
TRiiiiEYTECHNOLOGIES
Sales and Solutions

1261 Oakmead Parkway
Sunnyvale, CA 94086
Fax: 408-733-9970 408-733-9000

CYRIX Cx486DLC'" MICROPROCESSOR
High-Pelformance 486-Class CPU with
Single-Cycle Execution and On-Chip Cache

Cv.tx®
~d~cjng the Sfandards

• DESIGNED FOR IBM·COMPATIBLE
PERSONAL COMPUTERS
- 486SX instruction set compatible
- Runs DOS, Windows and Unix
- 32-bit internal / 32-bit external data path
- 386DX bus compatible
- 40 MHz maximum clock frequency

• GRAPHICS ACCELERATOR
- On-board 16-bit hardware multiplier runs

graphics faster than 386 and 486
- Ideal for Windows and other graphics-based

applications (PC Mag Winmarks = 7xl06 pix/sec)

The Cyrix Cx486DLC is a high-perfo=ance micro­
processor for use in IBM-compatible computers. The
Cx486DLC executes the 486SX instruction set and
all operating systems designed for this instruction set
including DOS, Windows, and Unix.

The Cx486DLC includes a single cycle execution unit
and a 32-bit internal data path that couple tightly to
the on-chip 1 KByte cache. This enables the
Cx486DLC to effectively access the cache two clocks

Execution Pipeline

Cache and Memory
Management

• 486·CLASS PERFORMANCE
- Up to 2 times faster than 386DX at same

clock frequency
- Landmark 2.0 = 130 MHz at 40 MHz
- Norton SI 6.0 = 66 at 40 MHz
- PM MIPS = 14 at 40MHz
- On-chip instruction and data cache
- High-speed single-cycle execution unit

• LOW POWER CONSUMPTION
- Software transparent suspend/resume
- Fully static design
- 0.10 rnA Icc at 0 MHz and 5 V

faster than a zero wait -state external bus access. As a
result, the Cx486DLC typically benchmarks 1.5 to 2
times faster than a 386DX at the same clock frequency.

The Cx486DLC bus interface is compatible with
existing 386DX hardware designs. Both hardware
and software controls are provided by Cyrix to
support the Gx486DLC cache interface and power
management features allowing design flexibility with
minimal changes to existing systems.

386DX Compatible
Bus Interface

Data
Buffers

Bus
Control

D31-DO

32

Control

A31-A2

'----,.,...IL.--I-----~ Address BE3#-BEO#
L.. __ ~_~~;';;';;;;;';';;;;;";';;;;;;;';;;;;'';;;;;J.. ___ ~ Buffers

Data Address Bus
170900:) :

©1992 Copyright Cyrix Corporation. All rights reserved.
Printed in the United States of America

Trademark Acknowledgments:

Cyrix is a registered trademark of Cyrix Corporation,
Cx486DLC is a trademark of Cyrix Corporation,
Product names used in this publication are for identification purposes only and may be trademarks of theiT respective companies.

Order Number: 94076-01
Cyrix Corporation
2703 North Central Expressway
Richardson, Texas 75080
United States of America

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specification described herein without notice. Before design-in or
order placement, customers are advised to verify that the information on which orders or design activities are based is current. Cyrix warrants its
products to conform to current specifications in accordance with Cyrix' standard warranty. Testing is performed to the extent necessary as
determined by Cyrix to support this warranty. Unless explicitly specified by customer order requirements, and agreed to in writing by Cyrix, not
all device characteristics are necessarily tested. Cyrix assumes no liability, unless specifically agreed to in writing, for customer's product design or
infringement of patents or copyrights of third parties arising from use of Cyrix devices. No license, either express or implied, to Cyrix patents,
copyrights, or other intellectual property rights pertaining to any machine or combination of Cyrix devices is hereby granted. Cyrix products are
not intended for use in any medical, life saving, or life sustaining systems. Information in this document is subject to change without notice.

ii PRELIMINARY

CYRIX 486DLC™ MICROPROCESSOR
High-Performance 486-Class CPU with
Single-Cycle Execution and On-Chip Cache

Cv.tx®
~dV!Cing the Standards

1. Product Overview
1.1 Introduction .. 1-1
1.2 Execution Pipeline .. 1-1
1.3 On-Chip Cache 1-2
1.4 Power Management 1-2
1.5 Signal Summary 1-3

2. Programming interface
2.1 Processor Initialization. 2-1
2.2 Instruction Set Overview 2-3
2.3 Register Set. 2-4
2.4 Address Spaces 2-30
2.5 Interrupts and Exceptions 2-38
2.6 Shutdown and Halt 2-44
2.7 Protection. 2-44
2.8 Virtual 8086 Mode. 2-47

3. Bus Interface
3.1 Overview .. 3-1
3.2 Signal Descriptions 3-3
3.3 Functional Timing .. 3-13

4. ElecllrDcal Specifications
4.1 Electrical Connections 4-1
4.2 Absolute Maximum Ratings ... 4-2
4.3 Recommended Operating Conditions. 4-3
4.4 DC Characteristics 4-4
4.5 AC Characteristics 4-5

5. Mechanical Specifications
5.1 Pin Assignments .. 5-1
5.2 Package Dimensions 5-5
5.3 Thermal Characteristics 5-6

6. Instruction Set
6.1 General Instruction Format 6-1
6.2 Instruction Fields .. 6-2
6.3 Flags .. 6-10
6.4 Clock Counts 6-10

Index
Ordering Information

PRELIMINARY iii

ev.tx®
~dv!Clng the Standards

List of Tables and Figures

LIST OF FIGURES

Figure Number Figure Name

I-I.
2-I.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-1I.
2-12.
2-13.
2-14.
2-15.
2-16.
2-17.
2-18.
2-19.
2-20.
2-21.
2-22.
3-I.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.
3-13.
3-14.
3-15.
3-16.
3-17.
3-18.
3-19.
3-20.

iv

Cx486DLC Input and Output Signals
Application Register Set .. .
General Purpose Registers
Segment Selector
EFLAGS Register .. .
System Register Set
Control Registers .. .
Descriptor Table Registers
Application and System Segment Descriptors.
Gate Descriptor
Task Register
32-Bit Task State Segment (TSS) Table.
16-Bit Task State Segment (TSS) Table ..
Debug Registers
Test Registers
Memory and 1/0 Address Spaces
Offset Address Calculation
Real Mode Address Calculation
Protected Mode Address Calculation
Selector Mechanism
Paging Mechanism
Directory and Page Table Entry (DTE and PTE) Format..
Error Code Format
Cx486DLC Functional Signal Groupings
Internal Processor Clock Synchronization ..
Bus Activity from RESET until First Code Fetch .. .
Fastest Non-Pipelined Read Cycles
Various Non-Pipelined Bus Cycles (no wait states) .
Various Non-Pipelined Bus Cycles with Different Numbers of Wait States ..
Non-Pipelined Bus States.
Fastest Pipelined Read Cycles
Various Pipelined Cycles (one wait state)
Fastest Transition to Pipelined Address Following Idle Bus State
Transitioning to Pipelined Address During Burst of Bus Cycles
Complete Bus States.
Non-Pipelined Bus Cycles Using BSI6#
Pipelining and BSI6# .
Interrupt Acknowledge Cycles
Non-pipelined Halt Cycle ..
Pipelined Shutdown Cycle
Non-Pipelined Cache Fills using KEN#
Pipelined Cache Fills using KEN#
Non-Pipelined Cache Fills using KEN# and BSI6#

PRELIMINARY

Page

1-3
2-5
2-6
2-7
2-9
2-12
2-13
2-15
2-16
2-18
2-19
2-20
2-21
2-24
2-26
2-30
2-32
2-33
2-34
2-34
2-36
2-36
2-40
3-1
3-13
3-14
3-16
3-17
3-18
3-19
3-21
3-22
3-24
3-25
3-26
3-28
3-29
3-31
3-32
3-33
3-34
3-35
3-36

List of Tables and Figures I

LIST OF FIGURES (Continued)

Figure Number Figure Name Page

3-21. Masking A20 using A20M# During Burst of Bus Cycles. .. 3-38
3-22. Requesting Hold from Idle Bus State 3-39
3-23. Requesting Hold from Active Non-Pipelined Bus. .. 3-40
3-24. Requesting Hold from Active Pipelined Bus 3-41
3-25. SUSP# Initiated Suspend Mode ... 3-43
3-26. Halt Initiated Suspend Mode 3-44
3-27. Stopping CLK2 During Suspend Mode 3-45
4-1. Drive Level and Measurement PointsJor Switching Characteristics 4-6
4-2. CLK2 Timing Measurement Points. .. 4-7
4-3. Input Signal Setup and Hold Timing 4-11
4-4. Output Signal Valid Delay Timing ... 4-12
4-5. Data Write Cycle Valid Delay Timing 4-12
4-6. Data Write Cycle Hold Timing .. 4-13
4-7. Output Signal Float Delay and HLDA Valid Delay Timing 4-13
4-8. RESET Setup and Hold Timing ... 4-14
5-1. Bottom View of Package Pins. .. 5-1
5-2. Top View of Package Pins 5-2
5-3. 132-Pin I'GA Package Dimensions. .. 5-5
6-1. General Instruction Format. .. 6-1

LIST OF TABLES

Table Number Table Name Page

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-11.
2-11A.
2-12.
2-13.
2-14.
2-15.
2-16.
2-17.
2-18.
2-19.

Initialized Register Contents
Segment Register Selection Rules
EFLAGS Bit Definitions .. .
CRO Bit Definitions
Segment Descriptor Bit Definitions .. .
Gate Descriptor Bit Definitions
Configuration Registers Index Assignments
Configuration Registers Bit Assignments
Non-CacheableRegions Block Size Field
DR6 and DR7 Field Definitions .. .
TR6 and TR7 Bit Definitions .. .
TR6 Attribute Bit Pairs ,
TR3-TR5 Bit Definitions .. '.' .
Memory Addressing Modes
Directory and Page Table Entry (DTE and PTE) Bit Definitions
Interrupt Vector Assignments .. .
Exception Changes in Real Mode
Error Code Bit Definitions .. .
Interrupt and Exception Priorities .. .
Descriptor Types Used for Control Transfer

PRELIMINARY

2-2
2-8
2-10
2-14
2-17
2-18
2-22
2-23
2-24
2-25
2-27
2-28
2-29
2-32
2-37
2-39
2-40
2-41
2-43
2-46

v

Cv.tx®
~dV!cing the Standards

List of Tables and Figures

Table Number

vi

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
5-1.
5-2.
5-3.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-6A.
6-7.
6-8.
6-9.
6-10.
6-11.
6-12.
6-13.
6-14.
6-15.
6-16.

LIST OF TABLES (Continued)

Table Name

Cx486DLC Signal Summary
Signal States During Reset .. .
Byte Enable Line Definitions
Write Duplication as a Function of BE3# - BEO# ..
Generating Al-AO Using BE3#-BEO#
Bus Cycle Types
Signal States During Hold Acknowledge
Signal States During Suspend Mode
Pins Connected to Internal Pull-Up and Pull-Down Resistors
Pins Requiring External Pull-Up Resistors
Absolute Maximum Ratings ...
Recommended Operating Conditions
DC Characteristics (at Recommended Operating Conditions)
Measurement Points for Switching Characteristics.
AC Characteristics for Cx486DLC-25
AC Characteristics for Cx486DLC-33
AC Characteristics for Cx486DLC-40
Signal Names Sorted by Pin Number.
Pin Numbers Sorted by Signal Name.
Package Thermal Resistance and Airflow 132-Pin Ceramic PGA Package
Instruction Fields
Instruction Prefix Summary .
w Field Encoding ..
d Field Encoding ...
reg Field Encoding .
mod rim Field Encoding ..
mod rim Field Encoding Dependent on w Field
mod base Field Encoding
ss Field Encoding
index Field Encoding .. .
sreg2 Field Encoding .. .
sreg3 Field Encoding.
eee Field Encoding
Flag Abbreviations .. .
Action of Instruction on Flag.
Clock Count Abbreviations ..
Instruction Set Summary ..

PRELIMINARY

Page

3-2
3-3
3-4
3-4
3-5
3-6
3-11
3-12
4-1
4-1
4-2
4-3
4-4
4-5
4-8
4-9
4-10
5-3
5-4
5-6
6-2
6-3
6-4
6-4
6-5
6-6
6-7
6-8
6-8
6-8
6-9
6-9
6-9
6-10
6-10
6-11
6-12

CYRIX Cx486DLC'" MICROPROCESSOR
High-Performance 486-dass CPU with
Single-Cycle Execution and On-Chip Cache

Cv.tx®
~dV!Cing the Standards

I. PRODUCT OVERVIEW

'1.1 Introduction

The Cyrix Cx486DLC microprocessor is an
advanced 32-bit X86 compatible processor
offering high performance and integrated power
management on a Single chip. The CPU is 486SX
instruction set compatible and is backward
compatible with the 386DX pinout. This CPU
provides up to 2 times the performance of the
386DX at equal clock frequencies. The
Cx486DLC is an ideal solution for battery­
powered applications in that it typically draws
0.10 rnA while the input clock is stopped in
suspend mode.

The CPU supports 8,16 and 32-bit data types and
operates in real, virtual 8086 and protected
modes. The Cx486DLC supports up to 4 GBytes
of physical memory. This microprocessor
achieves high performance through use of a
highly optimized variable length pipeline com­
bined with a RISC-like single cycle execution unit,
an on-chip hardware multiplier and an integrated
instruction and data cache.

1.2 Execution Pipeline

The CPU execution path consists of five
pipelined stages optimized for minimal instruction
cycle times. These five stages are:
• Code Fetch
• Instruction Decode
• Microcode ROM Access
• Execution
• MemorylRegister File Write-Back.

These stages have been designed with hardware

interlocks which permit successive instruction
execution overlap.

The 16-byte instruction prefetch queue fetches
code in advance and prepares it for decode, helping
to minimize overall execution time. The instruc­
tion decoder then decodes four bytes of instruc­
tions per clock eliminating the need for a queue of
decoded instructions. Sequential instructions are
decoded quickly and passed on to the microcode
ROM stage of the pipeline. Non-sequential
operations do not have to wait for a queue of
decoded instructions to be flushed and refilled
before execution continues. As a result, both
sequential and non-sequential instruction execu­
tion times are minimized.

PRELIMINARY

On-Chip Cache

The execution stage takes advantage of a RISC­
like single cycle executiollluiit and a 16-bit
hardware multiplier. The Write-back stage
provides Single cycle 32-bit access to the on-chip
cache and posts all Writes to the cache and system
bus using a two-deep Write buffer. Posted Writes
allow the execution unit to proceed with program
execution while the bus interface unit actually
completes the Write cycle.

1.3 On-Chip Cache

The Cx486DLC on-chip cache maximizes overall
performance by quickly supplying instructions
and data to the internal exeCution pipeline. On
386DX systems, an external memory access takes
a minimum of two clock cycles (zero wait states).
For cache hits, the CPU eliminates these two
clock cycles by overlapping cache accesses with
normal execution pipeline activity.

The Cx486DLC cache is a 1 KByte Write-through
unified instruction and data cache. New cache
lines are allocated only during memory read
cycles. The cache can be configured as direct­
mapped or as two-way set associative. The
direct-mapped organization is a Single set of 256
four-byte lines. When configured as two-way set
associative, the cache organization consists of two
sets of 128 four-byte lines and uses a Least
Recently Used (LRU) replacement algOrithm.

1.4 Power Management

The Cx486DLC power management features
allow a dramatic reduction in current consump­
tion when the CPU is in suspend mode (typically
less than 2 percent of the operating current).
Suspend mode is entered either by a hardware or
software initiated action. Using the hardware to
initiate suspend mode involves a two-pin hand­
shake using the SUSP# and SUSPA# signals. The
software initiates suspend mode through execution
of the HALT instruction. Once in suspend mode,
the CPU power consumption is further reduced
by stopping the external clock input. The result­
ing current draw is typically 0.1 rnA. Since the
Cx486DLC is a static device, no internal CPU data is
lost when the clock input is stopped.

PRELIMINARY

Signal Summary I

1.5 Signal Summary
The Cx486DLC includes additions to the 386DX signal set which are shown in Figure 1-1. These
additions consist of two power management signals (SUSP# and SUSPA#), four cache interface signals
(FLUSH#, KEN#, RPLSET, and RPLV AL#), and an AlO mask input (A20M#). The signal set is de­
scribed in greater detail in Chapter 3.

A20M# *** A31-A2
B516#

ADS#
BUSY#

CLKl BE3#- BEO#

ERROR# D31-DO

FLUSH# * D/C#

INTR
Cx486DLC HLDA

HOLD
MICROPROCESSOR

LOCK# KEN# *
NA# MIlO#

NMI * RPL5ET

PEREQ
* RPLVAL#

SUSP# ** ** SUSPA#
READY#

W/R#
RESET

= Internal Cache Interface

• • = Power Management

.** = A20 Mask 1711500

Figure 1·1. Cx486DLC Input and Output Signals

PRELIMINARY

CYRIX Cx:486DLC '" MICROPROCESSOR
High-Peiformance 486-Class CPU with
Single-Cycle Execution and On-Chip Cache

2. PROGRAMMING
INTERFACE

In this chapter, the internal operations of the
Cx486DLC are described mainly from an applica­
tion programmer's point of view. Included in this
chapter are descriptions of processor initialization,
the register set, memory addressing, various types
of interrupts and the shutdown and halt process.
Also included is an overview of real, virtual 8086,
and protected operating modes.

2.1 Processor
Initialization

The Cx486DLC is initialized when the RESET
Signal is asserted. The processor is placed in real
mode and the registers listed in Table 2-1 are set
to their initialized values. RESET invalidates and
disables the Cx486DLC cache, and turns off
paging. When RESET is asserted, the Cx486DLC
terminates all local bus activity and all internal

execution. During the entire time that RESET is
asserted, the internal pipeline is flushed and no
instruction execution or bus activity occurs.

Approximately 350 to 450 CLIQ clock cycles
(additional 220 + 60 if self~test is requested) after
deassertion of RESET, the processor begins
executing instructions at the top of physical
memory (address location FFFF FFFOh). Because
paging is disabled, the linear address is the same
as the physical address. When the first inter­
segment JUMP or CALL is executed, address lines
A31-AlO are driven low for code segment-relative
memory access cycles. While A31-AlO are low,
the Cx486DLC will execute instructions only in
the lowest 1MByte of physical address space until
system-specific initialization occurs via program
execution.

PRELIMINARY

Cv.tx®
~dV!Clng the Standards

Processor Initialization

Table 2.1. Initialized Register Contents

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator xxxxxxxxh 0000 OOOOh indicates self-test

passed.

EBX Base xxxxxxxxh

ECX Count xxxxxxxxh

EDX Data xxxx 0400 + Revision ID Revision ID = 20h.

EBP Base Pointer xxxxxxxxh

ESI Source Index xxxxxxxxh

ED! Destination Index xxxxxxxxh

ESP Stack Pointer xxxxxxxxh

EFLAGS Flag Word 00000002h

EIP Instruction Pointer OOOOFFFOh

ES Extra Segment OOOOh Base address set to 0000 OOOOh.

Limit set to FFFFh.

CS Code Segment FOOOh Base address set to 0000 OOOOh.

Limit set to FFFFh.

SS Stack Segment OOOOh

OS Data Segment OOOOh Base address set to 0000 OOOOh.

Limit set to FFFFh.

FS Extra Segment OOOOh

GS Extra Segment OOOOh

IDTR Interrupt Descriptor Table Base = 0, Limit = 3FFh

Register

CRO Machine Status Word OOOOOOIOh

CCRO Configuration Control 0 OOh

CCRl Configuration Controll xxxx xxxO (binary)

NCRl Non-Cacheable Region 1 OOOFh 4-GByte non-cacheable region.

NCR2 Non-Cacheable Region 2 OOOOh

NCR3 Non-Cacheable Region 3 OOOOh

NCR4 Non-Cacheable Region 4 OOOOh

DR7 Debug Register DR7 00000400h

Note: x = undefined value

2·2 PRELIMINARY

2.2 Instruction Set Overview

The Cx486DLC instruction set can be divided
into eight types of operations:

Arithmetic
Bit Manipulation
Control Transfer
Data Transfer
High-Level Language Support
Operating System Support
ShiftIRotate
String Manipulation

All Cx486DLC instructions operate on as few as 0
operands and as many as 3 operands. A NOP
instruction (no operation) is an example of a 0
operand instruction. Two operand instructions
allow the specification of an explicit source and
destination pair as part of the instruction. These
two operand instructions can be divided into eight
groups according to operand types:

Register to Register
Register to Memory
Memory to Register
Memory to Memory
Register to I/O
I/O to Register
Immediate Data to Register
Immediate Data to Memory

An operand can be held in the instruction itself (as
in the case of an immediate operand), in a register,
in an I/O port or in memory. An immediate
operand is prefetched as part of the opcode for the
instruction.

Operand lengths of 8, 16, or 32 bits are sup­
ported. Operand lengths of 8 or 32 bits are
generally used when executing code written for

Instruction Set Overview 2

386- or 486-class (32-bit code) processors.
Operand lengths of 8 or 16 bits are generally used
when executing existing 8086 or 80286 code (l6-bit
code). The default length of an operand can be
overridden by placing one or more instruction
prefixes in front of the opcode. For example, by
using prefixes, a 32-bit operand can be used with
16-bit code or a 16-bit operand can be used with
32-bit code.

Chapter 6 of this manual lists each instruction in
the Cx486DLC instruction set along with the
associated opcodes, execution clock counts and
effects on the FLAGS register.

2.2. 'I Lock Prefix
The LOCK prefix may be placed before certain
instructions that read, modify, then write back to
memory. The prefix asserts the LOCK# signal to
indicate to the external hardware that the CPU is
in the process of running multiple indivisible
memory accesses. The LOCK prefix can be used
with the following instructions:

Bit Test Instructions (BTS, BTR, BTC)
Exchange Instructions (XADD, XCHG,

CMPXCHG)
One-operand Arithmetic and LOgical
Instructions (DEC, INC, NEG, NOT)

Two-operand Arithmetic and Logical
Instructions (ADC, ADD, AND, OR, SBB,
SUB, XOR).

An invalid opcode exception is generated if the
LOCK prefix is used with any other instruction,
or with the above instructions when no write
operation to memory occurs (i. e., the destination
is a register).

PRELIMINARY 2-3

Cv.tx®
~dv!Cing the Standards

Register Set

2.3 Regis.er Set
There are 43 accessible registers in the Cx486DLC
and these registers are grouped into two sets. The
application register set contains the registers
frequently used by application programmers, and
the system register set contains the registers
typically reserved for use by operating systems
programmers.

The application register set is made up of:

Eight 32-bit general purpose registers
Six 16-bit segment registers
One 32-bit flag register
One 32-bit instruction pointer register

The system register set is made up of the remain­
ing registers which include:

Three 32-bit control registers
Two 48-bit and two 16-bit system address

registers
Six 32-bit debug registers
Two 8-bit and four 16-bit configuration

registers
Five 32-bit test registers

Each of the registers is discussed in detail in the
following sections.

2.3.1 Application Register Set
The application register set (Figure 2-1) consists
of the registers most often used by the applica­
tions programmer. These registers are generally
accessible and are not protected from read or
write access.

The Genei"al PU'l'vse Registei"s contents are
frequently modified by assembly language instruc­
tions and typically contain arithmetic and logical
instruction operands.

The Segment Registers contain segment selec­
tors, which index into tables located in memory.
These tables hold the base address for each
segment, as well as other information related to
memory addreSSing.

The Flag Register contains control bits used to
reflect the status of previously executed instruc­
tions. This register also contains control bits that
effect the operation of some instructions.

The Instruction Pointer is a 32-bit register that
points to the next instruction that the processor will
execute. This register is automatically incremented
by the processor as execution progresses.

2.3.1.1 Gene~IPurpose
Registers

The general purpose registers are divided into four
data registers, two pointer registers, and two index
registers as shown in Figure 2-2.

Data Registers

The data registers are used by the applications
programmer to manipulate data structures and to
hold the results oflogical and arithmetic opera­
tions. Different portions of the general data
registers can be addressed by using different
names. An "E" prefix identifies the complete 32-
bit register. An "X" suffix without the "E" prefix
identifies the lower16 bits ofthe register. The
'lower two bytes of the register can be addressed
with an "H" suffix to identify the upper byte or an
"L" suffix to identify the lower byte. When a
source operand value specified by an instruction
is smaller than the speCified destination register,
the upper bytes of the destination register are not
affected when the operand is written to the register.

2·4 PRELIMINARY

Register Set 2

31 1615 87 o
f- - AH - -f- - AL - EAX

f- - BH - -lx- -BL- EBX
cx

f- -rn -,- -CL-

f- - i5H - ~x_ -DL -

SI

D!

ECX

EDX General

ESI
Purpose

ED!
Registers

BP EBP

SP ESP

15 0

CS

SS

DS Segment
ES Registers

FS

GS

31 1615 0

I
EIP]

Instruction
Pointer and

HLAGS
Registers

IP

FLAGS

1700400

Figure 2· 'iI. Application Register Set

Pointer and Index Registers registers, however, some instructions use a fixed
assignment of these registers. For example, the
string operations always use ESI as the source
pointer, EDl as the destination pointer, and ECX
as a counter. The instructions using fixed regis­
ters include double-precision multiply and divide,
I/O access, string operations, translate, loop,
variable shift and rotate, and stack operations.

The pointer and index registers are listed below:

SIorESI
Dl orEDl
SP or ESP
BP orEBP

Source Index
Destination Index
Stack Pointer
Base Pointer

These registers can be addressed as 16- or 32-bit
registers, with the liE" prefix indicating 32 bits.
These registers can be used as general purpose

The Cx486DLC processor implements a stack
using the ESP register. This stack is accessed
during the PUSH and POP instructions, proce-

PRELIMINARY 2-5

Cv.tx®
~dV!clng the Standards

Register Set

dure calls, procedure returns, interrupts, excep­
tions, and interrupt/exception returns. The
microprocessor automatically adjusts the value of
the ESP during operation of these instructions.
The EBP register may be used to reference data

passed on the stack during procedure calls. Local
data may also be placed on the stack and referenced
relative to BP. This register provides a mechanism
to access stack data in high-level languages.

Data Registers

31 1615 87 0
1'---'---..-----.-1----.-1----.1 A (Accumulator)

B (Base)

C (Count)

1 liD (Data)

~
L

Pointer and Index Registers

BP (Base-Pointer)

SI (Source-Index)

Dr (Destination-Index)

SP (Stack-Pointer)

v

1700600

Figure 2·2. General Purpose Registers

2·6 PRELIMINARY

2.3.1.2 Segment Registers and
Selectors

Segmentation provides a means of defining data
structures inside the memory space of the micro­
processor. There are three basic types of seg­
ments: code, data, and stack. Segments are used
automatically by the processor to determine the
location in memory of code, data, and stack
references.

There are six 16-bit segment registers:

CS Code Segment
DS Data Segment
ES Extra Segment
SS Stack Segment
FS Additional Data Segment
GS Additional Data Segment

In real and virtual 8086 operating modes, a
segment register holds a 16-bit segment base. The
16-bit segment base is multiplied by 16 and a 16-
bit or 32-bit offset is then added to it to create a
linear address. The offset size is dependent on the
current address size. In real mode and in virtual
8086 mode with paging disabled, the linear
address is also the physical address. In virtual
8086 mode with paging enabled, the linear

15

INDEX

TI = Table Indicator
RPL = Requested Privilege Level

Register Set 2

address is translated to the physical address using
the current page tables.

In protected mode, a segment register holds a
segment selector containing a 13-bit index, a
Table Indicator (TO bit, and a two-bit requested
privilege level (RPL) field as shown in Figure 2-3.

The Index points into a descriptor table in
memory and selects one of 8192 (2 13) segment
descriptors contained in the descriptor table. A
segment descriptor is an eight-byte value used
to describe a memory segment by defining the
segment base, the segment limit, and access
control information. To address data within a
segment, a 16-bit or 32-bit offset is added to the
segment's base address. Once a segment selector
has been loaded into a segment register, an
instruction needs to specifY the offset only.

The Table Indicator (TO bit of the selector, defines
which deSCriptor table the index points into. If
TI=O, the index references the Global Descriptor
Table (GDT). IfTI=l, the index references the
Local Descriptor Table (LDT). The GDT and LDT
are described in more detail later in this chapter.

3 2 o

1706200

Figure 2·3. Segment Selector

PRELIMINARY 2·7

Cv.tx®
~dV!Clng fhe standards

Register Set

The Requested Privilege Level (RPL) field
contains a 2-bit segment privilege level (OO=most
privileged, 11= least privileged). The RPL bits are
used when the segment register is loaded to
determine the Effective Privilege Level (EPL). If
the RPL bits indicate less privilege than the
program, the RPL overrides the current privilege
level and the EPL is the lesser privilege level. If
the RPL bits indicate more privilege than the
program, the current privilege level overrides the
RPL and again the EPL is the lesser privilege level.

When a segment register is loaded with a segment
selector, the segment base, segment limit and
access rights are also loaded from the descriptor
table into a user-invisible or hidden portion of the
segment register, i.e., cached on-chip. The CPU
does not access the descriptor table again until

another segment register load occurs. If the
descriptor tables are modified in memory, the
segment registers must be reloaded with the new
selector values.

The processor automatically selects a default
segment register for memory references. Table 2-2
describes the selection rules. In general, data
references use the selector contained in the DS
register, stack references use the SS register and
instruction fetches use the CS register. While
some of these selections may be overridden,
instruction fetches, stack operations, and the
destination write of string operations cannot be
overridden. Special segment override prefixes allow
the use of alternate segment registers including
the use of the ES, FS, and GS segment registers.

Table 2·2. Segment Register Selection Rules

TYPE OF MEMORY REFERENCE IMPLIED (DEFAULT) SEGMENT OVERRIDE PREFIX
SEGMENT

Code Fetch CS None

Destination of PUSH, PUSHF, INT, CALL, SS None

PUSHA instructions

Source of POP, POPA, POPF, IRET, SS None

RET instuctions

Destination of STOS, MOVS, REP ES None

STOS, REP MOVS instructions

Other data references with effective

address using base regesters of:

EAX, EBX, ECX, DS CS, ES, FS, GS, SS

EDX, ESI, ED!

EBP,ESP SS CS, DS, ES, FS, GS

2·8 PRELIMINARY

Register Set 2

2.3. '11.3 Instruction Pointer 2.3. '1.4 Flags Register
Register

The Instruction Pointer (ElP) register contains the
offset into the current code segment of the next
instruction to be executed. The register is nor­
mally incremented with each instruction execu­
tion unless impliCitly modified through an inter­
rupt, exception or an instruction that changes the
sequential execution flow (e.g., jump, call).

The Flags Register, EFLAGS, contains status
information and controls certain operations on the
Cx486DLC microprocessor. The lower 16 bits of
this register are referred to as the FLAGS register
that is used when executing 8086 or 80286

I 0 0 0 0

2 2
4 3

1 1
9 8

code. The flag bits are shown in
Figure 2-4 and defined in Table 2-3.

. FLAGS
~ __________ ~A ____________ __

1 (1 1 1 1 1 1 \
6 5 432 1 a 9 8 7 6 543 2 1 a

o 000 000 0 0 1~1~lflol~1 ~~ 1~1~lpl~I~I~lol~lol~1 1 I~I
ALIGNMENT CHECK - S,~

VIRTUAL 8086 MODE - S
RESUME FLAG - D

NESTED TASK FLAG - S
VO PRIVILEGE LEVEL - S

OVERFLOW -A
DIRECTION FLAG - C

INTERRUPT ENABLE - S
TRAPFLAG-D
SIGN FLAG-A
ZERO FLAG-A

AUXILIARY CARRY - S
PARITY FLAG - A
CARRY FLAG - A

A = ARITHMETIC FLAG, D = DEBUG FLAG, S = SYSTEM FLAG, C = CONTROL FLAG
o OR 1 INDICATES RESERVED 1701101

Figure 2·4. IEFLAGS Register

PRELIMINARY 2·9

Cv.tx®
~d!!Clng the Standards

Register Set

Table 2·3. EFLAGS Bit Definitions

BIT NAME FUNCTION
POSITION

0 CF Carry Flag: Set when a carry (addition) or borrow (subtraction) out of or into the most

significant bit of the result occurs; cleared otherwise.

2 PF Parity Flag: Set when the low-order 8 bits of the result contain an even number of ones;

cleared otherwise.

4 AF Auxiliary Carry Flag: Set when a carry (addition) or borrow (subtraction) out of or into bit

position 3 of the result occurs; cleared otherwise.

6 ZF Zero Flag: Set if result is zero; cleared otherwise.

7 SF Sign Flag: Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

8 TF Trap Enable Flag: Once set, a Single-step interrupt occurs after the next instruction

completes execution. TF is cleared by the Single-step interrupt.

9 IF Interrupt Enable Flag: When set, maskable interrupts (INTR input pin) are acknowledged

and serviced by the CPU.

10 DF Direction Flag: When cleared, DF causes string instructions to auto-increment (default) the

appropriate index registers (ESI and/or ED!). Setting DF causes auto-decrement of the

index registers to occur.

11 OF Overflow Flag: Set if the operation resulted in a carry or borrow into the sign bit of the

result but did not result in a carry or borrow out of the high-order bit. Also set if the

operation resulted in a carry or borrow out of the high-order bit but did not result in a

carry or borrow into the sign bit of the result.

12,13 IOPL I/O Privilege Level: While executing in protected mode, IOPL indicates the maximum

current privilege level (CPL) permitted to execute I/O instructions without generating an

exception 13 fault or consulting the I/O permission bit map. IOPL also indicates the

maximum CPL allowing alteration of the IF bit when new values are popped into the

EFLAGS register.

14 NT Nested Task: While executing in protected mode, NT indicates that the execution of the

current task is nested within another task.

16 RF Resume Flag: Used in conjunction with debug register breakpOints. RF is checked at

instruction boundaries before breakpoint exception processing. If set, any debug fault is

ignored on the next instruction.

17 VM Virtual 8086 Mode: If set while in protected mode, the microprocessor switches to virtual

8086 operation handling segment loads as the 8086 does, but generating exception 13

faults on privileged opcodes. The VM bit can be set by the IRET instruction (if current

privilege level=O) or by task switches at any privilege level.

18 AC Alignment Check Enable: In conjunction with the AM flag in CRO, the AC flag determines

whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults

are enabled.

2·10 PRELIMINARY

2.3.2 System Register Set

The system register set (Figure 2-5) consists of
regIsters not generally used by application pro­
grammers. These registers are typically employed
by system level programmers who generate
operating systems and memory management
programs.

The Control Registers control certaiil aspects of
the Cx486DLC microprocessor such as paging,
coprocessor functions, and segment protection.
When a paging exception occurs while paging is
enabled, the control registers retain the linear
address of the access that caused the exception.

The Descriptor Table Registers and the Task
Register can also be referred to as system address
or memory management registers. These registers
consist of two 48-bit and two 16-bit registers.
These registers specify the location of the data
structures that control the segmentation used by
the Cx486DLC microprocessor. Segmentation is
one available method of memory management.

Register Set 2

The Confignration Registers are used to control
the Cx486DLC on-chip cache operation and
power management features. The cache and
power management features can be enabled or
disabled by writing to these registers. Non­
cacheable areas of physical memory are also
defined through the use of these registers.

The Debng Registers provide debugging facilities
for the Cx486DLC microprocessor and enable the
use of data access breakpoints and code execution
breakpoints.

The Test Registers provide a mechanism to test
the contents of both the on-chip 1 KByte cache
and the translation lookaside buffer (TLB). The
TLB is used as a cache for translating linear
addresses to physical addresses when paging is
enabled. In the following sections, the system
register set is described in greater detail.

PRELIMINARY 2·11

ev.tx®
~~ClngtfJestandardS

Register Set

a

47 1615 a
I Base Limit

I Base Limit
Selector
Selector

31 a
Linear Breakpoint Address a
Linear Breakpoint Address 1
Linear Breakpoint Address 2
Linear Breakpoint Address 3

Breakpoint Status
Breakpoint Control

7 a
I CCRa

23 I CCRl
Non-Cacheable Region 1
Non-Cacheable Region 2
Non-Cacheable Region 3
Non-Cacheable Region 4

31 a
Cache Test
Cache Test
Cache Test
TLB Test
TLB Test

CCRO ; Configuration Control 0
CCRl ; Configuration Control 1

Figure 2-5. System Register Set

2-12 PRELIMINARY

CRa

CR2
CR3

GDTR
IDTR
LDTR

TR

DRa
DRl
DR2
DR3
DR6
DR7

CCRa
CCRl
NCRl
NCR2
NCR3
NCR4

TR3
TR4
TR5
TR6
TR7

]
]

l

J

Control
Registers

Descripter
Table
Registers

Task Register

Debug
Registers

Configuration
Registers

Test
Registers

1711600

2.3.2.1 Control Registers
The control registers, CRa through CRJ, are
shown in Figure 2-6. The CRa register contains
system control flags which control operating
modes and indicate the general state of the CPU.
The lower 16 bits of CRa are referred to as the
machine status word (MSW). The CRa bit
definitions are described in Table 2-4. The
reserved bits in the CRa should not be modified.

When paging is enabled and a page fault is
generated, the CR2 register retains the 32-bit

31

Register Set 2

linear address of the address that caused the fault.
CRJ contains the 2a-bit base address of the page
directory. The page directory must always be
aligned to a 4 KByte page boundary, therefore, the
lower 12 bits of CRJ should always be equal to

zero.

When operating in protected mode, any program
can read the control registers. However, only
privilege level a (most privileged) programs can
modify the contents of these registers.

1211 0

PAGE DIRECTORY BASE REGISTER (PDBR) CR3

PAGE FAULT LINEAR ADDRESS CR2

P P
CRO

G E

3 3 2 5 2 0/
1 0 9 V

MSW 1700701

Figure 2-6. Control Registers

PRELIMINARY 2-13

Cv.tx®
~dV!cing the Standards

Register Set

Table 2·4. eRO Bit Definitions

BIT NAME FUNCTION
POSITION

0 PE Protected Mode Enable: Enables the segment based protection mechanism. IfPE=l,

protected mode is enabled. If PE=O, the CPU operates in real mode, with segment based

protection disabled, and addresses are formed as in an 8086-class CPU.

1 MP Monitor Processor Extension: If MP=l and TS=l, a WAIT instruction causes fault 7. The

TS bit is set to 1 on task switches by the CPU. Floating point instructions are not affected

by the state of the MP bit. The MP bit should be set to one during normal operations.

2 EM Emulate Processor Extension: IfEM=l, all floating point instructions cause a fault 7.

3 TS Task Switched: Set whenever a task switch operation is performed. Execution of a floating

point instruction with TS=l causes a device not available (DNA) fault. If MP=l and TS=l,

a WAIT instruction also causes a DNA fault.

4 1 Reserved: Do not attempt to modify.

5 0 Reserved: Do not attempt to modify.

16 WP Write Protect: Protects read-only pages from supervisor write access. The 386-type CPU

allows a read-only page to be written from privilege level 0-2 .. The Cx486DLC CPU is

compatible with the 386-type CPU when wp=o. WP=l forces a fault on a write to a read-

only page from any privilege level.

18 AM Alignment Check Mask: If AM=l, the AC bit in the EFLAGS register is unmasked and

allowed to enable alignment check faults. Setting AM=O prevents AC faults from occurring.

Reserved: Do not attempt to modify.

29 0 Cache Disable: If CD=l, no further cache fills occur. However, data already present in the

30 CD cache continues to be used if the requested address hits in the cache. The cache must also

be invalidated to completely disable any cache activity.

Paging Enable Bit: If PG=l and protected mode is enabled (PE=l), paging is enabled.

31 PG

2·14 PRELIMINARY

2.3.2.2 Descriptor Table
Registers and Descriptors

Descriptor Table Registers

The Global, Interrupt and Local Descriptor Table
Registers (GDTR, IDTR and LDTR), shown in
Figure 2-7, are used to specify the location of the
data structures that control segmented memory

48

! BASE ADDRESS

BASE ADDRESS

1708CXXJ

Register Set 2

management. The GDTR, IDTR and LDTR are
loaded using the LGDT, LIDT and LLDT instruc­
tions, respectively. The values of these registers
are stored using the corresponding store instruc­
tions. The GDTR and IDTR load instructions are
privileged instructions when operating in pro­
tected mode. The LDTR can only be accessed in
protected mode.

16 15 o

LIMIT GDTR

LIMIT IDTR
,

I

SELECTOR LDTR

Figure 2·7. Descriptor Table Registers

The Global Descriptor Table Register (GDTR)
holds a 32-bit base address and 16-bit limit for
the Global Descriptor Table (GDT). The GDT is
an array of up to 8192 8-byte descriptors. When
a segment register is loaded from memory, the TI
bit in the segment selector chooses either the GDT
or the local descriptor table (LDT) to locate a
deSCriptor. The index portion of the selector is
used to locate a given deSCriptor within the
descriptor table. The contents of the GDTR are
completely visible to the programmer. The first
descriptor in the GDT (location 0) is not used by
the CPU and is referred to as the "null descriptor".
If the GDTR is loaded while operating in
16-bit operand mode, the Cx486DLC accesses a
32-bit base value but the upper 8 bits are ignored
resulting in a 24-bit base address.

The Interrupt Descriptor Table Register
(IDTR) holds a 32-bit base address and 16-bit
limit for the Interrupt Descriptor Table (IDT).
The IDT is an array of 256 8-byte interrupt
desCriptors, each of which is used to point to an
interrupt service routine. Every interrupt that
may occur in the system must have an associated
entry in the IDT. The contents of the IDTR are
completely visible to the programmer.

The Local Descriptor Table Register (LDTR)
holds a 16-bit selector for the Local Descriptor
Table (LDT). The LDT is an array of up to 8192
8-byte deSCriptors. When the LDTR is loaded, the
LDTR selector field indexes an LDT deSCriptor
that must reside in the global deSCriptor table
(GDT). The contents ofthe selected deSCriptor

PRELIMINARY 2·15

Cv.tx®
~dv!c/ng the standards

Register Set

are cached on-chip in the hidden portion of the
LDTR. The CPU does not access the GDT again
until the LDTR is reloaded. If the LDT descrip­
tion is modified in memory in the GDT, the
LDTR must be reloaded to update the hidden
portion of the LDTR.

When a segment register is loaded from memory,
the II bit in the segment selector chooses either
the GDT or the LDT to locate a segment descrip­
tor. If TI = 1, the index portion of the selector is
used to locate a given descriptor within the LDT.
Each task in the system may be given its own
LDT, managed by the operating system. The
LDTs provide a method of isolating a given task's
segments from other tasks in the system.

Descriptors

Descriptors are divided into three types:
Application Segment Descriptors are used to
define code, data and stack segments. System
Segment Descriptors define an LDT segment or
a TSS. Gate Descriptors define task gates,
interrupt gates, trap gates and call gates.

Application Segment Descriptors can be located in
either the LDT or GDT. System Segment Descrip­
tors can only be located in the GDT. Dependent
on the gate type, gate descriptors may be located
in either the GDT, LDT or lDT. Figure 2-8
illustrates the descriptor format for both Applica­
tion Segment Descriptors and System Segment
Descriptors and Table 2-5 lists the corresponding
bit definitions.

31 24 23 22 21 20 19 16 15 14 13 12 II 8 7

BASE 31-24 I G I D I 0 I r I LIMIT 19-16 P I DPL I ~ I TYPE
I

BASE 23-16 +4

BASE 15-0 LIMIT 15-0

1707800

Figure 2·8. Application and System Segment Descriptors

2·16 PRELIMINARY

Register Set 2

Table 2·5. Segment Descriptor Bit Definitions

BIT MEMORY NAME DESCRIPTION'
POSITION OFFSET

31-24 +4 BASE Segment base address.

7-0 +4 32-bit linear address that points to the beginning of the segment.

31-16 +0

19-16 +4 LIMIT Segment limit.

15-0 +0

23 +4 G Limit granularity bit:

0= byte granularity, 1 = 4 KBytes(page) granularity.

22 +4 D Default length for operands and effective addresses.

Valid for code and stack segments only: 0= 16 bit, 1 = 32-bit.

20 +4 AVL Segment available.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege leveL

12 +4 DT Descriptor type:

o = system, 1 = application.

11-8 +4 TYPE Segment type.

System descriptor (DT = 0):

0010 = LDT deSCriptor
1001 = TSS descriptor, task not busy
1011 = TSS deSCriptor, task busy.

Application deSCriptor (DT = 1):
11 E o = data, 1 = executable.

10 CID If E = 0:
o = expand up, limit is upper bound of segment
1 = expand down, limit is lower bound of segment.

If E = 1:
o = non-conforming
1 = conforming (runs at privilege level of calling procedure).

9 RJW If E = 0:
o = non-readable.
1 = readable.

If E = 1:
o = non-writable.
1 = writable.

8 A o = not accessed, 1 = accessed.

PRELIMINARY 2-17

Cv.tx®
~dv!c/ng the standards

Register Set

Gate Descriptors provide protection for execut­
able segments operating at different privilege
levels. Figure 2-9 illustrates the fonnat for Gate
Descriptors and Table 2-6 lists the corresponding
bit definitions.

Interrupt Gate descriptors are used to enter a
hardware interrupt service routine. Trap Gate
descriptors are used to enter exceptions or soft­
ware interrupt service routines. Trap Gate and
Interrupt Gate deSCriptors can only be located in
the IDT.

Task Gate deSCriptors are used to switch the
CPU's context during a task switch. The selector
portion ofthe Task Gate deSCriptor locates a Task
State Segment. Task Gate deSCriptors can be
located in the GDT, LDT or IDT.

Call Gate deSCriptors are used to enter a proce­
dure (subroutine) that executes at the same or a
more privileged level. A Call Gate deSCriptor
primarily defines the procedure entry point and
the procedure's privilege level.

31 16 15 14 13 12 11 8 7 o

OFFSET 31-16 P I DPL I 0 I TYPE I 0 I 0 I 0 IPARAMETERS +4

SELECTOR 15-0 OFFSET 15-0

1707900

Figure 2.9. Gate Descriptor

Table 2·6. Gate Descriptor Bit Definitions

BIT MEMORY NAME DESCRIPTION
POSITION OFFSET

31-16 +4 OFFSET Offset used during a call gate to calculate the branch target.

15-0 +0

31-16 +0 SELECTOR Segment selector used during a call gate to calculate the branch target.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

ll-S +4 TYPE Segment type:

01 00 = 16-bit call gate

0101 = tack gate

OllO = 16-bit interrupt gate

Olll = 16-bit trap gate

llOO = 32-bit call gate

lllO = 32-bit interrupt gate

llll = 32-bit trap gate.

4-0 +4 Parameters Number of 32-bit parameters to copy from the caller's stack to the called

procedure's stack.

2·18 PRELIMINARY

2.3.2.3 Task Register

The Task Register (TR) holds a 16-bit selector
for the current Task State Segment (TSS) table
as shown in Figure 2-10. The TR is loaded and

15

Register Set 2

stored via the LTR and STR instructions, respec­
tively. The TR can only be accessed during
protected mode and can only be loaded when the
privilege level is 0 (most privileged).

o

SELECTOR

1708100

Figure 2· 'I O. Task Register

PRELIMINARY 2·19

Cv.tx®
".dV!Clng the Standards

Register Set .

When the TR is loaded, the TR selector field
indexes a TSS descriptor that must reside in the
global descriptor table (GDT). The contents of
the selected descriptor are cached on-chip in the
hidden portion of the TR

task. The TR points to the current TSS. The TSS
can be either a 286-type 16-bit TSS or a 386/486-
type 32-bit TSS as shown in Figures 2-11 and 2-
12. An I/O permission bit map is referenced in the
32-bit TSS by the I/O Map Base Address.

During task switching, the processor saves the
current CPU state in the TSS before starting a new

31 16 15

I 110 MAP BASE ADDRESS 0000000000000001 T

o 0 000 0 0 0 0 0 0 0 0 0 0 0 SELECTOR FOR TASK'S LDT

10000000000000000 GS

'0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FS
o 0 0 0 0 0 0 0 000 000 0 0 DS

000 0 0 0 0 0 000 000 0 0 55
10000000000000000 CS

o 0 0 0 0 0 0 0 000 0 0 0 0 0 ES
ED!
ESI
EBP
ESP

EBX
EDX
ECX
EAX

EFLAGS
ElP
CR3

00000000000000001 55 for CPL= 2

ESP for CPL = 2
00000000000000001 55 for CPL= 1

ESP for CPL = 1
ooooooooooooooooT SS for CPL= 0

ESP for CPL = 0
ooooooooooooooooT BACK LINK (OLD TSS SELECTOR)

o = RESERVED.

Figure 2· 1 1. 32·Bit Task State Segment (TSS) Table

2·20 PRELIMINARY

o
+64h
+60h
+5Ch
+58h
+54h
+50h
+4Ch
+48h
+44h
+40h
+3Ch
+38h
+34h
+30h
+2Ch
+28h
+24h
+20h
+ICh
+ISh
+14h
+lOh
+Ch
+8h
+4h
+Oh

1708200

Register Set 2

I
SELECTOR FOR TASK'S LOT +2Ah

!
OS +28h

I 55 +26h

I CS +24h

I ES +22h

DI +20h

51 +lEh

BP +16h

I
SP +lAh

I
BX +18h

I
OX +16h

I ex +14h

AX +12h

FLAGS +10h

IP +Eh

SP FOR PRIVILEGE LEVEL 2 +Ch

55 FOR PRIVILEGE LEVEL 2 +Ah

SP FOR PRIVILEGE LEVEL 1 +8h

55 FOR PRIVILEGE LEVEL 1 +6h

SP FOR PRIVILEGE LEVEL 0 +4h

55 FOR PRIVILEGE LEVEL 0 +2h

BACK LINK (OLD TSS SELECTOR) +Oh
1708800

Figure" 2·12. 'I 6-Bit Task State Segment (TSS) Table

PRELIMINARY 2-21

Cv.tx®
~dV!Clng the Standards

Register Set

2.3.2.4 Configuration Registers

The Cx486DLC provides six internal registers
used to configure the internal cache and to enable
or disable cache control and power management
pins. These registers do not exist on any 80X86
microprocessors. Four of the registers are dedi­
cated to defining non-cacheable areas of memory
and the remaining two registers are used for
Cx486DLC cache control and power manage­
ment control as shown in Table 2-7.

Access to the Configuration Registers is achieved
by writing the address (referred to as the index) of

the register to I/O port 22h. I/O port 23h is then
accessed to read or write data from or to the
configuration register. Accesses to the on-chip
configuration registers do not generate external VO
bus cycles. However, each I/O port 23h opera­
tion must be preceded by an I/O port 22h opera­
tion, otherwise the second and later I/O port 23h
operations are directed off-chip and produce
external VO bus cycles. Accesses to I/O port 22h
with an index outside of the CO-CFh range also
result in external I/O cycles and do not affect the
on-chip configuration registers.

Table 2·7. Configuration Registers Index Assignments

REGIS'IER NAME iiEGiSiiCii iNDiX NUMBER OF BITS I~'" RIllGISTIllR

CCRO COh 8

Configuration Contral a
CCRl Clh 8

Configuration ContraIl

Reserved C2h - C3h -
NCRl C4h - C6h 24

Non-Cacheable Region 1

NCR2 C7h - C9h 24

Non-Cacheable Region 2

NCR3 CAh-CCh 24

Non-Cacheable Region 3

NCR4 CDh-CFh 24

Non-Cacheable Region 4

Reserved DOh - FFh -

2·22 PRELIMINARY

Register Set 2

Bit assignments for the configuration registers are
listed in Table 2-8. The non-cacheable regions are
defined by a starting address and a block size.

example, a 128 KByte non-cacheable block is
allowed to have a starting address of a KB, 128 KB,
256 KB, etc. This relationship between block size
and starting address is true for all block sizes
except 4 GBytes. When the block size is set to

The non-cacheable region block size ranges from
4 KByte to 4 GByte as shown in Table 9. The
starting address of the non-cacheable region is
restricted to block size boundary alignment. For

4 GBytes, all physical memory is non-cacheable
regardless of the setting of the starting address.

Table 2·8. Configuration Registers Bit Assignments
REGISTER REGISTER BITS DESCRIPTION

NAME INDEX

Configuration Control COh 0 NCO: If = 1, sets the first 64 KBytes at each 1 MByte boundary as
(CCRO) non-cacheable.

1 NCl: If = 1, sets 640 KBytes to 1 MByte region as non-cacheable.

1 AlOM: If = 1, enables A20M# input pin.

3 KEN: If = 1, enables KEN# input pin.

4 FLUSH: If = 1, enables FLUSH# input pin.

S BARB: If =1, enables flushing of internal cache when hold state is
entered.

6 CO: Selects cache organization:
0= 2-way set associative
1 = direct-mapped

7 SUSPEND: If = 1, enables SUSP# input and SUSPA# output pins.

If = 0, output SUSPA# floats.

Configuration Control Clh 0 RPL: If = 1, enables output pins RPLSET and RPLVAL#.
(CCRl) If = 0, outputs RPLSET and RPLVAL# float.

7 - 1 Reserved.
Non-Cacheable C4h 7-0 Address bits A31 - Al4 of Region 1 starting address.
Region 1 CSh 7-0 Address bits A23 - A16 of Region 1 starting address.

C6h 7-4 Address bits AIS - All of Region 1 starting address.
3-0 Region 1 Block Size (Table 2-SA).

N on-Cacheable C7h 7-0 Address bits A31 - A24 of Region 1 starting address.
Region 1 CSh 7-0 Address bits A23 - A16 of Region 1 starting address.

C9h 7-4 Address bits AIS - All of Region 1 starting address.
3-0 Region 2 Block Size (Table l-SA).

Non-Cacheable CAh 7-0 Address bits A31 - Al4 of Region 3 starting address.
Region 3 CBh 7-0 Address bits Al3 - A16 of Region 3 starting address.

CCh 7-4 Address bits AIS - All of Region 3 starting address.
3-0 Region 3 Block Size (Table l-SA).

Non-Cacheable CDh 7-0 Address bits A31 - Al4 of Region 4 starting address.
Region 4 CEh 7-0 Address bits A23 - A16 of Region 4 starting address.

CFh 7-4 Address bits AIS - All of Region 4 starting address.
3-0 Region 4 Block Size (Table l-SA).

Note: All bits are cleared to 0 at reset. except C6h. C6h defaults to OFh to set the first non-cacheable region size = 4 GBytes.

PRELIMINARY 2·23

Cv.tx®
~dV!Cing the Standards

Register Set

Table 2-9. Non-Cacheable Regions Block Size Field

BITS 3-0 BLOCK SIZE

Oh Disabled

Ih 4 KBytes

2h 8 KBytes

3h 16 KBytes

4h 32 KBytes

5h 64 KBytes

6h 128 KBytes

7h 256 KBytes

2.3.2.5 Debug Registers
Six debug registers (DRO-DR3, DR6 and DR7),
shown in Figure 13, support debugging on the
Cx486DLC. Memory addresses loaded in the
debug registers, referred to as "breakpoints",
generate a debug exception when a memory access
of the speCified type occurs to the speCified address.
A breakpoint can be speCified for a particular kind of

3 3
1 0

2 2 2
8 7 6

2222211
4321098

BITS 3-0 BLOCK SIZE

8h 512 KBytes

9h 1 MBytes

Ah 2 MBytes

Bh 4 MBytes

Ch 8 MBytes

Dh 16 MBytes

Eh 32 MBytes

Fh 4 GBytes

memory access such as a read or a write. Code and
data breakpoints can also be set allowing debug
exceptions to occur whenever a given data access
(read or write) or code access (execute) occurs.
The size of the debug target can be set to I-byte, 2-
bytes, or 4-bytes. The debug registers are accessed
via MOV instructions which can be executed only
at privilege level o.

1 1 1 1
43209876543210

G L G L
1 1 0 0 DR7

:000000000 00 ooooo~I~lollllllll B B B B DR6
3 2 1 0

i BREAKPOINT 3 LINEAR ADDRESS

--~

DR3

BREAKPOINT 2 LINEAR ADDRESS DRl

BREAKPOINT 1 LINEAR ADDRESS DR!

I

BREAKPOINT 0 LINEAR ADDRESS DRO

ALL BITS MARKED AS 0 OR 1 ARE RESERVED AND SHOULD NOT BE MODIFIED. 1703201

Figure 2-13. Debug Registers

2-24 PRELIMINARY

Register Set 2

The debug address registers DRO - DRJ each
contain the linear address for one of four possible
breakpoints. Each breakpoint is further specified
by bits in the debug control register (DR7). For
each breakpoint address in DRO-DRJ, there are
corresponding fields L, RIW, and LEN in DR7
that specify the type of memory access associated
with the breakpoint. The RIW field can be used
to specify instruction execution as well as data
access breakpoints. Instruction execution

breakpoints are always taken before execution of
the instruction that matches the breakpoint.

The debug status register (DR6) reflects condi­
tions that were in effect at the time the debug
exception occurred. The contents of the DR6
register are not automatically cleared by the
processor after a debug exception occurs and,
therefore, should be cleared by software at the
appropriate time. Table 2-10 lists the bit defini­
tions for the DR6 andDR7 registers.

Table 2.1 O. DR6 and DR7 Field Definitions

REGISTER FIELD NUMBER OF BITS DESCRIPTION

DR6 Bi 1 Bi is set by the processor if the conditions described by DRi,

RlWi, and LENi occurred when the debug exception occurred,

even if the breakpoint is not enabled via the Gi or Li bits.

BT 1 BT is set by the processor before entering the debug handler if a

task switch has occurred to a task with the T bit in the TSS set.

BS 1 BS is set by the processor if the debug exception was triggered

by the Single-step execution mode (TF flag in EFLAGS set).

DR7 RlWi 2 Applies to the DRi breakpOint address register:

00 - Break on instruction execution only

01 - Break on data writes only

10 - Not used

11 - Break on data reads or writes.

LENi 2 Applies to the DRi breakpoint address register:

00 - One byte length

01 - Two byte length

10 - Not used

11 - Four byte length.

Gi 1 If set to a 1, breakpOint in DRi is globally enabled for all tasks

and is not cleared by the processor as the result of a task switch.

Li 1 If set to a 1, breakpoint in DRi is locally enabled for the current

task and is cleared by the processor as the result of a task switch.

GD 1 Global disable of debug register access. GD bit is cleared

whenever a debug exception occurs.

PRELIMINARY 2·25

ev.tx®
~dv!Clng the standards

Register Set

Code execution breakpoints may also be gener­
ated by placing the breakpoint instruction (INT 3) at
the location where control is to be regained. The
single-step feature may be enabled by setting the
TF flag in the EFLAGS register. This causes the
processor to perform a debug exception after the
execution of every instruction.

2.3.2.6 Test Registers

The five test registers, shown in Figure 2-14, are
used in testing the CPU's translation look-aside
buffer (TLB) and on-chip cache. TR6 and TR7
are used for TLB testing, and TR3-TRS and used
for cache testing.

TLB Test Registers

The Cx486DLC TLB is a four-way set associative
memory with eight entries per set. Each TLB entry
consists of a 24-bit tag and 20-bit data. The 24-bit tag
represents the high-order 20 bits of the linear address,

TLB PHYSICAL ADDRESS

31

a valid bit, and three attribute bits. The 20-bit data
portion represents the upper 20 bits of the physical
address that corresponds to the linear address.

TR6 is the TLB Test Command Register. TR6
contains a command bit, the upper 20 bits of a linear
address, a valid bit and the attribute bits used in the
test operation. The contents ofTR6 are used to create
the 24-bit TLB tag during both write and read (TLB
lookup) test operations. The command bit defines
whether the test operation is a read or a write.

TR7 is the TLB Test Data Register. TR7 contains
the upper 20 bits of the physical address (TLB data
field), two LRU bits and a control bit. During TLB
write operations, the physical address in TR7 is
written into the TLB entry selected by the contents of
TR6. During TLB lookup operations, the TLB data
selected by the contents ofTR6 is loaded into TR7.

Tables 2-11 and 2-12 list the bit definitions for the
TR6 and TR7 registers.

TLB UNEAR ADDRESS I v I D I D# I u I u# I w I w# I 0 0 0 0 I c I TR6

2·26

31 12 11 10 9 8 7 6 5 4 3 2 1 0

~~1:~ UNESELECTION

31 11 10 9 8 7 6 5

~SETI C~TR5
4 3 2 1 0

CACHE TAG ADDRESS

31

CACHE DATA

~Ctf.rf VAUD BITS I 0 0 0 I TR4

9876543210

1TR3
~3~1--~0

t;S=Reserved 1701001

Figure 2·14. Test Registers

PRELIMINARY

Register Set 2

Table 2·11. TR6 cund TR7 Bit lDefinitions

REGISTER BIT DESCRIPTION
NAME POSITION

TR6 31-12 Linear address.

TLB lookup: The TLB is interrogated per this address. If one and only one match

occurs in the TLB, the rest of the fields in TR6 and TR7 are updated per the matching

TLB entry.

TLB write: A TLB entry is allocated to this linear address.

11 Valid bit (V).

TLB write: If set, indicates that the TLB entry contains valid data. If clear, target

entry is invalidated.

10-9 Dirty attribute bit and its complement CD, D#). (Refer to Table 2-11A).

8-7 User/supervisor attribute bit and its complement (U, U#). (Refer to Table 2-11A).

6-5 Read/write attribute bit and its complement CR, R#). CRefer to Table 2-11A).

0 Command bit (C).

If = 0: TLB write.

If = 1: TLB lookup.

TR7 31-12 Physical address.

TLB lookup: data field from the TLB.

TLB write: data field written into the TLB.

11 Page-level cache disable bit (PCD).

Corresponds to the PCD bit of a page table entry.

10 Page-level cache write-through bit CPWT).

Corresponds to the PWT bit of a page table entry.

9-7 LRUbits.

TLB lookup: LRU bits associated with the TLB entry prior to the TLB lookup.

TLB write: ignored.

4 PLbit.

TLB lookup: If = 1, read hit occurred. If = 0, read miss occurred.

TLB write: If = 1, REP field is used to select the set. If = 0, the pseudo-LRU

replacement algorithm is used to select the set.

3-2 Set selection (REP).

TLB lookup: If PL = 1, set in which the tag was found. If PL = 0, undefined data.

TLB write: If PL = 1, selects one ofthe four sets for replacement. If PL=O, ignored.

PRELIMINARY 2·27

Cv.tx®
~dV!Clng the Standards

Register Set

Table 2·' , A. TR6 AHribute Bit Pairs

BIT BIT COMPLEMENT EFFECT ON TLB LOOKUP EFFECT ON TLB WRITE
(B) (B#)

0 0 Do not match. Undefined.

0 1 Match if the bit is o. Clear the bit.

1 0 Match if the bit is 1. Set the bit.

1 1 Match is the bit is 1 or 0 Undefined.

Cache Test Registers

The Cx486DLC on-chip cache is a two-way set
associative memory with 128 entries per set.
Each TLB entry consists of a 23-bit tag, 32-bit
data, and four valid bits. The 23-bit tag repre­
sents the high-order 23 bits of the physical
address. The 32-bit data represents the four bytes
of data currently in memory at the physical
address represented by the tag. The four valid
bits indicate which of the four data bytes actually
contain valid data.

The Cx486DLC contains three test registers that
allow testing of its internal cache. Using these
registers, cache test writes and reads may be
performed. Cache test reads allow inspection of
the data, valid bits and the LRU bit for the cache
entry. Cache test writes cause the data in TR3 to
be written to the selected set and line in the
cache. For data to be written to the allocated line,
the valid bits for the line must be set prior to the
write of the data. Bit definitions for the cache test
registers are shown in Table 2-12.

2·28 PRELIMINARY

Register Set 2

Table 2· '12. TR3·TR5 Bit Definitions

REGISTER BIT DESCRIPTION
NAME POSITION

TRJ 31-10 Cache data.

Cache read: data accessed from the cache.

Cache write: to be written into the cache.

TR4 31-9 Tag address.

Cache read: tag address from which data is read.

Cache write: data written into the tag address of the selected line.

7 LRU.

Cache read: the LRU bit associated with the cache line.

Cache write: ignored.

6-3 Valid bits.

Cache reads: four valid bits for the accessed line (one bit per byte).

Cache writes: valid bits written into the line.

TRS 10-4 Line Selection. Selects one of 128 lines.

2 Set selection.

If = 0: set 0 is selected.

If = 1: set I is selected.

1-0 Control bits. These bits control reading or writing the cache.

If = 00: Ignored.

If = 01: Cache write.

If = 10: Cache read.

If = ll: Cache flush (marks all entries as invalid).

PRELIMINARY .2·29

Cv.tx®
~dV!Clng the Standards

Address Spaces

2.4 Address Spaces
The Cx486DLC can directly address either
memory or I/O space. Figure 2-15 illustrates the
range of addresses available for memory address
space and I/O address space. For the Cx486DLC,
the addresses for physical memory range between
0000 OOOOh and FFFF FFFFh
(4 GBytes). The accessible I/O addresses space

Physical
Memory Space

ranges between 0000 OOOOh and
0000 FFFFh (64 KBytes). The coprocessor
communication space exists in upper I/O space
between 8000 00F8h and 8000 OOFFh. These
coprocessor I/O ports are automatically accessed by
the CPU whenever an ESC opcode is executed.
The I/O locations 22h and 23h are used for
Cx486DLC configuration register access.

Accessible
Programmed

1/0 Space
FFFF FFFFh FFFF FFFFh

Physical Memory
4 GBytes

0000 OOOOh L---_____ -1

SOOO OOFFh
800000FSh

0000 FFFFh

OOOOOOOOh

Not
Accessible

Not
Accessible

64 KBytes
J

Coprocessor
+-- Space

Cx486DLC
Configuration
Register 1/0
Space

+-- 0000 0023h
00000022h

1711700

Figure 2-15. Memory and I/O Address Spaces

2·30 PRELIMINARY

2.4.1 I/O Address Space

The Cx486DLC I/O address space is accessed
using IN and OUT instructions to addresses
referred to as "ports". The accessible I/O address
space is 64 KBytes and can be accessed as 8-bit,
16-bit or 32-bit ports. The execution of any IN or
OUT instruction causes the M/IO# pin to be
driven low, thereby selecting the I/O space instead
of memory space for loading or storing data. The
upper 8 address bits are always driven low during
IN and OUT instruction port accesses.

The Cx486DLC configuration registers reside
within the I/O address space at port addresses nh
and 23h and are accessed using the standard IN
and OUT instructions. The configuration registers
are modified by writing the index of the configura­
tion register to port 22h and then transferring the data
through port 23h. Accesses to the on-chip
configuration registers do not generate external I/
o cycles. However, each port 23h operation must
be preceded by a port nh write with a valid index
value. Otherwise the second and later port 23h
operations are directed off-chip and generate
external I/O cycles without modifying the on-chip
configuration registers. Also, writes to port nh
outside of the Cx486DLC index range (COh to
CFh) result in external I/O cycles and do not effect
the on-chip configuration registers. Reads of port
nh are always directed off-chip.

Address Spaces 2

2.4.2 Memory Address Space

The Cx486DLC directly addresses up to 4 GBytes
of phYSical memory. Memory address space is
accessed as bytes, words (16-bits) or doublewords
(32-bits). Words and doublewords are stored in
consecutive memory bytes with the low-order
byte located in the lowest address. The physical
address of a word or doubleword is the byte
address of the low-order byte.
With the Cx486DLC, memory can be addressed
using nine different addressing modes. These
addressing modes are used to calculate an offset
address often referred to as an effective address.
Depending on the operating mode of the CPU,
the offset is then combined using memory man­
agement mechanisms to create a physical address
that actually addresses the physical memory
devices.

Memory management mechanisms on the
Cx486DLC consist of segmentation and paging.
Segmentation allows each program to use several
independent, protected address spaces. Paging
supports a memory subsystem that simulates a
large address space using a small amount of RAM
and disk storage for physical memolY. Either or both
of these mechanisms can be used for manage­
ment of the Cx486DLC memory address space.

2.4.2.1 Offset Mechanism
The offset mechanism computes an offset (effec­
tive) address by adding together up to three
values: a base, an index and a displacement. The
base, if present, is the value in one of eight 32-bit
general registers at the time of the execution of the
instruction. The index, like the base, is a value
that is determined from one of the 32-bit

PRELIMINARY 2-31

Cv.tx®
~dV!Clng the Standards

Address Spaces

general registers (except the ESP register) when
the instruction is executed. The index differs
from the base in that the index is first multiplied
by a scale factor of 1, 2, 4 or 8 before the summa­
tion is made. The third component added to
the memory address calculation is the displace­
ment which is a value of up to 32-bits in length
supplied as part of the instruction. Figure 2-16
illustrates the calculation of the offset address.

171WlJ

Offset Address
(Effective Address)

Nine valid combinations of the base, index, scale
factor and displacement can be used with the
Cx486DLC instruction set. These combinations
are listed in Table 2-13. The base and index both
refer to contents of a register as indicated by
[Base] and [Index]. Figure 2· 1 6. OHset Address Calculation

ADDRESSING BASE INDEX SCALE DISPLACEMENT OFFSET ADDRESS (OA)
MODE FACTOR (DP) CALCULATION

(SF)

Direct x OA=DP
Register Indirect x OA= [BASE]
Based x x OA = [BASE] + DP
Index x x OA = [INDEX] + DP
Scaled Index x x x OA = ([INDEX] * SF) + DP
Based Index x x OA = [BASE] + [INDEX]
Based Scaled x x x OA = [BASE] + ([INDEX] * SF)
Index
Based Index with x x x OA = [BASE] + [INDEX] + DP
Displacement
Based Scaled x x x x OA = [BASE] + ([INDEX] * SF) + DP
Index with
Displacement

2·32 PRELIMINARY

2.4.2.2 Real Mode Memory
Addressing

In real mode operation, the Cx486DLC only
addresses the lowest 1 MByte (220) of memory.
To calculate a physical memory address, the 16-bit
segment base address located in the selected
segment register is multiplied by 16 and then the
16-bit offset address is added. The resulting
20-bit address is then extended with
12 zeros in the upper address bits to create the
32-bit physical address. Figure 2-17 illustrates
the real mode address calculation. Physical
addresses beyond 1 MByte cause a segment limit
overrun exception.

The addition of the base address and the offset
address may result in a carry. Therefore, the
resulting address may actually contain up to 21
significant address bits that address memory in
the first 64 KBytes above 1 MByte.

Offset Addresss

Address Spaces 2

2.4.2.3 Protected Mode Memory
Addressing

In protected mode three mechanisms calculate a
physical memory address (Figure 2-18).

• Offset Mechanism that produces the offset
or effective address as in real mode.

• Selector Mechanism that produces the base
address.

• Optional Paging Mechanism that translates a
linear address to the physical memory address.

The offset and base address are added together to
produce the linear address. If paging is not used,
the linear address is used as the physical memory
address. If paging is enabled, the paging mecha­
nism is used to translate the linear address into
the physical address. The offset mechanism is
described earlier in this section and applies to
both real and protected mode. The selector and
paging mechanisms are described in the follOwing
paragraphs.

Offset Mechanism

If Unear Address = Physical Address
~

Selected Segment
X 16

Register r---

1708300

Figure 2· 1 7. Real Mode Address Calculation

PRELIMINARY 2·33

ev.tx®
~d~Clng ttJeStandards

Address Spaces

Offset Mechanism
Offset Addresss

_Md= $ Linear Address .I Optional Physical

"I Paging Mechanism Memory
Address

Selector Mechanism

1=

Figure 2· 1 8. Protected Mode Address Calculation

Selector Mechanism

Memory is divided into an arbitrary number of
segments, each containing usually much less than
the 232 byte (4 GByte) maximum.

The six segment registers (C5, D5, 55, E5, F5 and
GS) each contain a 16-bit selector that is used
when the register is loaded Lo locate a segment
descriptor in either the global descriptor table
(GDT) or the local descriptor table (LDT). The
segment deSCriptor defines the base address, limit

15

ELECTOR I INDEX

L OAD

1

111=0 --. SEGMENT
DESCRIPTOR

I
GLOBAL DESCRIPTOR TABLE

and attributes of the selected segment and is cached
on the Cx486DLC as a result ofloading the selector.
The cached desCriptor contents are not visible to
the programmer. When a memory reference
occurs in protected mode, the linear address is
generated by adding the segment base address in
the hidden portion of the segment register to the
offset address. If paging is not enabled, this linear
address is used as the physical memory address.
Figure 2-19 illustrates the operation of the selector
mechanism.

(ACCESSED

111 IRPLI SELECTOR SEGMENT
REGISTER)

~
SEGMENT .-DESCRIPTOR

LOCAL DESCRIPTOR TABLE

------------ -----------
MEMORY DESCRIPTOR 1

~ BASE ADD REFERENCE "I CACHE RESS
l70330J

Figure 2·1 9. Selector Mechanism

2·34 PRELIMINARY

Paging Mechanism

The paging mechanism supports a memory
subsystem that simulates a large address space
with a small amount of RAM and disk storage.
The paging mechanism either translates a linear
address to its corresponding physical address or
generates an exception if the required page is not
currently present in RAM. When the operating
system services the exception, the required page is
loaded into memory and the instruction is then
restarted. Pages are always 4 KBytes in size and
are aligned to 4 KByte boundaries.

A page is addressed by using two levels of tables
as illustrated in Figure 2-20. The upper 10 bits
of the 32-bit linear address are used to locate an
entry in the page directory table. The page
directory table acts as a 32-bit master index to up
to 1K individual second-level page tables. The
selected entry in the page directory table, referred
to as the directory table entry, identifies the
starting address of the second-level page table.
The page directory table itself is a page and is

Address Spaces 2

therefore aligned to a 4 KByte boundary. The
physical address of the current page directory is
stored in the CR3 control register, also referred to
as the Page Directory Base Register (PDBR).

Bits 12-21 of the 32-bit linear address, referred to
as the Page Table Index, locate a 32-bit entry in
the second-level page table. This Page Table
Entry (PTE) contains the base address of the
desired page frame. The second-level page table
addresses up to 1K individual page frames. A
second-level page table is 4 KBytes in size and is
itself a page. The lower 12 bits of the 32-bit linear
address, referred to as the Page Frame Offset
(PFO), locate the desired data within the page
frame.

Since the page directory table can point to 1K
page tables, and each page table can point to 1 K
of page frames, a total of 1M of page frames can
be implemented. Since each page frame con­
tains 4 KBytes, up to 4 GBytes of virtual memory
can be addressed by the Cx486DLC with a Single
page directory table.

PRELIMINARY 2·35

Cv.tx®
~dV!c/ng the Standards

Address Spaces

In addition to the base address of the page table or the page frame, each Directory Table Entry or Page
Table Entry contains attribute bits and a present bit as illustrated in Figure 2-21 and listed in Table 2-14.

Linear Address

31 ~ 2221 1211 0

I Directory Table Index I Page Table Index

I
Page Frame Offset

I (DTI) (PT!) (PFO)

Directory Table Page Table Page Frame
4Kb 4Kb 4Kb

L---. Physical Data

-. PTE ~

---. DTE

[l --.. 0 a

1706700

Figure 2·20. Paging Mechanism

31 12 11 10 9 8765432 0

BASE ADDRESS I AVAHAmE

~ =RESERVED 1708500

Figure 2·21. Directory and Page Table Entry (DTE and PTE) Format

2·36 PRELIMINARY

Address Spaces 2

Table 2· 'I 4. Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT POSITION FIELD NAMIE DESCRIPTION

31 - 12 BASE Specifies the base address of the page or page table.

ADDRESS

11- 9 -- Undefined and available to the programmer.

8-7 -- Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the

page (PTE only, undefined in DTE).

5 A Accessed Flag. If set, indicates that a read access or write access has

occurred to the page.

4 PCD Page Caching Disable Flag. If set, indicates that the page is not

cacheable in the on-chip cache.

3 -- Reserved and not available to the programmer.

2 U/S User/Supervisor Attribute. If set (user), page is accessible at all privilege

levels. If clear (supervisor), page is accessible only when

CPL9=2.

1 WIR WritelRead Attribute. If set (write), page is writable. If clear (read),

page is read only. .
0 P Present Flag. If set, indicates that the page is present in RAM memory,

and validates the remaining DTEIPTE bits. If clear, indicates that the

page is not present in memory and the remaining DTEIPTE bits can be

used by the programmer.

If the present bit (P) is set in the DTE, the page
table is present and the appropriate page table
entry is read. If P= 1 in the corresponding PTE
(indicating that the page is in memory), the
accessed and dirty bits are updated (if necessary)
and the operand is fetched. Both accessed bits are
set (DTE and PTE), if necessary, to indicate that
the table and the page have been used to translate
a linear address. The dirty bit (D) is set before the
first write is made to a page.

The present bits must be set to validate the
remaining bits in the DTE and PTE. If either of
the present bits are not set, a page fault is gener­
ated when the DTE or PTE is accessed. If P=O,
the remaining DTEJPTE bits are available for use
by the operating system. For example, the
operating system can use these bits to record
where on the hard disk the pages are located. A
page fault is also generated if the memory refer­
ence violates the page protection attributes.

PRELIMINARY 2·37

Cv.tx®
~dV!cing the Standards

Interrupts and Exceptions

Translation Look-Aside Bnffer

The translation look-aside buffer (TLB) is a cache
for the paging mechanism and replaces the two-level
page table lookup procedure for cache hits. The
TLB is a four-way set associative 32-entry page table
cache that automatically keeps die most commonly
used page table entries in the processor. The
32-entryTLB, coupled with a 4Kpage size, results in
coverage of 128 KBytes of memory addresses.

The TLB must be flushed when entries in the page
tables are changed. The TLB is flushed whenever
the CR3 register is loaded. An individual entry in
the TLB can be flushed using the INVLPG instruc­
tion.

2.5 Interrupts and Exceptions

An interrupt or exception changes the sequential
flow of a program by transferring program control
to a service routine. Both software and hardware
interrupts can occur. Software interrupts occur as
the result of execution of an INT instruction.
Hardware interrupts occur in response to an
external interrupt request on the non-maskable
interrupt (NMI) or maskable interrupt (INTR) input
pins. Exceptions occur as the result of the execution
of an instruction that provokes an exception condi­
tion. For example, an illegal opcode or a stack fault
generates an exception.

When the Cx486DLC services an interrupt or
exception, the current program's address and flags
are pushed onto the stack to allow resumption of
execution of the interrupted program. In pro­
tected mode, the processor also saves an error
code for some exceptions. Program control is
then transferred to the interrupt handler (also
called the interrupt service routine). Upon
execution of an IRET at the end of the service
routine, program execution resumes at the inter-

rupted instruction.
The Cx486DLC accepts up to 256 different
interrupts. Each interrupt has a corresponding
vector. The vector number is used by the
Cx486DLC to locate an entry in the interrupt
descriptor table (IDT). In real mode, each IDT
entry is a four-byte far pointer to the entry point
of the corresponding interrupt service routine. In
protected mode, each IDT entry is an eight-byte
descriptor. The IDTR register speCifies the begin­
ning address and limit of the IDT. Following
reset, the IDTR contains a base address of Oh with
a limit of 3FFh.

The IDT can be located anywhere in physical
memory as determined by the IDTR register. The
IDT may contain different types of deSCriptors:
interrupt gates, trap gates and task gates. Inter­
rupt gates are used mostly to enter a hardware
interrupt handler. Trap gates are generally used
to enter an exception interrupt handler or soft­
ware interrupt handler. If an interrupt gate is
used, the Interrupt Enable Flag (IF) in the
EFLAGS register is cleared before the interrupt
handler is entered. Task gates are used to make
the transition to a new task.

Exceptions and the hardware NMI have as­
signed vectors in the range from 0-31, as shown in
Table 2-15. Not all of these first 32 vectors are
used by the Cx486DLC, however, unaSSigned
vectors are reserved and should not be used. The
vectors for the hardware INTR interrupts are
generated by external hardware. In response to
an unmasked INTR, the Cx486DLC issues
interrupt acknowledge bus cycles used to read the
value of the vector from external hardware. Any
vector in the range from 32 to 255 may be used.
Software INT instructions include the vector as
part of the instruction opcode.

2·38 PRELIMINARY

Interrupts and Exceptions 2

2.5.1 Exceptions

Exceptions can be classified in three different
categories depending on the way they are reported
and if the instruction which first caused the
exception can be restarted. Table 2-15 lists the
exception type for each of the Cx486DLC excep-

Trap exceptions are reported immediately after
the execution of the instruction that caused the
exception. The instruction pointer restored after
execution of the service routine points to the
instruction following the instruction that caused
the trap. Software interrupt instructions also
operate like trap exceptions.

tions.

Fault exceptions are reported for the current
instruction. The instruction is nullified and the
fault is reported with the CPU in a state which
permits the faulting instruction to be restarted.

Abort exceptions are caused by a very severe
system error. The catastrophic nature of the
error does not always allow sufficient information
to determine the precise location of the instruc­
tion causing the problem and does not allow
restart of the program.

Table 2·1 S. Interrupt Vector Assignments

INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT

1 Debug exception TRAP'

2 NMI interrupt

3 Breakpoint TRAP

4 Interrupt on overflow TRAP

5 BOUND range exceeded FAULT

6 Invalid opcode FAULT

7 Device not available FAULT

8 Double fault ABORT

9 Coprocessor segment overrun ABORT

10 Invalid TSS FAULT

11 Segment not present FAULT

12 Stack fault FAULT

13 General protection fault FAULT

14 Page fault FAULTfTRAP

15 Reserved

16 Coprocessor error FAULT

17 Alignment check exception FAULT

18-31 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP

'Note: Some debug exceptions may report both traps on the preVIous InstructIon and faults on the next InstructIon.

PRELIMINARY 2.39

Cv.tx®
~dV!Clng the standards

Interrupts and Exceptions

2.5.1.1 Exceptions in Real Mode

Many of the exceptions described in Table 2-15
are not applicable in real mode. Exceptions 10,
11, and 14 do not occur in real mode. Other
exceptions have slightly different meanings in real
mode as listed in Table 2-16.

Table 2·1 6. Exception Changes in Real Mode

VECTOR NUMBER PROTECTED MODE FUNCTION REAL MODE FUNCTION

8 Double fault

10 Invalid ISS

11 Segment not present

12 Stack fault

13 General protection fault

14 Page fault

Note: -- = does not occur

2.5.1.2 Error Codes

When operating in protected mode, the following
exceptions generate a 16-bit error code:

Double Fault
Alignment Check
Invalid TSS
Segment Not Present
Stack Fault
General Protection Fault
Page Fault

15

Selector Index

Interrupt table limit overrun.

--
--

55 segment limit overrun.

CS, DS, ES, FS, GS segment limit overrun.

--

The error code format is shown in Figure 2-22
and the error code bit definitions are listed in
Table 2-17. Bits 15-3 (selector index) are not
meaningful if the error code was generated as the
result of a page fault. The error code is always
zero for double faults and alignment check
exceptions.

3 2 1 0

1707CXXJ

Figure 2.22. Error Code Format

2.40 PRELIMINARY

Interrupts and Exceptions 2

Table 2·1 7. IError Code Bit Definitions

FAULT SELECTOR 52 ·51 SO
TYPE INDEX (BIT 2) (BIT I) (BIT 0)

(BITS 15.3)

Page Fault Reserved Fault caused by: Fault occurred Fault occurred during:

o = not present page. during: o = supervisor access.

1 = page-level o = read access. 1 = user access.

protection vioation. 1 = write access.

!DT Fault Index of faulty Reserved 1 If set exception

!DT selector occurred while trying

to invoke exception or

hardware interrupt

handler.

Segment Index of faulty TI bit of faulty 0 If set exception

Fault selector selector occurred while trying

to invoke exception or

hardware interrupt

handler.

PRELIMINARY 2·41

Cv.tx®
~dV!Clng the Standards

Interrupts and Exceptions

2.5.2 Hardware Interrupts

Hardware interrupts are classified as ei:ther
maskable or non-maskable. In most cases,
hardware interrupts are serviced after the current
instruction is completed. After the interrupt
handler is finished, execution continues in the
original program with the instruction immedi­
ately follOwing the interrupted instruction.

Non-maskable interrupts provide a method of
servicing very high priority interrupts. When the
NMI input is asserted, the CPU automatically
transfers program control to the interrupt service
routine corresponding to vector 2. Since the
interrupt vector is fixed and is supplied internally,
no interrupt acknowledge bus cycles are perfonned.

While executing the NMI service routine, the
Cx486DLC microprocessor does not service any
further NMI requests until an interrupt return (IRET)
instruction is executed or the processor is reset. If
another NMI occurs while currently servicing an
NMI, its presence is saved for servicing after execution
of the next IRET instruction. It is recommended that
an interrupt gate be used for the NMI in order to
disable nested maskable interrupts. Execution of
an IRET instruction in the maskable interrupt
handler allows the NMI to be re-enabled.

Hardware maskable interrupts occur when
the INTR pin is asserted and the Interrupt Enable
Flag (IF) bit is set to 1 in the EFLAGS register.
The processor only responds to maskable inter­
rupts between instructions (string instructions
have an interrupt window between memory
moves that allows interrupts during long string
moves). When an interrupt occurs, the processor
reads an 8-bit vector supplied by external system
hardware. This vector selects which of the 256
possible interrupt handlers is executed in re­
sponse to the interrupt.

2.5.3 Software Interrupts

The third type of interrupt/exception for the
Cx486DLC microprocessor is the software inter­
rupt. An INT n instruction causes the processor
to execute the interrupt service routine pointed to
by the nth vector in the interrupt table. Execution
of the interrupt service routine occurs regardless of
the state of the IF flag in the EFLAGS register.

The one-byte INT 3, or breakpoint interrupt, is a
particular case of the two-byte INT n interrupt.
By inserting this one-byte instruction in a pro­
gram, the user can set breakpoints in his program
that can be used during debug.

The last type of software interrupt is the single­
step trap. The Single-step feature is enabled by
setting the TF flag in the EFLAGS register. This
causes the processor to generate a debug excep­
tion after the execution of every instruction.

2.5.4 Interrupt and Exception
Priorities

Hardware interrupts are generated external to the
cpu. Maskable interrupts produced on the INTR
pin and non-maskable interrupts produced on the
NMI input are recognized between instructions.
When NMI and maskable INTR interrupts are
both detected at the same instruction boundary,
the Cx486DLC microprocessor services the NMI
interrupt first.

Exceptions are generated internal to the cpu. The
Cx486DLC checks for exceptions in parallel with
instruction decoding and execution. Several
exceptions can result from a single instruction.
However, only one exception is generated upon
each attempt to execute the instruction. Each
exception service routine should make the appro­
priate corrections to the instruction and then

2-42 PRELIMINARY

restart the instruction. In this way, exceptions can
be serviced until the instruction executes properly.

The Cx486DLC supports instruction restart after
all faults, except when an instruction causes a task
switch to a task whose task state segment (TSS) is
partially not present. A TSS can be partially not
present if the TSS is not page aligned and one of

Interrupts and Exceptions 2

the pages where the TSS resides is not currently in
memory.

As the Cx486DLC executes instructions, it follows
a consistent policy for prioritizing exceptions and
hardware interrupts as listed in Table 2-18.

Table 2· 1 8. Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES

1 Debug traps and faults from previous Includes single-step trap and data breakpoints

instruction. specified in the debug registers.

2 Debug traps for next instruction. Includes instruction execution breakpoints

speCified in the debug registers.

3 Non-maskable hardware interrupt. Caused by NMI asserted.

4 Maskable hardware interrupt. Caused by INIR asserted and IF = 1.

5 Faults resulting from fetching the next Includes segment not present, general protection

instruction. fault and page fault.

6 Faults resulting from instruction decoding. Includes illegal opcode, instruction too long, or

privilege violation.

7 WAIT instruction and IS = 1 and MP = 1. Device not available exception generated.

8 ESC instruction and EM = 1 or IS = 1. Device not available exception generated.

9 Coprocessor error exception. Caused by ERROR# asserted.

10 Segmentation faults (for each memory Includes segment not present, stack fault, and

reference required by the instruction) that general protection fault.

prevent transferring the entire memory

operand.

11 Page Faults that prevent transferring the

entire memory operand.

12 Alignment check fault.

PRELIMINARY 2·43

Cv.tx®
~dV!cing the Standards

Shutdown and Halt

2.6 Shutdown and Halt

The halt instruction (HLT) stops program
execution and prevents the processor from using
the local bus until restarted. The Cx486DLC then
enters a low-power suspend mode. NMI, INTR
with interrupts enabled (IF bit in EFlAGS=l), or
RESET forces the CPU out of the halt state. If
interrupted, the saved code segment and instruction
pointer specify the instruction following the HLT.

Shutdown occurs when a severe error is detected
that prevents further processing. An NMI input
can bring the processor out of shutdown if the
lDT limit is large enough to contain the NMI
interrupt vector (at least OOOFh) and the stack has
enough room to contain the vector and flag
information (i.e., stack pointer is greater than oo05h).
Otherwise, shutdown can only be exited by a
processor reset.

2.7 Protection

Segment protection and page protection are
safeguards built into the Cx486DLC protected
mode architecture which deny unauthorized or
incorrect access to selected memory addresses.
These safeguards allow multitasking programs to
be isolated from each other and from the operat­
ing system. Page protection is discussed earlier in
this chapter in section 2.4. This section concen­
trates on segment protection.

Selectors and deSCriptors are the key elements in
the segment protection mechanism. The segment
base address, size, and privilege level are established
by a segment deSCriptor. Privj.lege levels control
the use of privileged instructions, I/O instructions
and access to segments and segment deSCriptors.
Selectors are used to locate segment descriptors.
Segment accesses are divided into two basic types,

those involving code segments (e.g, control
transfers) and those involving data accesses. The
ability of a task to access a segment depends on:

• the segment type
• the instruction requesting access
• the type of deSCriptor used to define the

segment
• the associated privilege levels

(described below).

Data stored in a segment can be accessed only by
code executing at the same or a more privileged
level. A code segment or procedure can only be
called by a task executing at the same or a less
privileged level.

2.7.1 Privilege Levels

The values for privilege levels range between 0
and 3. Level 0 is the highest privilege level (most
privileged), and level 3 is the lowest privilege level
(least privileged). The privilege level in real mode
is effectively O.

The Descriptor Privilege Level (DPL) is the
privilege level defined for a segment in the
segment descriptor. The DPL field specifies the
minimum privilege level needed to access the
memory segment pointed to by the descriptor.

The Current Privilege Level (CPL) is defined as
the current task's privilege level. The CPL of an
executing task is stored in the hidden portion of
the code segment register and essentially is the
DPL for the current code segment.

The Requested Privilege Level (RPL) specifies a
selector's privilege level and is used to distinguish
between the privilege level of a routine actually
accessing memory (the CPL), and the privilege

2·44 PRELIMINARY

level of the original requestor (the RPL) of the
memory access. The lesser of the RPL and CPL is
called the effective privilege level (EPL). There­
fore, if RPL = 0 in a segment selector, the effective
privilege level is always determined by the CPL. If
RPL = 3, the effective privilege level is always 3
regardless of the CPL.

For a memory access to succeed, the effective
privilege level (EPL) must be at least as privileged
as the deSCriptor privilege level (EPL ::; DPL). If
the EPL is less privileged than the DPL (EPL > DPL),
a general protection fault is generated. For
example, if a segment has a DPL = 2, an instruc­
tion accessing the segment only succeeds if
executed with an EPL::; 2.

2.7.2 I/O Privilege Levels

The I/O Privilege Level (IOPL) allows the
operating system executing at CPL=O to define the
least privileged level at which IOPL-sensitive
instructions can unconditionally be used. The
IOPL-sensitive instructions include CLI, IN, OUT,
INS, OUTS, REP INS, REP OUTS, and STI.
Modification of the IF bit in the EFLAGS register
is also sensitive to the VO privilege level.

The IOPL is stored in the EFLAGS register. An 110
permission bit map is available as defined by the
32-bit Task State Segment (TSS). Since each task
can have its own TSS, access to individual VO

Protection 2

ports can be granted through separate VO permis­
sion bit maps.

If CPL 5 IOPL, IOPL-sensitive operations can be
performed. If CPL > IOPL, a general protection
fault is generated if the current task is associated
with a 16-bit TSS. If the current task is associated
with a 32-bit TSS and CPL> IOPL, the CPU
consults the VO permission bitmap in the TSS to
determine on a port-by-port basis whether or not
VO instructions (IN, OUT, INS, OUTS, REP INS,
REP OUTS) are permitted, and the remaining
IOPL-sensitive operations generate a general
protection fault.

2.7'.3 Priviilege Level TrCIIDlsfers

A task's CPL can be changed only through
intersegment control transfers using gates or task
switches to a code segment with a different
privilege level. Control transfers result from
exception and interrupt sevicing and from execu­
tion of the CALL,]MP, INT, IRET and RET
instructions.

There are five types of control transfers that are
summarized in Table 2-19. Control transfers can
be made only when the operation causing the
control transfer references the correct deSCriptor
type. Any violation of these descriptor usage
rules causes a general protection fault.

PRELIMINARY 2·45

Cv.tx®
~dV!Clng the Standards

Protection

Table 2· 19. Descriptor Types Used for Control Transfer

TYPE OF CONTROL TRANSFER OPERATION DESCRIPTOR DESCRIPTOR
TYPES REFERENCED TABLE

Intersegment within the same privilege level.]MP, CALL, RET, IRET* Code Segment GDTorLDT

Intersegment to the same or a more CALL Call Gate GDTorLDT

privileged level. Interrupt Instruction, Trap or Interrupt !DT

Interrupt within task (could change CPL Exception, External Gate

level). Interrupt

Intersegment to a less privileged level RET,IRET* Code Segment GDTorLDT

(changes task CPo.

Task Switch. via TSS CALL,]MP' Task State Segment GDT

Task Switch via Task Gate CALL,]MP Task Gate GDTorLDT

IRET* *, Interrupt Task Gate !DT

Instruction, Exception,

External Interrupt

, NT (Nested Task bit in EFLAGS) = 0
*' NT (Nested Task bit in EFLAGS) = I

Any control transfer that changes the CPL within
a task results in a change of stack. The initial
values for the stack segment (SS) and stack
pointer (ESP) for privilege levels 0, 1, and 2 are
stored in the TSS. During aJMP or CALL control
transfer, the SS and ESP are loaded with the new
stack pointer and the previous stack pointer is
saved on the new stack. When returning to the
original privilege level, the RET or IRET instruc­
tion restores the less-privileged stack.

2.7.3.1 Gales

Gate descriptors provide protection for privilege
transfers among executable segments. Gates are
used to transition to routines of the same or a
more privileged level. Call gates, interrupt gates
and trap gates are used for privilege transfers
within a task. Task gates are used to transfer
between tasks.

Gates conform to the standard rules of privilege.
In other words, gates can be accessed by a task if
the effective privilege level (EPL) is the same or
more privileged than the gate descriptor's privi­
lege level (DPL).

2·46 PRELIMINARY

2.7.4 Initialization and
Transition To Protected
Mode

The Cx486DLC microprocessor switches to Real
Mode immediately after RESET. While operating in
real mode, the system tables and registers should be
initialized. The GDTR and IDTR must point to a
valid GDT and IDT, respectively. The size of the
IDT should be at least 256 bytes, and the GDT must
contain deSCriptors which describe the initial code
and data segments.

The processor can be placed in protected mode by
setting the PE bit in the CRO register. After enabling
protected mode, the CS register should be loaded
and the instruction decode queue should be flushed
by executing an intersegmentJMP. Finally, all data
segment registers should be initialized with appro­
priate selector values.

2.8 Virtual 8086 Mode

Both Real Mode and Virtual 8086 (V86) Mode are
supported by the Cx486DLC CPU allowing execu­
tion of 8086 application programs and 8086 operat­
ing systems. V86 Mode allows the execution of
8086-type applications, yet still permits use of the
Cx486DLC protection mechanism. V86 tasks run at
privilege level 3. Upon entry, all segment limits are
set to FFFFh (64K) as in real mode.

2.8.1 Memory Addressing

While in V86 mode, segment registers are used in an
identical fashion to Real Mode. The contents of the
segment register are multiplied by 16 and added to
the offset to form the segment base linear address.

Virtual 8086 Mode 2

The Cx486DLC CPU permits the operating
system to select which programs use the V86
address mechanism and which programs use
protected mode addressing for each task.

The Cx486DLC also permits the use of paging
when operating in V86 mode. Using paging,
the 1-MByte address space of the V86 task can
be mapped to anywhere in the 4-GByte linear
address space of the Cx486DLC cpu. As in
real mode, linear addresses that exceed 1 MByte
cause a segment limit overrun exception.

The paging hardware allows multiple V86
tasks to run concurrently, and provides
protection and operating system isolation. The
paging hardware must be enabled to run
multiple V86 tasks or to relocate the address
space of a V86 task to physical address space
greater than 1 MByte.

2.8.2 Protection

All V86 tasks operate with the least amount of
privilege (level 3) and are subject to all of the
Cx486DLC protected mode protection checks.
As a result, any attempt to execute a privileged
instruction within a V86 task results in a
general protection fault.

In V86 mode, a slightly different set of instruc­
tions are sensitive to the JlO privilege level (IOPL)
than in protected mode. These instructions
are: CLI, INT n, IRET, POPF, PUSHF, and
STI. The INn, INTO and BOUND variations
of the INT instruction are not IOPL sensitive.

PRELIMINARY 2·47

Cv.tx®
~d~CJng the Standards

Virtual 8086 Mode

2.8.3 Interrupt Handling

To fully support the emulation of an 8086-type
machine, interrupts in V86 mode are handled as
follows. When an interrupt or exception is
serviced in V86 mode, program execution trans­
fers to the interrupt service routine at privilege
level 0 (i.e., transition from V86 to protected
mode occurs) and the VM bit in the EFLAGS
register is cleared. The protected mode interrupt
service routine then determines if the interrupt
came from a protected mod~ or V86 application
by examining the VM bit in the EFLAGS image
stored on the stack. The interrupt service routine
may then choose to allow the 8086 operating
system to handle the interrupt or may emulate the
function of the interrupt handler. Following
completion of the interrupt service routine, an
IRET instruction restores the EFLAGS register
(restores VM=l) and segment selectors and
control returns to the interrupted V86 task.

2.8.4 Entering and Leaving
V86 Mode

V86 mode is entered from protected mode by
either executing an lRET instruction at CPL = 0 or
by task switching. If an lRET is used, the stack
must contain an EFLAGS image with VM=l. If a
task switch is used, the TSS must contain an
EFLAGS image containing a 1 in the VM bit
position. The POPF instruction cannot be used to
enter V86 mode since the state of the VM bit is
not affected. V86 mode can only be exited as the
result of an interrupt or exception. The transition
out must use a 32-bit trap or interrupt gate which
must point to a non-conforming privilege level 0
segment (DPL = 0), or a 32-bit TSS. These
restrictions are required to permit the trap handler
to lRET back to the V86 program.

2·48 PRELIMINARY

CYRIX Cx486DLC '"MICROPROCESSOR
High-Peiformance 486-dass CPU with
Single-Cycle Execution and On-Chip Cache

Cv.tx®
7-dV!Cing the Sfandards

3. BUS INTERFACE

3. 'I Overview

The following paragraphs describe the Cx486DLC input and output signals. The discussion of these
signals is arranged by functional groups as shown in Figure 3-1. Table 3-1 gives a brief description of
each of the Cx486DLC signals.

2X Clock CLKl
INTR } Interrupt

Reset RESET Control
NMI

{< Address
A31-Al KEN#

Bus

BE3#-BEO# FLUSH# Internal

>- Cache
RPLSET Interface

A " Data < D31-DO Bus
'I ,. RPLVAL# ..I

Cx486DLC AlOM#
Address Bit

r W!R# 20 Mask Microprocessor

Bus D/C# PEREQ } Cycle -< Coprocessor
Definition MlIO# BUSY#

Interface

..... LOCK# ERROR#

r HOLD } BS16# Bus

Bus HLDA Arbitration
NA#

Cycle
-< Control READY# SUSP# } Power

ADS# SUSPA#
Management

1710000

Figure 3·'. C:x486DLC Functional Signal Groupings

PRELIMINARY 3·'

Cv.tx®
~dV!lng the Standards

Overview

Table 3· 1. Cx486DLC Signal Summary

SIGNAL SIGNAL NAME SIGNAL GROUP

A20M# ADDRESS BIT 20 MASK

A31-A2 ADDRESS BUS LINES Address Bus

ADS# ADDRESS STROBE Bus Cycle Control

BE3#- BEO# BYTE ENABLES Address Bus

BSl6# BUS SIZE 16 Bus Cycle Control

BUSY# PROCESSOR EXTENSION BUSY Coprocessor Interface

CLK2 2X CLOCK INPUT

D31-DO DATA BUS

D/C# DATNCONTROL Bus Cycle Definition

ERROR# PROCESSOR EXTENSION ERROR Coprocessor Interface

FLUSH# CACHE FLUSH Internal Cache Interface

INTR MASKABLE INTERRUPT REQUEST Interrupt Control

HLDA HOLD ACKNOWLEDGE Bus Arbitration

HOLD HOLD REQUEST Bus Arbitration

LOCK# BUS LOCK Bus Cycle Definition

KEN# CACHE ENABLE Internal Cache Interface

MIlO# MEMORYIINPUT-OUTPUT Bus Cycle Definition

NA# NEXT ADDRESS REQUEST Bus Cycle Control

NMI NON-MASKABLE INTERRUPT REQUEST Interrupt Control

PEREQ PROCESSOR EXTENSION REQUEST Coprocessor Interface

READY# BUS READY Bus Cycle Control

RESET RESET

RPLSET REPLACEMENT SET Internal Cache Interface

RPLVAL# REPLACEMENT SET VALID Internal Cache Interface

SUSP# SUSPEND REQUEST Power Management

SUSPA# SUSPEND ACKNOWLEDGE Power Management

WIR# WRlTEIREAD Bus Cycle Definition

The "#" (pound) symbol following a signal name
indicates that when the signal is in its active
(asserted) state, the signal is at a logic low level.
When the # is not present at the end of a signal
name, the logic high level represents the active
state. The follOwing two sections describe the
Signals and their functional timing characteristics.

Additional signal information may be found in
Chapter 4, Electrical Specifications. Chapter 4
documents the DC and AC characteristics for the
Signals including voltage levels, propagation
delays, setup times and hold times. Specified
setup and hold times must be met for proper
operation of the Cx486DLC.

3·2 PRELIMINARY

3.2

3.2.1

Signal Descriptions

2X Clock Input

The 2X Clock Input (CLK2) signal is the
basic timing reference for the Cx486DLC
microprocessor. The CLK2 input is
internally divided by two to generate the
internal processor clock. The external
CLK2 is synchronized to a known phase of
the internal processor clock by the falling
edge of the RESET signal. External timing
parameters are defined with respect to the
rising edge of CLK2.

3.2.2 Reset
Reset is an active high input signal that,
when asserted, suspends all operations in
progress and places the Cx486DLC into a
reset state. RESET is a level-sensitive
synchronous input and must meet speci­
fied setup and hold times to be recognized by
the Cx486DLC properly. The Cx486DLC
begins executing instructions at physical
address location FFFF FFFOh approxi­
mately 400 CLK2s after RESET is driven
inactive (low). While RESET is active all
other input pins are ignored. The remain­
ing signals are initialized to their reset state
during the internal processor reset se­
quence. The reset signal states for the
Cx486DLC are shown in Table 3-2.

Signal Descriptions 3
Table 3·2. Signal States During Reset

SIGNAL NAME SIGNAL STATE DURING RESET

A20M# Ignored

A31-A2 1

ADS# 1

BE3#- BEO# 0

BSl6# Ignored

BUSY# Ignored

D31-DO Float

D/C# 1

ERROR# Ignored

FLUSH# Ignored

HLDA 0

HOLD Ignored

INTR Ignored

KEN# Ignored

LOCK# 1

MlIO# 0

NA# Ignored

NMI Ignored

PEREQ Ignored

READY# Ignored

RESET Input Recognized

RPLSET Float

RPLVAL# Float

SUSP# Ignored

SUSPA# Float

WIR# 0

PRELIMINARY

Cv.tx®
7-dV!/ng the Standards

Signal Descriptions

3.2.3 Address Bus

The Address Bus (A31-Al) signals are three­
state outputs that provide physical memory or VO
port addresses. All address lines can be used for
addressing physical memory allowing a 4-GByte
address space (0000 OOOOh to FFFF FFFFh).
During VO port accesses, except for coprocessor
accesses, A31-A16 are driven low. This allows for
a 64 KByte VO address space (0000 OOOOh to
0000 FFFFh).

During coprocessor VO accesses, A30 - A16 are
driven low and A31 is driven high to allow it to be
used by extemallogic to generate a coprocessor
select signal. Consequently, for coprocessor
I/O cycles the Cx486DLC drives address
8000 00F8h with command transfers and
address 8000 OOFCh with data transfers.

Address lines A31 - A2 float while the CPU is in
hold acknowledge.

Byte Enables (BE3# - BEO#), shown in
Table 3-3, are three-state outputs that determine
which bytes within the 32-bit data bus will be
transferred during a memory or VO access.
During a memory write, one or both of the upper
bytes CD and C) of the data bus may be duplicated
in the lower bytes (B and A) of the bus. This
duplication is dependent on BE3#-BEO# as listed
in Table 3-4.

Table 3-3. Byte Enable Line Definitions

BYTE ENABLE BYTE
LINE 'RANSFERRED

BEO# D7 - DO

BE1# D15 - D8

BE2# D23 - Dl6

BE3# D31-D24

Table 3-4. Write Duplication as a Function of BE3# - BEO#

BE3#·BEO# D31·D24 D23.D16

0000 D C

0001 D C

0011 D C

0111 D x

1000 x C

1001 x C

1011 x C

1100 x x

1101 x x

1110 x x

Note: BE3#-BEO# combinations not listed, do not

occur during Cx486DLC bus cycles

A = logical write data D7 -DO

B = logical write data Dl5-D8

DIS·D8 D7·DO

B A

B x

D C

D x

B A

B x

x C

B A

B x

x A

C = lOgical write data D23-Dl6

D = logical write data D31-D24

x = not defined

PRELIMINARY

DUPLICA'ED
DA'A

no

no

yes

yes

no

no

yes

no

no

no

Generating AI-AO using BE3#-BEO# can be
achieved by using the following equations:

AO = (BEO#. BE2#) + (BEO#. BEI#)

Al = BEO#. BEI#

The relationship between AI-AO and BE3#-BEO#
is shown in Table 3-5.

Table 3·5. Generating A 1 -AO
Using BE3#-BEO#

A31-A2 AI AO BE3# BE2# BEl # BEO#

------ 0 0 x x x 0
------ 0 I x x 0 I
------ I 0 x 0 I I
------ I I 0 I I I

x - don l care

3.2.4 Data Bus

The Data Bus (D31 - DO) signals are three-state
bidirectional signals which provide the data path
between the Cx486DLC and external memory
and VO devices. The data bus inputs data during
memory read, VO read and interrupt acknowl­
edge cycles and outputs data during memory and
VO write cycles. Data read operations require that
specified data setup and hold times be met for
correct operation. The data bus signals are high
active and float while the CPU is in a hold ac­
knowledge state.

3.2.5 Bus Cycle Definition

The bus cycle definition signals consist of four
three-state outputs (MlIO#, D/C#, WIR#,
LOCK#). These outputs define the bus cycle type
for the operation being performed as listed in
Table 3-6. M/l0#, D/C# and W/R# are the
primary bus cycle definition signals and are valid

Signal Descriptions 3

when ADS# (Address Strobe) is active. During
non-pipelined cycles, the LOCK# output is driven
valid along with M/l0#, D/C# and WIR#. During
pipelined addressing, LOCK# is driven valid at
the beginning of the bus cycle, which is after
ADS# becomes active for that cycle. The bus
cycle definition signals are active low and float
while the Cx486DLC is in a hold acknowledge
state.

MemoryllO (M/lO#) distinguishes between
memory and VO operations. This signal indicates
that the current bus cycle is a memory read or
write. When MlIO# is not asserted the current
bus cycle is an VO read or write.

Data/Control (D/C#) distinguishes between data
and control operations. This signal indicates that
the current bus cycle is a data transfer to or from
memory or 110. When D/C# is not asserted the
current bus cycle involves a control function such
as halt, interrupt servicing or code fetch.

Write/Read (W/R#) distinguishes between write
and read bus cycles. This Signal indicates that the
current bus cycle is a write to memory or VO.
When W /R# is not asserted the current bus cycle
is a memory or Vo read operation.

LOCK# is an active low output which, when
asserted, indicates that other system bus masters
are denied access to control of the system bus.
The LOCK# Signal may be explicitly activated
during bus operations by including the LOCK
prefix on certain instructions. LOCK# is always
asserted during descriptor updates, interrupt
acknowledge sequences and when executing the
XCHG instruction. The Cx486DLC does not
enter the hold acknowledge state in response to
HOLD while the LOCK# input is active.

PRELIMINARY 3·5

Cv.tx®
~dV!ing the Standards

Signal Descriptions

Table 3-6. Bus Cycle Types

M/IO# D/C# W/R# LOCK#

0 0 0 0

0 0 0 1

0 0 1 X

0 1 X 0

0 1 0 1

0 1 1 1

1 0 X 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

x = don't care, -- = does not occur

3.2.6 Bus Cycle Control

The bus cycle control signals (ADS#, BS16#, NA#,
READY#) allow the Cx486DLC to indicate the
beginning of a bus cycle and allow system hard­
ware to control address pipelining, bus cycle
termination timing, and bus sizing.

Address Strobe (ADS#) is an active low, three­
state output which indicates that the Cx486DLC has
drivenavalidaddress(A31 - A2, BE3# - BEO#) and
bus cycle definition (MIlO#, D/C#,w/R#) on the
appropriate Cx486DLC output pins. During non­
pipelined bus cycles, ADS# is active for the first
clock of the bus cycle. During address pipelining,
ADS# is asserted during the previous bus cycle
and remains asserted until READY# is returned
for that cycle. ADS# floats while the Cx486DLC
is in a hold acknowledge state.

BUS CYCLE TYPE

Interrupt Acknowledge

--
--
--

I/O Data Read

I/O Data Write

--

Memory Code Read

Halt: A31-A2=Oh, BE3#-BEO#=101l

Shutdown: A31-A2-0h, BE3#-BEO# 1110

Locked Memory Data Read

Memory Data Read

Locked Memory Data Write

Memory Data Write

Ready (READY#) is an active low input which is
driven by the system hardware to indicate that the
current bus cycle can be terminated. During a
read cycle, assertion of READY# indicates that the
system hardware has presented valid data to the
cpu. When READY# is sampled active, the
Cx486DLC latches the input data and terminates
the cycle. During a write cycle, READY# assertion
indicates that the system hardware has accepted
the Cx486DLC output data. READY# must be
asserted to terminate every bus cycle, including
halt and shutdown indication cycles.

Next Address Request (NA#) is an active low
input used to request address pipelining. Asser­
tion of this input by the system hardware indi­
cates it is prepared to accept new bus cycle
definition and address Signals (MlIO#, D/C#,
WIR#, A31-A2, BE3# - BEO#) from the micropro­
cessor even if the current bus cycle has not been

3-6 PRELIMINARY

terminated by assertion of READY#. If the
Cx486DLC has an internal bus request pending
and the NA# input is sampled active, the next bus
definition and address signals are driven onto the bus.

Bus Size 16 (BSl6#) is an active low input that
allows connection of the 32-bit Cx486DLC data
bus to an external16-bit data bus. When this
input is activated, the microprocessor performs
multiple bus cycles to couple read and write
accesses from devices that cannot provide (accept)
32 bits of data in a Single cycle. During bus cycles
with BS16# active, data is transferred using data
bus Signals DIS-DO only.

3.2.7 Interrupt Control

The interrupt control input Signals (INTR, NMI)
allow the execution of the Cx486DLC's current
instruction stream to be intenupted and suspended.

Maskable Interrupt Request (INTR) is an
active high level-sensitive input which causes the
processor to suspend execution of the current
instruction stream and begin execution of an
interrupt service routine. The INTR input can be
masked (ignored) through the Flags Register IF
bit. When not masked, the Cx486DLC responds
to the INTR input by performing two locked
interrupt acknowledge bus cycles. The second
interrupt acknowledge cycle reads an 8-bit value,
the interrupt vector, from an external interrupt
controller. The 8-bit interrupt vector indicates the
interrupt level that caused generation of the INTR
and is used by the CPU to determine the begin­
ning address of the interrupt service routine. To
assure recognition of the INTR request, INTR

Signal Descriptions

must remain active until the start of the first
interrupt acknowledge cycle.

3

Non-maskable Interrupt (NMI) Request is a
rising edge sensitive input which causes the
processor to suspend execution of the current
instruction stream and begin execution of an NMI
interrupt service routine. The NMI interrupt
service request cannot be masked by software.
Asserting NMI causes an interrupt which inter­
nally supplies interrupt vector 2h to the CPU core.
External interrupt acknowledge cycles are not
necessary since the NMI interrupt vector is
supplied internally.

Once NMI processing has started, no additional
NMIs are processed until after execution of the
next IRET instruction (typically at the end of the
NMI service routine). IfNMI is re-asserted prior
to execution of the IRET instruction, one and only
one NMI rising edge is stored and is processed
after execution of the next IRET. If an unmasked
INTR occurs during the NMI service routine, the
INTR is serviced and execution returns to the
NMI service routine following the next IRET. If a
HALT instruction is executed within the NMI
service routine, the Cx486DLC restarts execution
only in response to RESET or an unmasked INTR.
NMI does not restart CPU execution under this
condition.

The Cx486DLC samples NMI at the beginning of
each phase 2. To assure recognition, NMI must
be inactive for at least eight CLK2 periods and
then be active for at least eight CLK2 periods.
Additionally, speCified setup and hold times must
be met to guarantee recognition at a particular
clock edge.

PRELIMINARY 3·7

Cv.tx® .
~dv!,ng the Standards

Signal Descriptions

3.2.8 Internal Cache
Interface

The internal cache interface signals (KEN#,
FLUSH#, RPLSET, RPLVAL#) are used to indicate
cache status and control caching activity.

Cache Enable (KEN#) is an active low input
which indicates that the data being returned
during the current cycle is cacheable. When
KEN# is active and the Cx486DLC is performing
a cache able code fetch or memory data read cycle,
the cycle is transformed into a cache fill. Use of
the KEN# input to control cacheability is optional.
The non-cacheable region registers can also be
used to control cacheability. Memory addresses
specified by the non-cacheable region registers are
not cacheable regardless of the state of KEN#. I/O
accesses, locked reads and interrupt acknowledge
cycles are never cached.

During any 32-bit cache fill cycle with KEN#
asserted, the Cx486DLC ignores the state of the
byte enables (BE3# - BEO#) and always writes four
bytes of data into the cache. If BS16# is asserted
during a cache fill cycle that requires two 16-bit
transfers and KEN# is active, KEN# must be
asserted for both 16-bit cycles to cause a cache fill
to occur. The KEN# input is ignored follOwing
reset and can be enabled using the KEN bit in the
CCRO configuration register.

Cache Flush (FLUSH#) is an active low input
which invalidates (flushes) the entire cache. Use
of FLUSH# to maintain cache coherency is
optional. The cache may also be invalidated
during each hold acknowledge cycle by setting
the BARB bit in the CCRO configuration register.
The FLUSH# input is ignored following reset and
can be enabled using the FLUSH bit in the CCRO
configuration register.

Replacement Set (RPLSET) is an output
indicating which set in the cache is currently
undergOing a line replacement. This Signal is
meaningful only when the internal cache is
configured as two-way set associative. The
RPLSET output is disabled (three-state) follOwing
reset and can be enabled using the RPL bit in the
CCRI configuration register.

Replacement Set Valid (RPLVAL#) is an active
low output driven during a cache fill cycle to
indicate that RPLSET is valid for the current
cycle. RPLVAL# and RPLSET provide external
hardware the capability of monitoring the cache
LRU replacement algOrithm. The RPL VAL#
output is disabled (three-state) following reset and
can be enabled using the RPL bit in the CCRI
configuration register.

3·8 PRELIMINARY

3.2.9 Address Bit 20 Mask

Address Bit 20 Mask (A20M#) is an active low
input which causes the Cx486DLC to mask (force
low) physical address bit 20 when driving the
external address bus or performing an internal
cache access. Asserting AlOM# emulates the 1
MByte address wrap around that occurs on the
8086. The AlO signal is never masked when
paging is enabled regardless of the state of the
AlOM# input. The AlOM# input is ignored
following reset and can be enabled using the
A20M bit in the CCRO configuration register.

3.2.10 Coprocessor Interface
The data bus, address bus and bus cycle definition
Signals, as well as the coprocessor interface signals
(PEREQ, BUSY#, ERROR#), are used to control
communication between the Cx486DLC and a
coprocessor. Coprocessor or ESC opcodes are
decoded by the Cx486DLC and the opcode and
operands are then transferred to the coprocessor
via I/O port accesses to addresses
8000 OOF8h, and 8000 OOFCh. 8000ooF8h
functions as the control port address and
8000 ooFChis used for operand transfers. Addi­
tional handshaking is provided using the three
dedicated control signals described below.

Coprocessor Request (PEREQ) is an active
high input which indicates the coprocessor is
ready to transfer data to or from the cpu. The
coprocessor may assert PEREQ in the process of
executing a coprocessor instruction. The
Cx486DLC internally stores the current coproces­
sor opcode and performs the correct data transfers
to support coprocessor operations using PEREQ

Signal Descriptions 3

to synchronize the transfer of required operands.
PEREQ is internally connected to a pull-down
resistor to prevent this signal from floating active
when left unconnected.

Coprocessor Busy (BUSY#) is an active low
input from the coprocessor which indicates to the
Cx486DLC that the coprocessor is currently
executing an instruction and is not yet able to
accept another opcode. When the Cx486DLC
processor encounters a WAlT instruction or any
coprocessor instruction which operates on the
coprocessor stack (e.g. load, pop, arithmetic
operation), BUSY# is sampled. BUSY# is continu­
ally sampled and must be recognized as inactive
before the CPU will supply the coprocessor with
another instruction. However, the follOwing
coprocessor instructions are allowed to execute
even if BUSY# is active since these instructions are
used for coprocessor initialization and exception
clearing:

FNINlT
FNClEX

BUSY# is internally connected to a pull-up resistor
to prevent it from floating active when left
unconnected.

Coprocessor Error (ERROR#) is an active low
input used to indicate that the coprocessor
generated an error during execution of a copro­
cessor instruction. ERROR# is sampled by the
Cx486DLC processor whenever a coprocessor
instruction is executed. IfERROR# is sampled active,
the processor generates exception 16 which is
then serviced by the exception handling software.

PRELIMINARY 3·9

Cv.tx®
7-dV!/ng the Standards

Signal Descriptions

Certain coprocessor instructions do not generate
an exception 16 even ifERROR# is active. These
instructions, which involve clearing coprocessor
error flags and saving the coprocessor state, are
listed below:

FNINIT
FNCLEX
FNSTSW
FNSTCW
FNSTENV
FNSAVE

ERROR# is internally connected to a pull-up
resistor to prevent it from floating active when left
unconnected.

3.2.11 Bus Arbili'cilion
The bus arbitration (HOLD, HLDA) Signals allow
the Cx486DLC to relinquish control of its local
bus when requested by another bus master
device. Once the processor has relinquished its
bus (three-stated), the bus master device can then
drive the local bus signals.

Hold Request (HOLD) is an active high input
used to indicate that another bus master requests
control of the local bus. After recognizing the
HOLD request and completing the current bus
cycle or sequence of locked bus cycles, the
Cx486DLC responds by floating (three-state) the
local bus and asserting the hold acknowledge
(HLDA) output. A31-A2, ADS#, BE3#-BEO#,
D31-DO, D/C#, LOCK#, MlIO#, RPLSET,
RPLVAL# and W/R# are floated while HLDA is
asserted.

Once HLDA is asserted, the bus remains granted
to the requesting bus master until HOLD becomes
inactive. When the Cx486DLC recognizes HOLD

is inactive, it Simultaneously drives the local bus
and drives HLDA inactive. External pull-up
resistors may be required on some of the
Cx486DLC tri-state outputs to guarantee that they
remain inactive while in a hold acknowledge state.

The HOLD input is not recognized while RESET
is active. If HOLD is asserted while RESET is
active, RESET has priority and the .Cx486DLC
places the bus into an idle state instead of a hold
acknowledge state. The HOLD input is also
recognized during suspend mode provided the
CLK2 input has not been stopped. HOLD is
level-sensitive and must meet specified setup and
hold times for correct operation.

Hold Acknowledge (HLDA) is an active high
output which indicates that the Cx486DLC is in a
hold aclmowledge state and has relinquished
control of its local bus. While in the hold ac­
knowledge state, the Cx486DLC drives HLDA
active and continues to drive SUSPA#. The other
Cx486DLC outputs, A31-A2, ADS#, BE3#-BEO#,
D31-DO, D/C#, LOCK#, MlIO#, RPLSET,
RPLVAL# and W/R# are in a high-impedance
state allowing the requesting bus master to drive
these signals. If the on-chip cache can satisfy bus
requests, the Cx486DLC continues to operate
during hold aclmowledge states.

The processor deactivates HLDA when the HOLD
request is driven inactive. The Cx486DLC stores
one NMI rising edge during a hold acknowl­
edge state for processing after HOLD is inactive.
The FLUSH# input is also recognized during a
hold acknowledge state. If SUSP# is asserted
during a hold acknowledge state, the Cx486DLC
may ormay not enter suspend mode depending
on the state of the internal execution pipeline.

3·10 PREUMINARY

Table 3-7 summarizes the state of the Cx486DLC
output signals during hold acknowledge.

Table 3-7. Signal States During Hold
Acknowledge

SIGNAL NAME SIGNAL STATE DURING HOLD
ACKNOWLEDGE

A20M# Recongnized Internally

A31-A2 Float

ADS# Float

BE3#- BEO# Float

BS16# Ignored
BUSY# Ignored

D31-DO Float

D/C# Float

ERROR# Ignored

FLUSH# Input Recognized

HLDA 1

HOLD Input Recognized

INTR Ignored

KEN# Ignored

LOCK# Float

MIlO# Float

NA# Ignored

NMI Input Recognized

PEREQ Ignored
READY# Ignored

RESET Input Recognized

RPLSET Float

RPLVAl.# Float
SUSP# Input Recognized

SUSPA# Driven

WIR# Float

3.2.12 Power Management ..

Two power management signals allow the
Cx486DLC to enter and exit suspend mode.
Suspend mode can also be entered as the result of

Signal Descriptions

executing a HALT instruction. Suspend mode
circuitry allows the Cx486DLC to consume
minimal power while maintaining the entire
internal CPU state.

3

Suspend Request (SUSP#) is an active low
input which requests that the Cx486DLC enter
suspend mode. After recognizing SUSP# is active,
the processor completes execution of the current
instruction, any pending decoded instructions and
associated bus cycles. In addition, the Cx486DLC
waits for the coprocessor to indicate a not busy
condition (BUSY# = 1) before entering suspend mode
and asserting suspend acknowledge (SUSPA#).
During suspend mode, internal clocks are
stopped and only the logic associated with moni­
toring RESET, HOLD and FLUSH# remains active.
With SUSP A# asserted, the OJQ input to the
Cx486DLC can be stopped in either phase.
Stopping the CLK2 input further reduces current
consumption of the Cx486DLC.

To resume operation, the CLK2 input is restarted
(if stopped), followed by deassertion of the SUSP#
input. The processor then resumes instruction
fetching and begins execution in the instruction
stream at the point it had stopped. The SUSP#
input is level-sensitive and must meet specified
setup and hold times to be recognized at a par­
ticular clock edge. The SUSP# input is ignored
following reset and can be enabled using the
SUSP bit in the CCRO configuration register.

The Suspend Acknowledge (SUSPA#) output
indicates that the Cx486DLC has entered suspend
mode as a result of SUSP# assertion or execution
of a HALT instruction. If SUSP A# is asserted and
the CLK2 input is switching, the
Cx486DLC continues to recognize RESET, HOLD
and FLUSH#. If suspend mode was entered as
the result of a HALT instruction, the

PRELIMINARY 3-11

Cv.tx®
7-dV!lng the Standards

Signal Descriptions

Cx486DLC also continues to monitor the NMI
input and an unmasked INTR input. Detection of
INTR or NMI forces the Cx486DLC to exit
suspend mode and begin execution of the appro­
priate interrupt service routine. The CLK2 input
to the processor may be stopped after SUSP A# has
been asserted to further reduce the current

consumption of the Cx486DLC. The SUSPA#
output is disabled (floated) following reset and
can be enabled using the SUSP bit in the CCRO
configuration register.

Table 3-8 shows the state of the Cx486DLC
signals when the device is in suspend mode.

Table 3-8. Signal States During Suspend Mode

SIGNAL NAME SIGNAL STATE DURING sUSP# SIGNAL STATE DURING HALT
INITIATED SUSPEND MODE INITIATED SUSPEND MODE

A20M# Ignored Ignored
A31-A2 1 1
ADS# 1 1
BE3#-BEO# 0 0
BS16# Ignored Ignored
BUSY# Ignored Ignored
D31-DO Float Float
D/C# 1 1
ERROR# Ignored Ignored
FLUSH# Input Recognized Input Recognized
HLDA 0 0
HOLD Input Recognized Input Recognized
INTR Latched Input Recognized
KEN# Ignored Ignored
LOCK# 1 1
MIlO# 0 0
NA# Ignored Ignored
NMI Ignored Input Recognized
PEREQ Ignored Ignored
READY# Ignored Ignored
RESET Input Recognized Input Recognized
RPLSET Driven Driven
RPLVAL# Driven Driven
SUSP# Input Recognized Ignored
SUSPA# 1 1
WIR# 0 0

3-12 PRELIMINARY

3.3

3.3.1

Functional Timing

Reset Timing and
Internal Clock
Synchronization

RESET is the highest priority input signal and is
capable of interrupting any processor activity
when it is asserted. When RESET is asserted, the
Cx486DLC aborts any bus cycle. Idle, hold
acknowledge and suspend states are also discon­
tinued and the reset state is established. RESET is
used when the Cx486DLC microprocessor is
powered up to initialize the CPU to a known valid
state and to synchronize the internal CPU clock
with external clocks.

RESET must be asserted for at least 15 CLK2
periods to ensure recognition by the Cx486DLC
microprocessor. If the self-test feature is to be

Functional Timing 3

invoked, RESET must be asserted for at least 80
CLK2 periods. RESET pulses less than 15 CLK2
periods may not have sufficient time to propagate
throughout the Cx486DLC and may not be
recognized. RESET pulses less than 80 CLK2
periods followed by a self-test request may incor­
rectly report a self-test failure when no true failure
exists.

Provided the RESET falling edge meets specified
setup and hold times, the internal processor clock
phase is synchronized as illustrated in Figure 3-2.
The internal processor clock is half the frequency
of the CLK2 input and each CLK2 cycle corre­
sponds to an internal CPU clock phase. Phase 2
of the internal clock is defined to be the second
rising edge of CLK2 follOwing the falling edge of
RESET.

I <\>2 OR <\>1 <\>2 OR <\>1 <\>2 <\>1

CLK2 [

RESET L

Internal
Processor [

Clock L-~~~~~r-~~~~

Figure 3·2. Internal Processor Clock Synchronization

PRELIMINARY

1707200

3·'13

Cv.tx®
~dV!cing the Standards

Functional Timing

Following the falling edge of RESET (and after
self-test if it was requested), the Cx486DLC CPU
performs an internal initialization sequence for
approximately 400 cue periods. The Cx486DLC
self-test feature is invoked if the BUSY# input is an
active low state when RESET falls inactive. The self­
test sequence requires approximately (220 + 60)
CLIe periods to complete. Even if the self-test
indicates a problem, the Cx486DLC microproces-

ClK2 [

RESET [

ClK (Internal) [

BUSY# [

ERROR#

BE3#-BEO#. W/R#.
MIlO#,HLDA

A31-A2,
D/C#, lOCK#

ADS#

A20M#, BSI6#,
FlUSH#. KEN#. NA#.

READY#. SUSP#

D31-DO

RPlSET, RPlVAl#.
SUSPA#

[

[

[

[

[

[XXXXXX)----- ----­

[XXXXXX)----

sor attempts to proceed with the reset sequence.
Figure 3-3 illustrates the bus activity and timing
during the Cx486DLC reset sequence.

Upon completion of self-test, the EAX register
contains 0000 OOOOh if the Cx486DLC micropro­
cessor passed its internal self-test with no prob­
lems detected. Any non-zero value in the EAX
register indicates that the microprocessor is faulty.

(Floating)

(Floating)

Internal
Initialization

Cycle I

Non-Pi pelined

If self-test is performed, add (Read)
(2"+ 60' to these numbers Tl 12

I 2 3 17 18 19 392 393*394 395*

------~------ -

Notes: 1. BUSY# should be held stable for 8 ClK2 periods before and after
the ClK2 period in which RESET falling edge occurs. 1710100

Figure 3·3. Bus Activity from RESET until First Code Fetch

3·14 PRELIMINARY

3.3.2 Bus Operation

The Cx486DLC microprocessor communicates
with the external system through separate, parallel
buses for data and address. This is commonly
called a demultiplexed address/data bus. This
demultiplexed bus eliminates the need for address
latches required in multiplexed address/data bus
configurations where the address and data are
presented on the same pins at different times.

Cx486DLC instructions can act on memory data
operands consisting of 8-bit bytes, 16-bit words
or 32-bit double words. The Cx486DLC bus
architecture allows for bus transfers of these
operands without restrictions on physical address
alignment. Any byte boundary alignment is
permissible. Operands not aligned on a word
boundary may require more than one bus cycle to
transfer the operand. This feature is transparent
to the programmer.

The Cx486DLC data bus (D31-DO) is a bidi­
rectional bus which can be configured as either a
16-bit or 32-bit wide bus as determined by
BS16#. The bus is 16-bits wide when BS16# is
asserted. When 32-bits wide, memory and VO
space are physically addressed as arrays of
32-bit double words.

The Cx486DLC drives the data bus during write
bus cycles and the external system hardware
drives the data bus during read bus cycles.
Every bus cycle begins with the assertion of the
address strobe (ADS#). ADS# indicates that the
Cx486DLC has issued a new address and new
bus cycle definition Signals. A bus cycle is defined
by four signals: MlIO#, W!R#, D/C# and LOCK#.
MlIO# defmes if a memory or 1/0 operation is
occurring, W/R# defines the cycle to be read or
write, and D/C# indicates whether a data or control

Functional Timing

cycle is in effect. LOCK# indicates that the
current cycle is a locked bus cycle. Every bus
cycle completes when the system hardware
returns READY# asserted.

3

The Cx486DLC performs the follOwing bus cycle
types:

Memory Read
Locked Memory Read
Memory Write
Locked Memory Write
VO Read (or coprocessor read)
VO Write (or coprocessor write)
Interrupt Acknowledge (always locked)
Halt/Shutdown

When the Cx486DLC microprocessor has no
pending bus requests, the bus enters the idle state.
There is no encoding of the idle state on the bus
cycle definition signals, however, the idle state can
be identified by the absence of further assertions
of ADS# follOwing a completed bus cycle.

3.3.2.1 Bus Cycles using Non-
Pipelined Addressing

Non-Pipelined Bus States

The shortest time unit of bus activity is a bus state,
commonly called T states. A bus state is one
internal processor clock period (two CLK2
periods) in duration. A complete data transfer
occurs during a bus cycle, composed of two or
more bus states.

The first state of a non-pipelined bus cycle is
called Tl. During phase one (first CLK2) ofTl,
the address bus and bus cycle defmition signals
are driven valid and, to signal their availability,
address strobe (ADS#) is simultaneously asserted.

PRELIMINARY 3·15

Cv.tx®
~dV!Cing the Standards

Functional Timing

The second bus state of a non-pipelined cycle is
caned T2. T2 tenninates a bus cycle with the
assertion of the READY# input and valid data is
either input or output depending on the bus cycle
type. The fastest Cx486DLC microprocessor bus

Cycle I
Non-1'ipelined

II (Read) T2

cycle requires only these two bus states. READY#
is ignored at the end of the Tl state.

Three consecutive bus read cycles, each consisting
of two bus states, are shown in Figure 3-4.

Cycle 2
Non-l'ipelined

II (Read) T2

Cycle 3
Non-1'ipelined

II (Read) T2

<1>1 I <1>2 <1>1 I <1>2 <I> I I <I> 2 <I> I I <I> 2 <1>1 I <1>2 <1>1 I <1>2

CLK2 [
A23-AI, BHE#,

BLE#, MlIO#, [
D/C#, WIR#

AD5# [

NA# [

B516# [

READY# [

LOCK# [Valid I Valid 2 Valid 3

DIS-DO [In ----------

Note: Fastest non~pipelined bus cycles consist ofT 1 and T2. 1712400

Figure 3·4. Fastest Non.Pipelined Read Cycles

3·16 PRELIMINARY

Non-Pipelined Read and Write Cycles

Any bus cycle may be performed with non­
pipelined address timing. Figure 3-5 shows a
mixture of read and write cycles with non­
pipelined address timing. When a read cycle is
performed, the Cx486DLC microprocessor floats
its data bus and the externally addressed device
then drives the data. The Cx486DLC micropro­
cessor requires that all data bus pins be driven to a
valid lOgic state (high or low) at the end of each
read cycle, when READY# is asserted. When a

CLK2 [
A31-A2, [BE3#-BEO#.

M1IO#, D/C#

W/R# [

ADS# [

NA# [

BS16# [
READY# [

Non-Pipelined Idle I C xcle I
(Write)

Ti 11 T2

I
Cycle 2

Non'Pipelined
(Read)

11 T2

Functional Timing 3
read cycle is acknowledged by READY# asserted
in the T2 bus state, the Cx486DLC CPU latches
the information present at its data pins and
terminates the cycle.

When a write cycle is performed, the data bus is
driven by the Cx486DLC CPU beginning in phase
two of n. When a write cycle is acknowledged,
the Cx486DLC write data remains valid through­
out phase one of the next bus state to provide
write data hold time.

I

Cxcle 3
Non-Pipelined

(Write)

11 T2

Idle

Ti

I

Cycle 4
Non'Pipelined

(Read)

11 T2

Idle

Ti

LOCK# [~~~~----r----+~--'---~~---r----~~~~--~----~~~
D3I-DO [-

Note: Idle states are shown here for diagram variety only. 1710300

Figure 3-5. Various Non-Pipelined Bus Cycles (no wait states)

PRELIMINARY 3-17

Cv.tx®
7.dV!Cing the Standards

Functional Timing

Non-Pipelined Wait States

Once a bus cycle begins, it continues until ac­
knowledged by the external system hardware
using the Cx486DLC READY# input. Acknowl­
edging the bus cycle at the end of the first T2
results in the shortest possible bus cycle, requiring
only Tl and T2. IfREADY# is not immediately
asserted however, T2 states are repeated indefi­
nitely until the READY# input is sampled active.
These intermediate T2 states are referred to as
wait states. If the external system hardware is not
able to receive or deliver data in two bus states, it

withholds the READY# signal and at least one
wait state is added to the bus cycle. Thus, on an
address by address basis the system is able to
define how fast a bus cycle completes.

Figure 3-6 illustrates non-pipelined bus cycles
with one wait state added to cycles 2 and 3.
READY# is sampled inactive at the end of the first
T2 state in cycles 2 and 3. Therefore, the T2 state
is repeated until READY# is sampled active at the
end of the second T2 and the cycle is then termi­
nated. The Cx486DLC ignores the READY#
input at the end of the Tl state.

Idle I Cycle 1 I
Non-Pipelined

(Read)

Cycle 2
Non-Pipelined

(Write)

Idle Cycle 3
Non-Pipelined

(Read)

Idle

Ti Tl T2 Tl T2 T2 Ti Tl T2 T2 Ti

ClK2 [
A31-A2,

[BE3#-BEO#,
M/IO#, D/C#

W/R# [
AD5# [
NA# [

B516# [L..CjC.:oL..OL~pLlDL~

READY# [L..CjC.~~pL\DL'f-l''-.'.....!'-d--DL..IL.C1!..::L:Y

LOCK#

D31-DO

Note: Idle states are shown here for diagram variety only. 1712500

Figure 3-6. Various Non-Pipelined Bus Cycles with DiHerenl Numbers of Wail Stales

3-18 PRELIMINARY

Initiating and Maintaining Non-Pipelined
Cycles

The bus states and transitions for non-pipelined
addressing are illustrated in Figure 3-7. The bus
transitions between four possible states: Tl, T2,
Ti, and Th. Active bus cycles consist of Tl and
T2 states, with T2 being repeated for wait states.

Functional Timing 3

Bus cycles always begin with a single Tl state. Tl
is always followed by a T2 state. If a bus cycle is
not acknowledged during a given T2 and NA# is
inactive, T2 is repeated resulting in a wait state.
When a cycle is acknowledged during T2, the
following state is Tl of the next bus cycle if a bus
request is pending internally. If no internal bus
request is pending, the Ti state is entered. If the

HOLD Asserted

RESET
Asserted

HOLD Negated 0

No Request

Bus States:

HOLD Negated 0

No Request

HOLD Asserted

READY# Asserted 0

HOLD Asserted

HOLD Negated.
Request Pending

READY# Asserted o--t--__
HOLD Negated 0

No Request

Request Pending 0

HOLD Negated

ALWAYS

READY# Asserted 0

HOLD Negated 0

Request Pending

Tl -- First clock of a non-pipelined bus cycle (CPU drives new address and asserts ADS#).
12 -- Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle.
Ti -- Idle State.
Th -- Hold Acknowledge (CPU asserts HLDA).

The fastest bus cycle consists of two states: 11 and 12.

Figure 3·7. Non.Pipelined Bus States

PRELIMINARY

READY# Negated 0

NA#Negated

1712Cill

3·19

Cv.tx®
"'-dV!Cing the Standards

Functional Timing

HOLD input is asserted and the Cx486DLC is
ready to enter the hold acknowledge state, the Th
state is entered.

Due to the demultiplexed nature of the bus, the
address pipelining option provides a mechanism
for the external hardware to have an additional
T state worth of access time without inserting a
wait state. After the reset sequence and follOwing
any idle bus state, the processor always uses non­
pipelined address timing. Pipelined or non­
pipelined address timing is then determined on a
cyde-by-cycle basis using the NA# input. When
address pipelining is not used, the address and
bus cycle definition remain valid during all wait
states. When wait states are added and it is
desirable to maintain non-pipelined address
timing, it is necessary to negate NA# during each
T2 state of the bus cycle except the last one.

3.3.2.2 Bus Cycles using
Pipelined Addressing

The address pipelining option allows the system
to request the address and bus cycle definition of
the next internally pending bus cycle before the
current bus cycle is acknowledged with READY#
asserted. If address pipelining is used, the exter­
nal system hardware has an extra T state of access
time to transfer data. The address pipelining
option is controlled on a cycle-by-cycle basis by
the state of the NA# input.

Pipelined Bus States

Pipelined addressing is always initiated by assert­
ing NA# during a non-pipelined bus cycle.
Within the non-pipelined bus cycle, NA# is
sampled at the beginning of phase 2 of each T2

state and is only acknowledged by the Cx486DLC
during wait states. When address pipelining is
acknowledged, the address (BE3# - BEO#, and
A31 - A2) and bus cycle definition (W/R#, D/C#,
and M/lO#) of the next bus cycle are driven
before the end of the non-pipelined cycle. The
address strobe output (ADS#) is asserted simulta­
neously to indicate validity of the above Signals.
Once in effect, address pipelining is maintained in
successive bus cycles by continuing to assert NA#
during the pipelined bus cycles.

As in non-pipelined bus cycles, the fastest bus
cycles using pipelined address require only two
bus states. Figure 3-8 illustrates the fastest read
cycles using pipelined address timing. The two
bus states for pipelined addressing are TlP and
T2P or TlP and T2I. The TlP state is entered
follOwing completion of the bus cycle in which
the pipelined address and bus cycle definition
information was made available and is the first
bus state of every pipelined bus cycle.

Within the pipelined bus cycle, NA# is sampled at
the beginning of phase 2 of the TlP state. If the
Cx486DLC has an internally pending bus request
and NA# is asserted, the TlP state is followed by a
T2P state and the address and bus cycle definition
for the next pending bus request is made avail­
able. If no pending bus request exists, the TlP
state is followed by a T2I state regardless of the
state of NA# and no new address or bus cycle
information is driven.

The pipelined bus cycle is terminated in either the
T2P or T2I state with the assertion of the
READY# input and valid data is either input or
output depending on the bus cycle type.
READY# is ignored at the end of the TlP state.

3·20 PRELIMINARY

Functional Timing 3

Cycle 1 Cycle 2 Cycle 3
P~elined Pipelined P~elined

Tl P Read) T2P TlP (Read) T2P TlP Read) T2P

01 I 02 01 I 02 01 I 02 01 I 02 01 I 02 01 I 02

CLK2 [U
A31-A2, [BE3#-BEO#,

MlIO#,D/C#,W!R#

ADS# [

NA# [

BSI6# [

READY# [

LOCK# [Valid 1 Valid 2 Valid 3

D31-DO [----------

Note: Fastest pipelined bus cycles consist of TIP and T2P. 1712700

Figure 3·8. Fastest Pipelineel Reael Cycles

Pipelined Read and Write Cycles out phase one of the next bus state to provide

Any bus cycle may be performed with pipelined
address timing. When a read cycle is performed,
the Cx486DLC microprocessor floats its data bus
and the externally addressed device then drives
the data. When a read cycle is acknowledged by
READY# asserted in either the T2P or T21 bus
state, the Cx486DLC CPU latches the information
present at its data pins and terminates the cycle.

When a write cycle is performed, the data bus is
driven by the Cx486DLC CPU beginning in phase
two of T 1 P. When a write cycle is acknowledged,
the Cx486DLC write data remains valid through-

write data hold time.

Pipelined Wait States

Once a pipelined bus cycle begins, it continues
until acknowledged by the external system
hardware using the Cx486DLC READY# input.
Acknowledging the bus cycle at the end of the
first T2P or T21 state results in the shortest pos­
sible pipelined bus cycle. If READY# is not
immediately asserted, however, T2P or T21 states
are repeated indefinitely until the READY# input
is sampled active. Additional T2P or T21 states
are referred to as wait states.
Figure 3-9 illustrates pipelined bus cycles with

PRELIMINARY 3·21

Cv.tx®
~dV!cing me Standards

Functional Timing

one wait state added to cycles 1 through 3. Cycle
1 is a pipelined cycle with NA# asserted during
TlP and a pending bus request. READY# is
sampled inactive at the end of the first T2P state
in cycle 1. Therefore, the T2P state is repeated
until READY# is sampled active at the end of the
second T2P and the cycle is then terminated. The

Cycle 2

Cx486DLC ignores the READY# input at the end
of the TlP state. Note that ADS#, the address and
the bus cycle definition signals for the pending
bus cycle are all valid during each of the T2P
states. Also, asserting NA# more than once
during the cycle has no additional effects. Pipe­
lined addressing can only output information for

Cycle 3 Cycle 1
Pipelined
(Write)

Pipelined Pipelined
Cycle 4

Pipelined
(Read)

CLK2

A31-A2,
BE3#-BEO#,

MlIO#, D/C#

W/R# [

ADS# [

BS16# [
READY# [

LOCK# [

D3I-DO [

3·22

(Read)

TlP T2P TlP T2P TlP

Valid 2

(Write)

TlI T2P

bus cycle to perform, which
is not always immediately
after NA# is asserted.

I

1710600

Figure 3·9. Various Pipelined Cycles (one wait state)

PRELIMINARY

the very next bus cycle.

Cycle 2 in Figure 3-9 illustrates a pipelined cycle,
with one wait state, where NA# is not asserted
until the second bus state in the cycle. In this
case, the CPU enters the n state following TlP
because NA# is not asserted. During the T2 state,
the Cx486DLC samples NA# asserted. Because a
bus request is pending internally and READY# is
not active, the CPU enters the T2P state and
asserts ADS#, valid address and bus cycle defini­
tion information for the pending bus cycle. The
cycle is then terminated by an active READY# at
the end of the np state.

Cycle 3 of Figure 3-9 illustrates the case where no
internal bus request exists until the last state of a
pipelined cycle with wait states. In cycle 3, NA#
is asserted in TlP requesting the next address.
Because the CPU does not have an internal bus
request pending, the T2I state is entered. How­
ever, by the end of the T2I state, a bus request
exists. Because READY# is not asserted, a wait
state is added. The CPU then enters the T2P state
and asserts ADS#, valid address and bus cycle
defInition information for the pending bus cycle.
As long as the CPU enters the T2P state at some
point during the bus cycle, pipelined addressing is
maintained. NA# need only be asserted once
during the bus cycle to request pipelined addressing.

Functional Timing 3

Initiating and Maintaining Pipelined Cycles

Pipelined addreSSing is always initiated by assert­
ing NA# during a non-pipelined bus cycle with at
least one wait state. The first bus cycle following
RESET, an idle bus or a hold acknowledge state is
always non-pipelined. Therefore, the Cx486DLC
always issues at least one non-pipelined bus cycle
following RESET, idle or hold acknowledge
before pipelined addressing takes effect.

Once a bus cycle is in progress and the current
address has been valid for one entire bus state, the
NA# input is sampled at the end of every phase
one until the bus cycle is acknowledged.

PRELIMINARY 3·23

Cv.tx®
~dV!cing the Standards

Functional Timing

Once NA# is sampled active, the Cx486DLC
microprocessor is free to drive a new address and
bus cycle definition on the bus as early as the next
bus state and as late as the last bus state in the
cycle.

Figure 3-10 illustrates the fastest transition pos­
sible to pipelined addressing following an idle bus

Cycle 2
Pipelined

(Read)

CLK2 [
A31-A2, I BE3#-BEO#, L MlIO#, D/C#

W/R# [

ADS# [

NA# [

BS16# [
READY# [

LOCK# [

D31-DO I
L

state. In Cycle 1, the next address is driven
during state T2P. Thus, Cycle 1 makes the
transition to pipelined address timing, since it
begins with Tl but ends with T2P. Because the
address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle and
it begins with a TlP state. Cycle 2 begins as soon
as READY# asserted terminates Cycle 1.

Cycle 3 Cycle 4 Idle
Pipelined Pipelined
(Write) (Read)

)Jote: Following any idle bus state (Ti), the address is always non-pipelined and NA# is only sampled during wait states.
To stan address pipeUning after an idle state requires a non-pipelined cycle with at least one wait state
(Cycle 1 above). The pipelined cycles (2, 3, and 4 above) are shown with various numbers of wait states. 1710700

Figure 3·1 O. Fastest Transition to Pipelined Address Following Idle Bus State

3·24 PRELIMINARY

Figure 3-11 illustrates transitioning to pipelined
addressing during a burst of bus cycles. Cycle 2
makes the transition to pipelined addressing.
Comparing Cycle 2 to Cycle 1 of Figure 3-10
illustrates that a transition cycle is the same
whenever it occurs consisting of at least T1, T2
(NA# is asserted at that time), and T2P (provided

CLK2 [
A31-A2,

BE3#-BEO#, [
MlIO#, D/C#

WIR# [

ADS# [

NA# [

B516# [

READY# [

LOCK# [

D31-DO [

Functional Timing 3

the Cx486DLC microprocessor has an internal
bus request already pending). TlP states are
repeated if wait states are added to the cycle.
Cycles 2,3, and 4 in Figure 3-11 show that once
address pipelining is achieved it can be main­
tained with two-state bus cycles consisting only of
TlPand TlP.

Cycle 3 Cycle 4 Idle
Pwlined Pi~elined
(rite) (ead)

Note: Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus ycles, NA# is only sampled
during wait states. Therefore, to begin address pipelining during a group of non-pipe lined bus cycles requires a
non-pipelined cycle with at least one wait state (Cycle 2 above).

1710800

Figure 3·' 1. Transilioning 10 Pipelined Address During Bursl of Bus Cycles

PRELIMINARY 3·25

CVlltx®
~dV!ing the Standards

Functional Timing

Once a pipelined bus cycle is in progress, pipe­
lined timing is maintained for the next cycle by
asserting NA# and detecting that the Cx486DLC
microprocessor enters T2P during the current bus
cycle. The current bus cycle must end in state
T2P for pipelining to be maintained in the next
cycle. T2P is identified by the assertion of ADS#.
Figures 3-10 and 3-11 each show pipelining
ending after Cycle 4. This occurred because the

HOLD Negated.
No Request

RESET
Asserted HOLD

I Asserted
I

HOLD Asserted

HOLD ~egated •
Request Pending

I

Tl

Cx486DLC CPU did not have an internal bus
request prior to the acknowledgment of Cycle 4.

The complete bus state transition diagram, including
operation with pipelined address is given in Figure
3-12. This is a superset of the diagram for non­
pipelined address. The three additional bus states for
pipelined address are shown in heavier circles.

READY# Assened •
HOLD Asserted

(No Request +
HOLD Asserted). NA# Asserted.

NA# Asserted. (HOLD Asserted +
READY# Negated No Request)

HOLD
READY# Asserted.

HOLD Negated.
Request Pending

READY# Asserted.

3·26

~oe~~~~e~t
HOLD Negated.
Request Pending

READY# Asserted. HOLD Negated. No Request

BusStatcs
11 .. First dock of a non-pipelmed bus cycle (CPU drlVes nell address

atldas:;cnsADSI;t)
11 .. Suhsequent c!vcks of a bus cycle when NA;'! has not bem sampled asserted

in thecurrentbuscyck

T1P--first clock cfapipdincdbuscycl1
Tl-ld!estate
Th .. Hdd Ackn8wled;;e Sl~le (CPU .1.\,erlS HLDA)

READY# Negated.
NA# Asserted.

HOLD Negated.
Request Pendmg

READY# ;.Jeg~ted.
Request Pendmg •

HOLD Negatea

)
NA# Asserted •

HOLD Negated.
Request Pendin

READY# Asserted

READY# Negated

Figure 3·12. Complete Bus States

PRELIMINARY

3.30203 Bus Cycles Using as'B 6#

Assertion of BSI6# during a bus cycle effectively
changes the Cx486DLC 32-bit data bus into a 16-
bit data bus. Although slower, the 16-bit data bus
usually requires less hardware interface circuitry
and generally offers greater compatibility with 16-
bit devices.

Non-Pipelined Cycles
With BSI6# asserted all operand transfers physi­
cally occur on data bus lines DIS-DO. With
BSI6# asserted during a 32-bit non-pipelined
read or write access additional bus cycles are
issued by the CPU to transfer the data.

For data reads with only the two upper bytes
selected (BE3# and/or BE2# asserted), data is read
from DIS-DO.

For data writes with only the two upper bytes
selected (BE3# and/or BE2# asserted), data is
duplicated on DIS-DO and no further action is
required.

For data reads with all four bytes selected (at least
BEl#, BE2# asserted and perhaps BEO# and/or
BE3# also asserted), the CPU performs two 16-bit
read cycles using data lines DIS-DO. Lines D31-
D16 are ignored.

Functional Timing 3

Data writes with all four bytes selected: (at least
BEl#, BE2# asserted and perhaps BEO# and/or
BE3# also asserted). The CPU performs two 16-
bit write cycles using data lines DIS-DO. Bytes 0
and 1 (corresponding to BEO# and BEl#) are sent
on the first bus cycle and bytes 2 and 3 (corre­
sponding to BE2# and BE3#) are sent on the
second bus cycle. BEO# and BEl# are always
negated during the second 16-bit bus cycle.
Figure 3-13 illustrates two non-pipelined bus
cycles using BS 16#.

Pipelined Cycles
The input signal "NA#" is a request to the CPU to
drive the address, byte enables and bus status
signals for the next bus cycle as soon as they
become internally available. "Pipelining" this
address allows the system logic to anticipate the
next bus cycle operation.

The CPU cannot acknowledge both address
pipelining and BSI6# for the same bus cycle.
IfNA# is already sampled when BSI6# is as­
serted, the data bus remains 32-bits wide.
If NA# and BSI6# are sampled asserted in the
same window, NA# is ignored and BSI6# remains
effective (that is the data bus becomes
16-bits wide). Figure 3-14 illustrates the interac­
tion between NA# and BSI6#.

PRELIMINARY 3·27

Cv.tx®
~dV!ing the Standards

CLK2 [

BEO#,BEl#

Functional Timing

Idle

A Transfer Requiring Two
Cycles on 16-Bit Data Bus

A Transfer Requiring Two
Cycles on 16-Bit Data Bus

(A~----------v ~~----------\

I NO;!~i~e}in*d NOl~~~~~I~~ed I No;!~;~e1in*d No;~~:ea~ed I
(Write Write) (Read Read)

Pan One Part Two Part One Part Two

Tl

BE2#,BE3#, [
A2-A31,

W 110#, D/C# '--f---"--'LCL-f '-----,----,----,------f '----c----,-----,-----{

W /R# [L"f-~L-'L-1'

ADS# [

Idle

READY# i
L'-+~~~~~~~~~~~~~_+~~~~~+_~~~Ll_+-~~

3·28

LOCK# [
L"f--"--'L-'L-1'

DIS-DO [.

D31-Dl6 [

Note: Dn = physical data pin n
dn = logical data bit n

Figure 3· 1 3. Non.Pipelined Bus Cycles Using BS 16#

PRELIMINARY

1712800

Functional Timing 3

CLK2

BEO#,BEl#

A2, A31,
BE2#, BE3#,

MlIO#, D/C#

W/R#

AD5#

[

[

[

[

[

Previous
Cycle

A Transfer Requiring Two
Cycles on 16-Bit Bus

(~------------~ --------------,
CyclelA Cycle IB
Pipelined Non-Pipelincd

(Write Write)
Part One

Cycle 2
Non-Pipelined

(Read)

Val d3

NA# [

B516# [

READY#

LOCK#

DlS-DO

D31-Dl6

[

[
dIS-do

[In

d3I-d16

[

Dn = physcial data pin n
dn = loglCal data bit n
Cycle lA is pipelined. Cycle IE cannot be pipelined, but its address can be inferred from Cycle 1 to
externally simulate address pipelining during cycle lB.

1711900

Figure 3· 'I 4. Pipelining and as 'I 6#

PRELIMINARY 3·29

Cv.tx®
~dV!fng the Standards

Functional Timing

3.3.3 Locked Bus Cycles

When the LOCK# signal is asserted, the
Cx486DLC microprocessor does not allow other
bus master devices to gain control of the system
bus. LOCK# is driven active in response to
executing certain instructions with the LOCK
prefix. The LOCK prefix allows indivisible
read/modify/write operations on memory oper­
ands. LOCK# is also active during Interrupt
Aclmowledge Cycles (described next).

LOCK# is activated on the CLK2 edge that begins
the first locked bus cycle and is deactivated when
READY# is returned at the end of the last locked
bus cycle. When using non-pipelined addressing,
LOCK# is asserted during phase 1 of Tl. When
using pipelined addressing, LOCK# is driven
valid during phase 10fTlP.

Figures 3-4 through 3-6 illustrate LOCK# timing
during non-pipelined cycles and Figures 3-8
through 3-11 cover the pipelined address case.

3.3.4 Interrupt Acknowledge
(INTA) Cycles

The Cx486DLC microprocessor is interrupted by
an external source via an input request on the
INTR input (when interrupts are enabled). The
Cx486DLC microprocessor responds with two

locked interrupt aclmowledge cycles. These bus
cycles are similar to read cycles. Each cycle is
terminated by READY# sampled active as shown
in Figure 3-15.

The state of A2 distinguishes the first and second
interrupt aclmowledge cycles. The address driven
during the first interrupt aclmowledge cycle is 4h
(A31-A3=0,A2=1, BE3#-BE1#=1, and BEO#=O.).
The address driven during the second interrupt
aclmowledge cycle is Oh (A31-A2=0,
BE3#-BE1#=1, and BEO#=O).

To assure that the interrupt acknowledge cycles
are executed indivisibly, the LOCK# output is
asserted from the beginning of the first interrupt
acknowledge cycle until the end of the second
interrupt aclmowledge cycle. Four idle bus states
(TO are always inserted by the Cx486DLC micro­
processor between the two interrupt acknowledge
cycles.

The interrupt vector is read at the end of the
second interrupt cycle. The vector is read by the
Cx486DLC microprocessor from D7 -DO of the
data bus. The vector indicates the specific inter­
rupt number (from 0-255) requiring service.
Throughout the balance of the two interrupt
cycles D31-DO float. At the end of the first inter­
rupt aclmowledge cycle, any data presented to the
Cx486DLC is ignored.

3.30 PRELIMINARY

Idle

Tl

CLK2 [

BE1#,BE2#,BE3# [
A31-A3,

[BEO#, D/C#,
M1IO#, WIR#

A2 [

LOCK# [

ADS# [

NA# [

BSl6# [
READY# [

D7-DO [- ---

D31-D8 [- ---

Interrupt
Acknowledge

Cycle 1

Tl T2 T2 Ti

--- --- -~~-
--- --- -~Y--

Idle
(4 Bus States)

Ti Ti Ti

Functional Timing 3

Interrupt
Acknowledge

Cycle 2

Tl T2 T2I

Idle I

Ti

Vector
--(8--

-~cp--
Note: Intenupt Vector (0-255) is read on D7-DO at the end of the second Intenupt Acknowledge bus cycle. Because each

Intenupt Acknowledge bus cycle is followed by idle bus states, asserting NA# has no practical effect. 1710900

Figure 3· 1 5. Interrupt Acknowledge Cycles

PRELIMINARY 3·31

ev.tx®
7dv!'ng the Standards

Functional Timing

3.3.5 Halt and Shutdown
Cycles

definition signals (MJIO#=l, D/C#=O, W/R#=l,
LOCK#=l) and an address of 2h (A31-A2=O,
BE3#=1, BE2#=O, BE1#-BEO#=1). The halt
indication cycle must be acknowledged by
READY# asserted. A halted Cx486DLC micro­
processor resumes execution when INTR (if
interrupts are enabled), NMI, or RESET is as­
serted. Figure 3-16 illustrates a non-pipelined
halt cycle.

Halt Indication Cycle

Executing the HLT instruction causes the
Cx486DLC execution unit to cease operation.
Signaling its entrance into the halt state, a halt
indication cycle is performed. The halt indication
cycle is identified by the state of the bus cycle

Cl.K2 [

BEO#, BE1#, BE3#, [MlIO#, W!R#

A31-A2, [BE2, D/C#

ADS# [

NA# [

BSl6# [

READY# [

LOCK# [----,----r

Cycle 2
Non-Pipelined

(Halt)

Note: Halt cycle must be acknowledged
by READY# asserted. Wait states may be
added to the cycle if desired.

Idle

CPU responds to
HOLD input while in
the halt state.

D31-DO [....::.,::..:.......L.-'>---,----c--L...C>...---,--,--.../ - (Floating) - - -

I I
1711000

Figure 3· 16. Non.pipelined Halt Cycle

3·32 PRELIMINARY

Functional Timing 3
Shutdown Indicatiou Cycle

Shutdown occurs when a severe error is detected
that prevents further processing. Signaling its
entrance into the shutdown state, a shutdown
indication cycle is performed. The shutdown
indication cycle is identified by the state of the bus
cycle definition signals (J\.1/I0#=1, D/C#=O, W/R#=l,

LOCK=l) and an address of Oh (A31-A1 = 0,
BE3#-BE1#=1, BEO#=O). The shutdown indica­
tion cycle must be acknowledged by READY#
asserted. A shut down Cx486DLC microproces­
sor resumes execution only when NMI or RESET is
asserted. Figure 3-17 illustrates a shutdown cycle
using pipelined addressing.

CLK2

BE1#,BE2#, BE3#
MlIO#, W/R#

A31-A2,
BEO#, D/C#

ADS#

NA#

BS16#

READY#

[

[

[

[

[

[

[

Cycle 1
Pipelined

(Read)

Cycle 2
Pipelined

(Shutdown)

Idle

Note: Shutdown cycle must be acknowledged
by READY# asserted. Wait states may be added
to the cycle if desired.

LOCK# Valid 1

D31-DO [

Figure 3· 1 7. Pipelined Shutdown Cycle

PRELIMINARY

CPU responds to
HOLD input while in
the shutdown state.

1711100

3.33

Cv.tx®
~dV!ing the Standards

Functional Timing

3.3.6 Internal Cache Interface

3.3.6. I Cache Fills

Any unlocked memory read cycle can be cached
by the Cx486DLC. The Cx486DLC automatically
does not cache accesses to memory addresses
specified by the non-cacheable region registers.
Additionally, the KEN# input can be used to
enable caching of memory accesses on a cycle-by­
cycle basis. The Cx486DLC acknowledges the
KEN# input only if the KEN enable bit is set in

Cycle 1
Non-Pipelined

(Read - Cache Fill)

Tl T2
pI I l'i2 01 I 02

ClK2 [
A31-A2, BE3#·BEO#.

[D/C#. M!10#, W/R#

ADS# [

RPlVAl# [

RPlSET [

BSI6# [

NA# [

KEN# [

READY# [

LOCK# [Valid 1

the CCRO configuration register.
As shown in Figures 3-18 and 3-19, the
Cx486DLC samples the KEN# input one CLK2
before READY# is sampled active. If KEN# is
asserted and the current address is not set as
non-cacheable per the non-cacheable region
registers, then the Cx486DLC fills four bytes of a
line in the cache with the data present on the data
bus pins. The states of BE3#-BEO# are ignored if
KEN# is asserted for the cycle.

Cycle 2
Non-Pipelined

(Read - Cache Fill)

Tl T2 T2
PI I l'i2 ,01 I 02 PI I ,02

Valid 2

Valid 2

D31-DO ----------cp---------------
1711200

Figure 3-' 8. Non-Pipelined Cache Fills using KEN#

3-34 PRELIMINARY

If the RPL bit in the CCR1 configuration register is
set, then the RPLSET and RPL VAL# output
signals are driven by the Cx486DLC during cache
fill cycles. RPLSET is only meaningful if the cache
is configured as two-way set associative. RPLSET
indicates which set in the cache is undergoing a line
replacement. RPL V AL# indicates that the
Cx486DLC will perform a cache fill to the indi­
cated set with the data present on the data bus
pins at the time READY# is sampled active.

CLK2

A31·A2,
BE3#· BEO#,

D/C#, yIlIO#,\VIR#

ADS#

RPLVAL#

RPLSH#

NA#

BSI6#

KEN# [

READY# [

LOCK#
Valid I

Functional Timing 3

However, if KEN# is enabled and sampled
inactive, the data is not cached and the line in the
set indicated by RPLSET is not overwritten.

Figures 3-18 and 3-19 illustrate RPL V AL# and
RPLSET functional timing for non-pipelined
cache fills and pipelined cache fills respec­
tively. RPLVAL# is driven at the same time and
for the same duration as the ADS# output for the
cache fill cycle. RPLSET is driven one CLK2 after

Cycle 2
Pipelined

(Read· Cache Fill)
TIP TIP

01 02 PI I P2

Valid 2 Valid 3 [

D31·DO [-----l= I
-----QD----

I

1711300

Figure 3·19. Pipelined Cache Fills using KEN#

PRELIMINARY 3·35

Cv.tx®
7dV!ing the Standards

Functional Timing

RPL V AL# is driven regardless of whether or not
the current bus cycle is pipelined.

IfBSI6# is asserted along with KEN# during a
read operation, the Cx486SLC may perform
two consecutive reads to complete a cache line

Cycle 1
Non-Pipelined

(Read - Cache Fill)
Part One

11 T2
01 I (J2 01 I 02 01

CLK2 [

A31-A2, BE3#-BEO#, [
D/C#, MIIO#, W/R#

ADS# [

RPLVAL# [

RPLSET [

BSI6# [

NA# [

KEN# [

READY# [

LOCK# [
015-00

031-00 [In

fill. Each read operation with BSI6# asserted
provides two bytes of data on DIS-DO to fill
the 4-byte cache line. KEN# must be asserted
along with BSI6# for both cycles in order for
the cache fill to occur. This is illustrated in
Figure 3-20.

Cycle 2
Non-Pipelined

(Read - Cache Fill)
Part Two

11 T2 T2
I 02 01 I 02 lill I 02

Dl'j-DO

1712300

Figure 3·20. Non.Pipelined Cache Fills using KEN# and B516#

3·36 PRELIMINARY

3.3.6.2 Flushing the Cache

To maintain cache coherency with external
memory, the Cx486DLC cache contents should
be invalidated when previously cached data is
modified in external memory by another bus
master. The Cx486DLC invalidates the internal
cache contents during execution of the INVD and
WBINVD instructions, following assertion of
HillA if the BARB bit is set in the CCRO configu­
ration register, or following assertion of FLUSH#
if the FLUSH bit is set in CCRO.

The Cx486DLC samples the FLUSH# input on
the rising edge of OJQ corresponding to the begin­
ning of phase 2 of the internal processor clock. If
FLUSH# is asserted, the Cx486DLC invalidates the
entire contents of the internal cache. The actual
point in time where the cache is invalidated depends
upon the internal state of the execution pipeline.

FLUSH# must be asserted for at least two OJQ

periods and must meet specified setup and hold
times to be recognized on a specific OJQ edge.

For maximum performance, FLUSH# should only be
asserted for the minimum time reguired. Each
phase 2 edge where FLUSH# is sampled asserted
causes the CPU to slow execution and invalidate the
cache contents. The CPU invalidates the cache even·if
a cache invalidation had just occurred during the
previous clock cycle.

Functional Timing 3

3.3.7 Address Bit 20 Masking

The Cx486DLC internal cache addressing must
be forced to emulate 8086 1 MByte wrap-around
addressing when system lOgiC emulates the wrap­
around addressing and data within the
64 KByte wrap-around area resides in the
Cx486DLC internal cache. The Cx486DLC
emulates the wrap-around addressing if the Ala
bit is set in the CCRO configuration register and
the A20M# input is asserted. Both the address bit
20 input to the internal cache and the external
Ala pin are masked (zeroed) when the AlOM#
input is asserted.

As shown in Figure 3-21, the Cx486DLC
samples the AlOM# input on the rising edge of
CLK2 corresponding to the beginning of phase 2
of the internal processor clock. If AlOM# is
asserted and paging is not enabled, the
Cx486DLC masks the Ala signal internally
starting with the next cache access and externally
starting with the next bus cycle. If paging is
enabled, the Ala signal is not masked regardless
of the state of AlOM#. A20 remains masked until
the access following detection of an inactive state
on the AlOM# pin. A20M# must be asserted for
a minimum of two CLK2 periods and must meet
specified setup and hold times to be recognized
on a specific CLK2 edge.

An alternative to using the AlOM# pin is pro­
vided by the NCO bit in the CCRO configuration
register. The Cx486DLC automatically does not
cache accesses to the first 64 KBytes and to
the first 64 KBytes at each 1 MByte boundary if
the NCO bit is set. This prevents data within the
wrap-around memory area from residing in the
internal cache and thus eliminates the need for
masking Ala to the internal cache.

PRELIMINARY 3·37

Cv.tx®
~dV!ing the Standards

Functional Timing

CLK2 [
AI9-A2,

[A31-A21,
BE3# - BEO#,
O/C#, M/IO#

W/R# [

ADS# [

A20M# [

A20 [
BSI6# [

NA# [

REAOY# [

LOCK# [

031-00 [

Idle Cycle 2
Non-Pipelined

(Read)

Cycle 4 Idle
Pipelined
(Write)

Ti Tl

ill-u1{illirl
TlP T2P TlP Tl! Ti

JlfLlUl MM MM1JL
XMXX D< Valid 1 X Valid 2 IX Valid 3 IX Valid 4 IXXXX XXXX

II
XMXX y \ II \ /IXXX XXXX

;- ;;- 1;- /
~ ~ I~ ~ I I
\ II ~

I r-------
'\", I XIXXXX X Valid 1 A Valid4 XXXX XXXX

XD<XXX XXXXY "<XXXAY "<xxx)< XXX)< y '< X XjY "<MX)<

;;<[>0()Q<: >O{£X XXXX XXXXI,\ ;;txxxxl\ IYYJ:X A \ A XXXX IXXXX

XXXXX XXXX X~ /;(XX XX)Y ~ AX X'N<A AX ~ ;;::x
XD<XXX X Valid 1 Valid 2 Valid 3 X Valid 4 :><:zz]

-t---t--$-< : Out ~ -I--~-------- Out 1

I I

1711400

Figure 3·21. Masking A20 using A20M# During Burst of Bus Cycles

3·38 PRELIMINARY

o

3.3.8 Hold Acknowledge State

The hold acknowledge state provides the mecha­
nism for an external device in a Cx486DLC
system to acquire the Cx486DLC system bus
while the Cx486DLC is held in an inactive bus
state. This allows external "bus masters" to take
control of the Cx486DLC bus and directly access
system hardware in a shared manner with
the Cx486DLC The Cx486DLC continues to
execute instructions out of the cache (if enabled)
until a system bus cycle is required.

Idle

I·
Ii Ih

CLK2 [

HOLD [

HLDA

Functional Timing 3

The hold acknowledge state (Th) is entered in
response to assertion of the HOLD input. In the
hold acknowledge state, the Cx486DLC micro­
processor floats all output and bi-directional
signals, except for HLDA and SUSPA#. HLDA is
asserted as long as the Cx486DLC CPU remains
in the hold acknowledge state and all inputs except
HOLD, FLUSH#, SUSP# and RESET are ignored.

Th may be entered directly from a bus idle state,
as in Figure 3-22, or after the completion of the
current physical bus cycle if the LOCK# signal is

Hold Acknowledge I
Idle

~I

hJl Ih Ii

[

A31·A2, [BE3#· BEO#,
D/C#, MlIO#, W/R#

- - _1- (Floating).

AD5# [- - - - (Floating)

B516#, NM, [
READY#

LOCK# [(Floating)

D31·DO [

Notc: For ma.x:imum design flexibility the CPU has no internal pull-up resistors on its outputs
External pull-ups may be reqUired on ADS# and other outputs to keep them negated
during hold acknowledge period.

Figure 3·22. Requesting Hold from Idle Bus State

PRELIMINARY

17120JJ

3·39

Cv.tx®
~dv!,ng the Standards

Functional Timing

not asserted, as in Figures 3-23 and 3-24. The
CPU samples the HOLD input on the rising edge
of CLK2 corresponding to the beginning of phase 1
of the internal processor clock. HOLD must meet
specified setup and hold times to be recognized at
a given CLK2 edge.

Tl

Cycle 1
Non-Pipelined

(Read)

T2 T2

The hold acknowledge state is exited in response
to the HOLD input being negated. The next bus
state is an idle state (Ti) if no bus request is
pending, as in Figure 3-22. If a bus request is
internally pending, as in Figures 3-23 and 3-24,
the next bus state is n. Th is also exited in
response to RESET being asserted. If HOLD

Th

Hold
Acknowledge

Th Tl

Cycle 2
Non-Pipelined

(Write)

T2

CLK2
- r-u-L LrL r-u-L r-u-L r-u-L LJL r-u-L

HOLD

HLDA

A31-A2.
BE3#-BEO#. D/C#,

MlIO#. W/R#

ADS#

NA#

BSI6#

READY#

LOCK#

D31-DO [

-

-

-

X

L

-

-+---J /
HOLD asserted no later
than READY# asserted

1_- V ~

IX Valid I
(Floating)

V-------r-------
(Floating)

V / ------- -------

IXXXX y '< '<XX X IXXXX IXXXX
32-Bit Bus Size _t

l>QOO(XXXX V '< IXXXX IXXXX
Note: If asserting 8516#
requires a second bus

~~~l:e~~~d ~;~r~~~ed, 
herformed before 

old acknowledge. 

kQOOO(Xy '<X').. XXX IXXXX 
I. 

(Negated, or Last Locked Cycle) 

V Valid 1 1>----- ----

~'"'~~--~-- (Floating) 
c---- ----

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold 
requirements are met. This waveform is useful for delennining Hold Acknowledge latency. 

'.. 

Valid 2 

V 

XXXX IXXXX 

/XXX IXXXX 

/xxX IXXXX 

Valid 2 

-- Out2 

1 

1712100 

Figure 3.23. Requesting Hold from Active Non.Pipelined Bus 

3·40 PRELIMINARY 



Functional Timing 3 

remains asserted when RESET goes inactive, the 
Cx486DLC enters the hold acknowledge state 
before performing any bus cycles provided HOLD 
is still asserted when the CPU is ready to perform 
its first bus cycle. 

If a rising edge occurs on the edge-triggered NMI 
input while in the Th state, the event is remem­
bered as a non-maskable interrupt 2 and is 
serviced when the Th state is exited. 

CLK2 [ 

HOLD 

HLDA 

A31-A2. 
BE3# - BEO#,D/C#. 

MIl0#. WIR# 

ADS# [ 

NA# [ 

BSI6# 

READY# [ 

LOCK# [ 

D31-DO L 

TIP 

Cycle I 
Pipelined 
(Write) 

T2l T2l 

HOLD asserted in same bus 
state as NA# asserted. 

Hold 
Acknowledge 

Th Th 

_~l~i~ __ 

I 
r---t---t------t-----1'---. _ Q'l~i~ __ 

Cycle 2 
Non-Pipelined 

(Read) 

TI T2 

Valid 1 

(Floating) 

r----L-----:~-;----'----~-l--:oatmg) 

! ---1------ n2 

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge. provided setup and hold requirements are met. 
This waveform is useful for determining Hold Acknowledge latency. 

1712200 

Figure 3·24. Requesting Hold from Active Pipelined Bus 

PRELIMINARY 3·41 



Cv.m® 
~dV!ing the Standards 

Functional Timing 

3.3.9 Coprocessor Interface 

The coprocessor interface consists of the data bus, 
address bus, bus cycle definition signals, and the 
coprocessor interface signals (BUSY#, ERROR# 
and PEREQ). The Cx486DLC automatically 
accesses dedicated coprocessor VO addresses 
8000 00F8h, and 8000 OOFCh to transfer 
opcodes and operands to/from the coprocessor 
whenever a coprocessor instruction is decoded. 
Coprocessor cycles can be either read or write and 
can be either non-pipelined or pipelined. Copro­
cessor cycles must be terminated by READY# 
and, as with any other bus cycle, can be termi­
nated as early as the second bus state of the cycle. 

BUSY#, ERROR# and PEREQ are asynchronous 
level-sensitive inputs used to synchronize CPU 
and coprocessor operation. All three signals are 
sampled at the beginning of phase 1 and must 
meet specified setup and hold times to be recog­
nized at a given CLKl edge. 

3.3.1 0 Power Management 

SUSP# Initiated Suspend Mode 

The Cx486DLC enters suspend mode when the 
SUSP# input is asserted and execution of the 
current instruction, any pending decoded instruc­
tions and associated bus cycles are completed. 
The Cx486DLC also waits for the coprocessor 
to indicate a not busy status 
(BUSY# = 1) prior to entering suspend mode. 
The SUSPA# output is then asserted. The 
Cx486DLC responds to SUSP# and asserts 
SUSPA# only if the SUSP bit is set in the CCRO 
configuration register. 

3·42 PRELIMINARY 



Figure 3-25 illustrates the Cx486DLC functional 
timing for SUSP# initiated suspend mode. SUSP# 
is sampled on the phase 2 CLK2 rising edge and 
must meet specified setup and hold times to be 
recognized at a particular CLK2 edge. The time 
from assertion of SUSP# to activation of SUSPA# 
varies depending on which instructions were 
decoded prior to assertion of SUSP#. The mini­
mum time from SUSP# sampled active to 
SUSPA# asserted is 2 CLK2s. As a maximum, the 
Cx486DLC may execute up to two instructions 
and associated bus cycles prior to asserting 
SUSPA#. The time required for the Cx486DLC to 

CLK2 [ 

sUSP# [ 

BUSY# [ 

SUSPA# [ 

I \31 I \32 I \31 I \32 I \31 

L 2CLlCs-l 
I MIN I , , 

Functional Timing 

deactivate SUSPA# once SUSP# has been 
sampled inactive is 4 CLK2s. 

3 

If the Cx486DLC is in a hold acknowledge state 
and SUSP# is asserted, the processor mayor may 
not enter suspend mode depending on the state of 
the Cx486DLC internal execution pipeline. If the 
Cx486DLC is in a SUSP# initiated suspend state 
and the CLK2 input is not stopped, the processor 
recognizes and acknowledges the HOLD input 
and stores the occurrence of FLUSH#, NMI and 
INTR (if enabled) for execution once suspend 
mode is exited. 

I \32 I 01 I 02 I 01 \32 I 01 I 02 

~~~~ , , 
, ,

f--~~ 4 CLK2s ~---

170120.)

Figure 3-25. SUSP# Initialled Suspend Mode

PRELIMINARY 3-43

Cv.tx®
~dV!ing the Standards

Functional Timing

Halt Initiated Suspeud Mode

The Cx486DLC also enters suspend mode as a
result of executing a HLT instruction. The
SUSPA# output is asserted no more than 17
CLK2s following READY# sampled active for the
halt bus cycle as shown in Figure 3-26. Suspend
mode is then exited upon recognition of an NMI

or an unmasked INTR. SUSPA# is deactivated 12
CLK2s after sampling of an active NMI or un­
masked INTR. If the Cx486DLC is in a halt
initiated suspend mode and the CLK2 input is
not stopped, the processor recognizes and ac­
knowledges the HOLD input and stores the
occurrence of FLUSH# for execution once sus­
pend mode is exited.

Ti Ti

I I

:-- 12 elK2s --:
I I

1711800

Figure 3·26. Halt Initiated Suspend Mode

3·44 PRELIMINARY

Stopping the Input Clock

Because the Cx486DLC is a static device, the
input clock (CLK2) can be stopped and restarted
without loss of any internal CPU data. CLK2 can
be stopped in either phase 1 or phase 2 of the
clock and either in a logic high or logic low state.
However, entering suspend mode prior to stop­
ping CLK2 dramatically reduces the CPU current
requirements. Therefore, the recommended
sequence for stopping CLK2 is to initiate
Cx486DLC suspend mode, wait for assertion of
SUSPA# by the processor and then stop the input
clock.

1 01 I 02 1 01 I 02 101
CLK2 [

[\ SUSP#
" 5J

BUSY# ['\,

SUSPA# ['I)
\

Functional Timing 3

The Cx486DLC remains suspended until CLK2 is
restarted and suspend mode is exited as described
above. While CLK2 is stopped, the Cx486DLC
can no longer sample and respond to any input
stimulus including the HOLD, FLUSH#, NMI,
INTR and RESET inputs.
Figure 3-27 illustrates the recommended
sequence for stopping CLK2 using SUSP# to

initiate suspend mode. CLK2 should be stable for
a minimum of 10 clock periods before SUSPA# is
deasserted.

I 02 1 01 I 02 1 01 I 02 1

'3J
(5) '\) '55

'\) '5, ((
)j

/
1701400

Figure 3·27. Slopping CLK2 During Suspend Mode

PRELIMINARY 3·45

3·46

CYRIX Cx486DLC'" MICROPROCESSOR
High-Pelfonnance 486-Class CPU with
Single-Cycle Execution and On-Chip Cache

Cv.tx®
7dV!Cing the Standards

4. ELECTRICAl.. SPECIFICAtiONS

Electrical Connections

4. 'il • 'Il Powell' and! Ground! COI'II-
nections and Decoupling

Due to the high frequency of operation of the
Cx486DLC, it is necessary to install and test this
device using standard high frequency techniques.
The high clock frequencies used in the
Cx486DLC and its output buffer circuits can
cause transient power surges when several output
buffers switch output levels Simultaneously.
These effects can be minimized by filtering the
DC power leads with low-inductance decoupling
capacitors, using low impedance wiring, and by
utilizing all of the 20 Vee and 21 GND pins.

4. '11 • .2 Pull-Up/Pull-I)owl'll
Resistors

Table 4-1 lists the input pins which are internally
connected to pull-up and pull-down resistors.
The pull-up resistors are connected to Vee and the
pull-down resistors are connected to VSS. When
unused, these inputs do not require connection to
external pull-up or pull-down resistors.

Table 4· 11. Pins Connected to
Internal Pull. Up and PuII.Down Resistors

SIGNAL PIN RESISTOR

A20M# Fl3 20-kQ pull-up
BS16# Cl4 20-kQ pull-up
BUSY# B9 20-kQ pull-up
ERROR# A8 20-ill pull-up
FLUSH# El3 20-ill pull-up
KEN# B12 20-kQ pull-up
PEREQ C8 20-ill pull-down
SUSP# A4 20-ill pull-up

It is recommended that the ADS# and LOCK#
output pins be connected to pull-up resistors, as
indicated in Table 4-2. The external pull-ups
guarantee that the Signals will remain negated
during hold acknowledge states.

Table 4·2. Pins Requiring
External PuII.Up Resistors

SIGNAL PIN EXTERNAL RESISTOR

ADS# E14 20-ill pull-up
LOCK# ClO 20-kQ pull-up

PRELIMINARY 4·1

Cv.tx®
~dV!Clng rho Standards

Absolute Maximum Ratings

4.1 .3 Unused Input Pins

All inputs not used by the system designer and
not listed in Table 4-1 should be connected either
to ground or to Vee Connect active-high inputs
to ground through a 20 kQ (± 10%) pull-down
resistor and active-low inputs to Vee through a
20 kQ (± 10%) pull-up resistor to prevent pos­
sible spurious operation.

4.1.4 N/e Designated Pins

Pins designated N/C should be left disconnected.
Connecting an N/C pin to a pull-up resistor, pull­
down resistor, or an active signal could cause
unexpected results and possible circuit malfunc­
tions.

4.2 Absolute Maximum
Ratings

The following table lists absolute maximum
ratings for the Cx486DLC microprocessor.
Stresses beyond those listed in Table 4-3 may cause
permanent damage to the device. These are stress
ratings only and do not imply that operation
under any conditions other than those listed
under "Recommended Operating Conditions"
(Table 4-4) is possible. Exposure to conditions
beyond Table 4-3 may (1) reduce device reliability
and (2) result in premature failure even when
there is no immediately apparent sign of failure.
Prolonged exposure to conditions at or near the
absolute maximum ratings (Table 4-3) may also
result in reduced useful life and reliability.

Table 4·3. Absolute Maximum Ratin!!!5

PARAMETER MIN MAX UNITS NOTES

Case Temperature -650 +1l0° C Power Applied
Storage Temperature -650 +1500 C No Bias
Supply Voltage, Vee -0.5 6.5 V With Respect to Vss
Voltage On Any Pin -0.5 Vee + 0.5 V With Respect to Vss
Input Clamp Current, 11K 10 rnA Power Applied
Output Clamp Current, 10K 25 rnA Power Applied

PRELIMINARY

Recommended Operating Conditions 4

4.3 Recommended Operating Conditions

The following table presents the recommended operating conditions for the Cx486DLC.

Table 4·4. Recommended Operating Conditions

Cx486DLC
PARAMETER UNITS NOTES

MIN MAX

Te Case Temperature 00 +850 C Power Applied

Vee Supply Voltage 4.75 5.25 V With Respect to Vss

VIH High Level Input 2.0 Vee + 0.3 V

VIL Low Level Input -0.3 0.8 V

VILe CLK2 Input LOW -0.3 0.8 V

Voltage

VIHe CLK2 Input HIGH 3.7 Vee + 0.3 V

Voltage

IOH Output Current -1.0 rnA V =V OH OH(min)

(High)

IOL Output Current 5.0 rnA VOL = V 01.("",,)

(Low)

11K Input Clamp +10 rnA VIN < Vss or

Current VIN > Vee

10K Output Clamp +25 rnA VOUT < Vss or

Current VOUT > Vee

PRELIMINARY 4·3

Cv.tx®
7dV!Clng the Standards

DC Characteristics

4.4 DC Characteristics

Table 4·5. DC Characteristics (at Recommended Operating Conditions)

Cx486DLC
PARAMETER UNITS NOTES

MIN MAX

VOL Output Low Voltage

IOL = 5 rnA 0.45 V

VOH Output High Voltage V

lOB = -1 rnA 2.4

IOH = -0.2 rnA Vee - 0.5

III Input Leakage Current ±15 !lA 0< VIN<VCC

For all pins except those
listed in Table 4-1.

IIH Input Leakage Current 200 !lA VIN = 2.4

PEREQ Note 1

ILL Input Leakage Current - 400 !lA VIL = 0.45V
A20M#, BSI6#, BUSY#, Note 2
ERROR#, FLUSH#,
KEN#,SUSP#

Icc Active Icc Typical:
25 MHz (CLK2 = 50 MHz) 435 500 rnA
33 MHz (CLK2 = 66 MHz) 520 650 rnA
40 MHz (CLK2 = 80 MHz) 560 700 rnA

Ices" Suspend Mode Icc Typical: Note 3

25 MHz (CLK2 = 50 MHz) 5.0 10.0 rnA
33 MHz (CLK2 = 66 MHz) 7.5 15.0 rnA
40 MHz (CLK2 = 80 MHz) 10.0 20.0 rnA

Icess Standby Icc Typical:
o MHz (Suspended/CLK2 Stopped) 100 250 !lA Note 3

ClN Input Capacitance 10 pF fc = 1 MHz (Note 4)

COLT Output or va Capacitance 12 pF fc = 1 MHz (Note 4)

CeLK CLK2 Capacitance 20 pF fc = 1 MHz (Note 4)

Notes: 1. PEREQ input has an internal pull-down resistor.
2. A20M#, B516#, BU5Y#, ERROR#, FlUSH#, KEN#, and 5U5P# inputs each have an internal pull-up resistor.
3. All inputs at 0.4 or Vcc-O.4 (CMOS levels). All inputs held static, (except ClK2 as indicated). All outputs unloaded

(static Iocr = a rnA).
4. Not 100% tested.

4·4 PRELIMINARY

4.5 AC Characteristics
Tables 4-7, 4-8 and 4-9 list the AC characteristics
including output delays, input setup require­
ments, input hold requirements and output float
delays. These measurements are based on the
measurement points identified in Figures 4-1 and
4-2. The rising clock edge reference level V REFC'

and other reference levels are shown in Table 4-6
below. Input or output signals must cross these
levels during testing.

Figure 4-1 shows output delay (A and B) and
input setup and hold times (C and D). Input
setup and hold times (C and D) are specified
minimums, defining the smallest acceptable

AC Characteristics

sampling window a synchronous input signal
must be stable for correct operation.

4

The outputs: A31-A2, ADS#, BE3#-BEO#, D/C#,
HLDA, LOCK#, MlIO#, RPLVAL#, and WIR#
change only at the beginning of phase one (Figure
4-1). D31-DO (write cycles), RPLSET and
SUSPA# change at the beginning of phase two.

The inputs: BUSY#, D31-DO (read cycles),
ERROR#, HOLD, PEREQ, and READY# are
sampled at the beginning of phase one (Figure 4-1).
A20M#, BSl6#, FLUSH#, IN1R, KEN#, NA#,
NMI, and SUSP# are sampled at the beginning of
phase two.

Table 4·6. Measurement Points for Switching Characteristics

SYMBOL Cx486DLC UNITS

VREFC 2 V

VREF 1.5 V

VIHC Vee - 0.8 V

VILC 0.8 V

VIHD 3 V

VIID a V

PRELIMINARY 4·5

ev.tx®
7-dV!Clng fhe Standards

AC Characteristics

Tx

CLK2:

OUTPUTS:

A31-A2, ADS#,
BE3#-BEO#, D/C#, Valid Valid

HLDA, LOCK#, Output n Output n+l
M1IO#,RPLVAL#, _....:.... ___ .LJ....l.-I.~'-'-~'--__ .,....: __

W/R#

OUTPUTS:

D31-DO, RPLSET,
SUSPA#

INPUTS:
A20M#, BSl6#

FLUSH#,INTR, KEN#,
NA#, NMI, SUSP#

INPUTS:

BUSY#, D31-DO,
ERROR#, HOLD,
PEREQ,READY#

\{HD

LEGEND: A - Maximum Output Delay Specification
B - Minimum Output Delay Specification
C - Minimum Input Setup Specification
D - Minimum Input Hold Specification

MAX

~EF
Valid
Output n+l

'7~

Figure 4·1. Drive Level and Measurement Points for Switching Characteristics

4·6 PRELIMINARY

AC Characteristics 4

~------------Tl--------------~

CLK2
------~-.~

jT4
1702300

Figure 4·2. C1K2 Timing Measurement Points

PRELIMINARY 4·7

Cv.tx®
7dV!clng the Standards

AC Characteristics

Table 4·7. AC Characteristics for Cx486DLC·25
Vcc=5.0V±5%, Tc = 0° to 85°C

25 MHz
SYMBOL PARAMETER MIN MAX FIGURE NOTES

(ns) (ns)

Tl CLK2 Period 20 4-2 Note 1
T2a CLK2 High Time 7 4-2 Note 2
Tlb CLK2 High Time 4 4-2 Note 2
na CLK2 Low Time 7 4-2 Note 2
nb CLK2 Low Time 5 4-2 Note 2
T4 CLK2 Fall Time 7 4-2 Note 2
T5 CLK2 Rise Time 7 4-2 Note 2
T6 A31- A2 Valid Delay 4 2l 4-4,4-7 CL = 50pF
T7 A31- A2 Float Delay 4 30 4-6 Note 3
T8 BE3# - BEO#, LOCK# Valid Delay 4 2l 4-4,4-7 CL = 50 pF
T9 BE3# - BEO#, LOCK# Float Delay 4 30 4-6 Note 3
TlO ADS#, D/C#, M/IO#, 4 21 4-4,4-7 CL = 50 pF

RPLVAL#, W!R#Valid Delay
Tll ADS#, D/C#, M/IO#, 4 30 4-7 Note 3

RPLVAL#, W!R# Float Delay
Tl2 D31-DO Write Data, RPLSET, 7 27 4-4,4-5 CL = 50 pF, Note 5

SUSPA#Valid Delay
Tl2a D31-DO Write Data Hold Time 2 4-6
Tl3 D31-DO Write Data, RPLSET 4 22 4-7 Note 3

Float Delay
Tl4 HLDA Valid Delay 4 22 4-7 CL = 50 pF
TlS A20M#, FLUSH#, KEN#, NA#, 5 4-3 Note 4

SUSP# Setup Time
Tl6 A20M#, FLUSH#, KEN#, NA#, 3 4-3 Note 4

SUSP# Hold Time
Tl7 BS16# Setup Time 7 4-3
Tl8 BS16# Hold Time 3 4-3
Tl9 READY# Setup Time 9 4-3
TlO READY# Hold Time 4 4-3
T2l D31-DO Read Data Setup Time 7 4-3
Tl2 D31-DO Read Data Hold Time 5 4-3
T23 HOLD Setup Time 9 4-3
T24 HOLD Hold Time 3 4-3

T25 RESET Setup Time 8 4-8
T26 RESET Hold Time 3 4-8
T27 NMI, INTR Setup Time 6 4-3 Note 4
Tl8 NMI, INTR Hold Time 6 4-3 Note 4
Tl9 PEREQ, ERROR#, BUSY# 6 4-3 Note 4

Setup Time
no PEREQ, ERROR#, BUSY# 5 4-3 Note 4

Hold Time
Notes are located on page 4-11

4·8 PRELIMINARY

AC Characteristics 4
Table 4·8. AC Characteristics for Cx486DLC·33

Vcc~5.0V±5%,

33 MHz

SYMBOL PARAMETER MIN MAX FIGURE NOTES

ens) ens)

Tl CLK2 Period 15 4-2 Note 1
T2a CLK2 High Time 625 4-2 Note 2
T2b CLK2 High Time 4.5 4-2 Note 2
T3a CLK2 Low Time 625 4-2 Note 2
nb CLK2 Low Time 4.5 4-2 Note 2
T4 CLK2 Fall Time 4 4-2 Note 2
T5 CLK2 Rise Time 4 4-2 Note 2
T6 A31- A2 Valid Delay 4 15 4-4,4-7 CL ~ 50pF
T7 A31- A2 Float Delay 4 20 4-6 Note 3
T8 BE3# - BEO#, LOCK# Valid Delay 4 15 4-4,4-7 CL ~ 50 pF
T9 BE3# - BEO#, LOCK# Float Delay 4 20 4-6 Note 3
TlO ADS#, D/C#, MIlO#, 4 15 4-4,4-7 CL ~ 50 pF

RPLVAL#, W!R#Valid Delay
Tl1 ADS#, D/C#, MIlO#, 4 20 4-7 Note 3

RPLVAL#, W!R# Float Delay
Tl2 D31-DO Write Data, RPLSET, 7 24 4-4,4-5 CL ~ 50 pF, Note 5

SUSPA#Valid Delay
Tl2a D31-DO Write Data Hold Time 2 4-6
Tl3 D31-DO Write Data, RPLSET 4 17 4-7 Note 3

Float Delay
Tl4 HLDA Valid Delay 4 20 4-7 C ~ 50 pF
Tl5 A20M#, FLUSH#, KEN#, NA#, 5 4-3 Note 4

SUSP# Setup Time
Tl6 A20M#, FLUSH#, KEN#, NA#, 2 4-3 Note 4

SUSP# Hold Time
Tl7 BS16# Setup Time 5 4-3
Tl8 BS16# Hold Time 2 4-3
Tl9 READY# Setup Time 7 4-3
T20 READY# Hold Time 4 4-3
T2l D31-DO Read Data Setup Time 5 4-3
T22 D31-DO Read Data Hold Time 3 4-3
T23 HOLD Setup Time 7 4-3
T24 HOLD Hold Time 2 4-3
T25 RESET Setup Time 5 4-8
T26 RESET Hold Time 2 4-8
Tn NMI, INTR Setup Time 5 4-3 Note 4
T28 NMI, INTR Hold Time 5 4-3 Note 4
T29 PEREQ, ERROR#, BUSY# 5 4-3 Note 4

Setup Time
no PEREQ, ERROR#, BUSY# 4 4-3 Note 4

Hold Time
Notes are oeatea on a e "'1--11 pg

PRELIMINARY 4·9

Cv.tx®
~dl'!Cing the Standards

AC Characteristics

Table 4·9. AC Characteristics for Cx486DLC·40
Vcc=5.0V±5%,

40 MHz

SYMBOL PARAMETER MIN MAX FIGURE NOTES

ens) ens)

Il CLK2 Period 12.5 4-2 Note 1
T2a CLK2 High Time 5 4-2 Note 2
T2b CLKl High Time 3.25 4-2 Note 2
T3a CLK2 Low Time 5 4-2 NOle2
T3b CLK2 Low Time 3.25 4-2 Note 2
T4 CLK2 Fall Time 4 4-2 Note 2
T5 CLK2 Rise Time 4 4-2 Note 2
T6 A31-A2 Valid Delay 3 12.5 4-4,4-7 CL = 50 pF
T7 A31- A2 Float Delay 3 17 4-7 Note 3
T8 BE3# - BEO#, LOCK# Valid Delay 3 12.5 4-4,4-7 CL = 50 pF
T9 BE3# - BEO#, LOCK# Float Delay 3 17 4-7 Note 3
IlO ADS#, D/C#, MlIO#, 3 12.5 4-4,4-7 CL = 50 pF

RPLVAL#, W!R#Valid Delay
III ADS#, D/C#, MlIO#, 3 17 4-7 Note 3

RPL VAL#, W!R# Float Delay
Il2 D31-DO Write Data, RPLSET, 5 20 4-4,4-5 CL = 50 pF, Note 5

SUSPA# Valid Delay
Il2a D31-DO Write Data Hold Time 2 4-6
Il3 D31-DO Write Data, RPLSET 3 14.5 4-7 Note 3

Float Delay
Il4 HLDA Valid Delay 3 17 4-7 C = 50 pF
Il5 A20M#, FLUSH#, KEN#, NA#, 5 4-3 Note 4

SUSP# Setup Time
Il6 A20M#, FLUSH#, KEN#, NA#, 2 4-3 Note 4

SUSP# Hold Time
Il7 BSI6# Setup Time 5 4-3
Il8 BS16# Hold Time 2 4-3
Il9 READY# Setup Time 5 4-3
TlO READY# Hold Time 3 4-3
T2l D31-DO Read Data Setup Time 5 4-3
Tn D31-DO Read Data Hold Time 3 4-3
T23 HOLD Setup Time 4 4-3
Tl4 HOLD Hold Time 2 4-3
T25 RESET Setup Time 4.5 4-8
Tl6 RESET Hold Time 2 4-8
Tn NMI, INTR Setup Time 5 4-3 Note 4
Tl8 NMI, INTR Hold Time 5 4-3 Note 4
Tl9 PEREQ, ERROR#, BUSY# 5 4-3 Note 4

Setup Time
no PEREQ, ERROR#, BUSY# 3 4-3 Note 4

Hold Time
Notes are located on page 4-11

4·10 PRELIMINARY

AC Characteristics 4
Notes for Tables 4-7, 4-8 and 4-9:

1. Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2. These parameters are not tested. They are guaranteed by design characterization.
3. Float condition occurs when maximum output current becomes less than III in magnitude. Float is not 100% tested.
4. The following inputs are allowed to be asynchronous to CLK2: A20M#, BUSY#, ERROR#, FLUSH#, INTR, NMI and PEREQ.

The setup and hold specifications are given for testmg purposes, to assure recognition within a specific ClK2 peliod.
5. T12 minimum time is not 100% tested.

CLK2

READY#

HOLD

D31-DO

PEREQ, ERROR#,
BUSY#

NA#, SUSP#, FLUSH#,
KEN#,A20M#

BS16#

NMI,INTR

Figure 4-3. Input Signal Setup anell Hold Timing

PRELIMINARY

1709500

4-'11 'II

Cv.tx® AC Characteristics
~dV!Clng the Standards

CLK2

BE3#-BEO#,
LOCK#

ADS#, D/C#,
MlIO#, RPLVAL#, W!R#

A31-A2

RPLSET, SUSPA#

Tx Tx

rigure 4-4. Output Signal Valid Delay TIming

Tl

CLK2

W/R#

Tl2---t:C-~~~
MAX

D31-DO Valid
1709700

Figure 4-5. Data Write Cycle Valid Delay Timing

4-12 PRELIMINARY

Tx

1709W0

CLK2

BE3#-BEO#
LOCK#

ADS#, D/C#,

MIIO#, RPLVAL#,

WIR#

A31-A2

D31-DO (Write Data),

RPLSET

HLDA

AC Characteristics 4

CLK2

W/R#

D31-DO 1709800

Figure 4·6. Data Write Cycle Hold Timing

Th Ti orTl

MAX MIN MAX Tl2 ~Ic~ ~~
----'-~~""")I - - - ((((((\(«

T14 __ ~~~ ____ ~

1709900

Figure 4·7. Output Signal Float Delay and HLDA Valid Delay 'liming

PRELIMINARY 4·13

Cv.tx®
~dV!clng the Standards

AC Characteristics

CLK2

T26 I

RESET

k-T25 1702700

Figure 4·8. RESET Setup and Hold Timing

4·14 PRELIMINARY

CYRIX Cx486DLC'" MICROPROCESSOR
High-Peifonnance 486-Class with
Single-Cycle Execution and On-Chip Cache

Cv.tx®
~dV!Cing the Standards

5. MECHANICAL SPECIIFICATIOINIS

5.1 Pin Assignments

The pin assignments for the Cx486DLC are shown as viewed from the pin side in Figure 5-1 and as
viewed from the top side (component side when mounted on a P.C board) in Figure 5-2. The signal
names are listed in Tables 5-1 and 5-2, sorted by pin number and signal name respectively.

2

3

4

5

6

7

8

9

10

11

12

13

14

ABC D E F G H J K L M N P

888GGGGG88GGGG
808GGGGGGGGGG8
GGGGGG8GGGG8G8
8800 G88
888 888
888 888 888 Cx486DLC 888
888
888
888

PIN VIEW G88
888
888

8GG 888
88888888888888
88888888888888
8G888G888G88GG

Figure 5· 'I. BoHom View of Package Pins

PRELIMIARY

1709200

5·'

Cv.tx®
7-dV!Clng the Standards

Pin Assignments

5-2

p N M L K J H G F E D C B A

,,--,
" "

" A30 :~ A27 ':~ A26 A23; A21 A20 ,:: A17 ;: A16 .", A1S :, A14;:, All AS
- " "',

vss ;~ vee;
,,---,'

--
:: vee '/ A3l " A29 ';:: A24 \' A22 " VSS ;:, A18 ;.: vee ;:, VSS' AI3 ;: AlO ',: A7 AS :: VSS :

',.'

" ,

A~~ :'. ~9. ',: ~_6)~ A4. :':. A3 :.

. . . .
, 030 ;'. VSS :: vcc)::.~~):, A25 ')(vss ';:, A19 ';:: vee';:: vss

.' "

-' " " -
" D26 ;. D27 :', D31

vss ',: D25 D28 "
" ... ,'

:, D24 ;~ vee ;:, vee:

: vee ',: D23 :: VSS :
. . -' '. -,'

, D22 .:~, 021" .,D20

D19 :~ 017 vss "

: 018,\ 016): .~~~.:
" --

Cx486DLC

TOP VIEW

:, vee:: vss :':, vee:
,,-

, " "
':RPLSET;:, N/C ;:, VSS :
, ,", '.

--
',RPLVAl':', INTR :' vee:

:,PEREQ;:, NMr.):.E~~.~~'

: RESET::, BUSY/':':, VSS ;

: vss " vss D/Ct

"

.. 014 ;:: 012 \' 010 ::, vee' 07;: VSS , '
', '

DO ;: vee):, ~~)':, 8EOI::,VCC):, vee ;:, KENI)~MJIO#:'

, " '
", .

~ .Ol~. ;:, .011 ;': vee.\ 08 ; ~~. ;. vss .'::, 01 .: :,REAO~~: :, ~~~:: FLUSH#\ NAt ,::, BEll .: ~ BE21 : ~ BE3#':-

-- '-', ,.- .'-',

Figure 5-2. Top View of Package Pins

PRELIMINARY

2

3

4

5

6

7

8

9

10

11

12

13

14

1709100

Pin Assignments 5

Table 5- 1. Signal Names Sorted by Pin Number

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal

No. Name No. Name No. Name No. Name No. Name No. Name

Al VCC B9 BU5Y# D3 A9 HI Al7 Ll3 DS N7 VCC

A2 V55 BIO WfR# D12 VCC H2 AIS Ll4 D6 NS 023

A3 A3 Bll VSS D13 NA# H3 Al9 Ml A26 N9 D21

A4 SUSP# Bl2 KEN# Dl4 HOLD Hl2 DO M2 A29 NIO Dl7

A5 VCC B13 BE2# El Al4 H13 Dl M3 VCC Nll Dl6

A6 VSS Bl4 VSS E2 A13 H14 02 M4 V5S Nl2 Dl2

A7 VCC Cl AS E3 Al2 J 1 A20 M5 D31 N13 Dll

A8 ERROR# C2 A7 El2 BEO# J2 VSS M6 028 Nl4 D9

A9 VSS C3 A6 E13 FLUSH# J3 VSS M7 VCC PI A30

AlO VCC C4 A2 El4 ADS# Jl2 VSS M8 VSS P2 VCC

All D/C# C5 VCC Fl Al5 J13 VSS M9 020 P3 030

Al2 MIlO# C6 RPLSET F2 VSS Jl4 03 MIa VSS P4 D29

A13 8E3# C7 RPLVAL F3 VSS Kl All Mll Dl5 P5 026

Al4 VCC C8 PEREQ Fl2 CLK2 K2 A22 Ml2 DIO P6 VSS

81 VSS C9 RESET F13 A20M# K3 A25 Ml3 VCC P7 D24

82 AS CIa LOCK# Fl4 VSS Kl2 D7 Ml4 HLDA P8 VCC

83 A4 Cll VSS Gl Al6 K13 D5 Nl An P9 D22

84 SUSPA# Cl2 VCC G2 VCC Kl4 D4 N2 A31 PIa Dl9

B5 VS5 C13 BEl# G3 VCC Ll A23 N3 VS5 Pll Dl8

86 N/C Cl4 B516# Gl2 VCC L2 A24 N4 VCC Pl2 Dl4

B7 INTR Dl All G13 READY# L3 A28 N5 D27 P13 Dl3

B8 NMI 02 Ala G14 VCC Ll2 VCC N6 025 Pl4 VSS

PRELIMINARY 5-3

Cv.tx®
~dV!cing the Standards

Pin Assignments

Table 5-2. Pin Numbers Sorted by Signal Name

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin

Name No. Name No. Name No. Name No. Name No. Name No.

A2 e4 A23 Ll 04 Kl4 026 P5 SUSP# A4 VSS A2

A3 A3 A24 L2 05 K13 027 N5 SUSPA# B4 VSS A6

A4 B3 A25 K3 06 Ll4 028 M6 vee Al VSS A9

A5 B2 A26 Ml 07 Kl2 029 P4 vee A5 VSS Bl

A6 e3 A27 Nl 08 Ll3 030 P3 vee A7 VSS B5

A7 C2 A28 L3 09 Nl4 031 M5 vee AIO VSS Bll

AS Cl A29 M2 DlO Ml2 ERROR# AS VCC Al4 VSS B14

A9 03 A30 PI Dll N13 FLUSH# E13 VCC e5 VSS ell

AIO 02 A31 N2 012 Nl2 HLDA Ml4 vee Cl2 VSS F2

All 01 AOS# El4 Dl3 P13 HaLO 014 vee Dl2 VSS F3

Al2 E3 BEO# El2 014 Pl2 lNTR B7 vee G2 VSS F14

A13 E2 BEl# e13 Dl5 MIl KEN# Bl2 VCC G3 VSS J2

Al4 El BE2# B13 Dl6 Nll LOCK# ClO vee Gl2 VSS J3

Al5 Fl BE3# A13 Dl7 NIO MlIO# Al2 vee Gl4 VSS Jl2

Al6 Gl BSI6# Cl4 018 Pll NA# Dl3 vec Ll2 VSS J13

Al7 HI BUSY# B9 Dl9 PIO N/C B6 vee M3 VSS M4

AlB H2 CLK2 Fl2 020 M9 NMI B8 VCC M7 VSS M8

Al9 H3 O/C# All 021 N9 PEREQ C8 VCC M13 VSS MIO

A20 Jl 00 Hl2 022 P9 REAOY# Gl3 VCC N4 VSS N3

A20M# F13 01 H13 023 NS RESET C9 VCC N7 VSS P6

A2l Kl 02 H14 024 P7 RPLSET C6 VCC P2 VSS Pl4

A22 K2 03 J14 025 N6 RPLVAL C7 VCC P8 WIR# BIO

5-4 PRELIMINARY

Package Dimensions

5.2 Package Dimensions

r::: ~ (i) s ~ 8 LC~
"! co C') co '<i -o~

~ ~ i'9. ::;~

0:5
0 0 0 0 0 0'"

'" '" '" '" '" ",N
q "! "< "t <q ..ql':

PIN #1 INDEX MARK
I I I I I I I I I (ON TOP SIDE)

\-------+-------------,- .725 (18.4)

1 :@000000'000000 0 .650(16.5)

2 00000001000000 0 .550(14.0)

3 GG8GG8818888888 .450(11.4)

4 888 88 .350(8.89)

5 G G 8 I 8 G 0 .250 (6.35)

6 0 0 0 I 8 8 0 .150 (3.81)

: . ~ ~ ~ _ . _ .1_ . .~ ~ ~ .ogo (1.27)

I
9 8 8 8 Cx486DLC 0 0 0

10 0 0 8 PIN VIEW 0 0 0
11 008 I 000
12 GG8G888888888G
13 000 G 0 0 GI8 8 G 8 8 0 0
14 @ 0 8GGGGI80G800 0

ABC D E F GIH J K L M N P

.001 (0.025)R
MINTYP

SWEDGE PIN STANDOFF
(4) PLACES

DIA TYP

11--.050 (1.27)

I MAXTYP

Ii

.018 (0.47) ~ J--~
.180 (4.57)

.065 (1.65) DIA TYP BRAZE PAD

1------ 1.450 (36.83) -------t

.120 (3.05) -

Figure 5·3. 1 32·Pin PGA Package Dimensions

PRELIMINARY

1709301

5·5

Cv.tx®
7.dV!C1n9 the Standards

Thermal Characteristics

5.3 Thermal Characteristics

The Cx486DLC is designed to operate when case temperature is between 00 - 850 C. The case tem­
perature is measured on the top center of the package. The maximum die temperature (Tj m) and the
maximum ambient temperature (Tama) can be calculated using the following equations.

TJ max = Tc + (P max X Elj)

T =T-(P xEl)
a max J max JOl

where:
T = Maximum average junction temperature (OC)

J max

Tc = Case temperature at top center of package COe)
P max = Maximum device power dissipation (W)
El = Junction-to-case thermal resistance (oaw)

JC

Ta max = Maximum ambient temperature (OC)
T = Average junction temperature COe)

J

El = Junction-to-ambient thermal resistance (oaw)
p

Values for Elja and EljC are given in Table 5-3 for various airflows for the 132-lead ceramic pin grid array
package.

5·6

Table 5·3. Package Thermal Resistance and AirFlow
1 32·Pin Ceramic PGA Package

THERMAL RESISTANCE

AIRFLOW
(OC/W)

(Fl/MIN)
El El

p JC

a 20 3

100 18 3

250 14 3

500 10 3

PRELIMINARY

CYRIX Cx486DLC'" MICROPROCESSOR
High-Performance 486-Class CPU with
Single-Cycle Execution and On-Chip Cache

Cv.tx®
7dV!Cing the Stondards

6. INSTRUCTION SET 6.1 General Instruction

This section summarizes the Cx486DLC instruc­
tion set and provides detailed information on the
instruction encodings. All instructions are listed
in the Instruction Set Summary Table
(Table 6-16), which prOvides information on the
instruction encoding, which flags are effected, and
the instruction clock counts for each instruction.
The clock count values are based on the assump­
tions described in section 6.3.

Format

All of the Cx486DLC machine instructions follow
the general instruction format shown in Figure
6-1. These instructions vary in length and can
start at any byte address. An instruction consists
of one or more bytes that can include: prefix
byte(s), at least one opcode byte(s), mod rim byte,
s-i-b byte, address displacement byte(s) and
immediate data byte(s). An instruction can be as
short as one byte and as long as 15 bytes. If there
are more than 15 bytes in the instruction a
general protection fault (error code of 0) is
generated .

. p p p p p p p PiT T T T T T TTl mod R R R rim I ss index base I d321161s : none id321161s i n~ne
7 07 0765320765320

~~~ ~ 
optional prefix byte(s) op-code mod rim s-i-b address 

(one or two bytes) byte byte displacement 

p; prefix bit 
T ; apcade bit 
R ; apcade bit or reg bit 

\..~ ___ ~y _____ ..J (4,2,1 bytes, 
or none) 

register and address 
mode specifier 

Figure 6·1. General Instruction Format 

PRELIMINARY 

immediate 
data 

(4,2, 1 bytes, 
or none) 

1703101 



Cv.tx® 
~d~Clng the Standards 

Instruction Fields 

6.2 Instruction Fields 

The general instruction fonnat shows the larger 
fields that make up an instruction. Certain 
instructions have smaller encoding fields that vary 
according to the class of operation. These fields 

define infonnation such as the direction of the 
operation, the size of the displacements, register 
encoding and sign extension. All the fields are 
described in Table 6-1 and the subsequent 
paragraphs provide greater detail. 

Table 6·1. Instruction Fields 

FIELD NAME DESCRIPTION NUMBER OF BITS 

Prefix SpeCifies segment register override, address and operand size, repeat 1 byte I prefix 

elements in string instruction, LOCK# assertion. 

Opcode Identifies instruction operation. lor 2 bytes 

w Specifies if data is byte or full size (full size is either 16 or 32 bits). 1 

d Specifies direction of data operation. 1 

s Specifies if an immediate data field must be sign-extended. 1 

reg General register specifier. 3 

mod rim Address mode specifier. 2 for mod' 3 for rim 

ss Scale factor for scaled index address mode. 2 

index General register to be used as index register. 3 

base General register to be used as base register. 2 

sreg2 Segment register for CS, SS DS and ES. 2 

sreg3 Segment register for C5, 55, D5 ES F5 and GS. 3 

eee Control, debug and test register specifier. 3 

Address Address displacement operand. 1,2 or 4 bytes 

displacement 

Immediate data Immediate data operand. 1,2 or 4 bytes 

6·2 PRELIMINARY 



Instruction Fields 6 

Prefixes 

Prefix bytes can be placed in front of any instruc­
tion. The prefix modifies the operation of the 
next instruction only. When more than one 
prefix is used, the order is not important. There 
are five type of prefixes as follows: 

4. Repeat is used with a string instruction 
which causes the instruction to be repeated 
for each element of the string. 

5. Lock is used to assert the hardware LOCK# 
signal during execution of the instruction. 

1. Segment Override explicitly specifies which 
segment register an instruction will use. 

Table 6-2 lists the encodings for each of the available 
prefix bytes. The operand size and address size 
prefixes allow the individual overriding of the 
default value for operand size and effective 
address size. The presence of these prefixes select 
the opposite (non-default) operand size ancl!or 
effective address size as the case may be. 

2. Address Size switches between 16- and 32-bit 
addressing. Selects the inverse of the default. 

3. Operand Size switches between 16- and 32-bit 
addressing. Selects the inverse of the default. 

Table 6·.2. Dnsllrructiion Prefix Summa." 

PREFIX ENCODING DESCRIPTION 

E5: 26h Overide segment default, use E5 for memory operand 

C5: 2Eh Overide segment default, use C5 for memory operand 

55: 36h Overide segment default, use SS for memory operand 

DS: 3Eh Overide segment default, use DS for memory operand 

FS: 64h Overide segment default, use FS for memory operand 

GS: 65h Overide segment default, use GS for memory operand 

Operand Size 66h Make operand size attribute the inverse of the default 

Address Size 67h Make address size attribute the inverse of the default 

LOCK FOh Assert LOCK# hardware signal. 

REPNE F2h Repeat the following string instruction. 

REP/REPE F3h Repeat the following string instruction. 

PRELIMINARY 



Cv.tx® 
~d!!Cjng the Standards 

Instruction Fields 

6.2.2 Opcode Field 

The opcode field is either one or two bytes in 
length and specifies the operation to be per­
fonned by the instruction. Some operations have 
more than one opcode, each specifying a different 
fonn of the operation. Some opcodes name 
instruction groups. For example, opcode Ox80 
names a group of operations that have an immediate 
operand, and a register or memory operand. The 

6.2.3 w Field 

group opcodes use an opcode extension field of 
3 bits in the follOwing byte, called the MOD R/lVl 
byte, to resolve the operation type. Opcodes for 
the entire Cx486DLC instruction set are listed in 
the Instruction Set Summary Table. The opcodes 
are given in hex values unless shown within 
brackets ([ D. Values shown in brackets are 
binary values. 

The i-bit w field indicates the operand size during 16- and 32- bit data operations. 

Table 6·3. w Field Encoding 

w FIELD OPERAND SIZE OPERAND SIZE 
16·81T DATA OPERATIONS 32·81T DATA OPERATIONS 

0 8 Bits 8 Bits 

1 16 Bits 32 Bits 

6.2.4 d Field 
The d field detennines which operand is taken as the source operand and which operand is taken as 
the destination. 

Table 6·4. d Field Encoding 

d FIELD DIRECTION OF OPERATION SOURCE OPERAND DESTINATION OPERAND 

0 Register --> RegisterlMemory reg mod rim or 

mod ss-index-base 

1 RegisterlMemory --> Register mod rim or reg 
mod ss-index-base 

6·4 PRELIMINARY 



Instruction Fields I 

6.2.5 reg Field 
The reg field detennines which general registers are to be used. The selected register is dependent on 
whether 16- or 32- bit operation is current and the status of the "w" bit. 

Table 6-5. reg Field Encoding 

reg 16-BIT 32-BIT 16-BIT 16-BIT 32-BIT 32-BIT 
OPERATION OPERATION OPERATION OPERATION OPERATION OPERATION 
w Field Not w Field Not w=O w=1 w=O w=1 

Present Present 

000 AX EAX AL AX AL EAX 
001 CX ECX CL CX CL ECX 

010 OX EOX OL OX OL EOX 
011 BX EBX BL BX BL EBX 
100 SP ESP AH 5P AH ESP 
101 BP EBP CH BP CH EBP 

110 51 E51 OH 51 OH ES1 
111 D! ED! BH D! BH ED! 

PRELIMINARY 6-5 



Cv.tx® 
~d!Clng the Standards 

Instruction Fields 

6.2.6 mod and rim Fields 
The mod and rim sub-fields, within the mod rim 
byte, select the type of memory addressing to be 
used. Some instructions use a fixed addressing 
mode (e.g., PUSH or POP) and therefore, these 

fields are not present. Table 6-6 lists the address­
ing method when 16-bit addressing is used and a 
mod rim byte is present. Some mod rim field 
encodings are dependent on the w field and are 
shown in Table 6-6A. 

Table 6·6. mod rim Field Encoding 

mod rim 1 6·BII ADDRESS 32·BII ADDRESS MODE 
MODE with mod rim Byte and 

with mod rim Byte No s·l·b Byte Present 

00000 DS:[BX+Slj DS:[EAXj 

00001 DS:[BX+Dlj DS:[ECXj 

00010 55: [BP+Slj DS:[EDXj 

00011 55: [BP+Dlj DS:[EBXj 

00100 DS:[Slj s-i-b is present (See 6.2.7) 

00101 DS:[Dlj DS:[d32j 

00110 DS:[d16j DS:[ESlj 

00111 DS:[BXj DS:[EDlj 

01000 DS:[BX+SI+d8j DS:[EAX+d8j 

01001 DS:[BX+Dl+d8j DS:[ECX+d8j 

01010 SS:[BP+SI+d8j DS:[EDX+d8j 

01011 SS:[BP+DI+d8j DS:[EBX+d8j 

01100 DS:[SI+d8j s-i-b is present (See 6.2.7) 

01101 DS:[Dl+d8j 55: [EBP+d8j 

01110 SS:[BP+d8j DS: [ESI+d8j 

01111 DS:[BX+d8j DS:[EDl+d8j 

10 000 DS:[BX+SI+d16j DS:[EAX+d32j 

10001 DS:[BX+Dl+d16j DS:[ECX+d32j 

10010 SS:[BP+SI+d16j DS: [EDX+d32j 

10011 SS:[BP+Dl+d16j DS:[EBX+d32j 

10 100 DS:[SI+d16j s-i-b is present (See 6.2.7) 

10101 DS:[Dl+d16j SS:[EBP+d32j 

10110 SS:[BP+d16j DS:[ESI+d32j 

10 III DS:[BX+d16j DS:[EDl+d32j 

11 000-11 111 See Table 6-6A See Table 6-6A 

6·6 PRELIMINARY 



Instruction Fields 6 

Table 6·6A. mod rIm Field Encoding Dependent on w Field 

mod rim 16·BIT 16·BIT 32·BIT 32·BIT 
OPERATION OPERATION OPERATION OPERATION 

w=O w=1 w=O w=1 

11 000 AL AX AL EN( 

11001 CL CX CL ECX 
11 010 DL DX DL EDX 
11 all' BL BX BL EBX 
11100 AH SP AH ESP 
11101 CH BP CH EBP 
11110 DH SI DH ESl 
11111 BH D! BH ED! 

PRELIMINARY 6·7 



ev.tx® 
7.d!Clng the Standards 

Instruction Fields 

6.2.7 mod and base Fields 
In Table 6-6A, the note "s-i-b present" for certain 
entries forces the use of the mod and base field as 
lis~ed in Table 6-7. 

Table 6·7. mod base Field Encoding 

mod base 32·BIT ADDRESS MODE 
with mod rim and 
s.l.b Bytes Present 

00000 D5:[EAX+(scaled index)] 

00001 D5:[ECX+(scaled index)] 

00010 D5: [EDX+(scaled index)] 

00011 D5: [EBX+(scaled index)] 

00100 55: [E5P+(scaled index)] 

00101 D5:[d32+(scaled index)] 

00110 D5: [E5I+(scaled index)] 

00111 D5: [EDI+(scaled index)] 

01000 D5: [EAX+(scaled indexhd8] 

01001 D5:[ECX+(scaled index)+d8] 

01010 D5: [EDX+(scaled index)+d8] 

01011 D5: [EBX+(scaled indexhd8] 

01100 55: [E5P+(scaled index)+d8] 

01101 55: [EBP+(scaled index)+d8] 

01110 D5: [E5I+(scaled index)+d8] 

Ollli D5:[EDI+(scaled indexhd8] 

10000 D5: [EAX+(scaled index)+d32] 

10 001 D5: [ECX+(scaled indexhd32] 

10010 D5: [EDX+(scaled indexhd32] 

10011 D5: [EBX+(scaled index)+d32] 

10100 55: [E5P+(scaled index)+d32] 

10101 55: [EBP+(scaled index)+d32] 

10110 D5: [E5I+(scaled index)+d32] 

10111 D5: [EDI+(scaled index)+d32] 

6.2.8 ss Field 
The ss field (Table 6-8) specifies the scale factor 
used in the offset mechanism for address calcula­
tion. The scale factor multiplies the index value 
to provide one of the components used to calcu­
late the offset address. 

Table 6·8. ss Field Encoding 

55 FIELD SCALE FACTOR 

00 xl 

01 x2 

10 x4 

11 x8 

6.2.9 index Field 
The index field (Table 6-9) specifies the index 
register used by the offset mechanism for offset 
address calculation. \\Then no index register is 
used (index field = 100), the ss value must be 00 
or the effective address is undefmed. 

Table 6·9. index Field Encoding 

Index FIELD INDEX REGISTER 

000 EAX 

001 ECX 

010 EDX 

011 EBX 

100 none 

101 EBP 

110 E51 

111 EDI 

6·8 PRELIMINARY 



Instruction Fields I 

6.2.1 0 sreg2 Field 6.2. 11 sreg3 Field 

The sreg2 field (Table 6-10) is a 2-bit field that 
allows one of the four 286-type segment registers 
to be specified. 

The sreg3 field (Table 6-11) is 3-bit field that is 
similar to the sreg2 field, but allows use of the FS 
and GS segment registers. 

Table 6·1 O. sreg2 Field Encoding Table 6· 'D 1. sreg3 Field Encoding 

sreg2 FIELD SEGMENT REGISTER SELECTED sreg3 FIELD SEGMENT REGISTER SELECTED 

00 E5 000 E5 

01 C5 001 C5 

10 55 010 5S 

11 D5 011 D5 

100 F5 

101 G5 

110 undefined 

III undefined 

6.2.1 2 eee Field 
The eee field is used to select the control, debug and test registers as indicated in Table 6-12. The 
values shown in Table 6-12 are the only valid encodings for the eee bits. 

Table 6· 12. eee Field Encoding 

eee FIELD REGISTER TYPE BASE REGISTER 

000 Control Register CRO 

010 Control Register CRl 

all Control Register CR3 

000 Debug Register DRO 

001 Debug Register DRI 

010 Debug Register DRl 

all Debug Register DR3 

110 Debug Register DR6 

III Debug Register DR7 

all Test Register TR3 

100 Test Register TR4 

101 Test Register TRS 

110 Test Register TR6 

III Test Register TR7 

PRELIMINARY 



Cv.tx® 
~d!c'ng the Standards 

Flags 

6.3 Flags 

The Instruction Set Summary Table lists nine flags 
that are affected by the execution of instuctions. 
The conventions shown in Table 6-13 are used to 
identify the different flags. Table 6-14 lists the 
conventions used to indicate what action the 
instuction has on the particular flag. 

Table 6- 1 3. Flag Abbreviations 

ABBREVIATION NAME OF FLAG 

OF Overflow Flag 

DF Direction Flag 

IF Interrupt Enable Flag 

TF Trap Flag 

SF Sign Flag 

ZF Zero Flag 

AF Auxiliary Flag 

PF Parity Flag 

CF Carry Flag 

Table 6- 1 4. Action of Instrvdion on Flag 

INSTUCTION 
ACTION TABLE 

SYMBOL 

x Flag is modified by the instruction. 

- Flag is not changed by the instruction. 

0 Flag is reset to "0". 

1 Flag is set to "I". 

6.4 

6.4.1 

Clock Counts 

Assumptions 
The following assumptions have been made in 
presenting the clock count values for the 
individual instructions: 

1. The instruction has been prefetched, 
decoded and is ready for execution. 

2. Bus cycles do not require wait states. 
3. There are no local bus HOLD requests 

delaying processor access to the bus. 
4. No exceptions are detected during instruc­

tion execution. 
5. If an effective address is calculated, it does 

not use two general register components. 
One register, scaling and displacement can 
be used within the clock count shown. 
However, if the effective address calcula­
tion uses two general register components, 
add 1 clock to the clock count shown. 

6. All clock counts assume aligned 32-bit 
memory/IO operands for cache miss 
counts. 

7. If instructions access a misaligned 32-bit 
operand address, add 2 clocks for read or 
write and add 4 clock counts for read and 
write. 

6-10 PRELIMINARY 



Clock Counts & 

6.4.2 Abbreviations 
The clock counts listed in the Instruction Set Summary Table are grouped by operating mode and 
whether there is a registerlcache hit or a cache miss. In some cases, more than one clock count is 
shown in a column for a given instruction, or a variable is used in the clock count. The abbreviations 
used for these conditions are listed in Table 6-15. 

Table 6·' 5. Clock Count Abbreviations 

CLOCK EXPLANATION 
COUNT 

SYMBOL 

/ Register operand/memory operand. 

n Number of times operation is repeated. 

L Level of the stack frame. 

I Condition jump taken I conditional jump not taken. 

\ CPL::; IOPL \ CPL > IOPL. 

PRELIMINARY 6·11 



01 • .. 
~ 

! c 
J 

i 
= 

Table 6-16. Inslructiol1l Set Summary 
REAL PROTECTED 

INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 
COUNT COUNT 

OF DF IF TF SF :ZF AF PF CF Reg/ ,I Cache Reg/ I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

I AAA ASCII Adjust AL aJterAdd 137 L - - - - x - x 1-- 4- r= 4 

IMDASCIIA~U5tAXb~JoreDivide I-D5 OA - I - ~- -=- x--;;-~-=-1-4- r - r 4 

I AAM ASCII Adjust AX aJter M~Itiply- I D4 OA I - - x x - x - 1-- 16 r-r16 -1- =r 
AAS ASCII Adjust AL aJter Subtract 3F ------x-x 

ADC Add with Carry x x x x x x 

Register to Register 1 [OOdw] [11 reg rim] 
Register to Memory 1 [OOOw] [mod reg rim] 
Memory to Register 1 [OOlw] [mod reg rim] 
Immediate to RegisteriMemory 8 [OOsw] [mod 010 rlm]# 
Immediate to Accumulator 1 [01 Ow] # 
-- ---- --- --- -- -----------------

ADD Integer Add 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to RegisterlMemory 
Immediate to Accumulator 

AND Boolean AND 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to RegisterlMemory 
Immediate to Accumulator 

ARPL Adjust Requested Privilege Level 
From Register/Memory 

x - - x x x x x 
o [OOdw] [11 reg rim] 
a [OOOw] [mod reg rim] 
a [001 w] [mod reg rim] 
8 [OOsw] [mod 000 r/m]# 
o [010w] # 

0 x x x 0 
2 [OOdw] [11 reg rim] 
2 [OOOw] [mod reg rim] 
2 [OOlw] [mod reg rim] 
8 [OOsw] [mod 100 r/m]# 
2 [010w] # 

- - - - - x - - -
63 [mod reg rim] 

# '" immediate data ++ '" 16-bn displacement x '" modified 
+ '" 8-bit displacement +++ = 32-blt displuccment (full) -" unchanged 

b h 
1 1 
3 5 3 5 
3 5 3 5 

1/3 5 1/3 5 
1 1 

-- ----- -- --- -- - -

b h 
1 1 
3 5 3 5 
3 5 3 5 

1/3 5 1/3 5 
1 1 

b h 
1 1 
3 5 3 5 
3 5 3 5 

1/3 5 113 5 
1 1 

I 

I 

I 

I 

I 

o 
~­
I"R~ 
~ 
~ 

'" 



,. 
II .. 
i 
i 
== 

01 • .. 
Cot 

INSTRUCTION 

BOUND Check Array Boundaries 
If Out of Range (lnt 5) 
If In Range 

BSF Scan Bit forward 
RegisterlMemory, Register 

BSR Scan BH Reverse 
RegisterlMemory, Register 

OPCODE FLAGS 

OF DF IF TF SF ZF AF PF CF 

62 [mod reg rim] 

- - - - - x - - -

OF BC [mod reg rim] 

OF Be [mod reg rim] 

REAL PROTECTED 
MODE CLOCK MODE CLOCK 

COUNT COUNT 

Reg/ I Cache 
Cache Hit Miss 

Reg/ I Cache 
Cache Hit Miss 

I BSWAP Byte Swap IOFC[I;~il 4 4 

BT Test Bit 
RegisterlMemory, Immediate 
RegisterlMemory, Register 

BTC Test Bil and Complement 
Register/Memory, Immediate 
RegistcrlMemory, Register 

BTR Test Bit and Reset 
Register/Memory, Immediate 
Regisler/Memory, Register 

BTS Test Bit and Set 
RegislerlMemory 
Register (short form) 

- - - - - - - - x 

BA [mod 100 r/m]# 
A3 [mod reg rim] 

SA [mod II a r/m]# 
B3 [mod reg rim] 

- x 

- - - - - - - - x 

# = immediate data ++ = 16-blt displacement x = modified 

-+ = 8-bit displacement +++ = 32-bll displacement (full) - = unchanged 

NOTES 

Real I Protected 
Mode Mode 

en 



o • .. 
.III 

i! c 
:I 

i 
== 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF IF SF :r.F A!I' PF CF Reg/ I Cache Reg/ I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

CALL Subroutine Call - - - - b h,j,k,r 
Direct Within Segment E8 +++ 7 7 
RegisteriMemory Indirect Within Segment FF Imod 010 rlml 8/9 10 8/9 10 
Direct Intersegment 9A lunsigned full offset, 12 30 

Call Gate to Same Privilege selector] 41 41 
Call Gate to Different Privilege No P 83 83 
Call Gate to Different Privilege x P's 81+4x 81+4x 
16-bit Task to 16-bit TSS 235 235 
16-bit Task to 32-bit TSS 262 265 
16-bit Task to V86 Task 179 182 
32-bit Task to 16-bit TSS 238 238 
32-bit Task to 32-bit TSS 265 268 
32-bit Task to V86 Task 182 185 

Indirect Intersegment FF Imod all rlml 14 17 14 34 
Call Gate to Same Privilege 43 43 
Call Gate to Different Privilege No P 85 85 
Call Gate to Different Privilege Level x P's 86+4x 86+4x 
16-bit Task to 16-bit TSS 237 240 
16-bit Task to 32-bit TSS 264 270 
16-bit Task to V86 Task 181 187 
32-bit Task to 16-bit TSS 240 243 
32-bit Task to 32-bit TSS 267 273 
32-bit Task to V86 Task 184 190 

-- ------ ~- ~ -~~ -----

I CBW Convert Byte to Word --- J 98 - - - - - - - - - 3 3 

CDQ Convert Doubleword to Quadword 99 

I CLC ClearCany Flag I F8 - - - - - - - - 0-1 I -1--r- 1'-]-

I CLD Clear Direction Flag I FC ~ ~ ~ ~.~ a 1--- -

I CLI Clear Interrupt Flag En I - - a - - - - - -17m 

I CLTS Clear T ash Switched Flag V06 5-r 
P = Parameters # = immediate data ++ = 16-bit displacement x = modified 

+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

o 
~ 
!R"~ 
~ 
I> 

'" 



" II c 
I: 

I 
== 

0-• .. 
VI 

INSTRUCTION OPCODE FLAGS 

OF DF IF IF SF %F AI PF CF 

1 CMC Complement the Carry Flag 1 F5 1 - - - - - - - x 1 

CMP Compare Integers 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to RegisterlMemory 
Immediate to Accumulator 

CMPS Compare String 

CMPXCHG Compare and Exchange 
Registerl, Register2 
Memory, Register 

3 [lOdw] [11 reg r/m[ 
3 [lOlw] [mod reg rim] 
3 ]lOOw] ]mod reg rim] 
8 [OOsw] ]mod III r/m]# 
3 ]llOw] # 

A ]Ollw] 

OF B [OOOw] ]ll reg2 regl] 
OF B [OOOw] [mod reg rim] 

x x x x x x 

x---xxxxx 

x---xxxxx 

REAL 
MODE CLOCK 

COUNT 

Reg/ I Cache 
Cache Hit Miss 

I 
3 5 
3 5 

1/3 5 
I 

1 CWD Convert Word to D;~blew;;rd 1 99 I-=- .~ r 1---

CWDE Convert Word to Doubleword 
Extended 

98 

PROTECTED 
MODE CLOCK 

COUNT 

Reg/ I Cache 
Cache Hit Miss 

I 
3 5 
3 5 

113 5 
I 

[DAA Dedmal Adjust AL aJterAdd In· - 1- x x x x x L4--1 4 

DAS Decimal Adjust AL aJter Subtract 

DEC Decrement by 1 
RegisteriMemory 
Register (short [ann) 

DIY UnSigned Divide 
Accumulator by RegisterlMemory 

Divisor: Byte 
Word 
Doubleword 

2F ---xxxxx 

x---xxxx-
F ]lllw] ]mod 001 rim] 
4 ]1 reg] 

F lOll w] [mod 110 rim] . 

# '" immedIate data ++ = 16-bi\ displacement 
+ = 8-bit displacement +++ '" 32-bit displacement (full) 

. -

x '" modified 
- = unchanged 

14/15 17 14/15 17 
22123 24 22/23 24 
38/39 40 38/39 _~O_ 

NOTES 

Real I Protected 
Mode Mode 

= 

b h 

b,e e,h 

L_ -----

en 



o 
I ... 
o 

"III 
I: .. 
i 
i 
== 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK 

COUNT COUNT 

OF DF IF TF SF :r.F All' PF CF Reg/ I Cache Reg/ I Cache 
Cache Hit Miss Cache Hit Miss 

ENTER Enter New Stach frame C8 ++ [8-bit Level[ - -
Level = 0 7 7 
Level = 1 10 10 10 10 
Level (Ll > 1 6+4*L 6+4*L 6+4*L 6+4*L 

[HLTlfalt ---I F4 [ - - - - - - - - [ T [-==-r 
IOIV Integer (Signed) Divide 
Accumulator by RegisterlMemory 

Divisor: Byte 
Word 
Doubleword 

IMUL Integer (Signed) Multiply 
Accumulator by RegisterlMemory 

Multiplier: Byte 
Word 
Doubleword 

Register with RegisterlMemory 
Multiplier: Byte 

Word 
Doubleword 

RegisterlMemory with Immediate to Regtster2 
Multiplier: Byte 

Word 
Doubleword 

IN Input Jrom 110 Port 
Fixed Port 
Variable Port 

INC Increment by 1 
RegisterlMemory 
Register (short form) 

f [OHw[ [mod III rim] 

_. ----

F [Ollw] [mod 101 rim] 

OF AF [mod reg rim] 

6 [lOsl] [mod reg rim] # 

E [OlOw] [port number] 
E [llOw] 

- - -

--

x x 

x---xxxx-
F [Ill w] [mod 000 rim] 
4 [0 reg] 

# '" immediate data ++ = 16~bit displacement 
+ = 8-hit displacement +++ = 32-bit displacement (full) 

x = modified 
- '" unchanged 

19/20 22 19120 22 
27128 29 27128 29 
43/44 47 43/44 47 

3/5 7 3/5 7 
3/5 7 3/5 7 
7/9 13 7/9 13 

3/5 7 3/5 7 
3/5 7 3/5 7 
7/9 13 7/9 13 

3/5 7 3/5 7 
3/5 7 3/5 7 
7/9 13 7/9 13 

NOTES 

Real I Protected 
Mode Mode 

b h 

b,e e,h 

b h 

I 

i 

o 
~ 
I"R~ 
~ 
'* '" 



'a 
;I .. 
i 
i 
= 

01 • .. ... 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 
OF DF IF IF SF %F AF PF CF Regl I Cache Regl I Cache Real I Protected 

Cache Hit Miss Cache Hit Miss Mode Mode 
--

I INS Input Stringfrom 110 Port I 6 [!lOwl ~ - - - - - - 1-20 ] 20 _. 6119- J6f2D ··-b-I-h-, m ~ 

INT Software Interrupt - x a - b,e g,j,k,r 
INTi CD [il 14 16 
Protected Mode: 
Interrupt or Trap to Same Privilege 49 SO 
Interrupt or Trap to Different Privilege 77 78 
16-bit Task to 16-bit TSS by Task Gate 233 234 
16-bit Task to 32-bit TSS by Task Gate 260 264 
16-bit Task to V86 by Task Gate 177 181 
16-bit Task to 16-bit TSS by Task Gate 236 237 
32-bit Task to 32-bit TSS by Task Gale 263 267 
32-bit Task to V86 by Task Gate ISO 184 
V86 to 16-bit TSS by Task Gate 236 237 
86 to 32-bit TSS by Task Gate 263 267 
86 to Privilege a by Trap Gate/lnt Gate 93 94 
INT3 CC 14 16 
Protected Mode: 
Interrupt or Trap La Same Privilege 49 SO 
Interrupt or Trap to Different Privilege 77 78 
16-bit Task to 16-bit TSS by Task Gate 233 234 
16-bit Task to 32-bit TSS by Task Gate .' 260 264 
16-bit Task to V86 by Task Gate 177 181 
32-bit Task 10 16-bil TSS by Task Gate 236 237 
32-bit Task to 32-bit TSS by Task Gate 263 267 

I 

32-bil Task to V86 by Task Gate 180 184 
V86 to 16-bit TSS by Task Gate 236 237 
V86 to 32-bit TSS by Task Gate 263 267 
V86 to Privilege 0 by Trap GatelInt Gale 93 94 

i 
Continued on the next page .. , 

-- '- - -_. 

# '" immeclulle data ++ '" 16-bit displacement x '" modified 
+ = 8-bil uisp1a<.:cmcm +++ = 32-bit displacement (full) - = undlanged 

m 



0-. ... 
• 

,. 
III .. 
i 
i .. 
= 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK 

COUNT COUNT 

OF DF IF TF SF 7.F D PF CF Regl I Cache Regl I Cache 
Cache Hit. Miss Cache Hit Miss 

INT Software Interrupt (Continued) - - x 0 - - -
INTO CE 
IfOF==O 1 1 1 1 
If OF==1 (INT 4) 15 17 
Protected Mode: 
Interrupt or Trap to Same Privilege 49 50 
Interrupt or Trap to Different Privilege 77 78 
16-bit Task to 16-bit TSS by Task Gate 233 234 
16-bit Task to 32-bit TSS by Task Gate 260 264 
16-bit Task to V86 by Task Gate 177 181 
32-bit Task to 16-bit TSS by Task Gate 236 237 
32-bit Task to 32-bit TSS by Task Gate 263 267 
32-bit Task to V86 by Task Gate 180 184 
V86 to 16-bit TSS by Task Gate 236 237 
V86 to 32-bit TSS by Task Gate 263 267 
V86 to Privilege 0 by Trap Gate!lnt Gate 93 94 

ry--NVo Invalidate Cache 1 OF 08 1 - - - - - - - - - 1 4 4 

IINVLPGInvalidateTlllEntry 10F 01 [mod 111 r/ml - - - - - 4 -I -I 4 

IRET Interrupt Return CF x x x x x x x x x 
Real Mode 14 14 
Protected Mode: 

Within Task to Same Privilege 31 33 
Within Task to Different Privilege 66 70 

16-bit Task to 16-bit Task 229 232 
16-bit Task to 32-bit TSS 256 262 
16-bit Task to V86 Task 173 179 
32-bit Task to 16-bit TSS 232 235 
32-bit Task to 32-bit TSS 259 267 
32-bit Task to V86 Task 176 182 

# '" immediate data ++ =' 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

NOTES 

Real I Protected 
Mode Mode 

b.e g.j.k.r 

g.h.j.k.r 

! 

o 
~ 
iR"~ g 
1} 
9c 

'" 



" I: .. 
! 

= := 

01 • .. 
'0 

INSTRUCTION 

'----------- ---- ----

JBaNAEflC Jump on BeiowiNot Above or Equal! 
Carry 
8-bit Displacement 
Full Displacement 

--

JBEflNAjump on Below or EqualiNot Above 
8-bit Displacement 
Full Disolacement 

OPCODE 

- ---

72 + 
OF 82 +++ 
-- ---- ---

76 + 
OF 86 +++ 

REAL PROTECTED 
FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF IF SF :ZP AI' PF CI' Reg/ I Cache Reg/ I Cache Real I Protected 
Cache Hil Miss Cache Hit Miss Mode Mode 

--

- - - - - - - - r 
i 
I 

611 611 
611 611 

IJCXZjumponCXZero --I E3 + - - - - - - - 713 1- nl~ -=r Tr~ 
JEflZjump on EquallZero 
8-bit Displacement 
Full Displacement 

74 + 
OF 84 +++ 

IJEcxij~mponECXZero -I E3 + 1713 r r 713~ -=r T~ 
J~NGEjump on LessINot Greater or Equal 
8-bit Displacement 
Full Displacement 

JLEflNG jump on Less or EqualiNot Greater 
8-bit Displacement 
Full Displacement 

7C + 
OF 8C+++ 

7E + 
OF 8E +++ 

# '" immediate data ++ '" 16·bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

at 



00 
~ 
o 

" ;: 
po 

i 
I 
== 

INSTRUCTION 

JMP Unconditional Jump 
Short 
Direct within Segment 
RegisterlMemory Indirect Within Segment 
Direct Intersegment 

Call Gate Same Privilege Level 
16-bit Task to 16-bit TSS 
16-bit Task to 32-bit TSS 
16-bit Task to V86 Task 
32-bit Task to 16-bit TSS 
32-bit Task to 32-bit TSS 
32-bit Task to V86 Task 

Indirect Intersegment 
Call Gale Same Privilege Level 
16-bit Task to 16-bit TSS 
16-bit Task to 32-bit TSS 
16-bit Task to V86 Task 
32-bit Task to 16-bit TSS 
32-bit Task to 32-bit TSS . 
32-bit Task to V86 Task 

JNB~A~NCJump on Not BelowlAbove or 
EquallNot Carry 
8-bit Displacement 
Full Displacement 

JNB~AJump on Not Below or EquallAbove 
8-bit Displacement 
Full Displacement 

JN~NZ Jump on Not EquallNot Zero 
8-bit Displacement 
Full Displacement 

JNlfJGE Jump on Not LesslGreater or Equal 
8-bit Displacement 
Full Displacement 

REAL PROTECTED 
OPCODE FLAGS MODE CLOCK MODE CLOCK 

COUNT COUNT 

OF DF IF TF SF EF AlP PF CF Reg/ I Cache Reg/ I Cache 
Cache HII Miss Cache Hit Miss 

- - -
EB + 6 6 
E9 +++ 6 6 
FF [mod 100 rim] 6/8 10 6/8 10 
EA [full offset, selector] 9 26 

37 37 
238 238 
265 268 
182 185 
241 241 
268 271 
185 188 

FF [mod 10 1 rim] 11 14 30 30 
39 39 

240 243 
267 273 
184 190 
243 246 
270 276 

-- - __ L- 187. __ 19~ 

- -
611 611 

73 + 611 611 

OF 83 +++ _L- -- -"-- ---- --- --

77 + 
OF 87 +++ 

75 + 
OF 85 +++ 

7D + 
OF 8D +++ 

# = immediate data ++ = 16-bil displacemcm x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

NOTES 

Real I Protected 
Mode Mode 

b h,j,k,r 

--

r 

o 
~ iR· 1;' 

~ 
If 

@ 



"I 
III 
III .. -J -Z 
~ 

= 

OIl • ... .. 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK 

COUNT COUNT 
OF DF IF 1F SF ZF AF PF CF Reg/ ,I ea.he Reg/ I Ca.he 

Co.he Hit Miss Co.he Hit Miss 

JNLEaG Jump on Not Less or Equal/Greater 
S-bit Displacement 17F + 
Full Displacement OF SF+++ 

JNO Jump on Not Overflow 
S-bit Displacement 171 + 
Full Displacement OF S1 +++ 

JNP(JPO Jump on Not Parity/Parity Odd 
S-bit Displacement 17B + 
Full Displacement OF 8B+++ 

IJNS Jump on Not Sign 
S-bit Displacement 

1
79 

+ 
Full Displacement OF 89+++ 

IJO Jump on Overflow 
8-bit Displacement 

1
70 

+ 
Full Displacement OF 80+++ 

JP(JPEJump on Parity/Pariry Even 
8-bit Displacement 17A + 
Full Displacement OF SA+++ 

----
JS Jump on Sign 
8-bit Displacement 

1
78 

+ 
Full Displacement OF 88+++ 

I LAHF Load AH with Rags 19F - - - - - - - - - 2 2 

LAR Load Access Rights 
From RegisterlMemory 

- - - - - x 
OF 02 [mod reg r/m[ 

# "" immediate data ++ = 16-bit displacement 
+ = 8-bit displacement +++ .. 32-blt displacement (fuJI) 

',' 

x _ modified 
- = unchanged 

NOTES I 

Real I P.o ..... d 
Mode Mode 

CD 



0-
~ 
~ 

i! 
po 

i 
i 
== 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF IF SF T.F M PF CF Reg/ I Cache Reg/ I Cache Real I Protected 
Cache HII Miss Cache Hit Miss Mode Mode 

ILDSLoadPointertoDS I C5 [mod reg rIm] - - - - - - - ~-== 6 -CTT 19 ~ --[~ b ~-~J0LJ 

LEA Load Effective Address 
No Index Register 
With Index Register 

8D [mod reg rIm] 

I LEAVE Leave Current Stach Frame I C9 3 ~-~CTT ~-I 4 b h 

I LES Load Painter to E5 I C4 [mod reg rIm] - - - - - - - - - 6 7 19 20 I b h,i,j 

I LFS Load Painter to FS I OF B4 [mod reg rIm] - - - - - - - - I 6 7 19 20 I b h,i,j 

I LGDT Load GOT Register I OF~ 01 [mod 010 rIm] I - - - - - - - - - I 9 9 9 b,c h,l 

I LGS Load Painter to GS I OF B5 [mod reg rIm] - - - - - - - - ~ -r 6 1-- 19 20 I b h,i,j _ul 

I HDT Load!DT Register I ~OF 01 [mod 011 rIm] - - - - I 9 9 9 b,c h,l 

LLDT Load illT Register 
From RegisterJM:emory 

LMSW Load Machine Status Ward 
From RegisterlMemory 

OF 00 [mod 010 rIm] 

OF 01 [mod 110 rIm] 

[LODS Load String I A [1I0w] - - - - - - - - - 4 4 4 4 I b h 

I LOOP Offset LooplNo Loop I E2 ~.~ - - - - - - - - - 913 I ~ 913--1 -;~ 

[LOOPNVLOOPNE Offset I EO + - - - - - - - - - 9 1 3 9 1 3 

# '" immediate data ++ = 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

o 
~ !-IR• & 
~ 

'" 



i c 
! 

= 
= 

0-• lit 
Cot 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK 

COUNT COUNT 
OF DF IF IF SFZFD PFCF Reg/ 1 Cache Reg/ 1 Cache 

Cache Hit Miss Cache Hit Miss 
~- ~---- .. --

I L()OPlJLOOPEOff~~-t - -- ----IEl~ - - - - - 913 913 

LSL Load Segment Limit 
From RegisterlMemol)' OF 03 [mod reg rIm] 

- - - - - x - - -

NOTES 

Real 1 Protected 
M.d. M.d. 

11.S5 Load Point~;to-SS--~- n - I OF B2 [mod reg rIm] - - - - - - 6 7 19 20 I a h,i,j 

LTR Load T ash Register 
From RegisterlMemol)' 

MOV Move Data 
Register to RegisterlMemol)' 
RegisterlMemol)' to Register 
Immediate to RegisterlMemol)' 
Immediate to Register (short form) 
Memol)' to Accumulator (short form) 
Accumulator to Memol)' (short form) 
RegisterlMemol)' to Segment Register 
Segment Register to RegisterlMemol)' 

MOV Move to!from ControllDebugITest Regs 
Register to CRO/CR2/CR3 
CRO/CR2ICR3 to Register 
Register to DRO-DR3 
DRO-DR3 to Register 
Register to DR6-DR7 
DR6-DR7 to Register 
Register to TR3-5 
TR3-5 to Register 
Register to TR6-TR7 
TR6-TR7 to Register 

OF 00 [mod reg rIm] 

- - - - - - -
8 [lOOw] [mod reg rIm] 
8 [lOlw] [mod reg rIm] 
C [Oll w] [mod 000 rIm] # 

B[wreg] # 
A [OOOW] +++ 
A [OOlw] +++ 
8E [mod sreg3 rIm] 
8C [mod reg rIm] 

- - - - - -
OF 22 [ll eee reg] 
OF 20 [ll eee reg] 
OF 23 [ll eee reg] 
OF 21 [ll eee reg] 
OF 23 [ll eee reg] 
OF 21 [ll eee reg] 
OF 26 [ll eee reg] 
OF 24 [ll eee reg] 
OF 26 III eee regl 
OF 24 [ll eee reg] 

- - b h,i,j 
112 2 112 2 
112 4 112 4 
112 2 112 2 
1 1 
2 4 2 4 

112 2 112 2 
213 5 15/16 18 
112 2 112 2 

- - I 
1l/3/3 1l/3/3 
1/3/3 1/3/3 

1 I 
3 3 
1 1 
3 3 
5 5 
5 5 
1 1 

3 3 

IM()V5 Move String - I A [010w] - - - - - - - - - r 5 5 5 5 I b h 

# = immediate data ++ = 16-bit displacement x = modified 
+ _ 8-bit displacement +++ .. 32-bit displacement (full) - _ unchanged 

til 



01 
". lit 
0lil 

i .. 
i 
I 
= 

INSTRIIICTION 

MOVSX Move with Sign Extension 
Register from RegisterlMemory 

MOVZX Move with Zero Extension 
Register from RegisterlMemory 

MUL Unsigned Multiply 
Accumulator with RegisterlMemory 

Multiplier - Byte 
-Word 
- Doubleword 

--- -------

OPCODE 

OF B [111 w] [mod reg rim] 

OF B [011 w] [mod reg rim] 

F [Ollw] [mod 100 rim] 

FLAGS 

OF DF IF TF SF 3:F AF PF CF 

x - - - - - - - x 

REAL PROTECTED 
MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

Regl I Cache 
Cache HII MI •• 

Regl I Cache 
Cache HII Miss 

Real I Protected 
Mode Mode 

b h 

3/5 7 3/5 7 
3/5 7 3/5 7 
7/9 13 7/9 13 

I NEG Negate Integer --- rF [Oll.w] ImodOl.l rim] I~ - - - x x x x x I 1/3 1/3 I 5 ul -b--r~ 

I NOP No Operation r9()u r _ _ _ _ _ _ _ _ _ 3 " I nn_~ 

rNOT-B~~le~~Co';'ple";e~t I F [Ollw] [mod OlO rim] - - - - - - - - - 1/3 5 1/3 b h 

OR Boolean OR 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to RegisterlMemory 
Immediate to Accumulator 

OUT Output to Port 
Fixed Port 
Variable Port 

o [lOdw] [11 reg rim] 
o [lOOw] [mod reg rim] 
o [lOlw] [mod reg rim] 
8 [OOOW] [mod 001 rim] # 
o [llOw] # 

E [011 w] [port number] 
E [lllw] 

0 - - x x x x 0 b h 
1 1 
3 5 3 5 
3 5 3 5 

1/3 5 1/3 5 
1 1 

lOUTS Output String 1 6 [111 w[ r------:--- u: -I 20 20-[ 6\19 6\19 1 b h,m 

# = immediate data ++ '" 16-bit displacement x = modified 
+ '" 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

o 
~ 
J-i 
~R~ ~ 
~ 
fl .. 



REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF TF SF ZF Af PF CF Reg/ I Cache Reg/ I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

POP Pop Value off Slack - b h,i,j 

I 
RegisterlMemory SF [mod 000 rim] 3/5 4/5 3/5 4/5 
Register (short form) 5 [1 reg] 3 4 3 4 
Segment Register (ES, CS, 55, DS) [000 sreg2 1l0] 4 5 18 19 

I Segment Register (ES, CS, SS, DS, FS, GS) ~ [10 sreg3_00]] __ . 4 5 18 19 
---

I POPA Pop All General Registers 161 E- 18 1-18 -C I8 =r 18Tb 1- h J 

POPF Pop Stach into fLAGS 9D x x x x x x x x x 

PREFIX BYTES - m 
"II 
;I 

Assert Hardware LOCK Prefix FO 
Address Size Prefix 67 .. 

iC 
Operand Size Prefix 66 
Segment Override Prefix 

i 
== 

C5 2E 
OS 3E 
ES 26 
F5 64 
GS 65 
55 36 

PUSH Push Value onto Stach - - b h 

Register/Memory FF [mod II 0 rim] 2/4 4 2/4 4 

I 

Register (shon form) 5 [0 reg] 2 2 2 2 
Segment Register (ES, CS, SS, DS) [000 sreg2 II 0] 2 2 2 2 
Segment Register (ES, C5, 55, DS, FS, GS) OF [10 sreg3 000] 2 2 2 2 

Immediate 6 [lOs0] # 2 2 2 2 

I PUSHA Push All General Regellas I 60 .. ==r= - 17 17 17 17 b h 

I PUSHF Push FLAGS Register I 9C 2 2 b h 

# = immedIate dala x = modified 
+ = 8-bit displacement - = unchanged 

o 
~ 
VI at 



o • 
~ o 

ii .. 
i 

= 
= 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF TF SF Zl' AF PF CF Reg/ 1 Cache Reg/ 1 Cache Real 1 Protecled 
Cache Hit Miss Cache Hit Miss Mode Mode 

~---- ~- - - ~-- -- ~-

RCL Rotate Through Cony Left x - - - - x b h 
RegisterlMemory by 1 D [OOOw] [mod 010 rim] 919 10 9/9 10 

I 

RegisterlMemory by CL D [001 w] [mod 010 rim] 919 10 919 10 
Reg~s£erlMemo~ by Immedi~~_ 

-
C [OOOw] [mod 010 rim] # 919 10 919 10 

RCR Rotate Through Carry Right x - - - - - x b h 
RegisterlMemory by 1 D [OOOw] [mod 011 rim] 9/9 10 9/9 10 
RegisterlMemory by CL D [001 w] [mod 011 rim] 9/9 10 9/9 10 
RegisterlMemory by Immediate C [OOOw] [mod 011 rim] # 

~-

~9 10 9/9 10 
-

REP INS Input String F2 6 [llOw] 

1 REP LODS Load String [-F2 A [llOw] ~ ~----.:-- - ~~5n 4+5n 4+5n 4+5n b h 

1 REP MOVS Move String 1 F2 A [OlOw] - - - - - - - - - 5+4n 5+4n 5+4n 1 ~ I-TT-~ 

REP OUTS Output String F2 6 [lllw] 

[REp STOS Sto;;String--~ ----~O~==------ 3+4n 3+4n 3+4n 3+4n b h 

REPE CMPS Compare String 
(Find non-match) 

REPE SCAS Scan String 
(Find non-AUAXlEAX) 

REPNE CMPS Compare String 
(Find match) 

REPNE SCAS Scan String 
(Find AUAXlEAX) 

F3 A [Ollw] 

F3 A [illw] 

F2 A [Ollw] 

F2 A [illw] 

# = immediate data 
+ = 8-bit displacement 

x---xxxxx 

x---xxxxx 

x---xxxxx 

x - x x x x x 

++ = 16-bit displacement x = modiricd 
+++ = 32-bit displacement (full) - = unchanged 

o 
~ ~ 

JR· ~ a-
@ 



REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF TF SF ZF AI PF CF Regl I Cache Regl I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

RET Return from Subroutine - - - - b g,h,j,k,r 
Within Segment C3 10 10 
Within Segment Adding Immediate to SP C2 ++ 10 10 
Intersegment CB I3 I3 26 26 
Intersegment Adding Immediate to SP CA ++ I3 I3 26 27 
Protected Mode: Different Privilege Level 

Imersegment 61 64 
lnte~egment Adding Immediate to SP 61 64 

ROL Rotate Left x - - - - x b h 
RegisterlMemory by 1 D [OOOw] [mod 000 rim] 2/4 6 2/4 6 
RegJsterlMemory by CL D [OOlw] [mod 000 rim] 3/5 7 3/5 7 

i! RegisterlMemory by Immediate C [OOOw] [mod 000 rim] # 214 6 214 6 
-

po 

i 
i 
== 

ROR Rotate Right x - - x b h 
RegisterlMemory by 1 D [OOOw] [mod 001 rim] 2/4 6 2/4 6 
RegisterlMemory by CL D [OOlw] [mod 001 rim] 3/5 7 • 3/5 7 
RegisterlMemory by Immediate C [OOOw] [mod 001 rim] # 214 6 214 6 

I SAHF Store AH in FLAGS I 9E I - ~ -x----;-;;-~ x I 2 

SAL Shift Left Arithmetic x - - - x x x x b h 
RegisterlMemory by 1 D [OOOw] [mod 100 rim] 214 6 214 6 
RegisterlMemory by CL D [001 w] [mod 100 rim] 3/5 7 3/5 7 
Register/Memory by Immediate C [OOOw[ [mod 100 rlm[ # 2/4 6 2/4 6 

SAR Shift Right Arithmetic x - - x x x x b h 
Register/Memory by 1 D [OOOw] [mod 111 rim] 2/4 6 214 6 
RegisterlMemory by CL D [OOlw] [mod 111 rim] 3/5 7 3/5 7 
RegisterlMemory by Immediate C [OOOw] [mod III rim] # 2/4 5 2/4 6 

SBB Integer Subtract with Borrow x x x x x x b h 
Register to Register 1 [lOdw] [11 reg rim] 1 1 

01 
~ .... 

Reg!ster to Memory 1 [lOOw] [mod reg rim] 3 5 3 5 
Memory to Register 1 ]lOlw] [mod reg rim] 3 5 3 5 
Immediate to Register/Memory 8 [OOsw] [mod 011 rim] # 1/3 5 1/3 5 
Immediate to Accumulator (short fOlm) 1 [llOw] # 1 1 en 



ell • 
~ 
CD 

" II 
!: 
:c 
i 
= 

REAL PROTECTED 
INSTRIJlCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF TF SF ZF AF PF CF Reg/ I Cache Reg/ I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

1 SCASScanString 1 A [Jiiw] 1 x - - - ~-x x x xl 5 1- b h 

SETB/SETNAEISETC Set Byte on BeiowlNot 
Above or EquallCarry 

To RegisterlMemory I OF 92 [mod 000 rim] 

SETBEISETNA Set Byte on Below or 
EquallNot Above 

To Register!l\.1emory 

SETEISETZ Set Byte on EquallZero 

OF 96 [mod 000 rim] 

To RegisterlMemory I OF 94 [mod 000 rim] 

SETUSETNGE Set Byte on LesslNot Greater 
or Equal 

To RegisterlMemory I OF 9C [mod 000 rim] 

SETLEISETNG Set Byte on Less or EquallNot 
Greater 

To Registerft...1emory 

SETNB/SETAEISETNC Set Byte on Not 
Belowl 

Above or EquallNot Carry 
To Register/Memory 

SETNBEISETA Set Byte on Not Below or 
Equal/Above 

To RegisteriMemory 

SETNEISETNZ Set Byte on Not EquallNot 
Zero 

To Register/Memory 

OF 9E [mod 000 rim] 

OF 93 [mod 000 rIm] 

OF 97 [mod 000 rim] 

OF 95 [mod 000 rim] 

# '" immediate data = 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

o 
~ 
!R"~ 
~ 
i;\ 

'" 



,. 
ill .. -51 
i 
a-

== 

01 • ~ • 

INSTRUCTION OPCODE 

SETNIJSETGE Set Byte on Not Less/Greater 
or Equal 

To RegisterlMemory I OF 9D Imod 000 r/ml 

SETNLElSETG Set Byte on Not Less or 
Equal/Greater 

To RegisterlMemory 

SETNO Set Byte on Not Overflow 
To RegisterlMemory 

I SETNS Set Byte on Not Sign 
To RegisterlMemory 

SETO Set Byte on Overflow 
To RegisterlMemory 

SETP/SETPE Set Byte on ParitylParity Even 
To RegisterlMemory 

SETS Set Byte on Sign 
To RegisterlMemory 

SGDT Store GDT Register 
To RegisterlMemory 

10F 9F Imod 000 r/ml 

10F 91 Imod 000 r/ml 

10F 9B Imod 000 r/ml 

10F 99 Imod 000 rIm] 

10F 90 Imod 000 rIm] 

10F 9A Imod 000 rIm] 

OF 98 Imod 000 rIm] 

OF 01 Imod 000 rIm] 

# = immediate data 

REAL 
FLAGS MODE CLOCK 

COUNT 
OF DF IF IF SF ZF AF PF CF Reg/ I Cache 

Cache Hit Miss 

- - - - - - - -

- - - - - - - -

- - - - - - -

- - - - - - - -

- - - - - - - - -

- - - - - - - -

= 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

PROTECTED 
MODE CLOCK NOTES 

COUNT 

Reg/ I Cache 
Cache Hit Miss 

Real I Protected 
Mode Mode 

at 



o • Cot o 

a c 
! 
E 
:= 

INSTRUCTION 

SHL Shift uft Logical 
RegisteriMemory by 1 
RegisteriMemory by CL 
RegisteriMemory by Immediate 

SHLD Shift uft Double 
RegisteriMemory by Immediate 
RegisteriMemory by CL 

SHR Shift Right Logical 
RegisteriMemory by I 
RegisteriMemory by CL 
RegisteriMemory by Immediate 

SHRD Shift Right Double 
RegisteriMemory by Immediate 
RegisteriMemory by CL 

SIDT Store !DI Register 
To RegisteriMemory 

SLDT Store WI Register 
To RegisteriMemory 

OPCODE 

D [OOOw] [mod 100 rim] 
D [001 w] [mod 100 rIm] 
C [OOOw] [mod 100 rIm] # 

OF A4 [mod reg rIm] # 

OF AS [mod reg rIm] 

D [OOOw] [mod 101 rIm] 
D [OOlw] [mod 101 rIm] 
C [OOOW] [mod lOi rIm] # 

OF AC [mod reg rIm] # 
OF AD [mod reg rIm] 

OF 01 [mod 001 rIm] 

OF 00 [mod 000 rIm] 

FLAGS 

OF DF IF 1F SF Zl' AF PF CF 

x - - - x x - x x 

- - - - x x - x x 

x - - - x x x x 

- - - - x x - x x 

REAL PROTECTED 
MODE CLOCK MODE CLOCK NOlES 

COUNT COUNT 

Reg/ I Cache 
Cache Hit Mi •• 

Reg/ I Cache 
Cache Hit MI •• 

Real I Protected 
Mode Mode 

1/3 S 113 S 
b h 

214 6 214 6 
1/3 7 1/3 7 

b h 
1/3 S 113 S 
214 6 214 6 
1/3 7 113 7 

1 SMSWStore Machine Status Word 10F 01 [modlOOr/m] 1- - - - - - - --J-D2~-2-rll2-T2~b,c~-h,i-1 

1 STC Set Carry Flag 1 F9 , - - - - - - - - 1 1 -1- - rl- T - - ,- -,- -- - 1 

ISTDSetDirectionFlag IFD - 1 - - - - - - ~-1 T-1- T-~--'- - -, 

1 STl Set Interrupt Flag 1 FB - - 1 - -.:-:--=-~r - 7 - T -7 - 1 ,- -;. -, 
# = immediate data ++ '" 16-bit displacement x "" modified 
+ "" B-bit displacement +++ = 32-bil displacement (full) - = unchanged 

P 
filii 
i~· 
iiJlllli 

@ 



"IJ 

I: c 
J 

= := 

0-• Cot .. 

REAL PROTECTED 
INSTRUcnON OPCODE FLAGS . MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF IF SF ZF AF PF CF Reg/ I Cache Reg/ 1 Cache Real 1 Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

[ STOSStore String- I A [101 w] - - - - - - - - - 3 3 3 I b h 

STR Store T ash Register 
To RegisterlMemory 

SUB Integer Subtract 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to RegisterlMemory 
Immediate to Accumulator (short form) 

TEST Test Bits 
Register/Memory and Register 
Immediate Data and RegisterltvlemOIY 
Immediate Data and Accumulator 

VERR Verify Read Access 
To RegisterlMemory 

VERW Verify Write Access 
To RegisterlMemory 

OF 00 [mod 001 rlml 

2 [lOdwl [11 reg rIm] 
2 [100w] [mod reg rIm] 
2 [101 wi [mod reg rIm] 
8 [OOsw] [mod 101 rim] # 

2 [llOwl # 

8 [OlOw] [mod reg rlml 
F [Ollwl [mod 000 rlml # 
A [100wl# 

OF 00 [mod 100 rlml 

OF 00 [mod 101 rlml 

x - - x x x x x 

0 - - x x - x 0 

-----x---

-----x---

b h 
1 1 
3 5 3 5 
3 5 3 5 

1/3 5 1/3 5 
1 1 

- -

b h 
1/3 5 1/3 5 
1/3 5 1/3 5 
1 1 

I WAIT Wait Until FPUNot Busy 19B - - - - - - - - - I -- 5- [-5 T=r-~ 

[ wBINVD Write-Ba~h andlnvalii,te Cach=OF 09 1- - - - - - - - 4 4 

XADD Exchange and Add 
Register 1, Reglster 2 
Memory, Register 

x---xxxxx 

OF C [OOOwl [11 reg2 reg!] 
OF C [OOOw] [mod reg rlml 

# = immediate data ++ = 16-bit displacement x '" modified 
+ = A-bit displacement +++ = 32-bit displacement (fuU) - = unchanged 

at 



o • Cot -ht 

! c 
! z 

= 

INSTRUCTION 

XCHG Exchange 
Register/Memory with Register 
Register with Accumulator 

OPCODE 

8 [Ollw] [mod reg rIm] 
9 [0 reg] 

FLAGS 

OF DF IF IF 5F %IF AI PF CF 

REAL 
MODE CLOCK 

COUNT 

Reg/ _I Cache 
Cache Hit Miss 

PROTECTED 
MODE CLOCK NOTES 

COUNT 

Reg/ 1 Cache 
Cache Hit Miss 

Real t Protected 
,-Mocle _ ~od,,-

IXIATTranslateByte 1 D7 - - - - - - - - - 3 - 1 - 5- [ 3 - IS-I - -I -h~ 

XOR Boolean Exclusive OR o - - - x x - x 0 
Register to Register 3 [OOdw] [11 reg rIm] 
Register to Memory 3 [OOOw] [mod reg rIm] 
Memory to Register 3 [OOlw] [mod reg rIm] 
Immediate to Register/Memory 8 [OOsw] [mod 1I0 rIm] # 
Immediate to Accumulator (short form) 3 [OIOw] # 

# = immediate data ++ = 16-bit displacement x = modified 
+ = 8-bit displacement 

Instruction Notes for Instruction Set Summary 

Notes a through c apply to Real Address Mode only: 

+++ = 32-bit displacement (full) - = unchanged 

1 
3 
3 

1/3 
I 

a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid op-code). 

b h 
1 

5 3 5 
5 3 5 
5 113 5 

I 

b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment limit 
(FFFFH). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum 
SSlimit. 

c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected Mode. 

Noles e through g apply to Real Address Mode and Protected Virtual Address Mode: 
e. An exception may occur, depending on the value of the operand. 
£. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK prefIx. 
g. LOCK#. is asserted during descriptor table accesses. 

Noles h through r apply to Protected Virtual Address Mode only: 
h. Exception 13 fault will occur if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit is 

violated, an exception 12 occurs. 
i. For segment load operations, the CPL, RPL, and OPL must agree with the privilege rules to avoid an exception 13 fault. The segment's descriptor must indicate "present" or exception 

11 (CS, OS, ES, FS, GS not present). If the 55 register is loaded and a stack segment not present is detected, an exception 12 occurs. 
j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK# to maintain descriptor integrity in multiprocessor systems. 
k. 1MP, CALL, INT, RET, and lRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
m. An exception 13 fault occurs if CPL is greater than IOPL. 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fIelds of the flag register are updated only if CPL = O. 
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit. 
p. Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared. 
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault will occur before the ESC instruction is executed. An exception 12 fault 

will occur if the stack limit is violated by the operand's starting address. 
r. The destination of a1MP, CALL, INT, RET, or lRET must be in the defined limit of a code segment or an exception 13 fault will occur. 

o 
~ J-i 
I~· 
~~ .. 



Index 

INDEX 

A------------------------------
AC Characteristics, 4-5 
Address 

bus, 3-4 
offset calculation, 2-32 
space, 2-30 

B --------------------------------
Bus 

arbitration, 3-10 
cycles, pipelined addressing, 3-20 
interface, 3-1 
operation, 3-15 
states, complete diagram, 3-26 
states, non-pipelined, 3-15 

Byte Enable lines, 3-4 

c -----------------------------
Cache Interface, 3-8,3-34 

flushing, 3-37 
signals, 3-8 
timing, 3-34 

Clock 
count assumptions, 6-10 
input, 3-3 
measurement points, 4-7 
stopping, 3-45 

Coprocessor Interface, 3-9,3-42 

D--------------------------------
Data Bus, 3-5 
DC Characteristics, 4-4 
Descriptor Table, 2-7 
Descriptors, 2-16 

E 
Exceptions, 2-38 

G--------------------------------
Gate Descriptors, 2-18 
Gates, 2-46 

H-----------------------------
Halt and Shutdown, 2-44,3-32 
Hold Acknowledge, 3-10,3-39 

I/O Space, 2-30 
Initialization, 2-1 
Instruction Set, 6-1 
Interrupt Acknowledge Cycles, 3-30 
Interrupts 

L 

exceptions, 2-39 
general, 2-38 
INTR, NMI, 3-7 
hardware/software, 2-42 
priorities, 2-42 

Lock Prefix, 2-3 
Locked Bus Cycles, 3-30 

JI--------------------------------
Maximum Ratings, 4-2 
Mechanical Drawing, 5-5 
Memory Space, 2-30 
Mode 

memory addressing modes, 2-32 
protected, addressing in, 2-33 
real, addressing in, 2-33 
suspend, 3-42 
suspend, halt initiated, 3-44 
virtual 8086, 2-47 

0-----------------------------
Offset Address Calculation, 2-32 
Operating Conditions 4-3 

p --------------------------------
Package Drawing, 5-5 
Paging Mechanism, 2-35 
Pin Assignments, 5-1 
Pins, Unused Inputs, 4-2 
Pipelined Bus States, 3-20 
Pipelined Wait States, 3-21 



Index 

Power and Ground Considerations, 4-1 
Power Management, 3-11 
Privilege Level, 2-8, 2-44 
Protection, Segment, 2-44 
Pull-Up and Pull-Down Resistors; 4-1 

INDEX 

5 --------------------------------
Segment Selector, 2-7 
Segment Descriptor, 2-7 
Selector Mechanism, 2-34 
Selectors, 2-7 

R--------------------------------
Setup and Hold Timing, 4-11 
Signals 

Registers 
application set of, 2-4 
cache configuration, 2-22 
cache test, 2-28 
control, 2-13 
data, 2-4 
debug, 2-24 
descriptor table, 2-15 
flags, 2-9 
global deSCriptor table, 2-15 
interrupt descriptor table, 2-15 
instruction pointer, 2-9 
local descriptor table, 2-15 
pointer and index, 2-5 
segment, 2-7 
system set of, 2-11 
task, 2-19 
test, 2-26 

Requested Privilege Level, 2-8 
Reset 

setup and hold timing, 4-14 
signal status during, 3-3 
timing, 3-13 

A20M#, 3-9,3-37 
ADS#, 3-6 
BS16#, 3-27 
BUSY#, 3-9 
D/C#, 3-5 
ERROR#,3-9 
FLUSH#, 3-8 
HLDA, 3-10 
HOLD, 3-10 
INTR, 3-7 
KEN#, 3-8 
LOCK#, 3-5 
MlIO#, 3-5 
NA#, 3-6 
NMI, 3-7 
PEREQ, 3-9 
READY#,3-6 
RPLSET, 3-8 
RPLVAL#, 3-8 
SUSP#, 3-11 
SUSPA#, 3-11 
W/R#, 3-5 

Signal Summary, 3-2 
Signals Unique to Cx486DLC, 1-3 

'f 
Thermal Characteristics, 5-6 
Translation Look-Aside Buffer, 2-38 

~------------------------------
Wait States, Non-Pipelined, 3-18 



Ordering Information 

Cyrix Prefix 

Device Name 
486DLC 

Speed 
33 = 33 MHz 
40=40MHz 

Package Type 
G = PGA Package 

Temperature Range 
P = Commercial 

Ordering Information 

ex 486DLC - 33 G P 

T T 

The currently available Cyrix Cx486DLC part numbers are listed below: 

PART NUMBER DESCRIPTION 

Cx486DLC-33GP 33 MHz, PGA Package 

Cx486DLC-40GP 40 MHz, PGA Package 



us 

Cyrix Corporation 
2703 North Central Exprressway 
Richardson, TX 75080 
Tel: (214) 234-8387 
Fax: (214) 699-9857 

Japan 

Cyrix KK 
7F N isso 11 Bldg, 2-3-4 
Shin-Yokohama, Koh-Hoku-Ku 
Yokohama, 222 Japan 
Tel: 81-45-471-1661 
Fax: 81-45-471-1666 

SALES OFFICES 

Taiwan &: Hong Kong 

ACCEL Technology Corp. 
3F-l, 678 Tun-Hua S. Rd. 
Taipei, Taiwan, R.O.c. 
Tel: 886-02-755-2838 
Fax: 886-02-708-0878 

On-tx ~.!!;jng the Standards 

Europe 

Cyrix Europe HQ 
603 Delta Business Park 
Welton Road 
Swindon 
SN57XF 
UK 
Tel: 44 (793) 417779 
Fax: 44 (793) 417788 

Canada 

Kaytronics 
5800 Thimens Blvd. 
Ville St. Laurent 
Quebec H4S-1S5 
Tel: (514) 745-6800 
Fax: (514) 745-5858 

2703 North Central Expressway. Richardson, Texas 75080 • (214) 234-8387 

May 1992 
a; Printed in the USA 

'" Printed on Recycled Paper Order Number 94076-01 




