
Developer's Toolkit
Supporting: Sound Master II®, Voice Master®,

Voice Master II®, MIDI Maestro
and Speech Thing®

Release 4.01

February 25, 1992

Software

Ryan S. Hanlon
Nick Skrepetos
Donny W. Fowler

Manual

Ryan S. Hanlon
Lance A. Williams
Donny W. Fowler
Nick Skrepetos
Eric Gustafson

©1990-92 Covox, Inc. — All Rights Reserved

COVOX INC.
675 Conger St.
Eugene, OR 97402

Tel (503) 342-1271 • FAX (503) 342-1283 • BBS (503) 342-4135

Trademark Acknowledgements

Ad Lib is a trademark of Ad Lib Inc.

Borland and dBase are trademarks of Borland International, Inc.
FoxPro and FoxPro2 are trademarks of Fox Software.

GRASP is a trademark of Paul Mace Software, Inc.
IBM and IBM PC are trademarks of International Business Machines Corp.
Intel is a trademark of Intel Corporation.
Microsoft is a trademark of Microsoft Corporation.
Show Partner is a trademark of Brightbill Roberts and Company, Ltd.
Tandy is a trademark of Tandy Corporation.
Yamaha is a trademark of Yamaha LSI.

Covox Software License

1. Grant of License. Covox grants to you the right to use one copy of the enclosed software
program (the "SOFTWARE") on a single terminal connected to a single computer (i.e.
with a single CPU). You may not network the SOFTWARE or otherwise use it on more
than one computer or computer terminal at the same time.

2. Copyright, Patents, and Trademarks. The SOFTWARE is owned by Covox, Inc. or its
suppliers and is protected by United States copyright laws and international treaty
provisions. Therefore, you must treat the SOFTWARE like any other copyrighted
material (e.g. a book or musical recording) except that you may either (a) make a copy
of the SOFTWARE solely for backup or archival purposes, or (b) transfer the
SOFTWARE to a single hard disk provided you keep the original solely for backup or
archival purposes. You may not copy the written material accompanying the
SOFTWARE. The voice recognition, data impression routines, and other routines that
might be present in this disk package are subject to existing patents and patents pending.
The names COVOX, VOICE MASTER, SPEECH THING, SOUND MASTER,
VOICE HARP, ̂d the Covox logo are registered trademarks of Covox, Inc.

3. Other Restrictions. You may not reverse engineer, decompile, or disassemble the com
piled SOFTWARE.

4. Development Software. The compiled library routines supplied by Covox may be used
in application software on a royalty-free basis provided that you: (a) distribute the com
piled and linked library routines only in conjunction with and as a part of your software
product; (b) the sign-on message for your software product must display that the sound
and/or speech software is the copyright of Covox, Inc.; (c) that the owners manual for
your software product must state in a conspicuous location that the sound and/or speech
software is licensed from Covox, Inc., that Covox hardware products are supported, and
where Covox products might be obtained; (d) that if the SOFTWARE is used to support
non-Covox sound hardware, Covox hardware must also be supported by your software
product, and; (e) you agree to indemnify, hold harmless, and defend Covox from and
against any claims or lawsuits, including attorney fees, that arise or result from the use
or distribution of our software product.

5. Exceptions. No part of the "SmoothTalker" text-to-speech software (SPEECH V2.EXE,
SPEECHV3.EXE, STALK.EXE, or STDRIVER.SYS) may be incorporated within
your software product.

c Limited Warranty Statement

Covox, Inc. guarantees the software disks to be free of manufacturing or duplication
defects for a period of one year from the date of purchase. Covox, Inc. will replace the
diskette free of charge, provided it is returned to the factory via prepaid transportation.

Liability Disclaimer

Software is provided on an "as is" basis. Covox, Inc. disclaims liability for direct, indirect
or incidental damages arising from the use of this software, including but not limited to
the interruption of service, loss of business or potential profits, legal actions or other
consequential damages even if Covox has been advised of the possibility of such damages.

Control of environmental factors by means of voice could expose the user to some risk.
Automatic voice recognition by machine remains an unreliable technology due to un
controllable variations in the way that normal speech is produced in an uncertain
acoustic environment. Covox, Inc. specifically disclaims liability as stated in the preced
ing paragraph when applied to voice recognition.

Software Update Poli<y I
Covox, Inc. reserves the right to incorporate software improvements in products without
prior notice and without obligation to replace previously issued software. Updated
software is available from the company at nominal cost. Current product information
will be sent to customers of record, namely, those that purchased directly from Covox,
Inc. and/or returned warranty cards.

INTRODUCTION ...1

Toolkit Filename Conventions 2

Library Header Files 3

CHAPTER 1 - Non-DMA Record and Play Functions 5

play2s, play3s, play4s 7

playS

playSs 13

playAny 16

record2s, recordSs, record4s 19

records 23

recordSs 26

playByte 29

playBytelnit 31

playByteUninit 33

recordByte 34

recordBytelnit 35

recordByteUninit 36

Error Codes: Non-DMA Functions 37

CHAPTER 2 - Buffer Pack And Unpack Functions 39

_CONVERT_DATA 40

packFirst, packNext 42

unpackFirst, unpackNext 46

CHAPTER 3 - DMA Record And Play Functions 51

Library Variables 52

dmaFlushQueue 53

dmalnit 54

dmaNumberlnQueue 56

dmaPlay 57

dmaRecord 60

dmaUninit 63

dmaBytesRemainmg 64
dmaGetChannel 66

dmaGetPort 68

dmaGetlRQNumber 70

dmaPause 72

dmaPortDetect 75

dmaSetRate 76

dmaUnpause 79
Error Codes: DMA Functions 80

CHAPTER 4-TSRPIAY Functions 81

_TSRPLAY__INFO 83
tsrFlushPiles 85

tsrGetProgramlD 86
tsrGetVersionString 87

tsrPause 88

tsrRemoveSystem 89
tsrResident 90

tsrSetupNewFiles 91
tsrStart 92

tsrUnpause 94
Error Codes: TSRPLAY Functions 95

CHAPTER 5 - BIOS Interrupt lA Sound Support 97
Running INT1ATSR.EXE 99

INT lAh: AH=81h (Get Sound Status) 100

INT lAh: AH=82h (Record Sound Buffer) 101

INT LAh: AH=83h (Play Sound Buffer) 103
INT lAh: AH=84h (Stop Sound I/O) 105

CHAPTER 6 - FoxPro/dBase Loadable Sound Drivers 107

CVXDMA 109

CVXINTT 110

CVXIRQ Ill

CVXPLAY 112

CVXPLAY2 113

CVXPLAYD 114

CVXPORT 115

CVXRATE 116

CVXREC 117

CVXREC2 118

CVXRECD 119

CVXUNIN 120

CHAPTER 7 - FM Synthesizer Functions 121

fmlnit 122

ftnNoteOff 123

finNoteOn 124

fmReset 126

fmSetFrequency 128

finSetlnstrument 130

j&nSetMode 132

ftnUninit 134

fmSetRegister 135

Error Codes: FM Synthesizer Functions 136

CHAPTER 8 - MIDI Functions 137

midilnit 138

midiFetchByte 139

midiOutByte 140

midiUninit 141

CHAPTER 9 - Covox Utility Functions 143

cvxBufferAUoc 144

cvxBufferFree 145

cvxHzToRate 146

cvxFileClose 147

cvxFileCreate 148

cvxFileOpen 150

cvxFileRead 151

cvxFileWrite 152

cvxRateToHz .153

Error Codes: Utility Functions 154

CHAPTER 10 - Programming With Polled (Non-DMA) I/O 155

Software Polling 155

Hardware Polling . .156

8254 Timer Bit Settings 158

CHAPTER 11 - Programming with Direct Memory Access 159
DMA Cycle (hardware) 159

Overview of Hardware Initialization 160

Programming Considerations 165

Multiple Page DMA Processing 165

CHAPTER 12 - Programming The FM Synthesizer 167

Overview 167

CHAPTER 13 - Programming The Covox MIDI 171

APPENDIX A - Covox Library Include Files 175

CVXDIGI.H 175

CVXFMSY.H 182

CVXMIDI.H 187

CVXUTIL.H 188 ^
CVXBRLND.H 190

CVXDEFS.H 192

APPENDIX B - Covox 16-Byte Sound File Header 193

APPENDIX C - Covox Hardware Devices 195

Physical Ports 195

Logical Port, IRQ, and DMA Channel Values 197

Hardware Capabilities 198

Hardware Diagrams 199

APPENDIX D - Keyboard Interrupt Handler 201

APPENDIX E - TSR DMA Sound File Playback Routine 205
General Description 205

Running TSRPLAY.EXE 207

Using TSRPLAY With Presentation Software 208

APPENDIX F - Covox Library Changes 209

INDEX 213

INTRODUCTION

Welcome to the Covox Developer's Toolkit. This package allows you to incorporate
music, voice smd other sound effects into your own software applications for the IBM
PC and its compatibles. All Covox products are supported, including the Speech Thing,
Voice Master Key System, Voice Master Key System II, MIDI Maestro and Sound
Master II.

The Developer's Toolkit manual is separated into thirteen chapters. The first six chapters
document the input and output of digitized sound, and are divided as follows:

1. Non-DMA Record and Play Functions.
2. Buffer Pack and Unpack Functions.
3. DMA Record and Playback Functions.

4. TSRPLAY Functions.

5. BIOS Interrupt lA Sound Support.
6. FoxPro and dBase Sound Support.

Programmers interested in the musical capabilities of the Covox MIDI Maestro and
Sound Master n cards should refer to the following two chapters:

7. FM Synthesizer Functions.
8. MIDI Functions.

Chapter nine consists of general utility functions.

9. Covox Utility Functions.

The final four chapters of the manual describe, in low-level detail, the basics of program
ming the Covox hardware interfaces.

10. Programming With Polled (non-DMA) I/O.
11. Programming With Direct Memory Access.
12. Programming the FM Synthesizer.
13. Programming MIDI.

The Developer's Toolkit includes small, medium, compact and large model libraries
compiled with Microsoft C 6.0 and Borland C 2.0. These object libraries include all the
necessary functions for programming digitized I/O, MTOI and the FM Synthesizer.

Library Filename Conventions

The libraries are named according to model size, type of tool, compiler, and language,
as follows:

<model> <tool type> <compiler> <language>.lib

model:

too! type:

compilen

language:

'S', 'M', 'C or 'L' for the library model size.

'MIDI' for MIDI tools.

'DIGI' for Digitized I/O tools.

'FMSV for FM Synthesizer tools.

'UTIL' for Utility tools.

'M' or 'B' indicating Microsoft or Borland.

'C for the C programming language.

Examples

SMIDIBC.LIB

• Small model

• MIDI tools

• Borland compiler

• C language

LDIGIMCXIB

• Large model

• Digitized I/O tools

• Microsoft compiler

• C language

Header Filename Conventions

The appropriate header file must be included when using the Covox libraries,

cvx <tool type>.h

"cvx" Stands for Covox.

tool type Corresponds to the value of < tool type > in the above libraries.

'MIDI' for MIDI.

'DIGI' for Digitized I/O.

'FMSV for FM Synthesizer.

'UTIL' for utility functions.

Introduction

When using the Toolkit libraries, the appropriate header files must be included at the
beginning of the program performing the function calls. The following header files are
printed out in Appendix A for convenient reference.

CVXDIGI.H A header file to be included with all programs using the Digitized I/O
functions in Chapters 1 through 4.

CVXFMSY.H A header file to be included with all programs using the FM functions
in Chapter 7.

CVXMIDI.H A header file to be included with all programs using the MIDI functions
in Chapter 8.

CVXUTIL.H A header file to be included with all programs using the utility functions
in Chapter 9.

CVXBRLND.H A header file automatically included with programs written in Borland
C (version 2.0).

Note: the above header files all include CVXDEFS.H.

CVXDEFS.H The following type definition statements are taken from the
CVXDEFS.H file. These definitions are used in all library header files
and in the example code throughout the Toolkit. They have been in
cluded for ease of use, code compaction and code portability.

typedef void VOID;

typedef unsigned BOOL;

typedef unsigned WORD;

typedef unsigned char BYTE;

typedef unsigned long LONG;

typedef unsigned long DWORD;

typedef BYTE * PSTR;

typedef BYTE * PBYTE;

typedef WORD * PWORD;

typedef LONG * PLONG;

typedef VOID * PVOID;

typedef BYTE far * LPSTR;
typedef BYTE far * LPBYTE;

typedef WORD far * LPWORD;

typedef LONG far * LPLONG;

typedef VOID far * LPVOID;

typedef BYTE huge * HPSTR;

typedef BYTE huge * HPBYTE;

typedef WORD huge * HPWORD;
typedef LONG huge * HPLONG;

typedef VOID huge * HPVOID;

typedef unsigned HANDLE;

Introduction

4 Introduotion

:--cHAFnERi-

Non-DMA Record and Play Functions

High-Level Functions

play2s record2s

play3s recordSs

play4s record4s

playS records

playSs recordSs

playAny

Low-Level Functions

playByte recordByte

playBytelnit recordBytelnit

playByteUninit recordByteUninit

This chapter describes both high and low level functions for recording and playback.

The high level functions, documented first in this chapter, use a method of I/O called
polling and require no initialization.

The records and playS functions record and play back industry standard 8 bit PCM
(Pulse Code Modulation) sound data. The recordSs and playSs functions record 8 bit
PCM sound data with optional silence encoding.

The record2s, recordSs and record4s functions record Covox's own brand of ADPCM

(Adaptive Differential PCM) sound data with optional silence encoding. The play2s,
playSs and play4s functions play back the ADPCM sound data.

Silence encoding may be adjusted or completely disabled in all of the record functions
that utilize silence encoding.

Chapter 1 5

The low level play and record functions must be initialized before use and uninitialized
when finished.

To record sound data using the low level functions, first initialize recording with record-
Bytelnit. Use the recordByte function to input the data, then use recordByteUninit to
deactivate recording.

To play back sound data using the low level functions, first initialize playback with play-
Bytelnit. Use the playByte function to output the data, then use playByteUninit to deac
tivate playback.

6 Chapter 1

play2s, playSs, play4s

Description Play a 2, 3 or 4 bit ADPCM sound buffer recorded with or without silence
encoding.

Prototype WORD play2s(LPSTR bufferStart, LONG bufferSize^ BYTEplaybaclRate^
WORDportOut, BOOL trebleFlag^ BOOL noiseFlag);

WORD play3s(LPSTR bujferStart, LONG buJferSize, BYTEplaybackRate^
WORDportOut, BOOL trebleFlag^ BOOL noiseFlag);

WORD play4s(LPSTR bujferStart, LONG bufferSize, BYTE playbackRate,
WORD portOut, BOOL trebleFlag, BOOL noiseFlag);

Parameters bufferStart A far pointer (LPSTR) to the sound buffer.

bujferSize A LONG value indicating the number of bytes to be played
from the buffer pointed to by bufferStart.

If bufferSize is not evenly divisible by 16, the remainder is ig
nored. If bufferSize is smaller than 16, the playback functions
return an error (JERRORJNVALIDJUFFERJSIZE).

playbackRate A BYTE value from 0 to 229, indicating the sampling rate at
which to play back the sound buffer.

liplaybackRate is 0, these functions look for the Covox 16-byte
header at the beginning of the buffer pointed to by bufferStart.
If no header exists or the rate in the header is 0, the default
value of 132 (%22 Hz) is used.

If playbackRate is larger than 229, it is set to 229 (44,191 Hz).

See Appendix B for rate value descriptions.

portOut This WORD value designates which DAC port to use for
playback. If the value of portOut is not one of the Covox logical
port values shown below, it represents the physical port ad
dress of the DAC.

The Covox logical port values are:

_CV5LVM0 _CVX_LPT1

_CVX^VM1 .CVXLLPTZ

_CVX_VM2 _CVX_LPT3

_CVXLVM3 _CVX-ISP

See Appendix C for port value descriptions.

Chapter 1

play2s, play3s, piay4s

trehleFlag A flag which, if _TRUE, indicates that the output is to be dif
ferentiated. If ..FALSE, there is no differentiation.

Differentiation is used to achieve the effects of a high-pass
filter, which enhances the upper frequencies of the digitized
sound.

noiseFlag A flag which, if _TRUE, indicates that computer generated
noise is to be output during silence periods. If _FALSE,
silence periods are played back as dead silence.

Remarks These functions automatically detect and convert silence encoding if it exists in
the sound file. If JoStopFlag is not set to _TRUE during playback, the function
will play back the entire buffer, up to the limit specified by bufferSize.

See Appendix D for information on usage of _ioStopFlag.

Return Value If successful, these functions return a value of JERROR_NONE. The possible
return values are:

^RROR_NONE

_ERRORJPORTJNITJFAILED

JERRORJNVALIDJBUFFERJSIZE

See the last page of the chapter for error code descriptions.

Example

11 PLAY3S.C
// This program uses the non-DMA play3s function. Memory is
11 allocated for the sound data. A file name TEST1.V3S is opened
// and its contents read into a buffer. Finally, the allocated
// memory is freed.

#include <fcntl.h>
#include <stdio.h>
#include <bios.h>
#include <dos.h>
#include <errno.h>
#include "cvxdigi.h"

#define _BUFFER__SIZE
#define __SOUND_FILE
#define _TREBLE_FLAG
#define _NOISE FLAG

0x8000

"TEST1.V3S"
_FALSE
FALSE

VOID main(VOID)
{

HANDLE

WORD

WORD

LPSTR

fileHandle;
bytesRead;
buf ferSegment;
playBuffer;

8 Chapter 1

play2s, play3s, play4s

// Allocate memory for playback buffer.
if((_dos_allocmem((JBUFFER_SIZE / 16 + 1),

&bufferSegment)))
printf("ERROR : Cannot Allocate MemoryIl\n");

else

// play3s requires a far pointer (LPSTR)•
FP__SEG(playBuffer) = bufferSegment;
FP__OFF(playBuffer) = 0x0000;

// Open the file containing sound data.
if(_dos__open(_SOUND_FILE, 0__RD0NLy, &fileHandle))

printf("ERROR : %s not found.\n", _SOUND_FILE);
else

// Read sound data from file.
_dos_read(fileHandle, playBuffer, JBUFFER_SIZE,

fitbytesRead);

// Prompt user to hit a key to begin playback.
printf("Hit any key to begin playback.\n");

// Wait for keystroke.
while (l_bios_keybrd(_KEYBRD_READY));

// Clear keystroke(s) from keyboard buffer,
while(_bios_keybrd(_KEYBRD_READY))

getch();

// Notify user that playback has begun,
printf("Playing sound file ...");

// Playback a file of length bytesRead.
play3s(playBuffer, (LONG)bytesRead, _CVX__RATE_DEFAULT,

_CVX_VMO, _TREBLE__FLAG, _NOISE__FLAG);

// Notify user that playback has coirpleted.
printf(" complete.\n");

// Close file containing sound data.
_dos__close(fileHandle);

// Free memory used by buffer.
if(_dos_freemem(bufferSegment))

printf("ERROR : Cannot Free Memory!!\n");

Chapter 1

plays

Description Plays back a standard 8 bit PCM (Pulse Coded Modulation) sound buffer.

Prototype WORD play8(LPSTR buJferStart, LONG bufferSize^ BYTEplaybackRate,
WORD portOut, BOOL trebleFlag);

Parameters bufferStart A far pointer (LPSTR) to the sound buffer.

bufferSize A LONG value indicating the number of bytes to be played
from the buffer pointed to by bufferStart,

If bufferSize is not evenly divisible by 16, the remainder is ig
nored. If bufferSize is smaller than 16, the record functions return
an error (JIRRORJNVALIDJBUFFERJSIZE),

playbackRate A BYTE value from 0 to 229, indicating the sampling rate at
which to play back the sound buffer.

liplaybackRate is 0, playS looks for the Covox 16-byte header
at the beginning of the buffer pointed to by bufferStart, If no
header exists or the rate in the header is 0, the default value
of 132 (9622 Hz) is used.

If playbackRate is larger than 229, it is set to 229 (44,191 Hz).

See Appendix B for rate value descriptions.

portOut This WORD value designates which DAC port to use for
playback. If the value of portOut is not one of the Covox logical
port values shown below, it represents the physical port ad
dress of the DAC.

The Covox logical port values are:

_CVXL.VMO _CV?LLPT1

_CVX_VM1 _CVX_LPT2

_CVX-VM2 _CVX_LPT3

_CVX_VM3 JCVXJSF

See Appendix C for port value descriptions.

trebleFlag A flag which, if _TRUE, indicates that the output is to be dif
ferentiated. If JFALSE, there is no differentiation.

Differentiation is used to acheive the effects of a high-pass
filter, which enhances the upper frequencies of the digitized
sound.

10 Chapter 1

playS

Remarks This function plays back an industry standard 8 bit PCM sound buffer (i.e. a
buffer recorded with records). If JoStopFlag is not set to _TRUE during
playback, the function will play back the entire buffer, up to the limit specified
by bujferSize,

See Appendix D for information on usage of JoStopFlag.

Return Value If successful, playS returns a value of ̂ RROR_NONE, The possible return
values are:

JRRORJ^ONE

JSRRORJ'ORTJNITJ'AILED

JSRRORJNVALIDJUFFERJSIZE

JSRRORJ'LAY8_^USY

See the last page of the chapter for error code descriptions.

Example

11 PLAYS.c
// This program uses the non-DMA play8 function. Memory is
// allocated for the sound data. A file name TESTl.VS is opened
// and its contents read into a buffer. Finally^ the allocated
11 memory is freed.

finclude <fcntl.h>
linclude <stdio.h>
#include <bios.h>
iinclude <dos.h>
#include <errno.h>
Iinclude "cvxdigi.h"

#define _BUFFER_SIZE 0x8000
#define _SOUND_FILE "TESTl.VS"
#define _TPEBLE_FLAG _FALSE

VOID main(VOID)

^ HANDLE fileHandle;
WORD bytesRead;
WORD bufferSegment;
LPSTR playBuf fer;

// Allocate memory for playback buffer.
if((__dos_allocmem((_BUFFER_SIZE / 16+1

&bufferSegment)))
printf("ERROR : Cannot Allocate Memory! !\n");

else

11 play8 requires a far pointer (LPSTR).
FP_SEG(playBuffer) = bufferSegment;
FP_OFF(playBuffer) = 0x0000;

// <^en the file containing sound data.
if(_dos_open(_SOUND_FILE, OlRDONLY, fifileHandle))

printf("ERROR : %s not found.\n", _SOUND_FILE);

Chapter 1 11

playS

else
// Read sound data from file.
__dos__read(fileHandle, playBuffer, __BUFFER_SIZE,

&bytesRead);

// Prompt user to hit a key to begin playback.
printf("Hit any key to begin playback.\n");

11 Wait for keystroke.
while(!__bios_Jceybrd(_KEYBRD_READy));

// clear keystroke(s) from keyboard buffer,
while (jDios__keybrd(_KEyBRD_READY))

getchO;

// Notify user that playback has begun,
printf("Playing sound file ...");

// Playback a file of length bytesRead.
play8(playBuffer, (LONG)bytesRead, _CVX_RATE__DEFAULT,

_CVX_VMO, __TREBLE_FLAG);

// Notify user that playback has conpleted.
printf(" complete.\n");

// Close file containing sound data.
_dos_close(fileHandle);

// Free memory used by buffer.
* '(_dos_freemem(bufferSegmenI

printf("ERROR : Cannot Free Memory!!\n");
if(_dos_freemem(bufferSegn^nt))

12 Chapter 1

playSs

Description Plays back an 8 bit PCM sound buffer recorded with or without silence encod
ing.

Prototype WORD play8s(LPSTR bujferStart, LONG bufferSize, BYTE playbackR.ate^
WORD portOut, BOOL trebleFlag, BOOL noiseFlag);

Parameters bufferStart A far pointer (LPSTR) to the sound buffer.

bujferSize A LONG value indicating the number of bytes to be played
from the buffer pointed to by bufferStart.

If bufferSize is not evenly divisible by 16, the remainder is ig
nored. IfbufferSize is smaller than 16, the record functions will
return an error (JSRRORJNVALlD_^UFFERJSlZE).

playbackRate A BYTE value from 0 to 229, indicating the sampling rate at
which to play back the sound buffer.

UplaybackRate is 0, playSs looks for the Covox 16-byte header
at the beginning of the buffer pointed to by bufferStart. If no
header exists or the rate in the header is 0, the default value
of 132 (9622 Hz) is used.

IfplaybackRate is larger than 229, it is set to 229 (44,191 Hz).

See Appendix B for rate value descriptions.

portOut This WORD value designates which DAC port to use for
playback. If the value of portOut is not one of the Covox logical
port values shown below, it represents the physical port ad
dress of the DAC.

The Covox logical port values are:

_CVX_VMO _CVX^LPT1

_CVX_VM1 _CVX_LPT2

_CVXL_VM2 _CVX^LPT3

_CVX_VM3 _CVX_ISP

See Appendix C for port value descriptions.

trebleFlag A flag which, if _TRUE, indicates that the output is to be dif
ferentiated. If _FALSE, there is no differentiation.

Chapter 1 13

playSs

Differentiation is used to acheive the effects of a high-pass
filter, which enhances the upper frequencies of the digitized
sound.

noiseFlag A flag which, if _TRUE, indicates that computer generated
noise is to be output during silence periods. If JPALSE,
silence periods are played back as dead silence.

Remarks This function automatically detects and converts silence encoding if it exists in
the sound file. If JoStopFlag is not set to _TRUE during playback, the function
will play back the entire buffer, up to the limit specified by bufferSize,

See Appendix D for information on usage of JoStopFlag.

Retom Value If successful, playSs returns a value of _ERROR_NONE. The possible return
values are:

JERRORJ^ONE

JERRORJPORTJNITJAILED

JRRORJNVALIDJBUFFERJIZE

See the last page of the chapter for error code descriptions.

Example

// PLAY8S.C
// This program uses the non-DMA playSs function. Memory is
// allocated for the sound data. A file name TESTl.VSS is opened
// and its contents read into a buffer. Finally, the allocated
// memory is freed.

#include <fcntl.h>
#include <stdio.h>
#include <bios.h>
#include <dos.h>
#include <errno.h>
#include "cvxdigi.h"

tdefine _BUFFER_SIZE
#define __SOUND_FlLE
#define JTREBLE^FLAG
#def ine _NOISEJFLAG

0x8000
"TESTl.VSS"

_FALSE
FALSE

VOID main(VOID)
{

HANDLE

WORD

WORD

LPSTR

fileHandle;
bytesRead;
bufferSegment;
playBuffer;

// Allocate memory for playback buffer.
if((_dos_allocmem((_BUFEER_SIZE / 16 + 1

fibufferSegment)))

14 Chapter 1

playSs

printf("ERROR : Cannot Allocate Memory!!\n");
else

// play8s requires a far pointer (LPSTR).
— FP_SEG(playBuffer) = bufferSegment;

FP_OFF(playBuffer) = 0x0000;

// Open the file containing sound data.
if(_dos_open(_SOUND_FILE, O^RDONLY, &fileHandle))

printf("ERROR : %s not found.\n"^ _SOUND_FILE);
else

// Read sound data from file.
_dos_read(fileHandle, playBuffer, _BUFFER_SIZE,

&bytesRead);

// Prompt user to hit a key to begin]playback.
printf("Hit any key to begin playback.\n");

// Wait for keystroke.
while(!_bios_keybrd(JKEYBRD_READY));

// Clear keystroke(s) from keyboard buffer,
while(_bios_keybrd(_KEYBRD_READY))

getchO;

// Notify user that playback has begun,
printf("Playing sound file ...");

// Playback a file of length bytesRead.
play8s(playBuffer, (LONG)bytesRead, _CVX_RATE_DEFAULT,

' ̂ _CVX_VMO, _TREBLE_FLAG, _NOISE_FLAG);

// Notify user that playback has conpleted.
printf(" complete.\n");

// Close file containing sound data.
_dos__close(fileHandle);

// Free memory used by buffer.
if(_dos_freemem(bufferSegment))

printf("ERROR : Cannot Free Memory!!\n");

Chapter 1 15

playAny

Description

Prototype

Plays back a sound buffer of any Covox format.

WORD playAny(LPSTR bufferStart, LONG bufferSize, BYTE
playbackRate^ WORD portOuty BOOL trebleFlagy
BOOL noiseFlag);

Parameters bufferStart A far pointer (LPSTR) to the sound buffer.

bufferSize A LONG value indicating the number of bytes to be played
from the buffer pointed to by bufferStart.

If bufferSize is not evenly divisible by 76, the remainder is ig
nored. If bufferSize is smaller than 16, the record functions will
return an error (JERRORJNVALIDjBUFFERJSIZE).

playbackRate A BYTE value from 0 to 229, indicating the sampling rate at
which to play back the sound buffer.

liplaybackRate is 0, playAny reads the file header for the rate
at which it was recorded. If no header exists or the rate in the

header is 0, the default value of 132 (9622 Hz) is used.

liplaybackRate is larger than 229, it is set to 229 (44,191 Hz).

See Appendix B for rate value descriptions.

portOut This WORD value designates which DAC port to use for
playback. If the value oiportOut is not one of the Covox logical
port values shown below, it represents the physical port ad
dress of the DAC.

The Covox logical port values are:

_CVX_VMO _CVX_LPT1

_CVX_VM1 _CVX_LPT2

_CVX^VM2 ^CV3LLPT3

_CVX_VM3 _CVX_ISP

See Appendix C for port value descriptions.

trebleFlag A flag which, if _TRIJE, indicates that the output is to be dif
ferentiated. If _FALSE, there is no differentiation.

Differentiation is used to acheive the effects of a high-pass
filter, which enhances the upper frequencies of the digitized
sound.

16 Chapter 1

playAny

noiseFlag A flag which, if _TRUE, indicates that computer generated
noise is to be output during silence periods instead of dead
silence.

Remarks This function plays back a Covox sound buffer of any format previously men
tioned in this chapter. The packing format is retrieved from the sound file
header. If no header is present then the data is assumed to be 8 bit PCM.

If JoStopFlag is not set to _TRUE during playback, the function will play back
the entire buffer, up to the limit specified by bufferSize,

See Appendix D for information on usage of JoStopFlag.

Return Value If successful, playAny returns a value of _ERROR_NONE, The possible return
values are:

JERRORJSfONE

JIRRORJ'ORTJNITJFAILED

JSRRORJNVALID^UFFERJSIZE

See the last page of the chapter for error code descriptions.

Example

11 PLAYANY.C
11 This program uses the non-DMA playAny() function. Memory is
// allocated for the sound data. A file name TEST1.V2S is opened
// and its contents read into the buffer used with the call to
// playAny(). Finally, the allocated memory is freed.

#include <fcntl.h>
iinclude <stdio.h>
#include <bios.h>
finclude <dos.h>
#include <errno.h>
#include "cvxdigi.h"

#define JBUFFER_SIZE 0x8000
#define _SOUND_FILE "TEST1.V2S"
idefine _TREBLE_FLAG __FALSE
idefine JWOISE_FLAG _TRUE

VOID main(VOID)
{

HANDLE

WORD

WORD

LPSTR

fileHandle;
bytesRead;
buf ferSegment;
playBuffer;

)i

// Allocate memory for playback buffer.
if((_dos_allocmem((__BUFFER_SIZE / 16 + 1

&bufferSegment)))
printf("ERROR : Cannot Allocate Memory I! \n");

else

Chapter 1 17

playAny

{

}
}

11 playAny() requires a far pointer (LPSTR).
FP_SEG(playBuffer) = bufferSegment;
FP_pFF(playBuffer) = 0x0000;

// Open the file containing sound data.
if(_dos_open(_SOUND_FIIiE, 0_RD0NLy, sfileHandle)) ^ '

printf(**ERROR : %s not found. _j50UNDJFILE);
else

// Read sound data from file.
_dos_read(fileHandle, playBuffer, _BUFFER__SIZE, &bytesRead);

// Play a file of length bytesRead.
playAny(playBuffer, (LONG)bytesRead, _CVX_RATE_pEFAULT,

_CVX_VMO, _TREBLE_FIiAG, _NOISE_FLAG);

// Close file containing sound data.
_dos_close(fileHandle);

// Free memory used by buffer.
if(_dos__freemem(bufferSegment))

printf("ERROR : Cannot Free Memory!l\n");
}

18 Chapter 1

record2s, recordSs, record4s

Description Record a 2,3 or 4 bit ADPCM sound buffer with optional silence encoding.

Prototype WORD record2s(LPSTR bufferStart, LONG bufferSize^ BYTE
recordRate^ WORD port/n, WORD silenceRange,
LONG ♦ bytesRecorded);

WORD recordSs (LPSTR buffers tart, LONG bujferSize, BYTE
recordRate, WORDportin, WORD silenceRange
LONG ♦ bytesRecorded);

WORD record4s(LPSTR bufferStart, LONG bujferSize, BYTE
recordRate, WORD portin, WORD silenceRange
LONG ♦ bytesRecorded);

Parameters bufferStart A far pointer (LPSTR) to the buffer that is to contain the
recorded data.

bujferSize A LONG value indicating the number of bytes in the buffer
pointed to by bufferStart.

If bujferSize is not evenly divisible by 16, the remainder is ig
nored If bujferSize is less than 32, the record junctions will
retum an error (JIRRORJNVALIDJBUFFERJSIZE).

recordRate A BYTE value from 0 to 209, indicating the sampling rate at
which to record the sound buffer.

If recordRate is 0, the default value of 132 (9622 Hz) is used.
If recordRate is larger than 209, it is set to 21^ (25,3^ Hz).
See Appendix B for rate value descriptions.

portin This WORD value designates which ADC port to use for
recording. If the value oiportin is not one of the Covox logical
port values shown below, it represents the physical port ad
dress of the ADC.

The Covox logical port values are:

_CV3LVM0 .CVJLLPTl

.CV5LVM1 _CVXJLPT2
_CVX^VM2 _CVXJLPT3

_CV3LVM3

See Appendix C for port value descriptions.

Chapter 1 19

record2s, recordSs, record4s

silenceRange A WORD value that determines the range of sampled values
interpreted as silence. Note that all ranges center on 0x80, as
this value represents actual silence. The value passed repre
sents the following hexadecimal ranges:

.SILENCE_0

JSILENCEJ

.SILENCER

.SILENCER

_SILENCE_4

_SILENCE_5

See CVXDIGLH in Appendix A for silence range descriptions.

bytes- A pointer to a variable of type LONG, representing the num-
Recorded ber of bytes actually recorded by the function.

Remarks Using record2s, a typical recording will be about 1/4 the size of an 8 bit PCM
file. Using record3s, a typical recording will be about 1/3 the size of an 8 bit
PCM file. Using record4s, a typical recording will be about 1/2 the size of an 8
bit PCM file. In all three cases, the resulting sound file may be much shorter if
silence encoding is used and there are long periods of silence during recording.

A 16-byte header, described in Appendix B, precedes the resulting file.

If JloStopFlag is not set to _TRUE during recording, the entire buffer will be
filled with ADPCM data before recording is terminated. See Appendix D for
information on usage of JoStopFlag.

Return Value If successful, these functions return a value of JIRRORJ^ONE, The possible
return values are:

JERROR_NONE

JlRRORJORTJNrrj^AILED

j:rrorjnvalid_puffer_size

See the last page of this chapter for error code descriptions.

Example

11 RECORD3S.C
11 This program uses the non-DM^ recordSs function. Memory is
// allocated for the record^ the recording is performed, and the
// recorded buffer is written to a file. The memory allocated for
// the record buffer is freed.

#include <stdio.h>
#include <bios.h>
iinclude <dos.h>
#include <errno.h>
iinclude "cvxdigi.h"

idefine
idefine

BUFFER_SIZE
SOUND FILE

0x8000
"TEST1.V3S"

20 Chapter 1

record2s, recordSs, record4s

VOID main(VOID)
{

LONG bytesRecorded;
_ HANDLE flleHandle;

WORD bytesWritten;
WORD bufferSegment;
LPSTR recordBuffer;

11 Allocate memory for recording buffer. Segment of
// allocated memory is returned in bufferSegment.
if((_dos_allocmem((_BUFFER__SIZE / 16 + 1),

&bufferSegment)))
printf("ERROR : Cannot Allocate MenKDry!l\n");

else

// recordSs requires a far pointer (LPSTR).
FP_SEG(recordBuffer) = bufferSegment;
FP_OFF(recordBuffer) = 0x0000;

// Prompt user to hit a key to begin recording.
printf("Hit any key to begin recording\n");

// Wait for keystroke.
while (!_bios_keybrd(_KEYBRD_JREADY));

from keyboard bu
_KEYBRD_READY))

// Clear keystroke(s) from keyboard buffer,
while (__bios_keybrd(_K

getch();

// Notify user that recording has begun,
printf("Recording ...");

// Record a file of length __BUFFER_SIZE.
if(record3s(recordBuffer, (LONG)__BUFFER_SIZE,

_CVX_RATE_DEFAULT, _CVX_VMO,
_SILENCE_3, &bytesRecorded))

// Notify user that error occured during record,
printf(" aborted. Error during record3s().\n");

else

// Notify user that recording has completed,
printf(" complete.\n");

}

// If bytesRecorded is not zero, no error was encountered.
if(bytesRecorded)

// Open a new file to write sound data into.
if(__dos_creat(_SOUND_FlLE, _AjNORMAL, sfileHandle))

_ printf("ERROR : Cannot create file.\n");
printf (" Sound data lost.\n");

else

// Write sound data to file.
_dos_write(fileHandle, recordBuffer,

(WORD)bytesRecorded, &bytesWritten);

Chapter 1 21

record2s, recordSs, record4s

11 Close file containing sound data.
_dos_close(fileHandle);

}
}

// Free memory used by buffer.
if(_jdos_freemem(bufferSegment))

printf("ERROR s Cannot Free MemoryI!\n");

22 Chapter 1

records

Description Records a standard 8 bit PCM (Pulse Coded Modulation) file.

Prototype WORD record8(LPSTR bujferStart, LONG bujferSize, BYTE recordRate,
WORDportln^ LONG ♦ bytesRecorded);

Parameters bufferStart A far pointer (LPSTR) to the buffer that is to contain the
recorded data.

bufferSize A LONG value indicating the number of bytes in the buffer
pointed to by bufferStart,

If bufferSize is not evenly divisible by 16, the remainder is ig
nored, If bufferSize is less than 32 then the record functions will
retum an error (JIRRORJNVALIDJBUFFERJSIZE),

recordRate A BYTE value from 0 to 209, indicating the sampling rate at
which to record the sound buffer.

If recordRate is 0, the default value of 132 (9622 Hz) is used.
If recordRate is larger then 209, it is set to 209 (25,3^ Hz).

See Appendix B for rate value descriptions.

portin This WORD value designates which ADC port to use for
recording. If the value of portin is not one of the Covox logical
port values shown below, it represents the physical port ad
dress of the ADC.

The Covox logical port numbers are:

jyxjmo
_CVX_VM1

_CVXLVM2

_CVXLVM3

^CVX-LPTl
_CV5LLPT2

_CVXL.LPT3

See Appendix C for port value descriptions.

bytes- A pointer to a variable of type LONG, representing the num-
Recorded ber of bytes actually recorded by the function.

Remarks This function records an industry standard 8 bit PCM (Pulse Coded Modula
tion) file. A 16-byte header, described in Appendix B, precedes the resulting
file.

Chapter 1 23

records

If JoStopFlag is not set to _TRUE during recording, the entire buffer will be
filled with PCM data before recording is terminated. See Appendix D for infor
mation on usage of JoStopFlag.

Return Value If successful, these functions return a value of JSRRORJ^ONE. The possible
return values are:

j:rrorjs[one

JERRORJ'ORTJNITJ^AILED

JERRORJNVALIDJBUFFERMZE

See the last page of this chapter for error code descriptions.

Example

11 RECORDS.c
// This program uses the non-DMA records function. Memory is
// allocated for the record. The recording is performed and the
// recorded buffer is written to a file. The memory allocated for
// the record buffer is freed.

#include <stdio.h>
#include <bios.h>
finclude <dos.h>
#include <errno.h>
tinclude "cvxdigi.h"

#define __BUFFER_SIZE OxSOOO
#define _SOUND_FlLE "TESTI.VS"

VOID main(VOID)

LONG bytesRecorded;
HANDLE fileHandle;
WORD bytesWritten;
WORD buffersegment;
LPSTR recordBuffer;

// Allocate memory for recording buffer. Segment of the
// allocated memory is returned in buffersegment.
if((__dos_allocmem((_BUFFER_SIZE / 16 + 1) ̂

abuffersegment)))
printf("ERROR : Ceuinot Allocate Memoryn\n");

else

// records requires a far pointer (LPSTR).
FP__SEG(recordBuffer) = buffersegment;
FP_OFF(recordBuffer) = 0x0000;

//Prompt user to hit a key to begin recording.
printf("Hit any key to begin recording\n"); ' ̂

II Wait for keystroke.
while(2_bios_keybrd(__KEyBRD_READY));

// Clear keystroke(s) from keybosurd buffer,
while(__bios_keybrd(_KEYBRD_READY))

24 Chapter 1

records

getchO;

11 Notify user that recording has begun.
printf("Recording ...");

// Record a file of length _BUFFER_SIZE.
if(records(recordBuffer^ (LONG)J3UFFER__SIZE,

_CVXJRATE_DEFAULT, _CVX_VMO,
&bytesRecorded))

^ // Notify user that error occured during record.
printf(" cdxDrted. Error during records().\n");

}
else

^ // Notify user that recording has completed.
printf(" complete.\n");

}

//If bytesRecorded is not zero, no error was encountered.
if(bytesRecorded)

^ // open a new file to write sound data into.
if(_dos_creat(_SOUND_FILE, _A_NORMAL, fifileHandle))

^ printf("ERROR : Cannot create file.\n");
printf(" Sound data lost.\n");

else

^ // Write sound data to file.
_dos_write(fileHandle, recordBuffer,

(WORD)bytesRecorded, SbytesWritten);

// Close file containing sound data.
_jdos_close(fileHandle);

}
>

// Free memory used by buffer.
if(_dos_freemem(buffersegroent))

printf("ERROR : Cannot Free Memory!!\n");

Chapter 1 25

recordSs

Description Records 8 bit PCM speech with optional silence encoding.

Froto^ WORD record8s(LPSTR bufferStart, LONG bufferSize, BYTE
recordRate^ WORD porting WORD silenceRange,
LONG ♦ bytesRecorded);

Parameters bufferStart A far pointer (LPSTR) to the buffer that is to contain the
recorded data.

bujferSize A LONG value indicating the number of bytes in the buffer
pointed to by bufferStart.

IfbufferSize is not evenly divisible by 16, the remainder is ig
nored. IfbufferSte is less than 32 then the recordJunctions will
retum an error (JIRRORJNVALIDJBUFFERJIZE).

recordRate A BYTE value from 0 to 209, indicating the sampling rate at
which to record the sound buffer.

If recordRate is 0, the default value of 132 (9622 Hz) is used.
If recordRate is larger than 209, it is set to 209 (25,386 Hz).

See Appendix B for rate value descriptions.

portin This WORD value designates which ADC port to use for
recording. If the value of portin is not one of the Covox logical
port values shown below, it represents the physical port ad
dress of the ADC.

The Covox logical port values are:

.CV3LVM0 _CVXJLPT1
«CV)LVM1 _CVXXPT2
_CVX_VM2 _CVXJLPT3

_CVX_VM3

silenceRange A WORD value that determines the range of sampled values
that are to be encoded as silence. Note that all ranges center
around 0x80, as this value represents actual silence. The value
passed represents the following hexadedmal ranges:

«SILENCE_0

.SILENCEJ

.SILENCER

.SILENCED

.SILENCE_4

JSILENCE_5

See CVXDIGLH in Appendix A for silence range descriptions.

26 Chapter 1

bytes-
Recorded

recordSs

A pointer to a variable of type LONG, representing the num
ber of bytes actually recorded by the function.

Remarks

Return Value

This function records industry standard 8 bit PCM speech with optional silence
encoding. A typical recording will be about the same size as an 8 bit PCM file,
but may be much shorter if silence encoding is used and there are long periods
of silence during the recording.

A 16-byte header, described in Appendix B, precedes the resulting file.

If JoStopFlag is not set to _TRUE during recording, the entire buffer will be
filled with PCM data before recording is terminated. See Appendix D for infor
mation on usage of JoStopFlag.

If successful, these functions return a value of JERROR_NONE. The possible
return values are:

JIRRORJIONE

JIRRORJPORTJNITJFAILED

j:rrorjnvaud^uffer_size

See the last page of this chapter for error code descriptions.

Example

11 RECORD8S.C
// This program uses the non-DMA recordSs function. Memory is
11 allocated for the record. The recording is performed and the
// recorded buffer is written to a file. The memory allocated for
// the record buffer is freed.

iinclude <stdio.h>
#include <bios.h>
Iinclude <dos.h>
Iinclude <ermo.h>
Iinclude "cvxdigi.h"

#define JBUFFER_SIZE 0x8000
#define _SOUND_FIIiE "TESTl.VS"

VOID main(VOID)
{

LONG

HANDLE

WORD

WORD

LPSTR

bytesRecorded;
frleHandle;
byteswritten;
buf ferSegment;
recordBuf fer;

// Allocate memory for recording buffer, segment of the
// allocated memory is returned in bufferSegment.
if((_dos_allocmem((_BUFFER_SIZE / 16 + 1),

abuffersegment)))
printf("ERROR : Camnot Allocate Memory 11 \n");

Chapter 1 27

recordSs

else

{
11 recordSs requires a far pointer (LPSTR).
FP_SEG(recordBuffer) = bufferSegment;
FP_OFF(recordBuffer) = 0x0000;

// Prompt user to hit a key to begin recording.
printf("Hit any key to begin recordingXn");

// Wait for keystroke.
while (l_bios_keybrd(_KEyBRD_READY));

// Clear keystroke(s) from keyboard buffer,
while(jDios_keybrd(_KEYBRp_READY))

getcho;

// Notify user that recording has begun,
printf("Recording ...");

// Record a file of length _BUFFER_SIZE.
if(recordSs(recordBuffer, (LONG)__BUFFER_SIZE,

_CVX_RATE_DEFAULT, _CVX_VMO,
_SILENCE_3, &bytesRecorded))

// Notify user that error occured during record,
printf(" aJx^rted. Error during recordSs().\n");

else

// Notify user that recording has completed,
printf(" complete.\n");

/f It bytesRecorded is not zero, no error was encountered.
if(bytesRecorded)

// Open a new file to write sound data into.
if(_dos_creat(_SOUND_FILE, __A_NORMAL, fifileHandle))

printf("ERROR : Cannot create file.\n");
printf(" Sound data lost.Xn");

else

// Write sound data to file.
_dos_write(fileHandle, recordBuffer,

(WORD)bytesRecorded, fibytesWritten);

// close file containing sound data.
__dos_close(fileHandle);

// Free memory used by buffer.
if(_dos_freemem(bufferSegment))

printf ("ERROR : Cannot Free Memory 11 \n");

28 Chapter 1

playByte

Description Outputs one byte to the device specified in playBytelnit.

Prototype VOID p!ayByte(BYTE outByte);

Parameters outByte An 8 bit value to be output to a Digital to Analog converter.

Remarks This function outputs one byte to the device specified by the playBytelnit func
tion. If disableTimerFlagy/e& JFALSE when playBytelnit was called this proce
dure polls timer 2 before outputting the byte. If trebleFlag was _TRUE when
passed to playBytelnit, this Action outputs the differentiated result of the
stream of bytes it receives.

Return Value None.

Example

// BYTE^IO.C
// This program initializes the non-DMA recording and playback
// system. A byte is input and immediately output through the
// Voice Master default port.

iinclude <bios.h>
^ iinclude <stdio.h>

iinclude "cvxdigi.h"

Idefine _TREBLE_FLAG ^FALSE

VOID main(VOID)
{

BYTE aByte;
BOOL disableTimerFlag = _FALSE;
WORD physPort;

// Initialize recording system.
physPort = recordByteinit(_cvx_yMO^ _cvx_RATE_DEFAULT,

disableTimerFlag);

// Set timing flag so that no timing is performed during playback.
disableTimerFlag = _TRUE;

// Initialize playback system.
physPort = playBytelnit(_CVX_VMOj _CVX_jRATE_DEFAULT,

disableTimerFlag, JTREBLE^FLAG);

// If a physical port value was returned then record and
// playback a byte at a time.
if(physPort)

11 Wait for key hit to exit.
while (l_bios_keybrd(_KEYBRD_READY))

11 Input one byte from physPort.
aByte = recordByte();

11 Output one byte to physPort.

Chapter 1 29

playByte

playByte(aByte);
}

// Clear keystroke(s) from keyboard buffer.
while(kbhit()) ^

getch ();

II Uninitialize the playback system.
playByteUninit();

11 Uninitialize the recording system.
recordByteUninit();

else

printf("ERROR : I/O port initialization failed.\n");
}

}

30 Chapter 1

playBytelnit

Description Initializes hardware for output to any Covox device using the playByte function.

Protolype WORD playByteInit(WORD portOut, BYTE playbackRate^ BOOL
disableTimerFlagj BOOL trebleFlag);

Parameters portOut This WORD value designates which DAC port to use for
playback. If the value ofportOut is not one of the Covox logical
port values shown below, it represents the physical port ad
dress of the DAC.

The Covox logical port numbers are:

.CV}LVMO

_CVX_VM1

.CVX_VM2

.CVX_VM3

.CVXJLFTl

_CVXJLPT2

_CV5LLPT3

_CVX.ISP

See Appendix C for port value descriptions.

playbackRate A BYTE value between 0 and 229, indicating the rate at which
playByte will synchronize output. This value is ignored if
disableTimerFlag is _TRUE.

If playbackRate is larger then 229, it is set to 229.

See Appendix B for rate value descriptions.

disableTimer- A flag which, if _TRUE, indicates that the timer is to be used
Flag to synchronize output for the playByte function. If _FALSE,

each byte will be output to the hardware device as soon as
playByte is called.

Remarks

Return Value

trebleFlag A flag which, if _TRUE, indicates that the output is to be dif
ferentiated. If _FALSE, there is no differentiation.

Differentiation is used to achieve the effects of a high-pass
filter, which enhances the upper frequencies of the digitized
sound.

This function is used to initialize the hardware for output. Output is performed
one byte at a time using the playByte function. The playByteUninit function
must be called when all sound output is complete.

This function returns the physical port address. If the port is not found, (eg.,
LPT not supported or Sound Master 11 not installed), the function returns a 0.

Chapter 1 31

playBytelnit

Example

See playByte.

32 Chapter 1

playByteUninit

Description Resets the hardware and software after calling playBytelnlt.

Prototype WORD playByteUnlnit(VOID);

Parameters None.

Remarks This function is used to reset the hardware and software after an playBytelnlt
has been called. This function is to be called after you are done using the play-
Byte function.

Return Value The WORD value returned is either 0 if successful or 1 if unsuccessful.

Example

See playByte.

Chapter 1 33

recordByte

Description Inputs one byte from the device specifred in recordBytelnit

Prototype BYTE recordByte(VOID);

Parameters None.

Remarks This frmction inputs one byte from the device specified using the recordBytelnit
fimction. If the timer was enabled when recordBytelnit was called then this
procedure polls timer 2 before reading the byte.

Return Value The byte input from the selected ADC.

Example

See playByte.

34 Chapter 1

recordBytelnit

Description Initializes hardware for recording with the recordByte function.

Prototype WORD recordByteInit(WORD portln, WORD recordRate, BOOL
disableTimerFlag);

Parameters portln

recordRate

This WORD value designates which ADC port to use for
recording. If the value of portln is not one of the Covox logical
port values shown below, it represents the physical port ad
dress of the ADC.

The Covox logical port numbers are:

.CVX-VMO

_cvx:.vMi

_CVXL.VM2

_CVXLVM3

_CVX-LPT1

_CVX_LPT2

_CVXJLP13

A BYTE value from 0 to 209, indicating the rate at which
recordByte will synchronize input. This value is ignored if
disableTimerFlag is _TRUE.

If recordRate is larger then 209, it is set to 209.

See Appendix B for rate value descriptions.

Remarks

disableTimer- A flag which, if _TRUE, indicates that the timer is to be used
Flag to synchronize input for the recordByte function. If _FALSE,

each byte will be input from the hardware device as soon as
recordByte is called.

This function is used to initialize the hardware for recording. The input will be
performed a byte at a time using the function recordByte. The function record-
ByteUninit must be called when sound input is complete.

Return Value This function returns the physical port number; if the port was not found, (e.g.
LPT port not installed), the function returns 0.

Example

See playByte.

Chapter 1 35

record ByteUninit

Description Resets the hardware and software after calling recordBytelnit.

Prototype WORD recordByteUninit(VOID);

Parameters None.

Remarks This function is used to reset the hardware and software after an recordBytelnit
has been called. This function is to be called after you are done using the record-
Byte function.

Return Value The WORD value returned is either 0 if successful or 1 if unsuccessful.

Example

See playByte.

36 Chapter 1

Error Cod^: Non-DIUlA Fitncliotm

_ERROILNONE

No errors.

j:rroilport_init^failed

Unable to find the specified port.

_ERR0IL.INVALID_BUFFEILS1ZE

The size of the specified buffer was found to be less than the minimum accept
able value.

JERROIL.INVALIDJFORMAT

The buffer format does not correspond to the function called.

JERROR^PLAY8_BUSY

The playS function is already active.

Chapter 1 37

38 Chapter 1

Buffer Pack And Unpack Functions

Structure

_CONVERT_DATA

High-Level Functions

packFirst

packNext

unpackFirst

unpackNext

The functions in this chapter are used to pack and unpack sound data. The structure
_CONVERT_DATA needs to be appropriately initialized for use of the pack/unpack
functions.

The functions packFirst and packNext can be used to compress 8 bit PCM (Pulse Coded
Modulation) sound data to one of the available Covox ADPCM formats.

The functions unpackFirst and unpackNext can be used to unpack any of the Covox
ADPCM formats to 8 bit PCM.

Chapter 2 39

_CONVERT_DATA

Description

Structure

A typedef structure used by the packing and unpacking routines. This structure
must be properly initialized before calling any of the pack/unpack functions.

typedef struct _tagConvertDataStruct

{
sourcePointer;

sourceLength;

sourceUsed;

destinationPointer;

destinationLength;
destinationFilled;

buf ferFormat;

sampleRate;

silenceRange;
trebleFlag;

noiseFlag;

LPSTR

LONG

LONG

LPSTR

LONG

LONG

WORD

BYTE

WORD

BOOL

BOOL

} _CONVERT_DATA;

Structure
Elements

sourcePointer A far pointer (LPSTR) to the location of the 8 bit PCM sound
buffer when packing, or of the packed sound buffer when un
packing.

sourceLength A LONG value specifying the number of bytes in the buffer
pointed to hy sourcePointer.

sourceUsed Returned in this LONG variable is the number of bytes in the
buffer pointed to hy sourcePointer that have been converted.

When unpacking sound data, if the value oisourceUsed is less
than the value of sourceLengfh, there are still bytes remaining
to be unpacked in the buffer pointed to hy sourcePointer.

destination- A far pointer (LPSTR) to the location of the buffer to be pack-
Pointer ed or unpacked into.

destination- A LONG value indicating the number of bytes in the buffer
Length pointed to by destinationPointer.

destination- Returned in this LONG variable is the number of bytes in the
Filled buffer pointed to by destinationPointer that have been filled

with converted sound data.

bufferFormat A WORD value that indicates the format of the buffer that is
being packed to or unpacked from.

40 Chapter 2

_CONVERT_DATA

The possible values for bufferFormat are the following:

_FORMAT^V8

_FORMAT.V2S

_FORMAT^V3S

_FORMAT_V4S

_FORMAT_V8S

See Appendix B for buffer format descriptions.

sampleRate This BYTE value corresponds to the recordRate and playback-
Rate parameters of the record and play functions, respective
ly. It can be a value from 0 to 229.

If sampleRate is 0, the value in the source header is used to
determine the sampling rate of the destination buffer. If the
source header value is 0 or not present, the default value of
132 (9622 Hz) is used.

\isampleRate (or the rate specified in the header) is non-zero,
that value is placed in the destination header; if it is larger than
229, a value of 229 (44,191 Hz) is used.

See Appendix B for rate value descriptions.

silenceRange A WORD value that determines the range of sampled values
that are to be encoded as silence. Note that all ranges center
around 0x80, as this value represents actual silence. The value
passed represents the following hexadecimal ranges:

_SILENCE_0

_SILENCE_1

_SILENCEJ

.SILENCER

.SILENCE_4

_SILENCE_5

See CVXDIGLH in Appendix A for silence range descriptions.

trebleFlag A flag which, if _TRUE, indicates that the output is to be dif
ferentiated upon playback. If _FALSE, there is no differentia
tion performed.

Differentiation is used to achieve the effects of a high-pass
filter, which enhances the upper frequencies of the digitized
sound.

noiseFlag A flag which, if _TRUE, indicates that computer generated
noise is to be output during silence periods. If ̂ FALSE,
silence periods are played back as dead silence.

Chapter 2 41

packFirst, packNext

Description Convert an 8 bit PCM sound buffer to a packed ADPCM format.

Prototype WORD packFirst((_CONVERT_DATA far ♦) convert);

WORD packNext((_CONVERT_DATA far ♦) convert);

Parameters convert See the _CONVERT-.DATA description for information on
this structure.

Remarks The packFirst and packNext functions are used to convert an 8 bit PCM sound
buffer to a packed format.

The packFirst function is called before packNext to create the destination
header, set the necessary parameters and start the packing process. The pack-
Next function is called after packFirst or another packNext to continue the
packing process. Packing is finished when there is no more source data to be
packed.

The packFirst and packNext functions are useful in a circular buffer scheme,
like DMA recording and long file conversion.

When using packFirst the following _CONVERT_DATA parameters must be
initialized:

sourcePointer

sourceLengfh

destinationPointer

destinationLength

sampleRate

bujferFormat

silenceRange

When using packNext the following _CONVERT_DATA parameters must be
initialized:

sourcePointer

sourceLengfh

destinationPointer

destinationLength

Note: destinationPointer andsourcePointer are not changed by calls to packFirst
or packNext and only need to be initialized once.

Return Value Both the packFirst and the packNext functions return 0 if packing is successful;
a non-zero value if unsuccessful. If either function returns 0, sourceUsed con
tains the number of source bytes already packed by that function and
destinationPilled contains the number of bytes placed in the destination buffer.

42 Chapter 2

packFirst, packNext

Example

11 PACKS.C
11 This program reads 8 bit PCM sound data from a file.
// The 8 bit sound data is converted to 3 bit with silence
// encoding using the packFirst and packNext routines.

' // The 3 bit data is then written to a new file.
//
// The 2 buffers that are used in this program are allocated
// using _dos_allocmem. The size of both buffers is set to 32K.

#include <stdio.h>
#include <bios.h>
linclude <dos.h>
tinclude <errno.h>
iinclude <fcntl.h>
iinclude "cvxdigi.h"

♦define _BUFFER_SIZE 0x8000
♦define _PCM_FILE "TESTl.V8"
♦define _3_BIT_FILE "TEST1.V3S"

VOID main(VOID)

LONG recordedLength;
HANDLE pcmFileHandle;
HANDLE packedFileHandle;
WORD bytesWritten;
WORD bytesRead;

_CONVERT_DATA cnvrtData;
WORD pcmsegment;
LPSTR pcmBuf f er;
WORD convers ionSegment;
LPSTR convers ionBuf fer;

// Allocate memory for buffers used to read 8 bit PCM
// data from file.
if((_dos_allocmem((WORD)((_BUFFER_SIZE / 16) + 1),

&pcmsegment)))

printf("ERROR : Cannot allocate memory for PCM bufferl\n"
exit< 0);

else

// Pack requires a far pointer (LPSTR)
FP_SEG(pcxnBuffer) = pcmSegment;
FP_OFF(pcmBuffer) = 0x0000;

}

// Allocate memo^ for buffer used for packing 8 bit PCM to
// 3 bit ADPCM with silence encoding.

if(_dos__allocmem((WORD)((_BUFFER_SIZE / 16) + 1),
&conversionSegment))

printf("ERROR : Cannot allocate memory for PCM buffer l\n"
exit(0);

else

Chapter 2 43

packFirst, packNext

// pack requires a far pointer (LPSTR)
FP_SEG(conversionBuffer) = conversionSegment;
FP_OFF(conversionBuffer) = 0x0000;

}

// Open a file containg 8 bit PCM data.
if(_dos__open(__PCM_FIIiE, 0_RDONLY, fipcmFileHandle))

printf("ERROR : %s not found.\n", __PCM_FILE);
else

// Read header information from file.
_dos_read(pcmFileHandle, pcmBuffer, (WORD)_HEADER_LENGTH,

&bytesRead);

// Point _CONVERT_DATA element to same location that will contain
// 8 bit PCM data read from __PCM_FILE
cnvrtData.sourcePointer = (LPSTR)pcmBuffer;

// Point _CONVERT_DATA structure element to same location as
// conversionBuffer. This buffer will contain the data
// that has been packed.
cnvrtData.destinationPointer = (LPVOID)conversionBuffer;

// Open a new file to write 3 bit sound data.
if(__dos_creat(_3_BIT__FILE, _A_NORMAL, &packedFileHandle))

printf("ERROR : Cannot create file %s.\n", _3_BIT_FILE);
else

// Put header information into structure for call
//to packFirst.
cnvrtData.sampleRate = (PBYTE)(pcmBuffer +

_HEADER_RATE_OFFSET); ^ -
cnvrtData.bufferFormat = _F0RMAT_V3S;
cnvrtData. s ilenceRange = JTRUE;
cnvrtData. sourceLength = (LONG)_HEADER_LENGTH;
cnvrtData.destinationLength = (LONG)_HEADER_LENGTH;

// Features not needed during pack.
cnvrtData.trebleFlag = 0;
cnvrtData.noiseFlag = 0;

// Call the function to set up the sound file header.
if(packFirst((_CONVERT_DATA far *)&cnvrtData))

printf("ERROR : Function packFirst failed.\n");
else

^ // write the 16 bit header returned by packFirst()
//to file.
_dos_write(packedFileHandle, cnvrtData.destinationPointer,

(WORD)_HEADER_LENGTH, &bytesWritten);

// Increment pcmBuffer past the 16 byte header
pcmBuffer = pcmBuffer + (WORD)_HEADER_LENGTH;

// Setup loop to process contents of pcmBuffer
while (!eof(pcitiFileHandle))

^ // Read 8 bit PCM data from file.
_dos_read(pcmFileHandle, pcmBuffer, __BUFFER_SIZE,

&bytesRead);

// Put information into _CONVERT_DATA structure for

44 Chapter 2

packFirst, packNext

// packNext.
cnvrtData. sourceLength = bytesRead;
cnvrtData.destinationLength = _BUFFER_J5IZE;

11 Call the function to set up the next buffer.
if(packNext ((_CONVERT_pATA far *)&cnvrtData))

printf("ERROR : Data packing failure.\n");
else

_dos_write(packedFileHandle,
cnvrtData.destinationPointer,
(WORD)cnvrtData.destinationFilled,
&bytesWritten);

// Close files.
_dos_close(pcmFileHandle);
_dos_close(packedFileHandle);

}

// Free memory used for 3 bit sound data.
if(_dos_freemem(conversionSegment))

printf ("ERROR : Cannot free memory for ADPCM bufferl\n");

// Free memory used by 8 bit PCM buffer.
if(_dos_freemem(pcmsegment))

printf ("ERROR : cannot free memory for PCM buffer !\n");
}

Chapter 2 45

unpackFirst, unpackNext

Description Convert a packed ADPCM sound buffer to an 8 bit PCM format.

Prototype WORD unpackFlrst((_CONVERT_DATA far ♦) convert)

WORD unpackNext((_CONVERT_DATA far ♦) convert);

Parameters convert See the _CONVERT_DATA description for information on
this structure.

Remarks The unpackFirst and unpackNext functions are used to convert a packed sound
buffer to a standard 8 bit PCM format.

The unpackFirst function is called before unpackNext to create the Covox 16-
byte header, set the parameters and start the unpacking process. The unpack-
Next function is called after unpackFirst or another unpackNext to continue
the unpacking process. Continue using the function unpackNext on source data
left over from previous unpack calls to unpack the rest of the data.

These functions are useful in a circular buffer scheme, like DMA playback and
long file conversion.

When using unpackFirst the following _CONVERT_DATA parameters must
be initialized:

sourcePointer

sourceLength

destinationPointer

destinationLength

sampleRate

bufferformat

trebleFlag

noiseFlag

When using unpackNext the following .CONVERT_DATA parameters must
be initialized:

sourcePointer

sourceLengfh

destinationPointer

destinationLength

Note: destinationPointer and sourcePointer are not changed by calls to unpack-
First or unpackNext and only need to be initialized once.

Return Value Both the unpackFirst and unpackNext functions return 0 if unpacking is suc
cessful; a non-zero value indicates that an error occurred in the values passed
to the function. If the function returns 0, the number of source bytes already
unpacked by the function is stored in sourceUsed and the number of bytes placed
in the destination buffer is stored in destinationFilled.

46 Chapter 2

unpackFirst, unpackNext

Example

11 UNPACK3S.C
11 This program reads 3 bit sovind data from a file.
// The 3 bit sound data is converted to 8 bit PCM encoding
// using the unpackFirst and unpackNext routines.
// The 8 bit PCM data is then written to a new file.

// The 2 buffers that are used in this program cure allocated
// using _dos_allocmem. The size of both buffers is set to 32K.

iinclude
finclude
iinclude
iinclude
iinclude
iinclude

<stdio.h>
<bios.h>
<dos.h>
<errno.h>
<fcntl.h>
"cvxdigi.h"

idefine _BUFFER_SIZE
idefine _PCM_FILE
idefine _3_BIT_FILE

0x8000
"TEST1.V8"
"TEST1.V3S"

VOID main(VOID)
{

LONG

HANDLE

HANDLE

WORD

WORD

__CONVERT_DATA
WORD

LPSTR

WORD

LPSTR

WORD

• WORD

BOOL

recordedLength;
v3sFileHandie;
EcmFileHandle;
ytesWritten;

bytesRead;

cnvrtData;
v3sSegment;
v3sBuffer;
convers ionSegment;
convers ionBuf fer;
i r
sourceSize
exitFlag

= 0;
= _FALSE;

// Allocate memory for buffers used to read 3 bit
// data from file.
if((_dos_allocmem((WORD)((_BUFFER_SIZE / 16) + 1),

&v3ssegment)))

^ printf("ERROR : Cannot allocate memory for v3s buffer l\n");
exitFlag = JTRUE;

else

^ // unpack requires a far pointer (LPSTR)
FP_SEG(v3sBuffer) = v3sSegment;
FP_OFF(v3sBuffer) = 0x0000;

}

// Allocate memory for buffer used for unpacking 3 bit data with
// silence encoding to 8 bit PCM.

if(_dos_allocmem((WORD)((_BUFFER_SIZE / 16) + 1),
&conversionSegment))

^ printf("ERROR : Cannot allocate memory for ADPCM buffer I \n");
exitFlag = JTRUE;

Chapter 2 47

unpackFirst, unpackNext

else

{
// unpack requires a far pointer (LPSTR)
FP_SEG(conversionBuffer) = conversionSegment;
FP_OFF(conversionBuffer) = 0x0000;

// Open file containg 3 bit data.
if(_dos_open(_3_BIT_FILE, 0_RDONLY, &v3sFileHandle))

printf("ERROR : %s not found. \n'% __3_BITJF'ILE);
exitFlag = _TRUE;

else
// Read header information from file.
__dos_read(v3sFileHandle^ v3sBuffer, (WORD)_HEADER_LENGTH,

&bytesRead);

// Point __CONVERT_DATA structure element to same location as
// conversionBuffer. This buffer will contain the unpacked data
cnvrtData.destinationPointer = (LPVOID)conversionBuffer;

// Point _CONVERT^DATA Structure element to same location as
// buffer containing 3 bit data.
cnvrtData.sourcePointer = (LPVOID)v3sBuffer;

// Open a new file to write 8 bit sound data.
if(_dos_creat(__PCM_FILE, _A_NORWAL, &pcmFileHandle))

printf("ERROR : Cannot create file %s.\n", _PCM_FILE);
exitFlag = _TRUE; ^ ^

}

if(1exitFlag)

// Put header information into structure for call
//to unpackFirst.
cnvrtData.sampleRate = (PBYTE)(v3sBuffer +

_HEADER__RATE_OFFSET);
cnvrtData. bufferFormat = _FORMAT_y3S;
cnvrtData.trebleFlag = _FALSE;
cnvrtData. noiseFlag = _TRUE;

cnvrtData.destinationLength = (LONG)_HEADER_LENGTH;
cnvrtData.sourceLength = (LONG)_HEADER__LENGTH;

// Features not needed during unpack.
cnvrtData.silenceRange = 0;

// Make call to unpack first 16 bytes of 3 bit buffer,
if (unpackFirst ((_jCONVERT_DATA far *)&cnvrtData))

printf("ERROR : Function unpackFirst failed.\n");
exitFlag = _TRUE;

// Write the 16 bit header returned by unpackFirst()
// to file.
_dos_write(pcmFileHandle^ cnvrtData.destinationPointer^

(WORD)_HEADER_LENGTH, &bytesWritten);

48 Chapter 2

unpackFirst, unpackNext

// Increment vSsBuffer past the 16 byte header
vSsBuffer = v3sBuffer + (WORD)_HEADER_LENGTH;

// Setup loop to process contents of v3sBuffer.
do

// Read 3 bit data from file.
_dos_read(v3sFileHandle, (LPVOID)(((LONG)cnvrt-

Data.sourcePointer) + sourceSize),
(_BUFFER__SIZE - sourceSize), fibytesRead);

// Calculate the amount of 3 bit data we have left
//to unpack in the current buffer.
sourceSize = sourceSize + bytesRead;

// Put information into _CONVERT_DATA structure for
// unpackNext.
cnvrtData.sourceLength = (LONG)sourceSize;
cnvrtData.destinationLength = (LONG)_BUFFER_SIZE;

// Call function to unpack a buffer of 3 bit data.
if(unpackNext ((_CONVERT_DATA far *)&cnvrtData))

^ printf("ERROR : Data unpacking failure.\n");
exitFlag = _TRUE;

else
__dos_write (pcmFileHandle,

cnvrtData.destinationPointer,
_ (WORD)cnvrtData.destinationFilled^

&bytesWritten);

// Move left over source data to the beginning of the
// conversion buffer.
sourceSize = sourceSize - (WORD)cnvrtData.sourceUsed;

for(i = 0; i < sourceSize; i++)
*(cnvrtData.sourcePointer + i) =

*(cnvrtData.sourcePointer +
cnvrtData.sourceUsed + i);

// Check to see if we are done unpacking.
if((sourceSize < 16) && eof(v3sFileHandle))

exitFlag = JTRUE;

}

} while(1exitFlag);

// Close files.
_dos_close(v3sFileHandle);
_dos_close(pcmFileHandle);

}

// Free memory used for 3 bit sound data.
if(__dos_freemem(conversionsegment))

printf("ERROR : Cannot free memoryI\n");

11 Free memory used by 8 bit PCM buffer.
if(__dos_freemem(v3sSegment))

printf ("ERROR : Cannot free meitrary used for PCM buffer I \n");

Chapter 2 49

50 Chapter 2

DMA Record And Play Functions

High Level Routines

dmaFlushQueue

dmalnit

dmaNumberlnQueue

Low Level Routines

dmaBytesRemaining

dmaGetChannel

dmaGetPort

dmaGetlrqNumber

dmaPlay

dmaRecord

dmaUninit

dmaPause

dmaPortDetect

dmaSetRate

dmaUnpause

The library functions in this chapter utilize a FIFO (First In, First Out) queue for record
ing and playing buffers of sound data under DMA. This queue can hold a maximum of
4 requests.

The function dmalnit installs the interrupt handler to manage the interrupts fired when
DMA reaches a page boundary or the end of a buffer, dmalnit also initializes the FIFO
queue data structure and all related pointers. The interrupt handler and the queue
manipulation routines are referred to as the DMA sub-system.

A request is placed into the queue by the functions dmaPlay and dmaRecord.

The function dmaNumberlnQueue is used to determine the number of requests in the
DMA queue. The queue can hold a maximum of four requests. The function dmaFlush
Queue removes all pending DMA I/O requests from the queue.

The function dmaBytesRemaining can be utilized when DMA is stopped before a buffer
is completely played or recorded.

Chapter 3 51

The flag .dmalnProgressFlag is _TRUE when DMA is performing I/O.

The functions dmaPause and dmaUnpause disable and enable the DMA controller on
the motherboard, effectively starting and stopping DMA without completely removing
the DMA sub-system.

A call to dmaUninit will completely remove the DMA sub-system.

The following variables are available for use by those applications using the functions in
this chapter.

BYTE .dmalnProgressFlag: This flag, if _TRUE, indicates that a DMA operation is
currently running. .dmalnProgressFlag can be monitored to tell when DMA recording
or playback is flnished.

BYTE .dmaDevice: This variable, if .TRUE, indicates that DMA has been initialized to
use the Voice Master or Sound Master II. If the value of .dmaDevice is JFALSE, DMA
has not been initialized.

52 Chapter 3

dmaFlushQueue

Description Clears the Play and Record Queue and stops the present DMA operation.

Prototype WORD dmaFIushQueue(VOID);

Parameters None.

Remarks The dmaRecord and dmaPlay routines use a FIFO queue to store pending
record and play requests. This function clears the queue and stops the present
DMA operation.

Return Value If successful, dmaFlushQueue returns a value of _ERRORJ^ONE. The pos
sible return values are:

j:rrorj^one

_ERRORJ)MAJ40TJNITIALIZED

See the last page of the chapter for error code descriptions.

Example

See dmaRecord and dmaPiay.

Chapter 3 53

dmalnit

Description Initializes Covox hardware and software for DMA.

Proto^pe WORD dmalnitf WORD portJumpery WORD dmaChannel^
WORD irqNumber^ WORD *portAddress);

Parameters portJumper Port address jumper setting. Search for DMA-capable
devices (i.e VM or SMII) set to this port address.

_AUTODETECT

_CV5LVM0

_CVX.VM1

.CVXLVM2

_CVXL.VM3

See Appendix C for port value descriptions.

dmaChannel DMA channels searched to find active channel.

JiUTODETECT

_DMA-CHANNELl.1

.DMA^CHANNELu3

See Appendix C for DMA channel value descriptions.

irqNumber IRQ numbers searched to find active IRQ line.

JiUTODETECT

JRQJ
JRQ-J

JRQ-.4

JRQ^
JRQ-7

See Appendix C for IRQ value descriptions.

portAddress A pointer to a WORD, representing the physical port address
(0x220,0x240,0x280 or 0x2C0) detected by dmalnit.

Remarks This function finds which, if any, Covox DMA-capable hardware is installed. It
detects the jumper settings for the port address, DMA channel and IRQ num
ber, then initializes the hardware and software for DMA I/O.

Return Value If successful, dmalnit returns a value of JlRRORJhIONE, The possible return
values are:

j:rrorj^one

j:RRORJ>MA_ALREADYJNrnALIZED

j:rrorj>maj>etectjfailed

See the end of the chapter for error code descriptions.

54 Chapter 3

dmalnit

Example

See dmaRecord and dmaPlay.

Chapter 3 55

dmaNumberinQueue

Description Returns the number of DMA I/O requests in the Play and Record Queue.

Prototype WORD dmaNumberInQueue(VOID);

Parameters None.

Remarks The dmaRecord and dmaPlay routines use a FIFO queue to store DMA I/O
requests. A request is not removed from the queue until it is fully processed.

Return Value The number of DMA I/O requests in the Play and Record Queue.

Example

See dmaRecord and dmaPlay.

56 Chapter 3

dmaPlay

Description

Prototype

Remarks

Plays 8 bit PCM data in the background using DMA.

WORD dmaPlay(LPSTR bufferStart, LONG bufferSize,
BYTE playbackRate^ WORD repeatCount);

Parameters bufferStart

bufferSize

playbackRate

repeatCount

A far pointer (LPSTR) to a buffer within the first 1 MB of
system memory. This buffer will temporarily hold the sound
data while recording under DMA.

Length (in bytes) of the buffer pointed to by bujferStart.

A BYTE value from 0 to 229, indicating the sampling rate at
which to play back the sound buffer.

IfplaybackRate is 0, the default value of 132 (9622 Hz) is used.
If playbackRate is larger then 229, it is set to 229 (44,191 Hz).

See Appendix B for rate value descriptions.

Number of times to play back the data buffer. If repeatCount
is set to -1 (OxFFFF), the buffer is repeated indefinitely.

This function places a DMA playback request in the DMA queue and, if no
- other requests are in the queue, starts playing 8 bit PCM data in the background
using DMA. If other requests are in the queue, dmaPlay first waits until they
are complete, then sets the .dmalnProgressFlag flag (a BYTE) to 0 and ac
tivates interrupt 0x15 with register AX = 0x91F0 (A device post command with
device set to OxFO).

Return Value If successful, dmaPlay returns a value of JERROR_NONE. The possible return
values are:

_ERROR_NONE

_ERROR_DMA_NOTJNITIALIZED

JERRORJQUEUEJFULL

See the last page of the chapter for a description of error codes.

Chapter 3 57

dmaPlay

Example

11 DMAPLAY.C
11 This program reads 8 bit PCM sound data from a file.
11 The 8 bit sound data is then played back using DMA.
//
II The buffers that are used in this program are allocated
11 using __dos_allocmem. Each buffer is set to 16K.

#include <stdio.h>
#include <bios.h>
linclude <dos.h>
#include <errno.h>
iinclude <fcntl.h>
#include "cvxdigi.h"

#define _BUFFER_SIZE 0x4000 // Size of each DMA buffer.
#define _BUFFER_COUNT 4 // Number of DMA buffers.
#define _PCM_FILE -TEST1.V8" // File containing sound data.

extern _dmalnProgressFlag;
extern _dmaDevice;

VOID main(VOID)
{

HANDLE pcmFileHandle;
WORD pcmSegment[_BUFFER_jCOUNT];
LPSTR pcmBuffer[_BUFFER_COUNT];
WORD bytesRead;
WORD portAddress;
BYTE dmaRate; 1^^
WORD phase =0;
WORD repeatcount =1;
WORD initError;
WORD i;

11 Allocate memory for buffers used to read 8 bit PCM
// data from file.
for(i = 0; i < __BUFFER_C0UNT; i++)
{

if((_dos_allocmem((WORD)((_BUFFER_SIZE / 16) + 1),
&pcmSegment[i])))

printf("ERROR : Cannot allocate memoryI\n");
exit(0);

else

// dmaPlayO requires a far pointer (LPSTR)
FP_SEG(pcmBuffer[i]) = pcmiSegment[i];
FP_pFF(pcmBuffer[i]) = 0x0000;

}
}

// Initialize DMA. Setting each parameter to _AUTODETECT
II causes dmalnit to perform a search for the Port,
11 DMA channel, and IRQ setting respectively.
initError = dmalnit (_AOTODETECT, _AUTODETECT, _AUTODETECT,

&portAddress);

// If the variable _dmaDevice equals 0 then the DMA
// sub-system was not initialized correctly.

58 Chapter 3

dmaPlay
if(_dinaDevice = 0)

printf("ERROR = %d : dmalnit failed\n", initError);
else

// Open a file containing 8 bit PCM data.
if(_dos_ppen(̂ jPCMJFILE, O RDONLY, &pcinFileHcUidle))

^ printf ("ERROR : %s not loundAn", JPCMJFILE);
else

// Get header information^ if it exists, from file.
_dos_read(pcmFileHandle, (LPVOID)pcinBuffer[phase],

(WORD)_HEADERJLENGTH, fibytesRead);

// Get rate from header.
dmaRate = pcmBuffer[phase][_HEADER_RATE_OFFSET];

// Loop here until we have queued the entire file,
do

// Fill buffer with sound data.
__dos_read(pcmFileHandle, (LPVOID)pcmBuffer[phase],

(WORD)_BUFFER_SIZE, fibytesRead);

// Insert buffer into DMA queue.
dmaPlay((LPSTR)pcmBuffer[phase], (LONG)bytesRead,

dmaRate, repeatCount);

// Toggle phase so next buffer is accessed.
if(phase == (_BUFFER_COUNT - 1))

_ phase = 0;
else

phase++;

// Loop until a spot in the queue opens up.
while(dmaNimberlnQueue() == _BUFFER_COUNT);

} while(leof(pcmFileHandle));

}

// Loop until DMA has completed,
while(_dmaInProgressFlag);

}

}

// Clecu: all requests from the Play and Record Queue,
if(dmaFlushQueue())

printf("DMA uninit failure : could not flush queue.\n");

// Uninitialize the DMA system,
if(dmaUninit())

printf("DMA uninit failure.\n");

// Close the sound file.
__dos_close(pcmFileHandle);

// Free memory used by 8 bit PCM buffer.
for(i = (_BUFFER_COUNT - 1); i 1= -1; i—)

^ if(_dos freemem(pcmSegment[i]))
print"? ("ERROR : Cannot free memory I \n");

>

Chapter 3 59

dmaRecord

Description Records 8 bit PCM data in the background using DMA.

Prototype WORD dmaRecord(LPSTR bufferStart^ LONG bufferSize,
BYTE recordRate);

Parameters bufferStart A far pointer (LPSTR) to a buffer within the first 1 MB of
system memory. This buffer will temporarily hold the sound
data while recording under DMA.

bufferSize Length (in bytes) of the buffer pointed to by bufferStart.

recordRate A BYTE value from 0 to 209, indicating the sampling rate at
which to record the sound buffer.

If recordRate is 0, the default value of 132 (9622 Hz) is used.
If recordRate is larger then 209, it is set to 209 (25,386 Hz).

See Appendix B for rate value descriptions.

Remarks This function places a DMA record request in the DMA queue and, if no other
requests are in the queue, starts recording 8 bit PCM data in the background
using DMA. If other requests are in the queue, dmaRecord first waits until they
are complete, then sets the _dmaInProgressFlag flag (a BYTE) to 0 and ac
tivates interrupt 0x15 with register AX = Ox91FO (A device post command with
device set to OxFO).

Return Value If successful, dmaRecord returns a value of JSRROR_NONE. The possible
return values are:

JERROR_NONE

j:rrorjdma_notjnitialized

JSRRORJQUEUEJFULL

See the last page of the chapter for error code descriptions.

Example

// DMAREC.C
// This program records using DMA. Four buffers are gueued for
// DMA recording. After each buffer has completed being recorded
// it is written to a file.
//
// The buffers that are used in this program are allocated
// using _dos_allocmem. Each buffer is set to 32K.

finclude <stdio.h>
#include <bios.h>
#include <dos.h>

60 Chapter 3

dmaRecord

tinclude <errno.h>
linclude <fcntl.h>
iinclude "cvxdigi.h"

idefine _BUFFER_SIZE 0x8000 // Size of each DMA buffer.
— idefine _BUFFER__COUNT 4 // Number of DMA buffers.

idefine _PCM_FILE "TESTl.VB" // File for recorded data.

BYTE CVXHeader[] = { OxFF^0x55^OxFF,OxAA,OXFF,0x55,OxFF^OxAA,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };

extern _dmaInProgressFlag;
extern _dmaDevice;

VOID main(void)

^ HANDLE pcmFileHandle;
WORD pcmSegment[_BUFFER_COUNT];
LPSTR pcinBuffer[_BUFFER_COUNT];
WORD portAddress;
WORD bytesWritten;
WORD phase;
WORD initError;
WORD i;
// Allocate memory for buffers used to record 8 bit PCM.
for(i = 0; i < _BUFFERjCOUNT; i++)

^ if((_dos_allocmem((WORD)((_BUFFER_SIZE / 16) + 1),
&pcmsegment[i])))

printf("ERROR : Cauinot allocate memory!\n");
exit(0);

else

// dmeUlecord() requires a far pointer (LPSTR)
FP_SEG(pcmBuffer[i]) = pcmSegment [i];
FP_OFF(pcmBuffer[i]) = 0x0000;

}

// Initialize DMA. Setting each parameter to _AOTODETECT
// causes dmalnit to perform a search for the Port,
// DMA channel, and IRQ setting respectively.
initError = dmalnit (_AUTODETECT, _AUTODETECT, _AUTODETECT,

&portAddress);

//If the variable _dmaDevice equals 0 then the DMA
// sub-system was not initialize correctly.
if(_dmaDevice = 0)

printf("ERROR = %d : dmalnit failed\n", initError);
else

// Create file for recorded 8 bit PCM data.
if(_dos_creat(_PCM_FILE, _A_NORMAL, &pcmFileHandle))

printf("ERROR : Cannot create %s.\n", _PCM_FILE);
else

// Put rate and format into header.
CVXHeader[__HEADER_RATE_PFFSET] = _CVX_RATE_DEFAULT;
CVXHeader[JE!EADERJFORMAT_jOFFSET] = _FORMATJV8;

Chapter 3 61

dmaRecord

11 write header information to file.
_dosjwrite(pcmFileHandle, cvxHeader,

(WORD)_HEADERJLENGTH, &bytesWritten);

// Queue all buffers for recording.
for(i = (_BUFFER_COUNT - 1); i 1= -1; i—)

dmaRecord(pcmBuffer[i]/ < LONG)_BUFFER__SIZE,
(WORD)JCVX_RATE_PEFAULT);

11 The variable 'phase' will indicate when a buffer has
11 been filled with recorded sound data. One is subtracted
11 from phase so that when a buffer is finished, phase
11 will equal the return value of dmaNumberlnQueue.
phase = jBUFFER_jcouNT - 1;

11 Loop here until there are no more buffers left
//in queue,
do

^ // Loop until a spot in the queue opens up.
while(dmaNumberlnQueue() > phase);

// write recorded buffer to file.
_jdos_write(pcmFileHandle, pcmBuffer[phase],

_BUFFER_SIZE, &bytesWritten);

// Decrement phase so that we can tell when the
// next buffer has been recorded,
phase—;

} while(phase > 0);

//At this point the last buffer is being recorded,
while(_dmalnProgressFlag);

// write last recorded buffer to file.
_dos_write(pcmFileHandle, pcmBuffer[phase],

_BUFFERJ5IZE, fibytesWritten);
}

}

// clear all requests from the Play and Record Queue,
if (dmaFlushQueue ())

printf("DMA uninit failure : could not flush queue.\n");

// Uninitialize the DMA system.
if(dmauninito)

printf("DMA uninit failure.\n");

// close the sound file.
_dos_close(pcmFileHandle);

// Free memory used by 8 bit PCM buffer.
for(i = (_BUFFER_COUNT - 1); i 1= -1; i—)

^ if(_dos_freemem(pcmSegment[i]))
printf("ERROR : Cannot free memory I \n");

}

62 Chapter 3

dmallninit

Description Uninitializes the DMA sub-system.

Prototype WORD dmaUninit(VOID);

Parameters None.

Remarks This function uninitializes the DMA capabilities of a Covox sound board that
has been initialized with dmalnit. dmallninit must be called before exiting in
order to disable the hardware and restore the system back to its original state.

Return Value If successful, dmaUninit returns a value of JERROR_NONE. The possible
return values are:

JIRRORJ^ONE

_PMAJ>IOTJNITIALIZED

See the last page of the chapter for error code descriptions.

Example

See dmaRecord and dmaHay.

Chapter 3 63

dmaBytesRemaining

Description Returns the number of bytes that have not been processed by the current DMA
request.

Prototype WORD dmaBytesRemaining(VOID);

Parameters None.

Remarks This function reads the DMA controller and returns the number of bytes that
have not been processed by the current DMA request.

Return Value The WORD value of the Count Register on the DMA controller.

Example

// DMACNT.C
// This program reads one buffer of 8 bit PCM sound data
// from a file. This buffer is played back under DMA.
// The results of the function dmaBytesRemaining () are printed
//to the screen immediately after dmaPlay() is called and
// again after DMA has completed.
//
// The buffers that are used in this program are allocated
// using _dos_allocmem. Each buffer is set to 32K.

#include <stdio.h>
#include <bios.h>
tinclude <dos.h>
iinclude <errno.h>
iinclude <fcntl.h>
#include "cvxdigi.h"

// size of DMA buffer.
// File containing sound data.

tdefine _BUFFER_SIZE 0x8000
tdefine _PCM_FILE "TEST1.V8"

extern _dmaInProgressFlag;
extern _dmaDevice;

VOID main(VOID)
{

HANDLE pcmFileHandle;
WORD pcmsegment;
LPSTR pcmBuf fer;
WORD bytesRead;
WORD portAddress;
BYTE dmaRate;
WORD dmaTempCount;
WORD repeatCount =1;
WORD init:Error;

// Allocate memory for buffer used to read 8 bit PCM
// data from file.
if((_dos_allocmem((WORD)((_BUFFER_SIZE / 16) + 1),

&pcmsegment)))

printf("ERROR : Cannot allocate memoryl\n");
exit(0);

64 Chapter 3

dmaBytesRemaining

}
else

// dmaPlayO requires a far pointer (LPSTR)
FP__SEG(pcmBuffer) = pcmsegment;
FP_OFF(pcmBuffer) = 0x0000;

}

// Initialize DMA. Setting each parameter to _AUTODETECT
// causes dmalnit to perform a search for the Port,
// DMA channel, and IRQ setting respectively.
initError = dmalnit(_AUTODETECT, _AUTODETECT, _AUTODETECT,

&portAddress);

// If the veuriable _dmaDevice equals 0 then the DMA
// sub-system was not initialized correctly.
if(_dmciDevice = 0)

printf("ERROR = %d : dmalnit failed\n", initError);
else

// Open a file containing 8 bit PCM data.
if(_dos_open(_PCM_FILE, OlRDONLY, &pcmFileHandle))

printf("ERROR ; %s not found.\n", _PCM_FILE);
else

// Get header information, if it exists, from file.
_dos_read(pcmFileHandle, (LPVOID)pcmBuffer,

_HEADER_LENGTH, fibytesRead);

// Get rate from header.
dmaRate = pcmBuffer [_HEADER_RATE__OFFSET];

// Fill buffer with sound data.
_dos_read(pcmFileHandle, (LPVOID)pcmBuffer,

(WORD)_BUFFER_SIZE, &bytesRead);

// Insert buffer into DMA queue.
dmaPlay((LPSTR)pcmBuffer, (LONG)bytesRead,

dmaRate, repeatCount);

// Loop until DMA has completed,
while(_dmaInProgressFlag);

>

printf("dmaBytesRemainingO = %d\n", dmaBytesRemaining ());

// Clear all requests from the Play and Record Queue,
if (dmaFlushQueue ())

printf("DMA uninit failure : could not flush queue.\n");

// Uninitialize the DMA sub-system.
if(dmauninito)

printf("DMA uninit failure.\n");

// close the sound file.
_dos_close(pcmFileHandle);

// Free memory used by 8 bit PCM buffer.
if(_dos__freemem(pcmsegment))

printf("ERROR : Cannot free memoryI\n");

Chapter 3 65

dmaGetChannel

Description Retrieves information about the DMA channel the device is using.

Prototype WORD dmaGetChannel(WORD ♦ dmaChannel);

Parameters dmaChannel A pointer to a WORD variable, indicating the DMA Channel
that the Covox board is configured to. Possible values:

_DMA-CHANNEL_1

_DMA-CHANNEUJ3

Remarks

See Appendix C for DMA Channel value descriptions.

After DMA has been initialized with dmalnit, information about the DMA
channel the device is using can be retrieved with this function.

Return Value If successful, dmaGetChannel returns a value of JERROR_NONE. The pos
sible return values are:

_ERROR_NONE

j:RRORJ)MA_NOTJNrnALIZED

See the last page of the chapter for error code descriptions.

Exampie

// DMAGETCH.C
11 This program installs the DMA sub-system and calls
// the function dmaGetChannel to determine the channel
// setting of the Voice Master or Sound Master II.

#include <stdio.h>
linclude <dos.h>
iinclude "cvxdigi.h"

extern _dmaDevice;

VOID main(VOID)

WORD dmaChannel;
WORD initError;
WORD portAddress;

// Initialize DMA. Setting each parameter to _AUTODETECT
// causes dmalnit to perform a seeurch for the Port,
// DMA channel, and IRQ setting respectively.
initError = dmalnit (__AUTODETECT, _AUTODETECT, __AUTODETECT,

&portAddress);

//If the variable _dmaDevice equals 0 then the DMA
// sub-system was not initialized correctly.
if(_dmaDevice = 0)

printf("ERROR = %d : dmalnit failed\n", initError);
else

66 Chapter 3

dmaGetChannel

11 Call function to to get the DMA channel setting
//of the Voice Master or Sound Master II.
dmaGetChannel(&dmaChannel);

/M. // Display DMA channel to the screen.
printf("DMA using channel %x\n**, dmaChannel

// uninitialize the DMA sub-system.
if(dmauninito)

printf("DMA uninit fallure.\n");
}

}

)?

Chapter 3 67

dmaGetPort

Description

Prototype

Parameters

Retrieves the device port address after initialization.

WORD dmaGetPort(WORD * dmaPort);

dmaPort A pointer to a WORD variable, indicating the port address
that the Covox board is configured to. Possible values:

.CV5LVM0

_CVX_VM1

jcvxjmi

jcvxjvm

Remarks

See Appendix C for port value descriptions.

After DMA has been initialized with dmalnit, information about device port
address can be retrieved with this function.

Return Value If successful, dmaGetPort returns a value of JSRRORJ^ONE. The possible
return values are:

JlRRORjsfONE

je:rrorj)maj^otjnitialized

See the last page of the chapter for error code descriptions.

Example

11 DMACTTP.C
11 This program installs the DNA siib-system and calls
// the function dmaGetPort to determine the jumper
// setting of the Voice Master or Sound Master II.

#include <stdio.h>
iinclude <dos.h>
linclude "cvxdigi.h"

extern _dmaDevice;

VOID main(VOID)

WORD dmaPort;
WORD initError;
WORD portAddress;

// Initialize DMA. Setting each parameter to _AUTODETECT
// causes dmalnit to perform a search for the Port,
// DMA channel, and IRQ setting respectively.
initError = dmalnit (JMJTODETECT, _AUTODETECT, _AUTODETECT,

&portAddress);

// If the variable _dmaDevice equals 0 then the DMA
// sub-system was not initialized correctly.
if(_dmaDevice = 0)

printf("ERROR = %d : dmalnit failedXn", initError);
else

68 Chapter 3

dmaGetPort

// Call function to to get the device jumper setting
f/ of the Voice Master or Sound Master II.
dmaGetPort (&dmaPort);

// Display DMA port to the screen.
printf("DMA using port %x\n", dmaPort

// Uninitialize the DMA sub-system,
if(dmaUninit())

printf("DMA uninit failure.\n");
}

>

Chapter 3 69

dmaGetlRQNumber

Description

Prototype

Parameters

Retrieves information about the IRQ channel the device is using.

WORD dmaGetIRQNumber(WORD ♦ dmalrqNumber);

dmalrq- A pointer to a WORD variable, indicating the IRQ channel
Number that the Covox board is configured to. Possible values:

JRQ-^
JRQJ
_IRQ-.4

_IRQ_5

JRQ-7

See Appendix C for IRQ value descriptions.

Remarks After DMA has been initialized with dmalnit, information about the IRQ chan
nel the device is using can be retrieved with this function.

Return Value If successful, dmaGetlrqNumber returns a value of J!RROR_NONE, The pos
sible return values are:

JSRRORJ^ONE

j:rrors>ma_notjnitialized

See the last page of the chapter for error code descriptiosns.

Example

11 DMAGETI.C
11 This program installs the DMA sub-system and calls
// the function dmaGetlRQNumber to determine the IRQ
// setting of the Voice Master or Sound Master II.

#include <stdio.h>
linclude <dos.h>
linclude "cvxdigi.h"

extern _dmaDevice;

VOID main(VOID)

WORD dmalRQNumber;
WORD initError;
WORD portAddress;

// Initialize DMA. Setting each parameter to _AUTODETECT
// causes dmalnit to perform a search for the Port,
// DMA channel, and IRQ setting respectively.
initError = dmalnit< _AUT0DETECT, _AUTODETECT, _AUTODETECT,

&portAddress);

// If the variable _dmaDevice equals 0 then the DMA
// sub-system was not initialized correctly.
if(_dmaDevice = 0)

printf("ERROR = %d : dmalnit failedXn", initError);

70 Chapter 3

dmaGetlRQNumber

else

^ // Call function to to get the DMA IRQ setting
//of the Voice Master or Sound Master II.
dmaGetlRQNumber (&dmaIRQNumber);

// Display DMA IRQ number to the screen.
printf("DMA using IRQ %x\n", dmalRQNumber);

// uninitialize the DMA sub-system.
if(dmaUninitO)

printf("DMA uninit failure.\n");
}

}

Chapter 3 71

dmaPause

Description Pauses DMA playback or recording.

Protolype BOOL dniaPause(VOID);

Parameters None.

Remarks This function disables the DMA sub-system by disabling the DMA controller
on the motherboard.

Return Value If _TRUE, DMA was successfully paused.

If _FALSE, DMA cannot be paused for one of two possible reasons. Either the
value of _dmaInProgressFlag is _FALSE, or DMA has not been initialized.

Example

// DMAPAUSE.C
// This program reads 8 bit PCM soimd data from a file.
// The 8 bit sound data is then played back using DMA.
// If a key is struck on the keyboard during the playback,
// then DMA is paused. Another key stoke will restart DMA.

// The buffers that are used in this program are allocated
// using _dos_allocmem. Each buffer is set to 16K.

#include <stdio.h>
iinclude <bios.h>
iinclude <dos.h>
#include <errno.h>
iinclude <fcntl.h>
iinclude "cvxdigi.h"

idefine _BUFFER_SIZE 0x4000
idefine _BUFFER_COUNT 4
idefine _PCM_FILE "TEST1.V8"

extern _dmalnProgressFlag;
extern _dmaDevice;

// Size of each DMA buffer.
// Number of DMA buffers.
// File containing sound data.

VOID main(VOID)
{

HANDLE pcmFileHandle;
WORD pcmSegment[_BUFFER_COUNT];
LPSTR pcmBuffer[JBUFFER_COUNT];
WORD bytesRead;

portAddress;
dmaRate;
repeatcount = 1;
initError;
i;

WORD

BYTE

WORD

WORD

WORD

// Allocate memory for buffers used to read 8 bit PCM
// data from file.
for(i = 0; i < _BUFFER_jCOUNT; i++)
{

72 Chapter 3

dmaPause

if((_dos_allocmem((WORD)((_BUFFER_SIZE / 16) + 1),
&pcinSeginent [i])))

^ printf("ERROR : Cannot allocate memory!\n");
exit(0);

else

^ // dmaPlayO requires a far pointer (LPSTR)
FP_SEG(pcinBuffer[i]) = pcinSegment[i];
FP_OFF(pcinBuffer[i]) = 0x0000;

}
}

// Initialize DMA. Setting each parameter to __AUTODETECT
// causes dmalnit to perform a search for the Port,
// DMA channel, and IRQ setting respectively.
initError = dmalnit(_AUTODETECT, _AUTODETECT, _AUTODETECT,

&portAddress);

// If the varicdDle _dmaDevice equals 0 then the DMA
// sub-system was not initialized correctly.
if(__dmaDevice == 0)

printf("ERROR = %d : dmalnit failed\n", initError);
else

^ // Open a file containing 8 bit PCM data.
if(_dos__open(_PCM__FILE, 0_jRD0NLY, &pcmFileHandle))

printf("ERROR : %s not found.\n", _PCM_FILE);
else

^ // Get header information, if it exists, from file.
_dos_read(pcmFileHandle, (LPVOID)pcmBuffer[0],

(WORD)_HEADER_LENGTH, &bytesRead);

// Get rate from header.
dmaRate = pcmBuffer[0][_HEADER_RATE_OFFSET];

// Loop here until we have queued all 4 buffers.
for(i = 0; i < _BUFFERjCOUNT; i++)

^ // Fill buffer with sound data.
_dos_read(pcmFileHcuidle, (LPVOID)pcmBuffer[i],

(WORD)_BUFFER__SIZE, &bytesRead);

// Insert buffer into DMA queue.
dmaPlay((LPSTR)pcmBuffer[i], (LONG)bytesRead,

dmaRate, repeatCount);

}

printf("Press any key to pause DMA.\n");

// Loop until DMA has completed,
while(_dmaInProgressFlag)

/! It Si key is struck, pause DMA playback.
if(jDios_keybrd(_KEYBRD_READY))

dmaPause ();

// Clear all keystrokes.
while(_bios_keybrd(_KEYBRD_READY))

Chapter 3 73

dmaPause

getch();

printf("\nDMA has been paused.\n");
printf("Press any key to restart.\n");

// Loop until a key is struck.
while (I_bios_keybrd(_KEYBRD_READY))

// Restart DMA playback.
dmaUnpause();

// Clear all key stokes,
while(jDios_keybrd(_KEYBRD_READY))

getch();

printf("\nPress any key to pause DMA.\n");

}
}

}

// Clear all requests from the Play and Record Queue,
if(dmaFlushQueue())

printf("DMA uninit failure : could not flush queue.\n");

// Uninitialize the DMA system.
if(dmauninito)

printf("DMA uninit failure.\n");

// close the sound file.
__dos_close(pcmFileHandle); r ^

11 Free memory used by 8 bit PCM buffer.
for(i = (_BUFFER_COUNT - 1); i 1= -1 ; i—)

if(_dos_freemem(pcmSegment[i]))
printf("ERROR : Cannot free memory!\n");

}

74 Chapter 3

dmaPortDetect

Description Detects which, if any, Covox DMA-capable board is installed.

Prototype WORD dniaPortDetect(WORD portJumper);

Parameters portJumper The base port addresses to be tested for occupancy.

J^UTODETECT

_CVX_VMO

_CV5L.VM1

_CVX_VM2

_CVXL.VM3

See Appendix C for port value descriptions.

Remarks This function performs a hardware detection to find out if the Covox Voice
Master or Sound Master II board is present. This will not detect the earlier
Voice Master cards without DMA capabilities.

Return Value Voice Master or Sound Master II base port address (0x220, 0x240, 0x280, or
0x2C0). dmaPortDetect returns 0 if one of these boards could not be found at
the given address.

Example

// DMAPORT.C
// This program determines which port the Voice Master
//or Sound Master II card can use for DMA control.

#include <stdio.h>
#include <dos.h>
linclude "cvxdigi.h"

VOID main(VOID)
{

WORD dmaPort;

// Call function to find port value.
dmaPort = dmaPortDetect(_AUTODETECT);

printf("port = %x\n", dmaPort);

Chapter 3 75

dmaSetRate

Description Sets the DMA I/O rate for the active Covox device.

Prototype WORD dmaSetRate(BYTE sampleRate);

Parameters sampleRate A BYTE value indicating the sampling rate at which to record
or play back a sound buffer.

If recording, sampleRate can be a value from 0 to 209 (25,386
Hz). If playing, sampleRate can be from 0 to 229 (44,191 Hz).

If sampleRate is 0, the default value of 132 (9622 Hz) is used.
lisampleRate is larger than 209when recording, it is set to 209.
If sampleRate is larger than 229 when playing, it is set to 229.

See Appendix B for rate value descriptions.

Remarks This function sets the DMA hardware timer on either the Voice Master or

Sound Master II, depending on which device was selected with dmalnit.

Generally not used by developer, but used by higher level routines in the library.

Return Value If successful, dmaSetRate returns a value of JERROR_NONE. The possible
return values are:

JSRRORJiONE

_MRRORJ)MAJ^OTJNITIALIZED

See the last page of this chapter for error code descriptions.

Example

It DMASETRT.C
if This program reads 8 bit PCM sound data from a file.
it The 8 bit sound data is then played back using DMA.
if The rate of buffer being played is increased every time
//a key is struck on the keyboard.
//
// The buffer that is used in this program is allocated
if using _dos_allocmem. The buffer is set to 64K.

#include <stdio.h>
#include <bios.h>
iinclude <dos.h>
finclude <errno.h>
Iinclude <fcntl.h>
Iinclude "cvxdigi.h"

Idefine _BUFFER_SIZE OxFFFF
Idefine _PCM_FILE "TEST1.V8"
Idefine JRATE_STEP 5

extern _dmalnProgressFlag;

it Size of each DMA buffer.
if File containing sound data.
if Value used to increase rate.

76 Chapter 3

dmaSetRate

extern _dmaDevice;

VOID main(VOID)

_ HANDLE pcmFileHandle;
WORD pcmSegment;
LPSTR pcmBuf fer;
WORD bytesRead;
WORD portAddre s s;
BYTE dmaRate;
WORD repeatcount = 1;
WORD initError;

// Allocate memory for buffer used to read 8 bit PCM
// data from file.
if((_dos__allocmem((WORD)((_BUFFER_SIZE / 16) + 1),

&pcmSegment)))

printf("ERROR : Cannot allocate memoryI\n");
exit(0);

else

// dmaplayo requires a far pointer (LPSTR)
FP_SEG(pcmBuffer) = pcmSegment;
FP_OFF(pcmBuffer) = 0x0000;

}

11 Initialize DMA. Setting each parameter to _jAUTODETECT
II causes dmalnit to perform a securch for the Port^

^ ' // DMA channel, and IRQ setting respectively.
initError = dmalnit (_AUTODETECT, _AUTODETECT, _AUTODETECT,

&portAddress);

// If the variable __dmaDevice equals 0 then the DMA
// sub-system was not initialized correctly.
if(__dmaDevice = 0)

printf("ERROR = %d : dmalnit failedXn", initError);
else

// Open a file containing 8 bit PCM data.
if(_dos_ppen(_PCM_FILE, OJRDONLY, &pcmFileHandle))

printf("ERROR : %s not found.\n", _PCM_FILE);
else

// Fill buffer with sound data.
_dos_read(pcmFileHandle, (LPVOID)pcmBuffer,

(WORD)_BUFFER_SIZE, &bytesRead);

// Get rate from header.
dmeU^te = pcmBuffer [_HEADER__RATE_OFFSET];

// Bypass header and insert buffer into DMA queue.
dmaPlay((LPSTR) pcmBuffer + _HEADER_LENGTH,

(LONG) bytesRead - _HEADER_LENGTH,
(MaRate, repeatCount);

printf("Press key increase rate by %d.\n", _RATE_STEP);

// Loop until DMA has completed,
while(_dmaInProgressFlag)
{

Chapter 3 77

dmaSetRate

H It di key is struck,increase rate of DMA output.
if(_bios_keybrd(_KEYBRD_READY))

// Make sure that rate does not go above maximum,
if ((dmaRate + _RATE_STEP) < _CVX_RATE_IN_MAXIMUM)
{

// Increase rate.
dmaRate = dmaRate + _RATE_STEP;

// Set new DMA rate.
dmaSetRate (dmaRate);

else
// Display that the rate can be set no higher,
printf ("Rate at maucimum. \n");

// clear all key strokes,
while (_bios_keybrd(_KEYBRD_READY))

getch();
}

}
}

}

// Uninitialize the DMA system,
if(dmauninit())

printf("DMA uninit failure.\n");

// Close the sound file.
_dos__close(pcmFileHandle);

II Free memory used by 8 bit PCM buffer.
if(_dos_freemem(pcmSegment))

printf("ERROR : Cannot free memory!\n");

78 Chapter 3

dmaUnpause

Description Restarts DMA playback or recording paused by dmaPause.

Prototype BOOL dmaUnpause(VOID);

Parameters None.

Remarks This function enables the DMA sub-system by enabling the DMA controller on
the motherboard.

Return Value If .TRUE, the DMA controller was successfully re-enabled.

If .FALSE, DMA can not be enabled for one of two reasons. Either dmaPause
was not previously called, or the DMA sub-system has not been initialized.

Example

See dmaPause.

Chapter 3 79

Srror Codes: DMA f^undfons

.ERRORJMONE

No errors.

.ERROILDMA^DETECTJFAILED

The port, IRQ or DMA channel was not found.

3RROR^DMAJiLREADYJNrnALIZED

The dmalnit function has previously been called.

JERROILDMA-NOTJNmALIZED

The dmalnit function has not yet been called or DMA could not be initialized.

JERROR_QUEUE_FULL

No room in FIFO queue for DMA I/O request.

80 Chapter 3

TSRPLAY Functions

Structure

_TSRPLAY^INFO

Functions

tsrFlushFiles

tsrGetVersionString

tsrGetProgramlD

tsrPause

tsrRemoveSystem

tsrResident

tsrSetupNewFiles

tsrStart

tsrUnpause

The Covox 'Terminate and Stay Resident Playback System' (TSRPLAY) is used to play
back one or more files in the background using the DMA capabilities of the Voice Master
and Sound Master 11. This system will play back a sound file of any Covox format.

The interface variables needed to use the functions listed above are defined in the struc

ture _TSRPLAY_INFO. _tsrPIayInfo, a global variable of this type, is defined in
CVXDIGI.H and must be used when calling the TSRPLAY interface functions.

After initializing the members of _tsrPlayInfo, a call to tsrStart will install the
TSRPLAY system.

The function tsrResident returns _TRUE if TSRPLAY has been installed.

After TSRPLAY has been installed, a call to tsrSetupNewFiles will replace the currently
active list of files and associated sample rates.

The functions tsrGetVersionString and tsrGetProgramlD return the version and pro
gram m of TSRPLAY.

Chapter 4 81

The functions tsrPause and tsrUnpause may be used to temporarily stop and start TSR
playback.

tsrFlushFiles will remove all active files and cause TSRPLAY to become inactive until
the function tsrSetupNewFiles is called again.

The function tsrRemoveSystem completely removes the TSRPLAY system, which in
cludes all memory and interrupt handlers.

NOTE;

The TSRPLAY functions have only been compiled for small model. Therefore, only
SDIGIMC.LIB and SD1GIBC.LIB contain the TSRPLAY functions.

IMPORTANT:

Many of the TSRPLAY functions make calls to the Covox utility functions (see Chapter
9). Therefore, compliled modules that contain TSRPLAY calls must be linked to both
SDIGIMC.LIB and SUTILMC.LIB (Microsoft) or SDIGIBCXIB and SUTILBC.LIB
(Borland).

82 Chapter 4

TSRPLAY INFO

Description Structure contaming all information needed to call TSRPLAY functions.

Structure typedef struct __tagtsrPlayInfo

WORD fileCount;

BYTE fileNaine[_FILE_jCOUNT_MAX][__FILEJPATH_I|ENGTH];
WORD fileRate[_FIIiE_COUNTJMAX];
WORD fileRepeat[_FILE_COUNT_MAX];
WORD bufferSize;

WORD bufferCount;

WORD dmaPort;

WORD dmachannel;

WORD dmalRQNuxnber;

} _TSRPLAY_INFO;

Structure
Elements

fileCount Number of files (up to 35) queued for playback.

fileName A two-dimensional array specifying the name of each file to
be played back.

fileRate An array specifying the sampling rate, in hertz (Hz), of the
corresponding file mfileName, Valid values are from 4,679 to
44,191. The default value is 9,622 Hz.

fileRepeat A one-dimensional array indicating the number of times to
repeat the file specified m fileName, The maximum value is
255; the default is 1. A value of -1 causes indefinite repeat.

bufferSize The size, in kilobytes (default 32), of each buffer to be queued
up for DMA playback. bufferSize is used with a call to tsrStart.
It cannot be changed after TSRPLAY has been installed.
Valid values are from 1 to 64.

bufferCount Number of buffers of bufferSize to be queued for DMA
playback (default 3). It cannot be changed after TSRPLAY
has been installed. Valid values are from 2 to 5.

dmaPort The port jumper setting on the Voice Master or Sound Master
n. Valid values are _CV5L.VM0, _CVX_VM1, .CVX-.VM2,
_CV)L.VM3 and AUTODETECT (default).

dmaChannel The DMA Channel jumper setting on the Voice Master or
Sound Master II. Valid values are _DMA_CIIANNELul,
_DMA.CHANNEIA and AUTODETECT (default).

Chapter 4 83

TSRPUVY INFO

dmalRQ- The IRQ jumper setting on the Voice Master or Sound Master
Number II. Valid values are JRQ.^, _IRQ^, _IRQ_4, JRQ_5,

_IRQ_7, and .AUTODETECT (default).

84 Chapter 4

tsrFlushFiles

Description Removes all active playback files from TSR.

Protolype VOID tsrFlushFiles(VOID);

Parameters None.

Remarks TSRPLAY remains in memory after this function is called.

Return Value None.

Example

// TSRFLUSH.C
// This program checks to see if TSRPLAY has been installed,
// If it has been installed then all files are flushed
// from TSRPLAY.

iinclude <stdlib.h>
iinclude <dos.h>
iinclude "cvxdigi.h"

VOID main(VOID)

// Check to see if TSRPLAY is resident.
if(tsrResident())
{

printf("Flushing %s files.\n"^ tsrGetProgramID());

// Clear all sound files from TSRPLAY.
tsrFlushFiles();

else

printf("ERROR : %s not installed\n", tsrGetProgramID());

Chapter 4 85

tsrGetProgramlD

Description Returns the TSRPLAY program ID.

Prototype PSTR tsrGetProgramID(VOID);

Parameters None.

Remarks The program ID is of the form "COVOX TSRPLAY'.

Return Value A pointer to a string (PSTR) containing the program ID of TSRPLAY.

Example

// TSRINFO.C
// This program calls tsrGetProgramlD and tsrGetVersionString
// and displays the return values to the screen.

iinclude <stdlib.h>
iinclude <dos.h>
iinclude "cvxdigi.h"

VOID main(VOID)
{

PSTR tsrID;
PSTR tsrVersion;

// Get TSRPLAY program ID.
tsrID = tsrGetProgramID();

}

// Get TSRPLAY version.
tsrVersion = tsrGetVersionString();

// Display results to the screen.
printf(" %s version %s\n", tsrlD^ tsrVersion);

86 Chapter 4

tsrGetVersionString

Description Returns the version of TSRPLAY.

Prototype PSTR tsrGetVerslonStringC VOID);

Parameters None.

Remarks None.

Return Value A pointer to a string (PSTR) containing the release version of TSRPLAY. The
string will have the following format:

< major version > < . > < minor version >

(for example, "2.00").

Example

See tsrGetProgramlD.

Chapter 4 87

tsrPause

Description Pauses TSR playback.

Prototype VOID tsrFause(VOID);

None.Parameters

Remarks TSRPLAY is paused by disabling the DMA controller on the motherboard.
This function sets an internal flag to reflect the paused state.

Return Value None.

Example

// TSRPAUSE.C
// This program checks to see if TSRPLAY has been installed.
// If it has been installed then TSRPLAY is paused. Link the .OBJ
//to both a DIGI and a UTIL library.

iinclude <stdlib.h>
#include <dos.h>
iinclude "cvxdigi.h"

VOID main(VOID)

// Check to see if TSRPLAY is resident.
if(tsrResident())

printf("Pausing %3\n'\ tsrGetProgramID());

11 Pause TSR playback.
tsrPause();

else
printf("ERROR : %s not installed\n", tsrGetProgramID());

88 Chapter 4

tsrRemoveSystem

Description Removes TSRPLAY from memory.

Prototype VOID tsrRemoveSystem(VOID);

Parameters None.

Remarks This function removes all hooked interrupts and frees all memory allocated by
the function tsrStart.

Return Value None.

Example

// TSRQUIT.C
// This program checks to see if TSRPLAY has been installed.
// If it has been installed then it is removed from memory
// with a call to tsrRemoveSystem. Otherwise an error message
//is displayed to the screen.

#include <stdlib.h>
#include <dos.h>
#include "cvxdigi.h"

VOID main(VOID)

// Check to see if TSRPLAY is resident.
if(tsrResidentO)

printf("Uninstalling %s\n"^ tsrC!etProgramID());

// Remove TSRPLAY from memory.
tsrRemoveSystem ();

else
printf("ERROR : %s not installed\n", tsrGetProgramiD());

Chapter 4 89

tsrResident

Description Checks to see if TSRPLAY code is resident.

Prototype BOOL tsrResident(VOID);

Parameters None.

Remarks None.

Return Value _TRUE if TSRPLAY code is resident. _FALSE if TSRPLAY has not been in
stalled.

Example

See tsrStart.

90 Chapter 4

tsrSetupNewFiles

Description Replaces existmg playback files with new list of files.

Prototype VOID tsrSetupNewFiles (VOID);

Piirameters None.

Remarks The header file CVXDIGI.H contains the structure _TSRPLAY_INFO, which
contains an array of file names and the variable indicating the number of files
in the array.

Return Value None.

Example

// TSRFILES.C
// This program checks to see if TSRPLAY has been installed.
// If it has been installed then a new file list is sent
//to the resident copy of TSRPLAY.

#include <stdlib.h>
iinclude <string.h>
#include <dos.h>
iinclude "cvxdigi.h"

♦define _FILE_COUNT 3
♦define _FIIiE_l "TEST1.V8"
♦define _FILE_2 "TEST2.V8"
♦define _FILE_3 -TEST3.V8"

VOID main(VOID)

// Check to see if TSRPLAY is resident.
if(tsrResident())

printf("Replacing files for resident %s\n"^
tsrGetProgramID());

// Setup 3 files in _tsrPlaylnfo structure.
_tsrPlayInfo.fileCount = JFILE_COUNT;

// Put new file names into structure.
strcpy(_tsrPlaylnfo.fileName[0], _FILE__1);
strcpy(_tsrPlaylnfo.fileName[1], _FILE_2);
strcpy(_tsrPlayInfo.fileName[2], _FILE_3);

11 Set 2nd file to repeat twice.
_tsrPlaylnfo.fileRepeat[1] = 2;

// Make call into TSRPLAY to replace files.
tsrSetupNewFiles();

else
printf("ERROR : %s not installedXn", tsrGetProgramiD ());

}

Chapter 4 91

tsrStart

Description

Prototype

Parameters

Remarks

Return Value

Installs TSR file playback code.

WORD tsrStart(VOID);

None.

The file CVXDIGI.H contains the structure _TSRPLAY_INFO used by tsr
Start. The only members of this structure that must be set up before calling
tsrStart are flleName[] [] and fileCount.

The other members of the structure _TSRPLAY_INFO are initialized by the
TSRPLAY libarary routines.

tsrStart will not return if TSRPLAY is successfully installed.

The TSRPLAY system uses approximately 30K plus memory allocated for each
DMA playback buffer of size _TSRPLAY_INFO.bufferSize.

The munber of buffers is determined by .TSRPLAY.INFO.bufrerCount.

If TSRPLAY is installed successfully, tsrStart does not return. If an error oc
curs, one of the following values is returned:

JSRRORjyPENINGJ^ILE

^RRORJILEJCOUNT

j:RRORJ)MAJNrrj^AILED

JlRRORMEMORYyiLLOC

JIRRORJNVALIDJUFFERMZE

JIRRORJLLEGALJUFFERJCOUNT

JIRRORJLLEGALJORT

_ERRORJLLEGAL_PMAjCHANNEL

_ERRORJLLEGALJRQ

j:RRORjiLREADYJ(ESIDENT

See the last page of the chapter for error code descriptions.

Example

11 TSRSTART. C
// This program checks to see if TSRPLAY has been installed.
n It TSRPLAY is not resident, the size and number of each DMA
11 buffer, the file list and file count in _tsrPlaylnfo are
11 initialized.

#include <stdlib.h>
linclude <string.h>
linclude <dos.h>

92 Chapter 4

tsrStart

tinclude "cvxdigi.h"

#define _FILE_COUNT 2
#define _FILE_1 "TESTl,V8"
#define _FILE_2 "TEST2.V8"
idefine _buffer_size_default 32
idefine _BUFFER_COUNT_DEFAULT 3

VOID main(VOID)

// Check to see if TSRPLAY is resident,
if(!tsrResident())

printf("Installing %s\n", tsrGetProgramlD());

// Setup 2 files in _tsrPlaylnfo structure.
_tsrPlaylnfo.fileCount = JF'lliE_COUNT;

// Put new file names into structure.
strcpy(_tsrPlayInfo.fileNaroe[0], JFILE_1);
strcpy(_tsrPlaylnfo.fileNaine[1], _FIIiE_2);

11 Set up memory for TSRPLAY
_tsrPlaylnfo.bufferSi2e = __BUFFER_SIZE__DEFAULT;
_tsrPlaylnfo.bufferCount = _BUFFER_COUNT_DEFAULT;

// Make call to install TSRPLAY system.
tsrStart();

else
printf("ERROR : %s has already been installed\n"^

tsrGetProgramlD());

Chapter 4 93

tsrUnpause

Description Restarts TSR playback after playback was paused by the function tsrPause.

Prototype VOID tsrUnpause(VOID);

Parameters None.

Remarks None.

Return Value None.

Example

// TSRUNPAU.C
// This program checks to see if TSRPLAY has been installed,
// If it has been installed then playback is restarted
// with a call to tsrUnpause.

#include <stdlib.h>
linclude <dos.h>
linclude "cvxdigi.h"

VOID main(void)

// Check to see if TSRPLAY is resident.
if(tsrResident())

printf("Restarting %s\n", tsrGetProgramlD());

11 Resume TSR playback.
tsrUnpause();

else
printf("ERROR : %s not installed\n", tsrGetProgramlD());

94 Chapter 4

Error Codes: TSR^LAY functions i

_ERROR_NONE

No errors.

_ERROILALREADY„RESIDENT

A call to tsrStart was attempted after TSRPLAY was already installed.

JERRORJFILE^COUNT

The file count specified in _TSRPLAY_INFO.fiIeCount was not between
1 and 255.

_ERROR.OPENING_FILE

A file name specified in _TSRPLAY_INFO.fiIeName was not found.

JERROR^ILLEGAL_BUFFER.SIZE

The value specified in _TSRPLAYJNFO.bufferSize was not between 1
and 64.

JERROR^ILLEGAL_BUFFER.COUNT

The buffer count specified in _TSRPLAYJNFO.bufferCount was not be
tween 2 and 5.

JERROILILLEGAL_PORT

The port specified in _TSRPLAY_INFO.dmaPort was not one of the valid
port values.

_ERROR^ILLEGALuDMA.CHANNEL

The DMA channel specified in _TSRPLAY_INFO.dmaChannel was not
one of the valid DMA Channel values.

JERROR^ILLEGALJRQ

The IRQ specified in _TSRPLAY_INFO.dmaIRQNumber was not one of
the valid IRQ values.

JERROR.DMA^INITJFAILED

Initialization of DMA on the Voice Master or Sound Master II failed.

Possible hardware conflict.

_ERRORJVfEMORY^LOC

Requested allocation is larger than the total memory available in system
(This error constant is defined in CVXUTILrS.H).

ERROR.WRONG_DOS_VERSION

The call to tsrStart was made in a DOS environment earlier than version
3.1.

Chapter 4 95

96 Chapter 4

BIOS Interrupt lA Sound Support

Using DMA and Tinier Interrupt

Low-Level Functions

INTlAhiAH = 81h

INTlAh:AH = 82h

INT lAh: AH = 83h

INTlAhrAH = 84h

Get Sound Status

Record Sound Buffer

Play Sound Buffer

Stop Sound HO

The INT1ATSR.EXE program contains a set of simulated BIOS routines to record and
play 8 bit PCM sound data. With the appropriate values placed into the AH register,
interrupt lA can be invoked to queue a buffer for recording or playback.

There are two types of hardware I/O control in the INTIATSR program; DMA and
timer interrupt. Either type can be selected by means of a command line s^tch (see the
section titled Running INT1ATSR.EXE).

The DMA mode has the superior sound quality of the two and will record at a rate of
25^86 Hz and playback at a rate of 44,191 Hz. The timer interrupt mode does not give
good results above 8 kHz. Be aware that different types of computers will affect the sound
quality differently.

Both Tandy and PC modes are supported and must be selected using command line
switches. The main difference between the two modes is how sample rate values are
expressed. In PC mode the rate of recording or playback represents the actual frequency
in Hz, whereas in Tandy mode a rate value from 3 (fastest) to 4095 (slowest) is used.

Chapters 97

When Tandy mode is selected, the volume of sound playback may be adjusted through
software. The range of values is 0 to 7; 0 signifies that sound is disabled. PC mode does
not support software volume control.

Note: The interrupt lA I/O queue has a maximum of 155 entries. When the queue is full,
an I/O call will cause the carry flag to be set. Therefore, the carry flag should be
monitored to determine if a spot is freed in the queue. (See the programming examples
for usage)

98 Chapter 5

nufiiiii^ mmrsnmE

Description:

Syntax:

Options:

A Terminate and Stay Resident (TSR) utility that hooks interrupt vector lA.
INTIATSR installs interrupt service routines for recording and playback of a
FIFO queue of 8 bit PCM data.

INTIATSR [OPTIONS]

/Pxxxx - The port to use for I/O; xxxx can be one of the following: VMO,
VMl, VM2, VM3 for the internal Voice Master (or Sound
Master II); or LPTl, LPT2, LPT3 for the external Voice
Master or Speech Thing (output only). Use DMA for DMA
mode using the internal Voice Master or Sound Master II. The
default port is VMO.

IMx-

/Q-

Select T for Tandy soimd mode and P for PC sound mode.
The default is P.

Uninstall INTIATSR program.

The following apply only to Voice Master and Sound Master II with DMA.

Ux- Select port jumper setting (0-3). -1 (default) for

ICx-

hx-

 sequential
search.

Select DMA channel (1 or 3). -1 (default) checks 1 first, then
3.

Select IRQ (2,3,4,5, or 7). -1 (default) checks 7 first, then 2,
3,4, and 5, in that order.

In the following examples, the address of the interrupt LA sound support routine is
placed into the BIOS, after which the program stays resident.

EXAMPLE: Initialize and direct input and output to the Voice Master n attached to LPTl.

C:\intlatsr /pLPTl

EXAMPLE: Prepare for DMA output on the Sound Master II board. IRQ 7 and DMA
channel 3 have been selected. If there is no Sound Master 11 board at these

settings then an error message will be returned.

C:\intlatsr /pDMA /i7 /c3

Chapter 5 99

Get Sound Status INTIAh: AH=81h

Call With:

Returns:

Notes:

AH = 81h

AL =0C4h

AH = Number of buffers remaining in queue.

Carry Flag = 1 if busy.

= 0 if not busy.

This interrupt call will set the carry flag if I/O is being performed, or clear the
carry flag if no I/O is being performed. The number of buffers left in the queue
is placed in AH upon return.

Example

See the Record Sound Buffer and Play Sound Buffer examples.

100 Chapter 5

INTIAh: AH=82h Record Sound Buffer

Call With: AH = 82h

ES:BX = Address of buffer.

CX = Length of buffer at ES:BX.

DX = Sampling Rate.

Returns: AH = 00

Carry Flag = 1 if busy.

= 0 if not busy.

Notes: This interrupt call is used to queue an empty buffer for PCM recording of soimd.
If the maximum number of buffers have been queued then the carry flag is set.
The carry flag is cleared if the queue request was successful.

Example

11 IIAREC.C
// This program records _BUFFER_SIZE bytes and writes the
11 data to to _FILE_NAME.
//
// NOTE : Before this program can be executed, INT1ATSR.EXE
// must be loaded into memory.
//
#include <dos.h>
linclude <fcntl.h>
#include <errno.h>
linclude "cvxdefs.h"

fdefine _FILE_NAME "TEST1.V8" //
Idefine _BUFFER_SIZE 0x8000 //

New sound file.
Bytes to record.

BYTE buffer[_BUFFER__slZE]; // Buffer to store
// recorded data.
VOID main(VOID)

WORD fileHandle;
WORD byteswritten;
BYTE carryFlag;

do

{
_asm
_asm
__asm

mov

mov

mov

bx,
es,
bx.

SEG buffer
bx
OFFSET buffer

//
//
//

Load ES:BX with
segment and offset
of buffer.

_asm mov CX, _BUFFER_SIZE // Set buffer length.

_asm mov dx. 9622 // Set sair^le rate.

__asm

_asm
mov

int
ah,
lAh

82h //
//

Output sound.

_asm
_asm
_asm

lahf
and
mov

ah, 1
carryFlag, ah

//
//
//

Get carry flag state.
If OF = 1 we need to
try request again.

Chapter 5 101

Record Sound Buffer INT lAh : AH=82h

} while(carryFlag);

/
d

{

// Loop here until all output is conpleted.
do

_asm mov ah, 81h // Check sound status.
_asm int lAh

_asin lahf // Get carry flag state.
_asin and ah, 1 //
_asm mov carryFlag, ah //

} while(carryFlag);

// Uninitialize the sound I/O facility.
//
_asm mov ah, 84h
__asm int lAh

// Create new file for recorded data.
if(_dos_creat(__FILE__NAME, _A__NORMAL, &fileHandle))

^ printf("ERROR : Cannot create file.\n");
printf(" Sound data lost.\n");

}

// Write recorded data to file.
if(__dos__write (fileHandle, (LPVOID)buffer,

(WORD)_BUFFER_J5IZE, &bytesWritten))

^ printf ("ERROR : Cannot write to file.\n");
printf(" Sound data lost.Xn");

}

// Close new file.
__dos_close(fileHandle);

102 Chapter 5

INTIAh: AH=83h Play Sound Buffer

Call With:

Returns:

AH = 83h

ES:BX = Address of buffer.

CX = Length of buffer at ES:BX.

DX = Sampling Rate.

AL = Volume (Tandy mode only).

AH = 00

Carry Flag = 1 if Busy.

= 0 if Not Busy.

Notes: This interrupt call is used to queue a buffer of PCM data for playback. If the
maximum number of buffers have been queued then the carry flag is set. The
carry flag is cleared if the queue request was successful.

Example

// IIAPLAY.C
// This program reads in __BUFFER_SIZE bytes from _FILE_NAME.
//A request is made to INT lAh to play the sound data from
// _FILE_NAME.
//
// NOTE : Before this program can be executed, INT1ATSR.EXE
// must be loaded into memory.
//
#include <dos.h>
linclude <fcntl.h>
tinclude <errno.h>
linclude "cvxdefs.h"

Idefine _FILE_NAME
Idefine _BUFFER__SIZE

"TEST1.V8"
0x8000

BYTE buffer[_BUFFER_SIZE];

// Sound data file.
// Bytes to read from file.

// Buffer to store data
// read from _FILE_NAME.

VOID main(VOID)

^ WORD fileHandle;
WORD bytesRead;
BYTE carryFlag;

// Open file containing sound data.
if(_dos__open(_FILE_NAME, OlRDONLY, SfileHandle))

^ printf(" ERROR : file %s not found\n", __FILE_NAME);
exit(0);

}

// Read sound data from file.
_jdos_read(fileHandle, (LPVOID)buffer,

(WORD) JBUFFER__SIZE, &bytesRead);

do

{

Chapter 5 103

Play Sound Buffer INT 1 Ah: AH=83h

_asm

_asm
_asm

111

bx,
es,
bx.

SEG buffer
bx
OFFSET buffer

//
//
//

Load ES:BX with
segment and offset
of buffer.

_asm mov cx. bytesRead // Set buffer length.

_asm mov dx. 9622 // Set sample rate.

_asm mov al. 4 // Set volume.

_asm

_asm

mov

int
ah,
lAh

83h //
//

Output sound.

_asm
_asm

_asm

lahf
and
mov

ah, 1
carryFlag, ah

//
//
//

Get carry flag state.
If CF = 1 we need to
try request again.

} while(carryFlag);

// Loop here until all output is completed,
do

_asm mov ah, 81h // Check sound status.
_asm int lAh

_asm lahf // Get carry flag state.
_asm and ah, 1 //
_asm mov carryFlag, ah //

} while (carryFlag);

// uninitialize the sound I/O facility.
_asm mov ah, 84h
_asm int lAh

// Close sound file.
_dos_close(fileHandle);

}

104 Chapter 5

INTIAh: AH=84h Stop Sound I/O

Call With: AH = 84h

Returns: Nothing

Notes: This interrupt call stops all sound I/O.

Example

See the Record Sound Buffer and Output Sound Buffer examples.

Chapters 105

106 Chapter 5

FoxPro/dBase Loadable Sound Drivers

Modules

CVXDMA

CVXINTT

CVXIRQ

CVXPLAY

CVXPLAY2

CVXPLAYD

CVXPORT

CVXRATE

CVXREC

CVXREC2

CVXRECD

CVXUNIN

FoxPro, FoxPro2 and dBase offer the option to load and call a binary file, or module.
Covox has designed a set of modules, which are described in this chapter, to record and
play back 8 bit digitized sound files using FoxPro, FoxPro2 and dBase.

When recording or playing back digitized sound using the non-dma modules CVXREC,
CVXREC2, CVXPLAY or CVXPLAY2, a buffer is used to temporarily store the sound
data being transferred to or from a Covox sound file. This buffer, which determines the
length of time available for playing or recording sound, has a fixed size because of the
32K file size limitation in FoxPro and dBase.

Because FoxPro2 allows a loadable file size of up to 64K, developers using FoxPro2 have
the option of using the CVXPLAY2 and CVXREC2 modules. These two modules have
been compiled with a larger buffer to allow longer recording and playback times.

The CVXRECD and CVXPLAYD modules allow recording and playback to the extent
of the hard drive. These modules can use any DMA-capable Covox device for DMA I/O,
but will not work when using non-DMA-capable devices such as the Speech Thing or
Voice Master II.

Chapter 6 107

Loading a Module

In FoxPro, FoxPro2 or dBase, modules must first be loaded before use, as follows:

LOAD "module name"

Calling a Module

When a module is called in FoxPro, FoxPro2 and dBase applications, a string can be
passed to that module. The following syntax must be used:

CALL "CVXPORr WITH "0"

In this example, CVXPORT is the module being called, and 0 is the string. All modules
that accept parameters expect the data to be passed as a string.

Module Usage

108 Chapters

After all of the modules that are to be used are loaded, the system must be initialized,
which is accomplished by calling CVXINTT.

All modules use the default settings (Port, DMA, IRQ). To change any one of these
settings, a call to CVXPORT, CVXDMA or CVXIRQ must be made.

After the system has been initialized, a file may be recorded or played back by calling
the CVXRATE module with the desired rate and then calling any one of the following
modules: CVXPLAY, CVXPLAY2, CVXPLAYD, CVXREC, CVXREC2, and CVXRECD.

Before leaving the FoxPro, FoxPro2 or dBase application, CVXUNIN must be called.

CVXDMA

Description: Informs all modules at which DMA channel the Covox board is configured.

Parameters: The DMA Channel setting. CVXDMA expects one of the following DMA chan-
nel values:

1 DMA Channel 1

3 DMA Channel 3

Remarks: The channel passed to CVXDMA should coincide with the DMA channel con
figuration of the board is configured. If the channel is not a legal value, the
CVXRECD and CVXPLAYD modules will not work.

The CVXDMA module is only needed when using CVXRECD or CVXPLAYD.
and only works if a DMA-capable device is installed.

Example

** Load in the sound driver modules **
LOAD "CVXINIT.BIN"

LOAD "CVXUNIN.BIN"

LOAD "CVXDMA.BIN-

LOAD "CVXRECD.BIN"

LOAD "CVXPLAYD.BIN"

** Initialize the sound system**
CALL "CVXINIT"

** Set the DMA channel to 1 (default) **
CALL "CVXDMA" WITH "1"

** Record a large file **
CALL "CVXRECD" WITH "TEST.V8"

** Play back the file **
CALL "CVXPLAYD" WITH "TEST.V8"

** Uninitialize the sound system **
CALL "CVXUNIN"

** Free the modules **
RELEASE MODULE "CVXINIT.BIN"
RELEASE MODULE "CVXUNIN.BIN"
RELEASE MODULE "CVXDMA.BIN"
RELEASE MODULE "CVXRECD.BIN"
RELEASE MODULE "CVXPLAYD.BIN"

Chapter 6 109

CVXINIT

Description: Initializes an interrupt handler for transferring information between modules.

Parameters: None.

Remarks: CVXINIT is used to set up an interrupt handler on interrupt 2Fh (multiplex
interrupt). This handler wdll be used as a 'link' to pass Port, DMA, IRQ and
Rate information between all modules.

This module must be called before any other module.

Example

** Load in the sound driver modules **
LOAD "CVXINIT.BIN"

LOAD "CVXUNIN.BIN"

LOAD "CVXPLAY.BIN"

** Initialize the sound system**
CALL "CVXINIT"

** Play back the TEST.V8 file **
CALL "CVXPLAY" WITH "TEST.V8"

** Uninitialize the sound system **
CALL "CVXUNIN"

** Free the modules **
RELEASE MODULE "CVXINIT.BIN"
RELEASE MODULE "CVXUNIN.BIN"
RELEASE MODULE "CVXPLAY.BIN"

110 Chapter 6

CVXIRQ

Description: Informs the modules at which IRQ channel the Covox board is configured.

Parameters: The IRQ setting. CVXIRQ expects one of the following IRQ values:

IRQ 2

IRQ 3

IRQ 4

IRQ 5

IRQ 7

Remarks: The IRQ setting passed to CVXIRQ should coincide with the IRQ channel that
the board is configured to. If these are not the same, the CVXRECD and
CVXPLAYD modules will fail.

The CVXIRQ module is only needed when using CVXRECD or CVXPLAYD
and will only operate if a DMA-capable device is installed.

Exampie

** Load in the sound driver modules **
LOAD "CVXINIT.BIN"

LOAD "CVXUNIN.BIN"

LOAD "CVXIRQ.BIN"
LOAD "CVXRECD.BIN-

LOAD "CVXPLAYD.BIN"

** Initialize the sound system**
CALL "CVXINIT"

** Set the IRQ channel to 7 (default) **
CALL "CVXIRQ" WITH "7"

** Record a large file **
CALL "CVXRECD" WITH "TEST.V8"

** Play back the file **
CALL "CVXPLAYD" WITH "TEST.V8"

** uninitialize the sound system **
CALL "CVXUNIN"

** Free the modules **
RELEASE MODULE "CVXINIT.BIN-

RELEASE MODULE "CVXUNIN.BIN"
RELEASE MODULE "CVXIRQ.BIN-
RELEASE MODULE "CVXRECD.BIN-
RELEASE MODULE "CVXPLAYD.BIN"

Chapter 6111

CVXPLAY

Description: Uses polled output to play a previously recorded 8 bit PCM file.

Parameters: The name of the file to be played.

Remarks: CVXPLAY plays back any standard 8 bit PCM file. Due to the limited module
size in FoxPro and dBase, only a few seconds of sound can be played back.

CVXPLAY does not return to the calling procedure until playback is complete.

Example

** Load in the sound driver modules **
LOAD "CVXINIT.BIN"

LOAD "CVXUNIN.BIN"

LOAD "CVXPLAY.BIN"

** Initialize the sound system**
CALL "CVXINIT"

** Play back the TEST.V8 file **
CALL "CVXPLAY" WITH "TEST.VS"

** Uninitialize the sound system **
CALL "CVXUNIN"

** Free the modules **
RELEASE MODULE "CVXINIT.BIN"

RELEASE MODULE "CVXUNIN.BIN"

RELEASE MODULE "CVXPLAY.BIN"

112 Chapters

CVXPLAY2

Description: Uses polled output to play a previously recorded 8 bit PCM file (FoxPro2 only).

Parameters: The name of the file to be played back.

Remarks: CVXPLAY2 will play back any standard 8 bit PCM file.

Due to the limited module size in FoxPro2, only a few seconds of sound can be
played back. The allotted time is twice that of CVXPLAY.

CVXPLAY2 does not return to the calling procedure until playback has finished.

Example

** Load in the sound driver modules **
LOAD "CVXINIT.BIN"

LOAD "CVXUNIN.BIN-

LOAD "CVXPLAY2,BIN"

** Initialize the sound system**
CALL "CVXINIT-

** Play back the TEST.V8 file (FoxPro2 only) **
CALL "CVXPLAY2" WITH "TEST.V8"

** Uninitialize the sound system **
CALL -CVXUNIN-

** Free the modules **
RELEASE MODULE **CVXINIT.BIN**

RELEASE MODULE "CVXUNIN.BIN**

RELEASE MODULE "CVXPLAY2.BIN"

Chapter 6 113

CVXPLAYD

Description: Uses DMA output to play a previously recorded 8 bit PCM ifile.

Parameters: The name of the file to be played back.

Remarks: CVXPLAYD can play back any standard 8 bit PCM file in its entirety. This
module requires that the file being played be located on a hard drive.

CVXPLAYD does not return to the calling procedure until playback has
finished.

Example

** Load in the sound driver modules **
LOAD "CVXINIT.BIN"

LOAD "CVXUNIN.BIN"

LOAD "CVXPLAYD.BIN"

** Initialize the sound system**
CALL "CVXINIT"

** Play back the TEST.V8 file **
CALL "CVXPLAYD" WITH "TEST.V8"

** Uninitialize the sound system **
CALL "CVXUNIN"

** Free the modules **
RELEASE MODULE "CVXINIT.BIN"

RELEASE MODULE "CVXUNIN.BIN"
RELEASE MODULE "CVXPLAYD.BIN"

114 Chapters

CVXPORT

Description: Inform the modules which port to use for recording and playback.

Parameters: The port address setting. CVXPORT expects one of the following port values:

Covox board set to port 0x22X.
Covox board set to port 0x24X.
Covox board set to port 0x28X.
Covox board set to port 0x2CX.
Speech Thing or Voice Master System II
attached to LPTl.

0

1

2

3

4

Remarks: If an internal card address is selected, that address should coincide with the
jumper position selected on the Covox board. If they are not the same, no I/O
can take place.

The CVXRECD and CVXPLAYD modules will not work if 4 is selected.

Example

** Load in the sound driver modules **
LOAD "CVXINIT.BIN"

LOAD "CVXUNIN.BIN"

LOAD "CVXPORT.BIN"

LOAD "CVXPLAY.BIN"

** Initialize the sound system**
CALL "CVXINIT"

** Set the port to jumper 0 (default) **
CALL -CVXPORT" WITH "0"

** Play back the TEST.V8 file **
CALL -CVXPLAY" WITH "TEST.VS"

** Uninitialize the sound system **
CALL "CVXUNIN"

** Free the modules **
RELEASE MODULE "CVXINIT.BIN-

RELEASE MODULE -CVXUNIN,BIN-

RELEASE MODULE -CVXPORT.BIN-

RELEASE MODULE -CVXPLAY.BIN"

Chapter 6 115

CVXRATE

Description: Sets the sampling rate at which all recording and playback will occur.

Parameters: The desired sampling rate. The rate must be passed as a 3 character string,
representing a value from 001 to 209 for recording, from 001 to 229 for playback,
or 255 for default settings (see Remarks below). If the rate is less than 100, put
0 in the first position(s) of the string (i.e. "062" for 62; "OOT for 7).

Remarks: CVXRATE uses the standard Covox rate values.

If a rate of255 is specified, CVXRATE will inform the playback modules to use
the rate stored in the digitized file header and the recording modules to default
to a rate of 132. CVXRATE is automatically set to 255 when loaded.

All recording and playback modules will use the sampling rate specified in
CVXRATE.

See Appendix B for rate value descriptions.

Example

** Load in the sound driver modules **
LOAD "CVXINIT.BIN-

LOAD "CVXUNIN.BIN"

LOAD "CVXRATE.BIN-

LOAD "CVXPLAY.BIN"

** Initialize the sound system**
CALL -CVXINIT-

** Set the rate to 132 **
CALL -CVXRATE- WITH -132"

** Play back the file **
CALL -CVXPLAY- WITH -TEST.V8-

** Uninitialize the sound system **
CALL -CVXUNIN-

** Free the modules **
RELEASE MODULE -CVXINIT.BIN-

RELEASE MODULE -CVXUNIN.BIN-
RELEASE MODULE -CVXRATE.BIN-

RELEASE MODULE -CVXPLAY.BIN-

116Chapter 6

CVXREC

Description: Uses polled input to record a standard 8 bit PCM file.

Parameters: The name of the file to be recorded.

Remarks: CVXREC stops recording when the internal buffer space is full or a key is
pressed, at which time it writes the recorded data to a ffle.

Due to the limited module size in FoxPro and dBase, only a few seconds of
sound can be recorded with this function.

CVXREC does not return to the calling procedure until recording is complete.

Example

** Load in the sound driver modules **
LOAD "CVXINIT.BIN-

LOAD "CVXUNIN.BIN"

LOAD "CVXREC.BIN-

LOAD -CVXPLAY.BIN-

** Initialize the sound system**
CALL -CVXINIT-

** Record a small file **
CALL -CVXREC- WITH "TEST.VS"

** Play back the file **
CALL -CVXPLAY" WITH "TEST.VS"

** Uninitialize the sound system **
CALL -CVXUNIN-

** Free the modules **
RELEASE MODULE "CVXINIT.BIN-
RELEASE MODULE -CVXUNIN.BIN-
RELEASE MODULE "CVXREC.BIN-
RELEASE MODULE -CVXPLAY.BIN-

Chapters 117

CVXREC2

Description: Uses polled input to record an 8 bit PCM file (FoxPro2 only).

Parameters: The name of the file to be recorded. _

Remarks: CVXREC2 continues recording until the internal data space is full or a key is
pressed, at which time it writes the sound data to a file.

Due to the limited module size in FoxPro2, only a few seconds of sound can be
recorded with this function. The allotted recording time is twice that of
CVXREC.

CVXREC2 does not return to the calling procedure until recording is complete.

Example

** Load in the sound driver modules **
LOAD "CVXINIT.BIN"

LOAD "CVXUNIN.BIN"

LOAD "CVXREC2.BIN"
LOAD "CVXPLAY2.BIN"

** Initialize the sound system**
CALL "CVXINIT"

** Record a file (FoxPro2 only) **
CALL "CVXREC2" WITH "TEST.V8"

** Play back the file (FoxPro2 only) **
CALL "CVXPLAY2" WITH "TEST.V8"

** Uninitialize the sound system **
CALL -CVXUNIN"

** Free the modules **
RELEASE MODULE "CVXINIT,BIN"
RELEASE MODULE "CVXUNIN.BIN-

RELEASE MODULE "CVXREC2.BIN-
RELEASE MODULE -CVXPLAY2.BIN-

118 Chapters

CVXRECD

Description: Uses DMA input to record an 8 bit PCM file.

Parameters: The name of the file to be recorded.

Remarks: CVXRECD continues recording until a key is pressed or the hard drive is full.
This module requires that the file being recorded be located on a hard drive.

CVXRECD does not return to the calling procedure until recording is complete.

Example

** Load in the sound driver modules **
LOAD "CVXINIT.BIN"

LOAD "CVXUNIN.BIN"

LOAD "CVXRECD.BIN"

LOAD "CVXPLAYD.BIN"

** Initialize the sound system**
CALL "CVXINIT"

** Record a large file **
CALL "CVXRECD" WITH "TEST.V8"

** Play back the file **
CALL "CVXPLAYD" WITH "TEST.VS"

** Uninitialize the sound system **
CALL "CVXUNIN"

** Free the modules **
RELEASE MODULE "CVXINIT.BIN"

RELEASE MODULE "CVXUNIN•BIN"

RELEASE MODULE "CVXRECD.BIN"

RELEASE MODULE "CVXPLAYD.BIN"

Chapters 119

CVXUNIN

Description: Removes the interrupt handler set up by CVXINIT.

Parameters: None.

Remarks: This module must be called before exiting the FoxPro/dBase application.

Example

** Load in the sound driver modules **
LOAD "CVXINIT.BIN-

LOAD "CVXUNIN.BIN"

LOAD "CVXPLAY.BIN"

** Initialize the sound system**
CALL "CVXINIT"

** Play back the TEST.V8 file **
CALL "CVXPLAY" WITH "TEST.V8"

** Uninitialize the sound system **
CALL "CVXUNIN"

** Free the modules **
RELEASE MODtJLE "CVXINIT.BIN-

RELEASE MODULE "CVXUNIN.BIN-

RELEASE MODULE "CVXPLAY.BIN"

120 Chapters

FM Synthesizer Functions

High-Level Functions

finlnit fmSetFrequency

fmNoteOff fmSetlnstrument

fmNoteOn fmSetMode

fmReset finUninit

Low-Level Function

finSetRegister

The library functions in this chapter are designed to play notes using the Yamaha
YM3812 FM synthesis chip. All calling programs must include the CVXFMSY.H file,
which in turn includes all other FM Synthesizer header files.

The fmlnit function initializes the FM library and the YM3812 chip. Any time after the
chip has been initialized, use the fmReset function to halt all chip actions and reset the
initial register values. Both functions set all voices to piano mode.

Any voice on the.chip can be set to a specific instrument by using the fmSetlnstrument
function. These instruments must be of the _BNK^INSTRUMENT format defined in

CVXFMSY.H. Call the ImSetMode function to select either melodic or percussive mode.

After a voice is set to an instrument, activate that voice to a particular note with the
fmNoteOn function. Once a voice has been activated, set it to a different frequency using
the fmSetFrequen<7 function. To turn the note off, call the fmNoteOfiT function.

A call to fmUninit uninitializes the FM library system.

You may also use the fmSetRegister function to access the registers directly. See the
chapter on Programming the FM Synthesizer for a brief outline of these registers.

Chapter? 121

fmlnit

Description Initializes the FM system and the YM3812 chip.

Prototype WORD fmlnit(J'MJNIT^DATA *fmInitData)

Parameters fmlnitData A structure containing all of the information needed to initial
ize the FM system and the YM3812 chip.

typedef struct

{
11 YM3812 Port.

WORD port;

} _FM_INIT_DATA;

Remarks This function must be called prior to any other of the FM library functions.

Return Value If successful the function returns the value _ERROR_NONE. The possible
return values are:

j:rror_none

j:rrorjnvalidjport

See the last page of the chapter for error code descriptions.

Example

// FMTEST.C
// This program initializes, then uninitializes the chip.

iinclude <stdio.h>
♦include "cvxfmsy.h"

VOID main(VOID)

_FM_INIT_pATA fmlnitData; // Initialization structure.

// Set the port to port A(388h)
fmlnitData. port = _FM_PORT_A;

// Initialize the FM libraries.
if(I(fmlnit ((_FM_INITJOATA *)&finlnitData)))

// Uninitialize the FM system.
if(fmuninito)

printf("ERROR : fmuninit () not successful. \n");

else
printf("ERROR : fmlnit() not successful.\n");

}

122 Chapter?

fmNoteOff

Description Turns off an FM note.

Prototype WORD fmNoteOfT(BYTE fmVoice)

Parameters fmVoice Voice to deactivate.

Remarks None.

Return Value If successful the function returns the value _ERROR_NONE, The possible
retiim values are:

j:rror_none

JERROR _SYSTEMJ^OTJNITIALIZED

JERROR_VOICE_OUT_OF^NGE

je:rror_voice_not_activated

See the last page of the chapter for error code descriptions.

Example

See fmNoteOn.

Chapter? 123

fmNoteOn

Description Turns on an FM note.

Prototype WORD fmNoteOn(BYTE fmVoice^ ViORl^ fmFrequency)

Parameters fmVoice The voice to activate.

fmFrequency The frequency of the note to play.

Remarks Any note with a value pre-defined in the Covox FM libraries may be called
according to the following format:

finNoteOn(0^ _finMidiScale [{subscript vsiue)]);

See CVXFMSY.H in Appendix A for a definition of the JhnMidiScale array and
the acceptable subscript values (i.e CO, DS4, G7). These values correspond to
MIDI note values, offset by one octave. (CO corresponds to MIDI note 12, C1
corresponds to MIDI note 24, etc.)

Return Value If successful the function returns a value of JERROR_NONE, The possible
return values are:

JSRRORJ^ONE

j:RROR_SYSTEM_NOTJNrnALIZED

j:rror_voicej)utj)fjunge

JERRORJNSTRUMENTJ^OTJ>EFINED

JiRRORJNVALIDJNSTRUMENT

Example

See the last page of the chapter for error code descriptions.

11 FMNOTE.C
// This program first initializes the FM Synthesizer chip^ then
11 configures voice 0 to piano. It then plays a middle c over
// that voice, turns off the note, and uninitializes the chip.

iinclude <stdio.h>
#include "cvxfmsy.h"

VOID main(VOID)
{

_FM_INIT_DATA fminitData;
_BNK_INSTRUMENT bnklnstrument
{

0, 0, 1, 3, 3, 15, 5,
15, 0, 0, 0, 1, 0, 7,
0, 2, 4, 0, 0, 0, 1,

// Initialization structure.

0. 1,
Or 15r
1, 0,

3r
7r
0

}; // Piano

124 Chapter 7

fmNoteOn

// Set the port to port A(388h)
fmini tData. port = _FM_PORT__A;

// Initialize the FM librarie.s
. if(l(fmlnit((JFM^INIT^DATA *)&fmlnitData)))

// Set the instrument on voice 0.
if(!(fmSetlnstrument((_BNK__INSTRUMENT far *)&bnklnstruinent,

0)))

// Turn the note on, voice 0 - middle C.
if(lfmNoteOn(0, _fmMidiScale [05]))

// Turn the note off on channel 0,
if(fmNoteOff(0))

printf("ERROR : fmNoteOff() not successful.\n");

else
printf("ERROR : fmNoteOn() not successful.Xn");

else
printf("ERROR : fmsetlnstrimient() not successful.\n");

// Uninitialize the FM system.
if(fmuninito)

printf("ERROR : fmUninit() not successful.\n");

else
printf("ERROR : fmlnit() not successful.\n");

Chapter? 125

fmReset

Description Resets the FM system and the YM3812 chip.

Prototype WORD fmReset(VOID)

Parameters None.

Remarks This function is used to reset the FM system and YM3812 chip. It turns off any
voices that are currently sounding. Instruments that have a very long release
time will continue to sound after a note off has been sent.

Return Value If successful the function returns a value of _^RROR_NONE. The possible
return values are:

JIRRORJ^ONE

je:rror_systemj^otjnitialized

See the last page of the chapter for error code descriptions.

Example

// FMREST.C
// This program first initializes the FM Synthesizer chip, then
// configures voice 0 to picuio. It then plays a middle C over
// that voice, turns off the note, and resets the chip.

finclude <stdio.h>
#include "cvxfmsy.h"

VOID main(VOID)

_FM__INIT_pATA fmlnitData; // Initialization structure.
_BNK_INSTRUMENT bnklnstrument =

^ 0, 0, 1, 3, 3, 15, 5, 0, 1, 3,
15, 0, 0, 0, 1, 0, 7, 0, 15, 7,
0, 2, 4, 0, 0, 0, 1, 1, 0, 0

}; // Piano

// Set the port to port A(388h)
fmlnitData. port = _FM__PORT_A;

// Initialize the FM libraries.
if(l(fmlnit((_FM_INIT_DATA *)&fmInitData)))

// Set the instrument on voice 0.
if<l(fmSetInstrument((_jBNK_INSTRUMENT far *)&bnklnstrument,
^ 0)))

// Turn the note on, voice 0 - middle C.
if(lfmNoteOn(0, _finMidiScale [C5]))

// Turn the note off on channel 0.

126 Chapter 7

fmReset

if(finNoteOff(0))
printf("ERROR : fmNoteOffO not successful.\n");

}
else

printf("ERROR : finNoteOn() not successful.\n");

else
printf("ERROR : fmsetlnstrument() not successful.\n");

// Reset the FM Synthesizer chip. This turns off any notes
// that are currently sounding.
if(fmReset)

printf("ERROR : fmReset() not successful.\n ");

// Uninitialize the FM system.
if(fmUninitO)

printf("ERROR : fmUninit() not successful.\n");

else
printf("ERROR : fmlnit() not successful.\n");

}

Chapter? 127

fmSetFrequency

Description Sets the frequency of a currently active voice.

Prototype WORD fmSetFrequency(BYTE fmVoice^ VfORD fmFrequency)

Parameters fm Voice The voice on which to set the frequency.

fmFrequency The frequency of the selected voice.

Remarks You may change the frequency of a currently active voice to that of any note
with a value pre-defined in the Covox FM libraries with this function, as follows:

fmSetFrequency (0, _fmMidiScale [(subscript value)]);

See CVXFMSY.H in Appendix A for a definition of the JmMidiScale array and
the acceptable subscript values (i.e CX), DS4, G7). These values correspond to
MIDI note values, offset by one octave. (CO corresponds to MIDI note 12, C1
corresponds to MIDI note 24, etc.)

Return Value If successful the function returns a value of JERRORJ^ONE, The possible
return values are:

j:rror_none

j:rror^ystemj^otjnitialized

See the last page of the chapter for error code descriptions.

Example

11 FMSETFRQ.C
// This program first initializes the FM Synthesizer chip^ then
// sets voice 0 to a piano configuration. It then plays a middle
// C over that voice, the frequency of which is changed several
// times by the fmSetFrequency() function, called within a loop.
// The program then turns off the note and uninitializes the chip.

#include <stdio.h>
iinclude "cvxfmsy.h"

VOID main(VOID)
{

WORD counterI, counterJ;
__FM__INIT__DATA fmlnitData; // Initialization structure.
_BNK_INSTRUMENT bnklnstrument =

0, 0, 1, 3, 3, 15, 5, 0, 1, 3,
15, 0, 0, 0, 1, 0, 7, 0, 15, 7,
0, 2, 4, 0, 0, 0, 1, 1, 0, 0

}; // Piano

// Set the port to port A(388h)

128 Chapter 7

fmSetFrequency

fmlnitData.port = _FM_PORT_A;

// initialize the FM libraries.
if(l(finlnit((_FM_INIT_DATA *)&fmInitData)))

^ // set the instrument on voice 0.
if(!(fmsetlnstrument((_BNK_INSTRUMENT far *)&bnklnstruinent^

0)))

// Turn the note on^ voice 0 - middle C.
if(lfmNoteOn(0^ _fmMidiScale[C5]))

^ // Loop through a series of tones.
for(counterl =0; counterl < 86; counterI++)

// Do a delay loop.
for(counterJ = 0; counterJ < 65534; counterJ-H-);

// Set the frequency to a specific tone on voice 0.
if(fmSetFrequency (0, _finMidiScale [counterl]))

^ printf("ERROR : fmSetFrequency()");
printf(" not successful.\n");

}
}

// Turn the note off on channel 0.
if(fmNoteoff(0))

printf("ERROR : fmNoteOff() not successful.\n");

else
printf("ERROR : fmNoteOn() not successful.\n");

else
printf("ERROR : fmSetInstrument() not successful.\n");

// Uninitialize the FM system.
if(fmUninitO)

printf("ERROR : fmUninit() not successful.\n");

else
printf("ERROR : fmlnit() not successful.\n");

Chapter? 129

fmSetlnstrument

Description Sets up an mstrument for playing notes.

Prototype WORD fmSetInstrument(.BNIL-INSTRUMENT far * fmlnstrument,
BYTEfmVoice)

Parameters fmlnstrument Pointer to the structure type _BNK_INSTRUMENT, which
has all of the data to define an instrument. See CVXFMSY.H
in Appendix A for the definition of this structure.

fmVoice The voice on which to set the instrument.

Remarks The libraries were originally designed to interface with the .BNK file type
defined by Ad Lib.

Return Value If successful the function returns a value of J£RROR_NONE. The possible
return values are:

j:rror_none

j:rror_systemj>jotjnitialized

JlRROR.VOICEjDUTjOFJiANGE

j:rrorjnvalidj^oicejfor_mode

JERRORJNVALIDJNSTRUMENT

See the last page of the chapter for error code descriptions.

Example

11 FMINSTR.C
// This program first initializes the FM Synthesizer chip^ then
// configures voice 0 to piano. It then uninitializes the chip.

#include <stdio.h>
#include "cvxfmsy.h"

VOID main(VOID)

__FM_INIT_DATA fmlnitData; // Initialization structure.
_BNK_INSTRUMENT bnklnstrument =
{

Or 0, 1, 3, 3, 15, 5, 0, 1, 3,
15, 0, 0, 0, 1, 0, 7, 0, 15, 7,
0, 2, 4, 0, 0, 0, 1, 1, 0, 0

}; // Piano

// Set the port to port A(388h)
fmlnitData. port = _FM_PORT_A;

// Initialize the FM libraries.
if(l(fmlnit((__FM_INIT_DATA *)&fmlnitData)))

130 Chapter 7

fmSetlnstrument

// Set the instrument on voice 0.
if(fmSetlnstrument ((_BNK_INSTRUMENT far *)&bnklnstrument,

0))
printf("ERROR : fmSetInstrument() not successfulAn");

II Uninitialize the FM system.
if(fmuninito)

printf("ERROR : fmUninit() not successful.\n");

else
printf("ERROR : fmlnit() not successful.\n");

Chapter 7 131

fmSetMode

Description Sets the FM system playback mode.

Prototype WORD fmSetMode(BYTE fmPlaybackMode)

Parameters fmPlayback
Mode

The mode to which the chip is set.

_MELODIC Voices 0-9 are active as melodic voices

and no percussive voices are available.

_PERCUSSIVE Voice 0-5 are active as melodic voices

and 6-10 are percussive voices.

6 -

7 -

8 -

9 -

10-

Bass Drum

Snare Drum

Tom Drum

Cymbal

High Hat

Remarks The default mode is _MELODIC.

Return Value If successful the function returns a value of JlRROR_NONE, The possible
return values are:

j:rrorjsione

j:RROR_SYSTEMJSlOTJNrnALIZED

See the last page of the chapter for error code descriptions.

Example

// FMMODE.C
// This program first initializes the FM Synthesizer chip, then
// configures the mode to JMELODIC and voice 0 to piano.
//It then uninitializes the chip.

#include <stdio.h>
#include "cvxfmsy.h"

VOID main(VOID)

__FM_INIT__DATA fmlnitData; // Initialization structure.
_BNK_INSTRUMENT bnklnstrument =
{

Of 0, 1, 3, 3, 15, 5, 0, 1, 3,
15, 0, 0, 0, 1, 0, 7, 0, 15, 7,
0, 2, 4, 0, 0, 0, 1, 1, 0, 0

}; // Piano

132 Chapter 7

fmSetMode

// Set the port to port A(388h)
fmlnitData.port = _FM_PORT_A;

// Initialize the FM libraries.
if(!(fmlnit((_FM_INIT_DATA *)&fmInitData)))

^ II Set the chip to melodic mode.
if(fmSetMode (_MELODIC))

printf("ERROR : fmSetMode() not successful.\n");

// Set the instrument on voice 0.
if(fmsetlnstrument((_BNK_INSTRUMENT far *)&bnklnstrument,

0))
printf("ERROR : fmSetInstrument() not successful.\n");

// Uninitialize the FM system.
if(fmuninito)

printf("ERROR : fmUninit() not successful.\n");

else
printf("ERROR : fmlnit() not successful.\n");

Chapter 7 133

fmUninit

Description Uninitializes the FM system and the YM3812 chip.

Prototype WORD fniUninit(VOID)

Parameters None.

Remarks None.

Return Value If successful the function returns a value of JIRROR_NONE, The possible
return values are:

j:rror_none

JERRORJSYSTEM NOT INITIALIZED

See the last page of this chapter for error code descriptions.

Example

// FMTEST.C
// This program initializes, then xininitializes the chip.

iinclude <stdio.h>
iinclude "cvxfmsy.h"

VOID main(VOID)

_FMLINIT_pATA fmlnitData; // Initialization structure.

// Set the port to port A(388h).
fmlnitData. port = _FM_PORT__A;

// Initialize the FM libraries.
if(!(fmlnit((__FM_INIT_DATA *)&fmlnitData)))

// Uninitialize the FM system.
if(fmUninitO)

printf("ERROR : fmUninit() not successful.\n");

else
printf("ERROR : fmlnit() not successful.\n");

}

134 Chapter 7

fmSetRegister

Description Writes data to a specific register on the YM3812.

Prototype VOID fmSetRegister(BYTE fmRegister, BYTEfmData)

Parameters fmRegister The destination register.

fmData The data to write to the register.

Remarks There is a small delay internal to this procedure. The delay is needed to allow
the YM3812 chip to 'settle'. All functions in the FM library use this function.

Return Value None.

Example

// FMSETREG.C
// This program first initializes the FM Synthesizer chip, then
// uses the fmSetRegister() function to set the chip wave select.
//It then uninitializes the chip.

#include <stdio.h>
linclude "cvxfmsy.h"

VOID main(VOID)

_FM_INIT_DATA fmlnitData; // Initialization structure.

// Set the port to port A(338h)
fmlnitData. port = _FM_PORT_A;

// Initialize the FM libraries.
if(fmlnit((_FM_INIT_DATA *)&fmlnitData))

// Turn off the wave select. This will cause the
// voices to default to sine wave.
fmSetRegister(JTEST, JWAVE_SELECT_ON);

// Uninitialize the FM system.
if(fmuninito)

printf("ERROR : fmUninit() not successful.\n");

else
printf("ERROR : fmlnit() not successful.\n");

}

Chapter 7 135

^ror Fll $yf^g|g0r g^un^lgne

JERROILNONE

No errors.

.ERROILINVALID^PORT

Invalid port sent to initialize.

_EWIOILjWSTEM_NOTJNrnALIZED

System is currently not initialized.

j:rror^invalid_voice_foil_mode

An attempt was made to set an instrument on an incompatible voice,

e.g. Bass drum sent to be set up on voice 0.

_ERROiLINVALID_INSTRUMENT

An attempt was made to set an invalid instrument.

JERROILINSTRUMENT_NOT_DEFINED

An attempt was made to turn on a voice that does not have an instrument
set.

_ERROILVOICE_NOTJIiCTIVATED ^
An attempt was made to turn off a voice that is not currently active.

_ERROR.VOICE_OUT.OF_RANGE

An attempt was made to set an instrument on a voice that is out of range
for the current playback mode.

136 Chapter?

MIDI Functions

Functions

midilnit

midiFetchByte

midiOutByte

midiUninit

The function midilnit initializes the MIDI board, sets up an IRQ handler and a Tirst
In, First Out' (FIFO) queue to store the MIDI data.

When a byte is sent from a MIDI device to the board, an IRQ 'fires'. In the interrupt
handler, the byte sent from the MIDI device is stored in the queue, the counter midi-
BytesInQueue is incremented and the flag midiByteReady is set to _TRUE.

A call to the function midiFetchByte returns a byte from the queue, decrements the
counter midiBytesInQuene and, if the queue is empty, sets the flag midiByteReady to
JFALSE.

The function midiOutByte sends a byte of data directly to the MIDI device.

The function midiUninit disables the MIDI board and removes the interrupt handler
that was installed by midilnit.

Chapter 8 137

midilnit

Description

Prototype

Parameters

Remarks

Initializes the Covox MIDI system.

VOID midilnit(WORD midiPort, BYTE irqChannel);

midiPort The port to which the Covox MIDI board is set. Valid ports
are:

JVIIDLPORT^

3fIDLPORT.B

See CVXMIDI.H in Appendix A for port value descriptions.

irqChannel The IRQ line to which the MIDI board is set. Valid IRQs are:

JRQ-^
_IRQ-3

_1RQ_5
JRQ-.7

See CVXMIDLH in Appendix A for IRQ value descriptions.

The midilnit function, in addition to initializing the Covox MIDI board, sets up
an interrupt handler to be used by the MIDI system. This IRQ handler takes
over the IRQ channel specified in the call to midilnit.

This function must be called prior to any other of the MIDI library functions.

Return Value None.

Example

// MIDIPLAY.C
// This program initializes the Covox MIDI system using the
// midilnit function, plays a middle c using the midiOutByte
// function, then calls the midiuninit function when finished.

♦include "cvxmidi.h"

VOID main(VOID)

// Set up the MIDI system with the default port and IRQ values,
midilnit (_MIDI_PORT_A, _IRQ_2);

// Turn on a middle c note.
midiOutByte(0x90);
midiOutByte(60);
midiOutByte(64);

// Turn the note off.
midiOutByte(60);
midiOutByte(0);

// Uninitialize the MIDI system.
midiUninitO;

138 Chapter 8

midiFetchByte

Description Gets a byte from the MIDI byte queue.

ProtoQpe BYTE m!dIFetchByte(VOID);

Parameters None.

Remarks When bytes are received from a MIDI device, they are placed into a queue. The
midiFetchByte retrieves a byte from the queue and adjusts the queue indexes
appropriately.

If an attempt is made to fetch a byte from the queue when the queue is empty,
the internal queue indexes will be corrupted. To prevent this, a flag (midiByte-
Ready) and an internal counter (midiBytesInQueue) are available for use.

BYTE midiByteReady

WORD midiBytesInQuene

_TRUE data in queue.
_FALSE queue empty.

The number of bytes in the queue. This
value decreases by 1 every time midi
FetchByte is called.

Return Value The next MIDI byte in the queue.

Example

MIDIFTCH.C

// This program initializes the Covox MIDI system, retrieves a
// byte from the MIDI queue using the midiFetchByte function,
// then calls the midiuninit function when finished.

#include "cvxmidi.h"

extern BYTE midiByteReady;
extern WORD midiBytesInQueue;

VOID main(VOID)

// Set up the MIDI system with the default port and IRQ channel
// values.
midilnit(_MIDI_PORT_A, _IRQ_2);

// Wait for a keypress to terminate routine,
while (IkbhitO)

^ // If a byte is ready, print out the byte and the number
//of bytes in the queue.
if(midrByteReady)

printf("MIDI Byte: %x Number Of Bytes In Queue: %x\n",
midiFetchByte(), midiBytesInQueue);

}

// Uninitialize the MIDI system,
midiuninit();

Chapter 8 139

midiOutByte

Description Sends a byte to a MIDI device.

Prototype VOID midiOutByte(BYTE midiData);

Parameters midiData Byte to send to the MIDI device.

Remarks The midiOutByte function has an internal delay that allows the MIDI system
enough time to 'settle' between the outputting of bytes.

Return Value None.

Example

MIDIPLAY.C

// This program initializes the covox MIDI system using the
// midilnit function, plays a middle C using the midiOutByte
// function, then calls the midiuninit function when finished.

#include "cvxmidi.h"

VOID main(VOID)

// Set up the MIDI system with the default port and IRQ values,
midilnit (_MIDI_PORT_A, _IRQ_2);

// Turn on a middle C note.
midiOutByte(0x90);
midiOutByte(60);
midiOutByte(64);

// Turn the note off.
midiOutByte(60);
midiOutByte(0);

}

// Uninitialize the MIDI system,
midiuninit();

140 Chapters

midiUninit

Description Uninitializes the MIDI system.

Prototype VOID mldiUninlt(VOID);

Parameters None.

Remarks The midiUninit function restores the original IRQ handler that was replaced
earlier by midilnit.

Return Value None.

Example

MIDIPLAY.C

// This program initializes the Covox MIDI system using the
// midilnit function, plays a middle C using the midiOutByte
// function, then calls the midiUninit function when finished.

#include "cvxmidi.h"

VOID main(VOID)

// Set up the MIDI system with the default port and IRQ values,
midilnit (_MIDI_PORT_A, _IRQ_2);

// Turn on a middle C note.
midiOutByte(0x90);
midiOutByte(60);
midiOutl^i:e (64) ;

// Turn the note off.
midiOutByte(60);
midiOutl^e (0);

// uninitialize the MIDI system.
midiUninit ();

}

Chapters 141

142 Chapter 8

Covox Utility Functions

Functions

cvxBufferAlloc

cvxBufferFree

cvxHzToRate

cvxFileClose

cvxFileCreate

cvxFileOpen

cvxFileRead

cvxFileWrite

cvxRateToHz

The functions in this chapter are used for a variety of purposes. They are primarily
designed to be used in conjunction with the functions from Chapters 1,2 and 3.

See the individual function descriptions for information.

Chapter 9 143

cvxBufferAlloc

Description Creates a buffer in which to store data.

Prototype LPSTR cvxBufrerAlloc(LONG bujferSize, LONG ♦ bytesAvailable);

Parameters bufferSize The desired size, in bytes, of the buffer to be created.

bytesAvailable Returned in this pointer (LONG ♦) is the number of bytes
available in the system. If the function was unsuccessful,
developers may use this variable to determine how much
memory to specify in a subsequent call to cvxBufferAlloc,

Remarks The buffer created is of the same type used in the record/play, pack/unpack and
dmaPlay/dmaRecord functions (see Chapters 1,2 and 3).

Return Value A far pointer (LPSTR) addressing the actual location in memory of the buffer
that was created. If the function was unsuccessful, a _NULL pointer is returned.

Example

// UTILBUFR.C
// This program creates a buffer of size _BUFFER_SIZE •
// After a buffer is successfully created, the buffer memory is
// deallocated with the function bufferFree.

iinclude <stdio.h>
finclude "cvxutil.h"

#define _BUFFER_SIZE 300000

VOID main(VOID)
{

LPSTR bufferstart;
LONG bytesAvailable;

// Allocate memory for buffer.
bufferstart = cvxBufferAlloc(_BUFFER_SIZE, &bytesAvailable);

// Make sure no error has occurred.
if(bufferstart = _NULL)
{

printf("ERROR I requested buffer size Isurger than");
printf(" available memory.\n\n");

else

{
printf("Memory requested = %ld\n", _BUFFER_SIZE);
printf("Memory available = %ld\n", bytesAvailable);

// Free memory.
if(cvxBufferFree(bufferstart))

printf("ERROR : Memory de-allocation failed.\n");

144 Chapter 9

cvxBufferFree

Description Frees memory previously allocated by cvxBufferAlloc.

Prototype WORD cvxBufferFree(LFSTR bufferStart);

Parameters bufferStart A far pointer addressing the location in memory of the buffer
to be destroyed.

Remarks All data that may have been stored in the specified buffer will be lost.

Return Value If successful, cvxBufferFree returns the value JERRORJ^ONE, The possible
return values are:

ERROR_NONE

ERRORMEMORYJ)EALLOC

See the last page of the chapter for error code descriptions.

Example

11 UTILBUFR.C
// This program creates a buffer of size _BUFFER__SIZE•
// After a buffer is successfully created, the buffer memory is
11 deallocated with the function bufferFree.

#include <stdio.h>
#include "cvxutil.h"

#define __BUFFER_SIZE 300000

VOID main(VOID)

^ LPSTR bufferStart?
LONG bytesAvailable;

// Allocate memory for buffer.
bufferStart = cvxBufferAlloc (_BUFFER_SIZE, abytesAvailable)?

// Make sure no error has occurred,
if (bufferstaurt = _NUIiL)

^ printf("ERROR : requested buffer size larger than");
printf (" available memory. \n\n") ?

else

^ printf("Memory requested = %ld\n", _BUFFER_SIZE)?
printf ("Memory available = %ld\n", bytesAvailable)?

// Free memory.
if(cvxBufferFree(bufferStart))

printf("ERROR : Memory de-allocation failed.\n");

Chapter 9 145

cvxHzToRate

Description

Prototype

Parameters

Converts a hertz frequency value to a standard Covox rate value.

BYTE cvxHzToRate(WORD rateHertz);

rateHertz A WORD value representing the actual frequency value (in
hertz) to be converted. rateHertz must be a value between 4679
and 44,191, or the function will exit immediately and return a
value of 0.

To convert from hertz to the corresponding cvxRate value,
this function uses the following formula:

cvxRate = 256 - (1,193,180 / rateHertz)

Remarks This function can be very helpful in determining the proper rate value to use
when recording a Covox sound file.

Return Value A BYTE value representing a standard Covox sampling rate value.

Example

// UTILR2HZ.C
// This program uses the functions cvxRateToHz() and
// cvxHzToRate() to calcuate between the Covox rate and
// the rate in hertz.

♦include <dos.h>
♦include "cvxutil.h"

VOID main(VOID)
{

printf(" 1 =
printf(" 132 =
printf(" 210 =
printf(" 211 =
printf(•• 223 =
printf(" 229 =

printf(- 4679
printf(•• 9622
printf("25938
printf("26515
printf("36156
printf("44191

=

%u Hz\n", cvxRateToHz(1)
%u Hz\n", cvxRateToHz(132)
%u Hz\n", cvxRateToHz(210)
%u Hz\n", cvxRateToHz(211)
%u Hz\n"^ cvxRateToHz(223)
%u Hz\n", cvxRateToHz(229)

%u cvx \n" f cvxHzTORate(4679
= %u cvx \n" f cvxHzToRate(9622
= %u cvx \n" f cvxHzToRate(25938
= %u cvx \n" f cvxHzToRate(26515
= %u cvx \n" r cvxHzToRate (36156
55 %u cvx \n" f cvxHzToRate(44191

146 Chapter 9

cvxFileClose

Description Closes a file with a handle.

Prototype WORD cvxFiieClose(HANDLE fileHandle);

Parameters fileHandle This value of type HANDLE identifies the file to be closed.

Remarks The function cvxFileClose uses DOS Int 21h function 3Eh to close a file created

with cvxFiieCreate or opened with cvxFileOpen.

Return Value If successful, cvxFileClose returns the value JERROR_NONE, The possible
return values are:

j:rror_none

JERRORJNVALIDJL4NDLE

See the last page of the chapter for error code descriptions.

Example

See cvxFiieCreate.

Chapter 9 147

cvxFiieCreate

Description Creates a new Ifile.

Prototype WORD cvxFlleCreate(IjVSTKfileName, WORD fileAttribute^
HANDLE *fileHandle);

Parameters fileName A far pointer (LPSTR) that points to a zero-terminated ASCII
string representing the fiill path and file name of the file to
create.

fileAttribute A WORD value indicating the attibutes of the new file.

.CREATEJVORMAL

.CREATE.R.ONLY

fileHandle A pointer to a variable of type HANDLE.

Remarks The funtion cvxFiieCreate uses DOS Int 21h function 3Ch to create a new file.

If fileName exists, it is opened and its length truncated to zero.

Return Value If successful, cvxFileCi^te returns the value _ERROR_NONE, The possible
return values are:

j:rror_none

j:rrorjpath_not_found

JERRORjrOOJ4ANYJILES_OPEN

JERRORyiCCESSJDENIED

Example

See the last page of the chapter for error code descriptions.

// UTILRW.C
// This program writes the contents of one file (_FIIiE^l)
// into a newly created file (_FILE_2) usin^ the functions
// cvxFileRead() and cvxFileWrite (). The file being copied cannot
//be Icurger than the available system memory.
// Memory is allocated with the function cvxBufferAlloc•

finclude <io.h>
iinclude <dos.h>
linclude <errno.h>
#include <stdio.h>
iinclude <fcntl.h>
iinclude "cvxutil.h"

idefine
idefine

FILEJ
FILE 2

"TEST1.V8"
"TEST2.V8"

VOID main(VOID)
{

148 Chapter 9

cvxFileCreate

LPSTR buf ferStart;
LONG buf fersize;
HANDLE handle1, handle2;
LONG bytesRead, bytesWritten;
LONG bytesAvailable;

// Open file containing sound data.
if(cvxFileOpen(_FILE_1, _OPEN_R_ONLY, &handlel))

^ printf("ERROR : file %s not found.\n", _FILE_1);
exit(0);

}

// Set number of bytes to allocate,
buffersize = filelength(handlel);

// Allocate memory for buffer.
bufferStaurt = cvxBufferAlloc(buffersize, &bytesAvailable);

// Error handling.
if(bufferstart == __NULL)

printf("Error allocating memory.\n");
printf("Memory available = %ld\n", bytesAvailable);
printf("Memory requested = %ld\n", buffersize);
exit(0);

}

// Read from file.
^ if(cvxFileRead(handlel, bufferstart, buffersize, &bytesRead))

printf("ERROR : Cannot read %s.\n", _FILE_1);
else

// Create new file.
if(cvxFileCreate(_FILE_2, _CREATE_NORMAL, &handle2))

printf("ERROR : Cannot create %s.\n", _FILE__2);
else

// write to new file.
if(cvxFilewrite(handle2, bufferstart, bytesRead,

fibytesWritten))
printf("ERROR : Cannot write to %s.\n", _FILE_2);

cvxFileClose(handle2);
}

}

cvxFileclose(handlel);

// Free memory used by bufferstart.
if(cvxBufferFree(bufferstart))

printf("Error de-allocating memory.\n");

Chapters 149

cvxFileOpen

Description Opens a file and assigns a file handle.

Prototype WORD cvxFileOpenf LPSTR fileName, WORD fileAccess^
HANDLE ♦ flleHandle);

Parameters fileName A far pointer (LPSTR) that points to a zero-terminated ASCII
string representing the full path and file name of the file to
create.

Remarks

accessMode A WORD value indicating the access mode to open file.

_OPEN_R.ONLY

_OPEN_W_ONLY

.OPEN_RW

flleHandle A pointer to a variable of type HANDLE.

The funtion cvxFileOpen uses DOS Int 21h function 3Dh to open a file.

Return Value If successful, cvxFileOpen returns the value JERRORjHONE. The possible
return values are:

JERROR_NONE

^RRORJFILEJsfOTJ'OUND

j:rrorjPath_notj'ound

JERRORJTOOJdANYJFILESjOPEN

_ERROR^CCESSJDENIED

JERRORJNVALID_ACCESS

See the last page of the chapter for error code descriptions.

Example

See cvxFileCreate.

150 Chapter 9

cvxFileRead

Description Reads in the contents of a file and places the data into a bui^er allocated by
cvxBufferAlloc.

Prototype WORD cyxFileRead(HANDLE///e/fand/e, LPSTR bufferStart,
LONG bufferSize, LONG ♦ bytesRead);

Parameters fileHandle A handle specifying the file to be read.

bufferStart A far pointer (LPSTR) addressing the location in memory of
a buffer that will contain data read from the specified file.

bufferSize A LONG variable specifying the size of the buffer pointed to
by bufferStart.

bytesRead A pointer to a variable of type LONG, indicating the number
of bytes actually read from the file.

Remarks Before using this function, the file must first be opened with a DOS file handle
function. Likewise, developers must close the file after file access is complete.

Return Value If successful, cvxFileRead returns the value JERRORJSfONE. The possible
return values are:

JSRROR.NONE

j:rror_file_accessj)enied

_ERRORJNVALIDJ{ANDLE

JSRRORJFILEJREADJ^AILED

See the last page of the chapter for error code descriptions.

Example

See cvxFileCreate.

Chapter 9 151

cvxFileWrite

Description Writes the contents of a buffer into a file.

Prototype WORD cvxFileWrite(HANDLE fileHandle, LPSTR bufferStart,
LONG bufferSize^ LONG ♦ bytesWritten);

Parameters fileHandle An arbitrary handle name for accessing the file to be read.

bufferStart A far pointer (LPSTR) addressing the location in memory of
a buffer that contains data to be written to the specified file.

buffersize A LONG variable specifying the number of bytes to be written
to the file.

bytesWritten A pointer to a variable of type LONG, indicating the number
of bytes actually written to the file.

Remarks Before using this function, the file must first be opened with a DOS file function.
Likewise, developers must close the file after file access is complete.

Return Value If successful, cvxFileWrite returns the value JlRRORJNfONE. The possible
retiu-n values are:

je:rror_none

JIRROR_JILE^CCESSS>ENIED

JERROR JNVALIDJIANDLE

JiRRORJFILEJVRITEJ^AILED

See the last page of the chapter for error code descriptions.

Example

See cvxFileCreate.

152 Chapter 9

cvxRateToHz

Description Converts a standard Covox rate value to a hertz frequency value.

Prototype WORD cvxRateToHz(BYTE cvxRate);

Parameters cvxRate A BYTE value representing the sampling rate value used in
most Covox functions. cvxRate maybe a value between 1 (4679
Hz) and 229 (44,191 Hz).

If cvxRate is 0, or if it is greater than 229, the function exits with
a return value of 0.

To convert from cvxRate to a rate measured in hertz, this func
tion uses the following equation:

hertz = 1,193,180 / (256 - cvxRate).

Remarks This function can be very helpful in determining the actual sampling rate of a
pre-recorded Covox sound file.

Return Value A WORD value representing the actual frequency (in hertz) of the Covox rate
value passed to the function. If unsuccessful, cvxRateToHz retiuns 0.

Example

// UTILR2HZ.C
// This program uses the functions cvxRateToHz () and
// cvxHzToRate () to calcuate between the Covox rate and
// the rate in hertz.

tinclude <dos.h>
iinclude "cvxutil.h"

VOID main(VOID)
{

printf(
printf(
printf(
printf(
printf(
printf(

1

132
210

211
223

229

printf(" 4679
printf(" 9622
printf("25938
printf("26515
printf("36156
printf("44191

%u Hz\n"^
%u Hz\n",
%u Ez\n",
%u Hz\n",
%u Hz\n"^
%u Hz\n",

%u cvx \n"
%u cvx \n"
%u cvx \n"
%u cvx \n"
%u cvx \n"
%u cvx \n"

cvxRateToHz(1)
cvxRateToHz(132)
cvxRateToHz(210)
cvxRateToHz(211)
cvxRateToHz(223)
cvxRateToHz(229)

cvxHzToRate(
cvxHzToRate(
cvxHzToRate(
cvxHzToRate(
cvxHzToRate(
cvxHzToRate (

4679

9622
25938
26515
36156
44191

Chapter 9 153

gfror Codes: Mtlllly Ftinc^ottg

JERROILNONE

No errors.

_ERROR^MEMORY_ALLOCATION

Size of memory request exceeds available memory in system.

3RROR_INVALID_HANDLE

File not open.

«ERROR.FILE_READ_FAILED

Unknown file read failure.

JERROR.FILE.WRITEJ'AILED

Unknown file write failure.

^ERRORJFILE_NOT_FOUND

Non-existent file specified in cvxFileOpen.

3RROR.PATH_NOT_FOUND

Invalid path specified.

_ERROR_TOO_MANYJFILES_OPEN

No more handles available in system.

JRRORj\CCESS_DENIED

File could not be accessed.

JERROR^INVALID^CCESS

Invalid mode during open/create.

154 Chapters

Programming With Polled (Non-DMA) I/O

A programmer must time the input and output to ensure accurate sample rates when
recording or playing digitized audio files. Polling is one method of timing I/O. There are
two types of I/O polling, referred to as software polling and hardware polling. Both types
employ a 'loop' to determine the interval between successive I/O instructions.

Software polling uses a simple delay loop, and is not recommended for most applications,
especially if they are to be used on systems with varying CPU clock speeds. Hardware
polling is a commonly used and accurate form of timing I/O delays.

Software polling utilizes loop constructs, such as 'for-next' in BASIC, 'for' in C, or 'loop'
in assembly. A loop counter can then be used to determine when the next I/O instruction
should be performed. This method is not recommended because the same software loop
will execute differently on different processors (i.e., an 8088 processor executes loops
much slower than a 80386 processor executes the same loop).

In the C code example shown below, a byte is output to the sound card port, vmPort at
the end of every delay loop. The variable bufferStait is a (LPSTR) and points to a buffer
of PCM data. The loop is exited when bufferStart points to the last PCM byte which is
pointed to by the LPSTR variable bufferEnd.

while ((loopCounter < _LOOP__SIZE) &&
(bufferStart l= bufferEnd))

// See if it's time to output a PCM byte.

Chapter 10 155

if(JL00P_SIZE = loopCounter++)

^ // Output byte of PCM data.
outp(virtPort, *bufferStart++);

}
}

// Reset the loop counter.
loopCounter = 0;

Hardware polling is more consistent among different processors than software polling.
The PC's timer chip, the Intel 8254, is used to time the interval between I/O instructions.
This timer has three independent timer channels designated as 0,1, and 2. Timer chan
nels 0 and 2 are available for use in timing I/O, Using timer 0 is referred to as 'interrupt
driven I/O' because an interrupt is fired when its counter value decrements to zero. Timer
0 is used by DOS to update the system time. Timer 1 is used for memory refresh and
should not be used. Timer 2 is the most convenient channel to use for hardware polling.

All three timer channels have a unique port containing a counter value that is decre
mented at a rate of 1,193,180 times per second (Hertz). Sampling periods can be imple
mented by setting the length of time it takes the timer to count down between I/O
instructions. With proper initialization, when the timer value reaches 0x00, it wraps
around to OxFF and continues decrementing. Setting the least significant byte (LSB) of
the timer to 0x00 and waiting for it to decrement to a pre-calculated terminal value will
determine the sampling rate. Use the following formula to calculate the value for the
timer to count down to:

terminalCount = 256 - (1,193,180 / hertzRate)

In the following C code, the timer on the PC is programmed to count down to a calculated
value determined by the rate stored in _RATE JN_HERTZ. The timer chip is initialized
with the value 0x98 (counter 2, read/write LSB, software triggered strobe, binary). The
maximum countdown value is then written to the timer port. This port is polled while the
countdown value remains greater than the variable terminalCount. bufferStart is a far
pointer to a string (LPSTR) that points to the PCM data being output. When bufferEnd
(LPSTR) is equal to bufferStart the 'while' loop is exited and the timer is set back to its
original rate. Timer 0 must be disabled dining polling so that slower computers will not
inadvertently be affected by interrupt 8. Timer 2 must be enabled by setting bit 0 of the
Programmable Peripheral Interface (port 61).

For a working programming example, see HARDPOLL.C.

156 Chapter 10

//**ie*icieirieit*-k'kie****'k1t**1cie1c****ic'k1t*'kieic1e1cieifkit1cie***ie**ieieie
11 The following code fragment plays back a buffer of
// sound data by polling timer counter 2.
//ieie-k***1e*it*ie'kic**ic*ie*ifk1cic*****if'kicie1c1e*1cicit1c**1cic****if***ie

// Calculate the value to count down to.
terminalcount = 256 - (1193180 / _RATE_IN_HERTZ);

// Save off current contents of Programmable Peripheral
// Interface.
port61 = inp(0x61);

// Enable timer 2 clock input.
outp(0x61^ (port61 | 0x01));

// Initialize the 8254 timer counter 2.
// Select R/W LSB, software triggered strobe, binary.
outp(0x43, 0x98);

// Set timer 2 to maximum countdown value (LSB only).
outp(0x42, 0x00);

// Disable timer 0 (int 8).
outp(0x21, (inp(0x21) | 0x01);

// Loop here and output all PCM bytes in the buffer
// pointed to by bufferStcurt.
while(bufferstart 1= bufferEnd)

If Loop while timer 2 value is greater than
// terminalcount.
while(inp(0x42) > terminalcount);

// Output sound data byte and increment buffer to next
// byte.
outp(vmPort, *bufferStart++);

// Reset timer 2 to maximum countdown value.
outp(0x42, 0x00);

}

// Initialize the 8254 timer counter 2.
outp(0x43, 0xB6);

// Write the LSB of the original timer countdown value.
outp(0x42, OxDO);

// Write the MSB of the original timer countdown value.
outp(0x42, 0x04);

// Restore original contents of PPI.
outp(0x61, port61);

_ // Reenable timer 0 (int 8).
outp(0x21, (inp(0x21) & OxFE));

Chapter 10 157

The Intel 8254 timer chip or its equivalent is foimd on both the PC motherboard and all
DMA-capable Covox boards. The following is a description of the format of the 8254
Control Word. On the PC, the port of the 8254 Control Word is 0x43. On the Voice
Master and Sound Master II cards, it is found at the Base Port plus offset QxOB.

Bits 7-6 These bits select which hardware timer is being manipulated.

GO Select timer 0

01 Select timer 1

10 Select timer 2

Bits 5-4 Read/write format specification.

00 Counter latch command

01 Read/Write only LSB
10 Read/Write only MSB
11 Read/Write LSB, then MSB

Bits 3-1 This bit settings select the count mode of the specified counter.
Mode 3 should be selected when setting up counter for polling I/O.

000 Mode 0: Interrupt on terminal count
001 Mode 1: Hardware retriggerable one-shot
010 Mode 2: Rate generator
011 Mode 3: Square wave mode
100 Mode 4: Software triggered strobe
101 Mode 5: Hardware triggered strobe

bit 0 PCs only utilize the binary counter setting.

0 Binary counter
1 BCD coimter

158 Chapter 10

% SiP iP tPW* %% % J" w" /J'%WP % %% ff ffflV. VJVJ'', SA%^tW.»VSS ̂ -P // • •W/ A* .>,/J^ S

CHAPTER 11

Programming with Direct Memory Access

The Covox Voice Master and Sound Master II are equipped for playback and recording
using 'Direct Memory Access' (DMA). In applications that use digitized sound, DMA
substantially reduces the CPU overhead.

During normal operation, the CPU provides address and control information by driving
the system bus and must be progranuned to move data between I/O (the Covox DMA
sound card) and memory. The CPU is not required to use its own processing time to
read a byte from, or write a byte to memory when DMA is used.

The DMA controller has four DMA channels. Two of the channels are used internally
by the PC. Channels 1 and 3 are available to be used by hardware interfaces such as the
Covox DMA boards.

This is a step-by-step description of a DMA cycle on the PC. Each step occurs during
every DMA cycle.

Step 1. The Covox DMA board sends a DRQ (DMA ReQuest) signal to the DMA
controller, requesting a DMA transfer on a specific channel.

Step 2. The CPU waits for the current bus cycle to finish and waits long enough to allow
the DMA controller time to access the bus.

Chapter 11 159

Step 3. The DMA controller responds by issuing a DACK (DMA ACKnowledge). The
Covox DMA card then reads a byte from the A/D converter (if it's a DMA read
cycle), or writes a byte to the D/A converter (if it's a DMA write cycle).

Step 4. Once the data is available on the bus, it is placed into a memory location with
an address the DMA controller generates automatically. The memory pointer
is then incremented or decremented depending upon how the DMA controller
is programmed.

After the programmed amount of data has been transferred, the DMA controller issues
a TC (Terminal Count) signal on the bus. The DMA card uses this signal to generate an
IRQ (Interrupt ReQuest) so as to inform the software that the memory transfer is com
plete. The IRQ that is fired is jumper selectable on the board. If a handler is set up,
another DMA sequence can be started within the handler.

Several steps are required to initialize both the DMA controller on the PC motherboard
and the Covox DMA board. Steps 1-4 and 8 are for the DMA controller; steps 5-7 and
9 are for the Covox DMA board.

Note: These steps are listed in the recommended order for initializing a DMA sequence,
but it is possible to modify the order to some extent.

Step 1. Disable the DMA channel.

Step 2. Set the processing mode (write or read).
Step 3. Set the physical address of the DMA sequence to process.

Step 4. Set the number of bytes for a DMA sequence

Step 5. Disable the DMA section of the Covox sound board.

Step 6. Initialize the timer on the DMA board and set the sample rate.
Step 7. Enable the interrupt latch on the DMA board.

Step 8. Enable the DMA controller.

Step 9. Enable the Covox DMA board to begin the DMA process.

The above steps are explained in detail on the following pages.

160 Chapter 11

DMA Controller Initialization

Step !• Disable the DMA Channel.

Port OxOA = DMA Mask Register

Before setting up the DMA controller, the DMA channel being utilized should
be disabled. The register used to disable and enable a specific DMA channel is
the DMA Mask Register at port OxOA.

Bits 7-3 Not used.

Bit 2 This bit enables or disables the DMA channel specified in bits 1-0.

I = Disable channel

0 = Enable channel

Bits 1-0 These bits specify the DMA channel to be enabled or disabled.

00 = ChannelO

01 = Channel 1

10 = Channel 2

II = Channels

For example, to disable channel 1, output a 0x05 to the DMA Mask
^ ̂ Register.

Step 2. Set the processing mode.

PortOxOB = DMA Mode Register

The DMA mode is set using the DMA Mode Register port on the DMA con
troller (OxOB). The standard mode used for transferring sound data is; single
mode, address increment, no reinitialization, read/write. The channel you select
is determined by the DMA channel the DMA board is using (jumper select).

Bits 7-6 Transfer Mode: Demand, Single, Block, or Cascade. Single mode
is used for standard sound data transfer. This implies that only one
byte is transferred at each DREQ.

00 = Demand mode

01 = Single mode (normally used)
10 = Block mode

11 = Cascade mode

Qll 5 Addressing Mode: Increment, Decrement. This specifies whether

the address being accessed by the DMA controller is incremented
or decremented after each DMA cycle.

0 = Address increment (normally used)
1 = Address decrement

Chapter 11 161

Bit 4 Automatic Reinitialization. If this bit is selected, the DMA con
troller will automatically restart itself when it reaches the end of
the DMA sequence. Otherwise DMA processing stops. Normally,
automatic reinitialization is disabled.

0 = No reinitialization (normally used)
1 = Automatic reinitialization

Bits 3-2 Transfer Direction: Read, Write, Verify. Read is used to transfer
from memory to the bus. Write is used to transfer from the bus to
memory. Verify is not used.

00 = Verify
01 = Read (play)
10 = Write (record)

Bits 1-0 Channel on which to initialize mode parameters. A separate mode
can be set for each DMA channel. The following describes the
DMA Mode Register bits:

00 = Channel 0

01 = Channel 1 (used by Covox DMA board)
10 = Channel 2

11 = Channel 3 (used by Covox DMA board)

Step 3. Set the physical address of the DMA sequence to process.

Port 0x02 = DMA Address Register for channel 1.
Fort 0x06 = DMA Address Register for channel 3.
Port 0x83 = DMA Page Register for channel 1.
Port 0x82 = DMA Page Register for channel 3.

In standard PC programming, memory addressing is accessed as "segment :
offset". Each segment starts on a paragraph (16-byte) boundary and is 64K bytes
long. Segments overlap each other every paragraph. The offset is the index into
the segment. In physical memory, addressing memory is separated into con
tiguous pages of 64K byte chunks. There are 16 of these chunks per megabyte
of memory.

The CPU performs the conversion from "segment: offset" to physical "page :
offset" internally, but the DMA controller does not have this ability. Therefore,
the conversion must be performed before you can write to the DMA controller.

The conversion from "segment: offset" to physical "page: offset" is performed
by shifting the segment left by four and adding the offset to the result. Shifting
left by four effectively multiplies the segment by 16. The resulting 20 bit value
allows addressing of up to a megabyte (IM). See the following C code example:

(LONG)physAddress = ((LONG)segment « 4) + (LONG)offset;

162 Chapter 11

The physical page can be extracted by shifting the physical address right by 16.
The page value is only 4 bits, but must be output as a byte to the DMA Page
Register. In C, this is accomplished by the following method:

(BYTE)physPage = (LON6)physAddress » 16;

The lower 2 bytes of the 20 bit physical address represent the offset from the
physical page. For example,

(WORD)physO£f set = (WORD)physAddress;

Step 4. Set the number of bytes for a DMA sequence.

Port 0x03 = DMA Count Register for channel 1.
Port 0x07 = DMA Count Register for channel 3.

The size of the sequence to process is simply the number of bytes that you wish
to transfer, up to a maximum of OxFFFF bytes (64K).

Note: These control registers are both read and write. Therefore it is possible to monitor
the Count Register for managing a circular buffer or for timing synchronization.

CoYOX DMA Board Initialization

All registers on the Covox DMA boards are at an offset from the Base Port, which is
configured by a jumper on the board. The valid ports are 0x220,0x240,0x280 and 0x2C0.
These examples will assume the base port is at the factory default, 0x220.

Step 5. Disable the DMA section of the Covox DMA Board.

Before altering any of the DMA controls on the DMA board, DMA must first
be disabled. To do this, output a 0 to the Disable DMA Offset (Port + OxOD).
In C, this is done as follows:

outp((WORD)(0x220 + OxOD), 0)',

Any value written to the Disable DMA Offset will disable DMA on the board.

Step 6. Initialize the timer on tbe Covox DMA Board and set the sample rate.

The DMA board was designed with a timer (Intel 82C54), to time the firing of
DREQ signals, which determines the sample rate. To use the timer it must first
be initialized. It may be initalized at any time, except during the processing of
a DMA sequence. However, initialization is only required once after each
hardware reset (cold boot).

To initialize the timer, a 0xB6 must be written to the Base Port plus OxOB. For
example, in C this can be accomplished as follows:

OUtp((WORD)(0x220 + OxOB), 0xB6);

Chapter 11 163

After initialization of the 82C54, set it to the desired sampling rate using the
following formula (in this case, expressed as a C code statement):

timerValue = 7,190^900 / sampleRate

In this statement, sampleRate is the desired sample rate in hertz, and timerValue
is the value to send to the timer. For example, an 8000 Hz sample rate would
require the timer to be programmed with an 899 (decimal). Since the timer can
only accept 8 bit values, send the value out in LSB/MSB format.

The timer port on the DMA board is located at the Base Port + OxOA. In C,
the timer could be programmed as follows:

outp((WORD) (0x220 + OxOA), (BYTE)timerValue);
outp((WORD) (0x220 + OxOA), (BYTE) (timerValue » 8));

Step 7. Enable the interrupt latch on the Covox DMA hoard.

After the DMA sequence has finished, prompt the PC to respond to an IRQ by
writing an arbitrary value to the Base Port + OxOC. For example (in C),

outp((WORD)(0x220 + OxOC), 0);

Starting the DMA Process

Step 8. Enable the DMA controller.

Port OxOA = Mask Register

The DMA controller is enabled by setting the enable/disable bit of port OxOA.

Bits 7'3 Not used

Bit 2 1 = Disable channel

0 = Enable channel

Bits I'O 00 = Channel0

01 = Channel 1

10 = Channel 2

11 = Channel 3

e.g. To enable channel 1, write a 0x01 to the Mask Register.

Step 9. Enable the Covox DMA Board to begin the DMA process.

After DMA has been enabled on the DMA controller, DMA can be enabled
on the DMA board by writing an arbitrary value to the Enable DMA Offset. In
C, this port could be accessed by the following statement:

outp((WORD)(0x220 + OxOE), 0);

The DMA sequence will now begin. When the sequence finishes, an IRQ will
fire (if the IRQ Enable flip-flop is enabled on the DMA board).

164 Chapter 11

• All of the registers on the DMA controller accept only one byte at a time. When
outputting a two byte value, you must first output the LSB, followed by the MSB.
The Clear LSB/MSB flip-flop register at port OxOC must be output to first to insure
that the DMA controller accepts the bytes in LSB/MSB order. Any value can be
output to the Clear LSB/MSB flip/flop register.

• Disabling and enabling of the DMA subsystem can cause an IRQ to fire.

• When the terminal count is reached on the 8237 DMA controller, the DACK line
on the Covox DMA sound board goes high. To set this line to low and thus allow
the next interrupt to occur, you must perform the following statements in the inter
rupt handler: The base port 0x220 used in the following C code example.

// Enable IRQ latch on the Covox DWi board.
outp((0x220 + OxOC), 0);

// Send 'End Of interrupt' signal to the IRQ controller.
outp(0x20, 0x20);

The DMA hardware can only access one 64K physical page at any one time. What if a
buffer lies across more than one page? Unfortunately the only way to handle this is to
break it into smaller sequences.

This can be done by comparing the size of the buffer to process with the number of bytes
between the current offset of the buffer into the page and the end of the page. If the
number of bytes to process extends beyond the page boundary, then only the number of
bytes between the offset into the page and the end of the page can be processed as one
sequence.

At the end of a DMA sequence the DMA controller generates an interrupt. An interrupt
handler must then calculate the new page and offset values. The new page value is cal
culated by adding 1 to the previous page value, and the offset into the page is set to zero.
If the number of bytes left in the buffer is greater than 64K, the next sequence will again
have to handle the page crossing calculations in the interrupt handler. These steps are
repeated until the entire buffer has been processed.

Chapter 11 165

166 Chapter 11

Programming The FM Synthesizer

The Covox Sound Master 11 contains an FM synthesizer chip designed by Yamaha. This
chip, the YM3812, is the same chip used by Ad Lib. All software written to support the
Ad Lib sound card also supports the FM Synthesizer of the Soimd Master 11.

FM is an abbreviation for Frequency Modulation, a system of modulating sound waves
to create combinations of higher harmonics. This allows for the generation of waveforms
containing high harmonics and non-harmonic sounds.

Voice Modes

The YM3812 is equipped with a total of three voicing modes:

a. 9 Melodic Voices Mode

This mode allows for simultaneous voicing of nine FM sounds having different
voices. Both the rhythm bit (R) and CSM bit must be set to 0.

b. 6 Melodic/5 Rhythm Voices Mode

When the YM3812 is set to this mode, the number of melody sounds which can
be simultaneously voiced is reduced by three to six, but five rhythm sounds are
added (bass drum, snare drum, tom tom, cymbal, and high hat). The bass drum
is created using FM sound generation, the tom tom by sine wave, and the other
three rhythm instruments are simulated by composite frequencies.

c. CSM Mode

This mode is for future upgrades to the YM3812, and is not supported in these
libraries.

Chapter 12 167

Oscillators

The YM3812 chip includes a built-in vibrato oscillator and an amplitude modulation
oscillator, which may be activated on selected voices to closely simulate the soimd of
natural instruments. This allows for a reduction in required programming.

The YM3812 is capable of producing 9 FM sounds over 9 different channels, each of
which effectively utilizes two operator cells, in parallel or cascading modulation. Note,
however, that the chip actually has only one operator cell, so that this operator cell must
be accessed a total of 18 times for 9 FM sounds. The order (slot number) in which signals
pass through this operator cell corresponds directly to the sequence of register numbers.

The F-number data for each channel controls both slots of that channel. The relationship
between the two slots is such that the first slot is always the modulating wave, and the
second slot is the carrier wave. The FM feedback mode affects the modulator slot, if
activated.

This is a table of the relationship between channels and slots:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 1 2 3 4 5 6 4 5 6 7 8 9 7 8 9

1 2 1 2 1 2

20 21 22 23 24 25 28 292A 2B 2C2D 30 31 32 33 34 35

CO C1C2CO C1C2C3C4C5C3C4C5C6C7C8C6C7C8

Slot Number

Channel Number

Slot Number for

Each Channel

Data/Slot Relation

Data/Chan. Relation

On the following page is a chart depicting the registers of the YM3812 chip. Any of the
registers maybe accessed directly using the setRegister function. See the FM Synthesizer
Functions chapter for a description of setRegister.

For additional information on the YM3812 chip, contact Yamaha.

168 Chapter 12

YM3812 Chip Registers

Address D7 D6 D5 D4 D3 D2 D1 DO Comment

01 Test Test Data of LSI

02 N/A

03 N/A

04 N/A

08

C

s

M

GSM Bit For

Future Upgrades

20

35

A

M

V

I

B

E

G

T

Y

P

K

S

R

Multiple

AM-Modulation
Vibrato
EG-Type

Key-Scale Rate
Multiple

40

55

K

S

L

TL Key-Scale Level
Total Level

60

75

AR DR
Attack Rate
Decay Rate

80

95

SL RR
Sustain Level
Release Rate

AO

A8

F-Number (L)
Key-on
Block

BO

B8

N/A
K
O
N

Block F-Num

(H)

F-Number

BD

A
M

D
E

P

V
I

B

D
E

P

R B

D

S
D

T

O
M

T

C

H

H

Depth
(AM/VIB)

Rhythm
(BD, SD, TOM, TC, HH)

CO

C8

N/A FB C
Feedback
Connection

EO

N/A WS Wave Select

F5

Chapter 12 169

170 Chapter 12

Programming The Covox MIDI

Covox has designed an internal 'Musical Instrument Digital Interface' (MIDI) for the
PC. This interface, which is contained in both the Covox MIDI Maestro and the Sound
Master II cards, can be used to sample data from a MIDI device such as a keyboard or

a MIDI guitar. The Covox MIDI uses a standard UART (Universal Asynchronous
Receiver/Transmitter) and meets the 1.0 International Standards Organization (ISO)
specifications.

The interface was designed so that information can be received and transmitted "simul
taneously". The following documentation will explain how to receive information from
and send information to a MIDI device using this interface. Three programs have been
included with this documentation to better demonstrate how to access the interface

(TESTIN.C, TESTOUT.C and MIDIASM).

MIDI Initialization

Setting up the interface to transmit data is a relatively simple task. First you must deter
mine the port address that the interface is using. The two available port addresses for
the Covox MIDI are 330h (default) and 338h.

Then, to initialize the card, write a 3h and then a 95h to the STATUS REGISTER (base
port + 1). The interface will then be ready to transmit and receive data. The interface
needs a little time to "settle" after a byte is written to it. To allow the user to know when
the interface is ready to accept data, bit 1 (0 relative) of the STATUS REGISTER will
be set. Before writing any data to the card this bit must be checked. If this bit is not
HIGH, the data written will become garbled.

This is the procedure for setting up the card and writing out a byte:

; It is assiuned that the port is 330h.

Chapter 13 171

Output a 3h to the STATUS register (base port + 1)
to reset the interface.

mov dx^ 330h
inc dx
mov al, 3h
out dx, al

base port
base port + 1

Output a 95h to the STATUS REGISTER to setup the
interface to transmit and receive data.

mov

out

al, 95h
dx, al

The above block of code is only necessary when initializing the interface. Initialization
is the same for both transmitting and receiving.

Poll bit 1 of the STATUS REGISTER to see if the
interface is ready to accept data.

Poll: in al, dx

"AND" the value read from the STATUS REGISTER with
a 2h to see if bit 1 is HIGH.

and al, 2h
cmp al, 0

If bit 1 is not HIGH jump back up to the
Poll: loop until the bit goes high.

je Poll

output the byte to the DATA REGISTER (base port).

mov

dec

out

al, byte
dx

dx, al

When data is transmitted to the interface from a MIDI device, the interface "fibres" an
IRQ. In the IRQ handler, the byte that was transmitted must be read in from the DATA
REGISTER. If the byte is not read, no further interrupts will occur. The MIDI interface
can be configured to use interrupt request channel (IRQ) 2 (default), 3,5 or 7.

Read the MIDI byte from the DATA REGISTER and
store it in al.

mov

in
dx, 330h
al, dx

For more information on how to use the interface, see MIDIASM.

172 Chapter 13

Two executable programs have been included for testing (TESTIN.EXE, TEST-
OUT.EXE). Both of these require command line switches that specify which Port Ad
dress and IRQ Channel the board is configured to.

For example (with the MIDI set to the default settings):

testin 816 2
testout 816

The first parameter represents the Port Address (decimal) and the second represents
the IRQ Channel.

To compile these programs type:

cl /c testin.c
tasm internal.asm
link testin+internal;

cl /c testout.c
tasm internal.asm
link testin+internal;

Chapter 13 173

174 Chapter 13

Covox Library Include Files

CVXDIGLH

The following header file must be included in your program when using any of the non-
DMA play/record, dmaPlay/dmaRecord, pack/unpack, or TSRPLAY functions.

//File :CVXD1GI.H
// Date : January 10,1992
// Description : Covox developers support library header fiie for
II piay/record, pack/unpack, dmaPlay/dmaRecord and
II tsrpiay functions.
II
H Last update
II Additional Notes :
yy***

II Copyright (c) 1992, Covox, Inc. All Rights Reserved

#ifndef _CVXDIGi_DEFiNED
#deflne _CVXDIGi_DEFiNED

#include "cvxdefs.h"

^^***

// if compiled with Borland C, the header file CVXBRLND.H will be
// automatically included.

#ifdefined(_TURBOC_)
#lnclude "cvxbrlnd.h"
#endlf

Appendix A 175

vxipueddv 9Z|.

jeuiuiep! U0UUBIJO// toxo I 13NNVH0"VWa~9U!J8P#

sjaujiuspj |8uuei|3 vi^a //

W 622 WnWIXVW"in0"3iVU"^0" eu!}0p#
602 wnwixvw Nr3iVU~XA0~ auuap#
201 nnV33a 3iVd"XA0" eu^ap#

6 13SddO~31Vy"a3aV3H" au«9P#
8 138330 iVWU03_y3aV3H" sujjap#
9i H10N31 y3aV3H" auyep#

uopBLUJOjUj japeaq sm punos xoaoq //

•|BuiJOi0|!jxoAOOP|O|/\iOdJ!q8// 33X0 3WA"lVWy03" euyep#
WOd W 8 // 80X0 8A"lVWy03" auusp#

•Bu!poouBBOuB|!SijJ!M|fl|Od«q8// 88X0 S8A"iVlftiy03" 9U!iap#
•Buipooue eou8|!S qji/w wodQV W fr II Wxo SM'lVWyOd" 9U!j8p#
•Bu!p00U8 80U8|!sm!Mirti0daVl!qe// 88x0 S8A"lVWy03"9U!j8p#
•Bu!poou8 80U8|!S qjjM wodQV W 2 // 28X0 S2A"lVWy03" 9uy8p#

«««»««««**»»»»»«««««««**»*«»*»«««»»««»*»«»«««*««»«**««««««««««»«**«»«*««//
SJ8jJj)U8p| }BUUO^ PJ038U - AB|d //

-|8A8| Sim }|nS8J lljM Bu|dd!|3 II {
8UJ0S ■SJU81JUU0J|AU8 ASjOU A|8A!)B|8J JOd // 8~30N31IS~

'fr"30N3niS"
•8n|BA p^p 8Mi II '0~3ON3niS~

'2 30N31IS"
■SUI8UJU0J|AU8 8Jinb A|8A|)B|8J JOd // ' r30N3niS~

•BU!POOU8 80U81!S ON // '0~30N3niS~
}

ujnu8

suojiouni AB|d //
pUB PJ008J JOi 86uBJ 80U8|!S Aj!08dS 01 P8sn SJUBISUOO p U0!lBJ8UJnU3 //

J8>lB8dS |BUJ8UJ|// 8 dSrXA0"9uy8p#
8 idl // 9 8id1~XA0" 9UU8P#
21«n// 9 21d1 XAO 9UU8P#
Ihnll V HdT)(A0"9U!J8p#

XO2X0POd// 8 81rtlA XAO aujjop#
X82X0 POd // Z zViA XAO auyop#
Xfr2X0POd// I tWA XA0"9U!J8P#
X22X0POd// 0 OlrtIA XA0"9U!)8P#

SJ8!^IU8P| Jjod IBOjBOl XOAOO //

#define _DM/LCHANNEU.3 0x03 // Channel 3 identifier

// IRQ vector identifiers
^^***

#define JRQ_2
#define JRQ_3
#deflne JRQ_4
#define JRQ_5
#define JRQ_7

0x02

0x03

0x04

0x05

0x07

II IRQ 2 identifier
II IRQ 3 identifier
II IRQ 4 identifier
II IRQ 5 identifier
II IRQ 7 identifier

// Constant used by dmalnit for auto-detection for port IRQ and DMA channel.

#define_AUTODETECT -1

//'
'***

II DMA (and IRQ) related port offsets

#deflne_DMA^MASK_REGlSTER OxOA

#deflne_DMA^MODE_REGISTER OxOB
#define_DMA^CLEAR_REGISTER OxOC

#deflne_DMA_STATUS_REGiSTER 0x08

#deflne_DMA_RESET_REGISTER OxOD
#deflne_DMA^CH1_PAGE_REGiSTER 0x83
#deflne_DMA_CH1J\DDR_REGiSTER 0x02
#define_DMA_CH1_C0UNT_REGiSTER 0x03
#define_DMA_CH3_PAGE_REGiSTER 0x82
#define_DMA_CH3_ADDR_REGiSTER 0x06
#deflne_DMA_CH3_C0UNT_REGISTER 0x07
#deflneJRQ_COMMAND_REGISTER 0x20
#deflneJRQ_MASK_REGiSTER 0x21

#define_C0M2_C0NTR0L_REGiSTER 0x04

#deflne _LPT1_C0NTR0U_REGiSTER 0x02

Used to enable or disable specific
DMA channels.

Used to setup the DMA transfer.
Used to reset DMA controller to
LSB/MSB format.

Used to determine which DMA channel
Is serviced during testing.

DMA controller master reset port.
DMA channel 1 page address register.
DMA channel 1 address register.
DMA channel 1 word count register.
DMA channel 3 page address register.
DMA channel 3 address register.
DMA channel 3 word count register.
Used to acknowledge Interrupts.
Used to enable or disable specific.

Interrupt sources.
Offset from base com2 port for modem

control register.
Offset from base Ipti port for control

register.

II DMA (and IRQ) related masks and vector numbers

#deflne_DMA_MODE_ENABLE 0x48
#deflne_DMA_DISABLE_MASK 0x04
#deflneJRQ3_VECT0R OxOB
#deflneJRQ4_VECT0R 0x00
#deflneJRQ5_VECT0R OxOD
#defineJRQ7_VECT0R OxOF
#deflneJRQ3_MASK 0x08

II Used to set the DMA transfer mode.
II use to disable a DMA channel.
II IRQ 3 vector number.
II IRQ 4 vector number.
// IRQ 5 vector number.
II IRQ 7 vector number.
// Determines If IRQ3 Is the Interrupt.

Appendix A 177

#define JRQ4_MASK 0x10
#defineJRQ5_MASK 0x20
#deflneJRQ7_MASK 0x80
#defineJRQ3_ENABLE_MASK OxF7
#defineJRQ4_ENABLE_MASK OxEF
#defineJRQ5_ENABLE_MASK 0xD7
#defineJRQ7_ENABLE_MASK 0x7F
#defineJRQ3_DISABLE_MASK 0x08
#defineJRQ4_DISABLE_MASK 0x10
#defineJRQ5_DISABLE_MASK 0x20
#defineJRQ7_DISABLE_MASK 0x80
#define_C0M2_DISABLE_MASK 0xF7
#deflne_LPT1_DISABLE_MASK OxEf

// Determines if IRQ4 is the interrupt.
// Determines if IRQ5 is the interrupt.
// Determines if IRQ7 is the interrupt.
// For enabling IRQ 3 via 8259 mask reg.
// For enabling IRQ 4 via 8259 mask reg.
// For enabling IRQ 5 via 8259 mask reg.
// For enabling IRQ 7 via 8259 mask reg.
// For disabling IRQ 3 via 8259 mask reg.
// For disabling IRQ 4 via 8259 mask reg.
// For disabling IRQ 5 via 8259 mask reg.
// For disabling IRQ 7 via 8259 mask reg.
// For disabling interrupts from COM 2.
// For disabling interrupts from LPT 1.

// Error codes for play and record functions.

#undef _ERROR_NONE
#define_ERROR_NONE 0

II NOTE; Starting offset for all play and record functions errors is 1000
enum

{
_ERROR_PORTJNIT_FAILED = 1000,
_ERRORJNVAUD_BUFFER_SIZE,

// Unable to find spec

}:

_ERRORJNVALID_FORMAT,
_ERR0R_PLAY8_BUSY

ified port.
// bufferSize was found to be zero or
// less than 16.
// Buffer format different from play call.
// play8 function already active.

II Prototypes for low level routines used by all Play and Record routines.

WORD playBytelnit (WORD, BYTE, BOOL, WORD);
WORD recordBytelnit (WORD, BYTE, BOOL);
VOID playByte (BYTE);
BYTE recordByte (VOID);
WORD playUnlnit (VOID);
WORD recordUnlnit (VOID);

Il*1c**ic'kicic1c'k-kifkieitit'k1f*icic***it'kit*it*1t***1cicic***iticic**ie'kic'k1c1tieici(itititic*'kie*icic*icis*1c'kic1c*icific

I I Prototypes for all Play and Record routines.

(LPSTR, LONG. BYTE, WORD, WORD, LONG *);
(LPSTR, LONG, BYTE, WORD, WORD, LONG *);
(LPSTR, LONG, BYTE, WORD, WORD, LONG •);
(LPSTR, LONG, BYTE, WORD, WORD, LONG *);
(LPSTR, LONG, BYTE, WORD, LONG *);

(LPSTR, LONG, BYTE, WORD, BOOL, BOOL);
(LPSTR, LONG, BYTE, WORD, BOOL, BOOL);

Appendix A

WORD record2s
WORD record3s
WORD record4s
WORD record8s
WORD records

WORD playAny
WORD play2s

178

WORD

WORD

WORD

WORD

playSs
play4s
playSs
playS

(LPSTR, LONG, BYTE, WORD, BOOL, BOOL)
(LPSTR, LONG, BYTE, WORD, BOOL, BOOL)
(LPSTR, LONG, BYTE, WORD, BOOL, BOOL)
(LPSTR, LONG, BYTE, WORD, BOOL);

// Data structure and prototypes for unpackFirst and unpackNext

typedef struct _tagCovertDataStruct
{

LPSTR sourcePolnter;
LONG sourceLength;
LONG sourceUsed;
LPSTR destlnatlonPolnter;
LONG destlnatlonLength;
LONG destlnationFllled;
WORD bufferFormat;
BYTE sampleRate;
WORD sllenceRange;
BOOL trebleRag;
BOOL nolseRag;

}_CONVERT_DATA:

WORD

WORD

WORD

WORD

unpackFirst
unpackNext
packFlrst
packNext

(_CONVERT_DATAfar*):
(_CONVERT_DATA far *);
(_CONVERT_DATAfar*):
(_CONVERT_DATAfar*):

// Error codes for DMA functions.

// NOTE : Starting offset for all DMA functions errors Is 3000.
enum

{
_ERROR_DM/LDETECT_FAILED = 3000,
_ERROR_DMAJVLREADYJNmAUZED,
_ERROR_DMA^NOTJNiTiAUZED,

// VM port,

}:
_ERROR_OUEUE_FULL

IRQ and channel not found.
// dmainit called more than once.
// dmalnit not called first or DMA could
// not be Initialized.
// No room In queue for DMA I/O request.

// Prototypes for DMA play and record routines.

WORD dmaPlay (LPSTR, LONG, BYTE, WORD);
WORD dmaRecord (LPSTR, LONG, BYTE);

WORD
WORD

dmaSetRate
dmalRQReset

(BYTE):
(VOID);

Appendix A 179

WORD
WORD

WORD

WORD
BOOL

BOOL

dmaEnable
dmaDisable

dmalnit

dmaUninit
dmaPause

dmaUnpause

(VOID):
(VOID);
(WORD. WORD. WORD. WORD *);
(VOID);
(VOID);
(VOID);

// Voice Master and Sound Master II port detection functions.
WORD dmaPortDetect (WORD);

// Functions called after dmalnit to find active DMA settings
WORD dmaGetPort (WORD*);
WORD dmaGetChannel (WORD *);
WORD dmaGetlRONumber (WORD*);

// I/O Queue Management
WORD dmaNumberlnOueue (VOID)
WORD dmaBytesRemalning (VOID)
WORD dmaRushOueue (VOID)

Il-k-kic*1c1cie**'k*******icic'k*ic*ic**it*ic*1ticit1c1c*icic*ic1c1ticic-k*1c1ck1c'kifk1c'k*1fk'kit1cit1e1c1cic*1tit1fkieieie1tic

H TSRPLAY header Information
^^**

II
#define_BUFFER_SiZE_MIN 1
#define_BUFFER_SIZE_MAX 64
#define_BUFFER_COUNT_MiN 2
#define_BUFFER_GOUNT_MAX 5
#define_FILE_REPEAT_MAX 255

#define_RATE_MINIMUM 4679
#define_RATE_MAXIMUM 44191
#define_FILE_COUNT_MAX 35

#define_FILE_PATH_LENGTH 80

Minimum and maximum size in K bytes
allowed for each TSRPLAY buffer.

Minimum number of DMA buffers.
Maximum number of DMA buffers.

Maximum value for the

variable fileRepeatCount.
Minimum and maximum rate setting

allowed In the array fileRate[].
This constant specifies the maximum

for playback In TSRPLAY.
Maximum length of file and path.

// Error codes for TSRPLAY

// NOTE: Starting offset for all TSRPLAY errors Is 4000.
enum

{
_ERRORJVLREADY_RESIDENT = 4000.

_ERROR_FILE_COUNT.
_ERROR_OPENING_FILE.

_ERRORJLLEGAL_BUFFER_SIZE.
_ERRORJLLEGAL_BUFFER_COUNT.
_ERRORJLLEGAL_PORT.
_ERRORJLLEGAL_DMA_CHANNEL.

IIA call was made to tsrStart after
II TSRPLAY had been previously installed.
//-TSRPLAYJNFO.fiieCount is out of range.
//-TSRPLAYJNFO.fiieName not found or
II error opening fiie.
// _TSRPLAY_iNFO.bufferSize is out of range.
// _TSRPLAY_INFO.bufferCount is out of range.
II _TSRPLAYJNFO.dmaPort is not valid.
//.TSRPLAYJNFO.dmaChannel is not vaiid.

180 Appendix A

_errorjllegaurq,
_ERROR_DMAJNIT_FAILED,
_ERROR_DMA_UNINIT_FAILED,
_ERROR_DMA^PLAY_FAILED,
_ERROR_WRONG_DOS_VERSION

}:

// _TSRPLAYJNFO.dmalRQNumber is not valid.
// initialization of DMA foiled.
II Uninitialization of DMA foiled.
II Insert DMA queue playback request foiled.
II DOS version is less than 3.1

// Structure containing all information needed to call TSRPIJVY interface
//functions.
II
typedef struct _tagtsrPiaylnfo
{

WORD

BYTE

WORD
WORD

fileCount; // Number of files queued for playback.
fileName[_FILE_COUNT_MAX][_FILE_PATH_LENGTH]; // Playback files.
fil II ReRate[_F1LE_C0UNT_MAX];
fileRepeat[_FiLE_COUNT_MAX];

WORD bufferSize;

WORD bufferCount;

WORD dmaPort;
WORD dmaChannel;
WORD dmalRQNumber;

ate for each file in fileName.
// Stores the number of times to
// playback list of files.
// Size of each buffer to be queued up
// for DMA playback.
// Number of buffers to be queued for
II DMA playback at one time.
II Variables for DMA I/O of PCM data.
II
II

}_TSRPLAYJNFO:

extem _TSRPLAYJNFO JsrPlaylnfo;

//TSRPLAY interfoce function prototypes.
II
WORD tsrStart (VOID);

(VOID):
(VOID):
(VOID):
(VOID);
(VOID);
(VOID);
(VOID);
(VOID);

BOOL
VOID

VOID
VOID

VOID
VOID
PSTR

PSTR

tsrStart

tsrResident

tsrRemoveSystem
tsrPause

tsrUnpause
tsrRushFiles
tsrSetupNewFiles
tsrGetVerslonString
tsrGetProgramID

#endif

// end CVXDIGI.H

Appendix A 181

CVXFlylSV,H

The following must be included in your program when using any of the Covox FM syn
thesizer functions.

// File : CVXFMSY.H
// Date : January 10,1992
II Description : Header file for the FM synthesizer libraries.
II
H Last update
II Additional Notes :

// Copyright (c) 1992, Covox, inc. All Rights Reserved

#ifndef _CVXFMSY_DEFiNED
#deflne _CVXFMSY_DEFiNED

#inciude "cvxdefs.h"

// If compiled with Borland C, the header file CVXBRLND.H will be
II automatically included.

#if deflned(_TURBOC_)
#include "cvxbrlnd.h"
#endif

II Structure definition for main header in .BNK files,
typedef struct
{

WORD fileVersion;
BYTE ADLIB[6]:
WORD entriesUsed;
WORD entrieslnFile;
LONG nameUstOffset;
LONG InstrumentDataOffset;
BYTE filler[8]:

}_BNK_HEADER:

II File version isb/msb.
II Signature "ADLiB-".
II Number of iist entries used.
II Number of iist entries in file.
II Absolute file offset of the name list.
II Absolute file offset of Instrument data.
//Filler(settoO).

// Structure definition for instrument headers in .BNK fiies.
typedef struct

WORD instrumentDatalndex;
BYTE recordUsed;
BYTE instrumentName[9];

} _BNieiNSTRUMENT_NAME:

II index of instrument into data section.
II Record used flag (0 - used, 1 - not used).
II Instrument Name.

182 Appendix A

// Structure definition for .BNK moduiator/carrier parameters.
typedef struct
/

BYTE mode; Mode (0 - melodic, 1 - percussive).
BYTE voiceNumber; Voice number(if percussive).
BYTE modKSL; Key scaling level.
BYTE modFreqMultiplier; Frequency Multiplier.
BYTE modFeedbackLevei; Feedback Level.
BYTE modAttack; Attack Rate.
BYTE modSustain; Sustain Level.
BYTE modSustainStatus; Sustaining Sound Status

(0 - diminishing, 1 - continuing).
BYTE modDecay; Decay Rate.
BYTE modRelease; Release Rate.

BYTE modOutputLevel; Output Level.
BYTE modAmplitudeVibrato; Amplitude Vibrato.
BYTE modFrequencyVibrato; Frequency Vibrato.
BYTE modKSR; Key Scale Rate.
BYTE modConnection; Connection (1 - parallel, 0 - cascading).
BYTE carKSL; Key scaling level.
BYTE carFreqMultiplier; Frequency Multiplier.
BYTE carFeedbackLevel; Feedback Level.
BYTE carAttack; Attack Rate.
BYTE carSustain; Sustain Level.
BYTE carSustainStatus; Sustaining Sound Status

(0 - diminishing, 1 - continuing).
BYTE carDecay; Decay Rate.
BYTE carReiease; Release Rate.
BYTE carOutputLevei; Output Level.
BYTE carAmpiitudeVibrato; Amplitude Vibrato.
BYTE carFrequencyVibrato; Frequency Vibrato.
BYTE caiKSR; Frequency Vibrato.
BYTE unused; Unused.

BYTE modWaveform; Unused.
BYTE carWaveform; Wave form for carrier.

} _BNieiNSTRUMEt^:

// Structure for tfie initiaiization data to be passed to fmlnit function,
typedef struct
{

WORD port; //Variable for the port of the Yamafiacfiip.
} _FMJNiT_DATA:

// Structure for the global parameters
typedef struct

{
WORD port;
BYTE systemlnitialized;
BYTE mode;

// Variable for the port of the Yamaha ch

} _FM_GLOBAU.DATA;

ip.
// System initialized flag.
// Variable for the mode
// (0 -Melodic, 0x30 - Percussive).

Appendix A 183

II Defines for modulator and carrier,
enum

{
.MODULATOR,
.CARRIER

}:

II Defines for percussion Instrument,
enum

{
.BASS.DRUM = 0x06,
.SNARE.DRUM,
.TOM.
.CYMBAL,
.HIGH.HAT

}:

#deflne.FM.PORTJV 0x388 II Tfie valid FM syntfieslzer ports on tfx
#deflne.FM.PORT.B 0x380 II Sound Master II.

#deflne.TEST 0x01 II The FM syntfieslzer control registers.
#deflneJVM.MULTI 0x20 II
#deflne.KSU.TL 0x40 II
#deflne ̂ R.DR 0x60 II
#deflne _SL_RR 0x80 II
#deflne_FNUM.L OxAO II
#deflne.KON.FNUM.H OxBO II
#deflne.PERC OxBd II
#deflne.FB_C OxCO II
#deflne.WS OxEO II

#deflne .WAVE.SELECT.OFF 0x00 H Mask to enable/disable wave select.
#deflne .WAVE.SELECT.ON 0x20 II

#deflne .SLOTS 0x10 II Numtier of slots per register.

#deflne.MEU_VOICES 0x09 II Ttie number of melodic voices.

#deflne .PERC.VOICES OxOB II Tfie number of percussive voices.

#deflne .VOICES OxOB II Tfie total number voices.

#deflne .PERCUSSIVE 0x20 II For percussive and melodic mode.
#denne .MELODIC 0x00 II

#deflne.PERC.CLEAR OxCO II Mask to dear percussive mode.

#deflne.RESET.DEPTH 0x00 II Mask to dear tfie deptfi register.

#deflne.RESET.KON OxDF II Mask to reset tfie kon bits.

184 Appendix A

#define_TOT_VOICES

#define _KON

OxOB II The total number of voices on the chip.

0x20 I I The bit position of the kon bits.

// Enumeration for ail of the available MIDI notes,
enum

{
CO, CSO, DO. DSO, EO. FO. FSO, GO. GSO. AO. ASO. BO.
01. 081. 01. DS1. El. F1. FBI. Gl. GS1. A1. AS1. B1.
02, 082. 02. 082, E2. F2. F82. G2. G82. A2. A82. B2.
03.083, D3. 083. E3. F3. F83, G3. G83. A3. A83. B3.
04. 084. 04. 084. E4. F4. F84, G4. G84. A4, A84. B4.
05. 085. 05. 085. E5. F5. F85. G5. G85. A5. A85. B5.
06. 086. 06. 086. E6. F6. F86. G6. G86. No, A86. B6.
07. 087. 07. 087. E7. F7, F87. G7. G87, A7. A87. B7.
08. 088. 08. 088. E8. F8. F88

}:

// External data references between modules.
extem WORD

extern BYTE

extem BYTE

extem BYTE

extem BYTE

extem BYTE

extem BYTE

extem BYTE

extem BYTE

extem BYTE

extem BYTE

extem BYTE

extem BYTE

extem BYTE

extem WORD
extem _FM_GLOBALOATA

// Error definitions.
#undef _ERROR_NONE
#define_ERROR_NONE 0

// NOTE: Btarting offset for ail FM iibrary errors
enum

{
_ERRORJNVAUO_PORT = 7000.
_ERR0R_8Y8TEM_N0TJNiTIAUZE0.
_ERRORJNVAUO_VOiOE_FOR_MOOE.
_ERR0RJNVAU0JN8TRUMENT.
_ERR0RJN8TRUMENT_N0T_0EFiNE0.
_ERROR_VOiOE_NOTJ^OTiVATEO.
_ERRORJNVALiO_VOiOE.
_ERROR_VOiOE_OUT_OF_RANGE

_fmPort;
_fmK8RMULTiReg
.fmKSLTLReg
_fmARORReg
_fm8LRRReg
_fmFNUMReg
_fmKONBLOOKReg
_fmFBOReg
_fmW8Reg
_fminstrument8et
_fmNoteOn
_fmPercussionRegister;
_fmMeiodic8iots
_fmPercussive8iots
_fmMidi8cale
_fmGiobaiParameters;

_MEL.VOiOE8][2]:
_PERO_VOiOE8][2]:

is 7000.

// invalid FM port sent to fminit
// Bystem has not been initialized.
// An invaiid voice was specified.
// An invaiid instrument was specified.
// Bpecified instrument was not defined.
// Bpecified voice not turned on.
// Bpecified voice does not exist.
// Voice out of range for current mode.

Appendix A 185

}:

// Function prototypes.
extern VOID fmSetReglster (BYTE, BYTE);

WORD fmlnit
WORD fmUnlnrt

WORD fmSetMode

WORD fmSetlnstrument
WORD fmReset
WORD fmNoteOn
WORD fmNoteOff

(_FMJNIT_DATA*):
(VOID):
(BYTE);
(_BNKJNSTRUMENT far *, BYTE);
(VOID);
(BYTE, WORD);
(BYTE);

WORD fmSetFrequency (BYTE, WORD);

#endlf

// end CVXFMSY.H

186 Appendix A

The following must be included in your program when using any of the Covox MIDI
functions.

'**
//'
II File
I I Date
II Description

CVXMIDI.H

January 10,1992
Header file for tfie MIDI libraries.

II
H Last update
// Additional Notes :

I I Copyrigfit (c) 1992, Covox, Inc. All Rights Reserved

#ifndef _CVXMIDI_DEFINED
#deflne _CVXMIDLDEFINED

#lnclude "cvxdefs.h"

^***

If compiled with Borland 0, the header file CVXBRLND.H will be
automatically included.

#if defined(_TURBOC_)
#lnclude "cvxbrind.h"
#endif

#define JRQJ

MIDLPORTJt 0x330 II The valid MIDI ports on the MIDI Maestro and
_MIDLPORT_B 0x338 II Sound Master II.

JRQ_2 2 //The available IRQ channels.
JRQ_3 3 II
JRQ_5 5 H (only on Soumd Master II)
JRQ_7 7 // (only on Sound Master II)

#endif
^^***

// end CVXMIDI.H
^^***

Appendix A 187

CVXOtlLH

The following must be included in your prc^am when using any of the Covox Utility
functions.

^^***

// File : CVXUTILH
// Date : Januaty 10,1992
// Description : Covox utilities support header file.
II
H Last update
// Additional Notes :

// Copyright (c) 1992, Covox, Inc. All Rights Reserved
^^***

#ifndef _C\/XUTIU_DEFINED
#define _CVXUTIL_DEFINED

#include "cvxdefs.h"

// If complied with Borland C, the header file CVXBRLND.H will be
II automatically included,
yy***

#if defined(_TURBOC_)
#include "cvxbrlnd.h"

#endif

I I Constants for cvxFileOpen and cvxFileCreate

#deflne_OPEN_R_ONLY 0x80
#define_OPEN_W_ONLY 0x84
#define _OPEN_RW 0x82
#define_CREATE_R_ONLY 0x0001
#define_CREATE_NORMAL 0x0000

jjie'k'k'kic'klfklticit'k'kie'kieifk'k'kleifklcieiflfk'kltle'k'k'k'klt'kifk'k'k'kleitleitie'klfk'k'kit'k'k'kieit'klfklt'k'kie'kltlclfkie'k'k'k'k^lt

I I Error Codes for covox Utilities

#undef _ERROR_NONE
#define_ERROR_NONE 0 ^

// Error codes for Covox utilities
// NOTE: Starting offset for all Covox utilities errors is 9000.
enum

{
_ERROR_NOT_ENOUGH_MEMORY = 9000,

188 Appendix A

}:

_ERROR_MEMORY_ALLOC.
_ERROR_MEMORY_DEALLOC,
_ERRORJNVALID_HANDLE,
_ERROR_FILE_WRITE_FAILED.
_ERROR_FILE_READ_FAILED.
_ERROR_RLE_NOT_FOUND,
_ERROR_PATH_NOT_FOUND,
_ERROR_TOO_MANY_FILES_OPEN.
_ERROR_ACCESS_DENIED
_ERRORJNVAUDJ\CCESS

// Error during memory allocation.
// Error during memory deallocation.
// File not open.
// Unknown file write follure.
// Unknown file read failure.
II Non-existent file given In cvxFlleOpen.
II Invalid path given.
II No more handles available In system.
II File could not be accessed.
II Invalid mode during open/create.

I I Prototypes for all Covox utility functions.

LPSTR cvxBufferAlloc

WORD cvxBufferFree
WORD cvxFlleRead
WORD cvxFlleWrlte

WORD cvxFlleClose
WORD cvxRIeOpen
WORD cvxFlleCreate
WORD wxRateToHz
BYTE cvxHzToRate

(LONG, LONG*);
(LPSTR):
(HANDLE. LPSTR, LONG, LONG *);
(HANDLE, LPSTR, LONG, LONG *);
(HANDLE);
(LPSTR, BYTE, HANDLE*):
(LPSTR, WORD, HANDLE *):
(BYTE):
(WORD):

#endif

//end CVXUTILH

Appendix A 189

(mBmMtiM

The following header file is automatically included by any of the header files described
previously in this appendix, when compiling a program in Borland C.

// Rle : CVXBRLND.H
// Date : January 10,1992
// Description : Redefinition of Borland C intertece functions.
II
II Last update
// Additional Notes : The following defines are used to bridge the differences
I I between those Microsoft C 6.0 and Borland C 2.0 functions
// which are analogous but use different function names.

// Copyright (c) 1992, Covox, Inc. Ail Rights Reserved

#ifndef _CVXBRLND_DEFiNED
#define _CVXBRLND_DEFINED

#include "cvxdefs.h"

// DOS related functions
II
#define _dos_setvect(vect, func) setvect(vect, func)
#define _dos_getvect(vect) getvect(vect)
#define .enableQ enableQ
#define _disableO disableO
#define _chain_intr(intr) (*intr) 0

#define _asm asm

#endif

//end CVXBRLND.H

190 Appendix A

CVXD£PS.H

CVXDEFS.H is automatically included when using any of the other include files accom
panying the Covox libraries.

: CVXDEFS.H
: January 10,1992
: Covox specific defines.

II File
II Date
II Description
II
II Last update
// Additional Notes :

II Copyrigfit (c) 1992, Covox, inc. All Rights Reserved

#lfndef _CVXDEF$_DEFINED
#deflne _CVXDEFS_DEFINED

#undef _TRUE
#undef _FALSE
#undef _NULL
enum

{
-FALSE,
-TRUE

}:

#deflne ^NULL 0

typedef void VOID:

typedef unsigned BOOL;
typedef unsigned char BYTE;

typedef unsigned WORD;

typedef unsigned long LONG;

typedef unsigned long DWORD;

typedef BYTE * PBYTE;

typedef BYTE
4r PSTR;

typedef WORD * PWORD;

typedef LONG * PLONG;

typedef VOID
* PVOID;

typedef BYTE far * LPBYTE;

typedef BYTE far * LPSTR;

typedef WORD far * LPWORD;

typedef LONG far 4r LPLONG;

typedef VOID far * LPVOiD;

Appendix A 191

typedef BYTE
typedef BYTE
typedef WORD
t^edef LONG
typedef VOID

typedef WORD

huge
huge
huge
huge
huge

HPBYTE;
HPSTR;
HPWORD;
HPLONG:
HPVOID;

HANDLE;

#endlf

// end CVXDEFS.H

192 Appendix A

CoYox 16-Byte Sound File Header

A 16-byte header is added to the beginning of all files recorded with the Covox Developer
Toolkit functions. This header has the following format (All values in hexadecimal):

FF 55 FF AA FF 55 FF AA XX yy 00 00 00 00 00 00

The first 8 bytes comprise a unique code that is guaranteed not to show up inside the
rest of the file. This means that multiple sound files can be concatenated together and
the locations found by looking for the headers.

JK - A one byte value that specifies the type of encoding done. It must be one of the
following values:

0x08 _FORMAT_V8

0x82 _FORMAT_V2S

0x83 JF'ORMAT.V3S

0x84 _FORMAT.V4S

0x88 _FORMAT_V8S

2 bit ADPCM with or without silence encoding

yy - A one byte (samplingRate) value that tells the rate at which a file was recorded. This
value also applies to recordRate,playbackRate and CVXRATE values.

To calculate the sampling rate in samples per second, use the following equation (where
F represents the desired sample rate (frequency) and R represents the samplingRate
value (in decimal):

F = 1,193,180/(256-R)

To convert from hertz to the corresponding samplingRate value (in decimal), use the
following formula:

R = 256-(1,193,180/F)

M - These bytes are reserved for futme use.

Appendix B 193

194 Appendix B

Covox Hardware Devices

Part 1 of this appendix lists the physical port addresses and offsets of all Covox devices.

Part 2 of this appendix lists the logical port address, IRQ, and DMA Channel values that
are used in the Covox library functions.

Part 3 lists the I/O capabilities of the various Covox devices.

Part 4 includes diagrams of the internal Covox devices.

Digitizer Base Ports (Voice Master Key and Sound Master II)

The Digitizer Port jumper (0 to 3) selected on the Voice Master Key or Sound Master
IT card indicates the Base Port of the digitizer:

0 - 0x0220 (factory default),
1 - 0x0240,

2 - 0x0280,

3 - 0x02C0.

Digitizer Base Port Offsets (Voice Master and Sound Master II)

The Base Port value + the Base Port Offset value can be used to access the ports on the
Voice Master. As can be seen below, only port offsets from 0x08 and OxOF are used on
the Voice Master and Sound Master 11 cards.

Appendix C 195

8254 TIMER 0 OFFSET = 0x08 TimerIClock

8254 TIMER 1 OFFSET = 0x09 Timer/Clock

8254 TIMER 2 OFFSET = OxOA Timer!Clock

8254 CONTROL OFFSET = OxOB rimerlClock Control Register ^

DMA Control Port Offsets (Voice Master Key and Sound Master II)

CLEAR IRQ OFFSET = OxOC

The Clear IRQ Offset is to be utilized after every DMA terminal count is reached. It is
common to find this port being written to inside an interrupt handler. Any value may be
output to the port.

DISABLE DMA OFFSET = OxOD

Writing to this port will disable DREQ (DMA Request) channel 1 or DREQ channel
3, thus preventing all DMA I/O.

ENABLE DMA OFFSET = OxOE

Writing to this port should be done last and only after all clock and DMA setup has been
completed. A write to this port will fire off a DREQ (cause the DREQ line to go low),
thus allowing the DMA I/O to begin.

DAC OFFSET = QxOF

The DAC OFFSET port should not be written to during DMA I/O.

FM Synthesizer Base Ports (Sound Master II)

0x0388 (factory default),
0x0380

MIDI Base Ports (MIDI Maestro and Sound Master II)

0x0330 (factory default),
0x0338

External Devices (Voice Master Key System II and Speech Thing)

The Speech Thing and Voice Master II can be connected to one of 3 LPT ports available
on the PC. The actual port address values for LPTl, LPT2, and LPT3 are stored at the
following memory locations (segment:offset) on the PC:

LPTl 40:08

LPT2 40: OA

LPT3 40: OC

196 Appendix C

Logical DAC Port Values

.CV5LVM0 -

_CVX_VM1 -

_CVX_VM2 -

_CVX^VM3 -

_CVX_LPT1 -

^CV5LLPT2 .

_CVXJLPT3 .

.CVX-ISP -

Logical FM Port Values

Voice Master Internal or Sound Master 11 DAC set to port
22X (factory default).

VM (internal) or SMII DAC set to port 24X.

VM (internal) or SM II DAC set to port 28X.

VM (internal) or SM II DAC set to port 2CX.

VM System 11 (external) or Speech Thing DAC attached to
LPTl.

VM System II (external) or Speech Thing DAC attached to
LPT2.

VM System II (external) or Speech Thing DAC attached to
LPT3.

The internal PC speaker.

JP'M^PORT.A - Sound Master n FM chip set to port 388.

JFM«PORT_B - Sound Master 11 FM chip set to port 380.

Logical MIDI Port Values

JVIIDL.PORT_A - SM II MIDI or MIDI Maestro set to port 330.

3MDI_PORT_B - SM 11 MIDI or MIDI Maestro set to port 338.

Logical IRQ Values

.IRQJ-

.IRQ3-

JRQ-4.

JRQ-5 -

JRQ-7-

IRQ 2 card jumper setting.

IRQ 3 card jumper setting.

IRQ 4 card jumper setting.

IRQ 5 card jumper setting.

IRQ 7 card jumper setting.

Logical DMA Channel Values

>DMA.CHANNELul -

_DMA.CHANNELJ -

DMA Channel 1 card jumper setting.

DMA Channel 3 card jumper setting.

Appendix C 197

Some features of the Covox Developer's Toolkit may be used with some Covox hardware
devices, but not with others. For each of the first 8 chapters of this manual, the applicable
Covox devices are listed directly below.

CHAPTER 1; Non-DMA Record and Play Functions

1. Sound Master II

2. Internal Voice Master

3. External Voice Master System II

4. Speech Thing (playback only)

CHAPTER 2: Pack and Unpack Functions — Device Independent

CHAPTER 3; DMA Record and Play Functions

1. Sound Master n

2. Internal Voice Master

CHAPTER 4; TSRPLAY Record and Play Functions

1. Sound Master 11

2. Internal Voice Master

CHAPTER 5: Interrupt (hclA BIOS Record and Play Functions

1. Sound Master 11

2. Internal Voice Master

3. External Voice Master System n (non-DMA only)
4. Speech Thing (non-DMA playback only)

CHAPTER 6; FoxPro/dBase Record and Play Modules

1. Sound Master II

2. Internal Voice Master

3. External Voice Master System II

4. Speech Thing (non-DMA playback only)

CHAPTER 7: FM Synthesizer Functions

1. Sound Master 11

CHAPTER 8; MIDI Recording and Playback Devices

1. Sound Master 11

2. MIDI Maestro

198 Appendix C

Kffl'dware IHagrains

Voice Master Key Internal Card:

DACKl-

DACK3-

IRQ 7
IRQ 6
IRQ 5
IRQ 4—.

IRQ 3^

CZIIINT. SPKR

Port Setting Jumpers

I—

ml r-
DRQ3

r-DRQi

Port Jumper Postn: 012 3

llllllllll ■llllllll

Connect The Red
Headset Lead Here

H Mi-High Level Input
M M2-Low Level Input

a Volume Control

M Audio Output
N
Connect The Black
Headset Lead Here

MIDI Maestro Internal Card:

330h
338h

1 IRQ 2
1 1 pIRQ3

■DID

=□

1

iiiiiniii ■iiiiiiiii

MIDI PORT

Appendix C 199

Sound Master 11 card:

FMPori

388 (default)

US!
MIDI Port

330 (default)

Internal Speaker Connection

IR07 (default) _
IRQ5-
IRQ3-
IR02-

OMA IRQ Select'Tiailiiim

. IRQ 2 (default)

IRQ 5 >^Q Select
IRQ 7

22X default)

28X Digitizer
2CX Port

DRQ3
DRQ1 (default)
DACK3
DACK1 (default)

DMA Channel

Une In or Covox
Microphone Input

Low Level Input

Volume Control

Audio Output

MIDI Connector

200 Appendix C

Keyboard Interrupt Handler

The program HOOK_KB.C contains a keyboard interrupt handler that sets the variable
JoStopFlag equal to _TRUE when a keypress event is detected from the keyboard. This
variable is used in all the non-DMA play and record functions (eg., playS, record3s, etc.)
to terminate the recording or plavback process.

Before an I/O function is used, hookKeyfooardO must be called to install the keyboard
interrupt handler. Call unhookKeyboardQ after the sound I/O function has terminated
to restore the original interrupt handler. The object module HOOK-KB.OBJ must be
linked with any application requiring this feature.

This function can be replaced with a similar function to set JoStopFlag, terminating I/O
without utilizing the keyboard interrupt handler. See the following source code file for
specific help on trapping the keyboard interrupt.

// File
//
// Version
//
// Description
//
//
//
//

HOOK KB,C

1/10/92

: This module contains three functions, which are
designed to hook and unhook into the keyboard
BIOS vector address. The function keyboardHandler
will determine if a keypress has been made. If it
has, the flag ioStopFlag will be set to _TRUE.

All Rights ReservedCopyright (c) 1992, Inc.Covox,

#include <dos.h>
iinclude "cvxdefs.h"

// If Borland C is used to compile the library the interface
// macros header must be included.

Appendix D 201

#include "cvxbrlnd.h"
iendif

#define _KEYBOARD_lNT 0x09

// This variable will contain the original address of the keyboard
11 BIOS routine. " -
VOID (interrupt far * old__keyboard_vect)();

// This function is the new keyboard interrupt heuidler routine.
VOID interrupt far keyboardHandler(VOID);

// This flag is defined in the play and record functions. It will
//be used throughout all of the record and play functions to
// determine if I/O should be terminated,
extern BYTE _ioStopFlag;

// Keyboard buffer head and tail pointer.
WORD head, tail;

// This function will save the original vector address of the
// keybocurd BIOS routine and set up a new address to point to
// the function keyboardHandler.
VOID hookKeyboard(VOID)

// Save off original keyboard vector address.
old_keyboard_vect = _dos_getvect(_KEYBQARD_INT);

// Hook int 9h (keyboard interrupt). This hook will set the
// flag _ioStopFlag when a key has been struck.
_asm cli
_dos_setvect(JKEYBOARDJNT, keyboardHandler);
_asm sti

_asm mov _iostopFlag, 0

11 This function will return the vector address for the keyboard
// back to its original state.
VOID unhookKeyboard(VOID)

// reset original keyboard vector.
_asm cli
_dos_setvect(_KEYBOARD__lNT, old_keyboard__vect);
_asm sti

}

// New keyboard handler. This handler will set a flag to indicate
// that a keyboard hit has occurred.
VOID interrupt far keyboardHandler(VOID)

// Call original keyboard handler
(*old__keyboard_yect) ();

_asm xor ax, ax
_asm mov es, ax

// Check head and tail pointers to see if they are equal.
_asm mov ax, WORD PTR es:0x4lA
_asm mov head, ax
_asm mov ax, WORD PTR es:0x4lc

202 Appendix D

_asm mov tail, ax

if(head 1= tail)
_asm mov _ioStopFlag, 1

_asm mov al, 2 OH
' _asm mov 2OH, al

Appendix D 203

204 Appendix D

A gBy«n!TifcTg"ikg M?

^>;s ®.

TSR DMA Sound File Playback Routine

The program TSRPLAY.EXE was designed to play back pre-recorded digitized sound
and speech as a background task. It is ideally suited for adding soimd to presentation
programs and other multimedia applications.

General Peeert|iaoii

Once TSRPLAY.EXE is loaded into memory, it will stay resident until it is explicitly
removed with the 7Q' option.

TSRPLAY.EXE will accept up to 35 files for playback. If no file extension is specified
with the file then 8 bit (.V8), is the assumed default. Each file can be given a rate or the
rate will be read from the header. If the file does not have a Covox 16 byte header and
no rate is specified on the command line then it will be assiuned that the file is 8 bit and
was recorded at the default rate of 132 (i.e., 9622 KHz).

Each file that is specified on the command line will be played back once and
TSRPLAY.EXE will then 'sleep' until another file or group of files is specified. If the '/hT
option is specified after a file then the file can be played back more than once.If the '/N-1'
option is used the file will be played back indefinitely or until the program is removed
from memory using the '/Q' option or another group of files is loaded. At any time during
play back the program can be removed from memory using the '/Q' option.

The command line options '/K', '/B', '/J', '/I', and '/C are only utilized during the first
call to TSRPLAY.EXE. If these options are used after TSRPLAY.EXE has been placed
into resident memory, they will simply be ignored.

Appendix E 205

The number of memory buffers and their size used by TSRPLAY.EXE can be controlled
with the command line options '/K' and VB. These buffers contain the sound data
processed by DMA during play back. If the size of each buffer is too small, or if there
are not enough buffers, then the playback may pause while a large program is loading.
On the other hand, if too much memory is used up by TSRPLAY.EXE then there may
not be enough available memory for some applications to load up. The default values
should work with most 286 or 386 hard drive systems.

TSRPLAY.EXE utilizes DMA (direct memory access), for playing back sound files.
When TSRPLAY.EXE is first loaded into memory an auto-detection function is run to
determine what settings (IRQ, port, DREG, and DACK), your Voice Master or Sound
Master n card is using. This auto-detection can sometimes cause your computer to lock
or not play back sound files correctly. If this is the case then you will need to use the
command line options VJ', '/T, and VC to tell TSRPLAY.EXE not to perform the auto-
detection.

206 Appendix E

^ Syntax: TSRPLAY filel [rile2...rile35] [OPTIONS]

Options: IRx - Rate in hertz to play back file (4679-44191). 9622 is the
default. Note how tlus differs from SAY.E}^.

IBx - Number of playback buffers (2-4). 3 is the default.

IKx - Size in kilobytes of each of the buffers (1-64). 32 is the
default.

INx - Number of times to play file. 1 is default. -1 for infinite.
255 is maximum.

/Z- Pause output. ('Z' for sleep)

IW' Restart paused output. ('W for wake)

IF- Flush all files being played back.

JQ- Remove TSRPLAY.EXE from memory.

IS- Install/Uninstall quietly (no screen output).

/?- List the available options.

^0^ The follov^g Voice Master and Sound Master 11 DMA settings can be selected in case
the auto-detect algorithm returns errors:

Ux - Select the lo^cal port value determined by the jumper
setting (1-4) on the card. -1 (default) for an automatic
sequential search.

ICx - Select DMA channel (1 or 3). -1 (default) checks 1 then
3.

Ilx - Select IRQ (2,3,4,5 or 7). -1 (default) for sequential
search.

- Install TSRPLAY.EXE to play back 2 sound files.

C:\ TSRPLAY songs.vS voice.vSs

- Install TSRPLAY.EXE to play back 1 sound file. Set the buffer size to 16 kilobytes.

C:\ TSRPLAY C:\songs.v8 /Ki6

- Install TSRPLAY.EXE to play back 1 sound file. Set the number of buffers to 4.

Appendix E 207

C:\ TSRPLAY songs.v8/B4

- Install TSRPLAY.EXE to play back 2 sound files. The first file is played 3 times and
the second is played once.

C:\ TSRPLAY C:\n.v8 /N3 C:\C.v3s

- Install TSRPLAY.EXE to play back 3 sound files. Each file is specified with a playback
rate.

C:\ TSRPLAY n.v8 /R8000 f2.y3s /RIOOOO f3.v4s /R12000

Most presentation programs have a script which loads and controls the graphic screens.
To add sound while a graphic is being loaded or animated, you need to be able to invoke
a DOS command firom the script. Most presentation programs have this capability. The
strategy is simple: call TSRPLAY when you want to start playing sound. Use the /S option
so that TSRPLAY doesn't print information to the screen during the presentation.

For example, when using Show Partner F/X, call TSRPLAY in the 'Picture Comment'
wmdow and set the 'Effect' to 'Command'. See page 7-20 for usage of Commands to
affect flow controLYou might have to specify the path to TSRPLAY as part of the com
mand line syntax.

With GRASP, use the following line in the script:

EXEC TSRPLAY.EXE filename /S

Make sure TSRPLAY is in the same directory and/or path of GRASP, otherwise you can
specify the pathname(s). Also note that you must specify the '.EXE' extension.

208 Appendix E

Covox Library Changes

From Version 3.x to Version 4.0

Version 3jl function name Version 4.0 function prototype

calc_Iength2s N/A

calcJengthSs N/A

calcjength4s N/A

geOyte BYTE recordByte(VOID);

init_play WORD playByteInit(WORD, BYTE, BOOL, WORD);

init..j^ord WORD recordByteInit(WORD, BYTE, BOOL);

puOyte VOID playByte(BYTE);

packJBrst WORD packFirst(_CONVERT_DATA far *);

packjiext WORD packNext(_CONVERT_DATA far *);

record2s WORD record2s(LPSTR, LONG, BYTE, WORD,
WORD, LONG ♦);

recordSs WORD record3s(LPSTR, LONG, BYTE, WORD,
WORD, LONG ♦);

record4s WORD record4s(LPSTR, LONG, BYTE, WORD,
WORD, LONG ♦);

recordSs WORD recordSs(LPSTR, LONG, BYTE, WORD,
WORD, LONG ♦);

records WORD recordS(LPSTR, LONG, BYTE, WORD,
LONG *);

Appendix F 209

Version 3 jc fiinction name Version 4,0 function prototype

SD_DMA^Init

SD^DMA^Unlnit

SD_DMA^Record

SD_DMi^Say

SD_^umber.In_Queue

SD_DMA.Bytes_Reniaining

SD.Flasii_Qaeue

SD.absoiute_address

SD.DMA^Disable

SD.DMA^nabIe

SD_DMA^t^byte

SD_DMAL.Init_get_byte

SD_DMA^Init_put«byte

SDJDMAjpuiJbytt

SD.DMA.Unlnit.get.byte

SD_DMA^UnInit.put_byte

SD_FindVMDMA

SD_Get_Device

SD.GeCDeviceJumper

SD.Gef;_DMA^Channel

SD_GetJRQ_Nuniber

SD.IRQ.Reset

SD.Set_DMA^Rate

say3s

WORD dnialnit(WORD, WORD, WORD, WORD *);

WORD dmaUninitC VOID);

WORD dniaRecord(LPSTR, LONG, BYTE);

WORD dmaPlayC LPSTR, LONG, BYTE, WORD);

WORD dniaNumberInQueue(VOID);

WORD dniaBytesReniaining(VOID);

WORD dniaFlushQueue(VOID);

N/A

N/A (See dmaPause)

N/A (See dmaUnpause)

N/A

N/A

N/A

N/A

N/A

N/A

WORD dmaPortDetect(WORD);

N/A

WORD dinaGetPort(WORD *);

WORD dmaGetChanneK WORD);

WORD dniaGetIRQNuinber(WORD);

N/A

WORD dinaSelRate(BYTE);

WORD playAny(LPSTR, LONG, BYTE, WORD,
BOOL, BOOL);

WORD play2s(LPSTR, LONG, BYTE, WORD,
BOOL, BOOL);

WORD play3s(LPSTR, LONG, BYTE, WORD,
BOOL, BOOL);

210 Appendix F

Version 3jc function name Version 4.0 function prototype

sayjDLbackground

stop^ay_background

uninit.play

uninitjrecord

unpack2s

unpack3s

unpack4s

unpackSs

unpackjfirst

unpack^ext

WORD play4s(LPSTR, LONG, BYTE, WORD,
BOOL, BOOL);

WORD play8s(LPSTR, LONG, BYTE, WORD,
BOOL, BOOL);

WORD play8(LPSTR, LONG, BYTE, WORD, BOOL);

N/A

N/A

WORD playUninit(VOID);

WORD recordUninit(VOID);

N/A (See unpack.first and unpack^next)

N/A (See unpack.first and unpack^next)

N/A (See unpachLfirst and anpack.next)

N/A (See anpack.first and unpack.next)

WORD unpackFirst(_CONVERT_DATA far *);

WORD unpackNext(_CONVERT_DATA far *);

N/A — These fiinctions have been removedfrom the Covox libraries.

Appendix F 211

212 Appendix F

A

A/D Converter

See ADC

Ad Lib 130,167

ADC (A/D Converter) 19,23,26,34-35
ADPCM 5,7,19-20,39,42,46,176,193

B

BIOS 97,99,198,201-202

BNKFile 121,130
Borland 175,182,187-188,190,201
Buffer 37,152,207

Addressing 101,103,151-152
ADPCM 7-8,19-20,46

Circular 42,46,163

Conversion of 39-42,46

Creation of 144

Deallocation of 145

DMA 51,57,60,76,92,100-101,165,180-181

FoxPro/dBase 107,117

Keyboard 202
Length of 40,101,103,151-152
PCM 10-14,23-27,42,57,97,101,103,155

TSRPLAY 83,92,95,180-181,206-207

Buffer Format 37,40-42,46,178

See also File Format

c

Carry Flag 98,100-101,103
Chip Registers

See YM3812, Chip Registers

Index 213

Clear IRQ Offset 196

_CONVERT_DATA Structure 39-42,46
CPU 155,159,162

D
D/A Converter

See DAG

DAG (D/A Gonverter) 7,10,13,16,31,196-197
DAGK (DMA AGKnowledge) 160,165
dBase 107-108,112,117

Differentiation 8,10,13-14,16,29,31,41

Digitizer 195
Disable DMA Offset 196

DMA 51-80,97,99,159-165,177,181,205-207
Cycle 159-161
Initialization of 52,54,63,95,181

Multiple Page 165
Operation 52-53
Playback 46,51-52,57,72,83,99,114,179,181
Recording 42,51-52,57,60,119,179
Sequence 160,162-165
Sound Device 54,75,107,109, 111, 159-165,198
Sub-system 51-52,72,79,165

Transfer 159

Terminal Count 196

TSRPLAY 206

DMA Channel 54,66,83,95,99,109,159-162,176-177,180,195-197,207
DMA ControUer 52,64,72,79,88,159-165,177

Address Register 162,177
Clear LSB/MSB Register 165,177
Count Register 64,163,177
Disable DMA Offset 163

Enable DMA Offset 164

Mask Register 161,177

Mode Register 161-162,177
Page Register 162-163,177
Reset Register 177

Status Register 177
DMA Requests 51,53,56-57,60,64,80,101,103,159,179,181,196
DOS 95,151-152,156,181,190,208
DRQ (DMA ReOuest) 159

214 Index

Enable DMA Offset 196

Error Codes

DMA Functions 80,179

FM Synthesizer Functions 136,185
Non-DMA Functions 37,178

TSRPLAY Functions 95,180

Utility Functions 154,188

FIFO 51,99,137

See also Queue

File Format 16-17,39,81,176,193

See also Buffer Format

File Handle 151-152

FM 121-136,167-168,185,197
Feedback 168

Frequency 121,124,128,167
Initialization of 121-122,134,136

Instruments 121,126,130,136,167-168
^ Modulation 167-168

Percussive Mode 121,132,167

Registers 121,135,168
Slot Number 168

Voices 121,123-124,126,128,130,132,136,167

FM Renters
See YM3812, Chip Registers

FM Synthesizer 121,167-168,182,184,196-198
See also YM3812

FM/MIDI Note Conversion 124,128

FoxPro 107-108,112,117

FoxPro2 107-108,113,118

Frequency 97,146,153,183,193

GRASP 208

H

Header 17,20,23,27,42,46,116,176,180,193
BNKFile 182

Rate Value 7,10,13,16,41,205

index 215

Header Fde 91,121,175,182,187-188,201
High-Pass Filter

See Differentiation

I/O Requests
See DMA Requests

INTIATSR 97,99
Intel 156,158,163

Interropt 82,177
15h 57,60

lAh 97-101,103,198
2Fh 110,120

DMA Handler 51

Keyboard 201-202
Latch 160,164

LPT 178

MIDI Handler 137-138,172
Timer 97,158,165

TSR 89

IRQ 54,70,84,95,99, 111, 138,160,164-165,172-173,177-178,187,195-197,207 ^
Handler 137-138,141,172 ^

Jumper 54,83-84,99,115,160-161,163,197,207

Keyboard Buffer
See Buffer, Keyboard

Keyboard Handler

See Interrupt, Keyboard

Loop Statements 155-156
LPT Port 31,35,99,115,176-178,196-197

15^
Melodic Mode 121,132,167
Memory Allocation 89,92,95,145,181,189
Microsoft 190

MIDI 124,128,137-141,171-173,185,187,196-198

216 Index

MIDI Maestro 171,187,196-198

Motherboard 52,72,79,88,158,160

N

Non-DMA I/O 155-158

Non-DMA Playback 5-18,29-33
Deactivation of 33

Initialization of 31

Non-DMA Recording 5-6,19-28,34-36
Deactivation of 36

Initialization of 35

Oscillator 168

Packing 17,40,42

Pause I/O 72,79,88,94,206-207

PC Mode (INTIATSR) 97
^ PCM 5,10,17,20,23-24,26-27,39,46,57,59-60,97,112-114,117-119,156,176,193

Physical Address 160,162-163
Polling 5,112-113,117-118,155,198

Hardware 29,34,155-158

Software 155

Port Address 7,54,68,75,83,95,99,115,122,136,138,155,158,161-165,171,173,176,
180,183-185,187,195-197,207

Presentation Programs 205,208
Program ID 81,86

Queue 51,53,56-57,60,80,179-180

Int lA 98,100

MIDI 137,139

Queuing 83,97,101,103,181

Rate

See Sampling Rate
Requests

See DMA Requests

Index 217

SampKng Rate 155-156,180,193,207-208
Playback 7,10,13,16,57,81,83,97,103,205
Recording 19,23,26,31,35,97,101
Setting 76,108,116,1^, 160,163-164

Transfer of (between files) 41
Value Conversion 146,153

Show Partner 208

Sflence Encoding 5,7-8,13-14,17,19-20,26-27,41,176,193
Sound Master H 52,75,81,99,159,167,171,184,187,196-198
Speech Thing 99,107,115,196-198

Tandy Mode (INTIATSR) 97
Timer 29,31,34-35,76,156,158,160,163-164,196
TSR 82,85,88,92,94,99,205

TSRPLAY 81-95,175,180-181,198,205-208

_TSRPLAY_INFO 81,83-84,92

U ̂
UART 171

Unpacking 40,46

Vibrato 168,183

Voice Master

External 99,107,115,196-198
Internal 52,75,81,84,99,159,195,197-198

Yamaha 121,167-168,183

YM3812 121-122,126,134-135,167-168

Chip Registers 169

218 Index

CO vox LICENSE AGREEMENT
PLEASE READ CAREFULLY BEFORE OPENING.

This is a legal agreement between you, the end user, and Covox, Incorporated. By opening this
sealed disk package, you are agreeing to be bound by the terms of this agreement. If you do not
agree to the terms of this agreement, promptly return the unopened disk package and the
accompanying items (including written materials, binders, and hardware) to the place you
obtained them for a refund.

COVOX SOFTWARE LICENSE
1. GRANT OF LICENSE. Covox grants to you the right to use one copy of the enclosed software
program (the "SOFTWARE") on a single terminal connected to a single computer (i.e. with a
single CPU). You may not network the SOFTWARE or otherwise use it on more than one
computer or computer terminal at the same time.

2. COPYRIGHT, PATENTS, & TRADEMARKS. The SOFTWARE is owned by Covox, Inc. or its
suppliers and is protected by the United States copyright laws and international treaty
provisions. Therefore, you must treat the SOFTWARE like any other copyrighted material (e.g. a
book or musical recording) except that you may either (a) make a copy of the SOFTWARE solely
for backup or archival purposes, or (b) transfer the SOFTWARE to a single hard disk provided
you keep the original solely for backup or archival purposes. You may not copy the written
material accompanying the software. The voice recognition, data compression routines, and
other routines that might be present in this disk package are subject to existing patents and
patents pending. The names COVOX, VOICE MASTER, SPEECH THING, SOUND MASTER,
VOICE HARP, and the Covox logo are registered trademarks of Covox, Inc.

3. OTHER RESTRICTIONS. You may not reverse engineer, decompile, or disassemble the
compiled SOFTWARE.

4. DEVELOPMENT SOFTWARE. The compiled library routines supplied by Covox may be used
in application software on a royalty-free basis provided that you; (a) distribute the compiled and
linked library routines only in conjunction with and as a part of your software product; (b) the
sign-on message for your software product must display that the sound and/or speech software
is the copyright of Covox, Inc; (c) that the owners manual for your software product must state in
a conspicuous location that the sound and/or speech software is licensed from Covox, Inc., that
Covox hardware products are supported, and where Covox products might be obtained; (d) that
if the SOFTWARE is used to support non-Covox sound hardware, Covox hardware must also be
supported by your software product, and; (e) agree to indemnify, hold harmless, and defend
Covox from and against any claims or lawsuits, including attorney fees, that arise or result from
the use or distribution of our software product.

5. EXCEPTIONS. No part of the "SmoothTalker" text-to-speech software (SPEECHV2.EXE,
SPEECHV3.EXE, STALK.EXE, or STDRIVER.SYS) nor ANY voice recognition software may be
incorporated within your software product.

LIMITED WARRANTY
Covox, Inc. guarantees the software disks to be free of manufacturing or duplication defects for a
period of one year from the date of purchase. Covox, Inc., will replace the diskette free of charge,
provided it is returned to the factory via prepaid transportation.

LIABILITY DISCLAIMER
Software is provided on an "as is" basis. Covox, Inc. disclaims liability for direct, indirect or
incidental damages arising from the use of this software, including but not limited to the
interruption of service, loss of business or potential profits, legal actions or other
consequential damages even if Covox has been advised of the possibility of such damages.

Control of computers or environmental factors by means of voice could expose the user to
some risk. Automatic voice recognition by machine remains an unreliable technology due
to uncontrollable variations in the way that normal speech is produced in an uncertain
acoustic environment. Covox, Inc., specifically disclaims liability as stated in the preceding
paragraph when applied to voice recognition.

Should you have any questions regarding this Agreement, please contact Covox, Inc., 675
Conger St., Eugene, OR 97402, U.S.A. Tel (503) 342-1271, Fax (503) 342-1283

^♦wwmtww

ATTENTION BORLAND DEVELOPERS!

February 7,1992

The TSRPLA Y library functions described in chapter 4 do not yet work properly when
compiled with Borland C. As a result, the TSRPLAY functions are still in beta for the
library SDIGIBC.LIB.

At this time, to get these functions to operate properly, TLINK must be specified with
a Vv' switch. Updates correcting this problem will be sent out as soon as they are available.

COVOX DEVELOPER'S TOOLKIT REGISTRATION CARD
Please fill out and mall back to us WITHIN 30 DAYS of purchase. This will qualify you for software
update notices, technical support, and developer's status on our BBS. Thank you!

NAME: PH.#

ADDRESS: FAX#

CITY/STATE (COUNTRY) ZIP (postal code)

Purchased From: Date Purchased:

Where did you see the product advertised?

Notice: If you need a different software media, Covox will send it to you at no charge provided this
warranty card and the original disks are returned postage-paid within 30 days from date of purchase.
Check the box (one only) for the format you need: |~ | 360K 5.25" fomat |"^ 720K 3.5"

Programming Languages Linkers Used:
Compiler Version

Comments:

4.01

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 147 EUGENE, OREGON

POSTAGE WILL BE PAID BY ADDRESSEE

COVOX INC

675 CONGER ST STE E

EUGENE OR 97402-9923

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

lliliiliiililiillliiiiililliliililiiiililiillnlilil

