

CVlltx® CYRIX Cx4865LC/eM MICROPROCESSOR

~dV!Clng the Standards

High-Peifonnance 486-Style CPU with Advanced Power
Management for Notebook and Battery-Powered Systems

• 486 PERFORMANCE
- Up to 2.4 times faster than 386SL at same frequency
- Landmark 2.0=107 MHz, Nonon SI 6.0 = 52 at 33 MHz
- On-chip hardware multiplier accelerates graphics
- Clock speeds up to 33 MHz

• 486-STYLE ARCHlTEcruRE
- Single-cycle RISC-like 32-bit integer core
- Integrated instruction and data cache
- Executes 486SX instruction set
- Runs DOS, Windows, OS/2, Unix

• SMALL 100-PIN QFP PACKAGE
- Compatible with 16-bit 386SX bus interface

allowing compact system design
- Companion low-power QFP math coprocessor

The Cyrix Cx486SLCle is an enhanced version of the
Cx486SLC specifically designed for demanding battery­
powered applications. The Cx486SLCle offers high
performance integrated with advanced features for both
CPU power management and system-wide power
management.

High performance is achieved through use of a single
cycle execution unit and a 32-bit internal data path that
couple tightly to an on-chip instruction/data cache. This
architecture results in up to 2 to 3 times the performance
of conventional 386SL notebook CPUs. Additionally, the
on-chip cache reduces overall system power by minimiz­
ing external memory accesses.

Execution Pipeline

Cache and Memory
Management

• ADVANCED POWER MANAGEMENT
- Software or hardware initiated low-power suspend mode
- Full static design permits stop clock state
- On-chip cache significantly reduces power-consuming

external memory accesses
- 3 V and 5 V versions

• SYSTEM MANAGEMENI' MODE
- High priority SMI interrupt and separate memory

address space
- Facilitates system-wide power management for

maximum battery life
- Rapid SMI service routine entry and exit
- I/O trapping for power management of peripherals

The Cx486SLCle's System Management Mode (SMM)
provides a high priority interrupt, I/O trapping and a
separate address space used to enhance and simplify
power management software. Fast entry and exit of
SMM allows frequent use of this feature without perfor­
mance degradation.

Additionally, the CPU's power consumption can be
minimized through use of easy-to-design suspend/resume
functionality augmented by a static CPU core. When
active, these features result in a significant reduction in
CPU power (0.1 % of active power). The 3V version
consumes less than one third the power of the 5V device.

Enhanced
386SX

Compatible
Bus Interiace

L-.-----'.--+----~IAddres$
A23-A1

BHE#, BLE#

L-. ____ -'=====""---'-____ ~I Buffers
Data Address Bus

© 1992 Copyright Cyrix Corporation. All rights reserved.
Printed in the United States of America

Trademark Acknowledgments:

Cyrix is a registered trademark of Cyrix Corporation,
Cx486SLC and Cx486SLCle are trademarks of Cyrix Corporation,
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Order Number: 94085
Cyrix Corporation
2703 North Central Expressway
Richardson, Texas 75080
United States of America

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specification described herein without notice. Before design-in or
order placement, customers are advised to verify that the information on which orders or design activities are based is current. Cyrix warrants its
products to conform to current specifications in accordance with Cyrix' standard warranty. Testing is performed to the extent necessary as
determined by Cyrix to support this warranty. Unless explicitly specified by customer order reqUirements, and agreed to in writing by Cyrix, not
all device characteristics arc necessarily tested. Cyrix assumes no liability, unless specifically agreed to in writing, for customer's product design or
infringement of patents or copyrights of third parties arising from use of Cyrix devices. No license, either express or implied, to Cyrix patents,
copyrights, or other intellectual property rights pertaining to any machine or combination of Cyrix devices is hereby granted. Cyrix products are
not intended for use in any medical, life saving, or life sustaining systems. Information in this document is subject to change without notice.

ii PRELIMINARY

CYRIX Cx486SLC/e MICROPROCESSOR
High-Peljonnance 486-Class CPU with Advanced Power
Management for Notebook or Battery-Powered Systems

Cv.tx®
~dV!C/ng the Standards

'I. Product Overview
1.1 Introduction............................... 1-1
1.2 Execution Pipeline 1-1
1.3 On-Chip Cache. .. 1-2
1.4 Power Management. 1-2
1.5 System Management Mode. 1-3
1.6 Signal Summary. 1-4

2. Programming Interface
2.1 Processor Initialization 2-1
2.2 Instruction Set Overview 2-3
2.3 Register Set. .. 2-4
2.4 Address Spaces. .. 2-32
2.5 Interrupts and Exceptions. 2-40
2.6 System Management Mode 2-47
2.7 Shutdown and Halt. 2-53
2.8 Protection
2.9 Virtual 8086 Mode

3. Bus Interface

2-55
2-58

3.1 Overview.... 3-1
3.2 Signal Descriptions. 3-3
3.3 Functional Timing. 3-12

4. IEleclriical Specifications
4.1 Electrical Connections. 4-1
4.2 Absolute Maximum Ratings. 4-2
4.3 Recommended Operating Conditions. 4-3
4.4 DC Characteristics. 4-4
4.5 AC Characteristics 4-5

5. Mechanical Specifications
5.1 Pin Assignments 5-1
5.2 Package Dimensions 5-4
5.3 Thermal Characteristics. 5-5

6. Instruction Set
6.1 General Instruction Format
6.2 Instruction Fields
6.3 Flags
6.4 Clock Counts

PRELIMINARY

6-1
6-2
6-10
6-10

iii

Cv.tx®
~dV~Clng the Standards

List of Tables and Figures

Appendix and Index

Paragraph Number Page

A.l Cx486SLC Stepping Revision History. .. A-I
A.2 Manual Revision History ... A-I
A.3 Ordering Information. .. A-3

Index .. A-4

LIST OF FIGURES

Figure Number Figure Name Page

I-I.
2-I.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-1I.
2-12.
2-13.
2-14.
2-15.
2-16.
2-17.
2-18.
2-19.
2-20.
2-2I.
2-22.
2-23.
2-24.
2-25.
2-26.
2-27.

iv

Cx486SLCle Input and Output Signals. 1-4
Application Register Set 2-5
General Purpose Registers. .. 2-6
Segment Selector ... 2-7
EFLAGS Register. .. 2-9
System Register Set. .. 2-12
Control Registers .. 2-13
Descriptor Table Registers ... 2-15
Application and System Segment Descriptors. 2-16
Gate Descriptor. 2-18
Task Register 2-19
32-Bit Task State Segment (TSS) Table . 2-20
16-Bit Task State Segment (TSS) Table. .. 2-21
Configuration Control Register CCRO .. 2-23
Configuration Control Register CCRI .. 2-24
Address Registers ARRI - ARR4 .. 2-25
Debug Registers 2-26
Test Registers. .. 2-28
Memory and I/O Address Space .. 2-32
Offset Address Calculation. .. 2-34
Real Mode Address Calculation. .. 2-35
Protected Mode Address Calculation. .. 2-36
Selector Mechanism .. 2-36
Paging Mechanism 2-38
Directory and Page Table Entry (DTE and PTE) Format 2-38
Error Code Format. .. 2-46
System Management Memory Address Space. .. 2-47
SMI Execution Flow Diagram .. 2-48

PRELIMINARY

List of Tables and Figures I

LIST OF FIGURES (Continued)

Figure Number Figure Name Page

2-28. SMM Memory Address Space Header 2-49
2-29. SMM and Suspend Mode Flow Diagram 2-54
3-1. Cx486SLCle Functional Signal Groupings 3-1
3-2. Internal Processor Clock Synchronization 3-12
3-3. Bus Activity from RESET until First Code Fetch 3-13
3-4. Fastest Non-Pipelined Read Cycles. 3-15
3-5. Various Non-Pipelined Bus Cycles (no wait states) 3-16
3-6. Various Non-Pipelined Bus Cycles with Different Numbers of Wait States 3-17
3-7. Non-Pipelined Bus States .. .
3-8. Fastest Pipelined Read Cycles.

3-19
3-20

3-9. Various Pipelined Cycles (one wait state) _ 3-22
3-10. Fastest Transition to Pipelined Address Following Idle Bus State 3-23
3-11. Transitioning to Pipelined Address During Burst of Bus Cycles 3-24
3-12. Complete Bus States .. . 3-25
3-13. Interrupt Acknowledge Cycles .. . 3-27
3-14. Non-Pipelined Bus Cycles Using BS16# 3-28
3-15. Pipelining Shutdown Cycle 3-29
3-16. Non-pipelined Halt Cycle using KEN# 3-31
3-17. Pipelined Cache Fills using KEN# 3-32
3-18. Masking A20 using A20M# During Burst of Bus Cycles 3-33
3-19. Requesting Hold from Idle Bus State 3-35
3-20. Requesting Hold from Active Non-Pipelined Bus 3-36
3-21. Requesting Hold from Active Pipelined Bus 3-37
3-22. SMI# Timing 3-39
3-23. I/O Trap Timing ... , 3-40
3-24. SUSP# Initiated Suspend Mode 3-41
3-25. Halt Initiated Suspend Mode. 3-42
3-26. Stopping CLK2 During Suspend Mode 3-43
3-27 Entering and Exiting Float 3-44
4-1. Drive Level and Measurement Points for Switching Characteristics 4-6
4-2. CLK2 Timing Measurement Points 4-7
4-3. Input Signal Setup and Hold Timing 4-11
4-4. Output Signal Valid Delay Timing 4-12
4-5. Data Write Cycle Valid Delay Timing 4-12
4-6. Data Write Cycle Hold Timing. 4-l3
4-7. Output Signal Float Delay and HLDA Valid Delay Timing 4-l3
4-8. RESET Setup and Hold Timing 4-14
5-1. Top View of Package Pins .. . 5-1
5-2. 100-Pin BQFP Package Dimensions. 5-4
6-1. General Instruction Format 6-1

PRELIMINARY v

Cv.tx®
7.dV'!Clng the Standards

List of Tables and Figures

LIST OF TABLES

Table Number Table Name Page

vi

2-1. Initialized Register Contents 2-2
2-2. Segment Register Selection Rules. 2-8
2-3. HLAGS Bit Definitions ... 2-10
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-11.
2-12.
2-13.
2-14.
2-15.
2-16.
2-17.
2-18
2-19.
2-20.
2-21.
2-22.
2-23.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
5-1.

CRO Bit Definitions 2-14
Segment Descriptor Bit Definitions 2-17
Gate Descriptor Bit Definitions 2-18
Configuration Control. .. 2-22
CCRO Bit Definitions. 2-23
CCRI Bit Definitions ... 2-24
ARRI - ARR4 SIZE Field .. 2-25
DR6 and DR7 Field Definitions ... 2-27
TR6 and TR7 Bit Definitions ... 2-29
TR6 Attribute Bit Pairs
TR3 - TR5 Bit Definitions .. .
Memory Addressing Modes
Directory and Page Table Entry (DTE and PTE) Bit Definitions
Interrupt Vector Assignments
Interrupt and Exception Priorities .. .
Exception Changes in Real Mode
Error Code Bit Definitions.
SMM Memory Address Space Header.
SMM Instruction Set
Descriptor Types Used for Control Transfer
Cx486SLCle Signal Summary
Signal States During Reset
Byte Enable Line Definitions .. .
Bus Cycle Types
Signal States During Hold Acknowledge
Signal States During Suspend Mode.
Pins Connected to Internal Pull-Up and Pull-Down Resistors
Pins Requiring External Pull-Up Resistors
Absolute Maximum Ratings
Recommended Operating Conditions
DC Characteristics (at Recommended Operating Conditions)
Measurement Points for Switching Characteristics
AC Characteristics for Cx486SLCle-V20

2-30
2-31
2-34
2-39
2-42
2-44
2-45
2-46
2-50
2-51
2-57
3-2
3-3
3-4
3-5
3-10
3-11
4-1
4-1
4-2
4-3
4-4
4-5
4-8

AC Characteristics for Cx486SLCle-25: Cx486SLCle-V25 4-9
AC Characteristics for Cx486SLCle-V33 4-10
Signal Names Sorted by Pin Number 5-2

PRELIMINARY

I

LIST OF TABLES (Continued)

Table Number Table Name Page

5-2. Pin Numbers Sorted by Signal Name , 5-3
5-3. Package Thermal Resistance and Airflow 5-5
5-4. Cx486SLCle Maximum Ambient Temperature (T)

for Various Airflows and Clock Frequencies .. 5-6
5-5. Cx486SLCle-V Maximum Ambient Temperature (T)

for Various Airflows and Clock Frequencies 5-6
6-1. Instruction Fields ... 6-2
6-2. Instruction Prefix Summary. 6-3
6-3. w Field Encoding ... 6-4
6-4. d Field Encoding .. 6-4
6-5. reg Field Encoding .. 6-5
6-6. mod rim Field Encoding. 6-6
6-6A. mod rim Field Encoding Dependent on w Field .. 6-7
6-7. mod base Field Encoding ... 6-8
6-8. ss Field Encoding . 6-8
6-9. index Field Encoding , 6-8
6-10. sreg2 Field Encoding. .. 6-9
6-11. sreg3 Field Encoding. .. 6-9
6-12. eee Field Encoding 6-9
6-13. FlagAbbreviations.. 6-10
6-14. Action ofInstruction on Flag ... 6-10
6-15. Clock Count Abbreviations .. 6-11
6-16. Instruction Set Summary .. 6-12

PRELIMINARY vii

Cv.tx® CYRIX Cx:486SLCje MICROPROCESSOR

~d~clng theStondords

High-Performance 486-Class CPU with Advanced Power
Management for Notebook and Battery-Powered Systems " ,-------.-, '1

1. PRODUCT OVERVIEW

'II .11 Introduction

The C yrix® Cx486SLOe ™ microprocessor is an
advanced 32-bit X86 compatible processor
offering high performance and integrated power
management on a single chip. The Cx486SLOe is
486SX instruction set compatible and is backward
compatible with the 386SX pinout This CPU
provides up to 2 or 3 times the performance of
conventional 386SL and 386SX notebook com­
puters at equal clock frequencies.

The Cx486SLOe is an ideal solution for battery­
powered applications in that it typically draws
0.40 rnA while the input clock is stopped in
suspend mode. Additionally, the Cyrix
Cx486SLOe System Management Mode (SMM)
can be used for system power management or
software emulation of I/O peripheral devices. The
Cx486SLOe-V version of the CPU offers addi­
tional power savings as it operates on a 3-volt as

. well as 5-volt power supply.

The Cx486SLOe supports 8,16 and 32-bit data
types and operates in real, virtual 8086 and
protected modes. This microprocessor achieves
high performance through the use of a highly
optimized variable length pipeline combined with
a RISC-like Single cycle execution unit, an on-chip
hardware multiplier and an integrated instruction
and data cache. The Cx486SLOe is available at
operating frequencies of 20, 25 and 33 MHz.

I
I

Product Overview _._~ __ ~ ____ . __ .J
1.2 Execution Pipeline

The Cx486SLOe execution path consists of five
pipelined stages that are optimized for minimal
instruction cycle times. These five stages are:

• Code Fetch
• Instruction Decode
• Microcode ROM Access
• Execution
• MemorylRegister File Write-Back

Each stage is designed with hardware interlocks
which permit successive instruction execution
overlap.

The 16-byte instruction prefetch queue fetches
code in advance and prepares it for decode,
helping to minimize overall execution time. The
instruction decoder then decodes four bytes of
instructions per clock eliminating the need for a
queue of decoded instructions. Sequential
instructions are decoded quickly and passed on to
the microcode ROM stage of the pipeline. Non­
sequential operations do not have to wait for a
queue of decoded instructions to be flushed and
refilled before execution continues. As a result,
both sequential and non-sequential instruction
execution times are minimized.

The execution stage takes advantage of a RISC­
like Single cycle execution unit and a 16-bit
hardware multiplier. The write-back stage
provides Single cycle 32-bit access to the on-chip

PRELIMINARY , .,

Cv.tx®
~dV!clng the Standards

On-Chip Cache

cache and posts all writes to the cache and system
bus using a two-deep write buffer. Posted writes
allow the execution unit to proceed with program
execution while the bus interface unit actually
completes the write cycle.

1.3 On-Chip Cache

The Cx486SLGe on-chip cache maximizes overall
performance by quickly supplying instructions and
data to the internal execution pipeline. On a
386SX system, an external memory access takes a
minimum of two clock cycles (zero wait states).
For cache hits, the Cx486SLGe eliminates these
two clock cycles by overlapping cache accesses
with normal execution pipeline activity. Addi­
tional bus bandwidth is gained by presenting
instructions and data to the execution pipeline up
to 32 bits at a time compared to 16 bits per cycle
for an external memory access.

The Cx486SLGe cache is a 1 KByte write-through
unified instruction and data cache. New lines are
allocated only during memory read cycles. The
cache can be configured as direct-mapped or as
two-way set associative. The direct-mapped
organization is a single set of 256 four-byte lines.
When configured as two-way set associative, the
cache organization consists of two sets of 128 four­
byte lines and uses a Least Recently Used (LRU)
replacement algOrithm.

1.4

1.4.1

Power Management

Suspend Mode and Static
Operation

The Cx486SLGe power management features
allow a dramatic reduction in current consump­
tion when the CPU is in suspend mode (typically
less than 2 percent of the operating current).
Suspend mode is entered either by a hardware or
software initiated action. Using the hardware to
initiate suspend mode involves a two-pin hand­
shake using the SUSP# and SUSPA# Signals. The
software initiates suspend mode through execu­
tion of the HALT instruction. Once in suspend
mode, the Cx486SLGe power consumption can
be further reduced by stopping the external clock
input. The resulting current draw is typically
0.40 mAo Since the Cx486SLGe is a static device,
no internal CPU data is lost when the clock input
is stopped.

1.4.2 3-Volt Operation

The Cx486SLGe-Vversion of the Cx486SLGe
operates from either a 3-volt or a 5-volt supply.
While operating with a 3-volt supply, the power
consumed by the 486SLC-V is typically only
30 percent of the power consumed while operating
at 5 volts.

'-2 PRELIMINARY

1.5 System Management
Mode

System Management Mode (SMM) provides an
additional interrupt and a separate address space
which can be used for system power management
or software transparent emulation of I/O peripher­
als. SMM is entered using the System Manage­
ment Interrupt (SMI#) which has a higher priority
than any other interrupt. While running in
protected SMM address space, the SMI interrupt
routine can execute without interfering with the
operating system or application programs.

After reception of an SMI#, portions of the CPU
state are automatically saved, SMM is entered and
program execution begins at the base of SMM
address space. The location and size of the SMM
memory is programmable within the
Cx486SLOe. Seven SMM instructions have been
added to the 486SX instruction set that permit
saving and restoring of the total CPU state when
in SMM mode.

PRELIMINARY

System Management Mode I

1·3

Cv.tx®
~dV!Clng the Standards

Signal Summary .

1.6 Signal Summary

The Cx486SLGe includes two power management signals (SUSP# and SUSPA#), four cache interface
signals (FLUSH#, KEN#, RPLSET, and RPLVAL#), an A20 mask input (A20M#) and two SMM
signals (SMADS# and SMI#) that are additions to the 386SX signal set. The complete list of
Cx486SLGe signals is shown in Figure 1-1.

1·4

A20M# (3)

BUSY#

ClK2

ERROR#

FLT#

FlUSH# (I)

INTR

HOLD

KEN# (1)

NA#

NMI

PEREQ

SUSP# (2)

REAOY#

RESET

(1) = Internal Cache Interface
(2) = Power Management
(3) ~ A20 Mask
(4) = System Management Mode

Cx486SLCle

MICROPROCESSOR

(I)

(1)

(2)

(4)

(4)

===> A23-AI

AOS#

BHE#

BlE#

A. -'> ... -y
DIS-DO

O/C#

HLDA

LOCK#

MlIO#

RPlSET - RPlVAl# - SUSPA#

,...-- SMAOS#

SMI#

WIR#

1713100

Figure 1·1. Cx486SLC/ e Input and Output Signals

PRELIMINARY

Cv.tx® CYRIX Cx486SLC/e" MICROPROCESSOR
High-Peiformance 486-Style CPU with Advanced Power
Management for Notebook and Battery-Powered Systems f"~ "" "1 ~dV!Clng the Standards

2. PROGRAMMING
INTERFACE

In this chapter, the internal operations of the
Cx486SLCle are described mainly from an
application programmer's point of view" Included
in this chapter are descriptions of processor
initialization, the register set, memory addressing,
various types of interrupts and the shutdown and
halt process" Also included is an overview of real,
virtual 8086, and protected operating modes"

2.1 Processor
Initialization

The Cx486SLCle is initialized when the RESET
signal is asserted" The processor is placed in real
mode and the registers listed in Table 2-1 are set
to their initialized values" RESET invalidates and
disables the Cx486SLCle cache, and turns off

"",,,,,,,,,,,,, I
,"" I
J) I
r(;'<~1 I

~~.~~-~'-~--,-~~~
Programming Interface

paging., When RESET is asserted, the
Cx486SLCle tenninates all local bus activity and
all internal execution" During the entire time that
RESET is asserted, the internal pipeline is flushed
and no instruction execution or bus activity
occurs"

Approximately 350 to 450 CLK2 clock cycles
(additional 220 + 60 if self-test is requested) after
RESET is negated, the processor begins executing
instructions at the top of physical memory (ad­
dress location FF FFFOh). When the first interseg­
ment JUMP or CALL is executed, address lines
A23~A20 are driven low for code segment-relative
memory access cycles" While A23-A20 are low,
the Cx486SLCle executes instructions only in the
lowest 1 MByte of physical address space until
system-specific initialization occurs via program
execution"

PRELIMINARY

ev.tx®
~dV!Clng the Standards

Processor Initialization

Table 2.'. Initialized Register Contents

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator xxxxxxxxh 0000 OOOOh indicates self-test

passed.

EBX Base xxxxxxxxh

ECX Count xxxxxxxxh

EDX Data xxxx 0400 + Revision ID Revision ID = 11 h.

EBP Base Pointer xxxxxxxxh

ESI Source Index xxxxxxxxh

ED! Destination Index xxxxxxxxh

ESP Stack Pointer xxxxxxxxh

EFLAGS Flag Word 0000 0002h

EIP Instruction Pointer OOOOFFFOh

ES Extra Segment OOOOh Base address set to 0000 OOOOh.

Limit set to FFFFh.

CS Code Segment FOOOh Base address set to FFFF OOOOh.

Limit set to FFFFh.

SS Stack Segment OOOOh Base address set to 0000 OOOOh.

Limit set to FFFFh

DS Data Segment OOOOh Base address set to 0000 OOOOh.

Limit set to FFFFh.

FS Extra Segment OOOOh Base address set to 0000 OOOOh.

Limit set to FFFFh

GS Extra Segment OOOOh Base address set to 0000 OOOOh.

Limit set to FFFFh

IDTR Interrupt Descriptor Table Base = 0, Limit = 3FFh

Register

CRO Machine Status Word 0000 OOlOh

CCRO Configuration Control a OOh

CCRI Configuration Control 1 OOh

ARRI Address Region 1 OOOFh 4-GByte non-cacheable region.

ARR2 Address Region 2 OOOOh

ARR3 Address Region 3 OOOOh

ARR4 Address Region 4 OOOOh

DR? Debug Register DR? 0000 0400h

Note: x' = Undefined value

2·2 PRELIMINARY

2.2 Instruction Set Overview

The Cx486SLOe instruction set can be divided
into eight types of operations:

Arithmetic
Bit Manipulation
Control Transfer
Data Transfer
High-Level Language Support
Operating System Support
ShiftIRotate
String Manipulation.

All Cx486SLOe instructions operate on as few as 0
operands and as many as 3 operands. A NOP
instruction (no operation) is an example of a 0
operand instruction. Two operand instructions
allow the specification of an explicit source and
destination pair as part of the instruction. These
two operand instructions can be divided into
eight groups according to operand types:

Register to Register
Register to Memory
Memory to Register
Memory to Memory
Register to I/O
I/O to Register
Immediate Data to Register
Immediate Data to Memory.

An operand can be held in the instruction itself
(as in the case of an immediate operand), in a
register, in an I/O port or in memory. An
immediate operand is prefetched as part of the
opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are sup­
ported. Operand lengths of 8 or 32 bits are

Instruction Set Overview 2

generally used when executing code written for
386- or 486-class C32-bit code) processors.
Operand lengths of 8 or 16 bits are generally used
when executing existing 8086 or 80286 code (16-
bit code). The default length of an operand can
be overridden by placing one or more instruction
prefixes in front of the opcode. For example, by
using prefixes, a 32-bit operand can be used with
16-bit code or a 16-bit operand can be used with
32-bit code.

Chapter 6 of this manual lists each instruction in
the Cx486SLOe instruction set along with the
associated opcodes, execution clock counts and
effects on the FLAGS register.

2.2.1 Lock Prefix

The LOCK prefix may be placed before certain
instructions that read, modify, then write back to
memory. The prefix asserts the LOCK# signal to
indicate to the external hardware that the CPU is
in the process of running multiple indivisible
memory accesses. The LOCK prefix can be used
with the following instructions:

Bit Test Instructions (BTS, BTR, BTC)
Exchange Instructions (XADD, XCHG,

CMPXCHG)
One-operand Arithmetic and LOgical

Instructions (DEC, INC, NEG, NOT)
Two-operand Arithmetic and LOgical

Instructions (ADC, ADD, AND, OR, SBB,
SUB,XOR).

An invalid opcode exception is generated if the
LOCK prefix is used with any other instruction,
or with the above instructions when no write
operation to memory occurs (i. e., the destination
is a register).

PRELIMINARY 2·3

On-tx®
~dV!Clng the standards

Register Set

2.3 Register Set

There are 43 accessible registers in the
Cx486SLCJe and these registers are grouped into
two sets. The application register set contains the
registers frequently used by application program­
mers, and the system register set contains the
registers typically reserved for use by operating
systems programmers.

The application register set is made up of:

Eight 32-bit general purpose registers.
Six 16-bit segment registers.
One 32-bit flag register.
One 32-bit instruction pointer register.

The system register set is made up of the remain­
ing registers which include:

Three 32-bit control registers.
Two 48-bit and two 16-bit system address

registers.
Six 32-bit debug registers.
Two 8-bit and four 16-bit configuration

registers.
Five 32-bit test registers.

Each of the registers is discussed in detail in the
following sections.

2.3.1 Application Register Set

The application register set (Figure 2-1) consists
of the registers most often used by the applica­
tions programmer. These registers are generally
accessible and are not protected from read or
write access.

The General Purpose Registers contents are
frequently modified by assembly language in­
structions and typically contain arithmetic and
logical instruction operands.

The Segment Registers contain segment selec­
tors, which index into tables located in memory.
These tables hold the base address for each
segment, as well as other information related to
memory addressing.

The Flag Register contains control bits used to
reflect the status of previously executed instruc­
tions. This register also contains control bits that
effect the operation of some instructions.

The Instruction Pointer register points to the
next instruction that the processor will execute.
This register is automatically incremented by the
processor as execution progresses.

2.3.1.1 General Purpose
Registers

The general purpose registers are divided into four
data registers, two pointer registers, and two index
registers as shown in Figure 2-2.

The data registers are used by the applications
programmer to manipulate data structures and to
hold the results of logical and arithmetic opera­
tions. Different portions of the general data
registers can be addressed by using different
names. An "E" prefix identifies the complete
32-bit register. An "X" suffix without the "E"
prefix identifies the lower 16 bits of the register.

. The lower two bytes of the register can be ad­
dressed with an "H" suffix to identify the upper
byte or an "L" suffix to identify the lower byte.
When a destination operand size specified by an
instruction is smaller than the specified destinatIon
register, the other bytes of the destination register
are not affected when the operand is written to the
register.

PRELIMINARY

31 1615 87
AX

AH AL
BX

BH BL
CX

CH CL
DX

DH DL

SI

D!

BP

SP

15

31 1615

I I
IP

FLAGS

o
EAX

EBX

ECX

EDX

ESI

ED!

EBP

ESP

o
CS

SS

DS

ES

FS

GS

0

I ~~LAGS]

Register Set 2

General
Purpose
Registers

Segment
Registers

Instruction
Pointer and
Flags Register

1700400

Figure 2· 'I. Application Register Set

The pointer and index registers are listed
below:

SI or ESI
DI orEDI
SP or ESP
BP orEBP

Source Index
Destination Index
Stack Pointer
Base Pointer

These registers can be addressed as 16- or 32-bit
registers, with the liE" prefix indicating 32 bits.
The pointer and index registers can be used as
general purpose registers, however, some instruc­
tions use a fixed assignment of these registers. For
example, repeated string operations always use
ESI as the source pointer, EDI as the destination
pointer, and ECX as a counter. The instructions

PRELIMINARY 2·5

Cv.tx®
~dV!Clng the Standards

Register Set

using fixed registers include double-precision
multiply and divide, VO access; string operations,
translate, loop, variable shift and rotate, and stack
operations.

The Cx486SLGe processor implements a stack
using the ESP register. This stack is accessed
during the PUSH and POP instructions, procedure
calls, procedure returns, interrupts, exceptions, and

Data Registers

31 1615 87

interrupt/exception returns. The microprocessor
automatically adjusts the value of the ESP during
operation of these instructions.
The EBP register may be used to reference data
passed on the stack during procedure calls. Local
data may also be placed on the stack and refer­
enced relative to BP. This register provides a
mechanism to access stack data in high-level
languages.

o
A (Accumulator)

B(Base)

C (Count)

I I D (Data)

~
L

L-____ ~~~------~

_X

Pointer and Index Registers

BP (Base-Pointer)

51 (Source-Index)

DI (Destination-Index)

SP (Stack-Pointer)

L-______________ ~~~--------------~

E __
1700600

Figure 2·2. General Purpose Registers

2·6 PRELIMINARY

2.3.1.2 Segment Registers and
Selectors

Segmentation provides a means of defining data
structures inside the memory space of the micro­
processor. There are three basic types of seg­
ments: code, data, and stack. Segments are used
automatically by the processor to determine the
location in memory of code, data, and stack,
references.

There are six 16-bit segment registers:

CS Code Segment
DS Data Segment
ES Extra Segment
SS Stack Segment
FSAdditional Data Segment
GS Additional Data Segment.

In real and virtual 8086 operating modes, a
segment register holds a 16-bit segment base.
The 16-bit segment base is multiplied by 16 and a
16-bit or 32-bit offset is then added to it to create
a linear address. The offset size is dependent on
the current address size. In real mode and in
virtual 8086 mode with paging disabled, the
linear address is also the physical address. In
virtual 8086 mode with paging enabled, the linear

15

INDEX

II = Iable Indicator
RPL = Requested Privilege Level

" Regisier Se~, 2

address is translated to the physical address using
the current page tables.

In protected mode, a segment register holds a
segment selector containing a 13-bit index, a
table indicator (TO bit, and a two-bit requested
privilege level (RPL) field as shown in Figure 2-3.

The Index points into a descriptor table in
memory and selects one of 8192 (213) segment
descriptors contained in the descriptor table. A
segment deSCriptor is an eight-byte value used to
describe a memory segment by defining the
segment base, the segment limit,. and access
control information. To address data within a
segment, a 16-bit or 32-bit offset is added to the
segment's base address. Once a segment selector
has been loaded into a segment register, an
instruction needs to specify the offset only.

The Table Indicator (TO bit of the selector,
defines which descriptor table the index points
into. IfTI=O, the index references the Global
Descriptor Table (GDT). IfTI=l, the index
references the Local Descriptor Table (LDT). The
GDT and LDT are described in more detail later
in this chapter.

2 0

1706200

Figure 2·3. Segment Selector

PRELIMINARY 2·7

On-tx®
~dV!Clng the standards

Register Set

The Requested Privilege Level (RPL) field
contains a 2-bit segment privilege level (OO=most
privileged, 11= least privileged). The RPL bits are
used when the segment register is loaded to
detennine the Effective Privilege Level (EPo. If
the RPL bits indicate less privilege than the pro­
gram, the RPL overrides the current privilege level
and the EPL is the lower privilege level. If the RPL
bits indicate more privilege than the program, the
current privilege level overrides the RPL and again
the EPL is the lower privilege level.

When a segment register is loaded with a segment
selector, the segment base, segment limit and
access rights are also loaded from the descriptor
table into a user-invisible or hidden portion of the
segment register, i.e., cached on-chip. The CPU
does not access the deSCriptor table again until

another segment register load occurs. If the
deSCriptor tables are modified in memory, the
segment registers must be reloaded with the new
selector values.

The processor automatically selects a default
segment register for memory references. Table 2-2
describes the selection rules. In general, data
references use the selector contained in the DS
register, stack references use the SS register and
instruction fetches use the CS register. While
some of these selections may be overridden,
instruction fetches, stack operations, and the
destination write of string operations cannot be
overridden. Special segment override prefixes
allow the use of alternate segment registers
including the use of the ES, FS, and GS segment
registers.

Table 2·2. Segment Register Selection Rules

TYPE OF MEMORY REFERENCE IMPLIED (DEFAULT) SEGMENT OVERRIDE PREFIX
SEGMENT

Code Fetch CS None

Destination of PUSH, PUSHt', INT, CALL, SS None

PUSHA instructions

Source of POP, POPA, POPF, IRET, SS None

RET instructions

Destination of STOS, MOVS, REP ES None

STOS, REP MOVS instructions

Other data references with effective

address using base registers of:

EAX, EBX, ECX, DS CS, ES, FS, GS, SS

EDX, ESI, ED!

EBP,ESP SS CS, DS, ES, FS, GS

2·8 PRELIMINARY

2.3.1.3 Instruction Pointer
Register

Register Set 2

2.3.1.4 Flags Register

The Instruction Pointer (ElP) register contains the
offset into the current code segment of the next
instruction to be executed. The register is nor­
mally incremented with each instruction execu­
tion unless implicitly modified through an inter­
rupt, exception or an instruction that changes the
sequential execution flow (e.g., jump, call).

The Flags Register, EFLAGS, contains status
information and controls certain operations on
the Cx486SLOe microprocessor. The lower 16
bits of this register are referred to as the FLAGS
register that is used when executing 8086 or
80286 code. The flag bits are shown in

3
1

l 0 0 0 0

2 2
4 3

1 1
9 8

Figure 2-4 and defined in Table 2-3.

FLAGS
~ ____________ ~AL ____________ ~

IfIll 1 \
6543 09876543210

o 0 0 00 0 0 0 0 121 ~ I ~ I 0 I ~ I ~~ I ~ I ~ I ~ I ~ I ~ I ~ I 0 I ~ I 0 I ~ 11 I ¥ I
ALIGNMENT CHECK - s~~

VIRTUAL 8086 MODE - S
RESUME FLAG - D

NESTED TASK FLAG - S
110 PRIVILEGE LEVEL - S

OVERFLOW -A
DIRECTION FLAG - C

INTERRUPT ENABLE - S
TRAPFLAG-D
SIGN FLAG-A
ZERO FLAG-A

AUXILIARY CARRY - A
PARITY FLAG - A
CARRY FLAG - A

A = ARITHMETIC FLAG, D = DEBUG FLAG, S = SYSTEM FLAG, C = CONTROL FLAG

o OR 1. INDICATES RESERVED 1701101

Figure 2.4. EFLAGS Register

PRELIMINARY 2·9

Cv.tx®
~dV!clng the standards

Register Set

Table 2.3. EFLAGS Bit Definitions

BIT NAME FUNCTION
POSITION

0 CF Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) the most

significant bit of the result occurs; cleared otherwise.

2 PF Parity Flag: Set when the low-order 8 bits of the result contain an even number of ones;

cleared otherwise.

4 AF Auxiliary Carry Flag: Set when a carry out of (addition) or borrow into (subtraction)

bit position 3 of the result occurs; cleared otherwise.

6 ZF Zero Flag: Set if result is zero; cleared otherwise.

7 SF Sign Flag: Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

8 TF Trap Enable Flag: Once set, a single-step interrupt occurs after the next instruction

completes execution. TF is cleared by the single-step interrupt.

9 IF Interrupt Enable Flag: When set, maskable interrupts (INTR input pin) are acknowledged

and serviced by the CPU.

10 DF Direction Flag: When cleared, DF causes string instructions to auto-increment (default)

the appropriate index registers (ESI and/or EDI). Setting DF causes auto-decrement of

the index registers to occur.

II OF Overflow Flag: Set if the operation resulted in a carry or borrow into the sign bit of the

result but did not result in a carry or borrow out of the high-order bit. Also set if the

operation resulted in a carry or borrow out of the high-order bit but did not result in a

carry or borrow into the sign bit of the result.

12,13 IOPL I/O Privilege Level: While executing in protected mode, IOPL indicates the maximum

current privilege level (CPL) permitted to execute I/O instructions without generating an

exception 13 fault or consulting the I/O permission bit map. "IOPL also indicates the

maximum CPL allowing alteration of the IF bit when new values are popped into the

EFLAGS register.

14 NT Nested Task: While executing in protected mode, NT indicates that the.execution of the

current task is nested within another task.

16 RF Resume Flag: Used in conjunction with debug register breakpoints. RF is checked at

instruction boundaries before breakpoint exception processing. If set, any debug fault is

ignored on the next instruction.

17 VM Virtual 8086 Mode: If set while in protected mode, the microprocessor switches to virtual

8086 operation handling segment loads as the 8086 does, but generating exception 13

faults on privileged opcodes. The VM bit can be set by the IRET instruction (if current

privilege level=O) or by task switches at any privilege level.

18 AC Alignment Check Enable: In conjunction with the AM flag in CRO, the AC flag determines

whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults

are enabled.

2·10 PRELIMINARY

· Register Set 2

2.3.2 System Register Set

The system register set (Figure 2-5) consists of
registers not generally used by application pro­
grammers. These registers are typically employed
by system level programmers who generate
operating systems and memory management
programs.

The Control Registers control certain aspects of
the Cx486SLOe microprocessor such as paging,
coprocessor functions, and segment protection.
When a paging exception occurs while paging is
enabled, the control registers retain the linear
address of the access that caused the exception.

The Descriptor Table Registers and the Task
Register can also be referred to as system address
or memory management registers. These registers
consist of two 48-bit and two 16-bit registers.
These registers specifY the location of the data
structures that control the segmentation used by
the Cx486SLOe microprocessor. Segmentation is
one available method of memory management.

The Configuration Registers are used to control
the Cx486SLOe on-chip cache operation, power
management features and System Management
Mode. The cache, power management and
SMM features can be enabled or disabled by
writing to these registers. Non-cacheable areas
and write-protected areas of physical memory are
also defined through the use of these registers.

The Debng Registers provide debugging facilities
for the Cx486SLOe microprocessor and enable
the use of data access breakpoints and code execu­
tion breakpoints.

The Test Registers provide a mechanism to test
the contents of both the on-chip 1 KByte cache
and the translation lookaside buffer (TLB). The
TLB is used as a cache for translating linear
addresses to phYSical addresses when paging is
enabled. In the follOwing sections, the system
register set is described in greater detail.

PRELIMINARY

On-tx®
~dV!Clng the Standards

Register Set

31 1615 0

I
Page Fault Linear Address Register

Page Directory Base Register

47 1615 0

I Base Limit

I Base Limit

Selector
Selector

31 C
Linear BreakpOint Address 0
Linear Breakpoint Address 1

Linear BreakpOint Address 2
Linear BreakpOint Address 3

Breakpoint Status

Breakpoint Control

7 o
I CCRO

15 J CCRI
Address Region 1

Address Region 2
Address Region 3
Address Region 4

31 0

Cache Test
Cache Test
Cache Test

TLB Test Control
TLB Test Status

CCRO = Configuration Control 0
CCRI = Configuration Control 1

Figure 2·5. System Register Set

2·12 PRELIMINARY

CRO

CR2

CR3

GDTR
IDTR

LDTR

TR

ORO
DRI

DR2

DR3

DR6

DR7

CCRO
CCRI

ARRI
ARRl

ARR3
ARR4

TR3

TR4
TR5

TR6
TR7

]
J

]

Control
Registers

Descripter
Table
Registers

Task Register

Debug
Registers

Configuration
Registers

Test
Registers

1700502

2.3.2.1 Control Registers
The control registers (CRa, CR2 and CRJ), are
shown in Figure 2-6. The CRa register contains
system control flags which control operating
modes and indicate the general state of the CPU.
The lower 16 bits of CRa are referred to as the
machine status word (MSW). The CRa bit
definitions are described in Table 2-4. The re­
served bits in CRa should not be modified.

When paging is enabled and a page fault is gener­
ated, the CR2 register retains the 32-bit linear

31

Register Set 2

address of the address that caused the fault. CRJ
contains the 2a-bit base address of the page
directory. The page directory must always be
aligned to a 4 KByte page boundary, therefore, the
lower 12 bits of CRJ are reserved.

When operating in protected mode, any program
can read the control registers. However, only
privilege level a (most privileged) programs can
modifY the contents of these registers.

1211 °
PAGE DIRECTORY BASE REGISTER (PDBR) RESERVED CR3

PAGE FAULT LlNEARADDRESS CR2

P P
CRO RESERVED RESERVED

G E
3 2 5 4 3 2 1 OJ 1 9

V
MSW 1700701

Figure 2·6. Control Registers

PRELIMINARY 2·13

ev.tx®
~d~C!ng the standards

Register Set

Table 2·4. eRO Bit Definitions

BIT NAME FUNCTION
POSITION

0 PE Protected Mode Enable: Enables the segment based protection mechanism. IfPE=l,

protected mode is enabled. If PE=O, the CPU operates in real mode, with segment based

protection disabled, and addresses are formed as in an 8086-class CPU.

1 MP Monitor Processor Extension: If MP=l and TS=l, a WAIT instruction causes fault 7. The

TS bit is set to 1 on task switches by the CPU. Floating point instructions are not affected

by the state of the MP bit. The MP bit should be set to one during normal operations.

2 EM Emulate Processor Extension: If EM= 1, all floating point instructions cause a fault 7.

3 TS Task Switched: Set whenever a task switch operation is performed. Execution of a floating

point instruction with TS=l causes a device not available (DNA) fault. IfMP=l and TS=l,

aWAIT instruction also causes a DNA fault.

4 1 Reserved: Do not attempt to modify.

5 0 Reserved: Do not attempt to modify.

16 WP Write Protect: Protects read -only pages from supervisor write access. The 386-type CPU

allows a read-only page to be written from privilege level 0-2. The Cx486SLCle CPU is

compatible with the 386-type CPU when wp=o. WP=l forces a fault on a write to a read-

only page from any privilege level.

18 AM Alignment Check Mask: IfAM=l, the AC bit in the EFLAGS register is unmasked and

allowed to enable alignment check faults. Setting AM=O prevents AC faults from occur-

ring.

29 0 Reserved: Do not attempt to modify.

30 CD Cache Disable: If CD=l, no further cache fills occur. However, data already present in the

cache continues to be used if the requested address hits in the cache. The cache must also

be invalidated to completely disable any cache activity.

31 PG Paging Enable Bit: IfPG=l and protected mode is enabled (PE=l), paging is enabled.

2.14 PRELIMINARY

2.3.2.2 Descriptor Table
Registers and Descriptors

Descriptor Table Registers

The Global, Interrupt and Local Descriptor Table
Registers (GDTR, IDTR and LDTR), shown in
Figure 2-7, are used to specify the location of the
data structures that control segmented memory
management. The GDTR, IDTR and LDTR are
loaded using the LGDT, UDT and LLDT instruc­
tions, respectively. The values of these registers
are stored using the corresponding store instruc­
tions. The GDTR and IDTR load instructions are
privileged instructions when operating in pro­
tected mode. The LDTR can only be accessed in
protected mode.

The Global Descriptor Table Register (GDTR)
holds a 32-bit base address and 16-bit limit for the
Global Descriptor Table (GDT). The GDT is an
array of up to 8192 8-byte descriptors. Wheri a
segment register is loaded from memory, the Tl
bit in the segment selector chooses either the GDT
or the local descriptor table (LDT) to locate a
descriptor. IfTi = 0, the index portion of the
selector is used to locate a given deSCriptor within

48

BASE ADDRESS

BASE ADDRESS

Register Set 2

the GDT table. The contents of the GDTR are
completely visible to the programmer. The first
descriptor in the GDT (location 0) is not used by
the CPU and is referred to as the "null descriptor".
If the GDTR is loaded while operating in 16-bit
operand mode, the Cx486SLCle accesses a 32-bit
base value but the upper 8 bits are ignored result­
ing in a 24-bit base address.

The Interrupt Descriptor Table Register
(lDTR) holds a 32-bit base address and 16-bit
limit for the Interrupt Descriptor Table (lDT).
The lDT is an array of 256 8-byte interrupt
'descriptors, each of which is used to point to an
interrupt service routine. Every interrupt that
may occur in the system must have an associated
entry in the lDT. The contents of the lDTR are
completely visible to the programmer.

The Local Descriptor Table Register (LDTR)
holds a 16-bit selector for the Local Descriptor
Table (LDT). The LDT is an array of up to 8192
8-byte deSCriptors. When the LDTR is loaded, the
LDTR selector indexes an LDT descriptor that
must reside in the global descriptor table (GDT).
The contents of the selected descriptor are cached

16 15 o

LIMIT GDTR

LIMIT IDTR
-

SELECTOR LDTR

1708000

Figure 2-7. Descriptor Table Registers

PRELIMINARY 2-15

On-tx®
~dV!Cing the Standards

Register Set

on-chip in the hidden portion of the LDTR. The
CPU does not access the GDT again until the
LDTR is reloaded. If the LDT description is
modified in memory in the GDT, the LDTR must
be reloaded to update the hidden portion of the
LDTR.

When a segment register is loaded from memory,
the TI bit in the segment selector chooses either
the GDT or the LDT to locate a segment descrip­
tor. IfTI = 1, the index portion ofthe selector is
used to locate a given descriptor within the LDT.
Each task in the system may be given its own
LDT, managed by the operating system. The
LDTs provide a method of isolating a given task's
segments from other tasks in the system.

Descriptors

There are three types of descriptors:

• Application Segment Descriptors that define
code, data and stack segments

• System Segment Descriptors that define an
LDT segment or a TSS

• Gate Descriptors that define task gates,
interrupt gates, trap gates and call gates.

Application Segment Descriptors can be located in
either the LDT or GDT. System Segment De­
scriptors can only be located in the GDT. Depen­
dent on the gate type, gate descriptors may be
located in either the GDT, LDT or IDT. Figure 2-
8 illustrates the descriptor format for both Applica­
tion Segment Descriptors and System Segment
Descriptors and Table 2-5 lists the corresponding
bit definitions.

31 24 23 22 21 20 19 161514 13 1211· 8 7

BASE 31-24 I G I D I 0 I y I LIMIT 19-16 P I DPL I ~ I TYPE I BASE 23-16 +4

BASE 15-0 LIMIT 15-0 +0

1707800

Figure 2·8. Application and System Segment Descriptors

2·16 PRELIMINARY

Register Set 2

Table 2·5. Segment Descriptor Bit Definitions

BIT MEMORY NAME DESCRIPTION
POSITION OFFSET

31-24 +4 BASE Segment base address.
7-0 +4 32-bit linear address that points to the beginning of the segment.

31-16 +0
19-16 +4 LIMIT Segment limit. In real mode, the default segment limit is always
15-0 +0 64 KBytes (OFFFFh).
23 +4 G Limit granularity bit:

0= byte granularity, 1 = 4 KBytes (page) granularity.
22 +4 D Default length for operands and effective addresses.

Valid for code and stack segments only: 0 = 16 bit, 1 = 32-bit.
20 +4 AVL Segment available.
15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.
12 +4 DT Descriptor type:

o = system, 1 = application.
11-8 +4 TYPE Segment type.

System deSCriptor (DT = 0):
0010 = LDT deSCriptor.
1001 = TSS descriptor, task not busy.
1011 = TSS descriptor, task busy.

Application descriptor (DT = 1):
11 E o = data, 1 = executable.

10 CJD If E = 0:
o = expand up, limit is upper bound of segment.
1 = expand down, limit is lower bound of segment.

If E = 1:
o = non-conforming.
1 = conforming (runs at privilege level of calling procedure).

9 R/W If E = 0:
o = non-readable.
1 = readable.

If E = 1:
o = non-writable.
1 = writable.

8 A o = not accessed, 1 = accessed.

PRELIMINARY 2·17

ev.tx®
~dv!clng thaStandards

Register Set

Gate Descriptors provide protection for execut­
able segments operating at djfferent privilege
levels. Figure 2-9 illustrates the fonnat for Gate
Descriptors and Table 2-6 lists the corresponding
bit definitions.

Interrupt Gate descriptors are used to enter a
hardware interrupt service routine. Trap Gate
descriptors are used to enter exceptions or software
interrupt service routines. Trap Gate and Interrupt
Gate descriptors can only be located in the IDT.

Task Gate deSCriptors are used to switch the CPU's
context during a task switch. The selector portion
of the Task Gate descriptor locates a Task State
Segment. Task Gate desCriptors can be located in
the GDT, LDT or IDT.

Call Gate deSCriptors are used to enter a procedure
(subroutine) that executes at the same or a more
privileged level. A Call Gate descriptor primarily
defmes the procedure entry point and the
procedure's privilege level.

31 16 15 14 13 12 11 8 7 o

OFFSET 31-16 P I DPL I 0 I TIPE 10101 0 I~~~~ +4

SELECTOR 15-0 OFFSET 15-0 +0

1707900

Figure 2-9. Gate Descriptor

Table 2-6. Gate Descriptor Bit Definitions

BIT MEMORY NAME DESCRIPTION
POSITION OFFSET

31-16 +4 OFFSET Offset used during a call gate to calculate the branch target.

15-0 +0

31-16 +0 SElECT0R Segment selector used during a call gate to calculate the branch target.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

ll-8 +4 TYPE Segment type:

0100 = 16-bit call gate

0101 = tack gate

0110 = 16-bit interrupt gate

o III = 16-bit trap gate

1100 = 32-bitcall gate

1110 = 32-bit interrupt gate

1111 = 32-bit trap gate.

4-0 +4 Parameters Number of 32-bit parameters to copy from the caller's stack to the called

procedure's stack.

2-18 PRELIMINARY

2.3.2.3 Task Register

Ihe Task Register (IR) holds a 16-bit selector
for the current Task State Segment (ISS) table
as shown in Figure 2-10. Ihe IRis loaded and
stored via the LIR and SIR instructions, respec­
tively. Ihe IR can only be accessed during
protected mode and can only be loaded when the
privilege level is a (most privileged). When the
IR is loaded, the IR selector field indexes a ISS
descriptor that must reside in the global descriptor

15

Register Set 2

table (GDI). Ihe contents of the selected descrip­
tor are cached on-chip in the hidden portion of
the IR.

During task switching, the processor saves the
current CPU state in the ISS before starting a new
task. The TR points to the current TSS. The TSS
can be either a 286-type 16-bit ISS or a 386/486-
type 32-bit ISS as shown in Figures 2-11 and
2-12. An I/O pennission bit map is referenced in
the 32-bit ISS by the I/O Map Base Address.

o

SELECTOR

1708100

Figure 2.1 O. Task Register

PRELIMINARY 2·19

ev.tx®
~d~clng the Standards

Register Set

31 16 15
110 MAP BASE ADDRESS 0000000000000001 T

o 0 0 0 O· 0 0 0 0 0 0 0 0 0 0 0 SELECTOR FOR TASK'S LDT
o 0 0 0 0 0 0 0 0 0 000 0 0 0 GS
o 0 0 0 0 0 0 0 0 0 000 0 0 0 FS
o 0 0 0 0 0 0 0 0 0 000 0 0 0 DS
o 0 0 0 0 0 0 0 0 0 000 0 0 0 55
o 0 0 0 0 0 0 0 0 0 000 0 0 0 CS
o 0 0 0 0 0 0 0 0 0 000 0 0 0 ES

ED!
ESI
EBP
ESP
EBX
EDX
ECX
EAX

EFLAGS
EIP
CR3

0000000000000000 I 55 for CPL ; 2
ESP for CPL ; 2

00000000000000001 55 for CPL ; 1
ESP for CPL ; 1

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 55 for CPL ; 0
ESP for CPL ; 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 BACK LINK (OLD TSS SELECTOR)

o ; RESERVED.

Figure 2-". 32-Bit Task State Segment CTSS) Table

2-20 PRELIMINARY

o
+64h
+60h
+5Ch
+58h
+54h
+50h
+4Ch
+48h
+44h
+40h
+3Ch
+38h
+34h
+30h
+2Ch
+28h
+24h
+20h
+lCh
+18h
+14h
+lOh
+Ch
+8h
+4h
+Oh

1708200

Register Set 2

SELECTOR FOR TASK'S LDT +2Ah

DS +2Sh

55 +26h

CS +24h

ES +22h

DI +20h

51 +lEh

BP +16h

SP +lAh

BX +lSh

DX +16h

CX +14h

AX +12h

FLAGS +lOh

IP +Eh

SP FOR PRIVILEGE LEVEL 2 +Ch

55 FOR PRIVILEGE LEVEL 2 +Ah

SP FOR PRIVILEGE LEVEL 1 +Sh

55 FOR PRIVILEGE LEVEL 1 +6h

SP FOR PRIVILEGE LEVEL 0 +4h

55 FOR PRIVILEGE LEVEL 0 +2h

BACK LINK (OLD TSS SELECTOR) +Oh
1708800

Figure 2-12. 16-Bit Task State Segment (Tss) Table

PRELIMINARY 2-21

Cv.tx®
~dV!Cing the standards

Register Set

2.3.2.4 Configuration Registers

The Cx486SLOe contains six registers that do not
exist on other x86 microprocessors. These
registers include two 8-bit Configuration Control
Registers (CCRO and CCRl) and four 16-bit
Address Region Registers (ARR1 through ARR4)
as listed in Table 2-7. The CCR and ARR registers
exist in1l0 memory space and are selected by a
"register index" number via 110 port 22h. 110
port 23h is used for data transfer.

Each 110 port 23h data transfer must be preceded
by an 110 port 22h register selection, otherwise the
second and later 110 port 23h operations are
directed ofkhip and produce external 110 cycles.
If the register index number is outside the
COh - CFh range, external 110 cycles will also
occur.

The CCRO register (Figure 2-13, Table 2-8)
defines the type of cache and determines if the
64-KByte memory area on 1-MByte boundaries
and 640-KByte to 1-MByte area are cacheable.
This register also enables certain pins associated
with cache control and suspend mode.

The CCR1 register (Figure 2-14, Table 2-9) is used
to setup internal cache operation and System
Management Mode (SMM). The ARR registers
(Figure 2-15, Table 2-10) are used to define the
location and size of the memory regions associated
with the internal cache. ARR1-ARR3 define three
write protected or non-cacheable memory regions
as deSignated by CCR1 bits WP1-WP3. ARR4
defines a SMM memory space or a non-cacheable
memory region as defined by CCR1 bit SM4.

Other CCR1 bits enable RPL and SMM pins and
control SMM memory access. The SMAC bit
allows access to defined SMM space while not in
an SMI service routine. The MMAC bit allows
access to main memory that overlaps with SMM
memory while in an SMI service routine for data
accesses only.

The ARR registers define address regions using a
starting address and a block size. The non-cache­
able region block sizes range from 4 KBytes to
4 GByte (Table 2-10). A block size of zero
disables the address region. The starting address
of the address region must be on a block size
boundary. For example, a 128 KByte block is
allowed to have a starting address of 0 KBytes,
128 KBytes, 256 KBytes, etc. The SMM
memory region size is restricted to a maximum of
16 MByte5. The SMM block size must be defined
for SMI# to be recognized.

Table 2·7. Configuration Control
Registers

REGISTER NAME REGISTER WIDT"
INDEX

Configuration Control a cah 8

CCRa

Configuration Control 1 C1h 8

CCR1

Address Region 1 C5h,C6h 16

ARR1

Address Region 2 C8h,C9h 16

ARR2

Address Region 3 CBh,CCh 16

ARR3

Address Region 4 CEh,CFh 16

ARR4
Note: The follovvmg regtster mdex numbers are reserved for future
use: C2h, C3h, C 4h, C7h, CAh, CDh and DOh through FFh.

PRELIMINARY

o Regisier Set 2

BIT
POSITION

0

1

2

3

4

5

6

7

7 543210

I sus I co I BARB I FLUSH I KEN I A20M I NCI I NCO I
REG. INDEX = COh

CCRO

1713200

(Figure 2· '113. Configuration COl1lihrol Registell' @ (CCR@)

'll'able 2·8. CeRO Bill lI»efill1littiollls

NAME DESCRIPTION

NCO Non-cacheable I-MByte Boundaries
1£=1: Sets the first 64 KBytes at each I-MByte boundary as
non-cacheable .

NCI Non-cacheable Upper Memory Area
1£=1: Sets 640-KByte to I-Mbyte memory region non-cacheable.

A20M Enable A20M# Pin
1£=1: Enables A20M# input pin; otherwise pin is ignored.

KEN Enable KEN# Pin
If=1: Enables KEN# input pin; otherwise pin is ignored.

FLUSH Enable FLUSH# Pin
1£=1: Enables FLUSH# input pin; otherwise pin is ignored.

BARB Enable Cache Flush during Hold
1£=1: Enables flushing of internal cache when hold state is entered.

CO Cache Type Select
1f=1: Selects direct -mapped cache.
1£ =0: Selects 2-way set associative cache.

SUS Enable Suspend Pins
If=l: Enables SUSP# input pin and SUSPA# output pin.
If=O: SUSPA# output pin floats, SUSP# input pin is ignored.

PRELIMINARY 2·23

CVlltx®
~dV!Clng the Standards

Register Set

7 6 5 4 3 2 o
I SM4 I WP3 WP21 WPl I MMACI SMAC I SMI I RPL I CCRl

REG. INDEX = Clh
1713300

Figure 2·14. Configuration Control Register 1 (CCR 1)

Table 2·9. CCR 1 Bit Definitions

BIT
POSITION NAME DESCRIPTION

0 RPL Enable RPL Pins.
[f=l: RPLSET and RPLVAL# output pins are enabled.
If=O: RPLSET and RPLVAL# pins float.

1 SMI Enable SMM Pins.
If=1: SMI# input/output pin and SMADS# output pin are enabled.
If=O: SMI# input pin ignored and SMADS# output pin floats.

2 SMAC System Management Memory Access.
If=1: Any access to addresses within the SMM memory space cause external bus cycles
to be issued with SMADS# output active. SMI# input is ignored.
If=O: No effect on access.

3 MMAC Main Memory Access.
If=I: All data accesses which occur within an SMI service routine (or when SMAC=I)
will access main memory instead of SMM memory space.
If=O: No effect on access.

4 WPI Address Region 1 Control.
If=I: Region 1 is write protected and cacheable.
If=O: Region 1 is non-cacheable.

5 WP2 Address Region 2 Control.
If=I: Region 2 is write protected and cacheable.
If=O: Region 2 is non-cacheable.

6 WP3 Address Region 3 Control.
If=I: Region 3 is write protected and cacheable.
If=O: Region 3 is non-cacheable.

7 SM4 Address Region 4 Control.
If=I: Region 4 is non-cacheable SMM memory space.
If=O: Region 4 is non-cacheable, SMI# input ignored.

2·24 PRELIMINARY

Register Set 2

REG. INDEX = CSh REG. INDEX = C6h

/
1\

\I
1\

\
7 o 7 4 3 0

I AD
STARTING ADDR~SS

Al21
SIZE

I
ARRI

Al6 AIS

ADDRESS REGION 1

REG. INDEX = CBh REG. INDEX = C9h

I
1\

\I
1\

\
7 o 7 4 3 0

I A23
STARTING ADDR~SS

Al21
SIZE

I
ARR2

Al6 AIS

ADDRESS REGION 2

REG. INDEX = CBh REG. INDEX = CCh

/
1\

\I
1\

\
7 o 7 4 3 0

I A23
STARTING ADDR~SS

A121
SIZE

I
ARR3

Al6 AIS

ADDRESS REGION 3

REG. INDEX = CEh REG. INDEX = CFh

I
1\

\I
1\

\
7 o 7 4 3 0

lAD
STARTING ADDR~SS

Al21
SIZE'

I
ARR4

Al6 AIS

ADDRESS REGION 4

'Note: ARR4 (SIZE) must be 4 KBytes to 16 MBytes if ARR4 is defined as
SMM memory space.

1713400

Figure 2·'15. Address Region Registers (ARR1 • ARR4)

Table 2·1 O. ARR 1 • ARR4 SIZE Field

BITS 3·0 BLOCK SIZE BITS 3·0 BLOCK SIZE

Oh Disabled 8h 512 KBytes

Ih 4 KBytes 9h 1 MBytes

2h 8 KBytes Ah 2 MBytes

3h 16 KBytes Bh 4 MBytes

4h 32 KBytes Ch 8 MBytes

5h 64 KBytes Dh 16 MBytes

6h 128 KBytes Eh 32 MBytes

7h 256 KBytes Fh 4 GBytes

PRELIMINARY 2·25

ev.tx®
~dV!Clng the Standards

Register Set

2.3.2.5 Debug Registers
Six debug registers (DRO-DR3, DR6 and DR7),
shown in Figure 2-16, support debugging on the
Cx486SLCle. Memory addresses loaded in the
debug registers, referred to as "breakpoints",
generate a debug exception when a memory access
of the specified type occurs to the specified address.
A breakpoint can be specified for a particular kind of

memory access such as a read or a write. Code and
data breakpoints can also be set allowing debug
exceptions to occur whenever a given data access
(read or write) or code access (execute) occurs.
The size of the debug target can be set to 1, 2, or
4 bytes. The debug registers are accessed via MOV
instructions which can be executed only at privilege
levelO.

33222222222211111 III
10987654321098 7 6 5 432 o 9 8 7 6 5 4 3 2 1 0

DR7 LEN I RIW I LEN I RIW I LEN I RIW I LEN I RIW
G 11~1~1~1~1~1~ G L G L o 0 o 0

33221100 D 1 1 0 0

o 0 0 0 0 a a o a a a o a a a a BIB a a 1 1 1 1 1 1 1 1
B B B B

T S 3 2 1 0
DR6

BREAKPOINT 3 LINEAR ADDRESS DR3

BREAKPOINT 2 LINEAR ADDRESS DR2

BREAKPOINT 1 LINEAR ADDRESS DRI

BREAKPOINT 0 LINEAR ADDRESS DRO

ALL BITS MARKED AS 0 OR 1 ARE RESERVED AND SHOULD NOT BE MODIFIED.
1703201

Figure 2·' 6. Debug Registers

2.26 PRELIMINARY

, Register Set 2

The debug address registers DRO-DR3 each
contain the linear address for one of four possible
breakpoints. Each breakpoint is further specified
by bits in the debug control register (DR7). For
each breakpoint address in DRO-DR3, there are
corresponding fields L, RIW, and LEN in DR7 that
specify the type of memory access associated with
the breakpoint.

before execution of the instruction that matches
the breakpoint.

The debug status register (DR6) reflects conditions
that were in effect at the time the debug exception
occurred. The contents of the DR6 register are not
automatically cleared by the processor after a
debug exception occurs and, therefore, should be
cleared by software at the appropriate time.

The RIW field can be used to specify instruction
execution as well as data access breakpoints.
Instruction execution breakpoints are always taken

Table 2-11 lists the field definitions for the DR6
and DR7 registers.

'll'able 2· 'II 'D. DR6 Clnd! DR7 Field Definitions

REGISTIER FIELD NUMBER OF BITS DESCRIPTION

DR6 Bi 1 Bi is set by the processor if the conditions described by DRi,

RlWi, and LENi occurred when the debug exception occurred,

even if the breakpoint is not enabled via the Gi or Li bits.

BT 1 BT is set by the processor before entering the debug handler if a

task switch has occurred to a task with the T bit in the TSS set.

BS 1 BS is set by the processor if the debug exception was triggered

by the single-step execution mode (TF flag in EFLAGS set).

DR7 RlWi 2 Applies to the DRi breakpoint address register:

00 - Break on instruction execution only

01 - Break on data writes only

10 - Not used

11 - Break on data reads or writes.

LENi 2 Applies to the DRi breakpoint address register:

00 - One byte length

01 - Two byte length

10 - Not used

11 - Four byte length.

Gi 1 If set to a 1, breakpoint in DRi is globally enabled for all tasks

and is not cleared by the processor as the result of a task switch.

Li 1 If set to a 1, breakpoint in DRi is locally enabled for the current

task and is cleared by the processor as the result of a task switch.

GD 1 Global disable of debug register access. GD bit is cleared

whenever a debug exception occurs.

PRELIMINARY

ev.tx®
~dV!Clng the Standards

Register Set

Code execution breakpoints may also be generated
by placing the breakpoint instruction (INT 3) at
the location where control is to be regained. The
single-step feature may be enabled by setting the
TF flag in the EFLAGS register. This causes the
processor to perform a debug exception after the
execution of every instruction.

2.3.2.6 Test Registers

The five test registers, shown in Figure 2-17, are
used in testing the CPU's translation look-aside
buffer (TLB) and on-chip cache. TR6 and TR7 are
used for TLB testing, and TR3-TRS are used for
cache testing. Tables 2-12 and 2-13 list the bit
definitions for the TR6 and TR7 registers.

TLB Test Registers

The Cx486SLOe TLB is a four-way set associative
memory with eight entries per set. Each TLB
entry consists of a 24-bit tag and 20-bit data. The

TLB PHYSI CAL ADDRESS

31

24-bit tag represents the high-order 20 bits of the
linear address, a valid bit, and three attribute bits.
The 20-bit data portion represents the upper 20
bits of the physical address that corresponds to the
linear address.

The TLB Test Control Register (TR6) contains a
command bit, the upper 20 bits of a linear address,
a valid bit and the attribute bits used in the test
operation. The contents of TR6 is used to create
the 24-bit TLB tag during both write and read
(TLB lookup) test operations. The command bit
defines whether the test operation is a read or a
write.

The TLB Test Data Register (TR7) contains the
upper 20 bits of the physical address (TLB data
field), two LRU bits and a control bit. During TLB
write operations, the physical address in TR7 is
written into the TLB entry selected by the contents
of TR6. During TLB lookup operations, the TLB data
selected by the contents of TR6 is loaded into TR7.

TLB LINEAR ADDRESS J v J D J D# J u J u# J w J w# J 0 0 0 OJCJTR6

31 12 11 10 9 8 7 6 5 4 3 2 1 0

LINE SELECTION ISETJ C~TR5
31 11 10 9 8 7 6 5 4 3 2 1 0

CACHE TAG ADDRESS TR4

31

CACHE DATA JTR3
~3'1--~0

D=Reserved· 1701001

Figure 2·1 7. Test Registers

2·28 PRELIMINARY

Register Set 2

Table 2·12. TR6 and TR7 Bit Definitions

REGISTER BIT DESCRIPTION
NAME POSITION

TR6 31-12 Linear address.

TLB lookup: The TLB is interrogated per this address. If one and only one match

occurs in the TlB, the rest of the fields in TR6 and TR7 are updated per the matching

TLBentry.

TLB write: A TLB entry is allocated to this linear address.

11 Valid bit (V).

TLB write: If set, indicates that the TLB entry contains valid data. If clear, target

entry is invalidated.

10-9 Dirty attribute bit and its complement (D, D#). (Refer to Table 2-13).

8-7 User/supervisor attribute bit and its complement (U, U#). (Refer to Table 2-13).

6-5 Read/write attribute bit and its complement (R, R#). (Refer to Table 2-13).

0 Command bit (C).

If = 0: TLB write.

If = 1: TLB lookup.

TR7 31-12 Physical address.

TLB lookup: data field from the TLB.

TLB write: data field written into the TLB.

11 Page-level cache disable bit (PCD).

Corresponds to the PCD bit of a page table entry.

10 Page-level cache write-through bit (PWT).

Corresponds to the PWT bit of a page table entry.

9-7 LRUbits.

TLB lookup: LRU bits associated with the TLB entry prior to the TLB lookup.

TLB write: ignored.

4 PL bit.

TLB lookup: If = 1, read hit occurred. If = 0, read miss occurred.

TLB write: If = 1, REP field is used to select the set. If = 0, the pseudo-LRU

replacement algorithm is used to select the set.

3-2 Set selection (REP).

TLB lookup: If PL = 1, set in which the tag was found. IfPL = 0, undefined data.

TLB write: If PL = 1, selects one of the four sets for replacement. If PL=O, ignored.

PRELIMINARY 2.29

Cv.tx®
~dV!Clng the standards

Register Set

Table 2 .. 1 3. TR6 AHribute Bit Pairs

BIT BIT COMPLEMENT EFFECT ON TLB LOOKUP
(B) (B#)

0 0 Do not match.

0 1 Match if the bit is O.

1 0 Match if the bit is 1.

1 1 Match if the bit is 1 or O.

Cache Test Registers

The Cx486SLOe l-KByte on-chip cache can be
configured either as a direct-mapped (256 entries)
or as a two-way set associative memory (128
entries per set). Each entry consists of a 23-bit
tag, a 32-bit data field, four valid bits and an LRU
bit. The 23-bit tag represents the high-order 23
bits of the physical address. The 32-bit data
represents the four bytes of data currently in
memory at the physical address represented by the
tag. The four valid bits indicate which of the four
data bytes actually contain valid data. The LRU bit
is only accessed when the cache is configured as
two-way set associative and indicates which of the
two sets was most recently accessed.

The Cx486SLOe contains three test registers that
allow testing of its internal cache. Using these
registers, cache test writes and reads may be
perfonned. Cache test writes cause the data in
TR3 to be written to the selected set and entry in
the cache. Cache test reads allow inspection of.the
data, valid bits and the LRU bit for the cache
entry. For data to be written to the allocated
entry, the valid bits for the entry must be set prior
to the write of the data. Bit definitions for the
cache test registers are shown in Table 2-14.

2.30 PRELIMINARY

EFFECT ON TLB WRITE

Undefined.

Clear the bit.

Set the bit.

Undefined.

Register Set 2

Table 2·14. TR3·TR5 Bit Definitions

REGISTER BIT DESCRIPTION
NAME POSITION

TR3 31-10 Cache data.
Cache read: data accessed from the cache.
Cache write: data to be written into the cache.

TR4 31-9 Tag address.
Cache read: tag address from which data is read.
Cache write: data written into the tag address of the selected entry.

7 LRU Bit. (Used with two-way configuration only)
Cache read: the LRU bit associated with the cache entry.
Cache write: ignored.

6-3 Valid Bits
Cache read: valid bits for the accessed entry, (one bit per byte).
Cache write: valid bits written into the entry.

TRS 10-4 Entry Selection
Two-Way Configuration:
Address bits 8-2 for selecting one of 128 entries.

Direct-Mapped Configuration:
Address bits 8-2 for selecting one of 256 entries.
Cache read: TRS-bit 2 is address bit 9.
Cache write: TR4-bit 9 is address bit 9.

2 Two-Way Configuration:
Set selection.
If = 0: set 0 is selected.
If = 1: set 1 is selected.

Direct -Mapped Configuration:
Cache read: Address bit 9 for selecting of one of 256 lines.

1-0 Control bits. These bits control reading or writing the cache.
If = 00: Ignored.
If = 01: Cache write.
If = 10: Cache read.
If = 11: Cache flush (marks all entries as invalid).

PRELIMINARY 2·31

Cv.tx®
~dV!Clng the Standards

Address Spaces

2.4 Address Spaces

The Cx486SLCle can directly address either
memory or I/O space. Figure 2-18 illustrates the
range of addresses available for memory address
space and I/O address space. For the Cx486SLCle,
the addresses for physical memory range between
00 OOOOh and FF FFFFh (16 MEytes). The
accessible I/O addresses space ranges between

Physical
Memory Space

00 OOOOh and 00 FFFFh (64 KBytes). The copro­
cessor communication space exists in upper I/O
space between 80 00F8h and 80 OOFFh. These
coprocessor I/O ports are automatically accessed
by the CPU whenever an ESC opcode is executed.
The I/O locations 22h and 23h are used for
Cx486SLCle configuration register access.

Accessible
Programmed
va Space

FF FFFFh FF FFFFh

2·32

Physical Memory
16 MBytes

00 OOOOh '--_____ -'--'

8000FFh
8000F8h

00 FFFFh

OOOOOOh

Not
Accessible

.--

Not
Accessible

64 KBytes

Figure 2·18. Memory and I/O Address Spaces

PRELIMINARY

Coprocessor
Space

Cx486SLCle
Configuration
Register va
Space
000023h
000022h

1706401

· Address Spaces 2

2.4.1 I/O Address Space

The Cx486SLOe I/O address space is accessed
using IN and OUT instructions to addresses
referred to as "ports". The accessible I/O address
space is 64 KBytes and can be accessed as 8-bit,
16-bit or 32-bit ports. The execution of any IN or
OUT instruction causes the MIlO# pin to be
driven low, thereby selecting the I/O space instead
of memory space for loading or storing data. The
upper 8 address bits are always driven low during
IN and OUT instruction port accesses.

The Cx486SLOe configuration registers reside
within the I/O address space at port addresses 22h
and 23h and are accessed using the standard IN
and OUT instructions. The configuration registers
are modified by writing the index of the configura­
tion register to port 22h and then transferring the
data through port 23h. Accesses to the on-chip
configuration registers do not generate external
I/O cycles. However, each port 23h operation
must be preceded by a port 22h write with a valid
index value. Otherwise, the second and later port
23h operations are directed off-chip and generate
external I/O cycles without modifying the on-chip
configuration registers. Also, writes to port 22h
outside of the Cx486SLOe index range (COh to
CFh) result in external I/O cycles and do not effect
the on-chip configuration registers. Reads of port
22h are always directed off-chip.

2.4.2 Memory Address Space

The Cx486SLOe directly addresses up to 16
MBytes of physical memory. Memory address
space is accessed as bytes, words (16-bits) or
doublewords (32-bits). Words and doublewords

are stored in consecutive memory bytes with the
low-order byte located in the lowest address. The
phYSical address of a word or doubleword is the
byte address of the low-order byte.

With the Cx486SLOe, memory can be addressed
using nine different addressing modes. These
addressing modes are used to calculate an offset
address often referred to as an effective address.
Depending on the operating mode of the CPU, the
offset is then combined using memory manage­
ment mechanisms to create a physical address that
actually addresses the physical memory devices.

Memory management mechanisms on the
Cx486SLOe consist of segmentation and paging.
Segmentation allows each program to use several
independent, protected address spaces. Paging
supports a memory subsystem that simulates a
large address space using a small amount of RAM
and disk storage for physical memory. Either or
both of these mechanisms can be used for manage­
ment of the Cx486SLOe memory address space.

2.4.2. I OHset Mechanism

The offset mechanism computes an offset (effec­
tive) address by adding together up to three
values: a base, an index and a displacement. The
base, if present, is the value in one of eight 32-bit
general registers at the time of the execution of
the instruction. The index, like the base, is a value
that is contained in one of the 32-bit general
registers (except the ESP register) when the
instruction is executed. The index differs from the
base in that the index is first multiplied by a scale
factor of 1, 2, 4 or 8 before the summation is
made. The third component added to the

PRELIMINARY 2·33

ev.tx®
~d~Clng the Standards

Address Spaces

memory address calculation is the displacement
which is a value of up to 32-bits in length supplied
as part of the instruction. Figure 2-19 illustrates
the calculation of the offset address.

Nine valid combinations of the base, index, scale
factor and displacement can be used with the
Cx486SLGe instruction set. These combinations
are listed in Table 2-15. The base and index both
refer to contents of a register as indicated by [Base}
and [Index}.

1706600

L-__ -+(+j+-__ ----'

Offset Address
(Effective Address)

Figure 2·19. OHset Address Calculation

Table 2·1 5. Memory Addressing Modes

ADDRESSING BASE INDEX SCALE DISPLACEMENT OFFSET ADDRESS (OA)
MODE FACTOR (DP) CALCULATION

(SF)

Direct x OA=DP

Register Indirect x OA= [BASE]

Based x x OA = [BASE] + DP

Index x x OA = [INDEX] + DP

Scaled Index x
00

x x OA = ([INDEX] * SF) + DP

Based Index x x OA = [BASE] + [INDEX]

Based Scaled x x x OA = [BASE] + ([INDEX] * SF)

Index

Based Index with x x x OA = [BASE] + [INDEX] + DP

Displacement

Based Scaled x x x x OA = [BASE] + ([INDEX] * SF) + DP

Index with

Displacement

2·34 PRELIMINARY

2.4.2.2 Real Mode Memory
Addressing

In real mode operation, the Cx486SLOe only
addresses the lowest 1 MByte (220) of memory.
To calculate a physical memory address, the
16-bit segment base address located in the selected
segment register is multiplied by 16 and then the
16-bit offset address is added. The resulting 20-bit
address is then extended with four zeros in the
upper address bits to create the 24-bit physical
address. Figure 2-20 illustrates the real mode
address calculation. Physical addresses beyond
1 MByte cause a segment limit overrun
exception.

The addition of the base address and the offset
address may result in a carry. Therefore, the
resulting address may actually contain up to 21
significant address bits that can address memory in
the first 64 KBytes above 1 MByte.

Offset Mechanism

Selected Segment
Register

Offset Addresss

X 16

Address Spaces 2

2.4.2.3 Protected Mode Memory
Addressing

In protected mode three mechanisms calculate a
physical memory address (Figure 2-21).

o Offset Mechanism that produces the offset
or effective address as in real mode.

.. Selector Mechanism that produces the base
address.

o Optional Paging Mechanism that translates a
linear address to the physical memory address.

The offset and base address are added together to
produce the linear address. If paging is not used,
the linear address is used as the physical memory
address. If paging is enabled, the paging mecha­
nism is used to translate the linear address into the
physical address. The offset mechanism is de­
scribed earlier in this section and applies to both
real and protected mode. The selector and paging
mechanisms are described in the following para­
graphs.

+
Linear Address ~ Physical Address

1708300

Figure 2·20. Real Mode Address Calculation

PRELIMINARY 2·35

Cv.tx®
~d!!clng the Standards

Address Spaces

Physical
Memory
Address

1706S00

Figure 2·21. Protected Mode Address Calculation

Selector Mechanism

Memory is divided into an arbitrary number of
segments, each containing usually much less than
the 232 byte (4 GByte) maximum.

The six segment registers (CS, DS, SS, ES, FS and
GS) each contain a 16-bit selector that is used
when the register is loaded to locate a segment
descriptor in either the global descriptor table
(GDT) or the local descriptor table (LDT). The
segment descriptor defines the base address, limit

15

ELECTOR I INDEX

L OAD

1

I T10Q ~ SEGMENT
DESCRIPTOR

I
GLOBAL DESCRIPTOR TABLE

and attributes of the selected segment and is cached on
the Cx486SLGe as a result ofloading the selector.
The cached descriptor contents are not visible to
the programmer. When a memory reference
occurs in protected mode, the linear address is
generated by adding the segment base address in
the hidden portion of the segment register to the
offset address. If paging is not enabled, this linear
address is used as the physical memory address.
Figure 2-22 illustrates the operation of the selector
mechanism.

(ACCESSED
I TI I RPL I SELECTOR SEGMENT

REGISTER)

~ SEGMENT
~ DESCRIPTOR

LOCAL DESCRIPTOR TABLE
- - - - - - - -'- - - - -

MEMORY DESCRIPTOR
~ .BASEADDR REFERENCE "I CACHE ESS

1703300

Figure 2.22. Selector Mechanism

2.36 PRELIMINARY

Paging Mechanism

The paging mechanism supports a memory
subsystem that simulates a large address space
with a small amount of RAM and disk storage.
The paging mechanism either translates a linear
address to its corresponding physical address or
generates an exception if the required page is not
currently present in RAM. When the operating
system services the exception, the required page is
loaded into memory and the instruction is then
restarted. Pages are either 4 KBytes or 1. MByte in
size. The CPU defaults to 4-KByte pages that are
aligned to 4 KByte boundaries.

A page is addressed by using two levels of tables as
illustrated in Figure 2-23. The upper 10 bits of
the 32-bit linear address are used to locate an entry
in the page directory table. The page directory
table acts as a 32-bit master index to up to 1K
individual second-level page tables. The selected
entry in the page directory table, referred to as the
directory table entry, identifies the starting address
of the second-level page table. The page direc­
tory table itself is a page and is, therefore, aligned
to a 4 KByte boundary. The physical address of
the current page directory is stored in the CR3
control register, also referred to as the Page
Directory Base Register (PDBR).

Bits 12-21 of the 32-bit linear address, referred to
as the Page Table Index, locate a 32-bit entry in

Address Spaces 2

the second-level page table. This Page Table
Entry (PTE) contains the base address of the
desired page frame. The second-level page table
addresses up to 1K individual page frames. A
second-level page table is 4 KBytes in size and is
itself a page. The lower 12 bits of the 32-bit linear
address, referred to as the Page Frame Offset
(PFO), locate the desired data within the page
frame.

Since the page directory table can point to 1K
page tables, and each page table can point to 1K of
page frames, a total of 1M of page frames can be
implemented. Since each page frame contains
4 KBytes, up to 4 GBytes of virtual memory can
be addressed by the Cx486SLCle with a single
page directory table.

In addition to the base address of the page table or
the page frame, each Directory Table Entry or
Page Table Entry contains attribute bits and a
present bit as illustrated in Figure 2-24 and listed
in Table 2-16.

If the present bit (P) is set in the DTE, the page
table is present and the appropriate page table
entry is read. Ifp=l in the corresponding PTE
(indicating that the page is in memory), the
accessed and dirty bits are updated, if necessary,
and the operand is fetched. Both accessed bits are
set (DTE and PTE), if necessary, to mdicate that
the table and the page have been used to translate
a linear address. The dirty bit CD) is set before the
first write is made to a page.

PRELIMINARY 2·37

Cv.tx®
~dv!c'ng the Standards

Address Spaces

Linear Address

31 ~ 2221 ~ 1211 ~ 0

I
Directory Table Index 1< Page Table Index

I
Page Frame Offset

I (DT!) (PT!) (PFO)

Directory Table Page Table Page Frame

4Kb 4Kb 4Kb

~ Physical Data

~ PTE r----

4 DTE

[l ~
~ 0 r o

CR3 Control Register
17 06700

Figure 2·23. Paging Mechanism

31 12 11 10 9 8 765432 0

BASE ADDRESS

D =RESERVED
1708500

Figure 2·24. Directory and Page Table Entry (DIE and PTE) Format

2·38 PRELIMINARY

Address Spaces 2

Translation Look-Aside Buffer The present bits must be set to validate the
remaining bits in the DTE and PTE. If either of
the present bits are not set, a page fault is gener­
ated when the DTE or PTE is accessed. If P=O,
the remaining DTEIPTE bits are available for use
by the operating system. For example, the
operating system can use these bits to record
where on the hard disk the pages are located. A
page fault is also generated if the memory refer­
ence violates the page protection attributes.

The translation look-aside buffer (TLB) is a cache
for the paging mechanism and replaces the two­
level page table lookup procedure for cache hits.
The TLB is a four-way set associative 32-bit entry
page table cache that automatically keeps the
most commonly used page table entries in the
processor. The 32-bit entry TLB, coupled with a
4K page size, results in coverage of 128 KBytes of
memory addresses.

Table 2·11 6. lDireciorv and Page 'll'albHe II!ntlrv (ID'I/'IE ancll IP'II'lE) lBiill lDefiilllliitt&olllls

BIT POSITION FIELD NAME DESCRIPTION

31 - 12 BASE Specifies the base address of the page or page table.

ADDRESS

11- 9 -- Undefined and available to the programmer.

8-7 -- Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the

page (PIE only, undefined in DIE).

5 A Accessed Flag. If set, indicates that a read access or write access has

occurred to the page.

4 FCD Page Caching Disable Flag. If sel, indicates that the page is not

cacheable in the on-chip cache.

3 -- Reserved and not available to the programmer.

2 U/S User/Supervisor Attribute. If set (user), page is accessible at all

privilege levels. :'> 2 If clear (supervisor), page is accessible only

when CPL:'> 2.

1 W/R WritelRead Attribute. If set (write), page is writable. If clear (read),

page is read only.

a P Present Flag. If set, indicates that the page is present in RAM

memory, and validates the remaining DTEIPTE bits. If clear,

indicates that the page is not present in memory and the remaining

DTEIPTE bits can be used by the programmer.

PRELIMINARY 2·39

Cv.tx®
~dV!Clng the Standards

Interrupts and Exceptions

The TLB must be flushed when entries in the page
tables are changed. The TLB is flushed whenever
the CR3 register is loaded. An individual entry in
the TLB can be flushed using the INVLPG instruc­
tion.

2.5 Interrupts and
Exceptions

The processing of either an interrupt or an excep­
tion changes the normal sequential flow of a
program by transferring program control to a
selected service routine. Except for SMM inter­
rupts, the location of the selected service routine
is determined by one of the interrupt vectors
stored in the interrupt deSCriptor table.

All true interrupts are hardware interrupts and are
generated by signal sources external to the CPU.
All exceptions (including so-called software
interrupts) are produced internally by the cpu.

2.5.2 Interrupts

External events can interrupt normal program
execution by using one of the three interrupt pins
on the Cx486SLGe.

• Non-maskable Interrupt (NMI pin)
• Maskable Interrupt (INTR pin)
• SMM Interrupt (SMI# pin)

For most interrupts, program transfer to the
interrupt routine occurs after the current instruc­
tion has been completed. When the execution
returns to the original program, it begins immedi­
ately following the interrupted instruction.

The NMI interrupt cannot be masked by soft­
ware and always uses interrupt vector 2 to locate
its service routine. Since the interrupt vector is
fixed and is supplied internally, no interrupt
acknowledge bus cycles are performed. This
interrupt is normally reserved for unusual situa­
tions such as parity errors and has priority over
INTR interrupts.

Once NMI processing has started, no additional
NMIs are processed until an IRET instruction is
executed, typically at the end of the NMI service
routine. If NMI is re-asserted prior to execution of
the IRET instruction, one and only one NMI rising
edge is stored and then processed after execution
of the next IRET.

During the NMI service routine maskable inter­
rupts are still enabled. If an unmasked INTR
occurs during the NMI service routine, the INTR
is serviced and execution returns to the NMI
service routine following the next IRET. If a
HALT instruction is executed within the NMI
service routine, the Cx486SLGe restarts execution
only in response to RESET, an unmasked INTR or
an SMM interrupt. NMI does not restart CPU
execution under this condition.

The INTR interrupt is unmasked when the
Interrupt Enable Flag (IF) in the EFLAGS register
is set to 1. With the exception of string opera­
tions, INTR interrupts are acknowledged between
instructions. Long string operations have interrupt
windows between memory moves that allow
INTR interrupts to be acknowledged.

When an INTR interrupt occurs, the CPU per­
forms two locked interrupt acknowledge bus

2·40 PRELIMINARY

cycles. During the second cycle, the CPU reads an
8-bit vector which is supplied by an external
interrupt controller. This vector selects which of
the 256 possible interrupt handlers will be ex­
ecuted in response to the interrupt.

The SMM interrupt has higher priority than
either INTR or NMI. After SMI# is asserted,
program execution is passed to an SMI service
routine which runs in SMM address space reserved
for this purpose. The remainder of this section
does not apply to the SMM interrupts. SMM
interrupts are described in greater detail later in
this chapter.

2.5.2 Exceptions

Exceptions are generated by an interrupt instruc­
tion or a program error. Exceptions are classified
as traps, faults or aborts depending on the mecha­
nism used to report them and the restartablity of
the instruction which first caused the exception.

A trap exception is reported immediately follow­
ing the instruction that generated the trap excep­
tion. Trap exceptions are generated by execution
of a software interrupt instruction during Single
stepping, at a breakpoint or by software interrupt
instruction (INTO, INT 3, INT n, BOUND), by a
Single-step operation or by a data breakpoint.

Software interrupts can be used to simulate hard­
ware interrupts. For example, an INT n instruc­
tion causes the processor to execute the interrupt
service routine pointed to by the nth vector in the
interrupt table. Execution of the interrupt service
routine occurs regardless of the state of the IF flag
in the EFLAGS register.

Interrupts and Excepti.ons 2

The one byte INT 3, or breakpoint interrupt
(vector 3), is a particular case of the INT n instruc­
tion. By inserting this one byte instruction in a
program, the user can set breakpoints in the code
that can be used during debug.

Single-step operation is enabled by setting the TF
bit in the EFLAGS register. When TF is set, the
CPU generates a debug exception (vector 1) after

. the execution of every instruction. Data break­
points also generate a debug exception and are
specified by loading the debug registers (DRO­
DR7) with the appropriate values.

A fault exception is caused by a program error
and is reported prior to completion of the instruc­
tion that generated the exception. By reporting
the fault prior to instruction completion, the CPU
is left in a state which allows the instruction to be
restarted and the effects of the faulting instruction
to be nullified. Fault exceptions include divide-by­
zero errors, invalid opcades, page faults and
coprocessor errors. Debug exceptions (vector 1)
are also handled as faults (except for data break­
points and single-step operations). After execu­
tion of the fault service routine, the instruction
pointer points to the instruction that caused the
fault.

An abort exception is a type of fault exception
that is severe enough that the CPU cannot restart
the program at the faulting instruction. Abort
exceptions include the double fault (vector 8) and
coprocessor segment overrun (vector 9).

PRELIMINARY 2·41

Cv.tx®
~dV!cJng the standards

Interrupts and Exceptions

2.5.3 Interrupt Vectors

When the CPU services an interrupt or exception,
the current program's instruction pointer and flags
are pushed onto the stack to allow resumption of
execution of the interrupted program. In pro­
tected mode, the processor also saves an error code
for some exceptions. Program control is then
transferred to the interrupt handler (also called the
interrupt service routine). Upon execution of an
IRET at the end of the service routine, program

execution resumes at the instruction pointer
address saved on the stack when the interrupt was
serviced.

2·42

Interrupt Vector Assigmnents

Each interrupt (except SMI#) and exception is
aSSigned one of 256 interrupt vector numbers
(Table 2-17). The first 32 interrupt vector assign­
ments are defined or reserved. INT instructions
acting as software interrupts may use any of
interrupt vectors, 0 through 255.

Table 2·' 7. Interrupt Vector Assignments

INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT

1 Debug exception TRAPIFAULT

2 NMI interrupt

3 Breakpoint TRAP

4 Interrupt on overflow TRAP

5 BOUND range exceeded FAULT

6 Invalid opcode FAULT

7 Device not available FAULT

8 Double fault ABORT

9 Coprocessor segment overrun ABORT

10 Invalid TSS FAULT

11 Segment not present FAULT

12 Stack fault FAULT

l3 General protection fault TRAPIFAULT

14 Page fault FAULT

15 Reserved

16 Coprocessor error FAULT

17 Alignment check exception FAULT

18-31 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP

Note: Data breakpoints and single-step are traps. All other debug exceptions are faults.

PRELIMINARY

The non-maskable hardware interrupt (NMI) is
assigned vector 2.

In response to a maskable hardware interrupt
(INTR), the Cx486SLGe issues interrupt
acknowledge bus cycles used to read the vector
number from external hardware. These vectors
should be in the range 32 - 255 as vectors a -31
are pre-defined.

Interrupt Descriptor Table

The interrupt vector number is used by the
Cx486SLGe to locate an entry in the interrupt
descriptor table (IDT). In real mode, each IDT
entry consists of a four-byte far pointer to the
beginning of the corresponding interrupt service
routine. In protected mode, each IDT entry is an
eight-byte descriptor. The Interrupt Descriptor
Table Register (IDTR) specifies the beginning
address and limit of the IDT FollOwing reset, the
IDTR contains a base address of Oh with a limit of
3FFh.

The IDT can be located anywhere in physical
memory as determined by the IDTR register. The
IDT may contain different types of descriptors:
interrupt gates, trap gates and task gates. Inter­
rupt gates are used primarily to enter a hardware
interrupt handler. Trap gates are generally used to
enter an exception handler or software interrupt
handler. If an interrupt gate is used, the Interrupt
Enable Flag (IF) in the EFLAGS register is cleared
before the interrupt handler is entered. Task gates
are used to make the transition to a new task.

2.5.4

Interrupts and Exceptions

Intenvpt and Exception
Priorities

2

As the Cx486SLGe executes instructions, it
follows a consistent policy for prioritizing excep­
tions and hardware interrupts. The priorities for
competing interrupts and exceptions are listed in
Table 2-18. SMM interrupts always take prece­
dence. Debug traps for the previous instruction
and next instructions are handled as the next
priority. When NMI and maskable INTR inter­
rupts are both detected at the same instruction
boundary, the Cx486SLGe microprocessor
services the NMI interrupt first.

The Cx486SLGe checks for exceptions in parallel
with instruction decoding and execution. Several
exceptions can result from a single instruction.
However, only one exception is generated upon
each attempt to execute the instruction. Each
exception service routine should make the
appropriate corrections to the instruction and
then restart the instruction. In this way, excep­
tions can be serviced until the instruction executes
properly.

The Cx486SLGe supports instruction restart after
all faults, except when an instruction causes a task
switch to a task whose task state segment (TSS) is
partially not present. A TSS can be partially not
present if the TSS is not page aligned and one of
the pages where the TSS resides is not currently in
memory.

PRELIMINARY 2·43

Cv.tx®
~dV!cing the Standards

Interrupts and Exceptions

Table 2·1 8. Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES

0 SMM hardware interrupt. SMM interrupts are caused by SMI# asserted
and always have highest priority.

I Debug traps and faults from previous Includes single-step trap and data breakpoints
instruction. specified in the debug registers.

2 Debug traps for next instruction. Includes instruction execution breakpoints
~ecified in the debug registers.

3 Non-maskable hardware interrupt. Caused ~ NMI asserted.
4 Maskable hardware interrupt. Caused by INTR asserted and IF ~ l.
5 Faults resulting from fetching the next Includes segment not present, general protection

instruction. fault and~e fault.
6 Faults resulting from instruction decoding. Includes illegal opcode, instruction too long, or

~rivil~e violation.
7 WAIT instruction and TS = I and MP = I. Device not available exception generated.
8 ESC instruction and EM = I or TS = I. Device not available exception generated.
9 Coprocessor error exception. Caused by ERROR# asserted.
10 Segmentation faults (for each memory Includes segment not present, stack fault, and

reference reqUired by the instruction) that general proiection fault.
prevent transferring the entire memory
operand.

II Page Faults that prevent transferring the
entire memory operand.

12 Alignment check fault.

2·44 PRELIMINARY

2.5.5 Exceptions in Real Mode

Many of the exceptions described in Table 2-17
are not applicable in real mode. Exceptions 10,
11, and 14 do not occur real mode. Other excep­
tions have slightly different meanings in real mode
as listed in Table 2-19.

Interrupts and Exceptions 2

Table 2·19. Exception Changes in Real Mode

VECTOR NUMBER PROTECTED MODE FUNCTION REAL MODE FUNCTION

8 Double fault. Interrupt table limit overrun.

10 Invalid ISS. --

11 Segment not present. --

12 Stack fault. SS segment limit overrun.

13 General protection fault. CS, DS, ES, FS, GS segment limit overrun.

14 Page fault. --

Note: -- == does not occur

PRELIMINARY 2·45

On-tx®
~dv!Clng the Standards

Interrupts and Exceptions

2.5.6 Error Codes

When operating in protected mode, the following
exceptions generate a 16-bit error code:

15 3 2 0

Selector Index

1707000

Double Fault
Alignment Check
Invalid TSS
Segment Not Present
Stack Fault

Figure 2·25. Error Code Format

General Protection Fault
Page Fault .

The error code format is shown in Figure 2-25 and
the error code bit definitions are listed in
Table 2-20. Bits 15-3 (selector index) are not
meaningful if the error code was generated as the
result of a page fault. The error code is always zero
for double faults and alignment check exceptions.

Table 2·20. Error Code Bit Definitions

FAULT SELECTOR 52 51
TYPE INDEX (BIT 2) (BIT 1)

(BITS 15.3)

Page Fault Reserved Fault caused by: Fault occurred
o = not present page during:

1 = page-level o = read access
protection violation. 1 = write access.

101 Fault Index of faulty Reserved 1
101 selector.

Segment Index of faulty II bit of faulty 0

Fault selector. selector.

2·46 PRELIMINARY

SO
(BIT 0)

Fault occurred during:
o = supervisor access

1 = user access.

If = 1, exception
occurred while trying
to invoke exception or
hardware interrupt

handler.

If = 1, exception
occurred while trying
to invoke exception or
hardware interrupt

handler.

,

2.6

2.6.1

System Management
Mode

Introduction

System Management Mode (SMM) provides an
additional interrupt which can be used for system
power management or software transparent
emulation of I/O peripherals. SMM is entered
using the System Management Interrupt (SMI#)
which has a higher priority than any other inter­
rupt, including NMI. After reception of an SMI#,

FF FFFFh

Physical
Memory Space

Physical Memory
16 MBytes

System Management Modes 2

portions of the CPU state are automatically saved,
SMM is entered and program execution begins at
the base of SMM address space (Figure 2-26).
Running in protected SMM address space, the
interrupt routine does not interfere with the
operating system or any application program.

Seven SMM instructions have been added to the
486SX instruction set that pennit saving and
restoring of the total CPU state when in SMM
mode. Two new pins, SMI# and SMADS#, support
SMM functions.

FF FFFFh

Potential
SMM Address

Space

} ADS# Active

4 KBytes to
16 MBytes

Defined
SMM

Address
Space

SMADS# Active

OOOOOOh '--____ ---'

Non-SMM Mode
ADS# Active

00 OOOOh '--____ ~

SMMMode
1713600

Figure 2·26. System Management Memory Address Space

PRELIMINARY 2.47

Cv.tx®
~dV!Cing the standards

System Management Mode

2.6.2 SMM Operation

SMM operation is summarized in Figure 2-27.
Entering SMM requires the assertion of the SMI#
pin for at least four CLK2 periods. For the SMI#
input to be recognized, the following configuration
register bits must be set as shown below:

SMI
SMAC
SM4
ARR4

CCRI (l) = 1
CCRI (2) = 0
CCRI (7) = 1
SIZE (3-0) > 0

The configuration registers are discussed in detail
earlier in this chapter. After recognizing SMI#,
and prior to executing the SMI service routine,
some of the CPU state information is changed.
Prior to modification, this information is auto­
matically saved in the SMM memory space header
located at the top of SMM memory space. After
the header is saved, the CPU enters real mode and
begins executing the SMI service routine starting
at the SMM memory base address.

The SMI service routine is user definable and may
contain system or power management software. If
the power management software forces the CPU
to power down, or the SMI service routine modi­
fies more than what is automatically saved, the
complete CPU state information must be saved.

A complete CPU state save is performed by using
MOV instructions to save normally accessible
information, and by using the SMM instructions to
save CPU information that is not normally acces­
sible to the programmer. As will be explained,
SMM instructions (SVDC, SVLDT, and SVTS) are
used to store the LDTR, TSR, and the segment
registers and their associated descriptor cache

SMI# Sampled Active

Normal Execution Resumes

1713700

Figure 2·27. SMI Execution
Flow Diagram

entries in SO-bit memory locations. After power
up or at the end of the SMI service routine, the
MOVand additional SMM instructions (RSDC,
RSLDT and RSTS) are used to restore the CPU
state. The SMM RSM instruction returns the CPU
to normal execution.

2·48 PRELIMINARY

2.6.3 SMM Memory Space
Header

System Management Mode 2

With every SMI interrupt, certain CPU state
information is automatically saved in the SMM
memory space header located at the top of SMM

address space (Figure 2-28 and Table 2-21). The
header contains CPU state information that is
modified when servicing an SMI interrupt. In­
cluded in this information are two pointers. The
Current IP points to the instruction executing
when the SMI was detected. The Next IP points

TopofSMM

Address Space

~

31

DR7

HLAGS

CRa

Current IF

Next IF

31 1615

Reserved I CS Selector

CS Descriptor (Bits 63-32)

31
CS Descriptor (Bits 31-0)

Reserved

Reserved

Reserved

ESI or ED!

Figure 2·28. SMM Memory Space Header

PRELIMINARY

a

Ah

-8h

-Ch

-lOh

a -14h

-ISh

-ICh

2 I a

I pili
-20h

-24h

-2Sh

-2Ch

-30h

1713S00

2·49

Cv.tx®
~dV!Clng the Standards

System Management Mode

to the instruction that will be executed after
exiting SMM. Also saved are the contents of
debug register 7 (DR7), the extended flags register
(EFlAGS), and control register 0 (CRO). If SMM
has been entered due to an I/O trap for a REP

INSx or REP OUTSx instruction, the Current IP
and Next IP fields (Table 2-21) contain the same
addresses and the I and l? field contain valid
information.

Table 2·21. SMM Memory Space Header

NAME DESCRIPTION SIZE

DR7 The contents of the debug register 7. 4 Bytes

EFLAGS The contents of the extended flag register. 4 Bytes

CRO The contents of the control register O. 4 Bytes

Current IP The address of the instruction executed prior to servicing the SMI 4 Bytes
interrupt.

Next IP The address of the next instruction that will be executed after 4 Bytes
exiting the SMM mode.

CS Selector Code segment register selector for the current code segement. 2 Bytes

CS Descriptor Code segment register descriptor for the current code segement. 8 Bytes

P REP INSxlOUTSx Indicator 1 Bit
P= 1 if current instruction has a REP prefix.
P=O if current instruction does not have REP prefix.

I IN, INSx, OUT, or OUTSx Indicator 1 Bit
1= 1 if current instruction performed is an I/O WRITE.
1=0 if current instruction performed is an I/O READ.

ESI or ED! Restored ESI or ED! value. Used when it is necessary to repeat a REP 4 Bytes
OUTSx or REP INSx instruction when one of the I/O cycles caused
an SMI# trap.

Note: INSx = INS. INSB, INSW or INSD instruction.

Note: OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.

2.50 PRELIMINARY

2.6.4 SMM Instructions

The Cx486SLOe automatically saves the minimal
amount of CPU state infol111ation when entering
SMM which allows fast SMI service routine entry
and exit. After entering the SMI service routine,
the MOY, SVDC, SVLDT and SVTS instructions·
can be used to save the complete CPU state infol111a­
tion. If the SMI service routine modifies more
than what is automatically saved or forces the
CPU to power down, the complete CPU state
infol111ation must be saved. Since the Cx486SLOe
is a static device, its internal state is retained when
the input clock is stopped. Therefore, an entire
CPU state save is not necessary prior to stopping
the input clock.

Syst-;m Management Mode 2

The new SMM instructions, listed in Table 2-22,
can only be executed if: (a) the Current Privilege
Level (CPL) = 0 and the SMAC bit (CCRl, bit 2)
is set; or (b) CPL = 0 and the CPU is in an SMI
service routine (SMI# = 0). If both these condi­
tions are not met and an attempt is made to
execute an SVDC, RSDC, SVLDT, RSLDT, SVTS,
RSTS or RSM instruction, an invalid opcode
exception is generated. These instructions can be
executed outside of defined SMM space provided the
above conditions are met. All of the SMM instruc­
tions (exceptRSM) save or restore 80 bits of data
allowing the saved values to include the hidden
portion of the register contents.

Table 2·22 SMM Instruction Set

INSTRUCTION OPCODE FORMAT DESCRIPTION

SVDC OF 78 [mod sreg3 rim] SVDC mem80, sreg3 Save Segment Register and Descriptor
Saves reg (DS, ES, FS, GS, or SS) to mem80.

RSDC OF 79 [mod sreg3 rim] RSDC sreg3, memBO Restore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from mem80.
(CS is automatically restored with RSM.)

SVLDT OF 7 A [mod 000 rim] SVLDTmem80 Save WTR and DeSCriptor
Saves Local Descriptor Table (LDTR) to mem80.

RSLDT OF 7B [mod 000 rim] RSLDTmem80 Restore WTR and Descriptor
Restores Local Descriptor Table (LDTR) from mem80.

SVTS OF 7C [mod 000 rim] SVTSmem80 Save TSR and Descriptor
Saves Task State Register (TSR) to mem80.

RSTS OF 7D [mod 000 rim] RSTSmem80 Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

RSM OFAA RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored using the
SMM memory space header and execution resumes at
interrupted point.

Note: mem80 = SO-bit memory location.

PRELIMINARY 2·51

On-tx®
~dV!c/ng ttJestandards

System Management Mode

2.6.5 SMM Memory Space

SMM memory space is defined by assigning
Address Region 4 to SMM memory space. This
assignment is made by setting bit 7 (SM4) in the
on-chip CCR1 register. ARR4, also an on-chip
configuration register, specifies the base address
and size of the SMM memory space. The base
address must be a multiple of the SMM memory
space size. For example, a 32 KByte SMM
memory space must be located at a 32 KByte
address boundary. The memory space size can
range from 4 KBytes to 16 MBytes.

SMM memory space accesses can use address
pipelining, and are always non-cacheable. SMM
accesses ignore the state of the A20M# input pin
and drive the A20 address bit to the unmasked
value.

Access to the SMM memory space can be made
while not in SMM mode by setting the System
Management Access (SMAC) bit in the CCR1
register. This feature may be used to initialize the
SMM memory space.

While in SMM mode, SMADS# address strobes are
generated instead of ADS# for SMM memory
accesses. Any memory accesses outside the
defined SMM space result in normal memory
accesses and ADS# strobes. Data (non-code)
accesses to main memory that overlap with
defined SMM memory space are allowed if bit 3 in
CCR1 (MMAC) is set. In this case, ADS# strobes
are generated for data accesses only and SMADS#
strobes continue to be generated for code accesses.

2.6.6 SM. Service Routine
Execution

Upon entry into SMM after the SMM header has
been saved, the CRO, EFLAGS, and DR7 registers
are set to their reset values. The Code Segment
(CS) register is loaded with the base and limits
defined by the ARR4 register and the SMI service
routine begins execution at the SMM base address
in real mode.

The programmer must then save the value of any
registers that may be changed by the SMI service
routine. For data accesses immediately after
entering the SMI service routine, the programmer
must use CS as a segment override. I/O port
access is possible during the routine but care must
be taken to save registers modified by the I/O
instructions. Before using a segment register, the

. register and the register's deSCriptor cache contents
should be saved using the SVDC instruction.
While executing in the SMM space, execution flow
can transfer to normal memory locations.

Hardware interrupts, (INTRs and NMIs), may be
serviced during an SMI service routine. If inter­
rupts are to be serviced while executing in the
SMM memory space, the SMM memory space
must be within the 0 to 1 MByte address range to
guarantee proper return to the SMI service routine
after handling the interrupt. INTRs are automati­
cally disabled when entering SMM since the IF flag
is set to its reset value. However, NMIs remain
enabled. If it is desired to disable NMI, it should be
done immediately after entering the SMI service
routine by the system hardware logic.

2·52 PRELIMINARY

Within the SMI service routine, protected mode
may be entered and exited as required, and real or
protected mode device drivers can be called.

To exit the SMI service routine, a Resume (RSM)
instruction, rather than an IRET, is executed. The
RSM instruction causes the Cx486SLCJe to restore
the CPU state using the SMM header infonnation
and resume execution at the interrupted point. If
the full CPU state was saved by the programmer,
the stored values should be reloaded prior to
executing the RSM instruction using the MOY and
the RSDC, RSLDT and RSTS instructions.

CPU States Related to SMM and Suspend
Mode

The state diagram shown in Figure 3-29 illustrates
the various CPU states associated with SMM and
suspend mode. While in the SMI service routine,
the Cx486SLCJe can enter suspend mode either by
(1) executing a HALT instruction or (2) by
asserting the SUSP# input.

During SMM operations and while in SUSP#
initiated suspend mode, an occurrence of either
NMI or INTR is latched. (In order for INTR to be
latched, the IF flag must have been set.) The
INTR or NMI is serviced after exiting suspend
mode.

If suspend mode is entered via a HALT instruction
from the operating system or application software,
the reception of an SMI# interrupt causes the CPU
to exit suspend mode and enter SMM. If suspend
mode is entered via the hardware (SUSP# = 0)
while the operating system or application software
is active, the CPU latches one occurrence of INTR,
NMI and SMI#.

Shutdown and Halt 2

2.7 Shutdown and Halt

The halt instruction (HLT) stops program
execution and prevents the processor from using
the local bus until restarted. The Cx486SLCJe
then enters a low-power suspend mode. SMI,
NMI, INTR with interrupts enabled (IF bit in
EFLAGS=l), or RESET forces the CPU out of the
halt state. If interrupted, the saved code segment
and instruction pointer specify the instruction
following the HLT.

Shntdown occurs when a severe error is detected
that prevents further processing. An NMI input
can bring the processor out of shutdown if the IDT
limit is large enough to contain the NMI interrupt
vector (at least OOOFh) and the stack has enough
room to contain the vector and flag infonnation
(i.e., stack pointer is greater than 0005h). Other­
wise, shutdown can only be exited by a processor
reset.

PRELIMINARY 2·53

Cv.tx® Shutdown and Halt
~dV!Cing the Standards

NMlorlNTR

HALT*

RESET ---\--~

SMl#=O

051 Application

Software

!RET*

RSM*

SUSP#=l

(INTR, NMI and SMI latched)

Non-SMM Operations

SMM Operations

HALT*

lRET*

(INTR and NMI latched) * Instructions

1715900

Figure 2-29. SMM and Suspend Mode Flow Diagram

2-54 PRELIMINARY

, Protection '
, , ',' 2

2.8 Protection

Segment protection and page protection are
safeguards built into the Cx486SLCle protected
mode architecture which deny unauthorized or
incorrect access to selected memory addresses.
These safeguards allow multitasking programs to
be isolated from each other and from the operating
system. Page protection is discussed earlier in this
chapter in section 2.4. This section concentrates
on segment protection.

Selectors and descriptors are the key elements in
the segment protection mechanism. The segment
base address, size, and privilege level are estab­
lished by a segment descriptor. Privilege levels
control the use of privileged instructions,
I/O instructions and access to segments and
segment descriptors. Selectors are used to locate
segment descriptors.

Segment accesses are divided into two basic types,
those involving code segments (e.g., control
transfers) and those involving data accesses. The
ability of a task to access a segment depends on:

• the segment type
• the instruction requesting access
ct the type of descriptor used to define the

segment
• the associated privilege levels

(described below).

Data stored in a segment can be accessed only by
code executing at the same or a more privileged
level. A code segment or procedure can only be
called by a task executing at the same or a less
privileged level.

2.8. 'I. Prh,iilege ILl9veDs

The values for privilege levels range between 0
and 3. Level 0 is the highest privilege level (most
privileged), and level 3 is the lowest privilege level
(least privileged). The privilege level in real mode
is effectively O.

The Descriptor Privilege Level (DPL) is the
privilege level defined for a segment in the seg­
ment descriptor. The DPL field specifies the
minimum privilege level needed to access the
memory segment pointed to by the descriptor.

The Current Privilege Level (CPL) is defined as
the current task's privilege level. The CPL of an
executing task is stored in the hidden portion of
the code segment register and essentially is the
DPL for the current code segment.

The Requested Privilege ~el (RPL) specifies a
selector's privilege level and is used to distinguish
between the privilege level of a routine actually
accessing memory (the CPL), and the privilege
level of the original requestor (the RPL) of the
memory access. The lesser of the RPL and CPL is
called the effective privilege level (EPL). There­
fore, ifRPL = 0 in a segment selector, the effective
privilege level is always determined by the CPL.
If RPL = 3, the effective privilege level is always 3
regardless of the CPL.

For a memory access to succeed, the effective
privilege level (EPU. must be at least as privileged
as the descriptor privilege level (EPL:'; DPL). If
the EPL is less privileged than the DPL (EPL >
DPL), a general protection fault is generated. For
example, if a segment has a DPL = 2, an instruc­
tion accessing the segment only succeeds if
executed with an EPL:'; 2.

PRELIMINARY 2·55

Cv.tx®
~dV!CI~9 the Standards

Protection

2.8.2 I/O Privilege Levels

The UO Privilege Level (IOPL) allows the
operating system executing at CPL=O to define the
least privileged level at which IOPL-sensitive
instructions can unconditionally be used. The
IOPL-sensitive instructions include CLI, IN, OUT,
INS, OUTS, REP INS, REP OUTS, and STI.
Modification of the IF bit in the EFLAGS register
is also sensitive to the I/O privilege level.

The IOPL is stored in the EFLAGS register. An
I/O permission bit map is available as defined by
the 32-bit Task State Segment (TSS). Since each
task can have its own TSS, access to individual
I/O ports can be granted through separate I/O
permission bit maps.

If CPL ::; IOPL, IOPL-sensitive operations can be
performed. If CPL > IOPL, a general protection
fault is generated if the current task is associated
with a 16-bit TSS. If the current task is associated
with a 32-bit TSS and CPL> IOPL, the CPU
consults the I/O permission bitmap in the TSS to
determine on a port-by-port basis whether or not
I/O instructions (IN, OUT, INS, OUTS, REP INS,
REP OUTS) are permitted, and the remaining
IOPL-sensitive operations generate a general
protection fault.

Privilege Level Transfers

A task's CPL can be changed only through inter­
segment control transfers using gates or task
switches to a code segment with a different
privilege level. Control transfers result from
exception and interrupt servicing and from
execution of the CALL,]MP, INT, lRET and RET
instructions.

There are five types of control transfers that are
summarized in Table 2-23. Control transfers can
be made only when the operation causing the
control transfer references the correct descriptor
type. Any violation of these deSCriptor usage rules
causes a general protection fault.

2·56 PRELIMINARY

> Protection 2

Table 2·23. Descriptor Types Used for Control Transfer

OPERATION DESCRIPTOR DESCRIPTOR
TYPE OF CONTROL TRANSFER TYPES REFERENCED TABLE

Intersegment within the same privilege level.]MP, CALL, RET, IRET* Code Segment GDTorLDT

Intersegment to the same or a more CALL Call Gate GDTorLDT

privileged level. Interrupt Instruction, Trap or Interrupt !DT

Interrupt within task (could change CPL Exception, External Gate

level). Interrupt

Intersegment to a less privileged level RET, !RET* Code Segment GDTorLDT

(changes task CPL).

Task Switch via TSS CALL,]MP Task State Segment GDT

Task Switch via Task Gate CALL,]MP Task Gate GDTorLDT

IRET**, Interrupt Task Gate !DT

Instruction, Exception,

External Interrupt

* NT (Nested Task bit in EFIAGS) = 0
'* NT (Nested Task bit in EFIAGS) = 1

Any control transfer that changes the CPL within a
task results in a change of stack. The initial values
for the stack segment (55) and stack pointer (E5P)
for privilege levels 0, 1, and 2 are stored in the
T5S. During aJMP or CALL control transfer, the
5S and E5P are loaded with the new stack pointer
and the previous stack pointer is saved on the new
stack. When returning to the original privilege
level, the RET or IRET instruction restores the
less-privileged stack.

2.8.3. 'II Gates

Gate descriptors provide protection for privilege
transfers among executable segments. Gates are
used to transition to routines of the same or a
more privileged level. Call gates, interrupt gates
and trap gates are used for privilege transfers
within a task. Task gates are used to transfer
between tasks.

Gates conform to the standard rules of privilege.
In other words, gates can be accessed by a task if
the effective privilege level (EPL) is the same or
more privileged than the gate descriptor's privilege
level (DPL).

PRELIMINARY 2·57

On-tx®
~dV!Clng the Standards

Virtual 8086 Mode

2.8.4 Initialization and
Transition to Protected
Mode

The Cx486SLCJe microprocessor switches to real
mode immediately after RESET. While operating in
real mode, the system tables and registers should be
initialized. The GDTR and IDTR must point to a
valid GDT and !DT, respectively. The size of the
IDT should be at least 256 bytes, and the GDT must
contain descriptors which describe the initial code
and data segments.

The processor can be placed in protected mode by
setting the PE bit in the CRO register. After enabling
protected mode, the CS register should be loaded
and the instruction decode queue should be flushed
by executing an intersegmentJMP. Finally, all data
segment registers should be initialized with appropri­
ate selector values.

2.9 Virtual 8086 Mode

Both real mode and virtual 8086 (V86) mode are
supported by the Cx486SLCJe CPU allowing execu­
tion of 8086 application programs and 8086 operat­
ing systems. V86 Mode allows the execution of
8086-type applications, yet still permits use of the
Cx486SLCJe protection mechanism. V86 tasks run
at privilege level 3. Upon entry, all segment limits
are set to FFFFh (64K) as in real mode.

Memory Addressing

While in V86 mode, segment registers are used in an
identical fashion to real mode. The contents of the
segment register are multiplied by 16 and added to
the offset to form the segment base linear address.
The Cx486SLCJe CPU permits the operating system

to select which programs use the V86 address
mechanism and which programs use protected
mode addressing for each task.

The Cx486SLCJe also permits the use of paging
when operating in V86 mode. Using paging,
the I-MByte address space of the V86 task can
be mapped to anywhere in the 4-GByte linear
address space of the Cx486SLCJe cpu. As in
real mode, linear addresses that exceed
1 MByte cause a segment limit overrun excep­
tion.

The paging hardware allows multiple V86 tasks
to run concurrently, and provides protection
and operating system isolation. The paging
hardware must be enabled to run multiple
V86 tasks or to relocate the address space of a
V86 task to physical address space greater than
1 MByte.

2.9.2 Protection

All V86 tasks operate with the least amount of
privilege (level 3) and are subject to all of the
Cx486SLCJe protected mode protection
checks. As a result, any attempt to execute a
privileged instruction within a V86 task results
in a general protection fault.

In V86 mode, a slightly different set of instruc­
tions are sensitive to the va privilege level
(IOPL) than in protected mode. These instruc­
tions are: CLI, INT n, IRET, POPF, PUSHF,
and STI. The IND, INTO and BOUND
variations of the INT instruction are not IOPL
sensitive.

2·58 PRELIMINARY

2.9.3 Interrupt Handling

To fully support the emulation of an 8086-type
machine, interrupts in V86 mode are handled as
follows. When an interrupt or exception is
serviced in V86 mode, program execution trans­
fers to the interrupt service routine at privilege
level 0 (i.e., transition from V86 to protected
mode occurs) and the VM bit in the EFLAGS
register is cleared. The protected mode interrupt
service routine then determines if the interrupt
came from a protected mode or V86 application
by examining the VM bit in the EFLAGS image
stored on the stack. The interrupt service routine
may then choose to allow the 8086 operating
system to handle the interrupt or may emulate the
function of the interrupt handler. FollOwing
completion of the interrupt service routine, an
lRET instruction restores the EFLAGS register
(restores VM=l) and segment selectors and control
returns to the interrupted V86 task.

2.9.4

Virtual 8086 Mode

Entering and Leaving
V86 Mode

2

V86 mode is entered from protected mode by
either executing an lRET instruction at CPL = 0 or
by task switching. If an lRET is used, the stack
must contain an EFLAGS image with VM=l. If a
task switch is used, the TSS must contain an
EFLAGS image containing a 1 in the VM bit
position. The POPF instruction cannot be used to
enter V86 mode since the state of the VM bit is
not affected. V86 mode can only be exited as the
result of an interrupt or exception. The transition
out must use a 32-bit trap or interrupt gate which
must point to a non-conforming privilege level 0
segment (DPL = 0), or a 32-bit TSS. These
restrictions are required to permit the trap handler
to lRET back to the V86 program.

PRELIMINARY 2·59

Cv.tx®
~dV!Clng the Standards

3. BUS INTERFACE

3. 'I Overview

CYRIX Cx486SLCje'MMICROPROCESSOR
High-Peifonnance 486-Style CPU with Advanced Power
Management for Notebook and Battery-Powered Systems

Bus'lnlell'face

The following sections describe the Cx486SLOe input and output signals. The signals are described in
the same order as they are listed in Figure 3-1. The discussion of these signals is arranged by functional
groups as shown in Figure 3-1 and Table 3-1.

2X Clock

Reset

Data
Bus

INTR
CLKl

NMI
RESET

Jl ..1\
SMI#

y--y DIS-DO

} Interrupt
Control

Address { Bus

KEN#

(. A23-AI
FLUSH#

"If

BLE# RPLSET

BHE#
Cx486SLCle RPLVAL#

} Internal
Cache
Interface

Microprocessor

Bus { Cycle
Definition

M/IO#
A20M#

D/C# PEREQ

WIR# BUSY#

LOCK# ERROR#

Address Bit
20 Mask

} Coprocessor
Interface

Bus { Cycle
Control

ADS#
HOLD

SMADS#
HLDA

READY#
SUSP#

SUSPA# NA#

} Bus
Arbitration

} Power
Management

FLT#
Float
Control

1714000

lFigure 3m'll. Clt486SLC/ e lFulI1Ictioll1laR Sigll1laR Groupings

PRELIMINARY

Overview

Table 3·1. Cx486SLC/ e Signal Summary

SIGNAL SIGNAL NAME SIGNAL GROUP

A20M# ADDRESS BIT 20 MASK

AD-AI ADDRESS BUS LINES Address Bus

ADS# ADDRESS STROBE Bus Cycle Control

BHE# BYTE HIGH ENABLE Address Bus

BLE# BYTE LOW ENABLE Address Bus

BUSY# PROCESSOR EXTENSION BUSY Coprocessor Interface

CLK2 2X CLOCK INPUT

DlS-DO DATA BUS

D/C# DATNCONTROL Bus Cycle Definition

ERROR# PROCESSOR EXTENSION ERROR Coprocessor Interface

FLT# FLOAT

FLUSH# CACHE FLUSH Internal Cache Interface

HLDA HOLD ACKNOWLEDGE Bus Arbitration

HOLD HOLD REQUEST Bus Arbitration

INTR MASKABLE INTERRUPT REQUEST Interrupt Control

KEN# CACHE ENABLE Internal Cache Interface

LOCK# BUS LOCK Bus Cycle Definition

M1IO# MEMORYIINPUT -OUTPUT Bus Cycle Definition

NA# NEXT ADDRESS REQUEST Bus Cycle Control

NMI NON-MASKABLE INTERRUPT REQUEST Interrupt Control

PEREQ PROCESSOR EXTENSION REQUEST Coprocessor Interface

READY# BUS READY Bus Cycle Control

RESET RESET

RPLSET REPLACEMENT SET Internal Cache Interface

RPLVAL# REPLACEMENT SET VALID Internal Cache Interface

SMADS# SMM ADDRESS STROBE Bus Cycle Control

SMI# SYSTEM MANAGEMENT INTERRUPT Interrupt Control

SUSP# SUSPEND REQUEST Power Management

SUSPA# SUSPEND ACKNOWLEDGE Power Management

W/R# . WRITEIREAD Bus Cycle Definition

The pound symbol"#" following a signal name
indicates that when the Signal is in its active
(asserted) state, the Signal is at a logic low level.
When the "#" is not present at the end of a signal
name, the lOgiC high level represents the active

state. The following two sections describe the
Signals and their functional timing characteristics.
Additional Signal information may be found in
Chapter 4, Electrical Specifications. Chapter 4
documents the DC and AC characteristics for the

PRELIMINARY

Signal Descriptions 3
signals including voltage levels, propagation
delays, setup times and hold times. Specified
setup and hold times must be met [or proper
operation of the Cx486SLOe.

Table 3·2. Signal States During Reset

3.2 Signal Descriptions

3.2.1 2X Clock Input

The 2X Clock Input (CLIU) signal is the basic
timing reference for the Cx486SLOe micropro­
cessor. The CLK2 input is internally divided
by two to generate the internal processor clock.
The external CLK2 is synchronized to a known
phase of the internal processor clock by the falling
edge of the RESET signal. External timing param­
eters are defined with respect to the rising edge of
CLK2

3.2.2 Reset

Reset is an active high input signal that, when
asserted, suspends all operations in progress and
places the Cx486SLOe into a reset state. RESET is
a level-sensitive synchronous input and must meet
specified setup and hold times to be properly
recognized by the Cx486SLOe. The
Cx486SLOe begins executing instructions at
physical address location FF FFFOh approxi­
mately 400 CLK2's after RESET is driven inactive
(low). While RESET is active all other input pins,
except FLT#, are ignored. The remaining signals
are initialized to their reset state during the inter­
nal processor reset sequence. The reset signal
states for the Cx486SLOe are shown in Table 3-2.

SIGNAL NAME

A20M#

A23-AI

ADS#

BHE#, BLE#

BUSY#

DlS-DO

D/C#

ERROR#

FLT#

FLUSH#

HLDA

HOLD

INTR

KEN#

LOCK#

M1IO#

NA#

NMI

PEREQ

READY#

RESET

RPLSET

RPLVAL#

SMADS#

SMI#

SUSP#

SUSPA#

W/R#

PRELIMINARY

SIGNAL STATE DURING RESET

Ignored

I

I

0

Initiates Self Test

Float

I

Ignored

Input Recognized

Ignored

0

Ignored

Ignored

Ignored

I

0

Ignored

Ignored

Ignored

Ignored

Input Recognized

Float

Float

Float

Ignored

Ignored

Float

0

3·3

Signal Descriptions

3.2.3 Data Bus

The Data Bus (DI5-DO) signals are three-state
bidirectional signals which provide the data path
between the Cx486SLOe and external memory
and I/O devices. The data bus inputs data during
memory read, I/O read and interrupt acknowl­
edge cycles and outputs data during memory and
I/O write cycles. Data read operations require that
specified data setup and hold times be met for
correct operation. The data bus signals are high
active and float while the CPU is in a hold ac­
knowledge or float state.

3.2.4 Address Bus

The Address Bns (AB-AI) signals are three­
state outputs that provide addresses for physical
memory and I/O ports. All address lines can be
used for addressing physical memory allowing a
16 MByte address space (00 OOOOh to FF FFFFh).
DuringI/O port accesses, A23-A16 are driven low
(except for coprocessor accesses). This permits a
64 KByte I/O address space (00 OOOOh to
00 FFFFh).

During all coprocessor I/O accesses address lines
A22-A16 are driven low and A23 is driven high.
This allows A23 to be used by external logic to
generate a coprocessor select signal. Coprocessor
command transfers occur with address 80 00F8h
and coprocessor data transfers occur with ad­
dresses 80 OOFCh and 80 OOFEh. A23-A1 float
while the CPU is in a hold acknowledge or float
state.

Byte Low Enable (BLE#) and Byte High
Enable (BHE#) are three-state outputs that
indicate which byte(s) of the 16-bit data bus will
be selected for data transfer during the current bus
cycle (Table 3-3). BLE# selects the low byte (D7-
DO) and BHE# selects the high byte (DIS-D8).

When BHE# and BLE# are asserted, both bytes (all
16 bits) of the data bus are selected. BLE# and
BHE# float while the CPU is in a hold acknowl­
edge or float state.

Table 3·3. Byte Enable Definitions

BHE# BLE# FUNCTION

0 0 Word transfer - D15-DO

0 1 Upper byte transfer - D 15-D8

1 0 Lower byte transfer - D7 -DO

1 1 N ever occurs during a bus cycle

3.2.5 Bus Cycle Definition

The bus cycle definition signals (M/IO#, D/C#,
WIR#, LOCK#) consist of four three-state outputs
which define the bus cycle type to be performed.

MemorylIO (MlIO#) is low during I/O read and
write cycles and is high during memory cycles.

Data/Control (D/C#) is low during control
cycles and is high during data cycles. Control
cycles are issued during functions such as a halt
instruction, interrupt servicing and code fetching.
Data bus cycles include data access from either
memory or I/O.

Write/Read (WIR#) is low during read cycles
(data is read from memory or I/O) and is high
during write bus cycles (data is written to memory
or I/O).

LOCK# is asserted to deny control of the CPU
bus to other bus masters. The LOCK# Signal may
be explicitly activated during bus operations by
including the LOCK prefix on certain instructions.
LOCK# is always asserted during deSCriptor and

PRELIMINARY

page table updates, interrupt acknowledge se­
quences and when executing the XCHG instruc­
tion. The Cx486SLOe does not enter the hold
acknowledge state in response to HOLD while the
LOCK# input is active.

The possible states for the bus cycle definition
signals are listed in Table 3-4. The primary bus
cycle definition signals (MlIO#, D/C# and W/R#)
are driven valid when ADS# (Address Strobe) is
asserted.

During non-pipelined cycles, the LOCK# output
is driven valid along with MlIO#, D/C# and
W/R#. During pipelined addressing; LOCK# is
driven at the beginning of the bus cycle, which is
after ADS# is asserted for that cycle. The bus cycle
definition signals float while the Cx486SLOe is
in a hold acknowledge or float state.

Signal Descriptions 3

3.2.6 Bus Cycle Control

The bus cycle control signals (ADS#, SMADS#,
READY#, NA#) allow the Cx486SLOe to indicate
the beginning of a bus cycle and allow system
hardware to control address pipelining and bus
cycle termination timing.

Address Strobe (ADS#) is a three-state output
which indicates that the Cx486SLOe has driven a
valid address (An-Ai, BHE#, BLE#) and bus
cycle definition (MlIO#, D/C#, W/R#) on the
appropriate Cx486SLOe output pins. During
non-pipelined bus cycles, ADS# is active for the
first clock of the bus cycle. DUringaddress
pipelining, ADS# is asserted during the previous
bus cycle and remains asserted until READY# is
returned for that cycle. ADS# floats while the
Cx486SLOe is in a hold acknowledge or float
state.

Table 3·4. Bus Cycle Types

M/IO# D/C# W/R# LOCK# BUS CYCLE TYPE

0 0 0 0 Interrupt Acknowledge

0 0 0 I

0 0 I X --

0 I X 0 --

0 I 0 I l/O Data Read

0 I I I l/O Data Write

I 0 X 0

I 0 0 I Memory Code Read
I 0 I I Halt: A23-AI = 2h, BHE# = I and BLE# = 0

Shutdown: A23-AI Oh,BHE# I andBLE# 0

I I 0 0 Locked Memory Data Read

I I 0 I Memory Data Read

I I I 0 Locked Memory Data Write

I I I I Memory Data Write

, x = don t care, -- = does not occur

PRELIMINARY 3·5

Signal Descriptions

SMM Address Strobe (SMADS#) is asserted

instead of the ADS# during SMM bus cycles and
indicates that SMM memory is being accessed.
SMADS# floats while the CPU is in a hold
acknowledge or float state. The SMADS# output
is disabled (floated) following reset and can be
enabled using the SMI bit in the CCRI
configuration register.

Ready (READY#) is an input generated by the
system hardware that indicates that the current
bus cycle can be terminated. During a read cycle,
assertion of READY# indicates that the system
hardware has presented valid data to the cpu.
When READY# is sampled active, the
Cx486SLGe latches the input data and terminates
the cycle. During a write cycle,READY# assertion
indicates that the system hardware has accepted
the Cx486SLGe output data. READY# must be
asserted to terminate every bus cycle, including
halt and shutdown indication cycles.

Next Address Request (NA#) is an input used
to request address pipelining by the system

. hardware. When asserted, the system indicates
that it is prepared to accept new bus cycle defini­
tion and address signals (M/IO#, D/C#, WIR#,
An-AI, BHE#, and BLE#) from the microproces­
sor even if the current bus cycle has not been
terminated by assertion of READY#. If the
Cx486SLGe has an internal bus request pending
and the NA# input is sampled active, the next bus
cycle definition and address signals are driven
onto the bus.

3.2.7 Interrupt Control

The interrupt control input signals ONTR, NMI,
SMI#) allow the execution of the Cx486SLGe's
current instruction stream to be interrupted and
suspended.

Maskable Interrupt Request (INTR) is a level­
sensitive input which causes the processor to
suspend execution of the current instruction
stream and begin execution of an interrupt service
routine. The INTR input can be masked
(ignored) through the Flags Register IF bit. When

. unmasked, the Cx486SLGe responds to the INTR
input by issuing two locked interrupt
acknowledge cycles. To assure recognition of the
INTR request, INTR must remain active until the
start of the first interrupt acknowledge cycle.

Non-maskable Interrupt Request (NMI) is a
riSing-edge sensitive input which causes the
processor to suspend execution of the current
instruction stream and begin execution of an NMI
interrupt service routine. The NMI interrupt
service request cannot be masked by the software.
Asserting NMI causes an interrupt which inter­
nally supplies interrupt vector 2h to the CPU core.
External interrupt acknowledge cycles are not
necessary since the NMI interrupt vector is sup­
plied internally.

The Cx486SLGe samples NMI at the l:ieginning of
each phase 2. To assure recognition, NMI must
be inactive for at least eight CLK2 periods and
then be active for at least eight CLK2 periods.
Additionally, specified setup and hold times must
be met to guarantee recognition at a particular
clock edge.

System Management Interrupt (SMI#) is a
bidirectional signal and level sensitive interrupt
with higher priority than the NMI interrupt. SMI#
must be active for at least four CLK2 clock periods
to be recognized by the Cx486SLGe. After the
SMI# interrupt is acknowledged, the'SMI# pin is

driven low by the Cx486SLGe for the duration of
the SMI service routine. The SMI# input is

PRELIMINARY

ignored following reset and can be enabled using
the SMI bit in the CCRl configuration register.

3.2.8 Internal Cache Interface

The internal cache interface signals (KEN#,
FLUSH#, RPLSET, RPLVAL#) indicate cache
status and control caching activity.

Cache Enable (KEN#) is an input which indi­
cates that the data being returned during the
current cycle is cacheable. When KEN# is active
and the Cx486SLOe is perfonning a cacheable
code fetch or memory data read cycle, the cycle is
transfonned into a cache fill. Use of the KEN#
input to control cacheability is optional. The non­
cacheable region registers can also be used to
control cacheability. Memory addresses specified·
by the non-cacheable region registers are not
cacheable regardless of the state of KEN#. VO
accesses, locked reads, SMM address space
accesses, and interrupt acknowledge cycles are
never cached.

During cached code fetches, two contiguous read
cycles are perfonned to completely fill the 4-byte
cache line. KEN# must be asserted during both
read cycles in order to cause a cache line fill.
DUring-cached data reads, the Cx486SLOe
perfonns only those bus cycles necessary to
supply the required data to complete the current
operation. Valid bits are maintained for each byte
in the cache line, thus allowing data operands of
less than 4 bytes to reside in the cache.

During any cache fill cycle with KEN# asserted,
the Cx486SLOe ignores the state of the byte
enables (BHE# and BLE#) and always writes two
bytes of data into the cache. The KEN# input is
ignored follOwing reset and can be enabled using
the KEN bit in the CCRO configuration register.

Signal Descriptions 3

Cache Flush (FLUSH#) is an input which
invalidates (flushes) the entire cache. Use of
FLUSH# to maintain cache coherency is optional.
The cache may also be invalidated during each
hold acknowledge cycle by setting the BARB bit in
the CCRO configuration register. The FLUSH#
input is ignored follOwing reset and can be
enabled using the FLUSH bit in the CCRO con­
figuration register.

Replacement Set (RPLSET) is an output
indicating which set in the cache is currently
undergoing a line replacement. This Signal is
meaningful only when the internal cache is
configured as two-way set associative. The
RPLSET output is disabled (three-state) follOwing
reset and can be enabled using the RPL bit in the
CCRl configuration register. RPLSET floats
during CPU hold acknowledge and float states.

Replacement Set Valid (RPLVAL#) is an
output driven during a cache fill cycle to indicate
that RPLSET is valid for the current cycle.
RPL VAL# and RPLSET provide external hardware
the capability of monitoring the cache LRU
replacement algOrithm. The RPLVAL# output is
disabled (three-state) following reset and can be
enabled using the RPL bit in the CCRl configura­
tion register. RPL VAL# floats during CPU hold
acknowledge and float states.

PRELIMINARY 3·7

Signal Descriptions

3.2.9 Address Bit 20 Mask

Address Bit 20 Mask (AlOM#) is an active low
input which causes the Cx486SLOe to mask
(force low) physical address bit 20 when driving
the external address bus or performing an internal
cache access. When the processor is in real mode,
asserting A20M# emulates the 1 MByte address
wrap around that occurs on the 8086. The A20
signal is never masked when paging is enabled
regardless of the state of the A20M# input. The
A20M# input is ignored following reset and can
be enabled using the AlOM bit in the CCRO
configuration register.

3.2.1 0 Coprocessor Interface

The data bus, address bus and bus cycle definition
Signals, as well as the coprocessor interface signals
(PEREQ, BUSY#, ERROR#), are used to control
communication between the Cx486SLOe and a
coprocessor. Coprocessor or ESC opcodes are
decoded by the Cx486SLOe and the opcode and
operands are then transferred to the coprocessor
via VO port accesses to addresses 80 00F8h,
80 OOFCh or 80 OOFEh. 80 00F8h functions as
the control port address and 80 OOFCh and
80 OOFEh are used for operand transfers. Addi­
tional handshaking is provided using the three
dedicated control signals described below.

Coprocessor Request (PEREQ) is an active high
input which indicates the coprocessor is ready to
transfer data to or from the CPU. The coproces­
sor may assert PEREQ in the process of executing
a coprocessor instruction. The Cx486SLOe
internally stores the current coprocessor opcode
and performs the correct data transfers to support
coprocessor operations using PEREQ to synchro-

nize the transfer of required operands. PEREQ is
internally connected to a pull-down resistor to
prevent this Signal from floating active when left
unconnected.

Coprocessor Busy (BUSY#) is an active low
input from the coprocessor which indicates to the
Cx486SLOe that the coprocessor is currently
executing an instruction and is not yet able to
accept another opcode. When the Cx486SLOe
processor encounters a WAIT instruction or any
coprocessor instruction which operates on the
coprocessor stack (e.g. load, pop, arithmetic
operation), BUSY# is sampled. BUSY# is continu­
ally sampled and must be recognized as inactive
before the CPU will supply the coprocessor with
another instruction. However, the following
coprocessor instructions are allowed to execute
even if BUSY # is active since these instructions are
used for coprocessor initialization and exception
clearing:

FNINIT
FNCLEX.

BUSY# is internally connected to a pull-up resistor

to prevent it from floating active when left
unconnected.

Coprocessor Error (ERROR#) is an active low
input used to indicate that the coprocessor
generated an error during execution of a copro­
cessor instruction. ERROR# is sampled by the
Cx486SLOe processor whenever a coprocessor
instruction is executed. If ERROR# is sampled
active, the processor generates exception 16 which
is then serviced by the exception handling soft­
ware.

Certain coprocessor instructions do not
generate an exception 16 even if ERROR# is
active. These instructions, which involve clearing

3·8 PRELIMINARY

coprocessor error flags and saving the coprocessor
state, are listed below:

FNINIT
FNCLEX
FNSTSW
FNSTCW
FNSTENV
FNSAVE

ERROR# is internally connected to a pull-up

resistor to prevent it from floating active when left
unconnected.

3.2.11 Bus Arbitration

The bus arbitration (HOLD, HLDA) signals allow
the Cx486SLOe to relinquish control of its local
bus when requested by another bus master device.
Once the processor has relinquished its bus
(three-stated), the bus master device can then
drive the local bus Signals.

Hold Request (HOLD) is an active high input
used to indicate that another bus master requests
control of the local bus. After recognizing the
HOLD request and completing the current bus
cycle or sequence of locked bus cycles, the
Cx486SLOe responds by floating the local bus
and asserting the hold acknowledge (HLDA)
output.

Once HLDA is asserted, the bus remains granted
to the requesting bus master until HOLD becomes
inactive. When the Cx486SLOe recognizes
HOLD is inactive, it Simultaneously drives the
local bus and drives HLDA inactive. External
pull-up resistors may be required on some of the
Cx486SLOe three-state outputs to guarantee that
they remain inactive while in a hold acknow­
ledge state.

Signal Descriptions 3

The HOLD input is not recognized while RESET
is active. If HOLD is asserted while RESET is
active, RESET has priority and the Cx486SLOe
places the bus into an idle state instead of a hold
acknowledge state. The HOLD input is also
recognized during suspend mode provided the
CLK2 input has not been stopped. HOLD is
level-sensitive and must meet specified setup and
hold times for correct operation.

Hold Acknowledge (HLDA) is an active high
output which indicates that the Cx486SLOe is in
a hold acknowledge state and has relinquished
control of its local bus. While in the hold ac­
knowledge state, the Cx486SLOe drives HLDA
active and continues to drive SUSPA#, if enabled.
The other Cx486SLOe outputs are in a high­
impedance state allowing the requesting bus
master to drive these Signals. If the on-chip cache
can satisfy bus requests, the Cx486SLOe contin­
ues to operate during hold acknowledge states.
A20M# is internally recognized during this time.

The processor deactivates HLDA when the HOLD
request is driven inactive. The Cx486SLOe stores
one NMI rising edge during a hold acknowledge
state for processing after HOLD is inactive. The
FLUSH# input is also recognized during a hold
acknowledge state. If SUSP# is asserted during a
hold acknowledge state, the Cx486SLOe mayor
may not enter suspend mode depending on the
state of the internal execution pipeline. Table 3-5
summarizes the state of the Cx486SLOe Signals
during hold acknowledge.

PRELIMINARY 3·9

Signal Descriptions

Table 3-5. Signal States During Hold
Acknowledge

SIGNAL NAME SIGNAL STATE DURING HOLD
ACKNOWLEDGE

A20M# Input Recognized

A23-AI Float

ADS# Float

BHE#,BLE# Float

BUSY# Ignored

DIS-DO Float

D/C# Float

ERROR# Ignored

FLT# , Input Recognized

FLUSH# Input Recognized

HLDA I

HOLD Input Recognized

INTR Input Recognized

KEN# Ignored

LOCK# Float

MlIO# Float

NA# Ignored

NMI Input Recognized

PEREQ Ignored

READY# Ignored

RESET Input Recognized

RPLSET Float

RPLVAL# Float

SMADS# Float

SMI# Input Recognized

SUSP# Input Recognized

SUSPA# Driven

WIR# Float

3.2.12 Power Management
Interface

The power management signals allows the
Cx486SLOe to enter suspend mode, Suspend
mode can also be entered as the result of executing a

HALT instruction. Suspend mode circuitry allows
the Cx486SLOe to consume minimal power
while maintaining the entire internal CPU state.

Suspend Request (SUSP#) is an active low
input which requests that the Cx486SLOe enter
suspend mode. After recognizing SUSP# active, the
processor completes execution of the current
instruction, any pending decoded instructions and
associated bus cycles, In addition, the
Cx486SLOe waits for the coprocessor to indicate
a not busy status (BUSY# = 1) before entering
suspend mode and asserting suspend acknowl­
edge (SUSPA#), During suspend mode, inter­
nal clocks are stopped and only the logiC associ­
ated with monitoring RESET, HOLD and FLUSH#
re~ active, With SUSPA# asserted, the CLK2
input to the Cx486SLOe can be stopped in either
phase. Stopping the CLK2 input further reduces
current consumption of the Cx486SLOe.

To resume operation, the CLK2 input is restarted
(if stopped), followed by negation of the SUSP#
input. The processor then resumes instruction
fetching and begins execution in the instruction
stream at the point it had stopped, The SUSP#
input is level sensitive and must meet specified
setup and hold times to be recognized at a par­
ticular clock edge. The SUSP# input is ignored
following reset and can be enabled using the SUSP
bit in the CCRO configuration register.

The Suspend Acknowledge (SUSPA#) output
indicates that the Cx486SLOe has entered the
suspend mode as a result of SUSP# assertion or
execution of a HALT instruction. If SUSPA# is
asserted and the CLK2 input is switching, the
Cx486SLOe continues to recognize FLT#,
RESET, HOLD and FLUSH#. If suspend mode
was entered as the result of a HALT instruction,'
the Cx486SLOe also continues to monitor the

3-10 PRELIMINARY

Signal Descriptions 3

NMI, SMI# and unmasked INTR inputs. Detec­
tion of an unmasked INTR, NMI or SMI# forces
the Cx486SLGe to exit suspend mode and begin
execution of the appropriate interrupt service
routine. The CLK2 input to the processor may be
stopped after SUSPA# has been asserted to further
reduce the current consumption of the

Cx486SLGe. The SUSPA# output is disabled
(floated) following reset and can be enabled using
the SUSP bit in the CCRO configuration register.

Table 3-6 shows the state of the Cx486SLGe
signals when the device is in suspend mode.

Table 3·6. Signal Siaies During Suspend Mode

SIGNAL NAME SIGNAL STATE DURING SUSP# SIGNAL STATE DURING HALT
INITIATED SUSPEND MODE INITIATED SUSPEND MODE

A20M# Ignored Ignored

A23-Al 1 1

ADS# 1 1

BHE#, BLE# 0 , 0

BUSY# Ignored Ignored

DlS-DO Float Float
D/C# . 1 1

ERROR# Ignored Ignored

FLT# Input Recognized Input Recognized

FLUSH# Input Recognized Input Recognized

HLDA 0 0

HOLD Input Recognized Input Recognized

INTR Latched Input Recognized

KEN# Ignored Ignored

LOCK# 1 1

M1IO# 0 0

NA# Ignored Ignored

NMI Latched Input Recognized

PEREQ Ignored Ignored

READY# Ignored Ignored

RESET Input Recognized Input Recognized

RPLSET Driven Driven

RPLVAL# Driven Driven

SMADS# 1 1

SMI# Latched Input Recognized

SUSP# Input Recognized Ignored

SUSPA# 0 0

W/R# 0 0

PRELIMINARY 3·11

Functional Timing

3.2.13 Float Control (FLT#)

Float (FLT#) is an active low input which forces
all bidirectional and output signals to a tri-state
condition. Floating the signals allows the
Cx486SLOe Signals to be externally driven
without physically removing the device from the
circuit. The Cx486SLOe CPU must be reset
follOwing assertion ordeassertion ofFLT#. It is
recommended that FLT# be used only for test
purposes.

3.3

3.3.1

Functional Timing

Reset Timing and
Internal Clock
Synchronization

RESET is the highest priority input signal and is
capable of interrupting any processor activity
when it is asserted. When RESET is asserted, the
Cx486SLOe aborts any bus cycle. Idle, hold
acknowledge and suspend states are also discon­
tinued and the reset state is established. RESET is
used when the Cx486SLOe microprocessor is

powered up to initialize the CPU to a known valid
state and to synchronize the internal CPU clock
with external clocks.

RESET must be asserted for at least 15 CLK2
periods to ensure recognition by the Cx486SLOe
microprocessor. If the self-test feature is to be
invoked, RESET must be asserted for at least 80
CLK2 periods. RESET pulses less than 15 CLK2
periods may not have sufficient time to propagate
throughout the Cx486SLOe and may not be
recognized. RESET pulses less than 80 CLK2
periods followed by a self-test request may incor­
rectly report a self-test failure when no true failure
exists.

Provided the RESET falling edge meets specified
setup and hold times, the internal processor clock
phase is synchronized as illustrated in Figure 3-2.
The internal processor clock is half the frequency
of the CLK2 input and each CLK2 cycle corre­
sponds to an internal CPU clock phase. Phase 2
of the internal clock is defined to be the second
rising edge of CLK2 follOwing the falling edge of
RESET.

01 OR 02 01 OR 02 02 01

CLK2 [

RESET [

Internal [Processor
Clock

1707200

Figure 3·2. Internal Processor Clock Synchronization

3·12 PRELIMINARY

Following the falling edge of RESET (and after
self-test if it was requested), the Cx486SLCJe
microprocessor performs an internal initialization
sequence for approximately 400 CLK2 periods.
The Cx486SLCJe self-test feature is invoked if the
BUSY# input is an active low state when RESET
falls inactive. The self-test sequence requires
approximately (220 + 60) CLK2 periods to com­
plete. Even if the self-test indicates a problem, the
Cx486SLCJe microprocessor attempts to proceed

CLK2

RESET

CLK (Internal)

BUSY#

ERROR#

BHE#, BLE#, WfR#,
MlIO#,HLDA

A23·AI,
D/C#, LOCK#

ADS#

NA#

READY#

DIS·DO

RPLSET, RPLVAL#,
SUSPA#

[

[

[

[

[

[

[

[

[

[

[SSSSSS)----- -----

[SSSSSS)----

Functional Timing 3

with the reset sequence. Figure 3-3 illustrates the
bus activity and timing during the Cx486SLCJe
reset sequence.

Upon completion of self-test, the EAX register
contains 0000 OOOOh if the Cx486SLCJe micro­
processor passed its internal self-test with no
problems detected. Any non-zero value in the
EAX register indicates that the microprocessor is
faulty.

Internal Cycle I
Initialization Non-Pipelined

If self-test is erfarmed, add (Read) C 220 + 60' to t~ese numbers Tl T2·

I 2 3 17 18 19 392' 393'394' 395'

(Floating)

(Floating)

Notes: 1. BUSY# should be held stable for 8 CLK2 l1eriods before and after
the CLK2 period in which RESET falling edge occurs. 1706000

Figure 3·3. Bus Activity from RESET until First Code Fetch

PRELIMINARY 3·13

Cv.tx®
~dV!Clng the Standards

Functional Timing

3.3.2 Bus Operation

The Cx486SLGe microprocessor communicates
with the external system through separate, parallel
buses for data and address. This is commonly
called a demultiplexed address/data bus. This
demultiplexed bus eliminates the need for address
latches required in multiplexed address/data bus
configurations where the address and data are
presented on the same pins at different times.

Cx486SLGe instructions can act on memory data
operands consisting of 8-bit bytes, 16-bit words
or 32-bit double words. The Cx486SLGe bus
architecture allows for bus transfers of these
operands without restrictions on physical address
alignment. Any byte boundary alignment is
permissible. Operands not aligned ona word
boundary may require more than one bus cycle to
transfer the operand. This feature is transparent
to the programmer.

The Cx486SLGe data bus (DlS-DO) is a 16-bit
wide bidirectional bus. The Cx486SLGe drives
the data bus during write bus cycles and the
external system hardware drives the data bus
during read bus cycles. The address bus provides
a 24-bit value using 23 signals for the 23 upper­
order address bits (A23-Al), defining which 16-
bit word is being accessed, and two byte enable
Signals (BHE# and BLE#) to directly indicate
which of the two bytes within the word are active.

Every bus cycle begins with the assertion of the
address strobe (ADS#). ADS# indicates that the
Cx486SLGe has issued a new address and new
bus cycle definition Signals. A bus cycle is defined
by four signals: MJIO#, WIR#, D/C# and LOCK#.
MJIO# defines if a memory or 110 operation is

occurring, W/R# defines the cycle to be read or
write, and D/C# indicates whether a data or control
cycle is in effect. LOCK# indicates that the
current cycle is a locked bus cycle. Every bus
cycle completes when the system hardware
returns READY# asserted.

The Cx486SLGe performs the follOwing bus cycle
types:

Memory Read
Locked Memory Read
Memory Write
Locked Memory Write
110 Read (or coprocessor read)
110 Write (or coprocessor write)
Interrupt Acknowledge (always locked)
Halt/Shutdown

When the Cx486SLGe microprocessor has no

pending bus requests, the bus enters the idle
state. There is no encoding of the idle state on the
bus cycle definition Signals, however, the idle
state can be identified by the absence of further
assertions of ADS# follOwing a completed bus
cycle.

3.3.2.1 Bus Cycles using Non­
Pipelined Addressing

Non-Pipelined Bus States

The shortest time unit of bus activity is a bus state,
commonly called T states. A bus state is one
internal processor clock period (two CLK2
periods) in duration. Acomplete data transfer
occurs during a bus cycle, composed of two or
more bus states.

3·14 PRELIMINARY

The first state of a non-pipelined bus cycle is called
Tl. During phase one (first CLK2) ofTl, the
address bus and bus cycle definition Signals are
driven valid and, to Signal their availability,
address strobe CADS#) is simultaneously asserted.
The second bus state of a non-pipelined cycle is
called T2. T2 terminates a bus cycle with the
assertion of the READY# input and valid data is

Functional Timing 3

either input or output depending on the bus cycle
type. The fastest Cx486SLGe microprocessor bus
cycle requires only these two bus states. READY#
is ignored at the end of the Tl state.

Three consecutive bus read cycles, each consisting
of two bus states, are shown in Figure 3-4.

Note: Fastest non-pipelined bus cycles consist ofTl and 12. 1704500

Figure 3-4. Fastest Non.Pipelined Read Cycles

PRELIMINARY 3-15

Cv.tx®
~dV!Clng the standards

Functional Timing

Non-Pipelined Read and Write Cycles

Any bus cycle may be performed with non­
pipelined address timing. Figure 3-5 shows a
mixture of read and write cycles with non­
pipelined address timing. When a read cycle is
performed, the Cx486SLCle microprocessor floats
its data bus and the externally addressed device
then drives the data. The Cx486SLCle micropro­
cessor requires that all data bus pins be driven to
a valid logic state (high or low) at the end of each
read cycle, when READY# is asserted. When a

read cycle is acknowledged by READY# asserted
in the T2 bus state, the Cx486SLCle CPU latches
the information present at its data pins and
terminates the cycle.

When a write cycle is performed, the data bus is
driven by the Cx486SLCle CPU beginning in
phase two ofTl. When a write cycle is acknowl­
edged, the Cx486SLCle write data remains valid
throughout phase one of the next bus state to
provide write data hold time.

Non-Pipelined Non-Pipelined Non-Pipelined Idle I cxcle I I Cxcle 2 I CXcle 3
(Write) (Read) (Wnte)

Idle
I

Cycle 4
NoncPipelined

(Read)

Idle

Ti Tl T2 Tl T2 Tl T2 Ti Tl T2 Ti

CLK2 [
A23-AI,

~6:t,B6}til [

WIR# [

ADS# [
NA# [

READY# [

LOCK# [
DIS-DO [

1704700

Figure 3·5. Various Non.Pipelined Bus Cycles (no wail slales)

3·16 PRELIMINARY

Non-Pipelined Wait States

Once a bus cycle begins, it continues until ac­
knowledged by the external system hardware
using the READY# input. Acknowledging the bus
cycle at the end of the first T2 results in the
shortest possible bus cycle, requiring only Tl and
T2. If READY # is not immediately asserted
however, T2 states are repeated indefinitely until
the READY# input is sampled active. These
intermediate T2 states are referred to as wait
states. If the external system hardware is not able
to receive or deliver data in two bus states, it

Functional Timing 3
withholds the READY# signal and at least one
wait state is added to the bus cycle. Thus, on an
address by address basis the system is able to
define how fast a bus_cycle completes.

Figure 3-6 illustrates non-pipelined bus cycles
with one wait state added to cycles 2 and 3.
READY# is sampled inactive at the end of the first
T2 state in cycles 2 and 3. Therefore, the T2 state
is repeated until READY# is sampled active at the
end of the second T2 and the cycle is then termi­
nated. The Cx486SLGe ignores the READY#
input at the end of the Tl state.

Idle I Cycle 1 I Cycle 2 Idle Cycle 3 Idle
Non-Pipelined Non-Pipelined

(Read) (Write)
Non-Pipelined

(Read)
Ti Tl T2 Tl T2 T2 Ti Tl T2 T2 Ti

CLK2 [
A23-Al,

[BHE#, BLE#,
MlIO#,D/C#

WIR# [
ADS# [

NA# [
READY# [

LOCK# [
DIS-DO [-

1704800

Figure 3·6. Various Non-Pipelined Bus Cycles with Different Numbers of Wait States

PRELIMINARY 3·17

Cv.tx®
~dv!Clng the Standards

Functional Timing

Initiating and Maintaining Non-Pipelined
Cycles

The bus states and transitions for non-pipelined
addressing are illustrated in Figure 3-7. The bus
transitions between four possible states: Tl, T2,
Ti, and Th. Active bus cycles consist of Tl and
T2 states, with T2 being repeated for wait states.
Bus cycles always begin with a Single Tl state.
Tl is always followed by a T2 state. If a bus cycle
is not acknowledged during a given T2 and NA# is
inactive, T2 is repeated resulting in a wait state.
When a cycle is acknowledged during T2, the
following state is Tl of the next bus cycle if a bus
request is pending internally. If no internal bus
request is pending, the Ti state is entered. If the
HOLD input is asserted and the Cx486SLCle is
ready to enter the hold acknowledge state, the
Th state is entered.

Due to the demultiplexed nature of the bus, the
address pipelining option provides a mechanism
for the external hardware to have an additional
T state worth of access time without inserting a
wait state. After the reset sequence and following
any idle bus state, the processor always uses non­
pipelined address timing. Pipelined or non­
pipelined address timing is then determined on
a cycle-by-cycle basis using the NA# input.
When address pipelining is not used, the address
and bus cycle definition remain valid during all
wait states. When wait states are added and it is
desirable to maintain non-pipelined address
timing, it is necessary to negate NA# during each
T2 state of the bus cycle except the last one.

3.3.2.2 Bus Cycles using
Pipelined Addressing

The address pipelining option allows the system to
request the address and bus cycle definition of the
next internally pending bus cycle before the
current bus cycle is acknowledged with READY#
asserted. If address pipelining is used, the exter­
nal system hardware has an extra T state of access
time to transfer data. The address pipelining
option is controlled on a cycle-by-cycle basis by
the state of the NA# input.

Pipelined Bus States

Pipelined addreSSing is always initiated by assert­
ing NA# during a non-pipelined bus cycle.
Within the non-pipelined bus cycle, NA# is
sampled at the beginning of phase 2 of each T2
state and is only acknowledged by the
Cx486SLCle during wait states. When address
pipelining is acknowledged, the address (BHE#,
BLE#, and A23-Al) and bus cycle definition
(W/R#, D/C#, and M/lO#) of the next bus cycle
are driven before the end of the non-pipelined
cycle. The address strobe output (ADS#) is
asserted Simultaneously to indicate validity of the
above Signals. Once in effect, address pipelining is
maintained in successive bus cycles by continuing
to assert NA# during the pipelined bus cycles.

As in non-pipelined bus cycles, the fastest bus
cycles using pipelined address require only two
bus states. Figure 3-8 illustrates the fastest read
cycles using pipelined address timing. The two
bus states for pipelined addreSSing are TlP and

3-'8 PRELIMINARY

I Functional Timing 3

T2P or TlP and T2I. The TlP state is entered
following completion of the bus cycle in which
the pipelined address and bus cycle definition
information was made available and is the first
bus state of every pipelined bus cycle.

Within the pipelined bus cycle, NA# is sampled at
the beginning of phase 2 of the TlP state. If the
Cx486SLGe has an internally pending bus
request and NA# is asserted, the TIP state is
followed by a TlP state and the address and bus

cycle definition for the next pending bus request is
made available. If no pending bus request exists,
the TlP state is followed by a T2I state regardless
of the state of NA# and no new address or bus
cycle information is driven.

The pipelined bus cycle is terminated in either the
T2P or T2I state with the assertion of the
READY# input and valid data is either input or
output depending on the bus cycle type.
READY# is ignored at the end of the TlP state.

HOLD Asserted

RESET
Asserted

HOLD Negated.
No Request

Bus States:

HOLD Negated.
No Request

HOLD Asserted

HOLD Negated.
Request Pending

READY# Asserted.
HOLD Asserted

READY# Asserted •. --r----~
HOLD Negated.
No Request

Request Pending.
HOLD Negated

ALWAYS

READY# Asserted.
HOLD Negated.
Request Pending

READY# Negated.
NA# Negatea

Tl -- First clock of a non-pipelined bus cycle (CPU drives new address and asserts ADS#).
T2 -- Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle.
Ti -- Idle State.
Th -- Hold Acknowledge (CPU asserts HLDA).

The fastest bus cycle consists of two states: Tl and T2.

17126CXJ

Figure 3-7. Non-Pipelined Bus Siaies

PRELIMINARY 3-19

Cv.tx®
~dv!c/ng the Standards

Functional Timing

Cycle 1 Cycle 2 Cycle 3
P('telined

TlP Re d) T2P

01 I 02 01 I 02

p~elined
TlP Read) T2P

01 I 02 01 I 02

p('telined
TlP Read) T2P

01 I 02 01 I 02

CLK2 [
A23-Al,

[BHE#, BLE#,
M1IO#, D!C#, W/R#

ADS# [

NA# [

READY# [

LOCK# [Valid 1 Valid 2

Dl5-DO [

Note: Fastest pipelined bus cycles consist orTlP and T2P. 1704600

Figure 3·8. Fastest Pipelined Read Cycles

Pipelined Read and Write Cycles

Any bus cycle may be performed with pipelined
address timing. When a read cycle is performed,
the Cx486SLGe CPU floats its data bus and the
externally addressed device then drives the data.
When a read cycle is acknowledged by READY#
asserted in either the T2P or T2I bus state, the
CPU latches the information present at its data
pins and terminates the cycle,

When a write cycle is performed, the data bus is
driven by the CPU beginning in phase two of TIP.
When a write cycle is acknowledged, the CPU
write data remains valid throughout phase one of
the next bus state to provide write data hold time.

Wait States for Pipelined Cycles

Once a pipelined bus cycle begins, it continues .
until acknowledged by the external system
hardware using the Cx486SLGe READY# input.
Acknowledging the bus cycle at the end of the
first T2P or T2I state results in the shortest
possible pipelined bus cycle. If READY# is not
immediately asserted, however, T2P or T2I states
are repeated indefinitely until the READY# input
is sampled active. Additional T2P or T2I states are
referred to as wait states.
Figure 3-9 illustrates pipelined bus cycles with one
wait state added to cycles 1 through 3. Cycle 1 is
a pipelined cycle with NA# asserted during TIP
and a pending bus request. READY# is sampled

3·20 PRELIMINARY

inactive at the end of the first T2P state in cycle l.
Therefore, the T2P state is repeated until READY#
is sampled active at the end of the second T2P and
the cycle is then terminated. The Cx486SLCle
ignores the READY# input at the end of the TlP
state. Note that ADS#, the address and the bus
cycle definition signals for the pending bus cycle
are all valid during each of the T2P states. Also,
asserting NA# more than once during the cycle
has no additional effects. Pipelined addressing can
only output information for the very next bus
cycle.

Cycle 2 in Figure 3-9 illustrates a pipelined cycle,
with one wait state, where NA# is not asserted
until the second bus state in the cycle. In this case,
the CPU enters the T2 state following TlP because
NA# is not asserted. During the T2 state, the
Cx486SLCle samples NA# asserted. Because a bus
request is pending internally and READY# is not
active, the CPU enters the T2P state and asserts
ADS#, valid address and bus cycle definition
information for the pending bus cycle. The cycle

Functional Timing

is then terminated by an active READY# at the
end of the T2P state.

3

Cycle 3 of Figure 3-9 illustrates the case where no
internal bus request exists until the last state of a
pipelined cycle with wait states. In cycle 3, NA#
is asserted in T1P requesting the next address.
Because the CPU does not have an internal bus
request pending, the T21 state is entered. How­
ever, by the end of the T21 state, a bus request
exists. Because READY# is not asserted, a wait
state is added. The CPU then enters the T2P state
and asserts ADS#, valid address and bus cycle
definition information for the pending bus cycle.
As long as the CPU enters the T2P state at some
point during the bus cycle, pipelined addressing
is maintained. NA# need only be asserted once
during the bus cycle to request pipelined addressing.

PRELIMINARY 3·21

ev.tx®
~dV!Clng the standards

TIP

Functional Timing

Cycle I
P!Jlelined
(Write)

T2P T2P TIP

Cycle 2
Pil'elined

(Read)

T2 T2P TIP

Cycle 3
Pipelined
(Write)

T21 T2P

Cycle 4
Pil'elined

(Read)

TIP

CLK2 [

A23-AI,
BHE#, BLE#, [
MflO#,D/C# -.-----+~--.-----.-----.---~~---.-----+~~~~--.-----~

3·22

WIR# [

ADS# [

READY# [

LOCK# [

Dl5-DO [

ADS# is asserted as soon
as the CPU has another
bus cycle to perform, which
is not always immediately
after NA# IS asserted.

1705201

Figure 3·9. Various Pipelined Cycles (one wait state)

PRELIMINARY

Initiating and Maintaining Pipelined Cycles

Pipelined addressing is always initiated by assert­
ing NA# during a non-pipelined bus cycle with at
least one wait state. The first bus cycle following
RESET, an idle bus or a hold acknowledge state is
always non-pipelined. Therefore, the Cx486SLCle
always issues at least one non-pipelined bus cycle
following RESET, idle or hold acknowledge
before pipelined addressing takes effect.

Once a bus cycle is in progress and the current
address has been valid for one entire bus state, the
NA# input is sampled at the end of every phase
one until the bus cycle is acknowledged. ODce

Cycle 2
Pipelined

(Read)

CLK2 [
A23·AI.

[BHE#. BLE#.
WIO#.D/C#

WIR# [
ADS# [

NA# [
READY# [

LOCK# [

DI5·DO [

Functional Timing 3

NA# is sampled active, the Cx486SLCle micro­
processor is free to drive a new address and bus
cycle definition on the bus as early as the next bus
state and as late as the last bus state in the cycle.

Figure 3-10 illustrates the fastest transition
possible to pipelined addressing follOwing an idle
bus state. In Cycle 1, the next address is driven
during state T2P. Thus, Cycle 1 makes the
transition to pipelined address timing, since it
begins with Tl but ends with T2P. Because the
address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle and
it begins with a TlP state. Cycle 2 begins as soon
as READY# asserted terminates Cycle 1.

Cycle 3
Pipelined
(Write)

1705100

Note: Following any idle bus state (Ti), the address is always non-pipelined and NA# is sampled only
during wait state. To start address pipelining after an idle state requires a non-pipelined cycle
with at least one wait state (Cycle 1 above). The pipelined cycles (2, 3, and 4 above) are shown
with 0,0 and 1 wait states respectively.

Figure 3·' O. Fastest Transition to Pipelined Address Following Idle Bus State

PRELIMINARY 3·23

On-tx®
~dv!c/ng the Standards

Functional Timing

Figure 3-11 illustrates transitioning to pipelined
addressing during a burst of bus cycles. Cycle 2
makes the transition to pipelined addressing.
Comparing Cycle 2 to Cycle 1 of Figure 3-10
illustrates that a transition cycle is the same
whenever it occurs consisting of at least T1, T2
(NA# is asserted at that time), and T2P (provided

the Cx486SLGe microprocessor has an internal
bus request already pending). T2P states are
repeated if wait states are added to the cycle.
Cycles 2,3, and 4 in Figure 3-11 show that once
address pipelining is achieved it can be main­
tained with two-state bus cycles consisting only of
TlP and T2P.

Cycle 2
Non-Pipelined

(Read)

CLK2 [

A23-AI,
BHE#, BLE#,
MlIO#, D/C#

W/R#

ADS#

NA#

READY#

LOCK#

DIS-DO

[

[

[

[~~~~~~~~~~~~~~
[~~~~~':::p!YJ
[

[

Note: Foliowing any idle bus state (Ti), the address is non-pipelined . Within non­
pipelined bus cycles, NA# is sampled only during wait states. Therefore, to begin
address pipelining during a group of non-pipelined bus cycles requires a non­
pipelined cycle with at least one wait state (Cycle 2 above).

1705000

Figure 3· 1 1. Transitioning to Pipelined Address During Burst of Bus Cycles

3·24 PRELIMINARY

Functional Timing 3

Once a pipelined bus cycle is in progress, pipe­
lined timing is maintained for the next cycle by
asserting NA# and detecting that the Cx486SLOe
microprocessor enters T2P during the current bus
cycle. The current bus cycle must end in state
T2P for pipelining to be maintained in the next
cycle. T2P is identified by the assertion of ADS#.
Figures 3-10 and 3-11 each show pipelining
ending after Cycle 4. This occurred because the

Cx486SLOe CPU did not have an internal bus
request prior to the acknowledgment of Cycle 4.

The complete bus state transition diagram, including
operation withpipelined address is given in
Figure 3-12. This is a superset of the diagram for
non-pipelined address. The three additional bus
states for pipelined address are shaded.

HOLD Negated.
No Request

HOLD Asserted

READY# Asserted.
HOLD Asserted

RESET
Asserted HOLD

Asserted

HOLD Negated.

(No Request +
HOLD Asserted) •
NA# Asserted.
READY# l'-!egated

NA# Asserted.
(HOLD Asserted +
No Request)

HOLD
Negated.
No Request

Request Pending.
HOLD Negated READY# Asserted.

HOLD Negated.
Request Pending

READY# Asserted.
HOLD Negated.
Request Pending

I

I

READY# Negated.
NA# Asserted.
HOLD Negated.

READY# Asserted. HOLD Negated. No Request Request Pending

Bus States: READY# Negated • ~
Tl ..

(No Request +
First Clock of a non-pipehned bus cycle (CPU drives new address HOLD Asserted)
and asserts ADS#) READY# Negated.

12 -- Subsequent clocks of a bus cycle when NA# has not been sampled Request Pending. NA# Asserted.
asserted in the current bus cycle. HOLD Negated HOLD Negated.

12[.. Request Pending

/
Subsequent clocks of a bus cycle when NA# has been sampled
asserted in the current bus cycle but there is not yet an internal bus
request pending (CPU does not drive new address or assert AD$#) READY# Asserted

T2P -- Subsequent clocks of a bus cycle when NA# has been sampled
asserted in the current bus cycle and there is an internal bus request
pending (CPU drives new address and asserts AD$#)

TlP .- First clock of a pipelined bus cycle.

Ti -- Idle state.

Th -- Hold Acknowledge state (CPU asserts HLDA)

READY# Negated

Figure 3· 'I 2. Complete Bus States

PRELIMINARY

1705300

3·25

CVlltx®
~dV!Cing the StandardS

Functional Timing

3.3.3 Locked Bus Cycles

When the LOCK# signal is asserted, the
Cx486SLCJe microprocessor does not allow other
bus master devices to gain control of the system
bus. LOCK# is driven active in response to
executing certain instructions with the LOCK
prefix. The LOCK prefix allows indivisible
read/modify/write operations on memory oper­
ands. LOCK# is also active during Interrupt
Acknowledge Cycles.

LOCK# is activated on the CLK2 edge that begins
the first locked bus cycle and'is deactivated when
READY# is returned at the end of the last locked
bus cycle. When using non-pipelined addressing,
LOCK# is asserted during phase 1 of T 1. When
using pipelined addressing, LOCK# is driven
valid during phase 1 ofTlP.

Figures 3-4 through 3-6 illustrate LOCK# timing
during non-pipelined cycles and Figures 3-8
through 3-11 cover the pipelined address case.

3.3.4 Interrupt Acknowledge
(lNTA) Cycles

The Cx486SLCJe microprocessor is interrupted
by an external source via an input request on the
INTR input (when interrupts are enabled). The
Cx486SLCJe microprocessor responds with two
locked interrupt acknowledge cycles. These bus
cycles are similar to read cycles. Each cycle is
terminated by READY# sampled active as shown
in Figure 3-13.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The address d~ven
during the first interrupt acknowledge cycle IS 4h
(A23-A3, AI, BLE# = 0; A2, BHE# = 1). The
address driven during the second interrupt
acknowledge cycle is Oh (A23-AI, BLE# = 0 and
BHE#= 1).

To assure that the interrupt acknowledge cycles
are executed indivisibly, the LOCK# output is
asserted from the beginning of the first interrupt
acknowledge cycle until the end of the second
interrupt acknowledge cycle. Four idle bus states
(TO are always inserted by the Cx486SLCJe
microprocessor between the two interrupt ac­
knowledge cycles.

The interrupt vector is read at the end of the
second interrupt cycle. The vector is read by the
Cx486SLCJe microprocessor from D7 -DO of the
data bus. The vector indicates the specific inter­
rupt number (from 0-255) requiring service.
Throughout the balance of the two interrupt
cycles D 15-DO float. At the end of the first inter­
rupt acknowledge cycle, any data presented to the
Cx486SLCJe is ignored.

3·26 PRELIMINARY

CLK2 [
BHE# [

A23-A3, AI,
[BLE#, MlIO#

D/C#, W/R#

A2 [

LOCK# [

ADS# [

NA# [

READY# [

D7-DO [
DIS-DB [

Functional Timing 3

Previous I
Cycle

Interrupt
Acknowledge

Cycle I

_ill ill M !ill nIL
'-'~ I\xxX

It.
XXXXXIA L~

X XXXXIY !'<XXX

X:xxJ<'XiA
It

/
--

I~V

XXX'IJ, lXXY '<!XX l><X: :XlXXXX

XXXXX IXXXX lXXI' '&\ /'xX
Ignored

- --- --- --- --@--

- --- --- --- -~o/-

Idle
(4 Bus States)

nIL nIL
lX"X X

KXXX IXXXX

XXXX !XXXX

lXXXX lXXXX

IXXXx IXXXx

--- ---

--- ---

nIL

Interrupt
Acknowledge

Cycle 2

nIL M Iill
J<J<J<li !\X

lXXX)<l\ KxXX

lXXXX!\ (j l-<XXX
1/

I~!/

lXXXX IXXXX[\ /lXXXX

IXXXx rxXXx IXXI' '&

ill
,p

XXXX

,XXXX

~

IXXXX

tlX
Vector

--- --- --- --0--
--- --- --- -~o/-

Note: Interrupt Vector (0-255) is read on D7-DO at the end of the second Interrupt
Acknowledge bus cycle. Because each Intrrupt Acknowledge busy cycle is followed by
idle bU:, ~tates, asserting NA# has no practical effect. 1705400

Figure 3·' 3. Interrupt Acknowledge Cycles

PRELIMINARY 3·27

Cv.tx®
~dV!Clng the standards

Functional Timing

3.3.5 Halt and Shutdown
Cycles

cycle is identified by the state of the bus cycle
definition signals (MlIO#=l, D/C#=O, WIR#=l,
LOCK#=l) and an address of 2h (A23-A2=O,
A1=1, BHE#=l, BLE#=O). The halt indication
cycle must be acknowledged by READY# as­
serted. A halted Cx486SLOe microprocessor
resumes execution when INTR (if interrupts are
enabled), NMI, or RESET is asserted. Figure 3-14
illustrates a non-pipelined halt cycle.

Halt Indication Cycle

Executing the HLT instruction causes the
Cx486SLOe execution unit to cease operation.
Signaling its entrance into the halt state, a halt
indication cycle is performed. The halt indication

CLK2 [

Cycle 1
Non-Pipelined

(Write)

Cycle 2
Non-Pipelined

(Halt)

Idle

Ai, BHE#.
MIIO#, WfR#

A23-A2,
BLE#, D/C#

[----f-"--,----(

[~--,---~~--~~~~~~~~
ADS#

NA#

READY#

LOCK#

DiS-DO

3·28

[

[~~~~~~~~~~~~~~~

[~~~~~~~~~~~~~~~

[-j---,------f

[--y--~~--~~~~~

Figure 3·14. Non.pipelined Halt Cycle

PRELIMINARY

J 705500

Shutdown Indication Cycle

Shutdown occurs when a severe error is detected
that prevents further processing. Signaling its
entrance into the shutdown state, the CPU issues
a shutdown indication cycle. The shutdown
indication cycle is identified by the state of the
bus cycle definition Signals (MlIO#=I, D/C#=O,

CLK2

BHE#,
MlIO#, WfR#

A23-AI,
BLE#, D/C#

ADS#

NA#

READY#

LOCK#

Dl5-DO

Cycle I
Pipelined

(Read)

Functional Timing 3
W/R#=I, LOCK=l) and an address of Oh (A23-
Al = 0, BHE# = 1, BLE#=O). The shutdown
indication cycle must be acknowledged by
READY# asserted. A shut down Cx486SLGe
microprocessor resumes execution only when
NMI or RESET is asserted. Figure 3-15 illustrates
a shutdown cycle using pipelined addressing.

Idle

1705600

Figure 3.1 5. Pipelined Shutdown Cycle

PRELIMINARY 3-29

Cv.tx®
~dV!Cing the Standards

Functional Timing

3.3.6 Internal Cache Interface

3.3.6.1 Cache Fills

Any unlocked memory read cycle can be cached
by the Cx486SLCJe. The Cx486SLCJe automati­
cally does not cache accesses to memory ad­
dresses specified by the non-cacheable region
registers. Additionally, the KEN# input can be
used to enable caching of memory accesses on a
cycle-by-cycle basis. The Cx486SLCJe acknowl­
edges the KEN# input only if the KEN enable bit
is set in the CCRO configuration register.

As shown in Figures 3-16 and 3-17, the
Cx486SLCJe samples the KEN# input one CLK2
before READY# is sampled active. If KEN# is
asserted and the current address is not set as non­
cacheable per the non-cacheable region registers,
then the Cx486SLCJe fills two bytes of a line in
the cache with the data present on the data bus
pins. The states of BHE# and BLE# are ignored if
KEN# is asserted for ,the cycle.

If the RPL bit in the CCR1 configuration register
is set, then the RPLSET and RPL VAL# output
signals are driven by the Cx486SLCJe during
cache fill cycles. If the cache is configured as
direct-mapped (CO bit in CCRO configuration
register), RPLSET is always driven low. If the
cache is configured as two-way set associative,
RPLSET indicates which set in the cache is
undergoing a line replacement. RPL VAL# indi­
cates that the Cx486SLCJe will perform a cache
fill to the indicated set with the data present on
the data bus pins at the time READY# is sampled
active. However, if KEN# is enabled and sampled
inactive, the data is not cached and the line in the
set indicated by RPLSET is not overwritten.

Figures 3-16 and 3-17 illustrate RPL V AL# and
RPLSET functional timing for both non-pipelined
and pipelined cache fills. RPL VAL# is driven at
the same time and for the same duration as the
ADS# output for the cache fill cycle. RPLSET is
driven one CLK2 after RPLVAL# is driven regard­
less of whether or not the current bus cycle is
pipelined.

3-30 PRELIMINARY

CLK2 [

A23-Al, BHE#, BLE#,
D/C#, MlIO#, W/R# [

ADS# [

RPLVAL# [

RPLSET [

NA# [

KEN# [

READY# [

LOCK# [

DIS-DO [

Cycle 1
Non-Pipelined

(Read - Cache Fill)
Tl 12

01 I 02 01 02

Valid 1

Functional Timing

Cycle 2
Non-Pipelined

(Read - Cache Fill)
Tl 12 12

01 I 02 01 I 02 01 I 02

Valid 2

1701900

Figure 3-16. Non-Pipelined Cache Fills using KEN#

PRELIMINARY

3

3·31

Cv.tx®
~dV!Clng the standards

Functional Timing

TIP
01 I 02

CLK2 [

A23-AI, [BHE#, BLE#,
D/C#, MlIO#,W/R#

ADS# [

RPLVAL# [

RPLSET [Valid I Valid 2 Valid 3

NA# [

KEN# [

READY# [

LOCK# [

DIS-DO [

1701800

Figure 3· 1 7. Pipelined Cache Fills using KEN#

3.3.6.2 Flushing the Cache

To maintain cache coherency with external
memory, the Cx486SLGe cache contents should
be invalidated when previously cached data is
modified in external memory by another bus
master. The Cx486SLGe invalidates the internal
cache contents during execution of the INVD and
WBINVD instructions, following assertion of
HLDA if the BARB bit is set in the CCRO configu­
ration register, or following assertion of FLUSH#
if the FLUSH bit is set in CCRO.

The Cx486SLGe samples the FLUSH# input on
the rising edge of CLK2 corresponding to the begin­
ning of phase 2 of the internal processor clock. If
FLUSH# is asserted, the Cx486SLGe invalidates the
entire contents of the internal cache. The actual
point in time where the cache is invalidated depends
upon the internal state of the execution pipeline.
FLUSH# must be asserted for at least two CLK2
periods and must meet speCified setup and hold
times to be recognized on a specific CLK2 edge.

3·32 PRELIMINARY

3.3.7 Address Bit 20 Masking

The Cx486SLOe can be forced to provide 8086
1-MByte address wrap-around compatiblity by
setting the A20 bit in the CCRO configuration
register and asserting the A20M# input. When
the A20M# input is asserted, the 20th bit in the
address to both the internal cache and the exter­
nal bus pin is masked (zeroed).

As shown in Figure 3-18 , the Cx486SLOe
samples the A20M# input on the rising edge of
CLK2 corresponding to the beginning of phase 2

CLK2

AI9-AI,
A23-All,

BHE#, BLE#,
MIl0#,D/C#

WIR#

ADS#

A20M#

A20

NA#

READY#

LOCK#

DIS-DO

Functional Timing 3

of the internal processor clock. If A20M# is
asserted and paging is not enabled, the
Cx486SLOe masks the A20 signal internally
starting with the next cache access and externally
starting with the next bus cycle.

If paging is enabled, the A20 signal is not masked
regardless of the state of A20M#. A20 remains
masked until the access follOwing detection of an
inactive state on the A20M# pin. A20M# must be
asserted for a minimum of two CLK2 periods and
must meet speCified setup and hold times to be
recognized on a specific CLK2 edge.

1701700

Figure 3·18. Masking A20 using A20M# During Burst of Bus Cycles

PRELIMINARY 3·33

On-tx®
~dV!Clng the Standards

Functional Timing

An alternative to using the A20M# pin is provided
by the NCO bit in the CCRO cache control con­
figuration register. The Cx486SLOe automati­
cally does not cache accesses, to the first 64 KBytes
and to the first 64 KBytes at each 1-MByte bound­
ary, if the NCO bit is set. This prevents data
within the wrap-around memory area from
residing in the internal cache and thus eliminates
the need for masking A20 to the internal cache.

3.3.8 Hold Acknowledge State

The hold acknowledge state provides the mecha­
nism for an external device in a Cx486SLOe
system to acquire the Cx486SLOe system bus
while the Cx486SLOe is held in an inactive bus
state. This allows external "bus masters" to take
control of theCx486SLOe bus and directly access
system hardware in a shared manner with
the Cx486SLOe. The Cx486SLOe continues to
execute instructions out of the cache (if enabled)
until a system bus cycle is reqUired.

The hold acknowledge state (Th) is entered in
response to assertion of the HOLD input. In the
hold acknowledge state, the Cx486SLOe micro­
processor floats all output and bi-directional
Signals, except for HLDA and SUSPA#. HLDA is
asserted as long as the Cx486SLOe CPU remains
in the hold acknowledge state and all inputs except
HOLD, FLUSH#, FLT#, SUSP# and RESET are
ignored.

Th may be entered directly from a bus idle state,
as in Figure 3-19, or after the completion of the
current physical bus cycle if the LOCK# signal is
not asserted, as in Figures 3-20 and 3-21. The
CPU samples the HOLD input on the rising edge
of CLK2 corresponding to the beginning of phase 1
of the internal processor clock. HOLD must meet
specified setup and hold times to be recognized at
a given CLK2 edge.

The hold acknowledge state is exited in response
to the HOLD input being negated. The next bus
state is an idle state (Ti) if no bus request is
pending, as in Figure 3-19. If a bus request is
internally pending, as in Figures 3-20 and 3-21,
the next bus state is Tl. Th is also exited in
response to RESET being asserted. If HOLD
remains asserted when RESET goes inactive, the
Cx486SLOe enters the hold acknowledge state
before performing any bus cycles provided HOLD
is still asserted when the CPU is ready to perform
its first bus cycle.

If a rising edge occurs on the edge-triggered NMI
input while in the Th state, the event is remem­
bered as a non-maskable interrupt 2 and is
serviced when the Th state is exited.

3·34 PRELIMINARY

Functional Timing 3

Idle Hold Acknowledge

·1
Idle

Ti Th Th Th Ti

CLK2 [

HOLD [

HLDA [

A23-AW BHE#,

Jr6#: Wllfli [------ - (Floating) - ------

ADS# [----- - (Floating) - ------

NA# [

READY# [

[LOCK#

DlS-DO [-- -------

-------- (Floating) --------

I I
-------- (Floating) --------

I I
Note For maximum design flexibility the CPU has no internal pull-up resistors on its outRllts.

External pull-ups may be reqUIred on ADS# and other outputs to keep them negatea
during hold acknowledge penod. 1705700

Figure 3·19. Requesting Hold from Idle Bus State

PRELIMINARY 3·35

Functional Timing

CLK2 [

HOLD [

HLDA [

A23-Al, BHE#, BLE#, [
BLE#, D/C#,

MII0#, W/R#

ADSIt [

NA# [

READY# [

LOCK# [

Tl

Cycle 1
Non-Pipelined

(Read)

T2

[(Floating)
D15-DO -- -------r-------

T2

Hold
Acknowledge

Th Th

(Floating)

----T-------
Note: HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold

requirements are met. This wavefonn is useful for determining Hold Acknowledge latency.

Cycle 2
Non-Pipelined

(Write)

Tl T2

Valid 2

Figure 3-20. Requesting Hold from Active Non-Pipelined Bus

3-36 PRELIMINARY

1705!l00

CLK2 [

HOLD [

HLDA [

A23-AI, BHE#,
[BLE#, D/C#,

MlIO#, W/R#

ADS# [

NA# [

READY# [

LOCK# [

DI5-DO [

TIP

Cycle I
Pipelined
(Write)

T2I T2I

HOLD asserted in same bus
state as NA# asserted.

Hold
Acknowledge

Iii Iii

Functional Timing

TI

Cycle 2
Non.Pipelined

(Read)

T2

Valid 2

r--+--+-----+-----,, ____ J!.'!~~~ ___ _

Vahd2

In 2

1705900

Figure 3·21. Requesting Hold from Active Pipe lined Bus

PRELIMINARY

3

3·37

ev.tx~
~~Clng the Standards

Functional Timing

3.3.9 Coprocessor Interface

The coprocessor interface consists of the data bus,
address bus, bus cycle definition signals, and the
coprocessor interface signals (BUSY#, ERROR#
and PEREQ). The Cx486SLOe automatically
accesses dedicated coprocessor VO addresses
80 00F8h, 80 OOFCh and 80 OOFEh to transfer
opcodes and operands to/from the coprocessor
whenever a coprocessor instruction is decoded.
Coprocessor cycles can be either read or write and
can be either non-pipelined or pipelined. Copro- .
cessor cycles must be terminated by READY#
and, as with any other bus cycle, can be termi­
nated as early as the second bus state of the cycle.

BUSY#, ERROR# and PEREQ are asynchronous
level-sensitive inputs used to synchronize CPU
and coprocessor operation. All three signals are
sampled at the beginning of phase 1 and must
meet specified setup and hold times to be recog­
nized at a given CLK2 edge.

3.3.10 SMM Interface

System Management Mode (SMM) uses two
CX486SLOe pins, SMI# and SMADS#. The bi­
directional SMI# pin is a non-maskable interrupt
that is higher priority than the NMI input. SMI#
must be active for at least four CLK2 periods to be
recognized by the Cx486SLOe. Once the
Cx486SLOe recognizes the 'active SMI# input, the
CPU drives the SMI# pin low for the duration of
the SMI service routine.

The SMADS# pin outputs the SMM Address
Strobe which indicates that a SMM memory bus
cycle is in progress and a valid SMM address is on
the address bus. The SMADS# functional timing,
output delay times and float delay times are
identical to the main memory address strobe
(ADS#) timing.

3·38 PRELIMINARY

SMI Handshake

The functional timing for SMI# interrupt is
shown in Figure 3-22. Five significant events
take place during a Cx486SLCle SMI# handshake:

(a) The SMI# input pin is driven active
(low) by the system lOgiC.

(b) The CPU samples SMI# active on the
rising edge of CLK2 phase 1.

(c) Four CLK2s after sampling the SMI#
active, the CPU switches the SMI# pin
to an outplit and drives SMI# low.

Functional Timing 3

(d) FollOwing execution of theRSM
instruction the CPU drives the SMI#
pin high for two CLK2s indicating
completion of the SMI service routine.

(e) The CPU stops driving the SMI# pin
high and switches the SMI# pin to an
input in preparation for the next SMI
interrupt. The system lOgiC is respon­
sible for maintaining the SMI# pin at
an inactive (high) level after the pin has
been changed to an input.

I'll '/J2 '/JI '/J2 '/JI '/J2 '/JI '/J2 '/JI '/J2 '/JI '/J2 '/JI '/J2 I'll '/J2 '/JI '/J2 I'll '/J2 I'll '/J2 I'll '/J2

CLK2 [

SMI# [

Note: Bold line indicates that the
Cx486SLC drives the SMI# pin.

Figure 3·22. SMI# Timing

PRELIMINARY

1713000

3·39

On-txs

~d~Clng the$tandards

Functional Timing

YO Trapping

The Cx486SLGe provides VO trapping which can
be used to facilitate power management of VO
peripherals. When an VO bus cycle is issued,
the VO address is driven onto the address bus
and can be decoded by external logic. If a trap to
the SMI handler is required, the SMI# input
should be activated at least three CLK2 edges prior

to returning the READY# input for the VO cycle.
The timing for creating an VO trap via the SMI#
input is shown in Figure 3-23. The Cx486SLGe
immediately traps to the SMI interrupt handler
follOwing execution of the VO instruction, and no
other instructions are executed between comple­
tion of the VO instruction and entering the SMI
service routine. The VO trap mechanism is not
active during coprocessor accesses.

1/0 CYQE

(READ or WRITE)
Tl T2 T2 12

CLKl [
ADDRESS, [

BYTE ENABLES

ADS# [

READY# [

SMI# [

I I
r3CLK2s1

1712900

Figure 3,;23. I/O Trap Timing

PRELIMINARY

3.3.11 Power Management

SUSP# Initiated Suspend Mode

The Cx486sLOe enters suspend mode when the
sUsP# input is asserted and execution of the
current instruction, any pending decoded instruc­
tions and associated bus cycles are completed.
The Cx486sLOe CPU also waits for the copro­
cessor not busy (BUsy# negated) prior to entering
suspend mode (Figure 3-24). The sUsPA#
output is asserted. The Cx486sLOe responds to
sUSP# and asserts sUsPA# only if the SUSP bit is
set in the CCRO configuration register.

sUsP# is sampled on the risi~g edge of phase 2
CLK2. sUsP# must meet specified setup and
hold times to be recognized at a particular CLK2
edge. The time from assertion of sUSP# to
activation of sUSP A# varies depending on which

Functional Timing 3

instructions were decoded prior to assertion of
sUSP#. The minimum time from sUSP#
sampled active to sUsPA# asserted is two CLK2s.
As a maximum, the CPU may execute up to two
instructions and associated bus cycles prior to
asserting sUsPA#. The time required for the CPU
to deactivate sUsP A# once sUSP# has been
sampled inactive is four CLK2s.

If the CPU is in a hold acknowledge state and sUSP#
is asserted, the CPU mayor may not enter suspend
mode depending on the state of the CPU internal
execution pipeline. If the CPU is in a sUSP# initiated
suspend state and the CLK2. input is not stopped, the
processor recognizes and acknowledges the HOLD
input and stores the occurrence of FLUSH#, NMI,
sMI# and INTR (if enabled) for execution once
suspend mode is exited.

~2 I ~l I ~2 I ~l I ~2 I ~l
CLK2 [

SUSP# [

--~~~*---------~----~~~--BUSY# [L 2 CLK2s --l
I MIN I !--- 4 CLK2s--_

SUSPA# [

1701200

Figure 3·24. SUSP# Initiated Suspend Mode

PRELIMINARY 3·41

ev.tx~
~d~ClngthestandordS

Functional Timing

HALT Initiated Suspend Mode

The Cx486SLGe also enters suspend mode as a
result of executing a HALT instruction. The
SUSPA# output is asserted no more than 17
CLK2s following READY# sampled active for the
HALT bus cycle as shown in Figure 3-25. Suspend
mode is then exited upon recognition of an NMI

or an unmasked INTR. SUSPA# is deactivated 12
CLK2s after sampling of an ac~ive NMI or un­
masked INTR. If the Cx486SLGe is in a HALT
initiated suspend mode and the CLK2 input is not
stopped, the processor recognizes and acknowl­
edges the HOLD input and stores the occurrence
of FLUSH# for execution once suspend mode is
exited.

Ti Ti Ti

.--12 CLK2s--. , ,

1701300

Figure 3-25. Halt Initiated Suspend Mode

3-42 PRELIMINARY

Functional Timing 3

Stopping the Input Clock The Cx486SLOe remains suspended until CLK2 is
restarted and suspend mode is exited as described

Because the Cx486SLOe is a static device, the earlier. While CLK2 is stopped, the Cx486SLOe
input clock (CLK2) can be stopped and restarted can no longer sample and respond to any input
without loss of any internal CPU data. CLK2 can stimulus including the HOLD, FLUSH#, NMI,
be stopped in either phase 1 or phase 2 of the clock INTR and RESET inputs.
and either in a logic high or logic low state.
However, entering suspend mode prior to stop­
ping CLK2 dramatically reduces the CPU current
requirements. Therefore, the recommended
sequence for stopping CLK2 is to initiate
Cx486SLOe suspend mode, wait for assertion of
SUSP A# by the processor and then stop the input
clock.

I 01 I 02 01 I 02 I ~1
CLK2 [

sUSP# [\ '5;

BUSY# ['5;

SUSPA# ['5;
\

Figure 3-26 illustrates the recommended
sequence for stopping CLK2 using SUSP# to
initiate suspend mode. CLK2 may be started
prior to or following negation of the SUSP# input.

~2 I 01 I 02 I 01 I ~2 I

'5; /
'5; '5; '5;

'5; '5; '5; ~
1701400

Figure 3·26. Stopping CLK2 During Suspend Mode

PRELIMINARY 3·43

ev.tx®
~dv!Clng ttJe Standards

Functional Timing

3.3.11 Float

Activating the FLT# input floats all
Cx486SLCle microprocessor bi-directional and
output signals. Asserting FLT# electrically
isolates the Cx486SLCle microprocessor from
the surrounding circuitry. This feature is useful
in board-level test environments. As the
Cx486SLCle microprocessor is packaged in a
surface mount PQFP, it is not usually socketed and
cannot be removed from the motherboard when
In-Circuit Emulation (ICE) is needed. Float
capability allows conriection of an emulator by
clamping the emulator probe onto the
Cx486SLCle microprocessor PQFP without
removing it from the circuit board.

FLT# is an asynchronous, active low input. It is
recognized on the rising edge of CLK2. When

CLK2 [

recognized, it aborts the current bus state and
floats the outputs of the Cx486SLCle micropro­
cessor as shown in Figure 3-27. FLT# must be
asserted for a minimum of 16 CLIQ cycles. To
exit the float condition, RESET should be asserted
and held asserted until after FLT# is deasserted.

Asserting the FLT# input unconditionally aborts
the current bus cycle and forces the Cx486SLCle
microprocessor into the float mode. As a result,
the Cx486SLCle microproceSsor is not guaranteed
to enter float in a valid state. After deactivating
FLT#, the Cx486SLCle CPU is not guaranteed to
exit float in a valid state. The Cx486SLCle
microprocessor RESET input must be asserted
prior to exiting float to guarantee that the
Cx486SLCle is reset and that it returns to a valid
state.

FLT# [~ /
\~. --------------~

Control [~ Valid r------------------------:......-~L ____ ___1X'__ __

Data [--O--~ Valid r------------------------~L_ ___ ~

Address [~ Valid)-------------------------{L._---1X'--__

Reset [-----------'/
1706100

Figure 3·27. Entering and Exiting Float

3-44 PRELIMINARY

CYRIX Cx486SLC/e" MICROPROCESSOR
High-Perfonnance 486-Class CPU with Advanced Power

Cv.tx® Management Jor Notebook and Battely-Powered Systems

4.

4.1

~dV!Clng the Standards

ELEcrRlCAL SPECIFICAnoNS

Electrical Connections

4.1 • 'I Power and Ground Con-
nections and Decoupling

Due to the high frequency of operation of the
Cx486SLOe, it is necessary to install and test this
device using standard high frequency techniques.
The high clock frequencies used in the
Cx486SLOe and its output buffer circuits can
cause transient power surges when several output
buffers switch output levels simultaneously.
These effects can be minimized by filtering the
DC power leads with low-inductance decoupling
capacitors, using low impedance wiring, and by
utilizing all of the 14 Vee and 18 GND pins.

4. '1.2 Pull-Up/Pull-Down
Resistors

Table 4-1 lists the input pins which are internally
connected to pull-up and pull-down resistors.
The pull-up resistors are connected to Vee and the
pull-down resistors are connected to VSS. When
unused, these inputs do not require connection to
external pull-up or pull-down resistors.

Electrical Specifications

Table 4.'. Pins Connected 10
Intemal PuII.Up and PuII·Down Resistors

SIGNAL PIN RESISTOR

A20M# 31 20-kQ pull-up
BUSY# 34 20-ill pull-up
ERROR# 36 20-ill pull-up
FLT# 28 20-ill pull-up
FLUSH# 30 20-ill pull-up
KEN# 29 20-kQ pull-up
PEREQ 37 20-kQ pull-down
SMI# 47 20-ill pull-up
SUSP# 43 20-ill pull-up

It is recommended that the ADS# and LOCK#
output pins be connected to pull-up resistors, as
indicated in Table 4-2. The external pull-ups
guarantee that the Signals will remain negated
during hold acknowledge states.

Table 4·2. lPins Requiring
IExtemal PuII.Up Resistors

SIGNAL PIN EXTERNAL RESISTOR

ADS# 16 20-ill pull-up
LOCK# 26 20-ill pull-up

PRELIMINARY 4·'

Cv.tx®
~dV!cfng the Standards

Absolute Maximum Ratings

4.1.3 Unused Input Pins

All inputs not used by the system designer and
not listed in Table 4-1 should be connected either
to ground or to Vee Connect active-high inputs
to ground through a 20 kO (± 10%) pull-down
resistor and active-low inputs to Vee through a
20 kO (± 10%) pull-up resistor to prevent pos­
sible spurious operation.

4.1.4 N/e Designated Pins

Pins designated N/C should be left disconnected.
Connecting an N/C pin to a pull-up resistor, pull­
down resistor, or an active signal could cause
unexpected results and possible circuit malfunc­
tions.

4.2 Absolute Maximum
Ratings

The following table lists absolute maximum
ratings for the Cx486SLOe and Cx486SLOe-V
microprocessors. Stresses beyond those listed
under Table 4-3 limits may cause permanent
damage to the device. These are stress ratings only
and do not imply that operation under any
conditions other than those listed under "Recom­
mended Operating Conditions" (Table 4-4) is
possible. Exposure to conditions beyond
Table 4-3 may (1) reduce device reliability and
(2) result in premature failure even when there is
no immediately apparent sign of failure. Pro­
longed exposure to conditions at or near the
absolute maximum ratings (Table 4-3) may also
result in reduced useful life and reliability.

Table 4·3. Absolute Maximum Ratings

PARAMETER MIN MAX UNITS NOTES

Case Temperature' -650 +1100 C Power Applied
Storage Temperature _650 +1500 C No Bias
Supply Voltage, Vee -0.5 6.5 V With Respect to Vss
Voltage On Any Pin -0.5 Vee + 0.5 V With Respect to Vss
Input Clamp Current, 11K 10 rnA Power Applied
Output Clamp Current, 10K 25 rnA Power Applied

4·2 PRELIMINARY

Recommended Operating Conditions

4.3 Recommended Operating Conditions

The following table presents the recommended operating conditions for the Cx486SLCle and
Cx486SLCle-V devices. The Cx486SLOe-V can be operated as a Cx486SLOe.

Table 4-4. Recommended Operating Conditions

PARAMETER
Cx486SLC/e Cx486SLC/e-V

UNITS NOTES
MIN MAX MIN MAX

Te Case Temperature 0° +100° 0° +85° C Power Applied

4

Vee Supply Voltage (-20, -25) 4.5 5.5 3.0 3.6 V With Respect to Vss

Vee Supply Voltage (-33) 4.75 5.25 V With Respect to Vss

VIH High Level Input 2.0 Vee + 0.3 2.0 Vee +0.3 V

VIL Low Level Input -0.3 0.8 -0.3 0.6 V

VILC CLK2 Input LOW -0.3 0.8 -0.3 0.5 V

Voltage

VIHe CLK2 Input HIGH 3.7 Vee + 0.3 Vee - 0.5 Vee+ 0.3 V

Voltage

IOH Output Current -1.0 -1.0 rnA V ;V
OH OH(min)

(High)

IOL Output Current 5.0 3.0 rnA VOL; V OL(=,)

(Low)

11K Input Clamp +10 +10 rnA VIN<VSS or

Current VIN>Vee

10K Output Clamp +25 +25 rnA VOUT<VSS or

Current Vou;>Vee

PRELIMINARY 4-3

Cv.tx®
~dV!Clng the S~andards

DC Characteristics

4.4 DC Characteristics

Table 4·5. DC Characteristics (at Recommended Operating Conditions)

Cx486SLC/e Cx486SLC/e.Y
PARAMETER UNITS NOTES

MIN MAX MIN MAX

Val Output Low Voltage
10l= 3 rnA 0.35 V
IOL= 5 rnA 0.45

VOH Output High Voltage
IOH =-1 rnA 2.4 Vee - 0.4 V

IOH = -0.2 rnA Vee - 0.5 Vee - 0.4

III Input Leakage Current ±15 ±15 IlA o <VIN<Vee
For all pins except for pins using
pull up/down resistors (see manual).

IIH Input Leakage Current 200 200 IlA VIN= 2.4
PEREQ Note 1

III Input Leakage Current - 400 - 400 IlA Vll= 0.45V
A20M#, BUSY#, ERROR#, FLT#, Note 2
FLUSH#, KEN#, SUSP#

Icc Active Icc Typical: Typical:
20 MHz (CLK2 = 40 MHz) 360 450 185 235 rnA
25 MHz (CLK2 = 50 MHz) 395 495 225 285
33 MHz (CLK2 = 66 MHz) 495 615 - -

IcesM Suspend Mode Icc Typical: Typical
20 MHz (CLK2 = 40 MHz) 8.0 14.0 5.0 9.0 rnA Note 3
25 MHz (CLK2 = 50 MHz) 9.0 15.0 6.0 10.0 Note 3
33 MHz (CLK2 = 66 MHz) 10.0 18.0 - - Note 3

Icess Standby Icc Typical: Typical:
o MHz (SuspendediCLK2 Stopped) 0.4 2 0.3 ·2 rnA Note 3

CIN Input Capacitance 10 10 pF fc = 1 MHz (Note 4)
Cour Output or I/O Capacitance 12 12 pF fc - 1 MHz (Note 4)
CelK CLK2 Capacitance 20 20 pF fe = 1 MHz (Note 4)

Notes: 1. PEREQ input has an internal pull-down resistor.

2. A20M#, BUSY#, ERROR#, FLT#, FLUSH#, KEN#, and SUSP# inputs each have an inlernal pull-up resistor.
3. All inputs at 0.4 or Vcc-O.4 (CMOS levels). All inputs held static (except CLK2 as indicated). All outputs unloaded (static 10m '" 0 rnA).
4. Not 100% tested.

4.4 PRELIMINARY

4.5 AC Characteristics

Tables 4-7 and 4-8 list the AC characteristics
including output delays, input setup require­
ments, input hold requirements and output float
delays. These measurements are based on the
measurement points identified in Figures 4-1 and
4-2. The rising clock edge reference level V REFC'

and other reference levels are shown in Table 4-6
below for the Cx486SLCle and Cx486SLCle-V.
Input or output signals must cross these levels
during testing.

Figure 4-1 shows output delay (A and B) and
input setup and hold times (C and D). Input
setup and hold times (C and D) are specified
minimums, defining the smallest acceptable
sampling window a synchronous input signal
must be stable for correct operation.

AC Characteristics 4

The outputs: A23-A1, ADS#, BHE#, BLE#, D/C#,
HLDA, LOCK#, MIlO#, RPLVAL#, SMAD#,
SMI# and W /R# change only at the beginning of
phase one (Figure 4-1). DlS-DO (write cycles),
RPLSET and SUSPA# change at the beginning of
phase two.

The inputs: BUSY#, D1S-DO (read cycles),
ERROR#, FLT#, HOLD, PEREQ, and READY#
are sampled at the beginning of phase one
(Figure 4-1). A20M#, FLUSH#, INTR, KEN#,
NA#, NMI, SMI# and SUSP# are sampled at the
beginning of phase two.

Table 4·6. Measurement Points for Switching Characteristics

SYMBOL Cx486SLC/e Cx486SLC/e·Y UNITS

VREFC 2 1.5 V

VREF 1.5 1.2 V

VIHC Vcc - 0.8 Vcc - 0.5 V

VllC 0.8 0.6 V

VIHD 3 2.3 V

VILD 0 0 V

PRELIMINARY' 4·5

ev.tx®
~dV!clng the Standards

CLK2:

OUTPUTS:

A23-Al, ADS#, BHE#,
BLE#, D/C, HLDA,

LOCK#, MII0#,
SMADS#, SMI#,

RPLVAL#, WIR#

OUTPUTS:

DIS-DO, RPLSET,
SUSPA#

INPUTS:

A20M#, FLUSH#,
INTR, KEN#,NA#,

NMI#, SMI# SUSP#

INPUTS:

BUSY#, DIS-DO,
ERROR#, FLT#, HOLD,

PEREQ, READY#

AC Characteristics

Tx

01

LEGEND: A - Maximum Output Delay Specification
B - Minimum Output Delay Specification
C - Minimum Input Setup Specification
D - Minimum Input Hold Specification

02

1714100

Figure 4·1. Drive Level and Measurement Points for Switching Characteristics

4·6 PRELIMINARY

AC Characteristics 4

~------------Tl------------~

CLK2

Figure 4·2. CLK2 Timing Measurement Points

PRELIMINARY 4·7

ev.tx®
~dV!CJng the Standards

AC Characteristics

Table 4-7. AC Characteristics for Cx:486SLC/e-Y20
Cx486SLCle-V20: vee = 3.0 to 3.6 V, Te = 0° to 8S0C

20 MHz

SYMBOL PARAMETER MIN MAX FIGURE NOTES

(ns) (ns)

Tl CLK2 Period 2S 4-2 Note 1

T2a CLK2 High Time 8 4-2 Note 2
T2b CLK2 High Time S 4-2 Note 2
T3a CLK2 Low Time 8 4-2 Note 2
T3b CLK2 Low Time 6 4-2 Note 2

T4 CLK2 Fall Time 8 4-2 Note 2

TS CLK2 Rise Time 8 4-2 Note 2

T6 A23-Al, SMI# Valid Delay 4 30 4-4,4-7 CL = SO pF
T7 A23-Al Float Delay 4 32 4-7 Note 3

T8 BHE#, BLE#, LOCK#Valid Delay 4 30 4-4,4-7 CL = SO pF

T9 BHE#, BLE#, LOCK# Float Delay 4 32 4-7 Note 3
TlO ADS#, D/C#, M/IO#, RPLVAL#, 4 26 4-4,4-7 CL = 50 pF

SMADS#, WIR#Valid Delay
Tll ADS#, D/C#, M/IO#, RPLVAL#, 4 30 4-7 Note 3

SMADS#, WIR# Float Delay
Tl2 DIS-DO Write Data, RPLSET, 4 38 4-4,4-S CL = 50 pF, Note 5

SUSPA#Valid Delay
Tl2a DIS-DO Write Data Hold Time 4 4-6
Tl3 DI5-DO Write Data, RPLSET, 4 27 4-7 Note 3, Note 6

SUSPA# Float Delay

Tl4 HLDAValid Delay 4 28 4-7 CL = 50 pF

TlS NA#, SUSP#, FLUSH#, KEN#, S 4-3

A20M# Setup Time
Tl6 NA#, SUSP#, FLUSH#, KEN#, 12 4-:?

A20M# Hold Time
Tl9 READY# Setup Time 12 4-3
T20 . READY# Hold Time 4 4-3
T2l DIS-DO Read Data Setup Time 9 4-3
T22 DIS-DO Read Data Hold Time 6 4-3
T23 H?LD Setup Time 17 4-3
T24 HOLD Hold Time S 4-3
T2S RESET Setup Time 12 4-8
T26 RESET Hold Time 4 4-8
T27 INTR, NMI, SMI# Setup Time 16 4-3 Note 4
T28 INTR, NMI, SMI# Hold Time 16 4-3 Note 4
T29 PEREQ,ERROR#,BUSY# 14 4-3 Note 4

Setup Time
T30 PEREQ, ERROR#, BUSY# S 4-3 Note 4

Hold Time

Note: Refer to AC Characteristics Notes on page 4-11.

4-8 PRELIMINARY

AC Characteristics

Table 4-8. AC Characteristics for Cx4865LCje-25, Cx4865LCje-V25
Cx486SLCle-2S: vee = 5.0 V ± 10%, Te = 0° to 100°C Cx486SLCle-V2S: Vee = 3.0 to 3.6 V, Te = 0° to 85° C

25 MHz

SYMBOL PARAMETER MIN MAX FIGURE NOTES

(ns) (ns)

Il CLK2 Period 20 4-2 Note 1
T2a CLK2 High Time 7 4-2 Note 2
T2b CLK2 High Time 4 4-2 Note 2
T3a CLK2 Low Time 7 4-2 Note 2
T3b CLK2 Low Time 5 4-2 Note 2
T4 CLK2 Fall Time 7 4-2 Note 2
TS CLK2 Rise Time 7 4-2 Note 2
T6 AD-AI, SMI# Valid Delay 4 21 4-4,4-7 CL = SOpF
T7 AD-AI Float belay 4 30 4-7 Note 3

T8 BHE#, BLE#, LOCK# Valid Delay 4 21 4-4,4-7 CL = SOpF

T9 BHE#, BLE#, LOCK# Float Delay 4 30 4-7 Note 3
IlO ADS#, D/C#, MJIO#, SMADS# 4 21 4-4,4-7 CL = SOpF

RPLVAL#, WIR#Valid Delay
III ADS#, D/C#, MJIO#, SMADS# 4 30 4-7 Note 3

RPL VAL#, W IR# Float Delay
Il2 DlS-DO Write Data, RPLSET, 7 27 4-4,4-5 CL = 50 pF, Note 5

SUSPA#Valid Delay
Il2a DIS-DO Write Data Hold Time 2 4-6
Il3 DlS-DO Write Data, RPLSET, 4 22 4-7 Note 3, Note 6

SUSPA# Float Delay
Il4 HLDA Valid Delay 4 22 4-7 CL = SOpF

IlS NA#, SUSP#, FLUSH#, KEN#, 5 4-3
A20M# Setup Time

Il6 NA#, SUSP#, FLUSH#, KEN#, 3 4-3
A20M# Hold Time

Il9 READY# Setup Time 9 4-3
T20 READY# Hold Time 4 4-3
T21 DIS-DO Read Data Setup Time 7 4-3
T22 DIS-DO Read Data Hold Time 5 4-3

T23 HOLD Setup Time 9 4-3

T24 HOLD Hold Time 3 4-3
T2S RESET Setup Time 8 4-8
T26 RESET Hold Time 3 4-8
T27 INTR, NMI, SMI# Setup Time 6 4-3 Note 4
T28 INTR, NMI, SMI# Hold Time 6 4-3 Note 4
T29 PEREQ, ERROR#, BUSY# 6 4-3 Note 4

Setup Time
T30 PEREQ, ERROR#, BUSY# 5 4-3 Note 4

Hold Time

Note: Refer to AC Characteristics Notes on page 4-11.

PRELIMINARY

4

4-9

Cv.tx®
~dV!Clng the Standards

AC Characteristics

Table 4.9. AC Characteristics for Cx486SLC/e.33
Cx486SLOe-33: vee ~ 5.0 V ± 5%, Te ~ 0° to lOO°C

33 MHz

SYMBOL PARAMETER MIN MAX FIGURE NOTES
(ns) (ns)

Tl CLK2 Period 15 4-2 Note 1
T2a CLK2 High Time 6.25 4-2 Note 2
T2b CLK2 High Time 4.5 4-2 Note 2
na CLK2 Low Time 6.25 4-2 Note 2
nb CLK2 Low Time 4.5 4-2 Note 2
T4 CLK2 Fall Time 4 4-2 Note 2
T5 CLK2 Rise Time 4 4-2 Note 2
T6 A23-AI, SMI#Valid Delay 4 15 4-4,4-7 CL- 50pF
T7 A23-AI Float Delay 4 20 4-7 Note 3
T8 BHE#, BLE#, LOCK#, Valid Delay 4 15 4-4,4-7 CL~ 50pF
T9 BHE#, BLE#, LOCK#, Float Delay 4 20 4-7 Note 3
TlO ADS#, D/C#, M1IO#, RPLYAL#, 4 15 4-4,4-7 CL- 50pF

SMADS#, WIR#Valid Delay

Tll ADS#, D/C#, M1IO#, RPLVAL#, 4 20 4-7 Note 3
SMADS#, WIR# Float Delay

Tl2 DIS-DO Write Data, RPLSET, 7 24 4-4,4-5 CL ~ 50 pF, Note 5
SUSPA# Valid Delay

Tl2a DIS-DO Write Data, Hold Time 2 4-6
Tl3 DIS-DO Write Data, RPLSET, 4 17 4-7 Note 3, Note 6

SUSPA# Float Delay

Tl4 HLDA Valid Delay 4 20 4-7 CL-50pF
Tl5 A20#, FLUSH#, KEN#, NA#, SUSP# 5 4-3

Setup Time

Tl6 A20#, FLUSH#, KEN#, NA#, SUSP# 3 4-3
Hold Time

Tl9 READY# Setup Time 7 4-3
T20 READY# Hold Time 4 4-3
T2l Dl5-DO, Read Data Setup Time 5 4-3
T22 Dl5-DO, Read Data Hold Time 3 4-3
T23 HOLD Setup Time 11 4-3
T24 HOLD Hold Time 2 4-3
T25 RESET Setup Time 5 4-8
T26 RESET Hold Time 2 4-8
T27 NMI, INTR, SMI# Setup Time 5 4-3 Note 4
T28 NMI, INTR, SMI# Hold Time 5 4-3 Note 4
T29 PEREQ, ERROR#, BUSY# 5 4-3 Note 4

Setup Time

no PEREQ, ERROR#, BUSY# 4 4-3 Note 4

Hold Time

Note: Refer to AC Characteristics Notes on page 4-11.

4·10 PRELIMINARY

AC Characteristics

AC Characteristics Notes [or Tables 4-7 through 4-9:
1. Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2. These parameters are not tested. They are guaranteed by design characterization.
3. Float condition occurs when maximum output current becomes less than III in magnitude. Float is not 100% tested.
4. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, to assure

recognition within a specific CLK2 period.
S. T12 minimum time is not 100% tested.
6. SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold acknowledge state.

CLK2

READY#

HOLD

015-00

PEREQ, ERROR#,
BUSY#

NA#, SUSP#, FLUSH#,
KEN#,A20M#

NMI, INTR, SMI#

Tx Tx

Figure 4·3. Input Signal Setup and Hold Timing

Tx

4

PRELIMINARY 4·11

4.12

AC Characteristics

CLK2

BHE#, BLE#,
LOCK#

ADS#, D/C#,
M1IO#, RPLVAL#,

SMADS#, WIR#

A23-AI,SMI#

RPLSET,SUSPA#

Ix Ix Ix

1714300

Figure 4.4. Output Signal Valid Delay Timing

Tl

CLK2

WIR#

DlS-DO 1708600

Figure 4·5. Data Write Cycle Valid Delay Timing

PRELIMINARY

CLK2

BHE#, BLE#,
LOCK#

ADS#, D/C#,
MIIO#, RPLVAL#,

SMADS#, W!R#

AD-AI

DIS-DO (Write Data),
RPLSET, SUSPA#

HLDA

AC Characteristics

CLK2

W/R#

D15-DO 1708700

Figure 4·6. Data Write Cycle Hold Timing

Th Ti orTl

Tl4_~~~ __ ~
Irr~7T~~~~ __ -r __ ~~~~~IMAX

1714400

Figure 4·7. Output Signal Float Delay and HLDA Valid Delay Timing

PRELIMINARY

4

4·13

On-tx®
~dV!Clng the stondards

AC Characteristics

-«-------- Reset ---?>t<::------,---- Initialization Sequence ----;..?

CLK2

RESET

1702700

Figure 4·8. RESn Setup and Hold Timing

4.14 PRELIMINARY

CYRIX Cx486SLC/e MICROPROCESSOR
High-Performance 486-Style CPU with Advanced Power

O • ® ManagementJorNotebookandBattery-PoweredSystems r- :.';''''.'~:J. .1

~IX Ii' r.;.
: ;i~:: \ Advancing the standord3 ! ~

_tMil.iiiMiiHiJli¢jIl.qJir'-u; . I

5. MECHANICAL SPECIFICATIONS

5.1 Pin Assignments

The pin assignments for the Cx486SLOe are shown in Figure 5-1. The signal names are shown in
Table 5-1 sorted by pin numbers and in Table 5-2 sorted by signal name.

~N~~~~~~~~oo~S~~~e~~~~~~~~
00»00000>00000»000«»<

O~OO~~~~~N~O~OO~~~~~M~O~OO~~
O~~~~~~~~~moooooorooooooooooooo~~~~

DO 1 75 AlO
Vss 2 0 74 A19

HLDA 3 73 A18
HOLD 4 72 A17

Vss 5 71 Vee
NA# 6 70 A16

READY# 7 69 Vee
Vee 8 68 Vss
Vee 9 67 Vss
Vee 10 66 A15
Vss 11 65 A14
Vss 12

TOP VIEW
64 AD

Vss 13 63 Vss
Vss 14 62 A12

CLK2 15 61 All
ADS# 16 60 AID
BLE# 17 59 A9

Al 18 58 A8
BHE# 19 57 Vee

SMADS# 20 56 A7
Vee 21 55 A6
Vss 22 54 A5

MlIO# 23 53 A4
D/C# 24 52 A3

WIR# 25 51 A2

N/C = No Connect 1713800

Figure 5·1. Pin Assignments

PRELIMINARY 5·'

ev.tx~
~dv!C/ng the standards

Pin Assignments

Table 5,.' 1. Signal Names Sorted by Pin Number

PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL
NO. NAME NO. NAME NO. NAME NO. NAME NO. NAME

1 DO 21 Vee 41 Vss 61 All 81 Dl5

2 Vss 22 Vss 42 Vee 62 A12- 82 Dl4

3 HLDA 23 M/IO# 43 SUSP# 63 Vss 83 Dl3

4 HOLD 24 D/C# 44 SUSPA# 64 A13 84 Vee

5 Vss 25 W/R# 45 RPLSET 65 A14 85 Vss

6 NA# 26 LOCK# 46 RPLVAL# 66 A15 86 Dl2

7 READY# 27 N/C 47 SMI# 67 Vss 87 Dl1

8 Vee 28 FLT# 48 Vee 68 Vss 88 DlO

9 Vee 29 KEN# 49 Vss 69 Vee 89 D9

10 Vee 30 FLUSH# 50 Vss 70 A16 90 D8

11 Vss 31 AlOM# 51 Al 71 Vee 91 Vee

12 Vss . 32 Vee 52 A3 72 A17 92 D7

13 Vss 33 RESET 53 A4 73 A18 93 D6

14 Vss 34 BUSY# 54 AS 74 A19 94 D5

15 CLK2 35 Vss 55 A6 75 AlO 95 D4

16 ADS# 36 ERROR# 56 A7 76 All 96 D3

17 BLE# 37 PEREQ 57 Vee 77 Vss 97 Vee

18 Al 38 NMI 58 A8 78 Vss 98 Vss

19 BHE# 39 Vee 59 A9 79 Al2 99 D2

20 SMADS# 40 INTR 60 AlO 80 Al3 100 Dl

5-2 PRELIMINARY

Pin Assignments 5

Table 5·2. Pin Numbers Sorted by Signal Name

SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN SIGNAL PIN
NAME NO. NAME NO. NAME NO. NAME NO. NAME NO.

Al 18 All 76 Dl1 87 RESET 33 Vee 97

A2 51 A22 79 Dl2 86 RPLSET 45 Vss 2

A3 52 AD 80 Dl3 83 RPLVAL# 46 Vss 5

A4 53 ADS# 16 Dl4 82 SMADS# 20 Vss 11

AS 54 A20M# 31 Dl5 81 SMI# 47 Vss 12

A6 55 BHE# 19 D/C# 24 SUSP# 43 Vss 13

A7 56 BLE# 17 ERROR# 36 SUSPA# 44 Vss 14

A8 58 BUSY# 34 FLT# 28 Vee 8 Vss 22

A9 59 CLK2 15 FLUSH# 30 Vee 9 Vss 35

AlO 60 DO 1 HOLD 4 Vee 10 Vss 41

All 61 Dl 100 HLDA 3 Vee 21 Vss 49

A12 62 D2 99 INTR 40 Vee 32 Vss 50

Al3 64 D3 96 KEN# 29 Vee 39 Vss 63

A14 65 D4 95 LOCK# 26 Vee 42 Vss 67

A15 66 D5 94 MIlO# 23 Vee 48 Vss 68

A16 70 D6 93 NA# 6 Vee 57 Vss 77

Al7 72 D7 92 N/C 27 Vee 69 Vss 78

A18 73 D8 90 NMI 38 Vee 71 Vss 85

A19 74 D9 89 PEREQ 37 Vee 84 Vss 98

AlO 75 DlO 88 READY# 7 Vee 91 W/R# 25

PRELIMINARY 5·3

ev.tx®
~dV!Clng the Standards

Package Dimensions

5.2 Package Dimensions

TOP SIDE VIEW
8 8
OCl
ci°
+1 +1
0"' ",Cl
t--:~
o~

* *

"'~ 0"" o~
ci°
+1 +1
0""
ro"" roN
00

T
0.140 TYP
(3.56)

----L Ull 1OOIIIillUillIf---l-L-+---'11 U ~;';~ ;;'O;~~~,,,
,.,>0 I,.,. -oIr-,owm -01 r-OO""W ~

5·4

(0.51) MIN (0.20) (0.635) 0.020 MIN
(0.51)

Note: All dimensions in inches (millimeters).
*Note: For metal BQFP package only: 0.735 ± 0.003 (18.64 ± 0.08)

Figure 5·2. 1 OO.Pin BQFP Package Dimensions

PRELIMINARY

1703001A

Thermal Characteristics 5

5.3 Thermal Characteristics

The Cx486SLGe is designed to operate when case temperature is between 00 - lOO°C and between
00 - 850 C for the Cx486SLGe-Y. The case temperature is measured on the top center of the package.
The maximum die temperature (TjMAX) and the maximum ambient temperature (Ta MA) can be calcu­
lated using the following equations.

where:

TjMAX = Tc + (P MAX X 8j)

Ta MAX = Tj - (P MAX X 8j)

Tj MAX = Maximum average junction temperature (OC)
Tc = Case temperature at top center of package (OC)
P MAX = Maximum device power dissipation (W)
8 = Junction-to-case thermal resistance (OOW)

JC

Ta MAX = Maximum ambient temperature (OC)
Tj = Average junction temperature caC)
8 = Junction-to-ambient thermal resistance caOW)

p

The junction-to-ambient and junction-to-case thermal resistances of the lOO-lead Bumpered Quad Flat
Pack (BQFP) package are listed in Table 5-3 for various airflows. Tables 5-4 and 5-5 list the maximum
ambient temperatures permitted for various clock frequencies and airflows.

Table 5·3. Package Thermal Resistance and Airflow

THERMAL RESISTANCE (OC/W)
AIRFLOW I OO-LEAD BQFP
(n/MIN)

8 8
J' JC

a 21 2

100 19 2

250 16 2

500 13 2

PRELIMINARY 5·5

CVlltx®
~dV!C/n9 the Standards

Thermal Characteristics

5.6

Table 5·4. Cx486SLC/e Maximum Ambient Temperature (TA)

for Various Airflows and Clock Frequencies

AIRFLOW

'eLK
(MHZ)

(It/min)

0 100 250 500

20 67°C 7pe 76°C 79°C

25 60°C 65°C 7loe 75°C

33 50°C 56°C 63°C 69°C

Note: Table refers to temperature specifications only and does not necessarily reflect part availability.

Table 5·5. Cx486SLC/e·V Maximum Ambient Temperature (TA)

for Various Airflows and Clock Frequencies

AIRFLOW

'CLK
(It/min)

(MHZ)
0 100 250 500

20 65°C 67°C 70°C 72°C

25 61°C 64°C 68°C 70°C

33 55°C 58°C 63°C 66°C

Note: Table refers to temperature specifications only and does not necessarily reflect part availability.

PRELIMINARY

CYRIX Cx486SLC/e" MICROPROCESSOR
High-Peiformance 486-Style CPU with Advanced Power
Management for Notebook and Battery-Powered Systems Cv.tx®

~dv!clnQ the Standords

_@id;i!.]!'"l';,,!!,!.!e,

6. INSTRUCTION SET 6.1 General Instruction
Format

This section summarizes the Cx486SLOe instruc­
tion set and provides detailed information on the
instruction encodings. All instructions are listed
in the Instruction Set Summary Table
(Table 6-16), which provides information on the
instruction encoding, which flags are effected, and
the instruction clock counts for each instruction.
The clock count values are based on the assump­
tions described in section 6.3.

All of the Cx486SLOe machine instructions
follow the general instruction format shown in
Figure 6-1. These instructions vary in length and
can start at any byte address. An instruction
consists of one or more bytes that can include:
prefix byte(s), at least one opcode byte(s), mod
rim byte, s-i-b byte, address displacement byte(s)
and immediate data byte(s). An instruction can
be as short as one byte and as long as 15 bytes. If
there are more than 15 bytes in the instruction a
general protection fault (error code of 0) is
generated.

I p p p p p p p P IT T T T T T TTl mod R R R rim I ss index base I 32 116 lSi none I 32 116 I 81 none
7 07 0765320765320

~~~~~'--y--------J 
optional prefix byte(s) op*code mod rim s-i-b address 

(one or two bytes) byte byte dis~lacement 

P = prefix bit 
T = apcade bit 
R = apcade bit or reg bit 

'~----v~----) (4'or';o~~les, 
register and address 

mode spedfier 

Figure 6·1. General Instruction Format 

PRELIMINARY 

immediate 
data 

(4,2,1 byles, 
or none) 

1703101 

6·1 



On-tx® 
~dV!Clng the standards 

Instruction Fields 

6.2 Instruction Fields 

The general instruction format shows the larger 
fields that make up an instruction. Certain 
instructions have smaller encoding fields that 
vary according to the class of operation. These 

fields define information such as the direction 
of the operation, the size of the displacements, 
register encoding and sign extension. All the 
fields are described in Table 6-1 and the subse­
quent paragraphs provide greater detail. 

Tabl.e 6·1. Instruction Fields 

FIELD NAME DESCRIPTION . NUMBER OF BITS 

Prefix Specifies segment register override, address and operand size, S per byte 

repeat elements in string instruction, LOCK# assertion. 

Opcode Identifies instruction operation. lor 2 bytes 

w Specifies if data is byte or full size (full size is either 16 or 32 bits). 1 

d Specifies direction of data operation: 1 

s Specifies if an immediate data field must be sign-extended. 1 

reg General register specifier. 3 

mod rIm Address mode specifier. 2 for mod; 3 for rIm 

ss Scale factor for scaled index address mode. 2 

index General register to be used as index register. 3 

base General register to be used as base register. 2 

sreg2 Segment register for CS, SS DS and ES. 2 

sreg3 Segment register for CS, SS, DS ES FS and GS. 3 

eee Control, debug and test register specifier. 3 

Address displacement Address displacement operand. 1,2 or 4 bytes 

Immediate data Immediate data operand. 1,2 or4 bytes 

PRELIMINARY 



Instruction Fields 8 

6.2.1 Prefixes 

Prefix bytes can be placed in front of any 
instruction. The prefix modifies the operation 
of the next instruction only. When more than 
one prefix is used, the order is not important. 
There are five type of prefixes as follows: 

4. Repeat is used with a string instruction 
which causes the instruction to be re­
peated for each element of the string. 

5. Lock is used to assert the hardware 
LOCK# signal during execution of the 
instruction. 

1. Segment Override explicitly specifies 
which segment register an instruction will 
use. 

Table 6-2 lists the encodings for each of the 
available prefix bytes. The operand size and 
address size prefixes allow the individual 
overriding of the default value for operand size 
and effective address size. The presence of 
these prefixes select the opposite (non-default) 
operand size and/or effective address size as the 
case maybe. 

2. Address Size switches between 16- and 
32-bit addressing. Selects the inverse of 
the default. 

3. Operand Size switches between 16- and 
32-bit addressing. Selects the inverse of 
the default. 

Table 6·2. Instruction Prefix Summary 

PREFIX ENCODING DESCRIPTION 

ES: 26h Overide segment default, use ES for memory operand 

CS: 2Eh Overide segment default, use CS for memory operand 

55: 36h Overide segment default, use 55 for memory operand 

DS: 3Eh Overide segment.default, use DS for memory operand 

FS: 64h Overide segment default, use FS for memory operand 

GS: 65h Overide segment default, use GS for memory operand 

Operand Size 66h Make operand size attribute the inverse of the default 

i Address Size 67h Make address size attribute the inverse of the default 

LOCK FOh Assert LOCK# hardware signal. 

REPNE F2h Repeat the following string instruction. 

REPIREPE F3h Repeat the follOwing string instruction. 

PRELIMINARY 



Instruction Fields 

6.2.2 Opcode Field 

The opcode field is either one or two bytes in 
length and specifies the operation to be per­
formed by the instruction. Some operations 
have more than one opcode, each specifying a 
different form of the operation. Some opcodes 
name instruction groups. For example, opcode 
Ox80 names a group of operations that have an 

6.2.3 w Field 

immediate operand, and a register or memory 
operand. The group opcod:es use an opcode . 
extension field of 3 bits in the following byte, 
called the MOD RIM byte, to resolve the 
operation type: Opcodes for the entire 
Cx486SLCle instruction set are listed in the 
Instruction Set Summary Table. The opcodes 
are given in hex values unless shown within 
brackets ([ D. Values shown in brackets are 
binary values. 

The I-bit w field indicates the operand size during 16- and 32- bit data operations. 

Table 6-3. w Field Encoding 

w FIELD OPERAND SIZE OPERAND SIZE 
16·BIT DATA OPERATIONS 32.BIT DATA OPERATIONS 

0 8 Bits 8 Bits 

1 16 Bits 32 Bits 

6.2.4 d Field 

The d field determines which operand is taken as the source operand and which operand is taken 
as the destination. 

Table 6-4. d Field Encoding 

d FIELD DIRECTION OF OPERATION SOURCE OPERAND DESTINATION OPERAND 

0 Register --> RegisterlMemory reg mod rim or 

RegisterlMemory --> Register mod ss-index-base 

1 mod rim or reg 

mod ss-index-base 

6-4 PRELIMINARY 



Instruction Fields 6 

6.2.5 reg Field 

. The reg field determines which general registers are to be used. The selected register is dependent 
on whether 16- or 32- bit operation is current and the status of the "w" bit. 

Table 6·5. reg Field Encoding 

reg , 6-BIT 32-BIT , 6-BIT , 6-BIT 32-BIT 32-BIT 
OPERATION OPERATION OPERATION OPERATION OPERATION OPERATION 
w Field Not w Field Not w=O w=' w=O w=1 

Present Present 

000 AX EAX AL AX AL EAX 

001 CX ECX CL CX CL ECX 
010 DX EDX DL DX DL EDX 
011 BX EBX BL BX BL EBX 
100 SP ESP AH SP AH ESP 
101 BP EBP CH BP CH EBP 
110 SI ES1 DH SI DH ES1 
111 DI EDI BH DI BH EDI 

PRELIMINARY 6·5 



ev.tx® 
~dV!Clng the Standards 

Instruction Fields 

6.2.6 mod and rim Fields 

The mod and rim sub-fields, within the mod 
rim byte, select the type of memory addressing 
to be used. Some instructions use a fixed 
addressing mode (e.g., PUSH or POP) and 

therefore, these fields are not present. 
Table 6-6 lists the addressing method when 
16-bit addressing is used and a mod rim byte is 
prese~t. Some mod rim field encodings are 
dependent on the w field and are shown in 
Table 6-6A. 

Table 6·6. mod rIm Field Encoding 

16·Blr ADDRESS 32·Blr ADDRESS MODE 
mod rim MODE with mod rim Byte and 

with mod rim Byte No s-i·b Byte Present 

00000 DS:[BX+SIj DS:[EAX] 

00001 DS:[BX+DI] DS:[ECX] 

00010 55: [BP+SIj DS:[EDX] 

00011 55: [BP+DI] DS:[EBX] 

00100 DS:[SIj s-i-b is present (See 6.2.7) 

00101 DS:[DI] DS:[d32] 

00110 DS:[d16] DS:[ESIj 

00111 DS:[BX] DS:[EDI] 

01000 DS: [BX+SI+d8] DS:[EAX+d8] 

01001 DS: [BX+DI+d8] DS:[ECX+d8] 

01010 55: [BP+SI+d8] DS:[EDX+d8] 

01011 55: [BP+DI+d8] DS:[EBX+d8] 

01100 DS:[SI+d8] s-i-b is present (See 6.2.7) 

01101 DS:[DI+d8] 55: [EBP+d8] 

01110 55: [BP+d8] DS:[ESI+d8] 

01111 DS:[BX+d8] DS:[EDI+d8] 

10000 DS: [BX+SI+d16] DS:[EAX+d32] 

10001 DS:[BX+DI+d16] DS: [ECX+d32] 

10010 55: [BP+SI+d16] DS:[EDX+d32] 

10011 55: [BP+DI+d16] DS: [EBX+d32] 

10 100 DS:[SI+d16] s-i-b is present (See 6.2.7) 

10 101 DS:[DI+d16] 55: [EBP+d32] 

10110 55: [BP+d16] DS:[ESI+d32] 

10111 DS:[BX+d16] DS:[EDI+d32] 

11 000-11111 See Table 6-6A See Table 6-6A 

6·6 PRELIMINARY 



Instruction Fields & 

Table 6·6A. mod rim Field Encoding Dependent on w Field 

mod rIm 16.BIT 16·BIT 32.BIT 32·BII 
OPERATION OPERATION OPERATION OPERATION 

w=O w=1 w=O w=1 

11 000 AL AX AL EAX 

11 001 CL ex CL ECX 
11010 DL DX DL EDX 
11 Oll' BL BX BL EBX 
11100 AH SP AH ESP 
11101 CH BP CH EBP 
11110 DH 51 DH ES1 
11111 BH D! BH ED! 

PRELIMINARY 6·7 



ev.tx® 
~d~CIng the Standards 

Instruction Fields 

6.2.7 mod and base Fields 

In Table 6-6A, the note "s-i-b present" for 
certain entries forces the use of the mod and 
base field as listed in Table 6-7. 

Table 6·7. mod base Field Encoding 

mod base 32·BIT ADDRESS MODE 
with mod rIm and 
s·i·b Bytes Present 

00000 DS:[EAX+(scaled index)] 

00001 DS: [ECX+(scaled index)] 

00010 DS:[EDX+(scaled index)] 

00011 DS: [EBX+(scaled index)] 

00100 SS:[ESP+(scaled index)] 

00101 DS:[d32+(scaled index)] . 

00110 DS:[ESI+(scaled index)] 

00111 DS: [EDI+(scaled indeX)] 

01000 DS: [EAX+(scaled index)+dB] 

01001 DS: [ECX+(scaled index)+dB] 

01010 DS: [EDX+(scaled indexhd8] 

01011 DS: [EBX+(scaled indexhdB] 

01100 SS: [ESP+(scaled index)+dB] 

01101 SS:[EBP+(scaled indexhd8] 

01110 DS: [ESI+(scaled index)+dB] 

01111 DS: [EDI+(scaled indexhdB] 

10000 DS: [EAX+(scaled index)+d32] 

10001 DS: [ECX+(scaled index)+d32] 

10010 DS: [EDX+(scaled indexhd32] 

10011 DS: [EBX+(scaled index)+d32] 

10100 SS:[ESP+(scaled indexhd32] 

10101 SS: [EBP+(scaled indexhd32] 

10110 DS:[ESI+(scaled indexhd32] 

10 III DS: [EDI+(scaled index)+d32] 

6.2.8 ssField 

The ss field (Table 6-8) specifies the scale factor 
used in the offset mechanism for address 
calculation. The scale factor multiplies the 
index value to provide one of the components 
used to calculate the offset address. 

Table 6·8. ss Field Encoding 

ss FIELD SCALE FACTOR 

00 xl 

01 x2 

10 x4 

11 x8 

6.2.9 index Field 

The index field (Table 6-9) specifies the index 
register used by the offset mechanism for offset 
address calculation. When no index register is 
used (index field = 100), the ss value must be 
00 or the effective address is undefined. 

Table 6·9. index Field Encoding 

index FIELD INDEX REGISTER 

000 EAX 

001 ECX 

010 EDX 

011 EBX 

100 none 

101 EBP 

110 ESI 

111 EDI ) 

6·8 PRELIMINARY 



Instruction Fields 6 

6.2.1 0 sreg2 Field 6.2.11 sreg3 Field 

The sreg2 field (Table 6-10) is a 2-bit field that 
allows one of the four 286-type segment regis­
ters to be specified. 

The sreg3 field (Table 6-11) is 3-bit field that is 
similar to the sreg2 field, but allows use of the 
FS and GS segment registers. 

Table 6·1 O. sreg2 Field Encoding Table 6· 1 1. sreg3 Field Encoding 

sreg2 FIELD SEGMENT REGISTER SELECTED sreg3 FIELD SEGMENT REGISTER SELECTED 

00 E5 000 E5 

01 C5 001 C5 

10 S5 010 5S 

11 D5 011 D5 

100 F5 

101 G5 

110 undefined 

111 undefined 

6.2.12 eee Field 

The eee field is used to select the control, debug and test registers as indicated in Table 6-12. The 
values shown in Table 6-12 are the only valid encodings for the eee bits. 

Table 6·12. eee Field Encoding 

eee FIELD REGISTER TYPE BASE REGISTER 

000 Control Register CRO 

010 Control Register CRl 

011 Control Register CR3 

000 Debug Register DRO 

001 Debug Register DRI 

010 Debug Register DRl 

011 Debug Register DR3 

110 Debug Register DR6 

111 Debug Register DR7 

011 Test Register TR3 

100 Test Register TR4 

101 Test Register TRS 

110 Test Register TR6 

111 Test Register TR7 

PRELIMINARY 6·9 



Cv.tx® 
~dV!Clng the Standards 

Flags 

6.3 Flags 

The Instruction Set Summary Table lists nine 
flags that are affected by the execution of 
instructions. The conventions shown in 
Table 6-13 are used to identify the different 
flags. Table 6-14 lists the conventions used to 
indicate what action the instruction has on the 
particular flag. 

Table 6·13 •. Flag Abbreviations 

ABBREVIATION NAME OF FLAG 

OF Overflow Flag 

DF Direction Flag 

IF Interrupt Enable Flag 

TF Trap Flag 

SF Sign Flag 

ZF Zero Flag 

AF Auxiliary Flag 

PF Parity Flag 

CF Carry Flag 

Table 6·' 4. Action of Instruction on Flag 

INSTRUCTION 
TABLE ACTION 

SYMBOL 

x Flag is modified by the instruction. 

- Flag is not changed by the instruction. 

0 Flag is reset to "0". 

1 Flag is set to "1". 

6.4 

6.4.1 

Clock Counts 

Assumptions 

The following assumptions have been made in 
presenting the clock count values for the 
individual instructions: 

1. The instruction has been prefetched, 
decoded and is ready for execution. 

2. Bus cycles do not require wait states. 
3. There are no local bus HOLD requests 

delaying processor access to the bus. 
4. No exceptions are detected during in­

struction execution. 
5. If an effective address is calculated, it does 

not use two general register components. 
One register, scaling and displacement 
can be used within theclock count 
shown. However, if the effective address 
calculation uses two general register 
components, add 1 clock to the clock 
count shown. 

6. All clock counts assume aligned 16-bit 
memory/IO operands for cache miss 
counts. 

7. If instructions access a misaligned 16-bit 
operand or a 32-bit operand on even 
address, add 2 clocks for read or write 
and add 4 clock counts for read and 
write. 

8. If instructions access a 32-bit operand on 
odd addresses, add 4 clocks for read or 
write and add 8 clocks for read and write. 

6·10 PRELIMINARY 



Clock Counts 8 

6.4.2· Abbreviations 

The clock counts listed in the Instruction Set Summary Table are grouped by operating mode 
and whether there is a registerlcache hit or a cache miss. In some cases,·more than one clock 
count is shown in a column for a given instruction, or a variable is used in the clock count. The 
abbreviations used for these conditions are listed in Table 6-15. 

Table 6· 'I 5. Clock Count Abbreviations 

CLOCK 
COUNT EXPLANATION 

SYMBOL 
/ Register operand/memory operand. 
n Number of times operation is repeated. 
L Level of the stack frame. 

1 Conditional jump taken 1 Conditional jump not taken. 
(e.g. "411" = 4 clocks if jump taken, 1 clock if jump not taken) 

\ CPL S; 10PL \ CPL> 10PL 
(where CPL = Current Privilege Level, 10PL = I/O Privilege Level) 

PRELIMINARY 



o • .. 
~ 

i! c 
! 
E 
== 

Tallie 6·16. Instruction Set Summary 
REAL PROTECTED 

INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK 
COUNT COUNT 

OF DF IF IF SF ZF AF PF CF Reg/ I Cache Reg/ 1 Cache 
Cache HIt Miss Cache HIt MIss 

~ASC::IlAdjustALafterAdd 137 - - - - - - x - x 4 4 

1 AAD ASCII Adjust AX before Divide 1 D5 OA - - - - x x - x - 1 4 4 

1 AAM ASCIlA;jjustAX after Multiply 1 D4 OA - - - - x x - x - 1 16 16 

1 AAS ASCII Adjust AL after Subt;act 1 3F - - - - - - x - x 4 - ---I 4 

ADC Add with Carry 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to RegisterIMemory 
Immediate to Accumulator 

ADD Integer Add 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to RegisterIMemory 
Immediate to Accumulator 

AND Boolean AND 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to RegisterIMemory 
Immediate to Accumulator 

ARPL Adjust Requested Privilege Level 
From RegisterIMemory 

x - - - x x x x x 
1 [OOdw] [11 reg rIm] 
1 [OOOW] [mod reg rIm] 
1 [OOIw] [mod reg rIm] 
8 [OOsw] [mod 010 r/m]# 
1 [OIOw] # 

x - - - x x x x x 
o [OOdw] [11 reg rIm] 
o [OOOw] [mod reg rIm] 
o [OOIw] [mod reg rIm] 
8 [OOsw] [mod 000 r/m]# 
o [OlOw] # 

0 - - - x x - x 0 
2 [OOdw] [11 reg rIm] 
2 [OOOw] [mod reg rIm] 
2 [OOIw] [mod reg rIm] 
8 [OOsw] [mod 100 r/m]# 
t[OlOw] # 

x - - -
63 [mod reg rIm] 

# .. immediate data ++ = 16-bit displacement x = modified 
+ • a-bit displacement +++ .. 32-bit displacement (full) - = unchanged 

1 1 
3 5 3 
3 5 3 

113 5 113 
1 1 

1 1 
3 5 3 
3 5 3 

1/3 5 113 
I 1 

1 1 
3 5 3 
3 5 3 

113 5 113 
1 1 

5 
5 
5 

5 
5 
5 

5 
5 
5 

NOTES 

Real 1 Protected 
Mode Mode 

b h 

b h 

b h 

o 
~ 
~R· ~ 
!} 
~ 

@ 



'III 
;I .. 
iii 
I 
== 

01 • .. 
W 

INSTRUCTION 

BOUND Check Array Boundaries 
If Out of Range (1m 5) 
If In Range 

'BSF Scan Bit Forward 
RegisteriMemory, Register 

BSR Scan Bit Reverse 
Registeri1v1emory, Register 

OPCODE 

62 Imod reg rim] 

OF BC Imod reg rim] 

OF BC Imod reg rim] 

FLAGS 

OF DF IF TF SF ZF AF PF CF 

- x - - -

-----x---

REAL PROTECTED 
MODE CLOCK MODE CLOCK 

COUNT COUNT 

Regl ,I Cache 
Cache Hit Mi •• 

Regl I Cache 
Cache Hit Mi •• 

I BSWAP Byte Swap -IOF ell reg] 4 4 

BT Test Bit 
Register/Memory, Immediate 
Register!iv1emory, Register 

BTC Test Bit and Complement 
RegisteriMemory, Immediate 
Register/Memory, Register 

BTR Test Bit and Reset 
Register/Memory, Immediate 
RegisteriMemory, Register 

BTS Test Bit and Set 
Register/Memory 
Register (short [arm) 

BA Imod 100 rlm]# 
A3 Imod reg rim] 

BA Imod 1 10 r/m]# 
B3 Imod reg rim] 

- - - - - - - - x 

--------x 

- - - - - - - - x 

--------x 

# = immediate data ++ = 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

NOTES 

Real I Protected 
Mode Mode 

en 



o • .. 
II 

i! c 
I 

I 
= 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF TF SF ZF AF PF CF Reg/ I Cache Reg/ I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

CALL Subroutine Call - - - - - b h,j,k,r 
I Direct Within Segment E8 H+ 7 7 

RegisterlMemory Indirect Within Segment FF [mad OlO r/m[ 8/9 lO 8/9 lO 
Direct Intersegment 9A [unsigned full affset, 12 30 

Call Gate to Same Privilege selector] 41 49 
I Call Gate ta Different Privilege Na P 83 97 

Call Gate ta Different Privilege x P's 81+4x 95+4x 
16-bil Task ta 16-bit TSS 262 263 
16-bit Task to 32-bit TSS 293 317 
16-bit Task ta V86 Task 179 206 
32-bit Task ta 16-bit TSS 238 258 
32-bit Task to 32-bit TSS 296 340 
32-bit Task ta V86 Task 182 229 

Indirect Intersegment FF [mad 011 r/m[ 14 17 14 34 
Call Gate to Same Privilege 43 51 

Call Gate to Different Privilege Na P 85 99 
Call Gate to Different Privilege Level x piS 86+4x 100+4x 

16-bit Task to 16-bit TSS 267 268 
16-bit Task to 32-bit TSS 298 322 
16-bit Task ta V86 Task 181 211 
32-bit Task ta 16-bit TSS 243 263 
32-bit Task ta 32-bit TSS 301 345 
32-bil Task ta V86 Task 184 230 

I CBW Convert Byte to Word 198 J - - - - - - - - - 3 --I -3-]--J~---] 

CDQ Convert Doubleword to Quadword 99 

I CLC Clear Carry Flag -I-;;S- I - - - - - - - - 0 I -I 

I CLD Clear Direction Flag I FC - 0 - - - - - - - -I 

I CLI Clear Interrupt Flag I FA - - 0 - - - - - - 7 7 m 

I CLTS Clear Task Switched Flag J0F06 - - - - - - - - - ] -I 'c 

P = Parameters # = immediate data ++ = 16-bit displacement x = modified 
+ = 8-bit displacement ++-t = 32-bit displacement (full) - .. unchanged 

o 
~ j,-iR ~ ~ S"r 
~ 
i} 
@. 

'" 



i! .. 
i z 
III 

== 

0-• .. 
UI 

REAL 
INSTRUCTION OPCODE FLAGS MODE CLOCK 

COUNT 
OF DF IF TF SF %F AF PF CF Reg/ ,I Cache 

Cache Hit __ ~ 
---

1 CMC Complement the Carry Flag 1 F5 .---. -- 1-·-· -.-. - - - - x 

CMP Compare Integers x . x x x x x 
Register to Register 3 [10dw] [11 reg r/ml 1 
Register to Memory 3 [lOlw] [mod reg rim] 3 5 

Memory to Register 3[lOOw] [mod reg rim] 3 5 
Immediate to RegisterlMemory 8 [OOsw] [mod 111 r/m]# 1/3 5 

Immediate to Accumulator 3 [110w] # 1 
- --- --- - -

CMPS Compare String 

CMPXCHG Compare and Exchange 
Register 1, Register 2 
Memory, Register 

A [Ol1w] 

OF B [OOOw] [11 reg2 regll 
OF B [OOOw] [mod reg rim] 

x---xxxxx 

x---xxxxx 

1 CWD Convert Word to Doubleword - 1 99 - - . . . . - . -

CWDE Convert Word to Doubleword 
Extended 

DAA Decimal Adjust AL aJter Add 

DAS Decimal Adjust AL aJter Subtract 

DEC Decrement by 1 
RegisterlMemory 
Register (short form) 

DIV Unsigned Divide 
Accumulator by RegisterlMemory 

Divisor: Byte 
Word 
Doubleword 

98 

27 

2F 

F [111w] [mod 001 rim] 
4 [1 reg] 

F [Ollw] [mod 110 rim] 

-

----xxxxx 

----xxxxx 

x---xxxx-

. 

. -

# "" immediate data ++ '" 16-bit displacement X '" modified 
+ = ·S-bit displacement +++ '" 32-bit displacement (full) - '" unchanged 

14/15 17 
- 22123 24 

38/39 40 
. 

PROTECTED 
MODE CLOCK NOTES 

COUNT 

Reg/ I Cache Real J Protected 
Cache Hit M~. Mode Mode 

.- --

b h 
1 
3 5 
3 5 

1/3 5 
1 

b,e e,h 

14/15 17 
22123 24 
38/39 40 

- -

at 



0\ • .. 
0\ 

Ii c 
! 

= 
== 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF TF SF %F AF PF CF Reg/ . '- Cache Reg/ I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

ENTER Enter New Stack Frame C8 ++ [8-bit levell - - - b h 
level = 0 7 7 

level = 1 10 10 10 10 
level (l) > 1 6+4*L 6+4*l 6+4*l 6+4*l 

IHLTHalt 1-;;:;- 1 - - - - - - - - - 1- 3 ~ ~ -31-- 1--1--1 -] 

IDlY Integer (Signed) Divide 
Accumulator by RegisterlMemory 

Divisor: Byte 
Word 
Doubleword 

IMUL Integer (Signed) Multiply 
Accumulator by RegisterlMemory 

Multiplier: Byte 
Word 
Doubleword 

Register with RegisterlMemory 
Multiplier: Byte 

Word 
Doubleword 

RegistcrlMemory with Immediate to Register2 
Multiplier: Byte 

Word 
Doubleword 

IN Input from liD Port 
Fixed Port 
Variable Port 

INC Increment by 1 
RegisterlMemory 
Register (short form) 

F [all wi [mod III rlml 

F [011 wi [mod 101 rim! 

OF AF [mod reg rim! 

6 [JOsl! [mod reg r/mJ # 

E [0 lOw! [port number! 
E [llOwJ 

-

x 

--

- - - -

- x 

-- -

x---xxxx-
F [111w! [mod 000 rim! 
4 [0 reg! 

# '" immediate data ++ = 16-bit displacement 
+ = 8-bit displacement +++ = 32-bit displacement (full) 

x '" modified 
- = unchanged 

b,e e,h 

19120 22 19120 22 
27128 29 27128 29 
43/44 47 43/44 47 

b h 

3/5 7 3/5 7 
3/5 7 3/5 7 
7/9 13 7/9 13 

3/5 7 3/5 7 
3/5 7 3/5 7 
7/9 13 7/9 13 

3/5 7 3/5 7 
3/5 7 3/5 7 
7/9 13 7/9 13 

-- ---- -

[) 
~ 
!"R~ 
~ 
~ 

@) 



i 
Ii 
e 

o • .. ..,. 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF IF SF ZF AI PF CF Reg/ I Cache Reg/ I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

1 INS Input Stringfrom 110 Port 1 6 [11OwI- - - - - - - - - - 20 20 6/19 6120 1 -I, h, m -I 

INT Software Interrupt - x 0 - - - - - - b,e g,j,k,r 
INTi CD [i] 14 16 
Protected Mode: 
Interrupt or Trap to Same Privilege ·57 58 
Interrupt or Trap to Different Privilege 91 92 
16-bit Task to 16-bit TSS by Task Gate 265 266 
16-bit Task to 32-bit TSS by Task Gate 296 320 
16-bit Task to V86 by Task Gate 177 205 
16-bit Task to 16-bit TSS by Task Gate 241 261 
32-bit Task to 32-bit TSS by Task Gate 299 343 
32-bit Task to V86 by Task Gate 180 232 
V86 to 16-bit TSS by Task Gate 241 261 
86 to 32-bit TSS by Task Gate 299 343 
86 to Privilege 0 by Trap Gate!Int Gate 106 114 
INT3 CC 14 16 
Protected Mode: 
Interrupt or Trap to Same Privilege 57 58 
Interrupt or Trap to Different Privilege 91 92 
16-bit Task to 16-bit TSS by Task Gate 265 266 
16-bit Task to 32-bit TSS by Task Gate 296 320 
16-bit Task to V86 by Task Gate 177 205 
32-bit Task to 16-bit TSS by Task Gate 241 261 
32-bit Task to 32-bit TSS by Task Gate 299 343 
32-bit Task to V86 by Task Gate 180 232 
V86 to 16-bit TSS by Task Gate 241 261 
V86 to 32-bit TSS by Task Gaie 299 343 
V86 to Privilege 0 by Trap Gate!Int Gate 93 114 

Continued on the next page ... 

# = immediate data ++ .. 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

CD 



0-• .. .. 

I c 
! 

= 
= 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK 

COUNT COUNT 
OF DF IF TF 5F ZF AF PF CF Reg/ I Cache Reg/ I Cache 

Cache Hit Miss Cache Hit Miss. 

INT Software Interrupt (Continued) - - x 0 - - - - -
INTO CE 
IfOF==O 1 1 1 1 
IfOF==l (INT 4) 15 17 
Protected Mode: 
Interrupt or Trap to Same Privilege 57 58 
Interrupt or Trap to Different Privilege 91 92 
16-bit Task to 16-bit TSS by Task Gate 265 266 
16-bit Task to 32-bit TSS by Task Gate 296 320 
16-bit Task to V86 by Task Gate 177 205 
32-bit Task to 16-bit TSS by Task Gate 241 261 
32-bit Task to 32-bit TSS by Task Gate 299 343 
32-bit Task to V86 by Task Gate 180 232 
V86 to 16-bit TSS by Task Gate 241 261 
V86 to 32-bit TSS by Task Gate 299 343 
V86 to Privilege 0 by Trap GatelInt Gate 106 114 

I INVD Invalidate Cache I OF 08 - - - - - - - - - 4 4 --- I 

IlNVLPG Invalidate rIB Entry I OF 01 [mod 111 r/m[ --T 4 4 

IRET Interrupt Return CF x x x x x x x x x 
Real Mode 14 14 
Protected Mode: 

Within Task to Same Privilege 35 37 
Within Task tb Different Privilege 74 78 

16-bit Task to 16-bit Task 259 260 
16-bit Task to 32-bit TSS 290 314 
16-bit Task to V86 Task 173 203 
32-bit Task to 16-bit TSS 23:; 255 
32-bit Task to 32-bit TSS 295 339 
32-bit Task to V86 Task 176 226 

# '" immediate data ++ = 16-bir displacement x '" modified 
+ .. a-bit displacement +++ =' 32-bit displacement (full) - = unchanged 

NOTES 

Real_I Protected 
Mode Mode 

b.e g.j,k,r 

g,hj,k,r 

, 

o 
~ 
j-lsc· 
It 
~ 

€O 



I c 
:I 

I 
= 

OIl • .. 
G 

INSTRUCTION 

JB~NAElJC Jump on BelowlNo! Above Dr Equall 
Carry 
8-bit Displacement 
Full Displacement 

JBElJNA Jump on Below Dr EqualINO! Above 
8-bit Displacement 
Full Disolacement 

OPCODE 

72 + 
OF 82 +++ 

76 + 
OF 86 +++ 

FLAGS 

OF DF IF TF SF ZF AF PF CF 

- - - - - - - -

REAL PROTECTED 
MODE CLOCK MODE CLOCK 

COUNT COUNT 

Reg/ I Cache 
Cache Hit Miss 

Reg/ I Cache 
Cache Hit Miss 

411 611 
411 611 

1 JCXZJump on CXZero IE3- -+ " - - - - - - - - 713 713 

JElJZ Jump on EquallZero 
8-bit Displacement 
Full Displacement 

74 + 
OF 84 +++ 

NOTES 

Real I Protected 
Mode Mode 

r 

1 JECXZ Jump on ECXZero 1 E3 + - - - - - - - - - 713 713 I--r-I 

J~GEJump on LessINot Greater Dr Equal 
8-bit Displacement 
Full Displacement 

JLE(JNG Jump on)..e,s Dr EqualINot Greater 
8-bit Displacement 
Full Displacement 

7C + 
OF 8C +++ 

7E + 
OF 8E +++ 

# = immediate data ++ = 16-hit displacement x = ~odified 
+ ;; 8-bit displacement +++ = 32-bit displacement (full) - ~ uncha!1ged 

at 



0-• ~ o 

iii c 
I 

i 
= 

INSTRUCTION 

jMP Unconditional Jump 
Short 
Direct within Segment 
RegisterlMemory Indirect Within Segment 
Direct Intersegment 

Call Gate Same Privilege Level 
16-bit Task to 16-bit TSS 
16-bit Task to 32-bit TSS 
16-bit Task to V86 Task 
32-bit Task to 16-bit TSS 
32-bit Task to 32-bit TSS 
32-bit Task to V86 Task 

Indirect Intersegment 
Call Gate Same Privilege Level 
16-bit Task to 16-bit TSS 
16-bit Task to 32-bit TSS 
16-bit Task to V86 Task 
32-bit Task to 16-bitTSS 
32-bit Task to 32-bit TSS 
32-bit Task to V86 Task 

jNBaAE!JNC Jump on Not Below/Above or 
Equal/Not Carry 
8-bit Displacement 
Full Displacement 

JNBE!JAJump on Not Below or Equal/Above 
8-bit Displacement 
Full Displacement 

jNE!JNZJump on Not Equal/Not Zero 
8-bit Displacement 
Full Displacement 

JN~GEJump on Not Less/Greater or Equal 
8-bit Displacement 
Full Displacement 

REAL 
OPCODE FLAGS MODE CLOCK 

COUNT 
OF DF IF IF SF %F AI PF CF Rag/ ,I Cache 

Cache Hit Miss 

- - - - - - - -
EB + 4 
E9 +++ 4 
FF [mod 100 r/m[ 6/8 10 
EA [full offset, selectorl 9 

FF [mod 101 r/ml 11 14 

- - - - - - - - -
411 

73 + 411 
OF 83 +++ 

77 + 

OF 87 +++ 

75 + 
OF 85 +++ 

7D + 
OF 8D+++ 

# = immediate data ++_ = 16-bit displacement x = modified 
: = 8-bit displacement +++ .. 32-bit displacement (full) - .. unchange~ 

PROTECTED 
MODE CLOCK 

COUNT 

Reg/ I Cache 
Cache Hit Miss 

6 
6 

6/8 10 
' 26 

45 45 
265 266 
296 320 
182 209 
241 261 
299 343 
185 232 
30 30 
47 47 
270 271 
301 325 
184 214 
246 268 
304 348 
187 237 

611 
611 

NOTES 

Real I Protected 
Mode Mode 

b h,j,k,r 

r 

o 
~ 
1R-i· ~ 
~ 

@ 



"III 
II .. -I: 
I 

01 • 
~ .. 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK 

COUNT COUNT 
OF DF IF TF SF ZF AF PF CF Reg/ I Cache Relf/ I Cache 

Cache Hit Miss Cache Hit Miss 

JNLE(JG Jump on Not Less or Equal/Greater 
8-bit Displacement 17F + 
Full Displacement OF 8F +++ 

JNO Jump on Not Overflow 
8-bit Displacement 

171 
+ 

Full Displacement OF 81 +++ 

JNPapO Jump on No(ParitylParity Odd 
8-bit Displacement 17B + 
Full Displacement OF 8B+++ 

IJNS Jump on Not Sign 
8-bit Displacement 

1
79 

+ 
Full Displacement OF 89 +++ 

I jO Jump on Overflow 
8-bit Displacement 

1
70 

+ 
Full Displacement OF 80+++ 

jpaPEJump on Parity/Parity Even 
8-bit Displacement 17A + 
Full Displacement OF 8A+++ 

JS Jump on Sign 
8-bit Displacement 

1
78 

+ 
Full Displacement OF 88+++ 

I UHF LoadAH with Flags 19F ------r---:---:--=]---2 2 

IAR Load Access Rights 
From RegisterlMemory 

- - - - - x 
OF 02 [mod reg rIm] 

# .. immediate data ++ = 16-bit displacement 
+ = a-bit displacement +++ = 32-bit displacement (full) 

x = modified 
- = unchanged 

NOTES 

Real I Protected 
Mode Mode 

• 



0-• .". 
.". 

I c 
! 

= 
= 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 
OF DF IF TF SF ZF AF PF CF Reg/ J Cache Reg/ I Cache Real I Protected 

Cache HII Miss Cache Hil Miss Mode Mode 

I,LDS Load Pointer to DS 1 C5 [mod reg rIm] - - - - - - 6 -, r 7 -r 23 24 b b,i,j 

LEA Load Effective Address 
No Index Register 
With Index Register 

8D [mod reg rIm] 

1 LEAVE Leave Current Stack Frame 1 C9 - - - - - - - - - 3 4 3 4 b h 

1 LES Load Pointer to ES 1 C4 [mod reg rIm] - - - - - - - - - 6 7 23 --I 24 - r-- b~-h~ij- -I 

LFS Load Pointer to FS OF B4 [mod reg rIm] 

1 LGDT Load GDI Register 1 OF 01 [mod 010 rIm] - - - - - - - - - 9 9 9 9 b,c l h,l 

1 LGS Load Pointer to GS 1 OF B5 [mod reg rIm] - - - - - - - - - 6 7 23 24 b' h,i,j 

1 LIDT Load!DI Register 1 OF 01 [mod Oll rIm] - - - - - - - - - 9 9 9 9 'I b,c h,t' 

LLDT Load WI Register 
From RegisterlMemory 

LMSW Load Machine Status Word 
From RegisterlMemory 

OF 00 [mod 010 rIm] 

OF 01 [mod llD rIm] 

1 LODS Load String 1 A [llOw] - - - - - - - - - 4 4 4 4 1 b h 

1 LQOP Offset LooplNo Loop 1 E2 + - - - - - - - - - 7 1 4 9 1 3 

1 LOOPNZlLOOPNEOffset 1 EO + - - - - - - - - - 714 913 

# = immediate data ++ ;; 16-bil displacemem x '" modifi~d 
+ = 8-bit displacement +++ = 32-hil displacement (full) - = unchanged 

o 
~ 1lR· ~ 
~ 

@ 



i! c 
:I 
i 

= 

o • ~ 
Cot 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK 

COUNT COUNT 
OF DF IF IF SF ZF AF PF CF Reg/ 1 Cache Reg/ 1 Cache 

Cache Hit Miss Cache Hit Miss 
~-

1 LOOPZJLOOPE Offset 1 El + - - - - - - - - - 714-1 9 1 3 • 1 

LSL Load Segment Umit 
From RegisterlMemory OF 03 [mod reg rIm] 

- - - - - x - - -

NOTES 

Real 1 Protected 
Mode Mode 

1 LSSioadPoi~t;rtoSS 1 OF B2 [mod reg rIm] - - - - - - 6 7 23 24 h,i,j 

LTR Load Tash Register 
From RegisterlMemory 

MOV Move Data 
Register to RegisterlMemory 
RegisterlMemory to Register 
Immediate to RegisterlMemory 
Immediate to Register (short form) 
Memory to Accumulator (short form) 
Accumulator to Memory \short form) 
RegisterlMemory to Segment Register 
Segment Register to RegisterlMemory 

MOV Move to!from ControllDebuglT est Regs 
Register to CROICR2/CR3 
CROICR2/CR3 to Register 
Register to DRO-DR3 
DRO-DR3 to Register 
Register to DR6-DR7 
DR6-DR7 to Register 
Register to TR3-5 
TR3-5 to Register 
Register to TR6-TR7 
TR6-TR7 to Register 

OF 00 [mod reg rIm] 

- - - - -
8 [lOOw] [mod reg rIm] 
8 [lOlw] [mod reg rIm] 
C [Ollw] [mod 000 rIm] # 

B [wregl # 
A [OOOw] +++ 
A [OOlw] +++ 
8E [mod sreg3 rIm] 
8C [mod reg rIm] 

- - - -
OF 22 [11 eee reg] 
OF 20 [11 eee reg] 
OF 23 [11 eee reg] 
OF 21 [11 eee reg] 
OF 23 [11 eee reg] 
OF 21 [11 eee reg] 
OF 26 [11 eee reg] 
OF 24 [11 eee reg] 
OF 26 [11 eee regl 
OF 24 [11 eee reg] 

- - - - b h,i,j , 112 2 112 2 
112 4 112 4 
112 2 112 2 
1 1 
2 4 2 4 

112 2 112 2 
213 5 15/16 18 
112 2 112 2 

- - - 1 
11/313 111313 
1/313 11313 

1 1 
3 3 
1 1 
3 3 
5 5 
5 5 
1 1 

3 3 

1 MOVS Move String 1 A [OlOw] - - - - - - - - - 5 5 5 -- 1 5 1 b h 

# = immediate data ++ '" 16-bit displacement x = modified 
+ .. 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

at 



0-• 
~ 

INSTRUCTION 

MOVSX Move with Sign Extension 
Register from Register/Memory 

MOVZX Move with Zero Extension 
Register from Register/Memory 

MUL Unsigned Multiply 
Accumulator with Register/Memory 

Multiplier - Byte 
-Word 
- Doubleword 

OPCODE 

OF B [Ill w] [mod reg rIm] 

OF B [Ollw] [mod reg rIm] 

F [Ollw] [mod 100 rIm] 

FLAGS 

OF DF IF TF SF ZF AF PF CF 

x - - - - - - x 

--

REAL PROTECTED 
MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

Reg/ I Cache 
Cache Hit Miss 

Reg/ I Cache 
Cache Hit Miss 

Real I Protected 
Mode Mode 

b h 

3/5 7 3/5 7 
3/5 7 3/5 7 
7/9 13 ______ L-. __ 7/9 13 

,. 
II I NEG Negate/ntegeT I F [Ollw] [mod 011 rIm] I x - - - x x x x x I 1/3 5 1/3 5 I b h 

C i! I NOP No Operation I 90 I 3 3 

Z 
I; I NOT Boolean Complement I F [Ollw] [mod 010 rIm] - I 1/3 5 1/3 5 I b h 

'< 
OR Boolean OR 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to Register/Memory 
Immediate to Accumulator 

OUT Output to Port 
Fixed Pan 
Variable Port 

o [lOdw] [11 reg rIm] 
o [100w] [mod reg rIm] 
o [lOlw] [mod reg rIm] 
8 [OOOw] [mod 001 rIm] # 
o [llOw] # 

E [Ollw] [pan number] 
E [lllw] 

0 - - - x x x x 0 b h 
I I 
3 5 3 5 
3 5 3 5 

113 5 1/3 5 
I I 

lOUTS Output String 16 [lllw] - - - - - - - - - 20 20 6\19 6\19 1 b h,m 

# _ immediate data ++ = 16-bit displacement x = modified 
+ = 8-bit displacement +++ = 32-bit displacement (full) - = unchanged 

o 
~ 
I~.~ 
§,iiJIlIIIIi 

@ 



"III 
;I 
c 
! 
i 
== 

0-• 
~ 
VI 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 
OF DF IF TF SF ZF AF PF CF Reg/ 1 Cache Reg/ 1 Cache Real 1 Protected 

Cache Hit Miss Cache Hit Miss Mode Mode - --- -

POP Pop Value off Stach - - b h,i,j 
RegisterlMemory SF [mod 000 r/mJ 3/5 4/5 3/5 4/5 
Register (short form) 5 [1 regJ 3 4 3 4 
Segment Register (ES, CS, SS, DS) [000 sreg2 II OJ 4 5 18 19 
Segment Register (ES, CS, SS, DS, FS, GS) OF [10 sreg3 001J 4 5 18 19 

-

I POPA PapAl! Ge~~ste-rs - --161 - C-- - - - - - - 1 18 18 18 18 1 b h 

POPF Pop Stach into FLAGS 9D x x x x x x x x x 

PREFIX BYTES - - m 
Assert Hardware LOCK Prefix Fa 
Address Size Prefix 67 
Operand Size Prefix 66 
Segment Override Prefix 

CS 2E 
DS 3E 
E5 26 
FS 64 
GS 65 
SS 36 

- -- ---------- -- -- ----

PUSH Push Value onto Stach - - - b h 
Register/Memory FF [mod II a r/mJ 2/4 4 2/4 4 
Register (short fonn) 5 [0 regJ 2 2 2 2 
Segment Register ([S, CS, SS, DS) [000 sreg2 II OJ 2 2 2 2 
Segment Register (ES, CS, 55, DS, FS, GS) OF [10 sreg3 OOOJ 2 2 2 2 
Immediate 6 [lOs0J # 2 2 2 2 

PUSHA Push All General Registers 60 

~~ FLAGS Register 19C 1 - - - - - - - - - 1 2 -I b r h -I 
# '" immediate data ++ '" 16-bit displacement x '" modified 
+ '" 8-bit displacement +++ '" 32-bit displacement (full) _ = unchanged 

en 



GI • 
~ 
GI 

I c 
I: 

I 
= 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF IF 5F ZF AF PF CF Reg/ I Cache Reg/ I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

RCL Rotate Through Carry Left x - - - - - - - x b h 
Register/Memory by 1 D [OOOw] [mod 010 rIm] 919 lO 919 lO 
Register/Memory by CL D [OOlw] [mod OlO rIm] 9/9 lO 9/9 10 
Register/Memory by Immediate C [OOOw] [mod OlO rIm] # 9/9 10 919 lO 

RCR Rotate Through Carry Right x - - - - - - x b h 
Register/Memory by 1 D [OOOw] [mod 011 rIm] 919 lO 919 lO 
Register/Memory by CL D [001 w] [mod 011 rIm] 919 lO 919 10 
Register/Memory by Immediate C [OOOw] [mod 011 rIm] # 919 lO 919 lO_ 

REP INS Input String F2 6 [llOw] 

1 REP LODS Load String 1 F2 A [llOw] - - - - - - - - - 4+5n 4+5n 4+5n 4+5n b h 

1 REP MOVS Move String 1 F2 A [0 lOw] - - - - - - ~.=--=-=r 5+4n -~ 1 5+4n 5+4n b h 

REP OUTS Output String F2 6 [lllw] 

1 REP STOS Store String 1 F2 A [lOlw] - - - - - - - - - I· 3+4n 3+4n 3+4n 3+4n b h 

REPE CMPS Compare String 
(Find non-match) 

REPE SCAS Scan String 
{Find non-AUAX/EAXl 

REPNE CMPS Compare String 
(Find match) 

REPNE SCAS Scan String 
{Find AUAX/EAXl 

F3 A [Ollw] x---xxxxx 

F3 A [illw] x---xxxxx 

F2 A [Ollw] x---xxxxx 

F2 A [lllw] x---xxxxx 

# "" immediate data ++ = 16-bil displacement x = modified 
+ .. 8-bit displacement +++ = 32-bit displacement 

(full) 
- .. unchanged 

-

o 
~ 
iR~ ~ 
~ 

OJ 



I 
i 
~ 

0-
~ 
"'4 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS . MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 
OF DF IF TF SF ZF AF PF CF Regl ,I Cache Regl I Cache Real I Protected 

Cache Hit Miss Cache Hit Miss Mode Mode 

RET Return from Subroutine - - - - - - - - - b g,hj,k,r 
Within Segment C3 10 10 
Within Segment Adding Immediate to SP C2 ++ 10 10 
Intersegment CB 13 13 26 26 
Intersegment Adding Immediate to SP CA ++ 13 13 26 27 
Protected Mode: Different Privilege Level 

Intersegment 69 72 
Intersegment Adding Immediate to SP 69 72 

ROL Rotate Left x - - - - - - - x b h 
RegisterlMemoI}' by I D [OOOW] [mod 000 rIm] 214 6 214 6 
RegisterlMemoI}' by CL D [OOlw] [mod 000 rIm] 3/5 7 3/5 7 
RegisterlMemoI}' by Immediate C [OOOw] [mod 000 rIm] # 214 6 214 6 

ROR Rotate Right x - - - - - - - x b h 
RegisterlMemoI}' by I D [OOOW] [mod 001 rIm] 214 6 214 6 
RegisterlMemoI}' by CL D [OOlw] [mod 001 rIm] 3/5 7 3/5 7 
RegisterlMemoI}' by Immediate C [OOOw] [mod 001 rIm] # 214 6 214 6 

----- - -_.-

I RSLDT Restore WTR and Descriptor I OF 7B [mod 000 rIm] [-=---=- -----:-------: -: -=-1---1-14-1----1 14 

I RSM Resumefrom SMM Mode I. OF AA - - - - - - - - - I 58 58 

I RSTS Restore TSR and Descriptor I OF 7D [mod 000 rIm] - - - - - - - - - I 14 14 . 5 

ISAHFStoreAHinFLAGS 19E Ix - - - x X - x xl 2 2 1---ul--
SAL Shift Left Arithmetic 
RegisterlMemoI}' by I 
RegisterlMemoI}' by CL 
RegisterlMemoI}' by Immediate 

SAR Shift Right Arithmetic 
RegisterlMemoI}' by I 
RegisterlMemoI}' by CL 
RegisterlMemoI}' by Immediate 

x - - -
D [OOOW] [mod 100 rIm] 
D [OOlw] [mod 100 rIm] 
C [OOOW] [mod 100 rIm] # 

x - , -
D [OOOw] [mod III rIm] 
D [OOlw] [mod III rIm] 
C [OOOw] [mod III rIm] # 

# = immediate data 
+ = 8-bit displacement 

++ .. 16-bil displacement 
+++ _ 32-bit displacement 
(full) . 

x x - x x 

2/4 6 2/4 6 
3/5 7 3/5 7 
2/4 6 2/4 6 

x x x x x 
2/4 6 ' 2/4 6 
3/5 7 3/5 7 
2/4 5 2/4 6 

x Of modified 
- • unchanged 

en 



o • W 
II 

I c 
I: 

I 
= 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 

OF DF IF IF 5F ZF AF PF CF Reg/ ,I Cache Reg/ I Cache Real I Protected 
Cache Hit Miss Cache Hit Miss Mode Mode 

SBB Integer Subtract with Borrow x - - - x x x x x b h 
Register to Register 1 [lOdw[ [11 reg rIm] 1 1 
Register to Memory 1 [lOOw] [mod reg rIm] 3 -5 3 5 
Memory to Register 1 [lOIw] [mod reg rIm] 3 5 3 5 
Immediate to RegisterlMemory 8 [OOsw] [mod 011 rIm] # 1/3 5 1/3 5 
Immediate to Accumulator (short form) 1 [llOw] # 1 1 

ISCASscanString I A [llIw] Ix - - - x x x x xl 5 5 I b h 

SEIBlSETNAEISETC Set Byte on BelowlNot 
Above or Equal/Cany 

To RegisterlMemory I OF 92 [mod 000 rIm] 

SETBEISETNA Set Byte on Below or 
EquallNot Above 

To RegisterlMemory I OF 96 [mod 000 rIm] 

SErElSETZ Set Byte on EquallZero 
To RegisterlMemory I OF 94 [mod 000 rIm] 

SETIJSETNGE Set Byte on LessINot Greater 
or Equal 

To RegisterlMemory I OF 9C [mod 000 rIm] 

SETLElSETNG Set Byte on Less or EquallNot 
Greater 

To RegisterlMemory I OF 9E [mod 000 rIm] 

SETNBlSETAEISETNC Set Byte on Not 
Belowl I OF 93 [mod 000 rIm] 

Above or &juallNot Cany 
To RegisterlMemory 

# = immediate data 
+ = 8-bit·displacement 

++ = 16-bit displacement x '" modified 
+++ .. 32-bit displacement (full) - '" unchanged 

i 

o 
jill! 
I"R~ 1l' a 
~ 
!l- .. 



" III .. -I 
i 

! 

CII .., 
-0 

INSTRUCTION 

, 

SETNBEISETA Set Byte on Not Below or 
Equal/Above 

To RegisterlMemory 

SETNEISETNZ Set Byte on Not EquallNot 
Zero 

To RegisterlMemory 

SETNUSETGE Set Byte on Not Less/Greater 
or Equal 

ITo RegisterlMemory 

I SETNLElSETG Set Byte on Not Less or 
Equal/Greater 

To RegisterlMemory 

I SETNO Set Byte on Not Overflow 
To RegisterlMemory 

SETNP/SETPO Set Byte on Not 
ParitylParity Odd 

To RegisterlMemory 

SETNS Set Byte on Not Sign 
To RegisterlMemory 

SETO Set Byte on Overflow 
To RegisterlMemory 

SETP/SETPE Set Byte on ParitylParity Even 
To RegisterlMemory 

OPCODE 

OF 97 [mod 000 rIm] 

OF 95 [mod 000 rIm] 

10F 9D [mod 000 rIm] 

10F 9F [mod 000 rIm] 

10F 91 [mod 000 rIm] 

10F 9B [mod 000 rIm] 

10F 99 [mod 000 rIm] 

10F 90 [mod 000 rIm] 

OF 9A [mod 000 rIm] 

# .. immediate data 
+ = a-bit displacement 

REAL PROTECTED 
FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 
OF DF IF TF SF ZF AF PF CF Reg/ ,I Cache Reg/ I Cache Real I Protected 

Cache Hit Miss Cache Hit Miss Mode Mode 

- - - -

- - - - - - - -

- - - - - - - - -

- - - - - - -

- - - - - - - - -

- - - - - - - -

'" 16-bit displacement x .. modified 
+++ = 32-bit displacement (full) - = unchanged en 



,-
Cot 
o 

j 
I 
I 

= 

INSTRUCTION 

SETS Set Byte on Sign 
To RegisterlMemory 

SGDT Store GDT Register 
To RegisterlMemory 

SHL Shift Left Logical 
RegisterlMemory by 1 
RegisterlMemory by tL 
RegisterlMemory by Immediate 

SHLD Shift Left Double 
RegisterlMemory by Immediate 
RegisterlMemory by CL 

SHR Shift Right Logical 
RegisterlMemory by 1 
RegisterlMemory by CL 
Register~emory by Immediate 

SHRD Shift Right Double 
RegisterlMemory by Immediate 
RegisterlMemory by CL 

SlOT Store IDT Register 
To RegisterlMemory 

SLDT Store WI Register 
To RegisterlMemory 

--

OPCODE 

OF 98 [modOOO rIm] 

OF 01 [mod 000 rIm] 

D [OOOw] [mod 100 rIm] 
D [OOlw] [mod 100 rIm] 
C [OOOw] [mod 100 rIm] # 

OF A4 [mod reg rIm] # 

OF A5 [mod reg rIm] 

D [OOOw] [mod 101 rIm] 
D [OOlw] [mod 101 rIm] 
C [OOOw] [mod 101 rIm] # 

OF AC [mod reg rIm] # 
OF AD [mod reg rIm] 

OF 01 [mod 001 rIm] 

OF 00 [mod 000 rIm] 

FLAGS 

OF DF IF 1F SF ZF AF PF CF 

x - - x x - x x 

- - - - x x x x 

x - - x x - x x 

- - - - x x - x x 

REAL PROTECTED 
MODE CLOCK MODE CLOCK NOTES 

COUNT ,COUNT 

Reg/ I Cacha 
Cache Hit Miss 

Reg/ I Cache 
Cache Hit Miss-

Real I Protected 
Mode Mode 

214 6 2/4 6 b h 

3/5 7 3/5 7 
214 6 214 6 

b h 
214 6 214 6 
3/5 7 3/5 7 
214 5 214 6 

1 SMSW Store Machine Status Word 1 OF 01 [mod 100 rIm] - - - - - - - - - 112 2 -I 112 2 b,c h,l 

# '" immediate data ++ = 16-bit displacement 
+ = a-bit displacement +++ = 32-bit displacement 

(£ull) 

x .. modified 
- = unchanged 

o 
~ 

!R"~ il' 
~ 
~ 

@ 



! c 
! 

! 

0-• W .. 

REAL PROTECTED 
INSTRUCTION OPCODE FLAGS MODE CLOCK MODE CLOCK NOTES 

COUNT COUNT 
OF DF IF TF SF ZF AF PF CF Reg/ I Cache Reg/ I Cache Real I Pratected 

Cache Hit Miss Cache Hit Miss Mode Mode 

ISTC Set Carry Flag 1 F9 1 - - - - - - - - 1 ~ 

[Si:'05etDirection~ 1 FD - 1 - - - - - - - I-I---i---I ~ 

1 STI Set Interrupt Flag 1 FB - - 1 - - -. - - - 7 7 m 

ISTOSStoreString- 1 A [101w[ - - - - - - - - - 3 3 r--)-- 3 1 b h 

STR Store Task Register 
To RegisterlMemory 

SUB Integer Subtract 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to Register/Memory 
Immediate to Accumulator (short form) 

---

OF 00 [mod 001 rIm] 

2 [lOdw] [11 reg rIm] 
2 [lOOw] [mod reg rIm] 
2 [lOlw] [mod reg rIm] 
8 [OOsw] [mod 101 rIm] # 

2 [llOw] # 

x - - - x x x x x b h 
1 1 
3 5 3 5 
3 5 3 5 

1/3 5 1/3 5. 
1 1 

- ----

1 SVDC Save Segment Register and Descriptor 1 OF 78 [mod sreg3dm]-I· - ---------= 1--- 1 22 22 ~ 

·1 SVLDT Save IDTR and Descriptor 1 OF 7A [mod 000 rIm] - - - - - - - - - 22 22· 

svrs Save TSR and Descriptor 

TEST Test Bits 
RegisterlMemory and Register 
Immediate Data and RegisterlMemory 
Immediate Data and Accumulator 

VERR Verify Read Access 
To RegisterlMemory 

0 - - - x x - x 0 
8 [OlOw] [mod reg rIm] 
F [Ollw] [mod 000 rIm] # 

A ]lOOw] # 

- - - - - x - - -
OF 00 [mod 100 rIm] 

# = immediate data 
+ = 8-bit displacement 

++ = 16-bit displacement 
+++ = 32-bit displacement 
(full) 

x = modified 
- = unchanged 

1/3 5 1/3 5 
l/3 5 1/3 5 
1 1 

b h 

at 



0-• Cot 
~ 

I c 
! 

= 
= 

INSTRUCTION 

VERW Verify Write Access 
To RegisterlMemory 

OPCODE 

OF 00 [mod 101 rim] 

FLAGS 

OF DF IF IF SF ZF AF PF CF 

- - - - - x - - -

REAL PROTECTED 
MODE MODE CLOCK 

CLOCK COUNT COUNT 

Reg/ ,I Cache 
Cache Hit Miss 

Reg/ I Cache 
Cachelm Miss 

I WAIT Wait Until FPUNotBusy 19B - - - - - - - - - 5 5 ,-- 5 5 

I WBINVD Write-Bach and Invalidate Cache [OF 09 _ _ _ _ _ _ _ _ _ 4 u __ U I 4 

XADD Exchange and Add 
Registerl, Register2 
Memory, Register 

XCHG Exchange 
RegisterlMemory with Register 
Register with Accumulator 

OF C [OOOw] [ll reg2 regl] 
OF C [OOOW] [mod reg rim] 

8 [Ollw] [mod reg rim] 
9 [0 reg] 

x---xxxxx 

NOTES 

Real I Protected 
Mode Mode 

I XIAT Translatellyte I D7 - - - - - - - - - 3 5 3 --r 5 h 

XOR Boolean Exclusive OR 
Register to Register 
Register to Memory 
Memory to Register 
Immediate to RegisterlMemory 
Immediate to Accumulator (short form) 

o - -
3 [OOdw] [ll reg rim] 
3 [OOOW] [mod reg rim] 
3 [OOlw] [mod reg rim] 
8 [OOsw] [mod llO rim] # 

3 [OlOw] # 

# .. immediate data 
+ .. 8-bit displacement 

++ = 16-bit displacement 
+++ = 32-bit displacement 
(full) 

x x - x 0 
1 
3 
3 

113 
1 

-
x = modified 
- • unchanged 

Instruction Notes for Instruction Set Snmmary 

Notes a thrpngh c apply to Real Address Mode only: 
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid op-code). 

b h 
1 

5 3 5 
5 3 5 
5 113 5 

1 

b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum C5, D5, E5, F5, or G5 segment limit 
(FFFFH). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum 
55 limit. 

c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected Mode. 

o ,ae 
I"R~ ir 
1l. 
~ .. 



Instruction Notes for Instruction Set Summary (Continued) 

Notes e through g apply to Real Address Mode and Protected Virtual Address Mode: 
c. An exception may occur, depending on the value of the operand. 
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK prefix. 
g. LOCK# is asserted during descriptor table accesses. 

Notes h through r apply to Protected Virtual Address Mode only: 
h. Exception 13 fault will occur if the memory operand in C5, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit is 

violated, an exception 12 occurs. 
1. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 faule The segment's descriptor must indicate "presem"or exception 

11 (CS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, an exception 12 occurs. 
j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK# to maintain descriptor integrity in multiprocessor systems. 
k. ]MP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule is violated. 
1. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
m. An exception 13 fault occurs if CPL is greater than IOPL. 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL ~ O. 
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit. 
p. Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared. 
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault will occur before the ESC instruction is executed. An exception 12 fault 

will occur if the stack limit is violated by the operand's starting address. 
r. 'The destination of a]MP, CALL, INT, RET, or \RET must be in the defined limit of a code segment or an exception 13 fault will occur. 

,. s. All memory accesses using this instruction are non-cacheable as this instruction uses SMM address space. 

= .. 
! 
= 
== 

o 

& m 



Notes 



Notes 



CVlltx~ 
~dv!Clng the Standards 

Notes 

.. '".-::, 



CYRIX Cx486SLCje" MICROPROCESSOR 
High-Performance 486-Style CPU with Advanced Power 
Management for Notebook or Battery Powered Systems 

ev.tx® 
~dV!Clng the Standards 

A.1 Cx486SLCj e Stepping 
Revision History 

The Cx486SLOe is an enhanced version of the 
Cx486SLC that adds System Management Mode 
circuity including two new pins: SMI# (pin 47) 
and SMADS# (pin 20). 

Also included are seven new software instruc­
tions: SVDC, RSDC, SVLDT, SVTS, RSTS, and 
RSM. Stepping identification can be performed by 
reading the initialized state of the EDX register 
(bits 15 - 0). The EDX register data is listed in 
TableA-l. 

Table A·I. Cx486SLC Stepping 

STEPPING EDX DESCRIPTION 
REGISTER 

Cx486SLC 0410 Original feature set 
Cx486SLOe 0411 SMM feature added 

A.2 Manual Revision History 

This manual (94069-00) replaces manual 
(94073-00) and applies Cx486SLC (except SMM 
mode features) and the Cx486SLOe. The new 
features are described as well as many other 
updates and improvements have been made. The 
follOwing items have been significantly revised: 

Cover Page 
Changed to reflect new features. 

Section 1.5 
Inclusion of system management mode informa­
tion has been made to this section. 

Section 1.6 
Figure 1-1 includes SMADS# and SMI# signals. 

Section 2.1 
In Table 2-1 the four NCR registers in the previ­
ous manual have been renamed as ARR registers 
as the meaning of these registers changed. 
Within Table 2-1 the initialized contents of the 
EDX, CRO, CCRl and DR7 have been corrected 
and updated. 

Section 2.3.2 
Figure 2-5 contains MRn registers replacing 
NCRn registers. Description ofTR6 and TR7 has 
been corrected. 

A·1 



ev.tx® 
~d~Cfng ftleStandards 

Manual Revision History 

Section 2.3.2.4 
This section was re-written to reflect SMM 
additions. The ARRn registers are described. 

Section 2.5 
Section 2.5 and its sub-sections were re-written 
include SMM information. 

Section 2.6 
This section is new and provides detailed system 
management mode information. The section 
describes the SMM memory space, the SMM 
header and the SMM instruction set. 

Section 3.1 
Figure 3-1 now shows the signals in the order 
they are described as well as includes the addi­
tional signals used for SMM operations. 
Table 3-1 include SMM signals. 

Section 3.2.6 
SMADS# paragraph included. 

Section 3.2.7 
SMI# paragraph included. 

Section 3.2.11 
Tables 3-5 and 3.2.12 corrected and updated. 

Section 3.3.10 
This is a new section and describes the SMM 
interface. Within this section the SMM bus 
timing and the SMM VO trap mechanism are 
described. 

Section 4.1.2 
Pull-up resistor for SMI# added to Table 4-1. 

Section 4.4 
33 MHz information added to Table 4-5. 

Section 4.5 
SMADS# and SMI# timing information added to 
Figures 4-1, 4-3, 4-4 and 4-7 and also to 
Tables 4-7,4-8,4-9. Figure 4-9 is new and 
provides 33 MHz AC characteristics. 

Section 5.1 
Figure 5-1, Tables 5-1 and 5-2 include the 
SMADS# and SMI# pins. 

Section 5.3 
The section has been corrected and updated. 
Tables 5-4 and 5-5 have been added to provide 
airflow as related to ambient temperature for 
various clock frequencies. 

Section 6.4 .. 2 
Table 6-16 includes the SVDC, SVLDT, SVTS 
RSDC, RSLDT, RSTS and RSM instructions. 

PRELIMINARY 



A.3 Ordering Information 

Cyrix Prefix 

Device Name 
486SLGe 

Voltage 
Blank = 5 volts 
V = 3 volts 

Speed 
20 = 20 MHz 
25 = 25 MHz 
33=33 MHz 

Package Type 
Q = Quad Flat Pak 

Temperature Range 
P = Commercial 

Ordering Information 

CX 486SLCle- V 33 Q P 

T 

The currently available Cyrix Cx486SLOe part numbers are listed below: 

Cx486SLCj e Part Numbers 

PART NUMBER DESCRIPTION 

Cx486SLCle-25-QP 5 V, 25 MHz, QFP Package 

Cx486SLCle-33-QP 5 V, 33 MHz, QFP Package 

Cx486SLCle-V20-QP 3 V, 20 MHz, QFP Package 

Cx486SLCle-V25-QP 3 V, 25 MHz, QFP Package 

PRELIMINARY 

A 

A·3 



On-tx® 
~dV!Clng the Standards 

Index 

INDEX 

A---------------------------
AC Characteristics, 4-5 
Addresses 

address bus, 3-4 
address space, 2-32 
offset address calculation, 2-34 

B ------------------------------
Bus 

bus arbitration, 3-9 
bus cycles using non-pipelined addressing, 3-14 
bus cycles using pipelined addressing, 3-18 
bus interface overview, 3-1 
bus operation, 3-14 
bus state diagram, 3-25 

Byte Enable Lines (BLE#, BHE#), 3-4 

c ------------------------------
Cache lnterface 

cache flushing, 3-31 
internal cache interface signals, 3-7 
internal cache timing, 3-30 

Clock 
2X clock input signal, 3-3 
clock count assumptions, 6-10 
clock waveform measurement points, 4-7 
stopping the input clock, 3-43 

Coprocessor lnterface 
signals, 3-8 
timing, 3-37 

D---------------------------
Data Bus Signals, 3-4 
DC Characteristics, 4-4 
Descriptor Table and Segment Selectors, 2-7 
Descriptors, Segment and Gate, 2-16 

E 
Exceptions, Trap, Fault and Abort, 2-41 

F 
Floating CPU signals using FLT#, 3-44 

G----------------------------
Gate Descriptors, 2-18 
Gates and Privilege Transfers, 2-57 

H-----------------------------
Halt (HLT) and Shutdown due to Errors, 2-53 
Halt and Shutdown Timing Cycles, 3-27 
Hold Acknowledge (HLDA), 3-9 
Hold Acknowledge State, 3-33 

]fO Address Space, 2-32 
lnitialization, 2-1 
lnstruction Set Formats, 6-1 
lnstruction Timing, 6-13 
lnterrupt Acknowledge (lNTA) Cycles, 3-26 
lnterrupts 

L 

abort exceptions, 2-41 
exceptions, 2-41 
fault execeptions, 2-41 
hardware/software, 2-44 
interrupt pins, NM1, lNTR, SM1# 2-40 
interrupt vectors, 2-41 
lNTR interrupts, 2-40 
NMl interrupts, 2-40 
priorities, 2-43 
SMl interrupt, 2-47 
real mode and exceptions, 2-45 
trap exceptions, 2-41 

Lock Prefix for lnstructions, 2-3 
Locked Bus Cycles, 3-26 

M---------------------------
Maximum Temperature and Voltage Ratings, 4-2 
Mechanical Drawing of 100-pin BQFP Package, 5-4 
Memory and]fO Address Spaces, 2-32 

A·4 PRELIMINARY 



Index A 

INDEX 

Modes 
HALT initiated suspend modesuspend, 3-42 
memory addressing modes table, 2-34 
protected mode addressing mode, 2-35 

. real mode addressing mode, 2-35 
SUSP# initiated suspend mode, 3-41 
vinua18086, 2-58 

0-------------------------------
Offset Address Calculation, 2-34 
Operating Conditions, Recommended 4-3 

P --------------------------------
Package Drawing (100-pin BQFP), 5-4 
Paging Mechanism, 2-37 
Pin Assignments, 5-1 
Pins, Unused and N/C Input, 4-2 
Pipelined Addressing, 3-18 
Pipelined Cycles and Wait States, 3-20 
Power and Ground Considerations, 4-1 
Power Management Interface, 3-10 
Power Management Timing, 4-41 . 
Privilege Level Field in Segment Selector, 2-8, 
Privilege Levels (DPL, CPL, RPL), 2-55 
Protection, Segment and Page, 2-53 
Pull-Up and Pull-Down Resistors, 4-1 

R-------------------------------
Registers 

address region registers, 2-22 
application register set, 2-4 
cache test register, 2-30 
configuration control registers, 2-22 
control registers, 2-13 
data registers, 2-4 
debug registers, 2-26 
desCriptor table registers and deSCriptors, 2-15 
flags register (EFLAGS), 2-9 
global descriptor table register, 2-15 
interrupt deSCriptor table register, 2-15 
instruction pointer register, 2-9 
local descriptor table register, 2-15 
pointer and index register, 2-5 

segment registers and selectors, 2-7 
system register set, 2-11 
task register, 2-19 
test register, 2-28 

Requested Privilege Level (RPL), 2-8 
RESET 

RESET setup and hold timing, 4-14 
RESET timing, internal clock synchronization, 3-12 
signal status during reset, 3-3 

5 ------~--------------~--------
Segment Selector, 2-7 
Segment Descriptor, 2-7 
Selector Address Mechanism, 2-36 
Selectors, Code, Data and Stack 2-7 
Setup and Hold Timing, 4-11 
Signals 

A23 -AI, 3-4 
A20M#,3-8, 
A20M# timing, 3-32 
ADS#, 3-5 
BHE#,3-4 
BLE#,3-4 
BUSY#, 3-8 
Dl5 - DO, 3-4 
DIC#, 3-4 
ERROR#,3-8 
FLT#,3-12 
FLUSH#, 3-7 
HLDA,3-9 
HOLD,3-9 
INTR, 2-40,3-6 
KEN#,3-7 
LOCK#, 3-4 
MIlO#, 3-4 
NA#,3-6 
NMI; 2-40, 3-6 
PEREQ, 3-8 
READY#,3-6 
RESET,3-3 
RPLSET,3-7 
RPLVAL#, 3-7 

PRELIMINARY A·5 



Index 

SMADS#,3-6 
SMI#,3-6 
SUSP#,3-10 
SUSPA#, 3-10 
WIR#, 3-4 

Signal Summary, 3-2 
Signals Unique to Cx486SLCle, 1-4 
SMI Service Routine Execution, 2-52 
SMM Interface, 3-38 
SMM Instructions, 2-51 
SMM Memory Space, 2-52 
SMM Memory Space Header, 2-49 
SMM Operation, 2-48 
Suspend Mode, 3-41 
System Managment Mode (SMM), 2-47 

INDEX 

T--------~~------------------

Thermal Characteristics, 5-5 
Translation Look-Aside Buffer, 2-39 

~-----------------------------
Wait States, Non-Pipelined, 3-17 

A·6 



us 

Cyrix Corporation 
2703 North Central Exprressway 
Richardson, IX 75080 
Tel: . (214) 994-8387 
Fax: (214) 699-9857 

Japan 

CyrixKK 
7F Nisso 11 Bldg., 2-3-4 
Shin-Yokohama, Kouhoku-Ku 
Yokohama, Kanagawa, 222 
Japan 
Tel: 81- (045) 471-1661 
Fax: 81- (045) 471-1666 

SALES OFFICES 

Europe 

Cyrix Europe HQ 
603 Delta Business Park 
Welton Road 
Swindon 
SN57XF 
England 
Tel: 44-(0793)-417777 
Fax: 44-(0793)-417770 

Taiwan &: Hong_Kong 

ACCEL Technology Corp. 
.3F-l., Sec. 2, Tun-Hua S. Rd. 
Taipei 
Taiwan, R.O.c. 
Tel: 886 (02) 755-2838 
Fax: 886 (02) 708-0878 

2703 North Central Expressway. Richardson, Texas 75080 • (214) 994-8387 
November 1992 #" Printed in the USA 
$2.00 Order Number 94085-00 t,J Printed on Recycled Paper 





BELL INDUSTRIES 
Electronic Distribution Group 

1161 N. Fairoaks A venue 

Sunnyvale, California 94089 

(408) 734·8570 

FAX NO. (408) 734-8875 


