1 T OV
(V)
‘ &mm
523
v
<
-l
mm
'Sw
0 5
vV Qo
O £
Q 0
ouv
rl
.Km
20
O = &
o & 3
MmO
= O
838 ¢

Am386™ Microprocessors
for Personal Computers

Data Book

ADVY ANCED MI CRO DEVICES n

© 1992 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchan-
tability or fitness for a particular application. AMD® assumes no responsibility for the use of any circuitry other than the cir-
cuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change
without notice. AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences
resulting from the use of the information included herein. Additionally, AMD assumes no responsibility for the functioning of
undescribed features or parameters.

Trademarks
AMD is a registered trademark and Am386 is a trademark of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMD n

Am386 MICROPROCESSORS FOR
PERSONAL COMPUTERS
DATA BOOK

Am386DX/DXL Microprocessor DataSheet
Am386SX/SXL Microprocessor DataSheet

Table of Contents

n AMD

Advanced Micro Devices’ microprocessors are breaking performance barriers. The
cost effective Am386 microprocessors are ideal for both desktop and battery pow-
ered portable computers. This data book describes the 32-bit Am386 Microprocessor
Family with data sheets on Am386DX/DXL and Am386SX/SXL microprocessors.

Am386 microprocessors are the fastest available with 40 MHz on the Am386DXL
microprocessor, a 21% performance increase over the 33-MHz version; and 25 MHz
on the Am386SXL microprocessor, a 25% performance increase over the 20-MHz
version. For portable systems the Am386DXL/SXL microprocessors’ true static
design allows longer battery life by offering low operating power consumption and a
standby mode.

We also offer 3-V Am386 microprocessors optimized for notebook applications.
Information on these can be found in the AMD® 3-Volt System Logic for Personal
Computers Data Book, publication #17028.

Remember, our partnership helps you gain and keep the competitive edge. We are
not your competition.

IR

Robert G. McConnell
Vice President
Personal Computer Products Division

Introduction

FINAL

Am386™DX/DXL

High-Performance, Low-Power, 32-Bit Microprocessor

e

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS
H Ideal for portable PCs
—True static design for long battery life
(Am386DXL microprocessor)

—Typical standby lcc <20 pA at DC (0 MHz)
(Am386DXL microprocessor)

—Typical operating lcc=210 mA at 33 MHz

—Lower power consumption than Intel i386DX or
Intel i386SX

—Small footprint 132-pin PQFP package

—Wide range of chip sets and BIOS available to
support standby mode capabilities

—Performance on demand (0 to 40 MHz)

B Ideal for desktop PCs
—40-, 33-, 25-, and 20-MHz operating speeds
—Lower heat dissipation facilitates fan reduction or

elimination for cost savings and noise reduction

—Pin-for-pin replacement for Intel i386DX

B Compatible with 386DX systems and software

B Supports 387DX-compatible math
coprocessors

B AMD advanced 0.8 micron CMOS technology

GENERAL DESCRIPTION

The Am386DX/DXL microprocessor is a high-speed,
true static implementation of the Intel i386DX micropro-
cessor. ltis ideal for both desktop and battery-powered
portable personal computers. For desktop PCs, the
Am386DXL microprocessor offers a 21% increase in
the maximum operating speed from 33 to 40 MHz. Also,
this device offers lower heat dissipation, allowing sys-
tem designers to remove or reduce the size and cost of
the system cooling fan.

For portables, the Am386DXL microprocessor’s true
static design offers longer battery life with low operating
power consumption and standby mode. At 33 MHz, this

device has 40% lower operating lcc than the Intel
i386DX. Standby mode allows the Am386DXL micro-
processor to be clocked down to 0 MHz (DC) and retain
full register contents. In standby mode, typical current
draw is less than 20 pA, nearly a 1000x reduction in
power consumption versus the Intel i386DX or Intel
i386SX.

Additionally, the Am386DXL microprocessor is avail-
able in a small footprint 132-pin plastic quad flat pack
(PQFP) package. This surface-mount package is 40%
smaller than PGA, allowing smaller, lower-cost board
designs without the need for a socket.

Typical lcc
250 +
200+ O Intel i386DX @ 5.0 V
A Am386DX/DXL CPU@ 5.0V
lc (MA) 150+ O Am386DXLV CPU @3.3V

100 il

50+

0 } } } - }
0o 2 16 20 25 33

Frequency (MHz)
Note: Inputs at Ve or Vss.

Typical Power Consumption

Publication #: 15021 Rev.D Amendment: /0
Issue Date: October 1992

a AMD

BLOCK DIAGRAM
Segmentation Unit Paging Unit Bus Control
HOLD, INTR,
- / 3-Input <:—_~> Request NMI, ERROR,
Eftoeivo Addross Bus _/ - > Adder Adder is 71 | |Pricritizer [** BUSY, RESET,
" HLDA, FLT
2
/ ; 32 e
Effocive Addiesm Bus] > Descriptor Page 8
7 Registers Cache £
32 ©
<
[+
L
Limit and Contdrol _g
::> Attribute :'1> an KLr—— o
PLA Attribute
g PLA :l‘> Address BE3-BEG
@ Driver A31-A2
g
5 =
Protection I 2
Test Unit B E - -
o = —
2 3 - MO, D/T,
8 = Pipeline/ W/R. [OCK
A Internal Control Bus k] %)| Bus Size [4-p KD—é B_S‘1_’
A N [Control ADS, BS16,
8 s NA, READY
5 3
MUX/
Barrel
X Pre- Trans- €% D31-D0O
ir:juger, N Dec%de L Instruction :'> fetcher/ <;|:P32> ceivers
er V] and —1 Decoder Limit
Status Sequencing Checker
X Flags
Multiply/
Divide
Control ?-Decotlied Code | 1 g—Bgte
ROM nstruction | stream ode
Register — <: Queue Queue
File
ALY C | Instruction 32 Bit Instruction
t
ﬁ Control ontro Predecode Prefetch ,
ALU Dedicated ALU Bus]
7
32
15021B-001

2 Am386 Microprocessors for Personal Computers

AMD a

FUNCTIONAL DESCRIPTION

True Static Operation (Am386DXL CPU)

The Am386DXL microprocessor incorporates a true
static design. Unlike dynamic circuit design, the
Am386DXL device eliminates the minimum operating
frequency restriction. It may be clocked from its maxi-
mum speed of 40 MHz all the way down to 0 MHz (DC).
System designers can use this feature to design true
32-bit battery-powered portable PCs with long battery
life.

Standby Mode (Am386DXL CPU)

This true static design allows for a standby mode. At any
of its operating speeds (40 MHz to DC), the Am386DXL
microprocessor will retain its state (i.e., the contents of
all of its registers). By shutting off the clock completely,
the device enters standby mode. Since power con-
sumption is a function of clock frequency, operating
power consumption is reduced as the frequency is low-
ered. In standby mode, typical current draw is reduced
to less than 20 pA at DC.

Not only does this feature save battery life, but it also
simplifies the design of power-conscious notebook
computers in the following ways:

1. Eliminates the need for software in BIOS to save
and restore the contents of registers.

2. Allows simpler circuitry to control stopping of the
clock since the system does not need to know
the processor state.

Lower Operating lcc

True static design also allows lower operating lcc when
operating at any speed. See the following graph for typi-
cal current at operating speeds.

Performance On Demand

The Am386DXL microprocessor retains its state at any
speed from 0 MHz (DC) to its maximum operating speed
(20, 25, 33, or 40 MHz). With this feature, system de-
signers may vary the operating speed of the system to
extend the battery life in portable systems.

For example, the system could operate at low speeds
duringinactivity or polling operations. However, uponin-
terrupt, the system clock can be increased up to its
maximum speed. After a user-defined time-out period,
the systemcanbe returnedto alow (or 0 MHz) operating
speed without losing its state. This design maximizes
lite while achieving optimal performance.

Am386DX/DXL Microprocessor Data Sheet 3

n AMD

CONNECTION DIAGRAMS
132-Lead Ceramic Pin Grid Array (PGA) Package —Top Side View

14

13

12

1

10

Note: NC = Not connected; connection of any NC pin may cause a malfunction or incompatability with future

A C D E F G H J K L M N P
Ve Vss BST6HOLDADS Vss Voc D2 D3 D4 D6 HLDA D9 Vs
O O OO OO OO O O OO0 OO0 O
BES BEZ2 BET NA NC NCREADY D! Vss D5 D8 Ve D11 D13
O O OO OO OO O O OO0 OO0 O

MAG NC Vo Vee BEO CLK2 Ve DO Vss D7 Ve D10 D12 D14
O O OO OO OO0 O O O0OO0OO0OOo
DIC Vs Vss D15 D16 D18
O O O O O O
Vee W/R LOCK Vss D17 D19
o O O O O O
Vss BUSY RESET D20 D21 D22
O O O O O O
ERROR NMI PEREQ Vss D23 Vee
O O O
Vee INTR NC Vee Vee D24
O O O O O O
Vss NC NC D28 D25 Vss
O O O O O O
Vee Vss Voo D31 D27 D26
O O O O O O
NC NC A2 Vss Vee D29
O O O O O O
A3 A4 A6 A9 A12 Vss Voo A19 Vss A25 A28 Ve Vss D30
O O OO0 OO OO O O O 0 O O
Vss A5 A7 A10 A13 Vss Voe A18 Vss A22 A24 A29 A31 Ve
O O OO0 OO OO O 0O OO0 0O
Veec Vss A8 A11 A14 A15 A16 A17 A20 A21 A23 A26 A27 A30
\O O OO0 OO OO O O0OO0OO0OO0OO0
A B (97 D E F G H J K L M N P

shippings of the Am386DX/DXL microprocessor.

1

10

Am386 Microprocessors for Personal Computers

a
a
=
< - o~ ™ < 0 © ~) o e - N 2] b
(=] o 2] © @ < Q q (=] 0 < ™ 1]
ol 20203038080208020805050505040
~ Q Q -~ N~ © o -~
z| 8030 0 3080 8020808050 5050E50230
© [<2] <} I — o] I o 1] o Q <
z =| JO030 £0 20 R0 80 200500 5050 £020
w [s2] < =] Q
) - N
@ x| 8030 g0 508030
[+ o 2 3 3] [s2]
| > 80 20 =0 20 2080
o
mv T mOmO mo 2 a0 z08a0
3} £ B
o Q Q [} (=] Q
g ol zO £0 £0 = 2020 £0
—_ o
~ < 7o) N
-0 vl zO 20 0 3020$0
S) ©
£ = 020 o 20 208
c W wl 20z0 0 _%O No_wo
g % 20202 L0503
e a| zOz0 20 2000
m M g 0 _ M
- o| 20%0 20 20 £0 20 20 £0 $0FO 0 0[O0
e = a
[o = >~ 2 o
<o =| 2020 3020£02050308050 020020
o E T @
Q 3 Q 9 Q (o} 6] (0] (s2] Q
z 8 <\ 20 £0 20 20 £0 20 20E0 20 20 80800 20
° 8 N i
T
O T - ~ ™ < 0 © ~ ® o o - o ™ <
w @« — -~ - -~ -~
z 9
2
o8
O v

Am386DX/DXL Microprocessor Data Sheet

shippings of the Am386DX/DXL microprocessor.

Note: NC = Not connected; connection of any NC pin may cause a malfunction or incompatability with future

o\

AMD

CONNECTION DIAGRAMS (continued)
PGA Pin Designations (sorted by Functional Grouping)

Address Data Control NC Vee Vss
Pin Pin Pin Pin Pin Pin Pin Pin Pin
Name No. Name No. Name No. No. No. No.
A2 C4 Do H12 ADS E14 A4 A1 A2
A3 A3 D1 H13 BEO E12 B4 A5 A6
A4 B3 D2 H14 BET Cc13 B6 A7 A9
A5 B2 D3 J14 BE2 B13 B12 A10 B1
A6 C3 D4 K14 BE3 A13 Ccé A4 B5
A7 Cc2 D5 K13 BS16 C14 Cc7 C5 B11
A8 C1 D6 L14 BUSY B9 E13 c12 B14
A9 D3 D7 K12 CLK2 F12 F13 D12 C11
A10 D2 D8 L13 D/C A1 G2 F2
Al1 D1 D9 N14 ERROR A8 G3 F3
A12 E3 D10 M12 HLDA M14 G12 F14
A13 E2 D11 N13 HOLD D14 G14 J2
A14 E1 D12 N12 INTR B7 L12 J3
A15 F1 D13 P13 LOCK c10 M3 J12
A16 G1 D14 P12 M/io A12 M7 J13
A17 H1 D15 M11 NA D13 M13 M4
A18 H2 D16 N11 NMI B8 N4 M8
A19 H3 D17 N10 PEREQ c8 N7 M10
A20 J1 D18 P11 READY G13 P2 N3
A21 K1 D19 P10 RESET Cc9 P8 P6
A22 K2 D20 M9 W/R B10 P14
A23 L1 D21 N9
A24 L2 D22 P9
A25 K3 D23 N8
A26 M1 D24 P7
A27 N1 D25 N6
A28 L3 D26 P5
A29 M2 D27 N5
A30 P1 D28 M6
A31 N2 D29 P4
D30 P3
D31 M5

Am386 Microprocessors for Personal Computers

AMD a

CONNECTION DIAGRAMS (continued)
PGA Pin Designations (sorted by Pin Number)

Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin
No. Name No. Name | No. Name | No. Name | No. Name | No. Name
A1 Vee B9 BUSY D3 A9 H1 A17 L13 D8 N7 Vee
A2 Vss B10 W/R D12 Vee H2 A18 L14 D6 N8 D23
A3 A3 B11 Vss D13 NA H3 A19 M1 A26 N9 D21
A4 NC B12 NC D14 HOLD H12 Do M2 A29 N10 D17
A5 Vee B13 BE2 E1 Al4 H13 D1 M3 Vee N11 D16
A6 Vss B14 Vs E2 A13 H14 D2 M4 Vss N12 D12
A7 Vee c1 A8 E3 A12 J1 A20 M5 D31 N13 D11
A8 ERROR | C2 A7 E12 BEO J2 Vss M6 D28 N14 D9
A9 Vss C3 A6 E13 NC J3 Vss M7 Vee P1 A30
A10 Vee C4 A2 E14 ADS J12 Vss M8 Vss P2 Vee
A1 D/C C5 Vee F1 A15 J13 Vss M9 D20 P3 D30
A12 Mo cé NC F2 Vss Ji4 D3 M10 Vs P4 D29
A13 BE3 c7 NC F3 Vss K1 A21 Mi1 D15 P5 D26
Al4 Vee c8 PEREQ | F12 CLK2 K2 A22 M12 D10 P6 Vss
B1 Vss Cc9 RESET | F13 NC K3 A25 M13 Vee P7 D24
B2 A5 Cio [OCK | F14 Vss Ki2 D7 M14 HLDA P8 Vee
B3 A4 C11 Vss G1 A16 K13 D5 N1 A27 P9 D22
B4 NC C12 Ve G2 Voo K14 D4 N2 A31 P10 D19
B5 Vss Cc13 BET G3 Vee L1 A23 N3 Vss P11 D18
B6 NC C14 BST6 G12 Voo L2 A24 N4 Veo P12 D14
B7 INTR D1 A1 G13 READY| L3 A28 N5 D27 P13 D13
B8 NMI D2 A10 G14 Ve L12 Ve N6 D25 P14 Vs

Am386DX/DXL Microprocessor Data Sheet

a AMD

CONNECTION DIAGRAMS (continued)
132-Lead Plastic Quad Flat Pack (PQFP) Package — Top Side View

s PP P22 838 N3 8388 s8R 3338358 8

>OoO000>000>>0000>00>00>>000>

HInnnnnnninnnnnnnmnmmnnm

02X LLIANTL2RE2RIPN-23858
Vss] 1@
Vo [2
D13 [3
D12 [4
D11 [5
D10] 6
Des [7
HLDA [] 8
D8 [o
Ves [10
Vss [11
D7 4 12
De [13
Ds [14
Da [15
Voo [16
D3 [17
D2 [18
D1] 19
Do] 20
Vss T 21
Vee [22
Vss [23
CLK2 [] 24
Vss:25
READY [26
ADS [27
HOLD [28
BS1e [] 29
NA [30
BEO [] 31
BET [32
BEz [33

388538337923 2L522353B33IB85388

1 s gagnnm

e B TR TR R R

1 %m& E -

Notes: Pin 1 is marked for orientation.

105 |1 Vs

NC [61

104 1 A31

NC [62

103 [A30

NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility with future

shippings of the Am386DX/DXL microprocessor.

NC L[63
Vss] 64

102 1 A29

101 1 A28

Ves [65

100 (1 A27

Vss =] 66

99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
7
70
69
68
67

A19
A18
A17
Veo
A16
VSS
A15
Al14
Vss
A13
A12
A1
A10
A9
A8
VCC

A6
A5
A4
A3
A2

Am386 Microprocessors for Personal Computers

AMD n

CONNECTION DIAGRAMS (continued)
132-Lead Plastic Quad Flat Pack (PQFP) Package — Pin Side View

41 1 DC

ERROR
FLT

55 1 Vss

42 1 LOCK
43 [J WR

45 1 RESET
46 [1 BUSY

47 1

50 [PEREQ

36 1 NC
37 23 NC
38 [BE3
39 [NC
40 [J Mio
44 [Vss
48 [Vss
49 1 Vo
51 1 Vss
52 [NMI
53 [INTR
56 1 Voo
57 1 Vss
58 [Ve
59 1 NC
60 =1 NC
61 —1 NC
62 1 NC
63 —1 NC

8 4
> =
i
S8

9
8
7
6
5
4
3
2
1

Ves 1132
D14 1131
D15 C]130
D16 []129
D17 C]128
Ve 4127
D18 []126
D19 []125
D20 1124
Voo 4123
Ves 122
D21 3121
D22 1120
D23 [—]119
D24 []118
Voo 4117
D2s C]116
D26 1115
Ves 114
D27 []118
D2s 1112
Ves 111
Voo 1110
D29 [—]109
D30 []108
D31 107
Vee []106
Vss 1105
A31 [J104
A30 []103
A29 []102
A28 1101
A27 £]100

Notes: Pin 1 is marked for orientation.
NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility with future
shippings of the Am386DX/DXL microprocessor.

64] Vs

65 |—1 Vss

66 | Vss

A23
A24
A25
A26
Voo

Am386DX/DXL Microprocessor Data Sheet

ﬂ AMD

CONNECTION DIAGRAMS (continued)
PQFP Pin Designations (sorted by Functional Grouping)

Address Data Control NC Vee Vss
Pin Pin Pin Pin Pin Pin Pin Pin Pin
Name No. Name No. Name No. No. No. No.
A2 67 Do 20 ADS 27 36 2 1
A3 68 D1 19 BEO 31 37 16 10
A4 69 D2 18 BET 32 39 22 11
A5 70 D3 17 BE2 33 59 34 21
A6 71 D4 15 BE3 38 60 49 23
A7 72 D5 14 BS16 29 61 56 25
A8 74 Dé 13 BUSY 46 62 58 35
A9 75 D7 12 CLK2 24 63 73 44
A10 76 D8 9 D/C 41 85 48
A1 77 D9 7 ERROR 47 99 51
A12 78 D10 6 FLT 54 106 55
A13 79 D11 5 HLDA 8 110 57
A4 81 D12 4 HOLD 28 117 64
A15 82 D13 3 INTR 53 123 65
A16 84 D14 131 LOCK 42 127 66
A17 86 D15 130 Mo 40 80
A18 87 D16 129 NA 30 83
A19 88 D17 128 NMI 52 90
A20 89 D18 126 PEREQ 50 91
A21 93 D19 125 READY 26 92
A22 94 D20 124 RESET 45 105
A23 95 D21 121 W/R 43 111
A24 96 D22 120 114
A25 97 D23 119 122
A26 98 D24 118 132
A27 100 D25 116
A28 101 D26 115
A29 102 D27 113
A30 103 D28 112
A31 104 D29 109
D30 108
D31 107
10 Am386 Microprocessors for Personal Computers

CONNECTION DIAGRAMS (continued)
PQFP Pin Designations (sorted by Pin Number)

Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin
No. Name No. Name | No. Name | No. Name | No. Name | No. Name
1 Vss 23 Vss 45 RESET | 67 A2 89 A20 111 Vss
2 Vee 24 CLK2 46 BUSY 68 A3 90 Vss 112 D28
3 D13 25 Vss 47 ERROR| 69 A4 91 Vss 113 D27
4 D12 26 READY | 48 Vss 70 A5 92 Vss 114 Vss
5 D11 27 ADS 49 Vee 71 A6 93 A21 115 D26
6 D10 28 HOLD 50 PEREQ| 72 A7 94 A22 116 D25
7 D9 29 BS16 51 Vss 73 Voo 95 A23 117 Vee
8 HLDA 30 NA 52 NMI 74 A8 9 A24 118 D24
9 D8 31 BEO 53 INTR 75 A9 97 A25 119 D23
10 Vss 32 BET 54 FLT 76 A10 98 A26 120 D22
1 Vss 33 BE2 55 Vss 77 A1 99 Vee 121 D21
12 D7 34 Vee 56 Vee 78 A12 100 A27 122 Vss
13 D6 35 Vss 57 Vss 79 A13 101 A28 123 Vee
14 D5 36 NC 58 Vee 80 Vss 102 A29 124 D20
15 D4 37 NC 59 NC 81 A14 102 A30 125 D19
16 Vee 38 BE3 60 NC 82 A15 104 A31 126 D18
17 D3 39 NC 61 NC 83 Vss 105 Vss 127 Vee
18 D2 40 Y/} 62 NC 84 A16 106 Vee 128 D17
19 D1 41 D/C 63 NC 85 Vee 107 D31 129 D16
20 Do 42 LOCK 64 Vss 86 A17 108 D30 130 D15
21 Vss 43 WR 65 Vss 87 A18 109 D29 131 D14
22 Vee 44 Vss 66 Vss 88 A19 110 Vee 132 Vss

Am386DX/DXL Microprocessor Data Sheet

1

n AMD

LOGIC SYMBOL
2X Clock —{CLK2 D31-D0 <__37_>
< T30_| A31-A2
Addrsls]g FLT l¢e——
< 4 BE3-BEO
RESET [¢——
NMI [¢——
—P|BsTe INTR j&———
Bus | ——— ADS
Cycle —
Control » NA
——»| READY
PEREQ [¢——
+—Wwr BUSY ¢——
Bus | «—— D6 ERROR [¢———
Cycle
Definition | €| W10
4——[OCK
HOLD HLDA

I

Bus Arbitration
Control

Data Bus

Float

Interrupt

Control

Math
Coprocessor
Control

15021B-003

12 Am386 Microprocessors for Personal Computers

AMD a

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of the elements below.

A 80386DXL 33

T— OPTIONAL PROCESSING (PQFP Only)

None = Trimmed and Formed PQFP in High Temp Trays
/F = Ringed PQFP in Horizontal Tubes

TEMPERATURE RANGE

Blank = Commercial (Tcase = 0°C to +85°C for PGA)
(Tcase = 0°C to +100°C for PQFP)

SPEED OPTION

-40=40 MHz
-33=33 MHz
-25=25 MHz
-20=20 MHz

DEVICE NUMBER/DESCRIPTION

80386DX/DXL
Am386DX/DXL High-Performance, Low-Power, 32-Bit Microprocessor

PACKAGE TYPE

A = 132-Lead Ceramic Pin Grid Array (CGX 132)
NG = 132-Lead Plastic Quad Flat Pack (PQB 132)

Valid Combinations

Valid Combinations
Valid Combinations lists configurations planned to
be supported in volume for this device. All speeds
may not be available in all package combinations.

Consult the local AMD sales office to confirm
availability of specific valid combinations and to

40
AB0386DX/DXL -33
-25
-20

NG80386DX 40, —40/F

33, -33/F

NG80386DX/DXL oo our

check on newly released combinations.

Am386DX/DXL Microprocessor Data Sheet 13

n AMD

PIN DESCRIPTION

A31-A2

Address Bus (Outputs)

Outputs physical memory or port I/O addresses.

ADS
Address Status (Active Low; Output)
Indicates that a valid bus cycle definition and address

are being driven at the Am386DX/DXL microprocessor
pins.

BE3-BEO

Byte Enables (Active Low; Outputs)

Indicate which data bytes of the data bus take part in a
bus cycle.

BS16

Bus Size 16 (Active Low; Input)

Allows direct connection of 32-bit and 16-bit data buses.

BUSY
Busy (Active Low; input)
Signals a busy condition from a processor extension.

CLK2

Clock (Input)

Provides the fundamental timing for the Am386DX/DXL
microprocessor.

D31-DO

Data Bus (Inputs/Outputs)

Inputs data during memory, 1/0, and interrupt acknow-
ledge read cycles and outputs data during memory and
1/0 write cycles.

D/C

Data/Control (Output)

A bus cycie definition pin that distinguishes data cycles,
either memory or /O, from control cycles which are:
interrupt acknowledge, halt, and instruction fetching.
ERROR

Error (Active Low; Input)

Signals an error condition from a processor extension.

FLT
Float (Active Low; Input)

An input signal which forces all bidirectional and output
signals, including HLDA, to the three-state condition.

FLT has aninternal pull-up resistor, and if it is not used it
should be unconnected.

HLDA

Bus Hold Acknowledge (Active High; Output)
Indicates that the Am386DX/DXL microprocessor has
surrendered control of its local bus to another bus
master.

HOLD

Bus Hold Request (Active High; Input)

Allows another bus master to request control of the local
bus.

INTR

Interrupt Request (Active High; Input)

A maskable input that signals the Am386DX/DXL micro-
processor to suspend execution of the current program
and execute an interrupt acknowledge function.

LocK

Bus Lock (Active Low; Output)

A bus cycle definition pin that indicates that other sys-
tem bus masters are denied access to the system bus
while it is active.

Mo

Memory 1/0 (Output)

A bus cycle definition pin that distinguishes memory
cycles from input/output cycles.

NA

Next Address (Active Low; Input)

Used to request address pipelining.

NC

No Connect

Should aiways remain unconnected. Connection of a
NC pin may cause the processor to malfunction or be
incompatible with future steppings of the Am386DX/
DXL microprocessor.

NMI

Non-Maskable Interrupt Request

(Active High; Input)

A non-maskable input that signals the Am386DX/DXL
microprocessor to suspend execution of the current pro-
gram and execute an interrupt acknowledge function.
PEREQ

Processor Extension Request (Active High; Input)
Indicates that the processor extension has data to be
transferred by the Am386DX/DXL microprocessor.
READY

Bus Ready (Active Low; Input)

Terminates the bus cycle.

RESET

Reset (Active High; Input)

Suspends any operation in progress and places the
Am386DX/DXL microprocessor in a known reset state.
Vee

System Power (Input)

Provides the +5-V nominal DC supply input.

Vss

System Ground (Input)

Provides 0-V connection from which all inputs and out-
puts are measured.

WR

Write/Read (Output)

A bus cycle definition pin that distinguishes write cycles
from read cycles.

14 Am386 Microprocessors for Personal Computers

AMD a

BASE ARCHITECTURE

Introduction

The Am386DX/DXL microprocessor consists of a
central processing unit, a memory management unit,
and a bus interface.

The central processing unit consists of the execution
unit and instruction unit. The execution unit contains
the eight 32-bit general purpose registers that are used
for both address calculation, data operations, and a
64-bit barrel shifter used to speed shift, rotate, multiply,
and divide operations. The multiply and divide logic
uses a 1-bit per cycle algorithm. The multiply algorithm
stops the iteration when the most significant bits of
the multiplier are all zero. This allows typical 32-bit
multiplies to be executed in under 1 ms. The instruction
unit decodes the instruction op-codes and stores them
in the decoded instruction queue for immediate use by
the execution unit.

The Memory Management Unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability and efficient
sharing. The paging mechanism operates beneath and
is transparent to the segmentation process to allow
management of the physical address space. Each
segment is divided into one or more 4-Kb pages. To
implement a virtual memory system, the Am386 DX/DXL
microprocessor supports full restartability for all page
and segment faults.

Memory is organized into one or more variable length
segments, each up to 4 Gb in size. A given region of the
linear address space, a segment, can have attributes
associated with it. These attributes include its location,
size, type (i.e., stack, code, or data), and protection
characteristics. Each task on an Am386DX/DXL micro-
processor can have a maximum of 16,381 segments of
up to 4 Gb each, thus providing 64 tb (trillion bytes) or
virtual memory to each task.

The segmentation unit provides four levels of protection
for isolating and protecting applications and the
operating system from each other. The hardware
enforced protection allows the design of system with a
high degree of integrity.

The Am386DX/DXL microprocessor has two modes of
operation: Real Address Mode (Real Mode) and Pro-
tected Virtual Address Mode (Protected Mode). In Real
Mode, the Am386DX/DXL device operates as a very
fast 8086 but with 32-bit extensions, if desired. Real
Mode is required primarily to setup the processor for
Protected Mode operation. Protected Mode provides

address to the sophisticated memory management,
paging, and privilege capabilities of the processor.
Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086
semantics, thus allowing 8086 software (an application
program or an entire operating system) to execute. The
Virtual 8086 tasks can be isolated and protected from
one another and the host Am386DX/DXL microproces-
sor operating system by the use of paging and the I/O
Permission Bitmap.

Finally, to facilitate high-performance system hardware
designs, the Am386DX/DXL microprocessor bus inter-
face offers address pipelining, dynamic data bus sizing,
and direct Byte Enable signals for each byte of the
data bus. These hardware features are described fully
beginning in the Functional Data section.

Register Overview
The Am386DX/DXL microprocessor has 32 register re-
sources in the following categories.

e General Purpose Registers

e Segment Registers

¢ Instruction Pointer and Flags

e Control Registers

e System Address Registers

e Debug Registers

* Test Registers

The registers are a superset of the 8086, 80186, and
80286 registers, so all 16-bit 80186 and 80286

registers are contained within the 32-bit Am386DX/DXL
microprocessor.

Figure 1 shows all the Am386DX/DXL microprocessor
base architecture registers that include the general ad-
dress and data registers, the instruction pointer, and the
flags register. The contents of these registers are task-
specific, so these registers are automatically loaded
with a new context upon a task switch operation.

The base architecture also includes six directly accessi-
ble segments, each up to 4 Gb in size. The segments
are indicated by the selector values placed in
Am386DX/DXL CPU segment registers of Figure 1.
Various selector values can be loaded as a program
executes, if desired.

The selectors are also task specific, so the segment reg-
isters are automatically loaded with new context upon a
task switch operation.

The other types of registers Control, System Address,
Debug, and Test are primarily used by system software.

Am386DX/DXL Microprocessor Data Sheet 15

n AMD

General Data and Address Registers

31 16 15 0
AX EAX
BX EBX
CX ECX
DX EDX
S| ESI
DI EDI
BP EBP
SP ESP
Segment Selector Registers
15 : 0
CS Code
gs Stack
DS
ES Data
FS
GS
Instruction Pointer and Flags Registers
31 16 15 0
IP EIP
FLAGS EFLAGS
15021B-004

Figure 1. Base Architecture Registers

Register Descriptions
General-Purpose Registers

The eight general-pumpose registers of 32 bits hold data
or address quantities. The general registers, Figure 2,
support data operands of 1, 8, 16, 32, and 64 bits and bit
fields of 1 to 32 bits. They support address operands of
16 and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The least significant 16 bits of the registers can be ac-
cessed separately. This is done by using the 16-bit
names of the registers AX, BX, CX, DX, SI, DI, BP, and
SP. When accessed as a 16-bit operand, the upper
16 bits of the register are neither used nor changed.

Finally, 8-bit operations can individually access the
lower byte (bits 7-0) and the higher byte (bits 15-8) of
general purpose registers AX, BX, CX, and DX. The
lower bytes are named AL, BL, CL, and DL, respec-
tively. The higherbytes are named AH, BH, CH, and DH,
respectively. The individual byte accessibility offers
additional flexibility for data operations, but is not used
for effective address calculation.

31 1615 87 0
AH A]X AL EAX
BH B[X BL EBX
CH C|X CL ECX
DH D{X DL EDX
S| ESI
DI EDI
BP EBP
SP ESP

31 16 15 0
EIP

IP
15021B-005

Figure 2. General Registers
and Instruction Pointer

Instruction Pointer

The instruction pointer, Figure 2, is a 32-bit register
named EIP. EIP holds the offset of the next instruction
to be executed. The offset is always relative to the base
of the code segment (CS). The lower 16 bits (bits 15-0)
of EIP contain the 16-bit instruction pointer named IP,
which is used by 16-bit addressing.

Flags Register

The Flags Register is a 32-bit register named EFLAGS.
The defined bits and bit fields within EFLAGS, shown in
Figure 3, control certain operations and indicate status
of the Am386DX/DXL microprocessor. The lower 16 bits
(bits 15-0) of EFLAGS contain the 16-bit flag register
named FLAGS, which is most useful when executing
8086 and 80286 code.

Note in the following descriptions, set means set to 1
and reset means reset to 0.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the Am386DX/DXL
microprocessor is in Protected Mode, the
Am386DX/DXL microprocessor will switch to Vir-
tual 8086 operation, handling segment loads as
the 8086 does, but generating Exception 13 faults
onprivileged op-codes. The VM bit can be set only
in Protected Mode by the IRET instruction (if cur-
rent privilege level = 0) and by task switches at any
privilege level. The VM bit is unaffected by POPF.
PUSHF always pushes a 0 in this bit, even if exe-
cuting in Virtual 8086 Mode. The EFLAGS image
pushed during interrupt processing or saved dur-
ing task switches will contain a 1 in this bit if the in-
terrupted code was executing as a Virtual 8086
task.

16 Am386 Microprocessors for Personal Computers

AMD a

RF

NT

(Resume Flag, bit 16)

The RF flag is used in conjunction with the debug
register breakpoints. It is checked at instruction
boundaries before breakpoint processing. When
RF is set, it causes any debug fault to be ignored
on the next instruction. RF is then automatically
reset at the successful completion of every in-
struction (no faults are signaled) except the IRET
instruction and the POPF instruction. (JMP,
CALL, and INT instructions causing a task switch.)
These instructions set RF to the value specified by
the memory image. For example, at the end of the
breakpoint service routine, the IRET instruction
can pop an EFLAGS image having the RF bit set
and resume the program’s execution at the break-
point address without generating another break-
point fault on the same location.

(Nested Task, bit 14)

This flag applies to Protected Mode. NT is set to
indicate that the execution of this task is nested
within another task. If set, it indicates that the cur-
rent nested task’s Task State Segment (TSS) has
a valid back link to the previous task’s TSS. This
bit is set or reset by control transfers to other
tasks. The value of NT in EFLAGS is tested by the
IRET instruction to determine whether to do an
inter-task return or an intra-task return. A POPF
or an IRET instruction will affect the setting of this
bit according to the image popped at any privilege
level.

IOPL (Input/Output Privilege Level, bits 12-13)

OF

DF

This two-bit field applies to Protected Mode. IOPL
indicates the numerically maximum CPL (current
privilege level) value permitted to execute I/O
instructions without generating an Exception 13
fault or consulting the I/0 Permission Bitmap. It
also indicates the maximum CPL value allowing
alteration of the IF (INTR Enable Flag) bit when
new values are popped into the EFLAGS register.
POPF and IRET instruction can alter the I1OPL
field when executed at CPL=0. Task switches
can always alter the IOPL field when the new flag
image is loaded from the incoming task’s TSS.

(Overflow Flag, bit 11)

OD is set if the operation resulted in a signed over-
flow. Signed overflow occurs when the operation
resulted in carry/borrow into the sign bit (high-
order bit) of the result but did not result in a carry/
borrow out of the high-order bit or vice-versa. For
8-, 16-, and 32-bit operations, OF is set according
to overflow at bits 7, 15, and 31, respectively.

(Direction Flag, bit 10)

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the sg

TF

SF

ZF

AF

PF

CF

instructions. Postincrement occurs if DF is reset.
Postdecrement occurs if DF is set.

(INTR Enable Flag, bit 9)

The IF flag, when set, allows recognition of exter-
nalinterrupts signaled onthe INTR pin. When IF is
reset, externalinterrupts signaled onthe INTR are
not recognized. IOPL indicates the maximum CPL
value allowing alteration of the IF bit when new
values are popped into EFLAGS or FLAGS.

(Trap Enable Flag, bit 8)

TF controls the generation of Exception 1 trap
when single-stepping through code. When TF is
set, the Am386DX/DXL microprocessor gener-
ates an Exception 1 trap after the next instruction
is executed. When TF is reset, Exception 1 traps
occur only as a function of the breakpoint ad-
dresses loaded into debug register DR3-DRO.

(Sign Flag, bit 7)

SF is set if the high-order bit of the result is set; itis
reset otherwise. For 8-, 16-, and 32-bit oper-
ations, SF reflects the state of bits 7, 15, and 31,
respectively.

(Zero Flag, bit 6)

ZF is setiif all bits of the result are 0. Otherwise itis
reset.

(Aucxiliary Carry Flag, bit 4)

The Auxiliary Flag is used to simplify the addition
and subtraction of packed BCD quantities. AF is
set if the operation resulted in a carry out of bit
3 (addition) or a borrow into bit 3 (subtraction).
Otherwise, AF is reset. AF is affected by carry out
of, or borrow into, bit 3 only; regardless of overall
operand length: 8, 16, or 32 bits.

(Parity flags, bit 2)

PF is set if the low-order 8 bits of the operation
contain an even number of 1s (even parity). PF is
reset if the low-order 8 bits have odd parity. PFis a
function of only the low-order 8 bits, regardless of
operand size.

(Carry Flag, bit 0)

CF is set if the operation resulted in a carry out
of (addition) or a borrow into (subtraction) the
high-order bit. Otherwise, CF is reset. For 8-, 16-,
or 32-bit operations, CF is set according to carry/
borrow at bits 7, 15, or 31, respectively.

Am386DX/DXL Microprocessor Data Sheet 17

Flags
R
~ N
332222222222111 1111111
109876543210987 6543210987465 43210
VIR NJIOP|O|D| I |T|S]|Z A P C
EFLAGS Reserved for Future Use MlElolTIL IEIEIEIFIRIFlolFlolEl1]F
Virtual Mode ——T T | T— Carry Flag
Resume Flag Parity Flag
Nested Task Flag Aucxiliary Carry
I/O Privilege Level Zero Flag
Overflow Sign Flag
Direction Flag : Trap Flag
Interrupt Enable
Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.
15021B-006
Figure 3. Flags Registers
Segment
Registers Descriptor Registers (Loaded Automatically)
Other
. Segment
15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CS- —_
Selector SS— — —
Selector DS- —_ ==
Selector ES- — ==
Selector FS- —_ - =
Selector GS- —_ ==
15021B-007

Figure 4. Segment Registers and Associated Descriptor Registers

Segment Registers

Six 16-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. Segment registers are shown in Figure 4. In
Protected Mode, each segment may range in size from
one byte up to the entire linear and physical space of the
machine, 4 Gb (2%2bytes). If a maximum sized segment
is used (limit = FFFFFFFFH), it should be Dword aligned
(i.e., the least two significant bits of the segment base
should be zero). This alignment will avoid a segment
limit violation (Exception 13) caused by the wrap
around. In Real Address Mode, the maximum segment
size is fixed at 64 Kb (2'° bytes).

The six segments addressable at any given moment are
defined by the segment registers: CS, SS, DS, ES, FS,
and GS. The selector in SS indicates the current stack

segment; the selectors in DS, ES, FS, and GS indicate
the current data segments.

Segment Descriptor Registers

The segment descriptor registers are not programmer
visible, yet it is very useful to understand their content.
Inside the Am386DX/DXL microprocessor, a descriptor
register (programmer invisible) is associated with each
programmer-visible segment register, as shown by
Figure 4. Each descriptor register holds a 32-bit seg-
ment base address, a 32-bit segment limit, and the
other necessary segment attributes.

When a selector value is loaded into a segment register,
the associated descriptor register is automatically up-
dated with the correct information. In Real Address
Mode, only the base address is updated directly (by

18

Am386 Microprocessors for Personal Computers

AMD u

shifting the selector value four bits to the left), since the R (Reserved, bit 4)
segment maximum limit and attributes are fixed in Real io bt i ;
Mode. In Protected Mode, the base address, the limit, S RS a e e oo
and the attributes are all updated per the contents of the this bit.
segment descriptor indexed by the selector. . .
TS (Task Switched, bit 3)
Whenever a memory reference occurs, the segment de- . i .
scriptor register associated with the segment being TS is automatically set whenever a task switch
used is automatically involved with the memory refer- operationis performed. If TS is set, a coprocessor
ence. The 32-bit segment base address becomes a ;E\SC‘Iapb? Otp-COdEXWI" :’ta‘r"]s‘; a_lc_>hoprtorcesrs]orgllot
component of the linear address calculation, the 32-bit vailable trap (Exception 7). The trap handler
limit is used for the limit-check operation, and the attrib- typically saves a 387D)-(math coprocessor con-
. ! text belonging to a previous task, loads a 387DX
utes are checked against the type of memory reference math coprocessor state belonging to the current
requested. task, and clears the TS bit before returning to the
Control Registers faulting coprocessor op-code.
The Am386DX/DXL microprocessor has three control EM (Emulate Coprocessor, bit 2)
registers of 32 bits: CRO, CR2, and CR3 to hold machine The Emulate coprocessor bit is set to cause all
state of a global nature (not specific to an individual coprocessor op-codes to generate a Coprocessor
task). These registers, along with System Address Reg- Not Available fault (Exception 7). Itis reset to allow
isters described in the next section, hold machine state coprocessor op-codes to be executed on an ac-
that affects all tasks in the system. To access the Con- tual 387DX math coprocessor (this is the default
trol Registers, load and store instructions are defined. case after reset). Note that thg WAIT op-code is
CRO: Machine Control Register (Includes 80286 not affected by the EM bit setting.
Machine Status Word) MP (Monitor Coprocessor, bit 1)
CRO, shown in Figure 5, contains six defined bits for The MP bit is used in conjunction with the TS bit to
control and status purposes. The low-order 16 bits of determine if the WAIT op-code will generate a
CRO are also known as the Machine Status Word Coprocessor Not Available fault (Exception 7)
(MSW) for compatibility with 80286 Protected Mode. when TS=1. When both MP=1 and TS=1, the
LMSW and SMSW instructions are taken as special ali- WAIT op-code generates a trap. Otherwise,
ases of the load and store CRO operations, where only the WAIT op-code does not generate a trap. Note
the low-order 16 bits of CRO are involved. For compati- that TS is automatically set whenever a task
bility with 80286 operating systems, the Am386DX/DXL switch operation is performed.
microprocessor LMSW instructions work in an identical PE (Protection Enable, bit 0)
fashion to the LMSW instruction on t.he 80286 (i.e., !t The PE bit is set to enable the Protected Mode. If
only operates on the low-order 16 bits of CRO and it PE is reset, the processor operates again in Real
ignores the new bits in CRO) New Am386DX/DXL mi- Mode. PE n’,]ay be set by IOading MSW or CRO. PE
croprocessor operating systems should use the MOV can be reset only by a load into CRO. Resetting
CRO, Reg instruction. the PE bit is typically part of a longer instruction
The defined CRO bits are described below. sequence needed for proper transition from Pro-
tected Mode to Real Mode. Note that for strict
PG (Paging Enable, bit 31) 80286 compatibility, PE cannot be reset by the
The PG bit is set to enable the on-chip paging unit. LMSW instruction.
It is reset to disable the on-chip paging unit.
31 24123 16|15 817 0
Blolofo|ofo]ofo|o|ofo]ofo]|ofo|ofo|o|olo]ofo]ofoo|o|o|R|L|E|M|E| cRo

Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.

Figure 5. Control Register 0

15021B-008

Am386DX/DXL Microprocessor Data Sheet 19

n AMD

CR1: Reserved
CR1 is reserved for future processors.
CR2: Page Fault Linear Address

CR2, shown in Figure 6, holds the 32-bit linear address
that caused the last page fault detected. The error code
pushed onto the page fault handler’s stack when it is in-
voked provides additional status information on this
page fault.

CR3: Page Directory Base Address

CR3, shown in Figure 6, contains the physical base
address of the page directory table. The Am386DX/DXL
microprocessor page directory table is always page-
aligned (4-Kb aligned). Therefore, the lowest 12 bits
of CR3 are ignored when written and they store as
undefined.

A task switch through a TSS that changes the value in
CRB3, or an explicit load into CR3 with any value, will in-
validate all cached page table entries in the paging unit
cache. Note that if the value in CR3 does not change
during the task switch, the cached page table entries are
not flushed.

System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286 CPU and
Am386DX/DXL microprocessor protection model.

These tables or segments are:
GDT (Global Descriptor Table)
IDT (Interrupt Descriptor Table)
LDT (Local Descriptor Table)
TSS (Task State Segment)

The addresses of these tables and segments are stored
in special registers, the System Address and System
Segment Registers illustrated in Figure 7. These
registers are named GDTR, IDTR, LDTR, and TR, re-
spectively. The Protected Mode Architecture section
describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address and
16-bit limit of the GDT and IDT, respectively.

The GDT and IDT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is en-
abled) and 16-bit limit values.

LDTRand TR

These registers hold the 16-bit selector for the LDT
descriptor and the TSS descriptor, respectively.

The LDT and TSS segments, since they are task-
specific segments, are defined by selector values stored
in the system segment registers. Note that a segment
descriptor register (programmer-invisible) is associated
with each system segment register.

31 24123

16{15

8|7 0

Page Fault Linear Address Register

CR2

Page Directory Base Register I OI 0 | 0 | OI OIOI OI OJi) I OIOI o| CR3
Note: 0 indicates “Reserved for Future Use.” Do not define; see Section Compatibility.
. . 15021B-009
Figure 6. Control Registers 2 and 3
System Address Registers
47 32-Bit Linear Base Address 1615 Limit 0
GDTR
IDTR
System Segment .) .
Registers Descriptor Registers (Automatically Loaded)
1' 5 ‘0 32-Bit Linear Base Address 32-Bit Segment Limit Attributes
TR Selector
LDTR Selector
15021B-010

Figure 7. System Address and System Segment Registers

20 Am386 Microprocessors for Personal Computers

AMD a

Debug and Test Registers

Debug Registers: The six programmer accessible de-
bug registers provide on-chip support for debugging.
Debug Registers DR3-DR0O specify the four linear
breakpoints. The Debug Control Register DR7 is used
to set the breakpoints, and the Debug Status Register
DR6 displays the current state of the breakpoints. The
use of the debug registers is described inthe Debugging
Support section.

Test Registers: Two registers are used to control the
testing of the RAM/CAM (Content Addressable Memo-
ries) in the Translation Look-Aside Buffer portion of the
Am386DX/DXL microprocessor. TR6 is the command
test register, and TR7 is the data register that contains
the data of the Translation Look-Aside buffer test. Their
use is discussed in the Testability section. Figure 8
shows the Debug and Test registers.

Debug Registers

31 0
Linear Breakpoint Address 0 DRo
Linear Breakpoint Address 1 DR1
Linear Breakpoint Address 2 DR2
Linear Breakpoint Address 3 DR3
Reserved for Future use. Do not define. DR4
Reserved for Future use. Do not define. DR5
Breakpoint Status DR6
Breakpoint Control DR7

31 Test Registers (For Page Cache) o
Test Control TR6
Test Status TR7

15021B-011

Figure 8. Debug and Test Registers

Register Accessibility

There are a few differences regarding the accessibility
of the registers in Real and Protected Mode. Table 1
summarizes these differences. See the Protected Mode
Architecture section for further details.

Compatibility

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note certain
Am386DX/DXL microprocessor register bits are Re-
served for Future Use. When reserved bits are called
out, treat them as fully undefined. This is essential for
software compatibility with future processors! Follow the
guidelines below:

1. Do not depend on the state of any undefined bits
when testing the values of defined register bits.
Mask them out when testing.

2. Do not depend on the state of any undefined bits
when storing them to memory or another register.

3. Do not depend on the ability to retain information
written into any undefined bits.

4. When loading registers, always load the undefined
bits as zeros.

5. However, registers that have been previously stored
may be reloaded without masking.

Depending upon the values of undefined register bits
will make your software dependent upon the unspeci-
fied Am386DX/DXL microprocessor handling of these
bits. Depending on undefined values risks making soft-
ware incompatible with future processors that define us-
ages for the Am386DX/DXL CPU undefined bits. Avoid
any software dependence upon the state of undefined
Am386DX/DXL CPU register bits.

Table 1. Register Usage

Use In Use In Use In
Real Mode Protected Mode Virtual 8086 Mode
Register Load Store Load Store Load Store
General Registers Yes Yes Yes Yes Yes Yes
Segment Registers Yes Yes Yes Yes Yes Yes
Flag Registers Yes Yes Yes Yes 10PL 10PL
Control Registers Yes Yes PL=0 PL=0 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=0 Yes No No
Debug Control Yes Yes PL=0 PL=0 No No
Test Registers Yes Yes PL=0 PL=0 No No

Notes: PL = 0: The registers can be accessed only when the current privilege level is zero.
IOPL: The PUSHF and POPF instructions are made I/O Privilege Level sensitive in Virtual 8086 Mode.

Am386DX/DXL Microprocessor Data Sheet 21

n AMD

Instruction Set
Instruction Set Overview

The instruction set is divided into nine categories of
operations.

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High Level Language Support
Operating System Support
Processor Control

These Am386DX/DXL microprocessor instructions are
listed in Table 2.

All Am386DX/DXL microprocessor instructions operate
on either 0, 1, 2, or 3 operands where an operand re-
sides in a register in the instruction itself or in memory.
Most zero operand instructions (e.g., CLI, STI) take only
one byte. One operand instructions generally are two
bytes long. The average instruction is 3.2-bytes long.
Since the Am386DX/DXL device has a 16-byte instruc-
tion queue, an average of 5 instructions will be
prefetched. The use of two operands permits the follow-
ing types of common instructions.

Register to Register
Memory to Register
Immediate to Register
Register to Memory
Immediate to Memory

The operands can be either 8-, 16-, or 32-bits long. As a
general rule, when executing code written for the
Am386DX/DXL microprocessor (32-bit code), operands
are 8 or 32 bits; when executing existing 80286 or 8086
code (16-bit code), operands are 8 or 16 bits. Prefixes
can be added to instructions that override the default
length of the operands (i.e., use 32-bit operands for
16-bit code or 16-bit operands for 32-bit code).

Addressing Modes
Addressing Modes Overview

The Am386DX/DXL microprocessor provides a total of
11 addressing modes for instructions to specify oper-
ands. The addressing modes are optimized to allow the
efficient execution of high-level languages such as C
and FORTRAN, and they cover the vast majority of data
references needed by high-level languages.

Register and Inmediate Modes

Two of the addressing modes provide for instructions
that operate on register or immediate operands:

Register Operand Mode: The operand is located in
one of the 8-, 16-, or 32-bit general registers.

Immediate Operand Mode: The operand is included in
the instruction as part of the op-code.

32-Bit Memory Addressing Modes

The remaining nine modes provide a mechanism for
specifying the effective address of an operand. The lin-
ear address consists of two components: the segment
base address and an effective address. The effective
address is calculated by using combinations of the fol-
lowing four address elements.

Displacement: An 8- or 32-bit immediate value follow-
ing the instruction.

Base: The contents of any generai-purpose register.
The Base registers are generally used by compilers to
point to the start of the local variable area.

Index: The contents of any general-purpose register ex-
ceptfor ESP. The Index registers are used to access the
elements of an array, or a string of characters.

Scale: The index register’s value can be multiplied by a
scale factor of either 1, 2, 4, or 8. Scaled index mode is
especially useful for accessing arrays or structures.

Combinations of these four components make up the
nine additional addressing modes. There is no perform-
ance penalty for using any of these addressing combi-
nations, since the effective address calculation is
pipelined with the execution of other instructions.

The one exception is the simultaneous use of Base and
Index components that requires one additional clock.

As shown in Figure 9, the effective address (EA) of
an operand is calculated according to the following
formula.

EA =Base Reg + (Index Reg - Scaling) + Displacement

Direct Mode: The operand’s offset is contained as part
of the instruction as an 8-, 16-, or 32-bit displacement.

Example: INC Word PTR [500]

Register Indirect Mode: A Base register contains the
address of the operand.

Example: MOV [ECX], EDX

Based Mode: A Base register’s contents is added to a
Displacement to form the operands offset.

Example: MOV ECX, [EAX + 24]

22 Am386 Microprocessors for Personal Computers

AMD

pr |

Table 2. Am386DX/DXL Microprocessor Instructions

Table 2a. Data Transfer

Table 2b. Arithmetic Instructions

General Purpose Addition
Mov Move operand ADD Add operands
PUSH | Push operand onto stack ADC Add with carry
POP Pop operand off stack INC Increment operand by 1
PUSHA | Push all registers on stack AAA ASCII adjust for addition
POPA | Pop all registers off stack DAA Decimal adjust for addition
XCHG | Exchange operand register Subtraction
XLAT | Translate sSuB Subtract operands
Conversion SBB Subtract with borrow
MOVZX | Move byte or Word, Dword with zero extension DEC Decrement operand by 1
MOVSX | Move byte or Word, Dword, sign extended NEG Negate operand
CBW Convert byte to Word, or Word to Dword CMP | Compare operands
CWD Convert Word to Dword DAS Decimal adjust for subtraction
CWDE | Convert Word to Dword extended AAS ASCII adjust for subtraction
cDQ Convert Dword to Qword Multiplication
Input/Output MUL Multiply Double/Single Precision
IN Input operand from 1/O space IMUL Integer multiply
ouT Output operand to I/O space AAM ASCII adjust after multiply
Address Object Division
LEA Load effective address DIV Divide unsigned
LDS Load pointer into D segment register DIV Integer divide
LES Load pointer into E segment register AAD ASCI! adjust before division
LFS Load pointer into F segment register
LGS Load pointer into G segment register Table 2c. String Instructions
LSS Load pointer into S (Stack) segment register MOVS | Move byte or Word, Dword string
Flag Manipulation INS Input string from 1/O space
LAHF Load A register from Flags OUTS | Output string to /O space
SAHF Store A register in Flags CMPS | Compare byte or Word, Dword string
PUSHF | Push flags onto stack SCAS | Scan Byte or Word, Dword string
POPE Pop flags off stack LODS | Load byte or Word, Dword string
PUSHFD | Push EFLAGS onto stack STOS | Store byte or Word, Dword string
POPFD | Pop EFLAGS off stack REP | Repeat
cLe Clear Carry Flag EEEE/ Repeat while equal/zero
CLD Clear Direction Flag
RENE/
CcMmC Complement Carry Flag REPNZ | Repeat while not equal/not zero
STC Set Carry Flag
STD Set Direction Flag

Am386DX/DXL Microprocessor Data Sheet

23

a AMD

Table 2. Am386DX/DXL Microprocessor Instructions (continued)

Table 2d. Logical Instructions

Table 2f. Program Control Instructions

- (continued)
Logicals
o7 NoT " Unconditional Transfers
zND “AND" operand CALL Call procedure/task
.operan £ RET Return from procedure
OR “Inclusive OR” operands
- JMP Jump
XOR “Exclusive OR” operands
TEST “Test” operands lteration Controls
Shifts LOOP Loop
SHL/SHR | Shift logical left or right LOOPE/
SAL/SAR | Shit arithmetic left or right LOOPZ | Loop if equal/zero
SHLD/ LOOPNE/
SHRD Double shift left or right LOOPNZ | Loop if not equal/not zero
Rotates JCXZ JUMP if register CX=0
ROL/ROR | Rotate left/right Interrupts
RCL/RCR | Rotate through carry left/right INT Interrupt
Table 2e. Bit Manipulation Instructions INTO Interrupt if overflow
- - I IRET Return from interrupt/task
- Single Bit Instructions CLI Clear interrupt enable
BT Bit Test STI Set interrupt enable
BTS Bit Test and Set
BTR Bit Test and Reset Table 2g. High Level Language Instructions
BTC Bit Test and Complement BOUND | Check array bounds
BSF Bit Scan Forward ENTER | Setup parameter block for entering procedure
BSR Bit Scan Reverse LEAVE Leave procedure
Table 2f. Program Control Instructions Table 2h. Protection Model
Conditional Transfers :lGDI;T ztore global de:crlptor tabli |
tore int t iptor t:
SETCC Set byte equal to condition code - errup. SSolploliEne
- STR Store task register
JA/JNBE Jump if above/not below nor equal -
- SLDT Store local descriptor table
JAE/NB | Jump if above or equal/not below -
- LGDT Load global descriptor table
JB/JNAE Jump if below/not above nor equal . -
- LIDT Load interrupt descriptor table
JBE/UNA | Jump if below or equal/not above -
- LTR Load task register
JC Jump if carry -
- LLDT Load local descriptor table
JENZ Jump if equalizero ARPL Adjust requested privilege level
JG/INLE Jump if greater/not less nor equal j ! - prviee
- LAR Load access rights
JGE/NL Jump if greater or equal/not less —
- LSL Load segment limit
JLAUNGE Jump if less/not greater nor equal VERR/
JLEANG | Jump if less or equal/not greater VERW Verify segment for reading or writing
JINC Jump if not carry LMSW Load machine status word (lower 16 bits
JNE/NZ | Jump if not equal/not zero of CRO)
JNO Jump if not overflow SMSW Store machine status word
JNPAPO_ | Jump if not parity/parity odd Table 2i. Processor Control Instructions
JNS Jump if not sign
JO “Jump if overflow HLT HaIT ,
JP/JPE Jump if parity/parity even WAIT Wait until BUSY negated
JS Jump if sign EscC Escape
LOCK Lock Bus
24 Am386 Microprocessors for Personal Computers

AMD n

Index Mode: An Index register’s contents is added to a
Displacement to form the operands offset.

Example: ADD EAX, TABLE [ESI]
Scaled Index Mode: An Index register’s contents is mul-
tiplied by a scaling factor that is added to a Displace-
ment to form the operands offset.

Example: IMUL EBX, TABLE [ESl 4], 7

Based Index Mode: The contents of a Base register is
added to the contents of an Index register to form the
effective address of an operand.

Example: MOV EAX, [ESI] [EBX]
Based Scaled Index Mode: The contents of an Index
register is multiplied by a Scaling factor and the result is
added to the contents of a Base register to obtain the
operands offset.

Example: MOV ECX, [EDX « 8] [EAX]

Based Index Mode with Displacement: The contents of
an Index Register and a Base register’s contents and a
Displacement are all summed together to form the
operand offset.

Example: ADD EDX, [ESI] [EBP + 00FFFFFOH]

Based Scaled Index Mode with Displacement: The con-
tents of an Index register are multiplied by a Scaling
factor; the result is added to the contents of a Base reg-
ister and a Displacement to form the operand’s offset.

Example: MOV EAX, LOCALTABLE[EDI ¢ 4] [EBP +80]

Segment Registers
SS

l Base Register I

GS
FS
ES
DS Selector
CS

—(

Access Rights SS |
Access Rights GS J
Access Rights FS 1
Access Rights ES [
Access Rights DS |
Access Rights CS
Limit

Base Address

A\ 4

Index Register I

Scale
1,2,4,0r8

Displacement
(In Instruction)

Effective Seqmgnt
Address Limit
Linear
Descriptor Registers Address

Target Address

LM
1 Selected

. Segment

Segment Base Address

15021B-012

Figure 9. Addressing Mode Calculations

Am386DX/DXL Microprocessor Data Sheet 25

n AMD

Differences Between 16- and 32-Bit Addresses

In order to provide software compatibility with the 80286
and the 8086, the Am386DX/DXL microprocessor can
execute 16-bit instructions in Real and Protected
Modes. The processor determines the size of the in-
structions it is executing by examining the D bitinthe CS
segment descriptor. If the D bit is 0 then all operand
lengths and effective addresses are assumed to be 16
bits long. If the D bit is 1 then the default length for oper-
ands and addresses is 32 bits. In Real Mode, the default
size for operands and addresses is 16 bits.

Regardless of the default precision of the operands or
addresses, the Am386DX/DXL microprocessor is able
to execute either 16- or 32-bit instructions. This is speci-
fied via the use of override prefixes. Two prefixes, the
Operand Size Prefix and the Address Length Prefix,
override the value of the D bit on an individual instruction
basis.

Example: The processor is executing in Real Mode and the
programmer needs to access the EAX registers. The assem-
bler code for this might be MOV EAX, 32-bit MEMORYOP. An
assembler automatically determines that an Operand Size
Prefix is needed and generates it.

Example: The D bit is 0 and the programmer wishes to use
Scaled Index addressing mode to access an array. The
Address Length Prefix allows the use of MOV DX,
TABLE[ESle2]. The assembler uses an Address Length
Prefix, since with D = 0, the default addressing mode is 16 bits.
Example: The D bit is 1 and the program wants to store a
16-bit quantity. The Operand Length Prefix is used to specify
only a 16-bit value: MOV MEM16, DX.

The Operand Length and Address Length prefixes can
be applied separately or in combination to any instruc-
tion. The Address Length Prefix does not allow ad-
dresses over 64 Kb to be accessed in Real Mode. A
memory address exceeding FFFFH will result in a Gen-
eral Protection Fault. An Address Length Prefix only al-
lows the use of the additional Am386DX/DXL micropro-
cessor addressing modes.

When executing 32-bit code, the Am386DX/DXL micro-
processor uses either 8- or 32-bit displacements, and
any register can be used as base or index registers.
When executing 16-bit code, the displacements are
either 8 or 16 bits, and the base and index register
conform to the 80286 model. Table 3 illustrates the
differences.

Data Types

The Am386DX/DXL microprocessor supports all data
types commonly used in high-level languages.

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits that spans a
maximum of four bytes.

Bit String: A set of contiguous bits on the Am386DX/
DXL microprocessor bit strings can be up to 4 Gb long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.

Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit

quantity. All operations assume a 2’s complement
representation.

Unsigned Integer (Word): An unsigned 16-bit quantity.
Unsigned Long Integer (Double Word): An unsigned
32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.
Unsigned Quad Word: An unsigned 64-bit quantity.
Offset: A 16- or 32-bit offset only quantity that indirectly
references another memory location.

Pointer: A full pointer which consists of a 16-bit segment
selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCIl alphanumeric
or control character.

String: A contiguous sequence of bytes, words, or
Dwords. A string may contain between 1 byte and 4 Gb.
BCD: A byte (unpacked) representation of decimai
digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0—9 storing one digit in each nibble.

When the Am386DX/DXL microprocessor is coupled
with a 387DX math coprocessor then the following com-
mon floating point types are supported.

Floating Point: A signed 32-, 64-, or 80-bit real number
representation. Floating point numbers are supported
by a 387DX compatible math coprocessor.

Figure 10 illustrates the data types supported by the
Am386DX/DXL microprocessor and a 387DX compat-
ible math coprocessor.

Table 3. Base and Index Registers for 16- and 32-Bit Addresses

32-Bit Addressing

16-Bit Addressing
Base Register BX, BP
Index Register S|, DI
Scale Factor None
Displacement 0, 8, 16 bits

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP

1,2,4,8

0, 8, 32 bits

26 Am386 Microprocessors for Personal Computers

AMD n

0
Il

0
Signed T l TTT Unsigned | I
Byte Byte
SignBit JL— |
Magnitude Magnitude i
1514 M 87 o 15 + 0 0
Signed FTTT[TTT]TTTTT] Unsigned [T TT [TTT[TTT[TT1
Word Word
Sign Bit 1, LMSB | L |
Magnitude Magnitude
31 +3 +2 16 15 +1 0 0
Signed
Sgned FTTT[TTT[TTT[TTT[TTT[TTT[TTT[TTT
Word
Sign Bit Jl LMsB |
Magnitude
31 +3 +2 16 15 +1 0 °
Unsigned
signed [T T[T T T [TTT[TT T[T TT[TTT[TTT]TT]
Word
L]
Magnitude
63 +7 +6 4847 +5 +4 32 31 +3 +2 16 15 +1 0 0
Signed
Quad
Word
Sign Bit 4, LMSB |
Magnitude
7 +N 0 7 + 07 0 0
Binary [TTT[TT1 TTTTT[TTT[TITT
Coded CTL]
Decimal
(BCD) BCD Digit N BCD Digit 1 BCD Digit 0
7 +N 0 7 + 07 0 0
PP RERRRAREAARAA
°0e
ASCll
ASCII Character N ASCII Character 1 ASCII Character 0
7 +N 0 7 + 07 0 0
Frrprnl RERRRRRRARRAL
Packed eee
BCD
— —
Most Significant Digit Least Significant Digit
s N 0 s H o715 O 0 }
|
By,@III|III.“|II|IIIIII|III ‘
String

Figure 10. Supported Data Types

15021B-013

Am386DX/DXL Microprocessor Data Sheet

27

n AMD

Long
48-Bit
Pointer

32-Bit
Bit Field

*Supported by 387DX-compatible math coprocessor.

Figure 10. Supported Data Types (continued)

+2 Gbits —2 Gbits
210
Bit
String
Bit0
39 +3 +2 +1 0 0
Short
St T T[T T[T T TIT[TTTTIT[TTT]TT]
Pointer
L 1
Offset
47 +5 +4 +3 +2 +1 0 0
Crrp e e ey e T T T rTrprTd
L
Selector Offset
79 +9 +8 +7 +6 +5 +4 +3 +2 +1 0 o
Floating
Point*
Sign Bit J | |
Exponent Magnitude
+5 +4 +3 +2 +1 0
crrp e e e e T T e rrrprTd
le Bit Field »l
= 1 to 32 Bits o
15021B-013

28

Am386 Microprocessors for Personal Computers

AMD a

Memory Organization
Introduction

Memory on the Am386DX/DXL microprocessor is di-
vided up into 8-bit quantities (Bytes), 16-bit quantities
(Words), and 32-bit quantities (Dword). Words are
stored in two consecutive bytes in memory with the low-
order byte at the lowest address, the high-order byte at
the highest address. Dwords are stored in four consecu-
tive bytes in memory with the low-order byte at the low-
est address, the high-order byte at the highest address.
The address of a word or Dword is the byte address of
the low-order byte.

Inadditionto these basic datatypes, the Am386DX/DXL
microprocessor supports two larger units of memory:
pages and segments. Memory can be divided up into
one or more variable length segments, which can be
swapped to disk or shared between programs. Memory
can also be organized into one or more 4-Kb pages.
Finally, both segmentation and paging can be com-
bined, gaining the advantages of both systems. The
Am386DX/DXL microprocessor supports both pages
and segments in order to provide maximum flexibility to
the system designer. Segmentation and paging are
complementary. Segmentation is useful for organizing
memory in logical modules, and as such is a tool for the
application programmer, while pages are useful for the
system programmer for managing the physical memory
of a system.

Address Spaces

The Am386DX/DXL microprocessor has three distinct
address spaces: logical, linear, and physical. A logical

address (also known as a virtual address) consists of a
selector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all of
the addressing components (Base, Index, Displace-
ment) discussed in Section Memory Address Modes
into an effective address. Since each task on Am386DX/
DXL CPU has a maximum of 16K (2'*—1) selectors, and
offsets can be 4 Gb (2%2 bits), this gives a total of 24¢ bits
or 64 tb of logical address space per task. The program-
mer sees this virtual address space.

The segmentation unit translates the logical address
space into a 32-bit linear address space. If the paging
unit is not enabled then the 32-bit linear address corre-
sponds to the physical address. The paging unit trans-
lates the linear address space into the physical address
space. The physical address is what appears on the
address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs the
translation of the logical address into the linear address.
In Real Mode, the segmentation unit shifts the selector
left four bits and adds the result to the offset to form
the linear address. While in Protected Mode, every se-
lector has a linear base address associated with it. The
linear base address is stored in one of two operating
systemtables (i.e., the Local Descriptor Table or Global
Descriptor Table). The selector’s linear base address is
added to the offset to form the final linear address.

Figure 11 shows the relationship between the various
address spaces.

Effective Address Calculation

Index
Base Displacement
Scale 31 0
1,2,4,8
—péq— BE3-BEO
-A2
A3t Physical
30 Effective Address Memory
15 2 0 ,l
R Logical or Segmentation 32 | Paging Unit (32
Selector P Virtual Address <9 Unit . 7] (Optional Use) [T]
ALY Linear Physical
7
- Descriptor Index Address Address
Segment Register
15021B-014

Figure 11. Address Translation

Am386DX/DXL Microprocessor Data Sheet 29

n AMD

Segment Register Usage

The main data structure used to organize memory is the
segment. On the Am386DX/DXL microprocessor, seg-
ments are variable sized blocks of linear addresses that
have certain attributes associated with them. There are
two main types of segments: code and data. The seg-
ments are of variable size and can be as small as 1 byte
or as large as 4 Gb (2% bytes).

In order to provide compact instruction encoding and in-
crease processor performance, instructions do not need
to explicitly specify which segment register is used. A
default segment register is automatically chosen ac-
cording to the rules of Table 4 (Segment Register Selec-
tion Rules). In general, data references use the selector
contained in the DS register; Stack references use the
SSregister; and Instruction fetches use the CS register.
The contents of the Instruction Pointer provides the off-
set. Special segment override prefixes allow the explicit
use of agiven segment register, and override the implicit
rules listed in Table 4. The override prefixes also allow
the use of the ES, FS, and GS segment registers.

There are no restrictions regarding the overlapping of
the base addresses of any segments. Thus, all 6 seg-
ments could have the base address set to zero and
create a system with a 4-Gb linear address space. This
creates a system where the virtual address space is the
same as the linear address space. Further details of
segmentation are discussed in Section Protected Mode
Architecture.

/O Space

The Am386DX/DXL microprocessor has two distinct
physical address spaces: Memory and I/O. Generally,
peripherals are placed in 1/0 space although the
Am386DX/DXL CPU also supports memory-mapped
peripherals. The I/O space consists of 64 Kb and can be
divided into 64K 8-bit ports, 32K 16-bit ports, or 16K
32-bit ports, or any combination of ports that add up to
less than 64 Kb. The 64Kb I/O address space refers to
physical memory rather than linear address since /0O in-
structions do not go through the segmentation or paging
hardware. The M/IO pin acts as an additional address
line, thus allowing the system designer to easily deter-
mine which address space the processor is accessing.

The /O ports are accessed via the IN and OUT /O in-
structions, with the port address supplied as animmedi-
ate 8-bit constant in the instruction or in the DX register.
All 8- and 16-bit port addresses are zero extended on
the upper address lines. The /O instructions cause the
M/IO pin to be driven Low.

1/0 port addresses 00F8H through 00FFH are reserved.

Interrupts

Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow, in order to handie external events, to report errors

or exceptional conditions. The difference between
interrupts and exceptions is that interrupts are used to

Table 4. Segment Register Selection Rules

Type of Memory Reference Implied (Default) Segment Use Segment Override Prefixes Possible
Code Fetch Ccs None
Destination of PUSH, PUSHF, INT, SS None
CALL, PUSHA instructions
Source of POP, POPA, POPF, SS None
IRET, RET Instructions
Destination of STOS, MOVS, REP ES None
STOS, REP MOVS Instructions
(Dlis Base Register)

Other Data References with

Effective Address Using Base

Register of:
[EAX] DS CS, SS, ES, FS, GS
[EBX] DS CS, SS, ES, FS, GS
[ECX] DS CS, SS, ES, FS, GS
[EDX] Ds CS, SS, ES, FS, GS
[ESI] Ds CS, SS, ES, FS, GS
[EDI] DS CS, SS, ES, FS, GS
[EBP] SS CS, SS, ES, FS, GS
[ESP] SS CS, SS, ES, FS, GS

Am386 Microprocessors for Personal Computers

AMD a

handle asynchronous external events while excep-
tions handle instruction faults. Although a program can
generate a software interrupt via an INT n instruction,
the processor treats software interrupts as exceptions.

Hardware interrupts occur as the result of an external
event and are classified into two types: maskable or
non-maskable. Interrupts are serviced after the execu-
tion of the current instruction. After the interrupt handler
is finished servicing the interrupt, execution proceeds
with the instruction immediately after the interrupted in-
struction. The differences between the interrupts are
discussed in the Maskable Interrupt and Non-Maskable
Interrupt sections.

Exceptions are classified as faults, traps, or aborts de-
pending on the way they are reported, and whether or
not restart of the instruction causing the exception is
supported. Faults are exceptions that are detected and
serviced before the execution of the faulting instruction.
A fault occurs in a virtual memory system when the
processor references a page or a segment that is not
present. The operating system fetches the page or seg-
ment from disk, and then the Am386DX/DXL micropro-
cessor restarts the instruction. Traps are exceptions
that are reported immediately after the execution of the
instruction that caused the problem. User defined inter-
rupts are examples of traps. Aborts are exceptions that

do not permit the precise location of the instruction caus-
ing the exception to be determined. Aborts are used to
report severe errors, such as a hardware error or illegal
values in system tables.

Thus, when an interrupt service routine has been com-
pleted, execution proceeds from the instruction immedi-
ately following the interrupted instruction. On the other
hand, the return address from an exception fault routine
will always point at the instruction causing the exception
and include any leading instruction prefixes. Table 5
summarizes the possible interrupts for the Am386DX/
DXL microprocessor and shows where the return ad-
dress points.

The Am386DX/DXL microprocessor has the ability to
handle up to 256 different interrupts/exceptions. In order
to service the interrupts, a table with up to 256 interrupt
vectors must be defined. The interrupt vectors are sim-
ply pointers to the appropriate interrupt service routine.
In Real Mode (see Section Real Mode Introduction),
the vectors are 4 byte quantities, a Code Segment
plus a 16-bit offset; in Protected Mode, the interrupt
vectors are 8 byte quantities that are put in an Inter-
rupt Descriptor Table (see Section Introduction). Of
the 256 possible interrupts, 32 are Reserved for Future
Use, the remaining 224 are free to be used by the
system designer.

Table 5. Interrupt Vector Assignments

Return Address
Points to
Interrupt Faulting
Function Number | Instructions Which Can Cause Exceptions Instruction Type
Divide Error 0 DIV, IDIV Yes FAULT
Debug Exception 1 Any instruction Yes TRAP*
NMI Interrupt 2 INT 2 or NMI No NMI
One Byte Interrupt 3 INT No TRAP
Interrupt on Overflow 4 INTO No TRAP
Array Bounds Check 5 BOUND Yes FAULT
Invalid Op-Code 6 Any illegal instruction Yes FAULT
Device Not Available 7 ESC, WAIT Yes FAULT
Double Fault 8 Any instruction that can generate an Exception ABORT
Coprocessor Segment Overrun 9 ESC No ABORT
Invalid TSS 10 JMP, CALL, IRET, INT Yes FAULT
Segment Not Present 11 Segment register instructions Yes FAULT
Stack Fault 12 Stack references Yes FAULT
General Protection Fault 13 Any memory reference Yes FAULT
Page Fault 14 Any memory access or code fetch Yes FAULT
Reserved for Future Use 15
Coprocessor Error 16 ESC, WAIT Yes FAULT
Reserved for Future Use 17-31
Two Byte Interrupt 0-255 | INTn No TRAP
*Some debug exceptions may report both traps on the previous instruction and faults on the next instruction.
Am386DX/DXL Microprocessor Data Sheet 31

n AMD

Interrupt Processing
When an interrupt occurs the following actions happen.

o First, the current program address and the Flags
are saved on the stack to allow resumption of the
interrupted program.

e Next, an 8-bit vector is supplied to the Am386DX/
DXL microprocessor that identifies the appropriate
entry in the interrupt table. The table contains the
starting address of the interrupt service routine.
Then, the user supplied interrupt service routine is
executed.

o Finally, when an IRET instruction is executed the old
processor state is restored and program execution
resumes at the appropriate instruction.

The 8-bit interrupt vector is supplied to the Am386DX/

DXL microprocessor in several different ways: excep-

tions supply the interrupt vector internally; software INT

instructions contain or imply the vector; maskable hard-
ware interrupts supply the 8-bit vector via the interrupt
acknowledge bus sequence. Non-Maskable hardware

interrupts are assigned to interrupt vector 2.

Maskable Interrupt

Maskable interrupts are the most common way the
Am386DX/DXL microprocessor responds to asynchro-
nous external hardware events. A hardware interrupt
occurs when the INTR is pulled High and the Interrupt
Flag bit (IF) is enabled. The processor only responds to
interrupts between instructions (REPeat String instruc-
tions have an interrupt window between memory
moves, which allows interrupts during long string
moves). When an interrupt occurs, the processor reads
an 8-bit vector supplied by the hardware that identifies
the source of the interrupt (one of 224 user defined inter-
rupts). The exact nature of the interrupt sequence is dis-
cussed in Section Functional Data.

The IF bitinthe EFLAGS register is reset when aninter-
rupt is being serviced. This effectively disables servicing
additional interrupts during an interrupt service routine.
However, the IF bit may be set explicitly by the interrupt
handler to allow the nesting of interrupts. When an IRET
instruction is executed the original state of the IF bit is
restored.

Non-Maskable Interrupt

Non-maskable interrupts provide a method of servicing
very high priority interrupts. A common example of
the use of a non-maskable interrupt (NMI) would be to
activate a power failure routine. When the NMI input
is pulled High it causes an interrupt with an internally
supplied vector value of 2. Unlike a normal hardware
interrupt, no interrupt acknowledgment sequence is per-
formed for NMI.

While executing the NMI servicing procedure, the
Am386DX/DXL microprocessor will not service further
NMi requests until an interrupt return (IRET) instruction
is executed or the processor is reset. If NMI occurs while
currently servicing an NMI, its presence will be saved for

servicing after executing the first IRET instruction. The
IF bit is cleared at the beginning of an NMI interrupt to
inhibit further INTR interrupts.

Software Interrupts

Athird type of interrupt/exception forthe Am386DX/DXL
microprocessor is the software interrupt. An INT n in-
struction causes the processor to execute the interrupt
service routine pointed to by the nth vector in the inter-
rupt table.

A special case of the two byte software interrupt INT nis
the one byte INT 3 or breakpoint interrupt. By inserting
this one byte instruction in a program, the user can set
breakpoints in the program as a debugging tool.

A final type of software interrupt is the single step inter-
rupt. It is discussed in the Debugging Support section.

Interrupt and Exception Priorities

Interrupts are externally-generated events. Mask-
able Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at instruc-
tion boundaries. When NMI and maskable INTR are
both recognized at the same instruction boundary, the
Am386DX/DXL microprocessor invokes the NMI serv-
ice routine first. If after the NMI service routine has been
invoked, maskable interrupts are still enabled, then the
Am386DX/DXL CPU invokes the appropriate interrupt
service routine.

Table 6a. Am386DX/DXL Microprocessor Priority
for Invoking Service Routines in Case of
Simultaneous External Interrupts

1. NMI
2. _INTR

Exceptions are internally-generated events. Exceptions
are detected by the Am386DX/DXL microprocessor if in
the course of executing an instruction, the Am386DX/
DXL CPU detects a problematic condition. The
Am386DX/DXL microprocessor then immediately in-
vokes the appropriate exception service routine. The
state ofthe Am386DX/DXL CPU is suchthat the instruc-
tion causing the exception can be restarted. If the ex-
ception service routine has taken care of the problem-
atic condition, the instruction will execute without caus-
ing the same exception.

It is possible for a single instruction to generate several
exceptions (for example, transferring a single operand
could generate two page faults if the operand location
spans two not present pages). However, only one ex-
ception is generated upon each attempt to execute the
instruction. Each exception service routine should cor-
rect its corresponding exception, and restart the instruc-
tion. Inthis manner, exceptions are serviced until the in-
struction executes successfully.

As the Am386DX/DXL microprocessor executes in-
structions, it follows a consistent cycle in checking for
exceptions, as shownin Table 6b. This cycle is repeated

32 Am386 Microprocessors for Personal Computers

AMD n

as each instruction is executed and occurs in paraliel
with instruction decoding and execution.

Instruction Restart

The Am386DX/DXL microprocessor fully supports re-
starting all instructions after faults. If an exception is
detected in the instruction to be executed (Exception
Categories 4 through 10 in Table 6b), the Am386DX/
DXL device invokes the appropriate exception service
routine. The Am386DX/DXL microprocessoris in a state
that permits restart of the instruction, for all cases but
those in Table 6c. Note that all such cases are easily
avoided by proper design of the operating system.

Table 6b. Sequence of Exception Checking

Consider the case of the Am386DX/DXL microprocessor
having just completed an instruction. It then performs the
following checks before reaching the point where the next
instruction is completed:

1. Check for Exception 1 Traps from the instruction just
completed (single-step via Trap Flag or Data Breakpoints
set in the Debug Registers).

2. Check for Exception 1 Faults in the next instruction
(Instruction Execution Breakpoint set in the Debug
Registers for the next instruction).

Check for external NMI and INTR.

Check for Segmentation Faults that prevented fetching
the entire next instruction (Exceptions 11 and 13).

5. Check for Paging Faults that prevented fetching the
entire next instruction (Exception 14).

6. Check for Faults decoding the next instruction [Exception
6 if illegal op-code; Exception 6 if in Real Mode or in
Virtual 8086 Mode and attempting to execute an
instruction for Protected Mode only (see Section
Protection and I/O Permission Bitmap); or Exception 13 if
instruction is longer than 15 bytes, or privilege violation in
Protected Mode (i.e., not at IOPL or at CPL =0)].

7. If WAIT op-code, check if TS =1 and MP = 1 (Exception 7
if both are 1).

8. If ESCAPE op-code for numeric coprocessor, check if
EM=1or TS=1 (Exception 7 if either are 1).

9. If WAIT op-code or ESCAPE op-code for numeric
coprocessor, check ERROR input signal (Exception 16 if
ERROR input is asserted).

10. Check in the following order for each memory reference
required by the instruction.

a. Check for Segmentation Faults that prevent trans-
ferring the entire memory quantity
(Exceptions 11, 12, 13).

b. Check for Page Faults that prevent transferring
the entire memory quantity (Exception 14).

Note that the order stated supports the concept of the paging mecha-
nism being underneath the segmentation mechanism. Therefore, for
any given code or data reference in memory, segmentation excep-
tions are generated before paging exceptions are generated.

Table 6c. Conditions Preventing
Instruction Restart

1. Aninstruction causes a task switch to a task whose Task
State Segment (TSS) is partially not present. (An entire
not present TSS is restartable.) Partially present TSS'’s
can be avoided either by keeping the TSS’s of such tasks
present in memory or by aligning TSS segments to reside
entirely within a single 4K page (for TSS segments of
4 Kb or less).

2. A coprocessor operand wraps around the top of a 64-Kb
segment or a 4-Gb segment and spans three pages; and
the page holding the middle portion of the operand is not
present. This condition can be avoided by starting any
segments containing coprocessor operands at a page
boundary if the segments are approximately 64—200 Kb
or larger (i.e., large enough for wraparound of the
coprocessor operand to possibly occur).

Note that these conditions are avoided by using the operating system
designs mentioned in this table.

Double Fault

A Double Fault (Exception 8) results when the proces-
sor attempts to invoke an exception service routine for
the segment exceptions (10, 11, 12, or 13), but in the
process of doing so, detects an exception other than a
Page Fault (Exception 14).

A Double Fault (Exception 8) will also be generated
when the processor attempts to invoke the Page Fault
(Exception 14) service routine, and detects an excep-
tion other than a second Page Fault. In any functional
system, the entire Page Fault service routine must re-
main present in memory.

Double Page faults however do not raise the Double
Fault exception. If a second Page Fault occurs while the
processor is attempting to enter the service routine for
the first time, then the processor will invoke the Page
Fault (Exception 14) handler a second time rather than
the Double Fault (Exception 8) handler. A subsequent
fault, though, will lead to shutdown.

When a Double Fault occurs, the Am386DX/DXL micro-
processor invokes the exception service routine for
Exception 8.

Reset and Initialization

When the processor is initialized or Reset, the registers
have the values shown in Table 7. The Am386DX/DXL
microprocessor will then start executing instructions
near the top of physical memory, at location
FFFFFFFOH. Whenthe first Inter-Segment Jump or Call
is executed, address lines A31—A20 will drop Low for
CS-relative memory cycles, and the Am386DX/DXL
microprocessor will only execute instructions in the
lower 1 Mb of physical memory. This allows the system
designer to use a ROM at the top of physical memory
to initialize the system and take care of Resets.

Am386DX/DXL Microprocessor Data Sheet 33

n AMD

RESET forces the Am386DX/DXL microprocessor to
terminate all execution and local bus activity. No instruc-
tion execution or bus activity will occur as long as Reset
is active. Between 350- and 450-CLK2 periods after
Reset becomes inactive, the Am386DX/DXL device
will start executing instructions at the top of physical
memory.

Table 7. Register Values after Reset

Flag Word UUUU0002H Note 1

Machine Status Word (CR0) UUUUUUUOH Note 2

Instruction Pointer 0000FFFOH

Code Segment FOOOH Note 3

Data Segment 0000H

Stack Segment 0000H

Extra Segment (ES) 0000H

Extra Segment (FS) 0000H

Extra Segment (GS) 0000H

DX Register Component and Note 5
Stepping ID

All Other Registers Undefined Note 4

Notes:

1. EFLAGS Register. The upper 14 bits of the EFLAGS register are
undefined, VM (Bit 17) and RF (Bit 16) and 0 (Bit 15) are all other
defined flag bits.

2. CRO: (Machine Status Word). All of the defined fields in the CRO
are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and PE
Bit0).

3. The code Segment Register (CS) will have its Base Address set
to FFFFO000H and Limit set to OFFFFH.

4. Allundefined bits are Reserved for Future Use and should not be
used.

5. DXregister always holds component and stepping identifier (see
Section Component and Revision Identifiers). EAX register holds
self-test signature if self-test was requested (see Section Self-
Test Signature).

Testability
Self-Test

The Am386DX/DXL microprocessor has the capability
to perform a self-test. The self-test checks the function
of alithe Control ROM and most of the non-random logic
of the part. Approximately one-half of the Am386DX/
DXL microprocessor can be tested during self-test.

Self-Test is initiated on the Am386DX/DXL micropro-
cessor when the RESET pin transitions from High to
Low, andthe BUSY pinis Low. The self-test takes about
2" clocks or approximately 26 ms with a 20-MHz
Am386DX/DXL device. At the completion of self-test,
the processor performs reset and begins normal opera-
tion. The part has successfully passed self-test if the
contents of the EAX register are zero (0). If the results of
EAXare not zero then the self-test has detected aflaw in
the part.

TLB Testing

The Am386DX/DXL microprocessor provides a mecha-
nism for testing the Translation Look-Aside Buffer (TLB)

if desired. This particular mechanism is unique to the
Am386DX/DXL CPU and may not be continued in the
same way in future processors. When testing the TLB,
paging must be turned off (PG = 0 in CRO0) to enable the
TLB testing hardware and avoid interference with the
test data being written to the TLB.

There are two TLB testing operations:

1. Write entries into the TLB; and,

2. Perform TLB lookups. Two test registers, shown in
Figure 12, are provided for the purpose of testing.
TR6 is the test command register and TR7 is the test
data register. The fields within these registers are
defined below.

C: This is the command bit. For awrite into TR6 to cause

an immediate write into the TLB entry, write a 0 to this

bit. For a write into TR6 to cause an immediate TLB
lookup, write a 1 to this bit.

Linear Address: This is the tag field of the TLB . On a
TLB write, a TLB entry is allocated to this linear address
and the rest of that TLB entry is set per the value of TR7
and the value just written into TR6. On a TLB lookup, the
TLB is interrogated per this value and if one and only
one TLB entry matches, the rest of the fields of TR6 and
TR7 are set from the matching TLB entry.

Physical Address: This is the data field of the TLB. On
a write to the TLB, the TLB entry allocated to the linear
address in TR6 is set to this value. On a TLB lookup, the
data field (physical address) from the TLB is read out to
here.

PL: On a TLB write, PL = 1 causes the REP field of TR7
to select which of four associative blocks of the TLB is to
be written, but PL = 0 allows the internal pointer in the
paging unit to select which TLB block is written. On a
TLB lookup, the PL bit indicated whether the lookup was
a hit (PL gets set to 1) or a miss (PL gets reset to 0).
V: The valid bit for this TLB entry. All valid bits can also
be cleared by writing to CR3.

D, D: The dirty bit for/from the TLB entry.
U, U: The user bit for/from the TLB entry.
W, W: The writable bit for/from the TLB entry.

For D, U, and W, both the attribute and its complement
are provided as tag bits to permit the option of a don’t
care on TLB lookups. The meaning of these pairs of bits
is given in the following table.

X - | Effect During Value of Bit
X TLB Lookup X after TLB Write
0 0 Miss All Bit X becomes undefined
0 1 Match if X=0 | Bit X becomes 0
1 0 Match if X=1 | Bit X becomes 1
1 1 Match Al Bit X becomes undefined

34 Am386 Microprocessors for Personal Computers

AMD n

For writing a TLB entry:
1. Write TR7 for the desired physical address, PL, and
REP values; and,

2. Write TR6 with the appropriate linear address, etc.,
(be sure to write C =0 for write command).

For looking up (reading) a TLB entry:

1. Write TR6 with the appropriate linear address (be
sure to write C =1 for lookup command); and,

2. Read TR7 and TR6. if