Amstrad Notebook NC200 Manual
Section 7 - BBC BASIC

BBC BASIC

Your Notebook contains a powerful BASIC interpreter that can be
used to write your own programs. BASIC is the most popular
programming language for beginners to learn. In fact, the name
BASIC is short for Beginners All-purpose Symbolic Instruction Code
because it is designed with beginners in mind. Symbolic Instruction
Code is just a technical way of saying "programming language’.
The version of BASIC built into the Notebook is compatible with BBC
BASIC - the version that is taught in most schools and that is used
on many other computers.

When you are using the Notebook you can switch to using BASIC
at any time by holding down the ["*"* key and pressing [* . To
leave BASIC when you have finished you type the command
*QUIT. Programs are not saved automatically so you MUST use the
SAVE command before leaving BASIC to preserve any program you
have been working on.

You may like to set the "Preserve context during power off’ switch
in the Systemn Settings menu to "Yes' so that if you switch off while
using BASIC your program is still available when you next switch on.

When you are using BASIC you must ensure that Caps Lock is
switched on at all times because BASIC expects all its commands
to be entered in upper case. If you type in a command and just
see the message 'Mistake” then it may well be that you have
mistakenly used lower case. To help you, each time you switch to
BASIC Caps Lock will be turned on (if it wasn’t already). When you
leave BASIC the setting of Caps Lock will be returned to its original
state.

When BASIC is started the screen will clear and you will see the
message:

BBC BASIC (NC200) Version 3.12
{C) Copyright R.T.Russell 1992
>

The *>" symbol is the BASIC "prompt” and it shows that BASIC is ready
for you to type in a command. There are two ways in which BASIC
can be used. You can just type individual commands at the prompt
and the result of them will be shown immediately.

188

You might wonder why the lines have been numbered 10, 20, 30
rather than just 1, 2 and 3. The reason for this is that if you later
choose to add a line between 10 and 20 you could pick a number
such as 15 that would be stored between them. If the lines were
numbered 1, 2. 3 there would be no room to add a line between
1 and 2. You cannot use 1.5 as a line number. You can only use
whole numbers. Try typing in:

15 PRINT "The result of 3 added to 4 is ";

and then type LIST to see how that new line has been slofted in
between 10 and 20. The semi-colon on the end of line 15 is a special
command to BASIC that means that the next thing it prints should
appear on the same line as the preceding text.

So far, all that you have done is to enter the lines of a program. To
actually see what happens when the program runs you must give
the immediate command RUN. You will see the program print the
following:

Start
The result of 3 added to 4 is 7
End

When you have finished writing a program you can store it
permanently by using the SAVE command. You should type the
word SAVE followed by the name of a file in which you want to store
your BASIC program. The file name must be given in quotation
marks. To save your first program you could type:

SAVE "FIRST"

To clear the memory so that you can start entering a completely
new program you use the command NEW. Just type:

You must be careful with this command. If you type NEW without
first saving anything you want to keep you will lose everything that
you have entered. If you type the command LIST you will see that
your first program haos disappeared. BBC BASIC has a special
command, OLD, which you can use immediately after a NEW
command to recover what has just been erased. You must use OLD
straight away. as soon as you enter a new program line the old
program is lost forever,

Pages 188 — 191

Immediate commands

Try typing:
PRINT 3 + 4

When you press [~ the result, 7, is displayed immediately. This is
known as immediate mode. Now, try typing the following (you must
end every command by typing (=)

PRINT "Hello World"

(To type "Hello World" you must switch Caps Lock off temporarily by
pressing the [] key, but remember to switch it back on before
typing further BASIC commands)

PRINT is @ command which does just what the name suggests and
tells BASIC that when the line is executed it should print whatever
follows the command on the line. If you just want some text printed
you must put it in quotation marks. Anything that isn’t in quotation
marks BASIC assumes are further instructions. (As it did with 3 + 4,
which it understood were instruction to tell it to add 3 and 4).

Writing programs - a short tutorial

Besides immediote mode the other way in which BASIC is used is
for you to type in the lines of a program and these will be stored in
the Notebook's memory. This is known as program mode. It is only
when you give the special command, RUN, that the commands you
have entered are actually acted upon. BASIC knows to store a
command rather than act on it immediately if it starts with a
number. Each line you type in must have a different number and
the lines will be stored in number order. So, for example, if you were
to type:

10 PRINT "Start" (-
30 PRINT "End" [
20 PRINT 3 + 4 (=

The lines would actually be stored in the order 10, 20, 30. You can
see this by typing the immediate mode command LIST. This will
show you the program that is being held in the Notebook's
memory.

189

To check that the little program that you just saved can be
recovered, type the command:

LOAD "FIRST"

This will load the program back into BASIC's program memaory. You
can now type LIST and you will see that the program has been
recovered. However, we no longer want to keep a copy of that
program in BASIC's memory so type the NEW command to clear
BASIC's memory then a new program can be entfered. Now that
BASIC is ready for a new program fto be entered type in the
following small program. Remember that BASIC keywords (such as
PRINT, IF, THEN, GOTO) must be in upper case. If you forget you will
see the error "Mistake in line x" when you RUN the program.

10 NUM = 1

20 PRINT NUM

30 NUM = NUM + 1

40 IF NUM < 8 THEN GOTO 20

Type RUN and you should see that the program prints out the
numbers 1to 7.

Line 10 sets a variable called NUM to a starting value of 1. A
variable is the name you give to an item that will store either a
number or a piece of text. In this case the item is storing the number
1 for us and we have chosen to call it NUM.

Line 20 uses the PRINT command to show the contents of the
variable NUM on the screen. Because NUM is not enclosed in
quotation marks, BASIC knows that it must look up the value stored
in a variable called NUM instead of just printing the word NUM on
the screen.

Line 30 adds one onto the current value stored in NUM. In effect
the line is saying "Set the variable called NUM to be equal to the
value currently store in NUM with one added to it".

Line 40 checks to see if NUM is less than 8 (the left angle bracket is
a special symbol used by BASIC to mean ‘less than”). If NUM still has
a value less than 8 then BASIC goes on to execute the command
GOTO 20 which means, go back to line 20 and carry on running
the program from there. If NUM is 8 or more then the part of the
line after THEN is ignored and it goes on to execute the next line in

191

Amstrad Notebook NC200 Manual

Section 7 - BBC BASIC Pages 192 — 195

sequence. Because there are no more lines after 40, the program
stops running.

This simple 4 line program does not do very much but it has shown
many of the concepts involved in programming. There is the use of
variables to store information (NUM), there is the printing of results,
there is the manipulation of variables to change the value that is
held and there is the redirection of program flow depending on
whether a certain condition is met. It is this last feature that sets a
computer apart from a simple calculator. Calculators (however
complex) can only perform arithmetic. It is only once the flow of
calculation can be changed as the result of a previous operation
that a calculating device can be considered a computer.

Anyone familiar with BASIC may have already realised that there is
a much neater way of achieving exactly the same effect as that
program we have just entered. Type NEW to start a new program
and then enter the following 3 lines:

10 FOR num = 1 TO 7
20 PRINT num
30 NEXT num

To save you having to type in the numbers 10, 20, 30 you could type
the immediate mode command AUTO and BASIC will generate the
number in sequence for you starting at 10 and going up in steps of
10. When it shows "40" just press the [key to get back to the BASIC
prompt ">".

Notice that this time we have put NUM in lower case "num”. This just
makes the program easier to read. We could just as easily have
used NUM but the important thing to know is that BASIC treats
variable names as case sensitive which means that it treats NUM
and num (and Num and nUm and nuM and soc on) as different
variables. You must always make sure that variable names match
correctly. It may be easiest to always use lower case for variable
names and upper case for BASIC keywords. This makes your
programs easier to read.

The words FOR and NEXT are 2 commands in BASIC that are always
used fogether. The FOR command starts a variable at a certain
value and sets an upper limit for it. Then every command in
between the FOR and the NEXT command is executed and ore is
added to the variable. If it has not reached the limit a jump is made
back to the instruction after the FOR command. The command

192

had VAT added to it af the given rate. Like before, lines 10 and 20
use the INPUT command to get the user of the program fo input
some values. The wording of the question is enclosed in quotation
marks and this is followed by a semicolon () and then the name of
the variable in which the value should be stored. If you don't use
a semicolon then no question mark is printed.

Line 30 creates a new variable called total which is the result of
adding the amount multiplied by the VAT rate to the original
amount. The part of the calculation in parentheses is calculated
first before the final addition is performed. The asterisk (*) is the
symbol BASIC understands to mean "'multiply’ and the siash (/) is the
symbol that means "divide by".

Line 40 prints the original amount stored in the variable amount,
followed by the message (in quotation marks) followed by the
value of the variable total.

This program has one or two shortcomings. Firstly, it was not really
necessary to create the intermediate variable called total to hold
the result of the calculation. Instead, line 30 could be deleted and
line 40 changed to read

40 PRINT amount "With VAT added is " amount + (amount * vatrate / 100)

To delete line 30 just type the number 30 on its own and press [,
This is the standard way to remove a single line from a program. If
you run the program again it will work exactly as before even
though it has been simplified.

The next problem that we couid overcome is the fact that each
time the program is RUN it just allows one set of numbers to be
entered and then stops. What we could do with is having the
program loop back to the start each time it gets to the end. This is
easy to do. Just add line 50:

50 GOTO 10

When you type RUN it will ask you for the VAT rate and then the
amount and then display the result. it will then go back round and
ask for the VAT rate again. This isn’t really what we wanted. It should
only be necessary to enter the VAT rate once each time the
program is run. What's more, there doesn’t appear to be any way
to stop the program running.

194

NEXT is followed by the same name of the variable as used in the
FOR command so that any particular NEXT command knows which
FOR command it should jump back to.

So far our litle programs have had fixed numbers built into the
program (the first program could only show the result of 3 + 4, the
second and third would just print the numbers 1 to 7 on the screen).
Normally you will want to make your programs more versatile so
that each time they are run they ask for some information and then
modify the operation of the program according to the information
entered. You do this with the INPUT command.

Type LIST to see the current three line program and then type:

5 INPUT "Start";start
7 INPUT "Finish";finish
10 FOR num = start TO finish

Now type LIST and you will see that not only have two new lines
been added to the start of the program but line 10 has been
replaced by a new version. If you type in a new line with the same
number as an existing line then that existing line will be replaced
by the new version.

The sequence of numbers in our program is now 5, 7. 10, 20, 30. This
is bit untidy. Type the command RENUMBER and then LIST. You will
see that the program has been renumbered with the line numbers
going up In steps of 10.

When you RUN the modified program it will stop and ask for a Start
value. Type the number 10 and press [}, When it asks for "Finish”
type 14. It will then print the numbers 10 to 14. If you run it again
and enter different start and finish values it will print a different set
of numbers each time.

The following is another example of a program that asks for you to
input numbers when it is run and then processes the numbers to
show a result.

10 INPUT "VAT rate as a percentage (0..100) "; vatrate
20 INPUT "Amount "; amount

30 total = amount + (amount * vatrate / 100)

40 PRINT amount " With VAT added is " total

When you RUN this program it will ask you to input the VAT Rate and
then an amount. It will print out what that amount is when it has

193

To stop the program press the " key. If you press the """ key when
a program is running it will stop running and the BASIC prompt will
appear after a message which says "Escape at line x°. This tells you
which line BASIC was executing when you stopped it

The easy answer to not being asked to input the VAT rate every time
is to make the destination of the final jump to be line 20. So type
the command:

EDIT 50

The current contents of line 50 will be displayed. Use the [=1=]
arrow keys to move the cursor to the end of the line and then
delete 10 and replace it with 20. When you have finished editing
the line press [~

If you ever EDIT o line and then reglise that you would like to keep
the old version just press [~ and your changes will be ignored. You
will find when editing lines that many of the quick methods you may
have leant about in the word processor can be used to move
about the line. For example, the left and right arrow keys [—T=]
pressed with [] will move a word at a time and when pressed
with £] will jump to the start or end of the line

In our program there is still a problem that the only way to stop the
program is by pressing the [~ key. As the program keeps waiting
to ask for an amount to be input we could arrange for the program
to stop running completely if the value 0 were input. Add the
following line:

25 IF amount = 0 THEN STOP

Including this line means that if the value 0 is input when the
program Is asking for ‘amount” the program will STOP. STOP is a
command to BASIC that does exactly what the name suggests and
stops a program running returning the BASIC prompt

The above has given you an idea of the first steps in learning BASIC
but unfortunately there isn‘t room in this manual for a complete
tutorial. What we suggest is that you get one of the many hundreds
of books available on programming in BASIC and you will find that
most of what they say applies equally well to the BBC BASIC in your
Notebook. If possible. get a book that is specifically written with BBC
BASIC in mind

195

Amstrad Notebook NC200 Manual

Section 7 - BBC BASIC Pages 196 — 199

Example BASIC programs

The following are a few simple programs that give a small taste of
what is possible in BASIC on the Notebook. Don’t worry too much
if you don’t understand all the commands used. You will probably
find them fun to use even if you do not understand exactly how
they work. One thing to watch is that you must type them exactly
as shown including all spaces and punctuation symbols. Don't
forget to press (= at the end of each line that you type

PROGRAM 1: Reaction time tester

This program uses the 1/100th second clock that BASIC gives access
to in order to time your reactions:
10 PRINT "Get ready..."

20 D = RND(300)+200

30 TIME = 0

40 REPEAT

50 UNTIL TIME > D

60 PRINT "Press a key..."

70 T = TIME

80 X = GET

90 T = TIME - T

100 PRINT "You took" T/100 " seconds.”

Line 20 picks a number at random between 0 and 300, adds 200 to
it to make it between 200 and 500 and then sets the clock to zero
in line 30.

Lines 40 and 50 then delay for that number of 1/100ths of a second.
(between 2 and 5 seconds)

Line 60 prints the message you must react to. The current time is
remembered in variable T and then after the GET statement in line
80 has got a key press a calculation is made to see how much time
has elapsed

This value is printed in line 100 (divided by 100 because it is a
measurement in 1/100ths not whole seconds so must be
converted)

Type NEW to clear any existing program. Type in the lines above,
then type RUN to use the program. You may like to use SAVE to save
a copy for later use.

semitones not ' /4 semitones. Finally it is added onto Cnote to make
the (*] key, (note=1) note C. The duration of note is set to */2aths
of a second ('/sth) so each key press will just make a short beep.

The last line of the program just directs control back round to line
20 so it will always wait for keys to be pressed (until the space bar
is used to stop the program).

Well that's the program but what do you do with it? Well, RUN it
and press some keys on the middle line of the keyboard. You should
hear musical notes. The keys have been picked to try and imitate
the black and white notes on a piano keyboard:

FX] () CuFd ()2
keys [0 10 1 L L L =G

C# Eb F# AbBb C# Eb F# Ab
notes C D EF G ABCDTETFG

So try tapping in the following tunes (spacing gives an idea of
rhythm)

Patriotic:
GGHTGH JJKJHGHGTG
GHJK LLL L KJ KKK K JH
JKIHG JKL ;KJHGE
Seafaring:
KIK AA GFDG KK LKL SS LKJL ##
Scottish and lyrical:
WTTYUU YTTEWW
WTTYUOPO
O PP O U UOJUYTE
WWTUOPOUYT

While you are using the program press the [+ 1= 15 | or [1 | keys
next to the [key and see what happens. When you have finished
press the space bar to stop the program running.

198

PROGRAM 2 : A musical organ program

10 k§ = "AWSEDFTGYHUJKOLP: ']#"+CHRS (13) : Cnote=96

20 a$ = GETS
30 IF a§ = " " THEN STOP
40 IF a§>="1" AND a$<="4" THEN Cnote=48* (ASC(a$)-ASC("0")) : GOTO 20

45 IF a$>="a" AND a$§<="z" THEN a$=CHRS (ASC(a$)-32)
50 note = INSTR(k§, a$)

60 IF note = 0 THEN GOTO 20

70 SOUND 1, 0, note*d + Cnote, 4

80 GoTO 20

Line 10 defines a string called k$ which hoids all the keys that the
program recognises. The (<] key is a special case as it returns the
value 13 that cannot be typed into a string - hence the "+ CHRS(13)"
at the end of the string. The variable Cnote stores the pitch value
for the musical note C. By varying this between 48, 96, 144 and 192
it is possible to play 4 octaves

Line 20 is the one which reads the keys pressed on the keyboard
and puts them into a$.

Line 30 gives us a neat way to stop the program (without having to
hit Stop). It tests to see if the character typed was the space bar
and if so the program stops.

Line 40 checks to see if the character type was between '1" and
4%, If it was it sets Cnote equal to 48 * the number 1,2 3 or 4.

Line 45 converts any lower case letters that have been typed into
upper case. This relies on the fact that the character numbers of all
the upper case letters are exactly 32 less than the lower case
letters. ASC converts a string to its character number and CHRS
converts a character number back to a string.

Assuming the key pressed wasn’t 1, 2, 3, 4 or space, Line 50 then
looks up the character that has been typed in k$ and sets the
variable called note to be equal to the position number (so A=1,
W=2, $=3, E=4 and so on up to [=)=21).

Line 60 then checks to see if note is zero (which means the key
wasn’t found in k$). If this is the case a jump is made back to line
20 to read another key.

The program will get to line 70 if the variable note contains a valid
note number. This is multiplied by 4 because sounds go up in

197

PROGRAM 3 : Scientific graph plotting

This program asks for a mathematical function to be typed in then
plots a curve of it on the screen.

10 pid = PI * 4 : st = pid / 480 : xscale = 480 / pid

20 INPUT "Function of x to plot (eg SIN(x)) : " func$
30 INPUT "Y scaling value (try 63 to start) : " yscale
40 CLG

50 PRINT TAB(0,0);func$

60 FOR x=0 TO pid STEP st

70 y = INT(EVAL(func$§)*yscale + 63)
B0 PLOT 69, x * xscale, y

90 NEXT x

Line 10 defines some constants to be used in the program (you can
have several statements on one line separated by colons “:). The
reason for making the variable pid is that we use the value of Pl
(3.14159) multiplied by 4 on several occasions so it is quicker to just
calculate it the once. The variable st is used as the STEP value in a
FOR..NEXT loop and xscale is used to make sure that the plotted
graph will exactly fill the full width of the screen

In line 20 The user Iis asked to input a function to plot. BBC BASIC is
very powerful in that one can type in a function of x and later have
it evaluated even though it is effectively just a string of characters.

Line 30 lets the user set a y scaling value. The reason for this is that
some graphs have a much larger amplitude (top to bottom height)
than others. Lower values input for y scaling will reduce the height
of the graph until it will fit on the screen.

Line 40 clears the graphics screen ready to plot the graph and line
50 just prints the function that has been input as a title. The TAB(O.0)
makes sure that the text appears in the first column of the first line
on screen

Line 60 sets up a FOR..NEXT loop that will step x from 0 to Pi*4 (this
is a measure of angle in radians and is the equivalent of 720
degrees or twice round a circle). So that 480 dots are printed across
the screen the previously calculated STEP value is used to increase
x in a very small increment each time.

Line 70 is the business end of the program that takes the function
of x that has been input and evoluates it with EVAL. The resultant y
value is multiplied up by the y scaling factor so that numbers
between 0 and 1 (such as you get from SIN(x)) will make a

199

Amstrad Notebook NC200 Manual

Section 7 - BBC BASIC Pages 200 — 203

noticeable displacement on the display (+/- 64 pixels from the
centre line). The resulting value is added to 63 to position it about
the middle of the screen and only the integer part is taken (using
the INT function) because co-ordinates with decimal fractions
would not make much sense to the PLOT command.

Each dot of the curve to be plotted is individually set by line 80. This
uses the ubiquitous PLOT command which has myriad uses. It just
so happens that "69" is the one that means plot a point at an
absolute (x.y) position. A list of all the possible PLOT commands is
given later in the manual.

Line 90 just completes the FOR..NEXT loop so that all 480 dots across
the screen are used.

When you RUN this program start off with an easy function. Enter
'SIN(x)" for the function (the word SIN must be In upper case but x
must be in lower case). When asked for the scaling value enter 63.

Having tried that, run the program again but this time enter the
function as:

SQR (ABS (SIN(x))})

again use a scale value of 63. The reason for the ABS function in
the above is to prevent the SQR (square root) function being given
a negative value which will just cause the program to stop with an
error.

For a final run of the program try the very interesting (and complex)
function:

SIN(x)*COS (x) - SIN(x)*SQR(x)

For the scaling value enter 16. This curve starts off with a small
amplitude but gets greater and greater as the plot continues.

Try making up your own functions using combinations of the various
mathematical functions in BASIC which are listed in the brief
summary of all BASIC commands that follows later.

produces one guadrant to a circle. It is far easier to use the
formulae that:

X = r sin(theta)
and
y = r cos(theta)

Then write a program that varies theta between 0 and 360 degrees
and calculate the (x.y) points on a circle. This is roughly what the
program does. However, it is recognised that a clock face only has
60 distinct points so there is no point in calculating 360 points. So
the program just counts theta up from 0 to 59 and then uses the
values of COS and SIN of theta multiplied by 6. As there is a lot of
sine and cosine calculations to be dane, the program does all the
calculations at the very start and stores the fixed results in two
arrays of variables. In addition to these a second set of arrays hold
the same results but shifted across the screen by 240 points and up
by 63. (To the centre of the screen).

The arrays are chosen to be integer arrays (that's what the “%" after
each name means) this makes them quicker to access and more
compact.

While the initial calculations are being made and the 60 points on
the clock face are being drawn, a check is made to see if theta is
divisible by 5 (using the MOD function). When it is a named
procedure (Draw_Hour_Biob) is called to make a bigger mark to
distinguish the twelve hour points on the clock face.

Once the face has been drawn the main loop of the program is
entered. Every second this reads the setting of the system date and
fime (in TIMES) and breaks out the hour, minutes and seconds
settings into separate strings. The strings are then converted to
numbers using the VAL function. For each of the three quantities a
call is made to the Draw_Hand named procedure. When this is
called two parameters are supplied. One is the setfting of hours,
minutes or seconds. And the other value passed is the length of the
pointer (*1.0 would be as long as the radius of the clock face, "0.4
is ?/sth the length of the radius and is used for the hour hand). Once
the strings have been converted to numbers the hour value is
multiplied by § to make it in the range 0..55. One twelfth of the
minutes setting is added so that the hour hand will take one of five
distinct positions between one hour and the next.

202

PROGRAM 4 : An analogue clock
10 DIM sn%(60), cs%(60), snoff%(60), csoffs(60)
20 CLG

30 FOR theta=0 TO 59

40 snt (theta) = INT(60 * SIN(RAD(theta * 6)))

50 snoff%(theta) = sn%(theta) + 240

60 csh(theta) = INT(60 * COS(RAD(theta * €)))

70 csoff¥(theta) = cst(theta) + 63

B0 PLOT 69, snoff%(theta), csoff%(theta)

90 IF (theta MOD 5)=0 THEN PROC_Draw_Rour Blob(theta)
100 NEXT theta

110 hour$=MIDS (TIMES, 17, 2)

120 min§=MID§ (TIMES, 20, 2)

130 sec$=MID§ (TIMES, 23, 2)

140 PRINT TAB(60, 4) MID$(TIMES, 17, 8)

150 hour=VAL(hour§) : min=VAL(min§) : sec=VAL(sec§)

153 IF hourl? THEN hour=hour-12

155 hour=hour*5 + (min/12)

160 PROC Draw_Hand (hour, 0.4)

170 PROC Draw_ Hand (min, 0.8)

180 PROC_Draw_Hand (sec, 0.9)

190 IF INKEY{l)=-1 THEN GOTO 110

200 sTOP

300 :

400 DEF PROC_Draw_Hand (time, length)

410 nawtime = time

420 IF time0) THEN oldtime=(time-1) ELSE oldtime=(time+59)
430 MOVE 240,63

440 PLOT 7, sn% (oldtime) * length + 240, cs%(oldtime) * length + 63
450 MOVE 240, 63

460 DRAW sn% (newtime) * length + 240, cs%(newtime) * length + 63
470 ENDPROC

480 :

500 DEF PROC_Draw_Hour_ Blob(angle)

510 MOVE snoff%(angle), csoff%(angle)

520 DRAW sn%(angle) * 1.1 + 240, cs%{angle) * 1.1 + 63
530 ENDPROC

It's a pretty mammoth program but we hope you think it is worth
the effort of typing it inl

The program draws a circular clock face and shows the current
time that the Notebook's clock is set to as a set of pointers on the
clock face. The time is shown as text digits alongside.

There are several ways to draw a cifc!g on a computer. One
method is to use the farmula for a circle r*=x* + y* and rearrange
this to give y=SQR(r - x°). 1 - the radius Is a fixed quantity (60 in our
case) so you just vary x between 0 and r and caiculate the
comesponding y values and plot the points. However, this only

201

After the calls to draw the hands a check is made to see if a key
is pressed. If one is then the program stops, otherwise it jumps back
to read the new time and re-draw the pointers. That forms the main
loop of the program. Line 300 with a single colon is just a neat way
of spacing the lines of the main program from the procedure
definitions that follow.

Finally there are the two procedures. The one to draw hands uses
two time settings, the current hour, minute or second and the
previous hour minute or second. It draws a blank line (PLOT 7) at
the old location and then draws in the new pointer. When
calculating the previous minute a special case of the hour/min/sec
being 0 is made. In this case the previous hour/min/sec would be
negative so 59 is added on.

The final procedure is the one that draws the extended legends on
the "hours’. It does this by drawing lines out from the circle edge fo
points that are 1.1*the radius further out.

We hope you enjoy these simple programs and may be inspired to
delve deeper into the world of BASIC programming. The range of
things you could attempt is endless. How about writing a drawing
package? Or a cardfile program? Or a spreadsheet? Or a game?
Or a terminal program to use the serial port (hint: treat it like a file
called "COM:") ?

203

Amstrad Notebook NC200 Manual

Section 7 - BBC BASIC Pages 204 — 205

Making programs run automaticaily

If you write a program in BASIC. each time you want to run it it
would seem that you have to switch to BASIC by pressing {21
and |” _, give a LOAD *filename" command and finally type RUN to
start the program running. If you want to make it easy for others to
use your program then give it the special name "AUTO". If there is
q file of this name in the Notebook’s memory then when you press
oo™) the program will be immediately loaded and start
running. It is possible to have a second file called NOTEPAD.RUN
which is also auto-run. This will be loaded and run after the program
called AUTO.

If such a program contains an OSCLIC'ESC OFF") command then
you might get into the situation that you could never get back to
BASIC's immediate mode. This is not a problem. Switch to the
wordprocessor's List Stored Documents screen and use - "] to
rename the file to something other than AUTO or NOTEPAD.RUN.

BASIC memory usage

BBC BASIC allocates as much RAM as possible for its use on entry,
up fo a maximum of about 40 Kbytes for user programs, variables
and stack. This figure cannot be increased by the addition of a
PCMCIA memory card but such a card would allow several
priograms to be stored and the CHAIN command could be used
to switch from one to the next.

If less than 40K of memory is available the value of PAGE will be
raised accordingly. At least 2 Kbytes of memory will be left free for
new files. Note that you must not raise HIMEM above its initial value
or lower PAGE below its initial value; any attempt to do so will most
probably crash the machine.

It may also be possible to crash the machine by injudicious use of
BBC BASIC's equivalent of the POKE command (?n = x). Also, almost
any attempt to use the assembler built into BBC BASIC will crash the
machine. If you do any of these things then the only way to correct
matters may be to perform a hard reset by holding down [=2 e7[=2
and "] when switching the machine on. This will lose all data and
documents stored in the machines memory. It would, therefore, be
advisable to avoid using any of these features unless you are
absolutely sure you know the effect they may have.

204

280 assembler

Unlike the Acorn computers that are based on the 6502 processor,
the Notebook is based on the Z80 processor. Consequently, the
ossembler built into the BASIC recognises Z80 mnemonics rather
than the 6502 variety, Assembly language programming is such an
advanced subject that there is no way it can be covered in this
manual. We would warn people not familiar with machine code
programming to avoid attempting to use the assembler feature as
it will almost certainly lead to a machine crash and subsegquent loss
of data.

Differences between BBC BASIC
on the Notebook and other computers

Not every feature of BBC BASIC is supported by the version in the
Notebook. Obviously the sound facilities are very limited and the
screen is only 480 pixels wide by 128 pixels deep. also, it can only
show two “colours”. This does mean that some of the standard BBC
BASIC commands are limited on the Notebook.

The following pages comprise a list of all the keywords recognised
in BBC BASIC, this is not a complete reference but may be useful to
those who already know a version of BASIC.

Following this is a description of operating system specific features
of BBC BASIC on the Notebook.

Those language elements which are machine specific, particularly
hardware-dependent features, are indicated accordingly. In most
cases their operation has been made as compatible as possible
with the original Acorn versions, within the constraints of the NC200
design and its operating system:

