Hardware Reference Manual

{

S
3
S
W

A

Order Number 210760-001

LITERATURE

1983 will be a year of transition for Intel's catalog program. In order to better serve you, our
customers, we are reorganizing many of our catalogs to more completely reflect product groups.

In addition to the new product line handbooks listed below, an INTEL PRODUCT GUIDE (Order No.
210846) will be available free of charge in March. This GUIDE will contain a listing of Intel's complete
product line along with information on quality/reliability, packaging and ordering, customer training
classes and product services.

-Consult the Intel Literature Guide (no charge, Order No. 210620) for a complete listing of Intel
literature. Literature is presently available in other forms for those handbooks that will not be
published until later in the year. Write or cali the Intel Literature Department, 3065 Bowers Avenue,
Santa Clara, CA 95051, (800) 538-1876, or (800) 672-1833 (California only).

HANDBOOKS

Memory Components Handbook (Order No. 210830)
Contains all application notes, article reprlnts data sheets and other design
information on RAMs, DRAMs, EPROMs, 2 PROMs, Bubble Memories.

Microcontroller Handbook (Available in May)
Contains all application notes, article reprints, data sheets, and other user information
on the MCS-48, MCS-51 (8-bit) and the new MCS-96 (16-bit) product families.

Military Handbook (Order No. 210461)
Contains complete data sheets on all military products.

Microprocessor and Peripherals Handbook (Order No. 210844)
Contains data sheets on all microprocessors and peripherals. (Individual User
Manuals are also available on the 8085, 8086, 8088, 186, 286, etc.)

Development Systems Handbook (Available in April)
Contains data sheets on development systems and supporting software.

OEM Systems Handbook (Available in May)
Contains all application notes, article reprints and data sheets for OEM boards
and systems.

Software Handbook (Available in May)
Contains software product overview as well as data sheets for all Intel software.

Quality/Reliability Standards Handbook (Available in April)

IAPX 286
HARDWARE
REFERENCE

MANUAL

1983

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Inte! retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXP, CREDIT, i, ICE, ICE, ICS, iDBP, iDIS, iLBX, im. iIMMX,
Insite, INTEL, intgl, Intelevision, Intellec, intgligent Identifier™,
intglBOS, inteligent Programming™, Intellink, iOSP, iPDS,
iRMS, iSBC, iSBX, iSDM, iSXM, Library Manager, MCS,
Megachassis, Micromainframe, MULTIBUS, Multichannel™
Plug-A-Bubble, MULTIMODULE, PROMPT, Ripplemode,
RMX/80, RUPI, System 2000, and UPI, and the combination of
ICE, iCS, iRMX, iSBC, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

* MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Department

3065 Bowers Avenue
Santa Clara, CA 95051

© INTEL CORPORATION, 1983

PREFACE

The Intel iAPX 286 microsystem is a high-performance microprocessing system based on the 80286
miCroprocessor.

This manual serves as the definitive hardware reference guide for iAPX 286 system designs. It is
written for system engineers and hardware designers who understand the operating principles of micro-
processors and microcomputer systems. Readers of this manual should already be familiar with the
iAPX 286 architecture at the level described in the Introduction to the iAPX 286 (Intel publication
Order Number 210308).

In this manual, the iAPX 286 microsystem is presented from a hardware perspective. Information on
the software architecture, instruction set, and programming of the iAPX 286 can be found in these
related Intel publications:

* iAPX 286 Programmer’s Reference Manual, Order Number 210498
o ASM286 Assembly Language Reference Manual, Order Number 121924
e PL/M-286 User’s Guide, Order Number 121946

Together with the iAPX 286 Hardware Reference Manual, these publications provide a complete
description of the iAPX 286 microsystem for hardware designers, software engineers, and all users of
iAPX 286 systems.

ORGANIZATION OF THIS MANUAL

The information in this manual is divided into seven chapters and one appendix. The material is intro-
duced beginning with a system-level description of the iAPX 286 microsystem, and continues with
discussions of the detailed hardware design information needed to implement system designs using the
actual iAPX 286 components.

e Chapter One provides an overview of the iAPX 286 microsystem.

e Chapter Two describes iAPX 286 system architecture from the viewpoint of the system designer.
Examples illustrate the many different system configurations that are possible within this architec-
ture. Design tradeoffs for the various choices are discussed.

¢ Chapter Three discusses the iAPX 286 local bus. Included in this chapter are detailed signal
descriptions and timing for the 80286 and support components, a discussion of iAPX 286 memory
and I/O organization, and in-depth discussions of processor and local bus interface guidelines.

The next four chapters provide the information required to interface memory, peripheral devices, and
processor extensions to the 80286 microprocessor.

e Chapter Four discusses techniques for designing memory subsystems for the iAPX 286, and describes
the effects of wait states on iAPX 286 performance.

» Chapter Five explains how to interface I/O devices to an iAPX 286 system.

» Chapter Six describes the interface between the 80286 and the 80287 Numeric Processor Exten-
sion, which greatly expands the mathematical processing power of the iAPX 286 microsystem.

iii 210760-001

ntel PREFACE

Chapter Seven shows how an iAPX 286 system can interface to the IEEE 796 Multibus, Intel’s
multi-master system bus.

Appendix A contains data sheets for the iAPX 286/10 (80286) microprocessor, the 80287 Numeric
_Processor Extension, and the various processor support components.

iv 210760-001

Table of Contents

CHAPTER 1 Page
INTRODUCTION :

IAPX 286 Microsystem COMPONENEScooerviririiiiiiiiicecreree et enee 1-1
MICTOPIOCESSONS ..eeriurieriieereerericiiiiir s san e st sbe s e be s st e et e e e s n e s ennaaeeans 1-2
Interrupt CoNtrollerooceeiiiiiiree et 1-2
Bus Interface Componentsccceceerecreeerirmenniicniee i, eeeeeetrrrreeaeaaas 1-2

CHAPTER 2
iAPX 286 SYSTEM ARCHITECTURE

IAPX 286 Bus Organizationcccooviiiiiiiiiiiiin et 2-1
The IAPX 286 LOCAI BUS ..coooeeeiiiiiciiiri et e et e w241
The Buffered LOCal BUScccoivieeiiiicnicicn it e 2-2
The SYStEM BUS coeiiii e e 2-3
BUS INtErfaCe GrOUPS ...cveerieeeeiiiieciiitecer et s e s s ssr e s erea e 2-3

Memory Subsystems for the IAPX 286ccccccevriiiiiicnic e 2-3
I Torz |l (=70 T TR 2-6
SYSIEM MEMOIY ...ttt s 2-7
DUAI-POIt MEIMOTY coiiveeiiciiieeiereee sttt esesmen e s s e s ree e e s e mmeeee e s 2-7

1/O Subsystems for the IAPX 286coociiiiiiieeeee e e 2-10

Processor EXtENSIONSccccevveveirieiminiecreniecreecie e sessissnenns e 2-10

Multi-Processing OVEIVIEWc.cccooveiiiiiiiiiiciec et 2513
Bus Arbitrationcc.ceceene.e. et ettt ea et e nae s i 2-13
Mutual EXCIUSIONcceviiiiniiiniii i, e e e e 2-14
Using the iIAPX 286 with the IEEE 796 MULTIBUS®cccocciviicinnriineciionen, 2-16
A Multi-Processing Design EXamPIEcccceeeeerrereeireeeienieseceniesaennnas e, 2-16

CHAPTER 3

THE iAPX 286 LOCAL BUS
Introduction to the 80286 Central Processing Unitccccocoeiiciiinniiininiencnne 3-1
- Processor ArChIiteCtUreccocuieiveiiiiieniieecere et e 3-2
THE BUS UNIt ittt ettt ee e sre s s eena e 3-2
The INSrUGHON UNit ...cooneiiee ettt 3-2
The Execution Unitccciiiiiiiiiiiiiiie i 3-3
The Address Unitcccccieniiiienniniinniniiniennns treereeeeeeeae s eaaa e rnr et e e seneenan 3-3
The Effects of Pipeliningc.ccoeeeiiieccrniiiis e 3-3
(0] o112 N i1aTe 11 [oTo (=T TSP 3-4
The 80286 Bus INTEITACEccccevrieiieeiiieer e e 3-4

Local Bus Overview ereeeretresaee et aeaee et a e neesneans e errreeereeteeareeeaneneans 3-5
Organization of Physical Memory and I/O 35

Memory Organizationcoiciiiiiiciie e 3-5
1/O Organizationccceooveeieiiiiiicie e e 3-9

ntel TABLE OF CONTENTS

Page

Interrupt Organization ..o 3-10
INterrupt PriOrties ...occoeieie e s 3-11
Non-Maskable Interrupt Request (NMI)cocceriiiiiniiciin e, 3-12
Maskable Interrupt Request (INTR)cooccveeiiiiieicceee e 3-13
Pipelined Address TiMiNGc..cccceerniiiiiiiiniinionnenninne FEUT O SN 3-15
iAPX 286 Local Bus Statescc.ccieicniiiniennnnnnnenens eereeeeeen et - 3-16
IAPX 286 Bus Operationsccccoooeeiiirriiieeir s e e eeereeeeessee e s s e s 3-17
Read CYCIBS ...iiiriiiitiieieeetccee s 3-18
WIE CYCIES ..ot et s e 3-18
Interrupt-Acknowledge CyCIEScccvveiriiiiiiierec e 3-21
Halt/Shutdown CYCIEScoecvieiieiiiii e 3-21
IAPX 286 BUS USAQEeeeiieereiriciiin ittt 3-23
Local Bus Usage Prioritiescccceciiiniiiciiiiniiee e, rreeser e 3-23
Prefetch Operationscooveeiiiieeiiccen ettt 3-23
Data OPerationscccoeccceeriieiimnieeneereee et s ra e e 3-24
Data Channel Transfersccoiviiiiiiiicie e 3-25
BUS ULIIZAtON ...coeeiiiieeee ettt e e e e e e e e e e e e e s e e e te e reseneseeenees 3-25
Bus Interface COMPONENTSccceevrieiiiiireiiiniiee e see e s ree e 3-26
Generating Timing Using the 82284 Clock Generatorcccooeveieviieeccriennnn. 3-26
Generating the System CIOCKcccoveiiiiiiiiii et 3-26
Timing Bus Operations UsSiNg READYccccceeeiinieereneenineseeertseesesenaesesaenens 3-32
Wait-State Timing Logic P URRIN e 3-37
_Generating the Proper RESET Timing P URUPRRTI 3-40
.. Synchronizing Processor Clocks in a Multi-Processor Systemc...ccceeeeeenee 3-43
Controlling the Local Bus Using the 82288 Bus Controllerccccoevvievinnnnen. 3-44
Systems Having More Than One Bus Controllercccooveeiiiniieciiiciiinneens 3-44
Selecting @ Controller ... e 3-45
Selecting MULTIBUS® TiMING .c..covovvvniieriiieneeseeiesiieeis s s 3-46
Modifying the Bus Control Timingccveeivieriiecie e 3-48
CMDLY (Command Delay)cccovviiiiriiiiiiciiiin e 3-49
CEN/AEN (Command Enable/Address Enable)cc.ceoereerenircerencnirneene 3-49
Local Bus Design Considerations ... 3-52
Address Bus Interface ... 3-52
AdAress DECOTING ..eevereeeiriieriie ettt 3-53
Non-Latched Chip SeleCtSooiveiiieiiiiie et 3-53
Latched Chip SEIECESeviiiicciiiiieeeeer e e e e 3-55
Data Bus INTErfaceooociiiieeeecien ettt 3-56
Other Bus Masters on the iAPX 286 Local BUSccccocviviiiiniiiiccieiiinncnns 3-61
DMA Configurationccccivciiiienni i 3-64
Initializing the IAPX 286 ProCessorcccciiiiiiiinivcicnctiiinisiiisen e 3-65
80286 Internal Statescccevccirreiiiiii e SUS 3-65
80286 External Signalsccoccevveeeeeens et eeee i re——treeee et e et et e e e eneeates 3-67
IAPX 286 Bus TiMINGcoocvervinieneeneeneeseesereeniene Ceerreeee e te e naesreraeens 3-69
Address and ALE TiMINGcocoeerieriieeneeeerreeee st s eenee e e 3-71

vi

Intel TABLE OF CONTENTS

Page

Command Timing et eeeeteeeteee et teeeen i rere st reae s e e e e e s e e s s e e e e s e b e e s e res 3-71

READY THMING «eeeotiieteierieieecieie ettt ettt sae e st be e s b ene e sne e 3-72

Read CyCle TiMING ..eceeciereeiieecieeeeeiteerree s ste e reressrseeesereeessressarneesssseesannns 3-72

Write Cycle Timing ettt reetteeee et tete s a—aree et te e arareeeaee e e sennrreeeesreannns 3-73

Interrupt-Acknowledge TimiNGccooiiiieerniiiiiiii s 3-74

Physical Design Considerationsccceciiiiiiiiini i, 3-74

Power, Ground, and Cap Connectionscccccccvviiceinienicniiiiiien i 3-74

Debugging Considerationsccccoiiiiiiiiiiiin 3-76

The iLBX Bus—A High-Performance Local Bus Standardc..icceeeeninnanns 3-76

CHAPTER 4

MEMORY INTERFACING :

Memory Speed vs. Performance and COStcccccrrvriinienicieenniensensreenceenanne 4-1
System Performance and Memory Performancecocceececenniveseenesivennnne 4-2
Memory Speed and Memory Performancecccccuccecvrrnenneenenceesenseneinene 4-2

iAPX 286 System Performance with Wait Statesccccccecvcvveiiicciiiiecccienee, 4-3
Explaining the Benchmark ReSUItSccccceeirieinciiiiiinecn e 4-3
The Intel Pascal Benchmarks eeeere e e e e e e s e ane e e e e s nearas 4-5

QUEEBNS ..ttt st s s et et e e s neeeaes 4-5
GCD ittt ettt et re e s raa e 4-5
Bubble Sortccoooiiiciiiiree, SRR UUPRURRRRPON 4-5
Matrix MUItiply .ooveeeiece e e e 4-5
The Intel Assembly—Language Benchmarks .. 4-6
1] 1= o7 S U PURR 4-6
KLAT ettt e st e s e s st e e e be b e e s e e ataeas 4-6
BOORT ettt sttt sae s st s s e s an e s ae e s na e nne 4-6
XFORM ottt et s s e e 4-6
PCOALL .ttt e st rae s sae e s e e s s et aa 4-6

Memory Interface TEChNIQUESc..coeiiiviiiiiicicie s . 46
Standard Address Strobe LOgiCc.cccccueuneen.. ettt e s reas 4-7
Special Address Strobe Logic O O 4-8
Interleaved MEMOTY ...c..cooiiieee et sae e s cae s e s 4-9

Timing Analysis for Memory Operationscccccoccieerrinverrecnenscennnnenesneeeeanas 4-11
Standard ALE TiMiNG ..coceiviiiiiiirienecceree et ee e e e e s 412

Read Operationsc.ccceeevverrunen, SRR PRRRRRPPPIRY 413
WIite OPErationsociiiiceiiivis it ectee s cecr e s e e e s eas e e s se e et e e e e saeeesan 415
Special Address Strobe TiIMINGcccccvviiieirnrieeires v e erer e sseeessreeeeenens 4-18
Interleaved Memory Timingcccccevecernemriceennene. et e 4-20

Memory Interface EXamPIESiccoeevrciiiiiencenitiere et s ste et e s de e aeas 4-23

Read-Only MEeMOIYccccciverieeiiirniirrerer e e ettt e e e e s ae e s s e enne e e seee e e ssnneeesanrenesen 4-23

"~ Timing Analysis for ROMS ..ottt e senens 4-24
Static RAM DEVICESccooiiiitivnsiincnitect b saee e se e snesse s et ennenan 4-25
Timing Analysis for Static RAMS SR 4-27
Pseudo-Static RAM DeViCeScccereceenierivnrensrseesiennisenanne S 4-30

vii

Intel TABLE OF CONTENTS

Page
DynamiC RAM DEVICESc.ccirireereermriinieeenreseetesessessn et e ssesaessessseneenseene 4-30
Timing Analysis for the 8207 RAM Controllercccoiviiiniiiinnne e 4-33
Error Correction Using the 8206 EDCUccccvvveerinnennee. eeeere s 4-38
Dual-Port Memory Subsystems Using the 8207 ADRCcccceevciiiiennnee. . 4-39
CHAPTER 5
170 INTERFACING
1/0-Mapping vs. Memory-Mappingccocvceeiiiiimii e 5-1
Address-Decoding ... 5-1
IAPX 286 INStruction Set ... e, . 51
Device ProteCtioncooiiiieiieiiiiceeeee st e e e 5-2
Interfacing to 8-Bit and 16-Bit I/O SO 5-3
Address DeCOdINGcovvveiriiiiiii it 5-3
Memory-Mapped [/Occooviiiieiiecee e e eannee e 5-4
8-BitI/O .o, e e e es e RO .. . 55
16-Bit I/O oo, e e bbb s 5-8
Linear Chip Selectsccoceviniiiiiiciic SR S 5-8
Timing Analysis for 1/O Operationsc.c.cccccoviririceinnninnrece e sereserreessaeees 5-8
. Read Operationsccvviveineiiinnin SRR S 5-10
Write Operationscceooovieereciiiiiieeieeeee et ssiee e ecneeeeeeeeeneete D212
. Matching 1/O Device ReqUIremMeENtSccccveriiceerrciieeniiieieerce et seeeesssees e 5-14
~ 1O Interface EXamMPIESoeiiieiie ittt e . 5-14
8274 Interface e eeeeeetneteetetaeteaeaa e eee i anannnares e e e 5-15
Read TiMING .eoeoiiei e e e e 5-16
Write TiMiNG .ooveeeeee e e RN e 5-17
8255A-5 Interfacecovveveeeeiceeiei e 5-17
8259A-2 INtErfaCe ...coeieiiiiie et et ... 5-18
Single Interrupt CONtroller ...t 5-19
Cascaded Interrupt Controllerscccocvvviiiiniiniininns e 5-19
Handling More than 64 Interrupts O PP 5-20
The iSBX Bus—A Modular |/O Expansion Bus O 5-21
CHAPTER 6
USING THE 80287 NUMERIC PROCESSOR EXTENSION
The 80287 Processor Extension Interfaceccceoceeierveniensnnennnnceisieniecens 6-1
The 80287 Status LiNeSc.coovviieieiiiininccccscnes e 072
~ Addressing the B0287 ...ttt st 6-3
The 80287 ClocK INPULcouiii e - 6-3
Local Bus Activity with the 80287coovreeeeii e - 64
Execution of ESC INStructionsccvcoiiiiiiiicreniesesenesc e 6-4
The Processor Extension Data Channelccco i, 6-4
Data Channel REQUESEScccceveriirierre ettt n 6-4

Intel TABLE OF CONTENTS

Page
Data Channel Transferscccoceiiiiiiereeisser e 6-4
Data Channel PriOrityccccoicceriiierieienccriie et st esirs e iceeae e s smea e 6-6
Performance Using 80287 Parallel Processingcccovveeeeeeriicnerecenssveeneensn 6-6
Designing an Upgradable iAPX 286 Systemcccccecvriviecsiincre e eieeenne 6-7
Designing the 80287 SOCKELccceiveiieiiieeeecee et 6-7
"Recognizing the 80287 ...ttt e sra s e bae e s 6-7
CHAPTER 7
THE SYSTEM BUS '
The System-Bus CONCEPLociiiriiiiiiii e e e 7-1
The Division Of RESOUICES ...t 7-2
Local RESOUrCESccccviveviveniiiiriiiciern e e e e 7-2
SYStEM RESOUICES ccciiiieiiicee ettt sttt 7-2
The IEEE 796 MULTIBUS®—A Multimaster System Buscccccoveviiniicnene 7-3
MULTIBUS® Design Considerationscccccccceeeceveerrirrmressineessrerennssssseeessssesenanee 7-3
Memory OPerationSs cccccviiireeieniere i e e s SN 7-5
[/O OPEratiONS eiiiieiiiiiiiec ettt st e sr et st et e sb e esr et 7-6
Interrupt-Acknowledge to Cascaded Interrupt Controllerscccocccvvieenenn. 7-7
Byte-Swapping During MULTIBUS® Byte Transfersccccccevininiiiiinnnnne. 79
implementing the Bus-Timeout FUNCoONccciiiiiniii e 7-10
Power Failure Considerationsccccevvivreeniiierieeiieeene e i ee e 7-10
MULTIBUS® Arbitration Using the 82289 Bus Arbiterccccoccnviiiinreccicnnnnne 7-12
Gaining Control of the MULTIBUS®cooviiriieeceeieviee e 7-12
Releasing the Bus—Three 82289 Operating Modescc.ococeveiiniccereniinnen. 7-14
When to Use the Different Modescccce.. eenrere et r et s e e rae s 7-15
Configuring the 82289 Operating MOdeSc.occceeviiiiieniiir e, 7-16
Asserting the LOCK SigNalccvurieereeierireininieesesisisieses e sasaseneseseesesaseseenes 7-17
Timing Analysis of the MULTIBUS® Interfacec..cccvevevieenniine e, 7-18
Using Dual-Port RAM with the System BUS -.........ccooiiiiiiiiiiie e 7-19
Avoiding Deadlock with a Dual-Port Memorycccccviiniennininnnicsnie e, 7-19
APPENDIX A
DEVICE SPECIFICATIONS
iAPX 286/10 High Performance Microprocessor with Memory
Management and ProteCtionccccceieroiiiiinncnnicein i A-1
80287 80-Bit HMOS Numeric Processor Extensionccccoveniniicicncnnne, A-51
82284 Clock Generator and Ready Interface for iAPX 286 Processors A-75
82288 Bus Controller for iAPX 286 ProCessorscccccevveiirnennssinicesensineens A-83
8282/8283 Octal LAtCh ...ccceeveeeiiiicreniecciin e si s e s A-99
8286/8287 Octal BuS TranSCeIVETccccocveerreiinvireriiereninreseressiensnessseessseesssnees A-105
8207 Advanced Dynamic RAM (DRAM) Controllerccocoeecvencinrieecnecennen. A-111
8259A/8259A-2/8259A-8 Programmable Interrupt Controllerccccvveenee A-129

TABLE OF CONTENTS

Table

3-1
3-2

3-4
3-5
3-6

3-8
4-1
4-2
4-3
4-4
4-5
4-6
47
4-8
4-9
4-10
4-11
4-12
4-13
5-1
5-2
5-3
5-4
6-1
6-2
7-1

7-3

Figure

2-1
2.2
2-3
2-4

List of Tables

Title o ' Page
iAPX 286 Microsystem Components rrerr et seane s 1-1
80286 Bus Cycle Status DECOTINGccceeurreerrirererinerereeesesesesiesaeiennas 3-4
Processing Order for Simultaneous Interruptsc.cccoovvvevicnnnn. v 3-11
Local Bus Usage PrioritieSccccveveccemmrreieeieee et veereesinee e 3-24
82284 Crystal Loading Capacitance Valuesc.ccccvveciecievniieininennne 3-28
Bus Operations Affecting HOLD Latencyccccevivnieivcieeecineneenns - 3-64
CPU State Following RESETcooiiiiiiriiierieeicee et 3-66
80286 Bus During RESETcccvcveeccemnninnncnssneseveeneens fevererre e 3-68
82288 Command States During RESETc........ et e s 3-68

_IAPX 286 Performance With Wait Statesccccevrveeeeiiciiiiveinsennineen, 4-4

Comparing Several Memory Interface Techniquescccccoiocevennenn. 4-12
Timing for 8-MHz Read Operations Using Standard ALE Strobe 4-14
Timing for 8-MHz Write Operations Using Standard ALE Strobe 417
Timing for 8-MHz Read Operations Using Special Address Strobe 4-20
Timing for 8-MHz Interleaved Memory Operationscccccocvvvevveenneen. 4-22
iAPX 286 Performance with Interleaved Memoriesccccovevviciienns 4-23
Timing Analysis for the 2764-20 EPROMcccocciciveiviieneccveennieee. 4-25
Wait-State Requirements for Intel EPROMSccoiiviiecviericieeecee, 4-26
Timing Analysis for the 2147H-1 RAM ..o, 4-30
Non-ECC Mode Programming, PDI Pin (57) Tied to Ground 4-35
8-MHz Timing Analysis for the 2118-10 DRAMccciovviviveee e, 4-37
6-MHz Timing Analysis for the 2164A-15 DRAM occiiiiiiiinieiie, 4-37
Timing Analysis for 8-MHz /O Read Operationsccceecevvcinneeaiunen. 5-12
80286 Timing Analysis for 1/O Write Operationsccecevveeiiennen. 5-14
80286/Peripheral Timing Parameters ereeeesneerrrresereeasanenas 5-15
Timing Requirements for Selected Peripheralscc.ccooccevviicennninnnneen. - 5-15
I/O Address Decoding for the 80287cccoeeiiirecesivneceenne TR 6-3
Whetstone Performance with Multiple Wait Statesccoevivvvnnens ‘ 6-7
Local Bus and MULTIBUS® Usage of BHE/BHENcccceeiviiien. 7-10
Three 82289 Operating Modes for Releasing the Buscccceeeue. 7-15
Required MULTIBUS® Timing for the iAPX 286ccccccoeveiieieiiineenns 7-18

List of Figures

Title . : Page

Representative IAPX 286 Systemcccocceeriiiiccicie e 2-2
iAPX 286 on Multi-Master System Bus cccocomriiiincenincinsiee e - 24
IAPX 286 With Both Local and System BuSeSccccecoereeeiincernninee, 2-5
Representative iAPX 286 System Memory Mapcc.cccivieivenreccennnan, 2-6

intel

TABLE OF CONTENTS

Figure

2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35

Title

DUAI-POIt MEIMOIY .eevviieiiiiieiiieiireitreeese e sesen s s cseeaserreeeses et ssenreresrneeseesnne
Arbitration Logic for a Dual-Port Memoryccccccocvveeccinceccrieeeseeen,
8207 Dual-Port Subsystemcccovcievniiiiiiiinccii e
iAPX 286 With 8086/8089 IOP Subsystemc..ccccceieeevrceeiiensieeenns
80286 With @n 80287cccevieeeieiiree e esbe e reeesie et e e e e sve et eenee
80286 With DMA Controllercccceoieeeireiiinnie e e e e nae
80286 on the MULTIBUS® Interfacecccocvviveecvieeciiineninnns ererereeranes
iAPX 286 Design Exampleccccoeciiernieicins eeereeereeeerr e rraeeereaaas
80286 Internal BIOCK Diagramccccoceevevverenisnenscnresiireeenssennesseeneens
Operation of Sequential vs. Pipelined Processorscccecvveeeviievinans
Separate Memory and /O SPaceScovvreeerreieieee e es s
IAPX 286 Memory Organizationcccceovieriveriiennnniesecne e
80286 Byte Transferscccoccceievcevenneen. ereeerrnerbeaias STOUO R
Even-Addressed Word Transferccvivieiiiicnniniinncens
Odd-Addressed Word Transferccccccovieeerienesrieen e nrenseenesseeneenas
Interrupt Descriptor Table Definitioncccccveeeiieeniiiinn e,
NMI and INTR Input TimiNg ...ccccovirvieiiieenii e
8259A PIC Driving 80286 INTR INPUE ...oeenviieeeiee et
Typical and Pipelined Bus Operationscccccccveivveerineccceisinneeeseennens
System and Processor/PCLK Clock Relationships ...
80286 STAIES .ovvvierreriiirrieneie e et e e e e s ene s
IAPX 286 Read CYCIEcccvrivcirrriereiieieeeice e e eeeea e
80286 Write CYClEooiiiiiiiicen ittt teees
Interrupt-Acknowledge Sequence ... s
82284 Clock Generator With an 80286 CPUccccccoirvenriienniiieeenn.
80286 ClOCK INPUL ...ttt e
Recommended Crystal Connections to the 82284cccccevvieeenans
82284 With External FrequencCy SOUICEccciereeirierneeneeieeesineins
External Frequency for Multiple 82284sccccccviiviinnrnenicinesineneees
Multiple Local Bus Processors Share a Common 82284
CLK to PCLK Timing Relationshipccccoeriiriciieniieeiie e
READY TiMING ceeereiiiiiienerien e sereee et ee e er e e s s e e
Ready Inputs to the 82284 and Output to the 80286 and 82288
SRDY and READY TiMING ...ccoeeeinreeeeninieeseeneeeeesesessesssseassescensesessenne
ARDY and READY Timingcccccceveveecervernneens TRV reene
Using Only One Ready INPULcccovvvviiiniiiiien e e
Selecting the Ready INPUEviieciicc e e
Open-Collector 82284 READY Output eteeeeeeree e i———easaeeennns
READY Output CharacteriStiCscccvcvvrvveereivieeivriniesieisimreeerresesnennens
Generating a Single Wait Statecccccoveiiininic e e,
Timing for the Single Wait-State Generatorcccccvvvemrveericeennns
Generating from 0 to 3 Wait Statesccceveiiiiccisinnee e
Typical RC RESET Timing CirCUitccccviiiiirreiiiicriien e snieeeennes

Xi

Page

TABLE OF CONTENTS

Figure

3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60
3-61

3-62
3-63
3-64
3-65
3-66
3-67
3-68
3-69
3-70
3-71
3-72
3-73
3-74
3-75
41

4-2

Title

80286 Reset and System Reset
Processor Clock Synchronization
RESET Synchronized to CLKc.ccccecenee

Generating a Synchronous RESET to Multiple 80286 CPUs

Synchronous RESET Circuit Timing
82288 Bus Controller with an 80286 CPU
CENL Disable of DEN on Write Cycle '

Local (MB=0) Vs. MULTIBUS® (MB=1) TIMING ...vvverereeererrrererreerrrees

Bus Controllers in Dual Bus System
Generating CMDLY For 0 or 1 CLK Delays ...
Generating 0 to 7 Command Delays

Bus Cycle Terminated with No Command Issued evrrees

CEN Characteristics (No Command Delay)
Latching the 80286 AdAressc..cccoeain.
ALE TiMiNG oo
Dual Address Bus Systemicinanen, .
Non-Latched Chip Selectsccceceveiiennnn.
Latched Chip Selectscccecvvrcivininniceneen,

Devices With Output Enables on a Non-Buffered Data Bus
Devices Without Output Enables on the Local Data Bus

Buffering the Data Busccccecvvviinecinnnen,
Dual Data Bus Systemc.ccocveveiieecincnnen.
Double Buffered Systemc.ccceeerieivennen.

Controlling System Transceivers with DEN and DT/R i

Buffering Devices with OE/RD c.cecciui.

Buffering Devices without OE/RD and with Common or Separate

Input/Outputooocciiiiii i,

Buffering Devices without OE/RD and with Separate Input/Output

Entering the Hold Stateccecceeineeinn

Exiting the Hold State taerersenrssaninianes
HOLD input Signal Timingcc...c..e..
DMA Controller on the Local Bus
DMA Controller on a Private System Bus ‘

Decoding Addresses in Both Real and Protected Modes

Signal States During RESETcccoceeiniiene

Disabling the 80286 Bus Interface on RESET

iAPX 286 Local Bus Cycle Timingc..c....
80286 Pin Configurationcc.cccceeee i S

.......................................

Required Power, Ground and CAP Connectlons

Terminal Posts Provide Signal Access
[2ICE™ Probe Cabling Requirements

Memory Interface Using Standard ALE Signal
Memory Interface Using Special Strobe Logic

Xii

TABLE OF CONTENTS

Figure

4-3
4-4
4-5

4-7
4-8

4-10
4-11
4-12
4-13
4-14
4-15
4-16
417
4-18
4-19
4-20
5-1
5-2
5-3
5-4
5-5
5-6

5-8

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
6-1

6-3
6-4
7-1

7-3
7-4

Interleaved Memory Circuitccccoecnenee.
Address Strobe Generationcccoeeeeeine
Memory Read Cycle Timing [
Delaying Transceiver Enable

..
..

Memory Write Cycle Timing Using Standard ALE Strobe

Timing for Special Address Strobe Logic
Interleaved Memory Timingcccevievevinnee.
ROM/PROM/EPROM Bus Interface

..

Generating Chip Selects for Devices without Output Enables
Generating Chip Selects for Devices with Output Enables

Static RAM Interface ..o,
80286-8207 Interfacesc.cccvveeceeiiinnneens
8207 Single-Port Memory Subsystem

256K, 64K, and 16K RAM Address ConnectionScccccecivevviieeeeneeenns

128K-Byte Memory Subsystem
External Shift Register Interface
128K-Byte Memory Subsystem Timing
8207 Memory Subsystem with ECC

..

..

Comparing Memory-Mapped and 1/O-Mapped /Occooeviveevevvennnennn.

Restricted Address Regionscccceeevuee.
Memory-Mapped I/O Devicescccceuuennn.
Generating I/O Chip Selectscccceevieenee

..

Bipolar PROM Decoder for 8-bit or 16-bit I/O Devicescccevveureennne

16-Bit to 8-Bit Bus Conversion
16-Bit I/O Decodecccoovceeeiiiiicceeeeeeien,
Linear Selects for /O Devicesccceerruneenn.
1/0 Cycle Modelccocceiriiiniiiccccieeesien s
I/0 Read Cycle TimiNgccocovvverrienreeernnnnen
1/0O Write Cycle TimiNg ..ccccoovvvveveeeeercieer e
Delaying Transceiver Enablecc..o.u.eee.
8274 MPSC Interfacecccccccceeveriieenicnennnnns
8255A-5 Parallel Port Interfaceccceeeee.
Single 8259A Interrupt Controller Interface ..

Cascaded 8259A Interrupt Controller Interfacec.ccoooeveecieenienes

iAPX 286/20 System Configuration
Data Transfer Timing for the 80287

Data Channel Request and Acknowledge Timingccccocvverniienenn,

Software Routine to Recognize the 80287 ..

Local Bus and MULTIBUS® Interface for the iAPX 286cccccceeueneee
Decoders Select the Local vs. the System BUSccoceevieeiiiinicncennnne
Selecting the MULTIBUS® for Memory Operationsccceveeevnnnennne

Memory-Mapping the MULTIBUS® I/O

Decoding Interrupt-Acknowledge Sequences

Xiii

.......................................

" TABLE OF CONTENTS

Figure

7-6
77
7-8

7-10
7-11
7-12
7-13

Title Page
Byte-Swapping at the MULTIBUS® Interfacecceeuu...... e 7-11
Implementing the Bus-Timeout FUNCLONcccccoveveeemrienee e 7-12
‘Two Bus Priority-Resolution TEChNIQUESccceveereerereiiereeeereieren, 7-13
Bus Exchange Timing for the MULTIBUS®cccccvnmiinninicnnee W 7-14
Effects of Bus Contention on Bus Efficiency et nenns 7-16
Four Different 82289 Configurationscccceeeeeeremeeesvennne. et 7-17
iAPX 286 Dual-Port Memory with MULTIBUS® Interface 7-21

Preventing Deadlock Between Dual-Port RAM and MULTIBUS® 7-22

Xiv

Introduction

CHAPTER 1
INTRODUCTION

The iAPX 286 is a new high-performance, VLSI microprocessor system that supports multi-user repro-
grammable and real-time multi-tasking applications. The iAPX 286 microsystem includes the 80286
microprocessor, the 80287 processor extension, and additional support components. The iAPX 286
architecture specifies how these components relate to each other, and is the key to the versatility of
the iAPX 286 system.

iAPX 286 MICROSYSTEM COMPONENTS

The components that make up the iAPX 286 microsystem are designed to work together in modular
combinations within the overall framework of the iIAPX 286 architecture. System functions are distrib-
uted among specialized components, allowing designers to select an appropriate mix of components to
fit the needs of their particular target system. This modular structure allows systems to grow in an
orderly way to meet new needs, without adding unneeded capabilities or excessive cost.

Table 1-1 lists the components in the iIAPX 286 microsystem and describes their functions.

Table 1-1. iAPX 286 Microsystem Components

Microprocessor Description

80286 Central Processing Unit (CPU) 16-bit high performance microprocessor with on-chip

memory management and memory protection

80287 Numeric Processor Extension High-performance numeric extension to the 80286 CPU

(NPX)

Support Combonent

Description

8259A Programmabile Interrupt
Controller

8282 Octal Latch (Non-inverting)
8283 Octal Latch (Inverting)

82284 Clock Generator and Driver

8286 Octal Bus Transceiver
8287 Octal Bus Transceiver (Inverting)

82288 Bus Controller
82289 Bus Arbiter

Provides interrupt control and priority management for the
CPU
Latches address and increases drive on address bus

Latches address for inverted-sense buses like the IEEE 796
Multibus

Generates system timing functions, including system clock,
RESET, and Ready synchronization ‘

Increases drive on data bus

Buffers data bus for inverted-sense buses like the IEEE 796
Multibus

Generates bus command signals
Controls access of microprocessors to multi-master bus

1-1 210760-001

Intel INTRODUCTION

Microprocessors

At the center of the iAPX 286 microsystem is the 80286 Central Processing Unit (CPU). The 80286
is a high-performance microprocessor with a 16-bit external data path and up to 16 megabytes of
directly-addressable physical memory; up to one gigabyte of virtual memory space is available to each
user. The standard operating speed of the 80286 is 8 MHz; a 6-MHz version of the 80286 is also
available.

The 80286 operates in two modes: Real-Address Mode and Protected Virtual-Address Mode.

e In Real-Address Mode, the 80286 is fully code-compatible with the iAPX 86 and 88 micro-
processors. All 8086 and 8088 instructions execute on the 80286 at a much faster rate. An § MHz
80286 executes instructions up to six times faster than a 5-MHz 8086.

e In Protected Virtual-Address Mode, the 80286 is also compatible with the 8086 instruction set.
Protected Virtual-Address Mode allows use of the 80286’s built-in memory protection and manage-
ment capabilities and virtual-memory support.

The 80287 Numeric Processor Extension is an iAPX 286 processor extension that uses the 80286 to
fetch instructions and transfer operands. The 80287 extends the numeric processing abilities of the
80286 to include 8-, 16-, 32-, 64-, and 80-bit integer and floating-point data types and to perform
common transcendental functions. The 80287 is compatible with the proposed IEEE 754 Floating-
Point Standard.

Interrupt Controller

Interrupt management for an iAPX 286 system is provided by the 8259A Programmable Interrupt
Controller. Interrupts from up to eight sources are accepted by the 8259A; up to 64 requests can be
accommodated by cascading several 8259A devices. The 8259A typically resolves priority between
active interrupts, interrupts the CPU, and passes a code to the CPU to identify the interrupting source.
Programmable features of this device allow it to be used in a variety of ways to fit the interrupt require-
ments of the particular system.

Bus Interface Components

Bus interface components connect the iAPX 286 processors to memory and peripheral devices. The
use of these components in a system is based on the requirements of the particular system configuration.

The 82284 Clock Generator is a bipolar device that generates timing for the iAPX 286 processors and
support components. The device supplies the internal clock to the processors and also provides a TTL-
level half-frequency peripheral clock signal to other devices in the system. The Clock Generator also
synchronizes RESET and Ready signals for the processors and support devices.

Addresses and control signals are latched and held by 8282 or 8283 Octal Latches. These latches are
bipolar devices that satisfy the high AC and DC drive requirements of larger systems.

The 8286 and 8287 Octal Bus Transceivers are bipolar, high-performance bi-directional data buffers
that satisfy the high AC and DC drive requirements of larger systems.

The 82288 Bus Controller is an HMOS device that decodes status lines from the 80286 CPU to gener-

ate bus command signals. These command signals identify and control the bus cycles that are performed.
The 82288 also provides address latch and data buffer control signals for the 8282/8283 Address

1-2 210760-001

|ntel INTRODUCTION

Latches and the 8286/8287 Bus Transceivers. The Bus Controller’s command outputs provide the high
AC and DC drive required for large systems, while control inputs allow tailoring of the command
timing to accommodate a wide variety of timing requirements.

Access by the iAPX 286 to a multi-master system bus is controlled by the HMOS 82289 Bus Arbiter.
A multi-master system bus connects memory and peripheral resources that are shared by two or more
processing elements. Bus Arbiters for each processor can use one of several priority-resolving techniques
to ensure that only one processor is driving the bus at any given time. The 82289 Bus Arbiter supports
bus arbitration signals that are fully-compatible with the IEEE 796 Multibus standard.

1-3 210760-001

iAPX 286 System Architecture 2

CHAPTER 2
iAPX 286 SYSTEM ARCHITECTURE

The iAPX 286 microsystem supports a very flexible architecture that opens up a wide range of possi-
bilities for system designers. This chapter describes the iAPX 286 system architecture and examines
some of the possible configurations this architecture supports.

¢ The first section of this chapter describes the organization of the iAPX 286 bus. This parallel bus
structure forms the basis for many of the configuration possibilities of the iAPX 286 architecture.

e The second section introduces memory subsystems for the iAPX 286. Memory is a crucial part of
every microprocessing system; it is used for the storage of program instructions and for the holding
of processing data and information.

¢ The third section discusses the possible I/O configurations of an iAPX 286 system. The iAPX 286
can directly address a large number of peripheral devices, or alternatively, I/O processing tasks can
be off-loaded to dedicated processing subsystems.

¢ The fourth section introduces the 80287 Numeric Processor Extension and briefly describes how
the 80287 operates in conjunction with the 80286 CPU.

¢ The final section of this chapter describes the architectural features of the iAPX 286 microsystem
which support multi-processing. Multi-processing provides virtually limitless possibilities for increasing
the performance of iAPX 286 systems through the modular expansion of processing capabilities.

iAPX 286 BUS ORGANIZATION

The iAPX 286 system architecture is centered around a parallel bus structure that connects the iAPX
286 processor to memory and 1/O resources. Across this bus, the iIAPX 286 processor fetches program
instructions, manipulates stored information, and interacts with external I/O devices. Figure 2-1 shows
this basic iAPX 286 bus architecture.

The iAPX 286 architecture contains two types of buses: the local bus and the system bus.

¢ The local bus connects the iAPX 286 processor with processor extensions and other processing
elements. Private memory and 1/0O devices connect to a buffered version of this local bus, and are
available only to processing elements residing on the local bus.

¢ The system bus connects the iAPX 286 processor to public memory and I/O resources. These public
resources are typically shared among the iAPX 286 processor and other bus masters that also connect
to the system bus.

Specialized bus interface components connect the iAPX 286 local bus to both the buffered local bus
and the system bus. These interface components process the signals that come from the iAPX 286
local bus and generate appropriate signals for use on the buffered local bus or the public system bus.

The iIAPX 286 Local Bus

The iAPX 286 local bus is formed from the signals generated by the 80286 CPU. These signals include
address, data, and control or status information that directs the operation of the local bus. All
iAPX 286 systems have at least one local bus containing the 80286 CPU.

2-1 210760-001

Inté iAPX 286 SYSTEM ARCHITECTURE

PROCESSING
MODULE

PRIVATE
MEMORY

PUBLIC

BUS BUS
INTERFACE n’ PROCESSOR “ INTERFACE MEMORY .

GROUP GROUP

PRIVATE
SYSTEM BUS

bl 2L
S 4

PRIVATE =® = x
1/0
LOCAL BUS PUBLIC
3 170

o

=

w

=

w

o

PROCESSING PROCESSOR PROCESSOR o
MODULE a

2

o

PROCESSING
L .I MODULE

210760-120

Figure 2-1. Representative iAPX 286 System

The 80286 provides on-chip arbitration logic and external control signals that allow it to share the local
bus with other processing elements. Examples of other processing elements that connect to the local
bus are processor extensions, Direct Memory Access (DMA) devices, or other specialized processors.
These arbitration functions provide a cost-effective way to structure a small, multi-processing system,
since the same bus interface components are shared by all of the processing elements on the local bus.
Additional arbitration logic is not required for additional processors on the local bus.

The Buffered Local Bus

A buffered local bus is just that: a buffered version of the iAPX 286 local bus which contains private
memory and I/O resources that are accessible only to processors on that local bus. All but the smallest
of iIAPX 286 systems contain a buffered version of the local bus. Since the buffered local bus takes
full advantage of the iAPX 286 local bus timing, and since the iAPX 286 processor does not have to
contend with other system processing elements for the use of these resources, the maximum system
performance is typically obtained when the iAPX 286 is executing programs from memory that resides
on this buffered local bus.

2-2 210760-001

Intel iAPX 286 SYSTEM ARCHITECTURE

The System Bus

The system bus, like the buffered local bus, is composed of buffered versions of the local bus signals.
Unlike a buffered local bus, however, the public system bus connects memory and I/O resources that
are shared among processors belonging to more than one local bus.

By providing easy shared access to processing resources on the system bus, the public system bus allows
multi-processor systems to communicate among themselves and to avoid a needless duplication of
resources.

Bus Interface Groups

Specialized bus interface components are used to translate the iAPX 286 local bus signals onto the
buffered bus to connect the iAPX 286 local bus to either a buffered local bus or to a public system
bus.

These bus interface components include the 82288 Bus Controller, 8282 and 8283 Octal Address
Latches, 8286 and 8287 Octal Bus Transceivers, and the 82289 Bus Arbiter. These components can be
mixed and matched as required to connect the 80286 to buffered local or system buses. In fact, the
modular nature of the iIAPX 286 bus structure allows as many local and system buses as required by
the target system.

Figure 2-2 shows an example of an 80286 connected to a multi-master (more than one processor) public
system bus. Address latches and data transceivers transfer the local bus address and data onto the
system bus, respectively. The 82288 Bus Controller translates the 80286 local bus signals to provide
the system bus command signals. The 82289 Bus Arbiter provides the arbitration and control functions
necessary to ensure that only one master has control of the system bus at any given time.

Figure 2-3 shows an iAPX 286 connected to both a multi-master system bus and to a buffered local
bus. Separate Bus Controllers, address latches, and data transceivers are used to implement each of
the two bus interfaces. No Bus Arbiter is required for the buffered local bus interface, because the
80286 has exclusive control of the buffered local bus.

In a system having more than one bus, address decoders typically select which of the available buses
is being requested when the iAPX 286 performs a bus operation. The appropriate Bus Controller and
Bus Arbiter, if any, are activated and the iAPX 286 bus operation continues to completion.

Chapter Three describes the operation of the iIAPX 286 local bus in more detail. Chapter Seven discusses
the considerations for designing interfaces between the iAPX 286 and a public system bus.

The following sections provide a closer look at some of the configuration possibilities for iAPX 286
systems. ‘
MEMORY SUBSYSTEMS FOR THE iAPX 286

An iAPX 286 processor operating in Protected Virtual-Address mode can directly address as much as
16 megabytes of physical memory. This large physical address space can be segmented into a number
of separate memory subsystems, with each having different characteristics and functions, but all memory
subsystems being directly accessible by the iAPX 286 processor.

2-3 210760-001

|nte| iAPX 286 SYSTEM ARCHITECTURE

INTERRUPT LINES W
A
8250A
PROGRAMMABLE
INTERRUPT
CONTROLLER
82289 ARBITRATION LINES
BUS
ARBITER
LOCAL BUS
MULTIMASTER
SYSTEM BUS
82284 82288 CONTROL LINES
CLOCK BUS
GENERATOR CONTROLLER
A
8282783 DDRESS LINES
LATCHES
80286
cPU
8286787 DATA LINES
TRANSCEIVERS)
2107601

Figure 2-2. iAPX 286 on Multi-Master System Bus

Individual memory systems for the iAPX 286 can be configured either as local memory, accessible by
an 80286 and other processors on a single local bus, or as system memory, to be shared by multiple
independent processors each having their own local bus:

e Local memory resides on a buffered local bus and is available to processors on that local bus only.

» System memory resides on a public system bus and is available to all processors that interface to
the public bus.

» A third alternative that combines the advantages of both local and system memory is to configure
the same memory to be accessible both as local memory from a local bus, and as system memory
from a public system bus. Such a memory system is called a dual-port memory.

-4 210760-001

Inte| IAPX 286 SYSTEM ARCHITECTURE

INTERRUPT LINES

\
R {
8250A
PROGRAMMABLE
INTERRUPT
CONTROLLER
LOCAL BUS
82284
CLOCK
GENERATOR
80286 s2289 ARBITRATION LINES
cru ARBITER
MULTIMASTER
SYSTEM BUS

82288
8US
CONTROLLER

CONTROL LINES

82288
BUS
CONTROLLER

ADDRESS
DECODE

BUFFERED
LOCAL
BUS

ADDRESS LINES

8282/83
LATCHES

8282/83
LATCHES

DATA LINES

8286/87

8286/87
TRANSCEIVERS

TRANSCEIVERS

210760-2

Figure 2-3. iAPX 286 With Both Local and System Buses

The iAPX 286 architecture allows any of these configurations to be used in a single system, the use of
one or all memory approaches depends on the needs of the target system.

Typical iAPX 286 systems will use some combination of both local and _vsystem memory (the system in
Figure 1-1 shows both). In systems configured with memory on both the buffered local bus and the
system bus, the selection of which bus is accessed during a given memory operation is based on the

memory or I/O address. Figure 2-4 shows an example memory and I1/O address map for the
iAPX 286 system shown in Figure 2-1.

2-5 210760-001

|nte| iAPX 286 SYSTEM ARCHITECTURE

MEMORY ADDRESS SPACE 1/0 ADDRESS SPACE
FFFFFFH
LOCAL EPROM
FFFOOOH
FFEFFFH
FFFFH
PUBLIC
SYSTEM
MEMORY
PUBLIC
1/0
100000H . .
OFFFFFH 100H
OFFH
PRIVATE
LOCAL PRIVATE
MEMORY 170
00OH 00OH

210760-134

Figure 2-4. Representative iAPX 286 System Memory Map

Local Memory

Local memory provides a processor with private memory space that is not accessible to other processors
(except those that share the processor’s local bus). This physical isolation of memory areas can assure
program and data security in high-reliability multi-processor systems.

The use of local memory can maximize system throughput in several ways:

« Local mexhory p.ermitsi the 80286 to take advantage of its pipelined address timing, making the
most efficient use of the bus and performing memory operations in the least possible time.

¢ Since the local memory is not shared with other processors, no access delays are incurred, whereas
access delays usually happen when several processors contend for use of the same resources.

* In systems where several processors each have their own private memory space, multiple tasks can
execute in parallel because each processor is fetching instructions on a separate data path.

The tradeoffs associated with using local memory in multi-processor systems 1nclude the cost of 1mple-
menting a separate memory subsystem for each processor.

2-6 210760-001

Intel IAPX 286 SYSTEM ARCHITECTURE

System Memory

System memory provides a shared memory space that can be accessed by all processors connected to
a public system bus. This shared memory allows multiple processors to communicate with one another
and efficiently pass blocks of data between their separate tasks.

Shared system memory is often a cost-effective alternative to using local memory when individual
processors may occasionally require a relatively large physical memory space. Since the same memory
is shared between multiple processors, the total system cost can be considerably less than if local memory
for each processor were sized to accommodate their largest respective memory requirements.

Since system memory typically can be expanded simply by installing additional memory boards, this
modular flexibility makes system memory attractive for many applications.

The tradeoffs associated with using shared system memory instead of local memory in multi-processor
systems include the fact that access to system memory may be slower than access to local memory
because processors must contend with each other for access to the system bus.

When several processors require use of the same memory resources at the same time, memory access
time (and therefore system throughput) can be significantly reduced.

The risk of data corruption with system memory is also greater in systems that use other processors
along with an iAPX 286 because one processor can possibly overwrite data being used by another
processor. Software protocols usually can avoid this problem, however.

Dual-Port Memory

Dual-port memory is a single memory subsystem that combines many of the advantages of both local
and system memory. Dual-port memory appears both as local memory to processors on a single local
bus, and as system memory to other processors in the system. Figure 2-5 shows an iAPX 286 system
that uses dual-port memory.

Dual-port memory permits the local processor to have high-speed access to the dual-port memory without
tying up the public system bus. In this way, iAPX 286 systems can access the dual-port memory as
local cache memory without affecting other processors using other system resources on the system bus.

The dual-port memory is also accessible by other processors using the system bus, providing a shared
memory space that can be used for inter-processor communications or other functions.

If necessary, address-mapping circuitry can make the memory appear in different address ranges for
local and system bus processors. Address-mapping can also be used to permit other system processors
access to only a portion of the dual-port memory, reserving portions of the memory array for exclusive
use by the local processor.

Offsetting these advantages is the fact that dual-port memory typically is more complex than a (single-
port) local or system memory subsystem. Dual-port memories require arbitration logic to ensure that
only one of the two buses serving the memory can gain access at one time. Figure 2-6 gives a visualiz-
ation of this arbitration requirement. Fortunately, the Intel 8207 Advanced Dynamic RAM Controller
(ADRC) greatly simplifies design of dual-port memory subsystems.

2-7 210760-001

iAPX 286 SYSTEM ARCHITECTURE

1
p .
< D, PUBLIC
N 4 SYSTEM
80286 BUS
DUAL-PORT OTHER

BUFFERED MEMORY PROCESSORS

LOCAL

BUS :
L
210760-3
Figure 2-5. Dual-Port Memory
N DUAL-PORT MEMORY h F
PORT A PORT B
A 2
L4 N
ARBITRATION
LOGIC
IAPX 286
LOCAL SYSTEM
BUS : BUS
MEMORY
ARRAY
<L~ q./L
© 210760-4

Figure 2-6. Arbitration Logic for a Dual-Port Memory

2-8 210760-001

Intel iAPX 286 SYSTEM ARCHITECTURE

The 8207 Advanced Dynamic RAM Controller is a high-performance dynamic RAM controller designed
to easily interface 16K, 64K, and 265K dynamic RAM devices to microprocessor systems. On-chip
arbitration and synchronization logic implements the dual-port function, allowing two different buses
to independently access the RAM array. The 8207 DRAM controller has a synchronous mode of opera-
tion that specifically supports the 80286 processor.

By combining RAM control and dual-port arbitration functions on a single chip, the 8207 ADRC
provides an easy way to implement dual-port memory in an iAPX 286 system. Figure 2-7 shows an
8207-based dual-port memory subsystem connected to an iAPX 286 subsystem and a Multibus system
bus interface.

The advantages of dual-port memories, described above, make dual-port memory a more effective
choice for multi-processor applications where using strictly local or system memory would significantly

I—“]h [T — pr
RO MWTC MRDC
[, 32znﬁ.rﬂ/n 32258R
READ ALE DT/
82284 4
ARDY XATK
SROY I__DJ
A -
o} M s2e6 DATA
o 3 |
AACKA XACKE
AO V
o WHA
5 R 8207
FDA ORAM 8283
CONTROLLER
- PEB |
hh Al MUX LOCK
80286 — DECODE MULTIBUS
CPU
)
DECODE -J 8282 8287 K
, I> :> .
>, —J
A V| e283 ADR
L 82289
SYS/RESE T
LLOTK > LOTK
LOCK otk -8
210760-5

Figure 2-7. 8207 Dual-Port Subsystem

2-9 210760-001

Intel iAPX 286 SYSTEM ARCHITECTURE

impact system cost and/or performance. Chapter Four describes the dc51gn of memory subsystcms for
he iAPX 286 in more detail.

170 SUBSYSTEMS FOR THE iAPX 286

The iAPX 286 processor can directly address as many as 32,768 16-bit 1/O devices, or 65,536 8-bit
I/0 devices, or combinations of the two. This large I/O address space is completely separate from the
memory address space, as shown previously in Figure 2-4.

In addition to accessing individual pcnphcral devices, an iAPX 286 system that requires extensive
1/O capability can offload its I/O processing tasks to one or more dedicated, independent processors.
An independent processor is one that executes an instruction stream separate from the 80286 CPU.
Examples of independent processors include the 8086 and 8088 CPU's, the 8089 Input/Output Proces-
sor, and the 80186 High Integration Microprocessor.

An independent processor typically executes out of its own local memory and uses shared or dual-port
memory for communicating with the 80286. Since the 8207 ADRC is compatible with both the 80286
and the independent processors already mentioned, it is ideal for implementing this type of I/O
subsystem.

Figure 2-8 shows an iAPX 286 systéem that includes such an I/O subsystem. The subsystem consists of
either an 80186 or an 8086 CPU and 8089 IOP. For the second case, the 8089 is local to the 8086. For
both cases, the processors are isolated from the 80286. Inter-processor communication between the
80286 and either the 186 or 8086/8089 is performed through the 8207-controlled dual-port memory.

This configuration protecfs the resources of each processing module from the other. The private memory
and I/0O space of the I/O subsystem is protected from the 80286 CPU; the private memory space of.
the 80286 is protected from incursion by the I/O subsystem processors.

When this level of protection is not required, the 80286 and the I/O subsystem may be configured on
the same system bus. This type of multi-processing system is described later in this chapter, along with
other types of multi-processing systems. Chapter Five describes the design of I/O subsystems for the
iAPX 286 in more detail.

PROCESSOR EXTENSIONS

A processor extension such as the 80287 Numeric Processor Extension (NPX) is a specialized proces-
sor that obtains its instructions from the 80286 CPU. By performing high-precision numeric instruc-
tions in parallel with the 80286 CPU, the 80287 extends the instruction set available to the 80286 and
greatly increases the performance of the iAPX 286/ 20 system over that of an iAPX 286/ 10 (80286
processor without the 80287 processor extension).

The 80287 monitors instructions fetched by the 80286 and automatically executes any numeric instruc-
tions as they are encountered by the 80286. The 80287 uses a special Processor Extension Data Channel
within the 80286 to request operand fetches and to store the results of operations. Two of the processor
extension’s signal lines allow the 80287 to indicate error and status conditions.

Figure 2-9 shows an 80286 CPU-and an 80287 NPX configured on a buffered local bus. Chapter Six
describes in detail the design of iAPX 286 systems using the 80287 Numeric Processor Extension.

2-10 210760-001

el

iAPX 286 SYSTEM ARCHITECTURE

80286 _ SYSTEM BUS SYSTEM
CcPU INTERFACE RESOURCES
iAPX 286
LOCAL BUS
ADDRESS
DECODE

186
cPU 8207 n RAM
ADRC ARRAY

8086 ADDRESS
cPU DECODE
SYSTEM BUS
| INTERFACE '
170
8089 RESOURCES
10P
IAPX 86
LOCAL BUS
LOCAL
MEMORY

210760-6

Figure 2-8. iIAPX 286 With 8086/8089 or 186 IOP Subsystems

2-11 210760-001

iAPX 286 SYSTEM ARCHITECTURE

it

ADDRESS
v
Vee
Ats-Ao Az A1
o7
82288 N—— :—> D1sDo
BUS
CONTROLLER <__ _— COoD/INTA
— 80286 DECODE
cPU
M0 fe— | M/ >
BUSY ERROR PEACK PEREQ
DEN [resed —
D Db D
ot/Rb— | B
ALE Pl e CLK
OWC IORC T T
BUSY ERROR PEACR PEREQ
-
1 e
T
| Drs50 v
82284 80287
|— PS2 Vi
€LOCK socker M ¢
GENERATOR <)y NP51
CMD1
' cMpo
CKM

||I—-—

210760-7

Figure 2-9. 80286 With an 80287

2-12

210760-001

Intel iAPX 286 SYSTEM ARCHITECTURE

MULTI-PROCESSING OVERVIEW

A single 80286 can provide a performance increase of up to 6 times that of a single 8086 CPU. In
large systems requiring even greater performance, system throughput can be increased even further by
employing multiple processors. By distributing system functions among multiple processors, significant
advantages can be gained:

» System tasks can be allocated to special-purpose processors whose designs are optimized to perform
those tasks simply and efficiently.

¢ Very high levels of performance can be attained when multiple processors execute simultaneously
(parallel processing).

¢ System reliability can be improved by isolating system functions so that a failure or error which
occurs in one part of the system has a limited effect on the rest of the system.

¢ Multi-processing promotes partitioning the system into modules, breaking system development into
more manageable tasks and permitting the parallel development of subsystems. Partitioning also
helps to isolate the effects of system modifications to a specific module.

Designers of multi-processing systems typically have been faced with the two classic problems whenever
more than one processor shares a common bus: bus arbitration and mutual exclusion. The iAPX 286
system architecture provides built-in solutions that virtually eliminate these problems.

Bus Arbitration

Bus arbitration is the means whereby one processing element gains control of a shared common bus
from another processing element. In an iAPX 286 system, this shared bus may be either the iAPX 286
local bus (if more than one processor is configured on the local bus), or a public system bus that is
shared between multiple processing elements. Bus arbitration for the control of the local bus is performed
directly by the 80286 CPU. For the control of a public system bus, specialized support devices are
used to provide the arbitration function.

At the local bus level, the 80286 provides bus arbitration through its on-chip arbitration logic and
control signals. Two control signals, called HOLD and HLDA (hold and hold acknowledge), are provided,
and are typically used with dedicated bus masters such as a Direct Memory Access (DMA) Controller.

Figure 2-10 shows an 80286 configured with a DMA controller on the local bus. The DMA controller
requests control of the local bus by asserting the HOLD signal to the 80286. The CPU responds by
relinquishing control of the bus and sending the controller an acknowledge signal (HLDA). The 82257
Advanced DMA Controller, a high- performancc DMA controller specifically designed to support the
80286 local bus protocols, will be available in 1984.

At the system bus level, bus arbitration for iAPX 286 systems typically is performed by the 82289 Bus
Arbiter. The Bus Arbiter connects to the 80286 CPU and controls iAPX 286 access to a multi-master
system bus such as the IEEE 796 Multibus. The 82289 supports a number of techniques for resolving
requests from multiple masters on the system bus, including both serial and parallel priority resolution.
Each iAPX 286 subsystem connected to the public system bus has its own Bus Arbiter.

For other (non-80286) processors connected to the public system bus, the 8289 Bus Arbiter provides
the necessary bus arbitration functions. The 8289 Bus Arbiter supports the 8086 and 8088 CPU’s, the
80186 High Integration Microprocessor, and the 8089 Input/Output Processor. The 8289 Bus Arbiter
is compatible with the 82289 bus control signals and the Multibus interface.

2-13 210760-001

lntel iAPX 286 SYSTEM ARCHITECTURE

A23-Ag
> E—
RESET — BUS
82284 ——
cLOCK READY 80286 — 8282
GENERATOR ck | cru — (3X) |
HOLD HLDA
D15-Do
o I —-
v (2x) BUS
y
HOLD HLDA
DMA
>1 CONTROLLER
N 82288 | COMMAND
» BUS [~ AND CONTROL
57, 50, M/i0 CONTROLLER SIGNALS
DMA REQUESTS
AND ACKNOWLEDGES
210760-8

Figure 2-10. 80286 with DMA Controller

Figure 2-11 illustrates the use of the 82289 Bus Arbiter in implementing a system bus interface. iAPX
286 designs using the 82289 Bus Arbiter are described in greater detail in Chapter Seven.

Mutual Exclusion

Mutual exclusion is a property of a shared resource which assures that only one processing element
uses the resource at one time. Typically, mutual exclusion means that one processor has the ability to
prevent other processing elements from accessing a shared resource (such as the bus) until the proces-
sor has finished using the resource.

In many cases, mutual exclusion can be accomplished in software through the use of semaphores. In
other cases, however, such as when several memory operations must be completed as a unit, support
for mutual exclusion must be provided in hardware. The iAPX 286 microsystem provides basic hardware
support for mutual exclusion through the 80286 LOCK signal.

The 80286 LOCK signal is activated automatically during specific CPU operations, or explicitly through
use of the ASM-286 LOCK prefix instruction, to prevent other processors from accessing a shared
resource. The CPU operations which assert an active LOCK signal include interrupt-acknowledge
sequences, the ASM-286 XCHG instruction, and descriptor-table accesses.

2-14 210760-001

N iAPX 286 SYSTEM ARCHITECTURE

- H0h -

READY X1 X2
—_——l
SRDY AR
8282 82284 ARDY
LATCH I ARDVEN |
> iy SROYEN AF::;E':
I
CLK READY . 1
A PN - COMMANDS
ALE CHDLY
READY | 1 READY v
82288 ClK 1 1 »{CLK 82288 N
oo M/O ') w/i0 DEN 1
51,50 y'|51. 50
cMD CENL —{CENL DT/R
MB__ CEN MB AEN ALE
| ; f A
= +sv . +5V !
____REN OF
@ — READY [Toek >
2 »icLK CONTROL
82289
2 N]w/io CNTL| (» 2
3 Jlsi.50 i
o L 4 ! N @
S ADDRESS)| B, FESE 4 a
DECODER »-|SYSB/RESE g
— o [g— l 2
M/10
y A
OE STB
i i ADDRESS
)
8283
ADDRESS | I J * I l V| LaTches
A23-0 CLK READY M/IO RESET)
LOCK
80286
D160
Ok
DATA
N 8287
] BUFFERS
DATA
— o T
210760-9

Figure 2-11. 80286 on the MULTIBUS® Interface

The 82289 Bus Arbiter and 8207 Advanced Dynamic RAM Controller both have inputs that connect
to the 80286 LOCK signal. When its Lock input is active, the Bus Arbiter will not relinquish control
of the system bus, preventing other system processors from using the system bus. In a dual-port memory
subsystem, the 8207 ADRC LOCK input restricts memory access to a single processor and so prevents
other processors from altering memory. Public system buses such as the IEEE 796 Multibus define a
similar LOCK signal, which is used to restrict access to the system bus resources.

The ability to exclude other processors from a shared resource in selected situations can provide a high
level of performance and integrity in an iAPX 286 system. For example, context switching and descrip-
tor-table loading can be performed quickly and safely by LOCKing the transfer sequence because
delays due to bus contention on the system bus are minimized and all data is protected from other
processors until the sequence is complete. Interrupt responses, semaphore accesses, and LOCKed data
transfers are also fast and reliable in an iAPX 286 system. -

2-15 210760-001

|nte| iAPX 286 SYSTEM ARCHITECTURE

The use of the LOCK signal with both a public system bus and a dual-port memory subsystem is
described in greater detail in Chapter Seven.

Using the iAPX 286 with the IEEE 796 MULTIBUS®

The Intel Multibus (IEEE 796 Standard) is an example of a proven, industry-standard system bus that
specifically supports multi-processing, and is well-tailored for iAPX 286 systems. A wide variety of
Multibus-compatible I/O subsystems, memory subsystems, general-purpose processing boards, and
dedicated-function boards are available from Intel and a variety of other manufacturers to speed product
development while ensuring bus-level compatibility. .

The job of interfacing an iAPX 286 subsystem to the Multibus is made relatively simple by using
several Intel components specially suited for handling the Multibus protocols. These bus interface
components are the same components described previously, and include:

o The 82288 Bus Controller

e The 82289 Bus Arbiter

* 8287 Inverting Data Transceivers -

o 8283 Inverting Latches

e The 8259A Programmable Interrupt Controller

These devices are functionally and electrically compatible with the Multibus specifications. Figure
2-11 shows how these components interconnect to interface the 80286 to the Multibus public system
bus. Chapter Seven describes in greater detail how these components can be used to provide a Multibus
interface for an iAPX 286 subsystem.

A Multi-Processing Design Exampié

Dedicated I/0 subsystems as well as other multi-processing design techniques described in this chapter
can be used to construct multi-processing systems that vary widely in function and complexity. Each
processor module in the system can be optimized to perform its portion of the system task.

Figure 2-12 shows a system that distributes functions among several processor modules. For simplicity,
bus interface components are not shown.

The supervisor module consists of a single 80286 CPU and local memory. The supervisor controls the
system, primarily responding to interrupts and dispatching tasks to the other modules. The supervisor
executes code out of local memory that is inaccessible to the other processors in the system. System
memory, accessible to all of the processors connected to the public system bus, is used for messages
and common buffers.

Each graphics module supports a graphics CRT terminal and contains an 80286 CPU and 80287 NPX
(iAPX 286/20 configuration), local memory, and local I/0O.

The database module is responsible for maintaining all system files; it consists of an 80286 CPU with
an iAPX 86/11 (8086 CPU and 8089 IOP) subsystem that controls the actual storage devices. Both
the iAPX 286/10 processor and the iAPX 86/11 subsystem in the database module have their own
local memory. A dual-port memory connects the iAPX 286/10 to the subsystem processors.

2-16 210760-001

iAPX 286 SYSTEM ARCHITECTURE

PRIVATE PRIVATE
SYSTEM BUS SYSTEM BUS
LOCAL 80286 LOCAL
MEMORY CPU MEMORY
GRAPHICS GRAPHICS
MODULE MODULE
LOCAL
‘170
\
PRIVATE
SYSTEM BUS
s“ﬁéﬁﬁ'&“ Locat SYSTEM
MEMORY MEMORY
PRIVATE
SYSTEM BUS
RESOURCES gss GATEwAY |MEESESENNNNN) NETWORK
LOCAL 8089
MEMORY op
DATABASE
MODULE 3\
DUAL PORT 80286 LOCAL
MEMORY CPU MEMORY
GRAPHICS
MODULE
LOCAL 80286 80287 LoCAL
MEMORY CPU NPX 170
PRIVATE PUBLIC PRIVATE J
SYSTEM BUS SYSTEM BUS SYSTEM BUS
210760-10
Figure 2-12. iAPX 286 Design Example
2-17 210760-001

The iAPX 286 Local Bus

CHAPTER 3
THE iAPX 286 LOCAL BUS

The iAPX 286 local bus connects the 80286 processor to memory and peripheral devices, and forms
the backbone of any iAPX 286 system. This chapter introduces the 80286 processor and describes the
operation of the iAPX 286 local bus:

The first section of this chapter introduces the 80286 processor. The four internal processing units
that make up the 80286 processor are described, as are the two operating modes of the 80286.

The second section introduces the iAPX 286 local bus, and gives an overview of the principles used
by the 80286 in managing resources on the local bus:

— The organization of the bus is described first, covering memory addressing, I/O, and interrupts.

— The timing of the local bus is described, starting with a description of the local bus states,
describing the 80286 bus operations that are composed of two or more bus states, and finally
describing the way in which the 80286 uses the various bus operations.

— Finally, specific bus interface components are introduced which-greatly ease the design of iAPX
286 local bus systems. Two of these interface components include the 82284 Clock Generator
and the 82288 Bus Controller.

The third section contains specific design information on generating timing for an iAPX 286 local
bus, using the 82284 Clock Generator. The generation of the three principle timing signals (the
system CLK, RESET, and READY) is described in detail.

The fourth section describes how to generate iAPX 286 local bus control signals using the 82288
Bus Controller.

The fifth section describes additional design alternatives concerning the connection of memory,
I/0, and other devices to the local bus. These design considerations include:

— Address decoding and data buffering.

— Connecting other bus masters to the local bus.

— Initializing the 80286.

— Detailed local bus timing.

— Physical design considerations including layout, packaging, power and ground coﬁnections.

Finally, the last section of this chapter introduces the iLBX bus, a high-performance local bus
standard to allow the modular expansion of the iAPX 286 local bus onto multiple boards.

INTRODUCTION TO THE 80286 CENTRAL PROCESSING UNIT

The 80286 Central Processing Unit (CPU) is an advanced, high-performance 16-bit microprocessor
that is optimized for use in multiple-user and multi-tasking systems. The 80286 has built-in memory
management and protection capabilities which permit operating system and task isolation as well as
program and data isolation within tasks. In addition, a highly-efficient pipeline architecture in both the
CPU itself and in the local bus protocols serves to maximize iAPX 286 system throughput and
performance, while minimizing the impact on bus- and memory-speed requirements.

3-1 210760-001

|nte| THE iAPX 286 LOCAL BUS

Processor Architecture

As shown in Figure 3-1, the pipelined 80286 architecture consists of four independent processing units;
these four units operate in parallel to maximize CPU performance.

THE BUS UNIT

The Bus Unit (BU) performs all bus operations for the CPU, generating the address, data, and command
signals required to access external memory and I/O. The Bus Unit also controls the interface to proces-
sor extensions and other local bus masters. Most of the local bus signals interface directly to the BU.

When not performing other bus duties, the Bus Unit “looks ahead” and pre-fetches instructions from
memory. When prefetching, the Bus Unit assumes that program execution proceeds sequentially; that
is, the next instruction follows the preceding one in memory. When the prefetcher reaches the limit of
the code segment, it stops prefetching instructions. If a program transfer causes execution to continue
from a new program location, the Bus Unit resets the queue and immediately begins fetching instruc-
tions from the new program location.

The Bus Unit stores these instructions in a 6-byte prefetch queue to be used later by the Instruction

Unit. By prefetching instructions, the BU eliminates the idle time that can occur when the CPU must
wait for the next sequential instruction to be fetched from memory.

THE INSTRUCTION UNIT

The Instruction Unit (IU) receives instructions from the prefetch queue, decodes them, and places
these fully-decoded instructions into a 3-deep instruction queue for use by the Execution Unit.

r
ADDRESS UNIT (AU)

A23 — A,
LATCHES AND BHE, M/i0

PHYSICAL
ADDRESS

PROCESSOR
PREFETCHER EXTENSION
INTERFACE

PEACK
PEREQ

SEGMENT

et SEGMENT | <]
ADDER LIMIT SEGMENT
SIZES

CHECKER

READY, HOLD
§1, 50, COD/INTA
LOCK, HLDA

BUS CONTROL

|
% DATA TRANSCEIVERS
]

D1s - Dy

@4\;.____

|
|
|
|
|
|
!
1
1
1
|
)
-
|
|
I
|
|
|
|

T |
e ——--—==—=Z¢ x-z-=-===37 " ! 8 BYTE !
I i | preFeTcH 1
ALY \ 1 QUEUE BUS UNIT (BU) |
e o e B N
|
] —_——) e _ e\ —— - — - — = |— RESET
CONTROL i i |" .i le— cLK
3 DECODED ,\srpyucTion INSTRUCTION | |_
= insTRUCTION ["NSTRCEHO NIT [Vss
QUEUE UNTQUY
EXECUTION UNIT (EU) T i - ap
| secmanwren__ S XX ¥ A p—— e [
NMI T | | BUSY
nTR' 'eRROR

210253

Figure 3-1. 80286 Internal Block Diagram

3-2 210760-001

Intel THE iAPX 286 LOCAL BUS

THE EXECUTION UNIT

Decoded instructions from the Instruction Unit are fetched by the Execution Unit (EU) and executed.
The EU uses the Bus Unit to perform data transfers to or from memory and I/0.

THE ADDRESS UNIT

The Address Unit (AU) provides the memory management and protection services for the CPU and
translates logical addresses into physical addresses for use by the Bus Unit. A register cache in the AU
contains the information used to perform the various memory translation and protection checks for
each bus cycle.

THE EFFECTS OF PIPELINING

The four 80286 processing units operate independently and in parallel with one another, overlapping
instruction fetches, decoding, and execution to maximize processor throughput and bus utilization.
Figure 3-2 shows how this pipelined architecture results in substantially increased performance relative
to a processor that fetches and executes instructions sequentially.

ELAPSED TIME .
TYPICAL FETCA 1 CODE 1 EXECUTE 4
T essoR DECODE FETCH 2 DECODE 2 EXECUTE 2
PIPELINED
PROCESSOR [//FETCH 1//] FETCH 2 FETCH3 | FETCH4 [/EXECUTE 1/] FETCHS FETCH 6
(IAPX 286)
DECODE 1 DECODE 2 DECODE 3 DECODE 4 DECODE §
% .
EXECUTE 1 EXECUTE 2 EXECUTE 3 EXECUTE 4
ADDR & MMV ADDR & MMU

210760-11

Figure 3-2. Operation of Sequential vs. Pipelined Processors

3-3 210760-001

Intel THE iAPX 286 LOCAL BUS

Operating Modes

The iAPX 286 processor operates in one of two modes: iAPX 86 Real-Address mode, and Protected
Virtual-Address mode. In both modes, the iAPX 286 executes a superset of the iAPX 86 instruction
set. ‘

In iAPX 86 Real-Address mode, the 80286 addresses up to one megabyte of address space using a
twenty-bit physical address. In Protected Virtual-Address mode, programs executing on the 80286 can
address up to a gigabyte of virtual address space, which the 80286 automatically maps into 16 megabytes
of physical address space using a twenty-four-bit physical address.

From a hardware standpoint, these two operating modes differ only in that the upper four address lines
(A,3 through Ajyg) must be ignored when the iAPX 286 is operating in Real-Address mode, and must
be decoded along with the other address lines when the iAPX 286 is operating in Protected Virtual-
Address mode.

The 80286 Bus Interface

The 80286 CPU connects to external memory, I/O, and other devices using a parallel bus interface.
This bus interface consists of a 24-bit address bus, a separate 16-bit data bus, and a number of control
and status lines to control the transfer of information across the bus. Taken together, and with additional
control signals derived from this basic set, these address, data, and control signals form the basis for
the iAPX 286 local bus.

Four status signals from the 80286 are used to control the operation of the local bus: the COD/INTA,
M/IO, ST, and SO signals. These signals are unlatched and are only valid through the first half of each
bus cycle. Table 3-1 shows the decoding of these status lines to identify the current bus cycle. Status
combinations not shown in the table are reserved and will not be encountered in normal operation.

Additional control signals, along with on-chip arbitration logic, allow the 80286 to support processor
extensions and other local bus masters. These signals for “handshaking” with other bus masters are
controlled by the 80286 Bus Unit. Standard HOLD, HLDA protocol is used for other bus masters,
while special processor extension request and acknowledge signals are used to support processor
extensions.

An ERROR signal from a processor extension inputs directly into the 80286 Execution Unit as do the

maskable (INTR) and non-maskable (NMI) interrupt signals. The BUSY signal from a processor
extension indicates the processor extension status to the 80286. The RESET and CLK signals affect

Table 3-1. 80286 Bus Cycle Status Decoding

S1 S0 COD/INTA M/i0 Bus Cycle Initiated
L L L L Interrupt Acknowledge
L L L H If A1=1 then Halt;

else Shutdown

Memory Data Read
1/O Data Read
Memory Instruction Read

Memory Data Write
1/O Data Write

ITIT rrr
r— IXITXI
Ir I Ir
rIT IrXxT

3-4 210760-001

Intel THE iAPX 286 LOCAL BUS

the 80286 processor as a whole; these signals do not interface to the device through a specific process-
ing unit. A complete description of the 80286 pin connections can be found in the Appendices.

The following sections describe the iAPX 286 local bus interface in greater detail. First, an overview
of the iAPX 286 local bus is given, explaining the relevant concepts and relationships that are involved.
This general description is followed by a discussion of specific issues that must be considered when
designing an iAPX 286 system.

LOCAL BUS OVERVIEW

The iAPX 286 local bus connects memory and I/O resources to the 80286 processor, using 24 separate
address lines, 16 data lines, and a number of status and control signals. Together, these address, data,
and control signals’allow the 80286 processor to fetch and execute instructions, to manipulate infor-
mation from both memory and I/O devices, and to respond to interrupts, processor extension requests,
and requests from other bus masters.

In many respects, the principles and protocols used in the iAPX 286 local bus are similar to those
commonly used in other parallel bus systems. In some respects, however, the iAPX 286 local bus is a
high-performance bus that differs somewhat from typical bus patterns. The following sections describe
how the iAPX 286 local bus is organized and how it operates to assure the efficient transmission of
information between all of the devices on the bus.

Organization of Physical Memory and I/0

The principal use of the local bus is to connect the iAPX 286 processor to memory and I/O devices.
‘When operating in Real-Address mode, the iAPX 286 can directly address up to 1 megabyte of physi-
cal memory, while in Protected Virtual-Address mode, the iAPX 286 can address up to 16 megabytes
of physical memory. These two operating modes of the 80286 have already been described. Except for
the differences in memory size, the organization of memory and I/0 is identical for both Real-Address
mode and Protected Virtual-Address mode.

In addition to its memory-addressing capabilities, the iAPX 286 can also directly address up to 65,536
8-bit I/O ports or up to 32,768 16-bit I/O ports mapped into a separate I/O address space, in either
operating mode. Figure 3-3 illustrates these separate memory and I1/0O address spaces.

MEMORY ORGANIZATION

The programmer views the memory address space of the iAPX 286 as a sequence of (8-bit) bytes in
which any byte may contain an 8-bit data element and any two consecutive bytes may contain a 16-bit
(word) data clement. Both byte and word information can be assigned to either even or odd addresses—
there is no constraint on word boundaries.

As shown in Figure 3-4, the address space is physically implemented on a 16-bit data bus by dividing
the address space into two banks of up to 512K bytes (in Real-Address mode) or 8 Mbytes (in Protected
mode). The lower half of the data bus (D7-D0) is connected to one bank of memory, and accesses even-
addressed bytes (A0O=0). The upper half of the data bus (D15-D8) connects to the other bank and
contains odd-addressed bytes (AO=1). Address line AQ and Bus High Enable (BHE) enable the appro-
priate banks of memory, while the remaining address lines select a specific byte within each bank.

3-5 210760-001

THE iAPX 286 LOCAL BUS

UP TO
16 MEG

MEMORY
SPACE

FFFFFF

64K

000000

1/0
SPACE

FFFF

0000

210760-12
Figure 3-3. Separate Memory and I/0 Spaces
(B) PHYSICAL IMPLEMENTATION OF THE
{A) LOGICAL ADDRESS SPACE ADDRESS SPAGE
512K BYTES 512K BYTES
FFFFF FFFFF FFFFE
FFFFE FFFFD FFFFC
FFFFD
FFFFC -t::{>)
OT 0—
5 4
3 2
1 0
PN
5
4
3 N
f Agg-Aq Di5-Ds BHE D7-Do Ao
0
1 MEGABYTE
210760-121

Figure 3-4. iAPX 286 Memory Organization

3-6

210760-001

Intel THE iAPX 286 LOCAL BUS

(When operating in Real-Address mode, address lines A23-A20 should be ignored, and address lines
A19-Al select the specific byte.) v

To perform byte transfers to even addresses (Figure 3-5A), the CPU transfers information over the
lower half of the data bus (D7-D0). A0 enables the bank connected to the lower half of the data bus
to participate in the transfer. Bus High Enable (BHE active low), disables the bank on the upper half
of the data bus from participating in the transfer. Disabling the upper bank is necessary to prevent a
write operation to the lower bank from destroying data in the upper bank. During the transfer, the
upper half of the data bus remains in the tri-state OFF condition.

To perform byte transfers to odd addresses (Figure 3-5B), the CPU transfers information over the
upper half of the data bus (D15-D8) while BHE (active low) enables the upper bank and A0 disables
the lower bank. The lower half of the data bus remains in the tri-state OFF condition.

TRANSFER X

Y+1 Y
) X+1 (X).

T 1

Ag-Aq Dis-Dg BHE (HIGH) D7-Dp Ao (LOW)

A. Even-Byte Transfers

TRANSFER X +1

Y+1 Y
X (X+1) X

gl

Atg-Aq Dis-Dg BHE (LOW) D7-Dg Ag (HIGH)

B. Odd-Byte Transfers
210760-122

Figure 3-5. 80286 Byte Transfers

3-7 210760-001

Intel THE iAPX 286 LOCAL BUS

The 80286 automatically routes bytes between the appropriate half of the data bus and the upper or
lower half of its internal data path, as well as activating BHE or A0 accordingly. The loading of a data
byte from an odd-addressed memory location into the CL register (lower half of the CX register)
illustrates this routing. The data is transferred into the 80286 over the upper half of the data bus, then
automatically redirected to the lower half of the 80286 internal data path and stored into the CL
register. This automatic routing ability also allows byte-I/O transfers between the AL register and
8-bit I/O devices that are connected to either half of the 16-bit data bus.

To access even-addressed 16-bit words (two consecutive bytes with the least significant byte at an even
byte address), AO (low) and BHE (low) enable both banks simultaneously, while the remaining address
lines select the appropriate byte from each bank. Figure 3-6 illustrates this operation.

To access 16-bit word data beginning at an odd address, the 80286 automatically performs two byte
accesses. As shown in Figure 3-7, the least significant byte addressed by the address lines is first trans-
ferred over the upper half of the data bus. The address is then incremented and a second byte transfer
is executed, this time over the lower half of the data bus. This two-byte transfer sequence is executed
automatically whenever a word transfer is performed to an odd address, with the CPU automatically
routing the two bytes onto the appropriate halves of the data bus.

When the Bus Unit is prefetching instructions, however, the Bus Unit always performs word fetches
on even boundaries. If the program transfers control to an odd address, the Bus Unit automatically
performs a word fetch from the next-lower word-boundary, ignoring the lower byte of this first instruc-
tion fetch. '

TRANSFER X+ 1, X

:> 5] %
\

A\t

A19-Aq D15-Dg BHE (LOW) D7-Do Ag (LOW)

210760-123

Figure 3-6. Even-Addressed Word Transfer

3-8 210760-001

Intel THE iAPX 286 LOCAL BUS

FIRST BUS CYCLE

: Y +1 Y
X+1)
o—

= e
Snlll

Aqg-Aq D15-Dg BHE (LOW) D7-Do Ap (HIGH)

SECOND BUS CYCLE

) Y+1 [\4)
X+1 X
lo— o—
. = E
L
A19-A1 D¢5-Dg BHE (HIGH) D7-Dg - Ap(LOW)

210760-124

Figure 3-7. Odd-Addressed Word Transfer

1/0 ORGANIZATION

The 80286 is capable of interfacing with 8- and 16-bit I/O devices that are mapped into a separate
64K I/0 space (memory-mapped I/O is also supported, and is described in Chapter Six). The iAPX
286 1/0 space is organized as 65,536 8-bit ports or 32,768 16-bit ports or some combination of the two.

For 8-bit I1/O devices, ports on the upper half of the data bus, have odd I/O addresses, while ports on
the lower half of the data bus have even I/O addresses. To access an 8-bit I/O device, A0 and BHE
select the appropriate half of the data bus, and address lines A15-A1 select one of the 32K I/O addresses.
During any I/O transfer, address lines A23-A20 are always low.

Sixteen-bit I/O devices always have even addresses to permit the CPU to select and access the entire
16-bit port in a single operation. To access a 16-bit [/O device, address lines A15-Al select the partic-
ular I/O address, while A0 and BHE condition the chip select to ensure that a 16-bit transfer is being
performed.

3-9 210760-001

Intel THE IAPX 286 LOCAL BUS

Interrupt Organization

The iAPX 286 recognizes a variety of both hardware-generated and software-generated interrupts that
alter the programmed execution of the 80286. Hardware-generated interrupts occur in response to an
active input on one of the two 80286 interrupt request pins. Software-generated interrupts occur due
to an INT instruction or one of several possible instruction exceptions. Software-generated interrupts
are described in the iAPX 286 Programmer’s Reference Manual; they are not described here.

The two hardware interrupt request inputs to the 80286 consist of a non-maskable interrupt request
(NMI), and a maskable interrupt request (INTR). The maskable interrupt request INTR can be
“masked” or ignored by the 80286 under software control, while a non-maskable interrupt request
NMI will always invoke a response from the 80286 unless a previous NMI interrupt has occurred and
is being serviced.

When the iAPX 286 encounters an interrupt of any kind, it automatically transfers program execution
to one of 256 possible interrupt service routines. A table stored in memory contains pointers defining
the proper interrupt service routine for each interrupt. Once the iAPX 286 has determined the type or
vector for a particular interrupt (an index into the table corresponding to the appropriate service routine),
the servicing of software- or hardware-interrupts proceeds identically. Figure 3-8 shows the structure
of this interrupt descriptor table for an iAPX 286 operating in both Real-Address mode and in Protected
Virtual-Address mode.

A MEMORY v
FFFFFH - Y
GATE FOR
J INTERRUPT #n
;: : ~ GATE FOR
. INTERRUPT #n-1
3FFH
INTERRUPT POINTER : DESCRIPTOR
FOR VECTOR 255 cPU 4 : TABLE
3FOH *
(IDT)
:_J_, : Y 15 0 GATE FOR
- .
rm —— INTERRUPT #1
INTERRUPT POINTER mTGngguFl?TR#o
FOR VECTOR 1 4H IDT BASE >
INTERRUPT POINTER 3H)) L
FOR VECTOR 0 A A
OH ~N '\Li
iAPX 86 REAL ADDRESS MODE PROTECTED VIRTUAL ADDRESS MODE
210760-125

Figure 3-8. Interrupt Descriptor Table Definition

3-10 210760-001

Intel THE iAPX 286 LOCAL BUS

INTERRUPT PRIORITIES

When an interrupt or cxception occurs, the iAPX 286 automatically transfers program control to the
appropriate interrupt service routine, even if the iAPX 286 is in the middle of processing a previous
interrupt. In this manner, the last interrupt processed is the first one serviced.

The single exception to this rule is the 80286 treatment of the INTR interrupt input. When operating
in Real-Address mode, any interrupt or exception automatically causes the 80286 to mask any INTR
requests for the duration of the interrupt service routine until the occurrence of an IRET instruction
or until the service routine explicitly enables INTR interrupts. When the 80286 is operating in Protected
mode, the individual task gate for each interrupt service routine specifies whether INTR interrupts are
to be masked for the duration of the interrupt service routine.

In the case of simultaneous interrupt or exception requests, the interrupts are processed in the fixed
order shown in Table 3-2. Interrupt processing involves saving the flags and the return address, and
setting CS:IP to point to the first instruction of the interrupt service routine. If other interrupt requests
remain pending, they are processed before the first instruction of the current interrupt handler is
executed. In this way, the last interrupt processed is the first one serviced.

To illustrate the information contained in the table, consider what occurs when both an NMI (non-
maskable interrupt) request and an INTR (maskable interrupt) request are received simultaneously by
an 80286 operating in Real-Address mode. The interrupts are handled in the following order:

1. The NMI interrupt will be processed first, saving the current status and pointing to the first
instruction of the NMI service routine.

2. The INTR interrupt request will be masked, since the NMI interrupt causes the 80286 to mask
INTR interrupts.

3. If no other exceptions occur, the NMI interrupt service routine will be executed until it is completed.

4. After the NMI service routine has completed, an IRET instruction will be executed to exit from
the service routine. This IRET instruction re-enables INTR interrupts.

5. If the INTR interrupt request line is still active, the processor will then respond to the interrupt
with two interrupt-acknowledge bus cycles, and then proceed to execute the appropriate interrupt
service routine. Any subsequent NMI interrupts that occur during the execution of this service
routine will immediately be serviced before execution of the INTR service routine continues.

6. Finally, after all interrupts have been serviced, program control will revert to the original inter-
rupted program. ‘

Table 3-2. Processing Order for Simultaneous Interrupts

Pm(‘):rzzsrmg Interrupt Source
1 (first) Processor Exception
2 Single Step
3 NMI (Non-Maskable Interrupt Request)
4 Processor Extension Segment Overrun
5 INTR (Maskable Interrupt Request)
6 (last) INT Instruction

3-11 210760-001

Intel THE iAPX 286 LOCAL BUS

The following sections describe the iAPX 286 system’s different responses to the two hardware-gener-
ated interrupt requests, NMI and INTR.

NON-MASKABLE INTERRUPT REQUEST (NMI)

The non-maskable interrupt request (NMI) input to the 80286 is edge-triggered (on a low-to-high
transition) and is generally used to signal the CPU of a “catastrophic” event such as the imminent loss
of power, memory error, or bus-parity error.

Interrupt requests arriving on the NMI pin are latched by the CPU and cannot be disabled. The NMI
input is asynchronous and, in order to ensure that it is recognized, required to have been low for four
system clock cycles before the transition and to remain high for a minimum of four additional clock
cycles. To guarantee that the NMI input is recognized on a particular clock transition, the required
set-up time for NMI is shown in Figure 3-9.

Once it is recognized by the 80286, the non-maskable interrupt automatically causes the 80286 CPU
to transfer control to the service routine corresponding to interrupt type 2; this interrupt vector is
internally-supplied and generates no external interrupt-acknowledge sequence.

The total time required to service an NMI interrupt is determined by several factors. The total process-
ing time includes:

* The time the interrupt was waiting to be recognized. While servicing one NMI, the 80286 will not
acknowledge another NMI until an IRET instruction is executed.

« Additional time allowed for the completion of the instruction currently being executed by the 80286.
These instructions could be IRET, MUL, or task-switch instructions.

¢ Time required for saving the CS, IP, and Flags registers.

¢ Any time required by the interrupt service routine to save the contents of additional registers not
automatically saved by the 80286.

CLK

g

INTR

NMI

[<&— 20 NS
MIN

210760-13

Figure 3-9. NMI and INTR Input Timing

3-12 210760-001

Intel THE iAPX 286 LOCAL BUS

Since the NMI interrupt will be recognized only on an instruction boundary, the time required for the
CPU to recognize the request (interrupt latency) depends on how many clock periods remain in the
execution of the current instruction.

On the average, the longest latency can occur if the interrupt request arrives while task-switch is being
executed in Protected mode. Other instructions resulting in long interrupt latencies are multiplications
and divisions. In the case of an instruction that loads the Stack Segment register, the interrupt will not
be recognized until after the following instruction is executed, to allow loading of the entire stack
pointer without intervening interrupts.

While executing an NMI service routine, the 80286 will not service additional NMI interrupts or
processor extension segment-overrun interrupts until an interrupt return (IRET) instruction is executed
or the CPU is reset. If an NMI interrupt request occurs while the 80286 is servicing a prior NMI
request, the occurrence of the second NMI request will be saved and the request will be serviced after
the CPU executes an IRET instruction. '

During the NMI service routine, an 80286 operating in Real-Address mode automatically masks any
INTR interrupt requests. In Protected mode, the NMI service routine is entered through either an
interrupt gate or a task gate. The new task context may be defined with INTR interrupts either enabled
or disabled. To re-enable INTR interrupts during the NMI service routine, the 80286 Interrupt (IF)
flag can be set true. In any case, the IF flag is automatically restored to its original state when the
service routine is completed (when the Flags register is restored following the first IRET instruction).

MASKABLE INTERRUPT REQUEST (INTR)

The INTR (Interrupt Request) line allows external devices to interrupt 80286 program execution,
INTR is usually driven by an Intel 8259A Programmable Interrupt Controller (PIC), which, in turn,
is connected to devices that require interrupt servicing.

The 8259A is a very flexible device that is controlled by software commands from the 80286 (the
8259A PIC appears to the CPU as a set of 1/O ports). Its main job is to accept interrupt requests from
devices connected to it, to determine which request has the highest priority, and then activate the
INTR line to interrupt the CPU and supply an appropriate interrupt vector.

Figure 3-10 shows a block diagram of a multiple 8259A subsystem that uses'a master interrupt control-
ler driven by slave interrupt controllers. Chapter Five contains detailed information on interfacing the
8259A to an iAPX 286 system.

The INTR input to the 80286 is level-sensitive and can be asynchronous to the system clock. INTR
must be active for at least two processor clock cycles before the current instruction ends in order to
interrupt before the next instruction begins. When the 80286’s Interrupt Flag (IF) is enabled and the
INTR signal is driven active high, the 80286 will acknowledge the interrupt on the next instruction
boundary. To guarantee recognition on a particular clock cycle, INTR must be set-up a minimum of
20 ns before the start of the clock cycle. INTR should remain active until the first INTA bus cycle to
guarantee that the CPU responds to the interrupt. Figure 3-9 shows the required timing of the INTR
input.

The iAPX 286 acknowledges an INTR interrupt request by executing two interrupt-acknowledge
(INTA) bus cycles (INTA bus cycles are described in a later section). The first INTA cycle signals all
8259As that the interrupt request has been honored. During the second INTA cycle, the 8259A with
the highest-priority interrupt pending responds by placing a byte containing the interrupt type (0-255)
onto the data bus to be read by the 80286. This interrupt type must have been previously programmed
into the 8259A to correspond to the service routine for the particular device requesting service.

3-13 210760-001

Intel THE iAPX 286 LOCAL BUS

CAS INTERRUPT
< IR |
INTR] MASTER
8259A INTERRUPT
N D7-Do IR
-
YINTA EN
ally > |
. INTR |ADDR MCE |z
| —
§1, 50 J ; INTA
s2284 || 80286 [uric™ [E: 82288 |2EN
| | ©PY - DT/R INTA INTA
ALE SLAVE SLAVE
DATA 7 8259A 8259A
5 D7-Do CAS D7-Dg CAS

&0 1N

ADDRESS
BUS
|
T OE
J>

S DATA <:

XCVR DATA
BUS

L] N
= s KR

210760-14

Figure 3-10. 8259A PIC Driving 80286 INTR Input

Following the second INTA cycle, the 80286 automatically transfers control to the interrupt service
routine corresponding to that particular interrupt.

During the interrupt-acknowledge cycles, any bus hold requests arriving via the 80286 HOLD line are
not honored until the interrupt-acknowledge cycles have been completed. In addition, the CPU activates
its LOCK signal during the first of these cycles to prevent other bus masters from taking control of
“the bus.

As for the NMI interrupt, the total time required to service an INTR interrupt is determined by the
type of instructions used and how long interrupts are disabled. The total servicing time is comprised of
the same elements as described for the NMI interrupt.

Since INTR requests will be acknowledged only by the 80286 on an instruction boundary, the time
required for the CPU to recognize the request (interrupt latency) depends on how many clock periods
remain in the execution of the current instruction.

The same factors affecting interrupt latency for the NMI interrupt affect the latency of the INTR
interrupt request. Specific instructions resulting in long interrupt latencies are multiplications, divisions,
task switches in Protected mode, or instructions that load the Stack Segment register, as descrxbed for
the NMI interrupt.

3-14 210760-001

Intel THE iAPX 286 LOCAL BUS

Pipelined Address Timing

The iAPX 286 local bus differs most from a typical microprocessor bus in its use of pipelined address
timing. To achieve high bus throughput, the pipelined address timing used by the iAPX 286 allows
overlapped bus cycles when accessing memory and 1/0. The resulting increase in bus throughput is
achieved without requiring a proportional increase in memory speed.

This pipelined timing differs from that of a typical microprocessor bus cycle. During transfers for
typical processors, an address is transmitted at the start of the bus cycle and held valid during the
entire cycle. :

Using pipelined timing, the 80286 places the address for the next memory or I/O operation on the bus
even before the previous bus operation has completed. This overlapping (pipelining) of successive bus
operations permits the maximum address setup time before data is required by the CPU or memory.

Figure 3-11 illustrates how this address pipelining results in improved bus throughput, even though the
address and data setup times for individual memory operations are identical for the two examples
shown. For an 8-MHz iAPX 286 system executing word transfers with zero wait states, data can be
transferred at the rate of 8 Megabytes per second while still allowing individual address access times
of 242 ns.

T O I T (R I
. TYPICAL CPU
ADDRESS n X n+1 X . BUS CYCLE
¢ ADDRESS >
ACCESS TIME j—\
/) e
| e | mn | e =]]

ADDRESS n X n+1 X n+2 X
< ADDRESS 80286 CPU
ACCESS TIME \ \ BUS CYCLE

210760-15

Figure 3-11. Typical and Pipelined Bus Operations

3-15 210760-001

Iﬂte' THE iAPX 286 LOCAL BUS

In the following sections, the complete iAPX 286 bus cycle is described, and the implementation of
pipelined timing is shown in greater detail. In a later section of this chapter, specific design consider-
ations and components are described for building high-performance iAPX 286 systems that take advan-
tage of this pipelined address timing.

iAPX 286 Local Bus States

The 80286 CPU uses a double-frequency system clock (CLK) to control bus timing. The CPU inter-
nally divides the system CLK by two to produce the internal processor clock, which determines the
local bus state. Each processor clock cycle is composed of two system CLK cycles, called Phase 1 and
Phase 2. The 82284 Clock Generator produces a processor clock output (PCLK) that identifies the
phase of the internal processor clock. Figure 3-12 shows the relationship between the system CLK and
the processor clock (PCLK).

The iAPX 286 local bus has three basic states: Idle (T;), Send-Status (T), and Perform-Command
(T.). The 80286 CPU also has a fourth state called Hold (T},). A Ty, state indicates that the 80286 has
surrendered control of the local bus to another bus master in response to a HOLD request. Each bus
state is one processo clock long. Figure 3-13 shows the 80286 CPU states and the allowed transitions.

The Idle (T;) state indicates that no data transfers are in progress. T; states typically occur during
execution of an instruction that does not require a bus cycle (assuming instruction and pre-fetch queues
are full). A T; state will also occur before the 80286 relinquishes control of the bus to another bus
master, entering the T}, (Hold) state.

T, is the first active state after T;. T is signalled by either status line ST or SO from the 80286 going
low (S1 or SO going low also identifies Phase 1 of the processor clock). During T, the command
encoding and data (for a write operation) are available on the 80286 output pins. If the address is not
already valid prior to entering the T state, the address also becomes valid. The 82288 bus controller
decodes the 80286 status signals to generate read/write commands and local transceiver-control signals.

ONE SYSTEM
CLK CYCLE
PCLK / \ /

[&———— ONE PROCESSOR CLOCK (.‘.YCLE———PJ
l¢——————— ONEBUS T STATE——————————

: PHASE 1 PHASE 2
|«—OF PROCESSOR———|<— OF PROCESSOR —»~{
CLOCK CYCLE CLOCK CYCLE

210760-16

Figure 3-12. System and Processor/PCLK Clock Relationships

3-16 210760-001

Intel THE iAPX 286 LOCAL BUS

HLDA . NEW CYCLE HLDA

NEW CYCLE
HLDA . NEW CYCLE

ALWAYS

READY - NEW CYCLE
HLDA

Ts — SEND STATUS
READY Tc — PERFORM COMMAND
T —8
READY . (NEW CYCLE + ! US IDLE
(HOLD - END OF TRANSACTION)) Ty — BUS HOLD

210760-17

Figure 3-13. 80286 States

After T, the perform command (T,) state is entered. Memory or 1/O devices are expected to respond
to the bus operation during T, either transferring read data to the CPU or accepting write data. The
READY input to the 80286 either terminates the bus cycle or causes the T, state to be repeated. T,
states may be repeated as many times as necessary to assure sufficient time for the memory or I/O
device to respond.

Following a T, state, the bus may enter immediately into a T state, beginning another bus operation,
or may enter the T; (Idle) state. This ability to immediately executé back-to-back bus operations leads
to high bus utilization and contributes to the iAPX 286’s high performance.

If another bus master requests and is granted control of the local bus, the 80286 will enter the Ty
(Hold) state. If the 80286 is in the T, state when the HOLD request is received, the bus will pass
through one T; (Idle) state before the 80286 grants control to the requesting bus master. During Hold
(T}), he 80286 floats all address, data, and status output pins, allowing the requesting bus master to
control the local bus. The 80286 HLDA output signal acknowledges the HOLD request and indicates
that the CPU has entered the T}, state.

iAPX 286 Bus Operations

The 80286 Bus Unit executes bus operations whenever the Execution Unit requires a bus operation as
part of an instruction execution, whenever a processor extension requests a bus operation, or when
sufficient room becomes available in the instruction pre-fetch queue. When no bus operations are in
progress or requested, the local bus remains in the idle state.

3-17 210760-001

|nte| THE iAPX 286 LOCAL BUS

Each local bus operation consists of one or more bus cycles. Each bus cycle consists of one Send-Status
(T;) state followed by one or more Perform-Command (T,) states. At maximum speed, the local bus
alternates between the T; and T, states, transferring one word of information every two processor clock
cycles.

The iAPX 286 local bus supports six types of bus operations: memory read, memory write, I/O read,
I/0O write, interrupt-acknowledge, and halt/shutdown operations. The signal timing during a bus cycle
differs between read, write, interrupt-acknowledge, and halt/shutdown cycles. Bus timing is also
dependent on the configuration of the bus controller, memory and 1/O speed, and in the case of back-
to-back bus cycles, the type of cycle previously performed. The following paragraphs describe what
occurs during each of these bus cycles performed by the 80286 CPU.

READ CYCLES

Figure 3-14 shows the timing for a single read cycle without command delays or wait states; this cycle
may be preceded and succeeded by any type of bus cycle, including other read cycles, write cycles, or
bus idle (T;) states. The sequence of signals that constitute a read cycle are as follows:

A. At the start of phase 2 of the bus state preceding the read cycle, the CPU transmits the memory
or I/O address and drives the M/IO and COD/INTA signals to indicate a memory or I/O bus
cycle. Address-decode logic begins operation.

B. At the start of phase 1 of the T, state, the CPU drives status lines ST high and S0 low to indicate
that the cycle is a read. The CPU also drives BHE high or low to indicate whether or not the
upper half of the data bus will be used (D15-D8).

C. Phase 2 of T, begins with ALE from the bus controller going high to capture the address into any
external address latches.

D. At the start of the first T, state, ALE goes low to latch the address and chip selects for the
remainder of the bus cycle. The bus controller drives DT/R and MRDC low to condition the
direction of the data transceivers and enable the memory or I/O location to be read. DEN from
the bus controller then goes active (high) to enable the data transceivers. Status (S1 or S0) is
removed in preparation for the next cycle.

E. At the start of Phase 2 of T, the address, M/TG, and COD/INTA lines change to reflect the
following bus operation (or enter the tri-state OFF condition if the following bus state is an INTA
cycle or a T; state before bus-hold acknowledge).

F. Atthe end of T, the READY signal is sampled. If READY is low, the input data is assumed to
be valid at the CPU data pins; the CPU reads the data from the bus and the bus controller
deactivates MRDC and DEN, and returns DT/R to its normal actlve-hxgh state. If READY is
sampled high, additional T states will be executed until READY is sampled low.

WRITE CYCLES

Figure 3-15 shows the timing for a single write cycle without command delays or wait states; the timing
of this write cycle is very much the same as for the read cycle just described, although the control
signalling is of course different. The sequence of signals that constitute a write cycle are as follows:

A. Asin the case of read cycles, the CPU drives the address, M/10, and COD/INTA signals at the
.start of phase 2 of the state preceding the bus cycle. Address decode logic begins operating.

B. At the start of T, the CPU drives ST low and SO high to indicate a write cycle. BHE is driven
high or low to enable or disable the high byte of the data bus (D15-D0).

3-18 210760-001

ntel THE iAPX 286 LOCAL BUS

PREVIOUS CYCLE READ CYCLE NEXT CYCLE
Tc ! Ts T [s
o | e | e | e | | e | o1 | w

i# 1
ST L ||
A23-A0 | |
M/10, COD/INTA //////////MW i } W////I////////////W///

§1.50 ,—‘ !-/

D15-DO

ALE

|]

/S
DEN } / i-__——-
DT/R I i
| :\ : /
READY | __:_/—

210760-18

Figure 3-14. iAPX 286 Read Cycle

At the start of phase 2 of T, the CPU outputs the data to be written to memory or I/O while the
bus controller drives ALE and DEN high to capture the address in external address latches and
to enable the data transceivers. DT/R is normally conditioned to transmit write data through the
transceivers; DT/R does not change at this time.

At the start of the first T,, the CPU removes its status signals. The bus controller drives MWTC
and ALE low to enable a memory or I/O write and to latch the address and chip selects for the
rest of the bus cycle.

At the start of Phase 2 of T, the address, M/IO, and COD/INTA lines change to reflect the
following bus operation (or enter the tri-state OFF condition if the following bus state is an INTA
cycle or a T; state before bus-hold acknowledge).

3-19 210760-001

ntel THE iAPX 286 LOCAL BUS

PREVIOUS CYCLE WRITE CYCLE NEXT CYCLE
i TC Ts | — Te Ts >
o1 o2 ¢1 2 | 1 2 1 2 |
T ll | L | 1 IL gl 11 L

TN

|
N
< D) e
T\ |
! . -
L/ { I —
| | |
_ : i
| |

210760-19

Figure 3-15. - 80286 Write Cycle

At the end of T, the READY input is sampled. If READY is low, the bus controller drives
MWTC high to latch data into the selected memory or I/O device. If READY is sampled high,
additional T, states are executed until READY is sampled low.

At the start of Phase 2 of the following T, or T; bus state, the DEN signal is disabled, and the
data bus may change to reflect either new write data or enter the tri-state OFF condition. In this
way, write data is held active well into the following bus cycle to provide sufficient data-hold time
following termination of the write command.

3-20 210760-001

Intel THE iAPX 286 LOCAL BUS

INTERRUPT-ACKNOWLEDGE CYCLES

Interrupt-acknowledge cycles are performed by the CPU in response to an external interrupt request
asserted via the INTR input pin. After recognizing the external interrupt request, the CPU executes a
sequence of two back-to-back interrupt-acknowledge (INTA) cycles to input an 8-bit vector that identi-
fies the interrupting source and directs the 80286 to an interrupt handling routine. Figure 3-16 shows
the sequence of signals that constitute the interrupt-acknowledge sequence:

A.

At the start of phase 2 of the state preceding the first interrupt-acknowledge cycle, the address
lines enter the tri-state OFF condition and M/IO and COD/INTA are driven low to identify the
coming interrupt-acknowledge cycle.

At the start of T,, LOCK and status lines ST and SO are driven low. LOCK prevents another bus
master in a multi-master system from gaining control of the bus between the two interrupt-
acknowledge (INTA) cycles.

At the start of Phase 2 of Ty, the bus controller drives MCE and ALE high. MCE (Master Cascade
Enable) enables the master 8259A interrupt controller (in a system that uses multiple interrupt
controllers) to drive the cascade address onto the local address bus for distribution to any slave
interrupt controllers.

At the start of the first T, the CPU drives status lines ST and SO high. The bus controller drives
INTA, ALE, and DT/R low. This first INTA signal freezes the contents-of the interrupt control-
ler; ALE latches the cascade address onto the system address bus for use by the slave interrupt
controllers; and DT/R places the data transceivers into the receiver mode (any data on the data
bus is ignored during this first INTA cycle). The bus controller drives DEN high to enable the
data transceivers.

Halfway through the first T state, the CPU removes the M/TIO and COD/INTA signals while
the bus controller drives MCE low (ALE has already fallen low to latch the cascade address onto
the address bus). READY is high to force a second T, state (two T, states are required to meet
the minimum 8259A INTA pulse width).

At the start of the second T, state, the CPU drives LOCK high. If the system bus was used for
the first INTA cycle, the 82289 Bus Arbiter will not relinquish the bus until the second INTA
cycle is complete.

READY going low at the start of phase 2 of T, terminates the cycle at the end of T.. The Bus
Controller drives INTA and DT/R high and DEN low. The CPU drives the address pins out of
TRI-STATE off during the second half of the second T,.

Three idle states (T;) are automatically inserted between the two INTA bus cycles to allow for
the minimum 8259A INTA-to-INTA time and CAS (Cascade Address) output delay.

In terms of signal timing, the second INTA cycle is almost identical to the first. LOCK remains
high during the second cycle, and the interrupt vector is read from the lower half of the data bus
at the end of the second T, state. Two T, states are required during this second INTA cycle to
meet the minimum INTA pulse width and to prevent contention between the CPU and the cascade
address latches that might occur as the CPU drives the address bus when the cascade address is
being disabled. The CPU does not start driving the address bus until the second half of the second
INTA T, bus state.

HALT/SHUTDOWN CYCLES

The 80286 externally indicates halt and shutdown conditions as a bus operation. These two conditions
occur due either to an HLT instruction or multiple protection exceptions while attempting to execute
one instruction.

3-21 210760-001

THE iAPX 286 LOCAL BUS

80286

L

—] ‘ IO I T T Nt T B) 1 W a2 Lot |2 | et Vez Lot T T e Ten 1wz lu 1u2

| INTACYCLE 1 (. <t————|INTA CYCLE 2 ———~|
s Tc T T s Tc Tc

Ts ‘
CLK

5150

M0, COD iNTA

ou-0n TR Y == -- === (O -m oz oo oo G-
LN/ AN\ ////////////////////////////////////// W\ /77777

. \ T

210760-20

Figure 3-16. Interrupt-Acknowledge Sequence

3-22 210760-001

Inte| THE iAPX 286 LOCAL BUS

A halt or shutdown bus operation is signalled when S1, S0, and COD/INTA are low and M/TO is
high. The address line Al distinguishes between a halt or shutdown condition; A1 high indicates a halt
condition, and Al low indicates a shutdown condition. The 82288 does not issue ALE, nor is READY
required to terminate a halt or shutdown bus operation.

During a halt condition, the 80286 may service processor extension requests (PEREQ) or HOLD
requests. The 80286 will remain in the halt state until an NMI, RESET, processor extension segment
overrun exception, or INTR interrupt (if interrupts are enabled) forces the processor out of halt.

During a shutdown condition, the 80286 may similarly service processor extension requests or HOLD
requests, except that a processor extension segment overrun exception during shutdown will inhibit
further servicing of processor extension requests. Only a non-maskable interrupt (NMI) or RESET can
force the 80286 out of the shutdown condition.

iAPX 286 Bus Usage

The previous sections described the characteristics of read and write cycles that can occur on the iAPX
286 local bus. These bus cycles are initiated by the 80286 Bus Unit in order to perform various functions.
These functions include:

+ prefetching instructions ahead of the current instruction that is executing

» transferring data required by an executing instruction ‘

 transferring data for a processor extension through the processor extension data channel

The following sections describe the rules and conditions that determine which bus operation will be
performed next by the 80286. These rules help to better explain the way in which the iAPX 286 uses
its local bus.

LOCAL BUS USAGE PRIORITIES

The iAPX 286 local bus is shared between the 80286 internal Bus Unit and external HOLD requests.
In the course of performing the three types of bus operations listed above, the 80286 Bus Unit also
must contend with transactions that require more than one bus operation to complete. Table 3-3 shows
the priorities followed by the 80286 Bus Unit in honoring simultaneous requests for the local bus.

PREFETCH OPERATIONS

The Bus Unit prefetches instructions when the local bus would otherwise be idle. When prefetching
instructions, the BU obeys the following general rules:
* A prefetch bus cycle is requested when at least two bytes of the 6-byte prefetch queue are empty.

» " Prefetches normally occur to the next consecutive address indicated by the Code Segment Instruc-
tion Pointer.

o The prefetcher normally performs word prefetches independent of the byte-alignment of the code
segment base in physical memory.

o The prefetcher performs only a byte code-fetch operation for control transfers to an mstruct10n
beginning on an odd physical address.

» Prefetching stops whenever a control transfer or HLT instruction is decoded by the IU and placed
into the instruction queue.

* In Real-Address mode, the prefetcher may fetch up to six bytes beyond the end of a code segment

3-23 210760-001

ntel THE iAPX 286 LOCAL BUS

Table 3-3. Local Bus Usage Priorities

Priority Operations Requesting the Local Bus

1 (Highest) Any data transfer that asserts LOCK either explicitly (via the
LOCK instruction prefix) or implicitly (segment descriptor
access, interrupt-acknowledge sequences, or an XCHG with
memory).

2 The second of the two byte-transfers required to transfer a word
’ operand at an odd physical address, or the second transfer
required to perform a processor extension data channel trans-

fer.
3 A request for the local bus via the HOLD input.
4 A processor extension data channel transfer via the PEREQ
input. N
5 A data transfer requested by the EU as part of an instruction.
6 (Lowest) An instruction prefetch performed by the BU. The EU will inhibit

prefetching two processor clocks in advance of any data trans-
fers to minimize waiting by the EU for a prefetch to complete.

In Protected mode, the prefetcher will never cause a segment-overrun exception. The prefetcher
stops at the last physical word in the code segment. Exception 13 will occur if the program attempts
to execute beyond the last full instruction in the code segment.

If the last byte of a code segment appears on an even physical memory address, the prefetcher will
read the next physical byte of memory (perform a word code fetch). The value of the additional
byte is ignored and any attempt to execute it causes exception 13.

Instruction prefetch operations can occur back-to-back with other prefetches or other bus cycles,
with no idle clocks on the bus.

DATA OPERATIONS

The Bus Unit performs data operatiohs when the Execution Unit (EU) needs to read or write data to
main memory or I/O. When performing data operations, the Bus Unit obeys the following general
rules:

Since the EU must wait on data reads, data operations have priority over prefetch operations when
both data and prefetch operations are ready to begin. A data operations, however, will not interrupt
a prefetch operation that has already started.

If the bus is currently in use when the EU requests a write cycle, the address and data for the write
cycle are stored by the Bus Unit in temporary registers until the current bus cycle completes. This
allows the EU to begin executing the next instruction without having to wait for a prefetch or other
bus operation to finish.

Only one write operation can be buffered by the Bus Unit. If the EU requests a write cycle while
these temporary buffers are full, the EU must wait for the buffers to empty before it can continue
executing instructions.

Any combination of data read and write operations can occur back-to-back with other bus opera-
tions, with no idle bus cycles. The string move or I/O instructions in particular transfer data with
no idle states on the bus. :

3-24 210760-001

Intel THE iAPX 286 LOCAL BUS

DATA CHANNEL TRANSFERS

The 80286 Bus Unit contains a processor extension data channel that supports data transfers between
memory and processor extensions like the 80287 Numeric Processor Extension. Transfers are requested
by the processor extension and performed by the CPU Bus Unit. Chapter Six describes the iAPX 286
processor extension interface in more detail. The following guidelines govern data channel activity:

» Data channel transfers have priority over prefetch and execution data cycles if all three operations
are requested at the same time.

« The transfers require at least two bus cycles to complete. For example, to transfer a word operand
to the 80287, the CPU performs the first cycle to read the operand from memory. A second transfer
writes the word to the 80287.

¢ The bus timing of these transfers is the same as any other bus read or write cycle.

+ Data channel transfers are treated as indivisable operations by the 80286. The Bus Unit will not
execute a data or prefetch operation until a data channel word transfer between memory and the
80287 is complete. ‘

« Data channel transfers to or from the 80287 are always word transfers. No single-byte transfers are
required by the 80287, nor are they performed by the 80286.

» Word transfers to an odd-addressed memory location are performed as two byte-transfers. This
results in three bus cycles (one word-transfer from the processor extension, and two byte-transfers
to memory). ‘ ‘

BUS UTILIZATION

Many features of the 80286 contribuie to a high utilization of the iAPX 286 local bus. These features
include:

¢ partitioning of CPU functions into individual processing units
¢ the Bus Unit guidelines for prefetch cycles, data cycles, and data channel transfers
« temporary Bus Unit address and data registers

» pipelined timing to allow back-to-back and overlapped bus operations

Depending on the particular program that is being executed and the speed of local memory,.these
architectural features can result in very high local bus utilization and bus efficiency. For typical types
of software, about 60% to 70% of all bus operations will be instruction prefetches, and about 75%-85%
of all bus clocks will be utilized by the CPU (assuming that memory responds with zero wait-states).
If memories having one or more wait states are used, better than 90% of all available bus clocks will
be used by the CPU. Long sequences of back-to-back bus operations are possible without the bus being
idle, especially if a program involves string operations.

Designers can best take advantage of the high local bus throughput offered by pipelined timing and
other features of the 80286 when interfacing the 80286 to local memory. The software tasks and data
that are requested. most often can reside in local memory where they can be quickly accessed. Less-
used tasks and data can reside in remote memory on a public.system bus, where access delays may be
incurred due to bus arbitration and additional address and data buffers. Chapter Four discusses the
performance tradeoffs of interfacing to fast vs. slow memories.

3-25 210760-001

Inte| THE iAPX 286 LOCAL BUS

Bus Interface Components

The job of implementing an iAPX 286 local bus around an 80286 CPU is made relatively simple by
using several components specifically adapted to supporting the pipelined timing and status signals of
the 80286. These interface components include:

. The 82284 Clock Generator, to generate the proper clock input for the 80286 CPU, to selectively
enable and synchronize the 80286 READY input, and to handle the conditioning of the system
RESET signal.

¢ The 82288 Bus Controller, to decode the 80286 status signals and to generate appropriate memory
and I/O read/write commands, and data transceiver and address buffer control signals.

» 8282 octal latches, for latching local bus address lines or chip selects.
o 8286 data transceivers_, for buffering the local bus data lines.

These devices support the pipelined timing of the 80286 local bus.and combine functions that would
take several dozen discrete components to.perform. The remaining sections of this chapter describe
how these circuits may be used to implement an iAPX 286 local bus.

GENERATING TIMING USING THE 82284 CLOCK GENERATOR

The 82284 Clock Generator provides the clock generation, READY timing, and RESET timing functions
for the 80286 CPU and other iAPX 286 support devices. Figure 3-17 illustrates how the 82284 Clock
Generator connects to an 80286 CPU.

In generating the clock signal for the system, the 82284 can use either a crystal or an external TTL-
level signal as its frequency source. The CLK output signal is equal to the 80286 input source frequency
and is double the specified processor clock frequency. The status lines SO and S1 from the CPU are
decoded by the 82284 to synchronize the 82284’s PCLK (peripheral clock) output. This PCLK output
is normally in phase with the 80286 internal processor clock.

The 82284 generates the READY input to the 80286, which the CPU uses either to insert wait states
into bus operations or to terminate successful bus operations. This READY output is synchronized to
the system clock, and can be selectively generated from either an asynchronous or a synchronous ready
input to the 82284,

The third timing function of the 82284 Clock Generator is the generation of the 80286 RESET, or
system RESET signal. The 82284 accepts an active-low RES input signal from a simple RC circuit or
other Reset source, synchronizes it with the system CLK, and drives its RESET output to properly
initialize the 80286 CPU and other system components.

The following sections describe each of these functions of the 82284 Clock Generafor, and discuss some
of the alternatives and considerations in designing an iAPX 286 system using the 82284.

Generating the System Clock

The 80286 requires a clock signal with fast rise and fall times (10 ns max) between low and high
voltages of 0.6V:low and 3.8V high. The maximum frequency of the clock input to the (8-MHz) 80286
is 16 MHz (20 MHz for a 10 MHz 80286-1). Since the 80286 internally uses dynamic cells, a minimum
clock input frequency of 4 MHz is required to maintain the state of the CPU. Due to this minimum
frequency requirement, the 80286 cannot be single:stepped by disabling the clock. The timing and
voltage requirements for the CPU clock are shown in Figure 3-18.

3-26 210760-001

ntel THE iAPX 286 LOCAL BUS

C2 cy
——Tiih——
X2 X3
XTAL
osC
MUX CLK :
EXTERNAL FREQ. EFI CLK
SOURCE
SOURCE SELECT g ?
RESET ' RESET
RES RESET
RESET
SYNCHRONIZER N
ROY ;
asvne reaoy — 220 ‘ 80286
SYNCHRONIZER -
ENABLE ——]
ARDYEN
YNC READY —___OSRW .
s ;) READY - o
ENABLE ——4————0) - roce READY READY
SRDYEN
PCLK
GENERATOR L 5
' 51
82284 I E)
CLOC
GENERATOR : : PCLK
TO OTHER DEVICES
210760-21
Figure 3-17. 82284 Clock Generator With an 80286 CPU
~—»|. | «——10ns MAX —»{ |«— 10 ns MAX
5.5
+5 i |1 % A
3.8 %
——15ns
“%ns MIN
1.5
P \ \
0 7 1 \
| \ A7 q
-5) —_ 62.5ns MIN
250ns MAX
210760-22
Figure 3-18. 80286 Clock Input
3-27 210760-001

Intel THE iAPX 286 LOCAL BUS

Using the 82284 Clock Generator, an optimum 50% duty-cycle clock with the required MOS-level -
voltages and transition times can easily be obtained. Since the 80286 CLK is a double-frequency clock
signal, the selected source must oscillate at twice the specified processor clock rate.

Either an external frequency source or a crystal can be used to drive the 82284. The frequency source
is selected by strapping the 82284 F/C input to indicate the appropriate frequency source.

To select the crystal inputs of the 82284 as the frequency source for clock generation, the F/C input.
to the 82284 must be strapped to ground. The crystal, a parallel-resonant, fundamental mode crystal,
connects to the X1 and X2 pins on the 82284 and should have a typical capacitance load of 32 pF.
Two loading capacitors are recommended to ensure stable operation of the 82284’s linear Pierce oscil-
lator with the proper duty cycle, as shown in Figure 3-19. The sum of the board capac1tance and the
loading capacitors should equal the values shown in Table 3-4.

If a high-accuracy frequency source, externally-variable frequency source, or a common source for
driving multiple 82284’s is desired, the External Frequency Input (EFI) of the 82284 can be selected:
by pulling the F/C input to 5 volts through a 1K ohm resistor (Figure 3-20). The external frequency
source should be TTL-compatible, have a 50% duty cycle, and oscillate at the system clock rate (twice
the processor clock rate).

Table 3-4. 82284 Crystal Loading Capacitance Values -

C1 Capacitance Cc2 éapacitance
Crystal Frequency (pin 7) . (pin 8)
1-8MHz E 60 pF 40 pF
8-16 MHz 25 pF 15 pF

NOTE: Capacitance values must include board capacitance.

10

7
X1 CLK [CLK
ce iAPX 286
D 8 CPUor
300 SUPPORT
[X2 82284 n | COMPONENT
c1 C2 READY READY

i
i
.||—|m

F/C

210760-23

Figure 3-19. Recommended Crystal Connections to the 82284

3-28 210760-001

Intel THE iAPX 286 LOCAL BUS

+5
7 X IAPX 286
1K g™ CPU OR
21x, SUPPORT
6 c SYSTEM | COMPONENT
EXTERNAL 5 Fi 10 CLK
FREQUENCY ———{ EFI CLK 3| CLK
SOURCE
82284

|_—> PCLK

210760-24

Figure 3-20. 82284 With External Frequency Source

If several sources of CLK are needed (in a multi-processor system, for example), multiple 82284 Clock
Generators can be used, driven by a common frequency source. When multiple 82284’s driven by a
common source are distributed throughout a system, each 82284 should be driven by its own line from
the source. To minimize noise in the system, each line should be a twisted pair driven by buffers like
the 74L.S04 with the ground of the twisted pair connecting the grounds of the source and receiver. To
minimize clock skew, the lines to each 82284 should be of equal length.

A simple technique for generating a master frequency source for additional 82284’s is shown in
Figure 3-21. One 82284 with a crystal is used to generate the desired frequency. The CLK output from
this 82284 drives the EFI input to the other 82284 Clock Generators in the system.

Since the CLK output is delayed from the EFI input by up to 30 ns, the CLK output of the master
82284 should not be used to drive both an 80286 and the EFI input of another 82284 (for a second
80286) if the two CPUs are to be synchronized. The variation on EFI-to-CLK delay over a range of
82284s may approach 10 to 15 ns. If, however, all 82284s are of the same package type, and have the
same relative supply voltage, and operate in the same tcmperature environment, the variation will be
reduced to between 5 and 10 ns.

When multiple processors share a common local bus, they should be driven with the same system CLK
to optimize the transfer of bus control. A single 82284 Clock Generator can be used in this configura-
tion, as shown in Figure 3-22. Each of the processors can share the common READY 51gnal since only
one processor is permltted to use the bus at any given time. Processors that are not in control of the
local bus will ignore any READY input.

3-29 210760-001

THE iAPX 286 LOCAL BUS

82284
F/C 10
CLK
| EFI
+5V
1K
7 82284 82284
X1 F/C
10
— CLK
8 10 5
—rL X2 CLK | EFt
Cq C2 |_——ls F/T
-0 - 1K
6 82284
F/T 10
CLK
Ser

210760-25

Figure 3-21.]External Frequency for Muitiple 82284s

The 82284 Clock Generator has two clock outputs: the system clock (CLK), which drives the CPU
and support devices, and a peripheral clock (PCLK), which runs at one-half the frequency of the
system CLK and is normally synchronized to the 80286 internal processor clock. CLK has a 50% duty
cycle, matching its input, and so does PCLK. CLK has MOS-level drive characteristics, while PCLK
is a TTL-level signal at half the frequency of the CLK output.

Figure 3-23 shows the relationship of CLK to PCLK. The maximum delay from CLK to PCLK is
40 ns. The 82284 synchronizes PCLK to the CPU internal processor clock at the start of the first bus
operation following a RESET, as detected by ST or SO going low. Following this first bus cycle, PCLK
will remain in phase with the internal processor clock.

3-30 210760-001

ntel THE iAPX 286 LOCAL BUS

80286

]

CLK

:> LOCAL
82284 . ' . BUS
READY
CO-PROCESSOR [

210760-26

Figure 3-22. Multiple Local Bus Processors Share a Common 82284

>]
o1 2 ' o1 2 ‘

\ 1/ X X k
PCLK UNDEFINED IF THIS
IS FIRST,BU\S CYCLE

—_—

FIRST BUS CYCLE
AFTER RESET

210760-27

Figure 3-23. CLK to PCLK Timing Relationship

3-31 210760-001

Intel THE iAPX 286 LOCAL BUS

Timing Bus Operations Using READY

As described previously in the discussion of iAPX 286 bus operations, the READY input is used by
the 80286 to insert wait states into a bus cycle, to accommodate memory and I/O devices that cannot
transfer information at the maximum 80286 bus bandwidth. In multi-processor systems, READY is
also used when the CPU must wait for access to the system bus or Multibus interface.

To insert a wait state (an additional T state) into the bus cycle, the READY signal to the CPU, Bus
Controller, and Bus Arbiter (if present) must be inactive (high) by the end of the current T, state. To
terminate the current bus cycle and avoid insertion of any additional wait states, READY must be low
(active) for the specified set-up time prior to the falling edge of CLK at the end of T,.

Depending on the size and characteristics of a particular system, designers may choose to implement
a Ready signal in one of two different ways:

1. The classical Ready implementation is to have the system “normally not ready.” When the selected
device receives a command and has had sufficient time to complete the command, it activates
Ready to the CPU and Bus Controller to terminate the bus cycle. This implementation is charac-
teristic of large multi-processor, Multibus systems or systems where propagation delays, bus access
delays, and device characteristics inherently slow down the system. For maximum performance,
devices that can run with no wait states must return Ready within the specified time limit. Failure
to respond in time will result in the insertion of one or more wait states.

2. Analternate technique is to have the system “normally ready.” All devices are assumed to operate
at the maximum CPU bus bandwidth. Devices that do not meet the requirement must disable
Ready by the end of T, to guarantee the insertion of wait states. This implementation is typically
applied to small, single-CPU systems and reduces the logic required to control the READY signal.

- Since the failure of a device requiring wait states to disable Ready by the end of T, will result in
premature termination of the bus cycle, system timing must be carefully analyzed before using
this approach.

As shown in Figure 3-24, the timing requirements for the CPU, Bus Controller, and Bus Arbiter READY
inputs are identical regardless of which method of ready implementation is used. Set-up time for READY
is 38.5 ns before the falling edge of CLK at the end of T¢; READY hold time is 25 ns from the falling
edge of CLK.

To generate a stable READY output that satisfies the required setup and hold times, the 82284 Clock
Generator provides two ready inputs: a Synchronous Ready (SRDY) and an Asynchronous Ready
(ARDY) input. Typically, one or both of these inputs will be driven by external timing logic to deter-
mine an appropriate Ready condition. The two Ready inputs are qualified by separate Enable signals
(SRDYEN and ARDYEN) to selectively enable one of the two Ready inputs (Figure 3-25).

The two Ready inputs allow more flexibility in designing an iAPX 286 system; although the SRDY
input must be synchronized to the system CLK, it permits more time for the external Ready logic; the
ARDY input need not be synchronized, but it permits less time for the Ready-timing logic to function.
To operate the iAPX 286 with zero wait-states, the Synchronous Ready (SRDY) input must be used—
the ARDY input cannot support zero-wait-state operation. At the end of T, (the first state in any bus
operation), either ARDY or ARDYEN must be high.

Figure 3-26 shows the timing of the SRDY signal. When SRDYEN is low, SRDY is sampled on the
falling edge of CLK at the end of Phase 1 of T.. When SRDY is sampled low, the 82284 immediately
drives the READY output low (24 ns max. delay from the falling edge of CLK). The setup times for
SRDY and SRDYEN are 15 ns before the falling edge of CLK. ,

3-32 210760-001

THE iAPX 286 LOCAL BUS

CLK

CMD 7
[NO WAIT 1 WAIT
\ STATE STATE 7
READY
NORMALLY NOT READY "N\ - /
38.5NS
MIN T -
READY 7 \
NORMALLY READY 25NS
—> < MIN
210760-28
Figure 3-24. READY Timing
7 8
s X X2
F/C 10
82284 CLK »1 CLK
. CLOCK
= GENERATOR
1] .
RES RESET 2 RESET
)] ' .
SYNCHRONOUS RDY iAPX 286
READY AND 3 CPU OR
ENABLE INPUTS SRDYEN SUPPORT,
DEVICE
1] READY al —»{ READY
ASYNCHRONOUS ARDY .
READY AND 17
ENABLE INPUTS ARDYEN
210760-29

Figure 3-25. Ready Inputs to the 82284 and Output to
~ the 80286 and 82288 '

3-33 210760-001

Intel THE iAPX 286 LOCAL BUS

¢2

~

15NS

MIN i
SRDY +
SRDYEN
ONS
> MIN
READY
: : 24NS
> MAX

210760-30

Figure 3-26. SRDY and READY Timing

Figure 3-27 shows the function of the ARDY input. When ARDYEN is low, ARDY is sampled on the
falling edge of CLK at the start of T, (one CLK cycle earlier than SRDY). This allows one full CLK
cycle for the 82284 to resolve the state of ARDY. When ARDY is sampled low, the READY output
of the 82284 is driven active-low following the falling edge of CLK at the end of phase 1 of T, (24 ns
max delay from the falling edge of CLK).

To insert a wait state, both ARDY and SRDY must either be sampled inactive, or else be disabled
using the appropriate Enable pin. Note that once both ARDY and ARDYEN have been resolved
active low, the 82284 ignores the condition of SRDY for the remainder of that bus cycle.

When only one Ready input is required, the associated Ready Enable signal can be tied to ground
while the other Ready Enable signal is connected to 5 volts through a 1K ohm resistor (Figure 3-28).
When both Ready inputs are used, the proper Ready Enable can typically be selected by latched
outputs from address decode logic (Figure 3-29).

As shown in Figure 3-30, the READY output has an open-collector driver to allow other Ready circuits
to be connected with it in a wired-OR configuration. Because of this, an external 300 ohm pull-up
resistor is required on the READY signal. At the start of a bus cycle, indicated by ST or SO going low
(Figure 3-31), the Clock Generator floats the READY output. The pull-up resistor has three system
CLK cycles to raise the voltage on the READY line to the inactive (high) state before it is sampled by
‘the 80286 CPU. When the selected 82284 Ready input is active, the READY line is forced low. READY
remains low until the next bus cycle-is started (S1 or SO going low) or until the selected Ready input
is detected high.

During RESET, the Clock Gen,erator‘ plills READY low to force Ehe Bus Controller into the idle state.

3-34 210760-001

ntel THE iAPX 286 LOCAL BUS

|
i
1
1
[
|
cMD L
/ |
i
N -~ !
ARDY + !
ARDYEN % / / |
]
£ |

16NS

—> " MmN

READY

24NS
MAX

210760-31
Figure 3-27. ARDY and READY Timing
|7 al
X4 X2
+5V 10 -
82284 fsesssmegm. CLK
CLOCK
GENERATOR
1K
1 -12—->RESET
ARDY
17
ARDYEN
SYSTEMREADY 2] srov 4 s READY
—ri SRDYEN
210760-32

. Figure 3-28. Using Only One Ready Input

3-35 210760-001

THE iAPX 286 LOCAL BUS

ALE
82284
STB 1
31 ARDY
> 17 J—
ADDRESS 8282 g ARDYEN
DECODE »| SRDY
PROM LATCH P
. - —~1 SRDYEN
READY #1
READY #2~

210760-33
Figure 3-29. Selecting the Ready Input
OPEN COLLECTOR -
READY DRIVER I
OPEN COLLECTOR _ _ _ _,
READY DRIVER .
+5V
82284 3008 iAPX 286
S A ral Spuor
(oPENL__~ UPPORT
COLLECTOR DEVICE
OUTPUT)
210760-34
Figure 3-30. Open-Collector 82284 READY Output
3-36 210760-001

Inte! THE iAPX 286 LOCAL BUS

¢2 ¢1 ¢$2 91 $2 ¢1

210760-35

"Figure 3-31. READY Output Characteristics

WAIT-STATE TIMING LOGIC

In the previous section, the operation of the SRDY and ARDY inputs to the Clock Generator were
described. In this section, the wait-state timing logic that drives these Ready inputs are discussed, with
specific examples for generating a fixed number of wait states.

With an 8-MHz 80286 CPU, fast memory and peripherals can typically operate with O or 1 wait states.
In most cases, address-decode logic can be used to select the number of wait states required by a
particular device. This address-decode logic is also used to generate the appropriate chip selects.

Figure 3-32 shows a simple method for generating one wait state in an iAPX 286 system. The timing
for a typical bus cycle incorporating this single wait state is shown in Figure 3-33.

In the circuit shown, the output of the first flip-flop becomes active at the end of T;. The output of the
second flip-flop does not become activated until Phase 2 of the first T, after the 82284 has sampled
SRDY high and caused the insertion of an additional wait state. During the following T, state, the
82284 samples SRDY low and terminates the bus cycle by setting READY low. READY also resets
the wait-state timing circuit in preparation for the following bus cycle.

For many existing memory and peripheral devices, one or more wait states will be required to operate
with an 8-MHz 80286 CPU. Some peripheral devices may require more than two wait states. The
circuit in Figure 3-34 shows a wait-state generator that inserts from 0 to 3 wait states into each bus
cycle. This circuit can be extended to incorporate any number of wait states by addlng an additional
flip-flop for each wait state.

3-37 210760-001

ntel THE iAPX 286 LOCAL BUS

PCLK %

ALE J) o} 1-WAIT READY
Q
D) D
. SRDY TO 82284
K K Q
READY) I CLR , CLR
N~
CLK
V
RESET %

210760-36

Figure 3-32. Generating a Single Wait State

ALE

PCLK

'SRDY \

SRDY SRDY
SAMPLED SAMPLED

210760-37

Figure 3-33. Timing for the Single Wait-State Generator

3-38 210760-001

Intel THE iAPX 286 LOCAL BUS

v SRDY
] —>
ADDRESS SELECT 1 WAIT
DECODE
PROM SELECT 2 WAIT
SELECT 3 WAIT
0-WAIT 1-WAIT 2-WAIT 3-WAIT
READY READY READY READY
AN
PCLK 1>
- J J J
ALE - 4 oK ald o o
K K K K
CLR CLR) CLR . CLR
[*] T e
CLK N
V
RESET %
210760-38

Figure 3-34. Generating from O to 3 Wait States

In the circuit shown, an address-decoder PROM selects the appropriate Ready signal to generate the
proper number of wait states. The timing for this circuit is identical to that of the previous circuit,
simply adding an additional wait state for each successive flip-flop.

These circuits are sufficient for generating SRDY timing for local devices when the required number
of wait states is known. For device addresses that are not local, e.g. for devices that reside on a system
bus or require other timing, the SRDYEN Enable signal to the 82284 should be driven inactive (high).

Memory and I/O devices configured on the Multibus interface generate their own Ready timing through
the Multibus XACK signal (shown in Figure 3-41 in the next section). XACK can be used to drive the
ARDY input to the 82284, while an address-decoder recognizes addresses mapped onto the Multibus
and selects the ARDYEN Enable line. The 82284 will automatically insert wait states into the bus
cycle until XACK becomes active low. More information on designing a Multibus interface for the
iAPX 286 is given in Chapter Seven. ‘

3-39 210760-001

Intel THE iAPX 286 LOCAL BUS

NOTE

If the iAPX 286 system operating in Real-Address mode is “normally not Ready,” program-
mers should not assign executable code to the last six bytes of physical memory. Since the
80286 CPU prefetches instructions, the CPU may attempt to prefetch beyond the end of
physical memory when executing code in Real Mode at the end of physical memory. If the
access to non-existent memory fails to enable READY, the system will be caught in an indef-
inite wait. Chapter Seven shows a bus-timeout circuit that is typlcally used to prevent the
occurrence of such an indefinite wait.

Generating the Proper RESET Timing

As described previously, the third timing function of the 82284 Clock Generator is to generate the
system RESET signal to properly initialize the 80286 CPU and other system components.

The system RESET signal provides an orderly way to start or restart an iAPX 286 system. When the
80286 processor detects the positive-going edge of RESET, it terminates all external activities. When
the RESET signal falls low, the 80286 is initialized to a known internal state, and the CPU then begins
fetching instructions from absolute address FFFFFOH.

To properly initialize the 80286 CPU, the high-to-low transition of RESET must be synchronized to
the system CLK. This signal can easily be generated using the 82284 Clock Generator. The 82284 has
a Schmitt-trigger RES input that can be used to generate RESET from an active-low external pulse.
The hysteresis on this Schmitt-trigger input prevents the RES signal from entering an indeterminate
state, and allows a simple RC circuit to be used to generate the RES signal upon powerup.

The specifications on the RES input circuit show that RESET will not become active untll the RES
input reaches at least 1.05 volts.

To guarantee RESET upon power-up, the RES input must remain below 1.05 volts for 5 milliseconds
after Vcc reaches the minimum supply voltage of 4.5 volts. Following this event, RES must still remain
below 1.05 volts for 16 processor clock cycles to allow for initializing the CPU. Figure 3-35 shows a
simple RC circuit that will keep RES low long enough to satisfy both requirements.

The 82284 RESET output meets all of the requirements for the 80286 CPU RESET input. The RESET
output is also available as a system RESET to other devices in the system, as shown in Figure 3-36.

During RESET, the 80286 internal processor clock is initialized (the divide by two counter is reset).
Following the rising edge of RESET, the next CLK cycle will start Phase 2 of a processor clock cycle
(see Figure 3-37). The 82284 synchronizes the 82284 PCLK output to the 80286 internal processor
clock at the start of the first bus cycle after RESET.

Since the 82284 synchronizes RESET to the system CLK, a delay of one or two clock cycles is intro-
duced before the RESET output is driven high. The 82284 will attempt to synchronize the rising edge
of RESET if Vcc and CLK are correct at that time (Figure 3-38). However, since.the rising edge of
RESET may occur during power-up, when Vcc and CLK are not valid, the rising edge of RESET may
be asynchronous to the CLK. A synchronized rising-edge of RESET is necessary only for clock-
synchronous, multiprocessor systems.

3-40 210760-001

THE iAPX 286 LOCAL BUS

4.5V === S

ov

RES 1
82284

RES RESET|— 105V [-mmm e == ot

/
L

RESET

210760-39
Figure 3-35. Typical RC RESET Timing Circuit
74504
_ SYSTEM RESET
(INIT)
» SYSTEM RESET
12 29
—] RES RESET »1 RESET
82284 80286
CLOCK CPU
GENERATOR) o
10 31
CLK CLK
210760-40

Figure 3-36. 80286 Reset and System Reset

3-41 210760-001

THE iAPX 286 LOCAL BUS

CLK

RESET /

CLK

RESET

210760-41
Figure 3-37. Processor Clock Synchronization
oK __/_AT /jv /_3T /___
ONS ONS
—> MIN MIN
13::‘8 le— 13#‘5
82284 ml N
NPoT & ///%') W \\\\\\\\\\\\\\\\\
N MAX — 4ons
82284 » e B \
i o
210760-42
Figure 3-38. RESET Synchronized to CLK
210760-001

3-42

Intel THE iAPX 286 LOCAL BUS

Synchronizing Processor Clocks in a Multi-Processor System

In a multi-processor system where each processor must be clock-synchronous, all of the processor clocks
must be synchronized following the initial power-up RESET. Since the CPU does not normally see the
rising edge of a RESET signal during power-up due to delays between the time voltage is applied and
the time that the processor is functioning properly, a second RESET pulse must be generated.

This second RESET pulse cannot be provided directly by the 82284 Clock Generator; additional logic
is required. Figure 3-39 shows a circuit that provides a fully-synchronous RESET signal by generating
a second RESET pulse that is triggered by the completion of the power-on reset. Timing for the circuit
is shown in figure 3-40.

The circuit actually provides two individual reset signals: CPU RESET, a synchronous reset signal that
drives the 80286 CPU’s in the system, and SYSTEM RESET, providing only a single RESET pulse
for peripheral devices that need not be synchronized to the processor clock. The circuit also generates
PCLK for the system (the 82284 PCLK signal should be ignored).

In operation, the normal power-on RESET occurs with the rising edge of CPU RESET not being seen
by the processors. When the RESET input goes low, the circuit automatically initiates a second RESET
that is synchronous to the system clock. The CPU RESET output goes low for one CLK cycle and
then goes high for seventeen cycles (the 80286 requires a minimum RESET pulse width of sixteen
CLK cycles subsequent to power-up reset). Both edges of this second reset pulse are synchronous to

74504

RESET—D& -
P) .
PR :
D Q
— PR cpy
I _E"" o O Reser

§74

S74

% o
common 1504
SYSTEM—D N I
CLK p a
Lo Q PCLK
. T J
S§74 PR -
v e e a
Qs Qg Q¢ Qp
> [¢] %< [T
7415393 s74
CLR L
a SYSTEM
CLR RESET
Y
210760-43

Figure 3-39. Generating a Synchronous RESET to Multiple
80286 CPUs o

3-43 210760-001

Intel THE iAPX 286 LOCAL BUS

| [1 2 1 8 | 4 | s | e | 7 |
S ipipgipgipgipipipipgipipipgigEpipgipigipipEpEgEpiph
reser 1 ‘
c;u RESET LI : —
SYSTEM RESET | S

PCLK. |||||||||||||||||||||

210760-44

Figure 3-40. Synchronous Reset Circuit Timing

CLK and to PCLK (the pulse is derived from the PCLK signal). SYSTEM RESET remains high from
power-up until the CLK cycle before the falling edge of the second CPU RESET pulse. Since the
synchronous reset guarantees that PCLK is in phase with the processor clock, it is not necessary to
synchronize PCLK to the processor clock via S1 or SO going low at the start of the first bus cycle (as
is done with the 82284 PCLK signal).

CONTROLLING THE LOCAL BUS USING THE 82288 BUS CONTROLLER

The 82288 Bus Controller decodes the 80286 status signals and generates appropriate commands for
controlling an iAPX 286 local bus. By decoding the ST, S0, and M/IO signals from the 80286, the
82288 generates memory and 1/O read/write commands, interrupt-acknowledge controls, and data
transceiver and address latch controls. Figure 3-41 shows how the 82288 Bus Controller connects to
the 80286 CPU.

The 82288 Bus Controller has several control inputs that allow its command timing to be customized
for a particular implementation. Other control inputs permit the Bus Controller to be used in systems
having more than one local bus, or systems having a local bus and one or more system buses, including
the Intel Multibus. The following sections describe each of the functions of the Bus Controller, and
discuss some of the alternatives in designing an iAPX 286 system using the 82288.

Systems Having More Than One Bus Controller

The 82288 Bus Controller makes it easy to implement an iAPX 286 system having more than one bus.
In a typical multiple-bus system, one 82288 Bus Controller is used to generate commands for each bus.
The Bus Controller’s CENL input selects the particular Bus Controller that is to respond to the current
bus cycle. A strapping option selects whether the Bus Controller generates signal timing compatible
with the iAPX 286 local bus, or follows the Multibus timing-specifications.

3-44 210760-001

Intel THE iAPX 286 LOCAL BUS

TO OTHER BUS
INTERFACE DEVICES

e —
80286 82288
) BUS CONTROLLER
MRD! MEMORY READ
o »| = RbC
MWT — > MEMORY WRITE
s1 >
§1 JORC > 10 READ
M/TO M/i0 OWE » 10 WRITE
INTA > INTERRUPT ACKNOWLEDGE
cLk -»{cx
READY —»| READY
ALE f———————> ADDRESS LATCH ENABLE
CMDLY DEN |————————» DATA ENABLE
CEN/AEN DT/R j—————» DATA TRANSMIT/RECEIVE
MCE ——————» MASTER CASCADE ENABLE
CENL MB
FROM 82284
CLOCK GENERATOR
COMMAND DELAY
MODE SELECT
FROM (STRAPPING OPTION)
DECODE LOGIC

210760-45

Figure 3-41. 82288 Bus Controller with an 80286 CPU

SELECTING A CONTROLLER

The 82288 CENL (Command Enable Latched) input selects whether the Bus Controller will respond
to the current bus cycle. This input is sampled at the start of the first T, state of each bus cycle. For
systems that use only one Bus Controller, this input may be strapped high.

In systems that use multiple Controllers, address-decode logic typically selects the Bus Controller that
executes the current bus cycle. CENL set-up time is 20 ns; sampling occurs on the falling edge of CLK
between T and T.. If CENL is sampled high, the Controller ignores the current bus cycle (e.g., DEN
and commands are not asserted) and waits for the next cycle to begin. It should be noted that in the
case of a write cycle, DEN is already active when CENL is sampled. Therefore, when CENL is sampled
low during a write, DEN will be driven low to disable the data buffers within 35 ns, as shown in Figure
3-42.

3-45 210760-001

Intel THE iAPX 286 LOCAL BUS

DEN

[

210760-46

Figure 3-42. CENL Disable of DEN on Write Cycle

SELECTING MULTIBUS® TIMING

The 82288 MB (Multibus) control input is a strapping option that configures bus controller timing for
local or Multibus mode. In local bus mode, the bus controller generates commands and control signal
timing compatible with the iAPX 286 local bus. In Multibus mode, timing is altered to meet Multibus
interface timing requirements for address and data setup times. All Multibus cycles require at least
one wait state. Strapping MB high selects Multibus mode; strapping MB low selects local mode.
Figure 3-43 shows typical bus command timing for an 82288 operating in both local mode and Multi-

bus mode. Chapter Seven provides detailed guidelines for implementing a Multibus interface for the
iAPX 286.

Figure 3-44 shows two 82288 bus controllers being used in an iAPX system. One controller interfaces
the 80286 CPU to a local bus and is configured for local bus mode (MB strapped to ground). The
second controller is configured in Multibus mode (MB strapped to +5V) and connects the CPU to the
Multibus interface. The local bus controller also has CEN strapped to +5V. CMDLY is tied low;
commands are not delayed. Address decode logic selects one of the two bus controllers via the CENL
inputs. The select signal for the Multibus controller also enables the 82289 Bus Arbiter.

Access to a multimaster system bus such as the Multibus is controlled by the 82289 Bus. Arbiter. The
Bus Arbiter decodes the ST, SO, M/IO, and SYSB/RESB lines to determine when the 80286 requires
access to the multimaster bus. After requesting and gaining control of the bus, the 82289 enables the
Bus Controller and address latches to allow the access to take place. Chapter Seven describes the
operation and use of the 82289 Bus Arbiter in detail.

3-46 210760-001

THE iAPX 286 LOCAL BUS

CMD

/ __
\ /
\ —

s/ \Nw/,

LOCAL BUS
TIMING

J

210760-47

Figure 3-43. Local (MB=0) Vs. MULTIBUS® (B= 1) Timing

3-47

210760-001

THE iAPX 286 LOCAL BUS

——-

READY oV RADY XACK
82284 Fom——
O SHOVEN ARDYEN
= CLK READY 51,50
1T
READY READY COMMANDS
N
cmMp ¢ cMD cMD N
82288 CLK CLK g22g8 Y
MG |A Mo DEN
§1,50 [\ Y| 51,50 oTR
TR
CMDLY CENL
CENL i cmpLy ALE
MB__ CEN £ MB AEN
(2]
a t = | 2
3 = 45V +5V 2
8 3
S — H
READY AEN
CLK gongg CONTROL
ADDRESS Wi CNTL)
DECODER 5i.50
1 SYS/RESE
Mo L
p STB OE
{' 8283 ADDRESS
—N A N
ADDRESS b g Y)
J DATA I 1
Az CLK READY MO
§1,50
80286 T0E DATA
A N
Diso K —/| 8287 1
210760-48

Figure 3-44. Bus Controllers in a Dual Bus System

Modifying the Bus Control Timing

To accommodate systems with slower memories or timing requirements, bus commands from the 82288
can be delayed using the Bus Controller’s CMDLY and CEN/AEN inputs. Command delays allow

increased address and write-data setup times before command active for devices that require lengthy
setup times.

3-48

210760-001

Intel THE iAPX 286 LOCAL BUS

CMDLY (COMMAND DELAY)

The 82288 CMDLY input delays command generation by one or more CLK cycles. Each CLK delay
allows at least 62.5 ns additional set-up time from address/chip select to command active. Command
delays may be required, for example, on write operations when write data must be valid before the
WR command is asserted. When no delays are required, CMDLY can be strapped to ground to always
issue the command as soon as possible.

A simple method for generating 0 or 1 command delays is shown in Figure 3-45. The CMDLY input
to the Bus Controller is driven by the output of an address-decode PROM gated to the Bus Controller’s
Address Latch Enable (ALE). CMDLY is driven high while ALE is active, but only when the PROM
output is also high. CMDLY falls low after ALE is driven low. To satisfy 82288 timing requirements,
the sum of PROM access time plus gate delay must not exceed 107 ns.

For devices that require more than one command delay, a counter can be used to generate the appro-
priate number of delays (Figure 3-46). Set-up time for CMDLY is 20 ns before the falling edge of
CLK. Note that delaying commands does not lengthen the bus cycle, nor does CMDLY affect the
DEN signal controlling the data transceivers. For example, if READY is sampled active low before
CMDLY is sampled high, the bus cycle will be terminated, with no command being issued (see
Figure 3-47).

When the Bus Controller is configured in Multibus mode, commands are automatically delayed for the
proper duration (CMDLY should be strapped low).

CEN/AEN (Command Enable/Address Enable)

The 82288 CEN/AEN input is a dual;function, asynchronous input that disables commands and control
signals. The function of the input depends on the mode of the Bus Controller. In local mode (MB=0),
the input functions as CEN; in Multibus mode (MB=1), the input functions as AEN.

82288
BUS
74508 CONTROLLER
-ADDRESS
DECODE . cMmDLY
PROM
ALE >

210760-49

Figure 3-45. Generating CMDLY For O or 1 CLK Delays

3-49 210760-001

THE iAPX 286 LOCAL BUS

IOECODE \ __L__ Uﬁ/oowN/ . .
PROM = .) MIN X"@—.
=
e e | o | 5 | 4
Figure 3-46. Generating O to 7 Command Delays S
m | Ts | Te | T I .
ALE ____/_-\ g
CMDLY %///////////////// / / // :2)) _ ‘1 ! W
READY WM/////////////////// // _A_M

Figure 3-47. Bus Cycle Terminated with No Command Issued

3-50

210760-001

Intel THE iAPX 286 LOCAL BUS

CEN provides the Bus Controller with an additional command enable signal that can be used for
address decoding or delaying commands and control signals asynchronously to the system clock. In
contrast to CENL, CEN is not latched internally and, when used as part of an address decoding scheme,
requires an external latch.

CEN contrasts with CMDLY in its ability to delay both command signals and DEN asynchronously
to the system clock. Whereas the minimum CMDLY controlled delay is 62.5 ns (one system clock), no
minimum is required for CEN.

As shown in Figure 3-48, when CEN is low, commands and DEN are inactive. When CEN goes high,
commands and control signals immediately go active (up to 25 ns max delay).

AEN is a signal typically generated by the 82289 Bus Arbiter to control commands and data during
accesses to the Multibus interface. For Multibus bus cycles, address decode logic enables the 82289
Bus Arbiter (SYSB/RESB) and 82288 Bus Controller (CENL) assigned to the Multibus interface.
After requesting and gaining control of the interface, the 82289 Bus Arbiter outputs the active-low
AEN signal to the Bus Controller to enable the Multibus commands and data transceivers.

AEN is asynchronous to the system CLK. When AEN goes high, the Bus Controller drives DEN
inactive and its command lines enter the tri-state OFF condition. Chapter Seven describes the use of
AEN in greater detail.

CEN

DEN

CMD

ey i

210760-52

Figure 3-48. CEN Characteristics (No Command Delay)

3-51 210760-001

Intel THE iAPX 286 LOCAL BUS

Another operating mode of the 82288 allows tri-stating the Bus Controller’s command outputs in non-
Multibus mode. To.do this, the CEN/AEN input is tied HIGH and the MB input is used to control
the command outputs. MB must be stable 20 ns before the falling edge of CLK and remain so for 5 ns
after CLK. Changing MB to HIGH will tri-state the command outputs on the falling edge of CLK.
Changing MB to LOW will enable the control outputs first, then the command outputs will go active
two CLK cycles later if a command is active.

LOCAL BUS DESIGN CONSIDERATIONS

Address Bus Interface

iAPX 286 systems operate with a 24-bit address bus, using the pipelined address timing described
previously. Since the majority of system memories and peripherals require stable address and chip-
select inputs for the duration of the bus cycle the addrcss bus and/or decoded chlp-selects should be
latched. . o .

The 82288 Bus Controller provides an ALE signal to capture the address in 8282 (non-inverting) or
8283 (inverting) latches (see Figure 3-49). These latches have outputs driven by tri-state buffers that
supply 32 mA drive capability and can switch a 300 pF capacitive load in 22 ns (inverting) or 30 ns
(non-inverting). The latches propagate the input signals through to the outputs while ALE is high and
latch the outputs on the falling edge of ALE (see Figure 3-50). The outputs are enabled by the active-
low OE input.

Chapter Four discusses other address strobe techniques that do not use the ALE signal from the 82288
Bus Controller. These special address strobes can be used to customize the 80286 bus cycle timing to
accommodate particular memory or peripheral devices.

|)
A23-A0 > o1 00 [A23-a16 >
8282/83
80286 s
cPU >{s18 oF Jo
>[p1 Do A15-A8‘> LATCHED
8282/83
—»15TB OF [O—) .
82288
CON'?F?SL ER o poj A7-A0
- 8282/83 J
ALE »]STB OE JO—

210760-53

Figure 3-49. Latching the 80286 Address

3-52 210760-001

Intel THE iAPX 286 LOCAL BUS

/N .

I

|

OUTPUTS r
FROM ADDRESS i
‘

I

I

I

|

!

" H 3 T

A23-A0 X CPU ADDRESS { x CPU ADDRESS 1
| L

. i

|

|

LATCHES

|
|
[
LATCHED ADDRESS X |
I
T
1
]
I

210760-54

Figure 3-50. ALE Timing

For optimum system performance and compatibility with multi-processor Multibus systems, the address
should be latched at the interface to each bus. As shown in Figure 3-51, systems that use both buffered
local and public system buses can have separate address buses with separate latches and Controllers
for each bus. The 100 pf maximum capacitance drive specification of the 80286 allows at least five
sets of address latches to be connected to the address outputs of the 80286.

Address Decoding

Address decoding in an iAPX 286 system can be performed between the time that the address is
generated at the CPU pins and the rising edge of ALE. At least 68 ns exist for an 8-Mhz system for
this address decode logic to operate and produce a select output from the latches with the same timing
as addresses. Such decode time comes free since it does not delay when a device can respond to an
address. Select signals decoded from CPU address pins must be latched to guarantee that they will
remain stable for the duration of the bus cycle.

Decoded select signals that drive the CENL input to the Bus Controller or the SYSB/RESB input to
the Bus Arbiter do not need to be latched (both the Bus Controller and Bus Arbiter latch these signals
internally).

NON-LATCHED CHIP SELECTS

Figure 3-52 shows an example circuit that decodes the address, M/TO=0, and COD/INTA =0 signals
to provide non-latched CENL and SYSB/RESB selects for the Bus Controller and Bus Arbiter and
additional non-latched selects to other devices in the system. The example assumes two system buses
with all interrupts on bus #1. The M/IO and COD/INTA signals are used to enable bus #1 during
interrupt-acknowledge cycles (the address bus floats during interrupt-acknowledge cycles).

3-53 210760-001

THE iAPX 286 LOCAL BUS

8282/83 ADDRESS
aggge : A23-A0 > LATCH D BUS 1
3)
STB OE
CENL1 82288 ALE —i-
> BUS =
CNTLR >
ADDRESS 8282/83
DECODE LATCH
(3)
STB OE :
CENL2 82288 ALE 2
BUS =
CNTLR >

COMMAND
BUS #1

ADDRESS
BUS #2

COMMAND
BUS #2

210760-55

Figure 3-51. Dual Address Bu_s System

80286

cPu 1024%8

PROM

M/1O »] Ao
COD/INTA »| Ag
A23 »| A7

. .
. .
. .

At Ag

CENL 1
(SYSB/RESB 1)

Da

D3

CENL 2
(SYSB/RESB 2)

8205 = -
DESODER > CHIP SELECTS

PROM DECODING

COD/INTA

M/I0

ADDRESS

PROM OUTPUT

INTA CYCLE o

1/0 OPERATION 1
MEM OPERATION X

o
o
1

XXXX

}

SELECT BUS #1 ~

SELECT BUS #1 OR #2
BASED UPON
ADDRESS

210760-56

Figure 3-52. Non-Latched Chip Selects -

3-54

210760-001

Intel THE iAPX 286 LOCAL BUS

Set-up time for the Bus Controller CENL input is 20 ns before the start of T, (assuming that commands
are not delayed). This means that the time from A23-A0, M/IO, and COD/INTA active to CENL is
107.5 ns max. To meet the set-up time for the Bus Arbiter SYS/RESB input, the time from A23-A0,
M/10, and COD/INTA active to SYSB/RESB is 127.5 ns maximum. Since the same PROM output
must meet both these requirements, the decoder PROM must have an access time of 107.5 ns or less.

To accommodate the timing requirements for individual devices, the 82288 Bus Controller has a
CMDLY input to delay the leading edge of commands from the Bus Controller by one or more CLK
cycles. Typical devices require zero or one command delays. This CMDLY (Command Delay) input
to the Bus Controller is described in a previous section.

The CMDLY signal is typically generated by address-decode logic, and is not latched either externally
or by the 82288. The same address-decoding techniques used for other non-latched selects can be used
to generate zero or more command delays for individual devices or ranges of addresses. Figure 3-45
shown previously illustrates a method for generating zero- or one-CLK command delays based on a
non-latched output from an address-decode PROM gated with ALE.

LATCHED CHIP SELECTS

Most memory and peripheral devices require a stable device-select signal that can be provided only by
latched chip-selects. Latched chip-selects can easily be generated by adding latches to the outputs of
decode logic shown in Figure 3-52. 8282/8283 or TTL dev1ces can latch the selects in response to the
ALE signal from the Bus Controller.

Figure 3-53 shows an example of a circuit that latches chip-selects. The timing for latched chip-selects
differs from that of non-latched selects. Since ALE goes high only 68 ns after the 80286 address is
valid, the address-decode PROM must have an access time of less than 68 ns to prevent the chxp-sclcct
outputs from changing after being passed through the latches.

Da CENL 1
D5 CENL 2 _ ———
80286 -
CPU 1024 X8
PROM 8282 p———»
OR
8283 [>
M/T0 »{Aq LATCH >
COD/INTA »|Ag D, o 205 ,
A - 8
o Az Dy DECODER |— ——
.| -
. . Do . .
At »1 Ao — sTB —

ALE

210760-57

Figure 3-53. Latched Chip Selects

3-55 210760-001

Intel THE IAPX 286 LOCAL BUS

Depending on the required set-up times from chip-select to comimand-active, the maximum PROM
access time can be increased by up to 62.5 ns. The 8282/8283 latch has a 0 ns set-up time from Data-
in to Strobe (ALE) going low, so a PROM with a maximum-access time of up to 130 ns may actually
be used. To provide sufficient set-up times from chip-select to command-active, however, commands
from the Bus Controller may have to be delayed one CLK .cycle when using this technique By delaying
commands one CLK cycle, the same circuit can be used with a gam of up to 62.5 ns in additional set-
up time from chlp-select to command active.

Dependmg on speed cost, and available board space, the designer may substltute programmed array
logic or discrete TTL logic for the PROM to decode latched and non-latched select signals from 80286
addresses.

Data Bus Interface

Since the 80286 provides separate address and data pins, demultiplexing of the data bus is unneces-
sary. The design considerations for connecting devices to the iAPX 286 local bus are whether or not to
buffer the data bus and whether a single or double level of buffering is required for the intended
application,

In general, buffering of the data bus is required for memory devices with OE 4 to data-bus-float times
of 42 ns or more (to avoid contention with the 80286 during back-to-back read-write cycles). Most
memory and I/O devices will therefore require buffering of the data bus. Unbuffered devices must not
present a load exceeding the CPU’s maximum drive capability of 3.0 mA with a capacitive loading of
100 pF. .

A major concern in both buffered and non-buffered systems is the contentlon on the data bus that
occurs when one device begins driving the bus before the previously-selected device has disabled its
output drivers. Devices that have separate chip-select and output-enable or read inputs provide one
solution to this problem. The output-enable signal can be driven by the Read command signal (see
Figure 3-54) to assure that the output drivers are not enabled during write cycles and the read command
can be delayed one CLK cycle to prevent any overlap between output drivers of two peripheral devices.
Delaying commands may already be necessary for some devices to provide the necessary chip-select to
command-active set-up time.

A23-A0, - P
PN] ——

DATA e - - . - S

N
CIS JVL— 1 y
DATA cs
—

RD =] RD/OE

210760-58

-- Figure 3-54. -Devices With Output Enables on a
Non-Buffered Data Bus

3-56 210760-001

Intel THE iAPX 286 LOCAL BUS

Devices without output-enable or Read inputs (chip-select alone) can be dealt with in a similar manner
(Figure 3-55). The chip-select in this circuit is gated with Read and Write. The tradeoffs with this
method include (1) chip select time is reduced to the read access time for reads and (2) no time is
allowed for chip-select to write-command set-up and (3) no hold time from CS high or WE high for
writes. Designers should check the device specifications to verify whether or not these tradeoffs create
a problem for a specific case. In general, devices with separate output-enables are preferred.

To satisfy the capacitive loading and drive requirements of larger systems, the data bus must be buffered.
The 8286 non-inverting and 8287 inverting octal transceivers satisfy the buffer requirements of most
larger systems. 8286/8287 transceivers have three-state output buffers that drive 32 mA on the bus
interface and 10 mA on the CPU interface and can switch capacitive loads of 300 pF on the bus
interface (Side B) and 100 pF on the CPU interface (Side A) in 22 ns (8287) or 30 ns (8286). As
shown in Figure 3-56, the OF and T inputs to the transceivers are driven by DEN and DT/R from the
82288 Bus Controller. DEN enables the devices, while DT/R controls the direction of data through
the devices. The DISABLE term is used if any other device may drive local data bus (i.e., 80287)
instead of data transceivers. Chapter Six describes using the 80287 in an iAPX 286/20 system, and
describes how to control the local data transceivers.

For applications that require separate system buses, two or more sets of transceivers can be connected
to the 80286 data pins. Figure 3-57 shows a configuration having two separate buses. Each bus has its
own 82288 Bus Controller to control its own set of data transceivers. Since the address-decode logic
selects one bus at a time, only one of the two DEN signals will ever be active at any time during a read
cycle. ’

!

e

|

DATA
BUS

e L)| oxeone

210760-59

Figure 3-55. Devices Without Output Enables on
the Local Data Bus

3-57 210760-001

THE iAPX 286 LOCAL BUS ‘

I

D15-DO <

[
8286/87
88,2,36 »|T XCVR BUFFERED
DATA BUS
-0 OE
DT/ﬁ >1T -8286/87

© XCVR

DISABLE
210760-60
Figure 3-56. Buffering the Data Bus
A : 4‘ - -
80286 8286/87 |- .
cPU XCVR
82288 @
BUS
CNTLR o
Cenc1 | | . DEN —-Do——r
=D
. (BUS 1. . cent .
L, | ENABLE) DT/R
ADDRESS > a B <: DATA BUS
v #2
DECODE . 8286/87
. * XCVR
82288 : @
B T -
i CNTLR OF
CENL:NABLE CENL DEN —-Do-—j
(BUS 2) 0T/
- 210760-61

Figure 3-57. Dual Data Bus System

3-58 210760-001

Intel THE iAPX 286 LOCAL BUS

Another alternative when implementing a data bus is to add a second level of buffering, reducing the
load seen by peripheral devices connected to the system bus (Figure 3-58). Double-buffering is typically
used for multi-board systems and isolation of memory arrays. The concerns with this configuration are
the additional delay for access, and more importantly, control of the second- level of transceivers in
relationship to the system bus and the device being interfaced to the system bus. Several techniques
can be used to control these transceivers.

The first technique (shown in Figure 3-59) simply distributed DEN and DT/R throughout the system,
DT/R is inverted to provide proper direction control for the second level transceivers, since sides A
and B were reversed. The second example (shown in Figure 3-60) provides control for devices with
output enables. The buffers are selected whenever the device on the local bus is selected. RD directs
the data to the local bus device during read cycles.

Bus contention on the local bus is possible during a read as RD simultaneously enables the device
output and changes the transceiver direction. Contention may also occur when RD terminates. If OE
was active before T changes, then the output is the same as the input, with no contention. To eliminate
such contention, it is necessary to sequence. T and OE.

For devices without output enables,-the same technique can be applied if the chip select to the device
is conditioned by read or write signals (see Figure 3-61). Controlling the chip select with read/write
prevents the device from driving against the transceiver prior to the command being received. This
technique limits access time to read/write time and chip select to write set-up and hold times.

BHE
Y B N L
38:36 A23-A0 > 8283 >] s287 DECODE
¢ ADDRESS
BUS
T o _ ‘| aporess
szer [soor K)forra cs
DATA
| OFE T BUS
82288
BUS
CNTLR DEN
DT/R -
N— ‘ _J W_/ N ‘ J
Y , ' Y
CPU LOCAL SYSTEM MEMORY 1/0
BUS BUS LOCAL BUS
210760-62

Figure 3-58. Double Buffered System

'3-59 210760-001

THE iAPX 286 LOCAL BUS

DEN

DT/R

YV

B A MEMORY /0
DEVICES
SYSTEM LOCAL

DATA BUS 8286/87 DATA BUS

210760-63

Figure 3-59. Controlling System Transceivers
with DEN and DT/R

228

SYSTEM
DATA
BUS

MEMORY/I/O
DEVICE

210760-126

Figure 3-60. Buffering Devices with OE/RD

cs

3 ap—
£ b

SYSTEM DATA T OE LOCAL DATA)
< As aK),
BUS .

BUS

8286/7

MEMORY/1/0
DEVICE

210760-64

Figure 3-61. Buffering Devices without OE/RD and with
Common or Separate Input/Output

3-60

210760-001

Intel THE iAPX 286 LOCAL BUS

One last technique is given for devices with separate inputs and outputs (see Figure 3-62). Separate
receivers and drivers are provided, rather than a single transceiver. The recciver is always enabled
while the bus driver is controlled by RD and chip-select. The only possibility for bus contention in this
system occurs as multiple devices on each line of the local read bus are enabled and disabled during
chip selection changes.

Other Bus Masters on the iAPX 286 Local Bus

The 80286 provides on-chip arbitration logic that supports a protocol for transferring control of the
local bus to other bus masters. This protocol is implemented by a pair of handshake signals called hold
(HOLD) and hold acknowledge (HLDA). The sequence of signals shown in Figures 3-63 and 3-64
illustrate this protocol. To gain control of the local bus, the requesting bus master asserts an active
high signal on the 80286 HOLD input (Figure 3-63). This HOLD input need not be synchronous to
the 80286 CLK.

When HOLD is asserted, the 80286 completes the current bus sequence and then tri-states all bus
outputs (except HLDA) to effectively remove itself from the local bus. The 80286 then drives HLDA
high to signal the requesting bus master that it now has control of the bus. The requesting bus master
must maintain a high on the HOLD line until it no longer requires the local bus.

The hold request to the CPU affects the 80286 Bus Unit (BU) directly, and only indirectly affects the
other units. The Execution Unit continues to execute from the instruction queue until both the instruc-
tion queue and the pre-fetch queue are empty, or until an instruction is encountered that requires a

WR ‘L
74504 TE T8
OR WE CS
745240

SYSTEM LOCAL WRITE BUS

DATA — — 1 1 (o}
BUS ' '

MEMORY/IIO

o& LOCAL READ BUS DEVICE

745240

210760-127

Figure 3-62. Buffering Devices without OE/RD and with
Separate Input/Output

3-61 210760-001

lntel THE iAPX 286 LOCAL BUS

WRITE OPERATION HOLD STATE ——————

| Tc | T T | Th | TH I Th
o1 1 o2 | o1 1 g2 | o1 | 62 | 61 | 62 | 61 | 02 | ¢1 |

CLK

HOLD —/
HLDA /

s oo "
/16, CoD /T Y g

D15:00 Mg

READY W 7772270000000 iz,

MWTC /

_ DEN

\

210760-65

Figure 3-63. Entering the Hold State

bus cycle. When hold request is dropped, the bus unit will not drive the address, data, or status/control
lines until a bus cycle is required. Since the CPU may still be executing pre-fetched instructions when
HOLD drops, a period of time may pass when the CPU is not driving the bus. Internal pull-up resistors
on the 82284 ST and SO inputs make this time look like an idle cycle and prevent spurious commands
from being issued. Figure 3-64 shows the sequence of signals for exiting the hold state and immediately
starting an 80286 bus cycle.

To guarantee valid system operation, the designer must ensure that the requesting device does not
assert control of the bus prior to the 80286 relinquishing control (no bus cycles should be performed
by the device until HLDA is received). The device must also relinquish control of the bus (tri-state all
outputs to the bus) before the 80286 resumes driving the bus.

As shown in Figure 3-65, the HOLD request into the CPU must be stable 20 ns prior to the negative
going edge of CLK at the start of a bus state (start of phase 1), and must remain stable for 20 ns after
CLK goes low to guarantee recognition on that clock edge. This same set-up time is required when
HOLD goes low to exit the hold state.

Since other bus masters such as DMA controllers are typically used in time-critical applications, the

amount of time that a bus master must wait for access to the local bus is often a critical design consid-
eration.

3-62 210760-001

Intel THE iAPX 286 LOCAL BUS

! HOLD STATE } - WRITE OPERATION——==~
TH Th ’ Th | Ts Te |

‘¢1|¢2 | | | |

i
HOLD _\
HLDA \
|
[}

BHE, LOCK A23:20, ST

]
D15-DO -;‘ (VALID

|
]
]

ALE : /—__—_
1

DEN /
MWTC -
| \——-—

210760-66

Figure 3-64. Exiting the Hold State

Figures 3-63 and 3-64 show the minimum possible latency for the 80286 CPU (2% processor clocks
from HOLD active to HLDA active and 1Y processor clocks from HOLD inactive to HLDA in active).

The maximum possible HOLD-active to HLDA-active time (HOLD latency) depends on the software
being executed. The actual HOLD latency at any time depends on the current bus activity, the state
of the LOCK signal (internal to the CPU) activated by the LOCK prefix, and interrupts. The 80286
will not honor a HOLD request until the current bus operation is complete. Table 3-5 shows the types
of bus operations that can affect HOLD latency, and indicates the types of delays that these operations
may introduce. When considering maximum HOLD latencies, designers must select which of these bus
operations are possible, and then select the maximum latency from among them.

As indicated in Table 3-5, wait states affect HOLD latency. The 80286 CPU will not honor a HOLD
request until the end of the current bus operation, no matter how many wait states are required. Systems
with DMA where data transfer is critical must insure that READY returns sufficiently soon.

3-63 210760-001

Intel THE iAPX 286 LOCAL BUS

210760-67
Figure 3-65. HOLD Input Signal Timing
Table 3-5. Bus Operations Affecting HOLD Latency
Bus 'Operation Latency, in System CLK cycles
Processor Extension Data transfer 10 + 2W() CLKs
to Odd-Aligned Word
Transfer to Odd-Aligned Word . 7 + 2W CLKs
INTA Interrupt 10 + 2W CLKs
XCHG Word on Even Boundary 11 + 2W CLKs
XCHG Word on Odd Boundary 17 + 4W CLKs
LOCKed MOVS, INS, OUTS 8 + Ni2)(4 + 2W) CLKs

NOTES:
(1) W = number of Wait states per cycle
@ N = number of transfers

DMA CONFIGURATION

A typical use of the HOLD/HLDA signals in an iAPX 286 system is bus control exchange with DMA
controllers or I/O devices that perform DMA. Figure 3-66 shows a block-level inter-connect diagram
for a “generic” DMA controller. The DMA controller resides on the local bus. This is probably the
simplest DMA configuration possible with the 80286, but it requires that the DMA controller have an
interface that functions like the 80286 local bus signals.

DMA controllers that do not have an 80286-like interface may still be configured in an iAPX 286
system-at the system bus level. Figure 3-67 shows a general inter-connect diagram for this type of
application. The CPU is totally isolated from the system bus when in the Ty, state, and the DMA
controller must be compatible with the iAPX 286 system bus. '

3-64 210760-001

I“te' THE iAPX 286 LOCAL BUS

_———#) ———') ADDRESS
A23-A0 ” 8282 " BUS
(3X)

RESET 80286

82284 READY,

» oK
HOLD HLDA .
1 8286 -—-') DATA

D15-DO

AV 4

(2X) Y, BUS
\i
HOLD HLDA |—
> DMA
L CONTROLLER 82288 ;) COMMAND
I 5150 m/100 AND CONTROL
S1.50 q v’ SIGNALS

J

DMA REQUESTS
AND ACKNOWLEDGES

210760-68

Figure 3-66. DMA Controller on the Local Bus

Initializing the iIAPX 286 Processor

The 80286 RESET input provides an orderly way to start or restart a system. When the processor
detects the positive-going edge of a pulse on RESET, it terminates all activities until the signal goes
low, at which time it initializes the CPU to a known internal state; the CPU then begins fetching
instructions from absolute address FFFFFOH. ’

80286 INTERNAL STATES

When an active RESET signal goes low, the 80286 registers are initialized as shown in Table 3-6. The
valid fields of the segment and description registers are set on, indicating valid segments. All privilege-
level fields are set to zero.

The RESET signal initializes the CPU in Real-Address mode, with the CS base register containing
FF0000H and IP containing FFFOH. The first instruction fetch cycle following reset will be from the
physical address formed by these two registers, i.e., from address FFFFFOH. This location will normally
contain a JMP instruction to the actual beginning of the system bootstrap program.

For iAPX 286 systems to operate in Protected Vlrtual Address mode, the 80826 (executing in Real-
Address mode) must enter Protected mode as part of the software initialization routine.

3-65 210760-001

Intel THE iAPX 286 LOCAL BUS

8282 ‘) ADDRESS
S @X) // BUS
. OE -
READY R :
80286 | 8286 N, DATA
sz2ea, PSR “epyt KO (2x)) BUS
‘JcLK : N : 4
. : oF v‘
HOLD HLDA | :
A :
DEN
_\ COMMAND
. 82288 }) > AND CONTROL
. Y SIGNALS
AEN
i ||
HLDA _
HOLD ~
DMA ~
—READY o lCONTROLLER
DMA REQUESTS
AND ACKNOWLEDGES

210760-69

Figure 3-67. DMA Controller on a Private System Bus

Table 3-6. CPU State Following RESET

CPU Component L Content
Flags 0002H
MSW FFFOH
IP FFFOH
CS Selector FOOOH
DS Selector . o 0000H
SS Selector o ‘ - © - "0000H
ES Selector R S - " 0000H
CS Base FFOO00H
DS Base 000000H
SS Base o . 000000H
"ESBase’ - - : E ' . - 000000H
+ CS Limit - : o i o FFFFH
-.DS Limit ; B ' FFFFH -
SS Limit . . : e FFFFH
ES Limit FFFFH
IDT Base ‘ . 000000H
IDT Limit N i e T CFFFFRH

3-66 210760-001

Intel THE iAPX 286 LOCAL BUS .

To accommodate an 80286 operating in both Real-Address mode and Protected mode, the EPROMs

containing the system bootstrap program must answer to both a 20-bit and a 24-bit physical address.

In Real-Address mode, the system bootstrap EPROMs must respond to addresses in the available .
1-Megabyte address space (ignoring the upper four address bits). In Protected mode, these same

EPROMs typically respond to addresses only in the top megabyte of the avax]able 16-Megabyte address

space (using the full 24-bit address).

Figure 3-68 shows a circuit that permits this type of operation by generating one of the terms in the

address-decode logic selecting the bootstrap EPROMs. This term inhibits the decoding of A23-A20

after RESET, when the system runs in Real-Address mode. After entering Protected mode, the boots-

trap program must strobe the PROTMODE signal to allow full use of the available 16-Megabyte
address space

80286 EXTERNAL SIGNALS

At power-up, the 80286 CPU requires 5 milliseconds to allow the capacitor connected to the CAP pin
to charge up. RESET should be asserted during this time to prevent spurious outputs. After power-up, .
the CPU requires a high on the RESET input with a minimum pulse width of 16 processor clocks. The
processor is internally active for a minimum of 50 CLK cycles after RESET goes low before perform-:
ing the first memory cycle. Maskable and non-maskable interrupts (the INT and NMI inputs) are not
recogmzed during the internal reset. .

When RESET is driven hlgh the 80286 signals will enter the states shown in Table 3-7. The tlmmg :
for the signals during reset is shown in Figure 3-69. :

The 80286 data bus lines enter the tri-state. OFF condition. when RESET is active. If system RESET
occurs during a bus cycle, RESET forces the 82284 Clock Generator to drive READY low to termi-:
nate the bus cycle and reinitialize the 82288 Bus Controller. ;

The 82284 Clock Generator contains internal pull-up resistors on its ST and SO status inputs, causing .
the Bus Controller to interpret the 80286 RESET condition as an idle bus state. The outputs from the |
Bus Controller during an idle state are shown in Table 3-8. :

1/0
_ PoRT PROTMOBE INHIBIT UPFER FOLR o
ADDRESSABLE SSBITS " TO ADDRESS-
LATCH) / < DECODE LOGIC

210760-70

Flgure 3-68. Decoding Addresses in Both Real
: - and Protected Modes .

3-67 210760-001

THE iAPX 286 LOCAL BUS

Table 3-7. 80286 Bus During RESET

Signals Condition
A23-A0 Logic 1
D15-DO Tri-state OFF
S1,S0 Logic 1
PEACK Logic 1
BHE Logic 1
LOCK Logic 1
M/I0 Logic 0
COD/INTA Logic 0
HLDA Logic 0

Table 3-8. 82288 Command States During RESET

Signal State
ALE = Logic 0
DEN Logic 0
OT/R Logic 1
MCE Logic 0
Commands Logic 1

OATA DR IRIIRIIY)

—

X
DDDMMIDNNNNNN gt

HLDA UNKNOWN

60ns
MAX l<—

Tx T
o1 $2 41 ¢2 .
Ons 20ns
MIN— MIN
;R
40ns
7.50 MAX [9+— _
PEACK UNKNOWN >
60ns
—» mAX [— -
A23-Ag = 1
BHE UNKNOWN 4
60ns
M/i MAX [
COD/INTA UNKNOWN X ‘
60ns 7
—» MAX [;
— b
LOCK UNKNOWN
60ns
> A

1

210760-71

Figure 3-69. Signal States During RESET

3-68

210760-001

Intel THE iAPX 286 LOCAL BUS

Note that the 82288 Bus Controller does not tri-state its command outputs during idle bus states. In a
single CPU system, if the system designer wishes to effectively remove the 80286 CPU from the bus
during RESET, the RESET signal can be connected to the 82288’s MB input and to the output enable
of the address latches (Figure 3-70). This forces the command and address bus interface into the tri-
state OFF condition while the 82288 drives DEN inactive, disabling the data bus transceivers. If the
82288 command outputs are tri-stated during RESET, the command lines should be pulled to V
through 2.2K ohm resistors to keep these signals in the HIGH state.

iAPX 286 Bus Timing

Figure 3-71 shows the timing relationships of the major iAPX 286 local bus cycles. Included in this
figure are the timing relationships for: ° '

* Address and ALE timing

e Command timing

¢ READY timing

* Read cycle timing

* Write cycle timing

For most of these signals, timing is controlled by the system CLK signal. For. this reason, the timing
relationships between signals can be deduced simply by determining the clock cycles between the
controlling clock edges, and adding or subtracting the appropriate minimum or maximum timing delays.

Additional delays through any transceivers or latches must also be considered when determining signal
timing.

Vee CEN/AEN
15
RESET »|uB
82284 82288
cLOCK . S i
GENERATOR CONTROLLER
Jvzs 9]
RESET OF 5286
DATA
TRANSCEIVERS
80286
cPU
9
8282
ADDRESS
LATCHES

210760-72

Figure 3-70. Disabling the 80286 Bus Interface on RESET

3-69 210760-001

el

THE iAPX 286 LOCAL BUS

READ CYCLE WRITE CYCLE l .
a_us CYCLE TYPE | ——» @1, . @ *ri_‘g) Te M‘ Ts .) Te . n‘m OM
R PAYAVAYS Ve Wa e W W WA
O —® — @ |
S1 ¢ SO ’ 1L_ _\ /
b3
M. co’;’f;:: / VALID ADDRESS VALID ADDRES! VALID IF Ts
f —~ ® | —~ @ 4
~@EF @ h— —~ @
Di5=D = = == == = = —————— R - —\”\ VALID WRITE DATA -
Aeaoy. {TTHTTIAL NIRRT \XX_\§I A YT,
— e @~
sAoY-+snoveK \TTITIIITTLLTILL LU !\\X_X\\ A \\\‘J\L ‘}‘/// LTI
. Hop= e
§ | anov+aroves TN | 777777 T TR @\L\\\\ I IIRRNANINRN AR Y
: @+ ~@—
_/—__/—-Jf L I /2 N /an N
- ok 1~: i
ALE /— M\) 'FT;\\
@@— T3 2
cuoLY \ ' ;"////////////// I ////f AN Jf//] T
‘ AT
] Ejl:_
@7}:— e —

g

210760-73

Figure 3-7

1.

iAPX 286 Local Bus Cycle Timing

One aspect of* system timing not compensated for by this method is the worst-case relationship between
minimum and maximum parameter values (i.e., tracking relationships). For example, consider a signal
that has specified minimum and maximum turn-on and turn-off delays. For MOS devices such as the
iAPX 286 components, it is typically not possible for a device to simultaneously demonstrate a maximum
turn-on and minimum turn-off delay even though worst-case analysis might imply the possibility. Because
of this, worst-case analyses that mix both minimum and maximum delay parameters will typically
exceed the worst case obtainable. Therefore, these analyses need not undergo further subjective degra-
dation to obtain reliable worst-case values.

3-70

210760-001

Intel THE iAPX 286 LOCAL BUS

The following sections provide guidelines for analyzing the critical 80286 timing relationships for each
of the signal groups described above. In these sections, an 8-MHz 80286 is assumed (one system CLK
cycle = 62.5 ns). 80286 processors running at other clock frequencies will have correspondingly shorter
or longer values for each of their timing relationships.

For a more detailed discussion of local bus timing related specifically to interfacing memory and
peripheral devices to the iAPX 286, see Chapters Four and Five.

ADDRESS AND ALE TIMING

The address/ALE timing relationship is important to determine the ability to capture an address and
local chip-selects during a bus cycle. The following discussion considers the standard bus timing using
the ALE signal from the 82288 Bus Controller. Other design techniques having different timing
relationships are described in Chapter Four.

The maximum address valid delay ((13)p,,x = 60 ns) from the 80286 guarantees an address set-up
time of at least 68 ns before ALE goes active, even assuming a minimum ALE active delay
((25)min = 3 ns). If we assume a maximum strobe to output delay for the latches
(STB-to-Output delay (max) = 45 ns for 8282 and 40 ns for 8283), and a maximum ALE active delay
((25)max = 12 ns), then the latest a valid address will be available at the outputs to the latches would
be 5.5 ns before the start of T for the 8282 latch, and 10.5 ns for the 8283 latch.

The minimum address hold time from ALE inactive (42.5 ns) guarantees a stable address until well
after ALE goes low. The ALE and latched address hold times guarantee a valid address to the system
for a minimum of 50 ns after command inactive.

Note that the maximum valid delay and minimum hold time for BHE guarantee that it will be latched
by ALE and will be available to the system at the same txme and for the same duration as the latched
address. .

ALE may also be used to capture latched chip-selects for local memory or I/0. To provide valid selects
before ALE falls low, address decoding must be performed in the window between address valid and
the trailing edge of ALE:

3 CLK cycles at 8 MHz 187.2 ns
— Address valid delay (max) — 60.0 ns
— ALE inactive delay (min) — 0.0ns
— Input-to-STB setup time (min) — 0.0ns
Minimum address decode time 127.5 ns

Decoding should be performed sooner if a device select is required before a command signal goes
active. Latched chip-selects are described in a previous section.

COMMAND TIMING

Command timing in Figure 3-71 is shown for an MRDC command with no delays, and for an MWTC
command with 1 delay. Commands are typically delayed using the 82288 CMDLY input to provide a
longer time from address and chip-select valid to command active. The use of CMDLY was discussed
in a previous section. Note that delaying a command does not automatically lengthen the bus cycle.

3-71 210760-001

Intel THE iAPX 286 LOCAL BUS

Commands are enabled on the falling edge of CLK at the start of T.. Commands are disabled on the
falling edge of CLK after the end of T.. The minimum turn-on and turn-off time for commands are
identical (Command delay (min) = 3 ns), and maximum turn-on and turn-off times are also the same
(Command delay (max) = 20 ns). Thus, the minimum command pulse width is:

2 CLK cycles at § MHz - - 125 ns
— Command turn-on delay (max) — 20 ns
+ Command turn-off delay (min) + 3ns
Minimum Command Pulse Width = 108 ns

with no delay and 45.5 ns with 1 delay. These command pulse widths are increased by 125 ns (2 CLK
cycles) for each wait state inserted into a bus cycle.

READY TIMING

The detailed requirements of the 80286 READY signal and the Ready. inputs for the 82284 were
described in an earlier section. The 82284 Ready inputs are typically generated from the decoded
address for a selected device, or address decode and command signals. Ready timing is shown for 0
wait state execution to illustrate the relationship of the 82284 ARDY and SRDY input requlrements
with respect to address decode outputs and command signals.

Outputs from address decode logic can easily meet the ARDY or SRDY input requirements. ARDY
obviously cannot be qualified by a command signal, however, even when the command is not delayed.
A command with no delay will meet the set-up requirements of SRDY. Once the maximum command
active delay of 25 ns and the minimum SRDY set-up time of 20 ns are subtracted from phase 1 of the
T, clock cycle (62.5 ns), 17.5 ns remains for external logic to generate the SRDY signal. Commands
with O or 1 delays may be used to qualify either ready input if the system is running with one or more
wait states. Assuming the maximum command active delays, the external logic times for zero or one
wait state operation at 8 MHz are as follows:

' . - | External : External
t}ﬁzﬁ? S;{':lep %‘;l:: Logic Time Logic Time
0 Cmd Delay 1 Cmd Delay
ARDY 0 ns 16 ns 100 ns ‘ 37.5ns
SRDY 20 ns O ns 142.5 ns 80 ns

An additional 125 ns (2 CLK cycles) are added to external logic time for each additional wait state.

READ CYCLE TIMING

Read timing consists of conditioning the bus, activating the read command, and establishing the data
transceiver enable and direction controls. Figure 3-71 shows read timing for a CPU running with 0
wait states, During a read, the latched address is available to the system a minimum of 2.5 ns before
the start of T, or 7.5 ns before command active. The read command is driven active early in T, to
enable the addressed device. DT/R is also driven low to condition the data transceivers to receive data,‘
and DEN then enables the transceivers. ’

3-72 210760-001

Intel THE iAPX 286 LOCAL BUS

Data from the selected device must be valid at the CPU 10 ns before the end of T, and must hold
valid for 5 ns after T.. Any propagation delay through data transceivers must also be considered.
Maximum input to output delay through the 8286 transceiver is 30 ns; maximum delay through the
8287 is 22 ns. This results in the following minimum address valid to data valid time (using 8286 non-
inverting transceivers):

3 CLK cycles at 8 MHz ‘ 187.5 ns

— ALE active delay (max) — 150 ns
— 8282 STB-to-output delay (max) — 450 ns
— 8286 transceiver delay (max) — 30.0 ns
— Read data setup (min) — 10.01ns
Minimum Address access time = 87.5 ns

Minimum command active to read data valxd time is 90 ns. These timing relatlonshlps increase by 125
ns for each wait state added to the bus cycle, as follows:

.. . 0 Wait 1 Wait 2 Wait 3 Wait
Minimum Times States State States States
Address valid 87.5 ns 212.5 ns 337.5ns - 462.5 ns

to Buffered Data

Valid (using 8286) ‘

Address valid 117.5 ns 242.5 ns 367.5 ns 492.5 ns
to Data valid

(unbuffered)

CMD active to 90 ns 215 ns 340 ns 465 ns
Data Valid

Note that the Address-valid to buffered-data-valid times assume an 8286 device; for the inverting
8287, these minimum times can be increased by 8 ns each.

WRITE CYCLE TIMING

Write timing involves providing write data to the system, generating the write command, and control-
ling data bus transceivers. Figure 3-71 shows write timing for a CPU running with 0 wait states. The
transceiver direction control signal DT/R is conditioned to transmit at the end of each read cycle and
does not change during a write cycle (DT/R is shown going high after a read). Data is placed on the
data bus and DEN is driven active early in the bus cycle. Write data is guaranteed to be valid before
the start of T, (12.5 ns mm) and before the write command becomes active (17.5 ns min). The write
command is enabled early in T.. Following is minimum time from write data valld until the data is
latched into the system device (command inactive):

. 3 CLK cycles at 8 MHz 187.5 ns

— Write-data valid delay (max) — 50.0 ns
+ Command inactive delay (min) - &+ 30ns
Minimum write data access time = 140.5 ns

3-73 210760-001

Intel THE iAPX 286 LOCAL BUS

Write command pulse width is 108 ns minimum. Data is held valid for a minimum of 37.5 ns after the
write .command goes ‘inactive. All of these timing relatlonshlps increase 125 ns for each added wait
state, as follows: . . : ‘ L

Cowait | 1Wait 2 Wait QWaii'

Time States State States States
Data Valid to 142.5 ns 267.5 ns 392.5 ns 517.5 ns
CMD inactive o R ; -
Address valid 1325ns . 257.5nms . 3825ns° ..507.5ns
to CMD inactive S o
Command Pulse 108ns 233 ns 358ns “ 473 ns

Width

Of course, any propagation delays through data transceivers should be considered when finding the
actual -data set-up times for the system device -being written to. The maximum input to output delay
through the 8286 data transceiver is 30 ns; maximum delay through the inverting 8287 is 22 ns.

INTERRUPT-ACKNOWLEDGE TIMING

Timing for an interrupt-acknowledge cycle is identical to a read, with the INTA command being issued
instead of MRDC or TORC. The MCE signal is also issued during an interrupt-acknowledge cycle,
going high following the start of Phase 2 of Ts during the first INTA cycle, and falling low during
Phase 2 of the final T, of the cycle. The two back-to-back INTA cycles required to complete an inter-
rupt-acknowledge sequence have been described in an earlier section.

Physical Design Considerations

When designing a system using-the 80286 processor, the physical design considerations include the
connection and decoupling of power, ground, and the 80286 CAP pin, and physical provisions for
debugging with an oscilloscope, logic analyzer, or Intel Integrated In-Circuit Emulator (I2ICE).

The 80286 processor is packaged in either a JEDEC-approved 68-pin leadless chip carrier, or in a Pin
Grid Array package. Figure 3-72 shows the pin configurations for both the pad/pin view (the underside
of the component when mounted on a PC board) and the top view (the top of the component when
mounted on a PC board). The footprmt of the Pin Grid Array package is identical to that of the socket
for the leadless chip carrier, as shown in the flgure) .

t

OWER GROUND AND CAP CONNECTIONS

As shown in Fxgure 3 73 the 80286 proccssor has two power pins and three ground pm connections.
The two power pins must be connected to +5 volts; all three ground pins must be connected to 0 volts.
A 0.1 pF low-impedance decoupling capacitor should be connected between power and ground. This
capacitor should be located as close as possible to the CPU socket.

The power and ground connections from the power supply to the CPU should be as low impedanée and

inductance as practically possible. Large surge currents are possxble, for example, when all 24 address
outputs change at once. -

3-74 210760-001

THE iAPX 286 LOCAL BUS

COMPONENT PAD VIEW—AS VIEWED FROM
P.C. BOARD VIEW—AS VIEWED FROM THE
UNDERSIDE OF COMPONENT WHEN MOUNTED ON COMPONENT SIDE OF THE P.C. BOARD.
g [
>88a8§d8dad6Sadadada
:!E]UUDUUUUUUUUUUU Ut |
Ay 52] CAP cap fs2!
a7 [C] ERROA ERROA [7
A [[] susv BUSY [1
e [] ~ne ne [
vee [] nec NC T
RESET []] wTR INTR "j
P i} [T LI i) M Y
» = B [UR & -
]] vss vss 3 ;;
9] rerea PEREQ :; c
. 1 vee - ‘Vec b =
)] FEaov READY [0]
| [C] Howo Hoto |3]
[(] veoa Hoa [0]
)] cooiNTa COD/NTA ii &:
j C] M'O M/lo ™ [j
A] oex ok [Ga] A an -
'IDDHHHHHHHHHHHHHHH -/)JﬁfTHH,’IH.’L’IT‘JTH‘JHL”J‘.T
FF 258 1
H ;;" Im\./.oolz PIN NO. 1 MARK |“‘uu|mlvs§<<>§ H
N a . o
68- PIN LEADLESS CHIP CARRIER
. 1.165 (29.591) 122 (3.099)
1.135 (28.829) > _>‘ I*_F@(z 489)
PPPAOROOO O _——SWEDGE PIN
(ONONORONONORONONONONO]
(ONO] [ONO)
@0 [ONC; .020 (0.508) '
0X0) ®6) .0177(3"’432)1‘
@0e ®e s T :
(ONO] ®0e
[ONO] [ONO] '
©06 ONO) SWEDGE PIN
Pm‘?@@@@@@@@oﬁa *
PPEEREHHO ®
PIN 1 10 .100(2,540)_4 825“ 3971)
CORNER . AL : " SEATING PLANE
1.000 REF 170 (4.318)
I (25.400) | . .150(3.810) I
68-PIN CERAMIC PIN GRID ARRAY
o o o “
35 37 39 41 43 45 %7 %o 51
34 ®36 38 40 %42 %44 46 4& 50 %53 5z
®32%3 55 %54
o o !
30 31 57 56
o ‘oo
28 29 59 58
e o L) L]
26 27 61 60
®24%25 ®63 %62
o o K I - . e
22 23 65 64 T) . . Coo
o o o _ o NOTE: N.C. PADS MUST NOT BE CONNECTED.
20 21 67 66
®18%19 %6 %14 %12 %10 % % ®2 *2 %5 .
*17%5 %3 %1% %7 %5 %3 %
BOTTOM VIEW
68-PIN JEDEC SOCKET PIN CONFIGURATION 210760-74

Figure 3-72. 80286 Pin Configuration

3-75 210760-001

Iﬂte' THE iAPX 286 LOCAL BUS

l'— Vee
+5vVDC 30

Vee

o‘1m+ 83535
Vss
l L] P
2]
[— cAP

GND

0.47ut

210760-75

Figure 3-73. Required Power, Ground and CAP Connections

A 0.47uF £ 20% 12V capacitor must be connected between the 80286 CAP pin and ground. This
capacitor filters the output of the internal substrate bias generator. A maximum leakage current of 1
wA s allowed through the capacitor.

DEBUGGING CONSIDERATIONS

The 68-pin JEDEC socket does not allow for direct access to the pins of the CPU using an oscilloscope
or logic analyzer probe. Most of the CPU signals are accessible on the DIP leads of the latches, trans-
ceivers, and the Bus Controller. To allow convenient access to the signals directly at the CPU, however,
physical debugging aids should be provided in the PC board layout.

Solder pads located around the CPU package and labelled with the signal name provide the easiest
and most inexpensive solution to access by a scope probe. To allow probes to be temporarily attached
(clipped) to the signal, terminal posts should be soldered into holes at the solder pad locations
(Figure 3-74). These terminal posts allow easy attachment of oscilloscope and logic analyzer probes.

When using Intel’s I2ICE as a debugging tool, the designer must also make provisions for connecting
the 80286 probe cable to the CPU socket. Figure 3-75 shows the requirements to physically support
debugging with I2ICE. The 80286 probe exits the socket on the side corresponding to pins 18-34 of the
CPU package (the 80286 component is installed upside down in the socket). A Texttool 268-5400 or
similar socket is recommended for ICE access. The texttool lid must allow access to the socket by the
ICE cables. At least one inch of space must be provided on that side of the socket to allow the probe
cable to fan away from the board. DIP packages soldered to the printed circuit board probably will
not interfere with the cable on the 80286 probe. High profile devices or devices installed in socket may
interfere with the cable and should not be located near that side of the CPU package.

THE iLBX BUS—A HIGH-PERFORMANCE LOCAL BUS STANDARD

The iLBX bus is a high-performance bus interface standard that permits the modular expansion of
iAPX 286 systems by simply adding additional boards containing memory, I/O subsystems, and other
peripheral devices or controllers to the iAPX 286 local bus.

The iLBX Local Bus Expansion standard is described in the iLBX Bus Specification, Order Number
144456, Rev. B. ~

3-76 210760-001

THE iAPX 286 LOCAL BUS

210760-76
Figure 3-74. Terminal Posts Provide Signal Access
|
SIDE VIEW | ‘
— \ |
) J |
VNI
=1.0"
(2. 5CM)_’
TOP VIEW 51 35 ;
52 34 |
PROBE
CABLE %
68 18
N\ 1 17
210760-77

Figure 3-75. I12ICE™ Probe Cabling Requirements

3-77

210760-001

Memory Interfacing

CHAPTER 4
MEMORY INTERFACING

This chapter provides guidelines for designing memory subsystems for the iAPX 286.

One of the principal considerations in designing memory subsystems for the iAPX 286 is the effect of
memory performance on the performance of the overall iAPX 286 system. In this chapter, the perform-
ance implications of specific memory designs are examined in detail:

» In the first section of this chapter, the tradeoff between system performance and memory cost is
examined in detail. The important relationships to consider are the relationship of system perform-
ance to memory performance, memory performance to memory device speed, and, finally, memory
device speed to memory cost.

* The second section uses benchmark test results to identify the actual relationship between memory
performance (measured by the number of required wait states) and overall system performance.
The impact of wait states on overall system performance is not as severe as you might initially
expect.

¢ In the third section, several memory interface techniques are introduced to show that memory system
performance is determined as much by the memory system design as it is by the actual speed of the
memory devices used. Specifically, two interface techniques can be used to gain increased memory
performance while using relatively slow memories.

» The fourth section contains a detailed timing analysis of the three memory interface techniques
introduced in the previous section.

o The fifth section of this chapter contains specific details for interfacing common types of memory
devices to the iAPX 286. ROMs, static RAMs, and pseudo-static RAMs are described, as well as
the use of the 8207 Advanced Dynamic RAM Controller to interface to dynamic RAMs.

MEMORY SPEED VS. PERFORMANCE AND COST

In a high-performance microprocessing system, overall system performance is linked very closely with
the performance of its memory subsystems. Memory is used for program storage, and for the storage
of data and information used in processing. The vast majority of bus operations in a typical micropro-
cessing system are operations to or from memory. :

It makes little sense to couple a high-performance CPU with low-performance memory; a high-
performance CPU running in a system with a large number of wait states provides no better throughput
than a low-performance processor, and is certainly more expensive. To realize the performance poten-
tial of the 80286 CPU, it is imperative that the CPU be coupled to relatively fast memory.

At the same time, however, fast memory devices are more expensive than slower memory devices. In
a system such as the iAPX 286 supporting up to sixteen megabytes of addressable memory, it is clear
that providing a large physical memory space using the fastest available memory devices would result
in an exceedingly costly design.

This cost/performance tradeoff can be mediated to some extent by partitioning functions and using a
combination of both fast and slow memories. Locating the most frequently-used functions in fast memory
and the less-used functions in slower memory will reduce costs over a system that uses fast memory
throughout. For example, in a RAM-based system that uses read-only memory devices primarily during

4-1 210760-001

Intel MEMORY INTERFACING

initialization, the PROM/EPROM can be very slow:(3-4 wait states) with little affect on system
performance. RAM memory can also be partitioned into fast local memory and slower system memory.

It is clear, then, that designers must strike a balance between system performance and system costs,
and that the choice of memory subsystems is the balancing factor. In order to intelligently tradeoff
cost versus performance, however, it is useful to examine the principle relationships that make up this
balance.

Three relationships tie together system cost and system performance:
1. System performance as a function of memory performance
2. ',Memo’r'y perforr_nance asa function of membory subsystem design and memory device speed)

3. - Memory device speed as related to memory.subsystem cost -

System Performance and Memory Performance

System performance measures the speed at which the microprocessing system performs a given task
or set of instructions. Memory performance measures the speed at which the mlcroprocessor can.access
or store a single item of information into memory. To accommodate slower memories, wait states can
be inserted into the 80286 bus cycle. A less-common alternative is to.use a slower clock frequency for
the 80286, thereby lengthening the 80286 bus cycle. :

Each wait state that is inserted into a bus operation represents a 50% increase in bus cycle time over
zero-wait-state operation. Although at first glance you might expect memory performance and overall
system performance to track each other in a one-to-one relationship, this is not actually.the case.’

As explained in the following section, the increased bus cycle time'for each additional waif state results
in an average increase of only 25% in overall CPU execution time, rather than the 50% increase that
simple hand calculations might predict. Benchmark tests reveal that overall CPU execution time
increases by about 25% over zero-wait operation when running with 1" wait state, and an additional 25%
over zero-wait operation for each additional wait state. The following section of this chapter explains
the architectural and.operational characteristics of the 80286 which reduce the effect of wait states on
system performance : ' ' ‘

The 80286 clock frequency is dlrectly related to system performance execution time increases-in dlrect
proportion to the increase in clock period, or the reduction in clock frequency. A 6-MHz 80286 requires
33 percent more time to execute a program than an 8 MHz 80286 operating with the same number of
wait states. Since a slower clock frequency increases the 80286 bus cycle times, however, fewer wait
states may be required to-accommodate slow memory devrces A slight reduction in clock frequency
may actually increase system performance in some instances if the slower clock allows the same memories
to be used with fewer wait states.

Memory Speed and Memory Performance

The relationship between memory subsystem performance and the speed of individual memory devices
is determined by the design of the memory subsystem. A later section of this chapter describes several
design alternatives that permit relatively high-performance memory subsystems to-be designed using

relatively slower memory-devices. These design alternatives include the use of spec1a1 address strobe
logic and the use of ‘interleaved ‘memory banks: ‘ . .

4-2 210760-001

Intel MEMORY INTERFACING

Special address strobe logic can be.used in place of the 82288 ALE signal to generate a valid address
to the mémory subsystem earlier in the 80286 bus cycle. This technique results in an increased memory
access time, permitting the use of slower memories without requiring additional wait states. '

Interleaving memory access between two or more banks of memory devices can also increase the memory
access time for most bus cycles. Using interleaved memory, memory devices are grouped into banks so
that each sequential fetch comes from the next memory bank. In a memory system partitioned into
four memory banks, for example, a program that fetches four 16-bit words from consecutive addresses :
actually fetches one word from each bank. The early address generated by the CPU can be latched
and made available to the next memory bank while the address for the previous cycle is still valid for
the previously-selected memory bank. These memory interface techniques are described in more detail
later in this chapter. :

e

|APX 286 SYSTEM PERFORMANCE WITH WAIT STATES

The iAPX 286 system supports wait states in the 80286 bus cycle to allow the use of slower memory:
and peripheral devices. These wait states extend the time required to perform individual bus opera-
tions, however, and so drrectly mﬂuence iAPX 286 system’ performance '

Wait states extend the 80286 bus cycle by adding an additional T, state for each wait state desued
For an 8-MHz 80286, each wait state adds an additional 125 ns (an increase of 50%) to the minimum ;
bus cycle time of 250 ns. An 80286 CPU: running with one wait state executes a bus cycle in 375 ns,’
compared with the 250 ns required when operatmg with zero wait states.

-Calculating performance degradation from this figure alone, however, will lead to overly-pessimistic
-results. On average, benchmark tests show that each wait state adds an additional 25% of the zero-wait
execution time to the overall execution time of a task. Simpe hand calculations would predict an
increase of 50% over the zero-wait execution time for each wait state. '

Table 4-1 shows the results of benchmark tests using four Pascal benchmarks and five assembly-language
benchmark programs. These benchmarks were executed on an iAPX 286 system operating with from
zero to four wait states. The Pascal benchmarks averaged a 23% incréase in execution time for each
additional wait state, while the assembly-language benchmarks showed an-average 20% increase in
executron tlme for each addmonal walt state. :

Explaining the Benchmark Results

As shown in the benchmark results in Table 4-1, the effect of wait states on iAPX 286 performance
varies with the nature of the program that is executing and the types of bus cycles belng performed
The pipelining within the 80286 CPU sometimes causes idle bus cycles while the CPU is executing
prefetched instructions, and no other bus operations are requested. Wait states reduce theé number of
these idle bus cycles and, on average, do not produce as severe a degradation in performance as simple
performance calculations might predict.

The characteristics of an individual program are important in determining processor performance with
wait states. For example, when the CPU is executing a program containing many multiplication and
division operatrons, performance is not degraded significantly by wait states. This i is because processor
performance is limited by processing speed and-not by bus throughput.

During program execution, the 80286 Bus Unit will prefetch instructions and fill the instruction and
prefetch queues. These prefetch operations occur several clock cycles ahead of execution and occur

4-3 210760-001

Inte| MEMORY INTERFACING

- Table 4-1. IAPX 286 Performance With Wait States

Intel Pascal Benchmarks .

. 0 Wait 1 Wait 2Wait | 3 Wait 4 Wait
Senchmark Performance States State States ~ States States
Queens Time (s) 719 .9.224 11496 | 1443 17.2

‘ Normalized Time (1.0) . {1.28) (1.6) - (2.0) (2.4)
GCD Time (s) 12.13 14.665 . 16.87 20.48 24.23
‘ Normalized Time (1.0) (1.21) (1.39) (1.69) (20)
Bubble Time (s) 5.587 7.586 9.74 11.83 14.64
Sort Normalized Time (1.0) (1.36) (1.74) (2.12) (2.62)
Matrix Time (s) 6.92 7.607 9.12 11.08 13.33
Mult. Normalized Time (1.0) (1.1) (1.32) (1.6) (1.93)
Average Normalized Time: (1.0 - (1.23) . (1.51) (1.85) -(2.23)
Intel Assembly-Language Benchmarks
! 0 Wait -1 Wait 2 Wait . 3 Wait
Program Performance - States State States States
PCALL Time (us) 17.0 21.38 27.50 33.25
Normalized Time 1.00 (1.26) (1.62) (1.96)
BSORT Time (us) 494.0 633.0 778.0 946.0
) ‘ Normalized Time (1.0) - (1.28) (1.58) (1.92)
XLAT Time (us) 4150 466.0 565.0 698.0
Normalized Time (1.0) (1.12) (1.36) (1.68)
XFORM Time (ms) 285.0 317.0 346.0 385.0
Normalized Time (1.0) (1.12) (1.22) (1.35)
INSPECT Time (ms) : 217.0 254.0 289.0) 346.0
Normalized Time (1.0) 1.17) (1.33) . (1.59)
Average Normalized Time: (1.0) (1.19) (1.42) ~(1.70)

when the bus would otherwise be idle. Any wait states in these instruction prefetches will not usually
delay program execution.

On the other hand, a progx;am that makes extensive use of the bus for manipulating data will show
greater degradation in performance when wait states are introduced. Programs that use many data
read and write operations are examples of programs that are bus-limited.

Since data read operations are performed in response to an executing instruction, the Execution Unit
must wait for the data to be read. Therefore, any delay in reading the data will have a direct impact
on system performance. Each wait state will. add an additional processor clock cycle to the execution
time of the current instruction. Word data read from odd addresses will result in two back-to-back byte
read operations, resulting in twice the delay before completion of the read instruction.

Data write operations are performed by the 80286 Bus Unit from information stored in temporary data
and address registers. The Execution unit fills these temporary registers and continues executing. Because

4-4 210760-001

Intel MEMORY INTERFACING

the Execution unit is not delayed, isolated data write operations with several wait states will not affect
system performance.

Wait states in the write operation may delay subsequent data read operations or instruction prefetches,
however. If several back-to-back data write operations are performed, the 80286 Execution unit may
have to wait for the Bus unit to finish before performing the next data write. Word. writes to odd
addresses will result in twice the number of delays as for word writes to even addresses.

Since the nature of the program has a direct impact on the performance of the iAPX 286 with one or
more wait states, any estimate of CPU performance must take this information into account. The best
estimates can be made by using the results tabulated for a benchmark program with characteristics
most closely matching those of the intended application. The only way to obtain a precise figure for a
particular application is to run that application and measure its performance.

The Intel Pascal Benchmarks

The Pascal benchmark results shown in Table 4-1 reflect the performance of an 80286 operating in
Real-Address mode. These benchmarks were written in Pascal and compiled using Intel’s Pascal-86
compiler version 2.0. The benchmarks themselves are described in the i4APX 86 System Benchmark
Report, Order Number 210352. The following paragraphs give a brief description of the
Intel Pascal benchmarks.

QUEENS (Chess Simulation)
The Intel Queens benchmark lists all possible combinations of non-attacking queens on a 9 X 9 chess-

board. This program tests control structures and boolean evaluations, and evaluates the code generated
for certain commonly-used statements (A = A + 1, for example).

GCD (Greatest Common Denominator) '

This Intel program computes the greatest common denominator of two integers using a recursive function
call. Function overhead and the MOD operator are tested by this benchmark.

BUBBLE SORT
This Intel benchmark sorts 1000 integers into numerically-ascending order using the exchange (bubble)

sort algorithm. This benchmark extensively tests control structures, relational expressions, and array
references.

MATRIX MULTIPLY
This Intel benchmark uses a simple row/column inner product method to compute the product of two

32 X 32 matrices. The elements of the matrices are integers. The benchmark tests control structure
arrays, array references, and integer arithmetic.

4-5 210760-001

Intel MEMORY INTERFACING

The Intel Assembly-Language Benchmarks

The assembly-language benchmark results shown in Table 4-1 reflect the performance of an 80286
operating in Protected mode. These benchmarks are described in the 8086 16-Bit Microprocessor
Benchmark Report. The following paragraphs give a brief description of each of these assem-
bly-language benchmarks

INSPECT (Automated Parts Inspection)

The automated parts inspection program controls an image-dissection camera having two 8-bit D/A"
converters (for X and Y axis control) and a 12-bit A/D converter that generates a gray-scale signal.
For each of the 16,384 (128 X 128) points, the measured gray-scale signal is compared with a known
good gray-scale value (stored in memory) to determine if it is within tolerance. One 16-bit multiply
.and one 16-bit divide are performed for each of the 16,384 points.

XLAT (Block Translation)

The block translation benchmark translates each EBCDIC character from a memory buffer into an
ASCII character to be stored in a second buffer. The translation detects when an EOT character is
encountered or when the entire EBCDIC buffer has been translated. For the benchmark tests, the
EBCDIC buffer contains 132 EBCDIC characters, none of which is an EOT character.

BSORT (Bubble Sort)

The bubble sort benchmark sorts a one-dimensional array containing 16-bit integer elements into
numerically-ascending order using the exchange (bubble) sort algorithm. For the benchmark tests, the
array contains 10 integers that are initially arranged in descending order.

XFORM (Gfa’phics X-Y Transformation) »

The X-Y transformation benchmark expands or compresses (scales) a selected graphics window
containing 16-bit unsigned integer X-Y pairs. Each X data value is offset by Xy and multiplied by a
fractional scale factor, while each Y data value is offset by Yo and multiplied by the same scale factor.
One 16-bit multiply and one 16-bit divide are performed for each of the X-Y coordinates. For the
benchmark test, the selected window contains 16,384 X-Y pairs.

PCALL (Reentrant Procedure)

The reentrant-procedure benchmark exercises processor features that are used to implement a reentrant
procedure. Three input parameters are passed by value to the reentrant procedure. Prior to the call,
one parameter is in ne of the general registers, while the other parameters are stored in memory
locations. Upon entry, the reentrant procedure preserves the state of the processor, assuming that it
will use all of the general registers. The reentrant procedure then allocates storage for three local
variables, adds the three passed parameters, and stores the result in a local variable. Upon exit, the
state of the processor is restored.

MEMORY INTERFACE TECHNIQUES

In the previous section, the impact of memory performance and wait states on system performance was
examined.in detail. In this section, memory performance itself is examined in order to understand how
the performance of a memory subsystem is determined as much by the subsystem design as by the

4-6 210760-001

Inte| MEMORY INTERFACING

speed of the individual memory devices. Three different memory interface techniques are introduced,
and the advantages and tradeoffs of each are described. The Memory Design Handbook describes still
other techniques that may be used.

Standard Address Strobe Logic

Chapter Three describes a straightforward method for interfacing to memory, using the ALE output
of the 82288 Bus Controller to strobe the address and chip-select latches. Figure 4-1 shows this memory-
interface model, showing the ALE signal from the 82288 Bus Controller being used to control the 8282
address latches.

The timing of this straightforward interface technique using the standard ALE address strobe is
examined in Chapter Three. Although this technique is simple and requires only a small number of
devices to implement, it provides only 87.5 ns of address access time at zero-wait-states. This limited
access time is sufficient only for very fast static RAM devices; slower memory devices will require
additional wait states and corresponding reductions in system performance. '

Other, more complex, methods of interfacing memory devices to the 80286 can increase address access
time to permit high-performance operation with slower memory devices. The following two sections
introduce these two techniques.

A N
ADDRESS): I
—
8282
LATCHES
M DECODE . e
sT8 CHIP ENABLE 20
BHE
. WE7.o
ALE
” MWTC WE15.8
o !
w 82288
a BUS
2 CONTROLLER |
OE
DT/R DEN
¥ l
T OE
80286 m 8286 !
e KR 2% KT wewmony

210760-78

Figure 4-1. Memory Interface Using Standard ALE Signal

4-7 210760-001

Il’lte' MEMORY INTERFACING

Special Address Strobe Logic

As an enhancement to the timing characteristics of the standard memory-interface technique described
above, special address strobe logic can be used to generate a valid address to the memory devices at
an earlier point in the bus cycle. This special address strobe logic is shown in Figure 4-2.

The address strobe logic shown in Figure 4-2 generates an address strobe as early as possible in the
memory cycle; that is, as soon as the command from the previous memory operation becomes inactive.
This memory-interface technique trades off address hold time following command inactive (few memory
devices require a lengthy address hold) in order to gain additional address access time.

Two additional optimizations are the use of 8283 (inverting) address latches and 8287 (inverting) data
transceivers to drive the buffered local bus containing the memory subsystem; these inverting buffers
exhibit faster timing characteristics than their non-inverting 8282 and 8286 counterparts. Because these
devices invert the data and address lines, however, these latches and transceivers should not be used
with I/O devices on the same buffered local bus, to avoid confusion. The reduced address hold time
resulting from this special strobe logic also is not compatible with many typical 1/O devices.

The timing of this special address strobe logic is described in detail in a later portion of this chapter.
The principle advantages of the special strobe logic depicted in Figure 4-2 is that address access time
is increased from 87.5 ns at zero wait states using the standard ALE strobe to as much as 155 ns using

N
ADDRESS) Ma
8283 4
LATCHES
DECODE ~
:> LoGic > ; cs
STB
BHE| (AO
82288
MB MRDC - e [0
cMDLY —I_\ -
~ WWTC >° i/ WeL
DT/R__DEN
) g LD_ »| WER
T OF MEMORY
80286 | R .
cpU 8287 *
A oK DATA | surrers <:>
210760-79

Figure 4-2. Memory Interface Using Special Strobe Logic

4-8 ’ 210760-001

Intel MEMORY INTERFACING

the special address strobe. This increased address access time permits slower memory devices to be
used in iAPX 286 systems, while still permitting operation at zero wait states.

The tradeoff made when using this special strobe logic is the increased hardware overhead required to
implement the strobe logic, and the separate latches and data buffers required for the separate memory
and I/O buses.

For systems that do not require large amounts of memory, however, this special strobe logic can provide
an economical, high-performance solution. The cost savings of using slower memories to obtain a given
level of performance more than offsets the cost of the additional logic required.

Interleaved Memory

For systems that require large amounts of memory, an interleaved memory subsystem can provide even
greater economies than using the special strobe logic just described, at the cost of extra address latches
and additional control logic. .

With an interleaved memory subsystem, memory devices are grouped into banks so that every sequen-
tial memory fetch comes from a different memory bank. For example, in a memory system partitioned
into four memory banks, a program that fetches four 16-bit words from consecutive addresses actually
fetches one word from each bank.

Interleaved memory banks permit designers to take full advantage of the 80286’s pipelined address
timing. By letting the early address from the 80286 propagate into the next memory bank while the
address for the current memory cycle is still valid in another bank, address access times for the individ-
ual memory devices can be greatly increased.

Of course, occasional back-to-back memory cycles to the same memory bank may occur, which will
require a longer bus cycle than if the access was to a different bank. The interleave control logic must
accommodate the longer bus cycle times by inserting an additional wait state into the cycle. On the
average, though, these memory ‘hits” comprise only 7% of all memory cycles using two interleaved
memory banks, and 80286 execution time for typical software is increased only 4% on average over
execution exclusively at zero wait states.

Figure 4-3 shows an example circuit that uses interleaved addressing and special address strobes to
increase the access time for most memory cycles. The memory devices are configured into two banks
with successive memory words assigned to alternate banks (address line 1 is used as a bank select).
Each bank has its own address latches and strobe signal. An 8205 decoder decodes the CPU address
to generate chip enables for the individual memory devices, and a BANKSEL signal is decoded to
enable the address strobes. i

Figure 4-4 shows the logic that generates the address strobe signals to the individual banks, and detects
consecutive reads to the same bank. Generally, the address strobes will be high until a read to one of
the memory banks occurs. The high address strobes maintain the address latches in their transparent
state to enable an address generated by the CPU to be transmitted to the memories in the shortest
possible time. (With the standard memory model, the address would not be transmitted to memory
until just before the start of T, due to the 82288 ALE timing and strobe to output delays.)

The address strobe to the selected bank is driven low on the falling edge of CLK at the start of the
first T, state to latch the address and chip selects to the respective memory devices. The address strobe
to the non-selected bank remains high, maintaining the respective address latches in their transparent
state.

4-9 210760-001

MEMORY INTERFACING

N 8283 N
M LaTtcH M A <:;—
¥ y
STB <) BANK 0
MEMORY
DECODE »{ CE
»{ WEL
»| WER
OE
8283 :
N LaTcH A) A
STB h 2 BANK 1
Y MEMORY
DECODE —»{cE
> WeL
»| WER
—— . -1 OE
TIFIE A0 |A1
:) pECODE |BANKSEL
ALE1 ALEO
READY D D D
LOGIC
-1cK
Q Q Q
—
82288 5 ¢ I_)o-
MWTC > L
MRDC ‘ p—
DEN %)o.___
: DT/R f—
@ MB_CMDLY|
w
"9
Q I l
Q
< y
= ﬂ
=D
- T.0OE
0286 K DATA)
[= sz KTORR N e
BUFFERS

210760-80

Figure 4-3. Interleaved Memory Circuit

4-10

210760-001

Intel MEMORY INTERFACING

USE THIS CIRCUIT TO GENERATE TC
IF MRDC OR MWTC IS DELAYED.
Ls112
M/T0:
NOTE: TC MUST BE HIGH BY MIDDLE OF ALE) a e
H TC BUS STATE. TC MUST BE
Low DURING OTHER BUS CYCLES BOLK —m——e———H CK
BPCLK?— K a
500 1
MROC Tc Lsa2 2
MWTC: !) J
N) . Pck Q ALEO .
K
. 1502
LS5t s112 S112
) — 2 cs
F : .
—D cK
500 —P cx
BANKSEL: ™\ Sz —{K a p
'_‘l_/' L J Q E1 cle i
LS08
Lso2 - .—?cx
K
J
AL LS02 S$112
i a BFCIR
r—LCK
[} LK
CLK {} LK
210760-81

Figure 4-4. Address Strobe Generation

The timing of this interleaved memory system is described in a later section of this chapter. The princi-
pal advantage of using an interleaved memory system such as this is the increased access time provided
at the beginning of most 80286 bus cycles. Access time requirements as long as 180 ns can be accom-
modated using this configuration, while still permitting most 80286 memory operations to occur with
zero wait states. With one wait state, access times as long as 305 ns can be reliably accommodated, as
compared with access times of 212.5 ns for the standard memory configuration at one wait state.

This increased access time results in a direct cost savings without reducing performance. For an example
system using EPROMSs with one wait state, the savings from interleaving are composed of the savings
from using 300 ns EPROMS instead of the more expensive 200 ns EPROMS, multiplied by the number
of EPROMS, and subtracting the additional interleave circuitry. For large-memory systems, this cost
savings without reducing performance can be well worth the effort.

Table 4-2 compares the various memory interface techniques and provides guidelines on selecting a
particular technique for specific applications. The following section analyzes the timing of each of
these interface techniques in more detail.

TIMING ANALYSIS FOR MEMORY OPERATIONS

To design a memory subsystem for the iAPX 286, designers must understand the timing of the 80286
memory cycle. In the sections that follow, critical timing values are calculated for each of the memory
interface techniques described in the previous section. Timing calculations are shown primarily for an
8-MHz 80286; in some cases, timing values for a 6-MHz 80286 are included to give examples of these

calculations as well.

4-11 210760-001

Intel MEMORY INTERFACING

Table 4-2. Comparing Several Memory Interface Techniques

Address Access Time
Provided by
Single-Buffered System
Memory Ir)terface with O Wait States Usage Guidelines
Technique
8MHz | 6MHz
ALE-Controlled 87.5ns 1399 ns Useful for implementing small bootstrap
Address Latches EPROMs; 2 waits at 8 MHz suitable for
2732A-3 or 2764A-3.
Special Address 155 ns 228.3 ns Useful for small static RAM systems; memories
Strobe Logic require separate latches; insufficient address
) hold time for 1/O.devices.
Interleaved 180 ns 254 ns Useful for large EPROM or static RAM arrays;
Memories ‘) 2 sets of address latches required, with 6 TTL
DIPs to control interleaving.
8207 DRAM 120 ns RAS 183 ns Useful for dynamic RAM arrays.
Controller 58 ns CAS 89.6 ns
(uses internal
interleaving)

Calculations using worst-case timing, rather than typical timing, are used exclusively throughout this
manual and are strongly recommended to all designers using these materials. By using worst-case timing
values, you will be able to determine critical timing paths, the need for wait states, and compatibility
between various memory devices.

Analyses using typical timing parameters make implicit assumptions about the system under study.
Typical calculations assume that with 5 to 8 devices in series, the probability of all devices simultane-
ously exhibiting worst-case timing is acceptably remote. However, since many modern designs use only
2 or 3 devices in series, the probability of all devices showing worst-case timing characteristics becomes
unacceptably high.

For this reason, worst-case timing calculations are used to assure reliable operation over all variations
in temperature, voltage, and individual device characteristics. Worst-case timing values are determined
by assuming the maximum delay in the latched address, chip-select, and command signals, and the
longest propagation delays through data buffers and transceivers.

Standard ALE Timing

The iAPX 286 memory cycle using the standard ALE timing from the 82288 Bus Controller is described
in Chapter Three. The analysis of timing is largely dependent on the particular memory configuration.
Figure 4-1, shown previously, shows the memory model used to analyze timing using the standard ALE
signal timing. Address and chip selects are measured from the outputs of latches (strobed by ALE)
Data valid is measured at the data pins of the CPU. MRDC is an 82288 output.

A single data buffer is used to prevent the AC loading from the memory subsystem from exceeding
the 80286 capacitive limit of 100 pF. The 8286 buffers can drive 300 pF loads. For very small systems,
the 80286 can be used without data buffers. For large, multi-board systems, two levels of buffering
may be used. In any case, the appropriate buffer delays should be considered when performing timing
calculations.

4-12 210760-001

Intel MEMORY INTERFACING

READ OPERATIONS

Figure 4-5 shows the timing for zero-wait state memory read cycles using the standard ALE address
strobe.

For read operations, data must be valid at the pins of the 80286 10 ns before the falling edge of CLK
at the end of the final T, (20 ns for the 6-MHz 80286). The critical timing parameters that determine
whether one or more wait states are required for a given memory subsystem design are the required
address and command access times before read data will be valid.

The maximum allowable address and chip-enable access times for the memory configuration shown in
Figure 4-1, with zero walit states, and incorporating one transceiver delay, can be calculated as follows:

8 MHz ‘ 6 MHz
3 CLK cycles 187.5 ns 249.9 ns
— ALE active delay (max) — 15.0ns — 15.0ns
— 8282 stb-to-output delay (max) — 45.0 ns — 45.0 ns
— 8286 transceiver delay (max) — 30.0 ns — 30.0 ns
— 80286 required data setup (min) — 10.0 ns — 200 ns
Maximum address to output delay = 87.5 ns 139.9 ns
Ts Tc . Ts

a X/ X /X S jv_/ X X/
/N |

LATCHED
ADDRESS
|-¢—TCLDX
- TLAVDV g
v TLCEDV >
LY T B USRS N PR — ————
— TCMLDV ———»
TLAVCML :
o TLCECML ™™ TOVCL=» -
MROC)k s
L MLCMH ol TCMHLAX
N M “TCMHLCEX

210760-82

Figure 4-5. Memory Read Cycle Timing

4-13 210760-001

Intel MEMORY INTERFACING

The calculations for maximum allowed command or output-enable access time before data valid are
similar:

2 CLK cycles at 8 MHz - 125 ns
— MRDC active delay (max) — 20 ns
— 8286 transceiver delay (max) — 30ns
— 80286 required data setup (min) — 10 ns
Maximum command to output delay = 65 ns max.

Because of the pipelined address timing of the 80286 CPU, the memory configuration shown in
Figure 4-1 provides a significant timing interval after the 80286 address is valid and before the address
latch (ALE) strobe becomes active. This interval can be used for address decoding without reducing
the chip-enable access times calculated above. The maximum address decode time that this memory
configuration can provide without reducing the chip-enable access time is calculated as follows:

2 CLK cycles at 8 MHz 125 ns
— 80286 address valid delay (max) — 60 ns
+ ALE active delay (min) + 3ns
Maximum decode time = 68 ns max.

This maximum decode time is not affected by the use of wait states in the 80286 bus cycle.

If wait states are inserted into the memory cycle, access times for the relevant parameters are increased
by 125 ns for each wait state (166.7 ns for each wait on a.6-MHz 80286). Address, chip-enable, and
command access times for a single buffered 8-MHz system running with from zero to two wait states
are shown in Table 4-3.

In view of the timing values shown in the table, fast static RAM devices are the only memory devices

capable of operating in this configuration with zero wait states. An 80286 operating with a single wait

state provides sufficient timing for almost all static RAM devices, a large number of dynamic RAM

devices, and faster ROM/PROM/EPROM devices. An 80286 operating with two wait states pr0v1des
sufficient timing for all but the slowest semiconductor memory devices.

Another critical timing parameter for memory read operations is the output data float time; that is,
the time from the memory output-enable inactive until the memory device disables its data drivers
following a read operation. This timing value is critical if the 80286 attempts to perform a write opera-
tion immediately following a read from the memory device. If this back-to-back read/write sequence
occurs, the memory device must disable its data drivers before the 82288 Bus Controller re-enables the
8286 data transceivers, or data bus contention will occur.

For the memory configuratioh shown in Figure 4-1, the maximum data float time afforded a memory
device at 8 MHz is 57.5 ns maximum. For certain memory devices, this allowed data float time may
be inadequate. If this is the case, then the possibility of bus contention must be specifically prevented.

Table 4-3. Timing for 8-MHz Read Operations Using Standard ALE Strobe

Maximum Access Times k Zero One Two
Before Data Valid Wait States Wait State Wait States
Address Access time (max) 87.5ns 2125 ns 337.5 ns
Chip-Select Access time (max) 87.5ns 2125 ns 337.5 ns
Command Access time (max) 65 ns 190 ns 315 ns
4-14 210760-001

Intel MEMORY INTERFACING

To accommodate the data float time requirements of slower memory and I/O devices, the output
cnables of the data bus transceivers must be delayed for the necessary length of time. Figure 4-6 shows
an example circuit that delays enabling the data transceivers following a read operation to the selected
memory devices. This circuit provides a maximum data float time for memory devices of:

2 CLK cycles at 8 MHz (Cmd inact.—DEN act.) 125 ns
— Cmd inactive delay (max) — 15ns
+ 8286 enable time (min) . + 10 ns
Maximum data float time (using circuit) = 120 ns max.

WRITE OPERATIONS

For typical write operations to a memory device, data is latched into the device on the rising edge of
the Write command at the end of T.. The important timing parameters determining whether wait
states are required are the address and command access times before command high.

The timing for memory write cycles, shown in Figure 4-7, uses the same model as that for read cycles.
Address, chip select/enable, and command generation are the same as for read operations.

Since the latest time that data is active coincides with the latest pdssible latched address and chip
select times (2.5 ns before the falling edge of CLK at the start of T,), the maximum address-valid to
command-high access time provided during write operations with zero wait states is:

3 CLK cycles at 8 MHz 187.5 ns
— ALE active delay (max) — 30.0ns
— 8282 address latch delay (max) — 30.0ns
+ Cmd inactive delay (min) + 3.0ns
Maximum address access time = 130.5 ns max.

MROC MRD

MWTC MWTC

)
CONTROLLER BUS SELECT
PRCE Ty

1
. 74LS175 74LS175
*10 [¢] o [[e]

MEMORY
PN O\ DEVICE
CLK D | |
D15-Do

CEIVER

210760-83

Figure 4-6. Delaying Transceiver Enable

4-15 210760-001

Intel MEMORY INTERFACING

Ts ‘ Tc) Ts
«“x / v W Y Y/
ALE / -\
- L. TCMHLAX |
TLAVCMH/ TLCECMH < TOMHLAX]
LATCHED
ADDRESS
TOVCMH |t TCMHDX]
[aY'\ e S —— <g§g<<<<<<< >>> })—--_-
—3 TOVCML
— TLAVCML
TLCECML
MWTC 7L
e TCMLCMH

210760-84

Figure 4-7. Memory Write Cycle Timing Using Standard ALE Strobe

Worst-case command-active to command-inactive timing is calculated in a similar manner (the command
pulse width for write operations is not affected by buffers in the data path):

2 CLK cycles at 8 MHz 125 ns
— Cmd active delay (max) — 20 ns
+ Cmd inactive delay (min) - + 3ns
Maximum command access time = 108 ns max.

The data-valid to command-inactive time for write operations must include data buffer delays. Assum-
ing a 30 ns maximum delay through 8286 buffers, the data-valid to command-inactive setup time is:

3 CLK cycles at 8 MHz 187.5 ns

— data valid delay (max) — 50.0ns -

— 8286 data buffer delay (max) — 30.0 ns

+ Cmd inactive delay (min) + 30ns
Maximum data setup time 110.5 ns max.

If wait states are inserted into the memory cycle, each of the relevant parameters for write operations
are increased by 125 ns for each wait state (166.7 ns for each wait on a 6-MHz 80286). Address, chip-
enable, command, and data-valid times for a single-buffered 8-MHz system running with from zero to
two wait states are shown in Table 4-4. As for read operations, 80286 operation with zero wait states is
possible using only fast static RAMs. One or two wait states are required to provide sufficient timing
for the majority of static'and dynamic RAM devices.

4-16 210760-001

Intel MEMORY INTERFACING

Table 4-4. Timing for 8-MHz Write Operations Using Standard ALE Strobe

Maximum Accesé Times Zero One Two

Before Command High Wait States Wait State Wait States
Address Access time (max) 130.5 ns 255.5 ns ' 380.5ns
Chip-Select Access time (max) 130.5 ns 255.5 ns 380.5 ns
Command Pulse width (max) 108.0 ns 233.0 ns 358.0 ns
Write Data Setup Time (max) 110.5 ns 235.5 ns 360.5 ns

The CMDLY and CEN inputs to the 82288 can significantly alter bus cycle timing. CMDLY can
delay commands to produce more address, chip enable, and data setup time before a command is
issued. CEN can hold commands and data buffer control signals inactive, also altering bus cycle timing.
When used, the effects of these inputs must also be included in any worst-case timing analysis.

For some RAM devices, the data setup time before write-command active is a critical parameter. With
no command delays, the write command may become active before the write data is valid at the pins
of the memory device:

1 CLK cycle at 8 MHz 62.5 ns
— data valid delay (max) — 50.0 ns
— 8286 data buffer delay (max) — 30.0ns
+ Cmd active delay (min) + 3.0ns
Maximum data setup time — 14.5 ns max.

(Note that the negative setup time implies that data may not be valid before the write command is
asserted).

With one command delay, the write command from the 82288 Bus Controller is delayed by 62.5 ns,
producing an acceptable 48 ns data setup time before command active. This command delay reduces
the command pulse width by 62.5 ns, however, and so additional wait states may be necessary to meet
this and other timing requirements.

If the circuit shown in Figure 4-6 is used to delay transceiver enable during write commands, the data
setup time is affected again. Using this circuit to accommodate slow output-data-float times by delay-
ing DEN results in a data setup time to end of command of 56 ns minimum:

2 CLK cycles at 8 MHz (DEN-to-WR) 125 ns
— S04 inverter (CLK) delay (max) — 7Tns
— S175 Flip-flop delay (max) — 20 ns
— S00, S30 gate delays (max) — 15mns
— 8286 output enable time (max) — 30 ns
+ Cmd active delay (min) + 3ns
Minimum data setup time = 56 ns min.

4-17 210760-001

Intel MEMORY INTERFACING

At the end of the write operation, some RAM devices requirc that the write data remain valid for a
short interval following write command inactive. The maximum- data hold requirement permitted by
the 80286 is:

1 CLK cycle at 8 MHz (after Cmd) . 625ns

— 82288 Cmd inactive delay (max) — 150 ns
+ 8286 Transceiver delay (min) + 50ns
Maximum data hold time = - .~ 52.5 ns max.

Some memory devices require that the address remain valid following a write operation. For this stand-
ard memory configuration, the maximum address hold time following write is:

- 1 CLK cycle at 8 MHz (after Cmd) : 62.5ns .
—. 8288 Cmd inactive delay (max) — 150 ns
+ ALE active delay (min) , o .+ 30ns
+ 8282 STB-to output delay (min) + 100 ns

Maximum address hold time = 60.5 ns max.

Most memory devices do not require such a lengthy address hold time following a write operation. The
following section shows how the spccial strobe logic introduced previously trades away some of this
unused address hold time to gain increased address access time.

Special Address Strobe Timing

As described in a previous section, special address strobe logic can be used to generate an address latch
strobe much earlier in the 80286 bus cycle than the 82288 ALE strobe. This special address strobe
technique trades off address hold time after command inactive for additional address and chip-enable
access time, permitting slow memories to be used with fewer wait states relative to the standard address
strobe technique described in the previous section.

Figure 4-2 shown previously shows the memory configuration that will be used in this analysis. Figure
4-8 shows the timing of this special address strobe logic.

The timing of this address strobe logic is relatively straightforward. Maximum address and chip-select
access time for an 80286 operating at zero wait states is:

] 8 MHz 6 MHz
4 CLK cycles 250 ns 333.3 ns
— Cmd inactive time (max) — 15ns — 15.0ns
— STB logic delay (max) — 8ns — 80ns
— 8283 latch delay (max)) — 40 ns - — 40.0 ns
— 8287 transceiver delay (max) — 22ns ‘ i — 22.0ns
— 80286 required data setup (min) — 10ns — 20.0 ns

Maximum address access time = 155ns 228.3 ms

Minimum address hold after command inactive is only 10 ns minimum, equal to the minimum 8283
STB-to-output delay.

4-18 210760-001

Intel MEMORY INTERFACING

| READ CYCLE 'WRITE CYCLE

Te Ts Tc Ts Tc Ts

SV AANE WA WE WAWE /N
e / \

15
p

STB /I
LATCHED
ADDRESS

DATA : : (READ)._.(WRITE DATA)----

210760-85

Figure 4-8. Timing for Special Address Strobe Logic

Since the memory configuration using the special strobe logic does not alter the command inputs to
the memory devices, command access times are the same as for the standard memory interface, but
for the reduced delays through the 8287 transceivers:

2 CLK cycles at 8 MHz : © 125 ns
— MRDOC active delay (max) : — 20ns
— 8287 transceiver delay (max) — 22 nmns
— 80286 required data setup (min) — 10ns
Maximum command to output delay = ‘ 73 ns max.

Because the address strobes are generated earlier in the bus cycle, the allowed address decode time
before the address strobe goes high is reduced. Maximum decode time without reducing chip-enable
access time is: '

1 CLK cycle at 8 MHz 62.5 ns
— 80286 address delay (max) — 60.0 ns
+ Cmd inact. delay (max) + 15.0 ns
+ STB logic delay (max) + 80ns

Maximum address decode time = 25.5 ns max.

If wait states are inserted into the memory cycle, access times for the relevant parameters are increased
by 125 ns for each wait state (166.7 ns for each wait state on a 6-MHz 80286). Address, chip-enable,
and command access times for a single-buffered 8-MHz system running with from zero to two wait
states are shown in Table 4-5.

4-19 210760-001

intel

MEMORY INTERFACING

Table 4-5. Timing for 8-MHz Read Operations Using Special Address Strobe

Maximum Access Times Zero One Two
Before Data Valid Wait States Wait State Wait States
Address Access time (max) 155 ns 280 ns 405 ns
Chip-Select Access time (max) 155 ns 280 ns 405 ns
Command Access time (max) 73ns 198 ns 323 ns

For write operations, the data setup and hold times for this memory configuration are not affected by
the special address strobe logic. These timing parameters differ from those for the standard memory
interface only in the reduced delays through the 8287 transceivers, where the standard interface uses
8286 transceivers. The Write command pulse width using this memory configuration is identical to
that for the standard memory interface.

As described previously, the special address strobe logic trades off address hold time for additional
address access time. Some memory devices specify an address hold time following a write operation.
Using the special address strobe logic, the maximum address hold time allowed for a memory device
following - Write command inactive is 10 ns, the minimum STB-to-output delay of the 8283 address
latch:

Maximum address hold after write = 10 ns. max.

This timing value illustrates the essential tradeoff between address access time and address hold time
using the special address strobe logic. Still other memory interface techniques are possible which make
other allowances in order to optimize the critical address access parameter.

Interleaved Memory Timing

Interleaved memory subsystems have been introduced in a previous section. The interleaving technique,
like the special strobe logic, produces increased address access times and allows considerably slower
memory devices to be used while still providing performance equal to that of faster memories using
the standard memory interface.

An example circuit showing an interleaved RAM system is shown in Figures 4-3 and 4-4. The timing
for this circuit is shown in Figure 4-9. This figure shows a sequence of four CPU bus cycles performed
in the following order:

1. Write cycle to non-interleaved memory

2. Read cycle from RAM bank 1

3. Read cycle from RAM bank 2

4. Read cycle from RAM bank 2

The sequence of signals required to perform these four bus cycles are as follows:
1. During the write cycle to RAM, both address strobes (ALEO and ALE1) are high. Since the
interleaved memory is not selected, chip enables to the interleaved memories are not generated.

2. At the start of the read cycle from RAM bank 1, the address decode logic generates chip-enable
signals to the -appropriate devices and BANKSEL activates the interleave logic to generate an
appropriate address strobe. ALE1 toggles low on the falling edge of CLK at the end of T; to latch

4-20 210760-001

Inte| MEMORY INTERFACING

RAM WRITE BANK 1 READ BANK 2 READ 2ND BANK 2 READ
>, N N i, N .

e N N N ™
fwspme e s el sl e]l m ool ®

210760-86

Figure 4-9. Interleaved Memory Timing

the address and chip-enable signals to bank 1. MRDC enables the output drivers of the RAMs.
Note that ALEO remains high throughout the bus cycle, maintaining the Bank 2 address latches
in their transparent states.

3. At the start of the read cycle from RAM bank 2, the address decode logic generates chip-enable
signals to the appropriate devices as before. ALE] is driven high on the falling edge of CLK
halfway through T, and remains high throughout the rest of the bus cycle. ALEO toggles low at
the start of T, to latch the address and chip-enable signals to bank 2. MRDC enables the output
drivers of the RAMs in bank 2, while DEN and the latched BANKSEL enable the interleave-
memory data transceivers.

4. The second read cycle to EPROM bank 2 begins with ALEO low. ALEO is not driven high until
CLK goes low halfway through T,. This delay reduces the data access time in comparison to the
previous bus cycles; the delay is accommodated by adding one additional wait state to the bus
cycle. Two S112 flip-flops are used to compare the bank-selects for the current and previous memory
cycles to detect the occurrence of back-to-back cycles to the same memory bank. The HIT output
of this interleave logic is used to drive the system Ready logic to insert the additional wait state.

The sequence of signals for this second bank 2 read is the same as the first, with the addition of
one extra wait state. ALEO is driven high one CLK cycle after the last T; state. ALEIl remains
high throughout the entire cycle. .

“The timing analysis for this interleaved memory system is straightforward, merely incorporating the
appropriate delays through the latches and buffers.

The maximum address access time for the configuration shown in Figure 4-3 is:

8 MHz 6 MHz

5 CLK cycles (overlapped address time) 312.5ns - 416.5 ns
— 80286 address delay (max) : — 60.0 ns — 80.0 ns
— 8283 input-to-output delay (max) — 220ns — 22.0ns
— 8287 delay (max) — 22.0ns — 22.0ns
— 80286 required data setup (min) — 10.0 ns — 20.0 ns
Maximum address access time = 198.5 ns 272.5 ns

4-21 210760-001

intel

MEMORY INTERFACING

Maximum chip-enable access time must incorporate the additional 8205 decoder delay:

8 MHz 6 MHz
5 CLK cycles (overlapped address time) 312.5ns 416.5 ns
— 80286 address delay (max) — 60.0 ns — 80.0 ns
— 8283 input-to-output delay (max) — 22.0ns — 220ns
— 8205 decoder delay (max) — 18.0ns — 18.0 ns
— 8287 delay (max) — 22.0ns — 22.0ns
— 80286 required data setup (min) — 10.0 ns — 20.0 ns
Maximum chip-enable access time = 180.5 ns 254.5 ns

If a subsequent memory access to the same memory bank occurs, an additional wait state will be
inserted into the memory cycle. The maximum address access time with this interleave “hit” is:

5 CLK cycles at 8 MHz (cycle w/ 1 wait) 312.5ns
— ALE valid delay (max) — 20.0 ns
— 8283 STB-to-output delay (max) — 40.0 ns
— 8287 delay (max) — 220ns
— 80286 required data setup (min) — 100 ns
Maximum address access (w/ “hit”) = 220.5 ns max.

Chip-enable access time with an interleave “hit” is the same as the address access time, less the 18 ns
8205 decoder delay:

Maximum chip-enable access (w/ “hit”) = 202.5 ns max.

Since memory read and write commands are passed directly to the memory devices as in the standard
memory interface, the command access times and command pulse widths calculated for interleaved
memory systems will be the same as for non-interleaved memory systems.

If wait states are inserted into the memory cycle, access times for the relevant parameters are increased
by 125 ns for each wait state (166.7 ns for waits on a 6-MHz 80286). Address, chip-enable, and command
access times for a single-buffered 8-MHz system running with from zero to two wait states are shown
in Table 4-6. ‘

Interleave “hits,” or back-to-back accesses to the same memory bank, typically occur during only about
7% of all bus cycles. Since an interleave hit results in an additional wait state inserted into the bus
cycle, this wait state may impact overall execution time and so affect system performance. Generally,
instruction prefetches by the 80286 bus unit will not result in any interleave “hits” since the prefetcher
accesses sequential addresses. On average, only interleave hits that occur due to data read operations

Table 4-6. Timing for 8-MHz Interleaved Memory Operations

Number of Wait States (Assuming no ‘‘Hits”)

Maximum Access Times

Before Data Valid Zero One Two
Wait States Wait‘state Wait States
Address Access time (max) 198.5 ns 323.5ns 448.5 ns
Chip-Select Access time (max) 180.5 ns 305.5 ns 430.5 ns
Command Access time (max) 73.0ns 198.0 ns 323.0 ns
4-22 210760-001

Intel MEMORY INTERFACING

will directly affect 80286 execution time, as described previously; delays in data write operations do
not affect the 80286 Execution unit.

Table 4-7 shows the results of several benchmarks run on an iAPX 286 system using an interleaved
memory system and one using a memory system having the same number of wait states without inter-
leaving. The values shown in the table are the ratios of execution times with interleaving to those
without interleaving. In general, execution times with interleaved memory are typically only 4% more
than execution times with memories having a comparable number of wait states.

MEMORY INTERFACE EXAMPLES

The following sections describe specific examples using common types of memory devices with the
iAPX 286. These interface examples include read-only memories, static and pseudo-static RAM devices,
and dynamic RAM devices using the 8207 Advanced Dynamic Ram Controller.

Read-Only Memory

The easiest memory devices to interface to any system are read-only memory devices (ROMs, PROMs,
and EPROMs). Their byte-wide format provides a simple bus interface, and since they are read-only
devices, A0 and BHE need not be included in their chip-select/enable decoding (chip-enable is similar
to chip-select, but chip-enable typically determines if the device is in the active or standby power mode
as well). ‘ ,

For a standard memory model, the address lines connected to the devices start with Al and continue -
up to the maximum number the device can accept, leaving the remaining address lines for chip-enable/
select decoding. To connect the devices directly to the local bus, the read-only memories must have
output-enables. The output-enable is also required to avoid bus contention in some memory
configurations.

Figure 4-10 shows the bus connections for read-only memories. Read-only memories require latched
chip-selects. Each valid decode selects one device on the upper and lower halves of the bus to allow

Table 4-7. iAPX 286 Performance with Interleaved Memories

Ratio of Execution Time for
interleaved to non-interleaved memories

Program Benchmark . when most bus operations occur with: |

O Wait States " 1 Wait State
DSO Bubble Sort (Pascal) 1.061 . '1.070
DSO Matrix Mult. (Pascal) 1.003 1.068
Berkeley Puzzle (Pascal) 1.020 : 1.028
Berkeley Sieve (C) 1.058 ' : 1.044
Quicksort (32-bit C) . . 1.057) ‘ 1.061
Intel XSFORM (ASM86) 1.007 o : *1.007
Intel Bubble Sort (ASM86) 1.032 1.034
Average of 17 Programs 1.036 . 1.046

4-23 210760-001

|nte| MEMORY INTERFACING

CHIP SELECT -0 CE |
P
pe-15 { 0o.7
hJ .
HIGH
2764
. I N BANK
A1-13¢ N Ao-12
\e y
MRDC »—of O
OE
Ao-12
LowW
2764 BANK

p
p0-7¢

L
Ll

210760-87

Figure 4-10. ROM/PROM/EPROM Bus Interface

byte and word access. Byte access is achieved by reading the full word onto the bus; the 80286 accepts
only the appropriate byte. The output-enable is controlled by the memory read command from the Bus
Controller.

TIMING ANALYSIS FOR ROMS

Read-only memories have four critical timing parameters that must be considered when interfacing
these devices to an iAPX 286. These parameters are:

1. Address to Output Delay (Address Access Time)

2. Chip-Enable to Output Delay (Chip-Enable Access Time)

3. Output Enable to Output Delay (Command Access Time)

4. Output Enable High to Output Float (Data Float Time)

By comparing these memory timing requirements to the iAPX 286 timing values, the required number
of wait states can be determined to guarantee a reliable memory interface.

As an example, consider a standard memory interface using 2764-20 EPROMs buffered by a single
level of 8286 transceivers. Table 4-8 shows the requirements of the 2764-20 and the times allowed by
an 80286 running with 1 wait state, using the standard ALE memory configuration described previ-
ously. By comparing the timing values shown in the table, it is clear that a 2764-20 EPROM is compat-
ible with the iAPX 286 system operating with one wait state.

Timing for an interleaved memory configuration or for systems using special Strobe logic can be deter-
mined in a similar manner. It should also be noted that the timing of memory operations using any of
the three memory interface techniques can be further modified by slowing the processor clock. An

4-24 210760-001

Intel MEMORY INTERFACING

Table 4-8. Timing Analysis for the 2764-20 EPROM

8-MHz iAPX 286
. 2764-20 EPROM 1 Wait State
Timing Paramoter (Max. Required) (Min. Provided)
Address Access Time 200 ns 212.5ns
Chip-Enable Access 200 ns 2125 ns
Command Access Time 75 ns 185.0 ns
Data Float Time 60 ns 120.0 ns*

*Assumes circuit to delay transceiver enable if write operation to the same bus occurs after read operation.

8-MHz 80286 operating with a 15-MHz clock rather than the usual 16-MHz clock can support 200 ns
memories such as the 2764-20 EPROM at zero wait states.

Table 4-9 shows the wait-state requirements for a variety of different Intel EPROMs for several differ-
ent memory configurations. In each configuration, a single level of data transceivers is assumed.
Static RAM Devices

Interfacing static RAM to an 80286 CPU introduces several new requirements into the memory design.
The address lines AO and BHE must be included in the chip-select/enable decoding for the devices,
and write timing must be considered in the timing analysis.

Data bus connections for each device must be restricted to either the upper- or lower-half of the data
bus to allow byte transfers to only one half of the data bus. Devices like the 2114 or 2142 must not be
configured to straddle both the upper and lower halves of the data bus.

To allow selection of either the upper byte, lower byte, or full 16-bit word for write operation, BHE
must condition selection of the upper byte and A0 must condition selection of the lower byte. Figure
4-11 shows several techniques for selecting devices with single chip-selects and no output-enables (2114,
2141, 2147A, 2148H/49H). Figure 4-12 shows selection techniques for devices with both chip-selects
and output-enables (2128, 2167A).

Devices without output-enables require inclusion of A0 and BHE to decode or enable chip selects. The
MRDC and MWRC commands are used to qualify chip-select generation to prevent bus contention.
Devices with common input/output pins (2114, 2142) and no output-enable require special care to
strobe chip-enable low only after write-enable is valid. Write-enable and write data must be held valid
until after chip-enable goes high.

For devices with separate input and output pins (2141, 2147, 2167A), the outputs can be tied together
and used as described in Chapter Three.

For devices with output-enables (Figure 4-12), the write command may be gated with BHE and A0 to
provide upper- and lower-bank write strobes. This simplifies chip-select decoding by eliminating BHE
and AO as a condition of decode. Although both devices are enabled during a byte write, only the
appropriate high or low byte device will receive a write strobe. No bus contention exists during reads
because the read command must be issued to enable the memory output drivers.

4-25 210760-001

intel

MEMORY INTERFACING

Table 4-9. Wait-State Requirements for Intel EPROMs

Device

EPROM

Required Number of Wait States for 8-MHz iAPX 286

Standard
ALE Strobe

. Special
Strobe Logic

Interleaved
Memory System’

2732A-20
2732A-25
2732A-30
2732A-35
2732A-4
2764-20
2764-25 -
2764-30
2764-4
27128-20
27128-25
27128-30
27128-45

-
=2
o
=

WMON=WNDN=WWMNN

—
=
=
-

W= =2 W= =0WNN =

-
=
)
=

GO = = b () = ok = GO N = —

EPROM
Device

Required Number of Wait States for 6-MHz iAPX 286

Standard
ALE Strobe

Special
Strobe Logic

Interleaved
Memory System’

2732A-20
. .2732A-25
2732A-30
2732A-35
2732A-4
2764-20
2764-25
- 2764-30
2764-4
27128-20
27128-25
27128-30
27128-45

1 Wait

N = = N 2 NN =

o
=
o
=

m__;_;om;n_xom_._._;

0 Wait

N=O0OO0ON-L0OON==20

“An additional wait state is required for back-to-back bus cycles to the same memory bank.

If multiple chip selects are available at the device, BHE and A0 may directly control device selection.
This allows normal chip-select decoding of the address space and direct connection of the memory read
and write commands to the memory devices. Another alternative is to use-the multiple chip select
inputs of the device to directly decode the address space (linear selects) and use the separate ‘write-
strobe technique to minimize the control circuitry needed to generate chip selects. As with the EPROMs
and ROMs, the address lines connected to the memory devices must start with Al rather than AO for

a standard memory interface.

For an interleaved memory subsystem, the low-order address lines beginning with A1l are used as bank
selects. Address lines that connect to the memory devices start thh the lowest address bit after the

bank select address lines.

210760-001

Intel MEMORY INTERFACING

ADDRESS Aoz
A ————— B
° ‘szos o LOW BANK
= CHIP SELECTS
2 .
ADDR Az 0P
"T’:D: olp LOW BANK
RD E _ o CHIP SELECT
WA 3 ol 0’:
8205 03 "
= 4 HIGH BANK
%z b CHIP SELECT
Aoz . RD e Osfo
o _ WA i Y
BHE o€
. ‘ezos Oo HIGH BANK Ao
M/i0 OR _ ' CHIP SELECTS BHE
ADDITIONAL oE; 07
ADDRESS .
E3
@ s)

BHE ——————— |

Ay ————»

b CHIP SELECTS ‘
el css O (HIGH AND LOW FOR
WR FOUR GROUPS) 3604A
MG ———— Jcsa i 1
C — cs3

HIGH BANK
CHIP SELECTS

+5
ADDR 3604A
. ——] cs3
. LOW BANK
Cs4 CHIP SELECTS
ADDRESS Ao — | cs1
A +5 i
' d cs2
+5

Mo cs4
BHE ——————————0| cs1

——0|CS2

(c) : [C]
210760-128

Figure 4-11. Generating Chip Selects for Devices without Output Enables

TIMING ANALYSIS FOR STATIC RAMS

When interfacing static RAM devices to an iAPX 286, write timing parameters must be considered in
addition to read parameters. These additional timing parameters are:

. Address Valid to End of Write (Address Access Time)

o Chip Select to End of Write (Chip-Enable Access Time)

¢ Write Pulse Width (Command Access Time)

¢ Write Release (Address Hold From End of Write)

* Data Valid to End of Write (Write Data Access Time)

« Data Hold From End of Write (Write Data Hold Time)

By comparing these memory timing requirements to the, 1APX 286 timing values, the requ1red number
of wait states can be determined to guarantee a reliable memory interface. .

4-27 210760-001

MEMORY INTERFACING

2142's

Aor 0 _> Aog
_ 1104
RD oD ! Dro
— 104

of WE
o Cs1
cs2 M
Ao
it v
WA L hd
— Aog
110,
oD ! Diss
JE 1{o 7}
L WE
Avg.1a N 8205 D—J———-—o@ j

CS2

+V

(a) HIGH AND LOW BANK WRITE STROBES

Ao N Aoe
— 1o
AD oo I Dro
. __ 104
WR —o WE
Ao o st

oo "Gt Diss
— UG,

——Q WE

csi
cs2_
cs

{b) Ag AND BHE AS DIRECT CHIP SELECT INPUTS

o,
I
mi

—2

2142's
Ao Aosg
— IIOl‘
RD oD Dy.
~ U, 0
Ol WE
—— o CS1
Cs2 ™
Ao :
WR)
L1
o hos
110y
oD | Disp
— 104
O WE
Avg o csi L
CS2
A

(c) LINEAR CHIP SELECT USED WITH HIGH
AND LOW BANK WRITE STROBES

210760-129

Figure 4-12. Generating Chip Selects for Devices with Output Enables

4-28

210760-001

Intel MEMORY INTERFACING

As an example, consider a standard memory interface using 2147H-1 RAM’s buffered by a single level
of 8286 transceivers on both inputs and outputs. Figure 4-13 shows the memory configuration used in
the analysis. Table 4-10 shows the timing requirements of the 2147H-1 RAM and the times allowed
by the 80286 running with zero wait states.

The Read command access time (Data valid from read) is not applicable in this configuration since
WE is high throughout the cycle. MRDC merely enables the output data buffers to transfer data to
the CPU. As demonstrated by the times shown in the table, the 2147H-1 static RAM is compatible
with a zero-wait-state 80286 CPU.

For slower RAM devices, special address Strobe logic or an interleaved memory configuration can be
used to increase the address and chip-select access times to permit operation at zero wait states.

LATCHED A
ADDRESS ')
MRDC » TO ADDITIONAL
A0 WRITE LOW MEMORY BANKS
MWT
WRITE HIGH _
BHE
HIGH BYTE
N WE .
Nao-11 [+]] ¢
L4 Al
2147H-1
(x8)
LATCHED po| ﬂ 8286
BANK SELECT o
OE
1 LOW BYTE t
N WE A
Aao-11 K
L Al
2147H-1
LATCHED (X8)
MEMORY 00|
SELECT »lcs 8286
DEN
_ OE
DT/R __——I }
T L/ > !
A
D15-0 <:> ——, TO ADDITIONAL
8286 (~ »’ MEMORY BANKS
(X2)

210760-88

Figure 4-13. Static RAM Interface

4-29 210760-001

|nte| MEMORY INTERFACING

Table 4-10. Timing Analysis for the 2147H-1 RAM

8-MHz iAPX 286
Timing 2147H-1 RAM 0 Wait States

(Max. Required) (Min. Provided)
Read . ‘
Address Access Time 35ns 575 ns
Chip-Enable Access Time 35 ns - 57.5ns
Read Command Access Time N/A N/A
Write
Address Access Time 35 ns 100.5 ns
Chip-Enable Access Time 35ns 100.5 ns
Command Access Time 20 ns 108.0 ns
Write Data Access Time 20 ns 100.5 ns
Address Hold Time Ons 60.5 ns
Write Data Hold Time 10 ns 60.5 ns

Pseudo-Static RAM Devices

Integrated dynamic RAM devices have many of the same characteristics as static RAM devices,
including a simple two-line control interface with output-enable and write-enable, and a simple chip-
enable and address inputs. All of the complexities of typical dynamic RAM devices, such as row- and
column-addressing, and refresh timing and arbitration, are integrated into the devices themselves. From
the system designer’s perspective, devices such as the 2186 and 2187 iRAMs can be treated in the
same manner as simple static RAM devices.

There are several considerations when designing systems using iRAMS which differ from designs using
static RAM devices. First, the iRAM must see a single edge (“glitchless”) transition of chip-enable
(CE) at the beginning of the memory cycle to allow the iRAM to latch addresses and to initialize
several internal clocks.

Second, since the iRAM accepts write data on the falling edge of write-enable (WE), the write data
must be valid before write-enable is activated.

The timing analysis of iIRAM systems is similar to that of static RAM systems, with the exception that
command delays may be needed in order to ensure write-data valid before write-command active.
Specific details on designing memory systems using the iRAM are described in Application Note
AP-132 “Designing Memory Systems with the 8K X 8 iRAM.”

Dynamic RAM Devices

The task of designing a dynamic RAM memory for an iAPX 286 system is made more complex by the
requirements for address multiplexing and memory-refresh logic. Fortunately, the 8207 Advanced
Dynamic RAM Controller simplifies this task considerably.

The 8207 Advanced Dynamic RAM Controller (ADRC) is a programmable, high-performance, systems-

oriented controller designed to easily interface 16K, 64K, and 256K dynamic RAMs to a wide range

4-30 210760-001

Intel MEMORY INTERFACING

of microprocessors, including the 80286 CPU. Dual-port configurations are supported by two independ-
ent ports that operate in both synchronous- and asynchronous-processor environments. The 8207 also
supports error detection and correction using the 8206 Error Detection and Correction Unit (EDCU).

The 8207 Controller timing is optimized for maximum performance. With fast dynamic RAM (such
as 2118-10’s) the 8207 can run at 0 wait states for most bus operations.

As shown in Figure 4-14, the 8207 can be controlled directly by the 80286 status lines or by 82288
command outputs, and can operate synchronously or asynchronously to the system clock. Figure 4-15
provides a block diagram for a single-port 8207 memory subsystem using the command interface. PCTL
is tied low to configure the 8207 in command mode for compatibility with the 80286 signals. CPU
status signals directly drive the read and write inputs to the controller while the 82284 CLK signal
provides the synchronous clock. Address lines connect directly to the controller, while data transfer is
controlled by two sets of latches between the memory banks and the CPU. A byte mark latch decodes
A0 and BHE to condition the write enable signals for the high- and low-byte memory banks.

The 8207 is capable of addressing 16K, 64K, and 256K dynamic RAMs, using an interleaved memory
arrangement. Memory can be divided into four banks, with each bank having its own RAS and CAS
signal pair. Low-order address lines serve as bank selects to allow interleaved memory cycles.
(Figure 4-16 shows the address connections to the ADRC for all three types of RAM devices.)

CLK __CLK
W CLK
80286

12|18
el

S0
80286 S1

w/io ’
ADDR

ADDR

(5

NOTE:
1 LATCH NOT REQUIRED IN SINGLE-PORT MODE.

Fast-Cycle Synchronous-Status Interface Fast-Cycle Asynchronous-Status Interface

|CLOCKl |CLOCK| INHIBIT ICLOCKl

v i v }

CLK 50 50 CLK WR CLK CLK &5 CLK_____ WRCLK
sif—»15i 82288 RD K S0 wre n
mio M0 G Mo wic MROCH L oen
80286 ALE 8207 80286 82288 LEN
ADDR PE ALE r pPE 8207
! STB Y
sTB
ADDRESS
LATCH - ADDRESS
DECODE > LATCH|
SYNCHRONOUS 80286 ’
Fast-Cycle Synchronous-Command interface Fast-Cycle Asynchronous-Command Interface

210760-89

Figure 4-14. 80286-8207 Interfaces

4-31 210760-001

Intel MEMORY INTERFACING

82284
READY gppy } OTHER ACK INPUTS
CLK
i
CLK
ALE
82288 -
DEN}— . CLK AACK
TRl |
[READY cLK Mi0s150 STROBES —\—_—'—,>
o
j’ PCTL MEMORY MEMORY
Mio| - f 8207 (UPPER) (LOWER)
§1 ¢ o RD WE—
50 qwR
80286 ADDR IN WE_ DI DO WE Ol DO
ADDR] {?
DATA I_—L]
STB | BO
BYTE
L > mank
LATCH BI
16,
VA
T 3
STB OE
8282 16,
BUFFER < 7
NOTE:
THE BYTE MARK LATCH MAY ALSO BE STROBED WITH LEN
210760-90

Figure 4-15. 8207 Single-Port Memory Subsystem

Interleaving memory cycles between different banks of RAM devices result in the access time for a
current cycle overlapping with the RAM precharge period for the previous cycle. When back-to-back
transfers to the same memory bank occur (about 6% of the time), the 8207 automatically inserts a wait
‘state into the current cycle, adding about 6% to the overall execution time. Slower memory devices
can be used with the 8207 at zero wait states than would be possible with RAM controllers that do not
support interleaved memory access. <

4-32 210760-001

Intel MEMORY INTERFACING

(NOTE 1)—»1 AHB v) (NOTE 1)j AHB
- (NOTE 1)—»] AH? ,
A12-A20 3"”"""“ A11-A18T j >‘AHD—AM7 A10-A16 | AHO-AHE
© g2 8207
8207 (NOTE 1)—»|aLa 8297 (NOTE 1)—»{ ALS

(NOTE 1)—»{ AL7

A3-A11 > ALO-AL8 A3-A10 ; ALO-AL7 A3-A9 J ALO-AL6

A1, A2 > BS0, BS1 A1, A2 > BS0, BS1 A1,A2 "> BS0, BS?

256K RAM INTERFACE 64K RAM INTERFACE 16K RAM INTERFACE
[q]onss:)
UNASSIGNED ADDRESS INPUT PINS SHOULD BE STRAPPED HIGH OR LOW.
A0 ALONG WITH BHE ARE USED TO SELECT A BYTE WITHIN A PROCESSOR WORD.

]LOWORDERADDRESSBWSAREUSEDASBANKSELECTmPUTSSOTHATCONSECUﬂVEMEMORYACCESSREQUESTS
ARE TO ALTERNATE BANKS ALLOWING BANK INTERLEAVING OF MEMORY CYCLES.

210463

Figure 4-16. 256K, 64K, and 16K RAM Address Connections

TIMING ANALYSIS FOR THE 8207 RAM CONTROLLER

The analysis of timing for dynamic RAMs is more extensive than for a static RAM or EPROM. The
analysis must include RAS, CAS, and refresh timing as well as standard bus interface timing.
Figure 4-17 shows the memory subsystem that serves as the model for the timing analysis in this section.

The subsystem shown in Figure 4-17 is a single-port configuration designed with an 8207 ADRC and
four banks of 2118-10 16K x 1 bit dynamic RAMs. Each bank is sixteen bits wide and is divided into
a high byte (D15-8) and a low byte (D7-0). Most 8207 signals connect directly to 80286, 82288, and
82284 inputs and outputs. No address buffering is required. The RAM data inputs and outputs are
buffered, with the 82288 DEN and DT/R signals controlling the output data buffers. The PEA (Port
Enable A) input to the ADRC is a non-latched chip-select driven by address-decode logic.

The 8207 is programmed at reset through strapping options and a 16-bit program word. PCTLA,
PCTLB, and RFRQ are strapped high or low to program port and refresh options. PCTLA is tied low
to select command mode. (PCTLB is not shown; PEB should be strapped high to ignore the port B
interface.) RFRQ is tied high to program the 8207 for self-refresh mode. PDI (Program Data Input)
accepts a 16-bit serial bit stream containing the program word. By strapping PDI high or low, one of
two sets of default parameters are selected. The example circuit in Figure 4-17 is programmed with
the non-ECC mode default parameters shown in Table 4-11.

4-33 210760-001

MEMORY INTERFACING

IS W

K

HIGH LOW
A0, 2118-10 2118-10
- 06 (x8) X8)
A3-9, ALO-6, A0-6 (DI
A10-F AHO-6
' o RASO 1
ALz L of ras
CASO DO
AL8 xS
AH7
2118-10 | 2118-10
AHB (x8) (X8)
< :> A0-6]
RAS1 :
’ ——of RAS o
Al ——————p] BSO cAs1
' l—a| CAS
A2 ————————»{BS1 8207 »
DRAM — -
; CONTROLLER]2 &88) 21&%)10
6 —————————Q WRA
: RAS2
CLK —————————»] CLK o —— FAS 0o
: L exs
RESET RESET
o 2118-10 | 2118-10
82284 SROY ———— | AACKA xo) s
FROM O A0-6 DI
DECODELOGIC ™ PEA anss ‘
_r PCTLA i .
L CAS3 Jors -
RFRQ LEN WE WE WE
+5v
° 1 I L 74500 |
BFE - sTB : l : Ce o S
Bl
8282 74500
LATCH
A0 ‘
OE
74500 = +5v
- DEN) | ’
74504 . '
.DT/R oF T
8287
BUFFER
OE T
- 8287
pree BUFFER '

210760-91

Figure 4-17. 128K-Byte Memory Subsystem

210760-001

Intel MEMORY INTERFACING

Table 4-11. Non-ECC Mode Programming, PDI Pin (57) Tied to Ground

Port A is Synchronous

Port B is Asynchronous

Fast-cycle Processor Interface (80286)

Fast RAM (2118-10 compatible)

Refresh Interval uses 236 clocks

128 Row refresh in 2 ms; 256 Row refresh in 4 ms.
Fast Processor Clock Frequency (16 MHz)

“Most Recently Used” Priority Scheme

4 RAM Banks Occupied

As shown in Figure 4-18, PDI can be driven by a 16-bit serial shift register to program the 8207 for
non-default operation. Sixteen bits are loaded into the register in parallel during reset and are shifted
out in serial by the 8207 program clock (PCLK).

Figure 4-19 shows the timing for three back-to-back memory cycles: a read from bank 1, a write to
bank 2, and a read from bank 2. Since the first two cycles are to different memory banks, the RAS for
the second cycle is overlapped with the RAS precharge period for the first cycle to allow the subsystem
to respond with no wait states.

In the case of back-to-back cycles to the same bank (cycles 2 and 3), the controller automatically waits
for the RAS precharge period between cycles before asserting RAS. AACKA from the 8207, which
must be connected to the 82284 SRDY input, is delayed long enough to guarantee an additional wait
state to compensate for the slower subsystem response time. The 82288 SRDY input is used rather
than the ARDY input to accommodate the critical AACKA signal timing. ~

SYSTEM \ . .
RESET / ‘ >| RESET
;———— PCLK
[OAD CLK 8207
patal
PL SO SHIFT REG. g7/ PDI
DATA IN

{01

1| JUMPER OPTIONS

e

210463

Figure 4-18." External Shift Register Interface

4-35 210760-001

ntel MEMORY INTERFACING

A23-0, M/I0,
con/is e\ A A X

]
>
f

NOTE

OVERLAP 1 WAIT REQUIRED

RAST

— k____ -

CAST

E

AOo.7 coLumn X row) COLUMN {row) coumn X

AACKA

2118

onripty mmmmmmmdmmmmme () mmmmmmmohm e (e
|

. i 1
--(READDATAX WRITE DATA)--------- 'READ DATA) o = mm e

R

80286 DATA

-—WL—-—

210760-92

Figure 4-19. 128K-Byte Memory Subsystem Timing

4-36 210760-001

Intel MEMORY INTERFACING

RAM timing to determine device compatibility is measured from RAS going low to data valid at the
CPU pins. Maximum allowed RAS access time is:

8 MHz 6 MHz
3 CLK cycles 187.5 ns 250 ns
— RAS active delay (max) — 35.0ns — 35ns
— 8287 transceiver delay (max) — 22.0ns — 22ns
— 80286 required data setup (min) : — 100 ns — 20ns
Max. allowed RAS access time = 120.5 ns 173 ns

The corresponding CAS access time is:

8 MHz 6 MHz
2 CLK cycles 125 ns 166.6 ns
— CAS active delay (max) — 35ns — 350ns
— 8287 transceiver delay (max) — 22ns — 220ns
— 80286 required data setup (min) — 10 ns —_20.0 ns
Max. allowed CAS access time = 58 ns 89.6 ns

For typical DRAM devices, the CAS access time will be the limiting parameter. Table 4-12 shows the
timing requirements of the 2118-10 DRAM and the times allowed by the 80286 and 8207 operating
with zero wait states.

The timing values shown in the table indicate that the 2118-10 DRAM is compatible with an 8-MHz
1APX 286 and 8207 operating at zero wait states. The circuit shown in Figure 4-19 will run at 0 wait
states for most memory cycles; the subsystem will run with 1 wait state only when back-to-back accesses
occur to the same memory bank.

With 2118-15 or 2164A-15 devices, this same circuit can be run at 1 wait state for most bus cycles on
an 8-MHz system (select slow RAM option in program word). For 6-MHz iAPX 286 systems, 2118-15
or 2164A-15 memories can be used at zero wait states, as shown in Table 4-13. Detailed timing speci-
fications for the 8207 DRAM Controller are provided in the Appendices.

Table 4-12. 8-MHz Timing Analysis for the 2118-10 DRAM

8-MHz iAPX 286

Timing Parameter

2118-10 DRAM
(Max. Required)

with 8207
0 Wait States
(Min. Provided)

RAS Access Time
CAS Access Time

100 ns
55 ns

120.5 ns
58 ns

Table 4-13. 6-MHz Timing Analysis for the 2164A-15 DRAM

Timing Parameter

2164A-15 DRAM
(Max. Required)

6-MHz IAPX 286
with 8207
0 Wait States
(Min. Provided)

RAS Access Time
CAS Access Time

150 ns
85 ns

173 ns
89.6 ns

4-37

210760-001

intel

MEMORY INTERFACING

ERROR CORRECTION USING THE 8206 EDCU

The 8207 RAM Controller supports error detection and correction using the 8206 Error Detection and
Correction Unit (EDCU). Figure 4-20 shows a memory subsystem using the 8206 EDCU with the

8207 RAM Controller.

The 8207 interface to the RAM devices in ECC mode is almost identical tok that in non-ECC mode.
RAM is divided into four banks with twenty-two devices in each bank. Sixteen RAM devices store
data for use by the CPU; the remaining six RAM devices store check bits for use by the 8206 (EDCU).

DATA
51 ol cBl
- RDA A0 A
1 WRA
RESET - .
RESET RAS RAS |
CLK o i
— »| cLk CAS CAS
SRDY
AACKA WE WE
‘ 8207
AD?RESS ,> oram w2 Dvg:':‘mc
/] A contRoLLER' (16-BIT WORD
R/W + 6 CHECK BITS)
—»1 FWR ERROR f N
PSEN DO cBO
D! cBl
w2
R/W
CE 8206
‘ . EDCU -
N BYTE ' BYTE BM1
MARK |) MARK Mo
—1 ECODER :V\ S
— DECO LATCH 00 8o ’
210760-93
_ Figure 4-20. 8207 Memory Subsystem with ECC
4-38 210760-001

|nte| MEMORY INTERFACING

During data writes, the EDCU computes a check code and writes the code into the check RAM.
During data reads, the EDCU compares the read data to the check code to detect errors. Single-bit
errors are corrected and double-bit or multiple-bit errors are flagged. The 8206 ERROR and CE
(Correctable Error) signals inform the 8207 of error status. R/W (Read/Write) and WZ (Write Zero)
from the 8207 control write/read and initialization modes of the 8206. Byte marks determine whether
a byte or word write is performed by the 8206.

It is important to note that the 8206 EDCU introduces a propagation delay of 67 ns (max) into memory
cycles. The ADRC automatically compensates for the delay by inserting an additional wait state into
all bus cycles to ECC-protected memory.

DUAL-PORT MEMORY SUBSYSTEMS USING THE 8207 ADRC

The 8207 RAM Controller contains on-chip arbitration logic to control dual-port memory subsystems.
The concept of a dual-port memory subsystem, permitting access by an 80286 over the 80286 local
bus and also access by other processors over a system bus, was introduced in Chapter Two.

In dual-port mode, the 8207 must arbitrate memory requests between port A, port B, and port C—the
internal refresh port. Two port priority options can be programmed to select which port has priority
over the others in gaining access to the RAM memory array. In addition, the 8207 supports a LOCK
input to prevent a second port from gaining access to the memory array until the port asserting the
LOCK request has released the memory.

Chapter Seven contains a detailed explanation of how to configure a dual-port subsystem between the
80286 local bus and the Multibus system bus. Specific examples are given for a dual-port memory
subsystem with error checking and correction, and specific guidelines are given for implementing the
LOCK input to the 8207 to prevent deadlock situations.

4-39 210760-001

1/0 Interfacing

CHAPTER 5
170 INTERFACING

The iAPX 286 supports both 8-bit and 16-bit input/output devices that can be mapped into elthcr a
special 1/O-address space or the 1APX 286 memory-address space. ‘

¢ 1/O-mapping permits I/O devxces to reside in a separate 64K I/0 address space. Four special I/O
instructions are avallable for device communications, and the I/O Privilege level offers I/O device
protection.

¢ Memory-mapping permits I/O devices to reside anywhcre in the iIAPX 286 memory space. The full
80286 instruction set can be used for I/O operations, and the full memory-management and protec-
tion features of the iAPX 286 can be used for device protection.

This chapter describes how to design I/O devices into an iAPX 286 system:

* The first section of this chapter establishes the tradeoffs between 1/O-mapped and memory-mapped
1/0.

* The second section describes several techniques for connecting data buses and generating chip-
selects for both 8-bit and 16-bit I/O devices. Various alternatives are dcscrlbed for both I/O-mapped
and memory-mapped devices.

» The third section discusses the timing considerations for I/0 opcratlons, and contains examples of
worst-case timing analyses.

¢ The fourth section contains specific I/O interface examples, including interfaces for the 8274 Multi-
Protocol Serial Controller, the 8255A Programmable Peripheral Interface, and the 8259A
Programmable Interrupt Controller.

o The last section of this chapter introduces the iSBX bus interface; the iSBX bus allows single-board
computer systems to be modularly expanded simply by plugging in I/O-mapped iSBX Mulumodule
Boards.

I/0-MAPPING VS. MEMORY-MAPPING

The 80286 CPU is capable of supporting either I/O-mapped or memory-mapped I1/O devices. As
outlined in the introduction, these two alternatives differ in three key respects. Although a decision to
use one alternative or another will depend on the particular requirements of the design, the tradeoffs
between these alternatives should be considered.

Address-Decoding

1/0O-mapped devices reside in a separate 64K 1/O address space, whereas memory-mapped devices
reside in the full 16 Mbyte physical memory space. For this reason, the address-decoding required to
generate chip-selects for I/O-mapped devices may be simpler than that required for memory-mapped
devices.

iAPX 286 Instruction Set

I/O-mapped devices are accessible to programmers using the IN, OUT, INS, and OUTS instructions
of the iAPX 286. IN and OUT instructions transfer data between I/O addresses and the AX (16-bit

5-1 210760-001

intel

transfers) or AL (8-bit transfers) registers. The first 256 bytes of I/O space are directly-addressable
by the 1/0O instructions, whereas the entire 1/O space (64K bytes) can be indirectly-addressed through
the DX register. INS and OUTS are string instructions used to transfer blocks of data between memory
and I/0O devices. For more information on these I/O instructions, see the iAPX 286 Programmer’s
Reference Manual.

1/0 INTERFACING

Memory-mapped devices are accessible using the full iAPX 286 instruction set, allowing efflclent coding
of such tasks as 1/O-to-memory, memory-to-I/O, and I /O-to-I /O transfers, as well as compare and
test opcratlons ‘

Figure 5-1 illustrates the advantages of using memory-mapped I/O over I/O-mapped I/O in perform-
ing a simple bit-manipulation task. After setting up pointers to the I/O device, the memory-mapped
I/0 example accomplishes the task in a single instruction; the I/O-mapped example requires three.

Device Protection

I/O-mapped devices are offered protection by the iAPX 286 1/0 Privilege level. This privilege level
can be used either to prevent a task from accessing any I/0 devices, or to permit the task access to all
of the I/O-mapped devices. ‘

Memory-mapped devices fall under the protection of the iAPX 286 memory-management and protec-
tion features. Depending on. how devices are mapped into the memory space, individual tasks may be
given access to particular I/O devices, while other devices are either visible-but-protected, or else mapped
entirely out of the task’s visible address space. Memory-mapping of devices thus permits more flexibil-
ity in offering protection of individual system resources than I/O-mapping does.

BIT-MANIPULATION FOR
1/0-MAPPED 1/0 DEVICE

SETBIT: MOV DX,STAT_REG ; point to status

IN AL,DX s read status word
OR AL,10H ;s set bit 4
ouT DX, AL ; output status word

BIT-MANIPULATION FOR
MEMORY-MAPPED /0 DEVICE

I1/0 base addr

SETBIT: MOV A
’ E

O0_SET_-BASE ;
MoV X

X, 1
S,A

sy set bit 4 of

load seg base

OR ES:BYTE PTR STAT_REG, 10H

status word

Figure 5-1. Comparing Memory-Mapped and 1/0-Mapped 1/0

5-2

210760-001

Intel 1/0 INTERFACING

INTERFACING TO 8-BIT AND 16-BIT I/0

Although the iAPX 286 can address I/O devices as either byte (8-bit) or word (16-bit) devices, several
considerations must be observed when connecting these devices to the iAPX 286 bus. The following
sections describe data bus connections and chip-select techniques for both I/O-mapped and memory-
mapped I/O devices.

Address Decoding

As mentioned in the previous section, the address-decoding for I/O-mapped devices is somewhat simpler
than that for memory-mapped devices. One simple technique for decoding memory-mapped 1/0
addresses is to map the entire iAPX 286 I/0 space into a 64-Kilobyte region of the iAPX 286 memory
space. If desired, the address decoder can be configured so that the I/O devices respond to both a
memory address and an I/O address. This configuration allows system compatibility with software
using the iAPX 86-family I/O instructions, while also permitting the use of software that takes advan-
tage of memory-mapped I/0 and the iAPX 286 memory-management and protection features.

Another factor affecting decoder complexity is the particular choice of addresses for either I/O-mapped
or memory-mapped devices. Before selecting addresses for various I/O devices, however, designers
must be aware of several restricted address spaces imposed by the iAPX 286 architecture. Figure 5-2
shows these restricted address regions for both memory-mapped and I/O-mapped devices.

RESERVED MEMORY LOCATIONS RESERVED I/0 LOCATIONS
FFFFFFH
DEDICATED
FFFFFOH
FFFFEFH
FFFFH
OPEN
OPEN
400H
3FFH 100H
OFFH
DEDICATED
DEDICATED
OF8H
OF7H
OPEN
000H 000H
210760-135

Figure 5-2. Restricted Address Regions

5-3 210760-001

Intel 1/0 INTERFACING

A third factor worth considering when decoding addresses is'that an address decoder can be made less
complex by decoding fewer of the lower address lines, resulting in larger granularity in the addresses
corresponding to an individual 1/O device. The 64-K I1/O address space of the iAPX 286 leaves plenty
of freedom for allocating addresses to individual I/O devices.

Memory-Mapped I/0

Figure 5-3 shows a simple decoding circuit for mapping the iAPX 286 I/O space into a 64K region of
the iAPX 286 memory space. This technique, described above, allows individual I/O devices to respond
to both a memory address and an I/O address. This particular circuit maps the I/O space into the
region of the iIAPX 286 memory space which corresponds to addresses FE 0000H through FE FFFFH
(this region is the second 64K region from the top of the physical address space; the top 64K reglon
typically contains the code for iAPX 286 system-reset processing).

When this memory-mapping technique is used, the low sixteen address bits must still be decoded to
generate chip selects (in the same manner as for I/O-mapped devices). The IORC and IOWC
commands, rather than. MRDC and MWTC, are generated by the Bus Controller whenever a bus
operation accesses addresses in the specified region. For this reason, subsequent sections of this chapter
will not distinguish between memory-mapped and I/O-mapped devices. '

The maximum decode time for the simple gating arrangement shown in Figure 5-3 is:

2 CLK cycles at 8 MHz 125.0 ns

— Address valid delay k — 60.0 ns

— M/IO setup time (82288) — 225ns
42.5 ns

or 42.5 ns from address valid to allow sufficient setup time for M/TO to be sampled by the 82288 Bus
Controller.

A23
L] L]
L] L]
o hd 82288

Asz - BUS

CONTROLLER
Ats DC
TORC
M/I0 M/10 fowc —

30 »1 350 MRD -
- »| 57 MWTC >

210760-94

Figure 5-3. Memory-Mapping I/0 Devices

5-4 210760-001

Intel 170 INTERFACING

The same circuit technique shown in Figure 5-3 may be used to memory-map 1/O devices that reside
on the Multibus. The Bus Controller shown in the circuit would then be used to control the Multibus
signals; this technique is discussed further in Chapter Seven in conjunction with Multibus I/0.

8-Bit 1/0

Although 8-bit 1/0O devices may be connected to either the upper- or lower-half of the data bus, it is
recommended that designers use the lower half of the data bus for 8-bit devices.

The particular address assigned to a device determines whether byte transfers will use the upper- or
lower-half of the data bus.

e If a device is connected to the upper half of the data bus, all I/O addresses assigned to the device
must be odd (A0 = 1).

» If the device is on the lower half of the bus, its addresses must be even (A0 = 0).

Since A0 will always be high or low for a specific device, this address line cannot be used as an address
input to select registers within a device. If a device on the upper half and a device on the lower half of
the bus are assigned addresses that differ only in AO (adjacent odd and even addresses), A0 and BHE
must be conditions of chip select decode to prevent a write to one device from erroneously performing
a write to the other. Figure 5-4 shows several techniques for generating chip selects for I/O-mapped
devices.

The first technique (a) uses separate 8205’s to generate chip selects for odd- and even-addressed byte
peripheral devices. If a word transfer is performed to an even-addressed device, the adjacent odd-
addressed I/O device is also selected. This allows accessing the devices individually for byte transfers
or simultaneously as a 16-bit device for word transfers. The second technique (b) restricts the chip
selects to byte transfers. Word transfers to odd addresses, since they are performed as two byte trans-
fers, are also permitted. The last technique (c) uses a single 8205 to generate odd and even device
selects for byte transfers. Even device selects are generated for both byte and word transfers to even
addresses.

If greater than 256 bytes of I/O space are required, additional decoding beyond what is shown in the
examples may be necessary. This can be done with additional TTL, 8205’s, or PROMs. Figure 5-5
shows an Intel 3605A bipolar PROM used as an I/O address decoder generating latched chip-selects.
The bipolar PROM is slightly slower than multiple levels of TTL (50 ns for PROM vs. 30 to 40 ns for
TTL), but provides full decoding in a single package, and allows easy reconfiguration of the system
I/0 map by inserting a new PROM; no circuit board or wiring modifications are required. By using
ALE to latch the decoded chip selects, up to 68 ns are available for decoding without affecting address
access timing:

2 CLK cycles at 8 MHz 125 ns
minus address valid delay (max) — 60 ns
plus ALE delay (min) + 3ns
Minimum address decode time = 68 ns max

One last technique for interfacing with 8-bit peripherals is considered in Figure 5-6. The 16-bit data
bus is multiplexed onto an 8-bit bus to accommodate byte-oriented DMA or block transfers to memory-
mapped 8-bit I/O. Devices connected to this interface may be assigned a sequence of odd and even
addresses rather than all odd or all even.

5-5 210760-001

1/0 INTERFACING

ADDRESS

Ao

BHE

ADDRESS

BHE

ADDRESS

Ao

O
¢)|Ao2 3
8205
Ey
ofE2
E3 oy
Ao2 Qo
8205 [
E
E3 07
(a)
Ag.2 Op
8205
E
Ao E2
BHE E3 [o]
. Ag.2 Og
8205
Ey
L———0 E_z
: E3 ‘07
(b)
Ag.1 Qo £>
8205
Az
Ej
2
Es o

(c)

EVEN ADDRESSED
WORD OR BYTE
PERIPHERALS

ODD ADDRESSED
BYTE PERIPHERALS

EVEN ADDRESSED
BYTE PERIPHERALS

ODD ADDRESSED
BYTE PERIPHERALS

EVEN ADDRESSED
PERIPHERALS
(WORD/BYTE)

ODD ADDRESSED
PERIPHERALS
(BYTE)

210760130

Figure 5-4. Generating I/0 Chip Selects

5-6

210760-001

1/0 INTERFACING

8 8282
M/I‘O—wc cs1 1
AO————cfCs2 04>]
A6 Ao 03 ———— SELT
A7 S Aq o2 —-— 3EL2
A8 Z 1a, 3806 0512 LATCH |———SE3
A9 4 Jas AT Al _ais
A10 : A Ag :‘; A4
A11 3 As Az A13
A12 | As
STB

ALE

210760-95
Figure 5-5. Bipolar PROM Decoder for 8-bit or 16-bit I/0 Devices
DT/R
OE T
8-BIT
D45-Dg B 828 A D7-Dg PERIPHERAL
DATA BUS
80286
16-BIT
DATA .
BUS oF N .
ALE—-Do—
DEN < D7-Do B 828 A
PERIPHERAL CS t
—1
BRE D
Ao ﬂD ‘
210760-96

Figure 5-6. 16-bit to 8-bit Bus Conversion

5-7 210760-001

Intel 1/0 INTERFACING

16-Bit 1/0

For efficient bus utilization and simplicity of device selection, 16-bit I/O devices should be assigned
to even addresses. As shown in Figure 5-7, both AO and BHE should be conditions of chip-select decode
to guarantee that a device is selected only for word operations.

Linear Chip Selects

Systems with 15 or fewer I/O pbrts that reside only in 1/O space, or that require more than one active
select (at least one low active and one high active) can use linear chip selects to access the 1/O devices.
Latched address lines Al through A15 connect directly to I/O device selects as shown in Figure 5-8.

TIMING ANALYSIS FOR 1/0 OPERATIONS

By analyzing the worst-case timing for 80286 I1/O cycles, designers can determine the timing require-
ments for various I/O devices and the need for wait states in the iAPX 286 bus cycle. This section
explains how to perform a worst-case timing analysis for I/O operations.

Timing for 80286 I/O cycles is identical to memory cycle timing in most respects and, like memory
timing, is dependent on a particular model. Figure 5-9 shows the model used here to discuss worst-case
timing analysis. Address and chip selects are measured from the outputs of latches (strobed by ALE).
Data valid for reads is measured at the data pins of the CPU. Data valid for writes is measured at the
data inputs to the I/O device. IORC and IOWC are 82288 outputs. Figures 5-10 and 5-11 show I/O
read and write timing for no-wait-state operation.

ADDRESS -) Aoz 0o -
, = . EVEN ADDRESSED
Ao 0 ;_‘ 8205 \ ;> WORD PERIPHERALS
I oy

Es 07

210760-131

Figure 5-7. 16-bit 1/0 Decode

5-8 210760-001

I/0 INTERFACING

ADDRESS a
LINE &

{ORC —Of RD 1/0 DEVICE
IOWC —Of Wh

(A) SEPARATE 170 COMMANDS

/0 DEVICE

§3 38

110 DEVICE

g
Q
EEE

(B) MULTIPLE CHIP SELECTS

, . 210760-97
Figure 5-8. Linear Selects for 1/0 Devices
The timing parameters used in the analysis are defined as follows:
TLAVCML = Latched address valid to command active
TCMHLAX = Latched address hold from command inactive
TCMLCMH = Command pulse width
TCMLDV = Command active to data valid
TLAVDV = Latched address valid to data valid
TDVCMH = Data valid to command inactive
TCMHDX = Data hold from command inactive
TCMHDF = Data float from command inactive
TLCECML = Latched chip enable to command active
TCMHLCEX = Latched chip enable hold from command inactive
TLCEDV = Latched chip enable to data valid
TCMLCML = Interval from one operation to the next
TCMHCML = Interval between commands (not shown)
5-9 210760-001

Intel 1/0 INTERFACING

’ N
> ADDRESS >
8282 .
LATCHES
‘:> pecobe L1 CHIP ENABLE -
— sTB
f ALE
ORC
@ 82288
a BUS 170
£ CONTROLLER | owe DEVICE
< : - o
DT/R DEN :
1 _JD_I
. T . - OE
80286 m 8286
‘ CcPU BUFFER

210760-98

Figure 5-9. 1/0 Cycle Model

The worst-case timing values can be calculated by assuming the maximum delay in the latched address,
chip select, and command signals, and the longest propagation delay. through the data buffers (if present).
These calculations provide the minimum possible access time and can be used to determine the
compatibility of I/O devices.

Read Operations

For read operations, data must be valid at the pins of the 80286 10 ns before the falling edge of CLK
at the end of T. The important timing parameters that determine whether I/O devices require one or

more wait states are the address and command access times required by the device before read data
will be valid. '

Taking into consideration the maximum propagation delay through the 8286 data transceivers (30 ns
max), the worst-case address access time provided during read operations with zero wait states is:

3 CLK cycles at 8 MHz o . 187.5 ns

— ALE active delay (max) — 15.0ns

— 8282 address latch delay (max) ' ‘ — 45.0 ns

— 8286 data buffer delay (max) " — 30.0 ns ‘
— Required data setup (min) — 10.0 ns
Minimum address access time = + 87.5 ns min

5-10 210760-001

ntel 1/0 INTERFACING

Ts Tc Ts
« %/ v/ Y S S
LATCHED
ADDRESS
TLAVDV >
o > | \[<—TCMHDF
DATA—— >>
78
TLAVCML |——— TCMLDV——>= [~3] l=TCMHDX
TLCECML—» — TOVC—o| |-
1oRe \ s
\N /
o TCMHLA
< TCMLC = TeMHLCEX ™
210760-99
Figure 5-10. 1/0 Read Cycle Timing
Ts Tc Ts
«x_/ 2/ /S S }
LATCHED
ADDRESS
~ TCMHLAX
TDVCMH < TCMHLCEX
K IO
—] t— TDVCML
— — T oAvonL € TCMHDX>]
| TLCECML s
\ 7/
- ———TCMLCMH >
210760-100

Figure 5-11. 1/0 Write Cycle Timing

5-11 210760-001

Intel 1/0 INTERFACING

The calculations for the worst-case command access times provided during read cycles are similar:

2 CLK cycles at 8 MHz 125 ns
— Cmd active delay (max) — 20 ns
— 8286 data buffer delay (max) — 30 ns
— Required data setup (min) — 10ns

Minimum command access time = 65 ns min.

If wait states are inserted into every I/O cycle, access times for the relevant parameters are increased
by 125 ns for each wait state. Address, chip enable, and command times for a single buffered system
running with from zero to two wait states are shown in Table 5-1.

Another critical timing parameter for I/O read operations is data float time. Data float time measures
the time required by the I/O device to disable its data drivers following a read operation. If the iAPX
286 attempts to perform a write operation immediately following a read from an I/O device, the I/O
device must disable its data drivers before the DEN signal from the Bus Controller re-enables the 8286
data transceivers, or data bus contention will occur.

For the I/O configuration shown in Figure 5-9, the maximum data float time afforded an 1/0 device
is 57.5 ns. For a typical I/O device, this allowed data float time is inadequate. However, if a buffered
local bus contains only I/O devices, the iAPX 286 cannot perform back-to-back read-write operations
to that bus, and so the circumstances producing bus contention will not occur. If the I/O devices share
the bus with memory such as static RAMs, then back-to-back read-write operations are possible and
bus contention must be specifically prevented. '

To accommodate the data float time requirements of typical I/O devices, and thereby avoid bus
contention, the output enables of the data bus tranceivers can be delayed for the necessary length of
time. Figure 5-12 shows an example circuit that delays enabling the data transceivers following a read
operation to the selected I/O devices. This same circuit, described in the previous chapter for use with
memory devices, provides a maximum data float time for a peripheral of:

2 CLK cycles at 8 MHz (Cmd to DEN active) 125 ns
— Cmd inactive delay (max) — 15ns
+ 8286 enable time (min) + 10 ns

Maximum data float time = 120 ns max.

Write Operations

For typical write operations to an I/O device, data is latched into the device on the rising edge of the
Write command at the end of T.. The important timing parameters that determine whether wait states
are required are the address and command access times before command high.

Table 5-1. Timing Analysis for 8-MHz 1/0 Read Operations

Worst-Case Access Timé Zero One Two
Before Data Valid Wait States Wait State Wait States
Address Access time (min) 87.5ns 2125ns 337.5 ns
Chip-Select Access time (min) 87.5ns 2125ns 337.5 ns
Command Access time (min) 65 ns 190 ns 315 ns
5-12 210760-001

lntel 1/0 INTERFACING

82288
BUS
CONTROLLER
IOWC IOWC
ORC » | ioRe
R DEN BUS SELECT
Dr/R (LATCHED OUTPUT OF
ADDRESS DECODER)
1
7415175 74LS175
1’0
—1o alo 5 DEVICE
yaN 2\
CLK—-Df l
T OE
) 8286 '
< . DATA > TRANSCEIVER <:> P1sDo
8286

210760-101

Figure 5-12. Delaying Transceiver Enable

The worst-case address-valid to command-high access time provided during write operations with zero
wait states is:

3 CLK cycles at 8§ MHz ‘ 187.5 ns
— ALE active delay (max) — 150 ns
— 8282 address latch delay (max) — 450 ns
+ Cmd inactive delay (min) + 30ns

Minimum address access time = 130.5 ns min

Worst-case command-active to command-inactive timing is calculated in a similar manner (command
timing for write operations is not affected by buffers in the data path):

2 CLK cycles at 8 MHz , 125 ns
— Cmd active delay (max) — 20 ns
+ Cmd inactive delay (min) + 3ns

Minimum command access time = 108 ns min

210760-001

Intel 1/0 INTERFACING

The data-valid to command-inactive time for write operations must include data buffer delays. Assum-
ing a 30 ns maximum delay through 8286 buffers, the data-valid to command-inactive setup time is:

3 CLK cycles at 8 MHz 187.5 ns
— data valid delay (max) — 50.0 ns
— 8286 data buffer delay (max) — 30.0 ns
+ Cmd inactive delay (min) + 3.0ns
Minimum data setup time 110.5 ns min

If wait states are inserted into every I/O cycle, each of the relevant parameters for write operations
are increased by 125 ns for each wait state. Address, chip-enable, command, and data-valid times for
a single buffered system running with from zero to two wait states are shown in Table 5-2.

The CMDLY and CEN inputs to the 82288 can significantly alter bus cycle timing. CMDLY can
delay commands to produce more address, chip enable, and (for write operations) data setup time
before a command is issued. CEN can hold commands and data buffer control signals inactive, also
altering bus cycle timing. When used, the effects of these inputs must also be included in any worst-
case timing analysis.

Matching I/0 Device Requirements

The timing requirements of various I/O devices can be determined by comparing the timing specifi-
cations for a device with the worst-case values for 80286 I/O cycles already discussed. From this
comparison, the required number of wait states and/or command delays for both read and write cycles
can easily be determined.

Table 5-3 shows the correspondence between important 80286 timing parameters and the timing
requirements for Intel peripherals.

For an iAPX 286 system operating at 8 MHz, two wait states are required to produce adequate timing
for typical I/O devices. One or more command delays may be required to ensure valid chip-select and
address inputs before the command becomes active. Table 5-4 shows the wait-state and command-delay
requirements of a variety of common peripherals.

170 INTERFACE EXAMPLES

This section shows 1/0 interfaces to the 8274 Multi-Protocol Serial Controller, the 8255A-5
Programmable Peripheral Interface, and the 8259A-2 Programmable Interrupt Controller.

Table 5-2. 80286 Timing Analysis for 1/0 Write Operations

Worst-Case Access Time Zero One Two
Before Command High Wait States - Wait State Wait States
Address Access time (min) 130.5 ns 255.5 ns 380.5 ns
Chip-Select Access time (min) 130.5 ns 255.5 ns 380.5 ns
Command Pulse width (min) 108 ns 233 ns 358 ns
Write Data Setup Time (min) 110.5 ns 235.5 ns 360.5 ns

5-14 210760-001

Intel 1/0 INTERFACING

Table 5-3. 80286/Peripheral Timing Parameters

80286 Peripheral Peripheral

Cycle Read Write
TLAVCML TAR TAW
TCMHLAX TRA TWA
TCMLCMH TRR TWW
TCMLDV TRD —
TCMHCML TDF TRV
TLAVDV TAD —
TCMLCML TRCYC —
TDVCMH — TDW
TCMHDX — -~ TWD
TLCECML TAR TAW
TCMHLCEX TRA TWA
TLCEDV TRD —

Table 5-4. Timing Requirements for Selected Peripherals

Intel Required Required
Peripheral Wait States Command Delays
8251A 2 1
8254-2 2 1
8255-5 2 0
8259A 2 0
8271 2 0
8272 2 0
8274 2 0
8291 2 0
8295A 2 0

8274 Interface

The 8274 Multi-Protocol Serial Controller (MPSC) is designed to interface high-speed serial commu-
nications lines using a variety of communications protocols, including asynchronous, IBM bi-synchron-
ous, and HDLC/SDLC protocols. The 8274 contains two independent full-duplex channels, and can
serve as a high-performance replacement for two 8251 A Universal Synchronous/Asynchronous Receiver
Transmitters (USARTS).

Figure 5-13 shows the signals required to interface an 8274 MPSC to an iAPX 286. The 8274 MPSC
is accessed by the iAPX 286 as a sequence of four 8-bit I/O-address or memory-address locations. For
interrupt operation, the 8274 can respond to 80286 interrupt-acknowledge sequences in the same manner
as an 8259A Interrupt Controller, and can be used in conjunction with a master 8259A Interrupt
Controller in a cascaded configuration.

The chip-select and address inputs (CS, AO, and A1) to the 8274 must all be latched. Typically, address
input AO and A1 would be connected to the latched address lines A1 and A2, respectively, of the local
address bus. A single level of buffering is typically used on the 8 data lines between the CPU and the
8274 MPSC.

5-15 210760-001

Intel 1/0 INTERFACING

8274
D0-D7 DoD; SERIAL
CONTROLLER

Al =i}

A2 i

PCLK PERIPRERAL CS ——]
I TORC ————p-|

v TOWC |

SERIAL
CHANNEL
d A
Tl ob— e , |
‘ SERIAL
: RESET—DO—-> RESET CHANNEL
B

§38*2

Q
=

i

450NS
DELAY

3
Z
>

V iNT
INTA INT
170
CAS |—>{a, o o Ll
MASTER »>1A>
8259A 8205

210760-102

Figure 5-13. 8274 MPSC Interface

The 8274 RD and WR commands are connected to the TORC and TOWC outputs of the 82288 Bus
Controller. To provide an acceptable CLK input for the 8274 MPSC, the 82284 PCLK clock frequency
‘can be divided by two and used to drlve the 8274 CLK input.

For Interrupt operation, the INTA signal from the Bus Controller is also connected to the 8274 MPSC.
When using the 8274 in a cascaded interrupt configuration, the IPI input from the cascade address
decoder must be valid before the falling edge of the INTA signal. A 450 ns delay circuit is used to
delay INTA until this decoded CAS address becomes valid.

Further details on ihterfacing the 8274 MPSC to a microprocessor system can be found in the appro-
priate data books. The following discussion looks at the bus timing requirements for accessing the 8724
MPSC on a buffered iAPX 286 local bus.

READ TIMING

The- Read timing requirements’for the 8274 MPSC are as follows: .

TARmin = 0Ons
TRAmin . = Ons
TRRmin .. = 250 ns.
TRDmax = 200 ns
TDFmax = 120 ns

5-16 210760-001

Intel 1/0 INTERFACING

A comparison of TAR (0 ns min. required) with 80286 timing (5.5 ns min. provided) shows that no
command delays are required. The command pulse width requirement (TRRmin) of 250 ns minimum
indicates that at least two wait states must be inserted into the iAPX 286 bus cycle (command pulse
width with two wait states is 310 ns). With these two wait states, read operations to the 8274 result in
a data access time of at least 315.5 ns, easily meeting the 8274 requirement for at least 200 ns.

Data float time for the 8274 MPSC is 120 ns maximum, and may necessitate the delayed-transceiver-
enable circuit shown in Figure 5-12. The circumstances requiring a delayed transceiver-enable to
accommodate lengthy data float times have been described in the previous section on Read Operations.

WRITE TIMING

Write timing requirements for the 8274 MPSC are as follows:

TAWmin = Ons
TWAmin = 0Ons
TWWmin = 250 ns
TDWmin = 150 ns
TWDmin = Ons
TRVmin = 300 ns

The first three timing requirements (TAWmin, TWAmin, and TWWmin) are identical to their equiv-
alent read parameters, and require identical timing. Like Read operations, write operations to the 8274
must have two wait states inserted into the iAPX 286 bus cycle.

The rcmaining three parameters are specific to write cycles. With two wait states, the iAPX 286 easily
exceeds the minimum 8274 data setup time (TDWmin = 150 ns) by providing at least 255.5 ns. The
8274 requires no data hold time.

TRVmin is the recovery time between write cycles to the USART. Recovery time is required following
any mode changes or control accesses. The circuit shown, however, guarantees only 62.5 ns between
successive Write commands. The proper recovery time between successive write cycles can be obtained
easily through software delays, or can be implemented in hardware by delaying commands by an
appropriate four CLK cycles.

8255A-5 Interface

Figure 5-14 shows the interface between an 8255A 5 Programmable Peripheral Interface and an 1APX
286. Tlmmg parameters are as follows:

Read Timing Write Timing
TARmin = 0 ns ' TAWmin = Ons
TRAmin = 0Ons TWAmin = 20 ns
TRRmin = 300 ns TWWmin = 300 ns
TRDmax = 200 ns _ TDWmin = 100 ns |
TDFmax = 100 ns TWDmin = 30 ns

TCYCmin (Reads and Writes) = 850 ns

A bus cycle with two wait states and no command delay, and using the additional delayed-transceiver-
enable logic to delay enabling the data transceivers following a read operation, meets all of the timing
requirements except for the time between cycles (TCYCmin). This remaining parameter can be met

5-17 210760-001

|nte| 1/0 INTERFAING

8255A

DATA 0-7 <:> 00-7

Al ———————3-] AO
A2 —————eme—p | A1

PORT A

PORT B
IORC ———————0

FD
oWe ———————o WA
s

[0 o) J— PORT C

1B

RESET =————————p] RESET

210760-103

Figure 5-14. 8255A-5 Parallel Port Interface

threugh'an appropriate software delay or in hardware by delaying commands the required number of
CLK cycles (and inserting wait states to meet the other requirements).

8259A-2 Interface

The 8259A-2 Programmable Interrupt Controller is designed for use in interrupt-driven microcomputer
systems, where it manages up to eight independent interrupt sources. The 8259A-2 handles interrupt
priority-resolution and individual interrupt masking, and directly supports the iAPX 286 manner of
acknowledging interrupts. During iAPX 286 interrupt-acknowledge sequences, the 8259A resolves the
highest-priority interrupt that is currently active, and returns a pre-programmed interrupt vector to the
80286 to identify the source of the interrupt.

A single 8259A-2 Interrupt Controller can handle up to eight external interrupts. Multiple 8259A-2
Interrupt Controllers can be cascaded to accommodate up to 64 interrupt requests. A technique for
handling more than 64 external interrupts is discussed at the end of this section.

Intel Application Note AP-59 contains much more detailed information on configuring an 8259A in a
variety of different ways. The remainder of this section contains specific details for interfacing an
8259A Interrupt Controller to the iAPX 286. ’

5-18 210760-001

intel

SINGLE INTERRUPT CONTROLLER

1/0 INTERFACING

Figure 5-15 shows the interface between the 80286 CPU and a single 8259A-2 Interrupt Controller.
Timing parameters for the 8259A-2 are as follows (note that symbols used in the 8259A data sheet
differ from those used for most of the other Intel peripherals):

Symbol Parameter ns
TAHRLmin AQ/CS Setup to RD/INTA Active 0
TRHAXmin AO0/CE Hold from RD/INTA Inactive 0
TRLRHmin RD/INTA Pulse Width 160
TRLDVmax Data Valid from RD/INTA Active 120
TRHDZmax Data Float from RD/INTA Inactive 100
TRHRLmin End of RD to next RD or End of INTA 160

to next INTA within an INTA

sequence only
TAHWLmin AO0/CS Setup to WR Active 0
TWHAXmin A0/CS Hold from WR Inactive 0
TWLWHmin WR Pulse Width 190
TDVWHmin Data Valid to WR Inactive 160
TWHDXmin Data Hold from WR Inactive 0
TWHWLmin End of WR to Next WR 190
TCHCLmin End of Command to Next Command 500

(not same type) or End of INTA
Sequence to Next INTA Sequence

To ensure proper operation, bus operations accessing the 8259A require one wait state. No CMDLYSs
are necessary. Because the 8259A requires a minimum of 500 ns (typically, two bus cycles) between
successive reads or writes, software accessing the 8259A should be suitably written to avoid violating
this requirement.

When an interrupt occurs, the 80286 CPU automatically executes two back-to-back interrupt-acknowl-
edge bus cycles. The timing of these interrupt-acknowledge (INTA) cycles is described in Chapter
Three. The external Ready logic must insert at least one wait state into each INTA cycle to ensure
proper 8259A timing. No CMDLYs are necessary. Between INTA cycles, the 80286 automatically
inserts three idle (T;) cycles in order to meet 8259A timing requirements.

CASCADED INTERRUPT CONTROLLERS

Figure 5-16 shows the interface between the 80286 CPU and multiple 8259A-2 interrupt controllers.
The master Interrupt Controller resides on the local bus, while up to eight slave controllers can be
interfaced to the system bus. Slave controllers resolve priority between up to eight interrupt requests
and transmit single interrupt requests to the master controller. The master controller, in turn, resolves
interrupt priority between up to eight slave controllers and transmits a single interrupt request to the
80286 CPU. Up to 64 interrupt requests can be accommodated by the configuration shown.

The basic read/write timing for cascaded interrupt controllers is the same as for a single interrupt
controller. The timing for interrupt-acknowledge sequences, however, involves additional signals over
those required for a single interrupt subsystem.

During the first interrupt-acknowledge cycle, the master controller and all slave controllers freeze the
state of their interrupt request inputs. The master controller outputs a cascade address that is enabled
by MCE (Master Cascade Enable) from the 82288 and latched by ALE; the cascade address is typically
gated onto address lines A8-A10 (IEEE 796 Multibus standard). This cascade address selects the slave

5-19 210760-001

Intel 1/0 INTERFACING

EXTERNAL
INTERRUPT
REQUESTS

|

INTR con/ T | ApbRESS INT IRO-7
D/
DECODE B2, cs 8250A-2
LoGIC — 1/0 ENABLE INTERRUPT CONTROLLER
sTB :
RD WR INTA AO DO-7
) ﬁ {—»-| cMDLY i WaN
82288 l—» foRC
80286 BUS
cpu 51, 50, WS > CONTROLLER —> oWC
| ——JaLe ™ > INTA
DT/R__DEN S ey
STB LI cLkp _I
A 8282 - N
ADDR '> LATCH > ADDRESS
RATA HOLD AFTER
WRITE

8286
XCVR DATA

210760-104

Figure 5-15. Single 8259A Interrupt Controller Interface

controller that is generating the highest-priority interrupt request. During the second interrupt-
acknowledge bus cycle, the slave controller responding to the cascade address outputs an interrupt
vector that points to an appropriate interrupt service routine.

Chapter Seven includes details for designing systems using cascaded Interrupt Controllers when slave
controllers may reside on a system bus such as the Multibus.

HANDLING MORE THAN 64 INTERRUPTS

Cascaded 8259A Interrupt Controllers can accommodate up to 64 independent interrupt requests. iAPX
286 systems that require more than 64 interrupts can use additional 8259A-2 devices in a polled mode.

For example, interrupt request inputs to a slave controller can be driven by a third level of 8259A-2
controllers. When one of these additional controllers receives an interrupt request, it drives one of the
interrupt request inputs to the slave controller active. The slave controller signals the master controller,
which in turn interrupts the CPU. The interrupt identifier received from the slave controller directs
the CPU to a service routine that polls the third level of interrupt controllers to determine the source
of the request.

The only additional hardware required to handle more than 64 interrupt sources are the additional

8259A-2 devices and address-decode logic for selecting the additional devices. Polling is performed by
writing the poll command to the appropriate 8259A-2, followed immediately by a read command. For

5-20 210760-001

Intel 1/0 INTERFACING

CHIP SELECTS
TO SLAVE
CONTROLLERS

(':'g: WA DECODE S es NT
4 LOGIC
O STB 1/0 ENABLE REQUESTS
T 8259A-2 1RO-7 FROM SLAVE
/\x CONTROLLERS
M/10 CASp-2
RD WR INTA A0 DO-7
o MCE T L > iorc
BUFFERS T
80286 MDLY [NTA
cpu o
I Iﬁ, S0, M/i6 82288
> BUS
CONTROLLER
1’3
'3
ALE 5
A8, A9, A10 DT/R DEN 3
£
z
STB A1 8
ADDRESS Y VA)>ADDRESS u
14 35
DATA @
2

T O0E

8286 € DATA
> XCVR >

210760-105

Figure 5-16. Cascaded 8259A Interrupt Controller Interface

maximum performance, use of a third level of interrupt controllers should be restricted to less-critical,
less frequently-used interrupts.

THE iSBX BUS—A MODULAR 1/0 EXPANSION BUS

The iSBX Bus is a modular I/O expansion bus that allows single-board computer systems to be expanded
simply by plugging in specialized iISBX Multimodule boards.

The iISBX Multimodule boards respond to fully-decoded chip select lines defined on the bus. An MPST
control signal indicates to the computer system that a Multimodule board is present. Once a Multi-
module board has been installed, the 1/O devices on the Multimodule board appear as an integral part
of the single-board computer, and can be accessed in software using the standard I/O instruction set.

The timing of bus operations between an iAPX 286 and an iSBX Multimodule Board is controlled by
the iSBX MWAIT signal. This signal is asserted to insert wait states with the 80286 bus cycle, and
can simply be inverted and used to drive the 82284 ARDY input.

The iSBX Bus is described in the iSBX Bus Specification, Order Number 142686-002. This document
contains complete details for designing Multimodule boards compatible with the iSBX bus standard.

5-21 210760-001

Using The 80287 Numeric
Processor Extension

- CHAPTER 6
USING THE 80287 NUMERIC PROCESSOR EXTENSION

The Intel 80287 is a high-performance numeric processor extension that extends the iAPX 286/10
system by adding floating-point, extended-integer, and BCD data types. The iAPX 286/20 system,
comprising an 80286 processor with an 80287 processor extension, contains over fifty additional
instructions over those of an iAPX 286/10, and fully conforms to the proposed IEEE 754 Floating
Point Standard. The additional instructions added by the Numeric Processor Extension are described
in the 8086 Numeric Supplemcnt as well as in the 80287 Data Sheet.

This chapter details how to design an iAPX 286/20 system connecting the 80287 Numerlc Processor
to an iIAPX 286/10.

o The first section of this chapter describes the electrical connections of the 80287 to an iAPX
286/10 system.

¢ The second section describes the local bus act1v1ty you may observe using the 80287 with the 80286.
This bus activity includes:

A. Interactions between the 80286 and 80287 under program control (executing ESC
instructions).

B. Interactions that occur asynchronous to the program, where the 80287 Numeric Processor
requests the transfer of operands between itself and system memory using the 80286 Processor
Extension Data Channel.

¢ The final sectlon of this chapter describes how to design an upgradable iAPX 286/10 system with
an empty 80287 socket. This system may be upgraded to an iAPX 286/20 system simply by insert-
ing an 80287 into the empty socket. This section includes an example software routine to recognize
the presence of an 80287.

THE 80287 PROCESSOR EXTENSION INTERFACE
The 80287 can be connected to an iAPX 286 / 10 system as shown in Figure 6-1.

Four important points should be observed when connecting the 80287 to an iAPX 286/10 system:

1. The 80287 operates as an extension of the 80286: the 80287 connects directly to the status lines
of the 80286. The 80286 executes programs in the normal manner; the 80287 automatically executes
any numeric instructions when they are encountered

2. The 80287 responds to particular I/O addresses (00F8H, OOFAH, and OOFCH) automaucally
generated by the 80286.

3. The 80287 can be driven by a separate clock signal, independent of the 80286 clock. This allows
a higher-performance (8 MHz) 80287 to be used if system performance requirements warrant it.

4. Because the 80287 data lines are connected directly to those of the 80286, the buffer/drivers
driving the local data bus must be disabled when the 80286 reads from the 80287.

6-1 210760-001

Intel USING THE 80287 NUMERIC PROCESSOR EXTENSION

3&<2<<
A1s-Ao
~»{ RESET Vee
READY READY 80286
cPU
CLK —] cLK
D1s-Do o
1 51
cop/
50 50 % TR [
M/I0 | wio & E HLDA | A2 A1AO =
82288 BUSY & PEREQ
BUS - 8205
CONTROLLER >E2 g o
DEN 5 7
- ! —— |
DT/R - TR
ALE CLK
JOWC IORC Q Q Q
| BUSY PEREQ
NPRD 2 J]
mPwr & W Hoa -
COD/INTA fat— >17
RESET »RESE T D10 SATA 8286/7
READY READY 80287
—‘:L]T- SOCKET NPS2 f——vcc
2280 K CLK286
— cLock S1 51
GENERATOR . CMD1
DMDO
J CLK CKM
=
[} 8284a b———ud’
T4 Vec———d
210760-106

Figure 6-1. iAPX 286/20 System Configuration

The 80287 Status Lines
The 80287 has a number of status lines and inputs that are connected directly to the 80286.

The SI, S0, COD/INTA, READY, RESET, HLDA, and CLK pins of the 80287 are connected to the
corresponding pins of the 80286. By monitoring these signals, the 80287 can observe the execution of
ESC instructions by the 80286.

The BUSY signal from the 80287 is connected directly to the 80286; it signals that the Processor
Extension is currently executing a numeric instruction. The 80286 will not execute most ESC instruc-
tions until this BUSY signal becomes inactive. The 80286 WAIT instruction and most ESC instruc-
tions cause the 80286 to wait specifically until this signal becomes inactive.

6-2 210760-001

Intel USING THE 80287 NUMERIC PROCESSOR EXTENSION

The ERROR signal from the 80287 is also connected directly to the 80286; it signals that the previous
numeric instruction caused an unmasked exception condition. The 80287 Data Sheet describes these
exception conditions and explains how these exceptions may be masked under program control. If an
exception occurs, this ERROR signal becomes active before the BUSY signal goes inactive, signalling
the end of the numeric instruction.

Addressing the 80287

When the 80286 executes an ESC instruction, the 80286 automatically generates one or more I/O
operations to the 80287’s reserved I/O addresses. These I/O operations take place independent of the
80286’s current I/0O privilege level.

Table 6-1 shows the particular I/O addresses reserved for the 80287 and shows how the four processor-
select and command inputs of the 80287 must be activated when these I/O addresses are asserted.
The CMDO and CMDI signals of the 80287 may be connected to the latched A1 and A2 address lines,
and, in addition, the NPRD and NPWR signals of the 80287 should be connected to the IORC and
IOWC signals from the 82288 Bus controller, respectively.

The 80287 Clock Input

The 80287 can operate either directly from the CPU clock or with a dedicated clock. To operate the
80287 from the CPU clock, the CKM pin of the 80287 is tied to ground. In this mode, the 80287
internally divides the system clock frequency to operate at one-third the frequency of the system clock
(i.e., for an 8 MHz 80286, the 16 MHz system clock is internally divided down to 5.3 MHz).

To use a higher-performance (8 MHz) 80287, the CKM pin of the 80287 must be tied high, and an
8284A clock driver and appropriate crystal may be used to drive the 80287 with an 8 MHz, 33% duty-
cycle, MOS-level clock signal on the CLK input. In this mode, the 80287 does not internally divide
the clock frequency; the 80287 operates directly from the external clock.

Table 6-1. 1/0 Address Decoding for the 80287

170 Address 80287 Select and Command Inputs
(Hexadecimal) —
NPS2 NPS1 CMD1 CMDO
00F8 1 0 0 0
00FA 1 0 0 1
00FC 1 0 1 0
00FE * Reserved For Future Use

NOTE:

These addresses are generated automatically by the 80286. Users should not attempt to reference these
1/0 addresses explicitly, at the risk of corrupting data within the 80287.

6-3 210760-001

Inte| USING THE 80287 NUMERIC PROCESSOR EXTENSION

LOCAL BUS ACTIVITY WITH THE 80287

The 80287 operates as a parallel processor independent of the 80286, and interacts w1th the 80286 in
two distinct ways:

1. The 80286 initiates 80287 operations during the execution of an ESC instruction. These interac-
tions occur under program control; thus, they are easily recognized as part of the instruction stream.

2. The 80287 requests the 80286 to initiate operand transfers using the Processor Extension Data
Channel of the 80286. These operand transfers between the 80287 and system memory occur
when the 80287 requests them; thus, they are asynchronous to the regular instruction stream of
the 80286.

Execution of ESC Instructions

When the 80286 encounters an ESC instruction, the 80286 first checks for the presence of the Proces-
sor Extension and verifies that the Processor Extension is in the proper context. If the BUSY status
line from the 80287 is active, the 80286 waits for this 51gnal to become inactive before proceeding to
execute the ESC instruction.

When the 80286 executes an ESC instruction, the 80286 automatically generates one or more I1/0
operations to the 80287’s reserved 1/0O addresses. These I/O operations take place independent of the
80286’s current 1/O Privilege level or Current Privilege level. The timing of these I/O operations is
similar to the timing of any other I/O operation, with no (zero) wait states required for successful
transfers.

Figure 6-2 illustrates the timing of data transfers with the 80287.

The Processor Extension Data Channel

All transfers of operands between the 80287 and system memory are performed by the 80286’s internal
Processor Extension Data Channel. This independent DMA-like data channel permits all operand
transfers of the 80287 to fall under the supervision of the 80286 memory-management and protection
model.

DATA CHANNEL REQUESTS

When the 80286 executes an ESC instruction that requires transfers of operands either to or from the
80287, the 80286 automatically initializes the Processor Extension Data Channel, setting the memory
address base and memory address limit registers, and setting the direction flag to indicate the direction
of the transfer. Once the 80826 has initialized the Processor Extension Data Channel, the Processor
Extension -can request operand transfers through the Data Channel by raising PEREQ active. This
request line remains high until the 80286 acknowledges the request by lowering its PEACK signal.

Figure 6-3 illustrates the timing of PEREQ and PEACK in controlling the operation of a Data Channel
transfer. PEACK always goes active during the first bus operation of a Data Channel transfer.

DATA CHANNEL TRANSFERS
Numeric data transfers performed by the Processor Extension Data Channel use the same timing as

any other 80286 bus cycle. Figure 6-2 illustrates operand transfers between the 80287 and system
memory, placing the 16-bit operands at even-aligned word boundaries.

6-4 210760-001

Intel USING THE 80287 NUMERIC PROCESSOR EXTENSION

Ts Te | Ts
CLK
]
t
Aq5-Ag 1/0 ADDRESS VALID X i
|
LATCHED '
CMDO, CMD1 X VALID | X
NPS1, NPS2 i
IORC (NPRD) \ V
o

DATA (<<< °NaL | >>>)——

A. DATA READ TIMING FOR THE 80287

Ts Tc Ts
CLK
Ays-Ao 1/0 ADDRESS VALID x
LATCHED
CMDO, CMD1 x VALID x
NPS1, NPS2

DATA IN
DATA %«« VALID
TOWC (NPWR) \

B. DATA WRITE TIMING FOR THE 80287

20—

ettt 1

210760-107

Figure 6-2. Data Transfer Timing for the 80287

For each operand transfer over the Processor Extension Data Channel, two or three bus operations are
performed: one (I/O) bus operation to the 80287, and one or two bus operations to transfer the operand
between the 80286 and system memory. Normally, Data Channel transfers require only two bus cycles;
three bus cycles are required for each operand aligned on an odd byte address. The timing of word
transfers to odd-aligned addresses is described in Chapter Three.

Operand transfers over the Processor Extension Data Channel may occur at any time following an
ESC instruction as long as the Processor Extension’s BUSY signal is active. Once this BUSY signal
becomes inactive, no further requests by the 80287 for the Data Channel will occur until after the
execution of a subsequent ESC instruction.

6-5 210760-001

Intel USING THE 80287 NUMERIC PROCESSOR EXTENSION

PEREQ

LATCHED
CMDO, CMD1 VALID
NPST, NPS2
TOWC - IORC .
(NPWR . NPRD)

210760-108

Figure 6-3. Data Channel Request and Acknowledge Timing

DATA CHANNEL PRIORITY

Data transfers over the Processor Extension Data Channel have a higher priority than either programmed
data transfers performed by the 80286 Execution Unit, or instruction prefetch cycles performed by the
80286 Bus Unit.

If the 80286 is currently performing a LOCKed instruction, or is performing a two-byte bus operation
required for an odd-aligned word operand, these higher-priority operations will be completed before
the Processor Extension Data Channel takes control of the bus. The Processor Extension Data Channel
also has a lower priority than external bus requests to the 80286 via the HOLD input.

Performance Using 80287 Parallel Processing

Because the 80287 Numeric Processor executes instructions in parallel with the 80286, the perform-
ance of the iAPX 286/20 system is fairly insensitive to memory speed and the number of wait states
encountered by the 80286.

Table 6-2 illustrates how the performance of an iAPX 286/20 system is only slightly degraded as the
number of wait states is increased. The figures shown are for an 8 MHz 80286-A1 with a 5 MHz
80287-A1 operating in Real mode. For an explanation of the Double-Precision Whetstone Benchmark
used in this test, see “A Synthetic Benchmark,” H. J. Curnow and B. A. Wichmann; Computer Journal,
Volume 19, No. 1. ' ;

6-6 210760-001

Intel USING THE 80287 NUMERIC PROCESSOR EXTENSION

Table 6-2. Whetstone Performance with Multiple Wait States

Performance
Number of Wait States Relative to
dWhets’ O-wait states
0 147.9 1.00 .
1 1425 . 096
2 138.5 0.94
3 135.4 0.92

*Performance shown in thousands of double-precision Whetstone instructions per second.

DESIGNING AN UPGRADABLE iAPX 286 SYSTEM

When designing an iAPX 286/10 system, it is relatively easy to design a socket for the 80287 Numeric
Processor Extension that permlts the system to be upgraded later to an iAPX 286/20 system. Upgrad-
ing the system at a later date is accomplished simply by installing the 80287 Numeric Processor in its
socket—no switches or strapping options are requlred Using an appropriate initialization sequence, the
iAPX 286 system can determine whether an 80287 is present in the system, and respond accordingly.
This capability allows a single design to address two different levels of system price vs. performance.

Designing the 80287 Socket

Figure 6-1 shown previously illustrates one way to design an 80287 socket to allow upgradability. A
single pull-up resistor is attached to data line D5 to ensure that this data bit will read high during a
floating condition. As explained in the following section, this data bit reading high will properly indicate
the absence or presence of the 80287 Numeric Processor.

Recognizing the 80287

During initialization, the 80286 can be programmed to recognize the presence of the 80287 Numeric
Processor Extension. Figure 6-4 shows an example of such a recognition routine.

In the example routine, the 80286 assumes that the 80287 is present, and executes an FNINIT instruc-
tion. Following the FNINIT instruction, the 80286 reads the 80287 status word. If an 80287 is indeed
present, the lower 8-bits of this word (the exception flags) will all be zeroes. If an 80287 is not present,
these data lines will have been floating. The preceding section of this manual explained how to design
the 80287 socket to ensure that at least one of these lower-eight data lines floats high in the absence
of the 80287.

Depending on the contents of these data lines, the 80286 can determine the presence or absence of an
80287 and then accordingly set or clear the MP and EM bits in its own Machine Status Word. If the
80286 determines that the 80287 has been installed, the 80286 will automatically pass all subsequent
numeric instructions to the 80287 for execution. If the 80287 is not present, the 80286 can automati-
cally invoke a software emulation routine each time it encounters a numeric instruction in its instruc-
tion path.

6-7 210760-001

intel

USING THE 80287 NUMERIC PROCESSOR EXTENSION

FND_287:

60T_287:

CCONTINUE:

FNINIT s initialize Numeric Processor
FSTSW AX ; retrieve 80287 status word
OR AL,AL ; test low-byte--80287 exception flags
‘ s if all zero, then 80287 present and
i properly initialized
: 1 1f not all zero, then 80287 absent.
JZ 60T7_287 ;i branch if 80287 present
SMSW AX 3+ No Numeric Processor--
DR 04H ; set EM bit in machine status word
LMSW AX ; to enable software emulation of 80287
JMP CONTINUE
SMSW AX "~ ; Numeric Processor present
OR 02H s set MP bit in machine status word
LMSW AX . 3 to permit normal 80287 operation
; and off we go ...

s initialization routine to detect an 80287 Numeric

Processor

Figure 6-4. Software Routine to Recognize the 80287

6-8

210760-001

The System Bus 7

CHAPTER 7
THE SYSTEM BUS

The concept of a system bus has already been introduced in Chapter Two. A system bus connects one
or more processing elements, each of which shares access to the same system resources. One or all of
the processing elements in such a system may be iAPX 286 subsystems. Chapter Two outlines how the
iAPX 286 system architecture supports a system bus, and details some of the considerations for inter-
facing an iAPX 286 system to a multiprocessor system bus.

This chapter expands on the description given in Chapter Two and describes how to interface an iAPX
286 subsystem to a multimaster system bus, using the IEEE 796 Multibus protocols.

* The first section of this chapter discusses some of the reasons for using a system bus, and describes
the tradeoffs between placing particular system resources on a local bus or the system bus.

» The second section describes a particular implementation of a multiprocessor system bus, the IEEE
796 (Intel Multibus) system bus. This section also details how specific Intel components can make
the design and implementation of a Multibus interface easy and efficient.

+ The third section describes three of the four principal considerations that must be taken into account
when designing an iAPX 286 interface to the Multibus. This section describes:

A. The decoding of memory and I/O references onto either the iAPX 286 local bus or the Multi-
bus. A technique for mapping Multibus I/O into the iAPX 286 memory space is explained,
and a byte-swapping circuit is introduced to comply with the Multibus requirements for byte
transfers.

B. The decoding of interrupts and interrupt acknowledge sequences onto either the local bus or
the Multibus.

o The fourth section describes the use of the 82289 Bus Arbiter in implementing a Multibus interface.
The Bus Arbiter coordinates the contention of the iAPX 286 system for the Multibus, and controls
the release of the Multibus to other Multibus processors following iAPX 286 usage.

¢ The fifth section contains a timing analysis of the Multibus interface, and summarizes the key
Multibus parameters, describing how the iAPX 286 system must be configured to meet these
requirements.

¢ The sixth section discusses using dual-port memories with the Multibus system bus interface, and
describes the handling of LOCK signals.

THE SYSTEM-BUS CONCEPT

Previous chapters considered single-bus systems in which a single iAPX 286 processor connects to
memory, I/O, and processor extensions. This chapter introduces the system bus concept, which allows
several single-bus systems to be connected into a more-powerful multiprocessing system.

In a single-bus system, a local bus connects processing elements with memory and I/O subsystems
where each processing element can access any resource on the local bus. However, since only one
processing element at a time can use the local bus, system throughput cannot be improved by adding
more processing elements. For this reason, a local bus typically contains only one general-purpose
processing element and perhaps one or more dedicated processors, along with memory and other
resources required by the processors.

7-1 210760-001

Intel THE SYSTEM BUS

A system bus can connect several processing subsystems, each of which may have their own local bus
and private resources. The system bus may also connect system resources such as memory and 1/0,
which are shared equally between processing subsystems. In this way, the system bus supports multi-
processing. Since each of the processing subsystems can perform simultaneous data transfers on their
respective local buses, total system throughput can be increased greatly over that of a single-bus system.

The system bus also establishes a standard interface, allowing computer systems to be expanded
modularly using components from different vendors. The Intel Multibus, for example, has over 100
vendors supplying over 800 board-level products that are compatible with the Multibus interface. Using
the standard Multibus protocols, a wide variety of I/O devices and memory subsystems are available
to expand the capabilities of iIAPX 286 systems.

Although the bulk of this chapter describes the Multibus system bus, the concepts discussed here are
applicable to any system bus.

The Division of Resources

The heart of the system-bus concept is the division of resources between a processing element’s local
bus and the system bus. Typically, an iAPX 286 subsystem that interfaces to a system bus will have
some amount of memory and perhaps other resources connected to its local bus. An important point to
consider in designing a multiprocessing system is how resources will be divided between local buses
and the system bus. An iAPX 286 subsystem must communicate with resources on both its local bus
and the system bus. There are a number of tradeoffs between placing a particular system resource such
as memory on a single processor’s local bus, or placing the resource on the system bus.

LOCAL RESOURCES

Resources on a local bus are accessible only by the processor controlling that local bus. This may
increase reliability, for such resources are isolated from the effects of failures occurring in other parts
of a system. System throughput can also be increased by using local resources, since the local processor
does not have to contend with other processors for the use of these resources. In systems where several
processors each have their own local memory, multiple tasks can execute in parallel because each
processor is fetching instructions from a separate path. In an iAPX 286 system, local memory allows
the 80286 to use its capability for overlapped memory cycles to the best effect: 80286 bus cycles can
be performed in the least possible time.

Of course, the cost of implementing a separate memory subsystem for each processor must be
considered. In addition, some memory will have to be connected to the system bus, to allow different
processing elements to communicate with each other. Occasionally-used processor resources may be
more cost-effective if they are connected to the system bus, where their use can be shared among
several processors.

SYSTEM RESOURCES

Resources directly connected to the system bus are accessible to all processing elements on the system
bus; therefore, they can be shared efficiently among different processors. Memory resources connected
to the system bus allow processors to pass blocks of data between each other efficiently and thus
communicate asynchronously.

A disadvantage of placing resources on the system bus is that a single processor may have to contend
with other processors for access to the bus, resulting in slower access times and reduced system

7-2 210760-001

Intel THE SYSTEM BUS

throughput. Using system memory also involves a risk of memory corruption because it is conceivable
that one processing element may overwrite data being used by another.

In view of these tradeoffs, designers must carefully consider which resources (or how much memory)
they will place on a subsystem’s local bus, and which or how much to place on the system bus. These
choices affect system reliability, integrity, throughput and performance, and often depend on the
requirements of the particular target system.

THE IEEE 796 MULTIBUS®—A MULTIMASTER SYSTEM BUS

The Intel Multibus (IEEE 796 Standard) is an example of a proven, industry-standard multiprocessing
system bus that is well-tailored for iAPX 286 systems. A wide variety of Multibus-compatible I/O
subsystems, memory boards, general-purpose processing boards, and dedicated-function boards are
available from Intel to speed product development while ensuring bus-level compatibility. Designers
who choose the Multibus protocols in their system bus have a ready supply of system components
available for use in their products.

The Multibus protocols are completely described in the Intel Multibus Specification, Order Number
9800683-04.

The job of interfacing an iAPX 286 subsystem to the Multibus is made relatively simple by using
several components specifically adapted to handling the Multibus protocols. These interface compo-
nents include:

« The 82288 Bus Controller, to generate Multibus-compatible memory and 1/O read/write commands,
and interrupt-acknowledge commands, as well as appropriate data and address buffer control signals.
The 82288 has a strapping option to select the Multibus mode of operation.

¢ The 82289 Bus Arbiter, to handle Multibus arbitration logic and to generate appropriate control
information.

» 8287 Data Transceivers, to buffer Multibus data lines (inverting transceivers are required to conform
to Multibus convention).

= 8283 Latches, to buffer Multibus address lines (inverting latches are required to conform to Multi-
bus convention).

» The 8259A Programmable Interrupt Controller, to handle hardware interrupts in conformance with
the Multibus bus-vectored interrupt conventions.

These devices are functionally and electrically compatible with the Multibus protocols, and form a
simple and cost-effective means of generating signals for a Multibus interface. Figure 7-1 shows how
these components interconnect to interface an iAPX 286 subsystem to the Multibus system bus.

MULTIBUS® DESIGN CONSIDERATIONS

One of the important decisions confronting a designer who is considering an implementation of a Multi-
bus interface is the question of how to divide system resources between resources that reside on the
Multibus and resources that reside on the iAPX 286 local bus.

Typically, system resources will be split between the local bus and the system bus (Multibus). System
designers must allocate the iAPX 286 system’s physical address space between the two buses, and use
this information to select either the iAPX 286 local bus or the system bus for each bus cycle.

7-3 210760-001

THE SYSTEM BUS

LOCAL BUS

i

o —
READY T
SROY —_1_ XACK
8282 82284 ARDY |
LATCH S
B el I
CLK READBY 1
A PN - COMMANDS
ALE TMDLY
READY T READY ~ C°MD Y/
82288 CLK | — »]cik 82288)
<‘~ oo MO m/iG DEN %
N 51,50 §1.50
CMD CENL —3] CENL DT/R
MB_ CEN me AEN ALE
= s +5V
\
e e
KEN OF
— READY [roek -
- CONTROL
82289
Nwio ot > s
Jlsi. 50 ¢ Y |3
ADDRESS j L4 SYSB/RESE]
PECODER »-15YSB/RESE 5
== i E
M/i0 !
A
O STB
ADDRESS
)) 8283
ADDRESS l | I I | 4 LATCHES
A23-0 CLK READY M/I0 RESET
§1,50
[oCK
80286
Die-0 A
’) 8287
BUFFERS
DATA 4
—
210760-109

Figure 7-1. Local Bus and MULTIBUS® Interface for the iAPX 286

7-4

210760-001

Inte| THE SYSTEM BUS

Figure 7-2 illustrates this requirement.

Three different types of bus operations must be considered when designing this decoding function:

1. Memory operations
2. I/O operations

3. Interrupt-acknowledge sequences

For memory and 1/0 operations, several additional features of the Multibus must be considered. The
following paragraphs describe each of these types in detail.

Memory Operatidns

The decoding of memory operations to select either the local bus or the system bus is relatively
straightforward. Typically, memory resources that reside on the system bus can be allocated to partic-
ular address windows, or ranges. An address decoder can be used to decode the ranges of ‘addresses for
memory that resides on the system bus, and the output of this decoder then selects either the system
bus or the local bus for the current bus cycle.

Figure 7-3 illustrates how the output of the address decoder drives the 82288 Bus Controller and 82289
Bus Arbiter circuits to selectively activate either the local bus or the system bus. Since both the CENL
input of the Bus Controller and the SYSB/RESB input of the Bus Arbiter are internally-latched, no
additional latches are required to maintain selection of the bus for the remainder of the current bus
cycle.

SYSTEM SYSTEM ees
RESOURCE RESOURCE
ADDRESS
DECODE
Y
SYSTEM BUS . N
IAPX 286
R
BUFFERED LOCAL BUS (
| 1 N
LOCAL -~ - © .. LOCAL vee
RESOURCE RESOURCE
210760-110

Figure 7-2. Decoders Select the Local vs. the System Bus "

7-5 210760-001

Iﬂte' THE SYSTEM BUS

SYSB/RESB
ADDRESS 1

5 Aoch DECODE "
23"A16 FOR 2i 2
% : MULTIBUS 82289 2
g M0 —] MEMORY ARBITER @
5 4
g g
[y SELECT 4
2 CENL :~< »J CENL o
@ 5
2
MB 1_ Vee —»-{MB =

82288 82288

BUS i . BUS
CONTROLLER) CONTROLLER

210760-111

Figure 7-3. Selecting the MULTIBUS® for Memory Operations

1/0 Operations

The decoding of iAPX 286 I/0 operations is similar to that described above for memory operations.
In the simplest case, decoding may not even be required if I/O resources are located solely on the local
bus. In this case any I/O operations simply can be directed to the local bus with no decoding required.
If I/O resources are split between the local bus and the system bus, however, I/O addresses must be
decoded to select the appropriate bus, just as for memory addresses as described above.

If I/O resources are located on the system bus, a second, concurrent issue may be considered. I/O
resources on the system bus may be memory-mapped into the iAPX 286 memory space, or I/O-mapped
into the I/O address space, independent of how the 1/O devices appear physically on the system bus.

Figure 7-4 shows a circuit technique for mapping the Multibus I/O space into a portion of the iAPX
286 memory space. This circuit uses an address-decoder to generate the appropriate I/O-read or 1/0-
write commands for any memory references falling into the memory-mapped I/O block. This same
technique is discussed in Chapter Five, which also contains a detailed discussion of the merits and
tradeoffs between memory-mapped and I /O-mapped devices.

7-6 210760-001

Intel THE SYSTEM BUS

Vee
MULTIBUS™
Agz-Ats MEMORY
DECODE SELECT
. . CENL
A23
5 MULIT/IgUS"‘ 82288
A - BUS
At D . DECODE CONTROLLER
M/I0
M/I0 10RC |—>
IOWC >
G0 - | §0O MRDC
R e ——— e -1 MWTC

210760-112

Figure 7-4. Memory-Mapping the MULTIBUS® 1/0

Interrupt-Acknowledge to Cascaded Interrupt Controllers

A third issue related to the division of system resources between the system bus (Multibus) and the
local bus is that of mapping interrupts between the Multibus and the local data bus. (You may recall
that when aninterrupt is received by the 80286, the iAPX 286 interrupt-acknowledge sequence uses
the data bus to fetch an 8-bit interrupt vector from the interrupting 8259A Programmable Interrupt
Controller.)

Designers may encounter three possible configurations:

1. All of the subsystem’s Interrupt Controllers (one master and perhaps one or more slaves) reside
on the local bus, and, therefore, all interrupt-acknowledge cycles are routed to the local bus.

2. All “terminal” Interrupt Controllers reside on the Multibus system bus (either all 8259A Interrupt
Controllers reside on the Multibus bus, or a master 8259A resides on the local bus but services
interrupts only from slave 8259A Interrupt Controllers that themselves reside on the Multibus),
and so all interrupt-acknowledge cycles are automatically routed to the Multibus.

3. Some slave Interrupt Controllers reside on the subsystem’S'local bus, and others reside on the
Multibus. In this case, the subsystem’s hardware must decode the Master Interrupt Controller’s
cascade address and select the appropriate bus for the interrupt-acknowledge cycles.

In the first two cases, the implementation is relatively straightforward; all interrupt-acknowledge bus
operations can be automatically directed onto the appropriate bus. If one of these two configurations
is envisioned for the system you are designing, you can skip this section and continue on. If, however,
your iAPX 286 subsystem will have a master 8259A Interrupt Controller on the local bus and at least
one slave 8259A Interrupt Controller connected to the Multibus, you should read this section to discover
how to handle the direction of interrupt-acknowledge bus cycles onto either the Multibus or the local
bus. :

7-7 210760-001

Intel THE SYSTEM BUS

First, a review of the operation of the iAPX 286 processor and the master and slave 8259A Interrupt
Controllers during an interrupt-acknowledge sequence. '

The 80286 responds to an INTR (interrupt) input by performing two INTA bus operations. During
the first INTA operation, the master 8259A Interrupt Controller determines which, if any, of its slaves
should return the interrupt vector, and drives the cascade address pins to select the appropriate slave
Interrupt Controller. During the second INTA cycle, the :80286 reads an eight-bit interrupt vector
from the selected Interrupt Controller and uses this vector to respond to the interrupt.

In iAPX 286 systems where slave Interrupt Controllers may reside on the Multibus, the three cascade
address lines from the master 8259A Interrupt Controller must be decoded to select whether the current
interrupt-acknowledge (INTA)sequence will require the Multibus.

If the Multibus is selected, the 82289 Bus Arbiter must be signalled first to request the Multibus, and
then enable the. Multibus address and' data transceivers to port the remainder of the first and the
second INTA cycles onto the Multibus. The cascade address lines from the master 8259A Interrupt
Controller (CASO, CAST, and CAS2) are gated onto the local bus address lines A8, A9, and A10
(Multibus address lines ADRS, ADRY, and ADRA), respectively, using tri-state drivers.

!

Figure 7-5. shows an example of a.circuit that performs this.decoding function during interrupt-
acknowledge sequences. This circuit also.addresses some of the critical timing necessary in the case of
a master 8259A Interrupt Controller gating a cascade address onto the Multibus.

The timing of the basic interrupt-ackrnowledge cycle is described in Chapter Three. During the first
INTA cycle, the cascade address from the master 8259A Interrupt Controller residing on the local bus
becomes valid ‘within a maximum of 565 ns following the assertion of the INTA signal from the Bus
Controller. Once this address becomes valid, it must be decoded to determine whether the remainder
of the INTA sequence should remain on the local bus, or should take place on the Multibus. Using the
cascade-decode logic shown in Figure 7-5, the decode delay adds an additional 30 ns, for atotal.of 595
ns from INTA to bus-select valid. The local bus Ready logic must therefore insert at least 4 wait states
into the first INTA cycle before the cascade address becomes valid and the local- or Multibus-select
becomes valid.

If the local bus is selected for the remainder of the INTA sequence, the first INTA cycle can be
terminated immeédiately. If the Multibus is selected, however, the first INTA bus cycle must still be
extended while it is ported onto the Multibus in order to properly condition the slave Interrupt Control-
lers on the Multibus. :

The circuit shown in Figure 7-5 shows how the Multibus 82289 Bus Arbiter and 82288 Bus Controller
are selected to allow this “delayed startup” of the Multibus INTA: bus cycle. The CMDLY input to
the 82288 is used as a select input that is sampled. repetitively by the 82288; the CENL input can be
tied high. Once the Multibus has been selected, the Multibus XACK signal should be used to termi-
nate the bus operation.

During the second INTA bus cycle, .the Master Cascade Enable (MCE) output of the 82288 Bus
Controller becomes active to gate the cascade address onto address lines A8, A9, and A10. This MCE
enable signal stays active one clock cycle longer than the ALE signal, allowing the.cascade address to
be properly .captured in the Multibus address latches. The MCE signal becomes active only during
INTA cycles—no additional logic is required to properly enable the cascade address onto the address
bus during INTA cycles.

7-8 210760-001

Intel THE SYSTEM BUS

NTa
(FROM SLAVE

8205 INTERRUPT CONTROLLER)
82597 oy =
MASTER (o la :

CAS; A 0

iNta CAS2 >4z CASVALID!Y

£, E,

NN
l Agl AglA1o »1STB
< Az23-Ao Liz;'?H >

— "
J\}M/lo COD/INTA oE 2
%]
2 ‘¥ 3 z
" MBSEL(® pmy— g
2 OTHER SYSB/RESB 2
3 MULTIBUS™ Y
- DECODE b
s B BEN 2
x 5
< 82289 3
BUS =
J74s00 ARBITER
INTA
McE SELEC
CENL %— £l - T cMbLY ,
: CENL
VCCO—I: MB .
82288 yp MBIO®! ALE >

| — /
BUS 82284 Mo
CONTROLLER CLOCK 82288
= GENERATOR BUS
READY CONTROLLER
ARDYEN |- —
J ARDY |-~ XACK
NOTES:

(1) CASVALID IS THE OUTPUT OF A TIMING CIRCUIT THAT BECOMES HIGH WHEN THE OUTPUT OF THE CASCADE ADDRESS
DECODER IS VALID. CASVALID MUST SATISFY 82288 CMDLY SETUP TIMES.

(2) MBSEL IS AN OUTPUT OF THE ADDRESS-DECODER PROM; MBSEL IS HIGH DURING ALL MULTIBUS MEMORY AND 1/0
OPERATIONS, BUT IS LOW FOR ALL INTERRUPT-ACKNOWLEDGE CYCLES (WHEN M/10 AND COD/INTA ARE BOTH LOW).

(3) MBIO IS AN OUTPUT OF THE ADDRESS DECODER PROM; MBIO IS LOW DURING ALL I/0 OPERATIONS AND INTERRUPT-
ACKNOWLEDGE CYCLES, AS WELL AS DURING MEMORY OPERATIONS THAT ARE MAPPED INTO THE MULTIBUS 1/0-
ADDRESS SPACE. 210760- 113

Figure 7-5. Decoding Interrupt-Acknowledge Sequences
Byte-Swapping During MULTIBUS® Byte Transfers

The Multibus standard specifies that during all byte transfers, the data must be transferred on the
lower-eight data lines (Multibus DATO through DAT7), whether the data is associated with an even
(low-byte) or odd (high-byte) address. For 16-bit systems, this requirement means that during byte
transfers to odd addresses, the data byte must be “swapped” from the high data lines (local bus D8
through D15) onto the low data lines (DO through D7) before being placed on the Multibus, and then
“swapped” back onto the high data lines when being read from the Multibus. This byte-swapping
requirement maintains compatibility between 8-bit and 16-bit systems sharing the same Multibus.

Because of this byte-swapping requiremént, the Multibus BHEN signal differs in definition from the
BHE signal on the iAPX 286 local bus. Table 7-1 illustrates the differences between these two signals.
Notice the difference that appears for byte transfers to odd addresses.

7-9 210760-001

Intel THE SYSTEM BUS

Table 7-1. Local Bus and MULTIBUS® Usage of BHE/BHEN

== Transfer == = Transfer
Bus Operation AO BHE Occurs On ADRO BHEN Occurs On
Word Transfer L L All 16 H L All 16
data lines data lines
Byte Transfer to L H Lower 8 H H Lower 8
Even Address data lines data lines
Byte Transfer to H L Upper 8 L H Lower 8
Odd Address data lines data lines

For iAPX 286 systems, this Multibus byte-swapping requirement is easily met by using only an additional
data transceiver and necessary control logic.

Figure 7-6 shows how this byte-swapping circuit can be implemented for the iAPX 286 as a bus master.
The three signals that control this byte-swapping function are the Data Enable (DEN), Multibus Byte
High Enable (BHEN), and Multibus Address bit 0 (ADRO). The 82288 Bus Controller always disables
DEN between bus cycles to allow the data transceivers to change states without bus contention. The
Multibus BHEN and ADRO signals are used instead of the local bus BHE and A0Q because the Multi-
bus signals are latched for the duration of the bus operation. Figure 7-6 also shows the generation of
the Multibus BHEN Signal from the local bus BHE and AO signals.

Implementing the Bus-Timeout Function

The Multibus XACK signal terminates iAPX 286 bus operations on the Multibus by driving the ARDY
input to the 82288 Bus Controller. If the iAPX 286 should happen to address a non-existent device on
the Multibus, however, the XACK signal may never be activated. Without a bus-timeout protection
circuit, the iAPX 286 could wait indefinitely, tying up the Multibus from use by other bus masters as
well.

The bus-timeout function provides a simple means of ensuring that all Multibus operations eventually
terminate. Figure 7-7 shows one implementation of a bus-timeout circuit using one-shots. If the Multibus
XACK signal is not returned within a finite period, the bus-timeout signal is activated to terminate the
bus operation.

When a bus-timeout occurs, the data read by the 80286 may not be valid. For this reason, the bus-
timeout circuit may also be used to generate an interrupt to prevent software from using invalid data.

Power Failure Considerations

The Multibus interface provides a means of handling power failures by defining a Power Fail Interrupt
(PFIN) signal and other status lines, and by making provisions for secondary or backup power supplies.

Typically, the Power Fail Interrupt (PFIN) from the Multibus is connected to the NMI interrupt
request line of the CPU. When a power failure is about to occur, this interrupt enables the 80286 CPU
to immediately save its environment before falling voltages and the Multibus Memory Protect (MPRO)
signal prevent any further memory activity. In systems with memory backup power or non-volatile
memory, the 80286 environment can be saved for the duration of the powerfail condition.

7-10 210760-001

Intel THE SYSTEM BUS

!
|

}—> MULTIBUS™ BHE|

DT/R
l———> OE T |-«
N
D15-Dg > < D15-Dg
8287
iAPX 286
LOCAL BUS
'—_—> OE T |-
> 74 MULTIBUS
8287
r———a» oE T
D7-Do >
8287
BHE —»| o

8282 8283

LATCH LATCH
AQC—p — f—3 MULTIBUS™ ADRO

STB OE STB OE

L = W)
ALE

210760-114

Figure 7-6. Byte-Swapping at the MULTIBUS® Interface

When the AC power is restored, the power-up RESET sequence of the 80286 CPU can check the
status of the Multibus Power Fail Sense Latch (PFSN) to see if a previous power failure has occurred.
If this latch is set low, the 80286 can branch to a powerup routine that resets the latch using Power
Fail Sense Reset (PFSR), restores its environment, and resumes execution.

Further guidelines for designing iAPX 286 systems with power-failure features are contained in the
Intel Multibus Specification referred to previously.

7-11 210760-001

Inte| THE SYSTEM BUS

0.14F
10K 820F 0 o 220k O-1F o

ms
Vee Vee

R/C C g R/C C

748123 @ B 745123 Qf——0)
ALE -—Do— A
CLR A CLR CLR

RESET—Dol
READY — SET
D Q
PCLK—
CLK
p clR @

MULTIBUS™ XACK.
j’ ARDY
{ (TO 82284)

BUS TIMEOUT
INTERRUPT

-||——<l

210760-115

Figure 7-7. Implementing the Bus-Timeout Function

MULTlBUS® ARBITRATION USING THE 82289 BUS ARBITER

The Multibus protocols allow multiple processing elements to contend with each other for the use of
common system resources. Since the iAPX 286 does not have exclusive use of the Multibus, when the
iAPX 286 processor occasionally tries to access the Multibus, another bus master will already have
control of the bus. When this happens, the iAPX 286 will have to wait before accessing the bus.

The 82289 Bus Arbiter provides a compact solution to controlling access to a multi-master system bus.
The Bus Arbiter directs the processor onto the bus and also allows both higher- and lower-priority bus
masters to acquire the bus. The Bus Arbiter attains control of the system bus (eventually) whenever
the iAPX 286 attempts to access the bus. (The previous section reviewed some techniques to determine
when the processor is attempting to access the system bus.) Once the Bus Arbiter receives control of
the system bus, the iAPX 286 can proceed to access specific resources attached to the bus. The 82289
Bus Arbiter handles this bus contention in a manner that is completely transparent to the iAPX 286
processor.

Gaining Control of the MULTIBUS®

In an iAPX 286 subsystem using an 82289 Bus Arbiter, the iAPX 286 processor issues commands as
though it had exclusive use of the system bus. The Bus Arbiter keeps track of whether the subsystem
indeed has control of the system bus, and if not, prevents the 82288 Bus Controller and address latches
from accessing the bus. The Bus Arbiter also inhibits the 82284 Clock Generator, forcing the 82286
processor into one or more wait states.

When the Bus Arbiter receives control of the system bus, the Bus Arbiter enables the ARDY input of
the Clock Generator, and enables the 82288 Bus Controller and address latches to drive the system

7-12 210760-001

Intel THE SYSTEM BUS

bus. Once the system bus transfer is complete, a transfer-acknowledge (XACK) signal is returned by
the Multibus, signalling to the processor that the transfer cycle has completed. In this manner, the Bus
Arbiter multiplexes one bus master onto the multi-master bus and avoids contention between bus masters.

Since many bus masters can be on a multi-master system bus, some means must be provided for resolv-
ing priority between bus masters simultaneously requesting the bus. Figure 7-8 shows two common
priority-resolution schemes: a serial-priority and a parallel-priority technique.

HIGHEST PRIORITY

VWA—§
AN

] BPRN
BUS
ARB:TER R0 =
(;‘ BUS Sl
(*1 ARB;TER BPR
/ .
(—) BUS 1—
(—] ARB:ISTER BPRO
1V -
BUS
/ E ARB[;TER BPRO
Y I
CBRQ : BUSY :

SERIAL PRIORITY RESOLVING TECHNIQUE

VWA—§
WA—§

A
A

BUS | BREQ
ARB:TER < BPRN J
74148 74138
ARBITER | BPRN : PRIORTY Lo 3708 3

~—>14 ENCODER DECODER

BREQ|
BUS
ARBITER lgpEN
3

BREQ
BUS
ARBITER BPRN
4

ot |
N N NA
you AV o AV.ou |

N NA TN

:
:

PARALLEL PRIORITY RESOLVING TECHNIQUE

210760-132

Figure 7-8. Two Bus Priority-Resolution Techniques

7-13 210760-001

Intel THE SYSTEM BUS

The serial-priority resolution technique consists of a daisy-chain of the 82289 Bus Priority In (BPRN)
and Bus Priority Out (BPRO) signals. Due to delays in the daisy-chain, however, only a limited number
of bus masters can be accommodated using this technique.

In the parallel-priority resolution technique, each 82289 Bus Arbiter makes independent bus requests
using its Bus Request (BREQ) signal line. An external bus-priority resolution circuit determines the
highest-priority bus master requesting the bus, and grants that master control of the bus by setting
BPRN low to that bus master. Any number of bus masters can be accommodated using this technique,
limited only by the complexity of the external resolution circuitry.

Other priority-resolution schemes may also be used. Intel Application Note AP-51 describes in greater
detail these techniques for resolving the priority of simultaneous bus requests.

Figure 7-9 shows the timing of a bus exchange for the parallel-priority resolution scheme shown in
Figure 7-8. In the timing example, a higher-priority bus master requests and is granted control of the
bus from a lower-priority bus master.

From the perspective of an individual Multibus subsystem, the subsystem has been granted the bus
when that subsystem’s BPRN input from the Multibus falls low (active). For the purpose of designing
an iAPX 286 sybsystem for the Multibus, the BPRN signal is sufficient, and a designer need not be
concerned with the particular priority-resolution technique implemented on the Multibus system. The
82289 Bus Arbiter releases the bus if BPRN becomes HIGH at the end of the current bus sequence,
under the control of this external arbitration dev1ce

Releasing the Bus—Three 82289 Operating Modes

Following a transfer cycle using the system bus, the 82289 Bus Arbiter can either retain control of the
system bus or release the bus for use by some other bus master. The Bus Arbiter can operate in one of
three operating modes, each of which defines different conditions under which the Bus Arbiter will
relinquish control of the system bus.

DTN
- -

(1) HIGHER PRIORITY BUS ARBITER REQUESTS THE MULTI-MASTER SYSTEM BUS.
(2) ATTAINS PRIORITY.

(3) LOWER PRIORITY BUS ARBITER RELEASES BUSY.

@ HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN.
210760-133

Figure 7-9. Bus Exchange Timing for the MULTIBUS®

7-14 210760-001

Inte| THE SYSTEM BUS

Table 7-2 defines the three operating modes of the 82289 Bus Arbiter, and describes the conditions
under which the Bus Arbiter relinquishes control of the Multibus. The following sections describe how
to configure the Bus Arbiter in any one of these modes, and also describe a way to switch the Bus
Arbiter between Modes 2 and 3 under program control from the iAPX 286.

The decision to configure the 82289 Bus Arbiter in one of these three modes, or to configure the Bus
Arbiter in a fourth manner, allowing switching between modes 2 and 3, is a choice left up to the
individual designer. This choice may affect the throughput of the individual subsystem, as well as the
throughput of other subsystems sharing the bus, and system throughput as a whole.

This performance impact occurs because a multi-processor system may have appreciablé overhead
when a processor requests and takes control of the Multibus. Figure 7-10 illustrates the effect of bus
set-up and hold times on bus efficiency and throughput.

When to Use the Different Modes

The various operating modes of the Bus Arbiter allow the designer to optimize a subsystem’s use of
the Multibus to its own needs and to the needs of the system as a whole.

Mode 1, for example, would be adequate for a sybsystem that needed to access the Multibus only
occasionally; by releasing the bus after each transfer cycle, the subsystem would minimize its'impact
on the throughput of other subsystems using the bus. -

Mode 2 would be ideal for a subsystem that shared the Multibus with a pool of other bus masters, all
of roughly equal priority, and all equally likely to request the bus at any given time. The performance
improvement of retaining the bus in case of a second or subsequent access to the bus would be matched
to the performance impact of other bus masters, who may have to request the bus from the controlling
Bus Arbiter, and thus suffer the ensuing hold delays.

Mode 3 would be ideal for a system that is likely to be using the Multibus a high percentage of the
time. The performance advantages of retaining control of the bus would outweigh the chances of other,
lower-priority devices waiting longer periods to gain access to the Multibus.

Table 7-2. Three 82289 Operating Modes for Releasing the Bus

Conditions under which the Bus

Operating Mode Arbiter releases the system bus®

Mode 1 The Bus Arbiter releases the bus at the end of each transfer cycle.
Mode 2 The Bus Arbiter retains the bus until:

« a higher-priority bus master requests the bus, driving BPRN high.

« alower-priority bus master requests the bus by pulling the CBRQ low.

Mode 3 The Bus Arbiter retains the bus until a higher-priority bus master requests
the bus, driving BPRN high. (In this mode, the Bus Arbiter ignores the
CBRQ input.

*The LOCK input to the Bus Arblter can be used to override any of the conditions shown in the table While
LOCK is asserted, the Bus Arbiter will retain control of the system bus.

7-15 210760-001

Inte| THE SYSTEM BUS

 TRANSFER:)

BUS UTILIZATION FOR BUS ARBITERS OPERATING IN MODE 1.
LOWER PRIORITY ARBITERS HAVE EASY ACCESS TO THE BUS,
BUT BUS EFFICIENCY IS LOW.

BUS UTILIZATION FOR A BUS ARBITER OPERATING IN MODE 3.
THE ARBITER RETAINS THE BUS UNTIL FORCED OFF, AND SO
ACQUIRES THE BUS ONLY ONCE FOR A SEQUENCE OF TRANSFERS.

210760-116

Figure 7-10. Effects of Bus Contention on Bus Efficiency

A fourth alternative, that of allowing a processor to switch its Bus Arbiter between Mode 2 and Mode
3, offers even more flexibility in optimizing system performance where such’ performance might be
subject to experimentation, or where Multibus traffic might be sporadic.

To summarize the preceeding discussion, the decision to use one or another of the four Bus Arbiter
configurations depends on the relative priorities of processors sharing the bus, and on the anticipated
traffic each processor may have for the bus. In order to optimize the sharing of the Multibus between
several bus masters, designers are urged to experiment with the different modes of each Bus Arbiter
in the system.

Configuring the 82289 Operating Modes

A designer can configure the Bus Arbiter in four ways:

1. The Bus Arbiter can be configured to operate in Mode 1, releasing the bus at the end of each
transfer cycle.

2. The Bus Arbiter can be configured in Mode 2, retaining the bus until either a higher- or lower-
priority bus master requests the bus.

3. The Bus Arbiter can be configured in Mode 3, retaining the bus until a higher-priority bus master
- requests the bus.

4. The Bus Arbiter can be configured so that it can be switched between Mode 2 and Mode 3 under
software control of the iAPX 286. This last configuration is more complex than the first three,

requiring that a parallel port or addressable latch be used to drive one of the strapping pins of the
82289. »

7-16 210760-001

Intel THE SYSTEM BUS

Once the designer has determined which of the four bus-retention techniques to adopt, this configura-
tion must be incorporated into the hardware design. Figure 7-11 shows the strapping configurations
required to implement each of these four techniques.

Asserting the LOCK Signal

Independent of the particular operating mode of the Bus Arbiter, the iAPX 286 processor can assert a
LOCK signal at any time to prevent the Bus Arbiter from releasing the Multibus. This software-
controlled LOCK signal prevents the Bus Arbiter from surrendering the system bus to any other bus
master, whether of higher- or lower-priority. This signal is typically used for implementing software
semaphores for critical code sections or critical real-time events. The LOCK signal can also be asserted
within one instruction to retain control of the bus for high-performance transfers.

When the iAPX 286 asserts the LOCK signal, the Bus Arbiter converts this temporary input into a
level-lock signal, LLOCK, which drives the Multibus LOCK status line. The Bus Arbiter will continue
to assert LLOCK retaining control of the Multibus until the first unLOCKed bus cycle from the
iAPX 286 processor. '

82289 82289

RESET | RESET RESET ——asee—i- | RESET
_L—— ALWAYS/CBALCK Vec —-| ALWAYS/CBALCK
MODE 1 MODE 2

82289 82289

“ESET—E RESET RESET RESET
ALWAYS/CBQLCK ol ALWAYS/CBALCK
%
PARALLEL }—]D
/

170
DATA) OR . Lo
ADDRESSABLE
MODE 3 LATCH
ENABLE —»-| ——04——MULTIBUS"‘ BCLK

% WHEN LOW, 82289 IN MODE 3;
WHEN HIGH, 82289 N MODE 2

210760-117

Figure 7-11. Four Different 82289 Configurations

7-17 210760-001

intal

This LLOCK signal from the 82289 Bus Arbiter must be connected to the Multibus LOCK status line
through a tri-state driver. This driver is controlled by the AEN output of the Bus Arbiter.

THE SYSTEM BUS

TIMING ANALYSIS OF THE MULTIBUS® INTERFACE

The timing specifications for the Multibus are explained concisely in the Multibus specification, Order
Number 9800683-04. To summarize these requirements as they pertain to an iAPX 286 subsystem
operating as a Multibus bus master:

o The iAPX 286 system must use one command delay when reading data from the Multibus.

¢ The iAPX 286 must use two command delays when writing data to the Multibus.

When the 82288 Bus Controller driving the Multibus is strapped in the Multibus configuration
(MB = 1, and CMDLY = 0), the Bus Controller automatically inserts the appropriate delays as

outlined above. No further consideration is required in order to conform to the Multibus timing
requirements.

Table 7-3 summarizes the critical Multibus parameters as they relate to the iAPX 286 system, and
shows that these parameters are satisfactorily met by an 8-Mhz iAPX 286 with one command delay

Table 7-3. Required MULTIBUS® Timing for the iAPX 286

8 MHz iAPX 286
Timing MULTIBUS® with:
Parameter Specification 1 CMDLY on RD
2 CMDLY on WR
tas 50 ns 125 ns (2 CLK cycles)
Address Setup minimum — 15ns (ALE delaymay)
before command — 45ns (8283 delaypay)
active + 3ns (Cmd delay i)
68 ns min.
tos 50 ns 125 ns (2 CLK cycles)
Write Data Setup minimum — 30ns (DEN act. delay,a,)
before command — 30ns (8287 delaymay)
active + 3ns (Cmd delayp,;,)
68 ns min.
tan 50 ns 62.5 ns (1 CLK cycle)
Address Hold minimum — 15.0ns (Cmd inact. delay,,,)
after command + 3.0ns (ALE act. delaynin)
inactive + 10.0ns (8283 delay)
60.5 ns min.
torw 50 ns 62.5 ns (1 CLK cycle)
Write Data Hold minimum — 15.0 ns (Cmd inact. delayay)
after command + 10.0ns (8287 delaymin)
inactive 57.5 ns min.

210760-001

Iﬂte' THE SYSTEM BUS

during reads and two command delays during write operations. The timing parameters assume the use
of 8283 and 8287 latches and transceivers.

In addition to the specific parameters defined in table 3-1, designers must be sure that:

e To ensure sufficient access time for the slave device, bus operations must not be terminated until
an XACK (transfer acknowledge) is received from the slave device.

« Following an MRDC or an IORC command, the responding slave device must disable its data
drivers within 125 ns (max) following the return of the XACK signal. (All devices meeting the
Multibus spec. of 65 ns max meet this requirement.)

USING DUAL-PORT RAM WITH THE SYSTEM BUS

A dual-port RAM is a memory subsystem that can be accessed by the iAPX 286 via the iAPX 286
local bus, and can also be accessed by other processing elements via the Multibus system bus. The
performance advantages of using dual-port memory are described in Chapter Four. This section describes
several issues that must be considered when implementing dual-port memory with a Multibus interface.

Dual-port' memories are a shared resource, and, like a shared bus, must address the twin issues of
arbitration and mutual exclusion. Mutual exclusion addresses the case when two processors attempt to
access the dual-port memory simultaneously. The Multibus LOCK signal and a similar LOCK signal
from the 80286 itself attempt to mediate this contention.

Chapter Four of this manual describes the techniques of addressing these two issues. This section
expands on the explanation in Chapter Four and in particular discusses how to handle the two LOCK
signals and avoid potential deadlock conditions that may otherwise arise.

Figure 7-12 shows a configuration where a dual-port memory is shared between an iAPX 286 subsys-
tem and the Multibus. The LLOCK (Level-Lock) signal from the 82289 Bus Arbiter is used to provide
the LOCK signal from the iAPX 286. This LLOCK signal is not conditioned on whether the 82289 is
currently selected (the SYSB/RESB input).

Avoiding Deadlock with a Dual-Port Memory

A potential deadlock situation exists for a dual-port memory when both the iAPX 286 processor and
another bus master attempt to carry out LOCKed transfers between the dual-port memory and exter-
nal Multibus memory or devices.

The situation can arise only when the iAPX 286 attempts to carry out a LOCKed transfer using both
the dual-port memory and the Multibus. In one deadlock scenario, the itAPX 286 processor, using the
local bus, reads data from the dual-port memory and asserts the LOCK signal, preventing the dual-
port memory from being accessed by another processing element on the Multibus.

If, at the same time, another bus master of higher priority (or while asserting the Multibus LOCK
signal) takes control of the Multibus and attempts to access the dual-port memory, this bus master will
be unable to access the (locked) dual-port memory and so enters a wait state, waiting for a response
from the memory. At the same time, the iAPX 286 processor will be unable to gain control of the
Multibus in order to complete its transfer, since the other processor gained the Multibus first. The
result is deadlock, and in the absence of other mechanisms, each processor stops.

7-19 210760-001

THE SYSTEM BUS

[=h

ARDY -
82284 N
SRDY —I >j
READY READY
CLK CLK 82288
RESET |— Vcc—4 CEN
READY —} READY
CLK—]CLK
50—150 MWTC o— j
51 81 MRDC o—
MB DT/R
D DATA
XACKA XACKB PSEL PSEN PCTLB
l PCTLA WE -
N A
| RAS p—
= CAS o~
8207
DRAM
RESET CONTROLLER
50 » | WRA R% o
§1 »|RDA
_ ERROR Jo—
SHIFT CE |
REGISTER
DO —»| PDI .
—»-|pER PEB J
y PWR
LOCK MUX LEN . A1 BYTE
A - MARK
DECODER |————saraee
80286 LATCH }—
CPU |
MUX ’
OE STB OE T =
DECODE |4 8282 | 8287 K —
LATCHES BUFFERS
A ADDRESS
SYS/RESB
LOCK |—»]LOCK L)__
BREQ '
CLK CLK LLOCK p——d
1] —
50 g—g 82289
READY ——o|READY AEN >
7-20 210760-001

THE SYSTEM BUS

I XACK
Yy ¥ ’G—I
T OF :
8287 DATA
8286 | A— 2072
E BUFFERS x > BUFFERS N —
1 OE T
> Je o 10 _|)‘J
:>A DYNAMIC :‘)‘
dras ™M cai
qCASpo cBO
N 8283 -
U U ') LATCHES
3 DI 8206CBI STB OE g
RW ghcy °° 0 a
ozim Do 3
BMO BM1 =
y
DECODE
| 8283 j ADR
M LATCHES
L4
STB_OF
Vce——MB * 1]
READY —~OJREADY ALE
0 ——4 50 DEN
i—{57 DT/R
CLK—Jclk MWTC i%_“hc
l—-aam MRDC MRDC
LCOCK
210760-118
Figure 7-12. iAPX 286 Dual-Port Memory with MULTIBUS® Interface
7-21 210760-001

Iﬂte' THE SYSTEM BUS

Typically, both processors will eventually terminate their respective bus operations due to bus-timeout
(see the earlier section on bus-timeout circuitry). If a bus timeout occurs, the processors will fail in
their respective attempts to write or read data.

Since reading and/or wrmng 1mproper data is to be avoided, you have two alternatives to avoid this
dead!lock situation:

¢ The first alternative is to simply avoid using LOCKed transfers from the dual-port memory in the
iAPX 286 software. No additional hardware over that shown in Figure 7-12 is required.

» The second alternative actually prevents the occurrence of LOCKed transfers between the dual-
port memory and the Multibus by using hardware to condition the LOCK input to the dual-port
memory. ‘

Figure 7-13 shows a circuit to implement the second alternative. Bear in mind, however, that this
circuit in effect destroys the LOCK condition on the dual-port memory for any transfers from the dual-
port memory ending on the Multibus. This fact will not be apparent from the iAPX 286 software. Even
if this alternative is implemented, software writers should be cautioned against using LOCKed trans-
fers between the dual-port-memory and the Multibus.

8207 DRAM
CONTROLLER ARRAY

LOCK MUX
BREQ é
(azzag)
K LOCK (MULTIBUS™)
(82289)

210760-119

Figure 7-13. Preventing Deadlock Between Dual-Port RAM and the MULTIBUS®

7-22 210760-001

Appendix A A
Device Specifications

ntal” ADVANCE INFORMATION

IAPX 286/10 ,
HIGH PERFORMANCE MICROPROCESSOR
WITH MEMORY MANAGEMENT AND PROTECTION

= High Performance 8 and 10 MHz m Optional Processor Extension:
Processor (Up to six times IAPX 86) —iAPX 286/20 High Performance 80-bit

m Large Address Space: Numeric Data Processor
—16 Megabytes Physical m Complete System Development
—1 Gigabyte Virtual per Task Support:

m Integrated Memory Management, Four- —Development Software: Assembler,
Level Memory Protection and Support PL/M, Pascal, FORTRAN, and System
for Virtual Memory and Operating Utilities
Systems —In-Circuit-Emulator (ICE™-286)

m Two iAPX 86 Upward Compatible u High Bandwidth Bus Interface
Operating Modes: (8 or 10 Megabyte/Sec)

—iAPX 86 Real Address Mode n Available in EXPRESS:
—Protected Virtual Address Mode —Standard Temperature Range

The iAPX 286/10 (80286 part number) is an advanced, high-performance microprocessor with specially optimized
capabilities for multiple user and multi-tasking systems. The 80286 has built-in memory protection that supports
operating system and task isolation as well as program and data privacy within tasks. A 10 MHz iIAPX 286/10 provides
up to six times greater throughput than the standard 5 MHz iAPX 86/10. The 80286 includes memory management
capabilities that map up to 230 bytes (one gigabyte) of virtual address space per task into 224 bytes (16 megabytes) of
physical memory.

The iIAPX 286 is upward compatible with iIAPX 86 and 88 software. Using iAPX 86 real address mode, the 80286 is
object code compatible with existing iAPX 86, 88 software. In protected virtual address mode, the 80286 is source
code compatible with iAPX 86, 88 software and may require upgrading to use virtual addresses supported by the
80286's integrated memory management and protection mechanism. Both modes operate at full 80286 performance
and execute a superset of the iAPX 86 and 88’s instructions.

The 80286 provides special operations to support the efficient implementation and execution of operating systems.
For example, one instruction can end execution of one task, save its state, switch to a new task, load its state, and
start execution of the new task. The 80286 also supports virtual memory systems by providing a segment-not-present
exception and restartable instructions.

g —— - P — e ——— — 4
ADDRESS UNIT (AU) | !
ADDRESS Az3 - Ag,
LATCHES AND DRIVERS 7 BHE, MI0

PHYSICAL

ADDRESS PROCESSOR PEACR
ADDER PREFETCHER| | EXTENSION [| PEREG
SEGMENT INTERFACE [

t READY, HOLD
= §1, 55, CODINTA
LOCK, HLDA

BUS CONTROL

|
|
|
1 |
| |
orrser \ | || —mmmt-—---1))
ADDER SEGMENT | qeamENT [1
LIMIT

CHECKER SIZES]]
. DATATRANSCEIVERS

]

6 BYTE
PREFETCH

T
|
| |
ALy \ | L QUEUE BUS UNIT (BU)
1

R I I _J L_ e A
REGISTERS | CONTROL E I' 1 | CESET
|'3Sl?|'ERcU°C|?I'IEgN INSTRUCTION INSTRUCTION | VS:
K TRYCTON | becooeR UNIT (1U)
EXECUTION UNIT (EU) T T 3 |
.

D15 - Do

I
|
!
|
|
|
|
|
|
|
|
|
.
s
|
|
|
|
|
|
|

Vee
CAP

Figure 1. 80286 Internal Block Diagram

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products: BXP, CREDIT, i, ICE, iCS, im, Insite, Intel, INTEL, Intelevision, Intellink,
Intellec,iMMX, iOSP, iPDS, iRMX, iSBC, iSBX, Library Manager, MCS, MULTIMODULEb" hassis, Micr int MULTIBUS, Multi 1, Plug-A-Bubble, PROMPT, Promware,
RUPI, RMX/80, System 2000, UPI, and the combination of iCS, iRMX, iSBC, iSBX, ICE, I<ICE, MCS, or UPl and a numerical suftix. Intel Corporation Assumes No Responsibility for the use
of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Patent Licensas are implied. © INTEL CORPORATION, 1982, ORDER NUMBER: 210253-002

A-1

®
ntel iAPX 286/ 10 ADVANCE INFORMATION
Component Pad View—As viewed from - P.C. Board View—As viewed from the
underside of component when mounted on component side of the P.C. board.
the board.
$s58588865a888s368 §5388s88cis8s88s58sé
O O O O O
Ay CAP CAP Ao
A ERAOR ERAGR |) Ay
A BUSY 5USY [A
CLK NC. Ne. [T cLK
Vee N.C. Ne] Vee
RESET INTR INTR RESET
A3 NC. N.C. % A3
NMI NMI
v,
:::eo renca]
Vee vee [J
REAGY READY |]
HoLD Holp [}
HLDA Hloa [
CODANTA CODNTA [)
Mio [N]

Arg - 18 ek toek [A1y
NONOO0NAAAA A0 1ONO0NNONNANNNMAN
SEEEBIL Y O HoURIRES S S
= ;><‘§blm;’gl§ PINNO. 1 MARK Egghlm§“>; =
< < o & < E3

NOTE: N.C.pads mustnotbe connected.

Figure 2. 80286 Pin Configuration

Table 1. Pin Description

The following pin function descriptions are for the 80286 microprocessor:

Symbol | Type Name and Function

CLK | System Clock provides the fundamental timing for iIAPX 286 systems. It is divided by two inside
the 80286 to generate the processor clock. The internal divide-by-two circuitry can
be synchronized to an external clock generator by a LOW to HIGH transition on the RESET
input.

Dys-Dg - /0 Data Bus inputs data during memory, I/O, and interrupt acknowledge read cycles; outputs data
during memory and I/0 write cycles. The data bus is active HIGH and floats to 3-state OFF during
bus hold acknowledge.

Ao3-Ag (0] Address Bus outputs physical memory and I/O port addresses. AO is LOW when data is to be
transferred on pins D7_g. A23-A1g are LOW during I/O transfers. The address bus is active HIGH
and floats to 3-state OFF during bus hold acknowledge.

BHE O Bus High Enable indicates transfer of data on the upper byte of the data bus, Dy5_g. Eight-bit

oriented devices assigned to the upper byte of the data bus would normally use BHE to con-
dition chip select functions. BHE is active LOW and floats to 3-state OFF during bus hold acknowledge.

BHE and A0 Encodings
BHE Value A0 Value Function
0 0 Word transfer
0 1 Byte transfer on upper half of data bus {D4s_g)
1 0 Byte transfer on lower half of data bus (D7_g)
1 1 Reserved

iAPX 286/10 ADVANCE INFORMATION

Table 1. Pin Description (Cont.)

Symbol

Type

Name and Function

51,50

Bus Cycle Status indicates initiation of a bus cycle and, along with M/TO and COD/INTA, defines
the type of bus cycle. The bus is in a T4 state whenever one or both are LOW. ST and 50 are
active LOW and float to 3-state OFF during bus hold acknowledge.

80286 Bus Cycle Status Definition
S1 S0 Bus cycle initiated

Interrupt acknowledge
Reserved

Reserved

None; not a status cycle
IF A1 =1 then halt; else shutdown
Memory dataread
Memory data write
None; not a status cycle
Reserved

/O read

1/0 write

None; not a status cycle
Reserved

Memory instruction read
Reserved

None; not a status cycle

COD/INTA
0(LOW)

E
[e]
I
2

(HIGH)

A4 B A 0000000

-t 2 20000~ + 220000
~ OO0 4,004 200200
P N I N PP PN

MIO

Memory/IO Select distinguishes memory access from I/O access. If HIGH during Ts, a memory
cycle or a halt/shutdown cycle is in progress. If LOW, an |/O cycle or an interrupt acknowledge cycle
is in progress. M/IO floats to 3-state OFF during bus hold acknowledge.

COD/INTA

Code/Interrupt Acknowledge distinguishes instruction fetch cycles from memory data read cycles.
Also distinguishes interrupt acknowledge cycles from I/O cycles. COD/INTA floats to 3-state OFF
during bus hold acknowledge.

LOCK

Bus Lock indicates that other system bus masters are not to gain control of the system bus following
the current bus cycle. The LOCK signal may be activated explicitly by the “LOCK” instruction prefix
or automatically by 80286 hardware during memory XCHG instructions, interrupt acknowledge, or
descriptor table access. LOCK s active LOW and floats to 3-state OF F during bus hold acknowledge.

READY

Bus Ready terminates a bus cycle. Bus cycles are extended without limituntit terminated by READY
LOW. READY is an active LOW synchronous input requiring setup and hold times relative to the
system clock be met for correct operation. READY is ignored during bus hold acknowledge.

HOLD
HLDA

Bus Hold Request and Hold Acknowledge control ownership of the 80286 local bus. The HOLD
input allows another local bus master to request control of the local bus. When control is granted, the
80286 will float its bus drivers to 3-state OFF and then activate HLDA, thus entering the bus hoid
acknowledge condition. The local bus will remain granted to the requesting master untii HOLD
becomes inactive which results in the 80286 deactivating HLDA and regaining control of the local
bus. Thisterminates the bus hold acknowledge condition. HOLD may be asynchronous to the system
clock. These signals are active HIGH.

INTR

Interrupt Request requests the 80286 to suspend its current program execution and service a
pending external request. Interrupt requests are masked whenever the interrupt enable bit in the
flag word is cleared. When the 80286 responds to an interrupt request, it performs two interrupt
acknowledge bus cycles to read an 8-bit interrupt vector that identifies the source of the interrupt. To
assure program interruption, INTR must remain active until the first interrupt acknowledge cycle is
completed. INTR is sampled at the beginning of each processor cycle and must be active HIGH at
least two processor cycles before the current instruction ends in order to interrupt before the next
instruction. INTR is level sensitive, active HIGH, and may be asynchronous to the system clock.

NMI

Non-maskable Interrupt Request interrupts the 80286 with an internally supplied vector value of
2. No interrupt acknowledge cycles are performed. The interrupt enable bit in the 80286 flag word
does not affect this input. The NMI input is active HIGH, may be asynchronous to the system clock,
and is edge triggered after internal synchronization. For proper recognition, the input must have
been previously LOW for at least four system clock cycles and remain HIGH for at least four system
clock cycles.

iAPX 286/10 ADVANGCE INFORMATION

Table 1. Pin Description (Cont.)

Type

Name and Function

Processor Extension Operand Request and Acknowledge extend the memory management and protection;
capabilities of the 80286 to processor extensions. The PEREQ input requests the 80286 to perform a data.
operand transfer for a processor extension. The PEACK output signals the processor extension when the,
requested operand is being transferred. PEREQ is active HIGH and floats to 3-state OFF during bus hold)
acknowledge. PEACK may be asynchronous to the system clock. PEACK is active LOW.

Processor Extension Busy and Error indicate the operating condition of a processor extension
to the 80286. An active BUSY input stops 80286 program execution on WAIT and some ESC
instructions until BUSY becomes inactive (HIGH). The 80286 may be interrupted while waiting
for BUSY to become inactive. An active ERROR input causes the 80286 to perform a processor
extension interrupt when executing WAIT or some ESC instructions. These inputs are active
LOW and may be asynchronous to the system clock.

RESET

System Reset clears the internal logic of the 80286 and is active HIGH. The 80286 may be re-
initialized at any time with a LOW to HIGH transition on RESET which remains active for more than
16 system clock cycles. During RESET active, the output pins of the 80286 enter the state shown
below:

80286 Pin State During Reset
Pin Value Pin Names

1 (HIGH) S0, ST, PEACK, A23-A0, BHE, LOCK
0 (LOW) M0, COD/INTA, HLDA
3-state OFF D15-Do

Operation of the 80286 begins after a HIGH to LOW transition on RESET. The HIGH to LOW transi-
tion of RESET must be synchronous to the system clock. Approximately 50 system clock cycles are
required by the 80286 for internal initializations before the first bus cycle to fetch code from the
power-on execution address is performed.

A LOW to HIGH transition of RESET synchronous to the system clock will end a processor
cycle at the second HIGH to LOW transition of the system clock. The LOW to HIGH transition
of RESET may be asynchronous to the system clock; however, in this case it cannot be prede-
termined which phase of the processor clock will occur during the next system clock period.
Synchronous LOW to HIGH transitions of RESET are required only for systems where the
processor clock must be phase synchronous to another clock.

Vss

System Ground: 0 VOLTS.

Vce

System Power: + 5 Volt Power Supply.

CAP

Substrate Filter Capacitor: a 0.047uf + 20% 12V capacitor must be connected between this pin
and ground. This capacitor filters the output of the internal substrate bias generator. A maximum DC
leakage current of 1 pais allowed through the capacitor.

For correct operation of the 80286, the substrate bias generator must charge this capacitor to its
operating voltage. The capacitor chargeup time is 5 milliseconds (max.) after Vo and CLK reach

_their specified AC and DC parameters. RESET may be applied to prevent spurious activity by the

CPU during this time. After this time, the 80286 processor clock can be phase synchronized to
another clock by pulsing RESET LOW synchronous to the system clock.

intgl’

iAPX 286/10

ADVANCE INFORMATION

FUNCTIONAL DESCRIPTION
Introduction

The 80286 is an advanced, high-performance micro-

processor with specially optimized capabilities for mul-
tiple user and multi-tasking systems. Depending on the
application, the 80286's performance is up to six times

faster than the standard 5 MHz 8086's, while providing -

complete upward software compatibility with Intel's iAPX
86, 88, and 186 family of CPU's.

The 80286 operatesintwo modes: iAPX 86 real address
mode and protected virtual address mode. Both modes
execute a superset of the iAPX 86 and 88 instruction set.

In iAPX 86 real address mode programs use real ad-
dresses with up to one megabyte of address space. Pro-
grams use virtual addresses in protected virtual address

mode, also called protected mode. In protected mode,
the 80286 CPU automatically maps 1 gigabyte of virtual -

addresses per task into a 16 megabyte real address
space. This mode also provides memory protection to
isolate the operating system and ensure privacy of each
tasks’ programs and data. Both modes provide the same
base instruction set, registers, and addressing modes.

The following Functional Description describes first, the
base 80286 architecture common to both-modes, sec-
ond, iAPX 86 real address mode, and third, protected
mode.

iAPX 286/10 BASE ARCHITECTURE

The iAPX 86, 88, 186, and 286 CPU family all contain
the same basic set of registers, instructions, and ad-
dressing modes. The 80286 processor is upward com-
patible with the 8086, 8088, and 80186 CPU’s.

Register Set

The 80286 base architecture has fifteen registers as
shown in Figure 3: These registers are grouped into the
following four categories:

General Registers: Eight 16-bit general purpose reg-
isters used to contain arithmetic and logical operands.
Four of these (AX, BX, CX, and DX) can be used either
in their entirety as 16-bit words or split into pairs of sep-
arate 8-bit registers.

Segment Registers: Four 16-bit special purpose reg-
isters select, at any given time, the segments of memory
that are immediately addressable for code, stack, and
data. (For usage, refer to Memory Organization.)

Base and Index Registers: Four of the general pur-
pose registers may also be used to determine offset ad-
dresses of operands in memory. These registers may
contain base addresses or indexes to particular loca-
tions within a segment. The addressing mode deter-
mines the specific registers used for operand address
calculations. -

Status and Control Registers: The 3 16-bit special
purpose registers in figure 3A record or control cer-
tain aspects of the 80286 processor state including
the Instruction Pointer, which contains the offset
address of the next sequential |nstruct|on to be
executed

16-BIT SPECIAL

BASE REGISTERS

INDEX REGISTERS

STACK POINTER

)2

SHOWN) ‘ BX BH BL)

| }
|

)

15 0
GENERAL
REGISTERS

REGISTER REGISTER
NAME FUNCTIONS
L7 07 0 15 0

BYTE AX AH . AL MULTIPLY/DIVIDE cs CODE SEGMENT SELECTOR
ADDRESSABLE /O INSTRUCTION . e EC
(8-BIT DX DH DL ucrio S 0s DATA SEGMENT SELECTOR
REGISTER
NAMES cX CH cL LOOP/SHIFT/REPEAT COUNT ss

STACK SEGMENT SELECTOR

ES K EXTRA SEGMENT SELECTOR

SEGMENT REGISTERS

5 o

F . © . | FLAGS
P INSTRUCTION POINTER
MSW MACHINE STATUS WORD
STATUS AND CONTROL
REGISTERS

Figure 3. Register Set

iAPX 286/10

ADVANCE INFORMATION

STATUS FLAGS:
CARRY

PARITY

AUXILIARY CARRY

ZERO

SIGN

OVERFLOW

[]

S\ i

o'm.12 [orn| :; [?T' :r | ss7| z: [\\i\\] A: ﬁ\\l PFz '\\{\ cF |

CONTROL FLAGS:

TRAP FLAG

INTERRUPT ENABLE

DIRECTION FLAG

SPECIAL FIELDS:

/O PRIVILEGE LEVEL

NESTED TASK FLAG

INTEL RESERVED

TASK SWITCH j

PROCESSOR EXTENSION EMULATED
MONITOR PROCESSOR EXTENSION

PROTECTION ENABLE

Figure 3a. Status and Control Register Bit Functions

Flags Word Description

The Flags word (Flags) records specific characteristics
of the result of logical and arithmetic instructions (bits 0,
2,4, 6,7, and 11) and controls the operation of the 80286
within a given operating mode (bits 8 and 9). Flags is a
16-bit register. The function of the flag bits is given in
Table 2.

Instruction Set

The instruction setis divided into seven categories: data
transfer, arithmetic, shift/rotate/logical, string manipula-
tion, control transfer, high leve! instructions, and pro-
cessor control. These categories are summarized in
Figure 4.

An 80286 instruction can reference zero, one, or two
operands; where an operand resides in a register, in the
instruction itself, or in memory. Zero-operand instruc-
tions (e.g. NOP and HLT) are usually one byte long. One-
operand instructions (e.g. INC and DEC) are usually two
bytes long but some are encoded in only one byte. One-
operand instructions may reference a register or mem-
ory location. Two-operand instructions permit the follow-
ing six types of instruction operations:

—Register to Register
—Memory to Register
—Immediate to Register
—Memory to Memory
—Registerto Memory
—Immediate to Memory

Table 2. Flags Word Bit Functions

Bit
Position

Name

Function

0

CF

Carry Flag—Set on high-order bit
carry or borrow; cleared otherwise

2

PF

Parity Flag—Set if low-order 8 bits
of result contain an even number of
1-bits; cleared otherwise

AF

Set on carry from or borrow to the
low order four bits of AL; cleared
otherwise

ZF

Zero Flag-Set if result is zero;
cleared otherwise

SF

Sign Flag—Set equal to high-order
bitof result (Qif positive, 1if negative)

11

OF

Overflow Flag—Setif result is a too-
large pusitive number or a too-small
negative number (excluding sign-bit)
to fit in destination operand; cleared
otherwise

TF

Single Step Flag—Once set, a sin-
gle step interrupt occurs after the
next instruction executes. TF is
cleared by the single step interrupt.

Interrupt-enable Flag—When set,
maskable interrupts will cause the
CPU to transfer control to an inter-
rupt vector specified location.

10

DF

Direction Flag—Causes string
instructions to auto decrement
the appropriate index registers
when set. Clearing DF causes
auto increment.

intal” IAPX 286/10 ADVANGCE INFORMATION
Two-operand instructions (e.g. MOV and ADD) are usu-
ally three to six bytes long. Memory to memory opera- ADDITION
tions are provided by a special class of string instructions ADD Add byte or word
requiring one to three bytes. For detailed instruction for- ADC Add byte or word with carry
ga:;s; a;:de(;\f(;zi r;%sé Le:;zr r:? the instruction set summary INC Increment byte or word by 1
’ AAA ASCII adjust for addition
DAA Decimal adjust for addition
SUBTRACTION
SUB Subtract byte or word
GENERAL PURPOSE SBB Subtract byte or word with borrow
MOV Move byte or word DEC Decrement byte or word by 1
PUSH Push word onto stack NEG Negate byte or word
POP Pop word off stack CMP Compare byte or word
PUSHA Push all registers on stack AAS ASCI! adjust for subtraction
POPA Pop all registers from stack DAS Decimal adjust for subtraction
XCHG Exchange byte or word MULTIPLICATION
XLAT Translate byte MUL Multiply byte or word unsigned
INPUT/OUTPUT IMUL Integer multiply byte or word
IN Input byte or word AAM ASCII adjust for multiply
ouTt Output byte or word DIVISION
ADDRESS OBJECT DIV Divide byte or word unsigned
LEA Load effective address IDIV Integer divide byte or word
LDS Load pointer using DS AAD ASCIHI adjust for division
LES Load pointer using ES CBW Convert byte to word
FLAG TRANSFER CWD Convert word to doubleword
LAHF Load AH register from flags Figure 4b. Arithmetic Instructions
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

Figure 4a. Data Transfer Instructions

LOGICALS

NOT “Not” byte or word
AND “And” byte or word
OR “Inclusive or” byte or word
XOR “Exclusive or” byte or word
MOVS Move byte or word string TEST “Test” byte or word
INS Input bytes or word string SHIFTS
OUTS Output bytes or word string SHL/SAL Shift logical/arithmetic left byte or word
CMPS Compare byte or word string SHR Shift logical right byte or word -
SCAS Scan byte or word string SAR Shift arithmetic right byte or word
LODS Load byte or word string ROTATES
STOS Store byte or word string ROL Rotate left byte or word
REP Repeat ROR Rotate right byte or word
REPE/REPZ Repeat while equal/zero RCL Rotate through carry left byte or word
REPNE/REPNZ Repeat while not equal/not zero RCR Rotate through carry right byte or word

Figure 4c. String Instructions

A-7

Figure 4d. Shift/Rotate/Logical Instructions

®
ntel iAPX 286/10 ADVANGE INFORMATION
CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS
JA/UNBE Jump if above/not below nor equal CALL Call procedure
JAE/INB . Jump if above or equal/not below RET Return from procedure
JB/JNAE Jump if below/not above nor equal JMP Jump
JBE/UNA Jump if below or equal/not above
JC Jumpif carry ITERATION CONTROLS
JENZ Jump if equal/zero
JG/INLE Jump if greater/not less nor equal LOOP Loop
JGE/JNL Jump if greater or equal/not iess LOOPE/LOOPZ Loopif equal/zero
JL/UNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLE/UNG Jump if less or equal/not greater JCXZ Jump if register CX = 0
JNC Jumpif not carry '
JNE/UNZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity odd INT Interrupt
JNS Jumpiif not sign INTO Interrupt if overflow
- JO Jump if overflow IRET Interrupt return
JP/JPE Jump if parity/parity even '
JS Jump if sign
Figure 4e. Program Transfer Instructions
FLAG OPERATIONS Memory Organization
STC Set carry flag Memory is organized as sets of variable length seg-
cLC Clear carry flag ments. Each segment is a linear contiguous sequence
cMe Complement carry flag Qf up to 64K (216) 8-bit bytes. Memor.y is addressed us-
STD Setdirection flag inga twojcomponent address (a pointer) ‘that consists
of a 16-bit segment selector, and a 16-bit offset. The
CLD Clear direction flag segment selector indicates the desired segment in
STI Set interrupt enable flag memory. The offset component indicates the desired byte
CLI Clear interrupt enable flag address within the segment.
EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt orreset
WAIT Wait for BUSY not active :13 X
ESC Escape to extension processor 32-BIT POINTER
LOCK Lock bus during next instruction —
NO OPERATION [sement | omser |
NOP I No operation < =8 ’ OPERAND
EXECUTION ENVIRONMENT CONTROL SELECTED | } SEament
LMSW Load machine status word
SMSw Store machine status word
Figure 4f. Processor Control Instructions
4 4
ENTER Format stack for procedure entry ~ ~
LEAVE Restore stack for procedure exit MEMORY
BOUND Detects values outside prescribed range

Figure 4g. High Level Instructions

Figure 5. Two Component Address

il

iAPX 286/10

ADVANCE INFORMATION

Table 3. Segment Register Selection Rules

Memory Segment Register Implicit Segment
Reference Needed Used Selection Rule
Instructions Code (CS) Automatic with instruction prefetch
Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP as a
base register.
Local Data Data (DS) All data references except when relative to stack or string destination
External (Global) Data Extra (ES) Alternate data segment and destination of string operation

All instructions that address operands in memory must
specify the segment and the offset. For speed and com-
pact instruction encoding, segment selectors are usu-
ally stored in the high speed segment registers. An
instruction need specify only the desired segment reg-
ister and an offset in order to address a memory operand.

Most instructions need not explicitly specify which seg-
ment register is used. The correct segment register is
automatically chosen according to the rules of Table 3.
These rules follow the way programs are written (see
Figure 6) as independent modules that require areas for
code and data, a stack, and access to external data areas.

Special segment override instruction prefixes allow
the implicit segment register selection rules to be
overridden for special cases. The stack, data, and
extra segments may coincide for simple programs.
To access operands not residing in one of the four
immediately available segments, a full 32-bit pointer
or a new segment selector must be loaded.

Addressing Modes

The 80286 provides a total of eight addressing modes
for instructions to specify operands. Two addressing
modes are provided for instructions that operate onreg-
ister orimmediate operands: '

Register Operand Mode: The operand is located in
one of the 8 or 16-bit general registers.

Immediate Operand Mode. The operand is included
inthe instruction.

Six modes are provided to specify the location of an op-
erand in a memory segment. A memory operand ad-
dress consists of two 16-bit components: segment
selector and offset. The segment selector is supplied by
a segment register either implicitly chosen by the ad-
dressing mode or explicitly chosen by a segment over-
ride prefix. The offset is calculated by summing any
combination of the following three address elements:

the displacement (an 8 or 16-bit immediate value
contained in the instruction)

the base (contents of either the BX or BP base
registers)

the index (contents of either the S! or Dl index registers)

A-9

r=—=1

CODE
MODULE A

DATA

CODE CcPy

MODULE B

DATA

CODE

DATA

STACK

PROCESS
STACK

EXTRA

SEGMENT
REGISTERS

PROCESS
DATA
BLOCK 1

PROCESS
DATA
BLOCK 2

1 1
Leed
MEMORY

Figure 6. Segmented Memory Helps
Structure Software

Any carry out from the 16-bit addition is ignored. Eight-
bit displacements are sign extended to 16-bit values.

Combinations of these three address elements define
the six memory addressing modes, described below.

Direct Mode: The operand's offset is contained in the
instruction as an 8 or 16-bit displacement element.

Register Indirect Mode: The operand’s offsetis in one
of the registers Sl, DI, BX, or BP.

Based Mode: The operand’s offset is the sum of an 8 or
16-bit displacement and the contents of a base register
(BX or BP).

H ®
intel IAPX 286/ 10 ADVANGE INFORMATION
Indexed Mode: The operand's offset is the sum of an 8
or 16-bit displacement and the contents of an index reg-
ister (Sl orDI).
Based Indexed Mode: The operand’s offset is the sum SIGNED [1 q
of the contents of a base register and an index register. SIG‘:':T m
Based Indexed Mode with Displacement: The oper- MAGNITUDE
and’s offset is the sum of a base register's contents, an NSIGNED [X 3
index register's contents, and an 8 or 16-bit displacement. BYTE
L
Data Types M:éilaruos
The 80286 directly supports the following data types: . SIGNED Py *1er 0 o
Integer: A signed binary numeric value con- e L
tained in an 8-bit byte or a 16-bit word. MAGNITUDE
All operations assume a 2's comple- SIGNED &1 *+3 42 geqs +1 0
ment representation. Signed 32 and 64- DOUBLE
bit integers are supported using the IAPX Sion b Twss .
286/20 Numeric Data Processor. MAGNITUDE
+7 +6 +5 +4 +3 +1 0
Ordinal: An unsigned binary numeric value con- Soan 12 Lt 2 e 5
tained in an 8-bit byte or 16-bit word. ::;gnﬂﬂ_ M!: [11 [1 J.
Pointer: A 32-bit quantity, composed of a seg- MAGNITUDE
ment selector component and an offset unsiGNED +1 9 o
component. Each componentis a 16-bit WORD
word. CTMsB
MAGNITUDE
String: A contiguous sequence of bytes or . N T T
words. A string may contain from 1 byte 2obED I"""T"""I l""'T'r"""I""'Trl"‘l']
to 64K bytes. DECIMAL L—prrs 50)
(BCD) DIGIT N DIGIT 1 DIGIT 0
ASCIL: A byte representation of alphanumeric 7 HN N
and control characters using the ASCII ASCIl m ves
standard of character representation. ASCll ASCHAsCH
CHARACTERy CHARACTER; CHARACTERy
BCD: A byte (unpacked) representation of the packep LMo 3 *1 a7 0 o
decimal digits 0-9. BCD |' ' ”l m
Packed BCD: A byte (packed) representation of two bt TG
decimal digits 0-9 storing one digit in SIGNIFICANT DIGIT SIGNIFICANT DIGIT
each nibble of the byte. ms N ms *1 oms O o
Floating Point: A signed 32, 64, or 80-bit real number STRING
representation. (Floating point operands BYTE/WORO N BYTE/WORD 1 BYTE/WORD 0
are supported using the iAPX 286/20 u +3 *2 a1 1 0 o
Numeric Processor configuration.) POINTER
Figure 7 graphically represents the data types sup- : ., SHECTOR '+5 OFFSET |+1 .
ported by the iAPX 286. jud M o
"ot [T T T T [T T T 11
SIGNBIT-, | |

I/O Space

The I/O space consists of 64K 8-bit or 32K 16-bit ports.
I/0 instructions address the I/0 space with either an 8-
bit port address, specified in the instruction, or a 16-bit
port address in the DX register. 8-bit port addresses are
zero extended such that A15—Ag are LOW. I/O port ad-
dresses 00F8(H) through 00FF(H) are reserved.

EXPONENT MAGNITUDE

“Supported by IAPX 286:20 Numeric Data Processor Configuration

A-10

Figure 7. iAPX 286 Supported Data Types

H ®
intel IAPX 286/10 ADVANGE INFORMATION
Table 4. Interrupt Vector Assignments
Return Address
Function Isterrupt Relau.ad Before Instruction
umber Instructions Causing Exception?
Divide error exception 0 DIV, IDIV Yes
Single step interrupt 1 All
NMlinterrupt 2 All
Breakpointinterrupt 3 INT
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
Invalid opcode exception 6 Any undefined opcode Yes
Processor extension not available exception 7 ESC or WAIT Yes
Reserved 8-15
Processor extension error interrupt 16 ESC or WAIT
Reserved 17-31
User defined 32-255
Interrupts

An interrupt transfers execution to a new program loca-
tion. The old program address (CS:IP) and machine state
(Flags) are saved on the stack to allow resumption
of the interrupted program. Interrupts fall into three
classes:hardwareinitiated, INT instructions, andinstruc-
tion exceptions. Hardware initiated interrupts occur
in response to an external input and are classified
as non-maskable or maskable. Programs may cause
an interrupt with an INT instruction. Instruction excep-
tions occur when an unusual condition, which pre-
vents further instruction processing, is detected while
attempting to execute an instruction. The return ad-
dress from an exception will always point at the in-
struction causing the exception and include any leading
instruction prefixes.

A table containing up to 256 pointers defines the proper
interrupt service routine for each interrupt. Interrupts 0—
31, some of which are used for instruction exceptions,
are reserved. For each interrupt, an 8-bit vector must be
supplied to the 80286 which identifies the appropriate
table entry. Exceptions supply the interrupt vector inter-
nally. INT instructions contain or imply the vector and
allow access to all 256 interrupts. Maskable hardware
initiated interrupts supply the 8-bit vector to the CPU
during an interrupt acknowledge bus sequence. Non-
maskable hardware interrupts use a predefined inter-
nally supplied vector.

MASKABLE INTERRUPT (INTR)

The 80286 provides a maskable hardware interrupt re-
quest pin, INTR. Software enables this input by setting

the interrupt flag bit (IF) in the flag word. All 224 user-
defined interrupt sources can share this input, yet they
can retain separate interrupt handlers. An 8-bit vector
read by the CPU during the interrupt acknowledge se-
quence (discussed in System Interface section) identi-
fies the source of the interrupt.

Further maskable interrupts are disabled while servic-
ing an interrupt by resetting the IF but as part of the
response to an interrupt or exception. The saved flag
word will reflect the enable status of the processor prior
to the interrupt. Until the flag word is restored to the flag
register, the interrupt flag will be zero unless specifically
set. The interrupt return instruction includes restoring
the flag word, thereby restoring the original status of IF.

NON-MASKABLE INTERRUPT REQUEST (NMI)

A non-maskable interrupt input (NMI) is also provided.
NMI has higher priority than INTR. A typical use of NMI
would be to activate a power failure routine. The activa-
tion of this input causes an interrupt with an internally
supplied vector value of 2. No external interrupt ac-
knowledge sequence is performed.

While executing the NMI servicing procedure, the 80286
will service neither further NMI requests, INTR re-
quests, nor the processor extension segment overrun
interrupt untit aninterrupt return (IRET) instruction is ex-
ecuted or the CPU is reset. If NMi occurs while currently
servicing an NM|, its presence will be saved for servic-
ing after executing the first IRET instruction. IF is cleared
at the beginning of an NMI interrupt to inhibit INTR
interrupts.

intgl’

iAPX 286/10

ADVANGCE INFORMATION

SINGLE STEP INTERRUPT

The 80286 has an internal interrupt that allows pro-
grams to execute one instruction atatime. ltis called the
single step interrupt and is controlled by the single step
flag bit (TF) in the flag word. Once this bitis set, an inter-
nal single step interrupt will occur after the next instruc-
tion has been executed. The interrupt clears the TF bit
and uses an internally supplied vector of 1. The IRET
instruction is used to set the TF bit and transfer contro}
to the nextinstruction to be single stepped.

Interrupt Priorities

When simultaneous interrupt requests occur, they are
processedin a fixed order as shown in Table 5. Interrupt
processing involves saving the flags, return address, and
setting CS:IP to point at the first instruction of the inter-
rupt handler. If other interrupts remain enabled they are
processed before the first instruction of the current in-
terrupt handleris executed. The lastinterrupt processed
is therefore the first one serviced.

Table 5. Interrupt Processing Order

Order [Interrupt
1 INT instruction or exception
2 Single step
3 NMI
4 Processor extension segment overrun
5 INTR

Initialization and Processor Reset

Processor initialization or start up is accomplished by
driving the RESET input pin HIGH. RESET forces the
80286 to terminate all execution and local bus activity.
No instruction or bus activity will occur as long as RE-
SET is active. After RESET becomes inactive and an
internal processing interval elapses, the 80286 begins
execution in real address mode with the instruction at
physical location FFFFFO(H). RESET also sets some
registers to predefined values as shown as shown in
Table 6. ‘

Table 6. 80286 Initial Register State after RESET

Flag word 0002(H)
Machine Status Word FFFO(H)
Instruction pointer FFFO(H)
Code segment FOOO(H)
Data segment 0000(H)
Extra segment 0000(H)
Stack segment 0000(H)

Machine Status Word Description

The machine status word (MSW) records when a task
switch takes place and contrals the operating mode of
the 80286. It is a 16-bit register of which the lower four
bits are used. One bit places the CPU into protected
mode, while the other three. bits, as shown in Table 7,
control the processor extension interface. After RESET,
this register contains FFFO(H) which places the 80286
in iAPX 86 real address mode.

Table 7. MSW Bit Functions

Bit
Position
0 PE

Name| Function

Protected mode enable places the
80286 into protected mode and can
not be cleared except by RESET.

Monitor processor extension al-
lows WAIT instructions to cause a
processor extension not present
exception (number 7).

Emulate processor extension
causes a processor extension not
present exception (number 7) on
ESC instructions to allow emulat-
ing a processor extension.

Task switched indicates the next
instruction using a processor ex-
tension will cause exception 7, al-
lowing software to test whether the
current processor extension con-
text belongs to the current task.

The LMSW and SMSW instructions can load and store
the MSW in real address mode. The recommended use
of TS, EM, and MP is shown in Table 8.

Table 8. Recommended MSW Encodings For Processor Extension Control

Instructions
TS | MP | EM Recommended Use Causing
. Exception 7
0 0]l 0 Initial encoding after RESET. iAPX 286 operation is identical to | None
iAPX 86,88.
0 0 1 No processor extension is available. Software will emulate its function. ESC
1 0 1 No processor extension is available. Software will emulate its function. The current { ESC
processor extension context may belong to another task.
0 1 0 A processor extension exists. None
1 1 0 A processor extension exists. The current processor extension context may belong | ESCor
to another task. The exception on WAIT allows software to test for an error pending | WAIT
from a previous processor extension operation.

A-12

intgl’ iAPX 286/10 ADVANCE INFORMATION

Halt

The HLT instruction stops program execution and pre-
vents the CPU from using the local bus until restarted. 15 0 -

Either NMI, INTR with IF = 1, or RESET will force the 0000 OFFSET OFFSET
80286 out of halt. If interrupted, the saved CS:IP will ADDRESS

point to the next instruction after the HLT. ﬁ -

iAPX 86 REAL ADDRESS MODE ‘ 15 °

. SEGMENT SEGMENT
The 80286 executes a fully upward-compatible superset SELECTOR 0000} ApDRESS

of the 8086 instruction set in real address mode. In real
address mode the 80286 is object code compatible with —
8086 and 8088 software. The real address mode archi-
tecture (registers and addressing modes) is exactly as

described in the IAPX 286/10 Base Architecture section
of this Functional Description. ADDER

Memory Size

Physical memory is a contiguous array of up to
1,048,576 bytes (one_megabyte) addressed by pins
A through A;q and BHE. A, through A,; may be 20-BIT PRVSICAL

ignored. MEMORY ADDRESS

Memory Addressing -
In real address mode the processor generates 20-bit Figure 8. iAPX 86 Real Address Mode Address

physical addresses directly from a 20-bit segment base Calculation
address and a 16-bit offset.

The selector portion of a pointer is interpreted as the
upper 16 bits of a 20-bit segment address. The lower
four bits of the 20-bit segment address are always zero.

Segment addresses, therefore, begin on multiples of 16
bytes. See Figure 8 for a graphic representation of ad-
dress formation. :
. FFEFFH
All segments in real address mode are 64K bytesin size " RESET BOOTSTRAP
and may be read, written, or executed. An exception or PROGRAM JuMP FFFFOH
interrupt can occur if data operands or instructions at- A . r'
tempt to wrap around the end of a segment (e.g. a word ~ . W»
with its low order byte at offset FFFF(H) and its high 3FFH
order byte at offset 0000(H)). I, in real address mode, T o ooa
the information contained in a segment does not use the - 3FCH
full 84K bytes, the unused end of the segment may be ~A ‘ : L
overlayed by another segment to reduce physical mem- » [-
ory requirements. INTERRUPT POINTER ™
FOR VECTOR 1 4H
: 3H
Reserved Memory Locations 'NTESS%ZL;’&NJER
The 80286 reserves two fixed areas of memory in real 0H
address mode (see Figure 9); system initialization area
and interrupt table area. Locations from addresses
FFFFO(H) thorugh FFFFF(H) are reserved for system
initialization. Initial execution begins at location FFFFO(H). Figure 9. IAPX 86 Real Address Mode Initially
Locations 00000(H) through 003FF(H) are reserved for Reserved Memory Locations

interrupt vectors.

A-13

intel®

iAPX 286/10

ADVANCE INFORMATION

Table 9. Real Address Mode Addressing Interrupts

Function Interrupt Related Return Address
Number Instructions Before Instruction?
Interrupt table limit too small exception 8 INT vector is not within table limit Yes
Processor extension segment overrun 9 ESC with memory operand extend- No
interrupt ing beyond offset FFFF(H)
Segment overrun exception 13 Word memory reference with offset Yes
= FFFF(H) or an attempt to exe-
cute past the end of a segment

Interrupts

Table 9 shows the interrupt vectors reserved for excep-
tions and interrupts which indicate an addressing error.
The exceptions leave the CPU in the state existing be-
fore attempting to execute the failing instruction (except
for PUSH, POP, PUSHA, or POPA). Refer to the next
section on protected mode initialization for a discussion
on exception 8.

Protected Mode Initialization

To prepare the 80286 for protected mode, the LIDT in-
struction is used to load the 24-bit interrupt table base
and 16-bit limit for the protected mode interrupt table.
This instruction can also set a base and limit for the in-
terrupt vector table in real address mode. After reset,
the interrupt table base is initialized to 000000(H) and
its size set to 03FF(H). These values are compatible
with iAPX 86, 88 software. LIDT should only be exe-
cuted in preparation for protected mode.

Shutdown

Shutdown occurs when a severe error is detected that
prevents further instruction processing by the CPU.
Shutdown and halt are externally signalled viaa haltbus
operation. They can be distinguished by A1 HIGH for halt
and Aq LOW for shutdown. In real address mode, shut-
down can occur under two conditions:

e Exceptions 8 or 13 happen and the IDT limit does not
include the interrupt vector.

® A CALL, INT, or POP instruction attempts to wrap
around the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if the
IDT limit is at least 000F(H) and 'SP is greater than
0005(H), otherwise shutdown can only be exited via the
RESET input.

PROTECTED VIRTUAL ADDRESS MODE

The 80286 executes a fully upward-compatible superset
of the 8086 instruction set in protected virtual address
mode (protected mode). Protected mode also provides
memory management and protection mechanisms and
associated instructions.

The 80286 enters protected virtual address mode from
real address mode by setting the PE (Protection En-
able) bit of the machine status word with the Load Ma-
chine Status Word (LMSW) instruction. Protected mode
offers extended physical and virtual memory address
space, memory protection mechanisms, and new oper-
ations to support operating systems and virtual memory.

All registers, instructions, and addressing modes de-
scribed in the iAPX 286/10 Base Architecture section of
this Functional Description remain the same. Programs
for the iIAPX 86, 88, 186, and real address mode 80286
can be runin protected mode; however, embedded con-
stants for segment selectors are different.

Memory Size

The protected mode 80286 provides a 1 gigabyte virtual
address space per task mapped-into a 16 megabyte
physical address space defined by the address pins Aps~
Ag and BHE. The virtual address space may be larger
than the physical address space since any use of an
address that does not map to a physical memory loca-
tion will cause a restartable exception.

Memory Addressing

As in real address mode, protected mode uses 32-bit
pointers, consisting of 16-bit selector and offset com-
ponents. The selector, however, specifies an index into
amemory resident table rather than the upper 16-bits of
areal memory address. The 24-bit base address of the

intgl’

IAPX 286/10

ADVANGE INFORMATION

desired segment is obtained from the tables in memory.
The 16-bit offset is added to the segment base address
to form the physical address as shownin Figure 10. The
tables are automatically referenced by the CPU when-
ever a segment register is loaded with a selector. All
iAPX 286 instructions which load a segment register will
reference the memory based tables without additional
software. The memory based tables contain 8 byte val-
ues called descriptors.

CcPU

31 16 15 0

POINTER |SELECTOR| OFFSET

PHYSICAL MEMORY
"

~

b

PHYSICAL
ADDRESS
ADDER

T BASE SEGMENT
ADDRESS DESCRIPTOR

23 0 4

T
DESCRIPTOR
TABLE

v
v

MEMORY

OPERAND ’ SEGMENT
L
\

~ ~
~N A

Figure 10. Protected Mode Memory Addressing

DESCRIPTORS

Descriptors define the use of memory. Special types of
descriptors also define new functions for transfer of con-
trol and task switching. The 80286 has segment de-
scriptors for code, stack and data segments, and system
control descriptors for special system data segments and
control transfer operations. Descriptor accesses are
performed as locked bus operations to assure descrip-
tor integrity in multi-processor systems.

CODE AND DATA SEGMENT DESCRIPTORS

Besides segment base addresses, code and data de-
scriptors contain other segment attributes including
segment size (1 to 64K bytes), access rights (read only,
read/write, execute only, and execute/read), and pres-
ence in memory (for virtual memory systems) (See Fig-
ure 11). Any segment usage violating a segment attribute
indicated by the segment descriptor will prevent the
memory cycle and cause an exception or interrupt.

Segment Descriptor
7 07 0
1
+7 INTEL RESERVED® +6
ACCESS
riGHts Yt +5 |P|PPL | s I_T.VP.E A BASE23-15 +4
+3 BASE 5.9 +2
1

1 LIMITy5-0 0
1

15 87 0

*Must be set to 0 for compatabillity with IAPX 388.

Access Rights Byte Definition ‘

Bit
Position Name Function
7 Present (P) P=1 Segmentis mapped into physical memory.
P=0 Nomapping to physical memory exists, base and limit are not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descrip- S=1 Code or Data segment descriptor
tor (S) S=0 Non-segment descriptor

I_ 3 Executable (E) E=0 Datasegmentdescriptortypeis:]
c 2 Expansion Birec- ED=0 Grow upsegment, offsets must be < limit.
2 tion (ED) | Data
£ ED=1 Grow downsegment, offsets must be > limit. Segment
3 1 Writeable (W) W=0 Datasegment may not be written into.
% W=1 Datasegment may be written into. —J
E 3 Executable (E) E=1 Code Segment Descriptor type is: _]
3 2 Conforming (C) C=1 Code segment may only be executed when CPL = DPL. | Code
= 1 Readable (R) R=0 Code segment may notbe read. Segment
L R=1 Code segment may be read. __|

0 Accessed (A) A=0 Segmenthas notbeen accessed.

A=1 Segmentselector has been loaded into segment register or used by
selector test instructions.

Figure 11. Code and Data Segment Descriptor Formats

A-15

intel”

iAPX 286/10

ADVANCE INFORMATION

Code