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DISTINCTIVE CHARACTERISTICS
n High-Performance Design

— Improved cache structure supports industry-
standard write-back cache

— Frequent instructions execute in one clock

— 80-million bytes/second burst bus at 25 MHz

— 105.6-million bytes/second burst bus at 33 MHz

— 128-million bytes/second burst bus at 40 MHz

— Flexible write-through and write-back address 
control

— 0.5-micron CMOS process technology

— Dynamic bus sizing for 8-, 16-, and 32-bit buses

— Supports “soft reset” capability

n High On-Chip Integration

— 8-Kbyte unified code and data cache

— Floating-point unit

— Paged, virtual memory management

n Enhanced System and Power Management 

— Stop clock control for reduced power 
consumption

— Industry-standard 2-pin System Management In-
terrupt (SMI) for power management independent 
of processor operating mode and operating 
system

— Static design with Auto Halt power-down support

— Wide range of chipsets supporting SMM avail- 
able to allow product differentiation

n Complete 32-Bit Architecture

— Address and data buses

— All registers

— 8-, 16-, and 32-bit data types

n Standard Features

— 3-V core with 5-V tolerant I/O

— Available in DX2 and DX4 versions

— Binary compatible with all Am486® DX 
and Am486DX2 microprocessors

— Wide range of chipsets and support available 
through the AMD FusionPCSM Program

n 168-pin PGA package or 208-pin SQFP package 

n IEEE 1149.1 JTAG Boundary-Scan Compatibility

n Supports Environmental Protection Agency's
“Energy Star” program 

— 3-V operation reduces power consumption up to 
40%

— Energy management capability provides excel-
lent base for energy-efficient design

— Works with a variety of energy efficient, power 
managed devices

GENERAL DESCRIPTION
The Enhanced Am486 microprocessor family is an ad-
dition to the Am486 microprocessor family of products.
The new family enhances system performance by incor-
porating a write-back cache implementation, flexible
clock control, and enhanced SMM. Table 1 shows avail-
able processors in the Enhanced Am486 microproces-
sor family.

The Enhanced Am486 microprocessor family cache al-
lows write-back configuration through software and
cacheable access control. On-chip cache lines are con-
figurable as either write-through or write-back.

The Enhanced CPU clock control feature permits the
CPU clock to be stopped under controlled conditions,
allowing reduced power consumption during system in-
activity. The SMM function is implemented with an indus-
try standard two-pin interface.

Table 1. Clocking Options

CPU 
Type

Operating 
Frequency Bus Speed Available Package

DX2
66 MHz 33 MHz

168-pin PGA
80 MHz 40 MHz

DX4

75 MHz 25 MHz 168-pin PGA or 
208-pin SQFP100 MHz 33 MHz

120 MHz 40 MHz 168-pin PGA
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ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of the elements below.

 

A

-12080486

SPEED OPTION

DEVICE NUMBER/DESCRIPTION

Valid Combinations
Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local
AMD sales office to confirm availability of specific valid
combinations and to check on newly released
combinations.

PACKAGE TYPE

A

-120 = 120 MHz
-100 = 100 MHz
-80 = 80 MHz
-75 = 75 MHz
-66 = 66 MHz

80486
Am486 High-Performance CPU 

A = 168-pin PGA (Pin Grid Array)
S = 208-pin SQFP (Shrink Quad Flat Pack)

Valid Combinations

80486 8

CACHE SIZE

V

8 = 8 Kbytes

-120
-100
-75

DX4

VERSION
DX4 = Clock-tripled with FPU
DX2 = Clock-doubled with FPU

DX4

8

CACHE TYPE
B = Write-Back

VOLTAGE
V = VCC is 3 V with 5 V I/O tolerance

B

V B

A 80486 8
-80
-66

DX2 V B

S 80486 8
-100
-75

DX4 V B

S

S = ENHANCED 

S

S

S
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1 CONNECTION DIAGRAMS AND PIN DESIGNATIONS

1.1 168-Pin PGA (Pin Grid Array) Package
A B C D E F G H J K L M N P Q R S

A B C D E F G H J K L M N P Q R S

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

D20 D19 D11 D9 VSS DP1 VSS VSS INC VSS VSS VSS D2 D0 A31 A28 A27

D22 D21 D18 D13 VCC D8 VCC D3 D5 VCC D6 VCC D1 A29 VSS A25 A26

TCK VSS CLK D17 D10 D15 D12 DP2 D16 D14 D7 D4 DP0 A30 A17 VCC A23

D23 VSS VCC A19 VSS VOLDET

DP3 VSS VCC D13 VCC D8 VCC D3 D5 VCC D6 VCC D1 A29 A21 A18 A14

D24 D25 D27 D13 VCC D8 VCC D3 D5 VCC D6 VCC D1 A29 A24 VCC VSS

VSS VCC D26 D13 VCC D8 VCC D3 D5 VCC D6 VCC D1 A29 A22 A15 A12

D29 D31 D28 D13 VCC D8 VCC D3 D5 VCC D6 VCC D1 A29 A20 VCC VSS

VSS VCC D30 D13 VCC D8 VCC D3 D5 VCC D6 VCC D1 A29 A16 VCC VSS

TDI TMS FERR A2 VCC VSS

INV SMI SRESET VCC D8 VCC D3 D5 VCC D6 VCC D1 A29 A13 VCC VSS

VSS VCC UP D13 VCC D8 VCC D3 D5 VCC D6 VCC D1 A29 A9 VCC VSS

HITM CACHE SMIACT A5 A11 VSS

INC WB/WT INC A7 A8 A10

IGNNE NMI FLUSH A20M HOLD KEN STPCLK BRDY BE2 BE0 PWT D/C LOCK HLDA BREQ A3 A6

INTR TDO RESET BS8 VCC RDY VCC VCC BE1 VCC VCC VCC M/IO VCC PLOCK BLAST A4

AHOLD EADS BS16 BOFF VSS BE3 VSS VSS PCD VSS VSS VSS W/R VSS PCHK CLKMUL ADS

PIN SIDE VIEW
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1.2 168-Pin PGA Designations (Functional Grouping)

Address Data Control Test INC Vcc Vss

Pin 
Name

Pin
No.

Pin 
Name

Pin
No.

Pin
Name

Pin
No.

Pin
Name

Pin
No.

Pin
No.

Pin
No.

Pin
No.

A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31

Q-14
R-15
S-16
Q-12
S-15
Q-13
R-13
Q-11
S-13
R-12
S-7
Q-10
S-5
R-7
Q-9
Q-3
R-5
Q-4
Q-8
Q-5
Q-7
S-3
Q-6
R-2
S-2
S-1
R-1
P-2
P-3
Q-1

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31

P-1
N-2
N-1
H-2
M-3
J-2
L-2
L-3
F-2
D-1
E-3
C-1
G-3
D-2
K-3
F-3
J-3
D-3
C-2
B-1
A-1
B-2
A-2
A-4
A-6
B-6
C-7
C-6
C-8
A-8
C-9
B-8

A20M
ADS
AHOLD
BE0
BE1
BE2
BE3
BLAST
BOFF
BRDY
BREQ
BS8
BS16
CACHE
CLK
CLKMUL
D/C
DP0
DP1
DP2
DP3
EADS
FERR
FLUSH
HITM
HLDA
HOLD
IGNNE
INTR
INV
KEN
LOCK
M/IO
NMI
PCD
PCHK
PLOCK
PWT
RDY
RESET
SMI
SMIACT
SRESET
STPCLK
UP
VOLDET
WB/WT
W/R

D-15
S-17
A-17
K-15
J-16
J-15
F-17
R-16
D-17
H-15
Q-15
D-16
C-17
B-12
C-3
R-17
M-15
N-3
F-1
H-3
A-5
B-17
C-14
C-15
A-12
P-15
E-15
A-15
A-16
A-10
F-15
N-15
N-16
B-15
J-17
Q-17
Q-16
L-15
F-16
C-16
B-10
C-12
C-10
G-15
C-11
S-4
B-13
N-17

TCK
TDI
TDO
TMS

A-3
A-14
B-16
B-14

A-13
C-13
J-1

B-7
B-9
B-11
C-4
C-5
E-2
E-16
G-2
G-16
H-16
K-2
K-16
L-16
M-2
M-16
P-16
R-3
R-6
R-8
R-9
R-10
R-11
R-14

A-7
A-9
A-11
B-3
B-4
B-5
E-1
E-17
G-1
G-17
H-1
H-17
K-1
K-17
L-1
L-17
M-1
M-17
P-17
Q-2
R-4
S-6
S-8
S-9
S-10
S-11
S-12
S-14

Notes: 
VOLDET is connected internally to VSS. 
INC = Internal No Connect 
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1.3 208-Pin SQFP (Shrink Quad Flat Pack) Package

TOP VIEW
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1.4 208-Pin SQFP Designations (Functional Grouping)

Address Data Control Test INC Vcc Vss

Pin Name Pin
No.

Pin Name Pin
No.

Pin
Name

Pin
No.

Pin
Name

Pin
No.

Pin
No.

Pin
No.

Pin
No.

A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30
A31

202
197
196
195
193
192
190
187
186
182
180
178
177
174
173
171
166
165
164
161
160
159
158
154
153
152
151
149
148
147

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31

144
143
142
141
140
130
129
126
124
123
119
118
117
116
113
112
108
103
101
100

99
93
92
91
87
85
84
83
79
78
75
74

A20M
ADS
AHOLD
BE0
BE1
BE2
BE3
BLAST
BOFF
BRDY
BREQ
BS8
BS16
CACHE
CLK
CLKMUL
D/C
DP0
DP1
DP2
DP3
EADS
FERR
FLUSH
HITM
HLDA
HOLD
IGNNE
INTR
INV
KEN
LOCK
M/IO
NMI
PCD
PCHK
PLOCK
PWT
RDY
RESET
SMI
SRESET
STPCLK
SMIACT
UP
WB/WT
W/R

47
203

17
31
32
33
34

204
6
5

30
8
7

70
24
11
39

145
125
109

90
46
66
49
63
26
16
72
50
71
13

207
37
51
41

4
206

40
12
48
65
58
73
59

194
64
27

TCK
TDI
TDO
TMS

18
168

68
167

3
67
96

127

2
9

14
19
20
22
23
25
29
35
38
42
44
45
54
56
60
62
69
77
80
82
86
89
95
98

102
106
111
114
121
128
131
133
134
136
137
139
150
155
162
163
169
172
176
179
183
185
188
191
198
200
205

1
10
15
21
28
36
43
52
53
55
57
61
76

81
88
94
97

104
105
107
110
115
120
122
132
135
138
146
156
157
170
175
181
184
189
199
201
208

Note: 
INC = Internal No Connect 
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Enhanced Am486 Microprocessor 

2 LOGIC SYMBOL

DP3–DP0

A31–A4

CLK

A20M

M/IO

Enhanced Am486 
CPU

W/R

D/C

28

2

LOCK

4 BE3–BE0

Clock

Address Bus

Bus Cycle
Definition

Address

PLOCK

BS8

BS16

ADS
RDY

Bus Cycle
Control

32

4

INTR

NMI

RESET
Interrupts

PCHK

A3–A2
BRDY

BLAST

PWT
PCD

KEN
FLUSH

EADS
AHOLD

Data Parity

Data Bus

Burst
Control

Page
Cacheability

Invalidation
Cache Control/

D31–D0

TMS
TDI

TDO
TCK

IEEE Test
Port Access

FERRIGNNE

Numeric Error
Reporting

Bus Arbitration

BREQ
HOLD

HLDA
BOFF

CACHE

CLKMULClock Multiplier

 Mask

HITM

INV

SMI
SMIACT

SMM

SRESET

STPCLKStop Clock

UPUpgrade 

VOLDETVoltage Detect
Present

WB/WT
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3 PIN DESCRIPTION
The Enhanced Am486 microprocessor family adds ten
signals to those used by the Am486DX processor.
These added signals support the enhanced processor
features and are indicated as “New” in the pin descrip-
tion titles. Some Am486DX CPU signals have new func-
tions to implement the Enhanced Am486 processor
write-back cache protocol. These signals are indicated
as “Modified” in the pin description titles. All other pro-
cessor signals provide the same functionality as the
Am486DX processor. 

A20M
Address Bit 20 Mask (Active Low; Input)

A Low signal on the A20M pin causes the microproces-
sor to mask address line A20 before performing a lookup to
the internal cache, or driving a memory cycle on the bus.
Asserting A20M causes the processor to wrap the address
at 1 Mbyte, emulating Real mode operation. The signal is
asynchronous, but must meet setup and hold times t20 and
t21 for recognition during a specific clock. During normal op-
eration, A20M should be sampled High at the falling edge of
RESET.

A31–A4/A3–A2
Address Lines (Inputs/Outputs)/(Outputs) 

Pins A31–A2 define a physical area in memory or indi-
cate an input/output (I/O) device. Address lines A31–A4
drive addresses into the microprocessor to perform
cache line invalidations. Input signals must meet setup
and hold times t22 and t23. A31–A2 are not driven during
bus or address hold. 

ADS
Address Status (Active Low; Output)

A Low output from this pin indicates that a valid bus
cycle definition and address are available on the cycle
definition lines and address bus. ADS is driven active by
the same clock as the addresses. ADS is active Low and is
not driven during bus hold.

AHOLD – Modified
Address Hold (Active High; Input)

The external system may assert AHOLD to perform a
cache snoop. In response to the assertion of AHOLD,
the microprocessor stops driving the address bus A31–
A2 in the next clock. The data bus remains active and
data can be transferred for previously issued read or
write bus cycles during address hold. AHOLD is recog-
nized even during RESET and LOCK. The earliest that
AHOLD can be deasserted is two clock cycles after
EADS is asserted to start a cache snoop. If HITM is
activated due to a cache snoop, the microprocessor
completes the current bus activity and then asserts ADS
and drives the address bus while AHOLD is active. This
starts the write-back of the modified line that was the
target of the snoop. 

BE3–BE0 
Byte Enable (Active Low; Outputs)

The byte enable pins indicate which bytes are enabled
and active during read or write cycles. During the first
cache fill cycle, however, an external system should ig-
nore these signals and assume that all bytes are active. 

n BE3 for D31–D24 

n BE2 for D23–D16 

n BE1 for D15–D8 

n BE0 for D7–D0 

BE3–BE0 are active Low and are not driven during bus
hold.

BLAST  – Modified
Burst Last (Active Low; Output)

Burst Last goes Low to tell the CPU that the next BRDY
signal completes the burst bus cycle. BLAST is active for both
burst and non-burst cycles. BLAST is active Low and is not
driven during a bus hold.

BOFF 
Back Off (Active Low; Input)

This input signal forces the microprocessor to float all
pins normally floated during hold, but HLDA is not as-
serted in response to BOFF. BOFF has higher priority
than RDY or BRDY; if both are returned in the same
clock, BOFF takes effect. The microprocessor remains
in bus hold until BOFF goes High. If a bus cycle is in
progress when BOFF is asserted, the cycle restarts.
BOFF must meet setup and hold times t18 and t19 for
proper operation. BOFF has an internal weak pull-up.

BRDY
Burst Ready Input (Active Low; Input)

The BRDY signal performs the same function during a burst
cycle that RDY performs during a non-burst cycle. BRDY
indicates that the external system has presented valid
data in response to a read, or that the external system
has accepted data in response to write. BRDY is ignored
when the bus is idle and at the end of the first clock in
a bus cycle. BRDY is sampled in the second and sub-
sequent clocks of a burst cycle. The data presented on
the data bus is strobed into the microprocessor when
BRDY is sampled active. If RDY is returned simulta-
neously with BRDY, BRDY is ignored and the cycle is
converted to a non-burst cycle. BRDY is active Low and
has a small pull-up resistor, and must satisfy the setup
and hold times t16 and t17.

BREQ
Internal Cycle Pending (Active High; Output)

BREQ indicates that the microprocessor has generated
a bus request internally, whether or not the microproces-
sor is driving the bus. BREQ is active High and is floated
only during three-state test mode. (See FLUSH.)
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BS8/BS16 
Bus Size 8 (Active Low; Input)/
Bus Size 16 (Active Low; Input)

The BS8 and BS16 signals allow the processor to op-
erate with 8-bit and 16-bit I/O devices by running multi-
ple bus cycles to respond to data requests: four for 8-
bit devices, and two for 16-bit devices. The bus sizing
pins are sampled every clock. The microprocessor sam-
ples the pins every clock before RDY to determine the
appropriate bus size for the requesting device. The sig-
nals are active Low input with internal pull-up resistors,
and must satisfy setup and hold times t14 and t15 for
correct operation. Bus sizing is not permitted during
copy-back or write-back operation. BS8 and BS16 are
ignored during copy-back or write-back cycles.

CACHE – New
Internal Cacheability (Active Low; Output)

In write-through mode, this signal always floats. In write-
back mode for processor-initiated cycles, a Low output
on this pin indicates that the current read cycle is cache-
able, or that the current cycle is a burst write-back or
copy-back cycle. If the CACHE signal is driven High
during a read, the processor will not cache the data even
if the KEN pin signal is asserted. If the processor deter-
mines that the data is cacheable, CACHE goes active
when ADS is asserted and remains in that state until the
next RDY or BRDY is asserted. CACHE floats in re-
sponse to a BOFF or HOLD request.

CLK – Modified
Clock (Input)

The CLK input provides the basic microprocessor timing
signal. The CLKMUL input selects the multiplier value
used to generate the internal operating frequency for
the Enhanced Am486 microprocessor family. All exter-
nal timing parameters are specified with respect to the
rising edge of CLK. The clock signal passes through an
internal Phase-Lock Loop (PLL).

CLKMUL – New
Clock Multiplier (Input)

The microprocessor samples the CLKMUL input signal
at RESET to determine the design operating frequency.
An internal pull-up resistor connects to VCC, which se-
lects clock-tripled mode if the input is High or left floating.
For clock-doubled mode, the input must be pulled Low.
For DX2 versions, this input must always be connected
to VSS to ensure correct operation.

D31–D0
Data Lines (Inputs/Outputs)

Lines D31–D0 define the data bus. The signals must
meet setup and hold times t22 and t23 for proper read op-
erations. These pins are driven during the second and sub-
sequent clocks of write cycles.

D/C
Data/Control (Output)

This bus cycle definition pin distinguishes memory and
I/O data cycles from control cycles. The control cycles
are:

n Interrupt Acknowledge

n Halt/Special Cycle

n Code Read (instruction fetching)

DP3–DP0
Data Parity (Inputs/Outputs)

Data parity is generated on all write data cycles with the
same timing as the data driven by the microprocessor.
Even parity information must be driven back into the
microprocessor on the data parity pins with the same
timing as read information to ensure that the processor
uses the correct parity check. The signals read on these
pins do not affect program execution. Input signals must
meet setup and hold times t22 and t23. DP3–DP0 should
be connected to VCC through a pull-up resistor in systems
not using parity. DP3–DP0 are active High and are driven
during the second and subsequent clocks of write cycles.

EADS – Modified
External Address Strobe (Active Low; Input)

This signal indicates that a valid external address has
been driven on the address pins A31–A4 of the micro-
processor to be used for a cache snoop. This signal is
recognized while the processor is in hold (HLDA is driv-
en active), while forced off the bus with the BOFF input,
or while AHOLD is asserted. The microprocessor ig-
nores EADS at all other times. EADS is not recognized
if HITM is active, nor during the clock after ADS, nor
during the clock after a valid assertion of EADS. Snoops
to the on-chip cache must be completed before another
snoop cycle is initiated. Table 2 describes EADS when
first sampled. EADS can be asserted every other clock
cycle as long as the hold remains active and HITM re-
mains inactive. INV is sampled in the same clock period
that EADS is asserted. EADS has an internal weak pull-up.

Note:  The triggering signal (AHOLD, HOLD, or BOFF)
must remain active for at least 1 clock after EADS to
ensure proper operation.

Table 2. EADS  Sample Time

Trigger EADS First Sampled

AHOLD Second clock after AHOLD asserted

HOLD First clock after HLDA asserted

BOFF Second clock after BOFF asserted
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FERR
Floating-Point Error (Active Low; Output)

Driven active when a floating-point error occurs, FERR
is similar to the ERROR pin on a 387 math coprocessor.
FERR is included for compatibility with systems using
DOS-type floating-point error reporting. FERR is active
Low, and is not floated during bus hold, except during
three-state test mode (see FLUSH).

FLUSH
Cache Flush (Active Low; Input)

In write-back mode, FLUSH forces the microprocessor
to write-back all modified cache lines and invalidate its
internal cache. The microprocessor generates two flush
acknowledge special bus cycles to indicate completion
of the write-back and invalidation. In write-through
mode, FLUSH invalidates the cache without issuing a
special bus cycle. FLUSH is an active Low input that
needs to be asserted only for one clock. FLUSH is asyn-
chronous, but setup and hold times t20 and t21 must be
met for recognition in any specific clock. Sampling
FLUSH Low in the clock before the falling edge of RE-
SET causes the microprocessor to enter three-state test
mode.

HITM – New
Hit Modified Line (Active Low; Output)

In write-back mode (WB/WT=1 at RESET), HITM indi-
cates that an external snoop cache tag comparison hit
a modified line. When a snoop hits a modified line in the
internal cache, the microprocessor asserts HITM two
clocks after EADS is asserted. The HITM signal stays
asserted (Low) until the last BRDY for the correspond-
ing write-back cycle. At all other times, HITM is deas-
serted (High). During RESET, the HITM signal can be
used to detect whether the CPU is operating in write-
back mode. In write-back mode (WB/WT=1 at RESET),
HITM is deasserted (driven High) until the first snoop
that hits a modified line. In write-through mode, HITM
floats at all times.

HLDA
Hold Acknowledge (Active High; Output)

The HLDA signal is activated in response to a hold re-
quest presented on the HOLD pin. HLDA indicates that
the microprocessor has given the bus to another local
bus master. HLDA is driven active in the same clock in
which the microprocessor floats its bus. HLDA is driven
inactive when leaving bus hold. HLDA is active High and
remains driven during bus hold. HLDA is floated only
during three-state test mode. (See FLUSH.)

HOLD
Bus Hold Request (Active High; Input)

HOLD gives control of the microprocessor bus to anoth-
er bus master. In response to HOLD going active, the
microprocessor floats most of its output and input/output

pins. HLDA is asserted after completing the current bus
cycle, burst cycle, or sequence of locked cycles. The
microprocessor remains in this state until HOLD is deas-
serted. HOLD is active High and does not have an in-
ternal pull-down resistor. HOLD must satisfy setup and
hold times t18 and t19 for proper operation.

IGNNE
Ignore Numeric Error (Active Low; Input)

When this pin is asserted, the Enhanced Am486 micro-
processor will ignore a numeric error and continue ex-
ecuting non-control floating-point instructions. When
IGNNE is deasserted, the Enhanced Am486 micropro-
cessor will freeze on a non-control floating-point instruc-
tion if a previous floating-point instruction caused an
error. IGNNE has no effect when the NE bit in Control
Register 0 is set. IGNNE is active Low and is provided
with a small internal pullup resistor. IGNNE is asynchro-
nous but must meet setup and hold times t20 and t21 to
ensure recognition in any specific clock.

INTR
Maskable Interrupt (Active High; Input)

When asserted, this signal indicates that an external
interrupt has been generated. If the internal interrupt
flag is set in EFLAGS, active interrupt processing is ini-
tiated. The microprocessor generates two locked inter-
rupt acknowledge bus cycles in response to the INTR
pin going active. INTR must remain active until the in-
terrupt acknowledges have been performed to ensure
that the interrupt is recognized. INTR is active High and
is not provided with an internal pull-down resistor. INTR
is asynchronous, but must meet setup and hold times
t20 and t21 for recognition in any specific clock.

INV – New
Invalidate (Active High; Input)

The external system asserts INV to invalidate the
cache-line state when an external bus master proposes
a write. It is sampled together with A31–A4 during the
clock in which EADS is active. INV has an internal weak
pull-up. INV is ignored in write-through mode.

KEN
Cache Enable (Active Low; Input)

KEN determines whether the current cycle is cacheable.
When the microprocessor generates a cacheable cycle
and KEN is active one clock before RDY or BRDY during
the first transfer of the cycle, the cycle becomes a cache
line fill cycle. Returning KEN active one clock before
RDY during the last read in the cache line fill causes the
line to be placed in the on-chip cache. KEN is active
Low and is provided with a small internal pull-up resistor.
KEN must satisfy setup and hold times t14 and t15 for
proper operation.
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LOCK
Bus Lock (Active Low; Output)

A Low output on this pin indicates that the current bus
cycle is locked. The microprocessor ignores HOLD
when LOCK is asserted (although it does acknowledge
AHOLD and BOFF). LOCK goes active in the first clock
of the first locked bus cycle and goes inactive after the
last clock of the last locked bus cycle. The last locked
cycle ends when RDY is returned. LOCK is active Low
and is not driven during bus hold. Locked read cycles
are not transformed into cache fill cycles if KEN is active.

M/IO
Memory/Input-Output (Active High/Active Low; 
Output)

A High output indicates a memory cycle. A Low output
indicates an I/O cycle. 

NMI
Non-Maskable Interrupt (Active High; Input) 

A High NMI input signal indicates that an external non-
maskable interrupt has occurred. NMI is rising-edge
sensitive. NMI must be held Low for at least four CLK
periods before this rising edge. The NMI input does not
have an internal pull-down resistor. The NMI input is
asynchronous, but must meet setup and hold times t20

and t21 for recognition in any specific clock.

PCD
Page Cache Disable (Active High; Output)

This pin reflects the state of the PCD bit in the page
table entry or page directory entry (programmable
through the PCD bit in CR3). If paging is disabled, the
CPU ignores the PCD bit and drives the PCD output
Low. PCD has the same timing as the cycle definition
pins (M/IO, D/C, and W/R). PCD is active High and is not
driven during bus hold. PCD is masked by the Cache Dis-
able Bit (CD) in Control Register 0 (CR0). 

PCHK
Parity Status (Active Low; Output)

Parity status is driven on the PCHK pin the clock after
RDY for read operations. The parity status reflects data sam-
pled at the end of the previous clock. A Low PCHK indicates
a parity error. Parity status is checked only for enabled bytes
as is indicated by the byte enable and bus size signals.
PCHK is valid only in the clock immediately after read data
is returned to the microprocessor; at all other times PCHK is
inactive High. PCHK is floated only during three-state test
mode. (See FLUSH.)

PLOCK – Modified
Pseudo-Lock (Active Low; Output)

In write-back mode, the processor forces the output
High and the signal is always read as inactive. In write-
through mode, PLOCK operates normally. When as-
serted, PLOCK indicates that the current bus transac-

tion requires more than one bus cycle. Examples of
such operations are segment table descriptor reads (8
bytes) and cache line fills (16 bytes). The microproces-
sor drives PLOCK active until the addresses for the last
bus cycle of the transaction have been driven, whether
or not RDY or BRDY is returned. PLOCK is a function
of the BS8, BS16, and KEN inputs. PLOCK should be
sampled on the clock when RDY is returned. PLOCK is
active Low and is not driven during bus hold.

PWT
Page Write-Through (Active High; Output)

This pin reflects the state of the PWT bit in the page
table entry or page directory entry (programmable
through the PWT bit in CR3). If paging is disabled, the
CPU ignores the PWT bit and drives the PWT output
Low. PWT has the same timing as the cycle definition
pins (M/IO, D/C, and W/R). PWT is active High and is not
driven during bus hold. 

RESET
Reset (Active High; Input)

RESET forces the microprocessor to initialize. The mi-
croprocessor cannot begin instruction execution of in-
structions until at least 1 ms after VCC and CLK have
reached their proper DC and AC specifications. To ensure
proper microprocessor operation, the RESET pin should re-
main active during this time. RESET is active High. RESET
is asynchronous but must meet setup and hold times t20 and
t21 to ensure recognition on any specific clock. 

RDY
Non-Burst Ready (Active Low; Input)

A Low input on this pin indicates that the current bus
cycle is complete, that is, either the external system has
presented valid data on the data pins in response to a read,
or, the external system has accepted data from the micro-
processor in response to a write. RDY is ignored when the
bus is idle and at the end of the bus cycle’s first clock. RDY
is active during address hold. Data can be returned to
the processor while AHOLD is active. RDY is active Low
and does not have an internal pull-up resistor. RDY must
satisfy setup and hold times t16 and t17 for proper chip
operation.

SMI – New
SMM Interrupt (Active Low; Input)

A Low signal on the SMI pin signals the processor to enter
System Management Mode (SMM). SMI is the highest level
processor interrupt. The SMI signal is recognized on an in-
struction boundary, similar to the NMI and INTR signals.
SMI is sampled on every rising clock edge. SMI is a falling-
edge sensitive input. Recognition of SMI is guaranteed in
a specific clock if it is asserted synchronously and meets
the setup and hold times. If SMI is asserted asynchronous-
ly, it must go High for a minimum of two clocks before going
Low, and it must remain Low for at least two clocks to guar-
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antee recognition. When the CPU recognizes SMI, it en-
ters SMM before executing the next instruction and
saves internal registers in SMM space.

SMIACT – New
SMM Interrupt Active (Active Low; Output)

SMIACT goes Low in response to SMI. It indicates that
the processor is operating under SMM control. SMIACT
remains Low until the processor receives a RESET sig-
nal or executes the Resume Instruction (RSM) to leave
SMM. This signal is always driven. It does not float dur-
ing bus HOLD or BOFF.

Note:  Do not use SRESET to exit from SMM. The sys-
tem should block SRESET during SMM.

SRESET – New
Soft Reset (Active High; Input)

The CPU samples SRESET on every rising clock edge.
If SRESET is sampled active, the SRESET sequence
begins on the next instruction boundary. SRESET re-
sets the processor, but, unlike RESET, does not cause
it to sample UP or WB/WT, or affect the FPU, cache, CD
and NW bits in CR0, and SMBASE. SRESET is asyn-
chronous and must meet the same timing as RESET.

STPCLK – New
Stop Clock (Active Low; Input)

A Low input signal indicates a request has been made
to turn off the CLK input. When the CPU recognizes a
STPCLK, the processor:

n stops execution on the next instruction boundary
(unless superseded by a higher priority interrupt).

n empties all internal pipelines and write buffers.

n generates a Stop Grant acknowledge bus cycle. 

STPCLK is active Low and has an internal pull-up re-
sistor. STPCLK is asynchronous, but it must meet setup
and hold times t20 and t21 to ensure recognition in any
specific clock. STPCLK must remain active until the
Stop Clock special bus cycle is issued and the system
returns either RDY or BRDY.

TCK
Test Clock (Input)

Test Clock provides the clocking function for the JTAG
boundary scan feature. TCK clocks state information
and data into the component on the rising edge of TCK
on TMS and TDI, respectively. Data is clocked out of
the component on the falling edge of TCK on TDO.

TDI
Test Data Input (Input)

TDI is the serial input that shifts JTAG instructions and
data into the tested component. TDI is sampled on the
rising edge of TCK during the SHIFT-IR and the SHIFT-
DR TAP (Test Access Port) controller states. During all

other TAP controller states, TDI is ignored. TDI uses an
internal weak pull-up.

TDO
Test Data Output (Active High; Output)

TDO is the serial output that shifts JTAG instructions
and data out of the component. TDO is driven on the
falling edge of TCK during the SHIFT-IR and SHIFT-DR
TAP controller states. Otherwise, TDO is three-stated.

TMS
Test Mode Select (Active; High Input)

TMS is decoded by the JTAG TAP to select the operation
of the test logic. TMS is sampled on the rising edge of
TCK. To guarantee deterministic behavior of the TAP
controller, the TMS pin has an internal pull-up resistor.

UP 
Write/Read (Input)

The processor samples the Upgrade Present (UP) pin
in the clock before the falling edge of RESET. If it is Low,
the processor three-states its outputs immediately. UP
must remain asserted to keep the processor inactive.
The pin uses an internal pull-up resistor.

VOLDET – New (168-pin PGA package only)
Voltage Detect (Output)

VOLDET provides an external signal to allow the system
to determine the CPU input power level (3 V or 5 V). For
Enhanced Am486 processors, the pin ties internally to
VSS. 

WB/WT – New
Write-Back/Write-Through (Input)

If the processor samples WB/WT High at RESET, the
processor is configured in write-back mode and all sub-
sequent cache line fills sample WB/WT on the same clock
edge in which it finds either RDY or the first BRDY of a burst
transfer to determine if the cache line is designated as write-
back mode or write-through. If the signal is Low on the first
BRDY or RDY, the cache line is write-through. If the signal is
High, the cache line is write-back. If WB/WT is sampled Low
at RESET, all cache line fills are write-through. WB/WT has
an internal weak pull-down.

W/R
Write/Read (Output)

A High output indicates a write cycle. A Low output in-
dicates a read cycle.

Note:  The Enhanced Am486 microprocessor family
does not use the VCC5 pin used by some 3-V, clock-
tripled, 486-based processors. The corresponding pin
on the Enhanced Am486 microprocessor is an Internal
No Connect (INC).
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4.3.3 Protected Mode

Protected Mode provides access to the sophisticated
memory management paging and privilege capabilities
of the processor.

4.3.4 System Management Mode

SMM is a special operating mode described in detail in
Section 7.

4.4 Cache Architecture
The Enhanced Am486 microprocessor family supports
a superset architecture of the standard 486 cache im-
plementation. This architectural enhancement im-
proves not only CPU performance, but total system
performance. 

4.4.1 Write-Through Cache

The standard 486DX-type write-through cache architec-
ture is characterized by the following:

n External read accesses are placed in the cache if
they meet proper caching requirements.

n Subsequent reads to the data in the cache are made
if the address is stored in the cache tag array.

n Write operations to a valid address in the cache are
updated in the cache and to external memory. This
data writing technique is called write-through.

The write-through cache implementation forces all
writes to flow through to the external bus and back to
main memory. Consequently, the write-through cache
generates a large amount of bus traffic on the external
data bus. 

4.4.2 Write-Back Cache

The microprocessor write-back cache architecture is
characterized by the following:

n External read accesses are placed in the cache if
they meet proper caching requirements.

n Subsequent reads to the data in the cache are made
if the address is stored in the cache tag array.

n Write operations to a valid address in the cache that
is in the write-through (shared) state is updated in
the cache and to external memory.

n Write operations to a valid address in the cache that
is in the write-back (exclusive or modified) state is
updated only in the cache. External memory is not
updated at the time of the cache update.

n Modified data is written back to external memory
when the modified cache line is being replaced with
a new cache line (copy-back operation) or an exter-
nal bus master has snooped a modified cache line
(write-back).

The write-back cache feature significantly reduces the
amount of bus traffic on the external bus; however, it
also adds complexity to the system design to maintain

4 FUNCTIONAL DESCRIPTION

4.1 Overview
Enhanced Am486 microprocessors use a 32-bit archi-
tecture with on-chip memory management and cache
memory units. The instruction set includes the complete
486 microprocessor instruction set along with exten-
sions to serve the new extended applications. All soft-
ware written for the 486 microprocessor and previous
members of the X86 architectural family can run on the
Enhanced Am486 microprocessor without modification. 

The on-chip Memory Management Unit (MMU) is com-
pletely compatible with the 486 MMU. The MMU in-
cludes a segmentation unit and a paging unit. Segmentation
allows management of the logical address space by pro-
viding easy data and code relocatibility and efficient sharing
of global resources. The paging mechanism operates be-
neath segmentation and is transparent to the segmentation
process. Paging is optional and can be disabled by system
software. Each segment can be divided into one or more
4-Kbyte segments. To implement a virtual memory system,
the Enhanced Am486 microprocessor supports full restart-
ability for all page and segment faults.

4.2 Memory
Memory is organized into one or more variable length
segments, each up to 4 Gbytes (232 bytes). A segment
can have attributes associated with it, including its location,
size, type (i.e., stack, code, or data), and protection charac-
teristics. Each task on a microprocessor can have a maxi-
mum of 16,381 segments, each up to 4 Gbytes. Thus, each
task has a maximum of 64 Tbytes of virtual memory.

The segmentation unit provides four levels of protection
for isolating and protecting applications and the operat-
ing system from each other. The hardware-enforced
protection allows high integrity system designs.

4.3 Modes of Operation
The Enhanced Am486 microprocessor has four modes
of operation: Real Address Mode (Real Mode), Virtual
8086 Address Mode (Virtual Mode), Protected Address
Mode (Protected Mode), and System Management
Mode (SMM).

4.3.1 Real Mode

In Real Mode, the Enhanced Am486 microprocessor
operates as a fast 8086. Real Mode is required primarily
to set up the processor for Protected Mode operation.

4.3.2 Virtual Mode

In Virtual Mode, the processor appears to be in Real
Mode, but can use the extended memory accessing of
Protected Mode.
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memory coherency. The write-back cache requires en-
hanced system support because the cache may contain
data that is not identical to data in main memory at the
same address location.

4.5 Write-Back Cache Protocol
The Enhanced Am486 microprocessor family write-
back cache coherency protocol reduces bus activity
while maintaining data coherency in a multi-master en-
vironment. The cache coherency protocol offers the fol-
lowing advantages:

n No unnecessary bus traffic. The protocol dynamical-
ly identifies shared data to the granularity of a cache
line. This dynamic identification ensures that the traf-
fic on the external bus is the minimum necessary to
ensure coherency.

n Software-transparent. Because the protocol gives
the appearance of a single unified memory, software
does not have to maintain coherency or identify
shared data. Application software developed for a
system without a cache can run without modification.
Software support is required only in the operating
system to identify non-cacheable data regions.

A modified MESI protocol is implemented on the En-
hanced Am486 microprocessor family for systems with
write-back cache support. MESI allows cache line to
exist in four states: modified, exclusive, shared, and in-
valid. The Enhanced Am486 microprocessor family al-
locates memory in the cache due to a read miss. Write
allocation is not implemented. To maintain coherency
between cache and main memory, the MESI protocol
has the following characteristics:

n The system memory is always updated for the case
during a snoop when a modified line is hit.

n If a modified line is hit by another master during
snooping, the master is forced off the bus and the
snooped cache writes back the modified line to the
system memory. After the snooped cache completes
the write, the backed-off bus master restarts the ac-
cess and reads the modified data from memory.

4.5.1 Cache Line Overview

To implement the Enhanced Am486 microprocessor cache
coherency protocol, each tag entry is expanded to 2 bits: S1
and S0. Each tag entry is associated with a cache line. Table
3 shows the cache line organization.

Table 3. Cache Line Organization

Data Words (32 Bits) Address Tag and Status

D0 Address Tag, S1, S0

D1

D2

D3

4.5.2 Line Status and Line State

A cache line can occupy one of four legal states as
indicated by bits S0 and S1. The line states are shown
in Table 4. Each line in the cache is in one of these
states. The state transition is induced either by the pro-
cessor or during snooping from an external bus master.

4.5.2.1 Invalid

An invalid cache line does not contain valid data for any
external memory location. An invalid line does not par-
ticipate in the cache coherency protocol.

4.5.2.2 Exclusive

An exclusive line contains valid data for some external
memory location. The data exactly matches the data in
the external memory location. 

4.5.2.3 Shared

A shared line contains valid data for an external memory
location and the data is shared by another cache and
exactly matches the data in the external memory, or
indicates that the cache line is in write-through mode.

4.5.2.4 Modified

A modified line contains valid data for an external mem-
ory location. However, the data does not match the data
in the external location because the processor has mod-
ified the data since it was loaded from the external mem-
ory. A cache that contains a modified line is responsible
for ensuring that the data is properly maintained. This
means that in the case of an external access to that line
from another external bus master, the modified line is
first written back to the external memory before the other
external bus master can complete its access. Table 5
shows the MESI cache line states and the correspond-
ing availability of data.

Table 4. Legal Cache Line States

S1 S0 Line State

0 0 Invalid

0 1 Exclusive

1 0 Modified

1 1 Shared
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4.6 Cache Replacement Description
The cache line replacement algorithm uses the stan-
dard Am486 CPU pseudo LRU (Least-Recently Used)
strategy. When a line must be placed in the internal
cache, the microprocessor first checks to see if there is
an invalid line available in the set. If no invalid line is
available, the LRU algorithm replaces the least-recently
used cache line in the four-way set with the new cache
line. If the cache line for replacement is modified, the
modified cache line is placed into the copy-back buffer
for copying back to external memory, and the new cache
line is placed into the cache. This copy-back ensures
that the external memory is updated with the modified
data upon replacement.

4.7 Memory Configuration
In computer systems, memory regions require specific
caching and memory write methods. For example,
some memory regions are non-cacheable while others
are cacheable but are write-through. To allow maximum
memory configuration, the microprocessor supports
specific memory region requirements. All bus masters,
such as DMA controllers, must reflect all data transfers
on the microprocessor local bus so that the micropro-
cessor can respond appropriately.

4.7.1 Cacheability

The Enhanced Am486 CPU caches data based on the
state of the CD and NW bits in CR0, in conjunction with
the KEN signal, at the time of a burst read access from
memory. If the WB/WT signal is Low during the first
BRDY, KEN meets the standard setup and hold require-
ments and the four 32-bit doublewords are still placed
in the cache. However, all cacheable accesses in this
mode are considered write-through. When the WB/WT
is High during the first BRDY, the entire four 32-bit dou-
bleword transfer considered write-back.

Note:  The CD bit in CR0 enables (0) or disables (1) the
internal cache. The NW bit in CR0 enables (0) or dis-
ables (1) write-through and snooping cycles. RESET
sets CD and NW to 1. Unlike RESET, however, SRESET
does not invalidate the cache nor does it modify the
values of CD and NW in CR0. 

Table 5. MESI Cache Line Status

Situation Modified Exclusive Shared Invalid

Line valid? Yes Yes Yes No

External 
memory 
is...

out-of-
date

valid valid
status 
unknown

A write to 
this cache 
line...

does not 
go to the 
bus 

does not go 
to the bus 

goes to 
the bus 
and
updates

goes
directly to 
the bus

4.7.2 Write-Through/Write-Back

If the CPU is operating in write-back mode (i.e., the WB/
WT pin was sampled High at RESET), the WB/WT pin
indicates whether an individual write access is executed as
write-through or write-back. The Enhanced Am486 micropro-
cessor does this on an access-by-access basis. Once the
cache line is in the cache, the STATUS bit is tested each time
the processor writes to the cache line or a tag compare results
in a hit during bus watching mode. If the WB/WT signal is
Low during the first BRDY of the cache line read access, the
cache line is considered a write-through access. Therefore,
all writes to this location in the cache are reflected on the ex-
ternal bus, even if the cache line is write protected.

4.8 Cache Functionality in Write-Back 
Mode

The description of cache functionality in write-back
mode is divided into two sections: processor-initiated
cache functions and snooping actions. 

4.8.1 Processor-Induced Actions and State 
Transitions

The microprocessor contains two new buffers for use
with the MESI protocol support: the copy-back buffer
and the write-back buffer. The processor uses the copy-
back buffer for cache line replacement of modified lines.
The write-back buffer is used when an external bus mas-
ter hits a modified line in the cache during a snoop op-
eration and the cache line is designated for write-back
to main memory. Each buffer is four doublewords in size.
Figure 1 shows a diagram of the state transitions in-
duced by the local processor. When a read miss occurs,
the line selected for replacement remains in the modi-
fied state until overwritten. A copy of the modified line
is sent to the copy-back buffer to be written back after
replacement. When reload has successfully completed,
the line is set either to the exclusive or the shared state,
depending on the state of PWT and WB/WT signals.

Invalid

Shared

Modified

ExclusiveRead_Hit

Read_Miss
(WB/WT = 1) •
(PWT = 0)

Read_Miss
[(WB/WT = 0) + (PWT = 1)]

Write_Hit

Write_Hit + Read_Hit

Shared

Read_Hit
+ Write_Hit

Figure 1. Processor-Induced Line Transitions in 
Write-Back Mode

Note: Write_Hit 
generates external 
bus cycle.
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If the PWT signal is 0, the external WB/WT signal de-
termines the new state of the line. If the WB/WT signal
was asserted to 1 during reload, the line transits to the
exclusive state. If the WB/WT signal was 0, the line
transits to the shared state. If the PWT signal is 1, it
overrides the WB/WT signal, forcing the line into the
shared state. Therefore, if paging is enabled, the soft-
ware programmed PWT bit can override the hardware
signal WB/WT.

Until the line is reallocated, a write is the only processor
action that can change the state of the line. If the write
occurs to a line in the exclusive state, the data is simply
written into the cache and the line state is changed to
modified. The modified state indicates that the contents
of the line require copy-back to the main memory before
the line is reallocated. 

If the write occurs to a line in the shared state, the cache
performs a write of the data on the external bus to up-
date the external memory. The line remains in the
shared state until it is replaced with a new cache line or
until it is flushed. In the modified state, the processor
continues to write the line without any further external
actions or state transitions. 

If the PWT or PCD bits are changed for a specified mem-
ory location, the tag bits in the cache are assumed to
be correct. To avoid memory inconsistencies with re-
spect to cacheability and write status, a cache copy-
back and invalidation should be invoked either by using
the WBINVD instruction or asserting the FLUSH signal.

4.8.2 Snooping Actions and State Transitions

To maintain cache coherency, the CPU must allow
snooping by the current bus master. The bus master
initiates a snoop cycle to check whether an address is
cached in the internal cache of the microprocessor. A
snoop cycle differs from any other cycle in that it is ini-
tiated externally to the microprocessor, and the signal
for beginning the cycle is EADS instead of ADS. The
address bus of the microprocessor is bidirectional to
allow the address of the snoop to be driven by the sys-
tem. A snoop access can begin during any hold state:

n while HOLD and HLDA are asserted 

n while BOFF is asserted

n while AHOLD is asserted

In the clock in which EADS is asserted, the microprocessor
samples the INV input to qualify the type of inquiry. INV spec-
ifies whether the line (if found) must be invalidated (i.e.,
the MESI status changes to Invalid or ‘I’). A line is inval-
idated if the snoop access was generated due to a write
of another bus master. This is indicated by INV set to 1.
In the case of a read, the line does not have to be inval-
idated, which is indicated by INV set to 0. 

The core system logic can generate EADS by watching
the ADS from the current bus master, and INV by watching

the W/R signal. The microprocessor compares the ad-
dress of the snoop request with addresses of lines in
the cache and of any line in the copy-back buffer waiting
to be transferred on the bus. It does not, however, com-
pare with the address of write-miss data in the write
buffers. Two clock cycles after sampling EADS, the mi-
croprocessor drives the results of the snoop on the HITM pin.
If HITM is active, the line was found in the modified state;
if inactive, the line was in the exclusive or shared state,
or was not found.

Figure 2 shows a diagram of the state transitions in-
duced by snooping accesses. 

4.8.2.1 Difference between Snooping 
Access Cases

Snooping accesses are external accesses to the micro-
processor. As described earlier, the snooping logic has
a set of signals independent from the processor-related
signals. Those signals are:

n EADS

n INV

n HITM

In addition to these signals, the address bus is required
as an input. This is achieved by setting AHOLD, HOLD,
or BOFF active.

Snooping can occur in parallel with a processor-initiated
access that has already been started. The two accesses
depend on each other only when a modified line is writ-
ten back. In this case, the snoop requires the use of the
cycle control signals and the data bus. The following sec-
tions describe the scenarios for the HOLD, AHOLD, and
BOFF implementations.

Figure 2. Snooping State Transitions

Invalid

Modified

Exclusive Shared

(HITM asserted
+ write-back)

(EADS = 0 * INV = 1)
+ FLUSH = 0

(EADS = 0 * INV = 1)
+ FLUSH = 0

EADS = 0 * INV = 0
* FLUSH = 1

EADS = 0 * INV = 0
* FLUSH = 1
(HITM asserted
+ write-back) EADS = 0 * INV = 0

* FLUSH = 1

EADS = 0 * INV = 1
+ FLUSH = 0
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4.8.2.2 HOLD Bus Arbitration Implementation

The HOLD/HLDA bus arbitration scheme is used prima-
rily in systems where all memory transfers are seen by
the microprocessor. The HOLD/HLDA bus arbitration
scheme permits simple write-back cache design while
maintaining a relatively high performing system. Figure
3 shows a typical system block diagram for HOLD/
HLDA bus arbitration.

Note:  To maintain proper system timing, the HOLD
signal must remain active for one clock cycle after HITM
transitions active. Deassertion of HOLD in the same
clock cycle as HITM assertion may lead to unpredictable
processor behavior.

4.8.2.2.1 Processor-Induced Bus Cycles

In the following scenarios, read accesses are assumed
to be cache line fills. The cases also assume that the
core system logic does not return BRDY or RDY until
HITM is sampled. The addition of wait states follows the
standard 486 bus protocol. For demonstration purpos-
es, only the zero wait state approach is shown. Table 6
explains the key to switching waveforms.

CPU

L2 Cache

DRAM

Local Bus 
Peripheral

I/O Bus
Interface

Slow
Peripheral

Address Bus

Data Bus

Address Bus

Data Bus

Figure 3. Typical System Block Diagram 
for HOLD/HLDA Bus Arbitration

4.8.2.2.2 External Read 

Scenario : The data resides in external memory (see
Figure 4).

Step 1 The processor starts the external read access
by asserting ADS = 0 and W/R = 0.

Step 2 WB/WT is sampled in the same cycle as BRDY. If
WB/WT = 1, the data resides in a write-back cache-
able memory location. 

Step 3 The processor completes its burst read and as-
serts BLAST.

4.8.2.2.3 External Write 

Scenario: The data is written to the external memory
(see Figure 5).

Step 1 The processor starts the external write access
by asserting ADS = 0 and W/R = 1. 

Step 2 The processor completes its write to the core
system logic.

4.8.2.2.4 HOLD/HLDA External Access TIming

In systems with two or more bus masters, each bus
master is equipped with individual HOLD and HLDA
control signals. These signals are then centralized to
the core system logic that controls individual bus mas-
ters, depending on bus request signals and the HITM
signal.

Table 6. Key to Switching Waveforms

Waveform Inputs Outputs

Must be steady Will be steady

May change from
H to L

Will change
from H to L

May change from
L to H

Will change
from L to H

Don’t care; any
change permitted

Changing;
state unknown

Does not apply
Center line is
High-impedance
“Off” state
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BOFF

WB/WT

KEN

Data n n+8n+4

BLAST

BRDY

ADS
1

ADR

M/IO

W/R

CLK

2

n n+8n+4

n+12

3

n+12

Note:  The circled numbers in this figure represent the steps in section 4.8.2.2.2.

Figure 4. External Read
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Note:  The circled numbers in this figure represent the steps in section 4.8.2.2.3.

1
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Figure 5. External Write
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HLDA
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HOLD

HITM

ADR

INV

CLK

valid

valid

Figure 6. Snoop of On-Chip Cache That Does Not Hit a Line

Note:  The circled numbers in this figure represent the steps in section 4.8.3.1.
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Note:  The circled numbers in this figure represent the steps in section 4.8.3.2.

Figure 7. Snoop of On-Chip Cache That Hits a Non-modified Line
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4.8.3 External Bus Master Snooping Actions

The following scenarios describe the snooping actions
of an external bus master.

4.8.3.1 Snoop Miss

Scenario : A snoop of the on-chip cache does not hit a
line, as shown in Figure 6.

Step 1 The microprocessor is placed in snooping
mode with HOLD. HLDA must be High for a
minimum of one clock cycle before EADS as-
sertion. In the fastest case, this means that
HOLD was asserted one clock cycle before the
HLDA response.

Step 2 EADS and INV are applied to the microprocessor. If
INV is 0, a read access caused the snooping cycle.
If INV is 1, a write access caused the snooping cycle. 

Step 3 Two clock cycles after EADS was asserted, the
snooping signal HITM becomes valid. Because the
addressed line is not in the snooping cache, HITM is
1.

4.8.3.2 Snoop Hit to a Non-Modified Line

Scenario : The snoop of the on-chip cache hits a line, and the
line is not modified (see Figure 7).

Step 1 The microprocessor is placed in snooping
mode with HOLD. HLDA must be High for a

minimum of one clock cycle before EADS as-
sertion. In the fastest case, this means that
HOLD was asserted one clock cycle before the
HLDA response.

Step 2 EADS and INV are applied to the microprocessor. If
INV is 0, a read access caused the snooping cycle.
If INV is 1, a write access caused the snooping cycle. 

Step 3 Two clock cycles after EADS is asserted, HITM
becomes valid. In this case, HITM is 1.

4.8.4 Write-Back Case 

Scenario : Write-back accesses are always burst writes with
a length of four 32-bit words. For burst writes, the burst always
starts with the microprocessor line offset at 0. HOLD must be
deasserted before the write-back can be performed (see Fig-
ure 8).

Step 1 HOLD places the microprocessor in snooping
mode. HLDA must be High for a minimum of one
clock cycle before EADS assertion. In the fastest
case, this means that HOLD asserts one clock cy-
cle before the HLDA response.

Step 2 EADS and INV are asserted. If INV is 0, snooping
is caused by a read access. If INV is 1, snooping is
caused by a write access. EADS is not sampled
again until after the modified line is written back to
memory. It is detected again as early as in Step 11.

EADS

External
bus master’s 
BOFF signal

HLDA

Data

HOLD

HITM

ADS

INV

BRDY

BLAST

W/R

M/IO

ADR

CLK

valid

n n

n n+4 n+8 n+12

n+1

valid

n

Figure 8. Snoop That Hits a Modified Line (Write-Back)

Note:  The circled numbers in this figure represent the steps in section 4.8.4.
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Step 3 Two clock cycles after EADS is asserted, HITM
becomes valid, and is 0 because the line is modi-
fied.

Step 4 The core system logic deasserts, in the next
clock, the HOLD signal in response to the HITM =
0 signal. The core system logic backs off the current
bus master at the same time so that the micropro-
cessor can access the bus. HOLD can be reassert-
ed immediately after ADS is asserted for burst
cycles.

Step 5 The snooping cache starts its write-back of the
modified line by asserting ADS = 0, CACHE = 0,
and W/R = 1. The write access is a burst write. The
number of clock cycles between deasserting HOLD
to the snooping cache and first asserting ADS for
the write-back cycles can vary. In this example, it is
one clock cycle, which is the shortest possible time.
Regardless of the number of clock cycles, the start
of the write-back is seen by ADS going Low.

Step 6 The write-back access is finished when BLAST
and BRDY both are 0.

Step 7 In the clock cycle after the final write-back ac-
cess, the processor drives HITM back to 1.

Step 8 HOLD is sampled by the microprocessor.

Step 9 One cycle after sampling HOLD High, the mi-
croprocessor transitions HLDA transitions to 1,
acknowledging the HOLD request.

Step 10 The core system logic removes hold-off control
to the external bus master. This allows the ex-
ternal bus master to immediately retry the abort-
ed access. ADS is strobed Low, which generates
EADS Low in the same clock cycle.

Step 11 The bus master restarts the aborted access.
EADS and INV are applied to the microprocessor
as before. This starts another snoop cycle.

The status of the addressed line is now either shared
(INV = 0) or is changed to invalid (INV = 1). 

4.8.5 Write-Back and Pending Access

Scenario : The following occurs when, in addition to the write-
back operation, other bus accesses initiated by the processor
associated with the snooped cache are pending. The micro-
processor gives the write-back access priority. This implies
that if HOLD is deasserted, the microprocessor first writes
back the modified line (see Figure 9).

Figure 9. Write-Back and Pending Access

Note:  The circled numbers in this figure represent the steps in section 4.8.5.
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Step 1 HOLD places the microprocessor in snooping
mode. HLDA must be High for a minimum of one
clock cycle before EADS assertion. In the fastest
case, this means that HOLD asserts one clock cy-
cle before the HLDA response.

Step 2 EADS and INV are asserted. If INV is 0, snooping
is caused by a read access. If INV is 1, snooping is
caused by a write access. EADS is not sampled
again until after the modified line is written back to
memory. It is detected again as early as in Step 11.

Step 3 Two clock cycles after EADS is asserted, HITM
becomes valid, and is 0 because the line is modi-
fied.

Step 4 In the next clock the core system logic deas-
serts the HOLD signal in response to the HITM =
0. The core system logic backs off the current bus
master at the same time so that the microprocessor
can access the bus. HOLD can be reasserted im-
mediately after ADS is asserted for burst cycles.

Step 5 The snooping cache starts its write-back of the
modified line by asserting ADS = 0, CACHE = 0,
and W/R = 1. The write access is a burst write. The
number of clock cycles between deasserting HOLD
to the snooping cache and first asserting ADS for
the write-back cycles can vary. In this example, it is
one clock cycle, which is the shortest possible time.
Regardless of the number of clock cycles, the start
of the write-back is seen by ADS going Low.

Step 6 The write-back access is finished when BLAST
and BRDY both are 0.

Step 7 In the clock cycle after the final write-back ac-
cess, the processor drives HITM back to 1.

Step 8 HOLD is sampled by the microprocessor.

Step 9 A minimum of 1 clock cycle after the completion
of the pending access, HLDA transitions to 1,
acknowledging the HOLD request.

Step 10 The core system logic removes hold-off control
to the external bus master. This allows the ex-
ternal bus master to immediately retry the abort-
ed access. ADS is strobed Low, which generates
EADS Low in the same clock cycle.

Step 11 The bus master restarts the aborted access.
EADS and INV are applied to the microprocessor
as before. This starts another snoop cycle.

The status of the addressed line is now either shared
(INV = 0) or is changed to invalid (INV = 1). 

4.8.5.1 HOLD/HLDA Write-Back Design 
Considerations

When designing a write-back cache system that uses
HOLD/HLDA as the bus arbitration method, the follow-
ing considerations must be observed to ensure proper
operation (see Figure 10).

HLDA

CLK

ADS

BLAST

BRDY

HOLD Valid Hold Assertion

Figure 10. Valid HOLD Assertion During Write-Back

HITM



Enhanced Am486 Microprocessor 

AMD

28

PRELIMINARY

Step 1 During a snoop to the on-chip cache that hits a
modified cache line, the HOLD signal cannot
be deasserted to the microprocessor until the
next clock cycle after HITM transitions active.

Step 2 After the write-back has commenced, the
HOLD signal should be asserted no earlier than
the next clock cycle after ADS goes active, and
no later than in the final BRDY of the last write.
Asserting HOLD later than the final BRDY may
allow the microprocessor to permit a pending
access to begin.

Step 3 If RDY is returned instead of BRDY during a
write-back, the HOLD signal can be reasserted
at any time starting one clock after ADS goes
active in the first transfer up to the final transfer
when RDY is asserted. Asserting RDY instead
of BRDY will not break the write-back cycle if
HOLD is asserted. The processor ignores
HOLD until the final write cycle of the write-
back.

4.8.5.2 AHOLD Bus Arbitration Implementation

The use of AHOLD as the control mechanism is often
found in systems where an external second-level cache
is closely coupled to the microprocessor. This tight cou-
pling allows the microprocessor to operate with the least
amount of stalling from external snooping of the on-chip
cache. Additionally, snooping of the cache can be per-
formed concurrently with an access by the microproces-
sor. This feature further improves the performance of
the total system (see Figure 11).

Note:  To maintain proper system timing, the AHOLD
signal must remain active for one clock cycle after HITM
transitions active. Deassertion of AHOLD in the same
clock cycle as HITM assertion may lead to unpredictable
processor behavior.

DRAM

Address Bus

Data Bus

L2 Cache

Address Bus

Data Bus

I/O Bus
Interface

Slow
Peripheral

CPU

Address Bus

Data Bus

Figure 11. Closely Coupled Cache Block Diagram

The following sections describe the snooping scenarios
for the AHOLD implementation.

4.8.5.3 Normal Write-Back

Scenario : This scenario assumes that a processor-initiated
access has already started and that the external logic can
finish that access even without the address being applied after
the first clock cycle. Therefore, a snooping access with
AHOLD can be done in parallel. In this case, the processor-
initiated access is finished first, then the write-back is executed
(see Figure 12). 

The sequence is as follows:

Step 1 The processor initiates an external, simple,
non-cacheable read access, strobing ADS = 0
and W/R = 0. The address is driven from the CPU.

Step 2 In the same cycle, AHOLD is asserted to indi-
cate the start of snooping. The address bus
floats and becomes an input in the next clock
cycle.

Step 3 During the next clock cycles, the BRDY or RDY
signal is not strobed Low. Therefore, the proces-
sor-initiated access is not finished.

Step 4 Two clock cycles after AHOLD is asserted, the
EADS signal is activated to start an actual snoop-
ing cycle, and INV is valid. If INV is 0, a read access
caused the snooping cycle. If INV is 1, a write ac-
cess caused the snooping cycle. Additional EADS
are ignored due to the hit of a modified line. It is
detected after HITM goes inactive.

Step 5 Two clock cycles after EADS is asserted, the
snooping signal HITM becomes valid. The line is
modified; therefore, HITM is 0. 

Step 6 In this cycle, the processor-initiated access is
finished. 

Step 7 Two clock cycles after the end of the processor-
initiated access, the cache immediately starts
writing back the modified line. This is indicated
by ADS = 0 and W/R = 1. Note that AHOLD is
still active and the address bus is still an input.
However, the write-back access can be execut-
ed without any address. This is because the
corresponding address must have been on the
bus when EADS was strobed. Therefore, in the
case of the core system logic, the address for
the write-back must be latched with EADS to
be available later. This is required only if
AHOLD is not removed if HITM becomes 0.
Otherwise, the address of the write-back is put
onto the address bus by the microprocessor.
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Step 8 As an example, AHOLD is now removed. In the
next clock cycle, the current address of the
write-back access is driven onto the address
bus.

Step 9 The write-back access is finished when BLAST
and BRDY both transition to 0.

Step 10 In the clock cycle after the final write-back access,
the snooping cache drives HITM back to 1.

The status of the snooped and written-back line is now
either shared (INV = 0) or is changed to invalid (INV = 1).

4.8.6 Reordering of Write-Backs (AHOLD) with 
BOFF

As seen previously, the Bus Interface Unit (BIU) com-
pletes the processor-initiated access first if the snooping
access occurs after the start of the processor-initiated
access. If the HITM signal occurs one clock cycle before
the ADS = 0 of the processor-initiated access, the write-back
receives priority and is executed first.

However, if the snooping access is executed after the
start of the processor-initiated access, there is a meth-
odology to reorder the access order. The BOFF signal
delays outstanding processor-initiated cycles so that a
snoop write-back can occur immediately (see Figure 13).

Scenario : If there are outstanding processor-initiated cy-
cles on the bus, asserting BOFF clears the bus pipeline. If

a snoop causes HITM to be asserted, the first cycle issued
by the microprocessor after deassertion of BOFF is the
write-back cycle. After the write-back cycle, it reissues the
aborted cycles. This translates into the following sequence:

Step 1 The processor starts a cacheable burst read
cycle.

Step 2 One clock cycle later, AHOLD is asserted. This
switches the address bus into an input one
clock cycle after AHOLD is asserted.

Step 3 Two clock cycles after AHOLD is asserted, the
EADS and INV signals are asserted to start the
snooping cycle. 

Step 4 Two clock cycles after EADS is asserted, HITM
becomes valid. The line is modified, therefore
HITM = 0.

Step 5 Note that the processor-initiated access is not
completed because BLAST = 1.

Step 6 With HITM going Low, the core system logic as-
serts BOFF in the next clock cycle to the snooping
processor to reorder the access. BOFF overrides
BRDY. Therefore, the partial read is not used. It is
reread later.

Step 7 One clock cycle later BOFF is deasserted. The
write-back access starts one clock cycle later be-
cause the BOFF has cleared the bus pipeline.
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Figure 12. Snoop Hit Cycle with Write-Back
Note:  The circled numbers in this figure represent the steps in section 4.8.5.3.
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Step 8 AHOLD is deasserted. In the next clock cycle
the address for the write-back is driven on the
address bus.

Step 9 One cycle after BOFF is deasserted, the cache
immediately starts writing back the modified line.
This is indicated by ADS = 0 and W/R = 1. 

Step 10 The write-back access is finished when BLAST
and BRDY go active 0.

Step 11 The BIU restarts the aborted cache line fill with
the previous read. This is indicated by ADS = 0
and W/R = 0.

Step 12 In the same clock cycle, the snooping cache
drives HITM back to 1. 

Step 13 The previous read is now reread.

4.8.7 Special Scenarios For AHOLD Snooping

In addition to the previously described scenarios, there
are special scenarios regarding the time of the EADS
and AHOLD assertion. The final result depends on the time
EADS and AHOLD are asserted relative to other proces-
sor-initiated operations.

4.8.7.1 Write Cycle Reordering due to Buffering

Scenario : The MESI cache protocol and the ability to perform
and respond to snoop cycles guarantee that writes to the
cache are logically equivalent to writes to memory. In particu-
lar, the order of read and write operations on cached data is
the same as if the operations were on data in memory. Even
non-cached memory read and write requests usually occur
on the external bus in the same order that they were issued
in the program. For example, when a write miss is followed by
a read miss, the write data goes on the bus before the read
request is put on the bus. However, the posting of writes in
write buffers coupled with snooping cycles may cause the or-
der of writes seen on the external bus to differ from the order
they appear in the program. Consider the following example,
which is illustrated in Figure 14. For simplicity, snooping sig-
nals that behave in their usual manner are not shown.

Step 1 AHOLD is asserted. No further processor-initi-
ated accesses to the external bus can be start-
ed. No other access is in progress.

Step 2 The processor writes data A to the cache, re-
sulting in a write miss. Therefore, the data is put
into the write buffers, assuming they are not full.
No external access can be started because
AHOLD is still 1.
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Figure 13. Cycle Reordering with BOFF  (Write-Back)
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W2

11

12

R2 from CPU

Ä

Ã

Å

Ç

É

CACHE

À

R1 from CPU

È

Æ

Â

Á



Enhanced Am486 Microprocessor

AMD

31

PRELIMINARY

Step 3 The next write of the processor hits the cache and
the line is non-shared. Therefore, data B is written
into the cache. The cache line transits to the Modified
state.

Step 4 In the same clock cycle, a snoop request to the
same address where data B resides is started be-
cause EADS = 0. The snoop hits a modified line.
EADS is ignored due to the hit of a modified line, but
is detected again as early as in step 10.

Step 5 Two clock cycles after EADS asserts, HITM be-
comes valid. 

Step 6 Because the processor-initiated access cannot
be finished (AHOLD is still 1), the BIU gives
priority to a write-back access that does not re-
quire the use of the address bus. Therefore, in
the clock cycle, the cache starts the write-back
sequence indicated by ADS = 0 and W/R = 0.

Step 7 During the write-back sequence, AHOLD is
deasserted.

Step 8 The write-back access is finished when BLAST
and BRDY transition to 0.

Step 9 After the last write-back access, the BIU starts
writing data A from the write buffers. This is in-
dicated by ADS = 0 and W/R = 0.

Step 10 In the same clock cycle, the snooping cache
drives HITM back to 1. 

Step 11 The write of data A is finished if BRDY transitions
to 0 (BLAST = 0), because it is a single word.

The software write sequence was first data A and then
data B. But on the external bus the data appear first as
data B and then data A. The order of writes is changed.
In most cases it is unnecessary to strictly maintain the
ordering of writes. However, some cases (for example,
writing to hardware control registers) require writes to
be observed externally in the same order as pro-
grammed. There are two options to ensure serialization
of writes, both of which drive the cache to write-through
mode:

1) Set the PWT bit in the page table entries. 
2) Drive the WB/WT signal Low when accessing these

memory locations.

Option 1 is an operating-system level solution not di-
rectly implemented by user-level code. Option 2, the
hardware solution, is implemented at the system level.
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4.8.7.2 BOFF Write-Back Arbitration 
Implementation 

The use of BOFF to perform snooping of the on-chip
cache is used in systems where more than one cache-
able bus master resides on the microprocessor bus. The
BOFF signal forces the microprocessor to relinquish the
bus in the following clock cycle, regardless of the type
of bus cycle it was performing at the time. Consequently,
the use of BOFF as a bus arbitrator should be imple-
mented with care to avoid system problems. 

4.8.8 BOFF Design Considerations

The use of BOFF as a bus arbitration control mecha-
nism is immediate. BOFF forces the microprocessor to
abort an access in the following clock cycle after it is
asserted. The following design issues must be consid-
ered.

4.8.8.1 Cache Line Fills

The microprocessor aborts a cache line fill during a
burst read if BOFF is asserted during the access. Upon
regaining the bus, the read access commences where
it left off when BOFF was recognized. External buffers
should take this cycle continuation into consideration if
BOFF is allowed to abort burst read cycles.

4.8.8.2 Cache Line Copy-Backs

Similar to the burst read, the burst write also can be
aborted at any time with the BOFF signal. Upon regain-
ing access to the bus, the write continues from where it
was aborted. External buffers and control logic should
take into consideration the necessary control, if any, for
burst write continuations.

4.8.8.3 Locked Accesses

Locked bus cycles occur in various forms. Locked ac-
cesses occur during read-modify-write operations, in-
terrupt acknowledges, and page table updates.
Although asserting BOFF during a locked cycle is per-
mitted, extreme care should be taken to ensure data
coherency for semaphore updates and proper data or-
dering.

4.8.9 BOFF During Write-Back

If BOFF is asserted during a write-back, the processor per-
forming the write-back goes off the bus in the next clock cycle.
If BOFF is released, the processor restarts that write-back ac-
cess from the point at which it was aborted. The behavior is
identical to the normal BOFF case that includes the abort and
restart behavior.

4.8.10 Snooping Characteristics During a Cache 
Line Fill

The following cases apply if snooping is invoked via
AHOLD, and neither HOLD nor BOFF is asserted. It also
requires that the processor buses are not tied together, such
as in a second-level cache system. The microprocessor takes
responsibility for responding to snoop cycles for a cache line
only during the time that the line is actually in the cache or in
a copy-back buffer. There are times during the cache line fill
cycle and during the cache replacement cycle when the line
is “in transit” and snooping responsibility must be taken by
other system components.

System designers should consider the possibility that a
snooping cycle may arrive at the same time as a cache
line fill or replacement for the same address. If a snoop-
ing cycle arrives at the same time as a cache line fill
with the same address, the CPU uses the cache line fill,
but does not place it in the cache.

If a snooping cycle occurs at the same time as a cache
line fill with a different address, the cache line fill is
placed into the cache unless EADS is recognized before
the first BRDY but after ADS is asserted, or EADS is
recognized on the last BRDY of the cache line fill. In
these cases, the line is not placed into the cache.

4.8.11 Snooping Characteristics During a 
Copy-Back

If a copy-back is occurring because of a cache line re-
placement, the address being replaced can be matched
by a snoop until assertion of the last BRDY of the copy-
back. This is when the modified line resides in the copy-back
buffer. An EADS as late as two clocks before the last BRDY
can cause HITM to be asserted.

Figure 15 illustrates the microprocessor relinquishing
responsibility of recognizing snoops for a line that is
copied back. It shows the latest EADS assertion that can
cause HITM assertion. HITM remains active for only one clock
period in that example. HITM remains active through the last
BRDY of the corresponding write-back; in that case the write-
back has already completed. This is the latest point where
snooping can start, because two clock cycles later the
final BRDY of the write-back is applied.

If a snoop cycle hits the copy-back address after the first
BRDY of the copy-back and ADS has been issued, the
microprocessor asserts HITM. Keep in mind that the write-
back was initiated due to a read miss and not due to a snoop
to a modified line. In the second case, no snooping is recog-
nized if a modified line is detected.
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4.9 Cache Invalidation and Flushing in 
Write-Back Mode

The Enhanced Am486 microprocessor family supports
cache invalidation and flushing, much like the
Am486DX and Am486 microprocessor write-through
mode. However, the addition of the write-back cache
adds some complexity.

4.9.1 Cache Invalidation through Software

The Enhanced Am486 microprocessor family uses the
same instructions as the Am486DX and Am486 micro-
processor families to invalidate the on-chip cache. The
two invalidation instructions, INVD and WBINVD, while
similar, are slightly different for use in the write-back
environment.

The WBINVD instruction first performs a write-back of
the modified data in the cache to external memory. Then
it invalidates the cache, followed by two special bus
cycles, whereas the INVD instruction only invalidates
the cache, regardless of whether modified data exists,
and follows with a special bus cycle. The utmost care
should be taken when executing the INVD instruction to
ensure memory coherency. Otherwise, modified data
may be invalidated prior to writing back to main memory.
In write-back mode, WBINVD requires a minimum of
2050 internal clocks to search the cache for modified
data. Writing back modified data adds to this minimum
time. WBINVD can only be stopped by a RESET.

Two special bus cycles follow the write-back of modified
data upon execution of the WBINVD instruction: first the
write-back, and then the flush special bus cycle. The

INVD operates identically to the standard 486 micropro-
cessor family in that the flush special bus cycle is gen-
erated when the on-chip cache is invalidated. Table 7
specifies the special bus cycle states for the instructions
WBINVD and INVD.

4.9.2 Cache Invalidation through Hardware

The other mechanism for cache invalidation is the
FLUSH pin. The FLUSH pin operates similarly to the
WBINVD command, writing back modified cache lines
to main memory. After the entire cache has copied back
all the modified data, the microprocessor generates two
special bus cycles. These special bus cycles signal to
the external caches that the microprocessor on-chip
cache has completed its copy-back and that the second
level cache may begin its copy-back to memory, if so
required.

Two flush acknowledge cycles are generated after the
FLUSH pin is asserted and the modified data in the
cache is written back. As with the WBINVD instruction,
in write-back mode, a flush requires a minimum of 2050
internal clocks to test the cache for modified data. Writ-
ing back modified data adds to this minimum time. The
flush operation can only be stopped by a RESET. Table
8 shows the special flush bus cycle configuration.

Table 7. WBINVD/INVD Special Bus Cycles

A32–A2 M/IO D/C W/R BE3 BE2 BE1 BE0 Bus Cycle

0000 0000 h 0 0 1 0 1 1 1 Write-back1

0000 0000 h 0 0 1 1 1 0 1 Flush1,2

Notes:
1. WBINVD generates first write-back, then flush.
2. INVD generates only flush.
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4.9.3 Snooping During Cache Flushing

As with snooping during normal operation, snooping is
permitted during a cache flush, whether initiated by the
FLUSH pin or WBINVD instruction. After completion of
the snoop, and write-back, if needed, the microproces-
sor completes the copy-back of modified cache lines.

4.10 Burst Write
The Enhanced Am486 microprocessor improves sys-
tem performance by implementing a burst write feature

Table 8. FLUSH  Special Bus Cycles

A32–A2 M/IO D/C W/R BE3 BE2 BE1 BE0 Bus Cycle

0000 0001h 0 0 1 0 1 1 1 First Flush
Acknowledge

0000 0001h 0 0 1 1 1 0 1
Second
Flush
Acknowledge

for cache line write-backs and copy-backs. Standard
write operations are still supported because they are on
the Am486DX family of microprocessors. Burst writes
are always four 32-bit words and start at the beginning
of a cache line address of 0 for the starting access. The
timing of the BLAST and BRDY signals is identical to the
burst read. Figure 16 shows a burst write access. (See Figure
17 and Figure 18 for burst read and burst write access with
BOFF asserted.) In addition to using BLAST, the CACHE
signal indicates burstable cycles.

CACHE is a cycle definition pin used when in write-back
mode (CACHE floats in write-through mode). For pro-
cessor-initiated cycles, the signal indicates either

n for a read cycle, the internal cacheability of the cycle

n for a write cycle, a burst write-back or copy-back, if
KEN is asserted (for linefills).
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Figure 16. Burst Write
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Figure 18. Burst Write with BOFF  Assertion
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CACHE is asserted for cacheable reads, cacheable
code fetches, and write-backs/copy-backs. CACHE is
deasserted for non-cacheable reads, translation looka-
side buffer (TLB) replacements, locked cycles (except
for write-back cycles generated by an external snoop
operation that interrupts a locked read/modify/write se-
quence), I/O cycles, special cycles, and write-throughs.
CACHE is driven to its valid level in the same clock as
the assertion of ADS and remains valid until the next
RDY or BRDY assertion. The CACHE output pin floats
one clock after BOFF is asserted. Additionally, the signal
floats when HLDA is asserted.

The following steps describe the burst write sequence:

1) The access is started by asserting: ADS = 0, M/IO = 1,
W/R = 1, CACHE = 0. The address offset always is 0,
so the burst write always starts on a cache line boundary.
CACHE transitions High (inactive) after the first BRDY.

2) In the second clock cycle, BLAST is 1 to indicate that
the burst is not finished.

3) The burst write access is finished when BLAST is 0
and BRDY is 0.

When the RDY signal is returned instead of the BRDY
signal, the Enhanced Am486 microprocessor halts the
burst cycle and proceeds with the standard non-burst cycle.

4.10.1 Locked Accesses

Locked accesses of an Enhanced Am486 microproces-
sor occur for Read-Modify-Write Operations and Inter-
rupt Acknowledge Cycles. The timing is identical to the
DX microprocessor, although the state transitions differ from
the standard DX microprocessor. Unlike processor-initiat-
ed accesses, state transitions for locked accesses are
seen by all processors in the system. Any locked read
or write generates an external bus cycle, regardless of

cache hit or miss. During locked cycles, the processor
does not recognize a HOLD request, but it does recog-
nize BOFF and AHOLD requests.

Locked read operations always read data from the ex-
ternal memory, regardless of whether the data is in the
cache. In the event that the data is in the cache and
unmodified, the cache line is invalidated and an external
read operation is performed. The data from the external
memory is used instead of the data in the cache, thus
ensuring that the locked read is seen by all other bus
masters. If a locked read occurs, the data is in the cache,
and it is modified, the microprocessor first copies back
the data to external memory, invalidates the cache line,
and then performs a read operation to the same loca-
tion, thus ensuring that the locked read is seen by all
other bus masters. At no time is the data in the cache
used directly by the microprocessor or a locked read
operation before reading the data from external memo-
ry. Since locked cycles always begin with a locked read
access, and locked read cycles always invalidate a
cache line, a locked write cycle to a valid cache line,
either modified or unmodified, does not occur.

4.10.2 Serialization

Locked accesses are totally serialized:

n All reads and writes in the write buffer that precede
the locked access are issued on the bus before the
first locked access is executed.

n No read or write after the last locked access is issued
internally or on the bus until the final RDY or BRDY
for all locked accesses.

n It is possible to get a locked read, write-back, locked
write cycle.
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4.10.3 PLOCK Operation in Write-Through Mode

As described in Section 3, PLOCK is only used in write-
through mode; the signal is driven inactive in write-back
mode. In write-through mode, the processor drives
PLOCK Low to indicate that the current bus transaction
requires more than one bus cycle. The CPU continues
to drive the signal Low until the transaction is completed,
whether or not RDY or BRDY is returned. Refer to the
pin description for additional information.

5 CLOCK CONTROL
5.1 Clock Generation
The Enhanced Am486 CPU is driven by a 1X clock that
relies on phased-lock loop (PLL) to generate the two
internal clock phases: phase one and phase two. The
rising edge of CLK corresponds to the start of phase
one (ph1). All external timing parameters are specified
relative to the rising edge of CLK. 

5.2 Stop Clock
The Enhanced Am486 CPU also provides an interrupt
mechanism, STPCLK, that allows system hardware to con-
trol the power consumption of the CPU by stopping the internal
clock to the CPU core in a sequenced manner. The first low-
power state is called the Stop Grant state. If the CLK input is
completely stopped, the CPU enters into the Stop Clock state
(the lowest power state). When the CPU recognizes a STP-
CLK interrupt, the processor:

n stops execution on the next instruction boundary
(unless superseded by a higher priority interrupt).

n waits for completion of cache flush.

n stops the pre-fetch unit.

n empties all internal pipelines and write buffers.

n generates a Stop Grant bus cycle.

n stops the internal clock.

At this point the CPU is in the Stop Grant state.

The CPU cannot respond to a STPCLK request from an
HLDA state because it cannot empty the write buffers and,
therefore, cannot generate a Stop Grant cycle. The rising
edge of STPCLK signals the CPU to return to program exe-
cution at the instruction following the interrupted instruction.
Unlike the normal interrupts (INTR and NMI), STPCLK
does not initiate interrupt acknowledge cycles or interrupt table
reads.

5.2.1 External Interrupts in Order of Priority

In write-through mode, the priority order of external in-
terrupts is:

1) RESET/SRESET
2) FLUSH
3) SMI
4) NMI
5) INTR
6) STPCLK

In write-back mode, the priority order of external inter-
rupts is:

1) RESET
2) FLUSH
3) SRESET
4) SMI
5) NMI
6) INTR
7) STPCLK

STPCLK is active Low and has an internal pull-up re-
sistor. STPCLK is asynchronous, but setup and hold
times must be met to ensure recognition in any specific
clock. STPCLK must remain active until the Stop Grant
special bus cycle is asserted and the system responds
with either RDY or BRDY. When the CPU enters the
Stop Grant state, the internal pull-up resistor is disabled,
reducing the CPU power consumption. The STPCLK
input must be driven High (not floated) to exit the Stop
Grant state. STPCLK must be deasserted for a mini-
mum of five clocks after RDY or BRDY is returned active
for the Stop Grant bus cycle before being asserted
again. There are two regions for the low-power mode
supply current:

1) Low Power: Stop Grant state (fast wake-up, frequency-
and voltage-dependent),

2) Lowest Power: Stop Clock state (slow wake-up, voltage-
dependent).

5.3 Stop Grant Bus Cycle
The processor drives a special Stop Grant bus cycle to the
bus after recognizing the STPCLK interrupt. This bus cycle
is the same as the HALT cycle used by a standard Am486
microprocessor, with the exception that the Stop Grant bus
cycle drives the value 0000 0010h on the address pins. 

n M/lO = 0

n D/C = 0

n W/R =1

n Address Bus = 0000 0010h (A4 = 1)

n BE3–BE0 = 1011

n Data bus = undefined

The system hardware must acknowledge this cycle by re-
turning RDY or BRDY, or the processor will not enter the
Stop Grant state (see Figure 19). The latency between a
STPCLK request and the Stop Grant bus cycle depends on
the current instruction, the amount of data in the CPU write
buffers, and the system memory performance
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5.4 Pin State during Stop Grant
Table 9 shows the pin states during Stop Grant Bus
states. During the Stop Grant state, most output and
input/output signals of the microprocessor maintain the
level they held when entering the Stop Grant state. The
data and data parity signals are three-stated. In response to
HOLD being driven active during the Stop Grant state (when
the CLK input is running), the CPU generates HLDA and
three-states all output and input/output signals that are three-
stated during the HOLD/HLDA state. After HOLD is deassert-
ed, all signals return to the same state they were before the
HOLD/HLDA sequence.

Table 9. Pin State During Stop Grant Bus State

Signal Type State

A3–A2 O Previous State

A31–A4 I/O Previous State

D31–D0 I/O Floated

BE3–BE0 O Previous State

DP3–DP0 I/O Floated

W/R, D/C, M/IO, CACHE O Previous State

ADS O Inactive

LOCK, PLOCK O Inactive

BREQ O Previous State

HLDA O As per HOLD

BLAST O Previous State

FERR O Previous State

PCHK O Previous State

SMIACT O Previous State

HITM O Previous State

To achieve the lowest possible power consumption dur-
ing the Stop Grant state, the system designer must en-
sure the input signals with pull-up resistors are not
driven Low, and the input signals with pull-down resis-
tors are not driven High.

All inputs except data bus pins must be driven to the
power supply rails to ensure the lowest possible current
consumption during Stop Grant or Stop Clock modes.
For compatibility, data pins must be driven Low to
achieve the lowest possible power consumption.

5.5 Clock Control State Diagram
Figure 20 shows the state transitions during a Stop
Clock cycle.

5.5.1 Normal State

This is the normal operating state of the CPU. While in
the normal state, the CLK input can be dynamically
changed within the specified CLK period stability limits.

5.5.2 Stop Grant State

The Stop Grant state provides a low-power state that
can be entered by simply asserting the external STPCLK
interrupt pin. When the Stop Grant bus cycle has been placed
on the bus, and either RDY or BRDY is returned, the CPU is
in this state. The CPU returns to the normal execution state
10–20 clock periods after STPCLK has been deasserted.

While in the Stop Grant state, the pull-up resistors on
STPCLK and UP are disabled internally. The system must
continue to drive these inputs to the state they were in imme-
diately before the CPU entered the Stop Grant State. For min-
imum CPU power consumption, all other input pins should be
driven to their inactive level while the CPU is in the Stop Grant
state.

.

t20 t21

Figure 19. Entering Stop Grant State
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Figure 20. Stop Clock State Machine

(valid for write-back mode only)

Figure 21. Recognition of Inputs when Exiting Stop Grant State
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Note:  A = Earliest time at which NMI or SMI is recognized.

A RESET or SRESET brings the CPU from the Stop
Grant state to the Normal state. The CPU recognizes
the inputs required for cache invalidations (HOLD,
AHOLD, BOFF, and EADS) as explained later. The CPU
does not recognize any other inputs while in the Stop Grant
state. Input signals to the CPU are not recognized until 1 clock
after STPCLK is deasserted (see Figure 21).

While in the Stop Grant state, the CPU does not recog-
nize transitions on the interrupt signals (SMI, NMI, and
INTR). Driving an active edge on either SMI or NMI does not
guarantee recognition and service of the interrupt request fol-
lowing exit from the Stop Grant state. However, if one of the
interrupt signals (SMI, NMI, or INTR) is driven active while the
CPU is in the Stop Grant state, and held active for at least one
CLK after STPCLK is deasserted, the corresponding interrupt
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will be serviced. The Enhanced Am486 CPU product family
requires INTR to be held active until the CPU issues an inter-
rupt acknowledge cycle to guarantee recognition. This condi-
tion also applies to the existing Am486 CPUs. 

In the Stop Grant State, the system can stop or change
the CLK input. When the clock stops, the CPU enters
the Stop Clock State. The CPU returns to the Stop Grant
State immediately when the CLK input is restarted. You
must hold the STPCLK input Low until a stabilized fre-
quency has been maintained for at least 1 ms to ensure
that the PLL has had sufficient time to stabilize. 

The CPU generates a Stop Grant bus cycle when en-
tering the state from the Normal or the Auto HALT Power
Down state. When the CPU enters the Stop Grant State
from the Stop Clock State or the Stop Clock Snoop
State, the CPU does not generate a Stop Grant bus
cycle.

5.5.3 Stop Clock State

Stop Clock state is entered from the Stop Grant state by
stopping the CLK input (either logic High or logic Low). None
of the CPU input signals should change state while the CLK
input is stopped. Any transition on an input signal (except IN-
TR) before the CPU has returned to the Stop Grant state may
result in unpredictable behavior. If INTR goes active while the
CLK input is stopped, and stays active until the CPU issues
an interrupt acknowledge bus cycle, it is serviced in the normal
manner. System design must ensure the CPU is in the correct
state prior to asserting cache invalidation or interrupt signals
to the CPU.

5.5.4 Auto Halt Power Down State

A HALT instruction causes the CPU to enter the Auto
HALT Power Down state. The CPU issues a normal
HALT bus cycle, and only transitions to the Normal state
when INTR, NMI, SMI, RESET, or SRESET occurs.

The system can generate a STPCLK while the CPU is in
the Auto HALT Power Down state. The CPU generates a Stop
Grant bus cycle when it enters the Stop Grant state from the
HALT state. When the system deasserts the STPCLK inter-
rupt, the CPU returns execution to the HALT state. The CPU
generates a new HALT bus cycle when it re-enters the HALT
state from the Stop Grant state.

5.5.5 Stop Clock Snoop State
(Cache Invalidations)

When the CPU is in the Stop Grant state or the Auto
HALT Power Down state, the CPU recognizes HOLD,
AHOLD, BOFF, and EADS for cache invalidation. When the
systems asserts HOLD, AHOLD, or BOFF, the CPU floats the
bus accordingly. When the system asserts EADS, the CPU
transparently enters Stop Clock Snoop state and powers up
for one full clock to perform the required cache snoop cycle.
If a modified line is snooped, a cache write-back occurs with
HITM transitioning active until the completion of the write-
back. It then powers down and returns to the previous state.

The CPU does not generate a bus cycle when it returns to the
previous state.

5.5.6 Cache Flush State

When configured in write-back mode, the processor rec-
ognizes FLUSH for copying back modified cache lines
to memory in the Auto Halt Power Down State or Normal
State. Upon the completion of the cache flush, the pro-
cessor returns to its prior state, and regenerates a spe-
cial bus cycle, if necessary.

6 SRESET FUNCTION
The Enhanced Am486 microprocessor family supports
a soft reset function through the SRESET pin. SRESET
forces the processor to begin execution in a known
state. The processor state after SRESET is the same
as after RESET except that the internal caches, CD and
NW in CR0, write buffers, SMBASE registers, and float-
ing-point registers retain the values they had prior to
SRESET, and cache snooping is allowed. The proces-
sor starts execution at physical address FFFFFFF0h.
SRESET can be used to help performance for DOS
extenders written for the 80286 processor. SRESET
provides a method to switch from Protected to Real
mode while maintaining the internal caches, CR0, and
the FPU state. SRESET may not be used in place of
RESET after power-up.

In write-back mode, once SRESET is sampled active,
the SRESET sequence begins on the next instruction
boundary (unless FLUSH or RESET occur before that
boundary). When started, the SRESET sequence con-
tinues to completion and then normal processor execu-
tion resumes, independent of the deassertion of
SRESET. If a snoop hits a modified line during SRESET,
a normal write-back cycle occurs. ADS is asserted to
drive the bus cycles even if SRESET is not deasserted.

7 SYSTEM MANAGEMENT MODE
7.1 Overview
The Enhanced Am486 microprocessor supports four
modes: Real, Virtual, Protected, and System Manage-
ment Mode (SMM). As an operating mode, SMM has a
distinct processor environment, interface, and hard-
ware/software features. SMM lets the system designer
add new software controlled features to the computer
products that always operate transparent to the Oper-
ating System (OS) and software applications. SMM is
intended for use only by system firmware, not by appli-
cations software or general purpose systems software.

The SMM architectural extension consists of the follow-
ing elements:

1) System Management Interrupt (SMI) hardware interface

2) Dedicated and secure memory space (SMRAM) for
SMI handler code and CPU state (context) data with a
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context normally consists of the CPU registers that
fully represent the processor state.

n Context Switch:  A context switch is the process of
either saving or restoring the context. The SMM dis-
cussion refers to the context switch as the process
of saving/restoring the context while invoking/exiting
SMM, respectively.

n SMSAVE:  A mechanism that saves and restores all
internal registers to and from SMRAM.

7.3 System Management Interrupt
Processing

The System interrupts the normal program execution
and invokes SMM by generating a System Management
Interrupt (SMI) to the CPU. The CPU services the SMI by
executing the following sequence (see Figure 22).

1) The CPU asserts the SMIACT signal, instructing the sys-
tem to enable the SMRAM.

2) The CPU saves its state (internal register) to SMRAM.
It starts at the SMBASE relative address location (see
Section 7.3.3), and proceeds downward in a stack-like
fashion.

3) The CPU switches to the SMM processor environment
(an external pseudo-real mode).

4) The CPU then jumps to the absolute address of 
SMBASE + 8000h in SMRAM to execute the SMI han-
dler. This SMI handler performs the system manage-
ment activities. 

Note:  If the SMRAM shares the same physical address
location with part of the system RAM, it is “overlaid”
SMRAM. To preserved cache consistency and correct
SMM operation in systems using overlaid SMRAM, the
cache must be flushed via the FLUSH pin when entering
SMM.

5) The SMI handler then executes the RSM instruction
which restores the CPU’s context from SMRAM, deas-
serts the SMIACT signal, and then returns control to the
previously interrupted program execution.

SMI

#1 #2 #3

Instr Instr Instr

State Save SMI Handler State Restore
#4 #5

Instr Instr

SMI

SMIACT

Figure 22. Basic SMI  Interrupt Service

RSM

status signal for the system to decode access to that
memory space, SMIACT

3) Resume (RSM) instruction, for exiting SMM

4) Special Features, such as I/O Restart and I/O instruc-
tion information, for transparent power management
of I/O peripherals, and Auto HALT Restart

7.2 Terminology
The following terms are used throughout the discussion
of System Management Mode.

n SMM: System Management Mode. The operating
environment that the processor (system) enters
when servicing a System Management Interrupt.

n SMI: System Management Interrupt. The is the trig-
ger mechanism for the SMM interface. When SMI is
asserted (SMI pin asserted Low) it causes the pro-
cessor to invoke SMM. The SMI pin is the only
means of entering SMM.

n SMI handler:  System Management Mode handler.
This is the code that is executed when the processor
is in SMM. An example application that this code
might implement is a power management control or
a system control function.

n RSM: Resume instruction. This instruction is used
by the SMI handler to exit the SMM and return to the
interrupted OS or application process.

n SMRAM:  This is the physical memory dedicated to
SMM. The SMI handler code and related data reside
in this memory. The processor also uses this mem-
ory to store its context before executing the SMI han-
dler. The operating system and applications should
not have access to this memory space.

n SMBASE:  A control register that contains the base
address that defines the SMRAM space.

n Context: This term refers to the processor state. The
SMM discussion refers to the context, or processor
state, just before the processor invokes SMM. The
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SMI Sampled

CLK

CLK2

SMI

RDY

Figure 24. SMI  Timing for Servicing an I/O Trap

For uses such as fast enabling of external I/O devices, the
SMSAVE mode permits the restarting of the I/O instructions
and the HALT instruction. This is accomplished through I/O
Trap Restart and Halt Auto HALT Restart slots. Only I/O and
HALT opcodes are restartable. Attempts to restart any other
opcode may result in unpredictable behavior. 

The System Management Interrupt hardware interface
consists of the SMI request input and the SMIACT output
used by the system to decode the SMRAM (see Figure 23).

7.3.1 System Management Interrupt Processing

SMI is a falling-edge triggered, non-maskable interrupt re-
quest signal. SMI is an asynchronous signal, but setup and
hold times must be met to guarantee recognition in a specific
clock. The SMI input does not have to remain active until the
interrupt is actually serviced. The SMI input needs to remain
active for only a single clock if the required setup and hold
times are met. SMI also works correctly if it is held active for
an arbitrary number of clocks (see Figure 24).

The SMI input must be held inactive for at least four clocks
after it is asserted to reset the edge-triggered logic. A subse-
quent SMI may not be recognized if the SMI input is not held
inactive for at least four clocks after being asserted. SMI, like
NMI, is not affected by the IF bit in the EFLAGS register
and is recognized on an instruction boundary. SMI does
not break locked bus cycles. SMI has a higher priority
than NMI and is not masked during an NMI. After SMI
is recognized, the SMI signal is masked internally until
the RSM instruction is executed and the interrupt ser-
vice routine is complete.

CPU

SMIACT

SMI
SMI Interface}

Figure 23. Basic SMI Hardware Interface

Masking SMI prevents recursive calls. If another SMI
occurs while SMI is masked, the pending SMI is recog-
nized and executed on the next instruction boundary
after the current SMI completes. This instruction bound-
ary occurs before execution of the next instruction in the
interrupted application code, resulting in back-to-back
SMI handlers. Only one SMI signal can be pending while
SMI is masked. The SMI signal is synchronized inter-
nally and must be asserted at least three clock periods
prior to asserting the RDY signal to guarantee recogni-
tion on a specific instruction boundary. This is important
for servicing an I/O trap with an SMI handler.

7.3.2 SMI Active (SMIACT )

SMIACT indicates that the CPU is operating in SMM.
The CPU asserts SMIACT in response to an SMI inter-
rupt request on the SMI pin. SMIACT is driven active
after the CPU has completed all pending write cycles
(including emptying the write buffers), and before the
first access to SMRAM when the CPU saves (writes) its
state (or context) to SMRAM. SMIACT remains active
until the last access to SMRAM when the CPU restores
(reads) its state from SMRAM. The SMIACT signal does
not float in response to HOLD. The SMIACT signal is
used by the system logic to decode SMRAM. The num-
ber of clocks required to complete the SMM state save
and restore is dependent on system memory perfor-
mance. The values shown in Figure 25 assume 0 wait-
state memory writes (2 clock cycles), 2 – 1 – 1 – 1 burst
read cycles, and 0 wait-state non-burst reads (two clock
cycles). Additionally, it is assumed that the data read
during the SMM state restore sequence is not cache-
able. The minimum time required to enter a SMSAVE
SMI handler routine for the CPU (from the completion
of the interrupted instruction) is given by:

Latency to start of SMl handler = A + B + C = 161 clocks

and the minimum time required to return to the interrupt-
ed application (following the final SMM instruction be-
fore RSM) is given by:

Latency to continue application = E + F + G = 258 clocks
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CLK

CLK2

SMI

SMIACT

ADS

RDY

T1 T2

Normal State State
Save

SMM
Handler

State
Restore

Normal
State

E

Clock-Doubled CPU Clock-Tripled CPU
A: Last RDY from non-SMM transfer to SMIACT assertion 2 CLKs minimum 2 CLKs minimum
B: SMIACT assertion to first ADS for SMM state save 20 CLKs minimum 15 CLKs minimum
C: SMM state save (dependent on memory performance) 139 CLKs 100 CLKs
D: SMI handler User-determined User-determined
E: SMM state restore (dependent on memory performance) 236 CLKs 180 CLKs
F: Last RDY from SMM transfer to deassertion of SMIACT 2 CLKs minimum 2 CLKs minimum
G: SMIACT deassertion of first non-SMM ADS 20 CLKs minimum 20 CLKs minimum

Figure 25. SMIACT  Timing
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7.3.3 SMRAM

The CPU uses the SMRAM space for state save and
state restore operations during an SMI. The SMI han-
dler, which also resides in SMRAM, uses the SMRAM
space to store code, data, and stacks. In addition, the
SMI handler can use the SMRAM for system manage-
ment information such as the system configuration, con-
figuration of a powered-down device, and system
designer-specific information.

Note:  Access to SMRAM is through the CPU internal
cache. To ensure cache consistency and correct oper-
ation, always assert the FLUSH pin in the same clock
as SMI for systems using overlaid SMRAM.

The CPU asserts SMIACT to indicate to the memory con-
troller that it is operating in System Management Mode. The
system logic should ensure that only the CPU and SMI han-
dler have access to this area. Alternate bus masters or DMA
devices trying to access the SMRAM space when SMIACT
is active should be directed to system RAM in the respective
area. The system logic is minimally required to decode
the physical memory address range from 38000h–
3FFFFh as SMRAM area. The CPU saves its state to
the state save area from 3FFFFh downward to 3FE00h.

After saving its state, the CPU jumps to the address
location 38000h to begin executing the SMI handler. The
system logic can choose to decode a larger area of SM-
RAM as needed. The size of this SMRAM can be be-
tween 32 Kbytes and 4 Gbytes.The system logic should
provide a manual method for switching the SMRAM into
system memory space when the CPU is not in SMM.
This enables initialization of the SMRAM space (i.e.,
loading SMI handler) before executing the SMI handler
during SMM (see Figure 26). 

SMRAM
System memory 

accesses redirected 
to SMRAM

System memory 
accesses not 

redirected to SMRAM

CPU 
accesses to 

system 
address 

space used 
for loading 
SMRAM Normal 

Memory 
Space

Figure 26. Redirecting System Memory
Address to SMRAM
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7.3.4 SMRAM State Save Map

When SMI is recognized on an instruction boundary, the
CPU core first sets the SMIACT signal Low, indicating to
the system logic that accesses are now being made to
the system-defined SMRAM areas. The CPU then
writes its state to the state save area in the SMRAM.
The state save area starts at SMBASE + [8000h +
7FFFh]. The default CS Base is 30000h; therefore, the
default state save area is at 3FFFFh. In this case, the
CS Base is also referred to as the SMBASE.

Table 10. SMRAM State Save Map

Register
Offset* Register Writable?

7FFCh CRO No

7FF8h CR3 No

7FF4h EFLAGS Yes

7FF0h EIP Yes

7FECh EDI Yes

7FE8h ESI Yes

7FE4h EBP Yes

7FE0h ESP Yes

7FDCh EBX Yes

7FD8h EDX Yes

7FD4h ECX Yes

7FD0h EAX Yes

7FCCh DR6 No

7FC8h DR7 No

7FC4h TR* No

7FC0h LDTR* No

7FBCh GS* No

7FB8h FS* No

7FB4h DS* No

7FB0h SS* No

7FACh CS* No

7FA8h ES* No

7FA7h–7F98h Reserved No

7F94h IDT Base No

7F93h–7F8Ch Reserved No

7F88h GDT Base No

7F87h–7F08h Reserved No

7F04h I/O Trap Word No

7F02h Halt Auto Restart Yes

7F00h I/O Trap Restart Yes

7EFCh SMM Revision Identifier Yes

7EF8h State Dump Base Yes

7EF7h–7E00h Reserved No

Note: 
*Upper 2 bytes are not modified.

If the SMBASE relocation feature is enabled, the SM-
RAM addresses can change. The following formula is
used to determine the relocated addresses where the
context is saved: SMBASE + [8000h + Register Offset],
where the default initial SMBASE is 30000h and the
Register Offset is listed in Table 10. Reserved spaces
are for new registers in future CPUs. Some registers in
the SMRAM state save area may be read and changed
by the SMI handler, with the changed values restored
to the processor register by the RSM instruction. Some
register images are read-only, and must not be modified.
(Modifying these registers results in unpredictable be-
havior.) The values stored in the “reserved” areas may
change in future CPUs. An SMI handler should not rely
on values stored in a reserved area.

The following registers are written out during SMSAVE
mode to the RESERVED memory locations (7FA7h–
7F98h, 7F93h–7F8Ch, and 7F87h–7F08h), but are not
visible to the system software programmer:

n DR3–DR0
n CR2
n CS, DS, ES, FS, GS, and SS hidden descriptor 

registers
n EIP_Previous
n GDT Attributes and Limits
n IDT Attributes and Limits
n LDT Attributes, Base, and Limits
n TSS Attributes, Base, and Limits

If an SMI request is issued to power down the CPU, the
values of all reserved locations in the SMM state save
must be saved to non-volatile memory.

The following registers are not automatically saved and
restored by SMI and RSM:

n TR7–TR3
n FPU registers: 

— STn
— FCS
— FSW
— Tag Word
— FP instruction pointer
— FP opcode
— Operand pointer

Note:  You can save the FPU state by using an FSAVE
or FNSAVE instruction.

For all SMI requests except for power down suspend/
resume, these registers do not have to be saved be-
cause their contents will not change. During a power
down suspend/resume, however, a resume reset clears
these registers back to their default values. In this case,
the suspend SMI handler should read these registers
directly to save them and restore them during the power
up resume. Anytime the SMI handler changes these
registers in the CPU, it must also save and restore them.
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7.4 Entering System Management Mode
SMM is one of the major operating modes, along with
Protected mode, Real mode, and Virtual mode. Figure
27 shows how the processor can enter SMM from any
of the three modes and then return.

The external signal SMI causes the processor to switch to
SMM. The RSM instruction exits SMM. SMM is transparent
to applications programs and operating systems for the fol-
lowing reasons:

n The only way to enter SMM is via a type of non-
maskable interrupt triggered by an external signal.

n The processor begins executing SMM code from a
separate address space, referred to earlier as sys-
tem management RAM (SMRAM).

n Upon entry into SMM, the processor saves the reg-
ister state of the interrupted program (depending on
the save mode) in a part of SMRAM called the SMM
context save space.

n All interrupts normally handled by the operating sys-
tem or applications are disabled upon SMM entry.

n A special instruction, RSM, restores processor reg-
isters from the SMM context save space and returns
control to the interrupted program.

Similar to Real mode, SMM has no privilege levels or
address mapping. SMM programs can execute all I/O
and other system instructions and can address up to 4
Gbytes of memory.

7.5 Exiting System Management Mode
The RSM instruction (opcode 0F AAh) leaves SMM and
returns control to the interrupted program. The RSM
instruction can be executed only in SMM. An attempt to
execute the RSM instruction outside of SMM generates
an invalid opcode exception. When the RSM instruction
is executed and the processor detects invalid state in-
formation during the reloading of the save state, the

Virtual
Mode

System
Management

ModeReset

Reset
or

RSM

SMI

RSM

RSM

VM=1

PE=1
Reset

or
PE=0

VM=0

Figure 27. Transition to and from SMM

Real 
Mode

Protected 
Mode

SMI

SMI

processor enters the shutdown state. This occurs in the
following situations:

n The value in the State Dump base field is not a
32-Kbyte aligned address.

n A combination of bits in CR0 is illegal: (PG=1 and
PE=0) or (NW=1 and CD=0).

In shutdown mode, the processor stops executing in-
structions until an NMI interrupt is received or reset ini-
tialization is invoked. The processor generates a
shutdown bus cycle.

Four SMM features can be enabled by writing to control
slots in the SMRAM state save area:

1) Auto  HALT Restart . It is possible for the SMI request
to interrupt the HALT state. The SMI handler can tell the
RSM instruction to return control to the HALT instruction
or to return control to the instruction following the HALT
instruction by appropriately setting the Auto HALT Re-
start slot. The default operation is to restart the HALT
instruction.

2) I/O Trap Restart . If the SMI was generated on an I/O
access to a powered-down device, the SMI handler
can instruct the RSM instruction to re-execute that I/O
instruction by setting the I/O Trap Restart slot.

3) SMBASE Relocation . The system can relocate the
SMRAM by setting the SMBASE Relocation slot in the
state save area. The RSM instruction sets SMBASE
in the processor based on the value in the SMBASE
relocation slot. The SMBASE must be aligned on 32-
Kbyte boundaries.

A RESET also causes execution to exit from SMM. 

7.6 Processor Environment
When an SMI signal is recognized on an instruction execution
boundary, the processor waits for all stores to complete, in-
cluding emptying the write buffers. The final write cycle is com-
plete when the system returns RDY or BRDY. The processor
then drives SMIACT active, saves its register state to SMRAM
space, and begins to execute the SMI handler.

SMI has greater priority than debug exceptions and external
interrupts. This means that if more than one of these condi-
tions occur at an instruction boundary, only the SMI processing
occurs. Subsequent SMI requests are not acknowledged
while the processor is in SMM. The first SMI request that oc-
curs while the processor is in SMM is latched, and serviced
when the processor exits SMM with the RSM instruction. Only
one SMI signal is latched by the CPU while it is in SMM. When
the CPU invokes SMM, the CPU core registers are initialized
as indicated in Table 11.
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Note : 
Interrupts from INT and NMI are disabled on SMM entry.

The following is a summary of the key features in the
SMM environment:

n Real mode style address calculation

n 4-Gbyte limit checking

n IF flag is cleared

n NMI is disabled

n TF flag in EFLAGS is cleared; single step traps are
disabled

n DR7 is cleared; debug traps are disabled

n The RSM instruction no longer generates an invalid
op code error

n Default 16-bit op code, register, and stack use. 

n All bus arbitration (HOLD, AHOLD, BOFF) inputs, and
bus sizing (BS8, BS16) inputs operate normally while the
CPU is in SMM.

7.7 Executing System Management 
Mode Handler

The processor begins execution of the SMI handler at
offset 8000h in the CS segment. The CS Base is initially
30000h, as shown in Table 12.

Table 11. SMM Initial CPU Core Register Settings

Register SMM Initial State

General Purpose 
Registers

Unmodified

EFLAGS 0000 0002h

CR0 Bits 0, 2, 3, and 31 cleared (PE, EM, TS, 
and PG); rest unmodified

DR6 Unpredictable state

DR7 0000 0400h

GDTR, LDTR,
IDTR, TSSR

Unmodified

EIP 0000 8000h
Notes : 
1. The segment limit check is 4 Gbytes instead of the usual 64K.
2. The Selector value for CS remains at 3000h even if the SMBASE
is changed.

The CS Base can be changed using the SMM Base relo-
cation feature. When the SMI handler is invoked, the
CPU’s PE and PG bits in CR0 are reset to 0. The pro-
cessor is in an environment similar to Real mode, but
without the 64-Kbyte limit checking. However, the de-
fault operand size and the default address size are set
to 16 bits. The EM bit is cleared so that no exceptions
are generated. (If the SMM was entered from Protected
mode, the Real mode interrupt and exception support
is not available.) The SMI handler should not use float-
ing-point unit instructions until the FPU is properly de-
tected (within the SMI handler) and the exception
support is initialized.

Because the segment bases (other than CS) are
cleared to 0 and the segment limits are set to 4 Gbytes,
the address space may be treated as a single flat
4-Gbyte linear space that is unsegmented. The CPU is
still in Real mode and when a segment selector is loaded
with a 16-bit value, that value is then shifted left by 4
bits and loaded into the segment base cache. 

In SMM, the CPU can access or jump anywhere within
the 4-Gbyte logical address space. The CPU can also
indirectly access or perform a near jump anywhere with-
in the 4-Gbyte logical address space.

Table 12. Segment Register Initial States

Segment 
Register Selector Base Attributes Limit 1

CS2 3000h 30000h 16-bit,
expand up 4 Gbytes

DS 0000h 00000000h 16-bit,
expand up 4 Gbytes

ES 0000h 00000000h 16-bit,
expand up 4 Gbytes

FS 0000h 00000000h 16-bit,
expand up 4 Gbytes

GS 0000h 00000000h 16-bit,
expand up 4 Gbytes

SS 0000h 00000000h 16-bit,
expand up 4 Gbytes
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NMI interrupts are blocked on entry to the SMI handler.
If an NMI request occurs during the SMI handler, it is
latched and serviced after the processor exits SMM.
Only one NMI request is latched during the SMI handler.
If an NMI request is pending when the processor exe-
cutes the RSM instruction, the NMI is serviced before
the next instruction of the interrupted code sequence.

Although NMI requests are blocked when the CPU en-
ters SMM, they may be enabled through software by
executing an IRET instruction. If the SMI handler re-
quires the use of NMI interrupts, it should invoke a dum-
my interrupt service routine to execute an IRET
instruction. When an IRET instruction is executed, NMI
interrupt requests are serviced in the same Real mode
manner in which they are handled outside of SMM.

7.7.2 SMM Revisions Identifier

The 32-bit SMM Revision Identifier specifies the version
of SMM and the extensions that are available on the
processor. The fields of the SMM Revision Identifiers
and bit definitions are shown in Tables 13 and 14. Bit
17 or 16 indicates whether the feature is supported
(1=supported, 0=not supported). The processor al-
ways reads the SMM Revision Identifier at the time of
a restore. The I/O Trap Extension and SMM Base Re-
location bits are fixed. The processor writes these bits
out at the time it performs a save state. 

Note:  Changing the state of the reserved bits may result
in unpredictable processor behavior.

7.7.1 Exceptions and Interrupts with System
Management Mode

When the CPU enters SMM, it disables INTR interrupts,
debug, and single step traps by clearing the EFLAGS,
DR6, and DR7 registers. This prevents a debug appli-
cation from accidentally breaking into an SMI handler.
This is necessary because the SMI handler operates
from a distinct address space (SMRAM) and the debug
trap does not represent the normal system memory
space. 

For an SMI handler to use the debug trap feature of the
processor to debug SMI handler code, it must first en-
sure that an SMM compliant debug handler is available.
The SMI handler must also ensure DR3–DR0 is saved
to be restored later. The debug registers DR3–DR0 and
DR7 must then be initialized with the appropriate values. 

For the processor to use the single step feature of the
processor, it must ensure that an SMM compliant single
step handler is available and then set the trap flag in the
EFLAGS register. If the system design requires the pro-
cessor to respond to hardware INTR requests while in
SMM, it must ensure that an SMM-compliant interrupt
handler is available, and then set the interrupt flag in the
EFLAGS register (using the STI instruction). Software
interrupts are not blocked on entry to SMM, and the
system software designer must provide an SMM com-
pliant interrupt handler before attempting to execute any
software interrupt instructions. Note that in SMM mode
the interrupt vector table has the same properties and
location as the Real mode vector table.

Table 13. System Management Mode Revision Identifier

31–18 17 16 15–0

Reserved SMM Base 
Relocation

I/O Trap
Extension SMM Revision Level

00000000000000 1 1 0000h

Table 14. SMM Revision Identifier Bit Definitions

Bit Name Description Default 
State

State at SMM
Entry

State at 
SMM Exit Notes

SMM Base 
Relocation

1=SMM Base Relocation Available
0=SMM Base Relocation 

Unavailable
1 1

0
1
0

No Change in State 
No Change in State

I/O Trap Extension 1=I/O Trapping Available
0=I/O Trapping Unavailable 1 1

0
1
0

No Change in State 
No Change in State
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7.7.3 Auto HALT Restart

The Auto HALT Restart slot at register offset (word lo-
cation) 7F02h in SMRAM indicates to the SMI handler
that the SMI interrupted the CPU during a HALT state;
bit 0 of slot 7F02h is set to 1 if the previous instruction
was a HALT (see Figure 28). If the SMI did not interrupt
the CPU in a HALT state, then the SMI microcode sets
bit 0 of the Auto HALT Restart slot to 0. If the previous
instruction was a HALT, the SMI handler can choose to
either set or reset bit 0. If this bit is set to 1, the RSM
micro code execution forces the processor to re-enter
the HALT state. If this bit is set to 0 when the RSM
instruction is executed, the processor continues execu-
tion with the instruction just after the interrupted HALT
instruction. If the HALT instruction is restarted, the CPU
will generate a memory access to fetch the HALT in-
struction (if it is not in the internal cache), and execute
a HALT bus cycle.

Table 15 shows the possible restart configurations. If
the interrupted instruction was not a HALT instruction
(bit 0 is set to 0 in the Auto HALT Restart slot upon SMM
entry), setting bit 0 to 1 will cause unpredictable behav-
ior when the RSM instruction is executed

7.7.4 I/O Trap Restart

The I/O instruction restart slot (register offset 7F00h in
SMRAM) gives the SMI handler the option of causing the
RSM instruction to automatically re-execute the interrupted
I/O instruction (see Figure 29).

Table 15. HALT Auto Restart Configuration

Value at 
Entry

Value 
at Exit

Processor Action on Exit

0 0 Return to next instruction in interrupted 
program

0 1 Unpredictable

1 0 Returns to instruction after HALT

1 1 Returns to interrupted HALT instruction

HALT Auto Restart

Register Offset 7F02h
Reserved

15 1 0

Figure 28. Auto HALT Restart Register Offset

.

When the RSM instruction is executed, if the I/O instruction
re-start slot contains the value 0FFh, then the CPU automat-
ically re-executes the l/O instruction that the SMI signal
trapped. If the I/O instruction restart slot contains the value 00h
when the RSM instruction is executed, then the CPU does
not re-execute the I/O instruction. The CPU automatically
initializes the I/O instruction restart slot to 00h during SMM
entry. The I/O instruction restart slot should be written only
when the processor has generated an SMI on an I/O instruc-
tion boundary. Processor operation is unpredictable when the
I/O instruction restart slot is set when the processor is servicing
an SMI that originated on a non-I/O instruction boundary.

If the system executes back-to-back SMI requests, the
second SMI handler must not set the I/O instruction re-
start slot. The second back-to-back SMI signal will not
have the I/O Trap Word set.

7.7.5 I/O Trap Word

The I/O Trap Word contains the address of the I/O ac-
cess that forced the external chipset to assert SMI,
whether it was a read or write access, and whether the
instruction that caused the access to the I/O address
was a valid I/O instruction. Table 16 shows the layout.

Bits 31–16 contain the I/O address that was being ac-
cessed at the time SMI became active. Bits 15–2 are
reserved.

If the instruction that caused the I/O trap to occur was
a valid I/O instruction (IN, OUT, INS, OUTS, REP INS,
or REP OUTS), the Valid I/O Instruction bit is set. If it
was not a valid I/O instruction, the bit is saved as a 0.
For REP instructions, the external chip set should return
a valid SMI within the first access.

Bit 0 indicates whether the opcode that was accessing
the I/O location was performing either a read (1) or a
write (0) operation as indicated by the R/W bit.

If an SMI occurs and it does not trap an I/O instruction,
the contents of the I/O address and R/W bit are unpre-
dictable and should not be used.

Table 16. I/O Trap Word Configuration

31–16 15–2 1 0

I/O Address Reserved Valid I/O Instruction R/W

15 0

I/O instruction restart slot

Register offset 7F00h

Figure 29. I/O Instruction Restart Register Offset
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7.7.6 SMM Base Relocation

The Enhanced Am486 CPU family provides a new con-
trol register, SMBASE. The SMRAM address space can
be modified by changing the SMBASE register before
exiting an SMI handler routine. SMBASE can be
changed to any 32K-aligned value. (Values that are not
32K-aligned cause the CPU to enter the Shutdown state
when executing the RSM instruction.) SMBASE is set
to the default value of 30000h on RESET. If SMBASE
is changed by an SMI handler, all subsequent SMI re-
quests initiate a state save at the new SMBASE.

The SMBASE slot in the SMM state save area indicates
and changes the SMI jump vector location and SMRAM
save area. When bit 17 of the SMM Revision Identifier
is set, then this feature exists and the SMRAM base and
consequently, the jump vector, are as indicated by the
SMM Base slot (see Table 15). During the execution of
the RSM instruction, the CPU reads this slot and initial-
izes the CPU to use the new SMBASE during the next
SMI. During an SMI, the CPU does its context save to
the new SMRAM area pointed to by the SMBASE,
stores the current SMBASE in the SMM Base slot (offset
7EF8h), and then starts execution of the new jump vec-
tor based on the current SMBASE (see Figure 30).

The SMBASE must be a 32-Kbyte aligned, 32-bit inte-
ger that indicates a base address for the SMRAM con-
text save area and the SMI jump vector. For example
when the processor first powers up, the minimum SM-
RAM area is from 38000h–3FFFFh. The default SM-
BASE is 30000h. 

As illustrated in Figure 31, the starting address of the
jump vector is calculated by:

SMBASE + 8000h

The starting address for the SMRAM state save area is
calculated by:

SMBASE + [8000h + 7FFFh]

When this feature is enabled, the SMRAM register map
is addressed according to the above formula.

Figure 30. SMM Base Slot Offset

31 031 0

SMM Base

Register Offset 7EF8h

To change the SMRAM base address and SMI jump
vector location, SMI handler modifies the SMBASE slot.
Upon executing an RSM instruction, the processor
reads the SMBASE slot and stores it internally. Upon
recognition of the next SMI request, the processor uses
the new SMBASE slot for the SMRAM dump and SMI
jump vector. If the modified SMBASE slot does not con-
tain a 32-Kbyte aligned value, the RSM microcode caus-
es the CPU to enter the shutdown state.

7.8 SMM System Design Considerations
7.8.1 SMRAM Interface

The hardware designed to control the SMRAM space
must follow these guidelines:

1) Initialize SMRAM space during system boot up. Initial-
ization must occur before the first SMI occurs. Initializa-
tion of SMRAM space must include installation of an SMI
handler and may include installation of related data struc-
tures necessary for particular SMM applications. The
memory controller interfacing SMRAM should provide a
means for the initialization code to open the SMRAM
space manually.

2) The memory controller must decode a minimum initial
SMRAM address space of 38000h–3FFFFh.

3) Alternate bus masters (such as DMA controllers) must
not be able to access SMRAM space. The system
should allow only the CPU, either through SMI or dur-
ing initialization, to access SMRAM.

4) To implement a 0-V suspend function, the system must
have access to all normal system memory from within
an SMI handler routine. If the SMRAM overlays normal
system memory (see Figure 32), there must be a meth-
od to access overlaid system memory independently.

SMI Handler Entry Point

SMBASE + 8000h
+ 7FFFh

SMRAM

SMBASE + 8000h

SMBASE

Start of State Save

Figure 31. SRAM Usage
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The recommended configuration is to use a separate
(non-overlaid) physical address for SMRAM. This non-
overlaid scheme prevents the CPU from improperly ac-
cessing the SMRAM or system RAM directly or through
the cache. Figure 33 shows the relative SMM timing for
non-overlaid SMRAM for systems configured in write-
through mode. For systems configured in write-back
mode, WB/WT must be driven Low (as shown in Figure
34) to force caching during SMM to be write-through.
Alternately, caching can be disabled during SMM by
deasserting KEN with SMI (as shown in Figure 35).

When the default SMRAM location is used, however,
SMRAM is overlaid with system main memory (at
38000h–3FFFFh). For simplicity, system designers may
want to use this default address or, they may select
another overlaid address range. However, in this case
the system control circuitry must use SMIACT to distin-
guish between SMRAM and main system memory, and
must restrict SMRAM space access to the CPU only. To
maintain cache coherency and to ensure proper system
operation in systems configured in write-through mode,
the system must flush both the CPU internal cache and
any second level caches in response to SMIACT going
Low. A system that uses cache during SMM must flush
the cache a second time in response to SMIACT going
High (see Figure 36). If KEN is driven High when FLUSH
is asserted, the cache is disabled and a second flush is
not required (see Figure 37). If the system is configured
in write-back mode, the cache must be flushed when
SMI is asserted and then disabled (see Figure 38).

7.8.2 Cache Flushes

The CPU does not unconditionally flush its cache before
entering SMM. Therefore, the designer must ensure
that, for systems using overlaid SMRAM, the cache is
flushed upon SMM entry, and SMM exit if caching is
enabled.

Note:  A cache flush in a system configured in write-
back mode, requires a minimum of 2050 internal clocks
to test the cache for modified data, whether invoked by

Non-overlaid
(no need to flush

caches)

Overlaid
(caches must
be flushed)

Normal
memory

Normal
memory

SMRAM Normal
memory

Figure 32. SMRAM Location 

Overlaid region

SMRAM

the FLUSH pin input or the WBINVD instruction, and
therefore invokes a performance penalty. There is no
flush penalty for systems configured in write-through
mode.

If the flush at SMM entry is not done, the first SMM read
could hit in a cache that contains normal memory space
code/data instead of the required SMI handler and the
handler could not be executed. If the cache is not dis-
abled and cache is not flushed at SMM exit, the normal
read cycles after SMM may hit in a cache that may con-
tains SMM code/data instead of the normal system
memory contents. 

In write-through mode, assert the FLUSH signal in re-
sponse to the assertion of SMIACT at SMM entry, and,
if required because the cache is enabled, assert FLUSH
again in response to the deassertion of SMIACT at SMM
exit (see Figures 36 and 37). For systems configured in
write-back mode, assert FLUSH with SMI (see Figure
38). 

Reloading the state registers at the end of SMM restores
cache functionality to its pre-SMM state.

7.8.3 A20M Pin

Systems based on the MS-DOS operating system con-
tain a feature that enables the CPU address bit A20 to
be forced to 0. This limits physical memory to a maxi-
mum of 1 Mbyte, and is provided to ensure compatibility
with those programs that relied on the physical address
wrap around functionality of the original IBM PC. The
A20M pin on Enhanced Am486 CPUs provides this
function. When A20M is active, all external bus cycles
drive A20 Low, and all internal cache accesses are per-
formed with A20 Low.

The A20M pin is recognized while the CPU is in SMM.
The functionality of the A20M input must be recognized
in two instances:

1) If the SMI handler needs to access system memory
space above 1 Mbyte (for example, when saving mem-
ory to disk for a zero-volt suspend), the A20M pin must
be deasserted before the memory above 1 Mbyte is
addressed.

2) If SMRAM has been relocated to address space above
1 Mbyte, and A20M is active upon entering SMM, the
CPU attempts to access SMRAM at the relocated ad-
dress, but with A20 Low. This could cause the system
to crash, because there would be no valid SMM inter-
rupt handler at the accessed location.

To account for these two situations, the system designer
must ensure that A20M is deasserted on entry to SMM.
A20M must be driven inactive before the first cycle of
the SMM state save, and must be returned to its original
level after the last cycle of the SMM state restore. This
can be done by blocking the assertion of A20M when
SMIACT is active.
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Enhanced Am486 Microprocessor 

State 
Save SMI Handler State Resume

Normal
Cycle

RSM

SMI

SMIACT

Figure 33. SMM Timing in Systems Using Non-Overlaid Memory Space and Write-Through Mode with 
Caching Enabled During SMM

Figure 34. SMM Timing in Systems Using Non-Overlaid Memory Spaces and Write-Back Mode with Caching 
Enabled During SMM

State 
Save SMI Handler State Resume

Normal
Cycle

RSM

SMI

SMIACT

Note:
For proper operation of systems configured in write-back mode when caching during SMM is allowed, force WB/WT Low to force
all caching to be write-through during SMM.

WB/WT

Figure 35. SMM Timing in Systems Using Non-Overlaid Memory Spaces and Write-Back Mode with Caching 
Disabled During SMM

State 
Save SMI Handler State Resume

Normal
Cycle

RSM

SMI

SMIACT

KEN
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Figure 36. SMM Timing in Systems Using Overlaid Memory Space and Write-Through Mode with Caching 
Enabled During SMM

State 
Save SMI Handler

State 
Resume

Normal
Cycle

RSM

SMI

SMIACT

FLUSH

SMI

Instruction x

Instruction x+1

Cache contents
invalidated

Cache contents 
invalidated

Figure 37. SMM Timing in Systems Using Overlaid Memory Spaces and Write-Through Mode with Caching 
Disabled During SMM
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Save SMI Handler
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Resume

Normal
Cycle

RSM

SMI

SMIACT

FLUSH

SMI

Instruction x

Instruction x+1

Cache contents
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Figure 38. SMM Timing in Systems Using Overlaid Memory Spaces and Configured in Write-Back Mode
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7.8.4 CPU Reset During SMM

The system designer should take into account the fol-
lowing restrictions while implementing the CPU Reset
logic:

1) When running software written for the 80286 CPU, a
CPU RESET switches the CPU from Protected mode
to Real mode. RESET and SRESET have a higher pri-
ority than SMI. When the CPU is in SMM, the SRESET
to the CPU during SMM should be blocked until the
CPU exits SMM. SRESET must be blocked beginning
from the time when SMI is driven active. Care should
be taken not to block the global system RESET, which
may be necessary to recover from a system crash.

2) During execution of the RSM instruction to exit SMM,
there is a small time window between the deassertion
of SMIACT and the completion of the RSM micro code.
If a Protected mode to Real mode SRESET is asserted
during this window, it is possible that the SMRAM
space will be violated. The system designer must guar-
antee that SRESET is blocked until at least 20 CPU
clock cycles after SMIACT has been driven inactive or
until the start of a bus cycle.

3) Any request for a CPU RESET for the purpose of
switching the CPU from Protected mode to Real mode
must be acknowledged after the CPU has exited SMM.
To maintain software transparency, the system logic
must latch any SRESET signals that are blocked dur-
ing SMM.

For these reasons, the SRESET signal should be used
for any soft resets, and the RESET signal should be used
for all hard resets.

7.8.5 SMM and Second Level Write Buffers

Before the processor enters SMM, it empties its internal
write buffers. This is to ensure that the data in the write
buffers is written to normal memory space, not SMM
space. When the CPU is ready to begin writing an SMM
state save to SMRAM, it asserts SMIACT. SMIACT may
be driven active by the CPU before the system memory
controller has had an opportunity to empty the second level
write buffers.

To prevent the data from these second level write buffers
from being written to the wrong location, the system
memory controller needs to direct the memory write cy-
cles to either SMM space or normal memory space. This
can be accomplished by saving the status of SMIACT
with the address for each word in the write buffers.

7.8.6 Nested SMI and I/O Restart

Special care must be taken when executing an SMI han-
dler for the purpose of restarting an l/O instruction.
When the CPU executes a Resume (RSM) instruction
with the l/O restart slot set, the restored EIP is modified
to point to the instruction immediately preceding the SMI
request, so that the l/O instruction can be re-executed. If a

new SMI request is received while the CPU is executing
an SMI handler, the CPU services this SMI request before
restarting the original I/O instruction. If the I/O restart slot is
set when the CPU executes the RSM instruction for the
second SMI handler, the RSM micro code decrements the
restored EIP again. EIP then points to an address different
from the originally interrupted instruction, and the CPU be-
gins execution at an incorrect entry point. To prevent this
from occurring, the SMI handler routine must not set the
I/O restart slot during the second of two consecutive
SMI handlers. 

7.9 SMM Software Considerations
7.9.1 SMM Code Considerations

The default operand size and the default address size
are 16 bits; however, operand-size override and ad-
dress-size override prefixes can be used as needed to
directly access data anywhere within the 4-Gbyte logical
address space.

With operand-size override prefixes, the SMI handler
can use jumps, calls, and returns, to transfer a control
to any location within the 4-Gbyte space. Note, however,
the following restrictions:

1) Any control transfer that does not have an operand-
size override prefix truncates EIP to 16 Low-order bits.

2) Due to the Real mode style of base-address formation,
a long jump or call cannot transfer control segment with
a base address of more than 20 bits (1 Mbyte).

7.9.2 Exception Handling

Upon entry into SMM, external interrupts that require
handlers are disabled (the IF in EFLAGS is cleared).
This is necessary because, while the processor is in
SMM, it is running in a separate memory space. Con-
sequently, the vectors stored in the interrupt descriptor
table (IDT) for the prior mode are not applicable. Before
allowing exception handling (or software interrupts), the
SMM program must initialize new interrupt and excep-
tion vectors. The interrupt vector table for SMM has the
same format as for Real mode. Until the interrupt vector
table is correctly initialized, the SMI handler must not
generate an exception (or software interrupt). Even
though hardware interrupts are disabled, exceptions
and software interrupts can still occur. Only a correctly
written SMI handler can prevent internal exceptions.
When new exception vectors are initialized, internal ex-
ceptions can be serviced. The restrictions follow:

1) Due to the Real mode style of base address formation,
an interrupt or exception cannot transfer control to a seg-
ment with a base address of more than 20 bits.

2) An interrupt or exception cannot transfer control to a
segment offset of more than 16 bits.

3) If exceptions or interrupts are allowed to occur, only the
Low order 16 bits of the return address are pushed
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onto the stack. If the offset of the interrupted procedure
is greater than 64 Kbytes, it is not possible for the in-
terrupt/exception handler to return control to that pro-
cedure. (One work-around is to perform software
adjustment of the return address on the stack.)

4) The SMBASE Relocation feature affects the way the
CPU returns from an interrupt or exception during an
SMI handler.

Note:  The execution of an IRET instruction enables
Non-Maskable Interrupt (NMI) processing.

7.9.3 Halt during SMM

HALT should not be executed during SMM, unless in-
terrupts have been enabled. Interrupts are disabled on
entry to SMM. INTR and NMI are the only events that take
the CPU out of HALT within SMM.

7.9.4 Relocating SMRAM to an Address above 
1 Mbyte

Within SMM (or Real mode), the segment base registers
can be updated only by changing the segment register.
The segment registers contain only 16 bits, which allows
only 20 bits to be used for a segment base address (the
segment register is shifted left 4 bits to determine the seg-
ment base address). If SMRAM is relocated to an address
above 1 Mbyte, the segment registers can no longer be
initialized to point to SMRAM.

These areas can still be accessed by using address
override prefixes to generate an offset to the correct
address. For example, if the SMBASE has been relo-
cated immediately below 16M, the DS and ES registers
are still initialized to 0000 0000h. Data in SMRAM can still
be accessed by using 32-bit displacement registers:

move esi,OOFFxxxxh;64K segment immediately
below 16M 

move ax,ds:[esi]

8 TEST REGISTERS 4 AND 5
MODIFICATIONS

The Cache Test Registers for the Enhanced Am486 mi-
croprocessor are the same test registers (TR3, TR4,
and TR5) provided in earlier Am486DX and DX2 micro-
processors. TR3 is the cache test data register. TR4,
the cache test status register, and TR5, the cache test
control register, operate together with TR3. 

If WB/WT meets the necessary setup timing and is sam-
pled Low on the falling edge of RESET, the processor
is placed in write-through mode and the test register
function is identical to the earlier Am486 microproces-
sors. If WB/WT meets the necessary setup timing and
is sampled High on the falling edge of RESET, the pro-
cessor is placed in write-back mode and the test regis-
ters TR4 and TR5 are modified to support the added
write-back cache functionality. Tables 17 and 18 show
the individual bit functions of these registers. Sections
8.1 and 8.2 provide a detailed description of the field
functions.

Note:  TR3 has the same functions in both write-through
and write-back modes.These functions are identical to
the TR3 register functions provided by earlier Am486
microprocessors.

8.1 TR4 Definition
This section includes a detailed description of the bit
fields defined for TR4. 

Note:  Bits listed in Tables 17 as Reserved or Not used
are not included in these descriptions.

n Tag (bits 31–11): Read/Write, always available in
write-through mode. Available only when EXT=0 in
TR5 in write-back mode. For a cache write, this is
the tag that specifies the address in memory. On a
cache look-up, this is tag for the selected entry in the
cache.

Table 17. Test Register (TR4)

31 30–29 28 27–26 25–24 23–22 21–20 19 18 17 16 15–11 10 9–7 6–3 2–0

Tag Valid LRU Valid
(rd)

Not 
used

Not 
used STn Rsvd. ST3 ST2 ST1 ST0 Reserved Not 

used Valid LRU Valid
(rd)

Not 
used

Table 18. Test Register (TR5)

31–20 19 18–17 16 15–11 10–4 3–2 1–0

Write-Back Not used Ext Set State Reserved Not used Index Entry Control

Write-Through Not used Index Entry Control
Note:
The values of STn, ST3–ST0, and Set State are: 00 = Invalid; 01 = Exclusive; 10 = Modified; 11 = Shared

EXT = 0

EXT = 1

Note: 
If EXT = 0, TR4 has the standard 486 processor definition for write-through cache. 



Enhanced Am486 Microprocessor 

AMD

54

PRELIMINARY

n STn (bits 30–29): Read Only, available only in write-
back mode when Ext=1 in TR5. STn returns the sta-
tus of the set (ST3, ST2, ST1, or ST0) specified by
the TR5 Set State field (bits 18–17) during cache
look-ups. Returned values are: 

— 00 = invalid

— 01 = exclusive

— 10 = modified

— 11 = shared. 

n ST3 (bits 27–26): Read Only, available only in write-
back mode when Ext=1 in TR5. ST3 returns the sta-
tus of Set 3 during cache look-ups. Returned values
are: 

— 00 = invalid

— 01 = exclusive

— 10 = modified

— 11 = shared

n ST2 (bits 25–24): Read Only, available only in write-
back mode when Ext=1 in TR5. ST2 returns the sta-
tus of Set 2 during cache look-ups. Returned values
are: 

— 00 = invalid

— 01 = exclusive

— 10 = modified

— 11 = shared

n ST1 (bits 23–22): Read Only, available only in write-
back mode when Ext=1 in TR5. ST1 returns the sta-
tus of Set 1 during cache look-ups. Returned values
are: 

— 00 = invalid

— 01 = exclusive

— 10 = modified

— 11 = shared

n ST0 (bits 21–20): Read Only, available only in write-
back mode when Ext=1 in TR5. ST0 returns the sta-
tus of Set 0 during cache look-ups. Returned values
are: 

— 00 = invalid

— 01 = exclusive

— 10 = modified

— 11 = shared

n Valid (bit 10): Read/Write, independent of the Ext bit
in TR5. This is the Valid bit for the accessed entry.
On a cache look-up, Valid is a copy of one of the bits
reported in bits 6–3. On a cache write in write-
through mode, Valid becomes the new valid bit for
the selected entry and set.  In write-back mode, writ-
ing to the Valid bit has no effect and is ignored; the

Set State bit locations in TR5 are used to set the
valid bit for the selected entry and set.

n LRU (bits 9–7): Read Only, independent of the Ext
bit in TR5. On a cache look-up, these are the three
LRU bits of the accessed set.  On a cache write,
these bits are ignored; the LRU bits in the cache are
updated by the pseudo-LRU cache replacement al-
gorithm.  Write operations to these locations have
no effect on the device.

n Valid (bits 6–3): Read Only, independent of the Ext
bit in TR5. On a cache look-up, these are the four
Valid bits of the accessed set.  In write-back mode,
these valid bits are set if a cache set is in the exclu-
sive, modified, or shared state.  Write operations to
these locations have no effect on the device.

8.2 TR5 Definition
This section includes a detailed description of the bit
fields in the TR4. 

Note:  Bits listed in Tables 18 as Reserved or Not used
are not included in the descriptions.

n Ext (bit 19): Read/Write, available only in write-back
mode. Ext, or extension, determines which bit fields
are defined for TR4: the address TAG field, or the
STn and ST3–ST0 status bit fields. In write-through
mode, the Ext bit is not accessible.  The following
describes the two states of Ext:

— Ext = 0, bits 31–11 of TR4 contain the TAG ad-
dress

— Ext = 1, bits 30–29 of TR4 contain STn, bits 27–
20 contain ST3–ST0

n Set State (bits 18–17): Read/Write, available only in
write-back mode. The Set State field is used to
change the MESI state of the set specified by the
Index and Entry bits. The state is set by writing one
of the following combinations to this field: 

— 00 = invalid

— 01 = exclusive

— 10 = modified

— 11 = shared

n Index (bits 10–4): Read/Write, independent of write-
through or write-back mode. Index selects one of the
128 sets.

n Entry (bits 3–2): Read/Write, independent of write-
through or write-back mode. Entry selects between
one of the four entries in the set addressed by the
Set Select during a cache read or write.  During
cache fill buffer writes or cache read buffer reads,
the value in the Entry field selects one of the four
doublewords in a cache line.
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n Control (bits 1–0): Read/Write, independent of write-
through or write-back mode. The control bits deter-
mine which operation to performed.  The following is
a definition of the control operations:

— 00 = Write to cache fill buffer, or read from cache 
read buffer.

— 01 = Perform cache write.

— 10 = Perform cache read.

— 11 = Flush the cache (mark all entries invalid)

8.3 Using TR4 and TR5 for Cache Testing
The following paragraphs provide examples of testing
the cache using TR4 and TR5.

8.3.1 Example 1: Reading The Cache (write-back 
mode only)

1) Disable caching by setting the CD bit in the CR0 reg-
ister.

2) In TR5, load 0 into the Ext field (bit 19), the required
index into the Index field (bits 10–4), the required entry
value into the Entry field (bits 3–2), and 10 into the
Control field (bits 1–0). Loading the values into TR5
triggers the cache read. The cache read loads the TR4
register with the TAG for the read entry, and the LRU
and Valid bits for the entire set that was read.  The
cache read loads 128 data bits into the cache read
buffer.  The entire buffer can be read by placing each
of the four binary combinations in the Entry field and
setting the Control field in TR5 to 00 (binary).  Read
each doubleword from the cache read buffer through
TR3. 

3) Reading the Set State fields in TR4 during write-back
mode is accomplished by setting the Ext field in TR5
to 1 and re-reading TR4.  

8.3.2 Example 2: Writing The Cache

1) Disable the cache by setting the CD bit in the CR0
register.

2) In TR5, load 0 into the Ext field (bit 19), the required
entry value into the Entry field (bits 3–2), and 00 into
the Control field (bits 1–0).

3) Load the TR3 register with the data to write to the cache
fill buffer.  The cache fill buffer write is triggered by load-
ing TR3.

4) Repeat steps 2 and 3 for the remaining three double-
words in the cache fill buffer.

5) In TR4, load the required values into TAG field (bits 31–
11) and the Valid field (bit 10).  In write-back mode, the
Valid bit is ignored since the Set State field in TR5 is
used in place of the TR4 Valid bit.  The other bits in TR4
(9:0) have no effect on the cache write.

6) In TR5, load 0 into the Ext field (bit 19), the required
value into the Set State field (bits 18–17) (write-back
mode only), the required index into the Index field (bits
10–4), the required entry value into the Entry field (bits
3–2), and 01 into the Control field (bits 1–0). Loading
the values into TR5 triggers the cache write. In write-
write-through mode, the Set State field is ignored, and
the Valid bit (bit 10) in TR4 is used instead to define
the state of the specified set.

8.3.3 Example 3: Flushing The Cache

The cache flush mechanism functions in the same way
in write-back and write-through modes.  Load 11 into
the Control field (bits 1–0) of TR5. All other fields are
ignored, except for Ext in write-back mode.  The cache
flush is triggered by loading the value into TR5.  All of
the LRU bits, Valid bits, and Set State bits are cleared.

9 Enhanced Am486 CPU Functional 
Differences

Several important differences exist between the En-
hanced Am486 microprocessor and the Am486DX mi-
croprocessor:

n The ID register contains a different version signa-
ture.

n The EADS function performs cache line write-backs of
modified lines to memory in write-back mode.

n A burst write feature is available for copy-backs. The
FLUSH pin and WBINVD instruction copy-back all mod-
ified data to external memory prior to issuing the special
bus cycle or reset.

9.1 Status after Reset
The RESET state is invoked either after power up or
after the RESET signal is applied according to the stan-
dard Am486DX microprocessor specification.

9.2 Cache Status
After reset, the STATUS bits of all lines are set to 0. The
LRU bits of each set are placed in a starting state.
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10 ENHANCED Am486 CPU 
IDENTIFICATION

The Enhanced Am486 microprocessor supports two
standard methods for identifying the CPU in a system.
The reported values are dynamically assigned based
on the CPU type (DX2 or DX4) and the status of the
WB/WT pin input (Low = write-through; High = write-
back) at RESET. 

10.1 DX Register at RESET
The DX register always contains a component identifier
at the conclusion of RESET. The upper byte of DX (DH)
contains 04 and the lower byte of DX (DL) contains a
CPU type/stepping identifier (see Table 19).

10.2 CPUID Instruction
The Enhanced Am486 microprocessor family imple-
ments a new instruction that makes information avail-
able to software about the family, model and stepping
of the microprocessor on which it is executing. Support
of this instruction is indicated by the presence of a user-
modifiable bit in position EFLAGS.21, referred to as the
EFLAGS.ID bit. This bit is reset to zero at device reset
(RESET or SRESET) for compatibility with existing pro-
cessor designs. 

10.2.1 CPUID Timing

CPUID execution timing depends on the selected EAX
parameter values (see Table 20).

10.2.2 CPUID Operation

The CPUID instruction requires the user to pass an input
parameter to the CPU in the EAX register. The CPU
response is returned to the user in registers EAX, EBX,
ECX, and EDX. 

Table 19. CPU ID Codes

CPU Type and Cache Mode
Component

ID (DH)
Revision
ID (DL)

DX2 in write-through mode 04 3x

DX2 in write-back mode 04 7x

DX4 in write-through mode 04 8x

DX4 in write-back mode 04 9x

Table 20. CPUID Instruction Description

OP
Code Instruction

EAX
Input
Value

CPU
Core
Clocks

Description

0F A2 CPUID
0 
1
>1

41
14
9

AMD string
CPU ID Register
null registers

When the parameter passed in EAX is zero, the register
values returned upon instruction execution are:

The values in EBX, ECX, and EDX indicate an AMD
microprocessor. When taken in the proper order:

n EBX (least significant bit to most significant bit)

n EDX (least significant bit to most significant bit)

n ECD (least significant bit to most significant bit)

they decode to:

‘AuthenticAMD’ 

When the parameter passed in EAX is 1, the register
values returned are:

The value returned in EAX after CPUID instruction ex-
ecution is identical to the value loaded into EDX upon
device reset. Software must avoid any dependency
upon the state of reserved processor bits.

When the parameter passed in EAX is grea ter than one,
register values returned upon instruction execution are:

EAX[31:0] 00000001h

EBX[31:0] 68747541h

ECX[31:0] 444D4163h

EDX[31:0] 69746E65h

EAX[3:0] Stepping ID*
EAX[7:4] Model:

Enhanced Am486 DX2 CPU—
write-through mode = 3h 

 write-back mode = 7h
Enhanced Am486 DX4 CPU—

write-through mode = 8h 
 write-back mode = 9h

EAX[11:8]
Family
Am486 CPU = 4h

EAX[15:12] 0000
EAX[31:16] RESERVED
EBX[31:0] 00000000h
ECX[31:0] 00000000h
EDX[31:0] 00000001h = all versions

The 1 in bit 0 indicates that the 
FPU is present

Note:
*Please contact AMD for stepping ID details.

EAX[31:0] 00000000h
EBX[31:0] 00000000h
ECX[31:0] 00000000h
EDX[31:0] 00000000h
Flags affected : No flags are affected.

Exceptions : None
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11 Electrical Data
The following sections describe recommended electri-
cal connections for the Enhanced Am486 microproces-
sors and electrical specifications.

11.1 Power and Grounding
11.1.1 Power Connections

Enhanced Am486 microprocessors have modest power
requirements. However, the high clock frequency output
buffers can cause power surges as multiple output buff-
ers drive new signal levels simultaneously. For clean,
on-chip power distribution at high frequency, 23 VCC pins
and 28 VSS pins feed the microprocessor in the 168-pin
PGA package. The 208-pin SQFP package includes 53
VCC pins and 38 VSS pins.

Power and ground connections must be made to all
external VCC and VSS pins of the microprocessors. On a
circuit board, all VCC pins must connect to a VCC plane.
Likewise, all VSS pins must connect to a common GND
plane.

The Enhanced Am486 microprocessor family requires
only 3.3 V as input power. Unlike other 3-V 486 proces-
sors, the Enhanced Am486 microprocessor family does
require a VCC5 input of 5 V to indicate the presence of
5-V I/O devices on the system motherboard. For socket
compatibility, this pin is INC, allowing the Enhanced
Am486 CPU to operate in 3-V sockets in systems that
use 5-V I/O.

11.1.2 Power Decoupling Recommendations

Liberal decoupling capacitance should be placed near
the microprocessor. The microprocessor, driving its 32-
bit parallel address and data buses at high frequencies,
can cause transient power surges, particularly when
driving large capacitive loads.

Low inductance capacitors and interconnects are rec-
ommended for best high-frequency electrical perfor-
mance. Inductance can be reduced by shortening circuit
board traces between the microprocessor and the de-
coupling capacitors. Capacitors designed specifically
for use with PGA packages are commercially available.

11.1.3 Other Connection Recommendations

For reliable operation, always connect unused inputs to
an appropriate signal level. Active Low inputs should be
connected to VCC through a pull-up resistor. Pull-ups in
the range of 20 KΩ are recommended. Active High in-
puts should be connected to GND.
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ABSOLUTE MAXIMUM RATINGS
Case Temperature under Bias  . . .  – 65°C to +110°C
Storage Temperature  . . . . . . . . . .  – 65°C to +150°C
Voltage on any pin

with respect to ground . . . . . .  – 0.5 V to Vcc +2.6 V
Supply voltage with

respect to VSS . . . . . . . . . . . . . . .  – 0.5 V to +4.6 V

Stresses above those listed under Absolute Maximum Ratings
may cause permanent device failure. Functionality at or above
these limits is not implied. Exposure to Absolute Maximum
Ratings for extended periods may affect device reliability.

OPERATING RANGES
Commercial (C) Devices

TCASE . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0°C to 85°C
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 V ±0.3 V

Operating Ranges define those limits between which the func-
tionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges
VCC = 3.3 V ± 0.3 V; TCASE = 0°C to + 85°C

Symbol Parameter Min Max Notes

VIL Input Low Voltage – 0.3 V +0.8 V

VIH Input High Voltage 2.0 V VCC + 2.4 V

VOL Output Low Voltage 0.45 V Note 1

VOH Output High Voltage 2.4 V Note 2

ICC

Power Supply Current:  66 MHz 
 75 MHz 
 80 MHz

 100 MHz
 120 MHz

660 mA
750 mA
800 mA

1000 mA
1200 mA

Typical supply current: 528 mA @ 66 
MHz, 600 mA @ 75 MHz, 640 mA @ 80 
MHz, 800 mA @ 100 MHz, and 
960 mA @ 120 MHz 
Inputs at rails, outputs unloaded.

ICCSTOPGRANT 

or ICCAUTOHALT

Input Current in Stop Grant or Auto Halt Mode:
 66 MHz
 75 MHz
 80 MHz
100 MHz
120 MHz 

66 mA
75 mA
80 mA

100 mA
120 mA

Typical supply current for Stop Grant or 
Auto Halt Mode: 20 mA @ 66 MHz and 
75 MHz, 30 mA @ 80 MHz, 50 mA @ 
100 MHz, and 60 mA @ 120 MHz.

ICCSTPCLK
Input Current in Stop Clock Mode 5 mA Typical supply current in Stop Clock 

Mode is 600 µA.

ILI Input Leakage Current ± 15 µA Note 3

IIH Input Leakage Current 200 µA Note 4

IIL Input Leakage Current – 400 µA Note 5

ILO Output Leakage Current ± 15 µA

CIN Input Capacitance 10 pF FC = 1 MHz (Note 6)

CO I/O or Output Capacitance 14 pF FC = 1 MHz (Note 6)

CCLK CLK Capacitance 12 pF FC = 1 MHz (Note 6)

Notes:
1. This parameter is measured at: Address, Data, BEn = 4.0 mA; Definition, Control = 5.0 mA
2. This parameter is measured at: Address, Data, BEn = - 1.0 mA; Definition, Control = - 0.9 mA
3. This parameter is for inputs without internal pull-ups or pull-downs and 0 ≤ VIN ≤ VCC.
4. This parameter is for inputs with internal pull-downs and VIH = 2.4 V.
5. This parameter is for inputs with internal pull-ups and VIL = 0.45 V.
6. Not 100% tested.
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The AC specifications, provided in the AC characteris-
tics table, consists of output delays, input setup require-
ments, and input hold requirements. All AC
specifications are relative to the rising edge of the CLK
signal. AC specifications measurement is defined by
Figure 36. All timings are referenced to 1.5 V unless
otherwise specified. Enhanced Am486 microprocessor

output delays are specified with minimum and maximum
limits, measured as shown. The minimum microproces-
sor delay times are hold times provided to external cir-
cuitry. Input setup and hold times are specified as
minimums, defining the smallest acceptable sampling
window. Within the sampling window, a synchronous
input signal must be stable for correct microprocessor
operation.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges

Switching Characteristics for 33 MHz bus (66 MHz or 100 MHz operating frequency)
VCC = 3.3 V ±0.3 V; TCASE = 0°C to + 85°C; CL = 50 pF unless otherwise specified

Symbol Parameter Min Max Unit Figure Notes

Frequency 8 33 MHz Note 2
t1 CLK Period 30 125 ns 39

t1a CLK Period Stability 0.1% ∆ Adjacent Clocks

Notes 3 and 4
t2 CLK High Time at 2 V 11 ns 39 Note 3
t3 CLK Low Time at 0.8 V 11 ns 39 Note 3
t4 CLK Fall Time (2 V–0.8 V) 3 ns 39 Note 3
t5 CLK Rise Time (0.8 V–2 V) 3 ns 39 Note 3

t6

A31–A2, PWT, PCD, BE3–BE0, M/IO, D/C, CACHE,
W/R, ADS, LOCK, FERR, BREQ, HLDA, 
SMIACT, HITM Valid Delay

3 14 ns 40

Note 5

t7 A31–A2, PWT, PCD, BE3–BE0, M/IO, D/C, CACHE,
W/R, ADS, LOCK Float Delay

3 20 ns 41 Note 3

t8 PCHK Valid Delay 3 14 ns 42

t8a BLAST, PLOCK, Valid Delay 3 14 ns 40

t9 BLAST, PLOCK, Float Delay 3 20 ns 41 Note 3
t10 D31–D0, DP3–DP0 Write Data Valid Delay 3 14 ns 40

t11 D31–D0, DP3–DP0 Write Data Float Delay 3 20 ns 41 Note 3
t12 EADS, INV, WB/WT Setup Time 5 ns 43

t13 EADS, INV, WB/WT Hold Time 3 ns 43

t14 KEN, BS16, BS8 Setup Time 5 ns 43

t15 KEN, BS16, BS8 Hold Time 3 ns 43

t16 RDY, BRDY Setup Time 5 ns 44

t17 RDY, BRDY Hold Time 3 ns 44

t18 HOLD, AHOLD Setup Time 6 ns 43

t18a BOFF Setup Time 7 ns 43

t19 HOLD, AHOLD, BOFF Hold Time 3 ns 43

t20
RESET, FLUSH, A20M, NMI, INTR, IGNNE, 
STPCLK, SRESET, SMI Setup Time

5 ns 43 Note 5

t21
RESET, FLUSH, A20M, NMI, INTR, IGNNE, 
STPCLK, SRESET, SMI Hold Time

3 ns 43 Note 5

t22 D31–D0, DP3–DP0, A31–A4 Read Setup Time 5 ns 43, 44

t23 D32–D0, DP3–DP0, A31–A4 Read Hold Time 3 ns 43, 44

Notes: 1. Specifications assume CL = 50 pF. I/O Buffer model must be used to determine delays due to loading (trace and
component). First Order I/O buffer models for the processor are available.

2. 0 MHz operation guaranteed during stop clock operation.
3. Not 100% tested. Guaranteed by design characterization.
4. For faster transitions (>0.1% between adjacent clocks), use the Stop Clock protocol to switch operating frequency.
5. All timings are referenced at 1.5 V (as illustrated in the listed figures) unless otherwise noted.
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SWITCHING CHARACTERISTICS for 40 MHz bus (80 MHz or 120 MHz operating frequency)
VCC = 3.3 V ± 0.3 V; TCASE = 0°C to + 85°C; CL = see Note 1

Symbol Parameter Min Max Unit Figure Notes

Frequency 8 40 MHz Note 2

t1 CLK Period 25 125 ns 39

t1a CLK Period Stability 0.1% ∆ Adjacent Clocks

Notes 3 and 4

t2 CLK High Time at 2 V 9 ns 39 Note 3

t3 CLK Low Time at 0.8 V 9 ns 39 Note 3

t4 CLK Fall Time (2 V–0.8 V) 3 ns 39 Note 3

t5 CLK Rise Time (0.8 V–2 V) 3 ns 39 Note 3

t6

A31–A2, PWT, PCD, BE3–BE0, M/IO, D/C, CACHE, 
W/R, ADS, LOCK, FERR, BREQ, HLDA, 
SMIACT, HITM Valid Delay

3

14

ns 40

Note 5

t7 A31–A2, PWT, PCD, BE3–BE0, M/IO, D/C, CACHE,
W/R, ADS, LOCK Float Delay

3
18

ns 41 Note 3

t8 PCHK Valid Delay 3 16 ns 42

t8a BLAST, PLOCK, Valid Delay 3 18 ns 40

t9 BLAST, PLOCK, Float Delay 3 16 ns 41 Note 3

t10 D31–D0, DP3–DP0 Write Data Valid Delay 3 16 ns 40

t11 D31–D0, DP3–DP0 Write Data Float Delay 3 18 ns 41 Note 3

t12 EADS, INV, WB/WT Setup Time 5 ns 43

t13 EADS, INV, WB/WT Hold Time 3 ns 43

t14 KEN, BS16, BS8 Setup Time 5 ns 43

t15 KEN, BS16, BS8 Hold Time 3 ns 43

t16 RDY, BRDY Setup Time 5 ns 44

t17 RDY, BRDY Hold Time 3 ns 44

t18 HOLD, AHOLD Setup Time 6 ns 43

t18a BOFF Setup Time 8 ns 43

t19 HOLD, AHOLD, BOFF Hold Time 3 ns 43

t20
RESET, FLUSH, A20M, NMI, INTR, IGNNE, 
STPCLK, SRESET, SMI Setup Time

5
ns 43 Note 5

t21
RESET, FLUSH, A20M, NMI, INTR, IGNNE,
STPCLK, SRESET, SMI Hold Time

3
ns 43 Note 5

t22 D31–D0, DP3–DP0, A31–A4 Read Setup Time 5 ns 43, 44

t23 D32–D0, DP3–DP0, A31–A4 Read Hold Time 3 ns 43, 44

Notes: 1. Specifications assume CL = 50 pF. I/O Buffer model must be used to determine delays due to loading (trace and
component). First Order I/O buffer models for the processor are available.

2. 0 MHz operation guaranteed during stop clock operation.
3. Not 100% tested. Guaranteed by design characterization.
4. For faster transitions (>0.1% between adjacent clocks), use the Stop Clock protocol to switch operating frequency.
5. All timings are referenced at 1.5 V (as illustrated in the listed figures) unless otherwise noted.
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SWITCHING CHARACTERISTICS for 25 MHz bus (75 MHz operating frequency)
VCC = 3.3 V ± 0.3 V; TCASE = 0°C to + 85°C; CL = see Note 1

Symbol Parameter Min Max Unit Figure Notes

Frequency 8 25 MHz Note 2

t1 CLK Period 40 125 ns 39

t1a
CLK Period Stability 0.1% ∆ Adjacent Clocks

Notes 3 and 4)

t2 CLK High Time at 2 V 14 ns 39 Note 3

t3 CLK Low Time at 0.8 V 14 ns 39 Note 3

t4 CLK Fall Time (2 V–0.8 V) 4 ns 39 Note 3

t5 CLK Rise Time (0.8 V–2 V) 4 ns 39 Note 5

t6

A31–A2, PWT, PCD, BE3–BE0, M/IO, D/C, CACHE, 
W/R, ADS, LOCK, FERR, BREQ, HLDA, 
SMIACT, HITM Valid Delay

3 19 ns 40

Note 4

t7 A31–A2, PWT, PCD, BE3–BE0, M/IO, D/C, CACHE,
W/R, ADS, LOCK Float Delay

3 28 ns 41 Note 3

t8 PCHK Valid Delay 3 24 ns 42

t8a BLAST, PLOCK, Valid Delay 3 24 ns 40

t9 BLAST, PLOCK, Float Delay 3 28 ns 41 Note 3

t10 D31–D0, DP3–DP0 Write Data Valid Delay 3 20 ns 40

t11 D31–D0, DP3–DP0 Write Data Float Delay 3 28 ns 41 Note 3

t12 EADS, INV, WB/WT Setup Time 8 ns 43

t13 EADS, INV, WB/WT Hold Time 3 ns 43

t14 KEN, BS16, BS8 Setup Time 8 ns 43

t15 KEN, BS16, BS8 Hold Time 3 ns 43

t16 RDY, BRDY Setup Time 8 ns 44

t17 RDY, BRDY Hold Time 3 ns 44

t18 HOLD, AHOLD Setup Time 8 ns 43

t18a BOFF Setup Time 8 ns 43

t19 HOLD, AHOLD, BOFF Hold Time 3 ns 43

t20
RESET, FLUSH, A20M, NMI, INTR, IGNNE, 
STPCLK, SRESET, SMI Setup Time

8 ns 43 Note 5

t21
RESET, FLUSH, A20M, NMI, INTR, IGNNE,
STPCLK, SRESET, SMI Hold Time

3 ns 43 Note 5

t22 D31–D0, DP3–DP0, A31–A4 Read Setup Time 5 ns 43, 44

t23 D32–D0, DP3–DP0, A31–A4 Read Hold Time 3 ns 43, 44

Notes: 1. Specifications assume CL = 50 pF. I/O Buffer model must be used to determine delays due to loading (trace and
component). First Order I/O buffer models for the processor are available.

2. 0 MHz operation guaranteed during stop clock operation.
3. Not 100% tested. Guaranteed by design characterization.
4. For faster transitions (>0.1% between adjacent clocks), use the Stop Clock protocol to switch operating frequency.
5. All timings are referenced at 1.5 V (as illustrated in the listed figures) unless otherwise noted.



Enhanced Am486 Microprocessor 

AMD

62

PRELIMINARY

Enhanced Am486 Microprocessor AC Characteristics for 
Boundary Scan Test Signals at 25 MHz
VCC = 3.3 V ±0.3 V; TCASE = 0°C to +85°C; CL = 50 pF unless otherwise specified

Symbol Parameter Min Max Unit Figure Notes

t24 TCK Frequency 25 MHz 1X Clock 

t25 TCK Period 40 ns 45, 46 Note 1

t26 TCK High Time at 2 V 10 ns 45

t27 TCK Low Time at 0.8 V 10 ns 45  

t28 TCK Rise Time (0.8 V–2 V) 4 ns 45 Note 2

t29 TCK Fall Time (2 V–0.8 V) 4 ns 45 Note 2

t30 TDI, TMS Setup Time 8 ns 46 Note 3

t31 TDI, TMS Hold Time 7 ns 46 Note 3

t32 TDO Valid Delay 3 25 ns 46 Note 3

t33 TDO Float Delay 36 ns 46 Note 3

t34 All Outputs (Non-Test) Valid Delay 3 25 ns 46 Note 3

t35 All Outputs (Non-Test) Float Delay 30 ns 46 Note 3

t36 All Inputs (Non-Test) Setup Delay 8 ns 46 Note 3

t37 All inputs (Non-Test) Hold Time 7 ns 46 Note 3

Notes: 1. TCK period ≥ CLK period.

2. Rise/Fall times can be relaxed by 1 ns per 10-ns increase in TCK period.

3. Parameter measured from TCK.
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 Key to Switching Waveforms

Waveform Inputs Outputs

Must be steady Will be steady

May change from
H to L

Will change
from H to L

May change from
L to H

Will change
from L to H

Don’t care; any
change permitted

Changing;
state unknown

Does not apply
Center line is
High-impedance
“Off” state

Figure 40. Output Valid Delay Timing

Figure 39. CLK Waveforms
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Figure 41. Maximum Float Delay Timing

Figure 42. PCHK  Valid Delay Timing
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Figure 43. Input Setup and Hold Timing

Figure 44. RDY  and BRDY  Input Setup and Hold Timing
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Figure 45. TCK Waveforms

Figure 46. Test Signal Timing Diagram
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12 PACKAGE THERMAL 
SPECIFICATIONS

The Am486 microprocessor is specified for operation
when TCASE (the case temperature) is within the range
of 0°C to +85°C. TCASE can be measured in any envi-
ronment to determine whether the Am486 microproces-
sor is within specified operating range. The case
temperature should be measured at the center of the
top surface opposite the pins.

The ambient temperature (TA) is guaranteed as long as
TCASE is not violated. The ambient temperature can be
calculated from θJC and θJA and from the following equa-
tions:

TJ = TCASE + P • θJC

TA = TJ – P • θJA

TCASE = TA + P • [θJA – θJC]

where:

 TJ, TA, TCASE = Junction, Ambient, and Case Temperature.
θJC, θJA = Junction-to-Case and Junction-to-Ambient 

Thermal Resistance, respectively.
P = Maximum Power Consumption

The values for θJA and θJC are given in Table 21 for the
1.75 sq. in., 168-pin, ceramic PGA. For the 208-pin
SQFP plastic package, θJA = 14.0 and θJC = 1.5.

Table 22 shows the TA allowable (without exceeding
TCASE) at various airflows and operating frequencies
(Clock). Note that TA is greatly improved by attaching a
heat sink to the package. P (the maximum power con-
sumption) is calculated by using the maximum ICC at 
3.3 V as tabulated in the DC Characteristics.

*0.350″ high unidirectional heat sink (Al alloy 6063-T5, 40 mil fin width, 155 mil center-to-center fin spacing).

Table 21. Thermal Resistance (°C/W) θJC and θJA for the Am486 CPU in 168-Pin PGA Package

Cooling 
Mechanism θJC

θJA vs. Airflow-ft/min. (m/sec)

0 (0) 200 
(1.01)

400
 (2.03) 

600
 (3.04)

800
 (4.06)

1000
 (5.07)

No Heat Sink 1.5 16.5 14.0 12.0 10.5 9.5 9.0

Heat Sink* 2.0 12.0 7.0 5.0 4.0 3.5 3.25

Heat Sink* and fan 2.0 5.0 4.6 4.2 3.8 3.5 3.25

Table 22. Maximum T A at Various Airflows in °C

TA by Cooling 
Type Clock

Airflow-ft/min. (m/sec)

0 (0) 200 
(1.01)

400 
(2.03)

600 
(3.04)

800 
(4.06)

1000 
(5.07)

TA without Heat Sink 66 MHz 52.3 57.8 62.1 65.4 67.6 68.7

TA with Heat Sink

66 MHz 63.2 74.1 78.5 80.6 81.7 82.3
75 MHz 60.3 72.6 77.6 80.1 81.3 81.9
80 MHz 58.6 71.8 77.1 79.7 81.0 81.7
100 MHz 52.0 68.5 75.1 78.4 80.1 80.9
120 MHz 45.4 65.2 73.1 77.1 79.1 80.1

TA with Heat Sink and 
fan

66 MHz 78.5 79.3 80.2 81.1 81.7 82.3
75 MHz 77.6 78.6 79.6 80.5 81.3 81.9
80 MHz 77.1 78.1 79.2 80.2 81.0 81.7
100 MHz 75.1 76.4 77.7 79.1 80.1 80.9
120 MHz 73.1 74.7 76.3 77.9 79.1 80.1
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13 PHYSICAL DIMENSIONS
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0.045
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Index
Corner

0.090
0.110

Notes:
1. All measurements are in inches.

2. Not to scale. For reference only.

3. BSC is an ANSI standard for Basic Space Centering. 
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Enhanced Am486 Microprocessor 

Notes:
1. All measurements are in millimeters unless otherwise noted.

2. Not to scale. For reference only.
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