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Am486DX/DX2 MICROPROCESSOR a
FEATURES

11

GENERAL DESCRIPTION

The Am486DX and Am486DX2 CPUs offer the highast performance for DOS, 08/2,
Windows, and UNIX applications. They are 100% binary compatible with the 386
architecture. One million plus transistors integrate cache memory, floating-point hard-
ware, and mernory managemant on-chip while retaining binary compatibility with pravious
members of the x88 architectural family. Frequently used instrictions execute in one
cycle, resulting in RISC performance levels. An B-Kbyte unified code and data cache
combine with a burst bus to ensure high system throughput.

New features enhance mubtiprocessing systerns. New instructions speed manipulation of
memory-based semaphores. On-chip hardware ensures cache consistency and
provides hooks for multilevel caches.

The Am486DX/DX2 microprocessors feature boundary scan test signals. This pravides
additional {estability features compatible with the IEEE Standard Test Access Port and
Boundary Scan Architecture {IEEE Standard 1149.1 JTAG).

The built-in self test extensively tests on-chip legic, cache memory, and the on-chip
paging transiation cache. Debug features include breakpoint traps on code execution and
data accesses,

This manual, when combined with the Am4860X Microprocessor Data Sheet (order #
17852), and the Am486DX2 Microprocessor Data Sheet (order # 17914), provides
complete design documentation.

DISTINCTIVE CHARACTERISTICS
m Binary Compatible with Large Soitware Base

— MS-DOS, 05/2, Windows
— UNIX, Windows NT
® High Integration Cn-Chip
— B-Kbyte code and data cache
— Floating-point unit
— Paged, virtual memory management
m Easy To Use
— Built-in self test
— Hardware debugging support
— Extensiva third-party software support
@ JEEE 1149.1 Boundary Scan Compatibility on all versions
m High-performance Design
— Frequent instructions execute in ona clack
— 0.7-micron CMOS process technology

AmJagsDX/DX2 Microprocessor Features 1-1



— Dynamic bus sizing for 8-, 16-, and 32-bit buses
Complete 32-bit Architecture
— All registers

— 8-, t16-, and 32-bit data types

Multiprocessor Support

— Multiprocessor instructions
— Cache consistency protocols
— Support for second-level cache

Flgure 1-1

Am4B6DX/DX2 CPU Pipelined 32-Bit Microarchitecture Block Diagram
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Figure 1-2
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1.3 PIN DESCRIPTIONS

The following paragraphs define the pins (signais) of the Am486DX/DX2 microprocessor.

A31-A4/A3-2
Address Lines {inputs/Outputs)/{Outputs)

Pins A31-A2, tagether with the byte enable pins BE3—BEQ, constitute the address bus
and define the physical area of memory or input/output space accessed. Address lines
A31-A4 are used to drive addresses into the microprocessor to perform cache line
invalidations. Input signals must meet setup and hold times t,; and t,. A31-A2 are not
driven during bus or address hold.

AmABADYX/DX2 Microprocessor Features 1-3
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A20M
Address Bi 20 Mask {Actlve Low; Input)

When the address mask is asserted, the Am4BEDX/DX2 microprocessor masks physical
address bit 20 (A20) befare performing a lookup to the internal cache or driving a
memory cycle on the bus. A20M emulates the address wraparound at 1 Mbyte, which
occurs on the 8086. A20M is active Low and should be asserted only when the proces-
sor is in Real Mede. This pin is asynchronous but should meet setup and hold times t5,
and t, for recognition in any specific ciock, For proper operation, AZ0M should be
sampled High at the falling edge of RESET.

ADS
Address Stajus (Active Low; Output)

This pin is used to indicate that a valid bus ¢ycle definiticn and address are available on
the cycle definition lines and address bus. ADS is driven active in the same clock as the
addresses are driven. ADS is active Low and is not driven during bus hold.

AHOLD
Address Hold (Active High; Input)

An address hold request allows another bus master aceess to the Am4BeDX/DX2
microprocessor's address bus for a cache invalidation cycle. The Am4880X/DX2
microprocessar staps driving its address bus in the clock following AHCLD going active.
Only the address bus is floated during address held; the remainder of the bus remains
active. AHOLD is active High and is provided with a small intemal puil-down resistor. For
proper cperation, AHOLD must meet setup and hold times t,; and t,..

BE3-BEO
Byte Enables (Activa Low; Owputs)

The address bus byte-enable pins indicate active byles during read and write cycles.
During the first cycle of a cache fill, the external systern should assume that all byte
enables are active, BE3 applies to D31-D24, BE?2 applies to D23-016, BE1 appties to
D15-D8, and BED applies to D7-D0. BE3-BEO are active Low and are not driven during
bus hold.

BS8/B516 :
Bus Size 8 {Active Low; Input)/Bus Size 16 (Active Low; Input)

The bus sizing pins cause the Am486DX/DX2 microprecessor to run multiple bus cycles
to camptlete a request from devices that cannot provide or accept 32 bits of data in a
single cycle. The bus sizing pins are samplad every clock. The state of these pins in the
ciock before RDY is used by the Amd86DX/DX2 microprocessor to determing the bus
size. These signals are active Low and are provided with internal pull-up resistors.
These inputs must satisfy setup and hold times t,. and t,s for proper operation.

BLAST
Burst Last {Active Low; Output)

This pin indicates that the next time BRDY is returned then the burst bus cycie is
complete. BLAST is active for both burst and non-burst bus cycles. BLAST is active Low
and is not driven during bus hold.

BOFF )
Backoff {Active Low; Input)

This input pin forces the Am488DX/DX2 microprocessor to float its bus in the next clock.
The microprocessor floats all pins normally floated during bus hold, but HLDA is not

asserted in response o BOFF. BOFF has higher priority than RDY or BRDY, if both are
returned in the same clock, BOFF takes effect. The micreprocessor remains in bus hold
until BOFF is negated. i a bus cycle is in progress wnen BOFF is asserted, the cycle is
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restarted. BOFF is active Low and must meet setup and hold times t,; and t,, for proper
operation.

BRDY
Burst Ready Input (Active Low; input)

The BRDY signal performs the same cycle during a burst cycle that RDY performs
during a non-burst cycle. BRDY indicates that the external system has presented valid
data in response to a read, or that the external systemn has accepted data in response to
write. BRDY is ignored when the bus is idle and at the end of the first clock in a bus
cycle.

BRDOY is sampled in the second and subsequent clocks of a burst cycle. The data
presented on the data bus is strobed into the microprocessor when BROY is sampled
active. It RDY is returned simultaneously with BRDY, BRDY ig ignored and the burst
cycle is prematurely aborted.

BRDY is active Low and is provided with a small pu!l-up resistor. BRDY must satisfy the
setup and hold times t,; and t,..

BREQ

internal Cycle Pending (Output)

BREQ indicates that the Am486DX/DX2 microprocessar has internally generated a bus
request. BREQ is generated whether or not the Am486DX/DX2 microprocesser is driving
the bus. BREQ is active High and is never floaied, except during three-state {est mode
(ses FLUSH).

CLK

Clock {Input)

The CLK input provides the fundamental timing and the internal cperating frequency for
the Am4B6DX/DX2 microprocasser. All external iming parameters arg specified with
respect fo the rising edge of CLK.

D31-DO

Data Lines {Inputs/Qutputs)

Lines D7—-00 define the least significant byte of the bus while lines D31-D24 define the
most significant byte of the data bus. These signals must meet setup and haid times 1.,
and ty; for proper operation on reads. These ping are driven during the second and
subsequent clocks of write cycles.

D/C
Data/Control (Qutput)

This bus cycle definition pin distinguishes data cycles, either memory or IO, from contral
cycles. These control cycles are: interrupt acknowladgs, halt, and instruction fetching.

DP3-DPD
Data Parity {Inputs/Outputs)

Data parity is generated on atl write data cycles with the sama timing as the data driven

by the Am4B8DX/DX2 microprocessor. Even parity information must be driven back into

the microprocessor an the data parity pins with the same timing as read information; this
ensures that the correct parity check status is indicated by the Am486DX/DX2 micropro-
cessor. The signals read on thase pins do not affect program exacution.

Input signals must meet setup and hold times t,, and t,,. DP3-DFP0 should be con-
nected to V. through a pull-up resistor in systems not using party. DP3-DP0 are active
High and are driven during the second and subsequent clocks of write cycles.
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EADS
Valld External Address (Active Low; input}

This address indicates a valid external address has been driven onto the Am486DX/DX2
microprocessor address pins. This address is used to perform an intemal cache invalida-
tion cycle. EADS is active Low and is provided with an internal pull-up resistor. EADS
must satisfy setup and held times t,, and t,; for proper operation.

FERR
Floating-Polnt Error (Active Low; Output)

Driven active when a floating-point error occurs, FERR is similar to the ERROR pin on a
387 math coprocessor. FERR is included for compatibility with systems using DOS-type
floating-point error reporting. FERR is active Low and is not floated during bus hold,
gxcept during three-state test mode {see FLUSH).

FLUSH
Cache Flush (Active Low; input)

FLUSH farces the Am486DX/DX2 microprocessor to flush its entire internal cache. This
input pin is active Low and need oniy be asserted for one clock. FLUSH is asynchronous
but setup and hoid times t, and t, must be met for recognition in any specitic clock.
FLUSH being sampled Low in the clock before the falling edge of RESET causes the
Am4860DX/DX2 microprocessor to enter the three-state test mode.

HLDA
Hold Acknowledge (Qutput)

The HLDA signal is activated in response to a hold request presented oa the HOLD pin.
HLDA indicates that the Am486DX/DX2 microprocessor has given the bus to anather
local bus master. HLDA is driven active in the same clock in which the Am486DX/DX2
microprocessor floats its bus. HLDA is driven inactive whan leaving bus hold. HLDA is
active High and remains driven during bus hold. HLDA is never floated except during
three-state test mode {see FLUSH).

HCLD
Bus Hold Requast {Input)

HOLD gives ancther bus master complete controt of the AmdB6DX/DX2 microprecessor
bus. In response to HOLD going active, the Am486DX/T2 microprocessor floats most
of its output and input/output pins. HLDA is assertad afier complefing the current bus
cycle, burst cycle, or sequence of locked cycles. The Am486DX/DX2 microprocessor
remains in this state until HOLD is deasserted. HOLD is active High and is not provided
with an internal pull-down resistor. HOLD must satisfy setup and hald times t,, and t,
for proper cperation.

IGNNE )
Ignore Numetic Error (Active Low; Input)

When this pin is asserted, the Am486DX microprocessor ignares a numeric error and
continues executing non-control ficating-point instructions, When IGNNE is deasserted,
the Am486DX/DX2 micropracessar freezes en a non-control floating-point instruction if a
previous floating-point instruction caused an error. 5GNNE has no effect when the NE bit
in Cantrol Register O is set. IGNNE is active Low and is provided with a smail internal
pull-up resistor. KGNNE is asynchrenous but setup and hold times ty, and t,, mustbe
met to ensure recognition on any specific clock.

INTR
Maskable interrupt (Input)

When asserted, this signal indicates that an external interrupt has baan generated. If the
internal interrupt flag is set in EFLAGS, active interrupt processing is initiated. The

1-8
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Am486DX/DX2 microprocessor generates two locked interrupt acknowledge bus cycles
in response to the INTR pin going active. INTR must remain active until the interrupt
“acknowledges have been performed to ensure that the interrupt is recognized. INTR is
-active High and is not provided with an internal pull-down resistor. INTR is asynchronous,
but must meet setup and held times tx and t; for recognition in any specific clock.

KEN
Cache Enable (Active Low; Input}

KEN is used to determine whether tha current cycie is cacheable. When the
AmM486DX/DX2 microprocessor generates a cacheabie cycle and KEN is active one
clock before ROY or BROY during the first transfer of the cycle, the cycle becomes a
cache lina fiil cycle. Returming KEN active ene clock before RDY during the last read in
the cache line fill causes the line to be placed in the on-chip cache. KEN is active Low
and s provided with a small internaf pull-up resistor. KEN must satisfy setup and hold
times t,, and t,; for proper operation.

oK
Bus Lock (Active Low; Output)

This pin indicates that the current bus cycle is locked. The Am486DX/DX2 microproces-
sor does not allow a bus hold when LOCK is asserted {but address helds are allowed).
LOCK goes active in the first clock of the first locked bus cycle and goes inactive after the
tast clock of the Iast locked bus cycie. The last locked cycle ends when RDY is retumed.
LOCK is active Low and is not driven during bus hold. Locked read cycles will not be
transformed into cache fill cycles if KEN is retumned active.

MO
Memoty (Input/Output) {Output)

This bus cycle definition pin distinguishes memory cycles from inputfoutput cycles.

NMI

Non-maskable Interrupt {Input) :

The NMI request signal indicates that an external non-maskabile interrupt has been
generated. NMI is rising edge sensitive. NMI must be held Low for at least four CLK
periuds before this rising edge. NMI is not. provided with an internal pull-down resistor.

NMI is asynchronous, but must meet setup and hold times t, and t, for recognition in
any specific clock.

PCD/PWT
Page Cache Disable/Page Write-Through {Outputs)

These pins reflect the state of the page atiribute bits, PWT and PCD, in the page table
entry or page directory entry. If paging is disabled or for unpaged cycles, PWT and PCD
reflect the state of the PWT and PCD bits in Control Register 3. PWT and PCD have the
same timing as the cycle definition pins (MG, D/C, and W/R). PWT and PCD are active
High and are not driven during bus hold. PCD is masked by the Cache Disable Bit {CD) in
Control Register 0.

PCHK

Parity Status (Active Low; Output)

Parity status is driven on the PCHK pin the clock after RDY for read operations. The
parity status is for data sampled at the end of the previous clock. A parity error is
indicated by PCHK being Low. Parity status is only checked for enabled bytes as
indicated by tha byte enable and bus size signals. PCHK is valid only in the clock
immediately after read data is returned to the microprocessor; at all other times PCHK is
inactive High. PCHK is never ficated, except during three-state test mode {see FLUSH).
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FLOCK :
Psesudo-Lock (Active Low; Cuiput}

PLOCK indicates that the current bus transaction requires more than one bus cycle to
compiete. Examples of such operations are floating-point long reads and writes (64 bits},
segmsant table descriptar reads {64 bits), and cache line fills {128 bits). The Am486DX/DX2
microprocessor drives PLOCK agctive until the addresses for the Jast bus cycle of the
transaction have been driven, regardless of whether RDY or BRDY have keen retumed.

Normally, PLOCK and BLAST are inverse of each other. However, during the first bus
cycle of a 64-bit floating-point write, both PLOCK and BLAST are asserted. PLOCK is a
function of the BS8, BS16, and KEN inputs. PLOCK should be sampled on if the clock
RDY is returned, PLOGK is active Low and is not driven during bus hoid.

RESET
Resat {Active High; Input)

RESET forces the Am486DX/DX2 microprocessor to begin execution at a known state.
The microprocessor cannot begin execution of instructions until at least 1 ms after Ve
and CLK have reached their proper DC and AC specifications. The RESET pin should
remain active during this time to ensure proper microprocessor operation. RESET is
active High. RESET is asynchronous but must meet setup and hold times t, and t;, for
recognition in a specific clock.

RDY
Noh-Burst Raady (Active Low; Input)

This pin indicates that the current bus cycle is complete. RDY indicates that the externa
system has presented valid data on the data pins in responge to a read, or that the

external system has accepted data from the Am4B88DX/DX2 microprocessor in response
to a write. RDY is ignored when the bus is idle and at the end of the bus cycle’s first clock.

RDY is active during address hold. Data can be raturned to the processor while AHOLD
is active,

RDY is active Low and is not provided with an internal pull-up resistor. RDYY must satisfy
setup and hold times t,s and ty; for proper chip operation.

TCK
Test Clock {Input)

Test Clock is an input to the Am486 CPU and provides the clocking function required by
the JTAG boundary scan feature, TCK is used to clock state information and data into
and out of the componsant. State select information and data are clecked into the
componéant on the rising edge of TCK on TMS and TDI, respectively. Data is clocked out
of the component on the falling edge of TCK on TDO.

TDI

Test Data Input {Input}

TDl is the serial input used to shift JTAG instructions and data into the component. TDI
is sampled on the rising edge of TCK during the SHIFT-IR and the SHIFT-DR TAP {Tap
Access Port) controller siates. During all other tap controlier states, TDI is a "don't care.”

TDO
Test Data Qutput {Output)

TDO is the serial output used to shift JTAG instructions and data out of the component,
TRO is driven on the falling edge of TCK during the SHIFT-IR and SHIFT-DR TAP
controller states. At all other times, TDO is driven ta the high impedance state.

1-3
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™S
Test Mode Select (Input)

TMS is decoded by the JTAG TAP to select the operation of the test legic. TMS is
sampled on the rising edge of TCK. To guaraniee deterministic behavior of the TAP
controller, TMS is provided with an internal pull-up resister.

UPF
Upgrade Present (Input) (PQFP package oniy)

The Upgrade Present pin forces the Am486DX2 CPL to three-state all its outputs and
anter the power-down mode. When the Upgrade Present pin is sampled asserted by the
CPU in the clock befere the falling edge of RESET, the power-down mods is enabled.
UP has no effect on the power-down status expect during this sdge. The CPU is also
forced to thres-state all of its outputs immediately in response to this signal The UP
signal must remain asserted in order to keep the pins three-stated. UP is active Luw and
is provided with an internal pull-up resistor, -

Note: The UP pin is for the Am4860X2 CPU.

WK
Write/Read (Output}

A bus cycle definition pin, W/R disiinguishes write cycles from read tycles,

Table 1.1 Output Pins

Name Active Level Floated At

BREGQ High
HLDA High
BE3-BEO Low Bus Hold
PCD/PWT High Bus Hold
W/R, D/C, MO High Bus Hold
LOCK Low Bus Hold
PLOCK Low Bus Hoid
ADS Low Bus Hold
BLAST Low Bus Hold
FCHK Low
FERR Low
AJ-AZ ’ High Bus, Address Hold

Table 1-2 Input Pins

Name Active Lavel Synchronous/Asynchronous
CLK
RESET High Asynchronous
HOLD High . Synchronous
AHOLD High Synchronous
EADS Low Synchronous
BOFF Low Synchronous
FLUSH tow. Asynchronous
AZOM Low Asynchrancus
5516, BS§ Low Synchronous
KEN Low Synchronous
DY Low Synchranous
8RD Law Synchronous
INTR High Asynichronous
NMI High Asynchronous
IGNNE Low Asynchronous
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Table 1-3 Input/Output Pins
Name Active Level Floated At
D31-D0 High Bus Hold
DP3-DF0 High Bus Hold
A31-Ad High Bus, Address Hold
Tabin 1-4 Bus Cycle Definition
Mo D/c WiR Bus Cycle Initiated
0 0 0 Interrupt Acknowledge
0 0 1 Hal/Special Cycle
0 1 0 1C Read
0 1 1 IO Write
1 0 0 Code Read
1 ] 1 Reserved
1 1 0 Memary Read
1 1 1 Memary Write
Table -5  Test Pins
Name Input or Output Sampled/Driven On
TCK Input N/A
TDI Input Rising Edge of TGK
Falling Edge of TCK
¥Eﬂg %ﬁ‘ Rising Edgs of TOK
1-10 AM4B6DX/DX2 Microprocassor Features




Am486DX/DX2 CPU ARCHITECTURAL lrl
OVERVIEW

2.1

INTRODUCTION

The Am486DX/DX2 microprocessor is a 32-bit architecture with on-chip memeory
management, floating-point, and cache memory units.

The Am486DX/DX2 microprocessor contains all the features of the 386 microprocessor
with anhancements to increase performancea. The instruction set includes the complete
386 microprocessor instruction set along with extensions 10 serve new applications. The
on-chip Memory Management Unit (MMU) is completely compatible with the 386 MMU.
The Am4B6DX/DX2 micropracessor brings the functions of a math coprocessor on-chip.
All software written for the 386 microprocessor, 387 math coprocessor, and previous
members of the x86/x87 architectural family ¢can run on the Am486DX:’DX2 microproces-
sor without any modifications.

Several enhancements have been added te the Am486DX/DX2 microprocessor to
increase parformance. On-chip cache memory allows frequently used data and code 10
ke stored on-chip, thereby reducing accesses to the external bus. RISC design tech-
niques have been used to reduce instruction cycle times. A burst bus feature enables fast
cache fills. Al of these features combined lead to performance greater than twice that of a
386 Microprocassor.

The Am486 microprocessor MMU consists of a segmentation unit and a paging unit.
Segmentation allows management of the logical address space by providing easy data
and code relacatibility and efficient sharing of glabal rescurces. The paging machanism
operates beneath segmentation and is transparent to the segmentation process. Paging is
optional and can be disabled by systemn software. Each segment can be divided into one
or more 4-Kbyte segments. Te implament a virtual memary system, the Am486DX/DX2
microprocessor supports full restartability for all page and segment faults.

Memery is organized into one or more variable length segments, each up to 4 Gbytes
(232 bytes) in size. A segment can have attributes associated with it. These atfributes
include its location, size, type {i.e., stack, code, or data), and protection characteristics.
Each task on an Am486DX/DX2 microprocessor can have a maximum of 16,381
segments, each up to 4 Ghytes in size. Thus, each task has a2 maximum of 64 Thyte
(terabytes) of virtuai memory.

The segmentation unit provides four levels of protection for isclating and protecting
applications and the operating system from each other. The hardware enforced protection
allows high integrity system designs.

The Am486DX/DX2 microprocessor has twe modes of operation: Real Address Mode (Real
Mode) and Virtual Address Mode (Protected Mode). In Real Mode, the Am486DX/DX2
microprocessor operates as a very fast B0BS, Real Mode is required primarily to set up
the processor for Protected Mode operation. Protected Mode provides access to the
sophisticated memory management paging and privilege capabilities of the processer.

Within Protected Mode, software can perform a task switch to enter into tasks designated
as Vinual 8086 Mode tasks. Each Virtual 8086 task behaves with B086 semantics, aliow-
ing 8086 software (an application pregram or an entire operating system) to execute,
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2.2

The on-chip floating-point unit {FPU) operates in parallel with the arithmetic and logic unit
and pravides arithmetic instructions for a variety of numeric data types. The FPU executes
numerous buiit-in transcendental functions (e.g., tangent, sine, cosine, and log functions)
and conforms to the ANSIIEEE standard 754-1985 for floating-point arithmetic.

The en-chip cache is 8 Kbytes. It is four-way set asscciative and follows a write-through
palicy. The on-chip cache includes features that provide flexibility in external memory
system design. Individual pages can be designated as cacheable or nen-cacheable by
software or hardware. The cache can also be enabled and disabled by software or
hardware.

Finally, the Am486DX/DX2 microprocesser has features that facilitate high-performance
hardware designs. The 1X clock on the Am486DX CPU eases high frequency board
level designs. The 2X cleck doubler an the Am486DX/DX2 CPLU improves execution
performance without increasing the board design complexity. This 2X clock doubler
enhances all operations operating out of the cache and/or not blocked by external bus
assesses. The burst bus feature enables fast cache fills.

REGISTER SET

The Am486DX/DX2 microprocessor register set includes all the registers contained in
the 386 microprocessor and the 387 math coprocessor. The register sef can be split into
the following categories: '

m DBase Architecture Registers
— General Purpose Registers
— Instruction Pointer
— Flags Register
— Segment Registars

@ Systems Level Registers

— Control Registers

— System Address Registers

Floating-Point Registers

Data Registers

Tag Word

Status Word

instruction and Data Pointers

Conirol Word

Debug and Test Registers

The base architecture and floating-point registers are accessible by the applications
program. The system level registers are only accessible at privilege level ¢ and are used
by the systems level program. The debug and test registers are also only accessible at
privilege lavel 0.

Base Architecture Registers

Figura 2-1 shows the Am486DX/DX2 micropracessor basse architecture registers. The
contents of these registers are task-specific and are automatically lcaded with a new
context upon a task switch operaiion.

AmaseDX/DX2 CPU Architectural Overview
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22.1.1

The base architecture includes six directly accessible descriptors, each specifying a seg-
ment up to 4 Ghytes in size. The descriptors are indicated by the selector values placed in
the Am486DX/DX2 micropracessor segment registers. Various selector valuss can be
loaded as a program executes. The selectors are also task specific, so the segment regis-
ters are automatically loaded with new context upon a task switch operation.

General Purpose Rogisiers

The eight 32-bit general pumose registers {see Figure 2-1) hold data or address quanti-
ties. The general purpose registers can support data operands of 1, 8, 16, and 32 bits,
and bit fields of 1 to 32 bits. Address operands of 16 and 32 bits are supported. The
32-bit registers are named EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The least significant 16 bits of the general purpose registers can be accessed separately
by using the 16-bit names of the registers: AX, BX, CX, DX, 5, DI, 8F, and SP. The
upper 16 bits of the register are not changed when the lower 16 bits are accessed
separately.

Figure 2-1

Base Architecture Registers

Ganaral Purpose Réglsters

31 24) 23 16115 8|7 0
' AH  AX AL EAX
BH  BX Bl EBX
CH ©X L ECX
DH DX DL EDX
sl ESI
DI EDi
BP EBP
Sp ESP
Segment Ragisters
15 a
cs Code Segment
53 Stack Segment
Ds
ES :
- Data Segments
G3
Instruction Pointer
31 16 16 0
1P EiP
31 Flag?:' egsmr 0 178524004
FLAGS EFLAGS
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2.2.1.2

2.2.1.3

Finally, 8-bit operations ¢an individually access the lower byte (bits 7-0) and the higher
byte {bits 815} of the general purpose registers AX, BX, CX, and DX. The lowest bytes
are named AL, BL, CL, and DL, respectively. The higher bytes are named AH, BH, CH,
and DH, respectively. The individual byte accessibility offers additional flexibility for data
operations, but is not usad for effective address calcufation. )

Instruction Pointer

The instruction pointer {see Figure 2-1) is a 32-bit register named EIP. EIP holds the
offsat of tha next instruction to be executed. The offset is always relative to the base of
the code segment (CS). The lower 16 bits (bits 15-0) of the EIP contain the 16-bit
instruction pointer named IP, which is used for 16-bit addressing.

' Flags Register

The fiags register is a 32-bit register named EFLAGS. The defined bits and bit fields
within EFLAGS control certain operations and indicate the Am486DX/DX2 microproces-
sor's status. The lower 16 bits (bits 15-0) of EFLAGS contain the 16-bit register named
FLAGS, which is most useful when executing 8086 and 80286 code. EFLAGS is shown
in Figure 2-2.

EFLAGS bits 1, 3, 5, 15, and 19-31 are “undefined”. When these bits are stored during
interrupt procassing or with a PUSHF instruction (push flags onto stack), a 1 is stored in
bit 1 and 0s in bits 3, 5, 15, and 19-31.

Figure 2-2
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The EFLAGS register in the Am486DX/DX2 microprocessor contains a new bit not
previously defined in the Am386% CPU. The new bit, AC, is defined in the upper 16 bits
of the register and it enables faults on accesses to misalignad data.

AC {Alignment Check, bit 18)

The AC bit enables the generation of faults if a memory reference is to a misaligned
address. Alignment faults are enabled when AC is setto 1. A misaligned address is a
word acecess to an odd address, a dword access to an address that is not on a dword
boundary, or an 8-byte reference to an address that is not on a 64-bit word boundary.
See Section 7.1.8 for more information on operand alignment.

Alignment faults are only generated by programs running at privilege level 3. The AC
bit setting is ignored at priviiege levels 0, 1, and 2. Note that references to the descrip-
tor tables (for selector loads) or the task state segment (TSS) are implicitly level 0 ref-
erences, even if the instructions causing the references are executed atievel 3. Align-
ment faults are reported through interrupt 17 with an error code of C. Tabie 2-1 gives
the alignment required for the Am486DX/DX2 microprocessor data types.

Implementation Note: Several Am4ssDX/DX2 microprocessor instructions generate misaligned
references, even if their memory address is aligned. For example, on the AmdBEDX/DX2 micro-
processor, the SGDT/S1DT (store giobalimerrupt descriptor table) instruction reads/writes two
bvites, and then reads/writes four bytes from a “pseude-descriptor” at the given address. The
Am486DX/DX2 microprocessor generates misaligned references unless the addressison g 2
mod 4 boundary. The FSAVE and FRSTOR instructions (floating-point save and restore
state) generate misaligned references for one-half of the register save/restore cycles.
The AmdBEDX/DXE microprocessor does not cause any AC faults if the effective address given
in the instruction has the proper aligrment.

VM (Virual 8086 Mode, bit 17)

The VM bit provides Virtuali 8086 Mode within Protected Mode. If set while the
AmA86DX/DX2 microprocessor is in Protected Mode, the Am486DX/0X2 micropra-
cessor switches to Virtual 8086 operation. Virtuai 8086 Mode handles segment loads
as the 8086 does, but generates exception 13 faults on privileged opecodes. The VM bit
can be set only in Pretected Mode, by the IRET instruction (if current privilege level = 0)
and by task switches at any privilege level. The VM bit is unaftected by POPF. PUSHF
always pushes a 0 in this bit, even if executing in Virtual 8088 Mode. The EFLAGS
image pushed during interrupt processing or saved during task switches containg a1in
this bit if the interrupted code was executing as a Virtual 8086 Task.

RF {Resume Flag, bit 16}

The BF flag is used in conjunction with the debug register breakpoints. Itis checked at
instruction boundaries before breakpoint processing. When RF is set, any debug fault
is ignored on the next instruction. RF is then automatically reset at the successful
completion of every instruction {no faults are signaled) except the IRET instruction
and the POPF instruction, {also JMP, CALL, and INT instructions that cause a task
switch). These instructions set RF to the value specified by the memary winage. For
example, at the end of the breakpoint service routine, the IRET instruction can pop an
EFLAGS image having the RF bit set and resume the program’s execution at the break-
point address, without generating another breakpeint fault on the same location.

AmM486DX/DX2 CPU Architecturai Overview 2-5
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Table 2-1 Data Type Alilgnment Reguirements
Alignment
Memory Access (Byte Boundary)
Word 2
Dword 4
Single Precision Real 4
Double Pracision Real - 8
Extended Precision Real 8
Selector 2
48-bit Segmented Pointer 4
32-Bit Flat Pointer 4
32-Bit Segmeanted Pointer 2
438-Bit “Pseudo Descriptos” 4
FSTENV/FLDENY 3ave Area 4/2 {On Operand Size)
FSAVE/FRSTOR Save Area 4/2 (On Cperand Size)
Bit String 4
NT (Nested Task, bit 14)
This flag applies to Protected Mode. NT is setto indicate thatthe execution of this task
is nested within another task. If set, it indicates that the current nested task’s Task
State Segment (TSS} has a valid back link to the previous task’s TSS, NT is set or
reset by control transfers to other tasks. The value of NT in EFLAGS is tested by the
iRET instruction to determine whether to do an inter-task return or an intra-task return.
POPF or an tRET instruction affects the setting of this bit according to the image
popped, at any privilege level. _ :
IOPL {Input/Cutput Privilege Level, bits 13—12)
This two-bit fisld applias o Protectad Mode. 10PL indicates the numerically maximum
CPL {current privitege level} value permitted to execute FQ instructions without gener-
ating an exception 13 fault or consulting the I/Q Permission Bit-mayp. It also indicates
the maximum CPL value that allows alteration of the IF (INTR Enable Flag) bit when
new values are popped into the EFLAGS register. POPF and IRET instruction can
alter the IOPL field when executed at CPL = 0. Task switches can always alter the
IOPL field when the new flag image is loaded from the incoming task's TSS.
OF (Overflow Flag, bit 11}
OF is setifthe operation resultedin a signed overfiow. Signed overflow cccurs when the
operation resulted in carry/borrow inta the sign bit (high-order bit) of the result, but did
not result in a carry/borrow out of the high-order bit, or vice versa. For 8-, 18-, and 32-bit
operations, OF is set according to overflow at bit 7, 15, and 31, respectively.
DF  (Direction Flag, bit 10)
DF defines whether ES| andfor EDI registers postdecrement orpnét increment during
the string instructions. Post increment occurs it OF is reset. Post decrement occurs if
DF is set.
25 AmABGDX/DX2 CPU Architectural Overview
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IF- {INTR Enable Flag, bit 9}
When set, the IF flag allows recognition of external interrupts signaled on the INTR pin.
When IF is reset, external interrupts signaled on the INTR are not recognized. IOPL
indicates the maximum CPL value that allows alteration of the IF bit when new values
are popped into EFLAGS or FLAGS.

TF (Trap Enable Flag, bit 8}
TF controls the generation of exception 1 trap when single-stepping through code.
When TF is set, the Am486DX/DX2 microprocessor generates an exception ¥ trap after
the next instruction is executed. When TF is reset, exception 1 traps occur only as a
function of the breakpoint addresses loaded inte debug registers DR3-CRO.

SF  (Sign Flag, bit 7)

' SF is set if the high-order bit of the result is set; if is reset otherwise. For 8-, 18-, and

32-bit operations, SF reflects the state of bit 7, 15, and 31 respectively.

ZF {Zero Flag, bit 6)
ZF is set if all bits of the result are 0; otherwise, it is reset.

AF  (Auxiliary Carry Flag, bit 4)
The Auxiliary Flag is used to simglify the addition and subtraction of packed BCD
quantities. AF is set if the operation resulted in a carry out of bit 3 (addition) or a bhorrow
into kit 3 {subtraction); otherwise, AF is reset. AF is affected by carry out of, or borrow
into bit 3 only, regardless of averall operand length: 8, 16, or 32 bits.

PF {Parity Flags, bit 2)
PF is set if the low-order eight bits of the operation contain an even number of “1s”
{even parity). PF is reset if the low-order eight bits have odd parity. PF is a function of
only the low-order eight bits, regardless of operand size.

CF (Carry Flag, bit ()

CF is set if the operation resulted in a carry out of {addition), or a borrow into {(subtrac-
tion) the high-order bit; otherwise, CF is reset. For 8-, 16-, or 32-bit operations, CF is
set according to carry/borrow at bit 7, 15, or 31, respectively.

Note: In these descriptions, “set” means “set to 1,” and ‘reget” means “resetio 0."

Segment Registers

Six 16-bit segment registers hold segment selector values that identity the currently
addressable memory segments. In Protected Mode, each segment can range in size
from one byte up to the entire lingar and physical address space of the machine, 4
Gbytes {232 bytes). In Real Address Mode, the maximum segment size is fixed at 64
Kbytes (2'° bytes).

The six addressable segments are defined by the segment registers CS, SS, DS, ES,
F&, and G5. The selector in CS indicates the current code segment; the selector in 8%
indicates the current stack segment; the selactors in DS, ES, £S5, and GS indicate the
current data segments,

Segment Descriptor Cache Registers

The segment descriptor cache registers are not programmer-visible, yat understanding
their content is very useful. A programmer-invisible descriptor cache register is
associated with gach programmer visible segment register (see Figure 2-3). Each
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descriptor cache register holds a 32-bit base address, a 32-bit segment limit, and othar
necessary segment attributes.

When a selector value is loaded into a segment register, the associated descriptar cache
register is automatically updated with the correct information. In Real Address Mode,
only the base address is updated directly (by shifting the selector value four bits 1o the
left), since the segment maximum limit and atiributes are fixed in Beal Mode. In Pro-
tected Mode, the base address, the limit, and the attributes are all updated per the
contents of the segment descriptor indexed by the selector.

Whenever a memory reference occurs, the segment descripior cache register
associated with the segment being used is automatically involved with the memaory
referance. The 32-bit segment base address becomes a component of the linear
address calculation, the 32-bit limit is used for the limit-check operation, and the
attributes are checked against the type of memory reference requested.

2.2.2 System Level Registers

The system level registers (ses Figure 2-4) control operation of the on-chip cache, the
on-chip floating-peint unit (FPU}, and the segmentation and paging mechanisms, These
registers are only accessibie to programs running at privilege level G, the highest
privilege level,

The system ievel registers include three control registers and four segmentation base
registers. The three control registers are CRO, CR2, and CR3. CR1 is raserved for future
AMD processors. The four segmantation base registers are the Global Descriptor Table
Register (GDTR}, the Interrupt Descriptor Table Register {IDTR), the Local Descriptar
Table Register (LDTR}), and the Task State Segment Registar {TR).

Figure 2.3 Am486 Microprocessor Segment Reglsters and Assoclated Descripior Cache

Registers
Sagmentfeglsters Doscriptor Registers {Automatically Loaded)
! ' ! o Other A
' Segment

15 0 Physical Base Address Segment Limit Attributes from Descriptor
Salector CS- -
Selectar 55— _ - -
Selector Ds- -1 -1-
Selactor ES- : -1-=1-
Selector F&-- -t-1-
Salactor G- i -i-1-
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Figure 2-4 System Level Registers

a 24 23 16/ 15 87 4]
) CRo
Page Fault Linsar Address Hagistar CR2
Page Directory Base Register GR3

System Address Registers

47 32-Bit Linear Base Addross 18| 15 Lirnit 1]
GDOTR
IDTR
Descriptor Registers (Automatically Loaded)
Systam Segment Registers e A -
15 0 32-Bit Linear BaseAdi:lr_ess 20-Bit Segment Limif  Attributes
TR Selactor :
LDTR Selsctor
178524007
Figuwe 2.5 Control Register 0
3 24 23 18 16 15 8 7 5 32 10
FICIN A w N TIEIW|P
G|D|wW A = £ Nslwle E CRO
\ -
hd
Note: : MSW
1 indicates AMD Reservad (Do Not Define}; see Section 2.2.6. 17852A-008
2.2.21 . Control Registers

Control Register 0 {CR0)

CRO (see Figure 2-5) contains 10 bits for control and status purposes. Five of the bits
defined in the Am486DX/DX2 microprocessor's CRO are newly defined. The new bits are
CD, NW, AM, WP, and NE. The function of the bits in CRO can be categorized as
follows:

B Am486DX/DX2 Micreprocessor Operating Modes: PG, PE (see Table 2-2)
B On-Chip Cache Control Modes: CD, NW (see Table 2-3)

® On-Floating-Peint Unit Control; TS, EM, MP, NE (see Table 2-4)

® Alignmsnt Check Control: AM

a Supervisor Write Protect: WP

The low-order 16 bits of CRO are also known as the Machine Status Word {(MSW), for
compatibility with the 80286 Protected Mode. LMSW and SMSW (load and store MSW)
instructions are taken as special aliases of the ioad and store CR0 operations, where
only the low-order 16 bits of CRO are involved. The LMSW and SM3W instructions in the
Am48eDX/DX2 microprocassor work the same as the LMSW and SMSW instructions in
the 80286 (i.e., they only operate on the low-crder 16 bits of CRO and they ignore the
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new bits). New Am488DX/DX2 microprocessar operating systems shouid use the MOV

CRO,

PG

CD

NW

AM

Reg instruction. The defined CRO bits are described below:
{Paging Enable, bit 31)

The PG bit is used to indicate whether paging is enabled {PG = 1) ordisabled {PG = 0}
(see Table 2-2).

(Cache Disable, bit 30)

The CD bitis used to enable the on-chip cache. When CD =1, the cache is notfilled on
cache misses. When CD = 0, cache fills can be performed on misses (see Table 2-3).

The state of the CD bit, the cache enabie input pin (KEN), and the relsvantpage cache
disaile (PFCD} hit determineg if a line read in response to a cache miss is installed in the
cache. Aline is installed in the cache only if CD = ¢ and KEN and PCD are both zero.
The relevant PCD bit comes from either the page table entry, page directory entry, or
control register 3. Refer to Section 5.6 for more details on page cacheability.

CD is set to one after RESET.
{Not Write-Through, bit 29)

The NW bit enables on-chip cache write-throughs and write-invalidate cycles (NW =
0). When NW =0, all writes, including cache hits, are sent out to the pins. Invalidate
cycles are enabled when NW = 0. During an invalidate cycle a line will be removed
from the cache if the invalidate address hits in the cache (see Table 2-3).

When NW = 1, write-throughs and writs-invalidate cycles are disabled. A write will not
ke sent to the pins if the write hits in the cache. With NW = 1, the only write cycies that
reach the external bus are cache rmisses. Write hits with NW = 1 will never update
main memoery. Invalidate cycles are ignored when NW = 1.

{Alignment Mask, bit 18)

The AM bit controls whether the alignment check (AC) bit in the flag register
{EFLAGS) can allow an alignment fault. AM == 0 disables the AC bit. AM = 1 enables
the AC bit. AM = 0 is the 386 microprocessor compatible mode. 386 microprocessor
software can load incorrectdatainto the AC bit in the EFLAGS register. Setting AM =0
will prevant AC faults from cccurring before the Am486DX/DX2 microprocessor has
created the AC interrupt service routine.

Table 2-2 Processor Operating Modes
PG | PE Made
0 0 |Real Mode. Exact 8086 semantics, with 32-bit extensions avaitable with prefixes.
4] 1 1Protected Mode. Exact 80286 ssmantics, plus 32-bit extensions through bath pre-
fixes and “defauit” prefix setling associated with code segment descriptors. Alsc, a
submode is defined to support a Virtual 8086 within the context of the extended
80286 protection modal.
1 0 |UNDEFINED. Loading CRC with this combination of PG and PE bits raises a GP
fault with error code 0.
1 1 | Page Protection Made. All the facilities of Protected Moede, with paging enabled
undemeath segmentation.
2-10 Am4BeDX/DX2 CPU Architectural Overview
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Table 2-3 On:-Chip Cache Control Modes
CD | NW Operating Mode
1 1 | Cache fills disabled, write-through and invalidates disakled.
1 0 |Cache fills disabled, write-through and invalidates enabled.
0 1 | INVALID. {f CRO is loaded with this combination of bits, a GP fault with error
code is raised.
0 0 |Cache fills enabled, write-through and invalidates enabied.
Tabla 24 On-Chip Floating-Point Unit Control

CRO BIT ingiruction Type l
EM TS MP Floating Polnt Walt
D 0 0 Execute Execute
0 0 1 Execute Execute
0 T ¢ Trap 7 Execute
0 1 1 Trap 7 Trap 7
1 0 0 Trap 7 Execute
1 0 3 Trap 7 Execute
1 1 0 Trap 7 Execute
1 1 1 Trap 7 Trap 7
WP (Write Protect, bit 16}
WP protects read-only pages from supervisor write access. The 386 microprocessor
allows a read-only page to be written from privilege levels 0—2. The Am486DX/DX2
microprocessor is compatible with the 386 microprocessor when WP = 0. WP =1
forces a fault on a write to a read-only page from any privilege level. Operating sys-
tems with Copy-on-Write features can be supported with the WP bit. Refer to Section
4.5.3 for further details on the WP bit.
NE (Numaerics Exception, bit §)

Thea NE bit controls whether unmasked floating-point exceptions (UFPE) are handled
through interrupt vector 16 {NE = 1} or through an external interrupt (NE = 0). NE=0
(default at reset) supports the DOS operating system error reporting scheme from the
8087, 80287, and 387 math coprocessor. In DOS systems, math coprocessor errors
are reported via external interrupt vector 13, DOS uses interrupt vector 16 for an oper-
ating system call. Refer to Sections 6.2.13 and 7.2.14 for more information on -
floating-point error reporting.

For any UFPE, the floating-point error oufput pin (FERR} is driven active.

For NE = G, the Am488DX/DX2 microprocessor works in conjunction with the ignere
numeric error input (IGNNE) and the FERR ocutput pins. When a UFPE occurs and the
IGNNE input is inactive, the Am486DX/DX2 microprocesseor freezes immediately
hefore executing the next floating-point instruction. An external interrupt controller
supplies an interrupt vector when FERR is driven active. The UFPE is ignored if
IGNNE is active and floating-point execution continues.

Note: The CPLU freeze mentioned above does hot take piace if the next instruction is one
of the control instructions: FNCLEX, FNINIT, FNSAVE, FNSTENV, FNSTCW, FNSTSW,
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FNSTSW AX, FNENI FNDIS!, and FNSETPM. The freeze does occur if the next instruc-
tion is WAIT.

For NE = 1, any UFPE resulis in a software interrupt 16 immediately before exacuting
the next non-control floating-point or WAIT instruction. The IGNNE signal is ignored.

TS (Task Switched, bit 3)

The TS bitis set when a task switch operation is performed. Execution of a floating-point
instruction with TS = 1 causes a device not avaitable (DNA) fault (trap vector 7). K TS =1
and MP =1 {monitor coprocesser in CRQ), a WAIT instruction causes a DNA fault {see
Table 2-4).

EM {(Emulate Coprocessor, bit 2)

The EM bit determines whether fioating-point instructions are trapped (EM = t) or
executed. If EM = 1, all floating-point instructions cause fault 7. :

Nota: WAIT instructions are not affected by the state of EM (see Table 2-4).

MP  {Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS bit to determine if WAIT instructions
should trap. If MP =1 and TS = 1, WAIT instructions cause fault 7 (see Table 2-4}. The
TS bitis setto 1 on task switches by the Am486DX/DX2 microprocessor. Floating-point
instructions are unaffected by the state of the MP bit. Itis recommended that the MP bit
he set to 1 {or the normal operation of the Am486DX/DX2 microprocessor.

PE (Protection Enabls, hit 0)

The PE bit enables the segment-based protection mechanism. if PE = 1, protection is
enabled. When PE = 0, the Am486DX/DX2 microprocessor operates in Real Mode,
with segment-based protection disabled and addresses formed as in an BOBG (see
Table 2-2).

All new CRO hits added to the Am3386 CPU and Am486DX/DX2 microprocessors, except
for ET and NE, are upward compatible with the BO286. Thase new bits are in register bits
not defined in the 8G286. For strict compatibility with the 80286, the LMSW instruction is
defined to not change the ET or NE bits.

Control Register 1 (CR1)
CR1 is reserved for use in future AMD microprocessors.
Conirol Register 2 {CR2)

CR2 hoids the 32-bit linear address that caused the last page fault detected (see
Figure 2-6). The error code pushed onto the page fauit handler’s stack when it is invoked
provides additional status information on this page fault.

Coantrol Register 3 (CRJ)

CR3 contains the physical base address of the page directory table (see Figure 2-6).
The Am438DX/DX2 microprocessar page directory is always page aligned (4 Kbyte-
aligned). This alignment is enforced by only storing bits 31-20 in CR3.

In the Am486DX/DX2 microprocessor, CR3 contains two new bits, page write-through
{PWT] (bit 3} and page cache disable {(PCD) (hit 4). The page table entry (PTE} and page
directory entry (PDE) alse contain PWT and PCD bits. PWT and PCD conirol page
cacheability. When a page is accessed in extarnal memory, the state of PWT and PCD
are driven out on the PWT and PCD pins. The source of PWT and PCD can be CR3, the
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PTE, or the PDE. PWT and PCD are sources from CR3 when the FDE is being updated.
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Whan paging is disabled (PG = 0 in CR0), PCD and PWT are assumed to be 0,
regardless of their state in CR3.

A task switch through TS5 that changes the valuss in CR3, or an explicit load into CR3
with any value invalidates all cached page table entries in the translation lookaside buffer
(TLB).

The page directary base address in CR3 is a physical addrass. The page directory ¢an be
paged out while its associated task is suspended, but the operating system must ensure
that the page directory is resident in physical memory before the task is dispatched. The
entry in the TSS for CR3 has a physical address, with no provisian for a present bit. This
means that the page directory for a task must be resident in physical memaory. The CR3
image in a TSS must point to this area before the task can be dispatched through its TSS.

System Address Registers

Four special registers are defined to reference the tables or segments suppone;:l_ by the
80286, 386, and Am485DX/DX2 microprocessor protection model. These tables or
segments are

m GDT (Global Descriptor Table)
m DT {Interrupt Descriptor Takle)
LDT {Local Descriptor Table)

m TSS (Task State Segment)

The addresses of these tables and segments are stored in special registers, the System
Address and System Segment Registers (see Figure 2-4). These registers are GDTR,
IDTR, LDTR, and TR, respectively. Chapter 4, Protected Mode Architecture, describes
the use of these registers.

System Address Registers [GDTR and IDTR)

The GDTR and IDTR hold the 32-bit linear base address and 156-bit jimit of tha GDT and
IDT, respectively.

Since the GDT and IDT segments are global to ail tasks in the system, the GDT and IDT
are defined by 32-bit linear addresses (subjact to page translation if paging is enabled)
and 16-bit limit values.

System Segment Registers (LDTR and TR)

The LDTR and TR hold the 16-bit selector for the LDT descriptor and the TSS descrip-
tor, respectively.

Figwe 2.6 Control Registers 2 and 3

<2l

Page Fault Linear Addrass Register CR2

3

Page Diractory Base Register glojo|ofo|o|o CR3

—AZofw
(=
o
(=]

oo~

Nota:

0 indicates AMD Resarvad (Do Wot Defing); sea Section 2.2.6.
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2.2.3

2.2.3.1

Since the LDT and TSS segments are task specific segments, the LDT and TSS are
defined by selector values stored in the system segmeant registers.

Note: A programmer-invisible segment descriptor register is associated with each systern seg-
ment register.

Floating-Point Registers

Figure 2-7 shows the floating-point register set. The an-chip fleating-point unit (FPU)
contains eight data registers, a tag word, a control register, a status register, an instruc-
tion pointer, and a data pointer.

The operation of the Am486DX/DX2 microprocessor’s on-chip FPU is exactly the same
as the 387 math coprocessor. Software written for the 387 math coprocessor runs on the
on-chip FPU without any modifications.

Data Registers

Fleating-peoint computations use the Am486DX/DX2 micrapracesser’'s FPU data
registers. These aight 80-bit registers provide the equivalent capacity of twenty 32-bit
registers. Each of the eight data registers is divided into fields corresponding to the
CPU's extended-precision data type.

The FPU's register sat can be accessed either as a stack, with instructions operating on
the top one or two stack elements, or as a fixed register set, with instructions operating
on explicitly designated registers. The TOP field in the status word identifies the current
top-of-stack register. A "push” operation decrgments TOP by 1 and loads a vaiue into the
new top register. A “pop” operation stores the value from the current fop register and
then increments TOP by 1. Like other Am486DX/DX2 microprocessor stacks in memory,
the FPL register stack grows "down” toward lower-addressed registers.

Instructions can adkress the data registers either implicitly or explicitly. Many instructions
operate on the register at the TOP of the stack. These instructicns implicitly address the
register at which TOP points. Other instructions allow the programmer to explicitly
specify which register to use. This explicit register addressing is also relative to TOP.

Flguwre 2-7

Floating-Point Registers Tag

Field
79 78 64 63 o 1 o

Ro | Sign Exponent Significand
A1
R2
R3
R4
R5
RB
R7

18 Q 47 0
Control Register Instruction Pointer

Status Hegister Data Pointer
Tag Word

17852A-010
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2.2.3.2 Tag Word

The tag word marks the content of each numeric data register (see Figure 2-8). Each
two-bit tag represents one of the eight data registers. The principal function of the tag
word is 10 optimize the FPU's performance and stack handling by making it possibie 1o
distinguish between empty and non-empty register locations. Tag words also enable
exception handlers to check the contents of a stack igcation without necassitating
complex decoding of the actual data.

2.2.3.3 Status Word

The 16-bit status word reflects the overall siate of tha FPU. The status word is shown in
Figure 2-9 and is located in the status register

Figure 2.8 FPU Tag Word
15 0
TAG (7) TAG (8) TAG (5) TAG ($) TAG (3) TAG (2} TAG {1} TAG (0}

Note:

Theindex i of tag(i) is not lop-relative. A program typically uses the top fiald of status word to deternine wiich tag(i} field refers to
logical top-of-stack.

TAG VALUES:
00

= Valid
ar = Zero
10 = CINaN, SNaN. Infintty, Denormal and Unsupported Formats
i1 = Empty
178524-011
Figure 2.9 FPU Status Word
Busy
Top-of-Stack Pointer
" Condition Code
15 l 4 LA 4 ll l? 0
c I CI|CIC|E|SIPIU{CLZ|C] ]
8ls |T°P| z|1|e|stF|E|E{E|E|E|E
EEEEEEE
Error Summary Status
Stack Flag
EXCEPTION FLAGS:
Precision
Underflow
Overflow
Zaro Divide
Denormalized Opsrand
Invalid Operation
ES is set if any unmasked exception bit is set; cleared otherwise.
See Tabla 2.5 for interpretation of condition code.
TGP Values:
00C = Register 0 is Top-of-Stack
001 = Aegister 1 is Top-of-Stack
]
L 17862802

111 = Regqlster 7 iz Top-of-Stack
For definitions of exceptions, refar to the Section entitled
"Exception Handling”.
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The B bit (Busy, bit 15) is inciuded for 8087 compatibility. The B bit reflects the contents
of the ES bit (bit 7 of the status word).

Bits 13—11 (TOP) point to the FPU register that is the current top-of-stack.

The four numeri¢ condition code bits, C3-CO0, are similar {o the flags in EFLAGS.
Instructions that perform arithmetic operations update C3-C0 to reilect the outcome.
The effects of these instructions on the condition codes are summarized in Table 2-5
through Table 2-8.

Bit 7 is the arror summary (ES) status bit. The ES bit is set if any unmasked exception
hit {bits 5-0 in the status word) is set; ES is clear otherwise. The FERR ({floating-point
error) signal is asserted when ES is set

Bit 6 is the stack flag {(SF). This bit is used tc distinguish invalid operations due to stack
overflow or underflow. When SF is set, bit 9 (C1) distinguishes between stack overﬂow
(C1 = 1) and underflow {Ct = 0}.

Table 2-9 shows the six exception flags in bits 0-5 of the status word. Bits 05 are setto
indicate that the FPU has detected an exception while executing an instruction.

The six exception flags in the status word can be individually masked by mask bits in the
FPU control word. Table 2-9 lists the exception conditions and their causes in order of
precedence. Table 2-9 also shows the action taken by the FPU if the corresponding
exception flag is masked.

An exception not masked by the control word causes three things to happen: the
corresponding exception flag in the staius word is set, the ES bit in the status word is
set, and the FERR gutput signal is asserted. When the Am486DX/DX2 microprocessor
attempts to execute another floating-point or WAIT instruction, either exception 16
accurs, or an external interrupt oceurs if NE = 1 in control register 0. The exception
condition must be resolved via an interrupt service routine. The FPU saves both the
address of the floating-point instruction that caused the exception, and the address of
any memory operand required by that instruction in the instruction and data pointars
{see Section 2.2.3.4).

Noto: When a new value is loaded into the status word by the FLDENY (load environment) or
FRSTOR (restore state) instruction, the value of ES (bit 7} and its reflection in the B bit (bit 15)
are not derived from the vailues loaded from memory. The values of ES and B are dependem
upon the valyes of the exception flags i the staius word and their corresponding masks in the
control word. K ES s set in such a case, the FERR output of the Am486DX/DX2 micreprocessor
is activated immediately.

2-16
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Table 2-5 FPU Condition Code Imterpretation
Instruction cog | @ [ c@a C2({C)
FPREM, FPREM? Three least significant bits _
(see Table 2-3) of quotient Reduction
0 = complete
Qe Qo o 1 = incomplete
or O/
FCOM, FCOMP, FCOMPF, FTST, . Operand is not
FUCOM, FUCOMP, FUCOMPP, Result of comparison L comparable
FICOM, FICOMP (see ) (Table 2-7)
FXAM Operand class Sign Operand class
{see Table 2-5) or O {Table 2-9)
FCHS, FABS, FXCH, FINCTOP,
FDECTOPF, Constant loads, Zero
FXTRACT, FLD, FILD, FBLD, FSTP UNDEFINED or O/ UNDEFINED
{ext real)
FIST, FESTP, FRNDINT, FST, FSTP,
FADD, FMUL, FDIV, FDIVR, FSUB, Roundup
FSUBR, FSCALE, FSQRT, FPATAN, UNDEFINED or O/ UNDEFINED
F2XM1, FYL2X, FYL2XP1
FPTAN, FSIN, Roundup Reduction
FCOS, FSINCOS UNDEFINED uﬁggféd 0 = compiste
i G2 = 1 1 = incomplete
FLDENY, FRSTCR Each bit loaded from memaory.
FINIT Clears these bits.
FLDCW, FSTENV, FSTCW, FSTSW, UNDEFINED

FCLEX, FGAVE

o/

Reduction

Roundup

UNDEFINED

When both IE and SF hits of status word are set, indicating a
stack exception, this bit distinguishes between stack overflow
(C1 = 1) and undarflow {C1 = 0).

If FFREM or FFREM1 produces a remainder that is less than the
modulus, reduction is complete. When reduction is incomplete,
the vaklue at the top of the stack is a partiat remainder that can be
used as input to further reduction. For FFTAN, FSIN, FCOS, ang
FSINCOS, the reduction bit is set if the operand at the top of the
stack is too lamge. In this case, the original operand remains at
the fop of the stack.

When the PE bit of the status word is set, this bit indicates
whether the last rounding in the instruction was upward.

Do not rely on finding any specific value in these bits.
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Table 2-6 Condition Code Interpretation after FPREM and FPREM1 Instructlons
Condition Code interpretation after FPREM and FPREM1
= = &1 o erpretation afte
nconplete Reduction:
1 X X X further interaction raguired
for complete reduction..
Q1 Qo Q2 QMODS
0 H 0 0
1
? :} g 2 Complete Reduction:
0 1 4 0 3 G0, C3, and C1 contain three least
09 0 1 4 significant bits of quotient.
4] 1 1 5
1 0 1 6
1 1 1 7
Table 2.7 Condition Code Resulting from Comparison
Order c3 C2 co
TOP = Operand ¢ 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
LUnordered 1 1 1
Table 2-8 Condition Code Defining Operand Class
C3 c2 1 co Value at TOP
0 0 0 0 + Unsupported
0 0 i 1 + NaN
0 H 1 V] - Unsupporied
Q ¢ 1 1 — NaN
0 1 0 0 + Normai
0 1 0 i -+ Infinity
o 1 1 4] — Normal
0 1 1 1 — Infinity
1 0 0 D +0
1 0 c 1 + Empty
1 0 1 0 -0
1 0 1 1 — Emipty
1 1 0 0 + Denarmal
1 1 1 0 - Denarmal
2.2.3.4 Instruction and Data Pointers
Because the FFU operates in parallel with the Arithmetic Logic Unit {ALU} (in the
Am486DX/DX2 microprocassor the ALU consists of the base architecture registers), any
emors detected by the FPU may be reported after the ALU executed the floating-paint
instruction that caused it. To allow identification of the failing numeri¢ instruction, the
Am486DX/DX2 microprocessor containg two pointer registers that supply the address of
the failing numeric instruction and the address of its numeric memory operand (if
appropriata).
2-18
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The instruction and data pointers are provided for user-writtsn error handlers. These registers
are accessed by the FLDENY {load envirenment), FSTENY (store envirenment), FSAVE
(save state), and FRSTOR (restore state) instructions. Whenever the Am48a6DX/DX2
micreprocessor decodes a new floating-point instruction, it saves the instruction (including
any prefixes that might be present), the address of the operand {if present), and the
opcode.

The instruction and data pointers appear in one of four formats depending on the
operating mode of the Am486DX/DX2 microprocessor (Protected Mode or Real Address
Mode) and depending on the operand-size attribute in efiect (32-bit operand or 16-bit
operand}. Whsen the Am486DX/DX2 microprocessor is in the Virtual 8086 Mode, the Real
Address Mode formats are used. The four formats are shown in Figure 2-10 through
Figure 2-13. The floating-point instructions FLDENY, FSTENV, FSAVE, and FRSTOR are
used to transfer these values to and from memory. Note that the data peinter value is
undefined if the prior floating-point instruction did not have a memory operand.

Note: The operand size atiribute Is the D bit in 2 segment descriptor.

2.2.3.5 FPU Control Word

The FPU provides several processing options that are selected by loading a control
word from memory into the control register. Figure 2-14 shows the format and encoding
of fialds in the control word.

Figure 210 Protected Mode FPU Instruction and Data Pointer Image In Memory,
A2-Bit Format

32-bit Protected Moda Farmat

b 23 15 T 0
Rasarved Control Word a
Reserved Status Word 4
Reserved Tag Word 8
' IP Offset ' C
00000 | Opcoda 10,0 ' CS Selector 10
. Data Operand Offset , 14
Ressrved Operand Selactor 8
1 [}
178524013

Figure 2-11 Real Mocde FPU Instruction and Data Pointer Image in Memory, 32-Bit Format
32-bit Real Address Mode Format

31 23 15 ? 0
Resarved Control Word 0
Reserved Status Word 4
Reserved Tag Word 8
Reserved Instruction Pointer 15..0 c
0000 | Instruction Pointer 31..16 | ¢ "opeode 10.0 10
Reserved Operand Pointer 15..0 14
6665 | Operand Fointer 31,16 [ o000 | ocooooco 18
178624014
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Figure 2?12 Protected Mode FPU Instruction and Data Pointer Image in Memory,
16-Bit Format

16-bit Protected Mode Format
15 7 Q

Contro! Word
Status Werd
Tag Word
P Offsst
S Selector
Operan,d Offsat
Dparand: Salactor

O » & A MO

178527015

Figure 2-13 Real Mode FPU Instruction and Data Pointer Image in Memory,
16-Bit Format

16-bit Real-address Moda And
Virtual-808¢6 Mode Format

15 7 0
Cuntrcll Word
Statusl- Word

Tag Word
Instruction Pointer 15..0
IP19.16 | 0| Opcode 10.0
Operand F’oimet-i 5.0 .
DP1916/¢] 00000000000 17852A_016
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The low-order byte of the FPU control word cuhfigures the FPU error and exception
masking. Bits 5-0 of the control word contain individual masks for each of the six
exceplions that the FPU recognizes.

The high-order byte of the control ward configures the FPU operating mode, inctuding
precision and rounding.

RC

PC

{(Rounding Control, bits 11-10)

Tha RC bits provide for directed rounding and true chop, as well as the unbiased
round to nearest even mede specified in the IEEE standard. Rounding control affects
only those instructions thal perform rounding at the end of the operation {and thus can
generate & precision exception); namely, FST, FSTP, FIST, all arithmetic instructions
{except FPREM, FPREM1, FXTRACT, FA8S, and FCHS), and all transcendenial
instructions.

{Precision Control, bits 9-8)

Tha PC bits can be used to set the FPU internal operating precision of the significand
at less than the default of 64 bits (extendead precision). This can be useful in providing
compatibility with early generation arithmetic processers of smaller precision. PC
affects anly the instructions ADD, SUB, DIV, MUL, and SQRT. For all other instruc-
tions, either the opcode datermines the precision or extanded precision is used.

220

AmadsseDX,/DX2 CPU Architectural Overview



AMD a

2.24
2.2.4.1

2.24.2

2.2.3

2.2.6

2.3

Debug and Test Registers

Debug Registers

The six programmer accessible debug registers {see Figure 2-15) provide on-chip
support for debugging. Debug registers DR3-DRO specify the four linear breakpoints.
The Debug control register DRY is used te set the breakpoints. The Debug status
register DRE displays the breakpaint’s current state. The use of the Debug registers is
described in Chapter 9,

Test Registers

The Am486DX/DX2 microprocessor contains five test registers (see Figure 2-15). TR8
and TR7Y are used to contred the TLB testing. TR3, TR4, and TRS are used for testing the
on-chip cache. The use of the test registers is discussed in Chapter 8.

Register AcceSSibiiity

There are a few differences regarding the accessibility of the registers in Real and
Protectad Maode (see Table 2-10). See Chapter 4, Prntected Mode Architecture, for
further details.

Compatibility With Future Processors

In the proceeding register descriptions, note certain Am486DX/DX2 microprocessor
register bits are AMD reserved. When reserved bits are called out, treat them as fully
undefined. This is essential for software compatibility with future processors! Follow these
guidelines:

m Do not depend on the states of any undefined bits when testing the values of defined .
register bits. Mask them out when.testing.

m Do not depend on the states of any undefined bits when storing them to memory or
another register.

& Do not depend on retaining information written into any undefined bits.
m When loading registers, always load the undefined bits as zeros.
& However, registers that have been previcusly stored ¢an be reloaded without masking.

Dspending upon the values of undefined register bits makes software dependent upon
the unspecified Am486DX/DX2 microprocessor handling of these bits. Depending on
undefined values risks making software incompatible with future processcrs that define
usage for the Amd4860X/DX2 microprocessor undefined bits.

AVOID ANY SOFTWARE DEPENDENCE UPON THE STATE OF UNDEFINED
Am486DX/DX2 MICROPROCESSCR REGISTER BITS.

INSTRUCTION SET

The Am486DX/DX2 microprocessor instruction set can be dlwded into eleven categories
of operations:

m Data Transfer
Arithmetic
Shift/Rotate

String Manipulation

Bit Manipulation

AmAssDX/DX2 CPU Architectural Qverview 2-21



&\ amp

24

Cantrel Transfer

High Level Language Support
Operating System Support
Procassor Contral

Floating Point
® Floating-Point Control

The Am486DX/DX2 microprocessor instructions are listed in Chapter 1¢. Note that all
floating-point unit instruction mnemonics begin with an F.

Alt Am486DX/DX2 microprocessor instructions operate on either 0, 1, 2, or 3 operands;
where an operand resides in a register, in the instruction itself, or in memory. Most 0
operand instructions (e.g., CLI, STI) take only one byte. Generally, 1 operand instruc-
tions are two bytes long. The average instruction is 3.2 bytes long. Since the
Am486DX/DX2 microprocessor hag a 32-byte instruction queue, an average of 10

instructions is pretetched. Using two operands permits the following types of common
instructions:

& Register to Register
Memory to Register
Memaory to Memory
immediate to Register

Register to Memeory
B Immediate to Memory

The operands can be either 8, 16, or 32 bits long. As a general rule, when gxacuting the
Am486DX/DX2 or 386 microprocessor's code {32-bit code}, operands are 8 or 32 bits;
when executing existing 80286 or 8086 code {16-bit code), operands are 8 or 16 bits.
Prefixes can be added to ail instructions that override the default length of the operands
(i.e., use 32-bit opsrands for 16-bit code, or 16-bit operands for 32-bit code).

MEMORY ORGANIZATION

Memory on the Am488DX/DX2 microprocassor is divided up into 8-bit quantities (bytes),
18-bit quantities {(words}, and 32-bit quantities (dwords}). Words are stored in two consecu-
tive bytes in memory with the low-order byte at the lowest address, the high-order byte at
the high address. Dwords are stored in four consecutive bytes in memory with the
low-orcler byte at the lowest address, the high-order byte at the highest address. The
address of a word or dword is the byte address of the low-order byte.

2-22
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Figure 2214 FPU Control Word

RESERVED
RESERVED"
ROUNMDING CONTROL

: PRECISION CONTROL

15 ll? ' 0
i |
PC

I ]
PIUJOLIZ[D] I
X}(XXHIC IXIXMMMMMM
T T A & A A
RESERVED !
EXCEPTION MASKS:
Precision
Und erflow
Ovarfiow * 0" after RESET or FINIT;
o changsable upon loading the control word
Zera Divide {CW). Programs must ignore this bit.
Dencermalized Opsrand ' '
Irvalid Operation
Precision Control Hounding Controi
2400 bits {single precision} 00-Round to nearest or even
01-{reserved) 071-Round down (toward — =o
53-10 bits {double precision) 10-Round up (toward + =}
64—11 bits (axtended pracision} ~ 11-Chop {truncate toward zero}
1785280137
Figure 2-15 Debug and Test Registers
Debug Registers
Linear Breakpoint Address © BRo
Linear Breakpoint Address 1 DR1
Linear Breakpoint Address 2 DR2
Linear Breakpoint Address 3 DR3
Resarved DR4
Resoarved DR5
Braakpoint Status DR6
Breakpoint Control DR?
Tast Ragistars
Cache Test Data TR3
Cache Test Status TR4
Cache Tast Control | TARS
TLE Test Control TRG
TLE Tost Status TR7 17852A-m7

AmA486DX/DX2 CPU Architectural Overview . 2-23



n AMD

Table 2.9 FPU Exceptions

Default Action
Exception Cause (If exception Is masked)

Operation on a signaling NaN, unsupported format,
indeterminate form {0% ca , 040, (+ oo} + (— 20}, etc ). or stack
overflow/underflow {SF is aiso set).

v alid
Operation

Result is a quiet NaN, integer
indefinite, or BCD indefinite.

Denormalized | At least one of the operands is dencrmalized (i.e., it has the Normal processing

Cperand smallest exponent but a nonzero significand). continues.
Zaro Divisor The divisar is zero while the dividend is a noninfinite, nonzero Result is oo,

number.

The result is too large in magnitude to fit in the specified Result is largest finite value
Overflow farmat ar o

The true resukt is nonzero but too small to be represented in
Underflow the specified format, and, if underflow exception is masked,
denormalization causes loss of accuracy.

Result is denormalized or
zero.

hesact | e e resl sl exacty epreseratle e s9ecied | Mot pracessing
(Precision) rounding mode. : continues.
Table 2-10 Register Usage
Use in UseIn bUsein
Register Real Mode Protected Mode Virtual 8086 Mode
Load Store Load Stora Load Store
General Registers Yes Y¥os Yes Yes Yos Yes
Segment Register Yes Yes Yas Yes Yes Yes
Flag Register Yes Yes Yes Yes IOPL IQPL"
Control Registers Yes Yes PL=0 PL=0 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yas Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes Na Mo
TR No Mo PL=0 Yes No Mo
FPU Data Registers Yes Yes Yes Yes Yes Yes
FPU Contral Registers Yes Yes Yas Yes Yes Yes
FPU Status Registers Yos Yes Yes Yes Yes Yes
FFU Instruction Pginter Yes Yes Yes Yes Yes Yes
FPU Data Pointer Yes Yas Yes Yes Yes Yes
Debug Registers Yes Yes PL=0 PL=0 Mo No
Test Registers Yes Yes FL=0 PL=0 No Na

Notes:
PL = 0: The registers can be accessed only when the current privilege levef is zero,
HOPL: The PUSHF and POPRF instructions are made YO Privilege Lavel sensitive in Vinual 8086 Mode.
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2.4.1

2-4-2

In addition to these basic data types, the AmdB&8DX/DX2 microprocessor supports two
larger units of memory: pages and segments. Memory can be divided up into one or
more variable length segments that can be swapped to disk or shared between pro-
grams. Memary ¢an also be organized into one or more 4-Kbyte pages. Finally, both
segmeniation and paging can be combined, gaining the advantages of both systems.
The Am486DX/0DX2 microprocessor supports both pages and segments in order to
provide maximum flexibility to the system designer. Segmentation and paging are
complementary. Segmentation is useful for organizing memery in legical medules and is a
tool for the application programmer, while pages are useful for the system programmer for
managing the physical memory of a system.

Address Spaces

The Am4B86DX/DX2 microprocessor has three distinct address spaces: logical, linear,
and physical. A logical address (also known as a virtual address) consists of a selector
and an offset. A selector is a segment register’s contents. An offset is formed by
summirg all of the addressing components (BASE, INDEX, and DISPLACEMENT),
discussed in Section 2.6.2, into an effective address. Since each task on the
Am486DX/DX2 microprocessor has a maximum of 16K (214 -1) selectors, and cffsets
can be 4 Gbytes (232 bits), this gives a total of 298 bits (or 64 Tbytes) of logical address
space per task. The pregrammer sees this virtual address space.

The segmentation unit translates the legical address space into a 32-bit linear address
space. If the paging unit is not enabled, then the 32-bit linear address corresponds to the
physical address. The paging unit translates the linear address space into the physicai
address space. The physical address is what appears on the address pins.

The primary difference between Real Mode and Protecied Mode is how the segmenta-
tion unit performs the translation of the logical address into the linear address. In Real
Mode, the segmentation unit shifts the selector left four bits and adds the result to the

offset to form the linear address. Whilg in Protected Mode, every seiector has a linear

base address associated with it. The linear base address is stored in one of two
cperating system tables {i.e., the Local Descriptor Table or Global Descriptar Table). The
selector's linear base address is added to the offset to form the final linear address.
Figure 2-1& shows the relationship between the various address spaces.

Segment Register Usage

The main data structure used to organize memaory is the segment. On the
Am4BeDX/DX2 microprocessor, segments are variable sized blocks of linear addresses
that have certain atiributes associated with them. There are two main types of seg-
ments: cede and data, the segments are of variable size and can be as small as 1 byte
or as large as 4 Gbyles (2°2 bytes).

In order to provide compact instruction enceding and increased processor performancs,
instructions do not need to explicitly specity which segment register is used. A defauit
segment register is automatically chosen according to the Segment Register Selection
Rulas (see Table 2-11}. in general, data references use the selector contained in the DS
register; stack references use the SS register, and instruction fetches use the CS
register. The cantents of the instruction Pointer provide the ofiset. Special segment
override prefixes allow the explicit use of a given segment register and ovesride the
implicit rules listed in Takle 2-11. The override prefixes also allow the use of the ES, FS,
and GS segment registers.
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Figure 216 Address Translation

Effective Address Calculation
Index
Base Displacemant
Scale | v
1,2,4,8
BE3-BE0
+ Ad1-pA2
Physical
Effective Address Memory
15 320 3 ,
R Logical or Segmentation Bg‘( Paging Unit 32
Virtual Addrass i (Optional Use) [T »
Selector E 13 Linit Linaar Physical
; Address Address
- Descriptor Index
Segment Register
17852A-018

Figure 2-17 Addressing Mode Calculations

Sagment Registers

Basa Registar I

SS - _
&GS .
FS i
>s I Indax Register |
Ds Selector
—p CS X
Scale
1,2, 4,0r8
- Digplacemant
= {In Instruction}
. . Effestive Segment
Cascriptor Registers Address Limit
Access Rights S5 I /
Access Rights G5 | Alalgf:;s
Access Rights FS | Target Address
Access Rights ES | Selected
Access Rights D3 I Segment
Accass Rights TS
Limit
i BaseAddress || ____ 1 . .. _. -
Segment Bass Address
17852A-019
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Table 211 Segment Register Selection Rules
Type of Implled {Default) Segment Override

Memory Reference Segment Use Prefixes Possible
Code Fetch CS None
Destination of PUSH, PUSHF, INT, CAEL, PUSHA
instructions S8 None
Source of PQP, POPA, POPF, IRET, RET instructions 58 Nene
Dastination of 5TOS, MOVS, REP
STOS, REP MOVS instructions ES Nane

{Dl is Base Register)

Other Data References with Effective Address Using
Base Register of:

[EAX]
[EBX]
[ECX]
[EDX]
IESI]

[EDIN

{EBP]
[ESP]

DS
Ds
DS
0os
DS
LS
S5
88

All

There are no restrictions regarding the overlapping of the base addresses of any
segments. Thus, all six segments ¢an have the base address set to 0 and create a
systemn with a 4-Gbyte linear-address space. This creates a system where the virtual
addrass space is the same as the linear address space. Further details of segmentation
are discussed in Section 4.3.

I/O SPACE

The AmdB6DX/DX2 microprocessor has two distinct physical address spaces: Memory
and I/0. Generally, peripherals are placed in YO space although the Am486DX/DX2
microprocessor also supperts memory mapped peripherals. The /O space consists of
64 Khytes and can be divided into 64K 8-bit ports, 32K 18-bit ports, 16K 32-bit ports, or
any combination of ports that total less than 64 Kbytes. The 64K |/ address space refers
to physical memory rather than linear address since 11O instructions do not go through the
segmentation or paging hardware. The MAG pin acts as an additional address line, thus
allowing the system designer to easily determine which address space the processor is
accessing.

The /O ports are accessed via the IN and OUT VO instructions, with the port address
supplied as an immediate 8-bit constant in the instruction or in the DX register. All 8- and
16-bit port addresses are zerp extended on the upper address lines. The IO instructions
cause the M/IO pin to be driven Low.

I/Q port addresses 00F8H through 00FFH are reserved for use by AMD.

ADDRESSING MODES

The AM486DX/DX2 microprocessar pravides a fotal of 11 addressing modes for
instructions to specify operands. The addressing modes are optimized to allow the
efficient execution of high-level languages such as C and FORTRAN, and they cover the
vast majority of data references needed by high-level languages.
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2.6.1

Register and Immediate Modes
Twe of the addressing modes provide for instructions that operate on register or
immediate operands:

Register Operand Mode: The operand is located in one of the 8-, 16-, or .32-bit 'generat
registers.

Immediate Operand Mode: The operand is included in the instruction as part of the
opcode.

32-Bit Memory Addressing Modes

The remaining nine modes provide a mechanism for specifying the effective address of
an operand. The linear address consists of two components: the segment base address
and an effective address. The effective address is calculated by using combinations of
the following four address elements:

DISPLACEMENT: An 8- ar 32-bit immediate vaiue following the instruction.

BASE: The contents ot any general purpose register. The base registers arg generally used by
compilers to point to the stan of the lacal variable area.

INDEX: The contents of any general purpose reqister except far ESF. The index registars are
used 1o access the elements of an array or a string of characters.

SCALE: The index register’s vale can be multiplied by a scale factor; either 1, 2, 4, or 8. Scaled
. : index mode is especially usefu] for accessing amays or structures.

Combinations of these four components make up the nine additional addressing modes.
There is no performance penalty for using any of these addrassing combinations, since
the effective address calculation is pipslined with the execution of other instructions. The
one exception is the simultaneous use of Base and Index components which raquires
one additional clock.

The effective agdress (EA) of an operand is calculated according to the following formula
(sea Figure 2-17).

EA = Base Reg + {Index Reg * Scaling) + Displacement

Direct Mode: The cperand's offset is contained as part of the instruction as an 8-, 16-, or
32-bit digplacement.

Example: INC Word PTR [500]
Register Indirect Mode: A BASE register contains the address of the operand.
Example: MOV I[ECX], EDX

Based Mode: A BASE register's contents are added to a DISPLACEMENT to form the
operand’s offset.

Example: MOV ECX, [EAX + 24]

Index Mode: An INDEX register's contents are added to a DISPLACEMENT to form the
operand’s offset.

Examnple: ADD EAX, TABLE[ES|]

Scaled Index Mode: An INDEX register’s contents are multiplied by a scaling factor that
is added to a DISPLACEMENT to form the opsrand's offset.

Example: IMUL EBX, TABLE[ESI'4].7

2-28
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Based Index Mode: The contents of a BASE register are added to the contents of an
INDEX register to form the eftective address of an operand.

Example: MOV EAX, [ESE[EBX]

Based Scaled Index Mode: The contents of an INDEX register are multiplied by a
SCALING factor. The result is added to the contents of a BASE register to obtain the
operand’s offset.

Example: MOV ECX, [EDX"8] [EAX]

Based Index Mode with Displacement: The contents of an INDEX register, a BASE
register's contents, and a DISPLACEMENT are added togethar to form the operand's
offset.

Example: ADD EDX, [ESI] [EBP+00FFFFFOR]

Based Scaled Index Mode with Displacement: The contents of an INDEX register are
multiplied by a SCALING factor. The result is added to the contents of a BASE register
and a DISPLACEMENT to form the operand's offset.

Example: MOV EAX, LOCALTABLE[EDI"4] {EBP + 80]

2.6.3 Differences Between 16- and 32-Bit Addresses

In order to provide software compatibility with the 80386, 80286, and the 8086, the
Amd486DX/DX2 microprocessor can execute 16-bit instructions in Real and Protectad dModes.
The processor determines the size of the instructions it is executing by examining the Default
Operation Size (D) bit in the CS segment descriptor. If the D bit is 0, then ali operand tengths
and effective adldresses are assumed to be 16 bits long. If the D bit is 1, then the default
iength for operands and addresses is 32 bits. In Real Mode the default size for operands and
addresses is 16-bits.

Regardless ¢of the default precision of the operands or addresses, the Am4860X/DX2
microprocassar is able to execute either 16- or 32-bit instructions. This is specified via the use
of overide prefixes. Two prefixes, the Operand Size Prefix and the Address Length Prefix,
override the value of the D bit on an indlividual instruction basis. These prefixes are automati-
cally added by the assemblers,

Exampie: The processoris executing in Real Mode and the programmes needs 1o access the EAX reg-
isters. The assembler code for this might be MOV EAX, 32-hit MEMORYOF The AMS486
Macro Assembier automatically determines that an Operand Size Preficis needed and gener-
ates it.

Example: The Dbitis 0.and the programmer wishes to use Scaled Index addressing moda to access an
amay. The Address Length Prefix alows the use of MOV DX, TABLEJESI"2). The assembler
uses an Address Length Prefix since, with D = 0, the default addressing mode is 16-bits.

Example: The Dbitis 1 and the program wants to stors a 16-bit yuantity. The Operand Length Pre-
fix is used to specify only a 16-bit value; MOV MEM16, DX,

The Operand Length and Address Length Prefixes can be applied separately or together
to any instruction. The Address Length Prafix does not allow addresses over 64 Kbytes
to be accessed in Real Mode. A memory address exceeding FFFFH results in a General
Protection Fault, An Address L.ength Prefix only allows the use of the additional
Am486DX/DX2 microprocessor addressing modes.

When executing 32-bit code, the Am486DX/DX2 microprocesser uses efther 8- or 32-bit
displacements, and any register can be used as a base or index register. When execut-
ing 18-bit code, the displacements ara either 8 or 16 bits, and the base and index
registers conform to the 80286 modei (see Table 2-12).
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Table 212 BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing 32-8it Addressing
BASE REGISTER BX, BF Any 32-bit GP Register
INDEX REGISTER gl D Any 32-bit GP Register Except ESF
SCALE FACTOR nane 1.24,8
DISPLACEMENT 0, B, 16 bits ¢, 8, 32 bits

2.7 DATA FORMATS
2.7.1 Data Types
The Am486DX/DX2 microprocessor supports a wide variety of data types. In the
following descriptions, the on-chip FPU consgists of the fioating-point registers. The CPU
consists of the base architecture registers.
2711 Unsigned Data Types
The FPU does not support unsigned data types (see Table 2-13).
Byte: Unsigned 8-bit quantity
Word: Unsighed 16-bit quantity
Dword: Unsigned 32-bit quantity
The feast significant bit (LSB) in a byte is bit 0. The most significant bit (MSB) is 7.
2.7.1.2 Signed Data Types
All signed data types assume 2s complement notation. The signed data types confain
two fields, a sign bit and a magnituda. The sign bit is the MSB. The number is negative if
the sign bit is 1. The number is positive if the sign bil is 0. The magnitude field consists
of the remaining bits in the number {see Table 2-13). '
8-bit imeger:  Signed 8-bit quantity
16-bit integer:  Signed 18-bit quantity
3z-bitinteger:  Signed 32-bit quantity B
64-oit integer:  Signed 64-bit quantity
" The FPU only supports 16-, 32-, and 64-bit integers. The CPU only supports 8-, 16-, and
32-hit integers.
2,7.1.3 " Floating-Point Data Types
Floating-point data type in the Am486DX/DX2 micropracesser contains three fields: sign,
significand, and exponent. The sign field is one bit and is the MSB of the floating-point
number, The number is negative if the sign bitis 1. The number is positive if the sign bit
is 0. The significand gives the significant bits of the number. The exponent fietd contains
the power of 2 needed to scale the significand (see Table 2-13).
Only the FPU supports floating-point data types:
® Single Precision Real: 23-bit significand and 8-bit exponent. 32 bits total.
® Double Precision Real: 52-bit significand and 11-bit exponent. 64 bits total.
m Extended Precision Real: 64-bit significand and 15-bit exponent. 80 bits total.
2-30 AmAs6DX/DX2 CPU Architectural Overview
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2.7.1.%

2.7.1.6

BCD Data Types

The Am486DX/DX2 microprocessor supponts packed and unpacked binary coded
decimal (BCD} data types. A packed BCD data type contains two digits per byte; the
lower digit is in bits 3—0 and the upper digit is in bits 7-4. An unpacked BCD data type
contains 1 digit per byte stored in bits 3-0.

The CPU supports 8-bit packed and unpacked BCD data types. The FPU only supports
B0-bit packed BCD data types (see Table 2-13).

String Data Typeaes

A sfring data typs ts a contiguous sequence of hits, bytes, words, or dwords, A sting can
contain between 1 byte and 4 Gbytes (see Table 2-14).

String data types are only supported by the CPU:

® Byte String: Contiguous sequence of bytes.

8 Word String: Contiguous sequence of words.

m Dword String: Contiguous sequence of dwords.

& Bit String: A set of contiguous bits. In the Am486DX/DX2 microprocessor, bit strings
can be up to 4-Gbits long.

ASCH Data Types

The Am486DX/DX2 microprocesser supperts ASCHl (American Standard Code for
Information Interchange) strings and can perform arithmetic ope;atlons (such as addiion
and dwusmn) on ASCH data (see Table 2-14).
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Table 213 Am486DX/DX2 Microprocessor Data Types

Supportad by Supportad by Least Significant B
Basa Ragisters FPU ? “f
Data Format Range | Precision |7 o7 i? a|7 o7 o|7 67 o7 o7 o7 o

. 7 0
Byte 0-255 8 bits
15 &
Ward 0-54K 16 bits
Dword 0-4G 32 bits A 2
. . . ¥ 0
8-8it Integer 102 B bits - Two's
Complament
Sign Bit t
15 1]
16-Bit Integer 104 16 bits Two's
Complement
Sign Bit
32-Bit Integer X[ 100 32 bits -(r:v;ﬁ-}faiemem
Sign Bit 1
63 o
64-Bit Integer X| 1018 &4 bits Twa's
Complement
Sign Bit ?
5-Bit 7 1]
Unpacked BCD 0-8 1 Digit Cne BCD Digit per Byte
8-Bit . 7 4]
Packed BCD -8 2 Digits Two BCD Digits per Byts
80-Bit 79 72 0
Packed BCD X| +10t12 18 Digits ignored
' Sign Bit .
Single 3 23 1]
Pracision Real x| +10838 24 Bits Biased Significand
Exp
Sign 8it .
Doubls 63 52 0
Prscision Real x| +10t308 53 Bits Béased Significand '
k.o v]
Extended 79 Sign Bit TGS 0
Precision Real X[ 104932 64 Bits Blased |, Significand
Exo
T Sign Bit

232
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Table 2-14 Siring and ASClH Data Types

String Data Types
Address A+ N A+l A
Byte String 7N g mes|7 ! 70 of
A+2N+1 A+SN A+3 A+? Avi1 A
Wi i h 'Y Y] : E
ord String 15 0 H5 1 of15
ArdN+2 A+dAN+2 ArdN+1  AsdN A+7 A+B A+5 A+d4 A+3 A2 Avt A
DW rd T T T T LJ T
String [31 N ees s } of 31 b o
A + 268, 435, 455 : A =268, 435, 456
. A+3 A2 Avri A A~-1 A-2 A-3
Bi
sig |, o7 |7 d7 d7r d7 107 d7 o7 J 2|7 d7
+2,147, 483, 647 +7 10 = 2,147, 483, 648
ASCIH Data Types

ASCI Character 7 d

27147

2.7.2

Pointer Data Types

A pointer data type coniains a valua that gives the address of a pisce of data. The
Am488DX/DX2 microprocessor supports two types of pointers (see Table 2-15).

48-bit pointer: 16-bit selector and 32-bit offset
32-bit pointer; 32-kit offset

Little Endian vs Big Endian Data Formats

The Am4860X/DX2 microprocassor, as well as all other members of the Am486
architecture, use the “little-endian” method for storing data types that are larger than one
byte. Words are stored in two consecutive bytes in memory; the iow-order byte is at the
lowest address, the high-order byte is at the highest address. Dwords are stored in four
consecutive bytes in memory with the low-order byte at the lowest address and the
high-order byte at the highest address. The address of & word or dword data item is the
byte address of the low-order byte.

Figure 2-18 illustrates the differences between the big-endian and little-endian formats
for dwords. The 32 bits of data are shown with the low order bit numbered bit 0, and the
high order bit numbered 32. Big endian data is stored with the high-order bits at the
lowest addressed byte. Little-endian data is stored with the high-crder bits in tha highest
addressed byle.

The Am4B6DX/DX2 microprocessor has two instructions that can convert 16- or 32-hit
data between the two byte orderings, BEWAP (byte swap) handles four byte values and
XCHG (exchange) handies two byte values,
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Table 215 Pointer Data Types
Least Signfficant Bylte
Data Format
47 31 0
4B-Bit
Pointer Selactor Ortasi
31 ol
3z-Bit
Pointer Oifset
2.8 INTERRUPTS
2.8.1 Interrupts and Exceptions

In order to handle external events, interrupts and exceptions alter the normal program
flow tc report errors or exceptional conditions. The difference between interrupts and
exceptions is that interrupts are used to handle asynchronous external events, excep-
tions handle instruction faults. Although a program can generate a software interrupt via
an INT n instruction, the processor treats software interrupts as exceptions.

Hardware interrupts occur as the result of an external event and are classified into two
types: maskable or non-maskable. Interrupts are serviced after the execution of the

current instruction. After the interrupt handler is finished servicing the interrupt, execu-
tion proceeds with the instruction immediately after the interrupted instruction. Sections
2.8.3 and 2.8.4 discuss the differences between Maskable and Non-Maskabla interrupts.

Exceptions are classified as faults, traps, or aborts depending on the way they are
reperted, and whethar or not restart of the instruction that caused the exception is
supported. Faults are exceptions that are detected and serviced before the execution of
the taulting instruction. A fault cceurs in a virtual memory system when the processor
referances a page or a segmant that is not present. The operating sysiem fetches the
pags or segment from disk and the Am486DX/DX2 microprocessor restarts the instruc-
tion. Traps are exceptions that are reported immediately after the execution of the
instruction that caused the problem. User-defined interrupts are examples of traps.
Aborts ars exceptions that do not permit the precise location of the instruction causing
the exception to be determinad. Aborts are used 1o report severe errors, such as a
hardware error or illegal values in system tables.

Figure 2-18 Big vs Little Enciian Memory Format

m+ 3 m+2 m+1 m
31 24 23 16 15 g8 7 1]
Dword in Little-Endian Memory Format
m m+ 1 m+2 m+ 3
kY| 24 23 16 15 8 7 Y
Dword in Big-Endian Memory Format 17852A-020
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2.8.2

2.8.3
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Thus, when an interrupt service routine has been completed, execution proceeds frem the
instruction immediately following the interrupted instruction. On the other hand, the return
ackireas from an exception fault routine always points to the instruction causing the
exception and includes any leading instruction prefixes. Table 2-16 summarizes the possible
interrupts for the Am486DX/DX2 microprocessor and shows whera the return address
points.

The Am486DX/DX2 microprocassor can handle up to 256 different interrupts/exceptions.
in order to service the interrupts, a table with up to 256 interrupt vectors must be
defined. The interrupt vactors are simply pointers to the appropriate interrupt service
rautine. In Real Mode (see Section 3.1}, the vecters are 4-byte quantities, a Code
Segment plus a 16-bit offset; in Protected Mode, the interrupt vectors are 8-byte

quantities that are put in an Imterrupt Descriptor Table (see Section 4.3.3.4). Of the 258

possible interrupts, 32 are reserved for use by the Am4B86DX/DX2 microprocessor, the
remaining 224 can be used by the systern designer.

Interrupt Processing

When an interrupt eccurs the following actions happen. First, the current program
address and the Flags are saved on the stack to allow resumption of the interrupted
program. Next, an 8-bit vector is supplied to the Am486DX/DX2 microprocessor which
identifies the appropriate entry in the interrupt takle. The table contains the starting
address ot the interrupt service routing. Then, the user-supplied interrupt service routing
is executed. Finally, when an IRET instruction is executed, the old processor state is
restored and program execution resumes at the appropriate instruction.

The 8-bit interrupt vector is supplied to the Am486DX/DX2 microprocessor in several
different ways: exceptions supply the interrupt vector internally; software INT instructions
contain or imply the vector; maskable hardware interrupts supply the 8-bit vector via the
interrupt acknowledge bus ssguence. Non-Maskabie hardware interrupts are assigned to
interrupt vector 2.

Maskable Interrupt

Maskable interrupts are the most common way the Am486DX/DX2 microprocessor
responds to asynchronous external hardware events. A hardware interrupt occurs when
the INTR is pulled High and the Interrupt Fiag bit {IF) is enabled. The processor only
responds to interrupts batweaen instructions, (REpeat String instructions have an “interrupt
window” between memory moves. This allows interrupts during long stiing moves). When
an interrupt occurs, the processor reads an 8-bit vector supplied by the hardware. This
vector identifies the source of the interrupt, (one of 224 user defined interrupts). The exact
nature of the interrupt sequence is discussed in Section 7.2.10.

The IF bit in the EFLAG registers is reset when an interrupt is being sarviced. This effec-
tively disables servicing additional interrupts during an interrupt service routine. However, the
IF can be set explicitly by the interrupt handler to allow the nesting of interrupts. When an
IRET instruction is executed, the criginal state of the IF is restored.

Non-Maskable Interrupt

Non-maskable interrupts {NMI) provide a methed of servicing very high priority inter-
rupis. A common example of the use of a NMI is activating a power failure routine. When
the NMI input is putted High, it causes an interrupt with an internally supplied vector
value of 2. Uniike 2 normal hardware interrupt, no interrupt acknowledgment sequence
is performed for an NMI.
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2.8.6

While exacuting the NMI servicing procedure, the Am486DX/DX2 micropracessar does
not service further NMI requests until an interrupt retuern (IRET) instruction is executed,
or the procassor is reset. If NMi occurs while currently servicing an NMLI, its presence is
saved for servicing after executing the first IRET instruction. The IF bit is cleared at the
beginning of an NM! interrupt to inhibit further INTR interrupts.

Software Interrupts

A third type of interrupt/exception for the Am4B6DX/DX2 microprocessor is the software
interrupt. An INT n instruction causes the processor to execute the interrupt service
routine pointed to by the nth vector in the interrupt table.

A special case of the two-byte software interrupt INT n is the one-byte INT 3, or break-
point interrupt. By inserting this one-byte instruction in a pregram, the user can sat
breakpoints in the program as a debugging tool. A final type of software interrupt is the
single step interrupt. !t is discussed in Section 9.2.

| Interrupt and Exception Priorities

Interrupts are externally-generated avents. Maskable Interrupts {on the INTR input) and
Nen-Maskable Interrupts (on the NMI input) are recognized at instruction boundaries.
When NM) and maskable INTR are both recognized at the same instruction boundary,
the Am486DX/DX2 microprocassor invokes the NMI service routine first. I, after the NMI
service routine has been invoked, maskable interrupls are still enabled, then the
Am4B6DX/DX2 microprocessor invokes the appropriate interrupt service routine. The
pricrity tor invoking service routines in case of simultaneous external interrupts is

1. NMI
2. INTR

Exceplions are internally-generated events. Exceplions are detected by the
AmA486DX/DX2 CPU if, in the course of executing an instruction, the Am486DX/DX2
microprocessor detects a problematic condition. The Amd486DX/DX2 microprocessor
then immediatety invokes the appropriate exception service routine. The state of the
Am4BEDX/DX2 microprocessor is such that the instruction causing the exception can be
restarted. If the exception service routine has taken care of the problematic condition, the
instruction executes without causing the same exception.

It is possible for a single instruction to generate several exceptions {for example,
transferring a single operand can generate two page faults if the operand location spans
two "not present” pages). However, anly one exception is generated upon each attempt
to execute the instruction. Each exception service routine should comrect its correspond-
ing exceplicn and restart the instruction. In this manner, exceptions are serviced until the
instruction executes successiully.

As the Amd86DX/DX2 microprocassor executes instructions, it fottows a cansistent cycle
in checking for exceptions, as shown in the following paragraphs. This ¢ycle is repeated
as each instruction is executed and occurs in paraliel with instruction decoding and
axacution.

2-36

AmdBeDX/DX2 CPU Architectural Overview



AMD a

Table 2-16 Interrupt Vector Assignments
F Interrupt Instructions That Retumn Address
unction Numbar Can Cause Polnts to Fault- | Type
Exception ing Instruction

Divide Erar L DV, IDIV - YES FAULT
Debug Exception 1 Any Instruction YES TRAP”
NMI Internupt 2 INT 2 ar NMI NO NMI
One-Byte Imerrupt 3 INT NO TRAP
interrupt on Overflow 4 INTG NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid Opcods 6 Any illegal instruction YES FAULT
Device Not Available 7 ESC, WAIT YES FAULT
Double Fault 8 Qg*’é‘i’”m%‘r‘l’“ That Can Generate ABORT
Reserved 8
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present " Segment Register lnstructions YES FAULT
Stack Fault 12 Stack References YES FAULT
Gieneral Protection Fault 13 Any Memory Refgrence YES FALLT
Page Fautt 14 Any Memory Access or Code Feich YES FAULT
Reserved i5
Floating-Point Error 16 Floating Point, WAIT YES FAULT
Alignmant Chack Inmterrupt 17 Unaligned Memory Access YES FAULT
Reserved 18-31 '
Two-Byte Interrupt 0-255 INT n NO TRAP

*Some debug exceptions can rapoit both traps on the previous instruction, and faults on the next instruction.

Consider the case of the Am486DX/DX2 microprocessor havihg just completed an
instruction. it then performs the foliowing checks before reaching the point where the
next instruction is complated:

1. Check for exception 1 Traps from the instruction just completed (5|ngle step via Trap

Flag, or Data Breakpoints set in the Debug Registers).

2. Check for exception 1 Faults in the next instruction (instruction Execution Breakpoint

set in the Debug Registers for the next instruction).

3. Chack for extemal NM! and INTR.

4. Check for Segmeniation Faults that prevented fetching the entire next instruction {excep-
tions 11 or 13).

5. Check for Page Faults that prevented fetching the entire next :nsh'ucilon (exception 14).

6. Check for Faults decoding the next instruction (exception 6 if ilegal opcode; exception -
6 if in Real Mode or in Virtual 8086 Mode and attempting to execute an instruction for
Protected Mode only {see Section 4.6.4); or exception 13 if the instruction is longer
than 15 bytes, or priviloge violation in Protected Mode (i.e., not at IOPL or at CPL = 0}).

7. If WAIT opcode, check if TS =1 and MP =1 (exception 7 if both are 1).

AmAgeDX/DX2 CPU Architectural Overview
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2.8.7

2.8.8

8. i opecode for FPU, check if EM = 1 or TS = 1 {exception 7 if either are 1).
9. i opcoda for FPU, check FPU error status {sxcaption 16 if error status is asserted).
10.Check in the following arder for each memaory reference required by the instruction:

A. Check for Segmentation Faults that prevent transferring the entire memery quan-
tity {exceptions 11, 12, 13).

B. Check for Page Faults that prevent transfeming the entire memory guantity (exception
14).

Note: The arder stated supports the concept of the paging mechaniam being ‘undemeath” the seg-
memation mechanism. Therefore, for any given code or data reference int memory, segimentation
axceptions are generatad before paging exceptions are generated.

instruction Restart

The Am486DX/DX2 microprocessor fully supports restarting all instructions after faults. If
an exception is detected in the instruction to be executed (exception categories 4
through 10), the Am486DX/DX2 microprocessor invokes the appropriate exception
service routine. The Am486DX/DX2 microprocessor is in a state that permits restart of
the instruction for all cases hut those in the following paragraph. All such cases are
easily avoided by proper design of the operating system.

An instruction causes a task switch to a task whose Task State Segment is parally “not
present”. (An entirely “not present” TSS is restartable.) Partially present TSSs can be
avoided either by keeping the TSSs of such tasks present in memory, or by aligning TSS
sagments to reside entirely within a single 4K page {for TSS segments of 4 Kbytes or
less).

Note; These conditions are avoided by using the operating system designs mentioned above.

Double Fault

A Double Fauit (exception 8) results whan the processor attempts to invoke an excep-
tion gervice routine for the segment exceptions (10, 11, 12, or 13}, but in the process of
doing so, detects an exception other than a Page Fault (exception 14).

A Double Fault (exception 8} is also generated when the processor attempts to invoke
the Page Fault {exception 14) service routing, and detects an exception other than a
sacond Page Fault. In any functional system, the entire Page Fault service routine must
remain “present” in memory.

When a Double Fault oceurs, the Am486DX/DX2 micropracessor invokes the excep-
tion service routine for exception 8.

Floating-Point Interrupt Vectors

Several interrupt vectors of the Am486DX/DX2 microprocessor are used to repornt
exceptional conditions while executing numeric pregrams in sither Real or Protected
Mode. Table 2-17 shows these interrupts and their causes.
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Table 2-17 Intermmupt Yectors Used hy FPU

Interrupt

Number Cause of Interrupt

A floating-point instruction is encountered when EM or TS or the processor control register
7 zero (CRO) was set. EM = 1 indicates that software emulation of the instruction is required.

When TS is set, either a floating-point or WAIT instruction causes irterrupt 7. This indicates
that the current FPU context might not beleng to the current task.

The first word or dword of a numeric operand is not entirely within the limit of its segment.
The ratum address pushed onto the stack of the exception handler points to the fioating-point
13 instruction that caused the exception, including any prefixes. The FPU has not executad this
instruction; the instruction pointer and data painter register refer to a previous, correcily
executed instruction.

The previous numenies instruction ¢aused an unmasked exception. The address of the faulty
instruction and the address of its operand are stored in the instruction pointer and data
pointer registers. Only floating-point and WAIT instructions can cause this interrupt. The

16 Am486 processor return address pushed onto the stack of the exception handler points to a
WAIT or floating-point instruction {including prefixes). This instruction can be restarted after
clearing the exception condition in the FPU. The FNINIT, FNCLEX, FNSTSW, FNSTENV, and
FNSAVE instructions cannot cause this interrupt.
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3 REAL MODE ARCHITECTURE

3.1 INTRODUCTION

Whan the processor is reset or powared up, it is initialized in Real Mode. Real Mode has
the same base architecture as the 80886, but aliows access o the Am486DX/DX2
microprocessor’s 32-bit register set. The addregsing mechanism, memory size, and
interrupt handling are afl identicai te the Real Mode on the 80286 {see Figure 3-1).

All of the Am486DX/DX2 microprocessor instructions are available in Real Mode (except
those instructions listed in Saction 4.6.4). The Real Mode default oparand size is 16 bits,
just like the 8086. in order to use the 32-bit registers and addressing modes, override
prefixes must be used. In addition, the segment size of the Am486DX/DX2 microproces-
sar in Real Mode is 64 Kbyles, so 32-bit effective addresses must have a value less than
0000FFFFH. The primary purpose of Real Mode is to set up the processor for Protected
Made Operation.

The LOCK prefix on the Amd88DX/DX2 microprocessor, even in Real Mode, is mare

restrictive than on the 80286. This is due to the addition of paging on the Am4BEDX/DX2
micropracessor in Protected Mode and Virtual 8086 Mode. Paging makes it impossible to
guarantee that repeated sting instructions can be LOCKed. The Am488DX/DX2 microprocessor
cannot require that all pages holding the string be physically present in memory, Hence, a
Page Fault {exception 14) might have to be taken during the repeated string instruction.
Therefore, the LOCK prefix cannot be supported during repeated string instructions.

Table 3-1 shows the only instruction forms where the LOCK prefix is legal on the
Am4B8EDX/DX2 microprocessor.

An exception 6 is generated if a LOCK prefix is placed before any instruction form or
opcode not listed in Table 3-1. The LOCK prafix allows indivisible read/modify/write
operations on memory operands using the instructions in Table 3-1. For example, even

Figwe 3-1 Real Address Mode Addressing

16 0 Max Limit Fixed at
Offset 64K in Real Mode
18 o
Segment Selector GO00
Memary Operand T
Selected
B4K Sagment
Segmeant Base
178628021
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3.2

3.3

the ADD Reg, Mem is not LOCKable, because the Mem operand is not the destination
{and therefore no memory read/modify/operation is being performed).

8ince, on the Am486DX/DX2 microprocessor, repeated string instructions are not
LOCKahle, it is impossible to LOCK the bus for a long fime. Therefore, the LOCK prefix
is not IOPL-sensitive on the Am4860DX/DX2 microprocassor. The LOCK prefix can be
used at any privilege level, but only on the instruction forms listed in Table 3-1.

MEMORY ADDRESSING

In Real Mode the maximum memory size is limited to 1 Mbyte. Thus, only address lines. -
A19-A2 are active. {Exception: after RESET, address lines A31-A2 are High during CS-
relative memary cycles until an intersegment jump or call is executed (see Section 6.5).

Since paging is not allowed in Real Mode, the linear addresses are the same as physical
addresses. Physical addresses are fermed in Real Mode by adding the contents of the
appropriate segment register, which is shifted left by four bits to an effective address.
This addition results in a physicat address frem 00000000H 1o 0010FFEFH and is
compatible with 80286 Real Mode. Since segment registers are shifted left by 4 bits,
Real Mode segments always start on 16-byte boundaries.

All segments in Real Mode are exactly 84 Kbytes long and can be read, written, or
executed. The Am486DX/DX2 microprocessor generates an exception 13 if a data
operand or instruction fetch occurs past the end of a segment (i.e., if an operand has an
offset greater than FFFFH; for example, a word with a low byte at FFFFH and a high
byte at 0000H). _

Segments can be overlapped in Real Mode. Thus, if a particular segment does not use
all 64 Khbytes, ancther segment can be overlayed an top of the unused portion of the
previous segrment. This overlapping lets the programmer minimize the physical memory
needed for a program.

RESERVED LOCATIONS

Thers are two fixed areas in memory that are reserved in Real Address Mode: system
initialization area and the interrupt table area. Locations 000004 through Q003FFH are
reserved for interrupt vectors. Each of the 256 possible interrupis has a 4-byte jump
vactor raservad for it. Locations D0000009H-FFFFFFFFH are reserved for system
initialization.

Tabla 3-1

Legal LOCK Prefix Instruction Forms

Qperands
Opcode {Dest, Source)

BIT Test and .
SET/RESET/COMPLEMENT Mem, Reg/immed

XCHG Reg, Mem
XCHG Mem, Heg

ADD, OR, ADC, SBE, :
AND, SUB, XOR Mem, Regfimmed

NOT, NEG, INC, DEC Mem
CMPXCHG, XADD Mem, Reg

3-2
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3.5

INTERRUPTS

Many of the axceptions coverad in Table 3-2 and Section 2.8 are not applicable to Real
Mode cperation: in particular, exceptions 10, 11, 14, and 17 do not happen in Real
Mode, Other exceptions have slightly different meanings in Real Mode (see Table 3-2).

SHUTDOWN AND HALT

The HLT instruction stops program executien and prevents the processor from using the
local bus until restarted. Either NMI, INTR with interrupts enabled {IF = 1), or RESET
forces the Am488DX/DX2 microprocessor out of halt. If interrupted, the saved CS:IP
peints te the next instruction after the HLT.

Like Protected Mode, the shutdown occurs when a severe error is detected that
prevents further processing. In Real Mode, shutdown can occur under two conditions:

1. An interrupt or an exception occurs {exceptions 8 or 13) and the interrupt vector is
larger than the Interrupt Descriptor Table (i.e., there is not an interrupt handler for the
interrupt).

2. A CALL, iNT, or PUSH instruction attempts to wrap around the stack segment when
SP is not even (i.e., pushing a value on the stack when SP = 0001, resulting in a
stack segment greater than FFFFH).

An NMI input can bring the processor out of shutdown if the Interrupt Descriptor Table
limit is large enough to contain the NM! interrupt vector (at least 0017H), and the stack
has encugh room to contain the vector and flag information {i.e., SP is greater than
0005HY). If these conditions are not met, the Am486DX/DX2 CPU is unable o execute
the NMI and executes another shutdown cycle. In this case, the processer remains in
shutdown and can only exit via the RESET input.

Table 32

Exceptions with Ditfierant Meanings in Real Mode

Function

Return Address
Location

Interrupt

Number Related Instruction

Interrupt table limit too small 8 INT Vector is not within tabla limit Befare Instruction

CS, DS, ES, FS, GS Ward memoty reference beyond offset =
Segment overrun exception

13 FFFFH. An attempt to execute past the end of | Befare Instruction
C3 segment.

85 Segmant averrun exception 12 Stack Reference beyond offset = FFFFH. -| Before Instruction

Real Mode Architecture 3-3
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4 PROTECTED MODE ARCHITECTURE

4.1

4.2

4.3
4.3.1

INTRODUCTION

The complete capabilities of the Am486DX/DX2 microprocessor are unlocked when the
processor operates in Protected Virtual Address Mede (Protected Mode). Protected
Mode vastly increases the linear address space to 4 Ghytes (2%2 bytes) and allows the
running of virtual memory programs of almost unlimited size (64 Thytes or 2% bytes). In
addition, Protected Mode allows the Am486DX/DX2 microprocessoer to run all existing
8086, 80286, and 386 microprocesser software, while providing a sophisticated memory
management and a hardware-assisted protection mechanism. Protected Mode aliows
the use of additional instructions especially optimized for supporting multitasking
operating systems. The Am486DX/DX2 microprocessor base architecture remains the
same; the registers, instructions, and addressing modes described in the previous
sections are retained. The main difference between Protected Mode and Real Mode
from a programmaer's view is the increased address space and a different addrassing
mechanism.

ADDRESSING MECHANISM

Like Real Mode, Protected Mode uses two components to form the logical address. A
16-bit selector determines the linear base address of a segment and the base address is
added to a 32-bit effective address to form a 32-bit linear address. The linear address is
then either used as the 32-bit physical address or, if paging is enabled, the paging
mechanism maps the 32-bit linear address into a 32-bit physical address.

The difference between the two modes lies in calculating the basae address. in Protected
Mode, the selector specifies an index into an operating system defined table {see

Figure 4-1). The table contains the 32-bit base address of a given segment. The physical
address is formed by adding the base address obtained from the table to the offset.

Paging provides an additional memory management mechanism that operates cnly in
Protected Mode. Paging provides a means of managing the very large segments of the
Am488DX/DX2 microprocessor. As such, paging operates beneath segmentation. The
paging mechanism translates the protected linear address that comes from the seg-
mentation unit into a physical address. Figure 4-2 shows the complete Amd86DX/DX2
microprocessor addressing mechanism with paging enabled.

SEGMENTATION

Introduction

Segmentation is one method of memory management. Segmentation provides the basis
for protection. Segments encapsulata regions of memory that have common attributes,
For example, all of the code of a given program can be contained in a segment, or an
operating system table can reside in a segment. AR segment information is stored in an
8-byte data structure called a descriptor. All descriptors in a system are contained in
tables recognized by hardware.
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Figure 4-1 Protected Mode Addressing
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4.3.2

4.3.3
4.3.3.1

4.3.3.2

Terminology

The following terms are used throughout the discussion of descriptors, privilege levels,
and protection:

PL:  Privilege Level

Cne of the four hierarchical privilege levels. Level 0 is the most privileged and level 3
is the least privileged. More privileged levels are numerically smaller than less privi-
leged levels.

RPL: Requester Privilege Level

The privilege fevel of the original supplier of the selector. RPL is determined by the -
two least significant bits of a selector. '

DPL: Descriptor Privilege Lavsi

This is the lsast privileged level where a task can access that descriptorr{and the
segment associated with the descriptor). DPL is determined by bitg 8-5 in the
Access Right Byte of a descriptor.

CPL: Current Privilege Level

The privilege level where atask is currently exscuting. CPL equals the privilege levet
of the exacuting code segment. CPL can alsa be determined by examining the low-
. st 2 bits of the CS register, except for conforming code segments.

EPL: Effective Privilage Level

The sffective privilege level is the least privileged of the RPL.and DPL.. Since smaller
privilege level values indicate greater privilege, EPL is the numerical maximum of
RPL and DPL.

Task: One instance of the program execution. Tasks are also referred to as processes.

Descriptor Tables

Introduction

The descriptor tables define all the segments that an Am486DXDX2 microprocessor
systemn uses. Three types of tables on the Am486DX/DX2 microprocessor hold descrip-
tors: the Global Descriptor Tabie (GDT), Local Descriptor Table (LDT), and the interrupt
Descriptar Table (IDT). All three tables are variable length memory arrays. They range in
size between 8 bytes and 64 Kioytes. Each table holds up to 8192 8-byte descriptors.
The upper 13 bits of a selector are used as an index into the descriptor table. The tables
have registers associated with them that hold the 32-bit linear base address and the
16-bit limit of each table.

Each table is associated with a register: the GDTR, LDTR, and the IDTR {see

Figure 4-3). The LGDT, LLDT, and LIDT instructions load the base and limit of the GDT,
LDT, and IDT, respectively, into the appropriate register. The SGDT, SLDT, and SIDT
instructions store the base and limit values. These tables are manipulated by the
operating system. Tharetore, the Ioad descriptor table instructions are privilegaed
instructions.

Globhal Descriptor Table

The GDT contains descriptors that are possibly available to all of the tasks in a system.
The GDT can contain any iype of segment descriptor, except for descriptors that are
used for servicing interrupts {i.e., interrupt and trap descriptors). Every Am488DX/DX2
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Figure 4-3
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4.3.3.3

4.3.3.4

microprocessor system contains a GDT, Generally the GDT contains code and data
segments used by the operating systems and task state segments, and descriptors for
the LDTs in a system,

The first slot of the GDT corresponds to the null selector and is not used. The nul
selector defines a null pointer value.

Local Descriptor Tahle

LDTs contain descripiors that are associated with a given task. Generally, operating
systems are designed so that each task has a separate LDT. The LDT can contain only
code, data, stack, task gate, and call gate descriptors. LDTs allow a mechanism to
isolate a given task's cede and data segments from the rest of the operating system,
while the GOT contains descriptors for segments that are commeon to all tasks. A
segment cannct be actessed by a task if its segmant descriptor dogs not exist in either
the current LDT or the GDT. This provides both isolation and protection for a task's
segments, while still allowing globaf data te be shared among tasks.

Unlike the 6-byte GDT or IDT registers that contain a base address and limit, the visible
portion of the LDT register contains only a 16-bit selector. This selector refers to an LDT
deseriptor in the GDT.

Interrupt Descriptor Table

The third table needed tor Am486DX/DX2 microprocessor systems is the IDT (see

Figure 4-4). The IDT contains the descriptors that point to the location of up to 256
interrupt service routines. The IDT can contain only task gates, interrupt gates, and trap
gates. The 1IDT should be at least 256 bytes in size in order 1o hold the descriptors for
the 32 Raserved Interrupts. Every internupt used by a sysiem must have an entry in the
IDT. The IDT entries are referenced via INT instructions, external interrupt vectors, and
axceptions. (See Section 2.8, Interrupts).

4-4
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Figure 4-4
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4.3‘4
4.3.4.1

4.3.4.2

Descriptors

Descriptor Attribute Bits

The object the segment selector points to is called a descriptor. Descriptors are 8-byte
quantities that confain aftributes about a given regicn of linear address space {ie., a
segment). These attributes include the 32-bit base linear addrass of the segment, the
20-bit langth and granularity of the segment, the protaction level, read, write, or execute
privileges, the detauli size of the operands {16 bit or 32 bit), and the type of segment. Al
of the attribute ifformation about a segment is contained in 12 bits in the segment
descriptor. Figure 4-5 shows the general format of a descriptor. All segments on the
Am486DX/DX2 microprocessor have three attribute fields in common: the P bit, the DPL
bit, and the S bit. The Present (P} bit is 1 if the segment is loaded in physical memory, if
P =0 then any attempt ta access this segment causes a net present exception {excep-
tion 11). The DPL is a two-bit field that specifies the protection level 0-3 associated with
a segment. ' '

The Am486DX/DX2 microprocessor has two main segment categories: system seg-
ments and non-system segments (for code and data). The segment (S} bit in the
segment descriptor determines if a given segment is a system segment or a code or
data segment. If the 5 bit is 1, then the segment is either a code or data segment; if it is
0, then the segment is a system segment.

Am4B6DX/DX2 CPU Code, Data Descriptors (S = 1)
Figure 4-6 shows the general format of a code and data descriptor and Table 4-1

ilustrates how the bits in the Access Rights Byte are interpreted.

Code and data segments have sevaral descriptor fields in common. The accessed (A)
bit is set whenever the processor accesses a descriptor. The A bit is used by operating
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Figure 4-5 General Format of Segmoent Descriptors
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systems to keep usage statistics on a given segment. The granularity (G) bit specifies if
a segment length is byte-granular or page-granular. Am486DX/DX2 microprocessor
sagments can be 1 Mbyte long with byte granularity {G = 0), or 4 Gbytes with page
granularity {G = 1), (i.e., 229 pages each page is 4 Kbytes in length). The granularity is
totally unrelated to paging. An Am486DX/DX2 microprocessor system can consist of
segments with byte grandtarity and page gramudarity, whether or not paging is enabled.

The executable (E) bit tells if 2 segment is a code or data segmeant. A code segment (E
=1, S =1 can be execute-only or execute/read as determined by the Read (R) bit.
Cods segments are execute only if R = 0, and execute/read if R = 1. Code segments
can never be written into.

Note: Code segments can ba modified via aliases. Aliases are writable data segments that
occupy the same range of lingar address space as the code segment.
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Table 4-1

Access Rights Byte Definition for Code and Data Descriptions

Bit Position

Name Functicn

7

Present (P) Segment is mapped inta physical memory

Ne mapping to physical memory exits. Base and limit are
not used.

Descriptor Privilege Segment privitege attribute used in privilege tests.

Level {DPL)

Segment Descriptor (S}

a7
o Y

Code or Data {includas stacks) segment descriptar.
System Segment Descriptor ar Gate Descriptor.

naw

Executabla (E)
Expansion Direction (EDY)

Descriptor type is data segment. If Data
Expand up segment, offsets must be < limit. Seg-
Expand down segment, offsets must be = limit. 2~ ment
Data segment cannot be written into. 5=1.
Data segment can be written into. E=0)

I s foas

o R T
o

Writable (W)

nn
—

Executable (E}
Canfarming (C)

Descriptor type is code segment. " If Data
Code segment may only be executed when Segment
CPL = DPL and CPL remains unchanged. (3=1,
Code segment cannot be read. E=1)
Code segment can be read.

nmn
ol

Readable (R)

Accessed {A) Segment has not been accessed.
Segment selector has been loaded into
segment register or used by selector test

instructions.

»»|2D Om|lsgmmm

]
A = s

4.3.4.3

The D bit indicates the default length for operands and effective addresses. if D =1 then
32-bit operands and 32-bit addressing modes are assumed. f D = 0 then 16-bit oper-
ands and 16-bit addressing modes are assumed. Therefore, all existing 80286 code
segments execute on the Am486DX/DX2 microprocessor, assuming the D bit is set 0.

Another attribute of code segments is determined by the conforming {C) bit. Conforming
segments, C = 1, can be executed and shared by programs at different privilege levels.
{See Section 4.4, Protection.)

Segments identified as data segments (E =0, $ = 1) are used for two types of
Am486DX/DX2 CPU segments: stack and data segments. The expansion direction (ED)
bit specifies if 2 segment expands downward {stack) or upward {data). If a segment is a
stack segment, all offsets must be greater than the segment limit. On a data segment all
offsets must be less than or equal to the limit. In other words, stack segments start at the
base linear address plus the maximum segment limit, and grows down 1o the base linear
address plus the limit. On the other hand, data segments start at the base linear address
and expand to the base linear address plus limi.

The write (W} bit controls the ability to write into a segment. Data segments are read-
only if W = 0. The stack segmeant must have W = 1.

The B hit contrels the size of the stack pointar register. If B = 1, then PUSHes, POPs,
and CALLs alt use the 32-bit ESP register for stack references and assume an upper
limit of FFFFFFFFH. If 8 = 0, stack instructions all use the 16-bit SP register and assume
an upper limit of FFFFH.

System Descriptor Formats

System segments describe information about operating system tables, tasks, and gates.
Figure 4-7 shows the general format of system segment descriptors and the various
types of system segments. Am488DX/DX2 CPU system descriptors contain a 32-bit base

Protected Mode Architecture 4-7



n AMD

4.3.4.4

4.3.4.5

4-3.4'6

linear address and a 20-bit segment limit. 80286 system descriptors have a 24-bit base
address and & 16-bit segment limit. 80286 system descriptors are ideniified by the upper 16
bits all being zero.

LDT Descriptors (S o 0, TYPE = 2}

LDT descriptors {S = 0, TYPE = 2) contain information about Local Descriptor Tables. LDTs
contain a table of segment descriptors, unigue to a particular task. Since the instruction to
load the LDTR is only available at privilege level 0, the DPL field is ignored. LDT descriptors
are only allowed in the GDT. '

TSS Descriptors (S = 0, TYPE = 1, 3, 9, B}

A TSS descripter contains information about the location, size, and privilege level of a Task
State Segment. A TSS is a special fixed format segment that contains all the state informatien
for a task and a linkage field to permit nesting tasks. The TYPE field is used to indicate if -
either the task is currently BUSY (i.e., on a chain of active tasis) or the TSS is available. The
TYPE field also indicates if the segment contams a 80286 or an Am486DX/DX2 micropro-
cessor TSS, The Task Register (TR) coniains the selector that poinis to the current TSS.

Gate Descriptors (5 = 0, TYPE = 4-7, C, F}

Gates are used to control access 1o entry points within the target code segment. The various
types of gate descripters are call gates, 1ask gates, interrupt gates, and trap gates. Gates
provide a level of indirection between the source and destination of the control fransfer. This
indirection allows the processor to automatically perform protection checks. It also alflows
system designers o control entry points to the operating systesn. Call gates are used to
change privilege levels (see Section 4.4, Protection), task gates are used to perform a task
switch, and interrupt and frap gates are used to specily interrupt service routines.

Figure 4-8 shows the format of the four types of gate descriptors. Call gates are primarily
used to fransfer program control to a more privileged level. The call gate descriplor consists of

three fiekds: the access byte, a long pointer {selector and offset) that points to the start of a

roufing, and a word count that specifies how many parameisrs are to be copied from the
cailer’s stack to the called routine stack. The word count field is oniy used by call gates when
there is a change in the privilege level. Other types of gales ignore the word count field.

Interrupt and trap gates use the destination selector and destination offset ficlds of the

Figure 4.7
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Figure 4-8 Gate Descriptor Formats
31 24 16 8 5 0 Byte Address
Salactar Offset 15...0 o
Woard Count
Offset 31...16 Pl EBPFL]O Type glolo 4.0
+4
I | { | [ i ]
Nams Value Description
Type 4 80286 Gall Gata
E Taek Gate {for 80286 or Am486 CPU Task)
L 80286 Interrupt Gate
7 ap28s Call Gate
G Amd486 CPU Call Gats
E Amdge6 GPU Interrupt Gate
F Am436 CPLU Trap Gate
P 0 Descriptar contents are not valid
1 Descriptor contents are valid
DPL Least privileged level at which a task may access the gaie. Word Count 0-31
The number of parameters to copy from caller's stack {0 the called procedure’s
stack. The parameters are 32-bit quantities for Am486 CPLU gates and 16-bit
quantities for 80286 gates.
Dastination 16-bit 5elector 1o the target code segment
Salsctor selector or
Selactor to the target task state segrent for task gate
Dastination oftsat Entry point within the targst code segment
Cfiget 16-bit 80286
32-bit Am4as CPU 178524029
difference between interrupt gates and trap gates is that the interrupt gate disables
interrupts (resets the IF bit) while the trap gate does nof.
Task gates are used to switch tasks. Task gates can only refer to a task state segment
(see Section 4.4.6, Task Switching); therefore, only the destination selector portion of a
task gate descriptor is used and the destination ofiset is ignored.
Exception 13 is generated when a destination selector does not refer to a correct
descriptor type (i.e., a code segment for an interrupt, trap, or call gate, a TSS for a task
gate).
The access byte format is the same far all gate descriptors. P = 1 indicates that the gate
contents are valid. P = 0 indicates the contents ara not valid and causes exception 11 if
referenced. DPL is the descriptor privilege level and specifies when this descriptor can
be used by a task {see Section 4.4, Protection). The S field, bit 4 of the access rights
byte, must be 0 to indicate a system control descriptor. The type field specifies the
descriptor type as indicated in Figure 4-8. '
4,3.4.7 Differences Between Am4B6DX/DX2 CPU and 80286 Descriptors

in order to provide operating system compatibifity between the 80286 and Am486DX/DX2
microprocessor, the Am486DX/DX2 microprocessor supports all 80286 segment descriptors.
Figure 4-3 shows tha general format of an B0286 system segment descripior. The only
differerces between 80286 and Am486DX/DX2 microprocessor descriptor formats are that
the values of the type fiekds, and the limit and base address fields, have been expanded for
the Am486DX/DX2 microprocessor. The 80286 systemn segment descriptors contained a
24-bit base addrass and 18-bit imit. The Am4860X/DX2 microprocessor system segrent
descriptors have a 32-bit base address, a 2-bit limit field, and a granulasty bit.
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4,3.4.8

4.3.4.9

4.3.4.10

By supporting BO286 system segments, the Am486DX/DX2 microprocessor can exacute
80286 application prograrns on an Am4880X/DX2 microprocessor operating system. This is
possibie because the processor automaticatly distinguishes between B0286-styie descriptors
and Am486DX/DX2 microprocesscr-style descriptors. In particular, if the upper word of a
descriptor is 0, then that descriptor is a 80286-style descriptor.

The only other differences between B0286-style descriptors and Am4B86DX/DX2 microproces-
sor descripters s the interpretation of the word count fiekd of call gates and the B bit. The
word count field specifies the number of 16-bit quantities fo copy for 80286 call gates ana
32-bit quantitiss for Am486DX/DX2 microprocessor call gates. The B bit controls the size of
PUSHes when using a call gate. if B = 0, PUSHes are 16 bits; if B = 1, PUSHes are 32 bits.

Selector Flelds

A setector in Protected Mode has three fields: Local or Global Descriptor Table Indicator (TT),
Deseriptor Entry Index (Index), and Requester {the selector's} Frivilege Level (RPL} {see
Figure 4-10}. The Tl bits select one of two memory-based tables of descriptors {the Global
Descriptor Table or the Local Descriptor Tatde). The Index selects one of 8K descriptors in the
appropriate descriptor table. The RPL bits allow high speed testing of the selector’s privilege
attributes.

Segment Descriptor Cache

In addition to the selector value, every segment register is associated wﬂh a segment
descriptor cache register. Whenever a segment register’s contents are changed, the 8-byte
descriptor associated with that selector is automatically loaded (cached) on the chip. Once
loaded, all references to that segment use the cached descriptor information instead of
reassessing the descriptor. The contents of the: descriptor cache are not visibie to the
programmer. Since descriptor caches only change when a segment register is changed,
programs that modify the descriptor tables must reload the appropriate segment registers after
changing a descriptor's value.

Segment Descriptor Register Settings

The contents of the segment descriptor cache vary depending on the mode the
Am486DX/DX2 microprocessor is operating in. ¥When operating in Real Address Mode, the
segment base, limit, and other attribuies within the segment cache registers are defined as
shown in Figure 4-11.

For compatibility with the 8088 architecture, the base is set t¢ 16 times the cumrent selactor
valug, the fimit is fxed at C000FFFFH, and the attributes are fixed to indicate the segment is
prasent and fully usabie. In Real Address Mode, the internal privilege leve! is always fixed to
the highest lavel, level G, se /O and oter privileged opoodes can be exacuted.

Figure 4-9 80286 Code and Data Segment Descriptors

31

0 Byte Addrass
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Bzse  Base Address of the Segment DPL Descriptor Privilege Lovel 0-3
Limit  The length of the segment - S System Descriptor: 0 = Systemn; 1 = User
P Present Bit: 1 = Present; 0 = Not Prasont Type  Type of Segment
178528-030
4-10 Protected Mode Architecture



AMD n

Figure 4-10 Example Descriptor Selection
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4.4
4.4.1

When operating in Protected Mode, the segment bass, limit, and other atiributes within the
segment cache registers are defined as shown in Figure 4-12. In Protected Mods, each of
these fieids are defined according to the contents of the segment descriptor indexed by the
selecior valua loaded info the segment register.

When operating in a Virtual 8086 Mode within the Protected Mode, the segment base, limit,
and other attributes within the segment cache registers are defined as shown in Figura 4-13.
Far compatibifity with the 8086 architecturs, the base is set to 16 times the current selector
value, the limit is fixed at COOOFFFFH, and the aitributes are fixed so as to indicate the
segment is present and fully usable. The virtual program executes at lowest privilege, level 3,
to allow tragping of all IOPL-sensitive instructions and level-0-only instructions.

PROTECTION

Protection Concepts

The Am486DX/DX2 microprocessor has four levels of profection. They are optimized to
support the needs of a multitasking operating system to isolate and protect user programs
from each other and the operating system. The privilege levels control the use of privileged
instructions, IO instructions, and access 1o segments and segment descriptors. Unlike
traditional microprocessor-based systems where this protection is achieved only through
complex extemal hardware and software, the Am486DX/DX2 CPU pravides the protection as
part of its integrated MMU. The Am486DX/DX2 microprocessor offers an additional type of

protection on a page basis when paging is enabled (see Section 4.5.3, Page Level Protec-
tion).

The four level hierarchical privilege system is illustrated in Figure 4-14. It is an exdension of

the user/supervisor privilege mode commonly used by minicomputers; in fact, the user/super-
visor mode is fully supported by the Am486DX/DX2 microprocessor paging mechanism. The
privilege levels {PL) are numbered O through 3. Level 0 is the most privileged or trusted level.
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Figwe 4-11 Segment Descriptor Caches for Heal Address Mode
(Segment Limit and Attributes are Fixed]

Segment Descriptor Cache Aegister Contents
. 32-Bit B :
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Executable
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Expansion Direction
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------------------------------------------------------------------

C5 | 16X Current CS Sslector® Q0Q0FFFFH ¥ 0 hd B U Y1 Y Y -| N
55 | 18X Gurrant 35 Selsctor O00OFFFFH Yol vy| Bl U]yl vy | W[ -
DS | 15X Current DS Selector 0000FFFFH Yol Y| Bl U]lY|]Y|] N|] -}~
£S5 | 18X Current ES Selactor QO0OFFFFH Yol ¥ Bl ULIY]Y] N] —-}-
FS | 16X Current FS Selectar D00OFFFFH Ylop Y| Bl U]Y]Y]N|]-|-
GS | 16X Current GS Selector 00GOFFFFH Ylop Y[ BlU]lY]YIN|-]-

*Except the 32-bit 3, base is inftialized ta FFFFFO00H aftar reset until first intersegment control transfer
{i.e.. ntersegment CALL, or intersegment JMF, or INT}see Figure 4-13.

Key: Y = Yes ’ 0 = Expand down
. N= Ne - B = Byte granularity
0 = Privilege level O P = Page granularity
1 = Privilege lavel 1 W= Pushipop 16-bit words
2 = Privilege level 2 F = Push/pop 32-bit Dwords 178524032
3 = Privilege level 3 — = [oes not apply to that segment cache register
U = Expand up
4.4.2 Rules of Privilege
The Am486DX/DX2 micreprocessor controls access to beth data and procedures
between task leveis, according to the following rules:
8 Data stored in a segment with privilege level p can be accessed only by code execut-
ing at a privilege level at least as privileged as p.
B A code segment/precedure with privilege level p can only be called by a task execut-
ing at the same or a lesser privilege level than p. '
4.4.3 Privilege Levels
4.4.3.1 Task Privilege

At any peint in time, a task on the Am486DX/DX2 microprocessor always executes at
one of the four privilege levels (PLs). The Curent Privilege Level (CPL) specifies the
task’s privilege level. A task’'s CPL can only be changed by control transfers, through
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Figure 4-12 Segment Descriptor Caches for Protected Mode {Loaded per Descriptor}

Segment Descriptor Cache Register Contants

32-Bit Base 32-Bit Limit Other Attributes
{Updated during Selector {Updated during Selector {Updated during Selector
Load into Segment Register) Load into Segment Register) Load into Segment Register)
Conforming Privilage
Stack Size
Executabls
Writeatle
Readabla
Expansion Diraction
Granularity
" Accassed
Privilega Leval
Prssent l
BASE LIMIT l Yy v ¥ ¥ ¥ wv ¥
4
G5 | Base per Segment Descriptor pld| d| d] d]d|N] ¥] ~|d
S5 | Base par Segment Descriptor Limit per b d| d d d r w| N| & ]| -
- Segment
03 | Base per Sepment Descriptor Descriptor pld] d]|] dl d|djd}] N|] =~
ES | Base por Segment Descriptor p|ld]| d dld]|d]d] N| - | -
FS | Base per Segment Dascriptor pldf| d d{d|djd] N|] —| -
GS | Base per Segment Descriptor pldf d d|d|d|d{ N| -] -
Kay: Y = Fixed Yes
N = Fixed No
d = persegment descriptor
p = persegment descriptor; but descriptor must indicate "present” to avoid excaption 11
{exception 12 in case of 55)
r = par sagment dascriptor; but descriptor must indicate “readabie” to avoid exception 13
fspecial case for S8)
W = per segment descriptor; but descriptor must indicate “writable” o avokd exception 13
{special case for 55)
— = doas not apply to that segment cach ist
as not apply to =iy} e ragistsr 178524033
gate descriptors, te a code segment with a different PL. {See Section 4.4.4, Privilege
Level Transfers). Thus, an application program running at PL = 3 can call an operating
system routing at PL =1 (via a gate) that causes the task’s CPL to be set io 1 until the
cperating system routine is finished.
4.4.3.2 Selector Privilege {RPL)

The PL of a selector is specified by the RPL field. The RPL is the two least significant
bits of the sselector. The selector’s RPL is only used to establish a less trusted privilege
level than the current privilege level for the use of a segment. This level is the task's
effactive privilege level {EPL). Tha EPL is defined as the ieast privileged {i.e., numeri-
cally larger) level of a task’s CPL and a selector's RPL. Thus, if the selector's RPL =0,
then the CPL always specifies the privilege level for making an access. On the other
hand, if RPL = 3, then a selectar can only access segments at level 3 regardless of the
fask's CPL. The RPL is usually used to verify that pointers passed to an operating
system procedure do not access data that is of higher privilege than the procedure that
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Figure 4-13 Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode

Granularity
Accessed

Privilege Level

(Segment Limit and Attributes are fixed}

Segmeant Descriptor Cache Register Contents
32-Bit Base

{Updated dl.lfil'lg Salector 32-Bit Lirmit Other Aftributes
Load into Segment Ragister) (Fixad) {Fixed)

Contarming Privilege
Stack Size
Executahle
Writeable
Readable

Expansion Diracticn

Present
BASE LIMIT l Y T Y VTy
C5 | 16X Current CS Salector 00CGOFFFFH Ylal vyl BlU|Y] Y] Y] -|N
85 | 18X Current 55 Sslector 00C0FFFFH Yl 3] ¥y B Ul Y] Y| N|] W -
D3 | 16X Gurrent DS Salector 00COFFFFH Ylal Y| Bl U|lY| Y] N} ~-]-
ES | 18X Gurrent ES Selector 000OFFFFH Yy 3|l ¥yl Bl Ul ¥y Y| N] -1 -
FS | 16X Currant FS Selactor OOQOFFFFH Y{al vyl Bl U[YITY] N -]-
GS | 18X Currsnt GS Salector O0QOFFFFH ¥l3| vl Blu|vyY|]lY|N]-]-
Key: Y = Yes D = Expand down
N = No B = Byte granularity
0 = Privilege level D P = Page granularity
1 = Privilege level 1 W Pushipop 16-bit words
2 = Privilege level 2 = Push/pop 32-bit dwords
3 = Privilege level 3 : - = Doos not apply 1o that segment cache register 17852A-034
L = Expand up
originated the pointer. Since the originator of a selector can specity any RPL valug, the
Adjust RPL {ARPL) instruction forces the RPL bits to the originator's CPL.
4.4.3.3 §/0 Privilege and /O Permission Bit-map
The IO privilege level {IOPL, a 2-bit field in the EFLAG register) defines the least privi-
leged level at which /O instructions can be unconditionally performed. 10 instructions can
be unconditionally performed when CPL < IOPL. (The IfQ instructions are IN, OUT, INS,
QUTS, REF INS, and REP QUTS.) When CPL = IOPL and the current task is associated
with a 286 TSS, attempted 1O instructions cause an exception 13 fault. When CPL =
IOPL and the current task is associated with an Am488DX/DX2 microprocessor TSS, the
I/O Permission Bit-map (part of an Am486DX/DX2 microprocessor TSS) is consulted on
whether I/O to the port is allowed, or if an exception 13 faul! is to be generated instead.
For diagrams of the YO Pemnission Bit-map, refer to Figure 4-15 and Figure 4-16. For fur-
ther information on how the /O Permission Bit-map is used in Protected Mode or in Virtual
8086 Mode, refer to Section 4.6.4, Protection and /O Permission Bit-map.
The IQPL alse affects whether several ather instructions can be executed or cause an
exception 13 fault instead. These instructions are “IOPL-sensitive” instructions and they
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Figure 4-14
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Figure 4-18 Sample O Permission Bit Map

A3 2928 27262524 232221 201818171618 14121211108 8 V76543 210
1111+ 61 1 040 00O 1 1 1 1|0 10 01 1 00Cl00D0C Q0011
ég3joo i oo0co 1 1|1 100 1 ¢ 1 01 1111 1oef1it1 11001
51111111 4+ 11111 1111111111 111111 11111
27lc0o 00 D0 OO0 CO O OO OGO|lO OD OO ODO|OODD OOOCO

111 11111

X 3

/G Ports Accessible: 2 - @, 12,13, 15, 20 = 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 68 — 60, 62, 63, 96 — 127

17852A-036

4.4.3.4

are CLI and STI. (Note that the LOCK prefix is not lOPL sensitive on the Am486DX/DX2

" MICrORToCassor.}

The IOPL also affects whether the interrupts enable flag (IF) bit can be changed by
loading a value into the EFLAGS register. When CPL < IOPL, then the IF bit can be
changed by loading a new value into the EFLAGS register. When CPL > IOPL, the IF bit
cannot be changed by a new value POPed into (or otherwise loaded into) the EFLAGS
register; the IF bit merely remains unchanged and no exception is generated.

Privilege Validation

The Am488DX/DX2 microprocessor provides several instructions to speed pointer
testing and help mairtain system integrity. These instructions verify that the selector
value refers to an appropriate segment. Table 4-2 summarizes the selector validation
praceduras available for the Am488DX/DX2 microprosassor,

Peinter verification prevents the common problem of an application at PL = 3 calling an
operating system's routing at PL = 0 and passing the operating system’s routine a *bad”
pointer that corrupts a data structure belonging to the operating system. If the operating
system routing uses the ARPL instruction to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this probiem can be avoided.
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Figure 4-16 Am486 CPU TSS and TSS Rogisters
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Table 4-2 Pointer Test Instructions

Instruction Operands Functlon
Selector Adjust Requested Frivilege Level: adjusts the RPL of the selector ta the
ARPL Re isterr numeric maximum of current selector RPL value and the RPL value in the
g register. Set zero flag if selector RPL is changed.
VERify for Read: sets the zero flag if the segment referred ta by the selector
VERR - Selector can be read.
VERify tor Write: sets the zerc flag i the segment referred to by the selector
VERW Selector can be written.
LSL Register, Load Segment Limit: reads the segment limit into the register if privilege rules
Selector and descriptor type allow. Set zero flag if successful.
LAR Register, Load Access Rights: reads the descriptor access rights byte inte the register if
Selector privilege rules allow. Set zers flag if successful.

4.4.3.5 Descriptor Access

There are basically two types of segment accesses: those involving code segments such as
control transters, and those involving data accesses. Determining a task's ability to access a
segment involves the type of segment fo be accessed, the instruction used, the type of
descriptor used, and CPL, RPL, and DPL as descrined above.

Any time an instruction loads data segment registers {DS, ES, FS, and GS), the
Am485DX/DX2 microprocessor makes protection validation checks, Selectors loaded in
the DS, ES, FS, and GS registers must refer only to data segments or readable code
segments. The data access rules are specified in Section 4.4.2, Rules of Privilegs. The
only exception 1o these rules is readable conforming code segmeants that can be
accessed at any privitege level,

Finally the privilege validation checks are performed. The CPL is compared to the EPL, and it
the EPL is more privileged than the CPL, an exception 13 (general protection faul) is
generated,

The stack segment rules are slightly different than data segment rules. Instructions that load
selectors into 5SS must refer to data segment descriptors for writable data segments. The DPL
and RPL must equal the CPL. All other descriptor types or a privilege level violation cause
exception 13. A stack not present fault causes exception 12. Note that an exception 11 is
used for a not-present cods or data segment.

4.4.4 Privilege Level Transfers

(Mer-segment control transfers eccur when a selector is loaded in the CS register. For a
typical system, most of these transfers are simply the result of a call or a jump to another
routine. There are five types of control transfers {see Table 4-3). Many of these transfers
result in a privilege kevel transfer. Changing privilege Yevels is done only via control transfers,
by using gates, task switches, and interrupt or trap gates.

Control transfers can only oceur if the operation that loaded the selector references the
correct descriptor type. Any violation of these descriptor usage rules causes an exception 13
{(e.g., JMP through a call gate, or IRET from a normal subroutine call},

To provide further system security, all control transfers are subject to the privilege rules. The
privilege niles require that
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m Privilege level transitiens ¢an only occur via gates.
m JMPs can be made to a non-conforming code segment with the same privilege, or to

a conforming code segment with greater or equal privilege.

CALLs can be made to a non-conforming code segment with the same privilege, or
via a gate to a more privileged level.

@ Interrupts handled within the task obey the same privilege rules as CALLs.

Canforming Code segments are accessible by privilege levels that are the same or
less privileged than the conforming-code segment’s DPL.

Both the RPL in the selector pointing to the gate and the task’s CPL must be of equal or
greater privilege than the gate’s DPL.

The code segment selected in the gate must be the same or more privileged than the
task's CPL.

Retum instructions that do not switch tasks can only retum control o a code sagment with
same of less privilege.

Task switches can be performed by a CALL, JMP, or INT, which references either a task
gate or task state segment who's DPL is less privileged or the same privilege as the old
task's CPL.

Any control transfer that changes CPL within a task causes a change of stacks as a result of
the privilege levet change. The initial values of SS:ESP for privilege levels 0, 1, and 2 are
retained in the task state segment (see Section 4.4.6, Task Switching). During & JMP or CALL
control transfer, the new stack pointer is loaded info the SS and ESP registers and the
previcus stack painter is pushed onto the new stack.

Table 4-3 Descriptor Types Used for Control Transfer
Descriptor Descriptor
Control Transier Types Operation Types Referencod Tabile
Intersegment within the same JMP, CALL, RET, IRET" Code Segment GDT/LDT
privilege level
intersegment to the same or higher CALL Call Gate GDTLDT
privilege level interrupt within task
can change CPL Interrupt instruction, Exception, | Trap or Interript IDT
External Interrupt Gate
imersegment to a tawer privilege RET, IRET* Code Segment GDTADT
level {changes task CPL)
CALL, JMP Task State Segment | GDT
Task Switch CALL, JMP Task Gate GDT/LDT
IRET"" Task Gate 0T
Interrupt Instruction, Exception,
External Interrupt
Note:

“NT (Nested Task bit of fiag register) = 6
“*NT (Nested Task bit of flag register) = 1

4.18
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4.4.5

4.4.6

When RETuming to the original privilege level, use of lower-privileged stack is restored as

part of the RET or IRET instruction operation. For subroutine calls that pass parameters on
the stack and ¢ross privilege levels, a fixed number of words (as specified in the gate's
word count field) are copied from the previous stack to the current stack. The inter-seg-
ment RET instruction with a stack adjustment value correctly restoras the previous stack
pointer upon return.

Call Gates

Gates provide protected, indirect CALLs. One of the major uses of gates is to provide a
secure method of privilege transfers within a task. Since the operating system defines all
the gates in a system, it can ensure that all gates oniy allow entry into a few trusted
procedures (such as those that allocate memory or parform 1/0).

Gate descriptors follow the data access rules of privilege; that is, gates can be accessed
by a task if the EPL is equal to or more privileged than the gate descriptor's DPL. Gates
follow the control transfer rules of privilege and therefore can only transfer control to a
more privileged level.

Call gates are accessed via a CALL instruction and are syriactically identical to calling a
normal subrouting. When an interlevel Am488DX/DX2 microprocessor call gate is
activated, the following actions occur:

Load CS:EIP from gate check for validity.

88 is pushed zero-extended to 32 bits.

ESP is pushed.

Copy Word Count 32-bit parameters from the old stack to the new stack.
5. Push Return address on stack.

The procedurs is identical for 80286 call gates, except 16-bit parameters are copied and
16-hit registers are pushed.

A LN

interrupt gates and trap gates wori like the call gates, except there is no copying of
parameters. The only difference between frap and interrupt gates is that control transfers
through an interrupt gate disable further interrupts {i.e., the IF bit is set to 0}, and Trap
gates ieave the interrupt status unchanged.

Task Switching

A very important attribute of any multitasking/multiuser operating system is the ability to
rapidly switch between tasks or processes. The Am486DX/DX2 microprocessor directly
supports this aperation by providing a task switch instruction in hardware. The
Am4860DX/DX2 microprocessor task switch operation saves the entire state of the
machine {ait of the registers, address space, and a link to the previous task), loads a
new execution state, performs protection ¢hecks, and commences execution in the new
task, all in about 10 microseconds. Like transfer of contral via gates, the task switch
operation is invoked by executing an inter-segment JMP or CALL instruction that refers
to a TSS, or a task gate descriptor in the GDT or LDT. An INT n instruction, exception,
trap, or external interrupt can aiso invoke the task switch operation if there is a task gate
descriptor in the associated |DT descriptor slot.

The TSS descriptor points to a segment (see Figure 4-16) containing the entire
Am486DX/DX2 microprocessor execution state while a task gate descriptor contains a
TSS selector. The Am486DX/DX2 CPU supports both 80286- and Am488DX/DX2
microprocessor-style TSSs. Figure 4-17 shows an 80286 TSS. The limit of an
AmM486DX/DX2 CPU TSS must be greater than 0064H {002BH for a 80286 TSS), and
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can be as large as 4 Gbytes. In the additional TSS space, the operating system is free to
store additional information such as the reason the task is inactive, time the task has
spent running, and apen files belong to the task.

Each task must be associated with TSS. The current TSS is identified by a special
register in the Am486DX/DX2 microprocessor, the Task State Segment Register (TR).
This register contains a selector referring to the task state segmeni descriptor that
defines the current TSS. A hidden base and limit register asscciated with TR are loaded
whenever TR is lpaded with a new selector, Returning from a task is accomplished by
the IRET instruction. When IRET is executed, control is retumed to the task that was
intarrupted. The current executing task’s siate is saved in the TSS and the old task state
is restored from its TSS.

Several bits in the flag register and machine status word {CRO) give information about
the state of a task that is useful to the operating system. The Nested Task (NT) {bit 14 in
EFLAGS) controls the function of the IRET instruction. If NT = D, the 1RET instruction-
performs the regular return; when NT = 1, IRET performs a task switch operation back to
the previous task. The NT bit is set or reset as shown in Figure 4-17.

When a CALL or INT instruction initiates a task switch, the new TSS is marked busy and
the back link field of the new TS8S is set to the old TSS selector. The NT bit of the new
task is set by CALL or INT initiated task switches. An interrupt that does not cause a task

Figwre 4-17 80286 TS5S
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4.4.7

switch clears NT. {The NT bit is restored after execution of the interrupt handler) NT can
also be set or cleared by POPF or IRET instructions.

The Am488DX/DX2 microprocessor TSS is marked busy by changing the descriptor type
figld from TYPE 9H to TYPE BH. An 80288 TSS is marked busy by changing the
descriptor type field from TYPE 1 to TYPE 3. Using a selector that references a busy TSS
causes an exception 13.

The Virtual Mode (VM) bit 17 is used to indicate if a task is a Virtual 8086 task. f VM =1,
then the tasks use the Real Mode addressing mechanism. The Virtuai 8086 environment
is only entered and exited via a task switch (see Section 4.6, Virtual Mode).

The FPU's state is net automatically saved when a task switch occurs because the
incoming task may not use the FPU. The Task Switched (TS) bit (bit 3 in the CRO) helps
deal with the FPU's state in a multitasking environment. Whenever the Am488DX/DX2
microprocessor switches tasks it sets the TS Bit. The Am4880DX/DX2 CPU detects the
first use of a processor extension instruction after a task switch and causes the processor
extension not present exception 7. The exception handler for exception 7 can then decide
whether to save the state of the FPUL. A processor extension not present (exception 7}
occurs when attempting to execute a floating-point or WAIT instruction if the Task
Switched and Monitar copracessor extension bits are both set {i.e., TS = 1 and MP = 1}.

The T it in the Am488DX/CX2 microprogessor TSS indicates that the processor should
generate a debug exception when switching to atask. i T =1, then upon entry to a new
task, a debug exception 1 is generated.

initialization and Transition to Protected Mode

Since the Am486DX/DX2 microprocessor begins executing in Real Mode immediately
after RESET, initiatizing the system tables and registers with the appropriate values is
necessary.

The GDT and IDT registars must refer to a valid GDT and IDT. The IDT should be at
least 256 bytes long, and GDT must contain descriptors for the initial code and data
segments. Figure 4-18 shows the tables and Figure 4-19 shows the descriptors needed
for a simple Protected Mode Am486DX/DX2 CPU system. It has a single code and
single data/stack segment {each 4 Gbytes lang) and a single privilege level PL = 0.

The actual method of enabling Protected Mode is to load CRO with the PE bit set, via the
MOV CRO0, R/M instruction. This puts the Am488DX/DX2 microprocessor in Protected
Mode.

After enabling Protected Mode, the next instruction should execute an intersegment JMP
to load the CS register and flush the instruction decode queus. The final step is to load
ali the data segment registers with the initial selector values.

An alternate approach to entering Protected Mode is especially appropriate for multitask-
ing operating systems. This method uses the built-in task switch 1o load all the registers.
in this case, the GDT contains two TSS descriptors in additien to the code and data
descriptors needed for the first task. The first JMP instruction in Protected Mode jumps
to the TS5, causing a task switch and kcading all of the registers with the values stored
in the TSS. The TSS Register should be initiglized to point to a valid TSS descriptor
since a fask switch saves the current task state in a TSS.
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Figure 4-18 Simple Protected System
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4.5 PAGING
4.5.1 Paging Concepls

Paging is another type of memory management useful for virtual memory multitasking
operating systems. Unlike segmentation, which modularizes programs and data into
variable length segments, paging divides programs into multiple uniform-size pages.
Pages bear no direct relation to the logical structure of a program. While segment
selectors can be considered the logical “name” of a program module or data structure, a
page most likely corresponds ta only a porticn of a module or data structure.

By taking advantage of the locality of reference displayed by most programs, only a small
number of pages from each active task must be in memory at any one moment.

4-22
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4.5-2
4.5.2.1

4.5.2.2

Paging Organization

The Am488DX/DX2 microprocessor uses two levels of tables to translate the linear
address {from the segmentation unit) into a physical address. There are three compo-
nents to the paging mechanism of the Am486DX/DX2 micropracessor: the page
directory, the page tables, and the page itself (page frame). All memory-resident
elements of the Am486DX/DX2 microprocessor paging mechanism are the same size, 4
Kbyies. A uniform size for all the elements simplifies memory allocation and reallocation
schemes, since thera is no problemn with memory fragmentation. Figure 4-20 shows how
the paging mechanism works.

Page Descriptor Base Roglster

CR2 is the Page Fauli Linear Address register. It holds the 32-hit linear address that
caused the last page faul! detected.

CR3 is the Page Directory Physical Base Address Register. It contains the physical
starting address of the page directory. The lower 12 bits of CR2 are always zero o
ensure that the page directery is always page aligned. Loading it via a MOV CR3, REG
instruction causes the page table entry cache to be flushed, as does a task switch
through a TSS that changes the value of CRQ. {See Section 4.5.5, Translation Looka-
side Buffer).

Figure 4-20 Paging Mechanism
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4.%.2.3

4.5.2.4

4- 5.2. 5

Page Directory

The page directory is 4 Kbytes long and allows up to 1024 page directory entries. Each
page directory entry contains the address of the next level of tables, the page tables, and
information about the page table. The contents of a page directory entry are shown in
Figure 4-21. The upper 10 bits of the linear address {A31-A22) are used as an index to
select the comract page directory entry. The actual method of enabling Protected Mode is to
loadt CRO with the PE bit set, via the MOV CRO, R/M instruction.

Page Tablos

Each page table is 4 Kbytes and holds up to 1024 page table entries. Page table entries
contain the starting address of tha page frame and statistical information about the page
(see Figure 4-22), Address bits A21-A12 are used as an index to select one of the 1024
page table entries. The 20 upper-bit page frame address is concatenated with the lower
12 bits of the linear address to form the physical address. Page tahles can be shared
between tasks and swapped te disks. ’

Page Directory/Table Entries

The lower 12 bits of the page table entries and page directory entries contain statistical
information about pages and page tablas respectively. The P (Present) bit = 0 indicates
if a page directory or page table entry can be used in address transtation. If P = 1, the
entry can be used for address translation; if P = 0, the entry cannof be used for transia-
tion and all the other bits are available for use by the software. For example, the
remaining 31 bits could be used to indicate where on the disk the page is stored.

The A {accessed) bit 5 is set by the Am486DX/DX2 microprocessor for both fypes of
entries before a read or write access occurs to an address covered by the entry. The D
{dirty) hit 8 is set to 1 before a write {0 an address covered by that page table entry
occurs. The D kit is undefined for page directory entries. When the P, A, and D bits are
updated by the Am486DX/DX2 microprocessor, the processor generates & read-modify-
write cycle that locks the bus and prevents cenflicts with other processors or peripherals.
Software that modifies these bits should use the LOCK prefix to ensure the integrity of
the page tables in multimaster systems.

The three bits marked “OS Reserved” in Figure 4-21 and Figure 4-22 (bits 9-11) are
software definaple. OSs are free to use thesa bits for whatever purpose they wish. One
use of the OS Reserved bits could be storing infermation about page aging. By keeping

Figure 4-21
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4.5.4

track of how long a page has been in memory since being accessed, an operating
systermn can implement a page replacement algorithm like Least Recently Used.

The {(User/Supervisor) U/S bit 2 and the (Read/Write) R/W bit 1 are used to prowde
protection attributes for individual pages

Page Level Protection {R/W, U/S Bitls)

The Am486DX/DX2 microprocessor provides a set of protection attributes for paging
systems. The paging mechanism distinguishes between two levels of protection: user,
which corrasponds to level 3 of the segmentation—based protection, and supervisor,
which encompasses all of the other protection levels {0, 1, and 2}.

The RAW and U/S bits are used in conjunction with the WP bit in the flags register
{EFLAGS). The 386 microprocessor does not contain the WP bit. The WP bit has been
addet! to the Am486DX/DX2 microprocessor to protect read-only pages from Supervisor
write accesses. The 386 micropracessor allows a read-only page to be written from
protection levels 0, 1, or 2. WP = 0 is the 386 microprocessor-compatible mode. When
WP = 0, the supervisor can write to a read-only page as defined by the /S and R/W
bits. When WP = 1, supervisor access to a read-only page (R/W = 0) causes a page
fault (excepiion 14).

Table 4-4 shows the affect of the WP, U/S, and BR/W bits on accessing memory. When
WP = 0, the supervisor can write to pages regardless of the state of the RW bit. When
WP =1 and RW = 0, the supervisor cannot write to a read-only page. A user attempt to
access a supervisor-cnly page {U/S = 0}, or write to a read-only page causes a page
fault {exception 14),

The R/W and U/S bits provide protection from user access on a page-by-page basis since
the bils are contained in the page table entry and the page directory table. The /S and
R/W bits in the first level page directory table apply to all entries in the page table ponted
o by that directory entry. The U/S and RAV bits in the second levs! page table sntry apply
only to the page described by that entry. The most restrictive of the U/S and R/W bits from
the page diractery table and the page Table entry are used o address a page.

Example: If the U/S and R/W bits for the page directory entry are 10 {(user read/execute)
and the U/S and R/W bits for the page table entry are 01 (no user access at all}, the
access rights for the page is 01, the numerically smaller of the two.

Noto: A giverr segment can be easlly made read-only for level 0, 1, or 2 via use of segmented
protection mechanisms. {See Section 4.4, Protection.)

Page Cacheability (PWT and PCD Bits)

PWT (page write through) and PCD {page cache disable) are two new bits defined in
entries in both levels of the page table structure, the page directory table, and the page
table entry. PCD and PWT control page cacheability and write policy.

PWT confrols write pelicy. PWT = 1 defines a write-through policy for the current page.
PWT = 0 allows the possibility of write-back. PWT is ignored internally because the
Am4860X/DX2 microprocessor has a write-through cache. PWT can be used to contral
the write policy of a second ievel cache.

PCD controls cacheability. PCD = 0 enables caching in the on-chip cache. PCD alone
does not enable caching; it must be conditioned by the KEN {cache enable) input signa,
and the state of the CD (cache disable bit) and NW {no write-through) bits in contirol

register 0 (CRO). When PCD = 1, caching is disabled regardless of the state of KEN, CD,
and NW/. (See Chapter 5, On-Chip Cachg).
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4.5.5

The state of the PCD and PWT bits are driven out on the PCD and PWT ping during a’
memory access.

The PWT and PCD bits for a bus cycle are obtained either from control register 3 (CR3),
the page directory entry, or the page table entry, depending on the type of cycle run.
Howsver, when paging is disabled {PG = 0 in CRO) or for cycles that bypass paging {i-.,
I1C (input/output) references, INTR {interrupt request) and HALT cycles), the PCD and
PWT bits of CR3 are ignored. The Am486DX/DX2 CPU assumes PCD = 0 and PWT =0
and drives these values on the PCD and PWT pins.

When paging is enabled (PG = 1 in CRQ}, the bits from the page table entry are cached in
the TLB and are driven any time the page mapped by the TLB eniry is referenced. For
normal memory tycles run with paging enabled, the PWT and PCLD bits are taken from
the page table entry. During TLB refresh cycles when the page directory and page table
entries are read, the PWT and PCD hits must be obtained elsewhere. The bits are taken
from CR3 whan a page directory entry is being read. The bits are taken from the page
directory entry when the page table entry is being updated.

The PCD or PWT bits in CR3 are initialized to zero at reset, but ¢an be set to any value
by level 0 software.

Translation Lookaside Buffer

The Am486DX/DX2 micraprocessor paging hardware is designed to support demand-
paged virtual memory systems. However, performance would degrade substantially if
the processor is required to access two levels of tables for every memory reference. To
soive this problem, the Am486DX/DX2 microprocessor keeps a cache of the most
recently accessed pages, this cache is called the Translation Leokaside Buffer (TLB).
The TLB is a four-way set-associative 32-entry page table cache. It automatically keeps
the most commonly used page table entries in the processer. The 32-entry TLB coupled
with a 4K page size results in coverage of 128 Kbytes of memory addresses. For many
common multitasking systems, the TLB has a hit rate of about 38%. This means the
processor only has to access the two-level page structura an 2% of all memory refer-
ences. Figure 4-23 illustrates how the TLB complements the Am486DX/DX2 microproces-
sor's paging mechanism.

Reading a new entry into the TLB (TLB refresh) is a two step process handled by the
Am486DX/DX2 microprocessor hardware. The sequence of data cycles to perform a TLB
refresh are

1. Read the correct page directory entry, as pointed to by the page base register and
the upper 10 bits of the linear address. The page hase register is in CR3.
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Figure 4-23 Translation Lookaside Bufier
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1a. Optionally, perform a locked read/write to set the accessed bitin the dlrectory entry.
The directory entry actually gets read iwice if the Am486DX/DX2 microprocessor
needs to set any of the bits in the entry. If the page directory entry changes between
the first and second reads, the data returmned for the second read will be used.

2. Read the correct entry in the page table and place the entry in the TLB.

2a. Opticnally, perform a locked readfwrite to set the accessed and/or dirty bit in the page
table eniry. Again, note that the page table entry actually gets read twice if the
Am486DX/DX2 microprocessor needs to set any of the bits in the entry. Like the
directory entry, if the data changss betwesn the first and second read, the data
retumed for the second read is used.

Nota: The directory eniry must always be read into the processor since directory entries are
never placed in the paging TLB. Page faulis can be signaled from either the page directory read
or the page table read. Page directory and page tabie entries can be placed in the Am486DX/DX2
on-chip cache just like normal data.

Paging Operation

The paging hardware operates in the following faghion. The paging unit hardware
receives a 32-bit linear address from the segmentation unit. The upper 20 linear address
bits are compared with all 32 entries in the TLB to determine if there is a match. If there
is a match (i.e., a TLE hit}, then the 32-bit physical address is calculated and is placed
on the address bus.

Howaever, if the page table entry is not in the TLB, the Am486DX/DX2 microprocessor
reads the appropriate page directory entry. If P = 1 on the page directory entry indicating
that the page table is in memory, then the Am488DX/DX2 microprocesser reads the
appropriate page table entry and sets the Access bit. If P = 1 on the page table entry
indicating that the page is in memary, the Am486DX/DX2 microprocessor updates the
Access and Dirty bits as needed and fetches the operand. The upper 20 bits of the linear
address, read from the page table, are stored in the TLB for future accesses. However, if
P =0 for either the page directory eniry or the page table entry, then the processor
generates a page fault, an exception 14.
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The processor also generates an exception 14 page fault if the memory reference violated
the page protection attributes (i.e., U/S or R/W) (e.g., trying to write to a read-oniy page).
CR2 holds the lingear address that caused the page fault. If a second page fault occurs
while the processor is attempting to enter the service routing for the first, then the
processor invokes the page fault (exception 14} handler a second time, rather than the
double fault (exception 8) handler, Since exception 14 is classified as a fault, CS: EIP
paints to the instruction causing the page fault. The 16-bit error code pushed as part of
the page fault handier contains status bits that indicate the cause of the page fault.

The 16-bit error code is used by the operating system to determine how to handle the

page. Figure 4-24 shows the format of the page-fault error code and the interpretation of
the bits.

Nota: Even though the bits in the error code ('S, W/R, and F} have similar names as the bits in
the page directory/fable entries, the interpretation of the error code bits is different. Table 4-5 indi-
cates what type of access caused the page faull.

Figure 4-24 Page Fault Error Code Format
15 a2 1g
LiEwW
ufulujufujuluiujujufulujulglg|®
17B52A-045
Table 4-5 Type of Access Causing Page Fault
u/s R/W Access Type

o 0 Supervisor” Read

0 1 Supetvisor Write

1 a User Read

1 1 User Write

Note: * Dascriptor fable access will fault with LIS = 0, aven if the program is execuling at fevel 3.

4.5.7

U/S: The U/S bitindicates whether the access causing the fault occurred when the proces-
sor was executing in User Mode (U/S = 1) or in Superviscr Mode (U/S = 0}.

W/R: The W/R bit indicates whether the access causing the fault was a Read (W/R=0) or a
Write {(W/R = 1). .

P:  The Pbitindicates whether a page fault was caused by a not-presentpage (P = 0), or
by a page level protection viotation (P =1).

U:  Undefined

Operating System Responsibilities

The Am486DX/DX2 microprocessor takes care of the page address translation process,
relieving the burden from an operating system in a demand-paged system. The operat-
ing system is responsible for setting up the initial page tables and handling any page
faults. The operating system also is required to invalidate (i.e., flush) the TLB when any
changes are made to any of the page table entries. The operating system must reload
CR3 to cause the TLB to be flushed.
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4.6.1

4.6.2

- 4.6.3

Setling up the tables is simply a matter of loading CR3 with the address of the page
directory and allocating space for the page directory and the page tables. The primary
responsibility of the operating system is to implement a swapping policy and handls all the
page faults.

A final concerm of the operating system is to ensurs that the TLB cache matchas the
information in the paging tables. In particular, any time the sperating system sets the P
present bit of page table entry to 0, the TLB must be flushed. Operating systems may
want to take advantage of the fact the CR3 is stored as part of a TSS, to give every task
or group of tasks its own set of page tables.

VIRTUAL 8086 ENVIRONMENT

Executing 8086 Programs

The Am486DX/DX2 microprocessor allows the execution of 8086 application programs
in both Real Mode and in the Virtual 8086 Mode (Virtuai Mode). Of the two methods,
Virtual 8086 Mode ¢ffers the system designer the most flexibility. The Virtual 8086 Mode
allows the execution of 8086 applications while still allowing the system dasigner to take
full advantage of the Am486DX/DX2 microprocessor protection mechanism. In particular,
the Am486DX/DX2 microprocessor allows the simultanecus execution of 8086 operating
systerns and its applications, as well 25 an Am486DX/DX2 microprocessor operating
system and both 80286 and Am488DX/CX2 microprocessor applications. Thus, in a
multiuser Am486DXA A2 microprocessor computer, one person could be running an

- MS-DOS spreadshest, another person using MS-D0OS, and a third person could be

running muitiple UNIX utilities and applications. Each person in this scenario would
believe he had the computer completely {o themselves. Figure 4-25 illustrates this
concept.

Virtual 8086 Mode Addressing Mechanism

One of the major differences between the Am486DX/DX2 micraprocesser Real and
Protectad Modes is how the segment selectors are interpreted. When the processor is
executing in Virtual 8086 Mode, the segment registers are used in an identical fashion to
Reai Mode. The contents of the segment register are shifting left four bits and are added
to the offset to form the segment base tinear address.

The Am486DX/DX2 microprocessor allows the operating system to specify which
programs use the 8086 style address mechanism, and which programs use Protected
Mode addressing, on a per task basis. Through the use of paging, the 1-Mbyte address
space of the Virtual Mode task can be mapped to anywhere in the 4 Gbyte linear
address space of the Am485DX/DX2 microprocessor. Like Real Mode, Virtual Mode
effective addresses (i.e., segment olfsets) that exceed 64 K byte cause an exception 13,
However, these restrictions should not prove to be important, bacause most tasks
running in Virtual 8086 Mode are simply existing 8086 application programs

Paging in Virtual Mode

The paging hardware allows the concurrent running of multiple Virtual Mode tasks, and
provides protection and operating system isolation. Althcugh it is not strictly necessary to
have the paging hardwara enabled to run Virtual Mode tasks, it is needed in order to run
multiple Virtual Mode tasks or to relocate the address space of a Virttual Mode task to
physical address space greater than 1 Mbyte.

The paging hardware allows the 20-bit linear address produced by a Virtual Mode
program to be divided into up to 256 pages. Each page can be located anywhere within
the maximum 4 Gbyte physical address space of the Am486DX/DX2 microprocessor. in
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Figure 4-25 Virtual 8085 Environment Memory Management
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addition, since CR3 (the Page Directory Base Register) is loaded by a task switch, each
virtual Mode task can use a differant mapping scheme to map pages to different
physical locations.

Finally, the paging hardware allows the sharing of the B0BE operating system code
between multiple 8086 applications. Figure 4-25 shows how the Am486DX/DX2
microprocassor paging hardware enables multipie 8086 programs to run under a virtual
memory demand paged system.

Protection and I/O Permission Bit-map

4.6.4
All Virtual 8086 Mode programs execute at privilege levei 3, the leve! of least privilege.
As such, Virtual 8086 Mode programs are subject to all of the protection checks defined
in Protected Mode. (This is different from Real Mode which implicitly is executing at
privilege level 0, the level of greatest privilege.} Thus, an attempt to execute a privileged
instruction when in Virtual 8086 Mode causes an exception 13 fault.
The following are privileged instructions, which may be executed only at privilege level 0.
Therefore, attempting to execute these instructions in Virtual 8086 Mode {(or anytime
CPL > 0) causes an exception 13 fault:
LIDT; MOV DRn, reg; MOV reg, DRn;
LGDT; MOW TREn, reg; MOV reg, TEREn;
LMEW; MOV CRn, reg; MOV reqg. CREn.
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CLTS;
HLT;

Several instructions, particularly those applying to the multitasking model and protection
model, are available only in Protected Mode. Therefare, attempting to execute the
following instructions in Real Mode or in Virtual 8086 Mode generates an exception 6
fault: '

LR ; 5TR;

LLDT; BLDT;

LAR; VERE;

LaL; VERW;
© AREL..

The instructions that are KOPL-sensitive in Protectad Mode are

IN; =TT
QuUT; CLI
INS;

oUuTs;

REP THS;

REP OUTE;

In Virtual 8088 Mode, a slightly different set of instructions are made IOPL-sensitive. The
following instructions are IOPL-sensitive in Virtual 8086 Mode:

INT n: STI;
PUSHF; CLI;
POFF; - IRET

The PUSHF, POPF, and RET instructions are }OPL-sensitive in Virtual 8086 Mode only,
This provision allows the IF flag (interrupt enable flag) to be virtualized to the Virtual
8086 Mode program. The INT n software interrupt instruction is also IOPL-sensitive in
Virtual 8086 Mode. Note, however, that the INT 3 {opeode OCCH), INTO, and BOUND
instructions are not IOPL-sengitive in Virtual 8086 Mode (they are not IOPL sensitive in
Protected Mode either).

Note that the I/C instructions (IN, OUT, INS, QUTS, REP INS, and REP QUTS) are not
iOPL-sensitive in Virtual 8086 Mode. Rather, the 1O instructions become automatically
sensitive to the /O Permission Bit-map contained in the Am486DX/DX2 microprocessor
Task State Segment. The /O Permission Bit-map, automatically used by the
Am486DX/DX2 microprocessor in Virtual 8086 Mode, is illustrated by Figure 4-15 and
Figure 4-16,

The IO Permission Bit-map can be viewed as a 0—64 Kbit bit string, which begins in
memory at offset Bit _ Map _ Offset in the current TSS, Bit _ Map _ Ofiset must be <
DFFFH so the entire bit map and the byte FFH that follows the bit map are all at offsets
<FFFFH from the TSS base. The 16-bit pointer Bit _ Map _ Cffset (15...0} is found in the
word beginning at offset 86H (102 decimal) from the TSS base, as shown in Figure 4-18.

Each bit in the IO Permission Bit-map corresponds to a single byte-wide /O port, as
illustrated in Figure 4-16. If a bit is 0, 10 to the corresponding byte wide port can oceur
without generating an exception; ctherwise, the I/O instruction causes an exception 13
fault. Since every byte-wide IO port must be protectable, all bits corresponding to a
word-wide or dword-wide port must be 0 for the word-wide or dword-wide /O to be
permitted. If all the referenced bits are 0, the I/Q is allowed. If any referenced bits are 1,
the attempted /O causes an exception 13 fault,
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Due 10 the use of a pointer to the base of the I/O Permission Bit-map, the bit-map can be
located anywhere within the TSS, or can be ignored completely by pointing the Bit-map
_ Offset {15...0) beyond the limit of the TSS segment. In the same manner, only a small
portion of the 64K VO space needs o have an associated map bit, by adjusting the TSS
{imit to truncate the bit-map. This eliminates the commitment of 8K of memory when a
complete bit-map is not required, while allowing the fully general case if desired.

EXAMPLE OF BITMAP FOR I/O PORTS 0-255:

Setting the TSS limit to {Bit_map _ Ofiset + 31 + 1*}{*"see note below) allows a 32-byte
bit-map for the I/C ports #0-255, plus a terminator byte of all 1's {(** see note below).
This allows the I/C bit-map to contro! 170 Pemmission to VO ports 0255 while causing an
exception 13 fault on attempted IfO 1o any /O port 256 through 65,565.

Note: ** Beyond the last byte of VO mapping information in the O Permission Bit-map must be
a byte containing aff 1's. The byte of alf 1's must be within the limit of the ArMBSDXFDXE micro-
processor TSS segment (see Figure 4-15).

Interrupt Handling

In order 1o fully support the emulation of an 8086 machine, interrupts in Virtual 8086
Mode are handled uriquely. When running in Virtuat Mode, all interrupts and exceptions
invelve a privilege change back te the host Am4B86DX/DX2 microprocessor operating
system. The Am486DX/DX2 microprocessor operating system determines if the interrupt
comes from a Protected Mode application or from a Virtuai Mode program by examining
the VM bit in the EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and execution passes to the interrupt
routine at level 0, the VM bit is cleared. However, the VM bit is stili set in the EFLAG
image on the stack.

The Am486DX/DX2 microprocessor operating system in turn handles the exception or
interrupt and then returns control to the 8088 program. The Am486DX/DX2 microproces-
sor operating system can choose to let the 8086 operating system handle the interrupt
or it may emulate the function of the interrupt handler, For example, many 8088 operat-
ing system calls are accessed by PUSHing parametars on ihe stack and then executing
an INT n instruction. If the IOPL is set te 0, then ali INT n instructions are intercepted by
the Am486DX/DX2 microprocessar operating system. The Am486DX/GX2 microproces-
sor operating system can emulate the 8088 operating system’s call. Figure 4-26 shows
how the Am486LX/DX2 microprocessor operating system can intercept an 8086
operating system's call to “"Open 5 Fite™. 5

An Am486DX/DXZ microprocessor operatirﬁ system can provide a Virtual 8086
environment that is totally transparent to th# application software via intercepting and
then emulating 8086 operating system’s calls, and intsrcepting IN and OUT instructions.

Entering and Leaviﬁg Virtual 8086 Mode

Virtual 8086 Mode is entered by executing an IRET instruction {at CPL = C) or Task
Switch (at any CPL) to an Am486DX/DX2 microprocessor task, The Am486DX/DX2
microprocessor TSS has a FLAGS image containing a 1 in the VM bit position while the
precesser is axecuting in Protected Mode. That is, one way to enter Virtual 8086 Mode is
to switch to a task with an Am486DX/DX2 micropracessor TSS that has a 1 in the VM bit
in the EFLAGS image. The other way is to execute a 32-bit IRET instruction at privilege
levet 0, where the stack has a 1 in the VM bit in the EFLAGS image. POPF does not
affect the VM bit, even if the processor is in Protected Mode or level 0, and so cannot be
used to enter Virtual 8086 Mode. PUSHF always pushes a 0 in the VM bit, even if the
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processor is in Virtual 8086 Mode, so that a program cannot tell if it is executing in Real
Made, or in Virtual 8088 Mode.

The VM bit can be set by executing an IRET instruction only at privilege level 0, or by any
instruction or Interrupt that causes a task switch in Protected Mode (with VM = 1 in the
new FLAGS image); the VM bit can be cleared only by an interrupt or exception in Virtual
8066 Mode. IRET and POPF instructions executed in Real Mode or Virtual 8088 Mode da
nat change the value in the VM bit. '

The transition out of Virtual 8086 Mode to Am486DX/DX2 microprocessor Protected
Maode occurs only on receipt of an interrupt or exception (such as due to a sensitive
instruction). In Virtual 8086 Mode, all interrupts-and exceptions vector through the
Protected Mode IDT and enter an interrupt handter in protected Am486DX/DX2 micro-
processor mode. That is, as part of interrupt processing, the VM bit is cleared.

Because the matching IRET must oceur from level 0, it an interrupt or trap gate is used
1o field an interrupt or exception out of Viriual 8086 Mode, the gate must perform an
inter-level interrupt only to level 0. Interrupt or trap gates through conforming segments,
or through segments with DPL = 0, raise a GP fault with the CS selector as the error
code.

Task Switches To/From Virtual 8086 Mode

Tasks that can exacute in Virtual 8086 Mode must be described by a TSS with the new
AmMA486DX/DX2 microprocessor format (TYPE 9 or 11 descriptar).

A task switch out of Virtual 8086 Mode operates exactly the same as any other task
switch out of a task with an Am488DX/DX2 microprocessor TSS. All of the programmer
visible state, inciuding the FLAGS register with the VM bit set 1o 1, is stored in the TSS.
The segment registers in the TSS contain 8086 segment base values rather than
selectors.

A task switch into a task described by an Am486DX/DX2 microprocessor TSS has an
additicnal check to determine if the incoming task should be resumed in Virtual 8086
Mode. Tasks described by 80286 format TSSs cannot be resumed in Virtual 8086 Mede,
80 no check is required there (the FLAGS image in 80286 format TSS has only the
low-arder 16 FLAGS bits). Before loading the segment register images from an
Am4BBDX/DX2 microprocessor TSS, the FLAGS image is loaded so that the segment
registers are loaded from the TSS image as 8086 segment base values. The task is now
ready to resume in Virtual 8088 Execution Mode.

Transitions Through Trap and Interrupt Gates, and IRET

A task switch is one way to enter or exit Virtual B086 Mode. The other method is to exit
through & trap or interrupt gate as part of handling ar interrupt; and to enter as part of
executing an IRET instruction, The transition out must use an Am488DX/DX2 micropro-
cessor trap gate (TYPE 14), or Am488DX/DX2 microprocessor interrupt gate {TYPE 15),
which must pgint to a non-conforming level 0 segment (DPL = 0 in order to permit the
trap handler to !RET back to the Virtual 8086 program. The gate must point to a
non-conforming level 0 segment to perform a level switch to level @ so that the maiching
IRET can change the VM bit. Am486DX/DX2 microprocessor gates must be used, since
80286 gates save only the low 16 bits of the FLAGS register, so that the VM bit is not
saved on transitions through the 80286 gates. Also, the 16-bit IRET {presumably) used
to terminate the 80286 interrupt handler pops only the lower 15 bits from FLAGS and
does not affect the VM bit. The acticn taken for an Am486DX/DX2 microprocessor trap
or interrupt gate, if an interrupt occurs while the task is executing in Virtual 8086 Mode,
is given by the following sequence. '
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Figure 4-28 Virtual 8086 Environment Interrupt and Call Handling
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1. Save the FLAGS ragister in a temp te push tater. Turn off the VM and TF bits, and if
the interrupt is serviced by an Interrupt Gate, turn off IF also.

2. Interrupt and Trap gates must perform a level switch from 3 {(where the Virtual Mods
8086 program executes) to level 0 (so IRET can return). This process involves a
stack switch to the stack given in the TSS for privilege level 0. Save the Virtual 8086
Made SS and ESP registers to push in a later step. The segment register ioad of S5
iz done as a Protected Mode segment load since the VM bit was turned off above.

3. Push the 8086 segment register values anto the new stack, in the aorder: GS, F5, DS,
ES. These are pushed as 32-bit quantities with undefined values in the upper 16 bits.
Then, load thesa four registars with null setectars ().

4, Push the old 8086 stack pointer onto the new stack by pushing the S5 register {(as
32-bits, high bits undefined), then pushing the 32-bit ESP register saved above.

5. Push the 32-bit FLAGS register saved in step 1.

8. Push the old 8086 instruction pointer onto the new stack by pushing the CS register (as
32-bits, high bits undefined), then pushing the 32-bit EIP register.

7. Load up the new CS:EIP value from the interrupt gate and begin execution of the
interrupt routine in Protected Am486DX/DX2 microprocessor Mode.

The transition out of Virtual 8086 Mode performs a level change and stack switch, in
addition to changing back to Protected Mode. in addition, ail of the 8086 segment
registar images are stored on the stack {behind the S5:ESP image) and then icaded
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with null (0) selectors before entering the interrupt handler. This permits the handler to
safely save and restore the DS, ES, FS, and GS registers as 80286 selectors. This is
needed so that interrupt handlers that do net care about the mode of the interrupted
program can use the same prologue and spilogue code for state saving (i.e., push all
registers in prologue pop ali in epilogue) regardiess of whether or not a “native” mode or
Virtial 8086 Mode program ig interrupted. Restoring null selectors to these registers
before executing the IRET does not cause a trap in the interrupt handler. Interrupt
routines that expect values in the segment registers, or return values in segment
registers, have to obtain/return values from the 8086 register images pushed onto the
new stack. They need to know the mode of the interrupted program in order to know
whare to find/return segment registers, and also to know how to interpret segment
register values.

The IRET instruction performs the inverse of the above sequence. Only the extended
Am486DX/DX2 microprocessor's IRET instruction (operand size = 32) can be used and
must be executed at level O tc change the VM bit to 1.

1. If the NT bit in the FLAGS register is on, an intertask return is performed. The current
state is stored in the current TSS and the link field in the current TSS is used to locate
the TSS for the interrupted task that is to be resumed. Otherwise, continue with the
fallowing sequence.

2. Read the FLAGS image from SS:[ESP] into the FLAGS register. This sets VM to the
value active in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP is popped first, then a 32-hit word is popped
that contains the CS value in the lower 16 bits. If VM = 0, this CS load is done as a pro-
tected mode segment load. i VM = 1, this is done as an 8086 segment load.

4. Increment the ESP register by 4 to bypass the FLAGS image that was popped in
Step 1.

5. fVM =1, lpad segment registers ES, DS, FS, and GS from memory locations
SS:[ESP + 8], SS:[ESP + 12}, SS{ESP + 16], and SS:[EXP + 20), respectively, where
the new value of ESP stored in Step 4 is used. Since VM = 1, these are done as 8086
segment register loads. Else, if VM = 0, check that the selectors in ES, DS, FS, and
GS are valid in the interrupted routine. Null out invalid selectors to trap if any attempt is
made to access through them,

6. it (RPL{CS) > CPL), pop the stack pointer SS:ESP from the stack. The ESP register
is popped first, followed by 32-bits containing S5 in the lower 16 bits, If VM =0, SS is
loaded as a Protected Mode segment register load. If VM = 1, an 8086 segment reg-
ister lcad is used. '

7. Resume execution of the interrupted routine. The VM bit in the FLAGS register (restared
from the interrupt roufine’s stack image in Step 1) determines whether the processor
resumes the intarrupted routine in Protected Modg or Virtual 8086 Mode.
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5 ON-CHIP CACHE

To meet its performance goals, the Am485DX/DX2 microprocessar contains an 8-Kbyte
cache. The cache is software transparent to maintain binary compatibility with previous
generations of the Ama8é CPU architectures.

The on-chip cache is designed for maximum flexibility and performance. The cache has
several operating modes oifering flexibility during program execution and debugging. Memory
areas can be defined as non-cacheable by software and extemal hardware. Protocols for
cache line invalidations and replacement are implemented in hardware, easing system design.

5.1 CACHE ORGANIZATION

The on-chip cache is a unified code and data cache. The cache is used for bath
instruction and data accesses and acts on physical address.

The cache organization is four-way set asscciative and each line is 26-bytes wide. The
B-Kbytes of cache memory ars logically organized as 128 sets, each containing four lines.

The cache memory is physically split into four 2-Kbyte blocks, each containing 128 lines
(see Figure 5-1). Associated with each 2-Kbyte block are 128 21-bit tags. There is a
valid bit for each line in the cache. Each line in the cache is either valid or not valid.
There are no provisions for partially valid lines.

The write strategy of on-chip cache is write-through, All writes drive an external write bus
cycle, in addition to writing the information to the internal cache if the write was a cache
hit. A write 10 an address not contained in the internal cache is only written to externat
memory. Cache allocations are not made on write misses.

Figuwre 51 On-Chip Cache Physical Organization

421-311: " 16Byte |
Tag Line Size

128 Tags 2¥bytes |128 Sets

i

2 Kbytes

2 Kbytes

2 Kbyles

I-‘sEll_i?sU ..I._ 4gi?slid

128 lSets 178524048

On-Chlp Cache , 51



&\ amp

5.2

5.3

CACHE CONTROL

Cache contrel is provided by the CD and NW bits in Control Register 0 (CR0). CD
enables and disavles the cacha. NW controls memory write-through and invalidates.

The CD and NW bits dsfine four operating modes of the on-chip cache (see Table 5-1).
These modes provide flexible on-chip cache operation.

CD=1,NW=1

The cache is completsly disabled by setting CD = 1 and NW = 1 and then flushing the cache.
This mode can be useful for debugging programs where it is important to see all memory
cycles at the pins. Writes that hit in the cache do not appear on the extemnal bus.

It is possible to use the on-chip cache as fast static RAM by “pre-icading” certain
memory areas into the cache, and then sstting CD = 1 and NW = 1. Pre-loading can be
done by carefully choosing memory references with the cache turnad on, or by using the
testability functions (see Section 8.2). When the cache is turned off, the memory
mapped by the cache is “frozen” into the cache since fills and invalidates are disatled.

CD=1,NW=0

Cache fills are disabled but write-throughs and invalidates are enabled. This mode is the
same as if the KEN pin was strapped High, disabling cache fills. Write-throughs and
invalidates can still oceur to keep the cache valid. This mode is useful it the software
must disable the cache for a short period of time, and then re-enable it without flushing
the original contenis, :

CD =0, NW=1

INVALID. If CRO is loaded with this bit configuration, a General Protection fault with an error
code of 0 is raised. Note that this mode implies a nan-transparent write-back cache. A future
pracessor might define this combination of bits to implement a write-back cache.

CD=0,NW=0
This is the normai operating mode.

Completely disabling the cache is a two step process. First, CD and NW must be setto 1
and then the cache must be flushed. If the cache is not flushed, cache hits on reads still
occur and data is read from the cache.

CACHE LINE FILLS

Any area of memory can be cached in the Am486DX/DX2 microprocessor. Non-cache-
able portions of memory can be defined by the externai system or by software. The
external system can inform the Am486DX/DX2 microprocessor that a memory address is
non-cacheable by returning the KEN pin inactive during a memory access (refer to
Section 7.2.3}. Software can prevent certain pages from being cached by setting the
PCD kit in the page table entry,

Table 51

Cache Operating Modes

cD NW | Operating Mode
1 1 Cache fil's disabled, write-through and invalidates disabled
1 0 | Cache fills disabled, write-through and invalidates enabled

0 1 INVALID. If CRO is loaded with this configuration of bits, a GP fault with error
code of 0 is raised.

0 0 | Cache fills enabled, write-through and invalidates enabled

5-2
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5.4

A read request can be generated from program operation or by an instruction prefetch.
The data is supplied from the on-chip cache if a cache hit occurs on the read address. if

the address is not in the cache, a read request for the data is generated on the external
bus.

If the read request is to a cacheable portion of memory, the Am486DX/DX2 microproces-
sor initiates a cache line fill. During a ling fill, a 16-byte line is read into the
AmM4B6DX/DX2 Microprocessor.

Cache fills are generated only for read misses. Write misses never cause a line in the
internal cache to be allocated. If a cache hit occurs on a write, the line is updated.

Cache line fills can be performed over 8- and 18-bit buses using the dynamic bus sizing
feature. Refer to Section 7.1.3 for a description of dynamic bus sizing.

Refer to Section 7.2.3 for further information on cacheable cycles.

CACHE LINE INVALIDATIONS

The Am486DX/DX2 microprocessor contains both a hardware and software mechanism
for invalidating lines in its internal cache. Cache line invalidations are needed to keep the
AmaB6DX/DX2 microprocessor's cache contents consistent with external memory.

Refer to Section 7.2.8 for further information on cache line invalidations.

- CACHE REPLACEMENT

When a line needs to be placed in its internal cache, the Am486DX/DX2 microprocoessar
first checks to see if there is a non-valid {ing in the set that can ba replaced. If all four
lines in the set are valid, a pseudo least recently used {L. RU) meachanism is used to
determine which ling is replaced.

A valid bit is associated with each ling in the cache. When a line needs to be placed in a
set, the four valid bits are checked to see if there is a non-valid line that can be replaced.,
If a non-valid line is found, that line is marked for replacement.

The four lines in the set are fabeled 10, 11, 12, and I3. The valid bits are checked during
an invalidation in the order i0, 11, 12, and 13. All valid bits are cleared when the processor
is reset or when the cache is flushed.

Replacement in the cache is handled by a pseudo LRU mechanism when ail four lines in
a set are valid. Three bits, B0, B1, and B2, are defined for each of the 128 sets in the
cache. These bits are the LRU bits and are updated for every hit or replace in the cache.

if the most recent access to the setwas to 1D or 11, BD is setto 1. B is setto O if the
most recent access was to 12 or I3, If the most recent access to 10:11 was to 10, B1 is set
to 1, else B1 is set to Q. If the most recent access to 12:13 was to 12, B2 is setto 1, else
B2 is set to 0.

The pseude LRU mechanism waorks in the following manner. When a lfine must be
replaced, the cache first selects which of 10:11 and 12:13 was least recently used. Then
the cache determines which of the two lines was least recently used and marks it for
replacement, This decision tree is shown in Figure 5-2. When the processor is reset or
when the cache is flushed, all 128 sets of three LRU bits are set to 0.

PAGE CACHEABILITY

Two bits for cache control, PWT and PCD, are defined in the page table and page
directory entries. The state of these bits are driven out on the PWT and PCD pins during
Memory access cycies.
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Figure 5-2
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The PWT bit controls write policy for second level caches used with the Am486DX/DX2
microprocessor. Setting PWT = 1 defines a write-through policy for the current page,
while PWT = 0 allows the possibility of write-back. The state of PWT is ignored intemally
by the Am4B86DX/DX2 micraprocessor since the on-chip cache is write through.

The PCD bit controls cacheability on a page-by-page basis. The PCD bit is internally
ANDed with the KEN signal to control cacheability on a cycle-by-cycle basis (see

Figure 5-3). PCD = 0 enables caching while PCD = 1 forbids it. Note that cache fills are
enabled when PCD =0 AND KEN = 0. This logical AND is implemented physically with a
NOR gate.

The state of the PCD bit in the page table entry is driven on the PCD pin whan a page in
external memory is accessed, The state of the PCD pin informs the external system of
the cacheability of the requested information. The external system then retums KEN,
telling the Am4B6DX/DX2 microprocessor if the area is cacheable. The Am486DX/DX2
microprocessor initiates a cache line fill if PCD and KEN indicate that the requested
information is cacheabls.

The PCD bit is masked with the CD bit in control registar 0 to determine the state of the
PCD pin. If CD = 1, the Am486DX/DX2 microprocessor forces the PCD pin High. if CD =
0, the PCD pin is driven with the value for the page table entry/directory (see

Figure 5-3).

The PWT and PCD bits for a bus cycle are obtained from either CR3, the page directory
entry, or page table entry. These bits are assumed to be © during Real Mode, whenever
paging is disabled, or for ¢cycles that bypass paging (IO references, interrupt acknowl-
edge, and Halt cycles).

When paging is enablad, the bits from the page table entry are cached in the TLB and
are driven any time the page mapped by tha TLE entry is referenced. For normal
memory cycles, PWT and PCD are taken from the page table entry. During TLB refresh
cycles where the page table and directory entries are read, the PWT and PCD bits must
be obtained elsewhere. During page table updates the bits are obtained from the page
directory. When the page directory is updated, the bits are obtained from CR3.

5-4

On-Chip Cache



AMD u

Figure 5-3 Page Cacheabllity
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5.7

CACHE FLUSHING

The on-chip cache can be flushed by external hardware or by software instructions.
Flushing the cache clears all valid bits for all lines in the cache. The cache is flushed
when external hardware asserts the FLUSH pin.

The ftush pin needs to be asserted for one clock if driven synctranously, or for two
clocks if driven asynchronously. The flush input is asynchronous but setup and hold
times must be met. The flush pin should be deasserted after the cache flush is complete.
Failure to deassert the pin causas exacution to stop as the processor repeatedly flushes
the cache. I external hardware activates flush in respense to an 1¥Q write, flush must be
asserted for at least two clocks prior to ready being returned for the /O write. This
ensures that the flush completes bafore the CPU begins execution of the instruction
following the OUT instruction.

Flush is recognized during HOLD, just like EADS.

The instructions INVD and WBINVD cause the on-chip cache to be flushed. External
caches connected to the Am486DX/DX2 microprocessor are signaled to flush their
contents when these instructions are executed.

Cn-Chip Cache 5-5
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WBINVD causes an external write-back ¢ache to write back dirty lines before flushing its
contents. The external cache is signaled using the bus cycle definition ping and the byte
enables {refer to Secticn 6.2.5 for the bus cycle definition pins and Seclion 7.2.11 for
special bus cycles).

The resuits of the INVD and WBINVD instructions are identical for the operation of the
Am486DX/DX2 microprocesseor’s on-chip cache since the cache is write-through. Note
that the INVD and WBINVD instructions are machine dependent. Future members of the
Am486DX/DX2 microprecassor family might change the definition of this instruction,

CACHING TRANSLATION LOOKASIDE BUFFER ENTRIES

The Am488DX/DX2 microprocessor containsg an integrated paging unit with a translation
lookaside buffer (TLB). The TLB contains 32 entries. The TLE has been enhanced over
the 386 microprocessor's TLB by upgrading the replacement strategy to a pseudo-LRU
algorithm, The pseude-LRU replacement algorithm is the same as that used in the
an-chip cache.

The paging TLEB operation is automatic whenever paging is enabled. The TLB contains
the most recently used page table entries. A page table entry translates the linear
acddress pointing to a particular page, to the physical address where the page is stored
in memory (refer to Section 4.5, Paging).

The paging unit looks up the linear address in the TLB in responsea 10 an intemal bus
request. The corresponding physical address is passed on to the on-chip cache or the
external bus {in the event of a cache miss} when the linear address is present in the TLB.

The paging unit accesses the page tables in external memory if the linear address is not
in the TLB. The required page table entry is read into the TLB and then the cache or bus
cycle for the actual data takes place. The process of reading a new page table entry into
the TLB is called a TLB refresh.

A TLB refresh is a two step process. The paging unit must first read the page directory
entry that points to the appropriate page table. The page tabie entry to be stored in the
TLB is then read from the page table. Control register 3 (CR3) points to the base of the
page directory table.

The Amd86DX/DX2 microprocessor allows page directory and page table entries
(returned during TLB refrashes) to be stored in the on-chip cache. Setting the PCD bits in
CR3 and the page diractory eniry to 1 prevents the page directory and page table entries
from being stored in the on-chip cachs (see Section 5.6, Page Cacheability).

On-Chip Cache
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6 HARDWARE INTERFACE

INTRODUCTION

The Am488DX/DX2 microprocessor bus is designed similar to the 386 microprocessor
bus whenever possible. Several new features have been added 10 the Am486DX/DX2
microprocessor bus, resulting in increased performance and functionality. New features
include & 1X clock, a burst bus mechanismi for high-speed internal cache fills, a cache
line invalidation mechanism, enhanced bus arbitration capabilities, a BS8 bus sizing
meachanism, and parity support.

The Am4B6DX/DX2 microprocessor is driven by a 1X clock as opposed fo a 2X clock in
the 386 microprocessor. A 25-MHz Am486DX/DX2 microprocessor uses a 25-MHz clock
in contrast to a 25-MHz 386 microprocessor that requires a 50-MHz clock. A 1X clock

allows simpler system design by cutting in half the clock speed required in the external
system.

Like the 388 microprocessor, the Am486DX/DX2 microprocessor has separate paraliel
buses for data and addresses. The bidirectional data bus is 32-bits wide. The address
bus consists of two components: 30 address lines (A31-A2) and four byte enable lines
(BE3-BED). The address bus addresses external memory in the same manner as the
386 microprocessor: The address lines form the upper 30 bits of the address and the
byte enables select individual bytes within a 4-byte location. The address lines are
bidirectional for uge in cache line invalidations.

The Am4B6DX/DX2 microprocessor's burst bus mechanism enables high-speed cache
filis from external memory. Burst cycles can sirobe data inte the processor at a rate of
one item every clock. Non-burst cycles have a maximum rate of ong item every two
clocks. Burst cycles are not limited to cache fills: all bus cycies requiring more than a
single data cycle can be bursted.

The Am488DX/DX2 microprocessor has a bus hold feature similar to that of the 386
microprocessor. During bus hold, the Amd86DX/DX2 microprocessor relinguishes
control of the local bus by floating its addrass, data, and control buses.

The Am486DX/DX2 microprocessor has an address hold feature in agdition to bus hold.
During address hold, only the address bus is floated, the data and control busas ¢an
remain active. Address hold is used for cache line invalidations.

Section 6.2 has a brief description of the Am4860X/DX2 microprocessor input and
output signals arranged by functional groups. Befere beginning the signal descriptions, a
few terms need to be defined. The overbarring of 2 signal name indicates the active, or
asserted, state occurs when the signal is at a low voltage. When the signal name is not
overbarred, the signal is active at the high voltage level. The term “ready” is used to
indicate thai the cycle is terminated with RDY or BRDY.

Chapters 6 and 7 discuss bus cycles and data cycles. A bus ¢ycle is at least two clocks
long and begins with ADS active in the first clock and RDY active in the last clock. Data
is transterred to or from the Am486DX/DX2 microprocessor during a data cycle. A bus
cycle contains ene or more data cycles.

Hardwatre Intetface 6-1
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6.2 SIGNAL DESGRIPTIOHS
8.2.1 Clock {CLK)
CLK provides the fundamentai timing and the internal operating frequency for the
AM486DX/DX2 micropracessor. All external timing parameters are specified with respect
fo the rising edge of CLK.
The Am486DX/DX2 microprocessor can operate over a wide frequency range, but CLK's
frequency cannot change rapidly while AESET is inactive. CLK's frequency must be
stable for proper chip operation since a single edge of CLK is used internally to generate
two phases. CLK only needs TTL levels far proper operation. Figure 8-2 illustrates the
CLK waveform. -
Figure 6.4 Functional Signal Groupings
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Figwe 6-2 CLK Waveform
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6.2.2

6.2.3

Address Bus {A31-A2, BEJ-BED)

A31-A2 and BE3-BEO form the address bus and provide physical memory and /O port
addresses. The Am486DX/DX2 microprocessor is capable of addressing 4 Gbytes of
physical memory space {00000000H through FFFFFFFFH) and 64 Kbytes of /O
address space (00000000H through 0000FFFFH). A31-A2 identity addresses to a
4-byte location. BE3—BEO identify which bytes within the 4-byta location are involved in
the current transfer.

Addresses are driven back into the Am486DX/DX2 microprocessor over A31-A4 during
cache line invalidations. The address lines are active High. Whan used as inputs into the
processor, A31-A4 must meet the setup and hold times t,; and t,,. A31-A2 are not
driven during bus or address hold.

The byts enable outputs, BE3-BED, determine which bytes must be driven valid for read
and write cyclas to external memory.

BE3 applies to D31-D24
BE?2 applies to D23-D16
BET applies to D15-D8
BED applies to D7-D0

BE3-BEOD can be decoded to generate AG, A1, and BHE signals used in 8- and 16-bit
systems (see Table 7-5). BE3-BEOQ are active Low and are not driven during bus hold.

Data Lines {(D31-D0)

_The bidirectional lines, D31-D0, form the data bus for the Am486DX/DX2 microproces-

sor. D7-D0 define the least significant byte and D31-D24 the most significant byte. Data
transfars to 8- or 16-bit devices are possible using the data bus sizing feature controlled
by the ES8 or BS16 input pins, '

D31-D0 are active High. For reads, D31-D0 must meet the setup and held times t,; and
. D31-D0 are not driven during read cycles and bus hold.

Hardware Interface 63
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6. 2.4
6.24.1

6.2.4.2

6.2.5

6.2.5.1

Parity

Data Parity Input/Outputs (DP3-DPO)

DP3-DPO are the data parity pins for the microprocessor. There is one pin for each byte
of the data bus. Even parity is generated or checked by the parity generators/checkers,
Even parity means there is an even number of High inputs on the eight corresponding
data bus pins and parity pin. ' _

Data Parity is generated on all write data ¢ycles with the same timing as the data driven
ny the Am4B86DX/DX2 microprocessor. Even parity information must be driven back to
the Am486DX/DX2 microprocsessor on these pins with the same timing as read informa-
tian. This ensurss that the correct parity check status is indicated by the Am486DX/DX2
microprocessor.

The values read on these pins do not affect program execution. It is the system’s
responsibility to take appropriate actions if a parity error occurs.

Input signals on DP3-DP0 must meet setup and hold times t, and t» for proper
operation.

Parity Status Output [FCHK)

Parity status is driven on the PCHK pin and a parity error is indicated by this pin being
Low. PCHK is driven the clock after ready for read operations to indicate the parity status
for the data sampled at the end of the previous clock. Parity is checked during code
reads, memory reads, and /O reads. Parity is not checked during interrupt acknowledge
cycles. PCHK only checks the parity status for enabled bytes as indicated by the byte
enable and bus size signals. it is valid only in the clock immediately after read data is
returned to the Am486DX/DX2 microprocessor. At all other times it is inactive High.
PCHK is never floaied.

Driving PCHK is the only effect bad input parity has on the Amd486DX/DX2 microproces-
sor. The Am488DX/DX2 microprocessor does not vector to a bus error interrupt when bad
data parity is returned. In systems that do not employ parity, PCHK can be ignored. In
systems not using parity, DP3-DP0 should be connected to Ve through a pull-up

resistor. :

Bus Cycle Definition

M0, D/C, WR Outputs

M/IG, D/C, and W/R are the primary bus ¢ycle definition signals. They are driven valid as
the ADS signal is asserted. M/10 distinguishes between memory and /O cycles. D/C
distinguishes between data and control cycles and W/R distinguishes between write and
read cycles.

Bus cycla definitions as a function of MAO, D/C, and W/R are given in Table 6-1. Note
there is a difference between the Am486DX/DX2 microprocessor and Am386 micropro-
cessor bus cycle definitions. The halt bus cycle type has been moved to location 001 in
the Am488DX/DX2 microprocesser from location 101 in the Am386 microprocessor.
Location 101 is now reserved and will never be generated by the Am486DX/DX2
MiCroprocessor. : '

6-4
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Table 6-1 ADS Initiated Bus Cycle Definitions
1 e Dic W/R | Bus Cycle Initiated
o ] 0 interrupt Acknowledge
0 ] 1 Halt/Sgecial Cycle
H 1 0 | I/O Read
0 1 1 1O Wiite
1 0 0 Code Read
i 0 1 i Reserved
1 1 0 Memuory Read
1 1 1 Memory Write
6.2.5.2 Bus Lock Oulput {(LOCK]
LGCK indicates that the Am486DX/DX2 microprocesser is running a read-modify-write
cycle where the external bus must not be relinquished between the read and write
cycles. Read-modify-write cycles are used to implement memory-based semaphores.
Multiple reads or writes ¢can be locked.
When LOCK is asserted, the current bus cycle is locked and the Am486DX/DX2
microprocessor shoukd be allowed exclusive access to the system bus. LOCK goes
active in the first clock of the first locked bus cycie and goes inactive after ready is
returned, indicating the last locked bus cycle.
The Am486DX/DX2 microprocessor does not acknowledge bus hold when LCCK is
asserted {though it does allow an address hold). LOCK is active Low and is floated
during bus hold. Locked read cycles are not transformed into cache fill cycles if KEN is
returned active. Refar to Section 7.2.6 for a detailed discussion of locked bus cycles.
6.2.5.3 Pseudo-Lock Qutput (PLOTK])

The pseudo-lock feature allows atomic reads and writes of memory operands greater
than 32 bits. These operands require more than one cycle to transfer. The
Am486DX/DX2 microprocassor asserts PLOCK during floating-point long reads and
writes (64 bits), segment table descriptor reads (64 bits), and cache line fills (128 bits).

When PLOCK is asserted n¢ other master is given control of the bus between cycles. A bus
hold request (HOLD) is not acknowledged during pseudo-locked reads and writes, with one
exception. During non-cacheable nen-bursted code prefetches, HOLD is recognized on
memory cycle boundaries even though PLOCK is asserted. The Am488DX/DX2 micropro-
cessor drives PLOCK active until the addresses for the last bus cycle of the transaction
have been driven, regardless of whether BRDY or RDY is returned.

A pseudo-locked transfer is meaningful only if the memory operand is aligned and if its
completely contained within a single cache line. A 64-bit floating-point number must be
aligned to an 8-byte boundary to guarantee an atomic access.

Normally PLOCK and BLAST are inverse of each other. However, during the first cycle
of a 64-bit flcating-point write, both PLOCK and BLAST are asserted.

Since PLOCK is & function of the bus size and KEN inputs, PLOCK should be sampled
only if the clock ready is returned. This pin is active Low and is not driven during bus
hoid. Refer to Section 7.2.7 for a detailed discussion of pseudc-locked bus cycles,
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Bus Control

Tha bus control signals allow the processor to indicate when a bus cycle has begun, and
allow other systemn hardware to control burst cycles, data bus width, and bus cycle
termination.

Address Status Output (ADS)

The ADS output indicates that the address and bus cycle definition signais are valid.
This signal goes active in the first clock of a bus cycle and goes inactive in the second
and subsequent clocks of the cycie. ADS is also inactive when the bus is idle.

ADS is used by external bus circuitry as the indication that the pracessor has started a
bus cycle. The external circuit must sample the bus cycle definition pins on the next
rising edge of the clock after ADS is driven active.

ADS is active Low and is not driven during bus hold.

Hn-n-Burst Ready input (RDY)

BDY indicates that the current bus cycle is complete. In response 1o a read, RDY
indicates that the external system has presented valid data on the data pins. In response
to a write request, RDY indicates that the extemal system has accepted the
Am486DX/DX2 microprocessor data. RDY is ignored when the bus is idle and at the end
of the first clock of the bus cycle. Since RDY is sampied during address hold, data can
be returned to the processor when AHOLD is active. '

ROY is active Low and is not provided with an internal pull-up resistor. This input must
satisfy setup and hold times t,; and t,, for proper chip operation.

Burst Control

Burst ﬁeady Input [BRDY)

BRDY performs the same function during a burst cycle that RDY performs during a
non-burst cycle. BRDY indicates that the external system has presented valid daia on
the data pins in response to a read, or that the external system has accepted the
Am486DX/DX2 microprocessor data in regponse to a write. BRDY is ignored when the
bus is idle and at the end of the first ciock in a bus cycle.

During a burst cycle, BRDY is sampled each clock, and if active, the data presented on
the data bus pins is stored into the Am486DX/DX2 microprocessar. ADS is negated
during the second through last data cycles in the burst, but address lines A3-A2 and
byte enables change to reflect the next data item expected by the Am486DX/DX2
MICrOprocessor.

If RDY is retumed simultaneously with BRDY, BRDY is ignored and the burst cycle is
prematurely aborted. An additional complete bus cycle is initiated ater an aborted burst
cycle if the cache line fill was not complete. BRDY is treated as a normal ready for the
last data cycle in a burst transfer or for non-burstabla cycles. Refer to Section 7.2.2 for

- burst cycle timing.

BRDY is active Low and is provided with a small internal pull-up resistor. BRDY must

satisfy the setup and hold timas t,; and t,..

Burst Last Output (BLAST)

BLAST indicates that the next time BRDY is returned it is treated as a normal RDY,
tenminating the line fili or other multiple-data-cycle transfer. BLAST is active for all bus
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cycles regardiess of whether they are cacheable or not. This pin is active Low and is not
driven during bus hold.

Interrupt Signals {RESET, INTR, NMI)

The interrupt signals can interrupt or suspend execution of the processor’s current
instruction stream.

Reset Input (RESET)

RESET forces the Am488DX/DX2 microprocessor to begin execution at a known state.
For a power-up (cold start) reset, Vo and CLK must reach their proper DC and AC
specifications for at least 1 ms before the Am486DX/DX2 microprocessor begins
instruction execution. The RESET pin should remain active during this time to ensure

~ proper Am486DX/DX2 microprocessar operation. However, for a warm boot-up case,

RESET is requirad to remain active for a minimum of 15 clocks. The testability operating
modes are programmed by the falling {inactive going) edge of RESET. {Refer 1o Chapter
B8 for a description ¢of the test modes during reset.)

Maskable Interrupt Request input {INTR)

INTR indicates that an external interrupt has been generated. Interrupt processing is
initiated if the IF flag is active in the EFLAGS register.

The Am486DX/DX2 microprocessor generates iwe locked interrupt acknowledge bus
cycles in response to asserting the INTR pin. An 8-bit interrupt number is latched from
an external interrupt controller at the end of the second interrupt acknowledge cycle.
iINTR must remain active until the interrupt acknowiedges have been performed to
ensure program interruption. (Refer to Section 7.2.10 for a detailed discussion of
interrupt acknowiedge cycles.}

‘The INTR pin is active High and is not provided with an internal pull-down resistor. INTR

is asynchronous, but the INTR setup and hold times t,, and tz, must be met to ensure
recognition on any specific clock.

Non-maskahble Interrupt Request Input {(NMI)

NMI is the non-maskable interrupt request signal. Asserting NMI causes an interrupt with
an internally supplied vector vaiue of 2. External interrupt acknowiedge cycles are not
generated since the NMI interrupt vector is internally generated. Whaen NMI processing
begins, the NMI signal is masked internally untit the IRET instruction is executed.

NMI is rising edge sensitive after internal synchronization. For proper operation, NI
must be heid Low for at least four CLK periods before this rising edgs. NM| is not
provided with an internal pull-down resistor. NMI is asynchronous, but setup and hold
times t,, and t,; must be met to ensure recagnition on any specific clock.

Bus Arbitration Signals

This section describes the mechanism by which the processor relinquishes control of its
lecal bus when requested by another bus master.

Bus Request Output (BREG)

The Amd4B86DX/DX2 microprocessor asserts BREC whenever a hus cycle is pending
internally. Thus, BREQ is always asserted in the first clock of a bus cycle, along with
ADS. Furthermore, if the Am486DX/DX2 microprocessor is currently not driving the bus
{due to HOLD, AHOLD, or BOFF), BREQ is asserted in the same clock that ADS wouid
have been assented if the processor was driving the bus.
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- After the first clock of the bus cycle, BREG can changs state. It will be asserted if

additional ¢ycles are necessary to complete a transfer {via BS8, BS16, KEN), or if more
cycles are pending internalty. However, if no additional cycles are necessary to complete
the current transfer, BREQ can be negated before ready comes back for the current
cycle. Extemnal logic can use the BREQ signal to arbitrate among multiple processors.
This pin is driven regardless of the siate of bus hold or address hold, BREQ s active
High and is never floated. During & hold state, internal events may cause BREQ to be
deasserted prior to any bus cycles.

Bus Hold Request Input {HOLD)

HOLD allows another bus master complete control of the Am486DX/DX2 microprocessor
bus. The Am486DX/DX2 microprocessor responds to an active HOLD signal by assert-
ing HLDA and placing most of its cutput and input/output ping in a High impedance state
(floated) after completing its current bus cycle, burst cycle, or sequence of locked cycles.
In addition, if the Am486DX/DX2 CPU receives a HOLD request while performing a
non-cacheable, non-bursted code prefetch and that cycle is backed off (BOFF}, the
AmMA86DX/DX2 CPU recognizes HOLD before restarting the cycle. The BREQ, HLDA,
and PCHK pins are not floated during bus hold. The Am4860X/DX2 microprocessor
maintains its bus in this state unti! the HOLD is deasserted. Refer to Section 7.2.8 for
timing diagrams for & bus hold cycle.

Unlike the 386 microprecassor, the Am488DX/DX2 microprocessor recognizes HOLD
during reset. Pull-up resistors are not provided for the outputs that are floated in
response to HOLD. HOLD is active High and is not provided with an internal pull-down
resistor. HOLD must satisfy setup and hold times t,; and t, far proper chip operation.

Bus Hold Acknowledge Ouiput (HLDA}

HLDA indicates that the Am486DX/DX2 microprocessor has given the bus to another
local bus master. HLDA goes active in response to a hold request presented on the
HOLD pin. HLDA is driven active in the same clock that the Am488DX/DX2 microproces-
sor floats its bus.

HLDA is driven inactive when leaving bus hold and the Am486DX/DX2 microprocessor
resumes driving the bus. The Am486DX/DX2 microprocessor does not cease internal
activity during bus hold since the internal cache satisfies the majority of bus requests.
HLDA is active High and remains driven during bus hold.

BackoH Input {EOFF)

Asserting the BOFF input forces the Am486DX/DX2 microprocessor te release control of
its bus in the next clock. The pins floated are exactly the same as in response to HOLD.
The response to BOFF differs from the response to BOLD in two ways: First, the bus is
floated immadiately in response to BOFF while the Am488DX/DX2 microprocessor
completes the curent bus cycle, before floating its bus in response to HOLD. Second,
the Am486DX/DX2 microprocessor does not assert HLDA in response to BOFF.

The processor remains in bus hald until BOFF is negated. Upon negation, the
Am486DX/DX2 microprocessor restarts the bus cycle aborted when BOFF was
asserted. To the internal execution engine, the effect of BOFF is the same as inserting a

few wait states to the original cycle Refer to Section 7.2.12 for a description of bus cycle
restart.

Any data returned to the processor while BOFF is asserted is ignored. BOFF has higher
priority than RDY or BRDY. If both BOFF and ready are returned in the same clock,
BOFF takes effect. If BOFF is asserted while the bus is idle, the Am486DX/DX2
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microprocessor floats its bus In the next clock. BOFF is active Low and must meet setup
and hold timas t,, and he for proper ¢hip operation.

Cache Invalidation

The AHOLD and EADS inputs are used during cache invalidation cycles. AHOLD
conditions the Am486DX/DX2 microprocessor's address lines, A31-A4, to accept an
address input. EADS indicates that an extarnal address is actually valid on the address
inputs. Activating EADS causes the Am486DX/DX2 microprocessor to read the external
address bus and perform an internal cache invalidation cycle tc the address indicated.
Refer to Section 7.2.8 for cache invalidation cycle timing.

Address Hold Request Input (AHOLD]

AHOLD is the address hold request. It allows ancther bus master access to the
Am486DX/DX2 microprocessor address bus for performing an internai cache invalidation -
cycle. Asserting AHOLD forces the Am486DX/DX2 microprocessor to stop driving its
address bus in the next clock. While AHOLD is active, only the address bus is fioated
and the remainder of the bus can remain active. For example, data can be returned for a
oreviously specified bus cycle when AHOLD is active. The Am486DX/DX2 micropreces-
sor does not initiate ancther bus cycle during address hold. Since the Am486DX/DX2
microprocessor floats its bus immediately in respense to AHOLD, an address hold
acknowledge is not required. if AHOLD is asserted while a bus cyclg is in progress, and
no readies are returned while AHOLD is asserted, the Am486DX/DX2 CPU redrives the
same address (that it originally sent out) once AHOLD is negated.

AHOLD is recognized during reset. Since the entire cache is invalidated by reset, any
invalidation cycles run during reset are unnacessary. AHOLD is active High and is
provided with a small internal pull-down resistor. It must satisfy the setup and hold times
t.a and ty, for proper chip operation. This pin determines whether or not the built-in self
test features of the Am486DX/DX2 microprocessor are exercised on assertion of RESET.

Extermal Address Valid Input {EADS)

EADS indicates that a valid external address has been driven onto the Am48sDX/DX2
CPU address pins. This address is used to perform an internal cache invalidaticn cycle.
The external address is checked with the currert cache contents. If the specified address
matches any areas In the cache, that area is immediately invalidated,

An invalidation cycle can be run by asserting EADS, regardless of the state of AHOLD,
HOLD, and BOFF. EADS is active Low and is provided with an internal pull-up resistor.
EADS must satisfy the setup and hold fimes 4y, and #, for proper chip operation.

Cache Control

Cache Enable input (KEN)

KEN is the cache enable pin. KEN is used to determing whether the data being returned
by the current cycle is cacheabte. When KEN is active and the Am486DX/DX2 micropro-
cessor generates a cacheable ¢ycie (most any memaory read cycle}, the cycle is
transtormed into a cache line fill cycle.

© A cache ling is 16-bytes long. During the first cycle of a cache line fill, the byte-enable

pins should be ignored and data should be retumed as if all four byte enables were
asserted. The Am486DX/DX2 microprocassor runs between 4 and 16 contiguous bus
cycles to fill the line, depending on the bus data width selected by BSE and B516. Refer
to Section 7.2.3 for a description of cache ling fit cycles,
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The KEN inpui is active Low and is provided with a small intemal pull-up resistor. It must
satisfy the setup and hold times t,, and t,s for proper chip operation.

Cache Flush Input (FLUSH}

The FLUSH input forcaes the Am486DX/DX2 microprocessor 10 flush its entire internal
cache. FLUSH is active Low and need only be asserted for one clock. FLUSH is
asynchronous but setup and hold times tx, and t,, must be met for recognition on any
specific clock.

FLUSH also determines whether or not the three-state test moda of the Am4880X/DX2
microprocessor is invoked on assertion of RESET.

Page Cacheability (PWT, PCD}

The PWT and PCD output signals correspond to two user attribute bits in the page table
entry. When paging is enabled, PWT and PCD correspond to bits 3 and 4 of the page
table entry respectively. For cycles that are not paged when paging is enabled (for
example /O cycles), PWT and PCD correspond to bits 3 and 4 in control register 3. When
paging is disabled, the Am4B6DX/DX2 CPU ignores the PCD and PWT bits and assumes
they are 0 for the purpose of caching and driving PCD and PWT.

PCD is masked by the CD bit in control register 0 (CR0). When CD = 1 {cache line fills
disabled), the Am4860X/DX2 microprocessor forces PCD High. When CD =0, PCD i
driven with the value of the page table entny/directory.

The purpose of PCD is to provide a cacheable/non-cacheable indication on a page by
page basis. The Am486DX/DX2 microprocessor does not perform a cache fill to any
page in which bit 4 of the page table entry is set. PWT corresponds te the write-back bit
and can be used by an external cache to provide this functionality. PCD and PWT bits
are assigned 1o be 0 during Real Mode or whenever paging is disabled. Refer to
Sections 4.5.4 and 5.6 for a discussion of non-cachaable pages.

PCD and PWT have the same timing as the cycle definition pins (MAD, D/C, and W/R).
P(_:D and PWT are active High and are not driven during bus hold.

Numeric Error Reporting {(FERR, IGNNE)

To allow PC-type ficating-point error reporting, the Amd860X/DX2 microprocassor
provides two pins, FERR and IGNNE.

Floating-Point Error Quiput {FERR)

The Am486DX/DX2 microprocessor asserts FERR whenever an unmasked floating-point
error is encountared. FERR is similar to the ERRCR pin on the 387 math coprocessor.
FERR can be used by external logic for PC-type floating-point error rapaorting in
AmM486DX/DX2 microprocessor systems. FERR is active Low, and is not floated during
lbus hold.

In some cases, FERR is asserted when the next fioating-point instruction is enceuntered,
and in other cases it is asserted before the next floafing-point instruction is encountered,
depending upon the execution state of the instruction causing the exception.

The following class of fleating-point exceptions drive FERR at the time the exception
oceurs {i.e., before encountering the next floating-point instruction).

1. The stack fault, invalid operation, and denormal exceptions on all transcendental
instructions, integer arithmetic instructions, FSQRT, FSCALE, FPREM(1), FXTRACT,
FBLD, and FBSTP.

6-10
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2. Any exceptions on stors instructions (inciuding integer store instructions).

The following class of floating-point exceptions drive FERR only after encountering the
next floating-point instruction. :

1. Exceptions other than en all transcendental instructions, integer arithmetic instruc-
tions, FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, and FBSTR.

2. Any exception on all basic arithmetic, load, compare, and control instructiens {i.e., all
other instructions).

Ignore Numiric Error Input (IGNNE)

The Am486DX/DX2 microprocessor ignores a numeric error and continues executing
non-controt floating-point instructions when TGNNE is asserted; FERR is still activated.
When deasserted, the Am486DX/DX2 microprocessor freezes on a non-conirol floating-
point instruction if a previous instruction caused an error. IGNNE has no effect when the
NE bit in ¢control register O is set. .

The TGNNE input is active Low and is provided with a smal! intemal puli-up resistor, This
input is asynchronous, but must meet setup and hoid times t;, and t; to ensure
recognition on any s_pecific clock. '

Bus Size Control {BS16, BS3)

The BS16 and BSB inputs allow external 16- and 8-bit buses to be supported with a
small number of external components. The Am486DX/DX2 CPU samples these pins
every cleck. The value sampled in the clock before ready determines the bus size. When
asserting BS16 or BS8, only 16 or 8 nits of the data bus need be valid. If both BS16 and
BSE are asserted, an 8-bit bus width is selected.

When BS16 or BS8 is asserted, the AM48EDX/DX2 microprocessar convarts & larger
data request to the appropriate number of smaller transfers. The byte enables are alsa
maodified appropriately for the bus size selected.

BST6 and BS8 are active Low and are provided with small intermal pull-up resistors. BS16
and BS8 must satisfy the setup and hold times t,; and t,; for proper chip operation.

Address Bit 20 Mask (A2Z0M}

Asserting the AZ0M input causes the Am486DX/DX2 microprocessor fo mask physical
address bit 20 before performing a lookup in the internal cache and before driving a
memory cycle to the outside world. When AZ0M is asserted, the Am488DX/DX2
microprocessor emulates the 1-Mbyte address wraparound that occurs on the 8086,
A20M is active Low and must be asserted only when the processor is in Real Mode. The
AZ0M is not defined in Protected Mode. A20M is asynchronous but should meet setup
and hold times t,, and t,; for recognition in any specific clock. For correct operation of
the chip, AZGM should be sampled High iwo clocks before and two clocks after RESET
goes Low.

When AZ0M is asserted synchronously, A20M should be High (non-active) at the clock
prior to the falling edge of RESET. AZ0M exhibits a minimum 4 clock latency, from time
of assertion to masking of the A20 bit. A20M is ignored during ¢ache invalidation cycles.
IO writes require AZ0M to be asserted a minimum of 2 clocks prior to RDY being
returned for the I1/Q write. This ensures racognition of the address mask before the
Am486DX/DX2 microprocessar begins execution of the instruction following OUT. if
AZ0M is asserted after the ADS of a data cycle, the A20 address signal is not masked
during this cycle but is masked in the next cycle. During a prefetch (cacheable or not), if
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AZOM is asserted after the first ADS, A20 is not masked for the duration of the prefetch;
aven if BS16 or BS8 is asserted.

Boundary Scan Test Signals

Test Clock {TCK)

TCK is an input to the Am486DX/DX2 CPU and provides the clacking function required by
the JTAG boundary scan feature. TCK is used to clock state information and data inte and
out of the component. State select information and data are clocked into the compenent
on the rising edge of TCK on TMS and TDf{, respectively. Data is clocked out of the part
on the falling edgs of TCK on TDC.

In addition to using TCK as a free running clock, it may be stopped in a Low, D, state
indefinitely, as described in IEEE 1149.1. While TCK is siopped in the Low state, the
boundary scan tatches retain their state,

When beundary scan is not used, TCK should be tied High or left as an NC {this is
important during power up to avoid the possibility of glitches on the TCK that could
prematurely initiate boundary scan operations). TCK is supplied with an internal pull-up
resistor.

TCK is a clock signal and is used as a reference for sampling other JTAG signals. On
the rising edge of TCK, TMS and TDI are sampled. On the falling edge of TCK, TDOQ is
driven,

Test Mode Select (TMS)

TMS is decoded by the JTAG TAP (Tap Access Port) o select the operation of the test
logic, as described in Section 8.5.4.

To guarantee deterministic behavior of the TAP contraller, TMS is provided with an
internal pull-up resistor. If boundary scan is not used, TMS may be tied High or left
unconnected. TMS is sampled on the rising edge of TCK. TMS is used to select the
intarnal TAP states required to load boundary scan instructions to data on TD!. For
proper initialization of the JTAG logic, TMS should be driven High, “17, for at least four
TCK cycles following the rising edge of RESET.

Test Data Input (TDI)

TDl is the serial input used to shift JTAG instructions and data into the component. The
shitting of instructions and data occurs during the SHIFT-IR and SHIFT-DR controller
states, respectively. These states are selected usmg the TMS signal as described in
Section 8.5.4.

An internal pull-up resistor is provided on TDI to ensure a known logic state if an open
circuit occurs on the TDI path. Note that when "1 is continuousty shifted into the
instruction register, the BYPASS instruction is selected. TDI is sampled on the rising
edge of TCK during the SHIFT-IR and the SHIFT-DR states. During all other TAP
controller states, TDI is a "don’t care™.

Test Data OQutput {TDO)

TDO is the serial output used to shift JTAG instructions and data out of the component.
The shifting of instructions and data occurs during the SHIFT-IR and SHIFT-DR TAP
controller states, respectively. These states are selected using the TMS signal as
described in Section 8.5.4. When not in SHIFT-IR or SHIFT-DR state, TDC is drivento a
High impedance state to allow connecting TDO of different devices in parallel.
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TDQ is driven on the falling edge of TCK during the SHIFT-IR ancg SHIFT-DR TAP
controller states. At all other iimes, TDO is driven to the High impedance state.

WRITE BUFFERS

The Am486DX/DX2 mictoprocessor contains four write buffers to enhance the perfor-
mance of consecutive writes to memory. The buffers ¢an be filled at a rate of one write
per ¢lock until all feur buffers are filled.

When all four buffers are empty and the bus is idle, a write request propagates directiy to
the extemal bus, bypassing the write buffers. If the bus is not available at the time the
write is generated internally, the write is placed in the write buffers and propagates to the
bus as soon as the bus becomes available. The wits is stored in the on-chip cache
immediately if the write is a cache hit. :

Writes are driven onto the external bus in the same order they are received by the write
buffers. Under certain conditions, @ memory read goes onto the extemal bus before the
memory writes pending in the buffer, even though the writes occurred eariier in the
program execution.

A memory read is only reordered in front of all writes in the buffers under the feliowing
conditions: If all writes pending in the buffers are cache hits, and the read is a cache migs.
Under these conditions, the Am436DX/DX2 micraprocessor does not read from an
extemal memory location that needs to be updated by one of the pending writes.

Reordering of a read with the writes pending in the buffers can only occur ance before all
the buffers are emptied. Regrdering read once only maintains cache consistancy.
Consider the following example:

The CPU writes to location X. Location X is in the internal cache so it is updated thers
immediately. However, the bus is busy so the write out to main memory is butfered {see
Figure 6-3). At this point, any reads to location X would be cache hits and most up-to-date
data would be read.

The next instruction causes a read to iocation Y. Location Y is not in the cache (a cache
migs). Since the write in the write buffer is a cache hit, the read is reordered. When
location Y is read, it is put into the cache. The possibility exists that location Y will
replace location X in the cache. If this is true, location X wouid no longer be cached (see
Figure 6-4).

Cache consistency has been maintained up to this point. Iif a subsequent read is to
location X (now a ¢cache miss) and it was reordered in front of the buifered write to
location X, stale data would be read. This is why only one read is allowed to be reor-
dered. Once a read is reorderad, all the writes in the write buffer are flagged as cache
misses to ensure that no more reads are reordered. Since one of the conditions to
reorder a read is that all writes in the write buffer must be cache hits, no more reordering

Figure 6-3

Internal Cache Example
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Figure 6-4 Intermnmal Cache Example X No Longer Cached
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is allowed until all of these flagged writes propagate to the bus. Similarty, if an invalidation
cycle is run, all entries in the write buffer are flagged as cache misses.

For multiple procassor systems and/or systems using DMA techniques such as bus snooping,
locked semaphores should be used fo maintain cache consistency.

6.3.1 Write Buffers and I/O Cycles
'O eycles must be handled in a different manner by the write buffers.

IO reads are never reardered in front of buffered memory writes. This ensures that the
Am486DX/DX2 microprocessor updates all memory locations before reading status from an
IO devices.

The Am486DX/DX2 microprocassor naver buffers single /O writes. When processing an
OUT instruction, internal execution stops until the ¥O write actually completes on the extemnal
bus. This allows time for the extemnal system to drive an invalidale inta the Am486DX/DX2
microprocessor or to mask interrupt's before the precessor progresses to the instruction
following QUT. REP OUTS instructions are buffered.

IYQ device recovery time must be handied slightly differently with the Am486DX/DX2
micropracassor than with the 386 microprocessor. /O davice back-to-back write recovery
times could be guaranteed by the 386 micraprocessar by inserting a jump to the next
instruction in the code that writes to the device. The jump forces the 386 microprocessor 1o
genesate a prefetch bus cycle that cannot begin until the KO writes complete.

Inserting a jump to the next write does not work with the Am486DX/DX2 microprocessor
because the prefetch coukl be satistied by the on-chip cache. A read cycle must be explicitly
generated to a non-cacheable location in memory to guarantee that a read bus ¢ycle is
performed. This read is not allowed to proceed to the bus until after the 11O write has
completed, because 110 writes are net buffered. The /O device has time to recover o accept
another write during the read cyds.

6.3.2 Write Buffers Implications on Locked Bus Cycles

Locked bus cycles are used for read-modify-write accesses to memoty. During a read-modify-
weite access, a memory base variable is read, modified, and then written back 1o the same
memozy location. tt is important that no other bus cydles, generated by other bus masters or
by the Am488DX/DX2 microprocessar, be allowed on the external bus between the read and
write portion of the locked sequernce.

Duting a locked read cycle the Am486GDX/DX2 microprocessor always accesses external
memory. |t never looks for the kocation in the on-chip cache, but for write cycles. Data is
written in the intemnal cache (it ¢cache hit) and in the external memaory. All data pending in the
Am486DX/DX2 microprocessor's write bufters are written o memory befora a locked cycle is
allxwed to procesd to the extemal bus.
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The Am488DX/DX2 microprocessor asserts the LOCK pin after the write buffers are emptied
during a locked bus cycle. With the LOCK pin asserted, the microprocessor reads the data,
operates on the data, and piaces the results in a write buffer. The contents of the write buffer
are then written fo extemnal memory, LOCK becomes inactive after the write part of the locked -
cycle.

6.4 INTERRUPT AND NON-MASKABLE INTERRUPT INTERFACE

The Am486DX/DX2 microprocessor provides two asynchronous intemupt inputs, INTR
(interrupt request) and NMi {non-maskable interrupt input). This section describes the
hardware interface between the instruction execution unit and the pins. For a description of
the algorithmic response to interrupis refer to Section 2.8. For interrupt imings, refer to
Section 7.2.10.

6.4.1 Interrupt Logic

The Am486DX/DX2 microprocessor containg a two clock synchronizer on the interrdpt line.
An interrupt request reaches the intemal instruction execution unit two clocks after the INTR
pin is asserted, if proper set up is provided ic the first stage of the synchronizer.

There is no special logic in the interrupt path other than the synchronizer. The INTR signal is
level sensitive and must remain active to be recognized by the instruction execution unit. The
irferrupt is not senviced by the Am486DX/DX2 microprocessor if the INTR signal does not
remain active.

The instruction execution unit looks at the staie of the synchronized intemupt signal at specific
clocks during the execufion of instructions {if interrupts are enabled). These specific clocks are
at instruction boundaries, or iteration boundarias in the case of string move instructions.
Interrupts are only accepted at these boundaries.

An interrupt must be presented to the Am486DX/DX2 micropracessor INTR pin three clocks
before the end of an instruction for the interrupt to be acknowledged. Presenting the interrupt
three clocks before the end of an instruction allows the interrupt to pass through the two ciock
synchronizer, leaving one clock to prevent the initiation of the next sequential instruction and
1o begin interrupi service. 1f the interrupt is not received in time to prevent the next instruction,
it is accepted at the end of the next instruction, assuming INTR is stiltt held active. The
inferupt service microcode starts after two dead clocks.

The longest latency baetween when an internipt request is presented on the INTR pin and
when the interrupt service begins is: longest instruction used + the two clacks for synchroniza-
fion + one dlock required to vector into the infernupt service microcode.

6.4.2 NMI Logic :

The NMI pin has a synchronizer like that used on the INTR Eng. Cther than {he synchronizer,
the NMI logic is different from that of the maskable interrupt.

NMI is edge triggered as opposed to the level triggered INTR signal. The rising edge of the
NMI signal is used to generate the interrupt request. The NMI input need not remain aclive
until the interrupt is actually serviced. The NMI pin only needs to remain active for a single
clock if the required setup and hokd times are mat. NMI operates properly if it is held active for
an amitrary number of clocks.

The NMI input must be held inactive for at least four clocks after it is asserted 10 reset the
edge triggerad logic. A subsequent NME may 1ot be generated if the NMI is not held inactive
for at least two clocks after baing asserted.
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6.5.1

The NMI input is internally masked whenever the NMI routing is entered. The NMI input
remains masked until an IRET (return from interrupd) instruction is executed. Masking the NM!
signal prevents recursive NMI calls. If ancther NMI accurs while the NMI is masked off, the
pending NMI is executed after the current NMI is dene. Cniy one NMI can be pending while
NMI is masked.

RESET AND INITIALIZATION

The Am486DX/DX2 microprocessor has a built-in self-test {BIST) that can be run during
reset. The BIST is invoked if the AHOLD pin is asserted in the clock prior to RESET going
from High to Low. RESET must be aclive for 15 dlocks with or without BIST being enabled.
Refer to Chapter 8 for information on Am486DX/DX2 microprocessor testability.

The Am488DX/DX2 microprocassor registers have the values shown in Table 6-2 after
RESET is performed. The EAX register contains information on the success or failure of the
BIST if the self test is executed. The DX register always contains a component identifier at |
the conclusion of RESET. The upper byte of DX (DH} contains 04 and the lower byte (DL}
contains a stepping identifier (see Tabte 6-4). The floating-point registers are inltialized as it
the FINIT/FNINIT {initialize processor) instruction was executed if the BIST was performed. lf
the BIST is not executed, the floating-point registars are unchanged.

The Am4B6DX/DX2 microprocessor starts executing instructions at location FFFFFFFOH and
RESET. When the first Intersegment Jump or Call is executed, addrass lines A31-A20 drop
Low for CS-relative mermory cycles, and the Am4868DX/DX2 microprocessor only executes
instructions in the lower 1 Mbyte of physical memory. This allows the system designer {o use
a ROM at the top of physical memary, fo initialize the systemn, and take care of RESETS.

RESET forces the Am486DX/DX2 rhicropmc:essor to terminate all execution and local bus
activity. No instruction or bus activity occurs as long as RESET is active.

All entries in the cache are invalidated by RESET.

Pin State During RESET

The Am486DX/DX2 microprocessor recognizes and can respond o HOLD, AHOLD, and
BOFF requests, regardiess of the RESET state. Thus, even though e processor ig in
RESET, it can still fipat its bus in respansa to any of these requasts,

While in RESET, the Am426DX/DX2 microprocessor bus is in the state shown in Figure 6-5 if
the HOLD, AHOLD, and BOFF reguests are inactive. Note that the address (A31-A2,
BE3-BED) and cycle definition (MO, D/C, and W/R) pins are undefined from the time
RESET is asseried up to the start of the first bus cycle. All undefined pins (except FERR}
assume known values at the beginning of the first bus cycle. The first bus cycle is always a
code fetch to address FFFFFFFOH, '

FERR reflects the state of the errer summary status {ES) bit in the floating-point unit status
word, The ES bit is initialized whenever the floating-point unit state is inidalized. The
floating-point unit's status word register can be initialized by BIST or by executing FINIT/FNI-
NIT instruction. Thus, after RESET ard before executing the first FINIT or FNINIT instruction,
the values of the FERR and the numeric status word register bits 7—0 depend on whether or
not BIST is performed. Table 6-3 shows the state of FERR signal after RESET and before the
execution of the FINIT/FNINIT instructien.

After the first FINIT or FNINIT instruction, FERR pin and the FPU status word register
bits {7—0) will be inactive irespective of the BIST.

6-16
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Table 68-2 Register Values After Reset
Register Initial Value {BIST) Initial Value {No Bist)
EAX Zero {Pass) Urdefined
ECX Undefined Undefined
EDX 0400 + Revision D 10400 + Revision |D
EBX Urdefined Undefined
ESP Undefined Undefined
EBP Undefined Undefined
ESI Undefined Undetined
EDI Undefined Undefined
EFLAGS 00000002h 00000002H
EP OFFFOH QFFFOH
ES 0000H 000CH
CS Fo0o0H FOooH
55 0000H 0O00OH
DS 0000H 0CO00H
Fs 0000H 0000H
Gs 0000H 0o000H
IDTR Base =0, Base =0,
Limit = 3FFH Limit = 3FFH
CRO 60000010H 60000010H
DR7 00000000H 00000000H
CW 037FH Unchanged
sSw Q000H Unchanged
™ FFFFH Unchanged
FiF 00000000H Unchanged
FEA 04000000H LUnchanged
FCS 0000H Unchanged
FDS 0000H i Unchanged
FOP 00QH Unchanged
FSTACK Undefined Unchanged
Table &3 FERR Pin State
BIST Performed FERR Pin FPU Status Word Register Bits 7-0
YES Inactive {High) Inactive {Low)
NO Undefined (Low or High) Undefined {(Low or High)

Hardware Interfaca
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Table 6-4 Am486DX/DX2 CPU Rovision ID

CPU Stepping Name Revision ID
B3 -
B4 |
B5 01
B6 1
Co 02
Do 04
CA2 10
CA2 10
CB0 11

KEY TO SWITCHING WAVEFORMS

WAVEFORM INPUTS OUTPUTS
Must be Will be
Stoady Steady

May Change Will be
fromHto L Changing
fromHto L
from Lto Changing
fromLtwa H
TP AN7  DontCars,  Changing,
A """‘ \ g:ﬁ#:gga State Unlinown
Doas Not Cantar
M Apply Line is High
Impedance

"Off" Srate

KS000010
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Figwe 6-5% Pin States During RESET
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BUS OPERATION | ﬂ

DATA TRANSFER MECHANISM

All data transfers occur as a result of one or more bus cycles. Legical data operands of
byte, word, and dword lengths can be transterred without restrictions on physical
address alignment. Data can be accessed at any byte boundary, but two or three cycles
can be required for unaligned data transfers, {See Section 7.1.3, Dynamic Data Bus
Sizing, and Section 7.1.6, Operand Alignment.)

The Am486DX/DX2 microprocessor address signals are split into two componehts.

High-order adkress bits are provided by the address lines, A31-A2. The byte enables,
BE3-BEQ, form the Low-order address and provide linear selects for the four bytes of
the 32-bit address bus. '

The byte enable outputs are asserted when their associated data bus bytes are involved
with the present bus cycle, {see Tabie 7-1). Byte snable patterns that have a negated
byte anable separating two or three asserted byte enables never oceur (see Table 7-5).
All other byte enable patterns are possible.

Address bits AD and A1 of the physical operand’s base address can be created when
necessary. {Using the byte enables to create AO and A1 is shown in Table 7-2). The byte
enables can also be decoded to generate BLE (Byte Low Enable} and BHE {Byte High
Enable). These signals are needed to address 16-bit memory systems (see Section 7.1.4,
Interfacing with 8- and 16-bit memories).

Table 7-1

Byte Enables and Associated Data and Operand Bytes

Byte Enable Signal Assoclated Dala Bus Sighals
BEO D7-D0 (byte D—least significant)
Et D15-D8 {byte 1}
BE2 D23-D16 (byte 2)
BE3 D31-D24 (byte 3 most significant}

Table 7-2

Generating A31-A0 from BE3-BED and Ad-A2

CPU Address Signals
Ad1-A2 BE3 BE2 BE1 BE0D
Physlical Base Address

A3l | ... A2 Al AD
A3l ..., AZ 0 ] X X X Low
A3l | ...... AZ ] 1 X X Low High
A1 ... A2 i 0 X Low | High | High
AdE | ... ... A2 1 1 Low High | High | High
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7.1.1

7.1.2

Memory and /O Spaces

Bus cycles can access physical memory space or /O space. Peripheral devices in the
systemn can either be memory-mapped, or I/O-mapped, or both. Physical memory
addresses range from 00000000H to FFFFFFFFH (4 Gbytes). I/0 addresses range
from 00DC0O00CH to COQ0FFFFH (64 Khytes) for programmed /O {see Figure 7-1).

Memory and YO Space Organization

The Am486DX/DX2 microprocessor data path to memory and 1O spaces can be 32-,
16- or 8-bits wide. The byte enable signals, BE3-BED, allow byte granularity when
addressing any memoty or /O structure whether 8-,16-, or 32-bits wide.

The Am486DX/DX2 microprocessor includes bus control pins, BS16 and BS8, that allow
direct connection to 16-, and 8-bit memorias and /O devices. Cycles to 32-, 16-, and
8-bit memories can oceur in any sequence, since the BS8 and BS16 signals are
sampled during each bus cycle.

32-bit wide memaory and /O spaces are organized as arrays of physical 4-byte words.
Each memory or I/C 4-byte word has four individually addressabie bytes at consecutive
byte addresses (see Figure 7-2). The lowest addressed boyte is associated with data
sighals D7-D0; the highest-addressed byte with D31-D24. Physical 4-byte words begin at
addresses divisible by 4.

16-bit memories are organized as arrays of physical 2-byte words. Physical 2-byte
words begin at addresses divisible by 2. The byte enables, BE3-BEO, must be decoded
to A1, BLE, and BHE to address 16-bit memories.{see Section 7.1.4).

Figursa 7-1

FFFFFFFFH

000GO000H 0Q0D0a0oH

Physical Memory and /0 Spaces

Physical
Memary
4 Gbytes

Accessible

-

64 Kbytes Programmed
/O Space

Physical M ace
ysical Memary Sp WO Space 17B52A-066
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Figure 7-2

Physical Memory and 1O Space Organization

32-Bit Wide Organization
FFFFFFFFH FFFFFFFCH

0¢000003H 00000000H

E3

E2 E1 ED

4]

16-Bit Wida Organization
FFFFFFFFH FFFFFFFEH

0000000 1H 00000G00H

HE LE

178524057

7.1.3

To address 3-bit memories, the two low-order address bits, A0 and A1, must be decoded
from BE3-BED. The same logic can be used for 8- and 18-bit memorias, since the decoding
logic for BLE and AQ are the same (see Section 7.1.4).

Dynamic Data Bus Sizing

Dynamic data bus sizing is a feature allowing procassor connection t¢ 32-, 16-, or 8-bit buses
for memaory or VO. A processar can connect to all three bus sizes. Transfers to or from
32-,16-, or 8-bit devices are supported by dynamically detenmining the bus width during each
bus cycle. Address decoding circuitry ¢an assert BS16 for 16-bit devices, or BS8 for 8-bit
devices during each bus cycle. BS8 and BS16 must be negated when addressing 32-hit
devices. An 8-bit bus width is selected if both BS16 and BSS are asserted.

BS16 and B33 force theAm486DX/DX2 microprocessor to run additional bus cycles to
complete requests larger than 16 or 8 bits. A 32-bit transfer is converted into two 16-bit
transfers {or three transfers if the data is misaligned) when BS16 is asserted. Asserting
BS8 converts a 32-bit transfer into four B-bit transfers.

Extra cycles forced by BST6 or BSS should be viewed as independent bus cycles. BS16 or
BS8 must be driven active during each extra cycle unless the addressed device has the
ahility to change the number of bytes it ¢an return between cycles.

The Am486DX/0X2 microprocessor drives the byte enables appropriately during extra cycles
forced by BS8 and BS16. A31-A2 do not change if accesses are to a 32-bit aligned area.
Table 7-3 shows the set of byte enables that are generated on the next cycle for each of the
valid possibiliies of the byte enables on the curent cycle.

The dynamic bus sizing feature of the Am488DX/DX2 microprocessor is significantly different
than that of the 386 microprocessor. Uniike the 386 microprocessor, the Amd88DX/DX2
microprocessor requires that data bytes be driven on the addressed data pins. The simplest
exampie of this function is a 32-bit aligned, BS16 read. When the Am486DX/DX2 micropro-
cessor reads the two high-order bytes, they must be driven on the data bus pins D31-D16.
The Am486DX/DX2 micreprocessor expects the two low-order bytes on D15-D0. The 388
microprocessor expects both the high- and low-order bytes on D15-D0. The 386 micropro-
cessor always reads or writes data on the lower 16 bits of the data bus when BS16 is
asserted.

The external system must contain buffers to enable the Am488DX/DX2 microprocessor
to read and write data on the appropriate data bus pins. Table 7-4 shows the data bus
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lines where the Am486DX/DX2 microprocessar expects data to be returned for each
valid combination of byte enables and bus sizing options.

Valid data is only driven onto data bus pins corresponding to active byte enables during
write cycles. Other pins in the data bus are driven but they do not contain valid data.
Unlike the 386 microprocessor, the Am486DX/DX2 microprecesser does not duplicate
write data onto parts of the data bus for which the corresponding byte enable is negated.

7.1.4 Interfacing with 8-, 16-, and 32-Bit Memories

In 32-bit physical memories (such as Figure 7-3), each 4-byte word begins at a byte
address that is a multiple of 4. A31—A2 are used as a 4-byte word select. BE3-BEQ
select individual bytes within the 4-byte word. BS8 and BS16 are negated for all bus
cycles involving the 32-bit array. -

Table 7-3 Next Byte Enable Values Iﬁr ESn Cycles

Current Noxt with B58 Next with BS16
BE3 BE2 BET BED BE3 BEZ BET BED BE3 BEz BET BEQ
1 1 1 o n n n n n n n n
1 1 0] ¢ 1 1 0 1 n n n n
1 0 0 0 1 0 4] 1 i 0 1 1
H g 0 0 0 0 o 1 0 0 1 1
1 1 H 1 n mn - n n n n n n
1 0 0 1 1 0 1 1 1 0 1 1
0 0 0 i 0 0 1 1 0 0 1 1
1 ¢ 1 1 n n n n n n n n
o 0 1 1 0 1 1 1 n n n n
0 1 1 1 n n n n n n n n
Note:
“n"” means ancther bus cycle is not required to satisfy the request.
Table 7-4  Data Pins Read with Different Bus Sizes
BE3 BE2 BET BEC | w/oBS&/B516 w BSE - wB5T6
1 1 1 0 D7-DO b7-D0 D7-D0
1 1 0 0 D15-D6 D7-Do D15-D0O
1 0 0 0 D23-D0 D7-D0 C15-DO
0 0 0 ] 031-D4 D7-D0 D15-D0
1 1 0 1 C15-D8 D15-D8 ‘D15-D8
1 o a 1 02308 D15-08 H5-D8
0 0 ] 1 D31-D8 D15-D8 D15-D8
1 ] 1 1 D2a-D16 D23-D16& D23-D16
0 0 1 1 D31-D16 D23-D16 D31-D16
0 1 1 1 D31-D24 Da1-D24 - DA1-D24
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18- and 8-bit memaories require external byte swapping logic for routing data to the
appropriate data lines and logic for generating BHE, BLE. and A1. In systems where
mixed memory widths are used, extra address decoding logic is necessary to assert
BS16 or BSE. : _

Figure 7-4 shows the Am486DX/DX2 microprocessor address bus interface to 32-,16-,
and 8-hit memories. To address 16-bit memories, the byte enables must be decoded to
produce A1, BHE, and BLE {A0). For 8-bit wide memories the byte enables must be
decoded to produce A0 and A1. The same byte select legic can be used in 16- and 8-bit
systems since BLE is exactly the same as A0 (see Tabie 7-5).

BE3-BEO can be decoded as shown in Table 7-5 to generate A1, BHE, and BLE. The
byte select logic necassary to generate BHE and BLE is shown in Figure 7-5.

Figure 7-3 Am486 Microprocessor with 32-Bit Memory

az, Data Bus {D31-D0}
Amd36 i Az-Bit
CPU Address Bus (BES-BED, A31-AZ) N Memory
T B58 TEEm‘
High High 78
Figure 7-4 Addressing 16- and 8-Bit Memories
. 32-Bit
Addrass Bus (A31-A2, BE3-BED)
Am486 - - Memoary
Microprocassor
558 BST6 AT1-A2
* 16-Bit

Mamory

Address
L—
Deccder | 2 e Mzi=] Byta
Selsct
Logic A0 (BLE), AT
AZ1-AZ
17852A-059
Filgure 7-5 Logic to Generate A1, BHE, and BLE for 16-Bit Buses
Ot D=
BET _ BE3
178524060
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Combinations of BE3-BEGC that never occur are these in which two or three asseried
byte enables are separated by one or more negated byte enables. These combinations
are “don't care” conditions in the dacoder. A decoder ¢can use the non- occurrlng
BE3-BED combinations to its best advantage !

Figure 7-6 shows an Am488DX/DX2 microprocessor data bus interface to 32-, 16- and
8-bit wide memories. External byte swapping logic is needed on the data knes so that
data is supplied to, and received from, the Am486DX/DX2 microprocessor on the correct
data pins (see Table 7-4).

Table 7-5 Generating A1, BHE, and BLE for Address for 16-Bit Devices
© CPU Signals : 8-, 16-Bit Bus Signals
N — — — — BLE | Commems
BE3 BE2 BE1 BED Al BHE
(AC}
H* H* H* H* X X X x-no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L H* L X X X x-non-contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* x X X x-non-contiguous bytes
L H* L* H* X X X x-non-contigquaus byles
L H* L L X X X x-non-contiguous bytes
L L H H H L L
L* L H* L* X X X x-nen-cantiguous bytas
L L L H L L H.
L L L. L L L L
Note:
BLE assefted when D7-D0 of 16-bit bus is active.
BHE asserted when D15-D8 of 16-bit bus is active.
AT Low for afi even words; AT High for all odd words.
Kay:
x = dontcare
H = High vollage levei
L = Lowvoltage leve!
* = anon-occurrng pattern of Byte Enables; either none reasseried, or the pattern has
Byte Enables assened for non-coriguous byles
7.1.5 Dynamic Bus Sizing During Cache Line Fills
858 and BS16 can be driven during cache line fills. The Am488DX/DX2 microprocessor
generates’ enough 8- or 16-bit cycles to fill the cache line. This can bé up to 16 8-bit
cycles.
The external system should assume that all byte enables are active for the first cycle of
a cache line fill. The Am486DX/DX2 microprocessor generates proper byte enables for
7-6 Bus Operation




AMD n

7.1.6

subsequent cycles in the line. Table 7-6 shows the appropriate AC {BLE), A1, and BHE
for the various combinations of the Am486DX/DX2 microprocessor byte enahles on both
the first and subsequent cycles of the cache line fill. The “** marks all combinations of

byte enables that are generated by the Am486DX/DX2 microprocessor during a cache
line fill.

Operand Alignment

Physical 4-byte words begin at addresses that are multiples of 4. It is possible to transfer
a logical operand that spans mere than one physical 4-byte word of memory ar YO at the
expense of extra cycles. Examples are 4-byte operands beginning at addresses that are
not evenly divisible by 4, or 2-byte words split between two physical 4-byte words. These
are referred to as unaligned transiers.

Operand alignment and data bus size dictate when multiple bus cydes are required.
Table 7-7 describes the transfer cycles generated for all combinations of logical oparand
lengths, alignment, and data bus sizing. When multiple cycles are required to transfer a
muliibyte logical operand, the highest-order bytes are transferred first. For example, when
the processor does a 4-byte unaligned read beginning at location x11 in the 4-byte aligned
space, the three high-order bytes are read in the first bus cycle. The low byte isread in a
subsaquent bus cycle.

Figure 7-8

Data Bus Interface to 16- and 8-bit Memorles

:3::5)

. D7-Do L, 4
, '
AmA4gs DISDE .4 | o a2-ait
Microprocessor D23-D1§ A 4 - Memary
D31-D24 P! *
F 3 r 3 - "
8516 -
(A31-A2, BE3-BED)
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e .
l' Swap g 18 o 16Bi
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®
‘ }
Byte
Swap Z8 2-Bit
Address ; 7 Memar
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Table 7-6 Generating A0, A1, and BHE from the Am486DX/DX2 Microprocessor Byle

Enables
First Cache Fill Cycle Any Other Cycle
BE3 BE2 BET BED AD At BHE AQ Al EBHE

1 1 1 H 0 o 0 0 0 1
1 1 0 0 0 0 0 0 0 0
1 Q v} 0 ] 0 ¢ 0 o 0
*0 0 0 0 0 0 0 0 0 o
1 1 0 1 ] 0 Y] 1 0 0
1 0 i 1 0 H 0 1 0 0
“0 4] b 1 0 ] 0 1 Q 0
1 0 1 1 0 0 0 0 1 1
*0 1] 1 | ] 0 0 0 1 0
*0 1 1 1 0 0 0 1 t 0

Note:

* All cornbination of byte enables that are genetated by the CPU during a cache line fill.

Table 7-7 Transfer Bus Cycles for Bytes, Words, and Dwords

Byte-Length of Logical Operand

1 2 4

Fhysical Byte Address in Memory

(Low-Order Bits) xx (90 | O 10 1 00 | o1 10 11

hb d hb hw h3

Transfer Cycles over 32-Bit Bus b | w | w W & e b b
4] hb w hb hw mw
Transfer Cycles over 16-Bit Data Bus
- BS16 Asserted b w hk W o] vy 1] b hb
. mw I
Transier Cycles over 8-Bit Data Bus b | ho | mhb | mib
= B58 Asserted b Ib Ib o] hb mib b hb mhb

hb hb hb Ib mhb : mib 4] hb

hb mhb | mib [+

Kay:

b = byte transfer

W o= 2-byte transfer ) 4-byte Operand lio mib | mhb | hb

3 = 3-byte transfer _ _T T

d = 4-byte transfer

h = high-order portion ' byte with byte with
I = low-order portion lowest highest
m o= mid-order portion atldress address
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7.2

7.2.1

T.2.1.1

The function of unaligned transfers with dynamic bus sizing is not obvious. When the
external systems assert BS16 or BS8 and force extra cycles, low-order bytes or words
are fransferred first (opposite to the example in Table 7-7). When the Am486DX/DX2
microprocessor requests a 4-byte read and the axternal systemn asserls BS16 6 the lower
two bytes are read first followed by the upper two bytes.

In the unaligned transfer described above, the processor requested three bytes on the
first cycle. If the external system assented B516 during this 3-byte transfer, the lower
word is fransferred first followed by the upper byte. In the fina! cycle the lower byte of the
4-byte operand is transferred as in the 32-bit example in Table 7-7.

BUS FUNCTIONAL DESCRIPTION

The Am486DX/DX2 microprocessor supports a wide variety of bus transfers to meet the
needs of high-performance systems. Bus transfers can be single cycle or multiple cycle,
burst or non-burst, cacheable or non ¢cacheable, 8, 16, or 32 bit, and pseudo-locked. To
support multiprocessing systems there are cache invalidation cycles and lockad ¢ycles,

Thig section beging with basic non-cacheable non-burst single cycle transfers, it moves
on 1o multiple cycle transfers and introduces the burst mode. Cacheability is introduced
in Section 7.2.3. The remaining sections describe locked, pseudo-locked, invalidate, bus
hold, and interrupt cycles.

Bus cycles and data cycles are discussed in this section. A bus cycle is at least two
clocks leng and begins with ADS active in the first clock and ready active in the iast
clock. Data is transferred to or from the Am486DX/DX2 microprocessor during a data
cycle. A bus cycle contains one or more data cycles,

Refer to Section 7.2.13 for a description of the bus states shown in the timing diagrams.

Non-Cacheable Non-Burst Single cfcle

No-Wait States

The fastest nen-burst bus eycle that the Am486DX/DX2 microprocessor supports is two
clocks jong. These cycles are called 2-2 cycles because reads and writes take two
cycles each. The first 2 refers to reads and the second to writes. For example, if a wait
state needs to be added to & write, the cycle would be called 2-3.

Basic two clock read and write cycles are shown in Figure 7-7. The Am486DX/DX2
microprocessor initiates a ¢ycle by asserting the address status signal {ADS) at the
rising edge of the first clock. The ADS output indicates that a valid bus cycle definition
and address is available on the cycle definition lines and address bus.

The non-burst ready input (RDY) is returned by the external system in the second clock.
RDY indicates that the external system has presented valid data on the data pins in
response to a read, or the external system has accepted data in response te a write.

The Am486DX/DX2 microprocessor samples RDY at the end of the second clock. The
cycle is complete if RDY is active {Low) when sampled. Note that RDY is ignored at the
end of the first clock of the bus cycle.

The burst last signal (BLAST) is asserted {Low) by the Am486DX/DX2 microprocessor
during the second clock of the first cycle in all bus transfers ilustrated in Figure 7-7. This
indicates that each transfer is complete after a single cycle. The Am486DX/DX2
microprocessor asserts BLAST in the last cycle of a bus transfer,

The timing of the parity check output {PCHK) is shown in Figure 7-7. The Am486DX/DX2
microprocessor drives the PCHK output one clock after ready terminates a read cycle,

Bus Operation 7-9
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Figure 7-7 Basic 2-2 Bus Cycle
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7.2.1.2

.7. 2- 2

PCHK indicates the parity status for the data sampled at the end of the previous clock.
The PCHK signal can be used by the external system. The Am486DX/DX2 microproces-
sor does nething in response to the PCHK output.

Inserting Wait States

The external system can insert wait states into the basic 2-2 cycle by driving RDY
inactive at the end of the second clock. BDY must be driven inactive to insert a wait
state. Figure 7-8 illustrates a simple non-burst, non-cacheabie signai with one wait state
added. Any number of wait states can be added to an Am4860X/DX2 microprocessor
bus cycle by maintaining RDY inactive.

The burst ready input (ERDY) must be driven inactive on al! clock edges where RDY is
driven inactive for proper operation of these simple non-burst cycles.

Multiple and Burst Cycle Bus Transfers

Multiple cycle bus transfers can be caused by internat requests from the Am486DX/DX2
micropracessor or by the external memory system. An internal request for a 64-bit
floating-point load or a 128-bit prefetch must take more than ene cycle. Intemal requests
for unaligned data can also require multiple bus cycies. A cache line fill requires multiple
cyclas to complete. The external system can cause a multiple cycle transfer when it can
only supply 8 or 16 bits per cycle. :

Only multiple cycle transfers caused by internal requests are considered in this section.
Cacheable ¢ycles and 8- and 16-bit iransfers are covered in Sections 7.2.3 and 7.2.5.

7-10
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Figure 7-8 Basic 3-3 Bus Cycle
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7.2.2.1 Burst Cycles

The Am486DX/DX2 microprocessor can accept burst cycles for any bus requests that
require more than a single data cycle. During burst cycles, a new data itern is strobed
into the Am486DX/DX2 microprocessor every clock, rather than every other clock as in
non-burst cycles. The fastest burst cycle requires two clocks for the first data item with
subsequent data items returned every clock.

The Am486DX/DX2 microprocessor is capable of bursting a maximum of 32 bits during a
write. Burst writes can only occur if BS8 or BS16 is asserted. For example, the
Am4BBDX/DX2 microprocessor can burst write four 8-bit operands or two 16-bit oper-
ands in g single burst cycie. But the Am486DX/DX2 microprocessor cannot burst
muitiple 32-bit writes in a single burst ¢ycle,

Burst cycles begin with the Am486DX/DX2 microprocessor driving out an address and
asserting ADS in the same manner as non-burst cycles. The Am486DX/DX2 micropro-
cessor indicates it is willing to perform a burst cycle by helding the burst last signal -
{BLAST) inactive in the second clock of the cycie. The external system indicates its
willingness to do a burst cycle by returning the burst ready signal (BRDY} active.

The addresses of the data items in a burst cycle all fall within the same 18-byte aligned
area {correspending to an internal Am4860X/DX2 microprocessor cache ling). A 16-byte
aligned area beging at location XXXXXXXX0H and ends at location XXXXXXXFH. During
a burst cycle, only BE3-BEC, A2, and A3 can change. A31-A4, MO, D/C, and W/R
remain stabie throughout a burst, Given the first address in a burst, external hardware
can easily calculate the address of subsequent transfers in advance. An external
memory system can be designed to quickly fill the Am4860X/DX2 microprocessor
internal cache lines.

Burst cycles are not limited to cache line fills. Any multiple cycle read request by the
Am486DX/DX2 microprocessor can be converted into a burst cycle. The AmdBSDX/DX2
microprocessor only bursts the number of bytes needed to complete a transfer. For
example, eight bytes are bursted in for a 64-bit floating-point non-cacheable read.

Bus Operation 7-11
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T.2.2.2

7.2.2.3

The external system converts a multiple cycle requast into a burst cycle by retuming
BRDY active rather than RDY {non-burst ready) in the first cycie of a transfer. For cycles
that cannot be bursted, such as interrupt acknowledge and halt, BRDY has the same
effect as ROY. BROY s ignored if both BRDY and ROY are returned in the same clock.
Memory areas and peripheral devices that cannot perform bursting must terminate
cycles with RDY. '

Terminating Multiple and Burst Cycle Transiers

The Am488DX/DX2 micropracessor drives BLAST inactive for all but the last cycle in a
multiple cycle transfer. BLAST is driven inactive in the first cycle to inform the external
system ihat the transfer could take additional cycles. BLAST is driven active in the last
cycle of the transfer, indicating that the next time BRDY or RDY is returned, the transfer
is complete.

BLAST is not valid in the first clock of a bus cycle. It should be sampled only in the
second and subsequent clocks when RDY or BRDY is returned.

The number of cycles in a transter is a function of several factors, including the number
of bytes the microprocessor needs to complete an internal request (1, 2, 4, 8, or 16}, the
state of the bus size inputs (BS8 and BS16), the state of the cache enable input (KEN),
and alignment of the data to be transferred.

© When the Am488DX/DX2 microprocessor initiales a request, it knows how many bytes

will be transferred and if the data is aligned. The external system must tell the micropro-
cessor whether the data is cacheable (if the transfer is a read) and the width of the bus
by returning the state of theé KEN, BE8, and B516 inputs one clock before RDY or BRDY
is returned. The Am486DX/DX2 microprocessor determines now many cycles a transfer
will take based aon its internal information and inputs from the extsrnal system.

BLAST is not valid in the first clock of a bus cycie because the Am4B88DX/DX2 micropra-
cessor cannot determing the number of cycles a transfer will take until the extarnal
system returns KEN, BS8, and B516. BLAST should only be sampled in the second and
subsequent clocks of a cycle when the external system returns RDY or BRDY.

The system ¢an terminate a burst cycle by retuming RDY instead of BRDY. BLAST
remains deasserted until the last fransfer. However, any transfers required to complete a
cache line fill follow the burst order {e.q., if burst order was 4, 0, C, 8 and RDY was
returned at after 0, the next transfers are from C and 8}.

Non-Cacheable, Non-Burst, Multiple Cycle Transfers

Figura 7-9 illustrates a 2 cycle non-burst, non-cacheabie multiple cycle read. This
transter is simply a sequence of two single cycle fransfers. The Am4860X/DX2 micro-
precessor indicates to the external system that this is a muitiple ¢ycle transter by driving
BLAST inactive during the second clock of the first cycle. The external system returns
ROY active, iIndicating that it will not burst the data. The external system also indicates
that the data is not cacheable by returning KEN inactive one clock before it returns RDY
active. When the Am486DX/DX2 microprocessor samples RDY active, it ignores BRDY.

Each cycle in the transfer begins when ADS is driven active, and the cycle is complete
when the external system returns RDY active,

The Am486DX/DX2 microprocessor indicates the last cycle of tha transfer by driving
BLAST activa. The next RDY returnad by the extemal system terminaies the transfer.

712
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Figure 7-9 Non-Cacheable, Non-Burst, Multiple Cycle Transfers
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7.2.2.4 Non-Cacheable Burst Cycles

The external system converts a multiple cycle request into a burst cycle by returning
BROY active rather than RDY in the first cycle of the transfer (see Figure 7-10).

There are several features to note in the burst read. ADS is only driven active during the first
cycle of the transfer. RDY must be driven inactive when BROY s retumad active.

BLAST behaves exactly as it does in the non-burst read. BLAST is driven inactive in the
second clock of the first cycle of the transfer, indicating more cycles to follow. In the last
cycle, BLAST is driven active, telling the external memory system to end the burst after
returning the next BRDY.

7.2.3 Cacheable Cycles

Any memory read can become a cache fili operation. The external memory system can
allow a read request to fill a cache line by returning KEN active one clack before RDY or
BRDY during the first cycle of the transfer on the external bus. Once KEN is asserted
and the remaining three requirements described below are met, the Am486DX/DX2
microprocessor fetches an entire cache line, regardless of the state of KEN. KEN must
be returned active in the last cycle of the transfer for the data to be written into the
internal cache. The Am486DX/DX2 microprocessor anly converts memory reads or
prefetches into a cache fill. KEN is ignored during write or /O cycles. Memory writes are
only stored in the on-chip cache i there is a cache hit. IO space is never cached in the
internal cache.

To transform a read or a prefetch into a cache line fili, the following conditions must be
met:

1. The KEN pin must be asserted one clock prior to RDY or BRDY being returned for
the first data cycle.

Bus Operation 7-13
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Figure 7-10 NomnCacheable, Burst Cycle
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2. The ¢ycle must be the tjpe that can be internally cached. {Locked reads, I/O reads,
and interrupt acknowledge cycles are never cached).

3. The page table entry must have the PCD bit set to 0. To cache a page table entry, the
page directory must have PCD = 0. To cache reads or prefetches when paging is dis-
abled, ar to cache the page directory entry, control register 3 (CR3) must have PCD = 0.

4. The CD bit in control register 0 (CR0O) must be dear.

External hardware ¢can determine when the Am486DX/DX2 microprocessor has trans-
formed a read or prefetch into a cache fill by examining the KEN, MAG, D/C, W/R,
LCGCK, and PCD pins. These pins convey io the system the outcome of conditions 1-3 in
the above list. In additicn, the Am486DX/DX2 microprecessor drives PCD High when-
ever the CD bit in CRD is set, s0 that extemal hardware can evaliate condition 4.

Cacheable cycles can be burst or non-burst.

Byte Enables During a Cache Line Fill |

For the first cycle in the line fill, the state of the byte enables should be ignored. In a
non-cacheable memory read, the byte enables indicate the bytes actually required by
the memory or code fetch.

. The Am486DX/DX2 microprocessor expects fo receive valid data on its entire bus (32
bits) in the first cycle of a cache line fill. Data should be returned with the assumption
that all the byte enable ping are driven active. However, if BS8 is asserted, oniy one byte
need be returned on data lines D7-D0. Slmllarly, if BS16 is asserted, two bytes should
be retumed on D15-00.

The Am486DX/DX2 microprocessor generates the addresses and byte enables for alt
subsequent cycles in the line fill. The order in which data is read during a line fill depends
on the address of the first item read. Byte ordering is discussed in Section 7.2.4.

7-14
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7.2.3.2

Non-Burst Cacheable Cyclas

Figure 7-11 shows a non-burst cacheabie cycle. The cycle bacomes a cache fill when
the Am4B6DX/DX2 microprocessor samples KEN active at the end of the first clock. The
Am488DX/DX2 microprocessor drives BLAST inactive in the second clock in response to
KEN. BLAST is driven inactive because a cache fill requires three additional cycles to
complete. BLAST remains inactive until the fast transfer in the cache line fill. KEN must
be returned active in the tast cycle of the transfer for the data to be written into the
internal cache.

Note that this cycle would be a single bus cycle if KEN was not sampled active at the
end of the first clock. The subsequent three reads would not have happened since a
cache fill was not requested.

The BLAST output is invalid in the first clock of a cycle, BLAST can be active during the
first clock due to earfier inputs. lgnare BLAST until the secend clock.

During the first cycle of the cache fine fill, the external system should treat the byte
enables as if thay are all aclive. In subsequent cycles in the burst, the Am486DX/DX2

. microprocessor drives the address lines and byte enables (see Section 7.2.4.2, Burst

7.23.3

and Cache Ling Filk Order).

Burst Cacheable Cycles .

Figure 7-12 illustrates a burst mods cache fill. As in Figure 7-11, the transfer becomes a
cache line filt when the external system retums KEN active at the end of the first clock in
the cycla. :

The external system informs the Am486DX/DX2 microprocessor that it will burst the line
in by driving BROY active at the end of the first cycle in the transfer.

Figure 7-11
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7.2.3.4

7.24
7'2.4. 1

Note that during a burst cycle, ADS is only driven with the first address.

Effect of Changing KEN during a Cache Line Fil}

KEN can change multiple times as long as it arrives at its final value in the clock before
RDY or BRDY is returned {see Figure 7-13}. Note that the timing of BLAST follows that
of KEN by one clock. The Am486DX/DX2 microprocessor samples KEN every clock and
uses the value returmed in the clock before RDY to determing if a bus cycle would be a
cache line fill. Similarly, it uses the value of KEN in the last cycle before early RDY to
load the line just retrieved from the memory into the cache. KEN is sampled every clock
and must satisfy setup and hold time.

KEN can alsc change multipie times before a burst cycle, as long as it arrives at its final
value one ciock before ready is returned active.

Burst Mode Details

Adding Wait States to Bursi Cycles

Burst cycles need not return data an every clock. The Am486DX/DX2 microprecessor
only strobes data into the chip when either RDY or BRDY are active.

Driving BRDY and RDY inactive adds a wait state to the transfar. A burst cycle where
two clocks are required for every burst item is shown in Figure 7-14.

Figure 712 Burst Cacheable Cycle
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Figure 7-13 Efect of Changing KEN

[N SV | S S —

D

Al
DiC, W
-A
3-BE

AZ1-Ad, MG,

A00000MaN00N L

RO OONN OO0/

AbY

g
vk

Data

178524-068

Figure 7-14 Slow Burst Cycle
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7.2.4.2

Burst and Cache Line Fill Order

The burst order used by the Am486DX/DX2 microprocessor is shown in Table 7-8. This
burst order is followed by any burst cycle {cache or not), cache line fill {burst or not), or
code prefetch.

The microprecessor prasents each request for data in an order determined by the first
address in the transter. For example, if the first address is 104, the next three addresses
in the burst will e 100, 10C, and 108. An example of burst address sequencing is
shown in Figure 7-15.

The sequences shown in Table 7-8 accommeodate systems with 64-bit buses, as weli as
systems with 32-bit data buses. The seguence applies to all bursts, regardiess of
whether the purpose of the burst is to fill a cache line, do a 64-bit read, or do a prefetch.
if either BS8 or BS16 is returned active, the Am486DX/DX2 microprocassor completes
the transfer of the current 32-bit word before progressing 10 the next 32-bit word. For
example, a BS16 burst to address 4 has the following order: 4-6-0-2-C-E-8-A.

Table 7-8

Burst Order
First Address Second Addrass Third Address Fourth Address
] 4 8 Cc
4 0 C 8
8 c 0 4
C 8 4 0

Figure 7-15% Burst Cycle Showing Order of Addresses
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7.2.4.3

Interrupted Burst Cyclos

Some memory systems might not be able to respond with burst cycles in the order
defined in Table 7-8. To support these systems, the Am486DX/DX2 mlcroprocessor
allows a burst cycle to be interrupted at any time.

The AMBGDXJDXE microprocessor automatically generates another normal bus ¢ycle
after being interrupted to complete the data transfer. This is called an interrupted burst
cycle. The external system can respond to an interrupted burst cycle with another burst
cycle.

The extemal system can interrupt a burst cycle by returning RDY instead of BRDY. RDY
can be returned after any number of data cycles terminated with BROY.

An example of an interrupted burst cycle is shown in Figure 7-16. The Am486DX/DX?2
microprocessor immediately drives ADS active 1o initiate a new bus cycle after RDY is.
returned active. BLAST is driven inactive one clock after ADS begins the second bus
cycle, indicating that the transter is incomplete.

KEN need not be returned active in the first data cycle of the second part of the transfer

- in Figure 7-16. The cycle was converted to a cache fill in the first part of the transfer and
-the Am488DX/DX2 micropracessor expects the cache fill to be completed. Note that the

first halt and second half of the transfer in Figure 7-16 are each two cycle burst trans-
fars.

The order in which the Am486DX/DX2 microprocessor requests operands during an
interrupted burst transfer is determined in Table 7-8. Mixing RDY and BRDY does not
change the order in which the Am486DX/DX2 microprocessor requests operand
addresses.

Flguré 716 Interrupted Burst Cycle
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7.2.9

An example of the order in which the Am488DX/DX2 microprocessor requests operands
during a cycle, in which the external system mixes RDY and BRDY, is shown in

Figure 7-17. The Am486DX/DX2 microprocessor initially requests a transfer beginning at
Location 104. The fransfer becomes a cache line fill when the external system returns
KEN active. The first cycle of the cache fill transfers the contents of location 104 and is
terminated with RDY. The Am486DX/DX2 microprocessor drives oui a new request (by
asserting ADS) to address 100. If the external system terminates the second cycle with
BRDY, the Am486DX/DX2 micreprocessor then requests/expects address 10C. The
correct order is datermined by the first cycle in the transfer, which might not be the first
cycle in the burst if the system mixes RDY with BRDY.

8- and 16-Bit Cycles

The Am486DX/DX2 microprocessor supperts both 18- and 8-bit external buses through
the BS16 and BSE inputs. BS16 and BS8 allow the external system to specify, on a
cycle-by-cydle basis, whether the addressed component can supply 8, 16, or 32 bits.
BS16 and BS8 can be used in burst cycles as well as non-burst cycles. If both BS16 and
BS58 are returned active for any bus cycie, the Am486DX/DX2 microprocessor responds
as if only BS8 were active.

The timing of BS16 and BS8 is the same as that of KEN. BS16 and BS8 must be driven
active before the first RDY oy BRDY is driven active.

Driving the 8516 and BS8 active can force the Am488DX/DX2 microprocessor to run
additional cycles to complete what would have been only a single 32-bit cycle. BS8 and
BS516 can change the state of BLAST when they force subsequent cycles from the
transfer.

Figure 7-18 shows an example in which BS8 forces the Am488DX/DX2 microprocessor to
run two exira cycles to complete a transter. The Am486DX/DX2 microprocessor issues a

Figure 7=-47
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7.2.6

request for 24 bits of information. The external system drives BS8 aclive, indicating that
only eight bits of data can be supplied per cycle. The Am486DX/DX2 microprocessor
issues two extra cycles to complete the transfer,

Extra cycles forced by the BS16 and BSS should be viewed as independent bus cycles.
BS16 and BS8 should be driven active for each additional cycle, unless the addressed
device has the ability to change the numiber of byies it can retumn betwgen cycles. The
AmM486DX/DX2 microprocessor drives BLAST inactive until the last cycle before the
transfer is complete.

Reter to Section 7.1.3 for the sequencing of addresses while BS8 or B316 are active.

BS8 and ES16 operate during burst cycles exactly the same as non-burst cycles. For
example, a single non-cacheabie read can be transferred by the Am486DX/DX2 micropro-
cessor as four 8-bit burst data cycles. Simitarly, a single 32-bit write can be written as four
8-bit burst data cycles. An example of a burst write is shown in Figure 7-19. Burst-writes
can only accur if BSB or BS16 is asserted.

Locked Cycles

Locked cycles are generated in software for any instruction that performs a read-modify-
write operation. During & read-modify-write operation, the processor can read and
modify a variable in external memory and be assured that the variabie is not accessed
between the read and write.

Locked cycles are automatically generated during certain bus transfers. The exchange
(xchg} instruction generates a focked cycte when ene of its operands is memory based.
Locked cycles are generated when a segment or page table entry is updated and during
interrupt acknowledge cycles. Locked cycies are also generated when the COCK
instruction prefix is used with selected instructions.

Figure 7-18 8-Bit Bus Size Cycle
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Figure 7-19 Burst Write as a Result of BSS or BS18
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7.2.7

Locked cycles are implemented in hardware with the LOCK pin. When LOCK is active, the
procassor is performing a read-modify-wiite operation and the external bus should not be
relinguished until the cycle is complete. Multiple reads or writes can be locked. A locked cycle
is shown in Figure 7-20. LOCK goes active with the address and bus definition pins at the
beginning of the first read cycle and remains active until RDY is retumed for the Jast write
¢cycle. For unaligned 32-bit read-modify-write operafion, the LGCK remains active for the entire
duration of the multiple cycle. It goes inactive when RDY is retumed for the last write cycle.

When LOCK ig active, the Am486DX/DX2 migroprocessor recdgnizes address hold and
backoif but does not recognize bus hold. it is left to the external system to properly
arbitrale a central bus when the Am486DX/DX2 microprocessor generates LOCK.

Pseudo-Locked Cycles

Pseudo-locked cycles ensure that no other master is given control of the bus during
operand transfers that take more than one bus cycle.

Psaudo-locked transfers are indicated by the PLOCK pin. The memory operands must
be aligned for correct operation of a pseudo-iocked cycle. '

PLOCK need not be examinad during burst reads. A 64-bit aligned operand can be
retrieved in one burst (note: this is only valid in systems that do not interrupt bursts}.

The system must examine PLOCK during 64-bit writes since the Am486DX/DX2
microprocessor cannot burst write more than 32 bits. However, burst can be used within
each 32-hit write cycle if BS8 or BS16 is assernted. BLAST is deasserted in response to
BSE or BE16. A 64-bit write is driven out as two non-burst bus cycles. BLAST is
asserted during both writes since a burst is impossible. PLOCK i asserted during the
first write to indicate that another write foilows. This behavior is shown in Figure 7-21.
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Figure 7-20 Locked Bus Cycle
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During all of the cycles where PLOCK is asserted, HOLD is not acknowiedged until the cycle
completes. This results in a farge HOLD latency, especially when BS8 or BST6 is asserted. To
reduce the HOLD latency during these cycles, windows are available betwaen transfers to
allow HOLD to be acknowledged during non-cacheable, nen-bursted code prefetches.
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7.2.8

7.2.8.1

PLOCK is asserted since BLAST is negated, but it is ignored and HOLD is reoogmzed during
the prefetch.

PLOCK can change saveral imes during a cycle, settiing to its final value when the clock
RDY is retumed.

Invalidate Cycles

Invalidate cycles are needed to keep the Am486DX/DX2 microprocessor's intemal cache
contents consistent with extemai memory. The Am486DX/DX2 microprocessor comains a
mechanism for listening to writes by other devices to external memory. When the processor
finds a wiite to a section of external memaory contained in its internal cache, the processor's
intemal copy is invalidated.

Invalidations use two pins, address hoid request (AHOLD) and valid extemal address (EADS).
There are two steps in an invalidation cycle. First, the extemal system asserts the AHOLD
input, forcing the Am486DX/DX2 microprocassor to immediately refinquish its address bus,
Next, the extemal system asserts EADS, indicating that a valid address is on the .
Am4seDX/DX2 microprocessor's address bus. Figure 7-22 shows the fastest possible
invalidation cycle. The Am486DX/DX2 CPU cycle recognizes AHOLD on one CLK edge and
floats the address bus in response. To allow the address bus to float and avoid contention,
EADS and the invalidation address should not be driven untit the following CLK edge. The
microprocessor reads the address over its address lines. If the microprocessor finds this
addrass in its internal cache, the cache entry is invalidated. Nole that the Am486DX/DX2
microprocessor's address bus is input/output, unlike the 386 microprocessor’s bus which is
output only.

The Am486DX/DX2 microprocessor immediately relinguishes its address bus in the next
clock upon assertion of AHOLD. For example, the bus could be three wait states ino a read
cycle. if AHOLD is activated, the Am486DX/DX2 microprocessor immediately fioats its
address bus before ready is returned, terminating the bus cycle.

When AHOLD is asserted only the address bus is floated, the data bus can remain active.
Data can be retumed for a previously specified bus cycle during address hold (sse
Figure 7-22 and Figure 7-23).

EADS is normally asseried when an external master drives an address onto the bus. AHOLD
need not be driven for EADS to gengrate an intemal invalidate. if EADS alone is asserted
while the Am488DX/DX2 micreprocessor is driving the address bus, it is possible that the
invalidation address comes from the Am488DX/DX2 microprocessor itself.

Note that it is also possible to run an invalidation cycle by assertlng EADS when HOLD or
BOFF is asserted.

Running an invalidation cycle prevents the Am4880X/DX2 microprocessor cache from
satislying other internal requests, so invalidations should be run only when necessary. The
fastest possitle invalidation cyde is shown in Figure 7-22, while a more realistic invalidation
cycle is shown in Figure 7-23. Both examples take one clock of cache access from the rest of
the Am486DX/DX2 microprocessor.

Rate of Imralic_late Cycles

The Am486DX/DX2 microprocessor can accept one invalidate per clock except in the
tast clock of a line fill. One invalidate per clock is possible as long as EADS is negated in
ONE or BOTH of the following cases:
1 In the clock, RDY or BRDY is returned for the last time.

. inthe clock foilowmg, RDY or BRDY is being returned for the last time.
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Figure 7-22 Fast Intemal Cache Invalidation Cycle
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Figure 7-23 Typical Internal Cache Invalidation Cycle
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7.2.8.2

This definition allows two system designs. Simple designs can restrict invalidates to one
every other clock. The simple design need not track bus activity. Alternatively, systems
can request one invalidate per clock if the bus is monitored.

Rumning Invalidate Cycles Concurrently with Line Fills

Precautions are necessary to avaid caching stale data in the Am4860X/DX2 microproces-
sor's cache in a system with a second level cache. An example of a system with a second
level cache is shown in Figure 7-24. An external device can be writing to main memory
over the system bus while the Am486DX/DX2 microprocessor is retrieving data from the
second level cache. The Am486DX/DX2 microprocessor needs to invalidate a line in its
internal cache if the extemai device is writing to a main memory address also contained in
the Am486DX/DX2 microprocessor's cache.

A potential problem exists if the extemal device is writing to an address in external
memory, and at the same time the Am486DX/DX2 micropracessor is reading data from
the same address in the second level cache. The system must force an invalidation
¢ycle to invalidate the data that the Am486DX/DX2 microprocessor has requested during
the line fill.

If the system asserts EADS befors the first data in the line fill is returned to the
Am486DX/DX2 microprocessor, the system must return data consistent with the new
data in the external memory upon resumption of the line fill after the invalidation cycle.
This is illustrated by the asseried EADS signal labeled in Figure 7-25.

If the system asserts EADS at the same time or after the first data in the line fill is
returned (in the same clock that the first RDY or BRDY s returned or any subsequent
clock in the line fill), the data is read into the Am486DX/DX2 microprocessor’s input
buffers but is not stored in the on-chip cache. This is illustrated by the asserted EADS
signal labeled 2 in Figure 7-25. The stale data is used to safisfy the request that initiated
the cache fill cycle. -

Figwe 7-24 System with Second Level Cache
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Ti } T1 T2 : T2 : T2 I T2 I T2 I T2 I Ti
ok [ \_( \ i/ \ i/ \ if \__!/ \ i/ \.IL[ \-r \
S s st A N A BN N
A00A o @

i ; [ i | | | [
AHOLD L i ; I I U !
S S STV NN I S N
e W

- 7T 007 007 TN TN VN7 TN

o KOO T T WO

aany AR OGO \HM TRRKL /00000 L /X0 _mu{ mnm
. | | '

I | ] I | l
| T | | | | | |
KEN | | \_|_/ | : I \_:_/ :
I | I |
I | I | e U g s W g S g |
Data : i : | \.CElLU \:zeiu mf_v'u mel_u
3
Notes:

1. Data returnod must be consistent if s address equals tha invalidation address in this clock,

£ Data returnad is not cachod if #s addross aquals the invalidation addross fn this olock.
17852A-080

7.2.9 Bus Hold

The Am4B86DX/DX2 microprocessor provides a bus hold, hold acknowledge protoco!
using the bus hold request (HOLD} and bus hold acknowledge (HLDA) pins. Asserting
the HOLD input indicates that another bus master desires control of the Am4B86DX/DX2
micropracessor’'s bus. The processar responds by floating its bus and driving HLDA
active when the cutrent bus cycle or sequence of locked cycles is complete. An exampie
of a HOLG/HLDA transaction is shown in Figure 7-26. Unlike the 386 microprocessor,
the Am486DX/DX2 microprocessor can respond to HOLD by floating its bus and
asserting HLDA while RESET is asserted.

Note that HOLD is recognized during unaligned writes (less than or equal to 32 bits) with
BLAST being active for each write. For graater than 32-bit or unaligned write, HOLD
recognition is prevented by PLOCK getting asserted.

The pins floated during bus hold are: BE3-BEG, PCD, PWT, W/R, D/C, M/IG, LCTK,
PLOCK, ADS, BLAST, D31-D0, A31-AZ, and CP3-DPD. :

7.2.10 interrupt Acknowledge

The Am488DX/DX2 micraprocessor generates interrupt acknowledge cycles in response
o maskable interrupt requests. These requests are generated on the interrupt request
input {INTR) pin. Interrupt acknowledge cycles have a unique cycle type generated on
the cycle type pins.
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An example interrupt acknowledge fransaction is shown in Figure 7-27. Interrupt acknowl-
edge cycles are generated in locked pairs. Data returned during the first cycle is ignored.
The interupt vector is retumed during the secornd cycle on the lower eight bits of the data
bus. The Am486DX/DX2 microprocessor has 256 possible inferrupt vectors.

The state of A2 distinguishes the first and second interrupt acknowledge cycles. The
byte address driven during the first interrupt acknowledge cycle is 4 (A31-A3 Low, A2
High, BES-BET High, and BEG Low). The address driven during the second interrupt
acknowledge cycle is 0 (A31-A2 Low, BE3-BET High, and BEQ Low).

Figure 7-26 HOLD/HLDA Cycles
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Figure 7-27 Interrupt Acknowledge Cycles
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Table 7-9

Special Bus Cycle Encoding
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- = | m
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BEO |Special Bus Cycle
0 |Shutdown
1
1
1

Flush
Halt

E3
1
1
1
0 Write Back

7.2.11

T2.14.4

7.2.11.2

7.2.12

Each of the interrupt acknowledge cycles are terminated when the external system
returns RDY or BRDY. Wait states can be added by withholding RDY or BRDY. The
Am486DX/DX2 microprocessor automatically generates four idle clocks between the first
and second cycles to allow for 8259A recovery time.

Special Bus cvcles

The Am4BEDX/DXZ microprocessor provides four special bus cycles to indicate that
certain instructions were executed or certain conditions have occurred intemally. The
spacial bus cydss in Table 7-9 ara dafined when the bus cycle definiticn pins are in the
following state:

MO = 0, DT = 0 and W/R = 1. During these cycles the andress bus is driven Low while
the data bus is undefined.

Two of the special cycles indicate halt or shutdown. Another special cycle is generated when
the Am4860DX/DX2 microprocessor executes an INVD (invalidate data cache) instruction and
could be used to flush an externat cache. The Write Back cycle is generated when the
Amd486DX/DX2 microprocessor executes the WBINVD {write-back invalidate data cache)
instruction and could be used to synchronize an extemal write-back cache.

The externat hardware must acknowledge these special bus cycles by retuming RDY or
BRDY.

Halt Indication Cycle

The Am486DX/DX2 microprocessor halts as the result of HALT instruction. Signaling its
entrance into the halt state, a halt indication cycle is performed. The halt indication cycle is
identified by the bus definiion signals in special bus cycle state and a byte address of 2. BEQ
and BE2 are the only signals distinguishing halt indication from shutdown indication, which
drives an address of 0. During the halt cycle, undefined data is driven on D31-D0. The haﬂ
indication cycle must be acknowledged by EDY or BRDY asserted.

A halted Am486DX/DX2 microprocessor resumas execution when INTR (it inferrupts are
enabled), NM, or RESET is asserted. '

Shutdown Indication Cycle

The Am486DX/DX2 microprocessor shuts down as the result of a protection fault while
atternpting to process a double fault. Signaling its entrance inte the shutdown state, a
shutdown indication cycie is performed. The shutdown indication cycle is identified by the bus
definifion signals in special bus cyde state and a byle address of 0. '

Bus Cycle Restart

In a multimaster system, another bus master can require the use of the bus to enable the
Am488DX/DX2 microprocessor to complete its current bus request. In this siiuation the
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7.2.13

7.2.14

AM486DX/DX2 microprocessor needs 1o restart its bus cycle after the other bus master
completes its bus fransaction.

A bus cycle can be restarted if the extemal system asserts the backoff (BOFF) input. The
Am486DX/DX2 microprocessor sampies the BOFF pin every clock. The Am486DX/DX2
micropracessor immediately (in the next clock) floats its address, data, and status pins when
BOFF is asserted (see Figure 7-28). Any bus cycle in progress when BOFF is asserted is
aborled, and any data retumed to the processor is ignared. The same pins that are floated in
response to HOLD are fioated in response to BOFF. HLDA is not generated in response to
BOFF. BOFF has higher priosity than RDY or BRDY. If either RDY or BRDY is refumed in the
same ¢lock as BOFF, BOFF takes effect.

The device asserting BOFF is free 1o nun any cycles it wants while the Am486DX/DX2
microprecessor bus is in its high impedance state. if backoff is requested after the
AM486DX/DX2 microprocessor has started a cyde, the new master should wait for memery
1o retum RDY or BRDY before assuming control of the bus. Waiting for ready providesa
handshake to ensitre that the memory systemn is ready to accept a new cycie. If the bus is
icle when BOFF is asserted, the new master can start its cycle two clocks after issuing BOFF.

The extemal memory ¢an view BOFF in the same manner as BLAST. Agserting BOFF telis
the external memory system that the current cycle is the last cydle in a transfer.

The bus remains in the high impedance state until BOFF is negated. Upon negalion, the
AMABEDX/DX2 microprocessor restarts its bus cycle by driving out the address and status
and assering ADS. The bus cydie then continues as usual.

Asserting BOFF during a burst, BSS, or BS16 cycle forces the Amd8&DX/DX2 microproces-
sor 1o ignore data returned for that cycle only. Data from previous cycles is still valid. For
example, if BOFF is asserted on the third BRDY of a burst, the Am4860DX/DX2 microproces-
sor assumes the data returmed with the first and second ERDYs is correct and restarts the
burst beginning with the third ilem. The same rule applies to transfers braken into multiple
cycle by BS8 or BS16.

Asserting BOFF in the same ciock as ADS causes the Am485DXX/DX2 microprocessor to
float its bus in the next clock arxi leaves ADS fioating Low. Since ADS is fioating Low, a
peripheral might think a new bus cycle has begun, even though the cydle is aborted. There
are two possile solutions to this problem. The first is for all devices to recognize this
condition and ignore ADS until RDY comes back. The second approach is to use a “two
clack” backoft: in the first clock AHOLD is asserted, and in the second clock BOFF is
asserted. This guarantees that ADS is not floating Low. This is only necessary in systems
where BOFF can be asserted in the same clock as ADS.

Bus States

A bus state diagram is shown in Figure 7-30. A description of the signals used in the diagram
is given in Table 7-10.

Floating-Point Error Handling

The AM485DX/DX2 microprocessor provides two options for reporting floating-point emors.
The simplest method is to raise interrupt 16 whenever an unmasked fioating-point efror
occurs. This option can be enabled by setting the NE bit in control register 0 (CR0).

The Am486DX/DX2 microprocessor also provides the option of allowing external hardware to
defermine how floating-point emors are reported. This option is necessary for compatibility with
the error repoarting scheme used in DOS-based systems. The NE bit must be deared in CRG
to enable user-defined emor reporting. User-defined error reporting is the default condtion
because the NE bit is cleared on raset.
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Twao pins, floating-point emor (FERR) and ignore numeric emror (IGNNE), are provided to direct
the actions of hardware if user-defined error reporting is used. Tha Am486DX/DX2 micropro-
cessor asserts the FERR culput to indicate that a floating-point error has occurred. FERR
corresponds to the ERROR pin on the 387 math coprocessor. Howeaver, there is a difference
in the behavior of the two.

In some casas FERR is asseried when the next floating-point instruction is encountered, and
in other casas it is asserted before the next floating-peint instuction is encountered, depend-
ing upon the execution state of the instruction causing the exception,

The following class of floating-point exceptions drive FERR at the time the exceptlion occurs
(i.e., before encountering the next floating-peint instruction).

1. The stack fault, invalid operétion, and denomnal exceptions on all ranscendental instruc-
' tions, integer arithmetic instructions, FSQRT, FSCALE, FPREM{1), FXTRACT, FBLD, and
FBSTP. .

2. Any exceptions on store instructions (inciuding integer store instructions).

The following class of floating-point exceptions drive FERR only after encountering the next
floating-point instruction.

1. Exceptions other than on all transcendental instructions, integer arithmetic instructions,
FSQRT, FSCALE, FPREM(1}, FXTRACT, FBLD, and FBSTP.

2. Any exception on all basic aritmetic, load, cormpare, and control instructions (i.e., all other
instructions).

Figure 7-28 Restarted Read Cycle
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Figure 7-29 Restarted Write Cycle

T A & R T | T | T2 | T

T2 I T |
GLK/\_I'L_'(\I!\L!\I T\
| | I
I
i
i

| [
T N
ADS I I
ADS | I |
|
I
!

]
|
f

|
ADDR
SPEC A

|
|
]
1
I
I
] f
i \

I |
3
| : 100 } I 100

A
| 1 | | | | I

a7 A AR AR A A AR AN AR A ARRKAANAARAA
I | I I I | |

e O XA AGAOA0NAA_LAddaC

I | l
t ; ! i t I
BOFF | 1 \u : / I| I :
| | |
| I ] | I
———{Fameps ) ———————{Fom 7 —
I | I | I | 178524084
Table 7-10 Bus State Description
State | Means
Ti Bus is idle. Address and status signals tan be driven to undetined values, ar the bus can be fioated to
a high impedance state.
™ First clock cycle of a bus cycle. Valid address and status are driven and ADS is asserted.
T2 Sacond and subsequent ciock cycles of a bus cycle. Data is driven if the cycle is & writs, or data is
expectad if the cycle is a read. RDY and BRDY are sampied.
Tib “First clack cycle of a restarted bus cycle. Valid address and status are driven and ADS is asserted.
Tb Second and subsequent clock cycles of an aborted bus cycle.

For both sets of exceptions above, the 387 math coprocessor asserts ERROR when the error
occurs and does not wait for the next floating-peint instruction to be encountered.

IGNNE ig an input to the Am486DX/DX2 microprocessor.

When the NE bit in CRO is cleared and IGNNE is asseried, the Am4868DX/DX2 microproces-
sor ignores a user floating-point erer and continues executing floating-peint instructions.
When IGNNE is negated, the Am486DX/DX2 microprocessor freezes on floating-point
instructions that get errors {except for the control instructions FNCLEX, FNINIT, FNSAVE,
FNSTENV, FNSTCW, FNSTSW, FNSTSW AX, FNENI, FNDISI, and FNSETPM). IGNNE can
be asynchronous to the Am486DX/DX2 microprocessor clock.

In systems with user-defined error reporting, the FERR pin is connected to the interrupt
controlier. When an unmasked floating-point eror o¢curs, an interrupt is raised. if IGNNE is
High at the time of this interrupt, the Am486DX/DX2 microprocessor freezes {disallowing
execution of a subsequent floating-point instruction) until the interrupt handler is invoked. By
driving the IGNNE pin Low fwhen clearing the interrupt request), the interrupt hander allows
execution of a floating-point instruction, within the interrupt handler, before the error condtion
is cleared (by FNCLEX, FNINIT, FNSAVE, or FNSTENV). If execution of a nen-control
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Figure 7-30 Bus State Diagram

(RDY Asserted + (BADY = BLAS ) Asserted) »
{HOLD + AHOLD + No Request} ¢
EOTF Nogated

Request Pending »
{RDY Asserted + (BADY « BLAST) Assarted) «
HOLD Negateds
AHOLD Negated
BOFF Negated

Request Pending »
HOLD Negateds

AHOLD Negatede
BOFF Negated

BOFF Negated

BOFF Asserted

BOFF Assarted OFF Negated

BOFF Asserted

*  HOLD is only factored into this state AHOLD Negated «
transition if Tk is entered while a non- BOFF Negatade
cacheable, non-bursted, codae prefetch (HOLD MNegated*)
is in progross. Otherwise, ignore
HOLD.
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floating-point instruction within the floating-point interrupt handler is unnecessary, the
{GNNE pin can be tied High.

7.2.15 Floating-Point Error Handling In AT Compatible Systems

The Am486DX microprocessor provides special featuras to allow the implementation of
an AT compatible numerics error reporting scheme. These features DO NOT replace the
external circuit. Logic is still required that decodes the OUT FO instruction and latches
the FERA signal. What follows is a description of the use of these Am486DX/DX2
microprocessor features.

The features provided by the Am486DX/DX2 microprocessor are the NE bit in the
Machine Status Register, the IGNNE pin, and the FERR pin.

The NE bit determines the action taken by the Am486DX/DX2 microprocessor when a
numerics error is detected. When set, this bit signals that non-DOS compatibie error
handling will be implemented. In this mode the Am486DX/DX2 microprocessar takes a
software exception {18) if 2 numerics error is detected.

If the NE bit is reset, the Am486DX/DX2 microprocessor uses the IGNNE pin to allow an
external circuit to contral the time at which non-control numerics instructiens are allowed
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to exacute. Note that floating-point control instructions such as FNINIT and FNSAVE can
be executed during a fleating-point error condition regardless of the state of IGNNE.

To process a floating-point error in the DOS environment, the following sequence must
take piace:

1. The error is detected by the Am488DX/DX2 microprocessor which activates the
FERR pin. -

2. FERR is latched so that it can be cleared by the QUT FQ instruction,

3. The latched FERR signal activates an interrupt at the interrupt controller. This interrupt
is usually handied on IRQ13.

4. The Interrupt Service Routine (ISR) handles the error and then clears the interrupt by
executing an OUT instruction to port FO. The address FG is decoded externally to clear -
the FERR latch. The KGNNE signal is aiso activated by the decoder output.

5. Usually the ISR then executes an FNINIT instruction or other control instruction
before restarting the program. FNINIT ciears the FERR output. '

Figure 84 illustrates the circuit required to perform this function. Note that this circuit has
not been tested. Itis included as an exampie of the required error handling logic.

Note that the IGNNE input allows nen-control instructions to be executed prior to the time
the FERR signal is reset by the Am4860DX/DX2 microprocessor. This function is imple-
mented to allow exact compatibility with the AT implemeantation. Most programs reinitialize
the floating-point unit before continuing after an error is detected. The floating point unit
can be reinitialized using one of the following four instructions: FCLEX, FINIT, FSAVE,
FSTENY.

7-34
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Figure 7-31 DOS Compatible Numerics Error Circuit
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8  Am486DX/DX2 CPU TESTABILITY m

Testing the Am486DX/DX2 microprocessor can be divided info three categories: Built-In
Self Test (BIST), Boundary Scan, and external testing. BIST performs basic device
testing on the Am486DX/DX2 CPU, including the non-random logic, control ROM
{CROM), translation lookaside buffer {TLB), and on-chip cache memory. Boundary Scan
provides additional test hooks that conform to the IEEE Standard Test Access Port and
Boundary Scan Architecture {IEEE Std. 1149.1). The Am488DX/DX2 microprocessor
also has a test mode in which all of its outputs are three-stated. Additional testing can be
performed by using the test registers within the Am486DX/DX2 CPU.

BUILT-IN SELF TEST (BIST)

The BIST is initiated by asserting AHOLD (address hoid) on the falling edge of RESET.
AHOLD is a synchronous signal only. It should be asserted in the ¢lock prior to RESET
going from High to Low te start BIST. FLUSH must also be asserted {driven Low} prior to
the falling edge of RESET to stast BIST. FLUSH must be deasserted (driven High} during
BIST. A20M must be deasserted (driven High) during the falling edge of RESET to start
BIST. The BIST takes approximately 2**20 clocks, or approximately 42 milliseconds with
a 25-MHz Am486DX/DX2 microprocessor. No bus cycies are run by the Am486DX/DX2
microprocessor until the BIST is concluded. Note that for the Am486DX/DX2 micropro-
cessor, the RESET must be active for 15 clocks with or without BIST being enabled for
warm resets.

The results of BIST are stored in the EAX register. The Am488DX/DX2 microprocessor
has successfully passed the BIST if the contents of the EAX register are zero. If the
results in EAX are not zero, then the BIST has detected a flaw in the microprocessor,
The microprocessor performs reset and begins normal operation at the completion of the
BIST.

The non-random logic, control HOM, on-chip cache, and TLB are tested during the BIST.

The cache portion of the BIST verifies that the cachs is functienal and that it is possible
to read and write to the cache. The BIST manipulates test registers TR3, TR4, and TR3
while testing the cache. These test registers are described in Section 8.2.

The cache testing algorithm writes a value to each cache entry, reads the value back,
and checks that the correct value was read back. The algorithm may be repeated mora
than once for each of the 512 cache entries using diflerent constants.

The TLB portion of the BIST verifies that the TLB is functionat and that it is possible to
read and write to the TLB. The BIST manipulates test registers TR8 and TR7 while
testing the TLB. TR6 and TR7 are described in Section 8.3.

ON-CHIP CACHE TESTING

The on-chip cache testability hcoks are designed to be accessible during the BIST and
for assembly language testing of the cache.

The Am486DX/DX2 microprocessor contains a cache fill buffer and a cache read buffer.
For testability writes, data must be written to the cache fill huffer before it can be written
to a location in the cache. Data must be read from a cache location into the cache read
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butfer before the microprocessor ¢an access the data. The cache fill and cache read
buffer are both 128 bits wide.

8.2.1 Cache Teosting Registers TR3, TR4, and TR5

Figure 8-1 shows the three cache testing registers: the Cache Data Test Reglster (Tl HS}
the Cache Status Test Register {TR4), and the Cache Control Test Register (TRS).
External access to these registers is provided through MOV reg, TREG, and MOV
TREG, reg instructions. '

B8.2.1.1 Cache Data Test Register: TR

The cache fill buffer and the cache read buffer can only be accessed through TR3. Data
to be written to the cache fill buffer must first be written to TR3. DCata read from the
cache read buffer must be loaded into TR3.

TR3 is 32 bits wide while the cache fill and read buffers are 128 bits wide. 32 bits of data
meist be written to TR3 four times to fill the ¢cache fill buffer. 32 bits of data must be read
from TR3 four times to empty the cache read buffer. The entry select bits in TR5
determine which 32 bits of data TR3 accesses in the buffers.

8.21.2 Cache Status Test Register: TR4

TR4 handles tag, LRU, and valid bit information during cache tests. TR4 must be loaded
with a tag and a valid bit before a write to the cache. After a read from a cache entry,
TR4 contains the tag and valid bit from that entry, as well as the LRU bits and four valid
bits from the accessed set.

8.2.1.3 Cache Control Tost Register 'I'Rs

TRS specifies which testability operatlon is performed and the set and entry within the set
that is accessed.

The 7-bit set select field determines which of the 128 seté is accessed.

The functionality of the two entry select bits depends on the state of the control bits.
When the fill or read buffers are being accessed, the entry select bits point to the 32-bit
tocation in the buffer being accessed. When a cache location is specified, the entry
select bits point to one of the four entries in a set (see Table 8-1).

Figure 8-1 Cache Test Registers

3 ' 0
| TR3
Cata Cache Data
Test Ragistar
< M1 10 9 8 7 65 43 21 0
; t.RU Bits Valid Bits TH4
Tag Valid {used only {used only 7 Cache Status
- during reads) |  during reads} / Test Register
10. 4 3 2 1 0
TRS
_ Set Selsct SE:ILZI Control | Cache Control
Test Register
ﬂ = unused
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Table 8-1 Cache Control Bit Encoding and Effect of Contral Bits on Entry Select and Set
Select Functionality
Control Bits | Operation Entty Select Bits Functions |Set Select Bits
| Bit1 | BitO [Enable Fili Bufier Write Read Select 32-bit {ocation in fill/

0 o Buffer Read read bufter. -

0 1 Perform Cache Write Salect an entry in set. Select a set to write fo.

1 0 |Perorm Cache Read Select an entry in set. Select a set to read from.

1 1 Perdorm Flush Cache - -
Five testability functions can be performed on the cache. The twa control bits in TRS
specify the operation to be executed. The five operations are
1. Write the cache fill buffer
2. Perform a cache testability write
3. Perform a cache testability read
4. Read the cachs read buffer
5. Perform a cache flush
Table 8-1 shows the encoding of the two control bits in TRE for the cache testability.
Table 8-1 also shows the functionality of the entry and set select bits for each control
operation.
The cache tests attempt to use as much of the normal operating circuitry as possible.
Therefore, whan cache tesis are being performed, the cache must be disabled (the CD
and NW bits in control register must be set to 1 to disable the cache, see Section 5).

- 8.2.2 Cache Testability Write

A testability write to the cache is a two step process. First, the cache fill bufter must be
loaded with 128 bits of data and TR4 loaded with the tag and valid bit. Next, the contents
of the fill buffer are written to a cache location. Sample assembly code to do a write is
given in Figure 8-2.

Loading the fili buffer is accomplished by first writing to the entry sefect bits in TRS and
setting the control bits in TR5 to 00. The entry select bits identify one of four 32-bit
locations in the cache fili buffer to put 32 bits of data. Following the write to TRS, TR3 is
written with 32 bits of data that are immediately placed in the ¢ache fill buffer. Wntmg to
TR3 initiates the write to the cache fill buffer. The cache fill buffer is loaded with 128
bits of data by writing to TR5 and TR3 four times, using a different entry select Iocaﬂon
each tima.

TR4 must be loaded with the 21-bit tag and valid bit {bit 10 in TR4) before the contents
of the fill buffer are written to a cache location.

The contents of the cache fill buffer are written to a cache location by writing TRS with a
control field of 01, along with the set select and entry select fields. The set select and
entry select field indicates the location in the cache to be wiitten. The normai cache LRU
update circuitry updates the internal LRU bits for the selected set.

Note that a cache testability write can only be done when the cache is disabled for
replaces (the CO bit in control register 0 is reset to 1). Aise note that care must be iaken
when directly writing to entries in the cache If the entry is set to overlap an area of

Am4g6DX/DX2 CPU Testabllity : 83



b" AMD

8.2.3

8.2.4

8.3

8.3.1

memory that is being used in external memory, that cachs antry could inadvertentily be
used instead of the external memory. Of course, this is exactly the type of operation that
one would desire if the cache were to be used as a high speed RAM.

Cache Testability Read

A cache testability read is a two step process. First, the contents of the cache location
are read into the cache read buffer. Next, the data is examined by reading it out of the
read buffer. Sample assembly code to do a testability read is given in Figure 8-2.

Reading the contents of a cache location inte the cache read buffer is initiated by wnting
TRS5 with the control bits set to 10 and the desired seven-bit set select and two-bit entry
select. In response to the write to TR5, TR4 is loaded with the 21-bit tag field and the
single valid bit from the cache entry read. TR4 is also loaded with the three LRU bits and
four vatid bits comesponding to the cache set that was accessed. The cache read buffer
is filled with the 128-bit value that was found in the data array at the specified location.

The contents of the read buffer are examined by performing four reads of TR3. Before
reading TR3, the entry select bits in TRS must be loaded to indicate which o the four
32-bit words in the read buffer to transfer into. TR3 and the control bits in TRS must be
loaded with 00. The register read of TR3 initiates the transfer of the 32-bit value from the
read buftfer to the specified general purpose register.

Note that it is very important that the entire 128-bit quantity from the read buffar, and
also the information from TR4, be read before any memory references are allowed to
occur. If memory operations are allowed to happen, the contents of the read buffer are
corrupted. This occurs because the testability operations use hardware that is used in
normal memory accesses for the Am486DX/DX2 microprocessor, whether the cache is
enabled or not.

Flush Cache

The control bits in TRS must be written with 11 to flush the ¢cache. None of the other bits
in TR5 have any meaning when 11 is written to thé control bits. Flushing the cache
resets the LRU bits and the valid bits to 0, but does not change the cache tag or data
arrays.

When the cache is flushed by writing to TR3, the special bus cycle indicating a cache
flush 1o the external system is not run {see Section 7.2.11, Special Bus Cycles). The
cache should be flushed with the INVD {Invalidate Data Cache) instruction or the
WBINVD {Write-back and Invalidate Data Cacha) instruction.

TLB TESTING

The Am486DX/DX2 microprocessor TLB testability hooks are similar to those in the 386
microprocessor. The testability hooks have been enhanced to provide added test
features and to include new features in the Am488DX/DX2 microprocessor. The TLB
testability hooks are designed to be accessible during the BIST and for assembly
language testing of the TLB.

Translation Lookaside Buffer Organization

The Am486DX/DX2 microprecessor's TLB is four-way set associative and has space for
eight entries. The TLB is logically split into three blocks {see Figure 8-3).

The data block is physically split into four arrays, each with space for eight entries. An
eniry in the data block is 22 bits wide, containing a 20-bit physical address and two bits
for the page attributes. The page attributes are the PCD (page cache disable) bit and the

8-4
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Figure 8-2 Sample Assembly Code for Cache Testing

An example assembly language sequence t¢ perform a cache write is

; eax. abx. ecx. &dx contain the cache line to write
; 2di contains the tag information to load

: CRO already says ta enable reads/write to TRS

: )

£ill the cache buffer

jateaty
meoy
mav
mow
mow
monF
mow
Moy
mer
mor
mow
mesw

esi,l ; set up command
tro,esl : load to TRS
tri,eax ; load data into cache fill buffer
asi,d

tr5,es1

£r3, ebx

esi, B

trh,e=z1

trd,ecx

esi, {ch

tr5,esi

trd, edx

; load the Cache Status Register

mo

tr4,edi ; lead 21-kit tag and valid bit

; perform the cache write

Moy
mow

es1, 1l
tr5,es1 - ; write the cache (set 0, entry 0}

_An example assembly language sequence to perform a cache read is

ST T

T
2w

data into eax, ebx, eox, edx; status into edi

read the cache line back

esi, 2 =
£r5,esal ; do cache testability read (set 0, entry 0}

: read the data from the read buffer

iy
IO
oW
oy
finlaahy
jiiiwty
mew
mow
mov
mosr
o
Litlagty

esi. 0

£rh, esi
eax,tr3
eai,d

trh,es1l
aebx, trl
esl, 8

tr5,es1i
scx, tr3
ezi, Och
tr5,esi
aedx, tr3

H
; read the statuz from TR4

r

moey

adi, trd 17855A087

PWT (page write-through) bit. Refer to Saction 4.5.4 for a discussion of the PCD and
PWT bits.

The tag block is also split into four arrays, one for each of the daia arrays. A tag entry is
21 bits wide, containing a 17-bit linear address and four protection bits. The protection
bits are valid {V), user/supervisor {U/5), read/write {R/W), and dirty {D).

The third block contains eight three-bit quantities used in the pseudo LRU replacement
algorithm. These bits are the LRU bits. The LRU replacement algorithm used in the TLB
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8.3.2

8.3.2.1

Command Test Register (TRE)

TRS contains the tag information and control information used in a TLB test. Loading
TRE with tag and control information initiates a TLB write or lockup test.

TLB Test Registers {TR6 and TR7)
The two TLB test registers are shown in Figure 8-4. TRE is the command test register
and TR7 is the data test register. External access to these registers is provided through
MOV reg, TREG, and MOV TREG reg instructions. '

is the same as that used by the on-chip cache. For a description of this algorithm, refer
to Section 5.5.

Figure 8-3

TLB Organization

8 Tags

t Tag

17 Bits

}

Page
Pretection
Bits
4 Bits
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Address
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Page
Attributes
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8 Entrias
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T

8 Entries

{
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Figiwe 84
|

TLB Test Registers
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.
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;

Z

.
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TR& contains three bit fields: a 20-bit linear address (bits 12-31), seven bits for the TLB
tag protection bits {bits 5—11), and one bit (bit 0) to define the type of cperation to be
performed on the TLB.

The 20-bit linear address forms the 1ag information used in the TLB access. The lower
three bits of the linear address select which of the sight sets are accessed. The upper
17 bits of the linear address form the tag stored in the tag array.

The seven TLB tag protection bits are described beiow.
V: The valid bit for this TLB entry

D, D: The dirty bit for/from the TLB entry

U, U: The user/supervisor bit for/from the TLB entry

W, W: The read/write bit for/fram the TLB entry

Two bits are used to represent the D, U/S, and R/W bits in the TLB tag to permit the
option of a forced miss or hit during a TLB lookup operation. The forced miss or hit
occurs regardless of the state of the acfual bit in the TLB. The meaning of these pairs of
bits is given in Table B-2.

The operation bit in TRE determines if the TLB test operation is & write or a lockup. The
function of the operation bit is given in Table 8-3. _

Data Test Register [Tﬁ?]

TR7? contains the information storad or raad from the data block during a TLB test
operation. Before a TLB test write, TR7 contains the physical address and the page
attributa bits to be stored in the entry. After a TLB test lookup hit, TR7 contains the
physical address, page attributes, LRU bits, and entry location from the access.

TR7 centains a 20-bit physical address (bits 31-12), two bitg for PCD (bit 11) and PWT
{bit 10}, and three bits for the LRU bits {bits 8—7). The LRU bits in TR? are only used
diuring a TLB lookup iest. The functionality of TRY bit 4 differs for TLB writes and
iookups. The encoding of bit 4 is defined in Table 8-4 and Table 8-5. Finally, TR7
contains two bits (bits 3—-2) to specify a TLB replacement potnter or the location of a TLB
hit.

Table 8-2

Meaning of a Pair of TRG Protection Bils .

TR6 Protection | TRE Protection Maaning of TLB Meaning of TLB Lookup
Bit (B} Bit# (B#) Write Operatlon Operationh

4] 0 Undefined Miss any TLE TAG Bit B
1 Write Oto TLB TAG BitB Match TLE TAG Bt B if O
0

1

Write 1 ta TLB TAG BitB Match TLB TAG Bit B if 1
Undefined Match any TLB TAG Bit 8

1]
1
1

Table 8-3

TR6 Operation Bit Encoding

TR6 Bito 'i'LB Opaeration to Be Performed
4] TLB Write
1 TLB Lockup
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Table 8-4

Encoding of Bit 4 of TR7 on Writes

TR7 Bit 4 Replacement Pointer Used on TLB Write
4] Psaudo-L R Replacement Pointer
i Data Tast Registar Bits 3—2

Table 85

Encoding of Bit 4 of TR7 on Lookups

TR7 Bit 4 Meaning after TLB Lockup Qparation
] TLE Lackup Aesulted in a Miss
1 TLB Lockup Aasultad in a Hit

8.3.3

8.3.4

A replacement poinier is used during a TLB write. The pointer indicates which of the four
entries in an accessed set is to be written. The replacement pointer can be specified fo
be the interal LRU bits or bits 2-3 in TR7. The source of the replacement pointer is
specified by TR7 bit 4. The encoding of bit 4 during a write is given in Table 8-4.

Note that both testability writes and lookups affect the state of the internal LRU bits
regardless of the replacement pointer used. All TLB write operations (testability or
normal operation) cause the written entry {0 become the most recently used. For
example, during a testability write with the replacement pointer specified by TR7 bits
2-3, the ingicated entry is written and that entry becomes the most recently used as
specified by the intermal LRU bits.

There are two TLB testing operations: write entries into the TLB, and perform TLB
lookups. One major enhancement over TLB testing in the 386 microprocessor is that
paging need not be disabled while executing testability writes or lookups.

Note that any time one TLB set contains the same linear address in more than one of its
entries, looking up that linear address does not result in a hit. Therefore, a single linear
address should not be written to one TLB set more than once.

TLB Write Test

To perform a TLB write, TR7 must be loaded followed by a TRé load. The register
operations must be performed in this order since the TLE operation is triggered by the
write to TRE.

TR?7 is loaded with a 20-bit physical address and values for PCD and PWT to be written
to the data portion of the TLB. In addition, bit 4 of TR7 must be loaded o indicate
whether to use TR7 bits 3-2 or the internal LRU bits as the replacement pointer on the
TLB write operation. Note that the LRU bits in TR7 are not used in a write test.

TRE must be written to initiate the TLB write operation. Bit 0 in TRE8 must be resetto 0 1o
indicate a TLB write. The 20-bit linear address and the seven page protection bits must
also be written in TRE to specify the tag portion of the TLB entry. Note that the three
least significant bits of the linear address specify which of the eight sets in the data block
are toaded with the physical address data. Thus, only 17 of the linear address bits are
stored in the tag array.

TLB Lookup Test

To parform a TLB lookup, itis only necessary to write the proper tags and control informa-
tion into TR6. Bit 0 in TR6 must be set to 1 1o indicate a TLB lookup. TR6 must be loaded
with a 20-bit linsar address and the seven protaction bits. To force misses and matches of

8-8
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8.4

8.5.1

the individual protection bits on TLB lookups, set the seven protection bits as specified in
Table 8-2.

A TLB lookup operation is initiated by the write to TR6. TR7 indicates the result of the
lookup operation following the write to TR6. The hit/miss indication can be found in TR7
kit 4 {see Table 8-5).

TR7 contains the following information if bit 4 indicates that the lookup test resulted in a
hit. Bits 23 indicate in which set the match occcurred. The 22 most significant bits in TR7
contain the physical address and page atiributes contained in the entry.

Bits 9—7 contain the LRU bits associated with the ageessed set. The state of the LRU
hits is previous to their being updated for the current lookup.

If bit 4 in TR7 indicated that the lockup test resulted in a miss, the remaining bits in TR7
are undefined.

Again, it should be noted that a TLB testability lookup operation affects the state of the
LRU bits. The LRU bits are updated if a hit occurred. The entry that was hit becomes the
most recently used.

THREE:-STATE OUTPUT TEST MODE

The Am488DX/DX2 microprocessor provides the ability to float all its outputs and
bidirectional pins. This includes ali pins floated during bus hold, as well as pins that are
naver floated in normal operation of the chip (HLDA, BREQ, FERR, and PCHK). When
the Am486DX/DX2 microprocessor is in the three-state output test mode, extemnal.
testing can be used to test board connections.

The three-state test mode is invoked by driving FLUSH Low for two ¢locks before and
two clocks after RESET goes Low. The ocutputs are guaranteed to three-state no later
than ten clocks after RESET goes Low (see Figure 8-4). The Am486DX/DX2 micropro-
cessor remains in the three-state tast mode until the next RESET.

Am486DX/DX2 MICROPROCESSOR BOUNDARY SCAN (JTAG)

The Am486DX/DX2 microprocessor provides additional testability features compatible
with the IEEE Standard Test Access Port and Boundary Scan Architecture {IEEE Std.
1149.1). The test logic provided allows for testing to ensure that compenents function
correctly, that interconnections between various components are correct, and that
various components interact correctly on the printed circuit board.

The boundary scan test logic consists of a boundary scan register and support logic that
are accessed through a test access port {TAP). The TAP provides a simpie serial
interface that makes it possible to test all signal traces with only a few probes.

The TAP can be controlled via a bus master. The bus master can be either automatic
test equipment or a companent (PLD) that interfaces to the four-pin test bus.

Boundary Scan Architecture
The boundary scan test iogic contains the following elements:

@ TAP, consisting of input pins TMS, TCK, and TDt; and output pin TDO.

m TAP controller, which interprets the inputs on the test mode select (TMS) line and per-
forms the comesponding operation. The operations performed by the TAP include
contrelling the instruction and data registers within the component.
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8.5.2

8.5.2.1

8- 5.2. 2

8.5.2.3

8-5I2I4

& Instruction register {IR), which accepts instruction codes shifted into the test logic on
the test data input (YD) pin. The instruction codes are used to select the specific test
operation to be performed or the test data register to be accessed.

B Test data registers: The Am486DX/DX2 microprocessor contains three test data reg-
isters: Bypass register {BPR}, Device Identification register (DID) and Beundary
Scan register (BSR).

The instruction and test data registers are separate shift-register paths connected in
parallet that have a common serial data input and a common serial data output connected
to the TAP signals, TDI and TDO, respeclively.

Data Reugisters

The Am486DX/DX2 CPU contains the two reqLiired test data registers; bypass register
and boundary scan register. In addition, they also have a device idenfication register.

Each test data register is serially connected to TDand TDO, with TDI connected to the
maost significant bit and TDO connected fo the least significant bit of the test data
register. Data is shifted one stage (bit position within the register) on each rising edge of
the test clock {TCK).

In addition, the Am486DX/DX2 CPU contains a RUNBIST register to support the
RUNBIST Boundary scan instruction.

Bypass Register {BPR}

The BPR is a one-bit shift register that provides the minimal length path between TDI and
TDO. This path can be selected when no test operation is being performed by the
companent to allow rapid movement of tast data to and from other compenents cn the
board. While the BPR is selectad, data is transferred from TDI to TDO without inversion.

Boundary Scan Register (BSR)

The BSR is a single shift register path cortaining the houndary scan cells that are
connected to all input and output pins of the Am486DX/DX2 CPU. Figure 8-5 shows the
logical structure of the BSR. While output cells determine the value of the signal driven on
the corresponding pin, input cells only capture data; they do not affect the normai
operation of the device. Data is transferred without inversion from TDI to TDO through the
BSR during scanning. The BSR can be operated by the EXTEST and SAMPLE instruc-
tions. The boundary scan register order is described in Section 8.5.5.

Device ldentification Ragister (DID)

The DID contains the manufacturer’s identification code, part number code, and version
code in the format shown in Figure 8-6. Table 8-6 lists the codes corresponding to the
Am486DX/DX2 CPU.

RUNBIST Register

The RUNBIST register is a one-bit register used to report the results of the Am486DX/DX2
CPU BIST when it is initiated by the RUNBIST instruction. This register is loaded with a
“1" prior to invoking the BIST and is loaded with “0” upon suceessful completion.

Table 8-6

Component Codes

Componant Code Verslon Code Part Number Code Manufacturer ldentity
Amags CPU (Ax) ocH 0410H 08H
Amd86 CPU (By) 0oH 0411H 05H
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Figure B-8 Logical Structure of Boundary Scan Register
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8.5.3 Instruction Register
The IR allows instructions to be serially shifted into the device. The instruction selects the
pasticular test to be performed, the test data register to be accessed, or both. The instruction
register is four bits wide. The most significant bit is connected to TDI and the least
significant bit is connected to TDO. There are no parity bits associated with the IR. Upon
entering the Capture-IR TAP controller state, the instruction register is loaded with the
default instruction “0001", SAMPLE/PRELOAD. Instructions are shifted into the instructon
register on the rising edge of TCK white the TAP controller is in the Shift-IR state.
8.5.3.1 Am488DX/DX2 CPU Boundary Scan Instruction Set

The Am486DX/DX2 CPU supports all three mandatery boundary scan instructions
(BYPASS, SAMPLE/PRELOAD, and EXTEST) aleng with two optional instructions
(\DCODE and RUNBIST). Table 8-7 lists the Am488DX/DX2 CPU boundary scan
instruction codes. The instructions listed as PRIVATE cause TDO to become enabled in
the Shift-DR state and cause “0” to be shifted out of TDQ on the rising edge of TCK.
Execution of the PRIVATE instructions does not cause hazardous operation of the
Am486DX/DX2 CPU. :

Am48SDX/DX2 CPU Testabllity 8-11
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Table 8-7

Boundary Scan Instruction Codes

Instruction Code - Instruction Name

0goo EXTEST

0001 SAMPLE

GO0 IDCODE

oo PRIVATE

0100 PRIVATE

0101 PRIVATE

oo FRIVATE

o111 PRIVATE

1000 RUNBIST

1001 PRIVATE

1010 PRIVATE

1011 PRIVATE

1100 PRIVATE

1101 PRIVATE

1110 : PRIVATE

111 ' BYPASS

EXTEST

The instruction code is “0000", The EXTEST instruction allows testing of circuitry extemal
to the component package, typically board interconnects. It does so by driving the values
loaded into the Am486DX/DX2 CPU's BSR out on the output pins corresponding to each
boundary scan cell. It then captures the valuss on Am486DX/DX2 CPU input pins to be
loaded into their corraesponding BSR locations. /O pins are selected as input RUNBIST or
output depending on the value ioaded into their control setting locations in the BSR. Val-
ues shifted into input latches in the BSR ‘are never used by the internal legic of the
Am4B86DX/DX2 CPLU.

Note: :

After using the EXTEST instruction, the Am4BEDX/DX2 CFU must be reset before normal (non-
boundary scan) use..

SAMPLE/PRELOAD

The instruction code is “0001”. The SAMPLE/PRELOAD has two functions that it par-
forms. When the TAP controller is in the Capture-DR state, the SAMPLE/PRELOAD
instruction allows a “snapshot” of the normal aperation of the component without inter-
fering with that nermal operation. The instruction causes BSR cells associated with out-
puts to sample the value being driven by tha Am488DX/DX2 CPU. It causes the cells
associated with inputs to sample the value being driven into the Am486DX/DX2 CPU,
On both ouiputs and inputs, the sampling occurs on the rising edge of TCK. When the
TAP controller is in the Update-DR state, the SAMPLE/PRELOAD instruction preloads
data to the device pins to be driven io the board by executing the EXTEST instruction.
Data is preloaded to the pins from the BSR on the falling edge of TCK.

“IDCODE _

The instruction code is “"0010". The IDCODE instruction selects the DID to be connacted
{o TDI and TDO, allowing the device identification code to be shifted out of the device an
TDO. Note that the DID is not altered by data being shifted in an TDI.

BYPASS

The instruction code is “1111”. The BYPASS instruction selects the bypass registerio be
conngcted to TDI or TDO, effectively bypassing the test logic on the Am4BEDX/DX2

8-12
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8.5.4

8.5.4.1

8.5.4.2

microprocessor by reducing the shift length of the device to one bit. Note that an open
circuit fault in the board level test data path causes the bypass register to be selected fol-
lowing an instruction scan ¢ycle due to the pull-up resistor on the TDIinput. This has besn
done to prevent any unwanted interference with the proper operation of thg system logic.

RUNBIST

The instruction code is “1000". The RUNBIST instruction selects the one (1) bit runbist
register, loads a value of “1" into the runbist register, and connects it to TDO. It also initi-
ates the built-in seif test (BIST) feature of the Am486DX/DX2 CPU, which is able to
detect approximately 60% of the siuck-at faults on the Am486DX/DX2 CPU. The
Am488DX/DX2 CPU AC/DC specifications for V. and CLK must be met and RESET
must have been asserted at least once prior to executing the RUNBIST boundary scan
instruction, After ioading the RUNBIST instruction code in the instruction register, the
TAP controller must be placed in the Run-Test-ldle state. BIST begins on the first rising
edge of TCK after entering the Run-Test-ldle state. The TAP controller must remain in
the Run-Test-Idle state until BIST is completed. Itrequires 1.2 mikion CLK cyclesto com-
plete BIST and report the result to the runbist register. After completing the 1.2 million
CLK cycles, the value in the runbist register should be shifted out on TDO during the
Shift-DR state. A value of “0” being shifted out on TDO indicates BIST successfully com-
pleted. A value of “1” indicates a failure. After executing the RUNBIST instruction, the

Am488DX/DX2 CPU must be reset prior to normal operation.

Test Access Port (TAP} Controller

The TAP controller is a synchronous, finite state maching. it controls the sequence of
operations of the test logic. The TAP controller changes state only in response to the
following events:

1. arising edge of TCK
2. power-up

The value of the test mode state (TMS)} input signal at a rising edge of TCK controls the
sequence of the state changes. The state diagram for the TAP centroller is shown in
Figure B-7. Test designers must consider the operation of the state machine in order to
design the correct sequence of values to drive on TMS.

Test-Logic-Reset State

In this state, the test logic is disabled g0 that normal operation of the device can
continue unhindered, This is achieved by initializing the instruction register such that the
IDCODE instruction is loaded. No matter what the original state of the contreller, the

controller enters Test-Lagic-Reset state when the TMS input is held High (1) for at ieast
five rising edges of TCK. The controlier remains in this state while TMS is High. The TAP
contraller is also forced to enter this state at power-up.

Run-Test-ldle State

This is controller state between scan operations. Once in this state, the controller
remains in this state as long as TMS is held Low. In devices supporting the RUNBIST
instruction, the BIST is perfermed during this state and the result is reported in the
runbist register. For instruction not causing functions to execute during this state, no
activity occurs in the test logic. The instruction register and all test data registers retain
their previous state. When TMS is High and a rising edge is applied to TCK, the
controller moves to the Select-DR state.

AmageDX/0X2 CPU Testability 8-13
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Figure 8-7
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Select-DR-Scan State

This is a temporary controller state. The test data register salected by the current
instruction retains its previous state. If TMS is held Low and a rising edge is applied to
TCK when in this state, the controller moves into the Capture-DR state and a scan
sequence for the selected test data register is initiated. If TMS is held High and a rising
edge is applied to TCK, the controller moves to the Select-IR-Scan state.

The instruction does not change in this stats.

Capture-DR State

In this state, the BSR captures input pin data if the current instruction is EXTEST or
SAMPLE/PRELOAD. The other test data registers, which do not have parallel input, are
not changed.

8-14
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B8.5.4.5

8.5.4.6

8.5.4.7

8.5.4.8

8.5.4.9

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to TCK, the control-
ler enters the Exit1-DR state if TMS is High, or the Shift-DR state if TMS is Low.

Shift-DR State

in this controller state, the test data register connected between TDiand TDO as a
result of the current instruction shifts data one stage toward its serial output on each
rising edge of TCK.

| The instruction does not change in this state.

When the TAP contreller is in this state and a rising edge is applied 1o TCK, tha controller
enters the Exit1-CR state if TMS is High, or remains in the Shift-DR state if TMS is Low.

Exit1-DR State

This is a temporary state. While in this state, if TMS is held High, a rising edge applxed to
TCK causas the controller to enter the Update-DR state, which terminates the scanning
process. If TMS is held Low and a rising edge is applied to TCK, the controller enters the
Pause-DR state.

The test data register sslected by the current instruction retains its previous value during
this state. The instruction does not change in this state. '

Pauso-DR State

The pause state allows the test controller to temporarily halt the shiiting of data through
the test data register in the serial path between TDI and TDO. An example of using this
state could be to allow a tester to reload its pin memory from disk during appt tcatlon ofa
long test sequence.

The test data register selected by the current instruction retains its prewous value during
this state. The instruction doas not change in this stats,

The controfler remains in this state as iong as TMS is Low. When TMS goes High and a
rising edge is applied to TCK, the controller moves to the Exit2-DR state.

Exit2-DR State

This is a temporary state. While in this state, if TMS is held High, a rising edge applied to
TCK causes the controller to enter the Update-DR state, which terminates the scanning
pracess. If TMS is held Low and a rising edge is applied to TCK, the controller enters lhe
Shift-DR state.

The test data register seiected by the current instruction retains its previous value during
this state. The instruction does not change in this state.

Update-DR State

The BSR is pravided with a jatched parallel output to prevent changes at the parallel
output while data is shifted in response to the EXTEST and SAMPLE/PRELOAD
instructions. When the TAP controller is in ihis state and the BSR is selected, data is
latched onto the paralle! output of this register from the shift-register path on the falling
edge of TCK. The data held at the Iatched parallel output does not change other than in
this state.

All shift-register stages in test data register selected by the current instruction retain their
previous values during this state. The instruction does not change in this state.
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8.5.4.11

8.5.4.12

8.5.4.13

8.5.4.14

8.5.4.13%

Seolect-IR-Scan State

This is a temporary controller state. The test data register selected by the current
instruction retains its previous state. If TMS is held Low and a rising edge is applied to
TCK when in this state, the controller moves into the Capture-IR state and a scan
sequence for the instruction register is initiated. f TMS is held High and a rising edge is
applied to TCK, the controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

Capture-IR State

In this controller state the shift register contained in the instruction register loads the
fixed value “0001" on the rising edge of TCK.

The test data register selected by the current instruction retains its previous value during
this state. The instruction does not change in this state.

When the controller is in this state and a rising edge is applied to TCK, the controller
enters the Exit1-IR state if TMS is helkl High, or the Shift-IR state if TMS is held Low.

Shift-IR State

In this state the shift register contained in the instruction register is connected between
TDI and TDO, and shifts data one stage towards its seriai output on each rising edge of
TCK.

The test data register selected by the cumrent instruction retains its previous value during
this state. The instruction does net change in this state.

When the controller is in this state and a rising edge is applied to TCK, the controller
enters the Exit1-1R state it TMS is held High, or remains in the Shift-IR state if TMS is
heald Low.

Exit1-1R State

This is a temporary state. While in this state, if TMS is held High, a rising edge applied to
TCK causes the cantroller to enter the Update-IR state, which terminates the scanning
process, [f TMS is heid Low and a rising edge is applied to TCK, the controlier enters the
Pause-IR state.

The test data register selacted by the current instruction retains its previous value during
this state. The instruction does not change in this state.

The pause state allows the test coniroller to temporarily halt the shifting of data through
the instruction register.

The test data register selected by the current instruction retains its previous value during
this state. The instruction does not change in this state.

The centreller remains in this state as long as TMS is Low. When TMS goes Highand a
rising edge is applied to TCK, the controller moves to the Exit2-IR state.

Exit2-IR State

This is a temporary state. While in this state, if TMS is held High, a rising edge applied to
TCK causes the controlier to enter the Update-iR state, which terminates the scanning
process. if TMS is held Low and a rising edge is applied to TCK, the controller enters the
Shift-iR state. '

3-16
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8.5.5

The test data register selected oy the current instruction retains its previous value during
this state. The instruction does not change in thig state.

Update-IR State

The instruction shifted into the instruction register is latched onto the parallel output from
the shift-register path on the falling edge of TCK. Once the new instruction has been
latched, it becomes the current instruction.

Test data registers selected by the cumrent instruction retain the previous value.

Boundary Scan Register Cell

The BSR contains a cell for each pin, as well as cells for control of /O and three-state
pins..

The following is the bit order of the Am486DX/DX2 CPU BSR: (from left to right and top 1o
bottem).

TDI -->WRCTL ABUSCTL BUSCTL MISCCTL
ADS BLAST PLOCK LOCK PCHK

{BRDY BOFF BS16 BS8 RDY KEN}

HOLD AHOLD CLK HLDA W/R BREQ BEO
BET BE2 BE3 M0 D/C PWT PCD

EADS AZ0M RESET FLUSH INTR NMI

FERR IGNNE D31 D30 D23 D28 D27 D26
D25 D24 DP3 D23 D22 D21 D20 D12 D18 D17
D16 DP2 D15 D14 D13 D12 D11 D10 D9 D8
DP1 D7 D& D5 D4 D3 D2 D1 DO DPO A31 A30
AZ29 A28 ADT AZ6 A25 A24 A23 A22 A21 A20
A19 A18 A17 A16 A15 A14 A13 A2 A11 A1C
AD A8 A7 A6 RESERVED A5 A4 A3
A2-->TDO

"RESERVED” 'correspon_ds to no connact "NC" signals on the Am486DX/DX2 CPU.

All the CTL cells are conirof cells that are used to select the direction of bidirectional pins
or three-state cutput pins. i "1 is loaded into the control cell {CTL), the associated
pin{s) are three-stated or selected as input. The following lists the control cells and their
correspanding pins.

1. WRCTL contrels the D31-D0 and DP3-DP0 pins.
2. ABUSCTL controls the A31-A2 pins.

3. BUSCTL controls the ADS, BLAST, PLOCK, LQOCK, W;‘rﬁ. BEQ, BE1, BEZ, BE3, W10,
D/C, PWT, and PCD pins.

4. MISCCTL controls the PCHK, HLDA, and BREQ pins.

- Tap Controller Initialization

The TAP controller is automatically initialized when a device is powered up. In addition,

the TAP controller can be initialized by applying a high 3|gnal level on the TMS input for
five TCK periods.

Am48EDX/DX2 CPU Testabillity 817
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9 DEBUGGING SUPPORT

8.1

The Am4B86DX/DX2 microprocessor provides several features that simplify the debug-
ging process. The three categories of on-chip debugging aids are:

t. The code execution breakpoint opcode (0CCH)
2. The single-step capabifity provided by the TF bit in the flag register

3. The code and data breakpoint capability provided by the Debug Registers DR3-DRO,
DR6, and DR7

BREAKPOINT INSTRUCTION
A single-byte-opcode breakpoint instruction is available for use by software debuggers.

The breakpoint opcode is OCCH and generates an exception 3 trap when executed. in
typical use, a debugger program can “plant” the breakpoint instruction at all desired code
execution breakpoints. The single-byte breakpoint opcode is an alias for the two-byte
general software interrupt instruction, INT n, where n = 3. The only difference between
INT 3 {OCCH) and INT n i that INT 3 is never IOPL-sensitive but INT n is ICPL-sensitive
in Protected Mode and Virtual 8086 Mode.

SINGLE-STEP TRAP

If the single-step flag (TF, bit 8) in the EFLAGS register is found to be set at the end of
an instruction, a single-step exception cccurs. The single-step exception is auto
vectored to exception number 1. Precisely, exception 1 occurs as a trap after the
instruction following the instruction that set TF. In typicai practice, a debugger sets the
TF bit of a flag register image on the debugger’s stack. It then typically transfers control
to the user program and leads the flag image with a signal instruction, the IRET instruc-
tion. The singie-step trap occurs after executing one instruction of the user program.

Since the exception 1 occurs as a frap (that is, it occurs after the instruction has already
executed), the CS:EIP pushed onto the debugger’s stack points to the next unexecuted
instruction of the program being debugged. An exception 1 handler, merely by ending
with an IRET instruction, can tharefore efficiently suppert single-stepping through a user
program. '

DEBUG REGISTERS .

The Debug Registers are an advanced debugging feature of the Ama86DX/DX2
microprocessor. They allow data access breakpoints as well as code execution break-
points. Since the breakpoints are indicated by on-chip registers, an instruction execution
breakpoint can be placed in ROM code or in code shared by several tasks, neither of
which can be supported by the INT 3 breakpoint opcode.

The Am486DX/DX2 microprocessor contains six Debug Registers, providing the ability to
specify up to four distinct breakpoint addresses, breakpoint control options, and read
breakpoint status. Initially after reset, breakpoint are in the disabled state. Therefore, no
breakpoints occur unless the debug registers are programmed. Breakpoints set up in the
Debug Registers are autovectored to excention number 1.
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9.3.1

9.3.2

9'3-2- 1

Linear Address Breakpoint Registers {DR3-DR0O}

Up to four breakpoint addresses can be specified by writing inte Debug Registers
DR2-DRC, shown in Figure 9-1. The breakpoint addresses specified are 32-bit linear
addresses. Am486DX/DX2 microprocessor hardware continuously compares the tinear
breakpoint addresses in DR3-DRO with the inear addresses generated by executing
software. {A linear address is the result of computing the effective address and adding
the 32-bit segment base address.) Note that if paging is not enabled, the linear address
equals the physical address. If paging is enabled, the linear address is franslated to a
physical 32-bit address by the on-chip paging unit. However, regardless of whether
paging is enabled or not, the breakpoint registers hold linear addresses.

Debug Control Register (DR7)

A Debug Contral Register, DRY, (see Figure 9-1), allows several debug centrol functions
such as enabling the breakpeints and setting up other control opfions for the hreak-
points. The fields within the DR7 are as follows:

Breakpoint Length Specification Bits {LENi)

A 2-bit LEN field exists for each of the four breakpoints. LEN specities the iength of the
associated breakpoint field. The choices for data breakpoints are: 1 byte, 2 bytes, and 4
bytes. Instruction execution breakpoints must have a length of 1 (LENi = 00). Encodmg
of the LENi field is shown in Figure 9-1.

The LEN:i field controls the size of breakpeint field i by controlling whether all low-order
linear address bits in the breakpoint address register are used to detect the breakpeint
event. Therefore, all breakpoint fields are aligned: 2-byte breakpoint fields begin on word
houndaries, andg 4-byte breakpoint fields begin on dword boundaries (see Table 9-1).

Figure 9-2 is an example of various size breakpoint fieldz. Agssume the breakpoint linear
address in DR2 is 00000005H. In that situation, Figure 9-2 indicates the region of the
breakpoint field for lengths of 1, 2, or 4 byles.

Figure 9=-1

3

Debug Registers
1615 0

Breakpoint & Linear Address DRO

Breakpoint 1 Linear Address DR1

Breakpoint 2 Linsar Address DR2

Breakpoint 3 Linear Address _ DR2
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17852A- 093

Debugging Support



ANMD n

Table 91 Debug Registers LENi Encoding
LENi Encoding | Breakpoint Field Width | Use of Least Significant Bits in Breakpoint Address Fegister i, {i = 0-3)
00 1 byte All 32-bits used to specify a single-byte breakpoint fialkd. _
ot 2 bytos A31-A1 used to specify a two-byte, word-aligned breakpoint field. AQ in
¥ Breakpoint Addrass Register is not Used.
10 Undefined—do not use this
encoding
11 4 bytes A31-A2 usad to specify a four-byte, dword-afigned breakpoint field. A0 and
Al in Breakpoint Address Register are not used.
Figure -2 Debug Registers Breakpoint Fields
CR2 = 0000D008H; LEN2 = 008
21
00000008H
bkpt fld2 Q0000004H
Co000000H
DR2 = DO00ODO5SH: LENZ <01
by
00Q00008H
— bikpt {ld2 =] 00000004H
0000a000H
DR2 = 0O00000EH; LENZ = 11B
a1 '
Q0000008H
-— bt fld2 —e | QOOO0004H
| | | ¢000000CH 178524003
9.3.2.2 RWi {Memory Access Qualifier Bits)

A 2-bit RW field exists for each of the four breakpoints. The 2-bit RW field specifies the
type of usage that must oceur in order to activate the associated breakpoint (see

Tabie 9-2).

RW encoding 00 is used te set up an instruction execution breakpoint. RW encodings 01

or 11 are uged to set up write-only or read/write data breakpoints.

Note: instruction execution breakpoints are taken as faults (i.e., before the instruction executss),

but data breakpoints are taken as traps (i.e., affer the data transfer takes piace).

Debugging Support
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Table 9-2

pebug Registers RW Encoding

RW Encoding Usage Causing Breakpoint

0o Instruction execution anty

o1 Data writes only

10 Undefinad—da not use this encoding

1 Data reads and writes only

9. 3.2.3

9. 3‘2-4

9.3.2.5

9.3.2.6

Using LENi and RWi to Set Data Breakpoint i

A data breakpoint can be set up by writing the lingar address into DR (i = 0—3). For data
breakpoints, RWi can = 01 (write-only} or 11 {write/read). LEN ¢an =00, 01, or 11.

If a data access falls entirely or partly within the data breakpoint field, the data broak-
point condition has occurred, and if the breakpoint is enabled, an exception 1 trap then
oCeurs. :

Using LENi and RWi to Set Instruction Execution Breakpoint i

An instruction execution breakpeint can be set up by writing the address of the begin-
ning of the instruction (including prefixes, if any) into DR {i = 0--3}. RWi must = 00 and
LEN must = 00 for instruction execution breakpoints.

If the instruction beginning at the breakpoint address is about to be executed, the
instruction execution breakpoint condition has occurred; and if the breakpoint is enabled,
an exception 1 fault oceurs before the instruction is executed.

Note: An instruction execution breakpoint address must equal the beginning byte address of an
instruction {including prefixes) in crder for the instruction execution breakpoint o occur.

Global Debug Reglster Access Detect {GD)

The Debug Registers can only be accessed in Real Mode or at priviiege level Oin
Protected Mode. The GD bit, when set, provides extra protection against any Debug
Register access, even in Real Mode or &t privilege level 0 in Protected Mods. This
additional protection feature guarantees that a seftware debugger can have full control
aver the Debug Register resources when required. The GD bit, when sat, causes an

. exception 1 fault if an instruction attempts to read or write any Debug Register. The GD

bit is then automatically cleared when the exception 1 handler is invoked, allowing the
exception 1 handler free access to the debug registers.

Exact Data Breakpoint Match Qlobal {GE) and Exact Data Broakpoint Match
Local {LE}

The breakpoint mechanism of the Am486DX/DX2 micreprocessor differs fram that of the
AM386 CPU. The Am488DX/DX2 microprocessor always does exact data breakpoint
matching, regardiess of GE/LE bit settings. Any data breakpoint frap is reported exactly
after completion of the insiruction that caused the operand transfer. Exact reporting is
provided by forcing the Am486DX/DX2 microprocessor execution unit to wait for
completion of data operand transfers before beginning execution of the next instructian,

When the Am486DX/DX2 microprocessor performs a task switch, the LE bit is cleared.
Thus, the LE bit supports fast task switching out of tasks that have enabled the exact
data breakpoint match for their task-local breakpeints, The LE bit is cleared by the
processor during a task switch to avoid having exact data breakpoint match enabled in

9-4
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9.3.2.7

9.3.3

9.3.3.1

the new task. Note that exact data breakpoint match must be re-enabled under software
cantral.

The Am486DX/DX2 microprocessor GE bit is unaffected during a task switch. The GE bit
supports the exact data breakpoint match that is to remain enabled during all tasks
executing.in the system.

Note: instruction execution breakpoints are atways reperied exactly.

Breakpuoint Enable Global {Gi} and Breakpoint Enable Local {Li)

If either Gi or Li is set, then the asscciated breakpoint (as defined by the lingar address
in DRI, the length in LENi, and the usage criteria in RWi) is enabled. if either Gi or Li is
set and the Am486DX/DX2 microprocessor detacts the ith breakpomt condition, then the
exceplion 1 handler is invoked.

When the Am486DX/DX2 microprocessor performs a task switch to a new Task State
Segment {TSS), al! Li bits are cleared. Thus, the Li bits support fast task switching out of
tasks that use soeme task-local breakpoint registers. The Li bits are cleared by the
processor during a task switch to avoid spurious exceptions in the new task. Note that
the breakpoints must be re-enabled under software control.

All Am486DX/DX2 microprocessor Gi bits are unaffected during a task switch. The Gi
bits support breakpoints that are active in all tasks executing in the system,

Debug Status Register (DR6)

A Debug Status Register, DR&, (see Figure 8-1}, allows the exception 1 handler to easily
determine why it was invoked. Nots the exception 1 handler can be invoked as a result
of one of several events:

DRO Breakpoint fault/trap
DR Breakpoint faulttrap
DR2 Breakpoint taulitrap
DR3 Breakpoint faultfrap
Single-step {TF) frap
Task switch trap

N ok DN

Fault due to attempted debug register access when GD = 1

The Debug Status Register contains single-bit flags for each of the possible events
invoking exception 1. Note telow that some of these events are faults (exceptions taken
before the instruction is executed), while other events are traps (exceptions taken after
the debug events occurred).

The flags in DRB are set by the hardware but never cleared by hardware. Exception 1
handler software should clear DR6 before returning to the user program to avoid future
confusion in identifying the source of exception 1.

The fields within the DRB are as follows:

Debug Fault/Trap Due to Breakpoint 0-3 (Bi)

Four breakpoint indicator flags, B3—-B0, correspond cne-to-cne with the breakpoint
registers in DR3-DA0. A flag Bi is set when the condition described by DRi, LENi, and
RWi occurs.
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If Gi or Li is set and if the ith breakpoint is detected, the processor invokes the exception
1 handler. The exception is handled as a fault if an instruction execution breakpaoint
occurred, or as a trap if a data breakpoint occurred.

Note: A flag Bi is set whenever the hardware detects a match condition on enabled breakpaint i.
Whenever & maich is detected on at least one enabled breakpoint i, the hardware immediately
sefs afl Bi bits corresponding to breakpoint conditions matching at that instant, whether enabled
or not. Therefore, the exception 1 handier can see that muitipie Bi bits are set, but only set Bi bits
corresponding to enabled breakpoints (Li or Gi set) are trie indications of why the exception 1
handier was invoked. :

9.3.3.2 Debug Fault Due to Attempted Register Access when GD Bit Set {BD)

This bit is get if the exception 1 handler is invoked due to an instruction attempting to
read or write to the debug registers when GD bit was set. If such an event occurs, then
the GD bit is automatically cleared when the exception 1 handler is invoked, allowing
handler access to the debug registers.

9.3.3.3 Debug Trap Due to Single-Step (BS)

This bit is set if the exception 1 handler is invoked due to the TF bit in the flag register
being set (for single-stepping). ' -

85.3.3.4 Debug Trap Due to Task Switch (BT)

This bit is set if the exception 1 handier is invoked due.to a task switch pceurring 1o a
task having an Am4860X/DX2 microprocessor TSS with the T hit set. Note the task
switch into the new task eceurs normally, but before the first instruction of the task is
executed, the exception 1 handier is invoked. With respect to the task switch operation,
the operation is considered to be a wrap.

9.3.4 Use of Resume Flag {HF) in Flag Register

The Resume Flag (RF) in the flag word. can suppress an instruction execution break-
point. This oceurs when the exception 1 handler retums to a user program at a user
address that is also an instruction execution breakpoint.
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1 0 INSTRUCTION SET SUMMARY

10.1

10.1.1

10.1.2

This section describes the Am4850X/DX2 microprocessor instruction set. Table 10-1
through Table 10-5 list all instructions along with instruction encoding diagrams and clock
counts. Further details of the instruction encoding are then provided in Sectien 10.2,
which completely describes the encoding structure and the definition of all fields occurring
within the Am488DX/DX2 microprocessor instructions.

MICROPROCESSOR INSTRUCTION ENCODING AND CLOCK COUHT
SUMMARY

To calculate elapsed time for an instruction, multiply the instruction clock count, as listed
in Table 10-1 through Table 10-5, by the processor clock periad.

For more detailed informaticn on the encodings of instructions, refer to Section 10.2,
Instruction Encedings. Section 10.2 explains the general structure of instruction encodings
and defines the exact encedings of all fields contained within the instruction.

Instruction Cleck Count

The Am486DX/DX2 microprocessor instruction clack count tables give clock counts,
assuming data and instruction accesses hit in the cache. A separate penalty column
defines clocks to add if a data access misses in the cache. The combined instruction and
data cache hit rate is over 90%.

A cache miss forces the Am488DX/DX2 microprocesser to run an external bus cycle.
The Am4B6DX/DX2 microprocassor 32-bit burst bus is defined as r-b-w.

Where:

r = The number of clocks in the first cycle of a burst read or the number of clocks per data
cycle in a nen-burst read.

b = The number of clocks for the second and subsequent cycles in a burst read.
w = The number of clocks for a write.

The fastest bus the Am486DX/DX2 microprocessor ¢an support is 2-1-2, assuming 0
walit states. The clock counts in the cache miss penalty column assume a 2-1-2 bus. For
slower buses, add r-2 clocks to the cache miss penalty for the first dword accessead.
Other factors also affect instruction clock counts.

Instruction Clock Count Assumptions

1. The external bus is available for reads or writes at all times. Eise, add clocks to
reads until the bus is available.

2. Accesses are aligned. Add three clocks to each misaligned access.

3. Cache fills complete before subsequent accesses to the same line. If a read misses
the cache during a cache fill due to a previous read or prefetch, the read must wait
for the cache fill to complete. if a read or write accesses a cache line still being filled,
it must wait for the fill to complete.
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If an effective address is caiculated, the base register is not the destination register of
the preceding instruction. If the base register is the destination register of the preced-
ing instruction, ackd 1 to the clock counts shown, Back-to-back PUSH and POP
instructions are not affected by this rule.

An effective address calculation uses one base register and does not use an index
register. However, if the effective address calculation uses an index register, one
ciock may be added to the clack count shown.

The target of a jump is in the cache. If not, add r clocks for accessing the destination
instruction af a jump. ! the destination instruction is not completely contained in the
first dword read, add a maximum of 3b clocks. If the destination instruction is not
completely contained in the first 16-byte burst, add a maximum of another r+3b
clocks. :

If no write buffer delay, w clocks are added only in the case in which all write buffers

-are full. This case rarely occurs.
- Displacement and immediate are not used together. If dispiacement and immediate

are used together, one clock can be added to the clock count shawn.

No invalidate cycles. Add a delay of one clock for each invalidaie cycle if the invalidate
cycle contends for the intemal cache/external bus when the Am488DX/DX2 CPU needs
to use it.

Page translation hits in TLB. A TLB miss adds 13, 21, or 28 clocks to the instruction,
depending on whether the accessed and/or dirty bit in neither, one, or both of the
page entrias neads to be set in memary. This assumes that neither pags entry is in
the data cache and a page fault does not occur on the address translation.

No exceptions are detected during instruction execution. Refer to Table 10-3 for
axtra clocks if an interrupt is detected.

instructions that read muitiple consecutive data items {i.e., task switch, POPA, etc.)
and miss the cache are assumed to start the first access on a 16-byte boundary, If

not, an extra cache line fitt might be necessary and might add up to (r+3b) clocks to
the cache miss penalty.

10-2
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Table 10-1 Am486DX/DX2 Microprocessor integer Clock Count Summary
|Penaity
Cache CaI::ha
INSTRUCTION FORMAT Hit | Miss | Notes:
INTEGER OPERATIONS
MOY = Mowve:
reg1 to rag2 1000100W | 11 regl rag2’ 1
reg2 to rag1 1000101w 11 rsgl rag2 1
. memory to reg 1000101w | med reg #m 1 2
rag to memory 1000100w mad reg r'm 1
Immediate o rag 1100011w | 11000 rag |immedate data 1
ar 1011wreg immadiats data 1
Immediate to Memory 110001 fTw mod 000 m | displacemant immediate 1
Memory to Accumulator 1010000w | full displacement 1 2
Accumulatar to Mamory 1010001 w |full displacement 1
MOVEX/MOVZX =Move with Sign/Zero Extension
rag2 o raq? 00801111 | 10%1z11w | 1t regl reg?
Wemory to reg 00001111 16t1211w mod reg pm 2
0 MOVZX
1 MOVEX
PUSH = Push
reg 11111111 | 11 110reg |} 4
or 05010 reg 1
memory 11111111 | mod 110 vm | 4 1 1
immediata 01101030 | immedale data 1
PUSHA = Push Al a1100000 i1
PCP = Pop .
1 reg 1000111t | i1 000req | 4 1
or 01011 reg _ 1] 2
memory 1000111t | med 009 wm | 5 2 1
POPA = Pop AR 01100001 g 715 | 1em2
XCHG = Exchange
rag1 with reg2 100001 1w { i1 regl regz | ]
Accumulator with reg 10010 reg 3 2
Memory with reg 100001 1w ] mod reg iim | 5 2
NOP:Noneratlon 10010000 1
LEA = Load EA 1o Register 10001101 mod reg rm I
N index register 1
With index register 2
Instruction TTT
ADD-Add DO
ADC=Add with Carry D10
AND=Logical AND 100
OR=Logical OR 0o
SUB=Subtract 101
SBB=Subtract with Borrow D11
XOR=Logical Exclusive OR 110
ingtructlon Set Summary 10-3
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Table 10-1 AmA4B6DX/DX2 Microprocessor Integer Clock Count Sunumary {continuead)

Penalty
it
Cachs | Cache-
INSTRUCTION FORMAT Hit Miezs | HNotes*
INTEGER OPERATIONS (confinued)
regl to reg2 00TTTOOw | 11 regl reg2 1
regZ to reg1 GOTTTO1w | 11 ragl rag2 i
memary to register COTTTOlw mod reg rm 2 2
register to memory OOTTTOOW mod reg rm 3 812 L
immadiate to register 100000sw 11 TTT reg | immediate data 1
immediate ta accumulatar GOTTT10w | immadiate data 1
immeciate te memery 100000sw | mod TTT rm | immediate data 3 62 A
Instruction TTT
ING = Incroment ¢oo
DEC = Dscrement 001
reg t1rt1iiw [ 11 TT7 reg | 1
or Q1TTT reg
memory 1111111 1w | mod TTT r.frnJ 3 a2 Ui
Instruction TTT
NOT = Logical Complement 010
NEG = Negate 011
reg 111101 1w 11 TTT reg 1
memory 1111011w | mad TTT rim 3 672 UL
CMP = Comparsa
reg 1 with reg2 DQ11300w 11 regi reg2 1
rag2 with regt g011101w | 11 regl reg2 1
memary with ragister 0011100w mad reg rm 2 2
register with memory 001110 1w | mod rag vm 2 2
immediate with register 100000sw 11 111 req | immediata dala 1
immediate with ace. oo11110w | immedate data 1
immediate with memory 100000sw | med 111 n‘m_l immediate data 2 2
TEST = Logical Compate
reg and reg2 1000010w 11 regi g2 1
memory and register 1000010w mod reg r'm 2 2
immadiate and ragister 1111011w 11 000 reg | immedate data 1
immediate and acc. 1010100w | immediale data 1
immediate and memeary 111101 1w | mod 00O sm | immediate data 2 2
MUL = Multiply {unsigned)
ace. with register [11r1011w | 11100 |
Multiplier—Byte 1318 MMM,
Word 1326 MN/MX,2
Dward 1342 MN/X 3
acc. with memary 1111011w | mod 100 »m |
Multiplier—Byte 1318 1 | MNAMX3
Ward 1328 1 MNAMK 2

10-4
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Table 10-1 AmdB86DX/DX2 Microprocessor Integer Clock Count Summary {continued)

TPenaity
if
Cache | Cache
INSTRUCTION FORMAT ) Hit Miss Notes*
INTEGER OPERATIONS (continued)
Dwrord 13/42 1 MNMX 3
IMUL = Integer Muitiply {(gigned)
acc. with ragister [ 11110t1w | 111018 |
Multiplier-Byte . 1318 MHMX 3
Ward 1326 MNAV 3
Dword 1342 MM 3
ace, with memory I-1111o11w ImndTDTn’n‘l
Multiplior—Byte 1318 MN/MX.3
Word : | 1326 MN/MX.3
Dwrord 1342 MMM
reg? with reg2 Ioooonn | 10101111 | 11 rogl reg2
Multiplier~Byte 1318 MNMX 3
. Word 13726 MNMK,
Dword ] 1342 i MM A
regisier with memory [ 0001111 | 10101111 mod e rfm '
Multiptiar-Byts 1318 1 | mMunxa
Word ‘ ) 13426 1 MNFMX,S.
Dword . 1342 1 MMM
reg! with imm. o reg2 . i 01101081 | 11 regi regz | immediate datm
Multiplier—Byte : 1818 MN/MX,3
Word 13426 MNMK A
Dword 13142 MNMX 3
mem. with imm. o rag. 01101081 | mod reg vim | immediate data
Multipliar—Byta 1318 2 MMMES
Word ' 1326 2 | munxs
DOword . 1342 2 MNAD(S
DIV = Divide (unsigned)
acs, by ragister | 1t111011w | 11 110 reg |
Divisor- Byt 16
Word o4
Dword 40
ace. by memory I 1111011w Imnd110n‘m]
Divisor- Byta 16
Word 24
Dword ' 4
IDIV = Integer Divide {zigned)
ace. by register { 1111011w | 11111 rep |
Divisor— Byt 18
Word 27
Dword i | 4
ace. by memory [ 111101 1w | mod 111 om |
Divisar- Byte 20
Word 28
Dwiord 44
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Table 10-1  Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued)
H’omﬂty
i
Cache | Cachs |
IHSTRUCTION FORMAT Hit Mixs Notes*
INTEGER OPERATIONS {continued}
CBW = Convert Byte to Word/
Convert Word to Dword 10011000
CWD = Convett Word ta Dword/ 10011001 3
Converl Dword to Guad Word
insiruction lnstruction TTT
ROL = Aotate Left aoo0
AOR = Rotate Right oo
RCL = Retats through Camy Left 010
RCR = Ratate through Garry Right 011
SHLSAL = Shift Logical/Arithmetic Left 100
SHR = Shift Logical Right 101
SAR = Shift Arithmetic. Right 111
Mut Through Camy (ROL, ROR, SAL, SAR, SHL, and 2HR)
reg by 1 1101000w 11 TTT reg 3
memary by 1 1101000w |med TTT rm 4 &
reg by GL 110100 1w 11 TTT reg 3
memory by GL 1101001w [mod TTT rm 4 6
rag by immediata count 1100000w 11 TTT reg fimm. §-bit data 2
mam by immediate sount i100000w |med TTT rfm | imm. 8-bit data 4 €
Through Camry (RCL and RCR}
reg by 1 1101000w | 11 TTT reg 8
memory by 1 i10i000w | mod TTT vm 4 g
rag by CL 1101001w | 11 TTT myg 8/30 MY 4
memory by CL 1101001w med TTT r'm 931 NS
raq by immediata count 1100000wW 11 TTT reg |immediate 8-bitdata 830 MM 4
mem by immediste count 1100000w | mag TTT vm |immediate 8-bitdata 9131 MM S
) Instruction 7T
SHLD = Shift Left Doubls 100
SHAD = Shift Right Double 101
ragistar with immediate oDog1111 10TTT100 11 reg2regl |immed. 8-bit data 2
memory by immediate pooo1111 10TTT1G00 11 reg2reg!  immed. 8-bit data 3 &
register by GL 00001111 | 10TTT101 | 11 reg2regi a
memoary by CL 00001111 10TTT141 mod reg m 4 5
BSWAP = Byte Swap 00001111 | 11001 reg | 1
XADD = Exchange and Add
ragi, reg2 00001111 1100000w 11 reg2regl )
memory, rag oDog1111 1100000w mod reg rm 4 62 UL
10-6 Instruction Set Summary
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Table 10-1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued)

Penalty
i
Cathe | Cache

INSTRUCTICN FORMAT Hit Miss Notes*
INTEGER OPERATICHS {continued)
CMPXCHG = Compare and Exchange

regi, reg2 00001111 [ 1011000w | 11 reg2regt &

meamary, reg coo01ti1d 1011000w mod reg vm Mo 2 g
CONTROL TRANSFER {within segment}
NOTE: Timas are jump taken/not taken
dece = Jump oh eoe

8-bit digplacement 0111TTTn 8-bitdisp. an TNT 23

full displacement 00001111 1000tttn full dizplacement 31 TNT.23

NGTE: Timas are jump taken/not taken
SETcece = Set Pyte on oot (Times are coce truedfalse)

rag 00001111 1001 TTTn 11 000 reg 473

mamory aoo00i1111. [ 1031TTTn | mad 008 vm : 34

Mnamohic Condition itn

[ .

Q Overflow 0000

NO Ne Cverflow 0001

BMNAE Below/Not Abeva or Equal 0010

NB/AE Nei Below/Above or Equal 001t

EZ Egual/Zera 0100

NE/NZ Not EqualiNot Zere o101t

BE/NA Below or Equal/Mat Abava Bit1o

MBE/A Mot Below or Equal/Abave o111

s Sign 1000

NS Not Sign : 1001

PPE Parity/Parity Even in1g@

NPPC . Not ParityiParity Cod 1011

LNGE Less Than/Not Greater or Egual 1100

NU/GE - NetLess ThandGreater or Equal 1101

LE/G Less Than or Equal‘Graater Than 1410

NLE/G Not Less Than or EqualiGreater Than 1117
LOOF = LOOP CX Times | 11100010 | “abirdsp. | 74 LNL.23
LOOPZ/LOOPE .

= Loop while Not Zero | 11100001 | sbitdsp. | 96 L/NL,23
LOOPNZ/LOOPNE
= Loop while Not Zero | 11100000 | asbitdsp. | 96 L/NL,23

JCXZ = Jump onh CX 2ero | 11100011 | sbitdsp. | 85 T/NT.23
JECXZ = Jump on ECX Zero L 11100011 | sbitdsp. | 85 TINT,23

{Address Size Prafix Difforentiates JCXZ for JECXZ)
JMP = Uncorditional Jump (within segment)

Short | 11101011 | Bbitdsp | 3 723
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Table 10-1 Am486DX/DX2 Microprocessor Integer Clock Count Summary {continued)
Punalty
if
Cache | Cache-
INSTRUCTION FORMAT Hit | Miss | Notes*
CONTROL TRANSFER {within zegment} (continued)
Disect 11101001 | full displacement 3 7.23
Register indirect 11111111 | 11 100 reg 7.23
Memaory indiract 11111111 mod 10290 #m 5 7
CALL = Call {within segment)
Diract 11101000 |full displacement 7.23
Register Indirect 71111111 11010 reg 723
Memary Indirect 14113111 | mod 010 vm 5 7
| RET = Raturn from CALL
[within segment) 5 5
Adding immadiate o SP [ 11000010 | 1tebitcisp. | 5 5
ENTER = Enter Procedure [ 11001000 Jisntdsesasiievel]
Leval=0 14
Laval=1 17
Level (L) = 1 17+3L 8
LEAVE = Leave Procedure 5 1
MULTIPLE-SEGMENT INSTRUCTIONS
MOV = Move
reg. 1o segment reg. 100011180 i1 sregd reg bclic) 053 RviR9
mamaory 1o segment reg. 10061410 | mod sreg3 vm am 25 RV:P9
seqrrant rey. 1o reg, 10004100 i1 smegl reg 3
segment reg. 1o memaory 10041100 | mod sreg3 om k!
PUSH = Push
segment rag. 3
{E5, C8, S, or DS)
segment reg, (FS or GS) [ cooorits | 10meR 000 | a
POP = Pap ‘
seqment reg. s 25 RAY/F. &
{ES, 585, or DS)
sagment reg, {FS or GS) 00001111 10 sreg30 Qi 39 25 Rv/F 9
1 DS = Load Pointer to DS 11000101 mad reg fm gz | 710 RAV/F ¢
LES = Load Poimer to ED 11000100 mod reg rm B2 710 RYF, 9
LFS = Load Pointet to FS oaoo1111 10110100 mod reg rm 812 o RV:F, 9
LGS = Load Pointer to GS Coog1i11 101101501 mod reg rm 612 o RviP,. g
LSS = Load Pointer to S5 oooot1t1 14110010 mad reg riin 612 7o RV/E 9
CALL = Call
Direct intersegment unsigred full offset, selector 18 2 |R72
o same lewed 20 3 (28]
thru Gats to same level 35 ] P g
ta inner lavel, no parameters =] 17 P&
ta inner level, x paramater (d} words 77X | 170 Y P11V 3
o TSS 37+TS 3 P11,8
thru Task Gate 3B+T13 3 F108
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Table 101 Am486DX/DX2 Microprocessor Integer Clock Count Summary [continued]
[Penaity
Cache Caln:ha
INSTRUCTION FORMAT Hit Mis= Motes™
MULTNPLE-SEGMENT INSTRUCTIONS {continued)

Indiract intersagmeant [ 11111941 T mod 011 om j 17 8 R7
to same level 20 i0 P %
thru Giate to same level 35 13 Pa
to inner level, no parameabars £9 24 [
te inner level, x pararmater (d} words FFeAX | 2d4n | R11, 8
0 TSS 3+Ts | 10 [R109
thru Task Gate 38+T8 10 Pi0o.&

RET = Return rom CALL

interzsgment i3 a R 7
to same level 17 8 o
ta autar laval 3L 12 PO

intersegment adding [ 11001010 | 15bitdisp.

imm. o 3P 14 8 R.7

to same: level 18 9 F o

o outer lavel 38 12 F g
JMP = Unconditional Jump

Direct intersegment unsigned full offset, selector 17 2 | R722
te same leval 19 3 P9
thru Cafl G3ate o same levsl 32 ] P9
thru TSS ATS | 3 P19
thru Task Gate 43+TS io Ping

Indirect intersegment [ 11111197 [ mod 101 m | 13 9 R.7,9
to same lsval 18 10 P8
theu Call Gate to same level ]| 13 Pa
thru TS5 41+T8 10 P08
thru Task Gate 42478 10 P10, 8

BIT MANIPULATION
BT = TEST BIT

ragistar, immadiate go001111 10111010 11 100 reg Jimmed o-bit data 3

memary, immeadiate goo001111% 10111010 mod 100 Fm | immed, 8-4it cita 3 1

regl, reg2 0001111 | 10100041 | 11 reg2 regt 2

MEemary, reg goon1111 10100011 mod reg rm 8 b

lstruclion TTT
ETS=Teos! Bit and Set 101
BTR=Test Bit and Raset 110
BTC-=Test Bit and Compliment 111

registar, immadiate coo01111 10111010 11 TTT reg |immed. 8-bi data

memary, immediate ooo0i1111 10111010 mod TTT im | immead, B-bit data ¢ L

ragl, reg2 ¢o001114 1911110 11 reg2 regl ]

mMemary, reg aoo01111 10111100 med reg r'm i3 N UL

B5F = Scan Bit Forward
regl, reg2 eoco1111 1011100 11 reg2 regl Bi42 MM, 12
Memory, reg goo0011114 10111100Q mad reg rm T3 2 MNRDL 13
Instruction Set Summary 10-8
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Table 10-1 AmAB6DX/DX2 Microprocessor Integer Clock Count Summary {continued)

Penalty
if
Cache | Cache
INSTRUCTLION FORMAT Hit Mias | Motes”
BIT MANIPULATION (conlinued)
BSR = Scah Bit Aeverse
ragi, reg oooo1111 | 16111101 | 11 reg2 regl 103 NX, 14
memory, reg 00001111 190111101 mod reg ©m 7104 1 MNMX, 15
STRING INSTRUCTIONS
CMPS = Compare Byte Word 1210011w 8 6 10
LODS = Load ByteWord 1010110w 5
o ALEX/EAX
MOVS = Move Byte/Waord 1010010w 7 2 16
SCAS = Soan ByterWord 101011 1w '
STOS = Store Byte/Word 1010101w
fram AL/EX/EAX

XLAT = Translate String 11010111 4 2

REPEATED STRING INSTRUCTIONS
Repealed by Count in CX or ECX {C = Counl in CX or EGX)

REPE CMPS = ComparoStiing | 11110011 | 1010011w |

{Find Mon-Maich)

c=0 5

G>0 74Te 18,17
REPNE CMPS = Compare String | 11110010 [ 1e10011w |

(Find Manch)

=0 5

C>0 7475 18,17
REP LODS = Load String [ 1¢110011 [ 10101 10w |

=0 5

C»0 7+l 16, 18
REP MOVS = Movs String | 11110011 [ 1610010w |

c=0 5

C=1 13 1 16
Cx>1 1248¢ 16, 19
REPE SCAS = Scan Strlng | 11110011 | 1010111w_]

{Find Non-AL/AX/EAX}

=0 h

>0 745¢ 20
REPME $CAS = Sean Siring [ 11110010 | 1010111w |

{Find Non-AL/AX/EAX}

c-0 6

G0 : 745c 20
REP STOS = Store String [ 11110011 | 1010101w |

C=0 ' 5

G0 7de

FLAG CONTROL

CLC = Clear Carty Flag 11111000 ?

8TC = Set Carry Flag 11131001 2

CMC = Complement Camry Flag 14110101 2.

CLD = Clear Direction Fiag 111111400 2
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Table 10-1  Am4B6DX/DX2 Microprocessor Integer Clock Commt Summary (continued)

[Penaity
Cache Call:ha

INSTRUCTION FORMAT Hit Miss | Hotes*
REPEATED STHIH-G INSTRUCTIONS {continued)
STD = Set Diraction Flag 11111101 2

CLl = Clear Intesrupd Enable Flag 11111010 5

ST1 = $et Intetrupt Enable Flag 11111011 5

LAHF = Load AH into Flag 10011111 3

SAHF = Store AH into Flags 10011110 2

PUSHF = Push Flags 10011190 413 RW/P
PCPF =Pop Flags 10011101 96 Rv/P
DECIMAL ARITHMETIC

AAA = ASCIU Adjust for Add oc110111 3

AAS = ASCl Adjust for Subtract 00110111 3
AAM = ASCH Adjust for Muliply 11013100 oQao1010 15
AAD = ASCI Adjust for Divide 11010101 oQc01010 14

DAA = Decimal Adjust for Add ooi0a1{11 2

DAS = Decimal Adjust for Subtract | 00101119 2

PROCESSOR CONTROL INSTRUGTIONS
HLT = Halt 4
MOV = Move To and From ControlDebug/Tes1 Registars

GRO from register 00001111 00100010 11 0G0 reg 17 2

CR/CAS from register 00001111 001090010 11 eeareg 4

Reg from CRO-3 0080t 111 00100000 11 eec rag 4

DR0-3 fram register 00001111 00100011 11 eae rag 10

DRE--7 fram ragister aooD1111 60100011 11 eee reg 13

Register from DR6-7 0a001111 ¢0t00001 11 eee reg 9

Ragister from DRO-—3 000Q1111 40100001 11 soe reg 9

TR2 from register 00031111 0a1o00110 11 011 reg 4

TR4-7 from regiztar 00001111 0aig01¢0 11 eee reg 4

Registar from TR3 Goo01111 001001G0 11071 reg 3

Register from TR4--7 gooo1111 goi1p0i1Q0 1 aea reg 4
CLTS = Clear Task Switched Flag goo01111 00000110 ' 7 2

INVD = Invalidate Data Cachs gooo1111 40001000 4
WERMVD Qoon1111 20001001 S

= Write-Back and Invalidate Data Cache
INVLPG = Invalidate TLB Entry

INVLPG memory [ 00001111 | 00000001 mcd11lrfm—| 121 1 HNH
PREFIX BYTES
Address Size Prefix ai100111 1

LOCK = Bus Lack Prefix 11110000 1
Operand Size Prefix Q1100110 1
Segment Override Prafix

Cs: QJ101110 1

DS: 001111410 1

Instruction Set Summary 10-11
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Table 101 Am486DX/DX2 Microprocessor integer Clock Count Summary [continued)
Panalty
if
Cache | Cache |-

INSTRUCTION FORMAT Hit | Miss | Notes*
PROCESSOR CONTROL INSTRUCTIONS {centinued)
“ES: 001007118 1

Fs: 00100110 1

GS: 03100101 1

55 0o110110 1
PROTECTION CONTROL
ARP. = Adjust Requested Privilege Level

From register 01100011 11 regl reg2 9

From memory 01100411 med reg vm
LAR = Load Access Righta

From register pooo1114 | 00000010 11 regi reg2 11 a

From remory coao111id 00oooRio med reg rfm 1"
LGDT = Logd Global Descriptor

Table ragister [ 00001111 | ovooooat med 010 6m | 12 5
LIDT = Load Interrupt Descriptor

Table register [ boooti11 | 00000001 mod 011 pm | 12 5
LLDY = Load Local Descriplor

Tabls register from reg. goo0i1111 | goocooao 11 010 reg 11

Table register from mem. opngi1tid 0oooo0000 mod 010 r/m 1 B
LMSWs=boat Machine Status Word

From register gooe1111 | 00000001 11110 rag 13

From memary 08001111 | 00CCO001 mod 110 rm 13 1
LSL = Load Segment Limit

From register aonoot111t go0000i1 11 regl rege 10 3

From memory ooon117T1 poopooid mod reg rim 10 g
LTR = Load Tosk Register

From Ragister 00001111 | ooocoono M0lireg | 20

From Memory 00001111 | 00ccono0 | med0itlom 20
SGDT

= Store Global Dascriptor Table | 0ooa1111 | 00000001 mudODOr.'mJ 10
SIDT = Slore

Interrupt Desctiptor Table [[oooot111 | 00000001 | mod00f um | 10
SLDT = Stors Local Descriptor Table

To ragister 00001111 | 00000000 11 000 reg 2

Ta memory gooai1i111 aooQooog mod G0 rim 3
SMSW = Store Local Machine Status

To register gooo111% | cooooooi 11 100 reg

To memory 00001111 | DODDODG mod 100 rm 3
STR = Siore Task Rogister

To ragister 00001111 | ©00CC000 11 001 reg 2

To memary 0eg01i11 | 00000000 | mod 00l rim 3
10-12 Instruction Set Summary
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Table 10-1 Am4868DX/DX2 Microprocessor Integer Clock Gount Summary {continued)

Penalty
if
Cache | Cache
INSTRUCTION FORMAT Hit Miss Hotes*
PROTECTION CONTROL {continued)
VERR = Verify Read Access
Registar oouot111 00000000 11 100 vm 11
Mamory 0000t111 oonoonQQ mad 100 rim 11 7
VERW = Verify Write Access
To register ooaoiiiit 00000000 11 107 reg 11
To memaory oooai111 00000000 mod 101 rim 11 7
INTERRUPT INSTRUCTIONS
MNTn = Inlerrupt Type n 11001101 type HNT+ 40 Rw/P 21
fNT3 = Interrupt Type 3 11001100 INT+D 21
NTO = Interrupt 4 if 11001115
Overflow Flag Set
Takan INT+2 21
Not Taken 3 A
BOUND = Intetrupt 5 if Dotect .
Valus Out Range [ 61160610 | mod reg rim
ffin range 7 21
 out of range INT+ 24 2
IRET = Interrupt Retum
Real MadeMirtual Mode 15 8
Protected Mods
To same leval 20 i1 g
To outer laval 38 19 8
Ta nasted task (EFLAGS.NT=1) TS+22 4 g.10
External Intexrupt INT+ 11 Eg|
NMI = Hon-Maxkable Interrupt INT+3 21
Page Fault INT+24 4
Vi85 Exceptions
CLI INT+8 4|
8Tl INT+8 21
INTn INT+@
PUSHF iINT+2 21
POPF INT+8 |
IRET INT+9
IN
Fixad Port INT+80 4|
Variable Port HNT+51 ~
ouT
Fixed Port INT+20 i
Variable Port FNT+51 21
INS MT+50 |
ouTs INT+50 21
REF INS INT+51 M
REP QUTS tNT+51 2t
Note:
* Notes for Table 10-1 can be found following Table 10-3.
Insfruction Set Summary 10-13
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Table 10-2 Task Switch Clock Counts Table

Value for TS
Method
. Cache Hit Miss Penalty
VI/AM4a6 CPU/286/TSS To Am4dgs CPU TSS 162 85
VM/Am486 CPU/286/ TSS To 286 VMS 143 at
VM/AM486 CPU/286 TSS To VM T8S 140 37
Table 10-3 Interrupt Clock Counts Table
Value for INT
Method e m——
Cache Hit Miss Penalty Notes
Reat Mode 26 2
Protected Mode
Imerrupt/Trap gate, same level 44 6 g
Internupt/Trap gate, different level Fil 17 9
Task Gate 37+ TS 3 9,10
Virtual Mode
interrupt/Trap gate, different level 82 17
Task Gate 374+T5 3 L
NOTES {Table 10-1 through Table 10-3)
Abbreviations: Dafinition:
16/32 16/32 bit modoas
Ut uniockedockad
MNALX nmyimmum/maximum
LANL foap/no foop-
AwP Aaal and Yirtual Mode/Frotected Mode
H Reaf Mode
P Protacted Made
TNT taken/mot taken
HNH hitine hit

Nolaes:

1. Assuming that the operand address and stack address faif in different cache sets.

2. Always locked, no cache hit case.

3. Cloks = 10+ maxflegs(imilLn)
m = multiolier value (trin clocks for m = 0}
‘n = 35forim
4. Clocks = {quotientfcountioperand fength)) *7+5
= 8 if count < operand Jength (8/16/32}
5. Clocks {quotient{count/operard lengtht)li *7+9

cache sels:

8. Penalty for cache miss: add six clocks for every 16 bytas copled to new glack frame.

9 if count ¢ operand length (8/16/32)
6. Equalnot equal cases (penally is the same regardiess of lock).
7. Assuming that addresses for memory read (for indirection), slack push/pop, and branch falf in differant

9. Add 11 clocks for sach unaccessed descriptor load.

10. Refer to Table 10-2 for value of TS,

11.  Add four extra clocks to the cache miiss penalty for sach 16 bytes.
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NOTES {continuad)
For notes 12-13: (b = 0-3, non-zero byte number);
fi = 0—1, non-zero nibble number);
frr = 03, non bit numbsr in nibble);
12, Clocks = B+d(bet}+ 3(f+1) + 3(ns1}

6 if second opevand = 0
Gpdfbs1) + 3(i+1) + 3fs1)
7 if second operand = 0
For notes 14—15: {n = bit position 0-31)
14, Clocks = 7 +3(32—)

§ if second operand = 0
15. Clocks = 8+ 3(32-n)

7 if second operand = 0
16. Assuming that the two string addresses falf in different cache sets.
17. Cachemiss penalty: add six clocks forevery 16 biytes compared. Entite penalty on first compare.
18 Cache miss penafly: add two clocks for every 18 bytfes of data. Ertire penalty on f;rsr load.
16. Cache miss penally: add four clocks for every 16 bytes moved.

{One clock for the first operation and three for the second)
20. Cache miss penafly: add four ciocks for every 16 bytes scanned.

{Two clocks each for first and second operations)
A21. Referio Table 10-3 for value gn INT
22. Clock count includes one clock for using bother displacement and immediate.
23. Refer to assumption & (see Section 10.1.2) in the case of a cache miss.

13 Clocks

Table 10-4 Amd86DX/DX2 Microprocessor FO Instructions Clock Count Summary

Protacted | Protected | Virtual
Real Mode Mode 8036
INSTRUCTION FORMAT Moda |(CPL<IOPL)|(CFL-IOPL)| Mode | Nalas
LI'0 INSTRUCTIONS
IN = Input from:
Fixed Port 1110010w portnumier i4 29 27
Variable Port 111011 0w 14 28 27
OUT = Cutput to: _
Fixed Port ' 111001 1w port number 16 11 ) 29
Variable Port 111011 1w 18 1Q 30 29
INS = Input  Byte'Word 0110110w 17 14 82 30
from DX Port
OUTS = Output  Byte'Word c110111w
to DX Port 17 10 32 3 1
REF INS = Input String [ r1110011 [o110150w | 16+8¢ 0480 3048¢ 20.48¢ 2
REF OUTS = Output Shing [ 11110011 fot1ot11w | 17+5¢ 1145¢ 31+6c | 4040 3

Notas:

1. Two clock cache miss penalty in all cases.

2. ¢ =count i CX or ECX.

3. Cache miss panafty in alf modes. Add 2 clocks for every 16 bytes. Entire penalty on second operation.
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Table 10-5 Amd86DX/DX2 Microprocessor Floating-Point Clock Count Summary

10-16

Concurreri
Cache Hit Executlon
Avg {Lower Avy (Lower
Range— Penalty if| Hange—
Upper GCachs Upper
INSTRUCTION FORMAT Range} Misa Rangs] [Moles
DATA TRANSFER
FLD = Real Load to ST (0):
32-bit mamary 11011 001 | mod 000 m s-i-bidisp. 3 2
B4-bit mamory 11611 101 | modoOmm | sibidisp. '3 3
B0-bit memory 11011 011 | mod 101 ¥m s-i-bidisp. L 4
5Tl 11011 011 | 11000 STii) 4
FILD = Integer Load to ST(D)
16-bit memory 11011 111 | med000rm | s-i-bvdisp. 14.5{13-18) 2 4
32-bit memory J11011 @111 mod 000 rim s-i-bidizp. 5(812) 2 4{2-4}
&4-bit memoary 11011 111 | mod 101 v | s-i-bidisp. 318.8{10-18) 3 78(2-8)
FBLD = BCD Load Yo ST(0) [11011 111 ] modi00rm | sibidisp. 75(70—103) 4 7.712-8)
FST = Store Aeal from ST}
32-bit memory 11811 10 | mod 018 rim s-i-bidisp. 7 1
64-bit meamery 11011 101 | modp1owm | s-i-bidisp. B 2
ST} 11011 101 | 11810 ST{i) a
FSTP = Store Real from ST{0) and Pop
32-bit memory 11031 001 | mod 011 r/m 3--bidisp. 7 1
&4-bit memaory 11011 101 | mod0l vm | s-i-bidisp. 8 2
B0-bit memory 11011 011 | med 111 vm s-i-b/disp. g
ST{i 11011 101 ] 11001 ST} 3
FIST = Store integer from ST{D)
16-Dit memory 11011 111 | mod 10 eim | s-i-bidisp. 33.4(28-34)
32-bit memory 11011 011 | modQ0rim | s-i-bidisp. 32.4{28-34)
FISTP = Store Imeger from ST{0) and Pop
16-bit memory $1011 111 | modONeim | s-ibidisp. 33.4(28-34)
32-pit memory 11011 911 | mod O rim s--bidisp. 33.4(28-34)
&4-bit mamory 11011 111 | mod 11inrm s-i-bricdisp. 33.4{29-34)
FBSTP = [11011 111 ] mod110wm | sibidisp. 175(172-176}
Store BCD from ST{0) and Pop
FXCH = Exchange ST(0} and ST{i) |‘1 1011 001 1o01 STii) 4
COMPARISON INSTRUCTIONS
FCOM = Compare ST(0) with Real
32-bit memory 11011 000 | modOwm | s-i-bidisp. 4 2 1
&4-bit memory 11011 100 | mod MO /m | s-i-bicksp. 4 3 1
5T(0) 11011 000 1810 ST 4 1
FCOM P = Compare ST(D) with Real and Pop
32-bat memory 11011 000 | mod 011 rm s-i-bidisp. 4 2 1
84-hit mamory 11011 100 | mod 011 m g-i-bulisp. 4 a 1
ST 11011 oo 11011 ST 3 1
Instruction Set Summary
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Tahle 10-5 Am486DX/DX2 Microprocessor Floating-Point Clock Count Summary [continued)

Concurrant
Cache Hit Execution
Avg (Lower Avg {Lower
Range— Penalty if| "Range—
Uppat Cachs Upper
INSTRUCTION FORMAT Range) Miss Rangs) [Notes
COMPARISON INSTRUCTIONS (Continued)
FCOMPP = Compare ST(D) [11011 1101101 1001} 5 1
with 8T{i) and Pop Twica
FICOM = Compare ST{0} with Inleger
16-bit mamory 11011 110 | med210rim | s-ibidisp. 18(16-20} 2 1
32-bit mamory 11011 010 | mod 010 rim | s-i-bidisp. 16.5(15-17) 2 1
FICOM P = Compare ST(0} with Integer
16-bit memory 11011 110 | modOt1em | s-i-bicisp. 18{168-20) 2 1
32-hit memory 11041 010 [ mod 011 eim | s--breisp, 16 5{15-17) 2 i
FTST = Compare ST(O) with 0.0 [ 11011001 [1110 0100] 4 1
FUCOM = Unordered [11011 001 [11110 STH| 4 1
compara ST{0) with STii)
FUCOMP = Unordered compare [ 11011 101 J[11101 ST 4 1
ST{0) with ST(i} and Pop
FUCOMPP = Unordered compare [ 11011 010 [ 1110 1001 | 5 1
ST} with ST(i) and Pop Twice
FXAM = Examine ST(0) 171071 001 [1110 010%] 8
CONSTANTS
FLDZ = Load + 0. into ST{1) 11011 o1 [11011 1110 4
FLD1 = Load + 1.0 into ST{0) 11611 o1 [11011 1000 4
FLDM = Load 7 Into ST{0) 11011 001 [11011 101 ] 2
FLDL2T = Load log{10} inte STW0) [ 11011 o001 [11011 100 8 2
FLDLZE = Load logo{e) into ST(0) [ 11011 001 J11811 1011 8 e
FLDLGZ = Load log,o(2) inte ST(o} [1101+ 001 11011 1100 8 2
FLDLNZ = Load log,(2) into ST(o) ji1¢11 oot f1o1t 110 8 2
ARITHMETIC
FADD = Add Real with ST{0)
BT{0)« ST(0) + 32-bit memory 11011 000 | mod 03 rim 5-i-b/disp. 10{8-20) 2 HE-1T}
ET{0)— ST(D) + 6d-hit mamary 11041 100 | mod000rm | s-i-bicisp, 10{8-20} 3 {517}
ST{d}+ ST ~ ST{O) 11011 doo[11000 ST 10(8-20) 7517}
FADD = Add resl with ST(@} and [11011 110 ]11000 ST 10(8—20) 7(5-17)
Pop (STii) — ST(0) — ST{i}}
FSUB = Subiract resl from ST{0}
ST+ STI0} — 32-bit memory 11011 6060 | mod 100 mm | sibidisp, 10(8—20) 2 7517
ST(0)+ ST(0} — B4-bit mamary 11041 100 { mod 100 mm | s-i-bidisp, " 10(8-20) 3 7(5-17)
ST{d)— ST{O} — STt 11011 0 [t1101 BT 10{8—20) 57}
FSUBP = Subtract reat from ST(i) (11011 11011101 ST | s-i-bidisp. TOHB~20} 7I5-17)
and Pop (ST{l) — STi0} - ST@) )
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Table 10-5 Am486DX/DX2 Microprocessor Floating-Point Clock Count Summary (continued]

Concurreht
Cache Hit Exscution
Avy [Lower Avg (Lower
Range- Penalty if| Range=
Upper Cathe Upper
INSTRUCTION FORMAT Range) Miss Rangs) |Notes
ARITHMETIC {Coninued)
FSUBE R = Subiract real frem ST()
ST{0}+— 32-bit memary — ST(D) 11011 000 | mod 000 m | sibudisp. 10{8-20) 2 2517}
ST{0)~— 64-bit memory — ST{H 11011 100 | mod 000 m 5-I-disp. 10{8-20) 3 H5-17)
STid)— ST{i} - ST{0} 11011 oo [1110108Tl 10{8~20) 7517
FSUBRP = Subtract realreversed [11011 110 [1+100 ST} | sibidisp. 10(8-20) 7(5-17)
and Pop from (ST{i) -
ST - ST
FMUL = Multiply real with ST(D)
STi0)y— ST{0) x 32-bit memory 11011 CQ0 | med 00O M | s-i-vdisp. 1 2 8
ST(O— ST(0) x 64-bit mamory 11011 100 | mod 000 | sibidisp. 14 3 1"
STidj— STIO) x STI} 11011 doo [11001 ST 16 13
FMULP = Multiply ST(D) with ST) [110171 110 [11001 ST} | si-bidisp. 16 13
and Pop (ST{1) ~ ST{0} xST(i))
FDIV = Divide $T(0) by Real
ST{0}— ST(CW32-bit memory 11011 000 | mod 110 rm s-i-hidigp, 73 2 70 3
STO— ST{OVE4-bit memory 11011 100 | mod 111G rim s-i-bidizp. 73 3 70 3
STid)= STOVSTH 11041 dob [1111d STH) 73 70 3
FDIVP = Divida ST(0) by ST(i) 11011 10 fi1111 $T()) | s-ibidisp. 73 70 a
and Pop (ST{[) — STI(0) / ST{i)}
EDIVR = Divide real reversed (Real’ST(0))
ST(0)«— 32-bit mamory/ST{0) 11011 000 | mod 111 im | s-tbidisp. 73 2 70 3
ST{0}= B4-bit memony/ST(D) 11011 {00 | med {11 m s-i-b/disp. 73 3 70 2
ST{dh— STHKSTID) 11011 oo [1111d ST 73 0 3
FDIVRP = Divideresireversed ~ [11011 11011110 ST{}| s-i-bidisp. 73 70 3
and Pop (3T{i) - ST{D) / ST}
FIADD = Add Integer to ST(D)
ST(O}— ST(0} + 16-bit memory 11011 10 | mod000wm | s-i-bidisp. 24(20-35) 2 7517
STi0)=— ST(0) + 32-bit memory 11011 010 | mod GO0 vm | s-i-bidisp. 22 5{19-32) 2 T5-17)
FISUB = Subtrac! integer from ST(0)
ST{&=— ST{0) — 18-bit memory 11011 110 | mod 100 em | s-i-bidisp. 24{20-35} 7517}
ST{0j+— ST(0)—32bitmemory [ 11011 010 | mod 100rm | sibidisp. 22.5{19-32) 7(5-17)
FISUBR = Integer Subtract LReversed
ST{(+ 16-bit memory — ET{0) 11011 11¢ | mod 101 m s-i-b/disp. 24{20-35) 2 517
ST 32-bit memory - ST{0) 11011 910 | mod 101 rim g-i-bidizp. 22.5{19-32} 2 7517
FRIUL = Multiply Integar with ST(0)
STi0)= ST{O) + 16-bit memory 11011 110 | mod 001 ¥m s-i-bidisp. 25(23-27) 2 8
STy ST + 32-bit memory 11¢11 010 | mod 001 v/m &-i-bidisp. 23 5(22-24} 2 8
FIDIV = Integer Divida
STi0)« ST(O)¥16-bit memory 11011 110 | med 10 m | sibidisp. B7(85-80) 2 70 a
ST{U)~— ST{OY3I2-bit memory 11011 010 | mod 1O v/m | s-i-hidsp. 85 5(84-86) 2 70 3

10-18
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Table 10=5 Am486DX/DX2 Microprocessor Floating-Point Clock Count Summary [continued)

Concurrent
Cache Hit Execution
Avg {Lower Avg (Lower
.Range— Panalty If| - Range-~
Upper Cache Upper
INSTRUCTION FORMAT Range) Miss Range] [Notes
ARITHMETIC {Continuad)
FIDIVR = Integer Divide Reversed
STi0)— 15-bit memary/ST(0) 11011 110 | med 111 6m | s-i-bidisp. 87{B5-80) 2 70 3
STi0)=— 32-bit mamoryST(O) 11011 010 | mod 111 m | s-i-bidisp. B5 5{84-86) 2 70 3
FSQRT = Square Root 11091001 1111 $010] s-ibidisp. B5.B{#3-87) 70
Facale = Scals ST(D) by ST{i} [11o11 111 J1111 1101] sibidisp. 31430-32) 2
Futract = [11011001 1111 0100] sibudisp. 18{16—20) 4(24)
Extract compansnte of ST{D)
FPREM = Partial Reminder 11011001 1111 1000] sibdisp. 84(70-138) 2(2-8)
FPREM1 = Partial Reminders (IEEE}| 11011 001 1111 01011 si-bidisp. "84 5(72-167) 5.5(2—18)
FRNDINT = Absolute value of ST{0) | 11011 001 1111 1100 s-i-brdisp. 28.1(21-30) T.4{2~B)
FABS = Absoulte value of ST(H) 11011001 1111 0001 s-ibisp. 3
FEHS = Change sign of ST{0} 11011 1011111 0000 =-i-bidisp. 6
TRANSCENDENTAL
FCO3 = Cosins of ST(0) 11011001 1111 1111 sibidisp. 241(183-279) 2 67
| FPTAN = Partial tangent of 5T(0] 1101100t 1111 0010 sibidisp. 244{200-273) 70 67
FPATAN = Partial arclangent 11011001 1111 0011 z-ibidisp. 28%{218-303) 5[2-17) 6
FSIN = Sine of ST(0) 11011001 [1111 1110 s-i-bidisp. 241{193-270) 2 5,7
FEINCOS = Sine and cosine of 3T{O)f 110411 001 |1 111 1011 sibrdisp. 291(243-329) 2 6,7
F2dM = 25T 1 11011001 |[1111 D000} si-bidisp. 24291402703 2 8
FLY2X = 5T{1) X logST{D)) 11011001 [1111 0001] sibidisp. 311{ 186329} 13 &
FLY2XP1 =5T{{} x log; 11011001 |£111 1001 sibidsp. 313{171-326) 13 5
(5TY) +1.0)
PROCESSOR CONTROL
FINIT = Inftialize FPU 11611 013 [1110 004 1] s-ibicisp. 17 4
F5STSW AX = Stove status word Ito AX. [ 11011 111 [1110 0000] sibidisp. 3 5
FSTSW = Stone stols ward Imamemary | 11011 101 med 111 v'm s-i-bidisp. a
FLDCW = Load control word 11011 001 | mod 101 rm s-i-bydisp. 4 2
FSTCW = Load control word 11011 1M mod 111 m s-i-bidisp. 3
FCLEX = Cleat axcsptions 11011 011 1112 0010] sibdisp. 7
FSTENV = Store envirohment 11011 001 | mod 110 em | si-bidisp.
Real and Virlual Mades 18-bit Addrass ' 14 4
Real and Virlual Modes 32-bit Address T4 4
Frotected Mode 16-bit Address 56 4
Protected Mode 32-bit Address 56 4
FLDEVN = Load environment [11011 001 | mod 100 om | s-ibidisp.
Rseal and Virtual Modas 16-bit Addres= 44 2
Rezl| and Virtual Modes 32-bit Addrass A4 z
Protected Mode 16-bit Addrass k2 2
Protected Mode 32-bit Address 34 2
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Table 10-5 Am486DX/DX2 Microprocessor Floating-Point Clock Count Summary {continued)

Concurrent
Cacha Hit Execution
Avyg (Lower Avg (Lower
Range— Penally if| HRange-
Upper Gache Uppsr
INSTRUCTION FORMAT Range) Miss Range) |Notes
PROCESSOR CONTROL {Cantinued)
FSAVE = Save slate [ir011 101 [ mod 100 vim | sibidisp. |
Real and Yirlual Modes 16-bit Addrass 154 4
Beal and Virtual Modes 32-bit Address . 154 4
Protected Mode 16-%it Address 143 4
Protected Mods 32-bit Address : 143 4
FASYOR = Restore stite [11011 101 [ mod 100 vm | aib/ |
Raal and Yirtual Modes 16-bit Address 131 23
Real and Yirual Modes 32-kit Addrass 131 27
Protacted Moda 16-bit Address 120 23
Proterted Mode 32-bit Address 120 27
FINGSTP = Increment Stack Peinter [ 11011001 1111 0111] 3
FDEGSTP = [11o1100 1111 0110 3
Decremshl Stack Pointar
FFREE = Free $Tii) [17011 101 |11000 ST | 3
FNOP = No opstations [15011 001 [t101 0000 3
WAIT = Wait until FPU ready 10011011 13
{Minum/Maximuin)
Noias:

" 1. If aperand is 0, clock counts = 27.
2. If operand is 0, clock counts = 28.
3. If CW.PC indicates 24 bit precision then subtract 38 ¢locks.
it CW PC indicates 53 bit precision then subtract 11 clocks.
4. If there is a numeric error pending from a previous instruction, add 17 clocks.
5. ifthere is a numeric erior pending from a previous instruction, add 18 clocks.
6. The INT pin is poiled several times while this instructior is executing to assure short interrupt latency.
7 If ABS (operand) is greater than n/4 then add n clocks. Where n = (operand/{rn/4)).

10.2

Instruction Encoding

All instruction encodings are subsets of the general instruction format shown in

Figure 10-1. Instructions consist of one or two primary opcode bytes, possibly an
address specifier consisting of the “mod r/m” byte and “scaled index” byte, a displace-
ment if required, and an immediate data field if required.

Within the primary opcode or opcodes, smaller encoding fields can be defined. These
fields vary according to the class of operation. The fields define such information as
direction of the operation, size of the displacements, register encoding, or sign extension.

Almost all instructions referring to an operand in memory have an addressing mode byte
following the primary opcode byts(s). This byte, the mod r/m byte, specifies the address
mode to be used. Certain encodings of the mod r/m byte indicate a second addressing
byte, the scale-index-base byte, follows the mod r/m byte to fully specify the addressing
mode. :

10-20
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10.2.1

10.2.2

Addressing modes can include a displacement immediately foilowing the mod r/m byte, or
scaled index byte. If a displacement is present, the possible sizes are B, 16, or 32 bits.

If the instruction specifies an immediate operand, the immediate operand follows any
displacement bytes. The immediate operand, if specified, is always the last field of the
instruction.

Figure 10-1 ilustrates several of the fields that can appear in an-instruction, such as the
mod field and the r/m figid, but Figure 10-1 does not show all fields. Several smaller fields
alsc appear in certain instructions, sometimes within the opcade bytes themselves.

Table 10-6 is a complete list of all fislds appearing in the Am4860DX/DX2 microprocessor
instruction set. Detailed tables jor each field follow Table 10-6.

32-Bit Extensions of the Instruction Set

With the Am488DX/DX2 microprocessor, the 8086/80186/ 80286 instruction set is
extended in two orthogonal directions: 32-bit forms ef all 16-bit instructions are added to
support the 32-bit data types, and 32-hit addressing modes are made available for all
ingtructions referencing memory. This orthogonal instruction set exiension is accom-
plished having a Default (D) bit in the code segment descriptor, and by having two
prefixes ta the instruction set.

Whether the instruction defaults to operaticns of 18 bits or 32 bits degends on the
setting of the D bit in the code segment descriptor, which gives the default length {either
32 bits or 16 bits) for both operands and effective addresses when executing that code
segment. In the Real Address Mode or Virtual 8086 Modse, no cotle segment descriptors
are used, but a D value of 0 is assumed internally by the Am486DX/DX2 microprocessor
when operating in those modes (for 16-bit default sizes compatible with the
8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effective Address Size Prefix, individually
allow averriding the Default selection of operand size and effective address size. These
prefixes can precede any opcode bytes and atfect only the instruction they precede. If
necessary, one or both of the prefixes can be placed before the opcode bytes. The
presance of the Operand Size Prefix and the Effective Adoress Prefix toggles the operand
size or the effective address size, respeciively, to the value “opposite” from the Default
setting. For example, if the default operand size is for 32-bit data operations, then the
presence of the Operand Size Prefix toggles the instruction to 16-bit data operation.
Another example, if the default effective address size is 16 bits, the presence of the
Effective Addrass Size prafix togales the ingtruction to use 32-bit effective address
compuiations.

These 32-bit extensions are avaitable in all Am486DX/DX2 microprocessor modes,
including the Real Address Mode or the Virtuat 8086 Mode. In these modes the default is
always 18 bits, so prefixes are needed to specify 32-bit operands or addresses. For
instructions with more than one prefix, the order of prefixes is not imporfant.

Unfess specified otherwise, instructions with 8-bit and 16-bit operands de not affect the
contents of the high-order bits of the extendad registers.

Encoding of Integer Instruction Fields

Within the instruction are several figlds indicating register selection, addressing mode, and
80 on. The exact encodings of these fields are defined immediately ahead.
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Figure 10-1

Qeneral Instruction Format

|TTTTTTTT!TTTTTTTT| mod TTTr/m | ss index base |d32|16| 8| none data32 | 18| 8| none

——

07685320 ?65320

e -
g g

mud rm’” 5= |-b
byte byte address immediate
opcode S displacemiant data {4, 2, 1
{G_Pe or two lgtes} (4, 2, 1 bytes bytes or
{ g;;g;:r;it}an register and address or none} nane}
moda specifier - 17852A084
10.2.2.1 Encoding of Operand Length {w} Field
For any given instruction performing a data operation, the instruction is executing as a
32-bit operation or a 16-bit operatien. Within the constraints of the operation size, the w
field encodes the operand size as either one byie or the full operation size, as shown m
Tabla 10-7.
10.2.2.2 Encoding of the General Register {reqg) Field
The general ragister is specified by the reg fiekl, which ¢can appear in the primary opcode
byies, or as the reg field of the “mod r/m” byte, or as the r/m fiekd of the “mod r’/m” byte.
The enceding of the reg field when the w field is not present in the instruction is shown in
Table 10-8.
The encoding of the reg field when the w field is present in the instruction during 16-bit
data operations is shown in Table 10-9.
The ragister specified by the reg field when the w field is prasent in the instruction during
32-bit data operations is shown in Tabie 10-10.
Table 10-6  Fislds within Am486 Microprocessor Instructions
Fleld Name |Description Number of Bits
w Specifies if Data is Bylte or Full Size {Full Size is either 16 or 32 bits) 1
d Specifies Direction of Data Operation 1
5 Specifies ¥ an Immediate Data Field Must be Sign-Extended 1
reg  |General Register Specifier 3
mad r/m | Address Mode Specifier (Effective Address can be a General Register) 2 far moad; 3 for r/m
58 Scale Factor for Scaled Index Address Mode 2
index Ganeral Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, 35, DS, ES 2
sregd Segment Register Specifier for CS, S8, DS, ES, FS, G5 3
ttn For Conditional Insfructions, Specifies a Condition Asserted or a Condition 4
Negated
Tabie 10:7 Encoding of the Operand Length (w] Field
w Field Operand Size During 16-Bit Data Operations | Operand Size During 32-Bit Data Operations
4] 3 hits 2 bits
1 16 bits 32 biis
Note:

Table 10-1 through Table 10-5 show encoding of individual instrictions
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Table 10-8 Encoding of the reg Field {w Field not Present Instruction}

rag Register Selected During | Register Selected During
Field 16-bit Data Operations 32-bit Data Operations
0co AX EAX
00 CX ECX
010 DX EDX
oM BX EBX
100 ) SP ESP
101 EP EBP
110 _ Sl ESI
111 DI EDI

Table 10-8 Encoding of the reg Field {w Field is Present, Instruction 16 Bits)

Reqgister Specified by reg Field During 16-bit Data Opetations
Function of w Field

red (when w = 0) when w = 1)
000 AL AX

001 cL CX

010 DL DX

011 BL BX

100 ' AH SP

101 CH BP

110 D 2|

111 BH DI

Table 1010 Register Speclfied by the reqg Field (w Field Is Present, Instruction 32 Bits)

Register Specified by reg Field During 32-bit Data Operations
reg Function of w Field
(when w = 0) {whenw =1)

000 AL EAX
001 CL ECX
010 DL EDX
01t BL EBX
100 AH ESF
101 CH EBP
110 DH ESI
i1 BH ED}

10.2,2.3

Encading of the Segment Register (sreg) Field

The sreq field in certain instructions is a 2-bit fieid, aliowing one of the four 80286
segment registers to be specified. The sreg figld in other instructions is a 3-bit field,
allowing the Am486DX/DX2 microprocessor's FS and GS segment registers to be
spacified.

Instruction Set Summary
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Table 10-11 2-Bit sreg2 Field

2—BIt sreg2 Fleld Saegment Register Salected
00 ES
01 CSs
10 38
1 DS

Table 10-12 3-Bit sreg3 Fleld

3-Bit sreg3 Fleld Segment Reglster Selected
000 _ ES
om c5
™Mo 88
011 DS
100 ' FS
101 &GS
110 do not use
i do not use

10.2.2.4 Encoding of Address Mode

Except for special instructions such as PUSH or POP, where the addressing mode is
predetermined, the addressing mode for the current instruction is specified by addres-
sing bytes following the primary opcode. The primary addressing dyte is the "mod r/m”
byte, and a second byte of addressing information, the "s-i-b" {scale-index-base) byte,
can be specified.

The s-i-b byte is specified when using 32-bit addressing mode and the “mod r/m" byte
has rfm = 100 and mod = 90, 01, or 10. When the s-i-b byle is present, the 32-bit
addressing mode is a function of the mod, ss, index, and base fields.

The primary addressing byte, the “mod rfm” byte, also contains three bits (shown as TTT
in Figure 10-1} sometimes usad as an extension of the primary opcode. The three bits,
howevar, can also be used as a register field {reqg).

When calculating an sffective address, sither 16-bit addressing or 32-bit addressing is used.
16-bit acddressing uses 16-bit address components to calculate the effective address,
while 32-bit addressing uses 32-bit addrass components to calcuiate the effective
address. When 16-bit addressing is used, the “mod rfm” byte s interpreted as a 16-bit
addressing mode specifier. When 32-bit addressing is used, the “mod r/m” byte is
interpreted as a 32-bit addressing mode specifier.

Table 10-13 through Table 10-15 define all encodings of all 16-bit addressing modes and
. 32-bit addressing modes.
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Table 10-13 Encoding of 16-Bit Address Mode with “mod r/im” Byte

mod r’m Effective Address
0o 000 DS:[BX + Sl
00 001 DS:{BX + D]
o0 010 SSBP + 5]
00 011 SS{BF + DI]
0¢ 100 DS:[51]
0c 101 DS
Qo 1190 DS:di16
00 111 DS:[BX]
07 000 DS.[BX + 5L + 08)
0t 001 DS:[BX + DI + d]
01 Q0 SS{BP + 31 + dg]
01011 S5BP + DI + dg]
01100 DS:[S! + d]
01 101 DS{DI + d8]
011140 SSIBP + d8]
o1 111 DS:BX + 48]
10 000 DS{BX+ Sl + a16]
10 001 DSBX + Dl + d18]
10 010 $SBP + S+ d16]
10 011 SSIBP + Di + d16]
10100 DSSI + d16]
10101 DS[DI + dig]
10 110 S5:BP + d16]
0111 D3IBX + di6}

Reglster Specified by r'/m During 16-Bit Data Oparations
Functlon of w Field

mod rim (wheh w = 0) {(whenw = 1)
11 000 AL AX

11 001 CL CX

11 010 DL DX

11 011 BL BX

11 100 AR SP
11101 CH BP
11110 CH 5t

11 111 BH DI

Register Specitied by r/m During 32-Blt Data Operatlons
Functlon of w Fleld

mod r/m (when w = 0) (whenw=1)
11 000 AL EAX
11 001 CL ECX
11 010 DL EDX
11 011 BL EBX
1100 AH ESP
11101 CH EBP
1110 - DH ESI
11111 BH EDI
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Table 10-14 Encoding of 32-Bit Address Mode with “mod r/m” Byte [No *s-5-b” Byte Prosont]

mod r/m " | Effective Address

00 000 DS EAX]

00 001 DS{ECX]

00 010 DS:[EDX]

00 011 DSEBX]

0C 100 s-ibr is present
o0 101 DS:d32

00 110 DSIESI

00 111 DS{EDI

01 ooC DS {EAX + 08|
01 o001 DS{ECX + dg]
01 010 DS{EDX + d8}
01 011 DS:[EBX + d8]
01 100 s-i-b is presen
01101 SS{EBP + d8]
01110 DS:[ESI + d8)
0t 111 DS:[ED} + dB]
10 000 DSEAX + d32]
10 ¢o1 DS [ECX + d32]
10 010 DS [EDX + d32]
10011 DS[EBX + d32]
10 100 s-i-b is present
10104 SS[EBP + d32j
10110 DSESI + d32]
10 111 DS{EDI + d32}

Register Speciied by 1eg or /in Duting 16-Bit Data Operations:

mod Km Function of w field
(when w = 0} {whah w = 1)
11 000 AL AX
11 001 CL _ CX
11 010 DL X
11 01t BL Bx
11 100 AH SP
1101 CH BP
11110 DH 3l
11 111 BH DI

Reglster Specifled by rag of rfm During 32-Bit Data Operations:

Function of w field
mod rim (when w = 0} (whenw=1)
11 000 AL EAX
11 001 CL ECX
1010 _ DL EDX
1011 BL EEX
11100 AH ESP
11 101 CH EBP
11110 DH ESI
1t 111 BH EDt
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Table 10-15 Encoding of 32-Bit Address Mode (“mod r/m” byte and “s-i-b” byle present)

mod base Effective Addrass

00 000 DSIEAX + (scaled index]]

00 001 DS ECX + (scaled index)]
00010 DS[EDX + (scaled index)}

go o1l DS {EBX + {scaled index)]

00 100 S3[ESP + {scaled index)]
00101 D5 [d32 + (scaled index)]

00 110 DS[ESI + {scaled index)]

00 111 DS{EDI + (scaled index)]

01 000 DSEAX + {scaled index} + d8]
01 001 DS{ECX + (scaled index) + d8]
01 010 DSIEDX + (scaled index) + d8]
01 011 DSIEBX + (scaled index} + d8]
01 100 SS{ESP + (scaled index} + d8]
01 101 SS{EBPF + (scaled index) + d8]
01 110 DSIESI + (scaled index) + d3j
0t 111 DSIEDI + {scaled index) + d3]
10 000 DS{EAX + (scaled index) + d32]
10 001 DS{ECX + (scaled indax} + d32]
10010 DSEEDX + {scaled index) + d32]
10 011 DSIEBX + (scaled index) + d32]
10 100 SSESP + (scaled index) + da2]
10 101 SS:[EBP + (scaled index) + d32)
16110 DS [ES! + (scaled index) + d32]
10111 DS:EDI + (scaled index) + d32]

Note:

Mod figld in mod r/m byte; ss, index, base figlds in s+-b byfe.
S8 . Scale Factor
a0 x1
a x2
0 x4
1 x8

index Index Register
000 EAX
001 ECX
10 EDX
on EBX
100 no index reg**
1 EBP
110 ESI
" ED
**imporiant Note:

When the index field is 100, indicating "no indax register,” then the ss field MUST equal 09. if the

index is 100 and ss does not equal 00, the effective address is undefined.

Instruction Set Summary
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10.2.2.5 Encoding of Operation Direction {d) Field _
In many two-operand instructions, the d field is present fo indicate which operand is
considered the source and which is the destination.
Table 10-16 Encoding of d Field
d Diraction of Operation
0 Register/Memary <—Ragister “rag” Field indicates Source Operand; “med r/m” ar “mod
ss index bage” indicates Destination Operand
1 Register «——Reagister/Memaory “reg” Fiedd indicates Destination Operand; “moed r/m” or
“mod 35 index base” indicates Source Operand
10.2.2.6 Encoding of Sign-Extend (s} Field _
The s field occurs primarily to instructions with immediate data fields. The s field has an
effect only if the size of the immediale data is 8 bits and is being placed in a 16-hit or
32-hit destination.
Table 10-17 Encoding of s Field
5 Effect on immedIate Data & Etfect on Immediate Data 16/32
0 Nane None
1 Sign-Extend Data None
& to fill 16-Bit or 32-Bit Destination
10.2.2.7 Encoding of Conditional Test (tiin] Field _
For the conditional instructions {(conditional jumps and set on condition), ttn is encoded
with “n” indicating to use the condition (n = 0} or its negation {n = 1}, and tit giving the
condition 1o test.
Table 1018 Encotiing of tttn Field
Mnemonic |Condition titn
O Ovorlow cgoo
NG MNo Cverflow coo1
B/NAE Below/Not Abave or Equal 0010
NB/AE Not Below/Abave or Equal oo
E/Z EqualiZero 0100
NE/NZ Mot Equal/Not Zero o101
BE/NA Below or EquakNot Above 0110
NBE/A Mot Below or EquaiyAbove 0111
5 5ign 1000
NS Mot Sign 1001
P/PE Parity/Parity Even 1010
NP{FO Not Parity/Farity Odd 1011
L/NGE Less Than/Mot Greater or Equal 1100
NL/GE Nat Less ThanvGreater or Equal 1101
LE/G Less Than or Equal/Greater Than 1110
NLE/G Not Less or Equal/Greater Than 1111
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Table 10-19 Encoding of ece Field

When Interpreted as Control Register Field

oaa Code Reg Name
000 CRO
010 CR2
011 CR3

Do not use any other encoding

When Interpreted as Debug Register Fiald

ece Code FReg Name
Y BRO
001 DR
01@ DR2
011 DR3
110 DRé
it DR7?

Do not use any other encoding

When Interpreted as Tesi Register Fleld

ece Code Reg Name
011 - TR3
100 TR4
101 TR5
110 TRS
111 TR?

" Do not use any other encading

10.2.2.8

10.2.3

Encoding of Control or Debug or Test Register {eee) Field -
This field is used to load and store the Control, Debug, and Test registers,

Encoding of Fleating-Point Instruction Fields

Instructions for the FPU assume one of the five forms shown in the following table, In all
cases, instructions are at least two bytes long and begin with the bit pattern 110118B.

QP = Instruction opcode, possible split into two fields; OPA and OPB
MF = Memory Format

00—32-bit real
01—32-bit intéger
10—64-bit real
11—16-bit integer

P =Pop
0—-Da not pop stack

1—Pop stack after operation

d = Destination

Instructlon Set Summary
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0—Destination is ST{0)
1—Destination is ST(i}
R XOR d = 0-Destination {op) Source

R XOR d = 1-Source {(op) Destination

ST{)) = Register stack alement
000 = Stack top
001 = Second stack elemenrt

111 = Eighth stack element

mod (Mode field) and r/m {Register/Memery specifier} have the same interpretation as
the corresponding fields of the integer instructions.

S--b (scals index base) byte and disp {displacemant) are opticnally present in instruc-
tions that have mod and r/m fields. Their presence depends on the values of mod and

r/m, as for infeger instructions.

Table 10-20 Encoding of Flaating-Point Instruction Fields

Instruction
First Byte Second Byte Seﬂ"v‘;:“ Optional Fields
1 11011 OPA 1 mod 1 [ orB r'm s-i-b disp
2 11011 MF OFA mod OPB tin s8-i-b disp
3 11011 d P OPA 1 1 OPB ST}
4 11011 o ¢ 1 1 1 1 OP
5 11011 o 1 1 1 1 1 QF
15-11 10 9 8 7 6 5 4 3 2 1 0
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CHAPTER

1 1 COMPARISON OF Am486DX/DX2 CPU AND l'l
THE 386 CPU WITH MATH COPROCESSOR

The differences between the Am4860X/DX2 microprocessor and the 386 microproces-
sor are due to performance enhancements. The differences between the microproces-
sors are listed below.,

1.

2.

10.

Instruction clock counts have been reduced to achieve higher performance. See
Section 10,

The Am486DX/DXZ2 microprocessor bus is significantly faster than the 386 micro-
processor bus, Differences include a 1X clock, parity support, burst cycles, cache-
able cycles, cache invalidate cycles, and 8-bit bus support. The Hardware interface
and Bus Operation Sections {see Chapters 6 and 7 of this manual) should be care-
tully read to understand the Am488DX/DX2 microprocessor bus functionality.

To support the on-chip cache, new bits have been added to control register 0 {CD
and NW) (see Saction 2.2.2.1), new pins have been added io the bus (see Chapter
6}, and new bus cycle types have been added {see Chapter 7). The on-chip cache
needs fo be enabled after reset by clearing the CD and NW bit in CRQ.

. The complete 387 math coprocessor instruction set and register set have been

added. No I/O cycles are performed during floating-point instructions. The instruc-
tion and data pointers are set to 0 after FINIT/FSAVE. Interrupt 8 can no longer
oceur, interrupt 13 occurs instead.

The Am486DX/DX2 microprocessor supports new floating-paint error reporting
medes to guarantee DOS compatibility. These new modes require a new bit in con-
trol register O (NE) (see Section 2.2.2.1) and new pins {FERR and IGNNE) {sese
Sections 6.2.13 and 7.2.14).

In some cases FERR is asserted when the next floating-peint instruction is encoun-
tered; and in other cases, it is asserted before the next floating-point instruction is
encaunterad, depending upon the execution state of the instruction causing exception
(see Sections 8.2.13 and 7.2.14). For both of these cases, the 387 math coprocassor
asserts ERROR when the error occurs and does not wait for the next floating-point
instruction to be encountered.

Six new instructions have been added:;

— Byte Swap (BSWAP)

— Exchange-and-Add {(XADD})

— Compare and Exchange {CMPXCHG)

~ Invalidate Data Cache {INVD)

— Write-back and Invalidate Data Cache {WBINVD)

— Invalidate TLB Entry (INVLPG)

There are two new bits detined in control register 3, the page tabie entries and page
directory enfries (PCD and PWT) (see Section 4.5.2.5).

A new page protection feature has been added. This feature requires a new bit in
control register 0 {WP) (see Sections 2.2.2.1 and 4.5.3}.

A new Alignment Check feature has been added. This feature requires a new kit in
the flags register (AC) (see Section 2.2.1.3) and a new bit in control register 0 (AM)
(see Section 2.2.2.1).
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11. The replacement algorithm for the TLB has been changed from a random algorithm
to a pseudo least recently used algoritiim, like that used by the on-chip cache. See
Seaction 5.5 for a description of the algorithm.

12. Three new testability registers, TR3, TR4, and TRS, have been added for testing the
on-chip cache. TLB testability has been enhanced (see Section 8).

13. The pretetch queusa has been increasad from 16 byies 10 32 bytes. A jump always
nesds to execute after modifying code to guarantee correct execution of the new
instruction.

14. After reset, the 1D in the upper byte of the DX register is 04. The canients of the
base registers, inciuding the floating-point registers, can be different after reset.

11-2 Comparison of Am4860DX/DX2 CPU and the 386 CPL with Maih Coprocessor
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1 2 CONVERTING AN EXISTING Am486DX
CPU DESIGN

Converting an Am486DX CPU system design to an Am486DX2 CPU design provides
more performance for a small difference in cost. Migrating from a 33-MHz Am486DX CPU
to a 50-MHz Am486DX2 CPU could increase performance by 35%. Conversion can be as
easy as replacing one or two devices.

A few systermn details should be checked first to be sure the design is ready for the
Am486DX2 CPU. Check with your BIOS vendor to be sure any BIOS issues have been
resolved. The BIOS for the Am486DX CPU may have timing loops. Since the Am4860X2
CPU runs instructions twice as fast as the Am486DX CPU, timing loops may no longer
return the required results. Most of the timing loops have been removed from a standard
BIOS, but there may be some versions that need updating. Ancther BIOS issue that may
not be criticai is the processor identification code. There are different ID codes in the
Am486DX CPU and the Am486DX2 CPU. The BIOS may need to be modified to identify
the Am486DX2 CPU code properly.

Other system parameters to watch out for are the thermal and power supply specifica-
tions. Refer to the Am486 device data sheets, order numbers 17914 and 17852. Since the
processor core runs twice as fast for the same input clock, the Am4860DX2 CPU uses
more power and generates more heat than the Am486DX CPU. Be sure there is ade-
quate cooling and adequate power built into the design. A heat sink is a recommended
method to help provide cooling for the Am486DX2 CPU.

The system checks mentioned above are common to all conversions from an Am486DX
CPU to an Am486DX2 CPU regardless of the speed of the processor or system.

Migrating from a 33-MHz Am486DX CPU fo a 50-MHz Am4B86DX2 CFU is a two step
process. The first step is to change the frequency source for the CPU from 33 MHz to 25
MHz. The Am486DX2 CPU can then be ingerted into the system. Without any tuning of
the memory and depending an the application, anly a modest performance improvement
may be observad. For programs running entirely out of the on-chip cache, however,
performance can increase up to 50%. There are many factors that contribute 1o the
performance of an application, including whether there is a second-level (L2) cache, the
cache size (if present), the memory subsystem design, and many other factors beyond
the scope of this introduction.

Because the Am486DX2 CPU core runs twice as fast as its external bus, it is more
sensitive to wait states. The Am4B860X2 CPU needs o be fed instructions and data
quickly. Either a high performance memory subsystem is needed or an external cache
should be added. An external ¢ache benefits the Am486DX2 CPU even more than it
henefits the Am486DX CPU and helps to hide the effects of a slower memory subgystem,
The Am486DX CPU gains an average of 3-9% performance by the addition of a second-
level cache, but the Am486DX2 CPU gains an average of 20-30% perfermance by
adding a second level cache. It should bs noted however, that an external cache does not
-preclude the benefits of tuning the memory subsystem.

The graph shown in Figure 12-2 shows a set of benchmarks known to have a poor cache
hit rate. This is shown for memory tuning purposes and is not to be taken as absolute
periormance.
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With the absence of a second-level cache, the memory subsystem becomas critical to
gaining performance when converting from a 33-MHz Am486DX CPU to a 50-MHz
Am486DX2 CPU. For slow memory systems without tuning, the 50-MHz Am486DX2 CPU
can possibly run slower than the 33-MHz Am486DX CPU {(see Figure 12-2). By tuning the
memory design, the 50-MHz Am488DX2 CPU can reach equivalent performance to the
33-MHz Ama8ssDX CPU running applications with low cache hit rates, and increase
performance for applications with higher hit rates. Tuning the memory design can be done
easily by either removing a wait state from the memory design (if timing permits), and/or
adkling faster DRAM and removing wait state(s) from the memory design.

Changing the wait state configuration for the system is often dene by programming the
DRAM contraller in the chip set on the motherboard. Each chip set is programmed
differently at the BIOS leval, requiring a BIOS modification. For testing purposes, the chip
set may be programmed on the fly from a DOCS program if the register locations are
known.

© Atypical ISA ¢hip set (such as the PCnet™ ISA Am79C860 device with an L2 cache),

allows 6-4-4-4 bus cycles at 33-MHz with 80-ns DRAMs for the Am486DX CPU. Without
modifying the memory subsystem, the 50-MHz Am486DX2 CPU achieved an average of
7—12% improvement aver the 33-MHz Am486DX CPU. By reducing the bus cycles at
25-MHz to 5-2-2-2 {still with 80-ns DRAMS), Am486DX2 CPU improved to achieve an
average of 15-20% more performance than the 33-MHz Am486DX CPU. By replacing the
DRAMs with faster devices {70 ns} bus.cycles could be reduced to 4-2-2-2 at 25-MHz,
improving the performance of the 50-MHz Am486DX2 CPU even more.

12-2
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Figure 12:1 Flowcharl for Am486DX CPU to Am486DX2 CPU Conversion
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Figure 12-2 Performance of 50-MHz Am48S6DX2 CPU vs. 33-MHz Am426DX CPL
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