The Ad Lib Music Synthesizer Card

PROGRAMMING GUIDE

Written by Tero Töttö

CHAPTER 1: DESCRIPTION OF THE SYNTHESIZER	1
Operators Operating Modes Melodic and Percussive Mode	1 1 2
CHAPTER 2: PROGRAMMING THE SYNTHESIZER	3
Card location in I/O channel Card addresses	3 3
CHAPTER 3: ALMSC REGISTER MAP	4
Status Register Write registers Operator offsets Channel formation	4 4 5
CHAPTER 4: ALMSC REGISTER REFERENCE	6
Status Register Registers 01h - 04h Registers 08h - 35h Registers 40h - B8h Registers BDh - F5h	6 6 7 8 9
APPENDIX A: INSTRUMENT BANK (.BNK) FILE STRUCTURE	10
APPENDIX B: NOTE FREQUENCIES	11

DISCLAIMER: IN NO EVENT WILL I BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST OF PROFITS, LOST SAVINGS OR OTHER INCIDENTIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF YOUR USE OR INABILITY TO USE THIS MANUAL, OR FOR ANY OTHER CLAIM BY ANY OTHER PARTY.

TRADEMARKS: Ad Lib is registered trademark of Ad Lib Inc.

COPYRIGHT: This manual can be distributed freely if not modified.

Ad Lib Synthesizer is made up of oscillators and envelope generators. An oscillator, an envelope generator, and a level controller are linked together to form an "operator":

The Ad Lib Music Synthesizer card (ALMSC) contains 18 operators which are generally grouped into pairs in order to produce instrumental sounds. The operators can be combined in three different ways:

* FM synthesis uses two operators in series. The first operator, the modulator, modulates the second operator, the carrier, via its modulation data input.

* Additive synthesis uses two operators in parallel, adding both outputs together. This method of synthesis is not as interesting as FM synthesis, but it can generate good organ-type sounds.

* Composite sine wave synthesis (CSW) may be used to generate speech or other related sounds by playing all 9 voices simultaneously. When using this method, the card cannot generate any other sounds. This mode is not explained here, because other methods have proved to provide better quality speech. The ALMSC produces either 9 melodic sounds or 6 melodic sounds and 5 percussion instruments. For the 9 melodic sounds, the operators are grouped in pairs. For the percussion mode, the opearators are arranged as follows:

* 6 melodic instruments (12 operators)
* 1 Bass Drum (2 operators)
* 1 Snare Drum (1 operator)
* 1 Tom-Tom (1 operator)
* 1 Cymbal (1 operator)
* 1 Hi-Hat (1 operator)

Because ALMSC has only 9 registers for frequency information (one for each melodic channel), Cymbal and Hi-Hat pitches are fixed.

In percussion mode, a white noise generator is used to create rhythm sounds. This white noise generator uses voices 7 and 8 (Snare Drum and Tom-Tom) frequency information (Block, Frequency Number, Multiplication), and the proper phase output. Various rhythm sounds are produced by combining this output signal with white noise. The result is then sent to the operators. Best ratio for the two frequencies is 3:1 (Snare Drum frequency = 3 * Tom-Tom frequency). Finally, envelope information is multiplied with the wave table output. As the envelope is set for one operator which corresponds to a single rhythm instrument, the values are set in the parameter registers in the same manner as for melodic instruments.

The ALMSC may be located at four different addresses:

218h , 288h , 318h , 388h

The port address is currently hard-wired to 388h, but jumpers may be added in the future, so you should take into account the possibility of using different addresses when programming. Later on this manual, I will refer only to the address 388h.

The card decodes two addresses:

388h - Index register (write), Status register (read)
389h - Data register (write only)

The index register is used to select the register address, and then data is written to data register. Status register returns the state of two timers on the card.

Because of the nature of the card, you must wait 3.3 µsec after a register select write, and 23 µsec after a data write. Best way to handle this is to read ALMSC status register in loop, because bus speed is always the same regardless of processor speed. 6 reads after register select write and 36 reads after data write should do the job.

Status Register (388h):

D7	D6	D5	D4	D3	D2	D1	DO
IRQFlag	T1Flag	T2Flag					

Write Registers (389h):

REG	D7	D6	D5	D4	D3	D2	D1	D0		
01	WSEnable				Tes	st Registe	er			
02			Timer 1 (Count (80	µsec res	olution)				
03			Timer 2 (Count (320) µsec rea	solution)				
04	IRQReset	T1Mask	T2Mask				T2 Start	T1 Start		
08	CSW	NOTE-SEL								
20-35	Tremolo	Vibrato	Sustain	KSR	Freque	ncy Multi	plication	Factor		
40-55	Key Scal	le Level			Output	Level				
60-75		Attac}	k Rate		Decay Rate					
80-95		Sustair	n Level			Release	e Rate			
A0-A8			Frequency	/ Number	(Lower 8	8 bits)				
в0-в8			KEY-ON	B	lock Numbe	er	F-Num (1	ni bits)		
BD	Trem Dep	Frem Dep Vibr Dep PercMod		BD On	BD On SD On TT On		CY On	HH On		
C0-C8		•		·	FeedBack	Modulati	on Factor	Additive		
E0-F5		Waveform Select								

For some of the parameters, there is one register per output channel. For those parameters, channel number can be used as an offset into the map. For many parameters, there is one register per operator. However, there are holes in the address map so that in this case, the operator number CANNOT be used as an offset. The operator offsets for those registers are (in hex form):

OPR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
OFS	00	01	02	03	04	05	08	09	0A	0B	0C	0 D	10	11	12	13	14	15

		MI	ΕLΟ	DIO	C M	ODE	Ξ		
CHAN	0	1	2	3	4	5	6	7	8
OPR1 OPR2	1 4	2 5	3 6	7 10	8 11	9 12	13 16	14 17	15 18

		I	PER	CUS	SSI	O N	M O	DΕ			
CHAN	0	1	2	3	4	5	BD	SD	TT	СҮ	НН
OPR1 OPR2	1 4	2 5	3 6	7 10	8 11	9 12	13 16	17	15	18	14

Status Register:

- D7 IRQ Flag. Set if D5 and/or D6 are/is set.
- D6 Timer 1 Flag. Set when the preset time in Timer 1 has elapsed.
- D5 Timer 2 Flag. Set when the preset time in Timer 2 has elapsed.

Timer interrupts are not wired, but the timers can be used to detect the presence of the card as follows:

- 1. Reset T1 and T2: write 60h to register 4.
- 2. Reset the IRQ: write 80h to register 4.
- 3. Read status register: read at 388h. Save the result.
- 4. Set timer 1 to FFh: write FFh to register 2.
- 5. Unmask and start timer 1: write 21h to register 4.
- 6. Wait in a delay loop for at least 80 µsec.
- 7. Read status register: read at 388h. Save the result.
- 8. Reset T1, T2 and IRQ as in steps 1 and 2.
- 9. Test the results of the two reads: the first should be 0, the second should be COh. If either is incorrect, then the ALMSC is not presents.
 - NOTE1: You should AND the result bytes with EOh because the unused bits are undefined.
 - NOTE2: This testing method doesn't work in SoundBlaster.

01: Test Register / WSE:

D5	Waveform Select Enable. If clear, all channels will use norm	al
	sine wave. If set, register EO-F5 (WS) contents will be used	•
D4-D0	Test Register, must be reset to zero before any operation.	

02: Timer 1 Count:

Upward 8 bit counter with a resolution of 80 μ sec. If an overflow occurs, the status register bit is set, and the preset value is loaded into the timer again.

03: Timer 2 Count:

Same as Timer 1, but with a resolution of 320 µsec.

04: IRQ-Reset / Mask / Start:

D7	IRQ-Reset. Resets timer and IRQ flags in status register.
	All other bits are ignored when this bit is set.
D6	Timer 1 Mask. If 1, status register is not affected in overflow.
D5	Timer 2 Mask. Same as above.
D1	Timer 2 Start. Timer on/off.
DO	Timer 1 Start. Same as above.

- D7 Composite sine wave mode on/off.
- D6 NOTE-SEL. Controls the split point of the keyboard. When 0, the keyboard split is the second bit from the bit 8 of the F-Number. When 1, the MSb of the F-Number is used.

20-35: Tremolo / Vibrato / Sustain / KSR / Frequency Multiplication Factor:

- D7 Tremolo (Amplitude vibrato) on/off.
- D6 Frequency vibrato on/off.
- D5 Sound Sustaining. When 1, operator's frequency will be held at its sustain level until a KEY-OFF is done.
- D4 Envelope scaling (KSR) on/off. When 1, higher notes are shorter than lower notes.
- D3-D0 Frequency Multiplication Factor (MULTI):

MULTI	Factor
0	1
1	2
2	3
3	4
4	5
5	6
6	7
7	8
8	9
9	10
10	10
11	10
12	12
13	12
14	15
15	15

40-55: Key Scale Level / Output Level:

D7-D6 Key Scale Level. Attenuates output level towards higher pitch:

KSL	Attenuation
0	-
1	1.5 dB/oct
2	3.0 dB/oct
3	6.0 dB/oct

D5-D0 Output Level. Attenuates the operators output level. In additive synthesis, varying the output level of any operator varies the volume of its corresponding channel. In FM synthesis, varying the output level of the carrier varies the volume of the channel. Varying the output of then modulator will change the frequency spectrum produced by the carrier.

60-75: Attack Rate / Decay Rate:

- D7-D4 Attack Rate. Determines the rising time for the sound. The higher the value, the faster the attack.
- D3-D0 Decay Rate. Determines the diminishing time for the sound. The higher the value, the shorter the decay.

80-95: Sustain Level / Release Rate:

D7-D4 Sustain Level. Determines the point at which the sound ceases

to decay and chages to a sound having a constant level. The sustain level is expressed as a fraction of the maximum level. Note that the Sustain-bit in the register 20-35 must be set for this to have an effect.

D3-D0 Release Rate. Determines the rate at which the sound disappears after KEY-OFF. The higher the value, the shorter the release.

A0-A8: Frequency Number:

Determines the pitch of the note. Highest bits of F-Number are stored in the register below.

B0-B8: Key On / Block Number / F-Num(hi bits):

D5 KEY-ON. When 1, channels output is enabled. D4-D2 Block Number. Roughly determines the octave. D1-D0 Frequency Number. 2 highest bits of the above register. The following formula is used to determine F-Number and Block:

F-Num = Music Frequency * 2^(20-Block) / 49716 Hz

BD: Trem Dep / Vibr Dep / PercMode / BD/SD/TT/CY/HH On:

D7	Tremolo (Amplitude Vibrato) Depth. 0 = 1.0dB, 1 = 4.8dB.
D6	Frequency Vibrato Depth. $0 = 7$ cents, $1 = 14$ cents.
	A "cent" is 1/100 of a semi-tone.
D5	Percussion Mode. 0 = Melodic Mode, 1 = Percussion Mode.
D4	BD On. KEY-ON of the Bass Drum channel.
D3	SD On. KEY-ON of the Snare Drum channel.
D2	TT On. KEY-ON of the Tom-Tom channel.
D1	CY On. KEY-ON of the Cymbal channel.
DO	HH On. KEY-ON of the Hi-Hat channel.

CO-C8: FeedBack Modulation Factor / Additive:

D3-D1 FeedBack Modulation Factor:

MULTI	Factor
0	0
1	π/16
2	π/8
3	π/4
4	π/2
5	π
6	2・π
7	4・π

D0 Additive. 1 = Additive synthesis, 0 = Frequency Modulation

E0-F5: Waveform Select:

D7-D2	Not used		
D1-D0	WaveForm	Select	(WS):

WS	WaveForm			
00	Sine			
01	Half-Sine			
10	Abs-Sine			
11	Pulse-Sine			

Field	Size	Туре	Description
			HEADER SECTION
1	1	byte	file version, major
2	1	byte	file version, minor
3	6	byte	signature: "ADLIB-"
4	2	integer	number of list entries used
5	2	integer	total number of list entries in file
6	4	longint	absolute offset in file of start of name list
7	4	longint	absolute offset in file of start of data
8	8	byte	pad (set to zero)
			INSTRUMENT NAME SECTION RECORD
1	2	integer	index into data section
2	1	byte	flag: 0 if record used, else 1
3	9	byte	instrument name (max 8 chars + NULL)
			DATA SECTION RECORD
1	1	byte	<pre>mode (0=melodic,1=percussion)</pre>
2	1	byte	voice number (if percussion mode)
	or (oper	rator 0) paramete	
3	1	byte	key scale level
4	1	byte	frequency multiplier
5	1	byte	feedback modulation factor
6	1	byte	attack rate
7	1	byte	sustain level
8	1	byte	sound sustaining
9	1	byte	dacay rate
10	1	byte	release rate
11	1	byte	output level
12	1	byte	amplitude vibrato (tremolo)
13	1	byte	frequency vibrato
14	1	byte	envelope scaling
15	1	byte	0=FM synthesis, 1=additive synthesis
			(for melodic channels and bassdrum only):
3	1	byte	key scale level
4	1	byte	frequency multiplier
5	1	byte	feedback modulation factor
6	1	byte	attack rate
7	1	byte	sustain level
8	1	byte	sound sustaining
9 10	1 1	byte byte	dacay rate release rate
10 11	1	byte byte	output level
11	1	byte byte	amplitude vibrato (tremolo)
12	1		frequency vibrato
13 14	1	byte byte	envelope scaling
14 15	1	byte	unused
29	1	byte	waveform for modulator

30 1 byte waveform for carrier APPENDIX B: NOTE FREQUENCIES

The following	table	contains	frequencies	in	Hertz	for	the	notes	in	octaves
1 to 8. Middl	e C is	in octave	e 5.							

NOTE	1	2	3	4	5	6	7	8
C C# D# F F G # A B	16.352 17.324 18.354 19.445 20.601 21.826 23.124 24.499 25.956 27.500 29.135 30.867	32.703 34.648 36.708 38.890 41.203 43.653 46.249 48.999 51.913 55.000 58.270 61.735	65.406 69.295 73.416 77.781 82.406 87.307 92.499 97.998 103.82 110.00 116.54 123.47	130.81 138.59 146.83 155.56 164.81 174.61 184.99 195.99 207.65 220.00 233.08 246.94	*261.63* 277.18 293.66 311.13 329.63 349.23 369.99 391.99 415.31 440.00 466.16 493.88	523.25 554.37 587.33 622.25 659.26 698.46 739.99 783.99 830.61 880.00 932.32 987.77	1046.5 1108.7 1174.7 1244.5 1318.5 1396.9 1480.0 1568.0 1661.2 1760.0 1864.7 1975.5	2093.0 2217.5 2349.3 2489.0 2637.0 2793.8 2960.0 3136.0 3322.4 3520.0 3729.3 3951.1

(11)