Amstrad Notebook NC200 Manual
Section 8 - BBC BASIC Keywords

BASIC Keywords

The following Is a list of all the BBC BASIC keywords. Those not
supported on the Notebook are noted. Differences in operation of
some of the commands is also noted. This list is not intended to be
a complete reference of the language. There are many good
books available on the subject of programming in BASIC and many
of these talk specifically about the BBC version of the language.
This list may be useful for those who already know how to program
or for those inquisitve beginners who would like to experiment.

ABS
var = ABS (number)

Sets var equal to the absolute value of number. Negative numbers
are converted to positive. Positive numbers are untouched.

ACS
var = ACS(number)

Sets var equal to the arc-cosine of the number. The result is in
radians (which may be converted to degrees using the DEG
function)

ADVAL

The Notebook has no analogue input port or equivalent. Use of the
ADVAL function will result in the error message "Sorry” (error code
255).

AND
var = number AND number

Sets var equal to the logical bitwise AND of the two numeric
arguments.

ASC
var = ASC(string)

Sets var equal to the ASCII value of the first character of the given
string.

ASN

var = ASN(number)

Setfs var equal to the Arc Sine of the argument. Result is in radians.

206

CLEAR
CLEAR

This resets all dynamic variables to the unused condition. The only
variables left intact are the static variables A% to 2% and @%.

CLe

This statement clears the current graphics window (by default the
entire display) to the unlit ('white’) state. The graphics cursor is not
moved.

CLOSE
CLOSE#number

Closes the file identified by number.
CLS

This statement clears the current text window (by default the entire
display) to ‘space’ characters and moves the text cursor to the top
left

COLOUR
COLOR

The Notebook's (LCD) screen cannot display colours. Use of the
COLOUR statement will result in the error message “Sorry” (error
code 255). Limited control over text attributes can be obtained
with VDU which is explained in the description of VDU.

cos
var = COS(number)

Sets var equal to the Cosine of the angle number which is specified
in radians. The RAD function may be used to convert an angle in
degrees to radians.

COUNT
var = COUNT

Sets var equal to the number of characters sent to the display since
the last new line.

Pages 206 — 209

ATN
var = ATN(number)

Sets var equal to the Arc Tangent of the given number. The result
is in radians and may be converted to degrees using the DEG
function

AUTO
AUTO start, step

Starts generating automatic line numbers at line start and goes up
by step. If start and step aren’t given it starts at 10 and goes up in
steps of 10.

BGET
var = BGET#number

Sets var equal to the next character from the file that has been
opened as number. The file can also be "“COM:" for the serial port.

BPUT
BPUT#number, value

Writes the value to a file that has been opened as number. The file
could also be the serial port "COM:" or the parallel port "LPT:"

CALL
CALL address, parameters

Calls a machine code subroutine. Not for the faint hearted.

CHAIN
CHAIN string

Loads and then continues on to run the program stored in the file
whose name is given in string.

CHR$
var = CHRS$(number)

Sefs a string variable equal to the character whose ASCIl code
number is number.

207

DATA
DATA constant, constant, constant...

Used to include constant data within a program which may be
used by means of the READ command which will read it into
variables.

DEF
DEF PROCname
DEF FNname

Used to begin the definition of a named procedure or function. The
following example may give a taste of how this works:

10 PROCtest ("Hello World")
20 PRINT FN_Average (3,9, 14)
30 END

40 -

100 DEF PROCtest (string$)

110 PRINT string$

120 ENDPROC

130 :

200 DEF FNAverage(nl, n2, n3)
210 =(nl+n2+n3)/3

DEG
var = DEG(numben

Sets var equal to the number converted from radians to degrees.
In radians a complete circle is equal to 2*Pl while in degrees a
complete circle is 360 degrees so DEG just divides by 2Pl and
multiplies by 360 (which is the same as divide by Pl and multiply by
180).

DELETE
DELETE start, finish

Deletes a range of lines from a program. DELETE 10,100 would
remove all lines between 10 and 100 (inclusive). To delete a single
line it is easier just to type the line number on its own

DIM
DIM var, size

Reserves space for an array of items. For example DIM A(S) would
reserve space for 6 items A0), A(1), A(2)..A(B)

Amstrad Notebook NC200 Manual
Section 8 - BBC BASIC Keywords

Div
var = number DIV number

Sets varequal to the integer result after dividing the first number by
the second. The remainder is discarded. The function MOD can be
used to get the remainder.

DRAW x.y

Draws a straight line (in ‘lit" pixels) between the current position of
the graphics cursor and the specified co-ordinates, then moves the
graphics cursor to the specified position. The range of co-ordinates
corresponding to positions on the screen is 0 to 479 in the x-
direction and 0 to 127 in the y-direction. This statement is identical
to PLOT 5, x. v.

EDIT number

A single-line editor is provided, which is entered using the
cormmand EDIT number. The contents of two or more lines may be
concatenated using the syntax EDIT 1,2 but the intermediate line
numbers must be edited out, and the original lines deleted,
manually. A line may be duplicated by editing only the line
number.

ELSE
IF condition THEN ELSE ...

Used to provide an alternative sequence of commands if the
condition in an IF statement fails.

END
END

Marks the point where you would like the program to stop running
and return to the BASIC prompt (>). END is not necessary as a
program will stop once it has executed the highest line number but
END makes things tidy and can be used to END the program early.
It also is used to separate the main program from the procedure
and function definitions and other subroutines.

ENDPROC
ENDPROC

Marks the end of a procedure definition.

210

ERROR
ON ERROR GOTO
ON ERROR OFF

Used to trap errors. When an ON ERROR GOTO command is used
subsequent errors cause program control to go to the line identified
in the GOTO part of the command. ERR and ERL can be inspected
to see what caused the error and if it can be corrected

EVAL
var = EVAL(BASIC expression in a string)

This very powerful command passes the sting to the BASIC
expression handler and then sets var equal to the result. A simple 4
line program will turn BASIC into a sclentific calculator:

10 REPEAT

20 INPUT "Enter command : " ef

30 PRINT EVAL e$
40 UNTIL FALSE

When RUN this might give the following:

Enter command @ JIN(RAD(45))
0.707106781
Enter command : DEC(ATN(SQR(2)))

54.7356103

Enter command : [[MLO
Thu.19 Mar 1992, 00:27:42
EXP

var = EXP(numbern)

Sets var equal to the natural logarithm base (e=2.71828183) raised
to the power of number. The inverse of this function is provided by
LN.

EXT
var = EXT#number

This function returns the size. in bytes. of an opened file. In the
special case of the serial and parallel ports ("COM:* and ‘LPT:) a
non-zero returned value indicates that the output port is busy and
if written to may result in a "Device fault”. A returned value of zero
indicates that the output port is ready to receive more characters.

212

Pages 210 — 213

ENVELOPE

This feature is not supported on the Notebook. Use of the
ENVELOPE statement will result in the error message “Sorry” (error
code 255).

EOF
var = EOF#number

This function returns TRUE if the file pointer is at the end-of-file
identified by number and FALSE otherwise. In the special case of
the serial port ("COM:") TRUE indicates that there are no input
characters waiting while FALSE indicates that one or more
characters are waiting at the input.

EOR
var = number EOR number

Sets var equal to the logical bitwise exclusive OR of the two
numbers.

ERL
var = ERL

Sets var equal to the number of the last line that caused an error.

ERR
var = ERR

Sets var equal to the number of the last error code. The possible
codes are:

1 Out of range 18 Diviston by zero 33 Can't match FOR

4 Mistake 19 String too long 34 FOR variable
5 Missing | 20 Too big 36 No TO
6 Type mismatch 21 -ve root 38 No GOSUB
7 No FN 22 Log range 39 ON syntax
9 Missing * 23 Accuracy lost 40 ON range
10-Bad-DiM 24 Exp range 41 No such line
F Dt space 26 No such variable 42 Qut of DATA
12 Not LOCAL 27 Missing) 43 No REPEAT
13 No PROC 28 Bad HEX 45 Missing #
14-Array 29 No such FN/PROC
15 Subscript 30 Bad call
16 Syntax error 31 Arguments
17 Escape 32 No FOR
21
FALSE
var = FALSE

FALSE is a fixed variable defined as 0. As BASIC uses the value 0 to
mean FALSE in conditional tests such as IF and UNTIL you can use
FALSE in these situations. For example,

REPEAT

PRINT "Hello"®
UNTIL FALSE

will repeat forever (until Stop is pressed)

FN
var = FNname
DEF FNname

Used in both defining and using a named function. See DEF for
more details.

FOR
FOR var=start number TO finish number STEP step value

Used to start a repetitive loop for a fixed number of iterations. var
will start at the value start number and then, each time a
cormesponding NEXT instruction Is executed var will be increased by
step value (or just 1) until it reaches (or exceeds) finish number.

GCOL

The Notebook’s (LCD) screen cannot display colours. Use of the
GCOL statement will result in the error message “Sorry” (error code
255)

GET
var = GET

Sets var equal to the ASCII value of the next key pressed. Waits for
a key to be pressed before returning.

GETS
var$ = GETS

Sets the stiing variable var$ equal equal fo the next character key
pressed. It waits for a key press before returning.

213

Amstrad Notebook NC200 Manual
Section 8 - BBC BASIC Keywords

GOsus
GOSUB line

A jump is made to the section of program starting at fine. When the
next RETURN command is executed control returns to the statement
after the GOSUB command.

GOTO
GOTO line

Control is transferred to the line identified in the GOTO command.
To make programs easy to read the use of excessive GOTO
commands should be avoided. It is far better to change the flow
of a program using the FOR...NEXT, REPEAT...UNTIL, DEF PROC and
GOSUB structures.

HIMEM
HIMEM = number
var = HIMEM

Can be used either to set a new high address for the top of BASIC's
program memory or to find out what it is currently set to. It is unwise
to change this unless you are sure you know what you are doing
as you may crash the machine leading to the need to completely
reset it and lose all your documents. It is OK to reduce HIMEM but
do not increase it above its initial value

IF
IF condition THEN

Used to conditionally execute statements. The condition is tested
and if it results in a TRUE (-1) value the statements after THEN are
executed

INKEY
var = INKEY(time)

Sets var equal fo the ASCII value of the next key pressed. Unlike GET
It only waits for the length of time given by time in centiseconds. If
no key is pressed it returns -1. Use of INKEY with a negative argument
to test the state of each key independently is not supported

214

LEN

var = LEN(sfring$)

Sets var equal to the number of characters in the given string.
LET

LET var = value

LET assigns a value to a variable (either number or string). In fact
LET is optional and need not be used. So

LET X =X + 3

and

X=X+3
are exactly equivalent.

LINE
INPUT LINE

See INPUT LINE.

LIST
LIST number, number

Lists a program. If a single number is given then only that line is
shown. If both numbers are given then all lines between the two
are shown. While a program is listed you can press [~ to pause the
listing. Press it again to stop.

LISTO
LISTO number

LUSTO is used before the LIST command to control how the
subsequent listing is formatted. The number affects how the listing
is formatted. Valid numbers are 0 to 7. LISTO 7 gives the easiest to
follow listing.

LN
var = LN(number)

Sets var equal to the natural logarithm of the number. Natural logs
are to the base e (=2.71828183). The inverse of LN is EXP.

216

Pages 214 — 217

INKEY$
var$ = INKEYS(time)

Waits for time 1/100ths of a second for a key fo be pressed and
returns the character in vars. If no key is pushed in time it sets vars
to the null (empty) string

INPUT
INPUT "prompt fext”, var

Stops and displays the prompt text and then sets var equal to the
users response. var can also be a string variable to allow the user
to enter text as well as numbers,

INPUT LINE
INPUT LINE vars

Allows the user to type a string of text including commas, quotes
and leading spaces and assigns this to vars.

INPUT#
INPUT#number, var

Inputs variable var from the file identified by number.

INSTR
var = INSTR(string. string to find, number)

The first named string is searched to see if it contains the sfring fo
find and if so var is set to the position in the string where it occurs.
The search can be started part way into the string by giving a
number.

INT
var = INT(humber)

Converts a real number to a lower integer.

LEFT$
var$ = LEFTS(string$. number)

Takes the number of leftmost characters from string$ and assigns
them to vars.

215

LOAD
LOAD prog_name

The prog_name (in quotes or contained in string variable) is the
name of a document that contains a program to load.

LOCAL
LOCAL var

Specifies a variable that is only local within a procedure or function
declaration. The value is lost (undefined) outside of the proc/fn.

LOG
var = LOG(numbern)

Sets var equal to the base 10 logarithm of number. There is no
inverse function of LOG os such because the equivalent is to use
10nnumber (ie 10 raised to the power of a number).

LOMEM
LOMEM = var
var = LOMEM

May be used to read and set the point in memory where dynamic
data structures will be placed. It would be unwise to change this
unless you are absolutely certain that you know what you are
doing.

MID$

var$ = MIDS(string$, start, length)

Sets var$ equal fo a string of characters taken from string$ starting
at position start for length characters.

MOD
var = number MOD number

Divides the first number by the second and sets var equal o the
remainder. See also DIV which sets var equal to the integer result
of dividing one number by another.

MODE

This feature is not supported on the Notebook. Use of the MODE
statement will result in the error message "Sorry” (error code 255).

217

Amstrad Notebook NC200 Manual

Section 8 - BBC BASIC Keywords Pages 218 — 221

MOVE
MOVE x.y

Moves the graphics cursor to the specified co-ordinates, but does
not affect what is displayed. The range of co-ordinates
comesponding to positions on the screen is 0 (left) to 479 (right) in
the x-direction and 0 (bottom) to 127 (fop) in the y-direction. This
statement is identical to PLOT 4, x, y.

NEW
NEW

Clears the current program from memory. If you use this
accidentally you can immediately use OLD to recover it but OLD
will no longer function once you start to enfer new program lines
or set new variables.

NEXT
NEXT var

Used to mark the end of a FOR loop and cause a jump back to the
statement after FOR until the loop variable has reached its upper
limit. The var name can be used to make sure a jJump is made back
to the correct FOR command.

NOT
var = NOT number

Sets var equal to the bit by bit binary inversion of number.

oLp
oD

Used to recover a program immediately after the accidental use
of NEW.

ON

ON var GOTO line, line...

ON var GOSUB line, line...

ON var PROCone, PROCtwo, ...

Can be used to goto or gosub a number of different lines
depending on the value of var. Can also be used to call different
named procedures dependent on the value of var.

218

Pi
var = Pl

Sets var equal to the value of n 3.14159265, the ratio of a circle’s
circumference to its diameter.

PLOT
PLOT nx.y

A multi-purpose plotting statement, whose effect is controlled by
the number n. x must be in the range 0 to 479 and y 0 to 127. In
the following ‘relative” means that (x. y) are added onto the current
graphics cursor position to determine the destination. When
‘absolute’ co-ordinates are used they are always specified with
relation to the origin of the graphics screen at (0, 0).

n Action

Moves the graphics cursor relative to the last point.
Draws a line, in "black’, relative to the last point
Draws a line, in “inverse’, relative to the last point.
Draws a line, in "white’, relative fo the last point.
Moves the graphics cursor to the absolute position x.y.
Draws a line, in "black’, to the absolute position x.y.
Draws a line, in “inverse’, to the absolute position x.y
Draws a line, in ‘white’, to the absolute position x.y

NOOE N —-O

i
&

As 0-7, but plots the last point on the line twice (i.e. in the
‘inverting” modes omits the last point).

16-31 As 0-15, but draws the line dotted.

32-63 As 0-31, but plots the first point on the line twice
(i.e. in the “inverting” modes omits the first point).

64-71 As 0-7, but plots a single point at x.y.

72-79 Draws a horizontal line left and right from the point x.y
until the first “lit" pixel Is encountered, or the edge of
the window. This can be used to fill shapes.

80-87 Plots and fills a triangle defined by the two previously
visited points and the point xy.

220

OPENIN
var = OPENIN(string)

The document/file whose name is given by sfring is opened for input
(reading) and a file number is returned in var. This may be used in
the various file reading commands such as BGET# and INPUT#, If the
filename given is "COM:" then input will be read from the serial port.

OPENOUT
var = OPENOQUT(string)

The document/file whose name is given by sfring is opened for
output (writing) and a file number is returned in var. This may be
used in the various file writing commands such as BPUT#. If the
filename given is “COM:" then output will go to the serial port. If the
name Is "LPT:* then the output will be to the parallel printer port.

OPENUP
var = OPENUP(string)

Has the combined effect of OPENIN and OPENOUT. The device or
file is opened for reading and writing. Can be used with files and
the serial port "COM:"

OR
var = number OR number

Sefs var equal to the result of the logical bitwise OR of the two
numbers.

OSCLI
OSClLsting)

The string is passed to the operating system fo be executed. This
can be one of the star commands such as *CAIL That Is,
OSCLI(C"CAT"). Notice that * is not included.

PAGE
PAGE = var
var = PAGE

PAGE can be used to read or set the starting address of the current
program area. It would be extremely unwise to change this value
unless you are totally certain you know what you are doing.

219

n Action

88-95 Draws a horizontal line to the right of the point x.y until
the first ‘unlit’ pixel is encountered, or the edge of the
window. This can be used to “undraw” things.

96-103 Plots and fills a rectangle whose oppaosite corners are
defined by the last visited point and the point x.y.

POINT
var = POINT (x.y)

This function sets var to the state of the pixel at the specified
location, as 0 (unlit) or 1 (Iit). If the specified point is outside the
graphics window (taking intfo account the position of the graphics
origin) the value -1 is returned. x is in the range 0..479 and y is in the
range 0..127

POS
var = POS

This function sets var equal to the horizontal position (column) of
the text cursor with respect to the left-hand edge of the current
text window, in the range 0 to 79.

PRINT
PRINT var

Prints the contents of a variable or variables and fixed text on the
screen. The line of items following PRINT is passed to BASIC's
expression evaluator before output is produced. A tilde character
'~ can be used before numeric items that should print in
hexadecimal. Commas in the print list cause output to start at the
next tab stop. Semicolons mean the items follow on immediately
adjacent. A single apostrophe forces printing to start on a new line.

Print format can be controlled by setting the variable @% before
printing but there are too many options to describe here. The
functions TAB(x,y) and SPC(number) can be used in a print
statement to either position the cursor at location (x.y) or at a fixed
number of spaces from the current position.

PROC
PROCname

Used to invoke a named procedure that is defined using DEF PROC.

221

Amstrad Notebook NC200 Manual
Section 8 - BBC BASIC Keywords

PTR
PTR#number = var
var = PTR#number

Allows the random access pointer of file number to be read or set.

PUT
PUT port, var

Qutputs a value to an I/O port address. It would be very unwise
indeed to experiment with this command as you will almost
certainly crash the Notebook necessitating a reset which will lose
all stored data.

RAD
var = RAD(number)

Sets var equal to the value of number converted from degrees to
radians.

READ
READ var

Reads data from a DATA statement and assigns it to var.

REM
REM comment

Allows comments to be added to programs. Anything following
REM is considered a remark and will be ignored. It is good practice
to include comments in programs so that at a later date you will
understand what a particularly complicated line really does! It can
also be used to temporarily disable a command while testing a
program

RENUMBER
RENUMBER start, step

Renumbers @ program starting at line 10 and going up in steps of
10. If start and step are given then numbering will begin at start and
go up in units of sfep.

REPEAT
REPEAT

Used to begin a loop that ends with the command UNTIL.

222

that contains a name to use). It is very important to SAVE a program
you are working on before switching away from BASIC (or typing
*QUIT) as the program is not autornatically saved.

SGN
var = SGN (number)

Sets var equal to -1 if the number is negative, +1 if it is positive or 0
if number is zero.

SIN
var = SIN(number)

Sets var equal to the Sine of the given angle which must be
specified in radians. The RAD function can be used to change an
angle in degrees into radians before using the SIN function.

SOUND
SOUND channel, volume, pitch, duration

SOUND will makes a sound on the Notebook's speaker. The
Notebook has two sound channels so channel must be either 1 or
2. The volume is not variable so the volume parameter is ignored.
The pitch specifies the note to be played. A value of 100 is middle
C. Although each step of the pitch parameter should change the
pitch by a quarter semitone, the Notebook can only play notes in
steps of a semitone so there is no point using values that are not a
multiple of four. A pitch value of 0 will switch a sound channel off.

The duration is given in twentieths of a second in the range 0 to 254
The value -1 or 255 causes an indefinite sound, which can be
s?op{pe_d only by issuing another SOUND statement or by pressing
the B key. So, for example:

SOUND 1, 0, 136, 20

Wil play the A above middle C on channel 1 for 1 second
(20/20ths).

To play a two note chord, use a SOUND command with a duration
of -1 to start the first note on channel 1 and then use a second
SOUND command to play the other note “on top” on channel 2.
Sounds can be made to stop playing by using another SOUND
command with a duration of 0.

224

Pages 222 — 225

REPORT
REPORT

This prints the error message associated with the last error that
occurred and is usually used in an ON ERROR GOTO trap to print
an error message when your program determines that the error
which has occurred is not one that it can cope with.

RESTORE
RESTORE line

When using READ to read data from DAITA statements, RESTORE can
be used to set the reading pointer back to a specified line so that
data can be re-read.

RETURN
RETURN

Used at the end of a section of program that has been jumped to
by the GOSUB command. Control returns to the statement ofter
GOSUB.

RIGHTS
vars = RIGHTS(string$, number)

Sets var$ equal to the string of characters taken from the rightmost
end of string$ and of length number.

RND
var = RND(number)

Sets var equal to a random number between 1 and number. If
number is not given then the var is between 1 an &FFFFFFFF. If the
given number is negative then the random number generator is set
to a value based on that number and that number is returned in
var,

RUN
RUN

Starts running the program currently held in memory.

SAVE
SAVE prog_name

The current program in memory is saved fo a document called
prog_name (this may be either a name in quotes or a sfring variable

223

SPC
PRINT SPC(numbern)
INPUT SPC(numben

When used in either a PRINT or INPUT command it prints number
spaces before any following text.

SQRr
var = SQR(number)

Sets var equal to the square root of number.

STEP
FOR var=start TO finish STEP step

Allows a FOR..NEXT variable to be increased (or decreased) in steps
other than one.

STOP
STOP

Just like END it stops a program running but prints o message to say
where the program stopped. Liberal use of STOP commands can
help when developing a program to trace the flow of execution.

STR$
var$ = STRS(number)

Sets a string to be equal to a number in the same format that it
would be printed in. If a tilde is included between the § and open
parenthesis the number will be converted to hexadecimal.

STRINGS
var$ = STRINGS(number, string)

Sets var$ equal to number repetitions of string.

TAB
PRINT TAB(x.y)
INPUT TAB(x.y)

Used to arrange for the printed output of a PRINT or INPUT
command to appear on the screen at location (x.y) with respect
to the current text window.

225

Amstrad Notebook NC200 Manual
Section 8 - BBC BASIC Keywords

TAN
var = TAN(number)

Sets var equal to the Tangent of the angle number. This must be
specified in radians. To use degrees use the RAD function to convert
the value from degrees to radians before using TAN.

THEN
IF condition THEN

Intfroduces the statements in an IF command that should be
executed if the condition is met. The use of THEN is optional but
makes programs easier to read.

TIME
TIME = var
var = TIME

A variable that can be set and read to measure elapsed time. It
increases once every 1/100th of a second. Typically this is used to
measure a fixed amount of elapsed time. For example:

TIME = 0

REPEAT
UNTIL TIME > 1000

would pause for approximately 10 seconds.

TIMES
vars = TIMES
TIMES = var$

Sets varS equal to a string which contains the current date and time
in a fixed format. MID$ can be used to pick selected fields from this.
It is also possible to set the date and time stored in the Notebook
by setting the TIMES variable. The format of the returned string is
‘Day.dd Mon yyyy.hh:mm:ss” where Day is the day of week, dd the
day of month, Mon the month, yyyy the year, hh the hour (00-23),
mm the minute and ss the second. The time, date or both time and
date may be set by including the appropriate fields. When setting
the clock the day of week is ignored and may be omitted.

TO
FOR var = start TO finish

Used in a FOR statement to divide the starting value from the end
value of the loop variable.

226

VDU
VDU numbet number

Passes the elements of the list to the VDU emulator (see full
description below). ltems terminated by a semicolon are sent as
16-bit values, LSB first.

All console output is passed to o software emulator of the BBC
Micro’s VDU drivers. VDU codes perform a function similar to those
of the BBC Micro, consistent with the hardware and Operating
System differences:

VDU o ignored

VDU 1.n The following byte is sent to the printer, if enabled
(with VDU 2). If the printer is not enabled, the byte is
ditched. Any 8-bit value (0- 255) can be sent. This
works even when the VDU is disabled with VDU 21.

VDU 2 Enables the printer. Subsequent characters are sent
both toc the screen and to the printer. The only
control characters sent to the printer are BEL (7)., BS
(8), HT (9. LF (10), VT (11), FF (12) and CR (13). Bytes
which are parameters for VDU commands are not
sent to the printer, e.g. VDU 27,13 does not send a
carriage return to the printer.

vDU 3 Disables the printer. Cancels the effect of VDU 2.

VDU 4 Causes the text cursor to be displayed.

VDU 5 Causes the text cursor to be hidden.

VDU 6 Enables the screen display. Cancels the effect of
VDU 21.

VDU 7 Causes a "beep”

vDU 8 Moves the text cursor left one character. If it was at

the left edge of the window., it is wrapped to the
end of the previous row (right-hand edge of
window). If it was also on the top row of the text
window, it is moved to the bottom row.

VDU 9 Moves the text cursor right one character. If it was
at the right hand edge of the window, it is wrapped

228

Pages 226 — 229

TRACE

TRACE ON
TRACE OFF
TRACE number

The command TRACE ON will cause BASIC to print the number of
each line it executes in square brackets to allow the flow of
execution to be followed. Tracing can be turned off using the
command TRACE OFF. If the command TRACE number is used then
only line numbers below number will be printed. By placing all
subroutines at high numbered lines and the main program in the
low numbered lines you can arrange to only show tracing of the
main part of the program.

TRUE
var = TRUE

Sets var to be equal to the value -1 that BASIC understands as TRUE
in IF and UNTIL expressions

UNTIL
UNTIL condition

Ends a loop started by the REPEAT command. As long as the
condition is not met a jump will be made back to the statement
after REPEAT.

USR
var = USR(number)

Calls a machine code routine at address number and returns the
value of the HL and HL' registers to the named variable. Not a
command for the uninitiated in the black art of machine code
programming.

VAL
var = VAL(string)

Converts as much of a string that can be interpreted as o number
into @ numeric value and assigns it to var.

227

to the beginning of the next row (left-hand edge of
window). If it was also on the bottom row of the text
window, it is moved to the top row.

VDU 10 Moves the text cursor down one row. If it was on the
bottom row of the text window, the window scrolls
up

VDU 11 Moves the text cursor up one row. If it was on the
top row of the text window, it is moved to the bottom
row.

VDU 12 This is identical to CLS in BASIC. It clears the text

window to space characters and moves the text
cursor to the "home’ position (top-left corner of the
text window).

VDU 13 Moves the text cursor to the left-hand edge of the
window, but does not move it vertically

VDU 14 Enabiles inverse text.

VDU 15 Disables inverse text. Cancels the effect of VDU 14.

VDU 16 This is identical to CLG in BASIC. It clears the graphics
window to unlit (‘'white’) pixels. The graphics cursor
is not moved

vDuU 17 Enables bold text

VDU 18 Disables bold text. Cancels the effect of VDU 17

vDU 19 Enables underlined text.

VDU 20 Disables underlined text. Cancels the effect of VDU
19.

VDU 21 Disables VDU output, All subsequent VDU commands

except 1 to 6 are ignored. If the printer is enabled,
VDUs 7.8.92.10.11,12 and 13 will still be sent to the

printer.
VDU 22 ignored
VDU 23 Ilgnored

Amstrad Notebook NC200 Manual
Section 8 - BBC BASIC Keywords

VDU 24 leftx;bottomy.rightx;topy:

Sets the graphics window. Horizontal (x)
co-ordinates are in the range 0 (left) to 479 and
vertical (y) co-ordinates in the range 0 (bottom) to

127.

VDU 25, n, x: y:
This is identical to PLOT n, x, y in BASIC. See PLOT for
more details.

VDU 26 Resets the text and graphics windows to their default

positions (filling the whole screen), homes the text
cursor, moves the graphics cursor to 0.0 and resets
the graphics origin to 0.0.

VDU 27.n Sends the next byte to the screen without
interpreting it as a control code. Allows graphics
characters corresponding to VDU 0-31 and VDU 127
to be displayed. Acts in a similar way to VDU 1 for
the printer.

VDU 28, leftx, bottomy, rightx, topy

Sets the text window. Herizontal (x) co-ordinates are
in the range 0 (left) to 79 and vertical (y)
co-ordinates in the range 0 (top) to 7.

VDU 29.x. y: Moves the graphics origin to the specified
co-ordinates. Subsequent graphics co-ordinates are
with respect to this position.

VDU 30 Homes the text cursor, to the top-left corner of the
text window.

VDU 31, x, y Identical to PRINT TAB(x. y). in BASIC. Positions the text
cursor according to the next two bytes. The
co-ordinates are with respect to the edges of the
current text window.

VDU 127 Backspaces the cursor by one position and deletes
the character there.

230

“KEY n (string)

Redefines a key fo return the specified stiing. The key number n is
from 0 to 127, where 41 to 66 correspond to E4* | to B]
respectively. The string may contain the "escape” symbol | in order
to insert non-printing characters. For example, | M indicates (=, 17
indicates DEL, | | indicates the character | itself and || causes bit
7 of the following character to be set. If the string is enclosed in
quotes (which is optional) 1" allows the character * to be included.

‘LOAD filename aaaa

Loads the specified file into memory at hexadecimal address aaaa.
The load address must be specified, and point to a valid memory
location.

*PRINTER n

Selects the printer as parallel (n=0) or serial (n=1).
*RENAME oldfile newfile

Renames the file oldfile as newfile.

*SAVE filename aaaa bbbb
"SAVE filename aaaa +iill

Saves a specified range of memory to a file. The address range is
specified either as start address aaaa and end address +1 bbbb or
as start address aaaa and length il

*SPOOL (filename)

Copy all subsequent console output to the specified file. If the
filename is omitted, any current spool file is closed and spooling is
terminated.

*| comment
This is @ comment line. Anything following the | is ignored.

Note: To type the | symbol hold down [©] and press [.

232

Pages 230 — 233

VPOS
var = VPOS

Sets var equal to the vertical position (row) of the text cursor with
respect to the top of the curent text window, in the range 0 to 7.

WIDTH
WIDTH number

Sets the width of print zones. A value of zero will stop it taking any
action.

Operating System Commands

The following Operating System commands are implemented. They
may be accessed directly (e.g. "BYE) or via the OSCL! statement
(OSCLI "BYE").

‘BYE
aulT

Exits from BASIC and returns control to the Operating System.

"CAT
‘DIR

Lists a catalogue of all the stored files

*DELETE filename
*ERASE filename

Deletes the specified file.

*ESC (ONIOFF)

Enables or disables the abort action of the [~ key which is known
in BASIC as the ESCape key: after *ESC OFF the [*% key simply
returns the ASCII code ESC (27). *ESC ON, or "ESC. restores the
normal action of the 7 key.

*EXEC filename

Accepts console input from the specified file instead of from the
keyboard (note that GET and INKEY always read from the
keyboard).

231

BASIC and the Printer
To list a program on the printer type:

VDU 2
LIST

When listing Is finished type VDU 3 to cancel printer oufput.

To have the output of a PRINT command in a program only output
on the printer use something like the following:

10 VDU 2:VDU 21
20 PRINT "This only appears on the printer”
30 VDU 3:VDU 6

Operating System error messages
These (trappable) errors are related to operating system functions:

Access denied (189): An inappropriate operation was
attempted on a device (e.g.

reading from the parallel port).

A star command was invalid or
incorrectly formed.

Bad command (254):

An attempt to define a function
key string failed.

Bad key (251):

A sting was too long. or had
unmatched quotes.

Bad string (253):

The channel number passed fo a
filing function was invalid

Channel (222):

Close error (200): An error occurred when trying to

close a file.

Device fault (202): A time-out occurred when
reading or writing a device.

233

Amstrad Notebook NC200 Manual

Section 8 - BBC BASIC Keywords

File creation error (190):

File exists (196):

File not found (214).

File write error (198):

Too many open files (192):

An OPENOUT, SAVE, "SAVE or
*SPOOL falled. because the
specified file could not be
created (e.g. too many files).

A "RENAME command specified
the new name as the name of an
existing file.

A LOAD, ‘LOAD, *EXEC, *DELETE
or *RENAME failed, because the
specified file did not exist

An error occurred when writing a
file with SAVE, *SAVE, PRINT#,
BPUT# or "SPOOL, e.g. because of
insufficient memory.

An attempt was made to exceed
the maximum number of open
files (7).

Page 234

