6x86 BIOS Writer’s Guide

REVISION 4.1

CYRIX CORPORATION

Cyrix Confidential



6x86 BIOS Writer’s Guide Cyrix Confidential

1995 Copyright Cyrix Corporation. All rights reserved.

Printed in the United States of America

Trademark Acknowledgments:

Cyrix is a registered trademark of Cyrix Corporation.

Product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

Cyrix Corporation

2703 North Central Expressway
Richardson, Texas 75080
United States of America

This document contains source code for sample programs that can be used to demonstrate
the functions/features described. CYRIX makes no representations that these programs are
error-free. These programs are provided "AS IS" WITHOUT WARRANTY OR
REPRESENTATION OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, ANY WARRANTY OF NONINFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT, AND ANY IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL CYRIX BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
OTHER PECUNIARY LOSS, AND OTHER CONSEQUENTIAL AND/OR INCIDENTAL
DAMAGES) ARISING OUT OF THE USE OR INABILITY TO USE THESE PROGRAMS,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THIS LIMITATION MAY NOT APPLY
TO YOU.

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specification
described herein without notice. Before design-in or order placement, customers are
advised to verify that the information on which orders or design activities are based is
current. Cyrix warrants its products to conform to current specifications in accordance
with Cyrix's standard warranty. Testing is performed to the extent necessary as determined
by Cyrix to support this warranty. Unless explicitly specified by customer order
requirements, and agreed to in writing by Cyrix, not all device characteristics are
necessarily tested. Cyrix assumes no liability, unless specifically agreed to in writing, for
customer's product design or infringement of patents or copyrights of third parties arising
from use of Cyrix devices. No license, either express or implied, to Cyrix patents,
copyrights, or other intellectual property rights pertaining to any machine or combination
of Cyrix devices is hereby granted. Cyrix products are not intended for use in any medical,
life saving, or life sustaining systems. Information in this document is subject to change
without notice.

Preliminary 2




6x86 BIOS Writer’s Guide Cyrix Confidential

REVISION HISTORY

REVISION RELEASE DESCRIPTION OF CHANGES
DATE

1.0 5/6/94 First release (preliminary).

1.1 6/24/94 Added CD/NW bits and LINBRST bit definitions.

1.2 6/29/94 Corrected code in Appendix C

1.3 7/11/94 Added information on RCR bit precedence and considerations to
the AAR/RCR section.

1.4 8/12/94 Corrected 1/0 recovery times in CCR4.

15 8/30/94 Added Device Identification Register 0 (DIRO) contents for static
devices.

1.6 9/13/94 Revised 1/0 recovery time register definition.

1.7 11/07/94 Revised Table 3-1 Device Identification Register contents.

1.8 11/15/94 Revised Table 3-1 Device Identification Register contents.

1.9 11/29/94 Revised Table 3-1.

2.0 2/24/95 Modified EDX values and CPUID instruction results.

2.1 6/15/95 Modified CPU detection description.

3.0 9/5/95 Deleted MMAC. Changed BSIZE Table. Renamed CD to RCD.

Added RCE. Reworked WWO, WL, WG, WT, descriptions.
Reworked ARR and RCR recommendations. Added recommended
settings appendix. Enhanced source code in appendices. Added
source code for MHz detection.

3.1 9/8/95 Changed recommendations to enable WWO for main memory.
3.2 9/12/95 Added recommendation for CMOS selectable CPUID en/disable
3.3 10/3/95 Changed recommendations for IORT from O to 7. Added ARR1

recommendation to disable WG in C0000-1M area. Changed
SMI_LOCK recommendation.

3.4 10/24/95 Corrected typo on ARRO/1 Size on Recommended Settings page.
341 12/13/95 Corrected bus ratio in Table 2-1.
3.5 1/10/96 Changed “M1” to “6x86”. Added details on ARR7 programming

(4.3.13, Table 4-2). Changed recommended setting for DTE_EN
to “1”. Added recommendation (4.2.4) and sample code
(Appendix G) to enable far hits in BTB.

3.51 1/19/96 Corrected sample code for setting MAPEN.

3.6 2/15/96 Corrected SMI_LOCK setting in Appendix F. Added Linear Burst
detection sample code.

3.7 03/25/96 SADS bit was added to Table 3-4.

3.8 05/21/96 Added P Number information paragraph 2.3

3.9 6/17/96 Added SLOP bit in CCR5

4.0 7/1/96 Added 6x86L support

4.1 7/29/96 Removed SLOP bit for DIR1=22h and above

Preliminary 3



6x86 BIOS Writer’s Guide Cyrix Confidential

TABLE OF CONTENTS

IO 1 (0T [0 Tod 1 o] o [ OO PR OURTOPRRRUPROPROTS 5
R o] oL TP UPPRTTOPI 5
1.2 6x86 Configuration REJISTEIS .......eiiieieiiieiiie it e e nree e 5

2. Detecting @ CYriX BX86 CPU .......coiuiiiiiiiiieiiie it ettt et snee e sneee s 6

3. DeteCting @ CYIX CPU ....coiiiiiiieiiie et ettt et s nee e .6
3.1 Detecting CPU Type and Stepping USING DIRS .......coovieiiiiiiiieiiient e 6
3.2 Performance RALING ......ccueeiuieiiie e sttt e e re e ste e e sraeenneas 7
3.3 Determining 6x86 Operating FreQUENCY .......c.evoieeeiieeiieeiies ciee e 8
3.4 CPUID INSEIUCTION ....vtietit ettt ettt ettt sateeenbe e et e e nee e b e e nneas 8
3.5 EDX Value fOlloOWING RESEL ......ooiuiieiiieiiee e et e 9
3.6 6x86 Configuration Register Index ASSIgNMENTS .......c.covveriiiriiineiies e 9
3.7 Accessing a Configuration REJISTEN ........c.eveieiiiiiiiiee s e e 9
3.8 6x86 Configuration Register Index ASSIgNMENTS .......c.coovveiieeeriinenies e e 10
3.9 Configuration Control Registers (CCRO-5) ......c.ooviiiiiiiiiieiiient e 12
3.10 Address Region Registers (ARRD-7) ....coouierueeiiie e sttt s 16
3.11 Region Control RegisSters (RCRO-7) ....coouieiiieiiie e et s 18

4. Recommended 6x86 Configuration Register SEttiNgS .........ocvevveririineriies v 22
4.1 PC MeMOIY MO ...t et et aeee s 22
4.2 General ReCOMMENUALIONS .......eeiiiiiiieiiie it ettt e sreeeseeeenneas 23
4.3 Recommended Bit SEIHINGS ......veeiueeiiie it ettt e 24

5. Programming Model DIffer@NCES ........ooiueiiiiiiiii et e e 31
5.1 INSEIUCTION SBE ...ttt ettt et e et e et e et e e nneeens es 31
5.2 Configuring Internal 6X86 FEALUIES ..........ccocuieiiieiiieiies s s 31
5.3 INVD and WBINVD INSLIUCLIONS .......eeiiiiiiieiiieiiie st eesieee st e e 31
5.4 Control Register 0 (CRO) CD and NW BitS .......cccoeeiiieiiieiiieit e 31

Y o] =] o [ PP OTRUTRTI 33
7.1 Appendix A - Sample Code: Detecting a Cyrix CPU ........cccoeviieiiiieniiniie e 33
7.2 Appendix B - Sample Code: Determining CPU MHZ ........ccoooviiiiniienies e 34
7.3 Appendix C - Example CPU Type and Frequency Detection Program .................. 37
7.4 Appendix D - Sample Code: Programming 6x86 Configuration Registers ........... 39
7.5 Appendix E - Sample Code: Controlling the L1 Cache .........cccoveeviiveiiineen v, 40
7.6 Appendix F - Example Configuration Register SEttings .......c.cccevvverieenieene evenn. 40
7.7 Appendix G - Sample Code: Enabling FAR COFSiNBTB .....ccccocovvviviiiieiieeneen 42
7.8 Appendix H - Sample Code: Detecting L2 Cache Burst Mode ............cccccvveeeneee. 44

Preliminary 4



6x86 BIOS Writer’s Guide Cyrix Confidential

1. Introduction

1.1 Scope

This document is intended for 6x86 system BIOS writers. It is not a stand alone
document but supplements other Cyrix and 6x86 documentation including: 6x86 Data
Book, 6x86/PENTIUM(P54C) Bus Interface Differences, Cyrix SMM Programmer’s Guide.
This document includes recommendations for 6x86 detection and 6x86 configuration
register settings. Configuration register settings described in this document apply to 6x86
step A and higher.

The recommended settings are optimized for both performance and compatibility in a
Windows95, Plug and Play (PnP), PCl-based system. Issues regarding optimum
performance, CPU detection, chipset initialization, memory discovery, I/O recovery time,
and others are described in detail.

1.2 6x86 Configuration Registers

The 6x86 uses on-chip configuration registers to control the on-chip cache, system
management mode (SMM), device identification, and other 6x86 unique features. The on-
chip registers are used to activate advanced features including performance enhancements.
These performance features may be enabled “globally” in some cases, or by a user-defined
address region. The flexible configuration of the 6x86 is intended to fit a wide variety of
systems.

The Importance of Non-Cacheable Regions

The 6x86 has eight internal user-defined Address Region Registers. Among other
attributes, the regions define cacheability vs. non-cacheability of the address regions.
Using this cacheability information, the 6x86 is able to implement high performance
features , that would otherwise not be possible. A non-cacheable region implies that read
sourcing from the write buffers, data forwarding, data bypassing, speculative reads, and fill
buffer streaming are disabled for memory accesses within that region. Additionally, strong
cycle ordering is also enforced. Although negating KEN# during a memory access on the
bus prevents a cache line fill, it does not fully disable these performance features. In other
words, negating KEN# is NOT equivalent to establishing a non-cacheable region in the
6x86.

Preliminary 5



6x86 BIOS Writer’s Guide Cyrix Confidential

2. Detecting a Cyrix 6x86 CPU

6x86 detection must first be determined by the BIOS during Power-On Self Test using the
method described in Section 3. Allowing 6x86 detection using CPUID at runtime is
covered in Section 3.4.

It is important to note that the 6x86’s CPUID instruction is disabled following reset.
Cyrix’s compatibility testing has found that some popular software does not correctly
check the CPUID return values (e.g. Vendor Identification String and Family fields). This
results in misidentification of CPU features which may cause a variety of runtime errors.
By disabling the CPUID instruction, the 6x86 CPU is assured to run code compatible with
the 486 instruction set and programming model.

3. Detecting a Cyrix CPU

Since CPUID is disabled by default, it cannot be used to identify the 6x86 during BIOS
POST. The correct method for detecting the presence of an 6x86 microprocessor during
BIOS POST is a two step process. First, a Cyrix brand CPU must be detected. Second,
the CPU’s Device Identification Registers (DIRs) provide the CPU model and stepping
information. Alternate methods of detecting the CPU are not recommended. These
include detection algorithms using the value of EDX following reset, and other signature
methods of determining if the CPU is an 8086, 80286, 80386, or 80486.

Detection of a Cyrix brand CPU is implemented by checking the state of the undefined
flags following execution of the divide instruction which divides 5 by 2 (5 , 2). The
undefined flags in a Cyrix microprocessor remain unchanged following the divide.
Alternate CPUs modify some of the undefined flags. Using operands other than 5 and 2
may prevent the algorithm from working correctly. Appendix A contains example code for
detecting a Cyrix CPU using this method.

3.1 Detecting CPU Type and Stepping using DIRs

Once a Cyrix brand CPU is detected, the model and stepping of the CPU can be
determined. All Cyrix CPUs contain Device Identification Registers (DIRs) that exist as
part of the configuration registers. The DIRs for all Cyrix CPUs exist at configuration
register indexes OFEh and OFFh. (See Chapter 3 for additional information.) Table 2-1
specifies the contents of the 6x86 DIRs.

DIRO bits [7:3] = 00110h indicate an 6x86 CPU is present, DIRO bits [2:0] indicate the
core-to-bus clock ratio, and DIR1 contains stepping information. Clock ratio information
Is provided to assist calculations in determining bus frequency once the CPU’s core
frequency has been calculated. Proper bus speed settings are critical to overall system
performance.

Preliminary 6



6x86 BIOS Writer’s Guide

Cyrix Confidential

TABLE 3-1. CYRIX DEVICE IDENTIFICATION REGISTERS
DEVICE | DESCRIPTION | CORE/BUS DIR1 DIRO
CLOCK
RATIO
6x86 3.3 or 3.52Volt 11 30h or 32h
211 00h - 1fh 31h or 33h
3n 35h or 37h
41 34h or 36h
6x86L Split Rail 11 30h or 32h
2.8V Core, 211 20h - 2fh 31h or 33h
3.3V1/0 3n 35h or 37h
41 34h or 36h

3.2 Performance Rating

The performance rating of a Cyrix part gives an indication of how fast a Cyrix 6x86
operates as compared to comparable devices. For more information visit our web address
www.cyrix.com. The correspondence between core frequency, bus frequency and
Performance (P) rating is shown in the table below. The plus sign (+) indicates that
testing has shown that the performance of the device was actually higher than its stated P
rating. The device name in Table 2-2 below should be used by the BIOS for display during
boot-up and in BIOS setup screens or utilities.

TABLE 2-2. 6X86 PERFORMANCE RATINGS

DEVICE TYPE DEVICE NAME FREQUENCY (MHZ)
CORE BUS

6x86 6x86-P90™" 80 40
6x86-P120™ 100 50

6x86-P133™ 110 55

6x86-P150™ 120 60

6x86-P166" 133 66

6x86-P200™ 150 75

6x86L 6x86L-P90™ 80 40
6x86L-P120™ 100 50

6x86L-P133™ 110 55

6x86L-P150™ 120 60

6x86L-P166™ 133 66

6x86L-P200™ 150 75

Preliminary



6x86 BIOS Writer’s Guide Cyrix Confidential

3.3 Determining 6x86 Operating Frequency

Determining the operating frequency of the CPU is normally required for correct
initialization of the system logic. Typically, a software timing loop with known instruction
clock counts is timed using legacy hardware (the 8254 timer/counter circuits) within the
PC. Once the operating frequency of the 6x86’s core is known, DIRO bits (2:0) can be
examined to calculate the bus operating frequency.

Careful selection of instructions and operands must be used to replicate the exact clock
counts detailed in the Instruction Set Summary in the 6x86 Data Book. An example code
sequence for determining the 6x86’s operating frequency is detailed in Appendix B and
Appendix C. The core loop uses a series of five IDIV instructions within a LOOP
instruction. IDIV was chosen because it is an exclusive instruction meaning that it
executes in the 6x86 x pipeline with no other instruction in the y pipeline. This allows for
more predictable execution times as compared to using non-exclusive instructions.

The 6x86 instruction clock count for IDIV varies from 17 to 45 clocks for a doubleword
divide depending on the value of the operands. The code example in the appendices uses
“0” divided by “1” which takes only 17 clocks to complete. The LOOP instruction clock
count is 1. Therefore, the overall clock count for the inner loop in this example is 86
clocks.

3.4 CPUID Instruction

The CPUID instruction is disabled following reset to improve compatibility with existing
software. It can be enabled by setting the CPUIDEN bit in configuration register CCR4. It
is recommend that all BIOS vendors include a CPUID enable/disable field in the CMOS
setup to allow the end user to enable the CPUID instruction. CPUID must default to
disabled and remain disabled unless enabled by the end user.

The CPUID instruction, opcode OFA2h, provides information indicating Cyrix as the
vendor and the family, model, stepping, and CPU features. Additional documentation on
the CPUID instruction and how alternate CPUs execute this instruction can be found in
the Pentium Processor User’s Manual, Volume 3, page 25-62; Pentium Processor User’s
Manual, Volume 1, Page 3-7; and Intel’s application note AP-485.

The EAX register provides the input value for the CPUID instruction. The EAX register is
loaded with a value to indicate what information should be returned by the instruction.

Following execution of the CPUID instruction with an input value of “0” in EAX, the EAX,
EBX, ECX and EDX registers contain the information shown in Figure 2-1. EAX contains
the highest input value understood by the CPUID instruction, which for the 6x86 is “1”.
EBX, ECX and EDX contain the vendor identification string “CyrixInstead”.

Following execution of the CPUID instruction with an input value of “1” loaded in EAX,
EAX[15:0] will contain the value of 053x. EDX bit [0] contains a “1” indicating that an
FPU is on chip.

Preliminary 8



6x86 BIOS Writer’s Guide Cyrix Confidential

swi tch (EAX)
{

case (0):
EAX
EBX :
EDX :
ECX :
br eak

69 72 79 43
73 6e 49 78
64 61 65 74

itrt tyt T CoF/
ot xto*/

~ N~

* % X
2]
=)

case (1):
EAX[ 7: 0] 3xh
EAX[ 15: 8] 05h
EDX[0] :=1 /* 1=FPU Built In, 0=No FPU */
br eak

defaul t:
EAX, EBX, ECX, EDX : Undefi ned
}

Figure 2-1. Information Returned by CPUID Instruction

3.5 EDX Value following Reset

Some CPU detection algorithms may use the value of the CPU’s EDX register following
reset. The 6x86’s EDX register contains the data shown below following a reset initiated
using the RESET pin:

EDX[31:16] = undefined
EDX[15:8] = 05h
EDX[7:0] = 3x

The value in EDX does not identify the vendor of the CPU. Therefore, EDX alone cannot
be used to determine if a Cyrix CPU is present. However, BIOS should preserve the
contents of EDX so that applications can use the EDX value when performing a user-
defined shutdown (e.g. a reset performed with data OAh in the Shutdown Status byte
(Index OFh) of the CMOS RAM Map).

3.6 6x86 Configuration Register Index Assignments

On-chip configuration registers are used to control the on-chip cache, system management
mode and other 6x86 unique features.

3.7 Accessing a Configuration Register

Access to the configuration registers is achieved by writing the index of the register to 1/0
port 22h. 1/O port 23h is then used for data transfer. Each I/O port 23h data transfer
must be preceded by an 1/0O port 22h register index selection, otherwise the second and
later 1/0 port 23h operations are directed off-chip and produce external I/O cycles. Reads
of I/0O port 22h are always directed off-chip. Appendix D contains example code for
accessing the 6x86 configuration registers.

Preliminary 9




6x86 BIOS Writer’s Guide Cyrix Confidential

3.8 6x86 Configuration Register Index Assignments

Table 3-1 lists the 6x86 configuration register index assignments. After reset,
configuration registers with indexes CO-CFh and FC-FFh are accessible. In order to
prevent potential conflicts with other devices which may use ports 22 and 23h to access
their registers, the remaining registers (indexes 00-BFh, DO-FBh) are accessible only if the
MAPEN(3-0) bits in CCRS3 are set to 1h. With MAPEN(3-0) set to 1h any access to an
index in the 00-FFh range does not create external I/0O bus cycles. Registers with indexes
CO-CFh, FC-FFh are accessible regardless of the state of the MAPEN bits. If the register
index number is outside the CO-CFh or FC-FFh ranges, and MAPEN is set to Oh, external
I/0 bus cycles occur.

Table 3-1 lists the MAPEN values required to access each 6x86 configuration register. The
configuration registers are described in more detail in the following sections.

Preliminary 10



6x86 BIOS Writer’s Guide

TABLE 3-1 CONFIGURATION REGISTER INDEX ASSIGNMENTS

Cyrix Confidential

REGISTER WIDTH
INDEX REGISTER NAME ACRONYM | (BITS) | MAPEN(3-0)
00h-BFh Reserved -
COh Configuration Control O CCRO 8 X
Cilh Configuration Control 1 CCR1 8 X
C2h Configuration Control 2 CCR2 8 X
C3h Configuration Control 3 CCR3 8 X
C4h-Céh Address Region 0 ARRO 24 X
C7h-C9h Address Region 1 ARR1 24 X
CAh-CCh Address Region 2 ARR2 24 X
CDh-CFh Address Region 3 ARR3 24 X
DOh-D2h Address Region 4 ARR4 24 1h
D3h-D5h Address Region 5 ARR5 24 1h
D6h-D8h Address Region 6 ARR6 24 1h
D9h-DBh Address Region 7 ARR7 24 1h
DCh Region Configuration 0 RCRO 8 1h
DDh Region Configuration 1 RCR1 8 1h
DEh Region Configuration 2 RCR2 8 1h
DFh Region Configuration 3 RCR3 8 1h
EOh Region Configuration 4 RCR4 8 1h
Elh Region Configuration 5 RCR5 8 1h
E2h Region Configuration 6 RCR6 8 1h
E3h Region Configuration 7 RCR7 8 1h
E4h-E7h Reserved -
E8h Configuration Control 4 CCR4 8 1h
ESh Configuration Control 5 CCR5 8 1h
EAh-FDh Reserved -
FEh Device Identification O DIRO 8
FFh Device Identification 1 DIR1 8

X = Don’ t Care

The 6x86 configuration registers can be grouped into four areas:

Configuration Control Registers (CCRs)

Address Region Registers (ARRS)
Region Control Registers (RCRs)

Device Identification Registers (DIRS)

CCR bits independently control 6x86 features. ARRs and RCRs together define regions of
memory with specific attributes. DIRs are used for CPU detection as discussed earlier in
Chapter 2. All bits in the configuration registers are initialized to zero following reset
unless specified otherwise. The appropriate configuration register bit settings vary

Preliminary

11



6x86 BIOS Writer’s Guide Cyrix Confidential

depending on system design. Recommendations for optimal settings for a typical PC
environment are discussed in Chapter 4.

3.9 Configuration Control Registers (CCRO-5)

3.9.1 Configuration Control Register O (CCRO)

There are six CCRs in the 6x86 which control the cache, power management and other
unique features. The following paragraphs describe the CCRs and associated bit definitions
in detail.

BIT 7 BIT 6 BITS BIT 4 BIT 3 BIT 2 BIT1 BITO

Reserved Reserved Reserved Reserved Reserved Reserved NC1 Reserved

TABLE 3-2. CCRO BIT DEFINITIONS

BIT BIT DESCRIPTION
NAME NO.
NC1 1 If set, designates 640KBytes -1MByte address region as non-cacheable.

3.9.2 Configuration Control Register 1 (CCR1)

BIT 7 BIT 6 BITS BIT 4 BIT 3 BIT 2 BIT1 BITO

SM3 Reserved Reserved [ NO_LOCK Reserved SMAC | USE_SMI Reserved

TABLE 3-3. CCR1 BIT DEFINITIONS

BIT BIT DESCRIPTION
NAME NO.
SM3 7 If set, designates Address Region Register 3 for SMM address space.
NO_LOCK 4 If set, all bus cycles are issued with the LOCK# pin negated except page

table accesses and interrupt acknowledge cycles. Interrupt acknowledge
cycles are executed as locked cycles even though LOCK# is negated.
With NO_LOCK set, previously non-cacheable locked cycles are executed
as unlocked cycles and therefore, may be cached. This results in higher
CPU performance. See the section on Region Configuration Registers
(RCR) for more information on eliminating locked CPU bus cycles only in
specific address regions.

SMAC 2 If set, any access to addresses within the SMM address space access system
management memory instead of main memory. SMI# input is ignored
while SMAC is set. Setting SMAC=1 allows access to SMM memory
without entering SMM. This is useful for initializing or testing SMM
memory.

USE_SMI 1 If set, SMI# and SMIACT# pins are enabled.
If clear, SMI# pin is ignored and SMIACT# pin is driven inactive.

Preliminary 12



6x86 BIOS Writer’s Guide Cyrix Confidential

3.9.3 Configuration Control Register 2 (CCR2)

BIT 7 BIT 6 BITS BIT 4 BIT 3 BIT 2 BIT1 BITO

USE_SUSP Reserved Reserved WPR1 SUSP_HLT LOCK_NW SADS Reserved

TABLE 3-4. CCR2 BIT DEFINITIONS

BIT NAME BIT DESCRIPTION
NO.

USE_SUSP 7 If set, SUSP# and SUSPA# pins are enabled.
If clear, SUSP# pin is ignored and SUSPA# pin floats.

These pins should only be enabled if the external system logic
(chipset) support them.

WPR1 4 If set, designates that any cacheable accesses in the 640 KBytes-
1MByte address region are write-protected. With WPR1=1, any
attempted write to this range will not update the internal cache.

SUSP_HLT 3 If set, execution of the HLT instruction causes the CPU to enter low
power suspend mode. This bit should be used cautiously since the
CPU must recognize and service an INTR, NMI or SMI to exit the
“HLT initiated” suspend mode.

LOCK_NW 2 If set, the NW bit in CRO becomes read only and the CPU ignores
any writes to this bit
SADS 1 If set, the CPU inserts an idle cycle following sampling of BRDY#

and prior to asserting ADS#.

Preliminary 13



6x86 BIOS Writer’s Guide Cyrix Confidential

3.9.4 Configuration Control Register 3 (CCR3)

BIT 7 BIT 6 BITS BIT 4 BIT 3 BIT 2 BIT1 BITO

MAPEN3 | MAPEN2 | MAPEN1 | MAPENO | Reserved LINBRST | NMI_EN [ SMI_LOCK

TABLE 3-5. CCR3 BIT DEFINITIONS

BIT NAME BIT DESCRIPTION
NO.

MAPEN(3-0) 7-4 If set to 0001 binary (1h), all configuration registers are accessible.

If clear, only configuration registers with indexes CO-CFh, FEh and
FFh are accessible.

LINBRST 2 If set, the 6x86 will use a linear address sequence when performing
burst cycles.

If clear, the 6x86 will use a “1+4” address sequence when
performing burst cycles. The “1+4” address sequence is compatible
with the Pentium’s burst address sequence.

NMI_EN 1 If set, NMI interrupt is recognized while in SMM. This bit should
only be set while in SMM, after the appropriate NMI interrupt service
routine has been setup.

SMI LOCK 0 If set, the CPU prevents modification of the following SMM

B configuration bits, except when operating in SMM:

CCR1 USE_SMI, SMAC, SM3

CCR3 NMI_EN

ARR3 Starting address and block size.

Once set, the SMI_LOCK bit can only be cleared by asserting the
RESET pin.

Preliminary 14



6x86 BIOS Writer’s Guide Cyrix Confidential

3.9.5 Configuration Control Register 4 (CCR4)

BIT 7 BIT 6 BITS BIT 4 BIT 3 BIT 2 | BIT1 | BITO

CPUIDEN Reserved Reserved | DTE_EN | Reserved IORT(2-0)

TABLE 3-6. CCR4 BIT DEFINITIONS

BIT BIT DESCRIPTION
NAME NO.
CPUIDEN 7 If set, bit 21 of the EFLAG register is write/readable and the CPUID

instruction will execute normally.

If clear, bit 21 of the EFLAG register is not write/readable and the
CPUID instruction is an invalid opcode.

DTE_EN 4 If set, the Directory Table Entry cache is enabled.

IORT(2-0) 2-0 Specifies the minimum number of bus clocks between 1/0O accesses (1/0
recovery time). The delay time is the minimum time from the end of
one 1/O cycle to the beginning of the next (i.e. BRDY# to ADS# time).

0Oh =1 clock

1h = 2 clocks

2h = 4 clocks

3h = 8 clocks

4h = 16 clocks

5h = 32 clocks (default value after RESET)
6h = 64 clocks

7h = no delay

Preliminary 15



6x86 BIOS Writer’s Guide Cyrix Confidential

3.9.6 Configuration Control Register 5 (CCR5)

BIT 7 BIT 6 BITS | BIT4 BIT 3 BIT 2 BIT1 BITO

Reserved | Reserved | ARREN LBR1 Reserved | Reserved SLOP WT_ALLOC

TABLE 3-7. CCR5 BIT DEFINITIONS

BIT NAME BIT DESCRIPTION
NO.

ARREN 5 If set, enables all Address Region Registers (ARRS). If clear, disables the
ARR registers. If SM3 is set, ARR3 is enabled regardless of the ARREN
setting.

LBR1 4 If set, LBA# pin is asserted for all accesses to the 640KBytes - 1MByte

address region. See section 4.3 for more information on
enabling/disabling LBA# for specific address regions.

SLOP 1 If set, the LOOP instruction is slowed down to allow programs with
poorly written software timing loops to function correctly. If clear, the
LOORP instruction executes in one clock.. This bit is only availabe in
6x86 CPU’s with DIR1 of 17h through 21h.

WT_ALLOC 0 If set, new cache lines are allocated for both read misses and write
misses. If clear, new cache lines are only allocated on read misses.

3.10 Address Region Registers (ARRO-7)

The Address Region Registers (ARRS) are used to define up to eight memory address
regions. Each ARR has three 8-bit registers associated with it which define the region
starting address and block size. Table 3-6 below shows the general format for each ARR
and lists the index assignments for the ARR’s starting address and block size.

The region starting address is defined by the upper 12 bits of the physical address. The
region size is defined by the BSIZE(3-0) bits as shown in Table 3-7. The BIOS and/or its
utilities should allow definition of all ARRs. There is one restriction when defining the
address regions using the ARRs. The region starting address must be on a block size
boundary. For example, a 128KByte block is allowed to have a starting address of OKBytes,
128KBytes, 256KBytes, and so on.

Preliminary 16



6x86 BIOS Writer’s Guide

TABLE 3-8. ARRX INDEX ASSIGNMENTS

Cyrix Confidential

ADDRESS STARTING ADDRESS REGION
REGION BLOCK SIZE
REGISTER
A31-A24 A23-A16 Al15-A12 BSIZE(3-0)
BITS (7-0) BITS (7-0) BITS (7-4) BITS (3-0)
ARRO C4h C5h Céh
ARR1 C7h C8h Coh
ARR2 CAh CBh CCh
ARR3 CDh CEh CFh
ARR4 DOh D1h D2h
ARR5 D3h D4h D5h
ARR6 D6h D7h D8h
ARR7 D9h DAh DBh
TABLE 3-9. BSIZE(3-0) BIT DEFINITIONS
BSIZE(3-0) ARR(0-6) ARR7
REGION SIZE REGION SIZE

Oh Disabled Disabled

1h 4 KBytes 256 KBytes

2h 8 KBytes 512 KBytes
3h 16 KBytes 1 MByte

4h 32 KBytes 2 MBytes

5h 64 KBytes 4 MBytes

6h 128 KBytes 8 MBytes

7h 256 KBytes 16 MBytes

8h 512 KBytes 32 MBytes

9h 1 MByte 64 MBytes

Ah 2 MBytes 128 MBytes

Bh 4 MBytes 256 MBytes

Ch 8 MBytes 512 MBytes
Dh 16 MBytes 1 Ghytes
Eh 32 MBytes 2 Ghytes
Fh 4 GBytes 4 GBytes

Preliminary

17



6x86 BIOS Writer’s Guide Cyrix Confidential

3.11 Region Control Registers (RCRO-7)

The RCRs are used to define attributes, or characteristics, for each of the regions defined by
the ARRs. Each ARR has a corresponding RCR with the general format shown below.

BIT 7 BIT 6 BITS BIT 4 BIT 3 BIT 2 BIT1 BITO

Reserved Reserved NLB WT WG WL WWO RCD/RCE

Note: RCD is defined for RCRO-RCR6. RCE is defined for RCR7 only.

TABLE 3-10. RCR BIT DEFINITIONS

BIT NAME BIT DESCRIPTION
NO.
RCD 0 Applicable to RCR(0-6) only. If set, the address region specified by the
corresponding ARR is non-cacheable.
RCE 0 Applicable to RCR7 only. If set, the address region specified by ARR7

is cacheable and implies that address space outside of the region
specified by ARR7 is non-cacheable.

WWO0 1 If set, weak write ordering is enabled for the corresponding region.
WL 2 If set, weak locking is enabled for the corresponding region.
WG 3 If set, write gathering is enabled for the corresponding region.
WT 4 If set, write through caching is enabled for the corresponding region.
NLB 5 If set, LBA# is negated for the corresponding region.

3.11.1 Detailed Description of RCR Attributes

Region Cache Disable (RCD)

Setting RCD=1 defines the corresponding address region as non-cacheable. RCD prevents
caching of any access within the specified region. Additionally, RCD implies that high
performance features are disabled for accesses within the specified address region. Bus
cycles issued to memory addresses within the specified region are single cycles with the
CACHE# pin negated. If KEN# is asserted for a memory access within a region defined
non-cacheable by RCD, the access is not cached.

Region Cache Enable (RCE)

Setting RCE=1 defines the corresponding address region as cacheable. RCE is applicable
to ARR7 only. RCE in combination with ARR7, is intended to define the Main Memory
Region. All memory outside ARR7 is non-cacheable when RCE is set. This is intended to
define all unused memory space as non-cacheable. If KEN# is negated for an access
within a region defined cacheable by RCE, the access is not cached.

Preliminary 18



6x86 BIOS Writer’s Guide Cyrix Confidential

Weak Write Ordering (WWO)

Setting WWO=1 enables weak write ordering for the corresponding address region. Weak
Write Ordering allows the 6x86 to retire writes out of sequence to the internal cache only.
External write cycles always occur in sequence (strongly ordered). WWO is only applicable
to memory regions that have been cached and designated as write-back. WWO should
never be enabled for memory mapped 1/0O.

Weak Locking (WL)

Setting WL=1 enables weak locking for the corresponding address region. With WL
enabled, all bus cycles are issued with the LOCK# pin negated except for page table
accesses and interrupt acknowledge cycles. WL negates bus locking so that previously
non-cacheable cycles can be cached. Typically, XCHG instructions, instructions preceded
by the LOCK prefix, and descriptor table accesses are locked cycles. Setting WL allows the
data for these cycles to be cached.

Weak Locking (WL) implements the same function as NO_LOCK except that NO_LOCK
is a global enable. The NO_LOCK bit of CCR1 enables weak locking for the entire address
space, whereas the WL bit enables weak locking only for specific address regions.

Write Gathering (WG)

Setting WG=1 enables write gathering for the corresponding address region. With WG
enabled, multiple byte, word or dword writes to sequential addresses that would normally
occur as individual write cycles are combined and issued as a single write cycle. WG
improves bus utilization and should be used for memory regions that are not sensitive to
the “gathering”. WG can be enabled for both cacheable and non-cacheable regions.

Write Through (WT)

Setting WT=1 defines the corresponding address region as write-through instead of write-
back. Any system ROM that is allowed to be cached by the processor should be defined as
write-through.

LBA# Not Asserted (NLB)

Setting NLB=1 prevents the 6x86 from asserting the Local Bus Access (LBA#) output pin
for accesses to that address region. The RCR regions in combination with the LBA# pin
can be used to define local bus address regions. The LBA# signal can then used by
external hardware as an indication that accesses are occurring to the local bus.

3.11.2 Attributes for Accesses Outside Defined Regions

If an address is accessed that is not in a region defined by the ARRs and ARR7 is defined
with RCE=1, the following conditions apply:

The memory access is not cached regardless of the state of KEN#.

Preliminary 19



6x86 BIOS Writer’s Guide

The LBA# pin is asserted.
Writes are not gathered.

Strong locking occurs.

Strong write ordering occurs.

3.11.3 Attributes for Accesses in Overlapped Regions

Cyrix Confidential

If two defined address regions overlap (including NC1 and LBR1) and conflicting attributes
are specified, the following attributes take precedence:

The LBA# pin is asserted.
Write-back is disabled.
Writes are not gathered.

Strong locking occurs.

Strong write ordering occurs.

The overlapping regions are non-cacheable.

Example 1: Overlapping Regions with Conflicting Cacheability

Since the CCRO bit NC1 affects cacheability, a potential exists for conflict with the ARR7
main memory region which also affects cacheability. This overlap in address regions with
conflicting cacheability is a typical configuration for a PC environment. In this case, NC1
takes precedence over the ARR7/RCE setting because non-cacheability always takes

precedence. For example, for the following settings:

NC1=1

ARR7 = 0-16 Mbytes

RCR7 bit RCE = 1,

the 6x86 caches accesses as shown in Table 3-11.

TABLE 3-11. CACHEABILITY FOR EXAMPLE 1

ADDRESS CACHEABLE COMMENTS
REGION
0 to 640 KBytes Yes ARR7/RCE setting.
640 KBytes- 1 MByte No NC1 takes precedence
over ARR7/RCE setting.
1 MByte - 16 MBytes Yes ARR7/RCE setting.
16 MBytes - 4 GBytes No Default setting.

Preliminary

20



6x86 BIOS Writer’s Guide Cyrix Confidential

Example 2:  Overlapping Regions with Conflicting Local Bus Designations

Since the CCR5 bit LBR1 affects LBA# assertion, a potential exists for conflict with the
RCR NLB bit, which also affects LBA# assertion. Preferably, regions/bits are defined such
that there are no conflicting regions. However, in cases where there is a region overlap the
LBR1 bit takes precedence over NLB. For example, for the following settings:

LBR1=1

ARRO = 0-16 Mbytes

RCRO NLB=1
The 6x86 LBA# pin behaves as shown in Table 3-12.

TABLE 3-12. LBA# BEHAVIOR FOR EXAMPLE 2

ADDRESS LBA# BEHAVIOR COMMENTS
REGION
0 to 640 KBytes Negated ARRO/NLBO setting.
640 KBytes- 1 MByte Asserted LBR1 takes precedence
over ARRO/NLBO setting.
1 MByte - 16 MBytes Negated ARRO/NLBO setting.
16 MBytes - 4 GBytes Asserted Default setting.

3.11.4 Attributes for Accesses with Conflicting Signal Pin Inputs

The characteristics of the regions defined by the ARRs and the RCRs may also conflict with
indications by hardware signals (i.e., KEN#, WB/WT#). The following paragraphs
describe how conflicts between register settings and hardware indicators are resolved.

Non-cacheable Regions and KEN#

Regions which have been defined as non-cacheable (RCD=1) by the ARRs and RCRs may
conflict with the assertion of the KEN# input. If KEN# is asserted for an access to a
region defined as non-cacheable, the access is not cached. Regions defined as non-
cacheable by the ARRs and RCRs take precedence over KEN#. The NCL1 bit also takes
precedence over the KEN# pin. If NC1 is set, any access to the 640k-1 Mbyte address
region with KEN# asserted is not cached.

Write-through Regions and WB/WT#

Regions which have been defined as write-through (WT=1) may conflict with the state of
the WB/WT# input to the 6x86. Regions defined as write-through by the ARRs and RCRs
remain write-through even if WB/WT# is asserted during accesses to these regions. The
WT bit in the RCRs takes precedence over the state of the WB/WT# pin in cases of
conflict.

Preliminary 21



6x86 BIOS Writer’s Guide Cyrix Confidential

4. Recommended 6x86 Configuration Register Settings

4.1 PC Memory Model

Table 4-1 defines the allowable attributes for a typical PC memory model. Actual
recommended configuration register settings for an example PC system are listed in
Appendix F.

TABLE 4-1. PC MEMORY MODEL

ADDRESS | ADDRESS WEAK WEAK WRITE WRITE- NOTES
SPACE RANGE CACHEABLE WRITES LOCKS | GATHERED THROUGH
DOS Area 0-9FFFFh Yes Yes No Yes No
Video A0000- No No No Yes No Note 1
Buffer BFFFFh
Video C0000- Yes No No No Yes Note 2
ROM C7FFFh
Expansion C8000h- No No No No No
Card/ROM DFFFFh
Area
System EO00Oh- Yes No No No Yes Note 2
ROM FFFFFh
Extended 100000h- Yes Yes No Yes No
Memory Top of
Main
Memory
Unused/P Top of No No No No No Note 3
CI MMIO Main
Memory-
FFFF
FFFFh
Notes:
1. Video Buffer Area

A non-cacheable region must be used to enforce strong cycle ordering in this area and to prevent
caching of video RAM. The video ram area is sensitive to bus cycle ordering. The VGA controller

can perform logical operations which depend on strong cycle ordering (found in Windows 3.1

code). To guarantee that the 6x86 performs strong cycle ordering, a non-cacheable area must be

established to cover the video ram area.

Video performance is greatly enhanced by gathering writes to Video RAM. For example, video

performance benchmarks have been found to use REP STOSW instructions that would normally
execute as a series of sequential 16-bit write cycles. With WG enabled, groups of four 16-bit write

cycles are reduced to a single 64-bit write cycle.

2. Video ROM and System ROM

Preliminary

22




6x86 BIOS Writer’s Guide Cyrix Confidential

Caching of the Video and System ROM areas is permitted, but is normally non-cacheable because
NC1 is set. If these areas are cached, they must be cached as write-through regions. Benchmarking
on 6x86 systems in a Windows environment has shown no benefit to caching these ROM areas.
Therefore, it is recommended that these areas be set as non-cacheable using the NC1 bit in CCRO.

3. Top of Main Memory-FFFFFFFFh (Unused/PCl Memory Space)

Unused/PCI Memory Space immediately above physical main memory must be defined as non-
cacheable to ensure proper operation of memory sizing software routines and to guarantee strong
cycle ordering. Memory discovery routines must occur with cache disabled to prevent read sourcing
from the write buffers. Also, PCl memory mapped 1/O cards that may exist in this address region
may contain control registers or FIFOs that depend on strong cycle ordering.

The appropriate non-cacheable region must be established using ARR7. For example, if 32 Mbytes
(0O000000-1FFFFFFh) are installed in the system, a non-cacheable region must begin at the 32
Mbyte boundary (2000000h) and extend through the top of the address space (FFFFFFFFh). This
is accomplished by using ARR7 (Base = 0000 0000h, BSize=32Mbytes) in combination with
RCE=1.

4.2 General Recommendations

4.2.1 Main Memory

Memory discovery routines should always be executed with the L1 cache disabled. By
default, L1 caching is globally disabled following reset because the CD bit in Control
Register O (CRO) is set. Always ensure the L1 cache is disabled by setting the CD bit in
CRO or by programming an ARR to “4 Gbyte cache disabled” before executing the memory
discovery routine. Once BIOS completes memory discovery, ARR7 should be
programmed with a base address of 0000000h and with a “Size” equal to the amount of
main memory that was detected.

The intent of ARR7 is to define a cacheable region for main memory and simultaneously
define unused/PCI space as non-cacheable. More restrictive regions are intended to
overlay the 640k to 1Mbyte area. Failure to program ARR7 with the correct amount of
main memory can result in:

incorrect memory sizing by the operating system eventually resulting in failure,

PCI devices not working correctly or causing system hangs,

low performance if ARR7 is programmed with a smaller size than the actual amount
of memory.

If the granularity selection in ARR7 does not accommodate the exact size of main memory,
unused ARRs can be used to fill-in as non-cacheable regions. All unused/PCI memory
space must always be set as non-cacheable.

4.2.2 1/0 Recovery Time (IORT)

Back-to-back 1/O writes followed by 1/0 reads may occur too quickly for a peripheral to
respond correctly. Historically, programmers have inserted several “JMP $+2” instructions
in the hope that code fetches on the bus would create sufficient recovery time. The 6x86’s

Preliminary 23



6x86 BIOS Writer’s Guide Cyrix Confidential

Branch Target Buffer (BTB) typically eliminates these external code fetches, thus the
previous method of guaranteeing 1/O recovery no longer applies. For the 6x86, one
approach to dealing with this issue is to insert I/O write cycles to a dummy port. 1/O write
cycles in the form “out imm,reg” are easily implemented as shown below:

OLD IORT NEW IORT
out 21h, al out 21h, al
jnp $+2 out 80h, al
jnp $+2 out 80h, al
jnp $+2 out 80h, al
in al,2lh in al,21lh

The 6x86 incorporates an alternative method for implementing 1/0 recovery time using
user selectable delay settings. See the section on 6x86 IORT settings below.

4.2.3 BIOS Creation Utilities

BIOS creation utilities or setup screens must have the capability to easily define and modify
the contents of the 6x86 configuration registers. This allows OEMs and integrators to
easily configure these register settings with the values appropriate for their system design.

4.2.4 Branch Target Buffer (BTB)

In the default state, the 6x86 BTB stores target addresses for near change-of-flow
instructions (COFs) only. To enhance the performance of the 6x86, the BTB should be
configured to store target addresses for both near and far COFs. This feature is controlled
through reserved configuration and test registers. Sample code used to enable this feature
is listed in Appendix G.

4.3 Recommended Bit Settings

4.3.1 NC1

The NC1 bit in CCRO is a predefined non-cacheable region from 640k to 1MByte. The
640k to 1MByte region should be non-cacheable to prevent L1 caching of expansion cards
using memory mapped i/o (MMIO). Setting NC1 also implies that the video BIOS and
system BIOS are non-cacheable. Experiments with both the 6x86 and Pentium show that
modern operating systems and benchmark applications (such as WinStone95) are
unchanged when caching/non-caching system and video BIOS.

Suggested setting:
NC1 =1

Preliminary 24



6x86 BIOS Writer’s Guide Cyrix Confidential

4.3.2 NO_LOCK

NO_LOCK enables weak locking for the entire address space. NO_LOCK may cause failures for software
that requires locked cycles in order to operate correctly.

Suggested setting:
NO_LOCK =0

4.3.3 LOCK_NW

Once set, LOCK_NW prohibits software from changing the NW bit in CRO. Since the definition of the NW
bit is the same for both the 6x86 and the Pentium, it is not necessary to set this bit.

Suggested setting:
LOCK_NW =0

4.3.4 WPR1

WPR1 forces cacheable accesses in the 640k to 1MByte address region to be write-
protected. If NC1 is set (recommended setting), all caching is disabled from 640k to
1MByte and WPR1 is not required. However, if ROM areas within the 640k-1MByte
address region are cached, WPR1 should be set to protect against errant self-modifying
code.

Suggested setting:
WPR1 = 0 unless ROM areas are cached

4.3.5 LINBRST

Linear Burst (LINBRST) allows for an alternate address sequence for burst cycles. The
system logic, L2 cache and motherboard design must also support this feature in order for
the 6x86 to function properly with this bit enabled. Linear Burst provides higher
performance than the default “1+4” burst sequence, but should only be enabled if the
system is designed to support it.

If the system does support linear burst, BIOS should enable this feature in both the system
logic and the 6x86 prior to enabling the L1 cache. Appendix H includes sample code that
can be used to detect if the L2 cache supports linear burst mode.

Suggested setting:
LINBRST = 0 unless linear burst supported by the system

4.3.6 MAPEN

When set to 1h, the MAPEN bits allow access to all 6x86 configuration registers including
indexes outside the COh-CFh and FCh-FFh ranges. MAPEN should be set to 1h only y to

Preliminary 25



6x86 BIOS Writer’s Guide Cyrix Confidential

access specific configuration registers and then should be cleared after the access is
complete.

Suggested setting:
MAPEN(3-0) = 0 except for specific configuration register accesses

4.3.7 I0ORT

I/0O recovery time specifies the minimum number of bus clocks between /O accesses for
the CPU's bus controller. The system logic typically also has a built-in method to select
the amount of I/O recovery time. It is preferred to configure the system logic with the 1/0
recovery time setting and set the CPU for a minimum 1/O recovery time delay.

Suggested setting:
IORT(2-0) =7

4.3.8 DTE_EN

DTE_EN allows Directory Table Entries (DTE) to be cached on the 6x86. This provides a
performance improvement for some applications that access and modify the page tables
frequently.

Suggested setting:
DTE_EN =1

4.3.9 CPUIDEN

When set, the CPUIDEN bit enables the CPUID instruction and CPUID detection. By
default, the CPUID instruction is disabled (CPUIDEN=0). In the default state, the
CPUID opcode OFA2 causes an invalid opcode exception. Additionally, the CPUID bit in
the EFLAGS register cannot be modified by software. When enabled the CPUID opcode is
enabled and the CPUID bit in the EFLAGS can be modified. The CPUID instruction can
then be called to inspect the type of CPU present.

CPUID is disabled by default to guarantee compatibility with popular software that
improperly uses CPUID and misidentifies the 6x86. Misidentification of the processor can
eventually result in runtime failures.

Suggested setting:
CPUIDEN =0

Preliminary 26



6x86 BIOS Writer’s Guide Cyrix Confidential

4.3.10 WT_ALLOC

Write Allocate (WT_ALLOC) allows L1 cache write misses to cause a cache line allocation.
This feature improves the L1 cache hit rate resulting in higher performance especially for
Windows applications.

Suggested setting:
WT_ALLOC =1

4.3.11 SLOP

Slow Loop (SLOP) slows down all versions of the LOOP instruction. Poorly written
software timing loops can fail as CPU speeds increase. This should not normally be
enabled but can be used to determine if a program failure is caused by the LOOP
instruction being much faster than on a slower CPU on which a program was written and
tested.

This bit is only availabe in 6x86 CPU’s with DIR1 of 17h through 21h.

Suggested setting:
SLOP =0

4.3.12 LBR1

LBR1when set causes the LBA# (Local Bus Access) pin to be asserted for accesses between
640k to 1MByte. This feature is not used for most systems.

Suggested setting:
LBR1 =0

4.3.13 ARREN

The ARREN bit enables/disables all eight ARRs. When ARREN is cleared (default), the
ARRs can be safely programmed. Most systems will need to use at least one address
region register (ARR). Therefore, ARREN should always be set after the ARRs and RCRs
have been initialized.

Suggested setting:
ARREN =1 after initializing ARRO-ARR7, RCRO-RCR7

4.3.14 ARR7 and RCR7

Address Region 7 (ARR7) defines the Main Memory Region (MMR). This region specifies
the amount of cacheable main memory and it’s attributes. Once BIOS completes memory
discovery, ARR7 should be programmed with a base address of 0000000h and with a

Preliminary 27



6x86 BIOS Writer’s Guide Cyrix Confidential

“Size” equal to the amount of main memory installed in the system. Memory accesses
outside this region are defined as non-cacheable to ensure compatibility with PCI devices.

Suggested setting:
ARR7 Base Addr = 0000 0000h

ARR7 Block Size = amount of main memory
RCR7 RCE =1
RCR7 WWO =1
RCR7 WL =0
RCR7 WG =1
RCR7 WT =0
RCR7 NLB =0

If the granularity selection in ARR7 does not accommodate the exact size of main memory,
unused ARRs can be used to fill-in as non-cacheable regions (RCD = 1) as shown in Table
4-2. All unused/PCl memory space must always be set as non-cacheable.

TABLE 4-2. ARR SETTINGS FOR VARIOUS MAIN MEMORY SIZES

MEM ARR7 ARRG ARR5 ARR4
SIZE | BASE | SIZE | BASE SIZE BASE SIZE BASE SIZE
B) | (HEX) | (MB) | (ex) (MB) (HEX) (MB) (HEX) (MB)
8 0 8

16 0 16

24 0 32 | 01800000 8

32 0 32

40 0 64 | 03000000 16 0280 0000 8

48 0 64 | 03000000 16

64 0 64

72 0 128 || 0600 0000 32 0500 0000 16 0480 0000 8

80 0 128 || 0600 0000 32 0500 0000 16

96 0 128 || 0600 0000 32

128 0 128

160 0 256 | OE00 0000 32 | 0C00 0000 32 | 0A00 0000 32

192 0 256 | OE00 0000 32 | 0Cco0 0000 32

256 0 256

4.3.15 SMM Features

The 6x86 supports SMM mode through the use of the SMI# and SMIACT# pins, and a
dedicated memory region for the SMM address space. SMM features must be enabled prior
to servicing any SMI interrupts. The following paragraphs describe each of the SMM
features and recommended settings.

Preliminary 28




6x86 BIOS Writer’s Guide Cyrix Confidential

USE_SMI

Prior to servicing SMI interrupts, SMM-capable systems must enable the SMM pins by
setting USE_SMI=1. The SMM hardware pins (SMI# and SMIACT#) are disabled by
default.

SMAC

If set, any access to addresses within the SMM address space accesses SMM memory
instead of main memory. Setting SMAC allows access to the SMM memory without
servicing an SMI. Additionally, SMAC allows use of the SMINT instruction (software SMI).
This bit may be enabled to initialize or test SMM memory but should be cleared for normal
operation.

SM3 and ARR3

Address Region Register 3 (ARR3) can be used to define the System Management Address
Region (SMAR). Systems that use SMM features must use ARR3 to establish a base and
limit for the SMM address space.

Only ARR3 can be used to establish the SMM region.

Typically, SMAR overlaps normal address space. RCR3 defines the attributes for both the
SMM address region AND the normal address space. If SMAR overlaps main memory,
write gathering should be enabled for ARR3. If SMAR overlaps video memory, ARR3
should be set as non-cacheable and write gathering should be enabled.

NMI_EN

The NMI_EN bit allows NMI interrupts to occur within an SMI service routine. If this
feature is enabled, the SMI service routine must guarantee that the IDT is initialized
properly to allow the NMI to be serviced. Most systems do not require this feature.

SMI_LOCK

Once the SMM features are initialized in the configuration registers, they can be
permanently locked

using the SMI_LOCK bit. Locking the SMM related bits and registers prevents
applications from tampering with these settings. Even if SMM is not implemented, setting
SMI_LOCK in combination with SMAC=0 prevents software SMIs from occurring.

Once SMI_LOCK is set, it can only be cleared by a processor RESET. Consequently,
setting SMI_LOCK makes system/BIOS/SMM debugging difficult. To alleviate this
problem, SMI_LOCK must be implemented as a user selectable "Secure SMI

Preliminary 29



6x86 BIOS Writer’s Guide Cyrix Confidential

(enable/disable)" feature in CMOS setup. If SMI_LOCK is not user selectable, it is
recommended that SMI_LOCK = 0 to allow for system debug.

Suggested settings for systems not using SMM:

USE_SMI =0
SMAC =0
SM3 =0
ARR3 = may be used as normal address region register
SMI_LOCK =0
NMI_EN =0

Suggested settings for systems using SMM:

USE_SMI =1
SMAC =0
SM3 =1

ARR3 Base Addr = as required
ARR3 Block Size = as required
SMI_LOCK =0
NMI_EN =0

4.3.16 Power Management Features

SUSP_HALT

Suspend on Halt (SUSP_HLT) permits the CPU to enter a low power suspend mode when
a HLT instruction is executed. Although this provides some power management
capability, it is not optimal.

Suggested setting:
SUSP_HALT =0

USE_SUSP

In addition to the HLT instruction, low power suspend mode may be activated using the
SUSP# input pin. In response to the SUSP# input, the SUSPA# output indicates when
the 6x86 has entered low power suspend mode. Systems that support the 6x86's low
power suspend feature via the hardware pins must set USE_SUSP to enable these pins.

Suggested setting:
USE_SUSP = 0 unless hardware suspend pins supported

Preliminary 30



6x86 BIOS Writer’s Guide Cyrix Confidential

5. Programming Model Differences

5.1 Instruction Set

The 6x86 supports the 486 instruction set. Pentium extensions for virtual mode,
additional debug capability, and internal counters are not supported.

5.2 Configuring Internal 6x86 Features

The 6x86 supports configuring internal features through I/O ports. The 6x86 does not
support configuring internal features through the WRMSR and RDMSR instructions which
are treated as invalid opcodes.

5.3 INVD and WBINVD Instructions

The INVD and WBINVD instructions are used to invalidate the contents of the internal
and external caches. The WBINVD instruction first writes back any modified lines in the
cache and then invalidates the contents. It ensures that cache coherency with system
memory is maintained regardless of the cache operating mode. Following invalidation of
the internal cache, the CPU generates special bus cycles to indicate that external caches
should also write back modified data and invalidate their contents.

On the 6x86, the INVD functions identically to the WBINVD instruction. The 6x86
always writes all modified internal cache data to external memory prior to invalidating the
internal cache contents. In contrast, the Pentium invalidates the contents of its internal
caches without writing back the “dirty” data to system memory. The Pentium behavior
can potentially result in a data incoherency between the CPU’s internal cache and system
memory.

5.4 Control Register O (CRO) CD and NW Bits

The CPU’s CRO register contains, among other things, the CD and NW which are used to
control the on-chip cache. CRO, like the other system level registers, is only accessible to
programs running at the highest privilege level. Table 5-1 lists the cache operating modes
for the possible states of the CD and NW bits.

The CD and NW bits are set to one (cache disabled) after reset. For highest performance
the cache should be enabled in write-back mode by clearing the CD and NW bits to 0.
Sample code for enabling the cache is listed in Appendix E. To completely disable the
cache, it is recommended that CD and NW be set to 1 followed by execution of the
WBINVD instruction. The 6x86 cache always accepts invalidation cycles even when the
cache is disabled. Setting CD=0 and NW=1 causes a General Protection fault on the
Pentium, but is allowed on the 6x86 to globally enable write-through caching.

Preliminary 31



6x86 BIOS Writer’s Guide Cyrix Confidential

TABLE 5-1. CACHE OPERATING MODES

CD [ NW OPERATING MODES

1 1 Cache disabled.

Read hits access the cache.

Read misses do not cause line fills.

Write hits update the cache and system memory.
Write hits change exclusive lines to modified.
Shared lines remain shared after write hit.

Write misses access memory.

Inquiry and invalidation cycles are allowed.

System memory coherency maintained.

1 0 Cache disabled.

Read hits access the cache.

Read misses do not cause line fills.

Write hits update the cache.

Only write hits to shared lines and write misses update system memory.
Write misses access memory.

Inquiry and invalidation cycles are allowed.

System memory coherency maintained.

0 1 Cache enabled in Write-through mode.
Read hits access the cache.

Read misses may cause line fills.

Write hits update the cache and system memory.
Write misses access memory.

Inquiry and invalidation cycles are allowed.

System memory coherency maintained.

0 0 Cache enabled in Write-back mode.
Read hits access the cache.

Read misses may cause line fills.

Write hits update the cache.

Write misses access memory and may cause line fills if write allocation is enabled.
Inquiry and invalidation cycles are allowed.

System memory coherency maintained.

Preliminary 32



6x86 BIOS Writer’s Guide Cyrix Confidential

7. Appendix

7.1 Appendix A - Sample Code: Detecting a Cyrix CPU

assune cs:_ TEXT
public _iscyrix
TEXT segnment byte public ‘ CODE

rhkkkhkkhkkhkhkhkkhkhkhhhkhhhkhhhkhhhkhhhkhkhhkhkhhkhhhkhhk kA hkhkhhkhkhhkhkhhhkhhhkhhkhkhkhkhkhkhkhkhkhkhk kK

Function: int iscyrix ()

; Pur pose: Determine if Cyrix CPUis present
; Techni que: Cyrix CPUs do not change flags where flags
; change in an undefined manner on ot her CPUs
; I nput s: none
; Qut put : ax == 1 Cyrix present, 0 if not
;*******************************************************************
_iscyrix proc near
. 386
xor ax, ax ; clear ax
sahf ; clear flags, bit 1 always=1 in flags

mv ax, 5
nov bx, 2

div bl ; operation that doesn't change fl ags
| ahf get flags
cnp ah, 2 check for change in flags

j ne not _cyrix
nov ax, 1

flags changed, therefore NOT CYR X
TRUE Cyrix CPU

jmp  done
not _cyri x:
mv ax, 0 ; FALSE NON- Cyrix CPU
done:
ret
_iscyrix endp
_TEXT ends
end

Preliminary 33



6x86 BIOS Writer’s Guide Cyrix Confidential

7.2 Appendix B - Sample Code: Determining CPU MHz

assunme cs:_ TEXT
public _cpu_speed
_TEXT segnent para public ' CODE

commrent ~
Rk I Sk S R R R S I kR S o S R R Sk Sk b S R Rk S I S b S R S
Functi on: unsi gned | ong _cpu_speed( unsigned int )
"C' style caller
Pur pose: calculate elapsed tinme req'd to conplete a loop of ID Vs
Techni que: Use the PC s high resolution timer/counter chip (8254)

to neasure el apsed tine of a software |oop consisting
of the IDIV and LOOP instruction.
Definitions: The 8254 receives a 1.19318M4 cl ock (0.8380966 usec).
One "tick" is equal to one rising clock edge applied
to the 8254 clock input.

| nput s: ax = no. of |oops for cpu_speed_| oop
Ret ur ns: ax = no. of 1.19318M#z clk ticks req'd to conplete a | oop
dx = state of 8254 out pin
EE IR S S Sk R R R I S S S R S S S Rk b O Sk R R S S S S S R S S S
PortB EQU 061h
Tinmer_Crl_Reg EQU 043h
Tinmer_2_Data EQU 042h
st k$dx EQU 10 ;dx register offset
st k$ax EQU 14 ;dx register offset
st ack$ax EQU [ bp] +st k$ax
st ack$dx EQU [ bp] +st k$dx
Loop_Count EQU [ bp+16] +4
. 386p
_cpu_speed proc near
pushf ;save interrupt flag
pusha ; pushes 16 bytes on stack
nov bp, sp ;init base ptr
cli ;disable interrupts
e di sable clock to timer/counter 2
in al, PortB
and al, Ofeh
out 80h, al ; 1/ O recovery tine
out PortB, a
nov di, ax

——————— initialize the 8254 counter to "0", known val ue

nov al , 0bOh

out Timer_Ctrl _Reg, al ;control word to set channel 2 count
out 80h, al ; 1/ O recovery tine

nov al,0f fh

out Timer 2 Data, al ;init count to O, Ish

out 80h, al ; 1/ O recovery tine

out Tinmer 2 Data, al ;init count to O, nsb

——————— get the nunber of loops fromthe caller's stack
nov cx, Loop_Count ; 1 oop count

——————— | oad dividend & divisor, clk count for IDV depend on operands!

Preliminary 34



6x86 BIOS Writer’s Guide Cyrix Confidential

xor edx, edx ; di vi dend EDX: EAX
xor eax, eax
nov ebx, 1 ;divi sor

jemm-- - enable the timer/counter's clock. Begin tinmed portion of test!

xchg ax, di ; save ax for nonent
or al, 1
out PortB, al ;enable timer/counter 2 clk
xchg ax, di ;restore ax
L this is the core | oop.
ALI GN 16
cpu_speed_| oop:
idiv ebx
idiv ebx
idiv ebx
idiv ebx
idiv ebx
| oop cpu_speed_I| oop
L disable the timer/counter's clk. End tined portion of test!
nov ax, di
and al, OFEH
out PortB, a

Peem - send | atch status conmmand to the tiner/counter

nov al, 0c8h ;latch status and count
out Timer_Crl_Reg, al
out 80h, al ; 1/ O recovery tine
R L read status byte, and count value "ticks" fromthe tiner/cntr
in al, Timer_2 Data ;read status
out 80h, al ; 1/ O recovery tine
nov dl, a
and dx, 080h
shr dx, 7
in al, Tinmer_2 Data ;read LSB
out 80h, al ; 1/ O recovery tine
nov bl, a
in al, Timer_2 Data ; read MVSB
out 80h, al ; 1/ O recovery tine
nov bh, a
not bx ;invert count

P send command to clear the tiner/counter

nov al , Ob6h

out Timer_Crl_Reg, al ;cl ear channel 2 count
out 80h, al ; 1/ O recovery tine

xor al, al

out Timer 2 Data, al ;set count to 0, Isb
out 80h, al ; 1/ O recovery tine

out Tinmer 2 Data, al ;set count to 0, nsb

R L put return values on the stack for the caller

mov [ bp+st k$ax], bx

nmov [ bp+st k$dx], dx

popa

popf ;restores interrupt flag

Preliminary 35



6x86 BIOS Writer’s Guide Cyrix Confidential

ret
_cpu_speed endp
. 8086
_TEXT  ENDS
END

Preliminary 36



6x86 BIOS Writer’s Guide

Cyrix Confidential

7.3 Appendix C - Example CPU Type and Frequency Detection

Program

/* hkhkhkkhkhhhhhhhdhhhdhhhdhdhddhddhddhhddhhdhhdhhddhhddhhddhhdddhddrdhddrdhddrddrddrddxdsd

functio
Pur pose

Ret ur ns

Require
ml_st
id.as
cl ock

WCP 8/ 22/ 95
denonstr at e:

identification code

n: mai n()
: a driver programto
CPU detection
CPU core frequency in Mz.
: 0 if successful
d source code nodul es
at.c mai n() nodule (this file)
m cpu
.asm cpu

timng | oop

Conpile and Link instructions for Borland C++ or equivalent:
bcc mlL_stat.c id.asmcl ock.asm

hkhkhkkhhkhkhhhhhhhhhdhdhdhhhddhddhdhdhhdhhddhhdrhdhhddrhddrdhddrdhddrdhddrdddrdddrddrddrdixx */

/* include

directives */

#i ncl ude <stdio. h>
/* constants */
#define TTPS 1193182 //high speed Tiner Ticks per second in Mz
#define MHZ 1000000 //nunber of clocks in 1 Mz
#defi ne LOOP_COUNT 0x2000 //core loop iterations
#defi ne RUNS 10 /I nunber of runs to average
#define DI VS 5 /1# of IDIV instructions in the core |oop
#define 6x86 I DIV _CLKS 17 /1 known cl ock counts for 6x86
#define 6x86_LOOP_CLKS 1
#define P54 _| DIV_CLKS 46 /1 known cl ock counts for P54
#define P54_LOOP_CLKS 7
/* prototypes */
unsigned int iscyrix( void); //detects cyrix cpu
unsi gned | ong cpu_speed( unsigned int ); //core timng | oop
mai n() {
/* declarations */
unsi gned char uc_cyrix_cpu = 0; /1 Cyrix cpu? 0=no, 1l=yes
unsi gned i nt i_runs = 0; /I nunber of runs to avg
unsi gned i nt ui _idiv, ui_loop = 0; /linstruction clk counts
unsi gned | ong ul _tt cnt, ul _tt _sum= 0; //timer tick counts, sum
unsi gned i nt ui _core_loop_cntr = LOOP_COUNT; //core loop iterations
fl oat f mt = 0; //measured tinmer ticks
fl oat f total core clks = 0; //cal cul ated core cl ocks
fl oat f total time = O; // measured tine
fl oat f _mhz = 0; /1 mhz

[* *xx*kkxxkkx datermine if Cyrix CPU IS present ****xxkxkxksrx */

/| dect ec
uc_cyrix

t if Cyrix CPUis present
_cpu = iscyrix();

/1display a nsg
i f(uc_cyrix_cpu) printf("\nCyrix CPU present! ");
else printf("\nCyrix CPU not present! ");

/1 1=cyrix, 0=non-cyrix

/* EE R S b R S S S I I determ ne CPU 'vhz R S S S SRR kS O */

/ | count

# of hi speed "tiner ticks" to conplete several runs of core |oop

Preliminary 37



6x86 BIOS Writer’s Guide Cyrix Confidential

for (i_runs =0 ; i_runs < RUNS ; i_runs++) {

ul _tt_cnt = cpu_speed( ui_core_loop_cntr );

ul _tt _sum+= ul tt _cnt; //sum them all together
}//end for

[/ compute the avg nunber of high speed "tiner ticks" for the several runs
f mt = ul _tt _sum/ RUNS; [/ comput e the average

/linitialize variables with the "known" clock counts for a 6x86 or P54
i f(uc_cyrix_cpu)ui _idiv=6x86_IDIV_CLKS; else ui_idiv=P54_ID V_CLKS;
i f(uc_cyrix_cpu)ui _| oop=6x86_LOOP_CLKS; el se ui_I|oop=P54_LOOP_CLKS;

//determ ne the total nunmber of core clocks. (5 idivs are in the core |oop)
f total _core_clks = (float)ui _core_loop_cntr * (ui_idiv * DIVS + ui_|loop);

//the time it took to conplete the core | oop can be determined by the
/lratio of nmeasured timer ticks(mt) to timer ticks per second(TTPS).
f total time =f ntt / TTPS;

//frequency can be found by the ratio of core clks to the total tine.
f mhz f total core clks / f _total tineg;
f mhz f mhz /| Mz //convert to Mz

/1display a nsg
printf("The core clock frequency is: 98.1f MHz\n\n",f_nhz);

return(0);

} //end main

Preliminary 38



6x86 BIOS Writer’s Guide Cyrix Confidential

7.4 Appendix D - Sample Code: Programming 6x86 Configuration
Registers

7.4.1 Reading/Writing Configuration Registers
Sample code for setting NC1=1 in CCRO.

pushf ;save the if flag

cli ;disable interrupts

nov al, OcOh ;set index for CCRO

out 22h, al ; sel ect CCRO register

in al, 23h ; READ current CCRO val ue READ
nov ah, al

or ah, 2h ; MODI FY, set NC1 bit MODI FY
nov al, OcOh ;set index for CCRO

out 22h, al ; sel ect CCRO register

nov al, ah

out 23h, al ; WRI TE new val ue to CCRO VWRI TE
popf ;restore if flag

7.4.2 Setting MAPEN

Sample code for setting MAPEN=L1 in CCR3 to allow access to all the configuration
registers.

pushf ;save the if flag

cli ;disable interrupts

nov al, 0c3h ; set index for CCR3

out 22h, al ; sel ect CCR3 register

in al, 23h ;current CCR3 val ue READ
nov ah, al

and ah, OFh ; cl ear upper nibble of ah

or ah, 10h ; MODI FY, set MAPEN( 3-0) MODI FY
nov al, 0c3h ;set index for CCR3

out 22h, al ; sel ect CCR3 register

nov al, ah

out 23h, al ; WRI TE new val ue to CCR3 WRI TE
popf ;restore if flag

Preliminary 39



6x86 BIOS Writer’s Guide Cyrix Confidential

7.5 Appendix E - Sample Code: Controlling the L1 Cache

7.5.1 Enabling the L1 Cache

;reading/witing CRO is a privileged operation

nov eax, cr0

and eax, 09fffffffh ;clear the CD=0, NWE1l bits to enable wite-back

nov cr0, eax ;control register O wite

wbi nvd ;optional, by flushing the L1 cache here it
;ensures the L1 cache is conpletely clean

7.5.2 Disabling the L1 Cache

nov eax, cr0

or eax, 060000000h ;set the CD=1, NW1 bits to disable caching
nov cr0, eax ;control register O wite

wbi nvd

7.6 Appendix F - Example Configuration Register Settings

Below is an example of optimized 6x86 settings for a 16 MByte system with PCI. Since
SMI address space overlaps Video RAM at AO0O0Oh, WG is set to maintain the settings of
the underlying region ARRO. If SMI address space overlapped system memory at 30000h,
only WWO and WG would be set. If SMI address space overlapped FLASH ROM at
EO000h, only RCD would be set. Power management features are disabled in this example
system.

Preliminary 40



6x86 BIOS Writer’s Guide

Cyrix Confidential

REGISTER BIT(S) SETTING DESCRIPTION
CCRO NC1 1 Disables caching from 640k-1MByte.
CCR1 USE_SMI 1 Enables SMI# and SMIACT# pins.
SMAC 0 Always clear SMAC for normal operation.
NO_LOCK 0 Enforces strong locking for compatibility.
SM3 1 Sets ARR3 as SMM address region.
CCR2 LOCK_NW 0 Locking NW bit not required.
SUSP_HLT 0 Power management not required for this system.
WPR1 0 ROM areas not cached, so WPR1 not required.
USE_SUSP 0 Power management not required for this system.
CCR3 SMI_LOCK 0 Locks SMI feature as initialized.
NMI_EN 0 Servicing NMlIs during SMI not required.
LINBRST 0 Linear burst not supported in this system.
MAPEN(3-0) 0 Always clear MAPEN for normal operation.
CCR4 IORT(2-0) 7 Sets IORT to minimum setting.
DTE _EN 1 Enables DTE cache.
CPUIDEN 0 Disables CPUID instruction for compatibility.
CCR5 WT_ALLOC 1 Enables write allocation for performance.
SLOP 0 SLOP not enabled
LBR1 0 LBA# pin not required.
ARREN 1 Enables all ARRs.
REGISTER BIT(S) SETTING DESCRIPTION
ARRO BASE ADDR A0000h Video buffer base address = A000Oh.
BLOCK SIZE 6h Video buffer block size = 128KBytes.
RCRO RCD 1 Caching disabled for compatibility. Caching also
WWO 0 disabled via NC1.
WL 0
WG 1 Write gathering enabled for performance.
WT 0
NLB 0
ARR1 BASE ADDR C0000h Expansion Card/ ROM base address = C0000h.
BLOCK SIZE 7h Expansion Card/ROM block size = 256KBytes.
RCR1 RCD 1 Caching disabled for compatibility. Caching also
WWO 0 disabled via NC1.
WL 0
WG 0
WT 0
NLB 0
ARR3 BASE ADDR AQ000Ch SMM address region base address
BLOCK SIZE 4h SMM address space = 32 KBytes
RCR3 RCD 1 Caching disabled due to overlap with video buffer.
WWO 0
WL 0 Write gathering enabled due to overlap with video
WG 1 buffer.
WT 0
NLB 0
ARR7 BASE ADDR Oh Main memory base address = Oh.
BLOCK SIZE 7h Main memory size = 16 MBytes.
RCR7 RCE 1 Caching, weak write ordering, and write gathering

Preliminary

41



6x86 BIOS Writer’s Guide

WwWO
WL
WG
WT
NLB

enabled for main memory.

Cyrix Confidential

ARR(2,4-6)

RCR(2,4-6)

BASE ADDR
BLOCK SIZE
RCD

WwWO

WL

WG

WT

NLB

eNeolololNolNoNolNoel leNoll el

ARR(2,4-6) disabled (default state).

RCR(2,4-6) not required due to corresponding
ARRs disabled (default state).

7.7 Appendix G - Sample Code: Enabling FAR COFs in BTB

Below is sample code that enables FAR COFs in the BTB.

Preliminary

42



6x86 BIOS Writer’s Guide Cyrix Confidential

je-m---- First, set MAPEN to allow access to all 6x86 configuration regs

mov al, 0C3h ; READ
out 22h, al
in al, 23h
nmov ah, al ; MODI FY
or ah, 10h
and ah, 1Fh
nov al, 0C3h ; WRI TE
out 22h, al
nov al, ah
out 23h, al
jemm-- Enabl e 6x86 test register opcodes
nov al, 30h ; READ debug register (index 30)
out 22h, al
in al, 23h
nov ah, al ; MODI FY enabl e tr opcodes
or ah, (1 SHL 6)
nov al, 30h ; WRI TE debug reg (i ndex 30h)
out 22h, al
nov al, ah
out 23h, al
L Enabl e FAR COF hits (index 5, bit 1)
nov ebx, 28h ; select index 5
; novtr _trl, ebx
db OFh, 26h, 0CBh ;opcodes for nmovtr _trl, ebx
; novtr _eax, tr2 ; READ test reg index 5
db OFh, 24h, 0DOh ;opcodes for nmovtr _eax, _tr2
and eax, OFFFFFFFDh ; MODI FY
; nmovt r _tr2, eax ; WRI TE new data to test reg 5
db OFh, 26h, 0DOh ;opcodes for novtr _tr2, eax
R L Di sabl e 6x86 Test Regi ster Opcodes
nov al, 30h ; READ debug reg DBRO
out 22h, a
in al, 23h
nov ah, al ; MODI FY
and ah, OBFh ;turn off tr opcodes
nov al, 30h ; WRI TE
out 22h, a
nov al, ah
out 23h, a
L Restore mapen to default stat
nov al, 0C3h ; READ
out 22h, a
in al, 23h
nov ah, al ; MODI FY
and ah, OFh ;turn of f mapen

Preliminary 43



6x86 BIOS Writer’s Guide Cyrix Confidential

nov al, 0C3h :VWRI TE
out 22h, al
nov al, ah
out 23h, al

7.8 Appendix H - Sample Code: Detecting L2 Cache Burst Mode

ConnEnt~***************************************************

Pur pose: This exanpl e programdetects if Linear Burst node is
support ed.
Met hod: There are 3 conponents (CPU, chipset, SPBSRAM that mnust

agree on the burst order. The CPU and chi pset burst order
can be determ ned by inspecting each devices internal
configuration registers. The SPBSRAM devi ces nust be
interrogated by a software algorithm (below) to determne if
"linear burst node" is enabl ed/ supported correctly.

Algorithm If the CPU and chi pset are programmed for |inear burst node
and a known data pattern exists in nmenory, then the burst
node of the SPBSRAMs can be determ ned by performng a cache
line burst and then inspect the data pattern.

Application: In this exanple, the SIS5511 chipset is used with a Cyrix
6x86 CPU.

Environnent: This programis a REAL node DOS programto serve as an
exanpl e. This exanpl e al gorithmshould be ported to Bl C5

VMr ni ngs: For sinplicity, this programdoes not check to see which
CPU or chipset is present. Nor, does this programcheck to
see if the CPUis in REAL node before executing protected
instructions. A so, this programblindly overwites data in

t he 8000h segnent of menory.
R Ik b S I I I R R Rk I R Ik I S IR Ik i S R R Rk S S o i

;version nbl10 ;renove comrent for TASM
DOSSEG
. MODEL SMALL
. DATA
Msg 1 db 0dh, Oah

db "1 SLI NBUR EXE checks if L2 SRAMs are in Linear Burst
Mode or'

db 0dh, Oah

db ' Toggl e Burst node for the SIS5511 chipset and the
6x86 CPU."

db 0dh, Oah

db "%
Msg 2 db 0dh, Oah

db ' Test conpl ete!”’

db 0dh, Oah

db "%
Msg_vyes db 0dh, Oah

db 'The L2 SRAMs correctly operate in |inear burst
node. '

db 0dh, Oah

db )
Msg_no db 0dh, Oah

db "ERROR  The L2 SRAMs incorrectly operate in linear
burst node.’

db 0dh, Oah

db )

Preliminary 44



6x86 BIOS Writer’s Guide

i ndex_port
dat a_port
pci _i ndex
. STACK 100h
. CODE
. STARTUP
. 486P
pushf
cli
R di spl ay
nov
nov
nov
nov
i nt
e di sabl e
call
out
joemm--- setup a

node tests and

; known pattern

dw 0CF8h
dw 0CFCh
dd 80000000h

a nsg using a DOS cal

;set nmeg_1l start

;print string function

ax, seg Msg_1

ds, ax

dx, of fset Msg_1

ah, 9h

21h ;DOS i nt
the L1 internal cache
cache of f

80h , al

Cyrix Confidential

;wite to PC diagnostic port

work space in main nmenory to perform burst
initialize the menory work space with a

ds
ds
ds

ds

; choose segnent 8000h

:[0], al ;init menory | ocations

-[8h], al
:[10n] , al

:[18h], al

enabl e the Si S5511 chipset's |inear burst node
;al=reg to read
; READ al =reg contents

push ds

nov ax, 8000h
nov ds, ax

nov al , 0001h
nov byte ptr

i nc al

nov byte ptr

i nc al

nov byte ptr

i nc al

nov byte ptr
pop ds

nov al, 51h
cal | r_pci_reg
nov ah, a

or ah, 8

nov al, 51h
cal | w_pci _reg

; MDD FY set

 WRITE

enable the CPU s |inear burst node
en_l i nbr st

cal |

enabl e L1 caching

cal |

bur st several

;in the
push
nov

cache _on

L2 cache,
ds

ax, 8000h
ds, ax

al,byte ptr ds:[0h]

linbrst bit

cache lines so that address 80000h is

but NOT in the L1 cache.

; choose seg nment 8000h

al,byte ptr ds:[1000h] ;fill

Preliminary

:line fill to L2 and L1

L1 line 1

45



6x86 BIOS

Writer’s Guide

nov al,byte ptr ds:[2000h] ;fill L11line 1
nov al,byte ptr ds:[3000h] ;fill L11line 1
nov al,byte ptr ds:[4000h] ;fill L1 line 1,

; how 80000h exists only in the
; L2 cache (not in L1 anynore!)

burst a cache line so that address 80000h will hit

: the L2 cache SRAMs

nov al,byte ptr ds:[8h]
;*¥**x% Byrst Pattern T able *****
:if SRAME in linear burst node, then
L1 will be filled with:

; byte data
;0 01lh
;8 02h
;10 03h
; 18 04h

;if SRAME in toggle burst nmode, then
;L1 will be filled with:

; byte data
;0 03h
;8 02h
;10 01lh
; 18 04h

Conpare the cache line to the Burst Pattern Tabl e
; above. The signature of the pattern will determ ne
;if the burst was linear or toggle.

; check byte ds:[10] in the L1
nov al, byte ptr ds:[10h]
;it will bealif toggle node

cnp al, 3h
;it will be a3 if linear node
pop ds
j nz not | i near
is_linear:
nov dx, of fset Msg_yes ; SRAMs in |inear burst node
j mp over _not
not |inear:
nov dx, of fset Msg_no ;SRAMs in toggle burst node
over _not :
wbi nvd

------ disable L1 internal cache

cal | cache of f

restore chipset to toggle node burst order

nov al, 51h ;al=re g to read

cal | r_pci_reg ; READ al =reg contents
nov ah, al

and ah, Of 7h s MODIFY clr linbrst bit
nov al, 51h

cal | wW_pci _reg ; WRI TE

cal | dis_|inbrst

restore L1 caching
cal | cache _on

Preliminary

Cyrix Confidential

46



6x86 BIOS Writer’s Guide Cyrix Confidential

done:
popf
R di splay a nmsg using a DCS cal
nmov ax, seg Msg_2
nov ds, ax
nov ah, 9h ;print string function
i nt 21h ; DCS i nt
R return to the operating system
EXT

Commnt ~kkkkhkkhkhhkhkkkkhkhkhhhhkhkhkhkhhhhhhhhdhdhhhdhdhhdhdhhhdrrhhdhhhrrrkhk

function r_pci_reg

pur pose read the pci register at the index in al
i nput s al = the index of the pci register
returns al=the data read fromthe pci reg

hhkhhkhkhkkhkhkhhhhdhhdhdhhhhhhkhdhdhhhhdhhhddhhhhdhhddhhhdddddhhrdrddddx

r_pci_reg PROC

pushf

push eax

push dx

cli

nov dx, i ndex_port
and eax, OFFh

or eax, pci _i ndex
out dx, eax

and al,3

nov dx, dat a_port
add dl,a

in al , dx

xchg al, bl ;preserve rtn val ue
nov eax, pci _i ndex
nov dx, i ndex_port
out dx, eax

pop dx

pop eax

popf

xchg al, bl

ret

r_pci _reg ENDP

Commnt ~kkkkhkkkhhkhkhkkkhkhhhhhkhkhkhkhhhhhhhhkhdhhhdhdhhddhhhdrrhhdhhhrrrkrd

function w_pci _reg

i nput s al = the index of the pci register
ah= the data to wite

out put s nmodi fies chipset registers directly

returns none

hhhkhkhkhkkhkhkhhhhhhhkhdhhhhhhhdhdhhhhdhkhddhhhhdhhddhhhdddddhhrdrdhdhdx

W_pci _reg proc

Preliminary 47



6x86 BIOS Writer’s Guide Cyrix Confidential

pushf

push eax

push bx

push dx

cli

nov bx, ax ; preserve input val ue(s)
nov dx, i ndex_port
and eax, OFFh

or eax, pci _i ndex
out dx, eax

and al,3

nov dx, dat a_port
add dl,a

nov al , bh ;recall data to wite
out dx, al

nov eax, pci _i ndex
nov dx, i ndex_port
out dx, eax

pop dx

pop bx

pop eax

popf

ret

w_pci _reg ENDP

Commnt ~kkkkhkkhkhhkhkkkkhkhkhhhhhkhkhkhhhhhhhhkhhhhdhdhkhdhdhhhdrdhrddhhrrrkrk

function en_| i nbr st

pur pose enabl e the 6x86 linbrst bit

i nput s none

out puts nmodi fies the 6x86 CPU registers directly
returns none

hhhkhkhkhkkhkhkhhhhhhhkhdhhhhhhkhdhdhhhhdhhddhhhdhdddhhhdddddhhhrrrdddhdx

en_linbrst PRCC

nov ax, 0C3C3h ;set LI NBRST
out 22h, al

in al , 23h

xchg ah, a

or ah, 4

out 22h, al

xchg ah, a

out 23h, al

ret

en_linbrst ENDP

Commnt ~kkkkkhkhhkhkkkkhkhkhhhhhkhkhkhhhhhhhhdhhhhdhdhkhdhdhhhdrrhhdhhhrrrkrk

function di s_|linbrst

pur pose di sable the 6x86 linbrst bit

i nput s none

out put's nmodi fies the 6x86 CPU registers directly
returns none

Preliminary 48



6x86 BIOS Writer’s Guide

hhkhkhkhkhkhkhkhhhhhhhkhdhhhhhhhdhdhhhhdhhddhhhhdhdddhhhdddddhhrdrdrddx

dis_linbrst PROC

nov ax, 0C3C3h

out 22h, al

in al , 23h

xchg ah, a

and ah, Of bh ;clear the linbrst bit
out 22h, al

xchg ah, a

out 23h, al

ret

dis_|inbrst ENDP

Commnt ~kkkkkhkhhkhkkkkhkhkhhhhhkhkhkhhhhhhhhkhhhhhdhkhdhdhhhdrrhhddhhrrrkrk

function cache_of f

pur pose di sables the L1 cache
i nput s none
returns none

hhkhhkhkhkkhkhkhhhhhhhdhdhhhhhhhdhdhhhhdhhddhhhhdhhddhhhdddddhhhrdrddddx

cache of f PRCC

pushf

push eax

cli

mov eax, crO
or eax, 60000000h
mov cr 0, eax
wbi nvd

jnp $+2

pop eax
popf

ret

cache of f ENDP

Commnt ~kkkkhkkhkhhkhkkkkhkhhhhhkhkhkhkhhhhhhhhdhhhhddhhdhdhhhdrdhhhddhhrrrkrd

function cache_on

pur pose enabl es the L1 cache
i nput s none
returns none

hhkhkhkhkhkkhkhkhhhhhhhkhdhhhhhhhdhdhhhhhhhddhhhhdhhddhhhdddddhhrdrdrdrdx

cache _on PRQCC

pushf

push eax

cli

mov eax, crO

and eax, 9FFFFFFFh
mov cr 0, eax

pop eax

popf

ret

cache _on ENDP

END

Preliminary

Cyrix Confidential

49



6x86 BIOS Writer’s Guide Cyrix Confidential

Preliminary 50



