e
intal IAPX 286

| Operating Systems
Writer’s Guide

Order Number 1213«»-«);:“1"/':41
o s fi

LITERATURE

In addition to the product line Handbooks listed below, the INTEL. PRODUCT GUIDE (no charge, Order

No. 210846) provides an overview of Intel’s complete product line and customer services.

Consultthe INTEL LITERATURE GUIDE fora complete listing of Intel literature. TO ORDER literature
in the United States, write or call the Intel Literature Department, 3065 Bowers Avenue, Santa Clara. CA
95051, (800) 538-1876, or (800) 672-1833 (California only). TO ORDER literature from international
locations, contact the nearest Intel sales office or distributor (see listings in the back of most any Intel

literature).

1984 HANDBOOKS

Memory Components Handbook (Order No. 210830)
Contains all application notes. article reprints, data sheets, and other design information
on RAMs, DRAMs, EPROMs. E2PROMs, Bubble Memories.

Telecommunication Products Handbook (Order No. 230730)
Contains all application notes, article reprints, and data sheets for telecommunication
products.

Microcontroller Handbook (Order No. 210918)
Contains allapplicationnotes, article reprints, data sheets, and design information for the
MCS-48, MCS-51 and MCS-96 families.

Microsystem Components Handbook (Order No. 230843)

Contains application notes, article reprints, data sheets, technical papers for micropro-
cessors and peripherals. (2 Volumes) (Individual User Manuals are also available on the
8085. 8086, 8088. 186, 286, eic. Consult the Literature Guide for prices and order
numbers.)

Military Handbook (Order No. 210461)
Contains complete data sheets for all military products. Information on Leadless Chip
Carriers and on Quality Assurance is also included.

Development Systems Handbook (Order No. 210940)
Contains data sheets on development systems and software, support options, and design
kits.

OEM Systems Handbook (Order No. 210941)
Contains all data sheets, application notes, and article reprints for OEM boards and
systems.

Software Handbook (Order No. 230786)
Contains all data sheets, applications notes, and article reprints available directly
from Intel, as well as 3rd Party software.

* Prices are for the U.S. only.

U.S. PRICE*
$15.00

750
15.00

20.00

10.00
10.00
15.00

10.00

intal

IAPX 286
OPERATING SYSTEMS
WRITER’S GUIDE

1983

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
-appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXP, CREDIT, i, ICE, ICE, ICS, iDBP, iDIS, iLBX, im, iMMX,
Insite, INTEL, intgl, Intelevision, Intellec, intgligent Identifier™,
intgIBOS, intgligent Programming™, Intellink, iOSP, iPDS,
iRMS, iSBC, iSBX, iSDM, iSXM, Library Manager, MCS,
Megachassis, Micromainframe, MULTIBUS, Multichannel™
Plug-A-Bubble, MULTIMODULE, PROMPT, Ripplemode,
RMX/80, RUPI, System 2000, and UPI, and the combination of
ICE, iCS, iRMX, iSBC, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

* MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Department

3065 Bowers Avenue
Santa Clara, CA 95051

€ INTEL CORPORATION, 1983

PREFACE

This book is written for systems designers and operating system designers and programmers who plan
to use the Intel iAPX 286 microprocessor in its protected, virtual-address mode. The protected-mode
iAPX 286 is designed for multitasking systems: systems that serve many users or that 51multaneously
run several programs.

This book analyzes operating system functions that are appropriate for the iAPX 286 when used in a
variety of multitasking applications, including

« Communications, such as automated PBXs
¢ Real-time, such as instrumentation or process control

* Multi-user, such as time-sharing or office systems

Many of the features of the iAPX 286 are intended for use by an operating system. This book identifies
and explains those features and gives examples of how they can be used in an operating system.

AUDIENCE

This book assumes that you have a knowledge of multitasking operating systems at least equivalent to
that presented in introductory undergraduate textbooks on the subject. It also assumes that you have
had some exposure to the architecture of the iAPX 286 through attending an introductory course or
reading introductory literature such as Introduction to the iAPX 286.

RELATED PUBLICATIONS

Intel Literature

The following manuals contam additional information of use to operatmg-system de51gners and
programmers:

o ASM286 Assembly Language Reference Manual, 121924

o Component Data Catalog, 210298 '

e [APX 286 Architecture Extension Kernel (K286) User’s Guide, 121961
o [APX 286 Programmer’s Reference Manual, 210498

» [APX 286 System Builder User’s Guide, 121935

e IAPX 286 Utilities User’s Guide, 121934

* iAPX 286/10 High Performance Mzcroprocessor with Memory Management and Protectton (Data
Sheet), 210253

o Introduction to the iAPX 286, 210308
o PL/M-286 User’s Guide, 121945

iii 121960-001

Intel PREFACE

External Literature

Many aspects of operating system construction for the iAPX 286 are the same as for other processors.
The following are sources of generally applicable theories and algorithms referred to in the text of this
book.

o Coffman, E.G., Jr., and Peter J. Denning, Operating Systéms Théory (Englewood Cliffs, N.J.:
Prentice-Hall, 1973)

¢ Denning, Peter J., “Virtual Memory,” Computing Surveys, Vol. 2, No. 3 (September 1970)
o Knuth, Donald E., Fundamental Algorithms, Vol. 1 (Reading, Mass.: Addison-Wesley, 1973)

e Peterson, James L., Petri Net Theory and the Modeling of Systems (Englewood Cliffs, N.J.: Prentice-
Hall, 1981)

RELATED PRODUCTS

Designers interested in operating systems for the protected-mode iAPX 286 should also be aware of
Intel’s iAPX 286 Architecture Extension Kernel K28. K286 is an operating-system kernel designed
for a wide variety of applications, including real-time, communications, business systems, and time-
sharing. K286 provides .

¢ Short-term, priority scheduling and management of multiple tasks
¢ Interrupt management ‘

e Multiprocessor support

e Virtual memory support

e Data sharing among tasks with synchronization

* Intertask signals and messages

¢ Extended protection

Whether you use K286 “as is,” for greatest possible efficiency, or whether you add layers of software
to more fully support your applications, K286 can significantly reduce your system development time.
Since K286 has been designed by the architects of the iAPX 286 and implemented and tested by
Intel’s software engineers, using K286 can make your system more reliable.

K286 implements many of the concepts discussed in this book, which can therefore give you additional
understanding of why and how to use K286.

HOW TO USE THIS MANUAL

This manual has two related objectives:

* To identify features of the iAPX 286 architecture that are unique when applied to the implemen-
tation of an operating system

¢ To show how you can effectively use these unique features in the design of familiar operating system
functions

iv 121960-001

ntel PREFACE

In pursuit of these objectives, Chapters 2 thru 13 share a general, three-part structure:

1.

Identifing an operating system function (or class of functions). The functions chosen are those
with which you might already be familiar, since they are similar to those used in state-of-the-art
operating systems such as iRMX 86 (from Intel Corporation) or UNIX (from Bell Laboratories).

Reviewing the iAPX 286 features that support that function. While this portion of each chapter
may cover some material available in other Intel literature, it provides added value by discussing
in one place all the iAPX 286 features that bear on a given operating system function and by
identifying relationships among those features.

Outlining some examples of how to use those iAPX 286 features in an implementation of the
identified function. It is, of course, impossible to illustrate all the ways to design any given function,
but these examples serve to illustrate a few of the ways that the designers of the iAPX 286 archi-
tecture intended for it to be applied.

Chapter 1 introduces the iAPX 286 architecture; identifies the role of an operating system in a protected,
multitasking environment; and shows how Intel’s Binder and Builder utilities aid in the construction of
an operating system. You may skip Chapter 1 if you are already familiar with multitasking operating
systems and with the Binder and the Builder.

Both Chapter 2 and Chapter S contain key information about manipulating the protection features of
the iAPX 286. Be sure not to omit these chapters when scanning the contents of the book.

For the remaining chapters, you may turn directly to the subjects that interest you most. You will find
the reading easier, however, if you observe the partial orderings outlined in table 0-1.

NOTATIONAL CONVENTIONS

UPPERCASE Characters shown in uppercase must be entered in the order shown. You may

enter the characters in uppercase or lowercase.

italic Italic indicates a meta symbol that may be replaced with an item that fulfills

the rules for that symbol. The actual symbol may be any of the following:

system-id Is a generic label placed on sample listings where an operating system-

dependent name would actually be printed.

Vx.y Is a generic label placed on sample listings where the version number of the

product that produced the listing would actually be printed.

Table 0-1. Prerequisites by Chapter

Target Chapter Prerequisites
6 4
7 6
8 4,6
9 . 6,7
12 4,6,7

v 121960-001

Table of Contents

CHAPTER 1
INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286
TASKS i e e
Structure of @ Programccoecieeiiieiiiieiiicec e
Segmented MEMOTYccoviiiiiiiiiiii e
MUIItASKING oottt
Privilege LEVEISc.oiiiiiiiiiiie ettt
Levels Of SEgMENTScccoiiiiiiiniicii
RUIES Of PrIVIIEOE ..eeeeerieiieiiieeee ettt e e
Software System StrUCLUrEcceeeeiiiiiiiieeee e
Role of the Operating SyStemccoccoiiiiiriieiiee e
Common O.S. FUNCHIONS eeiiiiiiiieeeeeeee et
0.S. Functions in a Dynamic Environmentc..cccooooiiiniiiiiniiiceenenne
Constructing the Initial Run-Time Environmentccoocoiiiiiiiiiiniicncnn,
Building a Static Systemcccccovviviiiiiiiii
Building a DynamiC SyStemcccuiiiiiiiiiiiieee e

CHAPTER 2
USING HARDWARE PROTECTION FEATURES
Addressing MEChANISMccuvieeereriieiicieieseeeee et a e eseneens
1D 1= Yol g o] (o] - USSP
DesCriptor FOrMALeeeiiiiiiiie ettt e e e e
Control FIOW Transfer ..ot
Gate DESCHPLOIS eeeiiiiiiieiiieeeiee et e et e s e e et e e ba e e ie e s naeeeaeeas
Control Transfer MEChaNISMSccocveveetioinierieireise et
Privilege Rules for Gated Intersegment Transfersccccciiiiiniiinns
DeSCriPIOr TADIESueeeii et e e e e e e e e e e eeeeeee
Local Descriptor Tablecoovioiiiiiiiieeeeee e
Global Descriptor Tableooviieiiiiiie e
Interrupt Descriptor Tableoooiiiiiiiiieee e
SEIECIOIS ... e e s e aee e
Format Of SEIECIOTeiiiiiiiiiieeeee e e
NUIE SEIBCIOT ...t e e s saee e
Alias DESCIIPIOrS ...c..c.eviiieiieieeeiitie ettt e e e e e
Explicit Variation of TYPec.cooviiiiiiiiieeeeceeeceee e
Variation of LENGh ...cooniiiiii et
Sharing Segments among TasKScceeviereiiiiiiiiiiniencne e
Protection and Integrity with Aliasingcccccoviiiiiiniiii e
Example of Descriptor Manipulationcceeeiiieirniiieeenieee e
Slot Managementcooiiiiie e

Vi

R N NS (U U R U U G N U G " G —
COdbdOubhAhAbaiadl

121960-001

Intel TABLE OF CONTENTS

CHAPTER 3 Page
REAL MEMORY MANAGEMENT
Memory Management FUNCHONScoooeiiiiiiiiiiiniiiccie e 3-1
Example of a Memory Managerccccevvviiiiniiiiiiccine e 3-1
Data STrUCIUIES coeeiiiieiieeeee ettt st 3-2
PL/M-286 COUEoouieiiieiieeiienee ettt sttt ettt s e e sb e 3-6
Protection StruCtUrecooceiiiiiiiic e 3-7
Advanced Memory Managementcccccooerieriieinieciennee e 3-10
CHAPTER 4
TASK MANAGEMENT
Hardware Task-Management Featuresccccccevviinieincininnciiecnenee 4-1
Storing Task Statecccceviiiiiiieeee e 4-1
SWItChING TASKS ..eeeeeieiieeeitie ettt aea s 4-3
Role of Operating System in Task Management ... 4-4
State Model of Task Schedulingcccieeiieeiiiiiniieie e 4-5
Interfacing with the Hardware Schedulerccccoviviiiiniiciiniininieiee, 4-6
Changing Scheduling State ..ot 4-7
Structuring Task INfOrmationc.ccceeviiiirierniiiee e 4-10
Example of @ DIiSPatChercoociiiiiiiiiniieic ettt 4-13
CHAPTER 5
DATA SHARING, ALIASING, AND SYNCHRONIZATION
Data-Sharing TeChNIQUEScooiiiiiiiieiiee e 5-1
Sharing via the GDTccoiiiiiiiiiiece e et in 5-1
Sharing via Common LDT coooiiiiiieiciieeeccre it eeee e e e e e ere e 5-1
Sharing via AlIASEScc.eiiieiiiiiiieeiie et eaae s 5-2
Alias Managementoooiieiiii e 5-3
Alias Databasecccccooceiiiiiieiieeee e 5-3
Alias ProCedUIEScceeiiiiiiiiiieiieeiece ettt 5-3
SYNCNFONIZALIONoiuiiiiieiieciee et s ae e s aa e 5-4
Low-Level Mutual EXCIUSIONccccoveiiiiiiniiiiceieecccesccesccieiees. 95
High-Level Mutual EXCIUSIONcccccoiiiiiiiiiecieeeceee e 5-6
MeSSaGE PaSSINGc.ccveiuiiieieeiiiiee ittt e 5-10
Message-Passing EXampleccoceeiiriiiiiiienicreeeee e 5-10
Variations on the Mailbox Themecccoiiiiriiinieccee e 5-16
CHAPTER 6
SIGNALS AND INTERRUPTS
Interrupt Features of the iAPX 286 Architecture SO 6-1
[VZ=Te1 (o 14T O PO PP PP PSPPI 6-1
Enabling and Disabling INterruptsccccovieriiniiiniienicecenecee e 6-2
Interrupt Descriptor TabIecoooiiiiiiiieeeiee e e 6-2
Interrupt Tasks and Interrupt Procedurescccccoeciviinecinnninncccneeenn. 6-2

vii 121960-001

intelv TABLE OF CONTENTS

Page

Operating System Responsibilitiesccccceeveiiiieeiiiiiniieceieees e, 6-4
Manage IDT Feeevere e e e rabere e e e e e e et e e s s et e ee s s nnnene s e e rrraant T 6-5
Switch Scheduling MOdES oooviiiiiiiiiieeee et 65
Manage Interrupt Controllerccccoviiivieeiniiieniiee e eeee e e 6-6
Provide Task-Level Interrupt Procedures cer 6-7
Provide Software Signalsccccoeeeiieiieieeriece e e .. 69

CHAPTER 7
HANDLING EXCEPTION CONDITIONS 0 ,

Fault Mechanismccccooevevieiniinnl. s 7-1

Fault RECOVEIYooiiiiiiiieeeceeee et e e, 7-1
Locating the Faulting Instructioncccooccciiiiiiiiiiinneen. PR 7-1
EFror €Ooooiiiiecieceee et e e 7-2

Application Interfacecccceviieiiiiiiii e i rreeerensirrrens 7-2

Exception ConditionNSccceeviiiiiiiiiiiiidiie i e 7-2
Interrupt 0—DiVIde EITOrcoooviiiiiieeiieeeieesiie et s s eee e e s e s et 7-3
Interrupt 1—Single STEP ...oviiiiiii e 7-3
Interrupt 3—Breakpointccoccieiieriirienie e s 7-3
Interrupt 4—OVerflOWcooiiiiiii e 7-3
Interrupt 5—Bound CheCKccceivviiiiiiiiiiee e . 7-4
Interrupt 6—Undefined Opcode (UD)ococciiiiiivcciiiiee e 7-4
Interrupt 7—Processor Extension Not Available (NM) e, 7-4
Interrupt 8—Double Fault (DF) et e et e e e aa————aeair—eeeeaanaens 7-5
Interrupt 9—Processor Extension Segment Overrun e 7-5
Interrupt 10—Invalid. TSS (TS) ..vovovevieiereeecieeeee e, T 7-5
Interrupt 11—Segment Not Present (NP) et e e e s e e e e aanes o 7-6
Interrupt 12—Stack Exception (SS)cccccevvriiiniieercinenn. e 7-6
Interrupt 13—General Protection Exception (GP)ccccivvieiiiiiiiieennnen, 7-7
Interrupt 16—Processor Extension Error (MF)cccccoceinieniicniieeencian 7-8
Interrupt 17—Run-Time EXCepionsccocceviiievreiieeeee e 7-8

Restartability SUMMAryc...ooooriii e 7-8

CHAPTER 8
INPUT/OUTPUT -

1/O and Protectioncccoceoviiiiiiiiiii e 8-1
1/O Privilege Level (IOPL) ..o 8-1
Controlling I/O ADdressescccccvevevieirennennnn Fevineesetranaieh et 8-2

1/0 and Memory Management ..o 8-3

Partitioning 1/O FUNCHONScccoeiiiiiiiiiiiiii e, 8-3
Requirements for Parallelism and Synchronizationcccccceeeiiinnnn 8-4
Requirements for Protectionccccoceee JUPR ireviereereeeeaere s e eerees 8-4
Implementation ARErNativescccceviiiniecininii i, 8-5

vi 121960-001

Iﬂtel TABLE OF CONTENTS

CHAPTER 9
VIRTUAL MEMORY

Hardware MechanisSmsccceeeveeiiiiiiiiiiiieeeie e f
ACCESSEA Bit ..eviiieiiiieec e
Present Bitccccceviviiiiiiiieeeee e

Software MechaniSmSsooocviiiiieiiiiiiiireee e
Secondary Storage Managementccoceciiiiiiiiiiiiiniinns
Level Zero Support Proceduresccccevuuvveiiiinniieninnnnen.
Swapping Managersccceeiieeiriiierniiee i

Software POlICIES cvviviiiiiiie e
FetCh e
Placementooviiiiiiie e
Replacementccccecoiiiieeenn. Hieveberaeveresaseerissetenennedeinsierasane

THrashingcooceeeiieiiieeee e e

CHAPTER 10
SYSTEM INITIALIZATION

Initial State ...,

~ Switching to Protected Modeccccevveeiiievieiieeiiceceeee e
Initializing for Protected Mode veeesinssansseenssemusaesasanssenns
Interrupt VECIOrcooiiiiiiee e
Stack e ———— et e
Global Descriptor Tableccceeeveeiiiiiiiiiiiiieeeeeeeeeae e
Starting First Taskcoccoiiiiiiiii e
Example of Initializationcccoeiiieiiiii e
Initialization Module ENTP ...

CHAPTER 11
BINDING AND LOADING

Binding Model ..ot
MOGUIES ...t
Segmentationcccceiiiiiin e
Interfacesccccoeevieiieenecicenees disisiivaditessnbesseseenessneresorens
NAMING oo e
TIMING e et e e e earee e

Implementing According to the Modelc..cccociiiiiniinieee
SOUrCE COAR ..ot e
COMPIIEIS ...t
Binding ULIlItIeSooociiiiiiieee e

Overview of Loadingcccceeeeeiieiiiee e e
Converting a Program into a Taskccccceeceeecciiie ieeniiied
iAPX 286 Object Module Formatccceverieniininiiicenenc
FIoW Of LOAdErooiiiiiiiee e

Load-Time Bindingccccoccevevieriecnennnnne BB R SR

EXample LOAdErceeeveiiiiiiiieeeeeeeeeeeeeeee e e

ix

Page

9-1
9-1

9-2
9-2

9-4
9-6

9-6
9-7

10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-3
10-3

11-1
111
11-2
11-2
11-3
11-3
11-3
11-4
11-4
11:5
11-8
119
11-10
11-11
11-12
11-12

121960-001

lntel TABLE OF CONTENTS

CHAPTER 12 Page
NUMERICS PROCESSOR EXTENSION
iAPX 286/20 Numerics Processing Featuresccccociiviiniccciiiiinnnnnn, 12-1
ESCAPE INSrUCIONS ...couvviiiiiiiiiieiiee e 12-1
Emulation Mode Flag (EM)ooiiiiiie 12-1
Math Present Flag (MP)coeeiiiiiiiii et 12-2
Task Switched Flag (TS)cocivriiiiii 12-2
WAIT INSTIUCHIONeeiiiiiiiiiiec e e 12-2
SUMMAIY it 12-2
INItIAZALON ... 12-2
TASK STAE ..ocveiieeiiiriie et e 12-3
NUMENICS EXCEPONS .ooieeeiiiii ittt 12-3
Interrupt 7—Processor Extension Not Available (NM)ccccccviiiiinnenn. 12-3
Interrupt 9—Processor Extension Segment Overrun (MP)ccccceeiie 12-4
Interrupt 16—Processor Extension Error (MF)cccccceiiiiiiiiiniiieciccee, 12-5
CHAPTER 13
EXTENDED PROTECTION
Extended Typeccccoiviiiiiinniiicece e e 13-1
Type Extension Code with Descriptorcccevveeiiniiennnnne reveeeenre e 13-1
Type Extension Code in Segmentcccevvviiiiiniiiiiecniirecee s 13-1
Indirect Namingccceviiiiiiiicc 13-2
Parameter Validationcoooieiiiiiiiii e 13-2
Defensive Use Of ARPL coiiiiiiiiiiniinie e 13-2
Point-0f-Entry SCrutinyccccoeviiiiiiiiiiin 13-3
Usage Privilege LeVe!l ..o 13-4
Send Privilege LeVE!cocioiiiiiiiicee e 13-5
Constructing Shared ObJECtSccoovciiriiiiiiiiiiii e, 13-5
GLOSSARY
INDEX
LIST OF TABLES
Table ' Title Page
0-1 Prerequisites by Chaptercccccoiiiiiiiiii e v
21 Categories of Control Flow Transfer ..o, 2-7
2-2 Control Transfer Mechanismsccccooiieiiniienicie e 2-10
3-1 Actions for Combining SEgMENtSc.ccecvvciiiinenesireesene e 3-9
4-1 Task Switching Operationscccccceveeiiiiiiieiiiee e e 4-3
6-1 Interrupt RESPoNSe TIMEceoeciiiiiieecee e e - 6-5
7-1 Restart CoONditioNScccoccivieriiiiicce et e 7-8
121 Interpretation of MP and EM Flagscccccveininieniniienincniecieens 12-3
13-1 Access Checking INStrUCtIONS cceeveirieeriienee e 13-2

X 121960-001

TABLE OF CONTENTS

2-7

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

4-1
4-2
4-3
4-4
4-5
4-6

LIST OF FIGURES

Title

Segregation of Segments by Tasks with Private LDTSccccee......

Global Segments in System

Segment Segregation by Privilege Level within a Taskcce......
A Four-Level Protection Structurecccceeeeiieiinicnininieecenieeenns
A Two-Level Protection StruCturecc..ccccceeeeieiieinciiieec et
A One-Level Unprotected Structurecccccceveiiiiiiiiiiiieiiiececcie
Independent Operating-System Tasksccccccorveieeiriiiieeenieiieneee

Building a Static System
Building a Dynamic System .

Abstraction of Addressing Mechanismccccceivniiiiiiniinnnne,

Data Segment Descriptor

Executable Segment Descriptorcccceeiiiiiniiicininie,

System Segment Descriptor

Calling a Conforming Segmentcccvrviiiiiicic i

Gate Descriptorccco.......
Intralevel Control Transfers .

Gated Interlevel Call and RetUINooooiveioiiiiiiiiiee e,
Valid and Invalid Interlevel Transfersccocovivieeviiiieiiiieie s

Format of a Selector
Aliasing for Debugger
Aliases for System Tables ...
Aliases with Differing Limit ..

Application of Segment Sharingcccccoviiiiiic e,

Aliases for Segment Sharing

Descriptor Manipulation EXamplecccccoooiiiiiininiieeeeee,

Available Slot List
Memory Fragmentation

Information Hiding in Memory-Management Example
Example Memory-Management Data Structurescccccccceveveeenee

Using Boundary Tags
Hiding Boundary Tags
Example GDT Layout

Splitting an Available Block of MemMOryccccccceeiiiiiniinineeeenieen.
Possibilities for Combining Segments ...
Code for Memory-Management Exampleccccooviiiennieecinnnenn.
Task State Segment and Registerccccoviiiiiniiiiiiiiiiicces
Scheduling State Transition Diagramc.ccoccevceviiniinniniinnnene,
Expanded Scheduling State Transition Diagramcccccoceiiiienen.

Changing Scheduling Mode .

Task Information Structure A
Task Information Structure B

Xi

Page

1-2
1-3
1-4
1-6
17
1-8
1-9

1-10

1-11
2-1
2-3
2-4
2-5
2-6

2-11
2-12
2-13
2-16
217
2-18
2-19
2-20
2-21
2-23
2-26

3-2

3-4
3-5
3-6
3-7
3-8
3-11
3-15
4-2
4-5

4-8

4-11
4-12

121960-001

TABLE OF CONTENTS

Figure

47
4-8
4-9
51

5-3
5-4

5-6
5-7

6-2
6-3
6-4 -
7-1
8-1
8-2
8-3
10-1
10-2
10-3
11-1
11-2
11-3
11-4
11-5
11-6
11-7
131

Task Information Structure Ccceeee.
Scheduler Queue Segmentcccccceevniene
Dispatcher Examplecccccceeinniininninicn,
Segment via Common LDTccccevrinneeen.
Alias Listccoceeennee. i ireeeer e e e reenedeea e
Identifying Alias Listcc..ccoovieiiiiiiennnns e
Semaphore Structure cccccceeveeeiiiiiiiiieee
Semaphore Examplecccoociiiiiiiiiiiieeenen,
Mailbox Structurecccceciiiiiiiiiieee,
Example of Mailbox Procedures
Interrupt Vectoring for Taskscccceeeeee.
Interrupt Vectoring for Procedures
Interrupt Procedure’s Stackcccccceeeennn.
Private Interrupt Procedurecccooeeneene
Exception Error Codeccccvvveiiiiiiiiiinnd e,
Petri Net Graph Symbolsccccocceiiie
Synchronization with Simple Device Driver ...

Synchronization with Two-Part Device Driver

Initialization Module ENTPccccceviiiiinneen.
Dummy Segments for ENTPcccccevieenns
Initial Task INIT ..o
Subsystem for Kernel Exports
Binder Specifications for XOS Kernel
Builder Specifications for XOSccocueeeee.
Specifying Dummy Gate Exports
Strategy for Load-Time Binding
Binding Loaderccccociiiiiieeinie i,
BOND Module of Binding Loader
Caller’s CPL ..oouiieiieeiieceee et

xii

Page

413
4-14
4-15

5-2

5-5
5-6

5-11
5-13
6-3
6-3
6-4
6-8
7-2
8-5
8-6

10-4
10-14
10-15

11-5

11-6

11-7
11-13
11-14
11-15
11-24

13-3

121960-001

Introduction to Protected 1
Multitasking on the iAPX 286

3

CHAPTER 1
INTRODUCTION TO PROTECTED MULTITASKING
ON THE iAPX 286

The iAPX 286 architecture views the software system (the operating system as well as applications) as
a number of asynchronous tasks, each task possibly consisting of levels of procedures deserving differ-
ent degrees of “trust.” An operating system for the iAPX 286 must (with the help of the hardware)
coordinate the activities of multiple tasks and administer protection among tasks and among levels of
procedures within tasks.

TASKS

A task is the execution of a sequence of steps. A program is a logical entity that can have many
representations: for example, source code file or object program file. A program becomes a task when
it is actually available for execution. This is achieved by converting source (with a compiler and program
loader, for example) to a representation suitable for execution and notifying the operating system that
the task is ready for installation and execution.

The distinction between programs and tasks is most clear in a multitasking system, where it is possible
for two or more tasks to use one program simultaneously. The line editor program in a timesharing
system is a common example. Even though each line editor task uses the same program, each task
produces different results, since it receives different inputs.

Structure of a Program

Each program is formed from modules created by language translators and bound together into a single
executable unit. The translators (for example, ASM286, PL/M-286, Pascal-286, and FORTRAN-286)
and the object program utilities (for example, Intel’s Builder and Binder) support the concept of logical
segments. A logical segment is a contiguous block of either instructions or data. Each logical segment
can contain up to 64K bytes of code or data. Logical segments are the units that may be combined
when a program comprises more than one module.

Segmented Memory

The iAPX 286 structures the address space of a task into physical segments of variable length. A
physical segment is a contiguous block of memory that does not (normally) overlap another physical
segment. Each physical segment may contain up to 64K bytes of either instructions or data. Each
physical segment contains one or more logical segments of a task. The segments reflect how tasks are
organized into code, data, and stack areas.

Multitasking

One of the most important features of the iAPX 286 is its ability to switch rapidly from executing one
task to executing another task. This gives the appearance that the processor is executing more than
one task at a time.

1-1 121960-001

Intel INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

Hardware system tables enable both the hardware and the operating system to distinguish between the
physical segments of individual tasks. Figure 1-1 shows how physical segments of one task are logically
separate from those of other tasks. Since references to physical segments are always relative to system
descriptor tables, the actual locations of physical segments in physical memory are not significant to
the tasks and therefore are not illustrated.

Descriptor tables serve not only to identify the segments that belong to a task but also to isolate the
address space of one task from that of another, so that one task cannot inadvertently affect the opera-
tions of another. : .

Multitasking works through close interaction of the operating system with hardware features. When
the executing task needs to wait for some event (such as the arrival of data from some I/O device), it
notifies the operating system. The operating system determines which other task should execute next,
and then causes the processor to store the state of the current task, retrieve the state of the next.task;
and begin executing the next task at the point where its processing last halted. The processor then
executes that task until the task needs to wait for some event. (This is a somewhat oversimplified

. TASK A
PL/M-286 COMPILATION

PL/M-286
CODE

PL/M-286
DATA

MULTIPLAN
DATA

TASK D v
MULTIPLAN FORIRAN
STACK ANALYZER

MULTIPLAN
CODE

AEDIT™
CODE

TASK C
AEDIT™

121960-40

Figure 1-1. Segregation of Segments by Tasks with Private LDTs

1-2 121960-001

|nte| INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

description of what can be a complex operating system function. Chapter 4 covers the subject of task
switching in more detail.)

Figure 1-2 illustrates how the global descriptor table defines an address space that is accessible to all
tasks in the system. This global space is useful for translation tables, run-time libraries, operating-
system code and data, and the like.

PRIVILEGE LEVELS

The iAPX 286 architecture uses the concept of privilege levels to protect critical procedures within a
task from less trusted procedures in the same task. For example, with previous generations of micro-
processors, applications code could access and possibly destroy tables used by the operating system.
An error of this sort could cause the operating system to incorrectly service a subsequent request from
another unrelated task. With the iAPX 286, such situations are prevented by hardware-enforccd barriers
between different levels of procedures.

GLOBAL SPACE

AVAILABLE TO
ALL TASKS

GLOBAL
DATABASE P
MANAGER
DATA TIONS
DATA
DATABASE A eor J
MANAGER
CODE

0.S. KERNEL KERNEL 0.S.
i & I il O s

TASK TASK
A C

LOCAL SPACES

121960-58

Figure 1-2. Global Segments in System

1-3 121960-001

Intel INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

Applied to procedures, privilege level is a measure of the degree to which you trust a procedure not to :
make a mistake that might affect other procedures or data. Applied to data, privilege level is a measure
of the protection you think a data structure should have from less trusted procedures.

Privilege level also applies to instructions. Certain instructions (those that deal with system tables,
interrupts, and I/0, for example) have such an effect on the system as a whole that only highly trusted
procedures should have the right to use them.

Levels of Segments

With regard to privilege, you can view the segments of a task as being grouped into four levels. Level
zero is for the most privileged procedures and the most private data; level three is for the least trusted
procedures and the most public data. You (or your operating system) associate each segment of each
task with one of these four levels of privilege. The privilege level of a segment applies to all the proce-

dures or all the data in that segment. Figure 1-3 illustrates the logical segregation of segments into

privilege levels. (Later chapters explain why operating-system segments are included within the task.)

PRIVILEGE
LEVEL PRIVILEGE
0 LEVEL PRIVILEGE
1 LEVEL PRIVILEGE
0.5. KERNEL 2 LEVEL
LDT KERNEL
ERNE STACK
PL=0
PL=0 S
— KERNEL
PL=0 DATA
PL=1
PL=1
PL=1
OPERATING
PL=1 - | SYSTEM
DYNAMIC
PLz2 os. DATA
DATA
PL=2
PL=2 \
PL=2 DATABASE
p—,) MANAGER
- DB
L3 CODE
PL=3
PL=3
PL=3 > APPLICATION
oo \
- PROC A
pL=3 CODE
PL=3

121960-41

Figure 1-3. Segment Segregation by Privilege Level within a Task

1-4 121960-001

Intel INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

Rules of Privilege

The 80286 processor controls access to both data and procedures between levels of a task. These rules
define access rights:

» Data can be accessed only from the same or a more privileged level.

* A procedure can be called only from the same level (or from a less privileged level, if the service is
deliberately “exported” to that level. Refer to gates in Chapter 2.).

SOFTWARE SYSTEM STRUCTURE

The way you choose to distribute software and data among tasks and privilege levels affects the relia-
bility, efficiency, and flexibility of your system. Operating-system modules may be segregated into
their own tasks or may be distributed among and shared by every task. Some advantages of placing
operating-system modules in separate tasks are

¢ Finer granularity of protection is achieved by using task separation as well as privilege levels.
e Operating-system functions can execute in parallel with the caller.

e When only one task at a time can perform the function (for example, reading from a keyboard),
serialization of requests is automatic; you do not need to synchronize among requesting tasks.

Some advantages of distributing operating-system functions are

¢ The communication between application and operating system is faster.

e It may be possible for all tasks to execute the same operation-system function in parallel. (You must
ensure reentrancy and provide for synchronization, however.)

Figures 1-4 through 1-7 illustrate some general approaches that you may consider.

The approach shown in figure 1-4 takes maximum advantage of the four privilege levels. The critical
procedures and data of the operating system kernel (for example, memory allocation tables and proce-
dures, information about tasks) are protected from all other procedures in the system. Those parts of
the operating system that are less reliable, either due to inherent complexity (for example, the I/O
subsystem) or due to occasional changes (for example, policies designed to increase overall through-
put), are at a lower level but are still protected from application levels. Application logic has two levels
so that application services (such as database management) can be protected from less trusted appli-
cation code, yet application services cannot affect the integrity of the operating system. Operating-
system procedures and application services are shared among all the tasks in the system.

Figure 1-5 illustrates that you do not need to use all four privilege levels. You may prefer this two-level
approach if you are converting from a traditional multitasking system that offers protection only between
the two levels defined by application and operating system.

The iAPX 286 can also emulate one-level systems, as illustrated in figure 1-6. This approach may be
useful in the initial stages of converting from an unprotected system, but it does not take advantage of
many of the protection features offered by the iAPX 286. It does isolate tasks from one another, but
it does not protect the operating system from applications software.

Some operating system functions are better structured as independent operating-system tasks, not as

privileged procedures within a task. Certain I/O functions are suited to this treatment. Because of the
complexity of 1/O code, the extra protection offered by a task boundary contributes to the reliability

1-5 121960-001

n “.el INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

GLOBAL SPACE

GLOBAL
DATA

APPLICATIONS SERVICES

ALL GATES

OPERATING
SYSTEM

D APPLICATION

121960-43

Figure 1-4. A Four-Level Protection Structure

of the system. Because many I1/O functions involve waiting for responses from 1/O devices, it is most
convenient to treat these functions as a separate task that can run asynchronously with respect to the
tasks that invoke them. Figure 1-7 illustrates a structure with independent operating-system tasks.

ROLE OF THE OPERATING SYSTEM

The role that an operating system may play in managing a multitasking execution environment depends
on the nature of the application. Applications can be classified according to the volatility of tasks

1-6 121960-001

lntd INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

GLOBAL SPACE

GLOBAL
DATA

OPERATING SYSTEM

D APPLICATION

121960-44

Figure 1-5. A Two-Level Protection Structure

executing over a period of time. Applications in which tasks frequently begin and end (for example,
time-sharing systems or multi-user business systems) are called dynamic systems. Applications in which
the mix of tasks does not change (for example, process control systems in which tasks service a fixed
number of sensors and effectors) are called static systems. :

Common 0.S. Functions

The operating-system roles common to both static and dynamic applications are

¢ Allocation of the processor or processors to tasks

¢ Coordination and communication among cooperating tasks
* Processing of interrupts and exception conditions

¢ Standardization of interfaces to I/O devvicesk

¢ Control of the numerics processor extension

1-7 121960-001

Ihtel INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

GLOBAL SPACE

OPERATING SYSTEM

AND
APPLICATIONS

121960-45

Figure 1-6. A One-Level Unprotected Structure

0.S. Functions in a Dynamic Environment

Even though many of the duties of an operating system in a dynamic environment resemble those in a
static environment, the dynamic environment often introduces new complexities. Some additional
functions that a dynamic system may require include

. Real memory mahagemgnt

. Prograrﬁ loading |

¢ Command language interface
e Virtual memory management
¢ Load-time binding

CONSTRUCTING THE INITIAL RUN-TIME ENVIRONMENT

Intel’s System Builder program helps you create the initial executable system. The Builder program
collects object modules into one module, assigns physical addresses, creates system tables, and assigns
privilege levels. A specification language gives you the ability to control preciscly what the Builder
does. “ :

1-8 121960-001

Intel INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

APPLICATIONS TASKS

FORTRAN
COMPILER

OPERATING-SYSTEM TASKS

OPERATING
SYSTEM

D APPLICATIONS

121960-1

Figure 1-7. Independent Operating-System Tasks

Building a Static System

In the case of static systems, the Builder does nearly all the work in constructing a running system.
Refer to figure 1-8 for an illustration of the building process. The output of the Builder is a single
module that contains all the tasks, both for the operating system and for applications, as well as all
system tables and protection information. The Builder’s output file has a format that simplifies creation
of a bootstrap loader for the system.

Building a Dynamic System

With dynamic systems, the Builder constructs as much of the final system as you can specify in advance,
but the nature of dynamic systems is such that the operating system must do at run-time many of the
operations that the Builder does for static systems (for example, allocation of memory and assignment
of physical addresses). The operating system must update system tables and administer the protection
mechanisms as the running environment changes.

1-9 121960-001

intel

INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

Figure 1-9 illustrates the process of constructing a dynamic system. The Builder creates a loadable
module containing those operating-system functions that permanently reside in the running operating
system, and it also creates a file that contains information about linking to operating-system primitives.
Either a static linker (such as Intel’s Binder) or a dynamically linking loader can use this information
to help dynamically loaded tasks use operating-system functions.

PLAN FOR
MopuLE PROTECTED MULTITASKING SYSTEM
MODULE
B
0s.
MODULE
A
OPERATING | [Nl —1
SYSTEM MODULE MEMORY
AND B/ IMAGE
APPLICATION
MODULES APPLICATION
(FROM < BUILD
asmzss, | : SPECIFI- .
PL/M-286, CATIONS .
PASCAL 285, .
FORTRAN 286, DEMIcE
BND286) DEVICE
DRIVER
[]
[]
° 0.S.
Y
APPLICATION
BOOT- g
BUILDER LOADABLE LOADER KERNEL
CODE
MODULE DT
~ = GDT
121960-4

Figure 1-8. Building a Static System

1-10

121960-001

Intel INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

_
KERNEL MEMORY
IMAGE
OPERATING > BOOT- BOOT- o
SYSTEM ~ 4 0sS. BUILDER LOADABLE LOADER
MODULES 0.S.
* OPERATING
s SYSTEM
[]
DEVICE
DRIVERS
EXPORT —
FILE LOADABLE
(CALL GATES APPLICATION
AND GLOBAL MODULES
(SEGMENTS)
MULTIPLAN
PROGRAM
\ APPLICATIONS
APPLICATION > BINDER FORTRAN DYNAMIC
MODULES + COMPILER LOADER
' L]
L]
L[]
AEDIT™
PROGRAM
\

121960-5

Figure 1-9. Building a Dynamic System

1-11 121960-001

Using Hardware
Protection Features

CHAPTER 2
USING HARDWARE PROTECTION FEATURES

The architecture of the iAPX 286 enables you to organize software systems so that each task is protected
from inadvertent or malicious damage by other tasks and so that privileged procedures are protected
from lower-level procedures. You control the degree of protection in your system by the way you set
up protection parameters through the Builder or through operating system procedures. The processor
interprets the protection parameters and automatically performs all the checking necessary to imple-
ment protection.

ADDRESSING MECHANISM

The protection mechanism of the iAPX 286 is embedded in the addressing mechanism. For an intro-
duction to the addressing mechanism, refer to figure 2-1, which shows those portions of the addressing
mechanism that are not concerned with protection features. From the point of view of the applications
programmer, an address is a pointer. A pointer consists of two parts: a selector and an offset. The

PHYSICAL MEMORY
vttt LN U N IV -
| |
| |
| |
| TARGET :
| SEGMENT MEMORY OPERAND |
CPU | : |
———— e T |
|] |
: 7\%%%\; o DESCRIPTOR |
i ADDER { I ToBE :
|
: o !
] b |
1 b]
|
{ | | SEGMENT BASE ADDRESS
SEGMENT
= ‘ DESCRIPTOR |
| |
! [I
: | 1
| T T
: | POINTER ,
I
: | I SELECTOR I OFFSET I
]
|] :
: |
1 DESCRIPTOR TABLE |
i BASE ADDRESS i >
| |
J e e e e e e e e -
121960-6

Figure 2-1. Abstraction of Addressing Mechanism

2-1 121960-001

Intel USING HARDWARE PROTECTION.FEATURES

selector portion identifies a segment of the address space and the offset addresses an item within the
segment relative to the beginning of the segment.

A selector identifies a segment by reference to a descriptor table. Each entry in a descriptor table is a
descriptor. A selector contains an index that identifies a particular descriptor in a particular descriptor
table. The descriptor contains the physical address and access rights of the segment.

Both selectors and descriptors contain additional information that relates to the protection features of
the iAPX 286.

DESCRIPTORS

A reference from one segment to another is realized indirectly through a descriptor, which contains
information about the referenced segment. All descriptors reside in a descriptor table. Every segment
must have at least one descriptor; otherwise there is no means to address the segment.

Descriptors are strictly under your control via the Builder or operating system procedures. The exist-
ence and function of descriptors is completely invisible to the applications programmer.

Descriptor Format
There are four variations in descriptor format, corresponding to the four classes of descriptor:

1. Data segment descriptors refer only to segments that contain system or application data, including
stacks (see figure 2-2). '

2. Executable segment descriptors refer only to segments that contain executable instructions (see
figure 2-3).

3. System segment descriptors refer only to segments that contain special hardware-recognized data
structures, such as descriptor tables (see figure 2-4).

4. . Gate descriptors define entry points for control transfers. A gate descriptor does not directly address
a memory segment; instead it provides a.protected pointer to an exported entry point. (Refer to
the section “Gate Descriptors” later in this chapter.)

The first two types of descriptor hold information that any operating system must maintain. The

iAPX 286, however, requires that such information be in a fixed format so the CPU can interpret it

directly. These descriptors are often created dynamically while a program executes (for example, a

data-segment descriptor may be created when a task needs additional memory to store an expanding

data structure).

‘The second two types of descriptor are unique to the iAPX 286. They are constructed either once when
the system is built or once when a task is created. Code to manipulate these descriptors is limited to
the procedures of a dynamic operating system that create new tasks.

Several of the descriptor formats have common fields. These fields are listed first in the following
discussions of descriptor contents.

PRESENT BIT

This Boolean is set if the segment addressed by the descriptor is actually present in memory, reset if
not present. Operating systems for dynamic applications that implement virtual memory must set and

2-2 121960-001

Intel USING HARDWARE PROTECTION FEATURES

7 o 7 0

T

RESERVED FOR iAPX 386 +6
MUST BE ZERO

T
P DPL 1 o|edp|wl|a BASE23.16 +4
X
BASE 5.0 +2
N
LiMIT o

P — PRESENT BIT

DPL — DESCRIPTOR PRIVILEGE LEVEL
ED — EXPANSION DIRECTION

W — WRITABLE

A — ACCESSED

121960-46

Figure 2-2. Data Segment Descriptor

reset this bit as program segments are brought into or eliminated from memory. Reference to a segment
whose present bit is reset causes a fault, providing an opportunity for the operating system to load the
segment from virtual store. (Chapter 9 takes up implementation of virtual memory systems.) In systems
that do not implement virtual memory, this bit is always set for allocated segments.

DESCRIPTOR PRIVILEGE LEVEL

The value of this item defines the privilege level of the segment addressed by this descriptor. You
control the values in the descriptor privilege level (DPL) by the parameters you give to the builder
when creating a static system or the resident portion of a dynamic system, or by the procedures your
operating system uses when loading segments dynamically.

INTEL RESERVED

This portion of the descriptor is reserved by Intel and should always be initialized with zeros. Other
use of this field in a valid descriptor will prevent compatability with the iAPX 386 and other additions
to Intel’s family of processors.

2-3 121960-001

Intel USING HARDWARE PROTECTION FEATURES

7 0 7 0

RESERVED FOR iAPX 386 +6
MUST BE ZERO

.

P DPL 1|1 |c]r]|aA BASE2s.16 +4
I

BASE 50 +2

LiMIT °

P — PRESENT BIT

DPL — DESCRIPTOR PRIVILEGE LEVEL
C — CONFORMING

R — READABLE

A — ACCESSED

121960-47

Figure 2-3. Executable Segment Descriptor

SEGMENT BASE

This field contains the physical address of the beginning of the memory segment referred to by this
descriptor. The 24 bits of this address give the 80286 a 16-megabyte range of real addresses. This is
the only place that physical addresses are used. All other addresses are relative to the physical addresses
stored in descriptors, making it possible to relocate executable and data segments without making any
changes to the relocated segments or to code that refers to the segments. The only changes necessary
to relocate segments are changes to the physical addresses stored in descriptor tables.

You can control the actual location of segments by means of specifications to the Builder or by means
of the algorithms your operating system uses to allocate memory to segments that are. loaded
dynamically.

SEGMENT LIMIT

Segment limits prevent accidental reading or writing beyond the space allocated to a segment. The
value of this field is one less than the length of the segment (in bytes) relative to the beginning of the
segment. The 16 bits of this field make it possible to have segments up to 64K bytes long. The hardware
automatically checks all addressing operations-to ensure that they do not exceed the segment limit of
the segment to which they refer. This protects other segments from such common programming errors
as runaway subscripts. :

2-4 121960-001

Intel USING HARDWARE PROTECTION FEATURES

7 07 0

RESERVED FOR iAPX 386 +6

MUST BE ZERO
T
P DPL oflofo TYPE BASEz3.16 +4
BASE 5.0 +2
LmiT 0

121960-48

Figure 2-4. System Segment Descriptor

Note that the segment limit field has a different meaning for “expand down” data segments. Refer to
the “expansion direction” bit later in this chapter.

SEGMENT TYPE

For system segments, the type field distinguishes between kinds of system segments. System segment
types are

1 and 3 Task state segment, a segment used for storing the context of a task. Chapter 4 discusses
task state segments more fully.

2 Local descriptor table. The three kinds of descriptor tables are explained later in this
chapter.

The processor interprets the type field to ensure that each segment is actually used as intended; for
example, an attempt to jump to a local descriptor table is obviously a mistake, and the.processor
detects this error while examining the target segment’s descriptor during the JMP instruction.

EXPANSION DIRECTION

Data segments may contain stacks as well as other data structures. Stacks expand toward lower addresses
while most other data structures expand toward greater (higher) addresses. This field indicates the
growth pattern for the segment. A value of zero in this field indicates that the segment expands upward

2-5 121960-001

Intel USING HARDWARE PROTECTION FEATURES

(from the base address toward the segment limit value that is also contained in the descriptor). A value
of one indicates that the segment expands downward (from offset FFFFH toward the limit).

WRITABLE

This field applies only to data segment descriptors. A value of one permits the CPU to write into the
segment; a value of zero protects the segment from attempts to write into it. Translation tables are but
one example of data that deserve the extra protection afforded by storage in a read-only segment.

CONFORMING

This field applies to executable-segment descriptors only. Ordinarily (when the conforming bit is zero)
a called procedure executes at the privilege level defined by the DPL in the descriptor of the segment
in which the procedure resides. When the conforming bit of the called segment is set, however, the
called procedure executes at the calling procedure’s privilege level. This feature cannot be used to
decrease (numerically) a segment’s privilege level below that defined by it’s DPL. Figure 2-5 shows
graphically how a conforming segment works. This feature is useful when you want to make procedures
(mathematical subroutines or run-time support procedures, for example) available to a number of other
procedures running at different privilege levels, but when you do not want to provide increased privi-
lege while the subroutine is executing.

bprL~,
CALL CODE

[SEGMENT

RET

Co
2 NFORMING

Copg CALL = ZODE
RET SEGMENT

SEaMEN;

CALL
CODE
RET SEGMENT

121960-7

Figure 2-5. Calling a Conforming Segment

2-6 121960-001

Intel USING HARDWARE PROTECTION FEATURES

READABLE

This field applies only to executable-segment descriptors. When reset, it prevents procedures in
other segments from reading this code segment; the contents of the segment can be executed only.
It is common, however, for executable segments to contain rcad-only data, in which case this bit
must be set.

ACCESSED

The processor sets this bit when the descriptor is accessed (that is, loaded into a segment register or
used by a selector test instruction). Operating systems that implement virtual memory may, by period-
ically testing and resetting this bit, monitor frequency of segment usage. This bit also indicates whether
a segment should be written to secondary storage before the RAM space it occupies is reused.

CONTROL FLOW TRANSFER

Transfers of control are also subject to protection rules. Within the application-oriented part of a task,
the protection rules allow unlimited access to code and data. Control transfers to privileged operating-
system functions and to other tasks, however, are controlled by gate descriptors. With gate descriptors,
the iAPX 286 architecture can perform functions in hardware that operating systems on other proces-
sors must do in software. These functions are invoked directly by ordinary CALL and JMP mstruc-
tions, not by special interrupt or trap instructions.

As table 2-1 illustrates, transfers of control can be classified into four categories, depending on whether
control passes to another segment, another privilege level, or another task. ThlS cla581flcat10n can help
clarify how privilege levels, descriptor tables, and tasks are used.

Processor functions that cause a change in the flow of control are

e Jump instruction (JMP)

¢ Procedure call instruction (CALL)

¢ Procedure return instruction (RET)
¢ Software interrupt instruction (INT)
e External interrupt

Table 2-1. Categories of Control Flow Transfer

Priviiege
Category Segment Level Task
Intrasegment same same same
Intersegment different same same
Interlevel different different same
same same
Intertask or or different
different different

2-7 121960-001

Intel USING HARDWARE PROTECTION FEATURES

¢ Processor-detected exception condition

¢ Interrupt return instruction (IRET)

Control transfers within the same privilege level may be either short (within same segment) or long (to
another segment). A short transfer simply specifies the offset of the instruction to which control is

transferred in the same segment. A long transfer also uses a selector to identify the segment to which
control is transferred.

For control transfer to a different privilege level or different task, the iAPX 286 introduces gate
descriptors.

Gate Descriptors

A gate descriptor is a type of descriptor used only for transferring control flow to instructions in another
segment. Gates provide an indirect reference that is useful for binding and protection purposes. By
requiring interlevel and intertask control transfers to reference gate descriptors, the iAPX 286 provides

two additional protection features:

1. You can hide a procedure by not providing a gate for its entry point.’

2. You can control access to a procedure via the privilege assigned to the gate. This allows hiding
critical procedures from untrusted software.

Figure 2-6 illustrates the format of a gate descriptor.

DESTINATION SELECTOR
For call, interrupt, and trap gates, this field contains a selector for the segment descriptor of the desti-

nation executable segment. For task gates, the selector in this field points to a descriptor for a task
state segment, and the RPL field is not used.

DESTINATION OFFSET

For call, interrupt, and trap gates, this field contains the offset of the entry point within the destination
executable segment (not used with task gates).

WORD COUNT
For each privilege level within a task, there is a separate stack. For calls through a call gate, the

processor automatically copies parameters from the stack for the calling procedure’s privilege level to
the stack for the destination’s privilege level. In this field, you specify the number of words to copy.

GATE TYPE
For gate descriptors, the type field distinguishes among the four kinds of gates:

0 Call gate ‘
1 Task gate
2 Interrupt gate
3 Trap gate

2-8 121960-001

Intel . USING HARDWARE PROTECTION FEATURES

7 o 7 0

RESERVED FOR iAPX 386 ‘ +6
MUST BE ZERO

WORD COUNT +
P DPL 0o 0o 1 TYPE X X X ONLY FOR TYPE=00 4

i 1 n L i

DESTINATION SELECTOR X X +2

DESTINATION OFFSET 0
NOT USED FOR TYPE=01 or 11 :

"

XX — NOT USED

121960-49

Figure 2-6. Gate Descriptor

PRESENT BIT
Since a gate descriptor does not refer directly to a segment, the present bit in a gate descriptor does

not necessarily indicate whether a segment is present. It can be used for other purposes, however. Refer
to Chapter 11 for an example of using the present bit to facilitate late binding.

Control Transfer Mechanisms
Table 2-2 summarizes the mechanisms for each class of control flow transfer.

Control transfers within a segment function similarly to intrasegment transfers on the iAPX 86,88,
except that the processor checks that the destination address does not exceed the segment limit.

Figure 2-7 illustrates a change in control flow between segments at the same privilege level. Any of
the following instructions can effect such a transfer:

JMP offset selector

CALL offset selector

RET 3 (offset and selector taken from stack)

The selector selccts a descriptor for an executable segment. The DPL in the target segment’s descrip-

tor must be the same as the privilege level under which the calling segment is running. A CALL or

2-9 121960-001

intal

USING HARDWARE PROTECTION FEATURES

Table 2-2. Control Transfer Mechanisms

Transfer Descriptor
Type Operation Referenced Table
Intrasegment JMP, CALL, RET (none)
Intersegment JMP, CALL, RET, IRET code segment GDT/LDT
9]
CALL, JMP call gate GDT/LDT
(same PL)

INT instruction, trap or IDT
external interrupt, interrupt
or exception gate (same PL)

Interlevel CALL call gate GDT/IDT
INT instruction, trap or IDT
external interrupt, interrupt
or exception gate
RET, IRET code segment GDT/IDT

Intertask CALL, JMP, IRET task state GDT

segment
CALL, JMP task gate GDT/LDT
INT instruction, task gate IDT
external interrupt, :
exception

* ‘IncIUdes cases in which the target segment is incidentally the same as the calling segment.

JMP instruction may also reference a call gate. If the target executable segment is at the same privi-
lege level, no level change occurs.

For transfers of control between segments at different privilege levels (as illustrated in figure 2-8) there

are three differences:

‘o Only the following instructions can be used:

C A L L offset selector

RET

Jumps between privilege levels within a task are not allowed.

+ The selector does not select the descriptor of an executable segment but rather selects a gate

descriptor.

o The offset operand must be present but‘ is ignored.

2-10

121960-001

Intel USING HARDWARE PROTECTION FEATURES

INTERSEGMENT
VIA GATE

INTRASEGMENT

INTERSEGMENT

121960-8

Figure 2-7. Intralevel Control Transfers

Privilege Rules for Gated Intersegment Transfers
An intersegment transfer through a gate involves four privilege level fields:

» The current privilege level (CPL) of the currently executing segment
¢ The requested privilege level (RPL) in the selector used in the CALL
e The DPL in the gate descriptor

¢ The DPL in the segment descriptor of the target executable segment
A transfer is valid only if the following relationships among privilege level numbers both hold:

MAX (CPL, RPL) <= gate DPL
target DPL <= CPL

Figure 2-9 illustrates both valid and invalid attempts to perform an interlevel transfer. Path E4,G5,E7
is not valid because the privilege level of gate G5 is numerically less than that of segment E4. Path
E4,E8 is not valid because all interlevel transfers must pass through a gate. Path E4,G4,E6 is not valid
because the privilege level of E6 is numerically greater than that of G4. Only paths E1,G2,E2; E1,G1,E3;
and E2,G1,E3 satisfy the privilege rule above.

2-11 121960-001

Inte' USING HARDWARE PROTECTION FEATURES

E — EXECUTABLE SEGMENT

E — GATE

121960-9

Figure 2-8. Gated Interlevel Call and Return

DESCRIPTOR TABLES

A descriptor table is simply a segment containing an array of eight-byte entries, where each entry is a
descriptor. Descriptors are stored in one of three classes of descriptor table:

* Local descriptor table (LDT)
* Global descriptor table (GDT)

* Interrupt descriptor table (IDT)

The descriptors in these tables define all the segments in the system. Each table has a variable upper
limit, so the size of the table need be no larger than required for the actual number of segments used.

You define the initial contents of desériptor tables through the Builder. An operating system for dynamic
applications may change the contents of descriptor tables and may create and dclete LDT’s as tasks
come and go. Correct management of descriptors is the heart of protection on the iAPX 286.

2-12 121960-001

USING HARDWARE PROTECTION FEATURES

E — EXECUTABLE
SEGMENT

[5] -
E7

INVALID

E8

E4

121960-10

Figure 2-9. Valid and Invalid Interlevel Transfers

2-13

121960-001

|n'e| USING HARDWARE PROTECTION FEATURES

Local Descriptor Table

An LDT contains the descriptors that are private to a task. Each task may have an LDT. The LDT
keeps the descriptors private to one task separate from those private to other tasks. A task cannot
normally gain access to the segments defined by another task. A local descriptor table may contain any
of the following types of descriptor:

¢ Data segment

* Executable segment
e Call gate

e Task gate

The executable segment and data segment descriptors in an LDT normally refer to segments private
to a task. Call gates and task gates in an LDT provide private entry points to other procedures and
programs.

The processor uses a task’s LDT automatically for certain addressing operations. The base address and
limit of the LDT segment of the executing task are kept in the LDT register. Only two operations are
available to programmatically change the contents of the LDT register:

¢ During a task switch operation, the processor loads the LDT register from the task state segment
(TSS).

e The LLDT instruction loads the LDT register directly. The LLDT instruction can be executed only
at privilege level 0 (PL 0). Initialization procedures use LLDT to give the LDT register its initial
value. Note that if you change the LDT register you must also change the LDT selector in the TSS
(refer to Chapter 4). An operating system may need to change the LDT register temporarily to gain
access to the address space of another task when passing information between tasks.

You can use the SLDT instruction to read the contents of the LDT register. Operating-system proce-
dures that operate on LDTs may usually be called from any task. These procedures may use the SLDT
instruction to find which LDT belongs to the current task. In PL/M-286, the built-in variable
LOCALSTABLE gives access to the LDT register.

An LDT may contain up to 8,192 descriptors (the number of 8-byte descriptors that fit into a maximum-
sized segment of 65,536 bytes).

Global Descriptor Table

Descriptors that are shared among tasks reside in the GDT. There is only one GDT for the entire
system. The GDT can contain any of the following types of descriptor:

¢ Data segment

¢ Executable segment

e Task state segment

e Local descriptor table segment
o Call gate

e Task gate

2-14 121960-001

Intel USING HARDWARE PROTECTION FEATURES

Since the GDT is shared among all tasks, its entries are usually protected. The privilege-level field in
each descriptor provides this function. When operating-system functions are distributed among and
shared by all tasks, the executable segments and data segments of the operating system are normally
kept in the GDT. Call gates then provide controlled access to privileged operating system functions.

The processor uses the GDT automatically for certain addressing operations. The base address and
limit of the GDT are kept in the processor’s GDT register. Only the LGDT instruction
(RESTORE$GLOBALSTABLE in PL/M-286) can alter the contents of the GDT register, and the
LGDT instruction can be executed only at PL O (i.e., by the operating system).

The SGDT instruction (SAVESGLOBALSTABLE in PL/M-286) reads the contents of the GDT
register.

A GDT may contain up to 8,191 descriptors (the number of 8-byte descriptors that fit into 2 maximum-
sized segment of 65,536 bytes). The first entry cannot be used as a descriptor. (A null selector is
identified by the fact that it refers to this first entry in the GDT.)

Interrupt Descriptor Table

When processing an interrupt, the processor refers to the IDT to determine what interrupt-handling
code to execute. Each interrupt is associated with an interrupt identifier, an integer that ranges from
0-255. The interrupt identifier is supplied either by the INT instruction or externally by the processor’s
INTA cycles. The interrupt identifier indexes an entry in the IDT. An IDT entry may be

e An interrupt gate

e A trap gate

* A task gate

In a manner similar to executable segment and data segment descriptors, each gate descriptor has a
descriptor privilege level. The DPL of a descriptor in the IDT determines the privilege required to
execute an INT n instruction (where n is the interrupt indentifier that corresponds to the descriptor).
This use of privilege levels prevents unauthorized programs from invoking interrupt handlers.

The processor locates the IDT by way of the IDT register. The IDT register can be changed only by
the LIDT (load IDT) instruction (RESTORESINTERRUPTS$TABLE in PL/M-286). Only PL-0
procedures (i.e., the operating system) can execute an LIDT instruction.

The SIDT instruction (SAVESINTERRUPTSTABLE in PL/M-286) reads the contents of the IDT
register.

Refer to Chapters 6 and 7 for more detailed information on how the IDT is used.

SELECTORS

A selector references a segment indirectly by idcntifyihg the location in a descriptor table where a
descriptor for that segment is stored. :

Format of Selector

See figure 2-10 for the format of a selector.

2-15 121960-001

Inte| USING HARDWARE PROTECTION FEATURES

15 . e 8 7 : 2. - 0

INDEX) Tl RPL

TI — TABLE INDICATOR
RPL — REQUESTED PRIVILEGE LEVEL

121960-50

Figure 2-10. Format of a Selector

INDEX

The index field of a selector specifies a descriptor in either the GDT or the task’s LDT. The index field
may take on values from O through n—1, where n'is the number of descriptors in the table. The
processor compares the index with the limit of the descriptor table to ensure that the index refers to a
defined descriptor.

TABLE INDICATOR

This bit item tells which descriptor table is indexed by the selector. A value of zero specifies the GDT;
one specifies the LDT. (The IDT cannot be referenced via a selector; only via an interrupt identifier.)

REQUESTED PRIVILEGE LEVEL

Selector privilege is specified in the RPL field of a selector. Selector RPL may establish a less trusted
privilege level than the current privilege level for the use of that selector. RPL cannot effect an increase
in privilege. A task’s effective privilege level is the numeric maximum of the RPL and the current
privilege level. For example, if a task is executing at PL = 2, an RPL = 3 reduces the task’s effective
privilege to level 3 for access to that segment. On the other hand, if RPL = 1, the task’s effective
privilege level remains at 2.

RPL is generally used by an operating system to ensure that selector parameters passed to the more
privileged levels of the operating system do not give access to data at a level more privileged than the
calling procedure. The RPL field is a convenient place to store the privilege level of the procedure that
originated the selector. Any use of the selector can be restricted to the usage allowed its originator.

The ARPL instruction (ADJUST$RPL built-in function in PL/M-286) allows the operating system to
set the RPL of a selector either to CPL or to the privilege level of the originator, whichever is (numer-
ically) larger. Refer to Chapter 13 for more information on the use of RPL.

2-16 121960-001

Intel USING HARDWARE PROTECTION FEATURES

Null Selector

A selector that has a value of zero in both the index and table indicator fields (i.e., appears to point to
the first entry of the GDT) is a null selector. You can load such a selector into the DS or ES register,
but any attempt to reference memory via that register causes an exception condition.

ALIAS DESCRIPTORS

The need arises in dynamic applications for the operating system to maintain more than one descriptor
for a segment; however, care must be taken to preserve system integrity and protection.

As an example of the need for an alternate descriptor, consider the case of an executable segment.
Ordinarily, the processor fetches instructions from an executable segment that is typed execute-only.
However, if the operating system supports a debugger, the debugger needs to read the executable
segment in order to display its contents. The debugger may also need to write to the executable segment
in order to set breakpoints. If the debugger tries to use an execute-only segment descriptor to read
from or write to the segment, the processor detects a protection exception. To properly use that segment,
the debugger must use another descriptor that identifies the segment as a data segment. Figure 2-11
illustrates this situation.

The use of more than one descriptor for a segment is known as aliasing. Descriptors used in this way
are known as aliases, because they provide alternate names for segments.

/ /|

0.S.
APPL:%?TION DEBUGGER
LDT
EXECUTE ONLY DATA SEGMENT
CODE SEGMENT

INSTRUCTIONS

121960-11

Figure 2-11. Aliasing for Debugger

2-17 121960-001

Intel USING HARDWARE PROTECTION FEATURES

Explicit Variation of Type

Figure 2-11 illustrates one kind of need for aliasing: the need for a different type specification for a
segment. Figure 2-12 shows another example of the same need. In a dynamic application, the operating
system' may neéed to modify the GDT, the IDT, TSSs, and LDTs. Changing the interrupt handler for
a specific interrupt vector requires changing the IDT. When the operating system places a new segment
into the address space of a task (as, for example, when transferring an 1/O buffer from an I/0 task),
it must update the task’s LDT. Starting a new task may require modification of the GDT to add
descriptors for the new task’s LDT and TSS.

With the iAPX 286, however, it is not possible to read or write a system.segment by loading its selector
into DS or ES. This restriction prevents indiscriminate use of system segments within the operating
system. Such use of a system segment requires that the operating system have a descriptor that identi-
fies the system segment as-a data segment.

The Builder allows for defining aliases for system segments. The Builder, by default, creates data-
segment aliases for the GDT and the IDT at fixed locations in the GDT.

Note that ali;isés for descriptor tables should have PL 0 in order to maintain the integrity of the protec-
tion mechanism; otherwise, procedures outside the operating system could indiscriminately change the
contents of descriptor tables.

Variation of Length

As illustrated in figure 2-13, aliases for a segment need not always have the same length. In the case
shown, the processor’s use of a descriptor to a TSS requires only that the segment contain 44 bytes.
However, the operating system maintains another descriptor that includes additional information about
the task.

GDT LDT DT

|

DATA
DATA

DATA

ALIAS GDT
ALIAS LDT
ALIAS IDT

® ALIAS FOR GDT SHOULD ALWAYS BE AVAILABLE TO KERNEL.

121960-12

Figure 2-12. Aliases for System Tables

2-18 121960-001

Intel USING HARDWARE PROTECTION FEATURES

TASK
PARAMETERS
<&——— TASK PRIORITY
SCHEDULING PARAMETERS GDT
MESSAGE QUEUE POINTERS
RESOURCE POOL POINTERS
TSS

ETC.

ALIAS TSS

TSS DESC.
A—’//

121960-13

Figure 2-13. Aliases with Differing Limit

Sharing Segments among Tasks

Yet another reason for using aliases is the need for sharing a segment among tasks. Consider an appli-
cation in which a memory-mapped video display shows status information for a production process. In
this application, there are two tasks, each monitoring different aspects of the process but interleaving
data on the display (see figure 2-14). Figure 2-15 illustrates how both tasks can access the memory
segment containing the display buffer.

You can find segment sharing needs of this sort in both static and dynamic systems. Note that there
are other techniques for segment sharing that do not use aliases; for example, placing the segment’s
descriptor in the GDT, or permitting tasks to share a single LDT. The aliasing technique illustrated
here has the advantages that

* No other tasks have access to the display buffer. (Putting its descriptor in the GDT makes it avail-
able to all other tasks.)

* Other segments in each of the tasks remain protected from the other task. (With a shared LDT, all
segments of each task are accessible from the other.)

Protection and Integrity with Aliasing

You must use aliases with care; improper use can compromise the protection and integrity of your
system.

2-19 121960-001

Intel USING HARDWARE PROTECTION FEATURES

FLUID-LEVEL SENSORS TEMPERATURE SENSORS

RESERVOIR

TASK A TASK B

VIDEO DISPLAY

121960-14

Figure 2-14. Application of Segment Sharing

CONTROL ACCESS TO ALIASES

When you use an alias to provide an alternate type for a system segment (to write to an LDT), any
procedure that has access to that alias also has unlimited power to affect the entire system. Therefore,
in constructing an operating system that uses such aliases, you must restrict them to the highest privi-
lege levels of the operating system; that is, the DPL of such aliases should always be zero.

PLAN FOR CHANGE

When you design a dynamic system that uses aliases for segment sharing, you must consider what will
happen when there is any change in a segment to which aliases are pointing. For example, when a
segment is relocated, all descriptors pointing to the relocated segment must be updated. When a segment
is-deleted, all aliases to it must be nullified. Chapter 5 presents a strategy for handling these changes.

EXAMPLE OF DESCRIPTOR MANIPULATION

As an example of how to manipulate descriptors and descriptor tables using an alias, consider the
procedures POINT_AT and NULLIFY in figure 2-16. POINT_AT creates a descriptor at a given slot
in the GDT. NULLIFY invalidates a descriptor in the GDT. It is intended for usc in connection with
POINT_AT to prevent accidental use of descriptors that are no longer needed.

2-20 121960-001

Intel USING HARDWARE PROTECTION FEATURES

PRIVATE
DATA & CODE
SEGMENTS

PRIVATE
DATA & CODE
SEGMENTS

D\ LDT
|

]

DISPLAY
BUFFER

SHARED
DATA
SEGMENT

AN

121960-15

Figure 2-15. Aliases for Segment Sharing

NULLIFY invalidates a descriptor by writing a value of 80H in the access rights byte. A value of 80H
is invalid because it indicates a system segment of type zero, but no type zero is defined for system
segments.

POINT_AT purposely loads the access rights byte of the descriptor last, to ensure that an accidental
use of the descriptor (as might occur if an external interrupt gives control to another procedure or task)
does not find partially complete information in a descriptor that otherwise looks valid.

These procedures do no checking of the privilege level of the calling procedure, and they freely create
descriptors of any type (except gate descriptors) and any DPL. Therefore, they are suitable for use
only at PL 0. As long as no gates for these procedures are provided at another privilege level, they can
be called only by other PL-0 procedures. For an example of how you might use such procedures, refer
to the example of a memory manager in Chapter 3.

When writing code to manipulate descriptors, you must be careful about chahging a descriptor that is
currently loaded in either of the processor’s data-segment registers (DS or. ES). Either disable inter-
rupts or move zero to the register before changing the descriptor, for example:

MOV DS, 0

Failure to do this leaves open the possibility that an external interrupt may cause the processor to
reload the segment register using the partially modified descriptor. When coding in PL/M-286, use
the compiler’s CODE option to view the way the generated code handles the DS and ES registers. This
situation does not arise in the present example. DS points to the data segment that contains the sole

2-21 121960-001

Intel USING HARDWARE PROTECTION FEATURES

global data item GDTA_SEL. PL/M-286 uses ES for all the BASED variables used here. Referencing
the descriptor table via its alias selector causes PL/M-286 to load ES with the alias descriptor, thereby
ensuring that ES does not contain the descriptor to be modified.

Remember that once a descriptor has been modified, it cannot be used to access a segment until it is
loaded into a segment register.

Be aware also that in a multitasking system, changes to shared segments (such as the GDT) must be
synchronized. Synchronization is the subject of Chapter 5. This example does not provide for
synchronization.

SLOT MANAGEMENT

The previous example assumes that the caller of POINT_AT already knows what descriptor-table slot
to use. Often, slots can be reserved in advance for specific operating system and applications functions.
But in general, dynamic systems require that the operating system dynamically allocate descriptor
table slots.

Figure 2-17 illustrates a way of identifying available slots in a descriptor table. A value of zero in the
access rights byte is invalid for any descriptor, so it can mark a free slot. A value of 80H (as used in
the previous example) is also invalid and can mark a reserved but unused slot.

In larger systems, the time needed to search a descriptor table linearly for free slots may become
excessive. Shorter search times may result from linking available slots together in a manner similar to
that shown in figure 2-17. Contiguous free slots are treated as a block, with a count of the number of
slots in the first and last slots of the block. (Note that the block size is stored in the reserved word of
available descriptor slots. Since available descriptor slots contain an invalid type code, this use of the
reserved word does not prevent upward compatibility.) All the free blocks are linked in a circular, two-
way list that includes the list header. The list header can reside at a fixed slot location that is the same
in all descriptor tables (in the case of figure 2-17 the list header is at slot number one). Algorithms
normally used for managing memory space may also apply to blocks of free descriptors. Refer to
Chapter 3 for an example of such an algorithm.

It is convenient for the operating system to use adjacent descriptor slots for related purposes; for example,
by locating together all the descriptors that the operating system uses for one task, the operating system
can quickly find any of those descriptors as long as it knows the location of one. Therefore, the algorithm
used for slot management should combine adjacent free slots into a single block. The procedures used
to manage free slots should then have a parameter that specifies the number of adjacent slots.

2-22 121960-001

nte| USING HARDWARE PROTECTION FEATUBES

PL/M-286 COMPILER 960-505 date PAGE 1

system-ID PL/M-286 Vx.y COMPILATION OF MODULE POINT
OBJECT MODULE PLACED IN :F1l:POINT.OBJ
COMPILER INVOKED BY: PLM286.86 :Fl:POINT.PLM

$ PAGEWIDTH(71) TITLE('960-505') INCLUDE. (:F1l:NUCSUB.PLM)

= $ NOLIST
1 POINT: DO;
/***/
/* Global declarations. */
2 1 DECLARE DESC_STR LITERALLY
'LIMIT WORD,
LO_BASE WORD, /* Format of a descriptor. */
HI_BASE BYTE,
RIGHTS BYTE,

SW_RESRVD WORD';

3 1 DECLARE DT_SIZE LITERALLY '200¢°',
GDTA SEL SELECTOR, /* Points to GDT alias */
GDTA_WSEL WORD AT (@GDTA_SEL)
INITIAL (8), /* Slot #1 by convention */
GDT BASED GDTA_SEL (DT_SIZE)
STRUCTURE (DESC_STR);

/***i*****k***t***/

/* Subroutine to determine either the alias for */
/* the GDT or the alias for this task's LDT, */
/* depending on the TI bit in SEL. ; */
4 1 FIND _DT_ALIAS: PROCEDURE (SEL) SELECTOR
PUBLIC REENTRANT;
5 2 DECLARE SEL . SELECTOR,
WSEL WORD AT (@SEL);
6 2 DECLARE LDT. SEL SELECTOR,
LDT_WSEL WORD AT (@LDT_SEL);
7 2 IF (WSEL AND 0004H)=0
THEN /* It's a selector to the GDT. */
8 2 RETURN GDTA_SEL;
9 2 ELSE DO; /* It's a selector to this task's LDT. */
10 3 LDT_SEL=LOCAL$TABLE; /* EL/M 286 built-in; stores a
selector to the GDT descriptor for this task's LDT. */
11 3 LDT_ WSEL=LDT_WSEL+8; /* Add 1 to index field. */
/* By convention, next slot holds alias. */
12 3 RETURN LDT_SEL;
13 3 END;
14 2 END FIND_DT_ALIAS;
$ EJECT

Figure 2-16. Descriptor Manipulation Example

2-23 121960-001

Inel

USING HARDWARE PROTECTION FEATURES

15

16

17

18
19
20
21
22
23
24
25

26

27

28

29

30
31
32
33

34

NNNDONDNDNDN

N

NN

PL/M-286 COMPILER 960-505 date PAGE 2

/***/

/* Create a descriptor at a given slot to a given */
/* segment, and return selector that points */
/* to that slot. */

POINT_AT: PROCEDURE(SLOT, RIGHTS, PHYS_ADDR PTR, LIMIT)
PUBLIC REENTRANT;

DECLARE SLOT SELECTOR,
SLOTW WORD AT (@SLOT), /* Alternate type */
RIGHTS ‘BYTE,

PHYS_ADDR_PTR POINTER,

PHYS ADDR BASED PHYS_ADDR_PTR STRUCTURE
(LO_] _WORD WORD,
HI_WORD WORD) ,

LIMIT WORD;

DECLARE SLOTI WORD, /* Slot index */
DTA_SEL SELECTOR, /* To be set to either
GDT alias or LDT alias. */
DT BASED DTA_SEL (DT_SIZE)
STRUCTURE (DESC_STR);

DTA_SEL = FIND DT_ALIAS(SLOT);

SLOTI = SHR(SLOTW,3); /* Expose index value. */
DT (SLOTI) .LO_BASE PHYS_ADDR.LO_WORD;
DT(SLOTI).HI_BASE LOW(PHYS_ADDR.HI_WORD);

wononomoase

‘DT (SLOTI) .LIMIT LIMIT;
DT (SLOTI) .SW_RESRVD 2;
DT (SLOTI) .RIGHTS RIGHTS;

RETURN;

END POINT_AT;

/***/
/* Invalidate descriptor indexed by SLOT. */

NULLIFY: PROCEDURE (SLOT) PUBLIC REENTRANT;

DECLARE SLOT SELECTOR,
SLOTW WORD AT (@SLOT); /* Alternate type */

DECLARE SLOTI WORD, /* Slot index */
DTA_SEL SELECTOR, /* To be set to either
GDT alias or LDT alias. */
DT - BASED DTA_SEL (DT_SIZE)
STRUCTURE (DESC_STR);

DTA_SEL = FIND DT _ALIAS(SLOT);

SLOTI = SHR(SLOTW,3); /* Get index part of selector. */

DT (SLOTI) .RIGHTS = 8@H;/* This invalid value prevents
use of the descriptor. */

RETURN;

END NULLIFY;

/***/

Figure 2-16. Descriptor Manipulation Exarﬁple (Cont’d.)

2-24

121960-001

ntel USING HARDWARE PROTECTION FEATURES

PL/M-286 COMPILER 960-505 date PAGE 3

35 1 END POINT;

MODULE INFORMATION:

CODE AREA SIZE 0OCAH 202D

CONSTANT AREA SIZE = @Q000H oD
VARIABLE AREA SIZE = @002H 2D
MAXIMUM STACK SIZE = 0@18H 24D

129 LINES READ
@ PROGRAM WARNINGS
¢ PROGRAM ERRORS

DICTIONARY SUMMARY:
96KB MEMORY AVAILABLE
5KB MEMORY USED (5%)
@KB DISK SPACE USED

END OF PL/M-286 COMPILATION

Figure 2-16. Descriptor Manipulation Example (Cont’d.)

2-25 121960-001

9¢-¢

100-096121

13

12

1

SLDT FORMAT

ACCESS RIGHTS
_mvie
PREVIOUS # SLOTS IN BLOCK
DESCRIPTOR TABLE
T 1 N
00H 4
I ! f
T T !
O00H
] } !
T T T
00H

/ 00H

O00H

10 80H 1
) | .
T T T
80H
|] Il
1 3 2 5 7 6
RESERVED D AVAILABLE

Figure 2-17. Available Slot List

121960-51

S3HNLV34 NOILO3LOHd FHVMAHVH ONISN

Real Memory Management

CHAPTER 3
REAL MEMORY MANAGEMENT

In dynamic applications, when tasks begin and end frequently, the operating system is responsible for
allocating memory to tasks. Without the control that an operating system provides, independent tasks
cannot be trusted to share the system’s memory harmoniously. The iAPX 286, through the descriptor
mechanism, gives the operating system the power to control memory usage. For static systems, you can
use the Builder to allocate memory. This chapter presents an example of how to manage real memory
dynamically, using dynamically created descriptors.

MEMORY MANAGEMENT FUNCTIONS

Procedures at various levels in a system have a need to get memory for their use. Some of the functions
that use memory dynamically include

e Loading the code and data segments for a new task

¢ Creating the TSS and LDT of a new task

* Expanding an application data structure

¢ Expanding system stack segments when stacks grow too large
¢ Allocating buffers for a newly opened file

In allocating memory statically using the Builder, you or the Builder must keep account of what memory
locations are available and what locations are used. A dynamic memory allocation module must do the
same, but, in addition, it needs to reuse the space vacated by tasks that have finished. Even tasks that
are still executing may no longer need all of the memory they once were using, so you need to provide
some means for them to return that space dynamically. The need to reclaim formerly used memory
space provides considerable challenge to operating system designers.

Protection usuaily requires that segments not overlap. The operating system should accurately keep
track of allocated memory to prevent new segments from overlapping current segments.

Allocation of memory to tasks in a dynamic environment is complicated by the facts that segments
have differing lengths and that the order of creation and deletion is unpredictable. Consequently, after
a number of tasks have come and gone, memory becomes fragmented, as illustrated in figure 3-1. It
becomes increasingly difficult to find free areas large enough to accomodate requests for space. It may
happen that no single free area in all of memory is large enough to fill a request for memory even
though the total of all smaller available areas is larger than the amount needed. Knuth (see “External
Literature” in the Preface) discusses how various memory-management mechanisms can minimize or
magnify this problem.

Memory management on the iAPX 286 differs from memory management on other processors in that
descriptors must be constructed to access any region of physical memory.

EXAMPLE OF A MEMORY MANAGER

As an example of how a memory manager can manipulate descriptors and segments, consider a memory
management module that implements a version of the “first fit” algorithm (as described by Knuth)
and combines adjacent free segments as a way to reduce fragmentation. This example employs the

3-1 121960-001

Intel REAL MEMORY MANAGEMENT

0 512K

— AVAILABLE MEMORY

— ALLOCATED MEMORY

121960-17

Figure 3-1. Memory Fragmentation

“first fit” algorithm because it provides an opportunity to illustrate how to create descriptors dynami-
cally to access free memory areas, not because it necessarily performs best in any specific application.
Knuth discusses other algorithms, including the “buddy system.”

Figure 3-2 illustrates conceptually the structure of this module. Hidden inside the module are the list
of available memory space, the aliases that permit modification of the GDT and LDTs, and the space-
management algorithms. The PUBLIC procedures ALLOCATE and FREE are the only interfaces
with the world outside the module.

Data Structures

Figure 3-3 illustrates the data structures implemented in this example memory manager. One-word
tags bound every memory area on the low and the high end. These boundary tags indicate whether the
area is free or in use by some task. Free areas are chained into a two-way linked list that uses physical
addresses to point to the next and prior segments in the list. The size of an area (in bytes) is stored
with the link addresses in the low-addressed end of the area. At the high-addressed end, a physical
address points to the beginning of the area.

With boundary tags at both ends of every memory area, the memory manager can, when freeing a
segment that is no longer needed, easily determine whether either of the adjoining areas is free. Figure
3-4 illustrates how adjacent free areas can be combined to reduce memory fragmentation.

Figure 3-5 illustrates that boundary tags are invisible to procedures outside the memory management

module because the tags are not within the base and limit addresses in the segment descriptor that the
memory manager returns to the caller.

3-2 121960-001

intel REAL MEMORY MANAGEMENT

attocate T Gate

MEMORY -
MANAGEMENT :
ALGORITHMS

GLOBAL DATA

FREE SPACE LISTS FREE_SEG | GATE

Ialsaisalsalsall

gooo

121960-16

Figure 3-2. Information Hiding in Memory-Management Example

This memory manager does not maintain descriptors to free segments; instead, it creates descriptors
dynamically when it needs to address the boundary tags and space-management linkages. This policy
minimizes the number of descriptors in the GDT. Note that as a result, free areas may be larger than
64K bytes. :

Physical addresses are stored as double words (DWORD) to take advantage of double word arithmetic
in PL/M-286. In an actual implementation, you may :wish to store physical addresses in three-byte
fields to save space, but you would need to implement arithmetic operations for three-byte operands.

The total size of the memory-management items associated with each free area is 20 bytes; therefore,
to ensure that no memory area is too small to contain the memory-management items, this algorithm
chooses the size of the allocated space to be a multiple of the next integer greater than 20 that is also
a multiple of 16. This number is identified as BLOCK_MODULUS.

3-3 121960-001

REAL MEMORY MANAGEMENT

i
[® START

SIZE

[PRIOR

NULL)
| G |

FIRST AVAILABLE

LAST AVAILABLE

CURRENT AVAILABLE

BOUNDARY<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>