

AMD-K5TM Processor

Data Sheet

Publication # 18522 Rev: F Amendment/0 Issue Date: January 1997

This document contains information on a product under development at AMD. The information is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed product without notice.

© 1997 Advanced Micro Devices, Inc. All Rights Reserved.

Advanced Micro Devices, Inc. ("AMD") reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

The information in this publication is believed to be accurate at the time of publication, but AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication or the information contained herein, and reserves the right to make changes at any time, without notice. AMD disclaims responsibility for any consequences resulting from the use of the information included in this publication.

This publication neither states nor implies any representations or warranties of any kind, including but not limited to, any implied warranty of merchantability or fitness for a particular purpose. AMD products are not authorized for use as critical components in life support devices or systems without AMD's written approval. AMD assumes no liability whatsoever for claims associated with the sale or use (including the use of engineering samples) of AMD products except as provided in AMD's Terms and Conditions of Sale for such product.

Trademarks:

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Am486 is a registered trademark, and AMD-K5 is a trademark of Advanced Micro Devices, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Contents

1	AMD-K5 [™] Processor Features 1.1 Redefining the Next Generation 1.2 High-Performance Design 1.3 Compatibility	1
2	Block Diagram	4
3	Ordering Information	5
4	Architectural Introduction4.1Superscalar RISC Core4.2Out-of-Order Execution4.3Register Renaming4.464-Bit Data Bus Interface Unit4.5Innovative x86 Instruction Predecoding4.6Cache Architecture4.7Branch Prediction4.8Unique x86 Instruction Conversion and Decoding4.9Reorder Buffer4.10Register File4.11The Right Combination—Compatibility and Performance	6 7 7 8 9 10
5	CPU Identification 1	2
6	Logic Symbol Diagram	3
7	Signal Descriptions 1 A31-A5/A4-A3 1 A20M 1 ADS 1 ADS 1 ADSC 1 AHOLD 1 AP 1 APCHK 1 BE7-BE0 1 BF1-BF0 (Model 1 and Model 2) 1 BOFF 1 BRDY 1 BREQ 1 BUSCHK 1 CACHE 1 CLK 1	14 14 14 15 15 16 16 16 17 17

18522F/0—Jan1997

	DP7-DP0 1	8
	<u>EADS</u>	.8
	EWBE	8
	FERR	
	FLUSH	-
	FRCMC 1	
	HIT 1	
	HITM	
	HLDA	
	HOLD	
	IERR	
	IGNNE	
	INIT	
	INTR	:0
	INV	:1
	<u>KEN</u> 2	21
	<u>LOCK</u>	21
	М/ТО	21
	<u>NA</u>	21
	NMI	
	PCD	
	<u>PCHK</u>	
	PEN 2	
	PRDY	
	PWT	
	RESET	
	R/S	-
	SCYC	-
	<u>SMI</u> 2	-
	SMIACT	-
	<u>STPCLK</u>	:3
	ТСК	3
	TDI	23
	TDO	3
	TMS	24
	TRST	24
	W/\overline{R}	
	WB/WT	
Proce	essor Operation	8
8.1	Power-On Configuration	8
8.2	Clock State	
	Normal Execution State	
	Halt/Auto-Power- Down State	
	Stop Grant State	
	Stop Clock Snoop State	
	Stop Clock State	
0 2		
8.3	Cache Protocol	, T

8

9

		Internal Cache	31
		Cacheability	32
		Copy-Back Buffers	32
8	3.4	Data Cache Coherency	32
		Cache Invalidation	32
		Read Cycles	33
		Write Cycles	
		Write Allocate	
		External Inquire Cycles	35
		Instruction Cache Coherency	
		Self-Modifying Code and the Cache	
8	8.5	External Bus Description	
		Memory Organization	
8	8.6	Bus Cycles	
		Single Transfer Cycles	
		Burst Read Cycles	
		Burst Write Cycles	
		BOFF or AHOLD/HOLD/HLDA During Burst Transfers	
		Use of BOFF	
		Locked Operations	
		LOCK during HOLD and BOFF	
		LOCK Operations during Inquire Cycles	42
		Locked Operation to Cached Lines	
		Bus Hold	43
		Bus Error Support using PCHK and APCHK	
		Special Bus Cycles	44
		Flush Operations	44
		Interrupt Acknowledge	45
		Inquire Cycles	45
		Pipelining	47
		Pipelining Timing Diagrams	49
8	8.7	System Management Mode	51
		Processing System Management Interrupts	51
		System Management Interrupt	51
		System Management Interrupt Initial State Upon Entering SMM	
			53
		Initial State Upon Entering SMMI/O Instruction RestartHalt Auto Restart	53 53 54
8	3.8	Initial State Upon Entering SMMI/O Instruction Restart	53 53 54
	8.8 3.9	Initial State Upon Entering SMMI/O Instruction RestartHalt Auto Restart	53 53 54 54
8	8.9	Initial State Upon Entering SMM I/O Instruction Restart Halt Auto Restart Am486 [®] and AMD-K5 Processor Bus Differences P54C and AMD-K5 Processor Bus Differences	53 53 54 54 55
8	8.9 Elect	Initial State Upon Entering SMMI/O Instruction RestartHalt Auto RestartMathematic Am486 [®] and AMD-K5 Processor Bus DifferencesP54C and AMD-K5 Processor Bus Differencesrical Data	53 53 54 54 55 55
8	8.9	Initial State Upon Entering SMM I/O Instruction Restart Halt Auto Restart Am486 [®] and AMD-K5 Processor Bus Differences P54C and AMD-K5 Processor Bus Differences rical Data Power and Grounding	53 54 54 55 55 56
8	8.9 Elect	Initial State Upon Entering SMM I/O Instruction Restart Halt Auto Restart Am486 [®] and AMD-K5 Processor Bus Differences P54C and AMD-K5 Processor Bus Differences rical Data Power and Grounding Power Connections	53 54 54 55 56 56
8] 9	3.9 E lect 9.1	Initial State Upon Entering SMM I/O Instruction Restart Halt Auto Restart Am486 [®] and AMD-K5 Processor Bus Differences P54C and AMD-K5 Processor Bus Differences rical Data Power and Grounding Power Connections Connection Recommendations	53 53 54 54 55 56 56 56
8] 9	3.9 Elect 9.1 9.2	Initial State Upon Entering SMMI/O Instruction RestartHalt Auto RestartAm486 [®] and AMD-K5 Processor Bus DifferencesP54C and AMD-K5 Processor Bus Differencesrical DataPower and GroundingPower ConnectionsConnection RecommendationsAbsolute Maximum Ratings	53 54 54 55 56 56 56 56 57
8] 9	3.9 E lect 9.1	Initial State Upon Entering SMM I/O Instruction Restart Halt Auto Restart Am486 [®] and AMD-K5 Processor Bus Differences P54C and AMD-K5 Processor Bus Differences rical Data Power and Grounding Power Connections Connection Recommendations	53 54 54 55 . 56 56 56 56 57 57

10	Switching Characteristics5910.166-MHz Bus Operation5910.260-MHz Bus Operation6210.350-MHz Bus Operation6410.4RESET, TCK, TRST, and Test Signal Timing66
11	Timing Diagrams
12	Package Thermal Specifications
13	Physical Dimensions
14	Pin Description Diagram (Model 0) 85
15	Pin Designations (Model 0) 86
16	Pin Description Diagram (Models 1 and 2) 87
17	Pin Designations (Models 1 and 2) 88

18522F/0—Jan1997

List of Figures

Figure 1.	Block Diagram	. 3
Figure 2.	Logic Symbol Diagram	
Figure 3.	State Transition Diagram for Stop Clock State Machine	
Figure 4.	Bus State Transitions	
Figure 5.	Single Writes (Zero Wait States)	
Figure 6.	Burst Write (One Wait State)	
Figure 7.	BOFF Timing.	
Figure 8.	Locked Cycles	
Figure 9.	HOLD/HLDA Cycle	
Figure 10.	Interrupt Acknowledge Cycles	
Figure 11.	Inquire Cycle (Hit to a Non-Modified Line)	
Figure 12.	Inquire Cycle (Hit to a Modified Line)	46
Figure 13.	Pipelined Cacheable Data Cache Cycle into	
	a Cacheable Instruction Cache Cycle	49
Figure 14.	Pipelined Write Cycle (Could be I/O) into	
	a Write Cycle (Could be I/O)	50
Figure 15.	Diagrams Key	68
Figure 16.	CLK Waveform	68
Figure 17.	Output Valid Delay Timing	
Figure 18.	Input Setup and Hold Timing	69
Figure 19.	Maximum Float Delay Timing	69
Figure 20.	Reset and Configuration Timing	70
Figure 21.	TCK Waveform	71
Figure 22.	TRST Timing	71
Figure 23.	Test Signal Timing Diagram	71
Figure 24.	STPCLK Timing (Stop Grant state)	72
Figure 25.	Transition L1 Shared Line to Exclusive	72
Figure 26.	Invalidation to Non-Modified L1 Cache Line	73
Figure 27.	Invalidation to Modified Line in	
	L1 Cache (Writeback Cycle)	73
Figure 28.	Single Read due to CACHE Inactive (No Wait State)	74
Figure 29.	Single Read due to KEN Not Asserted (One Wait State)	74
Figure 30.	Single Write due to KEN Inactive (No Wait State)	75
Figure 31.	Single Write due to CACHE Inactive (One Wait State)	75
Figure 32.	Burst Read (No Wait State)	76
Figure 33.	Burst Read (One Wait State)	76
Figure 34.	Burst Write (One Wait State)	77
Figure 35.	BOFF Timing	77
Figure 36.	Locked Cycle	78
Figure 37.	HOLD/HLDA Timing	78
Figure 38.	AHOLD Restrictions	79
Figure 39.	Special Cycle	79
Figure 40.	Interrupt Acknowledge	80

Figure 41.	SMI/SMIACT Timing	80
Figure 42.	Split Cycle (Misaligned Locked cycle)	81
Figure 43.	296-Pin Ceramic Staggered Pin Grid Array (SPGA)	84
Figure 44.	AMD-K5 Model 0 Processor Pin-Side View	85
Figure 45.	AMD-K5 Models 1 and 2 Processor Pin-Side View	87

List of Tables

Table 1.	Input Pins24
Table 2.	Output Pins
Table 3.	Input/Output Pins
Table 4.	Test Pins
Table 5.	Bus Cycle Definition
Table 6.	Special Cycles
Table 7.	Signals at Reset
Table 8.	Processor Reads to Data Cache
Table 9.	Writes to Data Cache
Table 10.	Inquire Cycles to Data Cache
Table 11.	Addressing of the AMD-K5 Processor Burst Order
Table 12.	SMM Save Area Map
Table 13.	Initial State Upon Entering SMM53
Table 14.	DC Characteristics over Commercial Operating Ranges58
Table 15.	CLK Switching Characteristics for 66-MHz Bus Operation 59
Table 16.	Delay Timing for 66-MHz Bus Operation60
Table 17.	Switching Characteristics for 66-MHz Bus Operation61
Table 18.	CLK Switching Characteristics for 60-MHz Bus Operation 62
Table 19.	Delay Timing for 60-MHz Bus Operation62
Table 20.	Switching Characteristics for 60-MHz Bus Operation
Table 21.	CLK Switching Characteristics for 50-MHz Bus Operation 64
Table 22.	Delay Timing for 50-MHz Bus Operation64
Table 23.	Switching Characteristics for 50-MHz Bus Operation65
Table 24.	RESET Configuration Signal
Table 25.	TCK Waveform and TRST Timing at 16 MHz66
Table 26.	Test Signal Timing at 16 MHz67
Table 27.	θ_{CA} for the AMD-K5 Processor in 296-pin SPGA
	Package for Typical Heat Sinks with Fans82
	Model 0 Maximum T_A in °C83
Table 29.	Models 1 and 2 Maximum T_A in °C

AMD-K5 Processor Data Sheet

1 AMD-K5[™] Processor Features

- Four-issue superscalar core with six parallel execution units arranged in a five-stage pipeline
- 16-Kbyte, dual-tagged, four-way, set-associative instruction cache
- 8-Kbyte, dual-tagged, dual-ported with four banks, four-way set-associative, writeback data cache
- Full, out-of-order speculative execution and completion
- Dynamic cache line-oriented branch prediction with 1-Kbyte branch predictions and low 3-cycle branch mispredict penalty
- Integrated, high-performance floating-point unit (FPU) with low-latency add/multiply and single-cycle issue
- Static clock control with Phase Lock Loop (PLL) circuitry
- 3.3-V operation and System Management Mode (SMM) for lower power consumption
- 64-bit Pentium-compatible bus and system interface in a 296pin SPGA package
- Compatible with existing Pentium (P54C) support infrastructure and system designs
- Fully compatible with the Microsoft[®] Windows[®] operating systems and the large installed library of x86 software

1.1 Redefining the Next Generation

AMD continues to bring superior, high-performance processor solutions to the personal computer market. The AMD-K5 processor offers superior price/performance value over other 5thgeneration processors—making it an ideal solution for mainstream desktop computers. Compatible with the entire installed library of x86 software, the AMD-K5 processor is a superior engine for the Microsoft Windows operating systems.

The AMD-K5 processor uses an independently developed "superscalar RISC-based design" manufactured in AMD's 0.35micron complementary metal-oxide semiconductor (CMOS) process. The design stems from a rich history of experience in RISC and x86 technology, providing a solid foundation for the development of our proprietary 4.3-million-transistor AMD-K5 processor.

AMD-K5 Processor Data Sheet

18522F/0-Jan1997

1.2 High-Performance Design

The superscalar RISC design techniques provide nextgeneration performance levels and the power to run complex 32-bit operating systems and applications. The AMD-K5 processor features a four-issue superscalar core that incorporates dynamic branch prediction and out-of-order speculative execution. While other 5th-generation processors feature a two-issue core, the AMD-K5 processor's RISC core is four-issue.

1.3 Compatibility

The AMD-K5 processor's compatibility is established using a rigorous testing procedure that begins with software simulation before the design is first committed to silicon. Throughout the design and manufacturing process, industry-standard tools and systems are used for compatibility testing.

Extended compatibility and qualification testing are provided by industry-leading personal computer and chip set manufacturers. Testing culminates with certification from XXCAL, Inc., an independent third-party testing lab. This combination of differentiating features is responsible for the AMD-K5 processor's overall design and performance advantages.

Compatibility with the Microsoft Windows operating system and the immense library of x86 software furthers these advantages, and is the foundation of the AMD-K5 processor's leading-edge solution.

Revision History

Date	Revision	Description
		The PR166 OPN added to Ordering Information in Section 3 on page 5.
		The valid combinations are updated in the Ordering Information in Section 3 on page 5.
		Model 2 added to the CPU Identification in Section 5 on page 12.
		P-Rating information added to the CPU Identification in Section 5 on page 12.
	F	Manufacturer in JTAG ID code changed to bits 11-1 in CPU Identification in Section 5 on page 12.
Jan. 1997		1.75 multiplier added to the BF1-BF0 pin description in Signal Descriptions in Section 7 on page 14.
		New data cache write allocate information added beginning on page 34
		Pipelining information added beginning on page 47.
		V _{CC} changes in Operating Ranges on page 57.
		I _{CC} updated in Table 14 on page 58.
		The package thermal specifications on page 82 are updated for new models and I_{CC} specs.
		All references to model 1 are changed to models 1 and 2.

AMD-K5 Processor Data Sheet

18522F/0-Jan1997

2 Block Diagram

3 Ordering Information

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.

AMD-K5

Valid Combinations

OPN	Package Type	Operating Voltage	Case Temperature		
AMD-K5-PR166ABX	296-pin SPGA	3.45 V-3.60 V	65°C		
AMD-K5-PR133ABR	296-pin SPGA	3.45 V-3.60 V	70°C		
AMD-K5-PR133ABQ	296-pin SPGA	3.45 V-3.60 V	60°C		
AMD-K5-PR120ABR	296-pin SPGA	3.45 V-3.60 V	70°C		
AMD-K5-PR100ABQ	296-pin SPGA	3.45 V-3.60 V	60°C		
AMD-K5-PR90ABQ	296-pin SPGA	3.45 V-3.60 V	60°C		
AMD-K5-PR75ABR	296-pin SPGA	3.45 V-3.60 V	70°C		
<i>Notes:</i> 1. Valid combinations lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.					

18522F/0-Jan1997

4 Architectural Introduction

The x86 architecture is the dominant standard for the personal computer marketplace. However, maintaining backwards compatibility with previous generations of x86 processors carries several inherent limitations associated with the x86 architecture: variable-length instruction set, fewer general-purpose registers, and complex addressing modes. The AMD-K5 processor overcomes these burdens by providing superscalar architecture that incorporates innovative technology: instruction predecoding, improved cache architecture, branch prediction with speculative execution, a superscalar RISC core, out-oforder execution, and register renaming.

4.1 Superscalar RISC Core

The AMD-K5 processor's superscalar RISC core consists of six execution units: two arithmetic logic units (ALU), two load/ store units, one branch unit, and one floating-point unit (FPU). This superscalar core is fully decoupled from the x86 bus through the conversion of variable-length x86 instructions into simple, fixed-length RISC operations (ROPs) that are easier to handle and execute faster. Once the x86 instruction has been converted, a dispatcher issues four ROPs at a time to the superscalar core. The processor's superscalar core can execute at a peak rate of six ROPs per cycle. The superscalar core supports data forwarding and data bypassing to immediately forward the results of an execution to successive instructions. This eliminates the delay of writing the results to output registers or memory and reading them back to the instruction needing the results.

4.2 Out-of-Order Execution

The AMD-K5 processor implements out-of-order execution to eliminate delays due to pipeline dependencies. Each execution unit has two reservation stations that hold ROPs prior to execution (except the FPU, which has one reservation station). ROPs can be issued out of order from the reservation stations and executed out of order. Some execution units will empty their reservation stations before others. Since each execution unit can operate independently, other units can continue execution when one or more units are stalled. A 16-entry reorder buffer keeps track of the original instruction sequence and ensures that the results are retired in program order.

4.3 Register Renaming

The x86 architecture has only eight general-purpose registers. This significantly increases register reuse (loads and stores) and register dependencies. The register reuse is addressed with multiple load/store execution units and a dual-ported data cache. The AMD-K5 processor uses register renaming to overcome register dependencies. Multiple logical registers for each physical register allow execution units to use the same physical name registers simultaneously.

4.4 64-Bit Data Bus Interface Unit

The AMD-K5 processor uses a 64-bit data bus that provides higher throughput and support for 64-bit data paths, and a cache/burst-oriented line refill for loading the processor's internal separate instruction and data caches. As code and data enter the bus interface unit, the internal cache refills continually as fast as five clock cycles per cache line. The enhanced bandwidth of the processor's data bus and the continuous cache refill process reduces processing delays and supports superior processor and overall system performance.

4.5 Innovative x86 Instruction Predecoding

While processing variable-length instructions is manageable in single-issue 4th-generation and dual-issue 5th-generation CPUs, only the AMD-K5 processor employs the necessary innovative techniques to issue as many as four x86 instructions per clock cycle.

Every byte of code that enters the AMD-K5 processor is tagged with associated predecode information that identifies the x86 instruction boundaries and enables multiple x86 instructions (varying in length from 8 to 120 bits) to be aligned. Once aligned, the instructions are assigned issue positions for the most efficient instruction processing—contributing to the processor's high performance. In addition to indicating where the x86 instruction begins and ends, the predecode information identifies the position of the opcode and the number of simple RISC-like operations (ROPs) the individual x86 instruction requires for later translation.

After the x86 instructions are predecoded, they are loaded into the instruction cache. When accessed from the instruction cache, the *speculative* instructions (x86 instructions from a predicted branch stream) are pushed into the byte queue and await further decoding. The byte queue not only contains the x86 instructions but also the associated predecode tags that mark each instruction's position and operation type.

4.6 Cache Architecture

Much of the AMD-K5 processor's performance advantage can be credited to the processor's instruction cache architecture and its ability to feed the processor core. Using separate instruction and data caches eliminates the internal conflicts over simultaneous instruction cache access and x86 loads and stores. The processor's 16-Kbyte instruction cache is dualtagged, avoiding the linear-to-physical address translation required to access every entry and allowing faster cache access. In addition, the processor maintains a separate set of physical instruction tags for snooping and aliasing, and through a special protocol, prevents flushing the cache even during Translation Lookaside Buffer (TLB) flushes or context switches.

The processor's instruction cache implements a four-way setassociative structure for maximum cache performance in a given size and maintains branch prediction information with every cache line.

The 8-Kbyte data cache allows two cache lines of data to be accessed simultaneously in a single clock cycle, as long as separate banks within the data cache are accessed. Supporting two accesses per clock enables the data cache to overcome the load/store bottlenecks inherent in the x86 architecture.

The AMD-K5 processor's data cache uses a modified, exclusive, shared, invalid (MESI) protocol to maintain data coherency with other caches in the system and to ensure that a read from

a given memory location returns valid data. Each cache line is assigned one of the four protocol states to identify the status of the information stored in the cache. The writeback cache design updates memory only when necessary. This keeps the system bus free for use by other devices and improves the overall system performance.

4.7 Branch Prediction

A branch occurs on average once every seven x86 instructions. When a branch is encountered, the processor predicts which direction the instruction flow will follow. The AMD-K5 processor adds branch prediction information to each instruction cache line in the form of a predicted address tag that indicates the target address of the first branch that is predicted to be taken in the cache line. The processor's dynamic branch prediction mechanism allows for 1024 branch targets and a 75% branch prediction accuracy. Combined with a minimal 3-cycle mispredict penalty, the branch prediction mechanism optimizes the processor's speculative execution of x86 software, such as the Microsoft Windows operating system and associated applications.

The dynamic branch prediction of the processor enables instructions to be fetched and fed into the processor's execution core, eliminating many pipeline bubbles and contributing to the superior performance of the AMD-K5 processor.

4.8 Unique x86 Instruction Conversion and Decoding

The logical instruction flow within the AMD-K5 processor continues as up to 32-bytes of predecoded x86 instructions are fetched from the byte queue of the instruction cache and forwarded in order to the decoder.

The processor's decoder converts complex x86 instructions into relatively simple, fast-executing ROPs that are of fixed length and easy to process. Simultaneously, the operands needed to perform the ROPs' operations are fetched from the register file or from the reorder buffer.

At the beginning of the decode process, the decoder scans the x86 instructions and allocates the instructions to the appropriate decode position. This allocation depends on the 5-bit tag given to each x86 instruction during predecode. When the predecoded instruction passes through the AMD-K5 processor's decoder, the number of ROPs needed to equate to the x86 instruction is already known from predecoding, saving valuable processing time.

During allocation, the instruction's pathways are identified. If an x86 instruction requires less than four ROPs for conversion, it is sent immediately to any of the four decode positions (Fastpath). Complex x86 instructions requiring four or more ROPs (or ROP sequences) are transferred to the Microcode ROM (MROM) for conversion.

Once through the decode position, the ROPs are dispatched in parallel to reservation stations that reside in each of the processor's six execution units. A reservation station precedes the input to individual execution units. Each execution unit has a pair of reservation stations.

The processor sends ROPs to the reservation stations in order, but when the ROPs are passed on to the execution units they can be executed out of order because the reservation stations can empty at different times. Out-of-order execution eliminates the need for compiler-specific optimization and reduces dependencies. The ROPs wait in the reservation stations for the execution unit processing to complete and for the needed operands, which come from the register file, the data cache, or are forwarded from other execution units. As an execution unit finishes processing one instruction, it receives another instruction from the reservation station. Using reservation stations in this manner, the processor minimizes instruction stalls due to dependencies on execution resources and allows a higher issue rate to be maintained.

4.9 Reorder Buffer

The AMD-K5 processor uses a central reorder buffer—a key to supporting speculative out-of-order execution (issue and completion). The central reorder buffer is used to rename registers, provide subsequent forwarding of requested intermediate

results, recover from mispredictions and exceptions, and hold the relative speculative state.

The processor's 16-entry reorder buffer stores results from x86 instructions that have been speculatively executed at the time a branch was predicted. When ROPs are dispatched to one of the processor's six independent execution units, an entry at the top of the reorder buffer is allocated for each ROP. Up to four entries are allocated simultaneously. The reorder buffer keeps track of the original instruction sequence and ensures that results are retired in program order, writing the results of the executed instruction to the register file. If a branch is mispredicted, the results of the instructions along the mispredicted path are invalidated in the reorder buffer before there is any effect on the x86 registers or memory system.

4.10 Register File

A problem with the x86 architecture has been its limited number of general-purpose registers. Fewer registers means frequent reuse of registers, which potentially leads to a reduction in performance. The AMD-K5 CPU utilizes register renaming and avoids this performance reduction.

Because the movement of values between registers and memory locations is unavoidable with the x86 instruction set, a key advantage of the AMD-K5 CPU is its single-cycle load from the data cache. This, in combination with the multiported register file and renaming in the reorder buffer, gives near optimal speculative performance within the constraints of the x86 instruction set.

4.11 The Right Combination—Compatibility and Performance

While each feature has a significant function, it is the combination of all features that is responsible for the AMD-K5 processor's overall design and performance advantages. Compatibility with the Microsoft Windows operating system and the immense library of x86 software furthers these advantages, and is the foundation of the AMD-K5 processor's leading-edge solution.

18522F/0-Jan1997

5 CPU Identification

Upon completion of RESET, the DX register contains a component identification. The upper byte of DX (DH) will contain 05h. The lower byte of DX (DL) will contain a CPU model (0h–2h)/stepping identifier (xh).

CPU ID						
Family ID (DH)	Model ID (DL, top 4 bits)	CPU Frequency (MHz)	Bus Speed	Processor P-Rating	BF Pin	BF1–BF0 Pins
	0	75	50	AMD-K5-PR75	1	N/A
		90	60	AMD-K5-PR90	1	N/A
5		100	66	AMD-K5-PR100	1	N/A
Э	1	90	60	AMD-K5-PR120	N/A	10
	I	100	66	AMD-K5-PR133	N/A	10
	2	116.7	66	AMD-K5-PR166	N/A	00
Notes: This table de	oes not constitute	product announcements nce actual products base	Instead, th	e information in the table i	represents <u>p</u>	oossible prod-

The boundary scan test access port (TAP) returns the following information in the device identification register (DIR).

JTAG ID Code						
Version (Bits 31–28)	Bond Option (Bit 27)	Unused (Bits 26–24)	Part Number (Bits 23–12)	Manufacturer (Bits 11–1)	LSB (Bit 0)	
xh	хb	000b	50xh (Model 0) 51xh (Model 1) 52xh (Model 2)	00000000001b	1b	

6 Logic Symbol Diagram

18522F/0—Jan1997

7 Signal Descriptions

A31-A5/A4-A3	Address Lines	Input/Output	
	signals are outputs to address system management memory inquire cycles. A4–A3 are not but must be driven to valid le	E0 to form the address bus. These s memory space, I/O space, and A31–A5 are used as inputs for used during the inquire cycle, evels. During bus hold, address floated. (See Switching Charac-	
A20M	Address Bit 20 Mask	Input	
	Asserting $\overline{A20M}$ will mask address bit 20 internally for internal cache accesses or driving memory cycles on the external bus. $\overline{A20M}$ should be asserted only in Real mode. Its effect is not defined in Protected mode. The state of $\overline{A20M}$ is ignored during transfers to and from SMM memory. $\overline{A20M}$ is sampled on every rising clock edge. (See Switching Characteristics t_{26} and t_{27} .)		
ADS	Address Status	Output	
	-	of a new bus cycle. Valid ion are available on the address assertion of ADS . ADS is floated	
ADSC	Address Status Copy	Output	
	_	ction as $\overline{\text{ADS}}$. It permits greater d to directly drive the cache to	
AHOLD	Address Hold	Input	
	nized as asserted. Other signa another bus master to access	the processor's address bus for a has a small internal pulldown	

AP	Address Parity	Input/Output
	signal is driven simultacycles that do not prov	s even parity for the address bus. This aneously with the address bus. Inquire ide even parity in the same clock cycle the assertion of <u>APCHK</u> . (See <u>APCHK</u> .)
АРСНК	Address Parity Check	Output
	bus for inquire cycles,	s an address parity error on the address APCHK is asserted on the second clock . It remains active for one clock.
BE7-BE0	Byte Enables	Output
	e	ndicate active bytes during read and byte-enable signals correspond to the bus as follows:
	■ BE7: D63–D56	BE3 : D31–D24
	■ <u>BE6</u> : D55–D48	BE2 : D23–D16
	■ <u>BE5</u> : D47–D40	■ <u>BE1</u> : D15–D8
	■ BE4: D39–D32	BE0 : D7–D0
	-	en at the same time as the address bus. s are also used to decode special cycles
BF (Model 0)	Bus Frequency	Input
	the internal operating the CLK signal is mult by the state of the BF s High at RESET, the clo	l 0 processor, the BF signal determines speed of the processor. The frequency of iplied internally by a ratio determined signal during RESET. If BF is sampled ock frequency is 1.5x the bus frequency. t RESET, the clock frequency is 2x the
	<u>BF Pin</u> Internal C	lock Multiplier
	0	2
	1	1.5

18522F/0—Jan1997

AMD-K5 Processor Data Sheet

BF1-BF0 (Model 1	Bus Frequency		Input	
and Model 2)	BF0 signals de cessor. The fre nally by a rati	etermine th equency of to determin g RESET. Th	and model 2 processo e internal operating s the CLK signal is mul ed by the states of the he processor speed mo	speed of the pro- ltiplied inter- e BF1 and BF0
	<u>BF1 Pin</u>	<u>BF0 Pin</u>	Internal Clock Multip	<u>plier</u>
	0	0	1.75	
	0	1	Reserved	
	1	0	1.5	
	1	1	1.5	
BOFF	Backoff		Input	
	associated sig asserted. An a clock after BC the processor Burst cycles in ning of the bu BRDY is samp	nals on the alternate ma DFF is samp will restart nterrupted urst cycle. B oled asserte	tion to a bus hold stat clock that BOFF is sa aster may drive the bu- led asserted. When B any bus cycle from th by BOFF will restart f OFF takes priority ov d in the same cycle as witching Characteristic	impled as us signals on the OFF is negated, he beginning. from the begin- ver BRDY. If BOFF, the cycle
BRDY	Burst Ready		Input	
	cycle to indication ignored at the bus is in an id asserted. Up t	ate complet end of the le state. Th to four asse	second and following ion of a data transfer first clock of a bus cyc e data bus is sampled rtions of BRDY are ne Switching Characteris	cycle. BRDY is cle and when the when BRDY is eeded to com-
BRDYC	Burst Ready Cop	Y	Input	
	connected int by level two c BRDYC and E A3 (not includ drive strength	ernally by a ache. At the SUSCHK co ling A31–A2 1 is weak fo	lentical to BRDY. The an OR gate. BRDYC is e falling edge of RESI ntrol the drive streng 22), ADS, HITM, and V r all states of BRDYC BUSCHK are both Lo	s typically used ET, the states of th on the A21– W/R signals. The and BUSCHK

the drive strength is strong. The A31–A22 signals use the weak drive strength at all times.

BREQ	Bus Request Pending	Output
	-	EQ signal to indicate a request for even when the processor floats). (See FLUSH.)
BUSCHK	Bus Check	Input
	cycle errors. This signal, when The control signals in the ma- latch. If the MCE bit in CR4 is the machine check exception falling edge of RESET, the st trol the drive strength on the ADS, HITM, and W/R signals. states of BRDYC and BUSCH	he external system to indicate bus in asserted, latchs the address bus. In chine check registers will also as set, the processor will vector to at the end of the bus cycle. At the ates of BRDYC and BUSCHK con- A21–A3 (not including A31–A22), The drive strength is weak for all K except BRDYC and BUSCHK e strength is strong. A31–A22 use l times.
CACHE	Cache Status	Output
	burst writeback cycles. A bur transfers associated with a lin Read data will not be cached read cycle, or if $\overline{\text{KEN}}$ is negat	d for cacheable read cycles or est access is always four 64-bit ne refill or a cache write back. if CACHE is negated during a red. KEN must be asserted during nsfer. If KEN is negated, a single
CLK	Clock	Input
	primary reference for all bus nals). It is used with the BF s	ck for the processor, and is the cycle timings (except for test sig- ignal to determine the internal ssor. The processor multiplies the BF.)
D/C	Data/Code	Output
	trol signals to determine bus	with $\overline{\text{ADS}}$, is used with other concycle and special cycle types. It is old. These cycles are defined in 27.

D63-D0	Data Lines	Input/Output
	driven during the second and cycles, with valid bytes indica	ated by <u>BE7–BE0</u> . They are sam- s asserted for read cycles. (See
DP7-DP0	Data Parity	Input/Output
		e even parity, one for each of the he eight data parity signals corre- e data bus as follows:
	■ DP7: D63–D56 ■ DP3	: D31–D24
	■ DP6: D55–D48 ■ DP2	: D23–D16
	■ DP5: D47–D40 ■ DP1	: D15–D8
	■ DP4: D39–D32 ■ DP0	: D7–D0
	not provide even parity when the assertion of PCHK. Byte data bytes. For systems that d	the data bus. Read cycles that do a the read data is driven result in enables are negated for invalid lo not use parity, DP7–DP0 should a pull-up resistor. (See PCHK and and t_{35} .)
EADS	Valid External Address	Input
	6	at a valid address is driven on the ycles. EADS has an internal pull-haracteristics t_{16a} and t_{17} .)
EWBE	External Write Buffer Empty	Input
	i	s the processor of pending buff- g the EWBE signal. The processor or modified cache lines until
FERR	Floating-Point Error	Output
	The FERR signal is asserted ing-point error. It is only floa	as a result of an unmasked float- ted during test.

FLUSH	Cache Flush	Input
	tance, FLUSH must meet the one or more clocks. Instruction dated. Any modified data in the back. A flush acknowledge cy notify external logic that the flushed. The FLUSH signal is	he internal caches. For accep- required setup and hold times for on and data caches will be invali- the data cache will be written vcle will follow the invalidation to internal caches have been also sampled at the falling edge he processor will operate in Tri-
FRCMC	Functional Redundancy Check Master/Checker	Input
	High configures the AMD-K5 tion, and sampling FRCMC L Checker operation. The proce col in Master mode. It floats a	pled at RESET. Sampling FRCMC processor for Master mode opera- ow configures the processor for essor follows standard bus proto- all outputs, with the exception of ode. In Checker mode, all signals
HIT	Hit	Output
	÷	nen an inquire cycle hits a valid a cache. This signal can be sam- ADS has been sampled as
нітм	Hit to a Modified Line	Output
	fied line in the data cache. The clock cycles after EADS has be	when an inquire cycle hits a modi- nis signal can be sampled two been sampled as asserted. HITM e modified line has been written
HLDA	Hold Acknowledge	Output
	The bus is floated when HLD	acknowledge a bus hold request. A is asserted. HLDA will be HOLD is negated. (See HOLD.)

HOLD	Bus Hold Request	Input
	this signal is asserted, the pro-	equest the processor bus. When ocessor will complete all pending assert the HLDA signal. This sig- locked cycles. (See Switching
IERR	Internal Error	Output
	dancy errors. Internal parity asserted for one clock, and the redundancy errors, when con-	ty errors and functional redun- errors will cause IERR to be ne processor will halt. Functional figured as a Checker, will cause econd clock after the mismatched
IGNNE	Ignore Numeric Error	Input
	CR0 to control response to nu unit. Numeric errors are hand set. When the NE bit is not set	conjunction with the NE bit in umeric errors in the floating-point dled internally when the NE bit is et, errors are reported if IGNNE is egated. (See Switching Character-
INIT	Initialize	Input
	signal is asserted. The INIT s nal except that the data buff isters, instruction cache, and	perform a self-test if the INIT sig-
INTR	Maskable Interrupt	Input
	number is transferred to the acknowledge cycle. To ensur- edged, the INTR signal must rupt acknowledge cycle is co	enerate interrupts. The interrupt processor during the interrupt e that interrupts are acknowl- be asserted until a locked inter- mplete. The INTR can be masked EFLAGS register. (See Switching

INV	Invalidation	Input
	the cache line for inquire cyclis sampled on the same clock	ignate the MESI protocol state of les that result in hits. This signal that EADS is asserted. Sampling ared state, while sampling INV state.
KEN	Cache Enable	Input
	$\overline{\text{KEN}}$ is negated. Returning $\overline{\text{K}}$ or $\overline{\text{NA}}$ of a cacheable cycle ca cache. Returning it negated t	ching. Caching is disabled when EN asserted with the first BRDY uses the line to be placed in the ransforms the cycle into a non- KEN has a small internal pull-up acteristics t_{18a} and t_{19} .)
LOCK	Bus Lock	Output
	asserted during the first clock after BRDY is sampled for the	to indicate locked cycles, and is c of a locked cycle. It is negated e last locked bus cycle. A HOLD dged during locked cycles, but ed during locked cycles.
M/ IO	Memory/ Input-Output	OUTPUT
	-	other control signals to determine re defined in Table 5 and Table 6 tive with $\overline{\text{ADS}}$.
NA	Next Address	Input
	pipelined cycle. NA does not LOCK is asserted, during writ no pending internal cycles. Fi	memory is prepared to accept a generate pipelined cycles when teback cycles, or when there are urthermore, locked or writeback and WB/WT are sampled when chever comes first.
NMI	Non-maskable Interrupt	Input
		erates a non-maskable interrupt. sensitive. The NMI signal must be k before its rising edge.

PCD	Page Cache Disable	Output
	contents of the PCD bit in CR table entry. PCD reflects the non-paged cycles occur. In Re	heability status by reporting the 3, the page directory, or the page state of the PCD bit in CR3 if al mode or Protected mode when cts the state of the CD bit in CR0.
РСНК	Parity Status	Output
	data read cycles. It may be san	to indicate a data parity error for mpled for parity status on the sec- oled as asserted. Except during ated.
PEN	Parity Enable	Input
	control signals of the cycle to check registers. The MCE bit	ty error, causes the address and be latched into the machine in CR4, if set, will cause a vector on before another instruction is
PRDY	Probe Ready	Output
	The processor asserts PRDY t assertion of R/S or execution instruction, USEHDT, and to into the Hardware Debug Too	indicate the processor's entry
PWT	Page Write-Through	Output
	contents of the PWT bit in CR table entry. The PWT signal re CR3 when non-paged cycles o	teback status by reporting the 3, the page directory, or the page eflects the state of the PWT bit in ccur or paging is disabled. In e, when paging is disabled, PWT
RESET	Reset	Input
	The processor cannot begin ex V_{CC} , BF, and CLK have stabil	e FLUSH, INIT, and FRCMC sig- f RESET. (See FLUSH, INIT,

R/S	Run/STOP	Input
	mal execution. A falling-edge next instruction boundary. A	ge-sensitive interrupt to stop nor- transition halts execution at the rising-edge transition, which is asserted, resumes execution.
SCYC	Split Cycle	Output
		hen LOCK is asserted. This signal cycles will be locked together for
SMI	System Management Interrupt	Input
	management interrupt. Asser	equest a non-maskable system ting this signal will cause the pro- cution and enter System Manage- t instruction boundary.
SMIACT	SMI Active	Output
	SMIACT is asserted when the	processor is operating in SMM.
STPCLK	Stop Clock	Input
	current instruction and issue	ses the processor to complete the a stop grant bus cycle. Once the ssor stops the clock, retaining the les.
тск	Test Clock	Input
	TCK is a test clock signal. It c boundary scan interface.	conforms to the IEEE-1149.1
TDI	Test Data Input	Input
		at for test data and TAP instruc- a are sampled on the rising edge
TDO	Test Data Output	Output
	-	put for test data and TAP instruc- falling edge of the TCK signal.

18522F/0-Jan1997

TMS	Test Mode Select	Input
	0	ect the TAP Test modes. This sig- dge of the TCK. TMS has an inter-
TRST	Test Reset	Input
	Asserting TRST initializes the	e TAP controller.
W/R	Write/Read	Output
	bus cycles and special cycles.	ther control signals to distinguish These cycles are defined in Table $\overline{\mathbf{x}}$ is driven active with $\overline{\mathbf{ADS}}$, and old.
WB/WT	Writeback/Writethrough	Input
	of a data line during cache lin High, the cache line will be lo	thes the MESI cache protocol state the fills. When the signal is driven aded in the exclusive state. When cache line will be loaded in the

Table 1. Input Pins

Name	Туре	Note	Name	Туре	Note
A20M	Asynchronous	Note 1	IGNNE	Asynchronous	
AHOLD	Synchronous		INIT	Asynchronous	
BF	Synchronous	Note 2	INTR	Asynchronous	
BOFF	Synchronous		INV	Synchronous	Note 5
BRDY	Synchronous		KEN	Synchronous	Note 6
BRDYC	Synchronous		NA	Synchronous	
BUSCHK	Synchronous	Note 3	NMI	Asynchronous	

Notes:

1. A20M may change during RESET or during a serializing event like an I/O write. A state change at other times will result in incorrect address generation on subsequent memory cycles.

2. BF and \overline{FRCMC} are normally connected to V_{CC} or V_{SS} by a jumper. For correct operation, any change on these signals should be followed by a RESET.

3. BUSCHK is sampled in every clock. Any asserted sample is remembered and takes effect on the same clock as the last BRDY.

4. These are sampled in the same clock as BRDY.

5. This is sampled in the same clock as EADS.

6. These are sampled with the first BRDY or NA and must meet setup to every clock

Name	Туре	Note	Name	Туре	Note
CLK	Clock		PEN	Synchronous	Note 4
EADS	Synchronous		RESET	Asynchronous	
EWBE	Synchronous	Note 4	R/S	Asynchronous	
FLUSH	Asynchronous		SMI	Asynchronous	
FRCMC	Asynchronous	Note 2	STPCLK	Asynchronous	
HOLD	Synchronous		WB/WT	Synchronous	Note 6

Table 1. Input Pins (continued)

Notes:

1. A20M may change during RESET or during a serializing event like an I/O write. A state change at other times will result in incorrect address generation on subsequent memory cycles.

2. BF and \overline{FRCMC} are normally connected to V_{CC} or V_{SS} by a jumper. For correct operation, any change on these signals should be followed by a RESET.

3. BUSCHK is sampled in every clock. Any asserted sample is remembered and takes effect on the same clock as the last BRDY.

4. These are sampled in the same clock as BRDY.

5. This is sampled in the same clock as EADS.

6. These are sampled with the first BRDY or NA and must meet setup to every clock

Table 2. Output Pins

Name	Floated At (Note 1)	Name	Floated At (Note 1)		
A4-A3	Bus Hold, Address Hold, BOFF	HLDA	Always Driven		
ADS	Bus Hold, BOFF	IERR	Always Driven		
ADSC	Bus Hold, BOFF	LOCK	Bus Hold, BOFF		
APCHK	Always Driven	M/IO	Bus Hold, BOFF		
BE7-BEO	Bus Hold, BOFF	PCD	Bus Hold, BOFF		
BREQ	Always Driven	PCHK	Always Driven		
CACHE	Bus Hold, BOFF	PRDY	Always Driven		
D/C	Bus Hold, BOFF	PWT	Bus Hold, BOFF		
FERR	Always Driven	SCYC	LOCK not asserted, Bus Hold, BOFF		
HIT	Always Driven	SMIACT	Always Driven		
HITM	Always Driven	W/R	Bus Hold, BOFF		
Notes:			•		

1. All outputs float during Tri-State test mode.

18522F/0-Jan1997

Table 3. Input/Output Pins

Name	When Floated		
A31-A5	Bus Hold, Address Hold, BOFF		
AP	Bus Hold, Address Hold, BOFF		
D63-D0	Bus Hold, BOFF		
DP7-DP0	Bus Hold, BOFF		

Table 4. Test Pins

Name	Туре	Note
TCK	Input	
TDI	Input	Sampled on the rising edge of TCK.
TDO	Output	Driven on the falling edge of TCK.
TMS	Input	Sampled on the rising edge of TCK.
TRST	Input	

Table 5. Bus Cycle Definition

Bus Cycle Initiated	Generated by CPU				Generated by System
	M/ IO	D/C	W/R	CACHE	KEN
Code Read, Instruction Cache Line Fill	1	0	0	0	0
Code Read, Noncacheable	1	0	0	1	X
Code Read, Noncacheable	1	0	0	х	1
Encoding for Special Cycle	0	0	1	1	X
Interrupt Acknowledge	0	0	0	1	X
I/O Read, Noncacheable	0	1	0	1	X
I/O Write, Noncacheable	0	1	1	1	X
Memory Read, Data Cache Line Fill	1	1	0	0	0
Memory Read, Noncacheable	1	1	0	1	X
Memory Read, Noncacheable	1	1	0	х	1
Memory Write, Data Cache Writeback	1	1	1	0	X
Memory Write, Noncacheable	1	1	1	1	X
AMD-K5 Processor Data Sheet

Table 6.Special Cycles

Special Cycle	A 4	BE7	BE6	BE5	BE4	BE3	BE2	BE1	BEO	M/IO	D/C	W/R	CACHE	KEN
Branch Trace	0	1	1	0	1	1	1	1	1	0	0	1	1	X
Flush (INVD, WBINVD execution)	0	1	1	1	1	1	1	0	1	0	0	1	1	x
Flush Acknowledge (FLUSH asserted Low)	0	1	1	1	0	1	1	1	1	0	0	1	1	x
Halt	0	1	1	1	1	1	0	1	1	0	0	1	1	X
Shutdown	0	1	1	1	1	1	1	1	0	0	0	1	1	X
Stop Clock Acknowledge	1	1	1	1	1	1	0	1	1	0	0	1	1	x
Writeback (WBINVD execution)	0	1	1	1	1	0	1	1	1	0	0	1	1	x

8 **Processor Operation**

8.1 Power-On Configuration

The AMD-K5 processor signals at reset are listed in Table 7.

Output	State at Reset	Output	State at Reset
Address	Float	FERR	1
ADS	1	HIT	1
АРСНК	1	НІТМ	1
BE7-BE0	Undefined	HLDA	0
BRDY	1	LOCK	1
BRDYC	1	M/IO	Undefined
BREQ	0	PCD	Undefined
CACHE	Undefined	РСНК	1
D/C	Undefined	PRDY	0
Data	Float	PWT	Undefined
DP7-DP0	Float	W/R	Undefined

Table 7.Signals at Reset

8.2 Clock State

The AMD-K5 processor uses the Enhanced 486 protocol to control the clock. This protocol provides for stopping the clock from hardware using the <u>STPCLK</u> control signal, or from software using the HALT instruction. During the clock-stopped states, cache coherency is maintained by temporarily enabling the clock for snoop processing and recognizing HOLD/HLDA arbitration sequences.

A state transition diagram for a stop clock state machine implementing five clocking states—the Enhanced 486 protocol—is illustrated in Figure 3 on page 29.

Figure 3. State Transition Diagram for Stop Clock State Machine

18522F/0—Jan1997

Normal Execution State	In this state, the AMD-K5 processor operates at full speed. All clocks are running.				
Halt/Auto-Power- Down State	In this state, most internal clocks are stopped. The Phase Lock Loop (PLL) is operating and certain bus interface components are clocked. Instruction execution is disabled. This aids in timely detection of inquire cycles and HOLD/HLDA sequences, while greatly reducing power consumption.				
	The Halt/Auto-Power-Down State is entered from normal exe- cution state by executing the HALT instruction in Real mode or Protected mode. The clock state will return to normal execu- tion state when an interrupt, non-maskable interrupt, system management interrupt, power-on reset, or soft reset is detected (INTR, NMI, SMI, RESET, or INIT, respectively). The clock state may temporarily transition from Halt/Auto-Power-Down State to Stop Clock Snoop State to process an inquire cycle or to Stop Grant State in response to a STPCLK. In these cases, the clock state will return to Halt/Auto-Power-Down State and wait for one of the interrupt conditions when the secondary condition is removed.				
Stop Grant State	In this state, most internal clocks are stopped. The PLL is oper- ating and certain bus interface components are clocked. Instruction execution is disabled. This allows timely detection of inquire cycles and HOLD/HLDA sequences, while greatly reducing power consumption.				
	The Stop Grant State is entered from Normal Execution State or Halt/Auto-Power-Down State by asserting the STPCLK pin. When STPCLK is sampled as asserted, the current instruction is completed, all processing is stopped, a Stop Grant bus cycle is generated, and the clock is shut down. The clock state will return to its previous state when STPCLK is negated. Once asserted, STPCLK must not be negated until the Stop Grant Acknowledge special cycle is seen. The clock state may tempo- rarily transition from Stop Grant State to Stop Clock Snoop State to process an inquire cycle, or to Stop Clock State to pro- cess a Stop Clock request. In these cases, the clock state will return to Stop Grant State when the secondary condition is removed.				
	STPCLK is treated as the lowest priority external interrupt. If a higher priority external interrupt exists (power-on reset, soft reset, flush, system management interrupt, non-maskable				

PRELIMINARY INFORMAT	
18522F/0—Jan1997	AMD-K5 Processor Data Sheet
	interrupt, or maskable interrupt), recognition of STPCLK is delayed until the interrupt processing is complete. However, assertion of a higher priority interrupt will not cause the Stop Grant State to be exited.
Stop Clock Snoop State	In this state, all internal clocks are running and an inquire cycle is being performed. Instruction execution is disabled and HOLD/HLDA operate normally.
	Stop Clock Snoop State is entered from Halt/Auto-Power-Down State or Stop Grant State when an inquire cycle is detected. This is a temporary state, lasting only until the coherency oper- ation (snoop/miss, snoop/invalidate or snoop/writeback) is com- plete. The clock state will then return to the previous state. (See Figure 24 on page 72.)
Stop Clock State	In this state, all internal clocks are stopped, the PLL is shut down, and all execution is disabled. If HOLD is asserted while the clock is running, HLDA will be generated and the buses floated. If HOLD is negated, HLDA will be negated and the buses will be driven to their previous state without regard to whether the clock is running. This is the lowest power state.
	The Stop Clock State is entered from the Stop Grant State by stopping the CLK. The clock state returns to Stop Grant State when the CLK is again started. The time required to restart the CLK and enter the Stop Clock State is approximately 1000 clock cycles.
8.3 Cache	e Protocol

Internal Cache

The AMD-K5 processor has a 16-Kbyte dual-tagged instruction cache with 32-byte lines and an 8-Kbyte dual-tagged data cache of 32-byte lines. Cache lines refill in four transfer burst cycles from memory and align along 32-byte lines.

The operating mode is software-controlled, and on-chip caches must be enabled by software. This is accomplished by clearing or setting the CD and NW bits of CR0.

Any area of memory can be cached. Software can prevent areas of memory from being cached by setting the PCD bit in the corresponding page table entry. Hardware can prevent areas of memory from being cached through the KEN pin.

PRELIMINARY INFORMATION AMD-K5 Processor Data Sheet 18522F/0-Jan1997 The AMD-K5 processor uses the MESI protocol—2 bits per cache line—in its data cache to ensure consistency in multiprocessing systems. The physical tags of both the instruction and data cache are accessed and compared during each inquire cycle to maintain a consistent copy of data. **Cacheability** The PCD and PWT bits in the page directory and page-table entry control caching on a page-by-page basis. The PCD and PWT bits manage page caching and drive processor PCD and PWT output pins. PCD affects the cacheability of pages in the internal cache. The PWT bit determines whether the writethrough or writeback policy is used for this particular page. **Copy-Back Buffers** A one-line copy-back buffer is employed within the AMD-K5 processor to temporarily hold a modified entry being replaced in the data cache. The replaced line is stored in the copy-back buffer at the same time the read request for the replacement line is sent externally. Following completion of the read access, the modified line in the copy-back buffer is written back to memory. The copy-back buffer is snooped during inquire cycles. A requested-word-first protocol is implemented by the AMD-K5 processor. Following receipt of the first data item, execution continues while the following three entries of the line are being fetched. The line is not marked valid until the last entry is stored in the cache.

8.4 Data Cache Coherency

Throughout this discussion, the MESI states may be abbreviated as follows:

M—Modified Exclusive State E—Exclusive State S—Shared State I—Invalid State

Cache Invalidation FLUSH writes back all modified lines and then invalidates all cache lines and generates a Flush Acknowledge special cycle to instruct the L2 cache to invalidate all lines.

The INVD instruction invalidates the entire cache and generates a Flush special cycle to instruct the L2 cache to invalidate all lines.

The WBINVD instruction writes back and invalidates all cache lines, generates a Write Back special cycle to instruct the L2 cache to write back all lines, and then generates a Flush special cycle to instruct the L2 cache to invalidate all lines.

Read Cycles The cache response to processor-generated reads is described in Table 8. Processor reads that hit in the data cache require no external data cycle. The data is provided by the cache. Processor reads that miss in the data cache generate a read-allocate operation, including an external bus cycle. The action of the cache is dependent on the system response to that cycle. The cache state transition for read cycles is also described in Table 8.

A read allocate begins by selecting the way in the cache to be replaced at random.

State	CACHE	KEN	WB/WT	PWT	Next State	Note
М	Х	Х	Х	Х	М	1
E	Х	Х	Х	X	E	1
S	Х	Х	Х	Х	S	1
I	0	0	1	0	E	2
I	0	0	0	Х	S	3
I	1	х	Х	Х	I	4
I	Х	1	Х	X	I	4, 5

 Table 8.
 Processor Reads to Data Cache

Notes:

- 1. A read cycle hit: Data is provided directly from the cache.
- 2. A read cycle miss: Selects the line for replacement; writes back the replaced line if it is modified (otherwise, discards the line). The line is cached as writeback.
- *3.* A read cycle miss: Selects the line for replacement; writes back the replaced line if it is modified (otherwise discards the line). The line is cached as writethrough.
- 4. A read cycle miss: The line is not cacheable.
- 5. Within the cache directory, the Invalid state indicates that the cache entry contains no valid data. For purposes of hit/miss determination, the Invalid state indicates that the referenced cache line is not present in the cache. When a line is selected for replacement, all invalid ways are selected before any valid data is displaced from the cache.

If the selected line is *not* modified, the data is discarded and the read of the new line is begun. When the first quad word of

	PRELIMINARY INFORMATION
AMD-K5 Processor Data Sl	heet 18522F/0-Jan1997
	the new line is received, it is forwarded to the execution units. When all four quad words are available, they are copied to the cache line at the selected way and the cache status is updated.
	If the selected line is modified, the read of the new line is begun at the same time the contents of the replaced line are copied to the copy-back buffer. When the first quad word of the new line is received, it is forwarded to the execution units. Execution continues concurrently as the rest of the block is received. When all four quad words are available, they are cop- ied to the cache line at the selected way and the cache status is updated. Concurrently, the contents of the replaced line are written to memory.
Write Cycles	Processor writes that hit in modified or exclusive lines in the data cache require no external data cycle. The data is updated in the cache. Processor writes that hit shared lines of the data cache update the data cache and memory. The status returned with the writethrough bus cycle determines the final state of the line.
	If write allocate is enabled in the AMD-K5 processor, processor writes that miss in the data cache generate an external data cache read cycle followed by a write hit. If write allocate is not enabled in the AMD-K5 processor, write misses generate an external write cycle only.
Write Allocate	Write allocate is an operating mode of the AMD-K5 processor that causes cache write misses to either proceed as normal write misses or to be converted to data cache line fills followed by cache write hits. The write allocate feature provides improved performance on repeat accesses to write-allocated data cache lines. The load/store unit in the processor deter- mines whether each cache write miss is write-allocatable by whether it falls in or out of the ranges specified in the memory range registers.
	For details on the implementation of write allocate, refer to the <i>AMD-K5 Processor Software Development Guide</i> , order# 20007.
	Before the write cycle occurs for a write miss with write allo- cate enabled, an external data cache read cycle occurs that fol- lows the normal rules for read allocate, and the intermediate state of the filled data cache line depends on the result of the

read cycle as shown in Table 8. The final state of the data cache line is determined as shown in Table 9 by the transition from the intermediate read state (M, E, S, or I) to the final state (M, E, S, or I) after the write hit to the cache line.

Note: In write allocate mode, replaced data cache lines are handled in the same way as during read allocate.

State	CACHE	KEN	WB/WT	PWT	Next State	Note
Μ	Х	Х	Х	Х	М	1
Е	Х	Х	Х	Х	М	2
S	0	0	1	0	Е	3
S	0	0	0	Х	S	3
3	0	0	Х	1	5	5
Ι	Х	Х	Х	Х	Ι	4
Notes:						

Table 9. Writes to Data Cache

1. A write hit to modified line: writes data to the cache.

2. A write hit to exclusive line: writes data to the cache.

3. A write hit to shared line: writes data to the cache and memory; invalidates any shared copy in the other cache.

4. If write allocate mode is not enabled, an invalid line always remains invalid. If write allocate mode is enabled, the intermediate state of the filled data cache line depends on the result of the read cycle as shown in Table 8, and the final state of the data cache line is determined by the intermediate state as applied to this table.

External Inquire Cycles

The processor supports inquire cycles for both instruction and data caches to maintain cache coherency. Inquire cycles are initiated with the assertion of EADS and result in a snoop to both the instruction and data caches. The snoop operation is performed using the physical tag arrays that are maintained for this purpose. The snoop operation runs concurrently with internal processor operation. The results of the snoop operation are indicated on the HIT and HITM pins. The results of the inquire cycles are described in Table 10. (See Figure 25 on page 72 and Figure 26 on page 73.)

	State	INV	Next State	Note			
		0	S	Snoop hit to modified line:			
	М	1	I	Assert HIT and HITM, Write back modified data to memory, Negate HITM, Transition cache state when complete.			
	E	0	S	Snoop hit to unmodified line:			
	L	1	I	Assert HIT, Transition cache state			
	S	0	S	Snoop hit to unmodified line:			
	5	1	I	Assert HIT, Transition cache state			
	I	Х	I	Snoop miss: Negate HIT.			
Instruction Cache Coherency	The instruction cache protocol is a subset of the data cache protocol where only Invalid and Shared states are imple- mented. Read hits provide the data to the processor. Read misses result in a read allocate operation that loads the line into the cache and the data is provided to the processor. The first data is provided as soon as it arrives from memory. Write cycles are never generated to the instruction cache, but						
Self-Modifying Code and the Cache	cache l A snoo modify tions in at the i guaran	ine be p write ing cou the in instruc tees e	ing invalid hit to the de. The cac astruction p tion follow xact execut	in the instruction cache, resulting in the dated. e instruction cache is treated as self- ache line is invalidated and all instruc- pipeline are flushed. Execution restart wing the one causing the snoop. This ution of cacheable self-modifying code. e, a jump should be placed between the			

modification of the code and its execution.

 Table 10. Inquire Cycles to Data Cache

Т

8.5 External Bus Description

The AMD-K5 processor external bus is identical to the P54C 64-bit bus, and will run at 1.5x or 2.0x multiples of the external bus frequency. The bus state transitions are illustrated in Figure 4.

AMD-K5 Processor Data Sheet

Figure 4. Bus State Transitions

Memory Organization

Physical memory address space ranges from 0000_0000h to FFFF_FFFF. Memory space is organized in 64-bit sections. Each 64-bit section has 8 bytes at consecutive memory addresses. The first address of each group is evenly divisible by 8, and each group is addressed by A31-A3. Since the protocol does not implement A2-A0 when interfacing to 32-bit, 16-bit, or 8-bit memories, the lower portions of the address must be determined by decoding the eight byte-enable signals. The address space of I/O begins at 0000_0000h and ends at 0000_FFFFh. I/O space is organized as a sequence of 8-bit quantities.

Memory objects can be 8, 16, 32, or 64 bits. I/O objects are 8, 16, or 32 bits. Both appear as fields on the 64-bit data bus.

Data is transferred on the byte lines corresponding to the address. 16-bit or 32-bit objects crossing a 32-bit boundary, or 64-bit objects crossing a 64-bit boundary, are misaligned and will require multiple cycles to transfer.

The byte-enable signals and the data lines correspond in the following manner:

- **BE7**: D63–D56
 - BE3: D31–D24
 BE2: D23–D16
- BE6: D55–D48 ■ BE5: D47–D40
- <u>BE1</u>: D15–D8
- BE5: D47–D40 ■ BE4: D39–D32
- <u>BE0</u>: D7–D0

8.6 Bus Cycles

Bus cycles encode normal read and write accesses to code or data space and handle special events such as interrupt acknowledge. The type of cycle is determined by the \overline{CACHE} , D/C, M/IO, and W/R outputs. The processor encodes information with the byte-enable signals for special bus cycles. (See Table 6 on page 27.)

If M/IO is asserted Low or PCD is driven High in any cycle, CACHE is not asserted. The processor uses a burst transfer of four 64-bit accesses, corresponding to the 32-byte line size of the caches, for bus cycles involving cache line movement.

Table 11 shows the order of burst accesses expected by the external protocol.

•			
If 1st Address = 0	then 8	then 10	then 18
If 1st Address = 8	then 0	then 18	then 10
If 1st Address = 10	then 18	then 0	then 8
If 1st Address = 18	then 10	then 8	then 0

Table 11. Addressing of the AMD-K5 Processor Burst Order

Single Transfer Cycles Single transfer cycles are initiated with the assertion of $\overline{\text{ADS}}$ while negating the cache signal. The cycle is completed when the BRDY signal is asserted by the external system. A single transfer cycle requires a minimum of two external clock cycles.

Timing for a single write transfer cycle is illustrated in Figure 5. (See Figures 28, 29, 30, and 31 beginning on page 74.)

Figure 5. Single Writes (Zero Wait States)

Burst Read Cycles	The size of a burst read access is always 32 bytes sent as four 64-bit transfers. A burst read access is indicated by the assertion of the \overline{CACHE} signal, but if the external memory system subsequently does not assert \overline{KEN} , the access will be converted to a single access. Data is sampled during the same clock that BRDY is asserted. Wait states can be added by negating BRDY.				
	The initial address and the byte enables are not changed after the initial access of a burst. External hardware must be config- ured to determine the subsequent addresses of the burst in accordance with the ordering specified in Table 11. PCHK is driven two clocks following an associated data transfer to the processor to indicate a data parity error. (See Figure 31 on page 75 and Figure 32 on page 76.)				
Burst Write Cycles	Like a burst read access, a burst write access is indicated by the assertion of the CACHE pin. Burst write cycles (an exam- ple of which is given in Figure 6) only occur for writebacks of modified lines in the processor data cache. These transfers are always four accesses. The address order for writeback cycles is always 0, 8, 10, 18. All other accesses, including unaligned accesses that cross 64-bit aligned boundaries, are sent as single accesses or a series of single accesses. Negating BRDY until				

the external memory system is ready to receive data adds additional wait states, if they are needed. The processor ceases driving the current data element upon receiving the BRDY signal. (See Figure 33 on page 76.)

Figure 6. Burst Write (One Wait State)

The external signal KEN is ignored for burst write cycles since these are previously cached lines. Writebacks can occur as a result of the following:

- Replacement of a data cache entry that is modified
- An inquire cycle that hits in a modified line
- Assertion of the WBINVD instruction
- Assertion of the external signal FLUSH

Only one line is sent for inquire or replacement accesses. Assertion of FLUSH or execution of WBINVD results in the modified lines in the entire cache being written back as a series of single line writes. An inquire or replacement access results in a writeback of only one line.

BOFF or AHOLD/ BOFF or AHOLD can be asserted during a burst transfer. The processor will abort a cycle if **BOFF** is asserted in the middle of the cycle. When \overline{BOFF} is negated, the cycle is restarted from the beginning.

> If AHOLD is asserted, the processor responds by floating the address pins in the next clock cycle. The system can then drive the address and assert EADS to generate an inquire cycle

HOLD/HLDA During Burst Transfers

while the data cycle continues. Assertion of HOLD can occur at any time, but HLDA will not be asserted until pending cycles are completed.

To avoid excessive power drain, AHOLD should not be negated when \overline{BRDY} is asserted during a write cycle, and when \overline{ADS} is asserted at the beginning of a writeback cycle.

Use of BOFF BOFF causes the processor to float its local bus on the next clock cycle and to terminate the current bus cycle (see Figure 7). BOFF is sampled every clock cycle. If both BOFF and BRDY are asserted during the same clock cycle, BRDY is ignored and the associated data transfer must be re-initiated. If BOFF is asserted while ADS is asserted, the processor floats ADS, even though it is in its asserted state. This situation must not be interpreted as the start of a cycle by the system.

Figure 7. **BOFF** Timing

 $\overline{\text{KEN}}$ must be reasserted by the system to enable caching on any cycle that was previously aborted by BOFF. If a burst cycle is aborted by the assertion of BOFF in the middle of the access, the initial state of $\overline{\text{KEN}}$ when the access began will be used when the cycle is restarted. KEN should be reasserted if caching is enabled for the cycle.

Any cycles aborted due to $\overline{\text{BOFF}}$ are recorded behind a pending writeback cycle that is scheduled in response to a snoop hit to a modified line. For example, if a cache line fill is aborted due to $\overline{\text{BOFF}}$, and an external cycle hits a modified line, the cache line fill is completed after the modified line is written back.

Locked Operations A locked cycle, illustrated in Figure 8, uses the LOCK pin to indicate that the processor is performing a read-modify-write, and that both the read operation and write operation must be allowed to complete as a combined operation. (See Figure 36, 40, and 42 beginning on page 78.)

Figure 8. Locked Cycles

	When the program generates a locked access, the processor first looks in the data cache. If the locked object is modified in the cache, it is written back to memory and invalidated. It is then accessed using a locked memory cycle. Since combined operations can access misaligned objects, locked operations can result in multiple writebacks, multiple locked reads, and multiple locked writes. When unaligned locked operations are performed, SCYC is asserted
LOCK during HOLD and BOFF	An assertion of HOLD after a locked operation has initiated is ignored by the processor until after the entire locked opera- tion has completed. Following completion, HLDA is asserted.
	If $BOFF$ is asserted during the read portion of a locked access, LOCK will float and the entire locked access will be restarted after $BOFF$ is negated. If $BOFF$ is asserted during the write portion of a locked access, LOCK will float and only the write will be restarted after $BOFF$ is negated.
LOCK Operations during Inquire Cycles	Inquire cycles can be performed as usual during locked opera- tions. Inquire cycles during atomic locked read and write oper- ations are only allowed from the external inquire. No writebacks will be seen because the processor has already evicted the modified line.

	The LOCK pin is asserted for the duration of locked accesses. Note also that at least one dead cycle will always be present between consecutive locked atomic read-modify-write opera- tions. This will be noted by the negating of the LOCK pin for a least one clock period between consecutive locked accesses.					
Locked Operation to Cached Lines	When a locked operation to a cached line occurs, the processor invalidates the line and determines whether the line is modi- fied. If the line is modified, it is written back to memory. LOCK is not asserted during the writeback operation. LOCK is then asserted and the locked read-modify-write operations are per- formed. The line is not cached during these operations. SCYC is asserted for misaligned locked transfers.					
Bus Hold	HOLD, illustrated in Figure 9 on page 44, is used to inform the processor that another bus device desires to be bus master. If HOLD is asserted, the processor completes all pending bus cycles and acknowledges release of the bus by asserting HLDA. When the bus is released, the processor floats the fol- lowing outputs:					
	■ A31–A3 ■	DP7–DP0				
	■ ADS ■	LOCK				
	■ AP ■	M/IO				
	■ BE7–BE3 ■	PCD				
	■ CACHE ■	PWT				
	■ D/ C ■	SCYC				
	■ D63–D0 ■	W/R				

These are the same outputs that are floated when $\overline{\text{BOFF}}$ is asserted. These outputs provide status information, but do not participate in the external memory system access.

AMD-K5 Processor Data Sheet

18522F/0-Jan1997

Figure 9. HOLD/HLDA Cycle

HLDA is negated one clock after HOLD is negated. Hold is not recognized during locked cycles, but is recognized during BOFF. An external master must monitor BOFF as well as HLDA to determine bus ownership.

Bus Error Support using PCHK and APCHK	PCHK and APCHK are used for checking data parity and address parity. Data parity is driven into the processor on pins DP7–DP0 during reads, and is driven out of the same pins dur- ing writes. The processor indicates a data parity error by asserting PCHK two clocks after the validation of parity by BRDY.
	The AP signal provides even parity for the address bus. The processor indicates an inquire parity error by asserting APCHK two clock cycles after the address is validated by EADS.
Special Bus Cycles	Several bus cycles are supported by the AMD-K5 processor, as illustrated in Table 6 on page 27. The byte enables are encoded to define the type of cycle. Figure 39 on page 79 is a timing diagram of a generic special bus cycle.
Flush Operations	The FLUSH input is used by external logic to cause the processor to write back any modified lines in the data cache, and to invalidate all entries in both the data cache and the instruction cache. A special cycle is executed by the processor to indicate completion of the FLUSH operation. The FLUSH input is treated as a high-priority asynchronous interrupt, and is acknowledged only on instruction boundaries.

Interrupt Acknowledge An interrupt acknowledge cycle, shown in Figure 10 on page 45, is a special cycle generated to acknowledge receipt of an interrupt at the INTR input. The processor generates an interrupt acknowledge cycle in a locked pair of transactions. The first transaction acknowledges the interrupt to the external system. The second transaction provides the interrupt vector to the processor. An idle cycle is generated between the transactions. An interrupt acknowledge cycle is completed upon assertion of BRDY. (See Figure 40.)

Inquire Cycles An inquire cycle is employed to allow the system to determine whether a particular line is cached and modified. After obtaining ownership of the address bus using BOFF, AHOLD, or HOLD, the system drives the physical address of the line on A31–A5, and marks the address valid with EADS.

If the processor detects a hit in its instruction or data cache, the processor asserts the HIT signal two clock cycles after the assertion of EADS (see Figure 11 on page 46). If the line is modified (see Figure 12 on page 46), the processor asserts the HITM signal two clocks after the assertion of EADS, and writes back the modified line. EADS is ignored during the writeback of the modified line. Initiation of the writeback of the modified line will occur no earlier than two clock cycles after HITM is asserted.

18522F/0—Jan1997

AMD-K5 Processor Data Sheet

Figure 11. Inquire Cycle (Hit to a Non-Modified Line)

Figure 12. Inquire Cycle (Hit to a Modified Line)

The HIT signal retains its state between inquire cycles. The HITM signal remains asserted until the writeback of the modified line completes. Following completion of the writeback operation, the processor negates HITM.

PipeliningThe following pipeline cycles are supported by AMD-K5 processors model 1 and model 2 with stepping level of 4 and above:

- Cacheable instruction cache cycle into a cacheable instruction cache cycle
- Cacheable instruction cache cycle into a cacheable data cache cycle
- Cacheable instruction cache cycle into a non-cacheable data cache cycle (could be I/O)
- Cacheable instruction cache cycle into a non-cacheable instruction cache cycle
- Non-cacheable instruction cache cycle into a cacheable data cache cycle
- Non-cacheable instruction cache cycle into a non-cacheable data cache cycle
- Cacheable data cache cycle into a cacheable instruction cache cycle
- Cacheable data cache cycle into a non-cacheable instruction cache cycle
- Non-cacheable data cache cycle into a cacheable instruction cache cycle
- Non-cacheable data cache cycle into a non-cacheable instruction cache cycle
- Write cycle (could be I/O) into a write cycle (could be I/O)
- Write cycle (could be I/O) into a cacheable instruction cache cycle
- Write cycle (could be I/O) into a non-cacheable instruction cache cycle
- Write cycle (could be I/O) into a cacheable data cache cycle
- Write cycle (could be I/O) into a non-cacheable data cache cycle

Pipelining is not supported for the following cycles:

- Non-cacheable instruction cache cycle into a non-cacheable instruction cache cycle
- Non-cacheable instruction cache cycle into a write cycle (could be I/O)
- Cacheable instruction cache cycle into a write cycle (could be I/O)
- Non-cacheable data cache cycle into a write cycle (could be I/O)
- Cacheable data cache cycle into a write cycle (could be I/O)
- Cacheable data cache cycle into a cacheable data cache cycle
- Cacheable data cache cycle into a non-cacheable data cache cycle
- Non-cacheable data cache cycle into a non-cacheable data cache cycle
- Non-cacheable data cache cycle into a cacheable data cache cycle

Pipelining Timing	The timing diagrams in Figure 13 and Figure 14 illustrate pipe-
Diagrams	lining.

Figure 13. Pipelined Cacheable Data Cache Cycle into a Cacheable Instruction Cache Cycle

PRELIMINARY INFORMATION

AMD-K5 Processor Data Sheet

18522F/0-Jan1997

Figure 14. Pipelined Write Cycle (Could be I/O) into a Write Cycle (Could be I/O)

18522F/0—Jan1997

8.7 System Management Mode

	System Management Mode (SMM) is a distinct processor mode—initiated by SMI—that allows the system designer to add software-controlled features that operate transparently to the operating system and application programs, such as power management. I/O Restart and Halt Auto-Restart are also pro- vided for transparent power management of I/O peripherals. The system designer may use the SMIACT signal to provide protection to the SMI handler code and CPU state information.
Processing System Management	When the processor receives an $\overline{\text{SMI}}$, normal operation will be interrupted in the following manner:
Interrupts	1. SMIACT is asserted, informing the system that it must enable the SMRAM.
	2. Once SMRAM is available, the processor saves its state beginning at 3FFFFh. The save area map is provided in Table 12 (given that the default SMIBASE is 30000h).
	3. Once the normal execution state is saved in SMRAM, the processor enters SMM.
	4. The processor will jump to SMRAM address 38000h to exe- cute the SMI handler, which will perform any required sys- tem management.
	5. When the Resume (RSM) instruction is received, the SMI handler restores the processor normal execution state from SRAM, negate the SMIACT signal, and resume execution.
System Management Interrupt	SMI is triggered on a clock falling edge. It is non-maskable and may be asserted asynchronously, but it will be recognized in the first cycle meeting set-up and hold times. To assure asynchronous recognition, SMI should be asserted for at least two clocks and negated for at least two clocks.
	SMI interrupts occur on instruction boundaries. SMI is not affected by the IF bit in the EFLAGS register. The SMI signal will be masked internally when the SMI is recognized until the RSM instruction is executed. SMI has a higher priority than NMI. It is not masked during an NMI. (See Figure 41 on page 80.)

18522F/0—Jan1997

Address	Contents	Address	Contents
FFFCh	CRO	FF74h	LDT Attribute
FFF8h	CR3	FF70h	LDT Base
FFF4h	EFLAGS	FF6Ch	LDT Limit
FFF0h	EIP	FF68h	GS Attributes
FFECh	EDI	FF64h	GS Base
FFE8h	ESI	FF60h	GS Limit
FFE4h	EBP	FF5Ch	FS Attributes
FFE0h	ESP	FF58h	FS Base
FFDCh	EBX	FF54h	FS Limit
FFD8h	EDX	FF50h	DS Attributes
FFD4h	ECX	FF4Ch	DS Base
FFD0h	EAX	FF48h	DS Limit
FFCCh	DR6	FF44h	SS Attributes
FFC8h	DR7	FF40h	SS Base
FFC4h	TR	FF3Ch	SS Limit
FFC0h	LDTR	FF38h	CS Attributes
FFBCh	GS	FF34h	CS Base
FFB8h	FS	FF30h	CS Limit
FFB4h	DS	FF2Ch	ES Attributes
FFB0h	SS	FF28h	ES Base
FFACh	CS	FF24h	ES Limit
FFA8h	ES	FF20h	
FFA4h	I/O Trap Word	FF1Ch	Reserved
FFA0h	Reserved	FF18h	
FF9Ch	I/O Trap EIP	FF14h	CR2
FF98h		FF10h	CR4
FF94h	Reserved	FF0Ch	I/O restart ESI
FF90h	IDT Base	FF08h	I/O restart ECX
FF8Ch	IDT Limit	FF04h	I/O restart EDI
FF88h	GDT Base	FF02h	Halt Restart
FF84h	GDT Limit	FF00h	I/O Trap Restart
FF80h	TR Attribute	FEFCh	SMM Rev ID
FF7Ch	TR Base	FEF8h	SMM Base Address
FF78h	TR Limit	FE00h-FEF4h	reserved

Table 12. SMM Save Area Map

Initial State Upon Entering SMM	Table 13 shows the initial state of the processor upon entering SMM.
	The default SMBASE value may be changed following reset to store the SMI handler code and CPU state information in a dif- ferent region of memory. If the SMBASE value is changed, the next entry to the SMI handler routine will occur relative to the new SMBASE value.

Table 13. Initial State Upon Entering SMM

Do eleter	Initial Contents						
Register	Selector	Base	Attributes	Limit			
CS	3000h	0003_0000h	16-bit, expand-up	4 Gbytes			
DS	0000h	0000_0000h	16-bit, expand-up	4 Gbytes			
ES	0000h	0000_0000h	16-bit, expand-up	4 Gbytes			
FS	0000h	0000_0000h	16-bit, expand-up	4 Gbytes			
GS	0000h	0000_0000h	16-bit, expand-up	4 Gbytes			
SS	0000h	0000_0000h	16-bit, expand-up	4 Gbytes			
General-Purpose		Unmodified					
EFLAGS		0000_0002h					
EIP		0000_8000h					
CRO	Bits	Bits 0, 2, 3, 31 cleared (PE, EM, TS, PG). Others are unmodified.					
CR4		0000_0000h					
GDTR			Jnmodified				
LDTR		l	Jnmodified				
IDTR		l	Jnmodified				
TR		l	Jnmodified				
DR7		0	000_0400h				
DR6		Undefined					

I/O Instruction Restart The SMI handler may allow the RSM instruction to restart the interrupted I/O instruction by using the I/O instruction restart word. If the value contained by the I/O instruction restart word is 0FFh, the processor re-executes the I/O instruction trapped by SMI.

The I/O instruction is not re-executed if the I/O restart word contains the value 000h. The value 000h is written in the I/O restart word when entering SMM. Processor operation is

unpredictable if the I/O instruction restart word is written when the processor has not generated an \overline{SMI} on an I/O instruction boundary. The \overline{SMI} handler for the second request must not set the I/O instruction restart word if the system executes back-to-back \overline{SMI} requests.

Halt Auto RestartOn entry to the SMI routine, the Halt Auto Restart word
(FF02h) has the value 0001h if the processor was halted when
the SMI occurred. Otherwise, it has a value of 0000h.

If the value is 0001h, the \overline{SMI} routine may cause a return to the HALT instruction by returning without modifying the Halt Auto Restart word. It may cause a return to the instruction after the halt instruction by clearing the Halt Auto Restart word.

8.8 Am486[®] and AMD-K5 Processor Bus Differences

The AMD-K5 processor:

- Data bus is 64 bits, versus the Am486 processor's 32 bits
- Has eight byte-enables and eight data parity pins
- Does not support non-cacheable burst cycles
- Supports FLUSH as an edge-triggered input
- Supports a writeback cache protocol using MESI (The new CACHE, HIT, HITM, WB/WT, and INV pins are defined to support this protocol.)
- Maintains the state of the internal caches and FPU, while performing the reset function with the INIT pin
- Supports SMM with the input signal SMI and the output signal SMIACT
- Does not allow invalidations every clock or while driving the address bus
- Supports parity checking on addresses and data
- Does not support dynamic bus sizing. This eliminates the need for the Am486 processor signals BS8 and BS16
- Includes the SCYC signal to indicate a split cycle during locked operations. A split cycle crosses a cache line boundary during an atomic operation due to a misaligned reference

- Adds the EWBE input to indicate an empty external write buffer (This supports strong store ordering between the processor and the external memory system. All writes to exclusive/modified lines are held until EWBE is asserted to indicate that no writes are pending in the external memory system.)
- On read-modify-write cycles, guarantees an idle cycle between consecutive locked accesses
- Implements non-cacheable code prefetches as eight bytes instead of 16 bytes (Each is treated as a single 8-byte access when non-cacheable.)
- Supports JTAG pins TCK, TDI, TDO, TMS, and TRST
- Supports external breakpoints with the pins BP3–BP0
- Requires some writebacks and line fills to be run as burst cycles (With no BLAST pin, burst writebacks cannot be terminated in the middle of the burst.)
- Drives burst length information with the CACHE pin (This pin always indicates a fixed burst length of four 64-bit accesses. The corresponding pin is BLAST on the Am486 processor—where the burst is typically four 32-bit transfers—but can be longer with narrower width memories.)
- Supports simple Master/Slave modes through the pins FRCMC and IERR
- Aborts a cycle if BOFF is asserted in the middle of the cycle (When BOFF is negated, the cycle restarts from the beginning. The Am486 processor restarts the cycle at the point it was aborted.)

8.9 P54C and AMD-K5 Processor Bus Differences

The AMD-K5 processor has two possible drive strengths, weak and strong. These strengths are equivalent to weak and strong on the Pentium processor. The recommended, default drive strength on the AMD-K5 processor is weak.

For detailed difference information, refer to Appendix A of the *AMD-K5 Processor Technical Reference Manual*, order# 18524, or the AMD-K5 Processor Application Note, "Comparison of the AMD-K5, Pentium, and 486 Processors," order# 20025.

18522F/0-Jan1997

9 Electrical Data

9.1 Power and Grounding

Power ConnectionsThe AMD-K5 processor includes 53 V_{CC} and 53 V_{SS} pins for
clean, on-chip power distribution at high frequencies. Power
and ground connections must be made to all external V_{CC} and
GND pins, respectively. All V_{CC} pins must be connected to the
circuit board V_{CC} plane, and all V_{SS} pins must be connected to
the circuit board GND plane. Table 14 on page 58 provides the
DC characteristics of the processor.

Connection Recommendations

- Emphasize decoupling capacitance near the AMD-K5 processor
- Driving address and data buses into large capacitive loads at high frequencies can cause transient power surges
- Low inductance capacitors and circuit paths provide the best performance at high frequencies
- Inductance can be reduced by shortening circuit board paths as much as possible
- Capacitors specifically for PGA packaging are commercially available
- NC pins shall be unconnected
- Always connect unused inputs to an appropriate signal level
- Unused active Low inputs should be connected to V_{CC} through a pull-up resistor
- Pull-up resistors of 20 kΩ should be used
- Unused active High inputs should be connected to GND

9.2 Absolute Maximum Ratings

Case Temperature under Bias –65°C to +110°C	
Storage Temperature65°C to +150°C	
Voltage on any pin (not to exceed 4.6 V) –0.5 V to V_{CC} +0.5 V	
CLK input (5-V tolerant)0.5 V to 6.5 V	
Supply voltage	

Note: Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. All voltage levels are with respect to ground.

9.3 **Operating Ranges**

	See "Ordering Information" on putting that are available for the A	
Commercial (C) Devices	T _{CASE} V _{CC}	
	Note: Operating ranges define the	ose limits between which the

functionality of the device is guaranteed.

18522F/0-Jan1997

Cumbal	Poromotor Description	Adv	ance Info	C
Symbol	Parameter Description	Min	Max	Comments
V _{IL}	Input Low Voltage	-0.3 V	+0.8 V	
V _{IH}	Input High Voltage	2.0 V	V _{CC} +0.3 V	
V _{OL}	Output Low Voltage		0.4 V	I _{OL} = 4-mA load
V _{OH}	Output High Voltage	2.4 V		I _{OH} =1-mA load
l	Power Supply Current-Model 0		44.0 mA/MHz	V _{CC} = 3.6 V Note 1
I _{CC} -	Power Supply Current—Models 1 and 2		39.0 mA/MHz	V _{CC} = 3.6 V Note 6
Ι _{LI}	Input Leakage Current		±15 μA	Note 2
I _{LO}	Output Leakage Current		±15 μA	Note 2
I _{IL}	Input Leakage Current Bias with Pull-up (Low)		400 μA	Note 3
I _{IH}	Input Leakage Current Bias with Pull-up (High)		200 μA	Note 4
C _{IN}	Input Capacitance		15 pF	Note 5
C _{OUT}	Output Capacitance		20 pF	Note 5
C _{OUT}	I/O Capacitance		25 pF	Note 5
C _{CLK}	CLK Capacitance		15 pF	Note 5
C _{TIN}	Test Input Capacitance		15 pF	Note 5
C _{TOUT}	Test Output Capacitance		20 pF	Note 5
C _{TCK}	TCK Capacitance	1	15 pF	Note 5

Table 14. DC Characteristics over Commercial Operating Ranges

Notes:

1. Typical supply current for model 0: 36 mA/MHz (2700 mA at PR75, 3240 mA at PR90, and 3600 mA at PR100).

2. This parameter is for inputs or I/O without an internal pull-up resistor and $0 \le V_{IN} \le V_{CC}$.

3. This parameter is for inputs with pull-ups and $V_{IL} = 0.40 V$.

4. This parameter is for inputs with pull-downs and $V_{IH} = 2.4 V$.

5. This parameter is determined by design.

6. Typical supply current for models 1 and 2: 30 mA/MHz (2700 mA at PR120, 3000 mA at PR133, and 3500 mA at PR166).

10 Switching Characteristics

The AMD-K5 processor commercial switching characteristics, provided in Table 15 through Table 26 on page 67, are measured at the voltage levels indicated by Figure 16 on page 68. They are measured relative to the rising edge of the CLK signal, as defined by Figure 16 through Figure 23. Output delays are specified as a function of minimum and maximum limits, with minimum delay times provided to external circuitry as hold times. A synchronous input signal must be stable for correct AMD-K5 processor operation during sampling.

10.1 66-MHz Bus Operation

Symbol	Advan		ce Info	Figuro	Commonto
	Parameter Description	Min	Max	Figure	Comments
	Frequency	33.3 MHz	66.6 MHz		
t ₁	CLK Period	15 ns	30.0 ns	16	
t _{1a}	CLK Period Stability		± 250 ps		Note 1
t ₂	CLK High Time	4.0 ns		16	@ 2.0 V, Note 1
t ₃	CLK Low Time	4.0 ns		16	@ 0.8 V, Note 1
t ₄	CLK Fall Time	0.15 ns	1.5 ns	16	2.0-0.8 V, Note 1
t ₅	CLK Rise Time	0.15 ns	1.5 ns	16	0.8-2.0 V, Note 1

Table 15. CLK Switching Characteristics for 66-MHz Bus Operation

18522F/0-Jan1997

Symbol	Parameter Description	Advan	ce Info	Figuro	Commonto
Symbol	Parameter Description	Min	Max	Figure	Comments
t _{6a}	ADSC, PWT, PCD, CACHE, SCYC Valid Delay	1.0 ns	7.0 ns	17	
t _{6b}	AP Valid Delay	1.0 ns	8.5 ns	17	
t _{6c}	A31–A17 Valid Delay	0.6 ns	6.3 ns	17	
t _{6d}	A16–A3 Valid Delay	0.5 ns	6.3 ns	15	
t _{6e}	ADS Valid Delay	1.0 ns	6.0 ns	17	
t _{6f}	BE7-BE0 Valid Delay	0.9 ns	7.0 ns	15	
t _{6g}	LOCK Valid Delay	0.9 ns	7.0 ns	15	
t _{6h}	M/IO Valid Delay	0.8 ns	5.9 ns	15	
t _{6i}	D/C, W/R Valid Delay	0.8 ns	7.0 ns	15	
t ₇	ADS, ADSC, AP, A31–A3, BE7–BE0, CACHE, D/C, LOCK, M/IO, PWT, PCD, SCYC, W/R Float Delay		10.0 ns	19	
t _{8a}	APCHK, IERR, FERR Valid Delay	1.0 ns	8.3 ns	17	
t _{8b}	PCHK Valid Delay	1.0 ns	7.0 ns	17	
t _{9a}	BREQ, HLDA Valid Delay	1.0 ns	8.0 ns	17	
t _{9b}	SMIACT Valid Delay	1.0 ns	7.3 ns	17	
t _{10a}	HIT Valid Delay	1.0 ns	6.8 ns	17	
t _{10b}	HITM Valid Delay	0.7 ns	6.0 ns	17	
t ₁₁	PRDY Valid Delay	1.0 ns	8.0 ns	17	
t ₁₂	D63–D0, DP7–DP0 Write Data Valid Delay	1.3 ns	7.5 ns	17	
t ₁₃	D63–D0, DP7–DP0 Write Data Float Delay		10.0 ns	19	

Table 16. Delay Timing for 66-MHz Bus Operation

Sumbel	Parameter Description	Advan	ce Info	F !	Commonte
Symbol	Parameter Description	Min	Max	Figure	Comments
t ₁₄	A31–A5 Setup Time	6.0 ns		18	
t ₁₅	A31–A5 Hold Time	1.0 ns		18	
t _{16a}	INV, AP Setup Time	5.0 ns		18	
t _{16b}	EADS Setup Time	5.0 ns		18	
t ₁₇	EADS, INV, AP Hold Time	1.0 ns		18	
t _{18a}	KEN Setup Time	5.0 ns		18	
t _{18b}	WB/WT, NA Setup Time	4.5 ns		18	
t ₁₉	KEN, WB/WT, NA Hold Time	1.0 ns		18	
t ₂₀	BRDY, BRDYC Setup Time	5.0 ns		18	
t ₂₁	BRDY, BRDYC Hold Time	1.0 ns		18	
t ₂₂	AHOLD, BOFF Setup Time	5.5 ns		18	
t ₂₃	AHOLD, BOFF Hold Time	1.0 ns		18	
t ₂₄	BUSCHK, EWBE, HOLD Setup Time	5.0 ns		18	
t _{24a}	PEN Setup Time	4.8 ns		16	
t _{25a}	BUSCHK, EWBE, PEN Hold Time	1.0 ns		18	
t _{25b}	HOLD Hold Time	1.5 ns		18	
t ₂₆	A20M, INTR, STPCLK Setup Time	5.0 ns		18	
t ₂₇	A20M, INTR, STPCLK Hold Time	1.0 ns		18	
t ₂₈	INIT, FLUSH, NMI, SMI, IGNNE Setup Time	5.0 ns		18	
t ₂₉	INIT, FLUSH, NMI, SMI, IGNNE Hold Time	1.0 ns		18	
t ₃₀	INIT, FLUSH, NMI, SMI, IGNNE Pulse Width	2 clocks		18	Asynchronou
t ₃₁	R/S Setup Time	5.0 ns		18	
t ₃₂	R/S Hold Time	1.0 ns		18	
t ₃₃	R/S Pulse Width	2 clocks		18	Asynchronou
t ₃₄	D63–D0, DP7–DP0 Read Data Setup Time	2.8 ns		18	
t ₃₅	D63–D0, DP7–DP0 Read Data Hold Time	1.5 ns		18	

Table 17. Switching Characteristics for 66-MHz Bus Operation

10.2 60-MHz Bus Operation

Table 18. CLK Switching Characteristics	for 60-MHz Bus Operation
---	--------------------------

Symbol	Advance Info		Figuro	Comments		
	Parameter Description	Min	Max	Figure	Comments	
	Frequency	30 MHz	60 MHz			
t ₁	CLK Period	16.67 ns	33.33 ns	16		
t _{1a}	CLK Period Stability		± 250 ps		Note 1	
t ₂	CLK High Time	4.0 ns		16	@ 2.0 V, Note 1	
t ₃	CLK Low Time	4.0 ns		16	@ 0.8 V, Note 1	
t ₄	CLK Fall Time	0.15 ns	1.5 ns	16	2.0-0.8 V, Note 1	
t ₅	CLK Rise Time	0.15 ns	1.5 ns	16	0.8-2.0 V, Note 1	
Notes: 1. Not 1	00% tested; determined by design charac	terization.				

Table 19. Delay Timing for 60-MHz Bus Operation

Symbol	Parameter Description	Advance Info		Figure	Commonte
		Min	Max	Figure	Comments
t _{6a}	ADSC, BE7–BE0, D/C, PWT, PCD, W/R, CACHE, SCYC Valid Delay	1.0 ns	7.0 ns	17	
t _{6b}	AP Valid Delay	1.0 ns	8.5 ns	17	
t _{6c}	A31–A3, LOCK Valid Delay	1.1 ns	7.0 ns	17	
t _{6d}	ADS, M/IO Valid Delay	1.0 ns	7.0 ns	17	
t ₇	ADS, ADSC, AP, A31-A3, BE7–BE0, CACHE, D/C, LOCK, M/IO, PWT, PCD, SCYC, W/R Float Delay		10.0 ns	19	
t _{8a}	APCHK, IERR, FERR Valid Delay	1.0 ns	8.3 ns	17	
t _{8b}	PCHK Valid Delay	1.0 ns	7.0 ns	17	
t _{9a}	BREQ, HLDA Valid Delay	1.0 ns	8.0 ns	17	
t _{9b}	SMIACT Valid Delay	1.0 ns	7.6 ns	17	
t _{10a}	HIT Valid Delay	1.0 ns	8.0 ns	17	
t _{10b}	HITM Valid Delay	1.1 ns	6.0 ns	17	
t ₁₁	PRDY Valid Delay	1.0 ns	8.0 ns	17	
t ₁₂	D63–D0, DP7–DP0 Write Data Valid Delay	1.3 ns	7.5 ns	17	
t ₁₃	D63–D0, DP7–DP0 Write Data Float Delay		10.0 ns	19	
Symbol	Deventer Description	Advan	ce Info	Figure	Commonto
------------------	--	----------	---------	--------	--------------
	Parameter Description	Min	Max	Figure	Comments
t ₁₄	A31–A5 Setup Time	6.0 ns		18	
t ₁₅	A31–A5 Hold Time	1.0 ns		18	
t _{16a}	INV, AP Setup Time	5.0 ns		18	
t _{16b}	EADS Setup Time	5.5 ns		18	
t ₁₇	EADS, INV, AP Hold Time	1.0 ns		18	
t _{18a}	KEN Setup Time	5.0 ns		18	
t _{18b}	WB/WT, NA Setup Time	4.5 ns		18	
t ₁₉	KEN, WB/WT, NA Hold Time	1.0 ns		18	
t ₂₀	BRDY, BRDYC Setup Time	5.0 ns		18	
t ₂₁	BRDY, BRDYC Hold Time	1.0 ns		18	
t ₂₂	AHOLD, BOFF Setup Time	5.5 ns		18	
t ₂₃	AHOLD, BOFF Hold Time	1.0 ns		18	
t ₂₄	BUSCHK, EWBE, HOLD, PEN Setup Time	5.0 ns		18	
t _{25a}	BUSCHK, EWBE, PEN Hold Time	1.0 ns		18	
t _{25b}	HOLD Hold Time	1.5 ns		18	
t ₂₆	A20M, INTR, STPCLK Setup Time	5.0 ns		18	
t ₂₇	A20M, INTR, STPCLK Hold Time	1.0 ns		18	
t ₂₈	INIT, FLUSH, NMI, SMI, IGNNE Setup Time	5.0 ns		18	
t ₂₉	INIT, FLUSH, NMI, SMI, IGNNE Hold Time	1.0 ns		18	
t ₃₀	INIT, FLUSH, NMI, SMI, IGNNE Pulse Width	2 clocks		18	Asynchronous
t ₃₁	R/S Setup Time	5.0 ns		18	
t ₃₂	R/S Hold Time	1.0 ns		18	
t ₃₃	R/S Pulse Width	2 clocks		18	Asynchronous
t ₃₄	D63–D0, DP7–DP0 Read Data Setup Time	3.0 ns		18	
t ₃₅	D63–D0, DP7–DP0 Read Data Hold Time	2.0 ns		18	

Table 20. Switching Characteristics for 60-MHz Bus Operation

10.3 50-MHz Bus Operation

Table 21.	. CLK Switching Characteristics for 50-MHz Bus Operation	
-----------	--	--

Symbol	Parameter Description	Advance Info		Figuro	Comments	
Symbol	Parameter Description	Min	Max	Figure	Comments	
	Frequency	25 MHz	50 MHz			
t ₁	CLK Period	20.0 ns	40.0 ns	16		
t _{1a}	CLK Period Stability		± 250 ps		Note 1	
t ₂	CLK High Time	4.0 ns		16	@ 2.0 V, Note 1	
t ₃	CLK Low Time	4.0 ns		16	@ 0.8 V, Note 1	
t ₄	CLK Fall Time	0.15 ns	1.5 ns	16	2.0-0.8 V, Note 1	
t ₅	CLK Rise Time	0.15 ns	1.5 ns	16	0.8–2.0 V, Note 1	
<i>Notes:</i> 1. Not 100% tested; determined by design characterization.						

Table 22. Delay Timing for 50-MHz Bus Operation

Symbol	Parameter Description	Advar	ice Info	Figuro	Commonte
Symbol	Parameter Description	Min	Max	Figure	Comments
t _{6a}	ADSC, BE7–BE0, D/C, PWT, PCD, W/R, CACHE, SCYC Valid Delay	1.0 ns	7.0 ns	17	
t _{6b}	AP Valid Delay	1.0 ns	8.5 ns	17	
t _{6c}	A31–A3, LOCK Valid Delay	1.1 ns	7.0 ns	17	
t _{6d}	ADS, M/IO Valid Delay	1.0 ns	7.0 ns	17	
t ₇	ADS, ADSC, AP, A31–A3, BE7–BE0, CACHE, D/C, LOCK, M/IO, PCD, PWT, SCYC, W/R Float Delay		10.0 ns	19	
t _{8a}	APCHK, IERR, FERR Valid Delay	1.0 ns	8.3 ns	17	
t _{8b}	PCHK Valid Delay	1.0 ns	8.3 ns	17	
t _{9a}	BREQ, HLDA Valid Delay	1.0 ns	8.0 ns	17	
t _{9b}	SMIACT Valid Delay	1.0 ns	8.0 ns	17	
t _{10a}	HIT Valid Delay	1.0 ns	8.0 ns	17	
t _{10b}	HITM Valid Delay	1.1 ns	6.0 ns	17	
t ₁₁	PRDY Valid Delay	1.0 ns	8.0 ns	17	
t ₁₂	D63–D0, DP7–DP0 Write Data Valid Delay	1.3 ns	8.5 ns	17	
t ₁₃	D63–D0, DP7–DP0 Write Data Float Delay		10.0 ns	19	

18522F/0—Jan1997

Symbol	Datamater Description	Advan	ce Info	Figure	Commerte
Symbol	Parameter Description	Min	Max	Figure	Comments
t ₁₄	A31–A5 Setup Time	6.5 ns		18	
t ₁₅	A31–A5 Hold Time	1.0 ns		18	
t _{16a}	INV, AP Setup Time	5.0 ns		18	
t _{16b}	EADS Setup Time	6.0 ns		18	
t ₁₇	EADS, INV, AP Hold Time	1.0 ns		18	
t _{18a}	KEN Setup Time	5.0 ns		18	
t _{18b}	WB/WT, NA Setup Time	4.5 ns		18	
t ₁₉	KEN, WB/WT, NA Hold Time	1.0 ns		18	
t ₂₀	BRDY, BRDYC Setup Time	5.0 ns		18	
t ₂₁	BRDY, BRDYC Hold Time	1.0 ns		18	
t _{22a}	BOFF Setup Time	5.5 ns		18	
t _{22b}	AHOLD Setup Time	6.0 ns		18	
t ₂₃	AHOLD, BOFF Hold Time	1.0 ns		18	
t ₂₄	BUSCHK, EWBE, HOLD, PEN Setup Time	5.0 ns		18	
t _{25a}	BUSCHK, EWBE, PEN Hold Time	1.0 ns		18	
t _{25b}	HOLD Hold Time	1.5 ns		18	
t ₂₆	A20M, INTR, STPCLK Setup Time	5.0 ns		18	
t ₂₇	A20M, INTR, STPCLK Hold Time	1.0 ns		18	
t ₂₈	INIT, FLUSH, NMI, SMI, IGNNE Setup Time	5.0 ns		18	
t ₂₉	INIT, FLUSH, NMI, SMI, IGNNE Hold Time	1.0 ns		18	
t ₃₀	INIT, FLUSH, NMI, SMI, IGNNE Pulse Width	2 clocks		18	Asynchronous
t ₃₁	R/S Setup Time	5.0 ns		18	
t ₃₂	R/S Hold Time	1.0 ns		18	
t ₃₃	R/S Pulse Width	2 clocks		18	Asynchronous
t ₃₄	D63–D0, DP7–DP0 Read Data Setup Time	3.8 ns		18	
t ₃₅	D63–D0, DP7–DP0 Read Data Hold Time	2.0 ns		18	

Table 23.	Switching	Characteristics	for 50-MHz Bus	Operation
-----------	-----------	-----------------	----------------	------------------

AMDZ

10.4 RESET, TCK, TRST, and Test Signal Timing

Table 24. RESET Configuration Signal

Symbol	Parameter Description	Advand	ce Info	Figure	Comments	
Jymbol		Min	Max	rigure		
t ₃₆	RESET Setup Time	5.0 ns		20		
t ₃₇	RESET Hold Time	1.0 ns		20		
t ₃₈	RESET Pulse Width, V _{CC} and CLK stable	15 clocks		20		
t ₃₉	RESET active after V _{CC} and CLK stable	1.0 ms		20		
t ₄₀	INIT, FLUSH, FRCMC Setup Time	5.0 ns		20		
t ₄₁	INIT, FLUSH, FRCMC Hold Time	1.0 ns		20		
t _{42a}	INIT, FLUSH, FRCMC Setup Time	2 clocks		20	Asynchronous, Note 1	
t _{42b}	INIT, FLUSH, FRCMC, BRDYC, BUSCHK Hold Time	2 clocks		20	Asynchronous, Note 1	
t _{42c}	BRDYC, BUSCHK Setup Time	3 clocks		20	Note 1	
t _{42d}	BRDYC Hold Time, RESET driven synchronously	1.0 ns		20	Note 1	
t _{43a}	BF, BF0, BF1 Setup Time	1.0 ms		20	Note 1	
t _{43b}	BF, BF0, BF1 Hold Time	2 clocks		20	Note 1	
Notes: 1. The	Notes: 1. These are measured to RESET falling edge.					

Table 25. TCK Waveform and TRST Timing at 16 MHz

Symbol	Parameter Description	Advance Info		Advance Info		Figuro	Comments	
Symbol	Parameter Description	Min	Max	Figure	Comments			
t ₄₄	TCK Frequency		16 MHz		1X Clock			
t ₄₅	TCK Period	62.5 ns		21	Note 1			
t ₄₆	TCK High Time	25.0 ns		21	at 2.0 V, Note 3			
t ₄₇	TCK Low Time	25.0 ns		21	at 0.8 V, Note 3			
t ₄₈	TCK Fall Time		5.0 ns	21	Notes 2, 3			
t ₄₉	TCK Rise Time		5.0 ns	21	Notes 2, 3			
t ₅₀	TRST Pulse Width	40.0 ns		22	Asynchronous			

Notes:

1. TCK period is \geq CLK period.

2. Rise/Fall times are measured between 0.8 V and 2.0 V. Rise/Fall times can be relaxed by 1 ns per 10-ns increase in TCK period.

3. Not 100% tested; determined by design characterization.

Symbol	Parameter Description	Advan	ce Info	Figuro	Notes
Symbol		Min	Max	Figure	NULES
t ₅₁	TDI, TMS Setup Time	5.0 ns		23	Note 2
t ₅₂	TDI, TMS Hold Time	13.0 ns		23	Note 2
t ₅₃	TDO Valid Delay	3.0 ns	20.0 ns	23	Note 1
t ₅₄	TDO Float Delay		25.0 ns	23	Note 1
t ₅₅	All Outputs (Non-Test) Valid Delay	3.0 ns	20.0 ns	23	Note 1
t ₅₆	All Outputs (Non-Test) Float Delay		25.0 ns	23	Note 1
t ₅₇	All Inputs (Non-Test) Setup Time	5.0 ns		23	Note 2
t ₅₈	All Inputs (Non-Test) Hold Time	13.0 ns		23	Note 2
Notes:			•		1

1. Parameter is measured from the TCK falling edge.

2. Parameter is measured from the TCK rising edge.

TCK period is \geq CLK period.

18522F/0—Jan1997

WAVEFORM	INPUTS	OUTPUTS
	Must be steady	Will be steady
	May change from High to Low	Will be changing from High to Low
	May change from Low to High	Will be changing from Low to High
	Don't care, any change permitted	Changing, State Unknown
	(Does not apply)	Center line is in a high impedance "Off" state

v = 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h, 6i, 8a, 8b, 9a, 9b, 10a, 10b, 11, 12

Figure 17. Output Valid Delay Timing

Figure 18. Input Setup and Hold Timing

Figure 19. Maximum Float Delay Timing

AMD-K5 Processor Data Sheet

Figure 20. Reset and Configuration Timing

AMD-K5 Processor Data Sheet

Figure 21. TCK Waveform

Figure 22. TRST Timing

Figure 23. Test Signal Timing Diagram

AMD-K5 Processor Data Sheet

18522F/0-Jan1997

11 Timing Diagrams

Figure 24. STPCLK Timing (Stop Grant state)

Figure 25. Transition L1 Shared Line to Exclusive

AMD-K5 Processor Data Sheet

Figure 27. Invalidation to Modified Line in L1 Cache (Writeback Cycle)

18522F/0-Jan1997

Figure 28. Single Read due to CACHE Inactive (No Wait State)

Figure 29. Single Read due to KEN Not Asserted (One Wait State)

Figure 30. Single Write due to KEN Inactive (No Wait State)

Figure 31. Single Write due to CACHE Inactive (One Wait State)

18522F/0-Jan1997

Figure 33. Burst Read (One Wait State)

AMD-K5 Processor Data Sheet

Figure 35. BOFF Timing

18522F/0-Jan1997

Figure 36. Locked Cycle

Figure 37. HOLD/HLDA Timing

AMD-K5 Processor Data Sheet

Figure 39. Special Cycle

AMD-K5 Processor Data Sheet

Figure 40. Interrupt Acknowledge

Figure 41. SMI/SMIACT Timing

AMD-K5 Processor Data Sheet

Figure 42. Split Cycle (Misaligned Locked cycle)

12 Package Thermal Specifications

The AMD-K5 processor is specified for operation when T_{CASE} (the case temperature) is within the range of 0°C to 70°C. T_{CASE} can be measured in any environment to determine whether the AMD-K5 processor is within the specified operating range. The case temperature should be measured at the center of the top surface opposite the pins.

The ambient temperature (T_A) is guaranteed as long as T_{CASE} is not violated. The ambient temperature can be calculated from θ_{CA} and from the following equation:

```
T_{CASE} = T_A + (P \cdot \theta_{CA})
```

where:

The value for θ_{CA} is given in Table 27 for the 1.90 sq. in., 296pin, ceramic SPGA case. Maximum T_A is shown in Table 28 and Table 29. The values for processor frequency in Table 28 apply to the AMD-K5 processor model 0. The values for processor frequency in Table 29 apply to the AMD-K5 processor models 1 and 2.

Typical Heat Sinks with Fans					
Heat Sink With Fan (length x width x height)	θ _{CA} (°C/W)	Manufacturer - Part Number			
1.885 in x 1.9 in x 1.04 in	0.81	Thermalloy, Inc 20961-TCM			
1.95 in x 1.79 in x 1.06 in	1.3	Wakefield Engineering, Inc 709-100AB124			
1.96 in x 1.96 in x 0.65 in 1.5 AAVID - 355455F00267					
Notes:					

Table 27. θ_{CA} for the AMD-K5 Processor in 296-pin SPGA Package for Typical Heat Sinks with Fans

1. Thermal interface material (e.g., thermal grease or thermal compound) is required between the top of the processor case and the base of the heat sink.

18522F/0—Jan1997

Heat Circle	Airflow of 0 (0) ft/min. (m/sec)									
Heat Sink	PR75 ¹ PR90 ² PR1									
Thermalloy Heat Sink w/Fan	60.6	48.7	47.5							
Wakefield Heat Sink w/Fan	54.9 41.9 39.									
AAVID Heat Sink w/Fan	52.6	39.1	36.8							
AAVID Heat Sink w/Fan 52.6 39.1 36.8 Notes: 1. $T_{CASE} = 70^{\circ}C$, $V_{CC} = 3.52$ V, $I_{CC} = 3300$ mA 2. $T_{CASE} = 60^{\circ}C$, $V_{CC} = 3.52$ V, $I_{CC} = 3960$ mA 3. $T_{CASE} = 60^{\circ}C$, $V_{CC} = 3.52$ V, $I_{CC} = 4400$ mA										

Table 28. Model 0 Maximum T_A in °C

Table 29. Mo	odels 1 and 2	Maximum	T₄	in °C	
--------------	---------------	---------	----	-------	--

Heat Sink	Airflow of 0 (0) ft/min. (m/sec)							
Heat Sink	PR120 ¹	PR133 ²	PR166 ³					
Thermalloy Heat Sink w/Fan	60.0	48.9	52.0					
Wakefield Heat Sink w/Fan	nk w/Fan 53.9 42.2 44.2							
AAVID Heat Sink w/Fan	51.5	39.4	41.0					
Notes:	•	•						
1. $T_{CASE} = 70^{\circ}C$, $V_{CC} = 3.52 V$, $I_{CC} = 3510 mA$								
2. $T_{CASE} = 60^{\circ}C$, $V_{CC} = 3.52 V$, $I_{CC} = 3900 mA$								
3. $T_{CASE} = 65^{\circ}\text{C}, V_{CC} = 3.52 \text{ V}, I_{CC} = 4550 \text{ mA}$								

AMD-K5 Processor Data Sheet

18522F/0-Jan1997

Figure 43. 296-Pin Ceramic Staggered Pin Grid Array (SPGA)

14 Pin Description Diagram (Model 0)

•

_

Control pins

V_{SS} pins

 \oslash NC, INC (Internal No Connect) pins \triangle V_{CC} pins \otimes **Reserved pins** Data pins 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 1 NC INC INC FLUSH V_{cc}^{\triangle} V_{cc}^{\triangle} AN ⊘ NC A10 Ă6 Vss \cap AM O A8 A30 Ă4 AL O A7 A3 . V_{SS} AK Å5 A29 A28 AJ 0 A25 0 A31 $\bar{\bar{V}_{SS}}$ O A22 AH 0 A26 V_{SS} LOCK 0 A27 AG $A24 V_{CC}^{\Delta}$ $\sqrt{\frac{\Delta}{cc}}$ SMIACT PCD 0 A21 ⊗ AF $\bar{V_{SS}}$ v_{cc}^{Δ} AE V_{CC}^{\triangle} A23 NC AD INTR $\bar{v_{ss}}$ AC $\sqrt[s]{V_{CC}}$ v_{cc}^{\triangle} V_{SS} HOLD AB AA \bigvee_{cc}^{Δ} Ζ PEN Vss Υ Х ٧ **Bottom** V_{CC}^{Δ} W V STPCLK V_{ss} View $\overset{\bigtriangleup}{V_{CC}}$ $\sqrt[55]{V_{CC}}$ U V_{CC} NC Т $\bar{\bar{V_{SS}}}$ S $V_{\rm CC}^{\Delta}$ ⊘ NC °v_cc R V_{SS} Q v_{cc}^{Δ} $\sqrt{\Delta}_{CC}$ TRST TMS Vss Ρ $V_{SS}^{\overline{}}$ v_{cc}^{Δ} Ν v_{cc}^{\bigtriangleup} D63 DP7 то_ TDI Μ TCK _ D62 V_{SS} V_ss ^{SS} D61 D60 v_{cc}^{\triangle} `⊗ NC $\overset{\bigtriangleup}{V_{cc}}$ L v_{cc}^{Δ} Κ V_{SS} J ⊗ NC D2 $\sqrt{\sum_{CC}}$ Н ´⊗ NC $\bar{V_{SS}}$ G $\overset{\bigtriangleup}{V_{CC}}$ D3 D5 F D_{1} D7 v_{cc}^{Δ} Е □ D46 ₽ D42 D8 DPO D D50 D D9 С INC . В 16 D13 D11 0 D13 D11 0 D18 D15 NC INC А ² 3 ⁴ 5 ⁶ 7 ⁸ 10 12 14 16 18 20 22 24 26 28 30 32 34 36 37 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 1

 \bigcirc

Ť

Address pins

Test pins

Figure 44. AMD-K5 Model 0 Processor Pin-Side View

AN

AM

AL

AK

AJ

AH

AG

AF

AE

AD

AC

AB

AA

Ζ

Y

Х

W

V

U

Τ

S

R

Q

Ρ

Ν

Μ

L

Κ

J

Н

G

F

Е

D

С

В

А

18522F/0-Jan1997

15 Pin Designations (Model 0)

Functional Grouping

Add	lress	Da	ata	Con	itrol	Te	est	NC	V _{cc}	V _{ss}	Reserved
Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin No.	Pin No.	Pin No.	Pin No.
A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31	AL-35 AM-34 AK-32 AN-33 AL-33 AK-30 AN-31 AL-29 AK-28 AL-27 AK-26 AL-27 AK-26 AL-27 AK-26 AL-27 AK-22 AL-21 AF-34 AL-23 AK-22 AL-21 AF-34 AH-36 AE-33 AG-35 AI-35 AH-34 AG-33 AK-36 AH-34 AJ-33	D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 D32 D33 D34 D32 D33 D34 D35 D36 D37 D38 D39 D30 D31 D32 D33 D34 D35 D36 D37 D38 D39 D40 D51 D32 D33 D34 D35 D36 D37 D38 D39 D40 D51 D32 D33 D34 D35 D36 D37 D38 D39 D40 D51 D32 D33 D34 D35 D36 D37 D38 D39 D40 D51 D32 D33 D34 D35 D36 D37 D38 D39 D40 D51 D32 D33 D34 D35 D36 D37 D38 D39 D40 D51 D32 D33 D34 D35 D36 D37 D38 D39 D40 D51 D35 D36 D37 D38 D39 D40 D51 D32 D33 D34 D35 D36 D37 D38 D39 D30 D31 D32 D35 D36 D37 D38 D39 D40 D51 D32 D33 D34 D35 D36 D37 D38 D39 D30 D31 D32 D35 D36 D37 D38 D39 D30 D31 D32 D35 D36 D37 D38 D39 D30 D31 D32 D36 D37 D38 D39 D30 D31 D32 D36 D37 D38 D39 D30 D31 D32 D36 D37 D38 D39 D36 D37 D38 D39 D36 D37 D38 D39 D36 D37 D38 D39 D40 D51 D32 D36 D37 D38 D39 D36 D37 D38 D39 D40 D51 D36 D37 D38 D39 D40 D51 D36 D37 D38 D39 D40 D41 D42 D45 D50 D50 D51 D52 D56 D56 D57 D57 D56 D57 D56 D57 D57 D56 D57 D57 D56 D57 D57 D56 D57 D57 D56 D57 D57 D56 D57 D57 D56 D57 D57 D56 D57 D57 D57 D56 D57 D57 D57 D57 D57 D56 D57 D57 D57 D57 D57 D57 D57 D57 D57 D57	K-34 G-35 J-35 G-33 F-36 F-36 F-37 E-33 D-34 C-35 B-34 C-35 B-36 D-32 B-34 C-35 B-36 D-32 B-34 C-35 B-36 D-32 B-34 C-33 B-34 C-35 B-36 D-32 B-34 C-33 B-32 C-31 D-22 C-23 D-24 C-27 C-23 D-24 C-27 C-23 D-24 C-27 C-23 D-24 C-21 D-20 C-17 C-15 D-16 C-13 D-10 D-10 D-10 D-10 D-10 D-10 D-005 E-07 C-03 D-04 E-03 G-05 E-01 G-03 H-04 J-03 K-04 K-03 K-04 J-03 K-04 K-03 K-04 K-04 J-03 K-04 K-04 K-04 J-03 K-04 K-04 K-04 K-04 K-04 K-04 K-04 K-04	A200M ADS ADSC AHOLD AP APCHK BE0 BE1 BE2 BE3 BE4 BE5 BE6 BE7 BF BOFF BRDY BRDYC BRD	AK-08 AJ-05 AM-02 V-04 AK-02 AE-05 AL-09 AK-10 AL-11 AK-12 AL-13 AK-14 AL-15 AK-16 Y-33 Z-04 X-04 Y-03 AJ-01 AL-07 U-03 AK-18 AK-04 D-30 C-25 D-18 C-07 F-06 F-02 N-05 AK-04 D-30 C-25 D-18 C-07 F-06 F-02 N-05 AM-04 W-03 Q-05 AN-07 Y-35 AK-06 AL-05 AJ-03 AB-04 P-04 AA-35 AA-33 AD-34 U-05 W-05 AL-07 U-05 AL-	TCK TDI TDO TMS TRST	M-34 N-35 N-33 P-34 Q-33	A-37 R-34 S-33 S-35 W-35 X-34 AL-19 AN-01 AN-03 B-02 C-01 AL-01 AN-03 AN-05	A-07 A-09 A-11 A-13 A-15 A-15 A-17 A-21 A-23 A-21 A-23 A-29 E-37 G-01 G-37 J-01 J-37 L-01 L-33 L-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 Q-37 S-01 S-37 R-01 A-37 A-01 A-27 A-01 A-23 A-01 A-27 A-29 R-01 Z Z Z A-01 A-27 A-01 A-27 A-20 Q-37 S-01 S-27 A-01 A-27 A-01 A-27 A-01 A-27 A-20 A-01 A-27 A-27 A-01 A-27 A-01 A-27 A-01 A-27 A-20 A-01 A-27 A-01 A-27 A-01 A-27 A-27 A-01 A-27 A-20 A-27 A-27 A-20 A-27 A-20 A-27 A-27 A-20 A-27 A-29 A-27 A-27 A-27 A-27 A-29 A-27 A-27 A-27 A-27 A-29 A-27 A-27 A-27 A-27 A-29 A-27 A-27 A-27 A-27 A-29 A-27 A-27 A-27 A-27 A-29 A-27 A-27 A-27 A-27 A-29 A-27 A-27 A-27 A-27 A-27 A-27 A-27 A-27	B-06 B-08 B-10 B-12 B-14 B-16 B-18 B-20 B-22 B-24 B-26 B-28 H-02 H-36 K-02 K-36 M-02 M-36 P-02 P-36 R-02 R-36 R-02 R-36 C-02 R-36 C-02 R-36 C-02 R-36 R-02 R-36 C-02 R-36 R-02 R-37 R-37 R-37 R-37 R-37 R-37 R-37 R-37	H-34 J-33 L-35 Q-03 Q-35 R-04 S-03 S-05 AA-03 AC-03 AD-04 AE-03 AE-35

Pin Description Diagram (Models 1 and 2) 16 Control pins Address pins • \bigcirc Т V_{SS} pins Test pins = \oslash \triangle V_{CC} pins NC, INC (Internal No Connect) pins \otimes Reserved pins Data pins

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 1

AN AN O A6 ⊘ NC V_{ss} AM AM O A8 A30 Ă4 AL O A7 O A3 AL NC _ $\bar{\bar{V}}_{SS}$ AK AK A5 A29 A28 BREQ HLDA ADS V_{SS} LOCK V_{CC} SMIACT PCD V_{CC} SMIACT PCD AJ AJ 0 A31 0 A25 AH 0 A22 AH 0 A26 AG 0 A27 0 A24 AG v_{cc}^{Δ} AF AF A21 3 NC V_{SS} 0 AE $\stackrel{\triangle}{v_{cc}}$ AE V_{cc}^{Δ} A23 AD AD $\bar{V_{SS}}$ AC $V_{\rm cc}^{\Delta}$ AC V_{cc}^{Δ} NM AB SMI . AB V_{SS} V_{SS} HOLD V_{CC} NC WB/WT V_{SS} BOFF V_{CC} BRDYC NA V_{SS} BRDY V_{SS} BRDY AA AA . INIT Ζ PEN Ζ $\tilde{V_{SS}}$ γ Y BFO FRCMC V_{cc} Х BF1 NC NC Х Vss └ △ V_{cc} W **Bottom** W V_{cc} EWBE KEN V V $\overline{V_{SS}}$ STPCLK V_{SS} AHOLD U v_{cc}^{Δ} View U CACHE INV Vss Т Τ M/IO $\bar{V_{SS}}$ Vss S V_{CC}^{Δ} $\sqrt[30]{v_{cc}}$ S ⊘ NC R R V_{SS} NC V_{SS} . Q Δ $\sqrt{2}$ Q TRST $V_{\rm CC}$ Ρ Ρ TMS $V_{SS}^{\overline{T}}$ รเกิลเ √_{ss} Ν V_{CC}^{Δ} D63 DP7 Ν TDO TDI $\begin{array}{c} & & & & \\ & & & \\ & & & \\ & &$ Μ Μ V_{SS} ΤĊΚ `⊗ NC $\overset{\bigtriangleup}{_{\rm V_{\rm CC}}}$ L v_{cc}^{\triangle} L $\begin{array}{c|c} & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$ Κ Κ $V_{\rm SS}$ J D2 \bigvee_{cc}^{\triangle} J ⊗ NC ´⊗ NC Н $\bar{\bar{V}_{SS}}$ Н □ D3 G DI $\stackrel{\triangle}{v_{cc}}$ G F F D5 D4 DP6 D51 DP5 D54 D52 D49 D46 Е 口 D7 v_{cc}^{Δ} Е 8 D42 D8 D DPO D С □ D9 С $\vec{34}$ V_{SS} A В В 16 DI3 DI8 D DII 〕 ∅ 5 NC ⊂ D15 А А 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 1

Figure 45. AMD-K5 Models 1 and 2 Processor Pin-Side View

18522F/0-Jan1997

17 Pin Designations (Models 1 and 2)

Functional Grouping

Add	lress	Da	ata	Cor	itrol	T	est	NC	V _{cc}	V _{ss}	Reserved
Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin No.	Pin No.	Pin No.	Pin No.
A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A22 A23 A24 A22 A26 A27 A28 A29 A30 A31	AL-35 AM-34 AK-32 AN-33 AL-33 AM-32 AK-30 AN-31 AL-29 AK-28 AL-27 AK-26 AL-27 AK-26 AL-25 AK-22 AL-21 AF-34 AL-23 AK-22 AL-21 AF-34 AL-23 AK-22 AL-21 AF-34 AL-35 AL-35 AL-35 AH-35 AH-35 AH-35 AH-35 AH-35 AH-36 AK-36 AJ-33	D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 D32 D24 D25 D26 D27 D28 D29 D30 D31 D32 D33 D34 D35 D33 D34 D35 D36 D37 D38 D39 D40 D37 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D30 D31 D32 D33 D34 D35 D36 D37 D38 D39 D30 D37 D38 D39 D30 D31 D32 D38 D39 D30 D31 D32 D37 D38 D39 D30 D37 D38 D39 D30 D37 D38 D39 D30 D37 D38 D39 D30 D37 D38 D39 D30 D37 D38 D39 D30 D37 D38 D39 D30 D37 D38 D39 D30 D37 D38 D39 D30 D37 D38 D39 D30 D37 D38 D39 D30 D37 D38 D39 D40 D57 D38 D39 D30 D37 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D57 D38 D39 D40 D40 D57 D38 D39 D40 D41 D42 D55 D56 D57 D50 D51 D50 D51 D50 D51 D50 D50 D51 D50 D50 D51 D50 D50 D51 D50 D50 D51 D50 D50 D51 D50 D50 D51 D50 D50 D50 D51 D50 D50 D50 D50 D50 D50 D50 D50 D50 D50	K-34 G-35 J-35 G-333 F-36 F-37 E-33 D-34 C-37 G-35 B-34 C-37 G-35 B-34 C-37 G-35 B-34 C-37 C-35 B-34 C-31 A-35 B-32 C-31 A-35 B-32 C-31 A-35 B-32 C-31 A-35 D-24 C-27 C-23 D-24 C-21 D-20 C-17 C-13 D-24 C-21 D-20 C-17 C-13 D-14 C-13 D-14 C-11 D-12 C-09 D-10 D-10 D-10 D-10 B-04 E-09 B-04 D-05 E-07 C-03 D-04 E-03 H-04 J-03 K-04 L-05 E-03 H-04 J-03 K-04 L-05 L-03 M-04 S-03 H-04 J-03 K-04 L-05 L-03 M-04 S-03 H-04 J-03 K-04 L-05 L-03 M-04 S-03 H-04 J-03 K-04 L-05 L-03 M-04 S-03 H-04 J-03 K-04 L-05 L-03 M-04 S-03 H-04 J-03 K-04 L-05 L-03 M-04 S-03 H-04 J-03 K-04 L-05 L-03 M-04 S-03 H-04 J-03 K-04 L-05 L-03 M-04 S-03 H-04 J-03 K-04 L-05 L-03 M-04 S-03 H-04 J-03 K-04 L-05 L-03 M-04 L-05 L-03 M-04 L-05 L-03 M-04 L-05 L-03 M-04 L-05 L-03 H-04 J-03 K-04 L-05 L-03 H-04 J-03 K-04 L-05 L-03 H-04 J-03 K-04 L-05 L-03 H-04 H-05 L-03 H-04 L-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-04 H-05 L-03 H-05 L-03 H-04 H-05 L-03 H-05 L-03 H-03 H-04 H-05 L-03 H-04 H-05 L-03 H-05 H-04 H-05 H-05 H-05 H-05 H-05 H-05 H-05 H-05	A20M ADS ADSC AHOLD AP APCHK BED BET BE2 BE3 BE4 BE5 BE6 BE7 BF0 BF1 BOFF BRDY BRDYC BRDYC BREQ BUSCHK CACHE CLK D/C DP0 DP1 DP2 DP3 DP4 DP5 DP6 DP7 EADS EWBE FERR FLUSH FERR FLUSH FERR FLUSH FERR FLUSH FERR FLUSH FERR FLUSH FCMC HIT HITM HLDA HOLD IERR IGNNE INT INTR INTR INTR INTR INTR INTR INTR	AK-08 AI-05 AM-02 V-04 AK-02 AE-05 AL-09 AK-10 AL-11 AK-12 AL-13 AK-14 AL-15 AK-16 Y-33 X-34 Z-04 X-04 Y-03 AL-07 U-03 AK-18 AK-16 Y-33 X-34 Z-04 X-04 Y-03 AL-07 U-03 AL-07 U-03 AL-07 U-03 AL-07 U-03 AK-18 AL-07 U-03 AL-07 C-25 AL-05 AL-05 AL-05 AL-05 AL-05 AL-05 AL-05 AL-05 AL-05 AL-05 AL-05 AL-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-35 AL-03 AC-05 AL-03 AC-35 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-35 AL-03 AC-05 AL-03 AC-35 AL-03 AC-05 AL-03 AC-33 AC-05 AL-03 AC-05 AL-03 AC-35 AL-03 AC-05 AL-03 AC-35 AL-03 AC-05 AL-03 AC-35 AL-03 AC-05 AL-03 AC-35 AL-03 AC-05 AL-03 AC-35 AL-03 AC-05 AL-03 AC-35 AL-03 AC-05 AL-03 AC-35 AL-03 AC-35 AL-03 AC-35 AL-03 AC-35 AL-03 AC-35 AL-03 AC-05 AL-03 AC-35 AL-03 AC-35 AL-03 AC-35 AL-03 AC-05 AL-03 AC-35 AL-03 AC-35 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AL-03 AC-05 AC-05 AC-05 AL-03 AC-05 AC	TCK TDI TDO TMS TRST	M-34 N-35 N-33 P-34 Q-33	A-37 R-34 S-33 S-35 W-33 W-35 AL-19 AN-01 AN-01 AN-03 B-02 C-01 AL-01 AN-03 AN-05	A-07 A-09 A-11 A-13 A-15 A-17 A-19 A-21 A-23 A-25 A-27 A-29 E-37 G-01 G-37 J-01 J-37 L-01 L-33 L-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 U-33 U-37 V-01 V-33 U-37 V-01 V-37 S-01 S-37 T-34 U-01 U-33 U-37 V-01 V-37 S-01 S-37 T-34 U-01 L-33 U-37 V-01 V-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 T-34 U-01 L-33 U-37 N-01 N-37 Q-01 Q-37 S-01 S-37 A-01 AC-37 AC-01 AC-37 AC-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AC-37 AD-01 AD-13 AD-13 AD-13 AD-13 AD-12 AD-12 AD-22 AD-12 AD-22 AD-12 AD-27 AD-22 AD-27 AD-22 AD-27 AD-27 AD-22 AD-27 AD-2	B-06 B-08 B-10 B-12 B-14 B-16 B-18 B-20 B-22 B-24 B-26 B-28 H-02 H-36 K-02 K-36 M-02 M-36 P-02 P-36 R-02 R-36 T-02 T-36 U-35 V-02 V-36 X-02 X-36 Z-02 X-36 Z-02 X-36 X-02 X-37 X-37 X-37 X-37 X-37 X-37 X-37 X-37	H-34 J-33 L-35 Q-03 Q-35 R-04 S-03 S-05 AA-03 AD-04 AE-03 AE-03 AE-35

AMD-K5 Processor Data Sheet

For more information or to order literature, write to or call:

TOLL FREE: (800)222-9323 (512)602-5651 Advanced Micro Devices, Inc. 5204 East Ben White Blvd. Mail Stop 604 Austin, Texas 78741 http://www.amd.com