
Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
1 Printed 03/01/99

Voodoo Banshee®

UNIVERSAL ACCESS 2D

DATABOOK
Revision 1.0

June 11, 1998
Copyright  1996-1997 3Dfx Interactive, Inc. All Rights Reserved

3Dfx Interactive, Inc.
4435 Fortran Drive
San Jose, CA 95134

www.3Dfx.com

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
2 Printed 03/01/99

Copyright Notice:
[English translations from legalese in brackets]

©1996-1999, 3Dfx Interactive, Inc. All rights reserved

This document may be reproduced in written, electronic or any other form of expression only in its
entirety.

[If you want to give someone a copy, you are hereby bound to give him or her a complete copy.]

This document may not be reproduced in any manner whatsoever for profit.

[If you want to copy this document, you must not charge for the copies other than a modest amount
sufficient to cover the cost of the copy.]

No Warranty

THESE SPECIFICATIONS ARE PROVIDED BY 3DFX “AS IS” WITHOUT ANY
REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS, OR
ARISING FROM THE COURSE OF DEALING BETWEEN THE PARTIES OR USAGE
OF TRADE. IN NO EVENT SHALL 3DFX BE LIABLE FOR ANY DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DIRECT OR INDIRECT
DAMAGES, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE
THE SPECIFICATIONS, EVEN IF 3DFX HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

[You’re getting it for free. We believe the information provided to be accurate. Beyond that, you’re on
your own.]

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
3 Printed 03/01/99

COPYRIGHT NOTICE: ..2
No Warranty..2

1. INTRODUCTION..7

RESOLUTIONS ..8

2. FUNCTIONAL OVERVIEW..8

SYSTEM LEVEL DIAGRAM ...8
ARCHITECTURAL OVERVIEW ...10

Overall Overview ..10
2D...11

FUNCTIONAL OVERVIEW ...11

3. BANSHEE ADDRESS SPACE ...13

4. BASIC INIT PROCEDURES..15

PRIMARY DEVICE..15
SECONDARY DEVICE, OR ON NON-X86 PLATFORMS ...15
SETTING UP VESA DESKTOP MODES..17

5. 2D ...30

2D REGISTER MAP ...30
REGISTER DESCRIPTIONS ..32

status Register...32
INTRCTRL REGISTER ..33

command Register...34
commandExtra Register ..35
colorBack and colorFore Registers ...36
Pattern Registers...36
srcBaseAddr and dstBaseAddr Registers ...37
srcSize and dstSize Registers ...38
srcXY and dstXY Registers...38
srcFormat and dstFormat Registers...39
clip0Min, clip0Max, clip1Min, and clip1Max Registers...41
colorkey Registers ...42
rop Register...43
lineStyle register ...43
lineStipple Register ...46
bresenhamError registers ..46

LAUNCH AREA ...47
Screen-to-screen Blt Mode...47
Screen-to-screen Stretch Blt Mode...47
Host-to-screen Blt Mode..47
Host-to-screen Stretch Blt Mode..49
Rectangle Fill Mode..49
Line Mode...50
Polyline Mode...51
Polygon Fill Mode ..51

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
4 Printed 03/01/99

MISCELLANEOUS 2D ..61
Write Sgram Mode Register...61
Write Sgram Color Register...62
Write Sgram Mask Register ...62

6. 3D MEMORY MAPPED REGISTER SET ..62

NOPCMD REGISTER...62
LFBMODE REGISTER...62

Linear Frame Buffer Writes...65
USERINTRCMD REGISTER ..68
COMMAND DESCRIPTIONS ..69

NOP Command ...69
USERINTERRUPT Command ...69

LINEAR FRAME BUFFER ACCESS..70
Linear frame buffer Writes ..70
Linear frame buffer Reads...71

PROGRAMMING CAVEATS..71
Memory Accesses ..71
Determining Banshee Idle Condition...71

7. PLL REGISTERS ..72

PLLCTRL REGISTERS...73

8. DAC REGISTERS ...74

DACMODE ...74
DACADDR ..74
DACDATA...74

9. VIDEO REGISTERS(PCI) ..75

vidMaxRgbDelta ...75
vidProcCfg Register ..76
hwCurPatAddr Register...78
hwCurLoc Register..79
hwCurC0 Register ...79
hwCurC1 Register ...79
vidInFormat ..79
vidInStatus ..81
vidSerialParallelPort Register ..81
vidInXDecimDeltas (for VMI downscaling Brensenham Engine)/ vidTvOutBlankHCount (for TV out
master mode)...85
vidInDecimInitErrs ...85
vidInYDecimDeltas ...86
vidPixelBufThold...87
vidChromaKeyMin Register ..87
vidChromaKeyMax Register..88
vidCurrentLine Register ..88
vidScreenSize ..88
vidOverlayStartCoords..88
vidOverlayEndScreenCoord ..89

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
5 Printed 03/01/99

vidOverlayDudx ..89
vidOverlayDudxOffsetSrcWidth ...89
vidOverlayDvdy ..89
vidOverlayDvdyOffset ...90
vidDesktopStartAddr ...90
vidDesktopOverlayStride...90
vidInAddr0 ..91
vidInAddr1 ..91
vidInAddr2 ..91
vidInStride ..91
vidCurrOverlayStartAddr..91

VIDEO-IN INTERFACE ...92
Function..92
Signals ..92

VIDEO LIMITATION ...93

10.AGP/CMD TRANSFER/MISC REGISTERS ...94

AGPREQSIZE ..94
AGPHOSTADDRESSLOW..94
AGPHOSTADDRESSHIGH...94
AGPGRAPHICSADDRESS ..95
AGPGRAPHICSSTRIDE ...95
AGPMOVECMD ...95
YUVBASEADDRESS...96
YUVSTRIDE ..96

11. AGP/PCI CONFIGURATION REGISTER SET...96

VENDOR_ID REGISTER ..97
DEVICE_ID REGISTER ..97
COMMAND REGISTER ...97
STATUS REGISTER...98
REVISION_ID REGISTER ...98
CLASS_CODE REGISTER ..98
CACHE_LINE_SIZE REGISTER ..98
LATENCY_TIMER REGISTER ..98
HEADER_TYPE REGISTER..99
BIST REGISTER ...99
MEMBASEADDR0 REGISTER ...99
MEMBASEADDR1 REGISTER ...99
IOBASEADDR REGISTER ...99
SUBVENDORID REGISTER...100
SUBSYSTEMID REGISTER ...100
ROMBASEADDR REGISTER..100
CAPABILITIES POINTER ...100
INTERRUPT_LINE REGISTER ..101
INTERRUPT_PIN REGISTER ..101
MIN_GNT REGISTER ...101
MAX_LAT REGISTER...101
FABID REGISTER ..101

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
6 Printed 03/01/99

CFGSTATUS REGISTER...102
CFGSCRATCH REGISTER ..102
NEW CAPABILITIES (AGP AND ACPI)..102
CAPABILITY IDENTIFIER REGISTER ..102
AGP STATUS..102
AGP COMMAND ..103
ACPI CAP ID...104
ACPI CTRL/STATUS ...104

12. INIT REGISTERS..105

STATUS REGISTER (0X0)..105
PCIINIT0 REGISTER (0X4) ...106
LFBMEMORYCONFIG REGISTER (0XC)...106
MISCINIT0 REGISTER (0X10)...106
MISCINIT1 REGISTER (0X14) ..107
DRAMINIT0 REGISTER (0X18) ...110
DRAMINIT1 REGISTER (0X1C)... 111
AGPINIT0 REGISTER (0X20) .. 111
VGAINIT0 REGISTER (0X28) ...112
VGAINIT1 REGISTER (0X2C) ...113
2D_COMMAND_REGISTER (0X30) ..114
2D_SRCBASEADDR REGISTER (0X34) ...114

13. FRAME BUFFER ACCESS..114

FRAME BUFFER ORGANIZATION...114
LINEAR FRAME BUFFER ACCESS..114
YUV PLANAR ACCESS ...114

14. ACCESSING THE ROM ..116

ROM CONFIGURATION ...116
ROM READS..116
ROM WRITES..117

15. POWER ON STRAPPING PINS...117

16. MONITOR SENSE ..117

17. HARDWARE INITIALIZATION..118

18. DATA FORMATS...118

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
7 Printed 03/01/99

1. Introduction
Banshee Graphics Engine is the second generation 3D graphics engine based on the original SST1
architecture. Banshee incorporates all of the original SST1 features such as true-perspective texture
mapping with advanced mipmapping and lighting, texture anti-aliasing, sub-pixel correction, gouraud
shading, depth-buffering, alpha blending and dithering. In addition to the SST1 features, Banshee will
include a VGA core, 2D graphics acceleration, and support for Intel’s AGP bus.

Features
• SST1 baseline features
• SST1 software compatible
• AGP / PCI bus compliant
• Native VGA core
• 2D acceleration

 Binary/Ternary operand raster ops
 Screen to Screen, Screen to Texture space, and Texture space to Screen Blits.
 Color space conversion YUV to RGB.
 1:N monochrome expansion
 Rendering support of 2048x2048

• Integrated DAC and PLLs.
• Bilinear video scaling
• Video in via feature connector
• Supports SGRAM memories

 Video-In:

• decimation
• support for interlaced video data
• support VMI, SAA7110 video connectors
• tripple buffers for video-in data

 Video-Out:

• Bilinear scaling zoom-in (from 1 to 10x magnification in increments of 0.25x)
• decimation for zoom-out (0.25x, 0.5x, 0.75x)
• chroma-keying for video underlying and overlaying
• support for stereoscopic display
• hardware cursor
• double buffer frame buffers for video refresh
• DDC support for monitor communication
• DPMS mode support
• overlay windows (for 3D and motion video)

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
8 Printed 03/01/99

Resolutions

VGA
MODE # Mode Type # of Colors Native Resolution Alpha Format
0,1 Alpha 16/256K 320x200 40x25
0,1 Alpha 16/256K 320x350 40x25
0,1 Alpha 16/256K 360x400 40x25
2,3 Alpha 16/256K 640x200 80x25
2,3 Alpha 16/256K 720x400 80x25
2,3 Alpha 16/256K 320x200 80x25
4,5 Graphics 4/256K 640x200 40x25
6 Graphics 2/256K 120x350 80x25
7 Alpha mono 320x200 80x25
D Graphics 16/256K 640x350 40x25
E Graphics 16/256K 640x350 40x25
F Graphics mono 640x350 80x25
10 Graphics 16/256K 640x350 80x25
11 Graphics 2/256K 640x480 80x30
12 Graphics 16/256K 640x480 80x30
13 Graphics 256/256K 320x200 40x25

VESA
MODE # Mode Type # of Colors Native Resolution Alpha Format
100 Graphics 256/256K 640x400 80x25
101 Graphics 256/256K 640x480 80x30

2. Functional Overview

System Level Diagram
In its entry configuration, a Banshee graphics solution consists of a single ASIC + RAM. Banshee is a
PCI Slave device, that receives commands from the CPU via direct writes or through memory backed fifo
writes. Banshee includes an entire VGA core, 2D graphic pipeline, 3D graphics engine, texture raster
engine, and video display processor. Banshee supports all VGA modes plus a number of Vesa modes.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
9 Printed 03/01/99

PCI System Bus

Frame
Buffer

Memory

H3
Graphics Chip

Feature Connector
Monitor

4/8/16 Mbytes of Sgram

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
10 Printed 03/01/99

Architectural Overview

Graphical Overview
The diagram below illustrates the overall architecture of the Banshee graphics subsystem.

PCI/AGP Interface

CMD Fifos

FBI TMU2DVGAVIDEO
IN

Memory Controller VIDEO

SGRAM PLL

PLL
Feature
Connector

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
11 Printed 03/01/99

2D

Endian

4:N

1:N

8:N

SRC
FIFO

256
CLUT

Replicate
Bytes

SRC
Chroma ROP

8x8x24
Palette

DST
Chroma

DST
FIFO

SRC
ADR

 ADR
FIFO

DST
ADR

To Memory Ctrl

 Write
Buffer

Endian

Endian

C0C1

1A

1A

LFB LFB’

LFB’
LFB

Host Port

CLIP

C1

C0

Functional Overview
Bus Support: Banshee implements both the PCI bus specification 2.1 and AGP specification 1.0 protocols.
Banshee is a slave only device on PCI, and a master device on AGP. Banshee supports zero-wait-state
transactions and burst transfers.

PCI Bus Write Posting: Banshee uses a synchronous FIFO 32ntries deep which allows sufficient write
posting capabilities for high performance. The FIFO is asynchronous to the graphics engine, thus
allowing the memory interface to operate at maximum frequency regardless of the frequency of the PCI
bus. Zero-wait-state writes are supported for maximum bus bandwidth.

VGA: Banshee includes a 100% IBM PS/2 model 70 compatible VGA core, which is highly optimized for
128 bit memory transfers. The VGA core supports PC ’97 requirements for multiple adapter, and vga
disable.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
12 Printed 03/01/99

Memory Architecture: The frame buffer controller of Banshee has a 128-bit wide datapath with support for
up to 100 MHz SGRAMs or SDRAMS. For 2D fills using the standard 2D bitBLT engine, 8 16-bit pixels
are written per clock, resulting in a 800 Mpixel/sec peak fill rate. For screen clears using the color
expansion capabilities specific to SGRAM, 64 bytes are written per clock, resulting in a 6.4 Gbytes/sec
peak fill rate. The minimum amount of memory supported by Banshee is 4 Mbytes, with a maximum of 16
Mbytes supported.

Host Bus Addressing Schemes: Banshee occupies a combined 64 Mbytes of memory mapped address
space, using two PCI memory base address pointers. Banshee also occupies 256 bytes of I/O mapped
address space for video and initialization registers. The register space of Banshee occupies 6 Mbytes of
address space, the linear frame buffer occupies 32 Mbytes of address space.

2D Architecture: Banshee implements a full featured 128-bit 2D windows accelerator capable of
displaying 8, 16, 24, and 32 bits-per-pixel screen formats. Banshee supports 1, 8, 16, 24, and 32 bits-per-
pixel RGB source pixel maps for BitBlts. 4:2:2 and 4:1:1 YUV colorspace are supported as source
bitmaps for host to screen BitBlts. Banshee supports screen-to-screen and host-to-screen stretch BitBlts at
100 Mpixels/Sec. Banshee supports source and destination colorkeying, multiple clip windows, and full
support of ternary ROP’s. Patterned Bresenham line drawing with full ROP support, along with polygon
fills are supported in Banshee’s 2D core. Fast solid fills, pattern fills, and transparent monochrome
bitmap BitBlts in 8 bits-per-pixel, 16 bits-per-pixel, and 32 bits-per-pixel modes.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
13 Printed 03/01/99

3. Banshee Address Space
MemoryBase0

Memory Address
0x0000000 - 0x007FFFF I/O register remap (See I/O section below)
0x0080000 - 0x00FFFFF CMD/AGP transfer/Misc registers
0x0100000 - 0x01FFFFF 2D registers
0x0200000 - 0x07FFFFF Reserved.
0x0800000 - 0x0BFFFFF Reserved.
0x0C00000 - 0x0FFFFFF YUV planar space

Memory Base1

Memory Address
0x0000000 - 0x1FFFFFF LFB space

I/O Base0

I/O Address
0x00 - 0x03 status Register

Initialization registers
0x04 - 0x07 pciInit0 register
0x08 - 0x0b sipMonitor register
0x0c - 0x0f lfbMemoryConfig register
0x10 - 0x13 miscInit0 register
0x14 - 0x17 miscInit1 register
0x18 - 0x1b dramInit0 register
0x1c - 0x1f dramInit1 register
0x20 - 0x23 agpInit register
0x24 - 0x27 tmuGbeInit register
0x28 - 0x2b vgaInit0 register
0x2c - 0x2f vgaInit1 register
0x30 - 0x33 dramCommand register (see 2D offset 0x70)
0x34 - 0x37 dramData register (see 2D offset 0x064)
0x38 - 0x3b reserved

PLL and Dac registers
0x40 - 0x43 pllCtrl0
0x44 - 0x47 pllCtrl1
0x48 - 0x4b pllCtrl2
0x4c - 0x4f dacMode register.
0x50 - 0x53 dacAddr register.
0x54 - 0x57 dacData register.

Video Registers part I
0x58 - 0x5b rgbMaxDelta register
0x5c - 0x5f vidProcCfg register.
0x60 - 0x63 hwCurPatAddr register.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
14 Printed 03/01/99

0x64 - 0x67 hwCurLoc register.
0x68 - 0x6b hwCurC0 register
0x6c - 0x6f hwCurC1 register.
0x70 - 0x73 vidInFormat register
0x74 - 0x77 vidInStatus register
0x78 - 0x7b vidSerialParallelPort register
0x7c - 0x7f vidInXDecimDeltas register.
0x80 - 0x83 vidInDecimInitErrs register.
0x84 - 0x87 vidInYDecimDeltas register.
0x88 - 0x8b vidPixelBufThold register
0x8c - 0x8f vidChromaMin register.
0x90 - 0x93 vidChromaMax register.
0x94 - 0x97 vidCurrentLine register.
0x98 - 0x9b vidScreenSize register.
0x9c - 0x9f vidOverlayStartCoords register.
0xa0 - 0xa3 vidOverlayEndScreenCoord register.
0xa4 - 0xa7 vidOverlayDudx register
0xa8 - 0xab vidOverlayDudxOffsetSrcWidth register.
0xac - 0xaf vidOverlayDvdy register.

VGA Registers
0xb0 - 0xdf vga registers (only in I/O space, not memory mapped)

Video Registers part II
0xe0 - 0xe3 vidOverlayDvdyOffset register.
0xe4 - 0xe7 vidDesktopStartAddr register.
0xe8 - 0xeb vidDesktopOverlayStride register.
0xec - 0xef vidInAddr0 register
0xf0 - 0xf3 vidInAddr1 register.
0xf4 - 0xf7 vidInAddr2 register.
0xf8 - 0xfb vidInStride register.
0xfc - 0xff vidCurrOverlayStartAddr register.

VGA Address Space

Memory Address
0x00A0000 - 0x00BFFFF
I/O Addresses (8 bit / 16 bit) addressable
0x0102
0x03B4 - 0x03B5
0x03BA
0x3C0 - 0x03CA
0x03CE - 0x03CF
0x03DA
0x46E8

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
15 Printed 03/01/99

4. Basic Init Procedures

Primary device
When Banshee is a primary device, and it’s installed in a system capable of running x86 BIOS, the
Banshee BIOS will perform the basic card init. This includes setting up the memory timings, clock
settings, and other startup paramaters.

Secondary device, or on non-x86 platforms
If Banshee is running as a secondary device, the BIOS does not have a chance to setup the proper startup
values. The proper values are stored in the banshee ROM. In order to setup the Banshee correctly, these
values will need to be read out of the ROM installed on the card, and programmed in to the appropriate
registers.

On non-x86 systems, the expansion ROM will often already have a PCI Expansion ROM base address.
However, most PC systems blank out the expansion rom address after shadowing the x86 part of the
expansion ROM into system memory. If for some reason the expansion rom does not have a PCI base
address, on Banshee, it is safe to borrow pci address space from the linear frame buffer. The address
decoding hardware guarantees that if the expansion rom is mapped on top of the linear frame buffer, the
expansion rom will have priority. In order to do this, set the PCI config space expansion rom base address
to be the same as the frame buffer base address for that card, perform the necessary accesses to rom, and
then set the expansion rom base address back to it’s previous value. Below is some example code to
perform this address space borrowing and access the ROM. It makes use of standard pci access functions,
and the external “mdc_crc_getbuffer()” which performs the CRC32 of the buffer.

FxBool bansheeChecksumRom(LPCARDINFO card, FxU32 *checksum_1sthalf, FxU32 *romSize) {
 SstIORegs *ioregs = (SstIORegs *)(card->NatMem0.MappedAddr);
 FxU32 old_miscInit1;
 FxU32 base_addr,old_base_addr;
 FxU32 phys_addr;
 FxU32 mapped_addr;
 FxU32 size;
 FxU32 checksum_1;
 char *ptr;

 pciGetConfigData(PCI_ROM_BASE_ADDRESS, card->pciDevNum, &base_addr);
 old_base_addr = base_addr;

 /* we are going to borrow address space from the MMIO registers */
 base_addr = card->PCIBase0 + 0x800000;

 phys_addr = base_addr & ~0x7FF;
 if (ioregs->reservedZ[1] & BIT(1)) {
 size = BANSHEE_ROM_SIZE; /* 64k */
 if (romSize) { *romSize = 64; }

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
16 Printed 03/01/99

 } else {
 size = BANSHEE_ROM_SIZE/2; /* 32k */
 if (romSize) { *romSize = 32; }
 }

 mapped_addr = card->NatMem0.MappedAddr + 0x800000;
 printf("old miscInit1 = 0x%X\n",old_miscInit1 = ioregs->miscInit1);
 ioregs->miscInit1 |= BIT(25);

 printf("banshee ROM base (0x%X,0x%X,size = %d)\n",
 base_addr,phys_addr,size);

 /* enable ROM address decoding */
 base_addr &= ~0x1;
 pciSetConfigData(PCI_ROM_BASE_ADDRESS, card->pciDevNum, &base_addr);
 base_addr |= 1;
 pciSetConfigData(PCI_ROM_BASE_ADDRESS, card->pciDevNum, &base_addr);

 /* checksum the rom */
 ptr = (char *)mapped_addr;

 if ((*(ptr) != 0x55) || (*(ptr + 1) != 0xAA)) {
 /* signature didn't match! */

 /* disable ROM address decoding */
 old_base_addr &= ~0x1;
 pciSetConfigData(PCI_ROM_BASE_ADDRESS, card->pciDevNum, &old_base_addr);

 printf("Couldn't find ROM signature: 0x55, 0xAA\n");
 ioregs->miscInit1 = old_miscInit1;
 return (FXFALSE);

 }
 printf("ptr = 0x%X, size=0x%X\n",ptr,size);

 checksum_1 = mdc_getcrc_buffer(ptr,size/2);
 printf("checksum 1 = 0x%X\n",checksum_1);

 if (checksum_1sthalf) {
 *checksum_1sthalf = checksum_1;
 }
 ioregs->miscInit1 = old_miscInit1;
 /* disable ROM address decoding */
 old_base_addr &= ~0x1;
 pciSetConfigData(PCI_ROM_BASE_ADDRESS, card->pciDevNum, &old_base_addr);

 return FXTRUE;
}

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
17 Printed 03/01/99

After you can access the expansion rom, you will need to find the important startup data. In the ROM,
there is a table of configuration data which looks like this:

struct tblOEMConfig_struct {
UINT32 regPCIInit0; /* IOBase[04h] */
UINT32 regMiscInit0; /* IOBase[10h] */
UINT32 regMiscInit1; /* IOBase[14h] */
UINT32 regDRAMInit0; /* IOBase[18h] */
UINT32 regDRAMInit1; /* IOBase[1Ch] */
UINT32 regAGPInit0; /* IOBase[20h] */
UINT32 regPLLCtrl1; /* IOBase[44h] */
UINT32 regPLLCtrl2; /* IOBase[48h] */
UINT32 regSGRAMMode; /* IOBase[30h] and IOBase[10Dh] */

};

To find the OEM Config Table, you need to following these steps:

1) At offset 50h of the x86 ROM Image, there is a word value. This value is the offset within the ROM
image, of the ROM Config Table.

2) The first WORD of the ROM Config Table is an offset within the ROM image, of the above OEM
Config Table.

3) If the pointer to the OEM Config Table is “0”, then there is no OEM Config Table. (This will not
happen in any release versions of the Banshee ROM.)

Setting up VESA desktop modes

The easiest way to setup the VESA standard desktop modes is to make use of the VGA BIOS Parameter
Tables. The contents of these tables have been included here for your convenience. The layout of these
Parameter tables is standardized, and should be able in popular VGA Books. However, the layout is also
included below for convinence. Keep in mind that the “byte number” in the table below is the location in
the BIOS Parameter list, and is not related to the register location. You can find the register locations for
the listed registers in any standard VGA book. Also keep in mind that in order to write the extended
CRTC registers, you must unlock them by writing a 0 to bit 7 of CR11.

Byte
Number

Contents

0 Number of text columns

1 Number of text rows

2 Character height (in pixels)

3 and 4 Display page length (in bytes)

Sequencer Register Values:

5 Clock Mode Register

6 Color Plane Write Enable Register

7 Character Generator Select Register

8 Memory Mode Register

9 Miscellaneous Register

CRT Controller Register values:

0ah Horizontal Total Register

0bh Horizontal Display End Register

0ch Start Horizontal Blanking Register

0dh End Horizontal Blanking Register

0eh Start Horizontal Retrace Register

0fh End Horizontal Retrace Register

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
18 Printed 03/01/99

10h Vertical Total Register

11h Overflow Register

12h Preset Row Scan Register

13h Maximum Scan Line Register

14h Cursor Start

15h Cursor End

16h-19h Unused

1ah Vertical Retrace Start Register

1bh Vertical Retrace End Register

1ch Vertical Display End Register

1dh Offset Register

1eh Underline Location Register

1fh Start Vertical Blanking Register

20h End Vertical Blanking Register

21h Mode Control Register

22h Line Compare Register

Attribute Controller Register Values:

23h Palette Register 0

24h Palette Register 1

25h Palette Register 2

26h Palette Register 3

27h Palette Register 4

28h Palette Register 5

29h Palette Register 6

30h Palette Register 7

31h Palette Register 8

32h Palette Register 9

33h Mode Control Register

34h Screen Border Color (Overscan)
Register

35h Color Plane Enable Register

36h Horizontal Panning Register

Graphics Controller register values:

37h Set/Reset Register

38h Set/Reset Enable Register

39h Color Compare Register

3ah Data Rotate & Function Select
Register

3bh Read Plane Select Register

3ch Mode Register

3dh Miscellaneous Register

Below are the actual mode paramater tables for all the supported VESA standard modes.

tblExtModeParms label byte
;
; Mode 55h / VESA Mode 109h / Internal Mode 1Dh
; 132x25 Color Text (8x16 font) - 40.0 MHz, 31.5 KHz, 70 Hz
;

db 084h, 018h, 010h
dw 02000h
db 001h, 003h, 000h, 002h
db 06Fh
db 09Ah, 083h, 084h, 09Dh, 085h, 013h
db 0BFh, 01Fh, 000h, 04Fh, 00Dh, 00Eh
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 042h, 01Fh, 096h, 0B9h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 00Ch, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 54h / VESA Mode 10Ah / Internal Mode 1Eh
; 132x43 Color Text (8x9 font) - 40.0 MHz, 31.5 KHz, 70 Hz
;

db 084h, 02Ah, 009h
dw 04000h

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
19 Printed 03/01/99

db 001h, 003h, 000h, 002h
db 06Fh
db 09Ah, 083h, 084h, 09Dh, 085h, 013h
db 0BFh, 01Fh, 000h, 048h, 007h, 008h
db 000h, 000h, 000h, 000h, 092h, 084h
db 082h, 042h, 01Fh, 089h, 0B9h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 00Ch, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 65h / VESA Mode 10Bh / Internal Mode 1Fh
; 132x50 Color Text (8x8 font) - 40.0 MHz, 31.5 KHz, 70 Hz
;

db 084h, 031h, 008h
dw 04000h
db 001h, 003h, 000h, 002h
db 06Fh
db 09Eh, 083h, 084h, 081h, 08Ah, 09Eh
db 0BFh, 01Fh, 000h, 047h, 006h, 007h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 042h, 01Fh, 096h, 0B9h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 00Ch, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 64h / VESA Mode 10Ch / Internal Mode 20h
; 132x60 Color Text (8x8 font) - 40.0 MHz, 31.5 KHz, 60 Hz
;

db 084h, 03Bh, 008h
dw 04000h
db 001h, 003h, 000h, 002h
db 0EFh
db 09Eh, 083h, 084h, 081h, 08Ah, 09Eh
db 00Bh, 03Eh, 000h, 047h, 006h, 007h
db 000h, 000h, 000h, 000h, 0EAh, 08Ch
db 0DFh, 042h, 01Fh, 0E7h, 004h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 00Ch, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
IF BANSHEE_DOUBLESCAN
;
; Mode 78 / VESA Mode 180 / *Internal Mode 21h*
; Mode 79 / VESA Mode 10E / Internal Mode 25h
; Mode 7A / VESA Mode 10F / Internal Mode 26h
; 320x200 - 256-color, 32K-color, 16M-color (8x8 font, 40x25 "Text")
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 028h, 018h, 008h
dw 0FFFFh
db 001h, 00Fh, 000h, 00Eh
db 06Fh
db 02Dh, 027h, 028h, 090h, 029h, 08Fh
db 0BFh, 01Fh, 000h, 0C0h, 000h, 000h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 028h, 01Fh, 096h, 0B9h, 0E3h
db 0FFh

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
20 Printed 03/01/99

db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 008h, 009h, 00Ah, 00Bh
db 00Ch, 00Dh, 00Eh, 00Fh, 001h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 040h
db 005h, 00Fh, 0FFh

;
; Mode 20 / VESA Mode 181 / *Internal Mode 22h*
; Mode 21 / VESA Mode 182 / Internal Mode 27h
; Mode 22 / VESA Mode 183 / Internal Mode 28h
; 320x240 - 256-color, 32K-color, 16M-color (8x8 font, 40x30 "Text")
; 25.175 MHz, 31.5 KHz, 60 Hz
;

db 028h, 01Dh, 008h
dw 0FFFFh
db 001h, 00Fh, 000h, 00Eh
db 0EFh
db 02Dh, 027h, 028h, 090h, 029h, 08Fh
db 00Bh, 03Eh, 000h, 0C0h, 000h, 000h
db 000h, 000h, 000h, 000h, 0EAh, 00Ch
db 0DFh, 028h, 01Fh, 0E7h, 004h, 0E3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 008h, 009h, 00Ah, 00Bh
db 00Ch, 00Dh, 00Eh, 00Fh, 001h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 040h
db 005h, 00Fh, 0FFh

;
; Mode 23 / VESA Mode 184 / *Internal Mode 23h*
; Mode 24 / VESA Mode 185 / Internal Mode 29h
; Mode 25 / VESA Mode 186 / Internal Mode 2Ah
; 400x300 - 256-color, 32K-color, 16M-color (8x8 font, 50x37 "Text")
; 40.000/2 MHz, 35.5 KHz, 60 Hz
;
 db 032h, 024h, 008h
 dw 0FFFFh
 db 001h, 00Fh, 000h, 00Eh
 db 02Fh
 db 03Dh, 031h, 032h, 080h, 035h, 01Dh
 db 072h, 0F0h, 000h, 060h, 000h, 000h
 db 000h, 000h, 000h, 000h, 059h, 00Dh
 db 057h, 064h, 000h, 058h, 073h, 0E3h
 db 0FFh
 db 000h, 001h, 002h, 003h, 004h, 005h
 db 006h, 007h, 008h, 009h, 00Ah, 00Bh
 db 00Ch, 00Dh, 00Eh, 00Fh, 001h, 000h
 db 00Fh, 000h
 db 000h, 000h, 000h, 000h, 000h, 040h
 db 005h, 00Fh, 0FFh
;
; Mode 26 / VESA Mode 187 / *Internal Mode 24h*
; Mode 27 / VESA Mode 188 / Internal Mode 2Bh
; Mode 28 / VESA Mode 189 / Internal Mode 2Ch
; 512x384 - 256-color, 32K-color, 16M-color (8x14 font, 64x27 "Text")
; 65.000/2 MHz, 48.0 KHz, 60 Hz
;

db 040h, 01Ch, 00Eh
dw 0FFFFh
db 001h, 00Fh, 000h, 00Eh
db 02Fh
db 04Fh, 03Fh, 040h, 083h, 042h, 00Ch
db 024h, 0F5h, 000h, 060h, 000h, 000h
db 000h, 000h, 000h, 000h, 003h, 009h
db 0FFh, 080h, 000h, 0FFh, 025h, 0E3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 008h, 009h, 00Ah, 00Bh
db 00Ch, 00Dh, 00Eh, 00Fh, 041h, 000h

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
21 Printed 03/01/99

db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 040h
db 005h, 00Fh, 0FFh

tblStdParameters label byte
;
; Mode 0 / Internal Mode 00h
; 40x25 - Color Text (8x8 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 028h, 018h, 008h
dw 00800h
db 009h, 003h, 000h, 002h
db 063h
db 02Dh, 027h, 028h, 090h, 02Bh, 0A0h
db 0BFh, 01Fh, 000h, 0C7h, 006h, 007h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 014h, 01Fh, 096h, 0B9h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 010h, 011h, 012h, 013h
db 014h, 015h, 016h, 017h, 008h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 1 / Internal Mode 01h
; 40x25 - Color Text (8x8 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 028h, 018h, 008h
dw 00800h
db 009h, 003h, 000h, 002h
db 063h
db 02Dh, 027h, 028h, 090h, 02Bh, 0A0h
db 0BFh, 01Fh, 000h, 0C7h, 006h, 007h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 014h, 01Fh, 096h, 0B9h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 010h, 011h, 012h, 013h
db 014h, 015h, 016h, 017h, 008h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 2 / Internal Mode 02h
; 80x25 - Color Text (8x8 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 050h, 018h, 008h
dw 01000h
db 001h, 003h, 000h, 002h
db 063h
db 05Fh, 04Fh, 050h, 082h, 055h, 081h
db 0BFh, 01Fh, 000h, 0C7h, 006h, 007h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 028h, 01Fh, 096h, 0B9h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 010h, 011h, 012h, 013h
db 014h, 015h, 016h, 017h, 008h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 3 / Internal Mode 03h
; 80x25 - Color Text (8x8 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
22 Printed 03/01/99

db 050h, 018h, 008h
dw 01000h
db 001h, 003h, 000h, 002h
db 063h
db 05Fh, 04Fh, 050h, 082h, 055h, 081h
db 0BFh, 01Fh, 000h, 0C7h, 006h, 007h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 028h, 01Fh, 096h, 0B9h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 010h, 011h, 012h, 013h
db 014h, 015h, 016h, 017h, 008h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 4 / Internal Mode 04h
; 320x200 - 4-color CGA (8x8 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 028h, 018h, 008h
dw 04000h
db 009h, 003h, 000h, 002h
db 063h
db 02Dh, 027h, 028h, 090h, 02Bh, 080h
db 0BFh, 01Fh, 000h, 0C1h, 000h, 000h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 014h, 000h, 096h, 0B9h, 0A2h
db 0FFh
db 000h, 013h, 015h, 017h, 002h, 004h
db 006h, 007h, 010h, 011h, 012h, 013h
db 014h, 015h, 016h, 017h, 001h, 000h
db 003h, 000h
db 000h, 000h, 000h, 000h, 000h, 030h
db 00Fh, 000h, 0FFh

;
; Mode 5 / Internal Mode 05h
; 320x200 - 4-color CGA (8x8 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 028h, 018h, 008h
dw 04000h
db 009h, 003h, 000h, 002h
db 063h
db 02Dh, 027h, 028h, 090h, 02Bh, 080h
db 0BFh, 01Fh, 000h, 0C1h, 000h, 000h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 014h, 000h, 096h, 0B9h, 0A2h
db 0FFh
db 000h, 013h, 015h, 017h, 002h, 004h
db 006h, 007h, 010h, 011h, 012h, 013h
db 014h, 015h, 016h, 017h, 001h, 000h
db 003h, 000h
db 000h, 000h, 000h, 000h, 000h, 030h
db 00Fh, 000h, 0FFh

;
; Mode 6 / Internal Mode 06h
; 640x200 - 2-color CGA (8x8 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 050h, 018h, 008h
dw 04000h
db 001h, 001h, 000h, 006h
db 063h
db 05Fh, 04Fh, 050h, 082h, 054h, 080h
db 0BFh, 01Fh, 000h, 0C1h, 000h, 000h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 028h, 000h, 096h, 0B9h, 0C2h
db 0FFh

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
23 Printed 03/01/99

db 000h, 017h, 017h, 017h, 017h, 017h
db 017h, 017h, 017h, 017h, 017h, 017h
db 017h, 017h, 017h, 017h, 001h, 000h
db 001h, 000h
db 000h, 000h, 000h, 000h, 000h, 000h
db 00Dh, 000h, 0FFh

;
; Mode 7 / Internal Mode 07h
; 80x25 - Mono Text (9x14 Font)
; 28.321 MHz, 31.5 KHz, 70 Hz
;

db 050h, 018h, 00Eh
dw 01000h
db 000h, 003h, 000h, 003h
db 0A6h
db 05Fh, 04Fh, 050h, 082h, 055h, 081h
db 0BFh, 01Fh, 000h, 04Dh, 00Bh, 00Ch
db 000h, 000h, 000h, 000h, 083h, 085h
db 05Dh, 028h, 00Dh, 063h, 0BAh, 0A3h
db 0FFh
db 000h, 008h, 008h, 008h, 008h, 008h
db 008h, 008h, 010h, 018h, 018h, 018h
db 018h, 018h, 018h, 018h, 00Eh, 000h
db 00Fh, 008h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Ah, 000h, 0FFh

;
; Mode 5Bh / VBE Mode 100h / *Internal Mode 08h*
; Mode 29h / VBE Mode 18Ah / Internal Mode 2Dh
; Mode 2Ah / VBE Mode 18Bh / Internal Mode 2Fh
; 640X400 - 256-color, 32K-color, 16M-color (8x16 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 050h, 018h, 010h
dw 0FFFFh
db 001h, 00Fh, 000h, 00Eh
db 063h
db 05Fh, 04Fh, 050h, 082h, 055h, 081h
db 0BFh, 01Fh, 000h, 040h, 000h, 000h
db 000h, 000h, 000h, 000h, 09Ch, 00Eh
db 08Fh, 050h, 01Fh, 096h, 0B9h, 0E3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 008h, 009h, 00Ah, 00Bh
db 00Ch, 00Dh, 00Eh, 00Fh, 041h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 040h
db 005h, 00Fh, 0FFh

;
; Mode 5Fh / VBE Mode 101h / *Internal Mode 09h*
; Mode 6E / VESA Mode 111h / Internal Mode 2Fh
; Mode 69 / VESA Mode 112h / Internal Mode 30h
; 640X480 - 256-color, 32K-color, 16M-color (8x16 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 050h, 01Dh, 010h
dw 0FFFFh
db 001h, 00Fh, 000h, 00Eh
db 0E3h
db 05Fh, 04Fh, 050h, 082h, 052h, 09Eh
db 00Bh, 03Eh, 000h, 040h, 000h, 000h
db 000h, 000h, 000h, 000h, 0EAh, 00Ch
db 0DFh, 050h, 000h, 0E7h, 004h, 0E3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 008h, 009h, 00Ah, 00Bh
db 00Ch, 00Dh, 00Eh, 00Fh, 041h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 040h

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
24 Printed 03/01/99

db 005h, 00Fh, 0FFh
;
; Mode 6Ah / VBE Mode 102h / Internal Mode 0Ah
; 800X600 - 16-color (8x16 Font)
; 40.000 MHz, 38.000 KHz, 60 Hz
;

db 064h, 024h, 010h
dw 0FA00h
db 001h, 00Fh, 000h, 006h
db 02Fh
db 07Fh, 063h, 064h, 082h, 06Bh, 01Bh
db 072h, 0F0h, 000h, 060h, 000h, 000h
db 000h, 000h, 000h, 000h, 059h, 00Dh
db 057h, 032h, 000h, 057h, 073h, 0E3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 001h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 000h
db 005h, 00Fh, 0FFh

;
; Mode 5Ch / VBE Mode 103h / *Internal Mode 0Bh*
; Mode 70h / VBE Mode 114h / Internal Mode 31h
; Mode 71h / VBE Mode 115h / Internal Mode 32h
; 800X600 - 256-color, 32K-color, 16M-color (8x16 Font)
; 40.000 MHz, 38.000 KHz, 60 Hz
;
 db 064h, 024h, 010h
 dw 0FFFFh
 db 001h, 00Fh, 000h, 00Eh
 db 02Fh
 db 07Fh, 063h, 064h, 082h, 069h, 019h
 db 072h, 0F0h, 000h, 060h, 000h, 000h
 db 000h, 000h, 000h, 000h, 059h, 00Dh
 db 057h, 064h, 000h, 058h, 073h, 0E3h
 db 0FFh
 db 000h, 001h, 002h, 003h, 004h, 005h
 db 006h, 007h, 008h, 009h, 00Ah, 00Bh
 db 00Ch, 00Dh, 00Eh, 00Fh, 001h, 000h
 db 00Fh, 000h
 db 000h, 000h, 000h, 000h, 000h, 040h
 db 005h, 00Fh, 0FFh
;
; Mode 6B / VESA Mode 107 / *Internal Mode 0Ch*
; Mode 74 / VESA Mode 11A / Internal Mode 35h
; Mode 75 / VESA Mode 11B / Internal Mode 36h
; 1280x1024 - 256-color, 32K-color, 16M-color (8x16 Font)
; 108.0 MHz, 64 KHz, 60 Hz
;

db 0A0h, 03Fh, 010h
dw 0FFFFh
db 001h, 00Fh, 000h, 00Eh
db 02Fh
db 0CEh, 09Fh, 0A0h, 091h, 0A6h, 014h
db 028h, 052h, 000h, 040h, 000h, 000h
db 000h, 000h, 000h, 000h, 001h, 004h
db 0FFh, 0A0h, 000h, 001h, 028h, 0E3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 008h, 009h, 00Ah, 00Bh
db 00Ch, 00Dh, 00Eh, 00Fh, 041h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 040h
db 005h, 00Fh, 0FFh

;
; Mode D / Internal Mode 0Dh
; 320x200 - 16-color planar (8x8 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
25 Printed 03/01/99

;
db 028h, 018h, 008h
dw 02000h
db 009h, 00Fh, 000h, 006h
db 063h
db 02Dh, 027h, 028h, 090h, 02Bh, 080h
db 0BFh, 01Fh, 000h, 0C0h, 000h, 000h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 014h, 000h, 096h, 0B9h, 0E3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 010h, 011h, 012h, 013h
db 014h, 015h, 016h, 017h, 001h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 000h
db 005h, 00Fh, 0FFh

;
; Mode E / Internal Mode 0Eh
; 640x200 - 16-color planar (8x8 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 050h, 018h, 008h
dw 04000h
db 001h, 00Fh, 000h, 006h
db 063h
db 05Fh, 04Fh, 050h, 082h, 054h, 080h
db 0BFh, 01Fh, 000h, 0C0h, 000h, 000h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 028h, 000h, 096h, 0B9h, 0E3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 010h, 011h, 012h, 013h
db 014h, 015h, 016h, 017h, 001h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 000h
db 005h, 00Fh, 0FFh

;
; Mode 5Eh / VBE Mode 105h / *Internal Mode 0Fh*
; Mode 72h / VBE Mode 117h / Internal Mode 33h
; Mode 73h / VBE Mode 118h / Internal Mode 34h
; 1024X768 - 256-color, 32K-color, 16M-color (8x16 Font)
; 65.000 MHz, 48.500 KHz, 60 Hz
;

db 080h, 02Fh, 010h
dw 0FFFFh
db 001h, 00Fh, 000h, 00Eh
db 02Fh
db 0A3h, 07Fh, 080h, 087h, 083h, 094h
db 024h, 0F5h, 000h, 060h, 000h, 000h
db 000h, 000h, 000h, 000h, 003h, 009h
db 0FFh, 080h, 000h, 0FFh, 025h, 0E3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 008h, 009h, 00Ah, 00Bh
db 00Ch, 00Dh, 00Eh, 00Fh, 041h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 040h
db 005h, 00Fh, 0FFh

;
; Mode 68h / VESA Mode 108h / Internal Mode 10h
; 80x60 Color Text (8x8 font) - 25.175 MHz, 31.5 KHz, 60 Hz
;

db 050h, 03Bh, 008h
dw 2600h
db 001h, 003h, 000h, 002h
db 0E3h
db 05Fh, 04Fh, 050h, 082h, 055h, 081h
db 00Bh, 03Eh, 000h, 047h, 006h, 007h
db 000h, 000h, 000h, 000h, 0EAh, 08Ch

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
26 Printed 03/01/99

db 0DFh, 028h, 01Fh, 0E7h, 004h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 00Ch, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode F / Internal Mode 11h
; 640x350 - 2-bit mono pseudo-planar (8x14 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 050h, 018h, 00Eh
dw 08000h
db 001h, 00Fh, 000h, 006h
db 0A2h
db 05Fh, 04Fh, 050h, 082h, 054h, 080h
db 0BFh, 01Fh, 000h, 040h, 000h, 000h
db 000h, 000h, 000h, 000h, 083h, 085h
db 05Dh, 028h, 00Fh, 063h, 0BAh, 0E3h
db 0FFh
db 000h, 008h, 000h, 000h, 018h, 018h
db 000h, 000h, 000h, 008h, 000h, 000h
db 000h, 018h, 000h, 000h, 00Bh, 000h
db 005h, 000h
db 000h, 000h, 000h, 000h, 000h, 000h
db 005h, 005h, 0FFh

;
; Mode 10h / Internal Mode 12h
; 640x350 - 16-bit planar (8x14 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 050h, 018h, 00Eh
dw 08000h
db 001h, 00Fh, 000h, 006h
db 0A3h
db 05Fh, 04Fh, 050h, 082h, 054h, 080h
db 0BFh, 01Fh, 000h, 040h, 000h, 000h
db 000h, 000h, 000h, 000h, 083h, 085h
db 05Dh, 028h, 00Fh, 063h, 0BAh, 0E3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 001h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 000h
db 005h, 00Fh, 0FFh

;
; Mode 0* / Internal Mode 13h
; 40x25 - Color Text (8x14 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 028h, 018h, 00Eh
dw 00800h
db 009h, 003h, 000h, 002h
db 0A3h
db 02Dh, 027h, 028h, 090h, 02Bh, 0A0h
db 0BFh, 01Fh, 000h, 04Dh, 00Bh, 00Ch
db 000h, 000h, 000h, 000h, 083h, 085h
db 05Dh, 014h, 01Fh, 063h, 0BAh, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 008h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
27 Printed 03/01/99

; Mode 1* / Internal Mode 14h
; 40x25 - Color Text (8x14 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 028h, 018h, 00Eh
dw 00800h
db 009h, 003h, 000h, 002h
db 0A3h
db 02Dh, 027h, 028h, 090h, 02Bh, 0A0h
db 0BFh, 01Fh, 000h, 04Dh, 00Bh, 00Ch
db 000h, 000h, 000h, 000h, 083h, 085h
db 05Dh, 014h, 01Fh, 063h, 0BAh, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 008h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 2* / Internal Mode 15h
; 80x25 - Color Text (8x14 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 050h, 018h, 00Eh
dw 01000h
db 001h, 003h, 000h, 002h
db 0A3h
db 05Fh, 04Fh, 050h, 082h, 055h, 081h
db 0BFh, 01Fh, 000h, 04Dh, 00Bh, 00Ch
db 000h, 000h, 000h, 000h, 083h, 085h
db 05Dh, 028h, 01Fh, 063h, 0BAh, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 008h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 3* / Internal Mode 16h
; 80x25 - Color Text (8x14 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 050h, 018h, 00Eh
dw 01000h
db 001h, 003h, 000h, 002h
db 0A3h
db 05Fh, 04Fh, 050h, 082h, 055h, 081h
db 0BFh, 01Fh, 000h, 04Dh, 00Bh, 00Ch
db 000h, 000h, 000h, 000h, 083h, 085h
db 05Dh, 028h, 01Fh, 063h, 0BAh, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 008h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 0+/1+ / Internal Mode 17h
; 40x25 - Color Text (9x16 Font)
; 28.321 MHz, 31.5 KHz, 70 Hz
;

db 028h, 018h, 010h
dw 00800h
db 008h, 003h, 000h, 002h
db 067h
db 02Dh, 027h, 028h, 090h, 02Bh, 0A0h

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
28 Printed 03/01/99

db 0BFh, 01Fh, 000h, 04Fh, 00Dh, 00Eh
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 014h, 01Fh, 096h, 0B9h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 00Ch, 000h
db 00Fh, 008h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 2+/3+ / Internal Mode 18h
; 80x25 - Color Text (9x16 Font)
; 28.321 MHz, 31.5 KHz, 70 Hz
;

db 050h, 018h, 010h
dw 01000h
db 000h, 003h, 000h, 002h
db 067h
db 05Fh, 04Fh, 050h, 082h, 055h, 081h
db 0BFh, 01Fh, 000h, 04Fh, 00Dh, 00Eh
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 028h, 01Fh, 096h, 0B9h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 00Ch, 000h
db 00Fh, 008h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Eh, 000h, 0FFh

;
; Mode 7+ / Internal Mode 19h
; 80x25 - Mono Text (9x16 Font)
; 28.321 MHz, 31.5 KHz, 70 Hz
;

db 050h, 018h, 010h
dw 01000h
db 000h, 003h, 000h, 002h
db 066h
db 05Fh, 04Fh, 050h, 082h, 055h, 081h
db 0BFh, 01Fh, 000h, 04Fh, 00Dh, 00Eh
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 028h, 00Fh, 096h, 0B9h, 0A3h
db 0FFh
db 000h, 008h, 008h, 008h, 008h, 008h
db 008h, 008h, 010h, 018h, 018h, 018h
db 018h, 018h, 018h, 018h, 00Eh, 000h
db 00Fh, 008h
db 000h, 000h, 000h, 000h, 000h, 010h
db 00Ah, 000h, 0FFh

;
; Mode 11h / Internal Mode 1Ah
; 640x480 - 2-color planar (8x16 Font)
; 25.175 MHz, 31.5 KHz, 60 Hz
;

db 050h, 01Dh, 010h
dw 0A000h
db 001h, 00Fh, 000h, 006h
db 0E3h
db 05Fh, 04Fh, 050h, 082h, 054h, 080h
db 00Bh, 03Eh, 000h, 040h, 000h, 000h
db 000h, 000h, 000h, 000h, 0EAh, 08Ch
db 0DFh, 028h, 000h, 0E7h, 004h, 0C3h
db 0FFh
db 000h, 03Fh, 03Fh, 03Fh, 03Fh, 03Fh
db 03Fh, 03Fh, 03Fh, 03Fh, 03Fh, 03Fh
db 03Fh, 03Fh, 03Fh, 03Fh, 001h, 000h
db 001h, 000h
db 000h, 000h, 000h, 000h, 000h, 000h

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
29 Printed 03/01/99

db 005h, 001h, 0FFh
;
; Mode 12h / Internal Mode 1Bh
; 640x480 - 16-color planar (8x16 Font)
; 25.175 MHz, 31.5 KHz, 60 Hz
;

db 050h, 01Dh, 010h
dw 0A000h
db 001h, 00Fh, 000h, 006h
db 0E3h
db 05Fh, 04Fh, 050h, 082h, 054h, 080h
db 00Bh, 03Eh, 000h, 040h, 000h, 000h
db 000h, 000h, 000h, 000h, 0EAh, 08Ch
db 0DFh, 028h, 000h, 0E7h, 004h, 0E3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 014h, 007h, 038h, 039h, 03Ah, 03Bh
db 03Ch, 03Dh, 03Eh, 03Fh, 001h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 000h
db 005h, 00Fh, 0FFh

;
; Mode 13h / Internal Mode 1Ch
; 320x200 - 256-color (8x8 Font)
; 25.175 MHz, 31.5 KHz, 70 Hz
;

db 028h, 018h, 008h
dw 02000h
db 001h, 00Fh, 000h, 00Eh
db 063h
db 05Fh, 04Fh, 050h, 082h, 054h, 080h
db 0BFh, 01Fh, 000h, 041h, 000h, 000h
db 000h, 000h, 000h, 000h, 09Ch, 08Eh
db 08Fh, 028h, 040h, 096h, 0B9h, 0A3h
db 0FFh
db 000h, 001h, 002h, 003h, 004h, 005h
db 006h, 007h, 008h, 009h, 00Ah, 00Bh
db 00Ch, 00Dh, 00Eh, 00Fh, 041h, 000h
db 00Fh, 000h
db 000h, 000h, 000h, 000h, 000h, 040h
db 005h, 00Fh, 0FFh

;
; Copyright (c) 1990-1998 Elpin Systems, Inc.
; All rights reserved.
;

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
30 Printed 03/01/99

5. 2D

2D Register Map

Memory Base 0: Offset 0x0100000

Register Name Address Reg Bits R/W Description
status 0x000(0) 0x0 31:0 R Banshee status register
intCtrl 0x004(4) 0x1 31:0 R/W Interrupt control and status
clip0Min 0x008(8) 0x2 28:0 R/W Min X & Y clip values when clip select is 0
clip0Max 0x00c(12) 0x3 28:0 R/W Max X & Y clip values when clip select is 0
dstBaseAddr 0x010(16) 0x4 23:0 R/W Destination base address
dstFormat 0x014(20) 0x5 17:0 R/W Destination stride and bits per pixel
srcColorkeyMin 0x018(24) 0x6 23:0 R/W Source Colorkey range (min)
srcColorkeyMax 0x01c(28) 0x7 23:0 R/W Source Colorkey range (max)
dstColorkeyMin 0x020(32) 0x8 23:0 R/W Destination Colorkey range (min)
dstColorkeyMax 0x024(36) 0x9 23:0 R/W Destination Colorkey range (max)
bresError0 0x028(40) 0xA 31:0 R/W Initial error for lines, right edges & stretch blt x
bresError1 0x02c(44) 0xB 31:0 R/W Initial error for left poly edges & stretch blt y
rop 0x030(48) 0xC 31:0 R/W 4 Ternary Raster operations
srcBaseAddr 0x034(52) 0xD 23:0 R/W Source base address
commandExtra 0x038(56) 0xE 31:0 R/W Extra control bits
lineStipple 0x03c(60) 0xF 31:0 R/W Monochrome pattern for lines
lineStyle 0x040(64) 0x10 28:0 R/W Style register for lines
pattern0Alias 0x044(68) 0x11 31:0 R/W Alias to colorPattern(0)
pattern1Alias 0x048(72) 0x12 31:0 R/W Alias to colorPattern(1)
clip1Min 0x04c(76) 0x13 28:0 R/W Min X & Y clip values when clip select is 1
clip1Max 0x050(80) 0x14 28:0 R/W Max X & Y clip values when clip select is 1
srcFormat 0x054(84) 0x15 18:0 R/W Source stride and bits per pixel
srcSize 0x058(88) 0x16 28:0 R/W Height and width of source for stretch blts
srcXY 0x05c(92) 0x17 28:0 R/W Starting pixel of blt source data

Starting position for lines
Top-most point for a polygon fill

colorBack 0x060(96) 0x18 31:0 R/W Background color
colorFore 0x064(100) 0x19 31:0 R/W Foreground color
dstSize 0x068(104) 0x1A 28:0 R/W Destination width and height for blts and

rectangle fills
dstXY 0x06c(108) 0x1B 28:0 R/W Starting X and Y of destination for blts

End point for lines
command 0x070(112) 0x1C 31:0 R/W 2D command mode & control bits
RESERVED 0x074(116) 0x1D 31:0 Do not write
RESERVED 0x078(120) 0x1E 31:0 Do not write
RESERVED 0x07c(124) 0x1F 31:0 Do not write
launchArea 0x080(128)

to
0x0ff(255)

0x20
to
0x3F

31:0 R Initiates 2D commands

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
31 Printed 03/01/99

colorPattern 0x100(256)
to
0x1fc(508)

0x40
to
0x7F

31:0 R/W Pattern Registers (64 entries)

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
32 Printed 03/01/99

Register Descriptions
The 2D register set is described in the sections below.

All 2D registers can be read, and all registers except for the status register are fully write-able. Reading a
2D register will always return the value that will be used if a new operation is begun without writing a
new value to that register. This value will either be the last value written to the register, or, if an operation
has been performed since the value was written, the value after all operations have completed.

All registers for the 2D section are unsigned unless specified otherwise.

status Register
The status register provides a way for the CPU to interrogate the graphics processor about its current state
and FIFO availability. The status register is read only, but writing to status clears any Banshee generated
PCI interrupts.

Bit Description
5:0 PCI FIFO freespace (0x3f=FIFO empty). Default is 0x3f.
6 Vertical retrace (0=Vertical retrace active, 1=Vertical retrace inactive). Default is 1.
7 FBI graphics engine busy (0=engine idle, 1=engine busy). Default is 0.
8 TREX busy (0=engine idle, 1=engine busy). Default is 0.
9 Banshee busy (0=idle, 1=busy). Default is 0.
10 2D busy (0=idle, 1=busy). Default is 0.
11 Reserved
27:12 reserved
30:28 Swap Buffers Pending. Default is 0x0.
31 PCI Interrupt Generated. Default is 0x0. (not currently implemented).

Bits(5:0) show the number of entries available in the internal host FIFO. The internal host FIFO is 64
entries deep. The FIFO is empty when bits(5:0)=0x3f. Bit(6) is the state of the monitor vertical retrace
signal, and is used to determine when the monitor is being refreshed. Bit(7) of status is used to determine
if the graphics engine of FBI is active. Note that bit(7) only determines if the graphics engine of FBI is
busy -- it does not include information as to the status of the internal PCI FIFOs. Bit(8) of status is used
to determine if TREX is busy. Note that bit(8) of status is set if any unit in TREX is not idle -- this
includes the graphics engine and all internal TREX FIFOs. Bit(9) of status determines if all units in the
Banshee system (including graphics engines, FIFOs, etc.) are idle. Bit(9) is set when any internal unit in
Banshee is active (e.g. graphics is being rendered or any FIFO is not empty). When the Memory FIFO is
enabled, bits(27:12) show the number of entries available in the Memory FIFO. Depending upon the
amount of frame buffer memory available, a maximum of 65,536 entries may be stored in the Memory
FIFO. The Memory FIFO is empty when bits(27:12)=0xffff. Bits (30:28) of status track the number of
outstanding SWAPBUFFER commands. When a SWAPBUFFER command is received from the host
cpu, bits (30:28) are incremented -- when a SWAPBUFFER command completes, bits (30:28) are
decremented. Bit(31) of status is used to monitor the status of the PCI interrupt signal. If Banshee
generates a vertical retrace interrupt (as defined in pciInterrupt), bit(31) is set and the PCI interrupt
signal line is activated to generate a hardware interrupt. An interrupt is cleared by writing to status with
“dont-care” data. NOTE THAT BIT(31) IS CURRENTLY NOT IMPLEMENTED IN HARDWARE, AND WILL ALWAYS

RETURN 0X0.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
33 Printed 03/01/99

intrCtrl Register
The intrCtrl register controls the interrupt capabilities of Banshee. Bits 1:0 enable video horizontal sync
signal generation of interrupts. Generated horizontal sync interrupts are detected by the CPU by reading
bits 7:6 of intrCtrl. Bits 3:2 enable video vertical sync signal generation of interrupts. Generated vertical
sync interrupts are detected by the CPU by reading bits 9:8 of intrCtrl. Bit 4 of intrCtrl enables
generation of interrupts when the frontend PCI FIFO is full. Generated PCI FIFO Full interrupts are
detected by the CPU by reading bit 10 of intrCtrl. PCI FIFO full interrupts are genered when intrCtrl bit
4 is set and the number of free entries in the frontend PCI FIFO drops below the value specified in
fbiInit0 bits(10:6). Bit 5 of intrCtrl enables the user interrupt command USERINTERRUPT generation
of interrupts. Generated user interrupts are detected by the CPU by reading bit 11 of intrCtrl. The tag
associated with a generated user interrupt is stored in bits 19:12 of intrCtrl.

Generated interrupts are cleared by writing a 0 to the bit signaling a particular interrupt was generated
and writing a 1 to interCtrl bit(31). For example, a PCI FIFO full generated interrupt is cleared by
writing a 0 to bit 10 of intrCtrl, and a generated user interrupt is cleared by writing a 0 to bit 11 of
intrCtrl. For both cases, bit 31 of intrCtrl must be written with the value 1 to clear the external PCI
interrupt. Care must be taken when clearing interrupts not to accidentally overwrite the interrupt mask
bits (bits 5:0) of intrCtrl) which enable generation of particular interrupts.

Note that writes to the intrCtrl register are not pushed on the PCI frontend FIFO, so writes to intrCtrl
are processed immediately. Since intrCtrl is not FIFO’ed, writes to intrCtrl may be processed out-of-
order with respect to other queued writes in the PCI and memory-backed FIFOs.

Bit Description
0 Horizontal Sync (rising edge) interrupts enable (1=enable). Default is 0.
1 Horizontal Sync (falling edge) interrupts enable (1=enable). Default is 0.
2 Vertical Sync (rising edge) interrupts enable (1=enable). Default is 0.
3 Vertical Sync (falling edge) interrupts enable (1=enable). Default is 0.
4 PCI FIFO Full interrupts enable (1=enable). Default is 0.
5 User Interrupt Command interrupts enable (1=enable). Default is 0.
6 Horizontal Sync (rising edge) interrupt generated (1=interrupt generated).
7 Horizontal Sync (falling edge) interrupt generated (1=interrupt generated).
8 Vertical Sync (rising edge) interrupt generated (1=interrupt generated).
9 Vertical Sync (falling edge) interrupt generated (1=interrupt generated).
10 PCI FIFO Full interrupt generated (1=interrupt generated).
11 User Interrupt Command interrupt generated (1=interrupt generated).
19:12 User Interrupt Command Tag. Read only.
20 Hole counting interupts enable (1=enable). Default is 0.
21 VMI interrupts enable. (1=enable). Default is 0.
22 Hole counting interrupt generated (1=interrupt generated).
23 VMI interrupt generated (1=interrupt generated).
29:24 reserved
30 VGA Interrupt generated (1=interrupt generated).
31 External pin pci_inta value, active low (0=PCI interrupt is active, 1=PCI interrupt is

inactive)

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
34 Printed 03/01/99

command Register
The command register sets the command mode for the 2D engine, as well as selecting a number of
options.

Bits (3:0) set the command mode for the 2D drawing engine as shown in the table below. If bit(8) is set,
the command will be initiated as soon as the command register is written. If bit(8) is cleared, drawing
will be initiated by a write to the launch area. For descriptions and examples of each command, see the
2D launch area section.

Command[3:0] Command
0 Nop - wait for idle
1 Screen to screen blt
2 Screen to screen stretch blt
3 Host to screen blt
4 Host to screen stretch blt
5 Rectangle fill
6 Line
7 Polyline
8 Polygon fill
13 Write Sgram Mode register

14 Write Sgram Mask register

15 Write Sgram Color register

Setting Bit(9) makes line drawing reversible. If this bit is set, drawing a line from point A to point B will
result in the same pixels being drawn as drawing a line from point B to point A.

Bits(11:10) control the value placed in dstXY after each blt or rectangle fill command is executed. If
bit(10) is 0, dst_x is unchanged. If bit(10) is 1, dst_x gets dst_x + dst_width. If bit(11) is 0, dst_y is
unchanged. If bit(11) is 1, dst_y gets dst_y + dst_height.

Bit(12) controls whether lines are stippled or solid. If bit(12) is 0, lines will be a solid color. If bit(12) is
1, lines will either be made up of either a two color pattern using colorFore and colorBack or will be a
transparent stipple using colorFore, as determined by the transparency bit - bit(16).

Bit(13) controls the format of the pattern data. If bit(13) is set to 0, the pattern must be stored in the
destination format. If it is set to 1, the pattern will be stored as a monochrome bitmap; Pattern registers 0
and 1 will be used as an 8x8x1bpp pattern, which will be expanded into the destination format using the
colorBack and colorFore registers. Note that if Bit(13) is set, and Bit(16) is set to indicate that
monochrome data is transparent, the pattern will be used to determine pixel transparency without regard
to the contents of the ROP register.

Bits(15:14) control the direction of blting during screen-to-screen copies. Note that the corner of the
source and destination rectangles passed in the srcXY and dstXY registers will change depending on the
blting direction. Bit(15) also controls the direction of blting for host-to-screen copies. This can be used to
flip a pixel map so that the top span in host memory is drawn as the bottom span on the screen. Note that

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
35 Printed 03/01/99

the direction bits only apply to “pure” screen to screen blits, but not to stretch blits. Also, destination and
source color keying, along with color conversions, cannot be used with right to left blits.

Bit(16) controls whether monochrome source bitmaps, and monochrome patterns will be transparent or
opaque. When bit(16) is 0, source bitmaps are opaque; a 0 in the bitmap will result in colorBack being
written to the destination. When bit(16) is 1, source bitmaps and monochrome patterns are transparent.
In this case, a 0 in the bitmap will result in the corresponding destination pixel being left unchanged.

The X and Y pattern offsets give the coordinates within the pattern of the pixel which corresponds to the
destination pixel pointed to by the destination base address register. In other words, if a pattern fill is
performed which covers the origin, pixel (0,0) in the destination pixel map will be written with the color
in pattern pixel (x_pat_offset, y_pat_offset).

Bit(23) controls whether the clip0 or clip1 registers will be used for clipping. When bit(31) is 0, clipping
values from clip0Min and clip0Max will be used, when bit(31) is 1, clipping values from clip1Min and
clip1Max will be used.

Bits(31:24) contain ROP0, the ternary ROP that is used when colorkeying is disabled. For more
information on ROPs, see the description of the rop register.
Command
Bit Description
3:0 Command
7:4 RESERVED
8 Initiate command (1=initiate command immediately, 0 = wait for launch write)
9 Reversible lines (1=reversible, 0=non-reversible)
10 Increment destination x-start after blt or rectangle command (1=increment, 0=don’t)
11 Increment destination y-start after blt or rectangle command (1=increment, 0=don’t)
12 Stipple line mode (1 = stippled lines, 0 = solid lines)
13 Pattern Format (1 = monochrome, 0 = color)
14 X direction (0 = left to right, 1 = right to left)
15 Y direction (0 = top to bottom, 1 = bottom to top)
16 Transparent monochrome (1 = transparent, 0 = opaque)
19:17 X pattern offset
22:20 Y pattern offset
23 Clip select (0=clip0 registers, 1 = clip1 registers)
31:24 ROP0

commandExtra Register
This register contains miscellaneous control bits in addition to those in the command register.

Bits(1:0) enable colorkeying, if the bit is 0, colorkeying is disabled. Enabling source colorkeying with
monochrome source, or in line, polyline, polygon, or rectangle modes has no effect. For further
explanation of these bits, see the description of the colorkey registers.

If bit(2) is set, the current command, and any following it will not proceed until the next vertical blanking
period begins. Wait for Vsync should not be used when performing non-DMA host blts.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
36 Printed 03/01/99

If bit(3) is set, only row 0 of the pattern will be used, rather than the usual 8 pattern rows.

Command
Bit Description
0 Enable source colorkey (1=source colorkeying enabled, 0=source colorkeying disabled)
1 Enable destination colorkey (1=enable dst colorkeying, 0=disable dst colorkeying)
2 Wait for Vsync (1=wait for vsync, 0=execute immediately)
3 Force pattern row 0 (1 = use only row 0, 0 = use all 8 pattern rows)

colorBack and colorFore Registers
The colorBack and colorFore registers specify the foreground and background colors used in solid-fill
and monochrome bitmap operations, and operations using a monochrome pattern. The color registers
must be stored in the destination color format.

The following tables shows the format of the color registers for each destination format.

P = palette index
R = red color channel
G = green color channel
B = blue color channel

Dst Format Bits stored
8 bpp 0000_0000_0000_0000_0000_0000_PPPP_PPPP

15 bpp 0000_0000_0000_0000_ARRR_RRGG_GGGB_BBBB

16 bpp 0000_0000_0000_0000_RRRR_RGGG_GGGB_BBBB

24 bpp 0000_0000_RRRR_RRRR_GGGG_GGGG_BBBB_BBBB

32 bpp AAAA_AAAA_RRRR_RRRR_GGGG_GGGG_BBBB_BBBB

colorFore
Bit Description
31:0 foreground color

colorBack
Bit Description
31:0 background color

Pattern Registers
The pattern registers contain an 8 pixel by 8 pixel pattern. The pixels must be either in the color format
of the destination surface, or in 1bpp (monochrome) format. The pixels are to be written to the pattern
registers in packed format. So, only registers 0 and 1 will be used for monochrome patterns, registers 0
through 15 will be used when the destination is 8 bpp, registers 0 through 31 will be used when the
destination is 16 bpp.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
37 Printed 03/01/99

Pixels should be written into the pattern registers starting with the upper left-hand corner of the pattern,
proceeding horizontally left to right, and then vertically top to bottom. The least-significant bits of
pattern[0] should always contain pixel(0,0) of a color pattern.

The table below give the bit position of monochrome pixels within the pattern registers. The bits are
numbered such that bit(0) represents the lsb of a register, and bit(31) represents the msb.

Order of pixel storage in the pattern registers for a monochrome pattern

pattern(0)
Row 0 7 6 5 4 3 2 1 0
Row 1 15 14 13 12 11 10 9 8
Row 2 23 22 21 20 19 18 17 16
Row 3 31 30 29 28 27 26 25 24

pattern(1)
Row 4 7 6 5 4 3 2 1 0
Row 5 15 14 13 12 11 10 9 8
Row 6 23 22 21 20 19 18 17 16
Row 7 31 30 29 28 27 26 25 24

pattern(0-64)
Bit Description
31:0 pattern color data

srcBaseAddr and dstBaseAddr Registers
Bits(23:0) of these registers contain the addresses of the pixels at x=0, y=0 on the source and destination
surfaces in frame-buffer memory. Bit(31) of each register is reserved and must be zero.

The srcBaseAddr register is used only for screen-to-screen blts. For host-blts, the alignment of the initial
pixel sent from the host is determined by the x entry in the srcXY register.

For YUYV422 and UYVY422 surfaces, the base address must be dword aligned. Thus bits(1:0) of
srcBaseAddr must be 0.

SrcBaseAddr
Bit Description
23:0 Source base address
30:24 RESERVED
31 Reserved (must be 0)

dstBaseAddr
Bit Description
23:0 Destination base address
30:24 RESERVED

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
38 Printed 03/01/99

31 Reserved (must be 0)

srcSize and dstSize Registers
These registers are used only for blts and rectangle fills. They contain the height and width in pixels of
the source and destination rectangles. The srcSize register will only be used in Stretch-blt modes. For
non-stretched blts, the blt source size will be the same as the blt destination size, determined by the
dstSize register.

srcSize
Bit Description
12:0 Blt Source Width
15:13 RESERVED
28:16 Blt Source Height
31:29 RESERVED

dstSize
Bit Description
12:0 Blt Destination Width
15:13 RESERVED
28:16 Blt Destination Height
31:29 RESERVED

srcXY and dstXY Registers

During screen-to-screen blts, the srcXY registers sets the position from which blt data will be read. Note
that the starting position for a blit depends on the direction of the blt as shown in the table below. For
lines and polylines, srcXY is the starting point of the first line segment. For polygons, the srcXY should
be the topmost vertex of the polygon - that is, the vertex with the lowest y value. If there are multiple
vertices sharing the lowest y value, the srcXY should be set to the leftmost vertex with that y value.
Reading the srcXY register while in polygon mode will always return the last polygon vertex that the host
sent for the left side of the polygon.

The values in the srcXY are signed, however for blts srcXY must contain only positive values.

During host-to-screen blts, only the x entry of the srcXY register is used. This entry determines the
alignment of the initial pixel in the blt within the first dword sent from the host. For monochrome
bitmaps, bits[4:0] are used to determine the bit position within the dword of the initial pixel. For color
bitmaps, bits[1:0] are give the position within the dword of the first byte of pixel data. Host blts are
always performed left-to-right (the x-direction bit in the command register is ignored), so the offset given
will always be that of the leftmost pixel in the first span. The alignment of the initial pixel of all spans
after the first is determined by adding the source stride (from the srcFormat register) to the alignment of
the previous span.

For blts, the dstXY should be the starting pixel of destination rectangle as shown in the table below. For
line and polyline modes, the dstXY will be the endpoint of the first line segment.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
39 Printed 03/01/99

In polygon mode, the dstXY register is used to store the last vertex sent for the right side of the polygon.
If command[8] is set when the command register is written in polygon mode, the value from srcXY will
be copied to dstXY. If command[8] is cleared, dstXY can be written with the rightmost pixel in the top
span of the polygon.

Command[15:14] Starting X/Y
00 Upper Left-hand corner
01 Upper Right-hand corner
10 Lower Left-hand corner
11 Lower Right-hand corner

dstXY
Bit Description
12:0 Signed X position on the destination surface
15:14 RESERVED
28:16 Signed Y position on the destination surface
31:30 RESERVED

srcXY
Bit Description
12:0 Signed x position of the first source pixel
15:14 RESERVED
28:16 Signed y position of the first source pixel
31:30 RESERVED

srcFormat and dstFormat Registers
These register specify the format and strides of the source and destination surfaces

For linear surfaces, the stride of a pixel map is the number of bytes between the starting addresses of
adjacent scan lines. For these surfaces, the units of the stride is always bytes, regardless of the pixel
format.

The number of bits per pixel is determined as described by the tables below. The ’32 bpp’ format contains
24 bits of RGB, along with a byte of unused data, the ’24 bpp’ is packed 24 bit color.

Data coming through the host port can be byte swizzled to allow conversion between big and little endian
formats, as selected by Bit 19 and 20 of src Format register. If both byte and word swizzling are enabled,
the byte swizzling occurs first, followed by word swizzling.

The source packing bits control how the stride of the source will be determined during blts. If both bits
are zero, the stride is set by the stride entry. Otherwise, the stride is based off of the width of the blt being
performed, as shown in the table below. The stride will equal the number of bytes in a row of the
rectangle being blted plus as many bytes as are required to get the necessary alignment.

For YUYV422 and UYVY422 source formats, linear strides must always be a dword multiple. Thus,
bits(1:0) of the srcFormat register must be 0.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
40 Printed 03/01/99

When necessary, the blt engine will convert source pixels to the destination format.

When source pixels in 15bpp or 16bpp format are converted to 24bpp or 32bpp, color conversion is
performed by replicating the msbs of each channel into the extra lsbs required. When pixels are
converted from 32bpp or 24bpp formats to 15 or 16bpp, 16bpp, the extra lsbs are removed from each
channel. When any non-32bpp format is converted to 32bpp, the 8msbs of each pixel (i.e. the alpha
channel) are filled with zeros.

Destination pixel formats are stored as shown in the description of the colorFore and colorBack registers.
RGB source formats match these, the other source formats are shown in the table below. For monochrome
source, p0 represents the leftmost pixel on the screen and p31 represents the rightmost. For YUV formats,
ya represents the left pixel and yb represents the pixel to the right of ya, etc. Thus, ya7 is the msb of the y
channel for the left pixel and ya0 is the lsb of the y channel for that pixel. In the diagram, the dword with
the lower address (which will be quadword aligned) is shown first, followed by the dword with the higher
address.

Source formats

Monochrome
p24 p25 p26 p27 p28 p29 p30 p31 p16 p17 p18 p19 p20 p21 p22 p23 p8 p9 p10 p11 p12 p13 p14 p15 p0 p1 p2 p3 p4 p5 p6 p7

UYVY 4:2:2
yb7 yb6 yb5 yb4 yb3 yb2 yb1 yb0 v7 v6 v5 v4 v3 v2 v1 v0 ya7 ya6 ya5 ya4 ya3 ya2 ya1 ya0 u7 u6 u5 u4 u3 u2 u1 u0

YUYV 4:2:2
v7 v6 v5 v4 v3 v2 v1 v0 yb7 yb6 yb5 yb4 yb3 yb2 yb1 yb0 u7 u6 u5 u4 u3 u2 u1 u0 ya7 ya6 ya5 ya4 ya3 ya2 ya1 ya0

Methods of color translation used for Blts
1bpp src 8bpp src 15bpp src 16bpp src 24bpp src 32bpp src YUV

src

8bpp dst color
registers

direct or
palette

not supported not supported not
supported

not supported not
supported

15bpp dst color
registers

not
supported

direct lsb removal lsb removal lsb removal,
alpha
dropped

YUV =>
RGB

16bpp dst color
registers

not
supported

msb
duplication

direct lsb removal lsb removal,
alpha
dropped

YUV =>
RGB

24bpp dst color
registers

not
supported

msb
duplication

msb
duplication

direct direct,
alpha
dropped

YUV =>
RGB

32bpp dst color
registers

not
supported

msb
duplication,
zero alpha

msb
duplication,
zero alpha

rgb direct,
zero alpha

direct YUV =>
RGB
zero alpha

srcFormat
Bit Description

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
41 Printed 03/01/99

13:0 Source Stride in bytes
15:14 RESERVED
19:16 Source color format: 1, 8, 16, 24, 32 bpp RGB, YUYV422, UYVY422
20 Host port byte swizzle (1=enable)
21 Host port word swizzle (1=enable)
23:22 Source packing
31:24 RESERVED

dstFormat
Bit Description
13:0 Destination Stride in bytes
15:14 RESERVED
18:16 Destination bits per pixel: 8, 15, 16, 24, or 32
31:19 RESERVED

srcFormat
[19:16]

Source Format dstFormat
[18:16]

Destination
Bpp

0 1 bpp mono 1 8
1 8 bpp palettized 3 16
3 16 bpp RGB 4 24
4 24 bpp RGB 5 32
5 32 bpp RGB
8 packed 4:2:2 YUYV
9 packed 4:2:2 UYVY

srcFormat[23:22] Packing Stride calculation
0 Use stride register srcFormat[13:0]
1 Byte packed ceil(src_width * src_bpp/8)
2 Word packed ceil(src_width * src_bpp/16)*2
3 Double-word packed ceil(src_width * src_bpp/32)*4

clip0Min, clip0Max, clip1Min, and clip1Max Registers
The clip registers define the maximum and minimum x & y values of pixel that can be written in the
destination pixel map. There are two sets of clip registers, however, only one set is used at a time, as
determined by the clip select bit in the command register.

Clipping is inclusive of the minimum values, and exclusive of the maximum values. Thus if the clip
select bit is zero, only pixels with x values in the range [clip0Min_x, clip0Max_x) and y values in the
range [clip0Min_y, clip0Max_y) will be written.

clip0Min
Bit Description
11:0 x minimum clip when clip select is 0

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
42 Printed 03/01/99

15:12 RESERVED
27:16 y minimum clip when clip select is 0
31:28 RESERVED

clip0Max
Bit Description
11:0 x maximum clip when clip select is 0
15:12 RESERVED
27:16 y maximum clip when clip select is 0
31:28 RESERVED

clip1Min
Bit Description
11:0 x minimum clip when clip select is 1
15:12 RESERVED
27:16 y minimum clip when clip select is 1
31:28 RESERVED

clip1Max
Bit Description
11:0 x maximum clip when clip select is 1
15:12 RESERVED
27:16 y maximum clip when clip select is 1
31:28 RESERVED

colorkey Registers
These registers define the range of colors that will be transparent when color keying is enabled.

Different ROPs are selected for each pixel depending the result of that pixels colorkey test. A source pixel
passes the colorkey test if it is within the inclusive range defined by the srcColorkeyMin and
srcColorkeyMax registers. A destination pixel passes the colorkey test if it is within the inclusive range
defined by the dstColorkeyMin and dstColorkeyMax registers.

For Pixels with 8bpp formats, the color indices are compared directly. For pixels with 16, 24, or 32bpp
formats, each color channel (R, G, and B) is compared separately, and each channel must pass for the
colorkey test to be passed. In the 32bpp format, the upper 8 bits are ignored during colorkey testing.
Source colorkeying cannot be enabled if the source format is 1 bpp.

If colorkeying is disabled for the source or destination surfaces, that colorkey test is failed.

For further information on ROP selection by the colorkey test results, see the description of the ROP
register.

The colorkey test uses the following formula:
pass = (((color>=colorkey_min) && (color<=colorkey_max)) && colorkey_enable)

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
43 Printed 03/01/99

srcColorkeyMin
Bit Description
23:0 minimum color key value for source pixels
31:24 RESERVED

srcColorkeyMax
Bit Description
23:0 maximum color key value for source pixels
31:24 RESERVED

dstColorkeyMin
Bit Description
23:0 minimum color key value for destination pixels
31:24 RESERVED

dstColorkeyMax
Bit Description
23:0 maximum color key value for destination pixels
31:24 RESERVED

rop Register
This is a set of ternary ROPs used to determine how the source, destination, and pattern pixels will be
combined. The default ROP, ROP0 is stored in the command register. Which of the four ROPs will be
used is determined on a per-pixel basis, based on the results of the source and destination colorkey tests,
as shown in the following table:

Source Color
Key Test

Destination Color
Key Test

ROP

Fail Fail ROP 0
Fail Pass ROP 1
Pass Fail ROP 2
Pass Pass ROP 3

rop
Bit Description
7:0 ROP 1
15:8 ROP 2
23:16 ROP 3

lineStyle register
The lineStyle register specifies how lines will be drawn.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
44 Printed 03/01/99

The bit pattern used for line stippling can be set to repeat every 1-32 bits, as set by the bit-mask size part
of this register. The bit-mask size entry gives the number of bits *minus one* that will be used from the
lineStipple register. Thus, if you want to use 2 bits to represent a dashed line, you would set the bit-mask
size to 1.

Each bit from the lineStipple register will determine the color or transparency of from 1-256 pixels. The
repeat count determines the number of pixels along the line that will be drawn (or skipped) for each bit in
the line pattern register. The number of pixels associated with each bit of the line pattern *minus one*
must be written to the repeat count entry.

The start position give the offset within the line pattern register for the first pixel drawn in a line. It
consists of an integer index of the current bit in the line pattern, and a fractional offset that will determine
the number of pixels that will be drawn using that bit of the pattern. The number of pixels drawn using
the initial bit in the line pattern will equal the repeat count (i.e. the repeat count entry+1) minus the
fractional part of the start position. The bit positions within the lineStipple registers are numbered
starting with the lsb at 0, going up to the msb at 31.

It is illegal to set the integer part of the stipple position to be greater than the bit-mask size. It is illegal to
set the fractional part to be greater than the repeat count. If either part of the stipple position is too large,
the behavior of the line drawing engine is undefined.

Writing the lineStyle register will cause the stipple position to be loaded from the register. If the
lineStyle register is not written to between the execution of two line commands, the stipple position at the
start of the new line will be whatever if was after the completion of the last line. If the lineStyle register
is read while the 2D engine is idle, the stipple position read will always be that which will be used in the
next line operation - thus, if the lineStyle register has been written since the last stippled line was drawn
the value written will be returned, otherwise the value that remained after the last stippled line will
returned. Reading the lineStyle register while the 2D engine is not idle will return an indeterminable
value for the stipple position.

In the following examples,. ‘x’ represents a pixel colored with colorFore, ‘o’ represents a pixel colored
with colorBack or that is transparent. ‘_S_’ Shows that the line engine is starting at bit 0 in the
lineStipple register. ‘_’ shows that the line engine is using a new bit from the lineStipple register.

Example
Say the bit-mask size is set to 6 (thus, the entry in the register is 5) and the line pattern is:
lineStipple <= 010111b

The pixel pattern that will be repeated is:

repeat_count repeating pixel pattern
1 x_x_x_o_x_o_S_x_x_x_o_x_o
2 xx_xx_xx_oo_xx_oo_S_xx_xx_xx_oo_xx_oo
3 xxx_xxx_xxx_ooo_xxx_ooo_S_xxx_xxx_xxx_ooo_xxx_ooo

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
45 Printed 03/01/99

Example
Say the repeat count is 5 (the register entry is 4), the integer part of the start position is 7, and the
fractional part of the start position is 2. The color of the first 3 pixels drawn for the line will be
determined by bit 7 in the line pattern register, the next 5 pixels will be determined by bit 8, and so on.

lineStyle <= 07020904h
lineStipple <= 1010110111b

pixels generated, where x=colorFore and o=colorBack:

xxx_ooooo_xxxxx_S_xxxxx_xxxxx_xxxxx_ooooo_xxxxx_xxxxx_ooooo_xxxxx_ooooo_xxxxx_S

Pseudo code for line pixel generation
Here is the pseudo-code for determining the color of pixels generated by the line engine:

<bit_position> = <start_position_integer>
<pixel_position> = <start_position_fraction>

while (<need_another_pixel>) {
 if (<line_pattern> & (1 << <bit_position>)) {

<new_pixel_color> = <colorFore>
 } else {

if (<transparent>) {
 <new_pixel_color> = <transparent>
} else {
 <new_pixel_color> = <colorBack>
}

 }

if (<pixel_position> == <repeat_count>) {
<pixel_position> = 0
if (<bit_position> == <bit_mask_size>) {

<bit_position> = 0;
} else {

<bit_position> = <bit_position> + 1
}

 } else {
<pixel_position> = <pixel_position> +1

 }

}

lineStyle
Bit Description
7:0 Repeat count
12:8 Stipple size

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
46 Printed 03/01/99

15:13 RESERVED
23:16 Start position - fractional part
28:24 Start position - integer part
31:29 RESERVED

lineStipple Register
The line bit-mask register contains a mask that determines how lines will be drawn. Bits that are ones
will be drawn with the color in the colorFore register. Bits that are zeros will be filled with the color in
the colorBack register, or will not be filled, depending on the ‘transparent’ bit in the command register.
The pattern in the bit mask can be set to repeat every 1-32 bits, as set by the bit-mask size part of the line
style register. If the bit-mask size is set to less than 31, some of the bits of the line bit-mask will not be
used, starting with the most-significant bit. For example, if the bit-mask size is set to 7, bits 0-7 of the
lineStipple register will contain the line bit-mask.

lineStipple
Bit Description
31:0 Line bit-mask

bresenhamError registers
These registers allows the user to specify the initial Bresenham error terms used when performing line
drawing, polygon drawing, and stretch blts. The Bresenham error terms are signed values.

Bit 31 of each registers determines whether or not the error term given in the lower bits will be used. If
this bit is 0, the line and stretch blt engines will generate the initial error term automatically. If the bit is
set to 1, the error term given in bits 16-0 will be used. If a bresenham error register is used, the register
should be written with bit[31] set to 0 after completion of the operation, so that subsequent operations will
not be affected.

bresError0 can be used to set the initial error value for lines, for the left edge of a polygon, and for blt
stretching along the y-axis.

bresError1 can be used to set the initial error value for the right edge of a polygon, and for blt stretching
along the x-axis.

bresError0
Bit Description
15:0 Signed Bresenham error term for stretch blt y, lines, and left polygon edges
30:17 RESERVED
31 Use the error term given in bits 16-0

bresError1
Bit Description
15:0 Signed Bresenham error term for stretch blt x and right polygon edges
30:17 RESERVED
31 Use the error term given in bits 16-0

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
47 Printed 03/01/99

Launch Area

 Screen-to-screen Blt Mode
Writing the launch area while in screen-to-screen blt mode results in a rectangle being copied from one
area of display memory to another. The position of the source rectangle is given by the write to the launch
area. The write to the launch area will be used to fill the srcXY register.

screenBltLaunch
Bit Description
12:0 X position of the source rectangle
15:13 RESERVED
28:16 Y position of the source rectangle
31:29 RESERVED

Screen-to-screen Stretch Blt Mode
Writing the launch area while in screen-to-screen blt mode results in pixels being copied from rectangle in
display memory to another of a different size. The write to the launch area will be used to fill the srcXY
register. The x and y direction bits do not apply to stretch blits. I.e., only top-down, left-to-right stretch
blits can be done.

stretchBltLaunch
Bit Description
12:0 X position of the source rectangle
15:13 RESERVED
28:16 Y position of the source rectangle
31:29 RESERVED

Host-to-screen Blt Mode
In host-to-screen blt mode, writes to the launch area should contain packed pixels to be used as source
data. When performing a host-to-screen blt, the blt engine does not generate source addresses. However,
it is still necessary for the driver to specify the srcFormat, in order for the blt engine to determine how
the source data is packed. The driver must also write the srcXY register in order to specify the first byte
or bit to use from the first dword. In monochrome source mode, the 5 lsbs will specify the initial bit. In all
other modes, the 2 lsbs of srcXY will specify the initial byte of the initial span. The alignment of the first
pixel of each span after the first is determined by adding the source stride (from the srcFormat register)
to the alignment of the previous span.

If more data is written to the launch area than is required for the host blt specified, the extra data will be
discarded, or may be used in the following host blt, if it is requested while the 2D is operating on the first
hblt. If too little data is written to the launch area, the hblt will be aborted, and pixels on an incomplete
span at the end of the host blt may or may not be drawn.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
48 Printed 03/01/99

Host Blt Example 1
In this example, the driver is drawing text to a 1024x768x16bpp screen using monochrome bitmaps of
various widths. The monochrome data is packed, with each row byte aligned. First, it sets up the
necessary registers before giving the data specific to the first blt:

colorBack <= the background color

colorFore <= the foreground color

dstXY <= the starting position of the first character

dstBaseAddr <= base address of the primary surface

clip0Min <= 0x00000000

clip0Max <= 0xFFFFFFFF

command <= SRC_COPY || HOST_BLT_MODE = 0xCC000003

dstFormat <= 0x00030800

srcFormat <= 0x00400000

The command mode is set to host-to-screen blt, with all other features disabled. Since colorkeying is
disabled, only ROP0 is needed. The format register sets the host format to unswizzled monochrome,
using byte-packing. This means that the stride will not have to be set for each blt, but will be set to the
number of bytes required to store the number of pixels in the source width (Since this is not a stretch blt,
the source width equals the destination width, as set later in the dstSize register). The clip registers are
set such that the results will not be clipped. Although this is a host to screen blt, the srcXY register must
be set in order to specify the initial alignment of the bitmask. For this example, the source data begins
with the lsb of the first dword of host data, so the srcXY register is set to zero.

Now, the driver is ready to start the first blt. It will blt a 11x7 pixel character.

dstSize <= 0x0007000B

srcXY <= 0x00000000

launch <= 0xc0608020

launch <= 0xC460C060

launch <= 0x3B806EC0

launch <= 0x00001100

Host Blt Example 2
In this example, the driver is drawing a pixel map

colorBack <= the background color

colorFore <= the foreground color

dstXY <= the starting position of the first character

clip0Min <= 0x00000000

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
49 Printed 03/01/99

clip0Max <= 0xFFFFFFFF

command <= SRC_COPY || HOST_BLT_MODE = 0xCC000003

srcFormat <= 0x00240000

The command mode is set to host-to-screen blt, with all other features disabled. Since colorkeying is
disabled, only ROP0 is needed. The format register sets the host format to unswizzled monochrome,
using byte-packing. This means that the stride will not have to be set for each blt, but will be set to the
number of bytes required to store the number of pixels in the source width (Since this is not a stretch blt,
the source width equals the destination width, as set later in the dstSize register). The clip registers are
set such that the results will not be clipped. Although this is a host to screen blt, the srcXY register must
be set in order to specify the initial alignment of the bitmask. For this example, the source data begins
with the lsb of the first dword of host data, so the srcXY register is set to zero.

Now, the driver is ready to start the first blt. It will blt a 11x7 pixel character.

dstXY <= 0x0007000B

srcXY <= 0x00000000

launch <= 1st 2 rows

launch <= 2nd 2 rows

launch <= 3rd 2 rows

launch <= last row

hostBltLaunch
Bit Description
31:0 Source pixel data

Host-to-screen Stretch Blt Mode
Writing the launch area while in host-to-screen blt mode results in the pixels written to the launch area
being stretched onto the destination rectangle. Pixel data for Host-to-screen stretch blts is written just as
for non-stretched host-to-screen blts, except when the destination height differs from the source height. In
this case, the host must replicate or decimate the source spans to match the number of destinations spans
required.

hostStretchLaunch
Bit Description
31:0 Source pixel data

Rectangle Fill Mode
Rectangle fill mode is similar to screen-to-screen blt mode, but in this mode, the colorFore register is
used as source data rather than data from display memory. The size of the rectangle is determined by the

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
50 Printed 03/01/99

dstSize register. The write to the launch area gives the position of the destination rectangle, which is
used to fill the dstXY register.

rectFillLaunch
Bit Description
12:0 X position of the destination rectangle
15:13 RESERVED
28:16 Y position of the destination rectangle
31:29 RESERVED

Line Mode
Writing the launch area while in line mode will write the launch data to the dstXY register and draw a
line from srcXY to dstXY. After the line has been drawn, dstXY is copied to srcXY. In line mode, all
pixels in the line will be drawn (as specified by the line style register), including both the start and
endpoint.

The ROP used for lines can use the pattern and the destination, but not source data. colorFore will be
used in the ROP in place of source data. Source colorkeying must be turned off, destination colorkeying is
allowed.

Line drawing example

srcXY <= 0x00020003 // line start-point = (3, 2)

lineStipple <= 0x00000006 // bit mask is 110 binary

lineStyle <= 0x02010202 // start position = 2 1/3, repeat count = 2, bit-mask size=2

colorBack <= BLACK

colorFore <= GREY

command <= LINE_MODE || OPAQUE

launch <= 0x000c0016 // line end-point = (22,12)

The line drawn will appear as shown below:

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
51 Printed 03/01/99

Origin

Figure 1

lineLaunch
Bit Description
12:0 X position of the line endpoint
15:13 RESERVED
28:16 Y position of the line endpoint
31:29 RESERVED

Polyline Mode
Writing the launch area while in line mode will write the launch data to the dstXY register and draw a
line from srcXY to dstXY. After the line has been drawn, dstXY is copied to srcXY. In polyline mode,
the endpoint of the line (the pixel at dstXY) will not be written. This ensures that each pixel in a non-
overlapping polyline will be written only once.

The ROP used for lines can use the pattern and the destination, but not source data. colorFore will be
used in the ROP in place of source data. Source colorkeying must be turned off, destination colorkeying is
allowed.

polylineLaunch
Bit Description
12:0 X position of the line endpoint
15:13 RESERVED
28:16 Y position of the line endpoint
31:29 RESERVED

Polygon Fill Mode
The polygon fill mode can be used to draw simple polygons. A polygon may be drawn using the method
described below if no horizontal span intersects more than two non-horizontal polygon edges. Polygons
are drawn by first determining the top vertex - that is the vertex with the lowest y coordinate. The

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
52 Printed 03/01/99

coordinates of this vertex should be written to the srcXY register. If multiple vertices share the lowest y
coordinate, any vertex with the lowest y coordinate may be used as the starting point. If command[8] is
set when the command register is written when command[3:0] indicates polygon mode, the value in the
srcXY register will be copied to the dstXY register. The value in the srcXY register determines the
starting point for the left side of the polygon, while the value in the dstXY register determines the starting
point for the right side of the polygon. If bit[8] of the command register is not set, the starting position of
the right side of the polygon can be set by writing to the dstXY register.

Once the starting vertex is set, as well as the desired colors, ROP, pattern, and options for the polygon fill,
the polygon can be drawn by writing polygon vertices to the launch area. When multiple vertices share
the lowest y coordinate, the starting vertex chosen will determine which of those vertices are on the ‘right’
edge of the polygon and which are on the ‘left’ edge. Pixels with the same y value as the starting point
are on the left edge if they are to the left of the starting point.

For optimum performance, software should determine the leftmost and rightmost of all vertices that share
the lowest y coordinate. The coordinates of the leftmost vertex should be written to srcXY and the
coordinates of the rightmost vertex should be written to dstXY. When the command register is written,
command[8] (the ‘start command’ bit) should be low.

In Polygon fill mode, polygon vertices should be written to the launch area in order of increasing y value.
Whenever 2 vertices share the same y value, the leftmost vertex *must* be written first. The driver should
keep track of the last y value sent for the left and right sides. If the y value for the last vertex sent for the
left side is *less than or equal to* the last y value sent for the right side, the next vertex on the left side
should be written to the launch area. Otherwise, the next vertex for the right side should be written to the
launch area.

The ROP used for filling polygons can use the pattern and the destination, but not source data. colorFore
will be used in the ROP in place of source data. Source colorkeying must be turned off, destination
colorkeying is allowed.

Pixels that are on the line that forms the left edge of the polygon will be drawn. Pixels that fall on the line
that forms the right edge of the polygon will not be drawn. For Horizontal edges, pixels on a horizontal
polygon edge that is on the ‘top’ of the polygon (i.e. above the edge is outside the polygon and below the
edge is inside the polygon) will be drawn, while pixels on a horizontal polygon edge that is on the bottom
of the polygon will not be drawn.

Polygon drawing example
As an example of polygon drawing, say we are drawing the polygon shown in figure 2. Traversing the
vertex list in counterclockwise order gives the following list of vertices:

(4, 1) (2, 4) (3, 6) (1, 6) (2,8) (5, 11) (8,8) (13,8) (11,6) (11,3) (10,1)

Figures 2a through 2m show the steps in drawing the polygon. Filled circles are vertices of the left
polygon edge. Open circles are vertices of the right polygon edge. Pixels that are drawn at the end of
each step are shaded in the figures.

The polygon engine keeps track of four vertices at a time. The top vertex of the current left polygon edge
(L0), the bottom vertex of the current left polygon edge (L1), the top vertex of the current right polygon
edge (R0), and the bottom vertex of the current right polygon edge (R1). The values of these variables at
each step in drawing the polygon are shown in the figures. The arrows in the figures indicate when a
variable changes between the start of the step and the end of pixel filling for that step.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
53 Printed 03/01/99

Figure 2

First, all required registers must be written, including the dstFormat register to specify the drawing
surface, color or pattern registers, and the command register. Write the coordinates of the starting vertex
(4, 1) to the srcXY register:

srcXY <= 0x00010004

command <= POLYGON_MODE || INITIATE_COMMAND

L0

L1 R1

R0

Figure 2a

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
54 Printed 03/01/99

R1.y>=L1.y, so we have to write the next vertex for the left edge (2, 4):

launch <= 0x00040002

L0

L1

R1

R0

Figure 2b

R1.y<L1.y, so we write the next vertex for the right edge (10, 2). The drawing engine now has edges for
both the left and right edges. So, it will draw all spans up to min(R1.y, L1.y). Because R1.y=R0.y, no
pixels will be drawn, but R0 will be updated to vertex R1:

launch <= 0x0001000a

R0L0

L1

R1

R0

Figure 2c

R1.y<L1.y, so we again write the next vertex on the right polygon edge (11, 3). Pixels on all spans from
max(L0.y, R0.y) to min(L1.y, R1.y)-1 will be drawn, as shown below. Because R1.y<L1.y, R0 is updated
to R1.

launch <= 0x0003000b

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
55 Printed 03/01/99

R0

L0

L1

R1

R0

Figure 2d

R1.y<L1.y, so we write the next vertex on the right edge (11, 6). Again, pixels on all spans from
max(L0.y, R0.y) to min(L1.y, R1.y)-1 will be drawn. This time R1.y>L1.y, however, so L0 is updated to
L1.

launch <= 0x0006000b

R0

L0

L1

L0

R1

Figure 2e

R1.y>=L1.y, so we write the next vertex on the left edge (3, 6). L1.y=R1.y, so R0 is updated to R1 and L0
is updated to L1.

launch <= 0x00060003

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
56 Printed 03/01/99

R0

L0

R1

R0L0

L1

Figure 2f

R1.y>=L1.y, so we write the next vertex on the left edge (1, 6). L1.y=R1.y, so R0 is updated to R1 and L0
is updated to L1. R1 did not change, so updating R0 to R1 has no effect.

launch <= 0x00060001

R1

R0L0

L1

L0

Figure 2g

R1.y>=L1.y, so we again write the next vertex on the left edge (2, 8). L1.y>R1.y, so R0 is updated to R1,
again with no effect.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
57 Printed 03/01/99

launch <= 0x00080002

R1

R0

L1

L0

Figure 2h

R1.y<L1.y, so we write the next vertex on the right edge (11, 8). L1.y=R1.y, so R0 is updated to R1, and
L0 is updated to L1.

launch <= 0x0008000b

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
58 Printed 03/01/99

R1

R0

L1

L0

L0 R0

Figure 2i

R1.y>=L1.y, so we write the next vertex on the left edge (5, 11). L1.y>R1.y, so R0 is updated to R1.

launch <= 0x000b0005

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
59 Printed 03/01/99

R1

L0

L1

R0

Figure 2j

R1.y<L1.y, so we write the next vertex on the right edge (8, 8). L1.y>R1.y, so R0 is updated to R1, but no
pixels are drawn.

launch <= 0x00080008

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
60 Printed 03/01/99

R1

L0

L1

R0 R0

Figure 2k

R1.y<L1.y, so we write the next vertex on the right edge. This is the final vertex in the polygon, which
doesn’t have a horizontal span at the bottom, so this vertex is the same as the last vertex for the left edge
(5, 11). L1.y=R1.y, so R0 is updated to R1, and L0 is updated to L1. No pixels on the final span are
drawn (this would be true even if L1.x did not equal R1.x). If the launch area is written again before any
registers are written the polygon engine will begin a new polygon starting at (5,11).

launch <= 0x000b0005

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
61 Printed 03/01/99

R1

L0

L1

R0

R0L0

Figure 2m

polygonLaunch
Bit Description
12:0 X position of a polygon vertex
15:13 RESERVED
28:16 Y position of a polygon vertex
31:29 RESERVED

Miscellaneous 2D

Write Sgram Mode Register
Executing this command causes the value in srcBaseAddr[10:0] to be set as the sgram mode register via a
special bus cycle in the memory controller.

SGRAM mode register
Bit Description
2:0 burst length
3 burst type (0=sequential, 1=interleave)
6:4 CAS latency
8:7 test mode

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
62 Printed 03/01/99

9 write burst length (0=burst, 1=single bit).
10 sgram-defined.

Write Sgram Color Register
Executing this command causes the value in srcBaseAddr[31:0] to be set as the sgram color register via a
special bus cycle in the memory controller. Since H3 has a 128-bit wide bus, the register is replicated
across the four sets of sgram memories.

Write Sgram Mask Register
Executing this command causes the value in srcBaseAddr[31:0] to be set as the sgram mask register via a
special bus cycle in the memory controller. Since H3 has a 128-bit wide bus, the register is replicated
across the four sets of sgram memories.

6. 3D Memory Mapped Register Set
Memory Base 0: Offset 0x0200000

Register Name Address Reg
Num

Bits Chip R/
W

Sync?
/Fifo?

Description

status 0x000(0) 0x0 31:0 FBI R No / n/a Banshee Status
intrCtrl 0x004(4) 0x1 31:0 FBI R/W No / No Interrupt Status and Control

nopCMD 0x120(288) 0x48 0 FBI+TREX% W Yes/Yes Execute NOP command

nopCMD Register
Writing any data to the nopCMD register executes the NOP command. Executing a NOP command
flushes the graphics pipeline. The lsb of the data value written to nopCMD is used to optionally clear the
fbiPixelsIn, fbiChromaFail, fbiZfuncFail, fbiAfuncFail, and fbiPixelsOut registers. Writing a ‘1’ to
the lsb of nopCMD will clear the aforementioned registers. Writing a ‘0’ to the lsb of nopCMD will not
modify the values of the aforementioned registers.

Bit Description
0 Clear fbiPixelsIn, fbiChromaFail, fbiZfuncFail, fbiAfuncFail, and fbiPixelsOut

registers (1=clear registers)

lfbMode Register
The lfbMode register controls linear frame buffer accesses.

Bit Description
3:0 Linear frame buffer write format (see table below)
5:4 Reserved

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
63 Printed 03/01/99

7:6 Reserved
8 Enable Banshee pixel pipeline-processed linear frame buffer writes (1=enable)
10:9 Linear frame buffer RGBA lanes (see tables below)
11 16-bit word swap linear frame buffer writes (1=enable)
12 Byte swizzle linear frame buffer writes (1=enable)
13 LFB access Y origin (0=top of screen is origin, 1=bottom of screen is origin)
14 Linear frame buffer write access W select (0=LFB selected, 1=zacolor[15:0]).
15 Reserved
16 Reserved

The following table shows the supported Banshee linear frame buffer write formats:

Value Linear Frame Buffer Write Format
16-bit formats

0 16-bit RGB (5-6-5)
1 16-bit RGB (x-5-5-5)
2 16-bit ARGB (1-5-5-5)
3 Reserved

32-bit formats
4 24-bit RGB (x-8-8-8)
5 32-bit ARGB (8-8-8-8)
7:6 Reserved
11:8 Reserved
12 16-bit depth, 16-bit RGB (5-6-5)
13 16-bit depth, 16-bit RGB (x-5-5-5)
14 16-bit depth, 16-bit ARGB (1-5-5-5)
15 16-bit depth, 16-bit depth

When accessing the linear frame buffer, the cpu accesses information from the starting linear frame buffer
(LFB) address space (see section 4 on Banshee address space) plus an offset which determines the <x,y>
coordinates being accessed. Bits(3:0) of lfbMode define the format of linear frame buffer writes.

When writing to the linear frame buffer, lfbMode bit(8)=1 specifies that LFB pixels are processed by the
normal Banshee pixel pipeline -- this implies each pixel written must have an associated depth and alpha
value, and is also subject to the fog mode, alpha function, etc. If bit(8)=0, pixels written using LFB access
bypass the normal Banshee pixel pipeline and are written to the specified buffer unconditionally and the
values written are unconditionally written into the color/depth buffers except for optional color dithering
[depth function, alpha blending, alpha test, and color/depth write masks are all bypassed when bit(8)=0].
If bit(8)=0, then only the buffers that are specified in the particular LFB format are updated. Also note
that if lfbMode bit(8)=0 that the color and Z mask bits in fbzMode(bits 9 and 10) are ignored for LFB
writes. For example, if LFB modes 0-2, or 4 are used and bit(8)=0, then only the color buffers are updated
for LFB writes (the depth buffer is unaffected by all LFB writes for these modes, regardless of the status of
the Z-mask bit fbzMode bit 10). However, if LFB modes 12-14 are used and bit(8)=0, then both the color
and depth buffers are updated with the LFB write data, irrespective of the color and Z mask bits in
fbzMode. If LFB mode 15 is used and bit(8)=0, then only the depth buffer is updated for LFB writes (the
color buffers are unaffected by all LFB writes in this mode, regardless of the status of the color mask bits
in fbzMode).

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
64 Printed 03/01/99

If lfbMode bit(8)=0 and a LFB write format is selected which contains an alpha component (formats 2, 5,
and 14) and the alpha buffer is enabled, then the alpha component is written into the alpha buffer.
Conversely, if the alpha buffer is not enabled, then the alpha component of LFB writes using formats 2, 5,
and 14 when bit(8)=0 are ignored. Note that anytime LFB formats 2, 5, and 14 are used when bit(8)=0
that blending and/or chroma-keying using the alpha component is not performed since the pixel-pipeline
is bypassed when bit(8)=0.

If lfbMode bit(8)=0 and LFB write format 14 is used, the component that is ignored is determined by
whether the alpha buffer is enabled -- If the alpha buffer is enabled and LFB write format 14 is used with
bit(8)=0, then the depth component is ignored for all LFB writes. Conversely, if the alpha buffer is
disabled and LFB write format is used with bit(8)=0, then the alpha component is ignored for all LFB
writes.

If lfbMode bit(8)=1 and a LFB write access format does not include depth or alpha information (formats
0-5), then the appropriate depth and/or alpha information for each pixel written is taken from the zaColor
register. Note that if bit(8)=1 that the LFB write pixels are processed by the normal Banshee pixel
pipeline and thus are subject to the per-pixel operations including clipping, dithering, alpha-blending,
alpha-testing, depth-testing, chroma-keying, fogging, and color/depth write masking.

Bits(10:9) of lfbMode specify the RGB channel format (color lanes) for linear frame buffer writes. The
table below shows the Banshee supported RGB lanes:

Value RGB Channel Format
0 ARGB
1 ABGR
2 RGBA
3 BGRA

Bit(11) of lfbMode defines the format of 2 16-bit data types passed with a single 32-bit writes. For linear
frame buffer formats 0-2, two 16-bit data transfers can be packed into one 32-bit write -- bit(11) defines
which 16-bit shorts correspond to which pixels on screen. The table below shows the pixel packing for
packed 32-bit linear frame buffer formats 0-2:

lfbMode bit(11) Screen Pixel Packing
0 Right Pixel(host data 31:16), Left Pixel(host data 15:0)
1 Left Pixel(host data 31:16), Right Pixel(host data 15:0)

For linear frame buffer formats 12-14, bit(11) of lfbMode defines the bit locations of the 2 16-bit data
types passed. The table below shows the data packing for 32-bit linear frame buffer formats 12-14:

lfbMode bit(11) Screen Pixel Packing
0 Z value(host data 31:16), RGB value(host data 15:0)
1 RGB value(host data 31:16), Z value(host data 15:0)

For linear frame buffer format 15, bit(11) of lfbMode defines the bit locations of the 2 16-bit depth values
passed. The table below shows the data packing for 32-bit linear frame buffer format 15:

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
65 Printed 03/01/99

lfbMode bit(11) Screen Pixel Packing
0 Z Right Pixel(host data 31:16), Z Left Pixel(host data 15:0)
1 Z left Pixel(host data 31:16), Z Right Pixel(host data 15:0)

Note that bit(11) of lfbMode is ignored for linear frame buffer writes using formats 4 or 5.

Bit(12) of lfbMode is used to enable byte swizzling. When byte swizzling is enabled, the 4-bytes within a
32-bit word are swizzled to correct for endian differences between Banshee and the host CPU. For little
endian CPUs (e.g. Intel x86 processors) byte swizzling should not be enabled, however big endian CPUs
(e.g. PowerPC processors) should enable byte swizzling. For linear frame buffer writes, the bytes within a
word are swizzled prior to being modified by the other control bits of lfbMode. When byte swizzling is
enabled, bits(31:24) are swapped with bits(7:0), and bits(23:16) are swapped with bits(15:8).

Very Important Note: The order of swapping and swizzling operations for LFB writes is as follows: byte
swizzling is performed first on all incoming LFB data, as defined by lfbMode bit(12) and irrespective of
the LFB data format. After byte swizzling, 16-bit word swapping is performed as defined by lfbMode
bit(11). Note that 16-bit word swapping is never performed on LFB data when data formats 4 and 5 are
used. Also note that 16-bit word swapping is performed on the LFB data that was previously optionally
swapped. Finally, after both swizzling and 16-bit word swapping are performed, the individual color
channels are selected as defined in lfbMode bits(10:9). Note that the color channels are selected on the
LFB data that was previously swizzled and/or swapped

Bit(13) of lfbMode is used to define the origin of the Y coordinate for all linear frame buffer writes when
the pixel pipeline is bypassed (lfbMode bit(8)=0). Note that bit(13) of lfbMode does not affect rendering
operations (FASTFILL and TRIANGLE commands) -- bit(17) of fbzMode defines the origin of the Y
coordinate for rendering operations. Note also that if the pixel pipeline is enabled for linear frame buffer
writes (lfbMode bit(8)=1), then fbzMode bit(17) is used to determine the location of the Y origin. When
cleared, the Y origin (Y=0) for all linear frame buffer accesses is defined to be at the top of the screen.
When bit(13) is set, the Y origin for all linear frame buffer accesses is defined to be at the bottom of the
screen.

Bit(14) of lfbMode is used to select the W component used for LFB writes processed through the pixel
pipeline. If bit(14)=0, then the MSBs of the fractional component of the 48-bit W value passed to the
pixel pipeline for LFB writes through the pixel pipeline is the 16-bit Z value associated with the LFB
write. [Note that the 16-bit Z value associated with the LFB write is dependent on the LFB format, and is
either passed down pixel-by-pixel from the CPU, or is set to the constant zaColor(15:0)]. If bit(14)=1,
then the MSBs of the fractional component of the 48-bit W value passed to the pixel pipeline for LFB
writes is zacolor(15:0). Regardless of the setting of bit(14), when LFB writes go through the pixel
pipeline, all other bits except the 16 MSBs of the fractional component of the W value are set to 0x0.
Note that bit(14) is ignored if LFB writes bypass the pixel pipeline.

Linear Frame Buffer Writes

Linear frame buffer writes -- format 0:
When writing to the linear frame buffer with 16-bit format 0 (RGB 5-6-5), the RGB channel format
specifies the RGB ordering within a 16-bit word. If the Banshee pixel pipeline is enabled for LFB
accesses (lfbMode bit(8)=1), then alpha and depth information for LFB format 0 is taken from the

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
66 Printed 03/01/99

zaColor register. The following table shows the color channels for 16-bit linear frame buffer access
format 0:

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Red (15:11), Green(10:5), Blue(4:0)
1 15:0 Blue (15:11), Green(10:5), Red(4:0)
2 15:0 Red (15:11), Green(10:5), Blue(4:0)
3 15:0 Blue (15:11), Green(10:5), Red(4:0)

Linear frame buffer writes -- format 1:
When writing to the linear frame buffer with 16-bit format 1 (RGB 5-5-5), the RGB channel format
specifies the RGB ordering within a 16-bit word. If the Banshee pixel pipeline is enabled for LFB
accesses (lfbMode bit(8)=1), then alpha and depth information for LFB format 1 is taken from the
zaColor register. The following table shows the color channels for 16-bit linear frame buffer access
format 1:

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Ignored(15), Red (14:10), Green(9:5), Blue(4:0)
1 15:0 Ignored(15), Blue (14:10), Green(9:5), Red(4:0)
2 15:0 Red (15:11), Green(10:6), Blue(5:1), Ignored(0)
3 15:0 Blue (15:11), Green(10:6), Red(5:1), Ignored(0)

Linear frame buffer writes -- format 2:
When writing to the linear frame buffer with 16-bit format 2 (ARGB 1-5-5-5), the RGB channel format
specifies the RGB ordering within a 16-bit word. If the Banshee pixel pipeline is enabled for LFB
accesses (lfbMode bit(8)=1), then depth information for LFB format 2 is taken from the zaColor register.
Note that the 1-bit alpha value passed when using LFB format 2 is bit-replicated to yield the 8-bit alpha
used in the pixel pipeline. The following table shows the color channels for 16-bit linear frame buffer
access format 2:

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Alpha(15), Red (14:10), Green(9:5), Blue(4:0)
1 15:0 Alpha(15), Blue (14:10), Green(9:5), Red(4:0)
2 15:0 Red (15:11), Green(10:6), Blue(5:1), Alpha(0)
3 15:0 Blue (15:11), Green(10:6), Red(5:1), Alpha(0)

Linear frame buffer writes -- format 3:
Linear frame buffer format 3 is an unsupported format.

Linear frame buffer writes -- format 4:
When writing to the linear frame buffer with 24-bit format 4 (RGB x-8-8-8), the RGB channel format
specifies the RGB ordering within a 24-bit word. Note that the alpha/A channel is ignored for 24-bit
access format 4. Also note that while only 24-bits of data is transfered for format 4, all data access must
be 32-bit aligned -- packed 24-bit writes are not supported by Banshee. If the Banshee pixel pipeline is
enabled for LFB accesses (lfbMode bit(8)=1), then alpha and depth information for LFB format 4 is taken

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
67 Printed 03/01/99

from the zaColor register. The following table shows the color channels for 24-bit linear frame buffer
access format 4:

RGB Channel
Format Value

24-bit Linear frame
buffer access bits

(aligned to 32-bits)

RGB Channel

0 31:0 Ignored(31:24), Red (23:16), Green(15:8), Blue(7:0)
1 31:0 Ignored(31:24), Blue(23:16), Green(15:8), Red(7:0)
2 31:0 Red(31:24), Green(23:16), Blue(15:8), Ignored(7:0)
3 31:0 Blue(31:24), Green(23:16), Red(15:8), Ignored(7:0)

Linear frame buffer writes -- format 5:
When writing to the linear frame buffer with 32-bit format 5 (ARGB 8-8-8-8), the RGB channel format
specifies the ARGB ordering within a 32-bit word. If the Banshee pixel pipeline is enabled for LFB
accesses (lfbMode bit(8)=1), then depth information for LFB format 5 is taken from the zaColor register.
The following table shows the color channels for 32-bit linear frame buffer access format 5.

RGB Channel
Format Value

24-bit Linear frame
buffer access bits

(aligned to 32-bits)

RGB Channel

0 31:0 Alpha(31:24), Red (23:16), Green(15:8), Blue(7:0)
1 31:0 Alpha(31:24), Blue(23:16), Green(15:8), Red(7:0)
2 31:0 Red(31:24), Green(23:16), Blue(15:8), Alpha(7:0)
3 31:0 Blue(31:24), Green(23:16), Red(15:8), Alpha(7:0)

Linear frame buffer writes -- formats 6-11:
Linear frame buffer formats 6-11 are unsupported formats.

Linear frame buffer writes -- format 12:
When writing to the linear frame buffer with 32-bit format 12 (Depth 16, RGB 5-6-5), the RGB channel
format specifies the RGB ordering within the 32-bit word. If the Banshee pixel pipeline is enabled for
LFB accesses (lfbMode bit(8)=1), then alpha information for LFB format 12 is taken from the zaColor
register. Note that the format of the depth value passed when using LFB format 12 must precisely match
the format of the type of depth buffering being used (either 16-bit integer Z or 16-bit floating point 1/W).
The following table shows the 16-bit color channels within the 32-bit linear frame buffer access format
12:

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Red (15:11), Green(10:5), Blue(4:0)
1 15:0 Blue (15:11), Green(10:5), Red(4:0)
2 15:0 Red (15:11), Green(10:5), Blue(4:0)
3 15:0 Blue (15:11), Green(10:5), Red(4:0)

Linear frame buffer writes -- format 13:
When writing to the linear frame buffer with 32-bit format 13 (Depth 16, RGB x-5-5-5), the RGB channel
format specifies the RGB ordering within the 32-bit word. If the Banshee pixel pipeline is enabled for
LFB accesses (lfbMode bit(8)=1), then alpha information for LFB format 13 is taken from the zaColor

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
68 Printed 03/01/99

register. Note that the format of the depth value passed when using LFB format 13 must precisely match
the format of the type of depth buffering being used (either 16-bit integer Z or 16-bit floating point 1/W).
The following table shows the 16-bit color channels within the 32-bit linear frame buffer access format
13:

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Ignored(15), Red (14:10), Green(9:5), Blue(4:0)
1 15:0 Ignored(15), Blue (14:10), Green(9:5), Red(4:0)
2 15:0 Red (15:11), Green(10:6), Blue(5:1), Ignored(0)
3 15:0 Blue (15:11), Green(10:6), Red(5:1), Ignored(0)

Linear frame buffer writes -- format 14:
When writing to the linear frame buffer with 32-bit format 14 (Depth 16, ARGB 1-5-5-5), the RGB
channel format specifies the RGB ordering within the 32-bit word. Note that the format of the depth
value passed when using LFB format 14 must precisely match the format of the type of depth buffering
being used (either 16-bit integer Z or 16-bit floating point 1/W). Also note that the 1-bit alpha value
passed when using LFB format 14 is bit-replicated to yield the 8-bit alpha used in the pixel pipeline. The
following table shows the 16-bit color channels within the 32-bit linear frame buffer access format 14:

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Alpha(15), Red (14:10), Green(9:5), Blue(4:0)
1 15:0 Alpha(15), Blue (14:10), Green(9:5), Red(4:0)
2 15:0 Red (15:11), Green(10:6), Blue(5:1), Alpha(0)
3 15:0 Blue (15:11), Green(10:6), Red(5:1), Alpha(0)

Linear frame buffer writes -- format 15:
When writing to the linear frame buffer with 32-bit format 15 (Depth 16, Depth 16), the format of the
depth values passed must precisely match the format of the type of depth buffering being used (either 16-
bit integer Z or 16-bit floating point 1/W). If the Banshee pixel pipeline is enabled for LFB accesses
(lfbMode bit(8)=1), then RGB color information is taken from the color1 register, and alpha information
for LFB format 15 is taken from the zaColor register.

userIntrCMD Register
Writing to the userIntrCMD register executes the USERINTERRUPT command:

Bit Description
0 Wait for USERINTERRUPT to be cleared before continuing (1=stall graphics engine

until interrupt is cleared)
1 Wait for interrupt generated by USERINTERRUPT (visible in intrCtrl bit(11)) to be

cleared before continuing (1=stall graphics engine until interrupt is cleared)
9:2 User interrupt Tag

If the data written to userIntrCMD bit(0)=0, then a user interrupt is generated (intrCtrl bit(11) is set to
1). If the data written to userIntrCMD bit(1)=1, then the graphics engine stalls and waits for the
USERINTERRUPT interrupt to be cleared before continuing processing additional commands. If no

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
69 Printed 03/01/99

USERINTERRUPT interrupt is set and the data written to userIntrCMD bit(1)=1, then the graphics
engine will not stall and will continue to process additional commands. Software may also use
combinations of intrCtrl bits(1:0) to generate different functionality.

The tag associated with a user interrupt is written to userIntrCMD bits 9:2. When a user interrupt is
generated, the respective tag associated with the user interrupt is read from IntrCtrl bits 19:12.

If the USERINTERRUPT command does not stall the graphics engine (userIntrCMD(0)=1), then a
potential race condition occurs between multiple USERINTERRUPT commands and software user
interrupt processing. In particular, multiple USERINTERRUPT commands may be generated before
software is able to process the first interrupt. Irrespective of how many user interrupts have been
generated, the user interrupt tag field in intrCtrl (bits 19:12) always reflects the tag of last
USERINTERRUPT command processed. As a result of this behavior, early tags from multple
USERINTERRUPT commands may be lost. To avoid this behavior, software may force a single
USERINTERRUPT command to be executed at a time by writing userIntrCMD(1:0)=0x3 and cause the
graphics engine to stall until the USERINTERRUPT interrupt is cleared.

Note that bit 5 of intrCtrl must be set to 1 for user interrupts to be generated – writes to userIntrCMD
when intrCtrl(5)=0 do not generate interrupts or cause the processing of commands to wait on clearing of
the USERINTERRUPT command (regardless of the data written to userIntrCMD), and are thus in effect
“dropped.”

Command Descriptions

NOP Command
The NOP command is used to flush the graphics pipeline. When a NOP command is executed, all
pending commands and writes to the texture and frame buffers are flushed and completed, and the
graphics engine returns to its IDLE state. While this command is used primarily for debugging and
verification purposes, it is also used to clear the 3D status registers (fbiTriangles, fbiPixelsIn,
fbiPixelsOut, fbiChromaFail, fbiZfuncFail, and fbiAfuncFail). Setting nopCMD bit(0)=1 clears the
3D status registers and flushes the graphics pipeline, while setting nopCMD bit(0)=0 has no affect on the
3D status registers but flushes the graphics pipeline. See the description of the nopCMD register in
section 5 for more information.

USERINTERRUPT Command
The USERINTERRUPT command allows for software-generated interrupts. A USERINTERRUPT
command is generated by writing to the userIntrCMD register. userIntrCMD bit(0) controls whether a
write to userIntrCMD generates a USERINTERRUPT. Setting userIntrCMD bit(0)=1 generates a
USERINTERRUPT. userIntrCMD bit(1) determines whether the graphics engine stalls on software
clearing of the user interrupt. By setting userIntrCMD bit(1)=1, the graphics engine stalls until the
USERINTERRUPT is cleared. Alternatively, setting userIntrCMD bit(1)=0 does not stall the graphics
engine upon execution of the USERINTERRUPT command, and additional graphics commands are
processed without waiting for clearing of the user interrupt. A identification, or Tag, is also associated

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
70 Printed 03/01/99

with an individual USERINTERRUPT command, and is specified by writing an 8-bit value to
userIntrCMD bits(9:2).

User interrupts must be enabled before writes to the userIntrCMD are allowed by setting intrCtrl
bit(5)=1. Writes to userIntrCMD when intrCtrl bit(5)=0 are “dropped” and do not affect functionality.
A user interrupt is detected by reading intrCtrl bit (11), and is cleared by setting intrCtrl bit(11)=0. The
tag of a generated user interrupt is read from intrCtrl bits (19:12). See the description of the intrCtrl
and userIntrCMD registers in section 5 for more information.

Linear Frame Buffer Access
The Banshee linear frame buffer base address is located at a 8 Mbyte offset from the memBaseAddr PCI
configuration register and occupies 4 Mbytes of Banshee address. Regardless of actual frame buffer
resolution, all linear frame buffer accesses assume a 2048-pixel logical scan line width. The number of
bytes per scan line depends on the format of linear frame buffer access format selected in the lfbMode
register. Note for all accesses to the linear frame buffer, the status of bit(16) of fbzMode is used to
determine the Y origin of data accesses. When bit(16)=0, offset 0x0 into the linear frame buffer address
space is assumed to point to the upper-left corner of the screen. When bit(16)=1, offset 0x0 into the linear
frame buffer address space is assumed to point to the bottom-left corner of the screen. Regardless of the
status of fbzMode bit(16), linear frame buffer addresses increment as accesses are performed going from
left-to-right across the screen. Also note that clipping is not automatically performed on linear frame
buffer writes if scissor clipping is not explicitly enabled (fbzMode bit(0)=1). Linear frame buffer writes
to areas outside of the monitor resolution when clipping is disabled result in undefined behavior.

Linear frame buffer Writes
The following table shows the supported linear frame buffer write formats as specified in bits(3:0) of
lfbMode:

Value Linear Frame Buffer Access Format
16-bit formats

0 16-bit RGB (5-6-5)
1 16-bit RGB (x-5-5-5)
2 16-bit ARGB (1-5-5-5)
3 Reserved

32-bit formats
4 24-bit RGB (8-8-8)
5 32-bit ARGB (8-8-8-8)
7:6 Reserved
11:8 Reserved
12 16-bit depth, 16-bit RGB (5-6-5)
13 16-bit depth, 16-bit RGB (x-5-5-5)
14 16-bit depth, 16-bit ARGB (1-5-5-5)
15 16-bit depth, 16-bit depth

When writing to the linear frame buffer with a 16-bit access format (formats 0-3 and format 15 in
lfbMode), each pixel written is 16-bits, so there are 2048 bytes per logical scan line. Remember when
utilizing 16-bit access formats, two 16-bit values can be packed in a single 32-bit linear frame buffer write

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
71 Printed 03/01/99

-- the location of each 16-bit component in screen space is defined by bit(11) of lfbMode. When using
16-bit linear frame buffer write formats 0-3, the depth components associated with each pixel is taken
from the zaColor register. When using 16-bit format 3, the alpha component associated with each pixel
is taken from the 16-bit data transfered, but when using 16-bit formats 0-2 the alpha component
associated with each pixel is taken from the zaColor register. The format of the individual color channels
within a 16-bit pixel is defined by the RGB channel format field in lfbMode bits(12:9). See the lfbMode
description in section 5 for a detailed description of the rgb channel format field.

When writing to the linear frame buffer with 32-bit access formats 4 or 5, each pixel is 32-bits, so there
are 4096 bytes per logical scan line. Note that when utilizing 32-bit access formats, only a single pixel
may be written per 32-bit linear frame buffer write. Also note that linear frame buffer writes using format
4 (24-bit RGB (8-8-8)), while 24-bit pixels, must be aligned to a 32-bit (doubleword) boundary -- packed
24-bit linear frame buffer writes are not supported by Banshee. When using 32-bit linear frame buffer
write formats 4-5, the depth components associated with each pixel is taken from the zaColor register.
When using format 4, the alpha component associated with each pixel is taken from the zaColor register,
but when using format 5 the alpha component associated with each pixel is taken from the 32-bit data
transfered. The format of the individual color channels within a 24/32-bit pixel is defined by the rgb
channel format field in lfbMode bits(12:9).

When writing to the linear frame buffer with a 32-bit access formats 12-14, each pixel is 32-bits, so there
are 4096 bytes per logical scan line. Note that when utilizing 32-bit access formats, only a single pixel
may be written per 32-bit linear frame buffer write. If depth or alpha information is not transfered with
the pixel, then the depth/alpha information is taken from the zaColor register. The format of the
individual color channels within a 24/32-bit pixel is defined by the rgb channel format field in lfbMode
bits(12:9). The location of each 16-bit component of formats 12-15 in screen space is defined by bit(11) of
lfbMode. See the lfbMode description in section 5 for more information about linear frame buffer writes.

Linear frame buffer Reads
It is important to note that reads from the linear frame buffer bypass the PCI host FIFO (as well as the
memory FIFO if enabled) but are blocking. If the host FIFO has numerous commands queued, then the
read can potentially take a very long time before data is returned, as data is not read from the frame buffer
until the PCI host FIFO is empty and the graphics pixel pipeline has been flushed. One way to minimize
linear frame buffer read latency is to guarantee that the Banshee graphics engine is idle and the host
FIFOs are empty (in the status register) before attempting to read from the linear frame buffer.

Programming Caveats
The following is a list of programming guidelines which are detailed elsewhere but may have been
overlooked or misunderstood:

Memory Accesses
All Memory accesses to Banshee registers must be 32-bit word accesses only. Linear frame buffer
accesses may be 32-bit or 16-bit accesses, depending upon the linear frame buffer access format specified
in lfbMode. Byte(8-bit) accesses are only allowed to Banshee linear frame buffer.

Determining Banshee Idle Condition
After certain Banshee operations, and specifically after linear frame buffer acceses, there exists a potential
deadlock condition between internal Banshee state machines which is manifest when determining if the

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
72 Printed 03/01/99

Banshee subsystem is idle. To avoid this problem, always issue a NOP command before reading the
status register when polling on the Banshee busy bit. Also, to avoid asynchronous boundary conditions
when determing the idle status, always read Banshee inactive in status three times. A sample code
segment for determining Banshee idle status is as follows:

/***
 * SST_IDLE:
 * returns 0 if SST is not idle
 * returns 1 if SST is idle
 ***/
SST_IDLE()
{
 ulong j, i;

 // Make sure SST state machines are idle
 PCI_MEM_WR(NOPCMD, 0x0);
 i = 0;
 while(1) {
 j = PCI_MEM_RD(STATUS);
 if(j & SST_BUSY)
 return(0);
 else
 i++;
 if(i > 3)
 return(1);
 }
}

7. PLL Registers

/M
Phase
Dector

Charge
Pump

VCO /2K

/N

Clock Out

Register Name Address Bits R/W Description
pllCtrl0 0x40-0x43 31:0 R/W Video Clock PLL
pllCtrl1 0x44-0x47 31:0 R/W GRX Clock PLL
pllCtrl2 0x48-0x4b 31:0 R/W Mem Clock PLL

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
73 Printed 03/01/99

Genlock mode: in order for the register 3da (vga register) to reflect the status of vsync correct,
vgaInit0[1]

needs to be set

PllCtrl registers
Bit Description
1:0 K, Post divider value
7:2 M, PLL input divider
15:8 N, PLL multiplier
16 Test. (0=normal operation, 1 = CLK is output of VCO). Default = 0.

Frequency output of PLL’s is given:

fout = 14.31818 * (N + 2) / (M + 2) / (2 ^ K).

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
74 Printed 03/01/99

8. DAC Registers

Register Name I/O
Address

Bits R/W Description

dacMode 0x4c-0x4f 4:0 R/W Dac Mode 2:1 or 1:1
dacAddr 0x50-0x53 8:0 R/W Dac pallette address
dacData 0x54-0x57 23:0 R/W Dac data register
reserved 0x58-0x5b na

dacMode
Bit Description
0 Dac Mode 2:1 or 1:1
1 Enable DPMS on Vsync
2 Force Vsync value.
3 Enable DPMS on Hsync
4 Force Hsync value.
5 Control crc2 collection mode (see crc2 register)

dacAddr
Bit Description
8:0 Pallette Address

This is the 9 bit CLUT address used for programming the CLUT. Unlike the VGA mechanism, this
address does not auto increment, but has access to the entire 512 entries in the CLUT.

dacData
Bit Description
23:0 Dac color value

This is the 24 bit RGB value at the index programmed into dacAddr. The color values are always stored
with red in bits [23:16], green in bits [15:8] and blue in bits [7:0].

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
75 Printed 03/01/99

9. Video Registers(PCI)

Register Name I/O
Addr

Bit
s

R/W Description

vidMaxRgbDelta 0x58 23:0 R/W Maximum delta values for video filtering
vidProcCfg 0x5c 31:0 R/W Video Processor configuration
hwCurPatAddr 0x60 23:0 R/W Cursor Pattern Address
hwCurLoc 0x64 26:0 R/W X and Y location of HW cursor
hwCurC0 0x68 23:0 R/W Hw cursor color 0
hwCurC1 0x6c 23:0 R/W Hw cursor color 1
vidInFormat 0x70 31:0 R/W Video In Format
vidInStatus 0x74 2:0 R Video In Status register
vidSerialParallelPort 0x78 31:0 R/W Serial and Parallel Ports
vidInXDecimDeltas 0x7c 31:0 R/W Video In horizontal decimation delta 1 & 2.
vidInDecimInitErrs 0x80 31:0 R/W Video In horizontal and vertical decimation

initial error term
vidInYDecimDeltas 0x84 31:0 R/W Video In vertical decimation delta 1 & 2
vidPixelBufThold 0x88 17:0 R/W Video Pixel Buffer Threshold
vidChromaMin 0x8c 31:0 R/W Chroma Key minimum value
vidChromaMax 0x90 31:0 R/W Chroma Key maximum value
vidCurrentLine 0x94 10:0 R Current Scan line
vidScreenSize 0x98 23:0 R/W Screen resolution
vidOverlayStartCoords 0x9c 31:0 R/W Start Surface Coordinates [31:28] Overlay

Start Screen Coordinates
vidOverlayEndScreenCoord 0xa0 23:0 R/W Overlay End Screen Coordinates
vidOverlayDudx 0xa4 19:0 R/W Overlay horizontal magnification factor
vidOverlayDudxOffsetSrcWid
th

0xa8 31:0 R/W Overlay horizontal magnification factor
initial offset (bit 18:0)
Overlay source surface width (bit 31:19)

vidOverlayDvdy 0xac 19:0 R/W Overlay vertical magnification factor
vidOverlayDvdyOffset 0xe0 18:0 R/W Overlay vertical magnification factor initial

offset
vidDesktopStartAddr 0xe4 23:0 R/W Desktop start address
vidDesktopOverlayStride 0xe8 31:0 R/W Desktop and Overlay strides
vidInAddr0 0xec 23:0 R/W Video In Buffer 0 starting address
vidInAddr1 0xf0 23:0 R/W Video In Buffer 1 starting address
vidInAddr2 0xf4 23:0 R/W Video In Buffer 2 starting address
vidInStride 0xf8 14:0 R/W Video In Buffer stride
vidCurrOverlayStartAddr 0xfc 23:0 R Current overlay start address in use

vidMaxRgbDelta
The vidMaxRgbDelta register specifies the maximum delta values allowed for a pixel’s color components
to be filtered in the video filter (4x1 tap filter or 2x2 box filter). Each of the three neighbor pixels is
compared with the center pixel, and if any of the RGB or YCbCr components exceed that of the center
pixel by +delta or -delta, that color component will be replaced by that of the center pixel in the filter. The
purpose of this is to prevent the high frequency pixels from being filtered in the tap or box filter.
Putting 0x01 in each of the delta values minimizes the amount of filtering while 0x3f maximizes it. The
value 0x0 is undefined.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
76 Printed 03/01/99

In order to avoid stepping outside the source surface (3d or video surface), the tap and box filters uses the
value programmed in vidOverlayEndScreenCoord to determine when it is getting to the right and bottom
edges of the overlay window, and performs point sampling on the edges of the source surface. For a full
screen 3d surface to be displayed with the box filter on a 640 x 480 resolution, vidOverlayEndScreenCoord
need to be programmed with x=639 and y=479 for clamping to be performed properly.

Bit Description
5:0 Maximum blue/V/Cr delta for video filtering (unsigned). Range from 0x1 to 0x3f. 0x0

is undefined.
13:8 Maximum green/U/Cb delta for video filtering (unsigned). Range from 0x1 to 0x3f. 0x0

is undefined.
21:16 Maximum red/Y delta for video filtering (unsigned). Range from 0x1 to 0x3f. 0x0 is

undefined.

vidProcCfg Register
The vidProcCfg register is the general configuration register for the Video Processor. It is written by the
host upon reset only.

Bit Description
0 1: Video Processor on, VGA mode off; 0: Video Processor off, VGA mode on.
1 1: X11 cursor mode; 0: Microsoft Windows cursor mode.
2 Overlay stereo enable. 0 = disabled, 1 = enabled.
3 Interlaced video out enable. For Banshee, since interlaced video out is not supported,

this bit should remain 0 all the time.
4 Half mode. 0 = disabled. 1 = enabled where desktop stride is added every other lines.
5 ChromaKeyEnable. 0 = off. 1 = on.
6 ChromaKeyResultInversion: (0 = desktop transparent if desktop color matches or falls

within the chroma-key color range; 1 = desktop transparent if desktop color does not
match or fall within the chroma-key range)

7 Desktop surface enable. 0 = do not fetch the desktop surface, 1 = fetch desktop surface
8 Overlay surface enable. 0 = do not fetch the overlay surface, 1 = fetch overlay surface
9 Video-in data displayed as overlay enable. 0 = do not display the video-in buffer directly

as overlay. 1= use the video-in buffer address as the overlay start address (auto-
flipping).

10 Desktop clut bypass. 0 = do not bypass the clut in the RAMDAC, 1 = bypass the clut
11 Overlay clut bypass. 0 = do not bypass the clut in the RAMDAC, 1 = bypass the clut
12 Desktop clut select. 0 = use the lower 256 entries of the clut. 1 = use the upper 256

entries.
13 Overlay clut select. 0 = use the lower 256 entries of the clut. 1 = use the upper 256

entries.
14 Overlay horizontal scaling enable. 0=disabled. 1=enabled.

Magnification factor determined by vidOverlayDudx.
15 Overlay vertical scaling enable. 0=disabled. 1=enabled.

Magnification factor determined by vidOverlayDvdy.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
77 Printed 03/01/99

17:16 Overlay filter mode
00: point sampling
01: 2x2 dither subtract followed by 2x2 box filter (for 3d only)
10: 4x4 dither subtract followed by 4x1 tap filter (for 3d only)
11: bilinear scaling

20:18 Desktop pixel format
000: 8bit palettized
001: RGB565 undithered
010: RGB24 packed
011: RGB32
100: Reserved
101: Reserved
110: Reserved
111: Reserved

23:21 Overlay pixel format
000: Reserved
001: RGB565 undithered
010: Reserved
011: Reserved
100: YUV411
101: YUYV422
110: UYVY422
111: RGB565 dithered

24 Reserved (must be 0)
25 Reserved (must be 0)
26 2X mode which refreshes two screen pixels per video clock. 0 = 1X mode, 1 = 2X

mode.
27 HW cursor enable. 0 = disabled, 1 = enabled.
28 Reserved
29 Reserved.
30 Reserved.
31 Backend deinterlacing for video overlay. 0 = No deinterlacing in the backend pipe. 1 =

Backend deinterlacing (Bob method). Bob method displays either the even or odd frame
at a time, and interpolates two interlaced lines to get the missing field. It is not
supported in 2X mode.

How to program for Backend deinterlacing (Bob method):
The only thing this option effects is that when the video processor displays the even field, it adds 0.5 to
the initial vertical offset (initial dvdy offset) used by the backend bilinear scaler. Everything else is the
same.
Since deinterlacing in the backend uses the bilinear scaler unit to interpolate between two interlaced lines,
the host needs to enable bilinear filtering, overlay vertical scaling, overlay horizontal scaling, and set up
the initial dvdy offset, dvdy, initial dudx offset and dudx correctly according to the desired magnification
factor between the source video and displayed video. The suggested setting for the parameters for backend
deinterlacing without horizontal magnification are: bilinear filter enable = 1, overlay vertical scaling
enable = 1, overlay horizontal scaling enable = 0, initial dvdy offset = 0.25, dvdy = 0.5. Initial dudx offset
and dudx are don’t cares.
Backend deinterlacing is not supported for 2x mode (2-pixel per video clk mode) since bilinear filtering is
not available in 2x mode.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
78 Printed 03/01/99

How does the hardware work in half-mode/ low-resolution mode?
The video refresh has an internal register which stores the memory address of where a scanline starts in
the desktop surface. At vertical retrace, this internal register is loaded with the value of
vidDesktopStartAddr. When half-mode is disabled, a stride is added to this internal register at the end of
every scanline to move to the next scanline. However, when half-mode is enabled, the stride is added at
the end of every other scanline, i.e., at the end of scanline 1, 3, 5, 7, …… etc. As a result, each line of the
desktop surface will be displayed twice, and the height of the video display will be double the height of the
desktop surface.

As one could see, the half-mode bit doubles the video display in the y-direction only. To double the
number of pixels in the x-direction, one needs to half the video clock frequency. For example, to display a
desktop surface of 320 x 240 on the monitor as 640 x 480 at 60 frames per second, a video clock of
frequency 12.59MHz (25.175MHz / 2) is needed. Also, while the vertical VGA timing parameters are the
same as those for 640 x 480, the horizontal parameters (e.g., Total number of horizontal pixels, width of
Hsync, number of pixels in horizontal blank, …… etc) need to be halved. With half of the video clock
frequency and the horizontal timing parameters, the monitor will see a timing which is equivalent to a
width of 640 pixels. Lastly, the video register, vidScreenSize, need to be programmed with x = 320 and y =
480, and each pixel presented by the video refresh unit to the monitor will be displayed twice in the x-
direction.

Line doubling is implemented for the desktop surface only, and is not available for overlay surface and
hardware cursor. Therefore if the overlay and the hardware cursor are enabled in half-mode, they will be
doubled in the x-dimension while they y-dimension will remain the same.

hwCurPatAddr Register
The hwCurPatAddr register stores the starting address of two monochrome cursor patterns. Each pattern
is a bitmap of 64-bit wide and 64-bit high (a total of 8192 bits). The two patterns are stored in such a way
that pattern 0 always resides in the lower half (least significant 64-bit) of a 128-bit word and pattern 1 the
upper half. In other words, each 128-bit word consists of one line from pattern 0 and one line from pattern
1. At each horizontal retrace, the Video Processor checks to see whether the cursor location falls on the
current scanline. If so, it fetches from the memory eight words of cursor patterns at a time. The eight
words are then stored in the on-chip ram for use in the next eight scanlines. This reduces the number of
memory accesses for cursor patterns from 64 to 8 times per screen refresh. Cursor patterns always reside
in linear address space, and the linear stride is always 16 bytes. The video processor figures out the shape
and color of the cursor for the current scanline according to the following table:

Bit from Pattern
0

Bit from Pattern
1

Displayed cursor
(Microsoft window)

Displayed cursor
(X11)

0 0 HWCurC0 Current Screen Color
0 1 HWCurC1 Current Screen Color
1 0 Current Screen color HWCurC0

1 1 NOT current screen color HWCurC1

Bit Description
23:0 Physical address of where the cursor pattern resides in the memory.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
79 Printed 03/01/99

hwCurLoc Register
The hwCurLoc register stores the x and y coordinates of the bottom right corner of the cursor. The
coordinates are unsigned, and range from 0 to 2047. This allows a partial cursor to be displayed in all
edges of the screen.

Bit Description
10:0 X coordinate of the bottom right corner of the cursor. Undefined upon reset.
26:16 Y coordinate of the bottom right corner of the cursor. Undefined upon reset.

hwCurC0 Register
The hwCurC0 register stores color 0 of the cursor.

Bit Description
7:0 Blue value of cursor color0
15:8 Green value of cursor color0
23:16 Red value of cursor color0

hwCurC1 Register
The hwCurC1 register stores color 1 of the cursor.

Bit Description
7:0 Blue value of cursor color1
15:8 Green value of cursor color1
23:16 Red value of cursor color1

vidInFormat
The VidInFormat register allows the host to specify the data format of the video-in data.

Bit Description
0 Reserved
3:1 (VMI only) Video-In data format

110: 8bit YCbCr 4:2:2 (UYVY) 101: 8bit YCbCr 4:2:2 (YUYV)
100: 8bit YCbCr 4:1:1

4 (VMI only) Video-In de-interlacing mode. (0 = No deinterlacing applied to the video data
coming in; 1 = Weave method deinterlacing, i.e. the video-in port will merge two consecutive
VMI frames into one inside the frame buffer before signaling a frame is done in the vidStatus
register.)

5 (VMI/TV out master mode) Vmi_vsync_in polarity. (1=active low; 0=active high (default))
6 (VMI/TV out master mode) Vmi_hsync_in polarity. (1=active low; 0=active high (default))
7 (VMI only) Vmi_vactive_in polarity. (1=active low; 0=active high (default))

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
80 Printed 03/01/99

8 (TV out only) G4 for posedge (1=Brooktree TV out support; 0=Chrontel)
1: Brooktree TV encoder samples at falling edge for the following data; 0: Chrontel TV encoder
samples at rising edge for the following data
Data[11] G0[4]
Data[10] G0[3]
Data[9] G0[2]
Data[8] B0[7]
Data[7] B0[6]
Data[6] B0[5]
Data[5] B0[4]
Data[4] B0[3]
Data[3] G0[0]
Data[2] B0[2]
Data[1] B0[1]
Data[0] B0[0]
1: Brooktree TV encoder samples at rising edge for the following data; 0: Chrontel TV encoder
samples at falling edge for the following data
Data[11] R0[7]
Data[10] R0[6]
Data[9] R0[5]
Data[8] R0[4]
Data[7] R0[3]
Data[6] G0[7]
Data[5] G0[6]
Data[4] G0[5]
Data[3] R0[2]
Data[2] R0[1]
Data[1] R0[0]
Data[0] G0[1]

10:9 (VMI only) VideoIn buffering mode select (00=single buffer, 01=double buffer, 10= triple buffer)
11 Reserved (must be 0)
12 Reserved (Was VMI parallel interface enable)
13 Reserved (Was DPMS enable)
15:14 (VMI/ TV out) VideoIn interface configuration

00: VideoIn Interface not used
01: VMI (Also need to clear vidSerialParallelPort reg bit[29] to 0. This controls GPIO[1], which
is used in the reference board to select the VMI device as the driver of some shared pins between
VMI and TV out).
10: VideoIn Interface reconfigured to digital TV out (Also need to set vidSerialParallelPort reg
bit[1] to 1. This controls GPIO[1], which is used in the reference board to de-select the VMI
device as the driver of some shared pins between VMI and TV out).
11: Reserved

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
81 Printed 03/01/99

16 (VMI/TV out) TV Out Genlock enable.
0: The VMI logic of the video controller uses vmi_pixclk_in as its clock while the remaining
video logic uses a separate video clock from the on-chip PLL. For TV out mode, vmi_vsync and
vmi_hsync are output of the video controller. Vmi_vactive is always output of the video
controller. (TV encoder is the slave device.)
1: Both the VMI logic and the remaining video logic use vmi_pixclk_in as their clock. For TV
out mode, vmi_vsync and vmi_hsync are input of the video controller. Vmi_vactive is always
output of the video controller.(TV encoder is the master device.) By setting bit 16 to 1, it allows
Banshee to genlock to the clock of an external VMI device or TV encoder.

17 (VMI/TV out) not_use_vga_timing_signal (Timing signals include vert_exra, display_ena,
vfrontporch_active, vbackporch_active, vblank, vga_blank_n, vga_vsync, vga_hsync)
0: Use the timing signals supplied by the VGA. For VMI and TV out slave mode.
1: Do not use the timing signals from the VGA. Timing signals are either supplied by the TV
encoder (in its master mode) or generated internally by the video controller. For TV out master
mode only.

18 Reserved. Used to be Field detection timing. (1=leading edge of Vsync; 0=trailing edge of Vsync
(default))

19 Reserved. Used to be Video-In blank time data capture enable. 0 = disabled, 1 = enabled.
20 Video-In horizontal decimation enable. (0=off; 1=on)
21 Video-In vertical decimation enable. (0=off; 1=on)
31:22 Reserved

VMI field detection

Note that the polarity of the VMI Vsync, Hsync, and Vactive signals is programmable. The inactive going
edge of the Vsync signal indicated whether the field is odd or even. If Hsync is active during the inactive
going edge of Vsync, the field is even. If Hsync is inactive, the field is odd.

vidInStatus
The VidInStatus register allows the host to read the status of the video-in port, and implement manual
buffer flipping for the video-in data.

Bit Description
2 Even/odd field of the frame VMI just finishes drawing. 1=even; 0=odd.
1:0 Video-in buffer VMI just finishes writing to.

00=buffer 0 (as specified by vidInAddr0);
01=buffer 1 (as specified by vidInAddr1);
10=buffer 2 (as specified by vidInAddr2);
11=No buffer is ready yet, video processor is still working on the first frame

vidSerialParallelPort Register
The vidSerialParallelPort register controls the chip’s I2C, DDC, GPIO, and the host port interface.
Bit[17:0] of the register are shared between the I2C and GPIO interface. If VideoIn interface is configured
to VMI (vidInFormat bit[15:14] == 2’b01), vidSerialParallelPort[17:0] are for VMI’s host port interface.
If configured to TV out (vidInFormat bit[15:14] == 2’b10), the bits are used to control digital TV out’s

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
82 Printed 03/01/99

additional GPIO interface. This is in addition to the two GPIO pins (one input and one output), which are
controlled by vidSerialParallelPort[30:29].

Since VMI, TV out, and ROM share pins for their interface, a pin can be input or output depending on
which interface has control of the pin at that time. GPIO[0] (different from TV_out_GPIO[0]) is a
hardwired output pin designed to be an output enable of the on-board tristate drivers. GPIO[0] is asserted
low, when the VMI device has control of the shared pins, and is driving pixdata[7:0], vmi_rdy_n, and
vmi_intreq_n as input to Banshee. GPIO[0] is pulled high, when either ROM or TV out controls the
shared pins, and pixdata[7:0], vmi_rdy_n, and vmi_intreq_n are output of Banshee.

GPIO[1] is software programmable, and is used to control the output enable of the on-board tristate
drivers for vmi_pixclk, vmi_vsync, vmi_hsync, and vmi_vactive. These are the signals that should be
continually driven by the external vmi device even when the ROM is using the shared pins (ROM does
not use the vmi_pixclk, vmi_vsync, vmi_hsync, and vmi_vactive pins). Otherwise the internal state of the
vmi controller in Banshee may be messed up. Vmi_cs_n cannot be used in lieu of GPIO[1] for this
purpose because the chip select pin can be turned off by vmi parallel host interface enable bit (bit 0
below).

Bit Written
By

Description (VMI is enabled) (digital TV out interface is enabled)

VMI host port interface General purpose IO interface
0 host VMI parallel host interface enable.

(0=off, 1=on); Default to 0 upon reset.
Not used

1 host VMI CS_N (Chip Select) Not used
Mode A Mode B

2 host/
encoder

VMI DS_N (Data
Strobe)

VMI RD_N (Read) TV out GPIO[0] (Output ONLY!)

3 host VMI RW_N
(Read/ Write_n)

VMI WR_N
(Write)

TV out GPIO[0] output enable_n

4 VMI VMI data
DTACK_N (Data
Acknowledge)

VMI data RDY
(Data Ready)

Not used

5 host VMI Data output enable_n. (0 = enabled,
1 = disabled); Default to 1 upon reset.

Not used

13:6 host/VM
I

VMI Data (Input / Output) Not used

17:14 host/
encoder
(for bits
14 and
16 only)

VMI Address Bit 14: TV out GPIO[2] (Output ONLY!)
Bit 15: TV out GPIO[2] output enable_n
Bit 16: TV out GPIO[1] (Input/Output)
Bit 17: TV out GPIO[1] output enable_n

DDC interface DDC interface
18 host DDC port enable (0 = disabled, 1 =

enabled) Default to 0 upon reset.
DDC port enable (0 = disabled, 1 =
enabled) Default to 0 upon reset.

19 host DDC DCK write (0 = DCK pin is driven
low, 1= DCK pin is tri-stated)
When this pin is tri-stated, other devices
can drive this line, and the final state of
the pin is reflected in bit 26. Default to 1
upon reset.

DDC DCK write (0 = DCK pin is driven
low, 1= DCK pin is tri-stated)
When this pin is tri-stated, other devices
can drive this line, and the final state of
the pin is reflected in bit 26. Default to 1
upon reset.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
83 Printed 03/01/99

20 host DDC DDA write (0 = DDA pin is driven
low, 1= DDA pin is tri-stated)
When this pin is tri-stated, other devices
can drive this line, and the final state of
the pin is reflected in bit 27. Default to 1
upon reset.

DDC DDA write (0 = DDA pin is driven
low, 1= DDA pin is tri-stated)
When this pin is tri-stated, other devices
can drive this line, and the final state of
the pin is reflected in bit 27. Default to 1
upon reset.

21 Monitor DDC DCK state (read only, 0 = low, 1 =
tri-stated which means no device is
driving this pin)

DDC DCK state (read only, 0 = low, 1 =
tri-stated which means no device is driving
this pin)

22 Monitor DDC DDA state (read only, 0 = low, 1 =
tri-stated which means no device is
driving this pin)

DDC DDA state (read only, 0 = low, 1 =
tri-stated which means no device is driving
this pin)

I2C interface I2C interface
23 host I2C port enable (0 = disabled, 1 =

enabled) Default to 0 upon reset.
I2C port enable (0 = disabled, 1 = enabled)
Default to 0 upon reset.

24 host I2C SCK write (0 = SCK pin is driven
low, 1= SCK pin is tri-stated)
When this pin is tri-stated, other devices
can drive this line, and the final state of
the pin is reflected in bit 21. Default to 1
upon reset.

I2C SCK write (0 = SCK pin is driven
low, 1= SCK pin is tri-stated)
When this pin is tri-stated, other devices
can drive this line, and the final state of
the pin is reflected in bit 21. Default to 1
upon reset.

25 host I2C SDA write (0 = SDA pin is driven
low, 1= SDA pin is tri-stated)
When this pin is tri-stated, other devices
can drive this line, and the final state of
the pin is reflected in bit 22. Default to 1
upon reset.

I2C SDA write (0 = SDA pin is driven
low, 1= SDA pin is tri-stated)
When this pin is tri-stated, other devices
can drive this line, and the final state of
the pin is reflected in bit 22. Default to 1
upon reset.

26 VMI/
encoder

I2C SCK state (read only, 0 = low, 1 =
tri-stated which means no device is
driving this pin)

I2C SCK state (read only, 0 = low, 1 = tri-
stated which means no device is driving
this pin)

27 VMI/
encoder

I2C SDA state (read only, 0 = low, 1 =
tri-stated which means no device is
driving this pin)

I2C SDA state (read only, 0 = low, 1 = tri-
stated which means no device is driving
this pin)

Misc. Misc.
28 host VMI reset_n (1 = normal. 0 = reset VMI

device.) Default to 0 upon reset.
Reset_n

29 host output only gpio GPIO[1] output output only gpio GPIO[1] output
30 VMI/

encoder
input only gpio GPIO[2] input input only gpio GPIO[2] input

31 Not used Not used

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
84 Printed 03/01/99

H3 Pinout sharing VMI, ROM and TV Out 3/3/98

Notes:
1. Rom access, VMI Video data/host port access and TV Out can only be performed separately
2. The only exception to 1, is "bypass" mode, where the VMI device can stream data and timing info directly into
 the TV encoder, while H3 snoops the data to display on the RGB monitor, either windowed or full screen.
3. This solution allows simulaneous RGB and TV out of the Windows desktop, simultaneous VMI and TV out for full
 screen VMI on the TV and windowed VMI on the RGB, but not windowed VMI on the TV.
4. The type in the table below is reference to H3
5. The programmability of the VMI or TV Encoder can be done via I2C, e.g. PAL mode,
6. The TV encoder must be able to operate in Master mode where it supplies the clock, vsync,hsync,blank and H3 outputs
 clock_out(delayed version of clock_in) and synchronous data
7. We must route a reference board to make sure the pin functions have been shared to provide a decent route
8. The ROM cs_n is tied to GND, the oe_n and we_n are used to control read/write respectively

Pin Name Pin Number
Pin Function Rom

Access Type Pin Function VMI Type

Pin Function
Digital TV out

rising/falling edge
pixdata/a0 A0 out Y0/Cr0/Cb0* in B0/G1 out
pixdata/a1 A1 out Y1/Cr1/Cb1* in B1/R0 out
pixdata/a2 A2 out Y2/Cr2/Cb2* in B2/R1 out
pixdata/a3 A3 out Y3/Cr3/Cb3* in G0/R2 out
pixdata/a4 A4 out Y4/Cr4/Cb4* in B3/G5 out
pixdata/a5 A5 out Y5/Cr5/Cb5* in B4/G6 out
pixdata/a6 A6 out Y6/Cr6/Cb6* in B5/G7 out
pixdata/a7 A7 out Y7/Cr7/Cb7* in B6/R3 out
vmi_adr/a8 A8 out vaddr0 out B7/R4 out
vmi_adr/a9 A9 out vaddr1 out G2/R5 out

vmi_adr/a10 A10 out vaddr2 out G3/R6 out
vmi_adr/a11 A11 out vaddr3 out G4/R7 out

vmi_cs_n CANNOT USE! vmi_cs_n out CANNOT USE!
vmi_rw A14 out vmi_rw_n/vmi_wr_n out clock_out out

vmi_ds_n/a15 A15 out vmi_ds_n/vmi_rd_ n out TV_OUT_GPIO_0 out
vmi_rdy/busy A12 out vmi_dtack_n/vmi_rdy_n* in TV_OUT_GPIO_1 in/out

vmi_hdata D0 in/out vmi_hd_0 in/out NOT USED
vmi_hdata D1 in/out vmi_hd_1 in/out NOT USED
vmi_hdata D2 in/out vmi_hd_2 in/out NOT USED
vmi_hdata D3 in/out vmi_hd_3 in/out NOT USED
vmi_hdata D4 in/out vmi_hd_4 in/out NOT USED
vmi_hdata D5 in/out vmi_hd_5 in/out NOT USED
vmi_hdata D6 in/out vmi_hd_6 in/out NOT USED
vmi_hdata D7 in/out vmi_hd_7 in/out NOT USED

hsync NOT USED hsync in hsync in/out
vsync NOT USED vsync_n in vsync in/out

blank_n NOT USED blank_n in blank_n in/out
pix_clk_in NOT USED vid_clk_in in clock_in in

vmi_insert_n Can this be detected by Software instead of wasting a pin? -- Pin Removed
vmi_intreq_n A13 out vmi_int_n* in TV_OUT_GPIO_2 out

reset_out NOT USED reset_n out reset_n out
rom_oe_n rom_oe_n o CANNOT USE! CANNOT USE!
rom_we_n rom_we_n o CANNOT USE! CANNOT USE!

i2c_clk NOT USED i2c_clk out i2c_clk out
i2c_data NOT USED i2c_data in/out i2c_data in/out
gp_io[0] vmi_oe_n out vmi_oe_n out vmi_oe_n out
gp_io[1] vmi_sync_oe_n out vmi_sync_oe_n out vmi_sync_oe_n out
gp_io[2] gp_in in gp_in in gp_in in

* means the signal may be buffered from the VMI data bus to ensure that it is not driven during ROM accesses.

Issues:
1. Brooktree part does not support CCIR656 where a data is transferred on rising edges only with a 2X clock.
 The Brooktree part uses a 1X clock and pumps data on both edges.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
85 Printed 03/01/99

vidInXDecimDeltas (for VMI downscaling Brensenham Engine)/ vidTvOutBlankHCount (for
TV out master mode)
If VideoIn Interface is configured to VMI mode (i.e., VidInFormat[15:14] == 2’b01), vidInXDecimDeltas
bits [11:0] contain the width of the destination video-in surface (width of the video overlay stored in the
frame buffer) in number of pixels. VidInXDecimDeltas bits[27:16] contain the width difference between
the source video-in surface (from VMI port) and destination video-in surface in number of pixels (Source -
Destination)

Bit Description
11:0 The positive (unsigned) value added to the error term when the horizontal Bresenham error

term is <0. It is programmed to be the width of the destination video-in surface in number
of pixels.

15:12 reserved
27:16 The positive (unsigned) value added to the error term when the horizontal Bresenham error

term is >0. It is programmed to be the difference between the width of the source and
destination video-in surfaces. (Source - Destination) in number of pixels.

31:28 reserved

If VideoIn Interface is configured to digitial TV out (i.e., VidInFormat[15:14] == 2’b10), TV Out Genlock
is enabled (VidInFormat[16] == 1’b1), and Not_use_vga_timing_signal is asserted, vidInXDecimDeltas
bits[10:0] contains the number of clock cycles after the leading edge of vmi_hsync before the horizontal
active region starts (i.e., horizontal blank becomes deasserted).

VidInXDecimDelata bits[26:16] contains the number of clock cycles after leading edge of vmi_hsync
before the horizontal active region ends (i.e., horizontal blank is re-asserted).

Output blank_n == horizontal blank_n AND vertical blank_n.

Note that the value in bits[26:16] needs to be greater than bits[10:0]. The clock cycles are based on the
clock coming in through the vmi_pixclk pin.

Bit Description
10:0 The number of clock cycles after the leading edge of vmi_hsync before the horizontal active

region starts (i.e., horizontal blank becomes deasserted).
15:11 reserved
26:16 The number of clock cycles after leading edge of vmi_hsync before the horizontal active

region ends (i.e., horizontal blank is re-asserted).
31:27 reserved

vidInDecimInitErrs

Description
The signed (2’s complement) initial value of the error term in the horizontal Bresenham
accumulator
reserved
The signed (2’s complement) initial value of the error term in the vertical Bresenham
accumulator
reserved

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
86 Printed 03/01/99

vidInYDecimDeltas
If VideoIn Interface is configured to VMI mode (i.e., VidInFormat[15:14] == 2’b01), vidInYDecimDelta
bits[11:0] contain the height of the destination video input window (height of the video overlay stored in
the frame buffer) in number of lines. vidInYDecimDeltas contains the height difference between the
source video surface (from VMI port) and destination video input window in number of lines (Source -
Destination).

Bit Description
11:0 The positive value added to the error term when the vertical Bresenham error term is <0
15:12 reserved
27:16 The positive value added to the error term when the vertical Bresenham error term is >0
31:28 reserved

If VideoIn Interface is configured to digitial TV out (i.e., VidInFormat[15:14] == 2’b10), and TV Out
Genlock is enabled (VidInFormat[16] == 1’b1), vertical blank_n signal is de-asserted when the number of
positive edges of vmi_hsync after the positive edge of vmi_vsync == vidInYDecimDeltas bits[10:0].

Vertical blank_n signal is re-asserted when the number of positive edges of vmi_hsync after the positive
edge of vmi_vsync == vidInYDecimDelta bits[26:16].

Output blank_n == horizontal blank_n AND vertical blank_n.

Note that the value in bits[26:16] needs to be greater than bits[10:0]. The clock cycles are based on the
clock coming in through the vmi_pixclk pin.

Bit Description
10:0 The number of vmi_hsync LEADING edges after the LEADING edge of vmi_vsync before

the vertical active region starts (i.e., vertical blank becomes deasserted).
15:11 reserved
26:16 The number of vmi_hsync LEADING edges after the LEADING edge of vmi_vsync before

the vertical active region ends (i.e., vertical blank is re-asserted).
31:27 reserved

Bresenham scaler for scaling down a video window in the horizontal direction:

error = vidInXDecimInitErr;

repeat until the source pixels of a video window scanline are exhausted

if (error < 0)

move to next source pixel

error = error + vidInXDecimDelta1

else

select the current source pixel as the destination pixel

move to next source pixel

error = error - vidInXDecimDelta2

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
87 Printed 03/01/99

Bresenham scaler for scaling down a video window in the vertical direction:

error = vidInYDecimInitErr

at each VideoIn Hsync

if (error < 0)

skip the whole line of video in data

error = error + vidInYDecimDelta1

else

select the current line of video in data

error = error - vidInYDecimDelta2

vidPixelBufThold
The vidPixelBufThold determines how many empty slots in each of the three pixel buffers will trigger
refilling of the buffers.

Bit Description
5:0 Primary pixel buffer low watermark (0x0 – 1 empty slot; 0x3f – 64 empty slots)
11:6 Secondary pixel buffer 0 low watermark (0x0 – 1 empty slot; 0x3f – 64 empty slots)
17:12 Secondary pixel buffer 1 low watermark (0x0 – 1 empty slot; 0x3f – 64 empty slots)

vidChromaKeyMin Register
The vidChromaKeyMin register contains the lower bound of the chroma key color.

Bit Description
8-bit desktop color format

7:0 chroma key color
31:8 Reserved

15-bit desktop color format
4:0 Blue value of the chroma -key
9:5 Green value of the chroma -key
14:10 Red value of the chroma -key
31:15 Reserved

16-bit desktop color format
4:0 Blue value of the chroma -key
10:5 Green value of the chroma -key
15:11 Red value of the chroma -key
31:16 Reserved

24-bit desktop color format
7:0 Blue value of the chroma -key
15:8 Green value of the chroma -key
23:16 Red value of the chroma -key
31:24 Reserved

32-bit desktop color format

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
88 Printed 03/01/99

7:0 Blue value of the chroma -key
15:8 Green value of the chroma -key
23:16 Red value of the chroma -key
31:24 Reserved

vidChromaKeyMax Register
The vidChromaKeyMax register contains the upper bound of the chroma key color. It is the same as
vidChromaKeyMin if the chroma-key is a single color instead of a range.

Bit Description
31:0 Format same as vidChromaKeyMin Register

vidCurrentLine Register
The vidCurrentLine register contains the current scan out line. As the vertical beam scans down the
display this register is incremented.

Bit Description
10:0 Current Video scan line.

vidScreenSize
NOTE: Whenever the screen resolution is changed, video processor needs to be re-enabled by
clearing vidProcCfg bit 0 and setting it to 1. This will reset the video processor.

Bit Description
11:0 Width of the screen in number of pixels. If vidScreenX is specified to be bigger than

1280, 2x mode needs to be enabled.
23:12 Height of the screen in number of lines.

vidOverlayStartCoords

Bit Description
11:0 The x-coordinate on the screen where the upper left corner of the overlay locates.
23:12 The y-coordinate on the screen where the upper left corner of the overlay locates.
25:24 The lower two bits of the x-coordinate for the first pixel (at the upper left corner) of the

overlay window with respect to the beginning of the source surface. Since the overlay
window may be partially occluded by the dimension of the screen, the first pixel of the
window may not necessarily be the first pixel of the source surface. The lower two bits
of the x-coordinate are used for undithering.

27:26 The lower two bits of the y-coordinate for the first pixel (at the upper left corner) of the
overlay window with respect to the beginning of the source surface. Since the overlay
window may be partially occluded by the dimension of the screen, the first pixel of the
window may not necessarily be the first pixel of the source surface. The lower two bits
of the y-coordinate are used for undithering.

31:28 reserved

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
89 Printed 03/01/99

vidOverlayEndScreenCoord
Beware that for a full screen overlay window, for example in 640x480 resolution, the
vidOverlayEndScreenCoord should be programmed to be 639x479 since the screen coordinate system
starts at the upper left orgin as (0,0).

Bit Description
11:0 The x-coordinate on the screen where the lower right corner of the overlay locates.
23:12 The y-coordinate on the screen where the lower right corner of the overlay locates.

vidOverlayDudx
When setting the vidOverlayDudx and vidOverlayDvdy, one needs to caution that the video refresh unit
does not step outside the 3d or video surface when it gets to the rightmost and bottom edges of the overlay
window. Since the video refresh unit does not know the dimension of the 3d or video surface, if
vidOverlayDudx and vidOverlayDvdy are set too large, the refresh unit may step outside the source
surface and cause artifacts at the edges of the overlay window.

Bit Description
19:0 Step size in source per horizontal step in screen space for magnification. Format is 0.20.

vidOverlayDudxOffsetSrcWidth
Bit[31:19] specifies the number of bytes of pixels that need to be fetched from the frame buffer to cover a
line of overlay window. The value depends on the width of the overlay window, the pixel depth of the
overlay, and the x-scaling factor, and the vidOverlayDudxOffset. The vidOverlayDuDxOffset will affect
the value only by +/- 1 pixel. The easiest way to figure out the value for the source width is to divide the
number of pixels for the width of the overlay window by the x-scaling factor. Round the result up. Add 1
to adjust for any DudxOffset, and finally multiply the value by the overlay pixel depth. This is a
conservative way to estimate for the source width since it will give a value slightly bigger than the actual
number of bytes that are needed. Putting in a value which is smaller or grossly larger than the actual
number of bytes needed will cause serious artifacts.

Bit Description
18:0 Initial offset of Dudx. Format is 0.19.
31:19 Number of bytes needed to be fetched from the source surface in order to cover a whole

un-occluded scanline for the overlay (13 bits allows a max of 8K bytes for an overlay
scanline).
i.e., ((Overlay width in number of screen pixels * vidOverlayDudx) +
vidOverlayDudxOffset)) * overlay pixel depth in bytes.
For non-scaled overlay with no offset, vidOverlayDudx becomes 1, and
vidOverlayDudxOffset becomes 0 in the above equation.

vidOverlayDvdy
When setting the vidOverlayDudx and vidOverlayDvdy, one needs to caution that the video refresh unit
does not step outside the 3d or video surface when it gets to the rightmost and bottom edges of the overlay
window. Since the video refresh unit does not know the dimension of the 3d or video surface, if
vidOverlayDudx and vidOverlayDvdy are set too large, the refresh unit may step outside the source
surface and cause artifacts at the edges of the overlay window.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
90 Printed 03/01/99

Bit Description
19:0 Step size in source per vertical step in screen space for magnification. Format is 0.20.

vidOverlayDvdyOffset

Bit Description
18:0 Initial offset of Dvdy. Format is 0.19.

Example:

Given source size of 640 x 240 and have it magnified to 1024 x 768 on the screen.

Source width:
Dudx[31:19] = 640 X 2 bytes = 1280 bytes (here 16 bpp assumed)
= 500h

Dudx[19:0] = 640/1024 = 0.625 = a0000h
(Note format is 0.20 means
x x x x x x x x x x x x x x x x x x x x
| | |
| | |
| | 0.125
| |
| 0.25
|
0.5)

Dvdy[19:0] = 240/768 = 0.3125 = 0.25 + 0.0625 = 50000h
(Format same as dudx above)

Dudx Offset[18:0] and Dvdy Offset [18:0] = 00000h if no initial offset is needed.
If upper leftmost overlay pixel needs to be the center of
the first pixel of the overlay surface, both offsets needs to be set to 0.5
which is 40000h.

vidDesktopStartAddr

Bit Description
23:0 Physical starting address of the desktop surface. This is a byte-aligned address.

vidDesktopOverlayStride

Bit Description
14:0 Bit[14:0] contains the linear stride of the surface in bytes. If interlaced video output

mode is enabled, the linear stride is still programmed to 1x the regular stride of the
surface, and will be multiplied by 2 when used.

15 reserved

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
91 Printed 03/01/99

For video overlay, the stride needs to be a multiple of 4-bytes for YUV 422 pixel format and a multiple
of 8-bytes for YUV 411 pixel format. This ensures that the right edge of the video source surface to fall
on a boundary of 2 pixels for YUV 422 and 4 pixels for YUV 411. The start address for the overlay is
sampled from the FIFO’ed leftOverlayBuf and rightOverlayBuf registers. The start address needs to be
aligned on a 32-bit boundary for YUV 422 pixel format and a 64-bit boundary for YUV 411 pixel
format.

Bit Description
30:16 Bit[30:16] contains the linear stride of the overlay surface in bytes. If interlaced video

output mode is enabled, the linear stride is still programmed to 1x the regular stride of
the surface, and will be multiplied by 2 when used.

31 reserved

vidInAddr0

Bit Description
23:0 Starting address of video-in buffer 0

vidInAddr1

Bit Description
23:0 Starting address of video-in buffer 1

vidInAddr2

Bit Description
23:0 Starting address of video-in buffer 2

vidInStride

Bit Description
14:0 This register contains the linear stride of the buffer in bytes. If interlaced video input

mode is enabled, the linear stride is still programmed to 1x the regular stride, and will
be multiplied by 2 before used.

vidCurrOverlayStartAddr
The vidCurrOverlayStartAddr register allows the host to read the start address which the video processor
is using to refresh the overlay window for the current frame.

Bit Description
23:0 Start physical address the video processor is using to refresh the overlay window. Read only.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
92 Printed 03/01/99

 Video-In Interface

Function
Video In Processor supports several connector interfaces for video data input. The following table shows
the signals needed for each interface.

Signals

Ports DDC(I2C) VMI* VMI (Mode A) VMI (Mode B)
VMI Video Port Hsync in Hsync in Hsync in
VMI Video Port Vsync in Vsync in Vsync in
VMI Video Port Vactive Vactive Vactive
VMI Video Port P[7:0] P[7:0] P[7:0]
VMI Video Port Pixclk (in) Pixclk (in) Pixclk in)
VMI I2C Port SDA (in/out)
VMI I2C Port SCK (in/out)
VMI Host Port D[7:0] (in/out) D[7:0]
VMI Host Port A[3:0] (out) A[3:0]
VMI Host Port cs_n (out) cs_n
VMI Host Port ds_n (out) rd_n
VMI Host Port r/w_n (out) wr_n
VMI Host Port dtack_n (in) ready
DDC Port SDA (in/out)
DDC Port SCK (in/out)
System signals vmi_reset_n (out) vmi_reset_n (out) vmi_reset_n (out)
System signals vmi_int_n (in) vmi_int_n vmi_int_n
System signals vmi_present_n (in) vmi_present_n vmi_present_n

A. Video-In Interface:

General Description

When video data arrives through the Video-In interface, they undergo the optional decimation and
filtering, packed into words of 128 bits in a FIFO before written into the memory. As writes to the memory
is always aligned on a 128-bit boundary, the appropriate byte enables also need to be set with the writes.
Supported pixel formats for the video-in data are YUV422 and YUV411. Both pixel formats are stored in
a form of 16 bit per pixel, which means that 4 bit are unused per pixel in the case of YUV411.

Video data are stored in the Video-In frame buffers whose starting addresses are specified by the registers
VidInAddr0, VidInAddr1, and VidInAddr2. VidInAddr1 and VidInAddr2 are used for double and triple
buffering to avoid video tearing. However, since video is coming in at a different rate from the video
refresh, switching of the video-in drawing buffers is not synchronous to the Vsync of the video refresh. At
the end of each VMI frame, the vmi_int input signal will be asserted. The video processor will then switch
to the next video-in frame buffer for the next VMI frame if multiple buffering is enabled. If disabled, the
same video-in frame buffer will be overwritten. At the same time, the video processor also updates the
VidInStatus register which indicates the VMI buffer VMI just finishes drawing (0, 1, 2), and whether the
buffer contains even or odd field. An interrupt signal will signal the host for display buffer flipping for the
video-in data. On the other hand, if the “Video_in data displayed as overlay enable” bit in VidProcCfg is

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
93 Printed 03/01/99

set, the video porcessor will do the display buffer flipping automatically for the overlay provided that all
the corresponding configuration registers for the overlay is set up correctly (e.g., overlay surface enable,
overlay pixel format, overlay_dudx, …… etc).

If Weave video-in deinterlaced mode is enabled, the video processor detects even/odd field from
VREF(Vsync) and HREF(Hsync). If odd, the specified VidInAddr register will be used as the starting
address of the video-in frame buffer. If even, VidInStride will be used as the starting address offset, and
added to the specified VidInAddr. Video-in buffer will be switched at every other Vsync. VidInStride
should be programmed to contain the a value which equals to 1X the regular line stride regardless of
whether the video-in data is interlaced or not.

1. VMI

-data:

8-bit YCbCr interface is used. The data format is CCIR-656 YCbCr 422, and pixels arrive in the style of
(Cb0[7:0] or U0[7:0]) -> Y0[7:0] -> (Cr0[7:0] or V0[7:0]) -> Y1[7:0].

Video data may be interlaced.

-timing:

Timing signals include VREF, HREF, VACTIVE, and PIXCLOCK.

VREF and HREF are active high VSYNC and HSYNC. If HREF is high during the falling edge of VREF,
the field is even. If HREF is low at that time, the field is odd.

VACTIVE is a blanking signal which indicates pixel data is valid across the YCbCr bus.

Video Limitation

1. In 1x mode, 3 streams of pixel fetching will consume more memory bandwidth than available for 32-
bit desktop. This means chroma-keying and bilinear filtering cannot be turned on simultaneously for
32-bit desktop.

2. In 2x mode (for any display larger than 1280 X 1024) where we refresh 2 screen pixels per

cycle at 110MHz, bilinear filtering is not supported. All backend zoom (magnification) is done
by point sampling (replication).

3. 1 - 10X backend zoom (magnification) with increments of 0.1X. Larger magnification is

supported, but with bigger increments.

 1 to 1/16X video-in decimation (minimization) with increments of 0.015X.

4. Retain the 3-bit tap filter for RGB565 dithered as an alternative
 to the 2x2 box filter.

5. Interlaced video output mode is not implemented.

6. Hw cursor is 2 color only.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
94 Printed 03/01/99

7. YUV 411 pixel format will be stored as unpacked in the frame buffer. This means each pixel
will occupy 16 bits instead of 12 bits. This makes pixel extraction easier, but consumes
more memory.

8. Video with YUV 422 format needs to be stored on a 4-byte memory boundary while YUV 411
on a 8-byte boundary. This is necessary because UV are shared between 2 pixels in 422
while UV are shared between 4 pixels in 411.

10.AGP/CMD Transfer/Misc Registers
Memory Base 0: Offset 0x0080000

Register Name Address Bits R/W Description
AGP

agpReqSize 0x000(0) 19:0 R/W Size of AGP request
agpHostAddressLow 0x004(4) 31:0 R/W Host address bits 31:0
agpHostAddressHigh 0x008(8) 31:0 R/W Host address bits 35:32
agpGraphicsAddress 0x00C(12) 24:0 R/W Graphics address bits 24:0
agpGraphicsStride 0x010(16) 16:0 R/W Graphics stride
agpMoveCMD 0x014(20) n/a W Begin AGP transaction

Misc
yuvBaseAddress 0x100(256) 25:0 R/W YUV planar base address
yuvStride 0x104(260) 12:0 R/W Y, U and V planes stride value

agpReqSize
agpReqSize defines the AGP packet transfer size. The maximum transfer size is 4-Mbyte block of data.
This register is read write and has no default value.

Bit Description
19:0 reserved. Default is 0x0.

agpHostAddressLow
During AGP transfers this address defines the source address bits 31:0 of AGP memory to fetch data
from. AGP addresses are 36-bits in length and are byte aligned. The upper 4 bits reside in the
agpHostAddressHigh register. This register is read write, and defaults to 0.

Bit Description
31:0 Lower 32 bits of AGP memory. Default is 0x0.

agpHostAddressHigh
The agpHostAddressHigh defines the stride, width, and upper 4-bits of source AGP address, during
AGP transfers. Stride and width are defined in quadwords. This register is read write, and defaults to 0.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
95 Printed 03/01/99

Bit Description
13:0 AGP Width. Default is 0x0.
27:14 AGP Stride. Default is 0x0.
31:28 Upper 4 bits of AGP memory. Default is 0x0.

agpGraphicsAddress
 agpgraphicsAddress defines the destination frame buffer address and type of the AGP transfer. At the
beginning of an AGP transfer this address is loaded into an internal address pointer that increments for
each data received over AGP. This register is read write, and defaults to 0.

Bit Description
25:0 Frame buffer offset. Default is 0x0.

agpGraphicsStride
agpGraphicsStride defines the destination stride in bytes of the AGP transfer. Stride is in multiples of
bytes. This register is read write, and defaults to 0.

Bit Description
14:0 Frame buffer Stride. Default is 0x0.

agpMoveCMD
agpMoveCMD starts an AGP transfer. When started agpHostAddress is loaded into the source pointer
and agpGraphicsAddress is loaded into the destination pointer. The source pointer is incremented after
data is fetched from AGP memory and written into frame buffer memory addresses by the destination
pointer. The destination pointer is then incremented after the data has been written. This register is write
only and has no default.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
96 Printed 03/01/99

Bit Description
2:0 reserved
4:3 Dest memory type (0=Linear FB, 1=planar YUV, 2=3D LFB, 3 = texture port).

Default is 0x0.
5 Command stream ID. This bit defines which command fifo when using a host initiated

AGP data move. Default is 0x0.

yuvBaseAddress
yuvBaseAddress register contains the starting frame buffer location of the yuv aperture.

Bit Description
24:0 YUV base Address. Default is 0x0.

yuvStride
yuvStride register contains the destination stride value of the U and V planes.

Bit Description
13:0 Y, U and V stride register. Default is 0x0.
30:14 reserved (must be 0)
31 Reserved (must be 0)

11. AGP/PCI Configuration Register Set

Register Name Addr Bits Description
Vendor_ID 0 15:0 3Dfx Interactive Vendor Identification
Device_ID 2 15:0 Device Identification
Command 4 15:0 PCI bus configuration
Status 6 15:0 PCI device status
Revision_ID 8 7:0 Revision Identification
Class_code 9 23:0 Generic functional description of PCI device
Cache_line_size 12 7:0 Bus Master Cache Line Size
Latency_timer 13 7:0 Bus Master Latency Timer
Header_type 14 7:0 PCI Header Type
BIST 15 7:0 Build In Self-Test Configuration
memBaseAddr0 16 31:0 Memory Base Address (Init/3D/2D regs)
memBaseAddr1 20 31:0 Memory Base Address (LFB)
ioBaseAddr 24 31:0 I/O Base Address
Reserved 28-43 Reserved
subVendorID 44-45 15:0 Subsystem Vendor ID
subSystemID 46-47 15:0 Subsystem ID
romBaseAddr 48 31:0 Expansion Rom Base Address
Capabilites Ptr 52 31:0 Pointer to start of New Capabilities structure [7:0]
Reserved 56-59 Reserved
Interrupt_line 60 7:0 Interrupt Mapping

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
97 Printed 03/01/99

Interrupt_pin 61 7:0 External Interrupt Connections
Min_gnt 62 7:0 Bus Master Minimum Grant Time
Max_lat 63 7:0 Bus Master Maximum Latency Time
fabID 64 2:0 Fab Identification
Reserved 68-75 Reserved
cfgStatus 76 31:0 Aliased memory-mapped status register
cfgScratch 80 31:0 Scratch pad register
AGP Cap_ID 84 31:0 AGP Capability identifier register (read only)
AGP status 88 31:0 AGP status register (read only)
AGP_Cmd 92 31:0 AGP command register (read / write)
ACPI Cap ID 96 31:0 ACPI Capability identifier register (read only)
ACPI cntrl/status 100 31:0 ACPI Control and Status register (read / write)
Reserved 92-255 n/a Reserved

Vendor_ID Register
The Vendor_ID register is used to identify the manufacturer of the PCI device. This value is assigned by
a central authority that will control issuance of the values. This register is read only.

Bit Description
7:0 3Dfx Interactive Vendor Identification. Default is 0x121a.

Device_ID Register
The Device_ID register is used to identify the particular device for a given manufacturer. This register is
read only.

Bit Description
15:0 Banshee Device Identification. Default is 0x3.

Command Register
The Command register is used to control basic PCI bus accesses. See the PCI specification for more
information. Bit 0,1 and 5 are R/W, and bits 15:6 and 4:2 are read only.

Bit Description
0 I/O Access Enable. Default is 0.
1 Memory Access Enable (0=no response to memory cycles). Default is 0.
2 Master Enable. Default is 0.
3 Special Cycle Recognition. Default is 0.
4 Memory Write and Invalidate Enable. Default is 0.
5 Palette Snoop Enable. Default is 0.
6 Parity Error Respond Enable. Default is 0.
7 Wait Cycle Enable. Default is 0. (strapped)
8 System Error Enable. Default is 0.
15:9 reserved. Default is 0x0.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
98 Printed 03/01/99

Status Register
The Status register is used to monitor the status of PCI bus-related events. This register is read only and
is hardwired to the value 0x0.

Bit Description
3:0 Reserved. Default is 0x0.
4 New Capabilities (AGP/ACPI). Default is 1 for AGP/ACPI (Strapped)
5 66 Mhz Capable. Default is 0 for PCI 33 Mhz 1 for AGP (Strapped)
6 UDF supported. Default is 0.
7 Fast Back-toBack capable. Default is 0. (Strapped)
8 Data Parity Reported. Default is 0.
10:9 Device Select Timing. Default is 0x0.
11 Signaled Target Abort. Default is 0.
12 Received Target Abort. Default is 0.
13 Received Master Abort. Default is 0.
14 Signaled System Error. Default is 0.
15 Detected Parity Error. Default is 0.

Revision_ID Register
The Revision_ID register is used to identify the revision number of the PCI device. This register is read
only.

Bit Description
7:0 Banshee Revision Identification. (0=na, 1=.35u, 2 = .25u)

Class_code Register
The Class_code register is used to identify the generic functionality of the PCI device. See the PCI
specification for more information. This register is read only.

Bit Description
23:0 Class Code. Default is 0x3.

Cache_line_size Register
The Cache_line_size register specifies the system cache line size in doubleword increments. It must be
implemented by devices capable of bus mastering. This register is read only and is hardwired to 0x0.

Bit Description
7:0 Cache Line Size. Default is 0x0.

Latency_timer Register
The Latency_timer register specifies the latency of bus master timeouts. It must be implemented by
devices capable of bus mastering. This register is read only and is hardwired to 0x0.

Bit Description
7:0 Latency Timer. Default is 0x0.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
99 Printed 03/01/99

Header_type Register
The Header_type register defines the format of the PCI base address registers (memBaseAddr in
Banshee). Bits 0:6 are read only and hardwired to 0x0. Bit 7 of Header_type specifies Banshee as a
single function PCI device.

Bit Description
6:0 Header Type. Default is 0x0.
7 Multiple-Function PCI device (0=single function, 1=multiple function). Default is 0x0.

BIST Register
The BIST register is implemented by those PCI devices that are capable of built-in self-test. Banshee does
not provide this capability. This register is read only and is hardwired to 0x0.

Bit Description
7:0 BIST field and configuration. Default is 0x0.

memBaseAddr0 Register
The memBaseAddr register determines the base address for all PCI memory mapped accesses to
Banshee. Writing 0xffffffff to this register will reset it to its default state. Once memBaseAddr has been
reset, it can be probed by software to determine the amount of memory space required for Banshee. A
subsequent write to memBaseAddr will set the memory base address for all PCI memory accesses. See
the PCI specification for more details on memory base address programming. Banshee requires 32
Mbytes of address space for memory mapped accesses. For memory mapped accesses on the 32-bit PCI
bus, the contents of memBaseAddr are compared with the pci_ad bits 31..25 (upper 7 bits) to determine
if Banshee is being accessed. This register is R/W.

Bit Description
31:0 Memory Base Address. Default is 0xf8000000.

memBaseAddr1 Register
The memBaseAddr register determines the base address for all PCI memory mapped accesses to
Banshee. Writing 0xffffffff to this register will reset it to its default state. Once memBaseAddr has been
reset, it can be probed by software to determine the amount of memory space required for Banshee. A
subsequent write to memBaseAddr will set the memory base address for all PCI memory accesses. See
the PCI specification for more details on memory base address programming. Banshee requires 32
Mbytes of address space for memory mapped accesses. For memory mapped accesses on the 32-bit PCI
bus, the contents of memBaseAddr are compared with the pci_ad bits 31..25 (upper 7 bits) to determine
if Banshee is being accessed. This register is R/W.

Bit Description
31:0 Memory Base Address. Default is 0xf8000008.

ioBaseAddr Register
The memBaseAddr register determines the base address for all PCI IO mapped accesses to Banshee.
Writing 0xffffffff to this register will reset it to its default state. Once ioBaseAddr has been reset, it can
be probed by software to determine the amount of io space required for Banshee. A subsequent write to

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
100 Printed 03/01/99

ioBaseAddr will set the IO base address for all PCI memory accesses. See the PCI specification for more
details on IO base address programming. Banshee requires 256 Bytes of address space for IO mapped
accesses. For IO mapped accesses on the 32-bit PCI bus, the contents of ioBaseAddr are compared with
the pci_ad bits 31..8 (upper 24 bits) to determine if Banshee is being accessed. This register is R/W.

Bit Description
31:0 IO Base Address. Default is 0xffffff01.

subVendorID Register
The subVendorID register defines the board manufacturer ID. During system initialization the expansion
code located at romBaseAddr will set this register to the appropriate value. This register is read during
plug and play initialization. See the PC97 specification for more details on subVendorID and plug and
play requirements. The default value for this register is automaticaly loaded after reset from the ROM.
Bits 7:0 are stored in ROM location 0x7ff8, while bits 15:8 are stored in 0x7ff9 for a 32K ROM. Bits 7:0
are stored in ROM location 0xfff8, while bits 15:8 are stored in 0xfff9 for a 64K ROM.
Bit Description
15:0 Subsystem Vendor ID register, Initialized by expansion prom, default is read by ROM.

subSystemID Register
The subSystemID register defines the board type. During system initialization, the expansion code
located at romBaseAddr will set this register to the appropriate value. This register is read during plug
and play initialization. See the PC97 specification for more details on subSystemID and plug and play
requirements. The default value for this register is automaticaly loaded after reset from the ROM. Bits 7:0
are stored in ROM location 0x7ffa, while bits 15:8 are stored in 0x7ffb for a 32K ROM. Bits 7:0 are stored
in ROM location 0xfffa, while bits 15:8 are stored in 0xfffb for a 64K ROM.

Bit Description
15:0 Subsystem ID register, Initialized by expansion prom, default is read by ROM.

romBaseAddr Register
The romBaseAddr register determines the base address for all PCI ROM accesses to Banshee. Writing
0xfffffffe to this register will reset it to its default state. Once romBaseAddr has been reset, it can be
probed by software to determine the amount of ROM space required for Banshee. A subsequent write to
romBaseAddr will set the ROM base address for all PCI memory accesses. See the PCI specification for
more details on memory base address programming. Banshee requires 32 to 64 Kbytes of address space
for ROM accesses and is configured by strapping bit 2. For ROM accesses on the 32-bit PCI bus, the
contents of romBaseAddr are compared with the pci_ad bits 31..16 (upper 16 bits) to determine if
Banshee is being accessed. This register is R/W.

Bit Description
31:0 Expansion Rom Base Address. Default is 0xffff8000 or 0xffff0000.

Capabilities Pointer
The Capabilities pointer register contains the offset in configuration space of beginning of the capability
link list structure. This register is read only.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
101 Printed 03/01/99

Bit Description
31:0 Capabilities Pointer offset. Default is 0x00000054 if AGP is enabled via the strapping

bits, otherwise it is 0x60.

Interrupt_line Register
The Interrupt_line register is used to map PCI interrupts to system interrupts. In a PC environment, for
example, the values of 0 to 15 in this register correspond to IRQ0-IRQ15 on the system board. The value
0xff indicates no connection. This register is R/W.

Bit Description
0:7 Interrupt Line. Default is 0x5 (IRQ5)

Interrupt_pin Register
The Interrupt_pin register defines which of the four PCI interrupt request lines, INTA* - INTRD*, the
PCI device is connected to. This register is read only and is hardwired to 0x1.

Bit Description
0:7 Interrupt Pin. Default is 0x1 (INTA*)

Min_gnt Register
The Min_gnt register specifies the burst period a PCI bus master requires. It must be implemented by
devices capable of bus mastering. This register is read only and is hardwired to 0x0 since Banshee does
not support bus mastering.

Bit Description
7:0 Minimum Grant. Default is 0x0.

Max_lat Register
The Max_lat register specifies the maximum request frequency a PCI bus master requires. It must be
implemented by devices capable of bus mastering. This register is read only and is hardwired to 0x0 since
Banshee does not support bus mastering.

Bit Description
7:0 Maximum Latency. Default is 0x0.

fabID Register
Identification code of the manufacturing plant.

Bit Description
3:0 Manufacturing fab identification. Read only. (1 = TSMC)
31:4 Scratch pad. (read / write)

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
102 Printed 03/01/99

cfgStatus Register
The cfgStatus register is an alias to the normal memory-mapped status register. See section x.x for a
description of the status registers. Reading the configuration space cfgStatus register returns the same
data as if reading from the memory-mapped status register.

cfgScratch Register
The cfgScratch register can be used as scratch pad storage space by software. The values of cfgScratch
are not used internally to alter functionality, so any value can be stored to and read from cfgScratch.

Bit Description
31:0 Scratchpad register. Default is 0x0.

New capabilities (AGP and ACPI)
AGP and ACPI Use PCI ‘s new capabilities mechanism. The New Capabilities structure is implemented
as a linked list of registers containing information for each function supported by Banshee. The list
contains both AGP status and command registers. AGP registers read back ‘0’ if AGP is disabled via the
strapping pins.

Capability Identifier Register
The capability register resides at offset (CAP_OFFSET). This register identifies AGP revision compliance

Bit Description
7:0 Capability ID. Always == 2 for AGP
15:8 Next Capability ID Pointer. Default is 0x60.
19:16 Minor AGP revision, the interface conforms to
23:20 Major AGP revision, the interface conforms to
31:24 Reserved. Defined as 0.

AGP Status
AGP status register documents maximum number of requests that Banshee can manage, AGP sideband
capable, and transfer rate

Bit Description
1:0 Data rates that Banshee can deliver/receive. Bit[0] = 1x, bit[1] = 2x. Default is 1.
4:2 Reserved. Default is 0
5 AGP_4G. AGP supports above 4 Giga bytes of memory. Default is 1.
8:6 Reserved. Default is 0.
9 SBA. Device supports side band addressing
23:10 Reserved. Default is 0
31:24 RQ_DEPTH. Max # of requests that Banshee can manage. Default is 7.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
103 Printed 03/01/99

AGP Command
AGP status register documents maximum number of requests that Banshee can manage, AGP sideband
capable, and transfer rate

Bit Description
2:0 Data Rate bit[0] = 1x, bit[1] = 2x. Only 1 bit must be set (Read/Write)
4:3 Reserved. Default is 0
5 AGP_4G_ENABLE. AGP supports above 4 Giga bytes of memory. Default is 0.
7:6 Reserved. Default is 0
8 AGP enable. Enables AGP function. AGP_RESET sets this bit to 0. (R/W)
9 SBA_ENABLE. Enable side band addressing mechanism. (R/W)
23:10 Reserved. Default is 0
31:24 RQ_DEPTH. Max # of requests System can handle. (R/W)

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
104 Printed 03/01/99

ACPI Cap ID
The ACPI Cap ID register identifies what Banshee supports in ACPI.

Bit Description
7:0 Capability ID. Always == 1 for ACPI
15:8 Next Capability ID Pointer. Default is 0
18:16 Version. Default is 0x1.
19 PME Clock. Default is 0.
20 Aux Power Source. Default is 0.
21 DSI. Default is 1. Indicates additional software initialization must take place.
24:22 Reserved. Default is 0
25 D1 Support. Default is 0.
26 D2 Support. Default is 0.
31:27 PME Support. Default is 0.

ACPI Ctrl/Status
ACPI status register allows transition from the D3 to D0 state.

Bit Description
1:0 Power State. Defaults to 0x0. Banshee only accepts writes of 0x0 or 0x3 to these bits.

(R/W)
7:2 Reserved. Default is 0
8 Sticky bit. Default is 0.
12:9 Data Select. Default is 0.
14:13 Data Scale. Default is 0.
15 Sticky bit. Default is 0.
21:16 Reserved. Default is 0
22 B2 B3 support. Default is 0.
23 BPCC_En. Default is 0.
31:24 Data for data select. Default is 0.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
105 Printed 03/01/99

12. Init Registers

Register Name I/O
Address

Bits R/
W

Description

status 00-03 31:0 R Banshee status register
pciInit0 04-07 31:0 R/W PCI initialization register
lfbMemoryConfig 0c-0f 31:0 R/W Should remain 0xa2200
miscInit0 10-13 31:0 R/W Misc. initialization register
miscInit1 14-17 31:0 R/W Misc. initialization register
dramInit0 18-1b 31:0 R/W Dram initialization register0
dramInit1 1c-1f 31:0 R/W Dram initialization register1
agpInit0 20-23 31:0 R/W AGP initialization register
textureGRXBackend 24-27 31:0 R/W Texture Cache initialization register
vgaInit0 28-2b 31:0 R/W VGA initialization register
vgaInit1 2c-2f 31:0 R/W VGA initialization register
2d_command 30-33 31:0 W 2d command register (to be used to write

SGRAM mode and special mode registers)
2d_srcBaseAddr 34-37 31:0 W 2d srcBaseAddr register (to be used to write to

SGRAM mode and special mode registers)
strapInfo 38-3b 11:0 R Strap bits after power up.
reserved 3c-3f na

status Register (0x0)
The status register provides a way for the CPU to interrogate the graphics processor about its current state
and FIFO availability. The status register is read only, but writing to status clears any Banshee generated
PCI interrupts.

Bit Description
4:0 PCI FIFO freespace (0x1f=FIFO empty). Default is 0x1f.
5 PCI FIFO busy. Default is 0x0.
6 Vertical retrace (0=Vertical retrace active, 1=Vertical retrace inactive). Default is 1.
7 FBI graphics engine busy (0=engine idle, 1=engine busy). Default is 0.
8 TREX busy (0=engine idle, 1=engine busy). Default is 0.
9 Banshee busy (0=idle, 1=busy). Default is 0.
10 2D busy (0=idle, 1=busy). Default is 0.
11 Cmd fifo 0 busy. Default is 0x0.
12 Cmd fifo 1 busy. Default is 0x0.
27:13 reserved
30:28 Swap Buffers Pending. Default is 0x0.
31 PCI Interrupt Generated. Default is 0x0.

Bits(4:0) show the number of entries available in the internal host FIFO. The internal host FIFO is 32
entries deep. The FIFO is empty when bits(4:0)=0x1f. Bit(6) is the state of the monitor vertical retrace
signal, and is used to determine when the monitor is being refreshed. Bit(7) of status is used to determine
if the graphics engine of FBI is active. Note that bit(7) only determines if the graphics engine of FBI is
busy – it does not include information as to the status of the internal PCI FIFOs. Bit(8) of status is used

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
106 Printed 03/01/99

to determine if TREX is busy. Note that bit(8) of status is set if any unit in TREX is not idle – this
includes the graphics engine and all internal TREX FIFOs. Bit(9) of status determines if all units in the
Banshee system (including graphics engines, FIFOs, etc.) are idle. Bit(9) is set when any internal unit in
Banshee is active (e.g. graphics is being rendered or any FIFO is not empty). Bit(10) of status is used to
determine if the 2D graphics engine is active. Bits(11:10) of status is used to determine if either command
fifo 0 or command fifo 1 are active. When a SWAPBUFFER command is received from the host cpu, bits
(30:28) are incremented – when a SWAPBUFFER command completes, bits (30:28) are decremented.
Bit(31) of status is used to monitor the status of the PCI interrupt signal. If Banshee generates a vertical
retrace interrupt (as defined in pciInterrupt), bit(31) is set and the PCI interrupt signal line is activated to
generate a hardware interrupt.

pciInit0 Register (0x4)
pciInit0 register contains the control information on how PCI should behave. Bits 15:0 are the output of
the counter clocked by GRX clock. Bits 19:18 control Interrupts. Bits 17:13 allow the retry interval to be
increased, while bits 12 and 11 allow retries to be disabled. Biys 9 and 8 determint the bus performance.
Bits 6:2 determine the PCI fifo Low water mark. This value should never be 0 (no overflow checking is
done) and should be set greater than 2 for any fast device operations. Bits 25:20 control how many non
modal LFB accesses are grouped together before being pushed to memory. This register is read write and
defaults to 0x01800040.

Bit Description

1:0 Reserved
6:2 PCI FIFO Empty Entries Low Water Mark. Valid values are 0-31. Default is 0x10.
7 Reserved. Default is 0x1.

8 Wait state cycles for PCI read accesses (0=1 ws, 1=2 ws). Default is 0x0.
9 Wait state cycles for PCI write accesses (0=no ws, 1=one ws). Default is 0x0.
10 Reserved. Default is 0x0.
11 Disable PCI IO access retries. . Default is 0x0.
12 Disable PCI Memory access retries. Default is 0x0.
17:13 Retry interval, less 8 clocks. Default is 0.
18 PCI Interrupt Enable Default is 0.
19 PCI Interrupt Time Out Enable. Default is 0.
25:20 PCI Fifo read threshold. Default is 0x18.
26 Force PCI/CMD Frame buffer accesses to high priority. (1= high, 0 = low, except for

PCI frame buffer reads). . Default is 0x0.

lfbMemoryConfig Register (0xC)
This register defaults to 0xa2200.

miscInit0 Register (0x10)
miscInit0 contains resets to all subsystems, pixel swizzling, and Y origin subtraction. Bits [1:0] reset the
3D graphics subsytem. Bits [3:2] enable byte/word swizzling during register accesses to 2D or 3D. Bits
[6:4] define resets for video, 2D, and memory subsytems. Bits[29:18] define the Y origin subtraction

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
107 Printed 03/01/99

value used during address calculation when Y flip is enabled in fbzMode. Bits [31:30] enable byte/word
swizzling during non modal LFB reads and writes

Bit Description
Miscellaneous Control

0 FBI Graphics Reset (0=run, 1=reset). Default is 0.
1 FBI FIFO Reset (0=run, 1=reset). Default is 0. [resets PCI FIFO and the PCI data

packer]
2 Byte swizzle incoming register writes (1=enable). [Register byte data is swizzled if

miscInit0[2]==1 and pci_address[20]==1] for 3D registers, and pci_address[19] ==1
for 2D registers. Default is 0.

3 Word swizzle incoming register writes (1=enable). [Register word data is swizzled if
miscInit0[2] == 1 and pci_address[20] ==1] for 3D registers, and pci_address[19] ==1
for 2D registers. Default is 0.

4 Video Timing Reset (0=run, 1=reset). Default is 0.
5 2D Graphics Reset (0=run, 1=reset). Default is 0.
6 Memory Timing Reset (0=run, 1=reset). Default is 0.
7 VGA Video Timing Reset (0=run, 1=reset). Default is 0.
10:8 Programmable delay to be added to the blank signal before it outputs to the TV out

interface. This is in terms of number of flops clocked by the 2x clock. The objective is to
synchronize the blank signal with the data output by matching the CLUT delay. Default
is 0x0.
 000 = 2 flops; 001 = 3 flops; …… 111 = 9 flops

13:11 Programmable delay to be added to the vsync and hsync signals before they are output
to the TV out interface. This is in terms of number of flops clocked by the 2x clock. The
objective is to synchronize the sync signals with the data output by matching the CLUT
delay. Default is 0x0.
000 = 2 flops; 001 = 3 flops; …… 111 = 9 flops

16:14 Programmable delay to be added to the vsync and hsync signals before they are output
to the monitor. This is in terms of number of flops clocked by the 2x clock. The
objective is to synchronize the sync signals with the data output by matching the delay
through the CLUT and DAC. Default is 0x0.
000 = 2 flops; 001 = 3 flops; …… 111 = 9 flops

17 Reserved
Y Origin Definition bits

29:18 Y Origin Swap subtraction value (12 bits). Default is 0x0.
30 Byte swizzle incoming non modal LFB writes (1=enable). Default is 0.
31 Word swizzle incoming non modal LFB writes (1=enable). Default is 0.

miscInit1 Register (0x14)
miscInit1 register controls miscellaneous operations of Banshee available in real mode. Bit 0 is used to
correct for CLUT addresses being inverted during host accesses. This bit should be set to 1 for proper
operation. Bit 3 enables and disables writes to the PCI subVendorID and subSystemID registers. Bit 4
enables writes to the ROM through romBaseAddr. Bit 5 enables the new triangle address aliasing
allowing better address compaction. Bit 6 disables texture mapping.

Power down of H3 is controlled by bits 11:7, where bit 7 powers down the color lookup tables, bit 8
powers down the DAC itself, bits 9, 10, and 11 power down the three PLL’s.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
108 Printed 03/01/99

Bits 17 and 18 disable stalling on the opposite pipe (either 2D or 3D) when a command is sent down.
These bits are used for testing, and should not be set during normal operation.

Bit 19 is used to terminate command fifo activity. Setting this bit to ‘1’ halts the command fifo and resets
all of the registers in the command register space to their default values. In order for Banshee to be shut
down gracefully, this bit should only be set when Banshee is idle. Be sure to restore this bit to 0 when
finished.

Bits 28 through 24 indicate the value of the strapping registers at boot up. Note that altering these bit
effect the read back information of PCI and AGP resource reporting. For more information on the
strapping registers, see the section on Power on Strapping

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
109 Printed 03/01/99

Bit Description
Miscellaneous Control

0 invert_clut_address. Default = 0.
2:1 tri_mode - triangle iterator mode. Default is 0x0.
3 Enable Sub Vendor/ Subsystem ID writes. (0=disable, 1=enable). Default is 0x0.
4 Enable ROM writes. (0=disable, 1=enable). Default is 0x0.
5 Alternate triangle addressing map (0=disable, 1=enable). Default is 0x0.
6 Disable texture mapping (0=enable, 1=disable). Default is 0x0.

Power Down Control
7 Power Down CLUT. Default is 0x0.
8 Power Down DAC. Default is 0x0.
9 Power Down Video PLL. Default is 0x0.
10 Power Down Graphics PLL. Default is 0x0.
11 Power Down Memory PLL. Default is 0x0.

2D Block Write Control
14:12 Block write threshold. Default is 0x0.
15 Disable 2D Block write. Default is 0x0.
16 Disable 2D stall on 3D synchronous dispatch. When set to 1, 2D will not wait on

pending 3D operations to complete before being issued. Default is 0x0.
17 Disable 3D stall on 2D synchronous dispatch. When set to 1, 3D will not wait on

pending 2D operations to complete before being issued. Default is 0x0.
18 Reserved.
19 Command Stream Reset (1=reset command streams, 0 = normal operation). Default is

0x0.
23:20 Reserved
24 PCI Fast device. Default strapped on VMI_DATA 0
25 PCI BIOS Size. Default strapped on VMI_DATA 1
26 PCI 66Mhz. Default strapped on VMI_DATA 2.
27 AGP Enabled. Default strapped on VMI_DATA 3.
28 PCI Device Type. Default strapped on VMI_DATA 4.

TV Out clock delay adjust
29 tv_out_clk_inv - invert delayed clock. Default = 0.
31:30 tv_out_clk_del_adj - choose between 4 values of delay. Default = 0.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
110 Printed 03/01/99

dramInit0 Register (0x18)
dramInit0 controls the sgram interface timing of specific timing parameters. The default value of this
register is 0x00579d29.

Bit Description
Sgram access timing

1:0 tRRD - row active to row active (1-4 clks). Default is 0x1 (2 clks)
3:2 tRCD - RAS to CAS delay (1-4 clks). Default is 0x2 (3 clks).
5:4 tRP - row precharge (1-4 clks). Default is 0x2 (3 clks).
9:6 tRAS - minimum active time (1-16 clks). Default is 0x4 (5 clks).
13:10 tRC - minimum row cycle time (1-16 clks). Default is 0x7 (8 clks).
15:14 tCAS latency (1-4 clks). Default is 0x2 (3 clks).
16 tMRS mode and special mode register cycle time (1-2 clks).. Default is 0x1 (2 clks)
17 tDQR Rd to DQM assertion delay (0-1 clks). Default is 0x1 (1 clk)
18 tBWC Block write cycle time (1-2 clks). Default is 0x1 (2 clks)
19 tWL WR to pre (1-2 clks). Default is 0x0 (1 clk)
21:20 tBWL BKWR to Pre (1-4 clks). Default is 0x1 (2 clks)
22 tRL RD to PRE (1-2 clks). Default is 0x1 (2 clks)
23 dont allow WR/BKWR to terminate RD, use BST. Default is 0x0 (allow wr-term)
24 Disable the dead bus cycle btw. RD and WR (0=enable, 1=disable). Default is 0x0
25 SGRAM write per bit enable (0=disable, 1=enable). Default is 0x0
26 Number of Sgram chipsets (0=1, 1=2). Default is 0x0. (power on strap =

VMI_DATA_5)
27 Sgram type (0=8Mbit, 1=16Mbit). Default is 0x0. (power on strap = VMI_DATA_6)

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
111 Printed 03/01/99

dramInit1 Register (0x1C)
Bit Description

SGRAM Refresh Control
0 Refresh Enable (0=disable, 1=enable). Default is 0.
9:1 Refresh_load Value. (Internal 14-bit counter 5 LSBs are 0x0) Default is 0x100.

Video Refresh Control
10 Video arbitration priority. (0=normal, 1=aggressive) Default is 0

Miscellaneous video Control
11 Triple buffer enable (0=double buffering, 1=triple buffering). Default = 0.
12 Dither passthrough (0=dithering, 1=bypass dithering). Default = 0.

SGRAM read data sampling control
13 sg_clk_nodelay - bypass the delay element. Default = 1.
14 sg_use_inv_sample - resample the flopped sgram data with another negative-edge flop

before flopping data with mclk. Default = 0.
15 sg_del_clk_invert - invert delayed clock before using it. Default = 0.
19:16 sg_clk_adj - delay value for sgram read data sample clock. Default = 0x0. (2-62 NAND

gates of delay, in steps of 4)
SGRAM frame buffer output delay control (control + data bits)

23:20 sg_oclk_del_adj - Delay amount for clock out to SGRAMs. Default = 0xf.
24 sg_oclk_nodelay - forces clock out to SGRAMs to have minimum delay. (0=delayed,

1=nodelay). Default = 0.
Memory Controller configuration bits

25 mctl_short_power_on. Power on in 128 cycles. Default = 0. VMI_ADDR_1
26 mctl_no_aggressive - turn off mem_ctrl’s aggressive row activation. Default = 0.
27 mctl_pagebreak - force a pagebreak for all accesses. Default = 0.
28 mctl_tristate_outputs - force data outputs to be tristate. Default = 0.
29 mctl_no_vin_locking - prevent vin from locking the bus during requesting. 0=allow

locking, 1=prevent locking. Default = 0.
30 mctl_type_sdram - (0=use SGRAMs, 1=use SDRAMs). Default = 0. VMI_ADDR_2

When using SGRAMs, mctl_type_sdram should be set to 0. When using SDRAMs, only 16Mbit
(16x512K parts) are supported, which result in a 16MB frame buffer. The sgram_type and sgram_chipsets
bits in dramInit0 are ignored when mctl_type_sdram=1.

Note that the fastfillCMD behaves differently when mctl_type_sdram=1 (dramInit1[30]). When
fastfilling with SGRAMs (mctl_type_sdram=0), if dithering is enabled and fastfillCMD[0]=1, no
dithering will happen. But when fastfilling with SDRAMs (mctl_type_sdram=1), if dithering is enabled
and fastfillCMD[0]=1, dithering will still happen, since SDRAMs do not support blockwriting.

agpInit0 Register (0x20)
The agpInit0 register is used to control how AGP behaves when making requests. Bit 0 sets the request
priority level. Bits [3:1] control the largest size the request can be. Bits [6:4] determine when the agp

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
112 Printed 03/01/99

request fifo becomes full (requests that have not yet been issued to the AGP target). Bits [10:7] control
when to much data has been returned, and AGP needs to begin stalling.

Bit Description
0 Force AGP request to be high priority. (0=Low, 1 = High). Default is 0x0.
3:1 Maximum AGP request length. (0=1 octword, 7 = 8 octwords). Default is 0x7.
6:4 AGP request fifo full threshold. Default is 0x1.
10:7 AGP read fifo full threshold. Default is 0x9.

vgaInit0 Register (0x28)
The vgaInit0 register is used for hardware initialization and configuration of the VGA controller in
Banshee. VGA can be disabled by writing bit 0 to a “1”. Bit 1 allows external video timing to drive the
VGA core video scan out logic. Bit 2 controls how the VGA DAC control logic views the width of the
RAM. For VGA compatibility, this bit should be set to 0 (6 bit DAC).

VGA extensions are enabled by bit 6. These extensions are mention in the VGA portion of this spec, in
the CRTC register space. Bit 10 enables the ability to read back the PCI configuration when bit 6 of this
register is 0.

Bit 8 determines if the chips should wake up as a VGA motherboard or an add in card. Bit 9 disables the
VGA to response to legacy address decoding. This bit should be set if Banshee is not the primary display
adapter in the system. By default, this bit is set if Banshee is set as a multimedia device with the
strapping bits. Setting this bit also disables write access to 0x46e8 and 0x102.

Bit 12 should be set when in an extended (non-VGA) mode. This disables the VGA from fetching
memory data during video raster scan out.

Bit 13 is used when an external DAC is supported. This bit should always be set to 0.

Bit 21:14 determine the start page of VGA in board memory. By default, VGA is placed at the beginning
of memory. If need be, it can be moved anywhere on a 64K byte boundary within 16M bytes.

Bit 22 disables VGA refresh control of board memory. When VGA is in scan out mode, it prefers
memory refresh to happen at horizontal sync time. When this bit is set to 0, three memory refresh cycles
happen after HBLANK occurs, and the memory refresh time out counter is deferred. When this bit is set
to 1, the memory refresh time out counter explicitly controls memory refresh events.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
113 Printed 03/01/99

Bit Description Default
Miscellaneous Control

0 VGA disable. (0=Enable, 1 = Disable). Setting this bit to 1 shuts off all
access to the VGA core.

0

1 Use external video timing. This bit is used to retrieve SYNC information
through the normal VGA mechanism when the VGA CRTC is not providing
timing control.

0

2 VGA 6/8 bit CLUT. (0= 6 bit, 1 = 8 bit). 0
5:3 Reserved. 1
6 Enable VGA Extensions 0
7 Reserved 0
8 0x46e8/0x3C3 Wake up select (0=use 0x46e8, 1=use 0x3C3 or IO Base +

0xC3). VGA add in cards that use 0x46e8 while mother board VGA uses
0x3C3. When Banshee is a multimedia device, this bit should be set to ‘1’
and the VGA subsystem should be enabled with IO Base + 0xC3.

0

9 Disable VGA Legacy Memory/IO Decode (0=Enable, 1=Disable) 0
10 Use alternate VGA Config read back (0 = Enable, 1=Disable). Setting this

bit to 0 allows the VGA to read back configuration through CRTC index
0x1c.

0

11 Enable Fast Blink (test bit) (1=fast blink, 0 = normal blink). 0x0
12 Use extended video shift out. Set this bit to 1 to disable all VGA memory

access when video processor is shifting out data.
0

13 Decode 3c6. (test bit) 0
21:14 Vga base offset in 64k quantities
22 Disable SGRAM refresh requests on HBLANK. When set to 1, the VGA

does not produce memory refreshes during horizontal blanking.
0

31:23 reserved 0

vgaInit1 Register (0x2C)
The vgaInit1 register contains the read and write apertures for VBE. VBE uses address 0xA0000 as an
aperture into Banshee memory. See the section on VBE apertures in the VGA portion of this document.
Bit 20 enables sequential chain mode, a pseudo packed pixel format Bits 28:21 define lock bits that
disable writes to specific sections of the VGA core. See the section on register locking in the VGA
portion of this document.

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
114 Printed 03/01/99

Bit Description Default
9:0 VBE write Aperture, in 32K granularity 0
19:10 VBE read Aperture, in 32K granularity 0
20 Enable 0xA0000 Sequential Chain 4 mode. 0
21 Lock Horizontal Timing - 3B4/3D4 index 0,1,2,3,4,5,1a 0
22 Lock Vertical Timing -3B4/3D4 index 6,7 (bit 7,5,3,2 and 0), 9 10, 11

(bits[3:0]), 15,16,1b.
0

23 Lock H2 - 0x3B4/0x3D4 index 17, bit 2 0
24 Lock Vsync - 0x3C2, bit 7. 0
25 Lock Hsync - 0x3C2, bit 6. 0
26 Lock Clock Select - 0x3C2, bits 3 and 2. 0
27 Lock Ram Enable - 0x3C2, bit 1 0
28 Lock Character Clock - 0x3C4, index 1 bit 0. 0

2d_Command_Register (0x30)
Writing to this register is the same as writing to the 2d unit’s command register. This mapping is
intended to provide a way to initialize the SGRAM mode and special mode registers at init time.

2d_srcBaseAddr Register (0x34)
Writing to this register is the same as writing to the 2d unit’s srcBaseAddr register. This mapping is
intended to provide a way to initialize the SGRAM mode and special mode registers at init time.

13. Frame Buffer Access

Frame Buffer Organization
The Banshee linear frame buffer base address is located in a separate memory base address register in
PCI config space and occupies 32 megabytes of address space for linear access. It is assumed (but not
required) that VGA will use the first 256K of linear memory, and the desktop, and video will use the
remaining linear memory.

Linear Frame Buffer Access
Linear frame buffer access is accessed much like system, and can store the desktop, video, 3D front buffer,
3D back buffer, 3D auxillary buffer, and textures. Memory management is done with a true linear
memory manager.

YUV Planar Access
YUV planar memory allows the CPU to write Y, U, and V in separate regions of memory space. As Y, U,
and V are written, they are converted into YUYV packed form, and stored in the frame buffer at the
correct offset from the YUV base address register. The first megabyte region defines Y, where each 32-bit
write, generates a 64-bit write on Banshee, with appropriate byte masks. The second megabyte region of
YUV planar memory defines U space, where each 32-bit write generates two 64-bit writes with

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
115 Printed 03/01/99

appropriate byte enable bits. The third region of YUV planar memory defines the V space, where each
32-bit write generates two 64-bit writes with appropriate byte enable bits. The conversion between planar
and packed is described below. YUV planar space has a fixed 1024 byte stride, and a programmable
destination stride.

0xC00000

0xD00000

0xE00000

Y

U

V

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
116 Printed 03/01/99

Y8

Y0 Y1

Y9 Y10

Y2 Y3

Y11

Y24

Y16 Y17

Y25 Y26

Y18 Y19

Y27

Y12

Y4 Y5

Y13 Y14

Y6 Y7

Y15

Y28

Y20 Y21

Y29 Y30

Y22 Y23

Y31

Y40

Y32 Y33

Y41 Y42

Y34 Y35

Y43

Y56

Y48 Y49

Y57 Y58

Y50 Y51

Y59

Y44

Y36 Y37

Y45 Y46

Y38 Y39

Y47

Y60

Y52 Y53

Y61 Y62

Y54 Y55

Y63

U4

U0 U1

U5 U6

U2 U3

U7

U12

U8 U9

U13 U14

U10 U11

U15

V4

V0 V1

V5 V6

V2 V3

V7

V12

V8 V9

V13 V14

V10 V11

V15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Y0 U0 Y1 V0 Y2 U1 Y3 V1

Y8 U0 Y9 V0 Y10 U1 Y11 V1

Y4 U2 Y5 V2 Y6 U3 Y7 V3

Y12 U2 Y13 V2 Y14 U3 Y15 V3

Y16 U4 Y17 V4 Y18 U5 Y19 V5

Y24 U4 Y25 V4 Y26 U5 Y27 V5

Y20 U6 Y21 V6 Y22 U7 Y23 V7

Y28 U6 Y29 V6 Y30 U7 Y31 V7

Y32 U8 Y33 V8 Y34 U9 Y35 V9

Y40 U8 Y41 V8 Y42 U9 Y43 V9

Y36 U10 Y37 V10 Y38 U11 Y39 V11

Y44 U10 Y45 V10 Y46 U11 Y47 V11

Byte #

YUV Planar space

Banshee Frame buffer

14. Accessing the ROM

ROM Configuration
Banshee supports either 32K or 64K of ROM space. The size of the ROM is determined during at power
up by an external strapping pin (see the section of strapping pins for more information).

Directly after reset, PCI subsystem and subvendor information are loaded from the next to last four bytes
of ROM memory. The last four bytes are reserved for checksum information.

ROM Reads
Banshee supports reads to the ROM through the normal PCI mechanism. In order to read the ROM, set
the romBaseAddr register bit 0 to 1. ROM accesses are then possible at the address indicated by the most
significant bits of romBaseAddr. ROM reads can have any combination of byte enables asserted. Since

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
117 Printed 03/01/99

the ROM is a byte device however, asserting multilble byte enables at once will cause the transfer of data
on the PCI bus to be slow.

It is important to note the ROM shares the bus with VMI and TV out. During ROM accesses, data on
these ports will become ROM information providing what may appear to be bad pixels on the display.
This is normal; however, if it is know that ROM accesses are to occur, it is recommended that VMI or TV
out be disabled prior to ROM access.

ROM Writes
Banshee also supports a mechanism for programming flash ROMs when they are available. The model
that Banshee uses is that of a 32K/64K EEPROM that allows programming by polling the EEPROM.

By default, Banshee will not respond to writes pointed at by romBaseAddr. By enabling bit 0 of
romBaseAddr and also setting bit 4 of miscInit1, writes pointed at by romBaseAddr will be processed.

Typically, programmable ROMs have a sequence of write events that must occur to be placed in the
‘Program Mode’. Then either a single or multiple writes occur (depending of the ROM used) to fill in
data. Finally, the ROM is polled via ROM reads, to confirm the write is complete. This process is
repeated until the ROM is completely written.

For more information on how to program a specific ROM, see its data sheet or application notes.

15. Power on Strapping Pins
During power up, Banshee gets some of its configuration information from strapping pins. This
information is used to control how Banshee will behave.

StrapInfo bit PIN Description
11 VMI_ADDR_3 Unused
10 VMI_ADDR_2 mctl_type_sdram (0=SGRAMs, 1=SDRAMs)
9 VMI_ADDR_1 mctl_short_power_on (0-normal power-on, 1=for RTL simulation only)
8 VMI_ADDR_0 re-map IDSEL (0=IDSEL is IDSEL, 1= PCI_AD_16 is IDSEL)
7 VMI_DATA_7 Disable PCI IRQ register (0=Enable, 1 = Disable).
6 VMI_DATA_6 SGRAM chip size (0=8Mb, 1=16Mb)
5 VMI_DATA_5 SGRAM number of chips (0=4 parts, 1=8 parts)
4 VMI_DATA_4 PCI Device Type (0= VGA, 1= Multimedia)
3 VMI_DATA_3 AGP Enable (0=Disabled, 1 = Enabled).
2 VMI_DATA_2 PCI 66Mhz (0 = 33Mhz, 1 =66Mhz)
1 VMI_DATA_1 BIOS Size (0=32K, 1 = 64K)
0 VMI_DATA_0 PCI Fast Device. (0=DEVSEL Medium,1= DEVSEL Fast)

16. Monitor Sense
Banshee Supports the ability to detect a monitor, as well as determine if the monitor is color or
monochrome. This is accomplished with an internal MSENSE signal. MSENSE becomes active when a

Voodoo Banshee Universal Access 2d Databook

Copyright  1996-1999 3Dfx Interactive, Inc. Revision 1.01
118 Printed 03/01/99

current is driven through either the RED, GREEN or BLUE DAC outputs. If a monochrome monitor is
present, only the GREEN output will cause MSENSE to become active. MSENSE is readable through IO
0x3c2, bit 4.

17. Hardware Initialization
• PCI Configuration

• DRAM Init

• VGA Core Wakeup

• Other Init?

18. Data Formats

Signal Pixel Sequence for 4 : 1 : 1 Pixel Sequence for 4 : 2 : 2

P15 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7

P14 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6

P13 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5

P12 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4

P11 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3

P10 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2

P9 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1

P8 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0

P7 U7 U5 U3 U1 U7 U5 U3 U1 U7 V7 U7 V7 U7 V7

P6 U6 U4 U2 U0 U6 U4 U2 U0 U6 V6 U6 V6 U6 V6

P5 V7 V5 V3 V1 V7 V5 V3 V1 U5 V5 U5 V5 U5 V5

P4 V6 V4 V2 V0 V6 V4 V2 V0 U4 V4 U4 V4 U4 V4

P3 0 0 0 0 0 0 0 0 U3 V3 U3 V3 U3 V3

P2 0 0 0 0 0 0 0 0 U2 V2 U2 V2 U2 V2

P1 0 0 0 0 0 0 0 0 U1 V1 U1 V1 U1 V1

P0 0 0 0 0 0 0 0 0 U0 V0 U0 V0 U0 V0

