AMD

8086

16-Bit Microprocessor iAPX86 Family

FINAL

DISTINCTIVE CHARACTERISTICS

- Directly addresses up to 1 Mbyte of memory
 24 operand addressing modes
 Efficient implementation of high level languages
- Instruction set compatible with 8080 software
- ٠ Bit, byte, word, and block operations •
- 8 and 16-bit signed and unsigned arithmetic in binary or . decimal
- MULTIBUS® system interface
 - Three speed options
- 5MHz for 8086
- 8MHz for 8086-2
- 10MHz for 8086-1

GENERAL DESCRIPTION

The 8086 is a general purpose 16-bit microprocessor CPU. Its architecture is built around thirteen 16-bit registers and nine 1-bit flags. The CPU operates on 16-bit address spaces and can directly address up to 1 megabyte using offset addresses within four distinct memory segments, designated as code, data, stack and extra code. The 8086 implements a powerful instruction set with 24 operand addressing modes. This instruction set is compatible with that of the 8080 and 8085. In addition, the 8086 is particularly effective in executing high level languages.

The 8086 can operate in minimum and maximum modes. Maximum mode offloads certain bus control functions to a peripheral device and allows the CPU to operate efficiently in a multi-processor system. The CPU and its high performance peripherals are MULTIBUS compatible. The 8086 is implemented in N-channel, depletion load, silicon gate technology and is contained in a 40-pin CERDIP package, Molded DIP package, or Plastic Leaded Chip Carrier.

Pin No.*	Name	1/0	Τ			De	escription		
39, 2-16	AD ₁₅ -AD ₀	1/0	bu be lo fk	is. A ₀ is analo transferred o wer half would bat to three-s	ogous to BHE on the lower d normality us state OFF du	es constitute the time m for the lower byte of th portion of the bus in me e A_0 to condition chip s ring interrupt acknowle	ultiplexed memory/IO address (T ₁) and data (T ₂ , T ₃ , T _W , T ₄ e data bus, pins D ₇ -D ₀ . It is LOW during T ₁ when a byte is to mory or I/O operations. Eight-bit oriented devices tied to the select functions. (See BHE.) These lines are active HIGH and dge and local bus "hold acknowledge."		
35-38	A19/S8. A18/S5. A17/S4. A16/S3	0	of du cy T	verations thes uring T ₂ , T ₃ , T /cle. A ₁₇ /S his informati	we lines are L w, and T ₄ . The and A ₁₆ ion indicate	OW. During memory and he status of the interrupt /Sg are encoded a his which relocation r	significant address lines for memory operations. During I/C 1//O operations, status information is available on these line enable FLAG bit (S) is updated at the beginning of each CLI s shown. register is presently being used for data accessing bus "hold acknowledge."		
				A17/S4	A16-S3	Characteristics]		
				0 (LOW)	0	Alternate Data			
				0	1	Stack			
				1 (HIGH)	0	Code or None			
		1		1	1	Data			
	1	1		Sejis 0			-		
				(LOW)					
			th ar	e bus would nd interrupt a tatus informat ree-state OF	normally us icknowledge tion is availa F in "hold."	e BHE to condition chi cycles when a byte is ble during T ₂ , T ₃ , and It is LOW during T ₁ f	1 ₅ -D ₈ Eight-bit oriented devices tied to the upper helf of to be teact functions. BHE is LOW during T₁ for read, writh to be transferred on the high portion of the bus. The S T₄. The signal is active LOW and floats to for the first interrupt acknowledge cycle.		
				BHE	A0	Characteristics	-		
		1		0	0	Whole word	_		
			1	0	1	Upper byte from/ to odd address			
				1	0	Lower byte from/	1		
	1					to even address			
				1	1	None			
32	RD	0	tt av Ø	tead. Read strobe indicates that the processor is performing a memory of I/O read cycle, depending on the state of the S2 pin. This signal is used to read devices which reside on the 8086 local bus. RD is ctive LOW during T2, T3, and Tw of any read cycle and is guaranteed to remain HIGH in T2 until the 086 local bus has floated. his signal floats to three-state OFF in "hold acknowledge."					
22	READY		T A	ansfer. The ! IEADY. This	READY sign: signal is act	al from memory/IO is s	sed memory or I/O device that it will complete the data synchronized by the 8284A Clock Generator to form EADY input is not synchronized. Correct operation is not met.		
18	INTR	1	10	on to determ ectored to vi	nine if the pr a an interna	ocessor should enter it to vector lookup table i	h is sampled during the last clock cycle of each instruc- nto an interrupt acknowledge operation. A subroutine is located in system memory. It can be internally masked b is internally synchronized. This signal is active HKGH.		
23	TEST	+	T	CCT Innut is	s examined i cessor waits	by the "Wait" instructio in an "Idle" state. Thi	on. If the TEST input is LOW, execution continues; other is input is synchronized internally during each clock cycle		
17	NMI		N te S	ion-Maskable	Interrupt. A mupt vector ansition from	n edge-triggered input lookup table located in a LOW to HIGH initia	which causes a type 2 interrupt. A subroutine is vectored system memory. NMI is not maskable internally by ates the interrupt at the end of the current instruction. Th		
21	RESET	1	- Ife	or at least fo	ur clock cyc	sor to immediately terr des. It restarts execution SET is internally synchr	ninate its present activity. The signal must be active HIG on, as described in the Instruction Set description, when ronized.		
19	CLK	1				timing for the process internal timing.	or and bus controller. It is asymmetric with a 33% duty		
	Vcc	+		/ _{CC} . The + 5		and the second se	······································		
40		_	_		ground pin.	····			
40			10						
40 1, 20 33		+				tes what mode the pro	ocessor is to operate in. The two modes are discussed i		

Pin No.*	Name	1/0			Desc	cription
28–26	\$2, \$1, \$0	0	when READY is HIGH. 1/O access control sign bus cycle, and the retu	This sinais. An Inais. An In to th	tatus is used by the 8 y change by S ₂ , S ₁ , i ne passive state in Ta	to the passive state (1, 1, 1) during T_3 or during T_4 1288 Bus Controller to generate all memory and or So during T_4 is used to indicate the beginning of i or Twy is used to indicate the end of a bus cycle. nowledge." These status lines are encoded as shown
			<u>\$2</u> <u>\$1</u>	Šo	Characteristics	
			0 (LOW) 0	0	Interrupt	-1
				<u> </u>	Acknowledge	_
			0 0	1	Read I/O Port Write I/O Port	
				1	Halt	
			1 (HIGH) 0	0	Code Access	-
			1 0	1	Read Memory	-
			1 1	0	Write Memory	-
			1 1	1	Passive	
29	RG/GT1	0	priority than RO/GT, I grant sequence is as fit 3 A pulse of 1 CLK w 8086 (pulse 1). 2 During a T4 or T, c indicates that the 80 state at the next CL "hold acknowledge." 3 A pulse 1 CLK wide request is about to Each master-master exc cycle after each bus ex if the request is made of the cycle when all it 1. Request occurs on c 2. Current cycle is not 3. Current cycle is not 4. A locked instruction If the local bus is idle 1. Local bus is idle	RQ/GT oblows: ide from lock cyc 86 has K. The from thend and change cchange cchange cchange the follow or before the follow or the for the follow	has an internal pull-up n another local bus m cle, a pulse 1 CLK wind allowed the local bus CPU's bus interface u transformer and the 8086 can re of the local bus is a . Pulses are active LC that the 8086 can re of the local bus is a . Pulses are active LC the CPU is performing in wing conditions are more a T_2. byte of a word (on a a acknowledge of an in urrently executing. we request is made, two uring the next clock. thin 3 clocks. Now the hady satisfied.	a memory cycle, it will release the local bus during T et: an odd address). nterrupt acknowledge sequence. wo possible events will follow: e four rules for a currently active memory cycle apply rs are not to pain control of the system bus while
24, 25	QS1, QS0	0	LOCK is active LOW. I until the completion of "hold acknowledge." Queue Status. The quei	he LOC	K signal is activated i t instruction. This sign	by the "LOCK" prefix instruction and remains active al is active LOW, and floats to three-state OFF in CLK cycle after which the queue operation is per-
						ng of the internal 8086 instruction queue.
.8	M/10	0	from an I/O access. M. T_4 of the cycle (M = HI	(10 bec GH, 10	omes valid in the T ₄ = LOW). M/IO floats t	m mode. It is used to distinguish a memory access preceding a bus cycle and remains valid until the fina to three-state OFF in local bus "hold acknowledge."
9	WR	0	Write. Indicates that the state of M/IO signal. W three-state OFF in local	H IS aC	tive for 12, 13, and T	rite memory or write I/O cycle, depending on the w of any write cycle. It is active LOW and floats to
4	INTA	0	INTA. Is used as a read of each interrupt acknow	d strobe wlegde (for interrupt acknowle cycle.	edge cycles. It is active LOW during $T_2,T_3,andT_W$
5	ALE	0	Address Latch Enable. a HIGH pulse active du	Provided ring T ₁	by the processor to of any bus cycle. Not	latch the address into 8282/8283 address latch. It is te that ALE is never floated.
7	DT/Ħ	0	er. It is used to control	the dire de, and	ection of data flow thr its timing is the same	that desires to use an 8286/8287 data bus transceiv- ough the transceiver. Logically DT/\overline{H} is equivalent to a as for M/\overline{IO} . (T = HIGH, R = LOW.) This signal adge."
6	DEN	0	transceiver. DEN is activ	va LOW	during each memory	286/8287 in a minimum system which uses the and I/O access and for INTA cycles. For a read or e middle of T4, while for a write cycle, it is active I floats to three-state OFF in local bus "hold

PIN DESCRIPTION (continued)					
Pin No.*	Name	1/0	Description		
31, 30	HOLD, HLDA	1/0	HOLD. Indicates that another master is requesting a local bus "hold." To be acknowledged, HOLD must be active HIGH. The processor receiving the "hold" request will issue HLDA (HIGH) as an acknowledge- ment in the middle of a T ₄ or T ₁ clock cycle. Simultaneous with the issuance of HLDA, the processor wi float the local bus and control lines. After HOLD is detected as being LOW, the processor will LOWer HLDA, and when the processor needs to run another cycle, it will again drive the local bus and control lines. The same rules as for RO/GT apply, regarding when the local bus will be released. HOLD is not asynchroneous input. External synchronization should be provided if the system cannot other wise guarantee the sat-up time.		

DETAILED DESCRIPTION

The 8086 CPU is internally organized into two processing units. These two units are the Bus Interface Unit (BIU) and the Execution Unit (EU). A block diagram of this organization is shown on page 1.

The BIU performs instruction fetch and queuing, operand fetch and store, address relocation, and basic bus control. The EU receives operands and instructions from the BIU and processes them on a 16-bit ALU. The EU accesses memory and peripheral devices through requests to the BIU. The BIU generates physical addresses in memory using the 4 segment registers and offset values.

The BIU and EU usually operate asynchronously. This permits the 8086 to overlap execution fetch and execution. Up to 6 instruction bytes can be queued. The instruction queue acts as a FIFO buffer for instructions, from which the EU extracts instruction bytes as required.

Memory Organization

The 8086 addresses up to 1 megabyte of memory. The address space is organized as a linear array, from 00000 to FFFFF in hexadecimal. Memory is subdivided into segments of 64K bytes each. There are 4 segments: code, stack, data, and extra (usually employed as an extra data segment). Each segment thus contains information of a similar type. Selection of a destination segment is automatically performed using the rules in the table below. This segmentation makes memory more easily relocatable and supports a more structured programming style.

Physical addresses in memory are generated by selecting the appropriate segment, obtaining the segment "base" address from the segment register, shifting the base address 4 digits to the left, and then adding this base to the "offset" address. For programming code, the offset address is obtained from the instruction pointer. For operands, the offset address is calculated in several ways, depending upon information contained in the addressing mode. Memory organization and address generation are shown in Figure 1a.

Certain memory locations are reserved for specific CPU operations. These are shown in Figure 1b. Addresses FFFFOH through FFFFH are reserved for operations which include a jump to the initial program loading routine. After RESET, the CPU will always begin execution at location FFFFOH, where the jump must be located.

Addresses 00000H through 003FFH are reserved for interrupt operations. The service routine of each of the 256 possible interrupt types is signaled by a 4-byte pointer. The pointer elements must be stored in reserved memory addresses before the interrupts are invoked.

AMD

Memory Reference Need	Segment Register Used	Segment Selection Rule				
Instructions	CODE (CS)	Automatic for all prefetching of instructions.				
Stack	STACK (SS)	All stack pushes and pops, and all memory references relative to BP base register except data references.				
Local Data	DATA (DS)	Data references which are relative to the stack, the destination of a string operation, or explicitly overriden.				
External (Global) Data	EXTRA (ES)	Destination of string operations, when they are explicitly selected using a segment override.				

Minimum and Maximum Modes

The 8086 has two system configurations, minimum and maximum mode. The CPU has a strap pin, MN/MX, which defines the system configuration. The status of this strap pin defines the function of pin numbers 24 through 31.

When MN/MX is strapped to GND, the 8086 operates in maximum mode. The operations of pins 24 through 31 are redefined. In maximum mode, several bus timing and control functions are "off-loaded" to the 8288 bus controller, thus

freeing up the CPU. The CPU communicates status information to the 8288 through pins S_0 , S_1 , and S_2 . In maximum mode, the 8086 can operate in a multiprocessor system, using the LOCK signal within a Multibus format.

When MN/ \overline{MX} is strapped to V_{CC}, the 8086 operates in minimum mode. The CPU sends bus control signals itself through pins 24 through 31. This is shown in the Connection Diagrams (in parentheses). Examples of minimum and maximum mode systems are shown in Figure 2.

Bus Operation

The 8086 has a combined address and data bus, commonly referred to as "a time multiplexed bus." This technique provides the most efficient use of pins on the processor while permitting the use of a standard 40-lead package. This bus can be used throughout the system with address latching provided on memory and I/O modules. The bus can also be demultiplexed at the processor with a single set of address latches if a standard non-multiplexed bus is desired for the system.

Each bus cycle consists of at least four CLK cycles. These are referred to as T_1 , T_2 , T_3 and T_4 (see Figure 5). The address is sent from the processor during T_1 . Data transfer occurs on the bus during T_3 and T_4 . T_2 is used for changing the direction of the bus during read operations. In the event that a "NOT READV" indication is given by the addressed device, "Wait" states (T_W) are inserted between T_3 and T_4 . Each inserted "Wait" state is of the same duration as a CLK cycle. "Idle" states (T_1) or inactive CLK cycles can occur between 8086 bus cycles. The processor uses these cycles for internal housekeeping.

During T₁ of any bus cycle, the ALE (Address Latch Enable) signal is emitted (by either the processor or the 8288 bus controller, depending on the MN/MX strap). At the trailing edge of this pulse, a valid address and certain status information for the cycle may be latched.

Status bits $\overline{S_0}$, $\overline{S_1}$, and $\overline{S_2}$ are used, in maximum mode, by the bus controller to identify the type of bus transaction according to the following table:

₹s2	Ī\$1	Ŝ0	Characteristics
D(LOW)	0	0	Interrupt Acknowledge
0	0	1	Read I/O
0	1	0	Write I/O
0	1	1	Hait
1(HIGH)	0	0	Instruction Fetch
1	0	1	Read Data from Memory
1	1	0	Write Data to Memory
1	1	1	Passive (no bus cycle)

Status bits S₃ through S₇ are multiplexed with high-order address bits and the BHE signal, and are therefore valid during T₂ through T₄. S₃ and S₄ indicate which segment register (see Instruction Set description) was used for this bus cycle in forming the address, according to the following table:

S4	S3	Characteristics
0(LOW)	0	Alternate Data (extra segment)
0	1	Stack
1(HIGH)	0	Code or None
1	1	Data

 S_5 is a reflection of the PSW interrupt enable bit. S_6 = 0 and S_7 is a spare status bit.

I/O Addressing

8086 I/O operations can address up to a maximum of 64K I/O byte registers or 32K I/O word registers. The I/O address appears in the same format as the memory address on bus lines A_{15} - A_0 . The address lines A_{19} - A_{16} are zero in I/O operations. I/O instructions which use register DX as a pointer have full address capability. Direct I/O instructions directly address one or two of the 256 I/O byte locations in page 0 of the I/O address space. I/O ports are addressed in the same manner as memory locations.

EXTERNAL INTERFACE

Processor Reset and Initialization

Processor initialization or start up is accomplished with activation (HIGH) of the RESET pin. The 8086 RESET is required to be HIGH for greater than 4 CLK cycles. The 8086 will terminate operations on the high-going edge of RESET and will remain dormant as long as RESET is HIGH. The low-going transition of RESET triggers an internal reset sequence for approximately 10 CLK cycles. After this interval the 8086 operates normally beginning with the instruction in absolute location FFFF0H (see Figure 1b). The details of this operation are explained in the Instruction Set description of the MCS-86 Family User's Manual. The RESET input is internally synchronized to the processor clock. At initialization the HIGH-to-LOW transition of RESET must occur no sooner than 50μ s after power-up, to allow complete initialization of the 8086.

NMI may not be asserted prior to the 2nd CLK cycle following the end of RESET.

Interrupt Operations

Interrupt operations fall into two classes: software or hardware initiated. The software initiated interrupts and software aspects of hardware interrupts are described in the Instruction Set description. Hardware interrupts are either non-maskable or maskable.

Interrupts transfer control to a new program location. A 256element table containing address pointers to the interrupt service program locations resides in absolute locations 0 through 3FFH (see Figure 1b), which are reserved for this purpose. Each element in the table is 4 bytes in size and corresponds to an interrupt "type." An interrupting device supplies an 8-bit type number during the interrupt acknowledge sequence, which is used to "vector" through the appropriate element to the new interrupt service program location.

Non-Maskable Interrupt (NMI)

The processor provides a single non-maskable interrupt pin (NMI) which has higher priority than the maskable interrupt request pin (INTR). A typical use would be to activate a power

failure routine. The NMI is edge-triggered on a LOW-to-HIGH transition. The activation of this pin causes a type 2 interrupt. (See Instruction Set description.)

NMI is required to have a duration in the HIGH state of greater than two CLK cycles, but is not required to be synchronized to the clock. Any high-going transition of NMI is latched on-chip and will be serviced at the end of the current instruction or between whole moves of a block-type instruction. Worst case response to NMI would be to multiply, divide, and variable shift instructions. There is no specification on the occurrence of the low-going edge; it may occur before, during, or after the servicing of NMI. Another high-going edge triggers another response if it occurs after the start of the NMI procedure. The signal must be free of logical spikes in general and be free of bounces on the low-going edge to avoid triggering extraneous responses.

Maskable Interrupt (INTR)

The 86/10 provides a single interrupt request input (INTR) which can be masked internally by software with the resetting of the interrupt enable FLAG status bit. The interrupt request signal is level-triggered. It is internally synchronized during each clock cycle on the high-going edge of CLK. To be responded to, INTR must be present (HIGH) during the clock period preceding the end of the current instruction. During the interrupt response sequence, further interrupts are disabled. The enable bit is reset as part of the response to any interrupt (INTR, MM, software interrupt or single-step), although the FLAGS register, which is automatically pushed onto the stack, reflects the state of the processor prior to the Interrupt. Until the old FLAGS register is resored, the enable bit will be zero

During the response sequence (Figure 4), the processor executes two successive (back-to-back) interrupt acknowledge cycles. The 8086 emits the LOCK signal from T₂ of the first bus cycle until T₂ of the second. A local bus "hold" request will not be honored until the end of the second bus cycle. In the second bus cycle, a byte is fetched from the external interrupt system (e.g., 8259A PIC) which identifies the source (type) of the interrupt. This byte is multiplied by four and used as a pointer into the interrupt vector lookup table. An INTR signal left HIGH will be continually responded to within the limitations of the enable bit and sample period. The INTERRUPT RETURN instruction includes a FLAGS pop, which returns the status of the original interrupt enable bit when it restores the FLAGS.

HALT

When a software "HALT" instruction is executed, the processor indicates that it is entering the "HALT" state in one of two ways depending upon which mode is strapped. In minimum mode, the processor issues one ALE with no qualfying bus control signals. In Maximum Mode, the processor issues appropiate HALT status on $S_2S_1S_0$, and the 6288 bus controller issues one ALE. The 8086 will not leave the "HALT" state when a local bus "hold" is entered while in "HALT." In this case, the processor reissues the HALT indicator. An interrupt request or RESET will force the 8086 out of the "HALT" state.

Read/Modify/Write (Semaphore) Operation Via Lock

The LOCK status information is provided by the processor when directly consecutive bus cycles are required during the execution of an instruction. This provides the processor with the capability of performing read/modify/write operations on memory (via the Exchange Register With Memory Instruction, for example) without the possibility of another system bus master receiving intervening memory cycles. This is useful in multiprocessor system configurations to accomplish "test and set lock" operations. The LOCK signal is activated (forced LOW) in the clock cycle following the one in which the software "LOCK" prefix instruction is decoded by the EU. It is deactivated at the end of the last bus cycle of the instruction following the "LOCK" prefix instruction. While LOCK is active, a request on a RQ/GT pin will be recorded and then honored at the end of the LOCK.

External Synchronization Via Test

As an alternative to the interrupts and general I/O capabilities, the 8086 provides a single software-testable input known as the TEST signal. At any time, the program may execute a WAIT instruction. If at that time the TEST signal is inactive (HIGH), program execution becomes suspended while the processor waits for TEST to become active. It must remain active for at least 5 CLK cycles. The WAIT instruction is reexecuted repeatedly until that time. This activity does not consume bus cycles. The processor remains in an idle state while waiting. All 8086 drivers go to three-state OFF if bus "HOLD" is entered. If interrupts are enabled, they may occur while the processor is waiting. When this occurs, the processor faches the WAIT instruction one extra time, processes the interrupt, and then re-fetches and re-executes the WAIT instruction upon returning from the interrupt.

Basic System Timing

Typical system configurations for the processor operating in minimum mode and in maximum mode are shown in Figures 2a and 2b, respectively. In minimum mode, the processor emits bus control signals in a manner similar to the 8085. In maximum mode, the processor emits coded status information which the 8288 bus controller uses to generate MULTIBUS compatible bus control signals. Figure 3 illustrates the signal timing relationships.

System Timing - Minimum System

The read cycle begins in T1 with the assertion of the Address Latch Enable (ALE) signal. The trailing (low-going) edge of this signal is used to latch the address information, which is valid on the local bus at this time, into the 8282/8283 latch. The BHE and A0 signals address the low, high, or both bytes. From T1 to T4, the M/IO signal indicates a memory or I/O operation. At T₂ the address is removed from the local bus and the bus goes to a high impedance state. The read control signal is also asserted at T2. The read (RD) signal causes the addressed device to enable its data bus drivers to the local bus. Some time later valid data will be available on the bus and the addressed device will drive the READY line HIGH. When the processor returns the read signal to a HIGH level, the addressed device will again 3-state its bus drivers. lfa transceiver (8286/8287) is required to buffer the 8086 local bus, signals DT/R and DEN are provided by the 8086.

A write cycle also begins with the assertion of ALE and the emission of the address. The M/\overline{O} signal is again asserted to indicate a memory or I/O write operation. In the T₂ immediately following the address emission, the processor emits the data to be written into the addressed location. This data remains valid until the middle of T₄. During T₂, T₃, and T_W, the processor asserts the write control signal. The write (WR) signal becomes active at the beginning of T₂ as opposed to the read which is delayed somewhat into T₂ to provide time for the bus to float.

The BHE and A_0 signals are used to select the proper byte(s) of the memory/IO word to be read or written according to the following table.

BHE	A ₀	Characteristics
0	0	Whole word
0	1	Upper byte from/to odd address
1	0	Lower byte from/to even address
1	1	None

I/O ports are addressed in the same manner as memory location. Even addressed bytes are transferred on the D_7-D_0 bus lines and odd addressed bytes on $D_{15}-D_8$.

The basic difference between the interrupt acknowledge cycle and a read cycle is that the interrupt acknowledge signal (INTA) is asserted in place of the read (RD) signal and the address bus is floated. (See Figure 6.) In the second of two successive INTA cycles, a byte of information is read from bus lines D₇-D₀ as supplied by the interrupt system logic (i.e., 8259A Priority Interrupt Controller). This byte identifies the source (type) of the interrupt. It is multiplied by four and used as a pointer into a interrupt vector lookup table, as described earlier.

Bus Timing --- Medium Size Systems

For medium size systems, the MN/ $\overline{\rm MX}$ pin is connected to V_{ss}, and the 8288 Bus Controller is added to the system as well as

an 8282/8283 latch for latching the system address and a 8286/8287 transceiver to allow for bus loading greater than the 8086 is capable of handling. Signals ALE, DEN, and DT/R are generated by the 8288 instead of the processor in this configuration, although their timing remains relatively the same. The 8086 status (S_2 , S_1 , and S_0) provide type-of-cycle information and become 8288 inputs. This bus cycle information specifies read (code, data, or 1/O), write (data or 1/O), interrupt acknowledge, or software halt. The 8288 thus issues control signals specifying memory read or write, 1/O read or write, or interrupt acknowledge. The 8288 provides two types of write strobes, normal and advanced, to be applied as required. The normal write strobes have data valid at the leading edge of write. The 8286/8287 transceiver receives the usual T and OE inputs from the 8288 DT/R and DEN.

The pointer into the interrupt vector table, which is passed during the second INTA cycle, can derive from an 8259A located on either the local bus or the system bus. If the master 8259A Priority Interrupt Controller is positioned on the local bus, a TTL gate is required to disable the 8286/8287 transceiver when reading from the master 8259A during the interrupt acknowledge sequence and software "poll."

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to + 150°C Ambient Temperature Under Bias0 to 70°C	
Voltage on any Pin	
with Respect to Ground1 to +7.0 V	
Power Dissipitation2.5 W	

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Temperature (TA)	0 to +70°C
Supply Voltage (V _{CC})	
8086	5 V ± 10%
8086-1, 8086-2	5 V ± 5%
Industrial (I) Devices	
Temperature (T _A)	40 to +85°C
Supply Voltage (V _{CC})	
8086	5 V ± 10%
8086-1, 8086-2	
0000-1, 0000-2	

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating range

Parameters	Description	Test Conditions	Min	Max	Unite
VIL	Input Low Voltage		-0.5	+ 0.8	v
ViH	Input High Voltage		2.0	V _{CC} + 0.5	V
VOL	Output Low Voltage	l _{OL} = 2.5 mA		0.45	V
VOH	Output High Voltage	l _{OH} = -400 μA	2.4		V
	Power Supply Current	All Speeds		340	mA
- <u>ioc</u>	Input Leakage Current	0V < VIN < VCC		±10	μA
1LO	Output Leakage Current	0.45V < V _{OUT} < V _{CC}		±10	μA
VCL	Clock Input Low Voltage		- 0.5	+ 0.6	V
VCH	Clock Input High Voltage		3.9	V _{CC} + 1.0	v
Cin	Capacitance of Input Buffer (All input except AD ₀ -AD ₁₅ , RQ/GT)	fc = 1 MHz		15	pF
CIO	Capacitance of I/O Buffer (AD0-AD15, RQ/GT)	fc = 1 MHz		15	pF

SWITCHING CHARACTERISTICS over COMMERCIAL operating range MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

		Test	808	6	8086	-2	8086-1		11-10-	
Parameters	Description	Conditions	Min	Max	Min	Max	Min	Max	Unite	
TCLCL	CLK Cycle Period		200	500	125	500	100	500	ns	
TCLCH	CLK Low Time		118		68		53		ns	
TCHCL	CLK High Time		69		44		39		ns	
TCH1CH2	CLK Rise Time	From 1.0 to 3.5V		10		10		10	ns	
TCL2CL1	CLK Fall Time	From 3.5 to 1.0V		10		10		10	ns	
TDVCL	Data in Set-up Time		30		20		5		ЛS	
TCLDX	Data in Hold Time		10		10		10		ns	
TRIVCL	RDY Set-up Time into 8284A (See Notes 1, 2)		35		35		35		ns	
TCLR1X	RDY Hold Time into 8284A (See Notes 1, 2)		0		0		0		nŝ	
TRYHCH	READY Set-up Time into 8086		118		68		53		ns	
TCHRYX	READY Hold Time into 8086		30		20		20		ns	
TRYLCL	READY Inactive to CLK (See Note 3)		-8		- 8		- 10		ns	
THVCH	HOLD Set-up Time		35		20		20		ns	
TINVCH	INTR, NMI, TEST Set-up Time (See Note 2)		30		15		15		ns	
ТІЦІН	Input Rise Time (Except CLK)	From 0.8 to 2.0 V		20		20		20	ns	
TIHIL	Input Fall Time (Except CLK)	From 2.0 to 0.8 V		12		12		12	ns	

Notes: 1. Signal at 8284A shown for reference only. 2. Set-up requirement for asynchronous signal only to guarantee recognition at next CLK. 3. Applies only to T2 state (8ns into T3).

Parameters TCLAV		· · ·	8086		8086-2		8086-1			
TCLAV	Description	Test Conditions	Min	Max	Min	Max	Min	Max	Unita	
	Address Valid Delay		10	110	10	60	10	50	ns	
TCLAX	Address Hold Time	1	10	1	10	1	10		ns	
TCLAZ	Address Float Delay]	TCLAX	80	TCLAX	50	10	40	ns	
TLHLL	ALE Width]	TCLCH-20		TCLCH-10		TCLCH-10		ns	
TCLLH	ALE Active Delay]		80		50		40	ns	
TCHLL	ALE Inactive Delay]		85		55		45	ns	
TLLAX	Address Hold Time to ALE Inactive		TCHCL-10		TCHCL-10		TCHCL-10		ns	
TCLDV	Data Valid Delay	1	10	110	10	60	10	50	ns	
TCHDX	Data Hold Time	1	10		10		10	-	ns	
TWHDX	Data Hold Time After WR	1	TCLCH-30		TCLCH-30		TCLCH-25		ns	
TCVCTV	Control Active Delay 1	1	10	110	10	70	10	50	กร	
TCHCTV	Control Active Delay 2	*CL = 20-100 pF	10	110	10	60	10	45	ns	
TCVCTX	Control inactive Delay	for all 8086 Outputs (in addition	10	110	10	70	10	50	ns	
TAZRL	Address Float to READ active	to 8086 self-load). Typical $C_L = 100 \text{ pF}$.	0		0		0		ns	
TCLRL	RD Active Delay		10	165	10	100	10	70	ns	
TCLRH	RD Inactive Delay		10	150	10	80	10	60	ns	
TRHAV	RD Inactive to Next Address Active	1	TCLCL-45		TCLCL-40		TCLCL - 35		ns	
TCLHAV	HLDA Valid Delay	1	10	160	10	100	10	60	ns	
TRLRH	RD Width	1	2TCLCL-75		2TCLCL-50		2TCLCL-40		ns	
TWLWH	WR Width	1	2TCLCL-60		2TCLCL - 40		2TCLCL-35		ns	
TAVAL	Address Valid to ALE Low	1	TCLCH-60		TCLCH-40		TCLCH-35	-	ns	
TOLOH	Output Rise Time	From 0.8 to 2.0 V		20		20		20	ns	
TOHOL	Output Fall Time	From 2.0 to 0.8 V		12		12		12	ńs	
2.			- -		DEVICE UNDER TEST	ST LC	DAD CIRCL	IIT		

SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued) MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) TIMING REQUIREMENTS

		Test	8086	\$	8086-	2	8086	1	
Parameters	Description	Conditions	Min	Max	Min	Max	Min	Max	Unit
TCLCL	CLK Cycle Period		200	500	125	500	100	500	ns
TCLCH	CLK Low Time		118		68		53		ns
TCHCL	CLK High Time		69		44		39		ns
TCH1CH2	CLK Rise Time	From 1.0 to 3.5 V		10		10		10	ns
TCL2CL1	CLK Fall Time	From 3.5 to 1.0 V		10		10		10	ns
TDVCL	Data in Set-up Time		30		20		5		ns
TCLDX	Data in Hold Time		10		10		10		ns
TR1VCL	RDY Set-up Time into 8284A (See Notes 1, 2)		35		35		35		ns
TCLR1X	RDY Hold Time into 8284A (See Notes 1, 2)		0		0		0		ns
TRYHCH	READY Set-up Time into 8086		118		68		53		ns
TCHRYX	READY Hold Time into 8086		30		20		20		ns
TRYLCL	READY Inactive to CLK (See Note 4)		-8		-8		- 10		ns
TINVCH	Set-up Time for Recognition (INTR, NMI, TEST (See Note 2)		30		15		15		ns
TGVCH	RQ/GT Set-up Time		30		15		12		ns
TCHGX	RQ Hold Time into 8066		40		30		20		ns
TILIH	Input Rise Time (Except CLK)	From 0.8 to 2.0 V		20		20		20	ns
TIHIL	Input Fall Time (Except CLK)	From 2.0 to 0.8 V		12		12		12	ns

		Test	8086		8086-2	2	8086-1		
Parameters	Description	Conditions	Min	Max	Min	Max	Min	Max	Unit
TCLML	Command Active Delay (See Note 1)		10	35	10	35	10	35	ns
TCLMH	Command Inactive Delay (See Note 1)	7	10	35	10	35	10	35	ns
TRYHSH	READY Active to Status Passive (See Note 3)			110		65		45	ns
TCHSV	Status Active Delay		10	110	10	60	10	45	ns
TCLSH	Status Inactive Delay		10	130	10	70	10	55	ns
TCLAV	Address Valid Delay		10	110	10	60	10	50	ns
TCLAX	Address Hold Time		10		10		10		ns
TCLAZ	Address Float Delay		TCLAX	80	TCLAX	50	10	40	ns
TSVLH	Status Valid to ALE High (See Note 1)			15		15		15	ns
TSVMCH	Status Valid to MCE High (See Note 1)			15		15		15	ns
TCLLH	CLK Low to ALE Valid (See Note 1)			15		15		15	ns
TCLMCH	CLK Low to MCE High (See Note 1)			15		15		15	ns
TCHLL	ALE Inactive Delay (See Note 1)	CL = 20-100 pF for all 8086		15		15		15	ns
TCLMCL	MCE Inactive Delay (See Note 1)	Outputs (In addition to 8086 self-load)		15		15		15	ns
TCLDV	Data Valid Delay		10	110	10	60	10	50	ns
TCHDX	Data Hold Time		10		10		10		ns
TCVNV	Control Active Delay (See Note 1)		5	45	5	45	5	45	ns
TCVNX	Control Inactive Delay (See Note 1)	_	10	45	10	45	10	45	ns
TAZRL	Address Float to Read Active	_	0		0		0		ns
TCLRL	RD Active Delay		10	165	10	100	10	70	ns
TCLRH	RD Inactive Delay		10	150	10	80	10	60	ns
TRHAV	RD Inactive to Next Address Active		TCLCL ~ 45		TCLCL-40		TCLCL - 35		ns
TCHDTL	Direction Control Active Delay (See Note 1)			50		50		50	ns
тснотн	Direction Control Inactive Delay (See Note 1)			30		30		30	ns
TCLGL	GT Active Delay		0	85	0	50	0	38	ns
TCLGH	GT Inactive Delay	4	0	85	0	50	0	45	ns
			2TCLCL - 75		2TCLCL-50		2TCLCL-40		ns
								-	ns ns
2. Set 3. Ap	RD Width Output Rise Time Output Fall Time nal at 8284A or 8288 shown f -up requirement for asynchrono olies only to T3 and wait state blies only to T3 state (8ns into	ous signal only to guarante s.	2TCLCL - 75	20 12 next C	2TCLCL - 50	20 12	2TCLCL - 40	20 12	

ABSC	DLUTE MAXIMUM RATINGS	OPERATI	NG RAN	NGES	
Ambient Temp /oltage on an with Respec Power Dissipit: Stresses abov RATINGS may at or above the	erature	Military (M) Devices Temperature (T _C) Supply Voltage (V _{CC}) Operating ranges define th functionality of the device is	ose limits	s between wi	
eliability.	ACTERISTICS over MILITARY operating r iless otherwise noted)	ange (for APL Products, Gro	oup A, Su	ubgroups 1, 2	2, 3
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
/IL †	Input LOW Voltage	V _{CC} = Min. & Max.	~0.5*	+ 0.8	V
Ин †	Input HIGH Voltage	V _{CC} = Min. & Max.	2.0	V _{CC} + 0.5*	٧
/OL	Output LOW Voltage	i _{OL} = 2.0 mA, V _{CC} = Min.		0.45	v
/он	Output HIGH Voltage	I _{OH} = +400 μA, V _{CC} = Min.	2.4		v
	Power Supply Current (Note 1)	$T_{C} = 25^{\circ}C, V_{CC} = Max.$		340	mA
	Input Leakage Current	V _{CC} = Max., V _{IN} = 5.5 V & 0 V	- 10	10	μA
.0 ††	Output Leakage Current	V _{CC} = Max., V _{OUT} = 5.5 V & 0.45 V	- 10	10	μA
CL †	Clock input LOW Voltage	V _{CC} = Min. & Max.	-0.5*	+0.6	v
<u>сь †</u>	Clock input HIGH Voltage	V _{CC} = Min. & Max.	3.9	V _{CC} + 1.0*	٧
in ttt	Capacitance of Input Buffer (All Input Except AD0-AD15, RQ/GT)	fc = 1 MHz		20*	ρF
NO TTT	Capacitance of I/O Buffer (AD ₀ -AD ₁₅ , RQ/GT)	fc = 1 MHz		20*	pF
Not included i	groups 7 and 8 only are tested. groups 1 and 2 only are tested. n Group A tests. neasured while running a functional pattern with spec va	ilue I _{OL} /I _{OH} loads applied.			

SWITCHING CHARACTERISTICS over MILITARY operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

Parameter	Parameter	Test Conditions	80	086	80	86-2	
Symbol	Description	(Note 6)	Min.	Max.	Min.	Max.	Uni
TCLCL	CLK Cycle Period (Note 11)		200	500	125	500	ns
TCLCH	CLK LOW Time		118		68	1	ns
TCHCL	CLK HIGH Time		69		44		ns
TCH1CH2	CLK Rise Time (Note 5)	From 1.0 to 3.5 V		10		10	ns
TCL2CL1	CLK Fall Time (Note 5)	From 3.5 to 1.0 V		10		10	ns
TDVCL	Data in Setup Time		30		20	1	ns
TCLDX	Data in Hold Time		10		10	1	ns
TRIVCL	RDY Setup Time into 8284A (Notes 1 & 2)	1	35	1	35	1	ns
TCLR1X	RDY Hold Time into 8284A (Notes 1 & 2)	1	0	1	0	1	ns
TRYHCH	READY Setup Time into 8086		118		68	1	ns
TCHRYX	READY Hold Time into 8086		30		20	1	ns
TRYLCL	READY Inactive to CLK (Note 4)	1	-8	1	-8		ns
THVCH	HOLD Setup Time	1	35		20		ns
TINVCH	INTR, NMI, TEST Setup Time (Note 2)		30	1	15	1	ns
TILIH	Input Rise Time (Except CLK) (Note 5)	From 0.8 to 2.0 V		20		20	ns
TIHIL	Input Fall Time (Except CLK) (Note 5)	From 2.0 to 0.8 V	1	12		12	ns
11 T4	sted at V _{CC} Max. (5.5 V) only. sted at V _{CC} Min. (4.5 V) only.						
Vii Vii Vii	sted at VCC Max. (5.5 V) only. sted at VCC Min. (4.5 V) only. st conditions for TCLCL Max. are: C = 4.5 V VoL = 1 V = 0 V VIH = 4 V C = 0 V VIH = 5 V						

		Test	80	86	808	36-2	
Parameter Symbol	Parameter Description	Conditions (Note 6)	Min.	Max.	Min.	Max.	Uni
TCLAV	Address Valid Delay		10	110	10	60	ns
TCLAX	Address Hold Time (Notes 7 & 8)		10		10		n
TCLAZ	Address Float Delay (Note 8)		10	80	10	50	n:
TLHLL	ALE Width (Note 10)		98		58		n
TCLLH	ALE Active Delay (Note 8)			80		50	
TCHLL	ALE Inactive Delay (Note 8)	_		85		55	<u>n</u> :
TLLAX	Address Hold Time to ALE Inactive (Note 7)	_	59		34		n
TCLDV	Data Valid Delay (Note 8)	_	10	110	10	60	n
TCHDX	Data Hold Time (Note 10)		10		10 38	 	ne
TWHDX	Data Hold Time After WR (Note 9)		88	110	38 10	70	ns ns
TOUOTY	Control Active Delay 1 (Note 8)		10	110	10	60	n
TCHCTV	Control Active Delay 2 (Note 8)	CL = 100 pF for all 8086	10	110	10	70	ne
TOVCTX	Control Inactive Delay (Note 8)	 Outputs (in addition to 8086 internal loads) 	0	+	0	+ ~~	ns
TAZRL	Address Float to READ Active (Note 9) RD Active Delay (Note 8)		10	165	10	100	ns
TCLRH	RD Active Delay (Note 8)		10	150	10	80	ns
TRHAV	RD Inactive to Next Address Active (Note 10)		155	1	85		ns
TCLHAV	HLDA Valid Detay (Note 8)		10	160	10	100	n
TRLRH	RD Width (Note 10)		325	<u> </u>	200	1	n
TWLWH	WR Width (Note 10)	-	340		210	1	n
TAVAL	Address Valid to ALE LOW (Note 9)		58		28	1	ns
TOLOH	Output Rise Time (Note 9)	From 0.8 to 2.0 V		20	1	20	ns
TOHOL	Output Fall Time (Note 9)	From 2.0 to 0.8 V		12		12	n
4, 5, 6, 7, 8, 9,	$\begin{array}{llllllllllllllllllllllllllllllllllll$	yne J941 tester.					

ſ

	Parameter	Test Conditions	80	86	80	86-2	
TCLCL TCLCH	Description	(Note 6)	Min.	Max.	Min.	Max.	Uni
TCLCH	CLK Cycle Period (Note 11)		200	500	125	500	ns
	CLK LOW Time		118		68	t	ns
TCHCL	CLK HIGH Time		69		44		ns
TCH1CH2	CLK Rise Time (Note 5)	From 1.0 to 3.5 V		10		10	ns
TCL2CL1	CLK Fall Time (Note 5)	From 3.5 to 1.0 V		10		10	ns
TDVCL	Data in Setup Time		30		20	1	ns
TCLDX	Data in Hold Time		10		10		ns
TRIVCL	RDY Setup Time into 8284A (Notes 1 & 2)		35		35		ns
TCLR1X	RDY Hold Time into 8284A (Notes 1 & 2)		0		0		ns
TRYHCH	READY Setup Time into 8086		118		68		ns
TCHRYX	READY Hold Time into 8086		30		20		ns
TRYLCL	READY Inactive to CLK (Note 4)		-8		-8		ns
TINVCH	Setup Time for Recognition (INTR, NMI, TEST) (Note 2)		30		15		ns
TGVCH	RQ/GT Setup Time		30		15		ns
TCHGX	RQ Hold Time into 8066		40		30		ns
TILIH	Input Rise Time (Except CLK) (Note 5)	From 0.8 to 2.0 V		20		20	ns
TIHIL	Input Fall Time (Except CLK) (Note 5)	From 2.0 to 0.8 V		12		12	ns
Vii Vo	$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
8. Ma 9. Te 10. Te	aximum spec tested at V_{CC} Min. (4.5 V) only. sted at V_{CC} Max. (5.5 V) only. sted at V_{CC} Min. (4.5 V) only.						
8. Ma 9. Te 10. Te 11. Te Vo	aximum spec tested at V _{CC} Min. (4.5 V) only. Isted at V _{CC} Max. (5.5 V) only.						
8. Ma 9. Te 10. Te 11. Te Vo	aximum spec tested at V_{CC} Min. (4.5 V) only. sted at V_{CC} Max. (5.5 V) only. sted at V_{CC} Min. (4.5 V) only. st conditions for TCLCL Max. are: $v_{CC} = 4.5$ V Voi = 1 V						
8. Ma 9. Te 10. Te 11. Te Vo	aximum spec tested at V_{CC} Min. (4.5 V) only. sted at V_{CC} Max. (5.5 V) only. sted at V_{CC} Min. (4.5 V) only. st conditions for TCLCL Max. are: $v_{CC} = 4.5$ V Voi = 1 V						
8. Ma 9. Te 10. Te 11. Te Vo	aximum spec tested at V_{CC} Min. (4.5 V) only. sted at V_{CC} Max. (5.5 V) only. sted at V_{CC} Min. (4.5 V) only. st conditions for TCLCL Max. are: $v_{CC} = 4.5$ V Voi = 1 V						
8. Ma 9. Te 10. Te 11. Te Vo	aximum spec tested at V_{CC} Min. (4.5 V) only. sted at V_{CC} Max. (5.5 V) only. sted at V_{CC} Min. (4.5 V) only. st conditions for TCLCL Max. are: $v_{CC} = 4.5$ V Voi = 1 V						
8. Ma 9. Te 10. Te 11. Te Vo	aximum spec tested at V_{CC} Min. (4.5 V) only. sted at V_{CC} Max. (5.5 V) only. sted at V_{CC} Min. (4.5 V) only. st conditions for TCLCL Max. are: $v_{CC} = 4.5$ V Voi = 1 V						
8. Ma 9. Te 10. Te 11. Te Vo	aximum spec tested at V_{CC} Min. (4.5 V) only. sted at V_{CC} Max. (5.5 V) only. sted at V_{CC} Min. (4.5 V) only. st conditions for TCLCL Max. are: $v_{CC} = 4.5$ V Voi = 1 V						
8. Ma 9. Te 10. Te 11. Te Vo	aximum spec tested at V_{CC} Min. (4.5 V) only. sted at V_{CC} Max. (5.5 V) only. sted at V_{CC} Min. (4.5 V) only. st conditions for TCLCL Max. are: $v_{CC} = 4.5$ V Voi = 1 V						
8. Ma 9. Te 10. Te 11. Te Vo	aximum spec tested at V_{CC} Min. (4.5 V) only. sted at V_{CC} Max. (5.5 V) only. sted at V_{CC} Min. (4.5 V) only. st conditions for TCLCL Max. are: $v_{CC} = 4.5$ V Voi = 1 V						

		Test	80	86	80	86-2	
Parameter Symbol	Parameter Description	(Note 6)	Min.	Max.	Min.	Max.	1 Un
TCLML	Command Active Delay (Note 1)	(111-1)	10	35	10	35	ns
TCLMH	Command Inactive Delay (Note 1)		10	35	10	35	ns
TRYHSH	READY Active to Status Passive (Note 3)			110		65	ns
TCHSV	Status Active Delay (Notes 7 & 8)		10	110	10	60	ns
TCLSH	Status Inactive Delay		10	130	10	70	ns
TCLAV	Address Valid Delay	1	10	110	10	60	ns
TCLAX	Address Hold Time		10		10		ns
TCLAZ	Address Float Delay]	10	80	10	50	ns
TSVLH	Status Valid to ALE HIGH (Note 1)]		15		15	กร
TSVMCH	Status Valid to MCE HIGH (Note 1)]		15		15	<u></u>
TCLLH	CLK LOW to ALE Valid (Note 1)			15		15	ns
TCLMCH	CLK LOW to MCE HIGH (Note 1)			15		15	ns
TCHLL	ALE Inactive Delay (Note 1)	C _L = 100 pF for all 8086 Outputs (In addition		15		15	ns
TCLMCL	MCE Inactive Delay (Note 1)	to 8086 internal loads)		15		15	ns
TCLDV	Data Valid Delay		10	110	10	60	ns
TCHDX	Data Hold Time		10		10	1	ns
TCVNV	Control Active Delay (Note 1)		5	45	5	45	ns
TCVNX	Control Inactive Delay (Note 1)		10	45	10	45	ns
TAZRL	Address Float to Read Active		0		0		ns
TCLRL	RD Active Delay	1	10	165	10	100	ns
TCLRH	RD inactive Delay]	10	150	10	60	ns
TRHAV	RD Inactive to Next Address Active]	155		85		ns
TCHDTL	Direction Control Active Delay (Note 1)			50		50	ns
TCHDTH	Direction Control Inactive Delay (Note 1)			30		30	ns
TCLGL	GT Active Delay (Note 8)		0	85	0	50	ns
TCLGH	GT Inactive Delay (Note 8)		0	85	0	50	ns
TALAH	RD Width		325	ļ	200		ns
TOLOH	Output Rise Time Output Fall Time	From 0.8 to 2.0 V From 2.0 to 0.8 V		20		20	ns
2. Se 3. Ap 4. Ap 5. No 6. V(V) V(7. Mi 8. Mi 9. Te 10. Te 11. Te 11. Te (V)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	o guarantee recognition at	next CLK.				

Г

	8086/80 INSTRUCTION SET	88 F SUMMARY		
DATA TRANSFER				
MOV = Move	76543210	76543210	76543210	76543210
Register/memory to /from register	100010dw	mod reg r/m		
mmediate to register/memory	1100011w	mod 0 0 0 r/m	data	data if w = 1
mmediate to register	1011 w reg	data	data if w = 1	
femory to accumulator	101000w	addr-low	addr-high]
occumulator to memory	101001w	addr-low	addr-high]
Register/memory to segment register	10001110	mod 0 reg r/m)	
Segment register to register/memory	10001100	mod 0 reg r/m]	
PUSH = Push:				
Register/memory	11111111	mod 1 1 0 r/m]	
Register	0 1 0 1 0 reg]		
Segment register	0 0 0 reg 1 1 0]		
POP = Pop:				
Register/memory	10001111	mod 0 0 0 r/m]	
Register	0 1 0 1 1 reg]		
Segment register	000 reg 1 1 1]		
KCHG = Exchange:			_	
Register/memory with register	100011w	mod reg r/m]	
Register with accumulator	10010 reg]		
IN - Input from:			_	
Fixed port	1110010w	port]	
Variable port	1110110 w]		
OUT - Ouput to:			-	
Fixed port	1110011w	port]	
Variable port	1110111w			
XLAT - Transtate byte to AL	11010111			
LEA - Load EA to register	10001101	mod reg r/m	Ţ	
LDS - Load pointer to DS	11000101	mod reg r/m		
LES - Load pointer to ES	11000100	mod reg r/m		
LANF - Load AH with flags	10011111	Ţ		
SANF - Store AH into flags	10011110	1		
PUSHF = Push flags	10011100	1		
POPF = Pop flags	10011101			

8086

INST	FRUCTION SET SU	MARY (contin	nued)	
ARITHMETIC				
ADD = Add	76543210	76543210	76543210	76543210
Reg/memory with register to either	00000dw	mod reg r/m		
Immediate to register / memory	10000sw	mod 0 0 0 r/m	data	data if s:w = 01
Immediate to accumulator	000010w	data	data if w = 1]
ADC = Add with carry:				
Reg/memory with register to either	000100dw	mod reg r/m		
mmediate to register/memory	10000sw	mod 0 1 0 r/m	data	data if s:w = 01
mmediate to accumulator	0001010w	data	data if w = 1	····
NC = Increment:				
Register/memory	111111w	mod 0 0 0 r/m		
Register	01000 reg			
AAA - ASCII adjust for add	00110111			
DAA = Decimal adjust for add	00100111			
SUB = Subtract:		•		
Reg/memory and register to either	001010dw	mod reg r/m		
mmediate from register/memory	100000sw	mod 1 0 1 r/m	data	data if s:w = 01
mmediate from accumulator	0010110w	data	data if w = 1	
SBB = Subtract with borrow;				
Reg/memory and register to either	000110dw	mod reg r/m		
mmediate from register/memory	100000sw	mod 0 1 1 r/m	data	dete if our - 01
nmediate from accumulator	0001110w	data	data if w = 1	data if s:w = 01
		L		
DEC = Decrement: legister/memory	111111w	mod 0 0 1 r/m		
legister				
EG Change sign				
Ed Change sign	1111011w	mod 0 1 1 r/m		
MP = Compare:				
legister/memory with register	0011101w	mod reg r/m		
egister with register/memory	0011100w	mod reg r/m		
nmediate with register/memory	100000sw	mod 1 1 1 r/m	data	data if s:w = 01
mediate with accumulator	0011110w	data	data if w = 1	
AS ASCII adjust for subtract	00111111			
AS Decimal adjust for subtract	00101111			
IUL Mulitiply (unsigned)	1111011w	mod 1 0 0 r/m		
IUL Integer multiply (signed):	1111011w	mod 1 0 1 r/m		
AM ASCII adjust for multiply	11010100	00001010		
IV Divide (unsigned):	1111011w	mod 1 1 0 r/m		
IV Integer divide (signed)	1111011w	mod 1 1 1 r/m		
AD ASCH adjust for divide	11010101	00001010		
BW Convert byte to word	10011000			
WD Convert word to double word	10011001			

	76543210	76543210	76543210	76543210
IOT Invert	1111011w	mod 0 1 0 r/m		
HL/SAL Shift logical/arithmetic left	110100vw	mod 1 0 0 r/m		
HR Shift logical right	110100vw	mod 1 0 1 r/m		
AR Shift arithmetic right	110100vw	mod 1 1 1 r/m		
IOL Rotate left	110100vw	mod 0 0 0 r/m		
IOR Rotate right	110100vw	mod 0 0 1 r/m		
RCL Rotate through carry flag left	110100vw	mod 0 1 0 r/m		
ICR Rotate through carry right	110100vw	modi0 1 1 r/m		
AND = And:				
teg/memory and register to either	00100dw	mod reg r/m	ן	
mmediate to register/memory	100000w	mod 1 0 0 r/m	data	data if w = 1
mmediate to accumulator	0010010w	data	data if w = 1]
				-
rEST = And function to flags, no result: Register/memory and register	1000010w	mod reg r/m	ו	
Hegister/memory and register	1111011w	mod 0 0 0 r/m	data	data if w = 1
mmediate data and register/meniory	1010100w	data	data if w = 1	1
	L	L		-
OR = Or:	000010dw	mod reg r/m	ı	
Reg/memory and register to either	1000000w	mod 0 0 1 r/m	data	data if w = 1
Immediate to register/memory	0000110w	data	data if w = 1	<u> uuu // u_/</u>
Immediate to accumulator	0000110#			
XOR = Exclusive or:			-	
Reg/memory and register to either	001100dw	mod reg r/m		1
Immediate to register/mamory	100000w	mod 1 1 0 r/m	data	data if w = 1 ∩
immediate to accumulator	0011010w	data	data if w = 1	_
STRING MANIPULATION:				
REP - Repeat	1111001z	ן		
MOVS - Move byte/word	1010010	ן		
	1010011w]		
CMPS = Compare byte/word		٦		
CMPS = Compare byte/word SCAS = Scan byte/word	1010111w			
	1010111 w 1010110 w]		

CALL = Call	76543210	76543210	76543210	76543210
Direct within segment	11101000	disp-low	disp-high]
indirect within segment	1111111	mod 0 1 0 r/m		
Direct intersegment	10011010	offset-low	offset-high	
	1	seg-low	seg-high	
ndirect intersegment	11111111	mod 0 1 1 r/m		
JMP = Unconditional jump:				
Direct within segment	11101001	disp-low	disp-high	1
Direct within segment-short	11101011	disp		
ndirect within segment		mod 1 0 0 r/m		
Direct intersegment	11101010	offset-low	offset-high	
	۱ ۱	seg-low	seg-high	
ndirect intersegment	1111111	mod 1 0 1 r/m	<u>```</u>	
RET = Return from CALL:				
Vithin segment	11000011			
Vithin seg adding immed to SP	11000010	data-low	data-high	
ntersegment	11001011			
ntersegment adding immediate to SP	11001010	data-low	data-high	
E/JZ = Jump on equal/zero	01110100	disp		
L/JNGE = Jump on less/not greater or equal	01111100	disp		
LE/JNG = Jump on less or equal/not greater	01111110	disp		
B/JNAE = Jump on below/not above or equal	01110010	disp		
BE/JNA = Jump on below or equal/not above	01110110	disp		
P/JPE - Jump on parity/parity even	01111010	disp		
O - Jump on overflow	01110000	disp		
S = Jump on sign	01111000	disp		
NE/JNZ - Jump on not equal/not zero	01110101	disp		
NL/JGE = Jump on not less/greater or equal	01111101	disp		
NLE/JG - Jump on not less or equal/greater	01111111	disp		
NB/JAE - Jump on not below/above or equal	01110011	disp		
NBE/JA = Jump on not below or equal/above	01110111	disp		
NP/JPO = Jump on not par/par odd	01111011	disp		
NO - Jump on not overflow	01110001	disp		
NS = Jump on not sign	01111001	disp		
OOP - Loop CX times	11100010	disp		
DCPZ/LOOPE - Loop while zero/equal	11100001	disp		
OOPNZ/LOOPNE - Loop while not zero/equal	11100000	disp		
CXZ - Jump on CX zero	11100011	disp		

Ì

CONTROL TRANSFER (Cont'd.)				
(T = Interrupt	7654321	76543210 7	6543210 76	543210
rpe specified	1100110	1 type		
лре 3	1100110	2		
ITO = Interrupt on overflow	1100111	5		
RET = interrupt return	1100111	1		
ROCESSOR CONTROL				
LC - Clear carry	1111100	0		
CMC - Complement carry	1111010	1		
TC - Set carry	1111100	1		
CLD - Clear direction	111110	0		
TD = Set direction	111110	1		
CLI = Clear interrupt	1111101	0		
STI = Set interrupt	1111101	1		
HLT = Halt	1111010	5		
	1001101			
ESC - Processor Extension Escape LOCK - Bus lock prefix Footnotes: L = 8-bit accumulator X = 16-bit accumulator X = Count register S = Data segment S = Extra segment	1 1 0 1 1 X X 1 1 1 1 0 0 0		ate data byte is sign ext f v = 1 then "count" in (anded to form (CL)
WAIT - Wait ESC - Processor Extension Escape LOCK - Bus lock prefix Footnotes: L - 8-bit accumulator X - 16-bit accumulator X - 16-bit accumulator S - Dats segment S - Dats segment bove/below refers to unsigned value. reater = more positive. ess = less positive (more negative) signed values of - 1 then "to" reg; if d = 0 then "from" reg	<u>1111000</u>	if s:w = 01 then 16 bits of if s:w = 11 then an immedia 16-bit operand. if v = 0 then 'count' = 1; if x = don't care z is used for string primitiv SEGMENT OVERRIDE PRI	ate data byte is sign extended for a 1 then "count" in (es for comparison with Z	anded to form (CL)
ESC - Processor Extension Escape LOCK - Bus lock prefix Footnotes: L = 8-bit accumulator X = 16-bit accumulator X = Count register S = Data segment bove/below refers to unsigned value. reater = more positive. ess = less positive (more negative) signed value: ess = less positive (more negative) signed value: = 1 then ''to'' regi: if d = 0 then ''tom'' reg = 1 then word instruction; if w = 0 then byte into	<u>1111000</u>	0 if s:w = 01 then 16 bits of if s:w = 11 then an immedia 16-bit operand. if v = 0 then 'count' = 1; if x = don't care z is used for string primitiv SEGMENT OVERRIDE PRI 0 0 1 reg 1	ate data byte is sign extr f v = 1 then "count" in (es for comparison with Z EFIX 1 0	anded to form (CL)
ESC - Processor Extension Escape LOCK - Bus lock prefix Footnotes: L = 8-bit accumulator X = 16-bit accumulator X = Count register S = Data segment S = Extra segment bove/below refers to unsigned value. reater = more positive. rester = more positive. rest = 0 - 0 then "from" reg = 1 then word instruction; if w = 0 then byte in mod = 10 then pDISP = 0. diss-low and disp-field mod = 0 then pDISP = 0. diss-low and disp-field	1 1 1 1 0 0 0	if s:w = 01 then 16 bits of if s:w = 11 then an immedia 16-bit operand. if v = 0 then "count" = 1; if x = don't care z is used for string primitiv SEGMENT OVERRIDE PRI 0 0 1 reg 1 REG is assigned according	te data byte is sign extr f v = 1 then "count" in (as for comparison with 2 EFIX 1 0 to the following table:	anded to form : CL) :F Flag.
ESC - Processor Extension Escape LOCK - Bus lock prefix Footnotes: L = 6-bit accumulator X = 16-bit accumulator X = Count register S = Data segment S = Extra segment bove/below refers to unsigned value. reater = more positive. ass = less positive (more negative) signed values of = 1 then 'to' reg; if d = 0 then 'trom'' reg = 1 then word instruction; if w = 0 then byte int mod = 11 then r/m is treated as a REG field mod = 00 then DISP = 0, disp-low sign-extended to mod = 00 then DISP = 0, disp-low sign-extended to	1 1 1 1 0 0 0	0 if s:w = 01 then 16 bits of if s:w = 11 then an immedia 16-bit operand. if v = 0 then "count" = 1; if x = don't care z is used for string primitiv SEGMENT OVERRIDE PRI 0 0 1 reg 1 REG is assigned according <u>16-Bit (w = 1)</u>	te data byte is sign extr f v = 1 then ''count'' in (es for comparison with 2 EFIX 1 0 to the following table: <u>8-Bit (w = 0)</u>	anded to form (CL)
ESC - Processor Extension Escape LOCK - Bus lock prefix Footnotes: L = 8-bit accumulator X - 16-bit accumulator X - 16-bit accumulator X - Count register S - Data segment S - Extra segment Dove/below refers to unsigned value. reater = more positive. mod = 11 then 'to' reg; if d = 0 then 'trom' reg = 1 then word instruction; if w = 0 then byte in mod = 11 then ISP = 0, disp-low and disp-high mod = 01 then DISP = disp-low sign-extended to beent mod = 10 then DISP = disp-high: disp-low	1 1 1 1 0 0 0	if s:w = 01 then 16 bits of if s:w = 11 then an immedia 16-bit operand. if v = 0 then "count" = 1; if x = don't care z is used for string primitiv SEGMENT OVERRIDE PRI 0 0 1 reg 1 REG is assigned according <u>16-Bit (w = 1)</u> 000 AX 001 CX	te data byte is sign extr f v = 1 then ''count'' in (as for comparison with 2 EFIX 1 0 to the following table: <u>9-Bit (w = 0)</u> 000 AL 001 CL	ended to form CL) F Flag. 00 ES 01 CS
ESC - Processor Extension Escape LOCK - Bus lock prefix Footnotes: L = 8-bit accumulator X = 16-bit accumulator X = 16-bit accumulator X = Count register S = Data segment S = Extra segment bove/below refers to unsigned value. reater = more positive. Bass = less positive (more negative) signed values d = 1 then 'to'' reg; if d = 0 then 'trom'' reg = 1 then word instruction; if w = 0 then byte in mod = 11 then I'so'' reg; d d = 0 then 'trom'' reg = 1 then word instruction; if w = 0 then byte in mod = 11 then DISP = 0, disp-low and disp-hig mod = 10 then DISP = disp-low sign-extended to beent mod = 10 then DISP = disp-high: disp-low r/m = 000 then EA = (BX) + (01) + DISP	1 1 1 1 0 0 0	0 if s:w = 01 then 16 bits of if s:w = 11 then an immedia 16-bit operand. 16-bit operand. if v = 0 then "count" = 1; if x = don't care z is used for string primitiv SEGMENT OVERRIDE PRI 0 0 0 1 reg REG is assigned according 16-Bit (w = 1) 000 AX 001 CX 010 DX 011 BX	te data byte is sign extr f v = 1 then "count" in (es for comparison with 2 EFIX 1 0 to the following table: <u>8-Bit (w = 0)</u> 000 AL 001 CL 010 DL 011 BL	ended to form (CL) (F Flag. Segmen 00 ES
ESC - Processor Extension Escape LOCK - Bus lock prefix Footnotes: L = 8-bit accumulator X = 16-bit accumulator X = Count register S = Data segment S	1 1 1 1 0 0 0	0 if s:w = 01 then 16 bits of if s:w = 11 then an immedia 16-bit operand. if v = 0 then 'count'' = 1; if x = don't care z is used for string primitiv SEGMENT OVERRIDE PRI 0 0 1 reg 1 REG is assigned according <u>16-Bit (w = 1)</u> 000 AX 001 CX 010 DX 011 BX 100 SP 101 BP	te data byte is sign extr f v = 1 then 'count' in (es for comparison with 2 EFIX 1 0 to the following table: 9-Bit (w = 0) 000 AL 001 CL 010 DL 011 BL 100 AH 101 CH	ended to form CL) F Flag. Segmen 00 ES 01 CS 10 SS
ESC - Processor Extension Escape LOCK - Bus lock prefix Footnotes: L - 8-bit accumulator X - 16-bit accumulator X - 16-bit accumulator X - Count register S - Data segment bove/below refers to unsigned value. reater = more positive. mod = 1 then 'to'' reg; if d = 0 then 'trom'' reg = 1 then word instruction; if w = 0 then byte int mod = 00 then DISP = 0, disp-low and disp-high mod = 00 then DISP = disp-low sign-extended to beent mod = 10 then DISP = disp-low sign-extended to beent mod = 10 then DISP = disp-low sign-extended to beent r/m = 000 then EA = (BX) + (D) + DISP r/m = 011 then EA = (BP) + (D) + DISP r/m = 011 then EA = (BP) + (D) + DISP r/m = 011 then EA = (BP) + (D) + DISP r/m = 011 then EA = (BP) + (D) + DISP r/m = 011 then EA = (BP) + (D) + DISP	1 1 1 1 0 0 0	0 if s:w = 01 then 16 bits of if s:w = 11 then an immedia 16-bit operand. if v = 0 then 'count' = 1; if x = don't care z is used for string primitiv SEGMENT OVERRIDE PRI 0 0 1 reg 1 REG is assigned according <u>16-Bit (w = 1)</u> 000 AX 001 CX 010 DX 011 BX 100 SP	te data byte is sign extr f v = 1 then ''count'' in (es for comparison with Z EFIX 1 0 to the following table: <u>e-Bit (w = 0)</u> 000 AL 001 CL 010 DL 011 BL 100 AH	ended to form CL) F Flag. Segmen 00 ES 01 CS 10 SS
ESC - Processor Extension Escape LOCK - Bus lock prefix Footnotes: L - 8-bit accumulator X - 16-bit accumulator X - 16-bit accumulator X - Count register S - Extra segment S - Extra segment bove/below refers to unsigned value. reater - more positive. In then 'to'' reg; if d - 0 then 'trom'' reg - 1 then 'to'' reg; if d - 0 then 'trom'' reg - 1 then word instruction; if $w = 0$ then byte in mod - 10 then DISP - 0, disp-low and disp-high mod - 10 then DISP - disp-low sign-extended to beent r/m = 000 then EA - (BX) + (SI) + DISP r/m = 001 then EA - (BP) + (SI) + DISP r/m = 101 then EA - (BP) + (SI) + DISP r/m = 101 then EA - (BP) + DISP	1 1 1 1 0 0 0	0 if s:w = 01 then 16 bits of if s:w = 11 then an immedia 16-bit operand. if v = 0 then 'count'' = 1; if x = don't care z is used for string primitiv SEGMENT OVERRIDE PRI 0 0 1 reg 1 REG is assigned according <u>16-Bit (w = 1)</u> 000 AX 001 CX 010 DX 011 BX 100 SP 101 BP 110 SI 111 DI	ate data byte is sign extended f v = 1 then 'count' in (as for comparison with 2 estimation 1 0 to the following table: g-Bit (w = 0) 000 AL 010 DL 010 DL 010 AL 101 CH 101 CH 111 BH	Segment (CL) (FFlag. (FFlag. (FF) (FF) (FF) (FF) (FF) (FF) (FF) (FF
ESC - Processor Extension Escape LOCK - Bus lock prefix Footnotes: L = 8-bit accumulator X = 16-bit accumulator X = 16-bit accumulator X = Count register S = Data segment S = Extra segment Dove/below refers to unsigned value. reater = more positive. most = List positive. mod = 11 then 'f/m is treated as a REG field mod = 00 then DISP = 0, disp-low and disp-hig mod = 11 then T/m is treated as a REG field mod = 00 then DISP = 0, disp-low and disp-hig mod = 01 then DISP = 0, disp-low and disp-hig mod = 01 then DISP = disp-low sign-extended to bent mod = 10 then EA = (BX) + (DI) + DISP r/m = 001 then EA = (BX) + (DI) + DISP r/m = 100 then EA = (BX) + (DI) + DISP r/m = 100 then EA = (SI) + DISP r/m = 100 then EA = (SI) + DISP	s struction gh are absent o 16-bits, disp-high is	0 if s:w = 01 then 16 bits of if s:w = 11 then an immedia 16-bit operand. if v = 0 then 'count'' = 1; if x = don't care z is used for string primitiv SEGMENT OVERRIDE PRI 0 0 1 reg 1 REG is assigned according <u>16-Bit (w = 1)</u> 000 AX 001 CX 010 DX 011 BX 100 SP 101 BP 110 SI	te data byte is sign extr f v = 1 then 'count' in (es for comparison with Z EFIX 10 to the following table: eght (w = 0) 000 AL 001 CL 010 DL 011 BL 100 AH 101 CH 110 DH 111 BH e the flag register files a represent the file:	CL) (F Flag. (F Flag. (F Stag. (Flag. (F) (Flag. (F) (F) (F) (F) (F) (F) (F) (F) (F) (F)