

Introduction to
the iAPX286

February 1982

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

The following are trademarks of Inte'l Corporation and may only be used to identify Intel Products:

BXp, CREDIT, i, ICE, iCS, im , iMMX, Insite, Intel, intel, Intelevision,
Inteliec, iOSP, iRMX, iSBC, iSBX, Library Manager, MCS,
Megachassis, Micromainframe, Micromap, Multimodule,
Plug-A-Bubble, PROMPT, RMX/SO, System 2000 and UPI.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation .

• MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

(S'lNTEL CORPORATION, 1982

Intel Corporation
Literature Department SV3-3
3065 BowersAvenue
Santa Clara, CA 95051

TABLE OF CONTENTS

SECTION 1
INTRODUCTION . .. 1-1

SECTION 2
MANAGEMENT OVERVIEW OF THE iAPX 286

Summary of iAPX 286 Benefits .. 2-1

iAPX 286 Addresses Application Requirements
Protection of Software Investments .. 2-3
Increased Throughput ... 2-3
Product Flexibility and Upgradability .. 2-4
New Architecture for Simplified Software Development 2-5

Flexible Hardware Configurations
Numeric Data Processor ... 2-6
Multiprocessor Capabilities ... 2-6
System Support Circuits .. 2-7
Board Systems ... 2-7

Sample Applications
iAPX 86 System Upgrade .. 2-7
Multi-user Systems .. 2-8
Real-time Multitasking Systems ... 2-8
Multiprocessor Systems .. 2-8
Real-time High-performance Systems .. 2-8

Development Systems and Software
Inteliec™ Microcomputer Development Systems 2-9
Evaluation Software ... 2-9
Development Software ... 2-9
High-level Languages .. 2-9

Summary . .. 2-10

SECTION 3
TECHNICAL OVERVIEW OF THE iAPX 286

Basic Programming Model
Basic Register Model .. 3-1
Basic Data Types ... 3-3
Basic Addressing Modes ... 3-3

Direct Addressing ... 3-4
Indirect Addressing ... 3-5

Register Indirect Addressing ... 3-5
Based or Indexed Addressing .. 3-6
Based Indexed Addressing .. 3-7

iii

String Addressing ... 3-8
I/O Port Addressing ... 3-8
Address Mode Summary ... 3-8

Flag Operations ... 3-9
Basic Instruction Set ... 3-9

General-purpose Data Transfers .. 3-9
Arithmetic Instructions ... 3-9
Flag Instructions ... 3-10
Logic Instructions .. 3-10
Shift Instructions ... 3-11
Rotate Instructions ... 3-11
String Operations .. 3-11
Control Transfer Instructions ... 3-12

Conditional Transfer Instructions ... 3-12
Unconditional Transfer Instructions .. 3-12

High-level Instructions .. 3-13
Block I/O Instructions ... 3-13
Iteration Control Instructions ... 3-13
Translate Instruction ... 3-13
Array Bounds Check Instruction .. 3-13
Enter and Leave Instructions .. 3-13

Extended Capabilities
Extendea Register Model .. 3-15
Extended Data Types ... 3-15

Integer Data Types ... 3-15
Floating-point Data Types ... 3-15
Packed BCD Data Type .. 3-15

Extended Addressing Modes ... 3-16
Extended Numeric Instruction Set .. 3-17

Arithmetic Instructions .. 3-17
Comparison Instructions .. 3-17
Transcendental Instructions ... 3-17
Data Transfer Instructions ... 3-17
Constant Instructions ... 3-17

Advanced Programming Model
Segmentation of Memory .. 3-17
Pointer Data Types ... 3-18
Segment Registers ... 3-18
Interrupts ... 3-20
Two Modes: Real Address and Protected Virtual Address 3-20
Protected Virtual Address Mode .. 3-21

Full Register Set ... 3-22
Segment Registers in Protected Virtual Address Mode 3-22

iv

Descriptor Data Type ... 3-23
Descriptor Tables .. 3-24
Instructions in Protected Mode ... 3-26

Protection Concepts .. 3-28
The Need for Protection ... 3-28
iAPX 286 Protection Model .. 3-28
Segment Protection .. 3-29
Control Transfer Within a Task ... 3-30

Advanced Architectural Features ... 3-31
Interrupt and Trap Operations ... 3-31
Multitasking Support ... 3-32
Restartable Instructions ... 3-32
Virtual Memory .. 3-33
Recoverable Stack Faults ... 3-34
Pointer Verification ... 3-34
Multiprocessor Support ... 3-34
System Configurations ... 3-35

APPENDIX A
iAPX 286 INSTRUCTIONS

Data Transfer Instructions A-1
General-purpose Data Transfers .. A-1
Accumulator-specific Transfers .. A-1
Address Transfers ... A-1
Flag Register Transfers .. A-2

Arithmetic Instructions . .. A-2
Addition Instructions ... A-2
Subtraction Instructions .. A-2
Multiplication Instructions ... A-3
Division Instructions ... A-3

Logic Instructions A-4

String Instructions ... A-5

Control Transfer Instructions ... A-5
Conditional Transfer Instructions .. A-5
Unconditional Transfer Instructions .. A-5
Iteration Control Instructions .. A-6
Flag Operations ... A-7
Interrupt Instructions ... A-7

Procedure implementation Instructions A-8

v

Protected Virtual Address Mode Instructions A-9
Protection Control Instructions .. A-9
Protection Parameter Verification Instructions A-1 0

APPENDIXB
GLOSSARY ... 8-1

APPENDIXC
SAMPLE INSTRUCTION TIMINGS .. . C-1

vi

FIGURE
NUMBER

2-1
2-2
2-3
3-1

3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21a
3-21b
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30

TABLE
NUMBER

A-1
A-2

LIST OF FIGURES AND TABLES

FIGURE NAME

Four Levels of Protection .. 2-2
iAPX 286 Performance Comparison 2-3
Concurrent Processing Enhances Speed 2-4
Address Space of Real Address Mode and

Protected Virtual Address Mode 3-2
Program Registers of the Base Architecture 3-3
Immediate Addressing ... 3-4
Register Addressing .. 3-4
Direct Addressing ... 3-4
Register Indirect Addressing .. 3-5
Based Addressing .. 3-5
Accessing a Structure with Based Addressing 3-5
Indexed Addressing ... 3-6
Accessing an Array with Indexed Addressing 3-6
Based Indexed Addressing ... 3-7
Accessing a Stack Array with Based Indexed Addressing 3-7
String Addressing ... 3-8
I/O Port Addressing ... 3-8
Extended Register Set. ... 3-14
Extended Data Types .. 3-16
Address Pointer ... 3-19
Advanced Register Set ... 3-19
Segmented Memory Helps Structure Software 3-20
iAPX 86 Real Address Mode Address Calculation 3-21
Full Register Set ... 3-23
Flags and Machine Status Word Bit Functions 3-24
Loading the Explicit Cache .. 3-25
Descriptor Tables .. 3-26
Descriptor Table Registers .. 3-27
Four Privilege Levels ... 3-29
Control Transfers Within a Task 3-30
Control Transfers Between Tasks 3-31
Virtual Memory Operation ... 3-33
Numeric Data Processor Configuration 3-36
Multibus/Multiprocessor Configuration 3-37

TABLE NAME

Interpretation of Conditional Transfers A-6
Predefined Interrupt Vectors .. A-7

vii

Section 1 1
Introduction

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SECTION 1
INTRODUCTION

The iAPX 286 is a new YLSI microprocessor
system with exceptional capabilities for support­
ing large-system applications. Based on a new­
generation CPU (the Intel 80286), this powerful
microsystem is designed to support multi-user
reprogrammable and real-time multitasking ap­
plications. Its dedicated system support circuits
simplify system hardware; sophisticated hard­
ware and software tools reduce both the time and
the cost of product development.

The iAPX 286 micro system is a total-solution
approach that enables you to develop high­
speed, interactive, multi-user, multitasking­
and multiprocessor-systems more rapidly and
at costs lower than ever before.

• Reliability and system "up-time" are becom­
ing increasingly important in all applications.
Information must be protected from misuse or
accidental loss. The iAPX 286 includes a pro­
tection mechanism that continually monitors
application and operating system programs to
maintain a high degree of system integrity.

• The iAPX 286 provides a large address space to
support today's application requirements. Real
memory consists of up to 16 megabytes (224

bytes) of RAM or ROM. This large physical
memory enables the iAPX 286 to keep many
large programs and data structures in memory
simultaneously for high-speed access.

• For applications with dynamically changing
memory requirements such as multi-user busi­
ness systems, the iAPX 286 CPU provides on­
chip memory management and even virtual
memory support. On an iAPX 286-based sys­
tem, each user can have up to a gigabyte (230

bytes) of virtual address space. This large
address space virtually eliminates restrictions

1-1

on the number or size of programs which may
be part of the system.

• Large multi-user or real-time multitasking ap­
plications can use the advanced features and
high-speed operation of the iAPX 286 to reduce
response time for system users. Microcom­
puter systems servicing four or five simulta­
neous users may now be expanded to support
more than three times that number, and real­
time systems can respond in one-sixth the time
or less.

The iAPX 286 is instruction-set-compatible with
the iAPX 86 and the iAPX 88, ensuring that your
investments in existing iAPX 86 software are
well protected. This software, as well as an
extensive base of third party software written
for the iAPX 86 and 88, may be executed as-is
on the iAPX 286 to take advantage of its much
higher performance.

Upgrading iAPX 86 and 88 application pro­
grams to use the new memory management and
protection features of the iAPX 286 usually
requires only reassembly or recompilation.
(Some programs may require minor modifica­
tion.) This compatibility, along with strong sys­
tem support from Intel, reduces both the time
and the cost of software development. You can
bring new products to market quickly.

This Introduction to the iAPX 286 describes the
features and capabilities of the iAPX 286 micro­
system. Section 2, directed to management,
gives an overview of iAPX 286 capabilities.
Section 3 is directed to the system designer. It
discusses the features of the iAPX 286 in greater
detail to provide a working knowledge of its op­
eration. A glossary is included at the end of the
manual to define terminology describing the op­
eration of the iAPX 286.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I
I

I
I

I
I
I
I

Section 2
Management Overview
of the iAPX 286

2

SECTION 2
MANAGEMENT OVERVIEW

OF THE iAPX 286

Intel's iAPX 286 microsystem provides the most
capable and cost-effective solution for your
products. Memory protection, virtual memory,
and high throughput rates promote the design of
reliable multi-user and multitasking system
products.

The iAPX 286 is also software-compatible with
the world-standard iAPX 86 and 88 micro­
processors-you can take advantage of a rapidly
growing base of applications software to support
your products.

The complete family of support circuits simpli­
fies creation of hardware systems. Develop­
ment support tools from Intel also aid the design­
er in creating system hardware and software.

The iAPX 286 includes many features which
provide greater capability, reliability, and
throughput than previously available with
microprocessors. These features address the
needs of your markets in three key ways:

1. iAPX 286 memory protection provides
superior system reliability-a requirement
for multi-user and multitasking systems.

2. Built-in support for memory management and
virtual memory allows you to build flexible
and cost-effective systems, and build them
faster at less cost. The iAPX 286 enables a
system designer to use these features in a vari­
ety of ways to best fit the target application.

3. Applications software already written for the
iAPX 86 and 88 can be used to put iAPX 286
systems to work immediately.

SUMMARY OF
iAPX 286 BENEFITS

Greater reliability-An innovative total­
protection system not only isolates the operating
system from application programs, but also

2-1

protects application programs and data from
other programs. This protection gives unpar­
alleled software integrity and up-time in a micro­
processor-based system.

Higher performance-The iAPX 286 can ex­
ecute instructions up to six times faster than the
iAPX 86. As a result, new features and capabili­
ties can be included in your product.

Protection of software investment-Operating
in Real Address Mode, the iAPX 286 can use un­
modified programs from the iAPX 86 and 88,
while providing up to a six-fold increase in per­
formance over these processors. This compati­
bility iets you use existing software to develop
more powerful iAPX 286-based products.
Newer software may then take advantage of the
advanced iAPX 286 features available in Pro­
tected Virtual Address Mode. A major iAPX
286 advantage is that the designer can add these
enhanced features at any time to an iAPX 286-
based product without hardware modification.

More software flexibility-Users may custom­
ize an operating system without compromising
its integrity. Additionally, the architecture and
instruction set can be customized to the system
needs using CPU extension devices which add
new capabilities like high-speed floating-point
arithmetic.

Increased data access-The iAPX 286 supports
a 16-megabyte real memory space able to con­
tain many programs and data files simultaneous­
ly for immediate access. The iAPX 286 can also
provide as much as a gigabyte (230 bytes) of vir­
tual memory space per user for even greater
programming flexibility.

Decreased development costs-The features of
the iAPX 286 and the system development tools
from Intel reduce the time required to develop
new products. Intel provides a complete set of

MANAGEMENT OVERVIEW

hardware and software development tools in­
cluding high-level languages, singie-board com­
puters, in-circuit emulators, and networked de­
velopment systems to drastically reduce the time
and cost of product development. The extensive
iAPX 286 family of support circuits, memories,
and peripheral control circuits reduces the com­
plexity of hardware design.

iAPX 286 ADDRESSES
APPLICATION REQUIREMENTS

The iAPX 286 extends the capabilities of the
iAPX 86 and 88 processors to increase the power
and simplify the development of multi-user and
multitasking systems. The iAPX 286 directly
addresses the needs of these systems by increas­
ing address space, reducing system response
time, increasing system reliability, and reducing
software development costs.

System Reliability and Data Integrity-Never
before has there been a microprocessor with such
extensive and flexible software protection fea­
tures to keep systems up and running and to keep
data protected. For any application, a system
designer can structure the protection mechanism
to match the requirements of the product.

• Task isolation-All tasks are completely iso­
lated from interference by other tasks. As a re­
sult, users of an iAPX 286-based protected
computer system do not have to worry about
another user crashing the system or violating
the integrity of their programs and data.

• Operating system protection-The iAPX 286
protection mechanism provides up to four priv­
ilege levels within each task (see Figure 2-1).
The highest privilege level is reserved for the
operating system kernel, the most trusted
program in the system. Below the kernel
level, systems can be configured to include a
system service level, an applications service
level, and an application program level.
These hierarchical privilege levels encourage
structured operating system design which
makes operating systems simpler to implement
and easier to maintain.

• Controlled operating system access-The
transparent operation of the iAPX 286 protec­
tion mechanism saves the programmer from
writing special instructions to request operat­
ing system services. Quick but weII­
controlled access from an application program
to operating system service routines preserves
the integrity of the operating system as well as
the high-speed attributes of the CPU.

+--+----,1----+- os KERNEL

-+--+---+-- SYSTEM SERVICES

-f---+-- APPLICATION SERVICES

APPLICATIONS

EACH TASK WITHIN AN IAPX 286 SYSTEM MAY INCLUDE: UP TO FOUR
SEPARATE PRIVILEGE LEVELS FOR SERVICE AND APPLICATION PROGRAMS.

Figure 2-1. Four Levels of Protection

2-2

MANAGEMENT OVERVIEW

Protection of Software
Investments
Software is rapidly becoming the largest invest­
ment in any computer system. The iAPX 286
protects both current and future investments in
software. It offers two modes of operation
which are fully upward compatible with soft­
ware developed for the iAPX 86 and 88 proces­
sors. This feature not only benefits current
iAPX 86 and 88 users, but it also allows custom­
ers to select from the large base of existing third­
party software. Compatibility also extends to
include iAPX 86/20, 88/20 Numeric Data Pro­
cessor systems using the 80287 Numeric Proces­
sor extension.

Real Address Mode makes the iAPX 286 appear
exactly like an iAPX 86, while executing as
much as six times faster. This mode can provide
a major savings in software development costs
by enabling you to use programs developed for
the iAPX 86 and 88 without any modification.

1.0 --
.9

.8
PERFORMANCE .7
RELATIVE TO

.6 IAPX286

.s

.4

.3 ----- -r--

.2 - --- - --- -

.1

r
iAPX286 iAPX86 iAPX86
(10mHz) (10mHz) (SmHz)

THE iAPX 286 PERFORMS UP TO SIX TIMES FASTER
THAN EARLIER MICROPROCESSORS.

Figure 2.2 iAPX 286 Performance
Comparison

I

2-3

Protected Virtual Address Mode (Protected
Mode) lets you take advantage of memory man­
agement and protection features easily. Pro­
tected Mode is used for the highest product
reliability, data integrity, and largest address
space. This mode also makes it efficient to use
the existing iAPX 86 and 88 software.

Application programs developed for the iAPX
86 require little or no modification to use Pro­
tected Mode. High-level language application
programs only need to be recompiled, while
some assembly language programs may require
minimal modifications. Because most applica­
tion programs do not require modification to
run on the iAPX 286, the user is assured that this
microsystem preserves the original integrity of
proven software.

The iAPX 286 completely supports the iAPX 86
instruction set in Protected Mode as well as in
Real Address Mode. Intel's commitment to pro­
tect software investments continues with the
iAPX286.

Increased Throughput

State-of-the-art Very Large Scale Integration
(VLSI) techniques enable the iAPX 286 to exe­
cute programs up to six times faster than pre­
vious-generation 16-bit microprocessors (see
Figure 2-2).

Four processing units-A major performance in­
novation in the iAPX 286 design is the imple­
mentation of four independent processing units
within the Central Processing Unit (CPU) (see
Figure 2-3). Each independent unit operates to
minimize bus requirements and to maximize
CPU throughput. The iAPX 286 will be avail­
able in both 8-megaHertz and lO-megaHertz
versions.

High-performance bus-iAPX 286 design com­
bines a new demultiplexed bus structure with
pipelining techniques to more than double bus

MANAGEMENTOVER~EW

efficiency. This increased bus efficiency maxi­
mizes the information-handling capacity of the
system for greater performance. Pipelined bus
operation achieves this higher bus throughput
without requiring proportional increases in
memory speed. The high-performance bus in­
terface and a lO-megaHertz clock rate provide a
bus bandwidth of 10 megabytes per second.

Product Flexibility and
Upgradability

The iAPX 286 can address up to 16 megabytes of
physical memory. Built-in iAPX 286 virtual
memory management support hardware can
make a much larger address space available to
accommodate even more programs and data.
This flexible address space allows you to build
products which are easy to upgrade to include
new features and capabilities.

This on-chip virtual memory management sup­
port enables a system to allocate as much as a

ADDRESS UNIT

I BASE REGISTERS I I; SELECTED ADDRESSES

I PROTECTION INFORMATION I
I PROTECTION LOGIC I

ADDRESSING DATA
INFORMATION

I REGISTERS I
ARITHMETIC/LOGIC UNIT

gigabyte (230 bytes) of virtual address space to
each user. Virtual memory eliminates the prob­
lems associated with limited address space.
The large address space enables programmers to
concentrate their efforts on improving program
operation, rather than on designing programs
around address space restrictions.

The large physical address space and built-in vir­
tual memory support are ideal for implementing
multi-user reprogrammable systems. The num­
ber of programs, the size of data bases, and the
number of users in the system are not constrained
by the size of physical memory.

The operation of the on-chip iAPX 286 memory
management unit is transparent and requires no
special instructions for its use. Because this
memory management support is integral to the
CPU, systems based on the iAPX 286 operate
faster, are easier to program, and require less
hardware and software than systems requiring an
external memory management unit.

BUS UNIT

I ADDRESS DRIVERS I
I DATA BUFFERS I
I INSTRUCTION PREFETCHER I · · I I · CODE QUEUE

SYSTEM BUS

INSTRUCTION
CODES

I TRANSLATOR I I I DECODED INSTRUCTIONS I INSTRUCTION QUEUE I I MUL TIDIV MACHINE

EXECUTION UNIT

I
INSTRUCTION UNIT

FOUR PROCESSING UNITS WITHIN THE iAPX 286 CPU OPERATE
CONCURRENTL Y TO MAXIMIZE THROUGHPUT.

Figure 2-3. Concurrent Processing Enhances Speed

2-4

MANAGEMENT OVERVIEW

Hardware support for system operations-The
iAPX 286 also supports high-speed system op­
eration with specialized on-chip hardware:

• The l6-bit multiply and divide instructions
of the iAPX 286 operate more than ten times
faster than those of the iAPX 86 and 88. Spe­
cial instructions for string handling and high­
level languages further enhance system
performance.

• Multitasking support hardware reduces to less
than 18 microseconds the time required to
switch processing from one task or user to
another. The code requirements for this
switch are eliminated because this hardware
automatically performs the operations of sus­
pending one program, saving registers, restor­
ing registers, and continuing with another
program.

• The processor's high-speed interrupt-hand­
ling hardware enables the system to respond
quickly to an external event. An iAPX 286
system is capable of responding to an interrupt
in less than 3 microseconds.

• Other on-chip hardware simplifies the imple­
mentation and speeds the operation of operat­
ing system functions such as virtual memory
management and memory protection.

Advanced numeric processing-The basic iAPX
2861 I 0 configuration (an 80286 CPU and
support circuits) may be expanded to an iAPX
286/20 Numeric Data Processor configuration.
This configuration handles number-crunching
applications which use up to 64-bit integer or
80-bit floating-point data types. It includes a
processor extension that operates concurrently
with the 80286 CPU, handling arithmetic calcu­
lations up to 100 times faster than comparable
software. The iAPX 286/20 configuration
conforms to the proposed IEEE Standard P754
for numeric processing.

2-5

In summary, the hardware of the 80286 CPU
maximizes the efficiency of both the processor's
instruction set and the system bus structure.
iAPX 286 instructions implement extended
functions that typically require many instruc­
tions. Additionally, pipelined memory access
techniques further enhance processing speed by
enabling the CPU to achieve higher bus band­
width. These features result in the greatest per­
formance while minimizing system cost by re­
ducing the need for higher-speed memories.

New Architecture for Simplified
Software Development
The instructions of the iAPX 286 increase code
density and execution speed. The iAPX 286 in­
struction set includes many instructions for
powerful data and arithmetic manipulations, as
well as enhanced high-level language code effi­
ciency and performance. These instructions and
the large address space of the iAPX 286 encour­
age the use of high-level languages for writ­
ing efficient operating systems and application
programs.

Hardware integration of both virtual memory
support and memory protection significantly re­
duces the software required to provide these fea­
tures. Because the iAPX 286 hardware directly
controls the most performance-critical func­
tions-task switching and virtual address trans­
lation-it reduces the size of an operating
system and maximizes system performance.
Because the virtual memory support is an inte­
gral part of the iAPX 286 architecture, virtual
memory address translation is also transparent to
software.

The hardware of the iAPX 286 enables the oper­
ating system to handle the program and data
swapping necessary for virtual memory. When
a program requests a segment which is in sec­
ondary storage (such as a disk drive), the proces­
sor initiates the operations to swap the desired

MANAGEMENT OVERVIEW

information into real memory. Swapping op­
erations are completely transparent to the appli­
cation program.

iAPX 286 instructions are fully restartable to
simplify returning to the application progiam
after the completion of program and data swap­
ping. Instruction restartability, combined with
on-chip virtual memory support, greatly simpli­
fies the tasks of both hardware and operating sys­
tem software designers.

The iAPX 286 protection mechanism does even
more to simplify both operating system software
and applications software development. Appli­
cation programs do not require special instruc­
tions to call the operating system while task
switching and parameter passing to the operating
system require no software overhead in the oper­
ating system.

As a result of its advanced architecture, the iAPX
286 is easy to program. The operation of the
address translation and protection mechanisms
is handled transparently so that application
programs remain uncomplicated. Programs are
smaller and cost less to develop. It is this trans­
parency which allows the iAPX 286 to execute
programs for the iAPX 86 and 88 with little or no
modification, even though they were not origi­
nally written for a virtual memory system.

FLEXIBLE HARDWARE
CONFIGURATIONS

The iAPX 286 offers extensive system con­
figuration options. The 68-pin CPU provides a
full 16-megabyte address bus and a 16-bit data
bus. Because the memory managpment and pro­
tection support is incorporated within the CPU, a
protected virtual memory system may be im­
plemented without requiring external memory
management units (MMUs).

The configuration options range from single­
processor dedicated-function systems to multi­
processor, multi-user reprogrammable systems.

2-6

Specialized support circuits from Intel accom­
modate dynamic memory interfaces, multipro­
cessor environments, and CPU extensions such
as the 80287 Numeric Processor Extension.

Intel provides a large selection of peripheral de­
vices for interfacing the iAPX 286 with mass
storage systems, video displays, and communi­
cations networks. You can implement mem­
ory systems with a variety of ROM, EPROM,
E2 PROM and static or dynamic memories
offering a range of speed and density options:
The iAPX 286 also supports a Multibus ™ system
bus interface. Using this interface allows
immediate configuration of systems with the
extensive base of existing Multibus compatible
memory, peripheral control, and CPU boards.

Numeric Data Processor

The iAPX 286120 Numeric Data Processor con­
figuration provides the high-speed mathematical
capabilities many systems demand. Including
the 80287 Numeric Processor Extension, this
configuration meets the specifications of the
proposed IEEE standard P754 for numeric data
processing and maintains compatibility with
iAPX 86/20 systems. A software emulation
package is also available for lower performance
systems, to execute in both Real Address and
Protected Modes.

Multiprocessor Capabilities

A system designer can easily configure a multi­
processor system using the iAPX 286. The inte­
grated memory management unit, along with
special support circuits for system bus inter­
facing and arbitration, allows well-controlled
communications on a multiprocessor bus. Bus
control and arbitration support circuits provide
flexible solutions for the construction of multi­
processor bus structures like the Intel Multibus
(IEEE Standard 796).

MANAGEMENT OVERVIEW

System Support Circuits

Support circuits for use in iAPX 286 systems in­
clude circuits designed for bus interface, mem­
ory, and peripheral system support.

Bus interface support is provided by chips which
handle tasks such as system timing, bus com­
munications, and control. These circuits reduce
the task of hardware design to the selection of the
appropriate component to provide the required
function. Examples of this support group are
bus controllers, data transceivers, and address
latches.

Intel's Advanced Dynamic RAM Controller
supports a direct interface between dynamic
RAM (DRAM) and the CPU of an iAPX 286
system. It also provides dual-port operation for
multiprocessor systems and is compatible with
Intel's 8206 Error Detection and Correction
Chip (ECC) for systems requiring a high degree
of data integrity.

Intel manufactures specialized controllers which
provide peripheral support for dedicated system
functions.

• To accommodate mass storage needs, Intel
manufactures peripheral controllers for bub­
ble memory, floppy diskette, and hard disk
systems.

• Video display controllcrs include a range of
simple to sophisticated alphanumeric displays
and a graphic display control device.

• Communications controllers can manage sim­
ple asynchronous protocols as well as bit­
synchronous protocols like SDLe. The com­
munications options for the iAPX 286 will also
include advanced techniques like Ethernet* for
local area network applications.

*Ethernet is a trademark of the Xerox Corporation.
The Ethernet protocol was developed jointly by
DEC, Xerox, and Intel.

2-7

Board Systems

The iAPX 286 will be available in both com­
ponent form, and as a preconfigured, pretested
Multibus-based single-board computer from
Intel for p.rototyping and for production require­
ments. The Multibus system bus interface not
only provides mUltiprocessor support, but it also
enables you to quickly design complete iAPX
286 systems using available board-level memory
and peripheral control products. Using these
support products, you can bring your products to
market with minimum delay and design effort.

This full complement of system support circuits
and board products enables the iAPX 286 to
address a wider range of computer applications
than any previous microprocessor system.
Intel's broad range of modular solutions enables
you to develop simple to sophisticated systems
quickly and easily.

SAMPLE APPLICATIONS

The iAPX 286 is ideal for multi-user, real-time
multitasking, and multiprocessor systems. It
can support high-performance, real-time ap­
plications which have been traditionally beyond
the capabilities of a microprocessor-based sys­
tem. This section briefly describes a few of the
potential applications for this advanced micro­
processor system.

iAPX 86 System Upgrade
The iAPX 286 Real Address Mode enables an
iAPX 286-based hardware system to use existing
iAPX 86 programs without modification. The
major benefits of this system migration path are:

• Total preservation of software investment

• As much as a six-fold increase in throughput

Later, as end-product requirements grow, the
system software may be modified in stages to
add software protection, without requiring hard­
ware changes.

MANAGEMENT OVERVIEW

Multi-user Systems

The high execution speeds, total task isolation,
and operating system protection make the iAPX
286 ideal for multi-user systems. The high ex­
ecution speeds enable a system to handle more
users with improved response time for each
user. Intertask isolation protects one user's code
and data from another's. Operating system pro­
tection provides total system integrity.

The iAPX 286 is ideal for multi-user business
systems. The protection features can separate
private financial data from word-processing or
order-entry data even as the data is being pro­
cessed. The virtual memory support gives each
user high system availability without restricting
simultaneous use of programs. Separate tasks
can be created to handle slow 110 devices such as
printers or modems; these tasks can run simul­
taneously with user service routines without de­
grading user response.

The iAPX 286 provides the flexibility to swap
programs and data in and out of memory for vir­
tual memory systems. This flexibility reduces
the amount of real memory required to operate a
large system which, in turn, reduces system
cost.

Real-time Multitasking Systems

The iAPX 286 hardware task-switching support
considerably reduces the time and code required
to save the state of one task and load another.
The multitasking capability of the iAPX 286
handles complex applications such as a large
PABX system controlling thousands of lines.
Distributed process control is another applica­
tion which can take advantage of the multitask­
ing and protection capabilities of the iAPX 286.

Multiprocessor Systems

Many applications can benefit from the concur­
rent operation of multiple processors. A typical

2-8

application for multiple processors is a system
with dedicated 110 processors which assume the
entire burden of driving a complex 110 device.
The iAPX 286 is an ideal master processor for
these systems.

The iAPX 286 simplifies the design of multi­
processor configurations with hardware that sup­
ports the industry-standard Multibus structure.
The iAPX 286 protection mechanism also pro­
vides support for mUltiprocessor communica­
tions to simplify the task of programming con­
currently operating CPUs.

This interprocessor compatibility enables a sys­
tem designer to construct a multiprocessor sys­
tem using any members of the family. For ex­
ample, an iAPX 286 CPU can serve as a master
controller for a series of 110 processors (such as
the Intel 8089) which, in turn, control the 110 for
the system. In this type of a system, the dedi­
cated processors remove the 110 overhead from
the master CPU to increase system throughput.

Real-time High-performance
Systems

The high-speed operation of the iAPX 286 opens
new doors to applications which have been
neither feasible with slower microprocessor sys­
tems nor cost-effective on minicomputer sys­
tems. Higher speed operation allows you to add
more features and more users without degrading
system response time. Image processing,
graphics, and educational computing systems
are examples of real-time applications for the
iAPX 286's high-speed, economical hardware.

DEVELOPMENT SYSTEMS
AND SOFTWARE

Intel assists the system designer with assem­
blers, compilers, development utilities, and an
in-circuit emulator for debugging which de­
crease both the time and the costs of producing
software. From single-board computers to full

MANAGEMENT OVERVIEW

hardware development systems, Intel provides
an environment for the creation of extremely
sophisticated microcomputer products.

Intellec ™ Microcomputer
Development Systems
Intel produces the Intellec Series III Micro­
computer Development System as a complete
center for the development of microcomputer­
based products. This system includes an iAPX
86 CPU, a hard-disk system interface with oper­
ating software, and a CRT with a 2000-character
display and detachable keyboard.

In-circuit emulation (ICE TM) modules and
software will be available for the Series III
to simplify the development of iAPX 286
hardware systems. This option enables a
designer to individually develop and test soft­
ware modules and then integrate them to
completely isolate various system functions for
testing and analysis.

Intel also manufactures the Intellec Model 675
Network Development System. This develop­
ment system provides the tools to develop and
test communications software and applications
using Ethernet for office automation systems.
An Ethernet communications controller incorpo­
rates the Ethernet Data Link and Physical Link
Control to provide a I O-megabit-per-second data
transmission rate over coaxial cable.

These development systems are compatible with
the wide range of hardware designed for the Intel
Multibus. Software compatibility among the
Intel development systems enables the use of the
programs described below for the rapid develop­
ment of microcomputer-based products.

Evaluation Software
The Intellec Series III Development System sup­
ports an iAPX 286 Evaluation Package. This is
a package of programs that enables system de­
signers to evaluate the operation and capabilities
of the iAPX 286.

2-9

The Evaluation Package includes all of the tools
a programmer needs to become familiar with the
operation of the iAPX 286 protection mecha­
nism and other new features. The simulator
enables a programmer to gain experience by
developing software modules which can later
be used directly on an iAPX 286 system.

Development Software

Intel's wide range of development programs and
high-level languages attests to its tradition of
strong support for the development of hardware
and software products. The Development Soft­
ware Release for the iAPX 286 has the right mix
of tools to simplify the development of all levels
of software from application programs to operat­
ing systems. These tools include high-level lan­
guages, an assembler, and utilities for combin­
ing and structuring software.

The Development Software Release includes
utility programs that can eliminate much of the
time, effort, and expense involved in creating
system software. These utilities include a bind­
er that links modules written in different lan­
guages into a single program. This capability
allows a programmer to write each module in the
most efficient language, rather than having to
write the entire system in a single language.

A system-building utility simplifies the genera­
tion and maintenance of operating systems. It
also provides an easy means of specifying the
operation of the iAPX 286 software protection
mechanism. Other utilities provide run-time
support for high-level languages such as Pascal
and FORTRAN.

High-level Languages

High-level languages are most valuable for re­
ducing the time and cost of program develop­
ment and maintenance. Intel's efficient compil­
ers, combined with the large address space and

MANAGEMENT OVE.RVIEW

the high performance of the iAPX 286, encour­
age the use of high-level languages for the de­
velopment of software. Intel's structured sys­
tem language, PLlM, will be the first high-level
language available for the iAPX 286. Following
PLiM will be Pascal and FORTRAN.

SUMMARY
The iAPX 286 is a micro system for the' 80s. On
increased throughput alone, the iAPX 286 is a
major advancement in microprocessor technol­
ogy. In addition, its extraordinary on-chip mem­
ory management support, complemented by the
powerful protection mechanism, gives the iAPX
286 the ability to address applications never
before served by microprocessors.

Recognizing that supplying a complete micro­
system solution can reduce software costs, Intel
produces software and hardware development
systems that significantly simplify the program
development cycle.

2-10

Versatile support components from Intel sim­
plify the creation of systems around the iAPX
286; iAPX 86-family compatibility ensures
volumes of compatible software. The high per­
formance level encourages the use of high-level
languages for efficient program development.
The four-level protection mechanism allows the
high degree of operating system and user pro­
gram integrity required of new applications.
The large virtual address space and virtual mem­
ory management supports the dynamic memory
demands of multi-user systems while maxi­
mizing the efficient use of real memory.

The iAPX 286 micro system provides the frame­
work for the development of extremely powerful
products. This capability-with strong support
from Intel-makes the iAPX 286 the ideal choice
for applications ranging from intelligent repro­
grammable workstations to complete multi-user,
real-time multitasking, interactive systems.

Section 3
Technical Overview
of the iAPX 286

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I

I
I

I

I
I
I
I

SECTION 3
TECHNICAL OVERVIEW

OF THE iAPX 286

This technical overview presents the concepts
governing the operation of the iAPX 286 micro­
system. The discussion covers all aspects of the
iAPX 286 microsystem, including the 80286 CPU
as well as support devices and optional extensions.

The material in the technical overview is orga­
nized by levels of increasing detail. Readers
familiar with the basic operation of the iAPX 86
or 88 may choose to begin directly with the later
sections which discuss the unique attributes of
the iAPX 286.

The first section describes the iAPX 286 basic
programming model. This section explains the
registers, data types, addressing modes, and in­
structions which handle most of the processing
functions within the system. These features are
representative of the base iAPX 286 architecture
without extensions.

The second section of the technical overview de­
scribes the extended capabilities which are avail­
able with the addition of a Numeric Processor
Extension to an iAPX 286 system. These capa­
bilities include new floating-point register exten­
sions for high-speed extended-precision arith­
metic calculations.

The third section of the technical overview ex­
pands the description of the basic programming
model to include features which provide special
capabilities. These advanced features include
special data types, enhanced instructions,
special addressing modes, and protection of
software.

The iAPX 286 provides two modes of operation,
Real Address Mode and Protected Virtual
Address Mode (or Protected Mode). Both
modes are compatible with the iAPX 86 and
88 CPU's so that most existing application
programs can execute in either mode with little
or no modifications.

3-1

On power-up, the iAPX 286 begins execution in
Real Address Mode and can address up to a
megabyte (220 bytes) of physical memory. The
software may switch the CPU from Real Address
Mode to Protected Mode, expanding the address
space up to 16 megabytes (224 bytes) of real
memory within the system and up to a gigabyte
(2 30 bytes) of virtual memory per user (see
Figure 3-1). This expansion in programmer
visible address space is the primary difference
in programs that migrate from one mode to
the other.

BASIC PROGRAMMING MODEL

The basic programming model described here
extends across the range of 16-bit processors
from Intel. The architecture of the iAPX 86,88,
186, and 286 simplifies programming by sup­
porting the most commonly used data types as
operands. It also provides a wide range of flexi­
ble addressing modes and a powerful instruction
set.

The features described in this section apply to
both modes ofiAPX 286 operation. An applica­
tion program written for Real Address Mode is
also compatible with Protected Mode operation.

Basic Register Model

The 80286 basic register model includes the ten
registers shown in Figure 3-2. The eight 16-bit
general-purpose registers (AX to SP) contain
arithmetic and logical operands; the two special­
purpose registers reflect certain aspects of the
80286 processor state. The register set is sym­
metrically addressable for all basic move, arith­
metic, and logical operations.

Four of the general data registers may be divided
into high and low sections for manipulating byte
variables. These are the AX, BX, CX, and OX

TECHNICAL OVERVIEW

registers. The corresponding eight 8-bit regis­
ters are AH, AL, BH, BL, CH, CL, DH, and
DL. This allows efficient manipulation of indi­
vidual bytes within words such as character ma­
nipulation within strings of data.

Not only are arithmetic and logical operations
available with all general data registers, but each
of these registers also handles special functions
for certain instructions. To provide code effi­
ciency, the iAPX 286 includes compact instruc­
tion encodings with implied use of general regis­
ters for these instructions. These instructions
extend the base instruction set which operates
on the general register set. As examples, the
AX and DX registers contain operands for Multi­
ply and Divide instructions or 110 addresses and
operands for I/O instructions. Additionally, the
CX register can maintain a count value for auto­
matic iteration control during the execution of
software loops.

The SP register in Figure 3-2 is the stack pointer.
The stack pointer normally indicates the offset
address for the current top of stack. Push, Pop,
and other instructions implicitly refer to the stack.
These instructions use SP as a destination or
source operand address and automatically incre­
ment or decrement the value of SP as part of their
operation.

Four of the general data registers may also serve
as base and index registers for flexible memory
addressing. The two base registers are the base
register (BX) for addressing data and the stack
frame register base (BP) for addressing stack in­
formation. The two index registers are the SI
(source index) and the DI (destination index)
registers. A programmer uses the index regis­
ters for general data addressing and to simul­
taneously specify two operands for memory-to­
memory string operations.

1 USER ~
t N

\ I USER 1 ~ 80286 ~ REAL

t 2 1; CPU MEMORY

1 I I REAL MEMORY

USER

t 1 r
1·MEGABYTE 1-GIGABYTE 16-MEGABYTE

REAL ADDRESS VIRTUAL ADDRESS REAL ADDRESS
SPACE SPACE PER USER SPACE

USER PHYSICAL USER MAPPED PHYSICAL
ADDRESS ; ADDRESS ADDRESS :} TO :} ADDRESS

SPACE SPACE SPACE SPACE

REAL ADDRESS MODE PROTECTED VIRTUAL ADDRESS MODE

Figure 3-1. Address Space of Real Address Mode
and Protected Virtual Address Mode

3-2

TECHNICAL OVERVIEW

The two special-purpose registers included in the
base register model are the instruction point­
er (rp) and the flag register. The instruction
pointer contains the offset address of the next
sequential instruction for execution. This offset
value is automatically incremented to point to
the next instruction unless the program jumps,
calls, or returns to a different location within that
code section. The 80286 flag register contains
12 status bits of which 9 are part of the base
register model discussed in this section.

Basic Data Types

The base architecture includes five types of data
representations for arithmetic operations: un­
signed binary (ordinal), signed binary (integers),
unsigned packed decimal (BCD), unsigned
unpacked decimal (BCD), and ASCII (using
unpacked BCD). Multiprecision instructions
can extend a numeric data type to any desired
length. Also supported are a string data type for
character manipulation and a pointer data type to
represent addresses.

Binary numbers may be either 8 or 16 bits in
length. Unsigned 8-bit binary numbers have a
range of 0 to 255 and signed 8-bit binary num­
bers have a range of - 128 to + 127. Unsigned
16-bit binary numbers have a range of 0 to
65,535 while signed 16-bit binary numbers have
a range of -32,768to +32,767.

AX

DX

CX

BX

BP

SI

DI

SP

7 07

AH

DH

CH

BH

15

AL

DL

CL

BL

o

t MUL TIPL Y/DIVIDE
\ I/O INSTRUCTIONS

} LOOP/SHIFT/REPEAT
COUNT

I
\

BASE REGISTERS

I INDEX REGISTERS
\ STRING POINTERS

} STACK POINTER

GENERAL DATA REGISTERS

Decimal numbers are a succession of 8-bit quan­
tities. Packed decimal numbers are stored as un­
signed byte quantities each with a range of 0 to
99. Unpacked decimal numbers are stored as
byte quantities each with a range of 0 to 9. The
unpacked BCD data type is commonly used for
arithmetic operations involving ASCII numbers.

The base architecture supports string manipula­
tion with special string instructions. These in­
structions treat any contiguous block of memory
up to 64K bytes as a single unit which may be
input, output, moved, compared, or scanned
without resorting to a multi-instruction loop.
Similarly the Compare instruction enables the
programmer to use two separate blocks of mem­
ory for sources, while the Move instruction sup­
ports the use of one memory block as a source
and a second memory block as a destination.

Basic Addressing Modes

The instruction set enables operands to be
immediate, register, or memory based. All
instructions, except string manipulation in­
structions, may use combinations of immediate,
register, and memory-based operands. The
combinations available to all classes of instruc­
tions are:

• Register to register

• Immediate to register

15 0

F r---J FLAGS

IP c=J INSTRUCTION POINTER

STATUS AND CONTROL REGISTERS

Figure 3-2. Program Registers of the Base Architecture

3-3

TECHNICAL OVERVIEW

• Register to memory

• Memory to register

• Immediate to memory

The string instructions and stack manipulation
instructions (such as Push and Pop) also allow
memory-to-memoryoperations.

An immediate operand is a constant which is
stored immediately following the instruction
which uses it (see Figure 3-3). Immediate oper­
ands may be 8-bit or 16-bit values, and 8-bit
operands are sign-extended for compact repre­
sentation of 16 bit operands. Register operands
reside within the registers of the iAPX 286 (see
Figure 3-4). These registers are symmetrically

OPCODE MOD RIM

L-----~·~I~ ___ EA __ ~

NEXT SEQUENTIAL
BYTE OR WORD
FOllOWING
INSTRUCTION
IN MEMORY.

Figure 3-3. Immediate AddreSSing

AX(AHOR Al)
OR

DX(DH OR Dl)
OR

CX(CH OR Cl)
OR

BX(BH OR Bl) '-----____ +-- OR
BP
OR
SI

OR
01

OR
SP

Figure 3-4. Register Addressing

3-4

accessible to the instruction set so that an instruc­
tion may use as operands any of the eight byte
registers (AH to DL) or the eight word registers
(AX to SP).

To access data in memory, an effective address
provides an offset into the section of memory
designated for data storage. A programmer can
generate an effective address in a variety of ways
to allow the program to address a given data
structure in the most efficient manner. An
8-megaHertz iAPX 286 forms a complete
address, for all addressing modes, in no more
than 125 nanoseconds.

Each instruction that addresses memory contains
an address mode field and an optional displace­
ment. Five basic methods of generating effec­
tive addresses are described below.

DIRECT ADDRESSING

A program can use direct addressing to access all
data types. The term direct addressing refers to
an operation that uses a value specified in the
instruction as a direct offset to the desired
location. A programmer normally uses direct
addressing to access constants or static variables
stored in memory (see Figure 3-5).

Figure 3-5. Direct Addressing

TECHNICAL OVERVIEW

INDIRECT ADDRESSING
An indirect address expression may include a
base register, an index register, and a displace­
ment value, or it may consist of various
combinations of these three elements. The dis­
placement values may be either 16-bit or 8-bit
sign-extended for efficient instruction encoding.
A program may easily address a wide variety

I OPCODE I MOD RIM I
BX

I- OR-

~
BP

~ I r----OR- EA
SI

~OR-
01

Figure 3-6. Register Indirect Addressing

of data structures using the different indirect
addressing modes available with the iAPX 286,
described below.

Register Indirect Addressing
For register indirect addressing, an instruction
takes the effective address of a memory operand
directly from one of the index or base registers

BX
OR
BP

~--:-~---~

Figure 3-7. Based Addressing

HIGH
ADDRESS

Figure 3·8. Accessing a Structure with Based Addressing

3-5

TECHNICAL OVERVIEW

(see Figure 3-6). Using this addressing method,
an instruction can operate on different memory
locations according to the current value of a
register.

data (using BP) as well as to address data struc­
tures which may be located at different places in
memory using BX, SI, or DI (see Figure 3-8).

Based addressing enables a programmer to write
a routine to access a block of memory which
does not have a known location until run time.
An example of this situation is a procedure
which reads an array from the routine that called
it. By using a register to indicate the base
address of an array, a programmer can use the
same procedure to process arrays at different
locations.

Based or Indexed Addressing
Based addressing enables a program to form an
effective address by specifying a register (BX,
SI, DI, or BP) and adding the displacement value
within the instruction to the value within the
specified register (see Figure 3-7). This form of
addressing is a convenient way to address stack

Figure 3·9. Indexed Addressing

~

I EA I--

I 14 I
INDEX R GISTER

+

I DISPLACEMENT

HIGH

A programmer may also use either of the two,
index registers, SI and DI, or the two base regis­
ters, BX and BP, for indexed addressing (see
Figure 3-9). The instruction specifies a register
and supplies a displacement value. The proces­
sor adds the value within the index register to the
value of the displacement to form an effective
address. By placing the location of the begin­
ning of an array in the displacement field of an
instruction, a programmer may address the
entire array using indexed addressing methods.

The iAPX 286 indexed addressing enables a
programmer to easily read or write information

"oJ

ADDRESS

ARRAY (8)

ARRAY (7)

ARRAY (6)

ARRAY (5)

ARRAY (4) -I EA I
ARRAY (3) •
ARRAY (2) I 2 I
ARRAY(l) - INDEX lGISTER

ARRAY (0)
DISPLACEMENT I

LOW
I." ADDRESS "oJ

Figure 3·10. Accessing an Array with Indexed Addressing

3-6

TECHNICAL OVERVIEW

stored in array form. A program accesses fixed
arrays stored in memory using the source index
and destination index. A displacement value
within a read or write instruction indicates the
start of the array; the program increments or de­
crements the value in the register to refer to dif­
ferentelements within the array (see Figure 3-1 0).

Based Indexed Addressing
Based indexed addressing generates an effective
address that is the sum of a base register, an
index register, and the displacement within the
instruction (see Figure 3-11). Based indexed
addressing is very flexible because two address
components can be varied at execution time. Figure 3-11. Based Indexed Addressing

HIGH
ADDRESS

PARM2

PARM 1

IP

OLDBP

OLDBX

OLDAX

ARRAY (8)

ARRAY (7)

Figure 3-12. Accessing a Stack Array with Based Indexed Addressing

3-7

TECHNICAL OVERVIEW

In the case where a program must address record
elements within an array of records, the forma­
tion of an address may require two levels of in­
direction as well as a displacement value. For
this application, two registers supply base and
index values and the optional displacement with­
in the read (or write) instruction specifies the
exact location of the record element within
the selected record.

To access parameters passed on the stack or
dynamic work space allocated on the stack, a
program uses the BP register as a base pointer to

OPCODE

SI H SOURCE EA

01 ~ DESTINATION EA I

Figure 3-13. String Addressing

DIRECT PORT ADDRESSING

PORT ADDRESS

INDIRECT PORT ADDRESSING

Figure 3-14. I/O Port Addressing

3-8

the stack (see Figure 3-12). Using the BP regis­
ter as a base pointer automatically refers an in­
struction to the section of memory containing
stack data. This capability supports recursive
procedures and the dynamic variables of block­
structured high-level languages.

STRING ADDRESSING
Instructions that manipulate string data types use
the SI and DI registers to supply the effective
address of the source operand and the effective
address of the destination operand, respectively
(see Figure 3-13). When the processor executes
a string instruction, it assumes that SI points to
the first byte or word of a source string and that
DI points to the first byte or word in a destination
string. This technique of addressing string data
allows high-speed manipulation of character
information for text-processing applications.

I/O PORT ADDRESSING
If an liD port is memory mapped, a programmer
may use the full instruction set with any of the
memory operand addressing modes to access the
port. For example, a group of terminals can be
accessed as an "array".

Additionally, direct, indirect, and string address­
ing modes can provide access to ports located in
a separate liD space using special liD instruc­
tions (see Figure 3-14). Direct port address­
ing operations supply an 8-bit direct address for
access to 256 byte ports or 128 word ports. A
program can use the DX register to indirectly
address up to 64K byte ports or 32K word ports.

ADDRESS MODE SUMMARY
To summarize, a comprehensive set of address­
ing modes enables the instruction set of the
iAPX 286 to satisfy the data storage require­
ments of high-level languages and dynamic
memory allocation. The three elements of an
indirect address expression-a base register, an
index register, and a constant 8-bit or 16-bit
displacement-may be used in any combination
to address many different data structures.

TECHNICAL OVERVIEW

Flag Operations

Arithmetic instructions post specific characteris­
tics of the result of an operation to the six arith­
metic flags. Most of these flags can be tested
with conditional jump instructions following the
arithmetic instruction.

The condition codes within the nag register re­
nect certain characteristics of the results of arith­
metic or logical operations. The carry flag (CF)
is set by a carry-out-of or a borrow-into the high­
order bit of a result. CF is typically used for un­
signed integer comparisons and multiprecision
arithmetic. The auxiliary carry flag (AF) provides
carry and borrow information for decimal data
operations.

The CPU sets the sign flag (SF) equal to the high­
order bit (bit 7 or 15) of a result. If the result of
an arithmetic or logical operation is zero, then
the CPU sets the zero nag (ZF). If the low-order
eight bits of an arithmetic or logical result con­
tain an even number of I-bits, then the CPU sets
the parity flag (PF). The overflow flag (OF)
reflects a signed operation which results in a
positive number which is too large, or a negative
number which is too small, to fit in the destina­
tion operand.

Basic Instruction Set

The iAPX 286 includes eight basic functional
groups of instructions. These groups are data
transfer, arithmetic, flag, logic, shift, rotate,
string manipulation, and control transfer. The
instruction set treats the basic addressing modes
and the three types of data operands (immediate,
register, and memory) symmetrically to provide
the greatest number of programming options.

All instructions are byte-aligned to eliminate the
space wasted by implementations that require
instructions to be aligned on integral word
boundaries. The eight instruction groups are
explained below.

3-9

GENERAL-PURPOSE DATA
TRANSFERS
The base architecture of the iAPX 286 includes
Move, Exchange, Push, and Pop instructions to
perform data transfer operations within the sys­
tem. These data transfer instructions can oper­
ate on both byte and word operands.

The Move instruction is the most general data
transfer instruction; it can perform transfers be­
tween the iAPX 286 registers as well as between
the registers and memory. The Exchange in­
struction performs a swapping operation be­
tween two registers or between a register and a
memory operand. Memory-to-memory data
transfers are also supported by the base
architecture with instructions that operate on
string data.

Push and Pop instructions perform operations
with the processor stack. Push instructions can
store both register and memory operands on the
stack for later retrieval by a Pop instruction.
These instructions automatically increment and
decrement the stack pointer to indicate the cur­
rent top of stack. The instruction set includes
special forms of Push and Pop for saving or re­
storing all general purpose registers with a single
instruction.

ARITHMETIC INSTRUCTIONS
The arithmetic instructions provide a means of
manipulating numerical data. The four basic
arithmetic operations include addition, subtrac­
tion, multiplication, and division. They may
operate on signed and unsigned binary integers
as well as on unpacked decimal numbers. Addi­
tion and subtraction instructions can also operate
on packed decimal numbers.

The iAPX 286 microsystem supports high-speed
execution of arithmetic instructions to improve
performance for number-crunching applications.
Examples of this performance are the 16-bit
Multiply and Divide instructions which require
only 2.1 microseconds and 2.4 microseconds,

TECHNICAL OVERVIEW

respectively, with an 80286 operating at 10
megaHertz. The basic memory to register add/
subtract time is only .7 microseconds.

Arithmetic operations on decimal operands
occur in two steps. The first step is the arithme­
tic operation and the second step is an adjustment
to create a valid decimal result. The order of
these instructions is reversed for divide instruc­
tions to adjust the dividend before performing
the operation to produce a valid decimal result.

ASCII adjust instructions produce valid decimal
results in unpacked form following addition,
subtraction, multiplication, and division opera­
tions. Decimal adjust instructions correct the
results of addition and subtraction operations
on packed decimal numbers.

To provide multiple-precision addition and sub­
traction, the Add With Carry and Subtract With
Borrow instructions allow a series of calcula­
tions to produce a single multiple-precision
result. Conditional jump instructions can assist
in handling multiple-precision operations and
detecting overflow conditions.

Division instructions use a full-word or double­
word dividend. A shorter dividend must, there­
fore, expand to 16 or 32 bits in length while pre­
serving its original sign. The Convert Byte To
Word and Convert Word To Doubleword in­
structions simplify division by extending the
sign of the dividend to the required 16-bit or 32-
bit value.

A Compare instruction provides a way to test an
operand without destroying the operand (as
would occur with a subtract instruction). Com­
pare performs a subtract operation which
updates the arithmetic flags but does not return
a result.

Increment, Decrement, and Negate instructions
allow a program to alter either register or mem­
ory operands in a single instruction. The Incre­
ment and Decrement instructions are convenient

3-10

for maintaining count values outside of regis­
ters. The Negate instruction provides a binary
two's complement for any register or memory
operand.

The instructions just described comprise the
group of arithmetic instructions that are part of
the base architecture. Multiple-precision data
types and transcendental functions are available
with a system that includes a Numeric Data Pro­
cessor (see' 'Extended Capabilities" later in this
section) .

FLAG INSTRUCTIONS
To control the operation of the flags, the base
architecture includes instructions to manipulate
the carry flag, the interrupt-enable flag, and the
direction flag.

The program can set, clear, or complement the
carry flag to control arithmetic calculations.
The carry flag instructions are also useful in con­
junction with Rotate With Carry instructions.

The direction flag (DF) selects the auto­
decrement mode or the auto-increment mode for
string instructions. Setting this flag causes the
CPU to process strings from high addresses
to low addresses, or from "right to left", by
decrementing a register. Clearing this flag
designates "left to right" string processing
by incrementing the register which points to
locations within the string.

The interrupt-enable flag controls the execution
of maskable interrupts. It enables (= 1) or dis­
ables (= 0) the CPU to respond to mask able
hardware interrupts. The flag is automatically
reset on response to an interrupt and restored
to its previous value on return from an interrupt
service routine.

LOGIC INSTRUCTIONS
The logic instructions include the Boolean oper­
ators "not", "and", "inclusive or", and "ex­
clusive or". These operators may be applied to

TECHNICAL OVERVIEW

both register and memory operands. The logic
instructions set the flags to reflect the results of
the specified Boolean operation.

In addition to the Boolean operators, the logic in­
structions include a Test instruction that sets the
flags but does not alter either of its operands.
This Test instruction performs a logical "and"
operation and is the logical equivalent of the
Compare instruction for arithmetic operands.

SHIFT INSTRUCTIONS
The bits in register or memory operands may be
shifted arithmetically or logically. A shift in­
struction may specify the number of bit shifts
using a constant immediate value or a dynamic
value contained in the CL register. Using the
CL register to specify the shift count enables the
program to specify this value at execution time.

Arithmetic shifts provide a fast way to multiply
and divide binary numbers by powers of two.
Because the carry flag (CF) reflects the last bit
shifted out of an operand, logical shifts are use­
ful for isolating individual bits in bytes or words.

The Arithmetic Shift Left and Logical Shift Left
instructions pad the shifted value on the right
with zeros. The Arithmetic Shift Left instruc­
tion sets overflow if the result is too big to repre­
sent. In a similar fashion, the Logical Shift
Right pads the shifted value on the left with
zeros. The Arithmetic Shift Right, however,
preserves the sign of an operand by copying the
sign bit into the vacant positions on the left cre­
ated by the shift to the right.

ROTATE INSTRUCTIONS
Bits in register or memory operands may be ro­
tated right or left. Bits rotated out of an operand
are not lost as in a shift, but are "circled" back
into the other "end" of the operand.

Additionally, a rotate instruction may specify
the carry flag as a high-order one-bit extension of
the operand to allow multi word rotate or shift

3-11

operations or bit testing. As with the shift in­
structions, a rotate instruction may specify the
number of bit positions to rotate using an im­
mediate value or a dynamic value contained in
the CL register.

The basic register shift and rotate performance is
250 nanoseconds for single-bit operations and
625 nanoseconds plus 125 nanoseconds per bit
for multibit operations at 8 megaHertz.

STRING OPERATIONS
The base architecture provides five basic string
operations called string primitives. The string
primitives process strings of bytes or words one
element at a time. Strings may consist of up to
64K bytes or 32K words. A programmer typi­
cally combines the string primitives with a Re­
peat prefix and other instructions to construct
customized string processing instructions.

The five string primitives are Move, Compare,
Scan, Load, and Store. The Move primitive
transfers information from one memory location
to another. The Compare primitive instruction
checks two blocks of memory for the first in­
stance of nonidentical contents.

The Scan primitive searches a block of memory
for the first occurrence of, or departure from, a
specified word or byte value. The Load and
Store string primitives move string elements to
and from the AX or AL registers (AX for word
strings and AL for byte strings).

The base architecture supplements the string
primitives with three different Repeat prefixes to
process blocks of string data stored in memory.
Each Repeat prefix terminates on a different set
of conditions. A Repeat prefix causes the hard­
ware to repeat a string primitive operation until
the processor detects a terminating condition
specified by that particular Repeat prefix.

The iteration count for a repeated string opera­
tion is programmable through the CX register.
The program places an iteration count in the CX

TECHNICAL OVERVIEW

register and the CPU automatically decrements
this count after each repeated string operation.
The programmer selects the Repeat prefix that
terminates on the appropriate zero or nonzero
result.

The direction flag (DF) in the flag register con­
trols the "left to right" or "right to left" direc­
tion of repeated string processing operations. If
the DF flag is set, the CPU automatically decre­
ments the operand pointers after each operation.
Clearing this flag causes the CPU to automatical­
ly increment these pointers.

Since the prefix and string primitive are not
fetched and executed for each operand pro­
cessed, a system can process strings much faster
than would be possible with a normal software
loop. The CPU performs memory-to-memory
block transfers at a bus bandwidth of 8 mega­
bytes per second for an 8 megaHertz iAPX 286
system.

A special Jump IfCX Is Zero instruction allows a
program to bypass string operations if the itera­
tion count specifies zero executions of the
routine. The execution of repeated string opera­
tions may be interrupted and resumed without
consequence.

CONTROL TRANSFER INSTRUCTIONS
The iAPX 286 provides both conditional and un­
conditional program transfer instructions to
direct the flow of execution. Unlike uncon­
ditional program transfers, conditional program
transfers depend on the results of operations
which affect the flag register.

Conditional Transfer Instructions
The conditional transfer instructions are jumps
that mayor may not transfer control depending
on the state of the CPU flags at the time the in­
struction executes. The target for all conditional
jumps must be within - 128 to + 127 bytes of

3-12

the first byte of the next instruction within the
current procedure. Conditional transfer instruc­
tions may be divided into two testing categories:
signed and unsigned.

Signed conditional transfer instructions test the
flags for" greater-than", "less-than", or
"equal" results. The unsigned instructions,
on the other hand, test the flags for "above",
"below", or' 'equal" results which depend only
on the relative magnitude of the operands.

The signed conditional transfer instructions test
the sign flag (SF) and the overflow flag (OF) to
make transfer decisions. The unsigned con­
ditional transfer instructions test the carry flag
(CF) and the zero flag (ZF) for the conditions
specified in the instruction.

Conditional transfer instructions are also pro­
vided to test individual status flags such as carry,
zero, parity, and overflow.

Unconditional Transfer Instructions
The group of unconditional transfer instructions
includes the Call, Return, and unconditional
Jump instructions. The Call and Return instruc­
tions form a pair which enables a program to ex­
ecute an out-of-line procedure and then return to
the original routine. The unconditional Jump in­
struction, on the other hand, provides a one-way
transfer of control to a new location.

Jump, Call, and Return instructions allow control­
transfer operations of various scope and imple­
mentation. Short forms of these instructions use
only a 16-bit direct address referring to locations
within the current program module and provide
byte efficiency in instruction encoding. Long
forms refer to locations outside the current mod­
ule and use a full 32-bit address pointer. Call and
Jump operations allow for direct, register indirect
(short form only), and indirect-through-memory
control transfers for relocatable programs. Re­
turn operations are always indirect through the
stack.

TECHNICAL OVERVIEW

High-level Instructions

The basic instruction set described earlier in this
section provides all of the functions normally re­
quired for data processing. To create a more
powerful instruction set and allow greater code
density, Intel also provides a group of high-level
instructions. Each high-level instruction re­
places a series of instructions from the basic in­
struction set to automatically handle a multi­
operation programming function.

BLOCK 1/0 INSTRUCTIONS
The iAPX 286 provides two block I/O instruc­
tions, In String and Out String, to accomplish
block input and output of information between
memory and an I/O port. The Repeat prefix en­
ables a block I/O operation to specify an iteration
count in the CX register just as with the other
string operations. After each byte or word trans­
fer, the CPU automatically decrements the itera­
tion count and tests for the terminating condition
specified in the Repeat prefix.

The program uses the DX register to specify an
I/O port address for a block I/O operation. This
indirect method of selecting an I/O port allows a
single device-handling procedure to service mul­
tiple devices. The direction flag controls the
automatic adjustment of the source (Sl) or des­
tination (DI) memory address just as it does with
other string instructions.

The block 1/0 operations provide a fast way to
transfer blocks of information without resorting
to the additional complications of Direct Memory
Access (DMA). An iAPX 286 system operating
at a clock rate of 10 megaHertz can transfer 10
megabytes per second through an I/O port with­
outDMA.

ITERATION CONTROL INSTRUCTIONS
Loop instructions combine the functions of the
Decrement and conditional Jump instructions to
simplify the implementation of software loops.
When the CPU executes a Loop instruction, it
first decrements the iteration count contained in

3-13

the CX register. Then it tests for the terminating
condition specified in the Loop instruction.

TRANSLATE INSTRUCTION
The Translate instruction performs a conversion
function which would otherwise require many in­
structions from the basic instruction set. The
Translate instruction is useful for converting byte
values from one coding system to another such as
from ASCII to EBCDIC.

The CPU executes a Translate instruction by
using the value contained in the AL register as an
index into a user-defined memory-based transla­
tion table. The table may be up to 256 bytes
long. The CPU completes the execution of a
Translate instruction by replacing the original
value in AL with the indicated value from the
translation table. The base address of the transla­
tion table is specified by the BX register to allow
multiple translation tables in the system.

ARRAY BOUNDS CHECK INSTRUCTION
The Array Bounds Check instruction provides in­
formation which can allow a program to test the
limits of an array before it attempts to read or
write elements within the array. This instruction
is also useful in high-level languages such as Pas­
cal to test and enforce the subranges of variables.

The Array Bounds Check instruction specifies a
register which contains an index value to an ele­
ment within an array. The CPU executes this in­
struction by comparing this index value with the
memory-based limit values for that array.

If the index value refers to a location outside the
array, the instruction causes an exception re­
served for the Array Bounds Check instruction.
The system may use this exception to invoke an
interrupt procedure that either expands the size of
the array or gracefully terminates the program.

ENTER AND LEAVE INSTRUCTIONS
The Enter and Leave instructions implement the
stack frame used by block-structured high-level
languages for nested procedures.

TECHNICAL OVERVIEW

Each time a program calls a procedure which be­
gins with the Enter instruction, the CPU sets up a
new stack frame display and specifies the amount
of dynamic stack storage required for the called
procedure. The stack frame display allows the
inner levels of a nested procedure to access vari­
ables defined on the stack at outer procedure
levels. After execution of the procedure is com­
plete, the Leave instruction reverses the action of

AX

OX

cx

BX

BP

SI

01

SP

7

15

AH

DH

CH

BH

07

AL

DL

CL

BL

o

I
l
I
j

I
I

o

MULTIPLY/DIVIDE
I/O INSTRUCTIONS

LOOP/SHIFT/REPEAT
COUNT

BASE REGISTERS

INDEX REGISTERS
STRING POINTERS

STACK POINTER

GENERAL DATA REGISTERS

7978 6463

the Enter instruction. Leave releases all of a pro­
cedure's dynamic stack space and restores the
stack frame of the calling routine.

EXTENDED CAPABILITIES

The previous section explains the registers, data
types, addressing modes, and instructions com­
mon to the base architecture of the Intel 16-bit

15 0

F c==J FLAGS

IP c=J INSTRUCTION POINTER

STATUS AND CONTROL REGISTERS

CS 8 CODE SEGMENT BASE

OS DATA SEGMENT BASE

SS STACK SEGMENT BASE

ES EXTRA SEGMENT BASE

15 0

SEGMENT REGISTERS

o

I
SIGN EXPONENT

1
SIGNIFICAND

80287 REGISTER STACK

§
15 0

STATUS WORD

CONTROL WORD

TAG WORD

Figure 3-15. Extended Register Set

3-14

TECHNICAL OVERVIEW

microsystems. To extend this base architecture,
Intel offers the 80287 Numeric Processor Exten­
sion (NPX) which supports floating point regis­
ters, mUltiple-precision numeric data types, and
new arithmetic instructions.

An iAPX 286 system may include different com­
ponents depending on the intended application.
The iAPX 2861 I 0 configuration is based on the
80286 CPU and includes clock and interface
support circuits. The iAPX 286/20 Numeric
Data Processor (NDP) configuration adds an
80287 NPX to the iAPX 286/10 system. The
iAPX 286120 supports the IEEE Microprocessor
Floating Point Standard P754.

The iAPX 286 micro system also supports a soft­
ware emulation of the Numeric Processor Exten­
sion complete with the registers, data types, and
instructions of the iAPX 286/20 configuration.
Programs written to use the NPX can execute on
any iAPX 286 using the software emulator.

Extended Register Model

The extended register set includes 8 80-bit float­
ing-point registers which provide the equivalent
capacity of 40 16-bit registers (see Figure 3-15).
These 8 floating-point registers are stack­
oriented to simplify arithmetic programming.
Two 16-bit registers control and report the re­
sults of numeric instructions. The control word
register defines the rounding, infinity, precision,
and error-mask controls required by the IEEE
standard. The status word register reports any
errors detected in numeric operations; it also
contains a condition code to control conditional
branching.

Extended Data Types

The extended data types described below and
shown in Figure 3-16 are of different lengths and
domains (real and integer). These convenient
data types allow number representation most

3-15

suitable for the application, with the required
precision.

INTEGER DATA TYPES
The NDP supports 16-bit, 32-bit, and 64-bit in­
teger operands for integer computations. These
integers use the two's complement format for
negative numbers, making the high-order bit a
sign bit.

The 16-bit word integer format is common to
both processors to ensure fast transfers of data
between them. The 32-bit and 64-bit integer
formats enable high-precision calculations with
large integers. The 64-bit data type allows inte­
gers as large as 9 x 10 18 .

FLOATING-POINT DATA TYPES
For extended-precision floating-point calcula­
tions, the NPX supports 32-bit, 64-bit, and 80-
bit real values. These normalized floating-point
data types include a sign bit, an exponent field,
and a mantissa field.

The 32-bit short real values provide 24-bit preci­
sion and a range of values from 10-38 to 10 + 38.

The 64-bit long real values provide 53-bit preci­
sion and a range of values from 10-308 to 10+ 308.

This 64-bit real data type is sufficient to handle
most high-precision calculations.

The temporary 80-bit real values provide ex­
tremely high precision for numeric calcula­
tions. Temporary 80-bit real values have a
precision of 64 bits and a range of values from
10-4932 to 10+ 4932 . To prevent problems result­
ing from overflow or underflow during in­
termediate calculations the NPX uses an internal
80-bit numeric format. This format ensures a
high degree of accuracy for the results of chained
calculations.

PACKED BCD DATA TYPE
In addition to the extended integer and floating­
point data types, the NDP also supports signed
18-digit packed BCD values. The packed BCD
data type has a range of 0 to 1018 . These decimal

TECHNICAL OVERVIEW

values satisfy the requirements of most com­
mercial programs by providing high precision
for decimal arithmetic.

stack and, optionally, the next element on the
register stack for operands. Special-purpose
numeric instructions can use this mode to save
memory space because they do not require full
addressing flexibility.

Extended Addressing Modes The second addressing technique enables an
instruction to use any other register stack element
along with the top element. Most two-operand
instructions support this addressing mode to
allow shorter and simpler numeric programs.

The Numeric Data Processor supports three
techniques for operand addressing. The first
implicitly uses the top element on the register

DATA RANGE
FORMATS

WORD INTEGER 104

SHORT INTEGER 109

LONG INTEGER 1019

PACKED BCD 1018

SHORT REAL 10.:!.38

LONG REAL 10-,-308

TEMPORARY REAL 10.!.4932

PRECISION MOST SIGNIFICANT BYTE

7 01 7 01 7 01 7 01 7 01 7

16 BITS 1'5 I~

32 BITS 131 10 I

64 BITS 163

18 DIGITS S 1 - 10" 0,61

24 BITS S IE7 01 F Eo 1 F23(

53 BITS sl E10 Eol F,

64 BITS sl E'4 Eo I Fa

INTEGER: 1
PACKED BCD: (_1)5 (0" ... Do)

REAL: (_1)5 (2E BIAS) (Fo·F, ...)
BIAS = 127 FOR SHORT REAL

1023 FOR LONG REAL
16383 FOR TEMP REAL

01 7

Figure 3-16. Extended Data Types

3-16

01 7 01 7 01 7 oj

TWO'S COMPLEMENT

TWO'S COMPLEMENT

J, TWO'S
10 COMPLEMENT

10, Dd

Fo IMPLICIT

FS2J Fo IMPLICIT

F63 I

TECHNICAL OVERVIEW

The third technique uses any of the existing
iAPX 286 memory addressing modes to refer to
memory operands. Instructions which move
operands between memory and the internal stack
use this technique.

Extended Numeric Instruction Set

The Numeric Processor Extension (or a software
emulation of the NPX) provides an extension
to the instruction set of the CPU's base archi­
tecture. A programmer places instructions for
the NPX in line with the instructions for the
CPU. The system executes these instructions in
the same .order as they appear in the instruction
stream. The NPX operates concurrently with
the CPU to provide maximum throughput for
numeric calculations.

The Numeric Processor Extension extends the
instruction set of the CPU to support high­
precision integer and floating-point calcula­
tions. To process the extended data types, the
extended instruction set includes arithmetic,
comparison, transcendental, and data transfer
instructions. The NPX also contains a set of
useful constants to enhance the speed of numeric
calculations.

ARITHMETIC INSTRUCTIONS
The extended instruction set includes not only
the four arithmetic operations (Add, Subtract,
Multiply, and Divide), but it also includes Sub­
tract Reversed and Divide Reversed instruc­
tions. The arithmetic functions include Square
Root, Modulus, Absolute Value, Integer Part,
Change Sign, Scale Exponent, and Extract Ex­
ponent instructions.

COMPARISON INSTRUCTIONS
The comparison instructions are Compare, Ex­
amine, and Test. Special forms of the Compare
operation can optimize algorithms by allowing
comparisons of binary integers with real num­
bers in memory.

3-17

TRANSCENDENTAL INSTRUCTIONS
The instructions in this group perform the other­
wise time-consuming core calculations for all
common trigonometric, inverse trigonometric,
hyperbolic, inverse hyperbolic, logarithmic, and
exponential functions. The transcendental in­
structions include Tangent, Arctangent, 2x - I,
Y.log2X, and Y.log2 (X + 1).

DATA TRANSFER INSTRUCTIONS
The data transfer instructions move operands
among the registers and between a register and
memory. This group includes Load, Store, and
Exchange instructions.

CONSTANT INSTRUCTIONS
Each of the constant instructions loads a com­
monly used constant into an NPX register. The
values have a real precision of 64 bits and are
accurate to approximately 19 decimal places.
The constants loaded by these instructions in­
clude 0, I, Pi, log2 10, log2e, log 10 2, and loge2.

ADVANCED PROGRAMMING
MODEL

The previous sections describe the registers, data
types, addressing modes, and instructions that
apply to a single program module with a single
source for data. This section on the advanced
programming model expands the view of the
base architecture to include the segmentation of
memory that enables the CPU to address a mega­
byte or more of physical memory.

Segmentation of Memory

As defined by the base architecture, the code,
data, and stack information for a program
occupy separate sections of the system memory
(either separate or overlapping). These sections
of memory are called segments. The base
address of an addressable segment is stored in a
segment register.

TECHNICAL OVERVIEW

The iAPX 286 addressing mechanism operates
on variable-length segments .. Each segment
may be as short as a single byte or as long as 64K
bytes. A variable-length segment makes better
use of memory and provides better granularity
over the traditional fixed-length page. Because
a program is structured into units of varying size,
a variable-length segment can be arranged to re­
flect the structure of the program rather than the
structure of the machine.

Pointer Data Types

A pointer data type is a value that represents a
complete memory address. Part of the pointer
specifies a segment and the remaining part speci­
fies an offset into that segment (see Figure
3-17). Through the manipulation of pointers, a
system can control access to common data areas
or code sections.

For greater code density, the base architecture
also provides short pointers consisting of only an
offset into the current segment. The use of seg­
ment registers and short pointers allows most in­
structions to use 16-bit short pointers rather than
32-bit full pointers. This technique produces
compact programs for faster execution.

An intersegment Call or Jump requires a full
pointer to completely specify the new point at
which the program resumes execution. A Call
or Jump within the same code segment requires
only a short pointer to transfer control. Call and
unconditional Jump instructions may use either a
full pointer or a short pointer. Conditional
Jumps and instructions which read or write
memory use only short pointers.

Segment Registers

The four segment registers of the iAPX 286 de­
fine the portion of address space available to a
program at a given instant (see Figure 3-18).

3-18

Each segment register contains the base address
of a memory segment. A program switches to a
different section of the address space by loading
a segment· register with the base address of the
desired section. The iAPX 286 CPU forms an
address within a segment by adding an effective
address value to the base address in the segment
register.

The code segment (CS) and stack segment (SS)
registers provide access to segments containing
instructions and stack data, respectively. The
data segment (DS) register refers to a segment
that stores data. The extra segment (ES) register
refers to an alternate data segment. The extra
segment register normally provides access to a
storage area external to the segment indicated by
the DS register, such as a system data segment
(see Figure 3-19).

All addressing within the iAPX 286 uses a seg­
ment register as a base and the effective address
value specified in the instruction as an offset
within the segment. The effective addresses dis­
cussed in the section on "Basic Addressing
Modes" do not refer to absolute memory loca­
tions; they are actually offsets from a segment
base address.

Just as instructions include an offset into the cur­
rent data segment to specify the effective ad­
dress, the instruction pointer (IP) provides an
offset into the current code segment for the loca­
tion of the next instruction. The stack pointer
(SP) similarly contains an offset into the current
stack segment for the location of the top of stack.

In addition to SP, the iAPX 286 includes the
stack frame base (BP) for convenient addressing
of parameters and dynamic work space allocated
on the stack by a procedure call.

The operation of the segment registers follows
the way structured programs are written. The
CPU implicitly assumes that instructions which
address program data refer to the segment indi­
cated by the DS register. Likewise, the CPU

TECHNICAL OVERVIEW

assumes that stack operations refer to the stack
segment and that instructions reside in the code
segment.

These implicit segment assignments allow more
compact instruction code by eliminating the
need to specify segment registers, segment base
addresses, or full 32-bit pointers in every in­
struction. These assignments may be altered,
however, to handle special situations.

For the case where a program must access data
from the code segment, stack segment, or extra
segment, the base architecture provides seg­
ment-override prefix codes. This flexible ad­
dressing capability enables a program to read
immediate operands within the code segment
and to address parameter information within the
stack segment.

Because program modules are normally smaller
than 64K bytes, they seldom need to refer to
locations outside the segments currently selected
by the four segment registers. However, when it
becomes necessary to establish addressability
within a new segment, the program needs only to
load a new base address into the appropriate seg­
ment register. The programmer normally uses a
Move instruction to change the contents of the
DS, ES, and SS registers. The CPU uses a full
32-bit address pointer to alter the contents of the

AX

OX

CX

BX

BP

SI

01

SP

7

15

AH

DH

CH

BH

07

AL

DL

CL

BL

o

I
I
}
I
I
I
I
}

MULTIPL YIDIVIDE
I/O INSTRUCTIONS

LOOP/SHIFT/REPEAT
COUNT

BASE REGISTERS

INDEX REGISTERS
STRING POINTERS

STACK POINTER

CS register when the program specifies a transfer
of control to an address outside of the current
code segment.

A program can use a Move instruction to specify
address ability within a new segment. Other
instructions can enable the program to specify
a location within the new segment, as well as the
segment itself. The Load Pointer into DS and
Load Pointer into ES instructions include the
base address of a segment and an offset value.
The CPU executes a Load DS or Load ES in­
struction by placing the base address in the
appropriate segment register and the offset value
in one of the general data registers (typically
a base or index register). These instructions
enable a program to quickly access data in
another segment using a single instruction.

POINTER
"- "' I SEG MENT I OFFSET

1615 31
~

~
I

0
SELECTED
OPERAND

MEMORY
v

r)-'

i SELECTED
) SEGMENT

'v

Figure 3-17. Address Pointer

15 0

F c==J FLAGS

IP c==J INSTRUCTION POINTER

STATUS AND CONTROL REGISTERS

CS 8 CODE SEGMENT BASE

OS DATA SEGMENT BASE

SS STACK SEGMENT BASE

ES EXTRA SEGMENT BASE

15 0

GENERAL DATA REGISTERS SEGMENT REGISTERS

Figure 3-18. Advanced Register Set

3-19

TECHNICAL OVERVIEW

Interrupts

The base architecture supports a versatile inter­
rupt system. An interrupt vector table contains
pointers to as many as 256 separate interrupt
service routines. Program interrupts can occur
in response to external devices and software
interrupt instructions, as well as program excep­
tions such as an undefined opcode or a divide
error.

Most external interrupts are "maskable". A
program allows the execution of maskable inter­
rupts only when the interrupt-enable flag (IF) is
set.

Internally generated interrupts and exceptions
are not maskable. The base architecture also

r------,
I I

MODULEA ~
~

MODULE B

PROCESS
STACK

PROCESS
DATA
BLOCK 1

PROCESS
DATA
BLOCK 2

I I
I I
I I

I
l
I
I
I

l
I
I
I

I
I
I

CODE I
DATA I

I
I
I

I
STACK
DATA

I
I
I

DATA

I

B
I I
I I
I I
I I L ______ ..I

MEMORY

provides a single externally triggered nonmask­
able interrupt to protect the system from cata­
strophic failures such as a power loss.

Two Modes: Real Address
and Protected Virtual
Address

The previous sections discuss iAPX 286 opera­
tion in either Real Address Mode or Protected
Virtual Address Mode (Protected Mode). In
Real Address Mode, the iAPX 286 executes un­
modified programs from the iAPX 86 and iAPX
88 while providing additional instructions and
allowing up to six times the throughput. In Pro­
tected Mode, the iAPX 286 executes application

CODE SEGMENT BASE CS

DATA SEGMENT BASE OS

STACK SEGMENT BASE SS

EXTRA SEGMENT BASE ES

SEGMENT REGISTERS

CPU

Figure 3-19. Segmented Memory Helps Structure Software

3-20

TECHNICAL OVERVIEW

programs from the iAPX 86 and iAPX 88 within
a protected virtual address space.

Protected Mode offers three advantages:

• Larger address space

• Protection of resources within the system

• Advanced operations

Following power-up or a system reset, the iAPX
286 CPU is in Real Address Mode, supporting a
I-megabyte real address space. All addresses in
Real Address Mode are real addresses; they are
formed by combining the real base address from
a segment register and the offset value provided
by the instruction (see Figure 3-20). The CPU
shifts the I6-bit base address value in the seg­
ment register left four bits before adding the 16-
bit effective address value to form a 20-bit real
address.

Protected Virtual Address Mode

The iAPX 286 in Protected Virtual Address
Mode (Protected Mode) integrates the capabili­
ties of Real Address Mode with memory man­
agement, virtual memory support, and address
space protection. This integration enables the
iAPX 286 to support reliable multi-user systems
which provide new levels of performance, yet
cost far less to develop and manufacture than
other systems of equivalent capabilities.

After power-up in Real Address Mode, the sys­
tem can either continue to execute in that mode
or switch to Protected Mode by setting a bit in a
status register. Once set, only a system reset can
clear the Protected Mode bit. This restriction
protects the system from programs attempting to
circumvent the protection mechanism by return­
ing to Real Address Mode.

In Protected Mode, the iAPX 286 supports a 16-
megabyte real address space and a virtual
address space per task (per user) of up to I giga­
byte (2 30 bytes). Programs do not deal with
physical addresses as in Real Address Mode.

3-21

Instead, the segment registers now specify one
of up to 16K 64K-byte segments of virtual
address space. The effective address specifies
the offset of the desired operand within the seg­
ment. The translation of virtual to physical
memory address is automatically performed by
the iAPX 286 on-chip memory management
facility. This eliminates the need for special in­
structions or routines to manage an external
memory management facility and provides sig­
nificantly higher system throughput.

The segmentation of the virtual address space in
Protected Mode of the iAPX 286 parallels the
segmentation of the real address space in Real
Address Mode. This design compatibility sim­
plifies the migration of programs from Real
Address Mode to Protected Mode. An applica­
tion programmer perceives no difference be­
tween the memory models of the Real Address
and Protected Modes except the amount of
addressable memory and the information con­
tained within a segment register.

To manage the 16-megabyte real address space
available in Protected Mode, the iAPX 286 sup­
ports a series of memory-based address mapping

19

15 a

I OFFSET I OFFSET
'-_____ --' ADDRESS

j---JL..-....I

20·BIT PHYSICAL
MEMORY ADDRESS

SEGMENT
ADDRESS

Figure 3-20. iAPX 86 Real Address Mode
Address Calculation

TECHNICAL OVERVIEW

(descriptor) tables. These tables define the vir­
tual address space for every task in the system
and greatly simplify relocation of programs and
data.

The addresses used in Protected Mode are natu­
ral extensions of the real addresses of Real
Address Mode, providing compatibility for ap­
plication programs. The iAPX 286 supports a
local address space for each task's private code
and data, and a global address space for shared
code and data available to all tasks in the system.

The iAPX 286 greatly reduces the complexity of
an operating system (OS) for a virtual memory
system by handling in hardware many of the op­
erations required for virtual addressing. The
80286 CPU contains all of the necessary logic to
perform virtual address translation using the
memory-based descriptor tables defined by Pro­
tected Mode operation. The information stored
in these tables includes the base address, length,
access rights, and status of every segment in the
system. Handling virtual address translation in
hardware relieves the as of this major duty and
provides faster operation.

The hardware-based address space protection of
the 80286 CPU makes large multi-user repro­
grammable systems easier to develop. System
and application software is easier to write and
debug.

This protection ensures reliable systems by:

• Isolating the as from applications programs

• Isolating users from users

• Protection checking which occurs concurrently
with other CPU functions so that it does not
affect system performance.

These Protected Mode features prevent a system
failure due to the unauthorized modification of
the as by application programs. Because the
protection mechanism detects errors before they
can cause damage, the coding problems are often
much easier to trace.

FULL REGISTER SET
To provide the hardware support for multitask­
ing, virtual memory, and protection, the register
set of the 80286 CPU includes new flag bits, new
registers, and extensions in addition to previ­
ously described registers (see Figures 3-21a and
21 b).

New flag bits control task transitions and the ex­
ecution of certain instructions. New registers
and extensions support virtual addressing, multi­
tasking, and protection. The operation of these
registers is optimized to simplify the task of writ­
ing both system and application programs.

SEGMENT REGISTERS IN PROTECTED
VIRTUAL ADDRESS MODE
As described above under "Segmentation of
Memory", the four segment registers (CS, DS,
ES, and SS) point to the four currently address­
able segments. A segment register performs the
same function in Protected Mode except that it
points to an entry in a table which, in turn, points
to the target segment, rather than pointing direct­
ly to the segment. This added level of indirec­
tion enables the operating system to place a seg­
ment anywhere in real memory without having
to adjust the address constants of a program.

In other words, Protected Mode alters the inter­
pretation of the value in a segment register from
a 16-bit real address to a table index. In addi­
tion, Protected Mode extends the segment regis­
ters to 64 bits to hold the addressing information
copied from the table. This additional informa­
tion includes the upper limit of the segment and
the parameters governing the operation of the
iAPX 286 protection mechanism.

3-22

Selector loading in Protected Mode parallels the
loading of a segment base in Real Address
Mode. By retaining the basic addressing proce­
dures of Real Address Mode in Protected Mode,
the iAPX 286 eliminates the need to rewrite ap­
plication programs to use virtual memory.

TECHNICAL OVERVIEW

DESCRIPTOR DATA TYPE
The 48-bit extension of a segment register con­
tains a "segment descriptor". When a segment
is in use, the descriptor which defines that seg­
ment occupies the 48-bit extension of the
appropriate segment register. A descriptor is a
data type which specifies the base address, limit,
and protection parameters for a single segment

7 07

AH

DH

o
AL

DL

I
\

MUL TIPLYDIVIDE
1,0 INSTRUCTIONS

of memory. Each virtual address translation
table (or descriptor table) of the iAPX 286 con­
sists of a list of descriptors for the segments de­
fined for that program.

The iAPX 286 CPU uses the descriptor informa­
tion in a segment register to translate a program's
virtual addresses to real addresses. As long as a

15 0

IP INSTRUCTION POINTER

AX

DX

CX

BX

BP

SI

DI

CH CL } LOOP SHIFT REPEAT COUNT

F §FLAGS

MSW MACHINE STATUS WORD

BH BL I
\

BASE REGISTERS STATUS AND CONTROL REGISTERS

I
\

INDEX REGISTERS
STRING POINTERS

SP } STACK POINTER

15 0

GENERAL DATA REGISTERS

ACCESS SEGMENT
SEGMENTSELECTORS RIGHTS BASE ADDRESS

7 023 015

SEGMENT
SIZE

~~ 8 It----t----I -t------tl I
15 0 47 4039 1615 0

SEGMENT REGISTERS
(LOADED BY PROGRAM)

SEGMENT SELECTORS

15 0

TRB
LDTR

GDTR

IDTR

(REGISTERS LOADED
BY OS AND CPU)

SEGMENT DESCRIPTOR CACHE REGISTERS
(CPU LOADS THIS EXPLICIT CACHE WHICH
IS INVISIBLE TO PROGRAMS)

ACCESS SEGMENT SEGMENT
RIGHTS BASE ADDRESS SIZE

7 023 015 0

I I
47 4039 1615

(CPU LOADS THIS EXPLICIT CACHE WHICH
IS INVISIBLE TO PROGRAMS)

TASK REGISTER AND DESCRIPTOR TABLE REGISTERS

Figure 3-21a. Full Register Set

3-23·

TECHNICAL OVERVIEW

program remains within the boundaries of a sin­
gle segment, the processor obtains all address
translation information from the descriptor field
in the segment register.

The iAPX 286' virtual addressing mechanism
uses an explicit cache that speeds operations by
eliminating the need to refer to a descriptor table
for every memory reference instruction. This
explicit cache consists of the segment register
extensions which hold descriptor information.

Whenever a program loads a selector into a seg­
ment register, the CPU automatically copies the
descriptor for that segment into the explicit
cache for that segment register (see Figure 3-22).

After the hardware of the iAPX 286 copies the
segment addressing information from a descrip­
tor to a segment register, the CPU does not need

to refer to a descriptor table again until the pro­
gram requires access to another segment.

The iAPX 286 includes many'different types of
descriptors in addition to the segment descrip­
tor. The system uses these other types of de­
scriptors to define segments which store virtual
addressing information and to regulate transfers
of control within the system.

DESCRIPTOR TABLES
A descriptor table is an .array of descriptors
which the hardware interprets for virtual address
translation. These descriptor tables form the in­
terface between the OS software and the iAPX
286 virtual addressing hardware. This hardware
supports one global descriptor table (GDT) , one
interrupt descriptor table (IDT) , and multiple

MACHINE
STATUS
WORD

I I I I I I I I I I I I I TS I EM I MP I PE I

FLAGS

""'W,"" ~
EMULATE PROCESSOR EXTENSION --------'

MONITOR PROCESSOR EXTENSION ----------'
PROTECTION ENABLE ________ ..J

STATUS FLAGS

CARRV-------------------~

PARITV ------------------, 1
AUXILlARvCARRV-1 '1.
~~RNO~~~~~~~~~~~~~~~~~~~~~~-----,l

SPECIAL FIELDS

1/0 PRIVILEGE LEVEL

NESTED TASK FLAG

Figure 3-21 b. Flags and Machine Status Word Bit Functions

3-24

CPU MEMORY

SEGMENT
TOP

CPU

VIRTUAL ADDRESS POINTER

I SELECTOR OFFSET I

_ ~~g~g~T DS EXPLICIT CACHE I
L... ___L. ____ L-___ ...J.... ___ -I1 I ~ SELECTOR I :

W I I

MEMORY

SEGMENT
TOP

::!! DS EXPLICIT CACHE -.---t""" I L :
~ U! DESCRIPTOR ! DESCRIPTOR ~ DESCRIPTOR J po- I TABLE lpo J TABLE

I I I
N I 1-1
~ ! m

o
b DESCRIPTOR TABLE REGISTER DESCRIPTOR TABLE REGISTER : i m I _

(J.) C. 1. THE PROGRAM PLACES A SELECTOR IN THE SEGMENT REGISTER. THE TABLE REGISTER 2. THE PROCESSOR ADDS THE SELECTOR INDEX TO THE BASE ADDRESS OF THE DESCRIPTOR 0 r\:> ::::J INDICATES THE LOCATION AND LENGTH OF THE DESCRIPTOR TABLE. TABLE TO SELECT A DESCRIPTOR. l>r
01 cc

- CPU MEMORY CPU MEMORY 0
;- VIRTUAL ADDRESS POINTER VIRTUAL ADDRESS POINTER <
~ I SELECTOR I OFFSET I n- SEGMENT SEGMENT ~

1:1 TOP I TOP ===
() : m
~ I ~ o -~ ~

m
()

(I)::T DS EXPLICIT CACHE SEGMENT SEGMENT
" BOTTOM BOTTOM

l o~",~, ~ I o""'~,,
: TABLE R) TABLE

.------r--;:B"'A"'S':=E-' : b;;;j BASE
LIMIT ADDRESS: LIMIT ADDRESS

DESCRIPTOR TABLE REGISTER I DESCRIPTOR TABLE REGISTER
I

3. AFTER THE PROCESSOR VERIFIES SEGMENT ACCESS RIGHTS. IT COPIES THE DESCRIPTOR 4. THE PROCESSOR USES THE DESCRIPTOR INFORMATION TO CHECK SEGMENT TYPES AND
TO THE DATA SEGMENT (DS) REGISTER. LIMITS AS WELL AS TO FORM EFFECTIVE ADDRESSES.

TECHNICAL OVERVIEW

local descriptor tables (LDTs). The system pro­
grammer locates these tables (see Figure 3-23)
anywhere in memory by using the three de­
scriptor table registers: GDTR, IDTR, and
LDTR (see Figure 3-24).

The operation of an application program may re­
quire a private local memory space to ensure reli­
able operation. An OS program, on the other
hand, must be system-wide in scope to provide
services to multiple application programs within
a system. The iAPX 286 uses descriptor tables
to separate the addressable memory space into a
global portion for the OS programs and shared
data, and a separate local portion for each task
within the system. Switching from one user's
local address space to another's only requires
changing the LDTR register.

The descriptor tables consolidate all address
translation information into easily manageable
areas. Each time the OS brings a segment from

GDT

lOT

secondary storage into real memory, it also up­
dates the addressing information contained in the
descriptor for that segment. Ifthe address trans­
lation information were not collected into de­
scriptor tables, the OS would have to locate
and modify every memory operand which re­
fers to a segment every time the OS relocates
that segment.

The IDT contains an enhanced version of the in­
terrupt vector table discussed under' 'Inter­
rupts". The interrupt types of Protected Mode
operation are identical to those of Real Address
Mode to provide mode independence for ap­
plication programs.

INSTRUCTIONS IN PROTECTED MODE
The instruction set of the Protected Mode iAPX
286 is identical (object code compatible) to the
iAPX 86,88 and Real Address Mode iAPX 286
to enable application programs to migrate easily

GLOBAL
DESCRIPTOR
TABLE

INTERRUPT
DESCRIPTOR
TABLE

DDD ... O ONE LOCAL
DESCRIPTOR
TABLE FOR
EACH TASK

c:1 c:1 c:1 L:J
TASK 1 LDT TASK 2 LDT TASK 3 LDT TASK n LDT

Figure 3-23. Descriptor Tables

3-26

TECHNICAL OVERVIEW

from Real Address Mode to Protected Mode op­
eration. Any instruction that modifies the con­
tents of a segment register in Real Address Mode
has the same net effect in Protected Mode but
will load a different value (the operand loaded
into the segment register). Because descriptor
loading is handled automatically by hardware, it

is completely transparent to the program. No
additional instructions are required to initiate de­
scriptor loading operations.

The only difference to the program between Real
Address Mode and Protected Mode operation is
the processor's interpretation of the l6-bit value

GLOBAL DESCRIPTOR TABLE REGISTER

----- -----

"..

I ~--.....

I LIMIT I BASE I
ADDRESS

INTERRUPT DESCRIPTOR TABLE REGISTER

i -----

S I
I

15 07 015 023 0

I I ACCESS I SELECTOR CONTROL LIMIT I BASE I
ADDRESS

LOCAL DESCRIPTOR TABLE REGISTER

Figure 3-24. Descriptor Table Registers

3-27

!INTERRUPT
DESCRIPTOR
TABLE (IDT)

LOCAL
DESCRIPTOR
TABLE (LDT)

TECHNICAL OVERVIEW

that it places in the segment register. Real
Address Mode installs the actual base address of
a segment in the segment register, while Pro­
tected Mode specifies this base address indirect­
ly through a segment selector.

Application programs written for the iAPX 86
and iAPX 88 may execute in Protected Mode by
simply replacing segment base values with seg­
ment selectors. An assembler can automatically
handle this conversion, because the syntax for
segment addressing remains the same in both
modes.

To summarize, Protected Mode operation is
transparent to application programs and simpli­
fies as programs. The application program­
mer's view of the address space expands from
a megabyte to a gigabyte in size. Otherwise,
addressing remains consistent to allow the use of
application programs from the iAPX 86 and 88.

The memory-based descriptor tables integrate
the key system functions of memory manage­
ment, virtual address translation, and memory
protection to relieve the as of these duties. This
extensive as support in hardware simplifies the
job of the system programmer and shortens the
product development cycle.

Protection Concepts

As computer system designs grow more com­
plex and memories grow larger, protection of
system resources becomes more important. To
ensure reliable operation, a protection mecha­
nism must prevent unauthorized modification
to the code and data sections of every program
in the system.

THE NEED FOR PROTECTION
A protection mechanism must guard a system's
as programs and data to prevent application
programs from making illegal or improper mod­
ifications to the as which could result in system

failure. Each task within the system must also
be isolated from undesirable actions of other
tasks.

Transfer of control between system modules
must be precisely controlled to achieve total
reliability. A system must be able to honor re­
quests for as services without granting control
over the as to the calling program.

A protection mechanism must assign different
priorities to different programs within the system
to impart greater privilege to more important
programs (such as an as program). The as
programs are always assigned to a higher
privilege level than application programs.

If it were possible for an application program to
define the actions of the protection mechanism,
that program could alter the protection pa­
rameters to override the authority of the as. To
prevent this problem, the hardware must enable
only programs at the highest privilege level to
control the protection mechanism.

A complete protection mechanism must also
be able to detect addressing errors before they
cause damage. To prevent improperly coded
instructions from overwriting programs and
executing data, each instruction must be checked
to verify that it is performing the intended
operation.

3-28

A protection mechanism reduces the cost of de­
veloping software by providing a quick means of
diagnosing program "bugs". The protection
mechanism can prevent an erroneous instruction
from executing before it causes a problem. The
operating system stays unaffected, and the pro­
gram remains intact for examination. Continu­
ous instruction checking can also reduce the cost
of software maintenance, because fewer prob­
lems make it through the development process.

iAPX 286 PROTECTION MODEL
The hardware protection and memory manage­
ment mechanisms of the iAPX 286 allow the as
to be part of every application program's virtual

TECHNICAL OVERVIEW

address space. The use of a global address space
enables an application program to access the OS
with a simple high-speed Call instruction rather
than the traditional and time-consuming context
switch to a separate protected address space. To
provide protection of the OS from an application
program, the iAPX 286 provides four hierarchi­
cal privilege levels within each user's virtual
address space. This approach allows complete
protection of the OS from applications programs
even though the OS is within the application
program's address space.

The advantage for the programmer of making the
OS a global resource is that the OS appears sim­
ply as a set of procedures which an applications
program may call as a subroutine. This fea­
ture not only improves performance, but it also
greatly simplifies the development of multi-user
systems.

TASKB

SEGMENT PROTECTION
Because each program and data structure occu­
pies its own variable-length segment in an iAPX
286 system, these segments constitute ideal units
for protection. The iAPX 286 provides four seg­
ment types for protection purposes. These four
segment types are execute-only, execute and
read, read-only, and read and write. The iAPX
286 protection mechanism checks both segment
register loading and each instruction that uses the
segment to verify that it does not violate the seg­
ment usage defined by the system designer for
each segment.

Segment register loading verifies the segment is
present and is the correct type; for example, ex­
ecutable for loading into CS, and read/write for
loading in SS (see Figure 3-22). Usage checks
include limit checks and access rights, such as
read, write, and execute only (see Figure 3-22).

TASK
ISOLATION

... PROVIDED BY
SEPARATE
DESCRIPTOR
TABLES

TASK A

PRIVILEGE LEVEL
ISOLATION

Figure 3-25. Four Privilege Levels

3-29

TECHNICAL OVERVIEW

In addition to segment typing, the iAPX 286 pro­
vides up to four levels of privilege for different
segments in the system (see Figure 3-25). The
privilege level of a segment is defined within the
descriptor for that segment.

The hardware-enforced privilege levels of
the iAPX 286 provide total control over the use
of code and data segments. The protection
mechanism enforces firewalls which prevent
the effects of bugs from propagating to more
privileged levels. A program may access data
at only the same or a less-privileged level; it
may call services at only the same or a more­
privileged level.

For total isolation between levels, the iAPX 286
maintains a separate stack and stack pointer for
each privilege level. The use of separate stacks
prevents a program from corrupting a service
procedure through unauthorized manipUlation of
the procedure's stack.

When an application program makes a call to the
OS, it typically passes a series of parameters to
the called procedure. The iAPX 286 automati­
cally copies parameters from the caller's stack to
the stack of the procedure to provide a trans­
parent call interface between protection levels.

The availability of multiple privilege levels en­
ables a system designer to divide an operating

LEVELO

LEVEL 1

system into separate hierarchical sections.
These separate sections are easier to write be­
cause they are smaller. They are also easier to
debug due to the error-trapping capabilities of
the protection mechanism. The following is an
example of the way a system designer might con­
figure these multiple protection levels.

Ideally, an OS kernel, which occupies the most­
privileged level, is small and fast so that it may
serve as a user-customized extension to the
iAPX 286 CPU. A system designer specifies
the use of the iAPX 286 protection mechanism
within this OS kernel.

The second and third privilege levels commorily
support system services and custom extensions,
respectively, while application programs occupy
the least-privileged level. A user can also use
these less-privileged levels to support custom
OS extensions without affecting the integrity of
the original OS. This hierarchical structuring of
privilege levels promotes structured system de­
sign and reduces the time required to develop
and maintain system software.

CONTROL TRANSFER WITHIN A TASK
The traditional implementation of a virtual mem­
ory system uses one type of call instruction to ac­
cess local procedures and a special supervisor
call instruction to request OS services. The

a. INTRALEVEL TRANSITION b. GATED INTER LEVEL CALL AND RETURN

Figure 3-26. Control Transfers Within a Task

3-30

TECHNICAL OVERVIEW

iAPX 286 simplifies programming by using the
same instruction to call both regular procedures
and OS services from the same virtual address
space (see Figure 3-26).

Within the same iAPX 286 privilege level, a
program may call to any procedure as long as
that procedure resides within an executable seg­
ment (as opposed to a data segment). The same
Call instruction which calls a procedure within
the current privilege level also can call to a pro­
cedure at a more-privileged level using acall gate.

A call gate provides an additional level of in­
direction which enables the protection mecha­
nism of the iAPX 286 to verify the privilege level
of the calling program before granting access to a
procedure. Each call gate controls the visibility
of a single procedure, so that a program may not
call the procedure if it does not satisfy the gate­
defined access requirements. This restriction
protects the integrity of an OS by preventing ac­
cess to OS code by programs of insufficient priv­
ilege. For example, procedures at levels 2 and 3
may both access a procedure at level 0 to allocate
more memory, however level 2 may also wish to
call level 0 to disable interrupts without giving
level 3 the same ability. The existence of gates
within the privilege level of the caller controls
(restricts) the caller's ability to access a more­
privileged procedure.

External interrupts, software interrupts, and
program exceptions can also cause privilege­
level transitions. Because the iAPX 286 protec­
tion mechanism does not allow a transfer to a
less-privileged level within a task, an interrupt
routine serviced within the task normally resides
at the most-privileged level to be accessible at all
times. Interrupt service routines which execute
as a separate task may execute at any level.

Advanced Architectural Features

The features of the iAPX 286 described in this
section support specific system functions which
would be difficult to implement and would limit
the performance of other microprocessor sys­
tems. The benefits of these new iAPX 286
features can be added to upgraded products
using existing iAPX 86 and iAPX 88 applica­
tion programs.

INTERRUPT AND TRAP OPERATIONS
A real-time interactive computer system must
handle frequent interrupts. The iAPX 286 pro­
vides a high-speed interrupt response mecha­
nism to allow maximum throughput while still
handling a large number of interrupts. The
iAPX 286 can respond to an interrupt in less than
4 microseconds to provide prompt execution of

Figure 3-27. Control Transfers Between Tasks

3-31

TECHNICAL OVERVIEW

an interrupt handler. This extremely low inter­
rupt latency results in a system which can sup­
port many more real-time events.

The interrupt system of the Protected Mode in­
cludes two classes of transfers to interrupt serv­
ice routines. The first class supports interrupt
service routines which reside in the address
space of the interrupted task. These routines are
normally part of the OS in the global address
space.

The second class of interrupt transfer automati­
cally performs a high-speed task switch from the
interrupted task to a special interrupt service task
which is completely isolated from other tasks.
The second class of interrupts provides a conve­
nient way to add new features or custom I/O
drivers to an existing system.

These interrupt operations are transparent to the
software. Both classes of interrupt transfer use
the same Return From Interrupt instruction to re­
turn control to the interrupted task.

The base architecture also includes a special in­
terrupt type to simplify program development.
The trap flag (TF) provides an interrupt follow­
ing every instruction for single-step execution or
program tracing. Single-stepping is a valuable
debugging tool. A single-step procedure can act
as a "window" into the system through which
a programmer observes the instruction-by­
instruction operation of a program.

MULTITASKING SUPPORT
Task dispatching is one of the most important
functions of an OS in a multi-user or multitask­
ing system. To allow concurrent execution of
multiple programs, the OS must be able to sup­
port multitasking.

Because task switching occurs so frequently in
real-time multitasking systems, the iAPX 286
CPU incorporates special high-speed hardware
to perform this operation (see Figure 3-27). A
lO-megaHertz iAPX 286 can save the state of

one task (all registers), load the state of another
task (all registers and the four segment descrip­
tors), and resume execution all in less than 17
microseconds. For greater performance, the
iAPX 286 also enables interrupts to cause a task
switch directly, without OS intervention.

To support task switching in hardware, the Pro­
tected Mode of the iAPX 286 defines a special
task state segment for each task in the system. A
task state segment is a segment which retains the
state of a task. The format of a task state segment
includes the contents of the general registers, the
selector for tpe task's local descriptor table, the
stack pointers for that task, and a back link to a
previously suspended task. The processor uses
the back link to return from a nested chain of sus­
pended tasks if such a chain exists.

Interrupts, exceptions, and traps can specify an
inter-task transfer. To maintain low interrupt
latency, interrupts can directly invoke a task
switch without requiring a call to the OS. The
same Call, Jump, and software Interrupt instruc­
tions which perform transfers within a task can
also take advantage of this high-performance
hardware to change tasks. This instruction com­
patibility allows a high degree of protection with­
out introducing greater program complexity.

3-32

REST ART ABLE INSTRUCTIONS
All segment loading and stack reference instruc­
tions are restartable. This restartability enables
an iAPX 286 system to handle program excep­
tions without requiring an elaborate program
restart routine following the exception. The
restartable instructions not only reduce pro­
gramming complexity, but they also provide
high-speed handling of program exceptions.
Restartable stack faults allow an OS to provide
growable stacks to accommodate varying stack
requirements. Because a virtual memory sys­
tem must frequently handle segment not-present
exceptions, instruction restartability can signifi­
cantly simplify the implementation of a virtual
memory system.

TECHNICAL OVERVIEW

VIRTUAL MEMORY
Any computer system which supports a virtual
address space must effectively manage the swap­
ping of programs (and data) between the sys­
tern's real memory and secondary storage
(usually a disk). If an instruction refers to a vir­
tual address that is not present in real memory,
the system must have a way to notify the OS to
bring the requested entity into real memory.

The previous discussion of descriptor loading
assumes that the target segment is present in real
memory. When the OS runs out of real memory
space, it creates free space by moving one or

DESCRIPTOR
TABLE

OS

FREE SPACE

more segments from real memory to secondary
storage. To allow the OS to easily identify the
most likely candidate for swapping, the iAPX
286 marks a segment as "used" each time it
accesses that segment.

After the OS determines which segment is used
the least, it can move the segment into secondary
storage and mark the segment descriptor "not
present". A segment which has not been ac­
cessed at all may simply be overwritten because
the version in secondary storage is still current.

If an instruction requests access to a segment that
is not present in real memory, the not-present bit

DISK STORAGE

CD PROGRAM REQUESTS ACCESS TO A SEGMENT
CURRENTLY STORED ON DISK

® CPU CHECKS THE APPROPRIATE
DESCRIPTOR TABLE

® DESCRIPTOR RETURNS SEGMENT
NOT-PRESENT STATUS

o SEGMENT-NOT-PRESENT INTERRUPT
TRIGGERS OS SEGMENT LOADING
PROCEDURES

® OS INSTRUCTS CPU TO READ FROM THE DISK

® CPU ACTIVATES THE DISK 1/0 HARDWARE

CD CPU PERFORMS A DMA TRANSFER FROM
DISK TO FREE MEMORY

® OS UPDATES DESCRIPTOR TABLE

® OS RETURNS TO TRAPPED INSTRUCTION

Figure 3-28. Virtual Memory Operation

3-33

TECHNICAL OVERVIEW

in the descriptor for that segment triggers a seg­
ment not-present exception. The OS handles
this type of interrupt by freeing the required
amount of real address space and then loading
the target segment into real memory from disk
storage (see Figure 3-28).

After the segment is loaded into real memory,
the OS marks the descriptor "present" {lnd up­
dates the address information for that segment in
the corresponding descriptor. At this point, the
OS may restart the instruction that originally re­
quested access to the segment.

Because the iAPX 286 detects any exception
before executing the instruction that caused the
exception, an instruction restart is extremely sim­
ple. After the exception-handling routine com­
pletes its execution, the processor simply places
the address of the interrupted instruction back in
the instruction pointer and continues executing
the program.

RECOVERABLE STACK FAULTS
A common problem in systems which support
a wide variety of programs is stack overflow.
This condition results from extensive use of re­
cursive procedures or subroutines which require
more dynamic storage on the stack than pro­
vided. The result of a stack overflow in most
systems is either the destruction of information
or a system crash. The protection mechanism of
the iAPX 286 prevents these disasters from
occurring.

As mentioned above, the iAPX 286 CPU actual­
ly halts any instruction which causes stack over­
flow before execution. Because the instruction
does not execute, it is simple to restart after the
exception handler corrects the problem.

The iAPX 286 can detect any instruction which
attempts to write beyond the limit of the current
stack segment before it causes a problem. The

3-34

resulting program exception can then call a pro­
cedure which increases the size of the stack seg­
ment. Following the operation of the exception
handler, the processor restarts the interrupted in­
struction. The original program continues ex­
ecuting with a larger stack. The iAPX 286 can
also detect a potential stack underflow.

POINTER VERIFICATION
One of the more complex problems in protected
systems is pointer verification to make sure that
a user's program does not pass an erroneous
pointer to the operating system. If undetected,
such an error could cause the OS to modify data
not belonging to the caller and violate the integri­
ty of other programs in the system or even the OS
itself.

To assist the programmer with pointer verifica­
tion, the iAPX 286 provides special instructions
which allow the software to restrict pointers
from an unknown caller to the caller's address
space and privilege level. Other instructions
check pointer characteristics such as access
rights and segment limits against the predefined
values for each segment in the system.

MULTIPROCESSOR SUPPORT
Multiprocessing systems offer the advantage of
even higher performance while maintaining
modularity and reliability. The base architec­
ture simplifies the development of systems
using multiple independent processors by pro­
viding facilities for coordinating the interaction
of processors.

The iAPX 286 provides support for multi­
processor coordination through an efficient bus
interface, an 82289 Bus Arbiter circuit, and a
special bus LOCK signal. Asserting the LOCK
signal causes the Bus Arbiter to prevent other

TECHNICAL OVERVIEW

CPUs in the system from using the common sys­
tem bus. In this way, the LOCK signal provides
integrity for data transfers between multiple pro­
cessors using a common address space.

The programmer may invoke the LOCK signal
by adding a Lock prefix to any memory access
instruction. No other processor in the system
may alter the contents of a shared memory loca­
tion while the LOCK signal is in effect.

Certain operations automatically invoke the
LOCK signal. These automatically LOCKed
operations include the Exchange instruction and
the descriptor loading procedures of the 80286.
The Exchange instruction is LOCKed to allow
the implementation of semaphores indicating
the available or busy status of various system
resources. The descriptor loading process is
LOCKed to maintain total integrity for the
definition of a processor's address space.

Interprocessor communication is required
whenever one processor in a mUltiprocessor sys­
tem alters the descriptor for a common resource
in memory. An iAPX 286 system can force all
processors in the system to reload a descriptor
with a simple interrupt routine. This procedure
allows each processor to access memory using
only current descriptor information.

SYSTEM CONFIGURATIONS
The iAPX 286 may be used in a wide variety of
configurations ranging from single processor to
multiprocessor systems. The family of devices
associated with the iAPX 286 micro system in­
clude the 80286 CPU, support devices (82284
clock chip, 82288 bus controller, and 82289 bus
arbiter), latches and transceivers (8282 and 8283
latches, and 8286 and 8287 transceivers), and
processor extensions like the 80287 Numeric
Processor Extension (NPX).

Figure 3-29 is an example of a single-processor
iAPX 286/20 Numeric Data Processor system

3-35

which includes an 80287 NPX for high-speed
calculations with extended numeric clata types.
A simple high-performance data processor sys­
tem, the iAPX 286/10, is obtained by simply re­
moving the Numeric Processor Extension from
the system. Because the iAPX 286 integrates
memory management and protection within the
CPU, this configuration provides full memory
management and protection without additional
circuitry.

Adding a 82289 Bus Arbiter to the previous con­
figuration allows it to perform as an independent
processing module within a multiple processor
system (see Figure 3-30). This configuration
provides a multi master system bus interface as
well as a local bus for private memory and I/O .

Other system configurations include interrupt
systems, dynamic RAM systems, and dual-port
memory configurations. The 8259A Interrupt
Controller supports interrupt systems with up to
65 separate hardware interrupts for each CPU in
an iAPX 286 system.

To simplify the implementation of dynamic
memory systems, Intel manufactures the 8207
Dynamic RAM Controller and the 8206 Error
Detection and Correction unit. The Advanced
DRAM Controller supports a high-speed syn­
chronous interface between the CPU and DRAM
as well as dual-port operation for multiprocessor
systems. The 8206 further enhances system re­
liability by providing single-bit error corrections
and multi-bit error detection in DRAM systems.

The combination of CPU processor extensions,
support devices, interrupt controllers, and mem­
ory system controllers provides the core ele­
ments of a simple yet flexible high-perform­
ance system architecture. Combining this
architecture with Intel's full line of peripherals
and memory components results in a compre­
hensive set of system solutions for almost any
application.

TECHNICAL OVERVIEW

CLOCK, READY

'" -V 82284 II II 80286
CLOCK A STATUS CPU

'V
'" r---- f--- I--

.t. ~ r- f--- I-- v

-<~
READY

ADDRESS DATA
LINES 0-23 LINES 0-15

Figure 3-29. Numeric Data Processor Configuration

3-36

TECHNICAL OVERVIEW

CLOCK, READY

"
82284

STATUS " 80286
CLOCK A CPU

'\r

r BUS
LOCK II ..t. ~

READY

J ADDRESS DATA
LINES LINES

0-23 0-15

L1\
~Jr:

82289 3636-1

~ BUS ADDRESS
ARBITER DECODER

V

..t. II II II "
II L

=v

'" .7 SELECT MULTI BUS

I~~ 8283

~ ..l\
ADDRESS

LATCH

rV LATCH -V
ENABLE

82288
Ll\ BUS

CONTROLLER

~ TRANSMIT/ 8287

~ ~
RECEIVE DATA

- XCVR

-

II I
-V

I
=1

j I I SELECT LOCAL

~.7 "-

~
V 8282

L1\ LATCH ENABLE "-
ADDRESS

LATCH

'-V -V

82288
BUS

~ CONTROLLER

8286

~ TRANSMIT/RECEIVE
DATA

~ XCVR

~ V

I
~

Figure 3-30. Multibus/Multiprocessor Configuration

3-37

MULTIBUS
CONTROL

MULTIBUS
ADDRESS

MULTIBUS
DATA

MULTIBUS
COMMANDS

LOCAL
ADDRESS

LOCAL
DATA

LOCAL
COMMANDS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

APPENDIX A
iAPX 286 INSTRUCTIONS

This appendix describes the operation of each
iAPX 286 instruction. The list of instructions is
organized by type:

Data transfer
Arithmetic
Logic
String
Control transfer
Procedure implementation
Processor control
Protected Virtual Address Mode

For more detailed information about these in­
structions, refer to the iAPX 286 Programmer's
Reference Manual.

DATA TRANSFER
INSTRUCTIONS

General-purpose Data Transfers

MOV (Move)

MOV transfers a byte or a word from a source
operand to a destination operand.

PUSH*

PUSH decrements the stack pointer (SP) by two
and then transfers a word from the source oper­
and (register, memory, immediate) to the top of
stack indicated by SP. PUSH is often used to
place parameters on the stack before calling a
procedure; it is also the basic means of storing
temporary variables on the stack.

POP*

POP transfers the word at the current top of stack
(indicated by SP) to the destination operand (reg­
ister or memory), and then increments SP by two
to point to the new top of stack. POP moves in­
formation from the stack to either a register or
memory.

A-1

XCHG (Exchange)

XCHG exchanges the byte or word source oper­
and with the destination operand. The Exchange
instruction automatically invokes a bus LOCK
signal to support the use of semaphores in a mul­
tiprocessor system.

Accumulator-specific Transfers

IN

IN transfers a byte (or word) from an input port to
the AL register (or AX register for a word).
The port is specified either with an in-line data
byte, allowing fixed access to ports 0 through
255, or with a port number in the DX register,
allowing variable access to 64K input ports.

OUT

OUT is similar to IN except that the transfer is
from AX or AL to the output port.

XLAT (Translate)

XLAT performs a table-lookup byte translation.
The AL register is used as an index into a 256-
byte table whose base is addressed by the BX
register. The byte operand so selected is trans­
ferred to AL.

Address Transfers

LEA (Load Effective Address)

LEA transfers the offset of the source operand
(rather than its value) to the destination oper­
and. The source operand must be a memory
operand, and the destination operand must be a
16-bit general register.

* Special forms of these instructions are also available
for saving and restoring all general-purpose regis­
ters. (See the Procedure Implementation Instruc­
tions later in this appendix.)

APPENDIX A

LDS (Load Pointer Into DS)

LDS transfers a pointer (that is, a 32-bit value
containing an offset and a segment selector) from
the source operand, which must be a memory
operand, to a pair of destination registers.
The segment selector is transferred to the DS
segment register. The offset must be transferred
to a 16-bit register.

LES (Load Pointer Into ES)

LES performs the same function as LDS except
that the segment selector is transferred to the ES
segment register.

Flag Register Transfers

LAHF (Load AH With Flags)

LAHF transfers the flag registers SF, ZF, AF,
PF, and CF into specific bits of the AH register.

SAHF (Store AH Into Flags)

SAHF transfers specific bits of the AH register to
the flag registers SF, ZF, AF, PF, and CF.

PUSHF (Push Flags)

PUSHF decrements the SP register by two and
transfers all of the flag registers into specific bits
of the stack element addressed by SP.

POPF (Pop Flags)

POPF transfers specific bits ofthe stack element
addressed by the SP register to the flag registers
and then increments SP by two.

ARITHMETIC INSTRUCTIONS

Addition Instructions

ADD

ADD replaces the destination operand with the
sum of a source and a destination operand.

A-2

ADC (Add With Carry)

ADC sums the operands, which may be bytes or
words, adds one if CF is set, al1d replaces the
destination operand with the result. ADC can be
used to add numbers longer than 16 bits.

INC (InC?rement)

INC adds one to the destination operand. The
operand may be either a byte or a word and is
treated as an unsigned binary number.

AAA (ASCII Adjust For Addition)

AAA changes the contents of register AL to a
valid unpacked decimal number, and zeroes the
top four bits.

DAA (Decimal Adjust For Addition)

DAA corrects the result of adding two valid
packed decimal operands. DAA changes this re­
sult to a pair of valid packed decimal digits.

Subtraction Instructions

SUB (Subtract)

SUB subtracts the source operand from the des­
tination operand, and replaces the destination
operand with the result. The operands may be
signed or unsigned bytes or words.

SBB (Subtract With Borrow)

SBB subtracts the source operand from the des­
tination operand, subtracts one if CF is set, and
returns the result to the destination operand.
The operands may be signed or unsigned bytes or
words. SBB may be used to subtract numbers
longerthan 16 bits.

DEC (Decrement)

DEC subtracts one from the destination operand,
which may contain a byte or a word.

APPENDIX A

NEG (Negate)

NEG subtracts the byte or the word in the des­
tination operand from zero and returns the result
to the destination. This instruction forms the
two's complement of the number, effectively re­
versing the sign of an integer.

CMP (Compare)

CMP subtracts the source operand from the des­
tination operand, which may be bytes or words,
but does not return the result. The operands re­
main unchanged, but the flags are updated and
can be tested by a subsequent conditional Jump
instruction.

AAS (ASCII Adjust For Subtraction)

AAS changes the contents of register AL to a
valid unpacked decimal number, and zeroes the
top four bits.

DAS (Decimal Adjust For Subtraction)

DAS corrects the result of subtracting two valid
packed decimal operands. DAS changes this re­
sult to a pair of valid packed decimal digits.

Multiplication Instructions

MUL (Multiply)

MUL performs an unsigned multiplication of the
source operand and the AX or AL register. If the
source operand is a byte, then it is multiplied by
register AL, and the two-byte result is returned
with the most-significant byte in AH and the
least-significant byte in AL. If the source oper­
and is a word, then it is multiplied by register
AX, and the two-word result is returned in regis­
ters DX and AX with DX containing the most­
significant word.

IMUL (Integer Multiply)

IMUL performs a signed multiplication of the
source operand and the accumulator. IMUL
uses the same registers as the MUL instruction.

A-3

AAM (ASCII Adjust For Multiplication)

AAM corrects the result of a multiplication of
two valid unpacked decimal numbers.

Division Instructions

DIV (Divide)

DIY performs an unsigned division of the AX or
AX and OX registers by the source operand. If
the source operand is a byte, it is divided into the
two-byte dividend assumed to be in registers AH
and AL with the most-significant byte in AH.
The single-byte quotient is returned in AL, and
the single-byte remainder is returned in AH.

Ifthe source operand is a word, it is divided into
the two-word dividend in registers AX and DX.
The single-word quotient is returned in AX, and
the single-word remainder is returned in OX.
Nonintegral quotients are truncated to integers.

IDIV (Integer Divide)

IDlY performs a signed division of the accumu­
lator by the source operand. IDlY uses the same
registers as the DIY instruction. For byte integer
division, the maximum positive quotient
is + 127 and the minimum negative quotient is
-128. For word integer division, the maximum
positive quotient is + 32,767 and the minimum
negative quotient is - 32,768.

AAD (ASCII Adjust For Division)

AAD modifies the numerator in AL before divid­
ing two valid unpacked decimal operands so that
the quotient produced by the division will be a
valid unpacked decimal number. AH must be
zero for the subsequent DIY to produce the cor­
rect result. The quotient is returned in AL, and
the remainder is returned in AH; both high-order
half-bytes are zeroed.

CBW (Convert Byte To Word)

CBW extends the sign of the byte in register AL
throughout register AH. CBW does not affect

APPENDIX A

any flags. CBW can beused to produce a double­
length (word) dividend from a byte before a byte
division.

CWD (Convert Word To Doubleword)

CWO extends the sign of the word in register AX
throughout register OX. CWO does not affect
any flags. CWO can be used to produce a double­
length (double word) dividend from a word
before a word division.

LOGIC INSTRUCTIONS

All of the logic instructions, except NOT, affect
the sign flag (SF), zero flag (ZF), and parity flag
(PF).

NOT

NOT inverts the bits to form a one's complement
of the byte or word operand. NOT has no effect
on the flags.

AND

AND performs the logical "and" of the oper­
ands (byte or word) and returns the result to the
destination operand.

OR

OR performs the logical "inclusive or" of the
two operands (byte or word) and returns the re­
sult to the destination operand.

XOR (Exclusive Or)

XOR performs the logical' 'exclusive or" of the
two operands and returns the result to the des­
tination operand.

A-4

TEST

TEST performs the logical "and" of the two
operands (byte or word), updates the flags, but
does not return the result. Neither operand is
changed.

SHL (Shift Logical Left)

SAL (Shift Arithmetic Left)

SHL and SAL perform the same function and are
physically the same instruction. The destination
byte or word is shifted left by the number of bits
specified in the count operand. The processor
shifts zeroes in from the right.

SHR (Shift Logical Right)

SHR shifts the bits in the destination operand
(byte or word) to the right by the number of bits
specified in the count operand. The processor
shifts zeroes in from the left.

SAR (Shift Arithmetic Right)

SAR shifts the bits in the destination operand
(byte or word) to the right by the number of bits
specified in the count operand. Bits equal to the
original high-order (sign) bit are shifted in from
the left, preserving the sign of the original value.

ROL (Rotate Left)
ROR (Rotate Right)

ROL and ROR rotate the destination operand
(byte or word) left or right by the number of bits
specified in the count operand.

RCL (Rotate Through Carry Left)
RCR (Rotate Through Carry Right)

RCL and RCR rotate bits in the destination oper­
and (word or byte) to the left or right by the num­
ber of bits specified in the count operand. These

APPENDIX A

instructions treat the carry flag (CF) as a high­
order one-bit extension of the destination oper­
and taking part in the bit rotation.

STRING INSTRUCTIONS

MOVS (Move String)

MOYS transfers a byte or word operand from the
source operand to the destination operand. As a
repeated operation, this instruction moves a
string from one location in memory to another.

CMPS (Compare String)

CMPS subtracts the destination byte or word
operand from the source operand and affects the
flags, but does not return the result. As a re­
peated operation, this instruction compares
two strings. With the appropriate Repeat prefix,
it is possible to determine the string element
after which the two strings become unequal,
thereby establishing an ordering between the
strings.

SCAS (Scan String)

SCAS subtracts the destination byte or word
operand from (AL or AX) and affects the flags,
but does not return the result. As a repeated op­
eration, this instruction scans for the occurrence
of, or departure from, a given value in the string.

LODS (Load String)

LODS transfers a byte or word operand from the
source operand to AL (or AX). 1;his operation
ordinarily is not repeated.

STOS (Store String)

STOS transfers a byte or word operand from AL
(or AX) to the destination operand. As a
repeated operation, this instruction fills a string
with a given value.

A-5

REP (Repeat)
REPE (Repeat While Equal)
REPNE (Repeat While Not Equal)
REPZ (Repeat While Zero)
REPNZ (Repeat While Not Zero)

REP, REPE, REPNE, REPZ, andREPNZrepeat
the action of the Move String, Store String, and
Compare String operations to process a block of
memory with a single instruction. The Repeat
instruction uses the CX register to count repeti­
tions. Repeat While Equal and Repeat While
Zero prefixes terminate their actions when the
zero flag (ZF) is cleared. Repeat While Not
Equal and Repeat While Not Zero terminate
when the zero flag is set.

CONTROL TRANSFER
INSTRUCTIONS

Conditional Transfer Instructions

Table A-I describes the conditional transfer
mnemonics and their interpretations. The con­
ditional jumps which are listed as pairs are
actually the same instruction. The instruction set
provides the alternate mnemonics for greater
clarity within a program listing.

Unconditional Transfer
Instructions

CALL

CALL activates an out-of-line procedure, saving
information on the stack for later use by a Return
instruction. The Return instruction in the called
procedure uses this information to transfer ex­
ecution back to the calling program.

Although long calls are provided for interseg­
ment transfers, short intrasegment call instruc­
tions require fewer bytes, providing greater code

APPENDIX A

density for better use of memory. The program
uses immediate data to specify a direct call and a
register or memory to specify an indirect call.

RET (Return)

RET transfers control from a procedure back to
the instruction after the call that activated the
procedure. Long and short forms of the Return
instruction are provided for intersegment and in­
trasegment transfer, respectively.

A value which may be coded within the Return
instruction is added to the stack pointer after the
return address is popped off the stack. This op­
eration releases the stack space which was used
for parameter passing.

JMP (Jump)

JMP unconditionally transfers control to the
target location. Unlike a Call instruction, Jump

is a one-way transfer of execution; it does not
save any return information on the stack. As
with the Call instruction, the Jump instruction
can include the address of the target operand
directly or obtain the address indirectly from a
register or memory.

Iteration Control Instructions

LOOP

LOOP decrements the CX ("count") register by
one and transfers execution ifCX is not zero.

LOOPZ (Loop While Zero)
LOOPE (Loop While Equal)

LOOPZ and LOOPE decrement the CX
register by one and transfers execution if CX is
not zero and the ZF flag is set.

Table A-1 : Interpretation of Conditional Transfers

Mnemonic

JA/JNBE
JAE/JNB
JB/JNAE
JBE/JNA
JC
JE/JZ
JNC
JNE/JNZ
JNP/JPO
JP/JPE

Mnemonic

JG/JNLE
JGE/JNL
JLlJNGE
JLE/JNG
JNO
JNS
JO
JS

UNSIGNED CONDITIONAL TRANSFERS

Condition Tested

(CForZF)=O
CF= 0
CF= 1
(CF or ZF)= 1
CF= 1
ZF = 1
CF= 0
ZF= 0
PF = 0
PF = 1

"Jump If . "
above/not below nor equal
above or equal/not below
below/not above nor equal
below or equal/not above
carry
equal/zero
not carry
not equal/not zero
not parity/parity odd
parity/parity even

SIGNED CONDITIONAL TRANSFERS

Condition Tested

«SF xor OF) or ZF) = 0
(SF xor OF) = 0
(SF xor OF) = 1
«SFxor OF) or ZF) = 1
OF= 0
SF = 0
OF= 1
SF = 1

A-6

"Jump If. "
greater/not less nor equal
greater or equal/not less
less/not greater nor equal
less at equal/not greater
not overflow
not sign
overflow
sign

APPENDIX A

LOOPNZ (Loop While Not Zero)
LOOPNE (Loop While Not Equal)

LOOPNZ and LOOPNE decrement the CX reg­
ister by one and transfers if CX is not zero and the
ZF flag is cleared.

JCXZ (Jump If CX Zero)

JCXZ transfers execution if the CX register is
zero. This instruction is useful for jumping over
a loop to execute it zero times.

Flag Operations

CF (Carry Flag)

If an addition results in a carry out of the high­
order bit of the result, then CF is set; otherwise
CF is cleared. If a subtraction results in a borrow
into the high-order bit of the result, then CF is
set; otherwise CF is cleared. Add With Carry
(ADC) and Subtract With Borrow (SBB) instruc­
tions may use the carry flag to perform multibyte
addition and subtraction.

AF (Auxiliary Carry Flag)

This flag detects a carry or borrow across the
boundary between the two halves of the AL reg­
ister. AF is provided for the decimal-adjust in­
stru,ctions and is not ordinarily used for any other
purpose.

SF (Sign Flag)

Arithmetic and logic instructions set the sign flag
equal to the high-order bit (bit 7 or 15) of the re­
sult. Standard two's complement notation is
used to indicate a 1 for negative results.

ZF (Zero Flag)

If the result of an arithmetic or logical operation
is zero, then ZF is set; otherwise ZF is cleared.

A-7

PF (Parity Flag)

If the low-order eight bits of an arithmetic or
logical result contain an even number of I-bits,
then the parity flag is set; otherwise it is cleared.

OF (Overflow Flag)

If the result of an operation is a too-large positive
number or a too-small negative number to fit in
the destination operand (excluding the sign bit),
then OF is set; otherwise OF is cleared.

Interrupt Instructions

INT (Interrupt)

INT pushes the flag registers (as in PUSHF),
clears the TF, and transfers control by an indirect
call through anyone of the 256 interrupt vector
elements. The instruction mayor may not clear
IF depending on the contents of the interrupt vec­
tor table. A one-byte form of this instruction
uses an implied interrupt vector type 3 and is
used for a breakpoint interrupt.

Table A-2: Predefined Interrupt Vectors

o Divide error exception
1 Single-step interrupt
2 Nonmaskable interrupt
3 Breakpoint interrupt
4 INTO detected overflow exception
5 Bound RANGE exceeded exception
6 Invalid opcode exception
7 Processor extension not-present trap
8 Double protection exception
9 Processor extension segment overrun exception

10 Task segment format exception
11 Segment not-present exception
12 Stack under/overflow exception
13 General protection exception
14-15 Reserved
16 Processor extension error interrupt
17 -31 Reserved

APPENDIX A

INTO (Interrupt On Overflow)

INTO pushes the flag registers (as in PUSHF),
clears the TF, and transfers control to an inter­
rupt service routine for this instruction if OF is set.
The instruction mayor may not clear IF depend­
ing on the contents of the interrupt vector table.

IRET (Return From Interrupt)

IRET transfers control to the return address
saved by a previous interrupt operation and
restores the saved flag register (as in POPF).

PROCEDURE IMPLEMENTATION
INSTRUCTIONS

ENTER (Enter Procedure)

ENTER creates the stack frame required by most
block-structured high-level languages. ENTER
specifies how many bytes of dynamic storage
to allocate on the stack for the routine being
entered. It also specifies the lexical nesting level
of the routine and determines how many stack
frame pointers the CPU will copy into the new
stack frame from the preceding frame. This list
of stack frame pointers is called the display. BP
always contains the current stack frame pointer.

LEAVE (Leave Procedure)

LEA VE reverses the effects of the Enter instruc­
tion by releasing all the stack space used by a
routine for its dynamic storage and stack frame
pointers (display).

PUSHA (Push All)

PUSHA saves all registers on the stack using
a single instruction prior to the execution of a
procedure.

A-a

POPA (Pop All)

POPA restores the registers saved by the Push
All instruction, except that SP remains un­
changed as the CPU ignores the SP value saved
by Push All.

PROCESSOR CONTROL
INSTRUCTIONS

Various instructions and mechanisms control
the 80286 processor and its interaction with its
environment.

Flag Instructions

STC (Set Carry Flag)

STC sets the carry flag (CF) to 1.

CLC (Clear Carry Flag)

CLC zeroes the carry flag (CF).

CMC (Complement Carry Flag)

CMC reverses the current status of the carry flag
(CF).

STD (Set Direction Flag)

STD sets the direction flag (DF), causing the
string instructions to auto-decrement the operand
pointer(s) .

CLD (Clear Direction Flag)

CLD clears the direction flag (DF), causing the
string instructions to auto-increment the operand
pointer(s).

STI (Set Interrupt-enable Flag)

STI sets the interrupt-enable flag (IF), allowing
the processing of maskable interrupts.

APPENOIXA

CLI (Clear Interrupt-enable Flag)

CLI clears the interrupt-enable flag (IF), pre­
venting the processing of maskable interrupts.

HLT (Halt)

HLT causes the 80286 processor to halt proces­
sing. The HALT state is cleared by RESET or
an enabled external interrupt.

WAIT (Wait)

WAlT causes the processor to enter a WAlT
(idle) state until the CPU receives a signal to con­
tinue processing. The CPU includes a special
input line called TEST which is reserved for this
operation. The CPU will exit WAIT to service
interrupts and resume WAlT on return from the
interrupt service routine.

ESC (Escape)

ESC provides a mechanism by which other pro­
cessors (such as the Numeric Processor Exten­
sion) may receive their instructions from the
80286 instruction stream and make use of the
80286 addressing modes.

LOCK (Bus Lock Prefix)

LOCK precedes any instruction to cause the pro­
cessor to assert its bus LOCK signal for the dura­
tion of the operation caused by that instruction.
This prefix code has use in multiprocessing
applications.

PROTECTED VIRTUAL ADDRESS
MODE INSTRUCTIONS

Protection Control Instructions

LGOT
(Load Global Descriptor Table Register)

LGDT loads the GDT register with base and
limit information for the system's global descrip­
tor table. The CPU obtains the required six
bytes from memory beginning at the location in­
dicated within the instruction.

A-9

LlOT
(Load Interrupt Descriptor Table Register)

LIDT loads the IDT register with six pytes of
base and limit information for the system's inter­
rupt descriptor table.

LLOT
(Load Local Descriptor Table Register)

LLDT loads the LDT register with a 16-bit selec­
tor value to choose one of the local descriptor
tables listed within the GDT. The source may be
either a 16-bit register or memory operand.

LMSW
(Load Machine Status Word Register)

LMSW loads the MSW register from either a 16-
bit register or memory operand. This instruction
allows a system to enter Protected Mode after
power-up or a system reset. A power-down or a
system reset is the only way to return to Real
Address Mode.

LTR (Load Task Register)

LTR loads the task register with a 16-bit selector
value to choose one of the task state segments
listed within the GDT. The source may be either
a 16-bit register or memory operand.

SGOT (Store Global Descriptor Table)

SGDT stores the contents of the GDT register in
six consecutive bytes beginning at the location
indicated within the instruction.

SlOT (Store Interrupt Descriptor Table)

SIDT stores the contents of the IDT register in
six consecutive bytes beginning at the location
indicated within the instruction.

SLOT
(Store Local Descriptor Table Register)

SLDT stores the selector field of the LDT in the
indicated 16-bit register or memory operand.

APPENDIX A

SMSW
(Store Machine Status Word Register)

SMSW stores the Machine Status Word in the in­
dicated 16-bit register or memory operand.

STR (Store Task Register)

STR stores the selector field of the task register
in the indicated 16-bit register or in the memory
operand.

ARPL (Adjust Requested Privilege Level)

ARPL sets the RPL field of the operand to the
maximum of its original value and a value con­
tained within the instruction. This action en­
sures that a selector passed to a procedure does
not request more privilege than the caller was en­
titled to. The instruction sets ZF (zero flag) if it
alters the selector passed to the procedure. The
RPL field may be within either a 16-bit register
or memory operand.

CTS (Clear Task Switched Flag)

CTS clears the TS flag which the hardware sets
each time it performs a task switching opera­
tion. If a task switch occurs during the operation
of the Numeric Data Processor, the TS flag can
activate a routine which saves the context of the
co-processor and clears TS to prepare for the
next task switching operation.

Protection Parameter Verification
Instructions

Bound (Detect Value Out Of Range)

Bound verifies that the value contained in the in­
dicated register lies within specified limits.
These limit values reside in a two-word block of

A-10

memory beginning at a location specified within
the instruction. If the instruction detects that the
value is not within the specified range, the spe­
cial interrupt for this instruction occurs. The
Bound instruction can serve as an array bounds
check to prevent accidental overwriting of data
outside an array.

LAR (Load Access Rights)

LAR loads the high eight bits of a 16-bit register
with the access rights field of a descriptor. The
instruction indicates the 8-byte descriptor in­
directly through its associated 16-bit selector.
The selector value may be either a register or
memory operand. The instruction sets ZF to in­
dicate that the descriptor was visible and that
the access rights are present within the specified
register.

LSL (Load Segment Limit)

LSL operates in the same way as the LAR in­
struction, except that it places the 16-bit segment
limit value from a descriptor into the specified
register.

VERR (Verify Read Access)

VERR sets ZF if the segment indicated within
the instruction is readable or clears ZF if it is
read-protected. The instruction indicates the
segment to be verified with a selector value con­
tained in a 16-bit register or memory operand.
This instruction allows a segment to be tested
without causing a protection fault.

VERW (Verify Write Access)

VERW operates the same as the VERR instruc­
tion except that it verifies write-protect status.

APPENDIXB
GLOSSARY

Call gate. Each call gate represents the pro­
tected entry point of a procedure. A call gate is
the only way to increase the current privilege
level within a task. Call gates are represented by
a gate descriptor within a descriptor table.

Code segment. The code segments in the
system contain the instructions and immediate
data for the programs in the system. A code seg­
ment is also known as an executable segment.

Code segment (CS) register. The CS reg­
ister holds the selector and descriptor for the cur­
rently selected code segment. The selector
chooses the descriptor which, in tum, provides
the base address and protection information for
the system.

Control descriptor. System segment de­
scriptors and gate descriptors are control descrip­
tors. System segment descriptors enable a pro­
gram to define the protection parameters for a
system, and gate descriptors provide pathways
between protected areas of memory. The de­
scriptors for code and data segments, on the
other hand, are called segment descriptors.

Data segment. The data segments in the sys­
tem contain the data (other than immediate data)
for the programs in the system.

Data segment (DS) register. The DS regis­
ter holds the selector and the descriptor for the
currently selected data segment. The selector
chooses the descriptor which, in tum, provides
the base address and protection information for
the system.

Descriptor. Descriptors define the attributes
of all memory segments and control gates.

Descriptor table. The iAPX 286 supports
three types of memory-based tables which con­
tain the descriptors for the system. These tables
are the interrupt descriptor table (IDT), the global
descriptor table (GDT), and the local descriptor
table (LDT).

8-1

Descriptor table descriptor. The location
of all local descriptor tables within the system
memory is defined by descriptor table descriptors
within the global descriptor table (GDT).

Explicit cache. The descriptor portions of the
four segment registers comprise the explicit
cache. It is used for high-speed addressing and
the verification of access rights.

Extra segment. An extra segment is simply a
data segment which the processor may use as an
alternate data source or destination by placing the
segment's selector and descriptor in the extra seg­
ment register.

Extra segment (ES) register. The ES regis­
ter holds the selector and descriptor for an alter­
nate data segment. The selector chooses the de­
scriptor which, in tum, provides the base address
and protection information for the system.

Gate descriptor. The gate descriptors in­
clude the call, trap, task, and interrupt gates.
Unlike a memory segment, a gate descriptor de­
fines the protected entry point of a code segment.

Global descriptor table (GDT). The global
descriptor table contains descriptors which are
available to every task in the system.

Global descriptor table register. This reg­
ister contains the base address and the limit of the
global descriptor table. The contents of this
register normally remain constant during sys­
tem operation.

Interrupt descriptor table (IDT). The inter­
rupt descriptor table contains descriptors which
vector interrupts, traps, and protection excep­
tions to their respective handling routines.

Interrupt descriptor table register. This
register contains the base address and limit of the
interrupt descriptor table. The contents of this
register normally remain constant during sys­
tem operation.

APPENDIXB

1/0. The I in I/O represents the input of in­
formation from a device such as a keyboard or a
card reader, while the 0 represents output· to a
device such as a printer or a video display.

Local descriptor table (LOT). A local de­
scriptor table contains the descriptors for seg­
ments which are generally private to a single
task. The local descriptor tables enforce the
isolation of tasks from one another.

Machine status word (MSW). The Machine
Status Word contains three flags which control
system copfiguration and one flag which assists
the operating system with Numeric Data Proces­
sor control in multitasking systems.

Microsystem. A micro system is a group of
integrated circuits designed to implement micro­
processor-based computer systems. The micro­
system includes a CPU and special support
circuits. Each support circuit performs a spe­
cific function which~nables the CPU to com­
municate with the outside world or to operate
more efficiently.

Memory-mapped 1/0. Memory-mapped I/O
differs from port-oriented lIO in that it is per­
formed through a normal memory access instruc­
tion rather than a special lIO instruction which
addresses one of the 64 K ports of the iAPX 286.

MultibusT>'. The Multibus is Intel's general­
purpose multiprocessing bus for 8- and 16-bit
computer systems.

Numeric Data Processor. The iAPX 286
CPU, with the 80287 processor extension, com­
prises the iAPX 286120 Numeric Data Processor
configuration. The iAPX 286120 handles long
data types and complex arithmetic operations in
parallel with normal processing operations.

Physical memory. The physical memory of
a system is made up of random-access (read/
write) memory (RAM) and read-only memory
(ROM) which are part of a system's hardware.
The physical memory is manipulated by an oper­
ating system to support virtual memory.

8-2

Pipelining. Instruction pipelining enables the
processor to fetch an instruction while still pro­
cessing the previous instruction. This technique
maximizes bus efficiency.

Pointer. A full pointer is a complete virtual
address. It includes a selector which indirectly
chooses a segment base address and an offset
value which points to a specific address within
the segment. The offset by itself is called a short
pointer.

Port. The iAPX 286 may address a maximum
of 64K I/O ports using protected I/O instruc­
tions. These lIO ports are not part of the virtual
address space of the iAPX 286.

Privilege level. The protection mechanism
of the iAPX 286 provides four hierarchical pro­
tection levels to ensure program reliability.
The most trusted service procedures occupy the
higher levels (levels 0, 1, and 2), while the less­
trusted application programs are placed at the
lowest level of privilege (level 3).

Privileged instruction. The operating sys­
tem kernel, which operates at the highest level of
privilege (level 0), may execute privileged in­
structions. These instructions control system
setup and operation.

Real memory. See physical memory.

Segment. The virtual address space of the
iAPX 286 is made up of variable-length regions
called segments. A segment has a minimum
length of 1 byte and a maximum length of 64K
bytes. The system includes code, data, task
state, and descriptor table segments.

Segment register. The four segment regis­
ters point to the four segments of memory which
are currently available for immediate access by
the processor. The segment registers are the
code, data, extra, and stack segment registers.

Selector. Each selector specifies a descriptor
within either the global descriptor table or the

APPENDIXB

local descriptor table. The program uses a selec­
tor as part of a full pointer to gain access to a
new segment.

Stack segment. The processor uses a stack
segment to hold return addresses, dynamic data,
temporary data, and parameters. An instruction
addresses a stack segment usually with the stack
pointer or the base pointer. Each privilege level
has its own stack segment for total isolation.
Stack segments usually expand downward.

Stack segment (55) register. The SS reg­
ister holds the selector and the descriptor for the
currently selected stack segment. The selector
chooses the descriptor which, in turn, provides
the base address and protection information for
the system.

System segment descriptor. The CPU
uses the system segment descriptors to define
task state segments and local descriptor tables
within the global descriptor table.

Task. A task is a single sequential thread of exe­
cution which has an associated processor state
and a well-defined address space with specific
access rights. The processor state is defined by
the contents of the task-variable registers while
the address space and access rights are defined by
the descriptor tables within the system.

Task register. The task register points to the
task state segment of the currently active task.
The task switch hardware of the iAPX 286 saves
the state of the processor in this task state segment
before it loads the state of the incoming task.

Task state segment. The task state segment
contains the contents of the task-variable program
registers, the stack segment selectors and pointers

8-3

for the three highest privilege levels, the selector
for the task's local descriptor table, and a back
link which may point to another task in a chain of
nested task invocations.

Trusted instruction. The trusted instruc­
tions which are controlled by the I/O privilege
level flag include Block I/O, In, Out, Enable In­
terrupts, Disable Interrupts, Pop Flags (to change
the interrupt-enable flag), and Halt instructions as
well as the Lock prefix code.

Virtual address. A complete virtual address
consists of a selector and an offset value. The
selector chooses a descriptor for a code or data
segment. The offset provides an index into the
selected segment.

Virtual address space. The virtual address
space of a task consists of all possible addresses
which the task can access as defined by the sys­
tem's global descriptor table and the task's own
local descriptor table.

Virtual addressing. Virtual addressing is a
system for providing uniform names (addresses)
for areas of memory and control structures. The
entities described by virtual addresses normally
have constant attributes for size and protection
and also variable attributes for presence and loca­
tion. The operating system may make an entity
present by swapping unneeded entities to secon­
dary storage (usually a disk) and swapping the de­
sired entity to primary storage (RAM). Virtual
addressing presents the user with an address
space much larger than the actual physical mem­
ory. Any I/O operation required to access pro­
grams or data in virtual memory is transparent
to the user.

APPENDIXC
SAMPLE INSTRUCTION

TIMINGS

The following list provides the execution timing
for some of the instructions which enable the
iAPX 286 to execute up to 6 times faster than its
predecessors:

Operation

16-bit add
16-bit multiply
Complete task switch
Block I/O (12 bytes moved)
String Move (16 bytes moved)
Double-precision multiply*

*Using 80287 Numeric Processor Extension

C-1

8MHz

0.25 usec
2.60

21.00
8.60
8.60

18.00

10MHz

0.20 usec
2.00

16.80
6.80
6.80

14.40

intel Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Intel International
Rue du Moulin a Papier 51, Boite 1,

. B,1160 Brussels, Belgium

Intel Japan K.K.
5,6 Tokodai, Toyosatomachi
Tsukuba,gun, Ibaraki,ken 300,26
Japan

Printed in U.S.A./T-S10/30K/0282/RRD JL

