

LITERATURE

In addition to the product line Handbooks listed below, the INTEL PRODUCT G U I DE (no charge, Order
No. 210846) provides an overview of Intel's complete product line and customer services.

Consult the INTEL L1TERATU RE GU I DE for a complete listing of I ntelliterature. TO ORDER literature
in the United States, write or call the Intel Literature Department. 3065 Bowers Avenue, Santa Clara, CA
95051, (800) 538-1876, or (800) 672-1833 (California only). TO ORDER literature from international
locations, contact the nearest Intel sales office or distributor (see listings in the back of most any Intel
literature).

1984 HANDBOOKS

Memory Components Handbook (Order No. 210830)
Contains all application notes, article reprints, data sheets, and other design information
on RAMs, DRAMs, EPROMs, E2pROMs, Bubble Memories.

Telecommunication Products Handbook (Order No. 230730)
Contains all application notes, article reprints, and data sheets for telecommunication
products.

Microcontroller Handbook (Order No. 210918)
Contains all application notes, article reprints, data sheets, and design information for the
MCS-48, MCS-51 and MCS-96 families.

Microsystem Components Handbook (Order No. 230843)
Contains application notes, article reprints, data sheets, technical papers for micropro­
cessors and peripherals. (2 Volumes) (individual User Manuals are also available on the
8085, 8086, 8088, 186, 286, etc. Consult the Literature Guide for prices and order
numbers.)

Military Handbook (Order No. 210461)
Contains complete data sheets for all military products. Information on Leadless Chip
Carriers and on Quality Assurance is also included.

Development Systems Handbook (Order No. 210940)
Contains data sheets on development systems and software, support options, and design
kits.

OEM Systems Handbook (Order No. 210941)
Contains all data sheets, application notes, and article reprints for OEM boards and
systems.

Software Handbook (Order No. 230786)
Contains all data sheets, applications notes, and article reprints available directly
from Intel, as well as 3rd Party software.

* Prices are for the U.S, only.

U.S. PRICE*

$15.00

7.50

15.00

20.00

10.00

10.00

15.00

10.00

• ® I

iAPX 286
OPERATING SYSTEMS

WRITER'S GUIDE

1983

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
·appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXp, CREDIT, i, ICE, 12 1CE, ICS, iDBP, iDIS, iLBX, im, iMMX,
Insite, INTEL, intel, Intelevision, Intellec, inteligent Identifier'",
intelBOS, inteligent Programming'", Intellink, iOSP, iPDS,
iRMS, iSBC, iSBX, iSDM, iSXM, Library Manager, MCS,
Megachassis, Micromainframe, MULTIBUS, Multichannel'"
Plug-A-Bubble, MULTI MODULE, PROMPT, Ripplemode,
RMX/80, RUPI, System 2000, and UPI, and the combination of
ICE, iCS, iRMX, iSBC, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation .

• MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

if' INTEL CORPORATION, 1983

Intel Corporation
Literature Department
3065 Bowers Avenue
Santa Clara, CA 95051

ii

PREFACE

This book is written for systems designers and operating system designers and programmers who plan
to use the Intel iAPX 286 microprocessor in its protected, virtual-address mode. The protected-mode
iAPX 286 is designed for multitasking systems: systems that serve many users or that simultaneously
run several programs.

This book analyzes operating system functions that are appropriate for the iAPX 286 when used in a
variety of multitasking applications, including

• Communications, such as automated PBXs

• Real-time, such as instrumentation or process control

• Multi-user, such as time-sharing or office systems

Many of the features of the iAPX 286 are intended for use by an operating system. This book identifies
and explains those features and gives examples of how they can be used in an operating system.

AUDIENCE

This book assumes that you have a knowledge of multitasking operating systems at least equivalent to
that presented in introductory undergraduate textbooks on the subject. It also assumes that you have
had some exposure to the architecture of the iAPX 286 through attending an introductory course or
reading introductory literature such as Introduction to the iAPX 286.

RELATED PUBLICATIONS

Intel Literature

The following manuals contain additional information of use to operating-system designers and
programmers:

• ASM286 Assembly Language Reference Manual, 121924

Component Data Catalog, 210298

• iAPX 286 Architecture Extension Kernel (K286) User's Guide, 121961

• iAPX 286 Programmer's Reference Manual, 210498

• iAPX 286 System Builder User's GUide, 121935

• iAPX 286 Utilities User's GUide, 121934

• iAPX 286/10 High Performance Microprocessor with Memory Management and Protection (Data
Sheet),210253

• Introduction to the iAPX 286,210308

• PL/M-286 User's Guide, 121945

iii 121960·001

PREFACE

External Literature

Many aspects of operating system construction for the iAPX 286 are the same as for other processors.
The following are sources of generally applicable theories and algorithms referred to in the text of this
book. . .

• Coffman, E.G., Jr., and Peter J. Denning, Operating Systems Theory (Engle\Vood Cliffs, N.J.:
Prentice-Hall, 1973)

• Denning, Peter J., "Virtual Memory," Computing Surveys, Vol. 2, No; 3 (September 1970)

• Knuth, Donald E., Fundamental Algorithms, Vol. 1 (Reading, Mass.: Addison-Wesley; 1973)

• Peterson, James L., Petri Net Theory and the Modeling of Systems (Englewood Cliffs, N.J.: Prentice­
Hall, 1981)

RELATED PRODUCTS

Designers interested in operating systems for the protected-mode iAPX 286 should also be aware of
Intel's iAPX 286 Architecture Extension Kernel K28. K286 is an operating-system kernel designed
for a wide variety of applications, including real-time, communications, business systems, and time­
sharing. K286 provides

• Short-term, priority scheduling and management of multiple tasks

• Interrupt management

• Multiprocessor support

• Virtual memory support

• Data sharing among tasks with synchronization

• Intertask signals and messages

• Extended protection

Whether you use K286 "as is," for greatest possible efficiency, or whether you add layers of software
to more fully support.your applications, K286 can significantly reduce your system development time.
Since K286 has been designed by the architects of the iAPX 286 and implemented and tested by
Intel's software engineers, using K286 can make your system more reliable.

~286 implements many of the concepts discussed in this book, which can therefore give you additional
understanding of why and how to use K286.

HOW TO USE THIS MANUAL

This manual has two related objectives:

• To identify features of the iAPX 286 architecture that are unique when applied to the implemen­
tation of an operating system

• To show how you can effectively use these unique features in the design of familiar operating system
functions

iv 121960·001

PREFACE

In pursuit of these objectives, Chapters 2 thru 13 share a general, three-part structure:

1. Identifing an operating system function (or class of functions). The functions chosen are those
with which you might already be familiar, since they are similar to those used in state-of-the-art
operating systems such as iRMX 86 (from Intel Corporation) or UNIX (from Bell Laboratories).

2. Reviewing the iAPX 286 features that support that function. While this portion of each chapter
may cover some material available in other Intel literature, it provides added value by discussing
in one place all the iAPX 286 features that bear on a given operating system function and by
identifying relationships among those features.

3. Outlining some examples of how to use those iAPX 286 features in an implementation of the
identified function. It is, of course, impossible to illustrate all the ways to design any given function,
but these examples serve to illustrate a few of the ways that the designers of the iAPX 286 archi­
tecture intended for it to be applied.

Chapter 1 introduces the iAPX 286 architecture; identifies the role of an operating system in a protected,
multitasking environment; and shows how Intel's Binder and Builder utilities aid in the construction of
an operating system. You may skip Chapter 1 if you are already familiar with multitasking operating
systems and with the Binder and the Builder.

Both Chapter 2 and Chapter 5 contain key information about manipulating the protection features of
the iAPX 286. Be sure not to omit these chapters when scanning the contents of the book.

For the remaining chapters, you may turn directly to the subjects that interest you most. You will find
the reading easier, however, if you observe the partial orderings outlined in table 0-1.

NOTATIONAL CONVENTIONS

UPPERCASE

italic

system-id

vx.y

Characters shown in uppercase must be entered in the order shown. You may
enter the characters in uppercase or lowercase.

Italic indicates a meta symbol that may be replaced with an item that fulfills
the rules for that symbol. The actual symbol may be any of the following:

Is a generic label placed on sample listings where an operating system­
dependent name would actually be printed.

Is a generic label placed on sample listings where the version number of the
product that produced the listing would actually be printed.

Table 0-1. Prerequisites by Chapter

Target Chapter Prerequisites

6 4

7 6

8 4,6

9 6,7

12 4, 6, 7

v 121960-001

Table of Contents

CHAPTER 1 Page
INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

Tasks :... 1-1
Structure of a Program .. 1-1
Segmented Memory .. 1-1
Multitasking 1-1

Privilege Levels ... 1-3
Levels of Segments ... 0.................. 1-4
Rules of Privilege ... 0................................ 1-4

Software System Structure ... 1-4
Role of the Operating System .. 1-6

Common O.S. Functions ... 1-7
O.S. Functions in a Dynamic Environment ... 1-8

Constructing the Initial Run-Time Environment ... 1-8
Building a Static System .. 1-9
Building a Dynamic System ... 1-9

CHAPTER 2
USING HARDWARE PROTECTION FEATURES

Addressing Mechanism .. .
Descriptors

Descriptor Format
Control Flow Transfer .. .

Gate Descriptors .. .
Control Transfer Mechanisms : .. .
Privilege Rules for Gated Intersegment Transfers

Descriptor Tables
Local Descriptor Table .. .
Global Descriptor Table .. .
Interrupt Descriptor Table

Selectors .. .
Format of Selector .. .
Null Selector

Alias Descriptors .. ;
Explicit Variation of Type .. .
Variation of Length
Sharing Segments among Tasks
Protection and Integrity with Aliasing .. .

Example of Descriptor Manipulation
Slot Management

VI

2-1
2-2
2-2
2-7
2-8
2-9

2-11
2-12
2-14
2-14
2-15
2-15
2-15
2-17
2-17
2-18
2-18
2-19
2-19
2-20
2-22

121960-001

TABLE OF CONTENTS

CHAPTER 3
REAL MEMORY MANAGEMENT

Memory Management Functions .. .
Example of a Memory Manager ;

Data Structures .. .
PL/M-286 Code .. .
Protection Structure

Advanced Memory Management

CHAPTER 4
TASK MANAGEMENT

Page

3-1
3-1
3-2
3-6
3-7

3-10

Hardware Task-Management Features ... 4-1
Storing Task State .. 4-1
Switching Tasks .. 4-3

Role of Operating System in Task Management ;..................................... 4-4
State Model of Task Scheduling 4-5
Interfacing with the Hardware Scheduler 4-6
Changing Scheduling State ... 4-7
Structuring Task Information ... 4-10

Example of a Dispatcher ... 4-13

CHAPTER 5
DATA SHARING, ALIASING, AND SYNCHRONIZATION

Data-Sharing Techniques ... ,........................ 5-1
Sharing via the GOT .. 5-1
Sharing via Common LOT ... 5-1
Sharing via Aliases .. 5-2

Alias Management ... 5-3
Alias Database ... 5-3
Alias Procedures .. 5-3

Synchronization ... 5-4
Low-Level Mutual Exclusion .. 5-5
High-Level Mutual Exclusion 5-6

Message Passing .. 5-10
Message-Passing Example .. 5-10
Variations on the Mailbox Theme 5-16

CHAPTER 6
SIGNALS AND INTERRUPTS

Interrupt Features of the iAPX 286 Architecture ... 6-1
Vectoring 6-1
Enabling and Disabling Interrupts 6-2
Interrupt Descriptor Table .. 6-2
Interrupt Tasks and Interrupt Procedures .. 6-2

vii 121960·001

TABLE OF CONTENTS

Page

Operating System Responsibilities ... ~.~.... 6-4
Manage lOT ; , ; ; ... :.; ... ~.... 6-5
Switch Scheduling Modes .; .. :.............. 6-5
Manage Interrupt Controller .;... 6-6
Provide Task-Level Interrupt Procedures .. 6-7
Provide Software Signals ... ~........................ 6-9

CHAPTER 7
HANDLING EXCEPTION CONDITIONS

Fault Mechanism ... ;................................. 7-1
Fault Recovery ...•......................... 7-1

Locating the Faulting Instruction .. : ; ; 7-1
Error Cpde ... ~ ,................. 7-2

Application Interface .. ; ; , 7-2
Exception Conditions i •••••••••••••••••• ••••••••• ,;................... 7-2

Interrupt O-Divide Error ... 7-3
Interrupt 1-Single Step .. :........... 7-3
Interrupt 3-Breakpoint ... 7-3
Interrupt 4-0verflow .. 7-3
Interrupt 5-Bound Check .. 7-4
Interrupt 6-Undefined Op~ode (UD) 7~4

Interrupt 7-ProcessorExtensioh NotAvailable (NM) ~...................... 7-4
Interrupt 8-Double Fault (OF) , ;............... 7-5
Interrupt 9-Processor Extension Segment Overrun ; ; .. :....... 7-5
Interrupt 1 O-Invalid, TSS (TS) ;............................... 7-5
Interrupt 11-Segmertt . .Not Present (NP) .. 7-6
Interrupt 12-Stack Exception (SS) .. 7-6
Interrupt 13-General Protection Exception (GP) 7-7
Interrupt 16-Processor Extension Error (MF) :.. 7-8
Interrupt 17-Run-Time Exceptions ... :................ 7-8

Restartability Summary 7-8

CHAPTER 8
INPUT /OUTPUT .

I/O and Protection .. .
I/O Privilege Level (IOPL) .. .
Controlling I/O Addresses ... , ;

I/O and Memory Management .;
Partitioning I/O .Functions

Requirements for Parallelism and Synchronization
Requirements for protection
Implementation Alt~rnatives•..

viii

8-1
8 .. 1
8-2
8-3
8-3
8-4
8-4
8-5

121960-001

CHAPTER 9
VIRTUAL MEMORY

TABLE OF CONTENTS

Page

Hardware Mechanisms .. 9-1
Accessed Bit ... 9-1
Present Bit , 9-1

Software Mechanisms ... 9-2
Secondary Storage Management .. 9-2
Level Zero Support Procedures ... 9-3
Swapping Managers .. 9-4

Software Policies ,... 9-6
Fetch ... 9-6
Placement .. 9-6
Replacement ... 9-7

Thrashing .. 9-8

CHAPTER 10
SYSTEM INITIALIZATION

Initial State .. 1 0-1
Switching to Protected Mode .. 1 0-1
Initializing for Protected Mode 10-2

Interrupt Vector ... 10-2
Stack :... 1 0-2
Global DescriptorTable ... 10-2

Starting First Task .. 10-2
Example of Initialization ... 10-3

Initialization Module ENTP ... 10-3

CHAPTER 11
BINDING AND LOADING

Binding Model ... 11-1
Modules ... 11-1
Segmentation .. 11-2
Interfaces 11-2
Naming .. 11-3
Timing .. 11-3

Implementing According to the Model 11-3
Source Code ... 11-4
Compilers .. 11-4
Binding Utilities .. 11 ~5

Overview of Loading ... 11-8
Converting a Program into a Task ... 11-9
iAPX 286 Object Module Format ... 11-10
Flow of Loader .. 11-11

Load-Time Binding .. 11-12
Example Loader .. 11-12

ix
121960-001

TABLE OF CONTENTS

CHAPTER 12 Page
NUMERICS PROCESSOR EXTENSION

iAPX 286/20 Numerics Processing Features .. 12-1
ESCAPE Instructions ... 12-1
Emulation Mode Flag (EM) 12-1
Math Present Flag (MP). 12-2
Task Switched Flag (TS) ... 12-2
WAIT Instruction .. 12-2
Summary ... 12-2

Initialization ... 12-2
Task State .. 12-3
Numerics Exceptions .. 12-3

Interrupt 7-Processor Extension Not Available (NM) 12-3
Interrupt 9-Processor Extension Segment Overrun (MP) 12-4
Interrupt 16-Processor Extension Error (MF) .. 12-5

CHAPTER 13
EXTENDED PROTECTION

Extended Type .. ,................... 13-1
Type Extension Code with Descriptor ~................... 13-1
Type Extension Code in Segment ... 13-1
Indirect Naming ... 13-2

Parameter Validation ... 13-2
Defensive Use of ARPL ... 13-2
Point-of-Entry Scrutiny................... ... 13-3

Usage Privilege Level .. 13-4
Send Privilege Level .. 13-5
Constructing Shared Objects .. 13-5

GLOSSARY

INDEX

LIST OF TABLES

Table Title Page

0-1 Prerequisites by Chapter .. v
2-1 Categories of Control Flow Transfer .. 2-7
2-2 Control Transfer Mechanisms .. 2-10
3-1 Actions for Combining Segments ... 3-9
4-1 Task Switching Operations .. 4-3
6-1 Interrupt Response Time .. 6-5
7-1 Restart Conditions .. 7-8
12-1 Interpretation of MP and EM Flags 12-3
13-1 Access Checking Instructions .. 13-2

x 121960-001

Figure

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
4-1
4-2
4-3
4-4
4-5
4-6

TABLE OF CONTENTS

LIST OF FIGURES

Title

Segregation of Segments by Tasks with Private LDTs
Global Segments in System
Segment Segregation by Privilege Level within a Task
A Four-Level Protection Structure
A Two-Level Protection Structure
A One-Level Unprotected Structure .. .
Independent Operating-System Tasks .. .
Building a Static System
Building a Dynamic System
Abstraction of Addressing Mechanism .. .
Data Segment Descriptor .. .
Executable Segment Descriptor .. .
System Segment Descriptor
Calling a Conforming Segment .. .
Gate Descriptor
Intralevel Control Transfers
Gated Interlevel Call and Return .. .
Valid and Invalid Interlevel Transfers
Format of a Selector
Aliasing for Debugger .. .
Aliases for System Tables
Aliases with Differing Limit .. .
Application of Segment Sharing .. .
Aliases for Segment Sharing
Descriptor Manipulation Example .. .
Available Slot List .. .
Memory Fragmentation
Information Hiding in Memory-Management Example
Example Memory-Management Data Structures
Using Boundary Tags .. .
Hiding Boundary Tags
Example GDT Layout .. .
Splitting an Available Block of Memory
Possibilities for Combining Segments
Code for Memory-Management Example .. .
Task State Segment and Register .. .
Scheduling State Transition Diagram .. .
Expanded Scheduling State Transition Diagram
Changing Scheduling Mode
Task Information Structure A .. .
Task Information Structure B .. .

xi

Page

1-2
1-3
1-4
1-6
1-7
1-8
1-9

1-10
1-11

2-1
2-3
2-4
2-5
2-6
2-9

2-11
2-12
2-13
2-16
2~17

2-18
2-19
2-20
2-21
2-23
2-26

3-2
3-3
3-4
3-5
3-6
3-7
3-8

3-11
3-15

4-2
4-5
4-6
4-8

4-11
4-12

121960·001

Figure

4-7
4-8
4-9
5-1
5-2
5-3
5-4
5-5
5-6
5-7
6-1
6-2
6-3
6-4
7 .. 1
8-1
8-2
8-3
10-1
10-2
10-3
11-1
11-2
11-3
11-4
11-5
11-6
11-7
13-1

TABLE OF CONTENTS

Title·

Task Information Structure C .. .
Scheduler Queue Segment
Dispatcher Example ; ,
Segment via Common LOT
Alias List ... '
Identifying Alias List .. .
Semaphore Structure .. .
Semaphore Example
Mailbox Structure .. .
Example of Mailbox Procedures
Interrupt Vectoring for Tasks
Interrupt Vectoring for Procedures .. .
Interrupt Procedure's Stack .. .
Private Interrupt Procedure
Exception Error Code .. .
Petri Net Graph Symbols
Synchronization with Simple Device Driver
Synchronization with Two-Part Device Driver
Initialization Module ENTP
Dummy Segments for ENTP
Initial Task INIT
Subsystem for Kernel Exports .. .
Binder Specifications for XOS Kernel .. .
Builder Specifications for XOS .. .
Specifying Dummy Gate Exports .. .
Strategy for Load-Time Binding
Binding Loader .. .
BOND Module of Binding Loader .. .
Caller's CPL .. .

xii

Page

4-13
4-14
4-15

5-2
5-4
5-5
5-6
5-8

5-11
5-13

6-3
6-3
6-4
6-8
7-2
8-5
8-6
8-6

10-4
10-14
10-15

11-5
11-6
11-7

11-13
11-14
11-15
11-24

13-3

121960-001

Introduction to Protected 1
Multitasking on the iAPX 286

CHAPTER 1
INTRODUCTION TO PROTECTED MULTITASKING

ON THE iAPX 286

The iAPX 286 architecture views the software system (the operating system as well as applications) as
a number of asynchronous tasks, each task possibly consisting of levels of procedures deserving differ­
ent degrees of "trust." An operating system for the iAPX 286 must (with the help of the hardware)
coordinate the activities of mUltiple tasks and administer protection among tasks and among levels of
procedures within tasks.

TASKS

A task is the execution of a sequence of steps. A program is a logical entity that can have many
representations: for example, source code file or object program file. A program becomes a task when
it is actually available for execution. This is achieved by converting source (with a compiler and program
loader, for example) to a representation suitable for execution and notifying the operating system that
the task is ready for installation and execution.

The distinction between programs and tasks is most clear in a multitasking system, where it is possible
for two or more tasks to use one program simultaneously. The line editor program in a timesharing
system is a common example. Even though each line editor task uses the same program, each task
produces different results, since it receives different inputs.

Structure of a Program

Each program is formed from modules created by language translators and bound together into a single
executable unit. The translators (for example, ASM286, PL/M~286, Pascal-286, and FORTRAN-286)
and the object program utilities (for example, Intel's Builder and Binder) support the concept of logical
segments. A logical segment is a contiguous block of either instructions or data. Each logical segment
can contain up to 64K bytes of code or data. Logical segments are the units that may be combined
when a program comprises more than one module.

Segmented Memory

The iAPX 286 structures the address space of a task into physical segments of variable length. A
physical segment is a contiguous block of memory that does not (normally) overlap another physical
segment. Each physical segment may contain up to 64K bytes of either instructions or data. Each
physical segment contains one or more logical segments of a task. The segments reflect how tasks are
organized into code, data, and stack areas.

Multitasking

One of the most important features of the iAPX 286 is its ability to switch rapidly from executing one
task to executing another task. This gives the appearance that the processor is executing more than
one task at a time.

1-1 121960-001

INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

Hardware system tables enable both the hardware and the operating system to distinguish between the
physical segments of individual tasks. Figure 1-1 shows how physical segments of one task are logically
separate from those of other tasks. Since references to physical segments are always relative to system
descriptor tables, the actual locations of physical segments in physical memory are not significant to
the tasks and therefore are not illustrated.

Descriptor tables serve not only to identify the segments that belong to a task but also to isolate the
address space of one task from that of another, so that one task cannot inadvertently affecUhe opera­
tionsof another.

Multitasking works through close interaction of the operating system with hardware features. When
the executing task needs to wait for some event (such as the arrival of data from some I/O device), it
notifies the operating system. The operating system determines which other task should execute next,
and then causes the processor to store the state of the current task, retrieve the state of the next task;
and begin executing the next task at the point where its processing last halted. The processor then
executes that task until .the task needs to wait for some· event. (This is a somewhat oversimplified

TASKD
MULTIPLAN

TASK A
PLlM·286 COMPILATION

TASK C
AEDIT'"

TASKB
FORTRAN

ANALYZER

Figure 1-1. Segregation of Segments by Tasks with Private LOTs

1-2

121960·40

121960-001

INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

description of what can be a complex operating system function. Chapter 4 covers the subject of task
switching in more detail.)

Figure 1-2 illustrates how the global descriptor table defines an address space that is accessible to all
tasks in the system. This global space is useful for translation tables, run-time libraries, operating­
system code and data, and the like.

PRIVILEGE LEVELS

The iAPX 286 architecture uses the concept of privilege levels to protect critical procedures within a
task from less trusted procedures in the same task. For example, with previous generations of micro­
processors, applications code could access and possibly destroy tables used by the operating system.
An error of this sort could cause the operating system to incorrectly service a subsequent request from
another unrelated task. With the iAPX 286, such situations are prevented by hardware-enforced barriers
between different levels of procedures.

GLOBAL SPACE

LOCAL SPACES

Figure 1-2. Global Segments in System

1-3

A V AILABLE TO
ALL TASKS

121960·58

121960-001

inter INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

Applied to procedures, privilege level is a measure of the degree to which you trust a procedure not to
make a mistake that might affect other procedures or data. Applied to data, privilege level is a measure
of the protection you think a data structure should have from less trusted procedures.

Privilege level also applies to instructions. Certain instructions (those that deal with system tables,
interrupts, and I/O, for example) have such an effect on the system as a whole that only highly trusted
procedures should have the right to use them.

Levels of Segments

With regard to privilege, you can view the segments of a task as being grouped into four levels. Level
zero is for the most privileged procedures and the most private data; level three is for the least trusted
procedures and the most public data. You (or your operating system) associate each segment of each
task with one of these four levels of privilege. The privilege level of a segment applies to all the proce­
dures or all the data in that segment. Figure 1-3 illustrates the logical segregation of segments into
privilege levels. (Later chapters explain why operating-system segments are included within the task.)

LDT

PL~O } PL~O

PL~O

PL~l

} PL~l

PL~l

PL~l

PL~2

} PL~2

PL~2

PL~2

PL~2

PL~3

PL~3

PL~3

PL~3

PL~3

PL~3

PL~3

PRIVILEGE
LEVEL

~ DATABASE
MANAGER

~
~

o PRIVILEGE
LEVEL

1
PRIVILEGE

LEVEL
2

Figure 1-3. Segment Segregation by Privilege Level within a Task

1-4

PRIVILEGE
LEVEL

3

121960-41

121960-001

INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

Rules of Privilege

The 80286 processor controls access to both data and procedures between levels of a task. These rules
define access rights:

• Data can be accessed only from the same or a more privileged level.

• A procedure can be called only from the same level (or from a less privileged level, if the service is
deliberately "exported" to that level. Refer to gates in Chapter 2.).

SOFTWARE SYSTEM STRUCTURE

The way you choose to distribute software and data among tasks and privilege levels affects the relia­
bility, efficiency, and flexibility of your system. Operating-system modules may be segregated into
their own tasks or may be distributed among and shared by every task. Some advantages of placing
operating-system modules in separate tasks are

• Finer granularity of protection is achieved by using task separation as well as privilege levels.

• Operating-system functions can execute in parallel with the caller.

• When only one task at a time can perform the function (for example, reading from a keyboard),
serialization of requests is automatic; you do not need to synchronize among requesting tasks.

Some advantages of distributing operating-system functions are

• The communication between application and operating system is faster.

• It may be possible for all tasks to execute the same operation-system function in parallel. (You must
ensure reentrancy and provide for synchronization, however.)

Figures 1-4 through 1-7 illustrate some general approaches that you may consider.

The approach shown in figure 1-4 takes maximum advantage of the four privilege levels. The critical
procedures and data of the operating system kernel (for example, memory allocation tables and proce­
dures, information about tasks) are protected from all other procedures in the system. Those parts of
the operating system that are less reliable, either due to inherent complexity (for example, the I/O
subsystem) or due to occasional changes (for example, policies designed to increase overall through­
put), are at a lower level but are still protected from application levels. Application logic has two levels
so that application services (such as database management) can be protected from less trusted appli­
cation code, yet application services cannot affect the integrity of the operating system. Operating­
system procedures and application services are shared among all the tasks in the system.

Figure 1-5 illustrates that you do not need to use all four privilege levels. You may prefer this two-level
approach if you are converting from a traditional multitasking system that offers protection only between
the two levels defined by application and operating system.

The iAPX 286 can also emulate one-level systems, as illustrated in figure 1-6. This approach may be
useful in the initial stages of converting from an unprotected system, but it does not take advantage of
many of the protection features offered by the iAPX 286. It does isolate tasks from one another, but
it does not protect the operating system from applications software.

Some operating system functions are better structured as independent operating-system tasks, not as
privileged procedures within a task. Certain I/0 functions are suited to this treatment. Because of the
complexity of I/0 code, the extra protection offered by a task boundary contributes to the reliability

1-5 121960-001

111'eI INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

GLOBAL SPACE

11~'1,~1. ~~~~:~NG
TASKB

D A~PLlCATION

121960-43

Figure 1-4. A Four-Level Protection Structure

of the system. Because many I/O functions involve waiting for responses from I/O devices, it is most
convenient to treat these functions as a separate task that can run asynchronously with respect to the
tasks that invoke them. Figure 1-7 illustrates a structure with independent operating-system tasks.

ROLE OF THE OPERATING SYSTEM

The role that an operating system may play in managing a multitasking execution environment depends
on the nature of the application. Applications can be classified according to the volatility of tasks

1-6 121960-001

inter INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286·

• OPERATING SYSTEM

D APPLICATION

GLOBAL SPACE

TASK
B

Figure 1-5. A Two-Level Protection Structure

121960-44

executing over a period of time. Applications in which tasks frequently begin and end (for example,
time-sharing systems or multi-user business systems) are called dynamic systems. Applications in which
the mix of tasks does not change (for example, process control systems in which tasks service a fixed
number of sensors and effectors) are called static systems.

Common O.S. Functions

The operating-system roles common to both static and dynamic applications are

• Allocation of the processor or processors to tasks

• Coordination and communication among cooperating tasks

• Processing of interrupts and exception conditions

• Standardization of interfaces to I/O devices

• Control of the numerics processor extension

1-7 121960-001

INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

GLOBAL SPACE

121960-45

Figure 1-6. A One-Level Unprotected Structure

O.S~ Functions in a Dynamic Environment

Even though many of the duties of an operating system in a dynamic environment resemble those in a
static environment, the dynamic environment often introduces new complexities. Some additional
functions that a dynamic system may require include

• Real memory ma~agement
• Program loading

• Command language interface

• Virtual memory management

• Load-time binding

CONSTRUCTING THE INITIAL RUN· TIME ENVIRONMENT

Intel's System Builder program helps you create the initial executable system. The Builder program
collects object modules into one module, assigns physical addresses, creates system tables, and assigns
privilege levels. A specification language gives you the ability to control precisely what the Builder
does.

1-8 121960-001

INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

D.... OPERATING
SYSTEM

D APPLICATIONS

APPLICATIONS TASKS

OPERATING-SYSTEM TASKS

Figure 1-7. Independent Operating-System Tasks

Building a Static System

121960-1

In the case of static systems, the Builder does nearly all the work in constructing a running system.
Refer to figure 1-8 for an illustration of the building process. The output of the Builder is a single
module that contains all the tasks, both for the operating system and for applications, as well as all
system tables and protection information. The Builder's output file has a format that simplifies creation
of a bootstrap loader for the system.

Building a Dynamic System

With dynamic systems, the Builder constructs as much of the final system as you can specify in advance,
but the nature of dynamic systems is such that the operating system must do at run-time many of the
operations that the Builder does for static systems (for example, allocation of memory and assignment
of physical addresses). The operating system must update system tables and administer the protection
mechanisms as the running environment changes.

1-9 121960-001

INTRODUCTION TO PROTECTED MULTITASKING ON THE iAPX 286

Figure 1-9 illustrates the process of constructing a dynamic system. The Builder creates a load able
module containing those operating-system functions that permanently reside in the running operating
system, and it also creates a file that contains information about linking to operating-system primitives.
Either a static linker (such as Intel's Binder) or a dynamically linking loader can use this information
to help dynamically loaded tasks use operating-system functions.

OPERATING
SYSTEM

AND
APPLICATION

MODULES
(FROM

ASM286,
PLlM'286,

PASCAL 286,
FORTRAN 286,

BND286)

KERNEL

MODULE
A

MODULE
B

• • •

APPLICATION

MODULE
A

MODULE
B

BUILD
SPECIFI·
CATIONS

PLAN FOR
PROTECTED MULTITASKING SYSTEM

BOOT·
LOADER

Figure 1-8. Building a Static System

1-10

MEMORY
IMAGE

APPLICATION

• • •
DEVICE
DRIVER

O.S.

KERNEL

lOT

GOT

121960·4

121960·001

OPERATING
SYSTEM

MODULES

APPLICATION
MODULES

INTRODUCTION TO PROTECTED MULTITASKING ON THE IAPX 286

• • •

8

EXPORT
FILE

(CALL GATES
AND GLOBAL
SEGMENTS)

BINDER

LOADABLE
APPLICATION

MODULES

BOOT­
LOADER

DYNAMIC
LOADER

Figure 1-9. Building a Dynamic System

1-11

MEMORY
IMAGE

OPERATING
SYSTEM

APPLICATIONS

121960-5

121960-001

-j

Using Hardware
Protection Features 2

CHAPTER 2
USING HARDWARE PROTECTION FEATURES

The architecture of the iAPX 286 enables you to organize software systems so that each task is protected
from inadvertent or malicious damage by other tasks and so that privileged procedures are protected
from lower-level procedures. You control the degree of protection in your system by the way you set
up protection parameters through the Builder or through operating system procedures. The processor
interprets the protection parameters and automatically performs all the checking necessary to imple­
ment protection.

ADDRESSING MECHANISM

The protection mechanism of the iAPX 286 is embedded in the addressing mechanism. For an intro­
duction to the addressing mechanism, refer to figure 2-1, which shows those portions of the addressing
mechanism that are not concerned with protection features. From the point of view of the applications
programmer, an address is a pointer. A pointer consists of two parts: a selector and an offset. The

CPU
r-

I

---------f-------l
PHYSICAL I
ADDRESS I

ADDER I
I
I
I
I
I
I

I

:
I
I
I
I
I
I

DESCRIPTOR TABLE I I
BASE ADDRESS I I

I L __________________ ~

PHYSICAL MEMORY

~----------------------------------

TARGET
SEGMENT

MEMORY OPERAND

(
DESCRIPTOR

TABLE·

SEGMENT BASE ADDRESS
SEGMENT

DESCRIPTOR

I
I

I POINTER I I
I I SELECTOR I I I OFFSET

I
I l
I
I

I
I L _________________________________ ~

121960·6

Figure 2-1. Abstraction of Addressing Mechanism

2-1 121960-001

USING HARDWARE PROTECTION,FEATURES

selector portion identifies a segment of the address space and the offset addresses an item within the
segment relative to the beginning of the segment.

A selector identifies a segment by reference to a descriptor table. Each entry in a descriptor table is a
descriptor. A selector contains an index that identifies a particular descriptor in a particular descriptor
table. The descriptor contains the physical address and access rights of the segment.

Both selectors and descriptors contain additional information that relates to the protection features of
the iAPX 286. .

DESCRIPTORS

A reference from one segment to another is realized indirectly through a descriptor, which contains
information about the referenced segment. All descriptors reside in a descriptor table. Every segment
must have at least one descriptor; otherwise there is no means to address the segment.

Descriptors are strictly under your control via the Builder or operating system procedures. The exist­
ence and function of descriptors is completely invisible to the applications programmer.

Descriptor Format

There are four variations in descriptor format, corresponding to the four classes of descriptor:

1. Data segment descriptors refer only to segments that contain system or application data, including
stacks (see figure 2-2).

2. Executable segment descriptors refer only to segments that contain executable instructions (see
figure 2-3).

3. System segment descriptors refer only to segments that contain special hardware-recognized data
structures, such as descriptor tables (see figure 2-4).

4. Gate descriptors define entry points for control transfers. A gate descriptor does not directly address
a memory segment; instead it provides a.protected pointer to an exported entry point. (Refer to
the section "Gate Descriptors" later in this chapter.)

The first two types of descriptor hold information that any operating system must maintain. The
iAPX 286, however, requires that such information be in a fixed format so the CPU can interpret it
directly. These descriptors are often created dynamically while a program executes (for example, a
data-segment descriptor may be created when a task needs additional memory to store an expanding
data structure).

The second two types of descriptor are unique to the iAPX 286. They are constructed either once when
the system is built or once when a task is created. Code to manipulate these descriptors is limited to
the procedures of a dynamic operating system that create new tasks.

Several of the descriptor formats have common fields. These fields are listed first in the following
discussions of descriptor contents.

PRESENT BIT

This Boolean is set if the segment addressed by the descriptor is actually present in memory, reset if
not present. Operating systems for dynamic applications that implement virtual memory must set and

2-2 121960-001

P DPL

USING HARDWARE PROTECTION FEATURES

1 0

o 7

RESERVED FOR iAPX 386
MUST BE ZERO

ED W A

BASE,s_o

LIMIT

P - PRESENT BIT
DPL - DESCRIPTOR PRIVILEGE LEVEL
ED - EXPANSION DIRECTION
W -WRITABLE
A - ACCESSED

BASE23·16

Figure 2-2. Data Segment Descriptor

o

+6

+4

+2

o

121960-46

reset this bit as program segments are brought into or eliminated from memory. Reference to a segment
whose present bit is reset causes a fault, providing an opportunity for the operating system to load the
segment from virtual store. (Chapter 9 takes up implementation of virtual rhemory systems.) In systems
that do not implement virtual memory, this bit is always set for allocated segments.

DESCRIPTOR PRIVILEGE LEVEL

The value of this item defines the privilege level of the segment addressed by this descriptor. You
control the values in the descriptor privilege level (DPL) by the parameters you give to the builder
when creating a static system or the resident portion of a dynamic system, or by the procedures your
operating system uses when loading segments dynamically.

INTEL RESERVED

This portion of the descriptor is reserved by Intel and should always be initialized with zeros. Other
use of this field in a valid descriptor will prevent compatability with the iAPX 386 and other additions
to Intel's family of processors.

2-3 121960-001

inter USING HARDWARE PROTECTION FEATURES

7 o 7 o

RESERVED FOR iAPX 386
MUST BE ZERO

+6

P DPL 1 1 C R A BASE.3_,. +4

BASE,s_o +2

LIMIT o

P - PRESENT BIT
DPL - DESCRIPTOR PRIVILEGE LEVEL
C -,- CONFORMING
R - READABLE
A - ACCESSED

121960-47

Figure 2-3_ Executable Segment Descriptor

SEGMENT BASE

This field contains the physical address of the beginning of the memory segment referred to by this
descriptor. The 24 bits of this address give the 80286 a 16-megabyte range of real addresses. This is
the only place that physical addresses are used. All other addresses are relative to the physical addresses
stored in descriptors, making it possible to relocate executable and data segments without making any
changes to the relocated segments or to code that refers to the segments. The only changes necessary
to relocate segments are changes to the physical addresses stored in descriptor tables.

You can control the actual location of segments by means of specifications to the Builder or by means
of the algorithms your operating system uses to allocate memory to segments that are loaded
dynamically.

SEGMENT LIMIT

Segment limits prevent accidental reading or writing beyond the space allocated to a segment. The
value of this field is one less than the length of the segment (in bytes) relative to the beginning of the
segment. The 16 bits of this field make it possible to have segments up to 64K bytes long. The hardware
automatically checks all addressing operations to ensure that they do not exceed the segment limit of
the segment to which they refer. This protects other segments from such common programming errors
as runaway subscripts.

2-4 121960-001

USING HARDWARE PROTECTION FEATURES

7 o 7 o

RESERVED FDR iAPX 386 +6
MUST BE ZERO

P DPL 0 0 0 TYPE BASE23_'. +4

BASE,s_o +2

LIMIT o

121960-48

Figure 2·4. System Segment Descriptor

Note that the segment limit field has a different meaning for "expand down" data segments. Refer to
the "expansion direction" bit later in this chapter.

SEGMENT TYPE

For system segments, the type field distinguishes between kinds of system segments. System segment
types are

1 and 3

2

Task state segment, a segment used for storing the context of a task. Chapter 4 discusses
task state segments more fully.

Local descriptor table. The three kinds of descriptor tables are explained later in this
chapter.

The processor interprets the type field to ensure that each segment is actually used as intended; for
example, an attempt to jump to a local descriptor table is obviously a mistake, and the _ processor
detects this error while examining the target segment's descriptor during the JMP instruction.

EXPANSION DIRECTION

Data segments may contain stacks as well as other data structures. Stacks expand toward lower addresses
while most other data structures expand toward greater (higher) addresses. This field indicates the
growth pattern for the segment. A value of zero in this field indicates that the segment expands upward

2-5 121960-001

USING HARDWARE PROTECTION FEATURES

(from the base address toward the segment limit value that is also contained in the descriptor). A value
of one indicates that the segment expands downward (from offset FFFFH toward the limit).

WRITABLE

This field applies only to data segment descriptors. A value of one permits the CPU to write into the
segment; a value of zero protects the segment from attempts to write into it. Translation tables are but
one example of data that deserve the extra protection afforded by storage in a read-only segment.

CONFORMING

This field applies to executable-segment descriptors only. Ordinarily (when the conforming bit is zero)
a called procedure executes at the privilege level defined by the DPL in the descriptor of the segment
in which the procedure resides. When the conforming bit of the called segment is set, however, the
called procedure executes at the calling procedure's privilege level. This feature cannot be used to
decrease (numerically) a segment's privilege level below that defined by it's DPL. Figure 2-5 shows
graphically how a conforming segment works. This feature is useful when you want to make procedures
(mathematical subroutines or run-time support procedures, for example) available to a number of other
procedures running at different privilege levels, but when you do not want to provide increased privi­
lege while the subroutine is executing.

121960-7

Figure 2-5. Calling a Conforming Segment

2-6 121960-001

USING HARDWARE PROTECTION FEATURES

READABLE

This field applies only to executable-segment descriptors. When reset, it prevents procedures in
other segments from reading this code segment; the contents of the segment can be executed only.
It is common, however, for executable segments to contain read-only data, in which case this bit
must be set. .

ACCESSED

The processor sets this bit when the descriptor is accessed (that is, loaded into a segment register or
used by a selector test instruction). Operating systems that implement virtual memory may, by period­
ically testing and resetting this bit, monitor frequency of segment usage. This bit also indicates whether
a segment should be written to secondary storage before the RAM space it occupies is reused.

CONTROL FLOW TRANSFER

Transfers of control are also subject to protection rules. Within the application-oriented part of a task,
the protection rules allow unlimited access to code and data. Control transfers to privileged operating­
system functions and to other tasks, however, are controlled by gate descriptors. With gate descriptors,
the iAPX 286 architecture can perform functions in hardware that operating systems on other proces­
sors must do in software. These functions are invoked directly by ordinary CALL and JMP instruc-
tions, not by special interrupt or trap instructions. .

As table 2-1 illustrates, transfers of control can be classified into four categories, depending on whether
control passes to another segment, another privilege level, or another task. This classification can help
clarify how privilege levels, descriptor tables, and tasks are used.

Processor functions that cause a change in the flow of control are

• Jump instruction (JMP)

• Procedure call instruction (CALL)

• Procedure return instruction (RET)

• Software interrupt instruction (INT)

• External interrupt

Table 2-1. Categories of Control Flow Transfer

Category Segment
Privilege

Task Level

Intrasegment same same same

Intersegment different same same

Interlevel different different same

same same
Intertask or or different

different different

2-7 121960-001

USING HARDWARE PROTECTION FEATURES

• Processor-detected exception condition

• Interrupt return instruction (IRET)

Control transfers within the same privilege level may be either short (within same segment) or long (to
another segment). A short transfer simply specifies the offset of the instruction to which control is
transferred in the same segment. A long transfer also uses a selector to identify the segment to which
control is transferred.

For control transfer to a different privilege level or different task, the iAPX 286 introduces gate
descriptors.

Gate Descriptors

A gate descriptor is a type of descriptor used only for transferring control flow to instructions in another
segment. Gates provide an indirect reference that is useful for binding and protection purposes. By
requiring interlevel and intertask control transfers to reference gate descriptors, the iAPX 286 provides
two additional protection features:

1. You can hide a procedure by not providing a gate for its entry point.·

2. You can control access to a procedure via the privilege assigned to the gate. This allows hiding
critiCal procedures from untrusted software.

Figure 2-6 illustrates the format of a gate descriptor.

DESTINATION SELECTOR

For call, interrupt, and trap gates, this field contains a selector for the segment descriptor of the desti­
nation executable segment. For task gates, the selector in this field points to a descriptor for a task
state segment, and the RPL field is not used.

DESTINATION OFFSET

For call, interrupt, and trap gates, this field contains the offset of the entry point within the destination
executable segment (not used with task gates).

WORD COUNT

For each privilege level within a task, there is a separate stack~ For calls through a call gate, the
processor automatically copies parameters from the stack for the calling procedure's privilege level to
the stack for the destination's privilege level. In this field, you specify the number of words to copy.

GATE TYPE

For gate descriptors, the type field distinguishes amQngthe four kinds of gates:

o Call gate

1 Task gate

2 Interrupt gate

3 Trap gate

2-8 121960-001

USING HARDWARE PROTECTION FEATURES

7 o 7 o

RESERVED FOR iAPX 386 +6
MUST BE ZERO

P DPL 0 0 1 TYPE X X X WORD COUNT
ONLY FOR TYPE~OO

+4

DESTINATION SELECTOR X X +2

DESTINATION OFFSET
NOT USED FOR TYPE~01 or 11

o

XX - .NOT USED

121960-49

Figure 2-6. Gate Descriptor

PRESENT BIT

Since a gate descriptor does not refer directly to a segment, the present bit in a gate descriptor does
not necessarily indicate whether a segment is present. It can be used for other purposes, however. Refer
to Chapter 11 for an example of using the present bit to facilitate late binding.

Control Transfer Mechanisms

Table 2-2 summarizes the mechanisms for each class of control flow transfer.

Control transfers within a segment function similarly to intrasegment transfers on the iAPX 86,88,
except that the processor checks that the destination address does not exceed the segment limit.

Figure 2-7 illustrates a change in control flow between segments at the same privilege level. Any of
the following instructions can effect such a transfer:

J M P offset selector
CAL L offset selector
RET (offset and selector taken from stack)

The selector selects a descriptor for an executable segment. The DPL in the target segment's descrip­
tor must be the same as the privilege level under which the calling segment is running. A CALL or

2-9 121960-001

USING HARDWARE PROTECTION FEATURES

Table 2-2. Control Transfer Mechanisms

Transfer Operation Descriptor
Table Type Referenced

Intrasegment JMP, CALL, RET (none)

Intersegment JMP, CALL, RET, IRET code segment GOT/LOT
(*)

CALL, JMP call gate GOT/LOT
(same PL)

INT instruction, trap or lOT
external interrupt, interrupt
or exception gate (same PL)

Interlevel CALL call gate GOT/lOT

INT instruction, trap or lOT
external interrupt, interrupt
or exception gate

RET,IRET code segment GOT/lOT

Intertask CALL, JMP, IRET task state GOT
segment

CALL, JMP task gate GOT/LOT

INT instruction, task gate lOT
external interrupt,
exception

* .Includescases in which the target segment is incidentally the same as the calling segment.

JMP instruction may also reference a call gate. If the target executable segment is at the same privi­
lege level, no level change occurs.

For transfers of control between segments at different privilege levels (as illustrated in figure 2-8) there
are three differences:

• Only the following instructions can be used:

CAL L offset selector
RET

Jumps between privilege levels within a task are not allowed.

• The selector does not select the descriptor of an executable segment but rather selects a gate
descriptor.

• The offset operand must be present but is ignored.

2-10 121960-001

USING HARDWARE PROTECTION FEATURES

~ - EXECUTABLE SEGMENT

[!:J -GATE

INTRASEGMENT

INTERSEGMENT

Figure 2-7. Intralevel Control Transfers

Privilege Rules for Gated Intersegment Transfers

INTERSEGMENT
VIA GATE

An intersegment transfer through a gate involves four privilege level fields:

• The current privilege level (CPL) of the currently executing segment

• The requested privilege level (RPL) in the selector used in the CALL

• The DPL in the gate descriptor

• The DPL in the segment descriptor of the target executable segment

121960-8

A transfer is valid only if the following relationships among privilege level numbers both hold:

MAX (CPL, RPL) <= gate DPL
target DPL < = CPL

Figure 2-9 illustrates both valid and invalid attempts to perform an interlevel transfer. Path E4,G5,E7
is not valid because the privilege level of gate G5 is numerically less than that of segment E4. Path
E4,E8 is not valid because all interlevel transfers must pass through a gate. Path E4,G4,E6 is not valid
because the privilege level of E6 is numerically greater than that of G4. Only paths EI,G2,E2; EI,G I,E3;
and E2,G I ,E3 satisfy the privilege rule above.

2-11 121960-001

USING HARDWARE PROTECTION FEATURES

o -EXECUTABLE SEGMENT

~ -GATE

Figure 2-8. Gated Interlevel Call and Return

DESCRIPTOR TABLES

121960-9

A descriptor table is simply a segment containing an array of eight-byte entries, where each entry is a
descriptor- Descriptors are stored in one of three classes of descriptor table:

• Local descriptor table (LDT)

• Global descriptor table (GDT)

• Interrupt descriptor table (lDT)

The descriptors in these tables define all the segments in the system. Each table has a variable upper
limit, so the size of the table need be no larger than required for the actual number of segments used.

You define (he initial contents of descriptor tables through the Builder. An operating system for dynamic
applications may change .the contents of descriptor tables and may create and delete LDT's as tasks
come and go. Correct management of descriptors is the heart of protection on the iAPX 286.

2-12 121960-001

USING HARDWARE PROTECTION FEATURES

I'"E"1 - EXECUTABLE
~ SEGMENT

[2J-GATE
INVALID

121960-10

Figure 2-9. Valid and Invalid Interlevel Transfers

2-13 121960-001

USING HARDWARE PROTECTION FEATURES

Local Descriptor Table

An LDT contains the descriptors that are private to a task. Each task may have an LDT. The LDT
keeps the descriptors private to one task separate from those private to other tasks. A task cannot
normally gain access to the segments defined by another task. A local descriptor table may contain any
of the following types of descriptor:

• Data segment

• Executable segment

• Call gate

• Task gate

The executable segment and data segment descriptors in an LDT normally refer to segments private
to a task. Call gates and task gates in an LDT provide private entry points to other procedures and
programs.

The processor uses a task's LDT automatically for certain addressing operations. The base address and
limit of the LDT segment of the executing task are kept in the LDT register. Only two operations are
available to programmatically change the contents of the LDT register:

• During a task switch operation, the processor loads the LDT register from the task state segment
(TSS).

• The LLDT instruction loads the LDT register directly. The LLDT instruction can be executed only
at privilege level 0 (PL 0). Initialization procedures use LLDT to give the LDT register its initial
value. Note that if you change the LDT register you must also change the LDT selector in the TSS
(refer to Chapter 4). An operating system may need to change the LDT register temporarily to gain
access to the address space of another task when passing information between tasks.

You can use the SLDT instruction to read the contents of the LDT register. Operating-system proce­
dures that operate on LDTs may usually be called from any task. These procedures may use the SLDT
instruction to find which LDT belongs to the current task. In PL/M-286, the built-in variable
LOCAL$TABLE gives access to the LDT register.

An LDT may contain up to 8,192 descriptors (the number of 8-byte descriptors that fit into a maximum­
sized segment of 65,536 bytes).

Global Descriptor Table

Descriptors that are shared among tasks reside in the GDT. There is only one GDT for the entire
system. The GDT can contain any of the following types of descriptor:

• Data segment

• Executable segment

• Task state segment

• Local descriptor table segment

• Call gate

• Task gate

2-14 121960-001

USING HARDWARE PROTECTION FEATURES

Since the GOT is shared among all tasks, its entries are usually protected. The privilege-level field in
each descriptor provides this function. When operating-system functions are distributed among and
shared by all tasks, the executable segments and data segments of the operating system are normally
kept in the GOT. Call gates then provide controlled access to privileged operating system functions.

The processor uses the GOT automatically for certain addressing operations. The base address and
limit of the GOT are kept in the processor's GOT register. Only the LGOT instruction
(RESTORE$GLOBAL$TABLE in PL/M-286) can alter the contents of the GDT register, and the
LGDT instruction can be executed only at PL 0 (i.e., by the operating system).

The SGDT instruction (SAVE$GLOBAL$TABLE in PL/M-286) reads the contents of the GDT
register.

A GOT may contain up to 8,191 descriptors (the number of 8-byte descriptors that fit into a maximum­
sized segment of 65,536 bytes). The first entry cannot be used as a descriptor. (A null selector is
identified by the fact that it refers to this first entry in the GDT.)

Interrupt Descriptor Table

When processing an interrupt, the processor refers to the lOT to determine what interrupt-handling
code to execute. Each interrupt is associated with an interrupt identifier, an integer that ranges from
0-255. The interrupt identifier is supplied either by the INT instruction or externally by the processor's
INTA cycles. The interrupt identifier indexes an entry in the lOT. An IDT entry may be

• An interrupt gate

• A trap gate

• A task gate

In a manner similar to executable segment and data segment descriptors, each gate descriptor has a
descriptor privilege level. The DPL of a descriptor in the IDT determines the privilege required to
execute an INT n instruction (where n is the interrupt indentifier that corresponds to the descriptor).
This use of privilege levels prevents unauthorized programs from invoking interrupt handlers.

The processor locates the IDT by way of the IDT register. The IDT register can be changed only by
the LIDT (load lOT) instruction (RESTORE$INTERRUPUTABLE in PL/M-286). Only PL-O
procedures (Le., the operating system) can execute an LIOT instruction.

The SlOT instruction (SA VE$INTERRUPUTABLE in PL/M-286) reads the contents of the lOT
register.

Refer to Chapters 6 and 7 for more detailed information on how the IDT is used.

SELECTORS

A selector references a segment indirectly by identifying the location in a descriptor table where a
descriptor for that segment is stored.

Format of Selector

See figure 2-10 for the format of a selector.

2-15 121960-001

USING HARDWARE PROTECTION FEATURES

TI - TABLE INDICATOR
RPL - REQUESTED PRIVILEGE LEVEL

121960-50

Figure 2-10. Format of a Selector

INDEX

The index field of a selector specifies a descriptor in either the GDT or the task's LDT. The index field
may take on values from 0 through n -I, where n is the number of descriptors in the table. The
processor compares the index with the limit of the descriptor table to ensure that the index refers to a
defined descriptor.

TABLE INDICATOR

This bit item tells which descriptor table is indexed by the selector. A value of zero specifies the GDT;
one specifies the LDT. (The IDT cannot be referenced via a selector; only via an interrupt identifier.)

REQUESTED PRIVILEGE LEVEL

Selector privilege is specified in the RPL field of a selector. Selector RPL may establish a less trusted
privilege level than the current privilege level for the use of that selector. RPL cannot effect an increase
in privilege. A task's effective privilege level is the numeric maximum of the RPL and the current
privilege level. For example, if a task is executing at PL = 2, an RPL = 3 reduces the task's effective
privilege to level 3 for access to that segment. On the other hand, if RPL = I, the task's effective
privilege level remains at 2.

RPL is generally used by an operating system to ensure that selector parameters passed to the more
privileged levels of the operating system do not give access to data at a level more privileged than the
calling procedure. The RPL field is a convenient placeto store the privilege level of the procedure that
originated the selector. Any use of the selector can be restricted to the usage allowed its originator.

The ARPL instruction (ADJUST$RPL built-in function in PL/M-286) allows the operating system to
set the RPL of a selector either to CPL or to the privilege level of the originator, whichever is (numer­
ically) larger. Refer to Chapter 13 for more information on the use of RPL.

2-16 121960-001

USING HARDWARE PROTECTION FEATURES

Null Selector

A selector that has a value of zero in both the index and table indicator fields (i.e., appears to point to
the first entry of the GDT) is a null selector. You can load such a selector into the DS or ES register,
but any attempt .to reference memory via that register causes an exception condition.

ALIAS DESCRIPTORS

The need arises in dynamic applications for the operating system to maintain more than one descriptor
for a segment; however, care must be taken to preserve system integrity and protection.

As an example of the need for an alternate descriptor, consider the case of an executable segment.
Ordinarily, the processor fetches instructions from an executable segment that is typed execute-only.
However, if the operating system supports a debugger, the debugger needs to read the executable
segment in order to display its contents. The debugger may also need to write to the executable segment
in order to set breakpoints. If the debugger tries to use an execute-only segment descriptor to read
from or write to the segment, the processor detects a protection exception. To properly use that segment,
the debugger m~st use another descriptor that identifies the segment as a data segment. Figure 2-11
illustrates this situation.

The use of more than one descriptor for a segment is known as aliasing. Descriptors used in this way
are known as aliases, because they provide alternate names for segments.

/1 /

APPLICATION 0.5.
LOT DEBUGGER

LOT

EXECUTE ONLY

\ DATA SEGMENT
CODE SEGMENT

INSTRUCTIONS

I 1/ \....

121960-11

Figure 2-11. Aliasing for Debugger

2-17 121960-001

USING HARDWARE PROTECTION FEATURES

Explicit Variation of Type

Figure 2-11 illustrates one kind of need for aliasing: the need for a different type specification for a
segment. Figure 2-12 shows another example of the'same need. In a dynamic application; the operating
system may need to modify the GDT, the IDT, TSSs, and LDTs. Changing the interrupt handler for
a specific interrupt vector requires changing the IDT. When the operating system places a new segment
into the address space of a task (as, for example, when transferring an I/O buffer from an I/O task),
it must update the task's LDT. Starting a new task may require modification of the GDT to add
descriptors for the new task's LDT and TSS.

With the iAPX 286, however, it is not possible to read or write a system segment by loading its selector
into DS or ES. This restriction prevents indiscriminate use of system segments within the operating
system. Such use of a: system segment requires that the operating system have a descriptor that identi­
fies the system segmertt'as·a data segment.

The Builder allows for . defining aliases for system segments. The Builder, by default, creates data­
segment aliases for ,the 'GDT and the IDTat fixed locations in the GDT.

Note that aliases for descriptor tables should have PL 0 in order to maintain the integrity of the protec­
tion mc:;chanism;otherwise, procedures outside the operating system could indiscriminately change the
contents of descriptor.tables.

Variation of Length

As illustrated iii figiJre 2-13, aliases for a segment need not always have the same length. In the case
shown, the processor's use of a descriptor to a TSS requires only that the segment contain 44 bytes.
However, the operating system maintains another descriptor that includes additional information about
the task.

GOT LOT lOT

• ALIAS FOR GOT SHOULD ALWAYS BE AVAILABLE TO KERNEL.

121960-12

Figure 2-12; Aliases for System Tables

2-18 121960-001

USING HARDWARE PROTECTION FEATURES

TASK
PARAMETERS - TASK PRIORITY

SCHEDULING PARAMETERS GOT
MESSAGE QUEUE POINTERS
RESOURCE POOL POINTERS ---------

TSS
ETC.

?~
ALIAS TSS

TSS DESC.

121960-13

Figure 2-13. Aliases with Differing Limit

Sharing Segments among Tasks

Yet another reason for using aliases is the need for sharing a segment among tasks. Consider an appli­
cation in which a memory-mapped video display shows status information for a production process. In
this application, there are two tasks, each monitoring different aspects of the process but interleaving
data on the display (see figure 2-14). Figure 2-15 illustrates how both tasks can access the memory
segment containing the display buffer.

You can find segment sharing needs of this sort in both static and dynamic systems. Note that there
are other techniques for segment sharing that do not use aliases; for example, placing the segment's
descriptor in the GDT, or permitting tasks to share a single LDT. The aliasing technique illustrated
here has the advantages that

• No other tasks have access to the display buffer. (Putting its descriptor in the GDT makes it avail­
able to all other tasks.)

• Other segments in each of the tasks remain protected from the other task. (With a shared LDT, all
segments of each task are accessible from the other.)

Protection and Integrity with Aliasing

You must use aliases with care; improper use can compromise the protection and integrity of your
system.

2-19 121960-001

inl:el~ USING HARDWARE PROTECTION FEATURES

FLUID·LEVEL SENSORS TEMPERATURE SENSORS

RESERVOIR

ABC D E

TASKA~~ ~ ~ ~ ~--+--+---t-TASKB
LT LT LT LT LT
EE EE EE EE EE
VM VM VM VM VM
EP EP EP EP EP
L L L L L

VIDEO DISPLAY

121960·14

Figure 2-14. Application of Segment Sharing

CONTROL ACCESS TO ALIASES

When you use an alias to provide an alternate type for a system segment (to write to an LDT), any
procedure that has access to that alias also has unlimited power to affect the entire system. Therefore,
in constructing an operating system that uses such aliases, you must restrict them to the highest privi­
lege levels of the operating system; that is, the DPL of such aliases should always be zero.

PLAN FOR CHANGE

When you design a dynamic system that uses aliases for segment sharing, you must consider what will
happen when there is any change in a segment to which aliases are pointing. For example, when a
segment is relocated, all descriptors pointing to the relocated segment must be updated. When a segment
is deleted, all aliases to it must be nullified. Chapter 5 presents a strategy for handling these changes.

EXAMPLE OF DESCRIPTOR MANIPULATION

As an example of how to manipulate descriptors and descriptor tables using an alias, consider the
procedures POINT_AT and NULLIFY in figure 2-16. POINT_AT creates a descriptor at a given slot
in the GDT. NULLIFY invalidates a descriptor in the GDT. It is intended for use in connection with
POINT_AT to prevent accidental use of descriptors that are no longer needed.

2-20 121960·001

o
D

USING HARDWARE PROTECTION FEATURES

TASKB

LOT

Figure 2-15. Aliases for Segment Sharing

121960·15

NULLIFY invalidates a descriptor by writing a value of 80H in the access rights byte. A value of 80H
is invalid because it indicates a system segment of type zero, but no type zero is defined for system
segments.

POINT.AT purposely loads the access rights byte of the descriptor last, to ensure that an accidental
use of the descriptor (as might occur if an external interrupt gives control to another procedure or task)
does not find partially complete information in a descriptor that otherwise looks valid.

These procedures do no checking of the privilege level of the calling procedure, and they freely create
descriptors of any type (except gate descriptors) and any DPL. Therefore, they are suitable for use
only at PL O. As long as no gates for these procedures are provided at another privilege level, they can
be called only by other PL-O procedures. For an example of how you might use such procedures, refer
to the example of a memory manager in Chapter 3.

When writing code to manipulate descriptors, you must be careful about changing a descriptor that is
currently loaded in either of the processor's data-segment registers (DS or ES). Either disable inter­
rupts or move zero to the register before changing the descriptor, for example:

MOV DS,O

Failure to do this leaves open the possibility that an external interrupt may cause the processor to
reload the segment register using the partially modified descriptor. When coding in PL/M-286, use
the compiler's CODE option to view the way the generated code handles the DS and ES registers. This
situation docs not arise in the present example. DS points to the data segment that contains the sole

2-21 121960-001

Intel USING HARDWARE PROTECTION FEATURES

global data item GDTILSEL. PL/M-286 uses ES for all the BASED variables used here. Referencing
the descriptor table via its alias selector causes PL/M-286 to load ES with the alias descriptor, thereby
ensuring that ES does not contain the descriptor to be modified.

Remember that once a descriptor has been modified, it cannot be used to access a segment until it is
loaded into a segment register.

Be aware also that in a multitasking system, changes to shared segments (such as the GDT) must be
synchronized. Synchronization is the subject of Chapter 5. This example does not provide for
synchronization.

SLOT MANAGEMENT

The previous example assumes that the caller of POINT_AT already knows what descriptor-table slot
to use. Often, slots can be reserved in advance for specific operating system and applications functions.
But in general, dynamic systems require that the operating system dynamically allocate descriptor
table slots.

Figure 2-17 illustrates a way of identifying available slots in a descriptor table. A value of zero in the
access rights byte is invalid for any descriptor, so it can mark a free slot. A value of 80H (as used in
the previous example) is also invalid and can mark a reserved but unused slot.

In larger systems, the time needed to search a descriptor table linearly for free slots may become
excessive. Shorter search times may result from linking available slots together in a manner similar to
that shown in figure 2-17. Contiguous free slots are treated as a block, with a count of the number of
slots in the first and last slots of the block. (Note that the block size is stored in the reserved word of
available descriptor slots. Since available descriptor slots contain an invalid type code, this use of the
reserved word does not prevent upward compatibility.) All the free blocks are linked in a circular, two­
way list that includes the list header. The list header can reside at a fixed slot location that is the same
in all descriptor tables (in the case of figure 2-17 the list header is at slot number one). Algorithms
normally used for managing memory space may also apply to blocks of free descriptors. Refer to
Chapter 3 for an example of such an algorithm.

It is convenient for the operating system to use adjacent descriptor slots for related purposes; for example,
by locating together all the descriptors that the operating system uses for one task, the operating system
can quickly find any of those descriptors as long as it knows the location of one. Therefore, the algorithm
used for slot management should combine adjacent free slots into a single block. The procedures used
to manage free slots should then have a parameter that specifies the number of adjacent slots.

2-22 121960·001

USING HARDWARE PROTECTION FEATURES

PL/M-286 COMPILER 960-505 date PAGE 1

system-ID PL/M-286 Vx.y COMPILATION OF MODULE POINT
OBJECT MODULE PLACED IN :Fl:POINT.OBJ
COMPILER INVOKED BY: PLM286.86 :Fl:POINT.PLM

1

2

3

4

5

6

7

8

9
10

11

12
13

14

1

1

1

2

2

2

2

2
3

3

3
3

2

$ PAGEWIDTH(71) TITLE('960-505') INCLUDE (:Fl:NUCSUB.PLM)
$ NOLIST

POINT: DO;

/***/
/* Global declarations. */

DECLARE DESC STR LITERALLY
'LIMIT

LO BASE
HI-BASE
RIGHTS

WORD,
WORD,
BYTE,
BYTE,

/* Format of a descriptor. */

SW RESRVD WORD' ;

DECLARE DT SIZE
GDTA SEL
GDTA-WSEL

INITIAL
GDT

LITERALLY '200',
SELEC,TOR, /* Points to GDT alias */
WORD AT (@GDTA SEL)
(8); /* Slot #1 by convention */
BASED GDTA SEL (DT SIZE)

STRUCTURE (OESC_STR);

/***/
/* Subroutine to determine either the alias for */
/* the GDT or the alias for this task's LDT~ */
/* depending on the TI bit in SEL. */

FIND_DT_ALIAS: PROCEDURE (SEL) SELECTOR
PUBLIC REENTRANT;

DECLARE SEL
WSEL

DECLARE LDT SEL
LDT-WSEL

IF (WSEL AND 0004H)~0

SELECTOR,
WORD AT (@SEL);
SELECTOR,
WORD AT (@LDT_SEL);

THEN /* It's a selector to the GDT. */
RETURN GDTA_SEL;

ELSE DO; /* It's a selector to this task's LDT. */
LDT SEL=LOCAL$TABLE; /* PL/M 286 built-in; stores a
selector to the GDT descriptor for this task's LDT. */
LDT WSEL=LDT WSEL+8; /* Add 1 to index field. */

/* By convention, next slot holds alias. */
RETURN LDT_SEL;

END;

END FIND_DT_ALIAS;
$ EJECT

Figure 2-16. Descriptor Manipulation Example

2-23 121960-001

Intel U~ING HARDWARE PROTECTION FEATURES

PL/M-286 COMPILER 960-505 date PAGE 2

15

16

17

18
19
20
21
22
23
24
25

26

27

28

29

30
31
32

33

34

1

2

2

2
2
2
2
2
2
2
2

2

1

2

2

2
2
2

2

2

/***/
/* Create a descriptor at a given slot to a given '*/
/* segment, and return selector that points */
/* to that slot. */

POINT AT: PROCEDURE (SLOT, RIGHTS, PHYS_ADDR_PTR, LIMIT)
- PUBLIC REENTRANT;

DECLARE SLOT SELECTOR,
SLOTW WORD AT (@SLOT), /* Alternate type */
RIGHTS BYTE,
PHYS ADDR PTR POINTER,
PHYS-ADDR- BASED PHYS ADDR PTR STRUCTURE

(LO-WORD WORD, --
HI-WORD WORD) ,

LIMIT WORD;

DECLARE SLOTI
DTA_SEL

DT

WORD, /* Slot index */
SELECTOR, /* To be set to either

GOT alias or LOT alias. */
BASED DTA SEL (DT SIZE)
STRUCTURE- (DESC_STR);

DTA'SEL = FIND DT ALIAS(SLOT);
SLOTI = SHR(SLOTW;3); /* Expose index value. */
DT(SLOTI) .LO BASE PHYS ADDR.LO WORD;
DT(SLOTI) .HI-BASE LOW(PHYS ADDR.HI WORD);
DT(SLOTI).LIMIT LIMIT; - -
DT(SLOTI) .SW RESRVD 0;
DT(SLOTI) .RIGHTS RIGHTS;
RETURN;

/***/
/* Invalidate descriptor indexed by SLOT. */

NULLIFY: PROCEDURE (SLOT) PUBLIC REENTRANT;

DECLARE SLOT
SLOTW

DECLARE SLOTI
DTA SEL

DT

SELECTOR,
WORD AT (@SLOT); /* Alternate type */

WORD, /* Slot index */
SELECTOR, /* To be set to either

GDT alias or LDT alias. */
BASED DTA SEL (DT SIZE)
STRUCTURE-(DESC_STR);

DTA SEL = FIND DT ALIAS(SLOT);
SLOTI = SHR(SLOTW;3); /* Get index part of selector. */
DT(SLOTI) .RIGHTS = 80H;/* This invalid value prevents

use of the descriptor. */
RETURN;

END NULLIFY;

/***/

Figure 2-16. Descriptor Manipulation Example (Cont'd.)

2-24 121960-001

USING HARDWARE PROTECTION FEATURES

PL/M-286 COMPILER 960-505

35 1 END POINT;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
129 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

DICTIONARY SUMMARY:

00CAH
0000H
0002H
0018H

96KB MEMORY AVAILABLE
5KB MEMORY USED (5%)
0KB DISK SPACE USED

END OF PL/M-286 COMPILATION

202D
0D
2D

24D

date

Figure 2-16. Descriptor Manipulation Example (Cont'd.)

2-25

PAGE 3

121960-001

NEXT

13

12

11

10

9

B
I\J
N 7
O'l

6

5

4

3

2

~1
HEAD 0

OF
FREE
SLOT o
LIST 1"iU' RESERVED

SLDTFORMAT

PREVIOUS FLAG

DESCRIPTOR TABLE

OOH

OOH

OOH

BOH

2 5 4

D AVAILABLE

Figure 2-17. Available Slot List

Rt;;SERV~~"O~iA~~.~ijij·····
SLOTS IN BLOCK

4

7 6

121960-51

l

c:
en
Z
C)

:::t
l>
:u
c
:E
l>
:u
m
-g
:u o
m
(") o
Z
."
m
~ c:
:u
m
en

Real Memory Management 3

CHAPTER 3
REAL MEMORY MANAGEMENT

In dynamic applications, when tasks begin and end frequently, the operating system is responsible for
allocating memory to tasks. Without the control that an operating system provides, independent tasks
cannot be trusted to share the system's memory harmoniously. The iAPX 286, through the descriptor
mechanism, gives the operating system the power to control memory usage. For static systems, you can
use the Builder to allocate memory. This chapter presents an example of how to manage real memory
dynamically, using dynamically created descriptors.

MEMORY MANAGEMENT FUNCTIONS

Procedures at various levels in a system have a need to get memory for their use. Some of the functions
that use memory dynamically include

• Loading the code and data segments for a new task

• Creating the TSS and LDT of a new task

• Expanding an application data structure

• Expanding system stack segments when stacks grow too large

• Allocating buffers for a newly opened file

In allocating memory statically using the Builder, you or the Builder must keep account of what memory
locations are available and what locations are used. A dynamic memory allocation module must do the
same, but, in addition, it needs to reuse the space vacated by tasks that have finished. Even tasks that
are still executing may no longer need all of the memory they once were using, so you need to provide
some means for them to return that space dynamically. The need to reclaim formerly used memory
space provides considerable challenge to operating system designers.

Protection usuaily requires that segments not overlap. The operating system should accurately keep
track of allocated memory to prevent new segments from overlapping current segments.

Allocation of memory to tasks in a dynamic environment is complicated by the facts that segments
have differing lengths and that the order of creation and deletion is unpredictable. Consequently, after
a number of tasks have come and gone, memory becomes fragmented, as illustrated in figure 3-1. It
becomes increasingly difficult to find free areas large enough to accomodate requests for space. It may
happen that no single free area in all of memory is large enough to fill a request for memory even
though the total of all smaller available areas is larger than the amount needed. Knuth (see "External
Literature" in the Preface) discusses how various memory-management mechanisms can minimize or
magnify this problem.

Memory management on the iAPX 286 differs from memory management on other processors in that
descriptors must be constructed to access any region of physical memory.

EXAMPLE OF A MEMORY MANAGER

As an example of how a memory manager can manipulate descriptors and segments, consider a memory
management module that implements a version of the "first fit" algorithm (as described by Knuth)
and combines adjacent free segments as a way to reduce fragmentation. This example employs the

3-1 121960·001

inter REAL MEMORY MANAGEMENT

D -AVAILABLE MEMORY

- ALLOCATED MEMORY

121960-17

Figure 3-1. Memory Fragmentation

"first fit" algorithm because it provides an opportunity to illustrate how to create descriptors dynami­
cally to access free memory areas, not because it necessarily performs best in any specific application.
Knuth discusses other algorithms, including the "buddy system."

Figure 3-2 illustrates conceptually the structure of this module. Hidden inside the module are the list
of available memory space, the aliases that permit modification of the GDT and LDTs, and the space­
management algorithms. The PUBLIC procedures ALLOCATE and FREE are the only interfaces
with the world outside the module.

Data Structures

Figure 3-3 illustrates the data structures implemented in this example memory manager. One-word
tags bound every memory area on the low and the high end. These boundary tags indicate whether the
area is free or in use by some task. Free areas are chained into a two-way linked list that uses physical
addresses to point to the next and prior segments in the list. The size of an area (in bytes) is stored
with the link addresses in the low-addressed end of the area. At the high-addressed end, a physical
address points to the beginning of the area.

With boundary tags at both ends of every memory area, the memory manager can, when freeing a
segment that is no longer needed, easily determine whether either of the adjoining areas is free. Figure
3-4 illustrates how adjacent free areas can be combined to reduce memory fragmentation.

Figure 3-5 illustrates that boundary tags are invisible to procedures outside the memory management
module because the tags are not within the base and limit addresses in the segment descriptor that the
memory manager returns to the caller.

3-2 121960-001

REAL MEMORY MANAGEMENT

I
ALLOCATE GATE

MEMORY ~
MANAGEMENT •

ALGORITHMS 0
GLOBAL DATA

FREE SPACE LISTS t:::I FRELSEG GATE

= t:::I
t:::I
t:::I

121960-16

Figure 3-2. Information Hiding in Memory-Management Example

This memory manager does not maintain descriptors to free segments; instead, it creates descriptors
dynamically when it needs to address the boundary tags and space-management linkages. This policy
minimizes the number of descriptors in the GDT. Note that as a result, free areas may be larger than
64K bytes.

Physical addresses are stored as double words (DWORD) to take advantage of double word arithmetic
in PL/M-286. In an actual implementation, you may wish to store physical addresses in three-byte
fields to save space, but you would need to implement arithmetic operations for three-byte operands.

The total size of the memory-management items associated with each free area is 20 bytes; therefore,
to ensure that no memory area is too small to contain the memory-management items, this algorithm
chooses the size of the allocated space to be a multiple of the next integer greater than 20 that is also
a multiple of 16. This number is identified as BLOCICMODULUS.

3-3 121960-001

NULL

FIRST AVAILABLE

REAL MEMORY MANAGEMENT

"FREE"

START

SIZE

NEXT

PRIOR

"FREE"

"USED"

BOUNDARY TAG ---!:Cj"U~S~E2D':':r

LINKED LIST OF
AVAILABLE SEGMENTS

ALLOCATED
SEGMENT

NULL

121960·18

Figure 3-3. Example Memory-Management Data Structures

The memory manager maintains physical-address pointers to the first segment in the available segment
list and to the last. It also maintains a "current available" pointer that corresponds to Knuth's "roving
pointer."

This example also makes some assumptions about the placement of descriptors in the GDT. Figure
3-6 illustrates these assumptions:

• The memory manager frequently needs to create temporary descriptors for such purposes as reading
and updating the boundary tags and link fields. For its own convenience, the memory manager
reserves GDT slots for these temporary descriptors. This example identifies the slots as SLOT_A,
SLOLB, and SLOLe.

• Adjacent slots in the GDT contain all the descriptors to information for one task. This way, given a
selector for one task descriptor, simple addition or subtraction yields selectors for other descriptors
for the same task.

3-4 121960·001

inter REAL MEMORY MANAGEMENT

BEFORE AFTER

I "USED" I I "USED" I

L "USED" J L "USED" ...J
I "USED" L ...J "FREE" .1

START

SEGMENT
TO BE
FREED

I "USED" I
I "FREE" L

START

SIZE SIZE

NEXT NEXT

PRIOR PRIOR

I "FREE" I I "FREE" ...J

121960-56

Figure 3-4. Using Boundary Tags

3-5 121960-001

REAL MEMORY MANAGEMENT

SEGMENT

ALLOCATED
MEMORY

Figure 3-5. Hiding Boundary Tags

There are two ways to reserve slots in a descriptor table:

BOUNDARY
TAG

SEGMENT

1 BOUNDARY
TAG

121960·300

I. Code absolute selector values in the program and use the Builder's RESERVE statement to prevent
the Builder from allocating other descriptors to those slots. This is the method used in this example.

2. Use EXTERNALs to dummy segments coded in an ASM286 module, and allow the Builder to
assign slots for the descriptors of the dummy segments. The Builder resolves the EXTERNALs.

PL/M-286 Code

This example separates space-management functions from descriptor-management functions. The space­
management procedures are DELINK, FIND_FIRST_FIT, and RETURN_SPACE. The public
procedures ALLOCATE and FREE_SEG call on POINT~T and NULLIFY to manipulate descrip­
tors for allocated segments. (Refer to Chapter 2 for definitions of POINT~Tand NULLIFY.)

The PL/M-286 built-ins used to manipulate system structures in this example include

5 E LEe TOR S 0 F (pointer)
GET $ 5 E G M E Ii T $ LIM I T (selector)

The external procedure GET$SEGMENT$BASE extracts the segment base address from the speci­
fied descriptor.

When the procedure FIND_FIRST_FIT finds an available space that is much larger than requested,
it allocates the higher-addressed portion of the space and leaves the lower-addrcssed portion in the free­
space list. Figure 3-7 illustrates the process of splitting an available space.

3-6 121960·001

REAL MEMORY MANAGEMENT

In + 3

CURRENT n+2
TASK

DESCRIPTORS n: 1

1
WORK DESCRIPTORS Im .

L
2

FOR MEMORY 'l1+
MANAGER

m

o

GLOBAL DESCRIPTOR TABLE

, ,
I
I
I
I
I
I ,

LOT ALIAS

LOT

TSS ALIAS

TSS

I
I

SLOT C

SLOT B

SLOT A , ,
I
I ,

GOT ALIAS

NULL

RESERVED FOR
OPERATING SYSTEM

Figure 3-6. Example GDT Layout

121960-19

When returning an unneeded segment to the available list, the procedure RETURN_SPACE checks
the boundary tags of both the lower and higher adjacent segments to see whether there is another free
segment with which to combine. Four cases are possible, as illustrated in figure 3-8 at the end of this
chapter. Table 3-1 summarizes the actions taken in each of the four cases.

See figure 3-9 at the end of this chapter for the PL/M-286 code that implements this example of a
memory manager.

Protection Structure

Where in the two-dimensional grid of protection offered by the iAPX 286 should the memory­
management module lie? There are two approaches that offer different advantages:

1. The module can be structured as privileged procedures that execute as part of every task that
calls them.

2. The module can execute as a separate task.

3-7 121960·001

inler REAL MEMORY MANAGEMENT

BEFORE AFTER

I "USED" I

SIZE"" 16 BYTES

I "USED" I
I "FREE" I

(
.. NEWSTART

\ NEW SIZE

NEXT

PRIOR

I "FREE" I

121960-20

Figure 3-7. Splitting an Available Block of Memory

GLOBAL PROCEDURES

Placing the module's segment descriptors in the GDT allows all tasks in the system to share the module
yet requires only one copy of the module's segments to be present in memory. This approach allows for
fastest communication between the application and the memory manager.

The procedures of the memory manager synchronize with the calling procedure (that is to say, the
calling procedure waits until the memory-management procedure returns). However, more than one
task can be executing the memory-management procedures at one time. This can be an advantage (as
when there are mUltiple CPUs and the requests are for different regions of the memory space), but it
requires synchronization of changes to space-management data structures (not shown in this example).

Segments containing procedures and data structures internal to this most critical operating-system
module should have the greatest protection possible. Because none of these procedures and data struc­
tures are PUBLIC, no other modules can gain knowledge of the locations of data and procedures. This
by itself, however, does not constitute positive protection from accidental or intentional snooping or
destruction. The segments containing these procedures and data should have privilege level 0 (PL 0)
so that the processor can prevent any access from less trusted procedures.

3-8 121960-001

REAL MEMORY MANAGEMENT

Table 3-1. Actions for Combining Segments

Case 0 Case 1 Case 2 Case 3

Action
Lo Hi Lo Hi Lo HI Lo HI

Free Free Free Used Used Free Used Used

CURR~VLBL=
Lo Lo This This

START START Base Base

CURR_LlNK.PRIOR = Hi Null - - LlNK.PRIOR

CURR_LlNK.NEXT= Hi
FIRST~VLBL - - LlNK.NEXT

DELINK HI Yes No No No

FIRST~VLBL= No No No Yes
CUR~VLBL?

PRIOR FREE
LlNK.NEXT= No No Yes No
CURR~VLBL?

NEXT FREE
LlNK.NEXT= No No Yes Yes
CURR~VLBL?

The PUBLIC interface procedures ALLOCATE and FREE_SEG should execute at PL 0 to access
the internal data structures and procedures, which are also at PL o. ALLOCATE and FREE_SEG
should have gates at PL 3, however, so that even least trusted application procedures can get the space
they need for such purposes as dynamic data structures.

SEPARATE TASK

Another possible structure, not exemplified here, is to treat the memory-management module as a
separate task. The iAPX 286 features for isolation of tasks provide the needed protection for the criti­
cal memory-management structures and procedures. Within the memory-management task, privilege
levels can be used to isolate the various internal procedures and data structures from one another. The
memory-manager task can use a message passing mechanism such as that shown in Chapter 5 to receive
requests and to pass segments to the requesting task.

With the memory-manager executing as a separate task, serialization of requests for space is automatic,
thereby eliminating the need for synchronization when modifying space-management structures. The
separate-task approach is also advantageous when there is a need to have the requesting task wait until
sufficient memory becomes available to fullfil a request. While one task is waiting, the memory manager
can continue to service requests from other tasks.

3-9 121960-001

REAL MEMORY MANAGEMENT

ADVANCED MEMORY MANAGEMENT

In actual applications, the memory-management module may need to deal with such topics as

• Different kinds of memory. The ALLOCATE procedure needs a parameter to specify (for example)
slow versus fast memory, and each type of memory needs its own free-space list.

• Multiprocessing. When multiple processors share some, but not all, of the available memory, the
memory management module must know what memory addresses each processor can access.
ALLOCATE must provide memory that is accessible to the processor that is running the calling
task. You need to partition memory into areas so that all the addresses in a given area satisfy a
common accessibility constraint. (The criteria for partitioning may also include memory types as
mentioned previously.) Each area needs its own free-space list.

• Dynamic deletion of memory. When a memory parity error occurs, the need for continued system
operation may require deleting the affected block of memory from the available-space lists, so that
it cannot cause more trouble.

• Fixed-location segments. Often certain addresses of memory have specific uses, for example, video
refresh buffers, and communication blocks for intelligent peripheral controllers. The memory manager
must be aware of these areas and not use them for other purposes. Its interfaces must include the
means for a task to request a specific special-purpose area.

• Compaction. It can happen that no single free memory space is large enough to satisfy an
ALLOCATE request, even though there is enough total free memory. Some memory-management
subsystems call on a compaction algorithm in such cases. Whether implementation of a compaction
algorithm is worthwhile depends primarily on the pattern of memory usage in a given application.
In many applications, this situation arises only when memory is nearly full anyway; compaction in
this case merely delays the inevitable by an insignificant time. If you do implement compaction,
you may choose to associate with each allocated segment a pointer that helps the compaction
algorithm find the descriptors for that segment. With a memory-management scheme such as that
exemplified here, the boundary tags are the most convenient container for descriptor pointers. With
descriptor pointers in place, the compaction algorithm need only follow the available-space lists to
discover all the opportunities for compaction.

3-10 121960-001

FROM
NEXT
FREE

SEGMENT

l
(

FROM
PRIOR
FREE

SEGMENT

REAL MEMORY MANAGEMENT

BEFORE CASE #0
I "FREE" I

START

SIZE

NEXT

PRIOR

I "FREE" I
1 "USED" L

SEGMENT
TO BE
FREED

I "USED" I
J "FREE"

START

SIZE

NEXT

PRIOR

I "FREE" I

AFTER

I "FREE" I
START

NEW SIZE

NEXT

PRIOR

I "FREE" I

Figure 3-8. Possibilities for Combining Segments

3-11

121960-21

121960-001

REAL MEMORY MANAGEMENT

BEFORE CASE #1 AFTER

J "USED" I I "USED" I

I "USED" I I "USED" J
I "USED" I J "FREE"

START

SEGMENT
TO BE
FREED

I "USED" I
I "FREE" I

START

SIZE SIZE

NEXT NEXT

PRIOR PRIOR

I "FREE" I I "FREE" I

121960-21

Figure 3-8. Possibilities for Combining Segments (Cont'd.)

3-12 121960-001

FROM
PRIOR
FREE

SEGMENT

~
FROM
NEXT
FREE

SEGMENT

REAL MEMORY MANAGEMENT

BEFORE

I "FREE" I
START

SIZE

NEXT

PRIOR

I "FREE" J
I "USED" I

SEGMENT
TO BE
FREED

I "USED" I
I "USED" I

I "USED" I

}--

CASE #2

.... ,
'"

\
\
\
I
\
II FROM

I NEXT
FREE

i_=C
(

FROM
PRIOR
FREE

SEGMENT

VALUE OF ADDRESS -
MOVEMENT OF ADDRESS ___ __

AFTER

I "FREE" I
START

SIZE

NEXT

PRIOR

I "FREE" I
I "USED" I

I "USED" I

Figure 3-8. Possibilities for Combining Segments (Cont'd.)

3-13

121960-21

121960-001

BEFORE

J "USED"J

. I "USED" I
I "USED" I

SEGMENT
TO BE
FREED

I "USED" I
I "USED" I

I "USED" I

REAL MEMORY MANAGEMENT

CASE #3

FROM
FORMER
HEAD OF

LIST

l
(

HEAD
OF

LIST

AFTER

J "USED"J

I "USED" I
cI "FREE" ~

START

SIZE

NEXT

PRIOR

I "FREE" I
I "USED" I

I "USED" I

.. ..

TO
FORM ER

OF
T

HEAD
LIS

j

-=-
NUL L

Figure 3·8. Possibilities for Combining Segments (Cont'd.)

3-14

121960-21

121960-001

REAL MEMORY MANAGEMENT

PL/M-286 COMPILER 960-501 date PAGE 1

system-ID PL/M-286 DEBUG Vx.y COMPILATION OF MODULE MEMORY
OBJECT MODULE PLACED IN :Fl:MEMORY.OBJ
COMPILER INVOKED BY: :F3:PLM286.86 :Fl:MEMORY.PLM CODE DEBUG

1

2

3

4
5
6
7
8
9

10

11

12

13

14

15

1

2

2
1
2
2
1
2
2

1

1

1

1

1

$ PAGEWIDTH(71) TITLE('960-501') INCLUDE (:Fl:NUCSUB.PLM)
$ NOLIST

MEMORY: DO;

/***/
/* Externals. */

POINT AT: PROCEDURE (SLOT, RIGHTS, PHYS ADDR PTR, LIMIT)
EXTERNAL;

DECLARE SLOT SELECTOR, RIGHTS BYTE,
PHYS ADDR PTR POINTER, LIMIT WORD;

END POINT AT; -
NULLIFY: PROCEDURE (SLOT) EXTERNAL;

DECLARE SLOT SELECTOR;
END NULL IFY;

GETSEGMENTBASE: PROCEDURE (SEL, BASE ADDR PTR) EXTERNAL;
DECLARE SEL SELECTOR, BASE ADDR PTR-POINTER;
END GETSEGMENTBASE; --

/***/
/* Space-management definitions. */

DECLARE PARAGRAPH LITERALLY '16';
/* To run under SIM286, all segments must have a base

address equal to zero mod PARAGRAPH. This is not
required when running on iAPX 286 hardware. */

DECLARE MEM LINK LITERALLY
'PADDING (8) BYTE,

START DWORD,
HI TAG WORD,
LO-TAG WORD,
PRIOR DWORD,
NEXT DWORD,
SIZE DWORD';

/* Base address of link descriptor is always PARAGRAPH
less than address of PRIOR field. Address of PRIOR
field is always 0 mod PARAGRAPH. PRIOR, NEXT, and
SIZE fields always point to a PRIOR - PARAGRAPH
address. */

DECLARE TAGS SIZE LITERALLY '4';
/* The space used by both tag words */

DECLARE LINK LIMIT LITERALLY '27';
/* Limit used to construct descriptors for MEM_LINK */

DECLARE BLOCK MODULUS LITERALLY '32';
/* All memory blocks are an integral multiple of

BLOCK_MODULUS in length.

Figure 3-9. Code for Memory-Management Example

3-15

*/

121960-001

REAL MEMORY MANAGEMENT

PL/M-286 COMPILER 960-501 date PAGE 2

16 1

17 1

18 1

19 1

20 1

21 1

22 1

23 2

24 2

25 2

26 1

27 2

28 2

DECLARE NULL_PHYS_ADDR LITERALLY '0';

DECLARE USED LITERALLY '1',
FREE LITERALLY '0';

/* Values of boundary tags */

DECLARE OK LITERALLY '0',
FAILED LITERALLY '8000H';

/* Values of exception codes */

DECLARE DWRIGHTS LITERALLY '92H' /* For manipulating
space-management data structures, this module
needs these rights parameters: Present, DPL=0,
data segment, grow up, writable. */;

1***/
/* Space-management data structures. * /

DECLARE (FIRST AVLBL,LAST AVLBL,CURR AVLBL)DWORD PUBLIC;
/* Physical-address pointers to chain of available

space. These always point to PRIOR - PARAGRAPH to
avoid calculating b~se addresses for MEM_LINKs. * /

DECLARE SLOT A SELECTOR PUBLIC,
WSLOT A WORD AT (@SLOT A) INITIAL (38H) , /* 7 */
SLOT B SELECTOR PUBLIC,
WSLOT B WORD AT (@SLOT B) INITIAL (40H) , /* 8 */
SLOT C SELECTOR PUB LIC,
WSLOT_C WORD AT (@SLOT C) INITIAL (48H) ; /* 9 */

/* "Scratch" slots for addressing MEM LINKS. */
/* Be sure to reserve these slots with the Builder */

/***/
/* Round a size parameter upwards to next" greater */
/* or equal (N * BLOCK_MODULUS) :.. 'TAGS_SIZE for some N */

ROUND_S IZE: PROCEDURE (A_PTR) PUBLIC REENTRANT;

DECLARE A PTR POINTER,
ADDR BASED A_PTR DWORD;

, AD DR BLOCK MODULUS
* (((ADDR + TAGS SIZE - 1) / BLOCK_MODULUS) + 1) -
- TAGS_SIZE;

END ROUND_SIZE;

1*** **/
/* Delink from avail able space 1 ist. * /

DELINK: PROCEDURE (THIS_SEL) REENTRANT;

SELECTOR, DECLARE THIS SEL
THIS-LINK BASED THIS SEL STRUCTURE (MEM_LINK);

DECLARE PRIOR LINK BASED SLOT C STRUCTURE (MEM_LINK),

Figure 3-9. Code for Memory-Management Example (Cont'd.)

3-16 121960-001

REAL MEMORY MANAGEMENT

PL/M-286 COMPILER 960-501 date PAGE 3

29

30
31
32

33
34
35

36
37
38

39
40

41

42

43

44

45

46
47
48

49

50
51

52
53
54

55

2

2
2
3

3
3
2

2
2
3

3
3

2

1

2

2

2

2
2
2

2

2
3

3
3
2

2

NEXT LINK BASED SLOT_C STRUCTURE (MEM_LINK);

IF THIS LINK. PRIOR = NULL PHYS ADDR
/* ThIs is the beginning of the list. */

THEN FIRST AVLBL = THIS LINK. NEXT ;
ELSE DO; /* Update link-from prior segment. */

CALL POINT AT(SLOT C, DWRIGHTS,
- -@THIS LINK.PRIOR, LINK_LIMIT);

PRIOR_LINK.NEXT = THIS_LINK. NEXT; .
END;

IF THIS LINK. NEXT = NULL PHYS ADDR
/* This is the end of the list. */
THEN LAST AVLBL = THIS_LINK. PRIOR;
ELSE DO; /* Update link from next segment. */

CALL POINT AT(SLOT C, DWRIGHTS,
-@THIS LINK.NEXT, LINK_LIMIT);

NEXT_LINK. PRIOR THIS_LINK. PRIOR;
END;

END DELINK;

1*** **/
FIND FIRST FIT: PROCEDURE (SIZE,BASE ADDR PTR)

- - WORD REENTRANT;

DECLARE SIZE WORD,
BASE ADDR PTR POINTER,
BASE-ADDR-BASED BASE ADDR_PTR DWORD;

DECLARE CURR LINK BASED SLOT_A STRUCTURE (MEM_LINK),
PHYS-SIZE DWORD,
SIZE-DIFF DWORD,
/* Boundary tag items */

BOUND ADDR DWORD,
BOUND-MID BASED SLOT B STRUCTURE (MEM LINK) ,
BOUND-HI BASED SLOT B STRUCTURE (MEM:=LINK);

DECLARE TOP LOOP LABEL;

PHYS SIZE = SIZE;
CALL-ROUND SIZE(@PHYS SIZE);
CALL POINT-AT(SLOT A,-DWRIGHTS,

- @CURR_AVLBL, LINK_LIMIT);

TOP LOOP:
IF-SLOT A SELECTOR$OF(NIL) /* Check for end of list */

THEN DO;
IF FIRST AVLBL = NULL PHYS ADDR
/* The list is empty~ */ -
THEN RETURN FAILED;

END;
ELSE CALL POINT AT(SLOT A, DWRIGHTS,

- @FIRST AVLBL, LINK LIMIT);
/* Continue from beginning of list. */ -

IF CURR LINK. SIZE < PHYS SIZE
THEN /* This segment is-too small, so •.. */

Figure 3-9. Code for Memory-Management Example (Cont'd.)

3-17 121960-001

REAL MEMORY MANAGEMENT

PL/M-286 COMPILER 960-501 date PAGE 4

56 2
57 3

58 3

59 3
60 4
61 4
62 4
63 3
64 3

65 2

66 2
67 2
68 3
69 3

70 3

71 3
72 3
73 3
74 3
75 3

76 3
78 3
79 3
80 3

81 2
82 3

83 3
84 3
85 3

86 3
87 3

88 3
89 3
90 3
91 3

92 3
93 3
95 3
96 3

97 2

DO; /* Look at next free segment in the list. */
CALL POINT AT(SLOT A, DWRIGHTS,

- @CURR LINK.NEXT, LINK LIMIT);
IF CURR AVLBL = CURR LINK. NEXT -
/* Have searched entire list without a hit. */
THEN DO;

CALL NULLIFY(SLOT A);
RETURN FAILED; -

END;
GOTO TOP LOOP;
END; /* Segmen t too small. * /

SIZE DIFF = CURR LINK. SIZE - PHYS SIZE;
/* Always a multiple of BLOCK_MODULUS */

IF SIZE DIFF = 0
THEN DO; /* This segment is a close fit. */

CURR AVLBL = CURR LINK.NEXT;
CALL-DELINK (SLOT=A);

/* Set lower boundary tag */
CURR LINK.LO TAG = USED;
/* Set upper-boundary tag */
CALL GET$SEGMENT$BASE (SLOT A, @BOUND_ADDR);
BASE ADDR = BOUND ADDR; -
BOUND ADDR = BOUND ADDR + CURR LINK. SIZE + TAGS SIZE;
CALL POINT AT(SLOT-B,DWRIGHTS,@BOUND ADDR,LINK LIMIT);
BOUND_HI.HI_TAG =USED; --

CALL NULLIFY(SLOT_A); CALL NULLIFY(SLOT B);
BASE ADDR = BASE ADDR + PARAGRAPH; -
RETURN OK; -

END; /* Close fit. */

ELSE DO; /* It will fit here with room to spare. */
CALL GET$SEGMENT$BASE (SLOT A, @CURR AVLBL);

/* Set boundary tag at end-of new segment. */
BOUND ADDR = CURR AVLBL + CURR LINK. SIZE + TAGS SIZE;
CALL POINT AT(SLOT B,DWRIGHTS,@BOUND ADDR,LINK LIMIT);
BOUND HI.HI TAG = USED; -

/* Calculate starting address of the new segment. */
BOUND ADDR = CURR AVLBL + SIZE DIFF;
BASE ADDR = BOUND ADDR + PARAGRAPH;

/* Set the boundary fields between the 2 segments. */
CALL POINT AT(SLOT B,DWRIGHTS,@BOUND ADDR,LINK LIMIT);
BOUND MID.START = CURR AVLBL; - -
BOUND-MID.HI TAG = FREE;
BOUND-MID.LO-TAG = USED;

/* Change size of available segment,
considering the 2 boundary tag words. */

CURR LINK. SIZE = SIZE DIFF - TAGS SIZE;
CALL-NULLIFY(SLOT A);-CALL NULLIFY(SLOT B);
RETURN OK; - -

END; /* Room to spare. */

END FIND FIRST FIT;
$EJECT - -

Figure 3-9. Code for Memory-Management Example (Cont'd.)

3-18 121960-001

REAL MEMORY MANAGEMENT

PL/M-286 COMPILER 9613-5131 date PAGE 5

98 1

99 2

11313 2

1131 2
1132 2
1133 2
1134 2
1135 2

1136 2

1137 2
1138 2
H19 2
111 2

112 2
113 2
114 2

116 2
117 2
118 2
119 2

1213 2
121 2
122 2

123 2

124 2
125 2

126 2
127 2
128 3
129 3
1313 3

1*** **/
/* Place a segment into the available space list. */

RETURN_SPACE: PROCEDURE (FREE_SEG) REENTRANT;

DECLARE FREE SEG SELECTOR,
FREE-LINK BASED FREE SEG STRUCTURE (MEM_LINK);

DECLARE CURR LINK BASED SLOT A STRUCTURE (MEM_LINK) ,
NEIBR ADDR DWORD,
NEIBR-LINK BASED SLOT B STRUCTURE (MEM_LINK) ,
FREE BASE DWORD,
FREE-SIZE DWORD,
HI SIZE DWORD,
NCASE BYTE,

HI USED LITERALLY '131H' ,
LO-USED LITERALLY '132H' ;

CALL GET$SEGMENT$BASE (FREE SEG, @FREE BASE);
FREE BASE = FREE BASE - PARAGRAPH; /* point to tags */
FREE-SIZE = GET$SEGMENT$LIMIT (FREE SEG);
FREE-SIZE = FREE SIZE + 1; -
CALL-ROUND SIZE (@FREE SIZE);
/* Determine which case. */
NCASE = 0;
/* Check higher neighbor. */
NEIBR ADDR = FREE BASE + FREE SIZE + TAGS SIZE;
CALL POINT AT (SLOT B,DWRIGHTS,@NEIBR ADDR,LINK LIMIT);
IF NEIBR LINK.LO TAG = USED THEN NCASE=NCASE OR-HI_USED;

ELSE HI-SIZE = NEIBR LINK. SIZE; /* Save */
/* Check-lower neighbor. */
NEIBR ADDR = FREE BASE;
CALL POINT AT(SLOT B,DWRIGHTS,@NEIBR ADDR,LINK LIMIT);
IF NEIBR_LINK.HI_TAG=USED THEN NCASE~NCASE OR LO_USED;

/* Which segment should become the new current one? */
IF (NCASE AND LO USED)<>13

THEN CURR AVLBL-= FREE BASE; /* low neighbor used */
ELSE CURR-AVLBL = NEIBR LINK.START; /* low free */

CALL POINT:::AT (SLOT_A, DWRIGHTS,@CURR_AVLBL, LINK_LIMIT) ;

/* Calculate size of new segment. */
IF (NCASE AND LO USED) = LO USED /* if low neibr used */

THEN CURR LINK.SIZE = 13; - .
ELSE /* already contains size of low neighbor */

CURR LINK. SIZE = CURR LINK. SIZE + TAGS_SIZE;
IF (NCASE AND HI USED) <> HI USED

/* if high neighbor free *7
THEN CURR LINK. SIZE = CURR LINK.SIZE+HI SIZE+TAGS_SIZE;

CURR_LINK.SIZE = CURR_LINK.SIZE + FREE_SIZE;

/* Set next .and prior links in new segment. */
IF NCASE = 3 /* neither neighbor free */

THEN DO; /* insert at head of available list */
CURR LINK. PRIOR = NULL PHYS ADDR;
CURR:::LINK.NEXT FIRST=AVLBL;

END;

Figure 3-9. Code for Memory-Management Example (Cont'd.)

3-19 121960-001

REAL MEMORY MANAGEMENT

PL/M-286 COMPILER 960-501 date PAGE 6

131 2

132 2

133 3
134 3
135 3

136 3
137 3

138 4
139 4
1411 4
141 3

142 2

143 2
144 3

145 3
146 3
147 4
148 4

149 4
150 4
151 3

152 3
153 3
154 4
155 4

156 4
157 4
158 3

159 2

160 2
161 2
162 2
163 2
164 2

166 2

ELSE IF (NCASE AND HI USED) <> HI USED
/* if high neighbor-free */

THEN DO; /* Dispose with high neighbor's links. */
/* Make selector for high neighbor. */
NEIBR ADDR = FREE BASE + FREE SIZE + TAGS SIZE;
CALL POINT AT (SLOT B,DWRIGHTS~@NEIBR ADDR~LINK LIMIT);
IF NCASE =-0 /* both neighbors free */ -

THEN /* remove one from available list. */
CALL DELINK (SLOT B);

ELSE /* Must be case 2. */
DO /* Transfer links to new current. */;

CURR LINK. PRIOR = NEIBR LINK. PRIOR;
CURR=LINK.NEXT = NEIBR=LINK.NEXT;

END;
END; /* disposing with high neighbor's links. */

IF (NCASE AND LO USED) = LO USED
/* if low neighbor used. */

THEN DO; /* Fix up links in prior and next segments. */
IF CURR LINK. PRIOR = NULL PHYS ADDR

THEN /* there is no prior */ -
FIRST AVLBL = CURR AVLBL; .

ELSE DO; /* fix up prior */
NEIBR ADDR = CURR LINK. PRIOR;
CALL POINT AT (SLOT B, DWRIGHTS, @NEIBR_ADDR,

- LINK-LIMIT);
NEIBR_LINK.NEXT = CURR_AVLBL;

END;
IF CURR LINK. NEXT = NULL PHYS ADDR

THEN /* there is no next */ -
LAST AVLBL = CURR AVLBL;

ELSE DO; /* fix up-next */
NEIBR ADDR = CURR LINK.NEXT;
CALL POINT AT (SLOT B, DWRIGHTS, @NEIBR_ADDR,

. - LINK-LIMIT);
NEIBR LINK. PRIOR = CURR AVLBL;

END; - -
END; /* Fixing up links. */

/* Set tag words */
CURR LINK.LO TAG = FREE;
/* set START-field in new current segment. */
NEIBR ADDR = CURR AVLBL + CURR LINK. SIZE + TAGS SIZE;
CALL POINT AT(SLOT B,DWRIGHTS,@NEIBR ADDR,LINK LIMIT);
NEIBR LINK~START =-CURR AVLBL; - -
NEIBR-LINK.HI TAG = FREE;
CALL NULLIFY (SLOT_A); CALL NULLIFY (SLOT_B);

END RETURN SPACE;
$EJECT -

Figure 3-9 . . Code for Memory-Manag~ment Example (Cont'd.)

3-20 121960-001

REAL MEMORY MANAGEMENT

PL/M-286 COMPILER 960-501 date PAGE 7

167 1

168 2

169 2

1713 2
171 2
172 3
173 3
174 3
175 2
176 2

177 2

178 1

179 2

1813 2
181 2
182 2

183 2

184 1

/***/

ALLOCATE: PROCEDURE (SLOT, RIGHTS, SIZE, EXCEP PTR)
PUBLIC REENTRANT,

DECLARE SLOT SELECTOR,
RIGHTS BYTE,
SIZE WORD,
EXCEP PTR POINTER,
EXCEP-BASED EXCEP PTR WORD;

DECLARE BASE ADDR DWORD;

IF OK <> FIND_FIRST_FIT (SIZE, @BASE_ADDR)
THEN DO;

EXCEP = FAILED;
RETURN;

END;
CALL POINT AT (SLOT, RIGHTS, @BASE_ADDR, SIZE-l);
EXCEP = OK;

END ALLOCATE;

/***/

FREE SEG: PROCEDURE (SLOT, EXCEP_PTR) PUBLIC REENTRANT;

DECLARE SLOT SELECTOR,
EXCEP PTR POINTER,
EXCEP-BASED EXCEP PTR WORD;

CALL RETURN SPACE (SLOT);
CALL NULLIFY (SLOT);
EXCEP = OK;

/***/

END MEMORY;

Figure 3-9. Code for Memory-Management Example (Cont'd.)

3-21 121960-001

Task Management 4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I
I

I

I
I
I
I

CHAPTER 4
TASK MANAGEMENT

The primary responsibility of an operating system is to allocate the processor to the executing tasks so
that each task makes progress consistent with its role in the application. This chapter examines how
the task-oriented features of the iAPX 286 hardware apply to conventional task-management concepts.

HARDWARE TASK-MANAGEMENT FEATURES

The operating system's responsibility for managing a multitasking system is reduced by iAPX 286
features for saving and restoring task state and switching between tasks.

Storing Task State

The state of a task (from the processor's point of view) is the contents of the registers used by that
task. The architecture of the iAPX 286 defines a special type of segment, the task state segment (TSS),
for storing the 80286-related state of a task. Multitasking operating systems on any processor need to
store similar information. The iAPX 286 requires merely that a specific format be used so that the
CPU can store and restore task state automatically. Figure 4-1 illustrates a TSS and related hardware
structures.

The processor keeps the location of the TSS of the currently executing task in the task register. The
task register has two parts:

• The "visible" portion, which a task can access. This part contains a selector to the descriptor (in
the GDT) for the current TSS.

• The "invisible" portion, which tasks do not control. When the contents of the visible portion are
changed, the processor loads the invisible portion with the base and limit values from the TSS
descriptor indexed by the selector in the visible portion.

There are two ways to change the task register:

• By one of the task switching operations described later in this section.

• By the LTR instruction. L TR is used to give the task register its initial value during system initial­
ization. Only privilege-level 0 (PL-O) procedures can execute L TR.

Because TSSs correspond one-to-one with tasks, the selector of a TSS uniquely identifies a task. The
STR instruction reads the task register into a selector. Operating-system procedures can use STR to
identify the calling task. The built-in variable TASK$REGISTER gives PL/M-286 programs access
to the task register.

The items in the TSS fall into four classes:

• Back link. Contains a selector to the TSS of the calling (or interrupted) task (if any).

• LDT selector. Contains a selector to this task's LDT.

4-1 121960-001

II I tel

CPU

TASK REGISTER

TRD----
15 0

.... ----------,
II PROGRAM INVISIBLE I
I 15 0 I

I ILIMIT~}I
I +-II BASE I I
I 23 0 I L____ _ _____ •

TASK MANAGEMENT

--SYSTEM
SEGMENT
DESCRIPTOR

INTEL RESERVED

~p_lir_:IO_)~_l_~~S~E~_AS_E_"_'_'~ljll
LlMIT,,~ r

------------------------~

BYTE
15 o OFFSET

TASK LOT SELECTOR 42

OS SELECTOR 40

SS SELECTOR 38

CS SELECTOR 36

ES SELECTOR 34

01 32

51 30

BP 28 CURRENT
TASK

SP 26 STATE

BX 24

TASK OX 22
STATE

CX SEGMENT 20

AX 18

FLAG WORD 16

IP (ENTRY POINT) 14

SS FOR CPL 2 12

SP FOR CPL 2 10

55 FOR CPL 1 8 INITIAL
STACKS

SP FOR CPL 1 -6 FOR CPL 0,1,2

SS FOR CPL 0 4

SP FOR CPL 0 2

BACK LINK SELECTOR TO TSS 0

Figure 4-1. Task State Segment and Register

121960-23

• Processor registers and flags. Used to store the processor state of the task. Note in particular the
NT flag, which indicates when the BACK LINK contains a valid selector.

• Initial stacks. Contain the initial SS and SP values to be used when a CALL transfers control to
any of the higher PLs (0, 1, or 2). No stack pointer is needed in the TSS for the PL-3 stack because
that stack is either the current staek (pointed to by the SS:SP fields) or is locatable via the chain
of stack pointers in higher-level stacks.

4-2 121960-001

TASK MANAGEMENT

The processor updates only the back link, the registers, and the flags as part of a task switching opera­
tion. The processor merely reads the initial stack fields (during interlevel CALLs) and the LDT selec­
tor (during a task switch). The operating system is responsible for initializing the stack and LDT fields.
It must also update the LDT selector before changing the LDT register.

Switching Tasks

Since a multitasking system typically has more tasks than it has processors to execute those tasks,
there must be some provision for causing a processor to cease executing one task and begin executing
another. The 80286 has several such mechanisms, each appropriate to different situations. All use
ordinary JMP, CALL, INT, or IRET instructions. The destination operand determines whether a task
switch occurs. Table 4-1 summarizes the operations and operands that cause switching of tasks.

In PL/M-286, an indirect CALL statement to the selector of a TSS descriptor or task gate causes
generation of an intertask CALL instruction. The W AITFORINTERRUPT built-in procedure
generates an IRET instruction.

The operand of a CALL or JMP instruction is a pointer containing both selector and offset parts; in
this case, the offset is not used, however. The selector portion may refer either to the descriptor of a
TSS or to a task gate for a TSS. The result is the same in either case. The difference lies in the
protection of access to the TSS. TSS descriptors, which may reside only in the GDT, normally have
DPL set to zero to prevent unauthorized task switching by procedures outside the operating system.
Task gates may reside in any descriptor table, giving task switching ability to procedures that have
access to the gate. A task gate in an LDT gives task switching power only to that LDT's task. A task
gate in the IDT gives task switching power to interrupts. This reduces operating-system involvement in
interrupt handling, and thereby reduces the time needed to respond to interrupts.

The operating system normally uses a JMP instruction to a TSS descriptor to cause a task switch. A
CALL instruction to a task gate in an LDT is useful for implementing coroutines.

The IRET instruction exits from a nested task that is invoked by a CALL as well as from one invoked
by an interrupt. (You cannot use the RET instruction to exit from a CALLed task; RET does not
perform a task switch.) The NT (nested task) flag controls the function of the IRET instruction. When
a CALL (or interrupt) causes a task switch, the processor sets the NT flag as the new task begins and
fills the back-link of the new TSS with the selector of the calling task's TSS. When the NT flag is set,
the IRET instruction causes a task switch to the task whose TSS selector is stored in the back-link.
The new task must be marked as busy (type code = 3); otherwise an exception occurs.

Table 4-1. Task Switching Operations

Operation Descriptor Descriptor
Referenced Table

CALL, JMP, IRET TSS GOT

CALL, JMP task gate GOT, LOT

INT instruction,
external interrupt, task gate lOT
exception

4-3 121960·001

TASK MANAGEMENT

If the proc~sser, while executing an IRET instruction, finds the NT flag not set, this indicates a return
to an interrupted procedure in the same task. Refer to Chapter 6 for details on interrupt procedures.

For CALL and JMP instructions, success of a task switch operation depends on the type field of the
TSS descriptor. If the type code is 1, denoting an available task, then the task switch proceeds. If the
type code is 3, denoting a busy task, then an attempt to switch to the task causes an exception. A task
is busy under either of these conditions:

• The task is the currently executing task.

• The task is on the chain of TSS back-links from the currently executing task. This prevents recur­
sion of task invocations. A task should be restarted only by the the task that interrupts it or by the
operating system after the task has been removed from the back-link chain.

If the target task is not busy, the processor takes these steps in executing a task switch:

• Saves all registers in current TSS

• Loads TR with new TSS descriptor

• Loads all registers and flags from new TSS (including LDT register)

• If switch is due to CALL (or interrupt), sets NT flag and sets back-link in new TSS to point to
previous TSS

• If switch is due to JMP or IRET, changes the old task's descriptor type code to one, indicating that
the task is no longer busy

• Resumes new task where it left off (i.e., CS:IP from new TSS)

Note that you cannot pass parameters by an intertask CALL. It is possible to share data between tasks,
however. Chapter 5 takes up this subject.

ROLE OF OPERATING SYSTEM IN TASK MANAGEMENT

Task switching without operating-system involvement is possible (though not necessarily advisable) in
static systems. Consider the following two application-driven scheduling strategies for static systems:

1. A fixed sequence of tasks is defined, and each task, when ready to relinquish the processor, volun­
tarily calls or jumps to the next task in sequence. Barring any errors, each task gets a share of
processor time.

2. All tasks in the system service external events. The interrupt mechanism of the iAPX 286, by
means of interrupt tasks, causes task initiation in real-time response to those events.

Strategy I is not viable in a highly protected system. Errors do happen. An erroneous program might
easily skip a task entirely. A programming error that causes a tight loop in one task would prevent all
other tasks from being serviced.

Strategy 2 can be adequate by itself for certain real-time systems with a static mix of tasks. Task
switching by interrupt is usable in dynamic systems, too, but rarely do all tasks in a dynamic system
deal exclusively with interrupts. Therefore, in dynamic systems, in highly protected systems, and in
systems with tasks that do not provide real-time processing, the operating system may need to assist
the processor with task switching.

4-4 121960-001

TASK MANAGEMENT

State Model of Task Scheduling

The role that the operating system must play in using the iAPX 286 task features is most conveniently
expressed in terms of a state-transition model. To distinguish from the processing state of a task (as
stored in the TSS), the term scheduling state is used here. Figure 4-2 illustrates the scheduling states
that a task may assume and the events that may cause a change of state.

A RUNNING task is the one that the processor is executing. A RUNNING task continues to execute
until

• It voluntarily gives up control because it needs to wait for some event, such as completion of an
I/O operation, data from another program, or the end of a specific period of time.

• It is preempted, i.e., forced to give up control. The interrupt mechanism may cause preemption in
order to execute an interrupt task, or the operating system may preempt periodically (via timer
interrupt) to give another task a chance to receive its share of the processor's attention.

A WAITING task may be waiting for any of several events:

• Completion of a request to the OS for I/O

• A signal from another task

• Data from another task

• The end of a time-delay period

The READY state is really a special case of the WAITING state. A READY task is waiting for one
specific event: the availability of a processor to execute it. A task becomes READY when first created.
A WAITING task becomes READY upon occurrence of the event (or events) for which it is waiting.
A RUNNING task becomes READY when preempted.

INITIATE ..

121960·22

Figure 4-2. Scheduling State Transition Diagram

4-5 121960·001

TASK MANAGEMENT

Usually, termination of a task is possible regardless of its scheduling state; therefore, this diagram does
not illustrate the transition to "terminated" state.

Interfacing with the Hardware Scheduler

Many applications of the iAPX 286 need both software scheduling (by the operating system) and
hardware scheduling (by the interrupt mechanism), but when two schedulers work with the same set
of tasks, you must ensure that they work together harmoniously. Figure 4-3 illustrates the additional
complexity of dual schedulers.

Note that scheduling state under hardware scheduling is nearly analogous to scheduling state under
software scheduling. The priority concept, often used in software scheduling, has its analog in the
priority mechanism implemented by the interrupt controller. The priority of hardware-scheduled tasks
relative to software-scheduled tasks is controlled by two factors:

• The CPU's interrupt-enable flag (IF), and the instruction's CLI (which clears IF) and STI (which
sets IF)

• The 8259A Programmable Interrupt Controller, an LSI component that allows selective masking
of interrupts so that software can prevent some external interrupts.

When IF is set, all hardware-scheduled tasks whose interrupts are not masked out have higher priority
than all software-scheduled tasks. When IF is reset, all hardware-scheduled tasks have lower priority
than the currently executing task. Only the operating system (CPL < = IOPL) has the right to execute

HARDWARE SCHEDULED

PREEMPTIVE INTERRUPT

INITIATE

IRET
DISPATCH

SOFTWARE SCHEDULED

121960-27

Figure 4-3. Expanded Scheduling State Transition Diagram

4-6 121960-001

TASK MANAGEMENT

eLI and STI instructions due to the significant effect that priority setting has on correct, overall
system operation.

The ability for an interrupt handler to be an independent task not only protects the handler from the
rest of the system but also permits greater flexibility in the kinds of functions an interrupt handler can
perform. An interrupt handler that is a task can use operating system functions that might change its
scheduling state. For example, if an interrupt handler requests the operating system to read a disk
record, the operating system may change the interrupt handler task's scheduling state from RUNNING
to WAITING while the I/0 operation takes place. (Other tasks may then execute in the meantime.)
If the interrupt handler were a procedure instead of a task, it would be difficult to identify it separately
from the task that it interrupted.

The operating system must keep track of whether a task is attached to an interrupt (i.e., has a task
gate in the IDT). Occurrence of an interrupt can at any time dispatch the task attached to the inter­
rupt. This happens without intervention by the operating system; therefore, when a task calls on operat­
ing system services, the operating system cannot assume that the calling task is the same as the latest
software-scheduled task.

An operating system can easily determine whether the current task is hardware or software scheduled
if it associates with each task a Boolean that indicates whether the task was software-scheduled. The
operating system must ensure that only one task at a time is so marked. The operating system can use
the STR instruction to identify the current task. If the current task is not marked as software-scheduled,
then the interrupt mechanism must.have dispatched it.

By knowing whether a task is attached to an interrupt, the operating system can

Avoid executing a task that is awaiting an interrupt. A software-scheduled task cannot respond to
an interrupt. An exception occurs when an interrupt attempts to invoke a busy task.

• Avoid preempting an executing interrupt task. That task should finish before software schedules
another task.

Decide what action to take when an interrupt-dispatched task calls on operating-system scheduling
services. Such action might be to mask off the interrupt or to place a gate for a counting task in the
IDT to mark lost interrupts.

When the operating system changes a task from hardware scheduling to software scheduling, it must
update the chain of tasks that threads through TSSs. Every hardware scheduled task has a link in its
TSS to the TSS of the interrupted task. If the system's interrupt structure permits nesting of inter­
rupts, then the chain of interrupted tasks may be arbitrarily long. To change a task to software-scheduled
mode, the operating system must take these actions (as figure 4-4 illustrates):

Reset the nested-task flag (NT) of the current task.

Nullify the back-link field in the current TSS (as insurance in case it is ever used).

Dispatch the prior task on the back-link chain.

Changing Scheduling State

In terms of the state model of scheduling, the operating system's job is to effect transitions between
scheduling states according to the expressed needs of individual tasks and of the application as a whole.

In many cases, applications drive the scheduling activities of the operating system. Applications express
their scheduling needs by calls to operating system functions that indirectly relate to scheduling. For

4-7 121960-001

TASK MANAGEMENT

TASK X

TSS TSS TSS TSS

FLAGS FLAGS FLAGS FLAGS

NT~l NT~l NT~l NT~l

BACK LINK L/ BACK LINK

L/
BACK LINK L/ BACK LINK

CURRENTLY

B EXECUTING

E TASK

F HARDWARE-SCHEDULED TASKS

0 --
R

SOFTWARE-SCHEDULED TASKS

E

\ TSS TSS TSS

FLAGS FLAGS FLAGS

NT~O NT~O NT~O

-:e- BACK LINK

*
BACK LINK .r- BACK LINK

CURRENT
SOFTWARE-
SCHEDULED

TASK

TSS TSS TSS

FLAGS FLAGS FLAGS

NT~l NT~l NT~l

BACK LINK L/ BACK LINK

~
BACK LINK

CURRENTLY
EXECUTING

A TASK

F HARDWARE-SCHEDULED TASKS
T --
E SOFTWARE-SCHEDULED TASKS
R TASK X

\ TSS TSS TSS TSS

FLAGS FLAGS FLAGS FLAGS

NT~O NT~O NT~O NT~O

.r- BACK LINK

~
BACK LINK .r BACK LINK .r- BACK LINK

CURRENT - - -
SOFTWARE-
SCHEDULED

TASK

121960-57

Figure 4·4. Changing Scheduling Mode

4-8 121960-001

TASK MANAGEMENT

example, when an application calls the operating system to request receipt of a message from another
task, the operating system determines whether a message is waiting for delivery. If no message is
waiting, then the operating system must switch the task from RUNNING state to WAITING state.
Later when another task calls the operating system to send a message to the waiting task, the operating
system must change the task from WAITING state to READY state. In cases such as these, the
operating system plays a bookkeeping role, simply keeping track of which tasks are waiting and associ­
ating events with the correct waiting tasks.

The operating system plays a much more significant role, however, when it determines which of the
ready tasks to dispatch (the transition from READY state to RUNNING state) or when to preempt
the task that is executing (the transition from RUNNING state to READY state). These decisions
affect the overall performance of the system, both throughput and response to external events.

POLICIES AND MECHANISMS

Because of the difficulty of establishing an effective policy for dispatching and preemption decisions,
it is desirable to clearly separate mechanisms from policies. The only control an operating system can
exercise over tasks is deciding which task to execute and how long to let it run before changing to
another task. The scheduling mechanisms must exert such control in a manner that the policies can
adjust. For example, to control how long a task executes, the scheduler implements a mechanism for
preempting the task after a certain time period has elapsed. The mechanism consists of an interval
timer (such as Intel's 8254 Programmable Interval Timer) that interrupts the executing task periodi­
cally so that the operating system can determine whether the task has yet exceeded the time-slice
allocated to it. The length of the time-slice is a variable that the policy layer can control. The policy
layer sets the length of the time-slice to reflect the importance of the task.

The separation of policy and mechanism applies as well to deciding which task to execute next. For
example, the scheduling mechanism associates a priority number with each task. When changing tasks
it always chooses the task with highest priority. The priority, however, is a variable, and the policy
layer determines its value.

For the policy layer to make reasonable decisions about scheduling, the mechanism layer may need to
collect statistics about the run-time behavior of tasks, for example:

• Elapsed time in the system

• Total of actual time serviced by processor

• Running average of actual length of time-slice

(Note that interrupt-scheduled tasks subtract from the time allocated to software-scheduled tasks.)

The privilege levels of the iAPX 286 architecture can support the separation between mechanisms and
policies. The mechanisms belong to the kernel of the operating system, and as such they should be well
tested, highly reliable, and not subject to frequent change; in other words, they are good candidates
for PL O. Policies, on the other hand, are subject to frequent change and, as a result, are less reliable.
Running scheduling policies at PL I ensures that errors cannot corrupt kernel procedures.

4-9 121960-001

TASK MANAGEMENT

SCHEDULING POLICIES

The actual implementation of scheduling policies depends on the needs of the application and the
behavior of the tasks in the system. Consider a simple policy that

• Gives all tasks equal priority

• Allocates the processor once to each task in turn

• Allocates the same maximum time-slot to each task

Even this seemingly "fair" policy actually favors certain tasks over others. A task that frequently
relinquishes the processor voluntarily (because, for example, it frequently has to wait for I/O) rarely
uses the full time-slot. A "processor-bound" task (for example, a computational task that uses many
instructions to accomplish its purpose but rarely does I/O), on the other hand, almost always uses the
full time-slot, forcing the operating system to preempt it. Over a period of many time-slots, processor­
bound tasks will receive much more attention from the processor than I/O-bound tasks. Whether this
situation is desirable depends on the roles of the tasks in the application.

Attempting to discriminate against processor-bound tasks by introducing a priority mechanism can
result in different problems. Suppose all I/O-bound tasks have higher priority than all processor-bound
tasks. At the end of a time-slice or when a task voluntarily gives up the processor, the scheduler switches
to one of the higher-priority tasks if one is ready; if none is ready, it switches to one of the lower­
priority tasks. The problem occurs when there is a such a number of I/O-bound tasks that at least one
of them is always ready. In this case, the lower-priority, processor-bound tasks never execute.

Many more scheduling policies than those outlined here are possible. The examples given merely illus­
trate how important it is that the characteristics of the tasks in the system be known and that the
policies match those characteristics. Refer to Coffman and Denning (see "External Literature" in the
Preface) for a survey of these and other policies.

Structuring Task Information

If your operating system is to manipulate tasks efficiently, you must structure task-related information
so that the operating system can get the information it needs as quickly as the application requires.
The processor implements part of this structure through interlocking links in the GDT, LDT, and TSS.
In addition to this structure, the operating system must deal with additional state information, which
might include

• The data-segment alias to the task's LDT

• The data-segment alias to the task's TSS

• Scheduling state

• Scheduling parameters (for example, time-slice, priority)

• Scheduling statistics (for example, total processor time used, average time-slice used, expected
running time)

• Links for queues of waiting and ready tasks

4-10 121960-001

TASK MANAGEMENT

This additional state information is referred to here as the task database (TDB). There are two common
modes of access to the task database:

1. From within the current task to information about the current task. Most operating system services
use this mode of access, including the scheduler's time-slice interrupt procedure.

2. From within the current task to information about other tasks. The scheduler uses this mode of
access to find the next task to execute.

ACCESS MODE 1

Access mode 1 can be efficiently implemented via the GDT. All descriptors for the key segments
relating to one task reside in adjacent GDT slots. If the operating system can locate one of these
descriptors (as by using the STR instruction to obtain a selector to the current TSS), then it can locate
any of the others by a simple addition or subtraction. Figure 4-5 suggests one possible way of organiz­
ing the TDB. In this example the TDB is stored in a data structure called the task information block
(TIB).

In large systems you may need to minimize the number of GDT slots used for task information, so as
not to unduly limit either the number of tasks or the number of other descriptors that GDT can hold.

TIB

GOT
I
I
I
I
I
I
I
I
I LOT

TIB

LOT ALIAS ... -
LOT ..
~ TSS ALIAS ...

TSS ... ~\
I
I I
I I
I I I
I I
I I
I I

\ TSS ,
'--- ... LOT SELECTOR

- 121960-24

Figure 4-5, Task Information Structure A

4-11 121960-001

TASK MANAGEMENT

The example in figure 4-5 illustrates the general case in which all the pertinent information is in separate
segments. This case uses five GDT slots. You can free one GDT slot by including the TSS within the
TIB. The TIB descriptor can serve as the data-segment alias for the TSS. Figure 4-6 illustrates such a
configuration.

Speed of access to the TDB is critical in some applications. Figure 4-7 shows another configuration of
task information that helps improve access speed. Here the task's stack segment for PL 0 contains both
the TSS and the TIB. The advantage of this approach is that the TIB and the TSS can be addressed
relative to the base address that the processor loads into SS when transferring control to a PL-O operating­
system procedure. This eliminates the need for loading the DS or ES register to access the current
task's TSS or TIB and also frees a segment register for other use. In such a case, the SP portion of the
TSS initial stack values for PL 0 is set to an offset beyond the TIB. In many applications it is still
desirable for the GDT to hold a descriptor for the TIB so as to facilitate access to TIBs for tasks other
than the current one.

ACCESS MODE 2

When the scheduler is dispatching a different task, it needs quick access to the queues of waiting and
ready tasks. If the links that implement these queues thread through the many segments that contain
TIBs, the time needed to search and update the queues is extended by the time needed to load a

LOT

GOT

bf TIB
LOT ALIAS -
LOT -
TSS -~ - TSS
TIB 1\ , I- LOT SELECTOR

"'-

'--
121960-25

Figure 4-6. Task Information Structure B

4-12 121960-001

TASK MANAGEMENT

LOT

D
PRIVILEGE·LEVEL ZERO

STACK SEGMENT

LOT ALIAS - STACK

~
LOT

TSS --....'
TIB SP

TIB .. TSS I
) LOT SELECTOR

SS

{ j ~
~

121960·26

Figure 4-7. Task Information Structure C

segment register for each segment visited. This suggests that these queues all reside together in a
separate scheduler queue segment. A pointer in each queue element can refer back to the correspond­
ing task. Figure 4-8 illustrates such a structure.

EXAMPLE OF A DISPATCHER

The process of changing a READY task to RUNNING state is known as "dispatching." Figure 4-9
shows a simple dispatching procedure. This procedure executes at PL 0 in the task that calls it. No
call gate is provided, so only other operating system procedures can call DISPATCHER; for example,
a procedure that switches the calling task to WAITING state, or a timer interrupt procedure that
determines when to preempt the task that it interrupts.

The DISPATCHER procedure is coded in ASM286 instead of PL/M-286 because it is more conveni­
ent to code an indirect, intertask JMP instruction in ASM286. DISPATCHER makes two assumptions
about the rest of the operating system that justify the use of an intertask JMP instead of an intertask
CALL:

• A task can call operating system procedures that change it from RUNNING state, so a task does
not need to execute an IRET for that purpose.

• The operating system procedure that calls DISPATCHER may set the TSS back link so as to
intercept an IRET if the task executes one. (When the operating system dispatches a task, it does
not make sense for an IRET to return to the previously executing task. That task may, for example,
be waiting for an event and not be ready to execute.)

4-13 121960·001

TASK MANAGEMENT

SCHEDULER QUEUE SEGMENT GDT

QUEUE ELEMENTS
READY QUEUES

BY PRIORITY

I ~'\ ~
==TASKA=

I A : ,...--
I PRIORITY 1 I I ,4 f...---' ==TASKB ==

14 I B 1-- ==TASKC ==

14

~
I j

!t /

~TASKD==

J I C t= TASKE ==
~1 / I PRIORITY 2 I I

/ 1 I D r
11

,/ /
t==TASKF ==

.1
WAITING QUEUES I E 1/ BY EVENT

+1
/

== TASKG ==
I I I I F

H~V I G

121960-52

Figure 4~8. Scheduler Queue Segment

4-14 121960-001

TASK MANAGEMENT

iAPX286 MACRO ASSEMBLER 960-503 04/22/83 PAGE

SERIES-III iAPX286 MACRO ASSEMBLER Vl.0 ASSEMBLY OF MODULE DISPATCHER
OBJECT MODULE PLACED IN :F5:0ISP.OBJ
ASSEMBLER INVOKED BY: ASM286.86 :F5:DISP.ASM

LOC OBJ

-0004 [J
-0002 [J
-0004 [J

0000

0000 C8040000
0004 FA
0005 9A0000---- E
000A 300000
0000 740B

OOOF 8946FE
0012 C746FC0000
0017 FF6EFC

001A
001A FB
001B C9
001C C3

LINE

1 +l
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

SOURCE

TITLE ('960-503')

NAME DISPATCHER
EXTRN DEQUEUE READY: FAR
PUBLIC 01 SPATCHER

STACK STACKSEG 4

TSS PTR EQU
TSS-SEL EQU
TSS=OFFSET EQU

DISPATCHER PRoe

D EXIT:

ENTER
CLI
CALL
CMP
JE

MOV
MOV
JMP

- STI

LEAVE
RET

DISPATCHER ENDP

OWORD PTR [BP-4 J
';ORO PTR [BP-2 J
WORD PTR [BP-4 J

SEGMENT ER PUBLIC

NEAR

4,0

DEQUEUE READY
AX,0
o EXIT

TSS SEL, AX
TSS-OFFSET, (3

TSS=PTR

WE'LL FORM POINTER ON STACK

RETURNS SELECTOR IN AX TO TSS
SAME TASK?
JUST RETURN

FORM PO INTER
NOT USED ANYWAY
TASK SWITCH

WHEN THIS TASK EVENTUALLY REGAINS CONTROL,
IT RESUMES EXECUTING HERE, SINCE THE OFFSET
OF THIS INSTRUCTION WAS THE LATEST VALUE IN
THE IP REGISTER FOR THIS TASK

35 NUCLEUS CODE ENDS
*** WARNING #160, LINE #35, SEGMENT CONTAINS PRIVILEGED INSTRUCTIONS

36 END

ASSEMBLY COMPLETE, WARNING, NO ERRORS

Figure 4-9. Dispatcher Example

4-15 121960-001

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

I
I

I

I
I
I
I

Data Sharing, Aliasing,
and Synchronization 5

CHAPTER 5
DATA SHARING, ALIASING, AND SYNCHRONIZATION

Even the simplest multitasking applications present a need for sharing data among tasks. In fact,
examples presented in earlier chapters of this book have used data sharing, as in the example proce­
dures in Chapter 3 that manipulate the free space list. For simplicity, these examples. have avoided
many of the implications of data sharing. However, sharing data among tasks is a complex activity
that offers many opportunities for one task to cause another to fail. Therefore, for the protection of the
system as a whole, .the operating system mu~t provide services that promote reliable data sharing.

DATA-SHARING TECHNIQUES

The architecture of the iAPX 286 allows segments to be shared among tasks through several mecha~
nisms. Each mechanism has different advantages and disadvantages, and requires different degrees of
support from the operating system.

Note that while the primary subject of this chapter is data sharing, these segment-sharing techniques
apply as well to code segments.· .

Sharing via the GDT

All tasks in the system can access a segment whose descriptor resides in the GDT. This mode of sharing
is especially useful for operating-system databases. Many operating-system procepures can be called
from any task; they can access system data only if that data resides in segments accessible to every
task.

Normally, the system designer decides in advance which descriptors are to reside in the GDT and
which in LDTs, and uses the Builder to install them in the appropriate descriptor table. The only
support required from the operating system is to provide synchronization for access to the shared data.

It is not always desirable to use GDT descriptors for sharing segments that only a few tasks use. A
segment that has a descriptor in the GDT is accessible by all tasks, and exposing it to access from
unrelated tasks may compromise the system's protection goals. Deletion of GDT descriptors may have
unknown effects, because it is diffucult to control usage of GDT descriptors. GDT space may be needed
for other purposes.

Sharing via Common LDT

When two (or more) tasks share most of the segments accessible to either one, then it is feasible for
them to actually use that same LDT. Figure 5-1 illustrates how to share an LDT by placing the GDT
selector of the LDT in the LDT field of the TSS of each task.

LDT sharing is appropriate if the sharing tasks are designed to cooperate, and if you are willing to take
the risk that a failure in one task might adversely affect the other tasks that use the same LDT.

5-1 121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

Figure 5-1. Segment Sharing via Common LOT

Sharing via Aliases

When tasks need to share simultaneously some, but not all, segments with selected other tasks, then
aliasing is an appropriate method. As figure 2-15 illustrates, each task that shares a segment has a copy
of the descriptor for that segment in its LDT. The term alias is used when there are multiple descrip­
tors for a segment because each descriptor provides an alternate name for the segment. Not all the
aliases for one segment need to be identical. Aliases may, for example, have different type or different
access rights.

Descriptor manipulation must be restricted to privilege level 0 (PL 0), but procedures at any privilege
level can benefit from aliasing. Therefore, the operating system must provide high-level interfaces that
cause creation and deletion of aliases. The operating system makes copies of descriptors for the shared
segments and installs the copies in the LDTs of the sharing tasks (or possibly at other slots in the
GDT). The operating system must strictly control which tasks may receive copies of which descriptors.
The presence of multiple copies of a segment's descriptor creates additional complexities for the
operating system when it relocates, deletes, or otherwise modifies the segment.

Bewareo'f the confusion that can arise when tasks share data structures that contain selectors to alias
descriptors. Task A may find a selector that points to a slot in Task B's LDT. Nothing prevents Task

5-2 121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

A from using the selector to reference its own LDT, but if it does so, the selector will likely refer to
the wrong descriptor. One way to avoid this potential problem is by reserving the same slot position in
the LDTs of all sharing tasks.

ALIAS MANAGEMENT

In any system that uses aliases for segment sharing, the operating system must ensure that all the
aliases for a given segment remain consistent in spite of changes to the segment. The operating system
may relocate a segment, transfer it to or from secondary store, or delete the segment. If allowed to use
a descriptor that had not been updated to reflect any of these changes, a task would fail and might
cause other tasks to fail. Therefore, an operating system must implement a means to find and update
all aliases for a segment when it changes anyone of the aliases.

Alias Database

Figure 5-2 shows an example method for locating aliases. This method maintains a header block for
each segment that has aliases. Pointers to all the aliases for that segment are linked to the header. As
long as the entire list does not span more than one segment, the link fields (FIRST, LAST, NEXT,
PRIOR, and HEADER) need only contain offsets. The doubly linked list shown here aids dynamic
creation and deletion of alias pointers; for static systems, a singly linked list would suffice.

In addition to the FIRST and LAST links, the list header contains that segment information that might
change but that must remain consistent in all the aliases of a segment. Operating-system operations on
segments demand that the segment base address and the present bit be consistent. Furthermore, any
interrogation of the accessed bit for a segment demands that the accessed bits in all the aliases be
ORed together. This example assumes that the operating system does not permit creation of aliases
with differing limit or expansion direction.

When a task that has a selector for an alias descriptor calls on operating system functions that make
changes to segment attributes, those changes must be broadcast to all other aliases for the segment.
Therefore, the operating system must have a means, given. any descriptor, to find the alias list that
includes that descriptor. Figure 5-3 illustrates one technique for doing this. Each descriptor table has
a parallel table of pointers to alias list headers. The index in a selector that locates a descriptor in the
descriptor table also locates a pointer in the parallel table. A descriptor that has no alias has a null
entry in the corresponding position in the parallel table. For applications in which aliases are few, you
can employ a hashing algorithm to reduce the number of entries in the parallel table.

Alias Procedures

Implementation of procedures for alias management for the 80286 is a straightforward application of
list processing algorithms and therefore is not illustrated here. At a minimum, the operating system
should provide a CREATE_ALIAS procedure and a DELETE_ALIAS procedure. .

The operating system must enforce a correspondence between the existence of descriptors for a segment
and the existence of the segment itself. A segment must always have a descriptor, and an active
descriptor must always point to a valid segment. A convenient way to enforce these rules is to permit
only the DELETE_ALIAS procedure to call the segment FREE procedure. DELETE_ALIAS should
cause deletion of a segment only when the last descriptor for the segment has been deleted.

Creating an alias is only the first step toward segment sharing. The CREATE_ALIAS procedure can
only create an alias for a segment that is accessible to the task that calls CREATE_ALIAS. The next

5-3 121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

TABLE

SLOT

NEXT

PRIOR

HEADER

LINKED LIST OF POINTERS TO ALIAS DESCRIPTORS
FOR ONE SEGMENT

SEGMENT HEADER

STATUS

------- IJ

765432

ACCESSED
PRESENT __ ---I

Figure 5-2. Alias List

121960-29

step toward segment sharing is to pass the alias to another task. This subject is taken up in a later
section of this chapter, "Message Passing."

SYNCHRONIZATION

Consider the example of a memory manager given in Chapter 3. While a memory management proce­
dure manipulates the links that manage free space, there are instants when the data in the links is
temporarily inconsistent (for example, the next-pointer in one segment has been set, but the previous­
pointer in the next segment has not yet been updated). If the processor interrupts the task in which the
memory-management procedure is running to run another task (or even another procedure in the same
task) and if the new task (or procedure) calls the memory manager, then the the memory manager is
likely to behave incorrectly.

For the protection of the system, the operating system must prevent such forms of incorrect function
in its own logic and must provide synchronization operations that enable application logic to avoid such
failures as well.

5-4 121960-001

inter DATA SHARING, ALIASING, AND SV!'IICHRONIZATION

DESCRIPTOR
TABLE

INDEX
FROM

SELECTOR

POINTER
TABLE

J---------t 1 r===:l--

DESCRIPTOR
TABLE

INDEX
FROM

SELECTOR

POINTER

POINTER
TABLE

~11--------t
POINTER

ALIAS LISTS

~------------------------------

HEADER
D 0--------0

D
~-----------------------------,

D 0---------0
HEADER

o
r-----------------------------, I
I
I
I
I
I HEADER
I
I
I
I
I
D

D 0-,.-------0
L ____________________________ _

121960-31

Figure 5-3. Identifying Alias List

Low-Level Mutual Exclusion

The most basic form of synchronization is control over critical sections. A critical section is a sequence
of instructions that operates on shared resources in such a way that errors could result if another
sequence of instructions operated on the same resources within the same time span. Any means that
prevents any two critical sections from overlapping in time would prevent such errors. In a single­
processor system, only an interrupt can cause the operations of one critical section to interleave with
those of another. Disabling interrupts provides the necessary mutual exclusion.

Procedures that disable interrupts to provide mutual exclusion must adhere to certain rules:

Determine the maximum permissible delay for servicing an interrupt, and do not code a critical
section that takes more time.

• Avoid causing a fault that might keep interrupts disabled for a longer time than permissible_

5-5 121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

• Do not nest critical sections; there is only one intetruptflag.

• Do not switch tasks; doing so may enable interrupts.

Disabling interrupts as a means to provide mutual exclusion is not a generally applicable technique.
The rules above are too restrictive for many situations, and the CLI and STI instructions for disabling
and enabling interrupts are restricted to procedures whose CPL does not numerically exceed IOPL.
An operating system can, however, use this technique for its own short-term, high-speed exclusion
requirements and as the basis for more general synchronization operations.

High~Level Mutual Exclusion

A more generally applicable form of mutual exclusion must permit interleaving (via interrupts and
software task switching) of unrelated critical sections.

SEMAPHORE DATA STRUCTURE

.Figure 5-4 illustrates an example data structure for implementing a general purpose form of control
over critical sections: binary semaphores. The semaphore structure consists of a counter and a queue.
Every shared resource subject to the effects of contention needs one semaphore structure to provide
mutual exclusion for the tasks using the resource.

The value of the counter is one minus the number of tasks waiting at the semaphore. A value of one
indicates that the semaphore is available; a value of zero indicates the the semaphore has been acquired

SEMAPHORE

COUNTER

QUEUE
POINTER

SCHEDULER QUEUE SEGMENT

r---------------------------,
I

HEAD OF I
QUEUE I

I
I

I
I
I
I
I ___________________________ J

Figure 5-4. Semaphore Structure

5-6

TO TASK
ENTRIES
INGOT

121960-28

121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

but no other tasks are waiting for the semaphore; a negative value indicates that some tasks are queued,
waiting for the semaphore to be released. The queue is circular so that the pointer to the head of the
queue also identifies the tail of the queue.

Semaphore structures may be stored individually in separate segments or may be stored together in
one or more segments. In the latter case the operating system must provide a means for identifying
individual semaphores within a segment. Storing the semaphore counter in a segment by itself yields
two important advantages:

• The processor can individually protect each semaphore.

• The selector of the descriptor for the semaphore segment serves as a convenient identifier for the
semaphore.

Semaphore structures are sensitive data that must be cloistered behind the level 0 protection wall.
Semaphores may reside either in the GDT or in the LDTs of the tasks that use them. The same
considerations apply as for shared data segments.

SEMAPHORE-MANAGEMENT PROCEDURES

The minimum set of operating-system procedures needed to use semaphores includes

• WAIT_SEMAPHORE to acquire a semaphore if it is not already acquired

• SIGNAL_SEMAPHORE to signal departure from a critical section

Dynamic systems may also need to define semaphores dynamically with procedures such as

• CREATE_SEMAPHORE for setting up a new semaphore structure

• DELETE_SEMAPHORE to eliminate a semaphore structure that is no longer needed

The operating system's responsibilities in managing binary semaphores include

• Ensuring that no more than one task holds a semaphore

• When a task requests a semaphore that has not been signalled, placing the task in a waiting queue,
and dispatching another task

• When a task signals a semaphore, awakening the next task in the waiting queue for that semaphore
and placing it in the ready queue

• Preventing or being prepared to handle any deadlock that may result from using semaphores

Figure 5-5 shows simple examples of how to use a low-level synchronization technique to implement'
WAIT_SEMAPHORE and SIGNAL_SEMAPHORE procedures. These procedures must run at
PL 0 to access the semaphore structures. With segment descriptors in the GDT and with call gates at
PL 3, any procedure in the system can call these synchronization primitives.

5-7 121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

PL/M-286 COMPILER 960-504 date PAGE 1

system-I 0 PL/M-286 Vx.y COMPILATION OF MODULE SEMAPH
OBJECT MODULE PLACED IN :Fl:SEMAPH.OBJ
COMPILER INVOKED BY: PLM286.86 :Fl:SEMAPH.PLM DEBUG

1

2
3

4
5
6

7
8
9

11

12

13

14

15
16
17
18
19
20
21
22

23

1
2

1
2
2

1
2
2

1

1

1

2

2

2
2
2
2
3
3
3
3

2

$ PAGEWIDTH(71) TITLE('960-504') INCLUDE (:Fl:NUCSUB.PLM)
$ NOLIST

SEMAPH: DO;

/***'**/
/* Externals */

DISPATCHER: PROCEDURE EXTERNAL;
END DISPATCHER;

ENQUEUE WAIT: PROCEDURE(QUEUE ID) EXTERNAL;
DECLARE QUEUE ID SELECTOR;

END ENQUEUE_WAIT;

DEQUEUE WAIT: PROCEDURE(QUEUE ID,EXCEP P) EXTERNAL;
DECLARE QUEUE ID SELECTOR, EXCEP P POINTER;

END DEQUEUE_WAIT; -

/***/
/* Semaphore Data Structures */

DECLARE SEMAPHORMAT LITERALLY
'FILLER (2) WORD,
COUNTER WORD';

DECLARE OK LITERALLY '0';

/***/
/* Test a semaphore; wait if not set */

WAIT SEMAPHORE: PROCEDURE (SEMAPH ID, EXCEP P)
PUBLIC-REENTRANT;

DECLARE SEMAPH ID SELECTOR,
SEMAPH-BASED SEMAPH ID STRUCTURE(SEMAPHORMAT);

DECLARE EXCEP P
EXCEP-BASED EXCEP P

POINTER,
WORD;

DISABLE;
SEMAPH.COUNTER=SEMAPH.COUNTER-l;
IF ZERO /* Test the zero flag. */

THEN /* Semaphore was set. */ DO;
ENABLE;
EXCEP=OK;
RETURN;

END;

/* Semaphore is not set; this task must wait. */
CALL ENQUEUE_WAIT (SEMAPH 10);

Figure 5·5. Semaphore Example

5-8 121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

PL/M-286 COMPILER 960-504 date

24
25

26

2
2

2

ENABLE;
CALL DISPATCHER;

END WAIT_SEMAPHORE;

PAGE 2

/***/
/* Set a Semaphore * /

27

28

29

30
31
32
33
34
35
36
37

38
39
40
41

42

1

2

2

2
2
2
2
3
3
3
3

2
2
2
2

2

SIGNAL_SEMAPHORE: PROCEDURE (SEMAPH 10, EXCEP P)
PUBLIC REENTRANT;

DECLARE SEMAPH 10 SELECTOR,
SEMAPH-BASED SEMAPH 10 STRUCTURE{SEMAPHORMAT);

DECLARE EXCEP P POINTER,
EXCEP-BASED EXCEP P WORD;

DISABLE;
SEMAPH.COUNTER=SEMAPH.COUNTER+l;
IF NOT (ZERO OR SIGN) /* Test flags. */

THEN /* No one is waiting at this semaphore. */ DO;
ENABLE;
EXCEP=OK;
RETURN;

END;

/* Someone is waiting at this semaphore. */
CALL DEQUEUE WAIT (SEMAPH 10, @EXCEP);
ENABLE; - -
CALL DISPATCHER;
EXCEP=OK;

END SIGNAL_SEMAPHORE;

/**********************~****************************** **/

43 1 END SEMAPH;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
107 LINES READ
o PROGRAM WARNINGS
o PROGRAM ERRORS

DICTIONARY SUMMARY:

91KB MEMORY AVAILABLE

0liJ84H
0liJ00H
0000H
0010H

4KB MEMORY USED (4%)
0KB DISK SPACE USED

END OF PL/M-286 COMPILATION

1320
00
00

160

Figure 5-5. Semaphore Example (Cont'd.)

5-9 121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

OTHER FORMS OF SYNCHRONIZATION

You may wish to implement other forms of synchronization; for example:

• Conditional variation of WAIT_SEMAPHORE that does not force a task to wait when the semaphore
has not been signalled.

• Timed waiting, so that a task can be awakened if the semaphore is not signalled within a reasonable
time. (This helps guard against deadlocks.)

• An extension of the semaphore concept known as a region. A region is similar to a semaphore except
that only the task that acquires a: region can release (signal) it, and a task that holds a region cannot
be suspended.

MESSAGE PASSING

Message passing is a general purpose means for transferring data from the address space of one task
to the address space of another, cooperating task. There are two aspects to the technique:

• Transferring data from a segment in one task's address space into a segment in the receiving task's
space

• Transferring a segment from one task's space into another's

The first case is suitable for passing relatively small amounts of data, such as parameters, information
describing events, etc. The second case has two primary applications:

• For transferring large "consumable resources" such as I/0 buffers

• For transferring aliases that implement the previously described method of "sharing via aliases"

When an alias is passed as part of a message, the operating system installs the alias in a descriptor­
table slot determined by the receiving task.

Message-Passing Example

Figure 5-6 shows an example data structure for implementing a simple form of message passing. This
structure defines a mailbox, a queue of tasks waiting for messages from the mailbox, and a queue of
undelivered messages. The system may contain one mailbox for every communication channel between
tasks. For simplicity, this example assumes that the format of messages for all mailboxes is the same,
consisting of a fixed-length data item and two descriptors.

If each mailbox resides in a unique segment, then these advantages result:

• Mailboxes are protected from operations on other mailboxes.

• A selector can serve as the identifier of a mailbox.

Only the sending and receiving tasks need access to a mailbox; therefore, the appropriate tables for
descriptors for mailbox segments are the LDTs of each of the tasks that share a mailbox. All tasks can
share a global mailbox, however, if its descriptor is in the GDT. The DPL for all mailbox segments
should be zero to prevent procedures outside the operating system from interfering with message passing.

Mailboxes require at least two procedures: SEND_MESSAGE and RECEIVE_MESSAGE. Figure
5-7 shows examples of these .procedures. Both procedures must run at PL 0 to access level-O mailbox

5:-10 121960·001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

MAILBOX

TASK QUEUE
POINTER

HEAD OF
MESSAGE

QUEUE

TAIL OF
MESSAGE

QUEUE

SCHEDULER QUEUE SEGMENT r---------------------------,

HEAD OF
QUEUE

QUEUE I
ELEMENTS I

I
I

TO TASK

L!.I.r1.)..LL...::t-1-- ENTRIES
INGOT

I
I
I
I
I
I
I
I I L ___________________________ J

QUEUE OF UNDELIVERED MESSAGES

r---------------------------,

NEXT DATA DESCRIPTORS

I L ___________________________ J

Figure 5-6. Mailbox Structure

5-11

121960-33

121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

segments. If there are call gates in the GDT at PL 3, then these procedures are accessible to all other
procedures in the system.

SEND_MESSAGE fills a message with the specified data and descriptors, removes the descriptors
from the descriptor table, and links the message at the tail of the message queue. If a task is waiting
at the mailbox, SEND_MESSAGE causes it to be linked into the ready queue so that it will find the
message the next time it is scheduled to run.

If RECEIVE.-MESSAGE finds no messages waiting at the mailbox, then it links"the task into a waiting
queue. The task queue threads through the task database. The task will continue executing when another
task sends a message to the mailbox. If (or when) a message is waiting, RECEIVE_MESSAGE writes
the data portion of the message at a specified location in the receiving task's space and installs the
descriptor portion in specified slots in one of the receiving task's descriptor tables (GDT or LDT).

These examples do not include management of space and queues for messages because conventional
algorithms apply. .External procedures GELMSG~PACE, ENQUEUE_MESSAGE,
DEQUEUE_MESSAGE, and FREE_MSG_SPACEprovide these functions.

Special handling is required to accommodate the fact that a descriptor in a message is temporarily not
in any descriptor table. There are two cases to consider: .

• The descriptor is the sole descriptor for the segment. In this case, no changes can be made to the
segment because it is temporarily inaccessible. You should take care that no failure in the commu­
nication process causes the descriptor to become lost. A memory area without a descriptor cannot
be freed.

• The descriptor is an alias (Le., one of several descriptors for the same segment). Since the segment
is (presumably) accessible via the other aliases, it is possible for some task to request some operation
on the segment during the time the descriptor in the. message is absent from any descriptor table.
Normally, the operating system updates all aliases when it makes any major changes to a segment
(for example, relocation or swapping to secondary storeJ~ This is not possible (given the aliasing
scheme previously presented in this chapter) when the alias is not in a descriptor table. To solve the
problem, this example assumes there are two procedures;

a. DISABLRALIAS..YTR that marks the alias list element to indicate to the alias manager that
the alias is in a mailbox

b. FI~LIAS..YTR that, when the message is delivered, updates the alias pointer with the new
location of the alias and with any segment information that may have changed while the alias
was absent from the alias list.

Dynamic systems may need to create and delete mailboxes dynamically. The only difficulty in creating
a mailbox is ensuring that no task uses it while it is being constructed. (The next section considers this
problem.) To delete a mailbox the operating system must awaken any tasks that are waiting for messages,
delete any descriptors (aliases) that reside in undelivered messages, and delete the undelivered messages
themselves.

The operating system may, as part of the process of task creation, give each task at least one mailbox.
If the mailbox feature is the only means of passing aliases among tasks, a task cannot receive an alias
for a mailbox unless it already has a mailbox. Some operating system designs may require every task
to have a mailbox for such purposes as receiving memory segments from the memory-allocation module.

5 12 121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

PL/M-286 COMPILER 960-508 date PAGE 1

system-ID PL/M-286 Vx.y COMPILATION OF MODULE MAILBOX
OBJECT MODULE PLACED IN :Fl:MBOX.OBJ
COMPILER INVOKED BY: PLM286.86 :Fl:MBOX.PLM DEBUG

1

2 1

3 1
4 2
5 2

6 1
7 2

8 2

9 1
10 2

II 2

12 1
13 2

14 1
15 2
16 2

17 1
18 2
19 2

213 1
21 2
22 2

23 1
24 2
25 2

26 1
27 2
28 2

$ PAGEWIDTH(71) TITLE('9613-5138') INCLUDE (:Fl:NUCSUB.PLM)
$ NOLIST

MAILBOX: DO;

/***/
/* Definitions */

DECLARE FAILED LITERALLY 'S13130H',
OK LITERALLY '13';

/***/
/* Externals */

NULLIFY: PROCEDURE (SLOT) EXTERNAL;
DECLARE SLOT SELECTOR;

END NULLIFY;

STORE DESCR: PROCEDURE (SLOT,PTR) EXTERNAL;
DECLARE SLOT SELECTOR,

PTR POINTER;
END STORE_DESCR;

LOAD DESCR: PROCEDURE(PTR,SLOT) EXTERNAL;
DECLARE PTR POINTER,

SLOT SELECTOR;
END LOAD _DESCR;

DISPATCHER: PROCEDURE EXTERNAL;
END DISPATCHER;

ENQUEUE WAIT: PROCEDURE(QUEUE ID) EXTERNAL;
DECLARE QUEUE ID SELECTOR; -

END ENQUEUE_WAIT;

DEQUEUE WAIT: PROCEDURE(QUEUE ID, EXCEP P) EXTERNAL;
DECLARE QUEUE ID SELECTOR, EXCEP P POINTER;

END DEQUEUE_WAIT; -

DISABLE ALIAS PTR: PROCEDURE(SLOT) EXTERNAL;
DECLARE SLOT-SELECTOR;

END DISABLE_ALIAS_PTR;

FIX ALIAS PTR: PROCEDURE (ALIAS_LIST_ID) EXTERNAL;
DECLARE ALIAS LIST ID POINTER;

END FIX_ALIAS_PTR; -

GET MSG SPACE: PROCEDURE(BOX ID,MSG P P,EXCEP P)EXTERNAL;
DECLARE BOX ID SELECTOR, (MSG_P_P~ EXCEP_P)-POINTER;

END GET_MSG_SPACE;

Figure 5·7. Example of Mailbox Procedures

5-13 121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

PL/M-286 COMPILER 960-508 date PAGE 2

29
30

31

32
33

34

35

36
37

38

39

40

41

42

43

44
45
46
47
48
49

50
51
52
53
54
55

1
2

2

1
2

2

1

2
2

1

1

1

2

2

2

2
2
2
3
3
3

2
2
2
2
3
3

FREE MSG SPACE: PROCEDURE(BOX ID,MSG PTR) EXTERNAL;
DECLARE-BOX ID SELECTOR, -

MSG-PTR POINTER;
END FREE_MSG=SPACE;

ENQUEUE MESSAGE: PROCEDURE(BOX ID, MSG_PTR) EXTERNAL;
DECLARE BOX ID SELECTOR, -

MSG PTR POINTER;
END ENQUEUE_MESSAGE;

DEQUEUE_MESSAGE: IlROCEDURE(BOX_ID, MSG P P, EXCEP P)
EXTERNAL;

DECLARE BOX ID SELECTOR, (MSG P P, EXCEP_P) POINTER;
END DEQUEUE_MESSAGE; - -

/***/
/* Mailbox Data Structures */

DECLARE MDATA SIZE LITERALLY 146 I ;

DECLARE MESSAGE FORMAT LITERALLY -, MDATA (MDATA SIZE) BYTE, -DESCRl (4) WORD,
DESCR2 (4) WORD' ;

/***/
/* Send Message via Mailbox */

SEND MESSAGE: PROCEDURE(BOX ID, MDATA PTR, SLOT1, SLOT2,
EXCEP _P) PUBLIC REENTRANT;

DECLARE BOX ID SELECTOR,
MDATA PTR POINTER,
(SLOTl, SLOT2) SELECTOR;

DECLARE EXCEP P
EXCEP- BASED EXCEP P

DECLARE MSG PTR POINTER,

POINTER,
WORD;

MESSAGE BASED MSG PTR STRUCTURE
(MESSAGE_FORMAT);

CALL GET MSG SPACE(BOX ID, @MSG PTR, @EXCEP);
IF EXCEP=FAILED THEN /* the box-is full of messages */

DO;
CALL DISPATCHER;
RETURN;

END;
/* The next statement will cause an exception if the

segment containing the data is not present.
Therefore interrupts are enabled. */

CALL MOVB (MDATA PTR,@MESSAGE.MDATA,MDATA SIZE);
IF SLOT1=SELECTOR$OF (NIL) -

THEN MESSAGE.DESCR1(2)=0; /* Mark as null */
ELSE DO;

CALL STORE DESCR(SLOT1,@MESSAGE.DESCR1);
CALL DISABLE_ALIAS_PTR(SLOT1);

Figure 5·7. Example of Mailbox Procedures (Cont'd.)

5-14 121960-001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

PL/M-286 COMPILER 961J-51J8 date PAGE 3

56
57
58
59
61J
61
62
63
64
65
66
67
68
69
71J

71

72

73

74

75

76

77
78
79
81J
81
82
83
84
85

86
87
88
89
91J
91
92
93
94

3
3
2
2
2
3
3
3
3
2
2
2
2
2
2

2

1

2

2

2

2

2
2
2
3
3
3
3
3
2

2
2
2
3
3
3
2
2
3

CALL NULLIFY(SLOT1);
END;,

IF SLOT2=SELECTOR$OF(NIL)
THEN MESSAGE.DESCR2(2)=IJ; /* Mark as null */
ELSE DO;

CALL STORE DESCR(SLOT2,@MESSAGE.DESCR2);
CALL DISABLE ALIAS PTR(SLOT2);
CALL NULLIFY(SLOT2);

END;
DISABLE;
CALL ENQUEUE MESSAGE(BOX ID, MSG PTR);
CALL DEQUEUE-WAIT(BOX ID~@EXCEP);
ENABLE; - -
CALL DISPATCHER;
RETURN;

END SEND_MESSAGE;

/***~*** **/
/* Receive Message from Mailbox */

RECEivE_MESSAGE: PROCEDURE (BOX ID, MDATA PTR, SLOT1,
SLOT2, EXCEP=P) PUBLIC-REENTRANT;

DECLARE BOX ID
MDATA PTR
(SLOTI, SLOT2)

SELECTOR,
POINTER,
SELECTOR;

DECLARE EXCEP P POINTER,
EXCEP-BASED EXCEP P WORD;

DECLARE MSG PTR POINTER,
MESSAGE BASED MSG PTR STRUCTURE

(MESSAGE_FORMAT);

CHECK MAIL:
DISABLE;
CALL DEQUEUE MESSAGE (BOX ID, @MSG PTR, @EXCEP);
IF EXCEP=FAILED THEN /* No mail today */

DO;
CALL ENQUEUE WAIT (BOX_ID);
ENABLE; -
CALL DISPATCHER;
GOTO CHECK MAIL;

END; -
ENABLE;

/* Next statement may cause exception. */
CALL MOVB(@MESSAGE.MDATA, MDATA PTR, MDATA SIZE);
IF MESSAGE.DESCR1(2)<>1J /* Test-for null descriptor */

THEN DO;
CALL LOAD DESCR(@MESSAGE.DESCR1, SLOT1);
CALL FIX_ALIAS_PTR(@MESSAGE.DESCR1);

END;
IF MESSAGE.DESCR2(2)<>1J /* Test for null descriptor */

THEN DO;
CALL LOAD_DESCR(@MESSAGE.DESCR2, SLOT2);

Figure 5-7. Example of Mailbox Procedures (Cont'd.)

5-15 121960-001

Intel DATA SHARING, ALIASING, AND SYNCHRONIZATION

PL/M-286 COMPILER 960-508 date

95
96
97
98

99

3
3
2
2

2

CALL FIX ALIAS PTR(@MESSAGE.DESCR2);
END;

CALL FREE MSG SPACE(BOX ID,@MESSAGE);
EXCEP=OK; - -

END RECEIVE_MESSAGE;

PAGE 4

1*** **/

100 1 END MAILBOX;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
193 LINES READ
o PROGRAM WARNINGS
" PROGRAM ERRORS

DICTIONARY SUMMARY:

91KB MEMORY AVAILABLE

016EH
0000H
0000H
0020H

6KB MEMORY USED (6%)
OKB DISK SPACE USED

END OF PL/M-286 COMPILATION

366D
0D
0D

32D

Figure 5-7. Example of Mailbox Procedures (Cont'd.)

Variations on the Mailbox Theme

Some of the features appropriate for semaphores are also appropriate for mailboxes, namely:

• Conditional receive

• Timed wait

For applications in which speed is not the overriding goal, mailboxes can substitute for semaphores. A
mailbox is analogous to a semaphore, with the counter of a semaphore corresponding to the number of
messages waiting at a mailbox. A mailbox with null messages is identical in function to a semaphore.

Most applications that use mailboxes require different message formats (different data size, different
number of descriptors) for different communication channels. With dynamically created mailboxes,
message format may be defined by parameters to the creation procedure, encoded in the mailbox, and
interpreted by the SEND_MESSAGE and RECEIVE_MESSAGE procedures.

5-16 121960·001

DATA SHARING, ALIASING, AND SYNCHRONIZATION

Systems that implement "pipes" as a form of intertask communication can call mailbox procedures
from the device drivers for the pipes.

It is possible to use mailboxes as the sole means of interface between applications and operating system.
For example, the operating system has one mailbox through which it receives service requests from all
applications; each task has a mailbox through which it receives responses from the operating system.
To get more memory, a task would send a memory request message to the operating system; the operat­
ing system would return a message containing an alias 'for the allocated memory segment and install
the alias in the task's LDT. The advantage is simplicity. Only two global gates are needed: one for
SEND_MESSAGE and one for RECEIVE_MESSAGE. A task can wait for only one purpose: for a
message from a mailbox. The disadvantage is inefficiency. Any implementation of mailboxes is bound
to be less efficient than the interlevel CALL instruction normally used to communicate with an operating
system.

All of these forms of message-passing can use the primitive synchronization and descriptor-manipulation
techniques illustrated in this section.B

5-17 121960-001

Signals and Interrupts 6

'.

CHAPTER 6
SIGNALS AND INTERRUPTS

Interrupts are a mechanism long used in single-task microprocessors for reacting quickly to external
events. In the multitasking architecture of the iAPX 286, each task may have the same needs for
information about external events as the one task ina single-task system. In a multitasking system,
several generalizations of interrupts are useful:

• Some tasks may do nothing but service a specific external event. While the task waits for an event
to occur, the processor can service other tasks.

• Information about an external event must be routed to the correct task.

• Events external to a task may include events occurring in other tasks as well as events external to
the processor.

• The ability to selectively ignore events must then extend to those events occurring in other tasks.

• Each task can benefit from a vector table to automatically route information about events to the
correct handler procedures within the task.

• Scheduling of tasks that service events must be coordinated with the software scheduler, while
retaining the ability to respond rapidly to events.

The 80286 implements some of these generalizations of interrupts onto the multitasking environment,
but the operating system has responsibility for others. Not all are relevant to every application of the
80286.

INTERRUPT FEATURES OF THE iAPX 286 ARCHITECTURE

The iAPX 286 architecture includes a number of features that work together to enable efficient response
to events.

Vectoring

The processor associates each event with an identifying number in the range 0-255. The processor
recognizes three classes of events:

• External. Events occurring outside the 80286 processor's environment are communicated to the
processor via the INTR or NMI (non-maskable interrupt) pins. The NMI is interrupt 2. Other
external interrupts share the INTR pin via one or more 8259A Programmable Interrupt Controllers,
which can map each interrupt to a unique interrupt ID in the range 32-255.

• Processor. When the processor detects a condition that it cannot handle, it communicates this fact
by causing an interrupt with an ID in the range 0-16 (except for interrupt 2; which is the NMI).

• Software. Programs can generate signal events by executing the instructions INT n and INTO.
With INT n, the value of n can be any interrupt indentifier in the range 0-255. This gives software
the ability to simulate hardware interrupts as well as the ability to cause interrupts that are not
directly associatcd with hardware events. (Note that many software systems use the software inter­
rupt to call on operating-system services. With the iAPX 286, an interlevel CALL through a CALL
gate serves this purpose.)

6-1 121960·001

SIGNALS AND INTERRUPTS

When an interrupt occurs, the processor uses the interrupt identifier as an index into the interrupt
descriptor table (IDT).

Enabling and Disabling Interrupts

The interrupt flag (IF) controls whether the processor immediately reacts to external events. When
reset, IF masks out signals presented to the INTR pin. It has no effect on NMI, on processor-detected
exceptions, or on software signals (INT and INTO).

To set IF, use the STI instruction (ENABLE statement in PL/M-286); to reset IF, use CLI (DISABLE).

Interrupt Descriptor Table

The IDT associates each interrupt identifier with a descriptor for the instructions that process the
associated event. The IDT is similar to the GDT and LDTs but is different in two important respects:

• The processor references the IDT only as the result of an interrupt.

• The only descriptors permitted in the IDT are three kinds of gate descriptors: task gates, interrupt
gates, and trap gates (descriptor types 5-7, respectively).

The IDT may dwell at any location in memory. The processor locates the IDT via the IDT register.
The operating system uses the instruction LIDT (load IDT) to set the IDT register. The instruction
SIDT (store IDT) reads the contents of the IDT register. There can be only one IDT, but the operating
system can use the LIDT instruction to substitute another array of gate descriptors.

Interrupt Tasks and Interrupt Procedures

In response to an event, the processor interrupts the currently executing task and begins executing the
instructions identified by the IDT gate descriptor that is associated with the event. The instructions
that execute as the result of the event may either be

• A task other than the current task

• A procedure within the current task

If the descriptor indexed by the interrupt identifier is a task gate, which points to a task state segment,
then the processor causes a task switch. Figure 6-1 illustrates the links that identify the interrupt task.
Chapter 4 discusses the mechanisms associated with task switching and considers the impact that
hardware task switching has on the operating system's task scheduler.

If the descriptor indexed by the interrupt identifier is either an interrupt gate or a trap gate (which
point to executable segments), then no task switch occurs. Instead the processor behaves similarly to
the way it would if the current task had called the indicated procedure via a call gate. Figure 6-2
illustrates the links that identify the interrupt procedure. The iAPX 286 protection mechanism requires
either that the target segment have a privilege level numerically less than or equal to CPL or that the
target segment be conforming. If one of these conditions is true, then the indicated procedure begins
executing in the current task. The major mechanical difference between invoking a procedure by an
interrupt and invoking by a CALL is that, with an interrupt, the processor pushes the flag word onto
the staek of the invoked procedure before the return address (as illustrated in figure 6-3) and clears
the single-step flag (TF).

6-2 121960-001

inter SIGNALS AND INTERRUPTS

INTERRUPT
10

INTERRUPT
10 -

lOT GOT

TASK GATE n TSS
DESCRIPTOR n

Figure 6-1. Interrupt Vectoring for Tasks

lOT

OFFSET

U TRAP GATE OR LOT OR GOT INTERRUPT GATE I--

~ SEGMENT
DESCRIPTOR BASE

Figure 6-2. Interrupt Vectoring for Procedures

TSS

EXECUTABLE
SEGMENT

ENTRY POINT

121960·304

121960·302

Note that if an interrupt occurs while a privilege-level D (PL-D) procedure is executing, an attempt to
transfer to a less privileged level violates protection rules. (The same protection rules apply as for a
CALL to a less privileged segment.) In general it is impossible to predict when an interrupt occurs;
therefore, it is equally impossible to avoid a protection violation when a less privileged procedure has
an interrupt gate or trap gate in the IDT.

6-3 121960·001

SIGNALS AND INTERRUPTS

STACK

.. .---....... --: ,.
HIGH

DIRECTION CALLER'S SS OF GROWTH

! CALLER'S SP

PARAMETER

I RPL
CALLER'S CPL IS STORED IN RPL

RETURN CS - FIELD OF RETURN ADDRESS
CS SELECTOR.

RETURN IP
SP_

.-:......""-
LO:.v

121960-36

Figure 6-3. Interrupt Procedure's Stack

What is the difference between an interrupt via an interrupt gate and an interrupt via a trap gate? In
the case of an interrupt gate, the processor automatically disables interrupts before transferring control
to the interrupt procedure; therefore, an interrupt gate is normally used with external interrupts. In
the case of a trap gate, the processor does not disable interrupts; therefore, trap gates are normally
used with processor-detected exception conditions, which are also known as "traps."

The IRET instruction returns control from an interrupt regardless of whether a task gate, interrupt
gate, or trap gate is used to enter the interrupt handler. In all cases, executing IRET restores IF to its
value before the interrupt. In the case of an interrupt procedure, the processor restores flags from the
stack; in the case of an interrupt task, from the interrupted task's TSS.

The difference in speed between handling an event by a task gate versus by an interrupt or trap gate
is not great, as table 6-1 illustrates.

OPERATING SYSTEM RESPONSIBILITIES

Given the number of hardware features thataut{)mate event handling, you might wonder what is left
for the operating system to do. In fact, for static systems in which interrupt tasks do not call on operat­
ing system. functions and in which there is no need to change the IDT, the operating system need not
concern itself with interrupts. Few applications are so simple, however. The following sections discuss
some extensions to the processor's event-handling features that you may find useful in your operating

6-4 121960-001

SIGNALS AND INTERRUPTS

Table 6-1. Interrupt Response Time

Response Time (in number of clock cycle.)

Operation
Task Interrupt or

Gate Trap Gate
(to different PL)

Hardware interrupt
167 78 processing

Save registers
PUSHA done by 17
PUSH OS task switch 3
PUSH ES 3

Initialize registers
MOV AX,SEG item-1

done by 2
MOV OS,AX 17
MOV AX,SEG item-2 task switch

2
MOV ES,AX 17

Total Clocks 167 139

system. The common goal in all these extensions is to structure the software so that, when an event
occurs, the hardware can handle interrupt administration chores automatically within the efficiency
and protection requirements of the application.

Manage lOT

Many applications require the ability to change the association between an event and the procedure or
task associated with it. Even relatively static systems require this ability if interrupt procedures and
interrupt tasks are not loaded until after system initialization. Only PL-O procedures can effect run­
time changes to the IDT because the data-segment alias for the IDT should have PL O. The techniques
for changing the IDT are similar to those already illustrated in Chapter 2 for the GDT and LDTs.

Switch Scheduling Modes

An application may include tasks that run sometimes as interrupt tasks and other times as normal tasks
under the supervision of the operating system's scheduler. Examples of such situations include the
following:

• An interrupt task calls on operating system services that might force the task to wait (for example,
RECEIVE_MESSAGE).

• The task loader (in a dynamic system) does not distinguish between interrupt tasks and regular
tasks, leaving it up to the task itself to request that the operating system attach it to an interrupt.

6-5 121960·001

Intel SIGNALS AND INTERRUPTS

If such situations can arise, the operating system must

• Keep track of whether a task is in hardware-scheduled mode or in software-scheduled mode

• Provide services to switch a task between hardware-scheduled and software-scheduled mode

Note, however, that an interrupt task that is in software-scheduled mode cannot service interrupts. If
it is possible for further interrupts of the same type to occur during the time the interrupt task is
software-scheduled, then switching to software-scheduled mode is not such a good idea. An alternative
strategy is to allocate interrupt-servicing duties among two or more tasks: one hardware-scheduled and
the others software-scheduled. The hardware-scheduled task responds to the interrupt and invokes one
of the software-scheduled tasks through a mechanism such as message-passing as discussed in
Chapter 5. If there are any delays in servicing that interrupt, it is one of the software-scheduled tasks
that waits, not the hardware-scheduled task.

Manage Interrupt Controller

Intel's 8259A Programmable Interrupt Controller (PIC) is key system resource in a multitasking system.
The 8259A PIC is a flexible device that gives the main processor the ability to service up to 64 external
events via the processor's single INTR pin. The 8259A PIC gives software control over such critical
parameters as the relative priorities among interrupts and the means for acknowledging interrupts.
Correct operation of the system requires proper use of the interrupt controller. For the operating system
to manage this critical resource is only consistent with the protection features of the iAPX 286.

At system initialization the operating system may initialize the 8259A PIC according to system config­
uration and the needs of the application. Initialization may include

• Setting the 8259A to operate in iAPX86 mode

• Setting up master/slave relationships when the hardware configuration includes multiple PICs

• Specifying whether interrupts are triggered by edge or by level

• Setting interrupt priority mode: rotating or masked

• Determining whether priority is fully nested (if priority is set by masking)

• Determining whether interrupts are acknowledged automatically or by explicit EOI command

Refer to the Component Data Catalog for details of these and other features of the 8259A PIC.

If you choose an interrupt policy in which the 8259A automatically determines interrupt priority and
automatically acknowledges interrupts, then there may be no need, after initialization, for either the
operating system or interrupt tasks and procedures to deal with the 8259A. If, on the other hand, you
choose a dynamically changing priority scheme (whether by specific rotation or by mask commands)
or explicit end-of-interrupt commands, then you must also choose whether run-time control of the 8259A
is the responsibility of the interrupt tasks and procedures or of the operating system.

For the operating system to maintain run-time control over the 8259A PIC, it may provide a procedure
such as the following that applications programs CALL instead of executing the IRET instruction.

PROC FAR

IRET j Switch to
Execution resumes

6-6

task on back-link
here upon interrupt

121960-001

SIGNALS AND INTERRUPTS

Send interrupt ma5k to PIC

RET Return to appllcatlon procedure

EHDP

The operating system executes the IRET instruction within W AIT_FOR_INTERRUPT.
WAIT_FOlLINTERRUPT would need to run as a privileged procedure within the calling task. With
this approach, the operating system has control just before the task begins to wait for an interrupt as
well as when the task begins to execute after the interrupt occurs. The operating system then has the
opportunity to send interrupt masks, end-of-interrupt commands, and specific priority rotation
commands, as appropriate for the application.

Provide Task-Level Interrupt Procedures

GDT interrupt procedures (i.e., those invoked via interrupt gates and trap gates in the IDT that point
to executable-segment descriptors in the GDT) provide a .global mechanism for a task to' react to
events. The mechanism is global in the sense that one set of interrupt procedures applies to all of the
tasks in the system. For example, suppose a GDT interrupt procedure handles the "divide error" excep­
tion. Then, a divide error in task A is handled by the same procedure as a divide error in task B because
there is just one gate for divide errors. There is often a need, however, for one task to take different
action than that taken by other tasks. For example, task A may need to terminate in case of a divide
error, while task B may need to continue.

INTERRUPT DISTRIBUTION

The software system designer has a choice of mechanisms that make it possible for different tasks to
have different interrupt procedures for a given interrupt type

1. LDT-based interrupt procedures

2.. An interrupt distributor

You must deploy alternative 1 carefully. If a trap or interrupt gate in the IDT contains a selector for
an LDT slot, then there must be a system-wide convention that every LDT will have an appropriate
descriptor in that slot. When the interrupt occurs, the processor uses the LDT of the current task to
locate the interrupt procedure.

Alternative 2 demands less from convention, but more from the operating system and the processor.
With this approach, each task has (in the task database) a table that is its own private analog of the
IDT. The operating system supplies aGDT interrupt procedure that merely indexes the current task's
handler table to find a pointer to the appropriate handler procedure. If the task does not supply an
interrupt procedure for a specific interrupt, the operating system can invoke a default procedure.

CONFORMING INTERRUPT PROCEDURES

For certain interrupt procedures (for example, a divide-error exception handler that substitutes a fixed
value for the quotient), the appropriate privilege level at which to run the interrupt procedure is the
same as that of the interrupted procedure. In these cases, the interrupt procedure can be placed in a
conforming segment. For interrupt procedures in conforming segments, the processor automatically
sets CPL to the DPL of till: segment containing the interrupted procedure. Note, however, that this

6-7 121960-001

SIGNALS AND INTERRUPTS

technique does not apply to procedures called by an interrupt distribution procedure (because the
distribution procedure always runs at PL 0).

"OUTWARD CALL"

An application may contain some interrupt procedures that should run at a fixed privilege level that is
greater than zero.

The processor, on the other hand, prevents calls from PL n to PL m if n<m. For privilege-checking
purposes the processor treats interrupts to procedures as calls. It is a privilege violation if the interrupt
procedure resides in a segment that has a DPL numerically greater than that of the interrupted proce­
dure. Since interrupts may occur at arbitrary times, it is possible for CPL to be less than the DPL of
the interrupt procedure, which would be an exception.

A similar p~oblem results when an interrupt distribution procedure (which runs at PL 0) attempts to
call a less privileged, procedure identified in the task's interrupt handler table. The problem results
even if the interrupt distributor attempts to simulate a conforming interrupt procedure by using the
interrupted procedure's CPL as the RPL value in the selector of the interrupt handler.

The operating system can employ the shadow task strategy to overcome this contradiction. Figure 6-4
outlines the shadow task strategy for invoking a lesser-privileged procedure from PL O. Only a PL-O

/
INTERRUPT

ID

IDT

OS INTERRUPT r--- PROCEDURE
(PLO)

TASK'S
HANDLER

TABLE

Figure 6-4. Private Interrupt Procedure

6-8

SHADOW TiSK JI TASK's~1 HANDLER
II PROC

MAIN TASK

121960-53

121960-001

SIGNALS AND INTERRUPTS

procedure such as the interrupt distribution procedure described previously can implement this mecha­
nism. Instead of calling the handler procedure (which could be a privilege violation), the operating
system's interrupt procedure

Creates a shadow task containing the handler procedure

Sets the CS and IP fields of the shadow task's TSS to the entry point of the handler procedure

Calls the shadow task

An IRET instruction in the interrupt handler procedure returns control to the interrupt distributor
procedure in the main task.

Creating a shadow task involves simply allocating space for the new TSS and initializing it. Setting the
LDT field of the new TSS to the same value as in the main task's TSS lets the shadow task have access
to all the same segments as the main task, including the segment containing the handler procedure.
The operating system may create the shadow task either at the time the main task is created or dynam­
ically, at the time the interrupt occurs.

Provide Software Signals

In some applications there is a need for one task to send a signal to another task that is not waiting for
the signal. The "quit" signal in an interactive system is an example. For the target task to respond
quickly to the signal, the signal must trigger some form of interrupt mechanism. The mechanisms
described previously for private interrupt procedures have the appropriate features: each task can define
the action to take upon receipt of the signal, and the signal handler can run at a restricted privilege
level. Additional components needed to implement software signals include

Extended task handler table with entries for each possible software signal

Operating system procedure that any task can call to send a signal to another task

A software signalling mechanism is also a convenient way for the operating system to signal tasks. This
method is particularly suited to

Reporting exception conditions detected by the operating system

Giving a task the chance to put its affairs in order before the operating system terminates it.

6-9 121960-001

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Handling Exception Conditions 7

CHAPTER 7
HANDLING EXCEPTION CONDITIONS

When the processor recognizes a condition that it cannot handle, an exception condition, operating
system or applications software must temporarily take control and dispose of the condition. Exception
conditions are also known as "faults."

FAULT MECHANISM

The processor reports an exception condition by causing one of a predefined set of interrupts; one
interrupt vector is associated with each exception condition that the processor recognizes. As with any
interrupt, either a procedure or a task can field a fault. Faults resemble other interrupts, but they
differ in two significant ways:

• You cannot disable a fault.

• For certain faults, the processor pushes an error code onto the stack of the fault handler (whether
procedure or task) to help with recovery.

FAULT RECOVERY

When a fault occurs, the fault handler has three possible ways of dealing with the exception:

o Ignore it and continue execution of the task.

o Fix the problem and retry the faulting instruction.

o Kill the faulting task.

Ignoring an exception is not generally advisable. Killing a task is sometimes unavoidable, but, for
critical tasks, the handler should make every effort to recover from the exception. In many cases, the
iAPX 286 helps the exception handler identify the faulting instruction and the conditions that caused
the fault.

Locating the Faulting Instruction

Usually, a fault handler can locate the faulting instruction either via the return pointer on the stack (if
the exception handler is an interrupt procedure) or via the IP stored in the TSS of the faulting task (if
the exception handler is an interrupt task). This stored value of the IP is used to return control to the
interrupted task, but the exception handler can also use the stored IP value to examine the faulting
instruction. There are three cases to consider:

• The stored IP value points to the location of the faulting instruction (including all prefixes). This is
the normal case.

o The stored IP value points to the location of the next instruction.

o The stored IP value is unrelated to the fault. This occurs, for example, with 80287 instructions
(which execute in parallel with 80286 instructions), or when the 80286 processor discovers a fault
while attempting to handle an external interrupt. '

7-1 121960-001

HANDLING EXCEPTION CONDITIONS

Error Code

With exceptions that may relate to a specific segment, the processor pushes an error code onto the
stack of the exception handler (whether procedure or task). Figure 7-1 illustrates the error code. The
format of the error code resembles that of a selector. However, instead of an RPL field, the error code
contains two one-bit items:

• The processor sets the EX (external) bit when the fault does not directly result from an action of
the task. Occurrence of this condition generally indicates a "system" problem as opposed to an
"application software" problem.

• The processor sets the I (lOT) bit if the index portion of the error code refers to a gate descriptor
in the lOT. When the I bit is set, the handler can ignore the TI bit. If the I bit is reset, then the TI
bit identifies either the GOT or an LOT, just as in a selector.

The index field identifies the descriptor associated with the exception (if any).

In some cases the error code on the stack is null, in which case all bits in the word are zero. For some
faults, the handler can gain additional information about the fault by determining whether the error
code is null.

APPLICATION INTERFACE

Since some of the actions appropriate for exception conditions depend on the requirements of individ­
ual application programs, the operating system may need to provide an application interface to the
exception handling system. Chapter 6 discusses mechanisms for doing so.

EXCEPTION CONDITIONS

The action appropriate to each type of exception depends both on the type of exception and the needs
of the application. This section provides details for each type of exception. Some of the exception
conditions are identified by a tW<rcharacter mnemonic that some other Intel literature uses.

II:::: :~:: :::: H HI
I = 1 IF DESCRIPTOR IS IN IDT

EX = 1 IF EXCEPTION DETECTED DURING
EVENT EXTERNAL TO TASK

Figure 7-1. Exception Error Code

7-2

121960·35

121960-001

HANDLING EXCEPTION CONDITIONS

Interrupt O-Oivide Error

This exception may occur during DIY (unsigned divide) and IDlY (integer divide) instructions. The
processor causes a divide-error exception in case of division by zero or quotient overflow.

A divide-error handler might, for example, replace the quotient with a predetermined value and permit
the faulting task to continue. The return pointer indicates the first byte of the divide instruction, so the
handler must increment the return pointer before returning.

Interrupt 1-Single Step

The processor causes a 'single step exception at the end of every instruction when the TF (trap flag) is
set. When the processor invokes any interrupt procedure, it saves the flags and resets the TF so that
the exception handler does not cause a single-step exception. Executing IRET at the end of the excep­
tion handler restores TF.

The exception handler for this exception typically belongs to a debugging system. Single stepping is a
valuable debugging tool. It allows the exception handler to act as a "window" into the system through
which you can observe task operation instruction by instruction. A single-step handler may, for example,
display register contents, the value of the instruction pointer, key variables, etc., as they change after
each instruction.

The single-step exception handler should take care, however, not to violate the system's protection goals
by its actions. To protect the operating system from the debugging activities of an applications
programmer, the debugger should not give access to the more privileged levels. The debugger can
check, either before or after each instruction, whether the instruction causes a control transfer to a
prohibited level. After such a transfer, the return pointer identifies the next instruction in an accessible
segment. The debugger can set a breakpoint at that instruction and suspend single stepping until the
breakpoint trap occurs.

Interrupt 3-Breakpoint

The INT 3 instruction causes this exception. The INT 3 instruction is one byte long, which makes it
easy to insert a breakpoint anywhere in an executable segment. The operating system or a debugging
subsystem can use a data-segment alias for an executable segment to place an INT 3 instruction anyplace
where it is convenient to arrest normal execution so that some sort of special processing can be performed.
Debuggers typically use breakpoints as a way of displaying registers, variables, etc., at crucial points
in a task.

The saved IP value points to the next instruction. Ifa debugger has replaced a planted breakpoint with
a valid opcode, it must subtract one from the saved IP value before returning.

Interrupt 4-0verflow

This exception occurs when the processor encounters an INTO instruction and the OF (overflow) flag
is set. Since signed arithmetic and unsigned arithmetic both use the same arithmetic instructions, the
processor can not tell which is intended and therefore does not cause an overflow exception. Instead it
merely sets OF when the results, if interpreted as signed numbers, would be out of range. When doing
arithmetic on signed operands, careful programmers and compilers either test OF directly or use the
INTO instructioll.

7-3 121960-001

HANDLING EXCEPTION CONDITIONS

An exception handler usually terminates the faulting task; however, in some applications it is feasible
to place a "maximum value" in the receiving operand and permit the task to continue. The return
pointer indicates the next instruction.

Interrupt 5-Bound Check

This exception occurs when the processor, while executing a BOUND instruction, finds that the operand
exceeds the specified limits. This condition usually indicates a programming error. The safest action
for the handler is to terminate the faulting task. In some applications, however, it is feasible to "adjust"
the erroneous operand. The return pointer points to the beginning of the faulting instruction.

Interrupt 6-Undefined Opcode (UD)

This exception occurs when the processor detects an invalid operation code in the instruction stream.
Such an exception may occur, for example, if a programmer mistakenly causes a jump to read-only
data in an executable segment. This exception has several variations:

• The first byte of the instruction is completely invalid; for example, 64H.

• The first byte of the instruction indicates a two-byte opcode, but the second byte is invalid; for
example, OFH followed by OFFH.

• One of the operands of the instruction is not valid for use with the opcode.

• The opcode extension in the second byte of an instruction contains a value that is invalid for use
with the opcode; for example, opcode OF6H with xxOOlxxxB in the second byte.

• The opcode requires a memory operand, but the operand actually indicates a register, for example,
LGDT AX.

The offending opcode is invalid, so the handler should not restart the instruction.

You can use this exception to implement extensions of the iAPX 286 instruction set. The exception
handler would interpret the instruction and advance the return pointer beyond the extended instruction
before returning.

Interrupt 7-Processor Extension Not Available (NM)

This exception occurs in either of two conditions:

• The processor encounters an ESC (escape) instruction, and the EM (emulate) bit of the machine
status word (MSW) is set.

• The processor encounters a WAIT instruction, and both the MP (math present) and TS (task
switched) bits of the MSW are set.

Refer to Chapter 12 for details concerning the 80287 Numerics Processor Extension.

7-4 121960-001

inter HANDLING EXCEPTION CONDITIONS

Interrupt 8-Double Fault (OF)

This exception occurs when the processor detects an exception while trying to invoke the handler for a
prior exception, for example:

• The code segment containing the exception handler is marked "not present."

• Invoking the exception handler causes a stack to overflow.

The processor pushes a null error code onto the stack. If this or any other action while invoking the
double-fault handler causes an additional fault, the processor shuts down. To avoid the catastophe of a
shut-down, the double-fault handler must be a separate task (so that pushing the error code does not
cause a stack fault) and must always be present (so that invoking it does not cause a "not present"
fatilt).

Recovery is sometimes possible by eliminating the cause of the second exception and re-executing the
faulting instruction so that the original fault can be handled appropriately. The greatest difficulty lies
in identifying the cause of the second exception. Often, however, a double-fault condition indicates a
serious error, and the faulting task should be terminated.

Interrupt 9-Processor Extension Segment Overrun

This exception occurs when a memory operand of an 80287 instruction has a segment-limit violation.
Since the 80287 executes in parallel with the 80286, the occurrence of this exception may not relate
directly to the instruction stream being executed by the current task. A task switch may have occurred
since the 80287 began executing the instruction. Even if the interrupted task is the correct task, its IP
may have been advanced by several instructions beyond the 80287 instruction. Refer to Chapter 12 for
more information about this exception.

Interrupt 10-lnvalid TSS (TS)

This exception occurs when the processor detects any of the following abnormalities in a TSS:

I. The value of the limit field of the descriptor to the TSS is too small (discovered during a task
switch).

2. The LDT indicated in the TSS is invalid or not present (task switch). Note that a null LDT
selector does not cause an exception during a task switch.

3. One of the segment register fields (SS, CS, DS, or ES) in the TSS is invalid (task switch).

4. One of the privileged-stack selectors is invalid (interlevel CALL).

5. The back-link selector is invalid (intertask IRET).

This exception does not occur when a segment-register field or the back link is marked "not present"
but is otherwise valid. A "not present" exception occurs in this case. If, during an interlevel CALL,
a privileged-stack selector in the TSS points to a descriptor marked "not present," then a stack
exception occurs. .

The handler for this exception must be a separate task, invoked via a task gate in the IDT. The proces­
sor pushes an error code onto the stack of the handler. The error code either identifies the faulty
TSS (case 1) or contains the faulty selector from the TSS (cases 2-5). The instruction causing the
fault can be restarted. An IRET at the end of the exception handler causes the faulting instruction to
execute again.

7-5 121960·001

HANDLING EXCEPTION CONDITIONS

A few of the conditions that can cause this exception are recoverable. If the system incorporates virtual
memory, the solution for a not present LDT may be to bring it in from virtual store. In the case of an
invalid. back-link, you can make the assumption that the NT flag was set by mistake, give control to
the scheduler, and hope

Interrupt 11-5egment Not Present (NP)

This exception occurs when the processor detects that the present bit of a descriptor is reset. It may
occur in any of these cases:

• While loading the CS, DS, or ES registers, but not while loading the SS register (a stack fault
occurs in that case). .

• White loading the LDT register with an LLDT instruction, but not while loading the LDT register
during it task switch operation (the "invalid TSS" fault occurs in that case). .

• While attempting to use a gate that is marked "not present."

An operating system typically uses the "not present" exception to implement a virtual memory system.
Refer to Chapter 9 for more information on virtual memory.

The processor pushes an error code onto the stack of the exception handler. The error code contains
the selector of the descriptor that is marked "not present."

·A "not present" indication in a gate descriptor usually has. special significance for the operating system.
for gates in the IDT, the present bit may serve as a sign that the interrupt task is in software scheduled
mode and temporarily unable to service an interrupt. If an interrupt arrives in this case, there may be
an error either in the device that generates the interrupt or in the handling of the Interrupt Mask
Register of the 8259A PIC. (Refer to Chapter 6 for more information on interrupt handling). for gates
in the GDT or LDTs, the present bit may serve to signal an unresolved linkage. (Refer to Chapter 11
for information on binding.)

The instruction that causes a "not present" fault is restartable (except in the case of a task switch).
Execution of an IRET by the exception handler causes the processor to execute the faulting instruction
again. When the processor detects the "not present" exception while loading CS, DS, or ES during a
task switch, the exception occurs in the new task, and the return pointer points to the first instruction
of the new task.

Interrupt 12-5tack Exception (55)

This exception occurs in either of two general conditions:

• As a result ofa limit violation in any operation that refers to the SS register. This includes stack­
oriented instructions such as POP, PUSH, ENTER, and LEAVE as well as other memory refer­
ences that implicitly use SS (for example, MOV AX,[BP+6]). ENTER causes this exception when
the stack is too small. for the indicated . local variable space. An interlevel CALL references two
stacks; a stack~limit exception can.result from either of them.

• When attempting to load the SS register with a descriptor that is marked "not present" but is
otherwise valid. This can occurin a task switch, an interlevelCALL, an inter level return, or a MOV
or POP instruction to SS.

7-6 121960-001

HANDLING EXCEPTION CONDITIONS

The processor pushes an error code on the stack of the exception handler. If the exception is due to a
not-present stack segment or to overflow of the new stack during an interlevel CALL, the error code
contains a selector to the segment in question (the exception handler can test the present bit in the
descriptor to determine which exception has occurred); otherwise the error code is null.

The instruction that causes a stack fault is usually restart able. Execution of an IRET by the exception
handler causes the processor to execute the faulting instruction again. The one case that is not restart­
able is a PUSHA or POPA intruction that attempts to wrap around the 64K boundaries of a stack
segment. This condition is identified by one of the values FFFEH,FFFFH, OOOOH, or OOOlH in the
saved SP.

When the processor detects a stack fault while loading SS during a task switch, the exception occurs
in the new task, and the return pointer has the value that the IP field of the new TSS held at the time
the task switch began.

When stack overflow causes the exception, the stack fault handler can increase the size of the stack
segment (up toa maximum of 64K) and permit the faulting task to continue. When the exception is
due to a stack segment not being present, recovery action resembles that of the "not present" fault
handler.

Interrupt 13-General Protection Exception (GP)

All protection violations that do not cause another exception cause a general protection exception. This
includes (but is not limited to)

• Exceeding segment limit when using DS, ES, orCS

• Exceeding segment limit when referencing a descriptor table

• Jumping to a data segment

• Writing into a read-only segment or an executable segment

• Reading from an execute-only segment

• Loading the SS register with a read-only descriptor (unless the selector comes from the TSS during
a task switch, in which case a TSS exception occurs)

• Loading DS, ES, or SS with the descriptor of a system segment

• Loading DS, ES, or SS with the descriptor of an executable segment

• Loading CS (by means of a CALL, JMP, or interrupt) with the descriptor of a data segment

• Accessing memory via DS or ES when it contains a null selector

• Switching to a busy task

• Violating privilege rules

The processor pushes an error code onto the exception handler's stack. If loading a descriptor caused
the exception, the error code contains a selector to the descriptor; otherwise the error code is null.

The return pointer points to the beginning of the faulting instruction. Recovery may be possible, but
because programming errors cause most of the conditions leading to a general protection exception,
recovery may not be worth the trouble required to identify the cause.

A string instruction (any variant of INS, OUTS, MOVS, STOS, SCAS, or CMPS) with a repeat prefix
(REP, REPE, or REPN E) is not restart able if it causes a segment limit violation. Check whether SI
or D I is ncar the scgmen I limit.

7-7 121960-001

HANDLING EXCEPTION CONDITIONS

An instruction that both tests and modifies the carry flag is not restart able (ADC, RCL, RCR, or
SBB).

Interrupt 16-Processor Extension Error (MF)

The 80286 causes this exception when it detects a signal from the 80287 on the 80286's ERROR input
pin. The 80286 tests this pin only at the beginning of certain floating-point instructions and when it
encounters a WAIT instruction while the EM bit of the MSW is reset (no emulation).

Refer to Chapter 12 for more information on this exception.

Interrupt 17 -Run-Time Exceptions

Intel's run-time support software uses this interrupt to communicate exception conditions regarding
range checks and procedure stack overflow. Applications should avoid using this interrupt for any other
purpose.

RESTART ABILITY SUMMARY

Table 7-1 summarizes the information pertinent to restarting the faulting instruction.

Table 7-1. Restart Conditions

Return Address Error Vector Exception Relative to Restartable? Code? Faulting Instruction

0 Divide error First byte Yes No
1 Single step Next instr. No No
3 Breakpoint Next instr. - No
4 Overflow Next instr. No No
5 Bound check First byte Yes No
6 Undefined opcode First byte No No
7 Processor extension Unrelated Yes No

not available
8 Double fault First byte No Yes

(always nUll)
9 Processor extension Unrelated No No

segment overrun
10 Invalid TSS First byte Yes Yes
11 Segment not present First byte Yes Yes
12 Stack exception First byte Yes Yes
13 General protection First byte No Yes
16 Processor extension Unrelated - No

error

7-8 121960-001

Input/Output 8

CHAPTER 8
INPUT /OUTPUT

Many of the concepts previously introduced in this book apply to the design of the I/O subsystem of
an operating system; in addition, the iAPX 286 has several I/O features of special interest.

The functions typically performed by an I/O subsystem include

• Centrally implementing and standardizing I/O logic so that all application programs can share it.

• Providing a uniform, high-level interface by which application procedures can request I/O services
(as a minimum, the functions READ and WRITE). A more sophisticated system may need a full,
file-oriented set of interfaces such as Intel's Universal Development Interface (UDI).

• Administering device naming. Often this includes transforming logical device identifiers into physi­
cal identifiers, so that applications that use the logical identifiers can maintain independence from
physical devices.

• Managing use of memory resources for I/O buffers.

• Managing sharing of physical devices. Often this reduces to giving one task exclusive use of a device
(for example, a printer) until the task relinquishes it. With disk devices, tasks can usually share the
device as long as each uses a different set of disk addresses. A sophisticated database-management
system may require unlimited disk sharing (the database system assumes responsibility for block­
level synchronization, deadlock detection, and recovery).

• Providing device-driver procedures to deal with the vagaries of various I/O devices.

• Optimizing I/O efficiency. This might include any of these techniques: blocking, buffer pooling,
automatic seek-ahead, reduction of disk arm movement.

This discussion of I/O classifies physical I/O operations thus:

• Direct I/O, in which the 80286 processor itself communicates directly with the peripheral device.
Direct I/O breaks down further into

a. Memory-mapped, in which I/O is triggered by processor instructions that reference certain
memory locations.

b. I/O-mapped, in which special I/O instructions cause the processor to do I/O.

• Indirect I/O, in which an external processor (such as the Intel 8089 I/O Processor) performs the
I/O.

1/0 AND PROTECTION

The concept of protection as applied to I/O deals not only with the memory used in I/O operations
but also with the right to execute I/O operations.

1/0 Privilege Level (lOPL)

You can limit to specific privilege levels the right to execute I/O and I/O-related instructions. 10PL
(a two-bit field in the flag word) restricts a task's right to execute any of these instructions:

IN input
INS input string

8-1 121960-001

OUT
OUTS
STI
eLI
LOCK

output
output string

INPUT /OUTPUT

set interrupt flag (enable interrupts)
clear interrupt flag (disable interrupts)
lock bus

When interpreting any of these restricted instructions, the processor compares CPL to IOPL. If CPL
ex.ceeds IOPL, the processor causes a general protection exception and does not carry out the
instruction.

Only a privilege-level 0 (PL-O) procedure (i.e., the operating system) can change IOPL. There is no
instruction that explicitly affects IOPL; however, any of the operations that load the flag word can, in
some cases, change 10PL. The. only mechanisms for changing the flag word are

• A task switch

• The POPF (pop flags) instruction

• IRET

When CPL is greater than zero, the POPF instruction does not change 10PL; even though it changes
other flags in the flag word. The processor issues no error indication when this occurs. A task switch
loads the flags from the Task State Segment (TSS). As long as the operating system does not make
data-segment aliases for the TSS available to less privileged levels, only the operating system can
change 10PL in the TSS. .

For maximum protection, the procedures of an I/O subsystem that run in the calling task should run
at a protection level numerically greater than the operating-system kernel but less than applications
procedures. 10PL can then include the I/O subsystem but exclude applications procedures. Used this
way, 10PL forces less privileged application procedures to call on I/O subsystem procedures for I/O
functions, thereby giving the operating system control over many I/O operations.

Tasks that deal primarily with I/O (device drivers, for example) may have an 10PL value as great as
three; If that is the case, all procedures in the task have access to I/O operations, yet all four privilege
levels are available to protect the procedures of the task from one another.

Controlling 110 Addresses

Protection is incomplete if not applied to memory accesses by I/O operations. 10PL does not apply to
memory-mapped I/O nor to interface with intelligent controllers (because none of the restricted
instructions are used). The operating system designer must make special provisions to control these
I/O operations, either via the operating system or with the Builder.

HARDWARE ADDRESS CHECKING

Memory-mapped I/O is subject to the segment-level protection mechanism of the iAPX 286. A task
can execute a memory-mapped I/O operation only if it has access to a descriptor for a data segment
that contains one of the memory addresses reserved for I/O. Giving a task descriptors for only the
I/O memory addresses that it has the right to use yields a double benefit:

• The task cannot access I/O devices assigned to other tasks.

• Within the task, I/O is restricted to those procedures whose privilege level is numerically less than
or equal to the DPL of the I/O memory address segments.

8-2 121960-001

INPUT /OUTPUT

You can still take advantage of I/O memory address protection even though the I/O devices on the
bus respond to I/O commands. A hardware address mapper can convert the processor's memory cycles
for the I/O memory space into I/O cycles on the bus. The address mapper will not initiate a bus I/O
cycle unless the memory operation passes the processor's protection checking.

SOFTWARE ADDRESS CHECKING AND CONVERSION

With indirect I/O, the external controller accesses I/O buffers independently of the 80286. This presents
a three-fold problem to the operating system:

• Memory access by the controller is not subject to the automatic protection checking of the 80286.

• The controller (probably) uses "flat" addresses (i.e., addresses that are not relative to a base address).

• The addressing range of the controller may not coincide completely with that of the 80286.

The flow of control for indirect I/O requests must pass through operating-system procedures at PL 0
so that the operating system can

• Check memory addresses and privilege levels against information stored in the task's descriptors

• Transform base-relative addresses to a flat format recognizable by the controller

1/0 AND MEMORY MANAGEMENT

An I/O subsystem can place additional requirements on the operating system's memory manager; for
example:

• I/O functions may use certain dedicated memory locations (for example, the addresses used for
memory-mapped I/O, and the communication blocks and buffers that external controllers expect
to find a fixed locations). The memory manager must be aware of these locations and must not
allocate them for other purposes.

• When buffers for external controllers are allocated dynamically, addressing limitations of the
controller. may require the memory manager to find space within the portion of memory that the
controller can address.

• Once it allocates a segment for the use of an external controller, the memory manager must not
move, delete, or swap out the segment without cooperation from the controller.

PARTITIONING 1/0 FUNCTIONS

To determine how best to distribute I/O functions across tasks and privilege levels, you must consider

• The opportunities for parallelism

• The needs for synchronization

• The requirements for protection

8-3 121960-001

INPUT/OUTPUT

Requirements for Parallelism and Synchronization

The requirements for· parallelism and synchronization in the I/O subsystem may include any of the
following: .

• The application procedure that requests a READ operation may run in parallel with the I/O subsys­
tem until that procedure needs to reference the requested data, at which point it must wait until
the data arrives or an exception occurs.

• . The procedure that requests a WRITE operation can usually run in parallel with the I/O'subsys­
tem. Some applications require acknowlegement of the completion ofa WRITE operation (in order,
for example, to synchronize with a database recovery system), in which case that procedure must
wait until the acknowledgement arrives.

• SEEK operations normally run in parallel with the requesting procedure.

• The I/O dev'icecan always run iii parallel with some task in a multitasking system, whether it be
the task that requested the I/O operation or some other task that is not waiting for I/O.

• In a simple I/O subsystem in which a device driver onlym~nages one I/O operation at a time, the
driver can simply wait until the device signals that the operation finishes. If the requesting proce­
dure is blocked, the device driver can merely convert the I/O-complete signal into a wake-up signal
for that procedure.

• In a more sophisticated I/O 'subsystem (for example, one in which a disk driver handles more than
one spindle and more than one task can share a disk device), greatest efficiency results only when
device drivers run in parallel with I/O devices as well as with requesting procedures. An 1/0-
complete signal from a device may arrive when the device driver is busy.

Figure 8-1 explains the symbols used in a Petri net graph. Figures 8-2 and 8-3 use Petri net graphs to
illustrate two approaches to synchronization between parts of an I/O subsystem. A horizontal line
represents an event of interest that occurs only under certain conditions. Circles preceding an event
represent the conditions under which the event can occur. Circles after an event' represent the condi­
tions that result from occurrence of the event. A dot inside a circle is called a token. A token represents
!1condition that is in effe<:t. An event occurs if and only if there are tokens for all its input conditions.
When aneven,~ occurs: tokens flow into all its output conditions.

Figure 8~2 assuines fhesimple device driver mentioned previously and points out how such a driver can
service only one task at a time. Figure 8-3 shows how a two-part driver can deal with more than one
I/O request at a time (assuming that the I/O device can do so as well). I/O requests from applications
procedures drive part A, while interrupts drive part B. Not shown by the Petri net graphs is the fact
that the two parts of the driver must share information about outstanding I/d requests. Both figures
show simplified device drivers to highlight the interactions among parts of the I/O subsystem; for.
example, a real device driver may issue multiple physical I/O commands in response to one I/O request
and may retry I/O operations in case of certain error indications from the device.

Requirements for Protection

The requirements for protection in an I/O subsystem include (in addition to the protection considera­
tions previously discussed)

• Device allocation tables and any other data used by the primary I/O interface procedures must be
protected from all but those procedures privileged to do I/O, but must be available to every task in
which the I/O interface procedures can run.

• Only the device driver should have access to a device's control parameters (for example, head settling
time for a disk drive).

8-4 121960-001

INPUT /OUTPUT

• Only the operating system and the I/O subsystem should use queues of buffers and I/O requests.

• An application procedure must not use a buffer that an I/O device is simultaneously using.

Implementation Alternatives

If descriptors for data global to the I/O subsystem (such as device allocation tables) reside in the GDT
with DPL equal to the I/O privilege level, then I/O procedures can access them regardless of what

o FALSE CONDITION

o TRUE CONDITION

EVENT

CONDITIONAL EVENTS

ENABLED CONDITIONAL EVENTS

t t
OCCURRENCES OF EVENTS

121960-39

Figure 8-1. Petri Net Graph Symbols

8-5 121960-001

APPLICATION

REQUEST
110

CONTINUE
PROCESSING

DO OTHER
PROCESSING

RECEIVE
RESPONSE

APPLICATION

REQUEST
I/O

CONTINUE
PROCESSING

DO OTHER
PROCESSING

RECEIVE
RESPONSE

INPUT /OUTPUT

DEVICE DRIVER

HARDWARE I/O DEVICE

GET
COMMAND

• WAIT 001/0

CAUSE
INTERRUPT

121960-37

Figure 8-2. Synchronization with Simple Device Driver

APPLICATION

REQUEST
1/0

CONTINUE
PROCESSING

DO OTHER
PROCESSING

RECEIVE
RESPONSE

APPLICATION

REQUEST
I/O

CONTINUE
PROCESSING

DO OTHER
PROCESSING

RECEIVE
RESPONSE

DEVICE DRIVER (PART A)

HARDWARE I/O DEVICE

GET
COMMAND

CAUSE
INTERRUPT

00110

121960-38

Figure 8-3. Synchronization with Two-Part Device Driver

8-6 121960-001

INPUT /OUTPUT

task the I/0 procedures run in. The I/O interface procedures (READ, WRITE, etc.) must have DPL
equal to that of the global I/0 data and therefore must have call gates at the privilege level of appli­
cation procedures (PL 3). If these call gates reside in the LDTs of application tasks, then I/0 interface
procedures can be shared by (but limited to) those tasks that need them. The call gates can also reside
in the GDT, where all tasks can access them. In either case the interface procedures run in the calling
task.

The possibilities for running device drivers in parallel with the calling task suggests that they be separate
tasks. Such a separation also serves to protect applications and device drivers from one another, a
definite advantage because inherent complexity and frequency of change tend to place device drivers
among the least reliable of operating system functions. The I/0 interface procedures have the respon­
sibility for managing the details of communication between the calling task and the device drivers.

You can implement a sophisticated device driver such as that illustrated in figure 8-3 as two cooper­
ating tasks: one scheduled by interrupts via a task gate in the IDT, and the other scheduled by I/O
requests via an operating-system mailbox facility.

It is possible to implement device drivers as interrupt procedures that run within applications tasks.
Such a structure is advantageous in these cases:

• Efficiency of I/0 is an overriding goal.

• Interrupts may arrive when a driver is busy.

The lack of protection inherent in such a structure becomes apparent, however, when you consider that
the driver procedure that fields an I/O-complete interrupt may run as part of a task completely unrelated
to the task that originally requested the I/O operation, and must run at PL O.

Viewing the possible implementations of buffers from the perspective of the iAPX 286 architecture,
the most pertinent consideration is whether a segment contains just one buffer or several buffers. An
approach that uses one segment per buffer has several advantages:

• The protection mechanism of the iAPX 286 (working as it does on segment descriptors) focuses on
each buffer individually.

• The selector of a buffer segment serves as a convenient buffer identifier, fitting easily into the
aliasing and mailbox schemes outlined in Chapter 5.

You can avoid the potential GDT congestion that may result from having one segment (and therefore
at least one segment descriptor) per buffer by storing buffer descriptors in LDTs.

When tasks share buffers (as between an application task and one or more device-driver tasks), you
have a choice between

• Leaving the buffer at all times within the address spaces of all the sharing tasks

• Transferring the buffer from the address space of one task into that of another

The mailbox scheme outlined in Chapter 5 easily accomplishes the latter approach. This scheme has
the advantage that the application task cannot use the buffer at the same time as I/O is in progress.
The "usage privilege level" (UPL), if set to IOPL, provides additional protection by limiting mailbox
access to I/O procedures. The application's requirements for I/O efficiency may, however, preclude
use of mailboxes for this purpose.

8-7 121960-001

Virtual Memory 9

CHAPTER 9
VIRTUAL MEMORY

The memory legitimately addressed by the tasks running on an iAPX 286 (the virtual memory) may
exceed the actual memory available. You can use this capability to lower memory costs, substituting
disk or other less expensive storage media for relatively expensive RAM. Virtual memory isolates
programmers from the amount of real memory in a computer system. The system designer can trade
off performance against system cost using identical software.

A system that supports virtual memory can be analyzed in terms of mechanisms and policies. The
iAPX 286 has mechanisms that help your operating system manage the swapping of segments between
RAM and less expensive memories. The operating system must implement additional mechanisms as
well as policies for efficient use of these mechanisms in a specific application.

HARDWARE MECHANISMS

The 80286 provides- the essential hardware mechanisms without which virtual memory systems would
not be possible. The segment is the basic unit of the virtual-memory scheme, just as it is the basic
unit of the real-memory scheme. In each segment descriptor, the iAPX 286 architecture provides an
accessed bit and a present bit to aid the operating system in simulating the virtual memory space with
available RAM.

Accessed Bit

Every descriptor for an executable segment or data segment has an accessed flag in the least signifi­
cant bit position of the access rights byte. Each time a task loads segment register with a segment
descriptor, the processor automatically sets the accessed bit in that descriptor. The processor does not
automatically reset the accessed bit; software must explicitly write a zero into the accessed bit. The
accessed bit has a dual function in virtual memory management:

• By testing and then resetting the accessed bit at regular intervals, the virtual-memory manager can
measure how frequently the segment is being accessed.

• For writable data segments, the accessed bit (when set) indicates that the segment may have been
changed.

Present Bit

Every segment descriptor has a present flag in the high-order bit position of the access-rights byte. The
processor automatically tests this bit as it loads segment registers. If the present bit is reset, the proces­
sor causes a trap. Which trap depends on the circumstances:

• Trap 11 (Segment not Present) occurs when loading the CS, OS, or ES register with a not-present
segment descriptor, when switching toa not-present TSS, when loading the Task Register by means
of the LTR instruction with a not-present TSS descriptor, or when loading the LOT register with a
not-present LOT descriptor.

• Trap.11 also occurs when loading CS with a gate descriptor that is marked "not present." This
condition does not necessarily mean that a segment is not present, however. The operating system

9-1 121960-001

VIRTUAL MEMORY

may attach other meaning to the present bit of gate descriptors. Refer to the section on load-time
binding in Chapter 11 for an example of an alternate use for the present bit in gate descriptors.

• Trap 12 (Stack Exception) occurs when loading the SS register with a not-present descriptor. The
exception handler can distinguish this condition from other stack exceptions by examining the access
rights byte of the descriptor selected by the error code.

• Trap 10 (Invalid TSS) occurs when switching to a TSS that points to a not-present LDT. The
exception handler can distinguish this from other "invalid TSS" conditions by examining the access
rights byte of the descriptor selected by the error code.

• Trap 8 (Double Fault) occurs if the processor, while trying to invoke an exception handler due to a
previous exception, finds that the code segment containing its entry point is not present. The diffi­
culty of distinguishing between this and other double fault conditions implies that trap 8 is to be
treated as an error condition, not a normal use of the present bit.

Refer to Chapter 7 for additional information about these traps.

SOFTWARE MECHANISMS

The operating system must provide additional mechanisms for a virtual memory system: one for moving
a segment from RAM to secondary storage (the swap-out manager) and one for moving a segment
from secondary storage to RAM (the swap-in manager).

The swapping managers are essentially I/O modules, but there are major differences between swapping
managers and the functions of a standard I/O subsystem:

• Swappers deal with executable segments, system segments, and data segments that are not normally
considered I/O buffers.

• I/O performance of swappers is critical and often calls for specialized device drivers and disk space
allocation stategies.

Secondary Storage Management

Virtual-memory mechanisms use a secondary storage medium, such as disk, to simulate a larger memory
space than that provided in RAM. The operating system uses this secondary storage (here called the
swap space) to store copies of those segments that are currently in the virtual space but may be
eliminated from RAM.

There are two general approaches for allocating swap space for segments in dynamic systems:

• The loader can invoke a swap-space allocation procedure as it loads the segments of a task. It can
at the same time write an initial image of the segment into the swap space. This is particularly
useful for a segment such as an executable segment that is occasionally swapped in but may never
be swapped out (when its RAM space is used for another segment) due to the fact that its contents
do not change.

• The operating system may invoke the swap-space allocation procedure dynamically, either when
allocating RAM for the segment or at the first time the operating system swaps the segment out.

Some operating systems may implement both approaches. A system that allocates swap space only at
load-time cannot swap out certain segments; namely, segments that a bootIoader creates initially and
segments that the operating system creates dynamically. In many systems, this is not a problem. Often

9-2 121960-001

VIRTUAL MEMORY

those segments that are bootloaded are just the segments that should not be swapped out. Other operat­
ing systems may allocate many segments dynamically: stacks, mailboxes, variable-length arrays, etc.
These systems may need both approaches.

In designing a dynamic swap-space allocation scheme, you should consider at what time it is best to
allocate swap space. The procedure that first allocates RAM space for a segment (a loader, for example)
often creates a writable data segment descriptor. Later, when the procedure has initialized the segment
(for example, by writing descriptors into a segment that is to be used as an LDT), it modifies the type
code in the descriptor to reflect the intended use of the segment (in this example, it would change the
type to LDT). By delaying the allocation of swap space until first swap out, the operating system never
allocates swap space for segments that it never swaps out (there is no need to allocate swap space for
an LDT, for example, if the operating system does not support swapping of LDTs).

Once the operating system allocates swap space for a segment, it must store the swap-space address in
a location that is easily accessible when it is time to swap the segment out. Two possible mechanisms
for storing the swap-space address are

• In a boundary tag of the segment, if boundary tags are used. (Refer to Chapter 3 for an example
of a space-management scheme that uses boundary tags.)

• In a table parallel to the descriptor table.

To determine whether to call the swap-space allocation procedure when it is time to swap a segment
out, the operating system can test whether the swap-space address field contains a null value.

When a segment is not present, the operating system can use the 24-bit base-address field in the segment
descriptor to store the address of the swap space in which the segment is stored. As long as the present
bit of a descriptor is reset, the processor does not use the base-address field. Storing the swap-space
address in the descriptor also makes the swap-space address readily accessible to the "not-present" trap
handler because the error code presented to the trap handler contains a selector to the descriptor for
the not-present segment.

Level Zero Support Procedures

While the swapping procedures are I/O procedures that should run at privilege levels greater than
zero, protection of the system demands that highly privileged procedures carry out some details of the
swapping process. Only privilege-level 0 (PL-O) procedures have the right to perform such activities as

• Create read-data or write-data alias descriptors with which the swappers can access the segments
they are operating on

• Change the present bit in a descriptor

• Overwrite the base-address field of a descriptor

• Prevent the swapper from operating on segments that must remain RAM-resident

• Update all the alias descriptors for a segment with its new status

The following checklist identifies some of those segments that should remain permanently in RAM (in
your application, there may be others):

• The GDT. (It is the key to all addressing operations.)

• LDTs that refer to present segments. (The processor cannot access an LDT segment without fetch­
ing its descriptor from the LDT.)

9-3 121960-001

VIRTUAL MEMORY

• TSSs that point to present LDTs. (You cannot switch to a task and use its LDT without referring
to its TSS.)

• TSSs whose NT (nested task) flag is set.

Certain operating-system kernel segments that are frequently referenced (for example, the segment
or segments containing the scheduler's queues). (System performance may degrade excessively.)

Segments belonging to the swapping managers.

I/0 buffers that are in use by an external device.

Executable segments that contain the entry point of an exception handler. (An exception would
result in a double fault.)

Note that, while the iAPX 286 does offer mechanisms that support swapping of TSSs and LDTs, doing
so is likely to cause not-present faults in PL-O procedures and to cause unacceptable delays in invoking
interrupt tasks that are not present. For either of these reasons, the designers of an operating system
may elect not to swap out TSSs and LDTs.

Swapping Managers

Swapping managers may need to distinguish between two classes of segments:

Segments of a task superstructure (the TSS, the task database (TDB), and possibly the level-zero
stack segment)

Segments not part of a task superstructure

Swapping of the task superstructure requires that swapping managers be aware that the kernel may
treat the TSS as a "subsegment" of the TDB, which may itself reside within the level-zero stack (as
outlined in Chapter 4). The swapping managers should treat these segments as a unit.

Considering the complexities associated with swapping the segments of the task superstructure, it is
perfectly reasonable for an operating system to simplify its virtual-memory subsystem by leaving those
segments in RAM for the duration of the task.

OUT-SWAPPER

The out-swapper works best as a separate task; when the out-swapper must wait for the swapping­
·device I/0 driver to write a segment, other tasks can continue to run, including the task whose segment
is being swapped out.

The out-swapper's responsibility is to

Mark all the descriptors for the segment "not present." The out-swapper must ensure that the present
bits in all descriptors for a segment always appear consistent. It must use a semaphore or region to
prevent other access to the aliases while it is changing present bits.

Copy the swap-space address into all the descriptors for the segment (or possibly, depending on
alias implementation, into a "master descriptor" that is linked to other descriptors).

Create a temporary data-segment descriptor to give the swapper the right to read the segment. The
operating system must not move or delete this segment until the out-swapper is finished with it.

Write the segment to the swap-space allocated for it (but only if the segment is writable ana its
accessed bit is set).

9-4 121960-001

VIRTUAL MEMORY

• Return the RAM space used by the segment.

• Delete the temporary data-segment descriptor.

IN-SWAPPER

In theory, the fetch policy module, invokes the in-swapper. In practice, when the fetch policy is "on
demand," the in-swapper is the "not-present" fault handler, which may also be called by the stack
segment fault handler (for not present stack segments) and by the "invalid TSS" fault handler (for not
present LDTs). The not-present fault handler can run as a procedure in the task that caused the fault.

There is one case, however, that such a procedure cannot handle well. A dispatcher procedure running
in task A causes a not-present fault when switching to task B whose TSS is not present. If the not­
present handler procedure continues running in task A, then task A must wait until task B's TSS can
be swapped in. Whether this is a problem depends on the role of task A in the application. The not­
present handler procedure can avoid this situation by suspending task B and sending a message to yet
another task that is dedicated to swapping in TSSs.

The steps that an in-swapper procedure takes are to

• Get the swap-space address and segment size (limit) from the descriptor indicated by the error code.

• Allocate a writable data segment in RAM large enough to receive the segment.

• Copy the segment from swap space to the newly allocated RAM space.

• Update all regular descriptors for the segment with the new base address, setting the present bit
and resetting the accessed bit. (The base address comes from the temporary writable data-segment
descriptor.)

• Delete the temporary writable data-segment descriptor.

An in-swapper task for not present TSSs gets a message from its input mailbox that identifies the
descriptor for the TSS and identifies the task to which the TSS belongs. The in-swapper task performs
the same steps as an in-swapper procedure, but it must also inform the scheduler when the task is
ready to run. You can avoid the additional complexities of not-present TSSs by not swapping TSSs
out.

COORDINATION OF IN- AND OUT-SWAPPER

A number of interactions between the in-swapper and out-swapper present pitfalls that the operating
system must avoid:

• A task may attempt to use a segment that is being swapped out. If the in-swapper does not handle
this possibility, it may swap in old, erroneous data from the swap-space.

• Task A may request swapping in of a shared segment that is being swapped in for task B. If the in­
swapper blithely reads in the segment again for task A, it may overwrite changes made by task B.

• A task may delete a segment that is being swapped out. If the swap-space release procedure does
not allow for this case, the segment's swap space may be released and reallocated while the out­
swapper is writing to it.

The in-swapper, out-swapper, and swap-space release procedures can control these interactions by
maintaining a shared table of all segments that are in transition. They must use a semaphore or region
to coordinate access to the shared table. The swap-space address can serve as the segment identifier in
the table.

9-5 121960-001

VIRTUAL MEMORY

SOFTWARE POLICIES

A virtual memory system gives each task the opportunity to affect other tasks in the system. Tasks
compete with one another for real memory resources. One task may attempt to use memory in such a
way as to unduly impede the progress of other tasks. The operating system must enforce policies which
ensure that every task makes appropriate progress.

Virtual memory management policies are not unique to the iAPX 286; the computer-science literature
contains many discussions of policies that apply to various classes of applications. There is, however, a
distinction between segmented architectures and paged architectures. The iAPX 286 has a segmented
architecture. Literature that deals with paged architectures may not apply to the iAPX 286. Refer to
the paper by Denning (see "External Literature" in the Preface) for a broad survey of the science of
virtual-memory management.

The remainder of this chapter is an introduction to memory-management policy. The policies you need
to consider are of three types: fetch policy, placement policy, and replacement policy.

Fetch

The fetch policy determines which segment to bring from swap space into RAM and determines when
to bring it in.

The simplest fetch policy is to bring in a segment on demand, that is, at the time it is referenced.
Under this policy, the operating system brings in a segment from swap space only when the processor
causes a not-present exception as the result of a reference to the segment.

All other fetch policies are in some way anticipatory. A simple example of an anticipatory fetch policy
on the iAPX 286 is to always bring in the LDT of a task when bringing in its TSS. Some time-sharing
systems implement an anticipatory policy that brings in all the segments of a task at once. This policy
may be suitable for tasks that consist only of one code segment, one or two data segments, and stack
segment (as, for example, simple BASIC programs submitted by students in a university environment).
The swapping managers can use the segment register fields in the TSS (CS, DS, ES, SS) to identify
the task's working set.

Attempting to implement such a full-task swap policy for more complex tasks that use many segments
may result in frequently fetching segments that are not referenced in anyone time slice.

The additional complexity of implementing an anticipatory fetch policy is justifiable only if the antic­
ipatory policy performs better than the demand policy. Given the efficiency of the iAPX 286 exception
mechanism and given that in a multitasking environment there is usually some other task to service
while one task waits for the in-swap per to fetch a segment, an anticipatory policy typically does not
provide significantly greater throughput. An anticipatory policy may give better performance, however,
when judged by performance standards other than throughput (for example, interrupt latency for specific
tasks).

Placement

Determining where in RAM to place an incoming segment is the subject of Chapter 3. In a virtual­
memory system, however, the constant reallocation of real memory to segments of varying length places
special demands on the operating system's memory management module. When choosing a space­
management algorithm for a system that includes virtual memory, you may wish to give extra consid­
eration to the trade-off between speed and memory fragmentation.

9-6 121960·001

VIRTUAL MEMORY

Replacement

The operating system may need to replace one or more other segments that already reside in real
memory to make space for a segment that is the object of a "segment-not-present" fault. The replace­
ment policy determines which segments to eliminate and when to eliminate them.

The choice of which segments to evict from RAM is crucial to the performance of the system. The
goal is to evict only segments that will not soon be referenced. The difficulty is knowing which segments
will not soon be referenced. Many different policies are discussed in the literature. They fall into three
general classes:

• Naive policies that determine which segment to evict without any knowledge of segment access
patterns

• Historical policies that use information about prior access patterns to determine the probability
that a segment will soon be referenced

• Optimal policies that use analyses of actual program control flow to determine the probability that
a segment will soon be referenced

HISTORICAL POLICIES

The iAPX 286 architecture supports gathering of historical information about actual segment access
patterns via the accessed bit in executable and data segment descriptors. An operating-system module
that periodically tests and resets the accessed bits of descriptors can develop a "profile" of segment
usage. The information gathered this way can be used both by the replacement policy module for run­
time decision making and by the operating system designers for improving replacement policy.

A "profiler" works best if it takes samples at regular intervals. To find all descriptors, it must step thru
LDTs. A profiler does not need to examine all descriptors in the system each time it is invoked; it needs
only to examine those of tasks that have run since the last time it was invoked. The same timer inter­
rupt procedure used by the scheduler can invoke the profiler at appropriate times.

A profiler may run either as a separate task or as a shared procedure in the current task. A profiler
that runs as a procedure in the current task can easily locate the LDT with an SLDT instruction. The
LSL (load segment limit) instruction helps the profiler find the size of an LDT. The LAR (load access
rights) instruction enables the profiler to test the accessed bit. A profiler that runs as a separate task
may require the support of a PL-O procedure that locates LDTs and tests accessed bits in other tasks.

A profiler must give special consideration to aliases. If the accessed bit in any of the aliases of a
segment is set, the segment has been accessed. Here again, a PL-O segment may be needed to step
through the kernel's alias lists.

OPTIMAL POLICIES

Many of the optimal policies discussed in the literature are of theoretical interest only. They are used
as a standard against which to measure the performance of more practical policies.

The segment-register fields of the TSS provide support for a trivial, but possibly useful, optimal policy.
The replacement policy can assume that, next time any given task runs, all the segments identified by
the CS, DS, SS, and ES fields of the TSS will be referenced. The processor loads all these registers
during a task switch and causes a fault at that time for each not-present segment. Since the task cannot
run if anyone of these segments is not present, the replacement policy may as well replace all of them

9-7 121960-001

VIRTUAL MEMORY

at once. It then becomes possible to allocate swap space for these segments in such a way as to minimize
seek time. Such a policy works well with the full-task fetch policy outlined previously.

THRASHING

If not carefully controlled, the I/O traffic in support of virtual memory may degrade system perform­
ance beyond acceptable limits. The worst case of performance degradation is called thrashing. This
happens when RAM is committed to simulating an excessively large virtual-memory space and the
behavior of the tasks in that space is such that no task can run without causing a not-present fault.

You can avoid thrashing by measuring or estimating the minimum amount of RAM a task needs in
which to operate without causing frequent not-present faults. If the task loader knows this figure, it
can refuse to load a task when not enough RAM is available. You can measure a task's RAM require­
ments with a profiler such as that described previously.

9-8 121960-001

System Initialization 10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER 10
SYSTEM INITIALIZATION

The initialization performed at power-on or RESET by the 80286 processor is not, by itself, adequate
for running in protected mode. Software must perform additional initialization before it is possible to
fully use protected mode.

INITIAL STATE

When you power up an 80286 system Or perform a RESET, the state of the processor is as follows:

• The MSW(machine status word) is zero; i.e., the 80286 starts running in the real-address mode.

• CS:IP be set to FOOO:FFFO, and the CS limit is OFFFFH.

• The four high-order address lines A23-20 are automatically asserted for all subsequent references to
CS until your initialization code changes CS.

• SS, DS, ES are set to zero, and the corresponding limit registers are set to OFFFFH.

• The flag word is zero. This means that the 80286 starts running with the maskable interrupts disabled.

The initial state of the address lines and CS:IP causes the processor to begin executing instructions at
physical address OFFFFFOH. Presumably, this addresses a JMP instruction in an initialization proce­
dure located in ROM or in RAM that has been loaded by another processor. The initialization proce­
dure may occupy any portion of the last 65,536 bytes of the 16-megabyte address space. The JMP
instruction at physical address OFFFFFOH transfers control to the actual beginning of the initialization
procedure. The first instruction that modifies the CS register causes the processor to cease asserting
the high-order four address lines; therefore, the initialization procedure must avoid using any instruc~
tions that modify the CS register, except for the final JMP instruction. -

The initial state of the DS, ES, and SS registers gives the initialization procedure access to the first
65,536 bytes of the address space. The initialization procedure may change these registers, however,
to gain access to any location in the first megabyte of the address space. (With regard to segmentation
arid addressing, the 80286 in real-address mode behaves just as an 8086.) Access to other portions of
memory is possible only after switching into protected mode.

SWITCHING TO PROTECTED MODE

You use the LMSW (load machine status word) instruction to set the PE bit in,the MSW,'thereby
switching the 80286 into protected, virtual-address mode. The current privilege level (CPL) starts at
zero. The segment registers continue to point to the same physical memory areas as in real-address
mode.

Immediately after setting the PE flag, the initialization code must· flush the processor's instruction
queues by executing a' JMP instruction. The 80286 fetches and decodes instructions and addresses
before they are used; however, after a change into protected, virtual-address mode, the prefetched
instruction information (which pertains to real-address mode) is no longer valid. A JMP forces the
processor to discard the invalid information. An intrasegment JMP will cause the processor to drop the
four high-order address lines; however, in protected mode this is not a problem. All addressing in
protected mode uses the 24-bit base address from the segment descriptor; so, once in protectedmpde,
all of physical memory is accessible.

10-1 121960-001

SYSTEM INITIALIZATION

INITIALIZING FOR PROTECTED MODE

You can do most of the initialization needed for protected mode either before or after switching into
protected mode. If done after, however, you must be careful to order the code so that it does not use
protected mode features that require initialization that is not yet completed.

Interrupt Vector

The initial state of the 80286 leaves interrupts disabled; however, to ensure a predictable action in case
an exception or non-maskable interrupt (NMI) occurs, it is a good idea to initialize the IDT register.
Since it is unlikely that the NMI interrupt handler or any exception handler has been initialized, the
most appropriate value to load into the IDT register is zeros, thereby guaranteeing a shutdown should
an interrupt happen. (The 80286 signals shutdown externally as an indication of a severe problem.)
Later, when interrupt service routines are ready, you can change the IDT register to point to an actual
IDT that contains gate descriptors for the interrupt routines. Interrupts may be enabled at that time.

Stack

Before you perform any stack operations, whether in real-address mode or in protected, virtual-address
mode, you must load the SS register with a descriptor to a stack segment in RAM. If the SS register
is loaded in real-address mode, it continues to point to the same segment after the switch into protected,
virtual-address mode.

Global Descriptor Table

Before you change any segment register in protected, virtual-address mode, the GDT register must
point to a valid GDT.

The GDT (as well as LDTs) should reside in RAM because the processor modifies the accessed bit of
descriptors.

To allow full 16-megabyte addressing in the initialization code, you may find it convenient to build a
temporary GDT that contains only enough descriptors to permit the initialization procedure to read
the GDT segment from ROM or from a bootloadable module. After placing the real GDT into RAM,
you can change the GDT register.

STARTING FIRST TASK

The initialization procedure can run awhile in protected mode without initializing the task register;
however, before the first task switch, two conditions must prevail:

• There must be a valid task state segment (TSS) for the new task. The register fields of the TSS
should have appropriate values, the segment register fields must point to valid segments or be null,
the stack pointers for privilege levels numerically less than or equal to the initial CPL must point
to valid stack segments, the LDT pointer must point to the GDT entry for a valid LDT (or be null
if the task does not use an LDT) and, just as insurance, the back link of the TSS should be null.

• The task register must point to an area in which to save the current task state. After the first task
switch, the information dumped in this area is not needed, and the area can be used for other
purposes.

10-2 121960·001

SYSTEM INITIALIZATION

Starting the first task is simply a 'matter of executing a long JMPvia the descriptor of a TSS'orvia II:
task gate to that descriptor. This task can perform any remaining initialization work while enjoying the
full protection and virtual-address features of the iAPX 286, the state assumed by the development
tools.

EXAMPLE OF I~ITIALIZATION

The following figures present a detailed example of one way to initialize a protected, virtual-address
mode system. This example includes assembly language modules that work in conjunction with Builder
specifications.

Figure 10-1 shows the primary initialization module ENTP (ENTer Protected mode). This module puts
the 80286 into protected, virtual-address mode a.nd invokes the first task constructed by BLD286. You
use a module such as ENTP by binding it with other modules (presumably those constituting the
operating system and the initial task) that you intend to place in EPROM.

. .
The module SEGS shown in figure 10-2 supplies dummy segment descriptions for ENTP. The program
INIT shown in figure 10-3 serves as the initial task .. It merely displays a message when initialization is
complete. ' .

Initialization Module ENTP

The steps that ENTP takes are to

• Switch into protected mode

• Create a temporary GDT

• 'Create an lOT and GDT copy in RAM from tables in EPROM

• . Point the CPU to the RAM tables

• Copy all the TSSs and LDTs identified in the .GDT from EPROMJo RAM'

• Update the RAM GDT to point to the RAM copies

• JMP to the initialization task in the GDT

The initializations immediately following RESET_STARTUP are redundant. They simulate tht
hardware RESET initializations in case of a software reset or in case of a 'branch to
RESELSTARTUP during debugging.

INITIALGDT is a temporary GDT containing descriptors for the lOT and the main GDT in EPROM
(the one constructed by BLD286). Since the symbols for these descriptors, GDT_DESC and.
IDTJ>ESC, are PUBLIC, the Builder can insert the actual base and limit values into the table. .

The code in segment ENTP _CODE is self-relocatable. In an EPROM-based system, you would specify
to the Builder the actual address of the segment ENTP _CODE, making sure that the entry point
resides at physical address FFFFFOH.

ENTP assumes a specific format for the GDT constructed by BLD286. The first two descriptors are
the data-segment aliases for the GDT and the IDT. The remaining descriptors are grouped according
to the template defined by TASICENTRY. Three adjacent descriptors identify the key segments of
each task. ENTP adapts at run time to the actual number of such groups in the GDT. The task that
ENTP initiatcs is identified by a fixed position in the GDT.

10-3 121960·001

...
o
~

'" <0
~

~

iAPX286 MACRO ASSEMBLER Enter Protected Mod. 960-516 date ?AG=

systeM-IO iAPX286 MACqO ASSEMBLER Vx.y ASSEMBLY CF MODULE ENTP
05JtCT MUOULE PLACED IN :Fl:ENTP~C3J
ASSEMBLER INVOKED 3Y: ASM286.86 :cl:E~TP.A86

LOC 09J

0000
0002
0004
0005
0006

LINE

1 +1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
2Z
23
24
25
26
27 +1

28
29
30
31
32
33
34
35
36
37
38
39
40

SOURCE

STITLEC'Enter Protected Mode 960-516')

HJECT

NAME
PUBLIC

ENT!>
IOT_OESC,GOT_OESC,START

Switch the 90286 from real address mode into protected ~ode.
Th. initial EPR~M GOT, lOT, T5S, and LOT Cif any) constructed by BL0286
are copied from EPRO~ into RA~. The RAM areaS are defined by data
seg~ents allocated as fixod entri.s i~ tho ~DT. The CPU registers for
the GOT, lOT, TSS, and LOT or • • et to pOlnt at the RAM based
segments. The base fields in the RAM GOT are also updated to
point at the RA~ based segments.

Interrupts are disabled during this mod. switching code.
The EPROM bas.d GOT, leT, TSS, and LOT are checked to assure
they are valid before copying them to RAM. If any of the RAM-~asQd
alias s09ments are smaller than the EPROM s~~~ents they are to hold,
h~lt or shutdown occurs. In general any exception or NMI caUSeS
5hutdown to occur until the first task is invoked.

If the RAM segment is larger than the EPROM seg~ent. the RAM segment
is expanded with zeroes. If the initial TS5 specifies an LOT,
the LOT is also copied into LDT_ALIAS with Zero fill if needed.
Tne EPROM or qA~ based GOT, IDT, TS5, and LOT segments may be located
anywhere in physical memory_

Define layout of a descriptor.

DESt
LIMIT
BASE_LOW
BASE_HIGH
ACCESS
RES

STRUC
OW
OW
DB
DB
011
ENDS

o
o
o
o
o

Offset of last byte in segment
Low 16 bits of 14-bit address
High 8 bits of 24-bit address
Access rights byte
Reserved word

DESC

Define the fixed GOT selector values for the descriptors that
define the EPROM based tablas.

Figure 10-1. Initialization Module ENTP

l

en
-< en
-I
In
i:
Z
=t
:;
r-
N :r­
-I
(5
Z

o
I

Q1

~
CD
0>
'?
0

~

iAPX286 "ACRO ASSEMBLER

LOC OBJ

0008
0010
0018
0020
0028

0001

0082
0092

0081
0060
0001
0004
002C
002A
0007

FEI0
OlEO
OleO E969FE

0000

0000
0000 0000

Enter Protected Mode 960-516 date PAGE

LINE

41
42
43
44
45
46
41
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64 +1
65
56
61
68
69
70
71
12
13
14
75
16
17
18
79
80
91
82
83
B4
35

S:lURCE

GOT_ALIAS EQU
lOT _All AS EQU
START_TSS_Al.IAS EeU
START_TASK EQU
START_LOT_ALIAS EQU

Define machine

PE EQU

l*SIIE OESC GOT(l) is data segment space for
2*S II E OESC GOT(2) is data segl1lent space for
3*SIZE OESC GOT(3) is data segment space for
4*S II E OESC GCT(4) is TSS for starting task
S*SIZE DESC GOT(5) is data segment space for

status .ord bit positions.

Protection enable

GOT
lOT
TSS

LOT

Oefine particular values of descriptor access rights byte.

DT_ACCESS EeU 82H Access byte value for an LOT
OS_ACCESS EeU 92H Access byte value for data segment:

expand up, level 0, writeable
TSS_ACCESS Eeu 811< Access byte value for an idle TSS
OPL EQU 60H Privilege level field 6faccess rights
ACCESSED EeU 1 Define accessed bit
TI EeU 4 Position of TI bit
TSS_SIZE EQU 44 Size of a TSS
LOT _OFFSET ECU 42 Position of LOT in TSS
TIRPL_MASK
$EJECT

EQU .SIZE OESC-l TI and RPL field mask

Pass control from the power up address to tMe mode switch code.
The segment cont~ini"g this code must be at physical addr~ss FFFEIOH
to place the" JMP instruction at physi:~l addr~ss ~FFFFOH. The base
address is chosen according to the size of this segment.

ENTP_CO:lE

CS_JFFSET

SEG..,ENT E~

EQU
O~G

JMP

OFEIOH Low 16 bits of starting address
OFFFOH-CS_CFFSET; Start at address FFFFFOI<
R"SET_STARTUP Do not change C51

Dafine the template ~or a temporary GDT used to locate the initial
GOT and stack. This data is copied to location O.
This space is also used for a temporary stack and finally serves
as the TSS written into when entering the initial T5S.

INITIAL_GOT
NULL_DESC

ORG

LABEL
DESC

o

WDRD
<>

Place remaining code below po~er_up
address

Filler a~d null rOT descriptor

Figure 104. Initialization ModuleENTP (Cont'd.)

2 l

en
-< en
-I m
~

z
::::j
> r-
N
l>
-I
(5
Z

....
0
I

0>

~
<D
C>
o
b
:1

I

iAPX286MAeRJ~ASSE~BlfK

Loe OBJ

0002 0000
0004 00
0005 00
0006 0000
0008 0000
OOOA 0000
oooe 00
0000 00
OOOE 0000
0010 0000
0012 0000
0014 00
0015 00
0016 0000
0018 0000
OOlA 0000
ODIC 00
0010 00
~Ole. 0000

0020 3FOO
0022 0000
0024 00
0025 9Z
0026 0000

0028 3FOO
OOZA 0000
ooze 00
0020 81
002E 0000

0030 (8

~nter Protec'hCl Mod.'60-516 date

LINE SJUnE

66

97

98

89
90
H
92
93
94

95 +1

96
97
98
99

100
101

102
103
104
105

GJT_DESe DESC <> ·C"scriptor for EPRO>l .. OT

lOT_DEse DESC <> Descriptor for EPROM lOT

r:"P_OESC OESt <> Temporary descript~r

Define a descriptor which points the GDT"at location O.
This descriPtor ii also loaded into S5 to define th~ initial
protected-mod~ stack se~ment.

TE"P_ST4CK CESC <:ND_GOT-INITlAL_GOT-1,O,O,DS_ACC~5S,0>

SEJECT

Defina tho TS5 descriptor us.d to allow the task switch to the
first task to overwrite this region of memory. The TSS overl~ys
the initial GOT and stack at 10cation,0.

SAVE_ TSS oesc <ENO_GDT-INITlAL_GDT-l,O,O,TSS_ACCESS,O>

Define the initial stack space and filler for the end of the TSS.

OW 8 OUP (0)

Figure 10·1. Initialization Module ENTP (Cont'd.)

PAG" 3 l

en
-< en
-t
In
:I:
Z
::::j
:;
r-
N
:I>
-t
(5
Z

......
o
!..

~

I

iAPX286 MACRO ASSEMBLEt

LOC OBJ

0000
)

0040

0040
0040 0000
0042 2000

0000
0002
0004

0044 2000
0046 1800
0048 2800
OOU 0000

004C
004C FA
0040 FC
004£ 33FF
0050 8EOF
0052 8ECT

_OOS4 8E07
0056 8UOOO

0059

0059 E90000
005C
005C 50
OOSO 83E05C

0060 2£OF015000

Enter Protected Mode 960-516 date PAGE

LINE SOURCE

106
107
108
109

110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130 +1
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

EN~_GOT LABEL WORD

START_POINTER LABEL OWORD
OW O_START_TASK Pointer to initial task

Define template for the task definition list.

TASK_ENTRY
TSS_SEL
T5S_ALIAS
LOT_ALIAS
TASK_ENTRY

TASK_LIST

RESET _STAIITUP:

SEJECT

CLI
CLO
XOR
MOV
MOV
MOV
MOV

STRUC
ow
OW
OW
ENDS

TASK_ENTRY

OW

01_01
OS_OI
ES_OI

o

Define layout of task description
Selector for TSS
Data segment alias for TSS
Data 5egment alia5 for LOT if any

<START_TASK.START_TSS_ALIAS.START_LOT_ALIAS>

Terminate list

No interrupts al10.ed'
Use autoincrement mode
Point ES:OI at phisical address 000000"

SS_ot : Set stack at end of reserved area
'SP_ENO_GOT-INITIAL_GDT

For~ an ~djustm.nt factor from the real CS base of FFOOOOH to the
segment base address assumed by A5M286. Any data reference mad.

STUT

1nto CS must add an indexing term raPl -to compensate for the difference
b.twe.n the offset generated by ASM286 and th~ offset required from
the base of FFOOOO".

PIIOC

CQLL STAQT1

The value of IP at run time is not
the same a. used by ASM2S61

Get true offset of STARTI
STUT1:

PI)P
SU!I

LIaT

BP
BP_OFfSET STARTl

NULL_oeSCCBPJ

Subtract ASM296 offset of STARTI
l.aving adjustment f.ctor in 8P

S.t up null lOT to force shutdo.n
on any protection error or interrupt

Figure 10-1. Initialization Module ENTP (Cont'd.)

4 l

~
~ m
.:
Z
:I • r-

~ ... o z

.....
o
clo

~

I

iAPX286 "'ACRO AssiMBLER

LOC OBJ

0065 807600
0068 B92000
0068 F3
006C ZEA5

006E OFOlEO
0071 000100
OOH OFOIFO
0077 EBOO

0079 ZEOF0156Z0
007E B82000
0081 8EDO
0083 33CO
0085 OFOOOO

0088 88Z800
008B OF0008

OOSE ZE884608
0092 302FOO

0095 723C

0097 BB0800
009A BE080.0
0090 E8D600
OOAO BElOOO
OOll B81000
00A6 e8COOO
0049 880800
OOAC SeDS

Eni.or Protechd '"ode 960-516 date P4G:

LINE.

147
14S
149
150
151
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172 +1

173
114
175
176
177
17B
119
180
181
192
183
184
185
186
1S7
188
189
190

SOUQC"

REP

SEJECT

COpy the EPROM-based temporary ~OT into RA~.

lEA
MOV
MOVS

Sl,INITIAL_GOT[gP]
CX,(ENO_GOT-1~ITI4L_GOT)/Z

ES:WORO PTR [01],CS:[51]

Setup pointer to GOT
Set length
Put into res.rv~d RAM

·SliIitch to protected 'moda 'and se·t· up a stack. :;OT, and LOT.

SMSW
O~

LMSW
JMP

LGOT
MOV
MOV,.

. X~R .
LLDT

MOV
LTR

AX
AX,PE
AX
$+2

n:~1> STACKt;!P]
AX,TEMP_STACK-1N1TIAL_bOT
SS,U
AX,AX
AX

AX,SAVE_TSS-INITIAL_G~T

AX

·Get current MSW
Sat PE bit
Enter protected modol
Clear queue of i~structions decoded

.hile in qeal Address Mode
C?L is now 0, CS still points at

FFFE10 in physical memory

.Put initial GOT into qA~ area
Setup SS with v~lid protected mode

selector to the RAM GOT and stack
Sot the current LOT to null
Any references to it causes

an exc9ption causi~g shutdown
Set initial TSS into the low RA~
The task switch needs a valid TSS

Copy the EPROM based GOT into the RAM data segment alias.
First the descriptor for the RAM data segment must be copied into
the temporary GOT.

MOV
CMP

JS

M~V

MOV
CALL
MOV
M(lV
CALL
MOV
MOV

AX,GOT_OESCCB~J.LIMIT

AX,6*SIZE OESC-1

BAD_GOT

BX,GOT_OESC-INITIAL_GOT
SItGOT_ALIAS
COPY..;EPROM_OT
SI,IOT_ALIAS
BX,IOT_OESC-INITIAL_GOT
COpy _EPROM_OT
AX,~OT_OESC-INITIAL_GOT
OS,AX

: Get size of GOT
;-Se'sur.·the last entry expected by

this code is inside the GOT
Jump if GOT isn"t big enough

Form selector to EPROM GOT
Get selector of GOT alias
Copy into EPROM
Get selector of lOT alias
Indicate EPRO~ ICT

Set up addressing into EPqOM GOT

Figure 10-1. Initialization Module ENTP (Cont'd.)

5 l

~ en
-t
m
~

Z
=t
:;
r-
N
~
5 z

....
0
I

U)

~
<D

'" '?
<>
9

iAPX286 MACRO ASSEMBLER·· Enter ~rot.cted Mode 960-515 . date PAGE

LOC' OBJ LINE

OOAE 1180800 191
00B1 OFOU7 192

193
194
195
196

00B4 805E44 197
00B7 198
00B7 E81BOO 199
OOBA 83C306 200
0080 2E8B07 201
OOCO OBCO 202
00C2 75F3 203

204
205
206

00C4 BB0800 207
00C7 8ED8 208
00C9 BBlOOO Z09
OOCC OFOllF 210
OOCF ZEFF6E40 211

212
213

0003 214
0003 F4 215

216
217
218 +1
219
220
221
222
223

0004 224
0004 F4 225
0005 226

227
0005, BE0800 228
0008 8EOE 229
OODA 2E887702 230
OODE 8EC6 231
ooeo OF03C6 232
00'E3 2E8BH 233
00E6 OF02D6 234
00E9 75E9 235

236

SOURCE

MJV
LGOT

8l(~GDT_ALIAS
caX]

G~~ tOT .11asdata se;~ent selector
Set GOT to qAM GOT
SS and TR remaln in low RAM

Copy all t~sk·s TSS and LOT segments into RAM

LEA
COPY_TASK_L~OP:

CALL
ADO
MOV
OR
JNZ

eX.TASK~LISTrBPJ

COPY_TASKS
BX.SIZE TASK_ENTRY
AX.CS:raXJ.TSS_SEL
AX.AX
COPY_TASK_LOoP

Define list of tasks to sat up

Copy them into RA~
Go to next entry
See if there 1s ~nother entry

With TSS. GOT. and LOT set. start UP the initial t~skl

BA~_GOT:

MOV
MoV
M'lV
LIoT
JMP

HLT

START ENoP
SEJECT

BX.GOT_ALIAS
os.ax
ax. lOT_ALIAS
[BXJ
START_POINTERCBPJ

Point OS at GOT

Get lOT alias data segment selector
Set, lOT for errors ~nd interrupts
Start the first task!
The low RAM area is overwritten .ith

the current CPU context

Halt here if GOT isn"t big enough

CO~y the TSS and LOT for the task pOinied at by CS:BX.
If the task has an LOT it will be copied down. too.
BX and ap are transparent.

BAO_TSS:
HLT

COPY_TASKS.

MOV
MoV
MOV
MOV,
LSL
MOV
LAR
JNZ

PRot ' ..

SI.GOT_AlIAS
o,S.SI
s(icsrraXJ.TSS_ALIAS
E S. S I
AX.SI.
SI.cs:r~XJ~TSS_SEL

OX.SI
aAO_TSS

Halt here if TSS is invalid

Get address ability to GOT

Get selector for TSS alias
Point ES at alias data segment
Get length of T5S alias
Ge~ TSS selector
Get alias access rights
Jump if invalid reference

Figure 10,.1. Initialization Module ENTP (Cont'd.)

6 l

en
~
-I m
!I:
Z
::;
j;
r-

~
o z

-"

~
o

~
<D

~ g

1apX286 MaCRO aSSEM8LER

LOC 08J

00E8 UD6
ODED 80E69F
OOFO 80FE81
00F3 15DF

00F5 OF03CE
00F8 83F928
OOFS 1201

OOFO C6440592
0101 8EDE
0103 E89BOO

0106 880800
0109 8EDS
0108 8ECD
0100 2E883F
0110 2E811102
0114 A5
0115 a5
0116 AD
0117 8AE2
0119 AI
011A A5

0118 2E8E5F02
011F 88362AOO
0123 81E6F8FF
0121 1441

0129 56
012A OF02D6
0120 153e

012F BAD6
0131 80E69F

Enter Protected· Mode 960-516 date PAGE

LINE S:!URCE

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267 +1
268
269
270
271
27Z
273
274
275
276
277
278
279
280
231
282

SEJECT

MOV
AND
CMP
JIlZ

LSL
CMP
JB

DL,OIl
DH,NOT OPL
all, TSS_ACCESS
BAO_TSS

eX,SI
CX,TSS_SIZE-1
BAD_TSS

Save TSS descriptor access byte
Ignore privilege
See if TSS
Jump if not

Get length of EPROM based TSS
Verify it is of proper size
Jump if it is not big enough

Setup for moving the EPROM based TSS to RAM.
OS points at GDT.

MOV
MOV
CALL

[SIJ.ACCESS,OS_ACCESS
OS,S!
COPY_WITH_FILL

Make TSS into data segment
Point OS at EPROM T~S
Copy as segment to :S with Zero fill

CX has copy count. AX-CX fill count

Set the GOT TSS limit and base address to the RAM values.

MJV
MOV
MOV
MOV
MOV
MOVSW
M:lVSW
LOOSW
MOV
STQSW
MOVSW

AX,GOT_ALIAS
OS, AX
E5,AX
DI,CS:[6XJ.T5S_SEL
SI,CS:[SXJ.TSS_ALIAS

AH,OL

Restore GOT addressing

Get TSS selector
Get RAM alias selector
Copy limit
Copy low 16 bits of address
Get high 3 bits of address
Mark as TSS descriptor
Fill in high address and access byte5
Copy reserved word

See if ~ valid LOT is specified for the startup task.
If 50 t~en copy the E~RO" varsion into tho RAM alias.

MOV
MOV
AND
JZ

PUSH
LAR
JNZ

MOV
AND

DS,CS:[BXJ.TS5_ALIAS
S!,DS:WORO PT~ LOT_OFFSET
St,NOT TIRPL_MASK
NO_LOT

51
OX,S!
BAD_LOT

DL.OH
DH,NOT OPL

Address TSS to get LOT

I~nor. TI and RPL
Skip this if no LOT used

Save LOT selector
Test descriptor
Jump if invalid selector

Save LOT descriptor access byte
Ignore priviJlege

Figure 10·1. Initialization Module ENTP (Cont'd.)

1 (

en
< en
~ m
!!:
Z
:::j
;;
r-
N
~
(5
z

--
iAPX286 'UCRO USE148LER Ente,. P,.ohcted Mode ?60;"Sl6 d_t.. PAGE

..
8 Ie[:

LOC OU LINE
,.

SOURCE ' .
0134 80FE82 283 CHP OH,OT_ACCESS Be .u,.. it is an LOT desc,.ipto,.
0137 7532 284 JNE BAD_LOT Jump if invalid

285
0139 26C6440592 286 HOY ES:CSIJ.ACCESS,OS_ACCESS; .14a,.k LOT lIS dat!l segment
OBE 8EDE 287 HOY OS,SI Poi~t OS at EPROM LOT
0140.,OF03C6 288 LSL AX,SI Gat LOT limit
0143E82600 289 CALL T:ST _OT _LIMIT Ye,.ify it i. valid
0146 88C8 290 MOV CX, AX Save fo,. lat.,.

291
292 Examine the LOT alias segment and, if good, copy to RAM.
293

0148 2E8B7704 294 MOY SI,CS:CBXJ.LOT_ALIAS Get LOT .alia. selecto,.
014C 8EC6 295 MOY ES,SI Point ES at alia:s segment
014E OF03C6 296 LSL AX,SI G.t length of alias ~egm.nt

UJ
0151 E81800 297 CALL TEST_DT_LIMIT Ve,.ify it is valid -<
OlS4 E8UOe 298 CALL COPY_WITII_FILL .Co.py LDT into RAM alias segment UJ

299 -t
300 Sit the LOT limit and base add,. •• s to the RAM copy of the LOT. m
301 ~

....;. I, 0157 2E8B77D4 302 MilY SI,CS;tBXJ.LDT_ALIAS Resto,.. LOT .alias ~el.cto,. Z
0 OlS8 SF 303 POP DI Resto,.. LOT selecto,. ::j
.!.. 015C 880800 304 MOV AX ,.GDT _AL I.A S Resto,.e G:lT add,..s·sin;l :;:

OlSF 8ED8 305 MOV DS,AX
0161 8ECO 306 MOV ES,U·

r-

0163 A5 307 MOVSW Move the RAM LOT limit ~
0164 A5 308 MOVSW Move the loe 16 bit. ac,.oss ::!
0165.AD 309 LOOSW Get the high 9 bits 0
0166 &AU 31"0 MOV AH,Ol Ma,.k as LOT desc,.ipto,. Z
0168 A8 311 STOSW S.t high add,.e •• and access ,.ights
0169 A5 312 MDYSW .CII.IOY .,. •• e,.ved wo,.d
016A 31"3 NO_LOT:
016A C3 314 RET All·done
0168 315 BAD_LOT:
0168 F4 316 liLT Halt he,.. if LOT is invalid

317
318 COPY_TASKS· ENOP
319 +1 SEJECT
320
321 Test the desc,.ipto,. table size in AX to ve,.ify that kt is an
322 even numbe,.of d.sc,.ipto,.s in length.
323

016C 324 TEST_OT_LUin PROC

~ 325
fD 016C 50 326 PUSH AX Save length
m
'? 0160 2407 327 ANO AL,7 Look at low o,.de,. bits
0 g

Figure 10-1. Initialization Module'ENTP(Cont'd.)

-'"
0

.!..
I\)

~
~
o

~

iAPX2~6 MACRO ASSEMBLER

LaC OBJ

016F 3C07
0111 58
0172 7501

0174 C3
0175
0115 Flo

0176

0176 8COO
017S 8ECD
017A 26C6H0592
017F 26C747060000
0185 OF03C3
0188 88C8
018A E8DFFF
01S0 BF0800
0190 SEOF
0192 BF1S00
0195 57
0196 AD
0197 E9D2FF

019A AS
0198 A5
019C AS
0190 AS
019E 07
019F SED8

Enter Protect~d Modi 960-516 d .. te PAGE

LINE

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
3S5
356
357
358
359
360
361
362
363
364
365
366
367
368
369 +1
370
371
372
373

SOURCE

C"IP
POP
JNE

R~T
BAD_oT_LIMIT:

lilT

TEST_OT _LIMIT

Al,7
AX
SAo_oT_LIMIT

ENoP

Must be all oneS
Restore length

All OK

Oie!

Copy tho EPROM OT at selector ex in the temporary GOT to tha alias
data se~ment at selector S1. Any i~proper descriptors or limits
cause shutdownl .

COPY_cPROM_OT PRec

HOV
MOV
MaV
MOV
LSL
MOV
CALL
MOV
MOV
HOV
PUSH
LOOSW
CALL

AX,SS • Point ES:OI at temporary descriptor

STOSW
HOVSW
MOVSW
MOVSW
POP
MOV

ES,AX
ES:CBXJ.ACCESS,OS_ACC:SS;
ES:ESXJ.RES,O
AX,BX
CX,AX
TEST_OT _LIMIT
OI,GOT_oESC-1N1T1Al_GOT
05,01
01,TEMP_OESC-INITIAL_GOT;
or

TEST_OT_LIMIT

ES
OS,BX

COPY_EPROM_OT ENDP
$EJECT

Mark descriptor as a data
Clear reserved word
Get limit of =PROM OT
Save for later

S991l1ent

Verify it is • proper limit
Address EPROM GOT in OS

Get selector for temporary descriptor
Save offs~.t for later us. as selector
Gat. alias segment size
Verify it is an even multiple of
descriptors i~ length

Put length into temporary
COP.Y r.entCtinir:'9 entries into temporary

ES now points at the GOT .lias area
OS now points at EPROM DT as data
Copy segment to alias with zero fill
CX is copy count, AX-CX is fill count
Fall into COPY_W1T~_FILL

Copy the segMent at OS to the segment at =S for length CX.
Fill the end .it~ AX-eX Zeroes. Use word oper.tions for speed but
allow odd byte operations.

Figure 10-1. Initialization Module ENTP (Cont'd.)

9 l

en
-< en
-I
m
s:::
Z
::::j
:;
r
N
>
-I o
Z

iAPX286 MACRO ASSEMBLER

LOC OBJ

OlAl

OlAl 33F6
OlA3 33FF
OlA5 2BCl
OlA7 83CI0l
OlAA 0109
OlAC F3
OlAO A5
OlAE 91
OlAF 7307

01B1 A4
0182 OBC9 0184 7409

0

.!.. 01B6 AA (,)
0187 49
01B8
01B8 olE9
01BA F3
018B AB
OlBC 7301

018E AA
01BF
OUF C3

*** WARNING '160, LINE

ASSEMBLY COMPLETE,

~
CD
0>
'?
0

:1

Ent9~ P~otected Mode 960-516

LINE

374
375
376
377
378
379
380
381
382

383
384
385
386
387
388
389
390
391
H2
393
394

395
396
397
398
399
400
401
402

SOURCE

COPY_WlTH_FILL

XOR
XOR
SUB
ADD
RCR

REP Mavsw

XCHG
JNC

MOVSB
OR
JZ

STOSB
DEC

EVEN_COPY:
SHR

REP STOSW

JNC

STOS8
EXIT_COPY:

RET

COPY_WITH_FIlL

PROC

SI,SI
01,01
AX,CX
CX,l
CX,l

AX,CX
EVEN_COPY

CX,CX
EXIT _COPY

ex
CX,l

EXIT_COPY

END?

403 ENTP_COCE ENDS
'403, SEGMENT CONTAINS PRIVILEGED INSTRUCTIONS

404 END

WARNING, NO EqRJRS

date

Sta~t at beginning of segments

Form fill count
Conve~t limit to count
Allow full 64K move
Copy DT into alias a~ea

Get fill count and ze~o AX
Jump if even byte count on cdpy

Copy odd byt ..

Exit if no fill

Even out the segm .. nt offset
Adjust ~ .. maining fill count

Fo~~ wo~d count on fill
Clea~ unused wo~ds at end

Exit if no odd byte ~.mains

Clea~ last odd byte

Figure 10-1. Initialization Module ENTP (Cont'd.)

PAGE 10
(

en
-< en
-I m
~

Z
:::j
~ r-

~ o z

....
0
!.
~

~
CD

~
~

iAPX286 MACR~ ASSEMBLER D:FIN= SEGMENTS N=EJEO FO, INIT CJC:

syste~-IO iAPXZ86 MAC~O ASS MSlER VX.y ASSEMelY OF MCDUlE S=GMENT_DEF
~BJECT .. MOOUlE, PLACED IN :F1: EGS.03J .
ASSE~BlE~ t~VOKtO Sy:' :~l:A M286.86 i C l:SEGS.A86

Lac OBJ LINE SOO~CE

date

1 +1 'TITlEC"OEFINE SEG~ENTS N~EJEJ FOq INIT CODE")
Z
3 NA~E SEGMENT_DcF
4
5 INIT_STACKO SEGMENT R~ aetine stack so mode,switc~ code can

0000 ?1?7 .6 OW run in prote~ted ~~de .
7 INIT _STACKO ENDS
8
9 lOT_SEG SEGIolENT RW Detine alias segment~ whose true

0000 (8 10 OW 8 CUP (1) sizo' ,"ust be, .et by the SlOZ8S
1??1
)

11 lOT_SEG ENOS com;nand file
lZ
13 TSS_SEG SEGMENT, RW

0000 (.8 14 OW. a CUP (?)
1111
)

15 TSS_SEG ENOS
16
17 IOT_SEG SEGotENT RW

0000 C 8 18 Ow a OUP (1)

?11.1
)

19 IJT _SEG ENDS
20
Z1 GDT_SEG SEGME"lT RW

0000 (8 U Oil 8 OUP C 1)

1?11
)

Z3 GDT_S:G ENeS
24
25 END

ASSEMBLY COMPLETE, ~O wARNINGS, Ne EQRCRS

Figure 10-2. Dummy Segments for ENTP

PAG= l

tn
-< tn
-t m
!:
Z
:::j
:;
r-
N
l>.
-t
(5
Z

....
0
I

U1

'" cO
~

~

iAPX286 MACRO ASSEMBLE~ INITIAL TASK

syst •• -ID iAPX286 MAC~O ASSEMSLER vx.y ASSEMBLY OF MODULE INIT_MOO
OBJECT MOOULE PLACED IN :F1:INIT.OBJ
ASSEMBLER INVOKED BY: :Fl:ASM286.86 :F1:INIT.A86

LDC DSJ

0000 1111

0000 496E697469616C
697A6174696F6E
20436F6D706C65
746521

0018 OD
0019 OA
OOlA 00

001S
0018 SEOOOO
ODIE FC
001F
001F lEAC
0021 OACO
0023 7408

0025 50
0026 9AOOOO---- E
0028 EBF2
0020
002D Flo

LINE

1 +1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
11
18
19
20
21
22
23
24
25
26
Z7
28
29
30

SOURCE

STITLE<"INITIAL TASK")

NAME
EXTRN

INIT STACK

INIT _DATA
DU A1
INIT _DATA

INIT_CDDE

MESSAGE

INIT_START:
MOY
ClD

MESS_lDDP:
loDS
OR
JZ

PUSH
CAll
J'4P

INIT_EXIT:
tilT

INIT _MI)()

C~:FA~

STACKSEG 10

SEG~ENT RW PUBLIC
OW
E~DS

SEG"lENT ER
ASSUME OS: INIT _DATA

DB 'Initielization Complete!' ,OO"',OAH,O

SI,OFFSET MESSAGE

CS:SYTE PTR [SIJ
Al,AL
INIT _EXJT

AX
CO
MESS_lOOP

ENDS .** WARNING .160, LINE '31,
31 INIT_CC:lE
SEGMENT CONTAINS
32

PRIVILEGED INSTRUCTIONS
ENC INIT_START,OS:INIT_OATA,SS:INIT_STACK

ASSEMBLY COMPLETE, WARNING, NO ERR:lRS

Figure 10-3. Initial Task INIT

date PAGE 1 (

U)
-<
~ m
~

Z
:::::j
5>
r-
N
:I>
(5
z

Binding and Loading 11

CHAPTER 11
BINDING AND LOADING

Binding is the process of converting symbolic references into an implementation that the processor can
utilize. The binding process spreads across many stages of software development, including source
code, translators, binding utilities, loaders, and execution itself. Intel's program development tools include
features that perform much of the needed binding. In some static systems no additional binding may
be needed. In dynamic systems, however, you may choose to incorporate some binding functions in the
operating system and related software in order to create a style of binding appropriate for the dynamic
nature of your application.

BINDING MODEL

To ensure that the binding process works correctly, it is a good idea to start with a modelof the' system
structure you wish to achieve. A binding model includes these factors:

• Modules-dividing programming into compilation units

• Segmentation-distributing instructions and data of modules among physical segments

• Interfaces-specifying the connections among modules

• Naming-choosing names for modules, segments, and interfaces, avoiding ambiguity but promoting
flexibility

• Timing-determining when to bind various types of symbolic references

As an example of a binding model, assume that the example modules presented in prior chapters
constitute a complete operating system, called XOS, and apply each of these factors to XOS.

Modules

The criteria used to separate fun9tions into modules may include

• Comprehensibility. Each module collects together functions that support a single operating system
concept of limited scope (for example, aliases, synchronization).

• Information hiding. Each module implements a data structure (for example, the alias lists in the
ALIAS module) that you can manipulate only by calling the procedures defined in the module for
that purpose. Other modules cannot access the data structure.

• Independent development. You can choose modules so that each can be developed by a different
programmer. Points of cooperation and communication among programmers include only the speci­
fied interfaces among modules. Minimizing the number and complexity of interfaces reduces project
administration costs.

• Structured testing. Testing of the whole system is simpler when you choose modules so that each
can be tested by itself, before testing its interactions with other modules.

• Flexibility. When you can anticipate changes to the system, you can limit the effects of the changes
on other modules by isolating the areas of expected change in a module.

Only the first of these criteria is significant to XOS, but all may be applicable to your operating system
design.

11-1 121960"001

BINDING AND LOADING

Modules are relevant to binding in that they (indirectly) define the units that can be distributed among
physical segments. A module is a single compilation unit. Intel's translators divide each compilation
unit into logical segments. Each logical segment is a named object that can be assigned to a physical
segment. You can use the development tool Binder to combine more that one logical segment into a
physical segment.

Segmentation

Protection requirements partially dictate how to distribute modules among physical segments:

• Data and procedures of different privilege levels must reside in different physical segments.

• Data and procedures of one task must reside in different segments from those of other tasks unless
sharing is explicitly intended.

• Instructions must reside in different physical segments from writable data items.

• Data structures for which you wish to provide individual protection (for example, the semaphores
and mailboxes discussed in Chapter 5) must each be in a separate segment.

Operating system procedures that have the same privilege level and are shared via the GDT can be
combined in just one segment (assuming that the total size does not exceed 64K bytes). In fact, doing
so has two advantages: all intermodule calls can be implemented as short CALL instructions, avoiding
the additional processing associated with changing the contents of the CS register, and more GDT slots
are available for other purposes. Of the procedures in XOS, the level-zero procedures presented in
Chapters 3 thru 5 can be combined in one segment, while the level-one I/O interface procedures can
go in another segment. Each device-driver task has its own code, data, and stack segments.

Interfaces

Possible mechanisms for implementing the interfaces among modules are

• Intrasegment (short) references. References to data or procedures in the same segment are most
efficiently implemented when you can use the current contents of a segment register.

• Intersegment (long) references. References to data or procedures in a segment not currently indicated
by one of the segment registers must cause a segment selector to be loaded into a segment register.
Intersegment references permit sharing of functions among many modules and permit access to
functions at another privilege level.

• Sharing by value. Procedures and data can be shared by including a copy of the data or procedures
in the same unit (segment or task, as appropriate) as each procedure that uses them. While this
approach can yield more efficient execution in some cases, it has limited applicability. It is usually
best to share dynamically changing data by name, so that all the procedures that use it can obtain
the most up-to-date version. Sharing large or widely used data or procedures by name uses main
memory more efficiently.

• Sharing by name. The "name" referred to here is the descriptor of the shared data or procedure.
Chapter 5 discusses methods of sharing by name (namely GDT, common LDT, and aliases).

In XOS, all tasks share the segments of the kernel and I/O-interface segments via the GDT. Applica­
tions procedures use long calls to access the primitives in these segments. Calls within the kernel level
or within the I/O level to private procedures at the same level are short calls.

11-2 121960-001

BINDING AND LOADING

Naming

The names by which you reference the components of a system influence the way the system can be
bound. Classes of names over which you have some degree of control are

• Modules. Builder uses the name of a module to represent all publics or all segments within the
module. Debuggers use module names to qualify identifiers of variables and procedures.

• Logical segments. The choice of logical segment names determines the possibilities for segment
combination. Binder combines logical segments that have the same name as well as compatible
combine-types.

• Physical segments. The names of physical segments give you the ability to assign segment attributes
individually using the Builder.

• Publics. Public identifiers must be unique among the modules that are bound together.

• Gates. Gate names identify the entry points to procedures. You can use gate names to give entry
points different public names than those used in the source language.

Timing

With respect to time, you can rate bindings on a scale running from early to late. An example of early
binding is a compiler's assignment of segment-relative locations to procedures and data. The latest
binding is that accomplished by the processor as it adds a segment-relative location to the 24-bit base
address of the segment. Between these extremes are other opportunities for binding: .

• Post-compile-time. Through Intel's utilities Builder and Binder, you can combine segments, resolve
intersegment references, allocate descriptor table slots, and allocate memory.

• Load-time. The loader can incorporate various levels of binding.

a. If the object module contains fix-up information (as in a linkable module), the loader can bind
all references as it loads the segments of a task.

b. The call gates of the iAPX 286 architecture make it possible for the loader to efficiently resolve
references to predefined classes of procedures (to operating system primitives, for example) at
the time a program is being loaded. This chapter presents an example of this form of load-time
binding in a later section.

• Run-time. Call gates also permit binding to an executable segment at the time it is first referenced.
By resetting the present bit in a call gate to an unloaded segment, you ensure that a trap will occur
when the gate is used. The "not present" trap handler can then load the required segment, allocate
a descriptor for it, and fix up the call gate.

IMPLEMENTING ACCORDING TO THE MODEL

With a binding model in mind, consider how to implement that model during the various stages of
system development: in source code, by translators, by binding utilities, by loaders, by the operating
system, and finally by the processor itself.

11-3 121960-001

BINDING AND LOADING

The model behind the example operating system, XOS, includes these components:

• Each module contains functionally related data structures and procedures.

• One segment contains level-zero (kernel) procedures, another segment contains level-zero data,
another segment level-one (I/O) procedures, and another level-one data. Operating system tasks
(such as device drivers) have their own distinct segments.

• The GDT contains descriptors of kernel and I/O segments, making them sharable by all tasks.
Gates for operating-system primitives, however, reside in the LDTs of the tasks that use them.

• The segment names created by PL/M-286 set the standard for segment naming in general. (Refer
to the chapter entitled "Linking to Modules Written in Other Languages" in the PL/M-286 User's
Guide for definition of PL/M-286 segment names).

• Tasks will be loaded dynamically.

• Load-time binding to XOS primitives is an option. (This is one reason for placing gates for operating­
system primitives in LDTs.)

Source Code

Since some of the logical segments declared in assembly language may be combined after assembly by
the Builder, the assembler needs to know whether the object of an external reference will be in one of
those segments whose descriptors it assumes to be loaded in segment registers. If the reference is to
another segment, the assembler must emit instructions that change the contents of a segment register.
The programmer supplies this information via additional assembly language syntax. A variety of forms
are available for this purpose, such as

SEGMENT
ASSUME
N EAR and FAR variants of PRO C and LAB E L
segment overrides (for example E S :' TAB L E _I T EM)

(Refer to the ASM286 Assembly Language Reference Manual for details on the use of these items.)

The module DISP containing the dispatcher is the only kernel module of XOS written in assembly
language (refer to Chapter 4). The logical code segment has the name NUCLEUS_CODE and combine
type ER so that it will combine with PL/M-286 segments of the same name. This module has no logical
data segment. The procedure DISPATCHER is a NEAR procedure because only other kernel proce­
dures in the same physical segment call it.

Compilers

With PL/M-286, decisions regarding segmentation are not imbedded in source code but rather are
implemented by the compiler according to compiler control statements that you supply. (Refer to the
SMALL, COMPACT, LARGE, and extended segmentation controls in the PL/M-286 User's Guide.)
With these control statements, you have nearly as much control over system structure as with assembly
language, but changes in system structure do not require changes to source code. It is just as important,
however, that use of these controls conform to a consistent model of system structure.

Figure 11-1 shows the segmentation controls used for compiling the kernel modules of XOS. These
controls define a subsystem named NUCLEUS that contains all the PL-O modules of XOS. The
PL/M-286 compiler prefixes the names of the code and data segments with the subsystem name. The
list of exports includes all the primitives. For each of the procedures named in the exports list, the

11-4 121960-001

BINDING AND LOADING

$ COMPACT (NUCLEUS
$ SLOT
$ GATE
$ DISPATCHER

SEMAPH
INTRUPT
DESCRIPTOR
DISQUE

EXPORTS
RESERVE SLOTS
ALLOCATE
CREATE ALIAS
WAIT SEMAPHORE
SEND-MESSAGE
CREATE LDT
LOAD LDT

HAS

$
$
$
$
$
$
$
$
$
$
$
$
$
$

GET GATE POINTER
ATTACH_TO_INTERRUPT ,

POINT
MEMORY
ALIAS
MAILBOX
TASK
GATE
MESSAGE

RELINQUISH_SLOTS
FREE SEG
CHANGE AR
SIGNAL-SEMAPHORE
RECEIVE MESSAGE
CREATE TASK
LOAD_LDT_GATE

WAIT_FOR INTERRUP'r

Figure 11·1. Subsystem for Kernel Exports

compiler generates a long RET instruction at the end of the procedure or at RETURN statements.
This enables procedures in other segments to call the the kernel procedures. The keyword COMPACT
tells the compiler to generate short RET instructions for procedures not named in the export list.

Binding Utilities

Intel's iAPX 286 Binder (BN0286) and System Builder (BL0286) provide a variety of binding services,
including

Combining logical segments that have the same name and combine type

Resolving references among modules

Constructing templates for GOT, LOT, and TSSs

• Allocating memory for bootloadable portions of the system

Assigning access rights to segments

11-5 121960-001

inter BINDING AND LOADING

• Constructing gates

• Formatting object files for the convenience of boot loaders and dynamic loaders

• Creating export modules that contain gates for operating-system interfaces

Figure 11-2 shows the Binder specifications that combine the level-zero modules of XOS. The input
modules contain only three unique segment names (the PL/M-286 names: NUCLEUS_CODE,
NUCLEUS_DATA, and STACK); therefore, the output module contains just three segments: one for
instructions, one for static data items, and one for the level-zero stack. The name of the output module
is NUCLEUS; it is written to the file NUC.LNK. Similar specifications combine the level-one modules.

Figure 11-3 shows the specifications to build a bootloadable file for the example operating system. The
SEGMENT statement assigns privilege levels to to each of the segments; segments not mentioned in
this clause receive privilege level 3 (PL 3) by default.

The TABLE statement defines the descriptor tables. The RESERVE clause allocates space for the
working descriptors used by such modules as the memory-management module described in
Chapter 3. The ENTRY clause identifies the remaining segment descriptors that belong in each table.
Builder allocates slots for each of these descriptors.

The TASK statement provides information for contructing TSSs. The identifier assigned to each task
is the identifier of the descriptor of its TSS. The OBJECT clause identifies the module containing the
information Builder can use to fill the segment-register and initial stack fields of the TSS.

The GATE statement creates gates for each of the public procedures that are XOS primitives, assigns
a privilege level to each gate, and gives each a name different from the procedure name.

The EXPORT statement creates a linkable module KERNEL in file XOS.EXP that application modules
can use for binding to the gates for XOS primitives.

RUN :F2:BND286 &
:Fl:POINT.OBJ, :Fl:SLOT.OBJ, &
:Fl:MEMORY.OBJ, :Fl:DISP.OBJ, &
:Fl:ALIAS.OBJ, :Fl:SEMAPH.OBJ, &
:Fl:MBOX.OBJ, :Fl:INTRPT.OBJ, &
:Fl:DESCR.OBJ , :Fl:DISQUE.OBJ, &

:Fl:TASK.OBJ:Fl:MESSAG.OBJ, &
PLM286.LIB &
NAME (NUCLEUS) OBJECT (:Fl:NUC.LNK) NOLOAD DEBUG

Figure 11-2. Binder Specifications for XOS Kernel

11-6 121960·001

inter BINDING AND LOADING

system-ID iAPX286 SYSTEM BUILDER, Vx.y

INPUT FILES: :Fl:NUC.LNK, :Fl:URTASK.OBJ, :Fl:CONSOL.OBJ, :Fl:LOADER,LNK,
:F2:LARGE.LB2, :Fl:STACKS.OBJ .

OUTPUT FILE: :Fl:XOS
CONTROLS SPECIFIED: TITLE (Example O.S.) BOOT LOAD BUILDFILE(:FI:XOS.BLD)

OBJECT (:Fl: XOS)

BUILD FILE: :Fl:XOS.BLD

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

SEGMENT
NUCLEUS CODE
NUCLEUS-DATA
NUCLEUS·:-STACK
URTASK CODE
URTASK-DATA
URTASK:-STACK
LQ PLM286 LIB CODE
LARGE VIP0.STACK0
LARGE-VIP0.STACKI
LARGE-VIP0.STACK2
CONSOLE DRIVER CODE
CONSOLE-DRIVER-DATA
CONSOLE-DRIVER:-STACK
CONSOLE-STACK0
LOADER_STACK0

GATE
XQ ATTACH TO INTERRUPT
XQ-WAIT FOR INTERRUPT
XQ-RESERVE SLOTS
XQ-RELINQUISH SLOTS
XQ-ALLOCATE -
XQ-FREE SEG
XQ-CREATE ALIAS
XQ-CHANGE-AR
XQ-WAIT SEMAPHORE
XQ-SIGNAL SEMAPHORE
XQ-SEND MESSAGE
XQ-RECEIVE MESSAGE
XQ-CREATE LDT
XQ-CREATE-TASK
XQ-LOAD LOT
XQ-LOAD-LDT GATE
XQ-GET GATE-POINTER
TIME_SLICE (INTERRUPT,

TABLE

(DPL=0) ,
(DPL=0) ,
(DPL=0, LIMIT=+20),
(DPL=0),
(DPL=0) ,
(DPL=0, LIMIT=+20H),
(DPL=0, CONFORMING),
(DPL=0) ,
(DPL=I) ,
(DPL=2) ,
(DPL=I) ,
(DPL=I) ,
(DPL=I, LIMIT=+20),
(DPL=0, LIMIT=+20),
(DPL=0, LIMIT=+20);

(ENTRY=ATTACH TO INTERRUPT,
(ENTRY=WAIT FOR INTERRUPT,
(ENTRY=RESERVE SLOTS,
(ENTRY=RELINQUISH SLOTS,
(ENTRY=ALLOCATE, -
(ENTRY=FREE SEG,
(ENTRY=CREATE ALIAS,
(ENTRY=CHANGE-AR,
(ENTRY=WAIT SEMAPHORE,
(ENTRY=SIGNAL SEMAPHORE,
(ENTRY=SEND MESSAGE,
(ENTRY=RECEIVE MESSAGE,
(ENTRY=CREATE_LDT,
(ENTRY=CREATE TASK,
(ENTRY=LOAD LOT,
(ENTRY=LOAD-LDT GATE,
(ENTRY=GET GATE-POINTER,
DPL=0, ENTRY=TIMINT);

GDT (RESERVE=(4 .• 9), ENTRY=(
NUCLEUS CODE,
NUCLEUS-DATA,
NUCLEUS-:-STACK,
LQ PLM286 LIB CODE,
LARGE_VIP0. STACK,

Figure 11-3. Builder Specifications for XOS

11-7

DPL=I) ,
DPL=I) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,
DPL=3) ,

121960-001

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

BINDING AND LOADING

LARGE V1P0.STACK0,
LARGE-V1P0.STACK1,
LARGE-V1P0.STACK2

) -
) ,

URTASK LDT (ENTRY=(URTASK)),
CONSOLE LDT (ENTRY=(CONSOLE DRIVER, CONSOLE STACK0)),
LOADER TASK LDT (ENTRY=(LOADER, LOADER STACK0)),
IDT (ENTRY=(15:TIME_SLICE)); -

TASK
ADAM (INITIAL, OBJECT

LDT
CONSOLE DEVICE (OBJECT

LDT
STACKS

LOADER TASK (OBJECT
LDT
STACKS

EXPORT #:F1:XOS.LB2 (KERNEL
XQ RESERVE SLOTS,
XQ-RELINQUISH SLOTS,
XQ-ALLOCATE, -
XQ-FREE SEG,
XQ-CREATE ALIAS,
XQ-CHANGE-AR,
XQ-WAIT SEMAPHORE,
XQ-SIGNAL SEMAPHORE,
XQ-SEND MESSAGE,
XQ=RECEIVE_MESSAGE));

END

URTASK,
URTASK LDT) ,
CONSOLE DRIVER,
CONSOLE-LDT,
(CONSOLE STACK0)),
LOADER,
LOADER TASK LDT,
(LOADER_STACK0));

BUILD FILE PROCESSING COMPLETED

Figure 11-3. Builder Specifications for XOS (Cont'd.)

These specifications do not illustrate all the features of Builder; refer to the iAPX 286 System Builder
User's Guide for a complete description of Builder syntax.

OVERVIEW OF LOADING

The loader in a dynamic system is not only responsible for copying a program into main memory, but
is also a step in the binding process. A loader installs the actual TSS and LDT for a task, thereby
making it possible for the processor to interpret the task's memory references.

If all symbolic references are already resolved, a loader's work is simple. The iAPX 286 object module
format (OMF) organizes segment information to facilitate rapid loading with little decision-making by
the loader program.

11-8 121960·001

BIND.ING AND LOADING

Converting a Program Into a Task'

Before an operating system can switch control to a new task, these structures must be initialized:

• The TSS (data the processor needs in order to run the task).

• The task database (TOB) (data the operating system needs in order to run the task).

Either the following structures must be present or some mechanism must be in place to make them
present when necessary:

• Stack segments for each privilege level at which the task runs. (A stack-fault handler could
automatically allocate a stack the first time it is used.)

• Executable and data segments. (A virtual memory system could make these present when referenced.)

Most programs also need an LOT to contain descriptors for segments private to the task. An LOT is
not required, however, if all descriptors used by the task reside in the GOT.

. The initial values in the CS:IP fields of the TSS should point to the entry point of the first procedure
of the new task.

STYLES OF LOADERS

There are several ways to structure a loader. The following are just a few examples:

I. As a separate and permanent task. With such a structure the loader constructs data segments in
the format of the new task's TSS and LOT. To create the new task, it passes descriptors for these
segments to privilege-level 0 CPL-O) procedures that convert them to system segments and start
the new task.

2. As procedures that run within an existing task. This approach suits the UNIX EXECUTE function,
where the FORK function creates the task in which the loader runs as a duplicate of the task that
called the FORK function. The loader deletes the descriptors it finds in the task's LOT (thereby
deleting the associated segments unless aliases exist in other tasks) and creates new descriptors
for the segments it loads.

3. As procedures in a skeletal task created by the operating-system kernel. The loader has only to
allocate an LOT and install descriptors for the segments it loads:

For approaches 2 and 3, the procedures of the loader may have segment descriptors and gates in the
GOT so as not to encumber the LOTS.

KERNEL SUPPORT

A loader normally funs at PLs 2 or3 because it uses of both kernel-level procedures (for example,
ALLOCATE to create a segment for the new task) and PL-I procedures (for example, the I/O proce­
dures to read object modules from disk). However, task creation involves some functions that only

11-9 121960-001

BINDING AND LOADING

PL-O procedures can execute. For these functions the operating system must provide some additional
support. These functions include

• Changing the access rights byte of a descriptor. The loader can create a writable data segment
(using a level-O procedure such as the ALLOCATE procedure described in Chapter 3) into which
to read a segment from the object file of the program being loaded. But, if that segment is to have
some other type in the new task (the segment might be an executable segment, for example), the
access rights byte must be changed.

• Filling the new task's LDT with the base addresses of its segments. When the loader allocates a
segment for the new task, the ALLOCATE procedure places the physical base address of the segment
in a descriptor table (presumably the loader's LDT, but possibly the GDT). Only PL-O procedures
should have access to physical addresses in descriptor tables.

• Allocating the stack segment for PL o. Insufficient space in this segment can cause failure of PL-O
procedures. Also, if the kernel requires the TSS to be located in the PL-O stack segment (as suggested
in Chapter 4), then the kernel should handle the complexities of setting up such a structure.

• Initializing the task database (TDB) for the new task. Only PL-O procedures have access to this
data structure. (Refer to Chapter 4 for a discussion of the task database.)

• Entering the new task in the scheduling queues and setting the back-link and nested task flag in the
new TSS. These operations are crucial to proper functioning of the scheduler and therefore should
be done at PL o.

iAPX 286 Object Module Format

Intel has defined object module formats (OMFs) for the iAPX 286 to be used by translators, object­
program utilities, and loaders. There are two classes of object module:

• Linkable modules, which are produced by translators and consumed by Builder and Binder. Binder
can also produce a linkable module from one or more input linkable modules in a process known as
incremental binding.

• Loadable modules, which are produced by the Binder and the Builder and consumed by loaders and
de buggers.

Refer to the iAPX 286 System Builder User's Guide for detailed definitions of the iAPX 286 Object
Module Format.

Loaders that adhere to Intel's OMFs for loadable modules can load object modules created by Intel's
program development tools. There are two basic variations of the iAPX 286 OMF for load able modules:

• That created by the Binder supports straightforward, single-task modules.

• That created by the Builder supports more complex variations, including multi task modules with
shared segments (possibly including shared LDTs), reserved LDT locations, GDT descriptors to be
installed as the task is loaded, etc.

Builder not only produces modules intended for use by dynamic loaders but also produces bootloadable
modules designed for use by bootstrap or initializing loaders. Bootloadable modules use absolute
addresses. A boot loader must be able to write to absolute physical locations.

11-10 121960-001

BINDING AND LOADING

The OMF of each object module consists of a header followed by a sequence of sections of various
kinds. The sections relevant to this discussion are those in loadable modules; including

• DESCRP: contains all the descriptors for the module. A loader can use this section as a template
for the LDT.

• LODTXT: contains the data and instructions to be loaded. A loader fills allocated memory segments
from the records of LODTXT. . . .

• DESNAM: provides symbolic names for segments: A loader can use these symbolic names to provid~
a load-time interface for making changes to segment parameters (for example, decreasing segment
limit of an expand-down stack segment to provide more stack space).

".",

Flow of Loader

A loader must take different action depending on whether the loadable modules' are created by the
Binder or by the Builder. The main difference in loading the two types of OMF is' the source of infor~
mation for descriptor tables. In the case of Binder OMFs, the DESCRP section is in the format of ail
LDT. In the case of Builder-created OMFs, information for the GDT, IDT, and LDTs comes from
various LODTXT records. A Boolean in the header of aloadable module distinguishes between Builder"
created and Binder-created modules. ..

FLOW FOR BINDER-CREATED MODULE

1. Allocate space for LDT segment. The size of the segment is eight times the value of the descriptor
count field of the module header. Put LDT descriptor in GDT.

2. Read the DESCR section into the LDT segment.

3. Allocate space for aU segments specified in the LDT, updating the base-address fields.

4. Allocate space for the TSS. (Step 3 does not allocate the TSS because the DESCR section does
not contain a TSS descriptor.) Put TSS descriptor in GDT.

5. Read first LODTXT section into TSS segment. (The first LODTXTrecord is always a TSS.)
<: ~

6. Put LDT selector into TSS.

7. If the LODTXT section is exhausted, the task is completely loaded. Jump to the 'rSS:

8. Read next LODTXT record into proper segment. Go to step 7.

FLOW FOR BUILDER-CREATED MODULE

I. Allocate temporary space to hold all entries from the DESCRP section.

2. Read the· DESCRP section into this space.

3, Allocate physical segments for all DES~RP entries (except for gates).

4. Read beginning of LODTXT record.

5.' Examine descriptor name of LODTXT record. The selector name is eith'et a special identifier for
the GDT or lOT, or it is an index into the DESCRP entries, The type field of a DESCRP entry
distinguishes LDT segments from other types.

a. If the LODTXT record defines entries of the GDT, then, for each entry in the record, obtain
the descriptor from DESCRP and install it in the GDT.

b. If the LODTXT record defines entries of the lOT, then, for each entry in the record, obtain
the descriptor from DESCRP and install it in the IDT. ;

11-11 121960-001

infel' BINDING·AND LOADING

c. If the LODTXT record defines an LDT, then, for each entry in the record, obtain the descrip­
tor from DESCRP and install it in the LDT.

d. If the LODTXT record does not apply to a descriptor table, read the LODTXT record directly
··into the selected segment.

6. If more LODTXT records remain, go to step 4.

7. ··Free the space used for DE8CRP entries.

8. The ta~k or tasks .are loaded. Jump to tpe TSS identified in the module header.

LOAD-TIME BINDING

As with any system, it is possible on the iAPX 286 to delay many binding operations until load time
by incorporating binding functions into the loader. The call gates of the iAPX 286 architecture, however,
provide an especially convenient and efficient way to delay one ,specific binding operation: namely,
oindingofcalls to operating-system primitives. Load-time binding to operating-system primitives is an
aqvantage .when

• J'he operating system is. under. development, and ODT locations of operating-system segment
descriptors are subject to change

• Programs may execute under different operating systems that have different GDT layouts

Data structures for implementing load-time binding are

• An export module of specially marked, dummy gates for operating system primitives. Figure 11-4
shows how you can create such a module through Builder specifications. The NOT PRESENT
specification marks the gates by resetting the' present bit. Gates used for this purpose must reside
in the LDT so that Binder (which works only with LDT descriptors) can use them. You need to
up4ate this export file only when you change the number or names of operating-system gates.

• A table of actual gates for the operating-system primitives. This table must contain, for each primi­
tive., the gate.name',ii GDT. selector for the segment in which the primitive resides, and the entry
point (offset) within the segment. It is most convenient to take such information from a Builder
export file that exports the gates for operating-system primitives. The example specifications shown
in figure 11~3 create such an export file.

Figure 11-5 shows the data flow for load-time binding. By using the gate name from the DESNAM
section, the loader associates a marked gate in the LDT with its gate name. Given the gate name, it
looks up the actual binding information.

EXAMPLE LOADER

Figure 11-6 shows an example of a loader that reads the iAPX 286 OMF, resolves references to
operating-system primitives, and calls kernel procedures to create a new task. In the interest of simplic­
ity, this .example t:ecogniz~~ only the single-task OMF produced by the Binder, and all error checking
is omitted .. ,!:,;; . '..'

This loader calls the kernel procedures CREATILLDT, LOAD_LDT, LOAD_LDT_GATE,
CREATE_TASK, RESERVE~LOTS,arid CHANGE_AR, which are not shown. CREATE_LDT
allocates an LDT segment for a new task and installs its descriptors in two of the four GDT slots
SPecified by Tt\SK.:.SEL. LOAD_LDT transfers a descriptor from the LDT of the loader to the LDT
of the new task. LOAD_LDT_GATE places a gate in the LDT oUhe new task. CREATE_TASK

11-12 121960-001

inter BINDING AND LOADING

system-ID iAPX286 SYSTEM BUILDER, Vx.y

INPUT FILES: :F1:NUC.LNK
OUTPUT FILE: (none)
CONTROLS SPECIFIED: TITLE(Gates for Load-Time Binding) NOBOOTLOAD NOOBJECT

BUILDFILE(:F1:XOSGAT.BLD) PRINT(:F1:XOSGAT.MP2)

BUILD FILE: :F1:XOSGAT.BLD

1
2
3
4
5
6
7
8
9

SEGMENT NUCLEUS CODE (DPL=0), NUCLEUS DATA (DPL=0),
NUCLEUS~STACK(DPL=0);

GATE
XQ - RESERVE SLOTS (ENTRY=RESERVE SLOTS, DPL=3,
XQ - RELINQUISH_SLOTS (ENTRY=RELINQUISH - SLOTS, DPL=3,
XQ_ALLOCATE (ENTRY=ALLOCATE, DPL=3,
XQ FREE SEG (ENTRY=FREE SEG, DPL=3,
XQ -CREATE ALIAS (ENTRY=CREATE ALIAS, DPL=3, -
XQ -CHANGE-AR (ENTRY=CHANGE AR, DPL=3, - WAIT SEMAPHORE (ENTRY=WAIT SEMAPHORE, DPL=3, XQ -XQ - SIGNAL SEMAPHORE (ENTRY=SIGNAL SEMAPHORE, DPL=3,
XQ - SEND MESSAGE (ENTRY=SEND MESSAGE, DPL=3,
XQ - RECEIVE MESSAGE (ENTRY=RECEIVE MESSAGE, DPL=3, -

TABLE

NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

GOT (ENTRY=(NUCLEUS_CODE, NUCLEUS_DATA, NUCLEUS.STACK)),

DUMMY (ENTRY=(
XQ RESERVE SLOTS,
XQ-RELINQUISH SLOTS,
XQ-ALLOCATE, -
XQ-FREE SEG,
XQ-CREATE ALIAS,
XQ-CHANGE-AR,
XQ-WAIT SEMAPHORE,
XQ-SIGNAL SEMAPHORE,
XQ-SEND MESSAGE,
XQ=RECEIVE_MESSAGE));

EXPORT #:F1:XOSGAT.LB2 (KERNEL
XQ RESERVE SLOTS,
XQ-RELINQUISH SLOTS,
XQ::)LLOCATE, -

END

XQ FREE SEG,
XQ-CREATE ALIAS,
XQ -CHANGE -AR,
XQ-WAIT SEMAPHORE,
XQ-SIGNAL SEMAPHORE,
XQ-SEND MESSAGE,
XQ=RECEIVE_MESSAGE));

BUILD FILE PROCESSING COMPLETED

Figure 11-4. Specifying Dummy Gate Exports

11-13

PRESENT) ,
PRESENT) ,
PRESENT) ,
PRESENT) ,
PRESENT) ,
PRESENT) ,
PRESENT) ,
PRESENT) ,
PRESENT) ,
PRESENT) ;

121960-001

BINDING AND LOADING

BINDING
LOADER

TASK BOUND
TO

OPERATING
SYSTEM

Figure 11-5. Strategy for Load-Time Binding

121960-55

finishes creation of the new task by creating a TSS from a template in the loader and placing the new
task in the scheduler's queues. RESERVE_SLOTS uses techniques such as those illustrated in
Chapter 2 to allocate descriptor table slots. CHANGE~R is used to place the correct type code into
the writable data-segment descriptor used by the loader to fill a segment.

The module BOND (shown in figure 11-7) shows the handling of the table of actual gates for operat­
ing-system primitives. The procedureGET_LOAD_FILE is not defined here. It simply fetches the file
specification for a load able module from, for example, the console or the command line interpreter.

11-14 121960-001

BINDING AND LOADING

PL/M-2B6 COMPILER 960-515 date PAGE 1

system-ID PL/M-286 vx.y COMPILATION OF MODULE LOADER
OBJECT MODULE PLACED IN :Fl:LOADER.OBJ
COMPILER INVOKED BY: PLM286.86 :Fl:LOADER.PLM DEBUG

1

2 1

3 1

4 2

5 2

6 1
7 2
8 2

9 1

10 2

11 2

12 1
13 2
14 2

15 1
16 2
17 2

18 1

19 2

$ PAGEWIDTH(71) TITLE('960-S1S')
$ INCLUDE (:Fl:NUCSUB.PLM)
$ NOLIST
$ INCLUDE (:Fl:UDISUB.PLM)
$ NOLIST
$ COMPACT

LOADER: DO;

/*************'**/
1* Language Extensions * 1

DECLARE BOOLEAN LITERALLY 'BYTE' ,
FALSE LITERALLY '0" ,
TRUE LITERALLY '0FFH' ,
TOKEN LITERALLY 'WORD' ,
CONNECTION LITERALLY 'TOKEN' ,
OFFSET LITERALLY 'WORD' ,
FOREVER LITERALLY 'WHILE TRUE';

/***/
1* Externals *1

RESERVE SLOTS: PROCEDURE(TABLE,COUNT,SLOT_PTR,EXCEP_PT~)
EXTERNAL;

DECLARE TABLE WORD, COUNT WORD, (SLOT_PTR, EXCEP_PTR)
POINTER;

END RESERVE_SLOTS;

CHANGE AR: PROCEDURE (SLOT,RIGHTS,EXCEP PTR) EXTERNAL;
DECLARE SLOT SELECTOR, RIGHTS BYTE, EXCEP PTR POINTER;
END CHANGE_AR; -

ALLOCATE: PROCEDURE (SLOT,RIGHTS,SIZE,EXCEP_PTR)
EXTERNAL;

DECLARE SLOT SELECTOR, RIGHTS BYTE, SIZE WORD,
EXCEP PTR POINTER;

END ALLOCATE;

FREE SEG: PROCEDURE (SLOT, EXCEP PTR) EXTERNAL;
. DECLARE SLOT SEr.-ECTOR, EXCEP PTR POINTER;

END FREE_SEG; -

CREATE LDT: PROCEDURE(TASK SEL,srZE,EXCEP PTR) EXTERNAL;
DECLARE TASK SEL SELECTOR; SIZE WORD, EXCEP PTR POINTER;
END CREATE_LDT; -

LOAD LDT:PROCEDURE (TASK SEL, NEW SLOT, OLD_SLOT,
EXCEP PTR) EXTERNAL; - -

DECLARE (TASK SEL, NEW SLOT, OLD_SLOT) SELECTOR,
EXCEP_PTR POINTER; -

Figure 11-6. Binding Loader

11-15 121960-001

BINDING AND LOADING

PL/M-286 COMPILER 9611-515 date PAGE

211 2

21 1

22 2

23 2

24 1

25 2

26 2

27 1
28 2
29 2

311 1

31 2
32 2

33 1

34 2

35 2

36 1
37 2

38 1
39 2
411 2

41

42
43

44
45
46

47

48

49

511

51

52

1

2
2

1
2
2

1

2

2

1

2

2

END LOAD_LOT;

LOAD LOT GATE: PROCEDURE (TASK SEL, NEW SLOT, RIGHTS,
TARGET; COUNT, EXCEP PTR) EXTERNAL; -

DECLARE (TASK SEL, NEW SLOT) SELECTOR, RIGHTS BYTE,
(TARGET, EXCEP PTR) POINTER, COUNT BYTE;

END LOAD_LDT_GATE;

CREATE TASK: PROCEDURE (TASK SEL, TEMPLATE, PRIORITY,
EXCEP PTR) EXTERNAL; -

DECLARE TASK SEL SELECTOR, (TEMPLATE, EXCEP_PTR)
POINTER, PRIORITY BYTE;

END CREATE_TASK;

GET LOAD FILE: PROCEDURE (FILE SPEC PTR) EXTERNAL;
DECLARE-FILE SPEC PTR POINTER; -
END GET_LOAD=FILE;

BUILD BOND TABLE: PROCEDURE (FILESPEC_PTR, EXCEP_PTR)
EXTERNAL;

DECLARE (FILESPEC PTR, EXCEP PTR) POINTER;
END BUILD_BONO_TABLE; -

FIND BOND: PROCEDURE (SNAME PTR, ENTRY PTR, SEL_PTR,
EXCEP PTR) EXTERNAL; - -

DECLARE (SNAME PTR, ENTRY PTR, SEL_PTR, EXCEP_PTR)
POINTER; - -

END FIND_BOND;

INITIALIZE SYSTEM: PROCEDURE EXTERNAL;
END INITIALIZE_SYSTEM;

REPORT: PROCEDURE (EXCEP PTR) EXTERNAL;
DECLARE EXCEP PTR POINTER;
END REPORT; -

DQ$ATTACH:
PROCEDURE (PATH$P, EXCEP$P) CONNECTION EXTERNAL;
DECLARE (PATH$P, EXCEP$P) POINTER;
END DQ$ATTACH;

DQ$DETACH: PROCEDURE (CONN, EXCEP$P) EXTERNAL;
DECLARE CONN CONNECTION, EXCEP$P PO INTER;
END DQ$DETACH;

DQ$OPEN:
PROCEDURE (CONN,
DECLARE CONN

, ' EXCEP$P
END DQ$OPEN;

ACCESS, NUM$BUF, EXCEP$P) EXTERNAL;
CONNECTION, (ACCESS, NUM$BUF) BYTE,
POINTER;

DQ$SEEK: PROCEDURE
(CONN, MODE, LOCATION, EXCEP$P) EXTERNAL;

DECLARE CONN CONNEC~ION, MODE BYTE,
LOCATION DWORD, EXCEP$P POINTER;

END DQ$SEEK;

Figur~ 11-6. Binding Loader (Cont'd.)

11-16

2

121960-001

BINDING AND LOADI.NG

PL/M-286 COMPILER 960-515 date PAGE 3

53 1

54 2

55 2

56 1
57 2
58 2

59 1

60 1

61 1

62 1

DQ$READ: PROCEDURE
(CONN, BUF$P, COUNT, EXCEP$P) WORD EXTERNAL;

DECLARE CONN CONNECTION, COUNT WORD,
(BUF$P, EXCEP$P) POINTER;

END DQ$READ;

DQ$CLOSE: PROCEDURE (CONN, EXCEP$P) EXTERNAL;
DECLARE CONN CONNECTION, EXCEP$P POINTER;
END DQ$CLOSE;

/**.**/
/* Data */

DECLARE IN GOT· LITERALLY '0',
IN=LDT LITERALLY '1',
DATA W LITERALLY 'lll100i0B', /* Access rights:

present~ DPL=3, expand-up, writable, data segment */
DATA WD LITERALLY '111101108', /* Access rights:

present, OPL=3, expand-down, writable, data segment */
READ LITERALLY '1',
DEFAULT PRIORITY LITERALLY '4',
ALLOCATED LITERALLY'80H',
OK LITERALLY'0',
EXCEPTION LITERALLY 'EXCEP<>OK';

DECLARE PATH NAME
LOAD-FILE
ACTUAL
EXCEP

(47) BYTE, /*
CONNECTION,
WORD,

Disk file to load */

DECLARE

TA SK..,.S LOT

DCS_SEL

WORD,
SELECTOR, /*

SELECTOR, /*

First of GOT slots
for new task */

Data or code segment
of new t~sk */

BOND FILESPEC (*) BYTE
INITIAL (11,':F1:XOS.LB2');

FILE_HEADER BYTE;

DECLARE MODULE HEADER STRUCTURE
TOTAL-SPACE DWORD,
DESCR=COUNT WORD,
BUILT BYTE,
DATE (8) BYTE,
TIME (8) BYTE,
CREATOR (41) BYTE,
TSS SEL WORD,
DESCRP LOC DWORD, /* 0 */
LODTXT-LOC DWORD, /* 1 */
IGNORE-1 DWORD, /* 2 */
DESNAM-LOC DWORD, /* .3 */
IGNORE-2 DWORD, /* 4 */
IGNORE-3 DWORD, /* 5 */
IGNORE-4 DWORD, /* 6 */
LAST LOC DWORD, /* 7 */
RESERVED1 DWORD,

Figure 11-6. Binding Loader (Cont'd.)

11-17 121960-001

BINDING AND LOADING

PL/M-286 COMPILER 960-515 date PAGE 4

63

64

65

66

67
68

69
70
71
72

73

74

75

1

1

1

1

2
2

2
3
3
3

2

1

2

RESERVED2 DWORD) ;

/* Table of segment names from DESNAM section of OMF */
DECLARE DESNAM SEL SELECTOR,

DESNAM-WIDTH LITERALLY '41',
DESNAM-BASED DESNAM SEL (2) STRUCTURE (

NAME (DESNAM WIDTH) BYTE) ,
DIX WORD; /* Index */

/* RAM copy of DESCRP section of OMF */
DECLARE DESCRP SEL SELECTOR,

SEGDT BASED DESCRP SEL (2) STRUCTURE
LIMIT WORD,
LO BASE WORD,
HI-BASE BYTE, /* Data/code segment descr * I
RIGHTS BYTE,
RESERVED WORD) ,

GATET BASED DESCRP SEL (2) STRUCTURE (
ENTRY_POINT OFFSET,
SEL SELECTOR,
WORD COUNT BYTE, /* Ga te d escr iptor
RIGHTS BYTE,
RESERVED WORD) ,

LIX WORD; /* Index */

/* Template for Task State Segment for new task */
DECLARE TSS STRUCTURE (

BACKL SELECTOR,
SP0 OFFSET, SS0 SELECTOR,
SPl OFFSET, SSl SELECTOR,
SP2 OFFSET, SS2 SELECTOR,
IP OFFSET,
FLAG WORD,
(AX, CX, DX, BX, SP, BP, SI, DI,

ES, CS, SS, DS, LDT_LI~K) SELECTOR);

*/

/***/
/* Subroutines * /

SECTION SIZE: PROCEDURE (TOCIX) DWORD;

DECLARE TOCIX WORD; /* Index into Table of contents */
DECLARE TOC(8) DWORD AT (@MODULE_HEADER.DESCRP_LOC),

IX WORD;

/* Find the size of an OMF section */
DO IX=TOCIX+l TO 7;

IF TOC(IX)<>0 /* Skip by null sections */
THEN RETURN TOC(IX)-TOC(TOCIX);

END;

END SECTION_SIZE;

/****************************,***************************/
BUILD_DESNAM_TABLE: PROCEDURE (DESNAM_SIZE);

DECLARE DESNAM_SIZE DWORD;

Figure 11-6. Binding Loader (Cont'd.)

11-18 121960·001

BINDING AND LOADING

PL/M-286 COMPILER 960-515 date PAGE 5

76 2

77 2

78 2

79 2

81 2
82 3
83 3

84 3

85 2

86 3
87 3
89 3
90 3
91 3

9.2 3

93 3
95 3
96 3

97 2

98 1

99 2

100 2

101 2

102 2

103 2

104 2

DECLARE DESNAM USED DWORD,
DESNAM-HEADER STRUCTURE

(DESCR IN WORD,
NAME LENGTH BYTE);

DESNAM USED=0;
/* Allocate a segment for the table */
CALL ALLOCATE (DESNAM SEL, DATA W,

DESNAM WIDTH * (MODULE HEADER.DESCR COUNT + 1), @EXCE
-P);- - -

IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Initialize the table */
DO DIX=0 TO MODULE HEADER.DESCR COUNT;

CALL MOVB(@(' ') ,@DESNAM(DIX) .NAME (0) ,1);
CALL MOVB(@DESNAM(DIX) .NAME(0),

@DESNAM(DIX) .NAME(l) ,DESNAM_WIDTH-l);
END;
/* Read each descriptor name */
DO WHILE DESNAM USED < DESNAM SIZE;

/* Read fixed-portion of DESNAM record */
ACTUAL=DQ$READ (LOAD FILE, @DESNAM HEADER, 3, @EXCEP);
'IF EXCEPTION THEN CALL REPORT (@EXCEP);
DESNAM USED=DESNAM USED+ACTUAL;
DIX=DESNAM HEADER.DESCR IN-I;
DESNAM(DIX).NAME(0)=DESNAM HEADER. NAME LENGTH;

/* Read rest of name into-table entry-*/
ACTUAL=DQ$READ(LOAD FILE,@DESNAM(DIX) .NAME(l),

- DESNAM(DIX) .NAME(0), @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
DESNAM USED=DESNAM USED+ACTUAL;

END /* DO LOOP */; -

/***/
LOAD_SEGMENTS: PROCEDURE(LODTXT_SIZE);

DECLARE LODTXT SIZE

DECLARE LODTXT HEADER
LOAD OFFSET
DESCR IN
LENGTH

COUNT
LODTXT USED

DWORD;

STRUCTURE
WORD,
WORD,
WORD

WORD,
DWORD;

DECLARE NEW LDT SEL SELECTOR,

) ,

NEW-LDT-SEL W WORD AT (@NEW LDT SEL),
SEG::::RIGHTS - BYTE; -

DECLARE TSS IN LITERALLY '0FFFDH';

LODTXT USED=0;
/* Step thru all LODTXT records */

DO WHILE LODTXT_USED<LODTXT_SIZE;

Figure 11-6. Binding Loader (Cont'd.)

11-19 121960-001

BINDING AND LOADING

PL/M-286 COMPILER 96r.J-515 date PAGE 6

Ul5 3
Ul6 3
HI8 3
1r.J9 3

11r.J 3
111 4

112 4
114 4
115 4

116 3
117 4
118 4

119 4
12r.J 4

121 4

122 4

124 4

125 4
127· 4

128 4
129 4

131 4

132 4
133 4

135 4
136 4
137 3

138 2

139 1

14r.J 2

141 2

143 2

144 3

/* Read in the LODTXT header */
ACTUAL=DQ$READ(LOAD FILE,@LODTXT HEADER,6,@EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
LODTXT USED=LODTXT USED+ACTUAL;
IF LODTXT_HEADER.DESCR_IN=TSS_IN

THEN DO; /* Load the Task State Segment */
ACTUAL=DQ$READ(LOAD FILE,@TSS,LODTXT HEADER. LENGTH,

@EXCEP); -
. ,IF EXCEPTION THEN CALL REPORT (@EXCEP);

LODTXT USED=LODTXT USED+ACTUAL;
END /* loading Task-State Segment */;

ELSE DO; /* Load a data or code segment */
LIX=LODTXT HEADER.DESCR IN-I;
IF (SEGDT(LIX) .RIGHTS AND r.J6H) =06H

/* expand-down data segment? */
THEN SEG RIGHTS=DATA WD;
ELSE SEG-RIGHTS=DATA-W;
/* Allocate a segment */

CALL ALLOCATE (DCS SEL, SEG RIGHTS,
SEGDT (LI X) . LIMIT+l, @EXCEP);

IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Read LODTXT record into segment */

ACTUAL=DQ$READ(LOAD FILE,
BUILD$PTR(DCS SEL,LODTXT HEADER. LOAD OFFSET),

LODTXT HEADER. LENGTH, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
LODTXT USED=LODTXT USED+ACTUAL;

/* Put actual access rights in descriptor */
CALL CHANGE AR (DCS SEL, SEGDT(LIX) .RIGHTS, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Construct selector for slot in new LDT */
/* DPL = 3; TI = 1 */

NEW LDT SEL W = (SHL(LIX,3) OR 07H);
/*-Transfer descriptor to new LDT */

CALL LOAD LDT(TASK SLOT,NEW LDT SEL,DCS SEL,@EXCEP);
IF EXCEPTION THEN CALL REPORT(@EXCEP);-
/* Mark descriptor as allocated */

SEGDT(LIX) .RIGHTS=ALLOCATED;
END /* loading a data or code segment */;

END /* stepping thru all LODTXT records */;

END LOAD_SEGMENTS;

/***/
LOAD_DESCRP: PROCEDURE;

/* Allocate a segment for the DESCRP section */
CALL ALLOCATE (DESCRP SEL, DATA vi,

8*MODULE HEADER.DESCR COUNT, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Step thru all descriptors */

DO LIX = '" TO MODULE HEADER.DESCR COUNT-I;
/* Read LDT entry */ -

ACTUAL=DQ$READ (LOAD FILE, @SEGDT(LIX),
- 8, @EXCEP);

Figure 11-6. Binding Loader (Cont'd.)

11-20 121960-001

BINDING AND LOADING

PL/M-2B6 COMPILER 960-515 date PAGE 7

145 3

147 3

14B 3
149, 3
150 4

151 4
152 4
153 4
154 3

155 2

156

157

15B

159
160

161

162

163
165

166
167
16B

169
170

171

172

~ 74
175

'"

1

2

2

3
3

4

4

4
4

3
3
4

4
4

4

4

4
4

IF EXCEPTION THEN CALL REPORT (@EXCEP);
1* Is it marked with Present bit = 0 ? *1

IF (SEGDT(LI'X) .RIGHTS AND B0H)=0 THEN
1* Is it a call g~te? *1

IF (SEGDT(LIX) .RIGHTS AND 0FH)=4 1* Type field *1
THEN DO; 1* Insert pointer from BOND table *1

CALL FIND BOND (@DESNAM(LIX) .NAME,
@GATET(LIX) .ENTRY POINT, @GATET(LIX) .SEL,
@EXCEP); -

IF EXCEP=OK THEN 1* Set present bit. *1
GATET(LIX) .RIGHTS=GATET(LIX) .RIGHTS OR B0H;

END 1* inserting pointer *1;
END 1* stepping through all descriptors *1;

END LOAD_DESCRP;

/***/
1* Transfer remaining descriptors to new LDT *1

TRANSFER REMAINDERS: PROCEDURE;
1* Handles descriptors for which there was no

LODTXT record (e.g. stacks and gates). *1

DECLARE NEW LDT SEL SELECTOR,
NEW-LDT-SEL W WORD AT (@NEW LDT SEL),
SEG=RIGHTS - BYTE; --

1* Step thru DESCRP entries, skipping LDT alias */
DO LIX = 2 TO MODULE_HEADER.DESCR_COUNT-l;

IF (SEGDT(LIX) .RIGHTS AND 0FH) = 4
THEN 1* call~gate *1 DO;

1* Construct selector for slot in new LDT *1
NEW LDT SEL W = (SHL(LIXj3) OR 07H);
I*-Transfer descriptor to new LDT */

CALL LOAD LDT GATE (TASK SLOT, NEW LDT SEL,
GATET(LIX) .RIGHTS,- --
BUILD$PTR(GATET(LIX) .SEL,

GATET(LIX) .ENTRY POINT) ,
GATET(LIX) .WORD COUNT, @EXCEP);

IF EXCEPTION THEN CALL REPORT (@EXCEP);
END 1* call gate */;

ELSE IF (SEGDT(LIX) .RIGHTS AND 10H) <> 0
THEN 1* unallocated data or code segment *1 DO;

IF (SEGDT(LIX) .RIGHTS AND 06H) = 06H
1* expand-down data segment? */

THEN SEG RIGHTS=DATA WD;
ELSE SEG-RIGHTS=DATA-W;

/* Allocate a segment *1
CALL ALLOCATE (DCS SEL, SEG RIGHTS,

SEGDT(LIX) .LIMIT+l, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Put actual access rights in descriptor *1

CALL CHANGE AR (DCS SEL, ,SEGDT (LI X) • RIGHTS, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
1* Construct selector for slot in new LDT *1

Figure 11-6. ,Binding Loader (Cont'd.)

11-21 121960-001

inter BINDING AND LOADING

PL/M-286 COMPILER 960-515 date PAGE 8

177

178
179
181

182

183

184

185
186
188
189
191
192
194
195

197

198.

199
200
202
203

205
206

208

209

211

212
214

215
216
218

219

221

4

4
4
4

3

2

1

1
1
1
1
1
1
1
1

1

2

2
2
2
2

2
2

2

2

2

2
2

2
2
2

2

2

/* DPL = 3; TI = 1 */
NEW LDT SELW = (SHL(LIX,3) OR 07H);
/*-Transfer descriptor to new LDT */

CALL LOAD LDT(TASK SLOT,NEW LDT SEL,DCS_SEL,@EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);

END /* unallocated data or code segment */;

END /* stepping thru DESCRP entries */;

END TRANSFER_REMAINDERS;

/*** ~*/

/* Main Line * /

CALL INITIALIZE_SYSTEM;

CALL BUILD BOND TABLE (@BOND FILESPEC,@EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
CALL RESERVE SLOTS (IN LDT, 1, @DCS SEL, @EXCEP);
IF EXCEPTION-THEN CALL-REPORT (@EXCEP);
CALL RESERVE SLOTS (IN LDT, 1, @DESCRP SEL, @EXCEP);
IF EXCEPTION-THEN CALL-REPORT (@EXCEP);
CALL RESERVE SLOTS (IN LDT, 1, @DESNAM SEL, @EXCEP);
IF EXCEPTION-THEN CALL-REPORT (@EXCEP);

DO FOREVER;

GET NAME:
CALL GET LOAD FILE (@PATH NAME); /* May wait */
LOAD FILE=DQ$ATTACH (@PATH NAME, @EXCEP);
IF EXCEPTION THEN GOTO GET-NAME;
CALL DQ$OPEN (LOAD FILE, READ, t,@EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Read file header. */

.ACTUAL=DQ$READ (LOAD FILE, @FILE HEADER, 1, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Read loadable-module header */

ACTUAL=DQ$READ (LOAD FILE, @MODULE HEADER,
SIZE(MODULE HEADER)~ @EXCEP);

IF EXCEPTION THEN CALL REPORT (@EXCEP);

/* Process DESNAM section of OMF */
CALL DQ$SEEK (LOAD FILE,2,MODULE HEADER.DESNAM LOC,

@EXCEP); - -
IF EXCEPTION THEN CALL REPORT (@EXCEP);
CALL BUILD_DESNAM_TABLE (SECTION_SIZE(3));

/* Tell OS to allocate an LDT */
CALL RESERVE SLOTS (IN GDT, 4, @TASK SLOT, @EXCEP);
IF EXCEPTION-THEN CALL-REPORT (@EXCEP);
CALL CREATE LDT. (TASK SLOT, MODULE HEADER. DESCR COUNT,

- @EXCEP) ; - -
jF EXCEPTION THEN CALL REPORT (@EXCEP);

/* Process DESCRP section */
CALL DQ$SEEK (LOAD FILE,2,MODULE HEADER.DESCRP LOC,

@EXCEP); - -

Figure 11-6. Binding Loader (Cont'd.)

11-22 121960-001

BINDING AND LOAD.ING

PL/M-286 COMPILER 9~"-515 date PAGE. 9

222 2
224 2

225 2

226 2
228 2

229 2

230 2

231 2

233 2
234 2
236 2
237 2

239 2
24" 2
242 2
243 2

245 2

IF EXCEPTION THEN CALL REPORT (@EXCEP);
CALL LOAD_DESCRP;

/* Process LODTXT section */
CALL DQ$SEEK (LOAD FILE,2,MOD[)LE HEADER.LODTXT LOC,

@EXCEP); -
IF EXCEPTION THEN CALL REPORT (@EXCEP);
CALL LOAD_SEGMENTS (SECTION_SIZE·(l»;

CALL TRANSFER_REMAINDERS r

/* Tell OS to create the new task */
CALL CREATE TASK(TASK SLOT, @TSS, DEFAULT PRIORITY,

- @EXCEP) ; r-

IF EXCEPTION THEN CALL REPORT (@EXCEP);

CALL DQ$CLOSE (LOAD FILE, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
CALL DQ$DETACH (LOAD FILE, @EXCEP)i
IF EXCEPTION THEN CALL REPORT (@EXCEP);

CALL FREE SEG (DESCRP SEL, @EXCEP);
IF EXCE·PTION THEN CALL REPORT (@EXCEP) i
CALL FREE SEG (DESNAM SEL, @EXCEP)i
IF EXCEPTION THEN CALL REPORT (@EXCEP)i

END /* FOREVER */;

II! * * ** *** * * ** * ** * * *,** *** .•.• * * ~* * * ** * * * * ** ** *.* ** ** *** ** * * *' /

246 1 . END LOADER i

MODULE· INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
508 LINES READ
o PROGRAM WARNINGS
" PROGRAM ERRORS

DICTIONARY SUMMARY:

"8B2H
fil""IH
fil"FFH
""I8H

96KB MEMORY AVAILABLE
llKB MEMORY USED (11%)
"KB DISK SPACE USED

END OF PL/M-286 COMPILATION

2226D
1D

255D
24D·

Figure 11-6. Binding Loader (Cont'd.)

11-23 121960-001

BINDING AND LOADING

PL/M-286 COMPILER 960-521 date PAGE 1

system-ID PL/M-286 Vx.y COMPILATION OF MODULE BOND
OBJECT MODULE PLACED IN :F1:BOND.OBJ
COMPILER INVOKED BY: PLM286.B6 :F1:BOND.PLM DEBUG

1

2

3

4

5

6

7

8

9

10

11

12
13
14

15

16
17

18

1

1

2

2

1

2

2

1

2

2

1
2
2

1

2
2

1

$ PAGEWIDTH(71) TITLE('960-S21')
$ INCLUDE (:F1:NUCSUB.PLM)
$ NOLIST
$ INCLUDE (:F1:UDISUB.PLM)
$ NOLIST
$ COMPACT

BOND: DO;

/***/
/* Language Exten·sions */

DECLARE BOOLEAN LITERALLY 'BYTE' ,
FALSE LITERALLY '0' ,
TRUE LITERALLY '0FFH' ,
TOKEN LITERALLY 'WORD' ,
CONNECTION LITERALLY 'TOKEN' ,
OFFSET LITERALLY 'WORD' ;

/***/
/* Externals */

RESERVE SLOTS: PROCEDURE (TABLE·, COUNT, SLOT~PTR, EXC EP _PTR)
EXTERNAL;

DECLARE TABLE WORD, COUNT WORD, (SLOT_PTR, EXCEP_PTR)
POINTER;

END RESERVE_SLOTS;

GET GATE POINTER: PROCEDURE (GATE SEL, SEG_SEL_PTR,
SEG OFFSET PTR, EXCEP PTR) EXTERNAL;

/* Returns selector and offset from a gate descriptor */
DECLARE GATE SEL SELECTOR,

(SEG SEL PTR, SEG OFFSET PTR, EXCEP PTR) POINTER;
END GET_GATE_POINTER; -. -

ALLOCATE: PROCEDURE (SLOT,RIGHTS,SIZE,EXCEP PTR)
EXTERNAL; -

DECLARE SLOT SELECTOR, RIGHTS BYTE, SIZE WORD,
EXCEP PTR POINTER;

END ALLOCATE;

REPORT: PROCEDURE (EXCEP PTR) EXTERNAL;
DECLARE EXCEP_PTR POINTER;
END REPORT;

DQ$ATTACH:
PROCEDURE (PATH$P, EXCEP$P) CONNECTION EXTERNAL;
DECLARE (PATH$P, EXCEP$P) POINTER;
END DQ$ATTACH;

DQ$DETACH: PROCEDURE (CONN, EXCEP$P) EXTERNAL;

Figure 11-7. BOND Module of Binding Loader

11-24 121960-001

inter BINDING AND LOADING

PL/M-286 COMPILER 960-521 date PAGE 2

19
20

21

22

23

24

25

26

27

28

29

30
31
32

33

34

35

36

2
2

1

2

2

1

2

2

1

2

2

1
2
2

1

1

1

1

DECLARE CONN CONNECTION, EXCEP$P POINTER;
END DQ$DETACH;

DQ$OPEN:
PROCEDURE (CONN,
DECLARE CONN

EXCEP$P
END DQ$OPEN;

ACCESS, NUM$BUF , EXCEP$P) EXTERNAL;
CONNECTION, (ACCESS, NUM$BUF) BYTE,
POINTER; .

DQ$SEEK:
(CONN,

DECLARE

PROCEDURE
MODE, LOCATION, EXCEP$P) EXTERNAL;
CONN CONNECTION, MODE BYTE,
LOCATION DWORD, EXCEP$P POINTER;

END DQ$SEEK;

DQ$READ:
(CONN,

DECLARE

PROCEDURE
BUF$P, COUNT, EXCEP$P) WORD EXTERNAL;
CONN CONNECTION, COUNT WORD,
(BUF$P, EXCEP$P) POINTER;

END DQ$READ;

DQ$CLOSE: PROCEDURE (CONN, EXCEP$P) EXTERNAL;
DECLARE CONN CONNECTION, EXCEP$P POINTER;
END DQ$CLOSE;

/*** ~*/

/* Data */

DECLARE IN_LDT LITERALLY '1',
DATA W LITERALLY 'lll10010B', /* Access rights:

present~ DPL=3, expand-up, writable, data segment */
READ LITERALLY '1',
EQUALS LITERALLY '0FFFFH',
OK LITERALLY '0',
EXCEPTION LITERALLY 'EXCEP<>OK';

DECLARE BOND FILE
ACTUAL
SEL

CONNECTION,
WORD,

WSEL
SELECTOR, /* for type conversion */
WORD AT (@SEL);

DECLARE FILE_HEADER BYTE;

DECLARE MODULE HEADER
TOTAL-LENGTH
SEGMENT COUNT
GATE COUNT
PUB COUNT
EXT-COUNT
LINKED
DATE
TIME
MODULE NAME
CREATOR
IGNOREI
PUBDEF LOC
PUBDEF::::LENGTH

(8)
(8)
(41)
(41)
(6)

STRUCTURE
DWORD,
WORD,
WORD,
WORD,
WORD,
BYTE,
BYTE,
BYTE,
BYTE,
BYTE,
DWORD,
miORD,
DWORD,

Figure 11-7. BOND Module of Binding Loader (Cont'd.)

11-25 121960-001

BINDING AND LOADING

PL/M-286 COMPILER 961:l-521 date PAGE 3

37

38

39

41:l
41

42
43
45
46

48
49

51

52

54
55
57

58

61:l

61

63

64

1

1

1

2
2

2
2
2
2

2
2

2

2

2
2
2

2

2

2

2

3

IGNORE2 (8) DWORD) ;

/* Table of actual locations of O.S. primitives */
DECLARE BOND SEL SELECTOR,

BOND-BASED BOND SEL (2) S~RUCTURE
GATE NAME(41) BYTE,
ENTRY POINT OFFSET,
GDT SEL SELECTOR) ,

BIX - WORD; /* Index * /
DECLARE PUBDEF STRUCTURE

(ENTRY POINT
GDT IN
IGNORE
WORD COUNT
LENGTH

WORD,
WORD,
WORD,
BYTE,
BYTE);

/*************~*****~*~****~************************** **/
/* . Subroutines */

/* create table of actual GDT selectors and
entry points for O.S. primitives. */

BUILD BOND TABLE: PROCEDURE (BOND NAME PTR, EXCEP_PTR)
PUBLIC;

DECLARE (BOND NAME PTR, EXCEP PTR) POINTER;
DECLARE EXCEP-BASED EXCEP_PTR-WORD;

/* Initialize file */
BOND FILE=DQ$ATTACH (BOND NAME PTR,@EXCEP);
IF EXCEPTION THEN RETURN;- -
CALL DQ$OPEN (BOND FILE, READ, 1, @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Read file header */

ACTUAL=DQ$READ (BOND FILE,@FILE HEADER,l,@EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);

/* Read module header * /
ACTUAL=DQ$READ (BOND FILE,@MODULE HEADER,

SIZE(MODULE HEADER), @EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Get space for table */

CALL RESERVE SLOTS (IN LDT,l,@BOND SEL,@EXCEP);
IF EXCEPTION-THEN CALL-REPORT (@EXCEP);
CALL ALLOCATE (BOND SEL, DATA W,

(MODULE HEADER. PUB COUNT+l)*SIZE(BOND(I:l» ,@EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);

/* Read the PUBDEF section */
/* (Locations are relative to beginning of module,

not beg inning of file. Assume module at 1.) * /
CALL DQ$SEEK (BOND FILE,2,MODULE HEADER.PUBDEF LOC+l,

@EXCEP); - -
IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Loop thru the PUBDEF entries */

DO BIX = I:l TO MODULE HEADER. PUB COUNT-I;
/* Read fixed part-of PUBDEF record */

ACTUAL=DQ$READ(BOND_FILE,@PUBDEF, 8, @EXCEP);

Figure 11-7. BOND Module of Binding Loader (Cont'd.)

11-26 121960-001

BINDING AND LOADING

PL/M-286 COMPILER 960-521 date PAGE 4

65

67

68

69

71
72

73

75

76

77

78

79

80
81

82

83
84
85
86
87
88
89
90
91

92

93

3

3

3

3

3
3

3

3

2

1

2

2

2
3

3

3
4
4
4
4
4
3
2
2

2

1

IF EXCEPTION THEN CALL REPORT (@EXCEP);
/* Convert index into GDT selector */

WSEL=SHL(PUBDEF.GDT IN,3);
/* Extract gate selector and offset from GDT */

CALL GET GATE POINTER (SEL, @BOND(BIX) .GDT SEL,
@BOND(BIX) .ENTRY POINT, @EXCEP); -

IF EXCEPTION THEN CALL-REPORT (@EXCEP);
/* Read variable-length name */

BOND(BIX) .GATE NAME(0)=PUBDEF.LENGTH;
ACTUAL=DQ$READ(BOND FILE,@BOND(BIX) .GATE NAME(l) ,

- PUBDEF.LENGTH,@EXCEP);
IF EXCEPTION THEN CALL REPORT (@EXCEP);

END /* looping thru PUBDEF entries */;

/***/

FIND BOND: PROCEDURE (SNAME PTR, ENTRY_PTR, SEL_PTR,
EXCEP_PTR) PUBLIC; -

/* Search BOND table for given name.
Return items from found entry. */

DECLARE (SNAME PTR,
POINTER; -

DECLARE SNAME
ENTRY POINT
GDT SEL
EXCEP

BASED
BASED
BASED
BASED

SNAME_PTR
ENTRY PTR
SEL PTR
EXCEP PTR

(41) BYTE,
WORD,
SELECTOR,
WORD;

DO BIX = 0 TO MODULE HEADER. PUB COUNT-I;
IF SNAME(0)=BOND(BIX) .GATE NAME(0) /* Same length? */

THEN /* Compare characters */
IF EQUALS=CMPB(@SNAME(I) ,@BOND(BIX) .GATE NAME(l),

SNAME «(1» -
THEN DO;

ENTRY POINT=BOND(BIX) .ENTRY POINT;
GDT SEL=BOND(BIX) .GDT SEL; -
EXCEP=OK; -
RETURN;

END;
END;
EXCEP=NOT OK;
RETURN;

/**./

END BOND;

MODULE INFORMATION:

Figure 11-7. BOND Module of Binding Loader (Cont'd.)

11-27 121960-001

BINDING AND LOADING

PL/M-286 COMPILER 961l-521

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
245 LINES READ
Il PROGRAM WARNINGS
Il PROGRAM ERRORS

DICTIONARY SUMMARY:

96KB MEMORY AVAILABLE

Il2CBH
IlllllllH
IlllC2H
IlIllCH

8KB MEMORY USED (8%)
IlKB DISK SPACE USED

END OF PL!M-286 COMPILATION

7l5D
0D

194D
280

date

Figure 11-7. BOND Module of Binding Loader (Cont'd.)

11-28

PAGE 5

121960-001

Numerics Processor Extension 12

CHAPTER 12
NUMERICS PROCESSOR EXTENSION

The iAPX 286/20 is a configuration of chips consisting of an 80286 CPU and an 80287 Numerics
Processor Extension (NPX). With these two cooperating processors it is possible to construct powerful
numerics processing systems, but the operating system must multiplex the 80287 among the tasks that
use it. If the system does not include an 80287, you may choose to have the operating system emulate
its functions.

i.APX 286/20 NUMERICS PROCESSING FEATURES

Several features of the iAPX 286/20 are of special interest to operating-system designers and program­
mers. You can find more details on how to use the iAPX 286/20 in the iAPX 286 Programmer's
Reference Manual.

ESCAPE Instructions

The 80287 NPX extends the instruction set of the iAPX 286 by over fifty opcodes. The CPU identifies
the extended instruction set by the bit pattern 110118 in the high-order five bits of the first byte of
the instruction. Instructions thus marked are called ESCAPE or ESC instructions.

The CPU performs some functions upon encountering an ESC instruction, before sending the instruc­
tion to the NPX. Those functions that are of interest to the operating system include

• Testing the emulation mode (EM) flag to determine whether NPX functions are being emulated by
software.

• Testing the TS flag to determine whether there has been a context change since the last ESC
instruction.

• For some ESC instructions, testing the ERROR pin to determine whether an error condition exists
at the NPX as a result of a previous ESC instruction.

The ASM286 Assembly Language Reference Manual provides more information on each 80287
instruction.

Emulation Mode Flag (EM)

The EM bit of the 80286 machine status word (MSW) indicates to the CPU whether NPX functions
are to be emulated. If the processor finds EM set when executing an ESC instruction, it causes trap 7,
giving the exception handler an opportunity to emulate the functions of an 80287. The EM flag can be
changed with the aid of LMSW (load machine status word) instruction (legal only at privilege level 0
(PL 0)) and tested with the aid of the SMSW (store machine status word). The built-iri variable
MACHINE$STATUS gives PL/M-286 programs access to the MSW.

The EM bit also controls the function of the WAIT instruction. If the processor finds EM set while
executing aWAlT, the processor does not check the ERROR pin for an error indication.

Note that EM must never be set concurrently with MP.

12-1 121960-001

NUMERICS PROCESSOR EXTENSION

Math Present Flag (MP)

The MP bit of the 80286 machine status word (MSW) indicates to the CPU whether an 80287 NPX
is actually attached. The MP flag controls the function of the WAIT instruction. If, when executing a
WAIT instruction, the CPU finds MP set, then it tests TS; it does not otherwise test TS during a
WAIT instruction. If it finds TS set under these conditions, the CPU causes trap 7.

Note that MP must never be set concurrently with EM.

Task Switched Flag (TS)

The TS bit of the MSW helps to determine when the context of the 80287 NPX does not match that
of the 80286 CPU. The CPU sets TS each time it performs a task switch (whether triggered by software
or by hardware interrupt). If, when interpreting one of the ESC instructions, the CPU finds TS already
set, it causes trap 7. The MP flag also relates to TS.

The CL TS instruction (legal only at PL 0) resets TS.

WAIT Instruction

The WAIT instruction is not an ESC instruction, but WAIT causes the CPU to perform some of the
same tests that it performs upon encountering an ESC instruction:

• The CPU waits until the NPX no longer asserts the BUSY pin. You can therefore use WAIT to
synchronize the CPU with the NPX.

• The CPU tests the ERROR pin (if EM is not set). You can therefore use WAIT to cause trap 16
if an error is pending from a previous ESC instruction. (The CPU makes this test only after BUSY
goes inactive.) Note that, if no 80287 is present, the ERROR pin should be tied inactive to prevent
WAIT from causing spurious traps.

Summary

Table 12-1 summarizes functions of the ESC and WAIT instructions that depend on setting of the MP
and EM flags.

INITIALIZATION

During its initialization phase the operating system must

• Set flags in the MSW to reflect the numerics processing environment

• Reset the 80287 (if present)

• Switch the 80287 into protected mode

You can use a configuration parameter to communicate the numerics proccssing environment to the
operating system. The FNINIT instruction (INIT$REAUMATH$UNIT in PL/M-286) resets the
80287, and the FSETPM instruction places the 80287 into protected mode.

12-2 121960-001

NUMERICS PROCESSOR EXTENSION

Table 12-1. Interpretation of MP and EM Flags

EM Flag Set Reset
Instruction

MP Flag Reset Set

TRAP 7? N ifTS=1

WAIT
TEST BUSY? Y Y

TEST ERROR? Y Y
(TRAP 16)

TRAP?? Y ifTS=1

ESCAPE
TEST BUSY? N y.

TEST ERROR? N Y
(TRAP 16)

TASK STATE

When a task uses the 80287 NPX, the operating system has two additional concerns in keeping track
of the task's state:

• The task database must be expanded to include 47 words of state information forthe 80287.

• The operating system must change 80287 state when a different task attempts to use the 80287.

The state of the 80287 consists of 47 words. Saving and restoring the 80287 state is therefore a relatively
expensive operation that should not be performed any more frequently than necessary. Typically, only
a few of the active tasks in a system use. the NPX; therefore, it would be wasteful to save and update
the state information with every task switch. It is preferable for the operating system to record which
task is using the 80287 and to swap state information only when some other task attempts to use the
80287. .

The 80286 supports sharing of the 80287 by providing the TS flag. The processor automatically sets
the TS every time a task switch occurs. The first use of an ESC or WAIT instruction when the TS is
set causes trap 7. This enables the operating system to keep track of the task to which the NPX is
assigned at any given time and to change 80287 state when necessary.

NUMERICS EXCEPTIONS

Three interrupt vector positions are reserved for exceptions that relate to numerics processing. Inter-
rupts for these vectors are not maskable. '

Interrupt 7-Processor Extension Not Available (NM)

This exception occurs in either of two conditions:

• The CPU encounters an ESC instruction and EM is set. In 'this case, the exception handler 'should
emulate the instruction that caused the exception. TS may also be set.

12-3 121960-001

inter NUMERICS PROCESSOR EXTENSION

• The CPU encounters either the WAIT instruction or an ESC instruction when both MP and TS are
set. In this case, the exception handler should update the state of the NPX if necessary.

EMULATION

The return link points to the first byte of the ESC instruction (or to the prefix byte, if any). As the
emulator decodes the ESC instruction, it should step the return pointer so that, at the end of the
emulation routine, the return from the exception handler causes execution to resume at the first
instruction following the ESC instruction.

UPDATING STATE

To make sure that the state of the NPX corresponds to the current task, the operating system should
implement the concept of "ownership" of the NPX. Ownership can be indicated by a Boolean in the
task database (TDB). The operating system must ensure that only one task at a time is marked as the
owner of the NPX. The exception handler should follow these steps:

1. Use the CL TS instruction to reset TS.

2. Return if the current task owns the NPX.

3. Use the FSAVE ESC instruction (PL/M-286 SAVE$REAUSTATUS) to store NPX context in
the former owner's task database.

4. Record the current task as the owner of the NPX.

5. Use the FRSTOR ESC instruction (PL/M-286 RESTORE$REAUSTATUS) to load the NPX
context from the new owner's TDB.

Since task switches may occur during execution of the exception handler, steps 3, 4, and 5 are a critical
region and must be protected by a mechanism such as a semaphore.

The exception handler must run at PL 0, both because it alters the critical task database at PL 0 and
because it uses the privileged instruction CL TS.

The exception handler must be an interrupt procedure, not an interrupt task. If it were an interrupt
task, the task switch that occurs upon returning from the exception handler would set TS, thereby
causing the exception again.

The return link points to the first byte of the interrupted instruction. Return from the exception handler
causes restart of that instruction, but this time TS is reset and the instruction can proceed.

Interrupt 9-Processor Extension Segment Overrun (MP)

This exception occurs when a memory operand of an 80287 instruction has a segment-limit violation.
Since the 80287 executes in parallel with the 80286, two difficulties may arise:

• The occurrence of this exception may not relate directly to the instruction stream being executed
by the current task. A task switch may have occurred since the 80287 began executing the instruc­
tion. Even if the interrupted task is the correct task, its IP may have been advanced by several
instructions beyond the ESC instruction.

• Since the exception is not maskable, it may occur while interrupts are disabled. If minimum inter­
rupt latency is important, the exception handler must do as little as possible. It could, for cxample,
record the error for later handling.

12-4 121960·001

NUMERICS PROCESSOR EXTENSION

The offending ESC instruction cannot be restarted. The task containing the ESC instruction (which
may not be the current task) must eventually be cancelled.

The exception handler must execute an FINIT instruction before executing a WAIT or other ESC
instruction; otherwise, the WAIT or ESC instruction will never finish. FlNIT does not affect the CS:IP
value and data address saved in the 80287.

Note that the 80286 CPU detects some addressing violations before sending the ESC instruction to
the 80287 NPX. In these. cases, the CPU causes trap 13 (pushing an error code of zero), and it is
generally possible to restart the ESC instruction. Refer to Chapter 7 for more information regarding
trap 13.

Interrupt 16-Processor Extension Error (MF)

The 80287 detects six different exception conditions during instruction execution. If the detected
exception is not masked by a bit in the control word, the 80287 communicates the fact that an error
occurred to the CPU by a signal at the ERROR pin. The CPU causes interrupt 16 the next time it
checks the ERROR pin, which is only at the beginning of a subsequent WAIT or certain ESC instruc­
tions. If the exception is masked, the 80287 handles the exception according to on-board logic; it does
not assert the ERROR pin in this case.

The six exception conditions are

1. INVALID OPERATION

2. OVERFLOW

3. ZERO DIVISOR

4. UNDERFLOW

5. DENORMALIZED OPERAND

6. PRECISION (INEXACT RESULT)

The steps to be taken to remove the error condition depend on the application.

Once the exception handler corrects the error condition causing the exception, the floating point
instruction that caused the exception can be restarted, if appropriate. This cannot be accomplished by
IRET, however, because the trap occurs at the ESC or WAIT instruction following the offending ESC
instruction. The handler must obtain from the 80287 the address of the offending instruction in the
task that initiated it, make a copy of it, execute the copy in the context of the offending task, and then
return via IRET to the current CPU instruction stream.

The ESC instructions that do not cause automatic checking of the ERROR pin are FNCLEX, FNINIT,
FSAVE, FSETPM, FSTCW, FSTENV, and FSTSW. You can use the WAIT instruction to test the
ERROR pin before these instructions, if necessary.

12-5 121960·001

Extended Protection 13

CHAPTER 13
EXTENDED PROTECTION

Even though the iAPX 286 architecture provides extensive, automatic protection, a fully protected
system requires additional protection features in the operating system. Operating-system software can
increase the reliability of the system by providing any of these protection features:

• Extending the "type" concept

• Validating pointer parameters

• Defining the right to use operating-system objects

• Defining the right to delete segments

• Protecting shared objects that are being constructed

EXTENDED TYPE

It is both convenient and dangerous to use a selector as the name of an operating-system object. The
danger arises from the fact that the selector by itself carries no information regarding the type of object
it identifies. A program can, for example, mistakenly pass the selector of a semaphore to an operating­
system procedure that operates on mailboxes, producing catastrophic results. The solution is to associ­
ate a type extension code for the object with the segment in which it resides or with a descriptor to
that segment. Operating-system procedures can then check the type of objects identified by selector
parameters. (The term type extension code is used here to avoid confusion with the processor-recognized
type code in a descriptor.)

There are three general methods of associating type with operating-system objects:

1. Place the type extension code in the segment in which the object resides.

2. Associate the type code with a descriptor for the segment.

3. Use indirect names and associate the type code with the name of the object.

Only segments likely to contain named operating-system objects need to have type extension codes;
namely, privilege-level 0 (PL 0), expand up, writable, data segments.

Type Extension Code with Descriptor

A logical way to store a type extension code is to associate it with the descriptor for the named object
(you can view the type extension code as a refinement of the processor-recognized type code in the
access-rights byte of the descriptor). The type extension code can be put in a table parallel to the
descriptor table (as illustrated in Chapter 5 in connection with alias-list pointers).

Type Extension Code in Segment

It is also possible to place the type extension code at some reserved location in the data segment itself.
This approach does not reference another segment and thereby avoids loading a segment register.

13-1 121960·001

EXTENDED PROTECTION

Indirect Naming

The most general approach to naming avoids giving to less privileged procedures any direct links to
the named objects. Instead, names are indexes (or perhaps pointers) into a name table, which is admin­
istered by the operating system at a highly privileged level. Each entry in the name table holds the
type extension code of the object, the selector of the segment in which the object resides, and any other
information needed to ensure appropriate use of the object. This approach not only offers the greatest
potential for protection, but also makes it possible to change the naming scheme without affecting
procedures that use the names and provides a consistent way of naming both those objects that reside
in dedicated segments and those that are packed into a segment with other objects.

PARAMETER VALIDATION

There is one type of privilege violation that the iAPX 286 cannot automatically check for. Consider,
for example, procedure A at PL 3 that passes a pointer parameter via the stack to procedure B at
PL 1. Procedure A could (accidently or purposely) pass a pointer that refers to a data structure at
PL 2. Doing so would violate the intent of the protection features of the iAPX 286 because procedure
A does not have sufficient privilege to operate on the data structure. However, the processor does not
detect the violation because procedure B, which actually addresses the data structure, does have suffi­
cient privilege to do so.

The iAPX 286 provides the RPL field in the selector as well as the instructions shown in table 13-1 to
help software guard against such protection violations.

In addition to type checking as mentioned previously, an operating system can provide two levels of
parameter validation:

1. Defensive use of ARPL instruction

2. Point-of-entry scrutiny

Defensive Use of ARPL

Simply by applying the ARPL instruction to every pointer parameter it receives, an operating system
procedure guards against complicity in accessing a segment that the calling procedure has no right to
access. ARPL has two selector operands, for example:

A R P L seLa , seLb

Table 13-1. Access Checking Instructions

ASM286 PL/M-286 Built·ln Description
Mnemonic Function

ARPL ADJUST$RPL Adjust requested privilege level

VERR SEGMENT$READABLE Verify segment for reading

VERW SEGMENT$WRITABLE Verify segment for writing

LAR GET$ACCESS$RIGHTS Load access rights

LSL GET$SEGMENT$LlMIT Load segment limit

13-2 121960-001

EXTENDED PROTECTION

ARPL adjusts the RPL field of seLa to the greater of its current value and the value of the RPL field
in seLb.

The CPL of the calling procedure is stored in the RPL field of the return pointer on the stack, as figure
13-1 illustrates. Assuming the parameter is also on the stack, statements of the form

MOV
ARPL

AX, STACK_FRAME.RETURN_SEL
STACK_FRAME.PARAM_SEL, AX

can be used to ensure that the RPL field of the parameter is not less that the calling procedure's CPL.
When the called procedure uses the parameter, the processor evaluates its right to use the parameter
as if it had the privilege level of the calling procedure. If the calling procedure passes a parameter that
it has no right to use, an exception will occur when the called procedure uses the parameter.

Every operating system procedure should apply the ARPL instruction to every pointer or selector
parameter it receives, even if the calling procedure is another operating-system procedure. This provides
inexpensive protection against accidental use of invalid parameters.

Point-of-Entry Scrutiny

While use of ARPL alone is sufficient to detect such invalid parameters, it has one drawback: it does
not help to isolate the source of the invalid parameter. An exception will eventually occur when some
higher-level procedure uses the parameter, but this may not happen until several instructions after the
procedure was called, and may not happen until after the called procedure passes the parameter to yet

STACK ...------ HIGH

INTERRUPTED
PROCEDURE'S SS

DIRECTION
OF GROWTH INTERRUPTED

I
PROCEDURE'S SP

FLAGS

RETURN CS

RETURN IP

SP_

LOW

~I..-

121960-32

Figure 13-1. Caller's CPL

13-3 121960-001

EXTENDED PROTECTION

another procedure. To detect parameter errors at the earliest opportunity, the operating system should
examine pointer parameters with the VERR, VERW, LAR, and LSL instructions.

The strategy for scrutinizing a pointer parameter includes

• Using ARPL as described previously to ensure that the RPL field of the pointer parameter contains
the calling procedure's privilege level.

• Using VERR or VERW to ensure that the indicated segment is accessible at the calling procedure's
privilege level. VERR also determines whether the indicated segment is readable; an execute-only
segment, for example, is not readable. VERW also determines whether the segment is writable;
only a writable data segment passes this test.

• Using LAR and LSL to make sure that the offset portion of the pointer parameter actually points
to a location within the boundaries of the segment. LAR makes the access-rights byte of the indicated
descriptor available, so you can determine whether the segment is an expand-down data segment.
LSL makes the segment-limit field of the descriptor available. If the segment is an expand-down
data segment, the offset portion of the pointer parameter must be greater than or equal to the
segment limit; otherwise the offset must be strictly less than the limit.

Refer to the appropriate language reference manual for details concerning the use of these instructions.

This strategy for parameter validation is somewhat more costly than using the ARPL instruction alone,
as described in the previous section. Therefore, you may wish to limit use of this strategy to those
operating system procedures that can be .called by less privileged, applications procedures.

USAGE PRIVILEGE LEVEL

Generally, operating system primitives that act on operating system objects (such as the semaphores
and mailboxes discussed in Chapter 5) have call gates at PL 3. Without further protection, procedures
at any privilege level in a task can use those objects for which descriptors exist in the LDT. Such
freedom violates the principle behind privilege levels, however. Consider these two cases:

• A database-management system that runs at PL 2 creates a mailbox for passing recovery informa­
tion to a separate task that is responsible for writing recovery information to a magnetic tape. A
task at PL 3 accidently uses the wrong selector in a call to the operating system and sends an
unrelated message to that mailbox. Later, when using the audit tape to reconstuct the database, the
database system reads the strange record and fails.

• Procedures of the same database system use a shared data segment so that they can access common
database parameters regardless of what task they run in. To synchronize their access to the common
data, they define and use a semaphore. A less privileged task uses a wrong selector in a call to the
operating system and signals this semaphore prematurely, permitting the shared data to be incor­
rectly changed. The database system fails when it next tries to use the incorrect data.

These examples illustrate the need for additional protection over the use of operating-system objects,
such as semaphores and mailboxes.

By associating a usage privilege level (UPL) with objects, the operating system can provide protection
analogous to that provided by hardware for access to segments. By means of a privilege-level parameter
to the creation procedure, the task that creates an object defines the maximum (numerical) privilege
level that can use the object. The UPL can be stored either in the data structures that define the object
or (if indirect naming is used) with the name of the object. In the procedures that operate on the object,
the operating system can check whether the calling procedure's privilege level exceeds the UPL of the
object. The calling procedure's privilege level is readily.available on the stack, as figure 13-1 illustrates.

13-4 121960-001

EXTENDED PROTECTION

SEND PRIVILEGE LEVEL

Moving or deleting the descriptor for a segment or the name of an object may have even more drastic
effects on other tasks than using the code or structures in the segment or object. Consider the effect of
deleting or mailing away a descriptor for a global data segment (for example, a translation table)
shared by all tasks in the system. A task that assumes the existence of the global segment will cause
an exception when it references the deleted descriptor slot. This points out the need for control over
the right to send or delete a descriptor.

One way of implementing such control is to associate with each descriptor (including alias descriptors)
a send privilege level (SPL). Procedures that move or delete descriptors (such as SEND_MESSAGE
and DELETE-ALIAS) interpret the SPL and ensure that the calling procedure cannot delete (send)
a descriptor from the GDT or its LDT unless CPL <= SPL. SPL for segments is an attribute of
segment descriptors and can be stored in tables parallel to descriptor tables.

The SPL and UPL for operating system objects may be different. In general, the SPL of all descriptors
in the GDT should be zero or one, limiting the deletion and movement of GDT descriptors to the most
privileged levels of the operating system. It is quite reasonable, however, to have GDT-based objects
with UPL of three, so that they are accessible from any level.

CONSTRUCTING SHARED OBJECTS

Since the procedure that builds a GDT-based object, such as a mailbox or semaphore, must have a
descriptor for the object's data segment, there is a possibility (however slight) that some other task (for
example, an interrupt task) might mistakenly use a selector for the object under construction in a
request to the operating system to use a similar object. The results are unpredictable, but probably
disastrous. There are several possible methods for guarding against such a circumstance:

• Lock out all other activity for that type of object by using a semaphore or other synchronization
primitive.

• For the purposes of construction only, use a reserved descriptor slot that other operating-system
procedures recognize as invalid.

• For the purposes of construction only, use an LDT slot of the task that is building the object.

• Use an invalid type extension code for the object until it is completely built.

13-5 121960-001

Glossary

GLOSSARY

8254 Programmable Interval Timer: an Intel counter/timer device that provides three independent
16-bit counters and six counter modes. For operating-system applications the 8254 can provide timed
interrupts for use by the software scheduler.

8259A Programmable Interrupt Controller: an Intel device that handles up to eight vectored priority
interrupts for the CPU. The chip is designed to minimize software and real-time overhead in handling
multi-level priority interrupts. It has several software selectable modes, permitting optimization for a
variety of system requirements.

80286: the CPU chip of the iAPX 286 architecture.

80287: the numerics processor extension chip of the iAPX 286/20 chip set.

access rights: the attributes of a segment, defined by a descriptor, that control how a segment can be
used by instructions in other segments.

accessed bit: a Boolean in the access rights byte of a descriptor that the processor sets when it loads
the descriptor into a segment register.

address mapper: a hardware device that selectively translates the CPU's addressing signals into signals
of another form.

alias: one of several descriptors for a segment. Each alias may define a different type, access rights,
or (in some cases) limit for the segment.

alias list: a data structure that enables the operating system to find all the aliases for a given segment.

asynchronous: characterized by unpredictable order in the occurrence of events; not synchronous.

back link: the selector field in a TSS that identifies the task to be invoked when the current task
executes an IRET instruction. The processor reads the back link only if the NT flag is set. The proces­
sor sets the back link to point to the TSS of the former task when a CALL instruction or interrupt
causes a task switch.

base address: the 24-bit address in physical memory at which a segment starts.

busy task: either the currently executing task or a task on a back-link chain from the currently execut­
ing task. A busy task has a type code of three in the descriptor for its TSS.

Binder: see iAPX 286 Binder.

binding: the process of translating a symbolic. reference to a form that the processor can interpret
directly.

bootloader: sec bootstrap loader.

bootstrap loader: a small, usually ROM-resident, program whose function is to load a larger, fully­
featured loader.

Glossary-1 121960-001

GLOSSARY

bootloadable module: a module containing absolute object code in a simple format that expedites loading
by a bootstrap loader.

boundary tag: a field at the low or high end of a block of memory used by the memory allocation
algorithm to distinguish between allocated and unallocated blocks.

breakpoint: a position in a program marked in such a way that intervention can occur when execution
of the program reaches that position.

buddy system: a memory-management algorithm that partitions memory into pairs of memory blocks
of equal size. When both blocks of a pair are not used, they are combined into a larger block that also
has a partner or "buddy" of the larger size.

buffer: an area of RAM used for transferring data to or from an external device.

built-in: in PL/M-286, a predefined identifier.

Builder: see iAPX 286 System Builder.

BUSY: an input pin to the 80286 used by a processor extension such as the 80287 to indicate when
the processor extension is unable to accept a new instruction.

caIl gate: a gate used to transfer control to a procedure in a segment of the same task at an equal or
(numerically) lesser privilege level.

carry flag (CF): one of the six arithmetic flags typically used for unsigned integer comparisons and
extended precision arithmetic. CF is set by a carry into, or a borrow from, the high-order bit of a result
operand.

code segment: see executable segment.

combine type: one of the characteristics that the Binder associates with segments. The Binder combines
segments only if they have compatible combine types.

compaction: relocating allocated memory segments into consecutive locations in order to bring together
all unallocated memory blocks.

compiler control statement: source statements that specify options to the compiler. Control statements
begin with a dollar sign ($) in the left margin.

conforming segment: an executable segment that executes at the CPL of any segment that calls it. A
conforming segment is identified by a bit in the access rights byte of its descriptor.

control flow transfer: any changein the normal sequential progress of a program. JMP, CALL, RET,
IRET, and INT instructions, as well as exceptions and external interrupts, can cause a change in
control flow.

coroutine: a type of subroutine that cooperates with other coroutines in quasi-parallel execution. A set
of related coroutines transfer control from one to another. Each coroutine maintains local variables
across invocations and maintains an independent instruction counter that determines where to begin
execution upon next invocation.

critical section: a procedure or portion of a procedure that operates on shared data in such a way that
it may act incorrectly if another procedure operates on the same data within the same time interval.

Glossary-2 121960-001

GLOSSARY

CS (code segment) register: the segment register that provides addressability for access to instructions.

current privilege level (CPL): the privilege level that the processor is using to execute the currently­
accessible executable segment. CPL may be equal to DPL of the executable segment, or CPL may be
numerically greater that DPL if the segment is conforming.

data segment: a segment that contains data (other than immediate data) for an executable segment.
A data segment is identified by a specific type code in the descriptor of the segment.

descriptor: an eight-byte item that defines the use of memory in an iAPX 286 protected-mode system.

descriptor table: one of the processor-recognized tables that contain the descriptors for the system;
These tables are the GDT, the IDT, and LDTs.

descriptor privilege level (DPL): the privilege level defined in the descriptor of a segment.

device driver: the task or procedures that use knowledge of the physical characteristics of an I/O
device to carry out higher-level I/0 requests.

direct I/O: I/O operations in which the CPU participates.

dispatching: determining which task the processor should work on, and switching the processor to that
task; also known as "scheduling."

double fault: a fault that occurs while the processor is attempting to handle a prior fault.

DS (data segment) register: one of three segment registers that provide addressability to data segments.

dynamic system: an application in which tasks begin and end relatively frequently.

EM (emulation mode) bit: a Boolean in the MSW that indicates to the processor whether ESC instruc­
tion processing is being emulated by software.

emulation: software interpretation of instructions for a processing device (such as the 80287 Numerics
Processor Extension) that is not present in the system.

entry point: an executable-segment offset that identifies the starting point for execution, as when the
segment is invoked via a gate.

error code: a word automatically pushed on the stack as a result of certain exceptions. The error code
helps identify the segment involved in the exception.

ERROR: an input pin of the 80286 used by a processor extension (such as the 80287) to signal error
conditions.

ES (extra segment) register: one of three segment registers that provide addressability to data segments.

ESC or ESCAPE instruction: an instruction (usually for a processor extension) identified by the five­
bit prefix 110118.

EX (external) bit: a Boolean in the error code which, when set, indicates that the exception is due to
factors outside the control of the task in which the exception occurs.

Glossary-3 121960·001

GLOSSARY

exception: a processor-detected condition that requires software intervention. The iAPX 286 commu­
nicates exceptions to software by means of the interrupt mechanism.

executable segment: a segment that contains processor instructions. An executable segment is identi­
fied by a specific type code in its descriptor.

execute-only segment: a special case of an executable segment that the processor can access for the
purpose of fetching instructions but cannot access for the purposes of reading data. An execute-only
segment is identified by a Boolean in the access-rights byte of its descriptor.

expand-down segment: a data segment that contains a data structure (such as a stack) that grows
toward lower memory locations. An expand-down segment is identified by a Boolean in the access­
rights byte of its descriptor. Offset addresses in an expand-down segment extend from the value contained
in the limit field of the descriptor thru OFFFFH.

exportation: a process by which a system-software interface is made available to applications and other
system programs. Gates and segments providing access to system services (such as operating-system
primitives) are placed, via the Builder's export definition, into a linkable module. This module is used
when building load able tasks that depend on the exported services.

EXPORTS list: a clause of PL/M-286's extended segmentation control syntax that specifies the public
identifiers that may be referenced from outside a subsystem.

external reference: a reference to an identifier that is defined as PUBLIC in another module.

fault: an interrupt that results from an exception.

fetch policy: the algorithm that determines which segment to bring into RAM from secondary storage
and when to bring it in.

first fit algorithm: a dynamic storage allocation algorithm that satisfies a request for space with the
first unallocated block of storage whose size is greater than or equal to the requested size.

flag: one of several Booleans maintained by the CPU, including the arithmetic flags (CF, PF, AF, ZF,
SF, OF), the control flags (TF, IF, DF), and the nested task flag (NT).

flag word: a 16-bit register of the 80286 that contains the arithmetic flags, the control flags, the nested
task flag, and the IOPL. The processor saves the flag word in the TSS with each task switch and loads
the flag word from the TSS of the next task, thereby enabling each task to use the flags without
interference from other tasks.

fragmentation: a condition resulting from some dynamic storage-allocation algorithms, in which
unallocated storage is dispersed in many small areas.

gate: a gate descriptor.

gate descriptor: a descriptor that defines a protected entry point to an executable segment or task.

GDT register: a register of the 80286 that contains the base address and limit of the GDT.

global descriptor table (GDT): the descriptor table that contains descriptors that can be used by every
task in the system. There is only one GDT per processor.

Glossary-4 121960·001

GLOSSARY

handler table: a table of selectors to call gates that identify the procedures for servicing asynchronous
events such as interrupts or software signals. A handler table is used by an operating system's interrupt
distributor and signalling primitives.

I bit: a Boolean in the error code which, when set, indicates that index portion of the error code points
to an entry in the IDT.

iAPX 286 Binder: an iAPX 286 program development utility used to link modules, combine segments,
and create a single-task, loadable output module.

iAPX 286 System Builder: the configuration utility for iAPX 286 protected-mode systems.

IDT register: an 80286 register that stores the base address and limit of the IDT.

index: the field of a selector that identifies a slot in a descriptor table.

indirect I/O: a style of I/O interface in which I/O operations are executed by an independent proces­
sor, not by the CPU.

interrupt: 1) the electrical or logical signal that an event has occurred; 2) the mechanism by which a
computer system responds quickly to events that occur at unpredictable times.

interrupt controller: a device (such as Intel's 8259A Programmable Interrupt Controller) that assists
the CPU in responding to multiple externalinterrupt signals by performing such functions as detection,
priority resolution, and identification.

interrupt descriptor table (IDT): a descriptor table that contains gates to the handler procedures or
handler tasks for interrupts and traps. The IDT may contain only interrupt gates, trap gates, and task
gates.

interrupt distributor: an operating-system interrupt procedure that transfers control to a task-defined
procedure for servicing the interrupt.

interrupt-enable flag (IF): a control flag of the 80286 that determines whether the processor responds
to external interrupt signals presented at the processor's INTR pin.

interrupt gate: a gate that identifies the entry point of a procedure for handling an interrupt. When an
interrupt transfers control through an interrupt gate, the processor resets the interrupt-enable flag.
Interrupt gates are valid only in the IDT.

interrupt handler: a procedure or task that is invoked by an interrupt.

interrupt latency: the time from the occurrence of an interrupt signal to the execution of the first
instruction of an interrupt handler.

interrupt procedure: an interrupt handler that is identified by an interrupt gate or trap gate. An inter­
rupt procedure runs in the interrupted task.

interrupt task: an interrupt handler that is identified by a task gate and runs as a task separate from
the interrupted task.

interrupt vectoring: the mapping from an interrupt source to the interrupt handler. In the iAPX 286
architecture, the 8259A and the IDT are components of the interrupt vectoring process.

Glossary-5 121960·001

GLOSSARY

intersegment reference: a reference to a location in a segment other than the segment containing the
reference.

intrasegment reference: a reference to a location in the same segment as the segment containing the
reference.

interlevel reference: an intersegment reference to a segment that has a different privilege level than
that of the segment containing the reference.

intertask transfer: a transfer of control flow to a task other that the current task.

I/O-mapped I/O: a style of I/O interface in which I/O devices respond to addresses in an address
space that is distinct from the memory address space. Special I/O instructions (IN, INS, OUT, OUTS)
trigger I/O operations. The 80286 uses the M/IO pin to distinguish memory addresses from I/O
addresses.

I/O privilege level (IOPL): a two-bit item in the flag register of the 80286 that controls the current
task's right to execute the I/O-related instructions IN, INS, OUT, OUTS, CLI, ST!, LOCK. A proce­
dure may not execute any of these instructions if CPL> 10PL.

I/O subsystem: the portion of an operating system that deals with filing and I/O.

IP (instruction pointer): an 80286 register that contains the offset of the instruction to be executed
within the current code segment.

kernel: that portion of an operating system that implements the most primitive of its functions.

LDT register: an 80286 register that stores the selector, base address, and limit of the current LOT.

limit: the field of a descriptor that defines the offset of the last byte of the segment.

linkable module: an object module created by iAPX 286 translators, by the Binder, or by the Builder
that can serve as input to either the Builder or the Binder. A linkable module requires further process­
ing before it can be executed.

linking: the process of combining segments from one or more input modules and resolving references
between modules. The Binder provides linking services for iAPX 286 program development.

loadable module: an executable object module (usually created by the Builder or the Binder) that has
a format suitable for processing by a loader running under control of an operating system.

loader: the task or procedures of an operating system that places an object module in RAM and prepares
it for execution by the operating system and the processor.

load-time: at the time a.task is loaded.

local descriptor table (LDT): the descriptor table that contains descriptors that are (generally) private
to a given .task. Each task may have an LOT. A task can use only descriptors that are in its LOT or in
the GOT. The LOT protects tasks from one another.

logical segment: the representation of a segment used by translators and program development utilities
prior to the time when the segment is actually placed in physical memory.

Glossary-6 121960·001

GLOSSARY

machine status word (MSW): an 80286 register that includes the TS, EM, MP, and PE Booleans.
These items are global to the system and are not a part of the task state.

mailbox: a software mechanism for sending messages between tasks. The mechanism consists of two
queues: one a queue of undelivered messages, the other a queue of tasks waiting for messages. Messages
are delivered in FIFO order.

memory management: the set of operating system functions that deal with the l111ocation of RAM to
tasks.

memory-mapped I/O: a style of I/O interface in which I/O devices respond to specific addresses in
the memory address space. I/O operations are triggered by standard instructions that read from, and
write to, memory locations.

message: a unit of intertask communication.

module: a compilation unit or a combination of compilation units.

MP (math present) flag: a Boolean in the MSW that indicates whether a processor extension (such as
the 80287 Numerics Processor Extension) is present.

mutual exclusion: preventing two critical sections from executing concurrently.

multiprocessing: using more than one CPU to execute a multitasking system.

multitasking: the capability to support more than one task either simultaneously (by using more than
one CPU) or virtually simultaneously (by multiplexing one CPU among several tasks).

nested task (NT) flag: a Boolean in the flag word that indicates the existence of a back link field in
the TSS to a previous TSS.

non-maskable interrupt (NMI): an external interrupt presented to the NMI pin of the 80286 that the
processor does not ignore, even when IF is reset.

not-present segment: a segment whose descriptor has the present bit reset. In a virtual-memory system,
this condition normally indicates that the segment has been evicted from RAM to make space for other
segments.

nucleus: see kernel.

nullify: assign a null value to.

numerics processor extension (NPX): the 80287 processor which cooperates with the 80286 CPU to
extend its processing power in mathematical applications.

object module format (OM F): a standard for the structure of object code files.

OF (overflow) flag: an arithmetic flag that indicates when a signed operation produces a positive number
that is too large or a negative number that is too small to fit in the destination operand.

offset: the address of a location within a segment, expressed as a quantity to be added to the base
address of the segment.

Glossary-7 121960·001

GLOSSARY

outward call: the attempt to call a procedure in another segment whose DPL is numerically greater,
than CPL.

parallel table: a table whose entries have a one-to"one correspondence with the entries of a descriptor
table, used to 'associate additional information with each descriptor.

parallelism: concurrent execution of two or more tasks or devices.

parameter validation: checking the attributes of parameters passed between procedures at different
privilege levels to prevent protection violations or to detect exception conditions.

PE bit: a Boolean in the MSWthat indicates whetherthe 80286 is running in real-address.modeor in'
protected, virtual-address mode.

Petri net graph: a notation for visualizing Petri nets. Petri nets are a mathematical tool for modeling
systems, first proposed by Dr. Carl Adam Petri in 1962.

physical address: a 24-bit address, such as that used as a base address, capable of encomp~ssing the
entire address spa~eof the 80286.

physical segment: a segment as viewed by the processor, to be distinguished from "logical segme~t.';
" ,

PIC: programmable interrupt controller. See interrupt controller.

pipes: a mechanism for intertask communi~ation used in the UNIX op~rating system. Each task views
a communicatio~ channel as a file and uses READ and WRITE op~rations to r,eceive and send messages.

placement policy: the algorithm for determining where in RAM to locate a segment.

pointer: an item that specifies a memory location. A full o~ lorig pointer inciudes a selector; which
indirectly chooses a segment base address, and an offset value, which points to a specific address within
~h!lt segment. An offset by itself is callt;d a short pointer.

preemption: a dispatching process in which the operating system switches to another task even though
the current task has not requested any function that would cause it to wait. The operating system may
preempt one task in order to give othe~ tasks a share of CPU attention. '
,.,., " , .

prefix: one of several instruction codes that modify the function or the environment of the following
instruction. iAPX 286 prefixes include the LOCK prefix, repeat prefixes, segment-override prefixes,
and the ESCAPE prefix.

present bit: a Boolean in a segment descriptor that indicates whether the segment is actuallly present
in RAM. In a virtual-memory system, the segment may have been evicted from RAM to create space
for 'another segment.

primitive: one of the operating-system operations made accessible to applications by some explicit
mechanism. In the iAPX 286 'architecture, primitives are typically procedures with call gates in the
GDTor LDTs.

privilege: the right to access cettain portions of memory or to execute certain processor instructions.

privilege level (PL): a: measure ,of privilege. In the iAPX 286, architecture, privilege is measured by
integers in the range 0-3, where 0 is the most privileged and 3 the least.

Glossary-'8 121960-001

GLOSSARY

privileged instruction: an instruction that can be executed only by a procedure running at. privilege
level O. Privileged instructions include CLTS, HLT, LGDT, LlDT, LLDT, LMSW, andLTR.

processor extension: an optional, special-purpose processor (such as the 80287) that runs in parallel
with the 80286 and extends its processing power.

profiler: a procedure or task that collects data about segment usage.

protected, virtual-address mode: the mode of operation of the 80286 that provides virtual-memory
addressing and memory protection.

protection: a mechanism that limits or prevents access to areas of memory or to instructions.

public: a symbol available for intermodule reference.

readable segment: an executable segment that can be read. It is necessary to read from an executable
segmentif that segment contains constants. A readable segment is identified by a Boolean in the access
rights byte of its descriptor.

read-only segment: a data segment that cannot be written to. A read-only segment is identified by a
Boolean in the access rights byte of its descriptor.

real-address mode: the mode of operation of the 80286 that provides greatest compatability with the
8086, without protection and virtual memory addressing.

real memory: the physical memory, as distinguished from virtual memory.

real-time system: a system that responds to external events in a relatively short time, as contrasted
with a batch system.

region: a mechanism for providing mutual exclusion among critical sections. A region is similar to a
semaphore that has the additional properties that 1) only the task that acquires a region can release it,
and 2) a task cannot be suspended while holding a region.

relocation: changing the physical location of a segment.

replacement policy: the algorithm that determines when to remove segments from RAM and which
segments to remove when space is (or is likely to be) needed for another segment.

resolving reference: see binding.

requested privilege level (RPL): the privilege-level field of a selector. A procedure may request a
numerically greater privilege level for use of a segment by placing the desired privilege level in the
RPL field of the selector that identifies that segment.

run-time: the time a task executes.

scheduler queue segment: a segment that contains one or more of the task queues used by a scheduler.
Keeping a queue in one segment may reduce the time for searching the queue.

scheduling: see dispatching.

scheduling mode: one of two styles of scheduling a task: hardware- (interrupt-) scheduled mode or
software-scheduled mode.

GlossarY-9 121960-001

GLOSSARY

scheduling state: one of several conditions that affect the way a task is treated by the scheduler. A
task may be ready to execute, executing, waiting for some event, etc.

secondary storage: a slower, less expensive storage medium than RAM (for example, disk).

segment: a variable-length area of contiguous memory addresses not exceeding 64K bytes.

segment register: one of four 80286 registers that hold addressing information for the segments that
are currently addressable by a task. The segment registers are CS (code segment), DS (data segment),
ES (extra segment), and SS (stack segment).

seiector: an item that identifies a descriptor by the location of the descriptor in a descriptor table.

semaphore: a synchronization mechanism that communicates the occurrence of an event between two
(or more) tasks via a shared memory location.

send privilege level (SPL): a software-implemented measure of the right to send or delete a segment.

shadow task: a duplicate task used to enable the operating system to perform an outward call.

signal: a mechanism for permitting one task to communicate the occurence of an event to another task
that is not waiting for the event to occur.

single step: a mode of execution that permits intervention between each instruction; used primarily as
a debugging aid.

slot: an entry in a descriptor table.

SS (stack segment) register: the segment register that provides address ability to the current stack
segment.

stack segment: a segment used by the processor to. hold return addresses, dynamic data, temporary
data, and parameters. For greatest protection, each privilege level of a task may have its own stack.
Stack segments usually expand downward.

static system: an application in which the mix of tasks does not change over time.

subsystem: in PL/M-286, a collection of tightly-coupled, logically-related modules that obey the same
model of segmentation.

swap space: the secondary storage area used to contain segments that have been removed from RAM.

swapping: in a virtual-memory system, the process of moving segments between RAM and secondary
storage.

swapping manager: a procedure or task responsible for swapping.

synchronization: imposition of an order on the occurrence of certain events.

system segment: a segment containing a descriptor table or task state.

table indicator (TI): a Boolean in a selector that identifies the descriptor table to which the selector
refers.

Glossary-10 121960-001

GLOSSARY

task: a single thread of execution that has an associated processor state.

task database: the collection of information about a task that the operating system needs to store.

task information block: a segment or part or a segment used by the operating system to contain all or
part of a task database.

task gate: a gate that identifies a TSS. A control transfer through a task gate causes a task switch.

task register: an 80286 register that points to the TSS of the currently active task.

task state segment (TSS): a segment used by the processor to store the contents of the task-variable
registers, the stack-segment selectors and pointers for the three most privileged levels, the selector for
the task's local descriptor table, and a back link that may point to another task in a chain of nested
task invocations.

TF (single step flag): a Boolean in the flag word that, when set, indicates that the processor should
cause a trap after each instruction. Typically, TF is used to facilitate debugging.

thrashing: in a virtual memory system, a condition in which excessive swapping seriously degrades
performance of all tasks.

time-sharing system: a multi-user, multitasking system in which processors are multiplexed among
users.

time slice: the time interval for which the CPU is allocated to a task.

translator: an assembler or compiler.

trap: an interrupt due to an exception condition.

trap gate: a gate that identifies the procedure to handle a trap. An interrupt through a trap gate differs
from an interrupt through an interrupt gate in that, with a trap gate, interrupts are not disabled upon
entry into the procedure. Trap gates are valid only in the IDT.

Trojan horse: a type of protection violation in which a procedure passes a selector that it has no right
to use to a more privileged procedure that does have the right to use it.

trusted instruction: one of a set of IfO-related instructions that cannot be executed unless CPL is less
than or equal to IOPL. The trusted instructions are CLI, STI, IN, INS, OUT, OUTS, and LOCK.

type code: a value in a descriptor that specifics the intended use of a segment. The processor interprets
the type code to ensure that segments are used only as intended.

type extension code: a software extension to the type code concept that includes usages recognized by
the operating system.

UDI (Universal Development Interface): an Intel standard for interfaces to operating-system services.

usage privilege level (UPL): a software-defined measure of the right to use an operating-system object.

vectoring: see interrupt vectoring.

Glossary-11 121960-001

GLOSSARY

virtual address: an address that consists of a selector and an offset value. The selector chooses a
descriptor for a segment; the offset provides an index into the selected segment.

virtual address space: The set of all possible virtual addresses that a 'task can access, as defined by the
GDT and the task's LDT. The maximum possible virtual address space for one task is one gigabyte.

virtual memory: a style of memory management that permits the virtual address space to exceed the
physical address space of RAM. With the help of processor features, the operating system simulates
the virtual address space by using secondary storage to hold the overflow from RAM.

word count: a field of a gate descriptor that specifies the number of words of parameters to be copied
from the calling procedure's stack to the stack of the called procedure.

writable segment: a data segment that can be written to. A writable segment is identified by a Boolean
in its descriptor.

XOS (Example Operating System): an imaginary operating system, portions of which are used in this
book as examples.

Glossary-12 121960-001

INDEX

8089 I/O processor, 8-1
8254 Programmable Interval Timer (PIT), 4-5,

4-9,4-13
8259A Programmable Interrupt Controller

(PIC), 4-6, 6-1, 6-6, 7-6
80287 Numerics Processor Extension (NPX),

1-7,7-4,7-5,7-8, Chapter 12

access rights (field of descriptor), 2-21, 2-22,
9-2, 11-5, 11-10, 13-1, 13-2, 13-4

accessed bit, 2-7, 5-3, 9-1, 9-4, 9-5, 9-7, 10-2
ADC, 7-8
addressing mechanism, 2-1
ADJUST$RPL, 2-16, 13~2
alias, 2-17 thru 2-22, 3-2,4-10,4-12, Chapter 5,

6-5,8-2,9-3,9-7, 10-3, 11-2, 11-9, 13-5
ARPL, 2-16, 13-2 thru 13-4
ASM286, 3-6, 4-13, 11-4, 13-2
ASSUME, 11-4
asynchronous execution, 1-6

back link (of TSS), 4-1 thru 4-4, 4-7, 4-13, 7-5,
7-6, 10-2, 11-10

base address, 2-4, 2-15, 4-1, 5-3, 9-3,9-5, 10-3,
11-3, 11-10, 11-11

binding, 1-8, 2-8, 2-9, Chapter 11
Binder, see iAPX 286 Binder
bootloadable, see module, bootloadable
BOUND,7-4
bound check exception, 7-4
boundary tags, 3-2, 3-5, 3-6, 9-3
breakpoint, 2-17, 7-3
buffer, 2-18, 3-1, 3-10, 5-10, 8-1, 8-3, 8-5, 8-7,

9-2,9-4
Builder, see iAPX 286 System Builder
BUSY/ pin, 12-2, 12-3
busy task, 4-3, 4-4, 7-7

CALL, 2-7, 2-9, 2-10, 4-2 thru 4-4, 4-13, 4-17,
6-1,6-2,6-4,6-6,7-5 thru 7-7, 11-3

carry flag (CF), 7-8
CLI, 4-6, 4-7, 5-6, 6-2, 8-2
CL TS, 12-2, 12-4
CMPS, 7-7
combine type, 11-4
COMPACT, 11-4, 11-5
compaction, 3-10 .
compiler control statements, 11-4
conforming segment, 2-5, 6-2, 6-7, 6-8
critical section, 5-5 thru 5-7, 12-4

Index-1

CS register, 4-4,6-9,7-5 thru 7-7, 9-1,9-6, 9-7,
10-1, 11-3, 11-9, 12-5

current privilege level (CPL), 2-11, 2-16, 4-6,
5-6,6-2,6-7,6-8,8-2, 10-1, 10-2, 13-3

deadlock, 5-7, 5-10
debugger, 2-17, 7-3,11-3,11-10
deletion

of segment, 2-20,5-2,5-3,8-3,9-5, 13-1
of descriptor, 13-5

DESCRP section, 11-11, 11-12
descriptor, 2-2,2-12, 11-6, 11-9

data segment, 2-2, 2-3, 2-6, 2-14, 2-15, 2~18,
7-7,9-3 thru 9-5, 9-7

dynamic creation, 3-1, 3-2
executable segment, 2-2, 2-4, 2-6,2-7,2-14,

2-15,2-17,6-7,7-7,9-7
gate, 2-2, 2-7 thru 2-11, 2-15, 6-2,7-6,9-1,

9-2, 10-2, 11-3, 11-9
system segment, 2-2, 2-5

descriptor privilege level (DPL), 2-3, 2-6, 2-9,
2-11,2-15,2-20,2-21,4-3,5-7,6-7,6-8,8-2,
8-5, 8-7

descriptor table, 2-2, 2-12, 2-15
see also global descriptor table, local
descriptor table, interrupt descriptor table

DESNAM section, 11-11
device drivers, 5-17, 8-1, 8-2, 8-4, 8-7, 9-2, 9-4,

11-2, 11-4
DI register, 7-7
DISABLE, 6·2, 6-4, 7-1
dispatching, 4-9, 4-13, 5-7,9-5, 11-4
divide error exception, 6-7, 7-3
double fault, 7-5, 9-2, 9-4
DPL, see descriptor privilege level
DS register, 2-17, 2-18, 2-21, 4-12, 7-5 thru 7-7,

9-1, 9-6, 9-7, 10-1
dynamic system, 1-7 thru 1-10,2-2,2-3,2-12,

2-18 thru 2-20,2-22,3-1,4-4,5-7,6-5, 11-8

effective privilege level, 2-16
EM (emulation mode) flag, 7-4, 7-8, 12-1 thru

12-3
emulation, 7-8, 12-1, 12-4
ENABLE,6-2
ENTER,7-6
ENTRY, 11-6
EPROM,10-3
ERROR/ pin, 7-8, 12-1 thru 12-3, 12-5
error code, 7-1, 7-2, 7-5 thru 7-7, 7-9, 9-2, 9-3,

12-5

121960·001

ES register, 2-17, 2-18, 2-21, 2-22, 4-12,7-5
thru 7-7, 9-1, 9-6, 9-7, 10-1

ESCAPE instructions, 7-4, 12-1 thru 12-5
EX (external) bit, 7-2

INDEX

. examples, 2-20 thru 2-26,3-1 thru 3-9, 3-15 thru
3-21, 4-15, 5-8, 5-9, 5-13 thru 5-16, 10-3
thru 10-15, 11-6 thru 11-8, 11-12 thru
11-28

exception, 1-7, 2-8, 2-10, 2-17, 4-3, 4-7, 5-5, 6-2,
6-4, 6-9, Chapter 7, 9-1, 11-3, 13-3, 13-5

handler, 6-7, Chapter 7, 9-2, 9-4, 11-3, 12-4,
12-5

recovery, Chapter 7, 12-3 thru 12-5
EXECUTE, 11-9
execute-only segment, 7-7, 13-4
expand-down segment, 2-5, 11-11, 13-4
expansion direction, 2-5, 5-3
EXPORT,11-6
export module, 11-6, 11-12, 11-13
exports list, 11-4, 11-5
extended segmentation controls, 11-4
EXTERNAL, 3-6

FAR,II-4
fault, see exception
FINIT, 12-5
"first fit" algorithm, 3-1, 3-2
flag word, 4-2 thru 4-4, 6-2, 6-4, 8-1, 8-2, 10-1
FNINIT, 12-2, 12-5
FORK,II-9
fragmentation, 3-1, 3-2, 9-6
FRSTOR,12-4
FSAVE, 12-4, 12-5
FSETPM, 12-2, 12-5

gate, 2-8, 2-11, 11-6
call, 2-8,2-10,2-12,2-14,2-15,2-21,3-9,

4-13,5-7,5-12,6-1,6-2,8-7,11-3,11-12,
11-14

interrupt, 2-8, 2-15, 6-2, 6-4, 6-7
name, 11-6
task, 2-8, 2-14, 2-15, 4-3, 4-7, 6-2, 6-4, 7-5,

10-3
trap, 2-8, 2-15, 6-2, 6-4, 6-7
see also descriptor, gate

GATE,II-6
GDT, see global descriptor table
GDT register, 2-15, 10-2
general protection exception, 7"7, 8-2
GEnACCESS$RIGHTS, 13-2
GEnSEGMENnLIMIT, 3-6, 13-2

global descriptor table (GDT), 1-3,2-12,2-14
thru 2-19, 2-22, 3-3, 3-4, 3-7, 3-8, 4-1, 4-3,
4-10 thru 4-12,5-1,5-7,5-10,6-7, 7-2, 8-7,
10-2, 10-3, 11-2, 11-4, 11-5, 11-9 thru 11-12,
13-5

handler table, 6-7
hashing algorithm, 5-3

I bit (of error code), 7-2
iAPX 286 Binder, 1-10, 11-3, 11-5, 11-6, 11-10,

11-11
iAPX 286 System Builder, 1-8 thru 1-11, 2-2,

2-4, 2-12, 2-18, 3-1, 3-6, 8-2, 10-3, 11-3 thru
11-6, 11-8, 11-10, 11-11

iAPX 386, 2-3
identifier, 5-7, 5-10, 8-7

see also interrupt identifier
IDT, see interrupt descriptor table
IDT register, 2-15, 6-2
IF (interrupt-enable) flag, 4-6, 5.:6, 6-2, 6-4
index field (of selector), 2-16,2-17,5-3,7-2
INIT$REAL$MATH$UNIT,12-2
initialization

of 80287, 12-2
see also system initialization

input/output (1/0),1-4 thru 1-7,2-18,4-5,4-7,
4-10,5-10, Chapter 8, 9-2, 9-4, 9-8, 11-2,
11-4, 11-9

indirect, 8-3
memory-mapped, 8-2

IN,8-1
INS, 7-7, 8-1
INT, 2-7, 2-10, 2-15, 4-3, 6-1, 6-2, 7-3
INT A cycles, 2-15
INTO, 6-1, 6-2, 7-3
INTR pin, 6-1, 6-2, 6-6
interrupt, 1-4, 1-7,2-10,2-15,2-21,4-3,5-4 thru

5-6, Chapter 6, 7-1, 7-6, 7-7, 8-4, 10-1,10-2
distribution, 6-7 thru 6-9
flag, see IF
identifier, 2-15, 6-1, 6-2
handler, 2-15, 2-18, 4-6
latency, see interrupt response time
mask, 4-7, 12-4
procedure, 4-4, 4-7, 4-11, 4-13, 6-2, 6-4 thru

6-7, 7-1, 12-4
response time, 4-3, 5-5, 6-5, 12-4
scheduled task, see scheduling
software, 6-1
task, 4-4, 4-7, 6-2, 6-4 thru 6-6, 7-1, 7-6, 9-4,

12-4, 13-5
interrupt descriptor table (IDT), 2-12, 2-15,

2-16,2-18,4-3,4-5,4-7,6-2,6-4,6-5,6-7,
7-2, 7-5, 10-2, 10-3, 11-11

Index-2 121960-001

INDEX

"invalid TSS" exception, 7-5 thru 7-7, 9-2, 9-5
10PL (I/O privilege level), 4-6, 5-6, 8-1, 8-2,

8-5
IP register, 4-4, 6-9, 7-1, 7-3, 7-5, 7-7, 10-1,

11-9, 12-4, 12-5
IRET, 2-7, 2-10, 4-3, 4-4, 4-13, 6-4, 6-6, 6-7, 6-9,

7-3,7-5,7-7,8-2,12-5

JMP, 2-5, 2-7, 2-9, 2-10, 4-3, 4-4, 4-13, 7-7,
10-1, 10-3

LABEL,11-4
LAR, 9-7, 13-2, 13-4
LARGE,11-4
LDT, see local descriptor table
LDT register, 2-14, 4-3, 7-6, 9-1
LDT selector (of TSS), 4-1, 4-3, 6-9, 7-5, 10-2,

11-11
LEAVE,7-6
LGDT,2-15
LIDT, 2-15, 6-2
limit field (of descriptor), 2-4, 2-5, 2-12, 2-15,

2-16,4-1,5-3,7-5 thru 7-7, 9-5, 10-1, 10-3,
11-11,12-4,13-2,13-4

linkage, 1-10, 7-6
LLDT, 2-14, 7-6
LMSW, 10-1,12-1
loading, see program loading
local descriptor table (LDT), 2-5, 2-12, 2-14,

2-16,2-18 thru 2-20, 3-1, 4-10, 5-1 thru 5-3,
5-10,5-17,6-7,7-2,8-7,9-3,9-4,9-7,10-2,
10-3, 11-2, 11-4, 11-5, 11-8 thru 11-12

not present, 9-1, 9-2
LOCAUTABLE,2-14
LOCK,8-2
LODTXT section, 11-11, 11-12
logical segment, 1-1, 11-2 thru 11-5
Lst, 9-7, 13-2, 13-4
LTR, 4-1,9-1

MACHINE$STATUS, 12-1
mailbox, 5-10 thru 5-12, 5-16, 5-17, 8-7, 9-3,

9-5, 11-2, 13-1, 13-4, 13-5
mechanisms, see policies and mechanisms
memory management

real, 1-8, 1-9,2-22, Chapter 3,5-4,5-12,5-17,
8-3, 8-5, 11-6

virtual, 1-8,2-2,2-3,2-7,7-6, Chapter 9, 11-9
message, 2-19, 3-9, 4-9, 5-4, 5-10, 5-12, 5-16
module, 11-1 thru 11-6

bootloadable, 11-6, 11-10
linkable, 11-6, 11-10
load able, 1-10, 11-10, 11-11, 11-14
object, 1-8, 1-9, 11-9, 11-10

MOV, 7-6
MOVS, 7-7
MP (math present) flag, 7-4, 12-1 thru 12-4
MSW (machine status word), 7-4, 7-8, 10-1,

12-1, 12-2
multiprocessor systems, 3-10
mutual exclusion, 5-5, 5-6

naming, 11-1 thru 11-6, 11-11, 11-12, 13-1, 13-2,
13-4, 13-5

NEAR,II-4
NMI (non-maskable interrupt), 6-1, 6-2, 10-2
NOT PRESENT statement, 11-12
"not present" exception, 7-5 thru 7-7,9-1,9-3

thru 9-8, 11-3
see also present bit

NT (nested task) flag, 4-2 thru 4-4, 4-7, 7-6, 9-4,
11-10

Numerics Processor Extension (NPX),
see 80287

OBJECT, 11-6
object module format (OMF), 11-8, 11-10,

11-11
OF (overflow) flag, 7-3
OUT,8-2
OUTS, 7-7, 8-2
outward call, 6-8
overflow exception, 7-3

paged architecture, 9-6
parallel table, 5-3, 13-1
parallelism. 1-4, 8-4, 8-7
PE (protection enable) flag, 10-1
Petri net graph, 8-4, 8-5
physical address, 1-8, 1-9,2-4,3-2 thru 3-4,

11-10
physical segment, 1-1, 1-2,2-12,2-15, 11-1 thru

11-3
PIC, see 8259A Programmable Interrupt

Controller
pipes, 5-17
PL/M-286, 2-14 thru 2-16, 2-21, 2-22, 3-3, 3-6,

4-1, 4c3, 4-13, 6-2, 11-4, 11-6, 12-2, 12-4,
13-2

pointer parameters, see selector parameters
policies and mechanisms

scheduling, 4-9, 4-10
virtual memory management, 9-1, 9-6

POP, 7-6
POPA,7-7
POPF,8-2
preemption, 4-5, 4-7, 4-9, 4-10, 4-13
prefix, 7-1

Index-3 121960-001

present bit, 2-2, 2-3, 2-9, 5-3, 7-5, 7-6, 9-1 thru
9-5, 11-12

primitives, 11-3,11 ~4, 11-6, 11-12, 11-14,13-4
priority, 2-19, 4-6, 4-7, 4-9, 4-10, 6-6, 6-7
privilege level, 1-3, 1-4, 1-8, 2-6, 2-7 thru 2-11,

INDEX

2-15,2-18,2-20,2-21,3-8,3-9,4-1,4-2,4-9,
4-12,4-13,5-2,5-7,5-10,5-12,6-2,6-3,6-5,
6-8,8-2,8-3,8-7,9-3,9-7, 11-2, 11-6, 11-9,
11-10, 12-2, 12-4, 13-1, 13-2, 13-4, 13-5

PROC, 11-4
"processor extension error" exception, 7-8, 12-5
"processor extension not available"exception,

7-4, 12-3, 12-4
"processor extension segment overrun"

exception, 7-5, 12-4, 12-5
profiling, 9-7, 9-8
program loading, 1-8, 1-10, 2-3, 2-4, 3-1, 6-5,

Chapter 11
bootstrap, 1-9, 11-10

protected, virtual-address mode, 10-1, 10-2, 12-2
protection, 1-3 thru 1-5, 1-9, Chapter 2,3-1,3-7,

4-3,4-4,4-6,5-1,5-4,5-7,5-10,6-2,6-3,
6-5,6-6,7-3,8-1 thru 8-4, 8-7, Chapter 13

violation, 6-4, 6-9, 7-7
PUBLIC, 3-2, 3-6, 3-8, 3-9, 10-3, 11-3, 11-6
PUSH,7-6
PUSHA,7-7

RCL, RCR, 7-8
readable segment, 2-7
read-only segment, 7-7
real address mode, 10-1, 10-2
real memory management, see memory

management,real
recovery, see exceptions
region, 5-10, 9-4, 9-5
REP, REPE, REPNE, 7-7
requested privilege level (RPL), 2-11,2-16,7-2,

13-2 thru 13-4
RESERVE, 3"6, 11"6
reserved word (of descriptor), 2-3, 2-22
RESET, 10-1, 10-3
RESTORE$GLOBAL$TABLE,2-15
RESTORE$INTERRUPT$T ABLE, 2-15
RESTORE$REAL$STATUS, 12-4
return pointer, 6-2, Chapter 7, 12-4, 13-3
return link, see return pointer
return address, see return pointer
relocation (of segment), 2-4, 2-20, 5-2, 5-3, 5-12,

8-3
RET, 2-7, 2-9, 2-10, 4-3, 11-5
RETURN, 11-5
ROM, 10-1
RPL, see requested privilege level

SAVE$GLOBAL$TABLE,2-15
SA VE$INTERRUPT$TABLE, 2"15·
SA VE$REAL$ST A TUS, 12-4
SBB,7-8
SCAS, 7-7
scheduling, 2-19, 4-11, 5-12, 9-5

hardware, see scheduling, interrupt
interrupt, 4-6, 4-7,4-9,6-1,6-5,6-6,8-7
queues, 4-12, 4-13, 9-4, 11-10, 11-14
software, 4-7, 4-9, 6-1, 6-5, 6-6, 7-6
state, 4-5 thru 4-7, 4-10

SEGMENT, 11-4, 11-6
segment, see logical segment, physical segment
segment limit, see limit field
segmented architecture, 9-6
SEGMENT$REAOABLE,

SEGMENT$WRITABLE,13-2
selector, 2-1, 2-2, 2-8, 2-9, 2-15, 2-16, 3-6,4-1,

4-3,5-7,7-6,7-7,11-12,13-1
parameters, 2-16, 13-1 thru 13-4
null, 2-15, 2-17, 7-7

SELECTOR$OF, 3-6
semaphore, 5-6, 5-7, 5-10, 5-16, 9-4, 9-5, 11-2,

12-4, 13-1, 13-4, 13-5
send privilege level (SPL), 13-5
SGOT,2-15
shadow task, 6-8, 6-9
sharing (of segments), 2-14,2-15,2-19,2-20,

2-22,4-4, Chapter 5, 8"7, 9-5, 11-2, 1l~4,
13-1,13-4,13-5

shutdown, 7-5, 10-2
SI register, 7-7
SlOT, 2-15, 6-2
signal, 4-5,5-7, 5-10, Chapter 6
single-step flag (TF), 6-2, 7-3
SLOT, 2-14, 9-7
slot, 2-20, 2-22, 2-26, 5-10, 11-6, 11-14, 13-5
SMALL,II-4
SMSW, 12-1
SP register, 4-2, 4-12, 7-6
SPL, see send privilege level
SS register; 4-2, 4-12, 7-5 thru 7-7, 9-2, 9-6,

10-1
stack, 2-5, 2-8, 3-1, 4-12, 6-2, 6-4, 7-1, 7"2,7-6,

7-7, 9-3, 9-4, 9-7, 10-2, 11-6, 11"9 thru
11-11,13-4

initial, 4-2, 4-3, 11-6
overflow, 7-5, 7-7
exception, 7-5 thru 7-7,9.2

static system, 1-7, 1-9, 1-10,2-3,2-19,3"1,4-4,
6-4, 11-9

STI, 4-6, 4-7, 5-6, 6-2, 8-2
STOS,7-7
STR, 4-1, 4-7, 4-11

Index-4 121960-001

subsystem, 11-4
swapping, 5-12, 8-3, 9-2 thru 9-4, 9-8
synchronization, 2-22, 3-8, 3-9, Chapter 5, 8-4,

8-6, 12-2, 13-4, 13-5
system initialization, 6-5,6-6, Chapter 10

TABLE,II-6
table indicator (TI), 2-16, 2-17, 7-2
task, 1-1

creation, 2-2, 2-18, 3-1, 5-12, 6-9,11-9
database (TDB), 4-11, 5-12,9-4, 11-9, 11-10,

12-3, 12-4
management, Chapter 4
state, 4-1, 10-2, 12-3

INDEX

switching, 2-14, 4-1, 4-3, 4-4, 4-9, 5-6, 6-2, 7-5
thru 7-7, 8-2, 9-4, 9-5, 10-2, 11-9, 12-2 thru
12-4

TASK, 11-6
task register (TR), 4-1, 4-2, 4-4, 9-1, 10-2
task state segment (TSS), 2-5, 2-14, 2-18,3-1,

4-1 thru 4-4, 4-10 thru 4-13, 5-1, 6-2, 6-4,
6-9,7-1,7-5,7-7,8-2,9-1,9-4 thru 9-7,
10-2, 10-3, 10-5, 11-6, 11-8 thru 11-12,
11-14

TASK$REGISTER,4-1
TDB, see task database
termination (of task), 6-9, 7-1, 7-5, 12-5
TF, see single-step flag

Index-5

thrashing, 9-8
TI, see table indicator
time slice, 4-5, 4-9 thru 4-11
timer, see 8254 Programmable Interval Timer
TS (task switched) flag, 7-4, 12-1 thru 12-4
TSS, see task state segment
type

field of descriptor, 2-5,2-17,2-18,2-20,2-21,
4-3,4-4,6-2,9-3, 11-10, 11-14, 13-1

extended, 13-1, 13-2, 13-5

UDI (Universal Development Interface), 8-1
"undefined opcode" exception, 7-4 .
UNIX, 11-9
usage privilege level (UPL), 8-7, 13-4, 13-5

vectoring, 6-1, 6-3, 7-1
VERR, VERW, 13-2, 13-4
virtual memory, see memory management,

virtual

WAIT, 7-4, 7-8,12-1 thru 12-5
WAITFORINTERRUPT,4-3
word count, 2-8
writable data segment, 2-6, 9-5, 11-10, 11-14,

13-1,13-4

XOS, II-I, 11-2, 11-4, 11-6

121960-001

inter u.s. SALES OFFICES

ALAIWIA IlEQRQIA NEWJEfISEY peNNSYLVANIA

Intel Corp, Intel Corp. InIelCorp.· , Corp .•
303 Williams Avenue, S.W. 330D Holcombe Bridge Road RarltanPlu.1II 510 Pennsytvania Avenue
Suite 1422 Suite 225 R.ritanCenter Fort WaShIngtOn 11D34
Huntsville 35801 N 30092 edison 08837 Tel: (215) 641-1000
Tel: 1205} 533-9353 Tel: (404) 449-0541 Tel: (lOt) 225-3000 TWX: 510-66'-2077

ARIZONA ,..-. TWX: 710-480-S238 -Corp.'

InlelCorp. , Corp.' NEW..xlCO 201 Penn Cenllr Boulevard
Suile301W

t 1225 N. 28th Drive 2550 GoO' Road. Intel Corp. _burgll'5235
Suite 2140 Sui1e815 1120 Juan Tebo N.E. ral, (412) 123-4970
Phoeni .. 85029 Rolling Meadows 80008 Alwquerque 87112
Tel: (602) 869-4980 Tel: (312) 981-7200 Tel: (50S) 292·D088 Q.E.D. ElectrOnics

TWX: 91()-851-58Bl 300 N. York Ro.d
CALIFORNIA NEWYORK Hatboro ,ICMO
Intel Corp. ,- InteiCorp: rOO, (2151874-9600
1010 Hurley Way , Corp. 300 Vanderbilt Motor Parkw.y TEIIAI
Suile 300 9100 Purdue ~ Hauppauge 11788 _eo",.' Sacramento 95825 _<00 rei: (516) 231-3300
r .. : (916) 929-4078 IndianapoliS 48268 ·TWX: 51D-227~ 12300ForcI Road

Intel Corp. ret (3171875-4823 Intel Corp.
s..o .. 380
DoIIu 75234

7870 Opportunity Road IOWA 80 Wahlngton Street Tel: (214) 24'·1087
Suite 135

''''''Corp.
Poi.Igt*eepsie 12601 TWX: 91~5817

San Diego 92111 T .. : (914) 473·2303
rei: (7'4, 268-3563 SI. Andrews Building TWX: 51().24a.ooeo Int"Corp."

Intel Corp."
1930 St. Andrews Drive N.E.

Intel Corp."
1322 S.W. Freeway

Cedar Rapids 52402 Suite 1490
2000 J:ut 4th Street roO, (3191393·5510 211 While Spruce BouIe\Wd Houston 11074
Suite 100 _'00e23 roo, (713198W088
Santa Ana 92105 KA_a ret (7181 ... ·1050 TWX: 910-881-2"90
rei: (6191835-9642 , Corp. TWX: 510453-1391

Industrial OIgllal Sptems Corp. TWX: 910-595-111" IMOOW.11Oth Street r-8quorod 5925 Sovereign
IntliCorp" Suite 110 ==-- Suite 101
1350 Shorebird Way Overtand Park 66210 Houston 11036
Mt. Va 94043 rei' (9131842-11080 rei' (3151483-_ rtl: (113) 981-9421 r.",4151 __

LOUISIANA
TWX: 110-541-0554

Intel Corp. TWX: 910-339·9219 r._
910-338-0255 Industrial Digital Systems Corp. 313 e. AndIrIon Lane

7383 __

Suite 31 ..
Intel Corp." 2332 Sftern Avenue VICtor Road _202 Austin 18152
5530 Corbin Avenue .-,4584 rei: (5121 454-3828
Suite 120 Metairie, LA 70001 rei, (7181924-8101
rarzana 91358 rll, (5041831-8492 TWX: 510-254-8542 UTAH
Tel: (213) 108-0333 _LAND

NOItTH CAROLINA Intel Corp.
TWX: 910-495-204S , Corp.' 288 Wesl 400 South
COLORADO 1257 Parkway Drive , Corp. San Lake City 84101
Intel Corp. Hanover 2107e

2308W. __
roo, (8011 __

SI.itI208
4445 NorIhpn. Drive ret (3011796-7500

Greensboro 27407 "lIGNA
Suite 100 TWX: 71D-882-1944

Tel: (918) 294-1541 Intel COrp.
ColOrado Springs 80907 Inlel Corp. 1103 SIma Ron Ro.t
ral, (3031594-8822 7833 Wilker Drive OHIO Suite 109
Intel Corp." Greenbelt 20770 , Corp.' RICINnand232111
650 S. Cherry Street rll, (3011431.1200 8500 Poe Avenue rOO, (8041292·5188
S 720 IlAllACHUKTI'I 0."..,45414

w_
Denver 80222 TII:(513) 890-5350
rOO,(3031321_ "''''Corp.' TWX: 810-4S0-2S28 -Corp.
TWX: 910-931-2289 21 Industrial Avenue

'"",Corp.' 1101 10th Avenue N.E.
Chelmslord 01824 Suile510

CONNEcnCUT Tel: (6171256-1800
arm Bldg .. No. 300 --28001 Chagrin _

Intel CoIp. TWX: 110-343-6333
CIeVlland ,22 roo, 12081.53-1088

38 Padanaram Road EMCeo.". Tet (211) 414-8915 TWX: 91D-443-3002
Danbury 06810 315 EJllot Street lWX, 110-427·_ WIICONIIN rei, 12031792_ Newton 02164
TWX: 71()..458-1199 Tel: (617) 2 , .. 0 - '"",Corp.

EMC Corp.
TWX: 922531 Intel Corp. 450 N. SUMySlOpe Rold

"'51 S. HarvarCI Avenue Suite 130
393 Canter Street MICHICIAN

SuiI8123 Brookfield 53005
Wallingford 08492 Intel Corp.· Tulsa 14135 Til: ,4t .. , 184·9060
roo, (2031 215-6991 26500 Northwestern HWJ. Tet: (918) 749-8881
I'LOII'DA SUlte .. Ol
Intel Corp. Southfield 48015 OREGON
1500 N.W. 62nd Street Tel: (3131353·0920 Intel Corp.
Suil81D4 TWX: 810·244-4915 l0700S.W. Beaverton
Ft. Lauderdale 33309 MINNESOTA HiUsdaIe Highway
Tel: (305) 171-0100

Intel Corp.
Suite 22

TWX: 510-958-9407 _97005
3500 W. 80th StrBet ral, (5031841_

IntefCorp. Suite 360 TWX: 910-411"7 .. ,
SOON. Maitland Bloomington 55431
Suite 205 Tel: (612) 835-6122
Maitland 32751 TWX: 910-576-2867
Til: (305) 628-2393

MtIlOURI TWX: 810-853-9219
Intel Corp.
"203 Elrth City Expressway
Sullet3'
Ear1h Ci1y 63045
Til: (314) 29"'990

°Fielcl ApplicatiOn Locmion

inter
ALABAMA
tA.rrow ElectroniCs, Inc.
3611 Memorial Parkway So.
HuntSVille 35405
Tel: (205) 882·2730
tHamHton/Avnet ElectroniCs
4812 Commercial Drive N.W.
Huntsville 35805
Tef: (205) 837·7210
TWX: 810·726·2162
tPioneer/HuntSVll1e
1207 Putnam Drive N.W.
Huntsville 35805
Tel: (2051837·9300
TWX: 810..72&.2197

ARIZONA
tHamlltonJAvnet Electronics
505 S. Medllon Drive
Tempe 85281
Tel: 16021231-5140
TWX: 910-950·0077
tWyle Distribution Group
8155 N. 24th Street
Phoenix 85021
Tel: 16021249-2232
TWX: 910-951-4282

CAUFORNIA
tArrow Electronics. inc.
521 Weddell Drive
Sunnyvale 94086
Tel: (4081745-6600
TWX: 910·339·9371
fArrow Electronics, Inc.
19748 Dearborn Street
Chatsworth 91311
Tel: (213) 701-7500
TWX: 910·493-2086
tHamllton/Avnet Electronics
350 McCormick Avenue
Costa Mesa 92626
Tel: (714)754·6051
TWX: 910-595·1928
tHamlllonfAvnel Electronics
19515 So. Vermont Avenue
Torrance 90502
Tel: (213) 615-3909
TWX: 910-349-6263
tHamliton/Avnet Electronics
1175 Bordeaux Drive
Sunnyvale 94086
Tel: (408) 743-3300
TWX: 910-339-9332
tHamllton/Avnet Electronics
4545 Viewridge Avenue
San Diego 92123
Tel: (714) 641-4109
TWX: 910-595-2638
tHamiltOnJAvnet Electronics
10912 W. WaShington Boulevard
Culver City 90230
Tel: (213) 558-2456
TWX: 910-340-6364
tHamiiton/Avnet Electronics
21050 Erwin Street
Woodland Hills 91367
Tel: (213) 883·0000
TWX: 910-494-2207
tHamiltOn Electro Sales
3170 Pullman Street
Costa Mesa 92626
Tel: {7141641-4109
TWX: 910·595·2638
tHamiton/Avnet Electronics
4103 NOrttlgate Boulevard
Sacramento 95834
Tel: (916) 920-3150
Kierullf Electronics, Inc.
3969 E. Bayshore Road
Palo Alto 94303
Tel: (415) 968·6292
TWX: 910-379-6430
Kierulff Electronics, Inc.
14101 Franklin Avenue
Tustin 92680
Tel: (714) 731-5711
TWX: 910-595-2599
Klerulff Electronics, Inc.
2585 Commerce Way
Los Angeles 90040
Tel: (213) 725-0325
TWX: 910-580-3666
tWyIe Distribution Group
124 Maryland Street
EI SegundO 90245
Tel: (213) 322·8100
TWX: 910·348·7140 or 7111
tWyle Distribution Group
9525 Chesapeake Drive
San Diego 92123
Tel: (714) 565-9171
TWX: 910·335·1590
tWyle Distribution Group
3000 Bowers Avenue
Santa Clara 95051
Tel: (408) 727-2500
TWX: 910-338-0451 or 045110
tWyIe Distribution Group
17872 Cowan Avenue
Irvine 92714
Tel: (714) 641·1800
TWX: 910-595·1572

u.s. DISTRIBUTORS
COLORADO

tWyle DistributIOn Group
451 E. 124th Avenue
Thornton 80241
Tel: (303) 457-9963
TWX: 910-936-0770

tHamilion/Avnet Electroncs
8765 E. Orchard Road
Suite 708
Englewood 80111
Tel: (303) 740.1017
TWX: 910-93S.()787

CONNECTlCUT

tArrow Electonics, Inc.
12 Beaumont Aoad
Wallingford 06492
Tel: (203) 265-7741
TWX: 710·220·1684
tHamilton/Avnet Electronk:s
Commerce Industrial Park
Commerce Drive
Danbury 06810
Tel: (203) 797-2800
TWX: 710-456-9974
tHaNey Electronics
112 Main Street
Norwalk 06851
Tel: (203) 853-1515
TWX: 710-468-3373

FLORIDA
tArrow Electronics, Inc.
1001 N.W. 62nd Street
Suite 108
FI. Lauderdale 33309
Tel: (305) 776-7790
TWX: 510-955-9456
tArrow Electronics, Inc.
50 Woodlake Drive W.
Bldg. B
Palm Bay 32905
Tel: (305) 725·1480
TWX: 510-959-6337
tHamilton/Avnet Electronics
6801 N.w. 15th Way
Ft. Lauderdale 33309
Tel: (305) 971-2900
TWX: 510-956-3097
tHamiltonfAvnet Electronics
3197 Tech. Drive North
SI. PeterSbl,lrg 33702
Tel: (813) 576-3930
TWX: 810-863-0374
tPioneerfOrlando
6220 S. Orange Blossom Trail
Suite 412
Orlando 32809
Tel: (305) 859-3600
TWX: 810-850-0177

tPioneerfFt. Lauderdale
1500 62nd Street N.W.
Suite 506
FI. Lauderdale 33309
Tel: (305) 171-7520
TWX: 510-955-9653
GEORGIA

tArrow Electronics, Inc.
2979 Pacific Drive
Norcross 30071
Tel: (404) 449·8252
TWX: 810-766·0439
tHemilton/Avnet Electronics
5825 D. Peact1tree Comers
Norcross 30092
Tel: (404) 447-7500
TWX: 810-766-0432
tPioneerlGeorgla
5835B Peachtree Corners E
Nbrcross 30092
Tel: (404) 448-1711
TWX: 810-766-4515

ILLINOIS

tArrow Electronics, Inc.
2000 E. Alonquin Street
Schaumberg 60195
Tel: (312)397-3440
TWX: 910-291·3544
tHamilton/Avnet Electronics
1130 Thorndale Avenue
Bensenville 60108
Tel: (312) B60-n80
TWX: 910-227..Q060
tPioneer/Chicago
1551 Carmen Drive
Elk Grove Village 60007
Tel: (312)437-9680
TWX: 910-262·1182

INDIANA
tArrow Electroruc., Inc.
271. Rand Road
tndilNlpoli' 48241
(3'7)243-....
TWX: "0-34'-31"
tHIImiltonIAvnet ElectroniC.
485 Grlldle Ori¥e
Carmel 48032
Tel: (317) 844·9333
TWX: "0.280-3968
tPiOneer/lndiana
6408Ca,tIeJIIICe Dri
Indianapoli, 46250
Tel: (317) 149-7300
TWX: 8100zeo.l794

ICANIAII
tH.mlttonJAvnet SIctronICt
1219QuIverIi Road
OverIInd Park 68215
Te"(913) 888-8900
TWX: 910.743-0005
MAIIYUND
tHamilton/Avnet Electronics
6822 OIk Hall Lane
Columbia 21045
ToI, (30') 995-3500
TWX: 710-882-1881
tMeaa TechnOlogy Corporation
16021 Indusb1a1 Drive
Gaithersburg 20877
Tel: (301) 948-4350
TWX: 710-828-9702
tPiOneer
9100 Gaither Road
Gaithersburg 20877
Tel: (301) 948-0710
TWX: 710-828-0545

MAlBACHunns

tHamliton/Avnet Electronics
50 Tower Offiea Park
WobumOl801
Tel: (617) 935·9700
TWX: 710-393-0382
tArrow ElectroniCS, Inc.
1 Arrow Drive
Woburn 01801
Tel: (617) 933-8130

. TWX: 710-393-6nO
tHarvey/Boston
44 Hartwell Avenue
Lexington 02173
Tel: (tl17)8tI3-1200
TWX: 710-326-661?

MICHIQAN

tArrow Electronics, Inc.
3810 Vr.rslty Drive
Ann Arbor 481 04
Tel: (313) 971·8220
TWX: 810.223-6020'
tPloneertMiChigan
13485 Stamford
Uvonla 48150
Tel: (313) 525-1800
TWX: 810-242-3271
tHamilton/Avnet Electronics
32487 Schoolcraft Road
Livonia 48150
Tel: (313) 522-4700
TWX: 810-242-8775

tHamiltofl/Avnet ElectfonlCs
. 2215 29th Street S.E.
Space A5
Grand Rapids, 49508
Tel: (616)243·8605
TWX: 810.273-6921
MINNESOTA

tArrow Electronics, Inc.
5230 W. 73rd Street
Edina 55435
Tel: (612) 830-1800
TWX: 910.578-3125
tHamilton/Avnet Bectronlcs
1 0300 Bran Road East
Minnetonka 55343
Tel: (612) 932-0600
TWX, (9'0) 576-2720
Pioneer/Twin Cities
10203 Bren Road East
Minnetonka 55343
Tel: (612) 935-5444
TWX: 910-576-2738
MISSOURI
tArrow Electronics, Inc.
2380 Schuetz
St. louis 63141
Tel: (314)567-6888
TWX: 910-764-6600
tHamilton/Avnet Electronics
13743 Shoreline Court
Earth City 63045
Tel: (314) 344-1200
TWX: 910-762-0684

.. _­
tArrOW ElectroniCs, Inc. ,-­ManchnIer 03103 TII' ___

1WX:710.22C).1114 ---tArrow a.cwonlcl, Inc.
PlMAId VIlIey Avenue
MooretlOWn 0ID57
Ttl: (215) 121-'100
TWX: 711).897.Q829
tArrow Ealctronlcl, Inc.
215 Midland Avena. __ 071182

Tel, (20') 7I7-HOO
TWl,7,o-99t-22OII
tArrow a.ctronlcl, Inc.
2 tnduatrtal Road
__ 07006

Tel, (20') 575-5300
TWX: 710-8l8-220I
tHamlttonlAvnet EIIctronICI
1 KaystonI Avenue
BIdg_36

i=:I~=OO
TWX: 710.940-0262
tHarvey Electronics
45 Route 48
Pinebrook 07058
Tel, (20') 575-35'0
TWX: 710.734
tMTI Systems Sate.
383 Route 48 W
Fairfield 07006
Tel: (201) 227-5552

NEW MEXICO
tAiIIanc. EIectromcs Inc.
11030 CochItI S.E.
Albuquerque 87123
Tel, (505) 292-3380
TWX! 910.989-1151
tHamllton/Amet Electronics

.' 2524 Baylor Drive S.E. __ 87'06

Tel, (505) 785-'500
TWX: 910.989-0814 __ ORK

tArrow Electronics, Inc.
900 Broad Hollow Road
FarrrMngdlle 11735
Tel, (5'8) 894-8800
TWX: 510-224-6128
tArrow EJectronlcs, InC.
3000 South Winton Road
Rochester 14623

,Te"l7'8) 275-0300
TWX: 510-2~788
tArrow Electronics, Inc.

UvC:":rL DrIve
Tel, (3'5) 852-'000
TWX: 710.54&-0230
tArrow Electronics, Inc.
20 Oser Avenue
Hauppauge 11788
Tel, (5'8) 23'-'000
TWX: 510-227-8823
tHamllton/Avnet EIectroniCI
333 Metro Park
Rocnester 14623
Tel, (718) 475-9130
TWX: 510-253-5470
tHamliton/Avnet Electronics
16 Corporate CIrcle
E. SyrlCl.lse 13057
Tel: (315) 437·2641
TWX: 710-641~1580
tHlmllton/Avnet Electronics
5 HubDnve
Mefvllle, Long laland 11747
TeI,(5'8)454_
TWX: 51().224-616t5
tHarvey Electronics
P.O. Box 1208
Btnghamton 13902
Til, (807) 748-8211
TWX: 510-252-0893

tMicroeomputer System Techntcal Demonstrator Centers

inter
NEW YORK (C"nt.)
tHarvey Electronics
60 Crossways Park West
Woodbury, Long Island 11797
Tel: (SIS) 921-8700
TWX: 510-221·2184

tHarveytAochester
840 Fairport Park
Fairport 14450
Tel: (716) 381·7070
TWX: 510·253·700'
tMTI Systems Sales
38 Harbor Park Drive
Port Washington 11050
Tel: (516) 62'·6200
TWX: 510·223·0846

NORTH CAROLINA
tArrow Electronics, Inc.
938 Burke Street
Winston-Salem 27101
Tel: (919) 725-8711
TWX: 510-S31-3169
tArrow Electronics, Inc.
3117 Poplarwood Court
Suite 123
Raleign 27265
Tel: (919)876-3132
TWX: 510-928-1856
tHamilton{Avnet Electronics
28031nduslrial Drive
Raleigh 27609
Tel: (919) 829-8030
TWX: 510-928-1836
tPioneerfCarolina
103 Industrial Avenue
Greensboro 27406
Tel: (919) 273-4441
TWX: 510·925·1114

OHIO
tArrow Electronics, Inc
7620 McEwen Road
Centerville 45459
Tel: (513) 435·5563
TWX: 810·459-1611
tArrow Electronics, Inc,
6238 Cochran Aoad
Solon 44139
Tel: (216) 248·3990
TWX: 810·427-9409
tHamilton/Avnet ElectroniCS
954 Senate Drive
Dayton 45459
Tef: (513) 433·0610
TWX: 810·450-2531
tHamiltonfAvnet Electronics
4588 Emery Industrial Parkway
WarrensvillE' Heights 44128
Tel: (216) 831·3500
TWX: 810-427·9452
tPioneer/Dayton
4433 Interpoiot Boulevard
Dayton 45424
Tel: (513) 236-9900
TWX: 810·459·1622
tPioneer/Cfeveland
4800 E. 131st Stroet
Cleveland 44105
Tel: (216) 587-3600
TWX: 810·422·221 t

OKLAHOMA

tArrow ElectroOlcs. Inc
4719 S. Memorial Dflvo
Tulsa 74145
Tel: (918) 665·7700

u.s. DISTRIBUTORS

OREGON
t Almac Electronics Corporation
8022 S.w. Nimbus. Bldg. 7
Beaverton 97005
Tel: (503) 641·9070
TWX: 910-467·8743
tHamiftonfAvnet Electronics
6024 SW. Jean Road
Bldg. C. Suite 10

~:~~5~j;~~.~~:4
TWX: 910-455·8179

PENNSYLVANIA
tArrow Electronics, Inc.
650 Seco Road
Monroeville 15146
Tel: (412) 856·7000

tPioneer/Pinsburgh
259 Kappa DrIve
PittSburgh 15238
Tel: (412) 782·2300
TWX: 710·795-3122
tPioneer/Oelaware Valley
261 Gibralter Road
Horsham 19044
Tel: (215) 674-4000
TWX: 510·665-6778

TEXAS
tArrow ElectroniCs, Inc.
13715 Gama Road
Dallas 75234
Tel: (2,4) 386·7500
TWX: 910·860-5377
tArrow Electronics, Inc.
10700 Corporate OrNe
Suite 100
Stafford 77477
Tel: (713) 491-4100
TWX: 910·880-4439
tArrow Electronics, Inc.
10'25 Metropolitan
Austin 78758
Tel: (512) 835·4100
TWX: 910-874·1348
tHamilton/Avnet Electronics
2401 Rutland
Austin 78757
Tel: (512)837-8911
TWX: 910·874·1319
tHamilton/Avnet Electronics
2111 W. Walnut Hill lane
Irving 75062
Tel: (214) 659·4100
TWX: 910-860-5929
tHamuton/Avnet Electronics
8750 West Park
Houston 77063
Tel: (713) 780·1771
TWX: 910·881-5523

tPioneer/Austin
9901 Burnet Road
Austin 78758
Tel: (512) 835·4000
TWX: 910·874-1323
tPioneer/Dallas
13710 Omega Road
Dallas 75234
Tel: (214) 386-7300
TWX: 910·850·5563
tPioneer/Houston
5853 Point West Drive
Houston 77036
Tel: (713) 988·5555
TWX: 910-576·2738

UTAH
tHamiiton/Avnet ElectroniCs
1585 Welt 2100 South
Salt like City 84119
Tel: (801) 972·2800
TWX: 910·925·4018
tArrow Electronics, Inc,
4980 Ametia Earhart Drive
Salt lake City 84112
Tel: (801) 539·1135
WASHINQTON
tAlmac Electronics CorporatIOn
14380 S.E. Ea.tgate Way
Bellevue 98007
Tel: (208) 643-9992
TWX: 910·444·2067
tArrow Electronics, Inc.
14320 N.E. 21 st Street
Bellevue 98007
Tet: (206) 843·4800
TWX: 91().444·2017
tHamlitoo/Avne! Electronics
14212 N.E. 21st Street
Bellevue 98005
Tel: (208) 4$3-5874
TWX: 910·443·2469
WISCONSIN
tArrow Electronics. Inc.
430 W. Aauslon Avenue
Oakcreek 53154
Tel: (414) 764·6600
TWX: 910·262-1193
tHamilton/Avnet Electronics
2975 Moorland Road
New Berlin 53151
Tel: (414) 78-4·4510
TWX: 910·262·1182

tMiCrocompuler System Technical Demonstrator Centers

intJ
BELGIUM

Intel Corporation S.A.
Pare Seny
Rue du Moulin a Papier 51
Boite 1
B·1160 Brussels
Tel: (02) 6610711
TELEX: 24814

DENMARK
Intel Denmark A/S'
Lyngbyvej 32F 2nd Floor
DK·2100 Copenhagen East
Tel: (01) 18 20 00
TELEX: 19567

FINLAND
Intel Finland OY
Hameentie 103
SF • 00550 Helsinki 55
Tel: 0/716 955
TELEX: 123332

FRANCE

Intel Corporation, S.A.A.L."
S Place de 18 Balance
Sllie 223
94528 Rungis Cede.
Tel: (01) 687 22 21
TELEX: 270475

Intel Corporation, S.A.R.L
Immeuble BBC
4 Qua. des Etroits
69005 Lyon
Tel: (7) 642 40 89
TELEX: 305153

INTEL EUROPEAN SALES OFFICES

WEST GERMANY
Intel Semiconductor GmbH"
Seidlstrasse 27
0·8000 Muenchen 2
Tel: (89) 53891
TELEX: 05·23177INTL 0

Intel Semicooouctor GmbH"
Mainler Straase 75
0·6200 Wiesbaden 1
Tel: (6121) 70 08 74
TELEX: 04186183INTW 0
Intel Semiconductor GmbH
Brueckstrasse 61
7012 Fellbach
West Germany
Tel: (711) 5800 82
TELEX: 7254826 tNTS 0
Inlel Semlconduclor GmbH"
Hohenzollern Sirasse 5-
3000 Hannover 1
T8I:(511)344081
TELEX: 923625 INTH 0
Intel SemiCOnductor GmbH
Ober-Ratherslrasse 2
0-4000 Dusseldorf 30
Tel:(211)651054
TELEX: 08-58977 INTL 0

ISRAEL
Intel Semiconductor Ltd:
P.O. Box 1659
Haifa
Tel: 4/524 261
TEL.EX: 46511

ITALY
Intel Corporation ltalla Spa·
Milanofiori. Palazzo E
20094 Assago (Milano)
Tel: (02)824 00 06
TELEX: 315183 INTMll

NETHERLANDS
Intel SemiConductor Nederland B.V:
Alexanderpoort Building
Marten Meesweg 93
3068 Rotterdam
Tel: (10)21 33 77
TELEX: 22283

NORWAY
Intel Norway AJS
P.O. Box 92
Hvamvelen 4
N-2013
Skjetten
Tel: (2) 742 420
TELEX: 18018

SWEDEN
Intel Sweden A.B.·
Box 20092
Arcnimedesvagen 5
S-1612O Bromma
Tel: (08) 98 53 85
TELEX: 12261

SWITZERLAND
Inlel Semiconduct~r A.G:
Forchslrasse 95
CH 8032 Zurich
Tel: (01) 55 45 02
TELEX: 57989 ICH CH

UNITED KINGDOM
Intel Corporation (U.K.) Ltd.­
S Hospital Street
Nantwich, Cheshire CW5 5RE
Tel: (0270) 626 560
TELEX: 36620
Intel Corporation (U.K.) Ltd:
Pipers Way
SWindon. Wiltshire SN3 1 RJ
Tel: (0793) 488.388
TELEX: 444447 INT SWN

-Field Application Location

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA WEST GERMANY NETHERLANDS SWITZERLAND

Bacher Elektronische Geraete GmbH Electronic 2000 Vertriebs A.G. Koning & Hartman :nduslrade AG
Rotemuehlgasse 26 Neumarkter Slrasse 75 Koperwerf 30 Gemsenstrasse 2
A 1120 Vienna 0-8000 MUnictl 80 P.O. Box 43220 Postcheck 80 - 21190
Tel: (222) 83 63 96 Tel: (89) 43 40 61 2544 EN 's Gravenhage CH·8021 Zurich
'tELEX: 11532 BASAT A TELEX: 522561 EIEC 0 Tel: 31 (70) 210.101 Tel: (01) 363 23 20

BELGIUM Jermyn GmbH TELEX: 31528 TELEX: 56788 INOEL CH

InelCo Belgium SA Postfach 1180 NORWAY UNITED KINQDOM
Ave. des Croix de Guerre 94 Schulslrasse 48

Nordisk Elektronic (Norge) AlS Bytech Ltd.
B1120 Brussels 0-6277 Bad Cam berg

PostofftCe Box 122 Unit 57 Tel: (06434) 231 Tel: (02) 216 01 60
TELEX: 484426 JERM 0 Smedsvingen 4 London Road

TELEX: 25441 1364 Hvalstad Earley, Reading

DENMARK
Celdis Enalechnik Systems GmbH Tel: (2) 786 210 Berkshire
Schillerstrasse 14 TELEX: 16963 Tel: (0734) 61031

MulUKomponent AIS 0-2085 Ouickoorn-Hamburg TELEX: 848215
Fabriksparken 31 Tel: (4106) 6121 PORTUQAL
OK-26QO Gloskrup TELEX: 213590 ENA 0 Oitram Comway Microsystems Ltd.
Tel: (02) 45 66 45 Proelectron Vertriebs GmbH Componentes E Electronica LOA Markel Street
TX: 33355 Max Planck Strasse 1-3 Av. Miguel Bombarda. 133 UK-Bracknell, Berkshire

Scandinavian Semiconductor 6072 OreieiCh bei Frankfurt Pl000 Usboa Tel: 44 (344) 55333

Supply AIS Tel: (6103) 33564 Tel: (19) 545 313 TELEX; 847201

Nannasgade 18 TELEX: 417983 TELEX; 14182 Briel<.s-P DECADE Ltd.
D~-2200 Copenhagen

IRELAND SPAIN
100 School Road

Tel: (01) 83 50 90 Tilehurst
TELEX: 19037 Micro Marketing Interface SA Reading, Berkshire

FINLAND
Glenageary Office Park Ronda San Pedro 22, 3 Tel: (0734) 413127
Glenageary Barcelona 10 TELEX: 837953

Oy Fintronic AB Co. Dublin Tel: (3) 301 7851 Jermyn Industries
Melkonkatu 24 A Tel: (1) 85 62 88 TWX: 51508 vestry Estate
SF-00210 TELEX: 31584 ITT SESA Sevenoaks. Kent
Helsinki 21

ISRAEL Miguel Angel 23-3 Tel: (0732) 450144
Tel: (0)69260 22 Madrid 10 TELEX: 95142
TELEX: 124 224 Ftron SF EastroniCS Ltd. Tel: (1) 419 54 00 M.E.O.L. 11 Rozanis Street
FRANCE P.O. Box 39300

TELEX: 27707 East Lane Road

Jermyn S.A. Tel Aviv 61390 SWEDEN NorthWembley

rue Jules Ferry 35 T8I: (3) 47 51 51 .I.e Gosta BaCkstrom
Middlesex HA9 7PP

93170 Bagnolet TELEX: 33638 Box 12009
Tel: (01) 904 93 07

Tel: (11859 04 04 Alstroemergatan 22
TELEX: 28817

TELEX: 213810 F ITALY
$-10221 SlockhOlm 12 Rapid Recall, Ltd.

Metrologie Eledra as S.P.A. Tel: (8) 541 080 Rapid House/Denmark SI

La Tour d' Asnieres Viale Elvezia, 18 TELEX: 10135 High Wycombe

1. Avenue Laurent Cely I 20154 Milano Berks, England HPll 2EA

926Q6..Asnieres Tel: (2) 34 97 51 Nordisk Electronik AB Tel: (0494126 271

Tel: (1) 791 4444 TELEX: 332332 Box 27301 TELEX: 837931

TELEX: 611 448 Intes! Sandhamnsgatan 71
YUGOSLAVIA

T ekelec Airtronic Milanfiori Pa1. E/5 8-102s.. Stockholm

20090 Assago Tel: (8) 635 040 H. R. Microelectronics Enterprises
Cite des Bruyeres

Milano TELEX: 10547 P.O. Box 5604
Rue Carle Vemet

Tel: (02) 82470 San Jose, California 95150
F-92310 Sevres Tel: 408/976·8000
Tel: (Ol) 534 75 35 TELEX: 311351

TELEX: 278-559
TELEX: 204552

intJ
AUITRALIA
Intel Semiconductor Ply. Ltd.

:=~icB=~.y ,
Crows Nelt, HSW, 20"
Au,lralla
T,I: 011-81-2-436-2744
TELEX: 790-20097

HONGICONG
Intel Semiconductor corp.
99-105 Des Voeux Rct, Centraf
18F, Untl B
Hong Kong
rei: 011·852·5-499-432
TELEX: 53889

INTEL INTERNATIONAL SALES OFFICES

JAPAN
Intel Japan K.K.
5-8 Tokodal, Toyoeato-machl'

~~~~~~~~rIIkl-k1ln 300-28 

TELEX: 03&58-160 
Inlll JIPI" K.K. 
2·,-15 NakII-m1Ch1 
Atlugi. Kanagewa 243 
Tel: 0482-23-3511 
Intel Japan K.K.· 
2·51-2 KoJlma-cno 

i:'~~3~~ 

Intel Japan K.K. 
2-69 Hon-cho 

~~:f:l~2~:attr,a 380 
Intel Japan K.K." 
2,",,-' Tarauenl 
Tayonaka. Osaka 580 
Tel: 06-863-1091 

Intel Japan K.K 
1-5·1 Marunouchi 
CtllyOCI.ku. Toqro 100 
T .. : 03-201-382113681 
Intel Japan K.K.· 
1-23-9 Shinmachi 
Setagaya-ku. Tokyo 154 
Tel: 03-426-22311427-8845 

'Field AppUcatlon Location 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 

AlIcwmNA 
VLC S.A.L. 
Sarmiento 1630 Pisc 
(1042) Buenos Air .. 
Ttl: 35-1202J8242 
TELEX: Public Booth 9900 or 9901 

MailIng Addren 
Soimell. International CorporetIon 
15 Park Row, Room #1730 
New York, New York 10038 
(2'2)_ 
Attn: OaalOn BriOn •• 
AUSTRALIA 
Total EJectronlcs 
9 Harker Street 
Burwoao 
Victoria 3125 
Tel: 61 3288-4044 
TELEX: M 31261 
MailingACIdreU 

:=~=a3125 
Australia 
Total ENtctronics 
., Johnstone LIne 
LIne Cove, N.S.W. 2066 
TELEX: 26297 
BRAZIL 
ICOIron S.A. 
05110 Av. Mutlnga3650·6 Andal 
Piriluba Sao Paulo 
Tel: 281-0211 
TELEX: 1122214/ICOTBR 

CHILE 
DIN 
AV. VIC MCKENNA 204 
Clsil&l6055 
Santiago 
Tel: 227 564 
TELEX: 352003 

COLOMBIA 
International Computer Machines 
Carrera 7 No. 72.a4 
Apdo. Aereo 19403 
Bogota 1 
Tel: 211·7282 
TELEX: 45716 ICM CO. 
HONGKDNO 
Schmictl a Co. lid. 
Wing on Centre, 28th Floor 
t 11 COMlUghl Road Central 
Ttl: 5455-844 
TELEX: 74766 $CHMC HX 

INDIA 
MicroniC DeviCeS 
104I109C, Nlrmallndustrlal Estate 
Sloo(E) 
Bombay 400022 
Tel: 486-170 
TELEX: 011-71447 MOEV IN 

JAPAN 
Auhl Electronics Co. Ltd. 
KMM Bldg. Room 407 
2-14-1 Asano, Kokura 
Kita·Ku, KitakyuShu City 802 
Tel: (093)511-6471 
TELEX: AECKY 7126-16 
Ham~ton-Avnet Electronics Japan Ltd. 
YU and YOU Bldg. 1-4 Horidome-Cho 
Nlhonbashl Chuo·Ku, Tokyo 103 
Tel: (03)662-9911 
TELEX: 2523774 
Ryoyo Electric Corp. 
Konwa Bldg. 
'-12-22, Tsukijl 
Chuo·Ku. Tokyo 104 
Tel: (03) 543-7711 
Tokyo Electron Ltd. 
Shin Juku, Nomura Bldg. 
2&-2 Nlsht-Shln Juku-Ichome 
Shin Juku-Ku, Tokyo 160 
Tel. (03) 343-4411 
TELEX: 232-2220 LABTEL J 

KOREA 
Karam Digital 
Room 909 Woonam Bldg. 
7, 1-KA Bongr8·0ong 
Chung·Ku Seoul 100 
Tel: 2-753-8123 
TELEX: K25299 KOOIGIT 

NEW ZEALAND 
Mclean Information Technology ltd. 
459 Kyber Pass Road, Newmarket,' 
P.O. Box 9464, Newmarket 
AuCkland I, New Zealand 
Tel: 501-801, 501-219,587-037 
TELEX: NZ21570 THERMAL 

SINGAPORE 
General Engineers Corporation Ply. Lid. 
Block 3, Units 1003-1008. 10th Floor 
P.S.A. Multi-Storey Complex 
TELOK BLANGAH/Paslr PenJang Road 
Singapol8 0511 
Tel: 271·3187 
TELEX: RS23987 GENERCO 

SOUTH AFRICA 
Electronic BuHdlng Elements, Ply. ltd. 
P.O. Box 4809 
Hazelwood, Pretoria 0001 
Tel: 011·27-12 .... 8-9221 or 9227 
TELEX: 3-0181 SA 

TAIWAN 
Taiwan Automation Corp" 
3d Floor #75, Section 4 
Nanking East Road 
Taipei 
Tel: 711-0940 
TELEX: 11942 TAIAUTO 

YUQOSLAVIA 
H. R. Microelectronics Enterprises 
P.O. Box 5604 
San Jose, California 95150 
Tel: (408)978-8000 
TELEX: 278-559 

'Field AppliCation LocatiOn 



intJ 
CALIFORNIA 

IntetCorp 
, 350 ShCreDlrCl Way 
Mt. View 94043 
Tel. (415) 968-8086 
TWX: 910·339·9279 

910-338-0255 

Intel Corp. 
2000 E. 4th Street 
SUite 110 
Santa Ana 92705 
Tel. (714)835·2670 
TWX: 910-595-2475 
Intel Corp 
7670 Opportunity Road 
San Diego 92111 
Tel. (714) 268·3563 

Intel Corp 
5530 N. Corbin Avenue 
SUite 120 
Tarzana 91356 
Tel: (213) 708-0333 

COLORADO 
Intel Corp. 
650 South Cherry 
Suite 720 
Denver 80222 
Tel: (303) 321·8086 
TWX: 910·931·2289 

CONNECTICUT 
Inlel Corp. 
36 Padanaram Road 
Danbury 06810 
Tel: (203) 792·8366 

FLORIDA 
Inlel Corp. 
1500 NW. 62nd Street 
SUite 104 
Ft. Lauderdale 33309 
Tel: (305) 771-0600 
TWX: 510-956-9407 

Intel Corp 
500 N. Maitland Avenue 
Suite 205 
Maitland 32751 
Tel: (305) 628·2393 
TWX: 810-853-9219 

Intel Corp. 
5151 Adanson Street 
Orlando 32804 
Tel' (305) 628·2393 

GEORGIA 

Intel Corp. 
3300 Holcomb Bndge Road 
Suite 225 
Norcross 30092 
Tel: (404) 449·0541 

ILLINOIS 
InlelCorp 
2550 Golf Road 
Suite81S 
Roiling Meadows 60008 
Tel: (312) 981·7230 
TWX: 910·253-1825 

KANSAS 

Inlel Corp. 
9393 W. 1101h Streel 
Suite 2£5 
Overland Park 66210 
Tel: (913) 642·8080 

MARYLAND 

Intel Corp. 
7257 Parkway Drive 
Hanover 21076 
Tel: (301) 796·7500 
TWX: 710-862·1944 

U.S. SERVICE OFFICES 

MASSACHUSEns 
Inlel Corp. 
27 Industrial Avenue 
Chelmsford 01824 
Tel: (617) 256·1800 
TWX: 710·343·6333 

MICHIGAN 
Inlel Corp. 
26500 Northwestern Highway 
Suite 401 
Southfield 48075 
Tel: (313) 353·0920 
TWX: 810-244-4915 

MINNESOTA 

Intel Corp. 
7401 Metro Boulevard 
Suite 355 
Edina 55435 
Tel: (612) 835-6722 
TWX: 910-576-2867 

MISSOURI 

I"tel Corp. 
4203 Earth CIty Expressway 
Suite 143 
Earth City 63045 
Tel: (314) 291-1990 

NEW JERSEY 
Intel Corp. 
385 Sylvan Avenue 
Englewood Cliffs 07632 
Tel: (201) 567·0820 
TWX: 710-991·8593 

NEW YORK 

InlelCorp. 
2255 Lyell Avenue 
Rochester 14606 
Tel' (716) 254-6120 

NORTH CAROLINA 

Intel Corp. 
5600 Execullve Dnve 
Suite 113 
Charlotte 28212 
Tel: (704) 568-8966 

Intel Corp. 
2306 W. Meadowview Road 
Suite 206 
Greensboro 27407 
Tel: (919) 294-1541 

OHIO 
Intel Corp. 
Chagrln·Brainard Bldg. 
Suite 300 
28001 Chagrin Boulevard 
Cleveland 44122 
Tel: (216) 464-6915 
TWX: 810·427-9298 
Inlel Corp. 
6500 Poe Avenue 
Dayton 45414 
Tel: (800) 325-4415 
TWX: 810·450-2528 

OKLAHOMA 
Inlel Corp. 
4157 S. Harvard 
SUIte 123 
Tulsa 74101 
Tel: (918) 749·8688 

OREGON 
IntetCorp. 
10700 S.W. Beaverton·Hilisdale HIghway 
Suite 22 
Beaverton 97005 
Tel: (503) 641-8086 
TWX: 910·467-8741 

PENNSYLVANIA 

Intel Corp. 
500 Pennsylvania Avenue 
Fort Washington 19034 
Tel: (215) 641-1000 
TWX: 510-661·2077 

Intel Corp. 
201 Penn Center Boulevard 
Suite 301 W. 
PittSburgh 15235 
Tel: (313) 354·1540 

TEXAS 
Intel Corp. 
313 E. Anderson Lane 
Suite 314 
Austin 78752 
Tel: (512) 454-8477 
TWX: 910-874·1347 
Intel Corp. 
2925 L.B.J. Freeway 
Suite 175 
Dallas 75234 
Tel: (214) 241-2820 
TWX: 910·860·5617 
Intel Corp. 
7322 S.W. Freeway 
Suite 1490 
Houston 77074 
Tel: (713) 988-8088 
TWX: 910·881·2490 

VIRGINIA 
Intel Corp. 
7700 Leesburg Pike 
Suile412 
Falls Church 22043 
Tel: (703) 734-9707 
TWX: 710·931-0625 

WASHINQTON 
Intel Corp. 
110 110th Avenue N.E. 
Suile 510 
Bellevue 98004 
Tet: 1·800·538-0662 
TWX: 910-443-3002 

WISCONSIN 
Intel Corp. 
150 S. Sunnyslope Road 
SUIte 148 
Brookfield 53005 
Tel: (414) 784·9060 




