

LITERATURE

1983 will be a year of transition for Intel's catalog program. In order to better serve you, our
customers, we are reorganizing many of our catalogs to more completely reflect product groups.

In addition to the new product line handbooks listed below, an INTEL PRODUCT GUIDE (Order No.
210846) will be available free of charge in March. This GUIDE will contain a listing of Intel's complete
product line along with information on quality/reliability, packaging and ordering, customer training
classes and product services.

, Consult the Intel Literature Guide (no charge, Order No. 210620) for a complete listing of Intel
literature. Literature is presently available in other forms for those handbooks that will not be
published until later in the year. Write or call the Intel Literature Department, 3065 Bowers Avenue,
Santa Clara, CA 95051, (800) 538-1876, or (800) 672-1833 (California only).

HANDBOOKS

Memory Components Handbook (Order No. 210830)

Contains all application notes, article reprints, data sheets and other design
information on RAMs, DRAMs, EPROMs, E2 PROMs, Bubble Memories.

Microcontroller Handbook (Available in May)
Contains all application notes, article reprints, data sheets, and other user information
on the MCS-48, MCS-51 (8-bit) and the new MCS-96 (16-bit) product families.

Military Handbook (Order No. 210461)

Contains complete data sheets on all military products.

Microprocessor and Peripherals Handbook (Order No. 210844)

Contains data sheets on all microprocessors and peripherals. (Individual User
Manuals are also available on the 8085, 8086, 8088, 186, 286, etc.)

Development Systems Handbook (Available in April)
Contains data sheets on development systems and supporting software.

OEM Systems Handbook (Available in May)
Contains all application notes, article reprints and data sheets for OEM boards
and systems.

Software Handbook (Available in May)
Contains software product overview as well as data sheets for all Intel software.

Quality/Reliability Standards Handbook (Available in April)

inter

iAPX 286
HARDWARE
REFERENCE·

MANUAL

1983

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXp, CREDIT. i, ICE, 121CE, ICS, iDBp, iDIS, iLBX, im, iMMX,
Insite, INTEL, intel, Intelevision, Intellec, inteligent Identifier™,
intelBOS, inteligent Programming™, Intellink, iOSP, iPDS,
iRMS, iSBC, iSBX, iSDM, iSXM, Library Manager, MCS,
Megachassis, Micromainframe, MULTIBUS, Multichannel™
Plug-A-Bubble, MULTI MODULE, PROMPT. Ripplemode,
RMX/80, RUPI, System 2000, and UPI, and the combination of
ICE, iCS, iRMX, iSBC, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

* MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

© INTEL CORPORATION. 1983

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

ii

PREFACE

The Intel iAPX 286 microsystem is a high-performance microprocessing system based on the 80286
microprocessor.

This manual serves as the definitive hardware reference guide for iAPX 286 system designs. It is
written for system engineers and hardware designers who understand the operating principles of micro­
processors and microcomputer systems. Readers of this manual should already be familiar with the
iAPX 286 architecture at the level described in the Introduction to the iAPX 286 (Intel publication
Order Number 210308).

In this manual, the iAPX 286 microsystem is presented from a hardware perspective. Information on
the software architecture, instruction set, and programming of the iAPX 286 can be found in these
related Intel publications:

• iAPX 286 Programmer's Reference Manual, Order Number 210498

• ASM286 Assembly Language Reference Manual, Order Number 121924

• PL/M-286 User's Guide, Order Number 121946

Together with the iAPX 286 Hardware Reference Manual, these publications provide a complete
description of the iAPX 286 microsystem for hardware designers, software engineers, and all users of
iAPX 286 systems.

ORGANIZATION OF THIS MANUAL

The information in this manual is divided into seven chapters and one appendix. The material is intro­
duced beginning with a system-level description of the iAPX 286 microsystem, and continues with
discussions of the detailed hardware design information needed to implement system designs using the
actual iAPX 286 components.

• Chapter One provides an overview of the iAPX 286 microsystem.

• Chapter Two describes iAPX 286 system architecture from the viewpoint of the system designer.
Examples illustrate the many different system configurations that are possible within this architec­
ture. Design tradeoffs for the various choices are discussed.

• Chapter Three discusses the iAPX 286 local bus. Included in this chapter are detailed signal
descriptions and timing for the 80286 and support components, a discussion of iAPX 286 memory
and I/O organization, and in-depth discussions of processor and local bus interface guidelines.

The next four chapters provide the information required to interface memory, peripheral devices, and
processor extensions to the 80286 microprocessor.

• Chapter Four discusses techniques for designing memory subsystems for the iAPX 286, and describes
the effects of wait states on iAPX 286 performance.

• Chapter Fiv~ explains how to interface I/O devices to an iAPX 286 system.

• Chapter Six describes the interface between the 80286 and the 80287 Numeric Processor Exten­
sion, which greatly expands the mathematical processing power of the iAPX 286 microsystem.

iii 210760-001

PREFACE

• Chapter Seven shows how an iAPX 286 system can interface to the IEEE 796 Multibus, Intel's
multi-master system bus.

• Appendix A contains data sheets for the iAPX 286/10 (80286) microprocessor, the 80287 Numeric
Processor Extension, and the various processor suppo~t components.

iv 210760-001

Table of Contents

CHAPTER 1 Page

INTRODUCTION
iAPX 286 Microsystem Components .. 1-1

Microprocessors ... 1-2
Interrupt Controller ... ;..................... 1-2
Bus Interface Components 1-2

CHAPTER 2
iAPX 286 SYSTEM ARCHITECTURE

iAPX 286 Bus Organization .. 2-1
The iAPX 286 Local Bus .. 2-1
The Buffered Local Bus ... ;.................... 2-2
The System Bus ... 2-3
Bus Interface Groups .. 2-3

Memory Subsystems for the iAPX 286 ... 2-3
Local Memory ... 2-6
System Memory .. 2-7
Dual-Port Memory ... 2-7

I/O Subsystems for the iAPX 286 ... 2-10
Processor Extensions .. '............................... 2-10
Multi-Processing Overview ~ ... ;.. 2-13

Bus Arbitration .. : ... 2-13
Mutual Exclusion : ... 2-14
Using the iAPX 286 with the IEEE 796 MUL TIBUS® 2-16
A Multi-Processing Design Example : ;..... 2-16

CHAPTER 3
THE iAPX 286 LOCAL BUS

Introduction to the 80286 Central Processing Unit ... 3-1
Processor Architecture 3-2

The Bus Unit .. :........................... 3-2
The Instruction Unit ... 3-2
The Execution Unit .. 3-3
The Address Unit .. ,.. 3-3
The Effects of Pipelining .. 3-3

Operating Modes .. 3-4
The 80286 Bus Interface ... 3-4

Local Bus Overview .. 3-5
Organization of Physical Memory and I/O ... 3-5

Memory Organization 3-5
I/O Organization .. 3-9

v

TABLE OF CONTENTS

Page

Interrupt Organization ... 3-1 0
Interrupt Priorities .. 3-11
Non-Maskable Interrupt Request (NMI) ... 3-12
Maskable Interrupt Request (INTR) 3-13

Pipelined Address Timing .. ;..................................... 3-15
iAPX 286 Local Bus States 3-16
iAPX 286 Bus Operations 3-17

Read Cycles 3-18
Write Cycles 3-18
Interrupt-Acknowledge Cycles ... 3-21
Halt/Shutdown Cycles ... 3.;.21

iAPX 286 Bus Usage ... ~................... 3-23
Local Bus. Usage Priorities 3-23
Prefe.tch Operations 3-23
Data Operations .. 3-24
Data Channel Transfers ... 3-25
Bus Utilization 3-25

Bus Interface Components .. 3-26
Generating Timing Using the 82284 Clock Generator ... 3-26

Generating the System Clock 3-26
Timing Bus Operations Using READy... 3-32

Wait-State Timing Logic ... ~................. 3-37
Generating the Proper RESET Timing ... 3-40
Synchronizing Processor Clocks in a Multi-Processor System 3-43

Controlling the Local Bus Using the 82288 Bus Controller 3-44
Systems Having More Than One Bus Controller ... 3-44

Selecting a Controller ~....... ... 3-45
Selecting MUL TIBUS® Timing ;.................................. 3-46

Modifying the Bus Control Timing ... 3-48
CMDL Y (Command Delay) 3-49
CEN/AEN (Command Enable/Address Enable) ... 3-49

Local Bus Design Considerations .. . 3-52
Address Bus Interface ... 3-52
Address Decoding ... 3-53

Non-Latched Chip Selects ... 3-53
Latched Chip Selects 3-55

Data Bus Interface .. 3-56
Other Bus Masters on the iAPX 286 Local Bus .. 3-61

DMA Configuration .. 3-64
Initializing the iAPX 286 Processor .. 3-65

80286 Internal States ... :.............. 3-65
80286 External Signals 3-67

iAPX 286 Bus Timing ... 3-69
Address and ALE Timing ... 3-71

vi

TABLE OF CONTENTS

Page

Command Timing .. 3-71
READY Timing ... 3-72
Read Cycle Timing .. 3-72
Write Cycle Timing :.. 3-73
Interrupt-Acknowledge Timing ... 3-74

Physical Design Considerations 3-74
Power, Ground, and Cap Connections .. 3-74
Debugging Considerations .. 3-76

The iLBX Bus-A High-Performance Local Bus Standard 3-76

CHAPTER 4
MEMORY INTERFACING

Memory Speed vs. Performance and Cost .. 4-1
System Performance and Memory Performance ... 4-2
Memory Speed and Memory Performance .. 4-2

iAPX 286 System Performance with Wait States ... 4-3
Explaining the Benchmark Results .. 4-3
The Intel Pascal Benchmarks .. 4-5

Queens .. 4-5
GCD ... 4-5
Bubble Sort ... 4-5
Matrix Multiply................. 4-5

The Intel Assembly-Language Benchmarks .. 4-6
Inspect 4-6
XLAT ... 4-6
BSORT ... 4-6
XFORM ... 4-6
PCALL .. 4-6

Memory Interface Techniques .. 4-6
Standard Address Strobe Logic '... 4-7
Special Address Strobe Logic .. 4-8
Interleaved Memory .. 4-9

Timing Analysis for Memory Operations ... 4-11
Standard ALE Timing .. 4-12

Read Operations '.' ~.. 4-13
Write Operations ~.. 4-15

Special Address Strobe Timing ;.................................... 4-18
Interleaved Memory Timing ... 4-20

Memory Interface Examples ... 4-23
Read-Only Memory ... 4-23

Timing Analysis for ROMS ; .. 4-24
Static RAM Devices ; ... ; ;.. 4-25

Timing Analysis for Static RAMS ... 4-27
Pseudo-Static RAM Devices ... 4-30

vii

inter TABLE OF CONTENTS

Page

Dynamic RAM Devices 4-30
Timing Analysis for the 8207 RAM Controller .. :..... 4-33
Error Correction Using the 8206 EDCU ... 4-38
Dual-Port Memory Subsystems Using the 8207 ADRC 4-39

CHAPTER 5
I/O INTERFACING

I/O-Mapping vs. Memory-Mapping ... 5-1
Address-Decoding ... 5-1
iAPX 286 Instruction Set ... 5-1
Device Protection 5-2

Interfacing to 8-Bit and 16-Bit I/O ... 5-3
Address Decoding ... 5-3
Memory-Mapped I/O 5-4
8-Bit I/O'.. 5-5
16-Bit I/O .. :.......................... 5-8
Linear Chip Selects .. 5-8

Timing Analysis for I/O Operations ... 5-8
Read Operations .. , ;..... 5-10
Write Operations ... ,'.. 5-12
Matching I/O Device Requirements ... 5-14

I/O Interface Examples ... ~.......... 5-14
8274 Interface ... 5-15

Read Timing 5-16
Write Timing .. .' .. .'..................................... 5-17

8255A-5 Interface ... 5-17
8259A-2 Interface .. ~.. 5-18

Single Interrupt Controller .. 5-19
Cascaded Interrupt Controllers .. 5-19
Handling More than 64 Interrupts 5-20

The iSBX Bus-A Modular I/O Expansion Bus 5-21

CHAPTER 6
USING THE 80287 NUMERIC PROCESSOR EXTENSION

The 80287 Processor Extension Interface .. 6-1
The 80287 Status Lines .. 6-2
Addressing the 80287 6-3

.. The 80287 Clock Input .. ~... 6-3
Local Bus Activity with the 80287 ~ ~ ;......................... 6-4

Execution of ESC Instructions .. 6-4
The Processor Extension Data Channel 6-4

Data Channel Requests ... 6-4

viii

TABLE OF CONTENTS

Page

Data Channel Transfers ... 6-4.
Data Channel Priority ... 6-6

Performance Using 80287 Parallel Processing .. 6-6
Designing an Upgradable iAPX 286 System ... 6-7

Designing the 80287 Socket ... 6-7
Recognizing the 80287 ... 6-7

CHAPTER 7
THE SYSTEM BUS

The System-Bus Concept .. .
The Division of Resources

Local Resources
System Resources

The IEEE 796 MUL TIBUS®-A Multimaster System Bus
MULTIBUS® Design Considerations .. .

Memory Operations
I/O Operations
Interrupt-Acknowledge to Cascaded Interrupt Controllers
Byte-Swapping During MUL TIBUS® Byte Transfers
Implementing the Bus-Timeout Function .. .
Power Failure Considerations

MUL TIBUS® Arbitration Using the 82289 Bus Arbiter .. .
Gaining Control of the MUL TIBUS® .. .
Releasing the Bus-Three 82289 Operating Modes
When to Use the Different Modes
Configuring the 82289 Operating Modes
Asserting the [Q'CK Signal

Timing Analysis of the MULTIBUS® Interface .. .
Using Dual-Port RAM with the System Bus

Avoiding Deadlock with a Dual-Port Memory

APPENDIX A
DEVICE SPECIFICATIONS

iAPX 286/10 High Performance Microprocessor with Memory
Management and Protection .. .

80287 80-Bit HMOS Numeric Processor Extension .. .
82284 Clock Generator and Ready Interface for iAPX 286 Processors
82288 Bus Controller for iAPX 286 Processors
8282/8283 Octal Latch .. .
8286/8287 Octal Bus Transceiver
8207 Advanced Dynamic RAM (DRAM) Controller .. .
8259A/8259A-2/8259A-8 Programmable Interrupt Controller

ix

7-1
7-2
7-2
7-2
7-3
7-3
7-5
7-6
7-7
7-9

7-10
7-10
7-12
7-12
7-14
7-15
7-16
7-17
7-18
7-19
7-19

A-1
A-51
A-75
A-83
A-99

A-105
A-111
A-129

inter

Table

1-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
5-1
5-2
5-3
5-4
6-1
6-2
7-1
7-2
7-3

TABLE OF CONTENTS

List of Tables

Title'

iAPX 286 Microsystem Components
80286 Bus Cycle Status Decoding ~
Processing Order for Simultaneous Interrupts
Local Bus Usage Priorities
82284 Crystal Loading Capacitance Values .. .
Bus Operations Affecting HOLD Latency .. .
CPU State Following RESET
80286 Bus During RESET
82288 Command States During RESET ;
iAPX 286 Performance With Wait States .. .
Comparing Several Memory Interface Techniques
Timing for 8-MHz Read Operations Using Standard ALE Strobe
Timing for 8-MHz Write Operations Using Standard.ALE Strobe
Timing for 8-MHz Read Operations Using Special Address Strobe
Timing for 8-MHz Interleaved Memory Operations
iAPX 286 Performance with Interleaved Memories
Timing Analysis for the 2764-20 EPROM .. ;
Wait-State Requirements for Intel EPROMs .. .
Timing Analysis for the 2147H-1 RAM .. .
Non-ECC Mode Programming,' POI Pin (57) Tied to Ground
8-MHz Timing Analysis forthe 2118-10 DRAM
6-MHz Timing Analysis for the 2164A-15 DRAM
Timing Analysis for 8-MHz I/O Read Operations
80286 Timing Analysis for I/O Write Operations
80286/Peripheral Timing Parameters ~
Timing Requirements for Selected Peripherals ;
I/O Address Decoding for the 80287
Whetstone Performance with Multiple Wait States
Local Bus and MUL TIBUS® Usage of BHE/BHEN
Three 82289 Operating Modes for Releasing the Bus
Required MUL TIBUS® Timing for the iAPX 286

List of Figures

Page

1-1
3-4

3-11
3-24
3-28
3-64
3-66
3-68
3-68

4-4
4-12
4-14
4-17
4-20
4-22
4-23
4-25
4-26
4-30
4-35
4-37
4-37
5-12
5-14
5-15
5-15

6-3
6-7

7-10
7-15
7-18

Figure Title . Page

2-1 Representative iAPX 286 System .. 2-2
2-2 iAPX 286 on Multi-Master System Bus, .. 2-4
2-3 iAPX 286 With Both Local and System ,Buses ;.... 2-5
2-4 Representative iAPX 286 System Memory Map 2-6

x

TABLE OF CONTENTS

Figure Title Page

2-5 Dual-Port Memory .. 2-8
2-6 Arbitration logic for a Dual-Port Memory ... 2-8
2-7 8207 Dual-Port Subsystem .. 2-9
2-8 iAPX 286 With 8086/8089 lOP Subsystem .. 2-11
2-9 80286 With an 80287 ... 2-12
2-10 80286 With DMA Controller .. ;.............. 2-14
2-11 80286 on the MUl TIBUS® Interface 2-15
2-12 iAPX 286 Design Example ~.................................. 2-17
3-1 80286 Internal Block Diagram .. 3-2
3-2 Operation of Sequential vs. Pipelined Processors 3-3
3-3 Separate Memory and I/O Spaces ... 3-6
3-4 iAPX 286 Memory Organization ... 3-6
3-5 80286 Byte Transfers 3-7
3-6 Even-Addressed Word Transfer ... 3-8
3-7 Odd-Addressed Word Transfer .. 3-9
3-8 Interrupt Descriptor Table Definition 3-10
3-9 NMI and INTR Input Timing 3-12
3-10 8259A PIC Driving 80286 INTR Input ~................. 3-14
3-11 Typical and Pipelined Bus Operations .. 3-15
3-12 System and Processor/PClK Clock Relationships 3-16
3-13 80286 States .. 3-17
3-14 iAPX 286 Read Cycle ... 3-19
3-15 80286 Write Cycle .. ~..... 3-20
3-16 Interrupt-Acknowledge Sequence .. 3-22
3-17 82284 Clock Generator With an 80286 CPU 3-27
3-18 80286 Clock Input .. 3-27
3-19 Recommended Crystal Connections to the 82284 3-28
3-20 82284 With External Frequency Source ~.. 3-29
3-21 External Frequency for Multiple 82284s ;........ 3-30
3-22 Multiple local Bus Processors Share a Common 82284 3-31
3-23 ClK to PClK Timing Relationship 3-31
3-24 READY Timing .. :............... 3-33
3-25 Ready Inputs to the 82284 and Output to the 80286 and 82288 3-33
3-26 SRDY and READY Timing 3-34
3-27 ARDY and READY Timing ~ -......... 3-35
3-28 Using Only One Ready Input ;....................................... 3-35
3-29 Selecting the Ready Input .. 3-36
3-30 Open-Collector 82284 READY Output ... 3-36
3-31 READY Output Characteristics .. 3-37
3-32 Generating a Single Wait State ... :.............. 3-38
3-33 Timing for the Single Wait-State Generator ... 3-38
3-34 Generating from 0 to 3 Wait States .. 3-39
3-35 Typical RC RESET Timing Circuit 3-41

xi

Figure

3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60
3-61

3-62
3-63
3-64
3-65
3-66
3-67
3-68
3-69
3-70
3-71
3-72
3-73
3-74
3-75
4-1
4-2

TABLE OF CONTENTS

Title

80286 Reset and System Reset
Processor Clock Synchronization .. .
RESET Synchronized to ClK .. .
Generating a Synchronous RESET to Multiple 80286 CPUs
Synchronous RESET Circuit Timing ;
82288 Bus Controller with an 80286 CPU
CENl Disable of DEN on Write Cycle
local (MB=O) Vs. MUlTIBUS® (MB=1) Timing
Bus Controllers in Dual Bus System .. .
Generating CMDlY For 0 or 1ClK Delays
Generating 0' to 7 Command Delays
Bus Cycle Terminated with No Command Issued
CEN Characteristics (No Command Delay)
Latching the 80286 Address ;
ALE Timing .. .
Dual Address Bus System : .. .
Non-latched Chip Selects
Latched Chip Selects
Devices With Output Enables on a Non-Buffered Data Bus
Devices Without Output Enables on the local Data Bus
Buffering the Data Bus
Dual Data Bus System .. .
Double Buffered System
Controlling System Transceivers with DEN and DT IA
Buffering Devices with DE/RD ; .. .
Buffering Devices without OE/RD and with Common or Separate

Input/Output
Buffering Devices without OE/RD and with Separate Input/Output
Entering the Hold State
Exiting the Hold State .. .
HOLD Input Signal Timing ~ ; ;
DMA Controller on the Local Bus
DMA Controller on a Private System Bus
Decoding Addresses in Both Real and Protected Modes
Signal States During RESET
Disabling the 80286 Bus Interface on RESET
iAPX 286 local Bus Cycle Timing
80286 Pin Configuration ~
Required Power, Ground and CAP Connections
Terminal Posts Provide Signal Access
121CE™ Probe Cabling Requirements
Memory Interface Using Standard ALE Signal ;
Memory Interface Using Special Strobe Logic

xii

. Page

3-41
3-42
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-50
3-51
3-52
3-53
3-54
3-54
3-55
3-56
3-57
3-58
3-58
3-59
3-60
3-60

3-60
3-61
3-62
3-63
3-64
3-65
3-66
3-67
3-68
3-69
3-70
3-75
3-76
3-77
3-77

4-7
A-8

inter

Figure

4-3
4-4
4-5
4-6 .
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
6-1
6-2
6-3
6-4
7-1
7-2
7-3
7-4
7-5

TABLE OF CONTENTS

Title

Interleaved Memory Circuit .. .
Address Strobe Generation
Memory Read Cycle Timing .. ;
Delaying Transceiver Enable
Memory Write Cycle Timing Using Standard ALE Strobe .. :
Timing for Special Address Strobe Logic .. .
Interleaved Memory Timing
ROM/PROM/EPROM Bus Interface
Generating Chip Selects for Devices without Output Enables
Generating Chip Selects for Devices with Output Enables
Static RAM Interface
80286-8207 Interfaces
8207 Single-Port Memory Subsystem
256K, 64K, and 16K RAM Address Connections
128K-Byte Memory Subsystem
External Shift Register Interface .. .
128K-Byte Memory Subsystem Timing
8207 Memory Subsystem with ECC
Comparing Memory-Mapped and I/O-Mapped I/O
Restricted Address Regions
Memory-Mapped I/O Devices
Generating I/O Chip Selects .. .
Bipolar PROM Decoder for 8-bit or 16-bit I/O Devices
16-Bit to 8-Bit Bus Conversion
16-Bit I/O Decode
Linear Selects for I/O Devices
I/O Cycle Model
I/O Read Cycle Timing .. .
I/O Write Cycle Timing
Delaying Transceiver Enable
8274 MPSC Interface
8255A-5 Parallel Port Interface .. .
Single 8259A Interrupt Controller Interface
Cascaded 8259A Interrupt Controller Interface
iAPX 286/20 System Configuration
Data Transfer Timing for the 80287 .. .
Data Channel Request and Acknowledge Timing
Software Routine to Recognize the 80287
Local Bus and MUL TIBUS® Interface for the iAPX 286
Decoders Select the Local vs. the System Bus
Selecting the MUL TIBUS® for Memory Operations
Memory-Mapping the MUL TIBUS® I/O .. .
Decoding Interrupt-Acknowledge Sequences

xiii

Page

4-10
4-11
4-13
4-15
4-16
4-19
4-21
4-24
4-27
4-28
4-29
4-31
4-32
4-33
4-34
4-35
4-36
4-38

5-2
5-3
5-4
5-6
5-7
5-7
5-8
5-9

5-10
5-11
5-11
5-13
5-16
5-18
5-20
5-21

6-2
6-5
6-6
6-8
7-4
7-5
7-6
7-7
7-9

.TABLE OF CONTENTS

Figure Title Page

7 -6 Byte-Swapping at the MUL TIBUS® Interface 7 -11
7 -7 Implementing the Bus-Timeout Function .. 7 -12
7-8 'Two Bus Priority-Resolution Techniques .. 7-13
7 -9 Bus Exchange Timing for the MUL TIBUS® 7 -14
7 -10 Effects of Bus Contention on Bus Efficiency .. 7 -16
7 -11 Four Different 82289 Configurations ... ,.......... 7 -17
7 -12 iAPX 286 Dual-Port Memory with MUL TIBUS® Interface 7 -21
7-13 Preventing Deadlock Between Dual-Port RAM and MULTIBUS® 7~22

xiv

Introduction 1

CHAPTER 1
INTRODUCTION

The iAPX 286 is a new high-performance, VLSI microprocessor system that supports multi-user repro­
grammable and real-time multi-tasking applications. The iAPX 286 microsystem includes the 80286
microprocessor, the 80287 processor extension, and additional support components. The iAPX 286
architecture specifies how these components relate to each other, and is the key to the versatility of
the iAPX 286 syst'em.

iAPX 286 MICROSYSTEM COMPONENTS

The components that make up the iAPX 286 microsystem are designed to work together in modular
combinations within the overall framework of the iAPX 286 architecture. System functions are distrib­
uted among specialized components, allowing designers to select an appropriate mix of components to
fit the needs of their particular target system. This modular structure allows systems to grow in an
orderly way to meet new needs, without adding unneeded capabilities or excessive cost.

Table 1-1 lists the components in the iAPX 286 microsystem and describes their functions.

Table 1-1. iAPX 286 Microsystem Components

Microprocessor

80286 Central Processing Unit (CPU)

80287 Numeric Processor Extension
(NPX)

Support Component

8259A Programmable Interrupt
Controller

8282 Octal Latch (Non-inverting)

8283 Octal Latch (Inverting)

82284 Clock Generator and Driver

8286 Octal Bus Transceiver

8287 Octal Bus Transceiver (Inverting)

82288 Bus Controller

82289 Bus Arbiter

Description

16-bit high performance microprocessor with on-chip
memory management and memory protection

High-performance numeric extension to the 80286 CPU

Description

Provides interrupt control and priority management for the
CPU

Latches address and increases drive on address bus

Latches address for inverted-sense buses like the IEEE 796
Multibus

Generates system timing functions, Including system clock,
RESET, and Ready synchronization

Increases drive on data bus

Buffers data bus for inverted-sense buses like the IEEE 796
Multibus

Generates bus command signals

Controls access of microprocessors to multi-master bus

1-1 210760-001

inter INTRODUCTION

Microprocessors

At the center of the iAPX 286 microsystem is the 80286 Central Processing Unit (CPU). The 80286
is a high-performance microprocessor with a 16-bit external data path and up to 16 megabytes of
directly-addressable physical memory; up to one gigabyte of virtual memory space is available to each
user. The standard operating speed of the 80286 is 8 MHz; a 6-MHz version of the 80286 is also
available.

The 80286 operates in two modes: Real-Address Mode and Protected Virtual-Address Mode.

In Real-Address Mode, the 80286 is fully code-compatible with the iAPX 86 and 88 micro­
processors. All 8086 and 8088 instructions execute on the 80286 at a much faster rate. An 8 MHz
80286 executes instructions up to six times faster than a 5-MHz 8086.

• In Protected Virtual-Address Mode, the 80286 is also compatible with the 8086 instruction set.
Protected Virtual-Address Mode allows use of the 80286's built-in memory protection and manage­
ment capabilities and virtual-memory support.

The 80287 Numeric Processor Extension is an iAPX 286 processor extension that uses the 80286 to
fetch instructions and transfer operands. The 80287 extends the numeric processing abilities of the
80286 to include 8-, 16-, 32-, 64-, and 80-bit integer and floating-point data types and to perform
common transcendental functions. The 80287 is compatible with the proposed IEEE 754 Floating­
Point Standard.

Interrupt Controller

Interrupt management for an iAPX 286 system is provided by the 8259A Programmable Interrupt
Controller. Interrupts from up to eight sources are accepted by the 8259A; up to 64 requests can be
accommodated by cascading several 8259A devices. The 8259A typically resolves priority between
active interrupts, interrupts the CPU, and passes a code to the CPU to identify the interrupting source.
Programmable features of this device allow it to be used in a variety of ways to fit the interrupt require­
ments of the particular system.

Bus Interface Components

Bus interface components connect the iAPX 286 processors to memory and peripheral devices. The
use of these components in a system is based on the requirements of the particular system configuration.

The 82284 Clock Generator is a bipolar device that generates timing for the iAPX 286 processors and
support components. The device supplies the internal clock to the processors and also provides a TTL­
level half-frequency peripheral clock signal to other devices in the system. The Clock Generator also
synchronizes RESET and Ready signals for the processors and support devices.

Addresses and control signals are latched and held by 8282 or 8283 Octal Latches. These latches are
bipolar devices that satisfy the high AC and DC drive requirements of larger systems.

The 8286 and 8287 Octal Bus Transceivers are bipolar, high-performance bi-directional data buffers
that satisfy the high AC and DC drive requirements of larger systems. '

The 82288 Bus Controller is an HMOS device that decodes status lines from the 80286 CPU to gener­
ate bus command signals. These command signals identify and control the bus cycles that are performed.
The 82288 also provides address latch and data buffer control signals for the 8282/8283 Address

1-2 210760-001

INTRODUCTION

Latches and the 8286/8287 Bus Transceivers. The Bus Controller's command outputs provide the high
AC and DC drive required for large systems, while control inputs allow tailoring of the command
timing to accommodate a wide variety of timing requirements.

Access by the iAPX 286 to a multi-master system bus is controlled by the HMOS 82289 Bus Arbiter.
A multi-master system bus connects memory and peripheral resources that are shared by two or more
processing elements. Bus Arbiters for each processor can use one of several priority-resolving techniques
to ensure that only one processor is driving the bus at any given time. The 82289 Bus Arbiter supports
bus arbitration signals that are fully-compatible with the IEEE 796 Multibus standard.

1-3 210760-001

iAPX 286 System Architecture 2

CHAPTER 2
iAPX 286 SYSTEM ARCHITECTURE

The iAPX 286 microsystem supports a very flexible architecture that opens up a wide range of possi­
bilities for system designers. This chapter describes the iAPX 286 system architecture and examines
some of the possible configurations this architecture supports.

• The first section of this chapter describes the organization of the iAPX 286 bus. This parallel bus
structure forms the basis for many of the configuration possibilities of the iAPX 286 architecture.

• The second section introduces memory subsystems for the iAPX 286. Memory is a crucial part of
every microprocessing system; it is used for the storage of program instructions and for the holding
of processing data and information.

• The third section discusses the possible I/O configurations of an iAPX 286 system. The iAPX 286
can directly address a large number of peripheral devices, or alternatively, I/O processing tasks can
be off-loaded to dedicated processing subsystems.

• The fourth section introduces the 80287 Numeric Processor Extension and briefly describes how
the 80287 operates in conjunction with the 80286 CPU.

• The final section of this chapter describes the architectural features of the iAPX 286 microsystem
which support multi-processing. Multi-processing provides virtually limitless possibilities for increasing
the performance of iAPX 286 systems through the modular expansion of processing capabilities.

iAPX 286 BUS ORGANIZATION

The iAPX 286 system architecture is centered around a parallel bus structure that connects the iAPX
286 processor to memory and I/O resources. Across this bus, the iAPX 286 processor fetches program
instructions, manipulates stored information, and interacts with external I/O devices. Figure 2-1 shows
this basic iAPX 286 bus architecture.

The iAPX 286 architecture contains two types of buses: the local bus and the system bus.

• The local bus connects the iAPX 286 processor with processor extensions and other processing
elements. Private memory and I/O devices connect to a buffered version of this local bus, and are
available only to processing elements residing on the local bus.

• The system bus connects the iAPX 286 processor to public memory and I/O resources. These public
resources are typically shared among the iAPX 286 processor and other bus masters that also connect
to the system bus.

Specialized bus interface components connect the iAPX 286 local bus to both the buffered local bus
and the system bus. These interface components process the signals that come from the iAPX 286
local bus and generate appropriate signals for use on the buffered local bus or the public system bus.

The iAPX 286 Local Bus

The iAPX 286 local bus is formed from the signals generated by the 80286 Cpu. These signals include
address, data, and control or status information that directs the operation of the local bus. All
iAPX 286 systems have at least one local bus containing the 80286 CPU.

2-1 210760-001

inter iAPX 286 SYSTEM ARCHITECTURE

--~

r-------I

I ,.,,,,, i .•
I MEMORY ~ r-------,
I I I I I
I I gJ I I 1-------, ~ al t- I BUS I

:! i3 ~ INTERFACE
0:.... I GROUP I

,-------. a. ~ I I I
I I U) I I
I I I I
I I 10--.---.

PROCESSOR
BUS

INTERFACE
GROUP

II PRIVATE H -
I I/O I ._ _ •• __ _.

I I --I I LOCAL BUS ..

'-______ 1 r---J:.--... "'--~---1
I I I I

PROCESSING
MODULE

I I I I
I PROCESSOR I I PROCESSOR I

I I I I
t _______ J L _______ J

Figure 2·1. Representative iAPX 286 System

r---------,
I I
I I

I tl PR~g~~~~NG I
I I
I I L _________ .I

PUBLIC
MEMORY

PUBLIC
I/O

r---------l
I I

• .t PROCESSING I
~ MODULE I

I I
I I L _________ .1

210760-120

The 80286 provides on-chip arbitration logic and external control signals that allow it to' share the local
bus with other processing elements. Examples of other processing elements that connect to the local
bus are processor extensions, Direct Memory Access (DMA) devices, or other specialized processors.
These arbitration functions provide a cost-effective way to structure a small, multi-processing system,
since the same bus interface components are shared by all of the processing eleinents on the local bus.
Additional arbitration logic is not required for additional processors on the local bus.

The Buffered Local Bus

A buffered local bus is just that: a buffered version of the iAPX 286 local bus which contains private
memory and I/O resources that are accessible only to processors on that local bus. All but the smallest
of iAPX 286 systems contain a buffered version of the local bus. Since the buffered local bus takes
full advantage of the iAPX 286 local bus timing, and since the iAPX 286 processor does not have to
contend with other system processing elements for the use of these resources, the maximum system
performance is typically obtained when the iAPX 286 is executing programs from memory that resides
on this buffered local bus.

2-2 210760-001

inter iAPX 286 SYSTEM ARCHITECTURE

The System Bus

The system bus, like the buffered local bus, is composed of buffered versions of the local bus signals.
Unlike a buffered local bus, however, the public system bus connects memory and I/0 resources that
are shared among processors belonging to more than one local bus.

By providing easy shared access to processing resources on the system bus, the public system bus allows
multi-processor systems to communicate among themselves and to avoid a needless duplication of
resources.

Bus Interface Groups

Specialized bus interface components are used to translate the iAPX 286 local bus signals onto the
buffered bus to connect the iAPX 286 local bus to either a buffered local bus or to a public system
bus.

These bus interface components include the 82288 Bus Controller, 8282 and 8283 Octal Address
Latches, 8286 and 8287 Octal Bus Transceivers, and the 82289 Bus Arbiter. These components can be
mixed and matched as required to connect the 80286 to buffered local or system buses. In fact, the
modular nature of the iAPX 286 bus structure allows as many local and system buses as required by
the target system.

Figure 2-2 shows an example of an 80286 connected to a multi-master (more than one processor) public
system bus. Address latches and data transceivers transfer the local bus address and data onto the
system bus, respectively. The 82288 Bus Controller translates the 80286 local bus signals to provide
the system bus command signals. The 82289 Bus Arbiter provides the arbitration and control functions
necessary to ensure that only one master has control of the system bus at any given time.

Figure 2-3 shows an iAPX 286 connected to both a multi-master system bus and to a buffered local
bus. Separate Bus Controllers, address latches, and data transceivers are used to implement each of
the two bus interfaces. No Bus Arbiter is required for the buffered local bus interface, because the
80286 has exclusive control of the buffered local bus.

In a system having more than one bus, address decoders typically select which of the available buses
is being requested when the iAPX 286 performs a bus operation. The appropriate Bus Controller and
Bus Arbiter, if any, are activated and the iAPX 286 bus operation continues to completion.

Chapter Three describes the operation of the iAPX 286 local bus in more detail. Chapter Seven discusses
the considerations for designing interfaces between the iAPX 286 and a public system bus.

The following sections provide a closer look at some of the configuration possibilities for iAPX 286
systems.

MEMORY SUBSYSTEMS FOR THE iAPX 286

An iAPX 286 processor operating in Protected Virtual-Address mode can directly address as much as
16 megabytes of physical memory. This large physical address space can be segmented into a number
of separate memory subsystems, with each having different characteristics and functions, but all memory
subsystems being directly accessible by the iAPX 286 processor.

2-3 210760-001

iAPX 286 SYSTEM ARCHITECTURE

INTERRUPT LINES

! ~
8259A

PROGRAMMABLE
INTERRUPT

CONTROLLER

82289 ARBITRATION LINES
BUS

ARBITER

LOCAL BUS

82284 82288 CONTROL LINES
CLOCK BUS

GENERATOR CONTROLLER
~

t
8282/83

ADDRESS LINES

r-- LATCHES

80286
CPU

~

8286/87
DATA LINES

TRANSCEIVERS

Figure 2-2. iAPX 286 on Multi-Master System Bus

MUL TIMASTER
SYSTEM BUS

210760-1

Individual memory systems for the iAPX 286 can be configured either as local memory, accessible by
an 80286 and other processors on a single local bus, or as system memory, to be shared by multiple
independent processors each having their own local bus:

Local memory resides on a buffered local bus and is available to processors on that local bus only.

System memory resides on a public system bus and is available to all processors that interface to
the public bus.

A third alternative that combines the advantages of both local and system memory is to configure
the same memory to be accessible both as local memory from a local bus, and as system memory
from a public system bus. Such a memory system is called a dual-port memory.

2-4 210760-001

inter

BUFFERED
LOCAL

BUS

iAPX 286 SYSTEM ARCHITECTURE

INTERRUPT LINES

! 1 ! ~
8259A

PROGRAMMABLE
r-- INTERRUPT

CONTROLLER

LOCAL BUS

82284
CLOCK

GENERATOR

1
80286 82289 ARBITRATION LINES

"'---- BUS CPU ARBITER

82288 82288 CONTROL LINES
BUS BUS

;---
CONTROLLER CONTROLLER -

r-- r--

L f ADDRESS
DECODE

1

4- ...-
ADDRESS LINES

8282/83 8282/83
LATCHES LATCHES

'---- ..-
DATA LINES

8286/87 8286/87
TRANSCEIVERS TRANSCEIVERS

Figure 2-3. iAPX 286 With Both Local and System Buses

MUL TIMASTER
SYSTEM BUS

210760-2

The iAPX 286 architecture allows any of these configurations to be used in a single system; the use of
one or all memory approaches depends on the needs of the target system.

Typical iAPX 286 systems will use some combination of both local and system memory (the system in
Figure 1-1 shows both). In systems configured with memory on both the buffered local bus and the
system bus, the selection of which bus is accessed during a given memory operation is based on the
memory or I/O address. Figure 2-4 shows an example memory and I/O address map for the
iAPX 286 system shown in Figure 2-1.

2-5 210760-001

iAPX 286 SYSTEM ARCHITECTURE

MEMORY ADDRESS SPACE 110 ADDRESS SPACE

FFFFFFH

LOCAL EPROM

FFFOOOH
FFEFFFH

FFFFH
PUBLIC
SYSTEM

MEMORY
PUBLIC

I/O

100000H
OFFFFFH 100H

OFFH
PRIVATE
LOCAL PRIVATE

MEMORY I/O

OOOH OOOH

210760-134

Figure 2-4. Representative iAPX 286 System Memory Map

Local Memory

Local memory provides a processor with private memory space that is not accessible to other processors
(except those that share the processor's local bus). This physical isolation of memory areas can assure
program and data security in high-reliability multi-processor systems.

The use of local memory can maximize system throughput in several ways:

Local memory permits the 80286 to take advantage of its pipelined address timing, making the
most efficient use of the bus and performing memory operations in the least possible time.

Since the local memory is not shared with other processors, no access delays are incurred, whereas
access delays usually happen when several processors contend for use of the same resources.

In systems where several processors each have their own private memory space, multiple tasks can
execute inparal,lel because each processor is fetching instructions on a separate data path.

The tradeoffs associated with using local memory in multi-processor systems include the cost of imple-
menting a separate memory subsystem for each processor. .

2-6 210760-001

IAPX 286 SYSTEM ARCHITECTURE

System Memory

System memory provides a shared memory space that can be accessed by all processors connected to
a public system bus. This shared memory allows multiple processors to communicate with one another
and efficiently pass blocks of data between their separate tasks.

Shared system memory is often a cost-effective alternative to using local memory when individual
processors may occasionally require a relatively large physical memory space. Since the same memory
is shared between multiple processors, the total system cost can be considerably less than if local memory
for each processor were sized to accommodate their largest respective memory requirements.

Since system memory typically can be expanded simply by installing additional memory boards, this
modular flexibility makes system memory attractive for many applications.

The tradeoffs associated with using shared system memory instead of local memory in multi-processor
systems include the fact that access to system memory may be slower than access to local memory
because processors must contend with each other for access to the system bus.

When several processors require use of the same memory resources at the same time, memory access
time (and therefore system throughput) can be significantly reduced.

The risk of data corruption with system memory is also greater in systems that use other processors
along with an iAPX 286 because one processor can possibly overwrite data being used by another
processor. Software protocols usually can avoid this problem, however.

Dual-Port Memory

Dual-port memory is a single memory subsystem that combines many of the advantages of both local
and system memory. Dual-port memory appears both as local memory to processors on a single local
bus, and as system memory to other processors in the system. Figure 2-5 shows an iAPX 286 system
that uses dual-port memory.

Dual-port memory permits the local processor to have high-speed access to the dual-port memory without
tying up the public system bus. In this way, iAPX 286 systems can access the dual-port memory as
local cache memory without affecting other processors using other system resources on the system bus.

The dual-port memory is also accessible by other processors using the system bus, providing a shared
memory space that can be used for inter-processor communications or other functions.

If necessary, address-mapping circuitry can make the memory appear in different address ranges for
local and system bus processors. Address-mapping can also be used to permit other system processors
access to only a portion of the dual-port memory, reserving portions of the memory array for exclusive
use by the local processor.

Offsetting these advantages is the fact that dual-port memory typically is more complex than a (single­
port) local or system memory subsystem. Dual-port memories require arbitration logic to ensure that
only one of the two buses serving the memory can gain access at one time. Figure 2-6 gives a visualiz­
ation of this arbitration requirement. Fortunately, the Intel 8207 Advanced Dynamic RAM Controller
(ADRC) greatly simplifies design of dual-port memory subsystems.

2-7 210760-001

80286

iAPX 286
LOCAL

BUS

iAPX 286 SYSTEM· ARCHITECTURE

-""-r--
....

PUBLIC
SYSTEM

.. ..-r- BUS

.A-- A

'(" -y

<==> DUAL-PORT A. A A. A

BUFFERED MEMORY "'(" -y "'(" ""Y
LOCAL

BUS

_1.0- _I--- ...

Figure 2-5 .. Dual-Port Memory

DUAL-PORT MEMORY

MEMORY
ARRAY

OTHER
PROCESSORS

SYSTEM
BUS

Figure 2-6. Arbitration Logic for a Dual-PortMemory

2-8

210760-3

210760-4

210760-001

iAPX 286 SYSTEM ARCHITECTURE

The 8207 Advanced Dynamic RAM Controller is a high-performance dynamic RAM controller designed
to easily interface 16K, 64K, and 265K dynamic RAM devices to microprocessor systems. On-chip
arbitration and synchronization logic implements the dual-port function, allowing two different buses
to independently access the RAM array. The 8207 DRAM controller has a synchronous mode of opera­
tion that specifically supports the 80286 processor.

By combining RAM control and dual-port arbitration functions on a single chip, the 8207 ADRC
provides an easy way to implement dual-port memory in an iAPX 286 system. Figure 2-7 shows an
8207-based dual-port memory subsystem connected to an iAPX 286 subsystem and a Multibus system
bus interface.

The advantages of dual-port memories, described above, make dual-port memory a more effective
choice for multi-processor applications where using strictly local or system memory would significantly

~----------------~~
~--------~~----~~

~------~---------------------------4r-+---------------+---~----~~~

so WJfA
Sf RnA

PEl!
PtA AI MUX LOCK MULTIBUS

80286
CPU

~ ___________________ Mrn

~~------------~~~------4-------------------~
~ ~~--------------~--------~

210760-5

Figure 2-7. 8207 Dual-Port Subsystem

2-9 210760-001

iAPX 286 SYSTEM ARCHITECTURE

impact system cost and/or performance. Chapter Four describes the design of memory subsystems for
he iAPX 286 in more detail. . ,

I/O SUBSYSTEMS FOR THE iAPX 286

The iAPX 286 processor can directly address as many as32,768 16-bit I/O devices, or 65,5368-bit
I/0 devices, or combinations of the two. This large I/O address space is completely separate from the
memory address space, as shown previously in Figure 2-4. .

In addition to accessing individual peripheral devices, an iAPX 286 system that requires extensive
I/0 capability can offload its I/0 processing tasks to one or more dedicated, independent processors.
An independent processor is one that executes an instruction stream separate from the 80286 CPU.
Examples of independent processors include the 8086 and 8088 CPU's, the 8089 Input/Output Proces­
sor, and the 80186 High Integration Microprocessor.

An independent processor typically executes out of its own local memory and uses shared or dual-port
memory for communicating with the 80286. Since the 8207 ADRC is compatible with both the 80286
and the independent processors already mentioned, it is ideal for implementing this type of I/O
subsystem.

Figure 2-8 shows an iAPX 286 system that includes such an I/O subsystem. The subsystem consists of
either an 80186 or an 8086 CPU and 8089 lOP. For the second case, the 8089 is local to the 8086. For
both cases, the processors are isolated from the 80286. Inter-processor communication between the
80286 and either the 186 or 8086/8089 is performed through the 8207-controlled dual-port memory.

This configuration protects the resources of each processing module from the other. The private memory
and I/O space of the I/O subsystem is protected from the 80286 CPU; the private memory space of
the 80286 is protected from incursion by the I/O subsystem processors.

When this level of protection is not required, the 80286 .and the I/0 subsystem may be configured on
the same system bus. This type of multi-processing system is described later in this chapter, along with
other types of multi-processing systems. Chapter Five describes the design of I/0 subsystems for the
iAPX 286 in more detail. '

PROCESSOREXTEN~ONS

A processor extension such as the 80287 Numeric Processor Extension (NPX) is a specialized proces­
sor that obtains its instructions from the 80286 CPU. By performing high-precision numeric instruc­
tions in parallel with the 80286 CPU, the 80287 extends the instruction set available to the 80286 and
greatly increases the performance of the iAPX286/20 system over that of an iAPX 286/10 (80286
processor without the 80287 processor extension).

The 80287 monitors instructions fetched by the 80286 and automatically executes any numeric instruc­
tions as they are encountered by the 80286. The 80287 uses a special Processor Extension Data Channel
within the 80286 to request operand fetches and to store the results of operations. Two of the processor
extension's signal lines allow the 80287 to indicate error and status conditions.

Figure 2-9 shows an 80286 CPU and an 80287NPX configured on a buffered local bus. Chapter Six
describes in detail the design of iAPX 286 systems using the 80287 Numeric Processor Extension.

2-10 210760-001

80286
CPU

8086
CPU

1

T

iAPX 286
LOCAL BUS

....,.

~~~9 M.L • .i ......... 

, ____________________ ...1 L~~ ~ts 

iAPX 286 SYSTEM ARCHITECTURE 

SYSTEM BUS 
INTERFACE 

SYSTEM BUS 
INTERFACE 

-

SYSTEM 
RESOURCES 

t 
ADDRESS 
DECODE 

8207 
ADRC 

t 
ADDRESS 
DECODE 

1/0 
RESOURCES 

LOCAL 
MEMORY 

I' 

Figure 2-8. iAPX 286 With 8086/8089 or 186 lOP Subsystems 

2-11 

RAM 
ARRAY 

210760-6 

210760-001 



iAPX 286 SYSTEM ARCHITECTURE 

II 
ADDRESS > 

LJ' A,s-Ao A2 A, 

07 
82288 ~ :"'" D,s-Do '----
8US 

CONTROllER 

~- ""--- COD/iNfA - -i--
80286 DECODE 

MIlO ~ - I-r- M/ro 
CPU r-

IIUSY EII"i'WR I'EACK PEREQ 

I--
DEN - I- ~ 

0 0 0 
DT/A - I- r-

ALE :-- I- ClK 

rowe IOI!C Q Q a 

~ IIUSY EFilfOR I'EACK PEREQ 

- k - ~ OE 

T 

I-w.... 0'5-000 
- DATA 8286 ~ 

~ 
I---

80287 
BUFFER 

82284 I--- f----,I 
CLOCK 

~ ~ 
SOCKET NPS2 -Vee 

~ GENERATOR NPS1 

CMDl 

CMDO 

CKM 

1 

210760-7 

Figure 2-9. 80286 With an 80287 

2-12 210760-001 



iAPX 286 SYSTEM ARCHITECTURE 

MULTI-PROCESSING OVERVIEW 

A single 80286 can provide a performance increase of up to 6 times that of a single 8086 CPU. In 
large systems requiring even greater performance, system throughput can be increased even further by 
employing multiple processors. By distributing system functions among multiple processors, significant 
advantages can be gained: 

• System tasks can be allocated to special-purpose processors whose designs are optimized to perform 
those tasks simply and efficiently. 

• Very high levels of performance can be attained when multiple processors execute simultaneously 
(parallel processing). 

• System reliability can be improved by isolating system functions so that a failure or error which 
occurs in one part of the system has a limited effect on the rest of the system. 

• Multi-processing promotes partitioning the system into modules, breaking system development into 
more manageable tasks and permitting the parallel development of subsystems. Partitioning also 
helps to isolate the effects of system modifications to a specific module. 

Designers of multi-processing systems typically have been faced with the two classic problems whenever 
more than one processor shares a common bus: bus arbitration and mutual exclusion. The iAPX 286 
system architecture provides built-in solutions that virtually eliminate these problems. 

Bus Arbitration 

Bus arbitration is the means whereby one processing element gains control of a shared common bus 
from another processing element. In an iAPX 286 system, this shared bus may be either the iAPX 286 
local bus (if more than one processor is configured on the local bus), or a public system bus that is 
shared between multiple processing elements. Bus arbitration for the control of the local bus is performed 
directly by the 80286 CPU. For the control of a public system bus, specialized support devices are 
used to provide the arbitration function. 

At the local bus level, the 80286 provides bus arbitration through its on-chip arbitration logic and 
control signals. Two control signals, called HOLD and HLDA (hold and hold acknowledge), are provided, 
and are typically used with dedicated bus masters such as a Direct Memory Access (DMA) Controller. 

Figure 2-10 shows an 80286 configured with a DMA controller on the local bus. The DMA controller 
requests control of the local bus by asserting the HOLD signal to the 80286. The CPU responds by 
relinquishing control of the bus and sending the controller an acknowledge signal (HLDA). The 82257 
Advanced DMA Controller, a high-performance DMA controller specifically designed to support the 
80286 local bus protocols, will be available in 1984. 

At the system bus level, bus arbitration for iAPX 286 systems typically is performed by the 82289 Bus 
Arbiter. The Bus Arbiter connects to the 80286 CPU and controls iAPX 286 access to a multi-master 
system bus such as the IEEE 796 Multibus. The 82289 supports a number of techniques for resolving 
requests from multiple masters on the system bus, including both serial and parallel priority resolution. 
Each iAPX 286 subsystem connected to the public system bus has its own Bus Arbiter. 

For other (non-80286) processors connected to the public system bus, the 8289 Bus Arbiter provides 
the necessary bus arbitration functions. The 8289 Bus Arbiter supports the 8086 and 8088 CPU's, the 
80186 High Integration Microprocessor, and the 8089 Input/Output Processor. The 8289 Bus Arbiter 
is compatible with the 82289 bus control signals and the Multibus interface. 

2-13 210760-001 



82284 
CLOCK 

GENERATOR 

iAPX 286 SYSTEM ARCHiTECTURE 

RESET -
READY 80286 -

CLK CPU -
--

HOLD HLDA 

HOLD HLDA 

I---
f-----

~ 
DMA 

CONTROLLER 

D 
DMA REQUESTS 

AND ACKNOWLEDGES 

A23-AO 

~ 8282 
~ (3X) 

- r---- f--

I 

D15-DO 

8286 
(2X) 

~ 
82288 

BUS 

ST, SO, MlID CONTROLLER 

Figure 2-10. 80286 with DMA Controller 

> ADDRESS 
BUS 

) 

> 

DATA 
BUS 

COMMAND 
AND CONTROL 
SIGNALS 

210760-8 

Figure 2-11 illustrates the use of the 82289 Bus Arbiter in implementing a system bus interface. iAPX 
286 designs using the 82289 Bus Arbiter are described in greater detail in Chapter Seven. 

Mutual Exclusion 

Mutual exclusion is a property of a shared resource which assures that only one processing element 
uses the resource at one time. Typically, mutual exclusion means that one processor has the ability to 
prevent other processing elements from accessing a shared resource (such as the bus) until the proces­
sor has finished using the resource. 

In many cases, mutual exclusion can be accomplished in software through the use of semaphores. In 
other cases, however, such as when several memory operations must be completed as a unit, support 
for mutual exclusion must be provided in hardware. The iAPX 286 microsystem provides basic hardware 
support for mutual exclusion through the 80286 LOCK signal. 

The 80286 LOCK signal is activated automatically during specific CPU operations, or explicitly through 
use of the ASM-286 LOCK prefix instruction, to prevent other processors from accessing a shared 
resource. The CPU operations which assert an active LOCK signal include interrupt-acknowledge 
sequences, the ASM-286 XCHG instruction, and descriptor-table accesses. 

2-14 210760-001 



iAPX 286 SYSTEM ARCHITECTURE 

rlDh 
--
READY X1 X2 

SRDY XACR 

II 8282 J-. 
82284 ARDY 

LATCH SRDYEN ARDYEN 
STB ClK READY RESET - G_ • I I Ai ~ COMMANDS 
ALE CMDLY CMD ... 
-- ~ 
READY J r READY -y 

82288 CLK 
I I 

CLK 82288 
I......- M/iO A ... M/iO DEN 
r-

CMD 

';~~:t1 
S1.SO 

~ CMD CENL DTiA 

MB CEN MB AEN ALE 

-1 +t J, i H1 
~ 

AEN Of 
READY [[()CK 

.. CLK 82289 A CONTR~L 

M/iO CNTL > 
1 ~ 

Sl,SO 
ADDRESS 

SYSB/RfSlj DECODER 

~ RESET 
[OCj( 

M/iO 

if 
Of STB 

~ 
ADDRES~ 

8283 ") 

ADDRESS II lATCHES ,. 

A23-0 CLK READY MilO RESET 
!H,So 

[OCj( t---

80286 

o".~ T 010 

DATA 
j. 

8287 ~ BUFFERS 
DATA . 

210760-9 

Figure 2-11. 80286 on the MULTIBUS® Interface 

The 82289 Bus Arbiter and 8207 Advanced Dynamic RAM Controller both have inputs that connect 
to the 80286 LOCK signal. When its Lock input is active, the Bus Arbiter will not relinquish control 
of the system bus, preventing other system processors from using the system bus, In a dual-port memory 
subsystem, the 8207 ADRC LOCK input restricts memory access to a single processor and so prevents 
other processors from altering memory. Public system buses such as the IEEE 796 Multibus define a 
similar LOCK signal, which is used to restrict access to the system bus resources. 

The ability to exclude other processors from a shared resource in selected situations can provide a high 
level of performance and integrity in an iAPX 286 system. For example, context switching and descrip­
tor-table loading can be performed quickly and safely by LOCKing the transfer sequence because 
delays due to bus contention on the system bus are minimized and all data is protected from other 
processors until the sequence is complete. Interrupt responses, semaphore accesses, and LOCKed data 
transfers are also fast and reliable in an iAPX 286 system .. 

2-15 210760-001 



iAPX 286 SYSTEM ARCHITECTURE 

The use of the LOCK signal with both a public system bus and a dual-port memory subsystem is 
described in greater detail in Chapter Seven. 

Using the iAPX 286 with the IEEE 796 MUL TIBUS® 

The Intel Multibus (IEEE 796 Standard) is an example of a proven, industry-standard system bus that 
specifically supports multi-processing, and is well-tailored for iAPX 286 systems. A wide variety of 
Multibus-compatible I/O subsystems, memory subsystems, general-purpose processing boards, and 
dedicated-function boards are available from Intel and a variety of other manufacturers to speed product 
development while ensuring bus-level compatibility. 

The job of interfacing an iAPX 286 subsystem to the Multibus is made relatively simple by using 
several Intel components specially suited for handling the Multibus protocols. These bus interface 
components are the same components described previously, and include: 

• The 82288 Bus Controller 

• The 82289 Bus Arbiter 

• 8287 Inverting Data Transceivers 

• 8283 Inverting Latches 

• The 8259A Programmable Interrupt Controller 

These devices are functionally and electrically compatible with the Multibus specifications. Figure 
2-11 shows how these components interconnect to interface the 80286 to the Multibus public system 
bus. Chapter Seven describes in greater detail how these components can be used to provide a Multibus 
interface for an iAPX 286 subsystem. 

A Multi-Processing Design Example 

Dedicated I/O subsystems as well as other multi-processing design techniques described in this chapter 
can be used to construct multi-processing systems that vary widely in function and complexity. Each 
processor module in the system can be optimized to perform its portion of the system task. 

Figure 2-12 shows a system that distributes functions among several processor modules. For simplicity, 
bus interface components are not shown. 

The supervisor module consists of a single 80286 CPU and local memory. The supervisor controls the 
system, primarily responding to interrupts and dispatching tasks to the other modules. The supervisor 
executes code out of local memory that is inaccessible to the other processors in the system. System 
memory, accessible to all of the processors connected to the public system bus, is used for messages 
and common buffers. 

Each graphics module supports a graphics CRT terminal and contains an 80286 CPU and 80287 NPX 
(iAPX 286/20 configuration), local memory, and local I/O. 

The database module is responsible for maintaining all system files; it consists of an 80286 CPU with 
an iAPX 86/11 (8086 CPU and 8089 lOP) subsystem that controls the actual storage devices. Both 
the iAPX 286/10 processor and the iAPX 86/11 subsystem in the database module have their own 
local memory. A dual-port memory connects the iAPX 286/10 to the subsystem processors. 

2-16 210760-001 



" GRAPHICS 
MODULE 

SUPERVISOR 
MODULE 

OATABASE 
MODULE 

{ 

LOCAL 
MEMORY 

LOCAL 
, 1/0 

LOCAL 
MEMORY 

1/0 
RESOURCES 

LOCAL 
MEMORY 

DUAL PORT 
MEMORY 

LOCAL 
MEMORY 

iAPX 286 SYSTEM ARCHITECTURE 

PRIVATE 
SYSTEM BUS 

PRIVATE 
SYSTEM BUS 

PRIVATE 
SYSTEM BUS 

~ 

~ 

!-. 

~ .. 
PRIVATE 

SYSTEM BUS 

80286 
CPU 

I 
80287 

NPX 

80286 
CPU 

~ 

... 

80286 
CPU 

• 
~ 

8086 
CPU 

8089 
lOP 

I 

~ 

PUBLIC 
SYSTEM BUS 

~ 

... 

II 

~ 

.. 

80286 
CPU 

t 

80287 
NPX 

SYSTEM 
MEMORY 

GATEWAY II 

80286 
CPU 

J. 
80287 
NPX 

PRIVATE 
SYSTEM BUS 

PRIVATE 
SYSTEM BUS 

Figure 2·12. iAPX 286 Design Example 

2-17 

LOCAL 
MEMORY 

LOCAL 
1/0 

I NETWORK 

LOCAL 
MEMORY 

LOCAL 
1/0 

.J 

.J 

> GRAPHICS 
MODULE 

> GRAPHICS 
MODULE 

210760-10 

210760-001 





The iAPX 286 Local Bus 3 





CHAPTER 3 
THE iAPX 286 LOCAL BUS 

The iAPX 286 local bus connects the 80286 processor to memory and peripheral devices, and forms 
the backbone of any iAPX 286 system. This chapter introduces the 80286 processor and describes the 
operation of the iAPX 286 local bus: 

• The first section of this chapter introduces the 80286 processor. The four internal processing units 
that make up the 80286 processor are described, as are the two operating modes of the 80286. 

• The second section introduces the iAPX 286 local bus, and gives an overview of the principles used 
by the 80286 in managing resources on the local bus: 

- The organization of the bus is described first, covering memory addressing, I/O, and interrupts. 

- The timing of the local bus is described, starting with a description of the local bus states, 
describing the 80286 bus operations that are composed of two or more bus states, and finally 
describing the way in which the 80286 uses the various bus operations. 

- Finally, specific bus interface components are introduced which greatly ease the design of iAPX 
286 local bus systems. Two of these interface components include the 82284 Clock Generator 
and the 82288 Bus Controller. 

• The third section contains specific design information on generating timing for an iAPX 286 local 
bus, using the 82284 Clock Generator. The generation of the three principle timing signals (the 
system CLK, RESET, and READY) is described in detail. 

• The fourth section describes how to generate iAPX 286 local bus control signals using the 82288 
Bus Controller. 

• The fifth section describes additional design alternatives concerning the connection of memory, 
I/O, and other devices to the local bus. These design considerations include: 

- Address decoding and data buffering. 

- Connecting other bus masters to the local bus. 

- Initializing the 80286. 

- Detailed local bus timing. 

- Physical design considerations including layout, packaging, power and ground connections. 

• Finally, the last section of this chapter introduces the iLBX bus, a high-performance local bus 
standard to allow the modular expansion of the iAPX 286 local bus onto multiple boards. 

INTRODUCTION TO THE 80286 CENTRAL PROCESSING UNIT 

The 80286 Central Processing Unit (CPU) is an advanced, high-performance 16-bit microprocessor 
that is optimized for use in multiple-user and multi-tasking systems. The 80286 has built-in memory 
management and protection capabilities which permit operating system and task isolation as well as 
program and data isolation within tasks. In addition, a highly-efficient pipeline architecture in both the 
CPU itself and in the local bus protocols serves to maximize iAPX 286 system throughput and 
performance, while minimizing the impact on bus- and memory-speed requirements. 

3-1 210760·001 



THE iAPX 286 LOCAL BUS 

Processor Architecture 

As shown in Figure 3-1, the pipelined 80286 architecture consists of four independent processing units; 
these four units operate in parallel to maximize CPU performance. 

THE BUS UNIT 

The Bus Unit (BU) performs all bus operations for the CPU, generating the address, data, and command 
signals required to access external memory and I/O. The Bus Unit also controls the interface to proces­
sor extensions and other local bus masters. Most of the local bus signals interface directly to the BU. 

When not performing other bus duties, the Bus Unit "looks ahead" and pre-fetches instructions from 
memory. When prefetching, the Bus Unit assumes that program execution proceeds sequentially; that 
is, the next instruction follows the preceding one in memory. When the prefetcher reaches the limit of 
the code segment, it stops prefetching instructions. If a program transfer causes execution to continue 
from a new program location, the Bus Unit resets the queue and immediately begins fetching instruc­
tions from the new program location. 

The Bus Unit stores these instructions in a 6-byte prefetch queue to be used later by the Instruction 
Unit. By prefetching instructions, the BU eliminates the idle time that can occur when the CPU must 
wait for the next sequential instruction to be fetched from memory. 

THE INSTRUCTION UNIT 

The Instruction Unit (lU)· receives instructions from the prefetch queue, decodes them, and places 
these fully-decoded instructions into a 3-deep instruction queue for use by the Execution Unit. 

r---------------------------, 
I ADDRESS UNIT (AU) 

I 
I 
I 
I 
I SEGMENT 
I ~~ 

I 
I SEGMENT 
I SIZES 

I 
I 

Figure 3-1. 80286 Internal Block Diagram 

3-2 

A'3 - Ao, 
lffiE, MIlO 

I'EACK 
PEREa 

READY, HOLD 

Sl, SO, COD/jllfA 

[OCR,HLDA 

015 - Do 

RESET 

CLK 

Vss 
Vee 
CAP 

210253 

210760-001 



THE iAPX 286 LOCAL BUS 

THE EXECUTION UNIT 

Decoded instructions from the Instruction Unit are fetched by the Execution Unit (EU) and executed. 
The EU uses the Bus Unit to perform data transfers to or from memory and I/O. 

THE ADDRESS UNIT 

The Address Unit (AU) provides the memory management and protection services for the CPU and 
translates logical addresses into physical addresses for use by the Bus Unit. A register cache in the AU 
contains the information used to perform the various memory translation and protection checks for 
each bus cycle. 

THE EFFECTS OF PIPELINING 

The four 80286 processing units operate independently and in parallel with one another, overlapping 
instruction fetches, decoding, and execution to maximize processor throughput and bus utilization. 
Figure 3-2 shows how this pipelined architecture results in substantially increased performance relative 
to a processor that fetches and executes instructions sequentially. 

--ELAPSED TIME---------------;.~ 

TYPICAL 

PROCESSOR ~~~~~~~~~~~~~~~~ ___ .L ____ J... __ E_XE_C_UT_E_2_...1.._ 

PIPELINED 
PROCESSOR 
(IAPX 286) ~~~~L __ ..l ___ ...l ___ ~~~~L ___ L ___ L ___ _ 

~~=~~~=~~~=_.. EXECUTE 2 
EXECUTE 3 

EXECUTE 4 I_~~~~~~~ 

~-_-~_-_~~_-~_-~-_-_-_-_~-_-, __ """'A"'DD""~.&"'M""M.U"""'&.... ___ ....... _A_DD_R_&_M_M_U ........ I =~~~~~~~~~~ 

210760-11 

Figure 3-2. Operation of Sequential vs. Pipelined Processors 

3-3 210760-001 



THE iAPX 286 LOCAL BUS 

Operating Modes 

The iAPX 286 processor operates in one of two modes: iAPX 86 Real-Address mode, and Protected 
Virtual-Address mode. In both modes, the iAPX 286 executes a superset of the iAPX 86 instruction 
set. ' 

In iAPX 86 Real-Address mode, the 80286 addresses up to one megabyte of address. space using a 
twenty-bit physical address. In Protected Virtual-Address mode, programs executing on the 80286 can 
address up to a gigabyte of virtual address space, which the 80286 automatically maps into 16 megabytes 
of physical address space using a twenty-four-bit physical address. 

From a hardware standpoint, these two operating modes differ only in that the upper four address lines 
(A23 through A20) must be ignored when the iAPX 286 is operating in Real-Address mode, and must 
be decoded along with the other address lines when the iAPX 286 is operating in Protected Virtual­
Address mode. 

The 80286 Bus Interface 

The 80286 CPU connects to external memory, I/O, and other devices using a parallel bus interface. 
This bus interface consists of a 24-bit address bus, a separate 16-bit data bus, and a number of control 
and status lines to control the transfer of information across the bus. Taken together, and with additional 
control signals derived from this basic set, these address, data, and control signals form the basis for 
the iAPX 286 local bus. 

Four status signals from the 8028,6 are used to control the operation of the local bus: the COD /INTA, 
M/IO, SI, and SO signals. These signals are unlatched and are only valid through the first half of each 
bus cycle. Table 3-1 shows the decoding of these status lines to identify the current bus cycle. Status 
combinations not shown in the table are reserved and will not be encountered in normal operation. 

Additional control signals, along with on-chip arbitration logic, allow the 80286 to support processor 
extensions and other local bus masters. These signals for "handshaking" with other bus masters are 
controlled by the 80286 Bus Unit. Standard HOLD, HLDA protocol is used for other bus masters, 
while special processor extension request and acknowledge signals are used to support processor 
extensions. 

An ERROR signal from a processor extension inputs directly into the 80286 Execution Unit as do the 
maskable (lNTR) and non-maskable (NMI) interrupt signals. The BUSY signal from a processor 
extension indicates the processor extension status to the 80286. The RESET and CLK signals affect 

Table 3-1. 80286 Bus Cycle Status Decoding 

-
S1 so COO/INTA MilO Bus Cycle Initiated 

L L L L Interrupt Acknowledge 
L L L H If A 1 = 1 then Halt; 

else Shutdown 

L H L H Memory Data Read 
L H H L I/O Data Read 
L H H H Memory Instruction Read 

H L L H Memory Data Write 
H L H L I/O Data Write 

3-4 210760·001 



THE iAPX 286 LOCAL BUS 

the 80286 processor as a whole; these signals do not interface to the device through a specific process­
ing unit. A complete description of the 80286 pin connections can be found in the Appendices. 

The following sections describe the iAPX 286 local bus interface in greater detail. First, an overview 
of the iAPX 286 local bus is given, explaining the relevant concepts and relationships that are involved. 
This general description is followed by a discussion of specific issues that must be considered when 
designing an iAPX 286 system. 

LOCAL BUS OVERVIEW 

The iAPX 286 local bus connects memory and I/O resources to the 80286 processor, using 24 separate 
address lines, 16 data lines, and a number of status and control signals. Together, these address, data, 
and control signals' allow the 80286 processor to fetch and execute instructions, to manipulate infor­
mation from both memory and I/O devices, and to respond to interrupts, processor extension requests, 
and requests from other bus masters. 

In many respects, the principles and protocols used in the iAPX 286 local bus are similar to those 
commonly used in other parallel bus systems. In some respects, however, the iAPX 286 local bus is a 
high-performance bus that differs somewhat from typical bus patterns. The following sections describe 
how the iAPX 286 local bus is organized and how it operates to assure the efficient transmission of 
information between all of the devices on the bus. 

Organization of Physical Memory and I/O 

The principal use of the local bus is to connect the iAPX 286 processor to memory and I/O devices. 
When operating in Real-Address mode, the iAPX 286 can directly address up to 1 megabyte of physi­
cal memory, while in Protected Virtual-Address mode, the iAPX 286 can address up to 16 megabytes 
of physical memory. These two operating modes of the 80286 have already been described. Except for 
the differences in memory size, the organization of memory and I/O is identical for both Real-Address 
mode and Protected Virtual-Address mode. 

In addition to its memory-addressing capabilities, the iAPX 286 can also directly address up to 65,536 
8-bit I/O ports or up to 32,768 16-bit I/O ports mapped into a separate I/O address space, in either 
operating mode. Figure 3-3 illustrates these separate memory and I/O address spaces. 

MEMORY ORGANIZATION 

The programmer views the memory address space of the iAPX 286 as a sequence of (8-bit) bytes in 
which any byte may contain an 8-bit data element and any two consecutive bytes may contain a 16-bit 
(word) data element. Both byte and word information can be assigned to either even or odd addresses­
there is no constraint on word boundaries. 

As shown in Figure 3-4, the address space is physically implemented on a 16-bit data bus by dividing 
the address space into two banks of up to 512K bytes (in Real-Address mode) or 8 Mbytes (in Protected 
mode). The lower half of the data bus (07-00) is connected to one bank of memory, and accesses even­
addressed bytes (AO=O). The upper half of the data bus (015-08) con.nects to the other bank and 
contains odd-addressed bytes (AO = 1). Address line AO and Bus High Enable (BHE) enable the appro­
priate banks of memory, while the remaining address lines select a specific byte within each bank. 

3-5 210760-001 



inter 

UP TO 
16MEG 

THE iAPX286 LOCAL BUS 

MEMORY 
SPACE 

FFFFFF 

..... --____ ... 000000 

f 
64K 

r_-----... FFFF 

1/0 
SPACE 

1 ______ ... 0000 

Figure 3-3. Separate Memory and 1/0 Spaces 

(A) LOGICAL ADDRESS SPACE (B) PHYSICAL IMPLEMENTATION OF THE 
ADDRESS SPACE 

512K BYTES 512K BYTES 
FFFFF FFFFF FFFFE 
FFFFE FFFFD FFFFC 
FFFFD 

FFFFC -A p:- r--A 
-V 

5 r-v 4 

3 2 

1 0 

~ L"::::,. 

5 

4 

3 I ~ I "'" 7' 
2 BHE 07- 00 
1 

0 

1 MEGABYTE 

Figure 3-4. iAPX 286 Memory Organization 

3-6 

210760-12 

p-

AO 

210760-121 

210760-001 



inter THE iAPX 286 LOCAL BUS 

(When operating in Real-Address mode, address lines A23-A20 should be ignored, and address lines 
A 19-A 1 select the specific byte.) 

To perform byte transfers to even addresses (Figure 3-5A), the CPU transfers information over the 
lower half of the data bus (D7-DO). AO enables the bank connected to the lower half of the data bus 
to participate in the transfer. Bus High Enable (BHE active low), disables the bank on the upper half 
of the data bus from participating in the transfer. Disabling the upper bank is necessary to prevent a 
write operation to the lower bank from destroying data in the upper bank. During the transfer, the 
upper half of the data bus remains in the tri-state OFF condition. 

To perform byte transfers to odd addresses (Figure 3-5B), the CPU transfers information over the 
upper half of the data bus (D 15-D8) while BHE (active low) enables the upper bank and AO disables 
the lower bank. The lower half of the data bus remains in the tri-state OFF condition. 

TRANSFER X 

Y+1 
X+1 

A19-A1 015- 08 BHE (HIGH) 07-0 0 Ao (LOW) 

A. Even-Byte Transfers 

TRANSFER X + 1 

Y+1 Y 
(X+1) X 

015-08 BHE (LOW) 07-00 Ao (HIGH) 

B_ Odd-Byte Transfers 

210760·122 

Figure 3-5. 80286 Byte Transfers 

3-7 210760·001 



inter THE iAPX 286 LOCAL BUS 

The 80286 automatically routes bytes between the appropriate half of the data bus and the upper or 
lower half of its internal data path, as well as activating BHE or AO accordingly. The loading of a data 
byte from an odd-addressed memory location into the CL register (lower half of the CX register) 
illustrates this routing. The data is transferred into the 80286 over the upper half of the data bus, then 
automatically redirected to the lower half of the 80286 internal data path and stored into the CL 
register. This automatic routing ability also allows byte-I/O transfers between the AL register and 
8-bit I/O devices that are connected to either half of the 16-bit data bus. 

To access even-addressed 16-bit words (two consecutive bytes with the least significant byte at an even 
byte address), AO (low) and BHE (low) enable both banks simultaneously, while the remaining address 
lines select the appropriate byte from each bank. Figure 3-6 illustrates this operation. 

To access 16-bit word data beginning at an odd address, the 80286 automatically performs two byte 
accesses. As shown in Figure 3-7, the least significant byte addressed by the address lines is first trans­
ferred over the upper half of the data bus. The address is then incremented and a second byte transfer 
is executed, this time over the lower half of the data bus. This two-byte transfer sequence is executed 
automatically whenever a word transfer is performed to an odd address, with the CPU automatically 
routing the two bytes onto the appropriate halves of the data bus. 

When the Bus Unit is prefetching instructions, however, the Bus Unit always performs word fetches 
on even boundaries. If the program transfers control to an odd address, the Bus Unit automatically 
performs a word fetch from the next-lower word-boundary, ignoring the lower byte of this first instruc­
tion fetch. 

TRANSFER X + 1, X 
~-------- p-------~ 

015-08 BHE (LOW) Ao(LOW) 

210760-123 

Figure 3-6. Even-Addressed Word Transfer 

3-8 210760-001 



THE iAPX 286 LOCAL BUS 

FIRST BUS CYCLE 
~------~ r-------~ 

BHE (LOW) Ao(HIGH) 

SECOND BUS CYCLE 

BHE (HIGH) AO(LOW) 

210760-124 

Figure 3-7. Odd-Addressed Word Transfer 

I/O ORGANIZATION 

The 80286 is capable of interfacing with 8- and 16-bit I/O devices that are mapped into a separate 
64K I/O space (memory-mapped I/O is also supported, and is described in Chapter Six). The iAPX 
286 I/O space is organized as 65,536 8-bit ports or 32,768 16-bit ports or some combination of the two. 

For 8-bit I/O devices, ports on the upper half of the data bus, have odd I/O addresses, while ports on 
the lower half of the data bus have even I/0 addresses. To access an 8-bit I/O device, AO and BHE 
select the appropriate half of the data bus, and address lines A15-Al select one of the 32K I/O addresses. 
During any I/O transfer, address lines A23-A20 are always low. 

Sixteen-bit I/O devices always have even addresses to permit the CPU to select and access the entire 
16-bit port in a single operation. To access a 16-bit I/O device, address lines A 15-A 1 select the partic­
ular I/O address, while AO and BHE condition the chip select to ensure that a 16-bit transfer is being 
performed. 

3-9 210760-001 



inter THE iAPX 286 LOCAL BUS 

Interrupt Organization 

The iAPX 286 recognizes a variety of both hardware-generated and software-generated interrupts that 
alter the programmed execution of the 80286. Hardware-generated interrupts occur in response to an 
active input on one of the two 80286 interrupt request pins. Software-generated interrupts occur due 
to an INT instruction or one of several possible instruction exceptions. Software-generated interrupts 
are described in the iAPX 286 Programmer's Reference Manual; they are not described here. 

The two hardware interrupt request inputs to the 80286 consist of a non-maskable interrupt request 
(NMI), and a maskable interrupt request (INTR). The maskable interrupt request INTR can be 
"masked" or ignored by the 80286 under software control, while a non-maskable interrupt request 
NMI will always invoke a response from the 80286 unless a previous NMI interrupt has occurred and 
is being serviced. 

When the iAPX 286 encounters an interrupt of any kind, it automatically transfers program execution 
to one of 256 possible interrupt service routines. A table stored in memory contains pointers defining 
the proper interrupt service routine for each interrupt. Once the iAPX 286 has determined the type or 
vector for a particular interrupt (an index into the table corresponding to the appropriate service routine), 
the servicing of software- or hardware-interrupts proceeds identically. Figure 3-8 shows the structure 
of this interrupt descriptor table for an iAPX 286 operating in both Real-Address mode and in Protected 
Virtual-Address mode. 

1 
1'1-- · · 

INTERRUPT POINTER 
FOR VECTOR 255 

~~ · · · 
INTERRUPT POINTER 

FOR VECTOR 1 

INTERRUPT POINTER 
FOR VECTOR 0 

rl--

~~ 

3FFH 

3FOH 

7H 

4H 
3H 

OH 

iAPX 86 REAL ADDRESS MODE 

I 
23 

r." 
MEMORY 

"'rI 

GATE FOR 
INTERRUPT #n 

GATE FOR 
INTERRUPT #n-1 

• 
CPU ~~ • ) 

• 
15 0 GATE FOR I lOT LIMIT 

INTERRUPT #1 
I- r--

GATE FOR 
INTERRUPT #0 

lOT BASE 

0 

~ ~ 

PROTECTED VIRTUAL ADDRESS MODE 

Figure 3-8. Interrupt Descriptor Table Definition 

3-10 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOT) 

210760-125 

210760-001 



THE iAPX 286 LOCAL BUS 

INTERRUPT PRIORITIES 

When an interrupt or exception occurs, the iAPX 286 automatically transfers program control to the 
appropriate interrupt service routine, even if the iAPX 286 is in the middle of processing a previous 
interrupt. In this manner, the last interrupt processed is the first one serviced. 

The single exception to this rule is the 80286 treatment of the INTR interrupt input. When operating 
in Real-Address mode, any interrupt or exception automatically causes the 80286 to mask any INTR 
requests for the duration of the interrupt service routine until the occurrence of an IRET instruction 
or until the service routine explicitly enables INTR interrupts. When the 80286 is operating in Protected 
mode, the individual task gate for each interrupt service routine specifies whether INTR interrupts are 
to be masked for the duration of the interrupt service routine. 

In the case of simultaneous interrupt or exception requests, the interrupts are processed in the fixed 
order shown in Table 3-2. Interrupt processing involves saving the flags and the return address, and 
setting CS:IP to point to the first instruction of the interrupt service routine. If other interrupt requests 
remain pending, they are processed before the first instruction of the current interrupt handler is 
executed. In this way, the last interrupt processed is the first one serviced. 

To illustrate the information contained in the table, consider what occurs when both an NMI (non­
maskable interrupt) request and an INTR (maskable interrupt) request are received simultaneously by 
an 80286 operating in Real-Address mode. The interrupts are handled in the following order: 

1. The NMI interrupt will be processed first, saving the current status and pointing to the first 
instruction of the NMI service routine. 

2. The INTR interrupt request will be masked, since the NMI interrupt causes the 80286 to mask 
INTR interrupts. 

3. If no other exceptions occur, the NMI interrupt service routine will be executed until it is completed. 

4. After the NMI service routine has completed, an IRET instruction will be executed to exit from 
the service routine. This IRET instruction re-enables INTR interrupts. 

5. If the INTR interrupt request line is still active, the processor will then respond to the interrupt 
with two interrupt-acknowledge bus cycles, and then proceed to execute the appropriate interrupt 
service routine. Any subsequent NMI interrupts that occur during the execution of this service 
routine will immediately be serviced before execution of the INTR service routine continues. 

6. Finally, after all interrupts have been serviced, program control will revert to the original inter­
rupted program. 

Table 3-2. Processing Order for Simultaneous Interrupts 

Processing 
Interrupt Source Order 

1 (first) Processor Exception 
2 Single Step 
3 NMI (Non-Maskable Interrupt Request) 
4 Processor Extension Segment Overrun 
5 INTR (Maskable Interrupt Request) 
6 (last) INT Instruction 

3-11 210760-001 



THE iAPX 286 LOCAL BUS 

The following sections describe the iAPX 286 system's different responses to the two hardware-gener­
ated interrupt requests, NMI and INTR. 

NON-MASKABLE INTERRUPT REQUEST (NMI) 

The non-maskable interrupt request (NMI) input to the 80286 is edge-triggered (on a low-to-high 
transition) and is generally used to signal the CPU of a "catastrophic" event such as the imminent loss 
of power, memory error, or bus-parity error. 

Interrupt requests arriving on the NMI pin are latched by the CPU and cannot be disabled. The NMI 
input is asynchronous and, in order to ensure that it is recognized, required to have been low for four 
system clock cycles before the transition and to remain high for a minimum of four additional clock 
cycles. To guarantee that the NMI input is recognized on a particular clock transition, the required 
set-up time for NMI is shown in Figure 3-9. 

Once it is recognized by the 80286, the non-maskable interrupt automatically causes the 80286 CPU 
to transfer control to the service routine corresponding to interrupt type 2; this interrupt vector is 
internally-supplied and generates no external interrupt-acknowledge sequence. 

The total time required to service an NMI interrupt is determined by several factors. The total process­
ing time includes: 

• The time the interrupt was waiting to be recognized. While servicing one NMI, the 80286 will not 
acknowledge another NMI until an IRET instruction is executed. 

• Additional time allowed for the completion of the instruction currently being executed by the 80286. 
These instructions could be IRET, MUL, or task-switch instructions. 

• Time required for saving 'the CS, IP, and Flags registers. 

• Any time required by the interrupt service routine to save the contents of additional registers not 
automatically saved by the 80286. 

~---------Tx----------~ 

elK <1>1 <1>2 

I~~~ _____ J 

210760-13 

Figure 3-9. NMI and INTR Input Timing 

3-12 210760-001 



inter THE iAPX 286 LOCAL BUS 

Since the NMI interrupt will be recognized only on an instruction boundary, the time required for the 
CPU to recognize the request (interrupt latency) depends on how many clock periods remain in the 
execution of the current instruction. 

On the average, the longest latency can occur if the interrupt request arrives while task-switch is being 
executed in Protected mode. Other instructions resulting in long interrupt latencies are multiplications 
and divisions. In the case of an instruction that loads the Stack Segment register, the interrupt will not 
be recognized until after the following instruction is executed, to allow loading of the entire stack 
pointer without intervening interrupts. 

While executing an NMI service routine, the 80286 will not service additional NMI interrupts or 
processor extension segment-overrun interrupts until an interrupt return (lRET) instruction is executed 
or the CPU is reset. If an NMI interrupt request occurs while the 80286 is servicing a prior NMI 
request, the occurrence of the second NMI request will be saved and the request will be serviced after 
the CPU executes an IRET instruction. ' 

During the NMI service routine, an 80286 operating in Real-Address mode automatically masks any 
INTR interrupt requests. In Protected mode, the NMI service routine is entered through either an 
interrupt gate or a task gate. The new task context may be defined with INTR interrupts either enabled 
or disabled. To re-enable INTR interrupts during the NMI service routine, the 80286 Interrupt (IF) 
flag can be set true. In any case, the IF flag is automatically restored to its original state when the 
service routine is completed (when the Flags register is restored following the first IRET instruction). 

MASKABLE INTERRUPT REQUEST (INTR) 

The INTR (Interrupt Request) line allows external devices to interrupt 80286 program execution. 
INTR is usually driven by an Intel 8259A Programmable Interrupt Controller (PIC), which, in turn, 
is connected to devices that require interrupt servicing. 

The 8259A is a very flexible device that is controlled by software commands from the 80286 (the 
8259A PIC appears to the CPU.as a set of I/O ports). Its main job is to accept interrupt requests from 
devices connected to it, to determine which request has the highest priority, and then activate the 
INTR line to interrupt the CPU and supply an appropriate interrupt vector. 

Figure 3-10 shows a block diagram of a multiple 8259A subsystem thatuses'a master interrupt control­
ler driven by slave interrupt controllers. Chapter Five contains detailed information on interfacing the 
8259A to an iAPX 286 system. 

The INTR input to the 80286 is level-sensitive and can be asynchronous to the system clock. INTR 
must be active for at least two processor clock cycles before the current instruction ends in order to 
interrupt before the next instruction begins. When the 80286's Interrupt Flag (IF) is enabled and the 
INTR signal is driven active high, the 80286 will acknowledge the interrupt on the next instruction 
boundary. To guarantee recognition on a particular clock cycle, INTR must be set-up a minimum of 
20 ns before the start of the clock cycle. INTR should remain active until the first INT A bus cycle to 
guarantee that the CPU responds to the interrupt. Figure 3-9 shows the required timing of the INTR 
input. 

The iAPX 286 acknowledges an INTR interrupt request by executing two interrupt-acknowledge 
(lNTA) bus cycles (lNTA bus cycles are described in a later section). The first INTA cycle signals all 
8259As that the interrupt request has been honored. During the second INTA cycle, the 8259A with 
the highest-priority interrupt pending responds by placing a byte containing the interrupt type (0-255) 
onto the data bus to be read by the 80286. This interrupt type must have been previously programmed 
into the 8259A to correspond to the service routine for the particular device requesting service. 

3-13 210760·001 



THE iAPX 286 LOCAL BUS 

,~ IR 
INTERRUPT 

.... 'If INTR MASTER 
8259A INTERRUPT ... IR 

07-0 0 
,. INTA EN 

rlDh Lt 
INTR ~ MCE INTA 

f-+-

~ 
INTA - ~ DEN 

82284 f-+- 80286 MIlO 82288 
CPU 

A -- ~ ~ 

~ 
INTA INTA 

~ 
ALE SLAVE SLAVE 

D~TA • 8259A 8259A 

STB 07-0 0 CAS 07"00 CAS 

'-- ~ ADDR 
.A frir fr~ 

'--- LATCH 
ADDRESS 

BUS 

T liE 
"I >' >' _ .... .... .... 

> ,. DATA 'I 
DATA XCVR 

BUS 

210760-14 

Figure 3-10. 8259A PIC Driving 80286 INTR Input 

Following the second INTA cycle, the 80286 automatically transfers control to the interrupt service 
routine corresponding to that particular interrupt. 

During the interrupt-acknowledge cycles, any bus hold requests arriving via the 80286 HOLD line are 
not honored until the interrupt-acknowledge cycles have been completed. In addition, the CPU activates 
its LOCK signal during the first of these cycles to prevent other bus masters from taking control of 

. the bus. 

As for the NMI interrupt, the total time required to service an INTR interrupt is determined by the 
type of instructions used and how long interrupts are disabled. The total servicing time is comprised of 
the same elements as described for the NMI interrupt. 

Since INTR requests will be acknowledged only by the 80286 on an instruction boundary, the time 
required for the CPU to recognize the request (interrupt latency) depends on how many clock periods 
remain in the execution of the current instruction. 

The same factors affecting interrupt latency for the NMI interrupt affect the latency of the INTR 
interrupt request. Specific instructions resulting in long interrupt latencies are multiplications, divisions, 
task switches in Protected mode, or instructions that load the Stack Segment register, as described for 
the NMI interrupt. 

3-14 210760-001 



THE iAPX 286 LOCAL BUS 

Pipelined Address Timing 

The iAPX 286 local bus differs most from a typical microprocessor bus in its use of pipelined address 
timing. To achieve high bus throughput, the pipelined address timing used by the iAPX 286 allows 
overlapped bus cycles when accessing memory and I/O. The resulting increase in bus throughput is 
achieved without requiring a proportional increase in memory speed. 

This pipelined timing differs from that of a typical microprocessor bus cycle. During transfers for 
typical processors, an address is transmitted at the start of the bus cycle and held valid during the 
entire cycle. 

Using pipelined timing, the 80286 places the address for the next memory or I/O operation on the bus 
even before the previous bus operation has completed. This overlapping (pipelining) of successive bus 
operations permits the maximum address setup time before data is required by the CPU or memory. 

Figure 3-11 illustrates how this address pipelining results in improved bus throughput, even though the 
address and data setup times for individual memory operations are identical for the two examples 
shown. For an 8-MHz iAPX 286 system executing word transfers with zero wait states, data can be 
transferred at the rate of 8 Megabytes per second while still allowing individual address access times 
of 242 ns. 

ADDRESS n+1 

DATA 

ADDRESS ~ 

_=~~c~~~:~=-p ------------8------

I Ts Tc Ts Tc Ts Tc 

ADDRESS ~ n X "+1 X "+2 X'-__ _ 

DATA 

Figure 3-11. Typical and Pipe lined Bus Operations 

3-15 

TYPICAL CPU 
BUS CYCLE 

80286 CPU 
BUS CYCLE 

210760-15 

210760-001 



THE iAPX 286 LOCAL BUS 

In the following sections, the complete iAPX 286 bus cycle is described, and the implementation of 
pipelined timing is shown in greater detail. In a later section of this chapter, specific design consider­
ations and components are described for building high-performance iAPX 286 systems that take advan­
tage of this pipelined address timing. 

iAPX 286 Local Bus States 

The 80286 CPU uses a double-frequency system clock (CLK) to control bus timing. The CPU inter­
nally divides the system CLK by two to produce the internal processor clock, which determines the 
local bus state. Each processor clock cycle is composed of two system CLK cycles, called Phase 1 and 
Phase 2. The 82284 Clock Generator produces a processor clock output (PCLK) that identifies the 
phase of the internal processor clock. Figure 3-12 shows the relationship between the system CLK and 
the processor clock (PCLK). 

The iAPX 286 local bus has' three basic states: Idle (T j ), Send-Status (Ts), and Perform-Command 
(Tc). The 80286 CPU also has a fourth state called Hold (Th). A Th state indicates that the 80286 has 
surrendered control of the local bus to another bus master in response to a HOLD request. Each bus 
state is one processo clock long. Figure 3-13 shows the 80286 CPU states and the allowed transitions. 

The Idle (Tj ) state indicates that no data transfers are in progress. T j states typically occur during 
execution of an instruction that does not require a bus cycle (assuming instruction and pre-fetch queues 
are full). A T j state will also occur before the 80286 relinquishes control of the bus to another bus 
master, entering the T h (Hold) state. 

Ts is the first active state after T j • Ts is signalled by either status line ST or SO from the 80286 going 
low (ST or SO going low also identifies Phase 1 of the processor clock). During Ts' the command 
encoding and data (for a write operation) are available on the 80286 output pins. If the address is not 
already valid prior to entering the Ts state, the address also becomes valid. The 82288 bus controller 
decodes the 80286 status signals to generate read/write commands and local transceiver-control signals. 

Ir°NESYSTEM~ 
ClK CYCLE 

PClK Y \ ;-

ONE PROCESSOR CLOCK CYCLE 

ONE BUS T STATE 
PHASE 1 

"I-
PHASE 2 

..--OF PROCESSOR OF PROCESSOR---. 
CLOCK CYCLE CLOCK CYCLE 

ClK\, / \ / "--
210760-16 

Figure 3-12. System and Processor/PCLK Clock Relationships 

3-16 210760-001 



THE iAPX 286 LOCAL BUS 

) 
READY . NEW CYCLE 

TS - SEND STATUS 

Te - PERFORM COMMAND 

TI - BUS IDLE 

TH - BUS HOLD 

210760-17 

Figure 3-13. 80286 States 

After Ts' the perform command (Tc) state is entered. Memory or I/O devices are expected to respond 
to the bus operation during T c' either transferring read data to the CPU or accepting write data. The 
READY input to the 80286 either terminates the bus cycle or causes the Tc state to be repeated. Tc 
states may be repeated as many times as necessary to assure sufficient time for the memory or I/O 
device to respond. 

Following a Tc state, the bus may enter immediately into a Ts state, beginning another bus operation, 
or may enter the T j (Idle) state. This ability to immediately execute back-to-back bus operations leads 
to high bus utilization and contributes to the iAPX 286's high performance. 

If another bus master requests and is granted control of the local bus, the 80286 will enter the T h 

(Hold) state. If the 80286 is in the Te state when the HOLD request is received, the bus will pass 
through one T j (Idle) state before the 80286 grants control to the requesting bus master. During Hold 
(T h), he 80286 floats all address, data, and status output pins, allowing the requesting bus master to 
control the local bus. The 80286 HLDA output signal acknowledges the HOLD request and indicates 
that the CPU has entered the T h state. 

iAPX 286 Bus Operations 

The 80286 Bus Unit executes bus operations whenever the Execution Unit requires a bus operation as 
part of an instruction execution, whenever a processor extension requests a bus operation, or when 
sufficient room becomes available in the instruction pre-fetch queue. When no bus operations are in 
progress or requested, the local bus remains in the idle state. 

3-17 210760-001 



THE iAPX 286 LOCAL BUS 

Each local bus operation consists of one or more bus cycles. Each bus cycle consists of one Send-Status 
(Ts) state followed by one or more Perform-Command (Te) states. At maximum speed, the local bus 
alternates between the Ts and Te states, transferring one word of information every two processor clock 
cycles. 

The iAPX 286 local bus supports six types of bus operations: memory read, memory write, I/O read, 
I/O write, interrupt-acknowledge, and halt/shutdown operations. The signal timing during a bus cycle 
differs between read, write, interrupt-acknowledge, and halt/shutdown cycles. Bus timing is also 
dependent on the configuration of the bus controller, memory and I/O speed, and in the case of back­
to-back bus cycles, the type of cycle previously performed. The following paragraphs describe what 
occurs during each of these bus cycles performed by the 80286 CPU. 

READ CYCLES 

Figure 3-14 shows the timing for a single read cycle without command delays or wait states; this cycle 
may be preceded and succeeded by any type of bus cycle, including other read cycles, write cycles, or 
bus idle (Tj ) states. The sequence of signals that constitute a read cycle are as follows: 

A. At the start of phase 2 of the bus state preceding the read cycle, the CPU transmits the memory 
or I/O address and drives the M/IO and COD/INTA signals to indicate a memory or I/O bus 
cycle. Address-decode logic begins operation. 

B. At the start of phase 1 of the Ts state, the CPU drives status lines S 1 high and SO low to indicate 
that the cycle is a read. The CPU also drives BHE high or low to indicate whether or not the 
upper half of the data bus will be used (D 15-D8). 

C. Phase 2 of Ts begins with ALE from the bus controller going high to capture the address into any 
external address latches. 

D. At the start of the first Te state, ALE goes low to latch the address and chip selects for the 
remainder of the bus cycle. The bus controller drives DT /R and MRDC low to condition the 
direction of the data transceivers and enable the memory or I/O location to be read. DEN from 
the bus controller then goes active (high) to enable the data transceivers. Status (S 1 or SO) is 
removed in preparation for the next cycle. 

E. At the start of Phase 2 of Te, the address, M/IO, and COD/INTA lines change to reflect the 
following bus operation (or enter the tri-state OFF condition if the following bus state is an INTA 
cycle or a T j state before bus-hold acknowledge). 

F. At the end of Te, the READY signal is sampled. If READY is low, the input data is assumed to 
be valid at the CPU data pins; the CPU reads the data from the bus and the bus controller 
deactivates MRDC and DEN, and returns DT /R to its normal active-high state. If READY is 
sampled high, additional Te states will be executed until READY is sampled low. 

WRITE CYCLES 

Figure 3-15 shows the timing for a single write cycle without command delays or wait states; the timing 
of this write cycle is very much the same as for the read cycle just described, although the control 
signalling is of course different. The sequence of signals that constitute a write cycle are as follows: 

A. As in the case of read cycles, the CPU drives the address, M/IO, and COD/INTA signals at the 
start of phase 2 of the state preceding the bus cycle. Address decode logic begins operating. 

B. At the start of Ts' the CPU drives SI low and SO high to indicate a write cycle. BHE is driven 
high or low to enable or disable the high byte of the data bus (D 15-DO). 

3-18 210760-001 



inter THE iAPX 286 LOCAL BUS 

PREVIOUS CYCLE READ CYCLE 

ClK 
~Tf ~2 -I-

PCLK J I j I r 
, I ..... • ,ID, co::: WIM~(<<~{ I I 

!\ III I 

I . . 
"'·00 ---------------r------------i---------Q-----------

I ----! i 
ALE --------+i-----J1 i\'-_____ ~i--------

, " ~ --------+------~I i\ il 

DEN ----.j...-----+-: --II 1\-----
DT/R --------....... ------i " i\ ' 

i ! 
READY --------~------~--~ I 

i \ i I 

I 

210760-18 

Figure 3-14. iAPX 286 Read Cycle 

C. At the start of phase 2 of Ts' the CPU outputs the data to be written to memory or I/0 while the 
bus controller drives ALE and DEN high to capture the address in external address latches and 
to enable the data transceivers. DT /R is normally conditioned to transmit write data through the 
transceivers; DT /R does not change at this time. 

D. At the start of the first Tc' the CPU removes its status signals. The bus controller drives MWTC 
and ALE low to enable a memory or I/O write and to latch the address and chip selects for the 
rest of the bus cycle. 

E. At the start of Phase 2 of Tc' the address, M/IO, and COD/INTA lines change to reflect the 
following bus operation (or enter the tri-state OFF condition if the following bus state is an INTA 
cycle or a T j state before bus-hold acknowledge). 

3-19 210760-001 



THE iAPX 286 LOCAL BUS 

WRITE CYCLE PREVIOUS CYCLE ~ 
I-TC~ Ts 

I <1>1 I <1>2 <1>1 I ~ 
NEXT CYCLE 

TC _TS-! 

ClK 
<1>2 <1>1 I <1>2 <1>1 I <1>2 I 

PClK J I I I I I 

",IO'C~::;: - ............. [<~(~ ........... [«<-+-! __ ....i.--_ ...... 

51· SO -----hi \ 1/ 
I 

015-00 ---------------~-----~~K«{~ ........ ~ -+-1 __ +---""»)~~)~»--------
i / i. I 

ALE --------:...----' 1',-. ------+I--~-----
~---~--~, i/ 

DEN ---------'--___ 1 
I '--. ----+'!' 
i I \~_ 
I i 
! i 
I I 

READY -------~------~--~ ! / 
\------+-'1 ' 

210760-19 

Figure 3-15. 80286 Write Cycle 

F, At the end of Tc' the READY input is sampled. If READY is low, the bus controller drives 
MWTC high to latch data into the selected memory or I/O device. If READY is sampled high, 
additional Tc states are executed until READY is sampled low_ 

G. At the start of Phase 2 of the following Ts or Ti bus state, the DEN signal is disabled, and the 
data bus may change to reflect either new write data or enter the tri-state OFF condition. In this 
way, write data is held active well into the following bus cycle to provide sufficient data-hold time 
following termination of the write command. 

3-20 210760-001 



THE iAPX 286 LOCAL BUS 

INTERRUPT-ACKNOWLEDGE CYCLES 

Interrupt-acknowledge cycles are performed by the CPU in response to an external interrupt request 
asserted via the INTR input pin. After recognizing the external interrupt request, the CPU executes a 
sequence of two back-to-back interrupt-acknowledge (lNTA) cycles to input an 8-bit vector that identi­
fies the interrupting source and directs the 80286 to an interrupt handling routine. Figure 3-16 shows 
the sequence of signals that constitute the interrupt-acknowledge sequence: 

A. At the start of phase 2 of the state preceding the first interrupt-acknowledge cycle, the address 
lines enter the tri-state OFF condition and MilO and COD/INTA are driven low to identify the 
coming interrupt-acknowledge cycle. 

B. At the start of Ts' LOCK and status lines ST and SO are driven low. LOCK prevents another bus 
master in a multi-master system from gaining control of the bus between the two interrupt­
acknowledge (lNT A) cycles. 

C. At the start of Phase 2 of Ts' the bus controller drives MCE and ALE high. MCE (Master Cascade 
Enable) enables the master 8259A interrupt controller (in a system that uses multiple interrupt 
controllers) to drive the cascade address onto the local address bus for distribution to any slave 
interrupt controllers. 

D. At the start of the first Tc' the CPU drives status lines SI and SO high. The bus controller drives 
INTA, ALE, and DT/R low. This first INTA signal freezes the contents· of the interrupt control­
ler; ALE latches the cascade address onto the system address bus for use by the slave interrupt 
controllers; and DT IR places the data transceivers into the receiver mode (any data on the data 
bus is ignored during this first INTA cycle). The bus controller drives DEN high to enable the 
data transceivers. 

E. Halfway through the first Tc state, the CPU removes the MilO and COD/INTA signals while 
the bus controller drives MCE low (ALE has already fallen low to latch the cascade address onto 
the address bus). READY is high to force a second Tc state (two Tc states are required to meet 
the minimum 8259A INTA pulse width). 

F. At the start of the second Tc state, the CPU drives LOCK high. If the system bus was used for 
the first INTA cycle, the 82289 Bus Arbiter will not relinquish the bus until the second INTA 
cycle is complete. 

G. READY going low at the start of phase 2 of Tc terminates the cycle at the end of Tc. The Bus 
Controller drives INTA and DT/R high and DEN low. The CPU drives the address pins out of 
TRI-STATE off during the second half of the second Tc. 

H. Three idle states (T j ) are automatically inserted between the two INTA bus cycles to allow for 
the minimum 8259A INTA-to-INTA time and CAS (Cascade Address) output delay. 

I. In terms of signal timing, the second INT A cycle is almost identical to the first. LOCK remains 
high during the second cycle, and the interrupt vector is read from the lower half of the data bus 
at the end of the second Tc state. Two Tc states are required during this second INTA cycle to 
meet the minimum INTA pulse width and to prevent contention between the CPU and the cascade 
address latches that might occur as the CPU drives the address bus when the cascade address is 
being disabled. The CPU does not start driving the address bus until the second half of the second 
INTA Tc bus state. 

HALT /SHUTDOWN CYCLES 

The 80286 externally indicates halt and shutdown conditions as a bus operation. These two conditions 
occur due either to an HL T instruction or multiple protection exceptions while attempting to execute 
one instruction. 

3-21 210760-001 



., 
OJ 

THE iAPX 286 LOCAL BUS 

1

_INTACYCLE1_1 1_INTACYCLE2_1 
BUS CYCLE TYPE TC Ts Tc Tc TI TI TI Ts Tc TC TS 

I l~1 I ,:.2 l'>' I l'02 I t',1 I ,.':.2 I ,1,1 I ,'.2 ,1,1 I ,':.2 I ,',1 I l'(J. I J,1 I <!,2 ,.~1 I l':J. I t',1 I l',2 I ,/.1 I r/,2 ,',1 I ,'.2 I 
CLK 

Sl • SO 

M ro, COD fNtA 

A23 - Ao 2555J)- - -' - - - - - - - - - <,-__ D_ON_'T_CA_R_E _---'t- - - - - - - - - - - -<'-__ _ 

BHE ~ - - - - - - - - - - -<,-__ D_ON_'T_C_AR_E _____ t- - - - - - - - - - - -c= 
PREVIOUS 

WRITE CYCLE -------<=>--------------------fECTO~--

READY "\\\'\\\\ OJ IIZZ71il!L7 \SS~ IlZZZZ7]j I II /ZI II ![[[flZZI IIZiJ 117Jl/J ~s..~~ /10m 
NOT READY READY NOT READY READY 

INTA \ / \ r--
MCE 1\ 1\ 

ALE n n 
orR \ / \ I 

DEN / \ / '------

210760-20 

Figure 3-16. Interrupt-Acknowledge Sequence 

3-22 210760-001 



inter THE iAPX 286 LOCAL BUS 

A halt or shutdown bus operation is signalled when ST, SO, and COD/INTA are low and MilO is 
high. The address line Al distinguishes between a halt or shutdown condition; Al high indicates a halt 
condition, and Al low indicates a shutdown condition. The 82288 does not issue ALE, nor is READY 
required to terminate a halt or shutdown bus operation. 

During a halt condition, the 80286 may service processor extension requests (PEREQ) or HOLD 
requests. The 80286 will remain in the halt state until an NMI, RESET, processor extension segment 
overrun exception, or INTR interrupt (if interrupts are enabled) forces the processor out of halt. 

During a shutdown condition, the 80286 may similarly service processor extension requests or HOLD 
requests, except that a processor extension segment overrun exception during shutdown will inhibit 
further servicing of processor extension requests. Only a non-maskable interrupt (NMI) or RESET can 
force the 80286 out of the shutdown condition. 

iAPX 286 Bus Usage 

The previous sections described the characteristics of read and write cycles that can occur on the iAPX 
286 local bus. These bus cycles are initiated by the 80286-Bus Unit in order to perform various functions. 
These functions include: 

• prefetching instructions ahead of the current instruction that is executing 

• transferring data required by an executing instruction. 

• transferring data for a processor extension through the processor extension data channel 

The following sections describe the rules and conditions that determine which bus operation will be 
performed next by the 80286. These rules help to better explain the way in which the iAPX 286 uses 
its local bus. 

LOCAL BUS USAGE PRIORITIES 

The iAPX 286 local bus is shared between the 80286 internal Bus Unit and external HOLD requests. 
In the course of performing the three types of bus operations listed above, the 80286 Bus Unit also 
must contend with transactions that require more than one bus operation to complete. Table 3-3 shows 
the priorities followed by the 80286 Bus Unit in honoring simultaneous requests for the local bus. 

PRE FETCH OPERATIONS 

The Bus Unit prefetches instructions when the local bus would otherwise be idle. When prefetching 
instructions, the BU obeys the following general rules: . 

• A prefetch bus cycle is requested when at least two bytes of the 6-byte prefetch queue are empty. 

• Prefetches normally occur to the next consecutive address indicated by the Code Segment Instruc­
tion Pointer. 

• The prefetcher normally performs word prefetches independent of the byte-alignment of the code 
segment base in physical memory. 

• The prefetcher performs only a byte code-fetch operation for control transfers to an instruction 
beginning on an odd physical address. 

• Prefetching stops whenever a control transfer or HLT instruction is decoded by the IU and placed 
into the instruction queue. 

• In Real-Address mode, the prefetcher may fetch up to six bytes beyond the end of a code segment. 

3-23 210760-001 



inter THE iAPX 286 LOCAL BUS 

Table 3-3. Local Bus Usage Priorities 

Priority Operations Requesting the Local Bus 

1 (Highest) Any data transfer that asserts LOCK either explicitly (via the 
LOCK instruction prefix) or implicitly (segment descriptor 
access, interrupt-acknowledge sequences, or an XCHG with 
memory). 

2 The second of the two byte-transfers required to transfer a word 
operand at an odd physical address, or the second transfer 
required to perform a processor extension data channel trans-
fer. 

3 A request for the local bus via the HOLD input. 

4 A processor extension data channel transfer via the PEREa 
input. 

S A data transfer requested by the EU as part of an instruction. 

6 (Lowest) An instruction prefetch performed' by the BU. The EU will inhibit 
prefetching two processor clocks in advance of any data trans-
fers to minimize waiting by the EU for a prefetch to complete. 

• In Protected mode, the prefetcher will never cause a segment-overrun exception. The prefetcher 
stops at the last physical word in the code segment. Exception 13 will occur if the program attempts 
to execute beyond the last full instruction in the code segment. 

• If the last byte of a code segment appears on an even physical memory address, the prefetcher will 
read the next physical byte of memory (perform a word code fetch). The value of the additional 
byte is ignored and any attempt to execute it causes exception 13. 

Instruction prefetch operations can occur back-to-back with other prefetches or other bus cycles, 
with no idle clocks on the bus. 

DATA OPERATIONS 

The Bus Unit performs data operations when the Execution Unit (EU) needs to read or write data to 
main memory or I/O. When performing data operations, the Bus Unit obeys the following general 
rules: 

• Since the EU must wait on data reads, data operations have priority over prefetch operations when 
both data and prefetch operations are ready to begin. A data operations, however, will not interrupt 
a prefetch operation that has already started. 

• If the bus is currently in use when the EU requests a write cycle, the address and data for the write 
cycle are stored by the Bus Unit in temporary registers until the current bus cycle completes. This 
allows the EU to begin executing the next instruction without having to wait for a prefetch or other 
bus operation to finish. 

• Only one write operation can be buffered by the Bus Unit. If the EU requests a write cycle while 
these temporary buffers are full, the ED must wait for the buffers to empty before it can continue 
executing instructions. 

• Any combination of data read and write operations can occur back-to-back with other bus opera­
tions, with no idle bus cycles. The string move or I/O instructions in particular transfer data with 
no idle states on the bus. 

3-24 210760-001 



THE.iAPX 286 LOCAL BUS 

DATA CHANNEL TRANSFERS 

The 80286 Bus Unit contains a processor extension data channel that supports data transfers between 
memory and processor extensions like the 80287 Numeric Processor Extension. Transfers are requested 
by the processor extension and performed by the CPU Bus Unit. Chapter Six describes the iAPX 286 
processor extension interf4ce in more detail. The following guidelines govern data channel activity: 

• Data channel transfers have priority over prefetch and execution data cycles if all three operations 
are requested at the same time. 

• The transfers require at least two bus cycles to complete. For example, to transfer a word operand 
to the 80287, the CPU performs the first cycle to read the operand from memory. A second transfer 
wri tes the word to the 80287. . 

• The bus timing of these transfers is the same as any other bus read or write cycle. 

• Data channel transfers are treated as indivisable operations by the 80286. The Bus Unit will not 
execute a data or prefetch operation until a data channel word transfer between memory and the 
80287 is complete. . 

• Data channel transfers to or from the 80287 are always word transfers. No single-byte transfers are 
required by the 80287, nor are they performed by the 80286. 

• Word transfers to an odd-addressed memory location are performed as two byte-transfers. This 
results in three bus cycles (one word-transfer from the processor extension, and two byte-transfers 
to meinory). 

BUS UTILIZATION 

Many features of the 80286 contribute to a high utilization of the iAPX 286 local bus. These features 
include: 

• partitioning of CPU Junctions into individual processing units 

• the Bus Unit guidelines for prefetch cycles, data cycles, and data channel transfers 

• temporary Bus Unit address and data registers 

• pipelined timing to allow back-to-back and overlapped bus operations 

Depending on the particular program that is being executed and the speed of local memory, these 
architectural features can result in very high local bus utilization and bus efficiency. For typical types 
of software, about 60% to 70% of all bus operations will be instruction prefetches, and about 75%-85% 
of all bus clocks will be utilized by the CPU (assuming that memory responds with zero wait-states)~ 
If memories having one or more wait states are used, better than 90% of all available bus clocks will 
be used by the CPU. Long sequences of back-to-back bus operations are possible without the bus being 
idle, especially if a program involves string operations. 

Designers can best take advantage of the high local bus throughput offered by pipelined timing and 
other features of the 80286 when interfacing the 80286 to local memory. The software tasks and data 
that are requested. most often can reside in local memory where they can be quickly accessed. Less­
used tasks and data can reside in remote memory on a public system bus, where access delays may be 
incurred due to bus arbitration and additional address and data buffers. Chapter Four discusses the 
performance tradeoffs of interfacing to fast vs. slow memories. 

3-25 210760-001 



THE iAPX 286 LOCAL BUS 

Bus Interface Components 

The job of implementing an iAPX 286 local bus around an 80286 CPU is made relatively simple by 
using several components specifically adapted to supporting the pipelined timing and status signals of 
the 80286. These interface components include: 

• The 82284 Clock Generator, to generate the proper clock input for the 80286 CPU, to selectively 
enable and synchronize the 80286 READY input, and to handle the conditioning of the system 
RESET signal. ' 

• The 82288 Bus Controller, to decode the 80286 status signals and to generate appropriate memory 
and I/O read/write commands, and data transceiver and address buffer control signals. 

• 8282 octal latches, for latching local bus address lines or chip selects. 

• 8286 data transceivers, for buffering the local bus data lines. 

These devices support the pipelined timing of the 80286 local bus and combine functions that would 
take several dozen discrete components to. perform. The remaining sections of this chapter describe 
how these circuits may be used to implement an iAPX 286 local bus. . 

GENERATING TIMING USING THE 82284 CLOCK GENERATOR 

The 82284 Clock Generator provides the clock generation, READY timing, and RESET timing functions 
for the 80286 CPU and other iAPX 286 support devices. Figure 3-17 illustrates "how the82284 Clock 
Generator connects to an 80286 CPU. . 

In generating the clock signal for the system, the 82284 can use either a crystal or an external TTL­
level signal as its frequency source. The CLK output signal is equal to the 80286 input source frequency 
and is double the specified processor clock frequency. The status lines SO and S 1 from the CPU are 
decoded by the 82284 to synchronize the 82284's PCLK (peripheral clock) output. This PCLK output 
is normally in phase with the 80286 internal processor clock. 

The 82284 generates the READY input to the 80286, which the CPU uses either to insert wait states 
into bus operations or to terminate successful bus operations. This READY output is synchronized to 
the system clock, and can be selectively generated from either an asynchronous or a synchronous ready 
input to the 82284. 

The third timing function of the 82284 Clock Generator is the generation of the 80286 RESET, or 
system RESET signal. The 82284 accepts an active-low RES input signal from a simple RC circuit or 
other Reset source, synchronizes it with the system CLK, and drives its RESET output to properly 
initialize the 80286 CPU and other system components. 

The following sections describe each of these functions of the 82284 Clock Generator, and discuss some 
of the alternatives and cons~derations in designing an iAPX 286 system using the 82284. 

Generating the System Clock 

The 80286 requires a clock signal with fast rise and fall times (10 ns max) between low and high 
voltages of 0.6V low and 3.8V high. The maximum frequency of the clock input to the (8-MHz) 80286 
is 16 MHz (20 MHz for a 10 MHz 80286-1). Since the 80286 internally uses dynamic cells, a minimum 
clock input frequency of 4 MHz is required to maintain the state of the CPU. Due to this minimum 
frequency requirement, the 80286 cannot be single~stepped by disabling the clock. The timing and 
voltage requirements for the CPU clock are shown in Figure 3-18. 

3-26 210760-001 



THE iAPX 286 LOCAL BUS 

XTAl1--)-t> 
OSC 

'--__ ..I ClK 
MUX .~_IClK 

RESET 

ff 
1-_______ ---j~RE:..:S.:.ET+----_~1__1 RESET 

SYNCHRONIZER 

SYNCHRONIZER -
SYNC READY -+~--01 SflDY D-

READY 
LOGIC 

ENABLE SROYE-N t-----+-----1I----__ -4--I-~ REJmV L--_+....--....... 

82284 
CLOCK 

GENERATOR PClK 

--.....-
TO OTHER DEVICES 

Figure 3-17. 82284 Clock Generator With an 80286 CPU 

5.5 
+5 

3.8 

1.5 
.6 

----. ~10 n5 MAX 10 ns MAX 

o r---~~~~~~~~------------~~--­
-.5 .. 62.5n5 MIN 

250n5 MAX 

Figure 3-18. 80286 Clock Input 

3-27 

80286 
CPU 

210760-21 

210760-22 

210760-001 



THE iAPX 286 LOCAL BUS 

Using the 82284 Clock Generator, an optimum 50% duty-cycle clock with the required MOS-Ievel· 
voltages and transition times can easily be obtained. Since the 80286 CLK is a double-frequency clock 
signal, the selected source must oscillate at twice the specified processor clock rate. 

Either an external frequency source or a crystal can be used to drive the 82284. The frequency source 
is selected by strapping the 82284 Fie input to indicate the appropriate frequency source. 

To select the crystal inputs of the 82284 as the frequency source for clock generation, the F IC input. 
to the 82284 must be strapped to g~ound. The crystal, a parallel-resonant, fundamental mode 'crystal, 
connects to the Xl and X2 pins on the 82284 and should have a typical capacitance load of 32 pF. 
Two loading capacitors are recommended to ensure stable operation of the 82284's linear Pierce oscil­
lator with the proper duty cycle, as shown in Figure 3-19. The sum of the board capacitance and the 
loading capacitors should equal the values shown in Table 3-4. 

If a high-accuracy frequency source, externally-variable frequency source, or a common source for 
driving multiple 82284's is desired, the External Frequency Input (EFI) of the 82284 can be selected' 
by pulling the F IC input to 5 volts through a lK ohm resistor (Figure 3-20). The external frequency 
source should be TTL~compatible, have a 50% duty cycle, and oscillate at the system clock rate (twice 
the processor clock rate). 

Table 3-4. 82284 Crystal Loading Capacitance Values 

Crystal Frequency 
C 1 CapaCitance C2 Capacitance 

(pin 7) (pin 8) 

1 - 8 MHz 60 pF 40 pF 

8-16MHz 25 pF 15 pF 

NOTE: Capacitance values must include board capacitance. 

7 10 
X1 ClK ClK 

D 
Vee iAPX286 

CPU or 
8 300 SUPPORT X2 82284 n COMPONENT 

C1I READY 
4 

READY 

6 
FIC 

':" 

210760-23 

Figure 3-19. Recommended Crystal Connections to the 82284 

3-28 210760-001 



EXTERNAL 
FREQUENCY 

SOURCE 

+5 

THE iAPX 286 LOCAL BUS 

.J- X1 1K .!!. X2 
6 Fie 

SYSTEM 
10 ClK 

5 ClK ... 
EFI ,. 

82284 

l ~ PClK 

iAPX 286 
CPU OR 

SUPPORT 
COMPONENT 

ClK 

Figure 3-20. 82284 With External Frequency Source 

210760-24 

If several sources of CLK are needed (in a multi-processor system, for example), multiple 82284 Clock 
Generators can be used, driven by a common frequency source. When multiple 82284's driven by a 
common source are distributed throughout a system, each 82284 should be driven by its own line from 
the source. To minimize noise in the system, each line should be a twisted pair driven by buffers like 
the 74LS04 with the ground of the twisted pair connecting the grounds of the source and receiver. To 
minimize clock skew, the lines to each 82284 should be of equal length. 

A simple technique for generating a master frequency source for additional 82284's is shown in 
Figure 3-21. One 82284 with a crystal is used to generate the desired frequency. The CLK output from 
this 82284 drives the EFI input to the other 82284 Clock Generators in the system. 

Since the CLK output is delayed from the EFI input by up to 30 ns, the CLK output of the master 
82284 should not be used to drive both an 80286 and the EFI input of another 82284 (for a second 
80286) if the two CPUs are to be synchronized. The variation on EFI-to-CLK delay over a range of 
82284s may approach 10 to 15 ns. If, however, all 82284s are of the same package type, and have the 
same relative supply voltage, and operate in the same temperature environment, the variation will be 
reduced to between 5 and IOns. 

When multiple processors share a common local bus, they should be driven with the same system CLK 
to optimize the transfer of bus control. A single 82284 Clock Generator can be used in this configura­
tion, as shown in Figure 3-22. Each of the processors can share the common READY signal, since only 
one processor is permitted to use the bus at any given time. Processors that are not in control of the 
local bus will ignore any READY input. 

3-29 210760-001 



THE iAPX 286 LOCAL BUS 

+5V 

1K 
82284 

6 
F/C 10 

5 
CLK 

EFI 

+5V 

-=- -=-
1K 

X1 82284 82284 
6 F/C 

10 
Cl CLK 

8 10 5 EFI X2 CLK 

C1

1 rC2 
+5V 

-= -= 
-= 1K 

6 
82284 

Fie 10 
CLK 

5 EFI 

-= -= 

210760-25 

Figure 3-21. ,External Frequency for Multiple 822845 

The 82284 Clock Generator has two clock outputs: the system clock (CLK), which drives the CPU 
and support devices, and a peripheral clock (PCLK), which runs at one-half the frequency of the 
system CLK and is normally synchronized to the 80286 internal processor clock. CLK has a 50% duty 
cycle, matching its input, and so does PCLK. CLK has MOS-Ievel drive characteristics, while PCLK 
is a TTL-level signal at half the frequency of the CLK output. 

Figure 3-23 shows the relationship of CLK to PCLK. The maximum delay from CLK to PCLK is 
40 ns. The 82284 synchronizes PCLK to the CPU internal processor clock at the start of the first bus 
operation following a RESET, as detected by Sl or SO going low. Following this first bus cycle, PCLK 
will remain in phase with the internal processor clock. 

3-30 210760-001 



ClK ~ 

82284 

READY 

THE iAPX 286 lOCAL BUS 

.A 

80286 K ---.. 'C 

t 
~ A 

CO·PROCESSOR K 
'C 

.... 

,. 
lOCAL 
BUS 

Figure 3-22. Multiple local Bus Processors Share a Common 82284 

210760·26 

1 ..... ·I---"'-1-- TS --"'-2 -...., .. ~II ...•• --"'-1--TC--"'-2-....,·~I ..... ·I---"'-1 --TS--"'-2-~·~1 

~,------------~~~--------------~ 
FIRST BUS CYCLE 

AFTER RESET 

Figure 3-23. ClK to PClK Timing Relationship 

3-31 

210760·27 

210760·001 



inter THE iAPX 286 LOCAL BUS 

Timing Bus Operations Using READY 

As described previously in the discussion of iAPX 286 bus operations, the READY input is used by 
the 80286 to insert wait states into a bus cycle, to accommodate memory and I/O devices that cannot 
transfer information at the maximum 80286 bus bandwidth. In multi-processor systems, READY is 
also used when the CPU must wait for access to the system bus or Multibus interface. 

To insert a wait state (an additional Te state) into the bus cycle, the READY signal to the CPU, Bus 
Controller, and Bus Arbiter (if present) must be inactive (high) by the end of the current Te state. To 
terminate the current bus cycle and avoid insertion of any additional wait states, READY must be low 
(active) for the specified set-up time prior to the falling edge of CLK at the end of Te. 

Depending on the size and characteristics of a particular system, designers may choose to implement 
a Ready signal in one of two different ways: 

1. The classical Ready implementation is to have the system "normally not ready." When the selected 
device receives a command and has had sufficient time to complete the command, it activates 
Ready to the CPU and Bus Controller to terminate the bus cycle. This implementation is charac­
teristic of large multi-processor, Multibus systems or systems where propagation delays, bus access 
delays, and device characteristics inherently slow down the system. For maximum performance, 
devices that can run with no wait states must return Ready within the specified time limit. Failure 
to respond in time will result in the insertion of one or more wait states. 

2. An alternate technique is to have the system "normally ready." All devices are assumed to operate 
at the maximum CPU bus bandwidth. Devices that do not meet the requirement must disable 
Ready by the end of T e to guarantee the insertion of wait states. This implementation is typically 
applied to small, single-CPU systems and reduces the logic required to control the READY signal. 
Since the failure of a device requiring wait states to disable Ready by the end of Te will result in 
premature termination of the bus cycle, system timing must be carefully analyzed before using 
this approach. 

As shown in Figure 3-24, the timing requirements for the CPU, Bus Controller, and Bus Arbiter READY 
inputs are identical regardless of which method of ready implementation is used. Set-up time for READY 
is 38.5 ns before the falling edge of CLK at the end of Tc; READY hold time is 25 ns from the falling 
edge of CLK. 

To generate a stable READY output that satisfies the required setup and hold times, the 82284 Clock 
Generator provides two ready inputs: a Synchronous Ready (SRDY) and an Asynchronous Ready 
(ARDY) input. Typically, one or both of these inputs will be driven by external timing logic to deter­
mine an appropriate Ready condition. The two Ready inputs are qualified by separate Enable signals 
(SRDYEN and ARD,YEN) to selectively enable one of the two Ready inputs (Figure 3-25). 

The two Ready inputs allow more flexibility in designing an iAPX 286 system; although the SRDY 
input must be synchronized to the system CLK, it permits more time for the external Ready logic; the 
ARDY input need not be synchronized, but it permits less time for the Ready-timing logic to function. 
To operate the iAPX 286 with zero wait-states, the Synchronous Ready (SRDY) input must be used­
the ARDY input cannot support zero-wait-state operation. At the end of Ts (the first state in any bus 
operation), either ARDY or ARDYEN must be high. 

Figure 3-26 shows the timing of the SRDY signal. When SRDYEN is low, SRDY is sampled on the 
falling edge of CLK at the end of Phase 1 of Te. When SRDY is sampled low, the 82284 immediately 
drives the READY output low (24 ns max. delay from the falling edge of eLK). The setup times for 
SRDY and SRDYEN are 15 ns before the falling edge of CLK. 

3-32 210760-001 



THE iAPX 286 LOCAL BUS 

8 

6 

82284 ClK 
10 

ClK 
CLOCK 

-=- GENERATOR 
11 

RES 
RESET 

12 
RESET 

SYNCHRONOUS { SRDY iAPX 286 
READY AND 3 

CPU OR 
ENABLE INPUTS SRDYEN SUPPORT. 

DEVICE 

4 
READY 

ARDY 
READY 

ASYNCHRONOUS { 
READY AND 17 

ENABLE INPUTS ARDYEN 

Figure 3-25. Ready Inputs to the 82284 and Output to 
the 80286 and 82288 

3-33 

210760-29 

210760-001 



inter THE iAPX 286 LOCAL BUS 

~----TS,------~----TC·------~ 
</>2 

ClK 

CMD----------------------~ 

SRDY + ---------------------------'" I 
SRDYEN 

READY-------------------------------~~ 

210760-30 

Figure 3-26. SRDY and READY Timing 

Figure 3-27 shows the function of the ARDY input. When ARDYEN is low, ARDY is sampled on the 
falling edge of CLK at the start of Tc (one CLK cycle earlier than SRDY). This allows one full CLK 
cycle for the 82284 to resolve the state of ARDY. When ARDY is sampled low, the READY output 
of the 82284 is driven active-low following the falling edge of CLK at the end of phase 1 of Tc (24 ns 
max delay from the falling edge of CLK). 

To insert a wait state, both ARDY and SRDY must either be sampled inactive, or else be disabled 
using the appropriate Enable pin. Note that once both ARDY and ARDYEN have been resolved 
active low, the 82284 ignores the condition of SRDY for the remainder of that bus cycle. 

When only one Ready input is required, the associated Ready Enable signal can be tied to ground 
while the other Ready Enable signal is connected to 5 volts through a IK ohm resistor (Figure 3-28). 
When both Ready inputs are used, the proper Ready Enable can typically be selected by latched 
outputs from address decode logic (Figure 3-29). 

As shown in Figure 3-30, the READY output has an open-collector driver to allow other Ready circuits 
to be connected with it in a wired-OR configuration. Because of this, an external 300 ohm pull-up 
resistor is required on the READY signal. At the start of a bus cycle, indicated by SI or SO going low 
(Figure 3-31), the Clock Generator floats the READY output. The pull-up resistor has three system 
CLK cycles to raise the voltage on the READY line to the inactive (high) state before it is sampled by 
.the 80286 CPU. When the selected 82284 Ready input is active, the READY line is forced low. READY 
remains low until the next bus cycle·is started (Sf or SO going low) or until the selected Ready input 
is detected high. 

During RESET, the Clock Gen.erator pulls READY low to force the Bus Controller into the idle state. 

3""734 210760-001 



THE iAPX 286 LOCAL BUS 

~--------TS---------'~··--------TC---------'~--------TS--------~ 

ClK 

CMD--------------------------~ 

~E~----------------------~ 

READY--------------------------~----------~ 

24NS 
~MAX 

Figure 3-27. ARDY and READY Timing 

+5V 

1K 

Xl X2 

82284 
CLOCK 

GENERATOR 

ARDY 

17 ARDYEN 

SYSTEM READY ---~~ SRDY 

3 SRDYEN 

10 . 
ClK 

12 RESET 

1-4 ____ .... READY 

Figure 3-28. Using Only One Ready Input 

3-35 

210760-31 

210760-32 

210760-001 



inter THE iAPX 286 LOCAL BUS 

ADDRESS 
DECODE 

PROM 

ALE 

! 
STB 

8282 
LATCH 

82284 

.--_l ...... ARDY 

t-_-+-__ 1"'-7 ..... ARDYEN 

~ SRDY 
t-_-+-+-.;;..3 .... SRDYEN 

READY #1-

READY #2'----" 

Figure 3-29. Selecting the Ready Input 

OPEN COLLECTOR 
READY DRIVER ---I 

I 
I 

OPEN COLLECTOR I 
READY DRIVER ---~ 

I 
I ~+5V 
I 
I > 

82284 
I >300n 

rh. . ~ iAPX 286 

READY 
4 CPU OR 

~;CLNEtro( 
SUPPORT 
DEVICE 

OUTPUT) 

Figure 3-30. Open-Collector 82284 READY Output 

3-36 

210760-33 

210760-34 

210760-001 



THE iAPX 286 LOCAL BUS 

-Te .. Ts----~------Te----~~ .. -----TS-

",2 

ClK 

Sf. SO ------_ 

CMD-----------J 

READY----'" 

",1 ¢2 

~5NS 
MIN 

. Figure 3-31. READY Output Characteristics 

WAIT-STATE TIMING LOGIC 

",2 ¢1 

210760-35 

In the previous section, the operation of the SRDY and ARDY inputs to the Clock Generator were 
described. In this section, the wait-state timing logic that dr'ives these Ready inputs are discussed, with 
specific examples for generating a fixed number of wait states. 

With an 8-MHz 80286 CPU, fast memory and peripherals can typically operate with 0 or 1 wait states. 
In most cases, address-decode logic can be used to select the number of wait states required by a 
particular device. This address-decode logic is also used to generate the appropriate chip selects. 

Figure 3-32 shows a simple method for generating one wait state in an iAPX 286 system. The timing 
for a typical bus cycle incorporating this single wait state is shown in Figure 3-33. 

In the circuit shown, the output of the first flip-flop becomes active at the end of Ts. The output of the 
second flip-flop does not become activated until Phase 2 of the first T C' after the 82284 has sampled 
SRDY high and caused the insertion of an additional wait state. During the following Tc state, the 
82284 samples SRDY low and terminates the bus cycle by setting READY low. READY also resets 
the wait-state timing circuit in preparation for the following bus cycle. 

For many existing memory and peripheral devices, one or more wait states will be required to operate 
with an 8-MHz 80286 CPU. Some peripheral devices may require more than two wait states. The 
circuit in Figure 3-34 shows a wait-state generator that inserts from 0 to 3 wait states into each bus 
cycle. This circuit can be extended to incorporate any number of wait states by adding an additional 
flip-flop for each wait state. 

3-37 210760-001 



THE iAPX 286 LOCAL BUS 

PClK 

AlE----------------~ 
Ot----"'----J 

K 

READY 
ClR ClR 

------. 

ClK 

RESET 

Figure 3-32. Generating a Single Wait State 

ClK 

ALE 

PClK 

01 

SRDY 

READY 

~TS 
I <1>1 I 

I 

<1>2 

\ 

SRDY 
SAMPLED 

o l·WAIT READY 

o SRDY TO 82284 

Figure 3-33. Timing for the Single Wait-State Generator 

3-38 

210760-36 

210760-37 

210760·001 



THE iAPX 286 LOCAL BUS 

ADDRESS 
DECODE t---+-..;;..:;;;~~..;...;.;..;... 

PROM 
SELECT 3 WAIT 

3-WAIT 
READY 

PCLK----~·~~--------~----------~~--------~~--------+_~ 

ALE --------1 

READY--~--~-+~ __ ~ ____ ~~ __ +-____ ~~ __ +-____ -;~ __ +-____ _ 

CLK--~>-~--~~----~----r-----~----+-----~----r-------

RESET --~ >o------~"----------~-----------+-----------~-----

Figure 3-34. Generating from 0 to 3 Wait States 

SRDY 

210760-38 

In the circuit shown, an address-decoder PROM selects the appropriate Ready signal to generate the 
proper number of wait states. The timing for this circuit is identical to that of the previous circuit, 
simply adding an additional wait state for each successive flip-flop. 

These circuits are sufficient for generating SRDY timing for local devices when the required number 
of wait states is known. For device addresses that are not local, e.g. for devices that reside on a system 
bus or require other timing, the SRDYEN Enable signal to the 82284 should be driven inactive (high). 

Memory and I/O devices configured on the Multibus interface generate their own Ready timing through 
the Multibus XACK signal (shown in Figure 3-41 in the next section). XACK can be used to drive the 
ARDY input to the 82284, while an address-decoder recognizes addresses mapped onto the Multibus 
and selects the ARDYEN Enable line. The 82284 will automatically insert wait states into the bus 
cycle until XACK becomes active low. More information on designing a Multibus interface for the 
iAPX 286 is given in Chapter Seven. . 

3-39 210760-001 



inter THE iAPX 286 LOCAL BUS 

NOTE 
If the iAPX 286 system operating in Real-Address mode is "normally not Ready," program­
mers should not assign executable code to the last six bytes of physical memory. Since the 
80286 CPU prefetches instructions, the CPU may attempt to prefetch beyond the end of 
physical memory when executing code in Real Mode at the end of physical memory. If the 
access to non-existent memory fails to enable READY, the system will be caught in an indef­
inite wait. Chapter Seven shows a bus-timeout circuit that is typically used to prevent the 
occurrence of such an indefinite wait. 

Generating the Proper RESET Timing 

As described previously, the third timing function of the 82284 Clock Generator is to generate the 
system RESET signal to properly initialize the 80286 CPU and other system components. 

The system RESET signal provides an orderly way to start or restart an iAPX 286 system. When the 
80286 processor detects the positive-going edge of RESET, it terminates all external activities. When 
the RESET signal falls low, the 80286 is initialized to a known internal state, and the CPU then begins 
fetching instructions from absolute address FFFFFOH. 

To properly initialize the 80286 CPU, the high-to-Iow transition of RESET must be synchronized to 
the system CLK. This signal can easily be generated using the 82284 Clock Generator. The 82284 has 
a Schmitt-trigger RES input that can be used to generate RESET froni an active-low external pulse. 
The hysteresis on this Schmitt-trigger input prevents the RES signal from entering an indeterminate 
state, and allows a simple RC circuit to be used to generate the RES signal upon powerup. 

The specifications on the RES input circuit show that RESET will not become active until the RES 
input reaches at least 1.05 volts. 

To guarantee RESET upon power-up, the RES input must remain below 1.05 volts for 5 milliseconds 
after Vec reaches the minimum supply voltage of 4.5 volts. Following this event, RES must still remain 
below 1.05 volts for 16 processor clock cycles to allow for initializing the CPU. Figure 3-35 shows a 
simple RC circuit that will keep RES low long enough to satisfy both requirements. 

The 82284 RESET output meets all of the requirements for the 80286 CPU RESET input. The RESET 
output is also available as a system RESET to other devices in the system, as shown in Figure 3-36. 

During RESET, the 80286 internal processor clock is initialized (the divide by two counter is reset). 
Following the rising edge of RESET, the next CLK cycle will start Phase 2 of a processor clock cycle 
(see Figure 3-37). The 82284 synchronizes the 82284 PCLK output to the 80286 internal processor 
clock at the start of the first bus cycle after RESET. 

Since the 82284 synchronizes RESET to the system CLK, a delay of one or two clock cycles is intro­
duced before the RESET output is driven high. The 82284 will attempt to synchronize the rising edge 
of RESET if Vcc and CLK are correct at that time (Figure 3-38). However, since the rising edge of 
RESET may occur during power-up, when V cc and CLK are not valid, the rising edge of RESET may 
be asynchronous to the CLK. A synchronized rising-edge of RESET is necessary only for clock­
synchronous, multiprocessor systems. 

3-40 210760-001 



THE iAPX 286 LOCAL BUS 

Vee 

82284 
,....-JVl.,..,... ...... - ....... ----t RES RESET t---.... 1.05V 

RESET~I -====--... 

Figure 3-35. Typical RC RESET Timing Circuit 

---. RES RESET 
12 

82284 
CLOCK 

GENERATOR 

CLK 
10 

29 

31 

74S04 

RESET 

80286 
CPU 

CLK 

SYSTEM RESET 
(INIT) 

SYSTEM RESET 

Figure 3-36. 80286 Reset and System Reset 

3-41 

t 

210760-39 

210760-40 

210760-001 



THE iAPX 286 lOCAL BUS 

~--------Tx--------~ 

elK 

RESET 

~I·,-------------TX--------------.~I 

elK 

RESET 

210760-41 

Figure 3-37. Processor Clock Synchronization 

elK 

82284 ~~~'l"I"'!"'l~~ 
RES 

INPUT ........... ~ ............ ~.op.a. ... ""l"'""""""""-'i ......... """'j,JJ 

82284 DEPENDS 1>N PREVIOUS 

tJiiJT _______ ST_A..JT,E O",F_RES ___ ..I 

210760-42 

Figure 3-38. RESET Synchronized to ClK 

3-42 210760-001 



inter THE iAPX 286 LOCAL BUS 

Synchronizing Processor Clocks in a Multi-Processor System 

In a multi-processor system where each processor must be clock-synchronous, all of the processor clocks 
must be synchronized following the initial power-up RESET. Since the CPU does not normally see the 
rising edge of a RESET signal during power-up due to delays between the time voltage is applied and 
the time that the processor is functioning properly, a second RESET pulse must be generated. 

This second RESET pulse cannot be provided directly by the 82284 Clock Generator; additional logic 
is required. Figure 3-39 shows a circuit that provides a fully-synchronous RESET signal by generating 
a second RESET pulse that is triggered by the completion of the power-on reset. Timing for the circuit 
is shown in figure 3-40. 

The circuit actually provides two individual reset signals: CPU RESET, a synchronous reset signal that 
drives the 80286 CPU's in the system, and SYSTEM RESET, providing only a single RESET pulse 
for peripheral devices that need not be synchronized to the processor clock. The circuit also generates 
PCLK for the system (the 82284 PCLK signal should be ignored). 

In operation, the normal power-on RESET occurs with the rising edge of CPU RESET not being seen 
by the processors. When the RESET input goes low, the circuit automatically initiates a second RESET 
that is synchronous to the system clock. The CPU RESET output goes low for one CLK cycle and 
then goes high for seventeen cycles (the 80286 requires a minimum RESET pulse width of sixteen 
CLK cycles subsequent to power-up reset). Both edges of this second .reset pulse are synchronous to 

RESE T 

N COMMO 
SYSTEM 
CLK 

74S04 

r- D 

74S04 r I> 

" PR 

a -
~D 

S74 

a 

L.. D a 

1: 
S74 

'f 'f r r-I-D PR 01-

"-!> 
OA as Oc aD 

a~k CLK 
74LS393 S74 

CLR 

L-I) 
CLR a 
-v 

Figure 3-39. Generating a Synchronous RESET to Multiple 
80286 CPUs 

3-43 

1 
PR 

S74 

o~ 

a~ 

CPU 
RESET 

PCLK 

SYSTEM 
RESET 

210760-43 

210760-001 



THE iAPX ,286 LOCAL BUS 

elK 

RESET 

CPU RESET LJ L 

SYSTEM RESET 

PClK 

210760-44 

Figure 3-40. Synchronous ResetCircuit Timing 

CLK and to PCLK (the pulse is derived from the PCLK signal). SYSTEM RESET remains high from 
power-up until the CLK cycle before the falling edge of the second CPU RESET pulse. Since the 
synchronous reset guarantees that PCLK is in phase with the processor clock, it is not necessary to 
synchronize PCLK to the processor clock via SI or SO going low at the start of the first bus cycle (as 
is done with the 82284 PCLK signal). 

CONTROLLING THE LOCAL BUS USING THE 82288 BUS CONTROLLER 

The 82288 Bus Controller decodes the 80286 status signals and generates appropriate commands for 
controlling an iAPX 286 local bus. By decoding the ST, SO, and M/IO signals from t,he 80286, the 
82288 generates memory and I/O read/write commands, interrupt-acknowledge controls, and data 
transceiver and address latch controls. Figure 3-41 shows how the 82288 Bus Controller connects to 
the 80286 CPU. 

The 82288 Bus Controller has several control inputs that allow its command timing to be customized 
for a particular implementation. Other control inputs permit the Bus Controller to be used in systems 
having more than one local bus, or systems having a local bus and one or more system buses, including 
the Intel Multibus. The following sections describe each of the functions of the Bus Controller, and 
discuss some of the alternatives in designing an iAPX 286 system using the 82288. 

Systems Having More Than One Bus Controller 

The 82288 Bus Controller makes it easy to implement an iAPX 286 system having more than one bus. 
In a typical multiple-bus system, one 82288 Bus Controller is used to generate commands for each bus. 
The Bus Controller's CENL input selects the particular Bus Controller that is to respond to the current 
bus cycle. A strapping option selects whether the Bus Controller generates signal timing compatible 
with the iAPX 286 local bus, or follows the Multibus timing specifications. 

3-44 210760-001 



80286 
CPU 

SO 

S1 

M/ID 

CLK 

READY 

C 
FROM 82284 { 

LOCK GENERATOR 

COMMAND DELAY 

FROM 
DECODE LOGIC 

THE iAPX 286 LOCAL BUS 

TO OTHER BUS 
INTERFACE DEVICES --

~ 

82288 
BUS CONTROLLER 

SO 
MADe 

MWTC 

S1 
10RC 

wID rowe 
INTA 

CLK 

READY 
ALE 

CMDLY DEN 

CEN/AEN DT/R 

MCE 

CENL MB 

MODE SELECT 
(STRAPPING OPTION) 

MEMORY READ 

MEMORY WRITE 

10 READ 

10 WRITE 

INTERRUPT ACKNOWLEDGE 

ADDRESS LATCH ENABLE 

DATA ENABLE 

DATA TRANSMIT/RECEIVE 

MASTER CASCADE ENABLE 

210760-45 

Figure 3-41. 82288 Bus Controller with an 80286 CPU 

SELECTING A CONTROLLER 

The 82288 CENL (Command Enable Latched) input selects whether the Bus Controller will respond 
to the current bus cycle. This input is sampled at the start of the first Tc state of each bus cycle. For 
systems that use only one Bus Controller, this input may be strapped high. 

In systems that use multiple Controllers, address-decode logic typically selects the Bus Controller that 
executes the current bus cycle. CENL set-up time is 20 ns; sampling occurs on the falling edge of CLK 
between Ts and Tc. If CENL is sampled high, the Controller ignores the current bus cycle (e.g., DEN 
and commands are not asserted) and waits for the next cycle to begin. It should be noted that in the 
case of a write cycle, DEN is already active when CENL is sampled. Therefore, when CENL is sampled 
low during a write, DEN will be driven low to disable the data buffers within 35 ns, as shown in Figure 
3-42. 

3-45 210760-001 



THE iAPX 286 LOCAL BUS 

TS 

ClK 

I 
I 

S1 . so -----\ i/ 
i 
I 

TC 

~~
: 

D~ . I 

CENL~~ 

Figure 3-42. CENL Disable of DEN on Write Cycle 

SELECTING MUL TIBUS® TIMING 

210760-46 

The 82288 MB (Multibus) control input is a strapping option that configures bus controller timing for 
local or Multibus mode. In local bus mode, the bus controller generates commands and control signal 
timing compatible with the iAPX 286 local bus. In Multibus mode, timing is altered to meet Multibus 
interface timing requirements for address and data setup times. All Multibus cycles require at least 
one wait state. Strapping MB high selects Multibus mode; strapping MB low selects local mode. 
Figure 3-43 shows typical bus command timing for an 82288 operating in both local mode and Multi­
bus mode. Chapter Seven provides detailed guidelines for implementing a Multibus interface for the 
iAPX 286. 

Figure 3-44 shows two 82288 bus controllers being used in an iAPX system. One controller interfaces 
the 80286 CPU to a local bus and is configured for local bus mode (MB strapped to ground). The 
second controller is configured in Multibus mode (MB strapped to + 5V) and connects the CPU to the 
Multibus interface. The local bus controller also has CEN strapped to + 5V. CMDLY is tied low; 
commands are not delayed. Address decode logic selects one of the two bus controllers via the CENL 
inputs. The select signal for the Multibus controller also enables the 82289 Bus Arbiter. 

Access to a multimaster system bus such as the Multibus is controlled by the 82289 Bus Arbiter. The 
Bus Arbiter decodes the ST, SO, MilO, and SYSB/RESB lines to determine when the 80286 requires 
access to the multimaster bus. After requesting and gaining control of the bus, the 82289 enables the 
Bus Controller and address latches to allow the access to take place. Chapter Seven describes the 
operation and use of the 82289 Bus Arbiter in detail. 

3-46 210760-001 



THE iAPX 286 LOCAL BUS 

ClK 

Si . so ----,.\ ____ J f 

AlE------------..J~~----------------------------

DEN _______ J f \-------
OTiR ---------_\_-----1 

TI Ts Te Te TI 

ClK 

Sf· SO 

\ f 

ALE 1\ 
DEN I '---

OTiR 

\ r 
CMD 

\ 1 
READY '" -

Figure 3-43. Local (MB=O) Vs. MUL TIBUS® (B= 1) Timing 

3-47 

lOCAL BUS 
TIMING 

MUlTIBUS 
TIMING 

210760-47 

210760-001 



VI 
::;, 
III 
....I 

"' CJ 
o 
....I 

CMD 

ADDRESS 

DATA 

READY 

<= 
-r 

READY 

CMD 82288 CLK 

M/iO .. 

51,So 
CMDLY 

CENL ~ 
MB CEN 

t 
- +5V 

Q 

ADDRESS 

DECODER 

n MilO 

I I 
I I 

II 
A23-o 

THE iAPX 286 LOCAL BUS 

rD~ 
X1 X2 

SRi5Y ARDY 
XACK 

82284 A"ii5Y'EN S"RoYEN 
CLK READY 51, So 

R"EA5Y COMMAND s 

CLK 82288 
CMD ) 

MiiO DEN {>r-
51,So 

DTtR ,- CENL 
ALE 

I1CMDLY 
MB AEN 

'='" t t 
+5V 

~ READY AEN 

CLK 82289 CONTRO 
.). 

MliO CNTL ) 

51,So 

SYSIRESB 

SrB"ci'[ 

8283 A~RES s 
) 

I I I L.....--

CLK READY MIlO 
51,So 

80286 r-i-or 
OAT A 

D,~o 
)--- W 8287 

'---

210760-48 

Figure 3-44. Bus Controllers in a Dual Bus System 

Modifying the Bus Control Timing 

To accommodate systems with slower memories or timing requirements, bus commands from the 82288 
can be delayed using the Bus Controller's CMDLY and CEN/ AEN inputs. Command delays allow 
increased address and write-data setup times before command active for devices that require lengthy 
setup times. 

3-48 210760-001 



THE iAPX 286 lOCAL BUS 

CMDl Y (COMMAND DELAY) 

The 82288 CMDL Y input delays command generation by one or more CLK cycles. Each CLK delay 
allows at least 62.5 ns additional set-up time from address/chip select to command active. Command 
delays may be required, for example, on write operations when write data must be valid before the 
WR command is asserted. When no delays are required, CMDLY can be strapped to ground to always 
issue the command as soon as possible. 

A simple method for generating 0 or 1 command delays is shown in Figure 3-45. The CMDL Y input 
to the Bus Controller is driven by the output of an address-decode PROM gated to the Bus Controller's 
Address Latch Enable (ALE). CMDL Y is driven high while ALE is active, but only when the PROM 
output is also high. CMDL Y falls low after ALE is driven low. To satisfy 82288 timing requirements, 
the sum of PROM access time plus gate delay must not exceed 107 ns. 

For devices that require more than one command delay, a counter can be used to generate the appro­
priate number of delays (Figure 3-46). Set-up time for CMDL Y is 20 ns before the falling edge of 
CLK. Note that delaying commands does not lengthen the bus cycle, nor does CMDL Y affect the 
DEN signal controlling the data transceivers. For example, if READY is sampled active low before 
CMDL Y is sampled high, the bus cycle will be terminated, with no command being issued (see 
Figure 3-47). 

When the Bus Controller is configured in Multibus mode, commands are automatically delayed for the 
proper duration (CMDL Y should be strapped low). 

CEN/ AEN (Command Enable/Address Enable) 

The 82288 CEN/ AEN input is a dual-function, asynchronous input that disables commands and control 
signals. The function of the input depends on the mode of the Bus Controller. In local mode (MB=O), 
the input functions as CEN; in Multibus mode (MB= 1), the input functions as AEN. 

82288 
BUS 

74S08 CONTROLLER 

ADDRESS ~ DECODE CMDLY 

PROM 

ALE 

210760-49 

Figure 3-45. Generating CMDl Y For 0 or 1 ClK Delays 

3-49 210760-001 



ADDRESS 
DECODE 

PROM 

8282 
LATCH 

THE iAPX 286 LOCAL BUS 

+5V 

74lS191 

D 

1------11 .. 1 ENABLE 

UP/DOWN 
74S02 

MIN/MAX t----\ 

t------~~-----~A 

t-------~~~----~B 

t-------~~-+~---~IC 
lOAD CLOCK 

74S04 

AlE----------~------~ 

74S04 Number of 
C ClK Delays 

ClK------------~ 

7 0 
6 0 
5 0 
4 0 
3 1 
2 1 
1 1 
0 1 

Figure 3-46. Generating 0 to 7 Command Delays 

T5 TC TC 

ClK 

51 . so --__ ,'-___ ..11 

ALE __ .................... -J~~ ............................................ ~ ........ ___ 

CMDLY,.;//////////// ) ) )) r~· 
CMD 

o 

READY~ 

I 
I 
I _i_ 

t! 
TERMINATES 
BUS CYCLE 

Figure 3-47. Bus Cycle Terminated with No Command Issued 

3-50 

B A 

0 0 
0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 

210760-50 

210760-51 

210760-001 



THE iAPX 286 LOCAL BUS 

CEN provides the Bus Controller with an additional command enable signal that can be used for 
address decoding or delaying commands and control signals asynchronously to the system clock. In 
contrast to CENL, CEN is not latched internally and, when used as part of an address decoding scheme, 
requires an external latch. 

CEN contrasts with CMDL Y in its ability to delay both command signals and DEN asynchronously 
to the system clock. Whereas the minimum CMDL Y controlled delay is 62.5 ns (one system clock), no 
minimum is required for CEN. 

As shown in Figure 3-48, when CEN is low, commands and DEN are inactive. When CEN goes high, 
commands and control signals immediately go active (up to 25 ns max delay). 

AEN is a signal typically generated by the 82289 Bus Arbiter to control commands and data during 
accesses to the Multibus interface. For Multibus bus cycles, address decode logic enables the 82289 
Bus Arbiter (SYSB/RESB) and 82288 Bus Controller (CENL) assigned to the Multibus interface. 
After requesting and gaining control of the interface, the 82289 Bus Arbiter outputs the active-low 
AEN signal to the Bus Controller to enable the Multibus commands and data transceivers. 

AEN is asynchronous to the system CLK. When AEN goes high, the Bus Controller drives DEN 
inactive and its command lines enter the tri-state OFF condition. Chapter Seven describes the use of 
AEN in greater detail. 

TI Ts Tc Tc TI 
eLK 

Sf·SO \ I 

ALE 1\ 
CEN 

DEN 

CMD 

READV_ ~ III!IlI!II!!/); 

210760-52 

Figure 3-48. CEN Characteristics (No Command Delay) 

3-51 210760-001 



THE iAPX 286 LOCAL BUS 

Another operating mode of the 82288 allows tri-stating the Bus Controller's command outputs in non­
Multibus mode. TO.do this, the CEN/AEN input is tied HIGH and the MB input is used to control 
the command outputs. MB must be stable 20 ns before the falling edge of eLK and remain so for 5 ns 
after CLK. Changing MB to HIGH will tri-state the command outputs on the falling edge of CLK. 
Changing MB to LOW will enable the control outputs first, then the command outputs will go active 
two CLK cycles later if a command is active. 

LOCAL BUS DESIGN CONSIDERATIONS 

Address Bus Interface 

iAPX 286 systems operate with a 24-bit address bus, using' the pipelinedaddress timing described 
previously. Since the majority of system memories and peripherals require stable address and chip­
select inputs for the duration of the bus cycle, the address bus and/or decoded chip-selects should be 
latched. 

The 82288 Bus Controller provides an ALE signal to capture the address in 8282 (non-inverting) or 
8283 (inverting),latches (see Figure 3-49). These latches have outputs driven by tri-state buffers that 
supply 32 rnA drive capability and can switch a 300 pF capacitive load in 22 ns (inverting) or 30 ns 
(non-inverting). The latches propagate the input signals through to the outputs while ALE is high and 
latch the outputs on the falling edge of ALE (see Figure 3-50). The outputs are enabled by the active­
low OE input. 

Chapter Four discusses other address strobe techniques that do not use the ALE signal from the 82288 
Bus Controller. These special address strobes can be used to customize the 80286 bus cycle timing to 
accommodate particular memory or peripheral devices. 

A23·AO 

80286 
CPU 

82288 
BUS 

CONTROLLER 

ALE I------t--~I 

Figure 3-49. Latching the 80286 Address 

3-52 

LATCHED 
ADDRESS 

210760·53 

210760·001 



THE iAPX 286 LOCAL BUS 

Tc Ts TC TS 

elK 

~ ____________ ~I~ i 1 

A23·AO X CPU ADDRESS i X CPU ADDR~SS l 
---- 1 1 -----------...... 1----+1-

I I : I 

!~ if! ALE -------------------t! : ---------------,,1 I 

FR~~~~:~SS __________________ ~i~)(~~l---L-A-T-CH-E-D-A-DD-R-E_ss __ ~i __ ><:J::: 
I I I I 
I 1 1 I 
I I 1 I 

210760-54 

Figure 3-50. ALE Timing 

For optimum system performance and compatibility with multi-processor Multibus systems, the address 
should be latched at the interface to each bus. As shown in Figure 3-51, systems that use both buffered 
local and public system buses can have separate address buses with separate latches and Controllers 
for each bus. The 100 pf maximum capacitance drive specification of the 80286 allows at least five 
sets of address latches to be connected to the address outputs of the 80286. 

Address Decoding 

Address decoding in an iAPX 286 system can be performed between the time that the address is 
generated at the CPU pins and the rising edge of ALE. At least 68 ns exist for an 8-Mhz system for 
this address decode logic to operate and produce a select output from the latches with the same timing 
as addresses. ~uch decode time comes free since it does not delay when a device can respond to an 
address. Select signals decoded from CPU address pins must be latched to guarantee that they will 
remain stable for the dur.ation of the bus cycle. 

Decoded select signals that drive the CENL input to the Bus Controller or the SYSBjRESB input to 
the Bus Arbiter do not need to be latched (both the Bus Controller and Bus Arbiter latch these signals 
internally). 

NON-LATCHED CHIP SELECTS 

Figure 3-52 shows an example circuit that decodes the address, MjIO=O, and CODjINTA=O signals 
to provide non-latched CENL and SYSBjRESB selects for the Bus Controller and Bus Arbiter and 
additional non-latched selects to other devices in the system. The example assumes two system buses 
with all interrupts on bus #1. The MjlO and CODjlNTA signals are used to enable bus #1 during 
interrupt-acknowledge cycles (the address bus floats during interrupt-acknowledge cycles). 

3-53 210760-001 



80286 
CPU 

I 
ADDRESS 
DECODE 

I 

THE iAPX 286 LOCAL BUS 

10.. 8282183 > A23-AO LATCH 

'" 
(3) 

STB OE 

CENL1 82288 
BUS 

ALE •• ~ 
CNTLR 

<= ..... 

> 8282183 
LATCH 

.~ ". (3) 

STB OE 

CENL2 82288 ALE • J-
BUS 

CNTLR 

Figure 3-51. Dual Address Bus System 

CENL 1 

04 
(SYSB/RESB 1) 

CENL 2 

03 
(SYSB/RESB 2) 

80286 
CPU 1024X8 

PROM 

MIlO 

CODIINTA 
02 

A23 
01 8205 

DECODER 
Do 

A16 

PROM DECODING 

CODIINTA MilO ADDRESS PROM OUTPUT 

INTA CYCLE 0 0 XXXX SELECT BUS # 1 . 

=> 
...... 

". 

=> 
.... 

". 

ADDRESS 
BUS #1 

COMMAND 
BUS #1 

ADDRESS 
BUS #2 

COMMAND 
BUS #2 

CHIP SEi:ECfS 

1/0 OPERATION 1 0 } 
SELECT BUS # 1 OR #2 

MEM OPERATION X 1 BASED UPON 
ADDRESS 

Figure 3-52. Non-Latched Chip Selects 

3-54 

210760-55 

210760-56 

210760-001 



THE iAPX 286 LOCAL BUS 

Set-up time for the Bus Controller CENL input is 20 ns before the start of Tc (assuming that commands 
are not delayed). This means that the time from A23-AO, MjIO, and CODjlNTA active to CENL is 
107.5 ns max. To meet the set-up time for the Bus Arbiter SYSjRESB input, the time from A23-AO, 
MjIO, and CODjlNTA active to SYSBjRESB is 127.5 ns maximum. Since the same PROM output 
must meet both these requirements, the decoder PROM must have an access time of 107.5 ns or less. 

To accommodate the timing requirements for individual devices, the 82288 Bus Controller has a 
CMDL Y input to delay the leading edge of commands from the Bus Controller by one or more CLK 
cycles. Typical devices require zero or one command delays. This CMDLY (Command Delay) input 
to the Bus Controller is described in a previous section. 

The CMDL Y signal is typically generated by address-decode logic, and is not latched either externally 
or by the 82288. The same address-decoding techniques used for other non-latched selects can be used 
to generate zero or more command delays for individual devices or ranges of addresses. Figure 3-45 
shown previously illustrates a method for generating zero- or one-CLK command delays based on a 
non-latched output from an address-decode PROM gated with ALE. 

LATCHED CHIP SELECTS 

Most memory and peripheral devices require a stable device-select signal that can be provided only by 
latched chip-selects. Latched chip-selects can easily be generated by adding latches to the outputs of 
decode logic shown in Figure 3-52. 8282j8283 or TTL devices can latch the selects in response to the 
ALE signal from the Bus Controller. 

Figure 3-53 shows an example of a circuit that latches chip-selects. The timing for latched chip-selects 
differs from that of non-latched selects. Since ALE goes high only 68 ns after the 80286 address is 
valid, the address-decode PROM must have an access time of less than 68 ns to prevent the chip-select 
outputs from changing after being passed through the latches. 

04 
CENL 1 

03 
CENL 2 

80286 
CPU 1024X8 

PROM 8282 
OR 

8283 
MIlO --. Ag r--- LATCH 

COD/INTA --. Aa 02_ r---
A23 ----=-- A7 8205 

f--;-0,_ DECODER 

00_ r-=---. A'6 r---- Ao STB 

t 
ALE 

210760-57 

Figure 3-53. Latched Chip Selects 

3-55 210760-001 



THE iAPX 286·LOCAL BUS 

Depending on the required set-up times from chip-select to command-active, the maximum PROM 
access time can be increased by up to 62.5 ns. The 8282/8283 latch has a 0 ns set-up time from Data­
in to Strobe (ALE) going low, so a PROM with a maximum access time of up to 130 ns may actually 
be used. To provide sufficient set-up times from chip-select. to command-active, however, commands 
from the Bus Controller may have to be delayed one CLKcycle when using this technique. By delaying 
commands one CLK cycle, the same circuit can be used with a gain of up to 62.5 ns in additional set­
up time from chip-select to command active. 

Depending on speed, cost, and available board space, the designer may substitute programmed array 
logic or discrete TTL logic for the PROM to decode latched and non-latched select signals from 80286 
addresses. 

Data Bus Interface 

Since the 80286 provides separate address and data pins, demultiplexing of the data bus is unneces­
sary. The design considerations for connecting devices to the iAPX 286 local bus are whether or not to 
buffer the data bus and whether a single or double level of buffering is required for the intended 
application. 

In general, buffering of the data bus is required for memory devices withOE t to data-bus-float times 
of 42 ns or. more (to avoid contention with the. 80286 during back-to-back read-write cycles). Most 
memory and I/O devices will therefore require buffering of the data bus. Unbuffered devices must not 
present a load exceeding the CPU's maximum drive capability of 3.0 mA with a capacitive loading of 
100 pF. 

A major concern in both buffered and non-buffered systems is the contention on the data bus that 
occurs when one device begins driving the bus before the previously-selected device has disabled its 
output drivers. Devices that have separate chip-select and output-enable or read inputs provide one 
solution to this problem. The output-enable signal can be driven by the Read command signal (see 
Figure 3-54) to assure that the output drivers are not enabled during write cycles and the read command 
can be delayed one CLK cycle to prevent any overlap between output drivers of two peripheral devices. 
Delaying commands may already be necessary for some devices to provide the necessary chip-select to 
command-active set-up time. 

A23·AO, 
MIlO, SHE 

DATA 
BUS 

I 

< 

U 
DATA 

WR 

Rl)/OE 

.DECODE 

I 
) 

1 
cs 

Figure 3-54. Devices With Output Enables on a 
Non-Buffered Data Bus 

3-56 

210760-58 

210760-001 



THE iAPX 286 LOCAL BUS 

Devices without output-enable or Read inputs (chip-select alone) can be dealt with in a similar manner 
(Figure 3-55). The chip-select in this circuit is gated with Read and Write. The tradeoffs with this 
method include (1) chip select time is reduced to the read access time for reads and (2) no time is 
allowed for chip-select to write-command set-up and (3) no hold time from CS high or WE high for 
writes. Designers should check the device specifications to verify whether or not these tradeoffs create 
a problem for a specific case. In general, devices with separate output-enables are preferred. 

To satisfy the capacitive loading and drive requirements of larger systems, the data bus must be buffered. 
The 8286 non-inverting and 8287 inverting octal transceivers satisfy the buffer requirements of most 
larger systems. 8286/8287 transceivers have three-state output buffers that drive 32 rnA on the bus 
interface and 10 rnA on the CPU interface and can switch capacitive loads of 300 pF on the bus 
interface (Side B) and 100 pF on the CPU interface (Side A) in 22 ns (8287) or 30 ns (8286). As 
shown in Figure 3-56, the O'E and T inputs to the transceivers are driven by DEN and DT /R from the 
82288 Bus Controller. DEN enables the devices, while DT /R controls the direction of data through 
the devices. The DISABLE term is used if any other device may drive local data bus (Le., 80287) 
instead of data transceivers. Chapter Six describes using the 80287 in an iAPX 286/20 system, and 
describes how to control the local data transceivers. 

For applications that require separate system buses, two or more sets of transceivers can be connected 
to the 80286 data pins. Figure 3-57 shows a configuration having two separate buses. Each bus has its 
own 82288 Bus Controller to control its own set of data transceivers. Since the address-decode logic 
selects one bus at a time, only one of the two DEN signals will ever be active at any time during a read 
cycle. 

A23-AO, 
MIlO, BHE '-----,.J 

DATA 
BUS 

RO------I 

DECODE 

.---------dICS 

Figure 3-55. Devices Without Output Enables on 
the Local Data Bus 

3-57 

210760-59 

210760-001 



80286 
CPU 

THE iAPX 286 LOCAL BUS 

BUFFERED 
Df'TA BUS 

. DT IR t-------+---4~-........ T ~~~~~7 

82288 
BUS 

CNTLR 

80286 
CPU 

ADDRESS 
DECODE 

Figure 3-56. Buffering the Data Bus 

015-00 

82288 
BUS 

CNTLR 

B <"': ____ .".> DAT:1BUS 

8286/87 
XCVR 

(2) 

DTiR I---~-----I 

82288 
BUS 

CNTLR 

B <"': ____ -,,> DAT:
2
BUS 

8286/87 
XCVR 

(2) 

'--C-.E .... N_L2 __ ...... CENL DEN 
(BUS 2 ENABLE) DT IR 1-______ ........ 

Figure' 3-57. Dual Data Bus System 

3-58 

210760-60 

210760-61 

210760-001 



THE iAPX 286 LOCAL BUS 

Another alternative when implementing a data bus is to add a second level of buffering, reducing the 
load seen by peripheral devices connected to the system bus (Figure 3-58). Double-buffering is typically 
used for multi-board systems and isolation of memory arrays. The concerns with this configuration are 
the additional delay for access, and more importantly, control or" the second, level of transceivers in 
relationship to the system bus and the device being .interfaced to the system bus. Several techniques 
can be used to control these transceivers. 

The first technique (shown in Figure 3-59) simply distributed DEN and DT /R throughout the system! 
DT /R is inverted to provide proper direction control for the second level transceivers, since sides A 
and B were reversed. The second example (shown in Figure 3-60) provides control for devices with 
output enables. The buffers are selected' whenever the device on the local bus is selected. RD directs 
the data to the local bus device during read cycles. 

Bus contention on the local bus is possible during a read as RD simultaneously enables the device 
output and changes the transceiver direction. Contention may also occur when RDterminates. If OE 
was active before T changes, then the output is the same as the input,.withno contention. To eliminate 
such contention, it is necessary to sequenceT and OE. 

For devices without output enables,. the same technique can be applied if the chip select to the device 
is conditioned by read or write signals (see Figure 3-61). Controlling the chip select with read/write 
prevents the device from driving against the transceiver prior to the command being received. This 
technique limits access time to read/write time and chip select to write set-up and hold times. 

BHE 

80286 A23·AO ) 8283 CPU 

r 
015·00 > 8287 

Of T 
82288 r-t>--1. ~ C~~~R DEN 

DTiR 

v. 
CPU LOCAL 

BUS 

) 

ADDRESS 
BUS 

DATA 
BUS 

'----2 
SYSTEM 

BUS 

8287 

8287 

I( 

-L 

K 
....-

~ 

V 
ADDRESS ... 

DATA ,.. 

y 
MEMORY 1/0 
LOCAL BiJS 

CS 

Figure 3-58. Double Buffered System 

DECODE 

~ 

210760-62 

210760-001 



THE iAPX 286 LOCAL BUS 

DEN ----I ~~----.... 

DTI~----I ~~--.., 

T 

B 

8286/87 

MEMORY 1/0 
DEVICES 

Figure 3-59. Controlling System Transceivers 
with DEN and DT /R 

~-----------------------------, 

~------~~-----. 
RD----------~--+-----------~_+~ 

SYSTEM 
DATA 
BUS 

MEMORYIIIO 
DEVICE 

Figure 3-60. Buffering Devices with OE/RD 

CS .... -------.., 

Rt> .... ------I 

SYSTEM DATA T OE LOCAL DATA CS WE 
~ _____ --"IIB A 1/0 

BUS BUS 

8286/7 

MEMORYIIIO 
DEVICE 

Figure 3-61. Buffering Devices without OE/RD and with 
Common or Separate Input/Output 

3-60 

210760-63 

210760-126 

210760-64 

210760-001 



THE iAPX 286 LOCAL BUS 

One last technique is given for devices with separate inputs and outputs (see Figure 3-62). Separate 
receivers and drivers are provided, rather than a single transceiver. The receiver is always enabled 
while the bus driver is controlled by RD and chip-select. The only possibility for bus contention in this 
system occurs as multiple devices on each line of the local read bus are enabled and disabled during 
chip selection changes. 

Other Bus Masters on the iAPX 286 Local Bus 

The 80286 provides on-chip arbitration logic that supports a protocol for transferring control of the 
local bus to other bus masters. This protocol is implemented by a pair of handshake signals called hold 
(HOLD) and hold acknowledge (HLDA). The sequence of signals shown in Figures 3-63 and 3-64 
illustrate this. protocol. To gain control of the local bus, the requesting bus master asserts an active 
high signal on the 80286 HOLD input (Figure 3-63). This HOLD input need not be synchronous to 
the 80286 CLK. 

When HOLD is asserted; the 80286 compl~tes the cuqellt bus sequence and then tri-states all bus 
outputs (except HLDA) to effectively remove itself from the local bus. The 80286 then drives HLDA 
high to signal the requesting bus master that it now has .control.of the bus. The requesting bus master 
must maintain a high on the HOLD line until it no longer requires the local bus. 

The hold request to the CPU affects the 80286 Bus Unit (BU) directly, and only indirectly affects the 
other units. The Execution Unit continues to execute from the instruction queue until both the instruc­
tion queue and the pre-fetch queue are empty, or until an instruction is encountered that requires a 

~~~----------------------------~ 

~----------+------------------,

SYSTEM

74S04
OR

74S240

DATA ~-----I---4
BUS

LOCAL WRITE BUS
o

MEMORY/I/O

LOCAL READ BUS DEVICE

74S240

Figure 3-62. Buffering Devices without OE/RD and with
Separate Input/Output

3-61

210760-127

210760-001

inter THE iAPX 286 LOCAL BUS

--WRITE OPERATION~ I • HOLD STATE ..

I TC I TC I
</:>1 I </:>2 </:>1 I </:>2 I </:>1 Tr </:>2 I </:>1 Tr </:>2

eLK

_ __ -J1 HOLD •

HLDA -------------.....11
~.~ -----Ir ----------------------------

~,~/~AO, ----»)~?»~»'!'!"I»>~~»~»)-~)'!'!"I»)~~»~~)'!'!"I»)~»}-__________________ _
015-00 ____________ "">Jj>).-------------------
READY ~ \\ \\ \\\\ \\ \ \\ \\\\ \\ \\\ \\\\ \\ \\ \\ \\ 1/1//11; /II IIIII!IIJ!!IIII II /II II /11M III II! /J////j;
MWTC __________ J/

. DEN --------------~
\~------------

Figure 3-63. Entering the Hold State

210760-65

bus cycle. When hold request is dropped, the bus unit will not drive the address, data, or status/control
lines until a bus cycle is required. Since the CPU may still be executing pre-fetched instructions when
HOLD drops, a period of tIme may pass when the CPU is not driving the bus. Internal pull-up resistors
on the 82284 S 1 and SO inputs make this time look like an idle cycle and prevent spurious commands
from being issued. Figure 3-64 shows the sequence of signals for exiting the hold state and immediately
starting an 80286 bus cycle.

To guarantee valid system operation, the designer must ensure that the requesting device does not
assert control of the bus prior to the 80286 relinquishing control (no bus cycles should be performed
by the device until HLDA is received). The device must also relinquish control of the bus (tri-state all
outputs to the bus) before the 80286 resumes driving the bus.

As shown in Figure 3-65, the HOLD request into the CPU must be stable 20 ns prior to the negative
going edge of CLK at the start of a bus state (start of phase 1), and must remain stable for 20 ns after
CLK goes low to guarantee recognition on that clock edge. This same set-up time is required when
HOLD goes low to exit the hold state.

Since other bus masters such as DMA controllers are typically used in time-critical applications, the
amount of time that a bus master must wait for access to the local bus is often a. critical design consid­
eration.

3-62 210760-001

THE iAPX 286 LOCAL BUS

I- HOLD STATE .. ~WRITE OPERATION---

I
TH

I
TH

4>1 I 4>2 I
CLK

TH

I

I
I

TS

I I
Te

I I

HOLD ~\.------------..;.1---------­
I
I

HLDA -----------~'\~ ____ ~l-----------
I
I

~.~ ---------------------------~~ ___ ~I
I
I

~~fo,~!~~iAAO, ------------------------<'-_+-i _V_AL_ID_A_DD_R_ES_S __ "","»""~)"",~"",~)"",,,0
- i

I

015-DO ---------------------------f----<"' ___ V_AL_IO __ _

I
I

ALE ----------------~i---~"'----I
I

DEN ----------------~i---J,I I
- I

MWTC ----------------~i----~'\~ ____ _

210760-66

Figure 3-64. Exiting the Hold State

Figures 3-63 and 3-64 show the minimum possible latency for the 80286 CPU (2'12 processor clocks
from HOLD active to HLDA active and Ph processor clocks from HOLD inactive to HLDA in active).

The maximum possible HOLD-active to HLDA-active time (HOLD latency) depends on the software
being executed. The actual HOLD latency at any time depends on the current bus activity, the state
of the LOCK signal (internal to the CPU) activated by the LOCK prefix, and interrupts. The 80286
will not honor a HOLD request until the current bus operation is complete. Table 3-5 shows the types
of bus operations that can affect HOLD latency, and indicates the types of delays that these operations
may introduce. When considering maximum HOLD latencies, designers must select which of these bus
operations are possible, and then select the maximum latency from among them.

As indicated in Table 3-5, wait states affect HOLD latency. The 80286 CPU will not honor a HOLD
request until the end of the current bus operation, no matter how many wait states are required. Systems
with DMA where data transfer is critical must insure that READY returns sufficiently soon.

3-63 210760-001

THE iAPX 286 LOCAL BUS

TX

elK

HOLD ------'

210760-67

Figure 3-65. HOLD Input Signal Timing

Table 3~5. Bus Operations Affecting HOLD Latency

Bus Operation latency, In System elK cycles

Processor Extension Data transfer
to Odd-Aligned Word

Transfer to Odd-Aligned Word

INTA Interrupt

XCHG Word on Even Boundary

XCHG Word on Odd Boundary

LOCKed MOVS, INS, OUTS

NOTES:

(1) W = number of Wait states per cycle

(2) N = number of transfers

DMA CONFIGURATION

10 + 2W(1) CLKs

7 + 2W CLKs

10 + 2W CLKs

11 + 2W CLKs

17 + 4W CLKs

8 + N(2)(4 + 2W) CLKs

Atypical use of the HOLD/HLDA signals in an iAPX286 system is bus control exchange with DMA
controllers or I/O devices that perform DMA. Figure 3-66 shows a block-level inter-connect diagram
for a "generic" DMA controller. The DMA controller resides on the local bus. This is probably the
simplest DMA configuration possible with the 80286, but it requires that the DMA controller have an
interface that functions like the 80286 local bus signals.

DMA controllers that do not have an 80286-like interface may still be configured in an iAPX 286
system. at the system bus level. Figure 3-67 shows a general inter-connect diagram· for this type of
application. The CPU is totally isolated from the system bus when in the T h state, and the DMA
controller must be compatible with the iAPX 286 system bus. . , .

3-64 210760-001

82284

'. ~

THE~PX286LOCALBUS

...
A23·AO -

- ~
RESET 80286 r-- -
READY r-- - ~

ClK r-- - n HOLD HlDA

015·00

'"

HOLD HlDA f--
r--

~

'----+- DMA
CONTROllER

D
DMA REQUESTS

AND ACKNOWLEDGES

Sl. SO. MIlO ----...

8282
(3X)

8286
(2X)

82288

Figure 3-66. DMA Controller on the Local Bus

Initializing the iAPX 286 Processor

-.Iio.

>

...
>

...
>

ADDRESS
BUS

DATA
BUS

COMMAND
AND CONTROL
SIGNALS

210760·68

The 80286 RESET input provides an orderly way to start or restart a system. When the processor
detects the positive-going edge of a pulse on RESET, it terminates all activities until the signal goes
low, at which time it initializes the CPU to a known internal state; the CPU then begins fetching
instructions from absolute address FFFFFOH. .

80286 INTERNAL STATES

When an active RESET signal goes low, the 80286 registers are initialized as shown in Table 3-6. The
valid fields of the segment and description registers are set on, indicating valid segments. All privilege­
level fields are set to zero.

The RESET signal initializes the CPU in Real-Address mode, with the CS base register containing
FFOOOOH and IP containing FFFOH. The first instruction fetch cycle following reset will be from the
physical address formed by these two registers, i.e., from address FFFFFOH. This location will normally
contain a JMP instruction to the actual beginning of the system bootstrap program.

For iAPX 286 systems to operate in Protected Virtual-Address mode, the 80826 (executing in Real­
Address mode) must enter Protected mode as part of the software initialization routine.

3-65 210760·001

THEiAPX .286 L.OCAL BUS

, ..
8282

~
(3X) --l
OE

I

ro- .'

~ I--
8286 80286 .I/. ...

82284 : ~ CPU (2X))

~
:

r--
r- OE

HOLD HLDA I .~
DEN

-.:.....- ...
.82288 , > ..

.'

J
.,

.

.. AEN

1

HLDA

HOLD

READY DMA
CONTROLLER

DMA REQUESTS
AND ACKNOWLEDGES < ~

Figure 3-67. DMA Controller on a Private System Bus

Table 3-6. CPU State Following RESET

CPU Component Content

Flags 0OO2H
MSW FFFOH
IP FFFOH
CS Selector FOOOH
OS Selector OOOOH ..
SS Selector

..
OOOOH ... ES Selector OOOOH

CS Base FFOOOOH
OS Base OOOOOOH
SS Base OOOOOOH

. ES Base OOOOOOH
, CS Limit FFFFH
·.OS Limit FFFFH
SS Limit FFFFH
ES Limit FFFFH
lOT Base OOOOOOH
10T''Limit FFFFH

3-66

ADDRESS
BUS

DATA
BUS

COMMAND
AND CONTROL
SIGNALS

210760-69

:

210760-001

inter THE iAPX 286 LOCAL BUS.

To accommodate an 80286 operating in both Real-Address mode and Protected mode, the EPROMs
containing the system bootstrap program must answer to both a 20~bit and a 24-bit physical address.
In Real-Address mode, the system bootstrap EPROMs must respond to addresses in the available.
I-Megabyte address' space (ignoring the upper four address bits). In Protected mode, these same·
EPROMs typically respond to addresses only in the top megabyte of the available 16-Megabyte address
space (using the full 24-bit address).

Figure 3-68 shows a circuit that permits this type of operation by generating one of the terms in the
address-decode logic selecting the bootstrap EPROMs. This term inhibits the. decoding of A23-A20
after RESET, when the system runs in Real-Address mode. After entering Protected mode, the boots­
trap program must strobe the PROTMODE signal to allow full use of the available 16-Megabyte·
address space.

80286 EXTERNAL SIGNALS

At power-up, the 80286 CPU requires 5 milliseconds to allow the capacitor. connected to the CAP pin
to charge up. RESET should be asserted during this time to prevent spurious outputs. After power-up, .
the CPU requires a high on the RESET input with a minimum pulse width of 16 processor clocks. The.
processor is internally active for a minimum of 50 CLK cycles after RESET goes low before perform­
ing the first memory cycle. Maskable and non-maskable interrupts (the INT and NMI inputs) are not
recognized during the .internal reset.

When RESET is driven high, the 80286 signals will enter the states shown in Table 3-7. The timing·
for the signals during reset is shown in Figure 3-69. .

The 80286 data bus lines enter the tri-state ,OFF condition, when R.ESETis active. If system RESET
occurs during a bus cycle, RESET forces the 82284 Clock Generator to drive READY low to termi­
nate the bus cycle and reinitialize the 82288 Bus Controller.

The 82284 Clock Generator contains internal pull-up resistors on its SI and SO status inputs, causing.
the Bus Controller to interpret the 80286 RESET condition as an idle bus state. The outputs from the
Bus Controller during an idle state are shown in Table 3-8.

1/0
PORT

OR
ADDRESSABLE

LATCH

RESET

INHIBIT UPPER FOUR
ADDRESS BITS . 'TO ADDRESS;

DECODE LOGIC

Figure 3-68. Decoding Addresses in Both Rea.1
, and Protected Modes .

210760·70

210760·001

inter THE iAPX 286 LOCAL BUS

Table 3-7. 80286 Bus During RESET

Signals Condition

A23-AO Logic 1
015-00 Tri-state OFF
81,80 Logic 1
PEACK Logic 1
SHE Logic 1
LOCK Logic 1
M/IO_ Logic 0
COO/INTA Logic 0
HLOA Logic 0

Table 3-8. 82288 Command States During RESET

Signal. State

ALE Logic 0
OEN Logic 0
OTfR Logic 1
MCE Logic 0

Commands Logic 1

ons
r
1-!i-2ons

mI"-+O_:;;;;.;. _____ -+-____ -+-_~f_------.....:;M:::.:.:.IN~MIN

51·SO
UNKNOWN PEACK

5

A23-AO
UNKNOWN BHE

tMQ
COD/INTA UNKNOWN

LOCK UNKNOWN

HLDA _____ U_N_KN_O_W_N _________ ~~----------------------~S'5~-------

210760-71

Figure 3-69. Signal States During RESET

3-68 210760-001

THE iAPX 286 LOCAL BUS

Note that the 82288 Bus Controller does not tri-state its command outputs during idle bus states. In a
single CPU system, if the system designer wishes to effectively remove the 80286 CPU from the bus
during RESET, the RESET signal can be connected to the 82288's MB input and to the output enable
of the address latches (Figure 3-70). This forces the command and address bus interface into the tri­
state OFF condition while the 82288 drives DEN inactive, disabling the data bus transceivers. If the
82288 command outputs are tri-stated during RESET, the command lines should be pulled to Vee
through 2.2K ohm resistors to keep these signals in the HIGH state.

iAPX 286 Bus Timing

Figure 3-71 shows the timing relationships of the major iAPX 286 local bus cycles. Included in this
figure are the timing relationships for: '.

• Address and ALE timing

• Command timing

• READY timing

• Read cycle timing

• Write cycle timing

For most of these signals, timing is controlled by the system CLK signal. For this reason, the timing
relationships between signals can be deduced simply by determining the clock cycles between the
controlling clock edges, and adding or subtracting the appropriate minimum or maximum timing delays.
Additional delays through any transceivers or latches must also be considered when determining signal
timing.

Vee CEN/AEN

RESET
15

MB
82284 £ DEN 6~~~6 CLOCK

GENERATOR

9 __ CONTROLLER

29

RESET OE
8286
DATA

TRANSCEIVERS

80286
CPU

9
OE

8282
ADDRESS
LATCHES

210760-72

Figure 3-70. Disabling the 80286 Bus Interface on RESET

3-69 210760-001

~

~

THE iAPX 286 LOCAL BUS

READ CYCLE WRITE CYCLE
READ

BUS CYCLE TYPE

ClK

51 .50

A23-Ao "TT'l'TT7'TT7777.;.,..;:mHf---!---+-----{mmJ.,-t--+:-:-:~+--___knr.rA/+_-_:::_:_t:_-­
M 10. CODINTA '.i..1.J.'.i..I.J.1...Li..i.l..Li..i..I..f.J.UH--....::..:f=.:...:.:.....=t---{""'WJ'-t---t---+---t'\UoU/'"+_---r----

SHE. lOCK (J..J..'-LI...'-LI...r..LJ...I.'..LJ...I.'..LJ...I.'..LJ...I..u...L.u...LJI'"! __ -t ______ { 'U.J..J..LLlI'-f----I----I--_¥ '--_-+-__ _

READY

SROY + SROYEN

ARDV + AROVEI'I

PClK

ALE

CMOlY

MWTC

MRDC

DTR

DEN

210760-73

Figure 3-71. iAPX 286 Local Bus Cycle Timing

One aspect of· system timing not compensated for by this method is the worst-case relationship between
minimum and maximum parameter values (i.e:, tracking relationships). For example, consider a signal
that has specified minimum and maximum turn-on and turn-off delays. For MOS devices such as the
iAPX 286 components, it is typically not possible for a device to simultaneously demonstrate a maximum
turn-on and minimum turn-off delay even though worst-case analysis might imply the possibility. Because
of this, worst':'case analyses that mix both minimum and maximum delay parameters will typically
exceed the worst case obtainable. Therefore, these analyses need not undergo further subjective degra­
dation to obtain reliable worst-case values.

3-70 210760-001

THE iAPX 286 LOCAL BUS

The following sections provide guidelines for analyzing the critical 80286 timing relationships for each
of the signal groups described above. In these sections, an 8-MHz 80286 is assumed (one system CLK
cycle = 62.5 ns). 80286 processors running at other clock frequencies will have correspondingly shorter
or longer values for each of their timing relationships.

For a more detailed discussion of local bus timing related specifically to interfacing memory and
peripheral devices to the iAPX 286, see Ch~pters Four and Five.

ADDRESS AND ALE TIMING

The address/ALE timing relationship is important to determine the ability to capture an address and
local chip-selects during a bus cycle. The following discussion considers the standard bus timing using
the ALE signal from the 82288 Bus Controller. Other design techniques having different timing
relationships are described in Chapter Four.

The maximum address valid delay «(13)max = 60 ns) from the 80286 guarantees an address set-up
time of at least 68 ns before ALE goes active, even assuming a minimum ALE active delay
«25)min = 3 ns). If we assume a maximum strobe to output delay for the latches
(STB-to-Output delay (max) = 45 ns for 8282 and 40 ns for 8283), and a maximum ALE active delay
«25)max = 12 ns), then the latest a valid address will be available at the outputs to the latches would
be 5.5 ns before the start of Tc for the 8282 latch, and 10.5 ns for the 8283 latch.

The minimum address hold time from ALE inactive (42.5 ns) guarantees a stable address until well
after ALE goes low. The ALE and latched address hold times guarantee a valid address to the system
for a minimum of 50 ns after command inactive. .

Note that the maximum valid delay and minimum hold time for BHE guarantee that it will be latched
by ALE and will be available to the system at the same time and for the same duration as the latched
address.

ALE may also be used to capture latched chip-selects for local memory or I/O. To provide valid selects
before ALE falls low, address decoding must be performed in the window between address valid and
the trailing edge of ALE:

3 CLK cycles at 8 MHz
- Address valid delay (max)
- ALE inactive delay (min)
- Input-to-STB setup time (min)
Minimum address decode time

187.2ns
60.0 ns

0.0 ns
0.0 ns

127.5 ns

Decoding should be performed sooner if a device select is required before a command signal goes
active. Latched chip-selects are described in a previous section.

COMMAND TIMING

Command timing in Figure 3-71 is shown for an MRDC command with no delays, and for an MWTC
command with 1 delay. Commands are typically delayed using the 82288 CMDLY input to provide a
longer time from address and chip-select valid to command active. The use of CMDL Y was discussed
in a previous section. Note that delaying a command does not automatically lengthen the bus cycle.

3-71 210760-001

THE iAPX 286 LOCAL BUS

Commands are enabled on the falling edge of CLK at the start of T c. Commands are disabled on the
falling edge of CLK after the end of T c. The minimum turn-on and turn-off time for commands are
identical (Command delay (min) = 3 ns), and maximum turn-on and turn-off times are also the same
(Command delay (max) = 20 ns). Thus, the minimum command pulse width is:

2 CLK cycles at 8 MHz
- Command turn-on delay (max)
+ Command turn-off delay (min)
Minimum Command Pulse Width =

125 ns
- 20 ns
+ 3 ns

108 ns

with no delay and 45.5 ns with 1 delay. These command pulse widths are increased by 125 ns (2 CLK
cycles) for each wait state inserted into a bus cycle.

READY TIMING

The detailed requirements of the 80286 READY signal and the Ready. inputs for the 82284 were
described in an earlier section. The 82284 Ready inputs are typically generated from the decoded
address for a selected device, or address decode and command signals. Ready timing is shown for 0
wait state execution to illustrate the relationship of the 82284 ARDY and SRDY input requirements
with respect to address decode outputs and command signals.

Outputs from address decode logic can easily meet the ARDY or SRDY input requirements. ARDY
obviously cannot be qualified by a command signal, however, even when the command is not delayed.
A command with no delay will meet the set-up requirements of SRDY. Once the maximum command
active delay of 25 ns and the minimum SRDY set-up time of 20 ns are subtracted from phase 1 of the
Tc clock cycle (62.5 ns), 17.5 ns remains for external logic to generate the SRDY signal. Commands
with 0 or 1 delays maybe used to qualify either ready input if the system is running with one or more
wait states. Assuming the maximum command active delays, the external logic times for zero or one
wait state operation at 8 MHz are as follows:

82284 Set-up Hold External External
Input Time Time Logic Time Logic Time

o Cmd Delay 1 Cmd Delay

ARDY o ns 16 ns 100 ns 37.5 ns
SRDY 20 ns o ns 142.5 ns 80 ns

An additional 125 ns (2 CLK cycles) are added to external logic time for each additional wait state.

READ CYCLE TIMING

Read timing consists of conditioning the bus, activating the read command, and establishing the data
transceiver enable and direction controls. Figure 3-71 shows read timing for a CPU running with 0
wait states. During a read, the latched address is available to the system a minimum of 2.5 ns before
the start of Tc' or 7.5 ns before command active. The read command is driven active early in Tc to
enable the addressed device. DT jR is also driven low to condition the data transceivers to receive data,
and DEN then enables the transceivers~ .

3-72 210760-001

THE iAPX 286 LOCAL BUS

Data from the selected device must be valid at the CPU IOns before the end of T c and must hold
valid for 5 ns after T c. Any propagation delay through data transceivers must also be considered.
Maximum input to output delay through the 8286 transceiver is 30 ns; maximum delay through the
8287 is 22 ns. This results in the following minimum address valid to data valid time (using 8286 non­
inverting transceivers):

3 CLK cycles at 8 MHz
- ALE active delay (max)
- 8282 STB-to-output delay (max)
- 8286 transceiver delay (max)
- Read data setup (min)
Minimum Address access time =

187.5 ns
15.0 ns
45.0 ns
30.0 ns
lOOns
87.5 ns

Minimum command active to read data valid time is 90 ns. These timing relationships increase by 125
ns for each wait state added to the bus cycle, as follows: .

Minimum Times o Wait 1 Wait 2 Wait 3 Wait
States State States States

Address valid 87.5 ns 212.5ns 337.5 ns 462.5 ns
to Buffered Data
Valid (using 8286)

Address valid 117.5 ns 242.5 ns 367.5 ns 492.5 ns
to Data valid
(unbuffered)

CMD active to 90 ns 215 ns 340 ns 465 ns
Data Valid

Note that the Address-valid to buffered-data-valid times assume an 8286 device; for the inverting
8287, these minimum times can be increased by 8 ns each.

WRITE CYCLE TIMING

Write timing involves providing write data to the system, generating the write command, and control­
ling data bus transceivers. Figure 3-71 shows write timing for a CPU running with 0 wait states. The
transceiver direction control signal DT IR is conditioned to transmit at the end of each read cycle and
does not change during a write cycle (DT IR is shown going high after a read). Data is placed on the
data bus and DEN is driven active early in the bus cycle. Write data is guaranteed to be valid before
the start of Tc (12.5 ns min), and before the write command becomes active (17.5 ns min). The write
command is enabled early in T c. Following is minimum time from write data valid until the data is
latched into the system device (command inactive):

3 CLK cycles at 8 MHz
- Write-data valid delay (max)
+ Command inactive delay·(min)
Minimum write data access time =

3-73

187.5 ns
- 50.0 ns
+ 3.0 ns

140.5 ns

210760-001

THE iAPX 286 LOCAL BUS

Write command pulse width is 108 ns minimum. Data is held valid fora minimum 0[,37.5 ns after the
write command goes inactive. All of.these timing relationships increase 125 ns for each added wait
state, as follows:

Time o Wait 1 Wait 2 Wait 3 Wait
States State States States

Data Valid to 142.5 ns 267.5 ns 392.5 ns 517.5 ns
CMD inactive

Address valid 132.5 ris 257.5 ns 382.5 ns . , 507.5 ns
to CMD inactive

Command Pulse 108 ns 233 ns 358 ns 473 fiS
Width

Of course, any propagation delays through data transceivers should be considered when finding the
actual data set-up times for the system device being written to. The maximum input to output delay
through the 8286 data transceiver is 30 ns; maximum delay through the inverting 8287 is 22 ns.

INTER~UPT -ACKNOWLEDGE TIMING

Timing for an interrupt-acknowledge cycle is identical to a read, with the INTA command being issued
instead of MRDC or IORC. The MCE signal is also issued during an interrupt-acknowledge cycle,
going high following the start of Phase 2 of Ts during the first INTA cycle, and- falling low during
Phase 2 ,of the final T c of the cycle. The two back-to-back INT A cycles required to complete an inter-
rupt-acknowledge sequence have been described in an earlier section. '

Physical Design Considerations

When designing a system using the 80286 processor, the physical design considerations include the
connection and decoupling of power, ground, and the 80286 CAP pin, and physical provisions for
debugging with an oscilloscope, logic analyzer, or Intel Integrated In-Circuit Emulator (PICE).

The 80286 processor is packaged in either a JEDEC-approved 68-pin lead less chip carrier, or in a Pin
Grid Array package. Figure 3-72 shows the pin configurations for both the pad/pin view (the underside
of the component when mounted on a PC board) and the top view (the top of the component when
mounted on a PC board). The footprint of the Pin Grid Array package is identical to that of the socket
for the leadless chip carrier, as shown in the figure. ,

POWER, GROUND, AND CAP CONNECTIONS

As shown in Figure 3-73, the 80286 processor has two power pin,S 'and three ground pin connections.
The two power pins must be connected to +5 volts; all three ground pins must be connected to 0 volts.
A 0.1 JLF low-impedance decoupling capacitor should be connected between power and ground. This
capacitor should be located as close as possible to the CPU socket.

The power and ground connections from the power supply to the CPU should be as low impedance and
inductance as practically possible. Large surge currents are possible, for example, when all, 24 address
outputs change at once. '

3-74 210760-001

THE iAPX 286 LOCAL BUS

COMPONENT PAD VIEW-AS VIEWED FROM
UNDERSIDE OF COMPONENT WHEN MOUNTED ON
THE BOARD.

~O<O_C7\ ~ = .. ~ ~",::! ~
>0000000000000000

58-PIN LEADLESS CHIP CARRIER

I-
@@

0@ @@ @ @ @
@@ @
@@ @
@@ @
@@ @

@
@
@
@

@@
@@

@@
@@

SWEDGE PIN

fi"'USV
NC

. N.C.

INTR
NC

P.C. BOARD VIEW-AS VIEWED FROM THE
COMPONENT SIDE OF THE P.C. BOARD.

~ !! '" ~ ~ .. ::,., 5!",0I'" ~ 0 ~
0000000000000000>

NMI .,

Vss
PEREa

Vee
READY
HOLD

r,lr l r lr lr 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1C]r 1 r 1r 1 r

I:D Z Z oe:(oCt c(> ;;: I!l! U U I;;; 15l1~ ::: ;: ::l I

'. ~. «

I
.122 (3.099)

~.099 (2.489)

.SWEDGE PIN----==:;;;;O:JI
PIN 1

PIN 110
CORNER ~"100T~p540) I~~ ,

1.000 REF
(25.400) .

58-PIN CERAMIC PIN GRID ARRA Y

- - - - - - ,- -' -35 37 39 41 43 45 47 49 51

- - - - '_ - - - - e'·_ 34 36 38 40 42 44 46 48 50 53 .52

- 32 - 33 '''55 - 54

- - -57 -56 30 31

-28 -29 -59 -58

- -27 -61 -60 26

-24 -25 -63 -62

- - - -22 23 65 64

-20 -21 -67 -66

- -19 -16 -14 -12 -10-8 - -4 -2 -68 18 .6

-17 -15 -13 -11 -9 -7 -5 -3 :-1

BOTTOM VIEW

58-PIN JEDEC SOCKET PIN CONFIGURATION

, . .

NOTE: N.C. 'PADS MUST NOT BE CONNECTED.

Figure 3-72. 80286 Pin Configuration

3-75

Ao
A,

A,

CLK

Vee
RESET

210760-74

210760-001

inter THE iAPX 286 LOCAL BUS

62

+ 5VDC -------t--6--~

GND----~--~~~

0.4711f

80286
CPU

Figure 3-73. Required Power, Ground and CAP Connections

210760-75

A 0.47~F ± 20% 12V capacitor must be connected between the 80286 CAP pin and ground. This
capacitor filters the output of the internal substrate bias generator. A maximum leakage current of 1
J.1.A is allowed through the capacitor.

DEBUGGING CONSIDERATIONS

The 68-pin JEDEC socket does not allow for direct access to the pins of the CPU using an oscilloscope
or logic analyzer probe. Most of the CPU signals are accessible on the DIP leads of the latches, trans­
ceivers, and the Bus Controller. To allow convenient access to the signals directly at the CPU, however,
physical debugging aids should be provided in the PC board layout.

Solder pads located around the CPU package and labelled with the signal name provide the easiest
and most inexpensive solution to access by a scope probe. To allow probes to be temporarily attached
(clipped) to the signal, terminal posts should be soldered into holes at the solder pad locations
(Figure 3-74). These terminal posts allow easy attachment of oscilloscope and logic analyzer probes.

When using Intel's PICE as a debugging tool, the designer must also make provisions for connecting
the 80286 probe cable to the CPU socket. Figure 3-75 shows the requirements to physically support
debugging with PICE. The 80286 probe exits the socket on the side corresponding to pins 18-34 of the
CPU package (the 80286 component is installed upside down in the socket). A Texttool 268-5400 or
similar socket is recommended for ICE access. The texttoollid must allow access to the socket by the
ICE cables. At least one inch of space must be provided on that side of the socket to allow the probe
cable to fan away from the board. DIP packages soldered to the printed circuit board probably will.
not interfere with the cable on the 80286 probe. High profile devices or devices installed in socket may
interfere with the cable and should not be located near that side of the CPU package.

THE iLBX BUS-A HIGH-PERFORMANCE LOCAL BUS STANDARD

The iLBX bus is a high-performance bus interface standard that permits the modular expansion of
iAPX 286 systems by simply adding additional boards containing memory, I/O subsystems, and other
peripheral devices or controllers to the iAPX 286 local bus.

The iLBX Local Bus Expansion standard is described in the iLBX Bus Specification, Order Number
144456, Rev. B.

3-76 210760-001

inter THE iAPX 286 LOCAL BUS

210760-76

Figure 3-74. Terminal Posts Provide Signal Access

SIDE VIEW

TOP VIEW 51 35
52 34 ~

PROBE
CABLE

<;>

68 18
['...1 17

210760-77

Figure 3-75. 121CETM Probe Cabling Requirements

3-77 210760-001

Memory Interfacing 4

CHAPTER 4
MEMORY INTERFACING

This chapter provides guidelines for designing memory subsystems for the iAPX 286.

One of the principal considerations in designing memory subsystems for the iAPX 286 is the effect of
memory performance on the performance of the overall iAPX 286 system. In this chapter, the perform­
ance implications of specific memory designs are examined in detail:

• In the first section of this chapter, the tradeoff between system performance and memory cost is
examined in detail. The important relationships to consider are the relationship of system perform­
ance to memory performance, memory performance to memory device speed, and, finally, memory
device speed to memory cost.

• The second section uses benchmark test results to identify the actual relationship between memory
performance (measured by the number of required wait states) and overall system performance.
The impact of wait states on overall system performance is not as severe as you might initially
expect.

• In the third section, several memory interface techniques are introduced to show that memory system
performance is determined as much by the memory system design as it is by the actual speed of the
memory devices used. Specifically, two interface techniques can be used to gain increased memory
performance while using relatively slow memories.

• The fourth section contains a detailed timing analysis of the three memory interface techniques
introduced in the previous section.

• The fifth section of this chapter contains specific details for interfacing common types of memory
devices to the iAPX 286. ROMs, static RAMs, and pseudo-static RAMs are described, as well as
the use of the 8207 Advanced Dynamic RAM Controller to interface to dynamic RAMs.

MEMORY SPEED VS. PERFORMANCE AND COST

In a high-performance microprocessing system, overall system performance is linked very closely with
the performance of its memory subsystems. Memory is used for program storage, and for the storage
of data and information used in processing. The vast majority of bus operations in a typical micropro­
cessing system are operations to or from memory.

It makes little sense to couple a high-performance CPU with low-performance memory; a high­
performance CPU running in a system with a large number of wait states provides no better throughput
than a low-performance processor, and is certainly more expensive. To realize the performance poten­
tial of the 80286 CPU, it is imperative that the CPU be coupled to relatively fast memory.

At the same time, however, fast memory devices are more expensive than slower memory devices. In
a system such as the iAPX 286 supporting up to sixteen megabytes of addressable memory, it is clear
that providing a large physical memory space using the fastest available memory devices would result
in an exceedingly costly design.

This cost/performance tradeoff can be mediated to some extent by partitioning functions and using a
combination of both fast and slow memories. Locating the most frequently-used functions in fast memory
and the less-used functions in slower memory will reduce costs over a system that uses fast memory
throughout. For example, in a RAM-based system that uses read-only memory devices primarily during

4-1 210760·001

MEMORY INTERFACING

initialization, the PROM/EPROM can be very slow (3-4 wait states) with little affect on system
performance. RAM memory can also be partiti~ned into fast local memory and slower system memory.

It is clear, then, that designers must strike a balance between system performance and system costs,
and that the choice of memory subsystems is the balancing factor. In order to intelligently tradeoff
cost versus performance, however, it is useful to examine the principle relationships that make up this
balance.

Three relationships 'tie together system cost and system performance:

1. System performance as a function of memory performance

2. . Mem~ry performance as a functio~ of ~emory ~ubsystem de~ign anq memory ,device speed

3. Memory device speed as related to memory. subsystem cost·

System Performance and Memory Performance

System performance measures the speed at which the microprocessing system performs a given task
or set of instructions. Memory performance measures the speed at which the microprocessor can access
or store a single item of information into memory. To accommodate slower memories, wait. states can
be inserted into the 80286 bus cycle .. A less-common alternative is to .use a sl9wer clockfrequency for
the 80286, thereby lengthening the 80286 bus cycle.

Each wait st~te that is inserted into 'a bus operation ~epresents a 50% increase in bus cycle time over
zero-wait-state operation. Although at first glance you might expect memory performance and overall
system performance to track each other in a one-to-one relationship, this is not actually. the case.'

As explained in the following section, the increased bus cycle time'for each additional waitstate results
in an average increase of only 25% in overall CPU execution time, rather than the 50% increase that
simple hand calculations might predict. Benchmark tests reveal that overall CPU execution time
increases by about 25% over zero-wait operation when running with 1 wait state, arid an additional·25%
over zero-wait operation for each additional wait state. The following section of this chapter explains
th~ architectural aI1doperational characteristics ,of the 80286 which reduce the effect of wait states on
system performance. .

The 80286 clock frequency is directly related to system performance; execution time increases in direct
proportion to the increase in clock period, or the reduction in clock frequency. A 6-MHz 80286 requires
33 percent more. time to execute a program than an 8 MHz 802~6 operating with the same number of
wait .states. Since a slower clock frequency increases t~e 8,0286 bus cycle times, however, fewer wait
states may be required to accommodate slow memory devices. A slight. reduction in clock frequency
may actually increase system perforqlance iI1some instances if the slower clock allows the same memories
to be used with fewer wait states.

Memory Speed· and 'Memory Performance

The relationship between memory subsystem performance and the speed of individual memory devices
is determined by the design of the memory subsystem. A later section of this chapter describes several
design alternatives that permit relatively high-performance memory subsystems to be designed using
relatively slower memory ·devices. These design alternatives include the use of special address strobe
logic and the use of'interleavedmemory banks;

4-2 210760-001

MEMORY INTERFACING

Special address strobe logic can be used in place of the 82288 ALE signal to generate a valid address
to the memory subsystem earlier in the 80286 bus cycle. This technique results in an increased memory
access time, permitting the use of slower memories without requiring additional wait states.

Interleaving memory access between two o'r more banks of memory devices can also increase the memory
access time for most' bus cycles. Using interleaved memory, memory devices are grouped into banks so
that each sequential fetch comes from the next memory bank. In a memory system partitioned into
four memory banks, for example, a program that fetches four 16-bit words from consecutive addresses·
actually fetches one word from each bank. The early address generated by the CPU can be latched
and made available to the nexf memory bank while the address for the previous cycle is still valid for'
the previously-selected memory bank. These memory interface techniques are described in more detail
later in this chapter.

iAPX 286 SYSTEM PERFORMANCE WITH WAIT STATES

The iAPX 286 system supports wait states in the 80286 bus cycle to allow the use of slower memory
and peripheral devices. These wait states' extend the time required to perform individual bus opera-
tions, however, and so directly influence iAPX 286 system performance. .

Wait states extend the 80286 bus cycle by adding an additional Tc state for each wait state. desired.
For an 8-MHz 80286, each wait state adds an additional 125 ns (an increase of 50%) to the minimum.
bus cycle time of 250·ns. An 80286 CPU running with.one wait state executes a bus cycle in 375 ns,'
compared with the 250 ns required when operating with zero wait states. .

'Calculating performance degradation from this figure alone, however, will lead to overly-pessimistic
; results. On average, benchmark tests show that each wait state a'dds an additiomil 25% of the zero-wait
execution time to the overall execution time of a task. Simpe hand calculations would predict an
increase of 50% over the zero-wait execution time for each wait state.

Table 4-1 shows the results of benchmark tests using four Pascal benchmarks and five assembly-language
benchmark programs. These benchmarks were executed on an iAPX 286 system operating with from
zero to four wait states. The Pascal benchmarks averaged a 23% increase in execution time for each
additional wait state, while the assembly-language benchmarks showed an average 20% increase in
execution time for each additional wait state.

Explaining .the Benchmark Results

As shown in the benchmark results in Table 4-1, the effect of wait states on iAPX 286 performance
varies with the nature of the program that is executing and the types of bus cycles being performed.
The. pipelining within the. 80286 CPU sometiines causes idle' bus cycles while the CPU is' executirig
prefetched instructions, and no other bus operatioris are requeste~L Wait states reduce the number of
these idle bus cycles and, on average, do not produce as severe a degradation in performance as simple
performance calculations might predict.

The characteristics of an individmil program are important in determining processor perforinance with
wait statrs. For example, when the CPU is executing a program containing many multiplication and
division operations,performance is not degraded signifieantly by wait states. This is because processor
performance is limited by processing speed and· not by bus throughput.

During program execution, the 80286 Bus Unit will prefetch instructions and fill the instruction and
prefetch queues. These prefetch operations occur several clock cycles ahead of execution and occur

4-3 210760-001

MEMORY INTERFACING

, Table 4-1. iAPX 286 Performance With Wait States

Intel Pascal Benchmarks

Benchmark Performance o Walt 1 Walt 2 Walt 3 Walt 4 Walt
States State States States States

Queens Time (5) 7.19 9.224 11.496 14.43 17.2
Normalized Time (1.0) " (1.28) (1.6) (2.0) (2.4)

GCD Time (5) 12.13 14.665 16.87 20.48 24.23
Normalized Time (1.0) (1.21) (1.39) .(1.69) (2.0)

Bubble Time (5) 5.587 7.586 9.74 11.83 14.64
Sort Normalized Time (1.0) (1.36) (1.74) (2.12) (2.62)

Matrix Time (5) 6.92 7.607 9.12 11.08 13.33
Mult. Normalized Time (1.0) (1.1) (1.32) (1.6) (1.93)

Average Normalized Time: (1.0) (1.23) , (1.51) (1.85) , (2.23)

Intel Assembly-Language Benchmarks

Program Performance o Walt 1 Walt 2 Walt 3 Walt
Stat~s State States States

PCALL Time (us) 17.0 21.38 27.50 33.25
Normalized Time (1.0) (1.26) (1.62) (1.96)

BSORT Time (us) 494.0 633.0 778.0 946.0
Normalized Time (1.0) (1.28) (1.58) (1.92)

XLAT Time (us) 415.0 466.0 565.0 698.0
Normalized Time (1.0) (1.12)' (1.36) (1.68)

XFORM Time (ms) 285.0 317.0 346.0 385.0
Normalized Time (1.0) (1.12) (1.22) (1.3.5)

INSPECT Time (ms) 217.0 254.0 289.0 346.0
Normalized Time (1.0) (1.17) (1.33) (1.59)

Average Normalized Time: (1.0) (1.19) (1.42) (1.70)

when the bus would otherwise be idle. Any wait states in these instruction prefetches will not usually
delay program execution.

On the other hand, a program that makes extensive use of the bus for manipulating data will show
greater degradation in performance when wait states are introduced. Programs that use many data
read and write operations are examples of programs that are bus-limited.

Since data read operations are performed in response to an executing instruction, the 'Execution Unit
must wait for the data to be read. Therefore, any delay in reading the data will have a direct impact
on system performance. Each wait state will add an additional processor clock cycle to the execution
time of the current instruction. Word data read from odd addresses will result in two back-to-back byte
read operations, resulting in twice the delay before completion of the read instr~ction. '

Data write operations are performed by the 80286 Bus Unit from information stored in temporary data
and address registers. The Execution unit fills these temporary registers and continues executing. Because

4-4 210760·001

inter MEMORY INTERFACING

the Execution unit is not delayed, isolated data write operations with several wait states will not affect
system performance.

Wait states in the write operation may delay subsequent data read operations or instruction prefetches,
however. If several back-to-back data write operations are performed, the 80286 Execution unit may
have to wait for the Bus unit to finish before performing the next data write. Word writes to odd
addresses will result in twice the number of delays as for word writes to even addresses.

Since the nature of the program has a direct impact on the performance of the iAPX 286 with one or
more wait states, any estimate of CPU performance must take this information into account. The best
estimates can be made by using the results tabulated for a benchmark program with characteristics
most closely matching those of the intended application. The only way to obtain a precise figure for a
particular application is to run that application and measure its performance.

The Intel Pascal Benchmarks

The Pascal benchmark results shown in Table 4-1 reflect the performance of an 80286 operating in
Real-Address mode. These benchmarks were written in Pascal and compiled using Intel's Pascal-86
compiler version 2.0. The benchmarks themselves are described in the iAPX 86 System Benchmark
Report, Order Number 210352. The following paragraphs give a brief description of the
Intel Pascal benchmarks.

QUEENS (Chess Simulation)

The Intel Queens benchmark lists all possible combinations of non-attacking queens on a 9 X 9 chess­
board. This program tests control structures and boolean evaluations, and evaluates the code generated
for certain commonly-used statements (A = A + 1, for example).

GCD (Greatest Common Denominator)

This Intel program computes the greatest common denominator of two integers using a recursive function
call. Function overhead and the MOD operator are tested by this benchmark.

BUBBLE SORT

This Intel benchmark sorts 1000 integers into numerically-ascending order using the exchange (bubble)
sort algorithm. This benchmark extensively tests control structures, relational expressions, and array
references. .

MATRIX MULTIPLY

This Intel benchmark uses a simple row/column inner product method to compute the product of two
32 X 32 matrices. The elements of the matrices are integers. The benchmark tests control structure
arrays, array references, and integer arithmetic.

4-5 210760-001

MEMORY INTERFACING

The Intel Assembly-Language Benchmarks

The assembly-language benchmark results shown in Table 4-1 reflect the performance of an 80286
operating in Protected mode. These benchmarks are described' in the 8086 J6-Bit Microprocessor
Benchmark Report. The following paragraphs give a brief description of each of these assem­
bly-language benchmarks. '

INSPECT (Automated Parts Inspection)

The automated parts inspection program controls an image-dissection camera having two 8-bit D I A'
converters (for X and Y axis control) and a 12-bit AID converter that generates a gray-scale signal.
For each of the 16,384 (128 X 128) points, the measured gray-scale signal is compared with a known
good gray-scale value (stored in memory) to determine if it is within tolerance. One 16-bitmultiply

,and one 16-bit divide are performed for each of the 16,384 points.

XLAT (Block Translation)

The block translation benchmark translates each EBCDIC character from a memory buffer into an
ASCII character to be stored in a second buffer. The translation detects when an EOT character is
encountered or when the entire EBCDIC buffer has been translated. For the' benchmark tests, the
EBCDIC buffer contains 132 EBCDIC characters, none of which is an EOT character.

BSORT (Bubble Sort)

The bubble sort benchmark sorts a one-dimensional array containing 16-bit integer elements into
numerically-ascending order using the exchange (bubble) sort algorithm. For the benchmark tests, the
array contains 10 integers that are initially arranged in descending order.

XFORM (Graphics X-Y Transformation)

The X-Y transformation benchmark expands or compresses (scales) a selected graphics window
containing 16-bit unsigned integer X-Y pairs. Each X data value is offset by Xo and multiplied by a
fractional scale factor, while each Y data value is offset by Yo and multiplied by the same scale factor.
One 16-bit multiply and one 16-bit divide are performed for each of the X-Y coordinates. For the
benchmark test, the selected window contains 16,384 X-Y pairs.

PCALL (Reentrant Procedure)

The reentrant-procedure benchmark exercises processor features that are used to implement a reentrant
procedure. Three input parameters are passed by value to the reentrant procedure. Prior to the call,
one parameter is in ne of the general registers, while the other parameters are stored in memory
locations. Upon entry, the reentrant procedure preserves the state of the processor, assuming that it
will use all of the general registers. The reentrant procedure then allocates storage for three local
variables, adds the three passed parameters, and stores the result in a local variable. Upon exit, the
state of the processor is restored.

MEMORY INTERFACE TECHNIQUES

In the previous section, the impact of memory performance and wait states on system performance was
examined.in detail. In this section, memory performance itself is examined in order to understand how
the performance of a memory subsystem is determined as much by the subsystem design as by the

4-6 210760-001

MEMORY INTERFACING

speed of the individual memory devices. Three different memory interface techniques are introduced,
and the advantages and tradeoffs of each are described. The Memory Design Handbook describes still
other techniques that may be used.

Standard Address Strobe Logic

Chapter Three describes a straightforward method for interfacing to memory, using the ALE output
of the 82288 Bus Controller to strobe the address and chip-select latches. Figure 4-1 shows this memory­
interface model, showing the ALE signal from the 82288 Bus Controller being used to control the 8282
address latches.

The timing of this straightforward interface technique using the standard ALE address strobe is
examined in Chapter Three. Although this technique is simple and requires ·only a small number of
devices to implement, it provides only 87.5 ns of address access time at zero-wait-states. This limited
access time is sufficient only for very fast static RAM devices; slower memory devices will require
additional wait states and corresponding reductions in system performance.

Other, more complex, methods of interfacing memory devices to the 80286 can increase address access
time to permit high-performance operation with slower memory devices. The following two sections
introduce these two techniques.

) ADDRESS A

b
8282

LATCHES
~

DECODE - CE I--- STB CHIP ENABLE ~ AO

tALE M~ WE7-0

MWTC WE1S-S -82288
BUS

CONTROLLER
MRDe

DE

DTiR DEN

,~ .1 I

T OE

80286 K DATA) 8286 MEMORY CPU BUFFERS ..

210760-78

Figure 4-1. Memory Interface Using Standard ALE Signal

4-7 210760-001

MEMORY.lNTERFACING

Special Address Strobe .Logic

As an enhancement to the timing characteristics of the standard memory-interface technique described
above, special address strobe logic can be used to generate a valid address to the memory devices at
an earlier point in the bus cycle. This special address strobe logic is shown in Figure 4-2.

The address strobe logic shown in Figure 4-2 generates an address strobe as early as possible in the
meinory cycle; that is, as soon as the command from the previous memory operation becomes inactive.
This memory-interface technique trades off address hold time foHowing command inactive (few memory
devices require a lengthy address hold) in order to gain additional address access time.

Two additional optimizations are the use of 8283 (inverting) address latches and 8287 (inverting) data
transceivers to' drive the buffered local bus containing the memory subsystem; these inverting buffers
exhibit faster timing characteristics than their non-inverting 8282 and 8286 counterparts. Because these
devices invert the data and address lines, however, these latches and transceivers should not be used
with I/O devices on the same buffered local bus, to avoid confusion. The reduced address hold time
resulting from this special strobe logic also is not compatible with many typical I/O devices.

The timing of this special address strobe logic is described in detail in a later portion of this chapter.
The principle advantages of the special strobe logic depicted in Figure 4-2 is that address access time
is increased from 87.5 ns at zero wait states using the standard ALE strobe to as much as 155 ns using

ADDRESS
r----, ,.

)1
.1 DECODE I _

~--"""'II LOGIC r

82288

8283
LATCHES r---_,...-"'" STB

~ BHE

~
A ,.

cs

AD

-MB MRDC~--~---------r~------+-+;-----------'1iO~E

I--- CMDLY 4-o----+---.:---l}-I JO-t--t-+----------...... WEI
MWTC "'

DT/R DEN Ji)
-==

)o--+-....... -------------'l~1 WEH -J'

""""----------:L~
T OE MEMORY

80286

~ ________________ ~A CPU DpK~----~D~A~T~A __ --~~1 8287· ~
BUFFERS ~

Figure 4-2. Memory Interface Using Special Strobe Logic

4-8

210760-79

210760-001

MEMORY INTERFACING

the speCial address strobe. This increased address access time permits slower memory devices to be
used in iAPX 286 systems, while still permitting operation at zero w,ait states.

The tradeoff made when using this special strobe logic is the increased hardware overhead required to
implement the strobe logic, and the separate latches and data buffers required for the separate memory
and I/O buses.

For systems that do not require large amounts of memory, however, this special strobe logic can provide
an economical, high-performance solution. The cost savings of using slower memories to obtain a given
level of performance more than offsets the cost of the additional logic required.

Interleaved Memory

For systems that require large amounts of memory, an interleaved memory subsystem can provide even
greater economies than using the special strobe logic just described, at the cost of extra address latches
and additional control logic.

With an interleaved memory subsystem, memory devices are grouped into banks so that every sequen­
tial memory fetch comes from a different memory bank. For example, in a memory system partitioned
into four memory banks, a program that fetches four 16-bit words from consecutive addresses actually
fetches one word from each bank.

Interleaved memory banks permit designers to take full advantage of the 8'o286's pipelined address
timing. By letting the early address from the 80286 propagate into the next memory bank while the
address for the current memory cycle is still valid in another bank, address access times for the individ­
ual memory devices can be greatly increased.

Of course, occasional back-to-back memory cycles to the same memory bank may occur, which will
require a longer bus cycle than if the access was to a different bank. The interleave control logic must
accommodate the longer bus cycle times by inserting an additional wait state into the cycle. On the
average, though, these memory "hits" comprise only 7% of all memory cycles using two interleaved
memory banks, and 80286 execution time for typical software is increased only 4% on average over
execution exclusively at zero wait states.

Figure 4-3 shows an example circuit that uses interleaved addressing and special address strobes to
increase the access time for most memory cycles. The memory devices are configured into two banks
with successive memory words assigned to alternate banks (address line 1 is used as a bank select).
Each bank has its own address latches and strobe signal. An 8205 decoder decodes the CPU address
to generate chip enables for the individual memory devices, and a BANKSEL signal is decoded to
enable the address strobes.

Figure 4-4 shows the logic that generates the address strobe signals to the individual banks, and detects
consecutive reads to the same bank. Generally, the address strobes will be high until a read to one of
the memory banks occurs. The high address strobes maintain the address latches in their transparent
state to enable an address generated by the CPU to be transmitted to the memories in the shortest
possible time. (With the standard memory model, the address would not be. transmitted to memory
until just before the start of T c due to the 82288 ALE timing and strobe to output delays.)

The address strobe to the selected bank is driven low on the falling edge of CLK at the start of the
first Tc state to latch the address and chip selects to the respective memory devices. The address strobe
to the non-selected bank remains high, maintaining the respective address latches in their transparent
state.

4-9 210760-001

MEMORY INTERFACING

8283 .. K-LATCH A

STB ~> BANK 0
MEMORY

DECODE CE
WIT
WEH
OE

8283 k;: LATCH A

STB 1.J. BANK 1
MEMORY

DECODE CE

-=: WIT
WER .. OE

BHE AO Al

~ DECODE
BARKS£[

~~ ALEl ALEO

L,.

READY
TC ~ D D D

LOGIC f..- AIT
INTERLEAVE ;too CK

LOGIC
a a a

~ ~
82288 ALE ,

}>-
MWTC I

V ---
MIme ~ -.)-DEN t-- 1 DT/R I-

MB CMDLY

~ Lf. ~
I J -
~

1 J

~

9
~

T OE
80286 DATA

~ CPU 8287
BUFFERS

210760-60

Figure 4-3. Interleaved Memory Circuit

4-10 210760-001

NOTE: TC MUST BE HIGH BY MIDDLE OF
EACH TC BUS STATE. TC MUST BE
LOW DURING OTHER BUS CYCLES

MRllC
"'WTe

SOO
LS02

Al----_-----+_~

MEMORY INTERFACING

5112

CK a ---ALEO

MIlO
ALE

USE THIS CIRCUIT TO GENERATE TC
IF MRllC OR MWTC IS DELAYED.

LS112

BcLK-----I>

ffilr'i'
BPCLK

TC

5112

SOO
BANKSEL.----.--+---{ o HIT

ALE--,.-----+--;;;-;;:;---t------If----------~---I

BPCLK

CLK---(;>--~----___ +-_________ _+_-----~--_BCLK

210760-81

Figure 4-4. Address Strobe Generation

The timing of this interleaved memory system is described in a later section of this chapter. The princi­
pal advantage of using an interleaved memory system such as this is the increased access time provided
at the beginning of most 80286 bus cycles. Access time requirements as long as 180 ns can be accom­
modated using this configuration, while still permitting most 80286 memory operations to occur with
zero wait states. With one wait state, access times as long as 305 ns can be reliably accommodated, as
compared with access times of 212.5 ns for the standard memory configuration at one wait state.

This increased access time results in a direct cost savings without reducing performance. For an example
system using EPROMs with one wait state, the savings from interleaving are composed of the savings
from using 300 ns EPROMS instead of the more expensive 200 ns EPROMS, multiplied by the number
of EPROMS, and subtracting the additional interleave circuitry. For large-memory systems, this cost
savings without reducing performance can be well worth the effort.

Table 4-2 compares the various memory interface techniques and provides guidelines on selecting a
particular technique for specific applications. The following section analyzes the timing of each of
these interface techniques in more detail.

TIMING ANALYSIS FOR MEMORY OPERATIONS

To design a memory subsystem for the iAPX 286, designers must understand the timing of the 80286
memory cycle. In the sections thaffollow, critical timing values are calculated for each of the memory
interface techniques described in the previous section. Timing calculations are shown primarily for an
8-MHz 80286; in some cases, timing values for a 6-MHz 80286 are included to give examples of these
calculations as well.

4-11 210760-001

inter MEMORY INTERFACING

Table 4-2. Comparing Several Memory Interface Techniques

Address Access Time
Provided by

Memory Interface
Single·Buffered System

Technique
with 0 Wait States Usage Guidelines

8 MHz 6 MHz

ALE-Controlled 87.5 ns 139.9 ns Useful for implementing small bootstrap
Address Latches EPROMs; 2 waits at 8 MHz suitable for

2732A-3 or 2764A-3.

Special Address 155 ns 228.3 ns Useful for small static RAM systems; memories
Strobe Logic require separate latches; insufficient address

hold time for I/O. devices.

Interleaved 180 ns 254 ns Useful for large EPROM or static RAM arrays;
Memories 2 sets of address latches required, with 6 TTL

DIPs to control interleaving.

8207 DRAM 120 ns 'liAS 183 ns Useful for dynamic RAM arrays.
Controller 58 ns CAS 89.6 ns
(uses internal
interleaving)

Calculations using worst-case timing, rather than typical timing, are used exclusively throughout this
manual and are strongly recommended to all designers using these materials. By using worst-case timing
values, you will be able todetermine critical timing paths, the need for wait states, and compatibility
between various memory devices.

Analyses using typical timing parameters make implicit assumptions about the system under study.
Typical calculations assume that with 5 to 8 devices in series, the probability of all devices simultane­
ously exhibiting worst-case timing is acceptably remote. However, since many modern designs use only
2 or 3 devices in series, the probability of all devices showing worst-case timing characteristics becomes
unacceptably high.

For this reason, worst-case timing calculations are used to assure reliable operation over all variations
in temperature, voltage, and individual device characteristics. Worst-case timing values are determined
by assuming the maximum delay in the latched address, chip-select, and command signals, and the
longest propagation delays through data buffers and transceivers.

Standard ALE Timing

The iAPX 286 memory cycle using the standard ALE timing from the 82288 Bus Controller is described
in Chapter Three. The analysis of timing is largely dependent on the particular memory configuration.
Figure 4-1, shown previously, shows the memory model used to analyze timing using the standard ALE
signal timing. Address and chip selects are measured from the outputs of latches (strobed by ALE).
Data valid is measured at the data pins of the CPU. MRDC is an 82288 output.

A single data buffer is used to prevent the AC loading from the memory subsystem from exceeding
the 80286 capacitive limit of 100 pF. The 8286 buffers can drive 300 pF loads. For very small systems,
the 80286 can be used without data buffers. For large, multi-board systems, two levels of buffering
may be used. In any case,the appropriate buffer delays should be considered when performing timing
cal cuI a tions.

4-12 210760-001

MEMORY INTERFACING

READ OPERATIONS

Figure 4-S shows the timing for zero-wait state memory read cycles using the standard ALE address
strobe.

For read operations, data must be valid at the pins of the 80286 10 ns before the falling edge of CLK
at the end of the final Tc (20 ns for the 6-MHz 80286). The critical timing parameters that determine
whether one or more wait states are required for a given memory subsystem design are the, required
address and command access times before read data will be valid.

The maximum allowable address and chip-enable access times for the memory configuration shown in
Figure 4-1, with zero wait states, and incorporating one transceiver delay, can be calculated as follows:

3 CLK cycles
- ALE active delay (max)
- 8282 stb-to-output delay (max)
- 8286 transceiver delay (max)
- 80286 required data setup (min)
Maximum address to output delay =

ClK

ALE

lATCHED
ADDRESS

TS

__ ~ ________ ~ ____ J

DATA·- -------- ---:----

TlAVCMl

Te

8 MHz
187.S ns

lS.0 ns
4S.0 ns
30.0 ns
10.0 ns
87.S ns

TS

MRDC __ ~ ________ ~T_lC_E_C_Ml __ ~~'1

~--TCMlCMH---I-i~f-- TCMHlAX
I TCMHlCP

Figure 4-5. Memory Read Cycle Timing

4-13

6'MHz
249.9 ns

lS.0 ns
4S.0 ns
30.0 ns
200 ns

139.9 ns

210760-82

210760-001

MEMORY INTERFACING

The calculations for maximum allowed command or output-enable access time before data valid are
similar:

2 CLK cycles at 8 MHz
- MRDC active delay (max)
- 8286 transceiver delay (max)
- 80286 required data setup (min)
Maximum command to output delay =

125 ns
20 ns
30 ns
10 ns
65 ns max.

Because of the pipelined address timing of the 80286 CPU, the memory configuration shown in
Figure 4-1 provides a significant timing interval after the 80286 address is valid and before the address
latch (ALE) strobe becomes active. This interval can be used for address decoding without reducing
the chip-enable access times calculated above. The maximum address decode time .that this memory
configuration can provide without reducing the chip-enable access time is calculated as follows:

2 CLK cycles at 8 MHz
- 80286 address valid delay (max)
+ ALE active delay (min)
Maximum decode time =

125 ns
60 ns

+ 3 ns
68 ns max.

This maximum decode time is not affected by the use of wait states in the 80286 bus cycle.

If wait states are inserted into the memory cycle, access times for the relevant parameters are increased
by 125 ns for each wait state (166.7 ns for each wait on a. 6-MHz 80286). Address, chip-enable, and
command access times for a single buffered 8-MHz system running with from zero to two wait states
are shown in Table 4-3.

In view of the timing values shown in the table, fast static RAM devices are the only memory devices
capable of operating in this configuration with zero wait states. An 80286 operating with a single wait
state provides sufficient timing for almost all static RAM devices, a large number of dynamic RAM
devices, and faster ROM/PROM/EPROM devices. An 80286 operating with two wait states provides
sufficient timing for all but the slowest semiconductor memory devices.

Another critical timing parameter for memory read operations is the output data float time; that is,
the time from the memory output-enable inactive until the memory device disables its data drivers
following a read operation. This timing value is critical if the 80286 attempts to perform a write opera­
tion immediately following a read from the memory device. If this back-to-back read/write sequence
occurs, the memory device must disable its data drivers before the 82288 Bus Controller re-enables the
8286 data transceivers, or data bus contention will occur.

For the memory configuration shown in Figure 4-1, the maximum data float time afforded a memory
device at 8 MHz is 57.5 ns maximum. For certain memory devices, this allowed data float time may
be inadequate. If this is the case, then the possibility of bus contention must be specifically prevented.

Table 4-3. Timing for 8-MHz.Read .Operations Using Standard ALE Strobe

Maximum Access Times Zero One Two
Before Data Valid Wait States Wait State Wait States

Address Access time (max) 87.5 ns 212.5 ns 337.5 ns

Chip-Select Access time (max) 87.5 ns 212.5 ns 337.5 ns

Command Access time (max) 65 ns 190 ns 315 ns

4-14 210760-001

MEMORY INTERFACING

To accommodate the data float time requirements of slower memory and I/O devices, the output
enables of the data bus transceivers must be delayed for the necessary length of time. Figure 4-6 shows
an example circuit that delays enabling the data transceivers following a read operation to the selected
memory devices. This circuit provides a maximum data float time for memory devices of:

2 CLK cycles at 8 MHz (Cmd inact.-DEN act.)
- Cmd inactive delay (max)
+ 8286 enable time (min)
Maximum data float time (using circuit) =

WRITE OPERATIONS

125 ns
- 15 ns
+ 10 ns

120 ns max.

For typical write operations to a memory device, data is latched into the device on the rising edge of
the Write command at the end of Tc. The important timing parameters determining whether wait
states are required are the address and command access times before command high.

The timing for memory write cycles, shown in Figure 4-7, uses the same model as that for read cycles.
Address, chip select/enable, and command generation are the same as for read operations.

Since the latest time that data is active coincides with the latest possible latched address and chip
select times (2.5 ns before the falling edge of CLK at the start of Tc), the maximum address-valid to
command-high access time provided during write operations with zero wait states is:

3 CLK cycles at 8 MHz
- ALE active delay (max)
- 8282 address latch delay (max)
+ Cmd inactive delay (min)
Maximum address access time =

187.5 ns
30.0 ns

- 30.0 ns
+ 3.0 ns

130.5 ns max.

MRDC~-------------------------------'I~
MWTC MWTC

82288
BUS

CONTROLLER BUS SELECT
(LATCHED OUTPUT OF
ADDRESS DECODER)

TOE

8286
DATA TRANS-

CEIVER

Figure 4-6. Delaying Transceiver Enable

4-15

MEMORY
DEVICE

210760-83

210760-001

inter

CLK

ALE

LATCHED
ADDRESS

TS

~ ________ -+ ____ -J

MEMORY INTERFACING

TC TS

,....t---TLAVCMH/TLCECMH --~

~---TDVCMH----+~ ___

DATA- -------~~~~~t====t====rr===rl~m~,t
TDVCML

TLAVCML
TLCECML

~---TCMLCMH---+-I~
I

Figure 4-7. Memory Write Cycle Timing Using Standard ALE Strobe

210760-84

Worst-case command-active to command-inactive timing is calculated in a similar manner (the command
pulse width for write operations is not affected by buffers in the data path):

2 CLK cycles at 8 MHz
- Cmd active delay (max)
+ Cmd inactive d'elay (min)
Maximum command access time =

125 ns
- 20 ns
+ 3 ns

108 ns max.

The data-valid to command-inactive time for write operations must include data buffer delays. Assum­
ing a 30 ns maximum delay through 8286 buffers, the data-valid to command-inactive setup time is:

3 CLK cycles at 8 MHz
- data valid delay (max)
- 8286 data buffer delay (max)
+ Cmd inactive delay (min)
Maximum data setup time

187.5 ns
50.0 ns

- 30.0 ns
+ 3.0 ns

110.5 ns max.

If wait states are inserted into the memory cycle, each of the relevant parameters for write operations
are increased by 125 ns for each wait state (166.7 ns for each wait on a 6-MHz 80286). Address, chip­
enable, command, and data-valid times for a single-buffered 8-MHz system running with from zero to
two wait states are shown in Table 4-4. As for read operations, 80286 operation with zero wait states is
possible using only fast static RAMs. One or two wait states are required to provide sufficient timing
for the majority of static'and dynamic RAM devices.

4-16 210760-001

MEMORY INTERFACING

Table 4-4. Timing for a-MHz Write Operations Using Standard ALE Strobe

Maximum Access Times Zero One Two
Before Command High Wait States Wait State Wait States

Address Access time (max) 130.5 ns 255.5 ns 380.5 ns

Chip-Select Access time (max) 130.5 ns 255.5 ns 380.5 ns

Command Pulse width (max) 108.0 ns 233.0 ns 358.0 ns

Write Data Setup Time (max) 110.5 ns 235.5 ns 360.5 ns

The CMDLY and CEN inputs to the 82288 can significantly alter bus cycle timing. CMDLY can
delay commands to produce more address, chip enable, and data setup time before a command is
issued. CEN can hold commands and data buffer control signals inactive, also altering bus cycle timing.
When used, the effects of these inputs must also be included in any worst-case timing analysis.

For some RAM devices, the data setup time before write-command active is a critical parameter. With
no command delays, the write command may become active before the write data is valid at the pins
of the memory device:

1 CLK cycle at 8 MHz
- data valid delay (max)
- 8286 data buffer delay (max)
+ Cmd active delay (min)
Maximum data setup time

62.5 ns
50.0 ns
30.0 ns

+ 3.0 ns
14.5 ns max.

(Note that the negative setup time implies that data may not be valid before the write command is
asserted).

With one command delay, the write command from the 82288 Bus Controller is delayed by 62.5 ns,
producing an acceptable 48 ns data setup time before command active. This command delay reduces
the command pulse width by 62.5 ns, however, and so additional wait states may be necessary to meet
this and other timing requirements.

If the circuit shown in Figure 4-6 is used to delay transceiver enable during write commands, the data
setup time is affected again. Using this circuit to accommodate slow output-data-float times by delay­
ing DEN results in a data setup time to end of command of 56 ns minimum:

2 CLK cycles at 8 MHz (DEN-to-WR)
- S04 inverter (CLK) delay (max)
- S175 Flip-flop delay (max)
- SOO, S30 gate delays (max)
- 8286 output enable time (max)
+ Cmd active delay (min)
Minimum data setup time =

125 ns
7 ns

20 ns
15 ns
30 ns

+ 3 ns
56 ns min.

4-17 210760-001

MEMORY INTERFACING

At the end of the write operation, some RAM devices require that the write data remain valid for a
short interval following write command inactive. The maximum'data hold requirement permitted by
the 80286 is:

1 eLK cycle at 8 MHz (after Cmd)
- 82288 Cmd inactive delay (max)
+ 8286 Transceiver delay (min)
Maximum data hold time =

62.5 ns
15.0 ns

+ 5.0 ns
52.5 ns max.

Some memory devices require that the address remain valid following a write operation. For this stand­
ard memory configuration, the maximum address hold time following write is:

1 CLK cycle at 8 MHz (after Cmd)
-·8288 Cmd inactive delay (max)
+ ALE active delay (min)
+ 8282 STB-to output delay (min)
Maximum address hold time =

62.5 ns
15.0 ns

+ 3.0 ns
+ 10.0 ns

60.5 ns max.

Most memory devices do not require such a lengthy address hold time following' a write operation. The
following section shows how the spccial strobe logic introduced previously trades away some of this
unused address hold time to gain increased address access time.

Special Address Strobe Timing

As described in a previous section, special address strobe logic can be used to generate an address latch
strobe much earlier in the 80286 bus cycle than the 82288 ALE strobe. This special address strobe
technique trades off address hold time after command inactive. for additional addres~ and chip-enable
access time, permitting slow memories to be used with fewer wait states relative to the standard address
strobe technique described in the previous section.

Figure 4-2 shown previously shows the memory configuration that will be used in this analysis. Figure
4-:-8 shows the timing' of this special address strobe logic. '

The timing of this address strobe logic is relatively straightforward. Maximum address and chip-select
access time for an 80286 operating at zero wait states is:

4 CLK cycles
- Cmd inactive time (max)
- STB logic delay (max)
- 8283 latch delay (max)
- 8287 transceiver delay (max)
- 80286 required data setup (min)
Maximum address access time =

8 MHz
250 ns

15 ns
8 ns

40 ns
22 ns
10 ns

155 ns

6 MHz
333.3 ns

15.0 ns
8.0 ns

40.0 ns
22.0 ns
20.0 ns

228.3 ns

Minimum address hold after command inactive is only IOns minimum, equal to the minimum 8283
STB-to-output delay.

4-18 210760-001

MEMORY INTERFACING

~---READ CYClE---"'I..----WRITE CYClE---+1

TC TS TC Ts TC TS

ClK

STB

lATCHED
ADDRESS __ -+-__ +-__ .p..#' ,,--+-__ +-_~~-....,--, "-+-__ ~-_+--_+__

DATA

210760-85

Figure 4-8. Timing for Special Address Strobe Logic

Since the memory configuration using the special strobe logic does not alter the command inputs to
the memory devices, command access times are the same as for the standard memory interface, but
for the reduced delays through the 8287 transceivers:

2 CLK cycles at 8 MHz
- MRDC active delay (max)
- 8287 transceiver delay (max)
- 80286 required data setup (min)
Maximum command to output delay =

125 ns
20·ns
22 ns
10 ns
73 ns max.

Because the address strobes are generated earlier in the bus cycle, the allowed address decode time
before the address strobe goes high is reduced. Maximum decode time without reducing chip-enable
access time is:

1 CLK cycle at 8 MHz
- 80286 address delay (max)
+ Cmd inact. delay (max)
+ STB logic delay (max)
Maximum address decode time =

62.5 ns
60.0 ns

+ 15.0 ns
+ 8 0 ns

25.5 ns max.

If wait states are inserted into the memory cycle, access times for the relevant parameters are increased
by 125 ns for each wait state (166.7 ns for each wait state on a 6-MHz 80286). Address, chip-enable,
and command access times for a single-buffered 8-MHz system running with from zero to two wait
states are shown in Table 4-5.

4-19 210760-001

MEMORY INTERFACING

Table 4-5. Timing for a-MHz Read Operations Using Special Address Strobe

Maximum Access Times Zero One Two
Before Data Valid Wait States Wait State Wait States

Address Access time (max) 155 ns 280 ns 405 ns

Chip-Select Access time (max) 155 ns 280 ns 405 ns

Command Access time (max) 73 ns 198 ns 323 ns

For write operations, the data setup and hold times for this memory configuration are not affected by
the special address strobe logic. These timing parameters differ from those for the standard memory
interface only in the reduced delays through the 8287 transceivers, where the standard interface uses
8286 transceivers. The Write command pulse width using this memory configuration is identical to
that for the standard memory interface.

As described previously, the special address strobe logic trades off address hold time for additional
address access time. Some memory devices specify an address hold time following a write operation.
Using the special address strobe logic, the maximum address hold time allowed for a memory device
following Write command inactive is 10 ns, the minimum STB-to-output delay of the 8283 address
latch:

Maximum address hold after write = IOns. max.

This timing value illustrates the essential tradeoff between address access time and address hold time
using the special address strobe logic. Still other memory interface techniques are possible which make
other allowances in order to optimize the critical address access parameter.

Interleaved Memory Timing

Interleaved memory subsystems have been introduced in a previous section. The interleaving technique,
like the special strobe logic, produces increased address access times and allows considerably slower
memory devices to be used while still providing performance equal to that of faster memories using
the standard memory interface.

An example circuit showing an interleaved RAM system is shown in Figures 4-3 and 4-4. The timing
for this circuit is shown in Figure 4-9. This figure shows a sequence of four CPU bus cycles performed
in the following order:

1. Write cycle to non-interleaved memory

2. Read cycle from RAM bank 1

3. Read cycle from RAM bank 2

4. Read cycle from RAM bank 2

The sequence of signals required to perform these four bus cycles are as follows:

1. During the write cycle to RAM, both address strobes (ALEO and ALEl) are high. Since the
interleaved memory is not selected, chip enables to the interleaved memories are not generated.

2. At the start of the read cycle from RAM bank 1, the address decode logic generates· chip-enable
signals to the appropriate devices and BANKSEL activates the interleave logic to generate an
appropriate address strobe. ALEI toggles low on the falling edge of CLK at the end of Ts to latch

4-20 210760-001

MEMORY INTERFACING

RAM WRITE BANK 1 READ BANK 2 READ 2ND BANK 2 READ

~~~r,.---.".A 

I ~S I TIC I Tf I TIS I TIC I ~C I ~S I ~C I TIC I ~S ~C I ~C I Tf 1 ~x 
elK 

A23.0 ___ ---. ________ '--_____ .I'-_____ ......, _______ _ 

AlEO 
~ ____ ~r_1~ ___________ ~r--

AlE1 

210760·86 

Figure 4-9. Interleaved Memory Timing 

the address and chip-enable signals to bank 1. MRDC enables the output drivers of the RAMs. 
Note that ALEO remains high throughout the bus cycle, maintaining the Bank 2 address latches 
in their transparent states. 

3. At the start of the read cycle from RAM bank 2, the address decode logic generates chip-enable 
signals to the appropriate devices as before. ALEI is driven high on the falling edge of CLK 
halfway through Ts' and remains high throughout the rest of the bus cycle. ALEO toggles low at 
the start of Tc to latch the address and chip-enable signals to bank 2. MRi5C enables the output 
drivers of the RAMs in bank 2, while DEN and the latched BANKSEL enable the interleave­
memory data transceivers. 

4. The second read cycle to EPROM bank 2 begins with ALEO low. ALEO is not driven high until 
CL~ goes low halfway through Ts. This delay reduces the data access time in comparison to the 
previous bus cycles; the delay is accommodated by adding one additional wait state to the bus 
cycle. Two S 112 flip-flops are used to compare the bank-selects for the current and previous memory 
cycles to detect the occurrence of back-to-back cycles to the same memory bank. The HIT output 
of this interleave logic is used to drive the system Ready logic to insert the additional wait state. 

The sequence of signals for this second bank 2 read is the same as the first, with the addition of 
one extra wait state. ALEO is driven high one CLK cycle after the last Tc state. ALEI remains 
high throughout the entire cycle. 

The timing analysis for this interleaved memory system is straightforward, merely incorporating the 
appropriate delays through the latches and buffers. 

The maximum address access time for the configuration shown in Figure 4-3 is: 

5 CLK cycles (overlapped address time) 
- 80286 address delay (max) 
- 8283 input-to-output delay (max) 
- 8287 delay (max) 
- 80286 required data setup (min) 
Maximum address access time = 

4-21 

8 MHz 
312.5ns 

60.0 ns 
22.0 ns 

- 22.0 ns 
- 10.0 ns 

198.5 ns 

6 MHz 
416.5 ns 

80.0 ns 
22.0 ns 

- 22.0 ns 
- 20.0 ns 

272.5 ns 

210760·001 



MEMORY INTERFACING 

Maximum chip-enable access time must incorporate the additional 8205 decoder delay: 

5 eLK cycles (overlapped address time) 
- 80286 address delay (max) 
- 8283 input-to-output delay (ma~) 
- 8205 decoder delay (max) 
- 8287 delay (max) 
- 80286 required data setup (min) 
Maximum chip-enable access time = 

8 MHz 
312.5 ns 
60.0 ns 
22.0 ns 
18.0 ns 
22.0 ns 
10.0 ns 

180.5 ns 

6 MHz 
416.5 ns 

80.0 ns 
22.0 ns 
18.0 ns 
22.0 ns 
20.0 ns 

254.5 ns 

If a subsequent memory access to the same memory bank occurs, an additional wait state will be 
inserted into the memory cycle. The maximum address access time with this interleave "hit" is: 

5 CLK cycles at 8 MHz (cycle wi 1 wait) 
- ALE valid delay (max) 
- 8283 STB-to-output delay (max) 
- 8287 delay (max) 
- 80286 required data setup (min) 
Maximum address access (wi "hit") = 

312.5 ns 
20.0 ns 
40.0 ns 
22.0 ns 
lOOns 

220.5 ns max. 

Chip-enable access time with an interleave "hit" is the same as the address access time, less the 18 ns 
8205 decoder delay: 

Maximum chip-enable access (wi "hit") = 202.5 ns max. 

Since memory read and write commands are passed directly to the memory devices as in the standard 
memory interface, the command access times and command pulse widths calculated for interleaved 
memory systems will be the same as for non-interleaved memory systems. 

If wait states are inserted into the memory cycle, access times for the relevant parameters are increased 
by 125 ns for each wait state (166.7 ns for waits on a 6-MHz 80286). Address, chip-enable, and command 
access times for a single-buffered 8-MHz system running with from zero to two wait states are shown 
in Table 4-6. 

Interleave "hits," orback-to-back accesses to the same memory bank, typically occur during only about 
7% of all bus cycles. Since an interleave hit results in an additional wait state inserted into the bus 
cycle, this wait state may impact overall execution time and so affect system performance. Generally, 
instruction prefetches by the 80286 bus unit will not result in any interleave "hits" since the prefetcher 
accesses sequential addresses. On average, only interleave hits that occur due to data read operations 

Table 4-6. Timing for a-MHz Interleaved Memory Operations 

Number of Wait States (Assuming no "Hits") 
Maximum Access Times 

Before Data Valid Zero One Two 
Wait States Wait State Wait States 

Address Access time (max) 198.5 ns 323.5 ns 448.5 ns 

Chip-Select Access time (max) 180.5 ns 305.5 ns 430.5 ns 

Command Access time (max) 73.0 ns 198.0 ns 323.0 ns 

4-22 210760-001 



MEMORY INTERFACING 

will directly affect 80286 execution time, as described previously; delays in data write operations do 
not affect the 80286 Execution unit. 

Table 4-7 shows the results of several benchmarks run on an iAPX 286 system using an interleaved 
memory system and one using a memory system having the same number of wait states without inter­
leaving. The values shown in the table are the ratios of execution times with interleaving to those 
without interleaving. In general, execution times with interleaved memory are typically only 4% more 
than execution times with memories having a comparable number of wait states. 

MEMORY INTERFACE EXAMPLES 

The following sections describe specific examples using common types of memory devices with the 
iAPX 286. These interface examples include read-only memories, static and pseudo-static RAM devices, 
and dynamic RAM devices using the 8207 Advanced Dynamic Ram Controller. 

Read-Only Memory 

The easiest memory devices to interface to any system are read-only memory devices (ROMs, PROMs, 
and EPROMs). Their byte-wide format provides a simple bus interface, and since they are read-only 
devices, AO and BHE need not be included in their chip-select/enable decoding (chip-enable is similar 
to chip-select, but chip-enable typically determines if the device is in the active or standby power mode 
as well). 

For a standard memory model, the address lines connected to the devices start with Al and continue -
up to the maximum number the device can accept, leaving the remaining address lines for chip-enable/ 
select decoding. To connect the devices directly to the local' bus, the read-only memories must have 
output-enables. The output-enable is also required to avoid bus contention in some memory 
configura tions. 

Figure 4-10 shows the bus connections for read-only memories. Read-only memories require latched 
chip-selects. Each valid decode selects one device on the upper and lower halves of the bus to allow 

Table 4-7. iAPX 286 Performance with Interleaved Memories 

Ratio of Execution Time for 
interleaved to non-interleaved memories 

Program Benchmark when most bus operations occur with: . 

o Wait States 1 Wait State 

DSO Bubble Sort (Pascal) 1.061 1.070 

DSO Matrix Mult. (Pascal) 1.003 1.068 

Berkeley Puzzle (Pascal) 1.020 1.028 

Berkeley Sieve (C) 1:058 1.044 

Quicksort (32-bit C) 1.057 1.061 

Intel XFORM (ASM86) 1.007 '1.007 

Intel Bubble Sort (ASM86) 1.032 1.034 

Average of 17 Programs 1.036 1.046 

4-23 210760-001 



CHIP SELECT 

.oil 

08-15 < 

A1-13 < 

00-7 < 

MEMORY INTERFACING 

CE 

00-7 

2764 

r--I AO·12 

~---c OE 

---0 OE 

~ AO·12 

2764 

00·7 

CE 

HIGH 
BANK 

LOW 
BANK 

Figure 4-10. ROM/PROM/EPROM Bus Interface 

210760-87 

byte and word access. Byte access is achieved by reading the full word onto the bus; the 80286 accepts 
only the appropriate byte. The output-enable is controlled by the memory read command from the Bus 
Controller. 

TIMING ANALYSIS FOR ROMS 

Read-only memories have four critical timing parameters that must be considered when interfacing 
these devices to an iAPX 286. These parameters are: 

1. Address to Output Delay (Address Access Time) 

2. Chip-Enable to Output Delay (Chip-Enable Access Time) 

3. Output Enable to Output Delay (Command Access Time) 

4. Output Enable High to Output Float (Data Float Time) 

By comparing these memory timing requirements to the iAPX 286 timing values, the required number 
of wait states can be determined to guarantee a reliable memory interface. 

As an example, consider a standard memory interface using 2764-20 EPROMs buffered by a single 
level of 8286 transceivers. Table 4-8 shows the requirements of the 2764-20 and the times allowed by 
an 80286 running with 1 wait state, using the standard ALE memory configuration described previ­
ously. By comparing the timing values shown in the table, it is clear that a 2764-20 EPROM is compat­
ible with the iAPX 286 system operating with one wait state. 

Timing for an interleaved memory configuration or for systems using special Strobe logic can be deter­
mined in a similar manner. It should also be noted that the timing of memory operations using any of 
the three memory interface techniques can be further modified by slowing the processor clock. An 

4-24 210760-001 



MEMORY INTERFACING 

Table 4-8. Timing Analysis for the 2764-20 EPROM 

8-MHz iAPX 286 

Timing Parameter 2764-20 EPROM 1 Wait State 
(Max. Required) (Min. Provided) 

Address Access Time 200 ns 212.5 ns 

Chip-Enable Access 200 ns 212.5 ns 

Command Access Time 75 ns 185.0 ns 

Data Float Time 60 ns 120.0 ns* 

*Assumes circuit to delay transceiver enable if write operation to the same bus occurs after read operation. 

8-MHz 80286 operating with a 15-MHz clock rather than the usual 16-MHz clock can support 200 ns 
memories such as the 2764-20 EPROM at zero wait states. 

Table 4-9 shows the wait-state requirements for a variety of different Intel EPROMs for several differ­
ent memory configurations. In each configuration, a single level of data transceivers is assumed. 

Static RAM Devices 

Interfacing static RAM to an 80286 CPU introduces several new requirements into the memory design. 
The address lines AO and BHE must be included in the chip-select/enable decoding for the devices, 
and write timing must be considered in the timing analysis. 

Data bus connections for each device must be restricted to either the upper- or lower-half of the data 
bus to allow byte transfers to only one half of the data bus. Devices like the 2114 or 2142 must not be 
configured to straddle both the upper and lower halves of the data bus. 

To allow selection of either the upper byte, lower byte, or full 16-bit word for write operation, BHE 
must condition selection of the upper byte and AO must condition selection of the lower byte. Figure 
4-11 shows several techniques for selecting devices with single chip-selects and no output-enables (2114, 
2141, 2147A, 2148H/49H). Figure 4-12 shows selection techniques for devices with both chip-selects 
and output-enables (2128, 2167A). 

Devices without output-enables require inclusion of AO and BHE to decode or enable chip selects. The 
MRDC and MWRC commands are used to qualify chip-select generation to prevent bus contention. 
Devices with common input/output pins (2114, 2142) and no output-enable require special care to 
strobe chip-enable low only after write-enable is valid. Write-enable and write data must be held valid 
until after chip-enable goes -high. 

For devices with separate input and output pins (2141, 2147, 2167A), the outputs can be tied together 
and used as described in Chapter Three. 

For devices with output-enables (Figure 4-12), the write command may be gated with BHE and AO to 
provide upper- and lower-bank write strobes. This simplifies chip-select decoding by eliminating BHE 
and AO as a condition of decode. Although both devices are enabled during a byte write, only the 
appropriate high or low byte device will receive a write strobe. No bus contention exists during reads 
because the read command must be issued to enable the memory output drivers. 

4-25 210760-001 



inter MEMORY INTERFACING 

Table4-9_ Wait-State Requirements for Intel EPROMs 

Required Number of Wait States for 8-MHz iAPX 286 
EPROM 
Device Standard Special Interleaved 

ALE Strobe ,Strobe Logic Memory System-

2732A-20 1 Wait 1 Wait 1 Wait 
2732A-25 2 1 1 
2732A-30 2 2 1 , 
2732A-35 3 2 2 
2732A-4 3 3 3' 
2764-20 1 1 1 
2764-25 ' 2 1 1 
2764-30 2 2 1 
2764-4 3 3 3 
27128-20 1 1 1 
27128-25 2 1 1 
27128-30 2 2 1 
27128-45 3 3 3 

Required Number of Wait States for 6-MHz iAPX 286 
EPROM 
Device Standard Special Interleaved 

ALE Strobe Strobe Logic Memory System-

2732A-20 1 Wait o Wait o Wait 
2732A-25 1 1 0 
2732A-30 .1 1 1 
2732A-35 2 1 1 
2732A-4 2 2 

' . 
2 

2764-20 1 0 0 
2764-25 1 1 0 

" 2764-30 1 .1 1 
2764-4 2 2 2 
27128-20 1 0 0 
27128-25 1 1 0 
27128-30 1 1- 1 
27128-45 2 2 2 

'-An additional wait state is r'equired for hack-to-b~ck bus cycles to the same memory, bank. 

If multiple chip selects are available at the device, BHE and AD may directly control device selection. 
This allows normal chip-select decoding of the address space and direct connection of the memory read 
and write commands to the memory devices. Another alternative is to use, the multiple chip select 
inputs of the device to directly decode the address space (linear selects) and use the separate write­
strobe technique to minimize the control circuitry needed to generate chip selects. As with the EPROMs 
and ROMs, the address lines connected to the memory devices muststart with Al rather than AD for 
a standard memory interface. ' 

For an interleaved memory subsystem, the low-order address lines beginning with Al are used as bank 
selects. Address lines that connect to the memory devices start with the lowest address bit after the 
bank select address lines. 

4-26 210760-001 



MEMORY INTERFACING 

ADDRESS 

Ao 
LOW BANK 
CHIP SELECTS 

ADDR 
RD LOW BANK 

WR CHIP SELECT 

HIGH BANK 
CHIP SELECT 

RD 
WR 

BHE 00 
8205 

HIGH BANK Ao 
MilO OR CHIP SELECTS BHE ADDITIONAL E; 07 

ADDRESS 

E3 

(a) (b) 

ADDR 

LOW BANK 
CHIP SELECTS 

Ao 

A +5 

BHE 

Ao 
3604A 

AD CHIP SELECTS 

WR 
0 (HIGH AND LOW FOR 

MIlO 
FOUR GROUPS) 

AD 
WR 

M/iO 
HIGH BANK 
CHIP SELECTS 

BHE CS1 

CS2 

(c) (d) 

210760-128 

Figure 4-11. Generating Chip Selects for Devices without Output Enables 

TIMING ANALYSIS FOR STATIC RAMS 

When interfacing static RAM devices to an iAPX 286, write timing parameters must be considered in 
addition to read parameters. These additional. timing parameters are: 

Address Valid to End of Write (Address Access Time) 

Chip Select to End of Write (Chip-Enable Access Time) 

Write Pulse Width (Command Access Time) 

Write Release (Address Hold From End of Write) 

Data Valid to End of Write (Write Data Access Time) 

Data Hold From End of Write (Write Data Hold Time) 

By comparing these memory timing requirements to the. iAPX 286 timing values, the required number 
of wait states can be determined to guarantee a reliable memory interface. 

4-27 210760-001 



MEMORY INTERFACING 

2142's 

A,O·, _______ -, 

RD--------------~ 

Ao-~r-....... 

WR --"~"---.J 

An.'4 

+v 

(a) HIGH AND LOW BANK WRITE STROBES 

A,o·, __________ ---, 

RD--------~ 

WR-------------~ 
Ao--------~ 

BHE--------+------~ 

2142's 

CS-------~------~ 

(b) Ao AND BHE AS DIRECT CHIP SELECT INPUTS 

2142's 

A,o., ------------, 
AD --------j 

Ao-_-r-_ 
Wii --,. _____ ~ 

An ---------+----<li 

A,a --_________ .-... _____ ----.J 

(e) LINEAR CHIP SELECT USED WITH HIGH 
AND LOW BANK WRITE STROBES 

07·0 

Figure 4-12. Generating Chip Selects for Devices with Output Enables 

4-28 

210760-129 

210760-001 



inter MEMORY INTERFACING 

As an example, consider a standard memory interface using 2147H-l RAM's buffered by a single level 
of 8286 transceivers on both inputs and outputs. Figure 4-13 shows the memory configuration used in 
the analysis. Table 4-10 shows the timing requirements of the 2147H-l RAM and the times allowed 
by the 80286 running with zero wait states. 

The Read command access time (Data valid from read) is not applicable in this configuration since 
WE is high throughout the cycle. MRDC merely enables the output data buffers to transfer data to 
the CPU. As demonstrated by the times shown in the table, the 2147H-l static RAM is compatible 
with a zero-wait-state 80286 CPU. 

For slower RAM devices, special address Strobe logic or an interleaved memory configuration can be 
used to increase the address and chip-select access times to permit operation at zero wait states. 

LATCHED----------------------------------------------------------------____________________________________ ~ 
ADDRESS ________ __ 

MRDC ---------4 
AO 

BHE 

LATCHED 
BANK SELECT 

1-..... ___________________________________ TO ADDITIONAL 

MEMORY BANKS WRITE LOW 

WRITE HIGH 

HIGH BYTE 

WE 
r--....-.......... vIAO-11 DII'or ________________ -. 

2147H-1 
(X8) 

WE 

00 ______ /'1 

L---. __ ..... I AO-11 01
1
""" ____________ -.-...., 

LATCHED 
MEMORY 
SELECT 

DEN --____ ~~ 

DTiR ------....., 

015-0, ___ -," 8286 

(X2) 

2147H-1 
(X8) 

TO ADDITIONAL 
Iv---------------------------------------~MEMORYBANKS 

210760-88 

Figure 4-13. Static RAM Interface 

4-29 210760-001 



MEMORY INTERFACING 

Table 4-10. Timing Analysis for the 2147H-1 RAM 

8-MHz iAPX 286 

Timing 
2147H-1 RAM o Wait States 

(Max. Required) (Min. Provided) 

Read 

Address Access Time 35 ns 57.5 ns 

Chip-Enable Access Time 35 ns 57.5 ns 

Read Command Access Time N/A N/A 

Write 

Address Access Time 35 ns 100.5 ns 

Chip-Enable Access Time 35 ns 100.5 ns 

Command Access Time 20 ns 108.0 ns 

Write Data Access Time 20 ns 100.5 ns 

Address Hold Time o ns 60.5 ns 

Write Data Hold Time 10 ns 60.5 ns 

Pseudo-Static RAM Devices 

Integrated dynamic RAM devices. have many of the same· characteristics as static RAM devices, 
including a simple two-line control interface with. output-enable and write-enable, and a simple chip­
enable and address inputs. All of the complexities of typical dynamic RAM devices, such as row- and 
column-addressing, and refresh timing and arbitration, are integrated into the devices themselves. From 
the system designer's perspective, devices such as the 2186 and 2187 iRAMs can be treated in the 
same manner as simple static RAM devices. 

There are several considerations when designing systems using iRAMS which differ from designs using 
static RAM devices. First, the iRAM must see a single edge ("glitchless") transition of chip-enable 
(CE) at the beginning of the memory cycle to allow the iRAM to latch addresses and to initialize 
several internal clocks. 

Second, since the iRAM accepts write data on the falling edge of write-enable (WE), the write data 
must be valid before write-enable is activated. 

The timing analysis of iRAM systems is similar to that of static RAM systems, with the exception that 
command delays may be needed in order to ensure write-data valid before write-command active. 
Specific details on designing memory systems using the iRAM are described in Application Note 
AP-132 "Designing Memory Systems with the 8K X 8 iRAM." . 

Dynamic RAM Devices 

The task of designing a dynamic RAM memory for an iAPX 286 system is made more complex by the 
requirements for address multiplexing and memory-refresh logic. Fortunately, the 8207 Advanced 
Dynamic RAM Controller simplifies this task considerably. 

The 8207 Advanced Dynamic RAM Controller (ADRC) is a programmable, high-performance, systems~ 
oriented controller designed to easily interface 16K, 64K, and 256K dynamic RAMs to a wide range 

4-30 210760-001 



MEMORY INTERFACING 

of microprocessors, including the 80286 CPU. Dual-port configurations are supported by two independ­
ent ports that operate in both synchronous- and asynchronous-processor environments. The 8207 also 
supports error detection and corredion using the 8206 Error Detection and Correction Unit (EDCU). 

The 8207 Controller timing is optimized for maximum performance. With fast dynamic RAM (such 
as 2118-10's) the 8207 can run at 0 wait states for most bus operations. 

As shown in Figure 4-14, the 8207 can be controlled directly by the 80286 status lines or by 82288 
command outputs, and can operate synchronously or asynchronously to the system clock. Figure 4-15 
provides a block diagram for a single-port 8207 memory subsystem using the command interface. PCTL 
is tied low to configure the 8207 in command mode for compatibility with the 80286 signals. CPU 
status signals directly drive the read and write inputs to the controller while the 82284 CLK signal 
provides the synchronous clock. Address lines connect directly to the controller, while data transfer is 
controlled by two sets of latches between the memory banks and the CPU. A byte mark latch decodes 
AO and BHE to condition the write enable signals for the high- and low-byte memory banks. 

The 8207 is capable of addressing 16K, 64K, and 256K dynamic RAMs, using an interleaved memory 
arrangement. Memory can be divided into four banks, with each bank having its own RAS and CAS 
signal pair. Low-order address lines serve as bank selects to allow interleaved memory cycles. 
(Figure 4-16 shows the address connections to the ADRC for all three types of RAM devices.) 

NOTE: 
1 LATCH NOT REQUIRED IN SINGLE-PORT MODE. 

Fast-Cycle Synchronous-Status Interface 

SYNCHRONOUS 80286 

Fast-Cycle Synchronous-Command Interface 

Fast-Cycle Asynchronous-Status Interface 

Fast-Cycle Asynchronous-Command Interface 

210760-89 

Figure 4-14. 80286-8207 Interfaces 

4-31 210760-001 



MEMORY INTERFACING 

82284 

READY SRDY "-
I OTHER AeR INPUTS 

ClK 

~ 
ClK 

ALE 
82288 

DEN I-- ClK AACK 
DT/R I-

h 

M/i'OSlS0 ADDR, ) P STROBES READY ClK 

L1 " ~ 
PCTl MEMORY MEMORY 

M/iO 8207 (UPPER) (lOWER) 
51 

1 
RD WE e-

SC WR 

80286 ADDRIN WE 01 DO WE 01 DO 

I • 1 'r ADDR 

1 L-~ I-- J 
DATA 

1 ---- .A 

~ '" 
STB BO 

C ......, BYTE 
MARK 
lATCH 
~ 

16 
/ 

/~ 

T 
STB OE 

8282 .A 16 
BUFFER ~ 

NOTE: 
THE BYTE MARK lATCH MAY ALSO BE STROBED WITH lEN 

210760-90 

Figure 4-15. 8207 Single-Port Memory Subsystem 

Interleaving memory cycles between different banks of RAM devices result in the access time for a 
current cycle overlapping with the RAM precharge period for the previous cycle. When back-to-back 
transfers to the same memory bank occur (about 6% of the time), the 8207 automatically inserts a wait 
state into the current cycle, adding about 6% to the overall execution time. Slower memory devices 
can be used with the 8207 at zero wait states than would be possible with RAM controllers that do not 
support interleaved memory access. 

4-32 210760-001 



inter MEMORY INTERFACING 

A12-A20 AHO-AH8 A11-A18 A10-A18 

8207 AL8 
8207 8207 

AL7 

A3-A11 ALa-AL8 A3-A10 ALO-AL7 A3-A9 ALa-ALB 

A1.A2 BSO. BS1 A1,A2 BSO, BS1 A1,A2 BSO, BS1 

256K RAM INTERFACE 64K RAM INTERFACE 16K RAM INTERFACE 

NOTES: 
[1] UNASSIGNED ADDRESS INPUT PINS SHOULD BE STRAPPED HIGH OR LOW. 
[2] AO ALONG WITH SHE ARE USED TO SELECT A BYTE WITHIN A PROCESSOR WORD. 
[3] LOW ORDER ADDRESS BITS ARE USED AS BANK SELECT INPUTS SO THAT CONSECUTIVE MEMORY ACCESS REQUESTS 

ARE TO ALTERNATE BANKS ALLOWING BANK INTERLEAVING OF MEMORY CYCLES. 

210463 

Figure 4-16. 256K, 64K, and 16K RAM Address Connections 

TIMING ANALYSIS FOR THE 8207 RAM CONTROLLER 

The analysis of timing for dynamic RAMs is more extensive than for a static RAM or EPROM. The 
analysis must include RAS, CAS, and refresh timing as well as standard bus interface timing. 
Figure 4-17 shows the memory subsystem that serves as the model for the timing analysis in this section. 

The subsystem shown in Figure 4-17 is a single-port configuration designed with an 8207 ADRC and 
four banks of 2118-10 16K x 1 bit dynamic RAMs. Each bank is sixteen bits wide and is divided into 
a high byte (D 15-8) and a low byte (D7-0). Most 8207 signals connect directly to 80286, 82288, and 
82284 inputs and outputs. No address buffering is required. The RAM data inputs and outputs are 
buffered, with the 82288 DEN and DT jR signals controlling the output data buffers. The PEA (Port 
Enable A) input to the ADRC is a non-latched chip-select driven by address-decode logic. 

The 8207 is programmed at reset through strapping options and a 16-bit program word. PCTLA, 
PCTLB, and RFRQ are strapped high or low to program port and refresh options. PCTLA is tied low 
to select command mode. (PCTLB is not shown; PEB should be strapped high to ignore the port B 
interface.) RFRQ is tied high to program the 8207 for self-refresh mode. PDI (Program Data Input) 
accepts a 16-bit serial bit stream containing the program word. By strapping PDI high or low, one of 
two sets of default parameters are selected. The example circuit in Figure 4~17 is programmed with 
the non-ECC mode default parameters shown in Table 4-11. 

4-33 210760·001 



MEMORY INTERFACING 

TO 

A3-9, 
.... 

A10-F -------..". .... 
" 

:---

..---

..---
~ 

-:,:-' 

A1 -----------.~ 
A2 __________ -.~ 

51 --------~CI 

~--------------_a 
CLK --------------.~ 

RESET ---------------.~ 

82284 "SRDY .... ---------------1 
~~g~OE LOGIC -------------~=-

r 
+5V t 

', .. 

BHE 

AO 

74S00 

ALO-6, 
AHO-6 

AL7 

AL8 

AH7 

AH8 

BSO 

BS1 8207 
DRAM 

CONTROLLER 

ROA' 

WRA 

CLK 

RESET 

AACKA 

PEA 

PCTLA 

RFRO LEN WE 

I I 

' STB 

8282 
LATCH 

o:::~· ! 
8287 

BUFFER 

015-0 _________ "'1/1 

I 
OE T 

8287 
BUFFER' 

AOO-6 

RASO 

CASO 

RAS1 

CAS1 

RAS2 

CAS2 

HIGH LOW 

2118-10 

-----V. 

2118-10 
(X8) 

AO-6 
(X8) 01 .... .A ... L-__ --, 

."4 

--<: RAS r----

---< ":180'0 21180,:0 II 
~ (X8) (X8) .:. A ....... --, J-,--, 
---0/ AO-6 01 " """1-
----<: RAS DO ---.J 

----<:CAS l 
~2~1~1~8-~1~0~-2~1~1~8-~1~O-l 

-J\ (X8) (X8) A 

AO-6 01 
-V .""Ir-~ I 
----<: RAS DO ---.J 

----<: CAS l 
~2~1~(~~~~)1~0~-2~1~(~~~~)1~O-l .A 

~AO-6 01 

RAS3 
~---------------aRAS 

.~'.r----r-r---. 

~C_A_S~3 ______________ aCAS 

J 

WE 

~O I 
I "JC~>----"""'" -'/. 

74S00 

L-______ --, __ ~~_~'r-------------~ 
.- -./ 

+5V 

00_ 

210760-91 

Figure 4-17. 128K-Byte Memory Subsyst~m 

4-34 210760-001 



MEMORY INTERFACING 

Table 4-11. Non-ECC Mode Programming, POI Pin (57) Tied to Ground 

Port A is Synchronous 

Port B is Asynchronous 

Fast-cycle Processor Interface (80286) 

Fast RAM (2118-10 compatible) 

Refresh Interval uses 236 clocks 

128 Row refresh in 2 ms; 256 Row refresh in 4 ms. 

Fast Processor Clock Frequency (16 MHz) 

"Most Recently Used" Priority Scheme 

4 RAM Banks Occupied 

As shown in Figure 4-18, PD I can be driven by a 16-bit serial shift register to program the 8207 for 
non-default operation. Sixteen bits are loaded into the register in parallel during reset and are shifted 
out in serial by the 8207 program clock (PCLK). 

Figure 4-19 shows the timing for three back-to-back memory cycles: a read from bank 1, a write to 
bank 2, and a read from bank 2. Since the first two cycles are to different memory banks, the RAS for 
the second cycle is overlapped with the RASprecharge period for the first cycle to allow the subsystem 
to respond with no wait states. 

In the case of back-to-back cycles to the same bank (cycles 2 and 3), the controller automatically waits 
for the RAS precharge period between cycles before asserting RAS. AACKA from the 8207, which 
must be connected to the·82284 SRDY input, is delayed long enough to guarantee an additional wait 
state to compensate for the slower subsystem response time. The 82288 SRDY input is used rather 
than the ARDY input to accommodate the critical AACKA signal timing. 

SYSTEM r-------~--------------~~RESET 
RESET 

.------~ PCLK 

8207 

PL SO SHIFT REG. DATA POI 
OUT 

I ~~:~IN 
W-+J-- -4~~..!...-..:..I-

, • ~ JUMPER OPTIONS 

Figure 4-18. External Shift Register Interface 

4-35 

210463 

210760-001 



MEMORY INTERFACING 

TC TS TC TS TC TS TC TC TS 

ClK 

A23-0, M/iO, :::x 
COD/~ • __ ~ ______ ~){~~~ ______ J){~~~ ______ J){~ ________ ~ ______ _ 

I I 
I I 

\~ _____ ~~ _____ Iii\~ _____ ;---\~~ ____ _ 
I I 
I I II I 

, 
I 

AOO-7 -----... I-~ COLUMN ~ ..... _C ... O~_U_MN __ ~ __ C_Ol_U_MN...-_X:::: 

I I ______ ~I------~ I 

AAO<A I ,""_ ...... ."r\ I I 
, _______ r-

I I 
I I 

2118 _______ + _______ < > ________ ~-----------< >-____ _ 
DATA OUT I "". - ... , -. I ..... _ ....... .,. 

I I I i 
802860ATA -------1--------{REAO:OATAX WRITE OAT~ >--------_{REAO ofTA>-----

I I I I 
I I I 
I I' I j I I I '---T-' I 
I I I I 

210760-92 

Figure 4-19. 128K-Byte Memory Subsystem Timing 

4-36 210760·001 



MEMORY INTERFACING 

RAM timing to determine device compatibility is measured from RAS going low to data valid at the 
CPU pins. Maximum allowed RAS access time is: 

3 CLK cycles 
- RAS active delay (max) 
- 8287 transceiver delay (max) 
- 80286 required data setup (min) 
Max. allowed RAS access time = 

The corresponding CAS access time is: 

2 CLK cycles 
- CAS active delay (max) 
- 8287 transceiver delay (max) 
- 80286 required data setup (min) 
Max. allowed CAS access time = 

8 MHz 
187.5 ns 
35.0 ns 

- 22.0 ns 
- lOOns 

120.5 ns 

8 MHz 
125 ns 
35 ns 
22 ns 
10 ns 
58 ns 

6 MHz 
250 ns 

35 ns 
- 22 ns 
- 20 ns 

173 ns 

6 MHz 
166.6 ns 
35.0 ns 
22.0 ns 
20.0 ns 
89.6 ns 

For typical DRAM devices, the CAS access time will be the limiting parameter. Table 4-12 shows the 
timing requirements of the 2118-10 DRAM and the times allowed by the 80286 and 8207 operating 
with zero wait states. 

The timing values shown in the table indicate that the 2118-10 DRAM is compatible with an 8-MHz 
iAPX 286 and 8207 operating at zero wait states. The circuit shown in Figure 4-19 will run at 0 wait 
states for most memory cycles; the subsystem will run with 1 wait state only when back-to-back accesses 
occur to the same memory bank. 

With 2118-15 or 2164A-15 devices, this same circuit can be run at 1 wait state for most bus cycles on 
an 8-MHz system (select slow RAM option in program word). For 6-MHz iAPX 286 systems, 2118-15 
or 2164A-15 memories can be used at zero wait states, as shown in Table 4-13. Detailed timing speci­
fications for the 8207 DRAM Controller are provided in the Appendices. 

Table 4-12. 8-MHz Timing Analysis for the 2118-10 DRAM 

8-MHz iAPX 286 

Timing Parameter 
2118-10 DRAM with 8207 
(Max. Required) o Wait States 

(Min. Provided) 

RAS Access Time 100 ns 120.5 ns 

CAS Access Time 55 ns 58 ns 

Table 4-13. 6-MHz Timing Analysis for the 2164A-15 DRAM 

6-MHz iAPX 286 

Timing Parameter 2164A-15 DRAM with 8207 
(Max. Required) o Wait States 

(Min. Provided) 

RAS Access Time 150 ns 173 ns 

CAS Access Time 85 ns 89.6 ns 

4-37 210760-001 



MEMORY INTERFACING 

ERROR CORRECTION USING THE 8206 EDCU 

The 8207 RAM Controller supports error detection and correction using the 8206 Error Detection and 
Correction Unit (EDCU). Figure 4-20 shows a memory subsystem using the 8206 EDCU with the 
8207 RAM Controller. 

The 8207 interface to the RAM devices in ECC mode is almost identical to that in non-ECC mode. 
RAM is divided into four banks with twenty-two devices in each bank. Sixteen RAM devices store 
data for use by the CPU; the remaining six RAM devices store check bits for use by the 8206 (EDCU). 

DATA 

'" 7- J 
51 ..... 01 CBI 

• RDA 
AO A so 

WRA ... 
RESET • RESET RAS RAS 
CLK 

• CLK CAS CAS 
SRDY 

AACKA 
WE WE 

ADDRESS II.. 
8207 DYNAMIC 
DRAM WZ 

AI : CONTROLLER 
RAM - , R/W 

(16-BIT WORD 
+ 6 CHECK BITS) 

-. FWR ERROR 
. PSEN DO CBO 

---1>-
.", >- ~ 7 

01 CBI ....... wz 
R/W 

CE 8206 
EDCU -

~ BYTE II.. BYTE BM1 
MARK MARK 

Y DECODER II" LATCH BMO 
DO CBO 

210760-93 

. Figure 4-20. 8207 Memory Subsystem with ECC 

4-38 210760-001 



MEMORY INTERFACING 

During data writes, the EDCU computes a check code and writes the code into the check RAM. 
During data reads, the EDCU compares the read data to the check code to detect errors. Single-bit 
errors are corrected and double-bit or multiple-bit errors are flagged. The 8206 ERROR and CE 
(Correctable Error) signals inform the 8207 of error status. R/W (Read/Write) and WZ (Write Zero) 
from the 8207 control write/read and initialization modes of the 8206. Byte marks determine whether 
a byte or word write is performed by the 8206. 

It is important to note that the 8206 EDCU introduces a propagation delay of 67 ns (max) into memory 
cycles. The ADRC automatically compensates for the delay by inserting an additional wait state into 
all bus cycles to ECC-protected memory. 

DUAL-PORT MEMORY SUBSYSTEMS USING THE 8207 ADRC 

The 8207 RAM Controller contains on-chip arbitration logic to control dual-port memory subsystems. 
The concept of a dual-port memory subsystem, permitting access by an 80286 over the 80286 local 
bus and also access by other processors over a system bus, was introduced in Chapter Two. 

In dual-port mode, the 8207 must arbitrate memory requests between port A, port B, and port C-the 
internal refresh port. Two port priority options can be programmed to select which port has priority 
over the others in gaining access to the RAM memory array. In addition, the 8207 supports a LOCK 
input to prevent a second port from gaining access to the memory array until the port asserting the 
LOCK request has released the memory. 

Chapter Seven contains a detailed explanation of how to configure a dual-port subsystem between the 
80286 local bus and the Multibus system bus. Specific examples are given for a dual-port memory 
subsystem with error checking and correction, and specific guidelines are given for implementing the 
LOCK input to the 8207 to prevent deadlock situations. 

4-39 210760-001 





I/O Interfacing 5 





CHAPTER 5 
1/0 INTERFACING 

The iAPX 286 supports both 8-bit and l6-bit input/output devices that can be mapped into either a 
special I/O-address space or the iAPX 286 memory-address space. 

• I/O-mapping permits I/O devices to reside in a separate 64K I/O address space. Four special I/O 
instructions are available for device communications, and the I/O Privilege level offers I/O device 
protection. 

• Memory-mapping permits I/O devices to reside anywhere in the iAPX 286 memory space. The full 
80286 instruction set can be used for I/O operations, and the full memory-management and protec­
tion features of the iAPX 286 can be used for device protection. 

This chapter describes how to design I/O devices into an iAPX 286 system: 

• The first section of this chapter establishes the tradeoffs between I/O-mapped and memory-mapped 
I/O. . . 

• The second section describes several techniques for connecting data buses and generating chip­
selects for both 8-bit and l6-bit I/O devices. Various alternatives are described for both I/O-mapped 
and memory-mapped devices. 

• The third section discusses the timing considerations for I/O operations, and contains examples of 
worst-case timing analyses. 

• The fourth section contains specific I/O interface examples, induding interfaces for the 8274 Multi­
Protocol Serial Controller, the 8255A Programmable Peripheral Interface, and the 8259A 
Programmable Interrupt Controller. 

• The last section of this chapter introduces the iSBX bus interface; the iSBX bus allows single-board 
computer systems to be modularly expanded simply by plugging in I/O-mapped iSBX Multimodule 
Boards. 

I/O-MAPPING VS. MEMORY-MAPPING 

The 80286 CPU is capable of supporting either I/O-mapped or memory-mapped I/O devices. As 
outlined in the introduction, these two alternatives differ in three key respects. Although a decision to 
use one alternative or another will depend on the particular requirements of the design, the tradeoffs 
between these alternatives should be considered. 

Address-Decoding 

I/O-mapped devices reside in a separate 64K I/O address space, whereas memory-mapped devices 
reside in the full 16 Mbyte physical memory space. For this reason, the address-decoding required to 
generate chip-selects for I/O-mapped devices may be simpler than that required for memory-mapped 
devices. 

iAPX 286 Instruction Set 

I/O-mapped devices are accessible to programmers using the IN, OUT! INS, and OUTS instructions 
of the iAPX 286. IN and OUT instructions transfer data between I/O addresses and the AX (16-bit 

5-1 210760-001 



inter 1/0 INTERFACING 

transfers) or AL (8-bit transfers) registers. The first 256 bytes of I/O space are directly-addressable 
by the I/O instructions, whereas the entire I/O space (64K bytes) can be indirectly-addressed through 
the DX register. INS and OUTS are string instructions used to transfer blocks of data between memory 
and I/O devices. For more information on these I/O instructions, see the iAPX 286 Programmer's 
Reference Manual. 

Memory-mapped devices are accessible using the full iAPX 286 instruction set, allowing efficient coding 
of such tasks as I/O-to-memory, memory-to-I/O, and I/O-to-I/O transfers, as well as compare and 
test operations. 

Figure 5-1 illustrates the advantages of using memory-mapped I/O over I/O-mapped I/O in perform­
ing a simple .bit-manipulation task. After setting up pointers to the I/O device, the memory-mapped 
I/O example accomplishes the task in a single instruction; the I/q-mapped example requires three. 

Device Protection 

I/O-mapped devices are offered protection by the iAPX 286 I/O Privilege level. This privilege level 
can be used either to prevent a task from accessing any I/O devices, or to permit the task access to all 
of the I/O-mapped devices. 

Memory-mapped devices fall under the protection of the iAPX 286 memory-managem.ent and protec­
tion features. Depending on how devices are mapped into the. memory space, individual tasks may be 
given access to particular I/O devices, while other devices are either visible-but-protected, or else mapped 
entirely out of the task's visible address space. Memory-mapping of devices thus permits more flexibil­
ity in offering protection of individual system resources than I/O-mapping does. 

SETBIT: MOV 

BIT-MANIPULATION FOR 
I/O-MAPPED 1/0 DEVICE 

DX,STAT_REG point to status 

A L , D X read status word 
set bit 4 

I N 
OR 
OUT 

A L , 1 0 H 
D X, A L output status word 

5 E T B I· T: M 0 V 
MOV 

BIT-MANIPULATION FOR 
MEMORY-MAPPED 1/0 DEVICE 

AX,IO_SET_BASE 
E S , A X 

I/O bas e add r 
loa d s e 9 bas e 

OR ES:BYTE PTR STAT_REG,10H 
set bit 4 of status word 

Figure 5-1. Comparing Memory-Mapped and I/O-Mapped 1/0 

5-2 210760-001 



I/O INTERFACING 

INTERFACING TO a-BIT AND 16-BIT 1/ 0 

Although the iAPX 286 can address I/O devices as either byte (8-bit) or word (16-bit) devices, several 
considerations must be observed when connecting these devices to the iAPX 286 bus. The following 
sections describe data bus connections and chip-select techniques for both I/O-mapped and memory­
mapped I/O devices. 

Address Decoding 

As mentioned in the previous section, the address-decoding for I/O-mapped devices is somewhat simpler 
than that for memory-mapped devices. One simple technique for decoding memory-mapped I/O 
addresses is to map the entire iAPX 286 I/O space into a 64-Kilobyte region of the iAPX 286 memory 
space. If desired, the address decoder can be configured so that the I/O devices respond to both a 
memory address and an I/O address. This configuration allows system compatibility with software 
using the iAPX 86-family I/O instructions, while also permitting the use of software that takes advan­
tage of memory-mapped I/O and the iAPX 286 memory-management and protection features. 

Another factor affecting decoder complexity is the particular choice of addresses for either I/O-mapped 
or memory-mapped devices. Before selecting addresses for various I/O devices~ however, designers 
must be aware of several restricted address spaces imposed by the iAPX 286 architecture. Figure 5-2 
shows these restricted address regions for both memory-mapped and I/O-mapped devices. 

RESERVED MEMORY LOCATIONS RESERVED 1/0 LOCATIONS 

r--------..... FFFFFFH 

DEDICATED 

1-----------1 ~~~~~~~ 

r-------.... FFFFH 
OPEN 

OPEN 

1-----------1 ~~~~ 
1----------1 ~~~~ 

DEDICATED 
DEDICATED 

~--------t g~~~ 
OPEN 

1---------- OOOH .... ------- OOOH 

210760-135 

Figure 5-2. Restricted Address Regions 

5-3 210760-001 



I/O INTERFACING 

A third factor worth considering when decoding addresses is that an address decoder can be made less 
complex by decoding fewer of the lower address lines, resulting in larger granularity in the addresses 
corresponding to an individual I/O device. The 64-K I/O address space of the iAPX 286 leaves plenty 
of freedom for allocating addresses to individual I/O devices. 

Memory-Mapped 1/0 

Figure 5-3 shows a simple decoding circuit for mapping the iAPX 286 I/O space into a 64K region of 
the iAPX 286 memory space. This technique, described above, allows individual I/O devices to respond 
to both a memory address and an I/O address. This particular circuit maps the I/O space into the 
region of the iAPX 286 memory space which corresponds to addresses FE OOOOH through FE FFFFH 
(this region is the second 64K region from the top of the physical address space; the top 64K region 
typically contains the code for iAPX 286 system-reset processing). 

When this memory-mapping technique is used, the low . sixteen address bits must still be decoded to 
generate chip selects (in the same manner as for I/O-mapped devices). The 10RC and 10WC 
commands, rather than MRDC and MWTC, are generated by the Bus Controller whenever a bus 
operation accesses addresses in the specified region. For this reason, subsequent sections of this chapter 
will not distinguish between memory-mapped and I/O-mapped devices. 

The maximum decode time for the simple gating arrangement shown in Figure 5-3 is: 

2 CLK cycles at 8 MHz 
- Address valid delay 
- M/IO setup time (82.288) 

125.0 ns 
60.0 ns 
22 5 ns 
42.5 ns 

or 42.5 ns from address valid to allow sufficient setup time for M/IO to be sampled by the 82288 Bus 
Controller. 

A23 

. 82288 
A17 BUS 

CONTROLLER 

A16 

IORC 

MIlO 
MIlO IOWC 

so .. so MRDC 

51 .. 51 MWTC 

210760-94 

Figure 5-3. Memory-Mapping 1/0 Devices 

5-4 210760-001 



1/0 INTERFACING 

The same circuit technique shown in Figure 5-3 may be used to memory-map I/O devices that reside 
on the Multibus. The Bus Controller shown in the circuit would then be used to control the Multibus 
signals; this technique is discussed further in Chapter Seven in conjunction with Multibus I/O. 

a-Bit I/O 

Although 8-bit I/O devices may be connected to either the upper- or lower-half of the data bus, it is 
recommended that designers use the lower half of the data bus for 8-bit devices. 

The particular address assigned to a device determines whether byte transfers will use the upper- or 
lower-half of the data bus. 

• If a device is connected to the upper half of the data bus, all I/O addresses assigned to the device 
must be odd (AO = 1). 

• If the device is on the lower half of the bus, its addresses must be even (AO = 0). 

Since AO will always be high or low for a specific device, this address line cannot be used as an address 
input to select registers within a device. If a device on the upper half and a device on the lower half of 
the bus are assigned addresses that differ only in AO (adjacent odd and even addresses), AO and BHE 
must be conditions of chip select decode to prevent a write to one device from erroneously performing 
a write to the other. Figure 5-4 shows several techniques for generating chip selects for I/O-mapped 
devices. 

The first technique (a) uses separate 8205's to generate chip selects for odd- and even-addressed byte 
peripheral devices. If a word transfer is performed to an even-addressed device, the adjacent odd­
addressed I/O device is also selected. This allows accessing the devices individually for byte transfers 
or simultaneously as a 16-bit device for word transfers. The second technique (b) restricts the chip 
selects to byte transfers. Word transfers to odd addresses, since they are performed as two byte trans­
fers, are also permitted. The last technique (c) uses a single 8205 to generate odd and even device 
selects for byte transfers. Even device selects are generated for both byte and word transfers to even 
addresses. 

If greater than 256 bytes of I/O space are required, additional decoding beyond what is shown in the 
examples may be necessary. This can be done with additional TTL, 8205's, or PROMs. Figure 5-5 
shows an Intel 3605A bipolar PROM used as an I/O address decoder generating latched chip-selects. 
The bipolar PROM is slightly slower than multiple levels of TTL (50 ns for PROM vs. 30 to 40 ns for 
TTL), but provides full decoding in a single package, and allows easy reconfiguration of the system 
I/O map by inserting a new PROM; no circuit board or wiring modifications are required. By using 
ALE to latch the decoded chip selects, up to 68 ns are available for decoding without affecting address 
access timing: 

2 CLK cycles at 8 MHz 
minus address valid delay (max) 
plus ALE delay (min) 
Minimum address decode time = 

125 ns 
60 ns 

+ 3 ns 
68 ns max 

One last technique for interfacing with 8-bit peripherals is considered in Figure 5-6. The 16-bit data 
bus is multiplexed onto an 8-bit bus to accommodate byte-oriented DMA or block transfers to memory­
mapped 8-bit I/O. Devices connected to this interface may be assigned a sequence of odd and even 
addresses rather than all odd or all even. 

5-5 210760-001 



I/O INTERFACING 

00 
ADDRESS 

A(J 

E3 
07 

00 

BHE 1 
07 

(a) 

(b) 

ADDRESS =@A001S205010 

Ao A2 
E1 
E2 07 
E3 

(c) 

EVEN ADDRESSED 
WORD OR BYTE 
PERIPHERALS 

ODD ADDRESSED 
BYTE PERIPHERALS 

EVEN ADDRESSED 
BYTE PERIPHERALS 

ODD ADDRESSED 
BYTE PERIPHERALS 

EVEN ADDRESSED 
PERIPHERALS 
(WORD/BYTE) 

ODD ADDRESSED 
PERIPHERALS 
(BYTE) 

Figure 5-4. Generating 1/ 0 Chip Selects 

5-6 

210760-130 

210760-001 



MIlO 
AO 
A6 
A7 
A8 
A9 

A10 
A11 
A12 

8 
10 

5 
6 
7 
4 
3 
2 
1 

CS1 
CS2 
AO 
A1 
A2 3806 

A3 A-1 

A4 
AS 
AS 

I/O INTERFACING 

8282 

04 
11 
12 

03 
13 02 
14 01 
~A15 

LATCH 
Ag 
As ~A14 
A7 r!L-A13 

STB 

t 
ALE 

Figure 5-5. Bipolar PROM Decoder for a-bit or 16-bit I/O Devices 

ALE 

DEN-----. 

80286 
16-BIT 
DATA 

BUS 

PERIPHERA~==~~=--:b~~~~[J 

DTiR 

Figure 5-6. 16-bit to a-bit Bus Conversion 

5-7 

8·BIT 
PERIPHERAL 
DATA BUS 

210760-95 

210760-96 

210760-001 



1/0 INTERFACING 

16-Bit I/O 

For efficient bus utilization and simplicity of device selection, 16-bit I/O devices should be assigned 
to even addresses. As shown in Figure 5-7, both AO and BHE should be conditions of chip-select decode 
to guarantee that a device is selected only for word operations. 

Linear Chip Selects 

Systems with 15 or fewer I/O ports that reside only in I/O space, or that require more than one active 
select (at least one low active and one high active) can use linear chip selects to access the I/O devices., 
Latched address lines Al through A15 connect directly to I/O device selects as shown in Figure 5-8. 

TIMING ANALYSIS FOR I/O OPERATIONS 

By analyzing the worst-case timing for 80286 I/O cycles, designers can determine the timing require­
ments for various I/O devices and the need for wait states in the iAPX 286 bus cycle. This section 
explains how to perform a worst-case timing analysis for I/O operations. 

Timing for 80286 I/O cycles is identical to memory cycle timing in most respects and, like memory 
timing, is dependent on a particular model. Figure 5-9 shows the model used here to discuss worst-case 
timing analysis. Address and chip selects are measured from the outputs of latches (strobed by ALE). 
Data valid for reads is measured at the data pins of the CPU. Data valid for writes is measured at the 
data inputs to the I/O device. 10RC and 10WC are 82288 outputs. Figures 5-10 and 5-11 show I/O 
read and write timing for no-wait-state operation. 

ADDRESS ~ Ao-' 00 

----t--,,., _ 'I =J EVEN ADDRESSED 
Ao ; E1 8205 WORD PERIPHERALS 
~ E2 

'--- E3 01 

210760-131 

Figure 5-7. 16-bit 1/0 Decode 

5-8 210760-001 



1/0 INTERFACING 

ADD~~~~ {]cs . 
10RC AD . 1/0 DEVICE 

iOWC ViA . 

(A) SEPARATE I/O COMMANDS 

CS 

CS 
1/0 DEVICE 

1m 

r---< ViA 

CS 

CS 
1/0 DEVICE 

1m 

ViA 

(B) MULTIPLE CHIP SELECTS 

Figure 5-8. Linear Selects for 1/0 Devices 

The timing parameters used in the analysis are defined as follows: 

TLAVCML 
TCMHLAX 
TCMLCMH 
TCMLDV 
TLAVDV 
TDVCMH 
TCMHDX 
TCMHDF 
TLCECML 
TCMHLCEX 
TLCEDV 
TCMLCML 
TCMHCML 

= Latched address valid to command active 
Latched address hold from command inactive 
Command pulse width 
Command active to data valid 
Latched address valid to data valid 
Data valid to command inactive 
Data hold from command inactive 
Data float from command inactive 
Latched chip enable to command active 
Latched chip enable hold from command inactive 
Latched chip enable to data valid 
Interval from one operation to the next 
Interval between commands (not shown) 

5-9 

210760-97 

210760-001 



1/0 INTERFACING 

... ... 
) ADDRESS ) 

S " 8282 
,.. 

LATCHES 
~ CHIP ENABLE DECODE l-
I- STB ~ tALE 

iORC 

82288 
BUS I/O 

CONTROLLER rowe DEVICE 

DTiR DEN 

I I Pl 
T OE 

... <=> [J~ 8286 
CPU BUFFER ,.. 

210760-98 

Figure 5-9. 1/0 Cycle Model 

The worst-case timing values canbe calculated by assuming the maximum delay in the latched address, 
chip select, and command signals, and the longest propagationdelay through the data buffers (if present). 
These calculations provide the minimum possible access time and can be used to determine the 
compatibility of I/O devices. 

Read Operations 

For read operations, data must be valid at the pins of the 80286 IOns before the falling edge of eLK 
at the end of T c' The important timing parameters that determine whether I/O devices require one or 
more wait states are the address and command access times required by the device before read data 
will be valid. 

Taking into consideration the maximum propagation delay through the 8286 data transceivers (30 ns 
max), the worst-case address access time provided during read operations with zero wait states is: 

3 eLK cycles at 8 MHz 
- ALE active delay (max) 
- 8282 address latch delay (max) 
- 8286 data buffer delay (max) 
- Required data setup (min) 
Minimum address access time = 

5-10 

187.5 ns 
15.0 ns 
45.0 ns 
30.0 ns 
10.0 ns 
.87.5 ns min 

210760-001 



ClK 

lATCHED 
ADDRESS 

T5 

1/0 INTERFACING 

Tc 

__ ~ ________ ~ ____ J 

~--~--------~~------~~~I 

ClK 

lATCHED 
ADDRESS 

Figure 5-10. 1/0 Read Cycle Timing 

T5 TC 

__ ~ ______ ~~ ____ J 

~--~---------+----------~I 

~ ........ --TCMlCMH----~~ 

I 

Figure 5-11. 1/0 Write Cycle Timing 

5-11 

T5 

210760-99 

T5 

210760-100 

210760-001 



1/0 INTERFACING 

The calculations for the worst-case command access times provided during read cycles are similar: 

2 CLK cycles at 8 MHz 
- Cmd active delay (max) 
- 8286 data buffer delay (max) 
- Required data setup (min) 
Minimum command access time = 

125 ns 
20 ns 
30 ns 
10 ns 
65 ns min. 

If wait states are inserted into every I/O cycle, access times for the relevant parameters are increased 
by 125 ns for each wait state. Address, chip enable, and command times for a single buffered system 
running with from zero to two wait states are shown in Table 5-1. 

Another critical timing parameter for I/O read operations is data float time. Data float time measures 
the time required by the I/O device to disable its data drivers following a read operation. If the iAPX 
286 attempts to perform a write operation immediately following a read from an I/O device, the I/O 
device must disable its data drivers before the DEN signal from the Bus Controller re-enables the 8286 
data transceivers, or data bus contention will occur. 

For the I/O configuration shown in Figure 5-9, the maximum data float time afforded an I/O device 
is 57.5 ns. For a typical I/O device, this allowed data float time is inadequate. However, if a buffered 
local bus contains only I/O devices, the iAPX 286 cannot perform back-to-back read-write operations 
to that bus, and so the circumstances producing bus contention will not occur. If the I/O devices share 
the bus with memory such as static RAMs, then back-to-back read-write operations are possible and 
bus contention must be specifically prevented. 

To accommodate the data float time requirements of typical I/O devices, and thereby avoid bus 
contention, the output enables of the data bus tranceivers can be delayed for the necessary length of 
time. Figure 5-12 shows an example circuit that delays enabling the data transceivers following a read 
operation to the selected I/O devices. This same circuit, described in the previous chapter for use with 
memory devices, provides a maximum data float time for a peripheral of: 

2 CLK cycles at 8 MHz (Cmd to DEN active) 
- Cmd inactive delay (max) 
+ 8286 enable time (min) 
Maximum data float time = 

Write Operations 

125 ns 
- 15 ns 
+ 10 ns 

120 ns max. 

For typical write operations to an I/O device, data is latched into the device on the rising edge of the 
Write command at the end of Te. The important timing parameters that determine whether wait states 
are required are the address and command access times before command high. 

Table 5-1. Timing Analysis for a-MHz 1/0 Read Operations 

Worst·Case Access Time Zero One Two 
Before Data Valid Wait States Wait State Wait States 

Address Access time (min) 87.5 ns 212.5 ns 337.5 ns 

Chip-Select Access time (min) 87.5 ns 212.5 ns 337.5 ns 

Command Access time (min) 65 ns 190 ns 315 ns 

5-12 210760-001 



inter 

ClK 

82288 
BUS 

CONTROllER 

rowe 

fORC 

DTiR DEN 

I 

I/O INTERFACING 

BUS SELECT 
(lA TCHED OUTPUT OF 
ADDRESS DECODER) -U--

74lS175 74lS175 

~D a - 0 a --
A A r J I 

, 
T OE 

< > DATA 
8286 

TRANSCEIVER 

8286 

<=> 

Figure 5-12. Delaying Transceiver Enable 

rowe 

10RC 

I/O 
DEVICE 

015-0 0 

210760-101 

The worst-case address-valid to command-high access time provided during write operations with zero 
wait states is: 

3 CLK cycles at 8 MHz 
- ALE active delay (max) 
- 8282 address latch delay (max) 
+ Cmd inactive delay (min) 
Minimum address access time = 

187.5 ns 
15.0 ns 

- 45.0 ns 
+ 3.0 ns 

130.5 ns min 

Worst-case command-active to command-inactive timing is calculated in a similar manner (command 
timing for write operations is not affected by buffers in the data path): 

2 CLK cycles at 8 MHz 
- Cmd active delay (max) 
+ Cmd inactive delay (min) 
Minimum command access time = 

5-13 

125 ns 
- 20 ns 
+ 3 ns 

108 ns min 

210760-001 



1/0 INTERFACING 

The data-valid to command-inactive time for write operations must include data buffer delays. Assum­
ing a 30 ns maximum delay through 8286 buffers, the data-valid to command-inactive setup time is: 

3 CLK cycles at 8 MHz 
- data valid delay (max) 
- 8286 data buffer delay (max) 
+ Cmd inactive delay (min) 
Minimum data setup time 

187.5 ns 
50.0 ns 

- 30.0 ns 
+ 30 ns 

110.5 ns min 

If wait states are inserted into every I/O cycle, each of the relevant parameters for write operations 
are increased by 125 ns for each wait state. Address, chip-enable, command, and data-valid times for 
a single buffered system running with from zero to two wait states are shown in Table 5-2. 

The CMDL Y and CEN inputs to the 82288 can significantly alter bus cycle timing. CMDL Y can 
delay commands to produce more address, chip enable, and (for write operations) data setup time 
before a command is issued. CEN can hold commands and data buffer control signals inactive, also 
altering bus cycle timing. When used, the effects of these inputs must also be included in any worst­
case timing analysis. 

Matching I/O Device Requirements 

The timing requirements of various I/O devices can be determined by comparing the timing specifi­
cations for a device with the worst-case values for 80286 I/O cycles already discussed. From this 
comparison, the required number of wait states and/or command delays for both read and write cycles 
can easily be determined. 

Table 5-3 shows the correspondence between important 80286 timing parameters and the timing 
requirements for Intel peripherals. 

For an iAPX 286 system operating at 8 MHz, two wait states are required to produce adequate timing 
for typical I/O devices. One or more command delays may be required to ensure valid chip-select and 
address inputs before the command becomes active. Table 5-4 shows the wait-state and command-delay 
requirements of a variety of common peripherals. 

I/O INTERFACE EXAMPLES 

This section shows I/O interfaces to the 8274 Multi-Protocol Serial Controller, the 8255A-5 
Programmable Peripheral Interface, and the 8259A-2 Programmable Interrupt Controller. 

Table 5·2. 80286 Timing Analysis for 1/0 Write Operations 

Worst-Case Access Time Zero One Two 
Before Command High Wait States Wait State Wait States 

Address Access time (min) 130.5 ns 255.5 ns 380.5 ns 

Chip-Select Access time (min) 130.5 ns 255.5 ns 380.5 ns 

Command Pulse width (min) 108 ns 233 ns 358 ns 

Write Data Setup Time (min) 110.5 ns 235.5 ns 360.5 ns 

5-14 210760-001 



inter 1/0 INTERFACING 

Table 5-3. 80286/Peripheral Timing Parameters 

80286 Peripheral Peripheral 
Cycle Read Write 

TLAVCML TAR TAW 
TCMHLAX TRA TWA 
TCMLCMH TRR TWW 
TCMLOV TRO -
TCMHCML TOF TRV 
TLAVOV TAD -
TCMLCML TRCYC -
TOVCMH - TOW 
TCMHOX - TWO 
TLCECML TAR TAW 
TCMHLCEX TRA TWA 
TLCEOV TRO -

Table 5-4. Timing Requirements for Selected Peripherals 

Intel Required Required 
Peripheral Wait States Command Delays 

8251A 2 1 
8254-2 2 1 
8255-5 2 0 
8259A 2 0 
8271 2 0 
8272 2 0 
8274 2 0 
8291 2 0 
8295A 2 0 

8274 Interface 

The 8274 Multi-Protocol Serial Controller (MPSC) is designed to interface high-speed serial commu­
nications lines using a variety of communications protocols, including asynchronous, IBM bi-synchron­
ous, and HDLC/SDLC protocols. The 8274 contains two independent full-duplex channels, and can 
serve as a high-performance replacement for two 825IA Universal Synchronous/Asynchronous Receiver 
Transmitters (USARTs). 

Figure 5-13 shows the signals required to interface an 8274 MPSC to an iAPX 286. The 8274 MPSC 
is accessed by the iAPX 286 as a sequence of four 8-bit I/O-address or memory-address locations. For 
interrupt operation, the 8274 can respond to 80286 interrupt-acknowledge sequences in the same manner 
as an 8259A Interrupt Controller, and can be used in conjunction with a master 8259A Interrupt 
Controller in a cascaded configuration. 

The chip-select and address inputs (CS, AO, and AI) to the 8274 must all be latched. Typically, address 
input AO and Al would be connected to the latched address lines Al and A2, respectively, of the local 
address bus. A single level of buffering is typically used on the 8 data lines between the CPU and the 
8274 MPSC. 

5-15 210760·001 



Vee a 

450NS 
DELAY 

CAS 

MASTER 
8259A 

1/0 INTERFACING 

8274 
00-07 00-0 7 SERIAL 

CONTROLLER 

A1 AO 
A2 A1 

PERIPHERAL CS ~ CS 
iORC .. AD 

IOWC • WR 

CLK 

RESET 

INTA 

INT 

0 iPi 

Figure 5-13. 8274 MPSC Interface 

~ SERIAL 
~CHA~NEL 

~ SERIAL 
~CHA~NEL 

210760-102 

The 8274 RD and WR commands are connected to the IORC and IOWC outputs of the 82288 Bus 
Controller. To provide an acceptable CLK input for the 8274 MPSC, the 82284 PCLK clock frequency 
can be divided by two and used to rl.rive the 8274 CLK input. 

For Interrupt operation, the INTA signal from the Bus Controller is also connected to the 8274 MPSC. 
When using the 8274 in a cascaded interrupt configuration, the IPI input from the cascade address 
decoder must be valid before the falling edge of the INT A signal. A 450 ns delay circuit is used to 
delay INT A until this decoded CAS address becomes valid. 

Further details on interfacing the 8274 MPSC to a microprocessor system can be found in the appro­
priate data books. The following discussion looks at the bus timing requirements for accessing the 8724 
MPSC on a buffered iAPX 286 local bus. 

READ TIMING 

The Read timing requirements for the 8274 MPSC are as follows: 

TARmin 
TRAm in 
TRRmin" 
TRDmax 
TDFmax 

o ns 
o ns 
250ns 
200 ns 
120 ns 

5-16 210760-001 



I/O INTERFACING 

A comparison of TAR (0 ns min. required) with 80286 timing (5.5 ns min. provided) shows that no 
command delays are required. The command pulse width requirement (TRRmin) of 250 ns minimum 
indicates that at least two wait states must be inserted into the iAPX 286 bus cycle (command pulse 
width with two wait states is 310 ns). With these two wait states, read operations to the 8274 result in 
a data access time of at least 315.5 ns, easily meeting the 8274 requirement for at least 200 ns. 

Data float time for the 8274 MPSC is 120 ns maximum, and may necessitate the delayed-transceiver­
enable circuit shown in Figure 5-12. The circumstances requiring a delayed transceiver-enable to 
accommodate lengthy data float times have been described in the previous section on Read Operations. 

WRITE TIMING 

Write timing requirements for the 8274 MPSC are as follows: 

TAWmin o ns 
TWAmin o ns 
TWWmin 250 ns 
TDWmin 150 ns 
TWDmin o ns 
TRVmin 300 ns 

The first three timing requirements (TAWmin, TWAmin, and TWWmin) are identical to their equiv­
alent read parameters, and require identical timing. Like Read operations, write operations to the 8274 
must have two wait states inserted into the iAPX 286 bus cycle. 

The remaining three parameters are specific to write cycles. With two wait states, the iAPX 286 easily 
exceeds the minimum 8274 data setup time (TDWmin = 150 ns) by providing at least 255.5 ns. The 
8274 requires no data hold time. 

TRVmin is the recovery time between write cycles to the USART. Recovery time is required following 
any mode changes or control accesses. The circuit shown, however, guarantees only 62.5 ns between 
successive Write commands. The proper recovery time between successive write cycles can be obtained 
easily through software delays, or can be implemented in hardware by delaying commands by an 
appropriate four CLK cycles. 

8255A-5 Interface 

Figure 5-14 shows the interface between an 8255A-5 Programmable Peripheral Interface and an iAPX 
286. Timing parameters are as follows: 

Read Timing 

TARmin 0 ns 
TRAmin 0 ns 
TRRmin 300 ns 
TRDmax 200 ns 
TDFmax 100 ns 

Write Timing 

TAWmin = 0 ns 
TW Amin = 20 ns 
TWWmin = 300 ns 
TDWmin 100 ns . 
TWDmin = 30 ns 

TCYCmin (Reads and Writes) = 850 ns 

A bus cycle with two wait states and no command delay, and using the additional delayed-transceiver­
enable logic to delay enabling the data transceivers following a read operation, meets all of the timing 
requirements except for the time between cycles (TCYCmin). This remaining parameter can be met 

5-17 210760-001 



DATA 0 

A1 

A2 

RESET 

I/OINTERFAING 

8255A -7<=> 00-7 
<=> .. AO 

PORTA 

.. A1 .A ). 

PORT 8 
ORO < ... ,. 
o WR 

<=> CS PORT C 

.. RESET 

Figure 5-14. 8255A-5 Parallel Port Interface 

210760-103 

through an appropriate software delay or in hardware by delaying commands the required number of 
CLK cycles (and inserting wait states to meet the other refluirements). 

8259A-2 Interface 

The 8259A:2 Programmable Interrupt Controller is designed for use in interrupt-driven microcomputer 
systems, where it manages up to eight independent interrupt sources. The 8259A-2 handles interrupt 
priority-resolution and individual interrupt masking, and directly supports the iAPX 286 manner of 
acknowledging interrupts. During iAPX 286 interrupt-acknowledge sequences, the 8259A resolves the 
highest-priority interrupt that is currently active, and returns a pre-programmed interrupt vector to the 
80286 to identify the source of the interrupt. 

A single 8259A-2 Interrupt Controller can handle up to eight external interrupts. Multiple 8259A-2 
Interrupt Controllers can be cascaded to accommodate up to 64 interrupt requests. A technique for 
handling more than 64 external interrupts is discussed at the end of this section. 

Intel Application Note AP-59 contains much more detailed information on configuring an 8259A in a 
variety of different ways. The remainder of this section contains specific details for interfacing an 
8259A Interrupt Controller to the iAPX 286. 

5-18 210760-001 



1/0 INTERFACING 

SINGLE INTERRUPT CONTROLLER 

Figure 5-15 shows the interface between the 80286 CPU and a single 8259A-2 Interrupt Controller. 
Timing parameters for the 8259A-2 are as follows (note that symbols used in the 8259A data sheet 
differ from those used for most of the other Intel peripherals): 

Symbol 

TAHRLmin 
TRHAXmin 
TRLRHmin 
TRLDVmax 
TRHDZmax 
TRHRLmin 

TAHWLmin 
TWHAXmin 
TWLWHmin 
TDVWHmin 
TWHDXmin 
TWHWLmin 
TCHCLmin 

Parameter 

AO/CS Setup to RD/INTA Active 
AO/CE Hold from RD/INTA Inactive 
RD /INTA Pulse Width 
Data Valid from RD/INTA Active 
Data Float from RD/INTA Inactive 
End of RD to next RD or End of INT A 
to next INTA within an INTA 
sequence only 
AO/CS Setup to WR Active 
AO/CS Hold from WR Inactive 
WR Pulse Width 
Data Valid to WR Inactive 
Data Hold from WR Inactive 
End of WR to Next WR 
End of Command to Next Command 
(not same type) or End of INTA 
Sequence to Next INTA Sequence 

os 

o 
o 

160 
120 
100 
160 

o 
o 

190 
160 
o 

190 
500 

To ensure proper operation, bus operations accessing the 8259A require one wait state. No CMDL Ys 
are necessary. Because the 8259A requires a minimum of 500 ns (typically, two bus cycles) between 
successive reads or writes, software accessing the 8259A should be suitably written to avoid violating 
this requirement. 

When an interrupt occurs, the 80286 CPU automatically executes two back-to-back interrupt-acknowl­
edge bus cycles. The timing of these interrupt-acknowledge (INTA) cycles is described in Chapter 
Three. The external Ready logic must insert at least one wait state into each INTA cycle to ensure 
proper 8259A timing. No CMDL Y s are necessary. Between INTA cycles, the 80286 automatically 
inserts three idle (T j ) cycles in order to meet 8259A timing requirements. 

CASCADED INTERRUPT CONTROLLERS 

Figure 5-16 shows the interface between the 80286 CPU and multiple 8259A-2 interrupt controllers. 
The master Interrupt Controller resides on the local bus, while up to eight slave controllers can be 
interfaced to the system bus. Slave controllers resolve priority between up to eight interrupt requests 
and transmit single interrupt requests to the master controller. The master controller, in turn, resolves 
interrupt priority between up to eight slave controllers and transmits a single interrupt request to the 
80286 CPU. Up to 64 interrupt requests can be accommodated by the configuration shown. 

The basic read/write timing for cascaded interrupt controllers is the same as for a single interrupt 
controller. The timing for interrupt-acknowledge sequences, however, involves additional signals over 
those required for a single interrupt subsystem. 

During the first interrupt-acknowledge cycle, the master controller and all slave controllers freeze the 
state of their interrupt request inputs. The master controller outputs a cascade address that is enabled 
by MCE (Master Cascade Enable) from the 82288 and latched by ALE; the cascade address is typically 
gated onto address lines A8-AIO (IEEE 796 Multibus standard). This cascade address selects the slave 

5-19 210760-001 



inter 

INTR 

80286 
CPU 

ADDR 

DATA 

COD I IRTA 

MIlO 

I-------~~ 

1/0 INTERFACING 

EXTERNAL 
~INTERRUPT V REQUESTS 

~~INT~--------~IR~0-~7~ 

I-----.... cs 8259A-2 
INTERRUPT CONTROLLER 1/0 ENABLE 

~r---~-~~---r-~~'/ 

T 

8286 
XCVR 

~----------v 

ADDRESS 

DATA 

210760-104 

Figure 5-15. Single 8259A Interrupt Controller Interface 

controller that is generating the highest-priority interrupt request. During the second interrupt­
acknowledge bus cycle, the slave controller responding to the cascade address outputs an interrupt 
vector that points to an appropriate interrupt service routine. 

Chapter Seven includes details for designing systems using cascaded Interrupt Controllers when slave 
controllers may reside on a system bus such as the Multibus. 

HANDLING MORE THAN 64 INTERRUPTS 

Cascaded 8259A Interrupt Controllers can accommodate up to 64 independent interrupt requests. iAPX 
286 systems that require more than 64 interrupts can use additional 8259A-2 devices in a polled mode. 

For example, interrupt request inputs to a slave controller can be driven by a third level of 8259A-2 
controllers. When one of these additional controllers receives an interrupt request, it drives one of the 
interrupt request inputs to the slave controller active. The slave controller signals the master controller, 
which in turn interrupts the CPU. The interrupt identifier received from the slave controller directs 
the CPU to a service routine that polls the third level of interrupt controllers to determine the source 
of the request. 

The only additional hardware required to handle more than 64 interrupt sources are the additional 
8259A-2 devices and address-decode logic for selecting the additional devices. Polling is performed by 
writing the poll command to the appropriate 8259A-2, followed immediately by a read command. For 

5-20 210760-001 



80286 
CPU 

DATA 

ADDRESS 

1/0 INTERFACING 

CHIP SElECTS 
.-------. TO SLAVE 

8282 
LATCH 

STB 

.---__ -.-______ .-ICASO-2 

82288 
BUS 

CONTROLLER 

CONTROLLERS 

8259A-2 

~--------~ 
DATA 

Figure 5-16. Cascaded 8259A Interrupt Controller Interface 

REQUESTS 
FROM SLAVE 
CONTROLLERS 

210760-105 

maximum performance, use of a third level of interrupt controllers should be restrIcted to less-critical, 
less frequently-used interrupts. 

THE iSBX BUS-A MODULAR I/O EXPANSION BUS 

The iSBX Bus is a modular I/O expansion bus that allows single-board computer systems to be expanded 
simply by plugging in specialized iSBX Multimodule boards. 

The iSBX Multimodule boards respond to fully-decoded chip select lines defined on the bus. An MPST 
control signal indicates to the computer system that a Multimodule board is present. Once a Multi­
module board has been installed, the I/O devices on the Multimodule board appear as an integral part 
of the single-board computer, and can be accessed in software using the standard I/O instruction set. 

The timing of bus operations between an iAPX 286 and an iSBX Multimodule Board is controlled by 
the iSBX MW AIT signal. This signal is asserted to insert wait states with the 80286 bus cycle, and 
can simply be inverted and used to drive the 82284 ARDY input. 

The iSBX Bus is described in the iSBX Bus Specification, Order Number 142686-002. This document 
contains complete details for designing Multimodule boards compatible with the iSBX bus standard. 

5-21 210760-001 





Using The 80287 Numeric 
Processor Extension 6 





CHAPTER 6 
USING THE 80287 NUMERIC PROCESSOR EXTENSION 

The Intel 80287 is a high-performance numeric processor extension that extends the iAPX 286/10 
system by adding floating-point, extended-integer, and BCD data types. The iAPX 286/20 system, 
comprising an 80286 processor with an 80287 processor extension, contains over fifty additional 
instructions over those of an iAPX 286/10, and fully conforms to the proposed IEEE 754 Floating 
Point Standard. The additional instructions added by the Numeric Processor Extension are described 
in the 8086 Numeric Supplement as well as in the 80287 Data Sheet. 

This chapter details how to design an iAPX 286/20 system connecting the 80287 Numeric Processor 
to an iAPX 286/10. . 

• The first section of this chapter describes the electrical connections of the 80287 to an iAPX 
286/10 system. . 

• The second section describes the local bus activity you may observe using the 80287 with the 80286. 
This bus activity includes: 

A. Interactions between the 80286 and· 80287 under program control (executing ESC 
instructions). 

B. Interactions that occur asynchronous to the program, where the 80287 Numeric Processor 
requests the transfer of operands between itself and system memory using the 80286 Processor 
Extension Data Channel. 

• The final section of this chapter describes how to design an upgradable iAPX 286/10 system with 
an empty 80287 socket. This system may be upgraded to an iAPX 286/20 system simply by insert­
ing an 80287 into the empty socket. This section includes an example software routine to recognize 
the presence of an 80287. 

THE 80287 PROCESSOR EXTENSION INTERFACE 

The 80287 can be connected to an iAPX 286/10 system as shown in Figure 6-1. 

Four important points should be observed when connecting the 80287 to an iAPX 286/10 system: 

1. The 80287 operates as an extension of the 80286: the 80287 connects directly to the status lines 
of the 80286. The 80286 executes programs in the normal manner; the 80287 automatically executes 
any numeric instructions when they are encountered. 

2. The 80287 responds to particular I/O addresses (00F8H, OOF AH, and OOFCH) automatically 
generated by the 80286. 

3. The 80287 can be driven by a separate clock signal, independent of the 80286 clock. This allows 
a higher-performance (8 MHz) 80287 to be used if system performance requirements warrant it. 

4. Because the 80287 data lines are connected directly to those of the 80286, the buffer/drivers 
driving the local data bus must be disabled when the 80286 reads from the 80287. 

6-1 210760-001 



USING THE 80287 NUMERIC PROCESSOR EXTENSION 

'\ 

ADDRESS I 
I/')'Ot M" (01/') 

~ "~ ott N'- ' 
« « <.- « «< «< « 

< 

YJ ,. AIS-AO 
RESET Vee 

FlEA!»' READY 80286 ~ 

CPU > 

Y ClK ClK 
-07 

DIs-Do S1 S1 -
SO SO 

COOl -
~ nm MIlO 

I WIO i HlDA 
r2A1AO E1 82288 BUSY Il. PEREa 

8205 BUS 
CONTROllER .E2 E3 07 

DEN I--
Y I DTiR 
0 0 0 

ALE ClK 
IOWC fOFfC 

Q1 
a a a 

I 1 
BUSY I ~ PEREa 

RJ5FIt) a: 
a: Il. HlDA fool NPWR U.I OE 

COD/IffI'A I-- T 

RESET RESET f-- 828617 => DIs-Do DATA 

E READY READY 80287 
SOCKET NPS2 f---Vee 

ClK ClK286 
---c::.... 82284 m>Sl 

CLOCK S1 S1 
GENERATOR SO 

SO 
CM01 

OMDO 
ClK CKM 

~-~--------1 ,r :~---,( -~-= .. - I 8284A ~---4 .. _.. I 
- -::.. :. -L _______ J 

210760-106 

Figure 6-1. iAPX 286/20 System Configuration 

The 80287 Status Lines 

The 80287 has a number of status lines and inputs that are connected directly to the 80286. 

The S 1, SO, COD jINTA, READY, RESET, HLDA, and eLK pins of the 80287 are connected to the 
corresponding pins of the 80286. By monitoring these signals, the 80287 can observe the execution of 
ESC instructions by the 80286. 

The BUSY signal from the 80287 is connected directly to the 80286; it signals that the Processor 
Extension is currently executing a numeric instruction. The 80286 will not execute most ESC instruc­
tions until this BUSY signal becomes inactive. The 80286 WAIT instruction and most ESC instruc­
tions cause the 80286 to wait specifically until this signal becomes inactive. 

6-2 210760-001 



inter USING THE 80287 NUMERIC PROCESSOR EXTENSION 

The ERROR signal from the 80287 is also connected directly to the 80286; it signals that the previous 
numeric instruction caused an unmasked exception condition. The 80287 Data Sheet describes these 
exception conditions and explains how these exceptions may be masked under program control. If an 
exception occurs, this ERROR signal becomes active before the BUSY signal goes inactive, signalling 
the end of the numeric instruction. 

Addressing the 80287 

When the 80286 executes an ESC instruction, the 80286 automatically generates one or more I/O 
operations to the 80287's reserved I/O addresses. These I/O operations take place independent of the 
80286's current I/O privilege level. 

Table 6-1 shows the particular I/O addresses reserved for the 80287 and shows how the four processor­
select and command inputs of the 80287 must be activated when these I/O addresses are asserted. 
The CMDO and CMD 1 signals of the 80287 may be connected to the latched A 1 and A2 address lines, 
and, in addition, the NPRD and NPWR signals of the 80287 should be connected to the 10RC and 
10WC signals from the 82288 Bus controller, respectively. 

The 80287 Clock Input 

The 80287 can operate either directly from the CPU clock or with a dedicated clock. To operate the 
80287 from the CPU clock, the CKM pin of the 80287 is tied to ground. In this mode, the 80287 
internally divides the system clock frequency to operate at one-third the frequency of the system clock 
(i.e., for an 8 MHz 80286, the 16 MHz system clock is internally divided down to 5.3 MHz). 

To use a higher-performance (8 MHz) 80287, the CKM pin of the 80287 must be tied high, and an 
8284A clock driver and appropriate crystal may be used to drive the 80287 with an 8 MHz, 33% duty­
cycle, MOS-Ievel clock signal on the CLK input. In this mode, the 80287 does not internally divide 
the clock frequency; the 80287 operates directly from the external clock. 

Table 6-1. I/O Address Decoding for the 80287 

1/0 Address 80287 Select and Command Inputs 

(Hexadecimal) 
NPS2 NPSl CMDl CMDO 

OOF8 1 0 0 0 

OOFA 1 0 0 1 

OOFe 1 0 1 0 

OOFE * Reserved For Future Use 

NOTE: 

These addresses are generated automatically by the 80286. Users should not attempt to reference these 
I/O addresses explicitly, at the risk of corrupting data within the 80287. 

6-3 210760-001 



USING THE 80287 NUMERIC PROCESSOR EXTENSION 

LOCAL BUS ACTIVITY WITH THE 80287 

The 80287 operates as a parallel processor independent of the 80286, and interacts with the 80286 in 
two distinct ways: 

1. The 80286 initiates 80287 operations during the execution of an ESC instruction. These interac­
tions occur under program control; thus, they are easily recognized as part of the instruction stream. 

2. The 80287 requests the 80286 to initiate operand transfers using the Processor Extension Data 
Channel of the 80286. These operand transfers between the 80287 and system memory occur 
when the 80287 requests them; thus, they are asynchronous to the regular instruction stream of 
the 80286. 

Execution of ESC Instructions 

When the 80286 encounters an ESC instruction, the 80286 first checks for the presence of the Proces­
sor Extension and verifies that the Processor Extension is in the proper context. If the BUSY status 
line from the 80287 is active, the 80286 waits for this signal to become inactive before proceeding to 
execute the ESC instruction. 

When the 80286 executes an ESC instruction, the 80286 automatically generates one or more I/O 
operations to the 80287's reserved I/O addresses. These I/O operations take place independent of the 
80286's current I/O Privilege level or Current Privilege level. The timing of these I/O operations is 
similar to the timing of any other I/O operation, with no (zero) wait states required for successful 
transfers. 

Figure 6-2 illustrates the timing of data transfers with the 80287. 

The Processor Extension Data Channel 

All transfers of operands between the 80287 and system memory are performed by the 80286's internal 
Processor Extension Data Channel. This independent, DMA-like data channel permits all operand 
transfers of the 80287 to fall under the supervision of the 80286 memory-management and protection 
model. 

DATA CHANNEL REQUESTS 

When the 80286 executes an ESC instruction that requires transfers of operands either to or from the 
80287, the 80286 automatically initializes the Processor Extension Data Channel, setting the memory 
address base and memory address limit registers, and setting the direction flag to indicate the direction 
of the transfer. Once the 80826 has initialized the Processor Extension Data Channel, the Processor 
Extension can request operand transfers through the Data Channel by raising PEREQ active. This 
request line remains high until the 80286 acknowledges the request by lowering its PEACK signal. 

Figure 6-3 illustrates the timing of PEREQ and PEACK in controlling the operation of a Data Channel 
transfer. PEACK always goes active during the first bus operation of a Data Channel transfer. 

DATA CHANNEL TRANSFERS 

Numeric data transfers performed by the Processor Extension Data Channel use the same timing as 
any other 80286· bus cycle. Figure 6-2 illustrates operand transfers between the 80287 and system 
memory, placing the 16-bit operands at even-aligned word boundaries. 

6-4 210760-001 



USING THE 80287 NUMERIC PROCESSOR EXTENSION 

TS TC TS 

ClK 

A1S-AO ____ I_IO_A_DD_R_E_SS_V_A_l_ID ____ ..IX"' ____ ----t __________ _ 

lATCHED ~-------------+------__ ---
CMDO, CMD 1 X VALID X 
NPS1, NPS2 _____ .1. "'. -------------o+------J. "". ___ _ 
IORC (NPRD) \""-----tf 

DATA --------------------------~ ... ~<w._D_AV_T:_l~_UT_ ..... »,WI~~----
A. DATA READ TIMING FOR THE 80287 

TS TC Ts 

ClK 

A1S-AO _____ I_IO_AD_D_R_E_SS_V_A_l_ID ___ ~X"" ____ -+ __________ _ 

~~~D X X 
~~~~,~pM~1-----J '_ _________ V_A_Ll_D __ -+ _____ -J ""-__ _ 

DATA ___________ ~~\<~ ..... ~ ____ D....;.;.~r;.;;,,;.~~N_+__-....,j), .... ~)~"""'*'~»~--

IOWC(NPWR)----------~~'_ _______ ~~ 

B. DATA WRITE TIMING FOR THE 80287 

210760-107 

Figure 6-2. Data Transfer Timing for the 80287 

For each operand transfer over the Processor Extension Data Channel, two or three bus operations are 
performed: one (I/O) bus operation to the 80287, and one or two bus operations to transfer the operand 
between the 80286 and system memory. Normally, Data Channel transfers require only two bus cycles; 
three bus cycles are required for each operand aligned on an odd byte address. The timing of word 
transfers to odd-aligned addresses is described in Chapter Three. 

Operand transfers over the Processor Extension Data Channel may occur at any time following an 
ESC instruction as long as the Processor Extension's BUSY signal is active. Once this BUSY signal 
becomes inactive, no further requests by the 80287 for the Data Channel will occur until after the 
execution of a subsequent ESC instruction. 

6-5 210760-001 



inter USING THE 80287 NUMERIC PROCESSOR EXTENSION 

PEREQ 

LATCHED 
CMDO, CMD1 
NP51, NP52 

IOWC. lORe 
(NPWR . NPRD) 

Figure 6-3. Data Channel Request and Acknowledge Timing 

DATA CHANNEL PRIORITY 

210760-108 

Data transfers over the Processor Extension Data Channel have a higher priority than either programmed 
data transfers performed by the 80286 Execution Unit, or instruction prefetch cycles performed by the 
80286 Bus Unit. 

If the 80286 is currently performing a LOCKed instruction, or is performing a two-byte bus operation 
required for an odd-aligned word operand, these higher-priority operations will be completed before 
the Processor Extension Data Channel takes control of the bus. The Processor Extension Data Channel 
also has a lower priority than external bus requests to the 80286 via the HOLD input. 

Performance Using 80287 Parallel Processing 

Because the 80287 Numeric Processor executes instructions in parallel with the 80286, the perform­
ance of the iAPX 286/20 system is fairly insensitive to memory speed and the number of wait states 
encountered by the 80286. 

Table 6-2 illustrates how the performance of an iAPX 286/20 system is only slightly degraded as the 
number of wait states is increased. The figures shown are for an 8 MHz 80286-Al with a 5 MHz 
80287-Al operating in Real mode. For an explanation of the Double-Precision Whetstone Benchmark 
used in this test, see "A Synthetic Benchmark," H. 1. Curnow and B. A. Wichmann; Computer Journal, 
Volume 19, No. 1. 

6-6 210760-001 



USING THE 80287 NUMERIC PROCESSOR EXTENSION 

Table 6-2. Whetstone Performance with Multiple Wait States 

Performance 

Number of Wait States Relative to 
dWhets· O-wait states 

0 147.9 1.00 

1 142.5 0.96 

2 138.5 0.94 

3 135.4 0.92 

·Performance shown in thousands of double-precision Whetstone instructions per second. 

DESIGNING AN UPGRADABLE iAPX 286 SYSTEM 

When designing an iAPX 286/10 system, it is relatively easy to design a socket for the 80287 Numeric 
Processor Extension that permits the system to be upgraded later to an iAPX 286/20 system. Upgrad­
ing the system at a later date is accomplished simply by installing the 80287 Numeric Processor in its 
socket-no switches or strapping options are required. Using an appropriate initialization sequence, the 
iAPX 286 system can determine whether an 80287 is present in the system, and respond accordingly. 
This capability allows a single design to address two different levels of system price vs. performance. 

Designi.ng the 80287 Socket 

Figure 6-1 shown previously illustrates one way to design an 80287 socket to allow upgradability. A 
single pull-up resistor is attached to data line D7 to ensure that this data bit will read high during a 
floating condition. As explained in the following section, this data bit reading high will properly indicate 
the absence or presence of the 80287 Numeric Processor. 

Recognizing the 80287 

During initialization, the 80286 can be programmed to recognize the presence of the 80287 Numeric 
Processor Extension. Figure 6-4 shows an example of such a recognition routine. 

In the example routine, the 80286 assumes that the 80287 is present, and executes an FNINIT instruc­
tion. Following the FNINIT instruction, the 80286 reads the 80287 status word. If an 80287 is indeed 
present, the lower 8-bits of this word (the exception flags) will all be zeroes. If an 80287 is not present, 
these data lines will have been floating. The preceding section of this manual explained how to design 
the 80287 socket to ensure that at least one of these lower-eight data lines floats high in the absence 
of the 80287. 

Depending on the contents of these data lines, the 80286 can determine the presence or absence of an 
80287 and then accordingly set or clear the MP and EM bits in its own Machine Status Word. If the 
80286 determines that the 80287 has been installed, the 80286 will automatically pass all subsequent 
numeric instructions to the 80287 for execution. If the 80287 is not present, the 80286 can automati­
cally invoke a software emulation routine each time it encounters a numeric instruction in its instruc­
tion path. 

6-7 210760-001 



USING THE 80287 NUMERIC PROCESSOR EXTENSION 

initialization routine to detect an 80287 Humeric Processor 

FHD_287: 

GOT_287: 

COHTIHUE: 

F H I HIT 
FSTSW AX 
OR A L , A L 

JZ GOT_28.7 

SMSW A X 
OR 04 H 
LMSW AX 
JMP COHTIHUE 

SMSW A X 
OR 02 H 
LMSW A X 

initialize Humeric Processor 
retrieve 80287 status word 
test 10w-by,te--80287 exception flags 
if all zero, then 80287 present and 
properly initialized 
if not all zero, then 80287 absent. 
branch if 80287 present 

Ho Humeric Processor--
set EM bit in machine status word 
to enable software emulation of 80287 

Humeric Processor present 
set MP bi·t in machine status word 
to permit normal 80287 operation 

and off we. go ••• 

Figure 6-4. Software Routine to Recognize the 80287 

6-8 210760-001 



The System Bus 7 





CHAPTER 7 
THE SYSTEM BUS 

The concept of a system bus has already been introduced in Chapter Two. A system bus connects one 
or more processing elements, each of which shares access to the same system resources. One or all of 
the processing elements in such a system may be iAPX 286 subsystems. Chapter Two outlines how the 
iAPX 286 system architecture supports a system bus, and details some of the considerations for inter­
facing an iAPX 286 system to a multiprocessor system bus. 

This chapter expands on the description given in Chapter Two and describes how to interface an iAPX 
286 subsystem to a multi master system bus, using the IEEE 796 Multibus protocols. 

• The first section of this chapter discusses some of the reasons for using a system bus, and describes 
the tradeoffs between placing particular system resources on a local bus or the system bus. 

• The second section describes a particular implementation of a multiprocessor system bus, the IEEE 
796 (Intel Multibus) system bus. This section also details how specific Intel components can make 
the design and implementation of a Multibus interface easy and efficient. 

• The third section describes three of the four principal considerations that must be taken into account 
when designing an iAPX 286 interface to the Multibus. This section describes: 

A. The decoding of memory and I/O references onto either the iAPX 286 local bus or the Multi­
bus. A technique for mapping Multibus I/O into the iAPX 286 memory space is explained, 
and a byte-swapping circuit is introduced to comply with the Multibus requirements for byte 
transfers. 

B. The decoding of interrupts and interrupt acknowledge sequences onto either the local bus or 
the Multibus. 

• The fourth section describes the use of the 82289 Bus Arbiter in implementing a Multibus interface. 
The Bus Arbiter coordinates the contention of the iAPX 286 system for the Multibus, and controls 
the release of the Multibus to other Multibus processors following iAPX 286 usage. 

• The fifth section contains a timing analysis of the Multibus interface, and summarizes the key 
Multibus parameters, describing how the iAPX 286 system must be configured to meet these 
requirements. 

• The sixth section discusses using dual-port memories with the Multibus system bus interface, and 
describes the handling of LOCK signals. 

THE SYSTEM-BUS CONCEPT 

Previous chapters considered single-bus systems in which a single iAPX 286 processor connects to 
memory, I/O, and processor extensions. This chapter introduces the system bus concept, which allows 
several single-bus systems to be connected into a more-powerful multiprocessing system. 

In a single-bus system, a local bus connects processing elements with memory and I/O subsystems 
where each processing element can access any resource on the local bus. However, since only one 
processing element at a time can use the local bus, system throughput cannot be improved by adding 
more processing elements. For this reason, a local bus typically contains only one general-purpose 
processing element and perhaps one or more dedicated processors, along with memory and other 
resources required by the processors. 

7-1 210760-001 



THE SYSTEM BUS 

A system bus can connect several processing subsystems, each of which may have their own local bus 
and private resources. The system bus may also connect system resources such as memory and I/O, 
which are shared equally between processing subsystems. In this way, the system bus supports multi­
processing. Since each of the processing subsystems can perform simultaneous data transfers on their 
respective local buses, total system throughput can be increased greatly over that of a single-bus system. 

The system bus also establishes a standard interface, allowing computer systems to be expanded 
modularly using components from different vendors. The Intel Multibus, for example, has over 100 
vendors supplying over 800 board-level products that are compatible with the Multibus interface. Using 
the standard Multibus protocols, a wide variety of I/O devices and memory subsystems are available 
to expand the capabilities of iAPX 286 systems. 

Although the bulk of this chapter describes the Multibus system bus, the concepts discussed here are 
applicable to any system bus. 

The Division of Resources 

The heart of the system-bus concept is the division of resources between a processing element's local 
bus and the system bus. Typically, an iAPX 286 subsystem that interfaces to a system bus will have 
some amount of memory and perhaps other resources connected to its local bus. An important point to 
consider in designing a multiprocessing system is how resources will be divided between local buses 
and the system bus. An iAPX 286 subsystem must communicate with resources on both its local bus 
and the system bus. There are a number of tradeoffs between placing a particular system resource such 
as memory on a single processor's local bus, or placing the resource on the system bus. 

LOCAL RESOURCES 

Resources on a local bus are accessible only by the processor controlling that local bus. This may 
increase reliability, for such resources are isolated from the effects of failures occurring in other parts 
of a system. System throughput can also be increased by using local resources, since the local processor 
does not have to contend with other processors for the use of these resources. In systems where several 
processors each have their own local memory, mUltiple tasks can execute in parallel because each 
processor is fetching instructions from a separate path. In an iAPX 286 system, local memory allows 
the 80286 to use its capability for overlapped memory cycles to the best effect: 80286 bus cycles can 
be performed in the least possible time. 

Of course, the cost of implementing a separate memory subsystem for each processor must be 
considered. In addition, some memory will have to be connected to the system bus, to allow different 
processing elements to communicate with each other. Occasionally-used processor resources may be 
more cost-effective if they are connected to the system bus, where their use can be shared among 
several processors. 

SYSTEM RESOURCES 

Resources directly connected to the system bus are accessible to all processing elements on the system 
bus; therefore, they can be shared efficiently among different processors. Memory resources connected 
to the system bus allow processors to pass blocks of data between each other efficiently and thus 
communicate asynchronously. 

A disadvantage of placing resources on the system bus is that a single processor may have to contend 
with other processors for access to the bus, resulting in slower access times and reduced system 

7-2 210760-001 



inter THE SYSTEM BUS 

throughput. Using system memory also involves a risk of memory corruption because it is conceivable 
that one processing element may overwrite data being used by another. 

In view of these tradeoffs, designers must carefully consider which resources (or how much memory) 
they will place on a subsystem's local bus, and which or how much to place on the system bus. These 
choices affect system reliability, integrity, throughput and performance, and often depend on the 
requirements of the particular target system. 

THE IEEE 796 MUL TIBUS®-A MUL TIMASTER SYSTEM BUS 

The Intel Multibus (IEEE 796 Standard) is an example of a proven,industry-standard multiprocessing 
system bus that is well-tailored for iAPX 286 systems. A wide variety of Multibus-compatible I/O 
subsystems, memory boards, general-purpose processing boards, and dedicated-function boards are 
available from Intel to speed product development while ensuring bus-level compatibility. Designers 
who choose the Multibus protocols in their system bus have a ready supply of system components 
available for use in their products. 

The Multibus protocols are completely described in the Intel Multibus Specification, Order Number 
9800683-04. 

The job of interfacing an iAPX 286 subsystem to the Multibus is made relatively simple by using 
several components specifically adapted to handling the Multibus protocols. These interface compo­
nents include: 

• The 82288 Bus Controller, to generate Multibus-compatible memory and I/O read/write commands, 
and interrupt-acknowledge commands, as well as appropriate data and address buffer control signals. 
The 82288 has a strapping option to select the Multibus mode of operation. 

• The 82289 Bus Arbiter, to handle Multibus arbitration logic and to generate appropriate control 
information. 

• 8287 Data Transceivers, to buffer Multibus data lines (inverting transceivers are required to conform 
to Multibus convention). 

• 8283 Latches, to buffer Multibus address lines (inverting latches are required to conform to Multi­
bus convention). 

• The 8259A Programmable Interrupt Controller, to handle hardware interrupts in conformance with 
the Multibus bus-vectored interrupt conventions. 

These devices are functionally and electrically compatible with the Multibus protocols, and form a 
simple and cost-effective means of generating signals for a Multibus interface. Figure 7-1 shows how 
these components interconnect to interface an iAPX 286 subsystem to the Multibus system bus. 

MUL TIBUS® DESIGN CONSIDERATIONS 

One of the important decisions confronting a designer who is considering an implementation of a Multi­
bus interface is the question of how to divide system resources between resources that reside on the 
Multibus and resources that reside on the iAPX 286 local bus. 

Typically, system resources will be split between the local bus and the system bus (Multibus). System 
designers must allocate the iAPX 286 system's physical address space between the two buses, and use 
this information to select either the iAPX 286 local bus or the system bus for each bus cycle. 

7-3 210760-001 



Ul 
::;) 
III 
...J « 
u 
9 

CMD 

THE SYSTEM BUS 

. ~ I 8282 I _ 82284 ARDY 11 lATCH I SRDYEN ARDYEN ...... -------------.... 

----

.... __ S;;,; ,T,;;;,8_...... ClK READy RESET - ~ 

Til ~ ~ I -=- COMMANDS 
ALE 
--
READY 

82288 ClK 

M/iO 
CMD 51, SO 

CENl 

MB CEN 

J. Jv 

ADDRESS 
DECODER 

if 

A 

... 

MilO 

1 I t-__ t---t~READ~MDlY CMDI-____ .--________ .,/:> 
T I 1---I---t~ClK 82288 

L..... __ L....._-".II.. MIlO DENI-----I-~ ~~-~ 
.----.----./1 r Sl, SO 

~ CENl DTlRt-----t-----, 

M8 AEN AlEI----__ I----, 

~J. .1., 
t---H~~ READY [[QCj( -----D>--+---+---t---il---. 
t---HI-~ ... ClK 82289 A CONTR~l 
r---~~I1~~ CNTl~-----~-~--L-~--~ 
I-__ Hl~ ... ~SYS8/RESB ~ ~ 

........... RESET LOCK 

OE STB 

ADDRES~ 

> 
ADDRESS II 

8283 
lATCHES 

A23-0 ClK READY MIiO RESET 
Sl,SO 

[{)CK-

80286 ~ 
"----________ Dle.o n 

. I~------------~ ... ~ 
DATA 

T OE 

BJlF8lRS ~ 

210760-109 

Figure 7-1. Local Bus and MUL TIBUS® Interface for the iAPX 286 

7-4 210760-001 



intel' THE SYSTEM BUS 

Figure 7-2 illustrates this requirement. 

Three different types of bus operations must be considered when designing this decoding function: 

1. Memory operations 

2. I/O operations 

3. Interrupt-acknowledge sequences 

For memory and I/O operations, several additional features of the Multibus must be considered. The 
following paragraphs describe each of these types in detail. 

Memory Operations 

The decoding of memory operations to select either the local bus or the system bus is relatively 
straightforward. Typically, memory resources that reside on the system bus can be allocated to partic­
ular address windows, or ranges. An address decoder can be used to decode the ranges ofaddresses for 
memory that resides on the system bus, and the output of this decoder then selects either the system 
bus or the local bus for the current bus cycle. 

Figure 7-3 illustrates how the output of the address decoder drives the 82288 Bus Controller and 82289 
Bus Arbiter yircuits to selectively activate either the local bus or the system bus. Since both the CENL 
input of the Bus Controller and the SYSB/RESB input of the Bus Arbiter are internally-latched, no 
additional latches are required to maintain selection of the bus for the remainder of the current bus 
cycle. 

iAPX 286 

SYSTEM 
RESOURCE 

SYSTEM 
RESOURCE 

SYSTEM BUS, 

BUFFERED LOCAL BUS 

LOCAL 
RESOURCE 

LOCAL 
RESOURCE 

Figure 7-2. Decoders Select the Local vs. the System Bus 

7-5 

... ' 

2107,60-110 

210760-001 



M/iO--.. 

THE SYSTEM BUS 

ADDRESS 
DECODE 

FOR 
MULTIBUS 
MEMORY 

SELECT 

SYSB/RESB 

82289 
BUS 

ARBITER 

CENL ~---o-C ... --....... ----..... ___ ~ICENL 

MB 

82288 
BUS 

CONTROLLER 

Vee MB 

82288 
BUS 

CONTROLLER 

Figure 7-3. Selecting the MUL TIBUS® for Memory Operations 

I/O Operations 

210760-111 

The decoding of iAPX 286 I/O operations is similar to that described above for memory operations. 
In the simplest case, decoding may not even be required if I/O resources are located solely on the local 
bus. In this case any I/O operations simply can be directed to the local bus with no decoding required. 
If I/O resources are split between the local bus and the system bus, however, I/O addresses must be 
decoded to select the appropriate bus, just as for memory addresses as described above. 

If I/O resources are located on the system bus, a second, concurrent issue may be considered. I/O 
resources on the system bus may be memory-mapped into the iAPX 286 memory space, or I/O-mapped 
into the I/Oaddress space, independent of how the I/O devices appear physically on the system bus. 

Figure 7-4 shows a circuit technique for mapping the Multibus I/O space into a portion of the iAPX 
286 memory space. This circuit uses an address-decoder to generate the appropriate I/O-read or 1/0-
write commands for any memory references falling into the memory-mapped I/O block. This same 
technique is discussed in Chapter Five, which also contains a detailed discussion of the merits and 
tradeoffs between memory-mapped and I/O-mapped devices. . 

7-6 210760-001 



MULTIBUS'· 
MEMORY 
DECODE 

A17 ....;;...------1 
A16 

THE SYSTEM BUS 

Vee 

MB 
JO--___.·ICENL 

82288 
BUS 

CONTROLLER 

MIlO -------------1 }---.IM/IO 

-----___ .·1 SO 
.. 5'f 

Figure 7-4. Memory-Mapping the MULTIBUS® I/O 

Interrupt-Acknowledge to Cascaded Interrupt Controllers 

210760-112 

A third issue related to the division of system resources between the system bus (Multibus) and the 
local bus is that of mapping interrupts between the Multibus and the local data bus. (You may recall 
that when an interrupt is received by the 80286, the iAPX 286 interrupt-acknowledge sequence uses 
the data bus to fetch an 8-bit interrupt vector from the interrupting 8259A Programmable Interrupt 
Controller.) 

Designers may encounter three possible configurations: 

1. All of the subsystem's Interrupt Controllers (one master and perhaps one or more slaves) reside 
on the local bus, and, therefore, all interrupt-acknowledge cycles are routed to the local bus. 

2. All "terminal" Interrupt Controllers reside on the Multibus system bus (either all 8259A Interrupt 
Controllers reside on the Multibus bus, or a master 8259A resides on the local bus but services 
interrupts only from slave 8259A Interrupt Controllers that themselves reside on the Multibus), 
and so all interrupt-acknowledge cycles are automatically routed to the Multibus. 

3. Some slave Interrupt Controllers reside on the subsystem's . local bus, and others reside on the 
Multibus. In this case, the subsystem's hardware must decode the Master Interrupt Controller's 
cascade address and select the appropriate bus for the interrupt-acknowledge cycles. 

In the first two cases, the implementation is relatively straightforward; all interrupt-acknowledge bus 
operations can be automatically directed onto the appropriate bus. If one of these two configurations 
is envisioned for the system you are designing, you can skip this section and continue on. If, however, 
your iAPX 286 subsystem will have a master 8259A Interrupt Controller on the local bus and at least 
one slave 8259A Interrupt Controller connected to the Multibus, you should read this section to discover 
how to handle the direction of interrupt-acknowledge bus cycles onto either the Multibus or the local 
bus. 

7-7 210760-001 



THE SYSTEM BUS 

First,a review 'of thebperation of the iAPX 286 processor and the master and slave 8259A Interrupt 
Controllers during an interrupt-acknowledge sequence. 

The 80286 responds to an INTR (interrupt) input by performing two INTA bus operations. During 
the first INTA operation, the master 8259A Interrupt Controller determines which, if any, of its slaves 
should return the interrupt vector, and drives the cascade address pins to select the appropriate slave 
Interrupt Controller. During the second INTA cycle, the 80286 reads an eight-bit interrupt vector 
from the selected Interrupt Controller and uses this vector to respond to the interrupt. 

In iAPX 286 systems where slave Interrupt Controllers may reside on the Multibus, the three cascade 
address lines from the master 8259A Interrupt Controller must be decoded to select whether the current 
interrupt-acknowledge (lNTA)sequence will require the Multibus. 

If the Multibus is_selected, the 82289 Bus Arbiter must be signalled first to request the Multibus, and 
then enable the Multibus address and data transceivers to port the remainder of the first and the 
second INTA cycles onto the Multibus. The cascade address lines from the master 8259A Interrupt 
Controller (CASD, CASI, and CAS2) are gated onto the local bus address lines A8, A9, and AID 
(Multibus address lines ADR8, ADR9, and ADRA), respectively, using tri-state drivers. 

Figure 7-5 shows an example of a circuit that performs this. decoding function during interrupt­
acknowledge sequences. This circuit also addresses some of the critical timing necessary in the case of 
a master 8259A Interrupt Controller gating a cascade address onto the Multibus. 

The timing of the basic interrupt-acknowledge cycle is described in Chapter Three. During 'the first 
INTA cycle, the cascade address from the master 8259A Interrupt Controller residing on the local bus 
becomes . valid within a maximum of 565 ns following the assertion of the INT A signal from the Bus 
Controller. Once this address becomes valid; it must be decoded to determine whether the remainder 
of the INTA sequence should remain on the local bus, or should take place on the Multibus. Using the 
cascade-decode logic shown in Figure 7-5, the decode delay adds an additional 30 ns, for a total. of 595 
ns from INTA to bus-select valid. The local bus Ready logic must therefore insert at least 4 wait states 
into the first INTA cycle before the cascade address becomes valid and the local- or Multibus-select 
becomes valid. 

If the local bus is selected for the remainder of the INTA sequence, the first INTA cycle can be 
terminated immediately. If the Multibus is selected, however, the first INTA bus cycle must still be 
extended while it is ported onto the Multibus in order to properly condition the slave Interrupt Control­
lers on the Multibus. 

The circuit shown in Figure 7-5 shows how the Multibus 82289 Bus Arbiter and 82288 Bus Controller 
are selected to allow this "delayed startup" of the Multibus INTA bus cycle. The CMDL Y input to 
the 82288 is used as a select input that is sampled repetitively by the 82288; the CENL input can be 
tied high. Once the Multibus has been selected, the Multibus XACK signal should be used to termi­
nate the bus operation. 

During the second INTA bus cycle,. the Master Cascade Enable (MCE) output of the 82288 Bus 
Controller becomes active· to gate the cascade address onto address lines A8, A9, and AID. This MCE 
enable signal stays active one clock cycle longer than the ALE signal, allowing the. cascade address to 
be· properly ,captured in the Multibus address latches. The MCE signal becomes active only during 
INTA cycles-no additional logic is required to properly enable the cascade address onto the address 
bus during INTA cycles. 

7-8 210760-001 



THE SYSTEM BUS 

-r 
IRIn -

! (FROM SLAVE 

8205 INTERRUPT CONTROLLER) 

8259A 
0, r-
.r-

MASTER
CASO Ao 07FD-CAS, A, 
CAS2 A2 INTA 74S30 CASVAlID(I) 

E, 102 

f: + • 
I 

:':."':t STB 
.A 

h> 1< 8283 
A23"AO LATCH 

~ 

VMiiO C+,D/INTA 01: 

MBSEL(2) 

OTHER SYSBIRESB A 10.. 

MULTIBUS'" 1< >~ DECODE ... ~ - AEN r---
82289 
BUS 

74S00 ARBITER 

INTA 
MCE -

-I>:: CENL 
SELECT 

CMDLY 
AEN 1--

1<= VC:o---r: 

CENL 
MB ~ 

82288 MB M8IO(3) ALE > BUS MIlO 

CONTROLLER 
82284 " CLOCK 82288 

-=- GENERATOR BUS - READY CONTROLLER 

ARDYEN 
ARDY NCR 

- '-

NOTES: 

(1) CASVALID IS THE OUTPUT OF A TIMING CIRCUIT THAT BECOMES HIGH WHEN THE OUTPUT OF THE CASCADE ADDRESS 
DECODER IS VALID. CASVALID MUST SATISFY 82288 CMDLY SETUP TIMES. 

(2) MBSEL IS AN OUTPUT OF THE ADDRESS-DECODER PROM; MBSEL IS HIGH DURING ALL MUL TIBUS MEMORY AND 1/0 
OPERATIONS, BUT IS LOW FOR ALL INTERRUPT-ACKNOWLEDGE CYCLES (WHEN M/iO AND CODIINTA ARE BOTH LOW). 

(3) MBiO IS AN OUTPUT OF THE ADDRESS DECODER PROM; MBIO IS LOW DURING ALL 1/0 OPERATIONS AND INTERRUPT­
ACKNOWLEDGE CYCLES. AS WELL AS DURING MEMORY OPERATIONS THAT ARE MAPPED INTO THE MULTIBUS 1/0-
ADDRESS SPACE. 

210760-113 

Figure 7-5. Decoding Interrupt-Acknowledge Sequences 

Byte-Swapping During MUL TIBUS® Byte Transfers 

The Multibus standard specifies that during all byte transfers, the data must be transferred on the 
lower-eight data lines (Multibus OATO through OAT7), whether the data is associated with an even 
(low-byte) or odd (high-byte) address. For 16-bit systems, this requirement means that during byte 
transfers to odd addresses, the data byte must be "swapped" from the high data lines (local bus 08 
through 015) onto the low data lines (DO through 07) before being placed on the Multibus, and then 
"swapped" back onto the high data lines when being read from the Multibus. This byte-swapping 
requirement maintains compatibility between 8-bit and 16-bit systems sharing the same Multibus. 

Because of this byte-swapping requirement, the Multibus BHEN signal differs in definition from the 
BHE signal on the iAPX 286 local bus. Table 7-1 illustrates the differences between these two signals. 
Notice the difference that appears for byte transfers to odd addresses. 

7-9 210760-001 



THE SYSTEM BUS 

Table 7-1. Local Bus and MULTIBUS® Usage of BHE/BHEN 

Bus Operation AO BHE Transfer ADRO BHEN 
Transfer 

Occurs On Occurs On 

Word Transfer L L All 16 H L All 16 
data lines data lines 

Byte Transfer to L H Lower 8 H H Lower 8 
Even Address data lines data lines 

Byte Transfer to H L Upper 8 L H Lower 8 
Odd Address data lines data lines 

For iAPX 286 systems, this Multibus byte-swapping requirement is easily met by using only an additional 
data transceiver and necessary control logic. 

Figure 7-6 shows how this byte-swapping circuit can be implemented for the iAPX 286 as a bus master. 
The three signals that control this byte-swapping function are the Data Enable (DEN), Multibus Byte 
High Enable (BHEN), and Multibus Address bit 0 (ADRO). The 82288 Bus Controller always disables 
DEN between bus cycles to allow the data transceivers to change states without bus contention. The 
Multibus BHEN and ADRO signals are used instead of the local bus BHE and AO because the Multi­
bus signals are latched for the duration of the bus operation. Figure 7-6 also shows the generation of 
the Multibus BHEN Signal from the local bus BHE and AO signals. 

Implementing the Bus-Timeout Function 

The Multibus XACK signal terminates iAPX 286 bus operations on the Multibus by driving the ARDY 
input to the 82288 Bus Controller. If the iAPX 286 should happen to address a non-existent device on 
the Multibus, however, the XACK signal may never be activated. Without a bus-timeout protection 
circuit, the iAPX 286 could wait indefinitely, tying up the Multibus from use by other bus masters as 
well. 

The bus-timeout function provides a simple means of ensuring that all Multibus operations eventually 
terminate. Figure 7-7 shows one implementation of a bus-timeout circuit using one-shots. If the Multibus 
XACK signal is not returned within a finite period, the bus-timeout signal is activated to terminate the 
bus operation. 

When a bus-timeout occurs, the data read by the 80286 may not be valid. For this reason, the bus­
timeout circuit may also be used to generate an interrupt to prevent software from using invalid data. 

Power Failure Considerations 

The Multibus interface provides a means of handling power failures by defining a Power Fail Interrupt 
(PFIN) signal and other status lines, and by making provisions for secondary or backup power supplies. 

Typically, the Power Fail Interrupt (PFIN) from the Multibus is connected to the NMI interrupt 
request line of the CPU. When a power failure is about to occur, this interrupt enables the 80286 CPU 
to immediately save its environment before falling voltages and the Multibus Memory Protect (MPRO) 
signal prevent any further memory activity. In systems with memory backup power or non-volatile 
memory, the 80286 environment can be 'Saved for the duration of the powerfail condition. 

7-10 210760-001 



inter 

iAPX 286 
LOCAL BUS 

THE SYSTEM BUS 

OTlR-----.., 

,-,-----,/ DE T 

8287 

~DET 
8287 

DOE T ~D7-Do 
8287 

01"00 

OEN--------------~~~+_~ 

AO-. 

8282 
LATCH 

8283 
LATCH 

ALE----~~----------------------~ 

AEN-----' 

MUL TIBUS'" EIRrN 

MUL TtBUS'" ADRO 

Figure 7-6. Byte-Swapping at the MUL TIBUS® Interface 

MULTIBUS 

210760-114 

When the AC power is restored, the power-up RESET sequence of the 80286 CPU can check the 
status of the Multibus Power Fail Sense Latch (PFSN) to see if a previous power failure has occurred. 
If this latch is set low, the 80286 can branch to a powerup routine that resets the latch using Power 
Fail Sense Reset (PFSR), restores its environment, and resumes execution. 

Further guidelines for designing iAPX 286 systems with power-failure features are contained in the 
Intel Multibus Specification referred to previously. 

7-11 210760-001 



ALE 

CLK--t----CO 

THE SYSTEM BUS 

CLR TIMEOUT INT 
Vee 

CLR 

a 
o 

CLR a ....... ------~------...... 
MUL.TIBUSN XACK----L 

Figure 7-7. Implementing the Bus-Timeout Function 

MUL TIBUS® ARBITRATION USING THE 82289 BUS ARBITER 

ARDY 
(TO 82284) 

210760-115 

The Multibus protocols allow multiple processing elements to contend with each other for the use of 
common system resources. Since the iAPX 286 does not have exclusive use of the Multibus, when the 
iAPX 286 processor occasionally tries to access the Multibus, another bus master will already have 
control of the bus. When this happens, the iAPX 286 will have to wait before accessing the bus. 

The 82289 Bus Arbiter provides a compact solution to controlling access to a multi-master system bus. 
The Bus Arbiter directs the processor onto the bus and also allows both higher- and lower-priority bus 
masters to acquire the bus. The Bus Arbiter attains control of the system bus (eventually) whenever 
the iAPX 286 attempts to access the bus. (The previous section reviewed some techniques to determine 
when the processor is attempting to access the system bus.) Once the Bus Arbiter receives control of 
the system bus, the iAPX 286 can proceed to access specific resources attached to the bus. The 82289 
Bus Arbiter handles this bus contention in a manner that is completely transparent to the iAPX 286 
processor. 

Gaining Control of the MUL TIBUS® 

In an iAPX 286 subsystem using an 82289 Bus Arbiter, the iAPX 286 processor issues commands as 
though it had exclusive use of the system bus. The Bus Arbiter keeps track of whether the subsystem 
indeed has control of the system bus, and if not, prevents the 82288 Bus Controller and address latches 
from accessing the bus. The Bus Arbiter also inhibits the 82284 Clock Generator, forcing the 82286 
processor into one or more wait states. 

When the Bus Arbiter receives control of the system bus, the Bus Arbiter enables the ARDY input of 
the Clock Generator, and enables the 82288 Bus Controller and address latches· to drive the system 

7-12 210760-001 



THE SYSTEM BUS 

bus. Once the system bus transfer is complete, a transfer-acknowledge (XACK) signal is returned by 
the Multibus, signalling to the processor that the transfer cycle has completed. In this manrier, the Bus 
Arbiter multiplexes one bus master onto the multi-master bus and avoids contention between bus masters. 

Since many bus masters can be on a multi-master system bus, some means must be provided for resolv­
ing priority between bus masters simultaneously requesting the bus. Figure 7-8 shows two common 
priority-resolution schemes: a serial-priority and a parallel-priority technique. 

SERIAL PRIORITY RESOLVING TECHNIQUE 

74148 
PRIORITY 

4 ENCODER 

PARALLEL PRIORITY RESOLVING TECHNIQUE 

74138 
3 T08 

DECODER 

Figure 7-8. Two Bus Priority-Resolution Techniques 

7-13 

210760-132 

210760-001 



THE SYSTEM BUS 

The serial-priority resolution technique consists of a daisy-chain of the 82289 Bus Priority In (BPRN) 
and Bus Priority Out (BPRO) signals. Due to delays in the daisy-chain, however, only a limited number 
of bus masters can be accommodated using this technique. 

In the parallel-priority resolution technique, each 82289 Bus Arbiter makes independent bus requests 
using its Bus Request (BREQ) signal line. An external bus-priority resolution circuit determines the 
highest-priority bus master requesting the bus, and grants that master control of the bus by setting 
BPRN low to that bus master. Any number of bus masters can be accommodated using this technique, 
limited only by the complexity of the external resolution circuitry. 

Other priority-resolution schemes may also be used. Intel Application Note AP-51 describes in greater 
detail these techniques for resolving the priority of simultaneous bus requests. 

Figure 7-9 shows the timing of a bus exchange for the parallel-priority resolution scheme shown in 
Figure 7-8. In the timing example, a higher-priority bus master requests and is granted control of the 
bus from a lower-priority bus master. 

From the perspective of an individual Multibus subsystem, the subsystem has been granted the bus 
when that subsystem's BPRN input from the Multibus falls low (active). For the purpose of designing 
an iAPX 286 sybsystem for the Multibus, the BPRN signal is sufficient, and a designer need not be 
concerned with the particular priority-resolution technique implemented on the Multibus system. The 
82289 Bus Arbiter releases the bus if BPRN becomes HIGH at the end of the current bus sequence, 
under the control of this external arbitration device. 

Releasing the Bus-Three 82289 Operating Modes 

Following a transfer cycle using the system bus, the 82289 Bus Arbiter can either retain control of the 
system bus or release the bus for use by some other bus master. The Bus Arbiter can operate in one of 
three operating modes, each of which defines different conditions under which the Bus Arbiter will 
relinquish control of the system bus. 

CD HIGHER PRIORITY BUS ARBITER REQUESTS THE MUL TI·MASTER SYSTEM BUS. 

® ATTAINS PRIORITY. 

® LOWER PRIORITY BUS ARBITER RELEASES BUSY. 

o HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN. 

Figure 7-9. Bus Exchange Timing for the MUL TIBUS® 

7-14 

210760-133 

210760-001 



THE SYSTEM BUS 

Table 7-2 defines the three operating modes of the 82289 Bus Arbiter, and describes the conditions 
under which the Bus Arbiter relinquishes control of the Multibus. The following sections describe how 
to configure the Bus Arbiter in anyone of these modes, and also describe a way to switch the Bus 
Arbiter between Modes 2 and 3 under program control from the iAPX 286. 

The decision to configure the 82289 Bus Arbiter in one of these three modes, or to configure the Bus 
Arbiter in a fourth manner, allowing switching between modes 2 and 3, is a choice left up to the 
individual designer. This choice may affect the throughput of the individual subsystem, as well as the 
throughput of other subsystems sharing the bus, and system throughput as a whole. 

This performance impact occurs because a multi-processor system may have appreciable overhead 
when a processor requests and takes control of the Multibus. Figure 7-10 illustrates the effect of bus 
set-up and hold times on bus efficiency and throughput. 

When to Use the Different Modes 

The various operating modes of the Bus Arbiter allow the designer to optimize a subsystem's use of 
the Multibus to its own needs and to the needs of the system as a whole. 

Mode 1, for example, would be adequate for a sybsystem that needed to access the Multibus only 
occasionally; by releasing the bus after each transfer cycle, the subsystem would minimize its impact 
on the throughput of other subsystems using the bus. 

Mode 2 would be ideal for a subsystem that shared the Multibus with a pool of other bus masters, all 
of roughly equal priority, and all equally likely to request the bus at any given time. The performance 
improvement of retaining the bus in case of a second or subsequent access to the bus would be matched 
to the performance impact of other bus masters, who may have to request the bus from the controlling 
Bus Arbiter, and thus suffer the ensuing hold delays. 

Mode 3 would be ideal for a system that is likely to be using the Multibus a high percentage of the 
time. The performance advantages of retaining control of the bus would outweigh the chances of other, 
lower-priority devices waiting longer periods to gain access to the Multibus. . 

Table 7-2. Three 82289 Operating Modes for Releasing the Bus 

Operating Mode Conditions under which the Bus 
Arbiter releases the system bus· 

Mode 1 The Bus Arbiter releases the bus at the end of each transfer cycle. 

Mode 2 The Bus Arbiter retains the bus until: . a higher-priority bus master requests the bus, driving BPRN high . . a lower-priority bus master requests the bus by pulling the CBRa low . 

Mode 3 The Bus Arbiter retains the bus until a higher-priority bus master requests 
the bus, driving BPRN high. (In this mode, the Bus Arbiter ignores the 
CBRa input. 

*The LOCK input to the Bus Arbiter can be used to override any of the conditions shown in the table. While 
LOCK is asserted, the Bus Arbiter will retain control of the system bus. 

7-15 210760-001 



THE SYSTEM BUS 

AN ISOLATED TRANSFER ON THE SYSTEM BUS. 

BUS UTILIZATION FOR BUS ARBITERS OPERATING IN MODE 1. 
LOWER PRIORITY ARBITERS HAVE EASY ACCESS TO THE BUS, 
BUT BUS EFFICIENCY IS LOW. 

BUS UTILIZATION FOR A BUS ARBITER OPERATING IN MODE 3. 
THE ARBITER RETAINS THE BUS UNTIL FORCED OFF, AND SO 
ACQUIRES THE BUS ONLY ONCE FOR A SEQUENCE OF TRANSFERS. 

Figure 7-10. Effects of Bus Contention on Bus Efficiency 

210760-116 

A fourth alternative, that of allowing a processor to switch its Bus Arbiter between Mode 2 and Mode 
3, offers even more flexibility in optimizing system performance where such· performance might be 
subject to experimentation, or where Multibus traffic might be sporadic. 

To summarize the preceeding discussion, the decision to use one or another of the four Bus Arbiter 
configurations depends on the relative priorities of processors sharing the bus, and on the anticipated 
traffic each processor may have for the bus. In order to optimize the sharing of the Multibus between 
several bus masters, designers are urged to experiment with the different modes of each Bus Arbiter 
in the system. 

Configuring the 82289 Operating Modes 

A designer can configure the Bus Arbiter in four ways: 

1. The Bus Arbiter can be configured to operate in Mode 1, releasing the bus at the end of each 
transfer cycle. 

2. The Bus Arbiter can be configured in Mode 2, retaining the bus until either a higher- or lower­
priority bus master requests the bus. 

3. . The Bus Arbiter can be configured in Mode 3, retaining the bus until a higher-priority bus master 
requests the bus. 

4. The Bus Arbiter can be configured so that it can be switched between Mode 2 and Mode 3 under 
software control of the iAPX 286. This last configuration is more complex than the first three, 
requiring that a parallel port or addressable latch be used to drive one of the strapping pins of the 
82289. 

210760-001 



THE SYSTEM BUS 

Once the designer has determined which of the four bus-retention techniques to adopt, this configura­
tion must be incorporated into the hardware design. Figure 7-11 shows the strapping configurations 
required to implement each of these four techniques. 

Asserting the LOCK Signal 

Independent of the particular operating mode of the Bus Arbiter, the iAPX 286 processor can assert a 
LOCK signal at any time to prevent the Bus Arbiter from releasing the Multibus. This software­
controlled LOCK signal prevents the Bus Arbiter from surrendering the system bus to any other bus 
master, whether of higher- or lower-priority. This signal is typically used for implementing software 
semaphores for critical code sections or critical real-time events. The LOCK signal can also be asserted 
within one instruction to retain control of the bus for high-performance transfers. 

When the iAPX 286 asserts the LOCK signal, the Bus Arbiter converts this temporary input into a 
level-lock signal, LLOCK, which drives the Multibus LOCK status line. The Bus Arbiter will continue 
to assert LLOCK retaining control of the Multibus until the first unLOCKed bus cycle from the 
iAPX 286 processor. ' 

82289 

RESET ---. RESET 

MODE 1 

82289 

RESET I RESET 

L ALWAYS/CBQLCK 

MODE 3 

82289 

RESET---. RESET 

PARALLEL 

~ 
1/0 

DATA OR 
ADDRESSABLE 

LATCH 
ENABLE ....... 

MODE 2 

82289 

RESET-..-------~ RESET 

D 

"-----o.;~ I---MUL TIBUS'" BCLK 

* WHEN LOW, 82289 IN MODE 3; 
WHEN HIGH, 82289 IN MODE 2 

210760-117 

Figure 7-11. Four Different 82289 Configurations 

7-17 210760-001 



THE SYSTEM BUS 

This LLOCK signal from the 82289 Bus Arbiter must be connected to the Multibus LOCK status line 
through a tri-state driver. This driver is controlled by the AEN output of the Bus Arbiter. 

TIMING ANALYSIS OF THE MUL TIBUS® INTERFACE 

The timing specifications for the Multibus are explained concisely in the Multibus specification, Order 
Number 9800683-04. To summarize these requirements as they pertain to an iAPX 286 subsystem 
operating as a Multibus bus master: 

• The iAPX 286 system must use one command delay when reading data from the Multibus. 

• The iAPX 286 must use two command delays when writing data to the Multibus. 

When the 82288 Bus Controller driving the Multibus is strapped in the Multibus configuration 
(MB = 1, and CMDL Y = 0), the Bus Controller automatically inserts the appropriate delays as 
outlined above. No further consideration is required in order to conform to the Multibus timing 
requirements. 

Table 7-3 summarizes the critical Multibus parameters as they relate to the iAPX 286 system, and 
shows that these parameters are satisfactorily met by an 8-Mhz iAPX 286 with one command delay 

Table 7-3. Required MUlTIBUS® Timing for the iAPX 286 

8 MHz iAPX 286 
Timing MULTIBUS® with: 

Parameter Specification 1 CMDLY on RD 
2 CMDLY on WR 

tAS 50 ns 125 ns (2 ClK cycles) 
Address Setup minimum - 15 ns (ALE delaYmax) 
before command - 45 ns (8283 delaYmax) 
active + ;3 ns (Cmd delaYmin) 

68 ns min. 

tos 50 ns 125 ns (2 ClK cycles) 
Write Data Setup minimum - 30 ns (DEN act. delaYmax) 
before command - 30 ns (8287 delaYmax) 
active + ;3 ns (Cmd delaYmin) 

68 ns min. 

tAH 50 ns 62.5 ns (1 ClK cycle) 
Address Hold minimum - 15.0 ns (Cmd inact. delaYmax) 
after command + 3.0 ns (ALE act. delaYmin) 
inactive + 1Q.Q ns (8283 delaYmin) 

60.5 ns min. 

tOHw 50 ns 62.5 ns (1 ClK cycle) 
Write Data Hold minimum - 15.0 ns (Cmd inact. delaYmax) 
after command + 1 Q.Q ns (8287 delaYmin) 
inactive 57.5 ns min. 

7-18 210760-001 



THE SYSTEM BUS 

during reads and two command delays during write operations. The timing parameters assume the use 
of 8283 and 8287 latches and transceivers. 

In addition to the specific parameters defined in table 3-1, designers must be sure that: 

• To ensure sufficient access time for the slave device, bus operations must not be terminated until 
an XACK (transfer acknowledge) is received from the slave device. 

• Following an MRDC or an IORC command, the responding slave device must disable its data 
drivers within 125 ns (max) following the return of the XACK signal. (All devices meeting the 
Multibus spec. of 65 ns max meet this requirement.) 

USING DUAL-PORT RAM WITH THE SYSTEM BUS 

A dual-port RAM is a memory subsystem that can be accessed by the iAPX 286 via the iAPX 286 
local bus, and can also be accessed by other processing elements via the Multibus system bus. The 
performance advantages of using dual-port memory are described in Chapter Four. This section describes 
several issues that must be considered when implementing dual-port memory with a Multibus interface. 

Dual-port memories are a shared resource, and, like a shared bus, must address the twin issues of 
arbitration and mutual exclusion. Mutual exclusion addresses the case when two processors attempt to 
access the dual-port memory simultaneously. The Multibus LOCK signal and a similar LOCK signal 
from the 80286 itself attempt to mediate this contention. 

Chapter Four of this manual describes the techniques of addressing these two issues. This section 
expands on the explanation in Chapter Four and in particular discusses how to handle the two LOCK 
signals and avoid potential deadlock conditions that may otherwise arise. 

Figure 7-12 shows a configuration where a dual-port memory is shared between an iAPX 286 subsys­
tem and the Multibus. The LLOCK (Level-Lock) signal from the 82289 Bus Arbiter is used to provide 
the LOCK signal from the iAPX 286. This LLOCK signal is not conditioned on whether the 82289 is 
currently selected (the SYSB/RESB input). 

Avoiding Deadlock with a Dual-Port Memory 

A potential deadlock situation exists for a dual-port memory when both the iAPX 286 processor and 
another bus master attempt to carry out LOCKed transfers between the dual-port memory and exter­
nal Multibus memory or devices. 

The situation can arise only when the iAPX 286 attempts to carry out a LOCKed transfer using both 
the dual-port memory and the Multibus. In one deadlock scenario, the iAPX 286 processor, using the 
local bus, reads data from the dual-port memory and asserts the LOCK signal, preventing the dual­
port memory from being accessed by another processing element on the Multibus. 

If, at the same time, another bus master of higher priority (or while asserting the Multibus LOCK 
signal) takes control of the Multibus and attempts to access the dual-port memory, this bus master will 
be unable to access the (locked) dual-port memory and so enters a wait state, waiting for a response 
from the memory. At the same time, the iAPX 286 processor will be unable to gain control of the 
Multibus in order to complete its transfer, since the other processor gained the Multibus first. The 
result is deadlock, and in the absence of other mechanisms, each processor stops. 

7-19 210760-001 



THE SYSTEM BUS 

rD~ 
!\ROY 

82284 ..... 

H2f SRJ:)Y 

READY p.-.. READY 
CLK ~CLK 82288 

RESET I-- Vcc- CEN 
READY--<: READY 

CLK- CLK 
SO- SO MWfC P- LI 51- 51 MRDC p-.r- MB 

DTIR 

D DATA 

XACKA XACKB PSEL PSEN PCTLB ~ 
~ 

PCTLA WE 

H>o 1~ 
A 

RAS 
-= CAS 

=0-
8207 

RESET DRAM 
CONTROLLER 

SO WRA WZ 
R/W 51 RDA 

ERROR 
SHIFT CE 

REGISTER 
DO PDI 
~ PEA PEB 

PWR ~ 
LOCK MUX LEN A1 BYTE 

.. ). MARK 
"- DECODER 

80286 LATCH 
CPU 

t 
f----- ' 

MUX 

OE STB OE T -= - '-- .. 
DECODE f-- 8282 8287 

LATCHES BUFFERS 

fr i'l 
A ADDRESS 

SYS/l!ESB J 
U5CK t--+- U5CK 

BREO P--

t CLK- CLK IIOCK 
51- 51 

82289 SO- SO 
READY---< READY AEN 

7-20 210760-001 



THE SYSTEM BUS 

~ XACK 

~. I 1 -
_t t ~ 
T OE .. 8287 A DATA 

8286 BUFFERS 
BUFFERS 

'1 ~ 
'\r -

T 

WE 01 

-D A DYNAMIC 

~ RAM 
RAS CBI 

CAS DO CBO 

U D 8283 -lATCHES -
WZ 01 CBI I--

STB OE 

R/W :~g~ CBO I-- tQ ~ DO 
f---

CE BMO BM1 

DECODE 

l' 

8283 J ADR 
_________ .....".". lATCHES 

STB OE 
Vee 

READY 
SO 
S1 

ClK 

ALE 
DEN~---r------r-~ 

DT/R~---r------r--~ 
MWTC~ ___ +-_____ +-__ ~ _______ -+~M~W~TC~ 
MRDC~ ___ r-_____ r-__________ -+_~M~R~DC~ 

Figure 7-12. iAPX 286 Dual-Port Memory with MUL TIBUS® Interface 

7-21 

210760-118 

210760-001 



THE SYSTEM BUS 

Typically, both processors will eventually terminate their respective bus operations due to bus-timeout 
(see the earlier section on bus-timeout circuitry). If a bus timeout occurs, the processors will fail in 
their respective attempts to write or read data. 

Since reading and/or writing improper data is to be avoided, you have two alternatives to avoid this 
deadlock situation: 

• The first alternative is to simply avoid using LOCKed transfers from the dual-port memory in the 
iAPX 286 software. No additional hardware over that shown in Figure 7-12 is required. 

• The second alternative actually prevents the occurrence of LOCKed transfers between the dual­
port memory and the Multibus by using hardware to condition the LOCK input to the dual-port 
memory. 

Figure 7-13 shows a circuit to implement the second alternative. Bear in mind, however, that this 
circuit in effect destroys the LOCK condition on the dual-port memory for any transfers from the dual­
port memory ending on the Multibus. This fact will not be apparent from the iAPX 286 software. Even 
if this alternative is implemented, software writers should be cautioned against using LOCKed trans­
fers between the dual-port memory and the Multibus. 

8207 
CONTROLLER 

DRAM 
ARRAY 

"'"------LOCK (MUL TIBUS'") 

210760-119 

Figure 7-13. Preventing Deadlock Between Dual-Port RAM and the MUL TIBUS® 

7-22 210760-001 



Appendix A 
Device Specifications A 





iAPX 286/10 
HIGH PERFORMANCE MICROPROCESSOR 

WITH MEMORY MANAGEMENT AND PROTECTION 
• High Performance 8 and 10 MHz 

Processor (Up to six times iAPX 86) 
• Large Address Space: 

-16 Megabytes Physical 
-1 Gigabyte Virtual per Task 

• Integrated Memory Management, Four­
Level Memory Protection and Support 
for Virtual Memory and Operating 
Systems 

• Two iAPX 86 Upward Compatible 
Operating Modes: 
-iAPX 86 Real Address Mode 
-Protected Virtual Address Mode 

• Optional Processor Extension: 
-iAPX 286/20 High Performance 80-bit 

-Numeric Data Processor 
• Complete System Development 

Support: 
-Development Software: Assembler, 

PUM, Pascal, FORTRAN, and System 
Utilities 

-In-Circuit-Emulator (ICE ™ -286) 
• High Bandwidth Bus Interface 

(8 or 10 Megabyte/Sec) 
• Available In EXPRESS: 

-Standard Temperature Range 

The iAPX 286/10 (80286 part number) is an advanced, high-performance microprocessor with specially optimized 
capabilities for multiple user and multi-tasking systems. The 80286 has built-in memory protection that supports 
operating system and task isolation as well as program and data privacy within tasks. A 10 MHz iAPX 286/10 provides 
up to six times greater throughput than the standard 5 MHz iAPX 86/10. The 80286 includes memory management 
capabilities that map up to 230 bytes (one gigabyte) of virtual address space per task into 224 bytes (16 megabytes) of 
physical memory. 

The iAPX 286 is upward compatible with iAPX 86 and 88 software. Using iAPX 86 real address mode, the 80286 is 
object code compatible with existing iAPX 86, 88 software. In protected virtual address mode, the 80286 is source 
code compatible with iAPX 86, 88 software and may require upgrading to use virtual addresses supported by the 
80286's integrated memory management and protection mechanism. Both modes operate at full 80286 performance 
and execute a superset of the iAPX 86 and 88's instructions. 

The 80286 provides special operations to support the efficient implementation and execution of operating systems. 
For example, one instruction can end execution of one task, save its state, switch to a new task, load its state, and 
start execution of the new task. The 80286 also supports virtual memory systems by providing a segment-not-present 
exception and restartable instructions. 

Figure 1. 80286 Internal Block Diagram 

A23 - AQ, 

SHE, MilO 

t--L.....f-- PEACK 
I-L.....f--PEREQ 

L--:---i.-+-.!-_ rtEADV. HOLD 

Sl. s-;l. CODi!NTA 
[OCR, HlDA 

RESET 
ClK 
Vss 
Vcc 
CAP 

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products: BXp, CREDIT. i.ICE, iCS, im, Insite, Intel, INTEl,lntelevision, Inteliink, 

~~~:~~'~~~~:~~~~:~~6~~~:~~~Th~SC~~~:~~~;'tn~~~~~~irR~~~i's~~:T~~~,~~i,~2~e~~g~~~~u~:~~;aa~n~~;~a~~u~~:~Y~~~~~~~~:~~~~.:~~~~~~~~b~~:p~~~~~'t~~~~t~:~~e 
of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Patent licensAs are implied. ©INTEl CORPORATION, 1982. ORDER NUMBER: 210253-002

A-1

iAPX 286/10

Component Pad View-As viewed from .
underside of component when mounted on

P.C. Board View-As viewed from the
component side of the PC. board.

the board. .

PIN NO.1 MARK

NOTE: N.C. pads must not be connected.

Figure 2. 80286 Pin Configuration

Table 1. Pin Description
The following pin function descriptions are for the 80286 microprocessor:

Symbol Type Name and Function

elK I System Clock provides the fundamental timing for iAPX 286 systems. It is divided by two inside
the 80286 to generate the processor clock. The internal divide-by-two circuitry can
be synchronized to an external clock generator by a lOW to HIGH transition on the RESET
input.

015-00 1/0 Data Bus inputs data during memory, 1/0, and interrupt acknowledge read cycles; outputs data
during memory and 1/0 write cycles. The data bus is active HIGH and floats to '3-state OFF during
bus hold acknowledge.

A23-AO 0 Address Bus outputs physical memory and 1/0 port addresses. AD is lOW when data is to be
transferred on pins 07-0. A23-A16 are lOW during 1/0 transfers. The address bus is active HIGH
and floats to 3-state OFF during bus hold acknowledge.

SHE 0 Bus High Enable indicates transfer of data on the upper byte of the data bus, 015=B.:-Eight-bit
oriented devices assigne~the upper byte of the data bus would normally use SHE to con-
dition chip select functions. SHE is active lOW and floats to 3-state OFF during bus hold acknowledge.

BHE and AO Encodings
BHEValue AOValue Function

0 0 Word transfer
0 1 Byte transfer on upper half of data bus (015-8)
1 0 Byte transfer on lower half of data bus (07-0)
1 1 Reserved

A-2

IAPX 286/10

Table 1. Pin Description (Cont.)

Symbol Type Name and Function

S1,SO a Bus Cycle Status indicates initiation of a bus cycle and, along with M/fO and COD/TNTA, defines
the type of bus cycle. The bus is in a T s state whenever one or both are LOW. 'ST and "SU are
active LOW and float to 3-state OFF during bus hold acknowledge.

80286 Bus Cycle Status Definition
COD/INTA MilO 51 SO Bus cycle Initiated

a (lOW) a 0 a Interrupt acknowledge
a a 0 1 Reserved
a a 1 0 Reserved
a 0 1 1 None; not a status cycle
a 1 0 0 IF A 1 = 1 then halt; else shutdown
a 1 0 1 Memory data read
a 1 1 a Memory data write
a 1 1 1 None; not a status cycle
1 (HIGH) a 0 a Reserved
1 0 a 1 1/0 read
1 0 1 0 1/0 write
1 a 1 1 None; not a status cycle
1 1 0 a Reserved
1 1 0 1 Memory instruction read
1 1 1 a Reserved
1 1 1 1 None; not a status cycle

MilO a Memory/lO Select distinguishes memory access from 1/0 access. If HIGH during T s, a memory
cycle or a halt/sh~own cycle is in progress. If LOW, an 1/0 cycle or an interrupt acknowledge cycle
is in progress. MilO floats to 3-state OFF during bus hold acknowledge.

COD/INTA a Codellnterrupt Acknowledge distinguishes instruction fetch cycles from memory data read cycles.
Also distinguishes interrupt acknowledge cycles from 1/0 cycles. COD/INTA floats to 3-state OFF
during bus hold acknowledge.

LOCK a Bus Lock indicates that other system bus masters are not to gain control of the system bus following
the current bus cycle. The LOCK signal may be activated explicitly by the "LOCK" instruction prefix
or automatically by 80286 hardware during memory XCHG instructions, interrupt acknowledge, or
descriptor table access. LOCK is active LOW and floats to 3-state OFF during bus hold acknowledge.

READY I Bus Ready terminates a bus cycle. Bus cycles are extended without limit until terminated by READY
Law. READY is an active LOW synchronous input requiring setup and hold times relative to the
system clock be met for correct operation. READY is ignored during bus hold acknowledge.

HOLD I Bus Hold Request and Hold Acknowledge control ownership of the 80286 local bus. The HOLD
HLDA a input allows another local bus master to request control of the local bus. When control is granted, the

80286 will float its bus drivers to 3-state OFF and then activate HLDA, thus entering the bus hold
acknowledge condition. The local bus will remain granted to the requesting master until HOLD
becomes inactive which results in the 80286 deactivating HLDA and regaining control of the local
bus. This terminates the bus hold acknowledge condition. HOLD may be asynchronous to the system
clock. These signals are active HIGH.

INTR I Interrupt Request requests the 80286 to suspend its current program execution and service a
pending external request. Interrupt requests are masked whenever the interrupt enable bit in the
flag word is cleared. When the 80286 responds to an interrupt request, it performs two interrupt
acknowledge bus cycles to read an 8-bit interrupt vector that identifies the source of the interrupt. To
assure program interruption, INTR must remain active until the first interrupt acknowledge cycle is
completed. INTR is sampled at the beginning of each processor cycle and must be active HIGH at
least two processor cycles before the current instruction ends in order to interrupt before the next
instruction. INTR is level sensitive, active HIGH, and may be asynchronous to the system clock.

NMI I Non-maskable Interrupt Request interrupts the 80286 with an internally supplied vector value of
2. No interrupt acknowledge cycles are performed. The interrupt enable bit in the 80286 flag word
does not affect this input. The NMI input is active HIGH, may be asynchronous to the system clock,
and is edge triggered after internal synchronization. For proper recognition, the input must have
been previously LOW for at least four system clock cycles and remain HIGH for at least four system
clock cycles.

A-3

iAPX 286/10

Table 1. Pin Description (Cont.)

Symbol Type Name and Function
PEREa I Processor Extension Operand Request and Acknowledge extend the memory management and protection I
PEACK 0 capabilities of the 80286 to processor extensions. The PEREQ input requests the 80286 to perform a data!

operand transfer for a processor extension. The 'I'EAC'R output signals the processor extension when the!
requested operand is being transferred. PEREQ is active HIGH and floats to 3-state OFF during bus holdl
acknowledge. 'I'EAC'R may be asynchronous to the system clock. 'I'EAC'R is active lOW.

BUSY I Processor Extension Busy and Error indicate the operating condition of a processor extension
ERROR I to the 80286. An active BUSY input stops 80286 program execution on WAIT and some ESC

instructions until BUSY becomes inactive (HIGH). The 80286 may be interrupted while waiting
for'8USY to become inactive. An active 'E'R'R'Ol1 input causes the 80286 to perform a processor
extension interrupt when executing WAIT or some Ese instructions. These inputs are active
LOW and may be asynchronous to the system clock.

RESET I System Reset clears the internal logic of the 80286 and is active HIGH. The 80286 may be re-
initialized at any time with a LOW to HIGH transition on RESET which remains active for more than
16 system clock cycles. During RESET active, the output pins of the 80286 enter the state shown
below:

80286 Pin State During Reset
Pin Value Pin Names

1 (HIGH) SO, S 1, PEACK, A23-AO, SHE, LOCK
o (LOW) M/TO, COO/INTA, HLOA
3-stateOFF 015-0 0

Operation of the 80286 begins after a HIGH to LOW transition on RESET. The HIGH to LOW transi-
tion of RESET must be synchronous to the system Clock. Approximately 50 system clock cycles are
required by the 80286 for internal initializations before the first bus cycle to fetch code from the
power-on execution address is performed.

A LOW to HIGH transition of RESET synchronous to the system clock will end a processor'
cycle at the second HIGH to LOW transition of the system clock, The LOW to HIGH transition
of RESET may be asynchronous to the system clock; however, in this case it cannot be prede-
termined which phase of the processor clock will occur during the next system clock period.
Synchronous LOW to HIGH transitions of RESET are required only for systems where the
processor clock must be phase synchronous to another clock.

Vss I System Ground: 0 VOLTS.

Vee I System Power: + 5 Volt Power Supply.

CAP I Substrate Filter Capacitor: a 0.04lf,IJ ± 20% 12V capacitor must be connected between this pin
and ground. This capacitor filters the output of the internal substrate bias generator. A maximum DC
leakage current of 1 f.La is allowed through the capacitor.

For correct operation of the 80286, the substrate bias generator must charge this capacitor to its
operating voltage. The capacitor chargeup time is 5 milliseconds (max.) after Vee and ClK reach

. their specified AC and DC parameters. RESET may be applied to prevent spurious activity by the
CPU during this time. After tllis time, the 80286 processor clock can be phase synchronized to
another clock by pulsing RESET LOW !';ynchronous to the system clock.

A-4

iAPX 286/10

FUNCTIONAL DESCRIPTION

Introduction
The 80286 is an advanced, high-performance micro- '
processor with specially optimized capabilities for mul­
tiple user and multi-tasking systems. Depending on the
application, the 80286's performance is up to six times
faster than the standard 5 MHz 8086's, while providing
complete upward software compatibility with Intel's iAPX
86,88, and 186 family of CPU's.

The 80286 operates in two modes: iAPX 86 real address
mode and protected virtual address mode. Both modes
execute a superset of the iAPX 86 and 88 instruction set.

In iAPX 86 real address mode programs use real ad­
dresses with up to one megabyte of address space. Pro­
grams use virtual addresses in protected virtual address
mode, also called protected mode. In protected mode,
the 80286 CPU automatically maps 1 gigabyte of virtual'
addresses per task into a 16 megabyte real address
space. This mode also provides memory protection to
isolate the operating system and ensure privacy of each
tasks' programs and data. Both modes provide the same
base instruction set, registers, and addressing modes.

The following Functional Description describes first, the
base 80286 architecture common to both modes, sec­
ond, iAPX 86 real address mode, and third, protected
mode.

iAPX 286/10 BASE ARCHITECTURE

The iAPX 86,88, 186, and 286 CPU family all contain
the same basic set of registers, instructions, and ad­
dressing modes. The 80286 processor is upward com­
patible with the 8086, 8088, and 80186 CPU's.

16-BIT
REGISTER

NAME

AH

DH

07

AL

DL

SPECIAL
REGISTER

FUNCTIONS

O} MULTIPLY/DIVIDE
1/0 INSTRUCTIONS

Register Set
The 80286 base architecture has fifteen registers as
shown in Figure 3; These registers are grouped into the
following four categories:

General Registers: Eight 16-bit general purpose reg­
isters used to contain arithmetic and logical operands.
Four of these (AX, BX, CX, and OX) can be used either
in their entirety as 16-bit words or split into pairs of sep­
arate 8-bit registers.

Segment Registers: Four 16-bit special purpose reg­
isters select, at any given time, the segments of memory
that are immediately addressable for code, stack, and
data. (For usage, refer to Memory Organization.)

Base and Index Registers: Four of the general pur­
pose registers may also be used to determine offset ad­
dresses of operands in memory. These registers may
contain base addresses or indexes to particular loca­
tions within a segment. The addressing mode deter­
mines the specific registers used for operand address
calculations.

Status and Control Registers: The 3 16-bit special
purpose registers in figure 3A record or control cer­
tain aspects of the 80286 processor state including
the Instruction Pointer, which contains the offset
address of the next sequential instruction to be
executed.

15 0

OS" DATA SEGMEr-.:T SELECTOR

BYTE
ADDRESSABLE
(8-BIT
REGISTER
NAMES
SHOWN) {:

BX

BP

CH CL

BH BL

) LOOP/SHIFT/REPEAT COUNT

} BASE REGISTERS

CS ~ CODE SEGMENT SELECTOR

SS ',', STACK SEGMENT SE',LECTOR

ES , EXTRA SEGMENT SELECTOR

SEGMENT REGISTERS

SI

01

SP

15

GENERAL
REGISTERS

} INDEX REGISTERS

) STACK POINTER

15 0

FE' ", FLAGS

IP INSTRUCTION POINTER

MSW MACHINE STATUS WORD

STATUS AND CONTROL
REGISTERS

Figure 3. Register Set

A-5

IAPX 286/10

STATUS FLAGS:

CARRY ------------------------,

PARITY -------------------,

AUXILIARYCARRY ----------------,

ZERO -----------...,

CONTROL FLAGS:
L..-_____ TRAP FLAG

L..-_______ INTERRUPT ENABLE
L..-________ DIRECTION FLAG

SPECIAL FIELDS:
L...-_____________ I/O PRIVILEGE LEVEL

L..-_______________ NESTED TASK FLAG

TASK SWITCH ~ INTEL RESERVED
PROCESSOR EXTENSION EMULATED ----"

MONITOR PROCESSOR EXTENSION _____ -'

PROTECTION ENABLE ----------'

Figure 3a. Status and Control Register Bit Functions

Flags Word Description
The Flags word (Flags) records specific characteristics
of the result of logical and arithmetic instructions (bits 0,
2, 4, 6, 7, and 11) and controls the operation of the 80286
within a given operating mode (bits 8 and 9). Flags is a
16-bit register. The function of the flag bits is given in
Table 2.

Instruction Set
The instruction set is divided into seven categories: data
transfer, arithmetic, shift/rotate/logical, string manipula­
tion, control transfer, high level instructions, and pro­
cessor control. These categories are summarized in
Figure 4.

An 80286 instruction can reference zero, one, or two
operands; where an operand resides in a register, in the
instruction itself, or in memory. Zero-operand instruc­
tions (e.g. NOP and HLT) are usually qne byte long. One·
operand instructions (e.g. INC and DEC) are usually two
bytes long but some are encoded in only one byte. One­
operand instructions may reference a register or mem­
ory location. Two-operand instructions permit the follow·
ing six types of instruction operations:

-Register to Register
-Memory to Register
-Immediate to Register
-Memory to Memory
-Register to Memory
-Immediate to Memory

A-6

Table 2 Flags Word Bit Functions

Bit Name Function Position
0 CF Carry Flag-Set on high-order bit

carry or borrow; cleared otherwise

2 PF Parity Flag-Set if low-order 8 bits
of result contain an even number of
1-bits; cleared otherwise

4 AF Set on carry from or borrow to the
low order four bits of AL; cleared
otherwise

6 ZF Zero Flag-Set if result is zero;
cleared otherwise

7 SF Sign Flag-Set equal to high-order
bit of result (0 if positive, 1 if negative)

11 OF Overflow Flag-Set if result is a too-
large pusitive number or a too-small
negative number (excluding sign-bit)
to fit in destination operand; cleared
otherwise

8 TF Single Step Flag-Once set, a sin-
gle step interrupt occurs after the
next instruction executes. TF is
cleared by the single step interrupt.

9 IF Interrupt-enable Flag-When set,
maskable interrupts will cause the
CPU to transfer control to an inter-
rupt vector specified location.

10 DF Direction Flag-Causes string
instructions to auto decrement
the appropriate index registers
when set. Clearing DF causes
auto increment.

IAPX 286/10

Two-operand instructions (e.g. MOV and ADD) are usu­
ally three to six bytes long. Memory to memory opera­
tions are provided by a special class of string instructions
requiring one to three bytes. For detailed instruction for­
mats and encodings refer to the instruction set summary
at the end of this document.

GENERAL PURPOSE
MOV Move byte or word

PUSH Push word onto stack

POP Pop word off stack

PUSHA Push all registers on stack

POPA Pop all registers from stack

XCHG Exchange byte or word

XLAT Translate byte

INPUT/OUTPUT
IN Input byte or word

OUT Output byte or word

ADDRESS OBJECT
LEA Load effective address

LOS Load pointer using OS

LES Load pointer using ES

FLAG TRANSFER
LAHF Load AH register from flags

SAHF Store AH register in flags

PUSHF Push flags onto stack

POPF Pop flags off stack

Figure 4a. Data Transfer Instructions

MOVS Move byte or word string

INS Input bytes or word string

OUTS Output bytes or word string

CMPS Compare byte or word string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not equal/not zero

Figure 4c. String Instructions

A-7

ADDITION
ADD Add byte or word

ADC Add byte or word with carry

INC Increment byte or word by 1

AM ASCII adjust for addition

DAA Decimal adjust for addition

SUBTRACTION
SUB Subtract byte or word

SBB Subtract byte or word with borrow

DEC Decrement byte or word by 1

NEG Negate byte or word

CMP Compare byte or word

AAS ASCII adjust for subtraction

DAS Decimal adjust for subtraction

MULTIPLICATION
MUL Multiply byte or word unsigned

IMUL Integer multiply byte or word

AAM ASCII adjust for multiply

DIVISION
DIV Divide byte or word unsigned

IDIV Integer divide byte or word

AAD ASCII adjust for division

CBW Convert byte to word

CWO Convert word to doubleword

Figure 4b. Arithmetic Instructions

LOGICALS
NOT "Not" byte or word

AND "And" byte or word

OR "Inclusive or" byte or word

XOR "Exclusive or" byte or word

TEST "Test" byte or word

SHIFTS
SHUSAL Shift logical/arithmetic left byte or word

SHR Shift logical right byte or word .

SAR Shift arithmetic right byte or word

ROTATES
ROL Rotate left byte or word

ROR Rotate right byte or word

RCL Rotate through carry left byte or word

RCR Rotate through carry right byte or word

Figure 4d. ShiftlRotate/Logicallnstructions

iAPX 286/10

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS

JAlJNBE Jump if above/not below nor equal CALL Call procedure

JAE/JNB . Jump if above or equal/not below RET Return from procedure

JB/JNAE Jump if below/not above nor equal JMP Jump

JBE/JNA Jump if below or equal/not above

JC Jump if carry ITERATION CONTROLS

JE/JZ Jump if equal/zero

JG/JNLE Jump if greater/not less nor equal LOOP Loop

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero

JUJNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero

JLE/JNG Jump if less or equal/not greater JCXZ Jump if register CX == 0

JNC Jump if not carry

JNE/JNZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overflow

JNP/JPO Jump if not parity/parity odd INT Interrupt

JNS Jumpif not sign INTO Interrupt if overflow

JO Jump if overflow IRET Interrupt return

JP/JPE Jump if parity/parity even

JS Jumpifsign

Figure 4e. Program Transfer Instructions

FLAG OPERATIONS
STC Set carry flag

CLC Clear carry flag

CMC Complement carry flag

STD Set direction flag

CLD Clear direction flag

STI Set interrupt enable flag

CLI Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset

WAIT Wait for BUSY not active

ESC Escape to extension processor

LOCK Lock bus during next instruction

NO OPERATION
NOP No operation

EXECUTION ENVIRONMENT CONTROL

LMSW I Load machine status word

SMSW I Store machine status word

Figure 41. Processor Control Instructions

ENTER Format stack for procedure entry

LEAVE Restore stack for procedure exit

BOUND Detects values outside prescribed range

Figure 4g. High Level Instructions

A-a

Memory Organization
Memory is organized as sets of variable length seg­
ments. Each segmel'Jt is a linear contiguous sequence
of up to 64K (216) a-bit bytes. Memory is addressed us­
ing a two-component address (a pointer) that consists
of a 16-bit segment selector, and a 16-bit offset. The
segment selector indicates the desired segment in
memory. The offset component indicates the desired byte
address within the segment.

I
31

32-81T POINTER

SEGMENT I OFF.SET I
1615 0

T

-oJ '"oJ

OPERAND
SELECTED

'":" "'u
"\J "\J

MEMORY

SELECTED
SEGMENT

Figure 5. Two Component Address

iAPX 286/10

Table 3. Segment Register Selection Rules

Memory Segment Register Implicit Segment
Reference Needed Used Selection Rule

Instructions Code (CS) Automatic with instruction prefetch

Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP as a
base register.

Local Data Data (DS) All data references except when relative to stack or string destination

External (Global) Data Extra (ES) Alternate data segment and destination of string operation

All instructions that address operands in memory must
specify the segment and the offset. For speed and com­
pact instruction encoding, segment selectors are usu­
ally stored in the high speed segment registers. An
instruction need specify only the desired segment reg­
ister and an offset in order to address a memory operand.

Most instructions need not explicitly specify which seg­
ment register is used. The correct segment register is
automatically chosen according to the rules of Table 3.
These rules follow the way programs are written (see
Figure 6) as independent modules that require areas for
code and data, a stack, and access to external data areas.

Special segment override instruction prefixes allow
the implicit segment register selection rules to be
overridden for special cases. The stack, data, and
extra segments may coincide for simple programs.
To access operands not residing in one of the four
immediately available segments, a full 32-bit pointer
or a new segment selector must be loaded.

Addressing Modes
The 80286 provides a total of eight addressing modes
for instructions to specify operands. Two addressing
modes are provided for instructions that operate on reg­
ister or immediate operands:

Register Operand Mode: The operand is located in
one of the 8 or 16-bit general registers.

Immediate Operand Mode. The operand is included
in the instruction.

Six modes are provided to specify the location of an op­
erand in a memory segment. A memory operand ad­
dress consists of two 16-bit components: segment
selector and offset. The segment selector is supplied by
a segment register either implicitly chosen by the ad­
dressing mode or explicitly chosen by a segment over­
ride prefix. The offset is calculated by summing any
combination of the following three address elements:

the displacement (an 8 or 16-bit immediate value
contained in the instruction)

the base (contents of either the BX or BP base
registers)

the index (contents of either the SI or 01 index registers)

A-9

MODULE A

MODULE B

PROCESS
STACK

PROCESS
DATA
BLOCK 1

r---'
I I

~
ODE

DATA

CODE

DATA

I I
I I

I I
I I

PROCESsD
DATA
BLOCK 2

I I
L ___ J

MEMORY

CPU

L_
CODE

L-r DATA

-- STACK

r--I- EXTRA

SEGMENT
REGISTERS

Figure 6. Segmented Memory Helps
Structure Software

Any carry out from the 16-bit addition is ignored. Eight­
bit displacements are sign extended to 16-bit values.

Combinations of these three address elements define
the six memory addressing modes, described below.

Direct Mode: The operand's offset is contained in the
instruction as an 8 or 16-bit displacement element.

Register Indirect Mode: The operand's offset is in one
of the registers SI, 01, BX, or BP.

Based Mode: The operand's offset is the sum of an 8 or
16-bit displacement and the contents of a base register
(BXorBP).

IAPX 286/10

Indexed Mode: The operand's offset is the sum of an 8
or 16-bit displacement and the contents of an index reg­
ister (SI or 01).

Based Indexed Mode: The operand's offset is the sum
of the contents of a base register and an index register.

Based Indexed Mode with Displacement: The oper­
and's offset is the sum of a base register's contents, an
index register's contents, and an 8 or 16-bit displacement.

Data Types
The 80286 directly supports the following data types:

Integer:

Ordinal:

Pointer:

String:

A signed binary numeric value con­
tained in an 8-bit byte or a 16-bit word.
All operations assume a 2's comple­
ment representation. Signed 32 and 64-
bit integers are supported using the iAPX
286/20 Numeric Data Processor.

An unsigned binary numeric value con­
tained in an 8-bit byte or 16-bit word.

A 32-bit quantity, composed of a seg­
ment selector component and an offset
component. Each component is a 16-bit
word.

A contiguous sequence of bytes or
words. A string may contain from 1 byte
to 64K bytes.

ASCII: A byte representation of alphanumeric
and control characters using the ASCII
standard of character representation.

BCD: A byte (unpacked) representation of the
decimal digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0-9 storing one digit in
each nibble of the byte.

Floating Point: A signed 32, 64, or 80-bit real number
representation. (Floating pOint operands
are supported using the iAPX 286/20
Numeric Processor configuration.)

Figure 7 graphically represents the data types sup­
ported by the iAPX 286.

I/O Space
The I/O space consists of 64K 8-bit or 32K 16-bit ports.
I/O instructions address the I/O space with either an 8-
bit port address, specified in the instruction, or a 16-bit
port address in the OX register. 8-bit port addresses are
zero extended such that A1S-AS are LOW. I/O port ad­
dresses 00F8(H) through OOFF(H) are reserved.

A-10

7 0
SIGNED rTTTTTTTl
BYTE~

SIGNBIT.J~
MAGNITUDE

7 0
UNSIGNED rrrrTT1'Tl

BYTE L-..:.......J
~
MAGNITUDE

1514 +1 87 0 0

s~~~g II I I I I I I I I I I I I I I I
SIGN BIT..J L.,! L..:::M~S:~AG=:N':'::IT""U==DE:----I

SIGNED 31 +3 +2 1615 +1 0

D~~~~~ II
SIGN BIT J IL_M...;;.S~B ---:-:M~AG;:ON;;:;IT:;;UD;:;;E=--------'

+ 7 + 6 + 5 + 4 +3 + 2 + 1
SIGNED 63 48 47 3231 1615 o

w~~A~11 I I I I
SIGN BIT J IL-"M;,;;,SB~_---:'M~A~GN:-:::IT:::-U=DE::--------'

15 +1 0

UNS~~~g Iii iii iii' , I I ' , , I
iLMSB

MAGNITUDE

BINARY 7 +N 0
CODED rrrrrrn1

DECIMAL L-..:.......J
(BCD) DI~~~ N

7 +N 0

ASCII~
ASCII

CHARACTERN

7 +N 0
PACKED rrrrrrn1

BCD L-L..J
'---J
MOST
SIGNIFICANT DIGIT

7/15 +N 0

STRING~ •••

BYTEIWORD N

7 +1 07 0

l'iilii'l'iil'iil
BCD BCD

DIGIT 1 DIGIT 0

7 +1 07 0

l'iil"'lii'I"'1
ASCII ASCII

CHARACTER 1 CHARACTERo

7 +1 07 0 0

,iii ,'11,111,111,

'---J
LEAST

SIGNIFICANT DIGIT

7/15 + 1 0 7/15 0 0

1"'I'lilii'lii'l
BYTEIWORD 1 BYTEIWORD 0

31 +3 +2 1615 +1 0

POINTER I ' , , I ' iii ' , , Iii iii i i II iii iii Ii, i I
I I

SELECTOR OFFSET
79+9 +8 +7 +6 +5 +4 +3 +2 +1

FL~~~~ II
SIGN BIT .JLL,-'----L.-.L..---'---'--........ --'-----'---'------I

EXPONENT MAGNITUDE

·Supported by IAPX 286.'20 Numeric Data Processor Configuration

Figure 7. iAPX 286 Supported Data Types

IAPX 286/10

Table 4. Interrupt Vector Assignments

Interrupt Related Return Address
Function Before Instruction

Number Instructions Causing Exception?
Divide error exception

Single step interrupt

NMI interrupt

Breakpoint interrupt

INTO detected overflow exception

BOUND range exceeded exception

Invalid opcode exception

Processor extension not available exception

Reserved

Processor extension error interrupt

Reserved

User defined

Interrupts
An interrupt transfers execution to a new program loca­
tion. The old program address (CS:IP) and machine state
(Flags) are saved on the stack to allow resumption
of the interrupted program. Interrupts fall into three
classes: hardware initiated, INT instructions, and instruc­
tion exceptions. Hardware initiated interrupts occur
in response to an external input and are classified
as non-maskable or maskable. Programs may cause
an interrupt with an INT instruction. Instruction excep­
tions occur when an unusual condition, which pre­
vents further instruction processing, is detected while
attempting to execute an instruction. The return ad­
dress from an exception will always point at the in­
struction causing the exception and include any leading
instruction prefixes.

A table containing up to 256 pointers defines the proper
interrupt service routine for each interrupt. Interrupts 0-
31, some of which are used for instruction exceptions,
are reserved. For each interrupt, an 8-bit vector must be
supplied to the 80286 which identifies the appropriate
table entry. Exceptions supply the interrupt vector inter­
nally. INT instructions contain or imply the vector and
allow access to all 256 interrupts. Maskable hardware
initiated interrupts supply the 8-bit vector to the CPU
during an interrupt acknowledge bus sequence. Non­
maskable hardware interrupts use a predefined inter­
nally supplied vector.

MASKABLE INTERRUPT (INTR)

The 80286 provides a maskable hardware interrupt re­
quest pin, INTR. Software enables this input by setting

0 DIV,IDIV Yes

1 All

2 All

3 INT

4 INTO No

5 BOUND Yes

6 Any undefined opcode Yes

7 ESC or WAIT Yes

8-15
16 ESCorWAIT

17-31
32-255

the interrupt flag bit (IF) in the flag word. All 224 user­
defined interrupt sources can share this input, yet they
can retain separate interrupt handlers. An 8-bit vector
read by the CPU during the interrupt acknowledge se­
quence (discussed in System Interface section) identi­
fies the source of the interrupt.

Further maskable interrupts are disabled while servic­
ing an interrupt by resetting the IF but as part of the
response to an interrupt or exception. The saved flag
word will reflect the enable status of the processor prior
to the interrupt. Until the flag word is restored to the flag
register, the interrupt flag will be zero unless specifically
set. The interrupt return instruction includes restoring
the flag word, thereby restoring the original status of IF.

NON-MASKABLE INTERRUPT REQUEST (NMI)

A non-maskable interrupt input (NMI) is also provided.
NMI has higher priority than INTR. A typical use of NMI
would be to activate a power failure routine. The activa­
tion of this input causes an interrupt with an internally
supplied vector value of 2. No external interrupt ac­
knowledge sequence is performed.

While executing the NMI servicing procedure, the 80286
will service neither further NMI requests, INTR re­
quests, nor the processor extension segment overrun
interrupt until an interrupt return (IRET) instruction is ex­
ecuted or the CPU is reset. If NMI occurs while currently
servicing an NMI, its presence will be saved for servic­
ing after executing the first IRET instruction. IF is cleared
at the beginning of an NMI interrupt to inhibit INTR
interrupts.

A-11

iAPX 286/10

SINGLE STEP INTERRUPT

The 80286 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is called the
single step interrupt and is controlled by the single step
flag bit (TF) in the flag word. Once this bit is set, an inter­
nal single step interrupt will occur after the next instruc­
tion has been executed. The interrupt clears the TF bit
and uses an internally supplied vector of 1. The IRET
instruction is used to set the TF bit and transfer control
to the next instruction to be single stepped.

Interrupt Priorities
When simultaneolls interrupt requests occur, they are
processed in a fixed order as shown in Table 5. Interrupt
processing involves saving the flags, return address, and
setting CS:IP to point at the first instruction of the inter­
rupt handler. If other interrupts remain enabled they are
processed before the first instruction of the current in­
terrupt handler is executed. The last interrupt processed
is therefore the first one serviced.

Table 5. Interrupt Processing Order

Order Interrupt

1 INT instruction or exception

2 Single step

3 NMI

4 Processor extension segment overrun

5 INTR

Initialization and Processor Reset
Processor initialization or start up is accomplished by
driving the RESET input pin HIGH. RESET forces the
80286 to terminate all execution and local bus activity.
No instruction or bus activity will occur as long as RE­
SET is active. After RESET becomes inactive and an
internal processing interval elapses, the 80286 begins
execution in real address mode with the instruction at
physical location FFFFFO(H). RESET also sets some
registers to predefined values as shown as shown in
Table 6.

Table 5. 80285 Initial Register State after RESET

Flag word 0002(H)
Machine Status Word FFFO(H)
Instruction pointer FFFO(H)
Code segment FOOO(H)
Data segment OOOO(H)
Extra segment OOOO(H)
Stack segment OOOO(H)

Machine Status Word Description
The machine status word (MSW) records when a task
switch takes place and controls the operating mode of
the 80286. It is a 16-bit register of which the lower four
bits are used. One bit places the CPU into protected
mode, while the other three bits, as shown in Table 7,
control the processor extension interface. After RESET,
this register contains FFFO(H) which places the 80286
in iAPX 86 real address mode.

Table 7. MSW Bit Functions

Bit
Name Function

Position

0 PE .Erotected mode ~nable places the
80286 into protected mode and can
not be cleared except by RESET.

1 MP ~onitor ,erocessor extension al-
lows WAIT instructions to cause a
processor extension not present
exception (number 7).

2 EM Emulate processor extension
causes a processor extension not
present exception (number 7) on
ESC instructions to allow emulat-
ing a processor extension.

3 TS Task switched indicates the next
instruCtion using a processor ex-
tension will cause exception 7, al-
lowing software to test whether the
current processor extension con-
text belongs to the current task.

The LMSW and SMSW instructions can load and store
the MSW in real address mode. The recommended use
of TS, EM, and MP is shown in Table 8.

Table 8 Recommended MSW Encodings For Processor Extension Control

Instructions
. TS MP EM Recommended Use Causing

Excejltion 7

0 0 0 Initial encoding after RESET. iAPX 286 operation is identical to None
iAPX 86,88.

0 0 1· No processor extension is available. Software will emulate its function. ESC

1 0 1 No processor extension is available. Software will emulate its function. The current ESC
processor extension context may belong to another task.

0 1 0 A processor extension exists. None

1 1 0 A processor extension exists. The current processor extension context may belong ESCor
to another task. The exception on WAIT allows software to test for an error pending WAIT
from a previous processor extension operation.

A-12

iAPX 286/10

Halt
The HLT instruction stops program execution and pre­
vents the CPU from using the local bus until restarted.
Either NMI, INTR with IF = 1, or RESET will force the
80286 out of halt. If interrupted, the saved CS:IP will
point to the next instruction after the HLT.

iAPX 86 REAL ADDRESS MODE
The 80286 executes a fully upward-compatible superset
of the 8086 instruction set in real address mode. In real
address mode the 80286 is object code compatible with
8086 and 8088 software. The real address mode archi­
tecture (registers and addressing modes) is exactly as
described in the iAPX 286/10 Base Architecture section
of this Functional Description.

Memory Size
Physical memory is a contiguous array of up to
1,048,576 bytes (one megabyte) addressed by pins
Ao through A 19 and SHE. A20 through A23 may be
ignored.

Memory Addressing
In real address mode the processor generates 20-bit
physical addresses directly from a 20-bit segment base
address and a 16-bit offset.

The selector portion of a pointer is interpreted as the
upper 16 bits of a 20-bit segment address. The lower
four bits of the 20-bit segment address are always zero.
Segment addresses, therefore, begin on multiples of 16
bytes. See Figure 8 for a graphic representation of ad­
dress formation.

All segments in real address mode are 64K bytes in size
and may be read, written, or executed. An exception or
interrupt can occur if data operands or instructions at­
tempt to wrap around the end of a segment (e.g. a word
with its low order byte at offset FFFF(H) and its high
order byte at offset OOOO(H)). If, in real address mode,
the information contained in a segment does not use the
full 64K bytes, the unused end of the segment may be
overlayed by another segment to reduce physical mem­
ory requirements.

Reserved Memory Locations
The 80286 reserves two fixed areas of memory in real
address mode (see Figure 9); system initialization area
and interrupt table area. Locations from addresses
FFFFO(H) thorugh FFFFF(H) are reserved for system
initialization. Initial execution begins at location FFFFO(H).
Locations OOOOO(H) through 003FF(H) are reserved for
interrupt vectors.

A-13

15 0

1
0000 I OFFSET I OFFSET

.... _-11...00 _____ --' ADDRESS

15

19

SEGMENT
SELECTOR

SEGMENT
0000 ADDRESS

20-BIT PHYSICAL
MEMORY ADDRESS

Figure 8. iAPX 86 Real Address Mode Address
Calculation

. RESET BOOTSTRAP
PROGRAM JUMP

~::: · ·
INTERRUPT POINTER

FOR VECTOR 255

~~ · ·
INTERRUPT POINTER

FOR VECTOR 1

INTERRUPT POINTER
FOR VECTOR 0

~~

?~

FFFFFH

FFFFOH

3FFH

3FCH

7H

4H
3H

OH

Figure 9. iAPX 86 Real Address Mode Initially
Reserved Memory Locations

iAPX 286/10

Table 9. Real Address Mode Addressing Interrupts

Function Interrupt
Number

Interrupt table limit too small exception 8

Processor extension segment overrun 9
interrupt

Segment overrun exception 13

Interrupts
Table 9 shows the interrupt vectors reserved for excep­
tions and interrupts which indicate an addressing error.
The exceptions leave the CPU in the state existing be­
fore attempting to execute the failing instruction (except
for PUSH, POP, PUSHA, or paPA). Refer to the next
section on protected mode initialization for a discussion
on exception 8.

Protected Mode Initialization
To prepare the 80286 for protected mode, the L1DT in­
struction is used to load the 24-bit interrupt table base
and 16-bit limit for the protected mode interrupt table.
This instruction can also set a base and limit for the in­
terrupt vector table in real address mode. After reset,
the interrupt table base is initialized to OOOOOO(H) and
its size set to 03FF(H). These values are compatible
with iAPX 86, 88 software. L1DT should only be exe­
cuted in preparation for protected mode.

Shutdown
Shutdown occurs when a severe error is detected that
prevents further instruction processing by the CPU.
Shutdown and halt are externally signalled via a halt bus
operation. They can be distinguished by A1 HIGH for halt
and A1 LOW for shutdown. In real address mode, shut­
down can occur under two conditions:

• Exceptions 8 or 13 happen and the lOT limit does not
include the interrupt vector.

• A CALL, INT, or POP instruction attempts to wrap
around the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if the
lOT limit is at least OOOF(H) and 'SP is greater than
0005(H), otherwise shutdown can only be exited via the
RESET input.

Related Return Address
Instructions Before Instruction?

INT vector is not within table limit Yes

ESC with memory operand extend- No
ing beyond offset FFFF(H)

Word memory reference with offset Yes
= FFFF(H) or an attempt to exe-
cute past the end of a segment

PROTECTED VIRTUAL ADDRESS MODE
The 80286 executes a fully upward-compatible superset
of the 8086 instruction set in protected virtual address
mode (protected mode). Protected mode also provides
memory management and protection mechanisms and
associated instructions.

The 80286 enters protected virtual address mode from
real address mode by setting the PE (Protection En­
able) bit of the machine status word with the Load Ma­
chine Status Word (LMSW) instruction. Protected mode
offers extended physical and virtual memory address
space, memory protection mechanisms, and new oper­
ations to support operating systems and virtual memory.

All registers, instructions, and addressing modes de­
scribed in the iAPX 286/10 Base Architecture section of
this Functional Description remain the same. Programs
for the iAPX 86, 88, 186, and real address mode 80286
can be run in protected mode; however, embedded con­
stants for segment selectors are different.

Memory Size
The protected mode 80286 provides a 1 gigabyte virtual
address space per task mapped into a 16 megabyte
physical address space defined by the address pins A23-

Ao and ERE. The virtual address space may be larger
than the physical address space since any use of an
address that does not map to a physical memory loca­
tion will cause a restartable exception.

Memory Addressing
As in real address mode, protected mode uses 32-bit
pointers, consisting of 16-bit selector and offset com­
ponents. The selector, however, specifies an index into
a memory resident table rather than the upper 16-bits of
a real memory address. The 24-bit base address of the

A-14

IAPX 286/10

desired segment is obtained from the tables in memory.
The 16-bit offset is added to the segment base address
to form the physical address as shown in Figure 10. The
tables are automatically referenced by the CPU when­
ever a segment register is loaded with a selector. All
iAPX 286 instructions which load a segment register will
reference the memory based tables without additional
software. The memory based tables contain 8 byte val­
ues called descriptors.

DESCRIPTORS

Descriptors define the use of memory. Special types of
descriptors also define new functions for transfer of con­
trol and task switching. The 80286 has segment de­
scriptors for code, stack and data segments, and system
control descriptors for special system data segments and
control transfer operations. Descriptor accesses are
performed as locked bus operations to assure descrip­
tor integrity in multi-processor systems.

CPU

CODE AND DATA SEGMENT DESCRIPTORS

Besides segment base addresses, code and data de­
scriptors contain other segment attributes including
segment size (1 to 64K bytes), access rights (read only,
read/write, execute only, and execute/read), and pres­
ence in memory (for virtual memory systems) (See Fig­
ure 11). Any segment usage violating a segment attribute
indicated by the segment descriptor will prevent the
memory cycle and cause an exception or interrupt.

ACCESS
RIGHTS BYTE

Segment Descriptor

o 7 -.
+7 INTEL RESERVEO'

+5 pl OPLl sl TYPE 1 Al BASE23-16

+3 BASE15_0

+1 LlMITl5-0

15 e 7

+6

+4

+2

Figure 10. Protected Mode Memory Addressing 'Mu.' be •• , 10 0 for comp.t.blllty with IAPX 388.

Access Rights Byte Definition

Bit
Name Function Position

7 Present (P) P=1 Segment is mapped into physical memory.
p=o No mapping to physical memory exists, base and limit are not used.

6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)

4 Segment Descrip- S=1 Code or Data segment descriptor
tor(S) S=O Non-segment descriptor

3 Executable (E) E=O Data segment descriptor type is:
2 Expansion Direc- ED=O Grow up segment, offsets must be .,. limit.

tion(ED) }~m
ED=1 Grow down segment, offsets must be > limit. Segment

1 Writeable (W) W=O Data segment may not be written into.
W=1 Data segment may be written into.

3 Executable (E) E=1 Code Segment Descriptor type is: }
2 Conforming (C) C=1 Code segment may only be executed when CPL ;a. DPL. Code
1 Readable (R) R=O Code segment may not be read. Segment

R=1 Code segment may be read. L
0 Accessed (A) A=O Segment has not been accessed.

A=1 Segment selector has been loaded into segment register or used by
selector test instructions.

Figure 11. Code and Data Segment Descriptor Formats

A-15

iAPX 286/10

Code and data are stored in two types of segments:
code segments and data segments. Both types are
identified and defined by segment descriptors. Code
segments are identified by the executable" (E) bit set to
1.in the descriptor access rights byte. The access rights

. byte of both code and data segment descriptor types
have three fields in common: present (P) bit, Descriptor
Privilege Level (DPL), and accessed (A) bit. If P = 0,
any attempted use of this segment will cause a not-pres­
ent exception. DPL specifies the privilege level of the
segment descriptor. DPL effects When the descriptor may
be used by a task (refer to privilege discussion below).
The A bit shows whether the segment has been previ­
ously accessed for usage. profiling, a necessity for vir­
tual. memory systems. The CPU will always set this bit
when accessing the descriptor;

Data segments (S = 1, E = 0) may be either read-only or
read-write as controlled by the W bit of the access rights
byte. Read-only (W = 0) data segments may not be writ­
ten into. Data segments may grow in two directions, as
determined by the Expansion Direction (ED) bit: up­
wards (ED = 0) for data segments, and downwards
(ED = 1) for a segment containing a stack. The limit field
for a data segment descriptor is interpreted differently
depending on the ED bit (see Figure 11).

A code segment (S = 1; E = 1) may. be execute-only
or execute/re.~d as determined by the Readable (R)
bit. Code segments may never be, written into and
execute-only code segments (R = 0) may not be read.
A code segment may also have an attribute called
conforming (C). A conforming code'segment may be
shared by programs that execute at different privi­
lege levels. The DPL of a conforming code segment
defines the range of privilege levels at which the
segment may be executed (refer to privilege discus­
sion below). The limit field identifies the last byte of
a code segment.

SYSTEM CONTROL DESCRIPTORS

In addition to code and data segment descriptors, the
protected mode 80286 defines system control descrip­
tors. These descriptors define special system data seg­
ments and control transfer mechanisms in the protected
environment. The special system data segment de­
scriptors define segments which contain tables of de­
scriptors (Local Descriptor Table Descriptor) and
segments which contain the execution state of a task
(Task State Segment Descriptor).

The control transfer descriptors are call gates, task gates,
interrupt gates and trap gates. Gates provide a level of
indirection between the source and destination of the
control transfer. This indirection allows the CPU to au- .
tomatically perform protection checks and control the
entry point of the destination. Call gates are used to
change privilege levels (see Privilege), task gates are
used to perform a task switch;. and interrupt and trap

System' Segment Descriptor

o 7

+7 . INTEL R~SERVED· +6

+5 pi DPL I 0 I trE
I I BASE23-16

+3 BASE15-0 +2

i '+1 LIMI~15-0

15 8 7

·MuII be .. I 100 for compalablilly with IAPX 388.

System Segment Descriptor Fields
Name Value Description

TYPE 1 Available Task State Segment
2 Local Descriptor Table Descriptor
3 Busy Task State Segment

P 0 Descriptor contents are not valid
1 Descriptor contents are valid

DPL 0-3 Descriptor Privilege Level

BASE 24-bit Base Address of special system data
number segment in real memory

LIMIT 16-bit Offset of last byte in segment
number

Figure 12. System Segment Format

gates are used to specify interrupt service routines. The
interrupt gate disables interrupts (resets IF) while the
trap gate does not.

Figure 12 gives the formats for the special system data
segment descriptors. The descriptors contain a 24-bit
base address of the segment and a 16-bit limit. The ac­
cess byte defines the type of descriptor, its state and
privilege level. The descriptor contents are valid and the
segment is in physical memory if P = 1. If p. = 0, the
segment is not valid. The DPL field is only used in Task
State Segment descriptors and indicates the privilege
level at which the descriptor may be used (see Privi­
lege). Since the Local Descriptor Table descriptor may
only be used by a special privileged instruction, the DPL
field is not used. Bit 4 of the access byte is 0 to indicate
that it is a system control descriptor. The type field spec­
ifies the descriptor type as indicated in Figure 12.

Figure 13 shows the format of the gate descriptors. The
descriptor contains a destination pointer that points to
the descriptor of the target segment and the entry point
offset. The destination selector in an interrupt gate, trap
gate, and call gate must refer to a code segment de­
scriptor. These gate descriptors contain the entry point
to prevent a program from constructing and using an
illegal entry point. Task gates may only refer to a task
state segment. Since task gates invoke a task switch,
the destination offset is not used in the task gate.

Exception 13 is generated when the gate is used if a
. destination selector does not refer to the correct de-

A-16

inter iAPX 286/10

Gate Descriptor

07

+7 INTEL RESERVED- +6

+5 pID~LIOI,TYtEI1X//1 ~g~~T4-0 +4

+3 DESTINATION SELECTORI5_2 Ix X +2

+1 DESTINATION OFFSETI5-0

15 87

-Mult be 18tto 0 for compatability with IAPX 386. (X Is don't care)

Gate Descriptor Fields
Name Value Description

4 -Call Gate

TYPE 5 -Task Gate
6 -Interrupt Gate
7 -Trap Gate

P 0 -Descriptor Contents are not
valid

1 -Descriptor Contents are
valid

DPL 0-3 Descriptor Privilege Level

WORD Number of words to copy
COUNT

0-31 from callers stack to called
procedures stack. Only used
with call gate.

Selector to the target code

DESTINATION 16-bit
segment (Call, Interrupt or

SELECTOR selector
Trap Gate)
Selector to the target task
state segment (Task Gate)

DESTINATION 16-bit Entry point within the target
OFFSET offset code segment

Figure 13_ Gate Descriptor Format

scriptor type, The word count field is used in the call gate
descriptor to indicate the number of parameters (0-31
words) to be automatically copied from the caller's stack
to the stack of the called routine when a control transfer
changes privilege levels. The word count field is not used
by any other gate descriptor.

The access byte format is the same for all gate descrip­
tors. P = 1 indicates that the gate contents are valid. P
= 0 indicates the contents are not valid and causes ex-

ception 11. if referenced. OPL is the descriptor privilege
level and specifies when this descriptor may be used by
a task (refer to privilege discussion below). Bit 4 must
equal 0 to indicate a system control descriptor. The type
field specifies the descriptor type as indicated in Figure
13.

SEGMENT DESCRIPTOR CACHE REGISTERS

A segment descriptor cache register is assigned to each
of the four segment registers (CS, SS, OS, ES). Seg­
ment descriptors are automatically loaded (cached) into
a segment descriptor cache register (Figure 14) when­
ever the associated segment register is loaded with a
selector. Only segment descriptors may be loaded into
segment descriptor cache registers. Once loaded, all
references to that segment of memory use the cached
descriptor information instead of reaccessing memory.
The descriptor cache registers are not visible to pro­
grams. No instructions exist to store their contents. They
only change when a segment register is loaded.

SELECTOR FIELDS

A protected mode selector has three fields: descriptor
entry index, local or global descriptor table indicator (TI),
and selector privilege (RPL) as shown in Figure 15. These
fields select one of two memory based tables of descrip­
tors, select the appropriate table entry and allow high­
speed testing of·the selector's privilege attribute (refer
to privilege discussion below).

SELECTOR

INDEX
, ! , ! !

15 3 2 1 0

BITS NAME FUNCTION

1-0 REQUESTED INDICATES SELECTOR PRIVILEGE
PRIVILEGE LEVEL DESIRED
LEVEL
(RPL)

2 TABLE TI = 0 USE GLOBAL DESCRIPTOR TABLE
INDICATOR (GDT)
(TI) TI = 1 USE LOCAL DESCRIPTOR TABLE

(LDT)

15-3 INDEX SELECT DESCRIPTOR ENTRY IN TABLE

Figure 15 .. Selector Fields

PROGRAM VISIBLE r - - - - - - - - - ~~ci;A-M -;V-;;I;L; - - - - - - - - - l
I ~~ I

SEGMENT SELECTORS I RIGHTS SEGMENT BASE ADDRESS SEGMENT SIZE I

~~'II I j
15 0 47 40 39 16 15 I

SEGMENT REGISTERS
(LOADED BY PROGRAM)

I
I SEGMENT DESCRIPTOR CACHE REGISTERS I
L __________ ~O~:D ~Y ~P~ __________ J

Figure 14. Descriptor Cache Registers

A-17

iAPX 286/10

LOCAL AND GLOBAL DESCRIPTOR TABLES

Two tables of descriptors, called descriptor tables, con­
tain all descriptors accessible by a task at any given time.
A descriptor table is a linear array of up to 8192 descrip­
tors. The upper 13 bits of the selector value are an index
into a descriptor table. Each table has a 24-bit base reg­
ister to locate the descriptor table in physical memory
and a 16-bit limit register that confine descriptor access
to the defined limits of the table as shown in Figure 16. A
restartable exception (13) will occur if an attempt is made
to reference a descriptor outside the table limits.

One table, called the Global Descriptor Table (GOT),
contains descriptors available to all tasks. The other ta­
ble, called the Local Descriptor Table (LOT), contains
descriptors that can be private to a task. Each task may
have its own private LOT. The GOT may contain all de­
scriptor types except interrupt and trap descriptors. The
LOT may contain only segment, task gate, and call gate
descriptors. A segment cannot be accessed by a task if
its segment descriptor does not exist in either descriptor
table at the time of access.

"\.I MEMORY 'V
CPU "I-' "f:-

15 0

"~
23

I GOT BASE

15 0

I: LOT LOT1
SELECTOR

r--~----;l

W I '~I
I 23 LOT LIMIT r-r-
: I I l.J LOT BASE Ii

}

CURRENT
LOT

I I LOTn
I PROGRAM INVISIBLE I
L _______ J

'l" 'L

Figure 16, Local and Global Descriptor
Table Definition

The LGDT and LLDT instructions load the base and limit
of the global and local descriptor tables. LGDT and LLDT
are protected. They may only be executed by trusted
programs operating at level O. The LGDT instruction loads
a six byte field containing the 16-bit table limit and 24-bit
base address of the Global Descriptor Table as shown
in Figure 17. The LLDT instruction loads a selector which
refers to a Local Descriptor Table descriptor containing
the base address and limit for an LOT, as shown in Fig­
ure 12.

A-18

o 7

+5 INTEL RESERVED' 1 BAS"E23-16 +4

+3 BASE15-0 +2
I

+1 LIMIT15-0

15 8 7

'Mult b, .. t to 0 for compatablllty with IAPX 386.

Figure 17. Global Descriptor Table and Interrupt
Descriptor Table Data Type

INTERRUPT DESCRIPTOR TABLE

The protected mode 80286 has a third descriptor table,
called the Interrupt Descriptor Table (lOT) (see Figure
18), used to define up to 256 interrupts. It may contain
only task gates, interrupt gates and trap gates. The lOT
(Interrupt Descriptor Table) has a 24-bit base and 16-bit
limit register in the CPU. The protected L1DT instruction
loads these registers with a six byte value of identical
form to that of the LGDT instruction (see Figure 17 and
Protected Mode Initialization).

,"u Lf
15 0

1 lOT LIMIT I-

1 lOT BASE

23 0

~ MEMORY 'V
I"fo- "to'

GATE FOR
INTERRUPT #n

GATE FOR
INTERRUPT #n-1

· · ·
GATE FOR

INTERRUPT #1

GATE FOR
INTERRUPT #0

~ ~

INTERRUPT
DESCRIPTOR
TABLE
(lOT)

Figure 18. Interrupt Descriptor Table Definition

References to lOT entries are made via INT instruc­
tions, external interrupt vectors, or exceptions. The lOT
must be at least 256 bytes in size to allocate space for
all reserved interrupts.

Privilege
The 80286 has a four-level hierarchical privilege system
which controls the use of privileged instructions and ac­
cess to descriptors (and their associated segments) within
a task. Four-level privilege, as shown in Figure 19, is an
extension of the user/supervisor mode commonly found
in minicomputers. The privilege levels are numbered 0
through 3. Level 0 is the most privileged level. Privilege

IAPX 286/10

CPU
ENFORCED
SOFTWARE
INTERFACES

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

Figure 19. Hierarchical Privilege Levels

levels provide protection within a task. (Tasks are iso­
lated by providing private LDT's for each task.) Operat­
ing system routines, interrupt handlers, and other system
software can be included and protected within the vir­
tual address space of each task using the four levels of
privilege. Tasks may also have a separate stack for each
privilege level.

Tasks, descriptors, and selectors have a privilege level
attribute that determines whether the descriptor may be
used. Task privilege effects the use of instructions and
descriptors. Descriptor and selector privilege only effect
access to the descriptor.

TASK PRIVILEGE

A task always executes at one of the four privilege levels.
The task privilege level at any specific instant is called
the Current Privilege Level (CPL) and is defined by the
lower two bits of the CS register. CPL cannot change
during execution in a single code segment. A task's CPL
may only be changed by control transfers through gate
descriptors to a new code segment (See Control Trans­
fer). Tasks begin executing at the CPL value specified
by the code segment when the task is initiated via a task
switch operation. A task executing at Level 0 can access
all data segments defined in the GDT and the task's LDT
and is considered the most trusted level. A task execut­
ing at Level 3 has the most restricted access to data and
is considered the least trusted level.

DESCRIPTOR PRIVILEGE

Descriptor privilege is specified by the Descriptor Privi­
lege Level (DPL) field of the descriptor access byte. DPL
specifies the least trusted task privilege level (CPL) at

A-19

which a task may access the descriptor. Descriptors with
DPL = 0 are the most protected. Only tasks executing
at privilege level 0 (CPL = 0) may access them. De­
scriptors with DPL = 3 are the least protected (Le. have
the least restricted access) since tasks can access them
when CPL = 0, 1,2, or 3. This rule applies to all descrip­
tors, except LDT descriptors.

SELECTOR PRIVILEGE

Selector privilege is specified by the Requested Privi­
lege Level (RPL) field in the least significant two bits of a
selector. Selector RPL may establish a less trusted priv­
ilege level than the current privilege level for the use of a
selector. This level is called the task's effective privilege
level (EPL). RPL can only reduce the scope of a task's
access to data with this selector. A task's effective privi­
lege is the numeric maximum of RPL and CPL. A selec­
tor with RPL = 0 imposes no additional restriction on its
use while a selector with RPL = 3 can only refer to seg­
ments at privilege Level 3 regardless of the task's CPL.
RPL is generally used to verify that pointer parameters
passed to a more trusted procedure are not allowed to
use data at a more privileged level than the caller (refer
to pointer testing instructions).

Descriptor Access and Privilege Validation
Determining the ability of a task to access a segment
involves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL,
RPL, and DPL. The two basic types of segment ac­
cesses are control transfer (selectors loaded into CS)
and data (selectors loaded into DS, ES or SS).

DATA SEGMENT ACCESS

Instructions that load selectors into DS and ES must
refer to a data segment descriptor or readable code seg­
ment descriptor. The CPL of the task and the RPL of the
selector must be the same as or more privileged (nu­
merically equal to or lower than) than the descriptor DPL.
In general, a task can only access data segments at the
same or less privileged levels than the CPL or RPL
(whichever is numerically higher) to prevent a program
from accessing data it cannot be trusted to use.

An exception to the rule is a readable conforming code
segment. This type of code segment can be read from
any privilege level.

If the privilege checks fail (e.g. DPL is numerically less
than the maximum of CPL and RPL) or an incorrect type
of descriptor is referenced (e.g. gate descriptor or exe­
cute only code segment) exception 13 occurs. If the seg­
ment is not present, exception 11 is generated.

iAPX 286/10

Instructions that load selectors into SS must refer to data
segment descriptors for writable data segments. The
descriptor privilege (DPL) and RPL must equal CPL. All
other descriptor types or a privilege level violation will
cause exception 13. A not present fault causes excep­
tion 12.

CONTROL TRANSFER

Four types of control transfer can occur when a selector
i) loaded into CS by a control transfer operation (see
Table 10). Each transfer type can only occur if the oper­
ation which loaded the selector references the correct
descriptor type. Any violation of these descriptor usage
PJles (e.g. JMP through a call gate or RETto a Task State
~ egment) will cause exception 13.

1 he ability to reference a descriptor for control transfer
i!; also subject to rules of privilege. A CALL or JUMP
instruction may only reference a code segment descrip­
tor with DPL equal to the task CPL or a conforming seg­
ment with DPL of equal or greater privilege than CPL.
The RPL of the selector used to reference the code de­
scriptor must have as much privilege as CPL.

RET and IRET instructions may only reference code
segment descriptors with descriptor privilege equal to or
less privileged than the task CPL. The selector loaded
into CS is the return address from the stack. After the
return, the selector RPL is the task's new CPL. If CPL
changes, the old stack pointer is popped after the return
address.

When a JMP or CALL references a Task State Segment
descriptor, the descriptor DPL must be the same or less
privileged than the task's CPL. Reference to a valid Task

State Segment descriptor causes a task switch (see Task
Switch Operation). Reference to a Task State Segment
descriptor at a more privileged level than the task's CPL
generates exception 13.

When an instruction or interrupt references a gate de­
scriptor, the gate DPL must have the same or less privi­
lege than the task CPL. If DPL is at a more privileged
level than CPL, exception 13 occurs. If the destination
selector contained in the gate references a code seg­
ment descriptor, the code segment descriptor DPL must
be the same or more privileged than the task CPL. If not,
Exception 13 is issued. After the control transfer, the
code segment descriptors DPL is the task's new CPL. If
the destination selector in the gate references a task
state segment, a task switch is automatically performed
(see Task Switch Operation).

The privilege rules on control transfer require:

-JMP or CALL direct to a code segment (code seg­
ment descriptor) can only be to a conforming segment
with DPL of equal or greater privilege than CPL or a
non-conforming segment at the same privilege level.

-interrupts within the task or calls that may change
privilege levels, can only transfer control through a
gate at the same or a less privileged level than CPL to
a code segment at the same or more privileged level
than CPL.

-return instructions that don't switch tasks can only re­
turn control to a' code segment at the same or less
privileged level.

-task switch can be performed by a call, jump or inter­
rupt which references either a task gate or task state
segment at the same or less privileged level.

Table 10. Descriptor Types Used for Control Transfer

Control Transfer Types

Intersegment within the same privilege level

Intersegment to the same or higher privilege level Interrupt
within task may change CPL.

Intersegment to a lower privilege level (changes task CPL)

Task Switch

*NT (Nested Task bit of flag word) = 0
**NT (Nested Task bit of flag word) = 1

Operation Types

JMP, CALL, RET, IREr

CALL

Interrupt Instruction,
Exception, External
Interrupt

RET,IRET*

CALL,JMP

CALL,JMP

IREr*
Interrupt Instruction,
Exception, External
Interrupt

A-20

Descriptor Descriptor .
Referenced Table

Code Segment GOT/LOT

Call Gate GOT/LOT

Trap or lOT
Interrupt
Gate

Code Segment GOT/LOT

Task State GOT
Segment

Task Gate GOT/LOT

Task Gate lOT

-nt_l@ I •• ~ .. IAPX 286/10

PRIVILEGE LEVEL CHANGES

Any control transfer that changes CPL within the task,
causes a change of stacks as part of the operation. Initial
values of SS:SP for privilege levels 0, 1, and 2 are kept
in the task state segment (refer to Task Switch Opera­
tion). During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and SP registers and
the previous stack pointer is pushed onto the new stack.

When returning to the original privilege level, its stack is
restored as part of the RET or IRET instruction opera­
tion. For subroutine calls that pass parameters on the
stack and cross privilege levels, a fixed number of words,
as specified in the gate, are copied from the previous
stack to the current stack. The inter-segment RET in­
struction with a stack adjustment value will correctly re­
store the previous stack pointer upon return.

Protection
The 80286 includes mechanisms to protect critical in­
structions that affect the CPU execution state (e.g. HLT)
and code or data segments from improper usage. These
mechanisms are grouped under the term "protection"
and have three forms:

Restricted usage of segments (e.g. no write allowed
to read-only data segments). The only segments
available for use are defined by descriptors in the Lo­
cal Descriptor Table (LDT) and Global Descriptor Ta­
ble(GDT).

Restricted access to segments via the rules of privi­
lege and descriptor usage.

Privileged instructions or operations that may only be
executed at certain privilege levels as determined by
the CPL and I/O Privilege Level (IOPL). The 10PL is
defined by bits 14 and 13 of the flag word.

These checks are performed for all instructions and can
be split into three categories: segment load checks (Ta­
ble 11), operand reference checks (Table 12), and privi­
leged instruction checks (Table 13). Any violation of the
rules shown will result in an exception. A not-present
exception related to the stack segment causes excep-
tion 12. .

The IRET and POPF instructions do not perform some
of their defined functions if CPL is not of sufficient privi­
lege (numerically small enough). No exceptions or other
indication are given when these conditions occur. .

The IF bit is not changed if CPL > 10PL.

The 10PL field of the flag word is not changed if CPL
>0.

A-21

Table 11
Segment Register Load Checks

Error Description Exception
Number

Descriptor table limit exceeded 13

Segment descriptor not-present 11 or 12

Privilege rules violated 13

Invalid descriptor/segment type seg-
ment register load:

-Read only data segment load to
SS

-Special control descriptor load to
OS, ES, SS 13

-Execute only segment load to
OS, ES, SS

-Data segment load to CS
-Read/Execute code segment

10adtoSS

Table 12 Operand Reference Checks

Error Description Exception
Number

Write into code segment 13
Read from execute-only code
segment 13
Write to read-only data segment 13
Segment limit exceeded' 120r 13

Note1: Carry out in offset calculations is ignored:

Table 13. Privileged Instruction Checks

Error Description Exception
Number

CPL '" 0 when executing the following
instructions: . 13

L1DT, LLDT, LGDT, LTR, LMSW,
CTS, HLT

CPL> IOPL when executing the fol-
lowing instructions: 13

INS, IN, OUTS, OUT, STI, CLI,
LOCK

EXCEPTIONS

The 80286 detects several types of exceptions and in­
terrupts, in protected mode (see Table 14). Most are re­
startable after the exceptional condition is removed.
Interrupt handlers for most exceptions receive an error
code, pushed on the stack after the return address, that
identifies the selector involved (0 if none). The return
address normally points to the failing instruction, includ­
ing all leading prefixes. For a processor extension seg­
ment overrun exception, the return address will not point
at the ESC instruction that caused the exception; how­
ever, the processor extension registers may contain the
address of the failing instruction.

iAPX 286/10

Table 14. Protected Mode Exceptions

Return Always Error Interrupt
Function Address Restart- Code Vector At Failing able? on Stack? Instruction?

8 Double exception detected Yes No Yes
9 Processor extension segment overrun No No No

10 Invalid task state segment Yes Yes Yes
11 Segment not present Yes Yes Yes
12 Stack segment overrun or segment not present Yes Yes1 Yes
13 General protection Yes No Yes

Note1: When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception will not be
restartable. This condition is identified by the value of the saved SP being either OOOO(H), 0001 (H), FFFE(H), or FFFF(H).

All these checks are performed for all instructions and
can be split into three categories: segment load checks
(Table 11), operand reference checks (Table 12), and
privileged instruction checks (Table 13). Any violation of
the rules shown will result in an exception: A not-present
exception related to the stack segment causes excep­
tion 12.

Special Operations
TASK SWITCH OPERATION

The 80286 provides a built-in task switch operation which
saves the entire 80286 execution state (registers, ad­
dress space, and a link to the previous task), loads a
new execution state, and commences execution in the
new task. Like gates, the task switch operation is in­
voked by executing an inter-segment JMP or CALL in­
struction which refers to a Task State Segment (TSS) or
task gate descriptor in the GOT or LOT. An INT n instruc­
tion, exception, or external interrupt may also invoke the
task switch operation by selecting a task gate descriptor
in the associated lOT descriptor entry.

The TSS descriptor points at a segment (see Figure 20)
containing the entire 80286 execution state while a task
gate descriptor contains a TSS selector. The limit field
must be > 002B(H).

Each task must have a TSS associated with it. The cur­
rent TSS is identified by a special register in the 80286
called the Task Register (TR). This register contains a
selector referring to the task state segment descriptor
that defines the current TSS. A hidden base and limit
register associated with TR are loaded whenever TR is
loaded with a new selector.

The I RET instruction is used to return control to the task
that called the current task or was interrupted. Bit 14 in
the flag register is called the Nested Task (NT) bit. It
controls the function of the IRET instruction. If NT == 0,
the IRET instruction performs the regular current task
return; when NT == 1, IRET performs a task switch op­
eration back to the previous task.

A-22

When a CALL or INT instruction initiates a task switch,
the old and new TSS will be marked busy and the back
link field of the new TSS set to the old TSS selector. The
NT bit of the new task is set by CALL or INT initiated task
switches. An interrupt that does not cause a task switch
will clear NT. NT may also be set or cleared by POPF or
IRET instructions.

The task state segment is marked busy by changing the
descriptor type field from Type 1 to Type 3. Use of a
selector that references a busy task state segment causes
Exception 13.

PROCESSOR EXTENSION CONTEXT SWITCHING

The context of a processor extension (such as the 80287
numerics processor) is not changed by the task switch
operation. A processor extension context need only be
changed when a different task attempts to use the pro­
cessor extension (which still contains the context of a
previous task). The 80286 detects the first use of a pro­
cessor extension after a task switch by causing the pro­
cessor extension not present exception (7). The interrupt
handler may then decide whether a context change is
necessary.

Whenever the 80286 switches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a pro­
cessor extension context may belong to a different task
than the current one. The processor extension not pres­
ent exception (7) will occur when attempting to execute
an ESC or WAIT instruction if TS == 1 and a processor
extension is present (MP == 1 in MSW).

POINTER TESTING INSTRUCTIONS

The iAPX 286 provides several instructions to speed
pointer testing and consistency checks for maintain­
ing system integrity (see Table 15). These instruc­
tions use the memory management hardware to
verify that a selector value refers to an appropriate
segment without risking an exception. A condition
flag (ZF) indicates whether use of the selector or
segment will cause an exception.

iAPX 286/10

~ ~

CPu INTEL RESERVED
I

TYPE DESCRIPTION

TASK REGISTER pi rl 0 1~~p~1

11
TRO---

SYSTEM
BASE23-16 1 AN AVAILABLE TASK STATE

... SEGMENT SEGMENT. MAY BE USED AS

DESCRIPTOR THE DESTINATION OF A TASK
15 0 BASE1~O SWITCH OPERATION. r-------..---..,

I PROGRAM INVISIBLE I 3 A BUSY TASK STATE SEGMENT.

I 15 0 I lIMIT1~O CANNOT BE USED AS THE

I I H
I DESTINATION OF A TASK

LIMIT l- I SWITCH.
I ------------ _..J

: I

BASE

I 23 0 I ~~ ~~
L ___ --- _..J BYTE

15 0 OFFSET

TASK LOT SELECTOR 42

OS SELECTOR 40 P DESCRIPTION

SSSELECTOR 38
1 BASE AND LIMIT FIELDS ARE VALID

0 SEGMENT IS NOT PRESENT IN
CSSELECTOR 36 MEMORY, BASE AND LIMIT ARE NOT

DEFINED
ESSELECTOR 34

01 32

SI 30

BP 28 CURRENT
TASK

SP 26 STATE

BX 24

TASK OX 22
STATE
SEGMENT CX 20

AX 18

FLAG WORD 16

IP (ENTRY POINT) 14

SSFOR CPL2 12

SP FOR CPL2 10

SS FOR CPL 1 8 INITIAL
STACKS

SP FOR CPL 1 6 FOR CPL 0,1,2

SS FOR CPLO 4

SP FOR CPLO 2

BACK LINK SELECTOR TO TSS 0

~ ~

Figure 20. Task State Segment and TSS Registers

A-23

iAPX 286/10

Table 15 Pointer Test Instructions

Instruction Operands Function
ARPL Selector, Adjust Requested Privi-

Register lege Level: adjusts the RPL
of the selector to the nu-
meric maximum of current
selector RPL value and the
RPL value in the register.
Set zero flag if selector RPL
was changed.

VERR Selector VERify for Read: sets the
zero flag if the segment re-
ferred to by the selector can
be read.

VERW Selector VERify for Write: sets the
zero flag if the segment re-
ferred to by the selector can
be written.

LSL Register, Load Segment Limit: reads
Selector the segment limit into the

register if privilege rules and
descriptor type allow. Set
zero flag if successful.

LAR Register, Load Access Rights: reads
Selector the descriptor access rights

byte into the register if priv-
ilege rules allow. Set zero
flag if successful.

DOUBLE FAULT AND SHUTDOWN

If two separate exceptions are detected during a single
instruction execution, the 80286 performs the double
fault exception (8). If an exception occurs during pro­
cessing of the double fault exception, the 82086 will en­
ter shutdown. During shutdown no further instructions
or exceptions are processed. Either NMI (CPU remains
in protected mode) or RESET (CPU exits protected mode)
can force the 80286 out of shutdown. Shutdown is exter­
nally signalled via a HALT bus operation with A1 HIGH.

PROTECTED MODE INITIALIZATION

The 80286 initially executes in real address mode
after RESET. To allow initialization code to be placed
at the top of physical memory, A23-20 will be HIGH
when the 80286 performs memory references
relative to the CS register until CS is changed. A23-20
will be zero for references to the OS, ES, or SS
segments. Changing CS in real address mode will
force A23-20 LOW whenever CS is used again. The
initial CS:IP value of FOOO:FFFO provides 64K bytes
of code space for initialization code without chang­
ing CS.

Protected mode operation requires several regis­
ters to be initialized. The GOT and lOT base regis­
ters must refer to a valid GOT and lOT. After
executing the LMSW instruction to set PE, the 80286
must immediately execute an intra-segment JMP
instruction to clear the instruction queue of instruc­
tions decoded in real address mode.

A-24

To force the 80286 CPU registers to match the initial
protected mode state assumed by software, execute
a JMP instruction with a selector referring to the
initial TSS used in the system. This will load the task
register, local descriptor table register, segment
registers and initial general register state. The TR
should point at a valid TSS since any task switch
operation involves saving the current task state.

SYSTEM INTERFACE
The 80286 system interface appears in two forms: a
local bus and a system bus. The local bus consists of
address, data, status, and control signals at the pins of
the CPU. A system bus is any buffered version of the
local bus. A system bus may also differ from the local
bus in terms of coding of status and control lines and/or
timing and loading of signals. The iAPX 286 family in­
Cludes several devices to generate standard system
buses such as the IEEE 796 standard Multibus ™ .

Bus Interface Signals and Timing
The iAPX 286 microsystem local bus interfaces the 80286
to local memory and I/O components. The interface has
24 address lines, 16 data lines, and 8 status and control
signals.

The 80286 CPU, 82284 clock generator, 82288 bus
controller, 82289 bus arbiter, 8286/7 transceivers,
and 8282/3 latches provide a buffered and decoded
system bus interface.The 82284 generates the
system clock and synchronizes READY and RESET.
The 82288 converts bus operation status encoded
by the 80286 into command and bus control Signals.
The 82289 bus arbiter generates Multibus bus
arbitration Signals. These components can provide
the timing and electrical power drive levels required
for most system bus interfaces including the Multibus.

Physical Memory and I/O Interface
A maximum of 16 megabytes of physical memory can
be addressed in protected mode. One megabyte can be
addressed in real address mode. Memory is accessible
as bytes or words. Words consist of any two consecutive
bytes addressed with the least significant byte stored in
the lowest address.

Byte transfers occur on either half of the 16-bit local data
bus. Even bytes are accessed over 07-0 while odd bytes
are transferred over 015-8. Even-addressed words are
transferred over 0 15- 0 in one bus cycle, while odd-ad­
dressed words require two bus operations. 'The first
transfers data on 0 15- 8, and the second transfers data
on 07-0. Both byte data transfers occur automatically,
transparent to software.

Two bus signals, Ao and BRE, control transfers over the
lower and upper halves of the data bus. Even address

iAPX 286/10

byte transfers are indicated by Ao lOW and SHE HIGH.
Odd address byte transfers are indicated by Ao HIGH
and SHE lOW. Both Ao and SHE are lOW for even ad­
dress word transfers.

The I/O address space contains 64K addresses in both
modes. The I/O space is accessible as either bytes or
words, as is memory. Byte wide peripheral devices may
be attached to either the upper or lower byte of the data
bus. Byte-wide I/O devices attached to the upper data
byte (015- 8) are accessed with odd I/O addresses. De­
vices on the lower data byte are accessed with even I/O
addresses. An interrupt controller such as Intel's 8259A
must be connected to the lower data byte (07-0) for proper
return of the interrupt vector.

Bus Operation
The 80286 uses a double frequency system clock (ClK
input) to control bus timing. All signals on the local bus
are measured relative to the system ClK input. The CPU
divides the system clock by 2 to produce the internal
processor clock, which determines bus state. Each pro­
cessor clock is composed of two system clock cycles
named phase 1 and phase 2. The 82284 clock generator
output (PCLK) identifies the next phase of the processor
clock. (See Figure 21.)

ClK

Ir ONE SYSTEM--1
CLKCYCLE ~

PCLKY \ r
Figure 21. System and Processor

Clock Relationships

Six types of bus operations are supported; memory read,
memory write, I/O read, I/O write, interrupt acknowl­
edge, and halt/shutdown. Data can be transferred at a
maximum rate of one word per two processor clock cycles.

The iAPX 286 bus has three basic states: idle (Ti), send
status (Ts), and perform command (T d. The 80286 CPU
also has a fourth local bus state called hold (T h)' T h in­
dicates that the 80286 has surrendered control of the
local bus to another bus master in response to a HOLD
request.

Each bus state is one processor clock long. Figure 22
shows the four 80286 local bus states and allowed
transitions.

A-25

RESET

Figure 22. 80286 Bus States

Bus States

The idle (Ti) state indicates that no data transfers are
in progress or requested. The first active state (T s)
is signaled by status line S1 or SO going lOW and
identifying phase 1 of the processor clock. During
T S' the command encoding, the address, and data
(for a write operation) are available on the 80286
output pins. The 82288 bus controller decodes the
status signals and generates Multibus compatible
read/write command and local transceiver control
signals.

After T s' the perform command (T d state is entered.
Memory or I/O devices respond to the bus operation
during T c, either transferring read data to the CPU or
accepting write data. T C states may be repeated as often
as necessary to assure sufficient time for the memory or
I/O device to respond. The REAIJ'Y signal determines
whether T C is repeated.

During hold (T h), the 80286 will float all address, data,
and status output pins enabling another bus master to
use the local bus. The 80286 HOLD input signal is used
to place the 80286 into the T h state. The 80286 HlDA
output signal indicates that the CPU has entered T h.

Pipelined Addressing
The 80286 uses a local bus interface with pipelined tim­
ing to allow as much time as possible for data access.
Pipelined timing allows bus operations to be performed
in two processor cycles, while allowing each individual
bus operation to last for three processor cycles.

The timing of the address outputs is pipelined such that
the address of the next bus operation becomes available
during the current bus operation. Or in other words, the
first clock of the next bus operation is overlapped with
the last clock of the current bus operation. Therefore,
address decode and routing logic can operate in ad-

IAPX 286/10

~
READ CYCLE N I READ CYCLE N+ 1 ---:;-i

Ts-----l-Tc--TS-I-TC
~1 I d>2 I ~1 I d>2 ~1 I d>2 ~1 I d>2

ClK

PROCClK

VALID ADDR (N)

015 - Do - - - - - - -: - - - - - - - - - - - - - - - - - -cJ- ---- -- --- -- --- --~
VALID READ VALID READ

DATA (N) DATA (N + 1)

Figure 23. Basic Bus Cycle

vance of the next bus operation. External address latches
may hold the address stable forthe entire bus operation,
and provide additional AC and DC buffering.

The 80286 does not maintain the address of the current
bus operation during all T c states. Instead, the address
for the next bus operation may be emitted during phase
2 of any Tc. The address remains valid during phase 1
of the first T C to guarantee hold time, relative to ALE, for
the address latch inputs.

Bus Control Signals
The 82288 bus controller provides control signals; ad­
dress latch enable (ALE), ReadIWrite commands, data
transmit/receive (DT/R), and data enable (DEN) that
control the address latches, data transceivers, write en­
able, and output enable for memory and I/O systems.

The Address Latch Enable (ALE) output determines when
the address may be latched. ALE provides at least one
system CLK period of address hold time from the end of
the previous bus operation until the address for the next
bus operation appears at the latch outputs. This address
hold time is required to support Multibus® and common
memory systems.

The data bus transceivers are controlled by 82288 out­
puts Data Enable (DEN) and Data Transmit/Receive (DT/
R). DEN enables the data transceivers; while DT/R con­
trols transceiver direction. DEN and DT/R are timed to
prevent bus contention between the bus master, 'data
bus transceivers, and system data bus tranceivers.

Command Timing Controls
Two system timing customization options, command ex­
tension and command delay, are provided on the iAPX
286 local bus.

Command extension allows additional time for external
devices to respond to a command and is analogous to
inserting wait states on the 8086. External logic can con­
trol the duration of any bus operation such that the op­
eration is only as long as necessary. The READY input
signal can extend any bus operation for as long as
necessary.

Command delay allows an increase of address or write
data setup time to system bus command active for any
bus operation by delaying when the system bus com­
mand becomes active. Command delay is controlled by
the 82288 CMDLY input. After Ts, the bus controller
samples CMDLY at each failing edge of CLK. If CMDLY
is HIGH, the 82288 will not activate the command signal.
When CMDLY is LOW, the 82288 will activate the com­
mand signal. After the command becomes active, the
CMDLYinput is not sampled.

A-26

When a command is delayed, the available response
time from command active to return read data or accept
write data is less. To customize system bus timing, an
address decoder can determine which bus operations
require delaying the command. The CMDLY input does
not affect the timing of ALE, DEN, or DT/R.

infel~ iAPX 286/10

ClK

PROC
ClK

A23- AO

READ CYCLE N-1

-------+----~----~

ALE

EX1 I RO

~MDlY----'

'" [.:,: --------------....,; --....

Figure 24. CMDlV Controls and leading Edge of the Command

Figure 24 illustrates four uses of CMDlY. Example 1
shows delaying the read command two system ClKs for
cycle N-1 and no delay for cycle N, and example2 shows
delaying the read command one system ClK for cycle
N-1 and one system ClK delay for cycle N.

Bus Cycle Termination
At maximum transfer rates, the iAPX 286 bus alternates
between the status and command states. The bus status
signals become inactive after T s so that they may cor­
rectly signal the start of the next bus operation after the
completion of the current cycle. No external indication of
T C exists on the iAPX 286 local bus. The bus master and
bus controller enter T C directly after Ts and continue ex­
ecuting T C cycles l:Jntil terminated by REAIJY.

READY Operation
The current bus master and 82288 bus controller termi­
nate each bus operation simultaneously to achieve
maximum bus bandwidth. Both are informed in advance
by REAIJY active which identifies the last T c cycle of the

A-27

current bus operation. The bus master and bus control­
ler must see the same sense of the READY signal, thereby
requiring "REAm be synchronous to the system clock.

Synchronous Ready
The 82284 clock generator provides REAIJY synchro­
nization from both synchronous and asynchronous
sources (see Figure 25). The synchronous ready input
(SROY') of the clock generator is sampled with the falling
edge of ClK at the end of phase 1 of each T c. The state
of SROY' is then broadcast to the bus master and bus
controller via the REAIJY output line.

Asynchronous Ready
Many systems have devices or subsystems that are
asynchronous to the system clock. As a result, their ready
outputs cannot be guaranteed to meet the 82284 SROY'
setup and hold time requirements. The 82284 asynchro­
nous ready input (ARlJ'Y) is designed to accept such
signals. The ARlJ'Y input is sampled at the beginning of
each T c cycle by 82284 synchronization logic. This pro­
vides a system ClK cycle time to resolve its value before
broadcasting it to the bus master and bus controller.

iAPX 286/10

MEMORY CYCLE N-l I MEMORY CYCLE N . I
--TS---t_TC--Ts-_TC-_TC-

I ~2 I ~1 I ~ ~1 I ~ ~1 I ~ ~1 I ~

ClK

PROC ClK

A23 - Ao ----------I-...J '\.l~..u.,'----VA-l-ID-AD-D-R ----..f.-J ~~~_-+ _____ _

I1EAIlY (SEE NOTE 1 0) (SEE NOTE 20)

'""~\S\\\\\\ i:mmmmo
(SEE NOTE 30)

NOTES:
10 SRDYEN is active low
20 If SRDYEN is high, the state of SRDY will not effect READY
30 ARDYEN is active low

Figure 25. Synchronous and Asynchronous Ready

ARDY or ARDYEN must be HIGH at the end of T s.
ARDY cannot be used to terminate bus cycle with
no wait states.

Each ready input of the 82284 has an enable pin
(SRDYEN and ARDYEN) to select whether the current
bus operation will be terminated by the synchronous or
asynchronous ready. Either of the ready inputs may ter­
minate a bus operation. These enable inputs are active
low and have the same timing as their respective ready
inputs. Address decode logic usually selects whether
the current bus operation should be terminated by ARDY
orSR'DY.

Data Bus Control
Figures 26, 27, and 28 show how the DT/R, DEN, data
bus, and address signals operate for different combina­
tions of read, write, and idle bus operations. DT/R goes
active (LOW) for a read operaton. DT/R remains HIGH
before, during, and between write operations.

A-28

The data bus is driven with write data during the second
phase of T s. The delay in write data timing allows the
read data drivers, from a previous read cycle, sufficient
time to enter 3-state OFF before the 80286 CPU begins
driving the local data bus for write operations. Write data
will always remain valid for one system clock past the
last T C to provide sufficient hold time for Multibus or other
similar memory or I/O systems. During write-read orwrite­
idle sequences the data bus enters 3-state OFF during
the second phase of the processor cycle after the last
T c' In a write-write sequence the data bus does not enter
3-state OFF between T c and T s'

Bus Usage
The 80286 local bus may be used for several functions:
instruction data transfers, data transfers by other bus
masters, instruction fetching, processor extension data
transfers, interrupt acknowledge, and halt/shutdown. This
section describes local bus activities which have special
signals or requirements.

inter iAPX 286/10

I
READ CYCLE I WRITE CYCLE I

--TI-_Ts--Tc--Ts--Tc--TI
I ,,2 ~1 I ~ I ~1 I ~ ~1 I ~ I ~1 I ~ ~1 I~

ClK

SO. SI

MRDC

MWTC

DEN

----------------~--------~

DT,R

Figure 26. Back to Back Read-Write Cycles

WRITE CYCLE READ CYCLE

ClK

015 - Do - - - - - - - - - - VALID WRITE DATA

DEN

DT/R

Figure 27. Back to Back Write-Read Cycles

A-29

iAPX 286/10

DTIR ______________________________ (HIGH)

Figure 28. Back to Back Write-Write Cycles

HOLD and HLDA
HOLD and HLDA allow another bus master to gain con­
trol of the local bus by placing the 80286 bus into the T h

state. The sequence of events requirea to pass control
between the 80286 and another local bus master are
shown in Figure 29.

In this example, the 80286 is initially in the T h state as
signaled by HLDA being active. Upon leaving T h, as sig­
naled by HLDA going inactive, a write operation is started.
During the write operation another local bus master re­
quests the local bus from the 80286 as shown by the
HOLD signal. After completing the write operation, the
80286 performs one Tj bus cycle, to guarantee write data
hold time, then enters T h as signaled by HLDA going
active.

The CMDLY signal and ARlJ'Y ready are used to start
and stop the write bus command, respectively. Note that
SROY must be inactive or disabled by SRDYEN to guar­
antee ARlJ'Y will terminate the cycle.

Instruction Fetching
The 80286 Bus Unit (BU) will fetch instructions ahead of
the current instruction being executed. This activity is
called prefetching. It occurs when the local bus would
otherwise be idle and obeys the following rules:

A-30

A prefetch bus operation starts when at least two bytes
of the 6-byte prefetch queue are empty.

The prefetcher normally performs word prefetches in­
dependent of the byte alignment of the code segment
base in physical memory.

The prefetcher will perform only a byte code fetch op­
eration for control transfers to an instruction beginning
on a numerically odd physical address.

Prefetching stops whenever a control transfer or HLT
instruction is decoded by the IU and placed into the
instruction queue.

In real address mode, the prefetcher may fetch up
to 6 bytes beyond the last control transfer or HL T
instruction in a code segment.

In protected mode, the prefetcher will never cause a
segment overrun exception. The prefetcher stops at
the last physical memory word of the code segment.
Exception 13 will occur if the program attempts to ex­
ecute beyond the last full instruction in the code
segment.

If the last byte of a code segment appears on an even
physical memory address, the prefetcher will read the
next physical byte of memory (perform a word code
fetch). The value of this byte is ignored and any at­
tempt to execute it causes exception 13.

NOTES:

iAPX 286/10

BUS HOLD ACKNOWLEDGE WRITE CYCLE

BUS CYCLE TYPE

~[

CLK

HOLD

HLDA

A.3 - AD

w~~---------------
COD/INTA

(SEE NOTE 2.)

~~~~~~---------
(SEE NOTE 3.) 

BHE, LOCK ------------------ ~~~...Jf11Z~'Z2ZZtZ~'tlttttJ---------

0'5 - Do ------------------------.:(\.. ______ V_A_Ll_D ______ ..i.»>-~ --------

~:~~E: ~I$$$~ Vl!lllll/ ~J$ff$ff;//$$% 
NOT READY NOT READY 

,'-______ ...J/ 
DTiR ______________________ -.:(:.:;,SE:.:E;.;N.:,:O:..;,T::.E..:..:7.:.:..,) --~-----(HIGH) 

DEN ,'-----
ALE ____________________ ~ __ __J~'__ ______________________________ _ 

TS ~ STATUS CYCLE 
TC ~ COMMAND CYCLE 

1. Status lines are not driven by 80286, yet remain high due to pullup resistors in 82288 and 82289 during HOLD state. 

2. Address, M/iO and COD/INTA may start floating during any TC depending on when internal 80286 bus arbiter decides to release bus to 
external HOLD. The float starts in <1>2 of TC. 

3. SHE and LOCK may start floating after the end of any TC depending on when internal 80286 bus arbiter decides to release bus to external 
HOLD. The float starts in <1>1 of TC. 

4. The minimum HOLD to HLDA time is shown. Maximum is one TH longer. 

5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown. 

6. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other machine status (Le., 
Interrupts, Waits, Lock, etc.) 

7. Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example. Synchronous ready state 
is ignored after ready is signaled via the asynchronous input. 

Figure 29. Multibus Write Terminated by Asynchronous Ready with Bus Hold 

A-31 



inter~ iAPX 286/10 

Processor Extension Transfers 
The processor extension interface uses I/O port ad­
dresses 00F8(H), OOFA(H), and OOFC(H) which are part 
of the I/O port address range reserved by Intel. An ESC 
instruction with EM = 0 and TS = 0 will perform I/O bus 
operations to one or more of these I/O port addresses 
independent of the value of 10PL and CPL. 

ESC instructions with memory references enable the 
CPU to accept PEREa inputs for processor extension 
operand transfers. The CPU will determine the operand 
starting address and read/write status of the instruction. 
For each operand transfer, two or three bus operations 
are performed, one word transfer with I/O port address 
OOFA(H) and one or two bus operations with memory. 
Three bus operations are required for each word oper­
and aligned on an odd byte address. 

Interrupt Acknowledge Sequence 
Figure 30 illustrates an interrupt acknowledge se­
quence performed by the 80286 in response to an INTR 
input. An interrupt acknowledge sequence consists of 
two INTA bus operations. The first allows a master 8259A 
Programmable Interrupt Controller (PIC) to determine 
which if any of its slaves should return the interrupt vec­
tor. An eight bit vector is read by the 80286 during the 
second INTA bus operation to select an interrupt han­
dier routine from the interrupt table. 

The Master Cascade Enable (MCE) signal of the 82288 
is used to enable the cascade address drivers, during 
INTA bus operations (See Figure 30), onto the local ad­
dress bus for distribution to slave interrupt controllers via 
the system address· bus. The 80286 emits the [OCR 
signal (active LOW) during T s of the first INTA bus oper­
ation. A local bus "hold" request will not be honored until 
the end of the second INTA bus operation. 

Three idle processor clocks are provided by the 80286 
between INTA bus operations to allow for the minimum 
INTA to INTA time and CAS (cascade address) out delay 
of the 8259A. The second INTA bus operation must al­
ways have at least one extra Testate added via logic 
controlling REAO'Y. A23-AO are in 3-state OFF until after 
the first Testate of the second INTA bus operation. This 
prevents bus contention between the cascade address 
drivers and CPU address drivers. The extra Testate al­
lows time for the 80286 to resume driving the address 
lines for subsequent bus operations. 

A-32 

Local Bus Usage Priorities 
The 80286 local bus is shared among several internal 
units and external HOLD requests. In case of simulta­
neous requests, their relative priorities are: 

(Highest) Any transfers which assert [OCR either ex­
plicitly (via the LOCK instruction prefix) or 
implicitly (Le. segment descriptor access, 
interrupt acknowledge sequence, or an 
XCHG with memory). 

The second of the two byte bus operations 
required for an odd aligned word operand. 

The second or third cycle of a processor 
extension data transfer. 

Local bus request via HOLD input. 

Processor extension data operand transfer 
via PEREa input. 

Data transfer performed by EU as part of an 
instruction. 

(Lowest) An instruction prefetch request from BU. The 
EU will inhibit prefetching two processor 
clocks in advance of any data transfers to 
minimize waiting by EU for a prefetch to finish. 

Halt or Shutdown Cycles 
The 80286 externally indicates halt or shutdown condi­
tions as a bus operation. These conditions occur due to 
a HLT instruction or multiple protection exceptions while 
attempting to execute one instruction. A halt or shut­
down bus operation is signalled when S1, SO and COD/ 
TfiITA are LOW and M/TO is HIGH. A1 HIGH indicates 
halt, and A1 LOW indicates shutdown. The 82288 bus 
controller does not issue ALE, nor is REAO'Y required to 
terminate a halt or shutdown bus operation. 

During halt or shutdown, the 80286 may service PEREa 
or HOLD requests. A processor extension segment 
overrun exception during shutdown will inhibit further 
service of PEREa. Either NMI or RESET will force the 
80286 out of either halt or shutdown. An INTR, if inter­
rupts are enabled, or a processor extension segment 
overrun exception will also force the 80286 out of halt. 



inter iAPX 286/10 

BUS CYCLE TYPE I Te 
",1 I ~'>2 /

_INTACYClE1_/ /_INTACYClE2_/ 
~ ~ .~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ I ~ I ~ I ~ I ~ ~ I ~ I~ I ~ I ~ I ~ ~ I ~ I ~ I~ I ~ I ~ ~ I ~ I 

., ., 
~ 

NOTES: 

ClK 

Sf • So 

M 10, COD,INTA 

COCK 

A23 - Ao m ______ ~:: ~O~ ~ <~ ___ DO_N_'T_CA_R_E __ ....I)- ______ (~E~~E~.)-<,,--__ _ 

SHE »»»»)>------------< ...... __ D_ON_·T_CA_RE_--J}- - - - - - - - - - - -c= 
PREVIOUS 

WRITE CYCLE 

(SEE NOTE 1.) 
-------<=>--------------------VECTO~--

(SEE NOTE 2.) (SEE NOTE 3.) 

IlrnlY \%\\\ 0111I00I07 \\\\\\ IIIOIIImmmmmmmml1ll!7 \\\\\\ rmm 
NOT READY READY NOT READY READY 

lNiA \ / \ r-
MCE 1\ 1\ 

ALE n n 
DTIIl \ I \ I 

DEN / \ / L 

1. Data is ignored. 

2. First INTA cycle should have at least one wait state inserted to meet 82S9A minimum INTA pulse width. 

3. Second INTA cycle must have at least one wait state inserted since the CPU will not drive A23 - Ao, SHE, and LOCK until after the first 
TCstate. 

The CPU imposed one/clock delay prevents bus contention between cascade address buffer being disabled by MCE t and address 
outputs. 

Without the wait state, the 80286 address will not be valid for a memory cycle started immediately after the second INTA cycle. The 
82S9A also requires one wait state for minimum INTA pulse width. 

4. LOCK is active for the first INTA cycle to prevent the 82289 from releasing the bus between INTA cycles in a multi-master system. 

5. A23 - Ao exits 3-state OFF during cP2 of the second Tc in the INTA cycle. 

Figure 30. Interrupt Acknowledge Sequence 

A-33 



iAPX 286/10 

Vee 
( 

iC 
AEN IlR"OC MEMORY READ 

~ rD1 MB MWTC MEMORY WRITE 

RrFfC 110 READ 
CMDLY lOWe 110 WRITE 

X2 X, 
MB INTA INTERRUPT ACKNOWLE -=C 

RES 
SO SO ALE 

S1 Sf MCE ,.----, 

! 4- PCLK 
READY REAllY DEN ,...- - --.I t- -- AD 

EFI 
CLK 

T CLK DTIII t---- I ,... - --.I DECODE t- ... AN - 82288 BUS -
__ ...I 

I r - l' ~ (OPTIONAL) I 
Fie I CONTROLLER 

r-
I r _.J 

I r" I I MfO 

DGE 

VANCED MEMORY 
o I/O CHIP SELECTS 

r 
I ~_J 

I r- .J I L ____ ~ 

EADY- SROY RESET T I ~ 
I I r _.J 

ABLE_ SRDY£N I I I I I 
SYNC R 

EN 

EADY_ AlIDY I I RESET M/ro 
ABLE_ ATmYEN I I 

LOCK 
82284 

I I 
.. CLK COD/INTI. 

CLOCK - Il£ADY 
GENERATOR I I 

~S1 A23- AO I I 
I I 
~ So 

r---.1 I - NMI sHE 

I r - - - J - HOLD 

I I - HLDA 

r------- ERROR I I 
I r------ eusy INTR 

I I PEACR 
I I I I r-----
I I I I r---- PEREa CAP 

I 
I I 

I I I I 80286 

r_LtUJ_:_, CPU 

0'5 - Do 

ASYNC R 

EN 

I I "- ;>-
I PROCESSOR ~-L _____ 

I 
EXTENSION 
(OPTIONAL) ..------

I I L. _______ J 

I 
r- I - -' 

T+ 
-= 

I I -- STB h=> I I 
~ OE 

I I 
J I -", 8282 

> or 8283 

~,,='" 
.... r-

Aof-
cs I-- CHIP 

INT 
fNfA 
WI! 

110 

l 
SPIEN 

K= '" Do - 0-, 

r-Y' 8259A 
INTERRUPT 

CONTROLLER 

f---- OE 

~ 
8286 

~ 
or 

8287 

" TRANS-
CEIVER 

T r-

ADDRESS BUS 

SELECT 

IRO - IR7 

DATA 
BUS 

Figure 31. Basic iAPX 286 System Configuration 

SYSTEM CONFIGURATIONS 

The versatile bus structure of the iAPX 286 microsys­
tem, with a full complement of support chips, allows flex­
ible configuration of a wide range of systems. The basic 
configuration, shown in Figure 31, is similar to an iAPX 
86 maximum mode system. It includes the CPU plus an 
8259A interrupt controller, 82284 clock generator, and 
the 82288 Bus Controller. The iAPX 86 latches (8282 
and 8283) and transceivers (8286 and 8287) may be 
used in an iAPX 286 microsystem. 

As indicated by the dashed lines in Figure 31, the ability 
to add processor extensions is an integral feature of iAPX 
286 microsystems. The processor extension interface 
allows external hardware to perform special functions 
and transfer data concurrent with CPU execution of other 
instructions. Full system integrity is maintained because 
the 80286 supervises all data transfers and instruction 
execution for the processor extension. 

The iAPX 286/20 numeric data processor which in­
cludes the 80287 numeric processor extension (NPX) 

A-34 

uses this interface. The iAPX 286/20 has all' the instruc­
tions and data types of an iAPX 86/20 or iAPX 88/20. 
The 80287 NPX can perform numeric calculations and 
data transfers concurrently with CPU program execu­
tion. Numerics code and data have the same integrity as 
all other information protected by the iAPX 286 protec­
tion mechanism. 

The 80286 can overlap c.hip select decoding and ad­
dress propagation during the data transfer for the pre­
vious bus operation. This information is latched into the 
8282/3's by ALE during the middle of a T s cycle. The 
latched chip select and address information remains 
stable during the bus operation while the next cycles 
address is being decoded and propagated into the sys­
tem. Decode logic can be implemented with a high speed 
bipolar PROM. 

The optional decode logic shown in Figure 31 takes ad­
vantage of the overlap between address and data of the 
80286 bus cycle to generate advanced memory and 10-
select signals. This minimizes system performance 



Vee 

IAPX 286/10 

'---V-cc-~-1'--1 _~i~~::SB :!~~ ==) MULTIBUS 

L. cR_alcK ~RO - BUS ARBITRATION r--so BPRN_ 

r-Sl BUSV_ 
,... READY CBRa -

r-- ClK cocK __ 
r-+--i-+-+-+--1 "EN M iO -

82289Sl0CK -r-r-­
BUS ARBITER 

MROC 1--1-+-------+-_ MEMORY READ 

l ~Ilh ~ ~~ I .0. I IORC 10 READ 

lowe I 0 WRITE 

RES

X
, x, iNT'A INTERRUPT ACKNOWLEDGE 

REsET --1>---+-~ ~ f4+---1>-+-+-+~ ~ :~: ~=~t===t~=~==~-+-~ 
-=I_=- DEN r--r-r--

- PClK ClK H-~-+--t--.~ ClK DT/A r--
- EFI II 82288 BUS 

=
..- F,C CONTROLLER 

-::!o- I CMDlY M'IO 

MilO 

SYNC READY - SROY RESET 1-+--;1-+-+-+-+---'1 ~ t 
ENABLE - SRDYEN I : ,r---

ASYNC READY _ AROY I I RESET 
ENABLE -- ARDYEN I I 

~~~~~ I 

_ STB

'----OE ~ CLK COD~~~ -= ~ADY Au - ",~===~~;~~~,-~~;;;_J...r--_--'~"~ r-

h=> ADDRESS BUS

GENERATOR

r - - - J - NMI SHE I---HH-+-I-I _
I r---~ :: :~~~
I r-------+ERROR CAS .. , "'l-
I I r __ - _ _ _ BUSY INT cs I- CHIP SELECT

: : I I r----- PEACK

I I I I I r----+ PEREa CAP~

11::1: 8~p~6 T+
WR

L-___ ---<..j R5

r _tt,_,_L,_, 0" - Do =
I I ;..

I PE~~i~;~g: k 1... - - - -
(OPTIONAL) : {"" - - - - l

.------J-.---l SPIEl<

{
--,/ Do - ~;59A

INTERRUPT
CONTROLLER

....c:::::::;-
_OE

~
8287

TRANS­
CEIVER

~-----~T -

K==IRO-IR,

~DATABUS

Figure 32. Multibus System Bus Interface '

degradation caused by address propogation and de­
code delays. In addition to selecting memory and I/O,
the advanced selects may be used with configurations
supporting local and system buses to enable the appro­
priate bus interface for each bus cycle. The COO/INTA
and M/TO signals are applied to the decode logic to dis­
tinguish between interrupt, I/O, code and data bus cycles.

By adding the 82289 bus arbiter chip the 80286 provides
a Multibus system bus interface as shown in Figure 32.
The ALE output of the 82288 for the Multibus bus is

A-35

connected to its CMOlY input to delay the start of com­
mands one system ClK as required to meet Multibus
address and write data setup times. This arrangement
will add at least one extra Testate to each bus operation
which uses the Multibus.

A second 82288 bus controller and additional latches
and transceivers could be added to the local bus of Fig­
ure 32. This configuration allows the 80286 to support
an on-board bus for local memory and peripherals, and
the Multibus for system bus interfacing.

iAPX 286/10

80286
CPU

READY

STATUS SO, 51, MliO

ADDRESS A23 - Ao, BHE, LOCK

8266

READY

01 DO CBDO
16·0 CBDI

DRAM
2118,2164

8207
DRAM

CONTROL

6267

SELECT

DATA

MUL TIBUS SELECT

XACK

MULTI BUS
COMMAND

(MRDC, MWTC)

L--____ ADDRESS

Figure 33. iAPX 286 System Configuration with Dual-Ported Memory

Figure 33 shows the addition of dual ported dynamic
memory between the Multibus system bus and the iAPX
286 local bus. The dual port interface is provided by the
8207 Dual Port DRAM Controller. The 8207 runs ~yn­
chronously with the CPU to maximize throughput for lo­
cal memory references. It also arbitrates between
requests from the local and system buses and performs

A-36

functions such as refresh, initialization of RAM, and read/
modify/write cycles. The 8207 combined with the 8206
Error Checking and Correction memory controller pro­
vide for single bit error correction. The dual-ported
memory can be combined with a standard Multibus sys­
tem bus interface to maximize performance and protec­
tion in multiprocessor system configurations.

inter IAPX 286/10

PACKAGE
The 80286 is packaged in a 68-pin, lead less JEDEC
type A hermetic lead less chip carrier. Figure 34 illus­
trates the package, and Figure 2 shows the pinout.

. I (2.39) --l F·094

~ . ';~:,

.·n D .960

PIN NO.1

.960
(24.38)

. (24.38)

.130
(3.30)

INCHES
(MILLIMETERS)

Figure 34. JEDEC Type A Package

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O°C to 70°C

Storage Temperature '. - 6SoC to + 1S0°C

Voltage on Any Pin with
Respect to Ground -1.0 to + 7V

Power Dissipation 3.6 Watt

* NOTICE: Stresses above those listed under "Absolute Max­
imum Ratings" may cause permanent damage to the device.
This is a stress rating only and functional operation of the de­
vice at these or any other conditions above those indicated in
the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for ex­
tended periods may affect device reliability.

D.C. CHARACTERISTICS (80286: T A = O°C to 70°C, Vee = SV ± 10%)

Symbol Parameter Min. Max. Units Test Conditions

Vil Input low Voltage -O.S +0.8 V

VIH Input High Voltage 2.0 Vee+ O.S V

VOL Output low Voltage 0.45 V IOL =3.0mA

VOH Output High Voltage 2.4 V IOH = -: 400 IJ-A

ICC Power Supply Current ... 600 mA TA=2SoC

III Input leakage Current ±10 IJ-A OV~VIN~Vee

ILO Output leakage Current ±10 IJ-A O.4SV ~ VOUT ~ Vee

Vel Clock Input High Voltagp -0.5 +0.6 V

VeH Clock Input High Voltage 3.8 Vee+ 1.0 V

CIN
Capacitance of Inputs

10 pF fc= 1 MHz
(All input except ClK)

Co Capacitance of I/O or outputs 20 pF fc= 1 MHz

CelK Capacitance of ClK Input 12 pF fc= 1 MHz

A-37

IAPX 286/10

A.C. CHARACTERISTICS (TA = 0°Cto70°C, Vee = 5V ± 10%)

80286 Timing Requirements
Symbol Parameter Min.

1 System clock period 62.5

2 System clock low time 15

3 System clock high time 20

4 Asynchronous input setup time 20

5 Asynchronous input hold time 20

6 RESET setup time 20

7 RESET hold time 0

8 Read data in setup time 10

9 Read data in hold time 5

10 READY setup time 38.5

11 READY hold time 25

12 STATUS/PEACK valid delay 0

13 Address valid delay 0
14 Write data valid delay 0

15 Address/Status/Data float delay 0
16 HLDA valid delay 0

82284 Timing Requirements
Symbol Parameter Min.

17 SRDY/SRDYEN setup time 15

18 SRDY/SRDYEN hold time 0

19 ARDY/ARDYEN setup time 0

20 ARDY/ARDYEN hold time 16

21 PCLKdeiay 0

NOTE1: These times are given for testing purposes to assure a predetermined action.

82288 Timing RequiFements
Symbol Parameter Min.

22 CMDLY setup time 20

23 CMDLY hold time 0

24 Command delay 3

25 ALE active delay 3

26 ALE inactive delay 0

27 DT/R read active delay 0

28 DT/R read inactive delay 10

29 DEN read active delay 10

30 DEN read inactive delay 3

31 DEN write active delay 0

32 DEN write inactive delay 3

A-38

Max. Units Test Conditions
250 ns

230 ns at .6 Volts

235 ns at3.2Volts

ns See note 1

ns See note 1

ns

ns

ns

ns

ns
ns

40 ns

60 ns

50 ns CL = 100 pF max
above self load

60 ns

60 ns

Max. Units Test Conditions
ns

ns

ns See note 1

ns See note 1.
CL = 50 pF

40 ns IOL =.5 m~
IOH = -1 ma

Max. Units Test Conditions
ns

ns

CL = 300 pF max
15 ns IOL = 32 ma max

IOH = -5mamax

15 ns

20 ns

20 ns

40 ns CL = 80 pF max

50 ns
IOL = 16 ma max
IOH = -1 ma max

15 ns

30 ns

30 ns

IAPX 286/10

WAVEFORMS

MAJOR CYCLE TIMING

READ

BUS CYCLE TYPE

ClK

S1 • SO

A,,-Ao 'TTTTT"T'Tl"TTm-mm..Ir-+_---+---!----l ,';:;:""1,-+---\---+---1,, ,.,rrr~ r+----+----
M 10, COD INTA J.LLL.L.LLI.'..I..L.LL.L.LLI.'.LU~+-__ """' __ --"' __ ---4 'lLLUlI'__+-__ -+-__ -+ ___ +!'IL.L.r.J" __ "-'f--..;... __

BHE,lOCK t../.J'..I..L.LL.L.J...i.J'..I..L.U..i..J...i.J'..I..L.U..i..u....(J.JI'+ __ "-'..:..... _____ ~'~I.I.I.."J'.+_--_t_--___i~--_V'---_+-....;.--

READY

SROV + SRDVEN

~ AROV + ARDYEN

PClK

ALE

CMDlY

MWTC

~
MRDC

DTR

DEN

A-39

iAPX 286/10

WAVEFORMS (Continued)

80286 ASYNCHRONOUS INPUT SIGNAL TIMING

NOTES:

BUS CYCLE TYPE

CLK

PCLK
(SEE NOTE 1.)

INTR,NMI
HOLD,PEREa
(SEE NOTE 2.) J..J..J...J...L.i.'..LJ..f.L..I~I....-+.J\'iI..IJ.'..LJ..L.LI..L4

ERROR,BUSY
(SEE NOTE 2.) LLLJI'--t-'I"' UI

1. PCLK indicates. which processor cycle phase will occur on the
next CLK. PCLK may not indicate the correct phase until the first
bus cycle is performed.

2. These inputs are asynchronous. The setup and hold times shown
assure recognition for testing purposes.

EXITING AND ENTERING HOLD

NOTES:

CD co
N
o
co

BUS CYCLE TYPE

CLK

HLDA ----+~I

BHE,LOCK
A23 - lAo

MIlO, ------------

COD/INTA

0,. - Do ___________________ ~~~~T.::)

~[PCLK ____ oJ

80286 RESET INPUT TIMING AND
SUBSEQUENT PROCESSOR CYCLE PHASE

CLK

RESET

CLK

RESET

NOTE 1: When RESET meets the setup time shown, the next CLK
will start or repeat </>2 of a processor cycle.

(SEE NOTE 4.)

I ~~~\,....::....:;=~(.J

1. These signals may not be driven by the 80286 during the time shown. The worst case in terms of latest float time is shown.
2. The data bus will be driven as shown if the last cycle before TI in the diagram was a write T c'
3. The 80286 floats its status pins during T H. External pullup resistors (in 82288) keep these signals high.
4. For HOLD request set up to HLDA, refer to Figure 29.
5. SHE and LOCK are driven at this time but will not become valid until Ts.
6. The data bus will remain in 3-state OFF if a read cycle is performed.

A-40

iAPX 286/10

WAVEFORMS (Continued)

80286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY

BUS CYCLE TYPE

ClK

SI • so

A23 - Ao

MIO

COD INTA

PEACK

I/O READ IF PROC. EXT. TO MEMORY r MEMORY READ IF MEMORY TO PROC. EXT.
MEMORY WRITE IF PROC. EXT. TO MEMORY r I/O WRITE IF MEMORY TO PROC. EXT.

CD . (SEE NOTE2')~ CD~-
......... \\\ ~ \ \\ \\ \........r~"'""'\\'\~~"M""~ \~~'M"'O~\~\\ ~YIi)lj /m! //!m)l//!!J!lJi /j///(1i!!111 //Ilm Ii! /llJi/ PEREa

NOTES:
1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The first bus operation

will be either a memory read at operand address or 1/0 read at port address OOFA(H).

2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is: 3xCD-@max.
-@)mln .. The actual, configuration dependent, maximum time is: 3X CD -@max.-@) min. + A X 2 XCD·
A is the number of extra T c states added to either the first or second bus operation of the processor extension data operand transfer
sequence.

INITIAL 80286 PIN STATE DURING RESET

BUS CYCLE TYPE

ClK

RESET

BHE

MIlO

CODIINTA

lOCK

DATA

HlDA

NOTES:

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

------55---------

1. Setup time for RESET t may be violated with the consideration that <1>1 of the processor clock may begin one system ClK period later.

2. Setup and hold times for RESET ~ must be met for proper operation.

3. The data bus is only guaranteed to be in 3-state OFF at the time shown.

A-41

iAPX 286/10

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES

,..;-r~~r-r~+r-r"";",;~r,,,,,;,,,;~ -- - - - - -"T - --- - - -,. -- - - - --.,. - - -- ---.,

I I I
LOW DISP/DATA I HIGH DISP/DATA I LOW DATA I HIGH DATA

Io...---r--.....L.:r-LT""""'.....L.:"""'T---'-""""" _______ ~ _______ ..L _______ ..1. _______ '"

REGISTER OPERAND/REGISTERS TO USE IN OFFSET CALCULATION

'----- REGISTER OPERAND/EXTENSION OF OPCODE
'------ REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH

'-------- WORD/BYTE OPERATION L...-______ DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER

'----------- OPERATION (INSTRUCTION) CODE

A. SHORT OPCODE FORMAT EXAMPLE

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5

B. LONG OPCODE FORMAT EXAMPLE

Figure 35. 80286 Instruction Format Examples

80286 INSTRUCTION SET SUMMARY
Instruction Timing Notes
The instruction clock counts listed below establish the
maximum execution rate of the 80286. With no delays in
bus cycles, the actual clock count of an 80286 program
will average 5% more than the calculated clock count,
due to instruction sequences which execute faster than
they can be fetched from memory.

To calculate elapsed times for instruction sequences,
multiply the sum of all instruction clock counts, as listed
in the table below, by the processor clock period. An 8
MHz processor clock has a clock period of 125 nanosec­
onds and requires an 80286 system clock (ClK input) of
16 MHz.

Instruction Clock Count Assumptions
1. The instruction has been prefetched, decoded, and

is ready for execution. Control transfer instruction clock
counts include all time required to fetch, decode, and
prepare the next instruction for execution.

2. Bus cycles do not require wait states.

3. There are no processor extension data transfer or
local bus HOLD requests.

4. No exceptions occur during instruction execution.

A-42

Instruction Set Summary Notes
Addressing displacements selected by the MOD field
are not shown. If necessary they appear after the in­
struction fields shown.

Above/below refers to unsigned value

Greater refers to positive signed value

less refers to less positive (more negative) signed values

if d = 1 then to register; if d = 0 then from register

if w = 1 then word instruction; if w = 0 then byte
instruction

if s = 0 then 16-bit immediate data form the operand

if s = 1 then an immediate data byte is sign-extended
to form the 16-bit operand

x don't care

z used for string primitives for comparison with ZF
FLAG

If two clock counts are given, the smaller refers to a reg­
ister operand and the larger refers to a memory operand

* = add one clock if offset calculation requires sum-
ming 3 elements

n = number of times repeated

m = number of bytes of code in next instruction

Level (l)-lexical nesting level of the procedure

iAPX 286/10

The following comments describe possible exceptions,
side effects, and allowed usage for instructions in both
operating modes of the 80286.

REAL ADDRESS MODE ONLY

1. This is a protected mode instruction. Attempted ex­
ecution in real address mode will result in an unde­
fined opcode exception (6).

2. A segment overrun exception (13) will occur if a word
operand reference at offset FFFF(H) is attempted.

3. This instruction may be executed in real address
mode to initialize the CPU for protected mode.

4. The IOPL and NT fields will remain O.

5. Processor extension segment overrun interrupt (9)
will occur if the operand exceeds the segment limit.

EITHER MODE

6. An exception may occur, depending on the value of
the operand.

7. COCK is automatically asserted regardless of the
presence or absence of the LOCK instruction prefix.

8. LOCK does not remain active between all operand
transfers.

PROTECTED VIRTUAL ADDRESS MODE ONLY

9. A general protection exception (13) will occur if the
memory operand can not be used due to either a
segment limit or access rights violation. If a stack
segment limit is violated, a stack segment overrun
exception (12) occurs.

10. For segment load operations, the CPL, RPL, and
DPL must agree with privilege rules to avoid an ex­
ception. The segment must be present to avoid a

A-43

not-present exception (11). If the SS register is the
destination, and a segment not-present violation
occurs, a stack exception (12) occurs.

11. All segment descriptor accesses in the GOT or LOT
made by this instruction will automatically assert
COCK to maintain descriptor integrity in mUltipro­
cessor systems.

12. JMP, CALL, INT, RET, IRET instructions referring to
another code segment will cause a general protec­
tion exception (13) if any privilege rule is violated.

13. A general protection exception (13) occurs if CPL
=1= O.

14. A general protection exception (13) occurs if
CPL> IOPL.

15. The IF field of the flag word is not updated if
CPL > IOPL. The IOPL field is updated only if
CPL = O.

16. Any violation of privilege rules as applied to the se­
lector operand do not cause a protection exception;
rather, the instruction does not return a result and
the zero flag is cleared.

17. If the starting address of the memory operand vio­
lates a segment limit, or an invalid access is at­
tempted, a general protection exception (13) will
occur before the ESC instruction is executed. A stack
segment overrun exception (12) will occur if the stack
limit is violated by the operand's starting address. If
a segment limit is violated during an attempted data
transfer then a processor extension segment over­
run exception (9) occurs.

18. The destination of an INT, JMP, CALL, RET or
IRET instruction must be in the defined limit of
a code segment or a general protection excep­
tion (13) will occur.

iAPX 286/10

80286 INSTRUCTION SET SUMMARY

FUNCTION FORMAT

DATA TRANSFER
MOV = Move:
Register to RegisterlMemory 11 000100w mod reg rim

Registerlmemory to register 11 000101w mod reg rim

Immediate to registerlmemory 11 10001 1 w mod 000 rim data I data if w = 1

Immediate to register 11 01 1 w reg data data if w = 1 1
Memory to accumulator 11 010000w addr-Iow addr-high 1
Accumulator to memory 11 010001w addr-Iow addr-high 1
Registerlmemory to segment register 11 00 0 1 1 1 0 mod 0 reg rim

Segment register to registerlmemory 11 0001100 mod 0 reg rim

PUSH = Push:
Memory 11 11111111 mod 11 0 rim 1
Register 10 1 0 1 0 reg I
Segment register 1000reg 110 1

Immediate 10 1 1 0 1 0 sOl data I dataifs""O I

PUSHA = Push All 10 1 1 0 0 00 0 1

POP = Pop:
Memory 11 00 0 1 1 1 1 1 mod 000 rim 1
Register 10 1 0 1 1 reg 1
Segment register 10 0 0 reg .1 1 1 1 (regH1)

POPA = PopAIi 10 1 1 0 000 1 I
XCHG = Exchange:
Registerlmemory with register 11 000011wl mod reg rim 1
Register with accumulator 11 00 1 0 reg I
IN = Input from:
Fixed port 11 1 1 00 1 0 wi port I
Variable port 11 1 1 0 1 1 0 wi

OUT = Outpulto:
Fixed port 11 1 1 001 1 w port 1
Variable port 11 1 1 0 1 1 1 w

XLAT = Translate byte to AL 11 1 0 1 0 1 1 1

LEA = Load EA to register 11 00 0 1 1 0 1 mod reg rim I
LOS = Load pOinter to OS 11 1 0 0 0 1 0 1 mod reg rim I (mod", 11)

LES = Load pointer to ES 11 1 0-0 0 1 0 0 mod reg rim 1 (mod", 11)

LAHF = Load AH with flags 11 00 1 1 1 1 1

SAHF = Store AH into flags 11 00 1 1 1 1 0

PUSHF = Push flags 11 00 1 1 1 0 0

POPF = Pop flags 11 00 1 1 1 0 1

Shaded areas indicate instructions not aval able in iAPX 86, 88 microsystems .
.f{(:..- OV6Q ,:!..(p(-

OO{O rf{ ()

e>DflOlfO

00(1 (({D

OO(DC'((0

A-44

CLOCK COUNT COMMENTS
Real Protected Real Protected

Address Virtual Address Virtual
Mode Address Mode Address

Mode Mode

2.3- 2.3- 2 9

2.5- 2.5- 2 9

1 2.3- 2.3- 2 9

2 2

5 5 2 9

3 3 2 9

2.5- 17.19- 2 9.10.11

2.3- 2.3- 2 9

5- 5- 2 9

3 3 2 9

3 3 2 9

3 3 2 9

17 17 2 9

5- 5- 2 9

5 5 2 9

5 20 2 9.10.11

19 19 2 9

3.5- 3.5- 2.7 7.9

3 3

5 5 14

5 5 14

3 3 14

3 3 14

5 5 9

3- 3-

7* 21- 2 9.10.11

7* 21- 2 9.10.11

2 2

2 2

3 3 2 9

5 5 2.4 9.15

iAPX 286/10

80286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
Real Protected Real Protected

FUNCTION FORMAT Address Virtual Address Virtual
Mode Address Mode Address

Mode Mode

ARITHMETIC
ADD = Add:
Reglmemory with register to either 10 00 0 0 0 d w I mod reg rim I 2,7" 2,7* 2 9

immediate to registerlmemory 1100000swl mod 000 rim I data I data if s w = 01 I 3,7* 3,7* 2 9

Immediate to accumulator 10 00 0 0 lOw I data I dataifw=1 I 3 3

ADC = Add with carry:
Reglmemory with register to either 1000100dwi mod reg rim I 2,7* 2,7* 2 9

Immediate to registerlmemory 1100000swl mod 010 rim I data I data if s w = 01 I 3,7" 3,7* 2 9

Immediate to accumulator 10 00 1 0 lOw I data I dataifw=1 I 3 3

INC = Increment:
Registerlmemory 11 111111 wi mod 000 rim I 2,7* 2,7* 2 9

Register 10 1 0 0 0 reg I 2 2

SUB = Subtract:
Reglmemory and register to either 10 0 1 0 1 0 d wi mod reg rim I 2,7* 2,7* 2 9

Immediate from registerlmemory 1100000swl mod 101 rim I data I data if s w = 0 1 I 3,7* 3,7* 2 9

Immediate from accumulator 10010110wl data I data ifw= 1 I 3 3

SBB = Subtract with borrow:
Reglmemory and register to either 10 00 1 1 0 d wi mod reg rim I 2,7* 2,7* 2 9

Immediate from registerlmemory 1100000swl modOll rim I data I data if s w = 0 1 I 3,7* 3,7* 2 9

Immediate from accumulator 10001110wl data I data if W= 1 I 3 3

DEC = Decrement:
Registerlmemory 11 1111 11 wi mod 00 1 rim I 2,7* 2,7* 2 9

Register 10 1 0 0 1 reg I 2 2

CMP = Compare:
Registerlmemory with register 10 0 1 1 1 01 w mod reg rim I 2,6* 2,6* 2 9

Register with registerlmemory 10 0 1 1 1 0 0 w mod reg rim I 2,7* 2,7* 2 9

Immediate with registerlmemory 1100000sw mod 111 rim I data I data if s w = 0 1 I 3,6* 3,6* 2 9

Immediate with accumulator 10 0 1 1 1 lOw data I dataifw= 1 I 3 3

NEG = Change sign 11 1 1 1 0 1 1 w mod 0 11 rim I 2 7* 2 7

AAA = ASCII adjustfor add 10 0 1 1 0 1 1 1 3 3

DAA = Decimal adjust for add 10 0 1 0 0 1 1 1 3 3

AAS = ASCII adjust for subtract 10 0 1 1 1 11 1 3 3

DAS = Decimal adjust for subtract 10 0 1 0 1 1 1 1 3 3

MUL = Multiply (unsigned): 11 111011w mod 1 00 rim I
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16* 16* 2 9
Memory-Word 24* 24* 2 9

IMUL = Integer multiply (signed): \1 1 1 1 0 1 1 wi mod 1 01 rim I
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16* 16* 2 9
Memory-Word 24* 24* 2 9

IMUL", Integer immediate multiply 10 1 1 0 lOs 1 I mod reg rim I data I data ifs", ° I 21,24" 21.24" 2 9
(signed)

DlV = Divide (unsigned): 11 1 1 1 0 1 1 wi mod 110 rim I
Register-Byte 14 14 6 6
Reg isler-Word 22 22 6 6
Memory-Byte 17* 17* 2,6 6,9
Memory-Word 25* 25* 2,6 6,9

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

A-45

iAPX 286/10

80286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
Real Protected Real Protected

FUNCTION FORMAT Address Virtual Address Virtual
Mode Address Mode Address

Mode Mode

ARITHMETIC (Continued):

IDIV = Integer divide (signed): 11 11 1 01 1 wi mod111 rim I
Register-Byte 17 17 6 6
Register-Word

5{)/,-l(7r/ING-
25 25 6 6

Memory-Byte <' - 20' 20' 2,6 6,9
Memory-Word !:i"1.' (.:) j(;r· 28' 28' 2,6 6,9
AAM = ASCII adjust for multiply 11 1 0 1 0 1 0 0 1 0 0 0,0 1 0 1 01 f-I (:.&'-Z {.:- ,/ / 16 16

AAD = ASCII adjust for divide 111010-1011000,010101,
,/ 14 14 ,,~

caw = Convert byte to word 1100110001 ~-.. _/ 2 2

CWD = Convert word to double word 11 00 1 1 00 1 I 2 2

LOGIC
ShiltiRotate Instructions:
Register/Memory by 1 11 101000wl mod m rim I 2,7' 2,7' 2 9

Register/Memory by CL 11 101 001 wi mod m rim I 5+n,8+n' 5+n,8+n' 2 9

,. R,eQlSter{Memoifby Count :·111 0 0 () () 0 wi mod mr/m I count I 5~n,8+n' 5+n:8+"' 2 9

m Instruction
o 0 0 RDL
o 0 1 RDR
o 1 0 RCL
o 1 1 RCR
1 00 SHUSAL
1 0 1 SHR
111 SAR

AND=And:
Reg/memory and register to either 10 0 1 0 0 0 d wi mod reg rim I 2,7* 2,7' 2 9

Immediate to registerlmemory 11000000wl mod 100 rim I data I data ifw= 1 I 3,7' 3,7* 2 9

Immediate to accumulator 10 0 1 0 0 lOw I data I data ifw= 1 I 3 3

TEST = And function to flags, no result:
Register/memory and register 11 000010wl mod reg rim I 2,6* 2,6* 2 9

Immediate data and registerlmemory 11 11 1 01 1 wi mod 000 rim I data I dataifw = 1 I 3,6* 3,6* 2 9

Immediate data and accumulator 11 010100wl data 1 data ifw= 1 I 3 3

oR=or:
Reg/memory and register to either 1000010dwi mod reg rim 1 2,7* 2,7* 2 9

Immediate to registerlmemory 11000000wl mod 00 1 rim I data I data ifw= 1 I 3,7' 3,7* 2 9

Immediate to accumulator 10 00 0 1 1 0 wi data 1 data ifw = 1 I 3 3

XoR = Exclusive or:
Reg/memory and register to either 1001100dwi mod reg rim 1 2,7* 2,7* 2 9

Immediate to registerlmemory 11000000wl mod 11 0 rim 1 data I dataifw=1 I 3,7* 3,7' 2 9

Immediate to accumulator 10011010wl data 1 data ifw= 1 I 3 3

NOT = Invert register/memory 11 11 1 011 wi mod 010 rim I 2,7* 2,7' 2 9

STRING MANIPULATION:
Moys = Move bytelWord 11 010010wl 5 5 2 9

CMPS = Compare byte/word 11 01 001 1 wi 8 8 2 9

SCAS = Scan byte/word 11.01 01 1 1 wi 7 7 2 9

LoDS = Load byte/wd to AUAX 11 01 01 1 0 wi 5 5 2 9

SToS = Stor byte/wd from AUA 11 01 0 1 01 wi 3 3 2 9

INS ;"'ti'lpUt Iiyte/Wd from OX port . 10 1 1 0 1 1 0 w I 5 5 2 9,14·

O~ = Outputbyte/W(f to OX port ·.10 1 1 0 1 1 1 wi 5 5 2 9,14

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems,

A-46

= r:; (~ /<...t ,~ I V" I-'VV"/-l'-Vl/L~ .- -". --".-

F'--315 IQffJ t- F-c(./_ C/-lljJ~ S cAS, ------~
IAPX 286/ 10 ~[IDW£OO©~ DOOIP@IruIMl~iiD@OO·--)

80286 INSTRUCTION SET SUMMARY (Continued)

;~

/1- (ALLV/ FUNCTION FORMAT

STRING MANIPULATION (Conllnued): L Repeated by count in CX
MOVS = Move string 11 1 1 1 0 0 1 0)11 0 1 0 0 lOw

CMPS = Compare string 11 1 1 1 0 0 1 z 1 0 1 0 0 1 1 W j2((l/'VC C. (pf/s 8/1.'/) P2
SCAS = Scan string 11 1 1 1 0 0 1 z 101 0 1 1 1 w !.?tOrN /' (;C/~.s e /w

LOOS = Load string l' 1 1 1 0 0 1 0) 1 0 1 0 1 lOw

STOS = Store string 11 1 1 1 0 0 1 (}) 1 0 1 0 1 0 1 w

INS = Input string 11 11 1001 !O) 01101 1 0 w

OUTS = Output string 11 1 1 1 0 0 '1 0) 101 1 0 1 1 1 wi
0

CONTROL TRANSFER

CALL = Call:
Direct within segment l' 1 1 0 1 00 0 I disp-Iow I disp-high I
ReQister/memory l' 111111 1 I modO 1 0 rim I indirect within segment
Direct intersegment l' 00 1 1 01 o I segment offset I

I segment selector I
Protected Mode Only (Direct intersegment):

Via call gate to same privilege level
Via call gate to different privilege level, no parameters
Via call gate to different privilege level, x parameters
ViaTSS
Via task gate

Indirect intersegment l' 11 11111 I modOll rim I (mod ~ 11)

Protected Mode Only (Indirect Intersegment):
Via call gate to same privilege level
Via call gate to different privilege level, no parameters
Via call gate to different privilege level, x parameters
ViaTSS
Via task gate

JMP;; Unconditional jump:
Short'long l' 1 1 0 1 0 1 1 I disp-Iow I
Direct within segment l' 1 1 0 1 00 1 I disp-Iow I disp-high I
Registerlmemory indirect within segmentl' 111111 '1 mod 1 00 rim I
Direct intersegment l' 1 1 0 1 0 1 o I segment offset I

I segment selector I
Protected Mode Only (Direct Intersegment):

Via call gate to same privilege level
ViaTSS
Via task gate

Indirect intersegment l' 1111 11 '1 mod 1 01 rim I (mod ~ 11)

Protected Mode Only (Indirect interugmant):
Via call gate to same privilege level
ViaTSS
Via task gate

RET = Raturn from CALL:
Within segment l' 1 00001 '1
Within seg adding immed to SP l' 1 0 0 0 0 1 01 data-low I data-high I
Intersegment l' 1 0 0 1 0 1 '1
Intersegment adding immediate to SP l' 1 0 0 1 0 1 o I data-low I data-high I
Protected Mode Only (RET):

To different privilege level

Shaded areas indicate instructions not available in iAPX 86,88 microsystems.

A-47

CLOCK COUNT
Real Protected

Address Virtual
Mode Address

Mode

5+4n 5 +4n

5+9n 5 t9n

5+8n 5+8n

5+4n 5+4n

4+3n 4+3n

5+4n 5+4n
5"t 4n 5+4n

7+rn 7+m

7+m,11 tm' 7+m,ll+m'

13+m 26+m

41+m
82+m

86+4x+m
17i+m
182+m

16+m 29+m'

44+m'
83+m'

9O+4x+m'
180+m'
185+m'

7+rn 7+.Q1

7+rn 7+m

7+m,11+m' 7+m,11+m'

II+m 23+m

38+m
175+m
180+m

15+m' 26+m'

41 +m'
178+m'
183+m'

II+m II+m

II+m II+m

15+m 25+m

15+m

55+m

COMMENTS
Reat Protected

Address Virtual
Mode Address

Mode

2 9

2,8 8,9

2,8 8,9

2,8 8,9

2,8 8,9
<'

2 9:14
2 9,14

2 18

2,8 8,9,18

2 11,12,18

8,11,12,18
8,11,12,)8
8,11,12,18
8,11,12,18
8,11,12,18

2 8,9,11,12,18

8,9,11,12,18
8,9,11,12,18
8,9,11,12,18
8,9,11,12,18
8,9,11,12,18

18

18

2 9,18

11,12,18

8;11,12,18
8,11,12,18
8,11,12,18

2 8,9,11,12,18

8,9,11,12,18
8,9,11,12,18
8,9,11,12,18

2 8,9,18

2 8,9,18

2 8,9,11,12,18

2 8,9,11,12,18

9,11,12,18

~
'Z!

iAPX 286/10

80286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
Real Protected Real Protected

FUNCTION FORMAT Address Virtual Address Virtual
Mode Address Mode Address

Mode Mode

CONTROL TRANSFER (Continued):

JElJl =Jump on equal/zero 10. 1 1 1 0. 1 0. 0. disp 7+mor3 7+mor3 18
JUJNGE = Jump on lessinot greater or equal 10. 1 1 1 1 1 0. 0. disp 7+mor3 7+mor3 18
JLElJNG = Jump on less or equal/not greater 10. 1 1 1 1 1 1 0. disp 7+mor3 7+mor3 18
JB/JNAE = Jumpon below/not above or equal 10. 1 1 1 0. 0. 1 0. disp 7+mor3 7+mor3 18
JBElJNA = Jump on below or equaltnot above 10. 1 1 1 0. 1 1 0. disp 7+mor3 7+mor3 18

JP/JPE = Jump on parity/parityeven 10. 1 1 1 1 0. 1 0. disp 7+mor3 7+mor3 18

JO = Jump on overflow 10.1110.0.0.0. disp 7+mor3 7+mor3 18

JS=Jumponsign 10. 1 1 1 1 0. 0. 0. disp 7+mor3 7+mor3 18

JNE/JNl = Jump on not equalrnot zero 10. 1 1 1 0. 1 0. 1 disp 7+mor3 7+mor3 18

JNUJGE = Jump on not less/greater or equal 10. 1 1 1 1 1 0. 1 disp 7+mor3 7+mor3 18

JNLElJG = Jump on not less or equal/greater 10. 1 1 1 1 1 1 1 disp 7+mor3 7+mor3 18

JNB/JAE = Jump on not below/above orequal 10. 1 1 1 0. 0. 1 1 disp 7+mor3 7+mor3 18

JNBElJA = Jumpon not below or equal/above 10. 1 1 1 0. 1 1 1 disp 7+mor3 7+mor3 18

JNP/JPO = Jump on not par/par odd 10. 1 1 1 1 0. 1 1 disp 7+mor3 7+mor3 18

JNO = Jump on not overflow 10. 1 1 1 0. 0. 0. 1 disp 7+mor3 7+mor3 18

JNS = Jump on not sign 10. 1 1 1 1 0. 0. 1 disp 7+mor3 7+mor3 18

LOOP = Loop ex times 11 1 1 0. 0. 0. 1 0. disp 8+mor4 8+mor4 18

LOOPZllOOPE = Loop while zero/equal 11 1~0.0.0.0.1 disp 8+mor4 8+mor4 18

LOOPNZlLOOPNE = Loop while not zero/equal 11 110.0.0.0.0. disp 8+mor4 8+mor4 18

JeXl = Jumpon ex zero 11 1 1 0. 0. 0. 1 1 disp 8+mor4 8+mor4 18

•. ENTER';' Enter Procedure 1110 0.100.0.1 data-low I data-high I L I 2,8 ·······8,9 L",o. 11 11 2,8 :;:;i . <l=l 15 15 2,8
L>1 16+4(L-l) 16+4(H)

2,8 '·.8.:9
LEAVE", Leave Procedure 11 10.0. 1 0. 0. 11 5 5 .

INT = Interrupt:
Type specified 11 1 0. 0. 1 1 0. 1 I type I 23+m 2,7,8

Type 3 11 1 0. 0. 1 1 0. 0. 1 23+m 2,7,8

INTO"; Interrupt on overflow 11 1 0. 0. 1 1 1 0. I 24+mor3 2,6,8
1311no 13ilno

Protected Mode Only: interrupt) interrupt)

Via interrupt or trap gate to same privilege level 40.+m 7,8,11,12,18
Via interrupt or trap gate to fit different privilege level 78+m 7,8,11,12,18
Via Task Gate 167+m 7,8,11,12,18

IRET = Interrupt return 11 1 0. 0. 1 1 1 11 17+m 31 +m 2,4 8,9,11,12,15,18

Protected Mode Only:
To different privilege level 55+m 8,9,11,12,15,18
To different task (NT = 1) 169+m 8,9,11,12,18

BOUND", Detect value out of range 10110.0.0.10.1 mod reg rim 1 13' 13" 2,6 e.a,9,11,12,ta
(Use INT doCk

countd
txl:8ptionS)

Shaded areas indicate instructions not available in iAPX 86,88 microsystems ..

A-48

rJ .t') I
~r 0 ,

bllL- L
,

iAPX 286/10

80286 INSTRUCTION SET SUMMARY (Continued)

FUNCTION FORMAT

PROCESSOR CONTROL
CLC = Clear carry l' 1 1 1 1 00 0

CMC = Complement carry l' 1 1 1 0 1 0 1

STC = Set carry l' 1 1 1 1 0 0 1

CLO = Clear direction l' 1 1 1 1 1 0 0

STD = Set direction [1 1 1 1 1 1 0 1

CLI = Clear interrupt l' 1 1 1 1 0 1 0

STI = Set interrupt l' 1 1 1 1 0 1 1

HLT= Halt l' 1 1 1 0 1 0 0

WAIT = Wait l' 00 1 1 0 1 1

LOCK = Bus lock prefix l' 1 1 1 0 00 0

CTS '" Clear task switched flag 10 0 a 0 1 1 1 1 000001101

ESC = Processor Extension Escape 11 1 0 lIT T T mod LLL rim 1
(TIT LLL are opcode to processor extension)

SEG = Segment Override Prefix /001 reg 110

PROTECTION CONTROL
LGDT = load global descriptor tablt register 10 000 1 1 1 1 000000011 modOl0 rim I
SGDT = Store global descriptortabffl register 10 0 001 1 1 1 000000011 modOOO rim I
L1DT=loadinterruptdescriptortableregis'.er 10 0001 11 1 000000011 modOl1 rIm I
SlOT = Store interrupt descriptor table register 10 000 1 1 1 1 000000011 modOOl rim I
LLDT = loJd Iocafdescriptortable regisler

from register memory 10 000 1 1 1 1 000000001 modOl0 rim I
SLDT = Store .Iocal descriptor table regisler

loregiSlerlmemory 10 000 1 1 1 1 000000001 modOOO rim I
LTR=Loadtaskregister

10 0 001 1 1 000000001 I fromregisler/memory 1 modOll rim
sm = Store task register

10 0001 1 1 I 10 register memory 1 o 0 a 0 0 0 0 01 modOOl rim
lMSW = load machine status word

I from r~sterrmemory 10 0 a 0 1 1 1 1 000000011 modll0 rim

SMSW = Store machine status word 10 000 1 1 1 1 000000011 modI 00 rim I
LAR = load access rights

from registerlmemory 10 000 1 1 1 1 000000101 mod reg rIm I
lSl = Load segment limit

fromregisterlrm:mory 10 0 a 0 1 1 1 1 0000001'1 mod reg rim I
ARPL = Adjust requested privilege IeI'd:

from rBglSterlmemory o 1 1 0001 '1 mod reg rim I
VERR = Iklily read acteSS: register!l!ltlmory ;10 000 1 1 1 1 000000001 modI 00 rIm 1
VERR = Veri~ write access: 100001 11 '1 000 a 00001 mod 1 0 1 rim I

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

A-49

CLOCK COUNT COMMENTS
Real Protected Real Protected

Address Virtual Address Virtual
Mode Address Mode Address

Mode Mode

2 2

2 2

2 2

2 2

2 2

3 3 14

2 2 14

2 2 13

3 3

0 O' 14

2 2 3 13

9-20' 9-20' 5,8 8,17

0 0

II' 11* 2,3 ..
11* II' 2,3 .i
12' 12' 2,3

••••••••• 12' 12' 2,3 ...
..

~' .•....

17,19' 1

2,3' 1 .

17,19' 1 9.1t.13
..

2.3' 1 9
3.6' 3.6' 2,3 9.13
2.3' 2.3' 2.3 9

14,16' 1

14,16' 1 11.11

10',11' 2 i 6.°
14.16' 1 (fL

14,16- 1 . i9J

iAPX 286/10

Footnotes

The effective Address (EA) of the memory operand is
computed according to the mod and rim fields:

if mod = 11 then rim is treated as a REG field

if mod = 00 then OISP = 0*, disp-Iow and disp-high

are absent
if mod = 01 then OISP = disp-Iow sign-extended to

16-bits, disp-high is absent

if mod = 10 then OISP = disp-high: disp-Iow

if rim = 000 then EA = (BX) + (SI) + OISP
if rim = 001 then EA = (BX) + (01) + DISP

if rim = 010 then EA = (BP) + (SI) + OISP

if rim = 011 then EA = (BP) + (01) + DISP

if rim = 100 then EA = (SI) + OISP
if rim = 101 then EA = (01) + OISP
if rim = 110 then EA = (BP) + OISP*

if rim = 111 then EA = (BX) + DISP

OISP follows 2nd byte of instruction (before data if
required)

*except if mod = OOandr/m = 110then EA = disp-high:disp-Iow.

SEGMENT OVERRIDE PREFIX

1001 reg 1 1 01

reg is assigned according to the following:

Segment
reg Register

00 ES
01 CS
10 SS
11 OS

A-50

REG is assigned according to the following table:

16-Blt (w = 1) 8-Bit (w = 0)
000 AX 000 AL
001 CX 001 CL
010 OX 010 OL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 SI 110 OH
111 01 111 BH

The physical addresses of all operands addressed by
the BP register are computed using the SS segment
register. The physical addresses of the destination op­
erands of the string primitive operations (those ad­
dressed by the 01 register) are computed using the ES
segment, which may not be overridden.

80287
80-Bit HMOS

NUMERIC PROCESSOR EXTENSION

• High Performance 80-Bit Internal
Architecture

• Implements Proposed IEEE Floating
Point Standard 754

• Expands iAPX 286/10 Datatypes to
Include 32-, 64-, 80-Bit Floating Point,
32-, 64-Bit Integers and 18-Digit BCD
Operands

• Object Code Compatible with 8087

• Built-in Exception Handling

• Operates in Both Real and Protected
Mode iAPX 286 Systems

• Protected Mode Operation Completely
Conforms to the iAPX 286 Memory
Management and Protection
Mechanisms

• Directly Extends iAPX 286/10 Instruction
Set to Trigonometric, Logarithmic,
Exponential and Arithmetic Instructions
for All Datatypes

• 8x80-Bit, Individually Addressable,
Numeric Register Stack

• Available in EXPRESS-Standard
Temperature Range

The Interlil 80287 is a high performance numerics processor extension that extends the iAPX 286/10
architecture with floating point, extended integer and BCD data types. The iAPX 286/20 computing system
(80286 with 80287) fully conforms to the proposed IEEE Floating Point Standard. Using a numerics
oriented architecture, the 80287 adds over fifty mnemonics to the iAPX 286/20 instruction set, making the
iAPX 286/20 a complete solution for high performance numeric processing. The 80287 is impiemented in
N-channel, depletion load, silicon gate technology (HMOS) and packaged in a 40-pin ceramic package.
The iAPX 286/20 is object code compatible with the iAPX 86/20 and iAPX 88/20.

READY

CKM

HlOA

ClK286

PEACK

RESET

013 NPSl

012 NPS2

Vcc ClK

Vss CMDl

011 Vss
010 CMDO

N.C. NPWR

08 NPRD
08 ERROR

07 BUSY
06 PEREQ

05 DO

04

03 02

NOTE:
N.C. PINS MUST NOT BE CONNECTED.

Figure 1. 80287 Block Diagram Figure 2. 80287 Pin Configuration

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. FEBRUARY 1983
© INTEL CORPORATION, 1983. ORDER NUMBER: 210920-001

A-51

80287

Table 1. 80287 Pin Description

Symbols Type Name and Function

ClK I Clock input: this clock provides the basic timing for internal 80287 opera-
tions. Special MaS level inputs are required. The 82284 or 8284A ClK
outputs are compatible to this input.

CKM I Clock Mode signal: indicates whether ClK input is to be divided by 3 or
used directly. A HIGH input will select the latter option. This input may be
connected to Vee or VSS as appropriate. This input must be either HIGH or
lOW 20 ClK cycles before RESET goes lOW

RESET I System Reset: causes the 80287 to immediately terminate its present ac-
tivity and enter a dormant state. RESET is required to be HIGH for more than
480287 ClK cycles. For proper initialization the HIGH-lOW transition must
occur no sooner than 50 JLs after Vee and ClK meet their D.C. and A.C.
specifications.

015-00 I/O Data: 16-bit bidirectional data bus. Inputs to these pins may be applied
asynchronous to the 80287 clock.

BUSY a Busy status: asserted by the 80287 to indicate that it is cu rrently executing
a command.

ERROR a Error status: reflects the ES bit of the status word. This signal indicates
that an unmasked error condition exists.

PEREa a Processor Extension Data Channel operand transfer request: a HIGH on
this output indicates that the 80287 is ready to transfer data. PEREa will be
disabled upon assertion of PEACK or upon actual data transfer, whichever
occurs first, if no more transfers are required.

PEACK I Processor Extension Data Channel operand transfer ACKnowledge: ack-
nowledges that the request signal (PEREa) has been recognized. Will
cause the request (PEREa) to be withdrawn in case there are no more
transfers required. PEACK may be asynchronous to the 80287 clock.

NPRO I Numeric Processor Read: Enables transfer of data from the 80287. l'his
input may be asynchronous to the 80287 clock.

NPWR I Numeric Processor Write: Enables transfer of data to the 80287. This input
may be asynchronous to the 80287 clock.

NPS1, NPS2 I Numeric Processor Selects: indicate the CPU is performing an ESCAPE
instruction. Concurrent assertion of these signals (Le., NPS1 is lOW and
NPS2 is HIGH) enables the 80287 to perform floating point instructions. No
data transfers involving the 80287 will occur unless the device is selected.
These inputs may be asynchronous to the 80287 clock.

CMD1, CMDO I Command lines: These, along with select inputs, allow the CPU to direct the
operation of the 80287. No actions will occur if these signals are both HIGH.
These inputs may be asynchronous to the 80287 clock.

210920-001

A-52

inter 80287

Table 1. 80287 Pin Description (cont.)

Symbols Type Name and Function

ClK286 I CPU Clock: This input provides a sampling edge for the 80287 inputs 51, SO,
COD/INTA, READY, and HlDA.lt must be connected to the 80286 ClK input.

51, S~ I Status: These inputs allow the 80287 to monitor the execution of ESCAPE
COD/INTA instructions by the 80286. They must be connected to the corresponding

80286 pins.

HlDA I Hold Acknowledge: This input informs the 80287 when the 80286 controls
the local bus. It must be connected to the 80286 HlDA output.

READY I Ready: The end of a bus cycle is signaled by this input. It must be connected
to the 80286 READY input.

Vss I System ground, both pins must be connected to ground.

Vee I +5V supply

FUNCTIONAL DESCRIPTION effectively extends the register and instruction set
of an iAPX 286/10 system for existing iAPX 286
data types and adds several new data types as well.
Figure 3 presents the program visible register
model of the iAPX 286/20. Essentially, the 80287
can be treated as an additional resource or an
extension to the iAPX 286/10 that can be used as a
single unified system, the iAPX 286/20.

The 80287 Numeric Processor Extension (NPX)
provides arithmetic instructions for a variety of
numeric data types in iAPX 286/20 systems. It also
executes numerous built-in transcendental func­
tions (e.g., tangent and log functions). The 80287
executes instructions in parallel with a 80286. It

80286

o I 15 FILE: 79 78

AX I R1 SIGN EXPONENT

BX I
R2

CX I
R3

OX I
R4

51 I
R5

01 I
R6

BP I
R7

SP I
R8

I
L_---:,

r15~ _____ ~0 I

t-1--F-L-:-GS------41 :

L ____ --,

~15~--------~0 I

~~I I i

80287
STACK:

64 63

SIGNIFICANO

15

CONTROL REGISTER

STATUS REGISTER

TAG WORD

r- INSTRUCTION POINTER_

~ DATA POINTER -

Figure 3. iAPX 286/20 Architecture

A-53

TAG FIELD
0 1

o

210920-001

80287

The 80287 has two operating modes similar to the
two modes of the 80286. When reset, 80287 is in
the real address mode. It can be placed in the
protected virtual address mode by executing the
SETPM ESC instruction. The 80287 cannot be
switched back to the real address mode except by
reset. In the real address mode, theiAPX 286/20 is
completely software compatible with iAPX 86/20,
88/20.

Once in protected mode, all references to memory
for numerics data or status informatio'n; obey the
iAPX 286 memory management and protection
rules giving a fully protected extension of the
80286 CPU. In the protected mode, iAPX 286/20
numerics software is also completely cOlTlpatible
with iAPX 86/20 and iAPX 88/20.

SYSTEM CONFIGURATION
As a processor extension to an 80286, the 80287
can be connected to the CPU as shown in Figure 4.
The data channel control signals (PEREa,
PEACK), the BUSY signal and the NPRD, NPWR
signals, allow the NPX to receive instructions and
data from the CPU. When in the protected mode, all
information received by the NPX is validated by the
80286 memory 'management and protection unit.
Once started, the 80287 can process in parallel
with and independent of the host CPU. When the
'NPX detects an error or exception, it will indicate
this to the CPU by asserting the ERROR signal.

The NPX uses the processor extension request and
acknowledge pins of the 80286 CPU to implement
data transfers with memory under the protection
model of the CPU. The full virtual and physical
address space of the 80286 is available. Data for
the 80287 in memory is addressed and represented
in the same manner as for an 8087.

The 80287 can operate either directly from the CPU
clock or with a dedicated clock. For operation with
the CPU clock (CKM=O), the 80287 works at one­
third the frequency of the system clock (Le., for an
8 MHz 80286, the 16 MHz system clock is divided
down to 5.3 MHz). The 80287 provides a capability
to internally divide the CPU clock by three to pro­
duce the required internal clock (33% duty cycle).
To use a higher performance 80287 (8 MHz), an
8284A clock driver and appropriate crystal may be
used to directly drive the 80287 with a 1/3 duty
cycle clock on the ClK input (CKM=1).

A-54

HARDWARE INTERFACE
Communication of instructions and data operands
between the 80286 and 80287 is handled by the
CMDO, CMD1, NPS1, N!;,S2, NPRD, and NPWR sig­
nals. I/O port addresses 00F8H, OOFAH, and OOFCH
are used by the 80286 for this communication.
When any of these addresses are used, the NPS1
input must be lOW and NPS2 input HIGH. The
10RC and 10WC outputs of the 82288 identify I/O
space transfers (see Figure 4). CMDO should be
connected to latched 80286 A1 and CMD1 should
be connected to latched 80286 A2.

I/O ports 00F8H to OOFFH are reserved for the
80286/80287 interface. To guarantee correct oper­
ation of the 80287, programs must not perform any
I/O operations to these ports.

The PEREa, PEACK, BUSY, and ERROR signals of
the 80287 are connected to the same-named 80286
input. The data pins of the 80287 should be directly
connected to the 80286 data bus. Note that all bus
drivers connected to the 80286 local bus must be
inhibited when the 80286 reads from the 80287.
The use of COD/INTA and M/ra in the decoder
prevents INTA bus cycles from disabling the data
transceivers.

The S1, SO COD/INTA, READY, HlDA, and ClK pins
of the 80286 are connected to the same named
pins on the 80287. These signals allow the 80287 to
monitor the execution of ESCAPE instructions by
the 80826.

PROGRAMMING INTERFACE

Table 2 lists the seven data types the 80287 sup­
ports and presents the format for each type. These
values are stored in memory with the least signifi­
cant digits at the lowest memory address. Pro­
grams retrieve these values by generating the
lowest address. All values should start at even
addresses for maximum system performance.

Internally the 80287 holds all numbers in the tem­
porary real format. load instructions automati­
cally convert operands represented in memory as
16-, 32-, or 64-bit integers, 32- or 64-bit floating
point number or 18-digit packed BCD numbers
into temporary real format. Store instructions per­
form the reverse type conversion.

210920-001

80287

RESET 1-----,

READY t---.,

82284 ClK I---

51 f---

SOr- I
A15-Ao

.-----tRESET

READY ~+--II-+"""+----I READY

82288

ClK ClK

51 ~~~-+-+----I 51
SO~~I-+-+-+----ISo

M/iO ~+--II-+-+-~~--I M/iO

80286
0 15-00

r---

r-- ERROR PEREQ r--
r- BUSY PEACK r--

COD/INTA HlDA

DENr-+-~-+;-~-+-~r---t--~r;

DT/R ~+-I-+-++----1-+---jf----f---+-~

AlE~+-I-+-++----1-+---jf----f---+-~

IORC
COD/INTA HlDA

l..--++--I RESET PEACK f-

'---+-t---t READY PEREQ r-­

~--+-I---I ClK286
I--

A2 A1 AO E1

r--- E2
E3

I

8205

~---+--+--IS1

L..--+---+-+--iSO
0 15-00 DATA

80287

l..-----jf----+-I---I NPRD N PS2 f-Vcc-

L..-------+---+-+--t NPWR NPS1 t-----------J

-- ERROR CMD1 ~----------~

ADDRESS

"'.-ctct

'(

:286 t> OR
8287
-

- BUSY CMDO~-----------~

ClK CKM

r---,
r:-I 1 //
0_ 1 8284A 1------0

L __
L ___ -1

Figure 4. iAPX 286/20 System Configuration

210920-001

A-55

80287

Table 2. 80287 Datatype Representation in Memory

Data
Most Significant Byte

Range Precision

01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 '0 17 o 1 Formats 7

Word Integer 104 16 Bits 115 10 I Two's Complement

Short Integer 109 32 Bits 131 10 I Two's Complement

Long Integer 1019 64 Bits 163 I I Two's
o Complement

Packed BCD 1018 18 Digits S I -I 017 016 I 101 Do I

Short Real 10±38 24 Bits S/E7 Eo / F1 F23 I Fo Implicit

Long Real 10±308 53 Bits S I E10 Eo I F1 F52 I Fo Implicit

. .
10±4932

S I Eo I Fo Temporary Real 64 Bits E14

NOTES:
(1) Integer: I S
(2) Packed BCD (- 1) (017" .00)

(3) Real: (- 1)s(2E-EifAS)(Fo F1 ...)

(4) Bias =127 for Short Real
1023 for Long Real
16383 for Temp Real

80287 computations use the processor's register
stack. These eight 80-bit registers provide the
equivalent capacity of 40 16-bit registers. The
80287 register set can be accessed as a stack, with
instructions operating on the top one or two stack
elements, or as a fixed register set, with instruc­
tions operating on explicitly designated registers.

Table 6 lists the 80287's instructions by class. No
special programming tools are necessary to use

the 80287 since all new instructions and data types
are directly supported by the iAPX 286 assembler
and appropriate high level languages. All iAPX
86/88 development tools which support the 8087
can also be used to develop software for the iAPX
286/20 in real address mode.

Table 3 gives the execution times of some typical
numeric instructions.

210920-001

A-56

F631

inter 80287

Table 3. Execution Time for Selected 80287 Instructions

Floating Point Instruction

Add/Subtract

Multiply (single precision)

Multiply (extended precision)

Divide

Compare

Load (double precision)

Store (double precision)

Square Root

Tangent

Exponentiation

SOFTWARE INTERFACE
The iAPX 286/20 is programmed as a single pro­
cessor. All communication between the 80286 and
the 80287 is transparent to software. The CPU au­
tomaticallycontrols the 80287 whenever a numeric
instruction is executed. All memory addressing
modes, physical memory, and virtual memory of
the CPU are available for use by the NPX.

Since the NPX operates in parallel with the CPU,
any errors detected by the NPX may be reported
after the CPU has executed the ESCAPE instruc­
tion which caused it. To allow identification of the
failing numeric instruction, the NPX contains two
pointer registers which identify the address of the
failing numeric instruction and the numeric
memory operand if appropriate for the instruction
encountering this error.

INTERRUPT DESCRIPTION

Several interrupts of the iAPX 286 are used to
report exceptional conditions while executing
numeric programs in either real or protected
mode. The interrupts and their functions are
shown in Table 4.

A-57

Approximate Execution
Time (JLs)

80287
(5 MHz Operation)

14/18

19

27

39

9

10

21

36

90

100

PROCESSOR ARCHITECTURE
As shown in Figure 1, the NPX is internally divided
into two processing elements, the bus interface
unit (BIU) and the numeric execution unit (NEU).
The NEU executes all numeric instructions, while
the BIU receives and decodes instructions, re­
quests operand transfers to and from memory and
executes processor control instructions. The two
units are able to operate independently of one
another allowing the BIU to maintain asynchro­
nous communication with the CPU while the NEU
is busy processing a numeric instruction.

BUS INTERFACE UNIT
The BIU decodes the ESC instruction executed by
the CPU. If the ESC code defines a math instruc­
tion, the BIU transmits the formatted instruction to
the NEU. If the ESC code defines an administrative
instruction, the BIU executes it independently of
the NEU. The parallel operation of the NPX with the
CPU is normally transparant to the user. The BIU
generates the BUSY and ERROR signals for
80826/80287 processor synchronization.

The 80287 executes a single numeric instruction at
a time. When executing most ESC instructions, the

210920-001

80287

Table 4. Interrupt Vectors

Interrupt Number Interrupt Function

7 An ESC instruction was encountered when EM or TS of the 80286 MSW was set.
EM=1 indicates that software emulation of the instruction is required. When TS is
set, either an ESC or WAIT instruction will cause interrupt 7. This indicates that the
current NPX context may not belong to the current task.

9 The second or subsequent words of a numeric operand in memory exceeded a
segment's limit. This interrupt occurs after executing an ESC instruction. The saved
return address will not point at the numeric instruction causing this interrupt. After
processing the addressing error, the iAPX 286 program can be restarted at the
return address with IRET. The address of the failing numeric instruction and
numeric operand are saved in the 80287. An interrupt handler for this interruptmust
execute FNINIT before any other ESC or WAIT instruction.

13 The starting address of a numeric operand is not in the segment's limit. The return
address will point at the ESC instruction (including prefixes) causing this error. The
80287 has not executed this instruction. The instruction and data address in 80287
refer to a previous, correctly executed, instruction.

16 The previous numeric instruction caused an unmasked numeric error. The address
of the faulty numeric instruction or numeric data operand is stored in the 80287.
Only ESC or WAIT instructions can cause this interrupt. The 80286 return address
will point at a WAIT or ESC instruction, including prefixes, which may be restarted
after clearing the error condition in the NPX.

80286 tests the BUSYpin and waits until the 80287
indicates that it is not busy before initiating the
command. Once initiated, the 80286 continues
program execution while the 80287 executes the
ESC instruction. In iAPX 86/20 systems, this
synchronization is achieved by placing a WAIT in­
struction before an ESC instruction. For most ESC
instructions, the iAPX 286/20 does not require a
WAIT instruction before the ESC opcode. However,
the iAPX 286/20 will operate correctly with these
WAIT instructions. In all cases, a WAIT or ESC in­
struction should be inserted after any 80287 store
to memory (except FSTSWand FSTCW) or load
from memory (except FLDENV or FRSTOR) before
the 80286 reads or changes the value.

Data transfers between memory and the 80287,
when needed, are controlled by the PEREQ
PEACK, NPRD, NPWR, NPS1, NPS2 signals. The
80286 does the actual data transfer with memory
through its processor extension data channel.
Numeric data transfers with memory performed by
the 80286 use the same timing as any other bus
cycle. Control signals for the 80287 are generated

by the 80826 as shown in Figure 4, and meet the
timing requirements shown in the AC require­
ments section.

NUMERIC EXECUTION UNIT
The NEU executes all instructions that involve the
register stack; these include arithmetic, logical,
transcendental, constant and data transfer in­
structions. The data path in the NEU is 84 bits wide
(68 fraction bits, 15 exponent bits and a sign bit)
which allows internal operand transfers to be per­
formed at very high speeds.

When the NEU be~xecuting an instruction, it
activates the BIU BUSY signal. This signal is used
in conjunction with the CPU WAIT instruction or
automatically with most of the ESC instructions to
synchronize both processors.

REGISTER SET
The 80287 register set is shown in Figure 5. Each of
the eight data registers in the 8087's register stack

210920-001

A-58

80287

79 78

DATA FIELD

64 63
TAG FIELD

o 1 0
~---r--------~~------------------~ SIGN EXPONENT SIGNIFICAND

15 o
CONTROL REGISTER

STATUS REGISTER

TAG WORD

r- INSTRUCTION POINTER -

f- OAT A POINTER -

Figure 5. 80287 Register Set

is 80 bits wide and is divided into "fields" corre­
sponding to the NPX's temporary real data type.

At a given point in time the TOP field in the status
word identifies the current top-of-stack register. A
"push" operation decrements TOP by 1 and loads a
value into the new top register. A "pop" operation
stores the value from the current top register and
then increments TOP by 1. Like 80286 stacks in
memory, the 80287 register stack grows "down"
toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate
on the register at the top of the stack. These in­
structions implicitly address the register pointed
by the TOP. Other instructions allow the program­
mer.to explicitly specify the register which is to be
used. Explicit register addressing is "top-relative."

STATUS WORD
The 16-bit status word (in the status register)
shown in Figure 6 reflects the overall state of the
80287. It may be read and inspected by CPU code.
The busy bit (bit 15) indicates whether the NEU is
executing an instruction (B = 1) or is idle (B = 0).

The instructions FSTSW, FSTENV, and FSAVE
which store the status word are executed ex­
clusively by the BIU and do not set the busy bit
themselves or require the Busy bit be cleared in
order to be executed.

The four numeric condition code bits (CO-C3) are
similar to the flags in a CPU: instructions that per­
form arithmetic operations update these bits to
reflect the outcome of NDP operations. The effect
of these instructions on the condition code bits is
summarized in Tables 5a and 5b.

Bits 14-12 of the status word point to the 80287
register that is the current top-of-stack (TOP) as
described above. Figure 6 shows the six error flags
in bits 7-0 of the status word. The section on ex­
ception handling explains how they are set and
used.

Bit 7 is the error status bit. This bit is set if any
unmasked exception bit is set and cleared other­
wise. If this bit is set, the ERROR signal is asserted.

Bits 5-0 are set to indicate that the NEU has
detected an exception while executing an
instruction.

210920-001

A-59

80287

15 o
I B I C31 TOP I~I c, ICalESI X IPEIUEIOEIZEIDEIIEI

I
EXCE PTION FLAGS (1 = EXCEPTION HAS OCCURRED)

INVALID OPERATION'

DENORMALIZED OPERAND'

ZERO DIVIDE'

OVERFLOW'

UNDERFLOW'

PRECISION'

(RESE RVED)

ERRO R STATUS(l)

ITION CODE(2) COND

TOP 0 F STACK POINTER(3)

BUSY NEU

g:ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET, CLEARED OTHERWISE.
(3)~~~ ~~~b~~ FOR CONDITION CODE INTERPRETATION.

000 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack .
111 = Register 7 is Top of Stack

*For definitions, see the section on exception handling

Figure 6. 80287 Status Word

TAG WORD

The tag word marks the content of each register as
shown in Figure 7. The principal function of the tag
word is to optimize the NPX's performance. The
tag word can be used, however, to interpret the
contents of 80287 registers.

INSTRUCTION AND DATA POINTERS

The instruction and data pointers (See Figures 8a
and 8b) are provided for user-written error hand­
lers. Whenever the 80287 executes a new instruc­
tion, the BIU saves the instruction address, the
operand address (if present) and the instruction
opcode. 80287 instructions can store this data into
memory.

The instruction and data pointers appear in one of
two formats depending on the operating mode of
the 80287. In real mode, these values are the 20-bit
physical address and 11-bit opcode formatted like
the 8087. In protected mode, these values are the
32-bit virtual addresses used by the program

which executed an ESC instruction. The same
FLDENV/FSTENV/FSAVE/FRSTOR instructions as
those of the 8087 are used to transfer these values
between the 80287 registers and memory.

The saved instruction address in the 80287 will
point at any prefixes which preceded the instruc­
tion. This is different than in the 8087 which only
pointed at the ESCAPE instruction opcode.

CONTROL WORD

The NPX provides several processing options
which are selected by loading a word from memory
into the control word. Figure 9 shows the format
and encoding of fields in the control word.

The low order byte of this control word configures
the 80287 error and exception masking. Bits 5-0 of
the control word contain individual masks for each
of the six exceptions that the 80287 recognizes.
The high order byte of the control word configures
the 80287 operating mode including precision,

210920·001

A-50

inter 80287

Table Sa. Condition Code Interpretation

Instruction
C3 C2 Type

Com pare, Test a a
a a
1 a
1 1

Remainder 01 a

U 1

Examine a a
a a
a a
a a
a 1
a 1
a 1
a 1
1 a
1 a
1 a
1 a
1 1
1 1
1 1
1 1

NOTES:
1. 8T = Top of stack
2. X = value is not affected by instruction
3. U = value is undefined IOllowlng instruction
4. Qn = Quotient bit n

Table 5b. Condition Code Interpretation after

FPREM Instruction As a Function of

Dividend Value

Dividend Range 02 01 00

Dividend < 2 * Modulus C3 C1 00
Dividend < 4 * Modulus C3 01 00
Dividend ~ 4 * Modulus 02 01 00

NOTE:

C1

x
x
x
X

00

U

a
a
1
1
a
a
1
1
a
a
1
1
a
a
1
1

1. Previous value of indicated bit, not affected by FPREM
instruction execution.

A-61

Co Interpretation

a ST> Source or a (FTST)
1 ST < Source or a (FTST)
a ST = Source or a (FTST)
1 ST is not comparable

02 Complete reduction with
three low bits of quotient
(See Table 5b)

U Incomplete Reduction

a Valid, positive unnormalized
1 Invalid, positive, exponent =0
a Valid, negative, unnormalized
1 Invalid, negative, exponent =0
a Valid, positive, normalized
1 Infinity, positive
a Valid, negative, normalized
1 Infinity, negative
a Zero, positive
1 Empty
a Zero, negative
1 Empty
a Invalid, positive, exponent = a
1 Empty
a Invalid, negative, exponent = a
1 Empty

rounding, and infinity control. The precision con­
trol bits (bits 9-8) can be used to· set the 80287
internal operating precision at less than the
default of temporary real (8a-bit) precision. This
can be useful in providing compatibility with the
early generation arithmetic processors of smaller
precision than the 80287. The rounding control
bits (bits 11-1 0) provide for directed rounding and
true chop as well as the unbiased round to nearest
even mode specified in the IEEE standard. Control
over closure of the number space at infinity is also
provided (either affine closure: ± 00, or projective
closure: 00, is treated as unsigned, may be
specified). . .

210920-001

80287

TAG VALUES:
00 = VALID
01 = ZERO
10 = INVALID or INFINITY
11 = EMPTY

Figure 7. 80287 Tag Word

MEMORY OFFSET .

15

CONTROL WORD +0

STATUS WORD +2

TAG WORD +4

IPOFFSET +6

CS SELECTOR +8

DATA OPERAND OFFSET +10

DATA OPERAND SELECTOR +12

Figure 8a. Protected Mode Instruction and Data Pointer Image in Memory

EXCEPTION HANDLING

The 80287 detects six different exception condi­
tions that can occur during instruction execution.
Any or all exceptions will cause the assertion of
ERROR signal if the appropriate exception masks
are not set.

The exceptions that the 80287 detects and the
'default' procedures that will be carried out if the
exception is masked, are as follows:

Invalid Operation: Stack overflow, stack under­
flow, indeterminate form (010, 00-00, etc.) or the use
of a Non-Number (NAN) as an operand. An ex­
ponent value of all ones and non-zero significand
is reserved to identify NANs. If this exception is
masked, the 80287 default response is to generate

a specific NAN called INDEFINITE, or to propogate
already existing NANs as the calculation result.

Overflow: The result is too large in magnitude to
fit the specified format. The 80287 will generate an
encoding for infinity if this exception is masked.

Zero Divisor: The divisor is zero while the divi­
dend is a non-infinite, non-zero number. Again, the
80287 will generate an encoding for infinity if this
exception is masked.

Underflow: The result is non-zero but too small in
magnitude to fit in the specified format. If this
exception is masked the 82087 will denormalize
(shift right) the fraction until the exponent is in
range. The process is called gradual underflow.

21092()'001

A-62

16

80287

15

CONTROL WORD

STATUS WORD

TAG WORD

INSTRUCTION,POINTER (15-0)

INSTRUCTION)I I INSTRUCTION
POINTER (19-16) 0 OPCODE (10-0)

DATA POINTER (15-0)

DATA POINTER I
(19-16) 0

15 12 11

o

o

MEMORY
OFFSET

+0

+2

+4

+6

+8

+10

+12

Figure 8b. Real Mode 80287 Instruction and Data Pointer Image in Memory

I xxx Ilcl RC I PC IxlxlpMluMloMlzMIDMllMI

111PRECISION CONTROL
00 = 24 BITS
01 = RESERVED
10 = 53 BITS
11 = 64 BITS

II

121ROUNDING CONTROL
00 = ROUND TO NEAREST OR EVEN
01 = ROUND DOWN (TOWARD -x)
10 = ROUND UP (TOWARD +x)
11 = CHOP (TRUNCATE TOWARD ZERO)

EXCEPTION MASKS (1 =EXCEPTION IS MASKED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERO DIVIDE

OVERFLOW

UNDERFLOW
PRECISION

(RESERVED)

(RESERVED)

PRECISION CONTROL 111

ROUNDING CONTROLI2I

INFINITY CONTROL (0 = PROJECTIVE, 1 = AFFINE)

(RESERVED)

Figure 9. 80287 Control Word

210920-001

A-63

-,v .:...I®
II 1'eII 80287

Denormalized Operand: At least one of the
operands is denormalized; it has the smallest ex­
ponent but a non-zero significand. Normal pro­
cessing continues if this exception is masked off.

Inexact Result: If the true result is not exactly
representable in the specified format, the result is
rounded according to the rounding mode, and this
flag is set. If this exception is masked, processing
will simply continue.

If the error is not masked, the corresponding error
bit and the error status bit (ES) in the control word
will be set, and the ERROR output signal will be
asserted. If the CPU attempts to execute another
ESC or WAIT instruction, exception 7 will occur.

The error condition must be resolved via an inter­
rupt service routine. The 80287 saves the address
of the floating point instruction causing the error
as well as the address of the lowest memory loca­
tion of any memory operand required by that
instruction.

iAPX 86/20 COMPATIBILITY:
iAPX 286/20. supports portability of iAPX 86/20
programs when it is in the real address mode.
However, because of differences in the numeric
error handing techniques, error handling routines
may need to be changed. The differences between
an iAPX 286/20 and iAPX 86/20 are:

1. The NPX error signal does not pass through an
interrupt controller (8087 INT signal does).

A-64

Therefore, any interrupt controller oriented in.:
structions for the iAPX 86/20 may have to be
deleted.

2. Interrupt vector 16 must point at the numeric
error handler routine.

3. The saved floating point instruction address in
the 80287 includes any leading prefixes before
the ESCAPE opcode. The corresponding saved
address of the 8087 does not include leading
prefixes.

4. In protected mode, the format of the saved in­
struction and operand pointers is different than
for the 8087. The instruction opcode is not
saved-it must be read from memory if needed.

5. Interrupt 7 will occur when executing ESC in­
structions with eitherTS or EM of MSW=1.lfTS
of MSW=1 then WAIT will also cause interrupt
7. An interrupt handler should be added to han­
dle this situation.

6. Interrupt 9 will occur if the second or subse­
quent words of a floating point operand fall
outside a segment's size. Interrupt 13 will occur
if the starting address of a numeric operand
falls outside a segment's size. An interrupt
handler should be added to report these pro­
gramming errors.

In the protected mode, iAPX 86/20 application
code can be directly ported via recompilation if the
286 memory protection rules are not violated.

210920-001

inter 80287

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias .. O°C to 70°C
Storage Temperature -65°C to + 150°C
Voltage on Any Pin with
Respect to Ground -1.0 to + 7V
Power Dissipation 3.0 Watt

*NOTICE: Stresses above those listed under Ab­
solute Maximum Ratings may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS TA = ooe to 70oe, Vcc = 5V ± 10%

Symbol Parameter Min. Max. Units Test Conditions

Vil Input low Voltage -0.5 +0.8 V

VIH Input High Voltage 2.0 Vcc+0.5 V

Val Output low Voltage 0.45 V 10l = 3.0 mA

VOH Output High Voltage 2.4 V 10H = .400/-LA
--

Icc Power Supply Current 475 mA TA = 25°C

III Input leakage Current ±10 /-LA OV~VIN~VCC

ILa Output leakage Current ±10 /-LA 0.45V~VouT"':;Vcc

VCl Clock Input low Voltage
CKM=1 -0.5 +0.6 V

CKM=O -0.5 +0.8 V

VCH Clock Input High Voltage
CKM=1 3.8 Vcc+1.0 V

CKM=O 2.0 Vcc+1.0 V

CIN Capacitance of Input &
Output Buffers (all except I/O
Buffer and ClK) 10 pF fc = 1 Mhz

Cia Capacitance of I/O Buffer for
015-0 0 20 pF fc = 1 MHz

CClK Capacitance of ClK Input 12 pF fc = 1 MHz

210920·001

A-65

-n+_I®
111'e' 80287

A.C. CHARACTERISTICS TA=O°C to 70°C, VCC= 5V± 10%
TIMING REQUIREMENTS

Symbol Parameter Min.

TClCl ClK cycle period
CKM=1 : 5MHz 200

8MHz 125
CKM=O: 16MHz 62.5

TClCH ClK low time CKM=1 118
CKM=O 15

TCHCl ClK high time CKM=1 69
CKM=O 20

TCH1CH2 ClK rise time

TCl2CL1 ClK fall time

TDVWH Data valid set up to NPWR inactive 75

TWHDX Data hold from NPWR inactive 0

TWlWH, NPWR, NPRD active time
95

TRlRH

TAVRl, Command Valid to NPWR or NPRD
0 TAVWl active

TMHRl Minimum response from PEREa active
130

set up to NPRD active

TKlKH PEACK active time 95

TKHKl PEACK inactive time 95

TKHCH PEACK inactive to NPWR, NPRD 0
inactive

TCHKl Data Channel NPRD, NPWR inactive
-25

set up to PEACK active

TWHAX, Command hold from NPWR, NPRD 0
TRHAX inactive

TKlCL PEACK active set up to command
0 active

T2ClCl 80286 Clock period 62.5

T2ClCH 80286 Clock low time 15

T2CHCl 80286 Clock high time 20

A-66

Test
Max. Units Conditions

ns
500
500 at 1.5 V
250

ns at 0.6 V
230 at 0.8 V

ns at 3.8 V
235 at 2.0 V

10 ns from 1.0 to 3.5 V

10 ns from 3.5 to 1.0V

ns

ns

ns

ns at 1.5 V

ns

ns

ns

ns

ns

ns

ns

250 ns

230 ns at 0.8V

235 ns at 2.0V

210920-001

inter 80287

A.C. CHARACTERISTICS TA=O°C to 70°C, VCC= 5V± 10%
TIMING REQUIREMENTS (cont.)

Symbol Parameter Min.

TCLSH S1, SO hold time 0

TSVCl S1, SO valid setup time 22.5

TCIVCL COD/INTA valid setup time 0

TCLCIH COD/INTA hold time 0

TRVCl READY valid setup time 38.5

TCLRH READY hold time 25

THVCL HlDA valid setup time 0

TCLHH HLDA hold time 0

TCLIH Input from ClK hold time 45

TIVCH Input to CLK setup time 70

NOTE:
1. To guarantee a predetermined response for testing purposes.

A.C. CHARACTERISTICS-TIMING RESPONSES

Symbol Parameter Min.

TRHQZ NPRD inactive to data tri-state

TRlQV NPRD active to data valid

TllBH ERROR active to BUSY inactive 100

TWLBV NPWR active to BUSY valid

TClML NPRD, NPWR active to PEREQ
inactive

TKLML PEACK active to PEREQ inactive

TCMDI Minimum command inactive time
Write-Write 95
Read-Read 150
Write-Read 105
Read-Write 95

TRHQH Data valid hold from NPRD inactive 5

NOTE:
1. On last data transfer of numeric instruction.

A-67

Max. Units
Test

Conditions

ns

ns

ns

ns
at 1.5 V

ns

ns

ns

ns

ns at 1.5V

ns (See Note 1)

Test
Max. Units Conditions

37.5 ns CL=20pF-100pF
at 1.5V

60 ns

ns
CL=100pF at 1.5V

100 ns

120
CL = 100pF at 1.5V

ns
(See Note 1)

127 ns

ns
ns at 1.5V
ns
ns

ns Cl=40pF at 1.5V

210920-001

80287

WAVEFORMS

CLOCK TIMING

TCLCH

RESET

NOTE:
1. Shown for CKM=1, when CKM=O TIVCH is measured from the second falling edge of ClK. These inputs
may be asynchronous to ClK. This input timing guarantees a predetermined response.

210920-001

A-58

WAVEFORMS (cant.)

DATA TRANSFER TIMING

CMDO CMD1
NPSf,NPS2

\V
11\

80287

VALID

~TRLRH~ TRHAX

~ ..,t.
TAVRL --'f\ J~TRHQZ-'

--. TRLQV ~ ~TRHQH--'

IIIIIV DATA OUT 1\
\\\\\ VALID II

TAVWL
TWLWH~ .. TWHAX

~Ir I

r\ 7~
TDVWH TWHDX

\V
I~

I DATA TRANSFER
FROM
80287

DATA MAY CHANGE
\1 DATA IN \If DATA MAY CHANGE
1,\ VALID I~

) 80287

DATA

--. TWLBV TRANSFER
TO

BUSY ~rr
--~--

DATA CHANNEL TIMING

C~CMDl -----1.~
N"'~1,NPS2

-----<
--. TAVWL

TAVRL

VALID

TRHAXt­
TWHAX 'P;:

PEREQ ~_TM __ HR_L ______ ~ ____________ ~ __________ ~ ______________ ~ __ __ i ~~ TKLCL~
..

~~------~.+

~--------TKLKH--------~

210920-001

A-69

80287

WAVEFORMS (cont.)

ERROR OUTPUT TIMING

BUSY _\I+-TILBH-J
ERROR 1 1

80286 STATUS TIMING

NOTES:
1. This input transition occurs before TS.
2. This input transition occurs after Te.

210920-001

A-70

inter

Data Transfer

FLO = LOAD

Integer/Real Memory to ST(O)

Long Integer Memory to ST(O)

Temporary Real Memory to
ST(O)

BCD Memory to ST(O)

ST(i) to ST(O)

FST = STORE

ST(O) to Integer/Real Memory

ST(O) to ST(i)

FSTP = STORE AND POP

ST(O) to Integer/Real Memory

ST(O) to Long Integer Memory

ST(O) to Temporary Real
Memory

ST(O) to BCD Memory

ST(O) to ST(i)

FXCH = Exchange ST(i) and
ST(O)

Comparison

FCOM = Compare

Integer/Real Memory to ST(O)

ST(i) to ST (0)

FCOMP = Compare and Pop

Integer/Real Memory to ST(O)

ST(i) to ST(O)

FCOMPP = Compare ST(l) to
ST(O) and Pop Twice

FTST = Test ST(O)

FXAM = Examine ST(O)

Mnemonics © Intel t982.

80287

Table 6. 80287 Extensions to the 80286 Instruction Set

Clock Count Range

I
Optional
8,16 Bit

Displacement
32 Bit 32 Bit 64 Bit 16 Bit
Real Integer Real Integer

I MF 00 01 10 11

I--E_SC_A_P_E __ M_F __ 1--.1._M_O_D_0_0 __ 0_R_/M--,1 = : = . = . ~.I~P = . =: 36-56 52-60 40-60 46-54

ESCAPE 1 1 1 MOD 1 0 1 R/M I_:=:=:!>I~P=:=: 60-68

ESCAPE 0 1 1 MOD 1 0 1 R/M [=: = . !>I~P = . =: 53-65

ESCAPE 1 1 1 MOD 1 0 0 R/M [~ : ~ : ~:I~P = . -: 290-310

I ESCAPE 0 0 1 1 1 0 0 0 ST(i) I 17-22

1 ESCAPE M F 1 1 MOD 0 1 0 R/M [, ~ . ~ . ~.I~P ~ - 64-90 82-92 96-104 80-90

1 ESCAPE 1 0 1 1 1 1 0 1 0 ST(i) I 15-22

MOD 0 1 1 R/M 1-. ~. ~: E;~P ~: J 66-92 64-94 96-106 62-92

~====~======~:
L-E_SC_A_PE __ l_l_l----1._M_O_D_l_l __ l_R_/M_C =. =. ~i~p =. J 94-105

ESCAPE MF 1

ESCAPE 0 1 1 MOD 1 1 1 R/M I : ~ : ~ : ~I~P ~ .J 52-56

L-E_SC_A_PE __ l_l_l----'-_M_O_D_l_l __ 0_R_/M_I_: ~: ~ :'~I~ ~. J 520-540

ESCAPE 1 0 1 1 1 0 1 1 ST(i) 1 17-24

I ESCAPE 0 0 1 I 1 1 0 0 1 ST(i) I 10-15

I ESCAPE MF 0 I MOD 0 1 0 R/M ,-. ~: ~. ~I~<: J 60-70 78-91 65-75 72-86

1 ESCAPE 0 0 0 1 1 1 0 1 0 ST(i) 1 40-50

ESCAPE MF 0 L MOD 0 1 1 R/M I: ~:I~P =. =:
~========~============~-

63-73 80-93 67-77 74-88

ESCAPE 0 0 0 1 1 0 1 1 ST(i) 45-52

ESCAPE 1 1 0 1 1 0 1 1 0 0 1 45-55

ESCAPE 0 0 1 1 1 1 0 0 1 0 0 36-48

ESCAPE 0 0 1 1 1 1 0 0 1 0 1 12-23

21092D-001

A-71

inter 80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

I
Optional Clock Count Range
8,16 Bit 32 Bit 32 Bit 64 Bit 16 Bit

Constants Displacement Real Integer Real Integer

I MF = 00 01 10 11

FLDZ = LOAD + 0.0 into ST(O) I ESCAPE 0 0 1
1

1 1 1 0 1 1 1 0
1

11-17

FLD1 = LOAD + 1.0 into ST(O) ESCAPE 0 0 1
1

1 1 1 0 1 0 0 0
1

15-21

FLDPI = LOAD 7T into ST(O) ESCAPE 0 0 1
1

1 1 1 0 1 0 1 1 I 16-22

FLDL2T = LOAD log2 10 into ESCAPE 0 0 1 11 1
ST(O)

1 0 1 0 0 1 I 16-22

FLDL2E = LOAD log2 e into ESCAPE 0 0 1
1

1 1 1 0 1 0 1 0 1 15-21
ST(O)

FLDLG2 = LOAD 10glO 2 into
ST(O)

1
ESCAPE 0 0 1

1
1 1 1 0 1 1 0 0

1
18-24

FLDLN2 = LOAD loge2 into
1

ESCAPE 0 0 1 11 1 1 0 1 1 0 1
1

17-23
ST(O)

Arithmetic

FADD = Addition

I I [
-. -.-

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD 0 0 0 R/M DISP
1

90-120 108-143 95-125 102-137 1 . -. -.-

ST(i) and ST(O)
1

ESCAPE d P 0
1

1 1 0 0 0 ST(i)
1

70-100 (Note 1)

FSUB = Subtraction
-. -.-

Integer/Real Memory with ST(O) I ESCAPE MF 0 I MOD 1 0 R R/M [. DISP
. -!

90-120 108-143 95-125 102-137 _. -.- _I

ST(i) and ST(O) I ESCAPE d P 0 I 1 1 1 0 R R/M
1

70-100 (Note 1)

FMUL = Multiplication -. _. -.-
Integer/Real Memory with ST(O) I ESCAPE MF 0 I MOD 0 0 1 R/M [" DISP 1 110-125 130-144 112-168 124-138

1 _. _.-
ST(i) and ST(O)

1
ESCAPE d P 0

1
1 1 0 0 1 R/M

1
90-145 (Note 1)

FDIV = Division - . -. -.-
1 1 I 1

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD 1 1 R R/M DISP i 215-225 230-243 220-230 224-238 - . -. -.-
ST(i) and ST(O) 1 ESCAPE d P 0

1
1 1 1 1 R R/M I 193-203 (Note 1)

FSQRT = Square Root of ST(O) I ESCAPE 0 0 1 I 1 1 1 1 1 0 1 0 I 180-186

FSCALE = Scale ST(O) by ST(1) I ESCAPE 0 0 1 I 1 1 1 1 1 1 0 1 I 32-38

FPREM = Partial Remainder of I ESCAPE 0 0 1 I 1 1 1 1 1 0 0 0 I 15-190
ST(O) +ST(1)

FRNDINT = Round ST(O) to
1

ESCAPE 0 0 1
1

1 1 1 1 1 1 0 0 I 16-50
Integer

NOTE.
1. IfP=1 thenadd5clocks.

210920-001

A·72

inter 80287

Table 6. 80287 Extensions to the 80286 Instruction Set (cont.)

FXTRACT = Extract
Components of St(O)

FABS = Absolute Value of
ST(O)

FCHS = Change Sign of ST(O)

Transcendental

FPTAN = Partial Tangent of
ST(O)

FPATAN = Partial Arctangent
of ST(O) -;- ST(l)

F2XM1 =2ST1O)_1

FYL2X = ST(l)· Log2
IST(O)I

FYL2XP1 = ST(l)· Log2
IST(O) +11

Processor Control

FINIT = Initialize NPX

FSETPM = Enter Protected
Mode

FSTSW AX = Store Control
Word

FLDCW = Load Control Word

FSTCW = Store Control Word

FSTSW = Store Status Word

FCLEX = Clear Exceptions

FSTENV = Store Environment

FLDENV = Load Environment

FSAVE = Save State

FRSTOR = Restore State

FINCSTP = Increment Stack
Pointer

FDECSTP = Decrement Stack
Pointer

ESCAPE 0 0 1

ESCAPE 0

ESCAPE

ESCAPE 0 0 1

ESCAPE

ESCAPE

ESCAPE

@§

ESCAPE 1 1

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE 0 1

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

Optional
8,16 Bit

Displacement

1 1 1 1 0 1 0 0

1 1 1 1 0 0 1 0

0 0

1 1 0

0 0 0

0

MOD 0 RIM DISP
1
i

MOD R/M~ ~~~I~~~~:
MOD RIM DISP

1 1 0 0 1

MOD 0 RIM DISP
1

1

MOD 0 RIM I DISP 1

1 -.-.-.-.---.-

MOD RIM DISP
1

1

MOD 0 RIM
-_·_·_·_·-1

DISP _._._._._ . ..!

A-73

Clock Count Range

27-55

10-17

10-17

30-540

250-800

310-630

900-1100

700-1000

2-8

2-8

10-16

7-14

12-18

12-18

2-8

40-50

35-45

205-215

205-215

6-12

6-12

210920-001

80287

Table 6. 80287 Extensions to thp. 80286 instruction Set (cont)

FFREE = Free ST(i) ESCAPE 1 0 1 I 1 1 0 0 0 ST(i)

FNOP = No Operation ESCAPE 0 0 1 I 1 1 0 1 0 0 0 0

NOTES:
1. if mod=OO then DISP=O", disp-Iow and disp-high are absent

if mod=01 then DISP=disp-low sign-extended to 16-bits, disp-high is absent
if mod=10 then DISP=disp-high; disp-Iow
if mod=11 then rim is treated as an ST(i) field

2. if r/m=OOO then EA=(BX) + (SI) +DISP
if r/m=001 then EA=(BX) + (01) +DISP
if r/m=010 then EA=(BP) + (SI) +DISP
if r/m=011 then EA=(BP) + (01) +DISP
if r/m=100 then EA=(SI) + DISP
if r/m=101 then EA=(DI) + DISP
if r/m=110 then EA=(BP) + DISP
if r/m=111 then EA=(BX) + DISP

"except if mod=OOO and r/m=110 then EA =disp-high; disp-Iow.
3. MF= Memory Format

00-32-bit Real
01-32-bit Integer
10-64-bit Real
11-16-bit Integer

4. ST(O)= Current stack top
ST(i) ith register below stack top

5. a - Desti nation
O-Destination is ST(O)
1-Destination is ST(i)

6. P= Pop
O-No pop
1-Pop ST(O)

7. R= Reverse: When d=1 reverse the sense of R
O-Destination (op) Source
1-Source (op) Destination

8. For FSQRT: -0 .:;: ST(O) .:;: +00

For FSCALE: _215 .:;: ST(1) < +2
15

and ST(1) integer

For F2XM1: 0.:;: ST(O) .:;: 2-1

For FYL2X: 0 < ST(O) <00
-00 < ST(1) < + 00

For FYL2XP1: 0 .:;: IST(O)I < (2 - Y2)/2
-00 < ST(1) < 00

For FPTAN: 0.:;: ST(O) ':;:7T/4
For FPATAN: 0 .:;: ST(O) < ST(1) < +00

A-74

rL . k rer .', . ",n .J'

9-16

10-16

82284
CLOCK GENERATOR AND READY INTERFACE

FOR iAPX 286 PROCESSORS

• Generates System Clock for iAPX 286
Processors

• Uses Crystal or TTL Signal for Frequency
Source

• Provides Local READY and Multibus·
READY Synchronization

• 18-pin Package

• Single + 5V Power Supply

.. Generates System Reset Output from
Schmitt Trigger Input

• Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The 82284 is a clock generator/driver which provides clock signals for iAPX 286 processors and support compo­
nents. It also contains logic to supply READY to the CPU from either asynchronous or synchronous sources and
synchronous RESET from an asynchronous input with hysteresis.

RESET

RES £1 RESET

SYNCHRONIZER

Xl ARDY VCC

X2
SRDY ARDYEN

ClK ----
SRDYEN S1

EFI READY SO
Fie EFI N.C.

ARDYEN
F/C PClK

ARDY Xl RESET

X2 RES

SR-DYEN GND ClK
SRCY READY

Sl
SO PClK

Figure 2.
Figure 1. 82284 Block Diagram 82284 Pin Configuration

* Multibus is a patented bus of Intel

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are implied.

"" INTEL CORPORATION 1982 A-75
MAY 1982

ORDER NUMBER: 210453·001

82284

Table 1. Pin Description

The following pin function descriptions are for the 82284 clock generator.

Symbol Type Name and Function

ClK 0 System Clock is the signal used by the processor and support devices which must be synchro-
nous with the processor. The frequency of the ClK output has twice the desired internal pro-
cessor clock frequency. ClK can drive both TTL and MOS level inputs.

F/C I Fr~quency/Crystal Select is a strapping option to select the source for th~ ClK output. When
F/C is strapped lOW, the internal crystal oscillator drives ClK. When F/C is strapped HIGH,
the EFI input drives the ClK output.

X1, X2 I Crystal In are the pins to whic~ a parallel resonant fundamental mode crystal is attached for
the internal oscillator. When F/C is lOW, the internal oscillator will drive the ClK output at the
crystal frequency. The crystal frequency must be twice the desired internal processor clock
frequency.

EFI I External Frequency In drives ClK when the F/C input is strapped HIG,H. The EFI input fre-
quency must be twice the desired internal processor clock frequency.

PClK 0 Peripheral Clock is an output which provides a 50% duty cycle clock with 1/2 the frequency of
ClK. PlCK will be in phase with the internal processor clock following the first bus cycle after
the processor has been reset.

ARDYEN I Asynchronous Ready Enable is an active lOW input Which qualifies the ARDY input.
ARDYEN selects ARDY as the source of ready for the current bus cycle. Inputs to ARDYEN
may be applied asynchronously to ClK. Setup and hold times are given to assure a guaranteed
response to synchronous inputs,

ARDY I Asynchronous Ready is an active lOW input used to terminate the current bus cycle. The
ARDY input is qualified by ARDYEN. Inputs to ARDY may be applied asynchronously to ClK.
Setup and hold times are given to assure aguaranteedresponse to synchronous inputs.

SRDYEN I Synchronous Ready Enable is an active lOW input which qualifies SRDY. SRDYEN selects
SRDY as the source for READY to the CPU for the current bus cycle. Setup and hold times
must be satisfied for proper operation.

SRDY I Synchronous Ready is an active lOW input used to terminate the current bus cycle. The SRDY
input is qualified by the SRDYEN input. Setup and hold times must be satisfied for proper oper-
ation.

READY 0 Ready is an active lOW output which~nals~current bus cycle is to be completed. The
SRDY, SRDYEN, ARDY, ARDYEN, S1, SO and RES inputs control READY as explained later in
the READY generator section. READY is an open collector output requiring an external 300
ohm pull up resistor.

SO, S1 I Status inputs prepare the 82284 for a sUbsequent bus cycle. SO and S1 synchronize PClK to
the internal processor clock and control READY. These inputs have pullup resistors to keep
them HIGH if nothing is driving them. Setup and hold times must be satisfied for proper oper-
ation.

RESET 0 Reset is an active HIGH output which is derived from the RES input. RESET is used to force the
system into an initial state. When RESET is active, READY will be active (lOW).

RES I !!eset In is an active lOW input which generates the system reset signal RESET. Si~s to
RES may be applied asynchronously to ClK. A Schmitt trigger input is provided on RES, so
that an RC circuit can be used to provide a time delay. Setup and hold times are given to assure
a guaranteed response to synchronous inputs.

Vee System Power: + 5V power supply

GND System Ground: 0 volts

FUNCTIONAL DESCRIPTION ready synchronization logic and system reset genera­
tion logic.

Introduction

The 82284 generates the clock, ready, and reset sig­
nals required for iAPX 286 processors and support
components. The 82284 is packaged in an 18-pin DIP
and contains a crystal controlled oscillator, MOS
clock generator, peripheral clock generator, Multibus

Clock Generator

The elK output provides the basic timing control for
an iAPX 286 system. elK has output characteristics
sufficient to drive MOS devices. elK is generated by
either an internal crystal oscillator or an external
source as selected by the FIG strapping option. When

AFN-00786B

A-76

82284

F/C is lOW, the crystal oscillator drives the ClK out­
put. When FIC is HIGH, the EFI input drives the ClK
output.

The 82284 provides a second clock output (PClK) for
peripheral devices. PClK is ClK divided by two.
PClK has a duty cycle of 50% and TTL output drive
characteristics. PClK is normally synchronized to the
internal processor clock.

After reset, the PClK signal may be out of phase with
the internal processor clock. The S1 and SO signalsof .
the first bus cycle are used to synchronize PClK to
the internal processor clock. The phase of the PClK
output changes by extending its HIGH time beyond
one system clock (see waveforms). PClK is forced
HIGH whenever either SO or Sf were active (lOW) for
the two previous ClK cycles. PClK continues to os­
cillate when both SO and S1 are HIGH.

Since the phase of the internal processor clock will
not change except during reset, the phase of PClK
will not change except during the first bus cycle after
reset.

Oscillator

The oscillator circuit of the 82284 is a linear Pierce os­
cillator which requires an external parallel resonant,
fundamental mode, crystal. The output of the oscilla­
tor is internally buffered. The crystal frequency cho­
sen should be twice the required internal processor
clock frequency. The crystal should have a typical
load capacitance of 32 pF.

X1 and X2 are the oscillator crystal connections. For
stable operation of the oscillator, two loading capaci­
tors are recommended, as shown in Figure 3. The
sum of the board capacitance and loading capaci­
tance should equal the values shown. It is advisable to
limit stray board capacitances (not including the effect
of the loading capacitors or crystal capacitance) to
less than 10 pF between the X1 and X2 pins.

7 10

-L X1 ClK ClK

loa
iAPX286 D CPU or

---r- 8
X2

SUPPORT

38PFr ±10PF

82284
II COMPONENT

__ 4 --
READY READY

-= -= i F/C

Figure 3. Recommended Crystal and Ready
Connections

Reset Operation

The reset logic provides the RESET output to force
the system into a known, initial state. When the RES
input is active (lOW), the RESET output becomes ac­
tive (HIGH). RES is synchronized internally at the fail­
ing edge of ClK before generating the RESET output
(see waveforms). Synchronization of the RES
input introduces a one or two ClK delay before affect­
ing the RESET output.

At power up, a system does not have a stable V cc and
ClK. To prevent spurious activity, RES should be as­
serted until V cc and ClK stabilize at their operating
values. iAPX 286 processors and support compo­
nents also require their RESET inputs be HIGH a mini­
mum number of ClK cycles. An RC network, as
shown in Figure 4, will keep RES lOW long enough to
satisfy both needs.

Vee

10Kll
82284

RES

+

l r"
Figure 4. Typical RC RESET Timing Circuit

A Schmitt trigger input with hysteresis on RES as­
sures a single transition of RESET with an RC circuit
on RES. The hysteresis separates the input voltage
level at which the circuit output switches between
HIGH to lOW from the input voltage level at which the
circuit output switches between lOW to HIGH. The
RES HIGH to lOW input transition voltage is lower
than the RES lOW to HIGH input transition voltage.
As long as the slope of the RES input voltage remains
in the same direction (increasing or decreasing)
around the RES input transition voltage, the RESET
output will make a single transition.

Ready Operation

The 82284 accepts two ready sources for the system
ready signal which terminates the current bus cycle.
Either a synchronous (SRDY) or asynchronous'ready
(ARDY) source may be used. Each ready input has an
enable (SRDYEN and ARDYEN) for selecting the type
of ready source required to terminate the current bus
cycle. An address decoder would normally select one
of the enable inputs.

AFN-00786B

A-77

82284

READY is enabled (lOW), if either SRDY +
SRDYEN = a or ARDY + ARDYEN = a when sam­
pled by the 82284 READY generation logic. READY
will remain active for at least two ClK cycles.

The READY output has an open-collector driver al­
lowing other ready circuits to be wire or'ed with it. The
READY signal of an iAPX 286 system requires an ex­
ternal 300 ohm pull-up resistor. To force the READY
signal inactive (HIGH) at the start of a bus cycle, the
READY output floats when either S1 or SO are sam­
pled lOW at the falling edge of ClK. Two system
clock periods are allowed for the pull-up resistor to
pull the READY Signal to V1H • When RESET is active,
READY is forced active one ClK later (see wave­
forms).

Figure 5 illustrates the operation of SRDY and

Ts

ClK

PClK

SRDYEN. These inputs are sampled on the falling
edge of ClK when S1 and SO are inactive and PClK is
HIGH. READY is forced active when both SRDY and
SRDYEN are sampled as lOW.

Figure 6 shows the operation of ARDY and
ARDYEN. These inputs are sampled by an internal
synchronizer at each falling edge of ClK. The output
of the synchronizer is then sampled when PClK is
HIGH. If the synchronizer resolved both the ARDY
and ARDYEN inputs to have been lOW, READY be­
comes lOW. When both ARDY and ARDYEN have
been resolved as active, the SRDY and SRDYEN in­
puts are ignored.

READY remains active until either S1 or SO are sam­
pled lOW, or the ready inputs are sampled as inac­
tive.

V1H
ARDYEN-----------Tr-----------~------------------~----~---------

SRDYEN
+

SRDY

READY ---------'

Figure 5. Synchronous Ready Operation

A-78

AFN-007868

82284

Tc Tc

ClK

PClK

V1H
SRDYEN------------~------~----~------+-----------+r-----------r---

ARDY
+

ARDYEN

READY ---------~

Figure 6. Asynchronous Ready Operation

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias ooe to 70°C

Storage Temperature -65°C to +150oe
All Output and Supply Voltages -O.5V to + 7V

All Input Voltages -1.0V to +5.5V

Power Dissipation 1 Watt

"Notice: Stresses above those listed under "Absolute
Maxmum Ratings" may cause permanent damage to
the device. This is a stress rating only and functional
operation of the device at these or any other condi­
tions above those indicated in the operational sec­
tions of this specification is not implied. Exposure to
absolute maximum rating conditions for extended
periods may affect device reliability.

D.C. CHARACTERISTICS (T A = O°C to 70°C, V cc = 5V ± 10%)

Symbol Parameter Min. Max. Units Test Conditions

IF Forward Input Current -0.5 mA VF = 0.45V

IR Reverse Input Current 50 uA VR = 5.2SV

Vc Input Forward Clamp Voltage -1.0 V Ic = -S mA

Icc Power Supply Current 145 mA

V1l Input lOW Voltage 0.8 V

V1H Input HIGH Voltage 2.0 V

VOl,VCl Output lOW Voltage 0.45 V 10l = 5 mA

VCH ClK Output HIGH Voltage 4.0 V 10H = -1 rnA

VOH Output HIGH Voltage 2.4 V IOH = -1 rnA

V1HR RES Input HIGH Voltage 2.6 V

VIHR-VllR RES Input Hysteresis 0.25 V

C1 Input Capacitance 10 pF

AFN·00786B

A-79

intel· 82284

A.C. CHARACTERISTICS (T A = O°C to 70°C, V cc = 5V ± 10%)

Symbol Parameter Min. Max. Units Test Conditions

t1 EFI to ClK Delay 40 ns

t2 EFI lOW Time 32 ns at 1.5V

EFI HIGH Time 28
CL = 150 pF

t3 ns IOL = 5 ma

t4 ClK Period 55 500 ns

t5 ClK lOW Time 15 ns at 0.6V
See Note 1.

t6 ClK HIGH Time 20 ns at3.8V

t7 ClK Rise Time 10 ns From 1.0V to 3.5V
See Note 2.

t6 ClK Fall Time 10 ns From 3.5V to 1.0V

t9 Status Setup Time 22.5 ns

t10 Status Hold Time 0 ns

t11 SRDY+SRDYEN Setup Time 15 ns

t12 SRDY+SRDYEN Hold Time 0 ns at 0.8V and 2.0V on input

t13 ARDY+ARDYEN Setup Time 0 ns and 0.8V on ClK

t14 ARDY+ARDYEN Hold Time 16 ns

t15 RES Setup Time· 16 ns

t16 RES Hold Time 0 ns

t17 READY Inactive Delay 5 ns at 0.8V

t16 READY Active Delay 0 24 ns
CL = 150 pF
IOL = 20 mA

t19 PClK Delay 0 40 ns at 0.8V on ClK to
See Note 3.

t20 RESET Delay 0 40 ns 0.8V or 2.0V on output

t21 PClK low Time t4-12.5 ns at 0.6V
See Note 3.

t22 PClK High Time t4-12.5 ns at 3.8V

Note 1. CL = 150 pF, IOL = 5 mao With either the internal osciliatorwith the recommended crystal and load or the EFI input.

Note 2. CL = 150 pF
IOL = 5 mA

Note 3. IOL = 5 mA
CL = 75 pF

AFN·00766B

A-80

Waveforms

CLK

PCLK

SADV
+

SRDYEN

82284

ClK as a Function of EFI

EFI

CLK

NOTE: The EFI input lOW and HIGH times as shown are required to
guarentee the elK lOW and HIGH times shown.

RESET and READY Timing as a Function of RES
with S1 and SO HIGH

NOTE 1: This is an asynchronous input. The setup and hold times
shown are required to guarantee the response shown.

READY and PClK Timing with RES HIGH

NOTE 1: This is an asynchronous input. The setup and hold times
shown are required to guarantee the response shown.

A-81

AFN·00786B

inter
82288

BUS CONTROLLER
FOR iAPX 286 PROCESSORS

• Provides Commands and Control for
Local and System Bus

• Offers Wide Flexibility in System
Configurations

• Flexible Command Timing

• Optional Multibus* Compatible
Timing

• Control Drivers with 16 rna IOL and
3·State Command Drivers with
32 rna IOL

• Single + 5V Supply

The Intel 82288 Bus Controller is a 20·pin HMOS component for use in iAPX 286 microsystems. The bus
controller provides command and control outputs with flexible timing options. Separate command out·
puts are used for memory and 1/0 devices. The data bus is controlled with separate data enable and direc·
tion control Signals.

Two modes of operation are possible via a strapping option: Multibus compatible bus cycles, and high
speed bus cycles.

COMMAND READY 20 VCC
STATUS OUTPUTS

[So
INTA J

ClK 19 So

51 IORC 51 18 M/iO
M/iO IOWC 82288

M"iiil"C MCE 17 DT/R

MWTC
ALE 16 DEN

ClK MB 15 CEN/AEN
CONTROL

CONTROL OUTPUTS
INPUTS CMDlY 14 CENl

CEN/AEN DTIR]
CENl DEN MRDC 13 INTA

CMDlY ALE

READY MCE
MWTC 12 IORC

GND 11 IOWC
MB

Figure 1. 82288 Block Diagram Figure 2. 82288 Pin Diagram

'Multibus is a patented bus of Intel.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an tntel Product. No Other Circuit Patent Licenses are Implied.

(C) INTEL CORPORATION, 1982

A-83

JUNE 1982

Order Number: 210471·001

82288

Table 1. Pin Description

The following pin function descriptions are for the 82288 bus controller.

Symbol Type Name and Function

ClK I System Clock provides the basic timing control for the 82288 in an iAPX 286 micro-
system. Its frequency is twice the internal processor clock frequency. The falling edge
of this input signal establishes when inputs are sampled and command and control
outputs change.

SO, S1 I Bus Cycle Status starts a bus cycle and, along with MilO, defines the type of bus cycle.
These inputs are active lOW. A bus cycle is started when either 51 or SO is sampled
lOW at the falling edge of ClK. These inputs have pullups sufficient to hold them HIGH
when nothing drives them. Setup and hold times must be met for proper operation.

iAPX 286 Bus Cycle Status Definition

MilO S1 SO Type of Bus Cycle

0 0 0 Interrupt acknowledge
0 0 1 1/0 Read
0 1 0 110 Write
0 1 1 None; idle
1 0 0 Halt or shutdown
1 0 1 Memory read
1 1 0 Memory write
1 1 1 None; idle

MilO I Memory or 110 Select determines whether the current bus cycle is in the memory space
or 110 space. When lOW, the current bus cycle is in the I/O space. Setup and hold times
must be met for proper operation.

MB I Multibus Mode Select determines timing of the command and control outputs. When
HIGH, the bus controller operates in Multibus mode. When lOW, the bus controller
optimizes the command and control output timing for short bus cycles. The function of
the CENfAEN input pin is selected by this signal. This input is intended to be a strapping
option and not dynamically changed. This input may be connected to VCC or GND.

CENL I Command Enable Latched is a bus controller select signal which enables the bus con-
troller to respond to the current bus cycle being initiated. CENL is an active HIGH input
latched internally at the start of each bus cycle. CENL is used to select the appropriate
bus controller for each bus cycle in a system where the CPU has more than one bus it
can use. This input may be connected to VCC to select this 82288 for all transfers. No
control inputs affect CENL. Setup and hold times must be met for proper operation.

CMDLY I Command Delay allows delaying the start of a command. CMDLY is an active HIGH
input. If sampled HIGH, the command·output is not activated and CMDLY is again
sampled at the next CLK cycle. When sampled LOW the selected command is enabled.
If READY is detected LOW before the command output is activated, the 82288 will ter-
minate the bus cycle, even if no command was issued. Setup and hold times must be
satisfied for proper operation. This input may be connected to GND if no delays are re-
quired before starting a command.

READY I READY indicates the end of the current bus cycle. READY is an active LOW input.
Multibus mode requires at least one wait state to allow the command outputs to
become active. READY must be LOW during reset, to force the 82288 into the idle state.
Setup and hold times must be met for proper operation.

AFN·00787A

A-84

82288

Table 1. Pin Description (Cont.)

Symbol Type Name and Function

CEN/AEN I Command Enable/Address Enable controls the command and DEN outputs of the bus
controller. CEN/AEN inputs may be asynchronous to CLK. Setup and hold times are
given to assure a guaranteed response to synchronous inputs. This input may be con-
nected to VCC or GND.

When MB is HIGH this pin has the AEN function. AEN is an active LOW input which in-
dicates that the CPU has been granted use of a shared bus and the bus controller com-
mand outputs may exit 3-state OFF and become inactive (HIGH). AEN HIGH indicates
that the CPU does not have control of the shared bus and forces the command outputs
into 3-state OFF and DEN inacti~OW). AEN would normally be controlled by an
82289 bus arbiter which activates AEN when that arbiter owns the bus to which the bus
controller is attached.

When MB is LOW this pin has the CEN function. CEN is an unlatched active HIGH input
which allows the bus controller activate its command and DEN outputs. With MB LOW,
CEN LOW forces the command and DEN outputs inactive but does not tristate them.

ALE a Address Latch Enable controls the address latches used to hold an address stable dur-
ing a bus cycle. This control output is active HIGH. ALE will not be issued for the halt
bus cycle and is not affected by any of the control inputs.

MCE a Master Cascade Enable signals that a cascade address from a master 8259A interrupt
controller may be placed onto the CPU address bus for latching by the address latches
under ALE control. The CPU's address bus may then be used to broadcast the cascade
address to slave interrupt controllers so only one of them will respond to the interrupt
acknowledge cycle. This control output is active HIGH. MCE is only active during inter-
rupt acknowledge cycles and is not affected by any control input. Using MCE to enable
cascade address drivers requires latches which save the cascade address on the falling
edge of ALE.

DEN a Data Enable controls when data transceivers connected to the local data bus should
be enabled. DEN is an active HIGH control output. DEN is delayed for write cycles in
the Multibus mode.

DTIR a Data Transmit/Receive establishes the direction of data flow to or from the local data
bus. When HIGH, this control output indicates that a write bus cycle i~being performed.
A LOW indicates a read bus cycle. DEN is always in~ctive when DTIR changes states.
This output is HIGH when no bus cycle is active. DTIR is not affected by any of the con-
trol inputs.

10WC a I/O Write Command instructs an 1/0 device to read the data on the data bus. This com-
mand output is active LOW. The MB and CMDLY inputs control when this output
becomes active. READY controls when it becomes inactive.

10RC a 1/0 Read Command instructs an 1/0 device to place data onto the data bus. This com-
mand output is active LOW. The MB and CMDLY inputs control when this output
becomes active. READY controls when it becomes inactive.

MWTC a Memory Write Command instructs a memory device to read the data on the data bus.
This command output is active LOW. The MB and CMDLY inputs control when this out-
put becomes active. READY controls when it becomes inactive.

MRDC a Memory Read Command instructs the memory device to place data onto the data bus.
This command output is active LOW. The MB and CMDLY inputs control when this out-
put becomes active. READY controls when it becomes inactive.

INTA a Interrupt Acknowledge tells an interrupting device that its interrupt request is being
acknowledged. This command output is active LOW. The MB and CMDLY inputs con-
trol when this output becomes active. READY controls when it becomes inactive.

VCC System Power: + 5V power supply

GND System Ground: a volts

AFN·00787A

A-a5

intel' 82288

FUNCTIONAL DESCRIPTION

Introduction
The 82288 bus controller is used in iAPX 286
systems to provide address latch control, data
transceiver control, and standard level-type com­
mand outputs. The command outputs are timed
and have sufficient drive capabilities for large TTL
buses and meet all IEEE-796 requirements for
Multibus. A special Multibus mode is provided to
statisfy all address/data setup and hold time re­
quirements. Command timing may be tailored to
special needs via a CMDlY input to determine the
start of a command and READY to determine the
end of a command.

Connection to multiple buses are supported with
a latched enable input (CENl). An address
decoder can determine which, if any, bus con­
troller should be enabled for the bus cycle. This
input is latched to allow an address decoder to
take full advantage of the pipelined timing on the
iAPX 286 local bus.

Buses shared by several bus controllers are sup­
ported. An AEN input prevents the bus controller
from driving the shared bus command and data

VCH

ClK
VCl

signals except when enabled by an external bus
arbiter such as the 82289.

Separate DEN and DT/R outputs control the data
transceivers for all buses. Bus contention is
eliminated by disabling DEN before changing
DT/R. The DEN timing allows sufficient time for
tristate bus drivers to enter 3-state OFF before
enabling other drivers onto the same bus.

The term CPU refers to any iAPX 286 processor or
iAPX 286 support component which may become
an iAPX 286 local bus master and thereby drive the
82288 status inputs.

Processor Cycle Definition
Any CPU which drives the local bus uses an inter­
nal clock which is one half the frequency of the
system clock (ClK) (see Figure 3). Knowledge of
the phase of the local bus master internal clock is
required for proper operation of the iAPX 286 local
bus. The local bus master informs the bus con­
troller of its internal clock phase when it asserts
the status signals. Status signals are always
asserted in Phase 1 of the local bus master's inter­
nal clock.

Figure 3. ClK Relationship to the Processor Clock and Bus T·States

AFN-007B7A

A-86

82288

Bus State Definition
The 82288 bus controller has three bus states (see
Figure 4): Idle (T,) Status (Ts) and Command (Td.
Each bus state is two ClK cycles long. Bus state
phases correspond to the internal CPU processor
clock phases.

The T, bus state occurs when no bus cycle is cur­
rently active on the iAPX 286 local bus. This state
may be repeated indefinitely. When control of the
local bus is being passed between masters, the
bus remains in the T, state.

READY .
NEW CYCLE

Figure 4. 82288 Bus States

VCH

ClK
VCl

Bus Cycle Definition
The S1 and SO inputs signal the start of a bus cy­
cle. When either input becomes lOW, a bus cycle
is started. The Ts bus state is defined to be the two
ClK cycles during which either S1 or SO are active
(see Figure 5). These inputs are sampled by the
82288 at every falling edge of ClK. When either 51
or SO are sampled lOW, the next ClK cycle is con­
sidered the second phase of the internal CPU clock
cycle.

The local bus enters the Tc bus state after the Ts
state. The shortest bus cycle may have·one Ts state
and one Testate. longer bus cycles are formed by
repeating Tc states. A repeated Tc bus state is
called a wait state.

The READY input determines whether the current
T c bus state is to be repeated. The READY input
has the same timing and effect for all bus cycles.
READY is sampled at the end of each T e bus state
to see if it is active. If sampled HIGH, the Te bus
state is repeated. This is called inserting a wait
state. The control and command outputs do not
change during wait states.

When READY is sampled lOW, the current bus cy­
cle is terminated. Note that the bus controller may
enter the Ts bus state directly from Te if the status
lines are sampled active at the next falling edge of
ClK.

!I!//////a

Figure 5. Bus Cycle Definition

AFN·007871',

A-a?

82288

Table 2. Command and Control Outputs for Each Type of Bus Cycle

Type of MilO S1 SO
Bus Cycle

Interrupt Acknowledge 0 0 0

I/O Read 0 0 1

I/O Write 0 1 0

None; idle 0 1 1

Halt/Shutdown 1 0 0

Memory Read 1 0 1

Memory Write 1 1 0

None; idle 1 1 1

Operating Modes
Two types of buses are supported by the 82288:
Multibus and non-Multibus. When the MB input is
strapped HIGH, Multibus timing is used. In
Multibus mode, the 82288 delays command and
data activation to meet IEEE-796 requirements on
address to command active and write data to com­
mand active setup timing. Multibus mode requires
at least one wait state in the bus cycle since the
command outputs are delayed. The non-Multibus
mode does not delay any outputs and does not re­
quire wait states. The MB input affects the timing
of the command and DEN outputs.

Command and Control Outputs
The type of bus cycle performed by the local bus
master is encoded in the M/iO, 51, and SO inputs.
Different command and control outputs are ac­
tivated depending on the type of bus cycle. Table 2
indicates the cycle decode done by the 82288 and
the effect on command, DT/A, ALE, DEN, and MCE
outputs.

Command DT/R ALE,DEN MCE
Activated State Issued? Issued?

INTA LOW YES YES

10RC LOW YES NO

10WC HIGH YES NO

None HIGH NO NO

None HIGH NO NO

MRDC LOW YES NO

MWTC HIGH YES NO

None HIGH NO NO

A-88

Bus cycles come in three forms: read, write, and
halt. Read bus cycles include memory read, 110
read, and interrupt acknowledge. The timing of the
associated read command outputs (MRDC, 10RC,
and INTA), control outputs (ALE, DEN, DT/R) and
control inputs (CEN/AEN, CENL, CMDLY, MB, and
READY) are identical for all read bus cycles. Read
cycles differ only in which command output is ac­
tivated. The MCE control output is only asserted
during interrupt acknowledge cycles.

Write bus cycles activate different control and
command outputs with different timing than read
bus cycles. Memory write and 110 write are write
bus cycles whose timing for command outputs
(MWTC and 10WC), control outputs (ALE, DEN,
DT/R) and control inputs (CEN/AEN, CENL, CMDLY,
MB, and READY) are identical. They differ only in
which command output is activated.

Halt bus cycles are different because no command
or control output is activated. All control inputs are
ignored until the next bus cycle is started via '81
and SO.

AFN-00787A

82288

Figures 6-10 show the basic command and control
output timing for read and write bus cycles. Halt
bus cycles are not shown since they activate no
outputs. The basic idle-read-idle and idle-write-idle
bus cycles are shown. The signal label CMD
represents the appropriate command output for
the bus cycle. For Figures 6-10, the CMDLY input is
connected to GND and CENL to Vee. The effects of
CENL and CMDLY are described later in the sec­
tion on control inputs.

Figures 6 and 7 show non-Multibus cycles. MB is
connected to GND while CEN is connected to Vee.
Figure 6 shows a read cycle with no wait states
while Figure 7 shows a write cycle with one wait
state. The READY input is shown to illustrate how
wait states are added.

ClK

51.SO

ALE

DEN

DT/R

CMD

READY

T, Ts Tc T,

Figure 6_ Idle-Read-Idle Bus Cycles with MB = 0

T, Ts Tc Tc T,

ClK

ALE -------+J

DEN ____ ---I

VOH
DT/R -------+-----4------+-------

CMD

Figure 7_ Idle-Write-Idle Bus Cycles with MB = 0

AFN·00787A

A-89

82288

Bus cycles can occur back to back with no T, bus
states between Te and Ts. Back to back cycles do
not affect the timing of the command and control
outputs. Command and control outputs always
reach the states shown for the same clock edge
(within Ts, Te, or following bus state) of a bus cycle.

A special case in control timing occurs for back to
back write cycles with MB = O. In this case, DT/R
and DEN remain HIGH between the bus cycles (see
Figure 8). The command and ALE output timing
does not change.

Figures 9 and 10 show a Multibus cycle with
MB= 1. AEN and CMDLY are connected to GND.
The effects of CM DL Y and AEN are descri bed later
in the section on control inputs. Figure 9 shows a
read cycle with one wait state and Figure 10 shows
a write cycle with two wait states. The second wait
state of the write cycle is shown only for example
purposes and is not required. The READY input is
shown to illustrate how wait states are added.

Ts

ClK

AlE ____ ~

DEN ______ -+_~

DT/R

CMD

Tc

1ST WRITE CYCLE --I- 2ND WRITE CYCLE

~ I ~ I ~
ClK

DE~OH --+------:----+

VOH
DTiR ---;---------+-

CMD ___ ...J

Figure 8. Write·Write Bus Cycles with MB = 0

Tc

Figure 9. Idle·Read·ldle Bus Cycles with MB = 1

AFN-00787A

A-gO

82288

Ts Tc Tc Tc

ClK

ALE _____ ..J

DEN
---------------~

CMD

Figure 10. Idle·Write·ldle Bus Cycles with MB = 1

The MB control input affects the timing of the com­
mand and DEN outputs. These outputs are
automatically delayed in Multibus mode to satisfy
three requirements:

1) 50 ns minimum setup time for valid address
before any command output becomes active.

2) 50 ns minimum setup time for valid write data
before any write command output becomes ac­
tive.

3) 65 ns maximum time from when any read com­
mand becomes inactive until the slave's read
data drivers reach 3-state OFF.

Three signal transitions are delayed by MB = 1 as
compared to MB = 0:

1) The HIGH to lOW transition of the read com­
mand outputs (IORC, MRDC, and INTA) are
delayed one ClK cycle.

2) The HIGH to lOW transition of the write com­
mand outputs (IOWC and MWTC) are delayed
two ClK cycles.

3) The lOW to HIGH transition of DEN for write
cycles is delayed one ClK cycle.

A-91

Back to back bus cycles with MB = 1 do not
change the timing of any of the command or con­
trol outputs. DEN always becomes inactive be­
tween bus cycles wi!~·MB= 1.

Except for a halt or shutdown bus cycle, ALE will
be issued during the second half of Ts for any bus
cycle. ALE becomes inactive at the end of the Ts
to allow latching the address to keep it stable dur­
ing the entire bus cycle. The address outputs may
change during Phase 2 of any Tc bus state. ALE is
not affected by any control input.

Figure 11 shows how MCE is timed during inter­
rupt acknowledge (INTA) bus cycles. MCE is one
ClK cycle longer than ALE to hold the cascade
address from a master 8259A valid after the falling
edge of ALE. With the exception of the MCE con­
trol output, an INTA bus cycle is identical in tim­
ing to a read bus cycle. MCE is not affected by any
control input.

AFN·00787A

82288

Ts Tc

ClK

AlE ____ t-...J

MCE _____ -'

Figure 11. MCE Operation for an INTA Bus Cycle

Control Inputs
The control inputs can alter the basic timing of
command outputs, allow interfacing to multiple
buses, and share a bus between different
masters. For many iAPX 286 systems, each CPU.
will have more than one·bus which may be used to
perform a bus cycle. Normally, a CPU will only
have one bus controller active for each bus cycle.
Some buses may be shared by more than one CPU
(i.e. Multibus) requiring only one of them use the
bus at a time.

Systems with multiple and shared buses use two
control input signals of the 82288 bus controller,
CENL and AEN (see Figure 12). CENL enables the
bus controller to control the current bus cycle.
The AEN input prevents a bus controller from driv­
ing its command outputs. AEN HIGH means that
another bus controller may be driving the shared
bus.

In Figure 12, two buses are shown: a local bus and
a Multibus. Only one bus is used for each CPU bus
cycle. The CENL inputs of the bus controllers
select which bus controller is to perform the bus
cycle. An address decoder determines which bus
to use for each bus cycle. The 82288 connected to
the shared Multibus must be selected by CENL
and be given access to the Multibus by AEN
before it will begin a Multibus operation.

CENL must be sampled HIGH at the end of the Ts
bus state (see waveforms) to enable the bus con­
troller to activate its command and control out­
puts. If sampled LOW the coml'Dands and DEN
will not go active and DT/R will remain HIGH. The
bus controller will ignore the CMDLY, CEN, and
READY inputs until another bus cycle is started
via S1 and SO. Since an address decoder is com­
monly used to identify which bus is required for
each bus cycle, CENL is latched to avoid the need
for latching its input.

The CEN L input can affect the DEN control out­
put. When MB = 0, DEN normally becomes active
during Phase 2 of Ts in write bus cycles. This tran­
sition occurs before CENL is sampled. If CENL is
sampled LOW, the DEN output will be forced LOW
during Teas shown in the timing waveforms.

When MB = 1, CEN/AEN becomes AEN. AEN con­
trols when the bus controller command outputs
enter and exit 3-state OFF. AEN is intended to be
driven by a bus arbiter, like the 82289, which
assures only one bus controller is driving the
shared bus at any time. When AEN makes a LOW
to HIGH transition, the command outputs im­
mediately enter 3-state OFF and DEN is forced in­
active. An inactive DEN should force the local
data transceivers connected to the shared data
bus into 3-state OFF (see Figure 12). The LOW to
HIGH transition of AEN should only occur during
TI or T s bus states.

The HIGH to LOW transition of AEN signals that
the bus controller may now drive the shared bus
command signals. Since a bus cycle m~e ac­
tive or be in the process of starting, AEN can
become active during any T-state. AEN LOW im­
mediately allows DEN to go to the appropriate
state. Three CLK edges later, the command out­
puts will go active (see timing waveforms). The
Multibus requires this delay for the address and
data to be valid on the bus before the commands
become active.

When MB = 0, CEN/AEN becomes CEN. CEN is an
asynchronous input which immediately affects
the command and DEN outputs. When CEN
makes a HIGH to LOW transition, the commands

AFN·00787A

A-92

82288

and DEN are immediately forced inactive. When
CEN makes a LOW to HIGH transition, the com·
mands and DEN outputs immediately go to the
appropriate state (see timing waveforms). READY
must still become active to terminate a bus cycle
if CEN remains LOW for a selected bus controller
(CENL was latched HIGH).

riD~
Xl X2

READY
SRDY ARDY

82284 ARDYEN
SRDYEN

CMD

ADDRESS

DATA

<=
READY

CMD 82288 CLK

-
MilO

51,So

CENL

MB CEN

~ t
+5V

ADDRESS

DECODER

n
I L
I I

II
A2~0

~ CLK READY 51, So

:.-

(

~

MilO

J Ll

CLK READY MilO
51,So

80286

Some memory or 1/0 systems may require more
address or write data setup time to command ac·
tive than provided by the basic command output
timing. To provide flexible command timing, the
CMDLY input can delay the activation of com·
mand outputs. The CMDLY input must be
sampled LOW to activate the command outputs.
CMDLY does not affect the control outputs ALE,
MCE, DEN, and DT/R.

XACK

READY COMM AN OS

CLK 82288
CMD

- DEN {>o-MilO

Sl. So
DT/R - CENL ALE

MB AEN

t t
+5V

READY AEN

CLK 82289 CON
. ~

TROL

MIlO CNTL) . --
Sl,SO

SYS/RESB

/Sr~0E7
/ /
/_/ ADD RESS

1--
1--

8283
V

~

yV

~
DATA

0"0
;--- ------!.")

8287

V
"",--1.1

Figure 12. System Use of AEN and CENL

AFN·00787A

A-93

82288

CMDlY Is first sampled on the falling edge of the
ClK ending Ts. If sampled HIGH, the command
output is not activated, and CMDlY is again
sampled on the next falling edge of ClK. Once
sampled lOW, the proper command output
becomes active immediately if MB=O. If MB=1,
the proper command goes active no earlier than
shown in Figures 9 and 10.

READY can terminate a bus cycle before CMDlY
allows a command to be issued. In this case no
commands are issued and the bus controller will
deactivate DEN and DT/R in the same manner as if
a command had been issued.

Waveforms Discussion
The waveforms show the timing relationships of in­
puts and outputs and do not show all possible tran­
sitions of all signals in all modes. Instead, all
signal timing relationships are shown via the
general cases. Special cases are shown when
needed. The waveforms provide some functional
descriptions of the 82288; however, most func­
tional descriptions are provided in Figures 5
through 11.

To find the timing specification for a Signal transi­
tion in a particular mode, first look for a special
case in the waveforms. If no special case applies,
then use a timing specification for the same or
related function in another mode.

ABSOLUTE MAXIMUM RATINGS·
Ambient Temperature Under Bias O°C to 70°C
Storage Temperature - 65°C to + 150°C
Voltage on Any Pin with

Respect to G N D - 0.5V to + 7V
Power Dissipation 1 Watt

* NOTICE: Stresses above those listed under "Ab­
solute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only
and functional operation of the device at these or
any other conditions above those indicated in the
operational sections of this sp'ecification is not im­
plied. Exposure to absolute maximum rating condi­
tions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (VCC =5V ± 10%, TA = O°C to 70°C)

Symbol Parameter Min Max Units Test Conditions

ICC Power Supply Current 100 mA

IF Forward Input Current
ClK Input -1 mA VF=0.45V
Other Inputs -.5 mA VF=0,45V

IR Reverse Input Current 50 uA VR=VCC

VOL Output lOW Voltage
Command Outputs .45 V IOl=32 rnA

Control Outputs .45 V IOl=16mA

VOH Output HIGH Voltage
Command Outputs 2.4 V IOH= -5 mA
Control Outputs 2.4 V IOH= -1 rnA

Vil Input lOW Voltage -0.5 .8 V

VCl ClK Input LOW Voltage -0.5 .6 V

VIH Input HIGH Voltage 2.0 VCC+0.5 V

VCH ClK Input HIGH Voltage 3.9 VCC+0.5 V

IOFF Output Off Current 100 uA

CClK ClK Input Capacitance 10 pF

CI Input Capacitance 10 pF

AFN.(J0787A

A-94

intel' 82288

A.C. CHARACTERISTICS (VCC=5V± 10%, TA=O°C to 70°C)

Symbol Parameter Min Max Units Test Conditions
t1 ClK Period 62.5 250 ns at 1.5V
t2 ClK HIGH Time 20 235 ns at 3.9V
t3 ClK lOW Time 15 230 ns at 0.6V
t4 ClK Fall Time 10 ns 3.5V to 1.0V
t5 ClK Rise Time 10 ns 1.0V to 3.5V
t6 MilO and Status Setup Time 22.5 ns
t7 MilO and Status Hold Time 0 ns
t8 CENl Setup Time 20 ns
t9 CENl Hold Time 0 ns
tlO READY Setup Time 38.5 ns From a.BV or

t11 READY Hold Time 25 ns
2.aV on input
to a.BV on ClK

t12 CMDlY Setup Time 20 ns
t13 CMDlY Hold Time 0 ns
t14 AEN Setup Time 25 ns Note 1
t15 AEN Hold Time 0 ns Note 1
t16 ALE, MCE Active Delay 3 15 ns
t17 ALE, MCE Inactive Delay 20 ns
t18 DEN (WRITE) Inactive From CENl 35 ns
t19 DT/R lOW From ClK 20 ns From a.BV on ClK
t20 DEN (READ) Active From DT/R 10 50 ns to O.BV or 2.0V

t21 DEN (READ) Inactive Delay 3 15 ns on output

t22 DT/R HIGH From DEN Inactive 10 40 ns IOl= 16 ma
t23 DEN (WRITE) Active Delay 30 ns IOH=-1ma

t24 DEN (WRITE) Inactive Delay 3 30 ns Cl = 150 pF

t25 DEN Inactive From CEN 25 ns

t26 DEN Active From CEN 25 ns
t27 DT/R HIGH From ClK And CEN 50 ns Note 2

t28 DEN Active From AEN 30 ns

t29 Command Active Delay 3 20 ns IOl=32 ma
t30 Command Inactive Delay 3 15 ns IOH= -5 ma

t31 Command Inactive From CEN 25 ns
Cl= 300 pF
From O.BV on ClK

t32 Command Active From CEN 25 ns to O.BV or 2.0V
t33 Command Inactive Enable From AEN 40 ns on output

t34 Command Float Time 40 ns

Nole 1: AEN is a asynchronous input. AEN setup and hold time is specified to guarantee the response shown in the waveforms.

Nole 2: T27 only applies to bus cycles where MB = 0, the 82288 was selected, and DEN = 0 when the cycle terminated (because
CEN=O).

AFN·Q0787A

A-95

82288

WAVEFORMS

ClK CHARACTERISTICS

ClK

STATUS, ALE, MCE, CHARACTERISTICS

...---- Ts _----1 ___ Tc __

ClK

M/iO.S1.5ii

ALE ------_t_'

MCE ______ -----J

CENl, CMDlY, DEN CHARACTERISTICS WITH MB = 0 AND CEN = 1 DURING WRITE CYCLE

ClK

DEN ____ +__'

CENl

AFN-007B7A

A-96

82288

WAVEFORMS (Continued)

READ CYCLE CHARACTERISTICS WITH MB = 0 AND CEN = 1

Ts Tc

ClK

CMDlY

DTiR

DEN

CMD

READY

CENl

WRITE CYCLE CHARACTERISTICS WITH MB = 0 AND CEN = 1

ClK

DEN ______J

VOH-------~+--+----_4~--_+_----­
DTiR

CMDlY

CMD

CENl

AFN·00787A

A-97

82288

WAVEFORMS (Continued)

CEN CHARACTERISTICS WITH MB = 0

ClK

CEN

DEN

CMD

DT/R ____________ n ___ -+.....J

AEN CHARACTERISTICS WITH MB = 1

ClK

DEN ___ ...J

NOTE 1: AEN is an asynchronous input. AEN setup and hold time is specified to guarantee the response shown in the waveforms.

A-98 AFN-00787A

8282/8283
OCTAL LATCH

• Address Latch for iAPX 86,88, 186,
188, MCS·80®, MCS·85®, MCS·48®
Famlies

• High Output Drive Capability for
Driving System Data Bus

• Fully Parallel 8·Bit Data Register and
Buffer

• Transparent during Active Strobe

• 3·State 'Outputs

• 20·Pin Package with 0.3" Center

• No Output Low Noise when Entering
or Leaving High Impedance State

• Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The 8282 and 8283 are 8-bit bipolar latches with 3-state output buffers. They can be used to implement latches, buffers,
or multiplexers. The 8283 inverts the input data at its outputs while the 8282 does not. Thus, all of the principal periph­
eral and input/output functions of a microcomputer system can be implemented with these devices.

8282 r-------,
I .. LE:'l 1---.--10 6 ~

I
I
I

I I L ______ _

011 007

L ______ _

STB Of

Figure 1. Logic Diagrams Figure 2. Pin Configurations

A-99 AFN-00727E

Pin

STB

OE

Dlo-DI7

000-007
(8282)

000-007
(8283)

8282/8283

Table 1. Pin Description

Description

STROBE (Input). STB is an input control
pulse used to strobe data at the data input
pins (Ao-A7) into the data latches. This
signal is active HIGH to admit input data.
The data is latched at the HlGH to LOW
transition of STB.

OUTPUT ENABLE (Input). OE is an input
control signal which when active LOW'
enables the contents of the data latches
onto the data output pin (Bo-B7). OE being
inactive HIGH forces the output buffers to
their high impedance state.

DATA INPUT PINS (Input). Data presented
at these pins satisfying setup time re-
quirements when STB is strobed and
latched into the data input latches.

DATA OUTPUT PINS (Output). When OE is
true, the data in the data latches is pre-
sented as inverted (8283) or non-inverted
(8282) data onto the data output pins.

FUNCTIONAL DESCRIPTION

The 8282 and 8283 octal latches are 8-bit latches with
3-state output buffers. Data having satisfied the setup
time requirements is latched into the data latches by
strobing the STB line HIGH to LOW. Holding the STS
line in its active HIGH state makes the latches appear
transparent. Data is presented to the data output pins by
activating the OE input line. When OE is inactive HIGH
the output buffers are in their high impedance state.
Enabling or disabling the output buffers will not cause
negative-going transients to appear on the data output
bus.

AFN·00727E

A-100

8282/8283

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias O·C to 70·C
Storage Temperature - 65·C to + 150·C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages - 1.0V to + 5.5V
Power Dissipation 1 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D,C, CHARACTERISTICS (Vcc = 5V :':10%, TA = O°C to 70°C)

Symbol Parameter Min. Max. Units Test Conditions

Ve Input Clamp Voltage -1 V le=-5mA

lee Power Supply Current 160 mA

IF Forward Input Current -0.2 mA VF = 0.45V

IA Reverse Input Current 50 ~ VA = 5.25V

VOL Output Low Voltage .45 V IOl = 32 mA

VOH Output High Voltage 2.4 V IOH = -5 mA

IOFF Output Off Current ± 50 ~ VOFF = 0.45 to 5.25V

Vll Input Low Voltage 0.8 V Vee= 5.0V See Note 1

VIH Input High Voltage 2.0 V Vee= 5.0V See Note 1

F= 1 MHz
CIN Input Capacitance 12 pF VBIAS = 2.5V, Vee= 5V

TA= 25·C

NOTE:

1. Output Loading IOl = 32 mA, IOH = -5 mA, Cl = 300 pF:

A,C. CHARACTERISTICS (Vcc = 5V :':10%, TA = O°C to 70°C (See Note 2)
Loading: Outputs-IOL = 32 mA, IOH = -5 mA, CL = 300 pF')

Symbol Parameter Min. Max. Units Test Conditions

TIVOV Input to Output Delay (See Note 1)
-Inverting 5 22 ns
- Non·lnverting 5 30 ns

TSHOV STB to Output Delay
-Inverting 10 40 ns
-Non·lnverting 10 45 ns

TEHOZ Output Disable Time 5 18 ns

TELOV Output Enable Time 10 30 ns

TIVSL Input to STB Setup Time 0 ns

TSLIX Input to STB Hold Time 25 ns

TSHSL STB High Time 15 ns

TOLOH Input, Output Rise Time 20 ns From O.BV to 2.0V

TOHOL Input, Output Fall Time 12 ns From 2.0V to 0.8V

NOTE: 'Cl = 200 pF for plastic 8282/8283.
1. See waveforms and test load circuit on following page.
2. For Extended Temperature EXPRESS the Preliminary Maximum Values are TIVOV = 25 vs 22, 35 vs 30;

TSHOV = 45, 55; TEHOZ = 25; TELOV = 50.

A-101

AFN-00727E

8282/8283

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT OUTPUT

,. -v.'-""'O""-"~ 045--.7\
A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC ··1 AND O.4SV FOR
A LOGIC ··0. TIMING MEASUREMENTS ARE MADE AT 1.5V FOR BOTH A
LOGIC ··1· AND ··0: INPUT RISE AND FALL TIMES ARE MEASURED FROM
O.BV TO 2.0V AND ARE DRIVEN AT 5ns ± 2ns.

OUTPUT TEST LOAD CIRCUITS

1.SV 1.SV

33Q 180Q

OUT OUT

I300PP

3·STATE TO VOL 3·STATE TO VOH

"200 pF for plastic 8282/8283.

A-102

2.14V

S2.7Q

OUT

r'OOPF.

SWITCHING

AFN lltll~IF

8282/8283

WAVEFORMS

INPUTS

STa

f------f- TSHSL

OUTPUTS

VO:1~ ___ _

TELOV -t=
__ -+ _____ ---J 'j-l--------------......., VOL +.lV

NOTE: 1. OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION.

2. ALL TIMING MEASUREMENTS ARE MADE AT 1.5V UNLESS OTHERWISE NOTED.

50 50

8282 8283

40

0 0 w w en en
z z
> >
"" ~ -I
W W
0 0

20

10

pF LOAD

Output Delay va. Capacitance

A-103

pF LOAD

AFN·00727E

8286/8287
OCTAL BUS TRANSCEIVER

• Data Bus Buffer Driver for iAPX
86,88,186,188, MCS·80™, MCS·8S™,
and MCS·48™ Families

• High Output Drive Capability for
Driving System Data Bus

• Fully Parallel 8·Bit Transceivers

• 3·State Outputs

• 20·Pin Package with 0.3" Center

• No Output Low Noise when Entering
or Leaving High Impedance State .

• Available in EXPRESS
- Standard Temperature Range
- Extended Temperature Range

The 8286 and 8287 are 8-bit bipolar transceivers with 3-state outputs. The 8287 inverts the input data at its outputs
while the 8286 does not. Thus, a wide variety of applications for buffering in microcomputer systems can be met.

8287 r--------,
I I

8--
I
I

AO Vcc AO Vcc
A1 BO A1 SO

B1 A2 B1
A3 B2 B2

B3 B3
B4 B4
BS BS
B6 B6
B7 OE B7

GND T GND T

Figure 1. Logic Diagrams Figure 2. Pin Configurations

A-105 AFN-01S0S0

8286/8287

Table 1. Pin Description

Symbol Type Name and Function

T I Transmit: T is an input control signal used to control the direction of the transceivers. When HIGH,
it configures the transceiver's Bo-B7 as outputs with Ao-A7 as inputs. T LOW configures Ao-A7 as
the outputs with Bo-B7 serving as the inputs.

OE I Output Enable: OE is an input control signal used to enable the appropriate output driver (as
selected by T) onto its respective bus. This signal is active LOW.

Ao-A7 1/0 Local Bus Data Pins: These pins serve to either present data to or accept data from the processor's
local bus depending upon the state of the T pin.

Bo-B7(8286) 1/0 System Bus Data Pin~: These pins serve to either present data to or accept data from the system
80-87(8287) bus depending upon the state of the T pin.

FUNCTIONAL. DESCRIPTION

The 8286 and 8287 transceivers are 8-bit transceivers with
high impedance outputs. With T active HIGH and OE ac­
tive LOW, data at the Ao-A7 pins is driven onto the Bo-:B7
pins. With T inactive LOW and OE active LOW, data at the

Bo-B7 pins is driven onto the Ao-A7 pins. No output low
glitching will occur whenever the transceivers are enter­
ing or leaving the high impedance state.

AFN·01506D

A-106

8286/8287

TEST LOAD CIRCUITS

1.SV 1.SV 2.14V

~'" ~wo ~""
OUT OUT OUT . r ".". I 300 pF' r 100 pF

3·STATE TO VOL 3·STATE TO VOL SWITCHING

B OUTPUT A OUTPUT B OUTPUT

1.SV l.SV 2.28V

~,ooo ~'OOO ~"OO
OUT OUT OUT

I 300pF' r 100pF 1100 pF

3·STATE TO VOH 3·STATE TO VOH SWITCHING

B OUTPUT A OUTPUT A OUTPUT

*200 pF for plastic 8286/8287

AFN·01506D

. A-107

intel· 8286/8287

ABSOLUTE MAXIMUM RATINGS·

Temperature Under 8ias O·C to 70·C
Storage Temperature - 65·C to + 150·C
All Output and Supply Voltages - 0.5V to + 7V
All Input Voltages - 1.0V to + 5.5V
Power Dissipation 1 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (Vcc = +5V ±10%, TA= O°C to 70°C)

Symbol Parameter Min Max Units Test Conditions

Ve Input Clamp Voltage -1 V le= -5 mA

Icc Power Supply Current-8287 130 mA
-8286 160 mA

IF Forward Input Current -0.2 mA VF= 0.45V

IR Reverse Input Current 50 /-IA VR=5.25V

VOL Output Low Voltage -8 Outputs .45 V IOL = 32 mA
-A Outputs .45 V IOL = 16 mA

VOH Outpu1 High Voltage -8 Outputs 2.4 V IOH= -5 mA
-A Outputs 2.4 V IOH = -1 mA

IOFF Output Off Current IF VOFF = 0.45V

IOFF Output Off Current IR VOFF = 5.25V

VIL Input Low Voltage -A Side 0.8 V Vee = 5.0V, See Note 1
-8 Side 0.9 V Vee = 5.0V, S~e Note 1

V IH Input High Voltage 2.0 V V ce = 5.0V, See Note 1

F = 1 MHz

CIN Input Capacitance 12 pF VBIAS = 2.5V, Vee = 5V
TA= 25·C

NOTE:
1. B Outputs-IOL = 32 mA, IOH = -5 mA, CL = 300 pF·: A Outputs-IOL = 16 mA, IOH = -1 mA, CL = 100 pF.

A.C. CHARACTERISTICS (Vce = +5V ±10%, TA = O°C to 70°C) (See Note 2)

Loading: 8 Outputs-IOL = 32 mA, IOH = -5 mA, CL = 300 pF·

A Outputs-loL = 16 mA, IOH = -1 mA, CL = 100 pF

Symbol Parameter Min Max Units

TiVOV Input to Output Delay
Inverting

Non-lnvertinQ

TEHTV Transmit/Receive Hold Time

TTVEL Transmit/Receive Setup

TEHOZ Output Disable Time

TELOV Output Enable Time

TOLOH Input, Output Rise Time

TOHOL Input, Output Fall Time

CL = 200 pF for plastiC 8286/8287
NOTE:
1. See waveforms and test load circuit on following page.

5 22 ns
5 30 ns

5 ns

10 ns

5 18 ns

10 30 ns

20 ns

12 ns

2. For Extended Temperature EXPRESS the Preliminary Maximum Values are TlVOV = 25 vs 22, 35 vs 30;
TEHOZ = 25; TELOV = 50.

A-108

Test Conditions

(See Note 1)

From 0.8 V to 2.0V

From 2.0V to 8.0V

AFN-015060

intel 8286/8287

WAVEFORMS

INPUTS

f y
-------------r----------------------------~

I_T'IVOV- TEHOZ ,~ TELOV-C=
VOH - .1V

OUTPUTS \/ - - - - - -
________________ ~/\~ ____________________ _+----, VOL+.1V

--.- TEHTV--j J--TTVEL

-----~'-----

NOTE:

1. All timing measurements are made at 1.5V unless otherwise noted.

50 50

8287 8286

40

~ ~
II) II)

z z
>- >-

~ ~
c c

20

10

pF LOAD pF LOAD

Output Delay versus Capacitance

AFN·01506D

A-109

8207
ADVANCED DYNAMIC RAM CONTROLLER

• Provides All Signals Necessary to
Control 16K (2118), 64K (2164A) and
256K Dynamic RAMs

• Directly Addresses and Drives up to 2
Megabytes without External Drivers

• Supports Single and Dual-Port
Configurations

• Automatic RAM Initialization in All
Modes

• Five Programmable Refresh Modes

• Transparent Memory Scrubbing in
ECC Mode

• Supports Intel iAPX 86, 88, 186, and 286
Microprocessors

• Data Transfer' Acknowledge Signals for
Each Port

• Provides Signals to Directly Control the
8206 Error Detection and Correction Unit

• Supports Synchronous or
Asynchronous Operation on Either Port

• +5 Volt Only HMOSII Technology for
High Performance and Low Power

The Intel 8207 Advanced Dynamic RAM Controller (ADRC) is a high-performance, systems-oriented, Dynamic
RAM controller that is designed to easily interface 16K, 64K and 256K Dynamic RAMs to Intel and other
microprocessor Systems. A dual-port interface allows two different busses to independently access memory.
When configured with an 8206 Error Detection and Correction Unit the 8207 supplies the necessary logic for
designing large error-corrected memory arrays. This combination provides automatic memory initialization and
transparent memory error scrubbing.

RDA
WflA

PClLA
PEA

ROB
WAli

PClLB
ffij

RFRQ

PDI------1f------.j

ERROR

t------,/ AOo_B

Figure 1. 8207 Block Diagram

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel.
., INTEL CORPORATION, 1983. NOVEMBER 1982

ORDER NUMBER: 210463-002

A-111
APRIL 1983

8207

Table 1. Pin Description

Symbol Pin Type Name and Function

LEN 1 0 ADDRESS LATCH ENABLE: In two-port configurations, when port A is running with
iAPX 286 Status interface mode, this output replaces the ALE signal from the system
bus controller and generates an address latch enable signal which provides op-
timum setup and hold timing for the 8207.

XACKN 2 0 TRANSFER ACKNOWLEDGE PORT A/ACKNOWLEDGE PORT A: In non-ECC mode,
ACKA this pin is XACKA and indicates that data on the bus is valid during a re:dCycle or

that data may be removed from the bus during a wrile cycle for Port A. A KA is a
Multibus-compatible signal. In ECC mode, this pin is CKAwhich can be configured,
depending on the programming of the X program bit, as an XACK or AACK strobe.
The SA programming bit determines whether AACK will be early or late.

XACKB/ 3 0 TRANSFER ACKNOWLEDGE PORT B/ACKNOWLEDGE PORT B: In non-ECC mode,
ACKB this pin is XACKB and indicates that data on the bus is valid during a reXd cycle or

that data may be removed from the bus during a write cycle for Port B. ACKB is a
Multibus-compatible signal. In ECC mode, this pin is ACKB which can be configured,
depending on the programming of the X program bit, as an XACK or AACK strobe.
The SB programming bit determines whether AACK will be early or late.

AACKN 4 0 ADVANCED ACKNOWLEDGE PORT A/WRITE ZERO: In non-ECC mode, this pin is
Wi. AACKA and indicates that the processor may continue processing and that data will

be available when required. This signal is optimized for the system by programming
the SA program bit for synchronous or asynchronous operation. After a RESET, this
signal will cause the 8206 to force the data to all zeros and generate the appropriate
check bits.

AACKB/ 5 0 ADVANCED ACKNOWLEDGE PORT B/READ/WRITE: In non-ECC mode, this pin is
R/W AACKB and indicates that the processor may continue processing and that data will

be available when required. This signal is optimized for the system by programming
the SB program bit for synchronous or asynchronous operation. This signal causes
the 8206 EOCU to latch the syndrome and error flags a'nd generate check bits.

OBM 6 0 DISABLE BYTE MARKS: This is an ECC control output signal indicating that a read
or refresh cycle is occurring. This output forces the byte address decoding logic to
enable all 8206 data output buffers. In ECC mode, this output is also asserted during
memory initialization and the 8-cycle dynamic RAM wake-up exercise. In non-ECC
mode synchronous local bus systems this signal may be used as an early WE output.

ESTB 7 0 ERROR STROBE: In ECC mode, this strobe is activated when an error is detected
and allows a negative-edge triggered flip-flop to latch the status of the 8206 EOCU
CE for systems with error logging capabilities.

LOCK 8 I LOCK: This input instructs the 8207 to lock out the port not being serviced at the time
LOCK was issued.

Vee 9 I LOGIC POWER: +5 Volts ± 10%. Supplies Vee for the' internal logic circuits.
43 I DRIVER POWER: +5 Volts ± 10%. Supplies Vee for the output drivers.

CE 10 I CORRECTABLE ERROR: This is an ECC input from the 8206 EOCU which instructs
the 8207 whether a detected error is correctable or not. A high input indicates a
correctable error. A low input inhibits the 8207 from activating WE to write the data
back into RAM. This should be connected to the CE output of the 8206.

ERROR 11 I ERROR: This is an ECC input from the 8206 EOCU and instructs the 8207 that an
error was detected. This pin should be connected to the ERROR output of the 8206.

MUX/ 12 0 MULTIPLEXER CONTROL/PROGRAMMING CLOCK: Immediately after a RESET
PCLK this pin is used to clock serial programming data into the POI pin.ln normal two-port

operation, this pin is used to select memory addresses from the appropriate port.
When this signal is high, port A is selected and when it is low, port B is selected. This
signal may change state before the completion of a RAM cycle, but the RAM address
hold time is satisfied.

PSEL 13 0 PORT SELEC'f: This signal is used to select the appropriate port for data transfer.

PSEN 14 0 PORT SELECT ENABLE: This signal used in conjunction with PSEL provides
contention-free port exchange. When PSEN is low, PSEL is allowed to change state.

WE 15 0 WRITE ENABLE: This signal provides the dynamic RAM array the write enable input
for a write operation.

AFN-0221BB

A-112

8207

Table 1. Pin Description (Continued)

Symbol Pin Type Name and Function

FWR 16 I FULL WRITE: This is an ECC input signal that instructs the 8207, in an ECC configu-
ration, whether the present write cycle is normal RAM write (full write) or a RAM
partial write (read-modify-write) cycle.

RESET 17 I RESET: This signal causes all internal counters and state flip-flops to be reset and
upon release of RESET, data appearing at the POI pin is clocked in by the PCLK
output. The states of the POI, PCTLA, PCTLB and RFRO pins are sampled by RESET
going inactive and are used to program the 8207.

CASO 18 0 COLUMN ADDRESS STROBE: These outputs are used by the dynamic RAM array to
CAS1 19 0 latch the column address, present on the AOO-8 pins. These outputs are selected by
CAS2 20 0 the BSO and BS1 as programmed by program bits RBO and RB1. These outputs drive
CAS3 21 0 the dynamic RAM array directly and need no external drivers.

RASO 22 0 ROWADDRESS STROBE: These outputs are used by the dynamic RAM array to latch
RAS1 23 0 the row address, present on the AOO-8 pins. These ouptuts are selected by the BSO
RAS2 24 0 and BS1 as programmed by program bits RBO and RB1. These outputs drive the
RAS3 25 0 dynamic RAM array directly and need no external drivers.

VSS 26 I DRIVER GROUND: Provides a ground for the output drivers.
60 I LOGIC GROUND: Provides a ground for the remainder of the device.

AOO 35 0 ADDRESS OUTPUTS: These outputs are designed to provide the row and column
A01 34 0 addresses of the selected port to the dynamic RAM array. These outputs drive the
A02 33 0 dynamic RAM array directly and need no external drivers.
A03 32 0
A04 31 0
A05 30 0
A06 29 0
A07 28 0
A08 27 0

BSO 36 I BANK SELECT: These inputs are used to select one of four banks of the dynamic
BS1 37 I RAM array as defined by the program bits RBO and RB1.

ALO 38 I ADDRESS LOW: These lower-order address inputs are used to generate the row
AL1 39 I address for the internal address multiplexer.
AL2 40 I
AL3 41 I
AL4 42 I
AL5 44
AL6 45
AL7 46
AL8 47

AHO 48 ADDRESS HIGH: These higher-order address inputs are used to generate the
AH1 49 column address for the internal address multiplexer.
AH2 50
AH3 51
AH4 52
AH5 53
AH6 54
AH7 55
AH8 56

POI 57 PROGRAM DATA INPUT: This input programs the various user-selectable options in
the 8207. The PCLK pin shifts programming data into the PDI input from optional
external shift registers. This pin may be strapped high or low to a default ECC (POI =
Vee) or non-ECC (POI = Ground) mode configuration.

RFRO 58 I REFRESH REQUEST: This input is sampled on the falling edge of RESET. If it is high
at RESET, then the 8207 is programmed for internal refresh request or external
refresh request with failsafe protection. If it is low at RESET, then the 8207 is
programmed for external refresh without failsafe protection or burst refresh. Once
programmed the RFRO pin accepts signals to start an external refresh with failsafe
protection or external refresh without failsafe protection or a burst refresh.

AFN-02218B

A-113

8207

Table 1. Pin Description (Continued)

Symbol Pin Type Name and Function

ClK' 59 I CLOCK: This input provides the basic timing for sequencing the internal logic.

RDB 61 I READ FOR PORT B: This pin is the re!9 memory request command input for port B.
This input also directly accepts the S1 status line from Intel processors.

WRB 62 I WRITE FOR PORT B: This pin is the write memory request command input for port B.
This input also directly accepts the SO status line from Intel processors.

PEB 63 I PORT ENABLE FOR PORT B: This pin serves to enable a RAM cycle request for port
B. It is generally decoded from the port address.

PCTlB 64 I PORT CONTROL FOR PORT B: This pin is sampled on the falling edge of RESET. It
configures port Btoaccept command inp'uts or processor status inputs. If low after
RESET, the 8207 is programmed to accept command or iAPX 286 status inputs or
Multibus commands. If high after RESET, the 8207 is programmed to accept status
inputs from iAPX 86 or iAPX 186 processors. The S2 status line should be connected
to. this input if programmed to accept iAPX 86 or iAPX 186 status inputs. When
programmed to accept commands or iAPX 286 status, it should be tied low or it may
be used as a Multibus-compatible inhibit signal.

RDA 65 I READ FOR PORT A: This pin is the re!9 memory request command input for port A.
This input also directly accepts the S1 status line from Intel processors.

WRA 66 I WRITE FOR PORT A: This pin is the w!!!.e memory request command input for port A.
This input also directly accepts the SO status line from Intel processors.

PEA 67 I PORT ENABLE FOR PORT A: This pin serves to enable a RAM cycle request for port
A. It is generally decoded from the port address.

PCTlA 68 I PORT CONTROL FOR PORT A: This pin is sampled on the falling edge of RESET. It
configures port A to accept command inputs or processor status inputs. If low after
RESET, the 8207 is programmed to accept command or iAPX 286 status inputs or
Multibus commands. If high after RESET, the 8207 is programmed to accept status
inputs from iAPX 86 or iAPX 186 processors. The S2 status line should be connected
to this input if programmed to accept iAPX 86 or iAPX 186 status inputs. When
programmed to accept commands or iAPX 286 status, it should be tied low or it may
be connected to INHIBIT when operating with Multibus.

GENERAL DESCRIPTION FUNCTIONAL DESCRIPTION

The Intel 8207 Advanced Dynamic. RAM Controller
(ADRC) is a microcomputer peripheral device which
provides the necessary signals to address, refresh
and directly drive 16K, 64K and 256K dynamic RAMs.
This controller also provides the necessary arbitra­
tion circuitry to support dual-port access of the
dynamic RAM array.

Processor Interface

The 8207 has control circuitry for two ports each
capable of supporting one of several possible bus
structures. The ports are independently configur­
able allowing the dynamic RAM to serve as an inter­
face between two different bus structures. The ADRC supports several microprocessor inter­

face options including synchronous and asynchro­
nous connection to iAPX 86, iAPX 88, iApX 186, iAPX
286 and Multibus.

This device may be used with the 8206 Error Detec­
tion and Correction Unit (EDCU). When used with the
8206, the 8207 is programmed in the Error Checking
and Correction (ECG) mode. In this mode, the 8207
provides all the necessary control signals for the
8206 to perform memory initialization and transpar­
ent error scrubbing during refresh.

Each port Of the 8207 may be programmed to run
synchronous or asynchronous to the processor
clock. (See Synchronous/Asynchronous Mode) The
8207 has been optimized to run synchronously with
Intel's iAPX 86, iAPX 88, iAPX 186 and iAPX 286.
When the 8207 is programmed to run in asynchro­
nous mode, the 8207 inserts the necessary synchro-

. nization circLJitry for the RD, WR, PE, and PCTl
inputs.

AFN-0221B8

A-114

8207

The 8207 can also decode the status lines directly
from the iAPX 86, iAPX 88, iAPX 186 and the iAPX 286
or can be programmed to receive read or write Multi­
bus commands or commands from a bus controller.
(See Status/Command Mode)

The 8207 may be programmed to accept the clock of
the iAPX 86, 88, 186, or 286. The 8207 adjusts its

_ClK
1------.lWR
1------.1 RD
1-------.1 PCTl

fiE 8207

Slow-Cycle SynchronOUS-Status Interface

Slow-Cycle Synchronous-Command Interface

internal timing to allow for the different clock fre­
quencies of these microprocessors. (See Micropro­
cessor Clock Frequency Option)

Figure 2 shows the different processor interfaces to
the 8207 using the synchronous or asynchronous
mode and status or command interface.

Slow-Cycle Asynchronous-Status Interface

Slow-Cycle Asynchronous-Command Interface

Figure 2A. Slow-cycle Port Interfaces Supported by the 8207

AFN-02218B

A-115

8207

_ClK
~--------------~WR
~--------------~RD

.-------~lEN

fiE 8207

Fast-Cycle Synchronous-Status Interface

SYNCHRONOUS 80286

Fast-Cycle Synchronous-Command Interface

Fast-Cycle Asynchronous-Status Interface

NOTE:
1 lATCH NOT REQUIRED IN SINGLE-PORT MODE.

Fast-Cycle Asynchronous-Command Interface

Figure 28. Fast-cycle Port Interfaces Supported by the 8207

Dual-Port Operation

The 8207 provides for two-port operation. Two inde­
pendent processors may access memory controlled
by the 8207. The 8207 arbitrates between each of the
processor requests and directs data to or from the
appropriate port. Selection is done on a priority con­
cept that reassigns priorities based upon past his­
tory_ Processor requests are internally queued.

Figure 3 shows a dual-port configuration with two
iAPX 86 systems interfacing to dynamic RAM. One of
the processor systems is interfaced synchronously
using the status interface and the other is interfaced
asynchronously also using the status interface.

Dynamic RAM Interface

The 8207 is capable of addressing 16K, 64K and 256K
dynamic RAMs. Figure 4 shows the connection of the
processor address bus to the 8207 using the different
RAMs. The 8207 directly supports the 2118 RAM
family or any RAM with similar timing requirements
and responses including the Intel 2164A RAM.

The 8207 divides memory into four banks, each bank
having its own Row (RAS) and Column (CAS) Ad­
dress Strobe pair. This organization permits RAM
cycle interleaving and permits error scrubbing dur­
ing ECC refresh cycles. RAM cycle interleaving over­
laps the start of the next RAM cycle with the RAM
Precharge period of the previous cycle. Hiding the

AFN-02218B

A-116

!
......
-.....I

8284A* ~ ~ I OTHER liCK INPUTS
MEMORY MEMORY

. (UPPER) . I (lOWER)

WE 01 DO IWE 01 DO

ALES 8288- DEN

DT/R
ClK AACKA. AOos RASa.,

CASo.,

~II u~
r4 ~ 1'-----------'

8284A*

E
ClK

I ~
ARDY READY

ClK

- I

~~
ffi~

S2 Sl SO
~

.~'"'' ::1 I II III J:2' 8207 W'~ AACKB

PCTlB

ROB

~
ClK READY

L-------------------------~--_r~~--i_t_----~~
-----.~~--~------+-r_----_i~

NOTE

80861
80186

WRB

PSEN PSEl

~I---

I I I 1 J'E sTBI U
8283

L::1T
......

80861
80186

rv1 ADDRIDATA

..

II
:.

! !

L~OE STB . ·lEXTENDED MEMORY USING STATUS .

~. • • _ . PORT A-SYNCHRONOUS;

~==================;~=====~~~= l~~H PORT B-ASYNCHRONOUS 16

STB OE
OE STB

'" I I II
(. ./1 l~~~H ~

'--

'THESE COMPONENTS ARE NOT NECESSARY WHEN USING THE 80186 COMPONENTS. THESE FUNCTIONS ARE PROVIDED DIRECTLY BY THE 80186.

Figure 3. 8086/80186 Dual Port System _

t

C)
I\)
o

~
{8)

~
~
©
[ffii]

~
c:uu
©
~
~
~
SI
©
~

inter 8207

A12-A20 All-A18 Al0-A16

8207 8207 8207

A3-All ALO-AL8 A3-Al0 A3-A9

Al,A2 Al,A2 BSO, BSl Al,A2 BSO, BSl

256K RAM INTERFACE 64K RAM INTERFACE 16K RAM INTERFACE

NOTES:
[1) UNASSIGNED ADDRESS INPUT PINS SHOULD BE STRAPPED HIGH OR LOW.
[2) AO ALONG WITH BHE ARE USED TO SELECT A BYTE WITHIN A PROCESSOR WORD.
[3) LOWORDER ADDRESS BITS ARE USED AS BANK SELECT INPUTS SO THAT CONSECUTIVE MEMORY ACCESS REQUESTS

ARETO ALTERNATE BANKS ALLOWING BANK INTERLEAVING OF MEMORY CYCLES.

Figure 4. Processor Address Interface to the 8207 Using 16K, 64K, and 256K RAMS

precharge period of one RAM cycle behind the data
access period of the next RAM cycle optimizes
memory bandwidth and is effective as long as suc­
cessive RAM cycles occur in alternate banks.

Successive data access to the same bank will cause
the 8207 to wait for the precharge time of the previ~
ous RAM cycle.

If not all RAM banks are occupied, the 8207 reassigns
the RAS and CAS strobes to allow using wider data
words without increasing the loading on the RAS
and CAS drivers. Table 2 shows the bank selection
decoding and the word expansion, including RAS
and CAS assignments. For exam'ple, if only two RAM
banks are occupied, then two RAS and two CAS
strobes are activated per bank.

The 8207 can interface to fast (e.g., 2118-10) or slow
(e.g., 2118-15) RAMs. The 8207 adjusts and optimizes
internal timings for either the fast or slow RAMs as
programmed. (See RAM Speed Option)

Memory Initialization
After programming, the 8207 performs eight RAM
"warm-up" cycles to prepare the dynamic RAM for
proper device operation and, if configured for opera­
tion with error correction, the 8207 and 8206 EDCU
will proceed to initialize all of memory (memory is
written with zeros with corresponding check bits).

A-118

Program
Bits

RB1 RBO

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

Table 2.
Bank Selection Decoding and

Word Expansion

Bank
Input

BS1 BSe RAS/CAS Pair Allocation

0 0 RASo_3, CASO_3 to Bank 0

0 1 Bank 1 unoccupied

1 0 Bank 2 unoccupied

1 1 Bank 3 unoccupied

0 0 RASo,1, CASO,1 to Bank 0

0 1 RAS2,3, CAS2,3 to Bank 1

1 0 Bank 2 unoccupied

1 1 Bank 3 unoccupied

0 0 RASo, CASo to Bank 0

0 1 RAS1, CAS1 to Bank 1

1 0 RAS2, CAS2 to Bank 2

1 1 Bank 3 unoccupied

0 0 RASo, CASo to Bank 0

0 1 RAS1, CAS1 to Bank 1

1 0 RAS2, CAS2 to Bank 2

1 1 RAS3, CAS3 to Bank 3

AFN-02218B

8207

Because the time to initialize memory is fairly long,
the 8207 may be programmed to skip initialization in
ECC mode. The time required to initialize all of
memory is dependent on the clock cycle time to the
8207 and can be calculated by the following
equation:

eq.1 TINIT = (~3) TCY

if Tcy = 125 ns then TINIT = 1 sec.

8206 ECC Interface

For operation with Error Checking and Correction
(ECC), the 8207 adjusts its internal timing and
changes some pin functions to optimize perfor­
mance and provide a clean dual-port memory inter­
face between the 8206 EDCU and memory. The 8207
directly supports a master-only (16-bit word plus 6
check bits) system. Under extended operation and
reduced clock frequency, the 8207 will support any
ECC master-slave configuration up to 80 data bits,
which is the maximum set by the 8206 EDCU. (See
Extend Option)

Correctable errors detected during memory read
cycles are corrected immediately and then written
back into memory.

In a synchronous bus environment, ECC system per­
formance has been optimized to enhance processor
throughput, while in an asynchronous bus environ­
ment (the Multibus), ECC performance has been op­
timized to get valid data onto the bus as quickly as
possible. Performance optimization, processor
throughput or quick data access may be selected via
the Transfer Acknowledge Option.

The main difference between the two ECC im­
plementations is that, when optimized for processor
throughput, RAM data is always corrected and an
advanced transfer acknowledge is issued at a point
when, by knowing the processor characteristics,
data is guaranteed to be valid by the time the proces­
sor needs it.

When optimized for quick data access, (valid for Mul­
tibus) the 8206 is configured in the uncorrecting
mode where the delay associated with error correc­
tion circuitry is transparent, and a transfer acknowl­
edge is issued as soon as valid data is known to exist.
If the ERROR flag is activated, then the transfer ac­
knowledge is delayed until after the 8207 has instruc­
ted the 8206 to correct the data and the corrected
data becomes available on the bus. Figure 5 il­
lustrates a dual-port ECC system.

Figure 6 illustrates the interface required to drive the
CRCT pin of the 8206, in the case that one port (PORT
A) receives an advanced acknowledge (not Multibus­
compatible), while the other port (PORT B) receives
XACK (which is Multibus-compatible).

Error Scrubbing

The 8207/8206 performs error correction during
refresh cycles (error scrubbing). Since the 8207 must
refresh RAM, performing error scrubbing during
refresh allows it to be accomplished without addi­
tional performance penalties.

Upon detection of a correctable error during refresh,
the RAM refresh cycle is lengthened slightly to per­
mit the 8206 to correct the error and for the corrected
word to be rewritten into memory. Uncorrectable er­
rors detected during scrubbing are ignored.

Refresh

The 8207 provides an internal refresh interval coun­
ter and a refresh address counter to allow the 8207 to
refresh memory. The 8207 will refresh 128 rows every
2 milliseconds or 256 rows every 4 milliseconds,
which allows all RAM refresh options to be sup­
ported. In addition, there exists the ability to refresh
256 row address locations every 2 milliseconds via
the Refresh Period programming option.

The 8207 may be programmed for any of five differ­
ent refresh options: Internal refresh only, External
refresh with failsafe protection, External refresh
without failsafe protection, Burst Refresh mode, or
no refresh. (See Refresh Options)

It is possible to decrease the refresh time interval by
10%, 20% or 30%. This option allows the 8207 to
compensate for reduced clock frequencies. Note
that an additional 5% interval shortening is built-in in
all refresh interval options to compensate for clock
variations and non-immediate response to the inter­
nally generated refresh request. (See Refresh Period
Options)

External Refresh Requests after RESET

External refresh requests are not recognized by the
8207 until after it is finished programming and pre­
paring memory for access. Memory preparation in­
cludes 8 RAM cycles to prepare and ensure proper

AFN-02218B

A-119

!
I\)
o

DT/R B

DEN B

ACKB

CMD/PEB

ADDR B

CMD/PEA

ADORA

ACKA

DEN A

DT/RA

.eK. ~~ 11--------- - DYNAMIC

r I K 8207 01 CBI CBO

--I~~---1-h MUX WZ ~ -- h
--~-~-J ClK>--- ClK PSEN -.J I ~===~==============~=:~ - CE >- I--_-L-______ ~

ERROR L >- I---~------~ ERROR

I--- _ / ADDR DB~ -- I I- f---< OVERRIDE
I v R/W __

- ACKA FWR PSEl L ~ '7 ,,'7 '7 - " V 11 rG= R/WERROR SY/CB cr:ll A R/W CE SYNC 01

------"'1/ ECC PPI k''-L-- PPO ECC

I
f MASTER 'I -- SLAVE

I
CRCT 8206 - ~ CRCT 8206

- _ ~ eM WDI/DO WR WR WDi/DO

- , '7 _ • .---+---+-f-' I v ~ neM D
~ ~ ~~

~x~~ f-~ ~X~~ t== 111 1;:"
DECODER f-n/ lATCH f-- ~ 1 I

t=== 7 '

~ ~ 17~ I

L-~----------t------ri-t=F~=====~~=r~ OE XCVR ~ ,

TIDT/R ~
PORT A I L PORT B I

Figure 5. Two-Port ECC Implementation Using the 8207 and the 8206

i

(X)
N o

~
19
~
~
©
!Ml

~
"li1l
©
2EJ
~
~
SJ
©
~

The differentiated reset pulse would be shorter than
the system reset pulse by at least the programming

8207

PSEL.-.-----,

8206 period required by the 8207. The differentiated reset
pulse first resets the 8207, and system reset would
reset the rest of the system. While the rest of the

R/W

~ system is still in reset, the 8207 completes its pro­
gramming. Figure 7 illustrates a circuit to ac­
complish this task.

Figure 6. Interface to 8206 CRCT Input When Port
A Receives AACK and Port B Receives
XACK

dynamic RAM operation, and memory initialization if
error correction is used. Many dynamic RAMs re­
quire this warm-up period for proper operation. The
time it takes for the 8207 to recognize a request is
shown below.

eq.2 Non-ECC Systems: TRESP = TpROG +
TpREP

eq.3 where: TpROG = (66) (Tey) which is pro-
gramming time

eq.4 TpREP = (8) (32) (Tey) which is the
RAM warm-up time

if Tey = 125 ns then TRESP = 41 us

eq.5 ECC Systems: TRESP = TpROG + TpREP +
TINIT

if Tey = 125 ns then TRESP = 1 sec

RESET

RESET is an asynchronous input, the falling edge of
which is used by the 20 to directly sample the logic
levels of the PCTlA, PCTlB, RFRO, and POI inputs.
The internally synchronized falling edge of RESET is
used to begin programming operations (shifting in
the contents of the external shift register into the POI
input).

Until programming is complete the 8207 registers
but does not respond to command or status inputs. A
simple means of preventing commands or status
from occurring during this period is to differentiate
the system reset pulse to obtain a smaller reset pulse
for the 8207. The total time of the reset pulse and the
8207 programming time must be less than the time
before the first command in systems that alter the
default port synchronization programming bits
(default is Port A synchronous, Port B asynchro­
nous). Oifferentiated reset is unnecessary when the
default port synchronization programming is used.

A-121

Within four clocks after RESET goes active, all the
8207 outputs will go high, except for PSEN, WE, and
AOO-8, which will go low.

OPERATIONAL DESCRIPTION

Programming the 8207

The 8207 is programmed after reset. On the falling
edge of RESET, the logic states of several input pins
are latched internally. The falling edge of RESET
actually performs the latching, which means that the
logic levels on these inputs must be stable prior to
that time. The inputs whose logic levels are latched at
the end of reset are the PCTlA, PCTlB, REFRO, and
POI pins. Figure 8 shows the necessary timing for
programming the 8207.

SYST~ L
RESET I 1-11----.,.~1
820~ln

RESEIT..!.J ,'--_______ _

11 PROGRAMMING TIME OF 8207

DIFFERENTIATED RESET

NOTES:
111REQUIRED ONLY WHEN THE PORT SYNCHRONIZATION
OPTIONS (SA & SB) ARE ALTERED FROM THEIR INITIAL DEFAULT
VALUES.
121vcc MUST BE STABLE BEFORE SYSTEM RESET IS ACTIVATED
WHEN USING THIS CIRCUIT

Figure 7. 8207 Differentiated Reset Circuit

AFN·02218B

8207

ClK

-:,..1,:...-:-______ --.�1, :-
RESET--" ~~ _______ ~~--~~------------------------------~--_

.--:...1 ______ -.--______________ ----!.,113:--- 1 --:13:-
~~~~ __ ~1t~41-.-~7 12 _______ \~,~.:--~t,..----~\~----~1 \~----~~ 

PDI====* _______________ P_D_IO ______________ ~X~ ___ PD_11 __ ~X~ ____ ~PD~12~ __ ~X== 

NOTES: 
I,-RESET IS AN ASYNCHRONOUS INPUT IF RESET OCCURS BEFORE I" THEN IT IS GUARANTEED TO BE RECOGNIZED. 
12-MINIMUM PDI VALID TIME PRIOR TO CLOCK EDGE THAT RECOGNIZES END OF RESET 
13 -MUX/PCLK DELAY 
14 -PSYNCHRONOUS LOAD DATA PROPAGATION DELAY 

Figure 8. Timing Illustrating External Shift Register Requirements for Programming the 8207 

Status/Command Mode 

The two processor ports of the 8207 are configured 
by the states of the PCTlA and PCTlB pins. Which 
interface is selected depends on the state of the 
individual port's PCTl pin at the end of reset. If PCTl 
is high at the end of the reset, the 8086 Status inter­
face is selected; if it is low, then the Command inter­
face is selected. 

The status lines of the 80286 are similar in code and 
timing to the Multibus command lines, while the 
status code and timing of the 8086 and 8088 are, 
identical to those of the 80186 (ignoring the differ­
ences in clock duty cycle). Thus there exists two 
interface configurations, one for the 80286 status or 
Multibus memory commands, which is called the 
Command interface, and one for 8086,8088 or 80186 
status, called the 8086 Status interface. The Com­
mand interface can also directly interface to the 
command lines of the bus controllers for the 8086, 
8088, 80186 and the 80286. 

The 8086 Status interface allows direct decoding of 
the status of the iAPX 86, iAPX 88, and the iAPX 186. 
Table 3 shows how the status lines are decoded. 
While in the Command mode the iAPX 286 status can 
be directly decoded. Microprocessor bus controller 
read or write commands or Multibus commands can 
also be directed to the 8207 when in Command 
mode. 

Refresh Options 

Immediately after system reset, the state of the 
REFRQ input pin is examined. If REFRQ is high, the 
8207 provides the user with the choice between self­
refresh or user-generated refresh with failsafe pro­
tection. Failsafe protection guarantees that if the 

A-122 

Table 3A. Status Coding of 8086,80186 and 80286 

Status Code Function 

S2 S1 SO 8086/80186 80286 

0 0 0 INTERRUPT INTERRUPT 

0 0 1 I/O READ I/O READ 

0 1 0 I/O WRITE I/O WRITE 

0 1 1 HALT IDLE 

1 0 0 INSTRUCTION 
FETCH, HALT 

1 0 1 MEMORYREAD MEMORY READ 

1 1 0 MEMORY WRITE MEMORY WRITE 

1 1 1 IDLE IDLE 

Table 3B. 8207 Response 

8207 
Command Function. 

8086/80186 80286/Status or 
-- Status Command 

PCTl RD WR Interface Interface 

0 0 0' IGNORE IGNORE 

0 0 1 IGNORE READ 

0 1 0 IGNORE WRITE 

0 1 1 IGNORE IGNORE 

1 0 0 READ IGNORE 

1 0 1 READ INHIBIT 

1 1 0 WRITE INHIBIT 

1 1 1 IGNORE IGNORE 

AFN-02218B 



8207 

user does not come back with another refresh re­
quest before the internal refresh interval counter 
times out, a refresh request will be automatically 
generated. If the REFRQ pin is low immediately after 
a reset, then the user has the choice of a single 
external refresh cycle without failsafe, burst refresh 
or no refresh. 

Internal Refresh Only 

For the 8207 to generate internal refresh requests, it 
is necessary only to strap the REFRQ input pin high. 

External Refresh with Failsafe 

To allow user-generated refresh requests with fail­
safe protection, it is necessary to hold the REFRQ 
input high until after reset. Thereafter, a low-to-high 
transition on this input causes a refresh request to be 
generated and the internal refresh interval counter 
to be reset. A high-to-Iow transition has no effect on 
the 8207. A refresh request is not recognized until a 
previous request has been serviced. 

External Refresh without Failsafe 

To generate single external refresh requests without 
failsafe protection, it is necessary to hold REFRQ low 
until after reset. Thereafter, bringing REFRQ high for 
one clock period causes a refresh request to be 
generated. A refresh request is not recognized until a 
previous request has been serviced. 

Burst Refresh 

Burst refresh is implemented through the same pro­
cedure as a single external refresh without failsafe 
(Le., REFRQ is kept low until after reset). Thereafter, 
bringing REFRQ high for a least two clock periods 
causes a burst of 128 row address locations to be 
refreshed. 

In EGG-configured systems, 128 locations are scrub­
bed. A burst refresh request is not recognized until a 
previous request has been serviced. 

No Refresh 

It is necessary to hold REFRQ low until after reset. 
This is the same as programming External Refresh 
without Failsafe. No refresh is accomplished by 
keeping REFRQ low. 

A-123 

Option Program Data Word 

The program data word consists of 16 program data 
bits, PDO-PD15. If the first program data bit PDO is 
set to logic 1, the 8207 is configured to support EGG. 
If it is logic 0, the 8207 is configured to support a 
non-EGG system. The remaining bits, PD1-PD15, 
may then be programmed to optimize a selected 
configuration. Figures 9 and 10 show the Program 
word for non-EGG and EGG operation. 

Using an External Shift Register 

The 8207 may be configured to use an external shift 
register with asynchronous load capability such as a 
74LS165. The reset pulse serves to parallel load the 
shift register and the 8207 supplies the clocking sig­
nal to shift the data in. Figure 11 shows a sample 
circuit diagram of an external shift register circuit. 
Serial data is shifted into the 8207 via the POI pin (57), 
and clock is provided by the MUX/PGLK pin (12), 
which generates a total of 16 clock pulses. After 
programming is complete, data appearing at the in­
put of the POI pin is ignored. MUX/PGLK is a dual­
function pin. During programming, it serves to clock 
the external shift register, and after programming is 
completed, it reverts to a MUX control pin. As the pin 
changes state to select different port addresses, it 
continues to clock the shift register. This does not 
present a problem because data at the POI pin is 
ignored after programming. Figure 8 illustrates the 
timing requirements of the shift register circuitry. 

ECC Mode (ECC Program Bit) 

The state of POI (Program Data In) pin at reset deter­
mines whether the system is an EGC or non-EGG 
configuration. It is used internally by the 8207 to 
begin configuring timing circuits, even before pro­
gramming is completely finished. The 8207 then 
begins programming the rest of the options. 

Default Programming Options 

After reset, the 8207 serially shifts in a program data 
word via the POI pin. This pin may be strapped either 
high or low, or connected to an external shift register. 
Strapping POI high causes the 8207 to default to a 
particular system configuration with error correc­
tion, and strapping it low causes the 8207 to default 
to a particular system configuration without error 
correction. Table 4 shows the default configurations. 

AFN·02218B 



intel' 8207 

PD15 PD8 PD7 PD~ 

o I o ITM 1115PR I FFS I EXT PLSI CIO I CI1j RBiJrn] RFSI CFsl SB I SA I 0 

PROGRAM 
DATA BIT NAME POLARITY/FUNCTION 

PD~ ECC ECC=O FOR NON·ECC MODE 

PD1 SA SA=O PORTA IS SYNCHRONOUS 
SA=1 PORT A IS ASYNCHRONOUS 

PD2 SB SB=O PORT B IS ASYNCHRONOUS 
SB=1 PORT B IS SYNCHRONOUS 

PD3 CFS CFS=O FAST·CYCLE iAPX 286 MODE 
CFS=1 SLOW·CYCLE IAPX 86 MODE 

PD4 RFS RFS=O FAST RAM 
RFS=1 SLOW RAM 

PD5 RBO RAM BANK OCCUPANCY 
PD6 RB1 SEE TABLE 2 

PD7 CI1 COUNT INTERVAL BIT 1; SEE TABLE 6 

PD8 CIO COUNT INTERVAL BIT 0; SEE TABLE 6 

PD9 PLS PLS=O LONG REFRESH PERIOD 
PLS=1 SHORT REFRESH PERIOD 

PD10 EXT EXT=O NOT EXTENDED 
EXT EXT=1 EXTENDED 

PD11 FFS FFS=O FAST CPU FREQUENCY 
FFS=1 SLOW CPU FREQUENCY 

PD12 PPR PPR=O MOST RECENTLY USED PORT 
PRIORITY 

PPR=1 PORT A PREFERRED 
PRIORITY 

PD13 TM1 TM1=0 TEST MODE 1 OFF 
TM1=1 TEST MODE 1 ENABLED 

PD14 0 RESERVED MUST BE ZERO 

PD15 0 RESERVED MUST BE ZERO 

Figure 9. Non-ECC Mode Program Data Word 

PD15 PD8 PD7 PD~ 

TM:!I RB11 RBO I PPR I FFS I EXT PLsl CIO I Ci1] XB I XA I RFSI CFSJSS I SAl 1 

PROGRAM 
DATA BIT NAME POLARITY/FUNCTION 

PD~ ECC ECC=1 ECC MODE 

PD1 SA SA=O PORT A ASYNCHRONOUS 
SA=1 PORT A SYNCHRONOUS 

PD2 SB SB=O PORT B SYNCHRONOUS 
SB=1 PORT B ASYNCHRONOUS 

PD3 CFS CFS=O SLOW·CYCLE IAPX 86 MODE 
CFS=1 FAST·CYCLE iAPX 286 MODE 

PD4 RFS RFS=O SLOW RAM 
RFS=1 FAST RAM 

PD5 XA XA=O MULTIBUS·COMPATIBLE 
ACKA 

XA=1 ADVANCED ACKA NOT 
MULTI BUS-COMPATIBLE 

PD6 XB XB=O ADVANCED ACKB NOT 
MULTI BUS COMPATIBLE 

XB=1 MULTI BUS-COMPATIBLE 
ACKB 

PD7 CI1 COUNT INTERVAL BIT 1; SEE TABLE 6 

PD8 CiO COUNT INTERVAL BIT 0; SEE TABLE 6 

PD9 PLS PLS=O SHORT REFRESH PERIOD 
PLS=1 LONG REFRESH PERIOD 

PD10 EXT EXT=O MASTER AND SLAVE EDCU 
EXT=1 MASTER EDCU ONLY 

PDn FFS FFS=O SLOW CPU FREQUENCY 
FFS=1 FAST CPU FREQUENCY 

PD12 PPR PPR=O PORT A PREFERRED 
PRIORITY 

PPR=1 MOST RECENTLY USED PORT 
PRIORITY 

PD13 RBO RAM BANK OCCUPANCY 
PD14 RB1 SEE TABLE 2 

PD15 TM2 TM2=0 TEST MODE 2 ENABLED 
TM2=1 TEST MODE 2 OFF 

Figure 10. ECC Mode Program Data Word 

AFN·02218B 

A-124 



sriil~f >------.--------.1 RESET 

...--------l PCLK 

8207 

POI 

-_ ... 1 J_UMPER OPTIONS 

Figure 11. External Shift Register Interface 

Table 4A. 
Default Non-ECC Programming, POI Pin (57) 

Tied to Ground. 

Port A is Synchronous 

Port B is Asynchronous 

Fast-cycle Processor Interface 

Fast RAM 

Refresh Interval uses 236 clocks 

128 Row refresh in 2 ms; 256 Row refresh in 4 ms 

Fast Processor Clock Frequency (16 MHz) 

"Most Recently Used" Priority Scheme 

4 RAM banks occupied 

Table 4B. 
Default ECC Programming, POI Pin (57) 

Tied to Vee. 

Port A is Synchronous 

Port B is Asynchronous 

Fast-cycle Processor Interface 

Fast RAM 

Port A has Advanced ACKA strobe (non-multibus) 

Port B has Non-advance ACKB strobe (multibus) 

Refresh interval uses 236 clocks 

128 Row refresh in 2 ms; 256 Row refresh in 4 ms 

Master EDCU only (16-bit system) 

Fast Processor Clock Frequency (16 MHz) 

"Most Recently Used" Priority Scheme 

4 RAM banks occupied 

If further system flexibility is needed, one or two 
external shift registers can be used to tailor the 8207 
to its operating environment. 

Synchronous/Asynchronous Mode 
(SA and SB Program Bits) 

Each port of the 8207 may be independently config­
ured to accept synchronous or asynchronous port 
commands (RD, WR, PCTL) and Port Enable (PE) via 
the program bits SA and S8. The state of the SA and 
S8 programming bits determine whether their asso­
ciated ports are synchronous or asynchronous. 

While a port may be configured with either the Status 
or Command interface in the synchronous mode, 
certain restrictions exist in the asynchronous mode. 
An asynchronous Command interface using'the con­
trol lines of the Multibus is supported, and an asyn­
chronous 8086 interface using the control lines of 
the 8086 is supported, with the use of TTL gates as 
illustrated in Figure 2.ln the 8086 case, the TTL gates 
are needed to guarante.e that status does not appear 
at the 8207 inputs too much before address, so that a 
cycle would start before address was valid. 

Microprocessor Clock Frequency Option 
(CFS and FFS Program Bits) 

The 8207 can be programmed to interface with slow­
cycle microprocessors like the 8086,8088, and 80186 
or fast-cycle microprocessors like the 80286. The 
CFS bit configures the microprocessor interface to 
accept slow or fast cycle signals from either micro­
processor group. 

This option is used to select the speed of the micro­
processor clock. Table 5 shows the various 
microprocessor clock frequency options that can be 
programmed. 

Table 5. 
Microprocessor Clock Frequen'cy Options 

Program Bits Processor Clock 

CFS FFS Frequency 

0 0 iAPX 86, 5 MHz 
88,186 

0 1 iAPX 86, 8 MHz 
88, 186 

1 0 iAPX 286 10 MHz 

1 1 iAPX 286 16 MHz 

AFN-022188 

A-125 



8207 

The external clock frequency must be programmed 
so that the failsafe refresh repetition circuitry can 
adjust its internal timing accordingly to produce a 
refresh request as programmed. 

RAM Speed Option (RFS Program Bit) 

The RAM Speed programming option determines 
whether RAM timing will be optimized for a fast or 
slow RAM. Whether a RAM is fast or slow is mea­
sured relative to the 2118-10 (Fast) or the. 2118-15 
(Slow) RAM specifications. 

Refresh Period Options 
(CIO, C11, and PLS Program Bits) 

The 8207 refreshes with either 128 rows every 2 mil­
liseconds or 256 rows every 4 milliseconds. This 
translates to one refresh cycle being executed ap­
proximately once every 15.6 microseconds. This rate 
can be changed to 256 rows every 2 milliseconds or a 
refresh approximately once every 7.8 microseconds 
via the Period Long/Short, program bit PLS,' pro­
gramming option. The 7.8 microsecond refresh re­
quest rate is intended for those RAMs, 64K and 
above, which may require a faster refresh rate. 

In addition to PLS program option, two other pro­
gramming bits for refresh exist: Count Interval 0 (CIO) 
and Count Interval 1 (CI1). These two programming 
bits allow the rate at which refresh requests are 
generated to be increased in order to permit refresh 
requests to be generated close to the same 15.6 or 
7.8 microsecond period when the 8207 is operating 

at reduced frequencies. The interval between re­
freshes is decreased by 0%, 10%, 20%, or 30% as a 
function of how the count interval bits are program­
med. A 5% guardband is built-in to allow for any 
clock frequency variations. Table 6 shows the refresh 
period options available. 

The numbers tabulated under Count Interval repre­
sent the number of clock periods between internal 
refresh requests. The percentages in parentheses 
represent the decrease in interval between refresh 
requests. Note that all intervals have a built-in 5% 
(approximately) safety factor to compensate for 
mi nor clock freq uency deviations and non­
immediate response to internal refresh requests. 

Extend Option (EXT Program Bit) 

The Extend option lengthens the memory cycle to 
allow longer access time which may be required by 
the system. Extend alters the RAM timing to compen­
sate for increased loading on the Rowand Column 
Address Strobes, and in the multiplexed Address 
Out lines. 

Port Priority Option and Arbitration 
(PPR Program Bit) 

The 8207 has to internally arbitrate among three 
ports: Port A, Port B and Port C-the refresh port. 
Port C is an internal port dedicated to servicing 
refresh requests, whether they are generated inter­
nally by the refresh inverval counter, or externally by 
the user. Two arbitration approaches are available via 

Table 6 Refresh Count Interval Table 

Count Interval 
C11, CIO 

(8207 Clock Periods) 

Ref. 
Freq. Period 00 01 10 11 ' 
(MHz) (ILS) CFS PLS FFS . (0%) (10%) (20%) (30%) 

16 15.6 1 1 1 236 212 188 164 

7.8 1 0 1 118 106 94 82 

10 15.6 1 1 0 148 132 116 100 

7.8 1 0 0 74 66 58 50 

8 15.6 0 1 1 118 106 94 82 

7.8 0 0 1 59 53 47 41 

5 15.6 0 1 0 74 66 58 50 

7.8 0 0 0 37 33 29 25 

AFN-02218B 

A-126 



8207 

the Port Priority programming option, program bit 
PPR. PPR determines whether the most recently 
used port will remain selected (PPR = 1) or whether 
Port A will be favored or preferred over Port B 
(PPR = 0). 

A port is selected if the arbiter has given the selected 
port direct access to the timing generators. The 
front-end logic, which includes the arbiter, is de­
signed to operate in parallel with the selected port. 
Thus a request on the selected port is serviced imme­
diately. In contrast, an unselected port only has ac­
cess to the timing generators through the front-end 
logic. Before a RAM cycle can start for an unselected 
port, that port must first become selected (Le., the 
MUX output now gates that port's address into the 
8207 in the case of Port A or B). Also, in order to allow 
its address to stabilize, a newly selected port's first 
RAM cycle is started by the front-end logic. There­
fore, the selected port has direct access to the timing 
generators. What all this means is that a request on a 
selected port is started immediately, while a request 
on an unselected port is started two to three clock 
periods after the request, assuming that the other 

two ports are idle. Under normal operating condi­
tions, this arbitration time is hidden behind the RAM 
cycle of the selected port so that as soon as the 
present cycle is over a new cycle is started. Table 7 
lists the arbitration rules for both options. 

Port LOCK Function 

The LOCK function provides each port with the 
ability to obtain uninterrupted access to a critical 
region of memory and, thereby, to guarantee that the 
opposite port cannot "sneak in" and read from or 
write to the critical region prematurely. 

Only one LOCK pin is present and is multiplexed 
between the two ports as follows: when MUX is high, 
the 8207 treats the LOCK input as originating at 
PORT A, while when MUX is low, the 8207 treats 
LOCK as originating at PORT B. When the 8207 
recognizes a LOCK, the MUX output will remain 
pointed to the locking port until LOCK is deactivated. 
Refresh is not affected by LOCK and can occur dur­
ing a locked memory cycle. 

Table 7. 
The Arbitration Rules for the Most Recently Used Port Priority and for Port A Priority Options 

Are As Follows: 

1. If only one port requests service, then that port-if not already selected-becomes selected. 

2a. When no service requests are pending, the last selected processor port (Port A or B) will remain selected. 
(Most Recently Used Port Priority Option) 

2b. When no service requests are pending, Port A is selected whether it requests service or not. (Port A Priority 
Option) 

3. During reset initialization only Port C, the refresh port, is selected. 

4. If no processor requests are pending after reset initialization, Port A will be selected. 

Sa. If Ports A and B simultaneously(*) request service while Port C is being serviced, then the next port to be 
selected is the one which was not selected prior to servicing Port C. (Most Recently Used Port Priority 
Option) 

5b. If Ports A and B simultaneously(*) request service while Port C is selected, then the next port to be selected 
is Port A. (port A Priority Option) 

6. If a port simultaneously requests service with the currently selected port, service is granted to the selected 
port. 

7. The MUX output remains in its last state whenever Port C is selected. 

B. If Port C and either Port A or Port B (or both) simultaneously request service, then service is granted to the 
requester whose port is already selected. If the selected port is not requesting service, then service is 
granted to Port C. 

9. If during the servicing of one port, the other port requests service before or simultaneously with the refresh 
port, the refresh port is selected. A new port is not selected before the presently selected port is 
deactivated. 

10. Activating LOCK will mask off service requests from Port B if the MUX output is high, or from Port A if the 
MUX output is low. 

* By "simultaneous" it is meant that two or more requests are valid at the clock edge at which the internal arbiter 
samples them. 

AFN-02218B 

A-127 





8259A/8259A-2/8259A-8 
PROGRAMMABLE INTERRUPT CONTROLLER 

• iAPX 86, iAPX 88 Compatible • Individual Request Mask Capability 

• MCS-80®, MCS-85® Compatible • Single + 5V Supply (No Clocks) 

• Eight·Level Priority Controller • 28·Pin Dual·ln·Line Package 

• Expandable to 64 Levels • Available in EXPRESS 

• Programmable Interrupt Modes 
- Standard Temperature Range 
- Extended Temperature Range 

The Intel<!l 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is 
cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28-pin DIP, uses 
NMOS technology and requires a single + 5V supply. Circuitry is static, requiring no clock input. 

The 8259A is designed to minimize the software and real time overhead in handling multi·level priority interrupts. It has 
several modes, permitting optimization for a variety of system requirements. 

The 8259A is fully upward compatible with the Intel® 8259. Software originally written for the 8259 will operate the 
8259A in all 8259 equivalent modes (MCS·80/85, Non·Buffered, Edge Triggered). 

0,-00 

DATA CONTROL LOG IC 
BUS 

BUFFER 

CS Vee 
WR Ao 
AD iNrA 

~ IRl 

AD 
IRO D6 IR6 
IRI 

D5 IR5 
IR2 

D4 IR4 

IRC D) IR3 

D2 IR2 

cs D, IRI 

Do IRO 

CASO INT 

CASO CAS 1 SPiEN 
GND CAS2 

CAS I 

CAS 2 

SP/EN" ~INTERNAL BUS 

Figure 1. Block Diagram Figure 2. Pin Configuration 

Intel Corporation Assumes No Responsibilty for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses a,e Implied. 

t'INTEL CORPORATION. 1980 AFN·OO221C 

A-129 



intel 8259A/8259A-2/8259A-8 

Table 1. Pin Description 

Symbol Pin No. Type Name and Function 

Vee 28 I Supply: +5V Supply. 

GND 14 I Ground. 

CS 1 I Chip Select: A low on this pin enables RD and WR communication between the CPU and the 8259A. 
INTA functions are independent of CS. 

WR 2 0 Write: A low on this pin when CS is low enables the 8259A to accept command words from the CPU. 

RD 3 I Read: A low on this pin when CS is low enables the 8259A to release status onto the data bus for the 
CPU. 

07-0 0 4-11 I/O Bidirectional Data Bus: Control, status and interrupt-vector information is transferred via this bus. 

CASo-CAS2 12,13,15 I/O Cascade Lines: The CAS lines form a private 8259A bus to control a multiple 8259A structure. These 
pins are outputs for a master 8259A and inputs for a slave 8259A. 

SP/EN 16 I/O Slave Program/Enable Buffer: This is a dual function pin. When in the Buffered Mode it can be used 
as an output to control buffer transceivers (EN). When not in the buffered mode it is used as an input 
to designate a master (SP = 1) or slave(SP = 0). 

INT 17 0 Interrupt: This pin goes high whenever a valid interrupt request is asserted. It is used to interrupt the 
CPU, thus it is connected to the CPU's interrupt pin. 

IRo-IR7 18-25 I Interrupt Requests: Asynchronous inputs. An interrupt request is executed by raising an IR input 
(low to high), and holding it high until it is acknowledged (Edge Triggered Mode), or just by a high 
level on an IR input (Level Triggered Mode). 

INTA 26 I Interrupt Acknowledge: This pin is used to enable 8259A interrupt-vector data onto the data bus by 
a sequence of interrupt acknowledge pulses issued by the CPU. 

Ao 27 I AO Address Line: This pin acts in conjunction with the CS, WR, and RD pins. It is used by the 8259A 
to decipher various Command Words the CPU writes and status the CPU wishes to read. It is typically 
connected to the CPU AD address line (A1 for iAPX 86, 88). 

AFN·00221 E 

A~130 



8259A/8259A-2/8259A-8 

FUNCTIONAL DESCRIPTION 

Interrupts in Microcomputer Systems 
Microcomputer system design requires that 1/0 devices 
such as keyboards, displays, sensors and other com­
ponents receive servicing in an efficient manner so that 
large amounts of the total system tasks can be assumed 
by the microcomputer with little or no effect on through­
put. 

The most common method of servicing such devices is 
the Polled approach. This is where the processor must 
test each device in sequence and in effect "ask" each 
one if it needs servicing. It is easy to see that a large por­
tion of the main program is looping through this con­
tinuous polling cycle and that such a method would 
have a serious, detrimental effect on system through­
put, thus limiting the tasks that could be assumed by 
the microcomputer and reducing the cost effectiveness 
of using such devices. 

A more desirable method would be one that would allow 
the microprocessor to be executing its main program 
and only stop to service peripheral devices when it is 
told to do so by the device itself. In effect, the method 
would provide an external asynchronous input that 
would inform the processor that it should complete 
whatever instruction that is currently being executed 
and fetch a new routine that will service the requesting 
device. Once this servicing is complete, however, the 
processor would resume exactly where it left off. 

This method is called Interrupt. It is easy to see that 
system throughput would drastically increase, and thus 
more tasks could be assumed by the microcomputer to 
further enhance its cost effectiveness. 

The Programmable Interrupt Controller (PIC) functions 
as an overall manager in an Interrupt-Driven system 
environment. It accepts requests from the peripheral 
equipment, determines which of the incoming requests 
is of . the highest importance (priority), ascertains 
whether the incoming request has a higher priority value 
than the level currently being serviced, and issues an 
interrupt to the CPU based on this determination. 

Each peripheral device or structure usually has a special 
program or "routine" that is associated with its specific 
functional or operational requirements; this is referred 
to as a "service routine". The PIC, after issuing an Inter­
rupt to the CPU, must somehow input information into 
the CPU that can "point" the Program Counter to the 
service routine associated with the requesting device. 
This "pointer" is an address in a vectoring table and will 
often be referred to, in this document,as vectoring data. 

The 8259A 
The 8259A is a device specifically designed for use in 
real time, interrupt driven microcomputer systems. It 
manages eight levels or requests and has built-in fea­
tures for expandability to other 8259A's (up to 64 levels). 
It is programmed by the system's software as an 1/0 
peripheral. A selection of priority modes is available to 
the programmer so that the manner in which the re­
quests are processed by the 8259A can be configured to 

match his system requirements. The priority modes can 
be changed or reconfigured dynamically at any time dur­
ing the main program. This means that the complete 
interrupt structure can be defined as required, based on 
the total system environment. 

RAM 

ROM 

RAM 

ROM 

CPU 

CPU·ORIVEN 
MULTIPLEXOR 

Figure 3a. Polled Method 

CPU INT 

Figure 3b. Interrupt Method 

AFN·00221E 

A-131 



8259A/8259A-2/8259A-8 

INTERRUPT REQUEST REGISTER (IRR) AND 
IN-SERVICE REGISTER (lSR) 

The interrupts at the IR input lines are handled by two 
registers in cascade, the Interrupt Request Register 
(IRR) and the In-Service Register (lSR). The IRR is used 
to store all the interrupt levels which are requesting ser­
vice; and the ISR is used to store all the interrupt levels 
which are being serviced. 

PRIORITY RESOLVER 

This logic block determines the priorities of the bits set 
in the IRA. The highest priority is selected and strobed 
into the corresponding bit of the ISR during INTA pulse. 

INTERRUPT MASK REGISTER (IMR) 

The IMR stores the bits which mask the interrupt lines 
to be masked. The IMR operates on the IRA. Masking of 
a higher priority input will not affect the interrupt 
request lines of lower priority. 

INT (INTERRUpn 

This output goes directly to the CPU interrupt input. The 
VOH level on this line is designed to be fully compatible 
with the 8080A, 8085A and 8086 input levels. 

INTA (INTERRUPT ACKNOWLEDGE) 

INTA pulses will cause the 8259A to release vectoring 
information onto the data bus. The format of this data 
depends on the system mode (~PM) of the 8259A. 

DATA BUS BUFFER 

This 3-state, bidirectional 8-bit buffer is used to inter-

iN'Ti' 
I 

~INTfRNAl8US 

Figure 4a. 8259A Block Diagram 

face the 8259A to the system Data Bus. Control words 0,·0. 

and status information are transferred through the Data 
Bus Buffer. 

READ/WRITE CONTROL LOGIC 

The function of this block is to accept OUTput com­
mands from the CPU. It contains the Initialization Com­
mand Word (ICW) registers and Operation Command 
Word (OCW) registers which store the variolls control 
formats for device operation. This function block also 
allows the status of the 8259A to be transferred onto the 
Data Bus. 

CS (CHIP SElECn 

A LOW on this input enables the 8259A. No reading or 
writing of the chip will occur unless the device is 
selected. 

WR (WRITE) 

A LOW on this input enables the CPU to write control 
words (lCWs and OCWs) to the 8259A. 

RD (READ) 

A LOW on this input enables the 8259A to send the 
status of the Interrupt Request Register (IRR), In Service 
Register (ISR), the Interrupt Mask Register (IMR), or the 
Interrupt level onto the Data Bus. 

RO ,., 
w- ,., 
A, 

fi 

Figure 4b. 8259A Block Diagram 

Ao 

This input signal is used in conjunction with WA and RD 
signals to write commands into the various command 
registers, as well as reading the various status registers 
of the chip. This line can be tied directly to one of the ad­
dress lines. 

AFN 00221E 

A-132 



intel' 8259A/8259A-2/8259A-8 

THE CASCADE BUFFER/COMPARATOR 

This function block stores and compares the IDs of all 
8259A's used in the system. The associated three I/O 
pins (CASO-2) are outputs when the 8259A is used as a 
master and are inputs when the 8259A is used as d 

slave. As a master, the 8259A sends the ID of the inter· 
rupting slave device onto the CASO-2 lines. The slave 
thus selected will send its preprogrammed subroutine 
address onto the Data Bus during the next one or two 
consecutive INTA pulses. (See section "Cascading the 
8259A".) 

INTERRUPT SEQUENCE 

The powerful features of the 8259A in a microcomputer 
system are its programmability and the interrupt routine 
addressing capability. The latter allows direct or indirect 
jumping to the specific interrupt routine requested 
without any polling of the interrupting devices. The nor· 
mal sequence of events during an interrupt depends on 
the type of CPU being used. 

The events occur as follows in an MCS-80/85 system: 

1. One or more of the INTERRUPT REQUEST lines 
(IR7-0) are raised high, setting the corresponding IRR 
bit(s). 

2. The 8259A evaluates these requests, and sends an 
. INT to the CPU, if appropriate . 

3. The CPU acknowledges the INT and responds with an 
INTA pulse. 

4. Upon receiving an INTA from the CPU group, the 
highest priority ISR bit is set, and the corresponding 
IRR bit is reset. The 8259A will also release a CALL in· 
struction code' (11001101) onto the 8-bit Data Bus 
through its D7-0 pins. 

5. This CALL instruction will initiate two more INTA 
pulses to be sent to the 8259A from the CPU group. 

6. These two INTA pulses allow the 8259A t6 release its 
preprogrammed subroutine address onto the Data 
Bus. The lower 8-bit address is released at the first 
INTA pulse and and the higher 8·bit address is reo 
leased at the second INTA pulse. 

7, This completes the 3-byte CALL instruction released 
by the 8259A. In the AEOI mode the ISR bit is reset at 
the end of the third INTA pulse, Otherwise, t~e ISA bit 
remains set until an appropriate EOI command is 
issued at the end of the interrupt sequence. 

The events occurring in an iAPX 86 system are the same 
until step 4. 

4. Upon receiving an INTA from the CPU group, the high· 
est priority ISR bit is set and the corresponding IRR 
bit is reset. The 8259A does not drive the Data Bus 
during this cycle. 

5. The iAPX 86/10 will initiate a second INTA pulse. 
During this pulse, the 8259A releases an 8·bit pOinter 
onto the Data Bus where it is read by the CPU 

6. This completes the interrupt cycle. In the AEOl'mode 
the ISR bit' is reset at the end of the second 'INTA 
pulse. Otherwise, the ISR bit remains set until an 
appropriate EOI command is issued at the end of the 
interrupt subroutine. 

If no interrupt request is present at step 4 of either 
sequence (Le., the request was too short in duration) the 
8259A will issue an interrupt level 7. Both the vectoring 
bytes and the CAS lines will look like an 'in~erruPt level 7 
was requested. . 

R5~ ~_ READ!, 
WAITE 
lOGIC 

Ao--

IT---

A~~ ___ '_NT_'R_R"_I~_~A_SK_R_EG __ ~ 

,J~'ONTfA .. l.US 

Figure 4c. 8259A Block Diagram 

~--~-'I~-----1 
INTERRUPT 
REQUESTS 

Figure 5. 8259A Interface to Standard 
System Bus 

---tAl 

--IR2 

AFN OIJ221E 

A-133 



8259A18259A-2/8259A-8 

INTERRUPT SEQUENCE OUTPUTS 
MCS-80®, MCS-85® 

This sequence is timed by three INTA pulses. During the 
first INTA pulse the CALL opcode is enabled onto the 
data bus. 

Content of First Interrupt 
Vector Byte 

07 06 05 04 03 02 01 DO 

CALLCODE ~1_l ________ 0 _________________ 0 ____ 1~1 

During the second INTA pulse the lower address of the 
appropriate service routine is enabled onto the data bus. 
When Interval = 4 bits A5-A7 are programmed, while Ao-
A4 are automatically inserted by the 8259A. When Inter­
val = 8 only A6 and A7 are programmed, while Ao-A5 are 
automatically inserted. 

Content of Second Interrupt 
. Vector Byte 

IR Inlervel .. 4 
07 06 05 D4 03 02 01 DO 

7 A7 A6 A5 1 1 1 0 0 

6 A7 A6 A5 1 1 0 0 0 

5 A7 A6 A5 1 0 1 0 0 

4 A7 A6 A5 1 0 0 0 0 

3 A7 A6 A5 0 1 1 0 0 

2 A7 A6 A5 0 1 0 0 0 

1 A7 A6 A5 0 0 1 0 0 

0 A7 A6 A5 0 0 0 0 0 

IR Int8rvel=8 
07 06 05 04 03 02 01 DO 

7 A7 A6 1 1 1 0 0 0 

6 A7 A6 1 1 0 0 0 0 

5 A7 A6 1 0 1 0 0 0 

4 A7 A6 1 0 0 0 0 0 

3 A7 A6 0 1 1 0 0 0 

2 A7 A6 0 1 0 0 0 0 

1 A7 A6 0 0 1 0 0 0 

0 A7 A6 0 0 0 0 0 0 

During the third INTA pulse the higher address of the 
appropriate service routine, which was programmed as 
byte 2 of the initialization sequence (As - A1s), is 
enabled onto the bus. 

07 DB 

A15 A14 

Content of Third Interrupt 
Vector Byte 

05 04 03 02 
A13 A12 All Al0 

iAPX 86, iAPX 88 

01 DO 

A9 AS 

iAPX 86 mode is similar to MCS-80 mode except that only 
two Interrupt Acknowledge cycles are issued by the pro­
cessor and no CALL opcode is sent to the processor. The 
first interr.upt acknowledge cycle is similar to that of 
MCS-80. 85 systems in that the 8259A uses it to internally 
freeze the state of the interrupts for priority resolution and 
as a master it issues the interrupt code on the cascade 
lines at the end of the INTA pulse. On this first cycle it does 

not issue any data to the processor and leaves its data bus 
buffers disabled. On the second interrupt acknowledge 
cycle iniAPX 86 mode t"'e master (or s!ave if so pro­
grammed) will send a byte of data to the processor with 
the acknowledged interrupt code composed as follows 
(note the state of the ADI mode control is ignored and 
As-A11 are unused in iAPX 86 mode): 

Content of Interrupt Vector Byte 
for IAPX 86 System Mnrh· 

07 06 05 04 03 02 01 DO 

tR7 T7 T6 T5 T4 T3 1 1 1 

IR6 T7 T6 T5 T4 T3 1 1 0 

IR5 T7 T6 T5 T4 T3 1 0 1 

IR4 T7 T6 T5 T4 T3 1 0 0 

IR3 T7 T6 T5 T4 T3 0 1 1 

IR2 T7 T6 T5 T4 T3 0 1 0 

tRl T7 T6 T5 T4 T3 0 0 1 

IRO T7 T6 T5 T4 T3 0 0 0 

PROGRAMMING THE 8259A 
The 8259A accepts two types of command words gener­
ated by the CPU: 

1. Initialization Command Words (lCWs): BEifore normal 
operation can begin, each 8259A in the system must 
be brought to a starting point - by a sequence of 2 to 
4 bytes timed by WR pulses. 

2. Operation Command Words (OCWs): These are the 
command words which command the 8259A to oper­
ate in various interrupt modes. These modes are: 

a. Fully nested mode 
b. Rotating priority mode 
c. Special mask mode 
d. Polled mode 

The OCWs can be written into the 8259A anytime after 
initialization. 

INITIALIZATION COMMAND WORDS. 
(ICWS) 
GENERAL 

Whenever a command is issued with AO = 0 and 04 = 1, 
this is interpreted as Initialization Command Word 1 
(ICW1). ICW1 starts the initialization sequence during 
which the following automatically occur. 

a. The edge sense circuit is reset, which means that fol­
lowing initialization, an interrupt request (IR) input 
must make a low-to-high transition to generate an 
interrupt. 

b. The Interrupt Mask Register is cleared. 

c. IR7 input is assigned priority 7. 
d. The slave mode address is set to 7. 
e. Special Mask Mode is cleared and Status Read is set to 

IRR. 
f. If IC4=O, then all functions selected in ICW4 are set to 

zero. (Non-Buffered mode', no Auto-EOI, MCS-80, 85 
system). 

'Note: Master/Slave in ICW4 is only used in the buffered mode. 

AFN·00221E 

A-134 



intel 8259A/8259A-2/8259A-8 

INITIALIZATION COMMAND WORDS 1 AND 2 
(ICW1, ICW2) 

A5-A15: Page starting address of service routines. In an 
MCS 80/85 system, the 8 request levels will generate 
CALLs to 8 locations equally spaced in memory. These 
can be programmed to be spaced at intervals of 4 or 8 
memory locations, thus the 8 routines will occupy a 
page of 32 or 64 bytes, respectively. 

The address format is 2 bytes long (Ao-A15). When the 
routine interval is 4, Ao-A4 are automatically inserted by 
the 8259A, while A5-A 15 are programmed externally. 
When the routine interval is 8, Ao-A5 are automatically 
inserted by the 8259A, while As-A15 are programmed 
externally. 

The 8-byte interval will maintain compatibility with cur­
rent software, while the 4-byte interval is best tor a com­
pact jump table. 

In an iAPX 86 system A1S-A11 are inserted in the five most 
significant bits of the vectoring byte and the 8259A sets 
the three least significant bits according to the interrupt 
level. AlO-AS are ignored and ADI (Address interval) has 
no effect. 

LTIM: If LTIM = 1, then the 8259A will operate in the 
level interrupt mode. Edge detect logic on the 
interrupt inputs will be disabled. 

ADI: CALL address interval. ADI = 1 then interval = 4; 
ADI = 0 then interval = 8. 

SNGL: Single. Means that this is the only 8259A in the 
system. If SNGL= 1 no ICW3 will be issued. 

IC4: If this bit is set - ICW4 has to be read. If ICW4 
is not needed, set IC4 = O. 

NO 151NGL I) 

NO IIC4 0) 

INITIALIZATION COMMAND WORD 3 (ICW3) 

This word is read only when there is more than one 
8259A in the system and cascading is used, in which 
case SNGL = O. It will load the 8-bit slave register. The 
functions of this register are: 

a. In the master mode (either when SP = 1, or in buffered 
mode when MIS = 1 in ICW4) a "1" is set for each 
slave in the system. The master then will release byte 
1 of the call sequence (for MCS-80/85 system) and 
will enable the corresponding slave to release bytes 2 
and 3 (for iAPX 86 only byte 2) through the cascade 
lines. 

b. In the slave mode (either when SP = 0, or if BUF = 1 
and MIS = 0 in ICW4) bits 2-0 identify the slave. The 
slave compares its cascade input with these bits and, 
if they are equal, bytes 2 and 3 of the call sequence (or 
just byte 2 for iAPX 86 are released by it on the Data 
Bus. 

INITIALIZATION COMMAND WORD 4 (ICW4) 

SFNM: If SFNM = 1 the special fully nested mode is 
programmed. 

BUF: If BUF = 1 the buffered mode is programmed. In 
buffered mode SP/EN becomes an enable output 
and the masterlslave determination is by MIS. 

MIS: If buffered mode is selected: MIS = 1 means the 
8259A Is programmed to be a master, MIS = 0 
means the 8259A is programmed to be a slave. If 
BUF = 0, MIS has no function. 

AEOI: If AEOI = 1 the automatic end of interrupt mode 
is programmed. 

/-APM: Microprocessor mode: J.LPM = 0 sets the 8259A for 
MCS-80, 85 system operation, J.LPM = 1 sets the 
8259A for iAPX 86 system operation. 

Figure 6_ Initialization Sequence 

AFN00221 E 

A-135 



intel' 

0.0 0, D. 

0.0 0, D. 

, 0, 

Ao 0, D. 

8259A/8259A-2/8259A-8 

ICV<, 

0., 0, OJ 0] 0, Do 

, ICW4NHDED 
O' NO ICWO NHDEt. 

, = SINGLE 
a = CASCADE MODE 

CALL A[,DRESS INTERVAL 
,. INTERVAL OF 0 
O' INTERVAL OF 8 

I = LEVEL TRIGGERED MODE 
a = EDGE TRIGGERED MODE 

A,-As 01 INTERRUPT 
VECTOR ADDRESS 

(MCS'80 185 MODE ONL Y) 

ICW2 

0., 0, OJ 0, 0, Do 

A'S-AS OF INTERRUPT 
VECTOR ADDRESS 

(MCSSOIS5 MODE) 
T,-T3 OF INTERRUPT 

ICWllMASTER DEVICE) VECTOR ADDRESS 
(808618088 MODE) 

• IR INPUT HAS A SLAVE 
IR INPuT DOES NOT HAVE 
A SLAVE 

ICW) ISLAVE DEVICE I 

0., [J~ 0, 0] 0, Do 

, = 6086/8066 MODE 
o = MCS·80 165 MODE 

, AUTO EOI 
O· NORMAl EOI 

f±H3x NON BUFF E RED MODE 
,- 0 BUFFERED MODE/SLAVE 
, , - BUFFERED MODE/MASTER 

NOTE 1: SLAVE 10 IS EQUAL TO THE CORRESPONDING 
MASTER IR INPUT, 

, = SPECIAL FULLY NESTED 

'------------1 0 = ~g~~PECIAL FULLY 
NESTED MODE 

Figure 7. Initialization Command Word Format 

A-136 

Acf'< 00221E 



8259A/8259A-2/8259A-8 

OPERATION COMMAND WORDS (OCWs) 
After the Initialization Command Words (ICWs) are pro­
grammed into the 8259A, the chip is ready to accept 
interrupt requests at its input lines. However, during the 
8259A operation, a selection of algorithms can com­
mand the 8259A to operate in various modes through 
the Operation Command Words (OCWs). 

OPERATION CONTROL WORDS (OCWs) 

OCW1 

AO 07 De 05 04 03 02 01 DO 

8 I M7 M6 M5 M4 M3 M2 M1 MO I 

OCW2 

0 I R SL EOI 0 L2 L1 LO I 

OCW3 

0 0 ESMM SMM P RR RIS I 

OPERATION CONTROL WORD 1 (OCW1) 

OCWl sets and clears the mask bits in the interrupt 
Mask Aegister (IMA). M7 - Mo represent the eight mask 
bits. M = 1 indicates the channel is masked 
(inhibited), M = 0 indicates the channel is enabled. 

OPERATION CONTROL WORD 2 (OCW2) 

A, SL, EOI - These three bits control the Aotate and 
End of Interrupt modes and combinations of the two. A 
chart ot these combinations can be tound on the Opera­
tion Command Word Format. 

L2, L1, Lo-These bits determine the interrupt level acted 
upon when the SL bit is active. 

OPERATION CONTROL WORD 3 (OCW3) 

ESMM - Enable Special Mask Mode. When this bit is 
set to 1 it enables the SMM bit to set or reset the Special 
Mask Mode. When ESMM = 0 the SMM bit becomes a 
"don't care". 

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1 
the 8259A will enter Special Mask Mode. If ESMM = 1 
and SMM = 0 the 8259A will revert to normal mask mode. 
When ESMM = 0, SMM has no effect. 

AFN U0221 E 



8259A18259A-2/8259A-8 

OCW, 

~ ~ ~ ~ ~ ~ ~ ~ ~ 

OCW2 

Ao 0 I Db C\ O. OJ 01 0, DO 

I 0 H IlL I EOI I 0 I 0 III Il. IlOI 

I 
III LnELTO II.< 
ACTED UPON 

0 , 2 3 . 5 6 7 

0 , 0 , 0 , 0 , 
0 0 , , 0 0 , , 
0 0 0 0 , , , , 

J r 
+ rt 

NON-SPECIFIC EOICOMMAND } 7 +r+ IP£CIFIC EOI COMMAND 
END Of INTERRUPT 

,.-ror;- ROTAn ON NON·SPfCIFIf EOI COMMAND 

} ,.-7-CO ROTATE IN AUTOMATI(" Jon ~I\(). on' A\STOMATIC IIOTATION 

:0-roro fiK)TATE IN AUTOMAI "''''''I't .,tAR. ,.-r,"+, -ROTAn 0111 ~Pff II., } Il'EClflClIOTATIOH r,-r;-ro °SET CIA .. , ... ~. o-r-;-ro HOOPf,RAltO ... 
~'-'-L..:.. 

·~AREUSED 

OCWl 

A" 0, Cl. 0,. O. 0, OJ 0, . ~ 

I 0 1"0 IE"'MI SMM I 0 I ' I P '1 RR l'RIS J 

I L~ 
READ R(GISTER COMMAND 

0 I , 0 , 
0 -' 0 , I 

REAO READ 

NO ACTION IR REG ISREG 
ON NE~T ON NEXT 
ilDPUlSE AD PULSE 

1-POU COMMAND 
0- NO POLl COMMAND 

SPECIAL MASK MOOE 

0 I , 0 , 
0 J 0 , , 

RESET SET 
NO ActiON SPECIAL SPECIAL 

MASK MASK 

Figure 8. Operation Command Word Format 

AFN·00221E 

A-138 



8259A/8259A-2/8259A-8 

FULLY NESTED MODE 

This mode is entered after initialization unless another 
mode is programmed. The interrupt requests are 
ordered in priority form 0 through 7 (0 highest). When an 
interr~Pt is acknowledged the highest priority request is 
determined and its vector placed on the bus. Additional· 
Iy, a bit of the Interrupt Service register (ISO-7) is set. 
This.bit remains set until the microprocessor issues an. 
End of Interrupt (EOI) command immediately. before 
returning from the service routine, or if AEOI (Automatic 
End of Interrupt) bit is set, until the trailing edge of the 
last INTA. While the IS bit is set, all further interrupts of 
the same or lower priority are inhibited, while higher 
levels will generate an interrupt (which will be 
acknowledged onlyif the microprocessor internal Inter­
rupt enable flip~flop· has been re-enabled through soft­
ware), 

After the Initialization sequence, IRO· has the highest 
priority and IR7 the lowest. Priorities can be changed, as 
will be explained, in the rotating priority mode. 

END OF INTERRUPT (EOI) 

The In Service (IS) bit can be reset either automatically 
following the trailing edge of the last in sequencelNTA 
pulse (when "EOI bit in ICW1 is set) or by a command 
word that must be issued to the 8259A before returning 
from a service routine (EOI command). An EOI command 
must be issued twice if in the Cascade mode, once for the 
master and once for the ~orresponding slave. 

There are two forms of EOI command: Specific and Non­
Specific. When the 8259A is operated In modes which 
preserve the fully nested structure, it can determine 
which IS bit to reset on EOL When a Non-Specific EOI 
command is issued the 8259A will automatically reset 
the highest IS bit of those that are set, since in the 
fully nested mode the highest IS level was necessarily the 
last level acknowledged and serviced. A non-specific EOI 
can be issued with OCW2 (EOI = 1, SL =0, R = 0). 

When a mode is used which may disturb the fully nested 
structure, the 8259A may no longer be able to determine 
the last level acknowledged:ln this case a Specific End of 
Interrupt must be issued which includes as part of the 
command the IS level to be reset. A specific EOI can be is­
sued with OCW2 (EOI = 1, SL = 1, R = 0, and LO-L2 is the 
binary level of the IS bit to be reset). 

I! should be noted that an IS -bit that is masked by an 
IMR bit will not be cleared by a non-specific EOI if the 
8259A is in the Special Mask Mode. 

AUTOMATIC END OF INTERRUPT (AEOI) MODE 

If AEOI = 1 in ICW4, then the 8259A will operate in AEOI 
mode continuously until reprogrammed by ICW4. In this 
mode the 8259A will automatically perform a non­
specific EOI operation at the trailing edge 01 the last 
interrupt acknowledge pulse (third pulse in MCS-80/85, 
second in iAPX 86). Note that from a system standpoint, _ 
this mode should be used only when a nested multilevel 
interrupt structure is not required within a single 8259A. 

The AEOI mode can only be used in a master 8259A and 
not a slave. 

AUTOMATIC ROTATION 
(Equal Priority Devices) 

In some applications there are a number of interrupting 
devices of equal priority. In this mode a device, after 
being serviced, receives the lowest priority, so a device 
requesting an interrupt will have to wait, in the worst 
case until each of 7 other devices are serviced at most 
once. For example, if the priority and "in service" status 
is: 

Before Rotate (IR4 the highest priority requiring service) 

IS7 IS8 ISS I~ 153 152 151 ISO 

·'IS" Status 10itloilioioloEJ 

Low •• t Priority Hlgh .. t Priority 

Priority Status I 716 I 5 I 4 I 3 I 2 I Cro I 

After Rotate (IR4 was serviced, all other priorities 
rotated correspondingly) 

. IS7 IS8 ISS IS4 153 IS2 151 ISO 

.. ts" Status rilliolololololol 

Priority Status 

Hlgh .. t Priority Low •• t Priority 

! 2 I )0 I 7fi 111 4 I 3 I 

There are two ways to accomplish Automatic Rotation 
using OCW2, the Rotation on Non-Specific EOI Command 
(R = 1, SL = 0, EOI= 1) and the Rotate in Automatic EOI 
Mode which is set by (R = 1, SL = 0, EOI = 0) and cleared 
by (R = 0, SL = 0, EOI = 0). . 

SPECIFIC ROTATION 
(Specific Priority) 
The programmer can change priorities by programming 
the bottom priority and thus fixing all other priorities; 
i.e., if IR5 is programmed as the bottom priority device, 
-then IR6 will have the highest one. 

The Set Priority command is issued in OCW2 where: 
R = 1, SL = 1; LO-L2 is the binary priority level code of the 
bottom priority device. 

Observe that in this mode internal status is updated by 
software control duringOCW2.However, it is independent 
of the End of Interrupt (EOI) command (also executed by 
OCW2). Priority changes can be executed during an EOI 
command by using the Rotate on Specific EOI command 
in OCW2 (R = 1, SL = 1, EOI = 1 and LO-L2 = IR level to 
receive bottom priority). 

INTERRUPT MASKS 

Each Interrupt Request input can be masked individu­
ally by the Interrupt Mask Register (IMR) programmed 
through OCW1. Each bit in the IMR masks one interrupt 
channel if it is set (1). Bit 0 masks IRO, Bit 1 masks IR1 
and so forth. Masking an IR channel does not affect the 
other channels oper~tion. 

AFN 00221E 

A-139· 



8259A/8259A-2/8259A-8 

SPECIAL MASK MODE 

Some applications may require an interrupt service 
routine to dynamically alter the system priority struc­
ture during its execution under software control. For 
example. the routine may wish to inhibit lower priority 
requests for a portion of its execution but enable some 
of them for another portion. 

The difficulty here is that if an Interrupt Request is 
acknowledged and an End of Interrupt command did not 
reset its IS bit (i.e., while executing a service routine), 
the 8259A would have inhibited all lower priority 
requests with no easy way for the routine to enable 
them 

That is where the Special Mask Mode comes In. In the 
special Mask Mode, when a mask bit is set in OCW1. it 
inhibits further interrupts at that level and enables Inter­
rupts from all other levels (lower as well as higher) that 
are not masked. 

Thus, any interrupts may be selectively enabled by 
loading the mask register. 

The special Mask Mode Is set by OCW3 where: 
SSMM=1, SMM=1, and cleared where SSMM=1, 
SMM=O. 

POLL COMMAND 

In this mode the INT output is not used or the micropro­
cessor internal Interrupt Enable flip~flop is reset, disabling 
its interrupt input. Service to devices is achieved by 
software using a Poll command. 

The Poll command is issued by setting P = "1" in OCW3. 
The 8259A treats the next AD pulse to the 8259A (i.e., 
RD = 0, CS = 0) as an interrupt acknowledge, sets the 
appropriate IS bit if there is a reque~ and~ads the 
priority level. Interrupt is frozen from WR to RD. 

The word enabled onto the data bus during Fm is: 

07 08 05 04 03 02 01 00 

[I W2 Wl wol 
WO-W2: Binary code of the highest priority level 

requesting service. 
I: Equal to a "1" If there is an interrupt. 

This mode is useful if there is a routine command com­
mon to several levels so that the rNTA sequence Is not 
needed (saves ROM space). Another application is to 
use the poll mode to expand the number of priority 
levels to more than 64. 

LTIM elT 
o. EOOE 
, = LEVEL 

TOOTHUI ''''O''fy CEllS 

EOGE 
SE"SE 
LATCH 

CL" 0 

sn 

Cl" "" 

"" lIT 

SET"" 

NON 
MASKlD 
"10 

'",O",TY 
"nOLVE" 

CONT"OL 
LOGIC 

Mcs-ao,85 { fJiTl~ 
MODE 

mrn INTE"""'L 
L......IH-----H+--+.----4---- O ... T .... US 

IAPX 86 
MODE j 'NTAn 

FREEZE ----

I~ 

NOTES 

MAIlE" CLl ... " ... CTIVE ONLY OU",NG ICW' 

c 
oJ 
U 
c 

i 

'''lEllIIS ... CTIVE DUllING liiTA''''N'' I'Oll SEQUE"CES ONl Y 

J T"UTH T .... LE FD" DL ... TCH 

~1"ATIDN 

'OLlOW 
HOLD 

Figure 9 .. Priority Cell-Simplified Logic Diagram 

A-140 

AFN oonlE 



intel 8259A/8259A-2/8259A-8 

READING THE 8259A STATUS 

The input status of several internal registers can be read to 
update the user information on the system. The following 
registers can be read via OCW3 (IRR and ISR or OCW1 
[IMR]). 

Interrupt Request Register (lRR): 8-bit register which con­
tains the levels requesting an interrupt to be acknowl­
edged. The highest request level is reset from the IRR 
when an interrupt is acknowledged. (Not affected by IMR.) 

In-Service Register (ISR): 8-bit register which contains the 
priority levels that are being serviced. The ISR is updated 
when an End of Interrupt Command is issued. 

Interrupt Mask Register: 8-bit register which contains the 
interrupt request lines which are maske·d. 

The IRR can be read when, prior to the RD pulse, a Read 
Register Command is issued with OCW3 (RR = 1, RIS = 0.) 

The ISR can be read when, prior to the RD pulse, a Read 
Register Command is issued with OCW3 (RR = 1, RIS = 1). 

There is no need to write an OCW3 before every status 
read operation, as long as the status read corresponds 
with the previous one; i.e., the 8259A "remembers" 
whether the IRR or ISR has been previously selected by 
the OCW3. This is not true when poll is used. 

After initialization the 8259A is set to IRR. 

For reading the IMR, no OCW3 is needed. The output data 
bus will contain the IMR whenever RD is active and AO = 1 
(OCW1). 

Polling overrides status read when P = 1, RR = 1 in OCW3. 

IR 

INT ------1--' 

INTA -----"'---------,. 

LATCH' 
ARMED 

EARLIEST IR 
CAN BE REMOVED 

EDGE AND LEVEL TRIGGERED MODES: 

This mode is programmed using bit 3 in ICW1. 

If LTIM = '0', an interrupt request will be recognized by a 
low to high transition on an IR input. The IR input can re­
main high without generating another interrupt. 

If LTIM = '1', an interrupt request will be recognized by a 
'high' level on IR Input, and there is no need for an edge 
detection. The interrupt request must be removed before 
the EOI command is issued orthe'CPU interrupt is enabled 
to prevent a second interrupt from occurring. 

The priority cell diagram shows a conceptual circuit of the 
level sensitive and edge sensitive input circuitry of the 
8259A. Be sure to note that the request latch is a transpar­
ent D type latch. 

In both ~he edge and level triggered m()des the IR inputs 
must remain high untilafter the falling edge of the first 
INTA. If the IR input goes low before this time a DEFAULT 
IR7 will 'occur when the CPU acknowledges the interrupt. 
This can be a useful safeguard for detecting interrupts 
caused byspurious noise glitches on the IR inputs. To im­
plement this feature the IR7 routine is' used for "clean up" 
simply executing a return instruction, thus ignoring the 
interrupt. If IR7 is needed for other purposes a default IR7 
can still be detected by reading the ISA. A normallR7 
interrupt will set the corresponding ISR bit, a default IR7 
won't. If a default IR7 routine occurs during anormallR7 
routine, however, the ISRwill remain set. In this case it is 
necessary to keep track of whether or not the IR7 routine 
was previously entered. If another IR7 occurs it is a 
default. 

808618088 808018085 

808618088 

8080/8085 

'EDGE TRIGGERED MODE ONLY 
LATCH' 
ARMED 

Figure 10. IR Triggering Timing Requirements 

AFN00221E 

A-141 



8259A/8259A-2/8259A-8 

THE SPECIAL FULLY NESTED MODE 

This mode will be used in the case ot a big system 
where cascading is used, and the priority has to be con­
served within each slave_ In this case the fully nested 
mode will be programmed to the master (using ICW4)_ 
This mode Is similar to the normal nested mode with the 
following exceptions: 

a_ When an interrupt request from a certain slave is in 
service this slave is not locked out from the master's 
priority logic and further interrupt requests from 
higher priority IR's within the slave will be recognized 
by the master and will initiate interrupts to the proc­
essor. (In the normal nested mode a slave is masked 
out when its request is in service and no higher 
requests from the same slave can be serviced.) 

b. When exiting the Interrupt Service routine the soft­
ware has to check whether the interrupt serviced was 
the only one from that slave. This is done by sending 
a non-specific End of Interrupt (EOI) command to the 
slave and then reading its In-Service register and 
checking for zero. If it is empty, a non-specific EOI 
can be sent to the master too. If not, no EOI should be 
sent. 

BUFFERED MODE 

When the 8259A Is used In a large system where bus 
driving buffers are required on the data bus and the cas­
cading mode is used, there exists the problem of enabl­
Ing buffers. 

The buffered mode will structure the 8259A to send an 
enable signal on SP/EN to enable the buffers. In this 

mode, whenever the 8259A's data bus outputs are ena­
bled, the SP/EN output becomes active. 

This modification forces the use of software program­
ming to determine whether the 8259A is a master or a 
slave. Bit 3 in ICW4 programs the buffered mode, and bit 
2 in ICW4 determines whether it is a master or a slave. 

CASCADE MODE 
The 8259A can be easily interconnected in a system of one 
master with up to eight slaves to handle up to 64 priority 
levels. 

The master controls the slaves through the 3 line cascade 
bus. The cascade bus acts like chip selects to the slaves 
during the INTA sequence. 

In a cascade configuration, the slave interrupt outputs are 
connected to the master interrupt request inputs. When a 
slave request line is activated and afterwards acknowl­
edged, the master will enable the corresponding slave to 
release the device routine address during bytes 2 and 3 of 
INTA. (Byte 2 only for 8086/8088). 

The cascade bus lines are normally low and will contain 
the slave address code from the trailing edge of the first 
INTA pulse to the trailing edge of the third pulse. Each 
8259A in the system must follow a separate initialization 
sequence and can be programmed to work in a different 
mode. An EOI command must be issued twice: once for 
the master and once for the corresponding slave. An 
address decoder is required to activate the Chip Select 
(CS) input of each 8259A. 

The cascade lines of the Master 8259A are activated only 
for slave inputs, non slave inputs leave the cascade line 
inactive (low). 

\ ADDRESS BUS 1161 \ 

\ CONTROL BUS J 
INT flEa 

\ DATA BUS 181 \ 
~ ~'" 

- - --- - - - -- -- r-f--
-- - - r- r - --- I--f--
--- r- - I- -- -- - - - I--f-- ---. 

~ V.r-- "" I V V 
CS Ao 00·7 INTA INT CS .0.0 007 INTA INI CS .0.0 00·7 INTA INT 

CAS 0 CASO CAS a 

8259A CAS 1 
8259A 8259A 

';LAVE A - I- SLAVE B CAS 1 CAS 1 MASTER 

CAS 2 1- CAS 2 CAS 2 

SPIEN7 6 5 4 3 2 1 0 SF'IENI 6 5 4 3 2 1 0 SF' ffiM7 M6 M5 M4 M3 M2 M1 MO 

c!o r r 1 r I 1 1 I c!o 1 1 1 1 11 11 L 17161 1 1 1 1 
7 6 5 4 3 2 1 0 1 6 5 4 3 2 1 0 5 4 3 2 1 Q 

I I 
I 

INTERRUPT REOUESTS 

Figure 11. Cascading the 8259A 

AFN 00221E 

A-142 



·8259A/8259A·2/8259A·8 

ABSOLUTE MAXIMUM RATINGS· 
Ambient Temperature Under Bias .......... O°C to 70°C 
Storage Temperature .............. -65°C to + 150°C 
Voltage on Any Pin 

with Respect to Ground ............. -0.5V to + 7V 
Power Dissipation .......................... 1 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. 

D.C. CHARACTERISTICS [TA = OOC to 700C, Vee = 5V ±5% (8259A-8), vee = 5V ±10% (8259A, 8259A-2)] 

Symbol Parameter Min. Max. Units Test Conditions 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0' Vee +0.5V V 

VOL Output High Voltage 0.45 V IOL = 2.2mA 

VOH Output High Voltage 2.4 V IOH = -400/-tA 

VOH(lNT) 
Interrupt Output High 3.5 V IOH = -100/-tA 
Voltage 2.4 V IOH = -400/-tA 

III Input LoadCurrent -10 +10 /-tA OV ~VIN ~Vee 
ILOL Output Leakage Current -10 +10 /-tA 0.45V ~VOUT ~Vee 

lee Vee Supply Current 85 mA 

ILiR IR Input Load Current 
-300 /-tA VIN = 0 

10 /-tA VIN = Vee 

'Note: For Extended Temperature EXPRESS V1H = 2.3V. 

CAPACITANCE (TA = 25°C; Vee = GND = OV) 

Symbol Parameter Min. Typ. Max. Unit Test Conditions 

CIN Input Capacitance 10 pF fc = 1 MHZ 

Clio I/O Capacitance 20 pF Unmeasured pins returned to Vss 

A.C. CHARACTERISTICS [TA = O°C to 70°C, Vee = 5V ±5% (8259A-8), Vee = 5V ± 10% (8259A, 8259A-2)] 

TIMING REQUIREMENTS 

Symbol Parameter 
8259A-8 8259A 8259A-2 

Units Test Conditions 
Min. Max. Min. Max. Min. Max. 

TAHRL AO/CS Setup to RD/INTAt 50 0 0 ns 

TRHAX AO/CS Hold after RD/INTAj 5 0 0 ns 

TRLRH RD Pulse Width 420 235 160 ns 

TAHWL AO/CS Setup to WR~ 50 0 0 ns 

TWHAX AO/CS+lold afterWRj 20 0 0 ns 

TWLWH WR Pulse Width 400 290 190 ns 

TDVWH Data Setup to WRj 300 240 160 ns 

TWHDX Data Hold afterWRj 40 0 0 ns 

TJLJH Interrupt Request Width (Low) 100 100 100 ns See Note 1 

TCVIAL 
Cascade Setup to Second orThird 

55 55 40 ns 
INTAJ, (Slave Only) 

End of RD to next RD 
TRHRL End of iNTA to next INTA within 160 160 160 ns 

an INTA sequence only 

TWHWL End of WR to next WR 190 190 190 ns 

AFN·00221E 

A-143 



intel 8259A/8259A·2/8259A·8 

A.C. CHARACTERISTICS (Continued) 

Symbol Parameter 
8259A·8 8259A 8259A·2 

Units Test Conditions 
Min. Max. Min. Max. Min. Max. 

*TCHCL 
End of Command to next Command 500 500 500 (Not same command type) 

ns 

--
End of INTA sequence to next 
INTA sequence. 

, 
'Worst case timing forTCHCL in an actual microprocessor system is typically' much greater,than 500 ns (i.e. 8085A = 1.6JLs, 
8085A·2 = 1JLs, 8086 = 1JLs, 8086-2 = 625 ns) 

NOTE: This is the low time required to clear the input latch in the edge triggered mode. 

TIMING RESPONSES 

Symbol' Parameter 
8259A·8 8259A 8259A·2 

Units Test Conditions 
Min. Max. 

TRLDV Data Valid from RDIINTAJ 300 
.,' 

TRHDZ Data Float after RD/INTAJ 10 200 

TJHIH Interrupt Output Delay 400 

TIALCV Cascade Valid from First INTAJ 
565 

(Master Only) 

TRLEL Enable Active from RDJ or INTAJ 160 

TRHEH Enable Inactive from RDJ or INTAJ 325 

TAHDV Data Valid from Stable Address 350 

TCVDV Cascade Valid to Valid Data 300 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

A C TESTING INPUTS ARE DRIVEN AT 2 4V FOR A LOGIC' 1 AND 0 45V FOR 
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2 OV FOR A LOGIC 1 
AND oav FOR A LOGIC o' , 

WAVEFORMS 

Min. 

10 

Max. Min. Max. 

200 120 ns C of Data Bus= 
100 pF 

100 10 85 ns. C of Data Bus 

350 300 ns 
Max text C = 100 pF 
Min. test C = 15 pF 

565 360 ns CINT = 100 pF 

125 100 ns CCASCADE = 100 pF 

150 150 ns 

200 200 ns 

300 200 ns 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

~"~''''~ TEST 

CL ~ 100 pF 
CL INCLUDES JIG CAPACITANCE 

WRITE 
~----------------------~ 

---- - - TWlWH ------1 1,.. _______________ _ 

TAHWl --

cs----------------~ 
ADDRESS IIUS 

Ao---------J 

DATA IIUS 

AFN l10221E 

A-144 



8259A/8259A-2/8259A-8 

WAVEFORMS (Continued) 

REAO/INTA 

RDtIHTA -------__ 1------ TRLRH ---. 

TRLEL 

TRHAX 

CI------~ 
ADDRESS IUS 

Ao------..J 

-- TRLDY =i }-
- TAHDY--

DATAIUS--------- ---------- 1...... _______ ____' ------

OTHER TIMING 

ru5 

;t=",,,=+ iNfA 

\ / 
WR 

\ #=TWHWL=!\ / 
AD 

mTA 

c.'""~ 
WR \ 
AD 

INTA 

/ iVA 

AFN l1L12;' 1 F 

A-145 



8259A/8259A-2/8259A;.8 

WAVEFORMS (Continued) 

INTA SEQUENCE 
IR 

INT ______ --J 

INTA---------...... 

DB - - - - - - - - - - - - _ 

_~ TCVIAL 

TCVDV 

C02-------___ ~---~~---~--~~-------~--
-TIALCV-

NOTES: Interrupt output must remain HIGH at least until leading edge of first INTA. 
1. Cycle 1 in iAPX 86, iAPX 88 systems, the Data Bus is not active. 

A-146 

AFN OLJ22IE 




