
Arn386 " Microprocessors
for Personal Computers
Data Book

Advanced
Micro

Devices

Am386™ Microprocessors
for Personal Computers

Data Book

ADVANCED MICRO DEVICES

© 1992 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchan­
tability or fitness for a particular application. AMD® assumes no responsibility for the use of any circuitry other than the cir­
cuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change
without notice. AM D assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences
resulting from the use of the information included herein. Additionally, AMD assumes no responsibility for the functioning of
undescribed features or parameters.

Trademarks

AMD is a registered trademark and Am386 is a trademark of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

ii

Am386 MICROPROCESSORS FOR
PERSONAL COMPUTERS

DATA BOOK

AMD ~

Am386DX/DXL Microprocessor Data Sheet .. 1
Am386SX/SXL Microprocessor Data Sheet .. 141

Table of Contents iii

I"

I

I

iv

AMD

Advanced Micro Devices' microprocessors are breaking performance barriers. The
cost effective Am386 microprocessors are ideal for both desktop and battery pow­
ered portable computers. This data book describes the 32-bit Am386 Microprocessor
Family with data sheets on Am386DX/DXL and Am386SX/SXL microprocessors.

Am386 microprocessors are the fastest available with 40 MHz on the Am386DXL
microprocessor, a 21 % performance increase over the 33-MHz version; and 25 MHz
on the Am386SXL microprocessor, a 25% performance increase over the 20-MHz
version. For portable systems the Am386DXLlSXL microprocessors' true static
design allows longer battery life by offering low operating power consumption and a
standby mode.

We also offer 3-V Am386 microprocessors optimized for notebook applications.
Information on these can be found in the AMD® 3-Volt System Logic for Personal
Computers Data Book, publication #17028.

Remember, our partnership helps you gain and keep the competitive edge. We are
not your competition.

Robert G. McConnell
Vice President
Personal Computer Products Division

Introduction

- ~
Am386™DXIDXL
High-Performance, Low-Power, 32-Bit Microprocessor

Advanced
Micro

Devices

DISTINCTIVE CHARACTERISTICS
• Ideal for portable PCs

-True static design for long battery life
(Am386DXL microprocessor)

-Typical standby Icc < 20 /-lA at DC (0 MHz)
(Am386DXL microprocessor)

-Typical operating Icc = 21 0 mA at 33 MHz

-Lower power consumption than Intel i386DX or
Intel i386SX

-Small footprint 132-pin PQFP package

-Wide range of chip sets and BIOS available to
support standby mode capabilities

GENERAL DESCRIPTION

The Am386DXlDXL microprocessor is a high-speed,
true static implementation of the Intel i386DX micropro­
cessor. It is ideal for both desktop and battery-powered
portable personal computers. For desktop PCs, the
Am386DXL microprocessor offers a 21% increase in
the maximum operating speed from 33 to 40 MHz. Also,
this device offers lower heat dissipation, allowing sys­
tem designers to remove or reduce the size and cost of
the system cooling fan.

For portables, the Am386DXL microprocessor's true
static design offers longer battery life with low operating
power consumption and standby mode. At 33 MHz, this

-Performance on demand (0 to 40 MHz)

• Ideal for desktop PCs

-40-,33-,25-, and 20-MHz operating speeds

-Lower heat dissipation facilitates fan reduction or
elimination for cost savings and noise reduction

-Pin-for-pin replacement for Intel i386DX
• Compatible with 386DX systems and software

• Supports 387DX-compatible math
coprocessors

• AMD advanced 0.8 micron CMOS technology

device has 40% lower operating Icc than the Intel
i386DX. Standby mode allows the Am386DXL micro­
processor to be clocked down to 0 MHz (DC) and retain
full register contents. In standby mode, typical current
draw is less than 20 /-lA, nearly a 1000x reduction in
power consumption versus the Intel i386DX or Intel
i386SX.

Additionally, the Am386DXL microprocessor is avail­
able in a small footprint 132-pin plastiC quad flat pack
(PQFP) package. This surface-mount package is 40%
smaller than PGA, allowing smaller, lower-cost board
designs without the need for a socket.

Typical Icc

250

200

Icc (rnA) 150

100

50

o
o 2

Note: Inputs at Vee or Vss.

Publication #: 15021 Rev.D Amendment: 10
Issue Date: October 1992

16 20 25 33

Frequency (MHz)

Typical Power Consumption

o Intel i386DX @ 5.0 V

II Am386DX/DXL CPU @ 5.0 V

D Am386DXL V CPU @ 3.3 V

r
I

~ AMD

BLOCK DIAGRAM

Segmentation Unit Paging Unit Bus Control

¢fl
H

--" "- 3-lnput ~ Request .. ~ Effective AddreSs Bus Adder
32 v

Adder Prioritizer

H
~

L~ 1/32 "
"-

OJ
Descriptor Page ~ (5 Effective Address Bus I ~

32 v
Registers Cache ~ E

" 8 " «
7ii

Control .\1

~ Limit and ~ and /L- ~
rV Attribute rV Y- o.

PLA
Attribute

PLA ~ Address
~ gJ

OJ --V Driver
E
" E .:: " Protection g " ;;

Test Unit 1i ~ u.
Jil " 0 OJ

t-~ ~
~ Pipeline!
~

~ I Internal Control Bus " Bus Size
" lL--V « Control ffi
" " c " ::J a

() , , ,
Barrel

~
MUX! .. Pre- Trans-Shifter, ~ ---1\, Decode Instruction ~ fetcher! ceivers Adder 1- -V and - Decoder --V Limit

Status Sequencing Checker

Multiply!
Flags

Divide

Control
3-Decoded Code 16-Byte

ROM
Instruction Stream Code

Register Vt-- - k= Queue ~ Queue
File ~ ALU

ALUf>

Control Control Instruction Instruction
Predecode Prefetch

Dedicated ALU Bus

32

2 Am386 Microprocessors for Personal Computers

OLD,INTR,
MI, ERROR,
U8Y, RESET,
LOA, FLT

BE3-BEO
A31-A2

M!lO, Die,
WlFf, LOCK,
AD8, B816,
NA,READY

031-00

15021B-OOI

FUNCTIONAL DESCRIPTION

True Static Operation (Am386DXL CPU)
The Am386DXL microprocessor incorporates a true
static design. Unlike dynamic circuit design, the
Am386DXL device eliminates the minimum operating
frequency restriction. It may be clocked from its maxi­
mum speed of 40 MHz all the way down to 0 MHz (DC).
System designers can use this feature to design true
32-bit battery-powered portable PCs with long battery
life.

Standby Mode (Am386DXL CPU)
This true static design allows for a standby mode. At any
of its operating speeds (40 MHz to DC), the Am386DXL
microprocessor will retain its state (i.e., the contents of
all of its registers). By shutting off the clock completely,
the device enters standby mode. Since power con­
sumption is a function of clock frequency, operating
power consumption is reduced as the frequency is low­
ered. In standby mode, typical current draw is reduced
to less than 20 IlA at DC.

Not only does this feature save battery life, but it also
simplifies the design of power-conscious notebook
computers in the following ways:

1. Eliminates the need for software in BIOS to save
and restore the contents of registers.

2. Allows simpler circuitry to control stopping of the
clock since the system does not need to know
the processor state.

AMD ~

Lower Operating Icc
True static design also allows lower operating Icc when
operating at any speed. See the following graph fortypi­
cal current at operating speeds.

Performance On Demand
The Am386DXL microprocessor retains its state at any
speed from 0 MHz (DC)to its maximum operating speed
(20, 25, 33, or 40 MHz). With this feature, system de­
signers may vary the operating speed of the system to
extend the battery life in portable systems.

For example, the system could operate at low speeds
during inactivity or polling operations. However, upon in­
terrupt, the system clock can be increased up to its
maximum speed. After a user-defined time-out period,
the system can be returned to a low (or 0 MHz) operating
speed without losing its state. This design maximizes
life while achieving optimal performance.

Am386DXlDXL Microprocessor Data Sheet 3

I
I'

~ AMD

CONNECTION DIAGRAMS
132-Lead Ceramic Pin Grid Array (PGA) Package-Top Side View

A B C D E F G H J K L M N P

Vee Vss BS16 HOLD ADS VSS Vee D2 D3 D4 D6 HLDA D9 Vss
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BE3 BE2 BE1 NA NC NC READY D1 Vss D5 D8 Vee D11 D13
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MIlO NC Vee Vee BEO CLK2 Vee DO Vss D7 Vee D10 D12 D14
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Die Vss Vss D15 D16 D18
11 0 0 0 0 0 0

Vee WiFi. LOCK Vss D17 D19
10 0 0 0 0 0 0

Vss BUSY RESET D20 D21 D22

9 0 0 0 0 0 0
ERROR NMI PEREQ Vss D23 Vee

8 0 0 0 0 0 0
Vee INTR NC Vee Vee D24

7 0 0 0 0 0 0
Vss NC NC D28 D25 Vss

6 0 0 0 0 0 0
Vee Vss Vee D31 D27 D26

5 0 0 0 0 0 0
NC NC A2 Vss Vee D29

4 0 0 0 0 0 0
A3 A4 A6 A9 A12 Vss Vee A19 Vss A25 A28 Vee Vss D30

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vss A5 A7 A10 A13 Vss Vee A18 Vss A22 A24 A29 A31 Vee

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee Vss A8 A11 A14 A15 A16 A17 A20 A21 A23 A26 A27 A30

0 0 0 0 0 0 0 0 0 0 0 0 0 0

A B C D E F G H J K L M N P

Note: NC = Not connected; connection of any NC pin may cause a malfunction or incompatability with future
shippings of the Am386DXlDXL microprocessor.

4 Am3S6 Microprocessors for Personal Computers

14

13

12

11

10

9

8

7

6

5

4

3

2

CONNECTION DIAGRAMS (continued)

132-Lead Ceramic Pin Grid Array (PGA) Package-Pin Side View

A B C D E F G H J K L M N P

Vee Vss A8 All A14 A15 A16 A17 A20 A21 A23 A26 A27 A30

0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vss A5 A7 Al0 A13 Vss Vee A18 Vss A22 A24 A29 A31 Vee

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3 A4 A6 A9 A12 Vss Vee A19 Vss A25 A28 Vee Vss D30

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NC NC A2 Vss Vee D29

4 0 0 0 0 0 0
Vee Vss Vee D31 D27 D26

5 0 0 0 0 0 0
Vss NC NC D28 D25 Vss

6 0 0 0 0 0 0
Vee INTR NC Vee Vee D24

7 0 0 0 0 0 0
ERROR NMI PEREQ Metal Lid

Vss D23 Vee
8 0 0 0 0 0 0

Vss BUSY RESET D20 D21 D22
9 0 0 0 0 0 0

Vee W/R LOCK Vss D17 D19

10 0 0 0 0 0 0
Die Vss Vss D15 D16 D18

11 0 0 0 0 0 0
MITo NC Vee Vee BED CLK2 Vee DO Vss D7 Vee Dl0 D12 D14

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BE3 BE2 BEl NA NC NC READY Dl Vss D5 D8 Vee Dll D13

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee VSS BS16 HOLD ADS VSS Vee D2 D3 D4 D6 HLDA D9 Vss

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A B C D E F G H J K L M N P

Note: NC= Not connected; connection of any NC pin may cause a malfunction or incompatability with future
shippings of the Am386DXlDXL microprocessor.

Am386DXlDXL Microprocessor Data Sheet

AMD ~

2

3

4

5

6

7

8

9

10

11

12

13

14

5

~ AMD

CONNECTION DIAGRAMS (continued)

PGA Pin Designations (sorted by Functional Grouping)

Address Data Control NC Vee Vss

Pin Pin Pin Pin Pin Pin Pin Pin Pin
Name No. Name No. Name No. No. No. No.

A2 C4 00 H12 ADS E14 A4 Al A2
A3 A3 01 H13 BED E12 84 A5 A6
A4 83 02 H14 BEl C13 86 A7 A9
A5 82 03 J14 BE2 813 812 Al0 81
A6 C3 04 K14 BE3 A13 C6 A14 85
A7 C2 D5 K13 B816 C14 C7 C5 811
A8 Cl 06 L14 BUSY 89 E13 C12 814
A9 03 07 K12 CLK2 F12 F13 012 Cll
Al0 02 08 L13 Ole All G2 F2
All 01 09 N14 ERROR A8 G3 F3
A12 E3 010 M12 HLOA M14 G12 F14
A13 E2 011 N13 HOLO 014 G14 J2
A14 El 012 N12 INTR 87 L12 J3
A15 Fl 013 P13 LOCK Cl0 M3 J12
A16 Gl 014 P12 Moo A12 M7 J13
A17 Hl 015 Mll NA 013 M13 M4
A18 H2 016 Nll NMI 88 N4 M8
A19 H3 017 Nl0 PEREQ C8 N7 Ml0
A20 Jl 018 Pll READY G13 P2 N3
A21 Kl 019 Pl0 RESET C9 P8 P6
A22 K2 020 M9 W/R 810 P14
A23 L1 021 N9
A24 L2 022 P9
A25 K3 023 N8
A26 Ml 024 P7
A27 Nl 025 N6
A28 L3 026 P5
A29 M2 027 N5
A30 Pl 028 M6
A31 N2 029 P4

030 P3
031 M5

6 Am3S6 Microprocessors for Personal Computers

AMD ~
CONNECTION DIAGRAMS (continued)

PGA Pin Designations (sorted by Pin Number)

Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin
No. Name No. Name No. Name No. Name No. Name No. Name

Al Vee 89 BUSY 03 A9 Hl A17 L13 08 N7 Vee

A2 Vss 810 W/P, 012 Vee H2 A18 L14 06 N8 023

A3 A3 811 Vss 013 NA H3 A19 Ml A26 N9 021

A4 NC 812 NC 014 HOLO H12 00 M2 A29 Nl0 017

A5 Vee 813 BE2 El A14 H13 01 M3 Vee Nll 016

A6 Vss 814 Vss E2 A13 H14 02 M4 Vss N12 012

A7 Vee Cl A8 E3 A12 Jl A20 M5 031 N13 011

A8 ERROR C2 A7 E12 BEO J2 Vss M6 028 N14 09

A9 Vss C3 A6 E13 NC J3 Vss M7 Vee Pl A30

Al0 Vee C4 A2 E14 ADS J12 Vss M8 Vss P2 Vee

All Ole C5 Vee Fl A15 J13 Vss M9 020 P3 030

A12 MIlO C6 NC F2 Vss J14 03 Ml0 Vss P4 029

A13 BE3 C7 NC F3 Vss Kl A21 Mll D15 P5 026

A14 Vee C8 PEREa F12 CLK2 K2 A22 M12 010 P6 Vss

81 Vss C9 RESET F13 NC K3 A25 M13 Vee P7 024

82 A5 Cl0 LOCK F14 Vss K12 07 M14 HLOA P8 Vee

83 A4 Cll Vss Gl A16 K13 05 Nl A27 P9 022

84 NC C12 Vee G2 Vee K14 04 N2 A31 Pl0 019

85 Vss C13 BE1 G3 Vee L 1 A23 N3 Vss Pll 018

86 NC C14 BS16 G12 Vee L2 A24 N4 Vee P12 014

87 INTR 01 All G13 READY L3 A28 N5 027 P13 013

88 NMI 02 Al0 G14 Vee L12 Vee N6 025 P14 Vss

Am386DXlDXL Microprocessor Data Sheet 7

~ AMD

CONNECTION DIAGRAMS (continued)

132-Lead Plastic Quad Flat Pack (PQFP) Package-Top Side View

Notes: Pin 1 is marked for orientation.

a

NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility with future
shippings of the Am386DXlDXL microprocessor.

Am3a6 Microprocessors for Personal Computers

CONNECTION DIAGRAMS {continued}

132-Lead Plastic Quad Flat Pack {PQFP} Package - Pin Side View

Notes: Pin 1 is marked for orientation.
NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility with future

shippings of the Am386DXlDXL microprocessor.

Am386DXlDXL Microprocessor Data Sheet

AMD ~

9

~ AMD

CONNECTION DIAGRAMS (continued)

PQFP Pin Designations (sorted by Functional Grouping)

Address Data Control NC Vee V ••

Pin Pin Pin Pin Pin Pin Pin Pin Pin
Name No. Name No. Name No. No. No. No.

A2 67 00 20 ADS 27 36 2 1
A3 68 01 19 BEO 31 37 16 10
A4 69 02 18 BE1 32 39 22 11
A5 70 03 17 BE2 33 59 34 21
A6 71 04 15 BE3 38 60 49 23
A7 72 05 14 BS16 29 61 56 25
A8 74 06 13 BUSY 46 62 58 35
A9 75 07 12 CLK2 24 63 73 44
A10 76 08 9 Oie 41 85 48
A11 77 09 7 ERROR 47 99 51
A12 78 010 6 FLT 54 106 55
A13 79 011 5 HLOA 8 110 57
A14 81 012 4 HOLO 28 117 64
A15 82 013 3 INTR 53 123 65
A16 84 014 131 LOCK 42 127 66
A17 86 015 130 MfiO 40 80
A18 87 016 129 NA 30 83
A19 88 017 128 NMI 52 90
A20 89 018 126 PEREQ 50 91
A21 93 019 125 READY 26 92
A22 94 020 124 RESET 45 105
A23 95 021 121 WfFi. 43 111
A24 96 022 120 114
A25 97 023 119 122
A26 98 024 118 132
A27 100 025 116
A28 101 026 115
A29 102 027 113
A30 103 028 112
A31 104 029 109

030 108
031 107

10 Am3S6 Microprocessors for Personal Computers

AMD ~
CONNECTION DIAGRAMS (continued)

PQFP Pin Designations (sorted by Pin Number)

Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin
No. Name No. Name No. Name No. Name No. Name No. Name

1 Vss 23 Vss 45 RESET 67 A2 89 A20 111 Vss

2 Vee 24 CLK2 46 BUSY 68 A3 90 Vss 112 D28

3 D13 25 Vss 47 ERROR 69 A4 91 Vss 113 D27

4 D12 26 READY 48 Vss 70 A5 92 Vss 114 Vss

5 D11 27 ADS 49 Vee 71 A6 93 A21 115 D26

6 D10 28 HOLD 50 PEREQ 72 A7 94 A22 116 D25

7 D9 29 BS16 51 Vss 73 Vee 95 A23 117 Vee

8 HLDA 30 NA 52 NMI 74 A8 96 A24 118 D24

9 D8 31 BEO 53 INTR 75 A9 97 A25 119 D23

10 Vss 32 BEl 54 FLT 76 A10 98 A26 120 D22

11 Vss 33 BE2 55 Vss 77 A11 99 Vee 121 D21

12 D7 34 Vee 56 Vee 78 A12 100 A27 122 Vss

13 D6 35 Vss 57 Vss 79 A13 101 A28 123 Vee

14 D5 36 NC 58 Vee 80 Vss 102 A29 124 D20

15 D4 37 NC 59 NC 81 A14 102 A30 125 D19

16 Vee 38 BE3 60 NC 82 A15 104 A31 126 D18

17 D3 39 NC 61 NC 83 Vss 105 Vss 127 Vee

18 D2 40 M/iO 62 NC 84 A16 106 Vee 128 D17

19 D1 41 Die 63 NC 85 Vee 107 D31 129 D16

20 DO 42 LOCK 64 Vss 86 A17 108 D30 130 D15

21 Vss 43 W/R 65 Vss 87 A18 109 D29 131 D14

22 Vee 44 Vss 66 Vss 88 A19 110 Vee 132 Vss

i"'l

Am386DXlDXL Microprocessor Data Sheet 11

~ AMD

LOGIC SYMBOL

2X Clock

Address
Bus

Boo { Cycle
Control

r Bus
Cycle

Definition

12

30

4

~ CLK2

A31-A2

BE3-BEO

~ BS16

ADS

NA

~ READY

WlFi.

DIG

Moo
LOCK

HOLD HLDA

Bus Arbitration
Control

D31-DO Data Bus

FLT Float

RESET
NMI) 'mo","

Control
INTR

PEREQ
) Mol" BUSY Coprocessor

ERROR
Control

Am3SS Microprocessors for Personal Computers

15021B-003

ORDERING INFORMATION

Standard Products

AMD ~

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of the elements below.

A
-r-

80386DXL -33 -,
L

Valid Combinations

-40

A80386DXlDXL
-33
-25
-20

NG80386DX -40, -40/F

NG80386DX/DXL
-33, -33/F
-25, -25/F

OPTIONAL PROCESSING (PQFP Only)
None = Trimmed and Formed PQFP in High Temp Trays

IF = Ringed PQFP in Horizontal Tubes

TEMPERATURE RANGE
Blank = Commercial (TCASE = O°C to +85°C for PGA)

SPEED OPTION
-40=40 MHz
-33=33 MHz
-25=25 MHz
-20=20 MHz

(T CASE = O°C to + 100°C for PQFP)

DEVICE NUMBER/DESCRIPTION
80386DXlDXL
Am386DXlDXL High-Performance, Low-Power, 32-Bit Microprocessor

PACKAGE TYPE
A = 132-Lead Ceramic Pin Grid Array (CGX 132)

NG = 132-Lead Plastic Quad Flat Pack (PQB 132)

Valid Combinations
Valid Combinations lists configurations planned to
be supported in volume for this device. All speeds
may not be available in all package combinations.
Consult the local AMD sales office to confirm
availability of specific valid combinations and to
check on newly released combinations.

Am386DXlDXL Microprocessor Data Sheet 13

~ AMD

PIN DESCRIPTION
A31-A2
Address Bus (Outputs)
Outputs physical memory or port I/O addresses.

ADS
Address Status (Active Low; Output)
Indicates that a valid bus cycle definition and address
(WfR, D/e, M/IO, BEQ, BE1, BE2, BE3, and A31-A2)
are being driven at the Am386DXlDXL microprocessor
pins.

BE3-BEO

Byte Enables (Active Low; Outputs)
Indicate which data bytes of the data bus take part in a
bus cycle.

BS16

Bus Size 16 (Active Low; Input)
Allows direct connection of 32-bit and 16-bit data buses.

BUSY
Busy (Active Low; Input)
Signals a busy condition from a processor extension.

CLK2
Clock (Input)
Provides the fundamental timing forthe Am386DXlDXL
microprocessor.

031-00
Data Bus (Inputs/Outputs)
Inputs data during memory, I/O, and interrupt acknow­
ledge read cycles and outputs data during memory and
I/O write cycles.

DfC
Data/Control (Output)
A bus cycle definition pin that distinguishes data cycles,
either memory or I/O, from control cycles which are:
interrupt acknowledge, halt, and instruction letching.

ERROR
Error (Active Low; Input)
Signals an error condition from a processor extension.

FLT
Float (Active Low; Input)
An input signal which forces all bidirectional and output
signals, including HLDA, to the three-state condition.
FL T has an internal pull-up resistor, and if it is not used it
should be unconnected.

HLDA
Bus Hold Acknowledge (Active High; Output)
Indicates that the Am386DXlDXL microprocessor has
surrendered control of its local bus to another bus
master.

HOLD
Bus Hold Request (Active High; Input)
Allows another bus master to request control of the local
bus.

INTR
Interrupt Request (Active High; Input)
A maskable input that signals the Am386DXlDXL micro­
processor to suspend execution of the current program
and execute an interrupt acknowledge function.

LOCK
Bus Lock (Active Low; Output)
A bus cycle definition pin that indicates that other sys­
tem bus masters are denied access to the system bus
while it is active.

MOO
Memory I/O (Output)
A bus cycle definition pin that distinguishes memory
cycles from inpuVoutput cycles.

NA
Next Address (Active Low; Input)
Used to request address pipelining.

NC
No Connect
Should always remain unconnected. Connection of a
NC pin may cause the processor to malfunction or be
incompatible with future steppings of the Am386DXI
DXL microprocessor.

NMI
Non-Maskable Interrupt Request
(Active High; Input)
A non-maskable input that signals the Am386DXlDXL
microprocessor to suspend execution of the current pro­
gram and execute an interrupt acknowledge function.

PEREQ
Processor Extension Request (Active High; Input)
Indicates that the processor extension has data to be
transferred by the Am386DXlDXL microprocessor.

READY
Bus Ready (Active Low; Input)
Terminates the bus cycle.

RESET
Reset (Active High; Input)
Suspends any operation in progress and places the
Am386DXlDXL microprocessor in a known reset state.

Vee
System Power (Input)
Provides the +5-V nominal DC supply input.

Vss
System Ground (Input)
Provides O-V connection from which all inputs and out­
puts are measured.

WfR
Write/Read (Output)
A bus cycle definition pin that distinguishes write cycles
from read cycles.

14 Am3S6 Microprocessors for Personal Computers

BASE ARCHITECTURE

Introduction
The Am386DXlDXL microprocessor consists 01 a
central processing unit, a memory management unit,
and a bus interface.

The central processing unit consists of the execution
unit and instruction unit. The execution unit contains
the eight 32-bit general purpose registers that are used
for both address calculation, data operations, and a
64-bit barrel shifter used to speed shift, rotate, multiply,
and divide operations. The multiply and divide logic
uses a 1-bit per cycle algorithm. The multiply algorithm
stops the iteration when the most significant bits of
the multiplier are all zero. This allows typical 32-bit
multiplies to be executed in under 1 ms. The instruction
unit decodes the instruction op-codes and stores them
in the decoded instruction queue for immediate use by
the execution unit.

The Memory Management Unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability and efficient
sharing. The paging mechanism operates beneath and
is transparent to the segmentation process to allow
management of the physical address space. Each
segment is divided into one or more 4-Kb pages. To
implement a virtual memory system, the Am386DXlDXL
microprocessor supports full restartability for all page
and segment faults.

Memory is organized into one or more variable length
segments, each up to 4 Gb in size. A given region of the
linear address space, a segment, can have attributes
associated with it. These attributes include its location
size, type (Le., staCk, code, or data), and protectio~
characteristics. Each task on an Am386DXlDXL micro­
processor can have a maximum of 16,381 segments of
up to 4 Gb each, thus providing 64 tb (trillion bytes) or
virtual memory to each task.

The segmentation unit provides four levels of protection
for isolating and protecting applications and the
operating system from each other. The hardware
enforced protection allows the design of system with a
high degree of integrity.

The Am386DXlDXL microprocessor has two modes of
operation: Real Address Mode (Real Mode) and Pro­
tected Virtual Address Mode (Protected Mode). In Real
Mode, the Am386DXlDXL device operates as a very
fast 8086 but with 32-bit extensions, if desired. Real
Mode is required primarily to setup the processor for
Protected Mode operation. Protected Mode provides

AMD ~

address to the sophisticated memory management,
paging, and privilege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086
semantics, thus allowing 8086 software (an application
program or an entire operating system) to execute. The
Virtual 8086 tasks can be isolated and protected from
one another and the host Am386DXlDXL microproces­
sor operating system by the use of paging and the I/O
Permission Bitmap.

Finally, to facilitate high-performance system hardware
designs, the Am386DXlDXL microprocessor bus inter­
face o~fers address pipelining, dynamic data bus sizing,
and direct Byte Enable signals for each byte of the
dat~ b~s. "!"hese hard~are features are described fully
beginning In the Functional Data section.

Register Overview
The Am386DXlDXL microprocessor has 32 register re­
sources in the following categories.

• General Purpose Registers

• Segment Registers

• Instruction Pointer and Flags

• Control Registers

• System Address Registers

• Debug Registers

• Test Registers

The registers are a superset of the 8086, 80186, and
80286 registers, so all 16-bit 80186 and 80286
registers are contained within the 32-bit Am386DXlDXL
microprocessor.

Figure 1 shows all the Am386DX/DXL microprocessor
base architecture registers that include the general ad­
dress and data registers, the instruction pOinter, and the
flags register. The contents of these registers are task­
specific, so these registers are automatically loaded
with a new context upon a task switch operation.

The base architecture also includes six directly accessi­
ble segments, each up to 4 Gb in size. The segments
are indicated by the selector values placed in
Am386DXlDXL CPU segment registers of Figure 1.
Various selector values can be loaded as a program
executes, if desired.

The selectors are also task specific, so the segment reg­
isters are automatically loaded with new context upon a
task switch operation.

The other types of registers Control, System Address,
Debug, and Test are primarily used by system software.

Am386DXlDXL Microprocessor Data Sheet 15

AMD

General Data and Address Registers

31 1615 0

AX

BX

CX

DX

SI

DI

BP

SP

Segment Selector Registers
15 0

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

CS Code
SS Stack

~:} Data
FS

GS

Instruction Pointer and Flags Registers
31 1615 0

I
IP

FLAGS
EIP

EFLAGS

150218--{)04

Figure 1. Base Architecture Registers

Register Descriptions
General-Purpose Registers

The eight general-purpose registers of 32 bits hold data
or address quantities. The general registers, Figure 2,
support data operands of 1, 8, 16, 32, and 64 bits and bit
fields of 1 to 32 bits. They support address operands of
16 and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EOX, ESI, EOI, EBP, and ESP.

The least significant 16 bits of the registers can be ac­
cessed separately. This is done by using the 16-bit
names of the registers AX, BX, CX, OX, SI, 01, BP, and
SP. When accessed as a 16-bit operand, the upper
16 bits of the register are neither used nor changed.

Finally, 8-bit operations can individually access the
lower byte (bits 7-0) and the higher byte (bits 15-8) of
general purpose registers AX, BX, CX, and OX. The
lower bytes are named AL, BL, CL, and OL, respec­
tively. The higher bytes are named AH, BH, CH, and OH,
respectively. The individual byte accessibility offers
additional flexibility for data operations, but is not used
for effective address calculation.

31

31

1615 8 7 o
AH AX AL

BH BX BL

CH CX CL

DH D X DL

SI

DI

BP

SP

1615 o

IP

Figure 2. General Registers
and Instruction Pointer

Instruction Pointer

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

EIP

15021&-005

The instruction pOinter, Figure 2, is a 32-bit register
named EIP. EIP holds the offset of the next instruction
to be executed. The offset is always relative to the base
of the code segment (CS). The lower 16 bits (bits 15-0)
of EIP contain the i6-bit instruction pointer named IP,
which is used by i6-bit addreSSing.

Flags Register

The Flags Register is a 32-bit register named EFLAGS.
The defined bits and bit fields within EFLAGS, shown in
Figure 3, control certain operations and indicate status
of the Am3860XlOXL microprocessor. The lower 16 bits
(bits 15-0) of EFLAGS contain the 16-bit flag register
named FLAGS, which is most useful when executing
8086 and 80286 code.

Note in the following descriptions, set means set to i
and reset means reset to O.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the Am3860XlDXL
microprocessor is in Protected Mode, the
Am3860XlOXL microprocessor will switch to Vir­
tual 8086 operation, handling segment loads as
the 8086 does, but generating Exception 13 faults
on privileged op-codes. The VM bit can be set only
in Protected Mode by the IRET instruction (if cur­
rent privilege level = 0) and by task switches at any
privilege level. The VM bit is unaffected by POPF.
PUSHF always pushes a 0 in this bit, even if exe­
cuting in Virtual 8086 Mode. The EFLAGS image
pushed during interrupt processing or saved dur­
ing task switches will contain a 1 in this bit if the in­
terrupted code was executing as a Virtual 8086
task.

16 Am3S6 Microprocessors for Personal Computers

RF (Resume Flag, bit 16)

The RF flag is used in conjunction with the debug
register breakpoints. It is checked at instruction
boundaries before breakpoint processing. When
RF is set, it causes any debug fault to be ignored
on the next instruction. RF is then automatically
reset at the successful completion of every in­
struction (no faults are signaled) except the IRET
instruction and the POPF instruction. (JMP,
CALL, and I NT instructio ns cau sing a task switch.)
These instructions set RF to the value specified by
the memory image. For example, atthe end ofthe
breakpoint service routine, the IRET instru~tion
can pop an EFLAGS image having the RF bit set
and resume the program's execution at the break­
point address without generating another break­
point fault on the same location.

NT (Nested Task, bit 14)

This flag applies to Protected Mode. NT is set to
indicate that the execution of this task is nested
within another task. If set, it indicates that the cur­
rent nested task's Task State Segment (TSS) has
a valid back link to the previous task's TSS. This
bit is set or reset by control transfers to other
tasks. The value of NT in EFLAGS is tested by the
IRET instruction to determine whether to do an
inter-task return or an intra-task return. A POPF
or an IRET instruction will affect the setting of this
bit according to the image popped at any privilege
level.

10PL (Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode. 10PL
indicates the numerically maximum CPL (current
privilege level) value perm!tted to execu.te I/O
instructions without generating an ExcepllOn 13
fault or consulting the I/O Permission Bitmap. It
also indicates the maximum CPL value allowing
alteration of the IF (INTR Enable Flag) bit when
new values are popped into the EFLAGS register.
POPF and IRET instruction can alter the 10PL
field when executed at CPL = O. Task switches
can always alter the 10PL field when the new flag
image is loaded from the incoming task's TSS.

OF (Overflow Flag, bit 11)

OD is set if the operation resulted in asignedover­
flow. Signed overflow occurs when the operation
resulted in carry/borrow into the sign bit (high­
order bit) of the result but did not result in a carry/
borrow out of the high-order bit or vice-versa. For
8-, 16-, and 32-bit operations, OF is set according
to overflow at bits 7, 15, and 31, respectively.

DF (Direction Flag, bit 10)

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the sg

AMD ~
instructions. Postincrement occurs if DF is reset.
Postdecrement occurs if DF is set.

IF (INTR Enable Flag, bit 9)

The IF flag, when set, allows recognition of exter­
nal interrupts signaled onthe INTR pin. When IF is
reset, external interrupts signaled on the INTR are
not recognized. 10PL indicates the maximum CPL
value allowing alteration of the IF bit when new
values are popped into EFLAGS or FLAGS.

TF (Trap Enable Flag, bit 8)

TF controls the generation of Exception 1 trap
when Single-stepping through code. When TF is
set, the Am386DXlDXL microprocessor gener­
ates an Exception 1 trap after the next instruction
is executed. When TF is reset, Exception 1 traps
occur only as a function of the breakpoint ad­
dresses loaded into debug register DR3-DRO.

SF (Sign Flag, bit 7)

SF is set if the high-order bit of the result is set; it is
reset otherwise. For 8-, 16-, and 32-bit oper­
ations, SF reflects the state of bits 7,15, and 31,
respectively.

ZF (Zero Flag, bit 6)

ZF is set if all bits of the result are O. Otherwise it is
reset.

AF (Auxiliary Carry Flag, bit 4)

The Auxiliary Flag is used to simplify the addition
and subtraction of packed BCD quantities. AF is
set if the operation resulted in a carry out of bit
3 (addition) or a borrow into bit 3 (subtraction).
Otherwise, AF is reset. AF is affected by carry out
of, or borrow into, bit 3 only; regardless of overall
operand length: 8, 16, or 32 bits.

PF (Parity flags, bit 2)

PF is set if the low-order 8 bits of the operation
contain an even number of 1 s (even parity). PF is
reset if the low-order 8 bits have odd parity. PF is a
function of only the low-order 8 bits, regardless of
operand size.

CF (Carry Flag, bit 0)

CF is set if the operation resulted in a carry out
of (addition) or a borrow into (subtraction) the
high-order bit. Otherwise, CF is reset. For 8-,16-,
or 32-bit operations, CF is set according to carry/
borrow at bits 7, 15, or 31, respectively.

Am386DXlDXL Microprocessor Data Sheet 17

~ AMD

Flags

r~--------------~---------------,
33222222222211111

098765432098765

EFLAGS Reserved for Future Use

Virtual Mode i r i 1 i r i ~ Carry Flag Resume Flag _____________ ---l Parity Flag

Nested Task Flag ---------------------1 '-------------
1/0 Privilege Level Auxiliary Carry

~~ - - ~~ '------------------- Sign Flag
Direction Flag Trap Flag

Interrupt Enable ___________________________ ---1

Note: 0 indicates "Reserved for Future Use: Do not define; see Section Compatibility.

150218-006

Figure 3. Flags Registers

Segment
Registers Descriptor Registers (Loaded Automatically)

Other

15 o Physical Base Address Segment Limit
Segment

Attributes from Descriptor

Selector

Selector

CS-
SS. 1----------t------+-1--~4_~_+--~+=~~

Selector

Selector

DS­
ES-r----------t------+-~-+~--~4-~=+~~
FS_r----------t------+-~-+~--~4-~=+~~ Selector

Selector GS '---______ ~ __ ~~~_L_L_L~~~

150218-007

Figure 4. Segment Registers and Associated Descriptor Registers

Segment Registers

Six i6-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. Segment registers are shown in Figure 4. In
Protected Mode, each segment may range in size from
one byte up to the entire linear and physical space of the
~achine: 4.Gb (232 bytes). If a maximum sized segment
I~ used (limit = FFFFFFFFH), it should be Dword aligned
(I.e., the least two significant bits of the segment base
~h~uld. be ~ero). This alignment will avoid a segment
limit vlolallon (Exception 13) caused by the wrap
around. In Real Address Mode, the maximum segment
size is fixed at 64 Kb (216 bytes).

The six segments addressable at any given moment are
defined by the segment registers: es, SS, DS, ES, FS,
and GS. The selector in SS indicates the current stack

segment; the selectors in OS, ES, FS, and GS indicate
the current data segments.

Segment Descriptor Registers

The segment descriptor registers are not programmer
visible, yet it is very useful to understand their content.
Insi.de the Am3860XlOXL microprocessor, a descriptor
register (programmer invisible) is associated with each
p~ogrammer-visible segment register, as shown by
Figure 4. Each descriptor register holds a 32-bit seg­
ment base address, a 32-bit segment limit, and the
other necessary segment attributes.

When a selector value is loaded into a segment register,
the asso.ciated descriptor register is automatically up­
dated with the correct information. In Real Address
Mode, only the base address is updated directly (by

18 Am386 Microprocessors for Personal Computers

shifting the selector value four bits to the left), since the
segment maximum limit and attributes are fixed in Real
Mode. In Protected Mode, the base address, the limit,
and the attributes are all updated per the contents of the
segment descriptor indexed by the selector.

Whenever a memory reference occurs, the segment de­
scriptor register associated with the segment being
used is automatically involved with the memory refer­
ence. The 32-bit segment base address becomes a
component of the linear address calculation, the 32-bit
limit is used for the limit-check operation, and the attrib­
utes are checked against the type of memory reference
requested.

Control Registers

The Am386DXlDXL microprocessor has three control
registers of 32 bits: CRO, CR2,'and CR3 to hold machine
state of a global nature (not specific to an individual
task). These registers, along with System Address Reg­
isters described in the next section, hold machine state
that affects all tasks in the system. To access the Con­
trol Registers, load and store instructions are defined.

CRO: Machine Control Register (Includes 80286
Machine Status Word)

CRO, shown in Figure 5, contains six defined bits for
control and status purposes. The low-order 16 bits of
CRO are also known as the Machine Status Word
(MSW) for compatibility with 80286 Protected Mode.
LMSW and SMSW instructions are taken as special ali­
ases of the load and store CRO operations, where only
the low-order 16 bits of CRO are involved. For compati­
bility with 80286 operating systems, the Arn386DXlDXL
microprocessor LMSW instructions work in an identical
fashion to the LMSW instruction on the 80286 (Le., it
only operates on the low-order 16 bits of CRO and it
ignores the new bits in CRO). New Am386DXlDXL mi­
croprocessor operating systems should use the MOV
CRO, Reg instruction.

The defined CRO bits are described below.

PG (Paging Enable, bit 31)

The PG bit is setto enable the on-chip paging unit.
It is reset to disable the on-chip paging unit.

AMD ~
R (Reserved, bit 4)

This bit is Reserved for Futu re Use. When loading
CRO care should be taken to not alter the value of
this bit.

TS (Task Switched, bit 3)

TS is automatically set whenever a task switch
operation is performed. If TS is set, a coprocessor
ESCape op-code will cause a Coprocessor Not
Available trap (Exception 7). The trap handler
typically saves a 387DX math coprocessor con­
text belonging to a previous task, loads a 387DX
math coprocessor state belonging to the current
task, and clears the TS bit before retuming to the
faulting coprocessor op-code.

EM (Emulate Coprocessor, bit 2)

The Emulate coprocessor bit is set to cause all
coprocessor op-codes to generate a Coprocessor
Not Available fault (Exception 7). It is reset to allow
coprocessor op-codes to be executed on an ac­
tual 387DX math coprocessor (this is the default
case after reset). Note that the WAIT op-code is
not affected by the EM bit setting.

MP (Monitor Coprocessor, bit 1)

The M P bit is used in conjunction with the TS bit to
determine if the WAIT op-code will generate a
Coprocessor Not Available fault (Exception 7)
when TS= 1. When both MP= 1 and TS = 1, the
WAIT op-code generates a trap. Otherwise,
the WAIT op-code does not generate a trap. Note
that TS is automatically set whenever a task
switch operation is performed.

PE (Protection Enable, bit 0)

The PE bit is set to enable the Protected Mode. If
PE is reset, the processor operates again in Real
Mode. PE may be set by loading MSW or CRO. PE
can be reset only by a load into CRO. Resetting
the PE bit is typically part of a longer instruction
sequence needed for proper transition from Pro­
tected Mode to Real Mode. Note that for strict
80286 compatibility, PE cannot be reset by the
LMSW instruction.

CRO

MSW

Note: 0 indicates "Reserved for Future Use.· Do not define; see Section Compatibility.

Figure 5. Control Register 0 15021B-OOS

Am386DXlDXL Microprocessor Data Sheet 19

~ AMD

CR1: Reserved

CR1 is reserved for future processors.

CR2: Page Fault Linear Address

CR2, shown in Figure 6, holds the 32-bit linear address
that caused the last page fault detected. The error code
pushed onto the page fault handler's stack when it is in­
voked provides additional status information on this
pagefauH.

CR3: Page Directory Sase Address

CR3, shown in Figure 6, contains the physical base
address ofthe page directory table. The Am386DXlDXL
microprocessor page directory table is always page­
aligned (4-Kb aligned). Therefore, the lowest 12 bits
of CR3 are ignored when written and they store as
undefined.

A task switch through a TSS that changes the value in
CR3, or an explicit load into CR3 with any value, will in­
validate all cached page table entries in the paging unit
cache. Note that if the value in CR3 does not change
during the task switch, the cached page table entries are
not flushed.

System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286 CPU and
Am386DXlDXL microprocessor protection model.

31

These tables or segments are:

GOT (Global Descriptor Table)

lOT (Interrupt Descriptor Table)

LOT (Local Descriptor Table)

TSS (Task State Segment)

The addresses of these tables and segments are stored
in special registers, the System Address and System
Segment Registers illustrated in Figure 7. These
registers are named GDTR, IDTR, LDTR, and TR, re­
spectively. The Protected Mode Architecture section
describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address and
16-bit limit of the GOT and lOT, respectively.

The GOT and lOT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is en­
abled) and 16-bit limit values.

LDTRandTR

These registers hold the 16-bit selector for the LOT
descriptor and the TSS descriptor, respectively.

The LOT and TSS segments, since they are task­
specific segments, are defined by selector values stored
in the system segment registers. Note that a segment
descriptor register (programmer-invisible) is associated
with each system segment register.

o

Page Fault Linear Address Register CR2

Page Directory Base Register I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 CR3

Note: 0 indicates "Reserved for Future Use: Do not define; see Section Compatibility.

Figure 6. Control Registers 2 and 3

System Address Registers

47 32-Bit Linear Base Address 16 15 Limit 0
GDTR~ ______________________ +-______ ~
I DTR 1..-. ______________________ .1.-______ ---1

System Segment
Registers Descriptor Registers (Automatically Loaded)

A

15 o 32-Bit Linear Base Address 32-Bit Segment Limit

TRt-___ -.,

LDTR '--___ -'

Figure 7. System Address and System Segment Registers

20 Am386 Microprocessors for Personal Computers

150218--009

Attributes

I I I I
150218--010

Debug and Test Registers

Debug Registers: The six programmer accessible de­
bug registers provide on-chip support for debugging.
Debug Registers DR3-DRO specify the four linear
breakpoints. The Debug Control Register DR? is used
to set the breakpoints, and the Debug Status Register
DR6 displays the current state of the breakpoints. The
use of the debug registers is described in the Debugging
Support section.

Test Registers: Two registers are used to control the
testing of the RAM/CAM (Content Addressable Memo­
ries) in the Translation Look-Aside Buffer portion of the
Am386DXlDXL microprocessor. TR6 is the command
test register, and TR? is the data register that contains
the data of the Translation Look-Aside buffer test. Their
use is discussed in the Testability section. Figure 8
shows the Debug and Test registers.

31

31

Debug Registers
o

Linear Breakpoint Address 0

Linear Breakpoint Address 1

Linear Breakpoint Address 2

Linear Breakpoint Address 3

Reserved for Future use. Do not define.

Reserved for Future use. Do not define.

Breakpoint Status

Breakpoint Control

Test Registers (For Page Cache) 0

ORO

DR1

DR2

DR3

DR4

DR5

DR6

DR?

Test Control I TR6
Test Status . TR?

150218-011

Figure 8. Debug and Test Registers

AMD ~
Register Accessibility

There are a few differences regarding the accessibility
of the registers in Real and Protected Mode. Table 1
summarizes these differences. See the Protected Mode
Architecture section for further details.

Compatibility

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note certain
Am386DXlDXL microprocessor register bits are Re­
served for Future Use. When reserved bits are called
out, treat them as fully undefined. This is essential for
software compatibility with future processors I Followthe
guidelines below:

1. Do not depend on the state of any undefined bits
when testing the values of defined register bits.
Mask them out when testing.

2. Do not depend on the state of any undefined bits
when storing them to memory or another register.

3. Do not depend on the ability to retain information
written into any undefined bits.

4. When loading registers, always load the undefined
bits as zeros.

5. However, registers that have been previously stored
may be reloaded without masking.

Depending upon the values of undefined register bits
will make your software dependent upon the unspeci­
fied Am386DXlDXL microprocessor handling of these
bits. Depending on undefined values risks making soft­
ware incompatible with futu re processors that define us­
ages for the Am386DXlDXL CPU undefined bits. Avoid
any software dependence upon the state of undefined
Am386DXlDXL CPU register bits.

Table 1. Register Usage

Use In Use In Use In
Real Mode Protected Mode Virtual 8086 Mode

Register Load Store Load Store Load Store

General Registers Yes Yes Yes Yes Yes Yes

Segment Registers Yes Yes Yes Yes Yes Yes

Flag Registers Yes Yes Yes Yes IOPL IOPL

Control Registers Yes Yes PL=O PL=O No Yes

GDTR Yes Yes PL=O Yes No Yes

IDTR Yes Yes PL=O Yes No Yes

LDTR No No PL=O Yes No No

TR No No PL=O Yes No No

Debug Control Yes Yes PL=O PL=O No No

Test Registers Yes Yes PL=O PL=O No No

Notes: PL = 0: The registers can be accessed only when the current privilege level is zero.
10PL: The PUSHF and POPF instructions are made 110 Privilege Level sensitive in Virtual 8086 Mode.

Am386DXlDXL Microprocessor Data Sheet 21

r

~ AMD

Instruction Set
Instruction Set Overview

The instruction set is divided into nine categories of
operations.

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High Level Language Support

Operating System Support

Processor Control

These Am386DXlDXL microprocessor instructions are
listed in Table 2.

All Am386DXlDXL microprocessor instructions operate
on either 0, 1, 2, or 3 operands where an operand re­
sides in a register in the instruction itself or in memory.
Most zero operand instructions (e.g., CLI, STI) take only
one byte. One operand instructions generally are two
bytes long. The average instruction is 3.2-bytes long.
Since the Am386DXlDXL device has a 16-byte instruc­
tion queue, an average of 5 instructions will be
prefetched. The use of two operands permits the follow­
ing types of common instructions.

Register to Register

Memory to Register

Immediate to Register

Register to Memory

Immediate to Memory

The operands can be either 8-, 16-, or 32-bits long. As a
general rule, when executing code written for the
Am386DXlDXL microprocessor (32-bitcode), operands
are 8 or 32 bits; when executing existing 80286 or 8086
code (16-bit code), operands are 8 or 16 bits. Prefixes
can be added to instructions that override the default
length of the operands (Le., use 32-bit operands for
16-bit code or 16-bit operands for 32-bit code).

Addressing Modes
Addressing Modes Overview

The Am386DXlDXL microprocessor provides a total of
11 addressing modes for instructions to specify oper­
ands. The addressing modes are optimized to allow the
efficient execution of high-level languages such as C
and FORTRAN, and they coverthe vast majority of data
references needed by high-level languages.

Register and Immediate Modes

Two of the addressing modes provide for instructions
that operate on register or immediate operands:

Register Operand Mode: The operand is located in
one of the 8-, 16-, or 32-bit general registers.

Immediate Operand Mode: The operand is included in
the instruction as part of the op-code.

32·Bit Memory Addressing Modes

The remaining nine modes provide a mechanism for
specifying the effective address of an operand. The lin­
ear address consists of two components: the segment
base address and an effective address. The effective
address is calculated by using combinations of the fol­
lowing four address elements.

Displacement: An 8- or 32-bit immediate value follow­
ing the instruction.

Base: The contents of any general-purpose register.
The Base registers are generally used by compilers to
point to the start of the local variable area.

Index: The contents of any general-purpose register ex­
ceptfor ESP. The Index registers are used to access the
elements of an array, or a string of characters.

Scale: The index register's value can be multiplied by a
scale factor of either 1,2, 4, or 8. Scaled index mode is
especially useful for accessing arrays or structures.

Combinations of these four components make up the
nine additional addressing modes. There is no perform­
ance penalty for using any of these addressing combi­
nations, since the effective address calculation is
pipelined with the execution of other instructions.

The one exception is the simultaneous use of Base and
Index components that requires one additional clock.

As shown in Figure 9, the effective address (EA) of
an operand is calculated according to the following
formula.

EA = Base Reg + (Index Reg· Scaling) + Displacement

Direct Mode: The operand's offset is contained as part
of the instruction as an 8-, 16-, or 32-bit displacement.

Example: INC Word PTR (500)

Register Indirect Mode: A Base register contains the
address of the operand.

Example: MOV [ECX), EDX

Based Mode: A Base register's contents is added to a
Displacement to form the operands offset.

Example: MOV ECX, [EAX + 24)

22 Am386 Microprocessors for Personal Computers

AMD ~

Table 2. Am386DX/DXL Microprocessor Instructions

Table 2a. Data Transfer Table 2b. Arithmetic Instructions

General Purpose Addition

MOV Move operand ADD Add operands

PUSH Push operand onto stack ADC Add with carry

POP Pop operand off stack INC Increment operand by 1

PUSHA Push all registers on stack AAA ASCII adjust for addition

POPA Pop all registers off stack DAA Decimal adjust for addition

XCHG Exchange operand register Subtraction

XLAT Translate SUB Subtract operands

Conversion SBB Subtract with borrow

MOVZX Move byte or Word, Dword with zero extension DEC Decrement operand by 1

MOVSX Move byte or Word, Dword, sign extended NEG Negate operand

CBW Convert byte to Word, or Word to Dword CMP Compare operands

CWD Convert Word to Dword DAS Decimal adjust for subtraction

CWDE Convert Word to Dword extended AAS ASCII adjust for subtraction

CDO Convert Dword to Oword Multiplication

Input/Output MUL Multiply Double/Single Precision

IN Input operand from I/O space IMUL Integer multiply

OUT Output operand to I/O space AAM ASCII adjust after multiply

Address Object Division
LEA Load effective address DIV Divide unsigned
LDS Load pointer into D segment register IDIV Integer divide
LES Load pointer into E segment register AAD ASCII adjust before division

LFS Load pointer into F segment register

LGS Load pointer into G segment register Table 2c. String Instructions

LSS Load pointer into S (Stack) segment register MOVS Move byte or Word, Dword string

Flag Manipulation INS Input string from I/O space

LAHF Load A register from Flags OUTS Output string to I/O space

SAHF Store A register in Flags CMPS Compare byte or Word, Dword string

PUSHF Push flags onto stack SCAS Scan Byte or Word, Dword string

POPF Pop flags off stack LODS Load byte or Word, Dword string

PUSHFD Push EFLAGS onto stack STOS Store byte or Word, Dword string

POPFD Pop EFLAGS off stack REP Repeat

CLC Clear Carry Flag

CLD Clear Direction Flag

CMC Complement Carry Flag

REPE/
REPZ Repeat while equal/zero

RENE/
REPNZ Repeat while not equal/not zero

STC Set Carry Flag

STD Set Direction Flag

Am386DXlDXL Microprocessor Data Sheet 23

~ AMD

Table 2. Am386DX/DXL Microprocessor Instructions (continued)

Table 2d. Logical Instructions

Logicals

NOT "NOT" operand

AND "AND" operands

OR "Inclusive OR" operands

XOR "Exclusive OR" operands

TEST "Test" operands

Shifts

SHLISHR Shift logical left or right

SALISAR Shift arithmetic left or right

SHLDI
SHRD Double shift left or right

Rotates

ROLIROR Rotate left/right

RCLIRCR Rotate through carry left/right

Table 2e. Bit Manipulation Instructions

Single Bit Instructions

BT Bit Test

BTS Bit Test and Set

BTR Bit Test and Reset

BTC Bit Test and Complement

BSF Bit Scan Forward

BSR Bit Scan Reverse

Table 2f. Program Control Instructions

Conditional Transfers

SETCC Set byte equal to condition code

JAlJNBE Jump if above/not below nor equal

JAE/JNB Jump if above or equal/not below

JB/JNAE Jump if below/not above nor equal

JBE/JNA Jump if below or equal/not above

JC Jump if carry

JE/JZ Jump if equal/zero

JG/JNLE Jump if greater/not less nor equal

JGE/JNL Jump if greater or equal/not less

JL/JNGE Jump if less/not greater nor equal

JLE/JNG Jump if less or equal/not greater

JNC Jump if not carry

JNE/JNZ Jump if not equal/not zero

JNO Jump if not overflow

JNP/JPO Jump if not parity/parity odd

JNS Jump if not sign

JO Jump if overflow

JP/JPE Jump if parity/parity even

JS Jump if sign

Table 2f. Program Control Instructions
(continued)

Unconditional Transfers

CALL Call procedure/task

RET Return from procedure

JMP Jump

Iteration Controls

LOOP Loop

LOOPEI
LOOPZ Loop if equal/zero

LOOPNEI
LOOPNZ Loop if not equal/not zero

JCXZ JUMP if register CX = 0

Interrupts

INT Interrupt

INTO Interrupt if overflow

IRET Return from interruptftask

CLI Clear interrupt enable

STI Set interrupt enable

Table 2g. High Level Language Instructions

BOUND Check array bounds

ENTER Setup parameter block for entering procedure

LEAVE Leave procedure

Table 2h. Protection Model

SGDT Store global descriptor table

SlOT Store interrupt descriptor table

STR Store task register

SLOT Store local descriptor table

LGDT Load global descriptor table

L1DT Load interrupt descriptor table

LTR Load task register

LLDT Load local descriptor table

ARPL Adjust requested privilege level

LAR Load access rights

LSL Load segment limit

VERRI
VERW Verify segment for reading or writing

LMSW Load machine status word (lower 16 bits
of CRO)

SMSW Store machine status word

Table 2i. Processor Control Instructions

HLT Halt

WAIT Wait until BUSY negated

ESC Escape

LOCK Lock Bus

24 Am386 Microprocessors for Personal Computers

Index Mode: An Index register's contents is added to a
Displacement to form the operands offset.

Example: ADD EAX, TABLE [ESI)

Scaled Index Mode: An Index register's contents is mUl­
tiplied by a scaling factor that is added to a Displace­
ment to form the operands offset.

Example: IMUL EBX, TABLE [ESle4), 7

Based Index Mode: The contents of a Base register is
added to the contents of an Index register to form the
effective address of an operand.

Example: MOV EAX, [ESI) [EBX)

Based Scaled Index Mode: The contents of an Index
register is multiplied by a Scaling factor and the result is
added to the contents of a Base register to obtain the
operands offset.

SS
G

Example: MOV ECX, [EDX e8) [EAX)

Segment Registers

~~
S c,

c;"

FS c,
ES c,

OS Selector I CS

L.C+

AMD ~
Based Index Mode with Displacement: The contents of
an Index Register and a Base register's contents and a
Displacement are all summed together to form the
operand offset.

Example: ADD EDX, [ESI) [EBP+OOFFFFFOH]

Based Scaled Index Mode with Displacement: The con­
tents of an Index register are multiplied by a Scaling
factor; the result is added to the contents of a Base reg­
ister and a Displacement to form the operand's offset.

Example: MOV EAX, LOCALTABLE[EDle4) [EBP+80)

Base Register I
Index Register I

<Y
Scale I 1,2,4, or 8

Displacement I (In Instruction)

Effective Segment
Address

Linear
Descriptor Registers -+Q-Address

+,.., Target Address
Access Rights SS I
Access Rights GS J .

Access Rights FS I
Access Rights ES I

Access Rights OS I
Access Rights CS

Limit

Base Address .. -- .. -
Segment Base Address

Figure 9. Addressing Mode Calculations

Am386DXlDXL Microprocessor Data Sheet

Limit

,/

Selected
Segment

150218-012

25

~ AMD

Differences Between 16- and 32-Bit Addresses

In orderto provide software compatibility with the 80286
and the 8086, the Am386DXlDXL microprocessor can
execute 16-bit instructions in Real and Protected
Modes. The processor determines the size of the in­
structions it is executing by examining the D bit inthe CS
segment descriptor. If the D bit is 0 then all operand
lengths and effective addresses are assumed to be 16
bits long. If the D bit is 1 then the default length for oper­
ands and addresses is 32 bits. In Real Mode, the default
size for operands and addresses is 16 bits.

Regardless of the default precision of the operands or
addresses, the Am386DXlDXL microprocessor is able
to execute either 16- or 32-bit instructions. This is speci­
fied via the use of override prefixes. Two prefixes, the
Operand Size Prefix and the Address Length Prefix,
override the value of the D bit on an individual instruction
basis.

Example: The processor is executing in Real Mode and the
programmer needs to access the EAX registers. The assem·
bier code for this might be MOV EAX, 32-bit MEMORYOP. An
assembler automatically determines that an Operand Size
Prefix is needed and generates it.

Example: The 0 bit is ° and the programmer wishes to use
Scaled Index addressing mode to access an array. The
Address Length Prefix allows the use of MOV OX,
TABLE[ESI.2]. The assembler uses an Address Length
Prefix, since with 0 = 0, the default addressing mode is 16 bits.

Example: The 0 bit is 1 and the program wants to store a
16-bit quantity. The Operand Length Prefix is used to specify
only a 16-bit value: MOV MEM16, OX.

The Operand Length and Address Length prefixes can
be applied separately or in combination to any instruc­
tion. The Address Length Prelix does not allow ad­
dresses over 64 Kb to be accessed in Real Mode. A
memory address exceeding FFFFH will result in a Gen­
eral Protection Fault. An Address Length Prefix only al­
lows the use of the additional Am386DXlDXL micropro­
cessor addressing modes.

When executing 32-bit code, the Am386DXlDXL micro­
processor uses either 8- or 32-bit displacements, and
any register can be used as base or index registers.
When executing 16-bit code, the displacements are
either 8 or 16 bits, and the base and index register
conform to the 80286 model. Table 3 illustrates the
differences.

Data Types
The Am386DXlDXL microprocessor supports all data
types commonly used in high-level languages.

Bit: A single bit quantity.

Bit Field: A group 01 up to 32 contiguous bits that spans a
maximum of four bytes.

Bit String: A set of contiguous bits on the Am386DXI
DXL microprocessor bit strings can be up to 4 Gb long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.

Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit
quantity. All operations assume a 2's complement
representation.

Unsigned Integer (Word): An unsigned 16-bit quantity.

Unsigned Long Integer (Double Word): An unsigned
32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.

UnSigned Quad Word: An unsigned 64-bit quantity.

Offset: A 16- or 32-bit offset only quantity that indirectly
references another memory location.

Pointer: A full pOinter which consists of a 16-bit segment
selector and either a 16- or 32-bit offset.

Char: A byte representation 01 an ASCII alphanumeric
or control character.

String: A contiguous sequence 01 bytes, words, or
Dwords. A string may contain between 1 byte and 4 Gb.

BCD: A byte (unpacked) representation of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0-9 storing one digit in each nibble.

When the Am386DXlDXL microprocessor is coupled
with a 387DX math coprocessor then the following com­
mon floating point types are supported.

Floating Point: A signed 32-, 64-, or 80-bit real number
representation. Floating pOint numbers are supported
by a 387DX compatible math coprocessor.

Figure 10 illustrates the data types supported by the
Am386DXlDXL microprocessor and a 387DX compat­
ible math coprocessor.

Table 3. Base and Index Registers for 16- and 32-Bit Addresses

16-Bit Addressing 32-Bit Addressing

Base Register BX, BP Any 32-bit GP Register
Index Register SI,OI Any 32-bit GP Register

Except ESP
Scale Factor None 1,2,4,8
Displacement 0,8,16 bits 0,8,32 bits

26 Am3a6 Microprocessors for Personal Computers

7 a

Sig;y~~1 '-: 1_1_1 _1_1_1--1
Sign Bit ...J ,-' ___ -----'

Magnitude

+1 0
1514 8 7

Signed

I I
I I I I I II I I I Word

I I I

a
I I Unsigned I I I I

Byte
'--____J

Magnitude

15 +1 o

uns0no:~ II I I I I I I II I I I I I I

Sign Bit J, LMSB

Magnitude Magnitude

31 +3 +2 1615 +1 o

g~~~II"I'" 11111 III 11111 111111
Sign Bit J L, _L~M:..:.S=-B __________________ ----,

Magnitude

31 +3 +2 1615 +1 0 a
Unsigned I I I I I I I I I I I I I

I
I I I I I I I I I I I I I I Double

Word

Magnitude

63 +7 +6 4847 +5 +4 3231 +3 +2 1615 +1 0

Signed

I I Quad
Word

Sign Bit J I LMSB

Magnitude

+N +1 a 7 0

Binary I I I I I I I \---\
I I I I I I I I I I I I I I Coded

Decimal
(BCD) BCD Digit N BCD Digit 1 BCD Digit 0

+N 7 +1 a 7 0

ASCII

\1 I I I I I I \ ___ 11 I I I I I I II I I I I I I \

ASCII Character N ASCII Character 1 ASCII Character 0

+N o +1 o 7 o

pa~~g \1 I I I I I I \-__ 1-_1 _1_1_1_1_1_1 L-I _1_1_1_1_1----'\

I
Most Significant Digit Least Significant Digit

7/15 7/15 +1 a 7/15
o

Byte I I I I I I I 1 ___ 1 1 I I I I I I I I I I I I I
String . .

Figure 10. Supported Data Types

Am386DXlDXL Microprocessor Data Sheet

AMD ~

150218-013

27

~ AMD

47

48-Bit

+2 Gbits

Stri~~ IIIII II
Bit 0

31 +3 +2

-2 Gbits
2 1 0

~ ~,---__ -,--,-II.L.....J.......III

+1 o

~~~:I"'I'II 1111111 1111111 1111111 
Pointer '-____ --'-____ ...l...-____ -'--___ ---' 

Offset 

+4 +3 +2 +1 

I I I I I I I I I I I I I II I I I I I II I I 
o o 

I I I II I I Long II I I I I I I 
Pointer '-____ --'-____ ...l...-_---L. __ -'--___ ---J'--___ ----I. ____ --' 

Selector Offset 

79 +9 +8 +7 +2 +1 o 0 

Floating I 
Point" 

I 
Sign Bit..J I 

Exponent Magnitude 

+5 +4 +3 +2 +1 0 

32-Bit l I I I I I I I I I I I I I I I I I I 
I 

I I I I I I I I I I I I 
I 

I I I I I I 
Bit Field 

I_ Bit Field ~I 1to 32 Bits 

·Supported by 387DX-compatible math coprocessor. 150218--013 

Figure 10. Supponed Data Types (continued) 

28 Am386 Microprocessors for Personal Computers 



Memory Organization 
Introduction 
Memory on the Am386DXlDXL microprocessor is di­
vided up into 8-bit quantities (Bytes), 16-bit quantities 
(Words), and 32-bit quantities (Dword). Words are 
stored in two consecutive bytes in memory with the low­
order byte at the lowest address, the high-order byte at 
the highest address. Dwords are stored in four consecu­
tive bytes in memory with the 10w-orcJer byte at the low­
est address, the high-order byte at the highest address. 
The address of a word or Dword is the byte address of 
the low-order byte. 

In addition to these basic data types, the Am386DXlDXL 
microprocessor supports two larger units of memory: 
pages and segments. Memory can be divided up into 
one or more variable length segments, which can be 
swapped to disk or shared between programs. Memory 
can also be organized into one or more 4-Kb pages. 
Finally, both segmentation and paging can be com­
bined, gaining 'the advantages of both systems. The 
Am386DXlDXL microprocessor supports both pages 
and segments in order to provide, maximum flexibility to 
the system designer. Segmentation and paging are 
complementary. Segmentation is useful for organizing 
memory in logical modules, and as such is a tool for the 
application programmer, while pages are useful for the 
system programmer for managing the physical memory 
of a system. 

Address Spaces 
The Am386DXlDXL microprocessor has three distinct 
address spaces: logical, linear, and physical. A logical 

Effective Address Calculation 

Index J 

l Base ~ I Displacement J 
Scale 

J 1,2,4,8 

.~ 
~~ 

l3~ Effective Address 
15 2 0 , r 

R Logical or Segmentation 
Selector P Virtual Address Unit 

14/ ..... L 

Segment Register 
Descriptor Index 

AMD ~ 
address (also known as a virtual address) consists of a 
selector and an offset. A selector is the contents of a 
segment register. An offset is formed by summing all of 
the addressing components (Base, Index, Displace­
ment) discussed in Section Memory Address Modes 
into an effective address. Since each task on Am386DXI 
DXL CPU has a maximum of 16K (21C 1) selectors, and 
offsets can be 4 Gb (232 bits), this gives a total of 246 bits 
or 64 tb of logical address space per task. The program­
mer sees this virtual address space. 

The segmentation unit translates the logical address 
space into a 32-bit linear address space. If the paging 
unit is not enabled then the 32-bitlinear address corre­
sponds to the physical address. The paging unit trans­
lates the linear address space into the physical address 
space. The physical address is what appears on the 
address pins. 

The primary difference between Real Mode and Pro­
tected Mode is how the segmentation unit performs the 
translation of the logical address into the linear address. 
In Real Mode, the segmentation unit shifts the selector 
left four bits and adds the result to the offset to form 
the linear address. While in Protected Mode, every se­
lector has a linear base address associated with it. The 
linear base address is stored in one of two operating 
system tables (Le., the Local Descriptor Table or Global 
Descriptor Table). The selector's linear base address is 
added to the offset to form the final linear address. 

Figure 11 shows the relationship between the various 
address spaces. 

31 0 

BE3-8EO 

A31-A2 
Physical 
Memory 

:& Paging Un~ ..L32 .... , (Optional Use) 
I 'Physical Linear 

Address Address 

15021B-014 

Figure 11. Address Translation 

Am386DXlDXL Microprocessor Data Sheet 29 



~ AMD 

Segment Register Usage 
The main data structure used to organize memory is the 
segment. On the Am3860XlOXL microprocessor, seg­
ments are variable sized blocks of linear addresses that 
have certain attributes associated with them. There are 
two main types of segments: code and data. The seg­
ments are of variable size and can be as small as 1 byte 
or as large as 4 Gb (232 bytes). 

In orderto provide compact instruction encoding and in­
crease processor performance, instructions do not need 
to explicitly specify which segment register is used. A 
default segment register is automatically chosen ac­
cording to the rules of Table 4 (Segment Register Selec­
tion Rules). In general, data references use the selector 
contained in the OS register; Stack references use the 
SS register; and Instruction fetches use the CS register. 
The contents of the Instruction Pointer provides the off­
set. Special segment override prefixes allow the explicit 
use of a given segment register, and override the implicit 
rules listed in Table 4. The override prefixes also allow 
the use of the ES, FS, and GS segment registers. 

There are no restrictions regarding the overlapping of 
the base addresses of any segments. Thus, all 6 seg­
ments could have the base address set to zero and 
create a system with a 4-Gb linear address space. This 
creates a system where the virtual address space is the 
same as the linear address space. Further details of 
segmentation are discussed in Section Protected Mode 
Architecture. 

1/0 Space 
The Am3860XlOXL microprocessor has two distinct 
physical address spaces: Memory and I/O. Generally, 
peripherals are placed in I/O space although the 
Am3860XlOXL CPU also supports memory-mapped 
peripherals. The I/O space consists of 64 Kb and can be 
divided into 64K 8-bit ports, 32K i6-bit ports, or 16K 
32-bit ports, or any combination of ports that add up to 
less than 64 Kb. The 64Kb I/O address space refers to 
physical memory rather than linear address since I/O in­
structions do not go through the segmentation or paging 
hardware. The MOO pin acts as an additional address 
line, thus allowing the system designer to easily deter­
mine which address space the processor is accessing. 

The I/O ports are accessed via the IN and OUT I/O in­
structions, with the port address supplied as an immedi­
ate 8-bit constant in the instruction or in the OX register. 
All 8- and i6-bit port addresses are zero extended on 
the upper address lines. The I/O instructions cause the 
MOO pin to be driven Low. 

I/O port addresses OOF8H through OOFFH are reserved. 

Interrupts 
Interrupts and Exceptions 
Interrupts and exceptions alter the normal program 
flow, in order to handle extemal events, to report errors 
or exceptional conditions. The difference between 
interrupts and exceptions is that interrupts are used to 

Table 4. Segment Register Selection Rules 

Type of Memory Reference Implied (Default) Segment Use Segment Override Prefixes Possible 

Code Fetch CS None 

Destination of PUSH, PUSHF, INT, 
CALL, PUSHA Instructions 

SS None 

Source of POP, POPA, POPF, 
IRET, RET Instructions 

SS None 

Destination of STOS, MOVS, REP ES None 
STOSS REP MOVS Instructions 
(DI is ase Register) 

Other Data References with 
Effective Address Using Base 
Register of: 

[EAX] DS CS,SS, ES, FS,GS 
[EBX] DS CS,SS, ES, FS,GS 
[ECX] DS CS, SS, ES, FS, GS 
[EDX] DS CS, 55, ES, FS, GS 
[ESI] DS CS,SS, ES,FS,GS 
[EDI] DS CS, SS, ES, FS, GS 
[EBP] SS CS,SS, ES,FS,GS 
[ESP] SS CS,SS, ES, FS,GS 

30 Am386 Microprocessors for Personal Computers 



handle asynchronous external events while excep­
tions handle instruction faults. Although a program can 
generate a software interrupt via an INT n instruction, 
the processor treats software interrupts as exceptions. 

Hardware interrupts occur as the result of an external 
event and are classified into two types: maskable or 
non-maskable. Interrupts are serviced after the execu­
tion of the current instruction. After the interrupt handler 
is finished servicing the interrupt, execution proceeds 
with the instruction immediately after the interrupted in­
struction. The differences between the interrupts are 
discussed in the Maskable Interrupt and Non-Maskable 
Interrupt sections. 

Exceptions are classified as faults, traps, or aborts de­
pending on the way they are reported, and whether or 
not restart of the instruction causing the exception is 
supported. Faults are exceptions that are detected and 
serviced before the execution of the faulting instruction. 
A fault occurs in a virtual memory system when the 
processor references a page or a segment that is not 
present. The operating system fetches the page or seg­
ment from disk, and then the Am386DXlDXL micropro­
cessor restarts the instruction. Traps are exceptions 
that are reported immediately after the execution of the 
instruction that caused the problem. User defined inter­
rupts are examples of traps. Aborts are exceptions that 

AMD ~ 
do not permitthe precise location ofthe instruction caus­
ing the exception to be determined. Aborts are used to 
report severe errors, such as a hardware error or illegal 
values in system tables. 

Thus, when an interrupt service routine has been com­
pleted, execution proceeds from the instruction immedi­
ately following the interrupted instruction. On the other 
hand, the return address from an exception fault routine 
will always point at the instruction causing the exception 
and include any leading instruction prefixes. Table 5 
summarizes the possible interrupts for the Am386DXI 
DXL microprocessor and shows where the return ad­
dress points. 

The Am386DXlDXL microprocessor has the ability to 
handle up to 256 different interrupts/exceptions. In order 
to service the interrupts, a table with up to 256 interrupt 
vectors must be defined. The interrupt vectors are sim­
ply pointers to the appropriate interrupt service routine. 
In Real Mode (see Section Real Mode Introduction), 
the vectors are 4 byte quantities, a Code Segment 
plus a i6-bit offset; in Protected Mode, the interrupt 
vectors are 8 byte quantities that are put in an Inter­
rupt Descriptor Table (see Section Introduction). Of 
the 256 possible interrupts, 32 are Reserved for Future 
Use, the remaining 224 are free to be used by the 
system designer. 

Table 5. Interrupt Vector Assignments 

Return Address 
Points to 

Interrupt Faulting 
Function Number Instructions Which Can Cause Exceptions Instruction Type 

Divide Error 0 DIV,IDIV Yes FAULT 

Debug Exception 1 Any instruction Yes TRAP' 

NMI Interrupt 2 INT20rNMI No NMI 

One Byte Interrupt 3 INT No TRAP 

Interrupt on Overflow 4 INTO No TRAP 

Array Bounds Check 5 BOUND Yes FAULT 

Invalid Op-Code 6 Any illegal instruction Yes FAULT 
Device Not Available 7 ESC, WAIT Yes FAULT 

Double Fault 8 Any instruction that can generate an Exception ABORT 

Coprocessor Segment Overrun 9 ESC No ABORT 

Invalid TSS 10 JMP, CALL, IRET, INT Yes FAULT 

Segment Not Present 11 Segment register instructions Yes FAULT 
Stack Fault 12 Stack references Yes FAULT 

General Protection Fault 13 Any memory reference Yes FAULT 

Page Fault 14 Any memory access or code fetch Yes FAULT 

Reserved for Future Use 15 

Coprocessor Error 16 ESC, WAIT Yes FAULT 

Reserved for Future Use 17-31 

Two Byte Interrupt 0-255 INTn No TRAP 

'Some debug exceptions may report both traps on the previous instruction and faults on the next instruction. 

Am386DXlDXL Microprocessor Data Sheet 31 



~ AMD 

Imerrupt Processing 
When an interrupt occurs the following actions happen. 

• First, the current program address and the Flags 
are saved on the stack to allow resumption of the 
interrupted program. 

• Next, an 8-bit vector is supplied to the Arn386DXI 
DXL microprocessor that identifies the appropriate 
entry in the interrupt table. The table contains the 
starting address of the interrupt service routine. 
Then, the user supplied interrupt service routine is 
executed. 

• Finally, when an IRET instruction is executed the old 
processor state is restored and program execution 
resumes at the appropriate instruction. 

The 8-bit interrupt vector is supplied to the Am386DXI 
DXL microprocessor in several different ways: excep­
tions supply the interrupt vector internally; software INT 
instructions contain or imply the vector; maskable hard­
ware interrupts supply the 8-bit vector via the interrupt 
acknowledge bus sequence. Non-Maskable hardware 
interrupts are assigned to interrupt vector 2. 

Maskable Interrupt 
Maskable interrupts are the most common way the 
Am386DXlDXL microprocessor responds to asynchro­
nous external hardware events. A hardware interrupt 
occurs when the INTR is pulled High and the Interrupt 
Flag bit (IF) is enabled. The processor only responds to 
interrupts between instructions (REPeat String instruc­
tions have an interrupt window between memory 
moves, which allows interrupts during long string 
moves). When an interrupt occurs, the processor reads 
an 8-bit vector supplied by the hardware that identifies 
the source of the interrupt (one of 224 user defined inter­
rupts). The exact nature of the interrupt sequence is dis­
cussed in Section Functional Data. 

The IF bit inthe EFLAGS register is reset when an inter­
rupt is being serviced. This effectively disables servicing 
additional interrupts during an interrupt service routine. 
However, the IF bit may be set explicitly by the interrupt 
handler to allow the nesting of interrupts. When an IRET 
instruction is executed the original state of the IF bit is 
restored. 

Non-Maskable Imerrupt 
Non-maskable interrupts provide a method of servicing 
very high priority interrupts. A common example of 
the use of a non-maskable interrupt (NMI) would be to 
activate a power failure routine. When the NMI input 
is pulled High it causes an interrupt with an internally 
supplied vector value of 2. Unlike a normal hardware 
interrupt, no interrupt acknowledgment sequence is per­
formed for NMI. 

While executing the NMI servicing procedure, the 
Am386DXlDXL microprocessor will not service further 
NMI requests until an interrupt return (IRET) instruction 
is executed orthe processor is reset. If NMI occurs while 
currently servicing an NM I, its presence will be saved for 

servicing after executing the first IRET instruction. The 
IF bit is cleared at the beginning of an NMI interrupt to 
inhibit further INTR interrupts. 

Software Interrupts 
A third type of interrupt/exception forthe Am386DXlDXL 
microprocessor is the software interrupt. An INT n in­
struction causes the processor to execute the interrupt 
service routine pointed to by the nth vector in the inter­
rupt table. 

A special case of the two byte software interrupt INT n is 
the one byte INT 3 or breakpOint interrupt. By inserting 
this one byte instruction in a program, the user can set 
breakpoints in the program as a debugging tool. 

A final type of software interrupt is the single step inter­
rupt. It is discussed in the Debugging Support section. 

Imerrupt and Exception Priorities 
Interrupts are externally-generated events. Mask­
able Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on the NMI input) are recognized at instruc­
tion boundaries. When NMI and maskable INTR are 
both recognized at the same instruction boundary, the 
Am386DXlDXL microprocessor invokes the NMI serv­
ice routine first. If after the NMI service routine has been 
invoked, maskable interrupts are still enabled, then the 
Am386DXlDXL CPU invokes the appropriate interrupt 
service routine. 

Table 6a. Am386DXlDXL Microprocessor PrlorHy 
for Invoking Service Routines in case of 

Simultaneous External Interrupts 
1. NMI 
2. INTR 

Exceptions are internally-generated events. Exceptions 
are detected by the Am386DXlDXL microprocessor if in 
the course of executing an instruction, the Arn386DXI 
DXL CPU detects a problematic condition. The 
Am386DXlDXL microprocessor then immediately in­
vokes the appropriate exception service routine. The 
state ofthe Am386DXlDXL CPU is suchthatthe instruc­
tion causing the exception can be restarted. If the ex­
ception service routine has taken care of the problem­
atic condition, the instruction will execute without caus­
ing the same exception. 

It is possible for a single instruction to generate several 
exceptions (for example, transferring a single operand 
could generate two page faults if the operand location 
spans two not present pages). However, only one ex­
ception is generated upon each attempt to execute the 
instruction. Each exception service routine should cor­
rect its corresponding exception, and restart the instruc­
tion. In this manner, exceptions are serviced until the in­
struction executes successfully. 

As the Arn386DXlDXL microprocessor executes in­
structions, it follows a qonsistent cycle in checking for 
exceptions, as shown in Table 6b. This cycle is repeated 

32 Am386 Microprocessors for Personal Computers 



as each instruction is executed and occurs in parallel 
with instruction decoding and execution. 

Instruction Restan 

The Am386DXlDXL microprocessor fully supports re­
starting all instructions after faults. If an exception is 
detected in the instruction to be executed (Exception 
Categories 4 through 10 in Table 6b), the Am386DXI 
DXL device invokes the appropriate exception service 
routine. The Am386DXlDXL microprocessor is in a state 
that permits restart of the instruction, for all cases but 
those in Table 6c. Note that all such cases are easily 
avoided by proper design of the operating system. 

Table 6b. Sequence of Exception Checking 

Consider the case of the Am386DXlDXL microprocessor 
having just completed an instruction. It then performs the 
following checks before reaching the point where the next 
instruction is completed: 

1. Check for Exception 1 Traps from the instruction just 
completed (single-step via Trap Flag or Data Breakpoints 
set in the Debug Registers). 

2. Check for Exception 1 Faults in the next instruction 
(Instruction Execution Breakpoint set in the Debug 
Registers for the next instruction). 

3. Check for external NMI and INTR. 

4. Check for Segmentation Faults that prevented fetching 
the entire next instruction (Exceptions 11 and 13). 

5. Check for Paging Faults that prevented fetching the 
entire next instruction (Exception 14). 

6. Check for Faults decoding the next instruction [Exception 
6 if illegal op-code; Exception 6 if in Real Mode or in 
Virtual 8086 Mode and attempting to execute an 
instruction for Protected Mode only (see Section 
Protection and I/O Permission Bitmap); or Exception 13 if 
instruction is longer than 15 bytes, or privilege violation in 
Protected Mode (i.e., not at 10PL or at CPL = 0)]. 

7. If WAIT op-code, check if TS = 1 and MP = 1 (Exception 7 
if both are 1). 

8. If ESCAPE op-=de for numeric coprocessor, check if 
EM = 1 or TS = 1 (Exception 7 if either are 1). 

9. If WAIT op-=de or ESCAPE op-code for numeric 
coprocessor, check ERROR input signal (Exception 16 if 
ERROR input is asserted). 

10. Check in the following order for each memorY reference 
required by the instruction. 

a. Check for Segmentation Faults that prevent trans­
ferring the entire memory quantity 
(Exceptions 11, 12, 13). 

b. Check for Page Faults that prevent transferring 
the entire memorY quantity (Exception 14). 

Note that the order stated supports the concept of the paging mecha· 
nism being underneath the segmentation mechanism. Therefore, for 
any given code or data reference in memory, segmentation excep· 
tions are generated before paging exceptions are generated. 

AMD 

Table 6c. Conditions Preventing 
Instruction Restan 

1. An instruction causes a task switch to a task whose Task 
State Segment (TSS) is partially not present. (An entire 
not present TSS is restartable.) Partially present TSS's 
can be avoided either by keeping the TSS's of such tasks 
present in memorY or by aligning TSS segments to reside 
entirely within a single 4K page (for TSS segments of 
4 Kb or less). 

2. A coprocessor operand wraps around the top of a 64-Kb 
segment or a 4-Gb segment and spans three pages; and 
the page holding the middle portion of the operand is not 
present. This condition can be avoided by starting any 
segments containing coprocessor operands at a page 
boundary if the segments are approximately 64-200 Kb 
or larger (I.e., large enough for wraparound of the 
coprocessor operand to possibly occur). 

Note that these conditions are avoided by using the operating system 
designs mentioned in this table. 

Double Fault 

A Double Fault (Exception 8) results when the proces­
sor attempts to invoke an exception service routine for 
the segment exceptions (10, 11, 12, or 13), but in the 
process of doing so, detects an exception other than a 
Page Fault (Exception 14). 

A Double Fault (Exception 8) will also be generated 
when the processor attempts to invoke the Page Fault 
(Exception 14) service routine, and detects an excep­
tion other than a second Page Fault. In any functional 
system, the entire Page Fault service routine must re­
main present in memory. 

Double Page faults however do not raise the Double 
Fault exception. If a second Page Fault occurs while the 
processor is attempting to enter the service routine for 
the first time, then the processor will invoke the Page 
Fault (Exception 14) handler a second time rather than 
the Double Fault (Exception 8) handler. A subsequent 
fault, though, will lead to shutdown. 

When a Double Fault occurs, the Am386DXlDXL micro­
processor invokes the exception service routine for 
Exception 8. 

Reset and Initialization 
When the processor is initialized or Reset, the registers 
have the values shown in Table 7. The Am386DXlDXL 
microprocessor will then start executing instructions 
near the top of physical memory, at location 
FFFFFFFOH. When the first Inter-Segment Jump or Call 
is executed, address lines A31-A20 will drop Low for 
CS-relative memory cycles, and the Am386DXlDXL 
microprocessor will only execute instructions in the 
lower 1 Mb of physical memory. This allows the system 
designer to use a ROM at the top of physical memory 
to initialize the system and take care of Resets. 

Am386DXlDXL Microprocessor Data Sheet 33 

,. 
I 



~ AMD 

RESET forces the Am386DXlDXL microprocessor to 
terminate all execution and local bus activity. No instruc­
tion execution or bus activity will occur as long as Reset 
is active. Between 350- and 450-CLK2 periods after 
Reset becomes inactive, the Am386DXlDXL device 
will start executing instructions at the top of physical 
memory. 

Table 7. Register Values after Reset 

Flag Word UUUUOOO2H Note 1 

Machine Status Word (CRO) UUUUUUUOH Note 2 

Instruction Pointer OOOOFFFOH 
Code Segment FOOOH Note 3 

Data Segment OOOOH 
Stack Segment OOOOH 
Extra Segment (ES) OOOOH 
Extra Segment (FS) OOOOH 
Extra Segment (GS) OOOOH 
DX Register Component and Note 5 

Stepping ID 

All Other Registers Undefined Note 4 

Notes: 

1. EFLAGS Register. The upper 14 bits of the EFLAGS register are 
undefined. VM (Bit 17) and RF (Bit 16) and 0 (Bit 15) are all other 
defined flag bits. 

2. CRO: (Machine Status Word). All olthe defined fields in the CRO 
are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and PE 
BitO). 

3. The code Segment Register (CS) will have its Base Address set 
to FFFFOOOOH and Limit set to OFFFFH. 

4. All undefined bits are Reserved for Future Use and should not be 
used. 

5. DX register always holds component and stepping identifier (see 
Section Component and Revision Identifiers). EAX register holds 
self·test signature if self·test was requested (see Section Self­
Test Signature). 

Testability 
Self-Test 

The Am386DXlDXL microprocessor has the capability 
to perform a self-test. The self-test checks the function 
of all the Control ROM and most of the non-random logic 
of the part. Approximately one-half of the Am386DXI 
DXL microprocessor can be tested during self-test. 

Self-Test is initiated on the Am386DXlDXL micropro­
cessor when the RESET pin transitions from High to 
Low, and the BUSYpin is Low. The self-testtakes about 
219 clocks or approximately 26 ms with a 20-MHz 
Am386DXlDXL device. At the completion of self-test, 
the processor performs reset and begins normal opera­
tion. The part has successfully passed self-test if the 
contents olthe EAX register are zero (0). lithe results of 
EAX are not zero then the self-test has detected a flaw in 
the part. 

TLB Testing 

The Am386DXlDXL microprocessor provides a mecha­
nism for testing the Translation Look-Aside Buffer (TLB) 

if desired. This particular mechanism is unique to the 
Am386DXlDXL CPU and may not be continued in the 
same way in future processors. When testing the TLB, 
paging must be turned off (PG = 0 in CRO) to enable the 
TLB testing hardware and avoid interference with the 
test data being written to the TLB. 

There are two TLB testing operations: 

1. Write entries into the TLB; and, 

2. Perform TLB lookups. Two test registers, shown in 
Figure 12, are provided for the purpose of testing. 
TR6 is the test command register and TR7 is the test 
data register. The fields within these registers are 
defined below. 

C: This is the command bit. For a write into TR6 to cause 
an immediate write into the TLB entry, write a 0 to this 
bit. For a write into TR6 to cause an immediate TLB 
lookup, write a 1 to this bit. 

Linear Address: This is the tag field of the TLB . On a 
TLB write, a TLB entry is allocated to this linear address 
and the rest of that TLB entry is set perthe value of TR7 
and the value just written into TR6. On a TLB lookup, the 
TLB is interrogated per this value and if one and only 
one TLB entry matches, the rest of the fields of TR6 and 
TR7 are set from the matching TLB entry. 

Physical Address: This is the data field of the TLB. On 
a write to the TLB, the TLB entry allocated to the linear 
address in TR6 is set to this value. On a TLB lookup, the 
data field (physical address) from the TLB is read out to 
here. 

PL: On a TLB write, PL = 1 causes the REP field of TR7 
to select which of four associative blocks of the TLB is to 
be written, but PL = 0 allows the internal pointer in the 
paging unit to select which TLB block is written, On a 
TLB lookup, the PL bit indicated whether the lookup was 
a hit (PL gets set to 1) or a miss (PL gets reset to 0). 

V: The valid bit for this TLB entry. All valid bits can also 
be cleared by writing to CR3. 

D, 0: The dirty bit for/from the TLB entry. 

U, TI: The user bit for/from the TLB entry. 

W, W: The writable bit for/from the TLB entry. 

For D, U, and W, both the attribute and its complement 
are provided as tag bits to permit the option of a don't 
care on TLB lookups. The meaning of these pairs of bits 
is given in the following table. 

x x Effect During Value of Bit 

TLB Lookup X after TLB Write 

0 0 Miss All Bit X becomes undefined 

0 1 Match ifX=O Bit X becomes 0 

1 0 Match ilX=1 Bit X becomes 1 

1 1 Match All Bit X becomes undefined 

34 Am386 Microprocessors for Personal Computers 



For writing a TLB entry: 

1. Write TR7 for the desired physical address, PL, and 
REP values; and, 

2. Write TR6 with the appropriate linear address, etc., 
(be sure to write C = 0 for write command). 

For looking up (reading) a TLB entry: 

1. Write TR6 with the appropriate linear address (be 
sure to write C = 1 for lookup command); and, 

2. Read TR7 and TR6. If the PL bit in TR7 indicates a 
hit, then the other values reveal the TLB contents. If 
PL indicates a miss, then the othervalues in TR7 and 
TR6 are indeterminate. 

Debugging Support 
The Am386DXlDXL microprocessor provides several 
features that simplify the debugging process. 

31 

Linear Address 

Physical Address 

AMD ~ 
The three categories of on-chip debugging aids are: 

1. The code execution breakpoint op-code (OCCH); 

2. The single-step capability provided by the TF bit in 
the flag register; and, 

3. The code and data breakpoint capability provided by 
the Debug Registers DR3-DRO, DR6, and DR7. 

Breakpoint Instruction 

A single-byte op-code breakpoint instruction is avail­
able for use by software debuggers. The breakpoint op­
code is OCCh and generates an Exception 3 trap when 
executed. In typical use, a debugger program can plant 
the breakpoint instruction at all desired code execution 
breakpoints. The single-byte breakpoint op-code is an 
alias for the two-byte general software interrupt instruc­
tion, INT n, where n = 3. The only difference between 
INT 3 (OCCh) and INT n is that INT 3 is never IOPL­
sensitive; but, INT n is IOPL-sensitive in Protected 
Mode and Virtual 8086 Mode. 

12 11 0 

V D D U "OW W 0 oj 0 o C TRG 

0 0 0 0 0 0 0 P REP 0 0 L TR7 

Note: 0 indicates "Reserved for Future Use .. · Do not define; see Section Compatibility. 

15021B-015 

Figure 12. Test Registers 

Am386DXlDXL Microprocessor Data Sheet 35 



~ AMD 

Single-Step Trap 

If the single-step flag (TF, bit 8) in the EFLAGS register 
is found to be set at the end of an instruction, a single­
step exception occurs. The single-step exception is auto 
vectored to Exception 1. Precisely, Exception 1 occurs 
as a trap after the instruction following the instruction 
that set TF. In typical practice, a debugger sets the TF bit 
of a flag register image on the debugger's stack. It then 
typically transfers control to the user program and loads 
the flag image with a signal instruction, the IRET instruc­
tion. The single-step trap occurs after executing one in­
struction of the user program. 

Since the Exception 1 occurs as a trap (that is, it occurs 
after the instruction has already executed), the CS:EIP 
pushed onto the debugger's stack points to the next 
unexecuted instruction of the program being debugged. 
An Exception 1 handler, merely by ending with an IRET 
instruction, can therefore efficienlly support single­
stepping through a user program. 

Debug Registers 

The Debug Registers are an advanced debugging fea­
ture of the Am386DXlDXL microprocessor. They allow 
data access breakpOints as well as code execution 
breakpoints. Since the breakpoints are indicated by on­
chip registers, an instruction execution breakpoint can 
be placed in ROM code or in code shared by several 
tasks, neither of which can be supported by the INT 3 
breakpoint op-code. 

The Am386DXlDXL microprocessor contains six Debug 
Registers, providing the ability to specify up to four dis­
tinct breakpoint addresses, breakpoint control options, 
and read breakpoint status. Initially after reset. break­
points will occur unless the debug registers are pro­
grammed. Breakpoints set up in the Debug Registers 
are auto-vectored to Exception 1. 

Linear Address Breakpoint Registers (DR3-DRO) 

Up to four breakpoint addresses can be specified by 
writing into Debug Registers DR3-DRO, shown in Fig­
ure 13. The breakpoint addresses specified are 32-bit 
linear addresses. Am386DXlDXL microprocessor hard­
ware continuously compares the linear breakpoint 

addresses in DR3-DRO with the linear addresses gen­
erated by executing software (a linear address is the re­
sult of computing the effective address and adding the 
32-bit segment base address). Note that if paging is not 
enabled the linear address equals the physical address. 
If paging is enabled, the linear address is translated to a 
physical 32-bit address by the on-chip paging unit. Re­
gardless of whether paging is enabled or not. however, 
the breakpoint registers hold linear addresses. 

Debug Control Register (DR7) 

A Debug Control Register, DR?, shown in Figure 13, 
allows several debug control functions, such as ena­
bling the breakpoints and setting up other control 
options for the breakpoints. The fields within the Debug 
Control Register, DR?, are as follows. 

LENi (Breakpoint Length Specification Bits) 

A 2-bit LEN field exists for each of the four breakpOints. 
LEN specifies the length of the associated breakpoint 
field. The choices lor data breakpoints are: 1 byte, 
2 bytes, and 4 bytes. Instruction execution break­
pOints must have a length 011 (LENi = 00). Encoding 01 
the LENi field is as lollows. 

Usage of Least 
Significant Bits in 

LENi Breakpoint Breakpoint Address 
Encoding Field Width Register i, (i =0-3) 

00 1 byte All 32-bits used to specify 
a single-byte breakpoint 
field. 

01 2 by1es A31-Al used to specify 
a two-byte, word-aligned 
breakpoint field. AD in 
Breakpoint Address 
Register is not used. 

10 Undefined-
do not use 

this encoding 

11 4 by1es A31-A2 used to specify 
a four-byte, Dword-aligned 
break~oint field. AD and 
A 1 in reakpoint Address 
Register are not used. 

36 Am3S6 Microprocessors for Personal Computers 



AMD 

31 16 15 a 
Breakpoint a Linear Address 

Breakpoint 1 Linear Address 

Breakpoint 2 Linear Address 

Breakpoint 3 Linear Address 

Reserved for Future Use. Do not define. 

Reserved for Future Use. Do not define. 

a B B B a a a a a T S D 

LEN I R Iwl LEN I R Iwl LEN I R Iwl LEN I R Iw a a G a a a G L 
333222111000 D E E 

a a a a B 
3 

G L G L G 
3 3 2 2 1 

B B 
2 1 

L G 
1 a 

B 
a 

L 
a 

ORO 

DRI 

DR2 

DR3 

DR4 

DR5 

DR6 

DR? 

31 16 15 a 

Note: 0 indicates "Reserved for Future Use:' Do not define; see Section Compatibility. 

Figure 13. Debug Registers 150218-{)16 

The LENi field controls the size of breakpoint field i by 
controlling whether all low-order linear address bits 
in the breakpoint address register are used to detect 
the breakpoint event. Therefore, all breakpoint fields 
are aligned; 2-byte breakpoint fields begin on Word 
boundaries and 4-byte breakpoint fields begin on Dword 
boundaries. 

The following is an example of various size breakpoint 
fields. Assume the breakpoint linear address in DR2 is 
OOOOOOOSH. In that situation, the following illustration 
indicates the region of the breakpoint field for lengths of 
1, 2, or 4 bytes. 

I 

DR2=OOOOOOO5H; 

31 

1 

DR2 = 00000005H; 

31 

DR2 = 00000005H; 

31 

1 

LEN2=OOB 

a 

bkP,,·,1 

LEN2=OIB 
a 

LEN2=11B 

a 

0OOOOOO8H 

00000004H 

oOOOOOOOH 

00000008H 

00000004H 

OOOOOOOOH 

00000008H 

00000004H 

OOOOOOOOH 

RWi (Memory Access Qualifier Bits) 

A 2-bit RW field exists for each of the four breakpoints. 
The 2-bit RW field specifies the type of usage that must 
occur in order to activate the associated breakpoint. 

RW 
Encoding 

00 

01 

10 

11 

Usage 
Causing Breakpoint 

Instruction execution only 

Data writes only 

Undefined-do not use this encoding 

Data reads and writes only 

RW encoding 00 is used to sel up an instruction execu­
tion breakpoint. RW encodings 01 or 11 are used to set 
up write-only or read/write data breakpoints. 

Note that instruction execution breakpoints are taken 
as faults (i.e., before the instruction executes), but 
data breakpoints are taken as traps (I.e., after the data 
transfer takes place). 

Using LENi and RWi to Set Data Breakpoint i 

A data breakpoint can be set up by writing the linear 
address into DRi (i = 0-3). For data breakpoints, RWi 
can = 01 (write only) or 11 (write/read). LEN can = 00, 
01, or 11. 

If a data access falls entirely or partly within the data 
breakpoint field, the data breakpoint condition has oc­
curred, and if the breakpoint is enabled, an Exception 1 
trap will occur. 

Using LENi and RWi to Set Instruction Execution 
Breakpoint i 

An instruction execution breakpoint can be set up 
by writing address of the beginning of the instruction 
(including prefixes if any) into DRi (i = 0-3). RWi 

Am386DXlDXL Microprocessor Data Sheet 37 



~ AMD 

must = 00 and LEN must = 00 for instruction execution 
breakpoints. 

If the instruction beginning at the breakpoint address is 
about to be executed, the instruction execution break­
point condition has occurred, and if the breakpoint is 
enabled, an Exception 1 fault will occur before the in­
struction is executed. 

Note that an instruction execution breakpoint address 
must be equal to the beginning byte address of an in­
struction (including prefixes) in order for the instruction 
execution breakpoint to occur. 

GD (Global Debug Register Access Detect) 

The Debug Registers can only be accessed in Real 
Mode or at privilege level 0 in Protected Mode. The GD 
bit, when set. provides extra protection against any De­
bug Register access even in Real Mode or at privilege 
level 0 in Protected Mode. This additional protection fea­
ture is provided to guarantee that a software debugger 
(or ICE-38S) can have full control overthe Debug Regis­
ter resources when required. The GD bit, when set, 
causes an Exception 1 fault if an instruction attempts to 
read or write any Debug Register. The GD bit is then 
automatically cleared when the Exception 1 handler is 
invoked, allowing the Exception 1 handler free access to 
the debug registers. 

GE and LE (Exact Data Breakpoint Match, Global 
and Local) 

If either GE or LE is set, any data breakpoint trap will be 
reported exactly after completion of the instruction that 
caused the operand transfer. Exact reporting is pro­
vided by forcing the Am38SDXlDXL microprocessor 
execution unit to wait for completion of data oper­
and transfers before beginning execution of the next 
instruction. 

If exact data breakpoint match is not selected, data 
breakpoints may not be reported until several instruc­
tions later or may not be reported at all. When enabling a 
data breakpoint, it is therefore recommended to enable 
the exact data breakpoint match. 

When the Am38SDXlDXL microprocessor performs a 
task switch, the LE bit is cleared. Thus, the LE bit sup­
ports fast task switching out of tasks that have enabled 
the exact data breakpoint match for their task-local 
breakpoints. The LE bit is cleared by the processor dur­
ing a task switch to avoid having exact data breakpoint 
match enabled in the new task. Note that exact data 
breakpoint match must be re-enabled under software 
control. 

The Arn38SDXlDXL microprocessor GE bit is unaf­
fected during a task switch. The GE bit supports exact 
data breakpoint match that is to remain enabled during 
all tasks executing in the system. 

Note that instruction execution breakpoints are always 
reported exactly, whether or not exact data breakpoint 
match is selected. 

Gi and Li (Breakpoint Enable, Global and Local) 

If either Gi or Li is set, then the associated breakpoint (as 
defined by the linear address in DRi, the length in LENi 
and the usage criteria in RWi) is enabled. If either Gi or 
Li is set and the Am38SDXlDXL microprocessor detects 
the breakpoint condition, then the Exception 1 handler 
is invoked. 

When the Am38SDXlDXL microprocessor performs a 
task switch to a new Task State Segment (TSS), all Li 
bits are cleared. Thus, the Li bits support fast task 
switching out of tasks that use some task-local break­
point registers. The Li bits are cleared by the processor 
during a task switCh to avoid spurious exceptions in the 
new task. Notethatthe breakpOints must be enabled un­
der software control. 

All Am38SDXlDXL microprocessor Gi bits are unaf­
fected during a task switch. The Gi bits support break­
points that are active in all tasks executing in the system. 

Debug Status Register (DR6) 

A Debug Status Register, DRS, shown in Figure 13, 
allows the Exception 1 handler to easily determine why 
it was invoked. Note the Exception 1 handler can be 
invoked as a result of one of several events. 

1. DRO Breakpoint fault/trap. 

2. DR1 Breakpoint fault/trap. 

3. DR2 Breakpoint fault/trap. 

4. DR3 Breakpoint fault/trap. 

5. Single-step (TF) trap. 

S. Task switch trap. 

7. Fault due to attempted debug register access when 
GD= 1. 

The Debug Status Register contains single-bit flags for 
each of the possible events invoking Exception 1. Note 
below that some of these events are faults (exception 
taken before the instruction is executed), while other 
events are traps (exception taken after the debug 
events occurred). 

The flags in DRS are set by the hardware but never 
cleared by hardware. Exception 1 handler software 
should clear DRS before returning to the user program 
to avoid future confusion in identifying the source of 
Exception 1 . 

The fields within the Debug Status Register, DRS are as 
follows. 

Bi (Debug FaultlTrap Due to Breakpoint 0-3) 

Four breakpoint indicator flags, B3-BO, correspond 
one-to-one with the breakpoint registers in DR3-DRO. A 

38 Am386 Microprocessors for Personal Computers 



flag Bi is set when the condition described by DRi, LENi, 
and RWi occurs. 

If Gi or Li is set, and if the breakpoint is detected, the 
processor will invoke the Exception 1 handler. The ex­
ception is handled as a fault if an instruction execution 
breakpoint occurred or as a trap if a data breakpoint 
occurred. 

Imponant Note: A flag, Bi, is set whenever the hard­
ware detects a match condition on enabled breakpoint i. 
Whenever a match is detected on at least one enabled 
breakpoint i, the hardware immediately sets all Bi bits 
corresponding to breakpoint conditions matching at that 
instant, whether enabled or not. Therefore, the Excep­
tion 1 handler may see that multiple Bi bits are set, but 
only set Bi bits corresponding to enabled breakpoints (Li 
or Gi set) are true indications of why the Exception 1 
handler was invoked. 

BD (Debug Fault Due to Attempted Register Access 
When GO Bit Set) 

This bit is set if the Exception 1 handler was invoked due 
to an instruction attempting to read or write to the debug 
registers when GD bit was set. If such an event occurs, 
then the GD bit is automatically cleared when the Ex­
ception 1 handler is invoked, allowing handler access to 
the debug registers. 

BS (Debug Trap Due to Single-Step) 

This bit is set if the Exception 1 handler was invoked due 
to the TF bit in the flag register being set (for single­
stepping). See Section Single-Step Trap. 

BT (Debug Trap Due to Task Switch) 

This bit is set if the Exception 1 handler was invoked 
due to a task switch occurring to a task having an 
Am386DXlDXL microprocessor TSS with the T-bit set. 

15 

19 

Segment Selector 

AMD ~ 
(See Figure 29.) Note the task switch into the new task 
occurs normally, but before the first instruction of the 
task is executed, the Exception 1 handler is invoked. 
With respect to the task switch operation, the operation 
is considered to be a trap. 

Use of Resume Flag (RF) In Flag Register 

The Resume Flag (RF) in the flag word can suppress an 
instruction execution breakpoint when the Exception 1 
handler returns to a user program at a user address that 
is also an instruction execution breakpoint. See Section 
Flags Register. 

REAL MODE ARCHITECTURE 
Real Mode Introduction 
When the processor is reset or powered up, it is initial­
ized in Real Mode. Real Mode has the same base archi­
tecture as the 8086, but allows access to the 32-bit 
register set of the Am386DXlDXL microprocessor. The 
addressing mechanism, memory size, and interrupt 
handling are all identical to the Real Mode on the 80286. 

All of the Am386DXlDXL microprocessor instructions 
are available in Real Mode (except those instructions 
listed in Protection and I/O Permission Bitmap). The de­
fault operand size in Real Mode is 16 bits, just like the 
8086. In order to use the 32-bit registers and addressing 
modes, override prefixes must be used. In addition, the 
segment size on the Am386DXlDXL CPU in Real Mode 
is 64 Kb so 32-bit effective addresses must have a value 
less than OOOOFFFFH. The primary purpose of Real 
Mode is to set up the processor for Protected Mode 
Operation. 

Memory Operand 

/ 
1 

64K 

Max Limit 
Fixed At 64K In 
Real Mode 

Selected 
Segment 

~--------~----------~---------------r----
Segment Base 

15021B-017 

Figure 14. Real Address Mode Addressing 

Am386DXlDXL Microprocessor Data Sheet 39 

i 

i" 



~ AMD 

LOCK Operation 
The LOCK prefix on the Am386DXlDXL microproces­
sor, even in Real Mode, is more restrictive than on the 
80286. This is due to the addition of paging on the 
Am386DXlDXL CPU in Protected Mode and Virtual 
8086 Mode. Paging makes it impossible to guarantee 
that repeated string instructions can be LOCKed. The 
Am386DXlDXL CPU cannot require that all pages hold­
ing the string be physically present in memory. Hence, a 
Page Fault (Exception 14) might have to be taken during 
the repeated string instruction. Therefore the LOCK 
prefix cannot be supported during repeated string 
instructions. 

These are the only instruction forms where the LOCK 
prefix is legal on the Am386DXlDXL microprocessor. 

Operands 
Opcode (Dest, Source) 

BIT TEST and Mem, Reg/immed 
SET IRESET ICOM PLEM ENT 

XCHG Reg, Mem 
XCHG Mem, Reg 

ADD,OR,ADC,SBB,AND,SUB,XOR Mem, Reg/immed 

NOT, NEG, INC, DEC Mem 

An Exception 6 will be generated if a LOCK prefix is 
placed before any instruction form or op-code not listed 
above. The LOCK prefix allows indivisible read/modify/ 
write operations on memory operands using the instruc­
tions above. For example, even the ADD Reg, Mem is 
not LOCKable, because the Mem operand is not the 
destination (and therefore no memory read/modify/ 
operation is being performed). 

Since, on the Am386DXlDXL microprocessor, repeated 
string instructions are not LOCKable, it is not possible 
to LOCK the bus for a long period of lime. Therefore, the 
LOCK prefix is not IOPL-sensitive on the Am386DXI 
DXL device. The LOCK prefix can be used at any privi­
lege level, but only on the instruction forms listed above. 

Memory Addressing 
In Real Mode, the maximum memory size is limited to 
1 Mb. Thus, only address lines A19-A2 are active. 

Exception, the High address lines A31-A20 are 
High during CS-relative memory cycles until an inter­
segment jump or call is executed (see Section Reset 
and Initialization). 

Since paging is not allowed in Real Mode, the linear ad­
dresses are the same as physical addresses. Physical 
addresses are formed in Real Mode by adding the 
contents of the appropriate segment register that is 
shifted left by 4 bits to an effective address. This addition 
results in a physical address from OOOOOOOOH to 
001 OFFEFH. This is compatible with 80286 Real Mode. 
Since segment registers are shifted left by 4 bits, this im­
plies that Real Mode segments always start on 16-byte 
boundaries. 

All segments in Real Mode are exactly 64-Kb long and 
may be read, written, or executed. The Am386DXlDXL 
microprocessor will generate an Exception 13 if a data 
operand or instruction fetch occurs past the end of a 
segment (i.e., if an operand has an offset greater than 
FFFFH; for example, a word with a low byte at FFFFH 
and the high byte at OOOOH). 

Segments may be overlapped in Real Mode. Thus, if a 
particular segment does not use all 64 Kb, another seg­
ment c an be overlayed on top of the unused portion of 
the previous segment. This allows the programmer to 
minimize the amount of physical memory needed for a 
program. 

Reserved Locations 
There are two fixed areas in memory that are reserved in 
Real address mode: system initialization area and the 
interrupt table area. Locations OOOOOH through 003FFH 
are reserved for interrupt vectors. Each one of the 256 
possible interrupts has a 4-byte jump vector reserved 
for it. Locations FFFFFFFOH through FFFFFFFFH are 
reserved for system initialization. 

Interrupts 
Many of the exceptions shown in Table 5 and discussed 
in Section Interrupts are not applicable to Real Mode op­
eration; in particular, Exceptions 10,11, and 14 will not 
happen in Real Mode. Other exceptions have slightly 
different meanings in Real Mode. Table 8 identifies 
these exceptions. 

Table 8. Other Exceptions in Real Mode 

Interrupt 
Function Number Related Instructions Return Address Location 

Interrupt table limit too small 8 INT Vector is not within table limit. Before Instruction 

Word memory reference 
CS, DS, ES, FS, GS t3 beyond offset = FFFFH. Before Instruction Segment overrun exception An attempt to execute 

past the end of CS segment. 

SS Segment overrun exception 12 Stack Reference Before Instruction beyond offset = FFFFH. 

40 Am386 Microprocessors for Personal Computers 



Shutdown and Halt 
The HL T instruction stops program execution and 
prevents the processor from using the local bus until 
restarted. Either NMI, FL T, INTR with interrupts en­
abled (IF = 1), or RESET will force the Am386DXlDXL 
microprocessor out of halt. If interrupted, the saved 
CS:IP will pOint to the next instruction after the HL T. 

Shutdown will occur when a severe error is detected that 
prevents further processing. In Real Mode, shutdown 
can occur under two conditions: 

• An interrupt or an exception occur (Exception 8 or 
13) and the interrupt vector is larger than the 
Interrupt Descriptor Table (Le., there is not an 
interrupt handler for the interrupt); 

• A CALL, INT, or PUSH instruction attempts to wrap 
around the stack segment when SP is not even (e.g., 
pushing a value on the stack when SP = 0001 
resulting in a stack segment greater than FFFFH). 

An NM I input can bring the processor out of shutdown if 
the Interrupt Descriptor Table limit is large enough to 
contain the NMI interrupt vector (at least 0017H) and the 
stack has enough room to contain the vector and flag in­
formation (Le., SP is greater than 0005H). Otherwise 
shutdown can only be exited via the RESET input. 

PROTECTED MODE ARCHITECTURE 
Introduction 
The complete capabilities of the Am386DXlDXL micro­
processor are unlocked when the processor operates in 
Protected Virtual Address Mode (Protected Mode). 
Protected Mode vastly increases the linear address 
space to 4 Gb (232 bytes) and allows the running of vir­
tual memory programs of almost unlimited size (64 tb or 
246 bytes). In addition, Protected Mode allows the 
Am386DXlDXL CPU to run all of the existing 8086 and 
80286 software, while providing a sophisticated mem­
ory management and a hardware-assisted protection 
mechanism. Protected Mode allows the use of addi­
tional instructions especially optimized for supporting 
multitasking operating systems. The base architecture 
of the Am386DXlDXL CPU remains the same;the regis­
ters, instructions, and addressing modes described in 

AMD ~ 
the previous sections are retained. The main differ­
ences between Protected Mode and Real Mode from a 
programmer's view is the increased address space and 
a different addressing mechanism. 

Addressing Mechanism 
Like Real Mode, Protected Mode uses two components 
to form the logical address: a 16-bit selector is used to 
determine the linear base address of a segment; the 
base address is added to a 32-bit effective address to 
form a 32-bit linear address. The linear address is then 
either used as the 32-bit physical address or if paging is 
enabled the paging mechanism maps the 32-bit linear 
address into a 32-bit physical address. 

The difference between the two modes lies in calculat­
ing the base address. In Protected Mode, the selector is 
used to specify an index into an operating system de­
fined table (see Figure 15). The table contains the 32-bit 
base address of a given segment. The physical address 
is formed by adding the base address obtained from the 
table to the offset. 

Paging provides an additional memory management 
mechanism that operates only in Protected Mode. Pag­
ing provides a means of managing the very large seg­
ments of the Am386DXlDXL microprocessor. As such, 
paging operates beneath segmentation. The paging 
mechanism translates the protected linear address that 
comes from the segmentation unit into a physical ad­
dress. Figure 16 shows the complete Am386DXlDXL 
device addressing mechanism with paging enabled. 

Segmentation 
Segmentation Introduction 

Segmentation is one method of memory management 
and provides the basis for protection. Segments are 
used to encapsulate regions of memory that have com­
mon attributes. For example, all of the code of a given 
program could be contained in a segment or an operat­
ing system table may reside in a segment. All informa­
tion about a segment is stored in an 8-byte data struc­
ture called a descriptor. All of the descriptors in a system 
are contained in tables recognized by hardware. 

Am386DXlDXL Microprocessor Data Sheet 41 



~ AMD 

48/32 Bit Pointer 

Selector Offset 

47/31 31/15 I 0 

"+,,, Memory Operand 

Access Rig hts 

Limit 

4 Base Address -
Segment 

Segment Base Descriptor 
Address 

Figure 15. Protected Mode Addressing 

48 Bit Pointer 

/ \ 
Segment I Offset 

15 o 31 0 

Paging 

Access Rights Mechanism Physical 

Limit V. Address 

L=> ~ Page Base Address ~ ./ Frame ',.... .... 
Segment 32 Linear Address 
Descriptor Address 

Figure 16. Paging and Segmentation 

42 Am3S6 Microprocessors for Personal Computers 

Segment L imit 

/ 
r 

Up To 
4Gb 

1 

Physical Address 

Memory Operand 

Selected 
Segment 

150218--018 

1 
! 

1 
1 

4Kb 

4Kb 

4Kb 

Physical 
Page: 

4Kb 

4Kb 

4Kb 

4Kb 

150218--019 



Terminology 

The following terms are used throughout the discussion 
of descriptors, privilege levels, and protection: 

PL: Privilege Level-One of the four hierarchical privi­
lege levels. Level 0 is the most privileged level and level 
3 is the least privileged. More privileged levels are nu­
merically smaller than less privileged levels. 

RPL: Requester Privilege Level-The privilege level of 
the original supplier of the selector. RPL is determined 
by the least two significant bits of a selector. 

DPL: Descriptor Privilege Level-This is the least privi­
leged level at which a task may access that descriptor 
(and the segment associated with that descriptor). De­
scriptor Privilege Level is determined by bits 6-5 in the 
Access Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level at 
which a task is currently executing, which equals the 
privilege level ofthe code segment being executed. CPL 
can also be determined by examining the lowest 2 bits of 
the CS register, except for conforming code segments. 

EPL: Effective Privilege Level-The effective privilege 
level is the least privileged of the RPL and DPL. Since 
small privilege level values indicate greater privilege, 
EPL is the numerical maximum of RPL and DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

Descriptor Tables 

Descriptor Tables Introduction 

The descriptor tables define all of the segments which 
are used in an Am386DXlDXL microprocessor system . 

LDTR 

10TR 

GOTR 

15 

LDT OESeR 
Selector 

15 

lOT Limit 

lOT Base 
Linear Address 

15 

GOT Limit 

GOT Base 
Linear Address 

0 

0 

0 

0 

o 

AMD ~ 
There are three types of tables on the Am386DXlDXL 
microprocessor that hold descriptors: the Global De­
scriptorTable, Local DescriptorTable, and the Interrupt 
Descriptor Table. All of the tables are variable length 
memory arrays. They can range in size between 8 bytes 
and 64 Kb. Each table can hold up to 8192 eight byte 
descriptors. The upper 13 bits of a selector are used as 
an index into the descriptor table. The tables have 
registers associated with them that hold the 32-bit 
linear base address, and the 16-bit limit of each table. 

Each of the tables has a register associated with it: the 
GDTR, LDTR, and the IDTR (see Figure 17). The LGDT, 
LLDT, and LlDT instructions load the base and limit of 
the Global, Local, and Interrupt Descriptor Tables, re­
spectively, into the appropriate register. The SGDT, 
SLDT, and SIDT instructions store the base and limit 
values. These tables are manipulated by the operating 
system. Therefore, the load descriptor table instructions 
are privileged instructions. 

Global Descriptor Table 

The Global Descriptor Table (GDT) contains descriptors 
that are possibly available to all of the tasks in a system. 
The GDT can contain any type of segment descriptor 
except for descriptors that are used for servicing inter­
rupts (i.e., interrupt and trap descriptors). Every 
Am386DXlDXL microprocessor contains a GDT. Gen­
erally, the GDT contains code and data segments used 
by the operating systems and task state segments and 
descriptors for the LDTs in a system. 

The first slot of the Global Descriptor Table corresponds 
to the null selector and is not used. The null selector 
defines a null pOinter value. 

. --------------------
0 

LOT Limit 

LOT Base 
Li near Add ress 

0 

Program Invisible 
Automatically Loaded 
From LOT Oescriptor 

--------------------

150218-020 

Figure 17. Descriptor Table Registers 

Am386DXlDXL Microprocessor Data Sheet 43 

~. 
I 



~ AMD 

Local Descriptor Table 

LDTs contain descriptors that are associated with a 
given task. Generally, operating systems are designed 
so that each task has a separate LDT. The LDT may 
contain only code, data, stack, task gate, and call gate 
descriptors. LDTs provide a mechanism for isolating a 
given task's code and data segments from the rest of the 
operating system, while the GDT contains descriptors 
for segments that are common to all tasks. A segment 
cannot be accessed by a task if its segment descriptor 
does not exist in either the current LDTorthe GDT. This 
provides both isolation and protection for a task's seg­
ments, while still allowing global data to be shared 
among tasks. 

Unlike the 6-byte GDT or IDT registers that contain a 
base address and limit, the visible portion of the LDT 
register contains only a 16-bit selector. This selector re­
fers to a Local Descriptor Table descriptor in the GDT. 

Interrupt Descriptor Table 

The third table needed for Am386DXlDXL microproces­
sorsystems isthe Interrupt Descriptor Table (see Figure 
18). The I DT contains the descriptors that pointto the lo­
cation of up to 256 interrupt service routines. The IDT 
may contain only task gates, interrupt gates, and trap 
gates. The IDT should be at least 256 bytes in size in 

r+ 

CPU 

15 0 

1 lOT Limit 

1 lOT Base 

31 0 

-.... 

~ 

order to hold the descriptors for the 32, Reserved for 
Future Use, interrupts. Every interrupt used by a system 
must have an entry in the IDT. The I DT entries are refer­
enced via INT instructions, external interrupt vectors, 
and exceptions. (See Interrupts.) 

Descriptors 

Descriptor Attribute Bits 

The object to which the segment selector pOints is called 
a descriptor. Descriptors are 8-byte quantities that con­
tain attributes about a given region of linear address 
space (Le., a segment). These attributes include the 
32-bit base linear address of the segment, the 20-bit 
length and granularity of the segment, the protection 
level, read, write or execute privileges, the default size 
of the operands (16 bit or 32 bit), and the type of seg­
ment. All of the attribute information about a segment is 
contained in 12 bits in the segment descriptor. Figure 19 
shows the general format of a descriptor. All segments 
on the Am386DXlDXL microprocessor have three at­
tribute fields in common: the P bit, the DPL bit, andtheS 
bit. The Present P bit is 1 if the segment is loaded in 
physical memory; if P = 0 then any attempt to access this 
segment causes a not present exception (Exception 
11). The Descriptor Privilege Level (DPL) is a 2-bit field 
that specifies the protection levels 0-3 associated with a 
segment. 

Memory 

Gate For 
Interrupt #n 

Gate For 
Interrupt #n-1 

· · • 

Gate For 
Interrupt #1 

Gate For 
Interrupt #0 

- ... 

~ 

Interrupt 
Descriptor 
Table 
(lOT) 

1 Increasing 
Memory 
Addresses 

15021B-021 

Figure 18. Interrupt Descriptor Table Register Use 

44 Am386 Microprocessors for Personal Computers 



AMD ~ 
Byte 

0 Address 31 

Segment Base 15-0 Segment Limit 15-0 0 

Base +4 23-16 
Base 31-24 

Base Base Address of the segment 
Limit The length of the segment 
P Present Bit: 1 = Present, 0 = Not Present 
DPL Descriptor Privilege Levels 0-3 
S Segment Descriptor: 0 = System Descriptor, 1 = Code or Data Segment Descriptor 
Type Type of Segment 
A Accessed Bit 
G Granularity Bit: 1 = Segment length is page granular, 0 = Segment length is byte granular 
D Default Operation Size {recognized in code segment descriptors only}: 1 = 32-bit segment, 0 = 16-bit segment 
o Bit must be zero {O} for compatibility with future processors 
AVL Available field for user or OS 

Note: In a maximum-size segment (Le., segment with G = 1 and segment limit 19--{l = FFFFFH), the lowest 12 bits of 
the segment base should be zero (Le., segment base II--{lOO =OOOH). 

15021 B--{)22 

Figure 19. General Format of Segment Descriptors 

The Am386DXlDXL microprocessor has two main cate­
gories of segments: system segments and non-system 
segments (for code and data). The segment S bit in the 
segment descriptor determines if a given segment is a 
system segment or a code or data segment. If the S bit is 
1, then the segment is either a code or data segment; if it 
is 0, then the segment is a system segment. 

Am386DX/DXL Microprocessor Code and Data 
Descriptors (5 = 1) 

Figure 20 shows the general format of a code and data 
descriptor and Table 9 illustrates how the bits in the 
Access Rights Byte are interpreted. 

Code and data segments have several descriptor fields 
in common. The accessed A bit is set whenever the 
processor accesses a descriptor. The A bit is used 
by operating systems to keep usage statistics on a 
given segment. The G bit, or granularity bit, specifies if 
a segment length is byte-granular or page-granular. 
Am386DXlDXL microprocessor segments can be 1 Mb 
long with byte granularity (G = 0) or 4 Gb with page 
granularity (G = 1), (i.e., 220 pages-each page is 4 Kb 
in length). The granularity is totally unrelated to paging. 
An Am386DXlDXL CPU system can consist of seg­
ments with byte granularity and page granularity, 
whether or not paging is enabled. 

The executable E bit tells if a segment is a code or data 
segment. A code segment (E = 1, S = 1) may be exe­
cute-only or execute/read as determined by the Read 
R bit. Code segments are execute only if R = 0 and exe­
cute/read if R =1. Code segments may never be written 
into. 

Note: Code segments may be modified via aliases. Aliases 
are writeable data segments that occupy the same range of 
linear address space as the code segment. 

The D bit indicates the default length for operands and 
effective addresses. If D = 1, then 32-bit operands 
and 32-bit addressing modes are assumed. If D = 0, 
then 16-bit operands and 16-bit addressing modes are 
assumed. Therefore all existing 80286 code segments 
will execute on the Am386DXlDXL microprocessor 
assuming the 0 bit is set O. 

Another attribute of code segments is determined by the 
conforming C bit. Conforming segments, C = 1, can be 
executed and shared by programs at different privilege 
levels (see Section Protection). 

Am386DXlDXL Microprocessor Data Sheet 45 

I 

I' 
I 



AMD 

31 o 

Segment Base 15-0 Segment Limit 15-0 o 

Base 31-24 
IGI DIB 10IAVLI1~~~6 Access Rights 

I 

Base 
Byte 23-16 +4 

DIB 1 = Default Instructions Attributes are 32 bits 
0= Default Instructions Attributes are 16 bits 

AVL Available field for user or as 
G Granular~y B~: 1 = Segment length is page granular, O=Segment length is byte granular 
o B~ must be zero (0) for compatibil~y with future processors 

Note: In a maximum-size segment (i.e., a segment with G = 1 and segment limit 1~ = FFFFFH). the lowest 12 bits of 
the segment base should be zero (i.e., segment base 11-000 =OOOH). 

150218-023 

Figure 20. Code and Data Segment Descriptors 

Table 9. Access Rights Byte Definition for Code and Data Descriptions 

Bit 
Position Name 

7 Present (P) P=1 
P=O 

6-5 Descriptor Privilege 
Levels (DPL) 

4 Segment Descriptor (S) S=1 
S=O 

3 Executable (E) E=O 
2 Expansion Direction (ED) ED=O 

ED=1 
1 Writeable (W) W=O 

W=1 

3 Executable (E) E=1 
2 Conforming (C) C=1 

1 Readable (R) R=O 
R=1 

0 Accessed (A) A=O 
A=1 

Segments identified as data segments (E = 0, S = 1) are 
used for two types of Am386DXlDXL microprocessor 
segments: stack and data segments. The expansion 
direction (ED) bit specifies if a segment expands down­
ward (stack) or upward (data). If a segment is a stack 
segment, all offsets must be greater than the segment 
limit. On a data segment all offsets must be less than or 
equal to the limit. In other words, stack segments start at 
the base linear address plus the maximum segment limit 
and grow down to the base linear address plus the limit. 
On the other hand, data segments start at the base 
linear address and expand to the base linear address 
plus limit. 

Function 

Segment is mapped into physical memory. 
No mapping to physical memory exists, base and limit are 
not used. 
Segment privilege attribute used in privilege tests. 

Code or Data (includes stacks) segment descriptor. 
System Segment Descriptor or Gate Descriptor. 

Descriptor type is data segment. 

} 
If Data 

Expand up segment, offsets must be s; lim~. 
Segment Expand down segment, offsets must be > limit. 

Data segment may not be wr~ten into. (S=1, 

Data segment may be written into. E=O) 

Descriptor type is code segment. 
Code segment may only be executed when If Code 
CPL~DPL and CPL remains unchanged. Segment 
Code segment may not be read. (S=1, 
Code segment may be read. E=1) 

Segment has not been accessed. 
Segment selector has been loaded into segment register 
or used by selector test instructions. 

The write (IN) bit controls the ability to write into a seg­
ment. Data segments are read-only if W=O. The stack 
segment must have W = 1 . 

The B bit controls the size of the stack pOinter register. If 
B = 1, then PUSHes, POPs, and CALLs all use the 32-bit 
ESP register for stack references and assume an upper 
limit of FFFFFFFFH. If B = 0, stack instructions all use 
the 16-bit SP register and assume an upper limit of 
FFFFH. 

System Descriptor Fonnats 

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 21 shows 
the general format of system segment descriptors, and 

46 Am386 Microprocessors for Personal Computers 



the various types of system segments. The Am386DXI 
DXL microprocessor system descriptors contain a 
32-bit base linear address and a 20-bit segment limit. 
80286 system descriptors have a 24-bit base address 
and a 16-bit segment limit. 80286 system descriptors 
are identified by the upper 16 bits being all zeros. 

LOT DescrIptors (5 =0, Type = 2) 

LDT descriptors (S = 0, TYPE = 2) contain information 
about Local Descriptor Tables. LDTs contain a table of 
segment descriptors, unique to a particular task. Since 
the instruction to load the LDTR is only available at privi­
lege level 0, the DPL field is ignored. LOT descriptors 
are only allowed in the Global Descriptor Table (GDT). 

T55 DescrIptors (5 = 0, Type = 1, 3, 9, 8) 

A Task State Segment (TSS) descriptor contains infor­
mation about the location, size, and privilege level of a 
TSS. A TSS in turn is a special fixed format segment that 
contains all the state information for a task and a linkage 
field to permit nesting tasks. The Type field is used to in­
dicate whether the task is currently BUSY (Le., on a 
chain of active tasks) orthe TSS is available. The Type 
field also indicates if the segment contains a 80286 or an 
Am386DXlDXL microprocessor TSS. The Task Regis­
ter (TR) contains the selector that points to the current 
TSS. 

Gate DescrIptors (5 = 0, Type = 4-7, C, F) 

Gates are used to control access to entry points within 
the target code segment. The various types of gate de­
scriptors are call gates, task gates, interrupt gates, and 
trap gates. Gates provide a level of indirection between 
the source and destination of the control transfer. This 
indirection allows the processor to automatically per­
form protection checks. It also allows system designers 
to control entry points to the operating system. Call 
gates are used to change privilege levels (see Section 
Protection), task gates are used to perform a task 

31 

Segmen1 Base 15-0 

Base 31-24 

Type Definition 

o Invalid 
1 Available 80286 TSS 
2 LOT 
3 Busy 80286 TSS 
4 80286 Call Gate 
5 Task Gate (for 80286 or Am3860XlOXL CPU Task) 
6 80286 Interrupt Gate 
7 80286 Trap Gate 

AMD ~ 
switch, and interrupt and trap gates are used to specify 
interrupt service routines. 

Figure 22 shows the format of the four types of gate de­
scriptors. Call gates are primarily used to transfer pro­
gram control to a more privileged level. The call gate de­
scriptor consists of three fields: the access byte; a long 
pointer (selector and offset) that points to the start of a 
routine; and a word count that specifies how many pa­
rameters are to be copied from the caller's stack to the 
stack of the called routine. The word count field is only 
used by call gates when there is a change in the privi­
lege level, other types of gates ignore the word count 
field. 

Interrupt and trap gates use the destination selector and 
destination offset fields of the gate descriptor as a point­
er to the start of the interrupt or trap handler routines. 
The difference between interrupt gates and trap gates is 
that the interrupt gate disables interrupts (resets the IF 
bit) while the trap gate does not. 

Task gates are used to switch tasks. Task gates may 
only refer to a task state segment (see Section Task 
Switching); therefore, only the destination selector por­
tion of a task gate descriptor is used, and the destination 
offset is ignored. 

Exception 13 is generated when a destination selector 
does not refer to a correct descriptor type, Le., a code 
segment for an interrupt, trap or call gate, a TSS for a 
task gate. 

The access byte format is the same for all gate descrip­
tors. P = 1 indicates that the gate contents are valid. 
P = 0 indicates the contents are not valid and causes Ex­
ception 11 if referenced. DPL is the descriptor privilege 
level and specifies when this descriptor may be used by 
a task (see Section Protection). The S field, bit 4 of the 
access rights byte, must be 0 to indicate a system con­
trol descriptor. The type field specifies the descriptor 
type as indicated in Figure 22. 

16 

Type 

8 
9 
A 
B 
C 
o 
E 
F 

Definition 

Invalid 

Base 
23-16 

o 
o 

+4 

Available Am3860XlOXL CPU TSS 
Undefined (Reserved) 
Busy Am3860XlDXL CPU TSS 
Am386DXlDXL CPU Call Gate 
Undefined (Reserved) 
Am386DXlDXL CPU Interrupt Gate 
Am3860XlOXL CPU Trap Gate 

Note: In a maximum·size segment (i.e., segment with G = 1 and segment limit 19-<1 = FFFFFH) the lowest 12 bits 
of the segment base should be zero (i.e., segment base 11-000 =OOOH). ' 

150218-024 
Figure 21. System Segments Descriptors 

Am386DXlDXL Microprocessor Data Sheet 47 

!: 



AMD 

31 24 16 15 

Selector 

Offset 31-16 

Gate Descriptors Fields 

8 

Offset 15-0 

5 

Word 
Count 
4-0 

o 

o 

+4 

Name 

Type 

Value 

4 

Description 

80286 Call Gate 
5 
6 

Task Gate (for 80286 or Am386DXlDXL CPU Task) 
80286 Interrupt Gate 

7 80286 Trap Gate 
C Am386DXlDXL CPU Call Gate 
E Am386DXlDXL CPU Interrupt Gate 
F Am386DXlDXL CPU Trap Gate 

P o Descriptor contents are not valid 
1 Descriptor contents are valid 

DPL-Least privileged level at which a task may access the gate. WORD COUNT 0-31-The number of parameters to copy 
from caller's stack to the called procedure's stack. The parameters are 32-bit quantities for Am386DXlDXL CPU gates, and 
16-bit quantities for 80286 gates. 

DESTINATION 
SELECTOR 

DESTINATION 
OFFSET 

16-Bit 
Selector 

Offset 
16-bit 80286 
32-bit Am386DXlDXL CPU 

Selector to the target code segment 
or 
Selector to the target state segment for task gate 

Entry point within the target code segment 

150218-025 

Figure 22. Gate Descriptor Fonnats 

Difference Between Am386DXlDXL Microproces­
sor and 80286 Descriptors 

In order to provide operating system compatibility be­
tween the 80286 and Am386DXlDXL microprocessor, 
the Am386DXlDXL CPU supports all of the 80286 seg­
ment descriptors. Figure 23 shows the general format of 
an 80286 system segment descriptor. The only differ­
ences between 80286 and Am386DXlDXL device de­
scriptorformats are that the values of the type fields and 
the limit and base address fields have been expanded 
for the Am386DXlDXL device. The 80286 system seg­
ment descriptors contained a 24-bit base address and 
16-bit limit, while the Am386DXlDXL microprocessor 
system segment descriptors have a 32-bit base ad­
dress, a 20-bit limit field, and a granularity bit. 

By supporting 80286 system segments, the Am386DXI 
DXL microprocessor is able to execute 80286 appli­
cation programs on an Am386DXlDXL CPU operating 
system. This is possible because the processor 
automatically understands which descriptors are 
80286-style descriptors and which are Am386DXlDXL 
microprocessor-style descriptors. In particular, if the 
upper word of a descriptor is zero, then that descriptor 
is an 80286-style descriptor. 

The only other differences between 80286-style de­
scriptors and Am386DXlDXL microprocessor descrip­
tors is the interpretation of the word count field of call 
gates and the B bit. The word count field specifies the 
number of 16-bit quantities to copy for 80286 call gates 
and 32-bit quantities for Am386DXlDXL device call 
gates. The B bit controls the size of PUSHes when using 
a call gate; if B = 0, then PUSHes are 16 bits, if B = 1, 
then PUSHes are 32 bits. 

Selector Fields 

A selector in Protected Mode has three fields: Local or 
Global Descriptor Table Indicator (TI), Descriptor Entry 
Index (Index), and Requestor (the selector's) Privilege 
Level (RPL) as shown in Figure 24. The TI bits select 
one of two memory-based tables of descriptors (the 
Global Descriptor Table or the Local Descriptor Table). 
The Index selects one of 8K descriptors in the appropri­
ate descriptor table. The RPL bits allow high speed test­
ing of the selector's privilege attributes. 

Segment Descriptor cache 

In addition to the selector value, every segment register 
has a segment descriptor cache register associated 
with it. Whenever a segment register's contents are 

48 Am386 Microprocessors for Personal Computers 



changed, the 8-byte descriptor associated with that 
selector is automatically loaded (cached) on the chip. 
Once loaded, all references to that segment use the 
cached descriptor information instead of reaccessing 
the descriptor. The contents of the descriptor cache are 

31 

Selector Base 15-0 

Reserved for Future Use 
Set to 0 

Base Base Address of the Segment 
Limit The length of the Segment 
P Present Bit: 1 = Present, 0 = Not Present 
DPL Descriptor Privilege Levels 0-3 
S System Descriptor: 0 = System, 1 = User 
Type Type of Segment 

AMD ~ 
not visible to the programmer. Since descriptor caches 
only change when a segment register is changed, 
programs that modify the descriptor tables must reload 
the appropriate segment registers after changing a 
descriptor's value. 

o 

Segment Limit 15-0 o 

P I TLI S I I Tyr
e I I 

Base 
23-16 +4 

150218-026 

Figure 23. 80286 Code and Data Segment Descriptors 

Segment 
Register 

15 

Selector 

Index 

N 

6 

5 

4 

~ 
2 

1 

0 

.... 

o 

Table 
Indicator 

TI=1 

A 

.A 
.... 

Descriptor 

Local Descriptor Table 

Descriptor N 
Number ---II....-__ ,/L-__ --L_ 

.A 
.... 

6 

5 

4 

3 

2 

1 

0 Null 

Global Descriptor Table 

Figure 24. Example Descriptor Selection 

Am386DXlDXL Microprocessor Data Sheet 

150218-027 

49 

I 
I 
r-



~ AMD 
Segment Descriptor Register Settings 

The contents of the segment descriptor cache vary de­
pending on the operating mode of the Am386DXlDXL 
microprocessor. When operating in Real Address 
Mode, the segment base, limit, and other attributes 
within the segment cache registers are defined as 
shown in Figure 25. 

indicate that the segment is present and fully usable. In 
Real Address Mode, the internal privilege level is always 
fixed to the highest level, level 0, so 110 and other privi­
leged op-codes may be executed. 

For compatibility with the 8086 architecture, the base is 
set to 16 times the current selector value, the limit is 
fixed at OOOOFFFFH, and the attributes are fixed to 

When operating in Protected Mode, the segment base, 
limit, and other attributes within the segment cache reg­
isters are defined as shown in Figure 26. In Protected 
Mode, each of these fields are defined according to the 
contents of the segment descriptor indexed by the se­
lector value loaded into the segment register. 

Segment Descriptor Cache Register Contents 

32-Bit Base 
(Updated During Selector 

Load into Segment Register) 
32-Bit Limit 

(Fixed) 
Other Attributes 

(Fixed) 

Conforming Privilege-----------------------------. 

Stack Size 

Executable 

Writeable 

Readable 

Expansion Direction --------------------, 

Granularity ---------------------, 

Accessed 1 
privilegeLevel-----,l 1 
Present-----------------.l 

BASE LIMIT + 
CS 16X Current CS Selector* 

SS 16X Current SS Selector 

DS 16X Current DS Selector 

ES 16X Current ES Selector 

FS 16X Current FS Selector 

GS 16X Current GS Selector 

Key: V = Yes 
N = No 
o Privilege level 0 
1 Privilege level 1 
2 Privilege level 2 

OOOOFFFFH V 

OOOOFFFFH V 

OOOOFFFFH V 

OOOOFFFFH V 

OOOOFFFFH V 

OOOOFFFFH V 

D = Expand down 
B = Byte granularity 
P = Page granularity 

0 V 

0 V 

0 V 

0 V 

0 V 

0 V 

W = Push/pop 16-bit words 
F = Push/pop 32-bit Dwords 

B U 

B U 

B U 

B U 

B U 

B U 

V V 

V V 

V V 

V V 

V V 

V V 

3 Privilege level 3 Does not apply to that segment cache register 
U = Expand up 

V - N 

N W -

N - -
N - -
N - -
N - -

*Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (e.g .• intersegment CALL, or 
intersegment JMP, or INT). (See Figure 27 example.) 

50 

Figure 25. Segment Descriptor Caches for Real Address Mode 
(Segment Limit and Attributes are Fixed) 

Am386 Microprocessors for Personal Computers 

150218-028 



AMD ~ 
Segment Descriptor Cache Register Contents 

32-Bit Base 
(Updated During Selector 

Load into Segment Register) 

32-Bit Limit 
(Updated During Selector 

Load Into Segment Register) 

Other Attributes 
(Updated During Selector 

Load Into Segment Register) 

Conforming Privilege -----------------------------, 

Stack Size 

Executable ----------------------------, 

Writeable 

Readable 

Expansion Direction ----------------------, 

Granularity ---------------------, 

Accessed 1 
privilegeLevel-----,l 1 
Present-----------------.l 

BASE LIMIT + 
CS Base per Seg Descr 

SS Base per Seg Descr 

DS Base per Seg Descr 

ES Base per Seg Descr 

FS Base per Seg Descr 

GS Base per Seg Descr 

Key: Y = Fixed Yes 
N = Fixed No 
d Per segment descriptor 

Limit per Seg Descr p d d 

Limit per Seg Descr p d d 

Limit per Seg Descr p d d 

Limit per Seg Descr p d d 

Limit per Seg Descr p d d 

Limit per Seg Descr p d d 

d d 

d d 

d d 

d d 

d d 

d d 

d N Y 

r w N 

d d N 

d d N 

d d N 

d d N 

- d 

d -

- -

- -

- -

- -

p = Per segment descriptor; descriptor must indicate "present" to avoid Exception 11 (Exception 12 in case of SS) 
r = Per segment descriptor, but descriptor must indicate "readable" to avoid Exception 13 (special case for SS) 
w = Per segment descriptor, but descriptor must indicate "writeable" to avoid Exception 13 (special case for SS) 

Does not apply to that segment cache register 

150218--{)29 

Figure 26. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor) 

When operating in a Virtual 8086 Mode within the Pro­
tected Mode, the segment base, limit, and other attrib­
utes within the segment cache registers are defined 
as shown in Figure 27. For compatibility with the 8086 
architecture, the base is set to 16 times the current 
selector value, the limit is fixed at OOOOFFFFH, and the 

attributes are fixed so as to indicate the segment 
is present and fully usable. The virtual program exe­
cutes at lowest privilege level, level 3, to allow trapping 
of all IOPL-sensitive instructions and level 0 only 
instructions. 

Am386DXlDXL Microprocessor Data Sheet 51 

i ,., 
! 



~ AMD 

Segment Descriptor Cache Register Contents 

32-Bit Base 
(Updated During Selector 

Load into Segment Register) 

32-Bit Limit 
(Fixed) 

Other Attributes 
(Fixed) 

Conforming Privilege ----------------------------, 

Stack Size 

Executable ---------------------------, 

Writeable 

Readable 

Expansion Direction 

Granularity ---------------------, 

Accessed 1 
Privilege Level------,l. 1 
Present----------------., 

BASE LIMIT + 
CS 16X Current CS Selector OOOOFFFFH V 3 V 

SS 16X Current SS Selector OOOOFFFFH V 3 V 

DS 16X Current DS Selector OOOOFFFFH V 3 V 

ES 16X Current ES Selector OOOOFFFFH V 3 V 

FS 16X Current FS Selector OOOOFFFFH V 3 V 

GS 16X Current GS Selector OOOOFFFFH V 3 V 

B 

B 

B 

B 

B 

B 

U V V V 

U V V N 

U V V N 

U V V N 

U V V N 

U V V N 

Key: V = Yes 
N = No 

D = Expand down 
B = Byte granularity 
P - Page granularity 

52 

o _ Privilege level 0 
1 = Privilege level 1 
2 = Privilege level 2 
3 = Privilege level 3 
U = Expand up 

W = Push/pop 16-bit words 
F = Push/pop 32-bit Dwords 

Does not apply to that segment cache register 

Figure 27. Segment Caches for Virtual 8086 Mode within Protected Mode 
(Segment Limit and Attributes are Fixed) 

Am386 Microprocessors for Personal Computers 

- N 

W -
- -
- -
- -
- -

150218-030 



Protection 
Protection Concepts 

The Am386DXlOXL microprocessor has four levels of 
protection that are optimized to support the needs of a 
multitasking operating system to isolate and protect 
user programs from each other and the operating sys­
tem. The privilege levels control the use of privileged in­
structions, I/O instructions, and access to segments and 
segment descriptors. Unlike traditional microprocessor 
based systems where this protection is achieved only 
through the use of complex external hardware and soft­
ware, the Am3860XlOXL CPU provides the protection 
on a page basis when paging is enabled (see Section 
Page Level Protection). 

The four-level hierarchical privilege system is illustrated 
in Figure 28. It is an extension of the user/supervisor 
privilege mode commonly used by minicomputers and, 
in fact, the user/supervisor mode is fully supported by 
the Am3860XlOXL microprocessor paging mechanism. 
The privilege levels (PL) are numbered 0 through 3. 
Level 0 is the most privileged or trusted level. 

High Speed 
Operating 
System 
Interface 15021B-031 

Figure 28. Four·Level Hierarchical Protection 

Rules of Privilege 

The Am3860XlOXL microprocessor controls access to 
both data and procedures between levels of a task, ac­
cording to the following rules. 

• Oata stored in a segment with privilege level p can be 
accessed only by code executing at a privilege level 
at least as privileged as p. 

• A code segment/procedure with privilege level p can 
only be called by a task executing at the same or a 
lesser privilege level than p. 

Privilege Levels 

Task Privilege 

AMD ~ 

At any point in time, a task on the Am3860XlOXL micro­
processor always executes at one of the four privilege 
levels. The Current Privilege Level (CPL) specifies the 
task's privilege level. A task's CPL may only be changed 
by control transfers through gate descriptors to a code 
segment with a different privilege level (see Section 
Privilege Level Transfers). Thus, an application pro­
gram running at PL = 3 may call an operating system 
routine at PL = 1 (via agate) that would cause the task's 
CPL to be set to 1 until operating system routine is 
finished. 

Selector Privilege (RPL) 

The privilege level of a selector is specified by the RPL 
field. The RPL is the two least significant bits of the se­
lector. The selector's RPL is only used to establish a 
less trusted privilege level than the current privilege 
level for the use of a segment. This level is called the 
task's effective privilege level (EPL). The EPL is defined 
as being the least privileged (I.e., numerically larger) 
level of a task's CPL and a selector's RPL. Thus, if se­
lector's RPL = 0, then the CPL always specifies the privi­
lege level for making an access using the selector. On 
the other hand if RPL = 3, then a selector can only ac­
cess segments at level 3 regardless of the task's CPL. 
The RPL is most commonly used to verify that pointers 
passed to an operating system procedure do not access 
data that is of higher privilege than the procedure that 
originated the pointer. Since the originator of a selector 
can specify any RPL value, the Adjust RPL (ARPL) in­
struction is provided to force the RPL bits to the 
originator's CPL. 

liD Privilege and VO Pennlsslon Bitmap 

The I/O privilege level (IOPL, a 2-bit field in the EFLAGS 
register) defines the least privileged level at which 
I/O instructions can be unconditionally performed. I/O 
instructions can be unconditionally performed when 
CPL,.;:; 10PL. (The I/O instructions are IN, OUT, INS, 
OUTS, REP INS, and REP OUTS.) When CPL> 10PL, 
and the current task is associated with a 286 TSS, at­
tempted I/O instructions cause an Exception 13 fault. 
When CPL > 10PL, and the current task is associated 
with an Am3860XlOXL CPU TSS, the I/O Permission 
Bitmap (part of an Am3860XlOXL microprocessorTSS) 
is consulted on whether I/O to the port is allowed, or an 
Exception 13 fault is to be generated instead. For dia­
grams of the I/O Permission Bitmap, refer to Figures 
29a and 29b. Forfurther information on how the I/O Per­
mission Bitmap is used in Protected Mode or in Virtual 
8086 Mode, refer to Section Protection and I/O Permis­
sion Bitmap. 

Am386DXlDXL Microprocessor Data Sheet 53 

r 



~ AMD 

31 16 15 

0000000000000000 

ESPO 

0000000000000000 

ESP1 

0000000000000000 

ESP2 

0000000000000000 

CR3 

EIP 

EFLAGS 

EAX 

ECX 

EDX 

EBX 

ESP 

EBP 

Note: 
ESI 

BIT MAP OFFSET EDI 
muSt be ~-DFFFH 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

BIT MAP OFFSET(15~) 0000000000000000 

Back Link 

SSO 

SSl 

SS2 

ES 

CS 

SS 

OS 

FS 

GS 

LOT 

I T 

O~ 
0 

4 

8 

C 

10 

14 

18 

1C 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

48 

4C 

50 

54 

58 

5C 
60 

~64 

TSS 
Base 

Stacks 
for 
CPL 
0,1,2 

Current 
Task 
State 

Available "-.. 68 0 EBUG 
TRAP 

BIT ~ 

31 

63 

95 

p--------. 
I ~cess TSS I 

: Rights Limit "!" ~ 
I I 

BASE I -:-I 

131 Program 01 

: Invisible 
I 
I ._------_. 

Task Register 

~RI Selector 

15 0 

Type = 9: Available 
Am386DX/DXL CPU TSS, 
Type = B: Busy 
Am386DX/DXL CPU TSS 

54 

65407 

65439 

65471 

65503 

65535 

31 

System Status, etc. 
in Am386DXlDXL CPU TSS 

24 23 16 15 8 

56 55 48 47 40 

88 87 80 79 72 

1/0 Permission Bitmap 

(One Bit per Byte 1/0 
Port. Bitmap may be 

Truncated using TSS Limit.) 

Am386DXlDXL CPU TSS Descriptor (In GOT) 

7 

39 

71 

t 

~ O. 
32 BIT_ MAP_OFFSET 

64 

96 OFFSE 

OFFSE 

~ 

OFFSE 

OFFSE 

OFFSE 

65472 OFFSE 

T+1FEC 

T+1FFO 

T +lFF4 

T + lFF8 

T+1FFC 

T +2000 

65504 OFFSE 

FFH OFFSE 

TSS Limit = OFFSET +20ooH 
0 

Selector Base 15~ Segment Limi115~ 

Base 31-24 
IG 11 10 I 0 11~~~~ pi DrL 10 I I TYfe I I 

Base 
23-16 

Figure 29a. TSS and TSS Registers 15021~32a 

Am3S6 Microprocessors for Personal Computers 



AMD 

31 30 29 28 2726 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

31 

63 

95 

127 

1 

0 

1 
0 

1 1 

0 1 

1 1 

0 0 

1 0 1 1 

0 0 0 1 

1 1 1 1 

0 0 0 0 

0 0 0 0 0 1 1 

1 1 1 0 0 1 0 

1 1 1 1 1 1 1 

0 0 0 0 0 0 0 

1 1 0 1 0 0 1 1 0 0 0 0 0 0 o 0 1 1 

1 0 1 1 1 1 1 1 0 0 1 1 1 1 100 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 o 0 0 0 0 0 0 0 0 00 0 0 
1 1 1 1 1 1 1 1 

lID Ports Accessible: 2 ~ 9,12,13,15, 20 ~ 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 ~ 60,62,63, 96 ~ 127 

Figure 29b. Sample 1/0 Permission Bit Map 
15021 B-032b 

The 1/0 privilege level (IOPL) also affects whether 
several other instructions can be executed or cause an 
Exception 13 fault instead. These instructions are called 
IOPL-sensitive instructions and they are CLI and STI. 
(Note that the LOCK prefix is not IOPL-sensitive on the 
Am386DXlDXL microprocessor.) 

The IOPL also affects whether the IF bit (interrupts en­
able flag) can be changed by loading a value into the 
EFLAGS register. When CPL~ IOPL, the IF bit can be 
changed by loading a new value into the EFLAGS regis­
ter. When CPL > IOPL, the IF bit cannot be changed by a 
new value POP'ed into (or otherwise loaded into) the 
EFLAGS register; the IF bit merely remains unchanged 
and no exception is generated. 

Table 10. Pointer Test Instructions 

Instruction Operands Function 

ARPL Selector, Adjust Requested Privilege 
Register Level; adjusts the RPL of the 

selector to the numeric maximum 
of current selector RPL value and 
the RPL value in the register. Set 
zero flag if selector RPL was 
changed. 

VERR Selector VERify for Read: sets the zero 
flag if the segment referred to 
by the selector can be read. 

VERW Selector VERify for Write: sets the zero 
flag if the segment referred to 
by the selector can be written. 

LSL Register, Load Segment Limit: reads the 
Selector segment limit into the register if 

privilege rules and descriptor 
type allow. Set zero flag if 
successful. 

LAR Register, Load Access Rights: reads the 
Selector descriptor access rights byte into 

the register if privilege rules allow. 
Set zero flag if successful. 

Privilege Validation 

The Am386DXlDXL CPU provides several instructions 
to speed pointer testing and help maintain system 
integrity by verifying that the selector value refers to an 

appropriate segment. Table 10 summarizes the selec­
tor validation procedures available for the Am386DXI 
DXL microprocessor. 

This pointer verification prevents the common problem 
of an application at PL = 3 calling an operating-systems 
routine at PL = 0 and passing the operating-systems 
routine a bad pointer that corrupts a data structure 
belonging to the operating system. If the operating­
systems routine uses the ARPL instruction to ensure 
that the RPL of the selector has no greater privilege 
than that of the caller, then this problem can be avoided. 

Descriptor Access 

There are basically two types of segment accesses: 
those involving code segments, such as control trans­
fers; and those involving data accesses. Determining 
the ability of a task to access a segment involves the 
type of segment to be accessed, the instruction used, 
the type of descriptor used, and CPL, RPL, and DPL as 
described above. 

Any time an instruction loads data segment registers 
(DS, ES, FS, GS) the Am386DXlDXL microprocessor 
makes protection validation checks. Selectors loaded in 
the DS, ES, FS, GS registers must refer only to data 
segments or readable code segments. The data access 
rules are specified in Section Rules of Privilege. The 
only exception to those rules is readable conforming 
code segments which can be accessed at any privilege 
level. 

Finally, the privilege validation checks are performed. 
The CPL is compared to the EPL; if the EPL is more 
privileged than the CPL, an Exception 13 (General Pro­
tection fault) is generated. 

The rules regarding the stack segment are slightly differ­
ent than those involving data segments. Instructions 
that load selectors into SS must refer to data segment 
descriptors for writeable data segments. The DPL and 
RPL must equal the CPL. All other descriptor types or a 
privilege level violation will cause Exception 13. A stack 
not present fault causes Exception 12. Note that an 
Exception 11 is used for a not-present code or data 
segment. 

Am386DXlDXL Microprocessor Data Sheet 55 



~ AMD 

Table 11. Descriptor Types Used for Control Transfer 

Descriptor Descriptor 
Control Transfer Types Operation Types Referenced Table 

Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDTlLDT 

Intersegment to the same or higher privilege level CALL Call Gate GDT/LDT 

Interrupt within task may change CPL 
Interrupt Instruction, Trap or Interrupt 

IDT Exception, External Interrupt Gate 

Intersegment to a lower privilege level (change task CPL) RET,IRET* Code Segment GDT/LDT 

CALL, JMP Task State Segment GDT 

CALL, JMP Task Gate GDT/LDT 

Task Switch IREr*, Interrupt Instruction, 
Exception, External Interrupt Task Gate IDT 

*NT (Nested Task bit of flag register) = 0 **NT (Nested Task bit of flag register) = 1 

Privilege Level Transfers 

Intersegment control transfers occur when a selector is 
loaded in the CS register. For a typical system most of 
these transfers are simply the result of a call or a jump to 
another routine. There are five types of control transfers, 
which are summarized in Table 11. 

Many of these transfers result in a privilege level trans­
fer. Changing privilege levels is done only via control 
transfers by using gates, task switches, and interrupt or 
trap gates. 

Control transfers can only occur if the operation that 
loaded the selector references the correct descriptor 
type. Any violation of these descriptor usage rules will 
cause an Exception 13 (e.g., JMP through a call gate or 
IRET from a normal subroutine call). 

In order to provide further system security, all control 
transfers are also subject to the privilege rules. 

The privilege rules require that: 

- Privilege level transitions can only occur via gates. 

- JMPs can be made to a non-conforming code 
segment with the same privilege or to a conforming 
code segment with greater or equal privilege. 

- CALLs can be made to a non-conforming code 
segment with the same privilege or via a gate to a 
more privileged level. 

- Interrupts handled within the task obey the same 
privilege rules as CALls. 

- Conforming Code segments are accessible by 
privilege levels that are the same or less privileged 
than the conforming-code segment's DPL. 

- Both the requested privilege level (RPL) in the 
selector pointing to the gate and the task's CPL must 
be of equal or greater privilege than the gate's DPL. 

- The code segment selected in the gate must be the 
same or more privileged than the task's CPL. 

- Return instructions that do not switch tasks can only 
return control to a code segment with same or less 
privilege. 

- Task switches can be performed by a CALL, JMP, or 
INT that references either a task gate or task state 
segment whose DPL is less privileged or the same 
privilege as the old task's CPL. 

Any control transfer that changes CPL within a task 
causes a change of stacks as a result of the privilege 
level change. The initial values of SS:ESP for privilege 
levels 0, 1, and 2 are retained in the task state segment 
(see Section Task Switching). During a JMP or CALL 
control transfer, the new stack pointer is loaded in the 
SS and ESP registers and the previous stack pointer is 
pushed onto the new stack. 

When returning to the original privilege level, use of the 
lower-privilege stack is restored as part of the RET or 
IRET instruction operation. For subroutine calls that 
pass parameters on the stack and cross privilege levels, 
a fixed number of words (as specified in the gate's word 
count field) are copied from the previous stack to the 
current stack. The intersegment RET instruction with a 
stack adjustment value will correctly restore the previ­
ous stack pointer upon return. 

call Gates 

Gates provide protected, indirect CALLs. One of the 
major uses of gates is to provide a secure method of 
privilege transfers within a task. Since the operating 
system defines all the gates in a system, it ,can 
ensure that all gates only allow entry into a few trusted 
procedures (such as those that allocate memory or per­
form I/O). 

56 Am3S6 Microprocessors for Personal Computers 



Gate descriptors follow the data access rules of privi­
lege; that is, gates can be accessed by a task if the EPL 
is equal to or more privileged than the gate descriptor's 
DPL. Gates follow the control transfer rules of privilege 
and therefore may only transfer control to a more privi­
leged level. 

Call gates are accessed via a CALL instruction and are 
syntactically identical to calling a normal subroutine. 
When an interlevel Am386DXlDXL microprocessor call 
gate is activated, the following actions occur: 

1. Load CS:EI P from gate check for validity; 

2. SS is pushed zero-extended to 32 bits; 

3. ESP is pushed; 

4. Copy word count 32-bit parameters from the old 
stack to the new stack; 

5. Push return address on stack. 

The procedure is identical for 80286 Call gates, except 
that 16-bit parameters are copied and 16-bit registers 
are pushed. 

Interrupt gates and Trap gates work in a similar fashion 
as the call gates, except there is no copying of parame­
ters. The only difference between Trap and Interrupt 
gates is that control transfers through an Interrupt gate, 
disable further interrupts (Le., the IF bit is set to 0), and 
Trap gates leave the interrupt status unchanged. 

Task Switching 

A very important attribute of any multitasking/multi-user 
operating system is its ability to rapidly switch between 
tasks or processes. The Am386DXlDXL microproces­
sor directly supports this operation by providing a task 
switch instruction in hardware. The Am386DXlDXL 
CPU task switch operation saves the entire state of the 
machine (all of the registers, address space, and a link 
to the previous task), loads a new execution state, per­
forms protection checks, and commences execution in 
the new task, in about 17 ms. Like transfer of control via 
gates, the task switch operation is invoked by executing 
an intersegment JMP or CALL instruction that refers to a 
Task State Segment (TSS) , or a task gate descriptor in 
the GDTorLDT. An INT n instruction, exception, trap, or 
external interrupt may also invoke the task switch opera­
tion if there is a task gate descriptor in the associated 
IDT descriptor slot. 

The TSS descriptor pOints to a segment (see Figure 
29a) containing the entire Am386DXlDXL microproces­
sor execution state while a task gate descriptor contains 
a TSS selector. The Am386DXlDXL CPU supports both 
80286 and Am386DXlDXL CPU style TSSs. Figure 30 
shows an 80286 TSS. The limit of an Am386DXlDXL 
microprocessor TSS must be greater than 0064H 
(002BH for an 80286 TSS) and can be as large as 4 Gb. 
In the additional TSS space, the operating system is 
free to store additional information, such as the reason 
the task is inactive, time the task has spent running, and 
open files belonging to the task. 

AMD ~ 
Each task must have a TSS associated with it. The cur­
rent TSS is identified by a special register in the 
Am386DXlDXL microprocessor called the Task State 
Segment Register (TR). This register contains a selec­
tor referring to the task state segment descriptor that de­
fines the current TSS. A hidden base and limit register 
associated with TR are loaded whenever TR is loaded 
with a new selector. Returning from a task is accom­
plished by the IRET instruction. When IRET is executed, 
control is returned to the task that was interrupted. The 
current executing task's state is saved in the TSS and 
the old task state is restored from its TSS. 

Several bits in the flag register and machine status word 
(CRO) give information about the state of a task that are 
useful to the operating system. The Nested Task (NT) 
(bit 14 in EFLAGS) controls the function of the IRET in­
struction. If NT = 0, the IRET instruction performs the 
regular return; when NT = 1, IRET performs a task 
switch operation back to the previous task. The NT bit is 
set or reset in the following fashion. 

When a CALL or INT instruction initiates a task switch, 
the new TSS will be marked busy and the back link 
field of the new TSS set to the old TSS selector. The NT 
bit of the new task is set by CALL or INT initiated task 
switches. An interrupt that does not cause a task switch 
will clear NT. (The NT bit will be restored after execution 
of the interrupt handler.) NT may also be set or cleared 
by POPF or IRET instructions. 

The Am386DXlDXL microprocessor Task State Seg­
ment is marked busy by changing the descriptor type 
field from Type 9H to Type BH. An 80286 TSS is 
marked busy by changing the descriptor type field from 
Type 1 to Type 3. Use of a selector that references a 
busy task state segment causes an Exception 13. 

The Virtual Mode (VM) bit 17 is used to indicate if a task 
is a virtual 8086 task. If VM = 1, then the tasks will use 
the Real Mode addressing mechanism. The virtual 8086 
environment is only entered and exited via a task switch 
(see Section Virtual Mode). 

The coprocessor's state is not automatically saved 
when a task switch occurs, because the incoming task 
may not use the coprocessor. The Task Switched (TS) 
Bit (bit 3 in the CRO) helps deal with the coprocessor's 
state in a multitasking environment. Whenever the 
Am386DXlDXL microprocessor switches tasks, it sets 
the TS bit. The Am386DXlDXL CPU detects the first use 
of a processor extension instruction after a task switch 
and causes the processor extension not available Ex­
ception 7. The exception handler for Exception 7 may 
then decide whether to save the state of the coproces­
sor. A processor extension not present Exception 7 will 
occur when attempting to execute an ESC or WAIT in­
struction if the Task Switched and Monitor coprocessor 
extension bits are both set (Le., TS = 1 and MP = 1). 

Am386DXlDXL Microprocessor Data Sheet 57 



~ AMD 

15 0 
Back Link Selector to TSS 0 

SP forCPL 0 2 

SS forCPL 0 4 
Initial 

SP for CPL 1 6 Stacks 

SS for CPL 1 8 forCPL 
0,1,2 

SP for CPL 2 A 

SSforCPL2 C 

IP (Entry Point) E 

Flags 10 

AX 12 

CX 14 

OX 16 

BX 18 Current 
SP 1A Task 

State 
BP 1C 

SI 1E 

01 20 

ES Selector 22 

CS Selector 24 

SS Selector 26 

OS Selector 28 

Task's LOT Selector 2A 
t'lJ Available N.J 
ru ru 150219-033 

Figure 30. 80286 TSS 

The T bit in the Am3860XlOXL microprocessor TSS in­
dicates that the processor should generate a debug ex­
ception when switching to a task. If T = 1, then upon en­
try to a new task, a debug Exception 1 will be generated. 

Initialization and Transition to Protected Mode 

Since the Am3860XlOXL microprocessor begins exe­
cuting in Real Mode immediately after RESET, it is nec­
essary to initialize the system tables and registers with 
the appropriate values. 

The GOT and lOT registers must refer to a valid GOT 
and lOT. The lOT should be at least 2S6-bytes long, 
and GOT must contain descriptors for the initial code 
and data segments. Figure 31 shows the tables and 
Figure 32 shows the descriptors needed for a simple 
Protected Mode Am3860XlOXL microprocessor sys­
tem. It has a single code and single data/stack segment 
each 4 Gb long and a single privilege level PL = O. 

The actual method of enabling Protected Mode is to load 
CRO with PE bit set, via the MOV CRO, RIM instruction. 

This puts the Am3860XlOXL microprocessor in Pro­
tected Mode. 

After enabling Protected Mode, the next instruction 
should execute an intersegment JMP to load the CS 
register and flush the instruction decode queue. The 
final step is to load all of the data segment registers with 
the initial selector values. 

An alternate approach to entering Protected Mode that 
is especially appropriate for muHitasking operating sys­
tems is to use the built in task-switch to load all of the 
registers. In this case, the GOT would contain two TSS 
descriptors in addition to the code and data descriptors 
needed for the first task. The first JM P instruction in Pro­
tected Mode would jump to the TSS causing a task 
switch and loading all of the registers with the values 
stored in the TSS. The TR should be initialized to point to 
a valid TSS descriptor since a task switch saves the 
state of the current task in a task state segment. 

Paging 
Paging Concepts 

Paging is another type of memory management useful 
for virtual memory multitasking operating systems. Un­
like segmentation that modularizes programs and data 
into variable length segments, paging divides pro­
grams into multiple uniform size pages. Pages bear no 
direct relation to the logical structure of a program. 
While segment selectors can be considered the logical 
name of a program module or data structure, a page 
most likely corresponds to only a portion of a module or 
data structure. 

By taking advantage of the locality of reference dis­
played by most programs, only a small numberof pages 
from each active task need be in memory at anyone 
moment. 

Paging Organization 

Page Mechanism 

The Am3860XlOXL microprocessor uses two levels of 
tables to translate the linear address (from the segmen­
tation unit) into a physical address. There are three com­
ponents to the paging mechanism olthe Am3860XlOXL 
CPU: the page directory, the page tables, and the page 
itself (page frame). All memory-resident elements of the 
Am3860XlOXL CPU paging mechanism are the same 
size, namely, 4 Kb. A uniform size for ali of the elements 
simplifies memory allocation and reallocation schemes, 
since there is no problem with memory fragmentation. 
Figure 33 shows how the paging mechanism works. 

58 Am386 Microprocessors for Personal Computers 



15 0 

SS 100101 

GS 100101 

FS 100101 

ES 

DS 

CS 

GDTR 

Data 
Descriptor 

Code 

1---'---. 

Base 31-24 
00 (H) 

31 

Reset Routines 

Initialization 
Routines 

User Memory 

Data Descriptor 

Code Descriptor 

Null Selector 

Interrupt 
Descriptors (32) 

o 
FFFFFFFF 
FFFFFFFO 

00000118} 
00000110 

GDT 
00000108 

00000100 .. 
IDT 
+ 

00000000 

Figure 31. Simple Protected System 

Base 
23-16 
00 (H) 

Descriptor 
~------~~~~~-------+-r--~~~~~~------~ 

Base 
23-16 
00 (H) 

Base 31-24 
00 (H) 

31 

Null Descriptor 

24 16 15 8 o 

Figure 32. GDT Descriptors for Simple System 

AMD ~ 

150218-034 

150218-035 

Page Descriptor Base Register 

CR2 is the Page FauH Linear Address register. It holds 
the 32-bit linear address that caused the last Page FauH 
detected. 

a task switch through a TSS that changes the value of 
CRO. (See Translation Look-Aside Buffer.) 

CR3 is the Page Directory Physical Base Address 
Register. It contains the physical starting address of the 
Page Directory. The lower 12 bits of CR3 are always 
zero to ensure that the Page Directory is always page 
aligned. Loading it via a MOV CR3, reg instruction 
causes the Page Table entry cache to be flushed, as will 

Page Directory 

The Page Directory is 4-Kb long and allows up to 1024 
Page Directory entries. Each Page Directory entry con­
tains the address of the next level of tables, the Page Ta­
bles and information aboutthe page table. The contents 
of a Page Directory entry are shown in Figure 34. The 
upper 10 bits of the linear address (A31-A22) are used 
as an index to select the correct Page Directory entry. 

Am386DXlDXL Microprocessor Data Sheet 59 

i 
r 



~ AMD 

Two Level Paging Scheme 

31 22 12 0 

Linear 
"I Directory I Table I Offset I 

Address I 12 
./ 

10V 10 " 
, 

User ,I ,I 

Memory 

Am386DXlDXL 
CPU 

31 0 v--- Address 

31 0 31 0 ~ 
CRO I 
CR1 +} r---+ 
CR2 

Page Table 

CR3 Root .. 
Control Registers 

Directory 

150218-036 

Figure 33. Paging Mechanism 

31 12 11 10 9 8 7 6 5 4 3 2 o 

as U R 
Page Table Address 31-12 Reserved 0 0 D A 0 0 - - p 

S W 

Figure 34. Page Directory Entry (Points to Page Table) 150218-037 

31 12 11 10 9 8 7 6 5 4 3 2 o 

as U R 
Page Frame Address 31-12 Reserved 0 0 D A 0 0 - - P 

S W 

Figure 35. Page Table Entry (Points to Page) 150218-038 

60 Am3S6 Microprocessors for Personal Computers 



Page Tables 

Each Page Table is 4 Kb and holds up to 1024 Page 
Table entries. Page Table entries contain the starting 
address of the page frame and statistical information 
about the page (see Figure 35). Address bits A21-A12 
are used as an index to select one of the 1024 Page 
Table entries. The 20 upper-bit page frame address is 
concatenated with the lower 12 bits of the linear address 
to form the physical address. Page tables can be shared 
between tasks and swapped to disks. 

Page DlrectorylTable Entries 

The lower 12 bits of the Page Table entries and Page Di­
rectory entries contain statistical information about 
pages and page tables respectively. The P (Present) bit 
o indicates if a Page Directory or Page Table entry can 
be used in address translation. If P = 1 , the entry can be 
used for address translation; if P = 0, the entry cannot be 
used for translation. Note that the present bit of the page 
table entry that pOints to the page where code is cur­
rently being executed should always be set. Code that 
marks its own page not present should not be written. All 
ofthe other bits are available for use by the software. For 
example the remaining 31 bits could be used to indicate 
where on the disk the page is stored. 

The A (Accessed) bit 5 is set by the Am386DXlDXL mi­
croprocessor for both types of entries before a read or 
write access occurs to an address covered by the entry. 
The D (Dirty) bit 6 is set to 1 before a write to an address 
covered by that page table entry occurs. The D bit is un­
defined for Page Directory entries. When the P, A, and 
D bits are updated by the Am386DXlDXL CPU, the mi­
croprocessor generates a Read-Modify-Write cycle that 
locks the bus and prevents conflicts with other proces­
sors or peripherals. Software that modifies these bits 
should use the LOCK prefix to ensure the integrity of the 
page tables in multi-master systems. 

The three bits marked OS Reserved in Figures 34 and 
35 (bits 11-9) are software definable. OSs are free to 
use these bits for whatever purpose they wish. An 
example use of the OS Reserved bits would be to store 
information about page aging. By keeping track of how 
long a page has been in memory since being accessed, 
an operating system can implement a page replace­
ment algorithm like Least Recently Used. 

The (User/Supervisor) U/S bit 2 and the (ReadIWrite) 
R/W bit 1 are used to provide protection attributes for 
individual pages. 

Page Level Protection (R/W, U/S Bits) 

The Arn386DXlDXL microprocessor provides a set of 
protection attributes for paging systems. The paging 
mechanism distinguishes between two levels of pro­
tection: user, which corresponds to level 3 of the 
segmentation based protection, and supervisor, which 
encompasses all of the other protection levels (0, 1, 2). 

AMD ~ 
Programs executing at level 0, 1, or 2 bypass the page 
protection, although segmentation based protection is 
still enforced by the hardware. 

The U/S and RIW bits are used to provide User/Supervi­
sor and Read/Write protection for individual pages or for 
all pages covered by a Page Table Directory entry. The 
U/S and R/W bits in the first level Page Directory Table 
apply to all pages described by the page table pointed to 
by that directory entry. The U/S and R/W bits in the sec­
ond level Page Table entry apply only to the page de­
scribed by that entry. The U/S and RIW bits for a given 
page are obtained by taking the most restrictive of the 
U/S and R/W bits from the Page Directory Table entries 
and the Page Table entries and using these bits to ad­
dress the page. 

Example: If the U/S and RIW bits for the Page Directory 
entry were 10 and the U/S and RIW bits for the Page Ta­
ble entry were 01, the access rights for the page would 
be 01, the numerically smaller of the two. Table 12 
shows the effect of the U/S and R/W bits on accessing 
memory. 

Table 12. Protection Provided by RIW and U/S 

Permitted Permitted Access 
U/S RIW Level 3 Levels 0, 1, or 2 

0 0 None ReadIWrite 

0 1 None ReadIWrite 

1 0 Read-Only ReadIWrite 

1 1 ReadIWrite ReadIWrite 

However, a given segment can be easily made read­
only for level 0, 1 , or 2 via the use of segmented protec­
tion mechanisms (see Section Protection). 

TranslatIon Look·Aslde Buffer 

The Am386DXlDXL microprocessor paging hardware 
is designed to support demand paged virtual memory 
systems. However, performance would degrade sub­
stantially if the processor was required to access two 
levels of tables for every memory reference. To solve 
this problem, the Am386DXlDXL device keeps a cache 
of the most recently accessed pages, this cache is 
called the Translation Look-Aside Buffer (TLB). The 
TLB is a four-way set associative 32-entry page table 
cache. It automatically keeps the most commonly used 
Page Table entries in the processor. The 32-entry TLB, 
coupled with a 4K page size, results in coverage of 
128 Kb of memory addresses. For many common multi­
tasking systems, the TLB will have a hit rate of about 
98%. This means that the processor will only have to 
access the two-level page structure on 2% of all memory 
references. Figure 36 illustrates how the TLB com­
plements the Am386DXlDXL microprocessor's paging 
mechanism. 

Am386DXlDXL Microprocessor Data Sheet 61 



AMD 

32 Entries 

Linear 
Address Translation 

----+ Look-Aside 
Buffer 

Miss 

.. 

31 

Page 
Directory 

0 

!-

.98% Hit Rate 

p---. 
po 

Hit 

Page 
Table 

po 

I--

Physical 
Memory 

15021B--{)39 

Figure 36. Translation Look-Aside Buffer 

Paging Operation 

The paging hardware operates in the following fashion: 
the paging unit hardware receives a 32-bit linear ad­
dress from the segmentation unit. The upper 20 linear 
address bits are compared with all 32 entries in the TLB 
to determine if there is a match. If there is a match (Le., a 
TLB hit), then the 32-bit physical address is calculated 
and will be placed on the address bus. 

However, if the Page Table entry is not in the TLB, the 
Am386DXlDXL microprocessor will read the appro­
priate Page Directory entry. If P = 1 on the Page Direc­
tory entry indicating that the page table is in memory, 
then the Am386DXlDXL device will read the appro­
priate Page Table entry and setthe Access bit. If P = 1 
on the Page Table entry indicating that the page is in 
memory, the Am386DXlDXL device will update the 
Access and Dirty bits as needed and fetch the operand. 
The upper 20 bits of the linear address, read from the 
page table, will be stored in the TLBforfuture accesses. 
However, if P = 0 for either the Page Directory entry or 
the Page Table Entry, then the processor will generate 
a Page Fault, an Exception 14. 

The processorwill also generate an Exception 14, Page 
Fault, if the memory reference violated the page protec­
tion attributes (Le., U/S or RIW; trying to write to a read­
only page). CR2 will hold the linear address that caused 
the page fault. If a second page fault occurs while the 
processor is attempting to enter the service routine for 
the first, then the processor will invoke the Page Fault 
(Exception 14) handler a second time, rather than the 
Double Fault (Exception 8) handler. Since Exception 14 

is classified as a fault, CS:EIP will pointtothe instruction 
causing the page fault. The 16-bit error code pushed as 
part of the page fault handler will contain status bits 
which indicate the cause of the Page Fault. 

The 16-bit error code is used by the operating system to 
determine how to handle the Page Fault. Figure 37 
shows the format of the page-fault error code and the in­
terpretation of the bits. 

Note: Even though the bits in the error code (U/S, RIW, 
and P) have similar names as the bits in the Page Direc­
tory/Table entries, the interpretation of the error code 
bits is different. Figure 38 indicates what type of access 
caused the Page Fault. 

150218--{)40 

Figure 37. Page Fault Error Code Format 

UlS: The U/S bit indicates whether the access causing 
the fault occurred when the processor was executing 
the User Mode (U/S = 1) or in Supervisor mode 
(U/S=O). 

R/W: The R/W bit indicates whether the access causing 
the fault was a Read (R/W = 0) or a Write (RIW = 1). 

P: The P bit indicates whether a Page Fault was caused 
by a not-present page (P = 0) or by a page level protec­
tion violation (P = 1). 

U: Undefined. 

UlS RIW Access Type 

0 0 Supervisor' Read 

0 1 Supervisor Write 

1 0 User Read 

1 1 User Write 

'Descriptor table access will fault with U/S = 0, even if the 
program is executing at level 3. 

150218--{)41 

Figure 38. Type of Access Causing Page Fault 

Operating System Responsibilities 

The Am386DXlDXL microprocessor takes care of the 
page address translation process, relieving the burden 
from an operating system in a demand-paged system. 
The operating system is responsible for setting up the 
initial page tables and handling any page faults. The op­
erating system is also required to invalidate (Le., flush) 
the TLB when any changes are made to any of the Page 
Table entries. The operating system must reload CR3 to 
cause the TLB to be flushed. 

62 Am386 Microprocessors for Personal Computers 



Setting up the tables is simply a matter of loading CR3 
with the address of the Page Directory and allocating 
space for the Page Directory and the Page Tables. The 
primary responsibility of the operating system is to im­
plement a swapping policy and handle all of the page 
faults. 

A final concern of the operating system is to ensure that 
the TLB cache matches the information in the paging ta­
bles. In particular, any time the operating system sets 
the P present bit of page table entry to zero, the TLB 
must be flushed. Operating systems may want to take 
advantage of the fact that CR3 is stored as part of a TSS 
to give every task or group of tasks its own set of page 
tables. 

Virtual 8086 Environment 
Executing 8086 Programs 

The Am3860XlDXL microprocessor allows the execu­
tion of 8086 application programs in both Real Mode 
and in the Virtual 8086 Mode (Virtual Mode). Of the two 
methods, Virtual 8086 Mode offers the system designer 
the most flexibility. The Virtual 8086 Mode allows the 
execution of 8086 applications, while still allowing 
the system designer to take full advantage of the 
Am386DXlDXL device protection mechanism. In par­
ticular, the Am386DXlDXL CPU allows the simultane­
ous execution of 8086 operating systems and its appli­
cations, and an Am386DXlDXL CPU operating system 
and both 80286 and Am386DXlDXL microprocessor 
applications. Thus, in a multiuser Am3860XlOXL CPU 
computer, one person could be running a MS-DOS 
spreadsheet, another person using MS-DOS, and a 
third person could be running multiple UNIX utilities and 
applications. Each person in this scenario would believe 
they had the computer completely to themself. Figure 39 
illustrates this concept. 

Virtual 8086 Mode Addressing Mechanism 

One of the major differences between Am386DXlDXL 
microprocessor Real and Protected Modes is how the 
segment selectors are interpreted. When the processor 
is executing in Virtual 8086 Mode, the segment registers 
are used in an identical fashion to Real Mode. The 
contents of the segment register are shifted left 4 bits 
and added to the offset to form the segment base linear 
address. 

The Am386DXlDXL microprocessor allows the operat­
ing system to specify which programs use the 8086 style 
address mechanism, and which programs use Pro­
tected Mode addressing, on a per task basis. Through 
the use of paging, the 1-Mb address space of the Virtual 
Mode task can be mapped to anywhere in the 4-Gb lin­
ear address space of the Am386DXlDXL device. Like 
Real Mode, Virtual Mode effective addresses (i.e., seg­
ment offsets) that exceed 64 Kb will cause an Exception 
13. However, these restrictions should not prove to be 

AMD ~ 
important because most tasks running in Virtual 8086 
Mode will simply be existing 8086 application programs. 

Paging In Virtual Mode 

The paging hardware allows the concurrent running 
of multiple Virtual Mode tasks and provides protection 
and operating system isolation. Although it is not 
strictly necessary to have the paging hardware enabled 
to run Virtual Mode tasks, it is needed in order to run 
multiple Virtual Mode tasks or to relocate the address 
space of a Virtual Mode task to physical address space 
greater than 1 Mb. 

The paging hardware allows the 20-bit linear address 
produced by a Virtual Mode program to be divided into 
up to 256 pages. Each one of the pages can be located 
anywhere within the maximum 4-Gb physical address 
space of the Am386DXlOXL microprocessor. In addi­
tion, since CR3 (the Page Directory Base Register) is 
loaded by a task switCh, each Virtual Mode task can use 
a different mapping scheme to map pages to different 
physical locations. Finally, the paging hardware allows 
the shari ng of the 8086 operating system code between 
multiple 8086 applications. Figure 39 shows how the 
Am386DXlDXL device paging hardware enables multi­
ple 8086 programs to run under a virtual memory de­
mand paged system. 

Protection and 1/0 Permission Bitmap 

All Virtual 8086 Mode programs execute at privilege 
level 3, the level of least privilege. As such, Virtual 8086 
Mode programs are subject to all of the protection 
checks defined in Protected Mode. (This is different 
from Real Mode which implicitly is executing at privilege 
level 0, the level of greatest privilege.) Thus, an attempt 
to execute a privileged instruction when in Virtual 8086 
Mode will cause an Exception 13 fault. 

The following are privileged instructions, which may be 
executed only at Privilege Level O. Therefore, attempt­
ing to execute these instructions in Virtual 8086 Mode 
(or anytime CPL > 0) causes an Exception 13 fault. 

LIDT; 

LGDT; 

LMSW; 

CLTS; 

HLT; 

MOV DRn, reg; 

MOV TRn, reg; 

MOV CRn, reg; 

MOV reg,DRn; 

MOV reg,TRn; 

MOV reg, CRn; 

Several instructions, particularly those applying to the 
multitasking model and protection model, are available 
only in Protected Mode. Therefore, attempting to exe­
cute the following instructions in Real Mode or in Virtual 
8086 Mode generates an Exception 6 fault. 

LTR; STR; 

LLDT; SLDT; 

LAR; VERR; 

LSL; VERW; 

ARPL. 

Am386DXlDXL Microprocessor Data Sheet 63 



~ AMD 

Mode 
Task 

• 
OOOOOOOO(H) 

8086 as 
Memory 

~ Am386DX/DXL CPU as 
L::::J Memory 

15021B--D42 
Figure 39. Virtual 8086 Environment Memory Management 

The instructions that are 10PL-sensitive in Protected 
Mode are: 

IN; 

OUT; 

INS; 

OUTS; 

REP INS; 

REP OUTS. 

STI; 

CLI; 

In Virtual 8086 Mode, a slightly different set of instruc­
tions are made 10PL-sensitive. The following instruc­
tions are 10PL-sensitive in Virtual 8086 Mode: 

INT n; 
PUSHF; 

POPF; 

STI; 

CLI; 

IRET. 

The PUSHF, POPF, and IRET instructions are 10PL­
sensitive in Virtual 8086 Mode only. This provision al­
lows the IF flag (interrupt enable flag) to be virtualized to 
the Virtual 8086 Mode program. The INT n software 

interrupt instruction is also 10PL-sensitive in Virtual 
8086 Mode. Note, however, that the INT 3 (op-code 
OCCH), INTO, and BOUND instructions are not 10PL­
sensitive in Virtual 8086 Mode (they are not 10PL sensi­
tive in Protected Mode either). 

Note that the I/O instructions (IN, OUT,INS, OUTS, 
REP INS, and REP OUTS) are not 10PL-sensitive in Vir­
tual 8086 Mode. Rather, the I/O instructions become 
automatically sensitive to the 110 Permission Bitmap 

. contained in the Am386DXlDXL CPU TSS. The I/O Per­
mission Bitmap, automatically used by the Am386DXI 
DXL microprocessor in Virtual 8086 Mode, is illustrated 
by Figures 29a and 29b. 

The I/O Permission Bitmap can be viewed as a 
0-64K bit string, that begins in memory at offset 
Bit_Map_Offset in the current TSS. Bit_Map_Offset 
must be ~ DFFFH so the entire bit map and the byte FFH 
that follows the bit map are all at offset ~ FFFFH from the 
TSS base. The 16-bit pointer BiCMap_Offset (15-0) is 
found in the word beginning at offset 66H (102 decimal) 
from the TSS base, as shown in Figure 29a. 

64 Am386 Microprocessors for Personal Computers 



Each bit in the I/O Permission Bitmap corresponds to a 
single byte-side I/O port, as illustrated in Figure 29a. If a 
bit is 0, I/O to the corresponding byte-wide port can oc­
cur without generating an exception. Otherwise the I/O 
instruction causes an Exception 13 fault. Since every 
byte-wide I/O port must be protectable, all bits corre­
sponding to a Word-wide or Dword-wide port must be 0 
for the Word-wide or Dword-wide I/O to be permitted. If 
all the referenced bits are 0, the I/O will be allowed. If 
any referenced bits are 1, the attempted I/O will cause 
an Exception 13 fault. 

Due to the use of a pointertothe base ofthe I/O Permis­
sion Bitmap, the bitmap may be located anywhere within 
the TSS or may be ignored completely by pOinting the 
BiCMap_Offset (15-0) beyond the limit of the TSS 
segment. In the same manner, only a small portion of 
the 64K I/O space need have an associated map bit by 
adjusting the TSS limit to truncate the bitmap. This 
eliminates the commitment of 8K of memory when a 
complete bitmap is not required, while allowing the fully 
general case if desired. 

Example of Bitmap for I/O Ports 0-255: Setting the TSS 
limit to {BiCMap_Offset + 31 +1""} (*"see note below] 
will allow a 32-byte bitmap forthe I/O ports 0-255, plus a 
terminator byte of all 1 s [""see note below]. This allows 
the I/O bitmap to control I/O Permission to I/O ports 
0-255 while causing an Exception 13 fault on attempted 
I/O to any I/O port 256 through 65,565. 

"Important Implementation Note: Beyond the last byte of 
110 mapping, information in the 110 Permission Bitmap must 
be a byte containing all 1 s. The byte of all 1 s must be within the 
limit of the Am386DX/DXL CPU TSS segment (see Figure 
29a). 

Interrupt Handling 

In order to fully support the emulation of an 8086 ma­
chine, interrupts in Virtual 8086 Mode are handled in a 
unique fashion. When running in Virtual Mode, all inter­
rupts and exceptions involve a privilege change back 
to the host Am386DXlDXL CPU operating system. The 
Am386DXlDXL microprocessor operating system de­
termines if the interrupt comes from a Protected Mode 
application or from a Virtual Mode program by examin­
ing the VM bit in the EFLAGS image stored on the stack. 

When a Virtual Mode program is interrupted and execu­
tion passes to the interrupt routine at level 0, the VM bit 
is cleared. However, the VM bit is still set in the EFLAGS 
image on the stack. 

The Am386DXlDXL microprocessor operating system 
in turn handles the exception or interrupt and then re­
turns control to the 8086 program. The Am386DXlDXL 
CPU operating system may choose to let the 8086 oper­
ating system handle the interrupt or it may emulate the 
function of the interrupt handler. For example, many 
8086 operating system calls are accessed by PUSHing 
parameters on the stack, and then executing an INT n 
instruction. If the 10PL is set to 0 then all INT n in­
structions will be intercepted by the Am386DXlDXL 

AMD ~ 
microprocessor operating system. The Am386DXlDXL 
CPU operating system could emulate the 8086 operat­
ing system's call. Figure 40 shows how the Am386DXI 
DXL microprocessor operating system could intercept 
an 8086 operating system's call to Open a File. 

The Am386DXlDXL microprocessor operating system 
can provide a Virtual 8086 Environment that is totally 
transparent to the application software via intercepting 
and then emulating 8086 operating system's calls, and 
intercepting IN and OUT instructions. 

Entering and Leaving Virtual 8086 Mode 

Virtual 8086 Mode is entered by executing an IRET in­
struction (at CPL = 0), or Task Switch (at any CPL) to an 
Am386DXlDXL microprocessor task whose Am386DXI 
DXL microprocessor TSS has an EFLAGS image con­
taining a 1 in the VM bit position while the processor is 
executing in Protected Mode. That is, one way to enter 
Virtual 8086 Mode is to switch to a task with an 
Am386DXlDXL device TSS that has a 1 in the VM bit in 
the EFLAGS image. The otherway is to execute a 32-bit 
IRET instruction at privilege level 0, where the stack has 
a 1 in the VM bit in the EFLAGS image. POPF does not 
affect the VM bit even if the processor is in Protected 
Mode or level 0, and so cannot be used to enter Virtual 
8086 Mode. PUSHF always pushes a 0 in the VM bit, 
even if the processor is in Virtual 8086 Mode, so that a 
program cannot tell if it is executing in Real Mode or in 
Virtual 8086 Mode. 

The VM bit can be set by executing an IRET instruction 
only at privilege level 0 or by any instruction or interrupt 
that causes a task switch in Protected Mode (with VM = 
1 in the new FLAGS image), and can be cleared only by 
an interrupt or exception in Virlual8086 Mode. I RET and 
POPF instructions executed in Real Mode or Virtual 
8086 Mode will not change the value in the VM bit. 

The transition out of Virtual 8086 Mode to Am386DXI 
DXL microprocessor Protected Mode occurs only on re­
ceipt of an interrupt or exception (such as dueto a sensi­
tive instruction). In Virtual 8086 Mode, all interrupts and 
exceptions vector through the Protected Mode IDT, 
and enter an interrupt handler in Am386DXlDXL CPU 
Protected Mode. That is, as part of interrupt processing, 
the VM bit is cleared. 

Because the matching IRET must occur from level 0, if 
an Interrupt or Trap gate is used to field an interrupt or 
exception out of Virtual 8086 Mode, the gate must per­
form an interlevel interrupt only to level O. Interrupt or 
Trap gates through conforming segments or through 
segments with DPL > 0, will raise a GP fault with the CS 
selector as the error code. 

Task Switches To/From Virtual BOB6 Mode 

Tasks which can execute in Virtual 8086 Mode must be 
described by a TSS with the new Am386DXlDXL micro­
processor format (Type 9 or 11 descriptor). 

Am386DXlDXL Microprocessor Data Sheet 65 



~ AMD 

8086 Application makes "Open File Call" -> causes General Protection Fault (Arrow #t) 
Virtual 8086 Monitor intercepts call. Calls Am386DX/DXL CPU as (Arrow #2) 
Am386DXlDXL CPU as "Opens File" returns control to 8086 as (Arrow #3) 
8086 as returns control to application (Arrow #4) 
Transparent to Application 150218-043 

Figure 40. Virtual 8086 Environment Interrupt and Call Handling 

A task switch out of Virtual 8086 Mode will operate 
exactly the same as any other task switch out of a task 
with an Am386DXlDXL CPU TSS. All of the program­
mer visible state, including the FLAGS register with the 
VM bit set to 1, is stored in the TSS. The segment regis­
ters in the TSS will contain 8086 segment base values 
rather than selectors. 

A task switch into a task described by an Am386DXlDXL 
microprocessor TSS will have an additional check to 
determine if the incoming task should be resumed in 
Virtual 8086 Mode. Tasks described by 80286 format 
TSSs cannot be resumed in Virtual 8086 Mode, so no 
check is required there (the FLAGS image in 80286 
format TSS has only the low-order 16 FLAGS bits). Be­
fore loading the segment register images from an 
Am386DXlDXL CPU TSS, the FLAGS image is loaded 
so that the segment registers are loaded from the TSS 
image as 8086 segment base values. The task is now 
ready to resume in Virtual 8086 Execution Mode. 

Transitions Through Trap and Interrupt Gates, 
andlRET 

A task switch is one way to enter or exit Virtual 8086 
Mode. The other method is to exist through a Trap or In­
terrupt gate, as part of handling an interrupt, and to enter 
as part of executing an IRET instruction. The transition 
out must use an Am386DXlDXL microprocessor Trap 
gate (Type 14) or Interrupt gate (Type 15) that must 
point to a non-conforming level 0 segment (DPL = 0) in 
order to permit the trap handler to IRET back to the 
Virtual 8086 program. The gate must pOint to a non­
conforming level 0 segment to pertorm a level switch to 
level 0 so that the matching IRET can change the VM 
bit. Am386DXlDXL device gates must be used, since 
80286 gates save only the lower 16 bits of the FLAGS 
register, so that the VM bit will not be saved on transi­
tions through the 80286 gates. Also, the i6-bit IRET 
(presumably) used to terminate the 80286 interrupt han­
dlerwill pop only the lower 16 bits from FLAGS, and will 

66 Am386 Microprocessors for Personal Computers 



not affect the VM bit. The action taken for an Am3S60Xl 
OXL microprocessor Trap or Interrupt gate if an interrupt 
occurs while the task is executing in Virtual SOS6 Mode 
is given by the following sequence. 

1. Save the FLAGS register in a temp to push later. 
Turn off the VM and TF bits, and if the interrupt is 
serviced by an Interrupt gate, turn off IF bit, also. 

2. Interrupt and Trap gates must perform a level switch 
from 3 (where the VMS6 program executes) to level 0 
(so IRET can return). This process involves a stack 
switch to the stack given in the TSS for privilege 
level O. Save the Virtual SOS6 Mode SS and ESP 
registers to push in a later step. The segment 
register load of SS will be done as a Protected Mode 
segment load since the VM bit was turned off above. 

3. Push the SOS6 segment register values onto the new 
stack, in the order: GS, FS, OS, ES. These are 
pushed as 32-bit quantities with undefined values in 
the upper 16 bits. Then load these 4 registers with 
null selectors (0). 

4. Push the old SOS6 stack pOinter onto the new stack 
by pushing the SS register (as 32-bit, high bits 
undefined), then pushing the 32-bit ESP register 
saved above. 

5. Push the 32-bit FLAGS register saved in step 1. 

6. Push the old SOS6 instruction pointer onto the new 
stack by pushing the CS register (as 32-bits, high bits 
undefined), then pushing the 32-bit EIP register. 

7. Load up the new CS:EIP value from the interrupt 
gate and begin execution 01 the interrupt routine in 
Protected Am3S60XlOXL Microprocessor Mode. 

The transition out of VirtualSOS6 Mode performs a level 
change and stack switch, in addition to changing back to 
Protected Mode. In addition, all of the SOS6 segment 
register images are stored on the stack (behind the 
SS:ESP image), and then loaded with null (0) selectors 
before entering the interrupt handler. This will permit the 
handler to safely save and restore the OS, ES, FS, and 
GS registers as S02S6 selectors. This is needed so that 
interrupt handlers that "don't care" aboutthe mode olthe 
interrupted program can use the same prolog and epilog 
code for state saving (Le., push all registers in prolog, 
pop all in epilog) regardless of whether or not a native 
mode or Virtual SOS6 Mode program was interrupted. 
Restoring null selectors to these registers before exe­
cutingthe IRETwili not cause a trap inthe interrupt han­
dier. Interrupt routines that expect values in the segment 
registers or return values in segment registers will have 
to obtain/return values from the SOS6 register images 
pushed onto the new stack. They will need to know the 
mode of the interrupted program in order to know 
where to find/return segment registers, and also to 
know how to interpret segment register values. 

AMD ~ 
The IRET instruction will perform the inverse of the 
above sequence. Only the extended Am3S60XlOXL 
microprocessor IRET instruction (operand size = 32) 
can be used and must be executed at level 0 to change 
the VM bit to 1. 

1. If the NT bit in the FLAGS register is on, an inter-task 
return is performed. The current state is stored in the 
current TSS, and the link field in the current TSS is 
used to locate the TSS forthe interrupted task which 
is to be resumed. 

Otherwise, continue with the following sequence. 

2. Read the FLAGS image from SS:S[ESP] into the 
FLAGS register. This will set VM to the value active 
in the interrupted routine. 

3. Popoff the instruction pOinterCS:EIP. EIP is popped 
first, then a 32-bit word is popped that contains the 
CS value in the lower 16 bits. If VM = 0, this CS 
load is done as a Protected Mode segment load. If 
VM = 1, this will be done as an SOS6 segment load. 

4. Increment the ESP register by 4 to bypass the 
FLAGS image which was popped in step 1. 

5. If VM = 1, load segment registers ES, OS, FS, 
and GS from memory locations SS:[ESP+S], 
SS:[ESP + 12], SS:[ESP + 16], and SS:[ESP + 20], 
respectively, where the new value of ESP stored in 
step 4 is used. Since VM = 1, these are done as SOS6 
segment register loads. 

Else if VM = 0, check that the selectors in ES, OS, 
FS, and GS are valid in the interrupted routine. Null 
out invalid selectors to trap if an attempt is made to 
access through them. 

6. If (RPL(CS) > CPL), pop the stack pointer SS:ESP 
from the stack. The ESP register is popped first, 
followed by 32-bits containing SS in the lower 16 bits. 
IfVM = 0, SS is loaded asa Protected Mode segment 
register load. If VM = 1, an SOS6 segment register 
load is used. 

7. Resume execution of the interrupted routine. The 
VM bit in the FLAGS register (restored from the 
interrupt routine's stack image in step 1) determines 
whether the processor resumes the interrupted 
routine in Protected Mode of Virtual SOS6 Mode. 

Am386DXlDXL Microprocessor Data Sheet 67 

I ~ 
I 



~ AMD 

FUNCTIONAL DATA 
Introduction 
The Am386DXlDXL microprocessor features a straight 
forward functional interface to the external hardware. 
The Am386DXlDXL CPU has separate parallel buses 
fordata and address. The data bus is 32 bits in width and 
is bidirectional. The address bus outputs 32-bit address 
values in the most directly usable form for the high­
speed local bus: 4 individual Byte Enable signals and 
the 30 upper-order bits as a binary value. The data and 
address buses are interpreted and controlled with their 
associated control signals. 

A dynamic data bus sizing feature allows the processor 
to handle a mix of 32- and 16-bit external buses on a 
cycle-by-cycle basis (see Data Bus Sizing). If 16-bit bus 
size is selected, the Am386DXlDXL microprocessor 
automatically makes any adjustment needed, even 
performing another 16-bit bus cycle to complete the 
transfer if that is necessary. Any 8-bit peripheral devices 
may be connected to 32- or 16-bit buses with no loss of 
performance. A new address pipe lining option is pro­
vided and applies to 32- and 16-bit buses for substan­
tially improved memory utilization, especially for the 
most heavily used memory resources. 

The address pipelining option, when selected, typically 
allows a given memory interface to operate with one 
less wait state than would otherwise be required (see 
Address Pipelining). The pipelined bus is also well 
suited to interleaved memory designs. When address 
pipelining Is requested by the extemal hardware, the 
Am386DXlDXL microprocessor will output the address 
and bus cycle definition of the next bus cycle (if it is inter­
nally available) even while waiting for the current cycle 
to be acknowledged. 

Non-pipelined address timing, however, is ideal for 
external cache designs, since the cache memory will 
typically be fast enough to allow non-pipe lined cycles. 
For maximum design flexibility, the address pipelining 
option is selectable on a cycle-by-cycle basis. 

The processor's bus cycle is the basic mechanism for 
information transfer, either from system to processor or 
from processor to system. Am386DXlDXL microproces­
sor bus cycles perform data transfer in a minimum of 
only two clock periods. On a 32-bit data bus, the 
maximum Am386DXlDXL device transfer at 20-MHz 
bandwidth is therefore 40 Mb/s, at 25-MHz bandwidth is 
50 Mb/s, at 33-MHz bandwidth is 66 Mb/s, and at 
40-MHz bandwidth is 80 Mb/s. Any bus cycle will be 
extended for more than two clock periods, however, if 
external hardware withholds acknowledgment of the 
cycle. At the appropriate time, acknowledgment is 
signaled by asserting the Am386DXlDXL microproces­
sor READY input. 

The Am386DXlDXL CPU can relinquish control of its 
local buses to allow mastership by other devices, such 

as direct memory access channels. When relinquished, 
HLDA is the only output pin driven by the Am386DXI 
DXL microprocessor providing near-complete isolation 
of the processor from its system. The near-complete 
isolation characteristic is ideal when driving the system 
from test equipment and in fault-tolerant applications. 

Functional data covered in this section describes the 
processor's hardware interface. First, the set of signals 
available at the processor pins is described (see Signal 
Description). Following that are the signal waveforms 
occurring during bus cycles (see Bus Transfer Mecha­
nism, Bus Functional Description, and Other Functional 
Descriptions). 

Signal Description 
Introduction 

Ahead is a brief description of the Am386DXlDXL CPU 
input and output signals arranged by functional groups 
(see Figure 41). 

Example signal: 

MOO -High voltage indicates Memory selected 
-Low voltage indicates I/O selected 

The signal descriptions sometimes refer to AC timing 
parameters, such as t25 RESET Setup Time and t26 
RESET Hold Time. 

Clock (CLK2) 

CLK2 provides the fundamental timing for the 
Am386DXlDXL microprocessor. It is divided by two in­
ternally to generate the internal processor clock used for 
instruction execution. The internal clock is comprised of 
two phases, phase one and phase two. Each CLK2 pe­
riod is a phase of the internal clock. Figure 42 illustrates 
the relationship. If desired, the phase of the internal 
processor clock can be synchronized to a known phase 
by ensuring the RESET signal falling edge meets its ap­
plicable setup and hold times, t25 and t26. 

Data Bus (D31-oo) 

These three-state, bidirectional signals provide the gen­
eral purpose data path between the Am386DXlDXL mi­
croprocessor and other devices. Data bus inputs and 
outputs indicate 1 when High. The data bus can transfer 
data on 32- and 16-bit buses using a data bus sizing 
feature controlled by the 8516 input. See Section Bus 
Control. Data bus reads require that read data setup and 
hold times, t21 and t22, be met for correct operation. In 
addition, the Am386DXlDXL microprocessor requires 
that all data bus pins be at a valid logic state (High or 
Low) at the end of each read cycle, when READY is 
asserted. During any write operation (and during halt 
cycles and shut down cycles), the Am386DXlDXL 
microprocessor always drives all 32 signals of the data 
bus even if the current bus size is 16 bits. 

68 Am386 Microprocessors for Personal Computers 



2X Clock { 

32-Bit Data { D31-D 

B" Comrol { 

Bus Arbitration { 

Interrupts { 

CLK2 [ 

Internal Am386DXlDXL [ 
CPU Clock (Half of 

the frequency of CLK2) 

AMD ~ 

CLK2 "-
Address Bo/ A31-A2 

BE3 

o~ BE2 
~ 

BE1 
32-Bit Address 

} Byto E"",, 
III! 

ADS 
BED 

NA 
Am386DXlDXL WlR 

BS16 Microprocessor DIG 
READY 

MIlO 

LOCK 
HOLD 

PEREQ 
HLDA 

BUSY 

INTR ERROR 

NMI Vee 

RESET GND 

FLT 

Figure 41. Functional Signal Groups 

Processor Clock 
Period 

} Coprocessor Signaling 

} Power Connections 

} Float 

Processor Clock 
Period 

15D21B-044 

CLK2 Period 
1 1 

CLK2 Period 
12 

CLK2 Period 
1 1 

CLK2 Period 
12 

12.5 ns Min} 40-MHz 
(40 MHz Max) Am386DXlDXL CPU 

15 ns Min } 33-MHz 
(33 MHz Max) Am386DX/DXL CPU 

40 ns Min } 25-MHz 
(25 MHz Max) Am386DXlDXL CPU 

50 ns Min } 20-MHz 
(20 MHz Max) Am386DX/DXL CPU 

15D21B-045 

Figure 42. CLK2 Signal and Internal Processor Clock 

Am386DXlDXL Microprocessor Data Sheet 69 



~ AMD 

Address Bus (BE3-BEO, A31-A2) 

These three-state outputs provide physical memory 
addresses or 1/0 port addresses. The address bus is 
capable of addressing 4 Gb of physical memory space 
(OOOOOOOOH-FFFFFFFFH), and 64 Kb of 1/0 address 
space (OOOOOOOOH-OOOOFFFFH) for programmed 1/0. 
1/0 transfers automatically generated for Am3860Xl 
OXL microprocessor-to-coprocessor communication 
use 1/0 addresses 800000F8H-800000FFH. so A31 is 
High in conjunction with MilO Low allows simple gen­
eration of the coprocessor select signal. 

The Byte Enable outputs. BE3-BEO. directly indicate 
which bytes of the 32-bit data bus are involved with the 
current transfer. This is most convenient for external 
hardware. 

BED applies to 07-00 
BE1 applies to 015-08 
BE2 applies to 023-016 

BE3 applies to 031-024 

The number of Byte Enables asserted indicates the 
physical size of the operand being transferred (1. 2. 3. or 
4 bytes). Refer to Section Operand Alignment. 

When a memory write cycle or 1/0 write cycle is in pro­
gress and the operand being transferred occupies only 
the upper 16 bits of the data bus (031-016). duplicate 
data is simultaneously presented on the corresponding 
lower 16 bits of the data bus (015-00). This duplication 

is performed for optimum write performance on 16 bit 
buses. The pattern 01 write data duplication is a function 
of the Byte Enables asserted during the write cycle. 
Table 13 lists the write data present on 031-00. as a 
function of the asserted Byte Enable outputs BE3-BEO. 

Bus Cycle Definition Signals (W/R". DIe, MilO, 
LOCK) 

These three-state outputs define the type of bus cycle 
being performed. W/R" distinguishes between write 
and read cycles. ole between data and control cycles. 
MilO between memory and 1/0 cycles. and LOCK 
between locked and unlocked bus cycles. 

The primary bus cycle definition signals are W/f5... Ole. 
and MilO. since these are the signals driven valid as the 
ADS (Address Status output) is driven asserted. The 
LOCK is driven valid at the same time as the first locked 
bus cycle begins. which due to address pipe lining. could 
be later than ADS is driven asserted. See Pipelined Ad­
dress. The LOCK is negated when the READY input 
terminates the last bus cycle that was locked. 

Exact bus cycle definitions. as a function of W/R". O/G. 
and MilO. are given in Table14. Note one combination 
of WIR". O/G. and MilO is never given when ADS is as­
serted (however. that combination. which is listed as 
does not occur. may occur during idle bus states when 
ADS is not asserted). If MilO. O/G. and W/f5.. are quali­
fied by ADS asserted. then a decoding scheme may be 
simplified by using this definition. 

Table 13. Write Data Duplication as a Function of BE3-BEO 

Am3860XlOXL CPU Byte Enables 

BE3 BE2 BEl 

High High High 
High High Low 
High Low High 
Low High High 

High High Low 
High Low Low 
Low Low High 

High Low Low 
Low Low Low 

Low Low Low 

Key: D = Logical Write Data D31-D24 
C = Logical Write Data D23-D 16 

BEO 

Low 
High 
High 
High 

Low 
High 
High 

Low 
High 

Low 

Am3860XlOXL CPU Write Data 

031-024 023-016 

Undef 
Undef 
Undef 

D 

Undef 
Undef 

D 

Undef 
D 

D 

B = Logical Write Data DIS-DB 
A = Logical Write Data D7-DO 

Undef 
Undef 

C 
Undef 

Undef 
C 
C 

C 
C 

C 

015-08 

Undef 
B 

Undef 
D 

B 
B 
D 

B 
B 

B 

70 Am38S Microprocessors for Personal Computers 

Automatic 
07-00 Duplication? 

A No 
Undef No 

C Yes 
Undef Yes 

A No 
Undef No 

C Yes 

A No 
Undef No 

A No 



AMD ~ 
Table 14. Bus Cycle Definition 

M/iD DiC W/R Bus Cycle Type Locked? 

Low Low Low Interrupt Acknowledge Yes 

Low Low High Does Not Occur -
Low High Low 1/0 Data Read No 

Low High High 1/0 Data Write No 

High Low Low Memory Code Read No 

High Low High Halt: Shutdown: No 
Address =2 Address=O 

BEO High BEO Low 
BEt High BEt High 
BE2 Low BE2 High 
BE3 High BE3 High 
A31-A2 Low A31-A2 Low 

High High Low Memory Data Read Some Cycles 

High High High Memory Data Write Some Cycles 

Bus Control Signals (ADS, READY, NA, BS16) 

Introduction 

The following signals allow the processor to indicate 
when bus cycle has begun and allow other system hard­
ware to control address pipelining, data bus width, and 
bus cycle termination. 

Address Status (ADS) 

This three-state output indicates that a valid bus cycle 
definition and address (W/R, DIG, MilO, BE3-BEO, and 
A31-A2) is being driven at the Am3860XlOXL micro­
processor pins. It is asserted during T1 and T2P bus 
states (see Non-pipelined Address and Pipe lined 
Address for additional information on bus states). 

Transfer Acknowledge (READY) 

This input indicates the current bus cycle is complete, 
and the active bytes indicated by BE3-BEO and B816 
are accepted or provided. When READY is sampled 
asserted during a read cycle or interrupt acknowledge 
cycle, the Am386DXlOXL microprocessor latches the 
input data and terminates the cycle. When READY is 
sampled asserted during a write cycle, the processor 
terminates the bus cycle. 

READY is ignored on the first bus state of all bus cycles, 
and sampled each bus state thereafter until asserted. 
READY must eventually be asserted to acknowledge 
every bus cycle, including Halt Indication and Shutdown 
Indication bus cycles. When being sampled, READY 
must always meet setup and hold times, t19 and t20, for 
correct operation. See all sections of Bus Functional 
Oescription. 

Next Address Request (NA) 

This is used to request address pipelining. This input 
indicates the system is prepared to accept new values 
of BE3-BEO, A31-A2. W/R, O/G, and MilO from 
the Am3860XlOXL microprocessor even if the end of 

the current cycle is not being acknowledged on READY. 
If this input is asserted when sampled, the next address 
is driven onto the bus provided the next bus request is 
already pending internally. See Address Pipelining and 
Read and Write Cycles. NA must always meet setup 
and hold times, t15 and t16, for correct operation. 

Bus Size 16(BS16) 

The B816 feature allows the Am3860XlOXL micropro­
cessor to directly connect to 32- and 16-bit data buses. 
Asserting this input constrains the current bus cycle to 
use only the lower-order half (015-00) of the data bus, 
corresponding to BEO and BEl. Asserting B816 has no 
additional effect if only BEO andlor BEl are asserted in 
the current cycle. However, during bus cycles asserting 
B E2 or BE3. asserting B816 will automatically cause the 
Am3860XlOXL microprocessor to make adjustments 
for correcttransfer olthe upper byte(s) using only physi­
cal data signals 015-00. 

If the operand spans both halves of the data bus and 
B816 is asserted, the Am3860XlOXL microprocessor 
will automatically perform another 16-bit bus cycle. 
B816 must always meet setup and hold times, t17 and 
t18, for correct operation. 

Am3860XlOXL CPU liD cycles are automatically gen­
erated for coprocessor communication. Since the 
Am3860XlOXL microprocessor must transfer 32-bit 
quantities between itself and a 3870X math coproces­
sor, B816 must not be asserted during 3870X math 
coprocessor communication cycles. 

Bus Arbitration Signals (HOLD, HLDA) 

Introduction 

This section describes the mechanism by which the 
processor relinquishes control of its local buses when 
requested by another bus master device. See 
Entering and Exiting Hold Acknowledge for additional 
information. 

Am386DXlDXL Microprocessor Data Sheet 71 I 

I 



~ AMD 

Bus Hold Request (HOLD) 

This input indicates some device other than the 
Am386DXlDXL CPU requires bus mastership. 

HOLD must remain asserted as long as any other de­
vice is a local bus master. HOLD is not recognized while 
RESET is asserted. If RESET is asserted while HOLD is 
asserted, RESET has priority and places the bus into an 
idle state, rather than the hold acknowledge (high 
impedance) state. HOLD is level-sensitive and is a syn­
chronous input. HOLD signals must always meet setup 
and hold times, t23 and t24, for correct operation. 

Bus Hold Acknowledge (HLDA) 

Assertion of this output indicates the Am386DXlDXL 
microprocessor has relinquished control of its local bus 
in response to HOLD asserted, and is in the Bus Hold 
Acknowledge state. 

The Hold Acknowledge state offers near-complete sig­
nal isolation. In the Hold Acknowledge state, HLDA is 
the only signal being driven by the Am386DX/DXL mi­
croprocessor. The other output signals or bidirectional 
signals (D31-DO, BE3-BEO, A31-A2, W/R, Die, MilO, 
LOCK, and ADS) are in a high-impedance state so the 
requesting bus master may control them. Pull-up resis­
tors may be desired on several signals to avoid spurious 
activity when no bus master is driving them. See Resis­
tor Recommendations. Also, one rising edge occurring 
on the NMI input during Hold Acknowledge is remem­
bered for processing after the HOLD input is negated. 

In addition to the normal usage of Hold Acknowledge 
with DMA controllers or master peripherals, the near­
complete isolation has particular attractiveness during 
system test when test equipment drives the system and 
in hardware-fault-tolerant applications. 

Coprocessor Interface Signals (PEREQ, BUSY, 
ERROR) 

Introduction 

In the following sections are descriptions of signals dedi­
cated to the numeric coprocessor interface. In addition 
to the data bus, address bus, and bus cycle definition 
signals, these following signals control communication 
between the Am386DXlOXL microprocessor and its 
387DX math coprocessor extension. 

Coprocessor Request (PEREQ) 

When asserted, this input signal indicates a coproces­
sor request for a data operand to be transferred tolfrom 
memory by the Am386DXlDXL microprocessor. In re­
sponse, the Am3860XlDXL CPU transfers information 
between the coprocessor and memory. Because 
Am386DXlDXL microprocessor has internally stored 
the coprocessor op-code being executed, it performs 
the requested data transfer with the correct direction 
and memory address. 

PEREQ is level-sensitive and is allowed to be asynchro­
nous to the CLK2 signal. 

Coprocessor Busy (BUSY) 

When asserted, this input indicates the coprocessor is 
still executing an instruction and is not yet able to accept 
another. When the Am3860XlOXL microprocessor en­
counters any coprocessor instruction that operates on 
the numeric stack (e.g., load, pop, or arithmetic opera­
tion) or the WAIT instruction, this input is first automati­
cally sampled until it is seen to be negated. This sam­
pling of the BUSY input prevents overrunning the execu­
tion of a previous coprocessor instruction. 

The FNINIT and FNCLEX coprocessor instructions are 
allowed to execute even if BUSY is asserted, since 
these instructions are used for coprocessor initialization 
and exception-clearing. 

BUSY is level-sensitive and is allowed to be asynchro­
nous to the CLK2 signal. 

BUSY serves an additional function. If BUSY is sampled 
Low at the falling edge of RESET, the Am386DXlOXL 
microprocessor performs an internal self-test (see Bus 
Activity During and Following Reset). If BUSY is sam­
pled High, no self-test is performed. 

Coprocessor Error (ERROR) 

This input signal indicates that the previous coprocessor 
instruction generated a coprocessor error of a type 
not masked by the coprocessor's control register. This 
input is automatically sampled by the Am386DXlOXL 
microprocessor when a coprocessor instruction is en­
countered, and if asserted, the Am3860XlDXL device 
generates Exception 16 to access the error-handling 
software. 

Several coprocessor instructions, generally those that 
clear the numeric error flags in the coprocessor or 
save coprocessor state, do execute without the 
Am3860XlOXL microprocessor generating Exception 
16 even if ERROR is asserted. These instructions are 
FNINIT, FNCLEX, FSTSW, FSTSWAX, FSTCW, 
FSTENV, FSAVE, FESTENV, and FESAVE. 

ERROR is level-sensitive and is allowed to be asynchro­
nous to the CLK2 signal. 

Interrupt Signals (INTR, NMI, RESET) 

Introduction 

The following descriptions cover inputs that can inter­
rupt or suspend execution of the processor's current 
instruction stream. 

Maskable Interrupt Request (INTR) 

When asserted, this input indicates a request for inter­
rupt service, which can be masked by the Am3860Xl 
OXL CPU Flag Register IF bit. When the Am386DXlOXL 
microprocessor responds 10 the INTR input, it performs 
two interrupt acknowledge bus cycles, and at the end of 
the second, latches an 8-bit interrupt vector on 017-00 
to identify the source 01 the interrupt. 

72 Am3S6 Microprocessors for Personal Computers 



INTR is level-sensitive and is allowed to be asynchro­
nous to the CLK2 signal. To assure recognition of an 
INTR request, INTR should remain asserted until the 
first interrupt acknowledge bus cycle begins. 

Non-Maskab/e Interrupt Request (NMI) 

This input indicates a request for interrupt service, which 
cannot be masked by software. The non-maskable in­
terrupt request is always processed according to the 
pointer or gate in slot 2 of the interrupt table. Because of 
the fixed NMI slot assignment, no interrupt acknowledge 
cycles are performed when processing NMI. 

NMI is rising edge-sensitive and is allowed to be asyn­
chronous to the CLK2 signal. To assure recognition of 
NMI, it must be negated for at least eight CLK2 periods, 
and then be asserted for at least eight CLK2 periods. 

Once NMI processing has begun, no additional NMI's 
are processed until after the next IRET instruction, 
which is typically the end of the NMI service routine. If 
NM I is re-asserted priorto that time, however, one rising 
edge on NMI will be remembered for processing after 
executing the next IRET instruction. 

Reset (RESET) 

This input signal suspends any operation in progress 
and places the Am386DXlDXL microprocessor in a 
known reset state. The Am386DXlDXL device is reset 
by asserting RESET for 15 or more CLK2 periods (80 or 

AMD ~ 
more CLK2 periods before requesting self-test). When 
RESET is asserted, all other input pins, except FL T, are 
ignored, and all other bus pins are driven to an idle bus 
state as shown in Table 15. If RESET and HOLD are 
both asserted at a pOint in time, RESET takes priority 
even if the Am386DXlDXL device was in a Hold Ac­
knowledge state prior to RESET asserted. 

RESET is level-sensitive and must be synchronous to 
the CLK2 signal. If desired, the phase of the internal 
processor clock and the entire Am386DXlDXL CPU 
state can be completely synchronized to external cir­
cuitry by ensuring the RESET signal falling edge meets 
its applicable setup and hold times, t25 and t26. The 
signal summary is shown in Table 16. 

Table 15. Pin State (Idle Bus) During Reset 

Pin Name Signal Level During Reset 

ADS High 

031-00 High Impedance 

BE3-BEO Low 

A31-A2 High 

WIT'{ Low 

Ole High 

M/TO Low 

LOCK High 

HLDA Low 

Table 16. Am386DX/DXL Microprocessor Signal Summary 

Input Synch Output High 
Signal Active Input! or Asynch to Impedance During 
Name Function State Output CLK2 HLDA? 

CLK2 Clock - I - -
031-00 Data Bus High 1/0 S Yes 

BE3-BEO Byte Enables Low 0 - Yes 

A31-A2 Address Bus High 0 - Yes 
WIT'{ Write· Read Indication High 0 - Yes 
DIG Data-Control Indication High 0 - Yes 

M/TO Memory-I/O Indication High 0 - Yes 

LOCK Bus Lock Indication Low 0 - Yes 

ADS Address Status Low 0 - Yes 

NA Next Address Request Low I S -
BS16 Bus Size 16 Low I S -
READY Transfer Acknowledge Low I S -
HOLD Bus Hold Request High I S -
HLDA Bus Hold Acknowledge High 0 - No 

PEREO Coprocessor Request High I A -
BUSY Coprocessor Busy Low I A -
ERROR Coprocessor Error Low I A -
INTR Maskable Interrupt Request High I A -
NMI Non-Maskable intrpt Request High I A -
RESET Reset High i S -

Am366DXlDXL Microprocessor Data Sheet 73 



~ AMD 

Bus Transfer Mechanism 
Introduction 

All data transfers occur as a result of one or more bus 
cycles. Logical data operands of byte, word, and Dword 
lengths may be transferred without restrictions on 
physical address alignment. Any byte boundary may be 
used, although two or even three physical bus cycles 
are performed as required for unaligned operand 
transfers. See Dynamic Data Bus Sizing and Operand 
Alignment. 

The Am386DXlDXL microprocessor address signals 
are designed to simplify external system hardware. 
Higher-order address bits are provided by A31-A2. 
Lower-order address in the form of BE3-BEO directly 
provides linear selects for the four bytes of the 32-bit 
data bus. Physical operand size information is thereby 
implicitly provided for each bus cycle in the most usable 
form. 

Byte Enable outputs, BE3-BEO, are asserted when their 
associated data bus bytes are involved with the present 
bus cycle, as listed in Table 17. During a bus cycle, any 
possible pattern of contiguous asserted Byte Enable 
outputs can occur, but never patterns having a negated 
Byte Enable separating two or three asserted Enables. 

Address bits AO and A1 of the physical operand's 
base address can be created when necessary (for 

L H 

L x H L L 
L 

L x H L 
H 

L L x L 
H 

x x H x L 

L H L 

BE1 

K - Map for A 1 Signal 

L H 

L x L H L 
L 

L x L H 
H 

L L x H 
H 

x x~ ~ L 

L H L 

BE1 

K - Map for AO Signal 

instance, for MUL TIBUS I or MUL TIBUS II interface), as 
a function of the lowest-order asserted Byte Enable. 
This is shown by Table 18. Logic to generate AO and A 1 
is given by Figure 43. 

Table 17. Byte Enables and Associated 
Data and Operand Bytes 

Byte Enable Signal Associated Data Bus Signals 

BEO 07-00 (Byte a-least significant) 

BET 015-08 (Byte 1) 

BE2 023-016 (Byte 2) 

BE3 D31-D24 (Byte 3-most significant) 

Each bus cycle is composed of at least two bus states 
and each bu s state requ ires one processo r clock period. 
Additional bus states added to a single bus cycle are 
called wait states. See Bus Functional Description. 

Since a bus cycle requires a minimum of two bus 
states (equal to two processor clock periods), data can 
be transferred between external devices and the 
Am386DXlDXL CPU at a maximum rate of one 4-byte 
Dword every two processor clock periods, for a 
maximum bus bandwidth of 80 Mb/s (Am386DXlDXL 
microprocessor operating at 40-MHz processor clock 
rate). 

~1 
BE1 

150218-046 

Figure 43. logic to Generate AO, A1 from BE3-BEO 

74 Am386 Microprocessors for Personal Computers 



A31 

A31 

A31 

A31 

A31 

A31 

FFFFFFFFH 

OOOOOOOOH 

AMD ~ 
Table 18. Generating A31-AO from BE3-BEO and A31-A2 

Am386DX/DXL CPU Address Signals 

......... A2 

Physical Base 
Address 

......... 

......... 

......... 

......... 

......... 

Physical 
Memory 

4Gb 

A2 

A2 

A2 

A2 

A2 

A1 

0 

0 

1 

1 

Physical Memory Space 

BE3 

AO 

0 x 

1 X 

0 X 

1 Low 

SOOOOOFFH 
SOOOOOFSH 
(See note) 

OOOOFFFFH 

OOOOOOOOH 

BE2 

x 

X 

Low 

High 

64 Kb 

1/0 Space 

BE1 

X 

Low 

High 

High 

BEO 

Low 

High 

High 

High 

Math Coprocessor 
(3S7DX) 

Accessible 
Programmed 
1/0 Space 

Note: Since A31 is High during automatic communication with coprocessor, A31 High and MIlO Low can be used to 
easily generate a coprocessor select signal. 

15021B-047 

Figure 44. Physical Memory and 110 Spaces 

Am386DXlDXL Microprocessor Data Sheet 75 



~ AMD 

Memory and 1/0 Spaces 

Bus cycles may access physical memory space or 1/0 
space. Peripheral devices in the system may either be 
memory-mapped, or I/O-mapped, or both. As shown in 
Figure 44, physical memory addresses range from 
OOOOOOOOH to FFFFFFFFH (4 Gb) and 1/0 addresses 
from OOOOOOOOH to OOOOFFFFH (64 Kb) for pro­
grammed 1/0. Note the 1/0 addresses used by the auto­
matic 1/0 cycles for coprocessor communication are 
800000F8H to 800000FFH, beyond the address range 
of programmed 1/0, to allow easy generation of a 
coprocessor chip select signal using the A31 and MOO 
signals. 

Memory and 1/0 Organization 

The Am3860XlOXL microprocessor datapath to mem­
ory and 1/0 spaces can be 32- or 16-bits wide. When 
32-bits wide, memory and 1/0 spaces are organized 
naturally as arrays of physical 32-bit Owords. Each 
memory or 1/0 Oword has four individually addressable 
bytes at consecutive byte addresses. The lowest-ad­
dressed byte is associated with data signals 017-00; 
the highest-addressed byte with 031-024. 

The Am3860XlOXL microprocessor includes a bus 
control input, B816, that also allows direct connection to 
16-bit memory or 1/0 spaces organized as a sequence 
of 16-bit word. Cycles to 32- and 16-bit memory or 1/0 
devices may occur in any sequence, since the B816 
control is sampled during each bus cycle. (See Oynamic 
Oata Bus Sizing.) The Byte Enable signals, BE3-BEO, 
allow byte granularity when addressing any memory or 
1/0 structure, whether 32- or 16-bits wide. 

Dynamic Data Bus Sizing 

Oynamic Oata Bus Sizing is a feature allowing direct 
processor connection to 32- or 16-bit data buses for 
memory or 1/0. A single processor may connect to both 
size buses. Transfers to or from 32- or 16-bit ports are 
supported by dynamically determining the bus width 
during each bus cycle. Ouring each bus cycle an 
address decoding circuit or the slave device itself may 
assert B816 for 16-bit ports, or negate B816 for 32-bit 
ports. 

With B816 asserted, the processor automatically 
converts operand transfers larger than 16 bits, or mis­
aligned 16-bit transfers, into two or three transfers as 
required. All operand transfers physically occur on 
015-00 when B816 is asserted. Therefore, 16-bit 
memories or 1/0 devices only connect on data signals 
015-00. No extra transceivers are required. 

Asserting B816 only affects the processor when BE2 
andlor BE3 are asserted during the current cycle. If only 
015-00 are involved with the transfer, asserting B816 
has no affect since the transfer can proceed normally 
over a 16-bit bus whether B816 is asserted or not. In 
other words , asserting B816 has no effect when only the 
lower half of the bus is involved with the current cycle. 

There are two types of situations where the processor is 
affected by asserting B816, depending on which Byte 
Enables are asserted during the current bus cycle. 

Upper Half Only: 

Only BE2 and/or BE3 asserted. 

Upper and Lower Half: 

At least BEl, BE2 asserted (and perhaps also 
BEO andlor BE3). 

Effect of asserting B816 during Upper Half Only read 
cycles: 

Asserting BS16 during Upper Half Only reads causes the 
Am3860XlOXL microprocessor to read data on the lower 
16 bits of the data bus and ignore data on the upper 16 bits 
of the data bus. Oata that would have been read from 
031-016 (as indicated by BE2 and BE3) will instead be 
read from 015-00, respectively. 

Effect of asserting B816 during Upper Half Only write 
cycles: 

Asserting BS16 during Upper Half Only writes does not af­
fect the Am3860X/OXL microprocessor. When only BE2 
and/or BE3 are asserted during a Write cycle, the 
Am3860XlOXL microprocessor always duplicates data 
signals 031-016 onto 015-00 (see Table 13). Therefore, 
no further Am3860X/OXL CPU action is required to per­
form these writes on 32- or 16-bit buses. 

Effect of asserting B816 during Upper anl=f Lower Half 
read cycles: 

Asserting BS16 during Upper and Lower iHalf reads 
causes the processor to perform two 16-bit read cycles for 
complete physical operand transfer. Bytes 0 a~d 1 (as in­
dicated by BEQ and BE1) are read on the first ewcle using 
015-00. Bytes 2 and 3 (as indicated by BE2 an~ BE3) are 
read during the second cycle, again using \ 015-00. 
031-016 are ignored during both 16-bit cycles.\BEQ and 
BEl are always negated during the second 16:!Jit cycle. 
See Figure 54 Cycles 2 and 2a. . 

Effect of asserting B816 during Upper and Lower Half 
write cycles: 

Asserting BS16 during Upper and Lower Half writes 
causes the Am3860XlOXL microprocessorto perform two 
16-bit write cycles for complete physical operand transfer. 
All bytes are available the first write cycle allowing external 
hardware to receive Bytes 0 and 1 (as indicated by BEQ 
and BEl) using 015-00. On the second cycle the 
Am3860XlOXL microprocessor duplicates Bytes 2 and 3 
on 015-00 and Bytes 2 and 3 (as indicated by BE2 and 
B§) are written using 015-00. BEO and BEl are always 
negated during the second 16-bit cycle. BS16 must be as­
serted during the second 16-bit cycle. See Figure 54 Cy­
cles 1 and 1 a. 

Interfacing with 32· and 16·Blt Memories 

In 32-bit-wide physical memories such as Figure 45, 
each physical Dword begins at a byte address that is a 
multiple of 4. A31-A2 are directly used as a Dword 
selects and BE3-BEO as byte selects. B816 is negated 
for all bus cycles involving the 32-bit array. 

76 Am3S6 Microprocessors for Personal Computers 



When 16-bit-wide physical arrays are included in the 
system, as in Figure 46, each 16-bit physical word be­
gins at an address that is a multiple of 2. Note the ad­
dress is decoded to assert B8 16 only during bus cycles 
involving the 16-bit array. If desiring to use pipelined 
address with 16-bit memories, then BE3-BEQ and WfR 
are also decoded to determine when B816 should be 
asserted. (See Pipe lined Address with Dynamic Data 
Bus Sizing.) 

A31-A2 are directly usable for addressing 32- and 
16-bit devices. To address 16-bit devices, A1 and two 
Byte Enable signals are also needed. 

AMD ~ 
To generate an A1 signal and two Byte Enable signals 
for 16-bit access, BE3-BEQ should be decoded as in 
Table 19. Note that certain combinations of BE3-BEQ 
are never generated by the Am386DXlDXL micropro­
cessor, leading to "don't care" conditions inthe decoder. 
Any BE3-BEQ decoder, such as shown in Figure 47, 
may use the non-occurring BE3-BEQ combinations to 
its best advantage. 

32" Data Bus (D31-DO) 

Am386DX/DXL 
Address Bus (BE3-BEO, A31-A2) 

32-Bit 
Microprocessor Memory 

lBS16 

High 

Figure 45. Am386DXlDXL Microprocessor with 32·8it Memory 150218-048 

Data Bus (D31-DO) 

32/ 

Am386DXlDXL 

"" 
32-Bit 

Microprocessor Address Bus Memory 

\\ (BE3-BEo, A31-A2) 

BS16 

I Address I 16/ Data Bus (D15-DO) Decoder 

........... Address Bus (A31-A2) 16-Bit 
Memory 

(BE3-BEO) (BHE, BLE, A1) 

I Logic I 

150218-049 

Figure 46. Am386DXlDXL Microprocessor with 32·811 and 16·811 Memory 

Am386DXlDXL Microprocessor Data Sheet n 

I 

I 

I 
I" 
! 



~ AMD 

Table 19. Generating Al, BHE, and BlE for Addressing 16-81t Devices 

Am386DXlDXl CPU Signals 16-Blt Bus Signals 

liD BE2 BEl BEO Al 

H* H* H* H* X 
H H H L L 
H H L H L 
H H L L L 
H L H H H 
H* L* H* L * X 
H L L H L 
H L L L L 
L H H H H 
L* H* H* L* X 

L* H* L* H* X 
L* H* L* L* X 
L L H H H 
L* L* H* L* X 
L L L H L 
L L L L L 

-BLE asserted when 07-00 of 16-bit bus is active. 
BHE asserted when 015-08 of 16-bit bus is active. 
AlLow for all even words; A 1 High for all odd words. 

Key: X = "Oon't Care" 
H = High voltage level 
L = Low voltage level 

1!i'Fi'E EirE' (AO) Comments 

X X X-no active bytes 
H L 
L H 
L L 
H L 
X X X-non-contiguous bytes 

L H 
L L 
L H 
X X X-non-contiguous bytes 

X X X-non-contiguous bytes 

X X X-non-contiguous bytes 

L L 
X X X-non-contiguous bytes 

L H 

L L 

* =A non-occurring pattern of Byte Enables; either none are asserted or the pattern has Byte Enables asserted for non-contiguous bytes. 

Operand A"gnment 

With the flexibility of memory addressing on the 
Am386DXlDXL microprocessor, it is possible to transfer 
a logical operand that spans more than one phy­
sical Dword or Word of memory or I/O. Examples are 
32-bit Dword operands beginning at addresses not 
evenly divisible by 4- or a 16-bit Word operand split 
between two physical Dwords of memory array. 

Operand alignment and data bus size dictates when 
multiple bus cycles are required. Table 20 describes the 
transfer cycles generated for all combinations of logical 
operand lengths, alignment, and data bus sizing. When 
multiple bus cycles are required to transfer a multi-byte 
logical operand, the highest-order bytes are transferred 
first (but if B816 asserted requires two 16-bit cycles be 
performed, that part olthe transfer is lowest-order first). 

Bus Functional Description 
Introduction 

The Am386DXlDXL microprocessor has separate, par­
allel buses for data and address. The data bus is 32 bits 
in width and is bidirectional. The address bus provides 
a 32-bit value using 30 signals for the 30 upper-order 
address bits and 4 Byte Enable signals to directly indi­
cate the active bytes. These buses are interpreted and 
controlled via several associated definition or control 
signals. 

The definition of each bus cycle is given by three defini­
tion signals: MOO, WIR, and DIC. At the same time, a 
valid address is present on the Byte Enable signals 
BE3-BEO and other address signals, A31-A2. A status 
signal, ADS, indicates when the Am386DXlDXL CPU 
issues a new bus cycle definition and address. 

Collectively, the address bus, data bus, and all associ­
ated control signals are referred to simply as the bus. 

When active, the bus performs one of the bus cycles 
below. 
1. Read from memory space. 
2. Locked read from memory space. 
3. Write to memory space. 
4. Locked write to memory space. 
5. Read from I/O space (or coprocessor). 
6. Write to I/O space (or coprocessor). 
7. Interrupt acknowledge. 
8. Indicate halt or indicate shutdown. 

Table 14 shows the encoding of the bus cycle definition 
signals for each bus cycle. See Section Bus Cycle 
Definition. 

The data bus has a dynamic sizing feature supporting 
32- and 16-bit bus size. Data bus size is indicated to the 
Am386DXlDXL microprocessor using its Bus Size 16 
(B816) input. All bus functions can be performed with 
either data bus size. 

78 Am386 Microprocessors for Personal Computers 



L H 

L x H L L 
L 

L x H L 
H 

L L x L 
H 

x x H x L 

L H L 

BE1 

K - Map for A1 Signal (same as Figure 43) 

L H 

L x L L L 
L 

L x H L 
H 

L H x L 
H 

x x L x L 

L H L 

BE1 

K - Map for 16-bit BHE signal 

BE0D--[:>o A1 

BE1 

BE1 D--[:>o BHE 

BE3 

L H 

L x L H L 
L 

L x L H 
H 

L L x H 
H 

~ 'HI""} 
BE2 

BEO 

BE1 

x x H x L 

L H L 

BE1 

K - Map for 16-bit BLt: signal (same as AO signal in Figure 43). 

Figure 47. logic to Generate A1, BHE, and BlE for 16-Bit Buses 

Table 20. Transfer Bus Cycles for Bytes, Words, and Dwords 

Byte-Length of Logical Operand 

1 2 4 

Physical Byte Address in Memory (low-order bits) xx 00 01 10 11 00 01 

Transfer Cycles over 32-bit Data Bus b w w w hb,* d hd 
Ib 13 

b w w hb, Ib, hb, Iw, 
Transfer Cycles over 16-bit Data Bus -...!!L Ib hw I---

Key: b = Byte transfer 
w= Word transfer 
I = low-order portion 

m = mid-order portion 

3 = 3-byte transfer 
d = Dword transfer 
h = high-order portion 
x = Don't care 
= BS16 asserted causes second bus cycle, 

<For this case, 8086, 8088, 80186, 80188, 80286 transfer Ib first, then hb. 

Am386DXlDXl MiCroprocessor Data Sheet 

I--- Ib, 
mw 

10 

hw, 
Iw 

hw, 

Iw 

AMD ~ 

150218--{)50 

11 

h3, 
Ib 

mw, 
hb, 

It)'-

79 

i 
~, 
I 



~ AMD 

Cycle 1 Cycle 2 Cycle 3 
Non-Pipelined Non-Pipelined Non-Pipelined 

(Read) (Read) (Read) 

T1 T2 T1 T2 T1 T2 

1\11 1 1\12 1\11 11\1 2 1\11 11\12 1\11 11\12 1\11 1 1\12 1\11 11\12 1\11 

CLK2 (Input) [ 

MIlO, BE3-BEO, 
A31-A2, Ole, W/R [ 

(Outpu1s) 

ADS (Output) [ 

NA [ 
(Input) 

READY [ 
(Input) 

LOCK [ 
(Output) 

031-00 [ 
(Input during Read) 

Fastest non-pipelined bus cycles consist of T1 and T2 
150219-051 

Figure 48_ Fastest Read Cycles with Non-Pipellned Address Timing 

When the Am3860XlOXL CPU bus is not pertorming 
one of the activities listed above, it is either Idle or in the 
Hold Acknowledge state, which may be detected by ex­
ternal circuitry. The Idle state can be identified by the 
Am386DXlOXL microprocessor giving no further asser­
tions on its address strobe output (ADS) since the begin­
ning of its most recent bus cycle, and the most recent 
bus cycle has been terminated. The Hold Acknowledge 
state is identified by the Am3860XlOXL CPU asserting 
its Hold Acknowledge (HLOA) output. 

The shortest time unit of bus activity is a bus state. A bus 
state is one processor clock period (two CLK2 periods) 
in duration. A complete data transfer occurs during a 
bus cycle, composed of two or more bus states. 

The fastest Am3860XlOXL microprocessor bus cycle 
requires only two bus states. For example, three con­
secutive bus read cycles, each consisting of two bus 
states, are shown by Figure 48. The bus states in each 
cycle are named T1 and T2. Any memory or I/O address 
may be accessed by such a two-state bus cycle, if the 
external hardware is fast enough. The high-bandwidth, 
two-clock bus cycle realizes the full potential of fast main 
memory, or cache memory. 

Every bus cycle continues until it is acknowledged 
by the external system hardware, using the Am3860Xl 
OXL microprocessor READY input. Acknowledging the 
bus cycle at the end of the first T2 results in the shortest 

bus cycle, requiring only T1 and T2. If READY is not 
immediately asserted, however, T2 states are repeated 
indefinitely until the READY input is sampled asserted. 

Address Plpelinlng 

The address pipelining option provides a choice of bus 
cycle timings. Pipelined or non-pipelined address timing 
is selectable on a cycle-by-cycle basis with the Next 
Address (NA) input. 

When address pipelining is not selected, the current ad­
dress and bus cycle definition remain stable throughout 
the bus cycle. 

When address pipe lining is selected, the address 
(BE3-BEO, A31-A2) and definition (WfR, Ole, and 
MilO) of the next cycle are available before the end of 
the current cycle. To signal their availability, the 
Am3860XlOXL microprocessor address status output 
(ADS) is also asserted. Figure 49 illustrates the fastest 
read cycles with pipelined address timing. 

Note from Figure 49, the fastest bus cycles using 
pipe lined address require only two bus states, named 
T1 P and T2P. Therefore, cycles with pipelined address 
timing allow the same data bandwidth as non-pipe lined 
cycles, but address-to-data access time is increased 
compared to that of a non-pipelined cycle. 

80 Am386 Microprocessors for Personal Computers 



CLK2 (Input) [ 

MIlO, BE3-BEO, [ A31-A2, Die, W/Fi. 
(Outputs) 

ADS [ (Output) 

NA [ (Input) 

READY [ (Input) 

LOCK [ (Output) 

D31-DO [ (Input during Read) 

T1P 

Cycle 1 
Pipelined 
(Read) 

T2P T1P 

Cycle 2 
Pipelined 
(Read) 

T2P T1P 

Cycle 3 
Pipelined 
(Read) 

AMD ~ 

T2P 

Fastest pipelined bus cycles consist of T1 P and T2P 

15021B-052 

Figure 49. Fastest Read Cycles with Pipelined Address Timing 

By increasing the address-to-data access time, 
pipe lined address timing reduces wait state require­
ments. For example, if one wait state is required with 
non-pipelined address timing, no wait states would be 
required with pipelined address. 

Pipelined address timing is useful in typical systems 
having address latches. In those systems, once an ad­
dress has been latched, pipe lined availability of the next 
address allows decoding circuitry to generate chip se­
lects (and other necessary select signals) in advance, 
so selected devices are accessed immediately when 
the next cycle begins. In other words, the decode time 
for the next cycle can be overlapped with the end of the 
current cycle. 

If a system contains a memory structure of two or more 
interleaved memory banks, pipelined address timing 
potentially allows even more overlap of activity. This is 
true when the interleaved memory controller is designed 
to allow the next memory operation to begin in one 
memory bank while the current bus cycle is still activat­
ing another memory bank. Figure 50 shows the general 
structure of the Am386DXlDXL microprocessor with 
two-bank and four-bank interleaved memory. Note each 
memory bank of the interleaved memory has full data 
bus width (32-bit data width typically, unless 16-bit bus 
size is selected). 

Further details 01 pipelined address timing are given in 
Pipelined Address; Initiating and Maintaining Pipelined 
Address; Pipelined Address with Dynamic Bus Sizing; 
and, Maximum Pipelined Address Usage With 16-bit 
Bus Size. 

Read and Write Cycles 

Introduction 

Data transfers occur as a result of bus cycles, classified 
as Read or Write cycles. During Read cycles, data is 
transferred from an external device to the processor. 
During Write cycles, data is transferred in the other di­
rection, from the processor to an external device. 

Two choices of address timing are dynamically select­
able: non-pipelined or pipelined. After a bus idle state, 
the processor always uses non-pipelined address tim­
ing. However, the NA (Next Address) input rnay be as­
serted to select pipelined address timing forthe next bus 
cycle. When pipelining is selected and the Am386DXI 
DXL microprocessor has a bus request pending inter­
nally, the address and definition of the next cycle is 
made available even before the current bus cycle is 
acknowledged by READY. Generally, the NA input is 
sampled each bus cycle to select the desired address 
timing for the next bus cycle. 

Am386DXlDXL Microprocessor Data Sheet 81 



~ AMD 

Two-Bank Interleaved Memory: 
a. Address signal A2 selects bank 
b. 32-bit datapath to each bank 

Am386DX/DXL 
CPU 

Four-Bank Interleaved Memory: 
a. Address signals A3 and A2 select bank 
b. 32-b~ datapath to each bank 

15021B-053 

Figure 50. Two-Bank and Four-Bank Interleaved Memory Structure 

Two choices of physical data bus width are dynamically 
selectable: 32 bits or 16 bits. Generally, the 8816 (Bus 
Size 16) input is sampled near the end ofthe bus cycle to 
confirm the physical data bus size applicable to the 
current cycle. Negation of 8S16 indicates a 32-bit size 
and assertion indicates a 16-bit bus size. 

If 16-bit bus size is indicated, the Am386DXlOXL CPU 
automatically responds as required to complete the 
transfer on a 16-bit data bus. Depending on the size and 
alignment of the operand, another 16-bit bus cycle may 
be required. Table 19 provides all details. When neces­
sary, the Am3860XlOXL microprocessor performs an 
additional 16-bit bus cycle, using 015-00 in place of 
031-016. 

Terminating a Read cycle orWrite cycle, like any bus cy­
cle, requires acknowledging the cycle by asserting the 
READY input. Until acknowledged, the processor in­
serts wait states into the bus cycle to allow adjustment 

for the speed of any external device. External hardware, 
that has decoded the address and bus cycle type as­
serts the READY input at the appropriate time. 

At the end of the second bus state within the bus cycle, 
READY is sampled. At that time, if external hardware 
acknowledges the bus cycle by asserting READY, the 
bus cycle terminates as shown in Figure 51. If READY is 
negated as in Figure 52, the cycle continues another 
bus state (a wait state) and READY is sampled again at 
the end of that state. This continues indefinitely until the 
cycle is acknowledged by READY asserted. 

When the current cycle is acknowledged, the 
Am3860XlOXL microprocessor terminates it. When a 
Read cycle is acknowledged, the Am3860XlOXL CPU 
latches the information present at its data pins. When a 
Write cycle is acknowledged, the Am3860XlOXL CPU 
write data remains valid throughout phase one of the 
next bus state to provide write data hold time. 

82 Am386 Microprocessors for Personal Computers 



Idle I 
Ti 

ClK2 [ 

(ClK) [ 

ADS [ 

Cycle 1 
Non-Pipelined 

(Write) 

T1 T2 

031-00 [- --- -

Cycle 2 
Non-Pipelined 

(Read) 

T1 T2 

Cycle 3 
Non-Pipelined 

(Write) 

T1 

Cycle 4 
Non-Pipelined 

(Read) 

AMD ~ 

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can 
Immediately follow the write cycle. 

15021B-<l54 

Figure 51. Various Bus Cycles and Idle States with Non-Pipelined Address (Zero Wait States) 

Non-Pipelined Address 

Any bus cycle may be pertormed with non-pipelined ad­
dress timing. For example, Figure 51 shows a mixture of 
Read and Write cycles with non-pipe lined address tim­
ing. Figure 51 shows that the fastest possible cycles 
with non-pipe lined address have two bus states per bus 
cycle. The states are named T1 and T2. In phase one of 
the T1 , the address Signals and bus cycle definition sig­
nals are driven valid, and to signal their availability, 
address status (ADS) is simultaneously asserted. 

During Read or Write cycles, the data bus behaves as 
follows. If the cycle is a read, the Am386DXlDXL micro­
processor floats its data signals to allow driving by the 
external device being addressed. The Am386DXlDXL 
device requires that all data bus pins be at a valid logic 
state (High or Low) at the end of each read cycle, when 
READY is asserted, even if all byte enables are not as­
serted. The system must be designed to meet this re­
quirement. If the cycle is a write, data signals are driven 
by the Am3860XlDXl device beginning in phase two of 

Am386DXlDXL Microprocessor Data Sheet 83 



~ AMD 

T1 until phase one of the bus state following cycle 
acknowledgment. 

When wait states are added and you desire to maintain 
non-pipelined address timing, it is necessary to negate 
NA during each T2 state exceptthe last one, as shown in 
Figure 52 Cycles 2 and 3. If NA is sampled asserted 
during a T2 other than the last one, the next state 
would be T21 (for pipelined address) or T2P (for pipe­
lined address) instead of another T2 (for non-pipe lined 
address). 

Figure 52 illustrates non-pipelined bus cycles with one 
wait added to Cycles 2 and 3. READY is sampled 
negated at the end of the first T2 in Cycles 2 and 3. 
Therefore, Cycles 2 and 3 have T2 repeated. At the end 
of the second T2, READY is sampled asserted. 

When address pipelining is not used, the address and 
bus cycle definition remain valid during all wait states. 

Idle I Cycle 1 
Non-Pipelined 

(Read) 

Cycle 2 
Non-Pipelined 

(Wrile) 

ClK2 [ 

(ClK) [ 

BEl-BED, [ 
A31-A2, 

MIlO, DIG 

WfR [ 

ADS [ 

NA [ 

-

-

X 

X 

X 

Ti T1 T2 

M-In M-

V \J V 
IXxxxx Valid 

DOOO< A 

'----r-

XX:Xx IXXXX xXxx 
32-Bil 

Bus Size 

t 

T1 T2 T2 

M- lJL In 

V \J \J 

D< Valid 2 

V 

l\-I 

IXXXX Y IXXXX 

32-Bil 
Bus Size 

t 

Idle I Cycle 3 
Non-Pipelined 

(Read) 

Ti T1 T2 T2 

M-M- lJL hn 

V V \J \J 

IX)()()( )( Valid 3 

rooo< A 

l\-I 

x'xxx IXXXXIY '( IXXXX 
32-Bil 

Bus Size 

t 

Ti 

M-

V 
IXXXX 

,.<500( 

XXX)( 

BS16 [ X XX)(X IXXXXY '< D<XXx l)(.XX)<.11 ~l)(.XX)<. XXX IXXXXIY ~xxxx. 

READY [ xxxXX IXxxx XX}'" /",XX IXX]' ~ ..<:XX Xx..x,x IX.X7 ~ ..00< 
End Cycle 1 End Cycle 2 End Cycle 3 

I I 
LOCK [ X Xxxx. IX Valid 1 X Valid 2 IXXXX X Valid 3 XXXX 

031-00 [ c--¢< 
I 

-1---- ---- Oul -r---- ---- - In --

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can 

84 

immediately follow the Write cycle. 150218--055 

Figure 52. Various Bus Cycles and Idle States with Non-Pipelined Address 
(Various Number of Wait States) 

Am386 Microprocessors for Personal Computers 



Bus States: 

RESET 
Asserted 

HOLD Asserted 

Request Pending. 
HOLD Negated 

ALWAYS 

READY Asserted. 
HOLD Negated. 
Request Pending 

AMD ~ 

READY Negated. 
NA Negated 

Tl- First clock of a non-pipelined bus cycle (Am386DX/DXL microprocessor drives new address and asserts ADS). 
T2- Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle. 
Ti - Idle state. 
Th- Hold Acknowledge state (Am386DXlDXL microprocessor asserts HLDA). 150228-017 
The fastest bus cycle consists of two states: Tl and T2. 
Four basic bus states describe bus operation when not using pipelinedaddress. These states do include 8516 usage for 32-bitand 16-bit bus 
size. If asserting 8516 requires second IS-bit bus cycle to be performed, it is performed before HOLD asserted acknowledged. 

Figure 53. Bus States (Not Using Pipelined Address) 

Figure 53 illustrates the bus states and transitions when 
address pipelining is not used. The bus transitions be­
tween four possible states: T1, T2, Ti, and Th. Bus cy­
cles consist of T1 and T2, with T2 being repeated for 
wait states. Otherwise, the bus may be idle in the Ti 
state, or in hold acknowledge, the Th state. 

When address pipelining is not used, the bus state dia­
gram is as shown in Figure 53. When the bus is idle, it is 
in state Ti. Bus cycles always begin with T1. T1 always 
leads to T2. If a bus cycle is not acknowledged during T2 
and NA is negated, T2 is repeated. When a cycle is ac­
knowledged during T2, the following state will be T1 of 
the next bus cycle if a bus request is pending internally, 
or Ti if there is no bus request pending, or Th if the 
HOLD input is being asserted. 

The bus state diagram in Figure 53 also applies to the 
use of B816. If the Am386DXlDXL microprocessor 
makes internal adjustments for 16-bit bus size, the 
adjustments do not affect the external bus states. If an 
additional 16-bit bus cycle is required to complete a 
transfer on a 16-bit bus, it also follows the state transi­
tions shown in Figure 53. 

Use of pipe lined address allows the Am3860XlOXL 
CPU to enter three additional bus states not shown 
in Figure 53. Figure 59 in Pipelined Address is the com­
plete bus state diagram, including pipe lined address 
cycles. 

Non-Pipelined Address With Dynamic Data Bus 
Sizing 

The physical data bus width for any non-pipelined bus 
cycle can be either 32 or 16 bits. At the beginning of the 
bus cycle, the processor behaves as if the data bus is 
32-bits wide. When the bus cycle is acknowledged by 
asserting READY at the end of a T2 state, the most 
recent sampling of 8816 determines the data bus size 
forthe cycle being acknowledged. If 8816 was most re­
cently negated, the physical data bus size is defined as 
32 bits. If 8816 was most recently asserted, the size is 
defined as 16 bits. 

When 8816 is asserted and two 16-bit bus cycles are re­
quired to complete the transfer, 8816 must be asserted 
during the second cycle; 16-bit bus size is not assumed. 
Like any bus cycle, the second 16-bit cycle must be ac­
knowledged by asserting READY. 

Am386DXlDXL Microprocessor Data Sheet 85 



~ AMD 

ClK2 [ 

(ClK) [ 

BE3-BE2, [ 
A31-A2, 

M/IO,O/G 

W/R [ 

ADS [ 

NA [ 

BS16 [ 

READY [ 

LOCK [ 

015-00 [ 

031-016 [ 

Idle 

Ti 

- lSL 

- \J 

XXXXX 

XXXX Y 

XXXXX 

XXXXX 

XXXXX 

XXXXX 

XXXXX 

-----

-:----

A transfer requiring two 
cycles on 16-bit data bus 

A transfer requiring two 
cycles on 16-bit data bus r A~ ________ ~y~ __________ ~A~ ________ ~~ 

I Cycle 1 ~CYcie 1 A Cycle 2 ~CYcie 2A I 
Non-Pi~elined Non-Pipelined Non-Pipelined Non-Pipelined 

(Write . Write) (Read Read) 
Part One Part Two Part One Part Two 

Idle I 
T1 T2 T1 T2 T1 T2 T1 T2 Ti 

lSL M lSL M 1JL 1IL lSL M M 
\J V \J V \J V \J V V 

Always Always 

Valid 1 I Negated 
During Part Two 

\ Valid 3 I Negated ~ 
During Part Two 

I I .. Valid 1 v .. Valid 2 .. ~ 
~ 

Y \ V-

'--V- '--V- '--V-'--V 

XXXX IX g~~~ X XXXX IX g~~~ X XXXX r>( go~~ X xxXX DC ~~~ X IXXXX 

)()()()( ~ ), XXXX ~ "<XXXX 1>- "<XXXX IA ..<IXXXX 

16-Bit 16-Bit 16-Bit 16-Bit 
Bus Size Bus Size Bus Size Bus Size 

XXXX IX~ m. ~ R'). >& AN. ~ LXX 

X Valid 1 X Valid 2 ~ 
d15-dO d31-d16 d1510 d31-=-d16 

- Out Out --<¥-- --<¥---
d31-d16 Ignored Ignored 

- .. Out "'r ---<+>-- --<+>--I I I I 
Key: Dn Physical data pin n 

dn = Logical data pin n 

150218-057 

Figure 54. Asserting 8516 (Zero-Wait-States, Non-Pipelined Address) 

86 Am386 Microprocessors for Personal Computers 



ClK2 [ 

(ClK) [ 

BE3-BE2, [ 
A31-A2, 

MIlO, Ole 

W/R [ 

ADS [ 

NA [ 

BS16 [ 

READY [ 

LOCK [ 

015-00 [ 

031-016 [ 

Idle 

Ti 

- UL 
- V-

X XXX)( 

xxxxx 

X XXX)( 

XXXXX 

XXXXX 

X XXX)( 

X XXXX 

-----

-----

A transfer requiring two 
cycles on 16-bit data bus 

r~---------------~~--------------~~ 
Cycle 1 Cycle 1A 

AMD ~ 

Cycle 2 Non-Pipelined Non-Pipelined 
(Read Read) Non-Pipelined 

Part One Part Two (Write) 

T1 T2 T2 T1 T2 T2 T1 T2 T2 

M UL M UL M 1JL M 1JL M 
V V-V V-\f V V V-V 
D< Valid 1 1 Negated during r\ Valid 2 

Part Two 

I I 
tx.. Valid 1 ~ Valid 2 

~ V 

1\.--1 "--I I\.--1 
Note: NA must be negated here to 

allow recognition of asserted 
~ BS16 in final T20 

IXXXX Y '< lX. DonO, X 
Care XXXX Y '< X Dono, X 

Care MAX'! '< lX.XX)< 
32-Bit 

Bus Size 

t 
IXXXX X >00< ~ .,(xxxx IJ()()()( A A D<.XXX xxx)( ~ \ 

16-Bit 16-Bit 
Bus Size Bus Size 

D<x.xx XX), .~ -<XX DO<Y ~ "XX XXy ~ 

~ Valid 1 Valid 2 

d15-dO d31-d16 d15-d0 

1---- ---- --$-- ---- -- In Out 

d31~16 --?-- Ignored 

1---- --- ---- x Out 

I I 

Key: On Physical data pin n 
dn logical data pin n 

15021B-058 

Figure 55. Asserting 8516 (One-Wait-State, Non-Pipelined Address) 

Am386DXlDXL Microprocessor Data Sheet 87 



~ AMD 

When a second 16-bit bus cycle is required to complete 
the transfer over a 16-bit bus, the addresses generated 
for the two 16-bit bus cycles are closely related to each 
other. The addresses are the same, except BEO and 
BE1 are always negated forthe second cycle. This is be­
cause data on 015-00 was already transferred during 
the first 16-bit cycle. 

Figures 54 and 55 show cases where assertion of BS16 
requires a second 16-bit cycle for complete operand 
transfer. Figure 54 illustrates cycles without wait states. 
Figure 55 illustrates cycles with one wait state. In Figure 
55 Cycle 1 , the bus cycle during which BS1 6 is asserted, 
note that NA must be negated in the T2 state(s) prior to 
the lastT2 state. This is to allow the recognition of BS16 
asserted in the final T2 state. The relation of NA and 
BS16 is given fully in Pipelined Address, but Figure 55 
illustrates this only precaution you need to know when 
using BS16 with non-pipelined address. 

Pipelined Address 

Address pipelining is the option of requesting the ad­
dress and the bus cycle definition of the next internally 
pending bus cycle before the current bus cycle is 
acknowledged with READY asserted. ADS is asserted 
by the Am386DXlDXL microprocessor when the next 
address is issued. The address pipelining option is 
controlled on a cycle-by-cycle basis with the NA input 
signal. 

Once a bus cycle is in progress and the current address 
has been valid for at least one entire bus state, the NA 
input is sampled at the end of every phase one until the 
bus cycle is acknowledged. During non-pipelined bus 
cycles, therefore, NA is sampled at the end of phase one 
in every T2. An example is Cycle 2 in Figure 56, during 
which NA is sampled at the end of phase one of every 
T2 (it was asserted once during the first T2 and has no 
further effect during that bus cycle). 

If NA is sampled asserted, the Am386DXlDXL micro­
processor is free to drive the address and bus cycle defi­
nition of the next bus cycle, and assert ADS, as soon as 
it has a bus request internally pending. It may drive the 
next address as early as the next bus state, whether the 
current bus cycle is acknowledged at that time or not. 

Regarding the details of address pipelining, the 
Am386DXlDXL CPU has the following characteristics. 

1. For NA to be sampled asserted, BS16 must be 
negated at the sampling window (see Figure 56 
Cycles 2 through 4, and Figure 57 Cycles 1 through 
4). If NA and BS16 are both sampled asserted during 

the last T2 period of a bus cycle, BS 16 asserted has 
priority. Therefore, if both are asserted, the current 
bus size is taken to be 16 bits and the next address is 
not pipelined. 

2. The next address may appear as early as the bus 
state after NA was sampled asserted (see Figure 56 
or 57). In that case, state T2P is entered immedi­
ately, However, when there is not an internal bus 
request already pending, the next address will not be 
available immediately after NA is asserted and T21 
is entered instead of T2P (see Figure 58 Cycle 3). 
Provided the current bus cycle is not yet acknow­
ledged by READY asserted, T2P will be entered as 
soon as the Am386DXlDXL microprocessor does 
drive the next address. External hardware should 
therefore observe the ADS output as confirmation 
the next address is actually being driven on the bus. 

3. Once NA is sampled asserted, the Am386DXlDXL 
microprocessor commits itself to the highest priority 
bus request that is pending internally. It can no 
longer perform another i6-bit transfer to the same 
address should BS16 be asserted externally, so 
thereafter must assume the current bus size is 32 
bits. Therefore, if NA is sampled asserted within a 
bus cycle, BS16 must be negated thereafter in 
that bus cycle (see Figures 56, 57, 58). Con­
sequently, do not assert NA during bus cycles that 
must have BS16 driven asserted. See Dynamic Bus 
Sizing with Pipelined Address. 

4. Any address which is validated by a pulse on the 
Am386DXlDXL CPU ADS output will remain stable 
on the address pins for at least two processor clock 
periods. The Am386DXlDXL microprocessor cannot 
produce a new address more frequently than every 
two processor clock periods (see Figures 56, 57, 58). 

5. Only the address and bus cycle definition of the very 
next bus cycle is available. The pipelining capability 
cannot look further than one bus cycle ahead (see 
Figure 58 Cycle 1). 

The complete bus state transition diagram, including op­
eration with pipelined address is given by Figure 59. 
Note it is a superset of the diagram for non-pipelined 
address only and the three additional bus states for 
pipelined address are drawn in bold. 

The fastest bus cycle with pipelined address consists of 
just two bus states, T1 P and T2P (recall for non­
pipelined address it is T1 and T2). T1 P is the first bus 
state of a pipelined cycle. 

88 Am386 Microprocessors for Personal Computers 



ClK2 [ 

(ClK) [ 

BE3-8EO, 
A31-A2, [ 

M/T5, DIG 

W/P, [ 

ADS [ 

NA [ 

BS16 [ 

READY [ 

LOCK [ 

031-00 [ 

Idle I Cycle 1 
Non-Pipelined 

(Write) 

Ti T1 T2 

- lJL M-m 
- \/ V V 
XXXXX IX Valid 1 

)( XXX)( ~ 

f\-V-

XXXXX IXXXX IXxxx 

X xxx.x lX.XXx IXXXX 

XXXXX IXXXX Ix\' 

)( XXX)( ~ Valid 1 

----- - Out 

T1 

Cycle 2 
Non-Pipelined 

(Read) 

T2 T2P 

Ul M-M-
\F V \F 

Cycle 3 
Pipelined 

(Write) 

T1P T2P 

lJL Ul 

\/ \F 

AMD ~ 

Cycle 4 
Pipelined 

(Read) 

T1P T21 

M-M-

V V 

Ti 

M-

V 
X Valid 2 X Valid 3 X Valid 4 IXXXX IXXXX 

;r ;r 

I 
iI'"" 

I I 
\ / I \ AXXX IXXXX 

I I 

'----V- I--
\ V- I--

\ V 
1/ - V-

xxXXI>.. J.)(XX)(~ ..(XXXXI>.. "(XXXX IXXXX 

To Allow To Allow To Allow 
Recognizing Recognizing 

1 
Recognizing 

NA NA NA 

t • t t • 
XX)(X lY '<.IXXXX 

/xXX IXXN ~ n. XXX>" AX XXX\. SJ. 

X Valid 2 ~ Valid 3 X Valid 4 ~ 

}-- --- - In Out }--- In -

Note: Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipe lined bus cycles, NA is only sampled during wait 
states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at least 
one wait state (Cycle 2 above). 

15021B-059 

Figure 56. Transitioning to Pipelined Address During Burst of Bus Cycles 

Am386DXlDXL Microprocessor Data Sheet 89 

I 
I 
I-



~ AMD 

Idle Cycle 1 
Non-Pipelined 

(Write) 

Cycle 2 
Non-Pipelined 

(Read) 

Cycle 3 
Pipelined 

(Write) 

Cycle 4 
Pipelined 
(Read) 

Idle 

----.~---------------.~---------.~---------.~---------------.~---

CLK2 [ 

(ClK) [ 

BE3-8EO, [ 
A31-A2, 

MIlO, Die 

ADS [ 

NA [ 

BS16 [ 

READY [ 

LOCK [ 

031-00 [ 

Ti 

- lIL 

- V-

)( XXX)( 

xxxXX 

XXXXX 

XXXXX 

X XXXX 

xxxxx 

-1----

T1 T2 T2P T1P T2P T1P T2P T1P T21 T2i Ti 

M-lIL Ul lIL M-lIL lSL M-M-lIL lIL 

V V \J V V V-\J V V V-V-

~ Valid 1 X Valid 2 ~ Valid 3 X Valid 4 XXx X XXXX X,xxx. 
f'F ..... f'F 

/ / / / rY I "- V I "- "XXX IXXXX XXX X 
I I 

i'-V- I--
\ V- I--

[\ V- I--
\ V 

1/ -'F 1/ 1/ 
-'F 

IX.XXXI>.. J.. XXX)( ~ J.. DOO()( ~ J.. XXX)( ~ J.. XXX IXXXX X.XXX 
......... 

To Allow To Allow To Allow To Allow 

1 Recognizing 

1 
Recognizing Recognizing 

1 
Recognizing 

NA NA NA NA 

t ! • ! t 
lX.XX)(~ ,(XXXX 

DO(XJ( ~ /xX IXXN ~ /X XXX>" AX XX~ /XX ,xxxx 

IX. Valid 1 ~ Valid 2 ~ Valid 3 ~ Valid 4 IXXXX 

- Out --- In Out }-- ------ In --
I 

Note: Following any idle bus state (Ti), the address is always non-pipelined and NA is only sampled during wait states. To start address pipelining 
after an idle state requires a non-pipelined cycle with at least one wait state (Cycle 1 above). The pipelined cycles (2, 3, 4 above) are shown 
with various numbers of wait states. 

15021B-060 

Figure 57. Fastest Transition to Pipelined Address Following Idle Bus State 

90 Am386 Microprocessors for Personal Computers 



Initiating and Maintaining Pipelined Address 

Using the state diagram Figure 59, observe the transi­
tions from an idle state, Ti, to the beginning of a 
pipelined bus cycle, T1 P. From an idle state Ti, the first 
bus cycle must begin with T1, and is therefore a non­
pipelined bus cycle. The next bus cycle will be pipelined, 
however, provided NA is asserted and the first bus cycle 
ends in a T2P state (the address forthe next bus cycle is 
driven during T2P). The fastest path from an idle state to 
a bus cycle with pipelined address is shown in below: 

Ti, Ti, Ti 

Idle 
States 

T1-T2-T2P 

Non-Pipelined 
Cycle 

T1P-T2P 

Pipelined 
Cycle 

T1-T2-T2P are the states of the bus cycle that estab­
lishes address pipelining for the next bus cycle, which 
begins with T1 P. The same is true after a bus hold state, 
shown below: 

Th, Th, Th T1-T2-T2P 

Hold Non-Pipelined 
Acknowledge Cycle 

States 

T1P-T2P 

Pipelined 
Cycle 

The transition to pipelined address is shown functionally 
by Figure 57 Cycle 1. Note that Cycle 1 is used to transi­
tion into pipelined address timing for the subsequent 
Cycles 2, 3, and 4 that are pipelined. The NA input is as­
serted at the appropriate time to select address pipe­
lining for Cycles 2, 3, and 4. 

Once a bus cycle is in progress and the current address 
has become valid, the NA input is sampled at the end of 
every phase one, beginning with the next bus state, until 
the bus cycle is acknowledged. During Figure 57 Cycle 
1 therefore, sampling begins in T2. Once NA is sampled 
asserted during the current cycle, the Am386DXlDXL 
microprocessor is free to drive a new address and bus 
cycle definition on the bus as early as the next bus state. 
In Figure 56 Cycle 1 for example, the next address 
is driven during state T2P. Thus, Cycle 1 makes the 
transition to pipe lined address timing, since it begins 

AMD ~ 
with T1 but ends with T2P. Because the address for Cy­
cle 2 is available before Cycle 2 begins, Cycle 2 is called 
a pipelined bus cycle, and it begins with T1 P. Cycle 2 
begins as soon as READY asserted terminates Cycle 1. 

Example transition bus cycles are Figure 57 Cycle 1 and 
Figure 56 Cycle 2. Figure 57 shows transition during the 
very first cycle after an idle bus state, which is the fastest 
possible transition into address pipelining. Figure 56 
Cycle 2, shows a transition cycle occurring during a 
burst of bus cycles. In any case, a transition cycle is the 
same whenever it occurs: it consists at least of T1, T2 
(you assert NA at that time), and T2P (provided the 
Am386DXlDXL microprocessor has an internal bus 
request already pending, which it almost always has). 
T2P states are repeated if wait states are added to the 
cycle. 

Note three states (Ii, T2, and T2 P) are only required in 
a bus cycle performing a transition from non-pipelined 
address into pipe lined address timing; for example, 
Figure 57 Cycle 1. Figure 57 Cycles 2, 3, and 4 show 
that address pipe lining can be maintained with two­
state bus cycles consisting only of T1 P and T2P. 

Once a pipelined bus cycle is in progress, pipe lined tim­
ing is maintained for the next cycle by asserting NA and 
detecting that the Am386DXlDXL CPU enters T2P dur­
ing the current bus cycle. The current bus cycle must 
end in state T2P for pipe lining to be maintained in the 
next cycle. T2P is identified by the assertion of ADS. Fig­
ures 56 and 57 however, show pipelining ending after 
Cycle 4, because Cycle 4 ends in T2P. This indicates 
the Am386DXlDXL CPU did not have an internal bus re­
quest prior to the acknowledgment of Cycle 4. If a cycle 
ends with a T2 orT21, the next cycle will not be pipelined. 

Realistically, address pipelining is almost always main­
tained as long as NA is sampled asserted. This is so, 
because in the absence of any other request a code 
prefetch request is always internally pending until the 
instruction decoder and code prefetch queue are 
completely full. Therefore, address pipelining is main­
tained for long bursts of bus cycles, if the bus is available 
(Le., HOLD negated) and NA is sampled asserted in 
each of the bus cycles. 

Am386DXlDXL Microprocessor Data Sheet 91 



~ AMD 

CLK2 [ 

(ClK) [ 

BE1--BEO, [ 
A31-A2, 

MOO, Ole 

WIR [ 

ADS [ 

NA [ 

BS16 [ 

READY [ 

LOCK [ 

031-00 [ 

92 

-

-

I 

')( 

~ 

T1P 

Cycle 1 
Pipelined 
(Wr~e) 

T2P T2P T1P 

Cycle 2 
Pipelined 
(Read) 

T2 T2P T1P 

Cycle 3 
Pipelined 
(Wr~e) 

T21 T2P 

Cycle 4 
Pipelined 
(Read) 

T1P 

IUl IUl l.JL IUl lSL IUl l.JL IUl lSL l.JL r-

V V V-V \/ V V-V \/ V- [\ 

Valid 1 ~ Valid 2 ~ Valid 3 XXXXX Val d4 

~ 

r 

X 

~ 

I 
\ 

~ V 

If Note: ADS is asserted 
in every T2P state. 

"'<XXXX rxxxx r 
+ + 

Asserting NA more than 
once durin\! any cycle 
has no additional 
effects. 

i"'" 

I ( 
V K)( 

~ / 

.1 d 
ADS IS asserte 
as Am3860XlDXl 

f-- - another bus cycle t 
which is not alway 
ately after NA is as 

as soon 
CPU has 

o perform, 
s immedi­
serted. 

I)()( X 

,,,"- / 
( As long as Am386DX/DXl CPU ent ersthe 

s pipe-T2P state during Cycle 3, addres 
lining is maintained in Cycle 4. 

'< A. f.. lX.XXX A. -< IXXXX XXXX ). ~ 

NA could have been asserted 
in T1 P if desired. Assertion now is 
the latest time possible to allow 
Am3860X/DXl CPU to enter T2P 
state to maintain pipelining in 
Cycle 3. 

'<IXXXX Y 

"<XX IXXY '<A -<XX XXY '<A AX)( rxxY '<A ..00 ~ 

Valid 1 D< Valid 2 X Valid 3 XValid4 

X Out )-- --- - In Out )-f--

I I 

150218-061 

Figure 58. Details of Address Plpellnlng During Cycles with Wait States 

Am386 Microprocessors for Personal Computers 



RESET 

Hall) Negated • 
No Request 

Request Pending • 
HOLD Negated 

HOLD Asserted 

READY Asserted. HOLD Negated. No Request 

Bus States: 
Tl - First clock of a non-pipelined bus cycle (Am386DXlDXL CPU drives new 

address and asserts ADS). 
T2 - Subsequent clocks of a bus cycle when NA has not been sampled asserted 

in the current bus cycle. 
T21- Subsequent clocks of a bus cycle when NA has been sampled asserted in 

the current bus cycle but there is not yet an internal bus request pending 
(Am386DXlDXL CPU will not drive new address or assert ADS). 

T2P-Subsequent clocks of a bus cycle when NA has been sampled asserted in 
the current bus cycle and there is an internal bus request pending 
(Am386DXlDXL CPU drives new address and asserts ADS). 

T1 P-First clock of a pipelined bus cycle. 
Ti - Idle state. 
Th - Hold Acknowledge state (Am386DXlDXL CPU asserts HLDA). 

Asserting NA for pipelined address gives access to three more bus states: T21, 
T2P, and T1P. 
Using pipelined address, the fastest bus cycle consists of Tl P and T2P. 

READY Asserted. 
HOLD Asserted 

(No Request + 
HOLD Asserted) • 

NA Asserted • 
READY Negated 

READY Negated 

AMD 

NA Asserted • 
(HOLD Asserted+ 

No Request) 

150218-062 

Figure 59. Am386DXlDXL Microprocessor Complete Bus States (Including Plpellned Address) 

Am386DXlDXL Microprocessor Data Sheet 93 

I 
r 



~ AMD 

Plpellned Address With Dynamic Data Bus Sizing 

The B816 feature allows easy interface to 16-bit data 
buses. When asserted, the Am3860XlOXL micropro­
cessor bus interface hardware performs appropriate 
action to make the transfer using a i6-bit data bus 
connected on 015-00. 

There is a degree of interaction, however, between the 
use of Address Pipe lining and the use of Bus 8ize 16. 
The interaction resuHs from the muHiple bus cycles re­
quired when transferring 32-bit operands over a 16-bit 
bus. If the operand requires both 16-bit halves of the 
32-bit bus, the appropriate Am3860XlOXL micropro­
cessor action is a second bus cycle to complete the op­
erand's transfer. This necessity conflicts with NA usage. 

When NA is sampled asserted, the Am3860XlOXL mi­
croprocessor commits itself to perform the next inter­
nally pending bus request, and is allowed to drive the 
next internally pending address onto the bus. Asserting 
NA therefore makes it impossible for the next bus cycle 
to again access the current address on A31-A2, such as 
may be required when B8 16 is asserted by the external 
hardware. 

To avoid conflict, the Am3860XlOXL microprocessor is 
designed with following two provisions. 

1 . To avoid conflict, BS16 must be negated in the current 
bus cycle if NA has already been sampled asserted 
in the current cycle. If NA is sampled asserted, the 
current data bus size is assumed to be 32 bits. 

2. Also to avoid conflict, if NA and B816 are both 
asserted during the same sampling window, B816 
asserted has priority and the Am3860XlOXL micro­
processor acts as if NA was negated at that time. 

Certain types of 16- or 8-bit operands require no adjust­
ment for correct transfer on a 16-bit bus. Those are read 
or write operands using only the lower half of the data 
bus, and write operands using only the upper half 
of the bus, since the Am3860XlOXL CPU simuHane­
ously duplicates the write data on the lower half of the 
data bus. For these patterns of Byte Enables and 
the W/fi. signals, B816 need not be asserted at the 
Am386DXlOXL CPU allowing NA to be asserted during 
the bus cycle if desired. 

Interrupt Acknowledge (INTA) Cycles 

In response to an interrupt request on the INTR input 
when interrupts are enabled, the Am3860XlOXL micro­
processor performs two interrupt acknowledge cycles. 
These bus cycles are similar to read cycles in that bus 
definition signals define the type of bus activity taking 
place, and each cycle continues until acknowledged by 
READY sampled asserted. 

The state of A2 distinguishes the first and second in­
terrupt acknowledge cycles. The byte address driven 
during the first interrupt acknowledge cycle is 4 (A31-
A3 Low, A2 High, BE3-BE1 High, and BEO Low). The 
address driven during the second interrupt acknowl­
edge cycle is 0 (A31-A2 Low, BE3-BE1 High, BEO 
Low). 

The LOCK output is asserted from the beginning of the 
first interrupt acknowledge cycle until the end ofthe sec­
ond interrupt acknowledge cycle. Four idle bus states, 
Ti, are inserted by the Am3860XlOXL microprocessor 
between the two interrupt acknowledge cycles, allowing 
for compatibility with spec TRHRL ofthe 8259A Interrupt 
Controller. 

During both interrupt acknowledge cycles, 031-00 
float. No data is read at the end of the first interrupt ac­
knowledge cycle. At the end of the second interrupt 
acknowledge cycle, the Am386DXlOXL microprocessor 
will read an external interrupt vector from 07-00 of the 
data bus. The vector indicates the specific interrupt 
number (from 0-255) requiring service. 

Halt Indication Cycle 

The Am3860XlOXL microprocessor haHs as a result of 
executing a HALT instruction. Signaling its entrance into 
the halt state, a haH indication cycle is performed. The 
halt indication cycle is identified by the state of the bus 
definition signals shown in Bus cycle Definition and a 
byte address of 2. BEO and BE2 are the only signals 
distinguishing halt indication from shutdown indication, 
that drives an address of O. During the haH cycle 
undefined data is driven on 031-DO. The haH indication 
cycle must be acknowledged by READY asserted. 

A halted Am3860XlOXL CPU resumes execution when 
INTR (if interrupts are enabled) or NMI or RESET is 
asserted. 

Shutdown Indication Cycle 

The Am3860XlDXL microprocessor shuts down as a 
result of a protection fauH while attempting to process a 
double fauH. Signaling its entrance into the shutdown 
state, a shutdown indication cycle is performed. The 
shutdown indication cycle is identified by the state of the 
bus definition signals shown in Bus Cycle Definition and 
a byte address of O. BEO and BE2 are the only signals 
distinguishing shutdown indication from haH indication, 
which drives an address of 2. During the shutdown 
cycle, undefined data is driven on 031-00. The shut­
down indication cycle must be acknowledged by 
READY asserted. 

A shutdown Am386DXlDXL microprocessor resumes 
execution when NMI or RESET is asserted. 

94 Am3S6 Microprocessors for Personal Computers 



ClK2 [ 

(ClK) [ 

BE3-BE2, [ 
A31-A2, 

MOO, Ole 

WfFi [ 

ADS [ 

NA [ 

BS16 [ 

READY [ 

LOCK [ 

015-00 [ 

031-016 [ 

A transfer requiring two 
cycles on 16-bit data bus 

AMD ~ 

r~---------------'~~--------------~~ 
Previous I Cycle 1 Cycle 1A 

I 
Cycle 2 

I 
Cycle Pipelined Non-Pipelined Non-Pipelined 

(Write Write) (Read) 
Part One Part Two 

T2P T1P T2 T2 T1 T2 T2 T1 T2 T2P 

- lJl M-UL M-M-M-j1Jl UL M-UL 
- \J V \f V V V V \f V \f 

Always -
X / Negated During '( X Valid 3 Valid 1 Valid 2 - Part Two 

-
'" Valid 1 I\. Valid 2 X Valid3 -

- / \. 

- V-~ / ,,--/ '-- '--
~ 

.. Note: NA must be negated in these Ts to allow 
_ reco~ nition of rserted BS 16 in final T2s. I 

)( XXX)( ~ '< ~ '< D< Don't Care XX y '< D< Don't Care XX ~ .<XXXX 

32-Bit 
Bustize 

IXXXX XXX X IA ..<IXXXX XXXX IA "<XXXX W ~ 

16-Bit 16-Bit 
Bus Size Bus Size 

}( ~ "<XX XXY '0.. ..{XX XXY '0.. AXX IXXY ~ 

I}\ Valid 1 Valid 2 

d15-d0 dl5-dO d31-d16 d15 -dO 

----<JV Out Out --- -~ 
I d31 -d16 d31-d16 d31 -d16 

---q> Out Out - f---- -~ I I I I I I 

Key: Dn 
dn 

Physical data pin n 
Logical data pin n 

Cycle 1 is pipelined. Cycle 1 A cannot be pipelined, but its address can be inferred from 
that of Cycle 1, to externally simulate address pipelining during Cycle 1 A. 

150218-063 

Figure 60. Using NA and 8S16 

Am386DXlDXL Microprocessor Data Sheet 95 



AMD 

ClK2 [ 

(ClK) [ 

BEO, 
A31-A3, [ 

MOO,OIC, 
WIR 

A2[ 

LOCK [ 

ADS [ 

NA [ 

8S16 [ 

READY [ 

07-00 [ 

031-08 [ 

Previous I 
Cycle 

Interrupt 
Acknowledge 

Cycle 1 

T2 T1 T2 T2 Ti 

-M M M LJL M 
-V V V \J V 
XIXXXX IT I,{XXX 

I/" 
/ 

XIXXXX I>" IJC:XXX 

V' 

XOCXXX IY I'{XXX 
I/" 

V 
XIXXXX I>" 

l\- I 

XIXXxJ\ IXXXX '{ IXx xxxxX 

J\IXXXX IXXXX X X Ignored ~ XXXXX 

XIXXxx IXXXX xXY '0.\ ..<XX 
Ignored 

-r----r--------r---G)---
Ignored 

-r---- ,...----------qr--

Idle 
(4 Bus States) 

Ti Ti 

LJL M 
\J V 
XXXX IXXXX 

'XX IXXXJ\ 

XXXX IXXXX 

XXXX IXXXJ\ 

XXXX IXXXX 

)(XXX IXXXX 

----r----

----r----

Interrupt Vector (0-255) is read on D7-DO at end of second Interrupt Acknowledge bus cycle. 

Ti 

LJL 

\J 

XXXX 

xJI)Q( 

T1 

Interrupt 
Acknowledge 

Cycle 2 

T2 T2i 

M UL LJL 

V \f \J 

IY '{XXJ\ 

,/ 
". 

~ ,.()()(X 

/ 

Idle I 
Ti 

M 
V 
IXXXJ\ 

IXXXX 

XXXXI>.. -<XXJ\ IXXXX 

/ 
I~ 

l\- I 

xXX X IXXXJ\J\. ). xxx X IXXXX 

XXXX IXXXXY ,(IXXXX 

x'X'XJ\ IXXXX XXY '0. m 
Vector 

----r-----------®----
Ignored 

----r-----------<y--

Because each Interrupt Acknowledge bus cycle is followed by idle bus states, assertin9 NA has no practical effect. Choose the 
approach that is simplest for your system hardware desi9n. 

150218-064 

Figure 61. Interrupt Acknowledge Cycles 

96 Am386 Microprocessors for Personal Computers 



ClK2 [ 

(ClK) [ 

BE3, BE1, [ 
BEO, MIlO 

[ BE2, A31-A2, 
WIR, DiC 

ADS [ 

NA [ 

BS16 [ 

READY [ 

LOCK [ 

D31-DO 

Cycle 1 Cycle 1A 
Non-Pipelined Non-Pipelined 

(Write) (Ha~) 

T1 T2 T1 T2 

Valid 2 
-f~-,-------r 

AMD ~ 

Idle 

Ti Ti Ti Ti 

Note: Halt cycle must be 
acknowledged by READY 
asserted. Wait states may 
be added to the cycle n 
desired. 

Am386DXlDXl CPU remains 
ha~ed untillNTR, NMI, or 
RESET is asserted. 

I I 
Am386DX/DXl CPU responds 
to HOLD input while in the 
Ha~ state. 

(Floating) - -- ---

I 

150218-{)65 

Figure 62. Halt Indication Cycle 

Am386DXlDXL Microprocessor Data Sheet 97 

i 

r 



~ AMD 

ClK2 f' .., 

(ClK) [ 

'EfE3--"!3ET [ 
MOO, WIR 

BEO, [ A31-A2, DIC 

ADS [ 

NA [ 

BSi6 [ 

READY [ 

D31-DO 

98 

Cycle 1 l Cycle 2 
Pipelined Pipelined 

(Read) (Shutdown) 

• 
bT1P T2P T1P T21 

Valid 1 

Valid 1 

Idle 

Ti Ti Ti Ti 

Am386DXlDXl CPU re­
mains shutdown until NMI or 
RESET is asserted. 

I I 
Am386DXlDXl CPU re­
sponds to HOLD input 
while in the Shutdown 
state. 

Note: Shutdown cycle must 
be acknowledged by READY 
asserted. WaH states may be 
added to the cycle if desired. 

(Floating) - -- ---

I 

150218-066 

Figure 63. Shutdown Indication Cycle 

Am386 Microprocessors for Personal Computers 



AMD ~ 
Other Functional Descriptions 
Entering and Exiting Hold Acknowledge 

The Bus Hold Acknowledge State, Th, is entered in 
response to the HOLD input being asserted. In the 
Bus Hold Acknowledge state, the Am386DXlDXL 
microprocessor floats all output or bidirectional signals, 
except for HLDA. HLDA is asserted as long as the 

Am386DXlDXL CPU remains in the bus hold acknowl­
edge state. In the Bus Hold Acknowledge state, all in­
puts except HOLD, FL T, RESET, BUSY, ERROR, and 
PEREQ are ignored (also up to one rising edge on NMI 
is remembered for processing when HOLD is no longer 
asserted). 

1 Idle 

1'- Acknowledge --. Hold 1 Idle 1 
Ti Th Th Th Ti 

ClK2 [ 

(ClK) [ 

HOLD [ 

HlDA [ 

BE3-BEO, 

[ A31-A2, M/iO, \ --Tlo·;"r--Die, W/R 

ADS [ 
'--_. (Floating) ._--

NA [ 

8S16 [ 

READY [ 

--- (Floating) ---

I I 
[- --- --- {Floating)---

I I 
D31-DO 

Note: For maximum design flexibility, the Am386DXlDXL CPU has no internal pullup resistors on its outputs. The design may 
require an external pullup on ADS and other Am386DX/DXL CPU outputs to keep them negated during float periods. 

Figure 64. Requesting Hold from Idle Bus 

Am386DXlDXL Microprocessor Data Sheet 

150218-067 

99 



~ AMD 

Th may be entered from a bus idle state, as in Figure 64, 
or after the acknowledgment ofthe current physical bus 
cycle if the LOCK signal is not asserted, as in Figures 65 
and 66. If HOLD is asserted during a locked bus cycle, 
the Am386DXlDXL microprocessor may execute one 
unlocked bus cycle before acknowledging HOLD. If as­
serting B816 requires a second 16-bit bus cycle to com­
plete a physical operand transfer, it is performed before 
HOLD is acknowledged, although the bus state dia­
grams in Figures 53 and 59 do not indicate that detail. 

Th is exited in response to the HOLD input being ne­
gated. The following state will be Ti as in Figure 64 if no 
bus request is pending. The following bus state will be 
T1 if a bus request is internally pending, as in Figures 65 
and 66. 

Th is also exited in response to RESET being asserted. 

If a rising edge occurs on the edge-triggered NMI in­
put while in Th, the event is remembered as a non­
maskable interrupt 2 and is serviced when Th is exited, 
unless of course, the Am386DXlDXL microprocessor is 
reset before Th is exited. 

RESET During HOLD Acknowledge 

RESET being asserted takes priority over HOLD being 
asserted. Therefore, Th is exited in response to the 
RESET input being asserted. If RESET is asserted 
while HOLD remains asserted, the Am386DXlDXL mi­
croprocessor drives its pins to defined states during 
reset, as in Table 15 Pin State During RESET, and 
performs internal reset activity as usual. 

If HOLD remains asserted when RESET is negated, the 
Am386DXlDXL microprocessor enters the hold ac­
knowledge state before performing its first bus cycle, 
provided HOLD is still asserted when the Am386DXI 
DXL microprocessor would otherwise perform its first 
bus cycle. If HOLD remains asserted when RESET is 
negated, the BUSY input is still sampled as usual to de­
termine whether a self test is being requested, and ER­
ROR is still sampled as usual to determine whether a 
387DX math coprocessor versus an 80287 (or none) is 
present. 

Float 

Activating the FL T input floats all Am386DXlDXL CPU 
bidirectional and output signals, including HLDA. As­
serting FL T isolates the Am386DXlDXL CPU from the 
surrounding circuitry. 

As the Am386DXlDXL microprocessor is packaged in a 
surface mount PQFP, it cannot be removed from the 
motherboard when In-Circuit Emulation (ICE) is 
needed. The FL T input allows the Am386DXlDXL CPU 
to be electrically isolated from the surrounding circuitry. 
This allows connection of an emulator to the Am386DXI 
DXL microprocessor PQFP without removing it from the 
PCB. This method of emulation is referred to as ON­
Circuit Emulation (ONCE). 

Entering and Exiting Float 

FL T is an asynchronous, active Low input. It is recog­
nized on the rising edge of CLK2. When recognized, it 
aborts the current bus cycle and floats the outputs of the 
Am386DXlDXL microprocessor (Figure 68). FL T must 
be held Low for a minimum of 16-CLK2 cycles. Reset 
should be asserted and held asserted until after FL T is 
deasserted. This will ensure that the Am386DXlDXL 
CPU will exit Float in a valid state. 

Asserting the FL T input unconditionally aborts the cur­
rent bus cycle and forces the Am386DXlDXL micro­
processor into the Float mode. Since activating FL T 
unconditionally forces the Am386DXlDXL CPU into 
Float mode, the Am386DXlDXL CPU is not guaranteed 
to enter Float in a valid state. After deactivating FL T, the 
Am386DXlDXL CPU is not guaranteed to exit Float 
mode in a valid state. This is not a problem, as the FL T 
pin is meant to be used only during ONC E. After exiting 
Float, the Am386DXlDXL CPU must be reset to return it 
to a valid state. Reset should be asserted before FL Tis 
deasserted. This will ensure that the Am386DXlDXL 
CPU will exit Float in a valid state. 

FL T has an internal pull-up resistor, and if it is not used it 
should be unconnected. 

Bus Activity During and Following Reset 

RESET is the highest priority input signal capable of in­
terrupting any processor activity when it is asserted. A 
bus cycle in progress can be aborted at any stage; or 
idle states or bus hold acknowledge states discontinued 
so that the RESET state is established. 

RESET should remain asserted for at least 15-CLK2 
periods to ensure it is recognized throughout the 
Am386DXlDXL microprocessor, and at least 80-CLK2 
periods if Am386DXlDXL device self-test is going to be 
requested at the falling edge. RESET asserted pulses 
less than 15 CLK2 periods may not be recognized. 
RESET pulses less than 80 CLK2 periods followed by 
a self-test may cause the self-test to report a failure 
when no true failure exists. 

The additional RESET pulse width is required to clear 
additional state prior to valid self-test. 

Provided the RESET falling edge meets setup and hold 
times, t25 and t26, the internal processor clock phase is 
defined at that time, as illustrated by Figure 67. 

An Am386DXlDXL microprocessor self-test may be re­
quested at the time RESET is negated by having the 
BUSY input at a Low level, as shown in Figure 67. The 
self-test requires (220) + approximately 60-CLK2 periods 
to complete. The self-test duration is not affected by the 
test results. Even if the self-test indicates a problem, the 
Am386DXlDXL device attempts to proceed with the re­
set sequence afterward. 

100 Am3S6 Microprocessors for Personal Computers 



After the RESET falling edge (and after the self-test if 
it was requested) the Am386DXlDXL microprocessor 
performs an internal initialization sequence for approxi­
mately 350 to 450 CLK2 periods. 

The Am386DXlDXL microprocessor samples its ER­
ROR input some time after the falling edge of RESET 
and before executing the first ESC instruction. During 

ClK2 [ 

(ClK) [ 

HOLD [ 

HlDA [ 
MriO, BE3-BEO, [ 

A31-A2, Die, wrf5. 

ADS [ 

NA [ 

BS16 [ 

LOCK [ 

031-00 [ -

T1 

Cycle 1 
Non-Pipelined 

(Read) 

T2 

Valid 1 

(Floating) 

T2 

--------r-------------

AMD it1 
this sampling period BUSY must be High. If ERROR 
was sampled active, the Am386DXlDXL device em­
ploys the 32-bit protocol of a 387DX math coprocessor. 
Even though this protocol was selected, it is still neces­
sary to use a software recognition test to determine the 
presence or identity of the coprocessor and to assure 
compatibility with future processors. 

Hold 
Acknowledge 

Th Th 

>. ----(~I~afti~!l) - - - - -

(Floating) 
In - - - - - - - - - - - -

Cycle 2 
Non-Pipelined 

(Write) 

T1 T2 

Valid 2 

Valid 2 

Out 

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) requirements 
are met. This waveform is useful for determining Hold Acknowledge latency. 

150218-068 

Figure 65. Requesting Hold from Active Bus (NA Negated) 

Am386DXlDXL Microprocessor Data Sheet 101 



~ AMD 

ClK2 [ 

(ClK) [ 

HOLD [ 

HlOA [ 
MOO, SE3-SEO, [ A31-A2, 010', WiFi 

ADS [ 

NA [ 

9816 [ 

READY [ 

LOCK [ 

031-00 

T1P 

Cycle 1 

Pipelined 

(Wr~e) 

T21 T21 

(Negated or last locked Cycle) 

Hold 

Acknowledge 

Th Th 

(Floating) 
------r-------

(Floating) 

Valid 1 >. ----(~I~fati~~)- - - -­

,.._----tf----....I-------tf---. (Floating) 
- --------

'----+-------r-------r---' 

Cycle 2 

Non-Pipelined 

(Read) 

T1 T2 

Valid 2 

Valid 2 

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) requirements 
are met. This waveform is useful for determining Hold Acknowledge latency. 

In 

15021B-069 

Figure 66. Requesting Hold from Active Bus (NA Asserted) 

Table 21. Component and Revision Identifier History 

Intel Am386DXlDXl Component Revision 
i386 Microprocessor Identifier Identifier 

Stepping Name Revision 

01 D 03 08 

102 Am386 Microprocessors for Personal Computers 



II Reset ~ II 

~ 15 ClK2 duration if not 

Internal 
Initialization 

AMD 

Cycle 1 

going to request self-test. Non-Pipelined 

ClK2 

Reset 

ClK (Internal) 

BUSY 

ERROR 

BE3-BEO, W/f5.. 
Miio, HlOA 

A31-A2, 
DIG, LOCK 

ADS 

NA 

BS16 

READY 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

~ 80 ClK2 duration before 
requesting self-test. 

If self-test is performed, add (Read) 
( (2 20) + 60' to these numbers T1 T2 

1 2 3 17 18 19 395 396 397 398 

031-00 [ XXXXXXX>- -- - -- ---- (Floating)' - - -- - - - -- -- - -- - - -- -- - --

Notes: 1. BUSY should be held stable for 8-CLK2 periods before and after the CLK2 period in which RESET falling edge occurs. 
2. If self-test is requested, the Am386DX/DXL microprocessor outputs remain in their reset state as shown here and in Table 14. 

Figure 67. Bus Activity from Reset Until First Code Fetch 150218-070 

CLK2 [ 

[~ I 
[ =::X~=v:;:a:;:lid;::::::::;}:----------------------------------'-- - - - - - - - - - ,'------..X'--Control 

Data [ --0 -< Valid )-- -- - -- - - - -- - -- - - -- - - - - -- -- -- < x=: 
Address [ ==>< Valid> - -- -- -- -- -- -- -- -- - -- -- - -- - -- {\,..._--JX'-__ 

Reset [ ------------------------~I 
150228-029 

Figure 68. Entering and Exiting Fl T 

Am386DXlDXl Microprocessor Data Sheet 103 
i 



~ AMD 

Self-Test Signature 
Upon completion of seH-test, (if self-test was requested 
by holding BUSY Low at least eight CLK2 periods before 
and after the falling edge of RESET), the EAX register 
will contain a signature of OOOOOOOOh indicating the 
Am3860XlOXL CPU passed its self-test of microcode 
and major PLA contents with no problems detected. The 
passing signature in EAX, OOOOOOOOh, applies to all 
Am3860XlOXL microprocessor revision levels. Any 
non-zero signature indicates the Am3860XlOXL CPU 
unit is faulty. 

Component and Revision Identifiers 
To assist Am3860XlOXL microprocessor users, the mi­
croprocessor after reset holds a component identifier 
and a revision identifier in its OX register. The upper 8 
bits of OX hold 03h as identification of the Am3860Xl 
OXL CPU component. The lower 8 bits of OX hold an 
8-bit unsigned binary number related to the component 
revision level. The revision identifier begins chronologi­
cally with a value zero and is subject to change (typically 
it will be incremented) with component steppings in­
tended to have certain improvements or distinctions 
from previous steppings. 

These features are intended to assist Am3860XlOXL 
microprocessor users to a practical extent. However, 
the revision identifier value is not guaranteed to change 
with every stepping revision nor to follow a completely 
uniform numerical sequence, depending on the type or 
intention of revision or manufacturing materials required 
to be changed. 

Coprocessor Interfacing 
The Am3860XlOXL microprocessor provides an auto­
matic interface for a 3870X floating-point math co­
processor. A 3870X math coprocessor uses an 110-
mapped interface driven automatically by the 
Am3860XlOXL microprocessor and assisted by three 
dedicated signals: BUSY, ERROR, and PEREQ. 

As the Am3860XlOXL CPU begins supporting a 
coprocessor instruction, it tests the BUSY and ERROR 
Signals to determine if the coprocessor can accept its 
next instruction. Thus, the BUSY and ERROR inputs 
eliminate the need for any preamble bus cycles for com­
munication between processor and coprocessor. A 
3870X math coprocessor can be given its command 
op-code immediately. The dedicated signals provide 
instruction synchronization, and eliminate the need of 
using the Am3860XlOXL CPU WAIT op-code (9Bh) for 
3870X math coprocessor instruction synchronization 
(the WAIT op-code was required when 8086 or 8088 
was used with the 8087 coprocessor). 

Custom coprocessors can be included in Am3860Xl 
OXL microprocessor based systems, via memory­
mapped or I/O-mapped interfaces. Such coprocessor 
interfaces allow a completely custom protocol, and are 
not limited to a set of coprocessor protocol primitives. In­
stead, memory-mapped or I/O-mapped interfaces may 
use all applicable Am3860XlOXL microprocessor in­
structions for high-speed coprocessor communication. 
The BUSY and ERROR inputs of the Am3860XlOXL 
CPU may also be used for the custom coprocessor in­
terface, if such hardware assist is desired. These sig­
nals can be tested by the Am3860XlOXL CPU WAIT op­
code (9Bh). The WAIT instruction will wait until the 
BUSY input is negated (interruptable by an NMI or en­
able INTR input), but generates an Exception 16 fault if 
the ERROR pin is in the asserted state when the BUSY 
goes (or is) negated. If the custom coprocessor inter­
face is memory-mapped, protection of the addresses 
used for the interface can be provided with the 
Am3860XlOXL microprocessor on-chip paging or seg­
mentation mechanisms. If the custom interface is 1/0-
mapped, protection of the interface can be provided with 
the Am3860XlOXL microprocessor 10PL (I/O Privilege 
Level) mechanism. 

A 3870X math coprocessor interface is I/O mapped as 
shown in Table 22. Note that a 3870X math coproces­
sor interface addresses are beyond the OhFFFFh range 
for programmed I/O. When the Am3860XlOXL CPU 
supports a 3870X math coprocessor, the Am3860Xl 
OXL microprocessor automatically generates bus cy­
cles to the coprocessor interface addresses. 

Table 22. Math Coprocessor pon Addresses 

Address in Am386DXlDXL 387DX 
CPU 110 Space Coprocessor Register 

BOOOOOFBh Opcode Register 
(32-bit port) 

BOOOOOFCh Operand Register 
(32-bit port) 

To correctly map a 3870X math coprocessor registers 
to the appropriate I/O addresses, connect a 3870X 
math coprocessor CMDO pin directly to the A2 output of 
the Am3860XlOXL microprocessor. 

Software Testing for Coprocessor Presence 

When software is used to test for coprocessor (3870X) 
presence, it should use only the following coprocessor 
op-codes: FINIT, FNINIT, FSTCW mem, FSTSW mem, 
FSTSW AX. To use other coprocessor op-codes when a 
coprocessor is known to be not present, first set EM = 1 
in Am3860XlOXL microprocessor CRO. 

104 Am386 Microprocessors for Personal Computers 



AMD ~ 
ABSOLUTE MAXIMUM RATINGS 
Storage Temperature ........... -65°C to + 150°C 
Ambient Temperature Under Bias .. -65°C to + 125°C 
Supply Voltage with Respect 

toVss ........................ -0.5Vto+7V 
Voltage on Other Pins ........ -0.5 V to Vcc +0.5 V 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TINGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to Absolute 
Maximum Ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over COMMERCIAL operating ranges 
Vcc = 5 V ±5%; TCASE = O°C to +85°C (PGA) 
Vcc=5 V±10%; TCASE=O°C to +100°C (PQFP-20, 25, and 33 MHz) 
Vcc = 5 V ±5%; TCASE = O°C to + 100°C (PQFP -40 MHz) 

Symbol Parameter Description Notes 

VIL Input Low Voltage (Note 1) 

V,H Input High Voltage 

VILe CLK2 Input Low Voltage (Note 1) 

V,He CLK2 Input High Voltage 

VOL Output Low Voltage 

IOL=4 mA: A31-A2, 031-00 (Note 6) 

IOL=5 mA: BE3-BEO, W/R, 
O/G, MIlO, LOCK, ADS, HLOA 

VOH Output High Voltage 

IOH=1 mA: A31-A2, 031-00 (Note 6) 

10H = 0.9 mA: BE3-BEO, 
W/R, O/G, M/TO, LOCK, 
ADS, HLOA 

III Input Leakage Current OV<;,V,N<;,VCC 

(All pins except BS16, PEREa, 
BUSY, FL T, and ERROR) 

I'H Input Leakage Current V ,H =2.4 V 
(PEREa Pin) (Note 2) 

III Input Leakage Current V'L=0.45 
(BSI6, BUSY, FL T, and ERROR) (Note 3) 

ILo Output Leakage Current 0.45 V <;,VouT<;,Vee 

Icc Supply Current (Note 7) Vee = 5.0 V 

CLK2 = 40 MHz: with -20 Icc Typ=130 

CLK2 = 50 MHz: with -25 Icc Typ=160 

CLK2 = 66 MHz: with -33 Icc Typ=210 

CLK2 = 80 MHz: with -40 Icc Typ=330 

leesB Standby Current leesB Typ = 20 !LA 
(Am3860XL microprocessor) (Note 5) 

CIN Input or 1/0 Capacitance Fe = 1 MHz (Note 4) 

COlfT Output Capacitance Fe = 1 MHz (Note 4) 

CeLK CLK2 Capacitance Fe = 1 MHz (Note 4) 

Notes: 1. The Min value, --{I.3, is not 100% tested. 
2. PEREa input has an internal pulldown resistor. 
3. BS16, BUSY, FLT, and ERROR inputs each have an internal pullup resistor. 
4. N01100% tested. 

Min Max Unit 

-0.3 0.8 V 

2.0 Vee + 0.3 V 

-0.3 0.8 V 

2.7 Vee +0.3 V 

0.45 V 

0.45 V 

2.4 V 

2.4 V 

±15 IlA 

200 !LA 

-400 !LA 

±15 !LA 

Vee = 5.5 V 

155 mA 

190 mA 

245 mA 

400 mA 

150 !LA 

10 pF 

12 pF 

20 pF 

S. Measurement taken with inputs at rails, outputs unloaded, BS16, BUSY, FLT, and ERROR at Vee voltage level, PEREa at Gnd. 
6. Outputs are CMOS and will pull to rail if load is not resistive. 
7. Inputs at rails (Vee or Vss). 

Am386DXlDXL Microprocessor Data Sheet 105 



~ AMD 

SWITCHING CHARACTERISTICS over COMMERCIAL operating range-40 MHz 
VCC = 5 V ±5%; TCASE = O°C to +85°C (PGA) 
Vcc=5 V ±5%; TCASE= O°C to +100°C (PQFP) 

No. Parameter Description Notes Ref Figure Min Max 

Oper. Frequency: Am386DXCPU Hall CLK2 Ireq. 2 40 
Am386DXL CPU Hall CLK2 Ireq. 0 40 

1 CLK2 Period: Am386DX CPU 71 12.5 250 
Am386DXL CPU 71 12.5 

2 CLK2 High Time at V'HC 71 4 

3 CLK2 Low Time at 0.8V 71 5 

4 CLK2 Fall Time 2.7 V-{).8 V (Note 3) 71 4 

5 CLK2 Rise Time 0.8 V-2.7 V (Note 3) 71 4 

6 A31-A2 Valid Delay CL=50 pF 70,73,81 4 13 

7 A31-A2 Float Delay (Note 1) 81 4 20 

8 BE3-BEO, LOCK Valid Delay CL=50 pF 70,73,81 4 13 

9 BE3-BEO, LOCK Float Delay (Note 1) 81 4 20 

10 WIR, MIlO, DIC Valid Delay CL=50 pF 70,73,81 4 13 

lOa ADS Valid Delay CL=50 pF 70,73,81 4 13 

11 WIR, MIlO, DIC, ADS Float Delay (Note 1) 81 4 20 

12 031-00 Write Data Valid Delay CL = 50 pF (Note 4) 70,74,81 7 18 

12a D31-DO Write Data Hold Time CL=50 pF 70, 75 2 

13 031-00 Float Delay (Note 1) 81 4 17 

14 HLDA Valid Delay CL=50 pF 70,81 4 17 

141 HLDA Float Delay (paFP Only) (Note 1) 70,81 4 17 

15 NA Setup Time 72 5 

16 NA Hold Time 72 2 

17 BS16 Setup Time 72 5 

18 BS16 Hold Time 72 2 

19 READY Setup Time 72 7 

20 READY Hold Time 72 4 

21 031-00 Read Setup Time 72 4 

22 031-00 Read Hold Time 72 3 

23 HOLD Setup Time 72 4 

24 HOLD Hold Time 72 2 

25 RESET Setup Time 82 4 

26 RESET Hold Time 82 2 

27 NMI, INTR Setup Time (Note 2) 72 5 

28 NMI, INTR Hold Time (Note 2) 72 5 

29 PEREa, ERROR, BUSY, (Note 2) 72 5 
FL T* Setup Time 

30 PEREa, ERROR, BUSY, (Note 2) 72 4 
FL T* Hold Time 

Notes: 1. Float condition occurs when maximum output current becomes less than ILo in magnitude. Float delay is not 100% tested. 

Unit 

MHz 
MHz 

ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure 

106 

recognition within a specific clock period. 
3. Rise and fall times are not tested. 
4. Min time not 100% tested. 
*PQFP package only. 

Am386 Microprocessors for Personal Computers 



AMD 

SWITCHING CHARACTERISTICS over COMMERCIAL operating range-33 MHz 
Vcc = 5 V ±5%; TCASE = O°C to +85°C (PGA) 
Vcc = 5 V ±1 0%; TCASE = O°C to +1 OO°C (PQFP) 

No. Parameter Description Notes Ref Figure Min Max 

Oper. Frequency: Am386DXCPU Hall CLK2 Ireq. 2 33.3 
Am386DXL CPU Hall CLK2 Ireq. 0 33.3 

1 CLK2 Period: Am386DX CPU 71 15 250 
Am386DXL CPU 71 15 

2 CLK2 High Time atV,HC 71 4 

3 CLK2 Low Time at 0.8 V 71 5 

4 CLK2 Fall Time 2.7 V-D.8 V (Note 3) 71 4 

5 CLK2 Rise Time 0.8 V-2.7 V (Note 3) 71 4 

6 A31-A2 Valid Delay CL =50 pF 70,73,81 4 15 

7 A31-A2 Float Delay (Note 1) 81 4 20 

8 BE3-BEO, LOCK Valid Delay CL =50 pF 70,73,81 4 15 

9 BE3-BEO, LOCK Float Delay (Note 1) 81 4 20 

10 WIR, MilO, DIC Valid Delay CL =50 pF 70,73,81 4 15 

lOa ADS Valid Delay CL =50 pF 70,73,81 4 14.5 

11 WIR, MilO, DIC, ADS Float Delay (Note 1) 81 4 20 

12 D31-DO Write Data Valid Delay CL =50 pF (Note 4) 70,74,81 7 23 

12a D31-DO Write Data Hold Time CL =50 pF 70, 75 2 

13 D31-DO Float Delay (Note 1) 81 4 17 

14 HLDA Valid Delay CL =50 pF 70,81 4 20 

141 HLDA Float Delay (paFP Only) (Note 1) 70,81 4 20 

15 NA Setup Time 72 5 

16 NA Hold Time 72 2 

17 BS16 Setup Time 72 5 

18 BS16 Hold Time 72 2 

19 READY Setup Time 72 7 

20 READY Hold Time 72 4 

21 D31-DO Read Setup Time 72 5 

22 D31-DO Read Hold Time 72 3 

23 HOLD Setup Time 72 9 

24 HOLD Hold Time 72 2 

25 RESET Setup Time 82 5 

26 RESET Hold Time 82 2 

27 NMI, INTR Setup Time (Note 2) 72 5 

28 NMI, INTR Hcild Time (Note 2) 72 5 

29 PEREa, ERROR, BUSY, (Note 2) 72 5 
FL T' Setup Time 

30 PEREa, ERROR, BUSY, (Note 2) 72 4 
FL T' Hold Time 

Notes: 1. Float condition occurs when maximum output current becomes less than I LO in magnitude. Float delay is not 100% tested. 

Unit 

MHz 
MHz 

ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure 
recognition within a specific clock period. 

3. Rise and fall times are not tested. 
4. Min time not 100% tested. 
'PQFP package only. 

Am386DXlDXL Microprocessor Data Sheet 107 



~ AMD 

SWITCHING CHARACTERISTICS over COMMERCIAL operating range-25 MHz 
Vee = 5 V ±5%; TCASE = O°C to +85°C (PGA) 
Vcc=5 V ±10%; TCASE=O°C to +100°C (PQFP) 

No. Parameter Description Notes Ref Figure Min Max 

Oper. Frequency: Am386DXCPU Half CLK2 freq. 2 25 
Am386DXL CPU Half CLK2 freq. 0 25 

1 CLK2 Period: Am386DX CPU 71 20 250 
Am386DXL CPU 71 20 

2 CLK2 High Time at V,HC 71 4 

3 CLK2 Low Time atO.8V 71 5 

4 CLK2 Fall Time 2.7 V-D.8 V (Note 3) 71 7 

5 CLK2 Rise Time 0.8 V-2.7 V (Note 3) 71 7 

6 A31-A2 Valid Delay CL=50 pF 70,73,81 4 17 

7 A31-A2 Float Delay (Note 1) 81 4 30 

8 BE3-BEO, LOCK Valid Delay CL=50 pF 70,73,81 4 17 

9 BE3-BEO, LOCK Float Delay (Note 1) 81 4 30 

10 WIR, MOO, DIC, ADS Valid Delay CL=50 pF 70,73,81 4 17 

11 WIR, MilO, DIC, ADS Float Delay (Note 1) 81 4 30 

12 031-DO Write Data Valid Delay CL=50 pF 70,74,81 7 23 

12a 031-DO Write Data Hold Time CL=50 pF 70, 75 2 

13 031-DO Float Delay (Note 1) 81 4 22 

14 HLDA Valid Delay CL=50 pF 70,81 4 22 

14f HLDA Float Delay (paFP Only) (Note 1) 70,81 4 30 

15 NA Setup Time 72 5 

16 NA Hold Time 72 3 

17 BS16 Setup Time 72 5 

18 BS16 Hold Time 72 3 

19 READY Setup Time 72 9 

20 READY Hold Time 72 4 

21 031-DO Read Setup Time 72 7 

22 031-DO Read Hold Time 72 5 

23 HOLD Setup Time 72 9 

24 HOLD Hold Time 72 3 

25 RESET Setup Time 82 8 

26 RESET Hold Time 82 3 

27 NMI, INTR Setup Time (Note 2) 72 6 

28 NMI, INTR Hold Time (Note 2) 72 6 

29 PEREa, ERROR, BUSY, FL T' (Note 2) 72 6 
Setup Time 

30 PEREa, ERROR, BUSY, FL T* (Note 2) 72 5 
Hold Time 

Notes: 1. Float condition occurs when maximum output current becomes less than ILo in magnitude. Float delay is not 100% tested. 

Unit 

MHz 
MHz 

ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes. to assure 
recognition within a specific clock period. 

108 

3. Rise and fall times are not tested. 
'PQFP package only. 

Am386 Microprocessors for Personal Computers 



SWITCHING CHARACTERISTICS over COMMERCIAL operating range-20 MHz 
Vcc = 5 V ±5%; T CASE = O°C to +85°C (PGA) 
Vcc = 5 V ±1 0%; TCASE = O°C to +1 OO°C (PQFP) 

AMD 

No. Parameter Description Notes Ref Figure Min Max 

Oper. Frequency: Am386DXCPU Half CLK2 Ireq. 2 20 
Am386DXL CPU Half CLK2 Ireq. 0 20 

1 CLK2 Period: Am386DXCPU 71 25 250 
Am386DXL CPU 71 25 

2 CLK2 High Time atV,HC 71 6 

3 CLK2 Low Time at 0.8 V 71 6 

4 CLK2 Fall Time 2.7 V-Q.8 V (Note 3) 71 8 

5 CLK2 Rise Time 0.8 V-2.7 V (Note 3) 71 8 

6 A31-A2 Valid Delay CL=120pF 70,73,81 4 30 

7 A31-A2 Float Delay (Note 1) 81 4 32 

8 BE3-BEO, LOCK Valid Delay CL=75 pF 70,73,81 4 30 

9 ~3-BEO, LOCK Float Delay (Note 1) 81 4 32 

10 WIR, MOO, DIC, ADS Valid Delay CL=75 pF 70,73,81 4 28 

11 WIR, MOO, DIC, ADS Float Delay (Note 1) 81 4 30 

12 D31-DO Write Data Valid Delay CL=120 pF 70,74,81 4 38 

13 D31-DO Float Delay (Note 1) 81 4 27 

14 HLDA Valid Delay CL=75 pF 70,81 6 28 

141 HLDA Float Delay (paFP Only) (Note 1) 70,81 4 30 

15 NA Setup Time 72 9 

16 NA Hold Time 72 14 

17 BS16 Setup Time 72 13 

18 EiSf6 Hold Time 72 21 

19 READY Setup Time 72 12 

20 READY Hold Time 72 4 

21 D31-DO Read Setup Time 72 11 

22 D31-DO Read Hold Time 72 6 

23 HOLD Setup Time 72 17 

24 HOLD Hold Time 72 5 

25 RESET Setup Time 82 12 

26 RESET Hold Time 82 4 

27 NMI, INTR Setup Time (Note 2) 72 16 

28 NMI, INTR Hold Time (Note 2) 72 16 

29 PEREa, ERROR, BUSY, FL T* (Note 2) 72 14 
Setup Time 

30 PEREa, ERROR, BUSY, FL T* (Note 2) 72 5 
Hold Time 

Notes: 1. Float condition occurs when maximum output current becomes less than I LC in magnitude. Float dalay is not 100% tested. 

Unit 

MHz 
MHz 

ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure 
recognition within a specific clock period. 

3. Rise and fall times are not tested. 
*PQFP package only. 

Am386DXlDXL Microprocessor Data Sheet 109 



.:1 AMD 

SWITCHING WAVEFORMS 
The switching characteristics consist of output delays, 
input setup requirements, and input hold requirements. 
All characteristics are relative to the CLK2 rising edge 
crossing the 2.0 V level. 

Switching characteristic measurement is defined by 
Figure 69. Inputs must be driven to the voltage levels in­
dicated by this diagram. Am3860XlOXL CPU output de­
lays are specified with minimum and maximum limits 
measured as shown. The minimum Am3860XlOXL 
microprocessor delay times are hold times provided to 
external circuitry. Am3860XlOXL microprocessor input 
setup and hold time are specified as minimums, defining 

CLK2 [ 

A31-A2, ADS, DtC, [ 
LOCK, MOO, WIR, 

BE3-BEO, HLDA 

D31-DO [ 

NA, 8S16, [ 
INTR,NMI 

READY, HOLD, [ 
FLT, ERROR, 

BUSY, PEREa, 
D31-DO 

___ ..... I\ll 

Legend: A-Maximum Output Delay Spec 
B-Minimum Output Delay Spec 
C-Minimum Input Setup Spec 
D-Minimum Input Hold Spec 

Note: Input waveforms have tr s; 2.0 ns from 0.8 V to 2.0 V. 

the smallest acceptable sampling window. Within the 
sampling window, a synchronous input signal must 
be stable for correct Am3860XlOXL microprocessor 
operation. 

Outputs ADS, WIR, OIC, MOO, LOCK, BE3-BEO, 
A31-A2, and HLOA only change at the beginning of 
phase one. 031-00 (write cycles) only change at the 
beginning of phase two. The READY, HOLD, BUSY, 
ERROR, PEREa, FL T, and 031-00 (read cycles) in­
puts are sampled at the beginning of phase one. The 
NA, BS16, INTR, and NMI inputs are sampled at the 
beginning of phase two. 

Tx 

Valid 
Output n 

, , Valid 
1.5 V Output n+ 1 

15021~71 

Figure 69. Drive Levels and Measurement Points 

110 Am386 Microprocessors for Personal Computers 



Am3S6DXlDXL CPU Output o~---l"" 

~C, 

CL includes all paras~ic capacitances. 

Vee-O.S V 

2.0 V 

Figure 70. AC Test Load 

t1 

t2 

Figure 71. CLK2 Timing 

Am386DXlDXL Microprocessor Data Sheet 

AMD ~ 

15021B-072 

15021B-073 

111 



~ AMD 

CLK2 [ 

REACiY [ 

HOLO [ 

031-00 [ 
13lJSY 

ERROR [ PEREa 
FLT 

NA [ 

B516 [ 

INTR,NMI [ 

CLK2 [ 

WtR, MOO, [ 
O/C,ADS 

A31-A2 [ 

HLOA [ 

112 

Tx 

127 128 

150218-074 

Figure 72. Input Setup and Hold Timing 

110 110a -..-..... -----+-.. 
Min Max 

Valid n 

16 -I14-...... -----1----t 

Valid n+1 

150218-075 
Figure 73. Output Valid Delay Timing 

Am3S6 Microprocessors for Personal Computers 



AMD ~ 
T1 

<\l1 <\l2 

CLK2 [ 

Wfp, [ 

t12 ----t....;.;.;;'-+------'-'=j 

031-00 [ Valid n 

15021 B--076 

Figure 74. Write Data Valid Delay Timing (25, 33, and 40 MHz) 

T1 

<\l1 <\l2 

CLK2 [ 

W/Fi, [ 

t12 __ --1I-...:.M:.:..:i~n I-___ :.::M.::;ax:.:..j 

031-00 Valid n Valid n+ 1 
I 

I 

[ 
15021B--078 

Figure 76. Write Data Valid Delay Timing (20 MHz) 

Am386DXlDXL Microprocessor Data Sheet 113 

Ii 
I' 
I' 



~ AMD 

nom + 6 r---.,---.... ---,---, 

nom +3 

nom 
Output Valid Delay (ns) 

nom-3 

nom-6 

nom -9 '--__ -'-__ -'-__ .L..L.. __ --' 

50 75 100 125 150 

Cl (picofarads) 

Note: This graph will not be linear outside of the Cl range shown. 

Figure n. Typical Output Valid Delay Versus Load Capacitance 
at Maximum Operating Temperature (CL=120 pF) 

nom + 9 .-----.,----.----r--..., 

nom +6 

Output Valid Delay (ns) 

nom 

nom-3 

nom -6 '--__ -'-__ -'-__ ....L. __ -' 

75 100 125 150 

Cl (picofarads) 

Note: This graph will not be linear outside of the Cl range shown. 

114 

Figure 78. Typical Output Valid Delay Versus Load Capacitance 
at Maximum Operating Temperature (CL=75 pF) 

Am386 Microprocessors for Personal Computers 

150218-{)79 

150218-{)80 



Output Valid Delay (ns) 

50 75 100 125 150 

CL (picofarads) 

Note: This graph will not be linear outside of the CL range shown. 

Figure 79. Typical Output Valid Delay Versus Load Capacitance 
at Maximum Operating Temperature (CL=50 pF) 

8.-----r---r---r------. 

6 

Rise Time (ns) 0.8 V - 2.0 V 4 

2 

8L-__ ~ ____ ~ ____ ~ __ ~ 

50 75 100 125 150 

CL (picofarads) 

Note: This graph will not be linear outside of the CL range shown. 

Figure 80. Typical Output Rise Time Versus Load capacitance 
at Maximum Operating Temperature 

Am386DXlDXL Microprocessor Data Sheet 

AMD ~ 

15021 B--081 

15021B--082 

115 

I 

i 
I 
r-



~ AMD 

CLK2 [ 

WIFf., MOO, [ 
DIC,ADS 

A31-A2 [ 

031-00 [ 

HLOA [ 

~ 

Th TiorT1 
cIl2 cIl1 cIl2 cIl1 cIl2 ru ru ru ru ru ,-

t9 
Min Max 

t8 
Min Max 

-- -- - -- -
(HighZ) 

t11 t1 0 t10a 
Min Max Min Max 

-- -- - -- -
(HighZ) 

t7 
Min Max 

t6 
Min Max 

-- -- - -- -
(HighZ) 

t13 
Min Max 

t12 
Min 

f--- --
(HighZ) 

- ---
t13-Also applies to data float when write 

cycle is followed by read or idle 

t14 t14f t14 t14f 
Min Max Min Max 

~"'-".r.r,.'"v .... ,..,,,., ... ,'% 

h:~~::~~~::;;:~;:~;:~ Ii:" "'" "":"" "'''';;, , .... 'I",'.r.r..,""''v,·",, 

Figure 81. Output Float Delay and HLDA Valid Delay Timing 

In~ialization Sequence 

cIl2 cIl1 

The second internal processor phase following RESET High-to-Low transition (provided 125 and t26 are mel) is q>2. 

Figure 82. RESET Setup and Hold Timing and Internal Phase 

116 Am386 Microprocessors for Personal Computers 

Max 

150218-083 

150218-084 



INSTRUCTION SET 

This section describes the Am386DXlDXL micropro­
cessor instruction set. A table lists all instructions along 
with instruction encoding diagrams and clock counts. 
Further details of the instruction encoding are then pro­
vided in the following sections, which completely de­
scribe the encoding structure and the definition of all 
fields occurring within Am386DXlDXL CPU instructions. 

Am386DXlDXL Microprocessor Instruc­
tion Encoding and Clock Count Summary 
To calculate elapsed time for an instruction, multiply the 
instruction clock count, as listed in Table 23, by 
the processor clock period (e.g., 50 ns for a 20-MHz, 
40 ns for a 2S-MHz, 30 ns for a 33-MHz, and 25 ns for a 
40-MHz Am386DXlDXL microprocessor). 

For more detailed information on the encodings of 
instructions refer to Section Instruction Encodings. Sec­
tion Instruction Encodings explains the general struc­
ture of instruction encodings and defines exactlY the 
encodings of all fields contained within the instruction. 

Instruction Clock Count Assumptions 
1. The instruction has been prefetched and decoded, 

and is ready for execution. 

AMD ~ 

2. Bus cycles do not require wait states. 
3. There are no local bus HOLD requests delaying 

processor access to the bus. 
4. No Exceptions are detected during instruction 

execution. 
5. If an effective address is calculated, it does not use 

two general register components. One register, 
scaling, and displacement can be used within the 
clock counts shown. However, if the effective 
address calculation uses two general register 
components, add 1 clock to the clock count shown. 

Instruction Clock Count Notation 
1. If two clock counts are given, the smaller refers to a 

register operand and the larger refers to a memory 
operand. 

2. n = number of times repeated. 
3. m = number of components in the next instruction 

executed, where the entire displacement (if any) 
counts as one component; the entire immediate data 
(if any) counts as one component; and each of the 
other bytes of the instruction and prefix(es) each 
count as one component. 

Am386DXlDXL Microprocessor Data Sheet 117 

i 

I-



AMD 

Table 23. Am386DXlDXL Microprocessor Instruction Set Summary 
Clock Count Comments 

Pro1eClod ProtecIod 
Real Virtual Real Virtual 

Add ..... Add ..... Add ..... Add", .. 
Instruction Format Mode Mode 1Iod. Mad. 

GENERAL DATA TRANSFER 

MOV=Move: 

Register to RegisterlMemory 1000100w mod rea rim 212 212 b h 

RegisterlMemory to Register 1000101w mod reg rim 214 214 b h 

Immediate to RegisterlMemory 11000 11 w mod a a a rim immediate data 212 212 b h 

Immediate to Register (short form) 10 11 wreg immediate data 2 2 

Memory to Accumulator (short form) 1010000w full displacement 4 4 b h 

Accumulator to Memory (short form) 1010001w full displacement 2 2 b h 

RegisterlMemory to Segment Register 10 00 1110 mod sreg3 rim 215 18,19 b h,l,i 

Segment Register to RegisterlMemory 10001100 mod reg rim 212 212 b h 

MOVSX = Move with Sign Extension 

Register from RegisterlMemory 10 a a a 1111 1,0"", w I mod reg rim I 3/6 3/6 b h 

MOVZX = Move with Zero Extension 

Register from RegisterlMemory 100 a a 1111 l' 011011 w I mod reg rim I 3/6 3/6 b h 

PUSH=Push: 

RegisterlMemory 11111111 modll0 rim 5 5 b h 

Register (short lonn) 01010 reg 2 2 b h 

Segment Register (ES,CS,SS, or DS) 000sreg2110 2 2 b h 

Segment Register (FS or GS) a a 0 a 1111 10sreg3000 2 2 b h 

Immediate 011010s0 immediate data 2 2 b h 

PUSHA= Push All 01100000 18 18 b h 

POP=Pop 

RegisterlMemory 10 0 a 1111 mod a a a rim 5 5 b h 

Register (shan lonn) 01011 reg 4 4 b h 

Segment Register (ES, SS, or DS) 000sreg2111 7 21 b h, i,i 

Segment Register (FS or GS) 00 0 a 1111 10sreg3001 I 7 21 b h, i,i 

POPA=PopAIl 01100001 24 24 b h 

XCHG = Exchange 

RegisterlMemory with Register 1000011w mod reg rim 3/5 3/5 b,l I, h 

Register with Accumulator (shortlonn) 10010 reg CI_Counl 3 3 
Virtual 

IN=lnputfrom: 8086_ 

Fixed Port 1110010w port number 026 12 6*/26·· m 

Variable Port 1110110w 027 13 7"/27"' m 

OUT = Output to: 

Fixed Port 11100 11 w port number 024 10 4'/24" m 

Variable Port 1110 111 w 025 11 5'125" m 

LEA = Load EA to Register 10 00 110 1 mod reg rim 2 2 

'IICPL,;IOPL "IICPL>IOPL 
o Clock count shown applies ~ VO permission allows I/O tathe port in Virtual 8086 Mode. If va bit map denies permission, Exception 13 fault occurs; refer to clockoounts for INT3 

instruction. 

118 Am386 Microprocessors for Personal Computers 



Table 23. Am386DXIDXL Microprocessor Instruction Set Summary (continued) 
Clock Count 

ProIoctod - VI_ _ .... _ .... 
Instruction Format IIode Modo 

SEGMENT CONTROL 

LDS = Load pointer to DS 11000101 mod reg rIm 7 22 

LES. Loed pointer to ES 11000100 mod reg rIm 7 22 

LFS = Load pointer to FS 00001111 10110100 mod reg rIm 7 25 

LGS = Load pointer to GS 00001111 10110101 mod reg rIm 7 25 

LSS = Loed pointer to SS 00001111 10110010 mod reg rIm 7 22 

FLAGCONmOL 

CLC = Clear Carry Flag 11111000 2 2 

CLD= Clear Direction Flag 11111100 2 2 

CLI. Clear Interrupt Enable Flag 11111010 B B 

CLTS=Clear Task Switched Flag 00001111 00000110 6 6 

CMC = Complement Carry Flag 11110101 2 2 

LAHF=Load AH into Flag 10011111 2 2 

POPF = Pop Flag 10011101 5 5 

PUSHF = Push Flag 10011100 4 4 

SAHF=StoreAH into Flag 10011110 3 3 

STC = Set Carry Flag 11111001 2 2 

STD. Set Direction Flag 11111101 2 2 

STI = Set Interrupt Enable Flag 11111011 B B 

ARITHMETIC 

ADD=Add 

Register to Register OOOOOOdw mod reg rIm 2 2 

Register to Memory OOOOOOow mod reg rIm 7 7 

Memory to Register 0000001w mod reg rIm 6 6 

Immediate to RegisterlMemory 100000sw modOOO rIm Immediate data 217 217 

Immediate to Accumulator (short form) 0000010w immediate data 2 2 

ADC = Add with carry 

Register to Register 000100dw mod reg rIm 2 2 

Register to Memory 0001000w mod reg rim 7 7 

Memory to Register 0001001w mod reg rIm 6 6 

Immediate to ReglsterlMemory iooooOsw mod010 rIm immediate data 217 217 

Immediate to Accumulator (short form) 0001010w immediate data 2 2 

INC =Increment 

RegisterlMemory 1111111 w modOOO rIm 216 216 

Register (short form) 01000 reg 2 2 

SUB =Subtract 

Register from Register 001010dw mod reg rIm 2 2 

Register from Memory 0010100w mod reg rIm 7 7 

Memory from Register 0010101w mod reg rIm 6 6 

Am386DXlDXL Microprocessor Data Sheet 

AMD 

Comments 
Protoctod - VI_ -- __ 

Modo Modo 

b h, i,j 

b h, i,j 

b h, i,j 

b h, i,j 

b h, i,j 

m 

c i 

b h,n 

b h 

m 

b h 

b h 

b h 

b h 

b h 

b h 

b h 

b h 

b h 

119 

i 

1-



AMD 

Table 23. Am386DXlDXL Microprocessor Instruction Set Summary (continued) 

Clock Count Comments 
_cted Protocted 

Real Virtual Real Virtual 
Addre •• Add ..... Add .... Addra .. 

Instruction Format Modo Modo Modo Modo 

ARITHMETIC (continued) 

Immediate from RegisterlMemory 0010011w mod 101 rIm immediate data 217 217 b h 

Immediate from Accumulator 0001110w Immediate data 2 2 

(shan form) 

SB B = Subtract wHh Borrow 

Register from Register 000110dw mod reg rIm 2 2 

Register from Memory 00011 DOw mod reg rIm 7 7 b h 

Memory from Register 0001101w mod reg rIm 6 6 b h 

Immediate from RegisterlMemory 100000sw mod 0 11 rIm immediate data 217 217 b h 

Immediate from Accumulator 0001110w immediate data 2 2 

DEC=Decrement 

RegisterlMemory 1111111 w reg 0 0 1 rIm 216 216 b h 

Register (short form) 01001 reg 2 2 

CMP = Compare 

Register with Register 001110dw mod reg rIm 2 2 

Memory with Register 0011100w mod reg rIm 5 5 b h 

Register with Memory 0011101 w mod reg rIm 6 6 b h 

Immediate with RegisterlMemory 100000sw mod 111 rIm immediate data 215 215 b h 

Immediate with Accumulator(short form) 0011110w immediate data 2 2 

NEG = Change Sign 1111011 w modOll rIm 216 216 b h 

AAA = ASCII Adjust for Add 00110111 4 4 

DAA = Decimal Adjust for Add 00111111 4 4 

AAS = ASCII Adjust for Subtract 00100111 4 4 

DAS = Decfmal Adjust for Subtract 00101111 4 4 

MUL = MuRiply (Unsigned) 

Accumulator with RegisterlMemory I 1111011 w I modI 00 rIm I 
Multiplier-Byte 12-17115-20 12-17115-20 b,d d,h 

-Word 12-25115-28 12-25115-28 b,d d,h 
-Doubleword 12-41/15-44 1241/15-44 b,d d,h 

fMUL = Integer MuHiply (signed) 

Accumulator with RegisterlMemory I 1111011 w I mod 101 rIm I 
MUltiplier-Byte 12-17115-20 12-17115-20 b,d d,h 

-Word 12-25115-28 12-25115-28 b,d d,h 
-Doubleword 

I I I I 
12-41115-44 12-41115-44 b,d d,h 

Register with RegisterlMemory 00001111 10101111 mod reg rIm 

Multiplier-Byte 12-17115-20 12-17115-20 b,d d,h 
-Word 12-25115-28 12-25115-28 b,d d,h 
-Doubleword 12-41/15-44 12-41115-44 b,d d,h 

RegisterlMemory with Immediate 

I I I to Regisler 011010 s 1 mod reg rIm immediate data 
-Word 13-26/14-27 13-26/14-27 b,d d,h 
-Doubleword 13-42114-43 13-42114-43 b,d d,h 

120 Am386 Microprocessors for Personal Computers 



AMD 

Table 23. Am386DXlDXL Microprocessor Instruction Set Summary (continued) 

Clock Count Comments 

Protected Protected 
Real Virtual Real Virtual 

Address Address Addre •• Address 
Instruction Format Mode Mode Modo Mod. 

ARITHMETIC (continued) 

DIV = Divide (Unsigned) 

Accumulator by Register/Memory I 1111011 w I mod 110 rim I Divisor -Byte 14/17 14/17 b,e e, h 
-Word 22125 22125 b,e e, h 
-Doubleword 38141 38141 b,e e, h 

IDIV = Integer Divide (Signed) 

I I mod 111 I Accumulator by RegisterlMemory 11110112 rim 
Divisor -Byte 19/22 19/22 b,e e, h 

-Word 27130 27/30 b,e e, h 
-Doubleword 43/46 43/46 b,e e, h 

AAD = ASCII Adjust for Divide 11010101 00001010 19 19 

AAM = ASCII Adjust for Multiply 11010100 00001010 17 17 

CBW =Convert Byte to Word 10011000 3 3 

CWD=Convert Word to 10011001 2 2 
Double Word 

LOGIC 

Shift/Rotate Instructions 
Not Through Carry (RDL, RDR, SAL, SAR, SHL, and SHR) 

RegisterlMemory by 1 1101000w mod TTT rim 317 317 b h 

RegisterlMemory by CL 1101001 w mod TTT rim 317 317 b h 

Register Memory by Immediate Count 1100000w mod TTT rim immediate B-bit data 317 317 b h 

Through Carry (RCL and RCR) 

RegisterlMemory by 1 1101000w mod TTT rim 9/10 9/10 b h 

RegisterlMemory by CL 1101001 w mod TTT rim 9/10 9/10 b h 

RegisterlMemory by Immediate Count 1100000w mod TTT rim immediate B-bit data 9/10 9/10 b h 

TTT Instruction 
000 ROL 
001 ROR 
010 RCL 
011 RCR 
100 SHUSAL 
101 SHR 
111 SAR 

SHLD=Shift Left Double 

RegisterlMemory by Immediate 00001111 10100100 mod reg rim I immediate a-bit data 317 317 

Register/Memory by CL 00001111 10100101 mod reg rim I 317 317 

SHRD=Shlft Right Double 

Register/Memory by Immediate 00001111 10101 100 mod reg rim I immediate a-bit data 317 317 

Register/Memory by CL 00001111 10101 101 mod reg rim I 317 317 

AND = And 

Register to Register 001000dw mod reg rim 2 2 

Register to Memory 0010000w mod reg rim 7 7 b h 

Memory to Register 0010001w mod reg rim 6 6 b h 

Immediate to Register/Memory 1000000w mod 110 rim immediate data 217 217 b h 

Immediate to Accumulator (short form) 0010010w immediate data 2 2 

TEST = And Function to Flags, no Result 

RegisterlMemory and Register 1000010w mod reg rim 215 215 b h 

Immediate Data and RegisterlMemory 1111011 w modOOO rim immediate data 215 215 b h 

Immediate Data and Accumulator 1010100W immediate data 2 2 
short lorml 

Am386DXlDXL Microprocessor Data Sheet 121 



AMD 

Table 23. Am386DXlDXL Microprocessor Instruction Set Summary (continued) 

Instruction Format 

LOGIC (continued) 

OR=Or 

Register to Register 000010dw mod reg rim 

Register to Memory 0000100w mod reg rim 

Memory to Register 0OOO101W mod reg rim 

Immediate and Register/Memory 1000000W mod 001 rim immediate data 

Immediate to Accumulator (short form) 0000110w immediate data 

XOR = Exclusive or 

Register to Register 001100dw mod reg rim 

Register to Memory 0011000w mod reg rim 

Memory to Register 0011001w mod reg rIm 

Immediate to Register/Memory 1000000w modll o rim immediate data 

Immediate to Accumulator (short form) 0011010w immediate data 

NOT = Invert Register/Memory I 1111011 w I mod 0 10 rim I 
STRING MANIPULATION 

CMPS = Compare Byte/Word 1010011 w 

INS= Input BytelWd from OX Port 0110110w 

LOOS = Load BytelWd to ALJAX 1010110w 

MOVS = Move BytelWord 1010010w 

OUTS = Output BytelWd to OX Port 0110111 w 

SCAS = Scan BytelWord 1010111 w 

ST05 = Store BytelWord from ALlAXlEX 1010101 w 

XLAT = Translate String 11010111 

REPEATED STRING MANIPULATION Repeated by Count in CX or ECX 

REPE CMPS = Compare string 

I I I (Find Non·Match) 11 110011 1010011 w 
REPNE CMPS=Compare String 

(Find Match) 11110010 1010011 w 

REP INS = Input String 11110010 0110110w 

REP LOOS = Load String 11 110010 1010110w 

REP MOVS=MoveString 11 110010 1010010w 

REP OUTS = Output String 11 110010 0110111 w 

REPE SCAS =Scan String 

I I I (Find Non-ALJAXlEAX) 11 110011 1010111 w 

REPNE SCAS = Store String 

(Find ALJAXlEAX) 11110010 1010111 w 

REP STOS = Store String 11 110010 1010101 w 

BIT MANIPULATION 

BSF = Scan Bit Forward 00001111 10111100 mod reg rIm 

BSR=Scan Bit Reverse 00001111 10111101 mod reg rim 

, ~CPL"IOPL H If CPL> IOPL 

o Clock count shown applies if 1/0 permission allows 110 to the port in Virtual 8086 Mode. If tiD bit map denies 
permission, Exception 13 fault occurs; refer to clock counts for tNT 3 instruction. 

Clock Count 
Virtual 8086 

Mode 

I 029 

I 028 

Clock Count 
Virtual80B6 

Mode 

I 028+6n 

I 026+5n 

I 
I 

122 Am3S6 Microprocessors for Personal Computers 

Clock Count 

Protected 
Real Virtual 

Address Addres. 
Mode Mode 

2 2 

7 7 

6 6 

217 217 

2 2 

2 2 

7 7 

6 6 

217 217 

2 2 

216 216 

10 10 

15 9'/29" 

5 5 

B B 

14 8'/28" 

8 8 

5 5 

5 5 

5+9n 5+9n 

5+9n 5+9n 

14+6n 8+6n"/ 
28 + 6n" 

5+6n 5+6n 

8+4n 8+4n 

12+5n 6+5n"/ 
26 + 5n" 

5+8n 5+8n 

5+8n 5+9n 

5+5n 5+5n 

11 +3n 11 +3n 

9+3n 9+3n 

Comments 

Protected 
Real Virtual 

Address Addre •• 

Mode Mode 

b h 

b h 

b h 

b h 

b h 

b h 

b h 

b h 

b h,m 

b h 

b h 

b h,m 

b h 

b h 

h 

b h 

b h 

b h,m 

b h 

b h 

b h,m 

b h 

b h 

b h 

b h 

b h 



AMD 

Table 23. Am386DXlDXL Microprocessor Instruction Set Summary (continued) 
Clock Count Comments 

Pro18c1od Protected 
Real Virtual Real Virtual 

Add .... Add ..... Add ..... Add ..... 
Instruction Format 1Iod. IIodo 1Iod. Mod. r-
BIT MANIPULATION (continued) 

BT=T8st BM 

Register/Memory, Immediate 0000 tIll 10111010 Imodl00 rim I immediate 8-bit data 3/6 3/6 b h 

Register/Memory, Register 00001111 10100011 I modreg rim I 3/12 3112 b h 

BTC= Test BM and Complement 

Register/Memory, Immediate 00001111 10111010 I mod 111 rIm I immediate a-bit data 618 6/8 b h 

Register/Memory, Register 00001111 10111011 I mod reg rim I 6113 6113 b h 

BTR=Test BH and Reset 

Register/Memory, Immediate 00001111 10111010 I mod 110 rim I immediate 8-bit data 618 618 b h 

Register/Memory, Register 00001111 10110011 I mod reg rIm I 6113 6113 b h 

BTS=Test BH and Set 

Register/Memory, Immediate 00001111 10111010 I mod 101 rim I immediate 8-bit data 6/8 618 b h 

Register/Memory, Register 00001111 10101011 I mod reg rim I 6113 6113 b h 

CONTROL TRANSFER 

CALL= Call 

Direct Within Segment 11101000 full displacement 7+m 7+m b r 

Register/Memory 11111111 modOl0 rim I 7+m 7+m b h, r 
Indirect Within Segment 10+m 10+m 

Direct Intersegment I 10011010 I unsigned full offset, selector 17+ m 34+m b i, k, r 

Protected Mode Only (Direct Intersegment) 

Via Call Gate to Same Privilege Level 52+m h,i, k, r 
Via Call Gate to Different Privilege Level, (No Parameters) 86+m h,i, k, r 
Via Call Gate to Different Privilege Level, (x Parameters) 94+4x+m h,i, k, r 
From 80286 Task to 80286 TSS 273 h,i, k, r 
From 80286 Task to Am386DXlDXL CPU TSS 298 h,i, k, r 
From 80286 Task to Vlnual8086 Task (Am386DXlDXL CPU TSS) 218 h,i, k, r 
From Am386DXlDXL CPU Task to 80286 TSS 273 h,i, k, r 
From Am386DXlDXL CPU Task to Am386DXlDXL CPU TSS 300 h,i, k, r 
From Am386DXlDXL CPU Task to Virtual 8086 Task (Am386DXlDXL CPU TSS) 218 h,i, k, r 

Indirect Intersegment 111111111 I modOll rim I 22+m 38+m b h,i, k, r 

Protected Mode Only (Indirect Intersegment) 

Via Call Gate to Same Privilege Level 56+ m h,i, k, r 
Via Call Gate to Different Privilege Level (No Parameters) 90+m h,i, k, r 
Via Call Gate to Different Privilege Level (x Parameters) 98+4x+m h,i, k, r 
From 80286 Task to 80286 TSS 278 h,i, k, r 
From 80286 Task to Am386DXlDXL CPU TSS 303 h,i, k, r 
From 80286 Task to Vinual8086 Task (Am386DXlDXL CPU TSS) 222 h,i, k, r 
From Am386DXlDXL CPU Task to 80286 TSS 278 h,i,k, r 
From Am386DXlDXL CPU Task to Am386DXlDXL CPU TSS 305 h,i, k, r 
From Am386DXlDXL CPU Task to Vinual8086 Task (Am386DXlDXL CPU TSS) 222 h,i, k, r 

JMP=UncondHlonal Jump 

Short 11101011 8-bit displacement 7+m 7+m r 

Direct within Segment 11101001 full displacement 7+m 7+m r 

Register/Memory 11111111 modl00 rim I 7+m 7+m b h,r 
Indirect within Segment 10+m 10+m 

Direct I ntersegment I 11101010 I unsigned full offset, selector 12+m 27+m i, k,r 

Am386DXlDXL Microprocessor Data Sheet 123 



~ AMD 

Table 23. Am386DXlDXL Microprocessor Instruction Set Summary (continued) 

Clock Count Comments 

Pr= 
PrOIoctod - - VI_ 

Add_ Add_ -. Add_ 
Instruction Format - Mode 

_0 
Modo 

CONTROL TRANSFER (continued) 

Protected Mode Only (Direct Intersegment) 

Via Call Gate to Same Privilege Level 45+m h,i, k, r 
From 80286 Task to 80285 TSS 274 h,i, k, r 
From 80286 Task to Am386DXlDXL CPU TSS 301 h,i, k, r 
From 80286 Task to Virtual 8086 Task (Am385DXlDXL CPU TSS) 219 h,i, k, r 
From Am385DXlDXL CPU Task to 80286 TSS 270 h,i, k, r 
From Am385DXlDXL CPU Task to Am386DXlDXL CPU TSS 303 h,J, k, r 
From Am385DXlDXL CPU Task to Virtual 8086 Task (Am385DXlDXL CPU TSS) 221 h,J, k, r 

Indirect Intersegment 111111111 1 mod 101 rim 
1 

17+m 31 +m b h,i, k, r 

Protected Mode Only (Indirect Intersegment) 

Via Call Gate to Same Privilege Level 49+ m h,i, k, r 
From 80286 Task to 80286 TSS 279 h,i,k, r 
From 80286 Task to Am386DXlDXL CPU TSS 306 h,i, k, r 
From 80286 Task to VirtualS085 Task (Am386DXlDXL CPU TSS) 223 h,i,k, r 
From Am386DXlDXL CPU Task to 80286 TSS 275 h,i,k, r 
From Am386DXlDXL CPU Task to Am386DXlDXL CPU TSS 308 h,i,k, r 
From Am386DXlDXL CPU Task to Virtual 8085 Task (Am386DXlDXL CPU TSS) 225 h,i,k, r 

RET= Retum Irom CALL 

Within Segment 11000011 10+m 10+m b g, h, r 

Within Seg. Adding Immediate to SP 11000010 16-bit displacement I 10+m 10+m b g, h, r 

Intersegment 11001011 18+m 32+m b g,h,i,k,r 

Intersegment Adding Immediate to SP 11001010 16-blt displacement 1 18+m 32+m b 9,h,J,k,r 

Protected Mode Only (RET) to Different Privilege Level 

Intersegment 69 h,i, k, r 
Intersegment Adding Immediate to SP 69 h,i, k, r 

CONDITIONAL JUMPS (Note: TImes are Jump "Taken or Not Taken") 

JO=Jump on Overflow 

8-bit Displacement 01110000 8 -bit displacement 1 7+mor3 7+m or3 r 

Full Displacement 00001111 10000000 J lull displacement 7+m or 3 7+m or3 r 

JNO = Jump on Not OVerflow 

8-bit Displacement 01110001 8-bit disptacement __ 1 7+m or3 7+m or3 r 

Full Displacement 00001111 10000001 1 lull displacement 7+m or3 7+m or3 r 

JB/JNAE = Jump on BalowlNot Abova or Equal 

8-bit Displacement 01110010 8 -bit displacement I 7+m or3 7+m or3 r 

Full Displacement 00001111 10000010 I full displacement 7+m or3 7+m or3 r 

JNB/JAE = Jump on Not Below/Above or Equal 

8-bit Displacement 01110011 8 -bit displacement I 7+m or3 7+m or3 r 

Full Displacement 00001111 10000011 1 ~UII displacement 7+m or3 7+mor r 

JE/JZ = Jump on Equal/ Zero 

8 -bit Displacement 01110100 B -bit displacement I 7+m or3 7+m or3 r 

Full Displacement 00001111 10000100 1 full displacement 7+m or 3 7+m or3 r 

JNE/JNZ = Jump on Not EquallNot Zero 

8-bit Displacement 01110101 8 -bit displacement I 7+m or3 7+m or3 r 

Full Displacement 00001111 10000101 1 full displacement 7+m or3 7+m or3 r 

JBE/JNA = Jump on Balow or EquallNot Above 

8-bit Displacement 01110110 8 -bit displacement J 7+m or3 7+m or3 r 

Full Displacement 00001111 10000110 1 lull displacement 7+mor3 7+m or3 r 

124 Am386 Microprocessors for Personal Computers 



AMD 

a e T bl 23 A m386 DX/D L MI X croprocessor Instruct on S S et ummalY continued 
Clock Count Comments 

Protected Protected 
Real Virtual Real Virtual 

Address Address Address Address 
Instruction Format Mode Mode Mode Mode 

CONDITIONAL JUMPS (continued) 

JNBE/JA = Jump on Not Below or Equal/Above 

8 -bit Displacement 01 110111 8 -bit displacement 7+m or 3 7+m or 3 r 

Full Displacement 00001111 1000011 1 full displacement 7+m or 3 7+m or 3 r 

JS=Jump on Sign 

8 -bit Displacement 0111100 a B -bit displacement 7+m or 3 7+m or 3 r 

Full Displacement 00001111 10001000 full displacement 7+m or 3 7+m or 3 r 

JNS = Jump on Not Sign 

8 -bit Displacement 01 111001 8 -bit displacement 7+m or 3 7+m or 3 r 

Full Displacement 00 001111 10001001 full displacement 7+rn or 3 7+m or 3 r 

JP/JPE =Jump on Parity/ParRy Even 

8-bit Displacement 01 1 1 1 010 8 -bit displacement 7+m or 3 7+m or 3 r 

Full Displacement 00001111 10001010 full displacement 7+m or 3 7+m or 3 r 

JNP/JPO=Jump on Not Pamy/Parity Odd 

8 -bit Displacement 01 1 11 011 8 -bit displacement 7+m or 3 7+m or 3 r 

Full Displacement 00001111 1000101 1 full displacement 7+m or 3 7+m or 3 r 

JUJNGE = Jump on Less/Not Greater or Equal 

8 -bit Displacement 01111100 8 -bit displacement 7+m or 3 7+m or 3 r 

Full Displacement 00001111 10001100 full displacement 7+m or 3 7+m or 3 r 

JNUJGE = Jump on Not LessiGreater or Equal 

8-bit Displacement 01 111101 8 -bit displacement 7+m or 3 7+m or 3 r 

Full Displacement 00001111 10001 1 01 full displacement 7+m or 3 7+m or 3 r 

JLE/JNG=Jump on Less or Equal/Not Greater 

B-bit Displacement 01111110 8 -bit displacement 7+m or 3 7+m or 3 r 

Full Displacement 00001111 10001110 full displacement 7+m or 3 7+m or 3 r 

JNLE/JG=Jump on Not Less or Equal/Greater 

8-bit Displacement 01111111 8 -bit displacement 7+m or 3 7+m or 3 r 

Full Displacement 00001111 10001111 full displacement 7+m or 3 7+m or 3 r 

JCXZ=Jump on CX Zero' 11100011 B -bit displacement 9+m or 5 9+m or 5 r 

JECXZ=Jump on ECX Zero' 11100011 8 ~bit displacement 9+m or 5 9+m or 5 r 

LOOP = Loop CX Times 11100010 B -bit displacement 11 +m 11 +m r 

LOOPZlLOOPE = Loop wi .. Zero/Equal 11100001 8 -bit displacement 11 +m 11+m r 

LOOPNZlLOOPNE=Loop white Not Zero 11100000 8 -bit displacement 11 +m 11 +m r 

CONDITIONAL BYTE SET (Note: Times are Register/Memory) 

SETO = Set Byte on Overflow 

To Register/Memory I 00001111 110010000 I modOOO rim I 4/5 415 h 

SETNO= Set Byte on Not Overflow 

To Register/Memory I 00001111 110010001 I modOOO rim I 4/5 4/5 h 

SETBISETNAE = Set Byte on BelowlNot Above or Equal 

To Register/Memory I 0000111 1 110010010 I modOOO rim I 4/5 4/5 h 

* Address Size Prefix Differentiates JCXZ from JECxz. 

Am386DXlDXL Microprocessor Data Sheet 125 



AMD 

Table 23. Am386DXlDXL Microprocessor Instruction Set Summary (continued) 

Clock Count Comments 

Protected Protected 
Real Virtual Real Virtual 

Addre •• Add_ Address Add,. .. 
Instruction Format Mode Mode Mod. Mod. 

CONDITIONAL BYTE SET (continued) 

SETNB=Set Byte on Not Below/Above or Equal 

To Register/Memory I 00001111 I 10010011 I mod 0 0 0 rim I 4/5 4/5 h 

SETE/SETZ = Set Byte on EquallZero 

To Register/Memory I 00001111 I 10010100 I mod 0 0 0 rim I 415 4/5 h 

SETNEISETNZ=Set Byte on Not Equal/Not Zero 

To Register/Memory I 00001 1 1 1 I 10010101 I mod 0 0 0 rim I 415 4/5 h 

SETBEISETNA = Set Byte on Below or Equal/Not Above 

To Register/Memory I 00001 11 1 110010110 I mod 0 0 0 rim I 415 4/5 h 

SETNBEISETA=Set Byte on Not Below or Equal/Above 

To Register/Memory I 00001 11 1 I 10010111 I mod 0 0 0 rim I 4/5 415 h 

SETS =Set Byte on Sign 

To Register/Memory I 00001111 I 10011000 I modOOO rim I 415 4/5 h 

SETNS = Set Byte on Not Sign 

To Register/Memory I 00001111 I 10011001 I mod 0 0 0 rim I 415 4/5 h 

SETP/SETPE = Set Byte on ParHy/Parlty Even 

To Register/Memory I 0000111 1 I 10011010 I mod 000 rim I 4/5 415 h 

SETNPISETPO=Set Byte on Not Parity/Parity Odd 

To Register/Memory I 00001 11 1 I 10011011 I mod 000 rim I 4/5 415 h 

SETliSETNGE=Set Byte on Less/Not Greater or Equal 

To Register/Memory I 00001 11 1 I 10011100 I mod 000 rim I 4/5 4/5 h 

SETNUSETGE=Set Byte on Not Less/Greater or Equal 

To Register/Memory I 00001 11 1 I 01 11 1 1 01 I mod 00 0 rim I 4/5 415 h 

SETLEISETNG = Set Byte on Less or Equal/Not Greater 

To RegisterlMemory I 00001 111 I 10011110 I mod 0 0 0 rim I 4/5 415 h 

SETNLE/SETG=Set Byte on Not Less or Equal/Greater 

To RegisterlMemory 00001111 10011111 I modOOO rIm I 415 4/5 h 

ENTER = Enter Procedure 11001000 16-bit displacement, 8-bit level I 
L~O 10 10 b h 
L~1 12 12 b h 
L>1 15+4(n-l) 15+4(n-l) b h 

LEAVE = Leave Procedure I 11001001 I 4 4 b h 

INTERRUPT INSTRUCTIONS 

INT = Interrupt: 

Type Specified 11001101 type I 37 b 

Type 3 11001100 33 b 

INTO = Interrupt 4 il Overflow Rag Set 11001 11 0 

IfOF~1 35 b, e 
IfOF~O 3 3 b, e 

126 Am386 Microprocessors for Personal Computers 



AMD 

Table 23. Am386DXlDXL Microprocessor Instruction Set Summary (continued) 

Instruction Format 

INTERRUPT INSTRUCTIONS (continued) 

Bound = Interrupt 5 if Detect 
Value Out of Range 

II Out of Range 

Ir-0-1-1--0-0-0-1-0--~I-m-o-d--re-g--'-/m--'I 

II in Range 

Protected Mode Only (INT) 

INT: Type Specified 
Via Interrupt or Trap Gate to Same Privilege Level 
Via Interrupt or Trap Gate to Different Privilege Level 
From 80286 Task to 80286 TSS via Task Gate 
From 80286 Task to Am386DXlDXL CPU TSS via Task Gate 
From 80286 Task to Virtual 8086 Mode via Task Gate 
From Am386DXlDXL CPU Task to 80286 TSS via Task Gate 
From Am386DXlDXL CPU Task to Am386DXlDXL CPU TSS via Task Gate 
From Am386DXlDXL CPU Task to Virtual 8086 Mode via Task Gate 
From Virtual 8086 Mode to 80286 TSS via Task Gate 
From Virtual 8086 Mode to Am386DXlDXL CPU TSS via Task Gate 
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 

INT: Type 3 
Via Interrupt or Trap Gate to Same Privilege Level 
Via Interrupt or Trap Gate to Diflerent Privilege Level 
From 80286 Task to 80286 TSS via Task Gate 
From 80286 Task to Am386DXlDXL CPU TSS via Task Gate 
From 80286 Task to Virtual 8086 Mode via Task Gate 
From Am386DXlDXL CPU Task to 80286 TSS via Task Gate 
From Am386DXlDXL CPU Task to Am386DXlDXL CPU TSS via Task Gate 
From Am386DXlDXL CPU Task to Virtual 8086 Mode via Task Gate 
From Virtual 8086 Mode to 80286 TSS via Task Gate 
From Virtual 8086 Mode to Am3B6DXlDXL CPU TSS via Task Gate 
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 

INTO 
Via Interrupt or Trap Gate to Same Privilege Level 
Via Interrupt or Trap Gate to Different Privilege Level 
From 80286 Task to 80286 TSS via Task Gate 
From 80286 Task to Am386DXlDXL CPU TSS via Task Gate 
From 80286 Task to Virtual 80B6 Mode via Task Gate 
From Am386DXlDXL CPU Task to 80286 TSS via Task Gate 
From Am386DXlDXL CPU Task to Am386DXlDXL CPU TSS via Task Gate 
From Am386DXlDXL CPU Task to Virtual 8086 Mode via Task Gate 
From Virtual 8086 Mode to 80286 TSS via Task Gate 
From Virtual 8086 Mode to Am386DXlDXL CPU TSS via Task Gate 
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 

BOUND 
Via Interrupt or Trap Gate to Same Privilege Level 
Via Interrupt or Trap Gate to Different Privilege Level 
From 80286 Task to 80286 TSS via Task Gate 
From 80286 Task to Am386DXlDXL CPU TSS via Task Gate 
From 80286 Task to Virtual 8086 Mode via Task Gate 
From Am386DXlDXL CPU Task to 80286 TSS via Task Gate 
From Am386DXlDXL CPU Task to Am386DXlDXL CPU TSS via Task Gate 
From Am386DXlDXL CPU Task to Virtual 8086 Mode via Task Gate 
From Virtual 8086 Mode to 80286 TSS via Task Gate 
From Virtual 80B6 Mode to Am386DXlDXL CPU TSS via Task Gate 
From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 

INTERRUPT RETURN 

IRET = Interrupt Return 111001 111 1 

Protected Mode Only (I RET) 
To the Same Privilege Level (within Task) 
To Different Privilege Level (within Task) 
From 80286 Task to 80286 TSS 
From 80286 Task to Am386DXlDXL CPU TSS 
From 80286 Task to Virtual 8086 Task 
From 80286 Task to Virtual 8086 Mode (within Task) 
From Am386DXlDXL CPU Task to 80286 TSS 
From Am386DXlDXL CPU Task to Am386DXlDXL CPU TSS 
From Am3B6DXlDXL CPU Task to Virtual80B6 Task 
From Am386DXlDXL CPU Task to Virtual 8086 Mode (within Task) 

Am386DXlDXL Microprocessor Data Sheet 

Clock Count Comments 

Real 
Address 

Mod. 

44 
10 

22 

275 
223 

Protected Protected 
Virtual Real Virtual 

Address Address Address 
Mode Mode Mode 

10 

59 
99 
282 
309 
226 
284 
311 
228 
289 
316 
119 

59 
99 
278 
305 
222 
280 
307 
224 
285 
312 
119 

59 
99 
280 
307 
224 
282 
309 
225 
287 
314 
119 

59 
99 
254 
284 
231 
264 
294 
243 
264 
294 
119 

b, e 9,g,h,j,k,r 
b, e e,g,h,j,k,r 

g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g, j, k, r 
g,j, k, r 
g, j, k, r 
g,j, k, r 
g, j, k, r 
g, j, k, r 

g,j, k, r 
g, j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g, j, k, r 

g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g, j, k, r 
g, j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 

g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g, j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 

g, h,j, k, r 

38 g, h,j, k, r 
82 g, h,j, k, r 
232 h, j, k, r 
265 h,j, k, r 
213 h, j, k, r 
60 

271 h,j, k, r 
h,j, k, r 
h,j, k, r 

60 

127 



AMD 

Table 23. Am386DXlDXL Microprocessor Instruction Set Summary (continued) 
Clock Count Comments 

Protected Protected 
Real Virtual Real Virtual 

Address Add ..... Address Add ..... 
Instruction Format Mod. Mode Mod. Mode 

PROCESSOR CONTROL 

HLT=HALT 111110100 
1 

5 5 I 

MOV = Move to and From ControllDebugiTest Registers 

CROICR2JCR3 Irom register 00001111 00100010 11 eee reg 11/415 1114/5 I 

Register From CR3-0 00001111 00100000 1 1 eee reg 6 6 I 

OR3-0 From Register 00001111 00100011 11 eee reg 22 22 I 

OR7-6 From Register 00001111 00100011 11 eee reg 16 16 I 

Register tram OR7-6 00001111 00100001 11 eee reg 14 14 I 

Register from OR3-0 00001111 00100001 11 eee reg 22 22 I 

TR7-6 from Register 00001111 00100110 11 eee reg 12 12 I 

Register from TR7-6 00001 111 00100100 11 eee reg 12 12 I 

NOP = No Operation 10010000 3 3 

WAIT=Walt untllBUSV 10011011 7 7 
pin is negated 

NOP = No Operation 1 10010000 I 3 3 

PROCESSOR EXTENSION INSTRUCTIONS 

Processor Extension Escape 
1 

11011 TTT 
1 

mod L L L rim I h 

TTT and LLL bits are op-oode information for coprocessor 

PREFIX BYTES 

Address Size Prefix 01100111 0 0 

LOCK= Bus Lock Prefix 11110000 0 0 m 

Operand SIZe Prefix 01100110 0 0 

Segment Override Prefix 

CS: 00101110 0 0 

OS: 00111110 0 0 

ES: 00100110 0 0 

FS: 01100100 0 0 

GS: 01 100101 0 0 

SS: 00110110 0 0 

PROTECTION CONTROL 

ARPL=Adjust Requested Privilege Level 

From RegisterlMemory 01100011 mod reg rim N/A 20121 a h 

LAR = Load Access Rights 

From RegisterlMemory 00001111 00000010 mod reg rim N/A 15116 a g, h,j, P 

LGDT = Load Global Descriptor 

Table Register 00001111 00000001 mod 0 1 0 rim 11 11 b,G h,1 

LIDT = Load Interrupt Descriptor 

Table Register 00001111 00000001 mod 0 11 rim 11 11 b,G h, I 

LLDT = Load Local Descriptor 

Table Register to Register/Memory 00001111 00000000 mod010 rim N/A 20124 a g, h,j, I 

LMSW = Load Machine Status Word 

From RegisterlMemory I a a 00 1111 00000001 mod 110 rim 11114 11/14 b.G h, I 

128 Am386 Microprocessors for Personal Computers 



AMD 

Table 23. Am386DXlDXL Microprocessor Instruction Set Summary (continued) 

Clock Count Comments 
Protected Protected 

Real Virtual Real Virtual 
Address Address Address Address 

Instruction Format Mode M_ Mode Mode 

PROTECTION CONTROL (continued) 

LSL= Load Segment Limit 

From RegisterlMemory I a a a a 1 111 100000011 I mod reg rim I 
Byte-Granular Limit N/A 21/22 a g, h, i, p 
Page-Granular Limit N/A 25/26 a g, h,i, P 

LTR = Load Task Register 

From RegisterlMemory I a a a a 1111 100000000 I modOO 1 rim I N/A 23/27 a g, h,i, I 

SGDT = Store Global Descriptor 

Table Register I 00 a a 1111 100000001 I modOOO rim I 9 9 b, C h 

SIDT = Store Interrupt Descriptor 

Table Register I 00 a a 1 11 1 100000001 I modOO 1 rim I 9 9 b, C h 

SLOT =5tore Local Descriptor Table Register 

To Register/Memory / 00 a a 1 111 /00000000 I modOOO rim J N/A 212 a h 

SMSW = Store Machine Status Word / a a a a 1 1 1 1 100000001 I mod 1 00 rIm I 212 212 b, C h, I 

STR = Store Task Register 

To Register/Memory I a a a a 1 111 100000000 I modOOl rim I N/A 212 a h 

VERR = Verify Read Access 

Register/Memory / a a a a 111 1 100000000 lmodl00 rim J N/A 10/11 a g, h, j, P 

VE RW = Verify Write Access / a a a a 1 111 100000000 

In~truction Notes for Table 23, 
Notes a through c apply to Am386DXlDXL CPU Real Address 
Mode only, 

a. This is a Protected Mode instruction. Attempted execution in Real 
Mode will result in Exception 6 (Invalid op-code). 

b. Exception 13 fault (General Protection) will occur in Real Mode if 
an operand reference is made that partially or fully extends beyond 
the maximum CS, OS, ES, FS, or GS limit, FFFFH. Exception 12 
(fault stack segment limit violation or not present) will occur in Real 
Mode if an operand reference is made that partially or fully extends 
beyond the maximum SS limit. 

c. This instruction may be executed in Real Mode. In Real Mode, its 
purpose is primarily to initialize the CPU for Protected Mode. 

Notes d through g apply to Am386DXlDXL CPU Real Address 
Mode and Am386DXlDXL CPU Protected Virtual Address Mode. 

d. The Am3860XlOXL CPU uses an early-out multiply algorithm. 
The actual number of clocks depends on the position of the most 
significant bit in the operand (multiplier). 
Clock counts given are minimum to maximum. To calculate actual 
clocks, use the following formula: 
Actual Clock~if m <>Othen max ([log2Imll, 3) +bclocks: if m~O 
then 3 + b clocks 
In this formula, m is the multiplier, and 
b ~ 9 for register to register, 
b ~ 12 for memory to register, 
b ~ 10 for register with immediate to register, 
b ~ 11 for memory with immediate to register. 

e. An Exception may occur, depending on the value of the operand. 

I. LOCK is automatically asserted, regardless of the presence or 
absence of the LOCK prefix. 

g. LOCK is asserted during descriptor table accesses. 

I mod 10 1 rim I N/A 15116 a g, h,i, P 

Notes h through r apply to Am386DXlDXL CPU Protected Virtual 
Address Mode only. 

h. Exception 13 fault (General Protection Violation) will occur if the 
memory operand in CS, OS, ES, FS, or GS cannot be used due to 
either a segment limit violation or access rights violation. If a stack 
limit is violated, an Exception 12 (Stack Segment Limit Violation or 
Not Present) occurs. 

For segment load operations, the CPL, RPL, and OPL must agree 
with the privilege rules to avoid an Exception 13 fault (General 
Protection Violation). The segment's descriptor must indicate 
present or Exception 11 (CS, OS, ES, FS, GS Not Present). If the 
SS register is loaded and a stack segment not present is detected, 
an Exception 12 (Stack Segment Limit Violation or Not Present) 
occurs. 

j. All segment descriptor accesses in the GOT or LOT made by this 
instruction will automatically assert LOCK to maintain descriptor 
integrity in multiprocessor systems. 

k. JMP, CALL, INT, RET, and IRET instructions referring to another 
code segment will cause an Exception 13 (General Protection 
Violation) if an applicable privilege rule is violated. 

An Exception 13 fault occurs if CPL is greater than 0 (0 is the most 
privileged level). 

m. An Exception 13 fault occurs if CPL is greater than IOPL. 

n. The IF bit of the flag register is not updated if CPL is greater than 
IOPL. The IOPL and VM fields of the flag register are updated only 
if CPL~O. 

o. The PE bit of the MSW (CRO) cannot be reset by this instruction. 
Use MOV into CRO if desiring to reset the PE bit. 

p. Any violation of privilege rules as applied to the selector operand 
does not cause a protection Exception; rather, the zero flag is 
cleared. 

Am386DXlDXL Microprocessor Data Sheet 129 



~ AMD 

q. If the coprocessor's memory operand violates a segment limit or 
segment access rights, an Exception 13 fault (General Protection 
Exception) will occur before the ESC instruction is executed. An 
Exception 12 fault (Stack Segment limit Violation or Not Present) 
will occur if the stack limit is violated by the operand's starting 
address. 

r. The destination 0.1 a JMP, CALL, INT, RET, or IRET must be in the 
defined limit of a code segment or an Exception 13 fault (General 
Protection Violation) will occur. 

Instruction Encoding 
Overview 

All instruction encodings are subsets of the general in­
structionformat shown in Figure 83. Instructions consist 
of one or two primary op-code bytes, possibly an ad­
dress specifier consisting of the mod rIm byte and 
scaled index byte, a displacement if required, and an im­
mediate data field if required. 

Within the primary op-code or op-codes, smaller encod­
ing fields may be defined. These fields vary according to 
the class of operation. The fields define such informa­
tion as direction of the operation, size of the displace­
ments, register encoding, or sign extension. 

Almost all instructions referring to an operand in mem­
ory have an addressing mode byte following the primary 
op-code byte(s). This byte, the mod rIm byte, specifies 
the address mode to be used. Certain encodings of the 
mod rIm byte indicate a second addressing byte, the 
scale-index-base byte, follows the mod rIm byte to fully 
specify the addressing mode. 

Addressing modes can include a displacement immedi­
ately following the mod rIm byte, or scaled index byte. If 
a displacement is present, the possible sizes are 8, 16, 
or 32 bits. 

If the instruction specifies an immediate operand, the 
immediate operand follows any displacement bytes. 
The immediate operand, if specified, is always the last 
field of instruction. 

Figure 83 illustrates several of the fields that can appear 
in an instruction, such as the mod field and the rIm field, 
but the Figure does not show all fields. Several smaller 
fields also appear in certain instructions, sometimes 

within the op-code bytes themselves. Table 24 is a com­
plete list of all fields appearing in the Am386DXlDXL mi­
croprocessor instruction set. Further ahead, following 
Table 24, are detailed tables for each field. 

32-81t Extensions of the Instruction Set 

With the Am386DXlDXL microprocessor, the 80861 
80186180286 instruction set is extended in two ortho­
gonal directions: 32-bit forms of all 16-bit instructions 
are added to support the 32-bit data types, and 32-bit 
addressing modes are made available for all instruc­
tions referencing memory. This orthogonal instruction 
set extension is accomplished having a Default (0) bit in 
the code segment descriptor, and by having 2 prefixes 
to the instruction set. 

Whether the instruction defaults to operations of 16 or 
32 bits depends on the setting of the D bit in the code 
segment descriptor, which gives the default length 
(either 32 or 16 bits) for both operands and effective ad­
dresses when executing that code segment. In the Real 
Address Mode or Virtual 8086 Mode, no code segment 
descriptors are used, but a D value of 0 is assumed in­
ternally by the Am386DXlDXL microprocessor when 
operating in those modes (for 16-bit default sizes com­
patible with the 8086/80186/80286). 

Two prefixes, the Operand Size Prefix and the Effective 
Address Size Prefix, allow overriding individually the 
Default selection of operand size and effective address 
size. These prefixes may precede any op-code bytes 
and affect only the instruction they precede. If neces­
sary, one or both of the prefixes may be placed before 
the op-code bytes. The presence of the Operand Size 
Prefix and the Effective Address Prefix will toggle the 
operand size orthe effective address size, respectively, 
to the value opposite from the Default setting. For exam­
ple, if the default operand size is for 32-bit data opera­
tions, then presence of the Operand Size Prefix toggles 
the instruction to 16-bit data operation. As another 
example, if the default effective address size is 16 bits, 
presence of the Effective Address Size prefix 
toggles the instruction to use 32-bit effective address 
computations. 

IT T T T T T T TIT T T T T T T TI mod T T T rIm I ss index base I d321161 S Inane data 321 161s1 none 

7 07 0765320765320 
\.. ".. A T Jl T A'-__ 'VV __ .JJ ll.....-__ ... .,._---.J1 

130 

opcode 
(one or two bytes) 

(T represents an opcode bit) 

mod rIm 
byte 

s-i-b 
byte 

address 
displacement 

~'------~v-------'~ (4,2,1b~es 
register and address 

mode specifier 

Figure 83. General Instruction Format 

or none) 

Am3S6 Microprocessors for Personal Computers 

immediate 
data 

(4,2, 1 b~es 
or none) 

15021B-085 



AMD ~ 
Table 24. Fields within Am386DX/DXL Microprocessor Instructions 

Field Name Description Number of Bits 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 bits) 1 

d Specifies Direction of Data Operation 1 

s Specifies if an Immediate Data Field must be Sign-Extended 1 
reg General Register Specifier 3 

mod rim Address Mode Specifier (Effective Address can be a General Register) 2 for mod; 
3 for rim 

ss Scale Factor for Scaled Index Address Mode 2 

index General Register to be used as Index Register 3 

base General Register to be used as Base Register 3 
sreg2 Segment Register Specifier for CS, SS, DS, ES 2 

sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3 

ttln For Condition Instructions, specifies a Condition Asserted or a Condition Negated 4 

Note: Table 23 shows encoding of individual instructions. 

Encoding of reg Field When w Field 
is not Present in Instruction 

These 32-bit extensions are available in all Am386DXI 
DXL microprocessor modes, including the Real Ad­
dress Mode or the Virtual 8086 Mode. In these modes 
the default is always 16 bits, so prefixes are needed to 
specify 32-bit operands or addresses. For instructions 
with more than one prefix, the order of prefixes is 
unimportant. 

Register Selected Register Selected 

Unless specified otherwise, instructions with 8- and 
16-bit operands do not affect the contents of the high­
order bits of the extended registers. 

Encoding of Instruction Fields 
Within the instruction are several fields indicating regis­
ter selection, addressing mode and so on. The exact en­
codings of these fields are defined immediately ahead. 

Encoding of Operand Length (w) Field 

For any given instruction performing a data operation, 
the instruction is executing as a 32- or 16-bit operation. 
Within the constraints of the operation size, the w field 
encodes the operand size as either one byte or the full 
operation size, as shown in the table below. 

Operand Size Operand Size 
During 16-Bit During 32-8it 

wField Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

Encoding of The General Register (reg) Field 
The general register is specified by the reg field, which 
may appear in the primary op-code bytes, or as the reg 
field of the mod rIm byte, or as the rIm field of the mod 
rIm byte. 

During 16-Bit During 32-Bit 
reg Field Data Operations Data Operations 

000 AX EAX 
001 CX ECX 
010 DX EDX 
011 BX EBX 
100 SP ESP 
101 BP EBP 
110 SI ESI 
111 DI EDI 

Encoding of reg Field When w Field 
is Present in Instruction 

Register Specified by reg Field 
During 16-Bit Data Operations 

Function of w Field 

reg (when w= 0) (when w = 1) 

000 AL AX 
001 CL CX 
010 DL DX 
011 BL BX 
100 AH SP 
101 CH BP 
110 DH SI 
111 BH DI 

Am386DXlDXL Microprocessor Data Sheet 131 



~ AMD 

Register Specified by reg Field 
During 32-Bit Data Operations 

Function of w Field 

reg (when w=O) (when w= 1) 

000 AL EAX 
001 CL ECX 
010 DL EDX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 DH ESI 
111 BH EDI 

Encoding of The Segment Register (sreg) Field 

The sreg field in certain instructions is a 2-bit field allow­
ing one of the four 80286 segment registers to be speci­
fied. The sreg field in other instructions is a 3-bit field, al­
lowing the Am3860XlOXL microprocessor FS and GS 
segment registers to be specified. 

2·81t sreg2 Field 

2-Bit sreg2 Field Segment Register Selected 

00 ES 
01 CS 
10 S5 
11 DS 

3-81t sreg3 Field 

3-Bit sreg3 Field Segment Register Selected 

000 ES 
001 CS 
010 SS 
011 DS 
100 FS 
101 GS 
110 do not use 
111 do not use 

Encoding Of Address Mode 

Except for special instructions, such as PUSH or POP, 
where the addressing mode is pre-determined, the ad­
dressing mode for the current instruction is specified by 
addressing bytes following the primary op-code. The 
primary addressing byte is the mod rIm byte, and a sec­
ond byte of addressing information, the scale-index­
base (s-i-b) byte, can be specified. 

The s-i-b byte is specified when using 32-bit addressing 
mode and the mod rIm byte has rIm = 100 and mod = 00, 
01, or 10. When the s-i-b byte is present, the 32-bit ad­
dressing mode is a function of the mod, ss, index, and 
base fields. 

The primary addressing byte, the mod rIm byte, also 
contains three bits (shown as TTT in Figure 83) some­
times used as an extension of the primary op-code. The 
three bits, however, may also be used as a register 
field (reg). 

When calculating an effective address, either 16-bit ad­
dressing or 32-bit addressing is used. l6-bit addressing 
uses 16-bit address components to calculate the effec­
tive address while 32-bit addressing uses 32-bit ad­
dress components to calculate the effective address. 
When 16-bit addressing is used, the mod rIm byte is in­
terpreted as a 16-bit addressing mode specifier. When 
32-bit addressing is used, the mod rIm byte is inter­
preted as a 32-bit addressing mode specifier. 

Tables on the following pages define all encodings of all 
16- and 32-bit addressing modes. 

132 Am386 Microprocessors for Personal Computers 



AMD ~ 

Encoding of 16-Blt Address Mode with mod rIm Byte 

mod rIm Effective Address mod rIm Effective Address ,. 
00 000 DS:[BX+SI] 10 000 DS:[BX + SI + d16] 
00 001 DS:[BX+ DI] 10 001 DS:[BX + DI + d16] 
00 010 SS:[BP+SI] 10 010 SS:[BP + SI + d16] 
00 011 DS:[BP+ DI] 10 011 SS:[BP+DI+d16] 
00 100 DS:[SI] 10 100 DS:[SI + d16] 
00 101 DS:[DI] 10 101 DS:[DI + d16] 
00 110 DS:d16 10 110 SS:[BP + d16] 
00 111 DS:[BX] 10 111 DS:[BX + d16] 

01 000 DS:[BX + SI + d8] 11 000 Register- See Below 
01 001 DS:[BX + DI + d8] 11 001 Register- See Below 
01 010 SS:[BP + SI + d8] 11 010 Register-See Below 
01 011 SS:[BP + DI + d8] 11 011 Register-See Below 
01 100 DS:[SI + d8] 11 100 Register-See Below 
01 101 DS:[DI + d8] 11 101 Register- See Below 
01 110 SS:[BP +d8] 11 110 Register- See Below 
01 111 DS:[BX+ d8] 11 111 Register-See Below 

Register Specified by rIm Register Specified by rIm 
During 32·Bit Data Operations During 16·Bit Data Operations 

Function of w Field Function of w Field 

mod rIm (whenw=O) (whenw= 1) mod rIm (when w=O) (when w= 1) 

11 000 AL EAX 11 000 AL AX 
11 001 CL ECX 11 001 CL CX 
11 010 DL EDX 11 010 DL DX 
11 011 BL EBX 11 011 BL BX 
11 100 AH ESP 11 100 AH SP 
11 101 CH EBP 11 101 CH BP 
11 110 DH ESI 11 110 DH SI 
11 111 BH EDI 11 111 BH DI 

Am386DXlOXL Microprocessor Data Sheet 133 



~ AMD 

Encoding of 32-Blt Address Mode with mod rIm byte 
(No s-I-b Byte Present) 

mod rim Effective Address mod rim Effective Address 

00 000 DS:[EAX] 10 000 DS:[EAX + d32] 
00 001 DS:[ECX] 10 001 DS:[ECX + d32] 
00 010 DS:[EDX] 10 010 DS:[EDX + d32] 
00 011 DS:[EBX] 10 011 DS:[EBX + d32] 
00 100 s-i-b is present 10 100 s-i-b is present 
00 101 DS:d32 10 101 SS:[EBP + d32] 
00 110 DS:[ESI] 10 110 DS:[ESI + d32] 
00 111 DS:[EDI] 10 111 DS:[EDI + d32] 

01 000 DS:[EAX + dB] 11 000 Register-See Below 
01 001 DS:[ECX + dB] 11 001 Register-See Below 
01 010 DS:[EDX + dB] 11 010 Register-See Below 

01 011 DS:[EBX + dB] 11 011 Register-See Below 
01 100 s-i-b is present 11 100 Register- See Below 
01 101 SS:[EBP + dB] 11 101 Register-See Below 
01 110 DS:[ESI + dB] 11 110 Register-See Below 

01 111 DS:[EDI + dB] 11 111 Register-See Below 

Register Specified by reg or rim Register Specified by reg or rim 
During 32-Bit Data Operations During 16-Bit Data Operations 

Function of w Field Function of w Field 

mod rim (when w=O) (when w= 1) mod rim (when w= 0) (when w= 1) 

11 000 AL EAX 11 000 AL AX 
11 001 CL ECX 11 001 CL CX 
11 010 DL EDX 11 010 DL DX 
11 011 BL EBX 11 011 BL BX 
11 100 AH ESP 11 100 AH SP 
11 101 CH EBP 11 101 CH BP 
11 110 DH ESI 11 110 DH SI 
11 111 BH EDI 11 111 BH DI 

134 Am386 Microprocessors for Personal Computers 



AMD ~ 

Encoding of 32·Blt Address Mode (mod rIm Byte and s·l·b present) 

mod base Effective Address 

00 000 DS:[EAX + (scaled index)) 
00 001 DS:[ECX + (scaled index)] 
00 010 DS:[EDX + (scaled index)] 
00 011 DS:[EBX + (scaled index)] 
00 100 SS:[ESP + (scaled index)) 
00 101 DS:[d32 + (scaled index)] 
00 110 DS:[ESI + (scaled index)] 
00 111 DS:[EDI + (scaled index)] 

01 000 DS:[EAX + (scaled index) + dB] 
01 001 DS:[ECX + (scaled index) + dB] 
01 010 DS:[EDX + (scaled index) + dB] 
01 011 DS:[EBX + (scaled index) + dB] 
01 100 SS:[ESP + (scaled index) + dB] 
01 101 SS:[EBP + (scaled index) + dB] 
01 110 DS:[ESI + (scaled index) + dB] 
01 111 DS:[EDI + (scaled index) + dB] 

10 000 DS:[EAX + (scaled index) + d32] 
10 001 DS:[ECX + (scaled index) + d32] 
10 010 DS:[EDX + (scaled index) + d32] 
10 011 DS:[EBX + (scaled index) + d32] 
10 100 SS:[ESP + (scaled index) + d32] 
10 101 SS:[EBP + (scaled index) + d32] 
10 110 DS:[ESI + (scaled index) + d32] 
10 111 DS:[EDI + (scaled index) + d32] 

Note: Mod field in mod rim byte: ss, index, base fields in s-i-b byte. 

Encoding of Operation Direction (d) Field 
In many two-operand instructions the d field is present 
to indicate which operand is considered the source and 
which is the destination. 

d Direction of Operation 

RegisterlMemory +- Register 
0 reg Field indicates Source Operand; 

mod rIm or mod ss index base indicates 
Destination Operand. 

Register +- Register Memory 
1 reg Field indicates Destination Operand; 

mod rim or mod ss index base indicates Source 
Operand. 

ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 xB 

Index Index Register 

000 EAX 
001 ECX 
010 EDX 
011 EBX 
100 no index reg (see note) 

101 EBP 
110 ESI 
111 EDI 

Note: When Index field IS 100, Indicating no Index register, then ss field 
must equal 00. If index is 100 and ss does not equal 00, the effective 
address is undefined. 

Encoding of Slgn·Extend (5) Field 
The 5 field occurs primarily to instructions with immedi­
ate data fields. The s field has an effect only if the size of 
the immediate data is 8 bits and is being placed in a 16-
or 32-bit destination. 

Effect on Effect on 
s Immediate Data 8 Immediate Data 16132 

0 None None 

1 Sign-Extended Data 8 to fill None 
16-Bit or 32-Bit Destination 

Am386DXlDXL Microprocessor Data Sheet 135 



~ AMD 

Encoding of Conditional Test (tttn) Field 
For the conditional instructions (conditional jumps and 
set on condition), tttn is encoded with n indicating to use 
the condition (n=O) or its negation (n=l), and ttt giving 
the condition to test. 

Mnemonic Condition tttn 

0 Overflow 0000 
NO No Overflow 0001 
B/NAE Below/Not Above or Equal 0010 
NB/AE Not Below/Above or Equal 0011 
EIZ EquallZero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/Above 0111 
S Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 
NP/PO Not Parity/Parity Odd 1011 
LlNGE Less Than/Not Greater or Equal 1100 
NL/GE Not Less Than/Greater or Equal 1101 
LEiNG Less Than or Equal/Not Greater Than 1110 
NLE/G Not Less Than or Equal/Greater Than 1111 

Encoding of Control or Debug or Test Register 
(eee) Field 

For the loading and storing of the Control, Debug and 
Test registers. 

When Interpreted as Control Register Field 

eee Code Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding. 

When Interpreted as Debug Register Field 

eee Code Reg Name 

000 ORO 
001 DRl 
010 DR2 
011 DR3 
110 DR6 
111 DR? 

Do not use any other encoding. 

When Interpreted as Test Register Field 

eee Code Reg Name 

110 TR6 
111 TR? 

Do not use any other encoding. 

136 Am3S6 Microprocessors for Personal Computers 



MECHANICAL DATA 
Introduction 
In this section, the physical packaging and its connec­
tions are described in detail. 

Package Dimensions and Mounting 
The initial Am386DXlDXL microprocessor package is a 
132-pin ceramic pin grid array (PGA). Pins of this pack­
age are arranged 0.100 inch (2.54 mm) center-to­
center, in a 14 x 14 matrix, three rows around. 

A wide variety of available sockets allow low insertion 
force or zero insertion force mountings, and a choice of 
terminals such as soldertail, surface mount, or wire 
wrap. 

Package Thermal Specification 
The Am386DXlDXL microprocessor is specified for 
operation when ambient temperature is within the range 
of 0°C-100°C. The ambienttemperature may be meas­
ured in any environment, to determine whether the 
Am386DXlDXL microprocessor is within specified oper­
ating range. 

The PGA ambient temperature should be measured at 
the center of the top surface opposite the pins. 

ELECTRICAL DATA 
Introduction 
The following sections describe recommended electri­
cal connections for the Am386DXlDXL microprocessor 
and its electrical specifications. 

Power and Grounding 
Power Connections 

The Am386DXlDXL CPU is implemented in CS21 S 
technology and has modest power requirements. How­
ever, its high clock frequency and 72 output buffers (ad­
dress, data, control, and HLDA) can cause power 
surges as multiple output buffers drive new signal levels 
simultaneously. For clean on-chip power distribution at 
high frequency, 20 Vee and 21 Vss pins separately feed 
functional units of the Am386DXlDXL CPU. 

Power and ground connections must be made to all 
external Vee and GND pins of the Am386DXlDXL CPU. 
On the circuit board, all Vee pins must be connected on a 
Vee plane. All V S8 pins must be likewise connected to the 
GND plane. 

AMD ~ 

Power Decoupling Recommendations 

Liberal decoupling capacitance should be placed near 
the Am386DXlDXL CPU. The Am386DXlDXL micro­
processor driving its 32-bit parallel address and data 
buses at high frequencies can cause transient power 
surges, particularly when driving large capacitive loads. 

Low inductance capacitors and interconnects are rec­
ommended for best high frequency electrical perform­
ance. Inductance can be reduced by shortening circuit 
board traces between the Am386DXlDXL microproces­
sor and decoupling capacitors as much as possible. Ca­
paCitors specifically for PGA packages are also com­
merCially available, for the lowest possible inductance. 

Resistor Recommendations 

The ERROR, FL T, and BU8Y inputs have resistor 
pull-ups of approximately 20 Kohms built into the 
Am386DXlDXL CPU to keep these Signals negated 
when no 387DX math coprocessor is present in the sys­
tem (or temporarily removed from its socket). The B816 
input also has an internal pull-up resistor of approxi­
mately 20 Kohms, and the PEREQ input has an internal 
pull-down resistor of approximately 20 Kohms. 

In typical designs, the external pull-up resistors are re­
commended. However, a particular design may have 
reason to adjust the resistor values recommended here, 
or alter the use of pull-up resistors in other ways. 

Other Connection Recommendations 

For reliable operation, always connect unused inputs to 
an appropriate signal level. NC pins should always re­
main unconnected. 

Particularly when not using interrupts or bus hold, (as 
when first prototyping, perhaps) prevent any chance of 
spurious activity by connecting these associated inputs 
to GND. 

Pin Signal 

B7 INTR 
B8 NMI 
D14 HOLD 

If not using address pipelining, pull-up D13 NA to Vee. 

If not using 16-bit size, pull-up C14 B816 to Vee. 

Pull-ups in the range of 20 Kohms are recommended. 

Am386DXlDXL Microprocessor Data Sheet 137 

i 
I­
I 



~ AMD 

PHYSICAL DIMENSIONS 

CGX 132 

14---- .1.:.11Q. -------1 Index Corner 1.4BO I 
'" I+------I-k~~--.... • 

.1.:.11Q. 
1.4BO 

.....--~~ @) @) @) @) @) @)I@) @) @) @) @) @) 
@) @) @) @) @) @) @)i@) @) @) @) @) @) @) 

1.300 
BSe 

@)@)O@)@)@) @)@)@)O@)@) 
@)@)@) @)@)@) 
@)@)@) @)@)@) 
@)@)@) @)@)@) 
@)@) 
@-@ 
@)@)@) 
@)@)@) 
@)@)@) 
@)@)O@)@)@) @)@)@)O@)@) 
@) @) @) @) @) @) @)l@) @) @) @) @) @) @) 

......... ~[ElJ @) @) @) @) @) @)I @) @) @) @) @) @) 

.OBO 
MAX 

.050 
BSe 

Bottom View (Pins Facing Up) 

.003 
BSe 

Base Plane -----.! 
Seating Plane ---.J I 

.100 -*--====== 
sse .--====== 

Side View 

138 Am386 Microprocessors for Personal Computers 

.J.Q2. 
.195 

~ 
.140 

15304C 
BP 36 
4/30/91 CD 



PHYSICAL DIMENSIONS (continued) 

PQS 132-Plastlc Quad Flat Pack (Trimmed and Formed) 

~ _____________________________ 1.097 ________________ ~ 

1.075 ___ 1._10_3 ________________ ~ 

0.947 
0.953 

1.085 

Top View 

0.947 
0.953 

1.075 
1.085 

AMD ~ 

1.097 
1.103 

m) \~~(mtI::;:I::~ 
.. ------------------ 0.80 ------------------.... 2 REF 0.0 0 

0.040 

Side View 

Am386DXlDXL Microprocessor Data Sheet 

11772E 
CF43 
7/28192SG 

139 



~ AMD 

PHYSICAL DIMENSIONS (continued) 

PQB 132-Plastic Quad Flat Pack with Molded Carrier Ring 
(Outer Ring measured in millimeters) 

~ 1~7,87 1~2.15 
Q.944 

138.00 
1 32.25 0.952 

45.87 41.37 135.15 .1.097 

13 41.63 135.25 11.103 

0.45 Typ 

0.65 Typ ~----'---i 
I I L.. ____ .J 

140 

( 

.. 

r 

""-

~ 

G 
'" LI,. 
"-T 

"-

4587 --
45.50 46.13 --
45.90 41.37 

37.87 41.63 

35.15 38.00 --
35.25 32.15 

1.097 32.25 

+- 0.944 
1.103 

0.952 
'-

I '" ! II -0-\ 
~ I I r-

66 
... Y 

i~ 
'~ ----+----
i ~ 0.012 

'Pin1~~ " __ 

99 I ~ , 
2 I 

~ I ! I 

I! / ! ~- I ..... 14-(_I 

TOP VIEW 

.025 N 
-=-. ~ 

0.008 

0.016 

OM 

I.IIII~IIII~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11~80 
I I ~ 

SIDE VIEW 

14826E 
C951 
7/28192SG 

Am3S6 Microprocessors for Personal Computers 



- Am386™SX/SXL 
~ 

High-Performance, 32-Bit Microprocessor 
with 16-Bit Data Bus 

Advanced 
Micro 

Devices 

DISTINCTIVE CHARACTERISTICS 
• 40-, 33-, 25-, and 20-MHz operating speeds 

• True static design for long battery life in 
ponable PCs 

-0 MHz (DC) minimum frequency 
-Typical standby (DC) current < 20 J.lA 

-Typical operating current < 165 mA at 20 MHz 
-Wide range of chip set and BIOS support take 

advantage of standby mode capabilities 

GENERAL DESCRIPTION 
The Am386SX!SXL microprocessor is a high-speed, 
true static implementation of the Intel i386SX. It is ideal 
for both desktop and battery-powered notebook 
personal computers. For notebooks, the Am386SXL 
microprocessor's true static design offers longer battery 
life with low operating power consumption and standby 
mode. At 20 MHz, this device offers a current which is 
22% lower than the Intel i386SX. Standby mode allows 
the Am386SXL CPU to be clocked down to 0 MHz (DC) 
and retain full register contents. Typical current in 
standby mode is reduced to less than 20 J.lA-nearly a 
1000x reduction in power consumption versus the 
Intel i386SX. 

• Lower heat dissipation facilitates elimination of 
cooling fan In desktop PCs 

• Pin-for-pin replacement of the Intel1386SX 

• Sup pons 387SX-compatible math 
coprocessors 

• 100-pin PQFP package with optional protective 
ring for better lead coplanarlty 

• AMD advanced 0.8 micron CMOS technology 

For desktop pes, the Am386SX!SXL microprocessor 
offers a 21 % increase in the maximum operating speed, 
from 33 to 40 MHz. Also, this device offers lower heat 
dissipation, allowing system designers to remove or re­
duce the size and cost of the cooling fan. 

This device will be available in a standard 100-pin 
Plastic Quad Flat Pack (PQFP). This package may be 
shipped in an optional protective ring for better lead 
protection during manufacturing. 

Typical Power Consumption 

250 

200 

Icc (rnA) 150 

100 

50 

0 
0 2 

Note: Inputs at Vee or Vss. 

Publication#: 15022 Rev. D AmendmentlO 

Issue Date: October 1992 

16 20 25 33 40 

Frequency (MHz) 

(Am386SX microprocessor only) 

o Intel i386SX @ 5.0 V 

8 Am386SX/SXL CPU @ 5.0 V 

o Am386SXL V CPU @ 3.3 V 

141 



l1 AMD 

BLOCK DIAGRAM 

Segmentation Unit 

"- 3-lnput ~ Effective Address Bus 
Adder V -V 32 v 

/32 Descriptor 
Effective Address Bus 

Registers 
I 

32 v 

r:) Limit and 

~ Attribute 
PLA 

'" :> 
ID 
E 
" E 

Protection 1l 
.!1! 

Test Unit .~ !!l 
0 ID 

'" '" l!! 
I Internal Control Bus ." 

." 
~ <C 

l;j 
Q) 
c 
::; 

Barrel 
Shifter, ~ ---" ~ 
Adder 

Decode and Instruction 
- -----v Sequencing ~ Decoder L-y' 
Status 

Multiplyl 
Flags 

Divide 

Control 
3-Decoded Code 

ROM 
Instruction Stream 

Register ~ - /'- Queue 

~ File " 'r-
ALU 

Control Control Instruction 

ALUf~ Predecode 
Dedicated AlU Bus 

Paging Unit 

Adder 

Page 
Cache 

Control 
and 

Attribute 
PLA 

Prefetchl 
Lim~ 

Checker 

16-Byte 
Code 

Queue 

Instruction 
Prefetch 

Bus Control 

¢;fu-
!!l 
ID 

'" ~ 
." 

~ 
"iii 
.Il 

<=- !~ 
c.. 

~ 
.c 
0 

:f 
111 
f;l 
f-
Q) 

ff=) 
~ 
u. 
Q) 
." 

8 

~ 

H 
Request 
Prioritizer ~~ 

OLD,INTR, 
MI,ERROR, 
USY, RESET, 
LDA, FlT 

L 

0 .. c 
8 

" 7' 

Address 
Driver 

Pipeline! 
Bus Size 
Control 

MUX! 
Trans-
ceivers 

L ;. 

32 

H 

f+ 

~ 

.. 

BHE, BlE, 
A23-A1 

MilO, Die, 
W/R, lOCK, 
ADS, NA, 
READY 

D15-DO 

16305C-001 

142 Am3S6 Microprocessors for Personal Computers 



LOGIC SYMBOL 

2X Clock CLK2 

Data Bus 015-00 

A23-A1 

Address Bus 

BLE, BHE 

FLT 

PEREQ 

ERROR 

BUSY 

Float 

} 
Math 
Coprocessor 
Control 

AMD ~ 

Am386SX/SXL NMI 

W/R Microprocessor 
RESET 

Bus Cycle 
Definition 

... 

Ole 

M/iO 

LOCK 

ADS 

ADS 

INTR 

HLDA 

HOLD 

NA READY 

NA READY 

} 
Bus 
Arbitration 
Control 

Bus Cycle Control 15022B-003 

FUNCTIONAL DESCRIPTION 

True Static Operation (Am386SXL CPU) 

The Am386SXL microprocessor incorporates a true 
static design. Unlike dynamic circuit design, the 
Am386SXL CPU eliminates the minimum operating 
frequency restriction. It may be clocked from its maxi­
mum speed of 40 MHz all the way down to 0 MHz 
(DC). System designers can use this feature to design 
battery-powered notebook PCs with long battery life. 

Standby Mode (Am386SXL CPU) 

This true static design allows for a standby mode. At any 
operating speed (40 to 0 MHz), the Am386SXL micro­
processor will retain its state (Le., the contents of all 
its registers). By shutting off the clock completely, the 
device enters standby mode. Since power consumption 
is proportional to clock frequency, operating power 
consumption is reduced as the frequency is lowered. 
In standby mode, typical current draw is reduced to 
less than 20 iJA at DC. 

Not only does this feature improve battery life, but it also 
simplifies the design of power-conscious notebook 
computers in the following ways: 

1. Eliminates the need for software in the BIOS to save 
and restore the contents of registers. 

2. Allows simpler circuitry to control stopping of the 
clock since the system does not need to know what 
state the processor is in. 

Lower Operating Icc (Am386SXL CPU) 

True static design also allows lower operating Icc when 
operating at any speed. See the following graph for 
typical current at operating speeds. 

Performance On Demand (Am386SXL CPU) 

The Am386SXL microprocessor retains its state at any 
speed from 0 MHz (DC) to its maximum operating 
speed. With this featu re, system designers may vary the 
operating speed of the system to extend the battery life 
in portable systems. 

For example, the system could operate at low speeds 
during inactivity or polling operations. However, upon 
interrupt, the system clock can be increased up to its 
maximum speed. After a user-defined time-out period, 
the system can be returned to a low (or 0 MHz) oper­
ating speed without losing its state. This design maxi­
mizes battery life while achieving optimal performance. 

Am386SXlSXL Microprocessor Data Sheet 143 



~ AMD 

CONNECTION DIAGRAMS 
Top Side View-100-Lead Plastic Quad Flat Pack 

Top Side View 

Notes: Pin 1 is marked for orientation. 

144 

NC = Not connected; connection of an NC pin may cause a malfunction or incompatibility 
with future shippings of the Am386SX!SXL microprocessor. 

Am386 Microprocessors for Personal Computers 



CONNECTION DIAGRAMS (continued) 
Pin Side View-100-Lead Plastic Quad Flat Pack 

(3 ~fu ~~- a: I- Ia: a 
io()I~()()() 8wi::J ~a:w:::; 8!z ~ 8()()()()() 8 ~ ~ 
~Z~ZZz>a:m>w~Z>_»ZZZZZ»> 

Pin Side View 

Notes: Pin 1 is marked for orientation. 
NC = Not connected; connection of an NC pin may cause a malfunction 

or incompatibility with future shippings of the Am386SX!SXL microprocessor. 

Am386Sx/SXl Microprocessor Data Sheet 

AMD ~ 

145 

i 
", 



~ AMD 

PIN DESIGNATION TABLES (sorted by Functional Grouping) 

Address Data Control NC Vee Vss 
Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin No. Pin No. Pin No. 

A1 18 DO 1 ADS 16 20 8 2 
A2 51 D1 100 BHE 19 27 9 5 
A3 52 D2 99 BlE 17 29 10 11 
A4 53 D3 96 BUSY 34 30 21 12 
A5 54 D4 95 CLK2 15 31 32 13 
A6 55 D5 94 DIG 24 43 39 14 
A7 56 D6 93 ERROR 36 44 42 22 A8 58 D7 92 FlT 28 45 48 35 A9 59 D8 90 HLDA 3 46 57 41 A10 60 D9 89 HOLD 4 
A11 61 47 69 49 

D10 88 INTR 40 
A12 62 lOCK 26 71 50 

D11 87 A13 64 M/iO 23 84 63 
A14 65 D12 86 

NA 91 67 6 
A15 66 D13 83 

NMI 97 68 38 
A16 70 D14 82 

PEREQ 37 77 
A17 72 D15 81 

READY 7 78 
A18 73 RESET 33 85 
A19 74 WIR 25 98 
A20 75 
A21 76 
A22 79 
A23 80 

PIN DESIGNATION TABLES (sorted by Pin Number) 

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name 
1 DO 21 Vee 41 Vss 61 A11 81 D15 
2 Vss 22 Vss 42 Vee 62 A12 82 D14 
3 HLDA 23 MOO 43 NC 63 Vss 83 D13 
4 HOLD 24 DIe 44 NC 64 A13 84 Vee 
5 Vss 25 W/R 45 NC 65 A14 85 Vss 
6 NA 26 lOCK 46 NC 66 A15 86 D12 
7 READY 27 NC 47 NC 67 Vss 87 D11 
8 Vee 28 FCi 48 Vee 68 Vs. 88 D10 
9 Vee 29 NC 49 V •• 69 Vee 89 D9 

10 Vee 30 NC 50 Vss 70 A16 90 D8 
11 Vss 31 NC 51 A2 71 Vee 91 Vee 
12 Vss 32 Vee 52 A3 72 A17 92 D7 
13 Vss 33 RESET 53 A4 73 A18 93 D6 
14 V.s 34 BUSY 54 A5 74 A19 94 D5 
15 CLK2 35 V.s 55 A6 75 A20 95 D4 
16 ADS 36 ERROR 56 A7 76 A21 96 D3 
17 BlE 37 PEREQ 57 Vee 77 V •• 97 Vee 
18 A1 38 NMI 58 A8 78 Vss 98 V •• 
19 BHE 39 Vee 59 A9 79 A22 99 D2 
20 NC 40 INTR 60 A10 80 A23 100 D1 

146 Am3S6 Microprocessors for Personal Computers 



ORDERING INFORMATION 
Standard Products 

AMD ~ 

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is 
formed by a combination of the elements below. 

80386SXlSXL -20 

L 

Valid Combinations 

NG 80386SX -40, -40/F 

-33, -33/F 

NG 80386SX/SXL 
-25, -25/F 
-20, -20/F 

-16', -16/F' 

'Contact AMD for 16-MHz availability. 

OPTIONAL PROCESSING 
None = Trimmed and Formed PQFP in high-temp trays 

/F = Ringed PQFP in horizontal tubes 

TEMPERATURE RANGE 

Blank=Commercial (O°C to +100°C) 

SPEED OPTION 

-40= 40 MHz (Am386SX microprocessor only) 
-33=33 MHz 
-25=25 MHz 
-20=20 MHz 
-16=16 MHz' 

DEVICE NUMBER/DESCRIPTION 
80386SX/SXL 
Am386SXlSXL High-Performance, 
Low-Power, 32-Bit Microprocessor with 
16-Bit Data Bus 

PACKAGE TYPE 

NG= 100-Pin Plastic Quad Flat Pack (PQB100) 

Valid Combinations 
Valid Combinations list configurations planned to 
be supported in volume for this device. Consult 
the local AMD sales office to confirm availability of 
specific valid combinations and to check on newly 
released combinations. 

Am386SXlSXL Microprocessor Data Sheet 147 



~ AMD 

PIN DESCRIPTIONS 

A23-A1 
Address Bus (OUtputs) 

Outputs physical memory or port VO addresses. 

ADS 
Address Status (Active Low; Output) 

Indicates that a valid bus cycle definition and address 
(WIR, DtC, MOO, BHE, BLE, and A23-A1) are being 
driven at the Am386Sx/SXL microprocessor pins. 

BHE,BLE 
Byte Enables (Active Low; Outputs) 

Indicate which data bytes of the data bus take part 
in a bus cycle. 

BUSY 
Busy (Active Low; Input) 

Signals a busy condition from a processor extension. 

CLK2 
CLK2 (Input) 

Provides the fundamental timing for the Am386Sx/SXL 
microprocessor. 

D15-DO 
Data Bus (Inputs/Outputs) 

Inputs data during memory, 1/0, and interrupt 
acknowledge read cycles; outputs data during memory 
and 1/0 write cycles. 

DtC 
Data/Control (Output) 

A bus cycle definition pin that distinguishes data cycles, 
either memory or 1/0, from control cycles which are: 
interrupt acknowledge, halt, and code fetch. 

ERROR 
Error (Active Low; Input) 

Signals an error condition from a processor extension. 

FLT 
Float (Active Low; Input) 

An input which forces all bidirectional and output 
Signals, including HLDA, to the three-state condition. 

HLDA 
Bus Hold Acknowledge (Active High; Output) 

Output indicates that the Am386Sx/SXL microproces­
sor has surrendered control of its logical bus to another 
bus master. 

HOLD 
Bus Hold Request (Active High; Input) 

Input allows another bus master to request control ofthe 
local bus. 

INTR 
Interrupt Request (Active High; Input) 

A maskable input that signals the Am386Sx/SXL micro­
processor to suspend execution of the current program 
and execute an interrupt acknowledge function. 

[OCR 

Bus Lock (Active Low; Output) 

A bus cycle definition pin that indicates that other 
system bus masters are not to gain control of the 
system bus while it is active. 

MIlO 
MernoryllO (OUtput) 

A bus cycle definition pin that distinguishes memory 
cycles from input/output cycles. 

NA 
Next Address (Active Low; Input) 

Used to request address pipelining. 

NC 
No Connect 

Should always be left unconnected. Connection of a NC 
pin may cause the processor to maHunction or be 
incompatible with future steppings of the Am386Sx/ 
SXL microprocessor. 

NMI 
Non-Maskable Interrupt Request 
(Active High; Input) 

A non-maskable input that signals the Am386Sx/SXL 
microprocessor to suspend execution of the current 
program and execute an interrupt acknowledge 
function. 

PEREQ _ 

Processor ExtensIOn Request (Active High; Input) 

Indicates that the processor has data to be transferred 
by the Am386Sx/SXL microprocessor. 

READY 
Bus Ready (Active Low; Input) 

Terminates the bus cycle. 

148 Am386 Microprocessors for Personal Computers 



RESET 
Reset (Active High; Input) 

Suspends any operation in progress and places the 
Am386SXlSXL microprocessor in a known reset state. 

Vee 

System Power (Input) 

Provides the +5 V nominal DC supply input. 

AMD t1 
V •• 
System Ground (Input) 

Provides the 0 V connection from which all inputs and 
outputs are measured. 

W/R 
Write/Read (Output) 

A bus cycle definition pin that distinguishes write cycles 
from read cycles. 

Am386SX!SXL Microprocessor Data Sheet 149 

I. 

I 

I 



~ AMD 

INTRODUCTION 

The Am386SXlSXL microprocessor is 100% object­
code compatible with the Am386DXlDXL, 286, and 
8086 microprocessors. System manufacturers can 
provide Am386DXlDXL CPU-based systems optimized 
for performance and Am386SXlSXL CPU-based sys­
tems optimized for cost, both sharing the same 
operating systems and application software. Systems 
based on the Am386SXlSXL microprocessor can 
access the world's largest existing microcomputer 
software base. 

Instruction pipelining, high-bus bandwidth, and a very 
high-perlormance ALU ensure short average instruction 
execution times and high system throughput. The 
Am386SXlSXL CPU is capable of execution at 
sustained rates of 2.5-3.0 million instructions per 
second (MIPS). 

The integrated Memory Management Unit (MMU) 
includes an address translation cache, advanced multi­
tasking hardware, and a four-level hardware-enforced 
protection mechanism to support operating systems. 
The virtual machine capability of the Am386SXlSXL 
CPU allows simultaneous execution 01 applications 
from multiple operating systems such as MS-DOS and 
UNIX. 

The Am386SXlSXL CPU offers on-chip testability and 
debugging features. Four breakpoint registers allow 
conditional or unconditional breakpoint traps on code 
execution or data accesses for powerlul debugging of 
even ROM-based systems. Other testability features 
include self-test, three-state of output buffers, and direct 
access to the page translation cache. 

BASE ARCHITECTURE 

The Am386SXlSXL microprocessor consists of a cen­
tral processing unit, a Memory Management Unit, and a 
bus interlace. 

The central processing unit consists of the execution 
unit and the instruction unit. The execution unit contains 
the eight 32-bit general purpose registers which are 
used for both address calculation and data operations 
and a 64-bit barrel shifter used to speed shift, rotate, 
multiply, and divide operations. The instruction unit 
decodes the instruction op-codes and stores them in the 
decoded instruction queue for immediate use by the 
execution unit. 

The MMU consists of a segmentation unit and a paging 
unit. Segmentation allows the managing of the logical 
address space by providing an extra addressing 
component, one that allows easy code and data 
relocatability, and efficient sharing. The paging 
mechanism operates beneath and is transparent to the 
segmentation process, to allow management of the 
physical address space. 

The segmentation unit provides four levels of protection 
for isolating and protecting applications and the 
operating system from each other. The hardware 
enforced protection allows the design of systems with a 
high degree of integrity. 

The Am386SXlSXL microprocessor has two modes of 
operation: Real Address Mode (Real Mode) and 
Protected Virtual Address Mode (Protected Mode). In 
Real Mode the Am386SXlSXL CPU operates as a very 
fast 8086, but with 32-bit extensions, if desired. Real 
Mode is required primarily to set up the processor for 
Protected Mode operation. 

Within Protected Mode, software can perform a task 
switch to enter into tasks deSignated as Virtual 8086 
Mode tasks. Each such task behaves with 8086 
semantics, thus allowing 8086 software (an application 
program or an entire operating system) to execute. The 
Virtual 8086 tasks can be isolated and protected from 
one another and the host Am386SXlSXL microproces­
sor operating system by use of paging. 

Finally, to facilitate high-performance system hardware 
designs, the Am386SXlSXL microprocessor bus 
interface oilers address pipelining and direct Byte 
Enable signals for each byte of the data bus. 

Register Set 

The Am386SXlSXL microprocessor has 34 registers as 
shown in Figure 1. These registers are grouped into the 
following seven categories: 

General Purpose Registers: The eight 32-bit general 
purpose registers are used to contain arithmetic and 
logical operands. Four of these (EAX, EBX, ECX, and 
EDX) can be used either in their entirety as 32-bit 
registers, as 16-bit registers, or split into pairs 01 
separate 8-bit registers. 

Segment Registers: Six 16-bit special purpose 
registers select, at any given time, the segments of 
memory that are immediately addressable for code, 
stack, and data. 

Flags and Instruction Pointer Registers: The two 
32-bit special purpose registers in Figure 1 record or 
control certain aspects of the Am386SXlSXL micropro­
cessor state. The EFLAGS register includes status and 
control bits that are used to reflect the outcome of many 
instructions and modify the semantics of some 
instructions. The Instruction Pointer (EIP) is 32-bits 
wide. The EIP controls instruction fetching, and the 
processor automatically increments it after executing an 
instruction. 

Control Registers: The four 32-bit control registers are 
used to control the global nature of the Am386SXlSXL 
microprocessor. The CRO register contains bits that set 
the different processor modes (Protected, Real, Paging, 
and Coprocessor Emulation). CR2 and CR3 registers 
are used in the paging operation. 

150 Am3S6 Microprocessors for Personal Computers 



63 

I 

82 

31 16 15 8 7 

AH A X AL 

BH B X BL 

CH C X CL 

DH D X DL 

SI 

DI 

BP 

SP 

15 

31 16 15 

I I 
FLAGS 

IP 

Page Fault Linear Address Register 

Page Directory Base Register 

47 16 15 

~I I 
31 

Linear Breakpoint Address 0 

Linear Breakpoint Address 1 

Breakpoint Status 

Breakpoint Control 

31 

I 
Test Control 

Test Status 

o 

0 

0 

I 

0 

I 
0 

0 

I 

EAX 

EBX 

ECX 

EDX 

ESI 

EDI 

EBP 

ESP 

CS 

SS 

DS 

ES 

FS 

GS 

AMD ~ 

General Purpose Registers 

Segment Registers 

EFLAGSJ 
EIP Flags & Instruction Pointer 

CRO 

JC'_'R""~ CR1 

CR2 

CR3 

GDTR 

] Sy.,m ,"Jd,,~ R",,'.'" IDTR 

LDTR 

TR 

DRO 

DR1 

DR2 

DR3 

DR4 
Debug Registers 

DR5 

DR6 

DR7 

TR6 
] Test Registers 

TR7 

Reserved for future use-do not use. 

15022B--004 

Figure 1. Am386SX/SXL Microprocessor Registers 

Am386Sx/SXL Microprocessor Data Sheet 151 



~ AMD 

System Address Registers: These four special regis­
ters reference the tables or segments supported by 
the 80286/Am386SXlSXUAm386DXlDXL CPU's pro­
tection model. These tables or segments are: 

GDTR (Global Descriptor Table Register), 
IDTR (Interrupt Descriptor Table Register). 
LDTR (Local Descriptor Table Register), 
TR (Task State Segment Register). 

Debug Registers: The six programmer accessible de­
bug registers provide on-chip support for debugging. 
The use of the debug registers is described in the sec­
tion Debugging Support. 

Test Registers: Two registers are used to control the 
testing of the RAM/CAM (Content Addressable 
Memories) in the Translation Look-Aside Buffer portion 
of the Am386SXlSXL microprocessor. Their use is dis­
cussed in the section Testability. 

EFLAGS Register 

The flag register is a 32-bit register named EFLAGS. 
The defined bits and bit fields within EFLAGS, shown in 
Figure 2, control certain operations and indicate the 
status of the Am386SXlSXL microprocessor. The lower 
16 bits (bits 15-0) of EFLAGS contain the 16-bit flag 
register named FLAGS. This is the default flag register 

Special Fields: 
110 Privilege Level ---------------. 

Nested Task -------------, 
17 16 15 

used when executing 8086, 80286, or real mode code. 
The functions of the flag bits are given in Table 1. 

Control Registers 

The Am386SXlSXL microprocessor has three control 
registers of 32 bits, CR3-CRO, to hold the machine 
state of a global nature. These registers are shown in 
Figures 1 and 2. The defined CRO bits are described in 
Table 2. 

Instruction Set 

The instruction set is divided into nine categories of 
operations: 

Data Transfer 
Arithmetic 
Shift/Rotate 
String Manipulation 
Bit Manipulation 
Control Transfer 
High-Level Language Support 
Operating System Support 
Processor Control 

These instructions are listed in the Instruction Set Clock 
Count Summary (pages 217 through 231). 

Status Flags: 
...--------------- Overflow 

.------------ Sign 

1110 9 8 7 6 5 

EFLAGS 

'------- Interrupt 
1..-______ Direction 

'---------------- Resume 

31 

152 

'----------------- Virtual BOB6 Mode 

Protection Enable --------..., 

16 15 
I 

MSW 

Figure 2. Status and Control Register Bit Functions 

Am386 Microprocessors for Personal Computers 

0 1 

CRO 

15022B-{)05 



AMD -_._---_. ~--~-~-------
Table 1. Flag Definitions 

-~-.------~-- ----~ 

Bit Position Name Function 
" •• r __ ,.~_~~v~<~. 

0 CF Carry Flag-Set on high-order bit carry or borrow; cleared otherwise. 

2 PF Parity Flag-Set if low-order 8 bits of result contain an even number of 1 bits; 
cleared otherwise. 

4 AF Auxiliary Carry Flag-Set on carry from or borrow to the low-order 4 bits of 
AL; cleared otherwise. 

6 ZF Zero Flag-Set if result is zero; cleared otherwise. 
-

7 SF Sign Flag-Set equal to high-order bit of result (0 if positive, 1 if negative). 

8 TF Single-Step Flag-Once set, a single-step interrupt occurs after the next 
instruction executes. TF is cleared by the single-step interrupt. 

9 IF Interrupt-Enable Flag-When set, maskable interrupts will cause the CPU to 
transfer control to an interrupt vector specified location. 

10 DF Direction Flag-Causes strin~ instructions to auto-increment (default) the 
appropriate index registers w en cleared. Setting DF causes auto-decrement. 

Overflow Flag-Set if the operation resulted in a carrylborrow into the sign bit 
11 OF (high-order bit) of the result but did not result in a carrylborrow out of the high-

order bit or vice-versa. 

1/0 Privilege Level-Indicates the maximum CPL permitted to execute 1/0 

12,13 10PL 
instructions without generating an Exception 13 fault or consulting the 1/0 
permission bit map while executing in protected mode. For virtual 8086 mode 
it indicates the maximum CPL allowing alteration of the IF bit. 

14 NT Nested Task-Indicates that the execution of the current task is nested within 
another task. 

Resume Flag-Used in conjunction with debug register breakpoints. It is 
16 RF checked at instruction boundaries before breakpoint processing. If set, any 

debug fault is ignored on the next instruction. 

Virtual 8086 Mode-If set while in protected mode, the Am386SXL micro-
17 VM processor will switch to virtual 8086 operation, handling segment loads as 

8086 does, but generating Exception 13 faults on privileged op-codes. 

Table 2. CRO Definitions 

Bit Position Name Function 

Protection Mode Enable-Places the Am386SXL microprocessor into pro-

0 PE 
tected mode. If PE is reset, the processor operates again in Real Mode. PE 
may be set by loading MSW or CRO. PE can be reset only by loading CRO; 
it cannot be reset by the LMSW instruction. 

1 MP 
Monitor Coprocessor Extension-Allows WAIT instructions to cause a 
processor extension Not Present exception (number 7). 

Emulate Processor Extension-Causes a processor extension Not Present 
2 EM exception (number 7) on ESC instructions to allow emulating a processor 

extension. 

Task Switched-Indicates the next instruction using a processor extension will 
3 TS cause Exception 7, allowing software to test whether the current processor 

extension context belongs to the current task. 

31 PG 
Paging Enable Bit-Is set to enable the on-chip paging unit. It is reset to 
disable the on-chip paging unit. 

Am386Sx/SXL Microprocessor Data Sheet 153 



~ AMD 

All Am386Sx/SXL microprocessor instructions operate 
on either 0, 1,2, or 3 operands; an operand resides in a 
register, in the instruction itself, or in memory. Most zero 
operand instructions (e.g., CLI, STI) take only one byte. 
One operand instruction generally is two bytes long. The 
average instruction is 3.2-bytes long. Since the 
Am386Sx/SXL CPU has a 16-byte prefetch instruction 
queue, an average of 5 instructions will be prefetched. 
The use of two operands permits the following types of 
common instructions: 

Register to Register 
Memory to Register 
Immediate to Register 
Memory to Memory 
Register to Memory 
Immediate to Memory 

The operands can be either 8, 16, or 32 bits long. As a 
general rule, when executing code written for the 
Am386Sx/SXL microprocessor (32-bit code), operands 
are 8 or 32 bits; when executing existing 8086 or 80286 
code (16-bit code), operands are 8 or 16 bits. Prefixes 
can be added to all instructions which override the 
default length of the operands (Le., use 32-bit operands 
for 16-bit code, or 16-bit operands for 32-bit code). 

Effective Address Calculation 

I Base 

15 2 0 

R 
Selector P 

L 

. Segment Register 

Index I 

~ I Displacement I 
Scale I 1,2,4,8 

.~ 
''Y 

13s Effective Address 

, 
Logical or Segmentation 

14,Yirtual Address Unit 

Descri tor p 
Index 

Memory Organization 

Memory on the Am386Sx/SXL microprocessor is 
divided into 8-bit quantities (Bytes), 16-bit quantities 
(Words), and 32-bit quantities (Dwords). Words are 
stored in two consecutive bytes in memory with the 
low-order byte atthe lowest address. Dwords are stored 
in four consecutive bytes in memory with the low-order 
byte at the lowest address. The address of a Word or 
Dword is the byte address 01 the low-order byte. 

In addition to these basic data types, the Am386Sx/SXL 
microprocessor supports two larger units of memory: 
pages and segments. Memory can be divided up into 
one or more variable length segments, which can be 
swapped to disk or shared between programs. Memory 
can also be organized into one or more 4-Kb pages. 
Finally, both segmentation and paging can be 
combined, gaining the advantages of both systems. 
The Am386Sx/SXL CPU supports both pages and 
segmentation in order to provide maximum flexibility to 
the system designer. Segmentation and paging are 
complementary. Segmentation is useful for organizing 
memory in logical modules, and, as such, is a tool forthe 
application programmer, while pages are useful to the 
system programmer for managing the physical memory 
of a system. 

15 0 

BHE-BLE 

A23-A1 
Physical 
Memory 

32 Paging Unit 24 

'" (Optional Use) '" 
p 

Linear Physical 
Address Address 

150218-{)11 

Figure 3. Address Translation 

154 Am3S6 Microprocessors for Personal Computers 



Address Spaces 

The Am386SX!SXL microprocessor has three types of 
address spaces: logical, linear, and physical. A logical 
address (also known as a virtual address) consists of a 
selector and an offset. A selector is the contents of a 
segment register. An offset is formed by summing all of 
the addressing components (Base, Index, Displace­
ment) discussed in the section Addressing Modes, into 
an effective address. This effective address, along with 
the selector, is known as the logical address. Since each 
task on the Am386SX!SXL CPU has a maximum of 16K 
(214-1) selectors, and offsets can be 4 Gb (with paging 
enabled), this gives a total of 246 bits, or 64 tb, of logical 
address space per task. The programmer sees the 
logical address space. 

The segmentation unit translates the logical address 
space into a 32-bit linear address space. If the paging 
unit is not enabled then the 32-bit linear address is 
truncated into a 24-bit physical address. The physical 
address is what appears on the address pins. 

The primary differences between Real Mode and 
Protected Mode are how the segmentation unit 
periorms the translation of the logical address into the 
linear address, size of the address space, and paging 
capability. In Real Mode, the segmentation unit shifts 
the selector left four bits and adds the result to the 
effective address to form the linear address. This linear 
address is limited to 1 Mb. In addition, Real Mode has 
no paging capability. 

Protected Mode will see one of two different address 
spaces, depending on whether or not paging is enabled. 
Every selector has a logical base address associated 
with it that can be up to 32 bits in length. This 32-bit 
logical base address is added to the effective address to 
form a final 32-bit linear address. If paging is disabled, 
this final linear address reflects physical memory and is 
truncated so that only the lower 24 bits of this address 
are used to address the 16-Mb memory address space. 
If paging is enabled, this final linear address reflects a 
32-bit address that is translated through the paging unit 
to form a 16-Mb physical address. The logical base 
address is stored in one of two operating system tables 
(i.e., the Local Descriptor Table or Global Descriptor 
Table). 

Figure 3 shows the relationship between the various 
address spaces. 

Segment Register Usage 

The main data structure used to organize memory is the 
segment. On the Am386SX!SXL CPU, segments are 
variable sized blocks of linear addresses which have 
certain attributes associated with them. There are two 
main types of segments, code and data. The segments 
are of variable size and can be as small as 1 byte or as 
large as 4 Gb (232 bits). 

In order to provide compact instruction encoding and 
increase processor periormance, instructions do not 

AMD ~ 
need to explicitly specify which segment register is 
used. The segment register is automatically chosen 
according to the rules of Table 3 (Segment Register 
Selection Rules). In general, data references use the 
selector contained in the OS register; stack references 
use the SS register; and, instruction fetches use the CS 
register. The contents of the Instruction Pointer provide 
the offset. Special segment override prefixes allow the 
explicit use of a given segment register and override the 
implicit rules listed in Table 3. The override prefixes also 
allow the use of the ES, FS, and GS segment registers. 

There are no restrictions regarding the overlapping of 
the base addresses of any segments. Thus, all six 
segments could have the base address set to zero and 
create a system with 4-Gb linear address space. 
This creates a system where the virtual address space 
is the same as the linear address space. Further details 
of segmentation are discussed in the section Protected 
Mode Architecture. 

Addressing Modes 

The Am386SX!SXL microprocessor provides a total of 
eight addressing modes for instructions to specify 
operands. The addressing modes are optimized to allow 
the efficient execution of high-level languages such as C 
and FORTRAN, and they coverthe vast majority of data 
references needed by high-level languages. 

Register and Immediate Modes 

Two of the addressing modes provide for instructions 
that operate on register or immediate operands. 

Register Operand Mode: The operand is located in 
one of the 8-, 16-, or 32-bit general registers. 

Immediate Operand Mode: The operand is included in 
the instruction as part of the op-code. 

32·Bit Memory Addressing Modes 

The remaining six modes provide a mechanism for 
specifying the effective address of an operand. The 
linear address consists of two components: the seg­
ment base address and an effective address. The 
effective address is calculated by summing any com­
bination of the following three address elements (see 
Figure 3). 

Displacement: an 8-,16-, or 32-bit immediate value, 
following the instruction. 

Base: The contents of any general purpose register. 
The base registers are generally used by compilers to 
point to the start of the local variable area. 

Index: The contents of any general purpose register 
except for ESP. The index registers are used to access 
the elements of an array or a string of characters. The 
index register's value can be multiplied by a scale factor, 
either i, 2, 4, or 8. The scaled index is especially useful 
for accessing arrays or structures. 

Am386Sx/SXL Microprocessor Data Sheet 155 I 



~ AMD 

Table 3. Segment Register Selection Rules 

Type of Memory Reference Implied (Default) Segment Use Segment Override Prefixes Possible 

Code Fetch CS 

Destination of PUSH, PUSHF, INT, SS 
CALL, PUSHA Instructions 

Source of POP, paPA, POPF, SS 
IRET, RET Instructions 

Destination of STOS, MOVE, REP ES 
STOS, REP MOVS Instructions 

Other Data References, with 
Effective Address Using Base 
Register of: 

[EAX] DS 
[EBX] DS 
[ECX] DS 
[EDX] DS 
[ESI] DS 
[EDI] DS 

I 
[EBP] SS 
[ESP] SS 

Combinations of these three components make up the 
six additional addressing modes. There is no perform­
ance penalty for using any of these addressing 
combinations, since the effective address calculation is 
pipelined with the execution of other instructions. The 
one exception is the simultaneous use of Base and 
Index components which requires one additional clock. 

As shown in Figure 4, the Effective Address (EA) of 
an operand is calculated according to the following 
formula: 

EA = BaSeReg~ter + (IndexRegister x Scaling) + Displacement 

1. Direct Mode: The operand's offset is contained as 
part of the instruction as an 8-, 16-, or 32-bit 
displacement. 

2. Register Indirect Mode: A Base register contains 
the address of the operand. 

3. Based Mode: A Base register's contents are added 
to a Displacement to form the operand's offset. 

4. Scaled Index Mode: An Index register's contents 
are multiplied by a Scaling factor, and the result is 
added to a Displacement to form the operand's 
offset. 

5. Based Scaled Index Mode: The contents of an 
Index register are multiplied by a Scaling factor, and 
the result is added to the contents of a Base register 
to obtain the operand's offset. 

6. Based Scaled Index Mode with Displacement: 
The contents of an Index register are multiplied by a 
Scaling factor, and the result is added to the contents 
of a Base register and a Displacement to form the 
operand's offset. 

None 

None 

None 

None 

CS, SS, ES, FS, GS 
CS, SS, ES, FS, GS 
CS, SS, ES, FS, GS 
CS, SS, ES, FS, GS 
CS, SS, ES, FS, GS 
CS, SS, ES, FS, GS 
CS, DS, ES, FS, GS 
CS, DS, ES, FS, GS 

Differences Between 16· and 32·Bit Addresses 

In order to provide software compatibility with the 8086 
and the 80286, the Am386Sx/SXL microprocessor can 
execute 16-bit instructions in Real and Protected 
Modes. The processor determines the size of the 
instructions it is executing by examining the D bit in a 
Segment Descriptor. If the D bit is 0, then all operand 
lengths and effective addresses are assumed to be 
16-bits long. If the D bit is 1, then the default length for 
operands and addresses is 32 bits. In Real Mode the 
default size for operands and addresses is 16 bits. 

Regardless of the default precision of the operands or 
addresses, the Am386Sx/SXL microprocessor is able 
to execute either 16- or 32-bit instructions. This is 
specified through the use of override prefixes. Two 
prefixes, the Operand Length Prefix and the Address 
Length Prefix, override the value of the D bit on an 
individual instruction basis. These prefixes are 
automatically added by assemblers. 

The Operand Length and Address Length Prefixes can 
be applied separately or in combination to any 
instruction. The Address Length Prefix does not allow 
addresses over 64 Kb to be accessed in Real Mode. 
A memory address which exceeds OFFFFH will result 
in a General Protection Fault. An Address Length Prefix 
only allows the use of the additional Am386Sx/SXL 
CPU addressing modes. 

When executing 32-bit code, the Am386Sx/SXL CPU 
uses either 8- or 32-bit displacements, and any register 
can be used as Base or Index registers. When executing 
16-bit code, the displacements are either 8- or 16-bits, 
and the Base and Index registers conform to the 
80286 mode\. Table 4 illustrates the differences. 

156 Am3S6 Microprocessors for Personal Computers 



SS 
G 

Segment Registers 

~~ 
S c. 

FS ~ c. 

ES 
DS Selector cs 1 

y;; 

AMD ~ 

Base Register 1 
I Index Register I 

« 
Scale 1 1,2,4, or 8 

Displacement I (In Instruction) 

Effective Se gment 
Imlt Address ,/L 

Descriptor Registers Linear 

~Address 
Access Rights SS I Target Address ~ 

GS I Access Rights 

Access Rights FS I 
Access Rights ES 1 

Access Rights DS I 
Access Rights CS 

Limit 

Base Address 

- - --
Segment Base Address 

Selected 
Segment 

150218-012 

Figure 4. Addressing Mode Calculations 

Data Types 

The Am386SXlSXL microprocessor supports all of the 
data types commonly used in high-level languages. 

Bit: A single bit quantity. 

Bit Field: A group of up to 32 contiguous bits, which 
spans a maximum of four bytes. 

Bit String: A set of contiguous bits; on the Am386SXI 
SXL microprocessor, bit strings can be up to 4 Gbits 
long. 

Byte: A signed 8-bit quantity. 

Unsigned Byte: An unsigned 8-bit quantity. 

Integer (Word): A signed 16-bit quantity. 

Long Integer (Dword): A signed 32-bit quantity. All 
operations assume a 2's complement representation. 

Unsigned Integer (Word): An unsigned 16-bit quantity. 

Unsigned Long Integer (Dword): An unsigned 32-bit 
quantity. 

Signed Quad Word: A Signed 64-bit quantity. 

Unsigned Quad Word: An unsigned 64-bit quantity. 

Pointer: A 16- or 32-bit offset-only quantity which 
indirectly references another memory location. 

Long Pointer: A full pointer which consists of a 16-bit 
segment selector and either a 16- or 32-bit offset. 

Char: A byte representation of an ASCII alphanumeric 
or control character. 

String: A contiguous sequence of bytes, Words, or 
Dwords. A string may contain between 1 byte and 4 Gb. 

BCD: A byte (unpacked) representation of decimal 
digits 0-9. 

Packed BCD: A byte (packed) representation of two 
decimal digits 0-9 storing one digit in each nibble. 

When the Am386SXlSXL microprocessor is coupled 
with a 387SX math coprocessor, the following common 
floating point types are supported. 

Floating Point: A Signed 32-,64-, or80-bit real number 
representation. Floating point numbers are supported 
by 387SX-compatible math coprocessors. 

Am386SXlSXL Microprocessor Data Sheet 157 



~ AMD 

Table 4. Base and Index Registers for 16· and 
32·Bit Addresses 

l6-Bit 32-Bit 
Addressing Addressing 

Base Register BX,BP Any 32-bit GP Register 
Index Register 51,01 Any 32-bit GP Register 

Except ESP 

Scale Factor None 1,2,4,8 
Displacement 0,8,16 bits 0,8,32 bits 

Figure 5 illustrates the data types supported by 
the Am386SXlSXL microprocessor and a 387SX­
compatible math coprocessor. 

1/0 Space 
The Am386SXlSXL CPU has two distinct physical 
address spaces: physical memory and I/O. Generally, 
peripherals are placed in 1/0 space, although the 
Am386SXlSXL CPU also supports memory-mapped 
peripherals. The 1/0 space consists of 64 Kb which can 
be divided into 64K 8-bit ports or 32K i6-bit ports, or any 
combination of ports which add up to no more than 
64 Kb. The 64Kb 1/0 address space refers to physical 
addresses rather than linear addresses since 1/0 
instructions do not go through the segmentation or 
paging hardware. The MilO pin acts as an additional 
address line, thus allowing the system designerto easily 
determine which address space the processor is 
accessing. 

The 1/0 ports are accessed by the In and Out 
instructions, with the port address supplied as an 
immediate 8-bit constant in the instruction or in the OX 
register. All 8-bit and 16-bit port addresses are zero 
extended on the upper address lines. The 1/0 
instructions cause the MilO pin to be driven Low. 1/0 
port addresses OOF8H through OOFFH are reserved for 
future use. 

Interrupts and Exceptions 

Interrupts and exceptions alter the normal program 
flow in order to handle external events, report errors, 
or report exceptional conditions. The difference be­
tween interrupts and exceptions is that interrupts are 
used to handle asynchronous external events while 
exceptions handle instruction faults. Although a pro­
gram can generate a software interrupt via an INT n 
instruction, the processor treats software interrupts as 
exceptions. 

Hardware interrupts occur as the result of an external 
event and are classified into two types: maskable 
or non-maskable. Interrupts are serviced after the 
execution of the current instruction. After the interrupt 
handler is finished servicing the interrupt, execution 
proceeds with the instruction immediately after the 
interrupted instruction. 

Exceptions are classified as faults, traps, or aborts, 
depending on the way they are reported and whether 

or not restart of the instruction causing the exception is 
supported. Faults are exceptions that are detected and 
serviced before the execution of the faulting instruction. 
Traps are exceptions that are reported immediately 
after the execution of the instruction which caused the 
problem. Aborts are exceptions that do not permit the 
precise location of the instruction causing the exception 
to be determined. 

Thus, when an interrupt service routine has been 
completed, execution proceeds from the instruction 
immediately following the interrupted instruction. On the 
other hand, the return address from an exception fault 
routine will always point to the instruction causing the 
exception and will include any leading instruction 
prefixes. Table 5 summarizes the possible interrupts lor 
the Am386SXlSXL microprocessor and shows where 
the return address points. 

The Am386SXlSXL CPU has the ability to handle up to 
256 different interrupts/exceptions. In order to service 
the interrupts, a table with up to 256 interrupt vectors 
must be defined. The interrupt vectors are simply 
pointers to the appropriate interrupt service routine. In 
Real Mode, the vectors are 4-byte quantities, a Code 
Segment plus a i6-bit offset; in Protected Mode 
the interrupt vectors are 8-byte quantities which ar~ 
put in an Interrupt Descriptor Table. Of the 256 possible 
interrupts, 32 are reserved for future use and the re­
maining 224 are free to be used by the system designer. 

Interrupt Processing 

When an interrupt occurs, the following actions happen. 
First, the current program address and Flags are saved 
on the stack to allow resumption of the interrupted 
program. Next, an 8-bit vector is supplied to the 
Am386SXlSXL microprocessor which identifies the ap­
propriate entry in the interrupt table. The table contains 
the starting address of the interrupt service routine. 
Then, the user supplied interrupt service routine is 
executed. Finally, when an IRET instruction is executed 
the old processor state is restored and program 
execution resumes at the appropriate instruction. 

The 8-bit interrupt vector is supplied to the Am386SXI 
SXL microprocessor in several different ways: excep­
tions supply the interrupt vector internally; software INT 
instructions contain or imply the vector; maskable 
hardware interrupts supply the 8-bit vector via the 
interrupt acknowledge bus sequence. Non-Maskable 
hardware interrupts are assigned to interrupt vector 2. 

Maskable Interrupt 

Maskable interrupts are the most common way to 
respond to asynchronous external hardware events. A 
hardware interrupt occurs when the INTR is pulled High 
and the Interrupt Flag bit (IF) is enabled. The processor 
only responds to interrupts between instructions (string 
instructions have an interrupt window between mem­
ory moves that allows interrupts during long string 

158 Am386 MIcroprocessors for Personal Computers 



AMD ~ 

Si9;y~~ n I 11 
Sign Bit J L..I ___ ..... 

Magnitude 

unsigned~ 
Byte~ 

I I 
Magnitude 

+1 0 
15 14 8 7 

S~:~~II' I II I I II I I II r 
Sign Bit J .... 1L_M_S_B ______ --' 

+N +1 0 
Binary ~ 7 07 0 

D~~:~ ~ ... I"'III'I"'I"'1 
(BCD) 

BCD BCD BCD 
Digit N Digit 1 Digit 0 

+N +1 0 
~ 7 07 0 

ASCII ~ ... I"'I"'r"I"'1 
ASCII ASCII ASCII 

CharacterN Character, Character, 

Packed BCD 

Magnitude Most 
Significant 

Digit 

Least 
Significant 

Digit 
+1 o +N +1 0 

~ 7/15 07/15 0 

s~r~~ ~ ... I (j I II I III i I II I I I 
15 0 

uns~:~ II I I I I I I II I I II I I I 

Magnitude 

+2 ~ 0 +2 Gbits -2 Gbits 
31 16 15 o 

Signed III I I I I II I I I I II I I I I I II I (I I I 11111 
D~~~~~. _--L. __ L-. _--L. _-----I Stri~~ 
Sign Bit J L MSB L..' _________________ --' 

Magnitude 

31 +3 +2 +1 o o 31 +2 + 1 o o 

un~~~~I'--'_'_'_I_' __ '~I_'_'_I_'_'_' ..... I~'_'_'_I_'_'_'~I_'_'_'_I_'_I_I ..... Shortl'lll"'l"'l" 111 1 111 111 (111 
32·Bit 

Pointer L.. ____ -'-___ --'~ ___ --L ____ ..... 

Magnitude Offset 

+7 +6 +5 +4 +3 +2 +1 o +5 +4 +2 +1 o 
63 4847 3231 1615 o Q 0 

S~o~ L..I~I_~_~_~_-'-_-L_~_~_~ p~?~! I" I (II I I" I( I I I I" I( I I I I" I( I I I I" I( I I T I I( I I I I 
Sign Bit JL..IL_M_S_B ______________ ..J 

Magnitude Selector 

79 +9 +8 +7 +6 +5 +4 +3 +2 +1 0 
0 

I Float!ng II 
POint· . 

~~--~--~--~~--~--~--~~----' 
Sign Bit JI'--____ ~ ______________ _' 

32·Bit 
Bit Field 

Exponent Magnitude 

+5 +4 +3 +2 +1 0 

1"1(1111"1(1111"1(1111"1(1111"1(11 T'II'II I 

14- 1 ~~tfJe~1ts ~ 
'Supported by a 387SX·compatible math coprocessor 

Figure 5. Am386SXJSXL Microprocessor Supponed Data Types 

Am386SXJSXL Microprocessor Data Sheet 

Offset 

15021B-Q13 

159 



~ AMD 

Table 5. Interrupt Vector Assignments 

Interrupt Instruction Which Return Address Points 
Function Number Can Cause Exception to Faulting Instruction Type 

Divide Error 0 DIV,IDIV Yes FAULT 

Debug Exception 1 Any Instruction Yes TRAP' 

NMI Interrupt 2 INT20rNMI No NMI 

One Byte Interrupt 3 INT No TRAP 

Interrupt on Overflow 4 INTO No TRAP 

Array Bounds Check 5 BOUND Yes FAULT 

Invalid Op-code 6 Any Illegal Instruction Yes FAULT 

Device Not Available 7 ESC, WAIT Yes FAULT 

Double Fault 8 Any instruction that can generate an ABORT exception 

Coprocessor Segment Overrun 9 ESC No ABORT 

Invalid TSS 10 JMP, CALL, IRET, INT Yes FAULT 

Segment Not Present 11 Segment Register Instructions Yes FAULT 

Stack Fault 12 Stack References Yes FAULT 

General Protection Fau~ 13 Any Memory Reference Yes FAULT 

Page Fautl 14 Any Memory Access or Code Fetch Yes FAULT 

Coprocessor Error 16 ESC, WAIT Yes FAULT 

Reserved for Future Use 17-32 

Two Byte Interrupt 0-255 INT n No TRAP 

Note: Some debug exceptions may report both traps on the previous instruction and faults on the next instruction. 

moves). When an interrupt occurs the processor reads 
an 8-bit vector supplied by the hardware which identifies 
the source of the interrupt (one of 224 user defined 
interrupts). 

Interrupts through interrupt gates automatically reset IF 
bit, disabling INTR requests. Interrupts through Trap 
Gates leave the state of the IF bit unchanged. Interrupts 
through a Task Gate change the IF bit according to the 
image of the EFLAGs register in the task's Task State 
Segment (TSS). When an IRET instruction is executed, 
the original state of the IF bit is restored. 

Non-Maskable Interrupt 

Non-maskable interrupts provide a method of servicing 
very high priority interrupts. When the NMI input is 
pulled High it causes an interrupt with an internally 
supplied vector value of 2. Unlike a normal hardware 
interrupt, no interrupt acknowledgment sequence is 
performed for an NMI. 

While executing the NMI servicing procedure, the 
Am386SXlSXL microprocessor will not service any fur­
ther NMI request or INT requests until an Interrupt Re­
turn (IRET) instruction is executed or the processor is 
rese!.lf NMI occurs while currently servicing an NMI, its 
presence will be saved for servicing after executing the 
first IRET instruction. The IF bit is cleared at the begin­
ning of an NMI interrupt!o inhibitfurther INTR interrupts. 

Software Interrupts 

A third type of interrupt/exception forthe Am386SXlSXL 
CPU is the software interrupt. An INT n instruction 

causes the processor to execute the interrupt service 
routine pOinted to by the nth vector in the interrupttable. 

A special case of the two byte software interrupt I NT n is 
the one byte INT 3, or breakpoint interrupt. By inserting 
this one byte instruction in a program, the user can set 
breakpoints in his program as a debugging tool. 

A final type of software interrupt is the single-step 
interrupt. It is discussed in section Single-Step Trap. 

Interrupt and Exception Priorities 

Interrupts are externally generated events. Mask­
able Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on the NMI input) are recognized at instruc­
tion boundaries. When NMI and maskable INTR are 
both recognized at the same instruction boundary, the 
Am386SXlSXL microprocessor invokes the NMI 
service routine first. If maskable interrupts are still 
enabled after the NMI service routine has been invoked, 
then the Am386SXlSXL CPU will invoke the appropriate 
interrupt service routine. 

As the Am386SXlSXL microprocessor executes in­
structions, it follows a consistent cycle in checking for 
exceptions, as shown in Table 6. This cycle is repeated 
as each instruction is executed, and occurs in parallel 
with instruction decoding and execution. 

Instruction Restart 

The Am386SXlSXL microprocessor fully supports re­
starting all instructions after Faults. If an exception is 

160 Am3S6 Microprocessors for Personal Computers 



detected in the instruction to be executed (exception 
categories 4 through 10 in Table 6), the Am386Sx/SXL 
microprocessor invokes the appropriate exception 
service routine. The Am386Sx/SXL microprocessor is 
in a state that permits restart of the instruction, for all 
cases by those given in Table 7. Note that all such 
cases will be avoided by a properly designed operating 
system. 

Double Fault 

A Double Fault (Exception 8) results when the 
processor attempts to invoke an exception service 
routine for the segment exceptions (10,11, 12, or 13), 
but in the process of doing so detects an exception other 
than a Page Fault (Exception 14). 

One other cause of generating a Double Fault is the 
Am386Sx/SXL CPU detecting any other exception 
when it is attempting to invoke the Page Fault (Excep­
tion 14) service routine (e.g., if a Page Fault is detected 
when the Am386Sx/SXL microprocessor attempts to in­
voke the Page Fault service routine). Of course, in any 
functional system, not only the Am386Sx/SXL CPU-

AMD 

based systems, the entire Page Fault service must 
remain present in memory. 

Reset and Initialization 

When the processor is initialized or Reset, the registers 
have the values shown in Table 8. The Am386Sx/SXL 
CPU will then start executing instructions near the 
top of physical memory, at location OFFFFFOH. When 
the first intersegment Jump or Call is executed, address 
lines A23-A20 will drop Low for CS-relative memory 
cycles, and the Am386Sx/SXL CPU will only execute 
instructions in the lower 1 Mb of physical memory. This 
allows the system designer to use a shadow ROM at the 
top of physical memory to initialize the system and take 
care of Resets. 

Reset forces the Am386Sx/SXL microprocessor to 
terminate all execution and local bus activity. No 
instruction execution or bus activity will occur as long as 
Reset is active. Between 350- and 450-CLK2 periods 
after Reset becomes inactive, the Am386Sx/SXL mi­
croprocessor will start executing instructions at the top 
of physical memory. 

Table 6. Sequence of Exception Checking 

Consider the case of the Am386SXL microprocessor having just completed an instruction. It then performs the following checks 
before reaching the point where the next instruction is completed. 

1. Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or Data Breakpoints set in the 
Debug Registers). 

2. Check for external NMI and INTR. 

3. Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the Debug Registers for the next 
instruction ). 

4. Check for Segmentation Faults that prevented fetching the entire next instruction (Exceptions 11 and 13). 

5. Check for Page Faults that prevented fetching the entire next instruction (Exception 14). 

6. Check for Faults decoding the next instruction (Exception 6 if illegal op-code; Exception 6 if in Real Mode or in Virtual 8086 
Mode and attempting to execute an instruction for Protected Mode only; or Exception 13 if instruction is longer than 15 bytes, or 
privilege violation in Protected Mode (i.e., not at IOPL or at CPL = 0)). 

7. If WAIT op-code, check ifTS = 1 and MP = 1 (Exception 7 if both are 1). 

8. If ESCape op-code for math coprocessor, check if EM = 1 or TS = 1 (Exception 7 if either are 1). 

9. If WAIT op-code or ESCape op-code for math coprocessor, check ERROR input signal (Exception 16 if ERROR input is 
asserted). 

10. Check in the following order for each memory reference required by the instruction. 

a. Check for Segmentation Faults that prevent transferring the entire memory quantity (Exceptions II, 12, and 13). 

b. Check for Page Faults that prevent transferring the entire memory quantity (Exception 14). 

Note: Segmentation exceptions are generated before paging exceptions. 

Table 7. Conditions Preventing Instruction Restart 

1. An instruction causes a task switch to a task whose Task State Segment (TSS) is partially not present (an entire not present 
TSS is restartable). Partially present TSSs can be avoided either by keeping the TSSs of such tasks present in memory, or by 
aligning TSS segments to reside entirely within a single 4K page (for TSS segments of 4 Kb or less). 

2. A coprocessor operand wraps around the top of a 64-Kb segment or a 4-Gb segment and spans three pages, and the page 
holding the middle portion of the operand is not present. This condition can be avoided by starting, at a page boundary any 
segments containing coprocessor operands, if the segments are approximately 64K-200K bytes or larger (Le., large enough 
for wraparound of the coprocessor operand to possibly occur). 

Note: These conditions are avoided by using the operating system designs mentioned in this table. 

Am386Sx/SXL Microprocessor Data Sheet 161 



~ AMD 

Table 8. Register Values after Reset 

Flag Word (EFLAGS) uuuuOOO2H Note 1 
Machine Status Word (CRO) uuuuuu10H 
Instruction Pointer (EIP) OOOOFFFOH 
Code Segment (CS) FOOOH Note 2 
Oata Segment (OS) OOOOH Note 3 
Stack Segment (SS) OOOOH 
Extra Segment (ES) OOOOH Note 3 
Extra Segment (FS) OOOOH 
Extra Segment (GS) OOOOH 

EAX Register OOOOH Note 4 
EOX Register Component and Stepping 10 Note 5 
All Other Registers Undefined Note 6 

Notes: 1. EFLAGS Register. The upper 14 bits of the EFLAGS register are undefined; all defined flag bits are zero. 
2. The Code Segment register (CS) will have its Base Address set to OFFFFOOOOH and Limit set to OFFFFH. 
3. The Data and Extra Segment registers (OS and ES) will have their Base Address set to OOOOOOOOOH and Limit set to OFFFFH. 
4. If self-test is selected, the EAX register should contain a 0 value. If a value of 0 is not found, the self-test has detected a flaw in 

the part. 
5. EDX register always holds a component and stepping identifier. 
6. All undefined bits are reserved for future use and should not be used. 

Testability 

The Am38SSXlSXL microprocessor, like the Am38SDXI 
DXL microprocessor, offers testability features that in­
clude a seH-test and direct access to the page 
translation cache. 

Self-Test 

The Am38SSXlSXL microprocessor has the capability 
to perform a self-test. The self-test checks the function 
of all of the Control ROM and most of the non-random 
logic of the part. Approximately one-half of the 
Am38SSXlSXL CPU can be tested during self-test. 

Self-Test is initiated on the Am38SSXlSXL micropro­
cessorwhen the Reset pin transitions from High to Low, 
and the BUSY pin is Low. The self-test takes about 220 

clocks, or approximately 33 ms with a 1S-MHz 
Am38SSXlSXL CPU. At the completion of self-test the 
processor performs reset and begins normal operation. 
The part has successfully passed self-test if the 
contents of the EAX are zero. If the results of the EAX 
are not zero, then the self-test has detected a flaw in 
the part. 

TLB Testing 

The Am38SSXlSXL microprocessor also provides a 
mechanism for testing the Translation Look-Aside 
Buffer (TLB) , if desired. This particular mechanism may 
not be continued in the same way in future processors. 

There are two TLB testing operations: 1) writing entries 
into the TLB; and, 2) performing TLB lookups. Two test 
registers, shown in Figure S are provided for the 
purpose of testing. TRS is the test command register, 
and TR7 is the test data register. 

Debugging Support 

The Am38SSXlSXL microprocessor provides several 
features which simplify the debugging process. The 
three categories of on-chip debugging aids are: 

1. The code execution breakpOint op-code (OCCH). 

2. The single-slep capability provided by the TF bit in 
the flag register. 

3. The code and data breakpoint capability provided by 
the Debug Registers DR3-0RO, DRS, and DR7. 

Breakpoint Instruction 

A single-byte software interrupt (INT 3) breakpoint 
instruction is available for use by software debuggers. 
The breakpoint op-code is OCCH, and generates an 
Exception 3 trap when executed. 

Single-Step Trap 

If the single-step flag (TF, bit 8) in the EFLAGS register 
is found to be set at the end of an instruction, a 
single-step exception occurs. The single-step exception 
is auto-vectored to Exception 1 . 

Debug Reg isters 

The Debug Registers are an advanced debugging 
feature of the Am38SSXlSXL microprocessor. They 
allow data access breakpoints as well as code 
execution breakpoints. Since the breakpoints are 
indicated by on-chip registers, an instruction execution 
breakpoint can be placed in ROM code or in code 
shared by several tasks, neither of which can be 
supported by the INT 3 breakpOint op-code. 

The Am386SXlSXL microprocessor contains six De­
bug Registers, consisting of four breakpoint address 

162 Am3S6 Microprocessors for Personal Computers 



AMD ~ 
Table 9. Exceptions in Real Mode 

Interrupt Related Return 
Function Number Instructions Address Location 

Interrupt table limit too small 8 INT vector is not within table limit Before 
Instruction 

CS, DS, ES, FS, GS 13 Word memory reference with Before 
Segment Overrun exception offset = OFFFFH. An attempt to Instruction 

execute past the end of CS segment. 

SS Segment Overrun exception 12 Stack Reference Before 
beyond offset = OFFFFH. Instruction 

Command ----------------------------------------------------, 

Wri~;:; =-==_ -==_ -==_ -~l=-=,l-----,l 
Valid ------------------......, ~ ~ ~ Test 

Control 

Linear Address 

31 

Physical Add ress 

31 

l22I Reserved for future use - do not use. 

TR6 

Test 
Status 

TR7 

15022B--006 

Figure 6. Test Registers 

registers and two breakpoint control registers. Initially 
after reset, breakpoints are in the disabled state; 
therefore, no breakpoints will occur unless the Debug 
Registers are programmed. Breakpoints set up in the 
Debug Registers are auto-vectored to Exception 1. 
Figure 7 shows the breakpoint status and control 
registers. 

REAL MODE ARCHITECTURE 
When the processor is reset or powered up it is 
initialized in Real Mode. Real Mode has the same base 
architecture as the 8086, but allows access to the 32-bit 
register set of the Am386SX!SXL microprocessor. The 
addressing mechanism, memory size, and interrupt 
handling are all identical to the Real Mode on the 80286. 

The default operand size in Real Mode is 16 bits, as in 
the 8086. In order to use the 32-bit registers and 
addressing modes, override prefixes must be used. In 
addition, the segment size on the Am386SX!SXL micro­
processor in Real Mode is 64 Kb, so 32-bit addresses 
must have a value less than OOOOFFFFH. The primary 
purpose of Real Mode is to set up the processor for 
Protected Mode operation. 

Memory Addressing 

In Real Mode the linear addresses are the same as 
physical addresses (paging is not allowed). Physical 
addresses are formed in Real Mode by adding the 
contents of the appropriate segment register which is 
shifted left by four bits to an effective address. This 
addition results in a 20-bit physical address or a 1-Mb 
address space. Since segment registers are shifted left 
by 4 bits, Real Mode segments always start on 16-byte 
boundaries. 

All segments in Real Mode are exactly 64-Kb long, and 
may be read, written, or executed. The Am386SX!SXL 
microprocessor will generate an Exception 13 if a data 
operand or instruction fetch occurs past the end of a 
segment. 

Reserved Locations 

There are two fixed areas in memory that are reserved 
in Real Address Mode: the system initialization area 
and the interrupt table area. Locations OOOOOH through 
003FFH are reserved for interrupt vectors. Each 
one of the 256 possible interrupts has a 4-byte jump 

Am386SXlSXL Microprocessor Data Sheet 163 



~ AMD 

vector reserved for it. Locations OFFFFFOH through 
OFFFFFFH are reserved for system initialization. 

Interrupts 

Many of the exceptions discussed in section Interrupts 
and Exceptions are not applicable to Real Mode 
operation; in particular, Exceptions 10, 11, and 14 do 
not occur in Real Mode. Other exceptions have slightly 
different meanings in Real Mode; Table 9 identifies 
these exceptions. 

Shutdown and Halt 

The HL T instruction stops program execution and 
prevents the processor from using the local bus until 
restarted. Either NMI, FL T, INTR with interrupts enabled 
(IF=1). or Reset will force the Am386SXlSXL micropro­
cessor out of halt. If interrupted, the saved CS:IP will 
point to the next instruction after the HL T. 

Shutdown will occur when a severe error is detected 
that prevents further processing. In Real Mode, shut­
down can occur under two conditions: 

1. An interrupt or an exception occurs (Exceptions 8 or 
13) and the interrupt vector is larger than the 
Interrupt Descriptor Table. 

2. A Call, INT, or Push instruction attempts to wrap 
around the stack segment when SP is not even. 

An NMI input can bring the processor out of shutdown if 
the Interrupt Descriptor Table limit is large enough to 
contain the NMI interrupt vector (at least OOOFH) and the 
stack has enough room to contain the vector and flag in­
formation (Le., SP is greater than 0005H). Otherwise, 
shutdown can only be exited by a processor reset. 

LOCK Operation 

The LOCK prefix on the Am386SXlSXL microproces­
sor, even in Real Mode, is more restrictive than on the 
80286. This is due to the addition of paging on the 
Am386SXlSXL CPU in Protected Mode and Virtual 
8086 Mode. The LOCK prefix is not supported during re­
peat string instructions. 

The only instruction forms where the LOCK prefix is 
legal on the Am386SXlSXL microprocessor are shown 
in Table 10. 

Table 10. Legal Instructions for the LOCK Prefix 

Operands 
Op-Code (Dest, Source) 

BIT Test and Mem, Regllmmed 
SET/RESET/COMPLEMENT 

XCHG Reg, Mem 
XCHG Mem, Reg 
ADD, OR, ADC, SBB Mem, Reg/lmmed 

AND, SUB, XOR 

NOT, NEG, INC, DEC Mem 

An Exception 6 will be generated if a LOCK prefix is 
placed before any instruction form or op-code not listed 
above. The LOCK prefix allows indivisible read/modify/ 
write operations on memory operands using the instruc­
tions above. 

The LOCK prefix is not IOPL-sensitive on the 
Am386SXlSXL microprocessor. The LOCK prefix can 
be used at any privilege level, but only on the instruction 
forms listed in Table 10. 

PROTECTED MODE ARCHITECTURE 

The complete capabilities of the Am386SXlSXL micro­
processor are unlocked when the processor operates in 
Protected Virtual Address Mode (Protected Mode). 
Protected Mode vastly increases the linear address 
space to 4 Gb (232 bytes), and allows the running of 
virtual memory programs of almost unlimited size (64 tb 
(246 bytes)). In addition, Protected Mode allows the 
Am386SXlSXL CPU to run all of the existing Am386DXI 
DXL CPU (using only 16 Mb of physical memory), 
80286, and 8086 CPU's software, while providing a 
sophisticated memory management and a hardware­
assisted protection mechanism. Protected Mode allows 
the use of additional instructions specially optimized for 
supporting multitasking operating systems. The base 
architecture of the Am386SXlSXL microprocessor 
remains the same; the registers, instructions, and 
addressing modes described in the previous sections 
are retained. The main difference between Protected 
Mode and Real Mode from a programmer's viewpoint is 
the increased address space and a different addressing 
mechanism. 

Addressing Mechanism 

Like Real Mode, Protected Mode uses two components 
to form the logical address: a 16-bit selector is used to 
determine the linear base address of a segment, the 
base address is added to a 32-bit effective address to 
form a 32-bit linear address. The linear address is then 
either used as a 24-bit physical address, or if paging is 
enabled, the paging mechanism maps the 32-bit linear 
address into a 24-bit physical address. 

The difference between the two modes lies in 
calculating the base address. In Protected Mode, the 
selector is used to specify an index into an operating 
system defined table (see Figure 8). The table contains 
the 32-bit base address of a given segment. The 
physical address is formed by adding the base address 
obtained from the table to the offset. 

Paging provides an additional memory management 
mechanism which operates only in Protected Mode. 
Paging provides a means of managing the very large 
segments of the Am386SXlSXL microprocessor, as 
paging operates beneath segmentation. The page 
mechanism translates the protected linear address 
which comes from the segmentation unit into a physical 
address. Figure 9 shows the complete Am386SXlSXL 
CPU addressing mechanism with paging enabled. 

164 Am386 Microprocessors for Personal Computers 



AMD ~ 

Breakpoint 0 Debug FaultfTrap ---------------------------, 
Breakpoint 1 Debug FaultfTrap --------------------------, j 
Breakpoint 2 Debug FaultfTrap j 
Breakpoint 3 Debug FaultfTrap I 

Register Access Fault j 
Single-Step Debug Trap 1 Debug 
Task Switch Debug Trap 1 1 Status 

t Control 

k;;':;'>;:::':><:'::>:;>,'<';:;;;:;:;:":;::;;<,>:>;:>;'i;;'" ";;';:;'~;;;;';;':";';",;",;,;;:;;':J BT 1 BS 1 BO t:>: ";:,;;'::,:>;;;>":'/>,,,;;;':1 B31 B21 B 1 1 BO I D R6 

Gi: Global Breakpoint Enable i 
Li: Local Breakpoint Enable i 

Local Exact Breakpoint Match 

Global Exact Breakpoint Match 

Global Debug Register Access Detect 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

15 14 13 

13 

321 0 

Breakpoint 
Control 

DR7 

'------------t[ LENi: Breakpoint Length i 
[2J Reserved for future use-do not use, RWI: Memory Access Qualifier I 

150228-007 

Figure 7. Debug Registers 

Segmentation 
Segmentation is one method of memory management 
It provides the basis for software protection and is used 
to encapsulate regions of memory that have common 
attributes. For example, all of the code of a given 
program could be contained in a segment, or an 
operating system table may reside in a segment. All 
information about each segment is stored in an 8-byte 
data structure called a descriptor. All of the descriptors 
in a system are contained in descriptor tables which are 
recognized by hardware. 

Terminology 

The following terms are used throughout the discussion 
of descriptors, privilege levels, and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level 0 is the most privileged 
level and level 3 is the least privileged. 

RPL: Requestor Privilege Level-The privilege level 
of the original supplier of the selector. RPL is 
determined by the least two significant bits of a 
selector. 

DPL: Descriptor Privilege Level-This is the least 
privileged level at which a task may access that 
descriptor (and the segment associated with that 
descriptor). Descriptor Privilege Level is deter­
mined by bits 6:5 in the Access Right Byte of a 
descriptor. 

CPL: Current Privilege Level-The privilege level at 
which a task is currently executing, which equals 
the privilege level of the code segment being 
executed. CPL can also be determined by 
examining the lowest 2 bits of the CS register, 
except for conforming code segments. 

EPL: Effective Privilege Level-The effective privilege 
level is the least privileged of the RPL and the 
DPL. EPL is the numerical maximum of RPL and 
DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

Descriptor Tables 

The descriptor tables define all of the segments which 
are used in an Am386SXlSXL microprocessor system. 
There are three types of tables which hold descriptors: 
the Global Descriptor Table, Local Descriptor Table, 
and Interrupt DeSCriptor Table. All of the tables are 
variable length memory arrays and can vary in size 
from 8 bytes to 64 Kb. Each table can hold up to 8192 
8-byte descriptors. The upper 13 bits of a selector are 
used as an index into the descriptor table. The tables 
have registers associated with them which hold the 
32-bit linear base address and the 16-bit limit of each 
table. 

Am386SXlSXL Microprocessor Data Sheet 165 



~ AMD 

48132 Bit Pointer 

Selector 

/ Segment Limit 

47131 

/ 
I Selector 

15 

~ 

166 

Access Rights 

Limit 

Base Address 

Segment 
Descriptor 

48 B't P , t I OIn er 

I Offset 

031 

Access Rights 

Limit 

r-------------~~ __ _ 
Memory Operand 

Segment Base 
Address 

Figure 8. Protected Mode Addressing 

Physical Address 

'" I 
0 

Paging Physical 
Mechanism Address 

Memory Operand 
::i::::!::;;(. + J:::::::::::> Page Frame Base Address 
32~ , 

Segment 
Descriptor 

LDTR 

IDTR 

GDTR 

Linear Address ~ 
Address 

Figure 9. Paging and Segmentation 

15 0 

I LDT DESeR Selector I 

IDT Limit 

o 

o 
o 

o 

Program Invisible 
Automatically Loaded 
From LDT Descriptor 

Figure 10. Descriptor Table Registers 

Am386 Microprocessors for Personal Computers 

Selected 
Segment 

15021B-018 

4 Kb 

4Kb 

4 Kb 

Physical Page 
4Kb 

4 Kb 

4 Kb 

4 Kb 

15022B-005 

15021 8--020 



Each of the tables has a register associated with it: 
GDTR, LDTR, and IDTR (see Figure 1). The LGDT, 
LLDT, and LlDT instructions load the base and limit of 
the Global, Local, and Interrupt Descriptor Tables into 
the appropriate register. The SGDT, SLOT, and SlOT 
store the base and limit values. These are privileged 
instructions. 

Global Descriptor Table 

The Global Descriptor Table (GOT) contains descriptors 
which are available to all of the tasks in a system. The 
GOT can contain any type of segment descriptor except 
for interrupt and trap descriptors. Every Am386SX/SXL 
CPU system contains a GOT. 

The first slot of the Global Descriptor Table corresponds 
to the null selector and is not used. The null selector 
defines a null pOinter value. 

Local Descriptor Table 

LOTs contain descriptors which are associated with a 
given task. Generally, operating systems are designed 
so that each task has a separate LOT. The LOT may 
contain only code, data, stack, task gate, and call gate 
descriptors. LOTs provide a mechanism for isolating a 
given task's code and data segments from the rest of the 
operating system, while the GOT contains descriptors 
for segments which are common to all tasks. A segment 
cannot be accessed by a task if its segment descriptor 
does not exist in either the current LDTorthe GOT. This 
provides both isolation and protection for a task's seg­
ments while still allowing global data to be shared 
among tasks. 

Unlike the 6-byte GOT or lOT registers which contain a 
base address and limit, the visible portion of the LOT 
register contains only a 16-bit selector. This selector 
refers to a Local Descriptor Table descriptor in the GOT 
(see Figure 1). 

Interrupt Descriptor Table 

The third table needed for Am386SXlSXL microproces­
sor systems is the Interrupt Descriptor Table. The lOT 
contains the descriptors which point to the location of 
the up to 256 interrupt service routines. The lOT may 
contain only task gates, interrupt gates, and trap gates. 

31 
Segment Base 15-0 

AMD ~ 
The lOT should be at least 256 bytes in size in order to 
hold the descriptors for the 32 interrupts reserved for fu­
ture use. Every interrupt used by a system must have an 
entry in the lOT. The lOT entries are referenced by INT 
instructions, external interrupt vectors, and exceptions. 

Descriptors 

The object to which the segment selector points to is 
called a descriptor. Descriptors are eight byte quantities 
which contain attributes about a given region of linear 
address space. These attributes include the 32-bit base 
linear address of the segment, the 20-bit length and 
granularity of the segment, the protection level, read, 
write, or execute privileges, the default size of the oper­
ands (16 bit or 32 bit), and the type of segment. All of 
the attribute information about a segment is contained 
in 12 bits in the segment descriptor. Figure 11 shows 
the general format of a descriptor. All segments on the 
Am386SXlSXL microprocessor have three attribute 
fields in common: the P bit, the DPL bit, and the S bit. 
The P (Present) Bit is 1 if the segment is loaded in 
physical memory. If P = 0, then any attempt to access 
this segment causes a Not Present exception (number 
11). The Descriptor Privilege Level (DPL) is a two bit 
field which specifies the protection level, 0-3, 
associated with a segment. 

The Am386SXlSXL microprocessor has two main 
categories of segments: system segments and non­
system segments (for code and data). The segment bit 
(S) determines if a given segment is a system segment 
or a code or data segment. If the S bit is 1, then the 
segment is either a code or data segment; if it is 0, then 
the segment is a system segment. 

Code and Data Descriptors (5=1) 

Figure 12 shows the general format of a code and data 
descriptor, and Table 11 illustrates how the bits in the 
Access Right Byte are interpreted. 

Code and data segments have several descriptor fields 
in common. The accessed bit (A) is set whenever 
the processor accesses a descriptor. The granularity 
bit (G) specifies if a segment length is byte-granular or 
page-granular. 

o 
Segment Limit 15-0 

Byte Address 
o 

Base 31-24 I G I 0 10 I AVL 11~~~6 P I DPL I S I Type I A I Base 
23-16 +4 

Base Base Address of the segment 
Limit The length of the segment 
P Present Bit (1 = Present, 0 = Not Present) 
DPL Descriptor Privilege Level 0-3 
S Segment Descriptor (0 = System Descriptor, 

1 = Code or Data Segment Descriptor) 
Type Type of Segment 

A Accessed Bit 
G Granularity Bit (1 = Segment length is page·granular, 

0= Segment length is byte-granular) 
D Default Operation Size (recognized in code segment 

descriptors only; 1 = 32-bit segment, 0 = IS-bit segment) 
o Bit must be zero for compatibility with future processors 
AVL Available field for user or OS 

Figure 11. Segment Descriptors 

Am386SXlSXL Microprocessor Data Sheet 

15021B-022 

167 



~ AMD 

31 . 
Segment Base 15-0 

Base 31-24 I G I D I 0 I AVL 11~~1i~ 
DIB 1 = Default Instruction Attributes are 32 bits 

0= Default Instruction Attributes are 16 bits 

AVL Available field for user or as 

G 

o 

o 
Segment Limit 15-0 

Byte Address 

o 

Access Rights Bytes I Base 
23-16 

Granularity Bit 1 = Segment length is page-granular 
0= Segment length is byte-granular 

Bit must be zero for compatibility with future processors 

+4 

150218-023 

Figure 12. Code and Data Descriptors 

31 
Segment Base 15-0 

Base 31-24 I G I D I 0 I 0 11~~li~ 
Type Definition 

o Invalid 
1 Available 80286 TSS 
2 LDT 
3 Busy 80286 TSS 
4 80286 Call Gate 

Segment Limit 15-0 

pi DPL 10 1 Type I Base 
23-16 

Type Definition 

8 Invalid 
9 Available TSS 
A Undefined (Reserved) 
B Busy TSS 

o Byte Address 

o 

+4 

C Am386SX/SXL CPU Call Gate 
5 Task Gate (for 80286 or Am386SX/SXL CPU Task) D Undefined (Reserved) 
6 80286 Interrupt Gate E Am386SX/SXL CPU Interrupt Gate 
7 80286 Trap Gate F Am386SX/SXL CPU Trap Gate 

15021B-024 

Figure 13. System Descriptors 

Table 11. Access Rights Byte Definition for Code and Data Descriptors 

Bit 
Position Name Function 

7 Present (P) P=1 Segment is mapped into physical memory. 
P=O No mapping to physical memory exists, Base and Limit are 

not used. 

6-5 Descriptor Privilege Levels (DPL) Segment privilege attribute used in privilege tests. 

4 Segment Descriptor (S) S=1 Code or Data (includes stacks) Segment Descriptor. 
s=o System Segment Descriptor or Gate Descriptor. 

3 Executable (E) E=O Descriptor type is data segment: 
If Data 

2 Expansion Direction (ED) ED=O Expand up segment, offsets must be ,0; limit. Segment 
ED=1 Expand down segment, offsets must be > limit. 

(S=I, 
1 Writeable (W) W=O Data segment may not be written into. E=O) 

W=1 Data segment may be written into. 

3 Executable (E) E=1 Descriptor type is code segment: 

} 
If Code 

2 Conforming (C) C=1 Code segment may only be executed when Segment 
CPL2DPL and CPL remains unchanged. 

(S=1, 
1 Readable (R) R=O Code segment may not be read. E=I) 

R=1 Code segment may be read. 

0 Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

168 Am386 Microprocessors for Personal Computers 



System Descriptor Formats (S=O) 

System segments describe information about operating 
system tables, task, and gates. Figure 13 shows the 
general format of system segment descriptors, and the 
various types of system segments. Am386Sx/SXL CPU 
system descriptors (which are the same as Am386Dx/ 
DXL CPU system descriptors) contain a 32-bit base lin­
ear address and a 20-bit segment limit. 80286 system 
descriptors have a 24-bit base address and a i6-bit 
segment limit. 80286 system descriptors are identified 
by the upper 16 bits being all zero. 

Differences Between Am386SXlSXL Microproces­
sor and 80286 Descriptors 

In order to provide operating system compatibility with 
the 80286, the Am386Sx/SXL CPU supports all of the 
80286 segment descriptors. The 80286 system 
segment descriptors contain a 24-bit base address and 
16-bit limit, while the Am386Sx/SXL CPU system 
segment descriptors have a 32-bit base address, a 
20-bit limit field, and a granularity bit. The word count 
field specifies the number of 16-bit quantities to copy for 
80286 call gates and 32-bit quantities for Am386SX/ 
SXL CPU call gates. 

Selector Fields 

A selector in Protected Mode has three fields: Local or 
Global Descriptor Table Indicator (TI), Descriptor Entry 
Index (Index), and Requestor (the selector's) Privilege 
Level (RPL), as shown in Figure 14. The TI bit selects 
either the Global Descriptor Table or the Local 
Descriptor Table. The Index selects one of 8K descrip­
tors in the appropriate descriptor table. The RPL bits 
allow high speed testing of the selector's privilege 
attributes. 

Segment 
Register 

Selector . 

0- - - - - - - - - 0 

Index 

N I 

6 

5 

4 

3 

2 

1 

0 

Table 
Indicator 

TI=1 

vii ..... 
v 

Descriptor 

I 

Local Descriptor Table 

AMD ~ 
Segment Descriptor Cache 

In addition to the selector value, every segment register 
has a segment descriptor cache register associated 
with it. Whenever a segment register's contents are 
changed, the 8-byte descriptor associated with the 
selector is automatically loaded (cached) on the chip. 
Once loaded, all references to that segment use the 
cached descriptor information instead of reaccessing 
the descriptor. The contents of the descriptor cache are 
not visible to the programmer. Since descriptor caches 
only change when a segment register is changed, 
programs which modify the descriptor tables must 
reload the appropriate segment registers after changing 
a descriptor's value. 

Protection 

The Am386Sx/SXL microprocessor has four levels of 
protection which are optimized to support a multitasking 
operating system and to isolate and protect user 
programs from each other and the operating system. 
The privilege levels control the use of privileged 
instructions, I/O instructions, and access to segments 
and segment descriptors. The Am386Sx/SXL micro­
processor also offers an additional type of protection on 
a page basis when paging is enabled. 

The four-level hierarchical privilege system is an 
extension of the user/supervisor privilege mode 
commonly used by minicomputers. The user/supervisor 
mode is fully supported by the Am386Sx/SXL micropro­
cessor paging mechanism. The Privilege Levels (PL) 
are numbered 0 through 3. Level 0 is the most privileged 
level. 

NI 
Descriptor vii 
Number 

..... 
v 

6 

5 

4 

3 

2 

1 

0 Null 

Global Descriptor Table 15021B-027 

Figure 14. Example Descriptor Selection 

Am386Sx/SXL Microprocessor Data Sheet 169 



.:1 AMD 

Table 12. Descriptor Types Used for Control Transfer 

Descriptor Descriptor 
Control Transfer Types Operation Types Referenced Table 

Intersegment w~hin the same privilege level JMP, CALL, RET, IRET' Code Segment GOT/LOT 

Intersegment to the same or higher privilege level CALL Call Gate GOT/LOT 

Interrupt within task may change CPL Interrupt Instruction, Trap or Interrupt lOT 
Exception, External Gate 
Interrupt 

Intersegment to a lower privilege level RET,IRET' Code Segment GOT/LOT 
(changes task CPL) 

CALL, JMP Task State GOT 
Segment 

CALL, JMP Task Gate GOT/LOT 

TaskSw~ch IRET" Task Gate lOT 
Interrupt Instruction, 
Exception, External 

'NT (Nested Task bit of flag register) = 0 
""NT (Nested Task bit of flag register) = 1 

Rules of Privilege 

Interrupt 

The Am386SXlSXL microprocessor controls access to 
both data and procedures between levels of a task, 
according to the following rules: 

-Data stored in a segment with privilege level p can be 
accessed only by code executing at a privilege level at 
least as privileged as p. 

-A code segment/procedure with privilege level p can 
only be called by a task executing at the same or 
lesser privilege level than p. 

Privilege Levels 

At any point in time, a task on the Am386SXlSXL micro­
processor always executes at one of the four privilege 
levels. The Current Privilege Level (CPL) specifies what 
the task's privilege level is. A task's CPL may only be 
changed by control transfers through gate descriptors to 
a code segment with a different privilege level. Thus, an 
application program running at PL=3 may call an 
operating system routine at PL = 1 (via agate) which 
would cause the task's CPL to be set to 1 until the 
operating system routine was finished. 

Selector Privilege (RPL) 

The privilege level of a selector is specified by the RPL 
field. The selector's RPL is only used to establish a less 
trusted privilege level than the current privilege level of 
the task for the use of a segment. This level is called the 
task's Effective Privilege Level (EPL). The EPL is 
defined as being the least privileged (numerically larger) 
level of a task's CPL and a selector's RPL. The RPL is 
most commonly used to verify that pointers passed to an 
operating system procedure do not access data that is 

of higher privilege than the procedure that originated the 
pOinter. Since the originator of a selector can specify 
any RPL value, the Adjust RPL (ARPL) instruction is 
provided to force the RPL bits to the originator's CPL. 

liD Privilege 

The I/O Privilege Level (IOPL) lets the operating system 
code executing at CPL = 0 define the least privileged 
level at which I/O instructions can be used. An 
Exception 13 (General Protection Violation) is gen­
erated if an I/O instruction is attempted when the CPL of 
the task is less privileged then the 10PL. The 10PL is 
stored in bits 13 and 14 of the EFLAGS register. The 
following instructions cause an Exception 13 if the CPL 
is greater than 10PL: IN, INS, OUT, OUTS, STI, CLI, 
and LOCK prefix. 

DescrIptor Access 

There are basically two types of segment accesses: 
those involving code segments such as control trans­
fers, and those involving data accesses. Determining 
the ability of a task to access a segment involves the 
type of segment to be accessed, the instruction used, 
the type of descriptor used, and CPL, RPL, and DPL as 
described above. 

Any time an instruction loads a data segment register 
(OS, ES, FS, GS) the Am386SXlSXL CPU makes pro­
tection validation checks. Selectors loaded in the OS, 
ES, FS, GS registers must refer only to data segment or 
readable code segments. 

Finally, the privilege validation checks are performed. 
The CPL is compared to the EPL and if the EPL is more 
privileged than the CPL, an Exception 13 (General 
Protection Fault) is generated. 

170 Am386 Microprocessors for Personal Computers 



p--------. 
: Access TSS 

, , 
: Rights Limit ~ 
, I 

: BASE ~ 

131 Program 0 I 

: Invisible : 

Task Register 

TR I Selector 

15 0 

31 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

0000000000000000 

BIT MAP OFFSET(15:0) 

I ':" Available 
I rp 

31 24 23 

63 56 55 

95 88 87 

I~~ 
65407 

65439 

65471 

65503 

65535 

31 

16 15 

ESPO 

ESP1 

ESP2 

CR3 

EIP 

EFLAGS 

EAX 

ECX 

EDX 

EBX 

ESP 

EBP 

ESI 

EDI 

0000000000000000 

........... 
System Status, etc. 

in TSS 

16 15 

48 47 

80 79 

1/0 Permission Bitmap 

(One Bit per Byte 1/0 
Port. Bitmap may be 

truncated using TSS Limit.) 

TSS Descriptor (in GDT) 

8 7 

40 39 

72 71 

AMD ~ 

O.-J 
TSS 
Base 

Back Link 0 

4 

SSO 8 

C 
Stacks 

for 
SS1 10 CPL 

14 
0,1,2 

SS2 18 

1C 

20 

24 

28 

2C 

30 

34 

38 
Current 

Task 
3C State 

40 

44 

ES 48 

CS 4C 

SS 50 

DS 54 

FS 58 

GS 5C 

LDT 60 

I T 64 
-s.....Debug 

68 Trap 

r; 0 Bit 

0, 

32 BIT_M AP_OFFSET 

64 

96 OFFS ET+C 

OFFS ET + 10 

r; ~ 
OFFS ET +1FEC 

OFFS ET + 1FFO 

OFFS ET +1FF4 

65472 OFFS ET + 1FF8 

65504 OFFS ET + 1FFC 

Segment Base 15-0 Segment Limit 15-0 

Type=9: Available TSS. 
Type = B: Busy TSS. 

Figure 15. TSS and TSS Registers 

Am386Sx/SXL Microprocessor Data Sheet 

Base 
23-16 

150228-006 

171 



AMD 

3130292827262524232221201918171615141312111098 765 43210 

3 
6 

9 
12 

1 1 
3 0 

5 1 
7 0 

~~ 

1 
0 

1 
0 

1 1 0 1 
1 0 0 0 

1 1 1 1 
0 0 0 0 

1 0 0 0 0 0 1 
1 1 1 1 0 0 1 

1 1 1 1 1 1 1 
0 0 0 0 0 0 0 

1 1 1 0 1 0 0 1 1 o 0 0 o 0 0 o 0 1 1 
0 1 0 1 1 1 1 1 1 o 0 1 1 1 1 1 0 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 0 0 0 o 0 o 0 o 0 0 0 o 0 0 000 0 

1 1 1 1 1 1 1 1 

~ ~ 
110 Ports Accessible: 2 --t 9, 12, 13, 15, 20 --t 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 --t 60, 62, 63, 96 --t 127 

15022~32b 
Figure 16. Sample I/O Permission Bit Map 

The rules regarding the stack segment are slightly differ­
ent than those involving data segments. Instructions 
that load selectors into SS must refer to data segment 
descriptors for writeable data segments. The OPL and 
RPL must equal the CPL of all other descriptor types or a 
privilege level violation will cause an Exception 13. A 
stack not present fault causes an Exception 12. 

Privilege Level Transfers 

Inter-segment control transfers occur when a selector is 
loaded in the CS register. For a typical system most of 
these transfers are simply the result of a call or a jump to 
another routine. There are five types of control transfers 
which are summarized in Table 12. Many of these 
transfers result in a privilege level transfer. Changing 
privilege levels is done only by control transfers, using 
gates, task switches, and interrupt or trap gates. 

Control transfers can only occur if the operation which 
loaded the selector references the correct descriptor 
type. Any violation of these descriptor usage rules will 
cause an Exception 13. 

CALL Gates 
Gates provide protected indirect CALLs. One of the 
major uses of gates is to provide a secure method of 
privilege transfers within a task. Since the operating 
system defines all of the gates in a system, it can ensure 
that all gates only allow entry into a few trusted 
procedures. 

Task Switching 

A very important attribute of any multitasking/multi-user 
operating system is its ability to rapidly switch between 
tasks or processes. The Am386Sx/SXL microproces­
sor directly supports this operation by providing a task 
switch instruction in hardware. The task switch oper­
ation saves the entire state of the machine (all of the 
registers, address space, and a link to the previous 
taSk), loads a new execution state, performs protection 
checks, and commences execution in the new task. Like 
transfer of control by gates, the task switch operation is 
invoked by executing an intersegment JMP or CALL 
instruction which refers to a Task State Segment (TSS), 
or a task gate descriptor in the GOT or LOT. An INT n 
instruction, exception, trap, or external interrupt may 

also invoke the task switch operation if there is a task 
gate descriptor in the associated lOT descriptor slot. 

The TSS descriptor points to a segment (see Figure 15) 
containing the entire execution state. A task gate 
descriptor contains a TSS selector. The Am386Sx/SXL 
microprocessor supports both 80286 and Am386Sx/ 
SXL CPU TSSs. The limit of an Am386Sx/SXL CPU 
TSS must be greater than 64H (2BH for a 80286 TSS), 
and can be as large as 16 Mb. In the additional TSS 
space, the operating system is free to store additional 
information such as the reason the task is inactive the 
time the task has spent running, or open files belonging 
to the task. 

Each task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
Am386Sx/SXL microprocessor called the Task State 
Segment Register (TR). This register contains a 
selector referring to the task state segment descriptor 
that defines the current TSS. A hidden base and limit 
register associated with TSS descriptor are loaded 
whenever TR is loaded with a new selector. Returning 
from a task is accomplished by the IRET instruction. 
When IRET is executed, control is returned to the task 
which was interrupted. The currently executing task's 
state is saved in the TSS and the old task state is 
restored from its TSS. 

Several bits in the flag register and machine status word 
(CRO) give information about the state of a task which is 
useful to the operating system. The Nested Task bit 
(NT) controls the function of the IRET instruction. If 
NT = 0, the IRET instruction performs the regular return. 
If NT = 1, IRETperforms a task switch operation base to 
the previous task. The NT bit is set or reset in the 
following fashion: 

When a CALL or INT instruction initiates a task 
switch, the new TSS will be marked busy and the 
back link field of the new TSS set to the old TSS 
selector. The NT bit olthe new task is set by CALL 
or INT initiated task switches. An interrupt that 
does not cause a task switch will clear NT (the NT 
bit will be restored after execution of the interrupt 
handler). NT may also be set or cleared by POPF 
or IRET instructions. 

172 Am386 Microprocessors for Personal Computers 



The Am386Sx/SXL microprocessor task state seg­
ment is marked busy by changing the descriptor type 
field from Type 9 to Type OSH. An 80286 TSS is marked 
busy by changing the descriptor type field from Type 1 
to Type 3. Use of a selector that references a busy task 
state segment causes an Exception 13. 

The VM (Virtual Mode) bit isusedto indicate if ataskis a 
Virtual 8086 task. If VM = 1 then the tasks will use the 
Real Mode addressing mechanism. The Virtual 8086 
environment is only entered and exited by a task switch. 

The coprocessor's state is not automatically saved 
when a task switch occurs. The Task Switched Sit (TS) 
in the CRO register helps deal with the coprocessor's 
state in a multitasking environment. Whenever the 
Am386Sx/SXL microprocessor switches tasks, it sets 
the TS bit. The Am386Sx/SXL CPU detects the first use 
of a processor extension instruction after a task switch 
and causes the processor extension Not Available 
Exception 7. The exception handler for Exception 7 
may then decide whether to save the state of the 
coprocessor. 

The T bit in the Am386Sx/SXL microprocessor TSS 
indicates that the processor should generate a debug 
exception when switching to a task. If T = 1, then 
upon entry to a new task a debug Exception 1 will be 
generated. 

Initialization and Transition To Protected Mode 

Since the Am386Sx/SXL microprocessor begins 
executing in Real Mode immediately after RESET, it is 
necessary to initialize the system tables and registers 
with the appropriate values. The GOT and lOT registers 
must refer to a valid GOT and lOT. The lOT should be at 
least 256 bytes long, and the GOT must contain 
descriptors for the initial code and data segments. 

Protected Mode is enabled by loading CRO with PE bit 
set. This can be accomplished by using the MOV CRO, 
RIM instruction. After enabling Protected Mode, the 

AMD ~ 
next instruction should execute an intersegment JMP 
to load the CS register and flush the instruction decode 
queue. The final step is to load all of the data segment 
registers with the initial selector values. 

An alternate approach to entering Protected Mode is to 
use the built in task-switch to load all of the registers. In 
this case the GOT would contain two TSS descriptors in 
addition to the code and data descriptors needed forthe 
first task. The first JMP instruction in Protected Mode 
would jump to the TSS causing a task switch and load­
ing all of the registers with the values stored in the TSS. 
The Task State Segment Register should be initialized 
to point to a valid TSS descriptor. 

Paging 
Paging is another type of memory management useful 
for virtual memory multitasking operating systems. Un­
like segmentation, which modularizes programs and 
data into variable length segments, paging divides pro­
grams into multiple uniform size pages. Pages bear no 
direct relation to the logical structure 01 a program. 
While segment selectors can be considered the logical 
name of a program module or data structure, a page 
most likely corresponds to only a portion of a module or 
data structure. 

Page Organization 

The Am386Sx/SXL microprocessor uses two levels of 
tables to translate the linear address (from the segmen­
tation unit) into a physical address. There are three 
components to the paging mechanism of the Am386SX/ 
SXL CPU: the Page Directory, the Page Tables, and the 
page itself (Page Frame). All memory-resident ele­
ments of the Am386Sx/SXL microprocessor paging 
mechanism are the same size, namely 4 Kb. A uniform 
size for all of the elements simplifies memory allocation 
and reallocation schemes, since there is no problem 
with memory fragmentation. Figure 17 shows how the 
paging mechanism works. 

Two Level Paging Scheme 

31 22 12 0 

~ Directory I Table I Offset I User Memory 
Linear Address 

10/" 10Y 
12 

/ , 

~ 31 a 
Address 

31 a 31 a 

CRa J t CR1 ~~ ---t 
CR2 

Page Table 

aFFFFFFH 

a 

CR3 Root 

Control Registers 
Directory 

150228-036 

Figure 17. Paging Mechanism 

Am386SXlSXL Microprocessor Data Sheet 173 



~ AMD 

31 12 11 10 9 8 7 6 5 4 3 2 o 

Page Table Address 31-12 

150228--037 

Figure 18. Page Directory Entry (Points to Page Table) 

31 12 

Page Frame Address 31-12 

150228--038 
Figure 19. Page Table Entry (Points to Page) 

Page Fault Register 
CR2 is the Page Fault Linear Address register. It holds 
the 32-bit linear address which caused the last Page 
Fault detected. 

Page Descriptor Base Register 
CR3 is the Page Directory Physical Base Address 
Register. It contains the physical starting addres~ o'f the 
Page Directory (this value is truncated to a 24-blt value 
associated with the Am386SXlSXL CPU's 16-Mb 
physical memory limitation). The lower 12 bits of CR3 
are always zero to ensure that the Page Directory is 
always page aligned. Loading it with a MOV CR3, reg 
instruction causes the Page Table entry cache to be 
flushed, as will a task switch through a TSS which 
changes the value of CRO. 

Page Directory 
The Page Directory is 4-Kb long and allows up to 1024 
Page Directory entries. Each Page Directory entry 
contains information about the Page Table and the 
address of the next level of tables, the Page Tables. The 
contents of a Page Directory entry are shown in Figure 
18. The upper 10 bits of the linear address (A31-A22) 
are used as an index to selectthe co rrect Page Dlrecto ry 
entry. 

The Page Table address contains the upper 20 bits of a 
32-bit physical address that is used as the base address 
for the next set of tables, the Page Tables. The lower 
12 bits of the Page Table addresses appear on 4-Kb 
boundaries. For an Am386DXlDXL CPU system, the 
upper 20 bits will select one of 220 Page Tables, but for 
an Am386SXlSXL microprocessor system, the upper 
20 bits only select one of 212 Page Tables. Again, this is 
because the Am386SXlSXL CPU is limited to a 24-bit 
physical address, and the upper 8 bits (A31-A24) are 
truncated when the address is output on its 24 address 
pins. 

Page Tables 
Each Page Table is 4-Kb long and allows up to. 1 0~4 
Page Table entries. Each Page Table entry contains in­
formation about the Page Frame and its address. The 
contents of a Page Table entry are shown in Figure 
19. The middle 10 bits of the linear address (A21-A 12) 

are used as an index to select the correct Page Table 
entry. 

The Page Frame address contains the upper 20 bits of 
a 32-bit physical address which is used as the base 
address for the Page Frame. The lower 12 bits of the 
Page Frame address are zero so that the Page Frame 
addresses appear on 4-Kb boundaries. For an 
Am386DXlDXL CPU system, the upper 20 bits will se­
lect one of 220 Page Frames, but for an Am386SXI 
SXL microprocessor system, the upper 20 bits only 
select one of 212 Page Frames. Again, this is because 
the Am386SXlSXL CPU is limited to a 24-bit physical 
address space, and the upper 8 bits (A31-A24) are 
truncated when the address is output on its 24 address 
pins. 

Page DirectorylTable Entries 
The lower 12 bits of the Page Table entries and Page Di­
rectory entries contain statistical information about 
pages and Page Tables, respectively. The P (Present) 
bit indicates if a Page Directory or Page Table entry can 
be used in address translation. If P = 1, the entry can be 
used for address translation. If P = 0, the entry cannot 
be used fortranslation. All of the other bits, are available 
for use by the software. For example, the remaining 31 
bits could be used to indicate where on disk the page is 
stored. 

The A (Accessed) bit is set by the Am386S~SXL CPU 
for both types of entries before a read or wnte access 
occurs to an address covered by the entry. The D (Dirty) 
bit is set to 1 before a write to an address covered by that 
Page Table entry occurs. The D bit is und~fined for Page 
Directory entries. When the P, A, and D bits are updated 
by the Am386SXlSXL CPU, the processor generates a 
Read-Modify-Write cycle which locks the bus and pre­
vents conflicts with other processors or peripherals. 
Software which modifies these bits should use the 
LOCK prefix to ensure the integrity ofthe Page Tables in 
multi-master systems. 

The 3 bits marked system software definable (in Figures 
18 and 19) are software definable. System software 
writers are free to use these bits for whatever purpose 
they wish. 

174 Am386 Microprocessors for Personal Computers 



Page Level Protection (R/w, UlS Bits) 

The Am386SXJSXL microprocessor provides a set of 
protection attributes for paging systems. The paging 
mechanism distinguishes between two levels of 
protection: User, which corresponds to level 3 of the 
segmentation based protection; and Supervisor, which 
encompasses all of the other protection levels (0, 1, 
and 2). Programs executing at Level 0, 1, or 2 bypass 
the page protection, although segmentation-based 
protection is still enforced by the hardware. 

The U/S and RIW bits are used to provide User/ 
Supervisor and Read/Write protection for individual 
pages, or for all pages covered by a Page Table 
Directory entry. The U/S and R/W bits in the second 
level Page Table entry apply only to the page described 
by that entry. The U/S and R/W bits in the first level Page 
Directory Table apply to all pages described by the Page 
Table pOinted to by that directory entry. The U/S and 
R/W bits for a given page are obtained by taking the 
most restrictive of the U/S and RIW bits from the Page 
Directory Table entries and using these bits to address 
the page. 

Translation Look·Aside Buffer 

The Am386SXJSXL microprocessor paging hardware is 
designed to support demand paged virtual memory 
systems. However, performance would degrade 
substantially if the processorwas required to access two 
levels of tables for every memory reference. To solve 
this problem, the Am386SXJSXL CPU keeps a cache of 
the most recently accessed pages; this cache is called 
the Translation Look-Aside Buffer (TLB). The TLB is 
a four-way set associative 32-entry Page Table cache. 
It automatically keeps the most commonly used Page 
Table entries in the processor. The 32-entry TLB 
coupled with a 4K page size results in coverage of 128 
Kb of memory addresses. For many common multitask­
ing systems, the TLB will have a hit rate of greater than 
98%. This means that the processor will only have to 
access the two-level page structure for less than 2% of 
all memory references. 

Paging Operation 

The paging hardware operates in the following fashion. 
The paging unit hardware receives a 32-bit linear 
address from the segmentation unit. The upper 20 linear 
address bits are compared with all 32 entries in the TLB 
to determine if there is a match. If there is a match (Le., a 
TLB hit), then the 24-bit physical address is calculated 
and is placed on the address bus. 

If the Page Table entry is not in the TLB, the Am386SXJ 
SXL microprocessor will read the appropriate Page 
Directory entry. If P = 1 onthe Page Directory entry, indi­
cating that the Page Table is in memory, then the 
Arn386SXJSXL CPU will read the appropriate Page 
Table entry and set the Access bit. If P = 1 on the 
Page Table entry, indicating thatthe page is in memory, 
the Am386SXJSXL microprocessor will update the 
Access and Dirty bits as needed and fetch the operand. 
The upper 20 bits of the linear address, read from the 

AMD ~ 
Page Table, will be stored in the TLB for future 
accesses. If P = 0 for either the Page Directory entry or 
the Page Table entry, then the processor will generate a 
Page Fault (Exception 14). 

The processor will also generate a Page Fault 
(Exception 14) if the memory reference violated the 
page protection attributes. CR2 will hold the linear 
address which caused the Page Fault. Since Exception 
14 is classified as a fault, CS:EIP will pOint to the 
instruction causing the Page Fault. The 16-bit error 
code, pushed as part of the Page Fault handler, will 
contain status bits which indicate the cause of the Page 
Fault. 

The 16-bit error code is used by the operating system to 
determine how to handle the Page Fault. Figure 20 
shows the format of the Page Fault error code and the 
interpretation of the bits. Even though the bits in the 
error code (U/S, W/R, and P) have similar names as the 
bits in the Page Directory/Table Entries, the interpreta­
tion of the error code bits is different. Figure 21 indicates 
what type of access caused the Page Fault. 

UlS: The U/S bit indicates whether the access causing 
the fault occurred when the processor was executing in 
User Mode (U/S = 1) or in Supervisor mode (U/S = 0). 

W/R: The W/R bit indicates whether the access causing 
the fault was a Read (W/R = 0) or a Write (W/R = 1). 

P: The P bit indicates whether a Page Fault was caused 
by a not-present page (P = 0), or by a page level protec­
tion violation (p= 1). 

U = Undefined 

15 3 2 1 0 

lululululululululululululul~I~lpl 
Figure 20. Page Fault Error Code Format 

UlS W/R Access Type 

0 0 Supervisor' Read 
0 1 Supervisor Write 
1 0 User Read 

1 1 User Write 

'Descriptor table access Will fault With U/S = 0, even If the program IS 
executing at level 3. 

Figure 21. Type of Access Causing Page Fault 

Operating System Responsibilities 

When the operating system enters or exits paging mode 
(by setting or resetting bit 31 in the CRO register), a 
short JM P must be executed to flush the Am386SXJSXL 
microprocessor's prefetch queue. This ensures that all 
instructions executed after the address mode change 
will generate correct addresses. 

The Am386SXJSXL microprocessor takes care of the 
page address translation process, relieving the burden 

Am386Sx/SXL Microprocessor Data Sheet 175 



~ AMD 

from an operating system in a demand-paged system. 
The operating system is responsible for setting up the 
initial Page Tables and handling any Page Faults. The 
operating system is also required to invalidate (Le., 
flush) the TLB when any changes are made to any of the 
Page Table entries. The operating system must reload 
CR3 to cause the TLB to be flushed. 

Setting up the tables is simply a matter of loading CR3 
with the address of the Page Directory, and allocating 
space forthe Page Directory and the Page Tables. The 
primary responsibility of the operating system is to 
implement a swapping policy and handle all of the 
Page Faults. 

A final concern of the operating system is to ensure that 
the TLB cache matches the information in the paging 
tables. In particular, anytime the operating systems sets 
the P (Present) bit of Page Table entry to zero, the TLB 
must be flushed by reloading CR3. Operating systems 
may want to take advantage of the fact that CR3 is 
stored as part of a TSS, to give every task or group of 
tasks its own set of Page Tables. 

Virtual 8086 Environment 
The Am386SXlSXL microprocessor allows the execu­
tion of 8086 application programs in both Real Mode 
and in Virtual 8086 Mode. The Virtual 8086 Mode allows 
the execution 01 8086 applications, while still allowing 
the system designer to take full advantage of the 
Am386SXlSXL CPU's protection mechanism. 

Virtual 8086 Addressing Mechanism 

One of the major differences between Am386SXlSXL 
CPU Real and Protected modes is how the segment 
selectors are interpreted. When the processor is 
executing in Virtual 8086 Mode, the segment registers 
are used in a fashion identical to Real Mode. The 
contents of the segment register are shifted left four 
bits and added to the offset to form the segment base 
linear address. 

The Am386SXlSXL microprocessor allows the oper­
ating system to specify which programs use the 8086 
address mechanism and which programs use Protected 
Mode addressing on a per task basis. Through the use 
of paging, the 1-Mb address space of the Virtual Mode 
task can be mapped to anywhere in the 4-Gb linear 
address space of the Am386SXlSXL CPU. Like Real 
Mode, Virtual Mode addresses that exceed 1 Mb will 
cause an Exception 13. However, these restrictions 
should not prove to be important, because most tasks 
running in Virtual 8086 Mode will simply be existing 
8086 application programs. 

Paging in Virtual Mode 

The paging hardware allows the concurrent running of 
multiple Virtual Mode tasks. and provides protection and 
operating system isolation. Although it is not strictly 
necessary to have the paging hardware enabled to run 
Virtual Mode tasks, it is needed in order to run multiple 
Virtual Mode tasks or to relocate the address space of a 

Virtual Mode task to physical address space greater 
than 1 Mb. 

The paging hardware allows the 20-bit linear address 
produced by a Virtual Mode program to be divided into 
as many as 256 pages. Each one of the pages can be 
located anywhere within the maximum 16-Mb physical 
address space of the Am386SXlSXL microprocessor. In 
addition, since CR3 (the Page Directory Base Register) 
is loaded by a task switch, each Virtual Mode task can 
use a different mapping scheme to map pages to 
different physical locations. Finally, the paging 
hardware allows the sharing of the 8086 operating 
system code between multiple 8086 applications. 

Protection and 110 Permission Bit Map 

All Virtual Mode programs execute at privilege level 3. 
As such, Virtual Mode programs are subject to all of the 
protection checks defined in Protected Mode. This 
is differentfrom Real Mode, which implicitly is executing 
at privilege level O. Thus, an attempt to execute a 
privileged instruction in Virtual Mode will cause an 
Exception 13 fault. 

The following are privileged instructions, which may be 
executed only at Privilege level O. Attempting to execute 
these instructions in Virtual 8086 Mode (or anytime 
CPL ~ 0) causes an Exception 13 fault: 

LIDT; 
LGDT; 
LMSW; 
CLTS; 
HLT; 

MOV DRn,REG; 
MOV TRn, reg; 
MOV CRn,reg; 

MOV reg,DRn; 
MOV reg,TRn; 
MOV reg,CRn; 

Several instructions, particularly those applying to the 
multitasking and the protection model, are available 
only in Protected Mode. Therefore, attempting to exe­
cute the following instructions in Real Mode or in Virtual 
8086 Mode generates an Exception 6 fault: 

LTR; STR; 
LLDT; SLDT; 
LAR; VERR; 
LSL; VERW; 
ARPL; 

The instructions which are IOPL sensitive in Protected 
Mode are: 

IN; STI; 
OUT; CLI 
INS; 
OUTS; 
REP INS; 
REP OUTS; 

In Virtual 8086 Mode the following instructions are IOPL 
sensitive: 

INT n; 
PUSHF; 
POPF; 

STI; 
CLI; 
IRET; 

176 Am386 Microprocessors for Personal Computers 



The PUSHF, POPF, and IRET instructions are 10PL 
sensitive in Virtual 8086 Mode only. This provision 
allows the IF flag to be virtualized to the virtual 8086 
Mode program. The INT n software interrupt instruction 
is also 10PL sensitive in Virtual 8086 Mode. Note that 
the INT 3, INTO, and BOUND instructions are not 10PL 
sensitive in Virtual 8086 Mode. 

The lID instructions that directly refer to addresses in 
the processor's lID space are IN, INS, OUT, and OUTS. 
The Am386Sx/SXL microprocessor has the ability to 
selectively trap references to specific lID addresses. 
The structure that enables selective trapping is the lID 
Permission Bit Map in the TSS segment (see Figures 15 
and 16). The lID permission map is a bit vector. The size 
of the map and its location in the TSS segment are 
variable. The processor locates the lID permission map 
by means of the lID map base field in the fixed portion of 
the TSS. The lID map base field is 16-bits wide and 
contains the offset of the beginning of the lID permission 
map. 

In protected mode, when an lID instruction (IN, INS, 
OUT, or OUTS) is encountered, the processor first 
checks whether CPL ~ 10PL. Ifthis condition is true, the 
I/O operation may proceed. If not true, the processor 
checks the lID permission map (in Virtual 8086 Mode, 
the processor consults the map without regard for the 
10PL). 

Each bit in the map corresponds to an lID port byte 
address; for example, the bit for port 41 is found at lID 
map base +5, bit offset 1. The processor tests all the bits 
that correspond to the lID addresses spanned by an lID 
operation; for example, a Oword operation tests four 
bits corresponding to four adjacent byte addresses. If 
any tested bit is set, the processor signals a general 
protection exception. If all the tested bits are zero, the 
lID operations may proceed. 

It is not necessary for the lID permission map to 
represent all the lID addresses. lID addresses not 
spanned by the map are treated as if they had one-bits in 
the map. The lID map base should be at least one byte 
less than the TSS limit; the last byte beyond the I/O 
mapping information must contain all 1 s. 

Becausethe I/O permission map is inthe TSS segment, 
different tasks can have different maps. Thus, the 
operating system can allocate ports to a task by 
changing the I/O permission map in the task's TSS. 

Imponant Implementation Note: Beyond the last byte 
of I/O mapping information in the lID permission bit map 
must be a byte containing all 1 s. The byte of all 1 s must 
be within the limit of the Am386Sx/SXL CPU TSS 
segment (see Figure 15). 

Interrupt Handling 
In order to fully support the emulation of an 8086 
machine, interrupts in Virtual 8086 Mode are handled in 
a unique fashion. When running in Virtual Mode all 
interrupts and exceptions involve a privilege change 
back to the host Arn386Sx/SXL microprocessor 

AMD ~ 
operating system. The Am386Sx/SXL CPU operating 
system deter-mines if the interrupt comes from a 
Protected Mode application, or from a Virtual Mode 
program, by examining the VM bit in the EFLAGS image 
stored on the stack. 

When a Virtual Mode program is interrupted, and 
execution passes to the interrupt routine at level 0, the 
VM bit is cleared. However, the VM bit is still set in the 
EFLAGS image on the stack. 

The Am386Sx/SXL microprocessor operating system 
in turn handles the exception or interrupt and then 
returns control to the 8086 program. The Am386SX/ 
SXL niicroprocessor operating system may choose to 
let the 8086 operating system handle the interrupt, or it 
may emulate the function of the interrupt handler. For 
example, many 8086 operating system calls are 
accessed by PUSHing parameters on the stack, and 
then executing an INT n instruction. If the 10PL is set to 
0, then all INT n instructions will be intercepted by the 
Am386Sx/SXL CPU operating system. 

An Am386Sx/SXL microprocessor operating system 
can provide a Virtual 8086 environment which is totally 
transparent to the application software by intercepting 
and then emulating 8086 operating system's calls, and 
intercepting IN and OUT instructions. 

Entering and Leaving Virtual 8086 Mode 

Virtual 8086 Mode is entered by executing a 32-bit IRET 
instruction at CPL = 0, where the stack has a 1 in the VM 
bit of its EFLAGS image, or a Task Switch (at any CPL) 
to an Am386Sx/SXL microprocessor task whose 
Am386Sx/SXL CPU TSS has an EFLAGS image 
containing a 1 in the VM bit position, while the processor 
is executing in the Protected Mode. POPF does not 
affect the VM bit, but a PUSHF always pushes a 0 in the 
VM bit. 

The transition out of Virtual 8086 Mode to Protected 
Mode occurs only on receipt of an interrupt or exception. 
In Virtual 8086 Mode, all interrupts and exceptions 
vector through the Protected Mode lOT, and enter an 
interrupt handler in Protected Mode. As part of the 
interrupt processing the VM bit is cleared. 

Because the matching IRET must occur from Level 0, 
Interrupt or Trap Gates used to field an interrupt or 
exception out of Virtual 8086 Mode must perform an 
inter-level interrupt only to Level O. Interrupt or Trap 
Gates through conforming segments, or through 
segments with OPL > 0, will raise a GP fault with the CS 
selector as the error code. 

Task Switches To/From Virtual 8086 Mode 

Tasks which can execute in Virtual 8086 Mode must be 
described by a TSS with the Am386Sx/SXL CPU for­
mat (Type 9 or 11 descriptor). A task switch out of 
Virtual 8086 Mode will operate exactly the same as any 
other task switch out of a task with an Am386Sx/SXL 
CPU TSS. All of the programmer visible state, including 
the EFLAGS register with the VM bit set to 1, is stored in 
the TSS. The segment registers in the TSS will contain 
8086 segment base values rather than selectors. 

Am386Sx/SXL Microprocessor Data Sheet 177 



~ AMD 

A task switch into a task described by an Am386SXlSXL 
CPU TSS will have an additional check to determine if 
the incoming task should be resumed in Virtual 8086 
Mode. Tasks described by 80286 format TSSs cannot 
be resumed in Virtual 8086 Mode, so no check is re­
quired there (the FLAGS image in 80286 format TSS 
has only the low-order 16 FLAGS bits). Before loading 
the segment register images from an Am386SXlSXL 
CPU TSS, the FLAGS image is loaded, so that the 
segment registers are loaded from the TSS image as 
8086 segment base values. The task is now ready to 
resume in Virtual 8086 Mode. 

Transitions Through Trap and Interrupt Gates, and 
IRET 
A task switch is one way to enter or exit Virtual 8086 
Mode. The other method is to exit through a Trap or 
Interrupt gate, as part of handling an interrupt, and to 
enter as part of executing an IRET instruction. The 
transition out must use an Am386SXlSXL CPU Trap 
Gate (Type 14), or Am386SXlSXL CPU Interrupt Gate 
(Type 15), which must pOint to a non-conforming Level 0 
segment (OPL = 0) in order to permit the trap handler to 
IRET back to the Virtual 8086 program. The Gate must 
point to a non-conforming Level 0 segment to perform a 
level switch to Level 0 so that the matching IRET can 
change the VM bit. Am386SXlSXL CPU gates must be 
used since 80286 gates save only the lower 16 bits of 
the EFLAGS register (the VM bit will not be saved). Also, 
the 16-bit IRET used to terminate the 80286 interrupt 
handler will pop only the lower 16 bits from FLAGS, and 
will not affect the VM bit. The action taken for an 
Arn386SXlSXL CPU Trap or Interrupt gate, if an 
interrupt occurs while the task is executing in Virtual 
8086 Mode, is given by the following sequence: 

1. Save the FLAGS register in a temp to push later. 
Turn off the VM, TF, and IF bits. 

2. Interrupt and Trap gates must perform a level switch 
from 3 (where the Virtual 8086 Mode program 
executes) to 0 (so IRET can return). 

3. Push the 8086 segment register values onto the new 
stack, in this order: GS, FS, OS, and ES. These are 
pushed as 32-bit quantities. Then load these 4 
registers with null selectors (0). 

4. Push the old 8086 stack pointer onto the new stack 
by pushing the SS register (as 32 bits), then pushing 
the 32-bit ESP register saved above. 

5. Push the 32-bit EFLAGS register saved in step 1. 

6. Push the old 8086 instruction onto the new stack by 
pushing the CS register (as 32 bits), then pushing the 
32-bit EIP register. 

7. Load up the new CS:EIP value from the interrupt 
gate, and begin execution 01 the interrupt routine in 
protected mode. 

The transition out of Virtual 8086 Mode performs a level 
change and stack switch, in addition to changing back to 
protected mode. Also, all of the 8086 segment register 
images are stored on the stack (behind the SS:ESP 

image), and then loaded with null (0) selectors before 
entering the interrupt handler. This will permit the 
handler to safely save and restore the OS, ES, FS, and 
GS registers as 80286 selectors. This is needed so that 
interrupt handlers, which do not care about the mode of 
the interrupted program, can use the same prologue 
and epilogue code for state saving, regardless of 
whether or not a native mode or Virtual 8086 Mode 
program was interrupted. Restoring null selectors to 
these registers belore executing the IRET will cause a 
trap in the interrupt handler. Interrupt routines which 
expect or return values in the segment registers will 
have to dbtain/return values from the 8086 register 
images pushed onto the new stack. They will need 
to know the mode of the interrupted program in order to 
know where to find/return segment registers, and also 
to know how to interpret segment register values. 

The IRET instruction will perform the inverse of the 
above sequence. Only the extended IRET instruction 
(operand size = 32) can be used, and must be executed 
at Leve.! 0, to change the VM bit to 1. 

1. If the NT bit in the FLAGS register is On, an intertask 
return is performed. The current state is stored in the 
current TSS, and the link field in the current TSS is 
used to locate the TSS for the interrupted task which 
is to be resumed. Otherwise, continue with the 
following sequence. 

2. Read the FLAGS image from SS:8[ESP] into the 
FLAGS register. This will set VM to the value active 
in the interrupted routine. 

3. Pop off the instruction pointer CS:EIP. EIP is pop­
ped first, then a 32-bit word is popped which contains 
the CS value in the lower 16 bits. If VM = 0, this CS 
load is done as a protected mode segment load. If 
VM = 1, this will be done as an 8086 segment load. 

4. Increment the ESP register by 4 to bypass the 
FLAGS image which was popped in step 1 . 

5. If VM = 1, load segment registers ES, OS, FS, and 
GS from memory locations SS:[ESP +8], SS:[ESP + 
12], SS:[ESP + 16], and SS:[ESP = 20], respectively, 
where the new value of ESP stored in step 4 is used. 
Since VM = 1, these are done as 8086 segment 
register loads. 

Else if VM = 0, check that the selectors in ES, OS, 
FS, and GS are valid in the interrupted routines. Null 
out invalid selectors to trap, if an attempt is made to 
access through them. 

6. If RPL (CS) > CPL, pop the stack pointer SS:ESP 
from the stack. The ESP register is popped first, 
followed by 32 bits containing SS in the lower 16 
bits. If VM = 0, SS is loaded as a protected mode 
segment register load. If VM = 1, an 8086 segment 
register load is used. 

7. Resume execution of the interrupted routine. The 
VM bit in the FLAGS register (restored from the 
interrupt routine's stack image in step 1) determines 
whether the processor resumes the interrupted 
routine in Protected Mode or Virtual 8086 Mode. 

178 Am386 Microprocessors for Personal Computers 



FUNCTIONAL DATA 
The Am386Sx/SXL microprocessor features a straight­
fOlward functional interface to the external hardware. 
The Am386Sx/SXL CPU has separate parallel buses 
for data and address. The data bus is 16-bits in width, 
and bidirectional. The address bus outputs 24-bit 
address values using 23 address lines and two Byte 
Enable signals. 

The Am386Sx/SXL microprocessor has two selectable 
address bus cycles: address pipelined and non-address 
pipelined. The address pipelining option allows as much 
time as possible for data access by starting the pending 
bus cycle before the present bus cycle is finished. A 
non-pipelined bus cycle gives the highest bus 
performance by executing every bus cycle in two 
processor CLK cycles. For maximum design flexibility, 
the address pipelining option is selectable on a 
cycle-by-cycle basis. 

The processor's bus cycle is the basic mechanism for 
information transfer, either from system to processor, or 
from processor to system. The Am386Sx/SXL micro­
processor bus cycles perform data transfer in a 
minimum of only two clock periods. The maximum 
transfer band-width at 16 MHz is therefore 16 Mb/s. 
However, any bus cycle will be extended for more than 
two clock periods if external hardware withholds ac­
knowledgment of the cycle. 

The Am386Sx/SXL microprocessor can relinquish 
control of its local buses to allow mastership by other 
devices, such as Direct Memory Access (DMA) 

2X Clock { 

16-Bit Data { 015-00 < 

CLK2 

Data Bus 

ADS 

NA 

AMD ~ 
channels. When relinquished, HLDA is the only output 
pin driven by the Am386Sx/SXL microprocessor, 
providing near complete isolation of the processor from 
its system (all other output pins are in a float condition). 

Signal Description Overview 
Below is a brief description of the Am386Sx/SXL micro­
processor input and output signals arranged by 
functional groups. 

Example signal: MilD-High voltage indicates memory 
selected 

-Low voltage indicates I/O 
selected 

The signal descriptions sometimes refer to Switching 
timing parameters, such as t25 Reset Setup Time and 
t26 Reset Hold Time. The values of these parameters 
can be found in the Switching Characteristics table. 

Clock (CLK2) 

CLK2 provides the fundamental timing for the 
Am386Sx/SXL microprocessor. It is divided by two in­
ternally to generate the intemal processor clock used 
for instruction execution. The internal clock is comprised 
of two phases, phase one and phase two. Each CLK2 
period is a phase of the internal clock. Figure 23 
illustrates the relationship. If desired, the phase of the 
internal processor clock can be synchronized to a 
known phase by ensuring the falling edge of the RESET 
signal meets the applicable setup and hold times, t25 
and t26. 

Address Bus) 

BHE 

BLE 

A23-A1} 

} 
24-Bit Address 

Byte 
Enables 

WiR 

DIC 
Bus Control { Am386SXlSXL MIlO } ,,, Cydo Do',"" READY Microprocessor 

LOCK 

HOLD PEREQ 

HLDA BUSY 

ERROR 
'"' A,,", •• ", { 

INTR Vee 

NMI 
~ 

Vss 

RESET FLT 
Interrupts { 

Figure 22. Functional Signal Groups 

Am386Sx/SXL Microprocessor Data Sheet 

} Math Coprocessor Signaling 

} Power Connections 

} Float 

15022B-010 

179 

I· 

I, 



~ AMD 

Processor Clock 
Period 

Processor Clock 
Period 

CLK2 Period CLK2 Period CLK2 Period CLK2 Period 
<\l1 <\l 2 <\l1 <\l2 

CLK2 [ 2V 

Internal [ 
Processor Clock 

II 

62.5 ns Min (16 MHz Max) 
50 ns Min (20 MHz Max) 
40 ns Min (25 MHz Max) 

150228-011 

Figure 23. CLK2 Signal and Internal Processor Clock 

Data Bus (D15-DO) 

These three-state, bidirectional signals provide the 
general purpose data path between the Am386Sx/SXL 
microprocessor and other devices. The data bus 
outputs are active High and will float during Bus Hold 
Acknowledge. Data bus reads require that read-data 
setup and hold times (t21 and t22) be met relative to 
CLK2 for correct operation. 

Address Bus (A23-A1, BHE, BLE) 

These three-state outputs provide physical memory 
addresses or I/O port addresses. A23-A 16 are Low 
during I/O transfers, except for I/O transfers automati­
cally generated by coprocessor instructions. During 
coprocessor I/O transfers, A22-A 16 are driven Low and 
A23 is driven High, so that this address line can be used 
by external logic to generate the coprocessor select 
signal. Thus, the I/O address driven by the Am386SX/ 
SXL microprocessor for coprocessor commands is 
8000F8H, the I/O addresses driven by the Am386SX/ 
SXL CPU lor coprocessor data are 8000FCH or 
8000FEH or cycles to a 387SX math coprocessor. 

The address bus is capable of addressing 16 Mb of 
physical memory space (OOOOOOH through FFFFFFH), 
and 64 Kb of I/O address space (OOOOOOH through 
OOFFFFH) for programmed I/O. The address bus is 
active High and will float during Bus Hold Acknowledge. 

The Byte Enable outputs, BHE and BLE, directly 
indicate which bytes of the 16-bit data bus are involved 
with the current transfer. BHE applies to 015-08 and 
BLE applies to 07-00. If both BHE and BLE are 
asserted, then 16 bits of data are being transferred. See 
Table 13 for a complete decoding of these signals. The 
Byte Enables are active Low and will float during Bus 
Hold Acknowledge. 

Bus Cycle Definition Signals (W/R, D/C, MOO, 
LOCK) 

These three-state outputs define the type of bus cycle 
being performed: W/R distinguishes between write and 
read cycles; DIG distinguishes between data and 
control cycles; MilO distinguishes between memory and 
I/O cycles; and, LOCK distinguishes between locked 
and unlocked bus cycles. All of these Signals are active 
Low and will float during Bus Acknowledge. 

The primary bus cycle definition signals are W/R, DIG, 
and MOO, since these are the signals driven valid as 
ADS (Address Status output) becomes active. The 
LOCK is driven valid at the same time the bus cycle be­
gins, which, due to address pipelining, could be after 
ADS becomes active. Exact bus cycle definitions, as a 
function of W/R, DIG, and M/IO, are given in Table 14. 

Table 13. Byte Enable Definitions 

BHE BLE Function 

0 0 Word Transfer 
0 1 Byte transfer on upper byte 

of the data bus, 015-08 
1 0 Byte transfer on lower byte 

of the data bus, 07-00 
1 1 Never occurs 

LOCK indicates that other system bus masters are not 
to gain control of the system bus while it is active. LOCK 
is activated on the CLK2 edge that begins the first 
locked bus cycle (I.e., it is not active at the same time as 
the other bus cycle definition pins) and is deactivated 
when READY is returned at the end of the last bus cycle 

180 Am386 Microprocessors for Personal Computers 



AMD ~ 

Table 14. Bus Cycle Definition 

MilO Die WIR Bus Cycle Type Locked? 

a a a Interrupt Acknowledge Yes 

a a 1 Does not occur -

a 1 a 1/0 Data Read No 

a 1 1 1/0 Data Write No 

1 a a Memory Code Read No 

1 a 1 Halt: 
Address = 2 
BHE = 1 
BLE = a 

1 1 a Memory Data Read 

1 1 1 Memory Data Write 

which is to be locked. The beginning of a bus cycle is 
determined when READY is returned in a previous bus 
cycle and another is pending (ADS is active), or the 
clock in which ADS is driven active if the bus was idle. 
This means that it follows more closely with the write 
data rules when it is valid, but may cause the bus to 
be locked longer than desired. The lOCK signal may 
be explicitly activated by the LOCK prefix on certain 
instructions. 

lOCK is always asserted when executing the XCHG 
instruction, during descriptor updates, and during the 
interrupt acknowledge sequence. 

Bus Control Signals (ADS, READY, NA) 

The following signals allow the processor to indicate 
when a bus cycle has begun, and allow other system 
hardware to control address pipelining and bus cycle 
termination. 

Address Status (ADS) 

This three-state output indicates that a valid bus cycle 
definition and address (W/R, ole, MilO, BHE, BlE, and 
A23-A 1) are being driven at the Am386Sx/SXl micro­
processor pins. ADS is an active low output. Once ADS 
is driven active, valid address, Byte Enables, and defini­
tion signals will not change. In addition, ADS will remain 
active until its associated bus cycle begins (when 
READY is returned for the previous bus cycle when 
running pipelined bus cycles). When address pipe­
lining is utilized, maximum throughput is achieved by 
initiating bus cycles when ADS and READY are active in 
the same clock cycle. ADS will float during Bus Hold 
Acknowledge. See sections Non-Pipelined Address 
and Pipelined Address for additional information on how 
ADS is asserted for different bus states. 

Shutdown: No 
Address = a 
BHE = 1 
BLE = a 

Some Cycles 

Some Cycles 

Transfer Acknowledge (READY) 

This input indicates the current bus cycle is complete, 
and the active bytes indicated by BHE and BLE are 
accepted or provided. When READY is sampled active 
during a read cycle or interrupt acknowledge cycle, the 
Am386Sx/SXL microprocessor latches the input data 
and terminates the cycle. When READY is sampled 
active during a write cycle, the processorterminates the 
bus cycle. 

READY is ignored on the first bus state of all bus cycles, 
and sampled each bus state thereafter until asserted. 
READY must eventually be asserted to acknowledge 
every bus cycle, including Halt Indication and Shutdown 
Indication bus cycles. When being sampled, READY 
must always meet setup and hold times (t19 and t20) 
for correct operation. 

Next Address Request (NA) 
This is used to request address pipelining. This input 
indicates the system is prepared to accept new values 
of BHE, BlE, A23-A1, WlR, DIG, and MilO from the 
Am386Sx/SXl CPU even if the end of the current cycle 
is not being acknowledged on READY. If this input is 
active when sampled, the next address is driven onto 
the bus, provided the next bus request is already 
pending internally. NA is ignored in ClK cycles in which 
ADS or READY is activated. This signal is active Low 
and must satisfy setup and hold times (t15 and t16) for 
correct operation. See sections Read and Write Cycles 
and Pipelined Address for additional information. 

Bus Arbitration Signals (HOLD, HLDA) 

This section describes the mechanism by which the 
processor relinquishes control of its local buses when 
requested by another bus master device. See section 
Entering and Exiting Hold Acknowledge for additional 
information. 

Am38SSXlSXL Microprocessor Data Sheet 181 



~ AMD 

Bus Hold Request (HOLD) 
This input indicates some device other than the 
Am386Sx/SXL microprocessor requires bus master­
ship. When control is granted, the Am386Sx/SXL CPU 
floats A23-A1, BHE, BLE, D15-DO, LOCK, MilO, D/C, 
W/R, and ADS, and then activates HLDA, thus entering 
the Bus Hold Acknowledge state. The local bus will 
remain granted to the requesting master until HOLD 
becomes inactive. When HOLD becomes inactive, the 
Am386Sx/SXL microprocessor will deactivate HLDA 
and drive the local bus (at the same time), thus 
terminating the Hold Acknowledge condition. 

HOLD must remain asserted as long as any other 
device is a local bus master. External pull-up resistors 
may be required when in the Hold Acknowledge (HLDA) 
state, since none of the Am386Sx/SXL microprocessor 
floated outputs have internal pull-up resistors. See sec­
tion Resistor Recommendations for additional infor­
mation. HOLD is not recognized while RESET is active. 
If RESET is asserted while HOLD is asserted, RESET 
has priority and places the bus into an idle state, rather 
than the Hold Acknowledge (high impedance) state. 

HOLD is a level-sensitive, active High, synchronous 
input. HOLD signals must always meet setup and hold 
times (123 and t24) for correct operation. 

Bus Hold Acknowledge (HLDA) 
When active (High), this output indicates the Am386SX/ 
SXL microprocessor has relinquished control of its local 
bus in response to an asserted HOLD signal, and is in 
the Bus Hold Acknowledge state. 

The Bus Hold Acknowledge state offers near complete 
signal isolation. In the HLDA state is the only signal 
being driven by the Am386Sx/SXL microprocessor. 
The other output or bidirectional signals (015-00, BHE, 
BLE, A23-A 1, W/R, DIC, MOO, LOCK, and ADS) are in 
a high-impedance state so the requesting bus master 
may control them. These pins remain Off throughout the 
time that HLDA remains active (see Table 15). Pull-up 
resistors may be desired on several signals to avoid 
spurious activity when no bus master is driving them. 
See section Resistor Recommendations for additional 
information. 

When the HOLD signal is made inactive, the Am386Sx/ 
SXL microprocessor will deactivate HLDA and drive the 
bus. One rising edge on the NMI input is remembered 
for processing after the HOLD input is negated. 

Table 15. Output Pin State During HOLD 

Pin Value Pin Names 

1 HLOA 

Float LOCK, M!iC5, 010", WIr:f., AliS, 
A23-A1,~, §IT, 015-00 

In addition to the nonnal usage of Hold Acknowledge 
with DMA controllers or master peripherals, the near 
complete isolation has particular attractiveness during 

system test when test equipment drives the system, and 
in hardware fault-tolerant applications. 

HOLD Latencies 
The maximum possible HOLD latency depends on the 
software being executed. The actual HOLD latency at 
any time depends on the current bus activity, the state of 
the LOCK signal (internal to the CPU) activated by the 
LOCK prefix, and interrupts. The Am386Sx/SXL micro­
processor will not honor a HOLD request until the 
current bus operation is complete. 

The Am386Sx/SXL microprocessor breaks 32-bit data 
or I/O accesses into 2 internally locked 16-bit bus 
cycles; the LOCK signal is not asserted. The Am386Sx/ 
SXL microprocessor breaks unaligned 16-bit or 32-bit 
data or I/O accesses into 2 or 3 internally locked 16-bit 
bus cycles. Again, the LOCK signal is not asserted but a 
HOLD request will not be recognized until the end of the 
entire transfer. 

Wait states affect HOLD latency. The Am386Sx/SXL 
microprocessor will not honor a HOLD request until the 
end of the current bus operation, no matter how many 
wait states are required. Systems with DMA where data 
transfer is critical must insure that READY returns 
promptly. 

CoprOCjSor Interface Signals (PEREQ, BUSY, 
ERROR 

In the following sections are descriptions of signals 
dedicated to the math coprocessor interface. In addition 
to the data bus, address bus, and bus cycle definition 
signals, the following signals control communication 
between the Am386Sx/SXL microprocessor and its 
387SX math coprocessor extension. 

Coprocessor Request (PEREQ) 
When asserted (High), this input Signal indicates a 
coprocessor request for a data operand to be 
transferred to/from memory by the Am386Sx/SXL Mi­
croprocessor. In response, the Am386Sx/SXL micro­
processor transfers infonnation between the math 
coprocessor and memory. Because the Am386Sx/SXL 
CPU has internally stored the math coprocessor op­
code being executed, it performs the requested data 
transfer with the correct direction and memory address. 

PEREQ is level-sensitive active High asynchronous 
Signal. Setup and hold times (t29 and t30) relative to 
the CLK2 signal must be met to guarantee recognition 
at a particular clock edge. This signal is provided with a 
weak internal pull-down resistor of around 20 Kohms to 
Ground so that it will not float active when left 
unconnected. 

Coprocessor Busy (BUSY) 
When asserted Low, this input indicates that the 
coprocessor is still executing an instruction, and is not 
yet able to accept another. When the Am386Sx/SXL mi­
croprocessor encounters any coprocessor instruction 
which operates on the numerics stack (e.g., load, pop, 
or arithmetic operation), or the WAIT instruction, this 

182 Am386 Microprocessors for Personal Computers 



input is first automatically sampled until it is seen to be 
inactive. This sampling of the BUSY input prevents 
overrunning the execution of a previous coprocessor 
instruction. 

The FNINIT, FNSTENV, FNSAVE, FNSTSW, 
FNSTCW, and FNCLEX coprocessor instructions are 
allowed to execute even if BUSY is active, since these 
instructions are used for coprocessor initialization and 
exception-clearing. 

BUSY is an active Low, level-sensitive, asynchronous 
signal. Setup and hold times (t29 and t30), relative to 
the CLK2 signal, must be met to guarantee recognition 
at a particular clock edge. This pin is provided with 
a weak internal pull-up resistor of around 20 Kohms to 
Vee so that it will not float active when left unconnected. 

BUSY serves an additional function. If BUSY is sampled 
Low at the falling edge of RESET, the Am386Sx/SXL 
microprocessor performs an internal seH-test (see sec­
tion Bus Activity During and Following Reset). If BUSY is 
sampled High, no seH-test is performed. 

Coprocessor Error(ERROR) 
When asserted Low, this input signal indicates that 
the previous coprocessor instruction generated a 
coprocessor error of a type not masked by the 
coprocessor's control register. This input is auto­
matically sampled by the Am386Sx/SXL microproces­
sorwhen a coprocessor instruction is encountered, and 
if active, the Am386Sx/SXL CPU generates Exception 
16 to access the error-handling software. 

Several coprocessor instructions, generally those which 
clear the numeric error flags in the coprocessor or save 
coprocessor state, do execute without the Am386SX/ 
SXL CPU generating Exception 16 even if ERROR is 
active. These instructions are FNINIT, FNCLEX, 
FNSTSW, FNSTSWAX, FNSTCW, FNSTENV, and 
FNSAVE. 

ERROR is an active Low, level-sensitive, asynchronous 
signal. Setup and hold times (t29 and t30), relative to 
the CLK2 Signal, must be met to guarantee recognition 
at a particular clock edge. This pin is provided with a 
weak internal pull-up resistor of around 20 Kohms to Vee 
so that it will not float active when left unconnected. 

Interrupt Signals (INTR, NMI, RESET) 

The following descriptions cover inputs that can 
interrupt or suspend execution of the processor's 
current instruction stream. 

Maskable Interrupt Request (INTR) 
When asserted, this input indicates a request for 
interrupt service, which can be masked by the 
Am386Sx/SXL microprocessor Flag Register IF bit. 
When the Am386Sx/SXL CPU responds to the INTR in­
put, it performs two interrupt acknowledge bus cycles 
and. at the end of the second, latches an 8-bit interrupt 
vector on 07-00 to identify the source of the interrupt. 

AMD ~ 
INTR is an active High, level-sensitive, asynchronous 
signal. Setup and hold times (t27 and t28), relative to 
the CLK2 signal, must be met to guarantee recognition 
at a particular clock edge. To assure recognition of an 
INTR request, INTR should remain active until the first 
interrupt acknowledge bus cycle begins. INTR is 
sampled at the beginning of every instruction in the 
Am386Sx/SXL microprocessor's Execution Unit. In 
order to be recognized at a particular instruction 
boundary, INTR must be active at least eight CLK2 clock 
periods before the beginning of the instruction. If 
recognized, the Am386Sx/SXL CPU will begin 
execution of the interrupt. 

Non-Maskable Interrupt Request (NMI) 
This input indicates a request for interrupt service which 
cannot be masked by software. The non-maskable 
interrupt request is always processed according to the 
pointer or gate in slot 2 of the interrupt table. Because of 
the fixed NMI slot assignment, no interrupt acknowledge 
cycles are performed when processing NMI. 

NMI is an active High, rising edge-sensitive, asyn­
chronous signal. Setup and hold times (t27 and t28), 
relative to the CLK2 signal, must be met to guarantee 
recognition at a particular clock edge. To assure 
recognition of NMI, it must be inactive for at least eight 
CLK2 periods, and then be active for at least eight CLK2 
periods before the beginning of the instruction boundary 
in the Am386Sx/SXL microprocessor's Execution Unit. 

Once NMI processing has begun, no additional NMI's 
are processed until after the next IRET instruction, 
which is typically the end of the NMI service routine. If 
NMI is re-asserted priortothattime, however, one rising 
edge on NMI will be remembered for processing after 
executing the next IRET instruction. 

Interrupt Latency 
The time that elapses before an interrupt request is 
serviced (interrupt latency) varies according to several 
factors. This delay must be taken into account by the 
interrupt source. Any of the following factors can affect 
interrupt latency: 

1. If interrupts are masked, an INTR request will not be 
recognized until interrupts are re-enabled. 

2. If an NMI is currently being serviced, an incoming 
NMI request will not be recognized until the 
Am386Sx/SXL microprocessor encounters the 
IRET instruction. 

3. An interrupt request is recognized only on an in­
struction boundary of the Am386Sx/SXL 
microprocessor's Execution Unit except for the 
following cases: 

- Repeat string instructions can be interrupted after 
each iteration. 

-If the instruction loads the Stack Segment 
register, an interrupt is not processed until after 

Am386Sx/SXL Microprocessor Data Sheet 183 



AMD 

the following instruction, which should be an ESP. 
This allows the entire stack pointer to be loaded 
without interruption. 

-If an instruction sets the interrupt flag (enabling 
interrupts), an interrupt is not processed until after 
the next instruction. 

The longest latency occurs when the interrupt 
request arrives while the Am386SXlSXL micropro­
cessor is executing a long instruction such· as 
multiplication, division, or a task switch in the Pro­
tected Mode. 

4. Saving the Flags register and CS:EIP registers. 

5. If interrupt service routine requires a task switch, 
time must be allowed for the task switch. 

6. If the interrupt service routine saves registers 
that are not automatically saved by the Am386SXI 
SXL microprocessor. 

Reset 

This input signal suspends any operation in progress 
and places the Am386SXlSXL microprocessor in a 
known reset state. The Am386SXlSXL CPU is reset by 
asserting RESET for 15 or more CLK2 periods (80 or 
more CLK2 periods before requesting self-test). When 
RESET is active, all other input pins, except FL T, are 
ignored, and all other bus pins are driven to an Idle Bus 
state, as shown in Table 16. If RESET and HOLD are 
both active at a point in time, RESET takes priority even 
if the Am386SXlSXL microprocessor was in a Hold Ac­
knowledge state prior to RESET active. 

Reset is an active High, level-sensitive, synchronous 
signal. Setup and hold times (t25 and t26) must be met 
in order to assure proper operation of the Am386SXI 
SXL microprocessor. 

Bus Transfer Mechanism 
All data transfers occur as a result of one or more bus 
cycles. Logical data operands of byte and word lengths 
may be transferred without restrictions on physical 
address alignment. Any byte boundary may be used, 
although two physical bus cycles are performed as 
required for unaligned operand transfers. 

The Am386SXlSXL microprocessor address signals 
are designed to simplify external system hardware. 
Higher-order address bits are provided by A23-A 1. 
BHE and BLE provide linear selects forthe two bytes of 
the 16-bit data bus. 

Byte Enable outputs BHE and BLE are asserted when 
their associated data bus bytes are involved with the 
present bus cycle, as listed in Table 17. 

Each bus cycle is composed of at least two bus states. 
Each bus state requires one processor clock period. 
Additional bus states added to a single bus cycle are 
called wait states. See section Bus Functional 
Description. 

Table 16. Pin State (Bus Idle) During Reset 

Pin Name Signal Level During Reset 

ADS 1 
015-00 Float 
BRE', l3IE 0 
A23-A1 1 
WIR 0 
OtC 1 
Moo 0 
LOCK 1 
HLOA 0 

Table 17. Byte Enables and Associated 
Data and Operand Bytes 

Byte Enable Signal Associated Data Bus Signals 

SLE 07-00 (Byte o-Ieast signnicant) 

SHE 015-08 (Byte 1-most signnicant) 

Memory and I/O Spaces 
Bus cycles may access physical memory space or I/O 
space. Peripheral devices in the system may either be 
memory-mapped, I/O-mapped, or both. As shown in 
Figure 24, physical memory addresses range from 
OOOOOOH to OFFFFFFH (16 Mb) and I/O addresses from 
OOOOOOH to OOFFFFH (64 Kb). Note the I/O addresses 
used by the automatic I/O cycles for coprocessor 
communication are 8000F8H to 8000FFH, beyond the 
address range of programmed I/O, to allow easy 
generation of a coprocessor chip select signal using the 
A23 and MOO signals. 

Bus Functional Description 
The Am386SXlSXL microprocessor has separate, par­
allel buses for data and address. The data bus is 16-bits 
in width, and bidirectional. The address bus provides a 
24-bit value using 23 signals for the 23 upper-order 
address bits and 23 Byte Enable signals to directly indi­
cate the active bytes. These buses are interpreted and 
controlled by several definition signals. 

184 Am3S6 Microprocessors for Personal Computers 



FFFFFFH ,-------, 

Physical Memory 

16 Mb 

OOOOOOH L-_____ ....l 

Physical Memory Space 

8000FFH 
8000F8H 

(Note) h..".-,,...,,..-,,...,,,..,,,..,,...,,...,,.-I 

64 Kb 

Coprocessor 

OOFFFFH 

OOOOOOH 
} 

Accessible 
Programmed 

l..-_____ ----l 110 Space 

110 Space 

AMD ~ 

Note: Since A23 is High during automatic communication with coprocessor, A23 High and MilO Low can be used to easily generate a 
coprocessor serect signal. 

CLK2 
(Input) 

SHE, SLE, A23-Al, 
M/iO, Ole, w/p, 

(Output) 

ADS 
(Output) 

NA 
(Input) 

READY 
(Input) 

LOCK 
(Output) 

015-00 
(Input during Read) 

[ 

[ 

[ 

[ 

[ 

[ 

[ 

Figure 24. Physical Memory and 1/0 Spaces 

Cycle 1 
Non-Pipelined 

(Read) 

Tl T2 

<I> 1 I <1>2 <1>1 I <1>2 

Cycle 2 
Non-Pipelined 

(Read) 

T1 T2 

<I> 1 I <I> 2 <1>1 I <I> 2 

Cycle 3 
Non-Pipelined 

(Read) 

Tl T2 

<I> 1 I <I> 2 <I> 1 I <I> 2 

Fastest non-pipelined bus cycles consist of Tl and T2 

Figure 25. Fastest Read Cycles with Non-Pipelined Address Timing 

Am386SXlSXL Microprocessor Data Sheet 

15022f3-{) 12 

15022f3-{) 13 

185 



~ AMD 

The definition of each bus cycle is given by three 
signals: MIlO, W/R, and Die. At the same time, a valid 
address is present on the Byte Enable signals, BHE 
and BLE, and the other address signals, A2.3-A 1. A 
status signal, ADS, indicates when the Am386Sx/SXL 
microprocessor issues a new bus cycle definition and 
address. 

Collectively, the address bus, data bus, and all assoc­
iated control signals are referred to simply as the bus. 
When active, the bus performs one of the bus cycles 
below: 

1. Read from memory space; 
2. Locked read from memory space; 
3. Write to memory space; 
4. Locked write to memory space; 
5. Read from I/O space (or math coprocessor); 
6. Write to I/O space (or math coprocessor); 
7. Interrupt acknowledge (always locked); 
8. Indicate halt, or indicate shutdown. 

Cycle 1 
Pipelined 
(Read) 

T1P T2P 

Ii> 1 I Ii> 2 Ii> 1 I Ii> 2 

CLK2 [ (Input) 

BHE, BLE, A23-A1, [ Mlro, DIG, W/R 
(Outputs) 

ADS 
(Output) [ 

NA [ (Input) 

READY [ (Input) 

LOCK [ (Output) 

015-00 [ (Input during Read) 

Table 14 shows the encoding of the bus cycle definition 
signals for each bus cycle. See section Bus Cycle Defi­
nition Signals for additional information. 

When the Am386Sx/SXL microprocessor bus is not 
per-forming one of the activities listed above, it is either 
idle or in the Hold Acknowledge state, which may be 
detected externally. The idle state can be identified by 
the Am386Sx/SXL CPU giving no further assertions on 
its address strobe output (ADS) since the beginning of 
its most recent cycle, and the most recent bus cycle 
having been terminated. The Hold Acknowledge state is 
identified by the Am386Sx/SXL microprocessor assert­
ing its Hold Acknowledge (HLDA) output. 

Bus Functional Description 
The Arn386Sx/SXL microprocessor has separate, 
parallel buses for data and address. The data bus is 
16-bits in width, and bidirectional. The address bus 
provides a 24-bit value using 23 signals for the 23 
upper-order address bits and 2 Byte Enable signals to 
directly indicate the active bytes. These buses are 
interpreted and controlled by several definition signals. 

Cycle 2 
Pipelined 
(Read) 

T1P 

Cycle 3 
Pipelined 
(Read) 

Ii> 1 I Ii> 2 

Fastest pipelined bus cycles consist of T1 P and T2P 15022B-014 

Figure 26. Fastest Read Cycles with Pipelined Address Timing 

186 Am386 Microprocessors for Personal Computers 



The shortest time unit of bus activity is a bus state. A bus 
state is one processor clock period (two CLK2 periods) 
in duration. A complete data transfer occurs during a 
bus cycle, composed of two or more bus states. 

The fastest Am386SX!SXL microprocessor bus cycle 
requires only two bus states. For example, three 
consecutive bus read cycles, each consisting of two bus 
states, are shown in Figure 25. The bus states in each 
cycle are named T1 and T2. Any memory or 1/0 address 
may be accessed by such a two-state bus cycle, if the 
external hardware is fast enough. 

Every bus cycle continues until it is acknowledged by 
the external system hardware, using the Am386SX!SXL 
microprocessor READY input. Acknowledging the bus 
cycle at the end of the first T2 results in the shortest bus 
cycle, requiring only T1 and T2. If READY is not 
immediately asserted however, T2 states are repeated 
indefinitely until the READY input is sampled active. 

Idle I Cycle 1 
Non-Pipelined 

(Write) 

Cycle 2 
Non-Pipelined 

(Read) 

Ti T1 T2 T1 T2 

ClK2 [ 

Processor ClK [ 

ADS [ 

015-00 [ -

AMD ~ 
The address pipelining option provides a choice of bus 
cycle timings. Pipelined or non-pipe lined address timing 
is selectable on a cycle-by-cycle basis with the Next 
Address (NA) input. 

When address pipelining is selected, the address (SHE, 
SlE, and A23-A 1) and definition (WfR, Die, MilO, and 
lOCK) of the next cycle are available before the end of 
the current cycle. To signal their availability, the 
Am386SX!SXL microprocessor address status output 
(ADS) is asserted. Figure 26 illustrates the fastest read 
cycles with pipe lined address timing. 

Note from Figure 26 the fastest bus cycles using 
pipe lined address require only two bus states, named 
T1 P and T2P. Therefore, cycles with pipelined address 
timing allow the same data bandwidth as non-pipe lined 
cycles, but address-to-data access time is increased by 
one T-state time compared to that of a non-pipe lined 
cycle. 

Cycle 3 I Idle I 
Non-Pipelined 

(Write) 

T1 T2 Ti 

Cycle 4 
Non-Pipelined 

(Read) 

T1 T2 Ti 

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state; an active bus cycle 
can immediately follow the write cycle. 

15022B-015 

Figure 27. Various Bus Cycles with Non-Pipelined Address (Zero Wait States) 

Am386SXlSXL Microprocessor Data Sheet 187 



~ AMD 

Read and Write Cycles 

Data transfers occur as a result of bus cycles, classified 
as read or write cycles. During read cycles, data is 
transferred from an external device to the processor. 
During write cycles, data is transferred from the 
processor to an external device. 

Two choices of address timing are dynamically 
selectable: non-pipelined or pipe lined. After an idle bus 
state, the processor always uses non-pipelined address 
timing. However, the NA (Next Address) input may be 
asserted to select pipe lined address timing for the next 
bus cycle. When pipelining is selected and the 
Am386SXlSXL microprocessor has a bus request 
pending internally, the address and definition of the next 
cycle is made available even before the current bus 
cycle is acknowledged by READY. 

Terminating a read or write cycle, like any bus cycle, 
requires acknowledging the cycle by asserting the 
READY input. Until acknowledged, the processor 
inserts wait states into the bus cycle, to allow adjustment 

forthe speed of any external device. External hardware, 
which has decoded the address and bus cycle type, 
asserts the READY input at the appropriate time. 

At the end of the second bus state within the bus cycle, 
READY is sampled. At that time, if external hardware 
acknowledges the bus cycle by asserting READY, the 
bus cycle terminates as shown in Figure 27. If READY is 
negated, as in Figure 28, the Am386SXlSXL micropro­
cessor executes another bus state (a wait slate) and 
READY is sampled again at the end of that state. This 
continues indefinitely until the cycle is acknowledged by 
READY asserted. 

When the current cycle is acknowledged, the 
Am386SXlSXL microprocessor terminates it. When a 
read cycle is acknowledged, the Am386SXlSXL CPU 
latches the information present at its data pins. When a 
write cycle is acknowledged, the Am386SXlSXL 
microprocessor's write data remains valid throughout 
phase one of the next bus state, to provide write data 
hold time. 

Idle I Cycle 1 
Non-Pipelined 

(Read) 

Cycle 2 
Non-Pipelined 

(Write) 

Idle I 
Ti 

Cycle 3 
Non-Pipelined 

(Read) 

Ti T1 T2 T1 T2 T3 T1 T2 T3 Ti 

ClK2 [ 

Processor elK [ 

BHE,BLE, [~~7V~vr--~7,7~-1vr---1~~~~---1~7V~vr---1~~~r-----~7V~ 
A23-A 1, Valid 2 Valid 3 

MIlO, Ole 

W/R [ q£.~~~--+---r 

ADS [ 

NA[~~~~~~~Daq 

015-00 [ -

Note: Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state; an active bus cycle 
can immediately follow the write cycle. 

150228-016 

Figure 28. Various Bus Cycles with Non-Pipelined Address (Various Number of Walt States) 

188 Am386 Microprocessors for Personal Computers 



Non-Pipellned Address 

Any bus cycle may be performed with non-pipelined 
address timing. For example, Figure 27 shows a mixture 
of read and write cycles with non-pipe lined address 
timing. Figure 27 shows that the fastest possible cycles 
with non-pipe lined address have two bus states per bus 
cycle. The states are named T1 and T2. In phase one of 
T1 , the address signals and bus cycle definition signals 
are driven valid and, to signal their availability, address 
strobe (ADS) is simultaneously asserted. 

During read or write cycles the data bus behaves 
as follows. If the cycle is a read, the Am386Sx/SXL mi­
croprocessor floats its data signal to allow driving by the 
external device being addressed. The Am386Sx/SXL 
microprocessor requires that all data bus pins be at a 
valid logic state (High or Low) at the end of each read 
cycle, when READY is asserted. The system must be 
designed to meei this requirement. Ifthe cycle is a write, 
data signals are driven by the Am386Sx/SXL CPU 
beginning in phase two of T1 until phase one of the bus 
state following cycle acknowledgment. 

Bus States: 

RESET 
Asserted 

Request Pending • 
HOLD Negated 

AMD ~ 
Figure 28 illustrates non-pipe lined bus cycles with one 
wait state added to Cycles 2 and 3. READY is sampled 
inactive at the end of the first T2 in Cycles 2 and 3. 
Therefore, Cycles 2 and 3 have T2 repeated again. At 
the end of the second T2, READY is sampled active. 

When address pipelining is not used, the address and 
bus cycle definition remain valid during all wait states. 
When wait states are added, and it is desirable to 
maintain non-pipelined address timing, it is necessary to 
negate NA during each T2 state, except the last one, as 
shown in Figure 28, Cycles 2 and 3. If NA is sampled 
active during a T2 other than the last one, the next state 
would be T21 or T2P instead of another T2. 

The bus states and transitions, when address pipelining 
is not used, are completely illustrated by Figure 29. The 
bus transitions between four possible states, T1 , T2, Ti, 
and Th. Bus cycles consist of T1 and T2, with T2 being 
repeated for wait states. Otherwise the bus may be idle, 
Ti, or in the Hold Acknowledge state Th. 

HOLD Asserted 

ALWAYS 

READY Asserted. 
HOLD Negated. 

Request Pending 

READY Negated. 
NA Negated 

Tl- First clock of a non-pipelined bus cycle (Am386SXlSXL CPU drives new address and asserts ADS). 
T2- Subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle. 
Ti -Idle state. 
Th- Hold Acknowledge state (Am386SX/SXL CPU asserts HLDA). 

The fastest bus cycle consists of two states: Tl and T2. 
Four basic bus states describe bus operation when not using pipelhied address. 150228-017 

Figure 29. Bus States (Not Using Pipelined Address) 

Am386SXlSXL Microprocessor Data Sheet 189 



~ AMD 

Bus cycles always begin with T1. T1 always leads to T2. 
If a bus cycle is not acknowledged during T2 and NA is 
inactive, T2 is repeated. When a cycle is acknowledged 
during T2, the following state will be T1 of the next bus 
cycle, if a bus request is pending internally, or Ti, if there 
is no bus request pending, or Th, if the HOLD input is 
being asserted. 

Use of pipelined address allows the Am386Sx/SXl mi­
croprocessor to enter three additional bus states not 
shown in Figure 29. Figure 33 is the complete bus state 
diagram, including pipelined address cycles. 

Pipelined Address 
Address pipe lining is the option of requesting the 
address and the bus cycle definition of the next 

internally pending bus cycle before the current bus 
cycle is acknowledged with READY asserted. ADS is 
asserted by the Am386Sx/SXl microprocessor when 
the next address is issued. The address pipelining op­
tion is controlled on a cycle-by-cycle basis with the NA 
input signal. 

Once a bus cycle is in progress and the current address 
has been valid for at least one entire bus state, the NA 
input is sampled at the end 01 every phase one until the 
bus cycle is acknowledged. During non-pipelined bus 
cycles, NA is sampled at the end of phase one in every 
T2. An example is Cycle 2 in Figure 30, during which 
NA is sampled at the end of phase one 01 every T2 
(it was asserted once during the first T2 and has no 
further effect during that bus cycle). 

Idle Cycle 2 
Non-Pipelined 

(Read) 

Idle 

CLK2 [ 

Processor ClK [ 

ADS [ 

015-00 [ -

Note: Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA is only sampled during 
wait states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined 
cycle with at least one wait state (Cycle 2 above). 

Figure 30. Transitloning to Pipelined Address During Burst of Bus Cycles 

190 Am3S6 Microprocessors for Personal Computers 

15022~18 



If NA is sampled active, the Am386SXlSXL micropro­
cessor is free to drive the address and bus cycle 
definition of the next bus cycle, and assert ADS, as soon 
as it has a bus request internally pending. It may drive 
the next address as early as the next bus state, whether 
the current bus cycle is acknowledged at that time or 
not. 

Regarding the details of address pipelining, the 
Am386SXlSXL CPU has the following characteristics: 

1. The next address may appear as early as the bus 
state after NA was sampled active (see Figures 30 
and 31). In that case, state T2P is entered immed­
iately. However, when there is not an intemal bus 
request already pending, the next address will not be 
available immediately after NA is asserted and T21 is 
entered instead of T2P (see Figure 32, Cycle 3). 

Idle Cycle 1 
Non-Pipelined 

(Write) 

Cycle 2 
Pipelined 

(Read) 

AMD ~ 
Provided the current bus cycle is not yet acknow­
ledged by READY asserted, T2P will be entered as 
soon as the Am386SXlSXL microprocessor does 
drive the next address. External hardware should 
therefore observe the ADS output as confirmation 
the next address is actually being driven on the bus. 

2. Any address which is validated by a pulse on the 
ADS output will remain stable on the address pins 
for at least two processor clock periods. The 
Am386SXlSXL CPU cannot produce a new address 
more frequently than every two processor clock 
periods (see Figures 30, 31, and 32). 

3. Only the address and bus cycle definition of the very 
next bus cycle is available. The pipelining capability 
cannot look further than one bus cycle ahead (see 
Figure 32, Cycle 1). 

Cycle 3 
Pipelined 

(Write) 

Cycle 4 
Pipelined 
(Read) 

Idle 

Ti Tl T2 T2P TIP T2P TIP T2P TIP T21 T21 Ti 

ClK2 [ - IUl IUl IUl IUl IUl IUl IUl IUl IUl rut rut rut 
Processor [ ClK 

- t'V t'V t'V t'V V t'V t'V V V V V V 
SHE, SLE, 

[ A23-Al, 
MIlO, Ole 

W/R [ 

X IXXXX lX Valid 1 lX Valid 2 X Valid 3 X Valid 4 ~ ~ IXXX2< 

i 
I'"" ~ 

I I i 
X IXXXXIY I 1\ V I I\, IAXXx ~ IJVVVI 

I I 

ADS [ l\-V- I--
~ V- I--

1\ V- I"-
I\, V 

1/ I/~ V~ 

NA [ )( 1)()()(x IXXX)(IX ). IXXX) IA AIXXXXIX J,IXXXXIX ...<lXxXX LX.XXX lXXX)( 

READY [ X IXXXX IXXX)( IXXY ~ '{X)( D(X)" ~X)( IX X)" ~ lXX.Y ~ ~ 

LOCK [ X ~ IX Valid 1 IX Valid 2 IX Valid 3 X Valid 4 LX.XX)( 

015-00 [ -1---- r- Out -t-- In Out ---- -- In --
I 

Note: Following any idle bus state (Ti) the address is always non-pipelined and NA is only sampled during wait states. To start 
address pipelining after an idle state requires a non·pipelined cycle with at least one wait state (Cycle 1 above). The 
pipelined cycles (2, 3, and 4 above) are shown with various numbers of wait states. 

Figure 31. Fastest Transition to Pipelined Address Following Idle Bus State 

Am386Sx/SXL Microprocessor Data Sheet 

150229-019 

191 



~ AMD 

The complete bus state transition diagram, including 
operation with pipe lined address, is given in Figure 33. 
Note that it is a superset olthe diagram for non-pipelined 
address only, and the three additional bus states for 
pipelined address are drawn in bold. 

The fastest bus cycle with pipelined address consists of 
just two bus states, T1 P and T2P (recall for non­
pipelined address it is T1 and T2). T1 P is the first bus 
state of a pipelined cycle. 

ClK2 [ 

Processor ClK [ 

192 

BHE, BLE, [ 
A23-A1, 

M/io, Ole 

W/R[ 

ADS [ 

NA [ 

READY [ 

LOCK [ 

015-00 [ 

-

-

X 

T1P 

Cycle 1 
Pipelined 
(Write) 

T2P T2P T1P 

Cycle 2 
Pipelined 
(Read) 

T2 T2P T1P 

Cycle 3 
Pipelined 
(Write) 

T21 T2P 

Cycle 4 
Pipelined 
(Read) 

T1P 

M-lIL lIL M-lIL M-lIL M-M-lIL r-

V \/ V V \/ V \/ V V \/ 1\ 

Valid 1 X Valid 2 D< Valid 3 D<XX)( D< Valid 4 

I 
\ 

\. V 
[(Note: ADS' is asserted 

in every T2P state. 

~ A XXXX rxXXX,Y 

• • Asserting NA more than 
once durin\! any cycle 
has no additional 
effects. 

AXJ, XX), '0.. 

D< Valid 1 D< 

I 
i'"" 

( r--

V r-<X ~ 

1\ / 

ADS islasserted las soon 
other 

~ 

as the CPU has an 
bus cycle to pertor 
is not always imme 

m, which 
diately 

after NA is asserted 

1"---V 
/ As long as the CPU enters the T2P 

ning state during Cycle 3, address pipeli 
is maintained in Cycle 4. 

'< ~ IXXXX>.. ..<rxxxx iXXXXI>. ), ~ 

NA could have been asserted in 
T1 P if desired. Assertion now is 
the latest time possible to allow 
the CPU to enter T2P state to 
maintain pipelining in Cycle 3. 

.(X)< XX)' ~ .(XX IXXY ~ ~ 5? 

Valid 2 X Valid 3 X Valid 4 

Out X Out }-- --- - In Out }--
I I I 

15022A-{)20 

Figure 32. Details of Address Pipelining During Cycles with Wait States 

Am3S6 Microprocessors for Personal Computers 



RESET 
Asserted . 

HOLD Negated. 
No Request 

HOLD Asserted 

READY Asserted. 
HOLD Asserted 

(No Request + 
HOLD Asserted) • 

NA Asserted. 
READY Asserted. 

_--1""- HOLD Negated. 
READY Negated 

Request Pending • 
HOLD Negated 

READY Asserted • 
HOLD Negated • 

No Request 

READY Asserted • 
HOLD Negated • 

Request Pending 

ReqUestP~,m_g ___________________ 1 

READY Asserted. HOLD Negated. No Request 

Bus States: 
Tl - First clock of a non-pipelined bus cycle (Am386SX/SXL CPU drives new 

address and asserts ADS). 
T2 - Subsequent clocks of a bus cycle when NA has not been sampled asserted 

in the current bus cycle. 
T21- Subsequent clocks of a bus cycle when NA has been sampled asserted in 

the current bus cycle but there is not yet an internal bus request pending 
(Am386SXlSXL CPU will not drive new address or assert ADS). 

T2P-Subsequent clocks of a bus cycle when NA has been sampled asserted in 
the current bus cycle and there is an internal bus request pending 
(Am386SX/SXL CPU drives new address and asserts ADS). 

Tl P-First clock of a pipelined bus cycle. 
Ti - Idle state. 
Th - Hold Acknowledge state (Am386SX/SXL CPU asserts HLDA). 

Asserting NA for pipelined address gives access to three more bus states: T21, 
T2P, and Tl P. 

Using pipelined address, the fastest bus cycle consists of Tl P and T2P. 

READY Negated • 
(No Request + 

HOLD Asserted) 

READY Negated 

Figure 33. Complete Bus States (Including Pipelined Address) 

Am386SXlSXL Microprocessor Data Sheet 

AMD 

NA Asserted. 
(HOLD Asserted + 

No Request) 

150228-021 

193 



~ AMD 

Initiating and Maintaining Pipelined Address 

Using the state diagram Figure 33, observe the 
transitions from an idle state (Ti) to the beginning of a 
pipe lined bus cycle (T1 P). From an idle state (Ti) the first 
bus cycle must begin with T1, and is therefore a 
non-pipelined bus cycle. The next bus cycle will be 
pipelined, however, provided NA is asserted and the 
first bus cycle ends in a T2P state (the address for the 
next bus cycle is driven during T2P). The fastest path 
from an idle state to a bus cycle with pipelined address is 
shown in bold below: 

TI, Ti, Ti, T1-T2-T2P, T1P-T2P, 

Idle Non-Pipelined Pipelined 
States Cycle Cycle 

T1-T2-T2P are the states of the bus cycle that establish 
address pipelining for the next bus cycle, which begins 
with T1 P. The same is true after a bus hold state, shown 
below: 

Th,Th,Th,T1-T2-T2P,T1P-T2P, 

Hold Acknowledge Non-Pipelined 
States Cycle 

Pipelined 
Cycle 

The transition to pipelined address is shown functionally 
by Figure 31, Cycle 1. Note that Cycle 1 is used to 
transition into pipelined address timing for the 
subsequent Cycles 2, 3, and 4, which are pipelined. The 
NA input is asserted at the appropriate time to select 
address pipelining for Cycle 2, 3, and 4. 

Once a bus cycle is in progress and the current address 
has been valid for one entire bus state, the NA input is 
sampled at the end of every phase one until the bus 
cycle is acknowledged. Sampling begins in T2 during 
Cycle 1 in Figure 31. Once NA is sampled active during 
the current cycle, the Am386Sx/SXL microprocessor is 
free to drive a new address and bus cycle definition on 
the bus as early as the next bus state. In Figure 31, Cy­
cle 1 for example, the next address is driven during state 
T2P. Thus, Cycle 1 makes the transition to pipelined 
address timing, since it begins with T1 but ends with 
T2P. Because the address for Cycle 2 is available 
before Cycle 2 begins, Cycle 2 is called a pipe lined bus 
cycle, and it begins with T1 P. Cycle 2 begins as soon as 
READY asserted terminates Cycle 1 . 

Examples oftransition bus cycles are Figure 31, Cycle 1 
and Figure 30, Cycle 2. Figure 31 shows transition 
during the very first cycle after an idle bus state, which is 
the fastest possible transition into address pipelining. 
Figure 30, Cycle 2 shows a transition cycle occurring 
during a burst of bus cycles. In any case, a transition 
cycle is the same whenever it occurs: it consists at least 
of T1, T2 (NA is asserted at that time), and T2P 
(provided the Am386Sx/SXL microprocessor has an 
internal bus request already pending, which il almost 
always has). T2P states are repeated if wait states are 
added to the cycle. 

Note that only three states (T1, T2, and T2P) are 
required in a bus cycle performing a transition from 

non-pipelined address into pipelined address timing 
(e.g., Figure 31, Cycle 1). Figure 31, Cycles 2, 3, and 4 
show that address pipelining can be maintained with 
two-state bus cycles consisting only of T1 P and T2P. 

Once a pipelined bus cycle is in progress, pipelined 
timing is maintained for the next cycle by asserting NA 
and detecting that the Am386Sx/SXL microprocessor 
enters T2P during the current bus cycle. The current bus 
cycle must end in state T2P for pipelining to be main­
tained in the next cycle. T2P is identified by the assertion 
of ADS. Figures 30 and 31, however, each show pipelin­
ing ending after Cycle 4, because Cycle 4 ends in T2i. 
This indicates the Am386Sx/SXL CPU did nol have an 
internal bus request prior to the acknowledgment of 
Cycle 4. If a cycle ends with a T2 or T21, the next cycle 
will not be pipelined. 

Realistically, address pipelining is almost always 
maintained as long as NA is sampled asserted. This is 
so because in the absence of any other request, a code 
prefetch request is always internally pending until the 
instruction decoder and code prefetch queue are 
completely full. Therefore, address pipelining is main­
tained for long bursts of bus cycles, if the bus is available 
(I.e., HOLD inactive), and NA is sampled active in each 
of the bus cycles. 

Interrupt Acknowledge (INTA) Cycles 

In response to an interrupt request on the INTR input 
when interrupts are enabled, the Am386Sx/SXL micro­
processor performs two interrupt acknowledge cycles. 
These bus cycles are similar to read cycles in that bus 
definition signals define the type of bus activity taking 
place, and each cycle continues until acknowledged by 
READY sampled active. 

The state of A2 distinguishes the first and second 
interrupt acknowledge cycles. The byte address driven 
during the first interrupt acknowledge cycle is 4 
(A23-A3, A1, BLE Low, A2 and BHE High). The byte 
address driven during the second interrupt acknow­
ledge cycle is 0 (A23-A 1, BLE Low, and BHE High). 

The LOCK output is asserted from the beginning of 
the first interrupt acknowledge cycle until the end of 
the second interrupt acknowledge cycle. Four idle bus 
states (Ti) are inserted by the Am386Sx/SXL micropro­
cessor between the two interrupt acknowledge cycles 
for compatibility with spec TRH RL of the 8259A Interrupt 
Controller. 

During both interrupt acknowledge cycles, D15-DO 
float. No data is read at the end of the first interrupt 
acknowledge cycle. At the end of the second interrupt 
acknowledge cycle, the Am386Sx/SXL microprocessor 
will read an external interrupt vector from D7-DO of the 
data bus. The vector indicates the specific interrupt 
number (from 0-255) requiring service. 

Halt Indication Cycle 

The execution unit halts as a result of executing a HL T 
instruction. Signaling its entrance into the halt state, a 

194 Am386 Microprocessors for Personal Computers 



halt indication cycle is performed. The halt indication 
cycle is identified by the state of the bus definition 
signals shown on page 39, Bus Cycle Definition Signals, 
and an address of 2. The halt indication cycle must 
be acknowledged by READY asserted. A halted 
Am386Sx/SXL CPU resumes execution when INTR (if 
interrupts are enabled), NMI, or RESET is asserted. 

Shutdown Indication Cycle 

The Am386Sx/SXL microprocessor shuts down as a 
result of a protection fault while attempting to process a 
double fault. Signaling its entrance into the shutdown 
state, a shutdown indication cycle is performed. The 
shutdown indication cycle is identified by the state of the 
bus definition signals shown in section Bus Cycle 

ClK2 [ 

'rocessor ClK [ 

BHE [ 

BLE, A23-~, [ 
A1, MIlO, 
Ole, W/Fi 

LOCK [ 

ADS [ 

NA [ 

READY [ 

07-00 [ 

-
-

X 

X 

X 

X 

X 

X 

Previous I 
Cycle 

Interrupt 
Acknowledge 

Cycle 1 

T2 T1 T2 T2 Ti 

M-lJL lJL M-lJL 

V \J \J V \J 
DOOO< Y ,(XXX 

I' 

[)(XXX~ II..(XXX 
lJ' 

DOOO< Y ,(XXX 
I' 

DOOO< ~ V 

l\- I 

D<XX)( IXXXXY '< XX) I)(IXXXX 

IXXXX IXXXX XXY ~\ ,,(XX 

Ignored 

-----~----------0--
Ignored 

AMD ~ 
Definition Signals and an address of O. The shutdown 
indication cycle must be acknowledged by READY as­
serted. A shut-down Am386Sx/SXL microprocessor 
resumes execution when NMI or RESET is asserted. 

Entering and Exiting Hold Acknowledge 

The Bus Hold Acknowledge state (Th) is entered in 
response to the HOLD input being asserted. In the Bus 
Hold Acknowledge state, the Am386Sx/SXL micropro­
cessor floats all outputs or bidirectional signals, except 
for HLDA. HLDA is asserted as long as the Am386SX/ 
SXL CPU remains in the Bus Hold Acknowledge state. 
In the Bus Hold Acknowledge state, all inputs except 
HOLD, FL T, and RESET are ignored. 

Idle 
(4 Bus States) 

Ti Ti 

M-lJL 

V \J 
IXXXx xxxx 

IXxxx IXXXX 

D()()( xxxx 

XXXX IXXXX 

XXX)( IXXXX 

----~---

Ti 

lJL 
\J 
xXX)< 

T1 

Interrupt 
Acknowledge 

Cycle 2 

T2 T21 

M-M-M-
V V V 
~ !<XXX 

I/" 

Ti 

M-
V 
IXXXX 

XXXXI)" / l.O(X)( IXXX)( 

xXX)< ~ 
V [,O(X)( [)(XXX 

/ 11X'X"X 

l\-V 

XXXX DO<XX ~ "(XXXX IXXX)( 

XXXX IXXXX IXXl' ~ ~ 
Vector 

--------1-------$---
015-08 [ -----1-------- ---0/------1----1--------1------~--
Interrupt Vector (0--255) is read on D7-DO at end of second Interrupt Acknowledge bus cycle. Because each Interrupt Acknowledge bus cycle is 
followed by idle bus states, asserting NA has no practical effect. Choose the approach which is simplest for your system hardware design. 

150228-022 

Figure 34. Interrupt Acknowledge Cycles 

Am386Sx/SXl Microprocessor Data Sheet 195 

1-



~ AMD 

Th may be entered from a bus idle state, as in Figure 37, 
or after the acknowledgment of the current physical bus 
cycle, if the LOCK signal is not asserted, as in Figures 
38 and 39. 

Th is exited in response to the HOLD input being 
negated. The following state will be Ti if no bus request 
is pending, as in Figure 37. The following bus state will 
be T1 if a bus request is internally pending, as in Figures 
38 and 39. Th is exited in response to RESET being 
asserted. 

If a rising edge occurs on the edge-triggered NMI in­
put while in Th, the event is remembered as a non­
maskable interrupt 2 and is serviced when Th is exited, 
unless the Am386Sx/SXL microprocessor is reset 
before Th is exited. 

Reset During Hold Acknowledge 

RESET being asserted takes priority over HOLD being 
asserted. If RESET is asserted while HOLD remains 
asserted, the Am386Sx/SXL microprocessor drives its 
pins to defined states during reset, as in Table 16 (Pin 

Cycle 1 
Non-Pipelined 

(Write) 

Tl T2 

CLK2 [ 

Processor Clock [ 

SHE,Al, [ M/TO, W/R 

SLE:,DIC [ A23-A2, 

ADS [ 

NA [ 

READY [ 

LOCK [-fu.....----.---f 

D15-DO 

Cycle 2 
Non-Pipelined 

(Halt) 

Tl T2 

State During Reset), and performs internal reset activity 
as usual. 

If HOLD remains asserted when RESET is inactive, the 
Am386Sx/SXL CPU enters the Hold Acknowledge 
state before performing its first bus cycle, provided 
HOLD is still asserted when the Am386Sx/SXL micro­
processor would otherwise perform its first bus cycle. 

FLOAT 

Activating the FL T input floats all Am386Sx/SXL micro­
processor bidirectional and output signals, including 
HLDA. Asserting FL T isolates the Am386Sx/SXL mi­
croprocessor from the surrounding circuitry. 

As the Am386Sx/SXL microprocessor is packaged in a 
surface mount PQFP, it cannot be removed from the 
motherboard when In-Circuit Emulation (ICE) is 
needed. The FL T input allows the Am386Sx/SXL CPU 
to be electrically isolated from the surrounding circuitry. 
This allows connection 01 an emulator to the Am386SX/ 
SXL microprocessor PQFP without removing it from the 
PCB. This method of emulation is referred to as ON­
Circuit Emulation (ONCE). 

Ti 

Idle 

Ti Ti Ti 

Am386SX/SXL CPU remains halted 
untillNTR, NMI, or RESET is as­
serted. 

I I 
Am386SXlSXL CPU responds to 
HOLD input while in the Halt state. 

(Floating) - -- ---

I 
15022B-023 

Figure 35. Example Halt Indication Cycle from Non·Pipelined Cycle 

196 Am3S6 Microprocessors for Personal Computers 



Entering and Exiting FLOAT 

FL T is an asynchronous, active Low input. It is recog­
nized on the rising edge of CLK2. When recognized, it 
aborts the current bus cycle and floats the outputs of 
the Am386SXlSXL microprocessor (Figure 41). FLT 
must be held Low for a minimum of 16-CLK2 cycles. 
Reset should be asserted and held asserted until after 
FL T is deasserted. This will ensure that the Am386SXI 
SXL CPU will exit FLOAT in a valid state. 

Asserting the FL T input unconditionally aborts the 
current bus cycle and forces the Am386SXlSXL CPU 
into the FLOAT mode. Since activating FL T 
unconditionally forces the Am386SXlSXL CPU into 
FLOAT mode, the Am386SXlSXL microprocessor is not 
guaranteed to enter FLOAT in a valid state. After 
deactivating FL T, the Am386SXlSXL CPU is not 
guaranteed to exit FLOAT mode in a valid state. This is 
not a problem, as the FL T pin is meant to be used only 
during ONCE. After exiting FLOAT, the Am386SXlSXL 
microprocessor must be reset to return it to a valid state. 
Reset should be asserted before FL T is deasserted. 

Cycle 1 
Pipelined 
(Read) 

Cycle 2 
Pipelined 

(Shutdown) 

T1P T2P T1P T21 

ClK2 [ 

Processor ClK 

SHE, [ 
M/TO, WiR 

SLE, 
[ A23-A1, DIG 

ADS [ 

NA 

READY 

LOCK [ --r~--;---; 

015-00 

AMD ~ 
This will ensure that the Am386SXlSXL CPU will exit 
FLOAT in a valid state. 

FL T has an internal pull-up resistor, and if it is not used it 
should be unconnected. 

Bus Activity During and Following Reset 

RESET is the highest priority input signal, capable of 
interrupting any processor activity when it is asserted. 
A bus cycle in progress can be aborted at any stage, or 
idle states and Bus Hold Acknowledge states discon­
tinued, so that the reset state is established. 

RESET should remain asserted for at least 15-CLK2 
periods to ensure it is recognized throughout the 
Am386SXlSXL microprocessor, and at least 80-CLK2 
periods if self-test is going to be requested at the falling 
edge. RESET asserted pulses less than 15-CLK2 
periods may not be recognized. RESET pulses less 
than 80-CLK2 periods followed by a self-test may cause 
the self-test to report a failure when no true failure 
exists. 

Idle 

Ti Ti Ti Ti 

Am386SX/SXl CPU remains 
shutdown until NMI or RESET 
is asserted. 

I 
Am386SXlSXl 
CPU responds to 
HOLD input while 
in the Shutdown 
state. 

150228-{)24 

Figure 36. Example Shutdown Indication Cycle from Non-Pipelined Cycle 

Am386SXlSXL Microprocessor Data Sheet 197 



~ AMD 

Provided the RESET falling edge meets setup and hold 
times (t25 and t26), the internal processor clock phase is 
defined at that time as illustrated by Figure 40 and 
Figure 48. 

A self-test may be requested at the time RESET goes 
inactive by having the BUSY input at a Low level, as 
shown in Figure 40. The self-test requires approxi­
mately (220 + 60) CLK2 periods to complete. The self­
test duration is not affected by the test results. Even 
if the self-test indicates a problem, the Am386SXlSXL 
microprocessor attempts to proceed with the reset 
sequence afterwards. 

After the RESET falling edge (and after the self-test 
if it was requested), the Am386SXlSXL microprocessor 
performs an internal initialization sequence for approx­
imately 350- to 450-CLK2 periods. 

Self-Test Signature 
Upon completion of self-test (if seH-test was requested 
by driving BUSY Low at the falling edge of RESET) the 
EAX register will contain a signature of OOOOOOOOH, 

indicating the Am386SXlSXL microprocessor passed 
its self-test of microcode and major PLA contents with 
no problems detected. The passing signature in EAX, 
OOOOOOOOH, applies to all revision levels. Any non-zero 
signature indicates the unit is faulty. 

Component and Revision Identifiers 
To assist users the Am386SXlSXL microprocessor, 
after reset, holds a component identifier and revision 
identifier in its OX register. The upper 8 bits of OX hold 
23H as identification of the Am386SXlSXL CPU (the 
lower nibble, 03H, refers to the Am3860XlOXL micro­
processor architecture. The upper nibble, 02H, refers to 
the second member of the Am3860XlOXL microproces­
sor Family). The lower 8 bits of OX hold an 8-bit 
unsigned binary number related to the component 
revision level. The revision identifier will, in general, 
chronologically track those component steppings which 
are intended to have certain improvements or distinction 
from previous steppings. The Am386SXlSXL micropro­
cessor revision identifier will track that of the Am3860Xl 
OXL CPU where possible. 

Idle I Hold Acknowledge I Idle 
~.~----------~--~. 

Ti Th Th Th Ti 

ClK2 [ 

Processor ClK [ 

HOlO [ 

HlOA [ 
BHE, BLE, 

[ A23-A1, MIiO, 
O/C,WIR 

ADS [ 

-- (Floating) 

-+------i., I 
'-....,.- (Floating) 

NA [ 

READY [ 

LOCK [ 
015-00 [-

-- (Floating) 

I 
-- (Floating) 

I 
Note: For maximum design flexibility the Am386SXlSXL CPU has no intemal pull-up resistors on its outputs. The design may re­

quire an external pull-up on ADS and other outputs to keep them negated during float periods. 

150228-025 

Figure 37. Requesting Hold from Idle Bus 

198 Am386 Microprocessors for Personal Computers 



AMD ~ 

Cycle 1 Hold Cycle 2 
Non-Pipelined Acknowledge Non-Pipelined 

(Read) (Write) 

T1 T2 T2 Th Th T1 T2 

ClK2 [ 

Processor ClK [ 

HOLD [ 

HlDA [ 

SHE, BLE, (Floating) 
A23--A1, [ Valid 1 ------r------- Valid 2 

MIlO, DIG, W/R 

(Floating) 
ADS [ 

NA [ 

READY [ 

LOCK [ Valid 2 

D15-DO [ (Floating) (Floating) 
Out -

--------r--------
--- -- -------------

(Floating) 

Note: HOLD is a synchronous input and can be asserted at any ClK2 edge, provided setup and hold (t23 and t24) 
requirements are met. This waveform is useful for determining Hold Acknowledge latency_ 

15022B-<l26 

Figure 38. Requesting Hold from Active Bus (NA Inactive) 

Am386Sx/SXL Microprocessor Data Sheet 199 



~ AMD 

T1P 

ClK2 [ 

Processor ClK [ 

HOLD [~~:V 

HlDA [ 

BHE, BLE, [ Valid 
A23-Al, 

MIlO, Die, W/f5. 

ADS [ 

NA [ 

Cycle 1 

Pipelined 

(Write) 

T21 T21 

HOLD asserted in same bus 
state as NA asserted 

Hold 

Acknowledge 

Th Th 

(Floating) 

-----r------
(Floating) 

LOCK [_-f--.>o...... __ --II-_V_a_lid_1_t-___ --t>. ___ _ (~I~ati~~) ____ _ 

(Floating) 
Out 

Cycle 2 

Non-Pipelined 

(Read) 

T1 T2 

Valid 2 

Valid 2 

Note: HOLD is a synchronous input and can be asserted at any ClK2 edge, provided setup and hold (t23 and t24) 
requirements are met. This waveform is useful for determining Hold Acknowledge latency. 

In 

150228-027 

Figure 39. Requesting Hold from Idle Bus (NA Active) 

200 Am386 Microprocessors for Personal Computers 



ClK2 [ 

RESET [ 

ClK (Internal) [ 

Processor ClK [ 

BUSY [ 

ERROR [ 

BHE, BLE, WIR, [ 
MIlO, HlDA 

A23-A1, [ 
Ole, LOCK 

ADS [ 

NA [ 

READY [ 

Reset 
~ 15 ClK2 duration if not 
going to request self-test 

~ 80 ClK2 duration before 
requesting self-test 

Internal 
Initialization 

(
If self-test is performed, add 
220 + 60' to these numbers 

1 

AMD 

Cycle 1 

Non-Pipelined 
(Read) 

T1 T2 

015-00 [ XXXXXXX>- -- - ---- - (Floating) - - -- -- - -- -- -- - -- -- - - -- ---

Notes: 

1. BUSY should be held stable for 8-CLK2 periods before and after the CLK2 period in which RESET falling edge occurs. 
2. If self-test is requested, the outputs remain in their reset state as shown here. 

150228-028 

Figure 40. Bus Activity from Reset Until First Code Fetch 

ClK2 [ 

FLT [~ 

Control [ ~ Valid 

Data [ --0-< 
}-----------------------------{ X 

~;::::V=al~id -----)- - - - - - - - - - - - - - - - - - - - - - - - - - - -'---;< ======~x:::=:-;::::== 
Address [ :=J< ~ __ ~V~al~id ____ ~>----------------------------{~ ____ JX~ ____ _ 

Reset [ / 

150228-029 

Figure 41. Entering and Exiting FL T 

Am386SXlSXL Microprocessor Data Sheet 201 



~ AMD 

The revision identifier is intended to assist users to a 
practical extent. However, the revision identifier value is 
not guaranteed to change with every stepping revision, 
or to follow a completely uniform numerical sequence, 
depending on the type or intention of revision, or 
manufacturing materials required to be changed. 

Table 18. Component and Revision 
Identifier History 

Am386SXL 
Intel i386SX Microprocessor 

Stepping Revision Revision Identifier 

B At 05H 
C B 08H 

Coprocessor Interfacing 
The Am386Sx/SXL microprocessor provides an 
automatic interface for a 387SX math coprocessor. A 
387SX math coprocessor uses an 1/0 mapped interface 
driven automatically by the Am386Sx/SXL CPU and 
assisted by three dedicated signals: BUSY, ERROR, 
and PEREQ. 

As the Am386Sx/SXL microprocessor begins 
supporting a math coprocessor instruction, it tests the 
BUSY and ERROR signals to determine if the copro­
cessor can accept its next instruction. Thus, the BUSY 
and ERROR inputs eliminate the needfor any preamble 
bus cycles for communication between processor and 
math coprocessor. A 387SX math coprocessor can be 
given its command op-code immediately. The dedicated 
signals provide instruction synchronization and elimi­
nate the need of using the WAIT op-code (9BH) for 
387SX math coprocessor instruction synchronization 
(the WAIT opcode was required when the 8086 or 8088 
was used with the 8087 math coprocessor). 

Custom math coprocessors can be included in 
Am386Sx/SXL microprocessor based systems by 
memory-mapped or I/O-mapped interfaces. Such math 
coprocessor interfaces allow a completely custom 
protocol, and are not limited to a set of math coproces­
sor protocol primitives. Instead, memory-mapped or 
I/O-mapped interfaces may use all applicable instruc­
tions for high-speed math coprocessor communication. 
The BUSY and ERROR inputs of the Am386Sx/SXL mi­
croprocessor may also be used for the custom math 
coprocessor interface, if such hardware assist is 
desired. These signals can be tested by the WAIT op­
code (9BH). The WAIT instruction will wait until the 
BUSY input is inactive (interruptable by an NMI or 
enabled INTR input), but generates an Exception 16 
fault if the ERROR pin is active when the BUSY goes (or 
is) inactive. If the custom math coprocessor interface is 
memory-mapped, protection of the addresses used for 
the interface can be provided with the Am386Sx/SXL 
CPU's on-chip paging or segmentation mechanisms. If 

the custom interface is I/O-mapped, protection of the 
interface can be provided with the 10PL (I/O Privilege 
Level) mechanism. 

A 387SX math coprocessor interface is I/O mapped as 
shown in Table 19. Note that a 387SX math coprocessor 
interface addresses are beyond the OH-OFFFFH range 
for programmed I/O. When the Am386Sx/SXL micro­
processor supports the 387SX math coprocessor, the 
Am386Sx/SXL CPU automatically generates bus 
cycles to the coprocessor interface addresses. 

Table 19. Math Coprocessor Port Address 

Address in Am386SXL 387SX-Compatible Math 
CPU 110 Space Coprocessor Register 

8000F8H Op-code Register 
8000FCH/8000FEH* Operand Register 

'Generated as 2nd bus cycle during Dword transfer. 

To correctly map a 387SX math coprocessor registers 
to the appropriate I/O addresses, connect the CMDO 
and CMDt lines of a 387SX math coprocessor, as 
listed in Table 20. 

Signal 

CMDO 
CMDt 

Table 20. Connections for CMDO 
and CMD1 Inputs for a 387SX 

Connection 

Connected directly to Am386SXL CPU A2 signal. 
Connect to ground. 

Software Testing for Math Coprocessor Presence 
When software is used to test for math coprocessor 
(387SX) presence, it should use only the following math 
coprocessor op-codes: FIN IT, FNINIT, FSTCW mem, 
FSTSW mem, and FSTSW AX. To use other math 
coprocessor op·codes when a math coprocessor is 
known to be not present, first set EM = 1 in the 
Am386Sx/SXL CPU's CRO register. 

PACKAGE THERMAL SPECIFICATIONS 

The Am386Sx/SXL microprocessor is specified for 
operation when case temperature is within the range of 
0°C-1 OO°C. The case temperature may be measured in 
any environment to determine whether the Am386SX/ 
SXL CPU is within specified operating range. The case 
temperature should be measured at the center of the top 
surface opposite the pins. 

The ambient temperature is guaranteed as long as Tc is 
not violated. The ambient temperature can be calcu­
lated from the Ojc and Oja from the following equations: 

Tj = Tc+P.Ojc 

Ta = Tj-P.Oja 

Tc = Ta+P.[Oja-Ojcj 

202 Am386 Microprocessors for Personal Computers 



ELECTRICAL SPECIFICATIONS 
The following sections describe recommended electri­
cal connections for the Am386SXlSXL microprocessor, 
and its electrical specifications. 

Power and Grounding 
The Am386SXlSXL CPU has modest power 
requirements. However, its high clock frequency and 47 
output buffers (address, data, control, and HLDA) can 
cause power surges as multiple output buffers drive new 
signal levels simultaneously. For clean on-chip power 
distribution at high frequency, 14 Vee and 18 Vss pins 
separately feed functional units of the Am386SXlSXL 
microprocessor. 

Power and ground connections must be made to all 
external Vee and Vss pins of the Am386SXlSXL micro­
processor. On the circuit board, all Vee pins should 
be connected on a Vee plane, and Vss pins should be 
connected on a GND plane. 

Power Decoupling Recommendations 

Liberal decoupling capacitors should be placed nearthe 
Am386SXlSXL microprocessor. The Am386SXlSXL 
CPU driving its 24-bit address bus and 16-bit data bus at 
high frequencies can cause transient power surges, 
particularly when driving large capacitive loads. Low 
inductance capaCitors and interconnects are recom­
mended for best high frequency electrical performance. 
Inductance can be reduced by shortening circuit board 
traces between the Am386SXlSXL microprocessor and 
decoupling capaCitors as much as possible. 

AMD ~ 
ReSistor Recommendations 

The ERROR, FL T, and BUSY inputs have internal pull­
up resistors of approximately 20 Kohms, and the 
PEREQ input has an internal pull-down resistor of 
approximately 20 Kohms, built into the Am386SXlSXL 
microprocessor to keep these signals inactive when a 
387SX-compatible math coprocessor is not present in 
the system (or temporarily removed from its socket). 

In typical designs, the external pull-up resistors shown 
in Table 21 are recommended. However, a particular 
design may have reason to adjust the resistor values 
recommended here, or alter the use of pull-up resistors 
in other ways. 

Other Connection Recommendations 

For reliable operation, always connect unused inputs to 
an appropriate signal level. NC pins should always re­
main unconnected. Connection of NC pins to Vee or Vss 
will result in component malfunction or incompatibility 
with future steppings of the Am386SXlSXL CPU. 

Particularly when not using the interrupts or bus hold (as 
when first prototyping), prevent any chance of spurious 
activity by connecting these associated inputs to GND. 

Pin Signal 

40 INTR 

38 

4 

NMI 

HOLD 

If not using address pipelining, connect pin 6 (NA) 
through a pull-up in the range of 20 Kohms to Vee. 

Table 21. Recommended Resistor Pull-Ups to Vee 

Pin Signal Pull-Up Value Purpose 

16 ADS 20 Kohms ±10% Lightly pull ADS inactive during Am386SX/SXL 
CPU Hold Acknowledge states. 

26 LOCK 20 Kohms ±1 0% Lightly pull LOCK inactive during Am386SXlSXL 
CPU Hold Acknowledge states. 

Am386Sx/SXL Microprocessor Data Sheet 203 



~ AMD 

ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Ambient Temperature under bias ..... -65 to 125°C Supply Voltage with respect to Vss . . .. -0.5 V to 7 V 
Storage Temperature .............. -65 to 150°C Voltage on other pins ........ -0.5 V to (Vee + 0.5)V 

Stresses above those listed may cause permanent 
damage to the device. Exposure to absolute maximum 
rating conditions for extended periods of time may affect 
device reliability. 

Operating ranges define those limits between which the 
functionality of the device is guaranteed. 

DC CHARACTERISTICS over COMMERCIAL operating ranges 
Vcc = 5 V ±1 0%; TCASE = O°C to +1 OO°C (16, 20, 25, and 33 MHz) 
Vcc=5 V ±5%; TCASE= O°C to +100°C (40 MHz) 

Symbol Parameter Description Notes 

V,l Input Low Voltage (Note 1) 

V,H Input High Voltage 

Vile CLK2 Input Low Voltage (Note 1) 

V,He CLK2 Input High Voltage 

VOL Output Low Voltage 
10l = 4 rnA: A23-Al,D15-DO 
10l = 5 rnA: BHE, BLE, WiR, 

DIG, M/TO, LOCK, 
ADS,HLDA 

VOH Output High Voltage 
10H = 1.0 rnA: A23-Al,D15-DO 
10H = 0.2 rnA: A23-Al,D15-DO 
10H = 0.9 rnA: BHE, BLE, WIR, 

DIG, M/TO, LOCK, 
ADS,HLDA 

10H = 0.18 rnA: BHE, BLE, WIR, 
DIG, M/TO, LOCK, 
ADS,HLDA 

ie, Input Leakage Current (for all pins ex- o V <;,V,N <;, Vee 
cept PEREa, BUSY, FL T, and ERROR) 

I'H Input Leakage Current (PEREa pin) V,H = 2.4 V (Note 2) 

hl Input Leakage Current V,l = 0.45 V (Note 3) 
(BUSY, ERROR, and FL T pins) 

Ilo Output Leakage Current 0.45 V <;, VOUT <;, Vee 

Icc Supply Current Vee = 5.0 V 
CLK2 = 32 MHz: with -16' Icc Typ = 
CLK2 = 40 MHz: with -20 Icc Typ = 130 rnA 
CLK2 = 50 MHz: with -25 Icc Typ = 160 rnA 
CLK2 = 66 MHz: with -33 Icc Typ = 210 rnA 
CLK2 = 80 MHz: with -40 Icc Typ = 255 rnA 

IcesB Standby Current (Arn386SXL CPU) leesB Typ = 20 j.l.A (Note 5) 

C'N Input Capacitance Fe = 1 MHz (Note 4) 

COUT Output or 1/0 Capacitance Fe = 1 MHz (Note 4) 

CelK CLK2 Capacitance Fe = 1 MHz (Note 4) 

Min Max Unit 

-0.3 +0.8 V 

2.0 Vee+0.3 V 

-0.3 +0.8 V 

2.7 Vee+0.3 V 

0.45 V 
0.45 V 

2.4 V 
Vee-0.5 V 

2.4 V 

Vee -0.5 

±15 j.l.A 

200 j.LA 

-400 j.l.A 

±15 j.l.A 

rnA 
155 rnA 
190 rnA 
245 rnA 
295 rnA 

150 j.l.A 

10 pF 

12 pF 

20 pF 

Notes: Tested at the minimum operating frequency of the part. 
'ContactAMD for IS-MHz availability. 

5. Inputs at rails, outputs unloaded, PEREa Low, ERROR High, 
BUSY High, and FL THigh. 

204 

1. The Min value, -0.3, is not 100% tested. 
2. PEREa input has an internal pull-down resistor. 
3. BUSY, FL T, and ERROR inputs each have an internal 

pull-up resistor. 
4. Not 100% tested. 

Am3S6 Microprocessors for Personal Computers 



SWITCHING CHARACTERISTICS 
The switching characteristics given consist of output de­
lays, input setup requirements, and input hold require­
ments. All switching characteristics are relative to the 
CLK2 rising edge crossing the 2.0 V level. 

Switching characteristic measurement is defined by 
Figure 42. Inputs must be driven to the voltage levels 
indicated by Figure 42 when switching characteristics 
are measured. Output delays are specified with 
minimum and maximum limits measured, as shown. 
The minimum delay times are hold times provided to 
external circuitry. Input setup and hold times are 

CLK2 [ 

AMD ~ 
specified as minimums, defining the smallest accept­
able sampling window. Within the sampling window, a 
synchronous input signal must be stable for correct 
operation. 

Outputs ADS, WfR, DIG, MIlO, LOCK, BHE, BLE, 
A23-A 1, and HLDA only change at the beginning of 
phase one. 015-00 (write cycles) only change at the 
beginning of phase two. The READY, HOLD, BUSY, 
ERROR, PEREQ, FL T, and 015-00 (read cycles) 
inputs are sampled at the beginning of phase one. The 
NA, INTR, and NMI inputs are sampled atthe beginning 
of phase two. 

Tx 

<\l2 

A23-A1, BHE, BLE, [ 
ADS, M/15, Ole, 

W/A., LOCK, HLDA 

Valid 
Output n 

,;"', Valid 
1.5 V Output n+ 1 

015-00 [ 

NA, INTR, NMI [ 

READY, HOLD, [ 
FL T, ERROR, BUSY, 

PEREa, 015-00 

Legend: A-Maximum Output Delay Characteristic 
B-Minimum Output Delay Characteristic 
C-Minimum Input Setup Characteristic 
D-Minimum Input Hold Characteristic 

Valid 
Output n 

Valid 
Output n+1 

Valid 
Input 

OV~~~~--------~~~~ 

150228-030 

Figure 42. Drive Levels and Measurement Points for Switching Characteristics 

Am386Sx/SXL Microprocessor Data Sheet 205 



~ AMD 

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges 
Switching Characteristics at 40 MHz (Am386SX Microprocessor Only): Vee = 5 V ±5%; T CASE = O°C to 100°C 

Ref. 
Symbol Parameter Description Notes Figure Min Max 

Operating Frequency Half CLK2 frequency 2 40 

1 CLK2 Period 44 12.5 250 

2 CLK2 High Time at2.7V 44 4.5 

3 CLK2 Low Time at 0.8 V 44 4.5 

4 CLK2 Fall Time 2.7 Vto 0.8 V (Note 3) 44 4 

5 CLK2 Rise Time 0.8 Vto 2.7 V (Note 3) 44 4 

6 A23-A1 Valid Delay CL = 50 pF 47 4 13 

7 A23-A1 Float Delay (Note 1) 51 4 20 

8 BHE, BlE, lOCK Valid Delay CL = 50 pF 47 4 13 

9 BHE, BlE, lOCK Float Delay (Note 1) 51 4 20 

10 MOO, DIC, WIR., ADS Valid Delay CL = 50 pF 47 4 13 

11 WIR., MOO, DIC, ADS Float Delay (Note 1) 51 4 20 

12 015-00 Write Data Valid Delay CL = 50 pF (Note 4) 47 7 18 

12a 015-00 Write Data Hold Time CL = 50 pF 49 2 

13 Q15-DO Write Data Float Delay (Note 1) 51 4 17 

14 HlDA Valid Delay CL = 50 pF 51 4 17 

14f HLDA Float Delay 51 4 17 

15' NA Setup Time 46 5 

16 NA Hold Time 46 2 

19 READY Setup Time 46 7 

20 READY Hold Time 46 4 

21 015-00 Read Data Setup Time 46 4 

22 015-00 Read Data Hold Time 46 3 

23 HOLD Setup Time 46 4 

24 HOLD Hold Time 46 2 

25 RESET Setup Time 52 4 

26 RESET Hold Time 52 2 

27 NMI, INTR Setup Time (Note 2) 46 5 

28 NMI, INTR Hold Time (Note 2) 46 5 

29 PEREa, ERROR, BUSY, Fl T' Setup Time (Note 2) 46 5 

30 PEREa, ERROR, BUSY, Fl T' Hold Time (Note 2) 46 4 

Notes: 'Float feature is available in Rev. 80 and later. 

206 

1. Float condition occurs when maximum output current becomes less than I LO in magnitude. Float delay is not 100% tested. 

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes to 
assure recognition within a specific CLK2 period. 

3. Rise and Fall times are not tested. They are guaranteed by design characterization. 

4. Min time is not 100% tested. 

Am386 Microprocessors for Personal Computers 

Unit 

MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



AMD ~ 
SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges 
Switching Characteristics at 33 MHz: Vee = 5 V±10%; TeAsE = O°C to 100°C 

Ref. 
Symbol Parameter Description Notes Figure Min 

Operating Frequency: Am386SX CPU Half CLK2 freq. 2 
Am386SXL CPU Half CLK2 freq. 0 

1 CLK2 Period: Am386SX CPU 43 15 
Am386SXL CPU 43 15 

2a CLK2 High Time at 2 V 43 6.25 

2b CLK2 High Time at 3.7 V 43 4 

3a CLK2 Low Time at 2 V 43 6.25 

3b CLK2 Low Time at 0.8 V 43 4.5 

4 CLK2 Fall Time 3.7VtoO.8V (Note 3) 43 

5 CLK2 Rise Time 0.8Vto3.7V (Note 3) 43 

6 A23-A1 Valid Delay CL = 50 pF 47 4 

7 A23-A 1 Float Delay (Note 1) 51 4 

8 BHE, BLE, LOCK Valid Delay CL = 50 pF 47 4 

9 BHE, BLE, LOCK Float Delay (Note 1) 51 4 

10 MilO, DIC, WIR, ADS Valid Delay CL = 50 pF 47 4 

11 WIR, MIlO, DIC, ADS Float Delay (Note 1) 51 4 

12 015-00 Write Data Valid Delay CL = 50 pF (Note 4) 47 7 

12a 015-00 Write Data Hold Time CL = 50 pF 49 2 

13 015-00 Write Data Float Delay (Note 1) 51 4 

14 HLDA Valid Delay CL = 50 pF 47 4 

14f HLDA Float Delay 51 4 

15 NA Setup Time 46 5 

16 NA Hold Time 46 2 

19 READY Setup Time 46 7 

20 READY Hold Time 46 4 

21 015-00 Read Data Setup Time 46 5 

22 015-00 Read Data Hold Time 46 3 

23 HOLD Setup Time 46 9 

24 HOLD Hold Time 46 2 

25 RESET Setup Time 52 5 

26 RESET Hold Time 52 2 

27 NMI, INTR Setup Time (Note 2) 46 5 

28 NMI, INTR Hold Time (Note 2) 46 5 

29 PEREa, ERROR, BUSY Setup Time (Note 2) 46 5 

30 PEREa, ERROR, BUSY Hold Time (Note 2) 46 4 

Max 

33 
33 

4 

4 

15 

20 

15 

20 

15 

20 

23 

17 

20 

20 

Notes: 1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100% tested. 
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes to 

assure recognition within a specific CLK2 period. 
3. Rise and Fall times are not tested. They are guaranteed by design characterization. 

4. Min time is not 100% tested. 

Am386Sx/SXL Microprocessor Data Sheet 

Unit 

MHz 
MHz 

ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

207 



~ AMD 

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges 
Switching Characteristics at 25 MHz: V co = 5 V ±1 0%; TeAsE = O°C to 100°C 

Ref. 
Symbol Parameter Description Notes Figure Min 

Operating Frequency: Am386SX CPU Half CLK2 Ireq. 2 
Am386SXL CPU Hall CLK2 Ireq. a 

1 CLK2 Period: Am386SX CPU 43 20 
Am386SXL CPU 43 20 

2a CLK2 High Time at2V 43 7 

2b CLK2 High Time at (Vee-0.8 V) 43 4 

3a CLK2 Low Time at2V 43 7 

3b CLK2 Low Time atO.8V 43 5 

4 CLK2 Fall Time (Vee-a.8 V) to 0.8 V (Note 3) 43 

5 CLK2 Rise Time 0.8 V to (Vee-0.8 V) (Note 3) 43 

6 A23-A 1 Valid Delay CL = 50 pF 47 4 

7 A23-A1 Float Delay (Note 1) 51 4 

8 BHE, BLE, LOCK Valid Delay CL = 50pF 47 4 

9 BHE, BLE, LOCK Float Delay (Note 1) 51 4 

10 MilO, Ole, W/R, ADS Valid Delay CL = 50 pF 47 4 

11 WIR, MIlO, DIC, ADS Float Delay (Note 1) 51 4 

12 015-00 Write Data Valid Delay CL = 50 pF 47 7 

12a 015-00 Write Data Hold Time CL = 50 pF 49 2 

13 015-00 Write Data Float Delay (Note 1) 51 4 

14 HLDA Valid Oelay CL = 50 pF 47 4 

141 HLDA Float Oelay 51 4 

15 NA Setup Time 46 5 

16 NA Hold Time 46 3 

19 READY Setup Time 46 9 

20 READY Hold Time 46 4 

21 015-00 Read Data Setup Time 46 7 

22 015-00 Read Data Hold Time 46 5 

23 HOLD Setup Time 46 9 

24 HOLD Hold Time 46 3 

25 RESET Setup Time 52 8 

26 RESET Hold Time 52 3 

27 NMI, INTR Setup Time (Note 2) 46 6 

28 NMI, INTR Hold Time (Note 2) 46 6 

29 PEREa, ERROR, BUSY, FL T Setup Time (Note 2) 46 6 

30 PEREa, ERROR, BUSY, FL T Hold Time (Note 2) 46 5 

Max 

25 
25 

7 

7 

17 

30 

17 
30 

17 

30 

23 

22 

22 

22 

Notes: 1. Float condition occurs when maximum output current becomes less than ILo in magnitude. Float delay is not 100% tested. 

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to 
assure recognition within a specific CLK2 period. 

3. These are not tested. They are guaranteed by design characterization. 

208 Am386 Microprocessors for Personal Computers 

Unit 

MHz 
MHz 

ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



AMD ~ 
SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges 
Switching Characteristics at 20 MHz: Vee = 5 V ±1 0%; TeAsE = O°C to 100°C 

Ref. 
Symbol Parameter Description Notes Figure Min Max 

Operating Frequency: Am386SX CPU Half CLK2 freq. 2 20 
Am386SXL CPU Half CLK2 freq. 0 20 

1 CLK2 Period: Am386SX CPU 43 25 
Am386SXL CPU 43 25 

2a CLK2 High Time at 2 V 43 8 

2b CLK2 High Time at (Vee-0.8 V) 43 5 

3a CLK2 Low Time at 2 V 43 8 

3b CLK2 Low Time at 0.8 V 43 6 

4 CLK2 Fall Time (Vee-0.8 V) to 0.8 V (Note 3) 43 8 

5 CLK2 Rise Time 0.8 V to (Vee-0.8 V) (Note 3) 43 8 

6 A23-A 1 Valid Delay CL = 120 pF (Note 4) 47 4 30 

7 A23-Al Float Delay (Note 1) 51 4 32 

8 BHE, BLE, LOCK Valid Delay CL = 75 pF (Note 4) 47 4 30 

9 BHE, BLE, LOCK Float Delay (Note 1) 51 4 32 

lOa MilO, DIC Valid Delay CL = 75 pF (Note 4) 47 4 28 

lOb WIR, ADS Valid Delay CL = 75 pF (Note 4) 47 4 26 

11 WIR, MilO, DIC, ADS Float Delay (Note 1) 51 6 30 

12 DI5-DO Write Data Valid Delay CL = 120 P (Note 4) 47 4 38 

13 DI5-DO Write Data Float Delay (Note 1) 51 4 27 

14 HLDA Valid Delay CL = 75 pF (Note 4) 47 4 28 

14f HLDA Float Delay 51 4 28 

15 NA Setup Time 46 5 

16 NA Hold Time 46 12 

19 READY Setup Time 46 12 

20 READY Hold Time 46 4 

21 DI5-DO Read Data Setup Time 46 9 

22 DI5-DO Read Data Hold Time 46 6 

23 HOLD Setup Time 46 17 

24 HOLD Hold Time 46 5 

25 RESET Setup Time 52 12 

26 RESET Hold Time 52 4 

27 NMI, INTR Setup Time (Note 2) 46 16 

28 NMI, INTR Hold Time (Note 2) 46 16 

29 PEREQ, ERROR, BUSY, FL T Setup Time (Note 2) 46 14 

30 PEREQ, ERROR, BUSY, FL T Hold Time (Note 2) 46 5 

Notes: 1. Float condition occurs when maximum output current becomes less than ILo in magnitude. Float delay is not 100% tested. 

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to 
assure recognition within a specific CLK2 period. 

3. These are not tested. They are guaranteed by design characterization. 
4. Tested with CL set at 50 pF and derated to support the indicated distributed capacitive load. See Figures 53 and 54 for the 

capacitive derating curve. 

Am386SXlSXL Microprocessor Data Sheet 

Unit 

MHz 
MHz 

ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

209 



~ AMD 

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges 
Switching Characteristics at 16 MHz": Vee = 5 V±10%; TeAsE = O°C to 100°C 

Ref. 
Symbol Parameter Description Notes Figure Min 

Operating Frequency: Am386SX CPU Half CLK2 freq. 2 
Am386SXL CPU Half CLK2 freq. 0 

1 CLK2 Period: Am386SX CPU 43 31 
Am386SXL CPU 43 31 

2a CLK2 High Time at2V 43 9 

2b CLK2 High Time at (Vee-0.8 V) 43 5 

3a CLK2 Low Time at2V 43 9 

3b CLK2 Low Time atO.8V 43 7 

4 CLK2 Fall Time (Vee-0.8 V) to 0.8 V (Note 3) 43 

5 CLK2 Rise Time 0.8 V to (Vee-0.8 V) (Note 3) 43 

6 A23-A1 Valid Delay CL = 120 pF (Note 4) 47 4 

7 A23-A 1 Float Delay (Note 1) 51 4 

8 BHE, BLE, LOCK Valid Delay CL = 75 pF (Note 4) 47 4 

9 BHE, BLE, LOCK Float Delay (Note 1) 51 4 

10 WIR, MilO, DIC, ADS Valid Delay CL = 75 pF (Note 4) 47 4 

11 WIR, MilO, DIC, ADS Float Delay (Note 1) 51 6 

12 015-00 Write Data Valid Delay CL=120pF (Note 4) 47 4 

13 015-00 Write Data Float Delay (Note 1) 51 4 

14 HLDA Valid Delay CL = 75 pF (Note 4) 47 4 

141 HLDA Float Delay 51 4 

15 NA Setup Time 46 5 

16 NA Hold Time 46 21 

19 READY Setup Time 46 19 

20 READY Hold Time 46 4 

21 015-00 Read Data Setup Time 46 9 

22 015-00 Read Data Hold Time 46 6 

23 HOLD Setup Time 46 26 

24 HOLD Hold Time 46 5 

25 RESET Setup Time 52 13 

26 RESET Hold Time 52 4 

27 NMI, INTR Setup Time (Note 2) 46 16 

28 NMI, INTR Hold Time (Note 2) 46 16 

29 PEREa, ERROR, BUSY, FL T Setup Time (Note 2) 46 16 

30 PEREa, ERROR, BUSY, FL T Hold Time (Note 2) 46 5 

Notes: 'Contact AMD for 16-MHz availability. 

Max 

16 
16 

8 

8 

36 

40 

36 

40 

33 

35 

40 

35 

33 

33 

1. Float condition occurs when maximum output current becomes less than I LO in magnitude. Float delay is not 100% tested. 

Unit 

MHz 
MHz 

ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to 
assure recognition within a specific CLK2 period. 

210 

3. These are not tested. They are guaranteed by design characterization. 
4. Tested with CL set at 50 pF and derated to support the indicated distributed capacitive load. See Figures 53 and 54 for the 

capacitive derating curve. 

Am3S6 Microprocessors for Personal Computers 



AMD ~ 

tl 

t2a 

t3b 

150228-031 

Figure 43. CLK2 Timing (16, 20, 25, and 33 MHz) 

tl 

t2 

Vee -0.8 V 

t3 

150228-031 a 

Figure 44. CLK2 Timing (40 MHz) 

Am386SXL CPU Output ~ 

TC
' 

150228-032 

Figure 45. AC Test Circuit 

Am386Sx/SXL Microprocessor Data Sheet 211 



~ AMD 

SWITCHING WAVEFORMS 

CLK2 [ 

READY [ 

HOLO [ 

015-00 [ (Inputs) 

BUSY, ERROR [ PEREa, FLT 

NA [ 

INTR, NMI [ 

CLK2 [ 

WIR,MIiO, [ 
OIC,ADS 

212 

A23-Al [ 

015-00 [ 
(Outputs) 

HLOA [ 

Tx <ill Tx <il2 

Figure 46. Input Setup and Hold Timing 

Tx 

tl 0 -I~""'----+----.I 
Max 

Valid n+l 

t6 -I~""'----+-.r 
Min Max 

t12 -I~""'------.r 
Min 

Figure 47. Output Valid Delay Timing 

Am3S6 Microprocessors for Personal Computers 

<ill Tx 

15022~33 

Max 

15022~34 



AMD ~ 
SWITCHING WAVEFORMS {continued} 

<jl1 
T1 

<jl2 

CLK2 [ 

W/R [ 
Min Min 

112 ---l~--l 

015-00 [ Valid n 

15021B-076 

Figure 48. Write Data Valid Delay Timing (20 and 25 MHz) 

CLK2 [ 

W/R [ 
Min 

112a ---1---1 

015-00 [ Valid n 

15021B-077 

Figure 49. Write Data Hold Timing 

T1 

CLK2 [ 

W/R [ 
112 Min Max 

015-00 [ Valid n Valid n+1 

15021B-078 

Figure 50. Write Data Valid Delay Timing (20 MHz) 

Am386Sx/SXL Microprocessor Data Sheet 213 



~ AMD 

CLK2 [ 

W/R, M/TO, [ 
DIG, ADS 

A23-A1 [ 

015-00 [ 

HLOA [ 

Th Ti orT1 
!jJ 2 !jJ 1 !jJ 2 !jJ 1 !jJ 2 

~ ru ~ ~ ~ V--
--1 

19 
Min Max 

18 
Min Max 

-- --I- -- -
(High Z) 

t11 
Min Max 

t10 
Min Max 

-- --I- -- -
(HighZ) 

17 
Min Max 

16 
Min Max 

-- --I- -- -
(High Z) 

113 
Min Max 

t12 
Min 

-- I- --
(High Z) 

I- ---

t13-Also applies to data float when write 

114f cycle is followed by read or idle. 
114 

Min Max Min Max 

'1//1/1//// ~~\\\\\\\\' 

Figure 51. Output Float Delay and HLDA Valid Delay Timing 

RESET Initialization Sequence 

!jJ2 or !jJ1 !jJ2 or !jJ1 !jJ2 

CLK2 [ 

RESET [ 

Figure 52. RESET Setup and Hold Timing and Internal Phase 

214 Am3S6 Microprocessors for Personal Computers 

Max 

150228-035 

150228-036 



nom + 6 r----,---,----.---, 

Output 
Valid 
Delay 
(ns) 

nom +3 

nom 

nom-3 

nom-6 

nom-9L-_~ __ ~ __ ~ __ ~ 

50 75 100 125 150 

CL (picofarads) 

15022B-037 

Figure 53. Typical Output Valid Delay Versus 
Load Capacitance at Maximum Operating 

Temperature(CL = 120 pF) 

nom +9 

nom +6 

Output 
Valid nom +3 

Delay (ns) 

nom 

nom-3 

50 100 125 150 

CL (picofarads) 
Figure 55. Typical Output Valid Delay Versus 

Load Capacitance at Maximum Operating 
Temperature (CL = 50 pF) 

DIFFERENCES BETWEEN THE Am386SX/ 
SXL CPU AND THE Am386DX/DXL CPU 

The following are the major differences between the 
Am386SXlSXL CPU and the Am3860XlOXL CPU: 

1. The Am386SXlSXL CPU generates byte selects on 
SHE and SlE (like the 8086 and 80286) to 
distinguish the upper and lower bytes on its 16-bit 
data bus. The Am3860XlOXL CPU uses four byte 

Output 
Valid 
Delay 
(ns) 

AMD ~ 
nom + 9 r----,---,----.---, 

nom + 6 

nom+3 

nom 

nom-3 

nom-6L-_~~_~ __ -L __ ~ 

75 100 125 150 

CL (picofarads) 

15022B-038 

Figure 54. Typical Output Valid Delay Versus 
Load Capacitance at Maximum Operating 

Temperature (CL = 75 pF) 

8r---~-----r----'-----' 

6 

Rise Time (ns) 
4 0.8 V-2.0V 

2 

8 
50 75 100 125 150 

CL (picofarads) 

Figure 56. Typical Output Rise Time Versus Load 
Capacitance at Maximum Operating Temperature 

selects, BE3-BEO, to distinguish between the 
different bytes on its 32-bit bus. 

2. The Am386SXlSXL CPU has no bus sizing option. 
The Am3860XlOXl CPU can select between either 
a 32-bit bus or a 16-bit bus by use of the BS16 input. 
The Am386SXlSXL CPU has a 16-bit bus size. 

3. The NA pin operation in the Am386SXlSXl CPU is 
identical to that of the NA pin on the Am3860XlOXL 

Am386SXlSXL Microprocessor Data Sheet 215 



~ AMD 
CPU with one exception: the Am3860XlOXL CPU 
NA pin cannot be activated on 16-bit bus cycles 
(where 8816 is Low in the Am3860XlOXL CPU 
case), whereas NA can be activated on any 
Am386SXlSXL CPU bus cycle. 

4. The contents of all Am3868X1SXL CPU registers at 
reset are identical to the contents of the Am3860XI 
OXL CPU registers at reset, except the OX register. 
The OX register contains a component-stepping 
identifier at reset, that is, 
in Am3860XlOXL CPU, after reset 

OH = 3 indicates Am3860X/OXL CPU 
01 = revision number: 

in Am386SXlSXL CPU, after reset 

OH = 23H indicates Am386SXlSXL CPU 
OL = revision number. 

5. The Am3860XlOXL CPU uses A31 and MilO as 
selects for the math coprocessor. The Am386SXI 
SXL CPU uses A23 and MilO as selects. 

6. The Am3860XlOXL CPU prefetch unit fetches code 
in four-byte units. The Am386SXlSXL CPU prefetch 
unit reads two bytes as one unit (like the 80286). In 
8816 mode, the Am3860XlOXL CPU takes two 
consecutive bus cycles to complete a prefetch 
request. If there is a data read or write request after 
the prefetch starts, the Am3860XlOXL CPU will 
fetch all four bytes before addressing the new 
request. 

7. Both Am3860XlOXL CPU and Am386SXlSXL CPU 
have the same logical address space. The only 
difference is that the Am3860XlOXL CPU has a 
32-bit physical address space and the Am386SXI 
SXL CPU has a 24-bit physical address space. The 
Am386SXlSXL CPU has a physical memory 
address space of up to 16 Mb instead of the 4 Gb 
available to the Am3860XlOXL CPU. Therefore, in 
Am386SXl8XL CPU systems, the operating system 
must be aware of this physical memory limit and 
should allocate memory for applications programs 
within this limit. If an Am3860XlOXL CPU system 
uses only the lower 16 Mb of physical address, then 
there will be no extra effort required to migrate 
Am386DXlDXL CPU software to the Am386SXlSXL 
CPU. Any application which uses more than 16 Mb of 
memory can run on the Am386SXlSXL CPU, if the 
operating system utilizes the Am386SXlSXL CPU's 
paging mechanism. In spite of this difference in 
physical address space, the Am386SXlSXL CPU 
and Am3860XlOXL CPU can run the same 
operating systems and applications within their 
respective physical memory constraints. 

8. The Am386SXlSXL CPU has an input called FL T 
which three-states all bi-directional and output pins, 
including HLDA, when asserted. It is used with ON­
Circuit Emulation (ONCE). 

INSTRUCTION SET 
This section describes the instruction set. The Instruc­
tion Set Clock Count Summary lists all instructions 

along with instruction encoding diagrams and clock 
counts. Further details of the instruction encoding are 
then provided in the following sections, which 
completely describe the encoding structure and the 
definition of all fields occurring within instructions. 

The Am386SXlSXL CPU Instruction 
Encoding and Clock Count Summary 
To calculate elapsed time for an instruction, multiply the 
instruction clock count, as listed in the Instruction Set 
Clock Count Summary, by the processor clock period 
(e.g., 40 ns for a 2S-MHz, 50 ns for a 20-MHz, and 
62.5 ns for a 16-MHz Am386SXlSXL microprocessor). 
The actual clock count of an Am386SXlSXL CPU 
program will average 5% more than the calculated clock 
count due to instruction sequences which execute faster 
than they can be fetched from memory. 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, decoded, and 
is ready for execution. 

2. Bus cycles do not require wait states. 

3. There are no local bus HOLD requests delaying 
processor access to the bus. 

4. No exceptions are detected during instruction 
execution. 

5. If an effective address is calculated, it does not use 
two general register components. One register, 
scaling and displacement can be used within the 
clock counts shown. However, if the effective 
address calculation uses two general register 
components, add 1 clock to the clock count shown. 

Instruction Clock Count Notation 

1. If two clock counts are given, the smaller refers to a 
register operand and the larger refers to a memory 
operand. 

2. n = number of times repeated. 

3. m = number of components in the next instruction 
executed, where the entire displacement (if any) 
counts as one component, the entire immediate data 
(if any) counts as one component, and all other bytes 
of the instruction and prefix(es) each count as one 
component. 

Misaligned or 32-8it Operand Accesses 
-If instructions access a misaligned 16-bit operand or 

32-bit operand on even address add: 
2 x clocks for read or write 
4x clocks for read and write 

-If instructions access a 32-bit operand on odd 
address add: 
4 x clocks for read or write 
8 x clocks for read and write 

Wait States 

Wait states add 1 clock per wait state to instruction 
execution for each data access. 

216 Am386 Microprocessors for Personal Computers 



AMD 

Am386SX/SXL Instruction Set Clock Count Summary 
Clock Count Notes 

Real 
Protected 

Real 
Protected Address Address 

Model Virtual Model Virtual 
Virtual Address Virtual Address 

Instruction Format 8086 Mode Mode 8086 Mode Mode 

GENERAL DATA TRANSFER 

MOV=Move: 

Register to Register/Memory 1 000100w mod reg rim 1 212 212' 

Register/Memory to Register 1 000101w mod reg rim I 214 214' 

Immediate to Register/Memory 1 1 a a a 1 1 w mod a a a rim I immediate data 212 212' 

Immediate to Register (short form) 1 a 1 1 w reg immediate data 2 2 

Memory to Accumulator (short form) 1 a 1 a a a a w lull displacement 4' 4' 

Accumulator to Memory (short form) 1 a 1 a a a 1 w full displacement 2' 2' 

Register/Memory to Segment Register 1 a a a 1 1 1 a mod sreg 3 rIm I 215 22123 

Segment Register to Register/Memory 1 a a a 1 1 a a mod sreg rIm I 212 212 

MOVSX = Move with Sign Extension 

Register from Register/Memory 10 a a a 1 111 11 a 1 1 1 1 1 w I mod reg rim I 3/6' 3/6' 

MOVZX = Move with Zero Extension 

Register from Register/Memory 10 a a a 1 111 11 a 1 1 01 1 w I mod reg rim I 3/6' 3/6' 

PUSH=Push: 

RegisterlMemory 11 1 11 11 11 mod 1 1 a rim I 5fT' 7/9' 

Register (short form) 10 1 a 1 a reg 2 4 

Segment Register (ES,CS,SS, or DS) (short form} 1000 sreg 2 110 2 4 

Segment Register (ES, CS, SS, OS, FS, or GS) 10 a a a 1 1 1 1 10 sreg3 000 
1 

2 4 

Immediate 10 1 1 a 1 a s a immediate data 2 4 

PUSHA = Push All 
101 1 a a a a a 18 34 

POP=Pop 

Register/Memory 1 a a a 1 1 11 mod a a a rim 1 5fT 7/9 

Register (short form) a 1 a 1 1 reg 6 6 

Segment Register (ES, CS, SS, or DS) 000 sreg 2 111 7 25 

Segment Register (ES, CS, SS, OS, FS, or GS) a a a a 1 1 1 1 10 sreg3 001 
1 

7 25 

POPA=PopAIl 01100001 24 40 

XCHG = Exchange 

Register/Memory with Register 11 a a a a 1 1 w I mod reg rim I 3/5" 3/5" 

Register with Accumulator (short form) 11 a a 1 a reg 
1 

3 3 

IN = Input From: 
ClK Count 

Virtual 8086 Mode 

Fixed Port 11 1 1 a a 1 owl port number 28'" 12' 6'/26' 

Variable Port 11 1 1 a 1 1 a w I 27''' 13' 7'/27' 

'If CPl,;;IOPL .. If CPl> 10Pl '''Clock count shown applies if 110 permission allows 1/010 the port in Virtual 8086 Mode. If 110 bit map 

denies permission Exception 13 fault occurs; refer to clock counts for I NT3 instruction. 

Am386Sx/SXL Microprocessor Data Sheet 

b h 

b h 

b h 

b h 

b h 

b h, i,j 

b h 

b h 

b h 

b h 

b h 

b h 

b h 

b h 

b h 

b h 

b h 

b h, i, j 

b h, i, j 

b h 

b, f f, h 

slt,m 

slt,m 

217 



~ AMD 

Am386Sx/SXL Instruction Set Clock Count Summary (continued) 
Clock Count Notes 

Real 
Proteeted 

Real Protected Address Address 
Model Virtual Model Virtual 
Virtual Address Virtual Address 

Instruction Format 8086 Mode Mode 8086 Mode Mode 

OUT = Output To: CLK Count 
Virtual 8086 Mode 

Fixed Port 11 1 1 001 1 w I port number I 24'" 10' 4'124' slt,m 

Variable Port 11 1 1 01 1 1 wi I 25'" II' 5'125' sit, m 

LEA = Load EA to Register 11 0001 1 01 I mod reg rim I 2 2 

SEGMENT CONTROL 

LOS = Load Pointer to OS 11 1 000 1 o 1 mod reg rim 7' 26'/28' b h, i,j 

LES = Load Pointer to ES 11 1 0001 00 mod reg rim 7' 26'/28' b h, i,j 

LFS = Load Pointerto FS 100001 t 1 1 1 01 1 01 00 mod reg rim I 7' 26'/28' b h, i, j 

LGS = Load Pointer to GS 100001 1 1 1 1 o t 1 01 01 mod reg rim I 7' 26'/28' b h, i,j 

LSS= Load Pointer to SS 10000 1 1 1 1 1 01 1 001 a mod reg rim I 7' 26'/28' b h, i,j 

FLAG CONTROL 

CLC = Clear Carry Flag 11 1 1 1 1 a a a 2 2 

CLD = Clear Direction Flag 11 1 1 1 , 1 a a 2 2 

CLI = Clear Interrupt Enable Flag I, , 1 1 , 01 a 8 8 m 

CLTS=Clear Task Switched Flag a a a a 1 , 1 1 0000011 a I 5 5 c I 

CMC = Complement Carry Flag 1 111 01 a 1 2 2 

LAHF = Load AH into Flag 1 a a 1 , 111 2 2 

POPF = Pop Flags 1 a a 1 1 1 01 5 5 b h, n 

PUSHF = Push Flags 1 a a 1 1 1 a a 4 4 b h 

SAHF = Store AH into Flags 1 001 , 1 , a 3 3 

STC = Set Carry Flag 11 1 1 , a a 1 2 2 

STD = Set Direction Flag 1 1 1 11 1 a 1 

STI = Set Interrupt Enable Flag 1 1 , l' 01 1 8 8 m 

ARITHMETIC 

ADD=Add 

Register to Register 1000000dW mod reg rim I 2 2 

Register to Memory looooooow mod reg rim I 7" 7" b h 

Memory to Register loooooo,w mod reg rim I 6' 6' b h 

Immediate to RegisterlMemory 1100000sw mod a 0 a rim I immedi~te data 2/7" 2/7" b h 

Immediate to Accumulator (short form) 100000, Ow immediate data 2 2 

ADC = Add with Carry 

Register to Register 10 a a 1 a ad WlmOdreg rim I 2 2 

'If CPLs;IOPL "If CPL>IOPL 

218 Am386 Microprocessors for Personal Computers 



AMD 

Am386SX/SXL Instruction Set Clock Count Summary (continued) 
Clock Count Notes 

Real 
Protected 

Real 
Protected Address Address 

Model Virtual Model Virtual 
Virtual Address Virtual Address 

Instruction Format 8086 Mode Mode 8086 Mode Mode 

ADC = Add with Carry (continued) 

Register to Memory 1000 1 o 0 0 w I mod reg rIm I 7"" 7"" b h 

Memory to Register 
10001 o 0 1 w 1 mod reg rim 1 6" 6" b h 

Immediate to Register/Memory 110000oswimod01 0 rim I immediate data 2f7"" 2f7" b h 

Immediate to Accumulator (short form) 10 0 0 1 o 1 o w I immediate data 2 2 

INC = Increment 

Register/Memory 11 1 1111 1 wimOdOO 0 rim I 216"" 216"" b h 

Register (short form) 10 1 o 0 0 reg 
1 

2 2 

SUB=Subtract 

Register from Register 100 1 o 1 Odw mod reg rim I 2 2 

Register from Memory 1001 o 1 OOw mod reg rIm I r" r" b h 

Memory from Register 100 1 o 1 01 w mod reg rim I 6" 6" b h 

Immediate from Register/Memory 1100000sw mod 1 a 1 rim I immediate data 2f7"" 2W" b h 

Immediate from Accumulator (short form) 100 1 o 11 0 w immediate data 2 2 

SB B = Subtract with Borrow 

Register from Register 000 1 1 odwlmOdreg rim I 2 2 

Register from Memory 000 1 1 OOWlmOdreg rim I r" r" b h 

Memory from Register 000 1 1 o1wlmOdreg rim 1 6" 6" b h 

Immediate from Register/Memory 100oooswimod01 1 rim I immediate data 2/7"" 2/7"" b h 

Immediate from Accumulator (short form) o 0 0 1 1 1 o w I immediate data 2 2 

DEC=Decrement 

RegisterlMemory 11 1 111 1 1 wlregQ01 rim I 216 216 b h 

Register (short form) 
101 001 reg 

1 
2 2 

CMP = Compare 

Register with Register 00 1 1 1 o d w mod reg rim I 2 2 

Memory with Register o 0 1 1 1 OOw mod reg rim I 5" 5" b h 

Register with Memory 00 1 1 1 01 w mod reg rim 1 6" 6" b h 

Immediate with RegisterlMemory 100000sw mod 1 1 1 rim I immediate data 215" 215" b h 

Immediate with Accumulator (short form) 001 1 11 Ow immediate data 2 2 

NEG = Change Sign 111 1 01 1 w mod 0 1 1 rim I 216" 216" b h 

AAA = ASCII Adjust for Add 001 1 o 1 11 4 4 

" If CPL,; IOPL "" If CPL > IOPL 

Am386Sx/SXL Microprocessor Data Sheet 219 



~ AMD 

Am386Sx/SXL Instruction Set Clock Count Summary (continued) 
Clock Count Notes 

Real 
Protected 

Real Protected Address Address 
M_I Virtual M_I Virtual 
Virtual Address Virtual Address 

Instruction Formal 8086 Modo Mode 8086 Modo Mode 

AAS= ASCII Adjust for Subtract 
1001 11 1 1 1 I 4 4 

DAA= Decimal Adjust for Add 
1001 00 1 1 1 I 4 4 

DAS = Decimal Adjust for Subtract 
1001 01 1 1 1 

1 
4 4 

MUL= Multiply (unsigned) 

Accumulator with Register Memory 11 1 1 1 01 1 w I mod 1 00 rIm I 
Multiplier - Byte 12-17J15-20* 2-17/15-20* b,d d, h 

-Word 12-25/15-28' 2-25115-28' b,d d, h 
- Doubleword 12-41/17-46' 2-41/17-46' b, d d, h 

IMUL = Integer MuHiply (signed) 

Accumulator wilh Register Memory 11 1 1 1 01 1 w I mod 1 o 1 rim I 
Multiplier - Byte 12-17115-20' 2-17/15-20* b, d d, h 

-Word 12-25115-28' 2-25115-28' b,d d, h 
- Doubleword 12-41/17-46' 2-41117-46' b, d d, h 

Regisler with Register/Memory 10000 1 111 11 o 1 01 1 1 1 1 mod reg rim 1 

Multiplier - Byte 12-17/15-20' 2-17115-20' b, d d, h 
-Word 12-25/15-28· 2-25115-28' b, d d, h 
- Doubleword 12-41/17-46' 2-41117-46' b, d d, h 

Regisler/Memory wilh Immediate to Register 
101 1 01 0 s 1 1 mod reg rIm I immediate data 

-Word 
13-26 3-26114-27 b, d d, h 

-Doubleword 
13-42 3-4211&-45 b, d d, h 

DIV = Divide (unsigned) 

Accumulalor by Register/Memory 11 1 1 1 01 1 wi mod 1 1 0 rim 1 

Divisor - Byte 
14/17 14117 b, e e, h -Word 

- Doubleword 22125 22125 b, e e, h 
38/43 38143 b, e e, h 

IDIV = Integer Divide (signed) 

Accumulator by Register/Memory 11 1 1 1 01 1 w I mod 111 rim 1 

Divisor - Byte 
19/22 19/22 b, e e, h 

-Word 
- Doubleword 27/30 27/30 b, e e, h 

43/48 43/48 b, e e, h 

AAD = ASCII Adjust for Divide 11 1 o 1 01 o 1 100001 01 o 1 19 19 

AAM = ASCII Adjust for Multiply 11 1 0 1 01 00100001 01 01 17 17 

CBW = Convert Byte to Word 11 001 1 000 1 3 3 

CWD = Convert Word to Double Word 11 001 1 001 
1 2 2 

LOGIC 

ShifVRotate Instruction 

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

Register/Memory by 1 11 1 01 ooowlmodTTT rim 1 
3n" 3n" b h 

If CPL,;IOPL .. IfCPL>IOPL 

220 Am3S6 Microprocessors for Personal Computers 



AMD 

Am386Sx/SXL Instruction Set Clock Count Summary (continued) 
ClockCou"t Notes 

Real Protected Real Protected Address Address 
Model Virtuai Model Virtual 
Virtual Address Virtual Address 

Instruction Format S08S Mode Mode 8086 Mode Mode 

LOGIC (continued) 

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) -{continued) 

RegisterlMemory by CL 11 1 01001 wlmodTTT rim I 3f7' 3f7' b h 

RegisterlMemory by Immediate Count 11 1 ooooowlmodTTT r/ml (t) 3f7' 3f7' b h 

Through Carry (RCL a"d RCR) 

RegisterlMemory by 1 11 1 01 ooowlmodTTT rIm I 9/10' 9/10' b h 

RegisterlMemory by CL 11 1 01 001wlmodTTT rIm I 9/10' 9/10' b h 

Register/Memory by Immediate Count 11 1 ooooowlmodTTT r/ml (1) 9/10' 9/10' b h 

TTT Instruction 
000 RDL 
001 RDR 
010 RCL 
011 RCR 
100 SHUSAL 
101 SHR 

SHLD=Shift Left Double 111 SAR 

Register/Memory by Immediate 10 a a a 1 1 1 1 11 a 1 a a 1 a a 1 mod reg rim 1 (1) 3f7" 3f7" 

Register/Memory by CL 10 a a a 1 1 1 1 11 a 1 a a 1 a 1 I mod reg rim I 3f7" 3f7" 

SHRD=Shift Right Double 

Register/Memory by Immediate 10 a a a 1 1 1 1 1, a 1 01 1 001 mod reg rim 1(1) 3f7" 3f7" 

Register/Memory by CL 10 a a a 1 1 1 1 11 a 1 01 1 01 I mod reg rim 1 3f7" 3f7" 

AND=And 

Register to Register 10 a 1 ooodwlmOdreg rIm I 2 2 

Register to Memory 100 1 a a a a w I mod reg rim 1 7" 7" b h 

Memory to Register 10 a 1 0001wlmOdreg rim I 6' 6' b h 

Immediate to Register/Memory 11 oooooowimod 10 a rim I immediate data 2f7' 2f7" b h 

Immediate to Accumulator (short form) 100 1 a a 1 o w I immediate data 2 2 

TEST = And Function to Flags, No Result 

Register/Memory and Register 11 a a a a 1 owlmOdreg rIm I 215' 215' b h 

Immediate Data and Register/Memory 11 11 1 a 1 1wlmodooo rIm I immediate data 215' 215' b h 

Immediate Data and Accumulator (short form) 11 a 1 a 1 o 0 w I immediate data 2 2 

OR=Or 

Register to Register 10 a a a 1 ad w 1 mod reg rIm I 2 2 

Register to Memory 100 a a 1 a a w I mod reg rim I 7" 7" b h 

Memory to Register 10 a a a 1 o1wlmOdreg rIm I 6' 6' b h I 

'II CPL:;;IDPL .. If CPL>IDPL (1) Immediate 8-Blt Data I: 

Am386SXlSXL Microprocessor Data Sheet 221 



~ AMD 

Am386SXJSXL Instruction Set Clock Count Summary (continued) 
Clock Count Notes 

Reel Protected Reel 
Address Address 
Model Virtual Model 
Virtual Address Virtual 

Instruction Format 8086 Mode Mode 8086 Mode 

LOGIC (continued) 

Immediate to Register/Memory 11 oooooowimodoo 1 rim I immediate data 2(7" m" b 

Immediate to Accumulator (short lorm) 10 0 0 0 1 1 o w I immediate data 2 2 

XOR = Exclusive Or 

Register to Register 10 0 1 1 OOdw mod reg rIm I 2 2 

Register to Memory 100 1 1 OOOw mod reg rim I 7" YO' b 

Memory to Register 10 0 1 1 001 w mod reg rim I 6' 6' b 

Immediate to Register/Memory 11000000w mod 1 1 0 rim I immediate data 2(7" 2(7" b 

Immediate to Accumulator (short form) 10 0 1 1 01 Ow immediate data 2 2 

NOT = Invert RegisterlMemory 11 11 1 o 1 1 w mod 0 1 0 rim I 2/6" 216" b 

STRING MANIPULATION 
Clock Count 

CMPS = Compare ByteIWord 11 o 1 00 1 1 w 
VirtualSOS6 

10' 10' b Mode 

INS= Input ByteIWord lrom OX Port 10 1 1 o 1 1 Ow I 29'" 15 9'129" b 

LOOS = Load Byte/Word to AUAXtEAX 11 o 1 o 1 1 Ow 5 5' b 

MOVE = Move Byte/Word 11 o 1 001 Ow 7 7" b 

OUTS = Output BytelWord to OX Port 101 1 o 1 11 w I 2S'" 14 S'12S" b 

SCAS = Scan ByteiWord 11 01 o 1 11 w 7' yo b 

STOS= Siore ByleiWord Irom AUAXtEX It o 1 01 01 w 4' 4' b 

XLAT = Translate String 
11 1 0 1 01 1 1 5' 5' 

REPEATED STRING MANIPULATION 

Repeated by Count in CX or ECX 

REPE CMPS=Compare String (Find non-match) 11 1 1 1 001 1 11 01 001 1 wi 5+9n*'" 5+9n"'* b 

REPNE CMPS = Compare String (Find match) 1 1 1 1 001 0 11 o 1 00 1 1 wi 5+9n" 5+9n"- b 

REP INS= Input String 1 1 1 1 001 o 10 1 1 o 1 1 owl I .. , 13+6n· 7+6n*/ 6 

owl 

27+6n" 

REP LODS= Load String 1 1 1 1 00 1 0 1 0 1 01 1 5+6n* 5+6n* b 

REP MOVS=MoveString 1 1 1 1 00 1 0 1 0 1 00 1 owl 7+4n· 7+4n* b 

REP OUTS=Outpul String 1 1 1 1 00 1 0 01 1 o 1 1 1 wi I .. , 12+5n" 6+5n*/ b 
26+5n*· 

REPE SCAS=Scan String (Find non-AUAXtEAX) 11 1 1 1 001 1 1 o 1 o 1 1 1 wi 5+8n" 5+8n· b 

REPNE SCAS= Scan String (Find AUAXtEAX) 11 1 1 1 001 01 1 o 1 01 1 1 wi 5+8n· 5+8n* b 

REP STOS=Store String 11 1 1 1 001 0 11 o 1 o 1 0 1 wi 5+5n' 5+5n* b 

, II CPL ~ 10PL .. II CPL > 10PL '''Clock count shown applies if 110 permission allows liD 10 Ihe port in Virtual SOS6 Mode. If 110 bil map 

denies permission Exception 13 fault occurs; refer to clock counts for lNT3 instruction. 

222 Am3S6 Microprocessors for Personal Computers 

Protected 
Virtual 

Address 
Mode 

h 

h 

h 

h 

h 

h 

sit, h, m 

h 

h 

Sit, h,m 

h 

h 

h 

h 

h 

sit, h, m 

h 

h 

5/1, h, m 

h 

h 

h 



AMD 

Am386SXlSXL Instruction Set Clock Count Summary (continued) 
Clock Count Notes 

Real 
Protected 

Real Protected Address Address 
M_' Virtual M_, Virtual 
VlrtueJ Address VlrtueJ Address 

Instruction Format 8086 Mode Modo 8086 Mode Modo 

BIT MANIPULATION 

BSF = Scan B it Forward 10 0 0 0 1 1 1 1 1, 01 1 1 1 001 mod reg rim 1(1} 10+3n'" 10+3n'" b h 

BSR = Scan Bit Reverse 10 0 0 0 1 1 1 1 1, o 1 1 1 1 01 1 mod reg rim 
1 

10+3n' 10+3n'" b h 

BT=Test Bit 

Register/Memory, Immediate 100001 1 1 1 1, o 1 1 1 0 1 o I mod 1 0 0 rim 1 {1} 3/6' 3/6' b h 

Register/Memory, Register 10 0 0 0 1 1 1 1 1, 01 000 1 1 I mod reg rim 
1 

3/12' 3/12' b h 

BTC=Test Bit and Complement 

RegisterJMemory, Immediate 100001 1 1 1 1, o 1 1 1 o 1 o I mod 11 1 rim 1 {1} 618' 618' b h 

Register/Memory, Register 10000 1 1 1 1 1, o 1 1 1 o 1 1 I mad reg rim 
1 

6113' 6/13' b h 

BTR = Test Bit and Reset 

Register/Memory, Immediate 10 0 0 0 1 1 1 1 1, o 1 1 1 0 1 01 mod 1 1 0 rim 1 {1} 6/8' 618' b h 

Register/Memory, Register 100001 1 1 1 1, o 1 1 00 1 1 1 mod reg rim 
1 

6113' 6/13' b h 

BTS=Test Bit and Set 

Register/Memory, Immediate 10000 1 1 1 1 1, 01 11 01 o I mod 1 0 1 rim I {1} 618' 618' b h 

Register/Memory, Register 10000 1 1 1 1 1, 01 01 01 1 I mod reg rim I 6/13' 6113' b h 

CONTROL TRANSFER 

CALL = Call 

Direct Within Segment 1, 1 1 0 1 000 1 full displacemen1 7+m'" 9+m'" b r 

RegisterlMemory 

1, Imod010 rim 1 
7+m"" 9+m"" b h, r 

Indirect Within Segment 111 1 11 1 
10+m'" 12+m'" 

Direct Intersegment 1, 001 1 o 1 o 1 unsigned full offset, selector 17+m· 42+m· b j, k, r 

Protected Mode Only (Direct Intersegment) 

Via Call Gate to Same Privilege Level 64+m h, j, k, r 

Via Call Gate to Different Privilege Level (No Parameters) 98+m h,j, k, r 

Via Call Gate to Different Privilege Level (x Parameters) 106+8x+m h,j, k, r 

From 80286 Task 10 80286 TSS 285 h, j, k, r 
From 80286 Task to Am386SXlSXL CPU TSS 310 h,j, k, r 
From 80286 Task to Virtual 8086 Task (Am386SXlSXL CPU TSS) 229 h,j, k, r 
From Am386SXlSXL CPU Task to 80286 TSS 285 h,j, k, r 
From Am386SXlSXL CPU Task to Am386SXlSXL CPU TSS 392 h,j, k, r 
From Am386SXlSXL CPU Task to Virtual 8086 Task (Am386SXlSXL CPU TSS) 309 h,j, k, r 

Indirect Intersegment 

1, I mod 1 

30+m 46+m b h,j, k, r 
1111111 o 1 1 rim 

Protected Mode Only (Indirect Intersegment) 

Via Call Gate to Same Privilege Level 68+m h,j, k, r 

Via Call Gate to Different Privilege Level (No Parameters) 102+m h,j, k, r 
Via Call Gate to Different Privilege Level (x Parameters) 110+8x+m h,j, k, r 

From 80286 Task to 80286 TSS h,i, k, r 
From 80286 Task to Am386SXlSXL CPU TSS h,j, k, r 
From 80286 Task to Virtual 8086 Task (Am386SXlSXL CPU TSS) h,j, k, r 
From Am386SXlSXL CPU Task to 80286 TSS h,j, k, r 
From Am386SXlSXL CPU Task to Am386SXlSXL CPU TSS 399 h,j, k, r 
From Am386SXlSXL CPU Task to Virtual 8086 Task (Am386SXlSXL CPU TSS) h,", k, r 

'If CPL"IOPL "If CPL>IOPL (1) Immediate 8-bIt data 

Am386SXlSXL Microprocessor Data Sheet 223 



;t1 AMD 

Am386Sx/SXL Instruction Set Clock Count Summary (continued) 

Instruction Format 

CONTROL TRANSFER (continued) 

JMP = Unconditional Jump 

Short , , , 0 , 0' , la.bit displacement I 
Direct within Segment , , o , o 0 0 , I lull displacement 

, , , , , , , , Imod'OO rim I Register/Memory 
Indirect Within Segment 

Direct Intersegment , , , 
0' o , o I unsigned lull offset, selector 

Protected Mode Only (Direct Intersegmenl) 

Via Call Gate to Same Privilege Level 

From 80286 Task to 80286 TSS 

From 80286 Task to Am386SX!SXL CPU TSS 

From 80286 Task to Virtual 8086 Task (Am386SX!SXL CPU TSS) 

From Am386SX!SXL CPU Task to 80286 TSS 

From Am386SX!SXL CPU Task to Am386SX!SXL CPU TSS 

From Am386SX!SXL CPU Task to Virtual 8086 Task (Am386SX!SXL CPU TSS) 

Indirect Intersegment 1""""lmod101 rim I 
Protected Mode Only (Indirect Intersegment) 

Via Call Gate to Same Privilege Level 

From 80286 Task to 80286 TSS 

From 80286 Task to Am386SX!SXL CPU TSS 

From 80286 Task to Virtual 8086 Task (Am386SX!SXL CPU TSS) 

From Am386SX!SXL CPU Task 10 80286 TSS 

From Am386SX!SXL CPU Task to Am386SXlSXL CPU TSS 

From Am386SXlSXL CPU Task to Virtual 8086 Task (Am386SX!SXL CPU TSS) 

RET = Return from Call 

Within Segment I, 1 0000 1 

Within Segment Adding Immediate to SP 
11 1 o 0 0 0 1 

Intersegmenl 
11 1 001 01 

Intersegment Adding Immediate to SP I, 1 001 o , 

Protected Mode Only (RET): to Different Privilege Level 

Intersegment 

Intersegment Adding Immediate to SP 

1 I 
o I ' 6-bit displacement 

, I 
0 I 16-bit displacement 

CONDITIONAL JUMPS (Note: Times are Jump "Taken or Not Taken') 

JO = Jump on Overflow 

8-bit Displacement 

Full Displacement 1 0 , 1 1 0 0 0 0 1 8-bit displacement I 

I 

I 

JNO = Jump on Not Overflow I 0 0 0 0 1 1 1 1 11 0 0 0 0 0 0 0 I lull displacement 

8-bit Displacement 

Full Displacemenl 10 1 , , 0 0 0 1 18-bii displacemenl I 
I 0 0 0 0 1 1 1 1 11 0 0 0 0 0 0 1 I lull displacement 

• II CPU IOPL .. II CPL > IOPL 

Clock Count 

Real 
Address 

Model 
Virtual 

8086 Mode 

7+m 

7+m 

9+mJ 
14+m 

16+m 

17+m 

Protected 
Virtual 

Address 
Mode 

7+m 

7+m 

9+ml 
14+m 

31 +m 

53+m 

395 

31 +m 

328 

12+m 

12+m 

36+m 

72 

72 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

224 Am386 Microprocessors for Personal Computers 

Notes 

Real 
Address 

Model 
Virtual 

8086 Mode 

b 

Protected 
Virtual 

Address 
Mode 

h, r 

j, k, r 

h,j, k, r 
h,j, k, r 
h,j, k, r 
h,j, k, r 
h,j, k, r 
h, j, k, r 
h,j, k, r 

h,j, k, r 

h, j, k, r 

h,j, k, r 

h, j. k, r 

h,j, k, r 

h, j. k, r 
h,j, k.r 
h,j, k, r 

g, h, r 

g, h, r 

g, h, i. k, r 

g, h, i. k, r 

h,j, k, r 
h,j, k, r 



Am386SX/SXL Instruction Set Clock Count Summary (continued) 
Clock Count 

Real Protected Address 
Model Virtual 
Virtual Address 

Instruction Format 8086 Modo Mod. 

CONDITIONAL JUMPS (continued) 

JB/JNAE = Jump on Below/Not Above or Equal 

a-bit Displacement 
101 1 1 001 0 IS-bit displacement 

I 
7 +m or 3 7+mor3 

Full Displacement 10000 1 11 1 1, 0000010 I full displacement 7 +m or 3 7+m or3 

JNB/JAE = Jump on Not Below/Above or Equal 

a-bit Displacement 10 1 1 1 00 1 1 la-bit displacement 
I 

7 +m or 3 7 +m or 3 

Full Displacement 100001 11 1 1, 0000011 
I 

lull displacement 7+mor3 7+mor3 

JE/JZ =Jump on EquallZero 

a-bit Displacement 101 1 1 0 1 o 0 IS-bit diselacement I 7 +m or 3 7 +m or 3 

Full Displacement 100001 1 11 1, 0000100 I lull displacement 7 +m or 3 7 +m or 3 

JNE/JNZ = Jump on Not Equal/Not Zero 

8-bit Displacement 101 1 1 0 1 01 la-bit displacement I 
7+mor3 7 +m or 3 

Full Displacement 100001 1 11 1, 0000101 I lull displacement 7 +m or 3 7 +m or 3 

JBE/JNA = Jump on Below or Equal/Not Above 

a-bit Displacement 101 1 1 0 1 1 o la-bit displacement I 7 +m or 3 7 +m or 3 

Full Displacement 100001 1 11 1, 0000110 I full displacement 7+mor3 7 +m or 3 

JNBE/JA=Jump on Not Below or Equal/Above 

a-bit Displacement 10 1 1 1 01 1 1 IS-bit displacement I 7 +m or 3 7 +m or 3 

Full Displacement 100001 1 1 1 1, 00001 1 1 I lull displacement 7+mor3 7+mor3 

JS=Jump on Sign 

8-bit Displacement 101 111 000 la-bit displacement I 7 +m or 3 7 +m or 3 

Full Displacement 100001 111 1, 0001000 I full displacement 7 +m or 3 7+mor3 

JNS = Jump on Not Sign 

8-bit Displacement 10 1 111 001 IS-bit dis~lacement I 
7 +m or 3 7 +m or 3 

Full Displacement 100001 111 1, 0001001 I full displacement 7 +m or 3 7+mor3 

JP/JPE = Jump on Parity/Parity Even 

8-bit Displacement 
101 1 1 1 0 1 0 IS-bit displacement 

I 
7 +m or 3 7+mor3 

Full Displacement 100001 11 1 1, 0001010 
I 

full displacement 7 +m or 3 7+mor3 

JNP/JPO = Jump on Not ParitylParity Odd 

S-bit Displacement 
101 111 01 1 IS-bit displacement I 7+mor3 7 +m or 3 

Full Displacement 10000 1 11 1 1, 0001 01 1 I full displacement 7 +m or 3 7 +m or 3 

Am386Sx/SXL Microprocessor Data Sheet 

AMD 

Notes 

Real 
Protected Address 

Model Virtual 
Virtual Address 

8086 Modo Mod. 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

r 

225 

I 

I 

~ 



AMD 

Am386SX/SXL Instruction Set Clock Count Summary (continued) 
Clock Count Notes 

Rea 
Protected 

Real 
Protected Address Address 

Model Virtual Model Virtual 
Virtual Address Virtual Address 

Instruction Format 8086 Mode Mode BOB6Mode Mode 

CONDITIONAL JUMPS (continued) 

JLlJNGE =Jump on LesslNot Greater or Equal 

a-bit Displacement 10 1 111 1 00 IS-bit displacement I 7+mor3 7 +m or 3 r 

Full Displacement 10 0 0 0 1 1 11 11 0001100 I full displacement 7+mor3 7 +m or 3 r 

JNLlJGE =Jump on Net Less/Greater or Equal 

8-bit Displacement 10 1 111 1 o 1 la-bit displacement 
I 

7 +m or 3 7+mor3 r 

Full Displacement 10 0 0 0 1 1 11 11 o 0 0 1 1 0 1 
I 

full displacement 7+m or3 7 +m or 3 r 

JLE/JNG=Jump on Less or Equal/Not Greater 

a-bit Displacement 10 1 111 1 1 0 IS-bit displacement 
I 7+mor3 1+mor3 r 

Full Displacement 100001 1 1 1 11 o 0 0 1 1 1 0 I full displacement 7 +rn or 3 7 +m or 3 r 

JNLE/JG=Jump on Not Less or Equal/Greater 

S-bit Displacement o 1 111 1 1 1 8-bit displacement 7 +m or 3 7+mor3 r 

Full Displacement 00001 1 1 1 1 0 0 0 1 1 1 1 full displacement 7+mor3 7+mor3 r 

JCXZ = Jump on CX Zero' 1 1 1 0001 1 a-bit displacement 9+mor5 9+m or 5 r 

JECXZ = Jump on ECX Zero 1 1 1 o 0 0 1 1 a-bit displacement 9+mor5 9 +m or 5 r 

LOOP = Loop CX Times 1 1 1 000 1 0 8-bit displacement 11+m 11 +m r 

LOOPZlLOOPE = Loop with ZerolEqual 1 1 1 00001 a-bit displacement 11 +m 11 +m r 

LOOPNZlLOOPNE = Loop while Not Zero 1 1 1 00000 a-bit displacement 11 +m 11 +m r 

CONDfTIONAL BYTE SET (Note: Times Are Register/Memory) 

SETO=Set Byte on Overflow 

To Register/Memory 100001 111 11 00 1 oooolmOdOO 0 rim 
I 4/5' 4/5' h 

SETNO = Set Byte on Not Overflow 

To RegisterlMemory 10 0 0 0 1 1 11 11 0010001 I mod o 0 0 rim 
I 4/5' 4/5' h 

SETB/SETNAE = Set Byte on BelowlNot Above or Equal 

To RegisterlMemory 10000 1 1 11 11 00 1 00 1 olmodOOO rim 
I 4/5' 4/5' h 

SETNB= Set Byte on Not BelowlAbove or Equal 

To Register/Memory 10000 1 111 11 o 0 1 0 0 1 1 ImodOOO rim 
I 

4/5' 4/5' h 

SETEISETZ = Set Byte on EquallZero 

To Register/Memory 100001 111 11 00 1 0 1 oolmodOOO rim 
I 

4/5' 4/5' h 

SETNE/SETNZ = Set Byte on Not Equal/Not Zero 

To Register/Memory I a 0 0 0 1 111 11 o 0 1 0 1 0 1 Imodoao rim I 4/5'" 4/5' h 

• Address Size Prefix differentiates JCXZ from JECXZ 

226 Am386 Microprocessors for Personal Computers 



AMD 

Am386SXJSXL Instruction Set Clock Count Summary (continued) 
ClockCounl Notes 

Real Protected Real 
Protected Add ...... Add ..... u_, Virtual Mode' Virtual 

Virtual Add ..... Virtual Address 
Instruction Format 8086 Modo Mode 8088_ Modo 

CONDITIONAL BYTE SET (continued) 

sETBEISETNA = sel Byte on Below or Equai/Nol Above 

To Register/Memory 100001 1 11 11 001 0 1 10lmodOOO rim 
1 

415' 415' h 

sETNBEISETA=sel Byte on Not Below or Equal/Above 

To Register/Memory 100001 1 11 11 001 01 111modOOO rim 
1 

415' 415' h 

SETS = sel Byte on Sign 

To Register/Memory 100001 111 11 001 1000imodOOO rim 1 
4/5' 4/5' h 

sETNs = Sel Byte on Not Sign 

To Register/Memory 100001 111 11 001 1 001 ImodOOO rim 
1 

4/5' 4/5' h 

sETPISETPE = Set Byte on ParilylParily Even 

To Register/Memory 100001 111 11 001 1010lmodOOO rim 
1 

4/5' 4/5' h 

sETNPISETPO = sel Byte on Not Parily/Parity Odd 

To Register/Memory 100001 1 11 11 001 1 01 11modOOO rim 
1 

415' 4/5' h 

sETLlSETNGE = Set Byte on Less!Not Grealer or Equal 

To Register/Memory 100001 1 11 11 001 1100lmodOOO rim 
1 

415' 415' h 

sETNLlSETGE =sel Byte on Nol Less/Grealer or Equal 

To Register/Memory 100001 1 11 
101 11 11011modOOO rim 

1 
415' 415' h 

sETLElSETNG = Set Byte on Less or EquallNot Grealer 

To Register/Memory 100001 1 11 11 001 1 110lmodOOO rim 
1 

415' 415' h 

sETNLEISETG=set Byte on Not Less or Equal/Grealer 

To Register/Memory 100001 1 11 11 001 11 111modOOO rim 
1 

4/5' 4/5' h 

ENTER = Enler Procedure 11 1 0 0 1 0 0 0 1 16-bit displacement, B-bit level 1 
L=O 10 10 b h 

L=1 14 14 b h 

L>1 17+8(n-1) 17+8(n-1) b h 

LEAVE = Leave Procedure 
11 1 

1 0 a 1 a a 1 4 4 b h 

INTERRUPT INSTRUCTIONS 

INT = Inlerrupt: 

Type Specilied 
11 1 a a 1 1 01 1 type 1 

37 b 

Type 3 
11 1 a a 1 1 a a 1 33 b 

INTO =lnlerrupt4 if OVerflow Flag sel 
11 1 a a 1 1 1 a 1 IIOF=1 

IIOF=O 35 b, e 
3 3 b, e 

'II CPLs;IOPL "II CPL>IOPL 

Am386SXlSXL Microprocessor Data Sheet 227 



~ AMD 

Am386SXlSXL Instruction Set Clock Count Summary (continued) 
Clock Count Notes - Protected - Pr ... cted Addres. AcId_ 

Model Vi ..... Model Virtual 

Instruction 
Virtual Acldreoo VI_ Add ..... 

Format 8086_ M_ 8086 Modo Mod. 

INTERRUPT INSTRUCTIONS (continued) 

INT = Interrupt: 

Type Specified 

Type 3 

Bound = Interrupt 5 If Detected Value Out of Range 101 1 0001 o I mod reg rIm I 
If OUI of Range 44 b, e e,g,hj,k,r 

If In Range 10 10 b, e e,g,hJ,k,r 

Protected Mode Only (IN1) 

INT: Type Specified 

Via Interrupt or Trap Gate 10 Same Privilege Level 

Via Interrupt or Trap Gate to Different Privilege Level 71 g,j, k, r 

From 80286 Task 10 80286 TSS via Task Gate 111 g,j, k, r 

From 80286 Task 10 Am386SXlSXL CPU TSS via Task Gate 438 g,j, k, r 

From 80286 Task to Virtual 8086 Mode via Task Gate 465 g,j, k, r 

From Am386SXlSXL CPU Task to 80286 TSS via Task Gate 382 g,j, k, r 

From Am386SXlSXL CPU Task to Am386SXlSXL CPU TSS via Task Gate 440 g,j, k, r 

From Am386SXlSXL CPU Task to Virtual 8066 Mode via Task Gate 467 g,j, k, r 

From Virtual 8086 Mode to 80286 TSS via Task Gale 384 g,j, k, r 

From Virtual 8086 Mode 10 Am386SXlSXL CPU TSS via Task Gale 445 g,j, k, r 

From Virtual 8086 Mode 10 Privilege Level 0 via Trap Gate or Interrupt Gate 472 g,j, k, r 

275 g,j, k, r 

INT: Type 3 

Via Interrupt or Trap Gate to Same Privilege Level 

Via Inlerrupt or Trap Gate to Different Privilege Level 71 g,j, k, r 

From 80286 Task to 80286 TSS via Task Gale 111 g,j, k, r 

From 80286 Task 10 Am386SXlSXL CPU TSS via Task Gate 382 g,j, k, r 

From 80286 Task to Virtual 8086 Mode via Task Gate 409 g,j, k, r 

From Am386SXlSXL CPU Task 10 80286 TSS via Task Gate 326 g,j, k, r 

From Am386SXlSXL CPU Task to Am386SXlSXL CPU TSS via Task Gate 384 g,j, k, r 

From Am386SXlSXL CPU Task to Virtual 8086 Mode via Task Gate 411 g,j, k, r 

From Virtual 8086 Mode 10 80286 TSS via Task Gate 328 g,j, k, r 

From Virtual 8086 Mode to Am386SXlSXL CPU TSS via Task Gate 389 g,j, k, r 

From Virtual 8086 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 416 g,j, k, r 

223 g,j, k, r 

INTO 

Via Interrupt or Trap Gate to Same Privilege Level 

Via Interrupt or Trap Gate 10 Different Privilege Level 71 g,j, k, r 

From 80266 Task to 80286 TSS via Task Gate 111 g,j, k, r 

From 80286 Task to Am386SXlSXL CPU TSS via Task Gate 384 g,j, k, r 

From 80266 Task to Virtual 8086 Mode via Task Gate 411 g,j, k, r 

From Am386SXlSXL CPU Task to 80286TSS via Task Gate 326 g,j, k, r 

From Am386SXlSXL CPU Task to Am386SXlSXL CPU TSS via Task Gate Am386DX g,j, k, r 

From Am386SXlSXL CPU Task to Virtual 8086 Mode via Task Gate 413 g,j, k, r 

From Virtual 8066 Mode to 80286 TSS via Task Gate 329 g,j, k, r 

From Virtual 8086 Mode to Am386SXlSXL CPU TSS via Task Gate 391 g,j, k, r 

From Virtual 8066 Mode to Privilege Level 0 via Trap Gate or Interrupt Gate 418 g,j, k, r 

223 g,j, k, r 

BOUND 

Via Interrupt or Trap Gate to Same Privilege Level 

Via interrupl or Trap Gate to Different Privilege Level 71 g,j, k, r 

From 80266 Task to 80286 TSS via Task Gate 111 g,j, k, r 

From 80286 Task to Am386SXlSXL CPU TSS via Task Gate 358 g,j, k, r 

388 g,j, k, r 

228 Am386 Microprocessors for Personal Computers 



AMD 

Am386Sx/SXL Instruction Set Clock Count Summary (continued) 
Clock Count Notes 

Real Protected Real Protected Add", .. Addre.s 
Model Virtual Model Virtual 
Virtual Addres. Virtual Addre •• 

Instruction Format 8086 Mode Mode 8086 Mode Mode 
l-
I 

INTERRUPT INSTRUCTIONS (continued) 

BOUND (continued) 

From 80286 Task 10 Virtual 8086 Mode via Task Gale 335 g,j, k, r 

From Am386SXlSXL CPU Task to 80286 TSS via Task Gate 386 g,j, k, r 

From Am386SXlSXL CPU Task to Am386SXlSXL CPU TSS via Task Gate 398 g,j, k, r 

From Am386SXlSXL CPU Task to Virtual 8086 Mode via Task Gate 347 g,j, k, r 

From Virtual 8086 Mode to 80286 TSS via Task Gate 368 g,j, k, r 

From Virtual 8086 Mode to Am386SXlSXL CPU TSS via Task Gate 398 g,j, k, r 
From Virtual 8086 Mode to Privilege Level a via Trap Gate or Interrupt Gate 223 g,j, k, r 

INTERRUPT RETURN 

IRET=lnterrupi Return 11 1 a a 1 1 1 1 
I 

24 g,h,j,k,r 

Protected Mode Only (IRET) 

Via Interrupt or Trap Gate to Same Privilege Level (within Task) 42 g,h,j,k,r 

Via Interrupt or Trap Gate to Diflerent Privilege Level (within Task) 86 g,h,j,k,r 

From 80286 Task to 80286 TSS 285 h,j, k, r 

From 80286 Task to Am386SXlSXL CPU TSS 318 h,j, k, r 

From 80286 Task to Virtual 8086 Task 267 h,j, k, r 
From 80286 Task to Virtual 8086 Mode (within Task) 113 h.j. k. r 

From Am386SXlSXL CPU Task to Virtual 8086 TSS 324 h,j, k, r 

From Am386SXlSXL CPU Task to 80286 TSS 328 h,j, k, r 

From Am386SXlSXL CPU Task to Am386SXlSXL CPU TSS 377 h,j, k, r 

From Am386SXlSXL CPU Task to Virtual 8086 Mode (within Task) 113 h,j, k, r 

PROCESSOR CONTROL 

HLT=Halt 11 1 1 1 a 1 a a 
I 

5 5 I 

MOV = Move To and From Control/DebuglTest Registers 

CROICR2ICR3 from Register a a a a 1 1 1 1 a a 1 a a a 1 a 1 1 eee reg 1014/5 1014/5 I 

Register Irom CR3-CRO a a a a 1 1 1 1 a a 1 a a a a a 1 1 eee reg 5 6 I 

DR3-DRO from Register a a a a 1 1 1 1 a a 1 a a a 1 1 1 1 eee reg 22 22 I 

DR7-DR6 from Regis1er a a a a 1 1 1 1 a a 1 a a a 1 1 1 1 eee reg 16 16 I 

Register from DR7-DR6 a a a a 1 1 1 1 001 a a 0 a 1 1 1 eee reg 14 14 I 

Register from DR3-DRO a a a a 1 1 1 1 a a 1 a a a a 1 1 1 eee reg 22 22 I 

TR7-TR6 from Register a a a a 1 1 1 1 a a 1 a a 1 1 a 1 1 eee reg 12 12 I 

Register from TR7-TR6 10 a a a 1 11 1 00100100 1 1 eee reg 12 12 I 

NOP = No Operation 11 0010000 3 3 I 

WAIT = Wait until BUSY pin is negated 11 a a 1 1 01 1 6 6 I 

PROCESSOR EXTENSION INSTRUCTIONS 

See 387SX 

Processor Extension Escape 11 1011TTTImodLLL rim I Data sheet 

TIT and LLL bits are op-code information for coprocessor. forelock h 
PREFIX BYTES counts 

Address Size Prefix 10 1 1 a a 1 1 1 I a a 

Am386Sx/SXL Microprocessor Data Sheet 229 



~ AMD 

Am386Sx/SXL Instruction Set Clock Count Summary (continued) 
Clock Count Notes 

Real 
Protected 

Real 
Protected Address Address 

Model Virtual Model Virtual 
Virtual Addre98 Virtual Address 

Instruction Formal 8086 Mode Mode 8086 Mode Mode 

PREFIX BYTES (continued) 

LOCK = Bus Lock Prefix 11 1 1 1 0 0 0 0 
I 

0 0 m 

Operand Size Prefix 10 1 1 00 1 1 0 I 0 0 

Segment Override Prefix 

CS 001 01 1 t 0 0 0 

OS 001 11 t 1 0 0 0 

ES 00 1 001 1 0 0 0 

FS 01 t o 0 1 00 0 0 

GS o 1 1 00 1 01 0 0 

SS 001 1 0 1 1 0 0 0 

PROTECTION CONTROL 

ARPL=Adjust Requested Privilege Level 

From Register/Memory ~1 000 1 1 I mod reg rim I N/A 20/21" a h 

LAR = Load Access Rights 

From Register/Memory 10000 t 111 10000001 o I mod reg rim I N/A 15/16' a g, h,i, P 

LGDT = Load Global Descriptor 

Table Register 10000 1 111 100000001 I mod 0 1 0 rim I 11' 11' b, c h, I 

LlDT = Load Interrupt Descriptor 

Table Register 100 0 0 1 111 100000001 I mod 0 1 1 rim I 11' 11' b, c h, I 

LLDT = Load Local Descriptor 

Table Register to Register/Memory 10000 1 111100000000lmOd010 rim I N/A 20/24' a g, h,j, I 

LMSW = Load Machine Status Word 

From Register/Memory 10000 1 111 100000001 I mod 1 1 0 rim I 10113 10113' b, c h, I 

LSL = Load Segment Limit 

From Register/Memory 100001 111 10000001 1 I mod reg rim I 
Byte-Granular Limit 

N/A 20/21' a g, h, i, p 
Page~Granular Limit 

N/A 25/26' a g, h, i, P 

LTR = Load Task Register 

From Register/Memory 100001 111100000000imod001 rim I N/A 23/27' a g, h,j, I 

SGDT = Store Global Descriptor 

Table Register 10 0 0 0 1 111 100000001 ImodOOO rim I g' g' b, c h 

SlOT = Store Interrupt Descriptor 

Table Register 100001 111 100000001 I mod 0 0 1 rim I g' g' b,c h 

'If CPL"IOPL "If CPL> IOPL 

230 Am386 Microprocessors for Personal Computers 



Am386SX/SXL Instruction Set Clock Count Summary (continued) 

Instruction Format 

PROTECTION CONTROL (continued) 

SLOT = Store Local Descriptor Table Register 

To Register/Memory 100001 1 11 100000000imOdOoo rIm I 
SMSW = Store Machine Status Word 10 0 0 0 1 1 11 100000001 I mod 1 o 0 rim 1 

STR = Store Task Register 

To Register/Memory 10000 1 111 100000000imOdo01 rim I 
VERR = Verify Read Access 

Register/Memory 100001 1 11 1000000001 mod 1 o 0 rim 1 

VE RW = Verily Write Access 10 0 0 0 1 1 11 1000000001 mod 1 o 1 rim I 
"II CPL,;IOPL ""If CPL>IOPL 

Instruction Notes for Instruction Set Summary 
Notes a through c apply to Real Address Mode only: 

Clock Count 
Real 

Protected Address 
Model Virtual 
Virtual Address 

so •• Mode Mode 

NIA 212" 

212" 212" 

N/A 212" 

N/A 10/11" 

N/A 15/16" 

a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in Exception 6 (invalid op·code). 

AMD 

Notes 
Real 

Protected Address 
Model Virtual 
Virtual Address 

80 •• Mode Mode 

a h 

b, C h, I 

a h 

a g, h,j, P 

a g, h,j, P 

b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the 
maximum CS, DS, ES, FS, or GS limit (FFFFH). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an 
operand reference is made that partially or fully extends beyond the maximum SS limit. 

c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected Mode. 

Notes d through g apply to Real Address Mode and Protected Virtual Address Mode: 

d. The Am386SXJSXL CPU uses an early·out multiply algorithm. The actual number of clocks depends on the position of the most significant bit 
in the operand (multiplier). 

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula: 
Actual Clock = if m < > 0, then max ([log, Iml], 3) + b clocks; 

=if m=O, then 3+b clocks 

In this formula, m is the multiplier, and 
b =9 for register to register; 
b = 12 for memory to register; 
b = 10 for register with immediate to register; 
b = 11 for memory with immediate to register. 

e. An exception may occur, depending on the value of the operand. 

f. LOCK is automatically asserted, regardless of the presence or absence of the LOCK prefix. 

g. LOCK is asserted during descriptor table accesses. 

Notes h through r apply to Protected Virtual Address Mode only: 

h. Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an 
access rights violation. If a stack limit is violated, an Exception 12 occurs. 

For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an Exception 13 fault. The segment's 
descriptor must indicate "present" or Exception 11 (CS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not 
present is detected, an Exception 12 occurs. 

j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK to maintain descriptor integrity in 
multiprocessor systems. 

k. JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an Exception 13, if an applicable privilege rule is 
violated. 

An Exception 13 fault occurs if CPL is greater than 0 {O is the most privileged level}. 

m. An Exception 13 fault occurs if CPL is greater than IOPL 

n. The IF bit of the flag register is not updated if CPL is greater than IOPL The IOPL and VM fields of the flag register are updated only if CPL =0. 

o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit. 

p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero flag is cleared. 
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an Exception 13 fault will occur before the ESC 

instruction is executed. An Exception 12 fault will occur if the stack limit is violated by the operand's starting address. 

r. The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an Exception 13 fault will occur. 

sit. The instruction will execute in s clocks if CPL ,; IOPL If CPL > IOPL, the instruction will take t clock. 

Am386SXlSXL Microprocessor Data Sheet 231 

I

I, 
,', 

r 

[, 

I ' 
'1 

11 
l 
'I 



~ AMD 

Instruction Encoding 
OvelView 

All instruction encodings are subsets of the general 
instruction format shown in the Am386Sx/SXL Instruc­
tion Set Clock Count Summary (pages 217 thru 231). 
Instructions consist of one or two primary op-code 
bytes, possibly an address specifier consisting of the 
mod rim byte and scaled index byte, a displacement if 
required, and an immediate data field if required. 

Within the primary op-code(s), smaller encoding fields 
may be defined. These fields vary according to the class 
of operation. The fields define such information as 
direction of the operation, size of the displacements, 
register encoding, or sign extension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following the 
primary op-code byte(s). This byte (mod rim) specifies 
the address mode to be used. Certain encodings of the 
mod rim byte indicate a second addressing byte 
(scale-index-base byte) follows the mod rIm byte to fully 
specify the addressing mode. 

Addressing modes can include a displacement 
immediately following the mod rim byte, or scaled index 
byte. If a displacement is present, the possible sizes are 
8, 16, or 32 bits. 

If the instruction specifies an immediate operand, the 
immediate operand follows any displacement bytes. 
The immediate operand, if specified, is always the last 
field of the instruction. 

Figure 57 illustrates several of the fields that can appear 
in an instruction, such as the mod field and the rim field, 

but Figure 57 does not show all fields. Several smaller 
fields also appear in certain instructions, sometimes 
within the op-code bytes themselves. Table 22 is a 
complete list of all fields appearing in the Instruction Set. 
Further ahead, following Table 22, are detailed tables 
for each field. 

32·Bit Extensions of the Instruction Set 

With the Am386Sx/SXL CPU, the 8086/80186/80286 
Instruction Set is extended in two orthogonal directions: 
32-bit forms of all 16-bit instructions are added to 
support the 32-bit data types; and, 32-bit addressing 
modes are made available for all instructions referenc­
ing memory. This orthogonal instruction set extension is 
accomplished having a Default (D) bit in the code seg­
ment descriptor, and by having 2 prefixes to the 
instruction set. 

Whether the instruction defaults to operations of 16 bits 
or 32 bits depends on the setting of the 0 bit in the code 
segment descriptor, which gives the default length 
(either 32 bits or 16 bits) for both operands and effective 
addresses, when executing that code segment. In the 
Real Address Mode or Virtual 8086 Mode, no code 
segment descriptors are used, but a 0 value of 0 is 
assumed internally by the Am386Sx/SXL CPU when 
operating in those modes (for 16-bit default sizes 
compatible with the 8086/80186/80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective ad­
dress size. These prefixes may precede any op-code 
bytes and affect only the instruction they precede. If 
necessary, one or both of the prefixes may be placed 

Table 22. Fields within Instructions 

Field Name Description Number of Bits 

w Specifies if data is byte or full size (full size is either 16 or 32 bits) 1 
d Specifies direction of data operation 1 
s Specifies if an immediate data field must be sign-extended 1 
reg General Register Specifier 3 
mod rim Address Mode Specifier (effective address can be a General Register) 2 for mod; 3 for rim 
ss Scale Factor for Scaled Index Address Mode 2 
index General Register to be used as Index Register 3 
base General Register to be used as Base Register 3 
sreg2 Segment Register Specifier for CS, SS, DS, and ES 2 
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, and GS 3 
tttn For Conditional Instructions, specifies a condition asserted or a condition negated 4 

.. 
Note: Table 21 shows encoding of IndiVidual Instructions. 

IL.;T....;.T_T;.....;.T_T.;....;T;.....;.T_T.;...&.;IT....;.T_T,---,T....;.T_T,---,T....;.T .... I m_o_d_T_T_T_r l_m-,-l_s_s_in_d_e_x_b_as_e ..... 1 d321161 81 none data32 1 161 8 1 none 

,.1 0 v 7 ~ 7 6 5 ~,-7_6_5-v3 __ 2_0 ..... ,-__ ~_--, '--__ ..._--..J 
mod rim s-i-b address imm;diate 

232 

op-code 
(one or two bytes) 

(T represents an op-code bit) 
'-... __ -'by:....t_e ___ ---b....:;y-te--.... ~ displacement data 

. "V" (4, 2, 1 bytes, (4, 2, 1 bytes, 
register and address 

mode specifier 

Figure 57. General Instruction Format 

or none) or none) 

150228-041 

Am3S6 Microprocessors for Personal Computers 



before the op-code bytes. The presence of the Operand 
Size Prefix and the Effective Address Prefix will toggle 
the operand size or the effective address size, 
respectively, to the value opposite from the Default 
setting. For example, if the default operand size is for 
32-bit data operations, then presence of the Operand 
Size Prefix toggles the instruction to 16-bit data 
operation. As another example, if the default effective 
address size is 16 bits, presence of the Effective 
Address Size prefix toggles the instruction to use 
32-bit effective address computations. 

These 32-bit extensions are available in all modes, 
including the Real Address Mode and the Virtual 8086 
Mode. In these modes the default is always 16 bits, so 
prefixes are needed to specify 32-bit operands or 
addresses. For instructions with more than one prefix, 
the order of prefixes is unimportant. 

Unless specified otherwise, instructions with 8-bit and 
16-bit operands do not affect the contents of the 
high-order of the extended registers. 

Encoding of Instruction Fields 

Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immediately 
ahead. 

Encoding of Operand Length (w) Field 

For any given instruction performing a data operation, 
the instruction is executing as a 32-bit operation or a 
16-bit operation. Within the constraints of the operation 
size, the w field encodes the operand size as either one 
byte or the full operation size, as shown in the table 
below. 

Operand Size Operand Size 
During 16-Bit During 32-Bit 

wField Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

Encoding of the General Register (reg) Field 

The general register is specified by the reg field, which 
may appear in the primary op-code bytes, or as the reg 
field of the mod rim byte, or as the rim field of the mod 
rim byte. 

Encoding of reg Field When w Field is not 
Present in Instruction 

Register Selected Register Selected 
During 16·Bit During 32·Bit 

reg Field Data Operations Data Operations 

000 AX EAX 
001 CX ECX 
010 DX EDX 
011 BX EBX 
100 SP ESP 
101 BP EBP 
101 SI ESI 
101 DI EDI 

AMD 

Encoding of reg Field When w Field Is 
Present in Instruction 

Register Specified by reg Field 
During 16·Bit Data Operations 

Function of w Field 

reg (when w= 0) (when w = 1) 

000 AL AX 
001 CL CX 
010 DL DX 
all BL BX 
100 AH SP 
101 CH BP 
110 DH SI 
111 BH DI 

Register Specified by reg Field 
During 32·Bit Data Operations 

Function of w Field 

reg (when w= 0) (when w = 1) 

000 AL EAX 
001 CL ECX 
010 DL EDX 
all BL EBX 
100 AH ESP 
101 CH EBP 
110 DH ESI 
111 BH EDI 

Encoding of the Segment Register (sreg) Field 

The sreg field in certain instructions is a 2-bitfield, allow­
ing one of the four 80286 segment registers to be 
specified. The sreg field in other instructions is a 3-bit 
field, allowing the Am386S)(ISXL CPU FS and GS 
segment registers to be specified. 

2·Bit sreg2 Field 

2·Bit sreg2 Field Segment Register Selected 

00 ES 
01 CS 
10 SS 
11 DS 

3·Bit sreg3 Field 

3·Bit sreg3 Field Segment Register Selected 

000 ES 
001 CS 
010 SS 
all DS 
100 FS 
101 GS 
110 do not use 
111 do not use 

Am386Sx/SXL Microprocessor Data Sheet 233 



~ AMD 

EncodIng of Address Mode 

Except for special instructions, such as PUSH or POP, 
where the addressing mode is predetermined, the ad­
dressing mode for the current instruction is specified by 
addressing bytes following the primary op-code. The 
primary addressing byte is the mod rIm byte, and a sec­
ond byte of addressing information, the s-i-b (scale-in­
dex-base) byte, can be specified. 

The s-i-b byte is specified when using 32-bit addressing 
mode, the mod rIm byte has rIm = 100, and mod = 00, 
01, or 10. When the s-i-b byte is present, the 32-bit ad­
dressing mode is a function of the mod, SS, index, and 
base fields. 

The primary addressing byte, the mod rIm byte, 
also contains three bits (shown as TTT in Figure 57) 

sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as a 
register field (reg). 

When calculating an effective address, either 16-bit ad­
dressing or 32-bit addressing is used. 16-bit addressing 
uses 16-bit address components to calculate the effec­
tive address, while 32-bit addressing uses 32-bit ad­
dress components to calculate the effective address. 
When 16-bit addressing is used, the mod rIm byte is in­
terpreted as a 16-bit addressing mode specifier. When 
32-bit addressing is used, the mod rIm byte is inter­
preted as a 32-bit addressing mode specifier. 

Tables on the following pages define all encodings of all 
16-bit addressing modes and 32-bit addressing modes. 

Encoding of 16·Bit Address Mode with mod rIm Byte 

mod rim Effective Address Register Specified by rim 
During 16·8it Data Operations 

00 000 DS:[BX+SI] 
00 001 DS:[BX+ DI] 
00 010 SS:[BP + SI] 

Function of w Field 

mod rim (when w= 0) (when w = 1) 

00 011 DS:[BP+ DI] 11 000 AL AX 
00 100 DS:[SI] 11 001 CL CX 
00 101 DS:[DI] 11 010 DL DX 
00 110 DS:d16 11 011 BL BX 
00 111 DS:[BX] 11 100 AH SP 

11 101 CH BP 
01 000 DS:[BX + SI + dB] 11 110 DH SI 
01 001 DS:[BX + DI + dB] 11 111 BH DI 
01 010 SS:[BP + SI + dB] 
01 011 SS:[BP + DI + dB] 
01 100 DS:[SI + dB] 
01 101 DS:[DI + dB] 
01 110 SS:[BP + dB] 

Register Specified by rim 
During 32·8it Data Operations 

Function of w Field 

01 111 DS:[BX + dB] mod rim (when w= 0) (when w= 1) 

11 000 AL EAX 

mod rim Effective Address 11 001 CL ECX 
11 010 DL EDX 

10 000 DS:[BX + SI + d16] 11 011 BL EBX 
10 001 DS:[BX + DI + d16] 11 100 AH ESP 
10 010 SS:[BP + SI + d16] 11 101 CH EBP 
10 011 SS:[BP + SI + d16] 11 110 DH ESI 
10 100 DS:[SI + d16] 11 111 BH EDI 
10 101 DS:[DI + d16] 
10 110 SS:[BP + d16] 
10 111 DS:[BX + d16] 

11 000 Register-See Below 
11 001 Register-See Below 
11 010 Register-See Below 
11 011 Register-See Below 
11 100 Register-See Below 
11 101 Register-See Below 
11 110 Register-See Below 
11 111 Register-See Below 

Am386 Microprocessors for Personal Computers 



AMD ~ 
Encoding of 32-Bit Address Mode with mod rim Byte (no s-I-b byte present) 

mod rIm Effective Address mod rIm Effective Address 

00 000 DS:[EAX] 10 000 DS:[EAX + d32] 
00 001 DS:[ECX] 10 001 DS:[ECX + d32] 
00 010 DS:[EDX] 10 010 DS:[EDX + d32] 
00 011 DS:[EBX] 10 011 DS:[EBX + d32] 
00 100 s-i-b is present 10 100 s-i-b is present 
00 101 DS:d32 10 101 SS:[EBP + d32] 
00 110 DS:[ESI] 10 110 DS:[ESI + d32] 
00 111 DS:[EDI] 10 111 DS:[EDI + d32] 

01 000 DS:[EAX + d8] 11 000 Register-8ee Below 
01 001 DS:[ECX + d8] 11 001 Register-8ee Below 
01 010 DS:[EDX + d8] 11 010 Register-8ee Below 
01 011 DS:[EBX + d8] 11 011 Register-8ee Below 
01 100 s-i-b is present 11 100 Register-8ee Below 
01 101 SS:[EBP + d8] 11 101 Register-8ee Below 
01 110 DS:[ESI + d8] 11 110 Register-8ee Below 
01 111 DS:[EDI + d8] 11 111 Register-8ee Below 

Register Specified by reg or rIm Register Specified by reg or rIm 
During 32-8it Data Operations During 16-8it Data Operations 

Function of w Field Function of w Field 

mod rIm (when w= 0) (when w= 1) mod rIm (when w=O) (when w= 1) 

11 000 AL EAX 11 000 AL AX 
11 001 CL ECX 11 001 CL CX 
11 010 DL EDX 11 010 DL DX 
11 011 BL EBX 11 011 BL BX 
11 100 AH ESP 11 100 AH SP 
11 101 CH EBP 11 101 CH BP 
11 110 DH ESI 11 110 DH SI 
11 111 BH EDI 11 111 BH DI 

Am386Sx/SXL Microprocessor Data Sheet 235 



~ AMD 

mod base 

00 000 
00 001 
00 010 
00 011 
00 100 
00 101 
00 110 
00 111 

01 000 
01 001 
01 010 
01 011 
01 100 
01 101 
01 110 
01 111 

10 000 
10 001 
10 010 
10 011 
10 100 
10 101 
10 110 
10 111 

Encoding of 32-81t Address Mode (mod rIm byte and s-I-b byte present): 

Effective Address 

DS:[EAX + (scaled index)) 
DS:[ECX + (scaled index)) 
DS:[EDX + (scaled index)) 
DS:[EBX + (scaled index)) 
SS:[ESP + (scaled index)] 
DS:[d32 + (scaled index)] 
DS:[ESI + (scaled index)] 
DS:[EDI + (scaled index)) 

DS:[EAX + (scaled index) + d8] 
DS:[ECX + (scaled index) + d8] 
DS:[EDX + (scaled index) + d8] 
DS:[EBX + (scaled index) + d8] 
SS:[ESP + (scaled index) + d8] 
SS:[EBP + (scaled index) + d8] 
DS:[ESI + (scaled index) + d8] 
DS:[EDI + (scaled index) + d8] 

DS:[EAX + (scaled index) + d32] 
DS:[ECX + (scaled index) + d32] 
DS:[EDX + (scaled index) + d32] 
DS:[EBX + (scaled index) + d32] 
SS:[ESP + (scaled index) + d32] 
SS:[EBP + (scaled index) + d32] 
DS:[ESI + (scaled index) + d32] 
DS:[EDI + (scaled index) + d32] 

ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 x8 

Index Index Register 

000 EAX 
001 ECX 
010 EDX 
011 EBX 
100 no index reg (see note) 
101 EBP 
110 ESI 
111 EDI 

Note: When index field is 100, indicating no index register, then ss 
field must equal 00. If index is 100 and ss does not equal 00, 
Ihe effective address is undefined. 

Note: Mod field in mod rim byte; ss, index, and base fields in s-i-b byte. 

236 Am3S6 Microprocessors for Personal Computers 



Encoding of Operation Direction (d) Field 

In many two-operand instructions, the d field is present 
to indicate which operand is considered the source and 
which is the destination. 

d Direction of Operation 

Register/Memory ¢= Register 

0 reg Field indicates Source Operand; 
mod rim or mod ss index base indicates Destination 
Operand. 

Register ¢= Register/Memory 

1 reg Field indicates Destination Operand; 
mod rim or mod ss index base indicates Source 
Operand. 

Encoding of Sign-Extend (s) Field 

The s field occurs primarily to instructions with immedi­
ate data fields. The s field has an effect only if the size of 
the immediate data is 8 bits and is being placed in a 
i6-bit or 32-bit destination. 

Effect on Effect on 
s Immediate Data8 Immediate Data 16132 

0 None None 

1 Sign-Extended DataB to Fill None 
16-Bit or 32-Bit Destination 

Encoding of Conditional Test (tttn) Field 

For the conditional instructions (conditional jumps and 
set on condition), tttn is encoded with n indicating to 
use the condition (n = 0), or its negation (n = 1), and 
ttt giving the condition to test. 

AMD ~ 
Mnemonic Condition tttn 

0 Overflow 0000 
NO No Overflow 0001 
B/NAE Below/Not Above or Equal 0010 
NB/AE Not Below/Above or Equal 0011 
EIZ EquallZero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/Above 0111 
S Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 
NP/PO No Parity/Parity Odd 1011 

LlNGE Less Than/Not Greater or Equal 1100 
NLiGE Not Less Than/Greater or Equal 1101 

LE/NG Less Than or Equal/Not Greater Than 1110 
NLE/G Not Less Than or Equal/Greater Than 1111 

Encoding of Control or Debug or Test Register (eee) 
Field 

For the loading and storing of the Control, Debug, and 
Test registers. 

When Interpreted as Control Register Field 

eee Code Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eee Code Reg Name 

000 DRO 
001 DR1 
010 DR2 
011 DR3 
110 DR6 
111 DR7 

Do not use any other encoding 

When Interpreted as Test Register Field 

eee Code Reg Name 

110 TR6 
111 TR7 

Do not use any other encoding 

Am386Sx/SXL Microprocessor Data Sheet 237 



~ AMD 

PHYSICAL DIMENSIONS 
For reference only. All dimensions measured in inches unless otherwise noted. BSC is an ANSI standard for Basic 
Space Centering. 

238 

PQB 100-Plastic Quad Flat Pack; Trimmed and Formed 
(all measurements are in inches) 

14---------------- 0.897 _____ -.! 
1+-_________ 0.875 ___ 0_.9_0_3 _____ -+1 

1+-___ 0.747 ___ 0_.8_8_5 ________ --+1 

0.753 

Top View 

0.747 
0.753 

0.875 
0.885 

~ 
0.130 

ml\~I(m;Tl 
_060_ 0.160 14-------- R'EF 0.020 0.180 

0.040 

Side View 

Am386 Microprocessors for Personal Computers 

15679G 
CF43 
7/16/92 SG 



PHYSICAL DIMENSIONS (continued) 

PQB 100-Plastic Quad Flat Pack with Molded Carrier Ring 
(Inner device measured in inches; outer ring measured in millimeters) 

4587 .. --
46.13 45.50 .. --

41.37 45.90 .. --
41.63 37.87 --

35.15 38.13 --
35.25 32.15 --

0.897 32.25 --
0.903 

0.744 ------t 

0.752 

I' I 

1~~~~~1 
f-H-\ 

'-O-
r 

"'-
I 

v 
I 

~ 37.87 I~ ~ I 
45.90 38.13 32.25 0.752 I 

~-----t---- ~ ~ 41.37 35.15 0.897 --
I 13 41.63 35.25 0.903 

I Pin 1 I.D. 

I '-• 
(/ IIi I .I.. 

'1'.1.. 
,'1' / 

" I L.._ .... 

( 

TOP VIEW 
.45 Typ 

AMD ~ 

~ 

~ 

/-

~ 

f-

r---, 
! : 

I 
I 
I 

i HL . ./-
(_I 1-

o. -- ~o. 

008 
012 

.025 NOM 

IIIII~IIII~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1~80 
II ~ It .65 Typ .r 0 0 0 I 

I r 
I 1.. ___ _ 

SIDE VIEW 

Am386Sx/SXL Microprocessor Data Sheet 

156800 
CB51 
7/16/92SG 

239 



~ AMD 

240 Am3S6 Microprocessors for Personal Computers 



AMD ~ 

Am386SX!SXL Microprocessor Data Sheet 241 



~ AMD 

242 Am3S6 Microprocessors for Personal Computers 



AMD ~ 

Am386Sx/SXL Microprocessor Data Sheet 243 



Sales Offices 

North American _________ _ 
ALABAMA ............................................................... (205) 882-9122 
ARIZONA ................................................................ (602) 242-4400 
CALIFORNIA. 

Culver City ......................................................... (310) 645-1524 
Newport Beach ................................................. (714) 752-6262 
Sacramento(Roseville) .................................... (916) 786-6700 
San Diego .......................................................... (619) 560-7030 
San Jose ............................................................ (408) 452-0500 
Woodland Hills .................................................. (818) 992-4155 

CANADA. Ontario. 
Kanata ................................................................ (613) 592-0060 
Willowdale ......................................................... (416) 222-7800 

COLORADO ........................................ : .................. (303) 741-2900 
CONNECTICUT ..................................................... (203) 264-7800 
FLORIDA. 

Clearwater ......................................................... (813) 530-9971 
FI. Lauderdale ................................................... (305) 776-2001 
Orlando (Longwood) ......................................... (407) 862-9292 

GEORGIA ............................................................... (404) 449-7920 
IDAHO ..................................................................... (208) 377-0393 
ILLINOIS, 

Chicago (Itasca) ............................................... (708) 773-4422 
Naperville ........................................................... (708) 505-9517 

MARYLAND ............................................................ (301) 381-3790 
MASSACHUSETTS ............................................... (617) 273-3970 
MINNESOTA .......................................................... (612) 938-0001 
NEW JERSEY. 

Cherry Hill .......................................................... (609) 662-2900 
Parsippany ......................................................... (201) 299-0002 

NEW YORK. 
Brewster ............................................................. (914) 279-8323 
Rochester .......................................................... (716) 425-8050 

NORTH CAROLINA 
Charlotte ............................................................. (704) 875- 3091 
Raleigh ................................................................ (919) 878-8111 

OHIO. 
Columbus (Westerville) .................................... (614) 891-6455 
Dayton ................................................................ (513) 439-0268 

OREGON ................................................................ (503) 245-0080 
PENNSyLVANIA .................................................... (215) 398-8006 
TEXAS. 

Austin ................................................................. (512) 346-7830 
Dallas ................................................................. (214) 934-9099 
Houston .............................................................. (713) 376-8084 

Internatlonal __________ _ 
BELGIUM. Antwerpen ..... TEL ............................... (03) 248 43 00 

FAX .............................. (03) 248 46 42 
FRANCE. Paris ................ TEL ............................. (1) 49-75-10-10 

GERMANY. 
FAX ............................. (1) 49-75-10-13 

Bad Homburg .............. TEL.. ............................. (06172)-24061 
FAX .............................. (06172)-23195 

MOnchen ....................... TEL .................................... (089) 4114-0 
FAX ................................. (089) 406490 

HONG KONG ..................... TEL ................................ (852) 865-4525 
Wanchai FAX ............................. (852) 865-4335 

ITALY. Milano ................... TEL ................................. (02) 3390541 
FAX .............................. (02) 38103458 

JAPAN. 
Atsugi ........................... TEL .............................. (0462) 29-8460 

FAX ............................. (0462) 29-8458 
Kanagawa .................... TEL .............................. (0462) 47-2911 

FAX ............................. (0462) 47-1729 
Tokyo ............................ TEL .............................. (03) 3346-7550 

FAX ............................. (03) 3342-5196 
Osaka ........................... TEL ................................ (06) 243-3250 

FAX ............................... (06) 243-3253 
KOREA. Seoul .................. TEL ............................ (82) 2-784-0030 

FAX ............................ (82) 2-784-8014 

International (Continusd) ________ _ 
LATIN AMERICA. 

FI. Lauderdale ............. TEL ............................. (305) 484-8600 
FAX ............................. (305) 485-9736 

SINGAPORE ..................... TEL ................................. (65) 3481188 

SWEDEN. 
FAX ................................. (65) 3480161 

Stockholm area ........... TEL ................................ (08) 986180 
(Bromma) FAX ............................... (08) 980906 

TAIWAN. Taipei ............... TEL ........................... (886) 2-7153536 

UNITED KINGDOM. 
FAX ........................... (886) 2-7122183 

Manchester area ......... TEL ............................... (0925) 830380 
(Warrington) FAX .............................. (0925) 830204 
London area ................ TEL ............................... (0483) 740440 
(Woking) FAX .............................. (0483) 756196 

North American Representatives __ _ 
CANADA 
Burnaby. B.C. - DAVETEK MARKETING ........... (604) 430-3680 
Kanata. Ontario - VITEL ELECTRONICS .......... (613) 592-0060 
Mississauga. Ontario - VITEL ELECTRONICS. (416) 564-9720 
Lachine. Quebec - VITEL ELECTRONICS ........ (514) 636-5951 
ILLINOIS . 

Skokie -INDUSTRIAL 
REPRESENTATIVES.INC ................................ (708) 967-8430 

INDIANA 
Huntington - ELECTRONIC MARKETING 
CONSULTANTS. INC ....................................... (317) 921-3450 
Indianapolis - ELECTRONIC MARKETING 
CONSULTANTS. INC ....................................... (317) 921-3450 

IOWA 
LORENZ SALES ............................................... (319) 377-4666 

KANSAS 
Merriam - LORENZ SALES ............................ (913) 469-1312 
Wichita- LORENZ SALES .............................. (316) 721-0500 

KENTUCKY 
ELECTRONIC MARKETING 
CONSULTANTS. INC ....................................... (317) 921-3452 

MICHIGAN 
Holland - COM-TEK SALES. INC .................. (616) 335-8418 
Brighton - COM-TEK SALES. INC ................. (313) 227-0007 

MINNESOTA 
Mel Foster Tech. Sales.lnc ............................ (612) 941-9790 

MISSOU81 
LORENZ SALES ............................................... (314) 997-4558 

NEBRASKA 
LORENZ SALES ............................................... (402) 475-4660 

NEW MEXICO 
THORSON DESERT STATES ........................ (505) 883-4343 

NEW YORK 
East Syracuse - NYCOM. INC ....................... (315) 437-8343 
Hauppauge - COMPONENT 
CONSULTANTS.INC ....................................... (516) 273-5050 

OHIO 
Centerville - DOLFUSS ROOT & CO ............ (513) 433-6776 
Columbus - DOLFUSS ROOT & CO ............. (614) 885-4844 
Westlake - DOLFUSS ROOT & CO ............... (216) 899-9370 

OREGON 
ELECTRA TECHNICAL SALES. INC ............. (503) 643-5074 

PENNSYLVANIA 
RUSSELL F. CLARK CO .• INC ........................ (412) 242-9500 

PUERTO RICO 
COMP REP ASSOC. INC ................................ (809) 746-6550 

UTAH 
Front Range Marketing .................................... (801) 288-2500 

WASHINGTON 
ELECTRA TECHNICAL SALES ...................... (206) 821-7442 

WISCONSIN 
Brookfield - INDUSTRIAL 
REPRESENTATIVES.INC ................................. (414) 789-9393 

Advahced Mero Devices reserves the right to make changes in its product without notice in order to improve design or perlormance characteristics. 
The performance characteristics listed in this document are guaranteed by specific tests. guard banding, design and other practices common to 
the industry. For specific testing details. contact your locai AMD sales representative. The company assumes no responslblltty for the use of any 
circuits described herein. 

~ 
RECYCLED. 
RECYCLABLE 

~ Advanced Micro Devlc8s, Inc. 901 Thompson Place. P.O. Box 3453. Sunnyvale. CA 9408B. USA 
.I11III Tel: (40B) 732-2400 • TWX: 910-339-9280 • TELEX: 34-8306 • TOLL FREE: (BOO) 53B-8450 
... APPUCATIONS HOTUNE & LITERATURE ORDERING • TOLL FREE: (BOO) 222-9323 • (408) 749-5703 

© 1992 Advanced Micro Devices. Inc . 
11339C 10115192 
Ban·35.5M·10/92-0 Printed in USA 



ADVANCED 
MICRO 

DEVICES, INC. 
901 Thompson Place 

P.o. Box 3453 
Sunnyvale 

California 94088-3453 
(408) 732-2400 
(800) 538-8450 

TWX: 910-339-9280 
TELEX: 34-6306 

CORPORATE 
APPLICA nONS HOTLINE 

USA (408) 749-5703 
JAPAN 81-3-3346-7561 

UK & EUROPE 44-(0)256-811101 
TOLL FREE 

USA (800) 222-9323 
FRANCE 0590-8621 

GERMANY 0130-813875 
ITAL Y 1678-77224 

PC PROCESSORS 
LITERATURE ORDERING 

USA (800) 292-9263 
USA (512) 462-6882 

RECYCLED & 
RECYCLABLE 

Printed in USA 

Ban-3S.5M-10/92-0 

11339C 


