ntel 80386 Hardware
Reference Manual

///////’/

el L]/ /
T A

AHEARN-WAHLSTROM

Order Number: 231732-001

intel

LITERATURE
To order Intel Literature write or call:
Intel Literature Sales Intel Literature Sales:
P.O. Box 58130 (800) 548-4725
Santa Clara, CA 95052-8130 Other Inquiries:

(800) 538-1876

Use the order blank on the facing page or call our Toll Free Number listed above to order literature.
Remember to add your local sales tax and a 10% handling charge for U.S. customers, 20% for Canadian
customers.

1986 HANDBOOKS

Product Line handbooks contain data sheets, application notes, article reprints and other design
information.

*PRICE IN
NAME ORDER NUMBER U.S.DOLLARS

COMPLETE SET OF 9 HANDBOOKS 231003 $120.00
Get a 30% discount off the retail price of $171.00
MEMORY COMPONENTS HANDBOOK 210830 $18.00
MICROCOMMUNICATIONS HANDBOOK 231658 $18.00
MICROCONTROLLER HANDBOOK 210918 $18.00
MICROSYSTEM COMPONENTS HANDBOOK 230843 $25.00
Microprocessor and peripherals (2 Volume Set) -
DEVELOPMENT SYSTEMS HANDBOOK 210940 $18.00
OEM SYSTEMS HANDBOOK 210941 $18.00
SOFTWARE HANDBOOK 230786 $18.00
MILITARY HANDBOOK 210461 $18.00
QUALITY/RELIABILITY HANDBOOK 210997 $20.00
PRODUCT GUIDE 210846 No charge
Overview of Intel’s complete product lines
LITERATURE GUIDE 210620 No charge
Listing of Intel Literature
INTEL PACKAGING SPECIFICATIONS 231369 No charge

Listing of Packaging types, number of leads,
and dimensions

*These prices are for the U. S. and Canada only. In Europe and other international locations, please
contact your local Intel Sales Office or Distributor for literature prices.

ntel

U.S. LITERATURE ORDER FORM

NAME:

COMPANY:

ADDRESS:

CITY: STATE: ZIP:
COUNTRY:

PHONE NO.: {)

ORDER NO. TITLE QTY. PRICE TOTAL
HEEREER RN x -
LTI)-CiT] x -
LT)-t]] x -
LTI x -
LT I-L " -
LT]-LET " -
HEEEEEREEN x -
Add appropriate postage Subtotal
and handling to subtotal Your Local Sales Tax

10% U.S.

20% Canada » Postage & Handling
Allow 2-4 weeks for delivery Total

Pay by Visa, MasterCard, Check or Money Order, payable to Intel Books. Purchase Orders
have a $50.00 minimum
OVisa OMasterCard Expiration Date

Account No.

Signature:

Mail To: Intel Literature Sales Customers outside the U.S. and Canada should con-
PO. Box 58130 tact the local Intel Sales Office or Distributor listed
Santa Clara, CA in the back of most Intel literature.
95052-8130

Call Toll Free: (800) 548-4725 for phone orders
Prices good until 12/31/86.
Source HB

Mail To: Intel Literature Sales
PO. Box 58130
Santa Clara, CA 95052-8130

intgl

80386
HARDWARE REFERENCE MANUAL

1986

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH, Genius, i
ICE, iCEL, iCS, iDBP, iDIS, PICE, iLBX, i, iMDDX, iMMX, Insite, Intel, intgl,
intglBOS, Intelevision, intgligent Identifier, intgligent Programming, Inteilec,
Intellink, iOSP, iPDS, iPSC, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library
Manager, MAP-NET, MCS, Megachassis, MICROMAINFRAME, MULTIBUS,
MULTICHANNEL, MULTIMODULE, MultiSERVER, ONCE, OpenNET, OTP,
PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware, QUEST, QueX,
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, UPI,
and VLSICEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or UPI
and a numerical suffix, 4-SITE. :

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

*MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Distribution
Mail Stop SC6-59

3065 Bowers Avenue
Santa Clara, CA 95051

©INTEL CORPORATION 1986 CG-6/86

PREFACE

The Intel 80386 is a high-performance 32-bit microprocessor. This manual provides complete
hardware reference information for 80386 system designs. It is written for system engineers
and hardware designers who understand the operating principles of microprocessors and
microcomputer systems. Readers of this manual should be familiar with the information in
the Introduction to the 80386 (Intel publication Order Number 231252).

RELATED PUBLICATIONS

In this manual, the 80386 is presented from a hardware perspective. Information on the
software architecture, instruction set, and programming of the 80386 can be found in these
related Intel publications:

e 80386 Programmer’s Reference Manual, Order Number 230985
e 80386 System Software Writer's Guide, Order Number 231499
e 80386 Data Sheet, Order Number 231630

The 80386 Data Sheet contains device specifications for the 80386. Always consult the most
recent version of this publication for specific 80386 parameter values.

Together with the 80386 Hardware Reference Manual, these publications provide a complete
description of the 80386 system for hardware designers, software engineers, and all users of
80386 systems.

ORGANIZATION OF THIS MANUAL

The information in this manual is divided into 12 chapters and three appendices. The material
begins with a description of the 80386 microprocessor and continues with discussions of
hardware design information needed to implement 80386 system designs.

e Chapter 1, “System Overview.” This chapter provides an overview of the 80386 and its
supporting devices.

¢ Chapter 2, “Internal Architecture.” This chapter describes the internal architecture of
the 80386.

e Chapter 3, “Local Bus Interface.” This chapter discusses the 80386 local bus interface.
This chapter includes 80386 signal descriptions, memory and I/O organization, and local
bus interface guidelines.

e Chapter 4, “Performance Considerations.” This chapter explores the factors that affect
the performance of an 80386 system.

¢ Chapter 5, “Coprocessor Hardware Interface.” This chapter describes the interface
between the 80386 and the 80287 and 80387 Numeric Coprocessors. Each of these copro-
cessors expands the floating-point numerical processing capabilities of the 80386.

ntel PREFACE

Chapter 6, “Memory Interfacing.” This chapter discusses techniques for designing memory
subsystems for the 80386.

Chapter 7, “Cache Subsystems.” This chapter describes cache memory subsystems, which
provide higher performance at lower relative cost.

Chapter 8, “I/O Interfacing.” This chapter discusses techniques for connecting I/O devices
to an 80386 system.

Chapter 9, “MULTIBUS® I and 80386.” This chapter describes the interface between
an 80386 system and the Intel MULTIBUS I multi-master system bus.

Chapter 10, “MULTIBUS® II and 80386.” This chapter describes the interface between
an 80386 system and the Intel MULTIBUS II multi-master system bus.

Chapter 11, “Physical Design and Debugging.” This chapter contains recommendations
for constructing and debugging 80386 systems.

Chapter 12, “Test Capabilities.” This chapter describes 80386 test procedures.

Appendix A contains descriptions of the components of the basic memory interface
described in Chapter 6.

Appendix B contains descriptions of the components of the 80387 emulator described in
Chapter 5.

Appendix C contains descriptions of the components of the dynamic RAM subsystem
described in Chapter 6.

TABLE OF CONTENTS

CHAPTER 1 Page

SYSTEM OVERVIEW
1.1 MICIOPIOCESSOI eieiiiiie ittt e e st ns b ee e s srannr e e 1-1
1.2 COPIOCESSOISccueeeueeruieiaeteeuteeureeseesresareeseeeeabe e bt e sbe e s e e se e e e st e saseseseeeneraeesaees 1-3
1.3 Interrupt CONrONEreoiiiii e 1-4
1.4 CloCK GENEratOrccooiiiiiiiiiiiiccic e e 1-4
1.5 DMA CONIOIEr ...t e s 1-4
CHAPTER 2

INTERNAL ARCHITECTURE
2.1 Bus Interface Unitcooovieiiiiie e 2-2
2.2 Code PrefetCh UNitcoooieiiiieeee e e 2-3
2.3 Instruction Decode Unitcoociiiiiiiiin e e 2-3
2.4 EXeCUtiON UNIt ...oooiiiie et e 2-3
2.5 Segmentation Unitccccooiieiiiiiiiiine e s 2-4
2.6 Paging UNitoooiiiiiieiceecie et e 2-4
CHAPTER 3

LOCAL BUS INTERFACE
3.1 BUS OPErationscccceeviieiiiiieriiiersiessieesseiee e e s see s see st e s saeesre e s sareesaeannnes 3-2
3.1.1 BUS StaeS ...oeiiceiieec e 3-4
3.1.2 Address PIpeliniNgccccoviieiiiiiiiniiice e e 3-5
3.1.3 32-Bit Data Bus Transfers and Operand Alignmentcccccceiiiiiiinneeen. 3-5
3.1.4 REAA CYCIE ...ooiiiiieiieeee ettt et s re e st e e e s anansees 3-10
B.1.5 WIitE CYCIE ...ttt s 3-13
3.1.6 Pipelined ADAress CYClEcooi et 3-14
3.1.7 Interrupt Acknowledge CyClecoiiiiiiiiiiin e 3-17
3.1.8 Halt/Shutdown CyClecccooiiiiiiiee et 3-18
3.1.9 BST1B CYCIE .ot ettt s e 3-19
3.1.10 16-Bit Byte Enables and Operand Alignmentcccocceiiiiiiinnnnee. 3-20
3.2 BUS TIMING .eeeieieiieeiie ettt e e st e sanessee s e e ae e e enees 3-22
3.2.1 Read Cycle TIMING ..ccciiriiiiiieiieee ettt e e 3-24
3.2.2 Write Cycle TIMINGccoiriiieereeeiee et e 3-24
3.2.3 READY# Signal TimMiNgcooooieeimiieniie e 3-25
3.3 ClOCK GENEIAtIONccceiiveieeiiierieeeiee s st e s e e e e e s ere e e s 3-26
3.3.1 82384 CIOCK GENEIatOrcoccceiriieeiiereieeseere e e eee s e sne e s e e ne e sene 3-26
3.3.2 ClOCK TIMING ..oeiieieiiieiceir et e e e sre e s e s e s e sae b et esneranesaene 3-26
B4 INTEITUPES e s s e e e e s e e s s 3-27
3.4.1 Non-Maskable Interrupt (NMI)ccoooiioiiie e 3-29
3.4.2 Maskable Interrupt (INTR)oooooiriiireiiereeee et e 3-29
3.4.3 INterrupt LAtENCYcooviiieiiieiie et 3-30
3.5 BUS LOCK i ettt et e 3-30
3.5.1 Locked Cycle ACHIVAIOrScccceiirnerieieesieieecstie et 3-31

|nte| TABLE OF CONTENTS

Page

3.5.2 Locked Cycle TIMINGccoceriiniiiieriiieine st e 3-32
3.5.3 LOCK# Signal DUrationcccceerieiiiniiiniiieieeseeesceseesin e se e esse s 3-32
3.6 HOLD/HLDA (Hold ACKNOWIEAGE)ccceirerriiriieiririesreeesiee e sreseesene 3-33
3.6.1 HOLD/HLDA TiMING ..coeeetiiienreeieiiseeceeeseeetessessmeseee e eeeseesaesssas e seessensnens 3-33
3.6.2 HOLD Signal LateNCYcocceeiiireiinieiceierce st ssr e 3-35
3.6.3 HOLD State Pin CONditionscccccevvierieriiinieneencieee e s 3-35
3.7 RESEL it 3-35
3.7.1 RESET TiMING ..eiieitieitiniriiireeiin et st s e sas e e 3-35
3.7.2 80386 INternal StateSccccceiierieeiiecireeie e 3-36
3.7.3 80386 EXternal Statesccccocereieiriiiiiiire et 3-38
CHAPTER 4

PERFORMANCE CONSIDERATIONS
4.1 Wait States and Pipeliningccocceriiiieiiiniin et 4-1
CHAPTER 5

COPROCESSOR HARDWARE INTERFACE
5.1 80287 Numeric Coprocessor INterfaceccccecvivevieiieiirceeen e en e eae 5-2
5.1.1 80287 CONNECLIONSeeiiiiiiieiiiiiiieeecreece et ee s e e e e s e e e e e e eas 5-2
5.1.2 80287 BUS CYCIESeeoiuieieieieiieiecee ettt e s e e sae e 5-2
5.1.3 80287 CIOCK INPUL ...ttt st sae e e e e e seeenis 5-4
5.2 80387 Numeric Coprocessor INterfaceccccccvieeevievieiiccen v enees 5-4
5.2.1 80387 CONNECHIONSooiiiieiiieiiiiieectier ettt e e seae e s rene e 5-4
5.2.2 80387 BUS CYCIEScooeeiniiieieieieei et 5-6
5.2.3 80387 CIOCK INPUL ..ottt e et e 5-6
5.3 Local Bus Activity with the 80287/80387ccceeiieieiiereeeeeerceereeereene 5-6
5.4 Designing an Upgradable 80386 Systemcccoviiivviiniiiiccciiiiicninenee, 5-7
5.4.1 80287/80387 RECOGNILIONcceevverureeirririeereeniete et e 5-8
5.4.2 80387 EMUIALOTccceecierieiiiereeeieeeee et esteseeessee e st eseeeseesaaesseeeeesneesreensens 5-9
CHAPTER 6

MEMORY INTERFACING
6.1 Memory Speed versus Performance and COstccccociriiiiicicnnncnnniecnneen, 6-1
6.2 Basic Memory INterfacecoooevieciieiiiiie s 6-1
6.2.1 PAL DEVICESceiiiieiiieieieeeeie ettt e e st e s st ee s s srre e e e s s reae e e ee e e s sesraeeseenneeesanes 6-2
6.2.2 AAAress LatChcooiiiiiiieieee et 6-3
6.2.3 AdAress DECOUETcccuiiiieeriirerireee ettt e s e e e naae s 6-4
6.2.4 Data TranSCOIVETcocueeverieieieieeie et ee et s e e te e sresere s ene e neeeaeeas 6-5
6.2.5 BUS CONrol LOGICviveerriereeeieeeeie ettt e e eee e satecns e s s e e s e en e s saenaeens 6-6
6.2.6 EPROM INTErfACEcceeuieieeeieieie ettt e e e 6-9
6.2.7 SRAM INTEITACEcooieiiiieeieeeeree et e aae s 6-11
6.2.8 16-Bit INtErfaCecceviiiiieie e et 6-14
6.3 Dynamic RAM (DRAM) INterfaceccoveiriiriecin it sn e e 6-15

vi

Intel TABLE OF CONTENTS

Page
6.3.1 Interleaved MEMOIYc.c.ciiiiieiiiieie et re e e e e 6-15
6.3.2 DRAM Memory Performanceccccceeiieiiiieniiesere et 6-15
6.3.3 DRAM CONrOlEroueiiieieriieieeie ettt et sre s sneeens 6-16
6.3.3.1 3-CLK DRAM CONtrOllErcccciieiiirienierietieeeeeesee e s eee s eaee e sntaans 6-17
6.3.3.2 2-CLK DRAM Controller ..ot sresie e seee s 6-21
6.3.4 DRAM Design Variationsccccccvriieiiiiiiiiiersicecsceeeceee e e sseeesaeeesnessnns 6-23
6.3.5 RefreSh CYCIEScvieiiiiiieree ettt et e e 6-25
6.3.5.1 Distributed Refreshcccooiiiiiiiiee et 6-25
6.3.5.2 BUISt REffeShocueiiiiieeieer et s 6-26
6.3.5.3 DMA REfr@SN ...ocieiiiiiiiiee ettt sttt ta e e e e 6-26
6.3.6 INItializationccoiiiiiee e e 6-27
6.3.7 TimMIiNg ANalYSISoiviiiiiii e e 6-27
CHAPTER 7

CACHE SUBSYSTEMS
7.1 Introduction t0 CacChescccocciiiiiiiiei e e 7-2
7.1.1 Program LOCalitycooiiiiieiiniie ettt s e 7-2
7.1.2 BIOCK FEICh ..o e e e 7-2
7.2 Cache OrganizationSccccevereirieienieeese e s st 7-3
7.2.1 Fully Associative Cacheccocceevirviiiiiinee e e 7-3
7.2.2 Direct Mapped Cachecccocciiiieiiieiieie et et 7-4
7.2.3 Set AssoCiative Cacheccccviiiiieiniirrecee et 7-6
7.3 Cache Updatingccceeeveiiiiniie it s 7-8
7.3.1 Write-Through SYStemccccoeiiiiiiiiiniic e e 7-8
7.3.2 Buffered Write-Through Systemccccvviiiniiinnicece e 7-8
7.3.3 Write-Back SyStem ..ottt e 7-9
7.3.4 Cache CORBIENCYcccooveiiiiiiiiiee e s e s e e 7-10
7.4 System Structure and Performancecccciieriiiniiiinnnee e 7-11
7.5 DMA Through Cachec..cccciciiirmeneninc ettt st s s e 7-12
7.6 Cache EXample ..ot e 7-13
7.6.1 EXample DESIGN ...coovi it e 7-13
7.6.2 Example Cache Memory Organizationccocorevinniinine e 7-13
7.6.3 Example Cache Implementationcccoociiiiiiniinirecinine e 7-15
CHAPTER 8
170 INTERFACING

8.1 1/O Mapping versus Memory Mappingccccccerrrmmensieinieessessiiessceesseeessavees 8-1
8.2 8-Bit, 16-Bit, and 32-Bit I/O Interfacescccccomuvivieecennnscene e ssiree e 8-1
8.2.1 Address DeCOINGcooccirrviririieeiiie it eete e rrre s st s e e s s e s b e sneeesbeaese e s sneen 8-1
B.2.2 B-Bit I/O oo e s 8-2
8.2.3 16-Bit I/O ..o e 8-4
8.2.4 32-Bit I/O ..o e e 8-4
8.2.5 Linear Chip SeIECtScceovieiiireieien ettt 8-4

vii

Inte| TABLE OF CONTENTS

Page
8.3 BasSiC I/O INtErfacecoccieireieieiiiiie ettt e e 8-4
8.3.1 AAress LatChocceoiiiiiiiiieeie et e 8-5
8.3.2 AdAress DECOUEIcccuiiiiciiiireiiie e et er et e s rrere s e s s s s 8-6
8.3.3 Data TranSCOIVETcocceeeireiiecieee ettt st sn e s 8-8
8.3.4 BUS CONtrol LOGICcoviueeriiiiieiieiece ettt e 8-8
8.4 Timing Analysis for 1/O Operationsccccvviiriinnciinne e 8-9
8.5 BasiC I/O EXAMPIEScoioiiriiiiiiieiee ettt e 8-13
8.5.1 8274 Serial CONrOlErccoieiieiieieiti e eer et s s 8-14
8.5.2 8259A Interrupt Controllercoccociiiiiiciinici e 8-14
8.5.2.1 Single Interrupt Controllercccoviiriiniiini e, 8-15
8.5.2.2 Cascaded Interrupt CONtrollersccccvviriieinceerene e 8-16
8.5.2.3 Handling More Than 64 Interruptsccccccveiiiiniiiinincccnien e, 8-16
8.6 80286-Compatible BUS CYCIESccovieeiiritieecienieecree e e 8-16
8.6.1 AD/AT GENEIAtOrceeoveeiiiitiiiccre e s 8-17
8.6.2 SO#/ST1# GENEIatOrccooceriieiicicene e e e 8-17
8.6.3 Wait-State GEeneratorccccccoviceieriiiinieieerresse e e saee s 8-18
8.6.4 Bus Controller and Bus Arbitercccccviiiiiiierninicn e 8-19
8.6.5 82258 ADMA CONLIOHEIccceeiiieiiieieeirer s e s e e s 8-20
8.6.5.1 82258 as BUS MASIEIcccocciiiiiiiiir e 8-22
8.6.5.2 82258 as Peripheralccccceieeiiiiieniien e srin e cee e ene s 8-24
8.6.6 82586 LAN COPIrOCESSOrococeeerieeeiurtiiintererirnssssresseesssssesseesssesssssssanenssnress 8-25
8.6.6.1 Dedicated CPUccoooiiiiiieeeie ettt 8-26
8.6.6.2 Decoupled Dual-Port MemMOryccccocmriiniimnccnni i 8-26
8.6.6.3 Coupled Dual-Port MEMOIYccccciiiirireernriresiec e asee e s s 8-27
8.6.6.4 Shared BUScccceivriiiiier it crte s ee st 8-28
CHAPTER 9

MULTIBUS® | AND 80386

9.1 MULTIBUS® | (IEEE 7986)cccoviieeiieieeieeete et s nes 9-1
9.2 MULTIBUSE® | Interface EXamPIecccoeeiiieeiiiciicireeeescineeeeee e sie e s seaans 9-2
9.2.1 Address Latches and Data Transceivers ..., 9-2
9.2.2 AdAress DECOUETo.cceieieiiiier it er ettt se e e 9-5
9.2.3 Wait-State GENeratorccociiriiiinieierr e 9-5
9.2.4 Bus Controller and Bus Arbiterccoocemieiienirineeccee e 9-7
9.3 Timing Analysis of MULTIBUS® | Interfaceccccceiiiininiiniciccrccee 9-10
9.4 82289 BUS AIDITEr ...t e e 9-10
9.4.1 Priority RESOIUtIONooiiiiiiie 9-11
9.4.2 82289 Operating MOdesccccocciiiiiiiiiiirii e 9-11
9.4.3 MULTIBUS® | LOCked CYCIESeoieiriiieiecee et 9-14
9.5 Other MULTIBUS® | Design Considerationscccoceeeieersvvereccrseensenneennees 9-14
9.5.1 Interrupt-Acknowledge on MULTIBUS® |ccoocieimnniiinnieencnre e 9-14
9.5.2 Byte Swapping during MULTIBUS® | Byte Transferscccccceviiiirenene 9-16
9.5.3 Bus Timeout Function for MULTIBUS® | ACCESSESccoveeveverrirnireeennnenns 9-17

viii

Intel TABLE OF CONTENTS

Page

9.5.4 MULTIBUS® | Power Failure Handlingcccccereeviiniicicrinenc e 9-17
9.6 ILBX™ BUS EXPANSION ...ccveccririieeiectisriirrsreeceeessesssessessesssnsesseessssssnssnssssessnnes 9-18
9.7 Dual-Port RAM with MULTIBUS® |c.ccoeiiiieiieeeinee e 9-19
9.7.1 Avoiding Deadlock with Dual-Port RAMccooirceiiccirinneenie e sreerenenes 9-20
CHAPTER 10

MULTIBUS® Il AND 80386
10.1 MULTIBUS® Il Standardccccocerviiieeniensiensesessnressseesnsssessssssssaseans 10-1
10.2 Parallel System Bus (IPSB)coooiiiiriireiereeceecne et s 10-1 -
10.2.1 IPSB INterface ..ot 10-2
10.2.1.1 BAC SIgNalSooceiieeeiiciie ettt 10-4
10.2.1.2 MIC SIgNAIS ..ooiiiiieieeeiiie st r et st s e et srae e s e e s s e s e s an e nn e e nnas 10-6
10.3 Local Bus Extension (ILBX™ 1)ccccovveimrrnmrininirisseneccsenenee s anena 10-7
10.4 Serial System Bus (ISSB)ccccciiiiiveerniirr e 10-7
CHAPTER 11

PHYSICAL DESIGN AND DEBUGGING
11.1 Power and Ground Requirementscccoccvrrieriiinccnnincnenesinn e 11-1
11.1.1 Power and Ground Planesccccciiiirenmnnninciiccin et sssses s 11-1
11.1.2 Decoupling Capacitorscccceeceeerrriierrniesssneseeeses s esssesserese s essssscsnnens 11-2
11.2 High-Frequency Design Considerationsccccoeeveiniminnsiennnnecionneneens 11-3
11.2.1 Line Terminationcccooiieiiiniricce ittt s e s e e re e e e s een 11-4
11.2.2 INTEITErENCE ..o e e e s s ne e 11-6
T1.2.3 LatChUD coooiiceeec et e cee e e e ee s r e e nna e e se s s eeeete s aeenans 11-7
11.3 Clock Distribution and Terminationcccccvevericncinmnnrcnnseescnnenes e 11-7
11.4 Thermal CharacteristiCsccccoirriierecrcninininc s e s snens 11-7
11.5 Debugging CONSIAErationsc.ccceceriiirieenieenieesiensresereseseessesssnrsnseressesenss 11-10
11.5.1 Hardware Debugging Featuresccveeiiiniinninins et 11-10
11.5.2 BUS INTEITACE ..ooieiieeeeerree et et e s e r s e s s 11-11
11.5.3 Simplest Diagnostic Programcccccoeorrienierniiienr e sreeneesieeas 11-11
11.5.4 Building and Debugging a System Incrementallycccccoecveevennerneeeneen. 11-12
11.5.5 Other Simple Diagnostic SOftWareccccccevivirrreecierecnnnen e seeseeeeeeas 11-14
11.5.6 Debugging HINtScccoiieiiiiiereeee et s e 11-14
CHAPTER 12

TEST CAPABILITIES
12.1 Internal TESES ...oooeee e e s 12-1
12.1.1 Automatic Self-TeSt ..o e 12-1
12.1.2 Translation Lookaside Buffer TeStScccovcrrerinnneesieinnessneeeeceeeneeas 12-2
12.2 Board-Level TESEScocciciicicciertccer et eese s sn e e e s as e e ae s 12-5

intel

TABLE OF CONTENTS

APPENDIX A
LOCAL BUS CONTROL PAL DESCRIPTIONS

PAL-1 Functions
PAL-2 Functions
PAL Equations

APPENDIX B
80387 EMULATOR PAL DESCRIPTION

APPENDIX C

DRAM PAL DESCRIPTIONS
DRAM State PAL
DRAM Control PAL
Refresh Interval Counter PAL
Refresh Address Counter PAL
Timing Parameters

Figure

2-1
2-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
39
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
5-1

Figures

Title

80386 System BIock Diagramcccevceceiiierenncienre e e

Instruction Pipelining

80386 Functional UnitScccveviiieiireiie et e
CLK2 and CLK RelationShipcccooerriieiinniiiie ettt e
80386 Bus States Timing EXampleccovvviiiiiceieirece et e
Bus State Diagram (Does Not Include Address Pipelining)
Non-Pipelined Address and Pipelined Address Differences
Consecutive Bytes in Hardware Implementationccccooiiinn e,
Address, Data Bus, and Byte Enables for 32-Bit Busccccccecee e

Misaligned Transfer

Non-Pipelined Address Read CYCIEScccevveiiiiiiriiniirieceeeccee e
Non-Pipelined Address Write CyClescccoovreiiiniiiiiiicieeec e
Pipelined Address CYCIEScooirieiiirirececeeeee e s
Interrupt Acknowledge Bus CyCleSccooiiiiiiirciiiin e e
Internal NA# and BS16# LOGQICcoeoiiiiineicien e
32-Bit and 16-Bit Bus Cycle Timingccccccviiiiiiiiiiie e,
32-Bit and 16-Bit Data Addressingc..cccceeecieccicrnnnceeseeeeccs e
Connecting 82384 10 80386cooeiiiieiiie
Using CLK to Determine Bus Cycle Startccccccvvnieniiicinnncneie,
Error Condition Caused by Unlocked Cyclescccooiviiciiiiiciinnns
LOCK# Signal during Address Pipeliningccccovvviiiiiincncnicee
Bus State Diagram with HOLD Statecccocceriiiiiiiiececececeeceee
Typical RC RESET Timing CirCuitccccoeiimiiiiiiiciee e
RESET, CLK, and CLK2 TiMiNGccccerrmimmenreriicceiesesce e e
80386 System with 80287 COProCESSOreeveveeerreeeriirrrirrensieesres e eeens

Page

A-1
A-2
A-2

C-13
C-13
C-13
C-25

Page

1-2
2-1
2-2
3-5

3-7

3-8

3-9

3-9
3-11
3-12
3-15
3-16
3-18
3-20
3-21
3-22
3-27
3-28
3-31
3-32
3-34
3-36
3-37

5-3

TABLE OF CONTENTS

Figure

5-2
5-3
5-4
5-5
5-6
6-1
6-2
6-3
6-4
6-5
6-6
6-7

6-9
6-10
6-11

7-2
7-3
7-4
7-5
7-6
7-7

7-9
8-1
8-2

8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17

Title

80386 System with 80387 COProCESSOrccccereereriierrierneiresiensieeans
Pseudo-Synchronous Interfacecccvcieviiiiienecinccrer e,
Routine to Detect 80287 Presencecccccccovvvciienneensieenieen e
80386 Machine Control Register (CR0O)ccccoeieneiiieciiiecc e
80387 Emulator SChematiCccccceeriiiriirieee e
Basic Memory Interface Block Diagramccccceeevenniinnciiinsecceeeiennnn
PAL Equation and Implementationccccccoiiiiiiinniiiineceeee e,
PAL Naming Conventionsccccuieiiiiiriiiterice e e enee s
BUS CONIOl LOGIC ..eoeeeiueeieieieie et ettt e s
Bus Control Signal TiMiNgcoooeeeoiieeiieeeee e
150-Nanosecond EPROM Timing Diagramccccccevvenievnnceniecnneneenns
100-Nanosecond SRAM Timing Diagramccccccevieerieienceenerie e
3-CLK DRAM Controller Schematiccccccveeveimineiiiciieeniieeenee e
3-CLK DRAM Controller Cyclescccouiiiiiiiininiiiiicceesee e
2-CLK DRAM Controller Schematicccccoceeviiiieiiiiiceceee e,
2-CLK DRAM Controller Cyclescociiiiiiiiiiniiiiiccienceeceee
Cache Memory SyStemMcccoivieiiiiiereeeer e e ee e
Fully Associative Cache Organizationcccceccccevriiiiiiniieeeeee e,
Direct Mapped Cache Organizationcccceeeiiiiiiiiereciee e e
Two-Way Set Associative Cache Organizationccccceecvivieeneenn.
Stale Data Problem ..o e
Hardware TranSparenCycccooccereerciiniicininee e esece st e
Non-Cacheable MemOry ... e
Example of Cache Memory Organizationcccccccvinriine e cnnieeseeeen,
Cache Memory System Implementationcccoceiviiiiiiniiencninnns
32-Bit to 8-Bit BUS CONVEISIONcccciiiiiiiieeiiti e
Linear Chip SElECtSoocceeciiieeeeerr e e e
Basic 1/0 Interface Block Diagramcoococeieiiiiein e
Basic I/O Interface CirCuitccooeieereiiiirieesr e e
Basic I/O Timing Diagramcccocoveviiiiiiiiiicicnc i e e
8274 INEITACE ...eiieieieiieciei et e e e e e e
Single 8259A INterfacecooccviiiirerieee e
80286-Compatible Interfaceccccccvveiiiciiiicceecceecceee e
A0, A1, and BHE# LOGICcccccceerieeiiniieie ettt s s reeieen e e
SO#/S1# Generator LOGICccooveeierreriieniesenis et see s e neee e
Wait-State Generator LOGICccceieriirieiiieeenie et
82288 and 82289 CONNECHIONS ccceiiieieiiin et e
HOLD and HLDA Logic for 80386-82258 Interfaceccccccervvecennnee.
82258 Slave Mode Interfaceccocceceriiiriiiiine e
LAN SHAtONooiiii i e e e e
Decoupled Dual-Port Memory Interfacec.ccceceeniienncieencnennscnne s
Coupled Dual-Port Memory Interfacec.cccoeeveveieeniienseeecee e

Xi

Page

5-5
5-7
5-8
5-9
5-10
6-2
6-4
6-5
6-7
6-8
6-10
6-12
6-18
6-20
6-22
6-24

TABLE OF CONTENTS

Figure

8-18
9-1
9-2
9-3

9-5
9-6
9-7
9-8
99
9-10
9-11
9-12
10-1
10-2
11-1
11-2
11-3
11-4
11-56
11-6
11-7
11-8
119
11-10
11-11
11-12
11-13
12-1
12-2
A-1
A-2
A-3
A-4

C-1
C-2
C-3
C-4
C-5
C-6
C-7
C-8

Title Page
Shared Bus INterface ..o e 8-28
80386-MULTIBUS® | INterfaceccccoeeirieeneenmereressiesseneeeesresee e 9-3
MULTIBUS® | Address Latches and Data Transceiversccccceenee. 9-4
Wait-State Generator LOGICcccveiviiiniciiiniscinnieceenie i, 9-6
MULTIBUS® Arbiter and Bus Controllerccccccecvviivivnninncinciicnnnne, 9-7
MULTIBUS® | Read Cycle TIMINGccccocereeinereeeerceenresseeceeeseesineeens 9-8
MULTIBUS® | Write Cycle TimiNgccovcvviiiirnnnrinienieeceetneiseenneeas 9-9
Bus Priority ResolUtioN ..o 9-12
Operating Mode Configurationscccccvviniririnnsnne e 9-13
Bus-Select Logic for Interrupt Acknowledge eeeeee e e e et eea e 9-16
Byte-Swapping LOGICcooeviiiiieicnti s 9-18
Bus-Timeout Protection Circuitcoocvvvmiinnicnccnnnienee e 9-19
iLBX™ Signal Generationcccccerriiveiiinicnnctentie e 9-20
iPSB Bus CyCle TIMINGc.cocoeiiieeiere e eece et 10-3
IPSB BUS INTEIfACeceeceeiiiirirrecienst et 10-4
Reducing Characteristic Impedancecccovieviininieniniiiincieinns 11-2
Circuit without DECOUPINGccovviiiiniiciiii e 11-2
Decoupling Chip Capacitorsc.cceviieerrenieiinie et 11-3
Decoupling Leaded Capacitorscccceeicicieeiiininnine et s 11-4
Series Terminationccccocviviiiniiricrecr e e 11-5
Split TErminationcccovimiininniics s 11-5
Avoid Closed-Loop Signal Pathscccoceeeviiiieiiinisiieneceenee 11-6
CLK2 Series Terminationccocceeevmirnnieniiminisnnrce st seeeees e 11-8
CLK2 LOAGING ...eeeeriereiieiniiecreersiresseeseeessseseessenseeessesssnsssassnssseesaseasanens 11-9
CLK2 WaVEOMS ..ottt s e 119
4-Byte Diagnostic Programcccccecuvinieininienncnenincsnnsennieenns 11-12
More Complex Diagnostic Program ccccecveeeimnrmniinennennecnenisieeennnns 11-15
Object Code for Diagnostic Program ccccocerieerceecerinienseeeseeneesneeas 11-16
80386 SEf-TEStcoeieiiiiireereece ettt et 12-2
TLB Test REQISTErSoiceireeeeieerrenceceeerersne e see e e sesse e s saaesnas 12-3
PAL-1 State ListiNgScoeeeirieiirrricinss e ererncsit e A-3
PAL-2 State LIStNGS ...cccveiieeeiireiireeeresren e see st e s snee s e c s s esneeeae A-9
PAL-1 EQUALIONSeuiiiiieiiiieecciieeceiceeeeceereessaeesessner e ssansn e as e s sanraeaeaan A-14
PAL-2 EQUALIONScooiiiiiiitiiiicecetn st et e s A-15
80387 Emulator PAL EQUAtIONScccceiivimrieerirniienireniessecnenneesienseens B-1
PAL Sampling EAQEScocccerieeiecrrertreeener ettt C-1
3-CLK DRAM State PAL EQUAtIONScccvecereereirniiiieesc e csresne e C-3
2-CLK DRAM State PAL EQuationsc..cccveeerieiniiciciicenecenecenns C-8
3-CLK DRAM Control PAL EQUAtIONS covciiiiiiniiiecceeen e C-15
2-CLK DRAM Control PAL EQUAtiONS cceeriernrciirene e scen e C-17
Refresh Interval Counter PAL EQUAtiONScccocccecinericenncenenesereeescnee C-20
Refresh Address Counter PAL EQuUationsccccocvimicicinnviciieseeeenn, C-23
DRAM Circuit Timing Diagramc.ccocevcivninincnnenmie e C-26

xii

TABLE OF CONTENTS

Table

1-1
31

32
33
34
35
36
37
4-1

42
6-1

6-2
6-3
7-1

8-1

8-2
83
9-1

C-1
c-2
c3
C-4
C5

Tables
Title

80386 System COMPONENLSccccocvicreeerniererieneese st eeee s
Summary of 80386 Signal PiNScccccvvierieiieneeeeeree s
Bus Cycle Definitionsccocevvieiiiiieierenie e ssree st
Possible Data Transfers on 32-Bit BUScccccooerieiieniinnnrncne e
Misaligned Data Transfers on 32-Bit Buscc.cccoevvrviieiiccencieeriennen,
Generation of BHE#, BLE#, and A1 from Byte Enablesc........
Byte Enables during BS16 CycClescccooceiviiciniiinicniiee e
Output Pin States during RESETccoiiiiiiiiiniiiiccciieencne e
80386 Performance with Wait States and Pipeliningcccocevieennnns
Wait States versus Operating Frequencyc.ccccovveenciciiiinniiieenes
Bus Cycles Generated by Bus Controllercccceiiiiiiiiiinnnneenns
DRAM Memory PerfOrmanceccocuceeeereeeernieneneeneeseeneeee e sieeesnnas
Designs for Six DRAM TYPEScccoveiriiiiiiniiinnini e
Cache System Performancecccccceveeiieeriiennninnee e
Data Lines for 8-Bit 1/O ADAressescccccvniveiineiinrccne e
Timings for Peripherals Using Basic I/O Interfacec.ccccvenniiiinnncns
AQ, A1, and BHE# Truth Tableoooeeeiiriiiiccce e,
MULTIBUS® | Timing Parametersccccccvnnieeniinnieninneennee e,
DRAM State PAL Pin Descriptionccccciiiiniinciiiennneesiicnnee e,
DRAM Control PAL Pin Descriptionc.cccceeviriciinninniie s
Refresh Interval Counter PAL Pin Descriptionccccccvveiniiiiniinencnnen,
Refresh Address Counter PAL Pin Descriptionccccccccevieiviennccninenen.
DRAM Circuit Timing Parameters ..o

xiii

Page

ntel

CUSTOMER SUPPORT

CUSTOMER SUPPORT

Customer Support is Intel’s complete support service that provides Intel customers with- Customer
Training, Software Support and Hardware Support.

After a customer purchases any system hardware or software product, service and support become
major factors in determining whether that product will continue to meet a customer’s expectations.
Such support requires an international support organization and a breadth of programs to meet a
variety of customer needs. Intel’s extensive customer support includes factory repair services as well as
worldwide field service offices providing hardware repair services, software support services and
customer training classes. '

HARDWARE SUPPORT

Hardware Support Services provides maintenance on Intel supported products at board and system
level. Both field and factory services are offered. Services include several types of field maintenance
agreements, installation and warranty services, hourly contracted services (factory return for repair) and
specially negotiated support agreements for system integrators and large volume end-users having
unique service requirements. For more information contact your local Intel Sales Office.

SOFTWARE SUPPORT

Software Support Service provides maintenance on software packages via software support contracts
which include subscription services, information phone support, and updates. Consulting services can
be arranged for on-site assistance at the customer’s location for both short-term and long-term needs.
For complex products such as NDS II or IZICE, orientation/installation packages are available
through membership in Insite User’s Library, where customer-submitted programs are catalogued and
made available for a minimum fee to members. For more information contact your local Intel Sales
Office.

CUSTOMER TRAINING

Customer Training provides workshops at customer sites (by agreement) and on a regularly scheduled
basis at Intel’s facilities. Intel offers a breadth of workshops on microprocessors, operating systems and
programming languages, etc. For more information on these classes contact the Training Center nearest
you.

TRAINING CENTER LOCATIONS

To obtain a complete catalog of our workshops, call the nearest Training Center in your area.

Boston (617) 692-1000 London (0793) 696-000
Chicago (312) 310-5700 Munich (089) 5389-1
San Francisco (415) 940-7800 Paris (01) 687-22-21
Washington, D.C. (301) 474-2878 Stockholm (468) 734-01-00
Israel (972) 349-491-099 Milan 39-2-82-44-071
Tokyo 03-437-6611 Benelux (Rotterdam) (10) 21-23-77
Osaka (Call Tokyo) 03-437-6611 Copenhagen (1) 198-033

Toronto, Canada (416) 675-2105 Hong Kong 5-215311-7

System Overview 1

CHAPTER 1
SYSTEM OVERVIEW

The 80386 is a new 32-bit microprocessor that forms the basis for a high-performance
32-bit system. The 80386 incorporates multitasking support, memory management, pipelined
architecture, address translation caches, and a high-speed bus interface all on one chip. The
integration of these features speeds the execution of instructions and reduces overall chip
count for a system. Paging and dynamic data bus sizing can each be invoked selectively,
making the 80386 suitable for a wide variety of system designs and user applications.

While the 80386 represents a significant improvement over previous generations of micro-
processors, substantial ties to the earlier processors are preserved. Software compatibility at
the object-code level is provided, so that an existing investment in 8086 and 80286 software
can be maintained. New software can be built upon existing routines, reducing the time to
market for new products. Hardware compatibility is preserved through the dynamic bus-
sizing feature.

The major components of an 80386 system and their functions are shown in Figure 1-1.
Table 1-1 describes these components.

1.1 MICROPROCESSOR

The 80386 provides unprecedented performance. At 16 MHz, the 80386 is capable of
executing at sustained rates of three to four million instructions per second, a speed compa-
rable to that of most super minicomputers. This achievement is made possible through a
state-of-the-art design that includes a pipelined internal architecture, address translation
caches, and a high-performance bus.

The 80386 features 32-bit wide internal and external data paths and eight general-purpose
32-bit registers. The instruction set offers 8-, 16-, and 32-bit data types, and the processor
outputs 32-bit physical addresses directly, for a physical memory capacity of four gigabytes.

Table 1-1. 80386 System Components

Component Description
80386 Microprocessor 32-bit high-performance microprocessor with on-
chip memory management and protection
80287 or 80387 Numeric Coprocessor Performs numeric instruction in paralle! with
80386; expands instruction set
82384 Clock Generator Generates system clock and RESET signal
8259A Programmable Interrupt Controlier Provides interrupt control and management

82258 Advanced DMA Performs direct memory controller access (DMA)

1-1

SYSTEM OVERVIEW

CLK

82384
CLOCK
GENERATOR | cLk2

8%3:7 80386 82258
80287 MICRO- ADMA
NUMERIC PROCESSOR CONTROLLER
COPROCESSOR
BUS BUS
CONTROL CONTROL ':glé?g
LOGIC LOGIC
: AV v :
— A LOCAL BUS /} =
s250n LOCAL LOCAL
INTERRUPT MEnORY et
CONTROLLER

INTERRUPTING
DEVICES

G30107

Figure 1-1. 80386 System Block Diagram

1-2

Intel SYSTEM OVERVIEW

The 80386 has separate 32-bit data and address paths. A 32-bit memory access can be
completed in only two clock cycles, enabling the bus to sustain a throughput of 32 megabytes
per second (at 16 MHz). By making prompt transfers between the microprocessor, memory,
and peripherals, the high-speed bus design ensures that the entire system benefits from the
processor’s increased performance.

Pipelined architecture enables the 80386 to perform instruction fetching, decoding, execu-
tion, and memory management functions in parallel. The six independent units that make-
up the 80386 pipeline are described in detail in Chapter 2. Because the 80386 prefetches
instructions and queues them internally, instruction fetch and decode times are absorbed in
the pipeline; the processor rarely has to wait for an instruction to execute.

Pipelining is not unusual in modern microprocessor architecture; however, including the
memory management unit (MMU) in the on-chip pipeline is a unique feature of the 80386.
By performing memory management on-chip, the 80386 eliminates the serious access delays
typical of implementations that use off-chip memory management units. The benefit is not
only high performance but also relaxed memory-access time requirements, hence lower system
cost.

The integrated memory management and protection mechanism translates logical addresses
to physical addresses and enforces the protection rules necessary for maintaining task integ-
rity in a multitasking environment. The paging function simplifies the operating-system
swapping algorithms by providing a uniform mechanism for managing the physical structure
of memory.

Task switching occurs frequently in real-time multitasking or multiuser systems. To perform
task switching efficiently, the 80386 incorporates special high-speed hardware. Only a single
instruction or an interrupt is needed for the 80386 to perform a complete task switch. A
16-MHz 80386 can save the state of one task (all registers), load the state of another task
(all registers, even segment and paging registers if required), and resume execution in less
than 16 microseconds (at 16 MHz). For less sophisticated task and interrupt handling, the
latency can be as short as 3.5 microseconds (at 16 MHz).

1.2 COPROCESSORS

The performance of most applications can be enhanced by the use of specialized coproces-
sors. A coprocessor provides the hardware to perform functions that would otherwise be
performed in software. Coprocessors extend the instruction set of the 80386.

The 80386 has a numeric coprocessor interface that can support one of two coprocessors:
the 80387 or the 80287. For applications that benefit from high-precision integer and
floating-point calculations, these numeric coprocessors provide full support for the IEEE
standard for floating-point operations. Both the 80387 and 80287 are software compatible
with the 8087, an earlier numeric coprocessor. At 16 MHz, the 80387 operates about eight
times faster than a 5-MHz 80287. However, the 80287 is fast enough for many applications
and is a cost-effective solution for many designs. The 80386 therefore offers the system
designer the choice of low-cost or high-performance numeric solutions.

1-3

Il‘lte' SYSTEM OVERVIEW

1.3 INTERRUPT CONTROLLER

The 8259A Programmable Interrupt Controller manages interrupts for an 80386 system.
Interrupts from as many as eight external sources are accepted by one 8259A; as many as
64 requests can be accommodated by cascading several 8259A chips. The 8259A resolves
priority between active interrupts, then interrupts the processor and passes a code to the
processor to identify the interrupting source. Programmable features of the 8259A allow it
to be used in a variety of ways to fit the interrupt requirements of a particular system.

1.4 CLOCK GENERATOR

The 82384 Clock Generator generates timing for the 80386 and its support components.
The 82384 provides both the 80386 clock (CLK2) and a half-frequency clock (CLK) to
indicate the internal phase of the 80386 and to drive 80286-compatible devices that may be
included in the system. It can also be used to generate the RESET signal for the 80386 and
other system components. Both CLK2 and CLK are used throughout this manual to describe
execution times.

1.5 DMA CONTROLLER

A DMA (Direct Memory Access) controller performs DMA transfers between main memory
and an I/O device, typically a hard disk, floppy disk, or communications channel. In a DMA
transfer, a large block of data can be copied from one place to another without the interven-
tion of the CPU.

The 82258 Advanced DMA (ADMA) Controller offers four channels and provides all the
signals necessary to perform DMA transfers. Other features of the 82258 are as follows:

¢ Command chaining to perform multiple commands

o Data chaining to scatter data to separate memory locations (separate pages, for example)
and gather data from separate locations

» Automatic assembly and disassembly to convert from 16-bit memory to 8-bit I/O, or
vice versa

» Compare, translate, and verify functions

« The option to replace one of the four high-speed channels with as many as 32 lower-speed,
multiplexed channels.

Internal Architecture

CHAPTER 2

INTERNAL ARCHITECTURE

The internal architecture of the 80386 consists of six functional units that operate in
parallel. Fetching, decoding, execution, memory management, and bus accesses for several
instructions are performed simultaneously. This parallel operation is called pipelined
instruction processing. With pipelining, each instruction is performed in stages, and the
processing of several instructions at different stages may overlap as illustrated in
Figure 2-1. The six-stage pipelined processing of the 80386 results in higher performance
and an enhanced throughput rate over non-pipelined processors.

The six functional units of the 80386 are identified as follows:

¢ Bus Interface Unit

¢ Code Prefetch Unit

¢ Instruction Decode Unit
¢ Execution Unit

+ Segmentation Unit

e Paging Unit

ELAPSED TIME
TYPICAL
PROCESSOR FETCH 1 DECODE 1 EXECUTE 1 FETCH 2 DECODE 2 EXECUTE 2
80386
BUS UNIT FETCH 1 FETCH 2 FETCH3 | FETCH4 STORE FETCH 5 FETCH 6
RESULT 1
D ECPDE DECODE 1 DECODE 2 DECODE 3 DECODE 4
________ —c————— ——————
EXECUTION EXECUTE 1 EXECUTE 2 EXECUTE 3 EXECUTE 4
NN 7/77/77777/7/77; M I VIR rmm——
r————————— —em————— - mmmme——————
MMU ADDR & MMU! ADDR & MMU
_____________ ————— 7 ——————————
210760-11

Figure 2-1. Instruction Pipelining

2-1

Inte| INTERNAL ARCHITECTURE

The Execution Unit in turn consists of three subunits:

e Control Unit
e Data Unit
e Protection Test Unit

Figure 2-2 shows the organization of these units. This chapter describes the function of each
unit, as well as interactions between units.

2.1 BUS INTERFACE UNIT

The Bus Interface Unit provides the interface between the 80386 and its environment. It
accepts internal requests for code fetches (from the Code Prefetch Unit) and data transfers
(from the Execution Unit), and prioritizes the requests. At the same time, it generates or

EXECUTION
UNIT SEGMENT UNIT PAGE UNIT
REGISTERS
SEGMENT TRANSLATION
REGISTERS LOOKASIDE
BUFFER
BARREL
SHIFTER
MULTIPLY/
DIVIDE SEGMENT PAGE
TRANSLATOR TRANSLATOR BUS UNIT
ALU >
BUS INTERFACE
PREFETCH
DECODER o QUEUE
INSTRUCTION
QUEUE PREFETCHER
DECODE UNIT PREFETCH UNIT
G30107

Figure 2-2. 80386 Functional Units

2-2

Intel INTERNAL ARCHITECTURE

processes the signals to perform the current bus cycle. These signals include the address,
data, and control outputs for accessing external memory and I/O. The Bus Interface Unit
also controls the interface to external bus masters and coprocessors.

2.2 CODE PREFETCH UNIT

The Code Prefetch Unit performs the program look ahead function of the 80386. When the
Bus Interface Unit is not performing bus cycles to execute an instruction, the Code Prefetch
Unit uses the Bus Interface Unit to fetch sequentially along the instruction byte stream.
These prefetched instructions are stored in the 16-byte Code Queue to await processing by
the Instruction Decode Unit.

Code prefetches are given a lower priority than data transfers; assuming zero wait state
memory access, prefetch activity never delays execution. On the other hand, if there is no
data transfer requested, prefetching uses bus cycles that would otherwise be idle. Instruction
prefetching reduces to practically zero the time that the processor spends waiting for the
next instruction.

2.3 INSTRUCTION DECODE UNIT

The Instruction Decode Unit takes instruction stream bytes from the Prefetch Queue and
translates them into microcode. The decoded instructions are then stored in a three-deep
Instruction Queue (FIFO) to await processing by the Execution Unit. Immediate data and
opcode offsets are also taken from the Prefetch Queue.

2.4 EXECUTION UNIT

The Execution Unit executes the instructions from the Instruction Queue and therefore
communicates with all other units required to complete the instruction. The functions of its
three subunits are as follows:

¢ The Control Unit contains microcode and special parallel hardware that speeds multiply,
divide, and effective address calculation.

¢ The Data Unit contains the ALU, a file of eight 32-bit general-purpose registers, and a
64-bit barrel shifter (which performs multiple bit shifts in one clock). The Data Unit
performs data operations requested by the Control Unit.

o The Protection Test Unit checks for segmentation violations under the control of the
microcode.

To speed up the execution of memory reference instructions, the Execution Unit partially
overlaps the execution of any memory reference instruction with the previous instruction.
Because memory reference instructions are frequent, a performance gain of approximately
nine percent is achieved.

Intel INTERNAL ARCHITECTURE

2.5 SEGMENTATION UNIT

The Segmentation Unit translates logical addresses into linear addresses at the request of
the Execution Unit. The on-chip Segment Descriptor Cache stores the currently used segment
descriptors to speed this translation. At the same time it performs the translation, the
Segmentation Unit checks for bus-cycle segmentation violations. (These checks are separate
from the static segmentation violation checks performed by the Protection Test Unit.) The
translated linear address is forwarded to the Paging Unit.

2.6 PAGING UNIT

When the 80386 paging mechanism is enabled, the Paging Unit translates linear addresses
generated by the Segmentation Unit or the Code Prefetch Unit into physical addresses. (If
paging is not enabled, the physical address is the same as the linear address, and no
translation is necessary.) The Page Descriptor Cache stores recently used Page Directory
and Page Table entries in its Translation Lookaside Buffer (TLB) to speed this translation.
The Paging Unit forwards physical addresses to the Bus Interface Unit to perform memory
and I/O accesses.

2-4

Local Bus Interface

CHAPTER 3
LOCAL BUS INTERFACE

Local bus operations are considered in this chapter. The 80386 performs a variety of bus
operations in response to internal conditions and external conditions (interrupt servicing, for
example). The function and timing of the signals that make up the local bus interface are
described, as well as the sequences of particular local bus operations.

The high-speed bus interface of the 80386 provides high performance in any system. At the
same time, the bus control inputs and status outputs of the 80386 allow for adaptation to a
wide variety of system environments.

The 80386 communicates with external memory, I/O, and other devices through a parallel
bus interface. This interface consists of a data bus, a separate address bus, five bus status
pins, and three bus control pins as follows:

o The bidirectional data bus consists of 32 pins (D31-D0). Either 8, 16, 24, or 32 bits of
data can be transferred at once.

» The address bus, which generates 32-bit addresses, consists of 30 address pins (A31-A2)
and four byte-enable pins (BE3#-BEO#). Each byte-enable pin corresponds to one of four
bytes of the 32-bit data bus. The address pins identify a 4-byte location, and the byte-
enable pins select the active bytes within the 4-byte location.

» The bus status pins establish the type of bus cycle to be performed. These outputs indicate
the following conditions:

Address Status (ADS#)—address bus outputs valid
Write/Read (W /R#)—write or read cycle
Memory /1/O (M/IO#)—memory or I/O access
Data/Control (D/C#)—data or control cycle
LOCK#—locked bus cycle

* The bus control pins allow external logic to control the bus cycle on a cycle-by-cycle basis.
These inputs perform the following functions:
READY #—ends the current bus cycle; controls bus cycle duration

Next Address (NA#)—allows address pipelining, that is, emitting address and status
signals for the next bus cycle during the current cycle

Bus Size 16 (BS16#)—activates 16-bit data bus operation; data is transferred on the
lower 16 bits of the data bus, and an extra cycle is provided for transfers of more than
16 bits

3-1

Intel LOCAL BUS INTERFACE

The following pins are used to control the execution of instructions in the 80386 and to
interface external bus masters. The 80386 provides both a standard interface to communi-
cate with other bus masters and a special interface support a numerics coprocessor.

» The CLK2 input provides a double-frequency clock signal for synchronous operation. This
signal is divided by two internally, so the 80386 fundamental frequency is half the CLK2
signal frequency. For example, a 16-MHz 80386 uses a 32-MHz CLK2 signal.

e The RESET input forces the 80386 to a known reset state.

» The HOLD signal can be generated by another bus master to request that the 80386
release control of the bus. The 80386 responds by activating the Hold Acknowledge
(HLDA) signal as it relinquishes control of the local bus.

e The Maskable Interrupt (INTR) and Non-Maskable Interrupt (NMI) inputs cause the
80386 to interrupt its current instruction stream and begin execution of an interrupt service
routine.

» The BUSY# ERRORG#, and Coprocessor Request (PEREQ) signals make up the inter-
face to an external numeric coprocessor. BUSY# and ERROR# are status signals from
the coprocessor; PEREQ allows the coprocessor to request data from the 80386. The
80386 can use either the 80287 or the 80387 coprocessor.

All of the 80386 bus interface pins are summarized in Table 3-1.

3.1 BUS OPERATIONS
There are seven types of bus operations:

¢ Memory read

e Memory write

e I/O read

e I/O write

¢ Instruction fetch

¢ Interrupt acknowledge
¢ Halt/shutdown

Each bus cycle is initiated when the address is valid on the address bus, and bus status pins
are driven to states that correspond to the type of bus cycle, and ADS# is driven low. Status
pin states that correspond to each bus cycle type are shown in Table 3-2. Notice that the
signal combinations marked as invalid states may occur when ADS# is false (high). These
combinations will never occur if the signals are sampled on the CLK2 rising edge when
ADS# is low, and the 80386 internal CLK is high (as indicated by the CLK output of the
82384). Bus status signals must be qualified with ADS# is true (low) to identify the bus
cycle.

Memory read and memory write cycles can be locked to prevent another bus master from
using the local bus and allow for indivisible read-modify-write operations.

3-2

el

LOCAL BUS INTERFACE

Table 3-1. Summary of 80386 Signal Pins

. Input Output
Signal Name Signal Function ';‘;::: (I;t:)t:tu/t SK :;:cﬁr H';gh_lmpedance
to CLK2 uring HLDA?

CLK2 Clock — 1 — —
D0-D31 Data Bus High 1/0 S Yes
BEO#-BE3# | Byte Enables Low (¢} — Yes
A2-A31 Address Bus High o} — Yes
W/R# Write-Read Indication High (o} — Yes
D/C# Data-Control indication High 0] — Yes
M/I0# Memory-1/O Indication High o) — Yes
LOCK# Bus Lock Indication Low 0 — Yes
ADS# Address Status Low 0] — Yes
NA# Next Address Request Low | S —
BS16# Bus Size 16 Low | S —_
READY # Transfer Acknowledge Low | S —
HOLD Bus Hold Request High | s —_—
HLDA Bus Hold Acknowledge High o} —_ No
PEREQ Coprocessor Request High | A —
BUSY# Coprocessor Busy Low l A —
ERROR# Coprocessor Error Low | A —
INTR Maskable Interrupt Request High | A —
NMI Non-Maskable Intrpt Request High | A —
RESET Reset High | S —

3-3

Iﬂtel LOCAL BUS INTERFACE

Table 3-2. Bus Cycle Definitions

M/I10# D/C# W/R# Bus Cycle Type Locked?
Low Low Low INTERRUPT ACKNOWLEDGE Yes
Low Low High does not occur —

Low High Low 1/0 DATA READ No
Low High High 1/O DATA WRITE No
High Low Low MEMORY CODE READ No
High Low High HALT: SHUTDOWN: No

Address = 2 Address = 0

(BEO# High (BEO# Low

BE1# High BE1# High

BE2# Low BE2# High

BE3# High BE3# High

A2-A31 Low) A2-A31 Low)
High High Low MEMORY DATA READ Some Cycles
High High High MEMORY DATA WRITE Some Cycles

3.1.1 Bus States

The 80386 uses a double-frequency clock input (CLK2) to generate its internal processor
clock signal (CLK). As shown in Figure 3-1, each CLK cycle is two CLK2 cycles wide.

Notice that the internal 80386 matches the external 82384 CLK. The 82384 CLK is permit-
ted to lag CLK2 slightly, but will never lead CLK2, so that it can be used reliably as a phase
status indicator. All 80386 inputs are sampled at CLK2 rising edges. Many 80386 signals
are sampled every other CLK2 rising edge; some are sampled on the CLK2 edge when CLK
is high, while some are sampled on the CLK2 edge when CLK is low. The maximum data
transfer rate for a bus operation, as determined by the 80386 internal clock, is 32 bits for
every two CLK cycles, or 32 megabytes per second (CLK2 = 32 MHz, internal CLK = 16
MH2z).

Each bus cycle is comprised of at least two bus states, T1 and T2. Each bus state in turn
consists of two CLK2 cycles, which can be thought of as Phase 1 and Phase 2 of the bus
state. Figure 3-2 shows bus states for some typical read and write cycles. During the first
bus state (T1), address and bus status pins go active. During the second bus state (T2),
external logic and devices respond. If the READY# input of the 80386 is sampled low at
the end of the second CLK cycle, the bus cycle terminates. If READY# is high when sampled,
the bus cycle continues for an additional T2 state, called a wait state, and READY# is
sampled again. Wait states are added until READY# is sampled low.

3-4

Intel LOCAL BUS INTERFACE

PROCESSOR CLOCK PROCESSOR CLOCK
PERIOD PERIOD
CLK2 PERIOD | CLK2 PERIOD [CLK2 PERIOD | CLK2 PERIOD

o1

CLK2 [_21]! \ 2V 4

¢2
F \ 2v 7
INTERNAL 80386 _ |
PROCESSOR CLOCK [\ /
(SAME FREQUENCY AS

82384 CLK SIGNAL)

—\
N

(16 MHz MAX)

83 ns MIN

(12.5 MHz MaXx) | 80386-12

62ns MlN]80386_1 6

231630-2

Figure 3-1. CLK2 and CLK Relationship

When no bus cycles are needed by the 80386 (no bus requests are pending, the 80386 remains
in the idle bus state (TI). The relationship between T1, T2, and TI is shown in Figure 3-3.

3.1.2 Address Pipelining

In the 80386, the timing address and status outputs can be controlled so the outputs become
valid before the end of the previous bus cycle. This technique, which allows bus cycles to be
overlapped, is called address pipelining. Figure 3-4 compares non-pipelined address cycles to
pipelined address cycles.

Address pipelining increases bus throughput without decreasing allowable memory or I/O
access time, thus allowing high bandwidth with relatively inexpensive components. In addition,
using pipelining to address slower devices can yield the same throughput as addressing faster
devices with no pipelining. A 16-MHz 80386 can transfer data at the maximum rate of 32
megabytes per second while allowing an address access time of three CLK cycles
(187.5 nanoseconds at CLK = 16 MHz neglecting signal delays); without address pipelin-
ing, the access time is only two CLK cycles (125 nanoseconds at CLK = 16 MHz). When
address pipeline is activated following an idle bus cycle, performance is decreased slightly
because the first bus cycle cannot be pipelined.. This condition is explained fully in
Chapter 4.

3.1.3 32-Bit Data Bus Transfers and Operand Alignment
The 80386 can address up to four gigabytes (232 bytes, addresses 00000000H-FFFFFFFFH)

of physical memory and up to 64 kilobytes (2'¢ bytes, addresses 00000000H-0000FFFFH)
of I/0. The 80386 maintains separate physical memory and I/O spaces.

3-5

Il'ltel LOCAL BUS INTERFACE

IDLE CYCLE 1 CYCLE 2 IDLE CYCLE 3 IDLE
NON-PIPELINED NON=PIPELINED NON=PIPELINED
(READ) (WRITE) (READ)
Ti T T2 Tt T2 T2 Ti T T2 T2 T
eue [pupEpipipugs it
(o230 e N/ NSNS /NSNS
BEO #~BE1 # ;
A2- A31, VALID 1 VALID 2 VALID 3
M/I0 #,D/C#
w/re [
sos# [/ / /
\/\/\/ V VVVVVV \/
wat [XXX
32=BIT 32-BIT 32~BIT
BUS SIZE BUS SIZE BUS SIZE
BS16 # [
READY # [
END CYCLE 1 END CYCLE 2 END CYCLE 3
LOCK # [VALID 1 VALID 2 VALID 3
00-031[B R R }-- IN (ouT e ..---L-- IN .o
1
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can immediately
follow the write cycle.
231630-16

Figure 3-2. 80386 Bus States Timing Example

The programmer views the address space (memory or 1/O) of the 80386 as a sequence of
bytes. Words consist of two consecutive bytes, and double words consist of four consecutive
bytes. However, in the system hardware, address space is implemented in four sections. Each
of the four 8-bit portions of the data bus (D0-D7, D8-D15, D16-D23, and D24-D31) connects
to a section. When the 80386 reads a doubleword, it accesses one byte from each section.
The 80386 automatically translates the programmers’ view of consecutive bytes into this
hardware implementation (see Figure 3-5).

The 80386 memory spaces and I/O space are organized physically as sequences of 32-bit
doublewords (2% 32-bit memory locations and 2'¢ 32-bit I/O ports maximum). Each double-
word starts at a physical address that is a multiple of four, and has four individually address-
able bytes at consecutive addresses.

3-6

Intel LOCAL BUS INTERFACE

RESET
ASSERTED

ASSERTED ¢ NO REQUEST

NO REQUEST

ALWAYS

REQUEST PENDING READY# ASSERTED «

REQUEST PENDING

READY# NEGATED

Bus States: NA# NEGATED

T1—first clock of a non-pipelined bus cycle (80386 drives new address and asserts ADS #)
T2—subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
Ti— idle state

The fastest bus cycle consists of two states: T1 and T2.

231630-17

Figure 3-3. Bus State Diagram (Does Not Include Address Pipelining)

Pins A31-A2 correspond to the most significant bits of the physical address; these pins address
doublewords of memory. The two least significant bits of the physical address are used inter-
nally to activate the appropriate byte enable output (BE3#-BEO#). Figure 3-6 shows the
relationship between physical address, doubleword location, data bus pins, and byte enables.
This relationship holds for a 32-bit bus only; the organization for a 16-bit bus is described
later in Section 3.1.10.

Data can be transferred in quantities of 32 bits, 24 bits, 16 bits, or 8 bits for each bus cycle
of a data transfer. Table 3-3 shows which bytes of a 32-bit doubleword can be transferred
in a single bus cycle. If a data transfer can be completed in a single cycle, the transfer is
said to be aligned. For example, a word transfer involving D23-D8 and activating BE1# and
BE2# is aligned.

Transfers of words and doublewords that overlap a doubleword boundary of the 80386 are
called misaligned transfers. These transfers require two bus cycles, which are automatically
generated by the 80386. For example, a word transfer at (byte) address 0003H requires two
byte transfers: the first transfer activates doubleword address 0004H and uses D7-DO0, and
the second transfer activates doubleword address 0000H and uses D31-D24.

3-7

Intel LOCAL BUS INTERFACE

NON-PIPELINED

CLK2
(INPUT)

BEO#-BE3#, A2-A31,
M/IO#, DICH, WIRH
(OUTPUTS)

T T
VALID 2 VALID 3

ADS#
(ouTPUT)

NA#
(INPUT)

W/ N\ |\ | \d
X

~

LOCK#

(ouTPUT) V?LID 1 VALID2 VALID 3

D0-D31
(INPUT DURING READ)

ACCESS
TIME

T2P TP T2P
vﬂl@? d:‘lldﬂ o1‘¢2
BEO#-BE3#, A2-A31,

1 1 T
M/IO#, DIC#, WIR# VALID 1 VALID 2 VALID3 VALID 4
(OUTPUTS)

o /TN /TN /TN

NA#
(INPUT)

wi TN\ T\ T\

LOCK#
(OUTPUT) x VALID 1 VALID 2 VALID3

D0-D31 e _L _
(INPUT DURING READ) '} >— = W - IN2 - N3

ACCESS
TIME

hd IN1 - —q«D— -

PIPELINED

CLK2
(INPUT)

G30107

Figure 3-4. Non-Pipelined Address and Pipelined Address Differences

3-8

LOCAL BUS INTERFACE

80386

MEMORY CS o—————

D23-D16

!

MEMORY CS

D15-D8

MEMORY CS Jo—

D7-D0

MEMORY CS

BEO#

BE1#

BE2#

BE3#

G30107
Figure 3-5. Consecutive Bytes in Hardware Implementation
BYTE WORD DWORD
ADDRESS ADDRESS ADDRESS
BEO 0 0 0
BE1 0 0
BE2 2 2 0
BE3 3 2 0
BEO 4 4 4
BE1 5 4 4
BE2 6 6 4
BE3 7 6 4
BEO 8 8 8
31 24|23 1615 8|7 0
BE3# BE2# BE1# BEO#
G30107

Figure 3-6. Address, Data Bus, and Byte Enables for 32-Bit Bus

3-9

Intel LOCAL BUS INTERFACE

Table 3-3. Possible Data Transfers on 32-Bit Bus

Possible Data Transfers to 32-Bit Memory

Size Byte Enables
32 bits 3-2-1-0
24 bits 3-2-1

2-1-0

16 bits 3-2
2-1

1-0

8 bits 3
2

1

0

Figure 3-7 shows the steps required for a misaligned 32-bit transfer. In the first bus cycle,
the physical address crosses over into the next doubleword location, and BEO# and BE1# are
active. In the second bus cycle, the address is decremented to the previous doubleword, and
BE2# and BE3# are active. After the transfer, the data bits are automatically assembled in
the correct order.

Table 3-4 shows the sequence of bus cycles for all possible misaligned transfers. Even though
misaligned transfers are transparent to a program, they are slower than aligned transfers
and should thus be avoided.

Because the 80386 operates on only bytes, words, and doublewords, certain combinations of
BE3#-BEO# are never produced. For example, a bus cycle is never performed with only
BEO# and BE2# active because such a transfer would be an operation on two noncontiguous
bytes at the same time. A single 3-byte transfer will never occur, but a 3-byte transfer followed
or preceded by a 1-byte transfer can occur for some misaligned doubleword transfers.

3.1.4 Read Cycle

Read cycles are of two types: pipelined address cycles and non-pipelined address cycles. In
a non-pipelined address cycle, the address bus and bus status signals become valid during
the first CLK period of the cycle. In a pipelined address cycle, the address bus and bus status
signals are output before the beginning of cycle, in the previous bus cycle, to allow longer
memory access times. Pipelined address cycles are described in Section 3.1.6.

The timing for two non-pipelined address read cycles (one with and one without a wait state)
is shown in Figure 3-8.

LOCAL BUS INTERFACE

FIRST BUS CYCLE: A31—-A2=n+4

32-BIT MEMORY

DATA BUS DATA BUS
A
1 i
| '
1
n+7 n+6 n+5 n+4
n+3 n+2 n+1 n
]
] l
' i |
BE3 BE2 BE1 BEO
HIGH HIGH Low Low
SECOND BUS CYCLE: A31—-A2=n
32-BIT MFMORY
DATA BUS DATA BUS
4 .
1
i |
n+7 n+6 n+5 n+4
n+3 n+2 n+1 n
o— o—
| 1
| 1]
BE3 BE2 BE1 BEO
Low LOow HIGH HIGH

G30107

3-11

Figure 3-7. Misaligned Transfer

LOCAL BUS INTERFACE

IDLE CYCLE1 CYCLE) IDLE
NON-PIPELINED NON-PIPELINED
(READ) (READ)
T T1 T2 T T2 T2 T
ot —LrL -].ﬂ_l —l._I_L —l_ﬂ_ m q_ﬂ_
——
—
BEO#-BE1#, |

A2-A31, VALID 1 | VALIDS
M/IO#, DIC#
WIR#

ADS# / \ /
NA#
32.BIT 32.BIT
BUS SIZE BUS SIZE
BS16#
READY# \Q
END CYCLE END CYCLE
LOCK# VALID 1 VALID 3
D0-D31 j/ mh\ﬁ { w —

G30107

Figure 3-8. Non-Pipelined Address Read Cycles

3-12

ntel LOCAL BUS INTERFACE

Table 3-4. Misaligned Data Transfers on 32-Bit Bus

First Cycle: Second Cycle:
Transfer Physical Address Byte Address Byte
Type Address Bus Enables Bus Enables
Word 4N + 3 4N + 4 0 4N 3
Doubleword 4N + 1 4N + 4 0 4N 1-3
Doubleword 4N + 2 4N + 4 0-1 4N 2-3
Doubleword 4N + 3 4N + 4 0-2 4N 3

NOTE: 4N=Nth doubleword address

The sequence of signals for the non-pipelined cycle is as follows:

e The 80386 initiates the cycle by driving ADS# low. The states of the address bus

(A31-A2), byte enable pins (BE3#-BEO#), and bus status outputs (M/IO#, D/C#,
W/R#, and LOCK#) at the CLK2 edge when ADS# is sampled low determine the type
of bus cycle to be performed. For a read cycle, ,

— W/R# is low
— M /IO# is high for a memory read, low for an I/O read

—For a memory read, D/C# is high if data is to be read, low if an instruction is to be
read. Immediate data is included in an instruction.

— LOCKH# is low if the bus cycle is a locked cycle. Only a memory data read cycle (in a
read-modify-write sequence) can be locked. No other bus master should be permitted
to control the bus between two locked bus cycles.

The address bus, byte enable pins, and bus status pins (with the exception of ADS#)
remain active through the end of the read cycle.

At the end of T2, READY# is sampled. If READY# is low, the 80386 reads the input
data on the data bus.

If READY# is high, wait states (one CLK cycle) are added until READY# is sampled
low. READY# is sampled at the end of each wait state.

Once READY# is sampled low, the 80386 reads the input data, and the read cycle termi-
nates. If a new bus cycle is pending, it begins on the next CLK cycle.

3.1.5 Write Cycle

Write cycles, like read cycles, are of two types: pipelined address and non-pipelined address.

Pipelined address cycles are described in Section 3.1.6.

3-13

Intel LOCAL BUS INTERFACE

Figure 3-9 shows two non-pipelined address write cycles (one with and one without a wait
state. The sequence of signals for a non-pipelined write cycle is as follows:

o The 80386 initiates the cycle by driving ADS# low. The states of the address bus
(A31-A2), byte enable pins (BE3#-BEO#), and bus status outputs (M/IO#, D/C#,
W/R#, and LOCK#) at the CLK edge when ADS# is sampled low to determine the type
of bus cycle to be performed. For a write cycle,

— W/R# is high

—M/IO# is high for a memory write, low for an I/O write

—D/C# is high

— LOCKH# is low if the bus cycle is a locked cycle. Only a memory write cycle (in a read-

modify-write sequence) is locked. No other bus master should be permitted to control
the bus between two locked bus cycles.

The address bus, byte enable pins, and bus status pins (with the exception of ADS#)
remain active through the end of the write cycle.

o At the start of Phase 2 in T1, output data becomes valid on the data bus. This data
remains valid until the start of Phase 2 in T1 of the next bus cycle.

o At the end of T2, READY# is sampled. If READY# is low, the write cycle terminates.

o If READY# is not low, wait states are added until READY# is sampled low. READY#
is sampled at the end of each wait state.

¢ Once READY# is sampled low, the write cycle terminates. If a new bus cycle is pending,
it begins on the next CLK cycle.

3.1.6 Pipelined Address Cycle

Address pipelining allows bus cycles to be overlapped, increasing the amount of time avail-
able for the memory or I/O device to respond. The NA# input of the 80386 controls address
pipelining. NA# is generated by logic in the system to indicate that the address bus is no
longer needed (for example, after the address has been latched). If the system is designed so
that NA# goes active before the end of the cycle, address pipelining may occur.

NA# is sampled at the rising CLK2 edge of Phase 2 of each CLK cycle. Once NA# is
sampled active, the address, byte enables, and bus status signals for the next bus cycle are
output as soon as they are available internally. Once NA# is sampled active, it is not required
again until the CLK cycle after ADS# goes active.

Figure 3-10 illustrates the effect of NA# During the second CLK cycle (T2) of a non-
pipelined address cycle, NA# is sampled low. The address, byte enables, and bus status
signals for the next bus cycle are output in the third CLK cycle (the first wait state of the
current bus cycle). Thereafter, NA# is sampled in the next CLK cycle after ADS# is valid
(T1 of each bus cycle); if NA# is active, the address, byte enables and bus-status pins for
the next cycle are output in T2 if another bus cycle is pending.

3-14

LOCAL BUS INTERFACE

CLK2

(82384 CLK)

BEO#-BE1#

A2-A31,

M/IO#, DIC#

WIR#

ADS#

NA#

BS16#

READY#

LOCK#

D0-D31

.=

IDLE CYCLE1

T

L
/|

NON-PIPELINED
(WRITE)

T2

1L
\/"

CYCLE2
NON-PIPELINED
(WRITE)

T2

UL
\VAVAVE

IDLE

=

VA

LID 1

VALID 2

—

32-BIT 32.BIT
BUS SIZE BUS SIZE
END CYCLE 1 END CYCLE 2
VALID 1 VALID 2
.1.__...__< out X out —r

G30107

Figure 3-9. Non-Pipelined Address Write Cycles

3-15

Intel LOCAL BUS INTERFACE

IDLE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 IDLE
NON=PIPELINED NON~PIPELINED PIPELINED PIPELINED
(WRITE) (READ) (WRITE) (READ)
| |
i T T2 it T2 TP | TIP |, T2P | TIP | T2 n
e [UL
-
(82384 CLK) [\/— \f\/_
BEO # - BE3 # .

A2-A31, VALID 1 VALID 2 VALID 3 VALID 4 OO

M/I0 #, D/C# / /

wry [X ’
ADS#[/—_ >_
NA#[

-
/

C

TO ALLOW TO ALLOW TO ALLOW
RECOGNIZING RECOGNIZING RECOGNIZING
NA # l NA # NA
ss1es [XXX G D, &0,
resors [XOCKCOOOCN N\

LOCK # [VALID 1 VALID 2 VALID 3 VALID 4

00—031[O PR -- ouT ------r---@(ouT)----@--.
| |

Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA# is only sampled during wait states.
Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipelined cycle with at least one wait state
(Cycle 2 above).

231630-20

Figure 3-10. Pipelined Address Cycles

The first bus cycle after an idle bus state is always non-pipelined. To initiate address pipelin-
ing, this cycle must be extended by at least one CLK cycle so that the address and status
can be output before the end of the cycle. Subsequent cycles can be pipelined as long as no
idle bus cycles occur.

NA# is sampled at the start of Phase 2 of any CLK cycle in which ADS# is not active,
specifically,

o The second CLK cycle of a non-pipelined address cycle
e+ The first CLK cycle of a pipelined address cycle

* Any wait state of a non-pipelined address or pipelined address cycle unless NA# has
already been sampled active

Intel LOCAL BUS INTERFACE

Once NA# is sampled active, it remains active internally throughout the current bus cycle.
If NA# and READY# are active in the same CLK cycle, the state of NA# is irrelevant,
because READY # causes the start of a new bus cycle; therefore, the new address and status
signals are always output regardless of the state of NA#.

A complete discussion of the considerations for using address pipelining can be found in the
80386 Data Sheet (Order Number 231630).

3.1.7 Interrupt Acknowledge Cycle

An unmasked interrupt causes the 80386 to suspend execution of the current program and
perform instructions from another program called a service routine. Interrupts are described
in detail in Section 3.4.

The 8259A Programmable Interrupt Controller is a system component that coordinates the
interrupts of several devices (eight interrupts for a single 8259A; up to 64 interrupts with
eight cascaded 8259As). When a device signals an interrupt request, the 8259A activates
the INTR input of the 80386.

Interrupt acknowledge cycles are special bus cycles designed to activate the 8259A INTA
input that enables the 8259A to output a service-routine vector on the data bus. The 80386
performs two back-to-back interrupt acknowledge cycles in response to an active INTR input
(as long as the interrupt flag of the 80386 is enabled).

Interrupt acknowledge cycles are similar to regular bus cycles in that the 80386 bus outputs
signals at the start of each bus cycle and an active READY# terminates each bus cycle. The
cycles are shown in Figure 3-11.

e ADS# is driven low to start each bus cycle.

e Control signals M/IO#, D/C#, and W/R# are driven low to signal to interrupt-
acknowledge bus cycles. These signals must be decoded to generate the INTA input signal
for the 8259A. The decoding logic is usually included in the bus controller logic for the
particular design. Bus controller designs are discussed in Chapters 6 and 8.

e LOCK# is active from the beginning of the first cycle to the end of the second. HOLD
requests from other bus masters are not recognized until after the second interrupt
acknowledge cycle.

e The address driven during the first cycle is 4; during the second cycle, the address is 0.
BE3# BE2#, and BE1# are high, BEO# is low, and A31-A3 are low for both cycles;
A2 is high for the first cycle and low for the second.

* The 80386 floats D31-DO0 for both cycles; however, at the end of the second cycle, the
service routine vector at the 8259A outputs is read by the 80386 on pins D7-DO.

* READY# must go low to terminate each cycle.

System logic must delay READY# to extend the cycle to the minimum pulse-width require-
ment of the 8259A Programmable Interrupt Controller. In addition, the 80386 inserts at
least 160 nanoseconds of bus idle time (four Ti states) between the two cycles to match the
recovery time of the 8259A.

Intej LOCAL BUS INTERFACE

PREVIOUS INTERRUPT IDLE INTERRUPT IDLE
CYCLE ACKNOWLEDGE (4 BUS STATES) ACKNOWLEDGE
CYCLE 1 CYCLE 2
12 it T2 2 Ti Ti Ti T T 2 T21 m
CLKZ[J ”l ||| UU
(82384 CLK)[\F\f _/_
351#,552#.955#[:
L
BEO#, A3-A31, a
M/10#, D/C#, W/R#
[)\
/
Locw[
—
soss [/ N—
wws [)
astes[IGNORED IGNORED
READY#[: X “ _“
IGNORED VECTOR
00_07[...... dececcccaee - ---‘ R cow
IGNORED IGNORED
DB-DSI[................. - - - P L L e reccal e cow

231630-26
Interrupt Vector (0-255) is read on DO-D7 at end of second Interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is followed by idle bus states, asserting NA# has no practical effect. Choose the approach
which is simplest for your system hardware design.

231630-26

Figure 3-11. Interrupt Acknowledge Bus Cycles

3.1.8 Halt/Shutdown Cycle

The halt condition in the 80386 occurs in response to a HLT instruction. The shutdown
condition occurs when the 80386 is processing a double fault and encounters a protection
fault; the 80386 cannot recover and shuts down. Halt or shutdown cycles result from these
conditions. Externally, a shutdown cycle differs from a halt cycle only in the resulting address
bus outputs.

As with other bus cycles, a halt or shutdown cycle is initiated by activating ADS# and the
bus status pins as follows:

¢ M/IO# and W /R# are driven high, and D/C# is driven low to indicate a halt cycle.

3-18

Intel LOCAL BUS INTERFACE

» All address bus outputs are driven low. For a halt condition, BE2# is active; for a shutdown
condition, BEO# is active. These signals are used by external devices to respond to the
halt or shutdown cycle.

READY# must be asserted to complete the halt or shutdown cycle. The 80386 will remain
in the halt or shutdown condition until...

e NMI goes high; 80386 services the interrupt
» RESET goes high; 80386 is reinitialized

In the halt condition (but not in the shutdown condition), if maskable interrupts are enabled,
an active INTR input will cause the 80386 to end the halt cycle to service the interrupt. The
80386 can service processor extension (PEREQ input) requests and HOLD (HOLD input)
requests while in the halt or shutdown condition.

3.1.9 BS16 Cycle

The 80386 can perform data transfers for both 32-bit and 16-bit. data buses. A control input,
BS16#, allows the bus size to be specified for each bus cycle. This dynamic bus sizing gives
the 80386 flexibility in using 16-bit components and buses.

The BS16# input causes the 80386 to perform data transfers for a 16-bit data bus (using
data bus signals D15-DO0) rather than a 32-bit data bus. The 80386 automatically performs
two or three cycles for data transfers larger than 16 bits and for misaligned (odd-addressed)
16-bit transfers.

BS16# must be supplied by external hardware, either through chip select decoding or directly
from the addressed device. BS16# is sampled at the start of Phase 2 only in CLK cycle as
long as ADS# is not active. If BS16# and READY# are sampled low in the same CLK cycle,
the 80386 assumes a 16-bit data bus.

The BS16# control input affects the performance of a data transfer only for data transfers
in which 1) BEO# or BE1# is active and 2) BE2# or BE3# is active at the same time. In
these transfers, the 80386 must perform two bus cycles using only the lower half of the data
bus.

If a BS16 cycle requires an additional bus cycle, the 80386 will retain the current address
for the second cycle. Address pipelining cannot be used with BS16 cycles because address
pipelining requires that the next address be generated on the bus before the end of the current
bus cycle. Therefore, because both signals are sampled at the same sampling window, BS16#
must be active before or at the same time as NA# to guarantee 16-bit operation. Once NA#
is sampled active in a bus cycle and BS16# is not active at that time, BS16# is locked out
internally.

If BS16# is asserted during the last clock of the bus cycle and NA# was not asserted previ-

ously in the bus cycle, then the processor performs a 16-bit bus cycle. This is true, even if
NA# is asserted during the last clock of the bus cycle. Figure 3-12 illustrates this logic.

3-19

Intel LOCAL BUS INTERFACE

Nag
(PN 013) (NTERNAL)

BS16 4
(INTERNAL)

BS164
(PIN C14)

80386 CHIP

231630-22

Figure 3-12. Internal NA# and BS16# Logic

Figure 3-13 compares the signals for 32-bit and 16-bit bus cycles.

3.1.10 16-Bit Byte Enables and Operand Alignment

For a 16-bit data bus, the 80386 views memory and I/O as sequences of 16-bit words. For
this configuration, the Bus High Enable (BHE#), AO or Bus Low Enable (BLE#), and Al
signals are needed. BHE# and BLE# are byte enables that correspond to two banks of memory
in the same way that BE3#-BEO# correspond to four banks. Al is added to A31-A2 to
generate the addresses of 2-byte locations instead of 4-byte locations. Figure 3-14 compares
the addressing configurations of 32-bit and 16-bit data buses.

The BHE#, BLE#, and Al signals can be generated from BE3#, BE2#, BE1#, and BEO#
using just four external logic gates. Table 3-5 shows the truth table for this conversion. Note
that certain combinations of BE3#-BEOQ# are never generated.

When BS16# is sampled active, the states of BE3#-BEO# determine how the 80386 responds:

e BSI16# has no effect if activated for a bus cycle in which BE3# and BE2# are inactive.
o If BEO# and BE1# are both inactive during a BS16 cycle, and either BE2# or BE3# is
active,

—For a write cycle, data on D31-D16 is duplicated on D15-DO0, regardless of the state
of BS16#. (This duplication occurs because BS16# is sampled late in the cycle but
data must be available early).

— For a read cycle, data that would normally be read on D31-D24 is read on D15-D8,
and data that would normally be read on D23-D16 is read on D7-DO.

e If BEO# or BEl# is active, and BE2# or BE3# is active, two bus cycles are required. The
two cycles are identical except BEO# and BE1# are inactive in the second cycle and

— For a write cycle, the data that was on D31-D16 in the first cycle is copied onto
D15-D0.

—For a read cycle, data that would normally be read on D31-D24 is read on D15-D8,
and data that would normally be read on D23-D16 is read on D7-DO.

3-20

LOCAL BUS INTERFACE

IDLE

™

CYCLE 1
NON-PIPELINED
(WRITE)

™ T2

CcLK2 I | | l
(82384 CLK) \-ﬁ\
BEO#-BE3#,

Az-A3t, | VALID 1
MIIO#, DICH
WIRH)
ADS#
NA#
32811
BUS SIZE
BS16# H
READY# 5
END CYCLE
LOCK# VALID 1
D0-D31 ==| = =— == —< out

IDLE

T

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

CYCLE1A
NON-PIPELINED
WRITE)
PART TWO

T2

CYCLE1
NON-PIPELINED
(WRITE
PART ONE

T2

T T
(82384 CLK) _/-_/-_/-_/- \
ALWAYS
BEO#, BE1# VALID 1 NEGATED
DURING PART TWO
BE2#, BE3#,
A2-A31, VALID 1
MIIO#, DIC#
WIRH
ADSH / \ / \
DON'T DON'T
"R M.
BS16#
16-BIT 16-BIT
BUS SIZE BUS SIZE|
READY#
LOCK# X VALID 1
DO-D15 D16-D31
D0-D15 =—t= __.-...< out X out

D16-D31 =

out

G30107

Figure 3-13. 32-Bit and 16-Bit Bus Cycle Timing

3-21

Inte| LOCAL BUS INTERFACE

32, DATA BUS (D0-D31)

"} 32-8BIT
80386 | ADDRESS BUS (BEO#-BE3#,A2-A31) | MEMORY

Tas1 6#

YHIGH
231630-6
" 32 DATA BUS (DO-D31)
¢ 7| 32-81T
80386 \] ADDRESS BUS _ | MEmMORY
(BEO#-BE3#, A2-A31)
BS164
ADDRESS
DECODER 16, DATA BUS (D0-D15) >
ADDRESS BUS (A2-A31) | 16=BIT
(BHER, BLES, A1) | MEMORY
231630-7

Figure 3-14. 32-Bit and 16-Bit Data Addressing

Table 3-6 shows which combinations of BE3#-BEO# require two bus cycles and the states of
BE3#-BEO# for each cycle.

In some cases, 16-bit cycles may be performed without using BS16#. Address pipelining may
be used as follows for these cycles.

» BS16# is not needed for cycles that use only D15-D0.

* BSI16# is not needed for a word-aligned 16-bit write. For write cycles, all 32 bits of the
data bus are driven regardless of bus size.

3.2 BUS TIMING

This section describes timing requirements for read cycles, write cycles, and the READY#
signal.

All 80386 signals have setup and hold time requirements relative to CLK2. The timings of
certain signals relative to one another depends on whether address pipelining is used. These
facts must be considered when determining external logic needed to facilitate bus cycles.

3-22

ntel

LOCAL BUS INTERFACE

Table 3-5. Generation of BHE#, BLE#, and A1 from Byte Enables

80386 Signals

16-Bit Bus Signals

Comments
BE3# BE2# BE1# BEO# A1 BHE# BLE# (AO)

H* H* H* H* X X X x—no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L X X X x—not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L X X X x—not contiguous bytes
L* H* L* H* X X X x—not contiguous bytes
L* H* L* L* X X X x—not contiguous bytes
L L H H H L L
L L* H* L* X X X x—not contiguous bytes
L L L H L L H
L L L L L L L

BLE# asserted when D0-D7 of 16-bit bus is active.
BHE# asserted when D8-D15 of 16-bit bus is active.
A1 low for all even words; A1 high for all odd words.

Key:

x = don’t care

H = high voltage level
L = low voltage level
* = anon-occurring pattern of Byte Enables; either none are asserted, or the pattern has Byte Enables

asserted for non-contiguous bytes

Table 3-6. Byte Enables during BS16 Cycles

First Cycle: Second Cycle:

BE3# BE2# BE1# BEO# BE3# BE2# BE1# BEO#
High High High Low None

High High Low High None

High High Low Low None

High Low High High None

High Low Low High High Low High High
High Low Low Low High Low High High
Low High High High None

Low Low High High None

Low Low Low High Low Low High High
Low Low Low Low Low Low High High

3-23

Intel LOCAL BUS INTERFACE

The analyses that follow are based on the assumption that a 16-MHz 80386 is used. If the
processor is operated at a different frequency, the timings will change accordingly. Example
worst-case signal parameter values from the 80386 Data Sheet (Order Number 231630) are
used; consult the most recent data sheet to confirm these values. Also note that delay times
and setup times must be factored into the timing of system response and interaction with
the 80386 to ensure comfortable margins for all critical timings.

3.2.1 Read Cycle Timing

For read cycles, the minimum amount of time from the output of valid addresses to the
reading of the data bus sets an upper limit on memory access times (including address
decoding time). In a non-pipelined address cycle, this time is

Four CLK2 cycles 125 nanoseconds
— A31-A2 output delay (maximum) —40 nanoseconds
— D31-DO0 input setup (minimum) — 10 nanoseconds

75 nanoseconds
With address pipelining and no wait states, the address is valid one CLK cycle earlier:

Non-pipelined value 75 nanoseconds
+ One CLK cycle (2 CLK2 cycles) +62.5 nanoseconds

137.5 nanoseconds

For both cases above, each wait state in the bus cycle adds 62.5 nanoseconds.

3.2.2 Write Cycle Timing

For write cycles, the elapsed time from the output of valid address to the end of the cycle
determines how quickly the external logic must decode and latch the address. In a non-
pipelined address cycle, this time is

Four CLK2 cycles 125 nanoseconds
— A31-A2 output delay (maximum) —40 nanoseconds

85 nanoseconds

(With address pipelining) (+ 62.5 nanoseconds)
(With N wait states) (+ N*62.5 nanoseconds)

3-24

Intel LOCAL BUS INTERFACE

The minimum amount of time from the output of valid write data by the access device to
the end of the write cycle is the least amount of time external logic has to read the data.
This setup time is

Three CLK2 cycles 93.75 nanoseconds
— D31-D0 output delay (maximum) —50 nanoseconds

43.75 nanoseconds
(With N wait states) (+ N*62.5 nanoseconds)
Data outputs are valid beyond the end of the bus cycle. This data hold time is at least

One CLK2 cycle 31.25 nanoseconds
+D31-DO0 hold time (minimum) + 1 nanoseconds

32.25 nanoseconds
(Wait states do not affect this parameter)

Wait states add the same amounts of data-to-end-of-cycle time as they do for read cycles.
(See Section 3.2.1.)

3.2.3 READY# Signal Timing

The -amount of time from the output of valid address signals to the assertion of READY# to
end a bus cycle determines how quickly external logic must generate the READY# signal.
READY# must meet the 80386 setup time. In a nonpipelined address cycle, READY# signal
timing is as follows:

Four CLK2 cycles 125 nanoseconds
— A31-A2 output delay (maximum) —40 nanoseconds
—READY# setup (minimum) —20 nanoseconds

65 nanoseconds

(With address pipelining) (+ 62.5 nanoseconds)
(With N wait states) (+ N*62.5 nanoseconds)

Again, pipelining and wait states increase this amount of time.

Because the efficiency of a cache depends upon quick turnaround of cache hits (i.e., when
requested data is found in the cache) the timing of the READY# signal is critical; therefore,
READY# is typically generated combinationally from the cache hit comparator. If the
READY# signal is returned too slowly, the speed advantage of the cache is lost.

3-25

Intel LOCAL BUS INTERFACE

3.3 CLOCK GENERATION

3.3.1 82384 Clock Generator

The 82384 Clock Generator is a multifunction component of the 80386 system that provides
clocking for synchronous operation of the 80386 and its support components as follows:

» Both CLK2 (a double-frequency clock for the 80386 and some support devices) and CLK
(a system clock for some 80386 support devices) are generated. The phase of the 82384
CLK matches that of the CLK signal generated internally by the 80386.

» The RESET signal for the 80386 and other system components is generated. The RES#
input of the 82384 accepts an asynchronous input from a simple RC circuit or similar
source, synchronizes the signal with CLK, and outputs the active-high RESET signal to
the 80386 and other system components. The timing and function of the RESET signal
with respect to the 80386 is discussed later in this chapter.

» The 82384 uses the ADS# output of the 80386 (which guarantees setup and hold time to
CLK2) to generate an ADSO# signal, which is functionally equivalent to ADS# but
guarantees setup and hold times with respect to CLK. Devices that are clocked with the
CLK output of the 82384 can use ADSO#.

Figure 3-15 shows a typical circuit to connect the 82384 to the 80386.

Either an external frequency source or a third overtone crystal can be used to drive the
82384. The F/C# input indicates the signal source; if F/C# is pulled high, the 82384 recog-
nizes the signal on its External Frequency Input (EFI) pin as its frequency source. If F/C#
is tied low, the crystal connected to the X1 and X2 pins of the 82384 is its frequency source.
In either case, the source frequency must equal the desired CLK?2 frequency. For example,
a 32 MHz crystal yields a 32 MHz CLK2 signal and a 16 MHz 80386 internal clock rate.

3.3.2 Clock Timing

The CLK2 and CLK outputs of the 82384 are both MOS-level outputs with output high
voltage levels of V—0.6V and adequate drive for TTL inputs. CLK2 is twice the frequency
of CLK.

The internal CLK signal of the 80386 is matched to the CLK output of the 82384 by the
falling edge of the RESET signal. This operation is described with the RESET function in
Section 3.8.

The skew between the 82384 CLK2 and CLK signals is maintained at 0-16 nanoseconds
(regardless of clock frequency). For closely timed interfaces, peripheral devices must be
timed by CLK2. Devices that cannot be operated at the double-clock frequency must use
the CLK output of the 82384. The 80386 interface to these devices must allow for the CLK2-
to-CLK skew.

3-26

Intel LOCAL BUS INTERFACE

HOR— .n

5yH

X, X,
ADS#
RES# RESET RESET ADS#
RC — —>
CIRCUIT EFi 82384 80386
—]
FIC# CLK2 CLK2
- lADso# 1CLK
T0
SUPPORT
PERIPHERALS
G30107
Figure 3-15. Connecting 82384 to 80386

The phase of the CLK output of the 82384 is useful for determining the beginning of a bus
cycle. Because each CLK2 cycle is 31.25 nanoseconds (at CLK2 = 32 MHz), and bus
status signal delays may be as much as 35 nanoseconds, it is impossible to tell from these
status signals alone which CLK2 cycle begins the bus cycle, and therefore when to expect
valid address signals. The phase of CLK can be used to make this determination. ADS#
should be sampled on rising CLK2 transitions when CLK is high, i.e., at the end of phase 2
(see Figure 3-16).

3.4 INTERRUPTS

Both hardware-generated and software-generated interrupts can alter the programmed
execution of the 80386. A hardware-generated interrupt occurs in response to an active input
on one of two 80386 interrupt request inputs (NMI or INTR). A software-generated inter-
rupt occurs in response to an INT instruction or an exception (a software condition that
requires servicing). For complete information on software-generated interrupts, see the 80386
Programmer’s Reference Manual.

3-27

Iﬂte' LOCAL BUS INTERFACE

31.25ns ——| !-—l ! } I

CLK2 r—‘:F—_

— e e Bed

-
RISING EDGE
I'_ QUALIFIER '\

CLK // / /
4-35 ns — |.._(gtTJ:R?CLE

o T

QUALIFIER

0-16 ns —»|

G30107

Figure 3-16. Using CLK to Determine Bus Cycle Start

In response to an interrupt request, the 80386 processes the interrupt (saves the processor
state on the stack, plus task information if a task switch is required) and services the inter-
rupt (transfers program execution to one of 256 possible interrupt service routines). Entry-
point descriptors to service routines or interrupt tasks are stored in a table (Interrupt
Descriptor Table or IDT) in memory. To access a particular service routine, the 80386 must
obtain a vector, or index, to the table location that contains the corresponding descriptor.
The source of this vector depends on the type of interrupt; if the interrupt is maskable (INTR
input active), the vector is supplied by the 8259A Interrupt Controller. If the interrupt is
nonmaskable (NMI input active), location 2 in the IDT is used automatically.

The NMI request and the INTR request differ in that the 80386 can be programmed to
ignore INTR requests (by clearing the interrupt flag of the 80386). An NMI request always
provokes a response from the 80386 unless the 80386 is already servicing a previous NMI
request. In addition, an INTR request causes the 80386 to perform two interrupt-
acknowledge bus cycles to fetch the service-routine vector. These bus cycles are not required
for an NMI request, because the vector location for an NMI request is fixed.

Under the following two conditions a service routine will not be interrupted by an incoming
interrupt:

o The incoming interrupt is an INTR request, and the 80386 is programmed to ignore
maskable interrupts. (The 80386 is automatically programmed to ignore maskable inter-
rupts when it receives any interrupt request. This condition may be changed by the inter-
rupt service routine.) In this case, the INTR request will be serviced only if it is still
active when maskable interrupts are reenabled.

3-28

Intel LOCAL BUS INTERFACE

* The incoming interrupt is an NMI, and the 80386 is servicing a previous NMIL. In this
case, the NMI is saved automatically to be processed after the IRET instruction in the
NMI service routine has been executed. Only one NMI can be saved; any others that
occur while the 80386 is servicing a previous NMI will not be recognized.

If neither of the above conditions is true, and an interrupt occurs while the 80386 is servicing
a previous interrupt, the new interrupt is processed and serviced immediately. The 80386
then continues with the previous service routine. The last interrupt processed is the first one
serviced.

If an NMI request and an INTR request arrive at the 80386 simultaneously, the NMI
request is processed first. Multiple hardware interrupts arriving at the 8259A are processed
according to their priority and are sent to the 80386 INTR input one at a time.

3.4.1 Non-Maskable Interrupt (NMI)

The NMI input of the 80386 generally signals a catastrophic event, such as an imminent
power loss, a memory error, or a bus parity error. This input is edge-triggered (on a low-to-
high transition) and asynchronous. A valid signal is low for eight CLK2 periods before the
transition and high eight CLK2 periods after the transition. The NMI signal can be
asynchronous to CLK2.

An NMI request automatically causes the 80386 to execute the service routine correspond-
ing to location 2 in the IDT. The 80386 will not service subsequent NMI requests until the
current request has been serviced. The 80386 disables INTR requests (although these can
be reenabled in the service routine) in Real Mode. In Protected Mode, the disabling of
INTR requests depends on the gate in IDT location 2.

3.4.2 Maskable Interrupt (INTR)

The INTR input of the 80386 allows external devices to interrupt 80386 program execution.
To ensure recognition by the 80386, the INTR input must be held high until the 80386
acknowledges the interrupt by performing the interrupt acknowledge sequence. The INTR
input is sampled at the beginning of every instruction; it must be high at least eight CLK2
periods prior to the instruction to guarantee recognition as a valid interrupt. This require-
ment reduces the possibility of false inputs from voltage glitches. In addition, maskable
interrupts must enabled in software for interrupt recognition. The INTR 1nput may be
asynchronous to CLK2.

The INTR signal is usually supplied by the 8259A Programmable Interrupt Controller, which
in turn is connected to devices that require interrupt servicing. The 8259A, which is controlled
by commands from the 80386 (the 8259A appears as a set of I/O ports), accepts interrupt
requests from devices connected to the 8259A, determines the priority for transmitting the
requests to the 80386, activates the INTR input, and supplies the appropriate service routine
vector when requested.

An INTR request causes the 80386 to execute two back-to-back interrupt acknowledge bus
cycles, as described earlier in Section 3.1.4.

3-29

Intel LOCAL BUS INTERFACE

3.4.3 Interrupt Latency

The time that elapses before an interrupt request is serviced (interrupt latency) varies
according to several factors. This delay must be taken into account by the interrupt source.
Any of the following factors can affect interrupt latency:

« If interrupts are masked, an INTR request will not be recognized until interrupts are
reenabled.

o If an NMI is currently being serviced, an incoming NMI request will not be recognized
until the 80386 encounters the IRET instruction.

+ If the 80386 is currently executing an instruction, the instruction must be completed. An
interrupt request is recognized only on an instruction boundary. (However, Repeat String
instructions can be interrupted after each iteration.)

» Saving the Flags register and CS:EIP registers (which contain the return address) requires
time.

« If interrupt servicing requires a task switch, time must be allowed for saving and restoring
registers.

+ If the interrupt service routine saves registers that are not automatically saved by the
80386, these instructions also delay the beginning of interrupt servicing.

The longest latency occurs when the interrupt request arrives while the 80386 is executing
a long instruction such as multiplication, division, or a task-switch in the Protected mode.

If the instruction loads the Stack Segment register, an interrupt is not processed until after
the following instruction, which should be an ESP load. This allows the entire stack pointer
to be loaded without interruption.

If an instruction sets the interrupt flag (thereby enabling interrupts), an interrupt is not
processed until after the next instruction.

3.5 BUS LOCK

In a system in which more than one device may control the local bus, locked cycles must be
used when it is critical that two or more bus cycles follow one another immediately. Other-
wise, the cycles can be separated by a cycle from another bus master.

Any bus cycles that must be performed back-to-back without any intervening bus cycles by
other bus masters should be locked. The use of a semaphore is one example of this precept.
The value of a semaphore indicates a condition, such as the availability of a device. If the
80386 reads a semaphore to determine that a device is available, then writes a new value to
the semaphore to indicate that it intends to take control of the device, the read cycle and
write cycle should be locked to prevent another bus master from reading from or writing to
the semaphore in between the two cycles. The erroneous condition that could result from
unlocked cycles is illustrated in Figure 3-17.

3-30

Intel LOCAL BUS INTERFACE

SEMAPHORE

BUS MASTER 1

READS
VALUE 0=NOT BUSY
LOCKED
3%
BUS MASTER 1 CLES
WRITES —_— m
VALUE 1=BUSY
BUS MASTER 2
READS
—_—
BUS MASTER B VALUE 1=BUSY
HAS CONTROL
OF DEVICE
BUS MASTER 2
WAITS FOR
VALUE TO CHANGE

NO ERROR
SEMAPHORE

BUS MASTER 1
READS B m
VALUE 0=NOT BUSY

/
/
/ BUS MASTER 2
UNLOCKED —_ READS
CYCLES \ VALUE 0=NOT BUSY
\
\
BUS MASTER 1
WRITES —_—> D
VALUE 1=BUSY
BUS MASTER 2
[:]41———— WRITES
VALUE 1=BUSY

ERROR
BOTH BUS MASTERS
TRY TO CONTROL DEVICE

G30107

Figure 3-17. Error Condition Caused by Unlocked Cycles

The LOCK# output of the 80386 signals the other bus masters that they may not gain
control of the bus. In addition, an 80386 with LOCK# asserted will not recognize a HOLD

request from another bus master.

3.5.1 Locked Cycle Activators

The LOCK# signal is activated explicitly by the LOCK prefix on certain instructions. LOCK#
is also asserted automatically for an XCHG instruction, a descriptor update, interrupt

acknowledge cycles, and a page table update.

3-31

Intel LOCAL BUS INTERFACE

3.5.2 Locked Cycle Timing

LOCK# is activated on the CLK2 edge that begins the first locked bus cycle. LOCK# is
deactivated when READY# is sampled low at the end of the last bus cycle to be locked.

LOCK# is activated and deactivated on these CLK2 edges whether or not address pipelining
is used. If address pipelining is used, LOCK# will remain active until after the address bus
and bus cycle status signals have been asserted for the pipelined cycle. Consequently, the
LOCK# signal can extend into the next memory access cycle that does not need to be locked.
(See Figure 3-18). The result is that the use of the bus by another bus master is delayed by
one bus cycle.

3.5.3 LOCK# Signal Duration

The maximum duration of the LOCK# signal affects the maximum HOLD request latency
because HOLD is not recognized until LOCK# goes inactive. The duration of LOCK#
depends on the instruction being executed and the number of wait states per cycle.

UNLOCKED | LOCKED LOCKED | UNLOCKED
BUS CYCLE | BUS CYCLE |BUS CYCLE | BUS CYCLE

= [T

ADDRESS
ASSERTED

BE3#-BEO#
A31-A2

LOCK

Lock# DE ASSERTED >/.
NM% ilimii
READY# /// % / / /A_;

G30107

Figure 3-18. LOCK# Signal during Address Pipelining

3-32

Intel LOCAL BUS INTERFACE

The longest duration of LOCK# in real mode is two bus cycles plus approximately two
clocks. This occurs during the XCHG instruction and in LOCKed read-modify-write opera-
tions. The longest duration of LOCK# in protected mode is five bus cycles plus approxi-
mately fifteen clocks. This occurs when an interrupt (hardware or software interrupt) occurs
and the 80386 performs a LOCKed read of the gate in the IDT (8 bytes), a read of the
target descriptor (8 bytes), and a write of the accessed bit in the target descriptor.

3.6 HOLD/HLDA (Hold Acknowledge)

The 80386 provides on-chip arbitration logic that supports a protocol for transferring control
of the local bus to other bus masters. This protocol is implemented through the HOLD input
and HLDA output.

3.6.1 HOLD/HLDA Timing

To gain control of the local bus, the requesting bus master drives the 80386 HOLD input
active. This signal must be synchronous to the CLK2 input of the 80386. The 80386 responds
by completing its current bus cycle (plus a second locked cycle or a second cycle required
by BS16#). Then the 80386 sets all outputs but HLDA to the three-state OFF condition to
effectively remove itself from the bus and drives HLDA active to signal the requesting bus
master that it may take control of the bus.

The requesting bus master must maintain HOLD active until it no longer needs the bus.
When HOLD goes low, the 80386 drives HLDA low and begins a bus cycle (if one
is pending).

For valid system operation, the requesting bus master must not take control of the bus before
it receives the HLDA signal and must remove itself from the bus before de-asserting the
HOLD signal. Setup and hold times relative to CLK2 for both rising and falling transitions
of the HOLD signal must be met.

When the 80386 receives an active HOLD input, it completes the current bus cycle before
relinquishing control of the bus. Figure 3-19 shows the state diagram for the bus including
the HOLD state.

During the HOLD state, the 80386 can continue executing instructions in its Prefetch Queue.
Program execution is delayed if a read cycle is needed while the 80386 is in the HOLD
state. The 80386 can queue one write cycle internally, pending the return of bus access; if
more than one write cycle is needed, program execution is delayed until HOLD is released
and the 80386 regains control of the bus.

HOLD has priority over most bus cycles, but HOLD is not recognized between two interrupt
acknowledge cycles, between two repeated cycles of a BS16 cycle, or during locked cycles.
For the 80386, HOLD is recognized between two cycles required for misaligned data trans-
fers; for the 8086 and 80286 HOLD it is not recognized. This difference should be consid-
ered if critical misaligned data transfers are not locked.

3-33

Intel LOCAL BUS INTERFACE

HOLD ASSERTED
READY# ASSERTED
HOLD ASSERTED
O
. 0%
) 578,
KN HOLD NEGATED * N3,
‘\é’\{v REQUEST PENDING S
& S
% &
RESET oE &
ASSERTED ¥
S
N + HOLD NEGATED+ Ng g
HOLD NEGATED otk 2gSERTED £ouest
NO REQUEST REN
‘ ALWAYS NAy NECATED
REQUEST PENDING * . TP
READY# ASSERTED &S
HOLD NEGATED AV) 5&}@«\
REQUEST PENDING Sag L .
(=13 COAS;
REES \®od&
READY# ASSERTED b % o
HOLD NEGATED* e H
REQUEST PENDING READT NEGATED- |23 33 g
NA# NEGATED [S2 %R .
s .o 28 8
288z &2 =
wees 2ol e
Sx2z 78 3
$H2d <. <
BZ- «0 N
’]’2 | 2<oy ¥ 3
Seoy ZYg <
READYy ASSERTED® 33229 ¢ S
HOLD NEGATED * . ® ez
NO REQUEST :
Bus States: SE 2
T1—first clock of a non-pipelined bus cycle (80386 drives new address and 3 25
asserts ADS #). 3 &g
T2—subsequent clocks of a bus cycle when NA# has not been sampled READY# NEGATED ggg
asserted in the current bus cycle. KO eseaTeD) £g2
T2l—subsequent clocks of a bus cycle when NA# has been sampled as-
serted in the current bus cycle but there is not yet an internal bus request
pending (80386 will not drive new address or assert ADS #).
T2P—subsequent clocks of a bus cycle when NA# has been sampled
asserted in the current bus cycle and there is an internal bus request pend-
ing (80386 drives new address and asserts ADS #).
T1P—first clock of a pipelined bus cycle.
Ti—idle state.
Th—hold acknowledge state (80386 asserts HLDA).
Asserting NA# for pipelined address gives access to three more bus READY# NEGATED
states: T2, T2P and T1P.
Using pipelined address, the fastest bus cycle consists of T1P and T2P.
231630-24

Figure 3-19. Bus State Diagram with HOLD State
HOLD is not recognized while RESET is active, but is recognized during the time between
the high-to-low transition of RESET and the first instruction fetch.
All inputs are ignored while the 80386 is in the HOLD state, except for the following:

» HOLD is monitored to determine when the 80386 may regain control of the bus.

o RESET takes precedence over the HOLD state. An active RESET input will reinitialize
the 80386.

» One NMI request is recognized and latched. It is serviced after HOLD is released.

3-34

Intel LOCAL BUS INTERFACE

3.6.2 HOLD Signal Latency

Because other bus masters such as DMA controllers are typically used in time-critical appli-
cations, the amount of time the bus master must wait (latency) for bus access can be a
critical design consideration.

The minimum possible latency occurs when the 80386 receives the HOLD input during an
idle cycle. HLDA is asserted on the CLK2 rising edge following the HOLD active input
(synchronous to CLK?2). The latency is at least

One CLK2 period 31.25 nanoseconds
+ HOLD setup time (minimum) 25 nanoseconds
+HLDA output delay (minimum) 4 nanoseconds

60.25 nanoseconds

Because a bus cycle must be terminated before HLDA can go active, the maximum possible
latency occurs when a bus-cycle instruction is being executed. Wait states increase latency,
and HOLD is not recognized between certain types of bus cycles.

3.6.3 HOLD State Pin Conditions

LOCK#, M/IO#, D/C#, W/R#, ADS#, A31-A2, BE3#-BEO#, and D31-DO enter the three-
state OFF condition in the HOLD state. Note that external pullup resistors may be required
on ADS#, LOCK# and other signals to guarantee that they remain inactive during transi-
tions between bus masters.

3.7 RESET

RESET starts or restarts the 80386. When the 80386 detects a low-to-high‘ transition on
RESET, it terminates all activitiecs. When RESET goes low again, the 80386 is initialized
to a known internal state and begins fetching instructions from the reset address.

3.7.1 RESET Timing

The 82384 Clock Generator generates the RESET signal to initialize the 80386 and other
system components. The 82384 has a Schmitt-trigger RES# input signal used to generate
the RESET signal from an active-low pulse. The hysteresis on the RES# input prevents the
RESET output from entering an indeterminate state, so a simple RC circuit can be used to
generate the RES# input on power-up. Figure 3-20 shows an RC circuit that satisfies timing
requirements for the RES# input.

The RESET input of the 80386 must remain high for at least 15 CLK2 periods to ensure
proper initialization (at least 80 CLK?2 periods if self-test is to be performed). The CLK
output of the 82384 is initialized with the rising edge of RESET. When RESET goes low,
the 80386 adjusts the falling edge of its internal clock (CLK) to coincide with the start of
the first CLK2 cycle after the high-to-low transition of RESET. The 82384 times

3-35

Intel LOCAL BUS INTERFACE

82384

iN914

RES#

G30107

Figure 3-20. Typical RC RESET Timing Circuit

high-to-low edge of RESET (synchronous to CLK2) so that the phase of the internal CLK
of the 80386 matches the phase of the CLK output of the 82384. This relationship is shown
in Figure 3-21.

On the high-to-low transition of RESET, the BUSY# pin is sampled. If BUSY# is low, the
80386 will perform a self-test lasting approximately 22 + 60 CLK2 cycles before it begins
executing instructions. The 80386 continues with initialization after the test, regardless of
the test results.

The 80386 fetches its first instruction from linear address OFFFFFFFOH, sometime between
350 and 450 CLK2 cycles after the high-to-low transition of RESET (or, if self-test is
performed,after completion of self-test). Because paging is disabled, linear address
OFFFFFFFOH is the same as physical address OFFFFFFFOH. This location normally contains
a JMP instruction to the beginning of the bootstrap program.

3.7.2 80386 Internal States

RESET should be kept high for at least one millisecond after V. and CLK2 have reached
their DC and AC specifications.

The 80386 samples its ERROR# input during initialization to determine the type of proces-
sor extension present in the system. This sampling occurs at some time at least 20 CLK2
periods after the high-to-low transition of RESET and before the first instruction fetch. If
the ERROR# input is low, the 80386 assumes that an 80387 numeric coprocessor is being
used, and the programmer must issue a command (FINIT) to reset the ERROR# input after
initialization. If ERROR# is high, an 80287 or no processor extension is assumed. In this
case, a software test must be run to determine whether an 80287 is actually present and to
set the corresponding flag in the 80386. This test is described in Chapter 5.

3-36

lg-¢€

|¢1|¢2|¢1|¢2|d’1‘¢2|¢1|¢2|

wal LML L L
Rcs#[_\ p (7//77/
ax [XX 01_|<fsacr~m|.\—/-5 5"\ SN N

PUT IN PHASE WITH 82384 ENSURES THAT ITS
THE PHASE 80386 WILL HAVE RESET OUTPUT FALLING EDGE
AFTER RESET FALLING EDGE OCCURS DURING PHASE TWO

=5 {

80386 ASSUMES RESET
FALLING EDGE OCCURS DURING
PHASE TWO, AND SETS ITS
OWN INTERNAL PHASE TO MATCH

RESET [/

231659-7

Figure 3-21. RESET, CLK, and CLK2 Timing

3OV4H3LNI SNg TvO01

lnté LOCAL BUS INTERFACE

3.7.3 80386 External States

RESET causes the 80386 output pins to enter the states shown in Table 3-7. Data bus pins
enter the three-state condition.

Prior to its first instruction fetch, the 80386 makes no internal requests to the bus, and,
therefore, will relinquish bus control if it receives a HOLD request (see Section 3.7 for a
complete description of HOLD cycles).

Interrupt requests (INTR and NMI) are not recognized before the first instruction fetch.

Table 3-7. Output Pin States during RESET

Pin Name Pin State
LOCK#, D/C#, ADS#, A31-A2 High
W/R#, M/10#, HLDA, BE3#-BEO# Low
D31-D0O Three-State

3-38

Performance Considerations 4

CHAPTER 4
PERFORMANCE CONSIDERATIONS

System performance measures how fast a microprocessing system performs a given task or
set of instructions. Through increased processing speed and data throughput, an 80386
operating at the heart of a system can improve overall performance immensely. The design
of supporting logic and devices for efficient interaction with the 80386 is also important in
optimizing system performance.

This chapter describes considerations for achieving high performance in 80386-based systems.
A variety of examples illustrate the potential performance levels for a number of
applications.

4.1 WAIT STATES AND PIPELINING

Because a system may include devices whose response is slow relative to the 80386 bus cycle,
the overall system performance is often less than the potential performance of the 80386.
Two techniques for accommodating slow devices are wait states and address pipelining. The
designer must consider how to use one or both of these techniques to minimize the impact
of device performance on system performance.

The impact of memory device speed on performance is generally much greater than that of
I/0O device speed because most programs require more memory accesses than I/O accesses.
Therefore, the following discussion focuses on memory performance.

Wait states are extra CLK cycles added to the 80386 bus cycle. External logic generates
wait states by delaying the READY# input to the 80386. For an 80386 operating at 16
MHz, one wait state adds 62.5 nanoseconds to the time available for the memory to respond.
Each wait state increases the bus cycle time by 50 percent of the zero wait-state cycle time;
however, overall system performance does not vary in direct proportion to the bus cycle
increase. The second column of Table 4-1 shows the performance impact (based on an
example simulation) for memory accesses requiring different numbers of wait states; one
wait state results in an overall performance decrease of 19 percent.

Table 4-1. 80386 Performance with Wait States and Pipelining

Wait States Wait States Performance Relative Bus
When Address When Address to Non-Pipelined Utilization

is Pipelined is Not Pipelined 0 Wait-State

0 0 1.00 73%

0 1 0.91 79%

1 1 0.81 86%

1 2 0.76 89%

2 2 0.66 91%

2 3 0.63 92%

3 3 0.57 93%

4-1

Intel PERFORMANCE CONSIDERATIONS

Unlike a wait state, address pipelining increases the time that a memory has to respond by
one CLK cycle without lengthening the bus cycle. This extra CLK cycle eliminates the output
delay of the 80386 address and status outputs. Address pipelining overlaps the address and
status outputs of the next bus cycle with the end of the current bus cycle, lengthening the
address access time by one or more CLK cycles from the point of view of the accessed
memory device. An access that requires two wait states without address pipelining would
require one wait state with address pipelining. The third column of Table 4-1 shows
performance with pipelining for different wait-state requirements.

Address pipelining is advantageous for most bus cycles, but if the next address is not avail-
able before the current cycle ends,the 80386 cannot pipeline the next address, and the bus
timing is identical to a non-pipelined bus cycle. Also, the first bus cycle after an idle bus
must always be non-pipelined because there is no previous cycle in which to output the address
early. If the next cycle is to be pipelined, the first cycle must be lengthened by at least one
wait state so that the address can be output before the end of the cycle.

With the 80386, address pipelining is optional so that bus cycle timing can be closely tailored
to the access time of the memory device; pipelining can be activated once the address is
latched externally or not activated if the address is not latched.

The 80386 NA# input controls address pipelining. When the system no longer requires the
80386 to drive the address of the current bus cycle (in most systems, when the address has
been latched), the system can activate the 80386 NA# input. The 80386 outputs the address
and status signals for the next bus cycle on the next CLK cycle.

The system must activate the NA# signal without knowing which device the next bus cycle
will access. In an optimal 80386 system, address pipelining should be used even for fast
memory that does not require pipelining, because if a fast memory access is followed by a
pipelined cycle to slower memory, one wait state is saved. If a fast memory access is followed
by another fast memory access, the extra time is not used, and no processor time is lost.
Therefore, all devices in a system must be able to accept both pipelined and non-pipelined
cycles.

Consider a system in which a non-pipelined memory access requires one wait state and a
non-pipelined I/O access requires four wait states. The bus control logic reads chip select
signals from the address decoder to determine whether one or four wait states are required
for the bus cycle. The bus control logic also determines whether the address has been
pipelined, because a pipelined cycle requires one less wait state. The system includes logic
for generating a Bus Idle signal that indicates whether the bus cycle has ended. The bus
control logic can therefore detect that the address has been pipelined if the Address Status
(ADS#) signal goes active while the Bus Idle signal is inactive.

Address pipelining is less effective for I/O devices requiring several wait states. The larger
the number of wait states required, the less significant the elimination of one wait state
through pipelining becomes. This fact coupled with the relative infrequency of I/O accesses
means that address pipelining for I/O devices usually makes little difference to system
performance.

4-2

intel

A third and less common approach to accommodating memory speed is reducing the 80386
operating frequency. Because a slower clock frequency increases the bus cycle time, fewer
wait states may be required for particular memory devices. At the same time, however,
system performance depends directly on the 80386 clock frequency; execution time increases
in direct proportion to the increase in clock period (reduction in clock frequency). A
12.5-MHz 80386 requires almost 33 percent more time to execute a program than a
16-MHz 80386 operating with the same number of wait states.

PERFORMANCE CONSIDERATIONS

The design and application determine whether frequency reduction makes sense. In some
instances, a slight reduction in clock frequency reduces the wait-state requirement and
increases system performance. Table 4-2 shows that a 12.5-MHz 80386 operating with zero
wait states yields better performance than a 16-MHz 80386 operating with two wait states.

Table 4-2. Wait States versus Operating Frequency

Number of 16 MHz Without 16 MHz With 12.5 MHz Without 12.5 MHz With
Wait States Pipelining Pipelining Pipelining Pipelining

0 1.00 0.91 0.78 0.71

1 0.81 0.76 0.64 0.59

2 0.66 0.63 0.52 0.49

3 0.57 — 0.45 —

4-3

Coprocessor Hardware Interface 5

CHAPTER 5
COPROCESSOR HARDWARE INTERFACE

A numeric coprocessor enhances the performance of an 80386 system by performing numeric
instructions in parallel with the 80386. The 80386 automatically passes on these instructions
to the coprocessor as it encounters them.

Intel offers two numeric coprocessors:

e The 80287 performs 16-bit data transfers. With the proper interface, the 80386 supports
the 80287.

» The 80387 performs 32-bit data transfers and interfaces directly with the 80386. The
80387 supports the instruction set of both the 80287 and the 8087, offering additional
enhancements that include full compatibility with the IEEE Floating-Point Standard, draft
10. The performance of a 16-MHz 80387 is about eight times faster than that of a
5-MHz 80287.

Either an 80287 or an 80387 numeric coprocessor can be included in an 80386 system. The
80386 samples its ERROR# input during initialization to determine which coprocessor is
present. As mentioned above, the 80287 and 80387 require different interfaces and therefore
slightly different protocols. The 80287 data bus is 16 bits wide, whereas the 80387 data bus
is 32 bits wide.

Data transfers to and from a coprocessor are accomplished through I/O addresses
800000F8H and 800000FCH; these addresses are automatically generated by the 80386 for
coprocessor instructions and allow simple chip-select generation using A31 (high) and
M/IO# (low). Because A31 is high for coprocessor cycles, the coprocessor addresses lie
outside the range of the programmed I/O address space and are easy to distinguish from
programmed 1/O addresses. Coprocessor usage is independent of the I/O privilege level of
the 80386.

The 80386 has three input signals for controlling data transfer to and from an 80287 or
80387 coprocessor: BUSY#, Coprocessor Request (PEREQ), and ERROR# These signals,
which are level-sensitive and may be asynchronous to the CLK2 input of the 80386, are
described as follows:

e BUSY# indicates that the coprocessor is executing an instruction and therefore cannot
accept a new one. When the 80386 encounters any coprocessor instruction except FNINIT
and FNCLEX, the BUSY# input must be inactive (high) before the coprocessor accepts
the instruction. A new instruction therefore cannot overrun the execution of the current
coprocessor instruction. (Certain 80387 instructions can be transferred when BUSY# is
active (low). These instructions are queued and do not interfere with the current
instruction.)

» PEREQ indicates that the coprocessor needs to transfer data to or from memory. Because
the coprocessor is never a bus master, all input and output data transfers are performed
by the 80386. PEREQ always goes inactive before BUSY# goes inactive.

5-1

Intel COPROCESSOR HARDWARE INTERFACE

« ERROR# is asserted after a coprocessor math instruction results in an error that is not
masked by the coprocessor’s control register. The data sheets for the 80287 and 80387
describe these errors and explain how to mask them under program control. If an error
occurs, ERROR# goes active before BUSY# goes inactive, so that the 80386 can take
care of the error before performing another data transfer.

5.1 80287 NUMERIC COPROCESSOR INTERFACE

The 80287 is described in this section only as it relates to the 80386. For a complete functional
description of the 80287, see the 80287 Data Sheet.

5.1.1 80287 Connections

The connections between the 80386 and the 80287 are shown in Figure 5-1. These connec-
tions are made as follows:

« The 80287 BUSY#, ERROR#, and PEREQ outputs are connected to corresponding 80386
inputs.

» The 80287 RESET input is connected to the 82384 RESET output.

o The 80287 Numeric Processor Select chip-select inputs (NPS1# and NPS2) are connected
to the latched M/IO# and A31 outputs, respectively. For coprocessor cycles, M/IO# is
always low; A31, high.

» The 80287 Command inputs (CMDI1 and CMDO) differentiate data from commands.
These inputs are connected to ground and the latched A2 output, respectively. The 80386
outputs address 800000F8H when writing a command, address 800000FCH when writing
or reading data.

* The lower half of the data bus connects to the 16 data bits of the 80287. The 80386
transfers data to and from the 80287 only over the D15-DO0 lines.

» The 80287 Numeric Processor Read (NPRD#) and Numeric Processor Write (NPWR#)
inputs are connected to I/O read and write signals from local bus control logic. The
configuration of this logic depends on the overall system.

¢ The 80287 Processor Extension Acknowledge (PEACK#) input is pulled high. In an 80286
system, the 80286 generates PEACK# to disable the PEREQ output of the 80287 so that
extra data is not transferred. Because the 80386 knows the length of the operand and will
not transfer extra data, PEACK# is not needed or used in 80386 systems.

5.1.2 80287 Bus Cycles

When the 80386 encounters a coprocessor instruction, it automatically generates one or more
I/O cycles to I/O addresses 800000F8H and 800000FCH. The 80386 performs all neces-
sary bus cycles to memory and transfers data to and from the 80287 on the lower half of the

5-2

Inte| COPROCESSOR HARDWARE INTERFACE

SHARED WITH OTHER
MEMORY AND l/O

82384 8284A
CLOCK CLOCK
GENERATOR GENERATOR
CLK2 RESET CLOCK |
Y 1
CLK2 RESET RESET CLK
— — —AN— v
BUSY BUSY CKM cc
ERROR ERROR
PEREQ PEREQ
1
_ | | ___
Mmio] 1 »1 NPS1
74F373 ! N
A31 1: »1 | ATCH I NPS2
A2 > cmo1
! [
80386 I T | -
cPU I | 1 cmbo
| |
D15:0 (> 74F245 A D15:0 . PEACK —AAMN— Ve
|
| I ! 80287
I I' NUMERIC
COPROCESSOR
o] =
READY |1 LOCAL iOR I »1 NPRD
55 M 16 | BUS |
ADS, M/i0 CONTROLLER imw »l Tewa
1
| LOCAL BUS LOGIC I
| |
-

G30107

Figure 5-1. 80386 System with 80287 Coprocessor

data bus. The 80386 automatically converts 32-bit memory transfers to 16-bit 80287 trans-
fers and vice versa. Because the 80386 automatically performs 80287 transfers as 16 bits
wide, the BS16# input of the 80386 does not need to be activated for transfers to and from
the 80287.

Bus control logic must guarantee 80287 timing requirements, particularly the minimum
command inactive time (Tcypr). Depending on the design of the bus controller, command
delays may be required.

5-3

Intel COPROCESSOR HARDWARE INTERFACE

5.1.3 80287 Clock Input

The 80287 can operate from the CLK or CLK2 output of the 82384 or a dedicated clock
oscillator. To operate the 80287 from CLK or CLK2, the Clock Mode (CKM) pin of the
80287 must be tied to ground. In this configuration, the 80287 divides the system clock
frequency internally by three.

The CKM pin of the 80287 is tied high to operate the 80287 from a dedicated MOS-level
clock. In this configuration, the 80287 does not internally divide the clock frequency; it
operates directly from the external clock. An 8284A clock driver and an appropriate crystal
can be used to provide the 80287 with the desired clock frequency.

5.2 80387 NUMERIC COPROCESSOR INTERFACE

The 80387 achieves significant enhancements in performance and instruction capabilities
over the 80287. It runs at internal clock rates of up to 16 MHz. To achieve maximum speed,
the interface with the 80386 is synchronous and includes a full 32-bit data bus. Detailed
information on other 80387 enhancements can be found in the 80387 Data Sheet.

The 80387 is designed to run either fully synchronously or pseudosynchronously with the
80386. In the pseudosynchronous mode, the interface logic of the 80387 runs with the clock
signal of the 80386, whereas internal logic runs with a different clock signal.

5.2.1 80387 Connections

The connections between the 80386 and the 80387 are shown in Figure 5-2 and are described
as follows:

» The 80387 BUSY#, ERROR#, and PEREQ outputs are connected to corresponding 80386
inputs.

» The 80387 RESETIN input is connected to the 82384 RESET output.

» The 80387 Numeric Processor Select chip-select inputs (NPS1# and NPS2) are connected
directly to the 80386 M/IO# and A3l outputs, respectively. For coprocessor cycles,
M/IO# is always low; A31, high.

» The 80387 Command (CMDO0#) input differentiates data from commands. This input is
connected directly to the 80386 A2 output. The 80386 outputs address 800000F8H when
writing a command or reading status, address 800000FCH when writing or reading data.

» All 32 bits (D31-D0) of the 80386 data bus connect directly to the data bus of the 80387.
Because the data lines are connected directly, any local data bus transceivers must be
disabled when the 80386 reads data from the 80387.

o The 80387 READY#, ADS#, and W /R# inputs are connected to the corresponding pins
on the 80386. READY# and ADS# are used by the 80387 to track bus activity and
determine when W/R#, NPS1#, NPS2, and Status Enable (STEN) can be sampled.

5-4

COPROCESSOR HARDWARE INTERFACE

32 MHz CLOCK GENERATOR

., . 1

X1 X2 EF! FIC#
ADSO#

FROM OTHER PERIPHERALS

A

80387
82384 CLOCK
GENERATOR
(OPTIONAL)
CLK2
RES# CLK
I RESET
»| Aps#
WAIT STATE
GENERATOR |+
(OPTIONAL) |
AND OR LOGIC
HLDA
DIC# |
— ET
RES LOCK# |
READY#
BEO#-BE3#
CLK2
—»1 BS16# MIO#
] NA# A3t
i HOLD A30-A3
—{ INTR A2
80386
—1 NMI WIR#
ADS#
32
DO-D31 S
BUSY#
ERROR#
PEREQ

HARDWARE INTERFACE

(6-2) 80386-80387 PSEUDO SYNCHRONOUS

CKM

387CLK2

386CLK2

RESET IN
READY#

READYO#

80387

NPS1#
NPS2

CMD#
WIR#
ADS#
D0-D31
BUSY#
ERROR#
PEREQ

STEN

G30107

Figure 5-2. 80386 System with 80387 Coprocessor

5-5

Intel COPROCESSOR HARDWARE INTERFACE

 STEN is an 80387 chip select and can be pulled high. If multiple 80387s are used by the
same 80386, STEN can be used to activate one 80387 at a time.

e Ready Out (READYO#) is an optional output that can be used to generate the wait
states required for a coprocessor. External logic can generate these wait states easily as
well, because the number of wait states is constant.

5.2.2 80387 Bus Cycles

When the 80386 encounters a coprocessor instruction, it automatically generates one or more
I/0O cycles to addresses 800000F8H and 800000FCH. The 80386 will perform all necessary
bus cycles to memory and transfer data to and from the 80387. All 80387 transfers are
32 bits wide. If the memory subsystem is only 16 bits wide, the 80386 automatically performs
the necessary conversion before transferring data to or from the 80387.

Read cycles (transfers from the 80387 to the 80386) require at least one wait state, whereas
write cycles to the 80387 require no wait states. This requirement is automatically reflected
in the state of the READYO# output of the 80387, which can be used to generate the
necessary wait state.

5.2.3 80387 Clock Input

The 80387 can be operated in two modes. In either mode, the CLK2 signal must be connected
to the 386CLK2 input of the 80387 because the interface to the 80386 is always synchron-
ous. The state of the 80387 CKM input determines its mode:

¢ In synchronous mode, CKM is high and the 387CLK2 input is not connected. The 80387
operates from the CLK2 signal. Operation of the 80387 is fully synchronous with that of
the 80386.

» In pseudo-synchronous mode, CKM is low and a frequency source for the 387CLK2 input
must be provided. Only the interface logic of the 80387 is synchronous with the 80386.
The internal logic of the 80387 operates from the 387CLK2 clock source, whose frequency
may be 10/16 to 16/10 times the speed of CLK2. Figure 5-3 depicts pseudo-
synchronous operation.

5.3 LOCAL BUS ACTIVITY WITH THE 80287 /80387
Both 80287 and 80387 coprocessors use two distinct methods to interact with the 80386:

* The 80386 initiates coprocessor operations during the execution of a coprocessor instruc-
tion (an ESC instruction). These interactions occur under program control.

» The coprocessor uses the PEREQ signal to request the 80386 to initiate operand transfers
to or from system memory. These operand transfers occur when the 80287/80387 requests
them; thus, they are asynchronous to the instruction execution of the 80386.

5-6

Intel COPROCESSOR HARDWARE INTERFACE

CLKk2 INTERFACE | SYNCHRONOUS

BUS

NUMERIC
CORE ASYNCHRONOUS

80386 | 80387

387CLK2

G30107

Figure 5-3. Pseudo-Synchronous Interface

When the 80386 executes an ESC instruction that requires transfers of operands to or from
the coprocessor, the 80386 automatically sets an internal memory address base register,
memory address limit register, and direction flag. The coprocessor can then request operand
transfers by driving PEREQ active. These requests occur only when the coprocessor is
executing an instruction (when BUSY# is active).

Two, three, four or five bus cycles may be necessary for each operand transfer. These cycles
include one coprocessor cycle plus one of the following:

» One memory cycle for an aligned operand
» Two memory cycles for a misaligned operand
» Two or three memory cycles for misaligned 32-bit operands to 16-bit memory

» Four memory cycles for misaligned 64-bit operands to 16-bit memory

Data transfers for the coprocessor have the same bus priority as programmed data transfers.

5.4 DESIGNING AN UPGRADABLE 80386 SYSTEM

It is relatively simple to design an 80386 system with an 80287 that may be later upgraded
to an 80387. The advantage of such a system is that two performance levels may be addressed
by one system at minimal additional cost.

Intel COPROCESSOR HARDWARE INTERFACE

5.4.1 80287/80387 Recognition

The 80386 samples its ERROR# input during initialization (after RESET goes low and
before execution of the first instruction) to determine the type of coprocessor present. The
80387 holds its ERROR# output low after reset, whereas the 80287 holds its ERROR#
output high. Therefore, if the 80386 samples ERROR# low, it assumes that an 80387 is
present. If it samples ERROR# high, it assumes that either an 80287 is present or that a
coprocessor is not used.

If the 80386 determines that an 80387 is present, the 80386 must be programmed to execute
the FNINIT instruction to reset the ERROR# output of the 80387 before any coprocessor
transaction takes place. Software can determine the coprocessor type by testing the ET bit
in the machine status word. If ET=1, the 80387 is present.

If the 80386 determines that either an 80287 is present or a coprocessor is not used, it must
then execute a routine to determine the presence of an 80287 in order to set its internal
status. Figure 5-4 shows an example of a recognition routine. In order to use this routine,
the designer must connect a pullup resistor to at least one of the lower eight bits of the data
bus if a coprocessor is not used.

In the example routine, the 80386 assumes that the 80287 is present, and executes an
FNINIT instruction. Following the FNINIT instruction, the 80386 reads the 80287 status
word. If an 80287 is present, the lower eight bits of this word (the exception flags) are all
zeros. If an 80287 is not present, these data lines are floating. If a pullup resistor is connected
to at least one of these lines, the absence of an 80287 is confirmed by at least one high bit
in the lower eight bits of the status word. The routine then sets or resets the Emulate Copro-
cessor (EM) bit of the CRO register (shown in Figure 5-5) of the 80386, depending on
whether or not an 80287 is present.

s initialization routine to detect an 80287 Numeric Processor

FND 287: FNINIT ; initialize Numeric Processor

FSTSW AX ;s retrieve 80287 status word

OR AL,AL ; test low-byte 80287 exception flags
; if all zero, then 80287 present and
; properly initialized
3y if not all zero, then 80287 absent.

Jz 6G0T_287 ; branch if 80287 present

SMSW AX ; No numeric processor

OR AX, 04H ; set EM bit in machine status word

LMSHW AX ;s to enable software emulation of 80287

JMP CONTINUE

GOT_287: SMSW AX ; Numeric Procesor present
OR AX, 02H ; set MP bit in machine status word
LMSUW AX ; to permit normal 80287 operation

CONTINUE: ; and off we go.

Figure 5-4. Routine to Detect 80287 Presence

5-8

Il'ltel COPROCESSOR HARDWARE INTERFACE

E P
sim|r|Ee| CRO

NOTE: INDICATES INTEL RESERVED: DO NOT DEFINE.

PG: PAGING ENABLE

ET: PROCESSOR EXTENSION TYPE
TS: TASK SWITCHED

EM: EMULATE COPROCESSOR
MP: MONITOR COPROCESSOR

PE: PROTECTION ENABLE

G30107

Figure 5-5. 80386 Machine Control Register (CRO)

5.4.2 80387 Emulator

The 80387 emulator circuit makes a 10-MHz 80287 appear to the 80386 as an 80387. The
schematic is shown in Figure 5-6. An 80387 socket (80387 PGA Adapter) is connected to
the 80386 (connections not shown) as described earlier in this chapter.

The 80287 sends signals to the 80386 through the socket. The inputs coming to the socket
from the 80386 are decoded by the PAL16L8 (Math Control) to provide the buffered CMDO,
NPRD#, and NPWR# inputs for the 80287. The PAL equations for the Math Control PAL
are listed in Appendix B of this manual.

The data lines of the 80287 are connected to the lower half of the 80386 data bus through
the socket; the BUSY#, ERROR#, and PEREQ signals are returned to the 80386 through
the socket as well. Note that while this circuit allows the 80386 to use an 80387 interface
with the 80287, the 80287 still performs only 16-bit data transfers. Therefore, during initial-
ization, the ERROR# output of the 80287 is high to indicate the presence of an 80287, not
an 80387.

(0 A}

Do Vee?
o1 Vecd
D2 Vee16
03 Vee2s
04 Vec28
DS Vccdd
D6 Veesa
o7 Vecsd
D8 Vb5
D9

D10 Vss2
b1 Vec8
012 V5510
D13 Vss15
D14 Vss24
D15 Vgs30
D16 Vgsd3
D17 Vssd9
D18 Vss59
D18

020

D21

022 cKM
D23 386CLK2
024 387CLK2
D25 WIR#
D26 ADSH
D27 STEN
D28 NPS1
D29 NPS2
D30 cMD#
D31

READYO# READY#
PEREQ

BUSY# RESETIN
ERROR#

+5v

!

A2 22K ::

w2
+5V
34 23 PDO PDO 14
READY ~ READY ~ 1 19 READYOD - 3 2 CMDO Cé’ Nps1E oo 22 PD1 PD1 13
" DAELY o L— 10 1 NPS2 D1
A31 A31 2 12 DisH 18 I0WCD ~ 4 20 20 5 IOWC - 28 NPWR# b2 21 PD2 PD2 12
LRESET _ 3] o 174 by 17_1ORDB~ 1w 30 |&___1ORB- 27 wpros s |20_Po3 PD3__ 11
ADO~ ADS - [l ier o1 [l 10 [&___READYO- 2] vees s |18_PD& PDs 6
MO ~ mio- 5], D1s# 15 AVALIDD - EEY I 5o |12 AVALID- 2 | oo os |18__POS PD5__ 5
o WIR= WIR - [D144 14 DVALIDD) o s0 |=_ovaLio ETN [o6 |7__Po6 PDE__ 4
AVALID~ 7 ” D13 :)i CLK16D -~ 17 7 70 16 CLK16~ 10 Vss10 o7 16 PD7 PD7 3
ovaup- 8} o jous STE N | 181 80 |12 LRESET PD8 1
cLkis- 9} o o £l I os |L15__PDB PDY_ 60
P2 1 1 1] e os |28 P8 | PD10_67
PALIBLO 1 1o |22_PDI10 I PD11_66
b1y J1t__PDI1] PD12_64
MATH CONTROL T4AS374 D12 8 PD12 I PD13 63
D13 7 PD13 I PD14 62
D14 6 PD14 I PD15 61
D15 5 PD15] _58_
21 ckm neis 2 S
386CLK2 ok 32 | Nea 56 |
o RESET X usys fp25 BUSY- 55 |
35 4 reser eRroR# fo2oERROR- S
READYO - 36) peack peneq f2—PEREQ HA 52 |
51)
i
80287 w8
7 |
L]
45
2 |
a1
]
39
READYO - 20]
PEREQ 17
BUSY- 19
8284A-1 ERROR-__ 18
8
-1
387 MATH EMULATOR

80387 PGA ADAPTER

= anp

37

38 286CLK2
L

35

23 W/R

29 ADS

2

2 M/io
R

21 A3t
| 2 A9,

30 A2
p—————o0

31 READY

34 RESET

G30107

3DVIHILNI FHVMAHYH HOSSIDOHAOD

Figure 5-6. 80387 Emulator Schematic

Memory Interfacing

CHAPTER 6
MEMORY INTERFACING

The 80386 high-speed bus interface has many features that contribute to high-performance
memory interfaces. This chapter outlines approaches to designing memory systems that utilize
these features, describes memory design considerations, and lists a number of useful examples.
The concepts illustrated by these examples apply to a wide variety of memory system
implementations.

6.1 MEMORY SPEED VERSUS PERFORMANCE AND COST

In a high-performance microprocessing system, overall system performance is linked to the
performance of memory subsystems. Most bus cycles in a typical microprocessing system
are used to access memory because memory is used to store programs as well as the data
used in processing.

To realize the performance potential of the 80386, a system must use relatively fast memory.
A high-performance processor coupled with low-performance memory provides no better
throughput than a less expensive low-performance processor. Fast memory devices, however,
cost more than slow memory devices.

The cost-performance tradeoff can be mediated by partitioning functions and using a combi-
nation of both fast and slow memories. If the most frequently used functions are placed in
fast memory and all other functions are placed in slow memory, high performance for most
operations can be achieved at a cost significantly less than that of a fast memory subsystem.
For example, in a RAM-based system that uses read-only memory devices primarily during
initialization, the PROM or EPROM can be slow (requiring three to four wait states) and
yet have little effect on system performance. RAM memory can also be partitioned into fast
local memory and slower system memory. Other performance considerations are described
in detail in Chapter 4.

The relationship between memory subsystem performance and the speed of individual memory
devices is determined by the design of the memory subsystem. Cache systems, which couple
a small cache memory with a larger main memory, are described in Chapter 7. Basic memory
interfaces are described in this chapter.

6.2 BASIC ‘MEMORY INTERFACE

The high performance and flexibility of the 80386 local bus interface plus the availability of
programmable and semi-custom logic (programmable logic arrays, for example) make it
practical to design custom bus control logic that meets the requirements of a particular
system. Standard logic components can generate the bus control signals needed to interface
the 80386 with memory and I/O devices. The basic memory interface is discussed in this
chapter; the basic I/O interface is presented in Chapter 8.

6-1

|nte| MEMORY INTERFACING

The block diagram of the basic memory interface is shown in Figure 6-1. The bus control
logic provides the control signals for the address latches, data buffers, and memory devices;
it also returns READY# active to end the 80386 bus cycle and NA# to control address
pipelining. The address decoder generates chip-select signals and the BS16# signal based on
the address outputs of the 80386. This interface is suitable for accessing ROMs, EPROMs,
and static RAMs (SRAMs).

6.2.1 PAL Devices

Many design examples in this manual use PAL (Programmable Array Logic) devices, which
can be programmed by the user to implement random logic. A PAL device can be used as a
state machine or a signal decoder, for example. The advantages of PALs include the
following:

e Programmability allows the PAL functions to be changed easily, simplifying prototype
development.

¢ The designer determines PAL pinout and can simplify the board layout by moving signals
as required.

BUS
CONTROL —
LOGIC -
ADDRESS
DECODER
MEMORY
y ADDRESS DEVICE
LATCH #
READY# NA# BUSSTATUS 1
—»1 BS16# ADDRESS >
80386
DATA MEMORY
DATA TRANSCEIVER DEVICE
| #2

G30107

Figure 6-1. Basic Memory Interface Block Diagram

6-2

Intel MEMORY INTERFACING

e PALs are inexpensive compared to dedicated bus controllers.

e Once a PAL design has been tested, Hard Array Logic (HAL) devices, which are mask-
programmed PALs, can be used in production quantities (several thousand units).

PALs also have the following disadvantages:

¢ Pin counts or speeds of available PALs can restrict some designs.

e Most PALs do not have buried (not connected to outputs) state registers; therefore, in
state-machine implementations, registered output pins must be used to store the current
state.

e The drive capability of PALs may be insufficient for some applications. In these cases,
buffering is required.

A PAL device consists logically of a programmable AND array whose output terms feed a
fixed OR array. Any sum-of-products equation, within the limits of the number of PAL
inputs, outputs, and equation terms, can be realized by specifying the correct AND array
connections. Figure 6-2 shows an example of two PAL equations and the corresponding logic
array. Note that every horizontal line in the AND array represents a multi-input AND gate;
every vertical line represents a possible input to the AND gate. The X at the intersection of
a horizontal line and a vertical line represents a connection from the input to the AND gate.

Programming a PAL device consists of determining where the Xs must be placed in the
AND array. This task is simplified by the use of a PAL assembler program. Such a program
accepts input in the form of sum-of-products equations. The assembled code is then applied
to a PAL device using a standard PROM programmer equipped with a special PAL
enhancement.

The following conventions apply to TTL and PAL devices described in this section:

» TTL devices are specified by number (function), but not by family (speed). Virtually any
family of a device can be used if it meets the performance requirements of the applica-
tion. For example, a 74x00 device might be implemented with a 74F00 or 74AS00.
Generally, the F and AS families provide the highest performance.

* PAL devices are specified by part number. A PAL part number generally consists of a
number, a letter, and a second number, and is interpreted as shown in Figure 6-3. PALs
are manufactured for a number of performance levels. Standard PALs are suitable unless
otherwise specified.

6.2.2 Address Latch

Latches maintain the address for the duration of the bus cycle and are necessary to pipeline
addresses because the address for the next bus cycle appears on the address lines before the
current cycle ends. In this example, 74x373 latches are used. Although the 80386 can be
run without address pipelining to eliminate the need for address latching, the system will
usually run less efficiently.

lntel MEMORY INTERFACING

« Sample equations:

/Q= A" /B
+ A°/R
+ /AB°R

/R:= A° /R
+ /B

+ Sample block diagram:

crock —>

16R6

i
Pt
i
£35as
UL
o

G30107

Figure 6-2. PAL Equation and Implementation

The 74x373 Latch Enable (LE) input is controlled by the Address Latch Enable (ALE or
ALE#) signal from the bus control logic that goes active at the start of each bus cycle. The
74x373 Output Enable (OE#) is always active.

6.2.3 Address Decoder

In this example, the address decoder, which converts the 80386 address into chip-select
signals, is located before the address latches. In general, the decoder may also be placed
after the latches. If it is placed before the latches, the chip-select signal becomes valid as
early as possible but must be latched along with the address. Therefore, the number of address
latches needed is determined by the location of the address decoder as well as the number
of address bits and chip-select signals required by the interface. The chip-select signals are
routed to the bus control logic to set the correct number of wait states for the accessed
device.

Intel MEMORY INTERFACING

16R8
Number of Outputs
Output Type’
Number of Internal and External Inputs

*Output types are designated as follows:

Active High

Active Low
Complementary
Registered
Exclusive-OR Registered
Arithmetic Registered

>PXIOFIT

Figure 6-3. PAL Naming Conventions

The decoder consists of two one-of-four decoders, one for memory address decoding and one
for I/O address decoding. In general, the number of decoders needed depends on the memory
mapping complexity. In this basic example, the A31 output is sufficient to determine which
memory device is to be selected.

6.2.4 Data Transceiver

Standard 8-bit transceivers (74x245, in this example) provide isolation and additional drive
capability for the 80386 data bus. Transceivers are necessary to prevent the contention on
the data bus that occurs if some devices are slow to remove read data from the data bus
after a read cycle. If a write cycle follows a read cycle, the 80386 may drive the data bus
before a slow device has removed its outputs from the bus, potentially causing reliability
problems. Transceivers can be omitted only if the data float time of the device is short enough
and the load on the 80386 data pins meets device specifications.

A bus interface must include enough transceivers to accommodate the device with the most
inputs and outputs on the data bus. Normally, 32-bit-wide memories, which require four
8-bit transceivers, are used in 80386 systems.

The 74x245 transceiver is controlled through two input signals:

» Data Transmit/Receive (DT/R#)—When high, this input enables the transceiver for a
write cycle. When low, it enables the transceiver for a read cycle. This signal is just a
latched version of the 80386 W /R# output.

e Data Enable (DEN#)—When low, this input enables the transceiver outputs. This signal
is generated by the bus control logic.

6-5

intgl

6.2.5 Bus Control Logic

MEMORY INTERFACING

Bus control logic is shown in Figure 6-4. The bus controller is implemented in two PALs.
One PAL (PAL-1) follows the 80386 bus cycles and generates the overall bus cycle timing.
The second PAL (PAL-2) generates most of the bus control signals. The equations for these
PALs are listed in Appendix A of this manual.

The bus controller decodes the 80386 status outputs (W/R#, M/IO# and D/C#) and
activates a command signal for the type of bus cycle requested. The command signal corre-
sponds to the bus cycle types (described in Chapter 3) as follows:

¢ Memory data read and memory code read cycles generate the Memory Read Command
(MRDC#) output. MRDC# commands the selected memory device to output data.

» I/0 read cycles generate the I/O Read Command (IORC#) output. IORC# commands
the selected I/O device to output data.

* Memory write cycles generate the Memory Write Command (MWTC#) output. MWTC#
commands the selected memory device to receive the data on the data bus.

» I/O write cycles generate the I/O Write Command (IOWC#) output. IOWC# commands
the selected memory device to receive the data on the data bus.

» Interrupt-acknowledge cycles generate the Interrupt Acknowledge (INTA#) output, which
is returned to the 8259A Interrupt Controller. The second INTA cycle commands the
8257A to place the interrupt vector on the bus.

Figure 6-5 shows the timings of bus control signals for various memory accesses.

The bus controller also controls the READY# input to the 80386 that ends each bus cycle.
The PAL-2 bus control PAL counts wait states and returns READY # after the number of
wait states required by the accessed device. The design of this portion of the bus controller
depends on the requirements of the system; relatively simple systems need less wait-state
logic than more complex systems. The basic interface described here uses a PAL device to
generate READY# other designs may use counters and/or shift registers.

The bus controller generates one of two bus cycles depending on which memory is being
accessed. Two inputs to PAL-1 (CSOWS and CS1WS) from the address decoder determine
the bus control signal timings. Table 6-1 shows the number of wait states, the command
delay time, and the data float time for each bus cycle.

Table 6-1. Bus Cycles Generated by Bus Controller

WAIT-STATES c d
Chip-Select Cycle Type °|_.',"e T;" Data-Float
Pipelined UnPipelined
csows read 0 1 1 CLK2 2 CLK2
write 1 2 1 CLK2 —
CS1WsS any 1 2 2 CLK2 4 CLK2

21601 |0J1U0) sng -9 3InbI4

MEMORY iINTERFACING

314WYX3 431104INOD SNB W01 98508
NI HIN
020 e 040 et
[G20
01 o
§ zev v
1IN3AZ-INNOD ~] 0ZLNO $2 SLANHILNI 4
3UvmOBVH —] ozaLvo WYMOBYH —] 0281 viNI
oL oo o oL um
a ay
¥3INNOD ¥3T1081NOD
ra3WIL Ldn¥¥3INI
Zs0z8 26528
? sunox Y [
o020 | a:sia] svzsYL
: o)
0 yeny © gaw - N30 w0
£
) s
20 20
NOHd3 8 % yo WOHd3 8% %91
[Eev veziz o a
a 9 e
—dzzm e
a 5% 5w
O wesver 9 s E A)
a
oza | 8510 | 9.620 | [M h 74 - Pa
0201 oy 00 oo 0201 o - I ° o — GoiavL
E s) Y o a
WYES 8x %z 30 Wves 8xxz 30 wyysexyz 30 wves gx ¥z 30 ELl 30
Z829159WH T8791S9NH 2-2291S9NH 2829159WH
o158
n an 3
Yim s
+ — 21
_ o ¢
[7 cag §M0SD
9 © -
e © 2e4v osor o0 3l SMoso 2
QiMn n 8] SMISD ™] n|_ a800
els 1. 3 0 01 0180 s S Vi
5 Aay 30— —f 0 um f—— Lodon o
€ T 01901 P_I. 30 240 | —] oo Aavay -
804v2 b AQv3H W i say [sav
¥3HIO ‘G549 1vd sav
— 3dud 13s3y 13834
" m e E %10
2 0 210 |
! aeysivd
’ : !
bSVYL 1 * (205
W10 oA
L 13s3y
vaczs
N
Aavay

6-7

8-9

CLK 7

IDLE

150 ns SRAM/EPROM READ
NON-PIPELINED

3
R R

/)

100 ns SRAM READ 150 NS 150 ns SRAM WRITE 150 ns SRAM/EPROM READ| IDLE {150 ns SRAM/EPROM READ|
PIPELINED SRAM/EPROM PIPELINED PIPELINED NON-PIPELINED
READ PIPELINED
4 1 2 3 1 2 3 1 2 3 4 1 2 3 4 1 2 3 4
R FIF Wis WWW|S RIRR|RF|IFW|/S RIRR|RF|FW|S RIRR/RF|FWWW S RRRIRF|FW

VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAW

ADS#

ADDR

DATA

SEL

25

BV o UCEAKAKAK

ALE

o
READ

(XXX

RN

READ WRITE READ READ

(XX

DEN#

~

MRDC#

MWTC#

NA#

READY#

FLOAT

NO FLOAT FLOAT ||=LOAT rLOAT
| | |

G30107

Figure 6-5. Bus Control Signal Timing

P

ONIOV4HILNI AHOWIN

lntel MEMORY INTERFACING

6.2.6 EPROM Interface

Figure 6-6 shows the signal timing for bus cycles from an 80386 operating at 16 MHz to a
27128-1 EPROM, which has a 150-nanosecond access time. Faster 110-nanosecond EPROMs
are also available but in this design, they require the same number of wait states as the
150-nanosecond EPROMs require. Timings for a 150-nanosecond SRAM are included for
comparison.

In the EPROM interface, the OE# input of each EPROM devices is connected directly to
the MRDC# signal from the bus controller. The wait state requirement is calculated by
adding up worst-case delays and comparing the total with the 80386 bus cycle time.

The bus cycle timings can be calculated from the waveforms in Figure 6-6. In the following
example, the timings for I/O accesses are calculated for CLK2 = 32 MHz and B-series
PALs. All times are in nanoseconds. Check the most recent 80386 Data Sheet to confirm
all parameter values.

tAR: Address stable before Read (MRDC# fall)

(1 x CLK2 period)— PAL RegOut Max— Latch Enable Max
— PAL RegOut Min

(1 x31.25) — 12 — 115

+0

= 7.75 nanoseconds
tRR: Read (MRDC#) pulse width

(4 x CLK2 period) — PAL RegOut Max -+ PAL RegOut Min
(4 x 31.25) —12 +0

= 113 nanoseconds
tRA: Address hold after Read (MRDC# rise)

(0 x CLK2 period) — PAL RegOut Max + PAL RegOut Min
+ Latch Enable Min

(0 x 31.25) — 12 + 0

+ 5

= —7 nanoseconds (This is acceptable because latched addresses are held for at
least as long as the end of the bus cycle.)

tAD: Data delay from Address

(6 x CLK2 period) — PAL RegOut Max — Latch Enable Max
— xcvr. prop. Min — 80386 Data Setup Min

(6 x 31.25) — 12 — 115

- 6 — 10

= 148 nanoseconds

0-9

CLK

ADS#

ADDR

DATA

SEL

ALE

DEN#

MRDC#

MWTC#

NA#

READY#

IDLE

150 ns SRAM/EPROM READ | 100 ns SRAM READ 150 NS 150 ns SRAM WRITE 150 ns SRAM/EPROM READ| IDLE |150 ns SRAM/EPROM READ|
NON-PIPELINED PIPELINED SRAM/EPROM PIPELINED PIPELINED NON-PIPELINED

READ PIPELINED

3 4 1 2 1 2 3 1 2 3 4 1 2 3 4

R R|R F/F W|s w

2 3 4
S RIR R|R F

A

A A A A A AAT
A\

g
-

/S

va
7 T\ W/
90

(0

SAXKAXUAE

XX

READ READ READ WRITE i READ READ

FLOAT NO FLOAT FLOAT DK‘LOAT rLoAT'
1 1 1 i !

G30107

Figure 6-6. 150-Nanosecond EPROM Timing Diagram

P

ONIOVJHILNI AHOWIN

Intel MEMORY INTERFACING

tRD: Data delay from Read (MRDC#)

(4 x CLK2 period) — PAL RegOut Max — xcvr. prop Min
— 80386 Data Setup Min

(4 x 31.25) - 12 - 6

- 10

= 97 nanoseconds
tDF: read (MRDC# rise) to Data Float

(4 x CLK2 period) — PAL RegOut Max + PAL RegOut Min
+ xcvr. Enable Min

(4 x 31.25) — 12 + 0

+ 3

= 116 nanoseconds

To pipeline the address outputs for sequential EPROM accesses, the address decoder logic
must generate the Next Address (NA#) signal. Note that the initial EPROM cycle follow-
ing the idle cycle cannot be address pipelined because there is no previous bus cycle. In
addition, the bus cycle following the last EPROM access is pipelined regardless of which
device it accesses, because the address is output before the bus cycle destination can be
determined.

6.2.7 SRAM Interface

In the SRAM interface, the OE# input of each SRAM device is connected to the MRDC#
signal from the bus controller; the WE# input of each SRAM device is driven by the MWTC#
signal. Because it is possible to write to only some bytes of a doubleword, the MWTC#
signal cannot connect directly to the WE# inputs. Each WE# input must be qualified by the
latched 80386 byte-enable signals (BE3#-BEO0#).

Figure 6-7 shows the signal timing for bus cycles to an Intel SRAM, which has a
100-nanosecond access time. The timing is essentially the same as for an EPROM.

The bus cycle timings can be calculated from the waveforms in Figure 6-7. In the following
example, the timings for I/O accesses are calculated for CLK2 = 32 MHz and B-series
PALs. All times are in nanoseconds. Check the most recent 80386 Data Sheet to confirm
all parameter values.

tAR: Address stable before Read (MRDC# fall)
tAW: Address stable before Write (MWTCH# fall)

(1 x CLK2 period) — PAL RegOut Max — Latch Enable Max
+ PAL RegOut Min

(1x31.25) — 12 —11.5

+ 0

= 7.75 nanoseconds

-9

IDLE

ax T\

1
w W

vA

SRAM READ SRAM WRITE SRAM READ NON-LOCAL SRAM READ IDLE

ADS#

SRAM READ
NON-PIPELINED PIPELINED PIPELINED PIPELINED BUS CYCLE PIPELINED
2 3 1 2 1 2 3 1 2 1 2 1 2 1

SRAM

NON-PIPELINED

VAVAVAW

WRITE

3 4
N N|N N

won T
DATA m

X

w T TR 0] L)

\ AT\ \

LN/ N __/ / /
AL \

L N
\J _J \/ -/
OV W N W W /

G30107

Figure 6-7. 100-Nanosecond SRAM Timing Diagram

ONIOVAHILNI AHOWIN

Intel MEMORY INTERFACING

tRR: Read (MRDC#) pulse width

(3 x CLK2 period) — PAL RegOut Max + PAL RegOut Min
(3x31.25) — 12 + 0

= 81.75 nanoseconds
tWW: Write (MWTC#) pulse width

(4 x CLK2 period) — PAL RegOut Max+ PAL RegOut Min
(4 x 31.25) — 12 + 0

= 113 nanoseconds
tRA: Address Hold after Read (MRDC# rise)

(0 x CLK2 period) — PAL RegOut Max + PAL RegOut Min
+ Latch Enable

(0 x 31.25) — 12 + 0
+ 5

= —7 nanoseconds (This is acceptable because latched addresses are held for at
least as long as the end of the bus cycle.)

tWA: Address hold after Write (MW TC# rise)

(1 x CLK2 period) — PAL RegOut Max + PAL RegOut Min
+ Latch Enable Min :

(1x31.25) — 12 + 0

+ 5

= 24.25 nanoseconds
tAD: Data delay from Address

(4 x CLK2 period) — PAL RegOut Max — Latch Enable Max
— xcvr. prop. Min — 80386 Data Setup Min

(4 x 31.25) — 12 — 115

— 6 — 10

= 85.5 nanoseconds
tRD: Data delay from Read (MRDC#)
(3 x CLK2 period) — PAL RegOut Max — xcvr. prop Min
— 80386 Data Setup Min
(3x31.25) —12 - 6
— 10

= 65.75 nanoseconds

Intel MEMORY INTERFACING

tDF: read (MRDC# rise) to Data Float

(2 x CLK2 period) — Pal RegOut Max + PAL RegOut Min
+ xcvr. Enable Min

(2 x 31.25) — 12 + 0

+ 3

= 47.5 nanoseconds
tDW: Data setup before write (MWTC# rise)

(3 x CLK2 period) — PAL RegOut Max — xcvr. Enable Max
+ PAL RegOut Min

(3 x 31.25) — 12 — 11

+ 0

= 70.75 nanoseconds
tWD: Data hold after write (MWTC# rise)

(1 x CLK2 period) — PAL RegOut Max + PAL RegOut Min
+ xcvr. Disable Min
(1x 31.25) — 12 + 0 + 2

= 21.25 nanoseconds

6.2.8 16-Bit Interface

The use of a 16-bit data bus can be advantageous for some systems. Memory implemented
as 16-bits wide rather than 32-bits wide reduces chip count. I/O addresses located at word
boundaries rather than doubleword boundaries can be software compatible with some systems
that use 16-bit microprocessors.

For example, if BS16# is asserted for EPROM accesses, only two byte-wide EPROMs are
needed. Overall performance is reduced because 32-bit data accesses and all code prefetches
from the EPROMs are slower (requiring two bus cycles instead of one). However, this
reduction is acceptable in certain applications. A system that uses EPROMs only for power-
on initialization and runs programs entirely from SRAM or DRAM has only a power-on
time increase over the 32-bit EPROM system; its main programs run at the same speed as
the 32-bit system.

The 80386 BS16# input directs the 80386 to perform data transfers on only the lower
16 bits of the data bus. In systems in which 16-bit memories are used, the address decoder
logic must generate the BS16# signal for 16-bit accesses. Since NA# cannot be asserted
during a bus cycle in which BS16# is asserted (because the current address may be needed
for additional cycles), the decoder logic should also guarantee that the NA# signal is not
generated. When the 80386 samples BS16# active and NA# inactive, it automatically
performs any extra bus cycles necessary to complete a transfer on a 16-bit bus. The 80386
response is determined by the size and alignment of the data to be transferred, as described
in Chapter 3.

Iﬂte' MEMORY INTERFACING

6.3 DYNAMIC RAM (DRAM) INTERFACE

This section presents a dynamic RAM (DRAM) memory subsystem design that is both cost-
effective and fast. The design can be adapted for a wide variety of speed and system require-
ments to provide high throughput at minimum cost.

6.3.1 Interleaved Memory

DRAMs provide relatively fast access times at a low cost per bit; therefore, large memory
systems can be created at low cost. However, DRAMs have the disadvantage that they require
a brief idle time between accesses to precharge; if this idle time is not provided, the data in
the DRAM can be lost. If back-to-back accesses to the same bank of DRAM chips are
performed, the second access must be delayed by the precharge time. To avoid this delay,
memory should be arranged so that each subsequent memory access is most likely to be
directed to a different bank. In this configuration, wait time between accesses is not required
because while one bank of DRAMs performs the current access, another bank precharges
and will be ready to perform the next access immediately.

Most programs tend to make subsequent accesses to adjacent memory locations during code
fetches, stack operations, and array accesses, for example. If DRAMSs are interleaved (i.e.,
arranged in multiple banks so that adjacent addresses are in different banks), the DRAM
precharge time can be avoided for most accesses. With two banks of DRAMs, one for even
32-bit doubleword addresses and one for odd doubleword addresses, all sequential 32-bit
accesses can be completed without waiting for the DRAMs to precharge.

Even if random accesses are made, two DRAM banks allow 50 percent of back-to-back
accesses to be made without waiting for the DRAMs to precharge. The precharge time is
also avoided when the 80386 has no bus accesses to be performed. During these idle bus
cycles, the most recently accesssd DRAM bank can precharge so that the next memory
access to either bank can begin immediately.

The DRAM memory system design described here uses two interleaved banks of DRAMs.
The DRAM controller keeps track of the most recently accessed bank in order to guarantee
the precharge time for both banks while allowing memory accesses to begin as soon as
possible.

6.3.2 DRAM Memory Performance

Table 6-2 shows the performance that can be obtained using this DRAM design with a
variety of processor and DRAM speeds. Performance is indicated by the number of wait
states per bus cycle (the number of CLK cycles in addition to the two-CLK minimum time
required to complete the access).

The performance for each processor and DRAM speed combination is given for both the
case of an access to the opposite bank of interleaved memories, in which no precharge time
is required, and the case of an access to the same bank, in which the precharge time is
factored in.

Intd MEMORY INTERFACING

Table 6-2. DRAM Memory Performance

40386 DRAM Bus Cycle Wait-States
Clock Rate Access Time Interleaved
(Nanoseconds) Piped:Unpiped Same Bank

12 MHz 120 0*:1* 1*

12 MHz 200 1 :2 3

16 MHz 80 0*:1* 1

16 MHz 100 0*:1* 1

16 MHz 150 1 :2 3

*Add one additional wait-state to these times for write accesses.

Note: The numbers for the 100-nanosecond DRAM are based on the assumption that no data transceivers
are used.

The number of wait states required for interleaved accesses is based on the assumption that
the address for the next access is pipelined. For cycles in which the address is not pipelined,
one extra wait-state must be added to the number in Table 6-2. This requirement applies to
all cycles that follow an idle bus state because these cycles can never be pipelined.

The number of wait states for same-bank accesses applies only to back-to-back cycles (without
intervening idle bus time) to the same bank of DRAMs. Because the controller must allow
the DRAMs to precharge before starting the access, address pipelining does not speed up
the same-bank cycle; the number of wait states is identical with or without address
pipelining.

The numbers in Table 6-2 are affected by DRAM refresh cycles. All DRAMs require periodic
refreshing of each data cell to maintain the correct voltage levels. An access to a memory
cell, called a refresh cycle, accomplishes the refresh. During one of these periodic refresh
cycles, the DRAM cannot respond to processor requests.

Although the distributed DRAM refresh cycles occur infrequently, they can delay the current
access so that the current access requires a total of up to four wait states (for the cases
marked with an asterisk (*)) or eight wait states (for the other cases).

6.3.3 DRAM Controller

The performances shown in Table 6-2 are derived from two DRAM controller designs that
differ in the number of CLKs they allow for read/refresh access and precharge times. The
two designs are designated by the number of CLKs required for a read cycle. The 2-CLK
design is used for the cases in Table 6-2 that are marked with an asterisk (*); the 3-CLK
design is used for the other cases.

Intel MEMORY INTERFACING

6.3.3.1 3-CLK DRAM CONTROLLER

Figure 6-8 shows a schematic of the 3-CLK DRAM controller. The DRAM array contains
two banks of 32-bit-wide DRAMSs. The top and bottom halves of the pictured array repre-
sent the two banks, which are each divided vertically along the four bytes for each
doubleword.

The DRAM chips used to create the DRAM banks can be of any length (N), and they can
be either one bit or four bits wide. If Nx1 DRAM chips are used, 64 chips are required for
the two banks; if Nx4 DRAM chips are used, only 16 chips are required. The banks in
Figure 6-8 are made from sixteen 64Kx4 DRAMSs, but another type of DRAM can be
substituted easily.

Two Row Address Strobe (RAS) signals are generated by the controller, one for each bank.
The top bank is activated by RASO# and contains the DRAM memory locations for which
the 80386 address bit A2 is low. The bottom bank is activated by RAS1#, which corresponds
to 80386 addresses for which A2 is high.

Four Column Address Strobe (CAS) signals are used, one for each byte of the 80386 data
bus. These CAS signals are shared by both banks. The 80386 Byte Enable signals
(BE3#-BEO#) map directly to the CAS signals (CAS3#-CASO0#). CASO# is mapped directly
from BEO# and enables the least-significant byte (D7-DO0). Similarly, CAS3# is mapped
directly from BE3# and enables the most-significant byte (D31-D24).

Each of the 32 data lines of the 80386 are connected to one DRAM chip from each bank.
If Nx1 DRAMs are used, the corresponding data line is connected to both the Din and Dout
pins. If Nx4 DRAMs are used, each data line is connected only to the corresponding
I/0 pin.

The Write Enable (WE#) signal and the multiplexed address signals are connected to every
DRAM chip in both banks. Nx4 DRAMs also require an Output Enable (OE#) signal for
every DRAM chip in both banks.

A single WE# control signal and four CAS control signals ensure that only those DRAM
bytes selected for a write cycle are enabled. All other data bytes maintain their outputs in
the high-impedance state. A common design error is to use a single CAS# control signal and
four WE# control signals, using the WE# signals to write the DRAM bytes selectively in
write cycles that use fewer than 32 bits. However, although the selected bytes are written
correctly, the unselected bytes are enabled for a read cycle. These bytes output their data to
the unselected bits of the data bus while the data transceivers output data to every bit of the
data bus. When two devices simultaneously output data to the same bus, reliability problems
and even permanent component damage can result. Therefore, a DRAM design should use
CAS signals to enable bytes for a write cycle.

DRAMs require both the row and column addresses to be placed sequentially onto the
multiplexed address bus. A set of 74F258 multiplexers accomplishes this function.

6-17

81-9

82384
cLoCK
GENERATOR
CLK _‘ OTHER READY LOGIC
RESET cLk2
L CLK2 RDY
I cLK OTHER NA LOGIC
RESET CLK2 _ we
NA l W CASs
— Ero A
€30 BYTE-ENABLES 4> €30 ';A_:T
CASO
DRAM
b cukz CONTROL
PAL
CLK
16R8B.
READY e SEN
—_— DI
SUSTOLE ____D)—» cso ROWSEL ROWSEL EN
ADS csi MUXOE DISABLE OTR
WR
cs3
DRAM
3 STATE
D/C PAL
_ 16R8B.
MG css
A3 cs2
A2 A2 RASO
—»{ RFRQ RAS1
80386 4
MICROPROCESSOR —D_
L» REFACK0 DD cLock t
— ad > > > >
REFACKI RFRQ O $$S b3 b4 bS s
REFACKI REFRESH sS b3S b bs
REFRESH ADDRESS 9 W W 1 9
INTERVAL COUNTER
COUNTER PAL prey — —e —
PAL 16R8 GRS €AS cAs Cas
b 20x10a) =L
ok AT0 AAS
WE
SEL 13
A18:11 ROW ADDRESS
MULTIPLEXED ADDRESS AT:0
™o Two ™o Two
fird 64Kxa | 6aKx4 64K x4 | G4Kx4
DRAMs | DRAMS DRAMs | DRAMs
103:0
At03 COLUMN ADDRESS
RAS
A WE
DT/R DEN OF
AT:0
74F245 TWO TWO TWO TWO
TRANSCEIVERS 84K x 4 64K x 4 64K x 4 84K x 4
J\ DRAMs | DRAMs | DRAMs | DRAMs
D31:0 80386 DATA BUS / DRAM DATA BUS 103:0

G30107

Figure 6-8. 3-CLK DRAM Controller Schematic

DNIOV4HILNI AHOWIN

Intel MEMORY INTERFACING

Four 74F245 octal transceivers buffer the DRAM from the data bus. Most DRAMs used in
the 3-CLK design require these transceivers to meet the read-data float time. When a DRAM
read cycle is followed immediately by an 80386 write cycle, the 80386 drives its data bus
one CLK2 period after the read cycle completes. If the data transceivers are omitted, the
RAS inactive delay plus the DRAM output buffer turn-off time (t-OFF) must be less than
a CLK2 period to avoid data bus contention.

PALs are used to monitor the 80386 status signals and generate the appropriate control
signals for the DRAM, multiplexer, and transceivers. PAL codes and pin descriptions for
the 3-CLK design are listed in Appendix C of this manual.

The DRAM State PAL performs the following functions:

e Monitors the 80386 DRAM chip-select logic
* Receives DRAM refresh requests and responds with the necessary DRAM cycles
¢ Keeps track of DRAM banks requiring precharge time

A DRAM read or write access is requested when all the chip-select signals of the DRAM
State PAL are sampled active simultaneously. These signals become active when all of the
following conditions exist at once:

* M/IO# W/R#, and D/C# outputs of the 80386 indicate either a memory read, memory
write, or code fetch.

» The bus is idle or the current bus cycle is ending (READY# active).
¢ ADS# is active.

e A3l is low (in this design, the lower half (two gigabytes) of 80386 memory space is
mapped to the DRAM controller).

If the DRAM controller is not already performing a cycle, it begins the access immediately.
However, if the DRAM controller is performing a refresh cycle, or if it is waiting for the
DRAM bank to precharge, the request is latched and performed when the controller is not
busy.

The DRAM Control PAL generates the majority of the DRAM control signals. The Refresh
Interval Counter PAL is a timer that generates refresh requests at the necessary intervals.
The Refresh Address Counter PAL maintains the next refresh address. Both the Refresh
Interval Counter PAL and the Refresh Address Counter PAL are simple enough to be
replaced by TTL counter chips; however, the use of PALs reduces the total chip count. If
there is a spare timer or counter in the system, it can be used to replace one or both of these
PALs.

Figure 6-9 shows the timing of DRAM control signals for the 3-CLK design for the follow-
ing five sequential DRAM cycles:

1. Read cycle
2. Write cycle to the opposite bank (no precharge)

6-19

02¢-9

IDLE DRAM READ BANK 0 DRAM READ BANK 1 DRAM WRITE BANK 1 DRAM REFRESH DRAM READ BANK 1
NON-PIPELINED PIPELINED PIPELINED (ALWAYS BOTH BANKS) PIPELINED

N\
ak NSNS NS S _/_\J—_/—\JT_/—_/_\I\I_/__/—\I_/—_/—\J—_/_\I\
A

cLk2 f\./\ﬂf\f\/\;(\f\/@’\f&"\f\f\f\f\f\f\f\f\/\f\f\)
WA
XXX
pu
5

ADS# WA | A | XY R LY LAY
SELECT | YXXXXCRARRIY XK L XXk G000 OO T X000 X O COCACOO0O XU
ROWSEL \ \ V4 \ / A\ L
ADDR 00O XK X X XXX X T
ROW COLUMN oW COLUMN ROW COLUMN EFRESF ROW COLUMN
RASO# / \ /[
RAS1# / \ |
CASX# / \ \ \
LOW ONLY FOR ENABLED BYTES
we S |\ /| \
WE# /
DATA OOOOOO0CO0Y e e
READ READ WRITE
DEN# __ / N\
7
DT/R# XAOCOOO0OOOCOO0 N L N ey OO Y KR O
RDY /| \ /| \ /| \ /
NA# | / | — |/
RFRQ ADCO0000X XOAOCOODO00000
MUXOE# / L

G30107

Figure 6-9. 3-CLK DRAM Controller Cycles

ONIOV4HILNI AHOWINW

Intel MEMORY INTERFACING

3. Read cycle to that same bank (requires precharge)
4. Refresh cycle (always requires precharge)

5. Read cycle (cycle after refresh always requires precharge)

During a normal DRAM access, only the RAS signal that corresponds to the selected bank
is activated. During a refresh cycle, both RAS signals are activated. During write cycles,
only the CAS signals corresponding to the enabled bytes are activated. During read cycles,
all CAS signals are enabled.

6.3.3.2 2-CLK DRAM CONTROLLER

Figure 6-10 is a schematic of the 2-CLK design, which provides zero wait-state operation
for pipelined interleaved accesses. The design differs from the 3-CLK controller in several
ways.

Read and refresh cycles are completed in only two CLKs; write cycles require three CLKs
to ensure that the 80386 write data is valid.

In general, the PALs that generate RAS and CAS signals can be either registered or combi-
natorial on the RAS and/or CAS outputs. If external registers are used, these PAL outputs
must be combinatorial so that the output has time to set up the external register on the same
CLK2 cycle. If the PAL outputs are used without external registers, the PAL outputs must
be registered internally. When the CAS signals are registered internally, the DRAM Control
PAL can sample and save the state of the Byte Enable (BE3#-BEO#) lines internally. When
the CAS signals are registered externally, the BE3#-BEO# lines must be latched externally
so that the DRAM Control PAL inputs maintain the valid byte enables.

For the 2-CLK design, the RAS and CAS signals are registered externally. The delay (from
CLK2) for these signals is reduced, and more time is available for the DRAM:s to respond.
If more drive is required on these signals, multiple TTL registers can be used, each driving
a small group of RAS or CAS lines. For example, in a design using Nx1 DRAMs, RASO#
must drive 32 DRAM:s. To reduce the worst-case skew (caused by the heavy loading), RASO#
can be output on four register outputs, each of which drives eight DRAMs.

In the 3-CLK design, the column address does not need to be latched because the Next
Address (NA#) signal is not activated until after the CAS signals go active, so the 80386
address remains valid for the memory access. Because a 2-CLK design has a shorter cycle
time, NA# must be activated before the CAS signals go active to output the next address
one CLK early. This early address necessitates a latch for the column addresses. In many
cases, with a generalized LE control, this latch can be shared with the I/O subsystem, which
usually must latch the address.

In the 2-CLK design, NA# is generated from the DRAM State PAL outputs and is there-
fore active in both the CLK2 cycle in which the 80386 samples NA# and the next CLK2
cycle. However, the 80386 does not sample NA# active twice. Once the 80386 outputs the
next address, the address must be valid for at least two CLKs before NA# is sampled again.

6-21

¢c-9

OTHER READY LOGIC

RD!

5 2

o9
CEE
kg

9
»|
2|
&l

o o)
E:

82384
CLOCK
GENERATOR
CLK =
RESET CLK2
¢ cLk2
CLK
LK2 ™
RESET © o=
wiR
NA BESD
L] CONTROL
P cLk2 PAL
CLK Qo 16R88
READY .
BUSIDLE ___J.ID"—’ cso OWSEL l ROWSEL
ADS csi MUXOE DISABLE
WR cs3
Ram OTR
= DI
bic STATE
PAL
_J 16R8B.
5 74F138 &=
MIiG ADDR DECODER cs2
A2 A2 RASO
] RFRQ RASi]
80386
L REFACKO P cLock
REFACKO l o
REFACKI RFRQ REFRESH
REFRESH ADDRESS
INTERVAL COUNTER
COUNTER
PAL 16R8
> 20X10A A
CLK
SEL U
A20:12 ROW ADDRESS
74F258
MUXES
OE LE
A11:3 COLUMN ADDRESS
74F373 T
LATCHES
BYTE-ENABLES
031:0 80386 DATA BUS

OTIR

=]

ER

TAF245
TRANSCEIVERS

[o) D [
H 74AS374 OCTAL REGISTER
a Q Q Q Q
>
< <
S <
< >
__CAS TAS CAS
AAS
WE
EIGHT EIGHT EIGHT EIGHT
256K x1 | 256Kx1 | 256Kx1 | 256Kx1
MULTIPLEXED ADDRESS DRAMs | DRAMs DRAMS DRAMs.
A0
Dy Dout
RAS
WE
EIGHT EIGHT EIGHT EIGHT
256K x1 | 256K x1 .| 266Kx1 | 256Kx1
DRAMs DRAMs DRAMs DRAMs
A0
DRAM DATA BUS Din Dout
G30107

Figure 6-10. 2-CLK DRAM Controller Schematic

ONIOVJHILNI AHOWIN

Intel MEMORY INTERFACING

In the 2-CLK design, the four data transceivers are optional because fast DRAMs with
short read-data-float times are used. The DRAM data pins and can be connected directly to
the 80386 data bus. The strong drive capability of the 80386 data bus can handle the load
of one DRAM from each bank plus a transceiver load for the other peripherals.

PAL codes and pin descriptions for the 2-CLK design are listed in Appendix C of this manual.
Figure 6-11 shows the timing of DRAM control signals for the 2-CLK design for the follow-
ing five sequential DRAM cycles:

1. Read cycle

2. Write cycle to the opposite bank (no precharge)

3. Read cycle to that same bank (requires precharge)

4. Refresh cycle (always requires precharge)

5. Read cycle (cycle after refresh always requires precharge)

6.3.4 DRAM Design Variations
Some of the possible variations of the 2-CLK and 3-CLK designs are as follows:

e Both the 3-CLK and 2-CLK designs can use any length DRAM in Nx1 and Nx4 widths.

» Both 3-CLK or 2-CLK designs can use the internal PAL registers or external TTL regis-
ters on the RAS and/or CAS signals. A conservative design using Nx1 DRAMs might
externally register each RAS (which drives 32 DRAMs) and internally register each CAS
(which drives only 16 DRAM:s).

Because internal registers have a greater maximum delay time and potentially less drive, the
choice between registered PALs or external registers affects all of the DRAM timing
parameters based on RAS and CAS. Some of the DRAM parameters are also affected by
the minimum delay time of the internally registered PALs. Because PALs do not guarantee
a minimum delay time, external TTL registers, which do guarantee a minimum delay time,
can help meet these timing parameters, as well as provide greater drive capability.

e Data transceivers are optional for both designs. If a data transceiver is used, the DRAM
read access must meet the 80386 read-data setup time. If no data transceiver is used, the
DRAM read-data-float time must not interfere with the next 80386 cycle, particularly if
it is a write cycle, and the 80386 data pin loading must not be exceeded.

* By including the column address latch and other circuitry, the DRAM controller can be
adapted to run either 3-CLK or 2-CLK cycles depending on the speed (and cost) of
DR AMs installed. To switch between the 3-CLK and 2-CLK controllers, the user should
plug in a different set of DRAMs, a different DRAM State PAL, and a different DRAM
Control PAL, and jumper the NA# logic.

» The choice of chip-select logic in »oth of the designs is arbitrary. Other DRAM memory-
mapping schemes can be implemented by modifying the address decoding to the DRAM
State PAL chip-selects.

6-23

y¢-9

CLK2

CLK

ADSH#

SELECT

ROWSEL

ADDR |

RASO#

RAS1#

CASx#

WE#

DATA

DEN#

DT/R#

RDY

NA#

RFRQ

MUXOE#

IDLE

AVAV.
N/

N\
N/
WA

DRAM READ BANK 0
NON-PIPELINED

AYAY,
/]
Vv

DRAM READ BANK1 DRAM WRITE BANK 0
PIPELINED PIPELINED PIPELINED

1 1 2 1 2 3 1

AYAY AVAVAVAVAVAVAVAV

DRAM READ BANK 0 DRAM REFRESH
(ALWAYS BOTH BANKS)

2

AYAY,
\a

3

AVAVAVAV/
\S

DRAM READ BANK 1
PIPELINED

AYAYAVAY
/NS

AVAV AYAV,
\ /NSNS NSNS NSNS
N AT TR Ay

IS Fiss

T, R s G x
p- O\ \ / L/ L/ pu-
A X X X XX X
ROW COLUMN ROW COLUMN _ROW COLUMN ROW COLUMN REFRESH ROW _[COLUMN
— \)\
/ S
LOW ONLY FOR ENABLED BYTES
-/
A
READ READ WRITE READ READ
: /
OO / VOO

J

G30107

Figure 6-11. 2-CLK DRAM Controller Cycles

P

ONIOVAHILNI AHOW3IN

|nte| MEMORY INTERFACING

* For a single DRAM bank rather than two, the user should tie the DRAM State PAL A2
input low, leave RAS1# unconnected (only RASO# is used), and feed the 80386 address
bit A2 into the address multiplexer. The DRAM State PAL equations can be modified
to change the RAS1# output to duplicate the RASO# output for more drive capability,
and the A2 input can be used as another chip-select input. When only one bank is used,
no accesses can be interleaved, and back-to-back accesses run with one wait state with
the 2-CLK design and three wait states with the 3-CLK design (independent of address

pipelining).

6.3.5 Refresh Cycles

All DRAMs require periodic refreshing of their data. For most DRAMs, periodic activation
of each of the row address signals internally refreshes the data in every column of the row.
Almost all DRAMs allow a RAS-only refresh cycle, the timing of which is the same as a
read cycle, except that only the RAS signals are activated (no CAS signals), and all of the
data pins are in the high impedance state.

Both the 3-CLK and 2-CLK designs use RAS-only refresh. The address multiplexer is placed
in the high impedance state, and the Refresh Address Counter PAL is enabled to output the
address of the next row to be refreshed. Then the DRAM State PAL activates both RASO#
and RAS1# to refresh the selected row for both banks at once. After the refresh cycle is
complete, the Refresh Address Counter PAL increments so that the next refresh cycle
refreshes the next sequential row.

The frequency of refreshing and the number of rows to be refreshed depend on the type of
DRAM. For most larger DRAMSs (64KxN and larger), only the lower eight multiplexed
address bits (A7-A0, 256 rows) must be supplied for the refresh cycle; the upper address
bits are ignored. The Refresh Address Counter PAL must output only eight bits and only
the lower eight bits of the address multiplexer must be placed in the high impedance state.
The OE# signals of the higher order address multiplexers can be tied low. Larger DRAMs
generally require refresh every 4 milliseconds. The following sections describe refresh specif-
ically for larger DRAM:s, although the concepts apply to smaller DRAMs.

6.3.5.1 DISTRIBUTED REFRESH

In distributed refresh, the 256 refresh cycles are distributed equally within the 4-millisecond
interval. Every 15.625 microseconds (4 milliseconds/256), a single row refresh is performed.
After 4 milliseconds all 256 rows have been refreshed, and the pattern repeats. Both the
3-CLK and 2-CLK designs use distributed refresh.

The Refresh Interval Counter PAL is programmed to request a single distributed refresh
cycle at intervals slightly under 15.625 microseconds. The counter requests a new refresh
cycle after a preset number of CLK cycles. This number is dependent on the CLK frequency
and can be calculated as follows for a 16-MHz CLK signal:

16 MHz x 15.625 microseconds — 4/256 = 249.98
= 249 CLK cycles

6-25

Intel MEMORY INTERFACING

The term 4/256 is subtracted to allow for the time it takes the DRAM State PAL to respond
to the request. Refresh requests are always given highest priority; however, if a DRAM
access is already in progress, it must finish before the refresh cycle can start. The 3-CLK
controller responds within 1-5 CLKs of the refresh request; the 2-CLK controller responds
within 1-4 CLKs. The maximum latency (the difference between the longest and shortest
responses) for either design is therefore 4 CLKs. This time is spread out among all 256
accesses, so 4/256 is subtracted in the above equations to account for the latency period.
The counter immediately resets itself after it reaches the maximum count, regardless of this
latency period.

Distributed refresh has two advantages over other types of refresh:

» Refresh cycles are spread out, guaranteeing that the 80386 access is never delayed very
long for refresh cycles. Most programs execute in approximately the same time, regard-
less of when they are run with respect to DRAM refreshes.

+ Distributed refresh hardware is typically simpler than hardware required for other types
of refresh.

6.3.5.2 BURST REFRESH

Burst refreshes perform all 256 row refreshes consecutively once every 4 milliseconds rather
than distributing them equally over the time period. Once a refresh is performed, the next
4-millisecond period is guaranteed free of refresh cycles. Time-critical sections of code can
be executed during this time.

The 3-CLK and 2-CLK designs can be modified for burst refreshes by lengthening the
maximum count of the Refresh Interval Counter to cover a 4-millisecond interval and holding
the Refresh Request (RFRQ) signal active for 256 refresh cycles instead of a single refresh
cycle. The completion of 256 refresh cycles can be determined by clearing the Refresh Address
Counter PAL before the first refresh cycle and monitoring the outputs until they reach the
zero address again. The Row Select (ROWSEL) signal can be used to clock the Refresh
Address Counter PAL. The longer interval counter and extra logic requires another PAL
device.

6.3.5.3 DMA REFRESH

With DMA refresh, the highest priority DMA channel is dedicated to perform refresh cycles
through DMA rather than through extra logic in the DRAM controller. A periodic timer is
used to initiate a DMA request; the DMA performs memory accesses to different DRAM
rows to accomplish refreshes. Either distributed or burst refresh techniques can be used.

DMA refresh can be used for both 3-CLK and 2-CLK designs. The Refresh Interval Counter
PAL or another timer periodically initiates a DMA request, and the DMA Controller supplies
the refresh address. To activate both banks, the DMA Acknowledge(DACK) signal should
be connected to the RFRQ input of the DRAM State PAL and activated one CLK2 cycle
before chip selects are sampled by the DRAM State PAL. In this way, the DMA controller
does not need to activate chip selects. If it does activate the chip selects, the DRAM State
PAL must be modified to ignore them. This modification prevents the PAL from attempting
to run a normal access cycle after the refresh cycle is complete.

6-26

Intel MEMORY INTERFACING

In addition, the DRAM Control PAL must be modified so that the Ready (RDY) signal is
generated on refresh accesses. Finally, the OE# input of the address multiplexer should be
tied low so that it never enters the high-impedance state, and the row address should include
the least-significant address bits (A1, A0).

For efficient refreshes, a DMA controller that can perform 32-bit accesses is required.
Otherwise, consecutive accesses are made to the same row, requiring more refresh cycles
than necessary for a complete DRAM refresh.

Unlike the refresh logic for the 3-CLK and 2-CLK designs, DMA accesses often require a
few clock cycles to acquire and release the 80386 bus. They also require a dedicated 32-bit
DMA channel. DMA refresh requires only one less PAL device than other refresh methods.
In most cases, therefore, it is advisable to use dedicated hardware for refresh rather than
DMA.

6.3.6 Initialization

Once the system is initialized, the integrity of the DRAM data and states is maintained,
even during an 80386 halt or shutdown state or hardware reset, because all DRAM system
functions are performed in hardware.

The controller PALSs contain some state and counter information that is not implicitly reset
during a power-up or hardware reset. The state machines are designed so that they enter the
idle state within 18 CLK2 cycles regardless of whether they powerup in a valid state. The
counters can start in any state. Thus, even though the state machines and counters can
powerup into any state, they are ready for operation before the 80386 begins its first bus
access.

Some DRAMs require a number of warm-up cycles before they can operate. Either method
listed below can provide these cycles:

* Performing several dummy DRAM cycles as part of the 80386 initialization process.
Setting up the 80386 registers and performing a REP LODS instruction is one way to
perform these dummy cycles.

» Activating the RFRQ signal, using external logic, for a preset amount of time, causing
the DRAM control hardware to run several refresh cycles.

6.3.7 Timing Analysis

The DRAM design (2-CLK or 3-CLK) for six combinations of DRAM speed and CLK

frequency is listed in the Table 6-3. The table also indicates for each DRAM type whether

data transceivers and /or external registers on the PAL outputs must be used with the design.

Appendix C of this manual contains a timing analysis of all 2-CLK and 3-CLK circuit
parameters for all six DRAM types.

6-27

ntel

MEMORY INTERFACING

Table 6-3. Designs for Six DRAM Types

DRAM 386 CLK PAL External Data
Access Time Rate Circuit Registers Xcvrs
80 nS 16 MHz 2-CLK optional optional
100 nS 16 MHz 2-CLK optional no
120 nS 12 MHz 2-CLK optional optional
150 nS 16 MHz 3-CLK optional yes
150 nS 16 MHz 3-CLK yes yes
200 nS 12 MHz 3-CLK optional yes

6-28

Cache Subsystems

CHAPTER 7
CACHE SUBSYSTEMS

Operating at 16 MHz, the 80386 can perform a complete bus cycle in only 125 nanoseconds,
for a maximum bandwidth of 32 megabytes per second. To sustain this maximum speed, the
80386 must be matched with a high-performance memory system. The system must be fast
enough to complete bus cycles with no wait states and large enough to allow the 80386 to
execute large application programs.

Traditional memory systems have been implemented with dynamic RAMs (DRAM:s), which
provide a large amount of memory for a small amount of board space and money. However,
no common low-cost DRAMs are available that can complete every bus cycle in
125 nanoseconds. Faster static RAMs (SRAMs) can meet the bus timing requirement, but
they offer a relatively small amount of memory at a higher cost. Large SRAM systems can
be prohibitively expensive.

A cache memory system contains a small amount of fast memory (SRAM) and a large
amount of slow memory (DRAM). The system is configured to simulate a large amount of
fast memory. Cache memory therefore provides the performance of SRAMs at a cost
approaching that of DRAMs. A cache memory system (see Figure7-1) consists of the
following sections:

o Cache—fast SRAMs between the processor and the (slower) main memory
¢ Main memory—DRAMs

» Cache controller—logic to implement the cache

a
] 1
| DRAM :
[
. SRAM 1
1 |
! > - MAIN |
80386 ; CACHE MEMORY)
1 1
] 1
| 1
| 1
1 1
1 |
| I
\ CACHE 1
| CONTROLLER 1
[I
| 1
]]
L e J
CACHE MEMORY SYSTEM
G30107

Figure 7-1. Cache Memory System

Intel CACHE SUBSYSTEMS

7.1 INTRODUCTION TO CACHES

In a cache memory system, all the data is stored in main memory and some data is dupli-
cated in the cache. When the processor accesses memory, it checks the cache first. If the
desired data is in the cache, the processor can access it quickly, because the cache is a fast
memory. If the data is not in the cache, it must be fetched from the main memory.

A cache reduces average memory access time if it is organized so that the code and data
that the processor needs most often is in the cache. Programs execute most quickly when
most operations are transfers to and from the faster cache memory. If the requested data is
found in the cache, the memory access is called a cache hit; if not, it is called a cache miss.
The hit rate is the percentage of accesses that are hits; it is affected by the size and physical
organization of the cache, the cache algorithm, and the program being run. The success of
a cache system depends on its ability to maintain the data in the cache in a way that increases
the hit rate. The various cache organizations presented in Section 7.2 reflect different strat-
egies for achieving this goal.

7.1.1 Program Locality

Predicting the location of the next memory access would be impossible if programs accessed
memory completely at random. However, programs usually access memory in the neighbor-
hood of locations accessed recently. This principle is known as program locality or locality
of reference.

Program locality makes cache systems possible. The same concept, on a larger scale, allows
demand paging systems to work well. In typical programs, code execution usually proceeds
sequentially or in small loops so that the next few accesses are nearby. Data variables are
often accessed several times in succession. Stacks grow and shrink from one end so that the
next few accesses are all near the top of the stack. Character strings and vectors are often
scanned sequentially.

The principle of program locality pertains to how programs tend to behave, but it is not a
law that all programs always obey. Jumps in code sequences and context switching between
programs are examples of behavior that may not uphold program locality.

7.1.2 Block Fetch

The block fetch uses program locality to increase the hit rate of a cache. The cache control-
ler partitions the main memory into blocks. Typical block sizes (also known as line size) are
2, 4, 8, or 16 bytes. A 32-bit processor usually uses two or four words per block. When a
needed word is not in the cache, the cache controller moves not only the needed word from
the main memory into the cache, but also the entire block that contains the needed word.

A block fetch can retrieve the data located before the requested byte (lookbehind), follows
the requested byte (lookahead), or both. Generally, blocks are aligned (2-byte blocks on
doubleword boundaries, 4-word blocks on doubleword boundaries). An access to any byte in
the block copies the whole block into the cache. When memory locations are accessed in

7-2

Intel CACHE SUBSYSTEMS

ascending order (code accesses, for example), an access to the first byte of a block in main
memory results in a lookahead block fetch. When memory locations are accessed in descend-
ing order, the block fetch is look-behind.

Block size is one of the most important parameters in the design of a cache memory system.
If the block size is too small, the lookahead and look-behind are reduced, and therefore the
hit rate is reduced, particularly for programs that do not contain many loops. However, too
large a block size has the following disadvantages:

¢ Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch
overwrites older cache contents, a small number of blocks results in data being overwrit-
ten shortly after it is fetched.

e As a block becomes larger, each additional word is further from the requested word,
therefore less likely to be needed by the processor (according to program locality).

e Large blocks tend to require a wider bus between the cache and the main memory, as
well as more static and dynamic memory, resulting in increased cost.

As with all cache parameters, the block size must be determined by weighing performance
(as estimated from simulation) against cost.

7.2 CACHE ORGANIZATIONS

7.2.1 Fully Associative Cache

Most programs make reference to code segments, subroutines, stacks, lists, and buffers located
in different parts of the address space. An effective cache must therefore hold several
noncontiguous blocks of data.

Ideally, a 128-block cache would hold the 128 blocks most likely to be used by the processor
regardless of the distance between these words in main memory. In such a cache, there
would be no single relationship between all the addresses of these 128 blocks, so the cache
would have to store the entire address of each block as well as the block itself. When the
processor requested data from memory, the cache controller would compare the address of
the requested data with each of the 128 addresses in the cache. If a match were found, the
data for that address would be sent to the processor. This type of cache organization, depicted
in Figure 7-2, is called fully associative.

A fully associative cache provides the maximum flexibility in determining which blocks are
stored in the cache at any time. In the previous example, up to 128 unrelated blocks could
be stored in the cache. Unfortunately, a 128-address compare is usually unacceptably slow,
expensive, or both. One of the basic issues of cache organization is how to minimize the
restrictions on which words may be stored in the cache while limiting the number of required
address comparisons.

7-3

Intel CACHE SUBSYSTEMS

31 . 24 23 21 0
32817 CACHE/DRAM BYTE
PROCESSOR TAG ~—4—
ADDRESS SELECT ENABLE
|<¢—16 MEGABYTE DRAM = 24 BITS —3»]
DATA
> 24682468 FFFFFC
TAG = -
22 BITS EAB.I;'ATES — 11223344 FFFFF8
(»{ 33333333 FFFFF4
FFFFFC 24682468
000000 12345678
FFFFF4 33333333
1633A0
128 -
LOCATIONS 4 87654321 16339C
163398
16339C 87654321
FFFFF8 11223344
L 00000C
2816 BIT SRAM 4096 BIT SRAM 000008
000004
> 12345678 000000
|e—32BITS—>|
16 MEGABYTE DRAM
G30107

Figure 7-2. Fully Associative Cache Organizatidn

7.2.2 Direct Mapped Cache

In a direct mapped cache, unlike a fully associative cache, only one address comparison is
needed to determine whether requested data is in the cache.

The many address comparisons of the fully associative cache are necessary because any
block from the main memory can be placed in any location of the cache. Thus, every block
of the cache must be checked for the requested address. The direct mapped cache reduces
the number of comparisons needed by allowing each block from the main memory only one
possible location in the cache.

Each direct mapped cache address has two parts. The first part, called the cache index field,
contains enough bits to specify a block location within the cache. The second part, called
the tag field, contains enough bits to distinguish a block from other blocks that may be
stored at a particular cache location.

7-4

intel

CACHE SUBSYSTEMS

For example, consider a 64-kilobyte direct mapped cache that contains 16K 32-bit locations
and caches 16 megabytes of main memory. The cache index field must include 14 bits to
select one of the 16K blocks in the cache, plus 2 bits (or 4 byte Enables) to select a byte
from the 4-byte block. The tag field must be 8 bits wide to identify one of the 256 blocks
that can occupy the selected cache location. The remaining 8 bits of the 32-bit 80386 address
are decoded to select the cache subsystem from among other memories in the memory space.
The direct-mapped cache organization is shown in Figure 7-3.

s28ir |31

24|23

16|15

PROCESSOR CACHE/DRAM
ADDRESS SELECT

TAG

INDEX

|—64K cACHE =16 BITS —>|
16 MEGABYTE DRAM =24 BITS
— —

DATA INDEX
FFFC
11223344 | FFF8
+ 4
0010
INDEX TAG DATA 0000
FFFC o1 12345678 ’_l 0008
FFF8 FF L 11223344 0004
+ 4 4+ 0000
0010 =
000C -
0008 00 87654321 ——
0004 01 11235813 »1 12345678 | FFFC
0000 00 13579246 r FFF8
(14B17S) | BiTss]| |-32BITS > gggg
0008
64K SRAM CACHE 11235813 | 0004
0000
FFFC
FFF8
0010
000C
87654321 0008
0004
13579246 | 0000
f32BiTs >
16 MEGABYTE DRAM

TAG

FF

01

00

G30107

Figure 7-3. Direct Mapped Cache Organization

7-5

Intel CACHE SUBSYSTEMS

In a system such as shown in Figure 7-3, a request for the data at the address 12FFE9H in
the main memory is handled as follows:

1. The cache controller determines the cache location from the 14 most significant bits of
the index field (FFE8H).

2. The controller compares the tag field (12H) with the tag stored at location FFE8H in
the cache.

3. If the tag matches, the processor reads the least significant byte from the data in the
cache.

4. If the tag does not match, the controller fetches the 4-byte block at address 12FFE8H in
the main memory and loads it into location FFE8H of the cache, replacing the current
block. The controller must also change the tag stored at location FFE8H to 12H. The
processor then reads the least significant byte from the new block.

Any address whose index field is FFE8H can be loaded into the cache only at location
FFE8H; therefore, the cache controller makes only one comparison to determine if the
requested word is in the cache. Note that the address comparison requires only the tag field
of the address. The index field need not be compared because anything stored in cache
location FFE8H has an index field of FFE8H. The direct mapped cache uses direct address-
ing to eliminate all but one comparison operation.

The direct mapped cache, however, is not without drawbacks. If the processor in the example
above makes frequent requests for locations 12FFE8H and 44FFE8H, the controller must
access the main memory frequently, because only one of these locations can be in the cache
at a time. Fortunately, this sort of program behavior is infrequent enough that the direct
mapped cache, although offering poorer performance than a fully associative cache, still
provides an acceptable performance at a much lower cost.

7.2.3 Set Associative Cache

The set associative cache compromises between the extremes of fully associative and direct
mapped caches. This type of cache has several sets (or groups) of direct mapped blocks that
operate as several direct mapped caches in parallel. For each cache index, there are several
block locations allowed, one in each set. A block of data arriving from the main memory
can go into a particular block location of any set. Figure 7-4 shows the organization for a
2-way set associative cache.

With the same amount of memory as the direct mapped cache of the previous example, the
set associative cache contains half as many locations, but allows two blocks for each location.
The index field is thus reduced to 15 bits, and the extra bit becomes part of the tag field.

Because the set associative cache has several places for blocks with the same cache index in
their addresses, the excessive main memory traffic that is a drawback of a direct mapped
cache is reduced and the hit rate increased. A set associative cache, therefore, performs more
efficiently than a direct mapped cache.

7-6

CACHE SUBSYSTEMS

TAG

DATA

1FF

001

24682468

77777777

jeoBITS» |32 BITS ™|

32K SRAM

64K CACHE

31 15|14
2 BIT 24|23 0
PROCESSOR | CACHE/DRAM
Pt e TAG INDEX
-2 x 32K SRAM = 15 BITS —»|
f«—— 16 MEGABYTE DRAM = 24 BITS — >
DATA INDEX
7FFC
11223344 | 7FF8
+4 4
0010
INDEX TAG DATA 000C
7FFC 001 12345678 | gggﬁ
7FF8 1FF 11223344
1 11 I 0000
0010 =
000C =
0008 000 87654321 f——p _
0004 001 11235813 12345678 | 7FFC
0000 000 13579246 f— 7FF8
1 1
feoBimss |wazBiTs > i
0008
32K SRAM »{ 11235813 0004
7rrrrrrr | o000
7FFC
7FF8
4 4
0010
000C
87654321 | 0008
0004
»1 13579246 | 0000
fe-22BiTS >
16 MEGABYTE DRAM

TAG

1F

00

00

G30107

Figure 7-4. Two-Way Set Associative Cache Organization

The set associative cache, however, is more complex than the direct mapped cache. In the
2-way set associative cache, there are two locations in the cache in which each block can be
stored; therefore, the controller must make two comparisons to determine in which block, if
any, the requested data is located. A set associative cache also requires a wider tag field,
and thus a larger SRAM to store the tags, than a direct mapped cache with the same amount
of cache memory and main memory. In addition, when information is placed into the cache,
a decision must be made as to which block should receive the information.

7-7

Intel CACHE SUBSYSTEMS

The controller must also decide which block of the cache to overwrite when a block fetch is
executed. There are several locations, rather than just one, in which the data from the main
memory could be written. Three common approaches for choosing the block to overwrite are
as follows:

» Overwriting the least recently accessed block. This approach requires the controller to
maintain least-recently used (LRU) bits that indicate the block to overwrite. These bits
must be updated by the cache controller on each cache transaction.

» Overwriting the blocks in sequential order.

» Opverwriting a block chosen at random.

The performance of each strategy depends upon program behavior. Any of the three strate-
gies is adequate for most set associative cache designs.

7.3 CACHE UPDATING

In a cache system, two copies of the same data can exist at once, one in the cache and one
in the main memory. If one copy is altered and the other is not, two different sets of data
become associated with the same address. A cache must contain an updating system to prevent
old data values (called stale data) from being used. Otherwise, the situation shown in
Figure 7-5 could occur. The following sections describe the write-through and write-back
methods of updating the main memory during a write operation to the cache.

7.3.1 Write-Through System

In a write-through system, the controller copies write data to the main memory immediately
after it is written to the cache. The result is that the main memory always contains valid
data. Any block in the cache can be overwritten immediately without data loss.

The write-through approach is simple, but performance is decreased due to the time required
to write the data to main memory and increased bus traffic (which is significant in multi-
processing systems).

7.3.2 Buffered Write-Through System

Buffered write-through is a variation of the write-through technique. In a buffered write-
through system, write accesses to the main memory are buffered, so that the processor can
begin a new cycle before the write cycle to the main memory is completed. If a write access
is followed by a read access that is a cache hit, the read access can be performed while the
main memory is being updated. The decrease in performance of the write-through system is
thus avoided. However, because usually only a single write access can be buffered, two
consecutive writes to the main memory will require the processor to wait. A write followed
by a read miss will also require the processor to wait.

7-8

|nte| CACHE SUBSYSTEMS

80386 CACHE MEMORY

1. PROCESSOR READ DATA; DATA NOT - /
FOUND IN CACHE. DATA IS COPIED
INTO CACHE FROM MEMORY.

80386

N

PROCESSOR WRITES A NEW VALUE
FOR THE DATA JUST READ.

80386

©w

LATER, ANOTHER READ CAUSES
NEW DATA TO BE OVERWRITTEN.
NEW DATA IS LOST.

.

80386

PROCESSOR READS THE SAME - <
LOCATION AS IN STEP 1. STALE
DATA IS COPIED INTO CACHE.
PROCESSOR GETS WRONG DATA.

»

G30107

Figure 7-5. Stale Data Problem

7.3.3 Write-Back System

In a write-back system, the tag field of each block in the cache includes a bit called the
altered bit. This bit is set if the block has been written with new data and therefore contains
data that is more recent than the corresponding data in the main memory. Before overwrit-
ing any block in the cache, the cache controller checks the altered bit. If it is set, the control-
ler writes the block to main memory before loading new data into the cache.

Write-back is faster than write-through because the number of times an altered block must
be copied into the main memory is usually less than the number of write accesses. However,
write-back has these disadvantages:

¢ Write-back cache controller logic is more complex than write-through. When a write-
back system must write an altered block to memory, it must reconstruct the write address
from the tag and perform the write-back cycle as well as the requested access.

* All altered blocks must be written to the main memory before another device can access
these blocks in main memory.

7-9

Intel CACHE SUBSYSTEMS

» In a power failure, the data in the cache is lost, so there is no way to tell which locations
of the main memory contain stale data. Therefore, the main memory as well as the cache
must be considered volatile and provisions must be made to save the data in the cache in
the case of a power failure.

7.3.4 Cache Coherency

Write-through and write-back eliminate stale data in the main memory caused by cache
write operations. However, if caches are used in a system in which more than one device has
access to the main memory (multi-processing systems or DMA systems, for example), another
stale data problem is introduced. If new data is written to main memory by one device, the
cache maintained by another device will contain stale data. A system that prevents the stale
cache data problem is said to maintain cache coherency. Three cache coherency approaches
are described below:

o Hardware transparency—Hardware guarantees cache coherency by ensuring that all
accesses to memory mapped by a cache are seen by the cache. This is accomplished either
by routing the accesses of all devices to the main memory through the same cache or by
copying all cache writes both to the main memory and to all other caches that share the
same memory (a technique known as broadcasting). Hardware transparent systems are
illustrated in Figure 7-6.

» Non-cacheable memory — Cache coherency is maintained by designating shared memory
as non-cacheable. In such a system, all accesses to shared memory are cache misses,
because the shared memory is never copied into the cache. The non-cacheable memory
can be identified using chip-select logic or high-address bits. Figure 7-7 illustrates non-
cacheable memory.

OTHER

BUS »| CACHE
MASTER

MAIN
J MEMORY

80386

- CACHE

G30107

Figure 7-6. Hardware Transparency

Intel CACHE SUBSYSTEMS

OTHER BUS
MASTER

- »] DECODE } NON-CACHEABLE

80386 |
CACHE MEMORY

CACHEABLE

G30107

Figure 7-7. Non-Cacheable Memory

Software can offset the reduction in the hit rate caused by non-cacheable memory by
using the string move instruction (REP MOVS) to copy data between non-cacheable
memory and cacheable memory and by mapping shared memory accesses to the cachea-
ble locations. This technique is especially appropriate for systems in which copying is
necessary for other reasons (as in some implementations of UNIX for example).

» Cache flushing — A cache flush writes any altered data to the main memory (if this has
not been done with write-through) and clears the contents of the cache. If all the caches
in the system are flushed before a device writes to shared memory, the potential for stale
data in any cache is eliminated.

An advantage of cache flushing is that is uses simpler hardware than the other two
approaches. A disadvantage of this approach is that the memory accesses that follow the
cache flush will be misses until the cache is refilled with new data. If flushes can be minimized,
however, this disadvantage may be minor compared to the advantages of cache flushing.

Combinations of various cache coherency techniques may offer the optimal solution for a
particular system. For example, a system might use hardware transparency for time-critical
I/0 operations such as paging and non-cacheable memory for slower I/O such as printing.

7.4 SYSTEM STRUCTURE AND PERFORMANCE

Performance data for various cache organizations is shown in Table 7-1. This data should
be weighed against other considerations, such as hardware complexity, in selecting a cache
organization.

Intel CACHE SUBSYSTEMS

Table 7-1. Cache System Performance

Cache Configuration Cache Performance
. e . . . Performance Ratio
Size Associativity Line Size Hit Rate Over Non-Cached DRAM
1K direct 4 bytes 41% 0.91
8K direct 4 bytes 73% 1.25
16K direct 4 bytes 81% 1.35
32K direct 4 bytes 86% 1.38
32K 2-way 4 bytes 87% 1.39
32K direct 8 bytes 91% 1.41
64K direct 4 bytes 88% 1.39
64K 2-way 4 bytes 89% 1.40
64K 4-way 4 bytes 89% 1.40
64K direct 8 bytes 92% 1.42
64K 2-way 8 bytes 93% 142
128K direct 4 bytes 89% 1.39
128K 2-way 4 bytes 89% 1.40
128K direct 8 bytes 93% 1.42
no cache-2 CLK SRAM access (100%) 1.47
no cache-4 CLK piplined DRAM — 1.00

7.5 DMA THROUGH CACHE

Cache coherency is especially relevant to the placement of a DMA controller in a 80386
system. Because the DMA controller has access to the main memory, it can introduce stale
data problems. Stale data can be avoided in the following ways:

e Implementing a transparent cache; that is, directing memory accesses from both the 80386
and the DMA controller through the cache.

» Allowing the DMA controller direct access to memory while guaranteeing cache coher-
ency through non-cacheable memory or cache flushing (see the previous section for expla-
nations of these techniques).

The first method is more desirable than the second because it does not require extra hardware
to guarantee cache coherency. However, with this method, the 80386 and the DMA control-
ler must contend for memory access. With the second method, the 80386 can access the
cache while the DMA controller is accessing the memory; as long as the 80386 access is a
cache hit, the DMA controller does not interfere with the performance of the 80386. Each
method has advantages. Deciding which method is more suitable depends on the perform-
ance of the DMA controller.

In general, if a DMA controller’s activity is significantly more time-consuming than that of
the 80386, it is better to allow the controller direct access to memory. DMA accesses through
the cache would cause significant delays for the 80386. A 16-bit, 8-MHz Advanced DMA
(ADMA) controller requires eight CLK2 cycles to write a 32-bit doubleword into memory,
plus five CLK2 cycles to gain and release control of the bus (using the HOLD signal). In

|nte| CACHE SUBSYSTEMS

contrast, an 80386 could ensure cache coherency by transferring data between cacheable
and non-cacheable memory at four CLK2 cycles for each doubleword (no wait states) using
the REP MOVS instruction.

7.6 CACHE EXAMPLE

The cache system example described in this section illustrates some of the decisions a cache
designer must make. The requirements of a particular system may result in different choices
than the ones made here. However, the issues presented in this example are likely to arise in
the process of designing any cache system.

7.6.1 Example Design

The cache system uses a direct mapped cache. In previous generations of computers, it was
often practical to use a 2-way or 4-way associative cache. SRAMSs had low memory capac-
ity, so many of them were needed to construct a reasonable cache. By comparison, the cost
of comparators and control logic for implementing the associativity (in terms of both dollars
and board space) was negligible. Today, however, SRAMSs hold more memory, cost less, and
take up less space. It is now more economical to increase cache effectiveness by increasing
cache size (SRAMs) rather than associativity (control logic and comparators).

The main memory is updated using write-through. Buffered write-through and write-back
systems require more logic and are usually cost-effective only if the DRAM response is
relatively slow (as with a dual-port DRAM shared with other processors or a DMA
controller).

The block size is four bytes, which is most convenient for the 32-bit data bus of the 80386.
An 8-byte block size would transfer twice as much data for every DRAM access, but would
require a wider bus and more SRAMs and DRAMs. In most cases, the extra cost outweighs
the extra performance.

The cache in this example accesses both code and data, rather than only code. Code-only
caches are easier to implement because there are no write accesses. They can be useful if
data accesses are infrequent and widely spaced in memory. In general, however, most
programs make frequent data accesses. The code prefetch function of the 80386 makes the
access time for code not critical to overall performance, so the performance gain of a code-
only cache is unimportant.

7.6.2 Example Cache Memory Organization

The example cache is organized as shown in Figure 7-8. The cache holds 64 kilobytes
(16K locations of 4-byte blocks) of data and code and requires 16K 8-bit tag locations. The
main memory holds 16 megabytes (4M locations of 4-byte blocks).

7-13

Intel CACHE SUBSYSTEMS

s2.Br 31 2423 16[15 0
PROCESSOR
CACHE/DRAM
ADDRESS sELEc'; TAG INDEX

j—64k caCHE =16 BITS —»]
f«——16 MEGABYTE DRAM = 24 BITS —»»|

DATA INDEX TAG
FFFC
L11223344 FFF8
INDEX TAG DATA W gg;g FF
FFFC o1 12345678 e
FFF8 FF 11223344 0000
0010 T i -
000C -
0008) 87654321 b——y
0004 01 11235813 ~>] 12345678 | FFFC
0000 00 13579246 f— ! FFF8
0010
(14 BiTs) |wsBiTs»| |e32BITS>| ooa f o1
0008
64K SRAM CACHE 11235813 | 0004
0000
FFFC
FFF8
0010
000C 00
87654321 0008
0004
13579246 | 0000

feazBiTs >

16 MEGABYTE DRAM

G30107

Figure 7-8. Example of Cache Memory Organization

The 32-bit address from the 80386 is divided into the following three fields:
¢ Select—Bits A31-A24 are decoded by chip-select logic to select the cache memory
subsystem.

» Tag—Bits A23-A16 identify one of the 256 64-kilobyte sections in the main memory
(DRAM).

¢ Index—Bits A15-A2 identify one of the 16K doubleword locations in the cache.

Intel CACHE SUBSYSTEMS

Each doubleword location of the cache can be occupied by one of 256 blocks from the main
memory (one block from each 64-kilobyte section).

The 80386 bits A23-A2 are interpreted as follows:

1. Index bits A15-A2 select the cache location.

2. Tag bits A23-A16 are matched with the 8 bits of the tag for that location to determine if
the block in the cache is the block needed by the 80386.

a. If the tag matches, the 80386 either reads the data in the cache or writes new data to
the location. In the case of a write, the data is also written to the main memory.

b. If the tag does not match, a data transfer to or from the main memory is performed.
Bits A23-A16 (the tag) select one of the 256 64-kilobyte sections of the DRAM, and
bits A15-A2 select one 4-byte block from that section to transfer to the cache and to
the processor. The 80386 Byte Enable signals select the requested bytes from the block.
The new tag for the cache location is written to the tag SRAM.

7.6.3 Example Cache Implementation

Figure 7-9 shows the logic for implementing the example cache. The index field (A15-A2)
is latched early in the cycle to select the tag from the tag RAM. The tag field (A23-A16) is
latched later in the cycle and compared with the tag from the RAM in the 74F521 compar-
ator. The output of the comparator is sent to the cache controller to enable either the cache
or the DRAM for the bus cycle.

In the case of a hit, the controller enables the cache for the bus cycle. If the access is a write,
the controller then enables the DRAM for the write-through cycle. In the case of a miss, the
controller enables the DRAM to update the cache before the access is performed.

9i-L

A23-A16
PIPELINED
TAG N
80386 LOOKUP =
\ Pralle \ TO CACH
216K x4 - » TO CACHE CONTROLLER
mey 8-BITTAG MisS TO ENABLE CACHE PaL20x10
N \ OR MAIN MEMORY
N REFREQ
ADDRESS 74F521
PAL20X10
TAG
—_—
A23-A16
USE NA#PIN
FOR ADDRESS 7AF3T3
PIPELINING MULTIPLEXED
INDEX OPEN A23-A2 ADDRESS
—_— —_—
A15-A2 EARLY 8) 16K x4
[N
74F373 74F373 SODEATA 74AS258
CACHE
{L BYTE ENABLES
—
BE3#-BEO#
74F373
SYSTEM DATA
— K
N
D31-D0
74F245 R &8
\ 256K x 8
80387 V) -
| ————
74F245 EPROM AND
PERIPHERALS
G30107

Figure 7-9. Cache Memory System Implementation

SW31SASansS 3IHOVO

l/O Interfacing

CHAPER 8
170 INTERFACING

The 80386 supports 8-bit, 16-bit, and 32-bit I/O devices that can be mapped into either the
64-kilobyte I/O address space or the 4-gigabyte physical memory address space. This chapter
presents the issues to consider when designing an interface to an I/O device. Mapping as
well as timing considerations are described. Several examples illustrate the design concepts.

8.1 1/0 MAPPING VERSUS MEMORY MAPPING
I/O mapping and memory mapping of I/O devices differ in the following respects:

o The address decoding required to generate chip selects for I/O-mapped devices is often
simpler than that required for memory-mapped devices. I/O-mapped devices reside in the
I/0 space of the 80386 (64 kilobytes); memory-mapped devices reside in a much larger
memory space (4 gigabytes) that makes use of more address lines.

» Memory-mapped devices can be accessed using any 80386 instruction, so I/O-to-memory,
memory-to-I/0O, and I/O-to-I1/O transfers as well as compare and test operations can be
coded efficiently. I/O-mapped devices can be accessed only through the IN, OUT, INS,
and OUTS instructions. All I/O transfers are performed via the AL (8-bit), AX (16-bit),
or EAX (32-bit) registers. The first 256 bytes of the I1/O space are directly addressable.
The entire 64-kilobyte 1/O space is indirectly addressable through the DX register.

* Memory mapping offers more flexibility in protection than I/O mapping does. Memory-
mapped devices are protected by memory management and protection features. A device
can be inaccessible to a task, visible but protected, or fully accessible, depending on where
the device is mapped in the memory space. Paging provides the same protection levels for
individual 4-kilobyte pages and indicates whether a page has been written to. The I/O
privilege level of the 80386 protects I/O-mapped devices by either preventing a task from
accessing any I/O devices or by allowing a task to access all I/O devices. A virtual-8086-
mode I1/O permission bitmap can be used to select the privilege level for a combination
of I/0 bytes.

8.2 8-BIT, 16-BIT, AND 32-BIT I/0 INTERFACES

The 80386 can operate with 8-bit, 16-bit, and 32-bit peripherals. The interface to a periph-
eral device depends not only upon data width, but also upon the signal requirements of the
device and its location within the memory space or I/O space.

8.2.1 Address Decoding

Address decoding to generate chip selects must be performed whether I/O devices are
I/O-mapped or memory-mapped. The decoding technique should be simple to minimize the
amount of decoding logic.

intel

One possible technique for decoding memory-mapped I/O addresses is to map the entire
I1/0 space of the 80386 into a 64-kilobyte region of the memory space. The address decoding
logic can be configured so that each I/O device responds to both a memory address and an
I/0 address. Such a configuration is compatible for both software that uses I/O instructions
and software that assumes memory-mapped 1/0.

|/0 INTERFACING

Address decoding can be simplified by spacing the addresses of I/O devices so that some of
the lower address lines can be omitted. For example, if devices are placed at every fourth
address, the 80386 Byte Enable outputs (BE3#-BEO#) can be ignored for I/O accesses and
each device can be connected directly to the same eight data lines. The 64-kilobyte I/O
space is large enough to allow the necessary freedom in allocating addresses for individual
devices.

Addresses can be assigned to I/O devices arbitrarily within the I/O space or memory space.
Addresses for either I/O-mapped or memory-mapped devices should be selected to minimize
the number of address lines needed.

8.2.2 8-Bit1/0

Eight-bit I/O devices can be connected to any of the four 8-bit sections of the data bus.
Table 8-1 illustrates how the address assigned to a device determines which section of the
data bus is used to transfer data to and from the device.

In a write cycle, if BE3# and/or BE2# is active but not BE1# or BEO#, the write data on
the top half of the data bus is duplicated on the bottom half. If the addresses of two devices
differ only in the values of BE3#-BEO# (the addresses lie within the same doubleword
boundaries), BE3#-BEO# must be decoded to provide a chip select signal that prevents a
write to one device from erroneously performing a write to the other. This chip select can be
generated using an address decoder PAL device or TTL logic.

Another technique for interfacing with 8-bit peripherals is shown in Figure 8-1. The 32-bit
data bus is multiplexed onto an 8-bit bus to accommodate byte-oriented DMA or block
transfers to memory-mapped 8-bit I/O devices. The addresses assigned to devices connected
to this interface can be closely spaced because only one 8-bit section of the data bus is
enabled at a time.

Table 8-1. Data Lines for 8-Bit 1/0 Addresses
Address 4N + 3 4N + 2 4N + 1 4N
Byte D31-D24 D23-D16 D15-D8 D7-D0O
Word D31-D16 D15-D0O
Doubleword D31-D0O

1/0 INTERFACING

74X245

: D31-D24 : :
OE#
74X245

OE#

74X245

it

D15-D8
OE#
74X245

OE#

BE3# ewm—ed
BE2# s
BE1# m—mmeed

BEO#

DECODE

<), K > 8-BIT /0 DEVICE
D7-DO D7-DO

G30107

Figure 8-1. 32-Bit to 8-Bit Bus Conversion

8-3

Intel 1/0 INTERFACING

8.2.3 16-Bit1/0

To avoid extra bus cycles and to simplify device selection, 16-bit I/O devices should be
assigned to even addresses. If 1/O addresses are located on adjacent word boundaries, address
decoding must generate the Bus Size 16 (BS16#) signal so that the 80386 performs a 16-bit
bus cycle. If the addresses are located on every other word boundary (every doubleword
address), BS16# is not needed.

8.2.4 32-Bit1/0

To avoid extra bus cycles and to simplify device selection, 32-bit devices should be assigned
to addresses that are even multiples of four. Chip select for a 32-bit device should be condi-
tioned by all byte enables (BE3#-BEO#) being active.

8.2.5 Linear Chip Selects

Systems with 14 or fewer I/O ports that reside only in the I/O space or that require more
than one active select (at least one high active and one low active) can use linear chip selects
to access I/O devices. Latched address lines A2-A15 connect directly to I/O device selects
as shown in Figure 8-2.

8.3 BASIC I/0 INTERFACE

In a typical 80386 system design, a number of slave 1/O devices can be controlled through
the same local bus interface. Other I/O devices, particularly those capable of controlling the
local bus, require more complex interfaces. This section presents a basic interface for slave
peripherals.

The high performance and flexibility of the 80386 local bus interface plus the increased
availability of programmable and semi-custom logic make it feasible to design custom bus
control logic that meets the requirements of particular system.

The basic I/O interface shown in Figure 8-3 can be used to connect the 80386 to virtually
all slave peripherals. The following list includes some common peripherals compatible with
this interface:

8259A Programmable Interrupt Controller

8237 DMA Controller (remote mode) _
82258 Advanced DMA Controller (remote mode)
8253, 8254 Programmable Interval Timer

8272 Floppy Disk Controller

82062, 82064 Fixed Disk Controller

8274 Multi-Protocol Serial Controller

8255 Programmable Peripheral Interface

8041, 8042 Universal Peripheral Interface

8-4

Intel 1/0 INTERFACING

ADDRESS o

LINE cs
iORC —Of RD 110 DEVICE
IOWC —Of WR
(A) ONE CHIP SELECT
cs
110 DEVICE
——O R_D
—— WR
A15 CcS
Al4 -dq CS
110 DEVICE
IORC — RD ¢
TOWC -] WR

(B) MULTIPLE CHIP SELECTS

210760-97

Figure 8-2. Linear Chip Selects

The bus interface control logic presented here is identical to the one used in the basic memory
interface described in Chapter 6. In most systems, the same control logic, address latches,
and data buffers can be used to access both memory and I/O devices. The schematic of the
interface is shown in Figure 8-4 and described in the following sections.

8.3.1 Address Latch

Latches maintain the address for the duration of the bus cycle. In this example, 74x373
latches are used.

The 74x373 Latch Enable (LE) input is controlled by the Address Latch Enable (ALE)
signal from the bus control logic that goes active at the start of each bus cycle. The 74x373
Output Enable (OE#) is always active.

Intel 1/0 INTERFACING

B
) CONl'i"ISROL ADDRESS

WAIT-STATE LoGIC [DECODER -~
GENERATOR
> 110

DEVICE
#

ADDRESS
READY# BUS LATCH
STATUS
- .
ADDRESS
80386 110
DEVICE
#2
DATA
TRANSCEIVER
DATA
G30107

Figure 8-3. Basic I/0 Interface Block Diagram

8.3.2 Address Decoder

In this example, the address decoder, which converts the 80386 address into chip-select
signals, is located before the address latches. In general, the decoder may also be placed
after the latches. If it is placed before the latches, the chip-select signal becomes valid as
early as possible but must be latched along with the address. Therefore, the number of address
latches needed is determined by the location of the address decoder as well as the number
of address bits and chip-select signals required by the interface. The chip-select signals are
routed to the bus control logic to set the correct number of wait states for the accessed
device.

The decoder consists of two one-of-four decoders, one for memory address decoding and one
for I/O address decoding. In general, the number of decoders needed depends on the memory
mapping complexity. In this basic example, an output of the memory address decoder
activates the I/O address decoder for I/O accesses. The addresses for the I/O devices are
located so that only address bits A4 and A5 are needed to generate the correct chip-select
signal.

8-6

1/0 INTERFACING

®

Hnoui) 8deI8lu] O/] diseg "p-g 2.nblg

£010€9
31dWYX3 B3 TI0HLNOD SN@ W01 98t08
N
00 -
gt
” o v
1IN3AZ-INNOD] 0Z1N0 $2 1 swdnuuaNI £
YYMAYYH — 0:231¥D IHYMOYYH ——] 0:28) V1N
oL ozwr0 uM oL M
ay &
HY3IINNOD 43110HLNOD
HINIL 1dNBYIINI
2v5028 zve528
? sunox Y
wora] svzsvrL
og 0 gy - N3Q ¥l
LY
ES) s
30 0
WOHd3 8 X %91 WOHd3 8% %9l
ez [314%14
€A
A 8
g v kad
ELESYYL = SV
0za | e:sia | 91:620 | v2:180 | LI
) i 0201
ool o0y ool ooy Lo oo o ooy TV — H— 6ELdvL
2 $9))
Wyusexyz 30 WyHS 8%z 30 wyusgxyz 30 wyds g%z 30
T'HZ9ISINH Z'BZIISIWH Z'BZYISIWNH Z'9ZIISINH
3m m ELY ELY
4- \JI’ v Ym
L—4 n3a 210
N o '
Mol SMOSO
s e SHOS3
9
2eam ¥ Il =
Ol —}
o i g
S - T eV
I e 1 2 _ebis
€ 21901 W_l — oo
804y Aavay W we sav 68LdvL
=1 3did
- I
: A
Z L
i 88Y9IWVd
z 4
1zsvnL)
S =1 1353y
’ veezs
esvL 2ID0T VYN HIHLO WOYHS

YINI

oiea

98£08

sav

1353y

19

N

AQvay

8-7

Intel 1/0 INTERFACING

8.3.3 Data Transceiver

Standard 8-bit transceivers (74x245, in this example) provide isolation and additional drive
capability for the 80386 data bus. Transceivers are necessary to prevent the contention on
the data bus that occurs if some devices are slow to remove read data from the data bus
after a read cycle. If a write cycle follows a read cycle, the 80386 may drive the data bus
before a slow device has removed its outputs from the bus, potentially causing bus contention
problems. Transceivers can be omitted only if the data float time of the device is short enough
and the load on the 80386 data pins meets device specifications.

A bus interface must include enough transceivers to accommodate the device with the most
inputs and outputs on the data bus. If the widest device has 16 data bits and if the I/O
addresses are located so that all devices are connected only to the lower half of the data bus,
only two 8-bit transceivers are needed.

The 74x245 transceiver is controlled through two input signals:

» Data Transmit/Receive (DT/R#)—When high, this input enables the transceiver for a
write cycle. When low, it enables the transceiver for a read cycle. This signal is just a
latched version of the 80386 W /R# output.

« Data Enable (DEN#)—When low, this input enables the transceiver outputs. This signal
is generated by the bus control logic.

8.3.4 Bus Control Logic

The bus control logic for the basic I/O interface is the same as the logic for the memory
interface described in Section 6.2. The bus controller decodes the 80386 status outputs
(W/R#, M/IO#, and D/C#) and activates a command signal for the type of bus cycle
requested. The command signal corresponds to the bus cycle types (described in Chapter 3)
as follows: h

» Memory data read and memory code read cycles generate the Memory Read Command
(MRDC#) output. MRDC# commands the selected memory device to output data.

e I/O read cycles generate the I/O Read Command (IORC#) output. IORC# commands
the selected I/0 device to output data.

* Memory write cycles generate the Memory Write Command (MWTCH#) output. MWTC#
commands the selected memory device to receive the data on the data bus.

» 1/O write cycles generate the I/O Write Command (IOWC#) output. IOWC# commands
the selected memory device to receive the data on the data bus.

Interrupt-acknowledge cycles generate the Interrupt Acknowledge (INTA#) output, which
is returned to the 8259A Interrupt Controller.

The bus controller also controls the READY# input to the 80386 that ends each bus cycle.
The PAL-2 bus control PAL counts wait states and returns READY# after the number of
wait states required by the accessed device. The design of this portion of the bus controller
depends on the requirements of the system; relatively simple systems need less wait-state

8-8

Intel 1/0 INTERFACING

logic than more complex systems. The basic interface described here uses a PAL device to
generate READY#; other designs may use counters and/or shift registers.

If several I/O devices reside on the local bus, READY# logic can be simplified by combin-
ing into a single input the chip selects for devices that require the same number of wait
states. The CSIO# input of PAL-1 generates the same number of wait states for all I/O
accesses. Adding wait states to some devices to make the wait-state requirements of several
devices the same does not significantly impact performance. If the response of the device is
already slow (four wait states, for example), the additional wait state amounts to a relatively
small delay. Typically, I/O devices are used infrequently enough that the access time is not
critical.

8.4 TIMING ANALYSIS FOR I/0 OPERATIONS

In this section, timing requirements for devices that use the basic I/O interface are discussed.
The values of the various device specifications are examples only; for correct timing analysis,
always refer to the latest data sheet for the particular device.

Timing for 80386 I/0O cycles is identical to memory cycle timing in most respects; in partic-
ular, timing depends on the design of the interface. The worst-case timing values are calcu-
lated by assuming the maximum delay in the address latches, chip select logic, and command
signals, and the longest propagation delay through the data transceivers (if used). These
calculations yield the minimum possible access time for an I/O access for comparison with
the access time of a particular I/O device. Wait states must be added to the basic worst-
case values until read and write cycle times exceed minimum device access times.

The timing requirement for the address decoder dictates that the logic be combinational (not
latched or registered) with a propagation delay less than the maximum delay calculated
below.

The CS1WS signal requires a maximum decoder delay of 38.75 nanoseconds:

(3 x CLK2 period) — 80386 Addr Valid — PAL setup
(3 x 31.25) — 40 - 15

= 38.75 nanoseconds
(CLK2 = 32 MHz)

The CSOWS signal must be slightly faster in order to activate NA#:
(3 x CLK2 period) — 80386 Addr Valid — (2 x OR prop. delay)
— 80386 NA# setup
(3 x 31.25) — 40 —(2x6)
— 10

= 31.75 nanoseconds
(CLK2 = 32 MHz)

8-9

Intel 1/0 INTERFACING

The timings of the other signals can be calculated from the waveforms in Figure 8-5. In the
following example, the timings for I/O accesses are calculated for CLK2 = 32 MHz and
B-series PALs. All times are in nanoseconds.

tAR: Address stable before Read (IORC# fall)
tAW: Address stable before Write (IOW C# fall)

(5 x CLK2 period) —PAL RegOut Max —Latch Enable Max
+ PAL RegOut Min

(5 x31.25) — 12 —11.5

+ 0

= 132.75 nanoseconds
tRR: Read (IORC#) pulse width

(9 x CLK2 period) — PAL RegOut Max + PAL RegOut Min
(9 x 31.25) - 12 +0
= 269.25 nanoseconds

tWW: Write (IOWC#) pulse width

(10 x CLK2 period) — PAL RegOut Max + PAL RegOut Min
(10 x 31.25) — 12 + 0

= 300.5 nanoseconds
tRA: Address hold after Read (IORC# rise)

(6 x CLK2 period) — PAL RegOut Max + PAL RegOut Min
+ Latch Enable Min

(6 x 31.25) — 12 + 0

+ 5

= 180.5 nanoseconds
tWA: Address hold after Write (IOWCH# rise)

(7 x CLK2 period) — PAL RegOut Max + PAL RegOut Min
+ Latch Enable Min

(7 x 31.25) — 12 + 0

+ 5

= 211.75 nanoseconds

Li-8

CLK

ADS#

ADDR

DATA

SEL

ALE

DEN#

IORD#

IOWT#

MRDC#

NA#

READY#

PERIPHERAL PERIPHERAL
|«—— RECOVERY —»| l«—— RECOVERY —|
IDLE PERIPHERAL READ ™ PE“;{S,E\?A""‘ PERIPHERAL READ P roAT AL+ PERIPHERAL WRITE
NON-PIPELINED PIPELINED SRAM READ PIPELINED PIPELINED
1 2 3 ‘4 5 6 7 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 1 3 4 5 6 7
L/_\v_v/vi\-s/g\:/l\-l/_l‘:/g\lfs_‘eperFFFrwscnn;lnELE/fJFFFFFwsuuusc ||M|||EEFFF
W /7 vy W/ v W/
TR TXCTEX
LGOI OOOCOOTOO00ON00N | 00000 OO OCDCOCOOO OGO | XY
READ READ READ WRITE
OO OO LOO0000000000 CLO0CY OO0
\ M\ JAVEE/A
\ \ / [
\ \
/
\ /
/
Y / / -

G30107

Figure 8-5. Basic I/0 Timing Diagram

P

ONIOV4H3LNI O/1

|nte| 1/0 INTERFACING

tRD:

tDF:

tDW:

tRV:

Data delay from Address
(12 x CLK2 period) — PAL RegOut Max + Latch Enable Max

— Xcvr. prop Min — 80386 Data Setup Min
(12 x 31.25) — 12 —11.5
- 6

— 10

= 335.5 nanoseconds
Data delay from Read (IORC#)

(9 x CLK2 period) — PAL RegOut Max — xcvr. prop Min
— 80386 Data Setup Min

(9 x 31.25) — 12 - 6

— 10

= 253.25 nanoseconds
read (IORC# rise) to Data Float
(8 x CLK2 period) — PAL RegOut Max -+ PAL RegOut Min
+ xcvr. Enable Min
(8 x 31.25) — 12 + 0

+ 3

= 241 nanoseconds

Data setup before write (IOWC# rise)

(10 x CLK2 period) — PAL RegOut Max — xcvr. Enable Max
+ PAL RegOut Min

(10 x 31.25) — 12 — 11

+ 0

= 289.5 nanoseconds

Data hold after write (IOWCH# rise)

(2 x CLK2 period) — PAL RegOut + PAL RegOut

+ xcvr. Disable

(2 x31.25) — 12 + 0

+ 2

= 52.5 nanoseconds

command recovery time

(11 x CLK2 period) — PAL RegOut Max + PAL RegOut Min
(11 x 31.25) - 12 + 0

= 331.75 nanoseconds

8-12

Intel 1/0 INTERFACING

Many peripherals require a minimum recovery time between back-to-back accesses. This
recovery time is usually provided in software by a series of NOP instructions. A JMP to the
next instruction also provides a delay because it flushes the 80386 Prefetch Queue; this
method has a more predictable execution time than the NOP method.

In 80386 systems, the instructions that provide recovery time are executed more quickly
than in earlier systems. For software compatibility with earlier microprocessor generations,
hardware must guarantee the recovery time. However, the circuitry to delay bus commands
selectively for the specific instance of back-to-back accesses to a particular device is typically
more complex than the frequency of such accesses justifies. Therefore, the preferred solution
is to delay all I/O cycles by the minimum recovery time. Because most 1/O accesses are
relatively infrequent, performance is not degraded.

The I/O access timings of the basic interface are compatible with all of the currently avail-
able Intel peripherals. (In some cases, the high-speed versions of these peripherals are
required). Table 8-2 compares several peripheral timings with the timings provided by bus
controller.

Only two peripherals do not meet the bus controller specifications: the 8041 and 8042 UPIs
(Universal Peripheral Interface 8-bit Microcomputers). These intelligent peripherals meet
all but the command recovery specification, so they can be used if this delay is implemented
in software.

8.5 BASIC 1/0 EXAMPLES

In this section, two examples of the interface to slave I/O devices are presented. Typically,
several of these devices exist on the 80386 local bus. The basic I/O interface presented above
is used for both examples.

Table 8-2. Timings for Peripherals Using Basic |/0 Interface

tAR tAW | tRR tww tRA twA tAD tRD tDF | tDwW tDWF twD tRV
bus cntrir 39 39 | 269 300 | 180 21 335 | 263 | 241 289 — 52 331
8259-2 0 0| 160 190 0 0 | 200 | 120 85 160 - 0 190
8254-2 30 0 95 95 0 0| 185 85 65 85 —_ 0 165
82C54-2 0 0 95 95 0 0} 185 85 65 85 —_— 0 165
82C55-2 0 0| 150 100 0 20 — | 120 75 100 — 30 300
8272 0 0 | 250 250 0 0 — | 200 | 100 150 - 5 —
82064 0 0]| 200 200 0 0 — 70 | 200 160 —_ 0 300
8041 0 0 | 250 250 0 0| 225 | 225 | 100 150 — 0 | 2500
8042 0 0| 160 160 0 0 | 130 | 130 85 130 - 0| 1120
8251 0 0] 250 250 0 0 — | 200 | 100 150 — 20 —
8273-4 0 0| 250 250 0 0} 300 | 200 | 100 150 —_ 0 | 1920
8274 0 0] 250 250 0 0 | 200 | 200 | 120 150 — 0 300
8291 0 0| 140 170 0 0 | 250 | 100 60 130 — 0 —
8292 0 0| 250 250 0 0 | 225 | 225 | 100 150 —_ 0 —

Intel 1/0 INTERFACING

8.5.1 8274 Serial Controller

The 8274 Multi-Protocol Serial Controller (MPSC) is designed to interface high-speed serial
communications lines using a variety of communications protocols, including asynchronous,
IBM bisynchronous, and HDLC/SDLC protocols. The 8274 contains two independent full-
duplex channels and can serve as a high-performance replacement for two 8251A Universal
Synchronous/Asynchronous Receiver Transmitters (USARTS).

Figure 8-6 shows connections from the basic I/O interface through which the 80386
communicates with the 8274. The 8274 is accessed as a sequence of four 8-bit I/O addresses
(I/O-mapped or memory-mapped). The Serial I/O (SERIO#) signal is a chip select gener-
ated by address decoding logic. RD# and WR# signals are provided by the bus control logic.
DB7-DBO inputs connect to the lower eight outputs of the data transceiver (D7-DO0).

The 8274 Al and AO inputs are used for channel selection and data or command selection.
These inputs are connected to two address lines that are determined by the 8274 addresses.
The addresses must be chosen so that the A1 and A0 inputs receive the correct signals for
addressing the 8274.

The 8274 requires a minimum recovery time between back-to-back accesses that is provided
for in the basic 1/O interface hardware.

8.5.2 8259A Interrupt Controller

The 8259A Programmable Interrupt Controller is designed for use in interrupt-driven
microcomputer systems. A single 8259A can process up to eight interrupts. Multiple 8259As
can be cascaded to accommodate up to 64 interrupts. A technique to handle more than
64 interrupts is discussed at the end of this section.

8274

FROM DATA
TRANSCEIVER D7-DO DB7-DBO

FROM ADDRESS (“ —>1 Al

LATCH | A2 ~——————d A0
MODEM INTERFACE
FROM

ADDRESS
DECODER SERIO# mmemeeeied CS#

FROMBUS [RD¥# ——at RO#
CONTROLLER | WR# ————nf whRs

G30107

Figure 8-6. 8274 Interface

8-14

Intel 1/0 INTERFACING

The 8259A handles interrupt priority resolution and returns a preprogrammed service routine
vector to the 80386 during an interrupt-acknowledge cycle. Intel Application Note AP-59
contains detailed information on configurations of the 8259A.

8.5.2.1 SINGLE INTERRUPT CONTROLLER

Figure 8-7 shows the connections from the basic I/O interface used for the 80386 and a
single 8259A. Programmable Interrupt Controller (PIC#) is a chip-select signal from the
address decoding logic. INTA# RD#, and WR# are generated by the bus control logic.
BD7-BDO0 are connected to the lower eight outputs of the data transceiver. The A2 bit,
connected to the 8259A AOQ input, is used by the 80386 to distinguish between the two inter-
rupt acknowledge cycles; 8259A register addresses must therefore be located at two consec-
utive doubleword boundaries.

When an interrupt occurs, the 8259A activates its Interrupt (INT) output, which is connected
to the Interrupt Request (INTR) input of the 80386. The 80386 automatically executes two
back-to-back interrupt-acknowledge cycles, as described in Chapter 3. The 8259A timing
requirements are as follows:

« Each interrupt-acknowledge cycle must be extended by at least one wait state. Wait-state
generator logic must provide for this extension.

» Four idle bus cycles must be inserted between the two interrupt-acknowledge cycles. The
80386 automatically inserts these idle cycles.

8259A

:: IR0 11
20 A1 i D
FROM —21—- | IR2 D1 3
INTERRUPTING — 1R D2f—
DEVICES i TO
2z '™ 03— DATA
24]'RS Daf—— TRANSCEIVERS
IETH s DS
A2 ~ 1" Dep—
(FROM ADDRESS A0 D7
LATCH) NIC 12
N1z] CASO ==L.16
——————J CAS1 SPEN jo—mmm——————
NC15) o INT 17 TO 80386
PIC# (CHIP SELECT 1 1= INTR INPUT
FROM ADDRESS DECODER -9 cs
FROM (lOWCH T WR v
BUS { IORC# - RD
CONTROL | |nTaA# AINTA

G30107

Figure 8-7. Single 8259A Interface

8-15

Intel 1/0 INTERFACING

8.5.2.2 CASCADED INTERRUPT CONTROLLERS

Several 8259As can be cascaded to handle up to 64 interrupt requests. In a cascaded config-
uration, one 8259A is designated as the master controller; it receives input from the other
8259As, called slave controllers. The interface between the 80386 and multiple cascaded
8259As is an extension of the single-8259A interface with the following additions:

» The cascade address outputs (CAS2#-CASO#) are output to provide address and chip-
select signals for the slave controllers.

o The interrupt request lines (IR7-IR0) of the master controller are connected to the INT
outputs of the slave controllers.

Each slave controller resolves priority between up to eight interrupt requests and transmits
a single interrupt request to the master controller. The master controller, in turn, resolves
interrupt priority between up to eight slave controllers and transmits a single interrupt request
to the 80386.

The timing of the interface is basically the same as that of a single 8259A. During the first
interrupt-acknowledge cycle, all the 8259As freeze the states of their interrupt request inputs.
The master controller outputs the cascade address to select the slave controller that is gener-
ating the request with the highest priority. During the second interrupt-acknowledge cycle,
the selected slave controller outputs an interrupt vector to the 80386.

Chapter 9 describes the interface to slave controllers that reside on a MULTIBUS I system
bus.

8.5.2.3 HANDLING MORE THAN 64 INTERRUPTS

If an 80386 system requires more than 64 interrupt request lines, a third level of 8259As in
polled mode can be added to the configuration described above. When a third-level control-
ler receives an interrupt request, it drives one of the interrupt request inputs to a slave
controller active. The slave controller sends an interrupt request to the master controller,
and the master controller interrupts the 80386. The slave controller then returns a service-
routine vector to the 80386. The service routine must include commands to poll the third
level of interrupt controllers to determine the source of the interrupt request.

The only additional hardware required to handle more than 64 interrupts are the extra 8259As
and the chip-select logic. For maximum performance, third-level interrupt controllers should
be used only for noncritical, infrequently used interrupts.

8.6 80286-COMPATIBLE BUS CYCLES

Some devices (the 82258, for example) require an 80286-compatible interface in order to
communicate with the 80386. An 80286-compatible interface must generate the following
signals:

o Address bits Al and AO, and Byte High Enable (BHE#) from the 80386 BE3#-BEO#
outputs

8-16

Intel 1/0 INTERFACING

* Bus cycle definition signals SO# and S1# from the 80386 M/IO#, W/R#, and D/C#
outputs

o Address Latch Enable (ALE#), Device Enable (DEN), and Data Transmit/Receive
(DT/R#) signals

+ I/O Read Command (IORC#) and I/O Write Command (IOWC#) signals for I/O cycles

e Memory Read Command (MRDC#) and Memory Write Command (MWTC#) signals
for memory cycles

» Interrupt Acknowledge (INTA#) signal for interrupt-acknowledge cycles

In the following example, the interface is constructed using the 80286-compatible bus
controller (82288) and bus arbiter (82289). The 82289, along with the bus arbiters of other
processing subsystems, coordinates control of the bus between the 80386 and other bus
masters. The 82288 provides the control signals to perform bus cycles. Communication
between the 80386 and these devices is accomplished through PALs that are programmed
to perform all necessary signal translation and generation. Latching and buffering of the
data and address buses is performed by TTL logic.

Figure 8-8 shows a block diagram of the interface, which consists of the following parts:

e AO0/A1 generator—Generates the lower address bits from 80386 BEO# BE3# outputs
e Address decoder—Determines the device the 80386 will access

* Address latches—Connect directly to 80386 address pins A19-A2 and the outputs of the
AO0/A1 generator

¢ Data transceivers—Connect directly to 80386 data pins D15-D0

o SO0#/S1# generator—Translates 80386 outputs into the SO# and S1# signals

¢ Wait-state generator—Controls the length of the 80386 bus cycle through the READY #
signal

+ 82288 Bus Controller—Generates the bus command signals

* 82289 Bus Arbiter—Arbitrates contention for bus control between the 80386 and other
bus masters

8.6.1 AO/A1 Generator

The AO, Al, and BHE# signals are 80286-compatible. These signals are generated from the
80386 byte enables (BEO#-BE3#) as shown in Table 8-3. The truth table can be imple-
mented with the logic shown in Figure 8-9.

8.6.2 SO0#/S1# Generator

SO# and S1# are 80286-compatible status signals that must be provided for the 82288 and
82289. The SO0#/S1# logic in Figure 8-10 generates these signals from 80386 status outputs
(D/C#, M/IO#, and W/R#) and wait-state generator outputs. WS1 and WS2 are wait-
state generator outputs that correspond to the first and second wait states of the 80386 bus
cycle. These signals ensure that SO# and S1# are valid for two CLK cycles.

8-17

Intel 1/0 INTERFACING

BYTE ENABLES > AO/A1
LOGIC :>
ADDRESS LATCHED ADDRESS

LATCH

80386 ADDRESS
’ ADDRESS
DECODER

N DATA TO 80286

50386 DATA taanscever | DATA > COMPATIBLE
PERIPHERALS
So#IS1#

80386 STATUS LOGIC ot

80386

A
82288
BUS
CONTROLLER
WAIT-STATE
GENERATOR
] 82289
BUS —_— .
ARBITER

G30107

Figure 8-8. 80286-Compatible Interface

8.6.3 Wait-State Generator

The wait-state generator PAL shown in Figure 8-11 controls the READY# input of the
80386. For local bus cycles, the wait-state generator produces signal outputs that correspond
to each wait state of the 80386 bus cycle, and the PAL READY# output uses these signals
to set READY# active after the required number of wait states. Two of the wait-state signals,
WSI1 and WS2, are also used to generate SO# and S1#, as described above.

The PCLK signal, which necessary for producing 80286-compatible wait states, is generated
by dividing the CLK signal from the 82384 by two.

8-18

|nte| 1/0 INTERFACING

Table 8-3. AO, A1, and BHE# Truth Table

80386 Signals 16-Bit Bus Signals
Comments
BE3# BE2# BE1# BEO# A1 BHE# BLE# (AO)
H* H* H* H* X X X X—no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H L H H H H L
H* L* H* L X X X x—not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L H* H* L* X X X x—not contiguous bytes
L* H* L* H* X X X x—not contiguous bytes
L* H* L* L* X X X x—not contiguous bytes
L L H H H L L
L* L* H* L* X X X x—not contiguous bytes
L L L H L L H
L L L L L L L

BLE# asserted when DO-D7 of 16-bit bus is active.
BHE# asserted when D8-D15 of 16-bit bus is active.
A1 low for all even words; A1 high for all odd words.

Key:
x = don’t care
H = high voltage level
L = low voltage level
* = a non-occurring pattern of Byte Enables; either none are asserted, or the pattern has Byte Enables
asserted for non-contiguous bytes

To meet the READY# input hold time requirement (25 nanoseconds) for the 82288 Bus
Controller, the READY # signal must be two CLK cycles long. Therefore, two PAL equations
are required to generate READY#. The first equation generates the Ready Pulse
(RDYPLSE) output. RDYPLSE is fed into the READY# equation to extend READY# by
an additional CLK cycle. These signals are gated by PCLK.

RDYPLSE := ARDY * PCLK

/READY := ARDY * PCLK + RDYPLSE

8.6.4 Bus Controller and Bus Arbiter

Connections for the 82288 and 82289 are shown in Figure 8-12. The 82288 MB input is tied
low so that the 82288 operates in local-bus mode. Both the 82288 and the 82289 are selected
by an output of the address decoder that selects 80286-compatible cycles. The AEN# signal
from the 82289 enables the 82288 outputs.

Inte| 1/0 INTERFACING

BEO#
L H
JEE onn
pezg —— Ay ges o Al
onan # BEIY
x| x kB x|L
L H L
BE1#
K-map for A1 signal (same as Figure 5-3) 231630-8
BEO#
L H
Lfx|L]L
L BE1#
BE2# LixiHpL H BE3# BHE
LIH]x)L BES#
H
x|{x|L|x]|L
L H L
BE1#
K-map for 16-bit BHE # signal 231630-9
BEO#
L H BEO#
S H) L BLE# (OR A0)
Lix]L|H
BE2# H BE3#
LiL|x}H
H
x| x fH]xjL
L H L
BE1#
K-map for 16-bit BLE # signal (same as A0 signal in Figure 5-3) 231630-10

Figure 8-9. AO, A1, and BHE# Logic

8.6.5 82258 ADMA Controller

The 82258 Advanced Direct Memory Access (ADMA) controller performs DMA transfers
between main memory and an I/O device, typically a magnetic disk or communications
channel, without intervention from the 80386. Shifting the I/O processing function from the
80386 to the 82258 improves overall system performance because the 80386 doesn’t have to
switch context for every transfer.

The 82258 operates from the CLK output of the 82384 and provides the following advanced
features that are not available in previous generations of DMA controllers:

¢ Command chaining to perform multiple commands sequentially

» Data chaining to scatter data to separate memory locations and to gather data from
separate locations (this feature is useful for demand paging)

* Auto-assembly and disassembly to convert from 16-bit memory to 8-bit I/O or vice versa

8-20

lntel 1/0 INTERFACING

MI/IO#

DiC# ™\ (THESE OUTPUTS
SHOULD BE
-/ LATCHED BY CLK)
WIR#
¢
CHIP SELECT -

FOR 80286
COMPATIBLES
wst

Y

ws2

G30107
Figure 8-10. SO#/S1# Generator Logic
wst ws1
ADSO# K TO S0/S1
16R8 GENERATOR
CLK ws2
82288 ALE
%c CLK# READY# TO 80386
PCLK oo
CHIP SELECT
FOR 80286
COMPATIBLES
G30107

Figure 8-11. Wait-State Generator Logic

» Compare, translate, and verify functions

» The option to use one of the four high-speed channels as a lower-speed, multiplexed
channel. The 82258 gains up to 32 more channels through multiplexing

|®
nte| 1/0 INTERFACING
82289 W g T
SO#
So# LLOCK#
si#
S1# CBRO# -
Mio# MIO# BUSY# >
READY#
READY# BPRO# 80286
MBEN svsB BREQ# COMPATIBLE
LOCK# LocKs
AEN# H
l— BPRN#
82288
SO# MRDC#
S1# MWDC#
MiIo# |ORCH >
READY# oWC#
CENL INTA#
-~ ~,
mB
ALE » TO ADDRESS LATCH
oMLY
DTIR# » TO DATA TRANSCEIVER
AEN#
l_ DEN TO DATA TRANSCEIVER
G30107

Figure 8-12. 82288 and 82289 Connections

The 82258, paired with the 82288 Bus Controller, is capable of being a bus master on a
common local bus and/or system bus with the 80386 and its bus controller. The 82258
requires both a local bus interface to act as bus master and an 80386 interface to commu-
nicate directly with the 80386.

8.6.5.1 82258 AS BUS MASTER

The 82258 operating mode determines the type of bus interface it generates. In the 80286
mode, the 82258 generates the signals for direct interface with an 80286. In this example,
the 82258 is set to 80286 mode because the 80386 resembles the 80286 more than the 80186
or 8086. The 82258 is initialized to 80286 mode by holding its A23 pin high with a pullup
resistor during reset.

8-22

Inte| 1/0 INTERFACING

The 82258 interface must include logic for sharing control of the local bus with the 80386.
The HOLD and Hold Acknowledge (HLDA) pins on both the 80386 and the 82258 facili-
tate the transfer of bus control between the 80386 and the 82258.

Figure 8-13 shows the logic to transfer bus control. When the 82258 needs bus access, it
asserts its HOLD request signal, which is synchronized to CLK?2 to meet the synchronous
setup and hold times of the 80386. The resulting Processor Hold (PHOLD) signal sets the
80386 HOLD input active.

When the 80386 recognizes the HOLD request, it completes the current bus cycle, then
places all its outputs except HLDA in the high impedance state and asserts HLDA. External
logic must use HLDA to disable the output buffers of the 80386 bus controller, data bus,
and address bus, and enable the output buffers of the 82258 and its bus controller, data bus,
and address bus.

The wait-state generator must be started with the ALE output of the 82288 Bus Controller.
Although the 82258 can share wait-state generator logic with the 80386, the logic must be
modified to support longer wait states for 82258 cycles. The 82258 divides its CLK input by
two internally, so that its wait state requires two CLK cycles rather than one. In addition,
the READY# output must meet the 82258 input hold time requirement of 25 nanoseconds.

CLK2
HLDA |

HOLD ——L— L
oo ® E qo
82258
ap D———Do— PHOLD

H D1 a1
74F379 TO 82258
TRANSCEIVERS

HOLD

HLDA

80386

G30107

Figure 8-13. HOLD and HLDA Logic for 80386-82258 Interface

8-23

Intel 1/0 INTERFACING

When the 82258 completes its operation, its HOLD request goes inactive (low), disabling
the 82258 output buffers and re-enabling the 80386 and its output buffer.

8.6.5.2 82258 AS PERIPHERAL

Although most of the communication between the 80386 and the 82258 is achieved indirectly
through memory, the 80386 occasionally performs bus cycles to the 82258. For example, the
80386 performs a direct access to set the general mode register during initialization. The
access occurs asynchronously over the slave mode interface of the 82258 that is shown in
Figure 8-14. The interface consists of the following pins:

+ Chip Select (CS#)—enables the slave mode interface

* Control (RD#, WR#)—indicates bus cycle type (asynchronous interface)
» Register Address (A7-A0)—selects an 82258 internal register

e Data (D15-D0)—transfers data to and from the 82258

With the 82258, asynchronous cycles must be used to allow time for the conversion of 80386
status signals to 80286-compatible inputs. The SO# and S1# inputs of the 82258 must there-
fore be inactive (high) during slave mode operations. Asynchronous cycles require an address
hold time after a read command or write command, so the address outputs from the 80386
(A7-A2, and decoded A1, A0, and BHE#) that connect to corresponding inputs of the 82258
must be latched. Because A7-A0 and BHE# become 82258 outputs after initialization, regis-
tered transceivers (74F543) serve as these latches.

ADMA Enable (ADMAEN#) is a chip select generated by address decoding logic during
80386 accesses to the I/O addresses designated for the 82258. The RD# and WR# command
signals from the 80386 bus control logic must be delayed to provide the proper setup time
from chip select to command inputs. This delay can be generated using wait-state generator
signals.

ADMAEN# cs# AT- <:> K)
FROM ADDRESS A0 TRANSCEIVER [N VI oaes
DECODER HIGH =i S0#
BHE# > - LOCAL
HIGH St# 74F543 BUS
FROM
30386 {an#—— RD#
BUS
conTROL \ WR#——————] WR¥
LoGIC D15-D0
82258
L -~
G30107

Figure 8-14. 82258 Slave Mode Interface

8-24

intel

1/0 INTERFACING

8.6.6 82586 LAN Coprocessor

The 82586 is an intelligent, high-performance communications controller designed to perform
most tasks required for controlling access to a local area network (LAN). In most applica-
tions, the 82586 is the communication manager for a station connected to a LAN. Such a
station usually includes a host CPU, shared memory, a Serial Interface Unit, a transceiver,
and a LAN link (see Figure 8-15). The 82586 performs all functions associated with data
transfer between the shared memory and the LAN link, including:

¢ Framing
¢ Link management
e Address filtering

__INTERRUPT

TRANSCEIVER
CABLE

IEEE 802.3 COMPATIBLE
WORKSTATION

|EEE 802.3/ETHERNET LINK

SYSTEM
MEMORY
CHANNEL
HosT ATTENTION g2s8s
COPROCESSOR

SERIAL
INTERFACE

82501
ETHERNET
SERIAL
INTERFACE

82C502
ETHERNET
TRANSCEIVER
CHIP

Figure 8-15. LAN Station

8-25

Intel 1/0 INTERFACING

e FError detection

« Data encoding

¢ Network management

« Direct memory access (DMA)
» Buffer chaining

« High-level (user) command interpretation

The 82586 has two interfaces: a bus interface to the 80386 local bus and a network interface
to the Serial Interface Unit. The bus interface is described here. For detailed information
on using the 82586, refer to the Local Area Networking (LAN) Component User’s Manual.

The 82586, which is a master on the 80386 local bus, communicates directly with the 80386
through the Channel Attention (CA) and interrupt (INT) signals. There are several ways
to design an interface between the 82586 and the 80386. In general, higher performance
interfaces (requiring less servicing time from the 80386) are more expensive. Four types of
interfaces are described in this section:

» Dedicated CPU

o Decoupled dual-port memory
* Coupled dual-port memory

¢ Shared bus

8.6.6.1 DEDICATED CPU

Dedicating a CPU to control the 82586 results in a high-performance, high-cost interface.
The CPU, typically an 80186, an 80188, or a microcontroller, executes the data link layer
(a functional division) of software and sometimes the network, transport, and session layers
as well. (For definitions of these layers, see the Local Area Networking (LAN) Components
User’s Manual). The dedicated CPU relieves the 80386 of these layers and provides a high-
level, message-oriented interface that can be treated in software as a standard I/O device.
In hardware, the interface is mapped into a dual-port memory.

8.6.6.2 DECOUPLED DUAL-PORT MEMORY

A decoupled dual-port memory interface, shown in Figure 8-16, contains two sections of
memory:

+ 80386 core memory—typically DRAM that provides executable memory space for the
operating system

« 82586 communication channel memory—typically dual-ported SRAM that contains the
commands and buffers of the 82586

8-26

|nte| 1/0 INTERFACING

80386

DRAM

ROM o DMA DUAL
PORT
LOGIC

i

82586 ® 82501 C:D 82502 jp—ol

\ COMM CHANNEL

MEMORY

SRAM

LAN

G30107

Figure 8-16. Decoupled Dual-Port Memory Interface

Only the dual-ported SRAM is shared; the 82586 cannot access the 80386 core memory.
The 80386 and 82586 operate in parallel except when both require access to the SRAM. In
this instance, one processor must wait while the other completes its access. At all other
times, the two devices are decoupled.

This interface requires at least one level of data copying to move data between the 80386
core memory and the 82586 communication channel memory. However, usually the data
must be copied to separate the frame header information.

8.6.6.3 COUPLED DUAL-PORT MEMORY

In a coupled dual-port memory interface, the 80386 and the 82586 share a common memory
space as illustrated in Figure 8-17. The 82586, with 24 address bits, can address up to 16
megabytes of memory. If the 80386 memory is larger than 16 megabytes, some memory is
inaccessible to the 82586; this memory must be taken into account in the system design.

The advantage of coupled dual-port memory is that the 82586 can perform DMA transfers
directly into the operating system memory. In this case, other logic must remove the frame
header information from the data prior to the DMA transfer. Through the buffer-chaining
feature of the 82586, the header information can be directed to a separate buffer, as long as
the minimum buffer size requirements are met.

8-27

1/0 INTERFACING

80386

INTERRUPT
CONTROLLER

DUAL PORT
o T K
CONTROLLER

82586

&

82501

82502

ROM

1o

L 5

DRAM

LAN

G30107

Figure 8-17. Coupled Dual-Port Memory Interface

___HOLD

80386

HLA

82586

»

i3
i3

DRAM

G30107

8.6.6.4 Shared Bus

Figure 8-18. Shared Bus Interface

In a shared bus interface (Figure 8-18), the 80386 and the 82586 share a common address
and data bus. The HOLD and HLDA signals provide bus arbitration. When one device
enters the hold state in response to the HOLD input, the other device can access the bus.

The shared bus interface is probably the simplest and least expensive interface. However,
the performance of the 80386 may drop tremendously because the 80386 must wait for the
82586 to complete its bus operation before it can access the bus. This wait can be several
hundred CLK cycles.

8-28

MULTIBUS® | and 80386

CHAPTER 9
MULTIBUS® | AND 80386

Previous chapters have presented single-bus systems in which a single 80386 connects to
memory, I/O, and coprocessors. This chapter introduces the system bus, which connects
several single-bus systems to create a powerful multiprocessing system. Two examples of
multiprocessing system buses are the Intel MULTIBUS 1, discussed in this chapter, and the
Intel MULTIBUS II, discussed in Chapter 10.

A system bus connects several processing subsystems (each of which can include a local bus
and private resources) and the resources that are shared between the processing subsystems.
Because all the processing subsystems perform operations simultaneously on their respective
local buses, such a multiprocessing system results in a significant increase in throughput over
a single-bus system.

Another advantage of using a system bus is that the system can be expanded modularly. The
system bus establishes the standard interface through which additional processing subsys-
tems communicate with one another. Through this interface, components from different
vendors can be integrated.

A central concern of any multiprocessing system is dividing resources between the system
bus and the individual local buses; that is, determining which resources to share between all
processors and which to keep for only one processor’s use. These choices affect system relia-
bility, integrity, throughput, and performance. The deciding factors are often the require-
ments of the particular target system.

Because local resources are isolated from failures occurring in other parts of the system,
they enhance the overall reliability of the system. Also, because the processor does not have
to contend with other processors for access to its local resources, bus cycles are performed
quickly. However, local resources add to the system cost because each resource must be
duplicated for each subsystem that requires it.

Resources used by more than one processing subsystem but not used frequently by any
subsystem should be placed on the system bus. The system can minimize the idle time of
such resources. However, this advantage must be weighed against the disadvantage of
increased access time when more than one processor must use a system resource.

9.1 MULTIBUS® | (IEEE 796)

The Intel MULTIBUS I (IEEE 796 Standard) is a proven, industry-standard, 16-bit multi-
processing system bus. A wide variety of MULTIBUS I compatible 1/0 subsystems, memory
boards, general purpose processing boards, and dedicated function boards are available from
Intel. Designers who choose the MULTIBUS I protocols in their system bus have a ready
supply of system components available for use in their products.

9-1

Intel MULTIBUS® | AND 80386

MULTIBUS I protocols are described in detail in the Intel MULTIBUS® I Architecture
Reference Book.

One method of constructing an interface between the 80386 and the MULTIBUS I is to
generate all MULTIBUS I signals using only TTL and PAL devices. A simpler method is
to use the 80286-compatible interface described in Chapter 8. The latter option is described
in the MULTIBUS I interface example in this chapter.

9.2 MULTIBUS® | INTERFACE EXAMPLE

The MULTIBUS I interface presented in the following example consists of the 80286-
compatible 82289 Bus Arbiter and 82288 Bus Controller. The 82289, along with the bus
arbiters of other processing subsystems, coordinates control of the MULTIBUS I; the 82288
provides the control signals to perform MULTIBUS I accesses. Communication between
the 80386 and these devices is accomplished through PALs that are programmed to perform
all necessary signal translation and generation. Latching and buffering of the data and address
buses is performed by TTL logic.

Figure 9-1 shows a block diagram of the interface, which consists of the following parts:

¢ AO/Al generator—Generates the lower address bits from 80386 BEO#-BE3# outputs
¢ Address decoder—Determines whether the bus cycle requires a MULTIBUS I access

e MULTIBUS I address latches—Connect directly to 80386 address pins A23-A2 and the
outputs of the AO/A1 generator

» MULTIBUS I data latch/transceivers—Connect directly to 80386 data pins D15-D0

» SO0#/S1# generator—Translates 80386 outputs into the SO# and S1# signals

* Wait-state generator—Controls the length of the 80386 bus cycle through the READY#
signal

» 82288 Bus Controller—Generates the MULTIBUS I command signals

« 82289 Bus Arbiter—Arbitrates contention for bus control between the 80386 and other
MULTIBUS I masters

These elements of the 80286-compatible interface are described in detail in Chapter 8. The
block diagram in Figure 9-1 does not include the 80386 local bus interface and local resources.
In a complete system, some logic (for example, the address decoder) is common to both
MULTIBUS I and local bus interfaces. The following discussion includes only the logic
necessary for the MULTIBUS I interface.

9.2.1 Address Latches and Data Transceivers

MULTIBUS 1 allows up to 24 address lines and 16 data lines. In this example, the
MULTIBUS addresses are located in a 256-kilobyte range between FOOO00H and F3FFFFH,
so that all 24 address lines are used. The 16 data lines correspond to the lower half of the
80386 data bus.

BYTE ENABLES)

80386

£€-6

A0/A1

80386 ADDRESS

LoGIC :>
)

—

ADDRESS

ADDRESS
LATCH

MULTIBUS® ADDRESS

DECODER

< 80386 DATA

80386 STATUS)

SO#/S1#

LOGIC T

DATA
TRANSCEIVER

MULTIBUS® DATA

!

WAIT-STATE
GENERATOR

82288
BUS
CONTROLLER

l

]

82289
BUS
ARBITER

MULTIBUS® |

G30107

Figure 9-1. 80386-MULTIBUS® | Interface

98€08 ANV | ®@SNalLINW

Intel MULTIBUS® | AND 80386

Inverting address latches convert the 80386 address outputs to the active-low MULTIBUS
I address bits. MULTIBUS I address bits are numbered in hexadecimal so that A23-A0 on
the 80386 bus become ADR17#-ADRO# on the MULTIBUS I. The BHE# signal is latched
to provide the MULTIBUS I BHEN# signal, as shown in Figure 9-2.

MULTIBUS 1 requires address outputs to be valid for at least 50 nanoseconds after the
MULTIBUS I command goes inactive; therefore, the address on all bus cycles is latched.
The Address Enable (AEN#) output of the 82289 Bus Arbiter, which goes active when the
82289 has control of the MULTIBUS 1, is an output enable for the MULTIBUS I latches.
The ALE# output of the 82288 latches the 80386 address for the MULTIBUS 1, as shown
in Figure 9-2.

Inverting latch/transceivers are needed to provide active-low MULTIBUS I data bits.
MULTIBUS I data bits are numbered in hexadecimal, so D15-DO convert to DATF#-
DATO4#. Data is latched only on write cycles. For MULTIBUS I write cycles, the 82288
ALE#, DEN, and DT/R# inputs can control the address latches and data latch/
transceivers. For MULTIBUS I read cycles, the local bus RD# signal can control the latch/
transceivers. If DEN were used, data contention on the 80386 local bus would result when
a MULTIBUS I read cycle immediately followed a local write cycle.

————'\ INVERTING
ADDRESS LATCH]
A23-A0) ADR17#-ADRO#

ALE
(FROM 82288)

INVERTING
LATCH/
DATA D15-D0 TRANSCEIVER DATF#-DATO#

DTN _—-———I

DT/R#
(FROM 82288)

i

G30107

Figure 9-2. MULTIBUS® | Address Latches and Data Transceivers

9-4

Intel MULTIBUS® | AND 80386

9.2.2 Address Decoder

A MULTIBUS I system typically has both shared and local memory. I/O devices can also
be located either on MULTIBUS I or a local bus. Therefore, the address space of the 80386
must be allocated between MULTIBUS I and the local bus, and address decoding logic
must be used to select one bus or the other.

The following two signals are needed for MULTIBUS 1 selection:

» Bus Size 16 (BS16#) must be returned active to the 80386 to ensure a 16-bit bus cycle.
Additional terms for other devices requiring a 16-bit bus can be added to the BS16# PAL
equation.

« MULTIBUS Enable (MBEN) selects the 82288 Bus Controller and the 82289 Bus Arbiter
on the MULTIBUS 1 interface. Other outputs of the decoder PAL are programmed to
select memory and I/O devices on the local bus.

The decoding of addresses to select either the local bus or the MULTIBUS 1 is straight
forward. In the following example, the system uses the first 64 megabytes of the 80386
memory address space, requiring 26 address lines. The MULTIBUS I memory is allocated
to the addresses from FOOOOOH to F3FFFFH. The same PAL equation generates the two
PAL outputs BS16# and MBEN:

JA25 * [A24* A23 * A22 * A21 * A20 * /A19 * /Al8

I/0 resources residing on MULTIBUS I can be memory-mapped into the memory space of
the 80386 or I/O-mapped into the I/O address space independent of the physical location
of the devices on MULTIBUS 1. The addresses of memory-mapped I/O devices must be
decoded to generate I/O read or 1/O write commands for memory references that fall within
the I/O-mapped regions of the memory space. This technique is discussed in Chapter 8
along with the tradeoffs between memory-mapped 1/O and I/O-mapped 1/0.

9.2.3 Wait-State Generator

The wait-state generator controls the READY# input of the 80386. For local bus cycles, the
wait-state generator produces signal outputs that correspond to each wait state of the 80386
bus cycle, and the PAL READY# output uses these signals to set READY# active after the
required number of wait states. Two of the wait-state signals, WS1 and WS2, are also used
to generate SO# and S1#

READY# generation for MULTIBUS I cycles is linked to the Transfer Acknowledge
(XACK#) signal, which is returned active by the accessed device on MULTIBUS I when
the MULTIBUS I cycle is complete. For a system containing a MULTIBUS I interface as
well as a local bus, XACK# must be incorporated into the wait-state generator to produce
the READY# signal. The necessary logic is shown in Figure 9-3.

9-5

intel

MULTIBUS® | AND 80386

82289 AEN#
MULTIBUS® XACK#

ENDCYC2

CLK

82288 ALE

D J Q WSt
ADSO# K

ARDY
D -
SN B

(BUS CONTROLLER)

—P

ws1

@

16R8

DC CLK#

TO S0/S1
GENERATOR
ws2

READY#

PCLK

TO 80386

G30107

Figure 9-3. Wait-State Generator Logic

For MULTIBUS I accesses, the wait-state generator is started by the ALE# signal from the
82288. When XACK# goes active, it is synchronized to CLK. The resulting Asynchronous
Ready (ARDY) signal, incorporated into the PAL equation for the READY# signal, causes
READY# to be output between two and three CLK cycles after ARDY goes active.

The PCLK signal, which is necessary for producing 80286-compatible wait states, is gener-
ated by dividing the CLK signal from the 82384 by two.

To meet the READY# input hold time requirement (25 nanoseconds) for the 82288 Bus
Controller, the READY# signal for MULTIBUS 1 cycles must be two CLK cycles long.
Therefore, two PAL equations are required to generate READY#. The first equation gener-
ates the Ready Pulse (RDYPLSE) output. RDYPLSE is fed into the READY# equation to
extend READY# by an additional CLK cycle. These signals are gated by MBEN and PCLK.

RDYPLSE := ARDY * MBEN * PCLK

/READY := ARDY * MBEN * PCLK + RDYPLSE * MBEN

Intel MULTIBUS® | AND 80386

9.2.4 Bus Controller and Bus Arbiter

Connections for the 82288 and 82289 are shown in Figure 9-4. The 82288 can operate in
either local-bus mode or MULTIBUS I mode; a pullup resistor on the 82288 MB input
activates the MULTIBUS I mode. Both the 82288 and the 82289 are selected by the MBEN
output of the address decoder PAL. The AEN# signal from the 82289 enables the 82288
outputs.

Timing diagrams for MULTIBUS I read and write cycles are shown in Figures 9-5 and
9-6. The only differences between the timings are that a read cycle controls the data latch/
transceivers using RD# and outputs the MRDC# command signal, whereas a write cycle
controls the data latch/transceivers using DEN and outputs the MWTC# command.

82289 MULTIBUS® |
So# Sso# LLOCK# LOCK#
Si# S1# CBRO# Je——»] CBRO#
Mio# Mno# BUSY# BUSY#
EADY#
REA READY# BPRO# —»] BPRO#
MBEN sYsB BREQ# »| BREG#
LOCK#
¢ LOCK#
AEN# |+
BPRN#
BPRN#
82288
so# MRDCH# »] MRDCH#
st# MWDCH »{ mwrcs
Mno# IORC# IORCH#
READY# JOWCH —»] 1owct
1K CENL INTA# »] iNTA
mMB
ALE TO MULTIBUS® ADDRESS LATCH
CMDLY
DTIR# >
— AEN# DEN 1 TO MULTIBUS® DATA TRANSCEIVER
G30107

Figure 9-4. MULTIBUS® Arbiter and Bus Controlier

8-6

CLK2

CLK

DIC, WiR,
M/io

CSYNC

MB ALE

MB ADDR,
BHE

DATA

Ts

Tc

Tc

G30107

Figure 9-5. MULTIBUS® | Read Cycle Timing

P

98€08 ANV | @SNaILTINN

&

MULTIBUS® | AND 80386

LI

(3Tcs
MINIMUM)

gl
e

)
.

) -

€

e

(

) ¢~

{
)
A}
)
4
b)
1
)1
A
1
) -
1l
3 A
T(
)

ASY
J
Y

!

Tc

|

L

|
Ts

?

|
|

X

I
Il
|
|
|
T
I
;
ue
[
4
|
|
[
l
I
|
|
!
-1
;
|

CLK

®
e [T LTLMLLILS
]

YT
4l>(
|
H
|
|
%
;
l
[
|
'll
|
1
=
/
|
:
|
i
]

R,
o

M/

DIC, Wi

EADY

R

—

ENDCYC2

G30107

9-9

Figure 9-6. MULTIBUS® | Write Cycle Timing

lntel MULTIBUS® | AND 80386

9.3 TIMING ANALYSIS OF MULTIBUS® | INTERFACE

The timing specifications for the MULTIBUS T are explained in the MULTIBUS® I Speci-
fication, Order Number 9800683. Table 9-1 lists the MULTIBUS I parameters that relate
to the 80386 system. These calculations are based on the assumption that 74ALS580 latches
and 74F544 transceivers are used for the MULTIBUS I address and data interface.

In addition to the parameters in Table 9-1, designers must allow for the following:

¢ To ensure sufficient access time for the slave device, bus operations must not be termi-
nated until an XACK# signal is received from the slave device.

¢ Following an MRDC# or an IORC# command, the responding slave device must disable
its data drivers within 125 nanoseconds after the return of the XACK# signal. All devices
that meet the MULTIBUS I specification of 65 nanoseconds meet this requirement.

9.4 82289 BUS ARBITER

In a MULTIBUS I system, several processing subsystems contend for the use of shared
resources. If one processor requests access to MULTIBUS I while another processor is using
it, the requesting processor must wait. Bus arbitration logic controls access to MULTIBUS
I for all processing subsystems.

Each processing subsystem contains its own 82289 Bus Arbiter. The Bus Arbiter directs its
processor onto the bus and allows higher and lower priority bus masters to access the bus.
Once the bus arbiter gains control of MULTIBUS I, the 80386 can access system resources.
The bus arbiter handles bus contention in a manner that is transparent to the 80386.

Table 9-1. MULTIBUS® | Timing Parameters

Timing MULTIBUS 80386 System
Parameter Specification Timing

tAS 50 ns 125 ns (2 CLK cycles)

Address setup minimum — 20 ns (ALE max delay)

before command — 22 ns (74ALS580 max. delay)

active + 3 ns (Command min. delay)
86 ns min.

tDS 50 ns 125 ns (2 CLK cycles)

Write data minimum — 30 ns (DEN max. delay)

setup before — 12 ns (74F544 max. delay)

command active + 3 ns (Command min. delay)
86 ns min.

tAH 50 ns v 187.5ns (3 CLK cycles)

Address hold minimum — 25 ns (Command inactive max. delay)

after command + 3 ns (ALE max. delay)

inactive 165.5ns min

Intel MULTIBUS® | AND 80386

Each processor in the multiprocessing system initiates bus cycles as though it has exclusive
use of MULTIBUS I. The bus arbiter keeps track of whether the subsystem has control of
the bus and prevents the bus controller from accessing the bus when the subsystem does not
control the bus.

When the bus arbiter receives control of MULTIBUS 1, it enables the bus controller and
address latches to drive MULTIBUS 1. When the transfer is complete, MULTIBUS I returns
the XACK# signal, which activates READY# to end the bus cycle.

9.4.1 Priority Resolution

Because a MULTIBUS I system includes many bus masters, logic must be provided to resolve
priority between two bus masters that simultaneously request control of MULTIBUS I.
Figure 9-7 shows two common methods for resolving priority: serial priority and parallel
priority.

The serial priority technique is implemented by daisy-chaining the Bus Priority In (BPRN#)
and Bus Priority Out (BPRO#) signals of all the bus arbiters in the system. Due to delays
in the daisy chain, this technique accommodates only a limited number of bus arbiters.

The parallel priority technique requires external logic to recognize the BPRN# inputs from
all bus arbiters and return the BPRO# signal active to the requesting bus arbiter that has
the highest priority. The number of bus arbiters accommodated with this technique depends
on the complexity of the decoding logic.

Priority resolution logic need not be included in the design of a single processing subsystem
with a MULTIBUS 1 interface. The bus arbiter takes control of MULTIBUS I when the
BPRN# signal goes active and relinquishes control when BPRN# goes inactive. As long as
external logic exists to control the BPRN# inputs of all bus arbiters, a subsystem can be
designed independent of the priority resolution circuit.

9.4.2 82289 Operating Modes

Following a MULTIBUS I cycle, the controlling bus arbiter can either retain bus control or
release control so that another bus master can access the bus. Three modes for relinquishing
bus control are as follows:

* Mode 1—The bus arbiter releases the bus at the end of each cycle.

¢ Mode 2—The bus arbiter retains control of the bus until another bus master (of any
priority) requests control.

e Mode 3—The bus arbiter retains control of the bus until a higher priority bus master
requests control.

In addition, the bus arbiter can switch between modes 2 and 3, based on the type of bus
cycle.

MULTIBUS® | AND 80386

; :g HIGI;::‘;PR!ORITY

BUS 4——1

ARB:TER e
Q;] Q.1 BUS SPRN
ARB;TER BPRO
(bl 1 ARBBszEn “2
L e
\7 0| e oo
(-

CBRQ : : BUSY

SERIAL PRIORITY RESOLVING TECHNIQUE

BUS

BREQ
ARB:TER [« BPRN |
BREQ

1
BUS]2
- 74148
ARBITER PRN 3 PRIORITY o]
2 - »14 ENCODER

pr— BREQ
BUS

74138
3708
DECODER

BN -

ARBITER Im
3 g

BREQ
BUS
ARBITER |gpeN
4

Gl-c1 1
N\

h—

You AVeom iV.eu

/
1
/ h———
/

PARALLEL PRIORITY RESOLVING TECHNIQUE

210760-132

Figure 9-7. Bus Priority Resolution

intal

MULTIBUS® | AND 80386

Figure 9-8 shows the strapping configurations required to implement each of these four

techniques.

The operating mode of one bus arbiter affects the throughput of both the individual subsys-
tem as well as other subsystems on MULTIBUS 1. This is because the delay required to
transfer MULTIBUS I control from one bus arbiter to another affects all subsystems waiting
to use MULTIBUS 1. Therefore, the most efficient operating mode depends on how often a
subsystem accesses MULTIBUS I and how this frequency compares to that of the other

subsystems.

* Mode 1 is adequate for a subsystem that needs MULTIBUS I access only occasionally.
By releasing MULTIBUS I after each bus cycle, the subsystem minimizes its impact on

other subsystems that use MULTIBUS 1.

RESET ~———3»]

L]

82289

RESET

ALWAYS/CBQLCK|

MODE 1

e

82289

RESET

ALWAYS/CBQLCK

MODE 3

RESET ——»§

VEe |

82289

RESET

LWAYS/CBOLCK

MODE 2

DATA)|
ENABLE —»‘

PARALLEL
170

OR
ADDRESSABLE

* WHEN LOW, 82289 IN MODE 3;
WHEN HIGH, 82289 IN MODE 2

82289

RESET

ALWAYS/CBQLCK

L
~

MULTIBUS™ BCLK

210760-117

Figure 9-8. Operating Mode Configurations

9-13

Intel MULTIBUS® | AND 80386

¢ Mode 2 is suited for a subsystem that is one of several subsystems that are all equally
likely to require MULTIBUS I. The performance decrease caused by the delay necessary
to take control of MULTIBUS I is distributed evenly to all subsystems.

¢ Mode 3 should be used for a subsystem that uses MULTIBUS 1 frequently. The delay
required for taking control of MULTIBUS I and the consequent performance decrease is
shifted to subsystems that use MULTIBUS I less often.

* Switching between modes 2 and 3 is useful if the subsystem demand for MULTIBUS I
is unknown or variable.

9.4.3 MULTIBUS® | Locked Cycles

Locked bus cycles for the local bus are described in Chapter 3. In locked bus cycles, the
80386 asserts the LOCK# signal to prevent another bus master from intervening between
two bus cycles. In the same manner, an 80386 processing subsystem can assert the LLOCK#
output of its bus arbiter to prevent other subsystems from gaining control of MULTIBUS
I. A locked cycle overrides the normal operating mode of the bus arbiter (one of the four
modes mentioned above).

Locked MULTIBUS I cycles are typically used to implement software semaphores (described
in Chapter 3) for critical code sections or critical real-time events. Locked cycles can also
be used for high-performance transfers within one instruction.

The 80386 initiates a locked MULTIBUS I cycle by asserting its LOCK# output to the
82289 bus arbiter. The bus arbiter outputs its LLOCK# signal to the MULTIBUS I LOCK#
status line and holds LLOCK# active until the LOCK# signal from the 80386 goes inactive.
The LLOCK# signal from the bus arbiter must be connected to the MULTIBUS I LOCK#
status line through a tristate driver controlled by the AEN# output of the bus arbiter.

9.5 OTHER MULTIBUS® | DESIGN CONSIDERATIONS

Additional design considerations are presented in this section. These considerations include
provisions for interrupt handling, 8-bit transfers, timeout protection, and power failure
handling on MULTIBUS L

9.5.1 Interrupt-Acknowledge on MULTIBUS® |

When an interrupt is received by the 80386, the 80386 generates an interrupt-acknowledge
cycle (described in Chapter 3) to fetch an 8-bit interrupt vector from the 8259A Program-
mable Interrupt Controller. The 8259A can be located on either MULTIBUS I or a local
bus.

Intel MULTIBUS® | AND 80386

Multiple 8259As can be cascaded (one master and up to eight slaves) to process up to 64
interrupts. Three configurations are possible for cascaded interrupt controllers:

¢ All of the interrupt controllers for one 80386 reside on the local bus of that processor,
and all interrupt-acknowledge cycles are directed to the local bus.

» All slave interrupt controllers (those that connect directly to interrupting devices) reside
on MULTIBUS 1. The master interrupt controller may reside on either the local bus or
MULTIBUS 1. In this case, all interrupt-acknowledge cycles are directed to
MULTIBUS L

¢ Some slave interrupt controllers reside on local buses, and other slave interrupt control-
lers reside on MULTIBUS 1. In this case, the appropriate bus for the interrupt-
acknowledge cycle depends on the cascade address generated by the master interrupt
controller.

In the first two configurations, no decoding is needed because all interrupt acknowledge
cycles are directed to one bus. However, if a system contains a master interrupt controller
residing on a local bus and at least one slave interrupt controller residing on MULTIBUS 1,
address decoding must select the bus for each interrupt-acknowledge cycle.

The interrupt-acknowledge cycle must be considered in the design of this decoding logic.
The 80386 responds to an active INTR input by performing two bus cycles. During the first
cycle, the master interrupt controller determines which, if any, of its slave controllers should
return the interrupt vector and drive sits cascade address pins (CASO#, CAS1#, CAS2#) to
select that slave controller. During the second cycle, the 80386 reads an 8-bit vector from
the selected interrupt controller and uses this vector to service the interrupt.

In a system that has slave controllers residing on MULTIBUS 1, the circuit shown in
Figure 9-9 can be used to decode the three cascade address pins from the master controller
to select either MULTIBUS 1 or the local bus for the interrupt-acknowledge cycle. If
MULTIBUS 1 is selected, the 82289 Bus Arbiter is enabled. The 82289 in turn requests
control of MULTIBUS I and enables the address and data transceivers when the request is
granted.

The bus-select signal must become valid for the second interrupt-acknowledge cycle. The
master controller’s cascade address outputs become valid within 565 nanoseconds after the
INTA# output from the bus control logic goes active. Bus-select decoding requires 30
nanoseconds, for a total of 595 nanoseconds from INTA# to bus-select valid. The four idle
bus cycles that the 80386 automatically inserts between the two interrupt-acknowledge cycles
provides some of this time. The wait-state generator must add wait states to the first
interrupt-acknowledge cycle to provide the rest of the time needed for the bus-select signal
to become valid.

The cascade address outputs are gated onto A8, A9, and A10 of the address bus through
three-state drivers during the second interrupt-acknowledge cycle. Bus control logic must
generate a Master Cascade Enable (MCE) signal to enable these drivers. This signal must
remain valid long enough for the cascade address to be captured in MULTIBUS I address
latches; however it must be de-asserted before the 80386 drives the address bus.

9-15

Intel MULTIBUS® | AND 80386

—— -

INTn
(FROM SLAVE
1 8205 INTERRUPT CONTROLLER)
8259A iy =
MASTER ;o P :
CAS4 Aq 07
CAS2 g (3 CASVALID!

Agl AglA10 -
< l o Az0-Ag
a J\}M/I_G DIC# §
z I3 i
MBSEL®
Q
SYSB/RESB [
S _ OTHER &
P MULTIBUS™ z
§ DECODE @
®] AEN g
82289 3
BUS =
74500 ARBITER
- ‘
- <} SELECT »::—» CMDLY mI
[: CENL
Vee MB iy N
ALE
(3)
LOCAL g MBIO —»-1M/10 ,>
CONTROLLER WAIT-STATE 82288
— GENERATOR BUS
RERDY CONTROLLER
ARDYEN |
2 XACK
L
210760-113

Figure 9-9. Bus-Select Logic for Interrupt Acknowledge

9.5.2 Byte Swapping during MULTIBUS® | Byte Transfers

The MULTIBUS I standard specifies that all byte transfers must be performed on the lower
eight data lines (MULTIBUS I DATO#-DAT7#), regardless of the address of the data. An
80386 subsystem must swap data from eight of its upper 24 data lines (D8-D15, D16-D23,
or D24-D31) to its lower eight data lines (D0-D7) before transferring data to MULTIBUS
I, and swap data from its lower data lines to the appropriate upper data lines when reading
a byte from MULTIBUS I. This byte-swapping requirement maintains compatibility between
8-bit, 16-bit, and 32-bit systems sharing the same MULTIBUS 1.

9-16

Intel MULTIBUS® | AND 80386

The BS164# signal is generated and returned to the 80386 for all MULTIBUS I cycles. The
80386 automatically swaps data between the lower half (D15-D0) and the upper half
(D31-D16) of its data bus and adds an extra bus cycle as necessary to complete the data
transfer. Therefore, only the logic to swap data from D15-D8 to D7-DO is needed to meet
the byte-swapping requirement of MULTIBUS L.

Figure 9-10 illustrates a circuit that performs the byte-swapping function. The Output Enable
(OE#) inputs of the data latch/transceivers are conditioned by the states of the BHE# and
A0 outputs of the address decoder.

9.5.3 Bus Timeout Function for MULTIBUS® | Accesses

The MULTIBUS I XACK# signal terminates an 80386 bus cycle by driving the wait-state
generator logic. However, if the 80386 addresses a nonexistent device on MULTIBUS 1, the
XACK# signal is never generated. Without a bus-timeout protection circuit, the 80386 waits
indefinitely for an active READY# signal and prevents other processors from using
MULTIBUS L

Figure 9-11 shows an implementation of a bus-timeout circuit that ensures that all
MULTIBUS I cycles eventually end. The ALE# output of the bus controller activates a
one-shot that outputs a 1-millisecond pulse. The rising edge of the pulse activates the
TIMEOUT# signal if READY# does not go active within 1 millisecond to clear the
TIMEOUT# flip-flop. The TIMEOUT# signal is input to the wait-state generator logic to
activate the READY# signal. When READY# goes active, it is returned to clear the
TIMEOUT# signal.

9.5.4 MULTIBUS® | Power Failure Handling

The MULTIBUS 1 interface includes a Power Fail Interrupt PFIN signal to signal an
impending system power failure. Typically, PFIN# is connected to the non-maskable inter-
rupt (NMI) request input of each 80386. The NMI service routine can direct the 80386 to
save its environment immediately, before falling voltages and the MULTIBUS I Memory
Protect (MPRO#) signal prevent any further memory activity. In systems with memory
backup power or nonvolatile memory, the saved environment can be recovered on powerup.

The power-up sequence of the 80386 can check the state of the MULTIBUS I Power Fail
Sense Latch (PFSN#) to see if a previous power failure has occurred. If this signal is active
(low), the 80386 can branch to a power-up routine that resets the latch using the Power Fail
Sense Reset signal (PFSR#), restores the previous 80386 environment, and resumes
execution.

Further guidelines for designing 80386 systems with power failure features are contained in
the Intel MULTIBUS® I Specification.

Intel MULTIBUS® | AND 80386

LEAB
> [0EAB cEAp

> IGEBA CEBA
74F544
D,;-Dg DATF-DAT8
80386

DATA ____ LEABj=-
BUS -1 OEAB CEAB

OEBA CEBA| ™ MULTIBUS®

D,-D, DAT7-DATO
BUS
CONTROL
aus BHE —>1 raraTs > »1 74ALS580 f—— MULTIBUS® BHEN
CONTROL
AO——> L . > MULTIBUS® ADRO
LE OE oC_C
1 T ‘r
ALE AEN——-J
G30107

Figure 9-10. Byte-Swapping Logic

9.6 iLBX™ BUS EXPANSION

The iLBX (Local Bus Expansion) is a high-performance bus interface standard that permits
the modular expansion of an 80386-based system. An iLBX interface links the 80386 system
board with additional boards containing memory, I/O subsystems, and other peripheral
devices or bus masters. Any board that conforms to the iLBX standard can be added to the
system as the user’s needs dictate. For a 16-MHz 80386-based system, a typical iLBX access
cycle requires six wait states.

9-18

Iﬂte' MULTIBUS® | AND 80386

a —¢ o}— ReaDv#
ALE
CLK2

Vo
ol
=]

TIMEOUT#

G30107

Figure 9-11. Bus-Timeout Protection Circuit

The iLBX™ Bus Specification describes the iLBX Local Bus Expansion standard in detail.

The iLBX bus interface requires the generation of Al, A0, and BHE# from the 80386
BE3#-BEO# outputs. The iLBX connector contains 24 address bits (AB23-AB0) and 16 data
bits (DB15-DB0), which are taken from the buffered address lines (A23-A0), and data lines
(D15-DO0) of the 80386 local bus. BHE# is inverted and buffered to provide the Byte High
Enable (BHEN) signal.

The Read/Write (R/W#), Data Strobe (DSTB#), and Address Strobe (ASTB#) controls
are generated from local bus control signals using the logic shown in Figure 9-12. R/W# is
a delayed, inverted version of the W/R# output of the 80386. DSTB# goes active when
either RD# or WR# from the local bus control goes active. ASTB# and DSTB# are delayed
to allow adequate setup time for BHEN. In this example, the WS2 signal, which is active
during the third CLK cycle of the 80386 bus cycle, provides the delay.

A chip-select output of address decoding logic goes active for accesses to the memory and
I/0 locations allocated to the iLBX bus and selects the iLBX address and data buffers.
Command signals from the local bus control logic enable the outputs of the iLBX
transceivers.

When an iLBX cycle is complete, the Acknowledge (ACK#) signal is returned over the
iLBX bus. This signal must be synchronized and incorporated into the wait-state generator
logic to provide the READY# signal.

9.7 DUAL-PORT RAM WITH MULTIBUS® |

A dual-port RAM is a memory subsystem that can be accessed by both the 80386, through
its local bus, and other processing subsystems, through the MULTIBUS I system bus. Dual-
port RAM offers some of the advantages of both local resources and system resources. It is
an effective solution when using only local memory or only system memory would decrease
system cost and/or performance significantly.

9-19

Intel MULTIBUS® | AND 80386

WIR#
_—_LD_ s
S1# —eeeed D Q

CLK2 —> Q ASTB#

]

Figure 9-12. iLBX™ Signal Generation

RESET
ILBXEN#

:D K
I CLK2 —> 6 ~ DSTB#
READY# —-DO——

G30107

The 80386 accesses dual-port RAM through its high-speed local bus, leaving MULTIBUS
I free for other system operations. Other processing subsystems can pass data to and from
the 80386 through the dual-port RAM using MULTIBUS L

If necessary, dual-port RAM can be mapped to reserve address ranges for the exclusive use
of the 80386. The 80386 and the other processing subsystems need not use the same address
mapping for dual-port RAM.

The disadvantage of dual-port RAM is that its design is more complex than that of either
local or system memory. Dual-port RAM requires arbitration logic to ensure that only one
of the two buses gains access at one time.

9.7.1 Avoiding Deadlock with Dual-Port RAM

The MULTIBUS-LOCK# signal and the 80386 LOCK# signal mediate contention when
both the 80386 and a MULTIBUS I device attempt to access dual-port RAM. However,
locked cycles to dual-port RAM can potentially result in deadlock. Deadlock arises when
the 80386 performs locked cycles to ensure back-to-back accesses to dual-port RAM and
MULTIBUS L.

Intel MULTIBUS® | AND 80386

Suppose the 80386 locks an access to dual-port RAM followed by a MULTIBUS access, to
ensure that the accesses are performed back-to-back. (This could happen only in protected
mode during interrupt processing when the IDT is in the dual-port RAM and the target
descriptor is in MULTIBUS RAM.) At the same time the 80386 performs the first locked
cycle, another device gains control of MULTIBUS I for the purpose of accessing dual-port
RAM. The 80386 cannot gain control of MULTIBUS I to complete the locked operation,
and the other device cannot relinquish control of MULTIBUS I because it cannot complete
its access to dual-port RAM. Each device therefore enters an interminable wait state.

Two approaches can be used to avoid deadlock:

» Requiring software to be free of locked accesses to dual-port RAM.

» Designing hardware to negate the LOCK# signal for transfers between dual-port RAM
and MULTIBUS L. If this approach is used, software writers must be informed that such
transfers will not be locked even though software dictates locked cycles.

9-21

MULTIBUS® Il and 80386 10

CHAPTER 10
MULTIBUS® Il AND 80386

Standard bus interfaces guarantee compatibility between existing and newly developed
systems. This compatibility safeguards a user’s hardware investment against obsolescence
even in the face of rapidly advancing technology. The MULTIBUS I standard interface has
proven its value in providing flexibility for the expansion of existing systems and the integra-
tion of new designs. The MULTIBUS II standard interface extends Intel’s Open Systems
design strategy into the world of 32-bit microprocessing systems.

10.1 MULTIBUS® i STANDARD

The MULTIBUS 1I standard is a processor-independent bus architecture that features a
32-bit parallel system bus with a maximum throughput of 40 megabytes per second, high-
speed local bus access to off-board memory, a low-cost serial system bus, and full multi-
processing support. MULTIBUS II achieves these features through five specialized Intel
buses:

» Parallel System Bus (iPSB)

e Local Bus Extension GLBX II)

e Serial System Bus (iSSB)

¢ Multi-channel DMA I/O Bus

» System Expansion I/O Bus (iSBX)

The DMA I/0 Bus and the iSBX are carried over directly from MULTIBUS I architecture.
See the MULTIBUS® I Architectural Specification for a full description of these buses. The
multiple bus structure provides the following important advantages over a single, generalized
bus:

» Each bus is optimized for a specific function.
» The buses perform operations in parallel.

¢ Buses that are not needed for a particular system can be omitted, avoiding unnecessary
costs.

10.2 PARALLEL SYSTEM BUS (iPSB)

The Parallel System Bus (iPSB) is optimized for interprocessor data transfer and commu-
nication. Its burst transfer capability provides a maximum sustained bandwidth of 40
megabytes per second for high-performance data transfers.

10-1

Intel MULTIBUS® Il AND 80386

The iPSB supports four address spaces per bus agent (a board that encompasses a functional
subsystem). The conventional I/O and memory address spaces are included, plus two other
address spaces that support advanced functions:

e An 255 address message space supports message passing. Typically, a microprocessor
performs interprocessor communications inefficiently. Message passing allows two bus
agents to exchange a block of data at full bus bandwidth without supervision from a
microprocessor. An intelligent bus interface capable of message passing shifts the burden
of interprocessor communication away from the processor, thus enhancing overall system
performance.

* An interconnect space allows geographic addressing, which is the identification of any
bus agent (board) by slot number. Every MULTIBUS II system contains a Central
Services Module (CSM) that provides system services, such as uniform initialization and
bus timeout detection, for all bus agents residing on the iPSB bus. The CSM may use the
registers of the interconnect space of each bus agent to configure the agent dynamically.
Stake pin jumpers, DIP switches, and other hardware configuration devices can be
eliminated.

Because the 80386 can access only memory space or I/O space, the message space and
interconnect space may be mapped into the memory space or the I/O space. Decoding logic
provides chip select signals for the devices implementing the message space and the inter-
connect space, as well as devices in the memory space and the I/O space.

Three types of bus cycles define activity on the iPSB bus:

e Arbitration Cycle—Determines the next owner of the bus. This cycle consists of a resolu-
tion phase, in which competing bus agents determine priority for bus control, and an
acquisition phase, in which the agent with the highest priority initiates a transfer cycle.

e Transfer Cycle—Performs a data transfer between the bus owner and another bus agent.
This cycle consists of a request phase, in which address control signals are driven, and a
reply phase, in which the two agents perform a handshake to synchronize the data trans-
fer. The reply phase is repeated and data transfers continue until the bus owner ends the
transfer cycle.

» Exception Cycle—Indicates that an exception (error) has occurred during a transfer cycle.
This cycle consists of a signal phase, in which an exception signal from one bus agent
causes all other bus agents to terminate any arbitration and transfer cycles in progress,
and a recovery phase, in which the exception signals go inactive. A new arbitration cycle
can begin on the clock cycle after the recovery phase.

Figure 10-1 shows how the timing of these cycles overlap.

10.2.1 iPSB Interface

Each bus agent must provide a means of transferring data between its 80386, its intercon-
nect registers, and the iPSB bus. The location of bus interface logic to meet this requirement
is shown in Figure 10-2. A full-featured subsystem may also include provisions for the message
passing protocols used by the iPSB bus.

10-2

€-01

-+

ARBITRATION CYCLE

RESOLUTION
BREQ# AND
ARBS# «
ARBO#

ACQUISITION —//

TRANSFER CYCLE
‘ COMMAND HANDSHAKE
K SC9# « SCO# SC9# « SCO# —7//
y ADDRESS DATA
7 AD31# » ADO# AD31# » AD# 7/~
EXCEPTION CYCLE

A—

SIGNAL
BUSERR#
AND TIMEOUT#

—F

G30107

Figure 10-1. iPSB Bus Cycle Timing

P

98€08 ANV Il «SNAILTNN

Intel MULTIBUS® Il AND 80386

BUS INTERFACE
FUNCTIONAL PATHS

LOCAL MEM
OR /O ACCESS LOCAL
RESOURCES

ALLIPSB ACCESS

BUS INTERCONNECT
Loca INTERFACE REFERENCES /" INTERCONNECT
INTERCONNECT LOGIC SPACE
MESSAGES T

INCOMING | \ncoming

INTERCONNECT
ALL | “pererence | MESSAGE
EXTERNAL

REFERENCES

=

G30107

Figure 10-2. iPSB Bus Interface

The iPSB interface may be conveniently implemented by a Bus Arbiter/Controller (BAC),
a Message Interrupt Controller (MIC), and miscellaneous logic. The BAC coordinates direct
interaction with the other devices on the iPSB bus, while the MIC works through the BAC
to send and receive interrupt messages. Other logic is needed for address decoding, parity
checking, and control signal generation.

The BAC and MIC are implemented in Intel gate arrays. In addition, Intel is developing an
advanced CMOS device, the Message Passing Coprocessor (MPC), that integrates the
functions of the BAC and the MIC plus parity checking and full message passing (solicited
and unsolicited), all in one package called the BIC (Bus Interface Controller). Systems
designed today with the available BAC and MIC can be upgraded to the MPC in the future.

10.2.1.1 BAC SIGNALS

The BAC provides arbitration and system control logic for the arbitration, transfer, and
exception cycles defined by the MULTIBUS II architecture. Through the BAC, the bus
agent functions as either a requestor or a replier in a transfer cycle. In all cases, the device
requiring iPSB bus access (either the 80386 or the MIC) is completely isolated from the
iPSB; the BAC provides all direct interaction.

10-4

Intel MULTIBUS® Il AND 80386

The BAC signals can be divided into three functional groups:

* iPSB interface
e Local bus interface
* Register interface with the 80386

The iPSB interface signals perform mainly arbitration and system control. Five bidirectional
Arbitration signals (ARB5-ARBO) are used during reset to read a cardslot ID and arbitra-
tion ID from the CSM, and during arbitration cycles to output the arbitration ID for prior-
ity resolution. Bus Request (BREQ#) is a bidirectional signal. Each bus agent asserts BREQ#
to request control of the bus and samples BREQ# to determine if other agents are also
contending for bus control.

Bus Error (BUSERR#) is a bidirectional signal that a bus agent outputs to all other bus
agents when it detects a parity error during a transfer cycle. Bus Timeout (TIMOUT #) is
output by the CSM to all bus agents when a bus cycle fails to end within a prescribed time
period.

Ten System Control signals (SC9#-SCO0#) coordinate transfer cycles. The MULTIBUS® II
Architectural Specification defines each of these signals. Directional enables (SCOEH and
SCOEL) are provided for transceivers to buffer these bidirectional signals. External logic
checks byte parity on the multiplexed address and data bus (AD31-AD0) and sets the Parity
inputs (PAR3-PARO) accordingly.

Other iPSB signals are Reset (RST#), Reset-Not-Complete (RSTNC#), and ID Latch
(LACHn#, n = slot number). These signals are used only during reset.

Local bus interface signals pertain to the communication between the BAC and the 80386
or between the BAC and the MIC. These signals indicate to the BAC when to request bus
control and what type of bus cycle to drive when it gains bus control.

Four control signals are necessary for each of the two devices connected to the BAC. The
signals that connect to the 80386 are REQUESTA, GRANTA, READYA, and SELECTA;
those that connect to the MIC are REQUESTB, GRANTB, READYB, and SELECTB.

To request bus control, the 80386 or the MIC activates one of the REQUEST signals. The
corresponding GRANT signal is returned by the BAC when it has bus control. Data width
and address space selections are encoded on the WIDTH1#, WIDTHO#, SPACE1#, and
SPACEO# inputs, while WR# dictates either a write cycle or a read cycle. These five inputs
translate directly to SC6#-SC2# outputs during the request phase of a transfer cycle.
READYA or READYB indicates that WIDTHO#, WIDTH1#, SPACEO#, SPACE1#, and
WR# can be read by the BAC to drive the transfer cycle.

LASTINA or LASTINB controls the end-of-cycle signal for burst transfers. The LOCK#
input is activated for locked transfers.

10-5

Intel MULTIBUS® Il AND 80386

The bus agent that receives a transfer cycle from the bus owner must have its BAC enabled
by an active SELECT input. Errors detected by the replying agent are encoded by its MIC
on the AGERR2-ACERRO inputs to its BAC so that the BAC can drive the SC7#-SC5#
lines accordingly. If an error occurs, the requesting agent notifies the 80386 through the
EINT signal.

The register interface signals control register operations between the 80386 and the BAC.
Three 5-bit registers (Arbitration ID, Slot ID, and Error Port) are addressed through RSEL1
and RSELO. Data is transferred on RIO4-RIOO0; the direction of transfer is indicated by
RRW.

10.2.1.2 MIC SIGNALS

The MIC coordinates interrupt handling for a bus agent on the iPSB bus. Interrupts are
implemented as virtual interrupts in the message space. To send an interrupt message, the
80386 writes four bytes to the MIC to indicate the source, destination, and type of message.
The MIC then coordinates the message transfer. The MIC of the receiving bus agent reads
the 4-byte message and stores it in a 4-deep message queue to be read by the 80386.

The MIC signals are divided into three groups:

« iPSB interface
¢ Local bus interface
« BAC interface

The iPSB interface consists of the multiplexed address/data bus (AD31#ADO0#). Although
the MIC gains access to the iPSB bus through the BAC, the MIC drives the address/data
bus directly. As a requesting agent, the MIC drives the address and data at the appropriate
times. As a receiving agent, the MIC monitors the address/data bus for its address. When
it recognizes its address, the MIC selects its BAC to perform the required handshake and
read the message into the message queue. Then, the MIC interrupts the 80386 to indicate
that the message is pending in the queue. The 80386 reads the message and services the
interrupt accordingly.

The local bus interface consists of seven register/ports, addressed through A2-A0, through
which the MIC and the 80386 communicate. Data is transferred over D7-D0, and WR# and
RD# determine the direction of transfer. Other signals include the MIC Chip Select (CS#),
a WAIT# signal for adding wait states to the 80386 cycle, and a Message Interrupt (MINT)
to signal an interrupt condition to the 80386.

The BAC interface includes REQUESTB, READYB, SELECTB, and GRANTB. These
signals have already been described with the other BAC signals.

While the BAC and the MIC together provide the backbone for an iPSB interface, other
logic provides buffering and control to round out the interface. An 8751 Microcontroller
coordinates 80386 access to the interconnect space. An address decoder distinguishes between
local, interconnect, and iPSB accesses. PALs control the buffering of signals between the
80386, BAC, MIC, 8751 Microcontroller, and iPSB bus.

10-6

|I'Ite| : MULTIBUS® Il AND 80386

10.3 LOCAL BUS EXTENSION (iLBX™ II)

The iLBX II bus extension is a high-speed execution bus designed for quick access to off-
board memory. One iLBX II bus extension can support either two processing subsystems
(called the primary requesting agent and the secondary requesting agent) plus four memory
subsystems, or a single processing subsystem plus five memory subsystems. A MULTIBUS
IT system may contain more than one iLBX II bus extension to meet its memory
requirements.

The iLBX II bus extension features a 26-bit address bus and a separate 32-bit data bus.
Because these paths are separate, the extension allows pipelining of transfer cycles; the request
phase of a transfer cycle can overlap the reply phase of the previous cycle.

Other features of the iLBX II bus extension are:

e A unidirectional handshake for fast data transfers
¢ Mutual exclusion capability to control multiported memory

« Interconnect space (for each bus agent) through which the primary requesting agent
initializes and configures all other bus agents.

10.4 SERIAL SYSTEM BUS (iSSB)

The Serial System Bus (iSSB) provides a simple, low-cost alternative to the Parallel System
Bus (iPSB) bus. In applications that do not require the high performance of the iPSB bus,
the iSSB bus can provide some cost reduction. In systems containing both the iPSB bus and
the iSSB bus, the iSSB bus provides an alternate path for interface control, diagnostics, or
redundancy.

The iSSB bus can contain up to 32 bus agents distributed over a maximum of 10 meters.
Bus control is determined through an access protocol called Carrier Sense Multiple Access
with Collision Detection (CSMA/CD). This protocol allows agents to transmit data whenever
they are ready. In case of simultaneous transmission by two or more bus agents, the iSSB
invokes a deterministic collision resolution algorithm to grant fair access to all agents.

From the application point of view, the error detection capability of the iSSB bus, coupled

with an intelligent bus agent interface (able to retransmit) makes the iSSB bus as reliable
as the iPSB bus, even though the iSSB bus may be up to 10 meters long.

10-7

Physical Design and Debugging 1 1

CHAPTER 11
PHYSICAL DESIGN AND DEBUGGING

This chapter outlines recommendations for providing adequate power to the 80386, address-
ing high-frequency issues that do not exist for lower-frequency systems, achieving the proper
thermal environment for the 80386, and building an 80386-based system successfully. The
guidelines presented here allow the user to gain the full benefits of the high-performance
80386.

11.1 POWER AND GROUND REQUIREMENTS

The CHMOS III 80386 differs from previous HMOS microprocessors in that its power
dissipation is primarily capacitive; there is almost no DC power dissipation. Power dissipa-
tion depends mostly on frequency.

Power dissipation can be distinguished as either internal (logic) power or I/O (bus) power.
Internal power varies with operating frequency and to some extent with wait states and
software. Internal power increases with supply voltage also. Process variations in manufac-
turing affect internal power, although to a lesser extent than with NMOS processes.

I/O power, which accounts for roughly one-fifth of the total power dissipation, varies with
frecuency and voltage. It also depends on capacitive bus load. Capacitive bus loading for
noniual AC performance is specified in the 80386 data sheet. Performance will be reduced
if these loadings are exceeded. The addressing pattern of the software can affect I/O power
by changing the effective frequency at the address pins. (Data interactions comprise a
relatively small percentage of 1/0O; the variation in frequency at the data pins with different
data patterns is not a significant factor in power dissipation.)

11.1.1 Power and Ground Planes

Power and ground planes must be used in 80386 systems to minimize noise. Power and
ground lines have inherent inductance and capacitance, therefore an impedance
Z= (L/C)‘/ 2, The total characteristic impedance for the power supply can be reduced by
adding more lines. This effect is illustrated in Figure 11-1, which shows that two lines in
parallel have half the impedance of one. To reduce the impedance even further, the user
should add more lines. In the limit, an infinite number of parallel lines, or a plane, results
in the lowest impedance. Planes also provide the best distribution of power and ground.

The 80386 has 20 V, pins and 21 V, (ground) pins. All power and ground pins must be
connected to a plane. Ideally, the 80386 is located at the center of the board, to take full
advantage of these planes.

Although the 80386 generally demands less power than the 80286, the possibility for power

surges is increased due to higher frequency and pin count. Peak-to-peak noise on V,, relative
to V,, should be maintained at no more than 400 mV, and preferably no more than 200 mV.

11-1

Intel PHYSICAL DESIGN AND DEBUGGING

11.1.2 Decoupling Capacitors

The switching activity of one device can propagate to other devices through the power supply.
For example, in the TTL NAND gate of Figure 11-2, both Q3 and Q4 transistors are on for
a short time when the output is switching. This increased load causes a negative spike on V.,
and a positive spike on ground. In synchronous systems in which many gates switch simul-
taneously, the result is significant noise on the power and ground lines.

Lo

—,W_T — =
Co =2

;; o= [2 2 [Lo

Lo 2Co Co

G30107

Figure 11-1. Reducing Characteristic Impedance

G30107

Figure 11-2. Circuit without Decoupling

11-2

|nte| PHYSICAL DESIGN AND DEBUGGING

Decoupling capacitors placed across the device between V., and ground reduce voltage spikes
by supplying the extra current needed during switching. These capacitors should be placed
close to their devices because the inductance of connection lines negates their effect.

When selecting decoupling capacitors, the user should provide 0.01 microfarads for each
device and 0.1 microfarads for every 20 gates. Radio-frequency capacitors must be used;
they should be distributed evenly over the board to be most effective. In addition, the board
should be decoupled from the external supply line with a 2.2 microfarads capacitor.

Chip capacitors (surface-mount) are preferable because they exhibit lower inductance and
require less total board space. They should be connected as in Figure 11-3. Leaded capaci-
tors can also be used if the leads are kept as short as possible. Six leaded capacitors are
required to match the effectiveness of one chip capacitor, but because only a limited number
can fit around the 80386, the configuration in Figure 11-4 results.

11.2 HIGH-FREQUENCY DESIGN CONSIDERATIONS

At high signal frequencies, the transmission line properties of signal paths in a circuit must
be considered. Reflections, interference, and noise become significant in comparison to the
high-frequency signals. They can cause false signal transitions, data errors, and input voltage
level violations. These errors can be transient and therefore difficult to debug. In this section,
some high-frequency design issues are discussed; for more information, consult a reference
book on high-frequency design.

[N\

[

Z =0.
[] 80386 2 I:I "
D % =1.0 4F

NN

[

G30107

Figure 11-3. Decoupling Chip Capacitors

11-3

Intd PHYSICAL DESIGN AND DEBUGGING

angn

80386

ngog

Figure 11-4. Decoupling Leaded Capacitors

=1.0 yuF

=0.14F

0

1 ==
22 y -
3 =
vz g

G30107

11.2.1 Line Termination

Input voltage level violations are usually due to voltage spikes that raise input voltage levels
above the maximum limit (overshoot) and below the minimum limit (undershoot). These
voltage levels can cause excess current on input gates that results in permanent damage to
the device. Even if no damage occurs, most devices are not guaranteed to function as speci-
fied if input voltage levels are exceeded.

Signal lines are terminated to minimize signal reflections and prevent overshoot and under-
shoot. If the round-trip signal path delay is greater than the rise time or fall time of the
signal, terminate the line. If the line is not terminated, the signal reaches its high or low
level before reflections have time to dissipate, and overshoot and undershoot occur.

There are two methods of termination: series and split. A series termination compensates for
excess current before the signal travels down the line; a split termination adjusts the current
at the end of the line.

Series termination decreases current flow in the signal path by adding a series resistor, as
shown in Figure 11-5. The resistor increases the rise and fall times of the signal so that the
change in current occurs over a longer period of time. Because the amount of voltage
overshoot and undershoot depends on the change in current over time (V = L di/dt), the
increased time reduces overshoot and undershoot. Placing the series resistor close to the
signal source decreases inductance (L).

Series termination is advantageous because less power is consumed than in split termination.
However, series termination reduces signal rise and fall times, so it should not be used when
these times are critical.

11-4

Intel PHYSICAL DESIGN AND DEBUGGING

Split termination is effective in reducing signal reflection (ringing). Split termination is
accomplished by the addition of two resistors, as shown in Figure 11-6. As the line voltage
starts to rise above V., R2 siphons off some of the current. As the line voltage starts to drop
below ground, current is supplied to the circuit through R1.

11.2.2 Interference

Interference is the result of electrical activity in one conductor causing transient voltages to
appear in another conductor. Interference increases with the following factors:

» Frequency-Interference is the result of changing currents and voltages. The more frequent
the changes, the greater the interference.

¢ Closeness of the two conductors—Interference is due to electromagnetic and electrostatic
fields whose effects are weaker further from the source.

There are two types of interference to consider in high frequency circuits: electromagnetic
interference (EMI) and electrostatic interference (ESI).

| | Rs r-D [-B
SOURCE
G30107
Figure 11-5. Series Termination
5V
SOURCE Ry
G30107

Figure 11-6. Split Termination

Iﬂte' PHYSICAL DESIGN AND DEBUGGING

EMI (also called crosstalk) is caused by the magnetic field that exists around any current-
carrying conductor. The magnetic flux from one conductor can induce current in another
conductor, resulting in transient voltage. Several precautions can minimize EMI:

* Running a ground line between two adjacent lines wherever they traverse a long section
of the circuit board. The ground line should be grounded at both ends.

+ Running ground lines between the lines of an address bus or a data bus if either of the
following conditions exists:

- The bus is on an external layer of the board.

- The bus is on an internal layer but not sandwiched between power and ground planes
that are at most 10 mils away.

» Avoiding closed loops in signal paths (see Figure 11-7). Closed loops cause excessive
current and create inductive noise, especially in the circuitry enclosed by a loop.

ESI is caused by the capacitive coupling of two adjacent conductors. The conductors act as
the plates of a capacitor; a charge built up on one induces the opposite charge on the other.
The following steps reduce ESI:

» Separating signal lines so that capacitive coupling becomes negligible.

» Running a ground line between two two lines to cancel the electrostatic fields.

Hl H

G30107

Figure 11-7. Avoid Closed-Loop Signal Paths

11-6

Intel PHYSICAL DESIGN AND DEBUGGING

11.2.3 Latchup

Latchup is a condition in a CMOS circuit in which V. becomes shorted to V. Intel’s
CHMOS III process prevents latchup under normal operating conditions. Latchup can be
triggered when the voltage limits on I/O pins are exceeded, causing current surges. The
following guidelines help prevent latchup:

* Observing the maximum rating for input voltage on I/O pins.

e Never applying power to an 80386 pin or a device connected to an 80386 pin before
applying power to the 80386 itself.

» Preventing overshoot and undershoot on I/O pins by adding line termination and by
designing to reduce noise and reflection on signal lines.

11.3 CLOCK DISTRIBUTION AND TERMINATION

For performance at high frequencies, the clock signal (CLK2) for the 80386 must be free of
noise and within the specifications listed in the 80386 data sheet. These requirements can be
met by following these guidelines:

* Using the 82384 Clock Generator to provide both CLK2 and CLK signals. The 82384 is
designed to match 80386 specifications.

¢ Terminating the CLK2 output with a series resistor to obtain a clean signal. The resistor
value is calculated by measuring the total capacitive load on the CLK2 signal and refer-
ring to Figure 11-8. If the total capacitive load is less than 80 picofarads, the user should
add capacitors to make up the difference. Because of the high frequency of CLK2, the
terminating resistor must have low inductance; carbon resistors are recommended.

» Not putting more than two loads on a single trace to avoid signal reflection (see
Figure 11-9 for example configurations).

» Using an oscilloscope to compare the CLK2 waveform with those in Figure 11-10.

11.4 THERMAL CHARACTERISTICS

The thermal specification for the 80386 defines the maximum case temperature. This section
describes how to ensure that an 80386 system meets this specification.

Thermal specifications for the 80386 are designed to guarantee a tolerable temperature at
the surface of the 80386 chip. This temperature (called the junction temperature) can be
determined from external measurements using the known thermal characteristics of the
package. Two equations for calculating junction temperature are as follows:

T, =T, + (6, * PD) and

T, = T. + (6, * PD)

11-7

Il'lte' PHYSICAL DESIGN AND DEBUGGING

160
140 |—
120
S 100 |
80
60 DO NOT USE <80 pF
] | | 1
0 10 20 30 40

TERMINATION RESISTOR (OHMS)

® C_=C\ (386)+ Cy (387) + Cjy (PALS) + ... + CBOARD-
Cgoarp IS CALCULATED FROM LAYOUT AND BOARD PARAMETERS:

THICKNESS, DIELECTRIC CONSTANT, DISTANCE TO GROUND/Vcc PLANES.

© TERMINATION RESISTOR MUST BE LOW INDUCTANCE TYPE.
RECOMMEND CARBON FILLED TYPE.

G30107

Figure 11-8. CLK2 Series Termination
where
T, = junction temperature
. = ambient temperature
T. = case tempterature
6;, = junction-to-ambient temperature coefficient
0,. = junction-to-case temperature coefficient

PD = power dissipation (worst-case I * V.

11-8

|ntel PHYSICAL DESIGN AND DEBUGGING

GOOD BAD BAD

G30107
Figure 11-9. CLK2 Loading
WAVEFORMS
GOOD ' BAD
5V
ov
G30107

Figure 11-10. CLK2 Waveforms

Case temperature calculations offer several advantages over ambient temperature
calculations:

« Case temperature is easier to measure accurately than ambient temperature because the
measurement is localized to a single point (top center of the package).

 The worst-case junction temperature (T;) is lower when calculated with case temperature
for the following reasons:

- The junction-to-case thermal coefficient (6,) is lower than the junction-to-ambient
thermal coefficient (6,,); therefore, calculated junction temperature varies less with
power dissipation (PD).

- 0, is not affected by air flow in the system; 6, varies with air flow.

Intel PHYSICAL DESIGN AND DEBUGGING

With the case-temperature specification, the designer can either set the ambient tempera-
ture or use fans to control case temperature. Finned heat sinks or conductive cooling may
also be used in environments where the use of fans is precluded. To approximate the case
temperature for various environments, the two equations above should be combined by setting
the junction temperature equal for both, resulting in this equation:

Ta = Tc - ((0ja - gjc) ="P]))

The current data sheet should be consulted to determine the values of §;, (for the system’s
air flow) and ambient temperature that will yield the desired case temperature. Whatever
the conditions are, the case temperature is easy to verify.

11.5 DEBUGGING CONSIDERATIONS

This section outlines an approach to building and debugging 80386 hardware incrementally.
In a short time, a complete 80386-based system can be built and working. This approach
does not have to be followed to the letter, but it provides several valuable debugging concepts
and useful hints. Use these guidelines in conjunction with the 80386 data sheet, which contains
detailed information about the 80386.

11.5.1 Hardware Debugging Features

Even before a system is built, debugging can be made easier by planning a suitable environ-
ment for the 80386. The 80386 board (whether it is a printed circuit board or a wire-wrap
board) must have power and ground planes. The user should provide a decoupling capacitor
between V. and GND next to each IC on the board. All 80386 V. and GND pins should
be connected individually to the appropriate power or ground plane; multiple power or ground
pins should not be daisy-chained.

Room in the system should be included for the following physical features to aid debugging:

e Two switches: one for generating the RESET signal to the 80386 and one for tying the
READY# signal high (negated).

e Connections for a logic analyzer on major control signals:

Inputs to the 80386:
Ready (READY#)
Next Address (NA#)
Bus Size 16 (BS16#)
Data Bus (D0-D31)

Outputs from the 80386:
Address Strobe (ADS#)
Write/Read (W /R#), Data/Control (D/C#),
Memory/IO (M/IO#), Lock (LOCK#)
Address Bus (A2-A31)
Byte Enable (BEO#-BE3#)

11-10

Intel PHYSICAL DESIGN AND DEBUGGING

Logic analyzer connection points should be provided to all 80386 address outputs
(A2-A31 and BEO#-BE3#) even if there are not enough logic analyzer inputs to accom-
modate all of them. Initially, only BEO#, BE1#, BE2#, BE3#, and the output of the address
decoder circuit should be connected. The single output of an address decoder circuit
represents many bits of address information. If the address decoder does not work as
expected, more of the logic analyzer inputs should be moved to the 80386 address pins.

o Buffers and visual indicators (such as LEDs) for three or four of the critical 80386 control
signals. A visual indicator for the ADS# output, for example, will light when the system
is performing bus cycles.

11.5.2 Bus Interface

During initial debugging, bus-cycle operation should be simplified. The 80386 bus interface
is flexible enough to be tested in stages. To simplify bus control, the initial testing should be
performed with a non-pipelined address. The NA# input should be tied high (negated) to
guarantee no address pipelining. The only signals that need to be controlled are the READY #
input and the BS16# input.

The READY# input on the 80386 lets the user delay the end of any bus cycle for as long as
necessary. For each CLK cycle after T2 that READY# is not sampled active, a wait state
is added. READY# can be used to provide extra time (wait states) for slow memories or
peripherals. Wait state requirements are a function of the device being addressed. Therefore,
the address decoder must determine how many wait states, if any, to add to each bus cycle.
The address decoder circuit (usually in conjunction with a shift register) must generate the
READY# signal when it is time for the bus cycle to end. It is critical for the system to
generate the READY# signal; if it does not, the 80386 will wait forever for the bus cycle to
end.

EPROMs, static RAMs, and peripherals all interface in much the same way. The EPROM
interface is the simplest because EPROMs are read-only devices. RAM interfaces must
support byte addressability during RAM write cycles. Therefore, RAM write enables for
each byte of the 32-bit data bus must be controlled separately.

The BS164# signal must be activated when the current bus cycle communicates over a 16-bit
bus. An address decoder circuit can be used to determine if BS16# must be asserted during
the current bus cycle.

11.5.3 Simplest Diagnostic Program

To start debugging 80386 hardware, the user should make a set of EPROMSs containing a
simple program, such as a 4-byte diagnostic that loops. Such a program is shown in
Figure 11-11. Because the program is four bytes long, it will exercise all 32 bits of the data
bus. This program tests only the code prefetch ability of the 80386.

In generating this program, the user should take into account the initial values of the

80386 CS register (FOOOH) and IP register (FFFOH) after reset. The software entry point
(label START in Figure 11-11) must match the CS:IP location.

11-11

lntel PHYSICAL DESIGN AND DEBUGGING

ASSUME CS:SIMPLEST_CODE

0000 SIMPLEST_CODE SEGMENT
FFFO ORG OFFFOH
FFFO 90 START: NOP
FFF1 90 NOP
FFF2 EB FC JMP START
FFF4 SIMPLEST_CODE ENDS

END

Figure 11-11. 4-Byte Diagnostic Program

The 80386 is initially in Real Mode (the mode that emulates the 8086) after reset. With
this simple diagnostic code, it will remain in Real Mode. In Real Mode, CS:IP generates
the physical code fetch address directly, without any descriptors, by adding CS and IP in
the following way:

(CS) F000
(IP) + FFFO
FFFFO

Also, after reset (until the 80386 executes an intersegment JMP or CALL instruction), the
physical base address of the code segment is set internally to FFFFOOOOH. Therefore, the
physical address of the first code fetch after reset is always FFFFFFFOH. The simple
diagnostic program must begin at this location.

11.5.4 Building and Debugging a System Iincrementally

When designing an 80386 system, the designer plans the entire system. The core portions
must be tested, however, before building the entire system. Beginning with only the 80386
and the 82384 Clock Generator, the following steps outline an approach that enables the
designer to build up a system incrementally:

1. Install the 82384 and its crystal. Check that the CLLK2 signal is clean. Connect the CLK2
signal to the 80386.

2. Connect the 82384 RESET output to the 80386 RESET input, and with CLK2 running,
check that the state of the 80386 during RESET is correct.

11-12

Intel PHYSICAL DESIGN AND DEBUGGING

3. Tie the 80386 INTR, NMI, and HOLD input pins low. Tie the READY# pin high so
that the first bus cycle will not end. Reset the 80386, and check that the 80386 is emitting
the correct signals to perform its first code fetch from physical address FFFFFFFOH.
Connect the address latch, and verify that the address is driven at its outputs.

4. Connect the address decoding hardware to the 80386, and check that after reset, the
80386 is attempting to select the EPROM devices in which the initial code to be executed
will be stored.

5. Connect the data transceiver to the system, and check that after reset, the transceiver
control pins are being driven for a read cycle. Connect all address pins of the EPROM
sockets, and check that after reset, they are receiving the correct address for the first code
fetch cycle.

Intel’s iPPS programmer for EPROMs supports dividing an object module into four
EPROMs, as is necessary for a 32-bit data bus to EPROM. The programmer can also divide
an object module into two EPROMSs for a 16-bit data bus to the EPROMs. (In this case,
the BS16# input to the 80386 must be asserted during all bus cycles communicating with
the EPROMs).

When the 82384, crystal, 80386, address decoder, address latch, data transceiver, and
READY# generation logic (including wait-state generation) are functioning, the 80386 is
capable of running the software in the EPROMSs. Now the simple debug program described
above can be run to see whether the parts of the system work together.

After installing the EPROMs, the READY# line should be tied high (negated) so that the
80386 begins its first bus cycle after reset and then continues to add wait states. While the
system is in this state, the circuit should be probed to verify signal states, using a voltmeter
or oscilloscope probe.

The programmer should check whether the address latches have latched the first address
and whether the address decoder is applying a chip-select signal to the EPROMs. The
EPROMs should be emitting the first four opcode bytes of the first code to be executed
(90H, 90H, EBH, FCH for the 4-byte program of Figure 11-11), and the opcode should be
propagating through the data transceivers to the 80386 data pins.

Then the READY# input should be connected to the READY# generation logic, the 80386,
and the results should be tested when the simple program runs. Because the program loops
back on itself, it runs continuously. At this point, the system has progressed to running
multiple bus cycles, so a logic analyzer is needed to observe the dynamic behavior of the
system.

When the EPROMs programmed with the simple 4-byte diagnostic program are installed
and the 80386 is executing the code, the LED indicator for ADS# (if included in the system)
glows, because ADS# is generated for each bus cycle by the 80386. It is necessary to check
that the EPROM:s are selected for each code fetch cycle. After system operation is verified
with the simple program, more complex programs can be run.

11-13

Intel PHYSICAL DESIGN AND DEBUGGING

11.5.5 Other Simple Diagnostic Software

Other simple programs can be used to check the other operations the system must perform.
The program described here is longer than the 4-byte program illustrated previously; it tests
the abilities to write data into RAM and read the data back to the 80386.

This second diagnostic program, shown in Figure 11-12, is also suitable for placing into
EPROMS. Because this diagnostic loops back to itself, the ADS# LED should glow contin-
uously, just as it does when running the 4-byte program.

The program in Figure 11-12 is based on the assumption that hardware exists to report
whether the data being read back from RAM is correct. This hardware consists of a writable
output latch that can display a byte value written to it. The byte value written is a function
of the RAM data comparison test. If the data is correct, the byte value written is AAH
(10101010); if the data is incorrect, 55H (01010101) is written.

This diagnostic program is not comprehensive, but it does exercise EPROM, RAM, and an
output latch to verify that the basic hardware works.

The program is short (45 bytes) to be easily understood. Because it is short and because it
loops continuously, a logic analyzer or even an oscilloscope can be used to observe system
activity.

This program can be written in ASM86 assembly language. Because the primary purpose of
this program is to exercise the system hardware quickly, the 80386 is not tested extensively,
and Protected Mode is not enabled.

The diagnostic software verifies the ability of the system to perform bus cycles. The 80386
fetches code from the EPROMs, implying that EPROM read cycles function correctly.
Instructions in the program explicitly generate bus cycles to write and read RAM. The data
value read back from RAM is checked for correctness, then a byte (AAH if the data is
correct, 55H if it is not) is output to the 8-bit output latch. The program then loops back to
its beginning and starts over.

After the source code is assembled, the resulting object code should be as shown in
Figure 11-13.

11.5.6 Debugging Hints

The debugging approach described in this section is incremental; it lets the programmer
debug the system piece by piece. If even the simple 4-byte program does not run, a logic
analyzer can be used to determine where the problem is. At the very least, the 80386 should
be initiating a code fetch cycle to EPROM.

11-14

ntel PHYSICAL DESIGN AND DEBUGGING

PAGE 66,132

EQUATES
LATCH EQU 0C8H iPRESUMES A HARDWARE
;LATCH IS AT I/O ADDR C8H
GOOD_SIGNAL EQU 0AAH
BAD_SIGNAL EQU 055H

CODE TO VERIFY ABILITY TO WRITE AND READ RAM CORRECTLY

~. o~ e

ASSUME CS:INITIAL_CODE

INITIAL_CODE SEGMENT
ORG OF000H ;THIS IS INTENDED TO BE LOCATED
;AT PHYSICAL ADDRESS FFFFFO00H
TST_LOOP: MOV BX, 0000H ;INITIALIZE BASE REGISTER TO 0
MoV DS, BX ;INITIALIZE DS REGISTER TO 0
MoV [BX], 5473H WRITE 5473H TO RAM ADDR 0 AND 1
MOV [BX]+2, 2961H ;WRITE 2961H TO RAM ADDR 2 AND 3
JMP READ ;JMP TO FORCE CPU TO BREAK
;PRE-FETCH QUEUE AND FETCH THE
;NEXT INSTRUCTION AGAIN. THIS
;PREVENTS THE RAM DATA WRITTEN
;FROM JUST LINGERING ON THE DATA
;BUS UNTIL THE READ OCCURS
READ: CMP [BX], 5473H ;READ DATA FROM RAM ADDR 0 AND 1
;AND COMPARE WITH VALUE WRITTEN
JNE BADRAM ; IF DATA DOESN”T MATCH, THEN JMP
CMP [BX]+2, 2961H ;READ DATA FROM RAM ADDR 2 AND 3
;AND COMPARE WITH VALUE WRITTEN
JNE BADRAM ;IF DATA DOESN“T MATCH, THEN JMP
MOV AL, GOOD_SIGNAL
ouT LATCH, AL ;SIGNAL THAT DATA WAS CORRECT
JMP TST_LOOP
BADRAM: Mov AL, BAD_SIGNAL
ouT LATCH, AL ;SIGNAL THAT DATA WAS BAD
JMP TST_LOOP
ORG OFFFOH ;POSITION THE FOLLOWING INSTRUCTION
;AT OFFSET OFFFOH
START: JMP TST_LOOP ; INTRA-SEGMENT JUMP (WITHIN
1 SEGMENT)
;THIS IS INTENDED TO BE THE FIRST
7INSTRUCTION EXECUTED, SO IT MUST
;BE LOCATED AT PHYSICAL ADDRESS
;FFFFFFFOH.
INITIAL_CODE ENDS
END

Figure 11-12. More Complex Diagnostic Program

11-15

PHYSICAL DESIGN AND DEBUGGING

00cs
002A
0055

ounon

0000
FO00

F000
F003
FO05
F009
FOOE

FO1ll
FO15
FO17
FO1C

FO1lE
F020
F022

F024
F026
F028

FFFO
FFFO

FFF3

Warning Severe

Errors
0

H
H EQUATES
H
LATCH
GOOD_SIGNAL
BAD_SIGNAL
7
H
i
INITIAL CODE

BB 0000 TST_LOOP:

8E DB

C7 07 5473

C7 47 02 2961

EB 01 90

81 3F 5473 READ:

75 0D

81 7F 02 2961

75 06

BO AA

E6 C8

EB DC

BO 55 BADRAM:

E6 C8

EB D6

E9 F000 R START:
INITIAL_CODE

Errors
0

PAGE

EQU
EQU
EQU

66,132

0C8H
0AAH
055H

CODE TO VERIFY ABILITY TO WRITE
AND READ RAM CORRECTLY

ASSUME CS:INITIAL_CODE

SEGMENT
ORG

MOV
MOV
MOV
MoV
JMP

cMP
JNE
cMp
JNE

MOV
ouT
JMP

MOV
ouT
JMP

ORG
JMP

ENDS
END

0F000H

BX, O000O0H

DS, BX

[BX], 5473H
[BX]+2, 2961H
READ

[BX], 5473H
BADRAM
[BX]1+2, 2961H
BADRAM

AL, GOOD_SIGNAL
LATCH, AL
TST_LOOP

AL, BAD_SIGNAL
LATCH, AL
TST_LOOP

OFFFOH
TST_LOOP

Figure 11-13. Object Code for Diagnostic Program

11-16

Inte| PHYSICAL DESIGN AND DEBUGGING

The 80386 stops running only for one of three reasons:

» The READY# signal is never asserted to terminate the bus cycle.
+ The HALT instruction is encountered, so the 80386 enters a HALT state.

» The 80386 encounters a shutdown condition. In Real Mode operation (as in the simple
diagnostic program), a shutdown usually indicates that the 80386 is reading garbage on
the data bus.

If the 80386 stops running, the cause can be determined easily if the system contains simple
hardware decoders with associated LEDs to visually indicate halt and shutdown conditions.
The 80386 emits specific codes on its W/R#, D/C#, M/I0#, and address outputs to indicate
halt or shutdown. A circuit to decode these signals can be tested by executing a HLT
instruction (F4H) to see if the halt LED is turned on. The shutdown LED cannot be tested
in the same way, but its decoder is so similar to the halt decoder that if the halt decoder
works, the shutdown decoder should also work.

If the shutdown LED comes on and the 80386 stops running, the data being read in during
code fetch cycles is garbled. The programmer should check the EPROM contents, the wiring
of the address path and data path, and the data transceivers. The 4-byte diagnostic program
should be used to investigate the system. This program should work before more complex
software is used.

If neither the halt LED nor the shutdown LED is on when the 80386 stops running, the
READY# generation circuit has not activated READY# to complete the bus cycle. The
80386 is adding wait states to the cycle, waiting for the READY# signal to go active. The
address at the address latch outputs and the states of the W/R# D/C#, and M/IO# signals
should be checked to narrow the investigation to a specific part of the READY# generation
circuit. Then the circuit should be investigated with the logic analyzer.

Once the basic system is built and debugged, more software and further enhancements can
be added to the system. The incremental approach described applies to these additions.
Systematic, step-by-step testing and debugging is the surest way to build are liable
80386-based system.

11-17

Test Capabilities

12

CHAPTER 12
TEST CAPABILITIES

The 80386 contains built-in features that enhance its testability. These features are derived
from signature analysis, and proprietary test techniques. All the regular logic blocks of the
80386, or about half of all its internal devices, can be tested using these built-in features.

The 80386 testability features include aids for both internal and board-level testing. This
chapter describes these features.

12.1 INTERNAL TESTS

Allowances have been made for two types of internal tests: automatic self-test and Transla-
tion Lookaside Buffer (TLB) tests. The automatic self-test is controlled completely by the
80386. The designer needs only to initiate the test and check the results. The TLB tests must
be externally developed and applied. The 80386 provides an interface that makes this test
development simple.

12.1.1 Automatic Self-Test

The 80386 can automatically verify the functionality of its three major Programmable Logic
Arrays (PLAs) (the Entry Point, Control, and Test PLAs) and the contents of its Control
ROM (CROM). The automatic self-test is initiated by setting the BUSY# input active during
initialization (as described in Chapter 3). The test result is stored in the EAX register of the
80386.

The self-test progresses as follows (see Figure 12-1):

1. Normal PLA or CROM inputs are disabled.

2. A pseudo-random count sequence, generated by an internal Linear Feedback Shift
register (LFSR), provides all possible combinations of PLA and CROM inputs.

3. PLA and CROM outputs for each input combinations are directed to a parallel-load
LFSR.

4. Through the action of this LFSR, a signature of all output results is accumulated.

5. After all input combinations have been sequenced, the final contents of the LFSR are
XORed with a signature constant stored in the 80386. If the LFSR contents match the
signature constant, the result will be all zeroes, indicating functional PLA and CROM.

6. The result is loaded into the EAX register.

The self-test provides 100-percent coverage of single-bit faults, which statistically comprise
a high percentage of total faults.

12-1

Inte| TEST CAPABILITIES

[LFSR]

PLAs
AND
CROM

|
LFSR] [sienature constant]

o
I

| restresur |
v

TO EAX

G30107

Figure 12-1. 80386 Self-Test

12.1.2 Translation Lookaside Buffer Tests

The on-chip Page Descriptor Cache of the 80386 stores its data in the TLB. (Cache opera-
tion is discussed fully in Chapter 7.) The linear-to-physical mapping values for the most
recent memory accesses are stored in the TLB, thus allowing fast translation for subsequent
accesses to those locations. The TLB consists of:

» Content-addressable memory (CAM)—holds 32 linear addresses (Page Directory and
Page Table fields only) and associated tag bits (used for data protection and cache
implementation)

* Random access memory (RAM)—holds the 32 physical addresses (upper 20 bits only)
that correspond to the linear addresses in the CAM

» Logic-implements the four-way cache and includes a 2-bit replacement pointer that
determines to which of the four sets a new entry is directed during a write to the TLB.

To translate a linear address to a physical address, the 83086 tries to match the Page
Directory and Page Table fields of the linear address with an entry in the CAM. If a hit
(a match) occurs, the corresponding 20 bits of physical address are retrieved from the RAM
and added to the 12 bits of the Offset field of the linear address, creating a 32-bit physical
address. If a miss (no match) occurs, the 80386 must bring the Page Directory and Page
Table values into the TLB from memory.

12-2

Intel TEST CAPABILITIES

The 80386 provides an interface through which to test the TLB. Two 32-bit test registers of
the 80386 are used to write and read the contents of the TLB through the MOV TREG, reg
and MOV reg, TREG instructions. An 80386 program can be used to generate test patterns
which are applied to the TLB through automatic test machines or assembly language
programs.

The paging mechanism of the 80386 must be disabled during a test of the TLB. The internal
response is therefore not identical to that of normal operation, but the main functionality of
the TLB can be verified.

Test register #6 is used as the command register for TLB accesses; test register #7 is used
as the data register. Addresses and commands are written to the TLB through the command
register. Data is read from or written to the TLB through the data register.

The two test operations that may be performed on the TLB are:

» Write the physical address contained in the data register and the linear address and tag
bits contained in the command register into a TLB location designed by the data register.

¢ Look up a TLB entry using the linear address and tag bits contained in the command
register. If a hit occurs, copy the corresponding physical address into the data register,
and set the value of the hit/miss bit in the data register. If a miss occurs, clear the
/hit/miss bit. In this case, the physical address in the data register is undefined.

A command is initiated by writing to the command register. The command register has the
format shown in Figure 12-2 (top). The two possible commands are distinguished by the

31 12 11 5 4 1 0
DV
A
LINEAR ADDRESS TAG LOOKUP/
WRITE#

COMMAND REGISTER

31 12 11 5 4 3 21 0
v .
A 7
PHYSICAL ADDRESS MIT/REPLACEMENT
MISS POINTER
DATA REGISTER REPLACEMENT BIT

G30107

Figure 12-2. TLB Test Registers

12-3

Iﬂte' TEST CAPABILITIES

state of bit 0 in the command register. If bit 0 = 1, a TLB lookup operation is performed.
If bit 0 = 0, a TLB write is performed.

The tag bits (not including the linear address) consist of the following:

Bit Name Definition

1 Valid (V) Entry is valid

10 Dirty (D) Entry has been changed

9 Not Dirty (D#) Entry has not been changed

8 User (U) Entry is accessible to User privilege level

7 Not User (U#) Entry is not accessible to User privilege level
6 Writable (W) Entry may be changed

5 Not Writable (W#) Entry may not be changed

The complement of the Dirty, User, and Writable bits are provided to force a hit or miss for
TLB lookups. A lookup operation with a bit and its complement both low is forced to be a
miss; if both bits are high, a hit is forced. A write operation must always be performed with
a bit and its complement bit having opposite values.

The data register has the format shown in Figure 12-2 (bottom). The replacement pointer
indicates which of the four sets of the TLB is to receive write data. Its value is changed
according to a proprietary algorithm after every TLB hit. For testing, a TLB write may use
the replacement pointer value that exists in the TLB, or it may use the value in bits 3 and 2
of the data register. If data register bit 4 = 0, the existing replacement pointer is used. If
bit 4 = 1, bits 3 and 2 of the data register are used.

The TLB write operation progresses as follows:

1. The physical address, replacement bit, and replacement pointer value (optional) are written
to the data register.

2. The linear address and tag values are written to the command register, as well as a 0
value for bit 0.

It is important not to write the same linear address to more than one TLB entry.
Otherwise, hit information returned during a TLB lookup operation is undefined.

The TLB lookup operation progresses as follows:

e The linear address and tag values are written to the command register, as well as a
1 value for bit 0.

» New values for the hit/miss bit and replacement pointer are written to bits 4-2 in the
data register. If the hit/miss bit (bit 4) is 1, bits 31-12 contain the physical address from
the TLB. Otherwise, bits 31-12 are undefined.

12-4

Intel TEST CAPABILITIES

For more information on how to write routines to test the TLB, refer to the
80386 Programmer’s Reference Manual.

12.2 BOARD-LEVEL TESTS

For board-level testing, it is often desirable to isolate areas of the board from the interactions
of other devices. The 80386 can be forced to a state in which all but two of its pins are
effectively removed from their circuits. This state is accomplished through the HOLD and
HLDA pins.

When the HOLD input of the 80386 is asserted, the 80386 places all of its outputs except
for HLDA in the three-state condition. HLDA is then driven high. The 80386 remains in
this condition until HOLD is de-asserted. Note that RESET being asserted takes priority
over HOLD requests.

The 80386 completes its current bus cycle before responding to the HOLD input. Detailed
information on HOLD/HLDA response is given in Chapter 3.

12-5

Appendix
Local Bus Control PAL
Descriptions

APPENDIX A
LOCAL BUS CONTROL PAL DESCRIPTIONS

The bus controller is implemented in two PALs. One PAL (called PAL-1) follows the 80386
bus cycles and generates the overall bus cycle timings. The second PAL (PAL-2) generates
most of the bus control signals.

The PALs are clocked by CLK2. They could also be clocked by CLK. Using CLK2 has the
following advantages over using CLK:

o The skew from clock to command signal is reduced, so higher performance is possible
with slower devices.

o The 80386 ADS# and READY# signals can be sampled directly. If CLK were used, it
would be possible to sample ADSO# from the 82384 instead of ADS#, but the READY #
generation logic would be more complex because READY# must be synchronized to
CLK2.

¢ The PAL can provide delays in 31-nanosecond, rather than 62-nanosecond, increments.
The advantages of using CLK to clock the PALs are as follows:

o A slower PAL device could be used.
¢ One PAL input is saved because only CLK, rather than CLK and CLK2, is needed.

Because CLK2 is used to clock the PALs, the choice of PALs is currently limited to only
20-pin B-series PALs.

PAL-1 FUNCTIONS

PAL-1 is implemented as two main state machines. The BUSSTATE state machine, which
is used to follow the 80386 bus cycles, is specified by the state of two signals, IDLE and
PIPE, and follows the 80386 bus by sampling ADS# and READY#. IDLE and PIPE are
often useful in implementing other 80386 subsystems (such as the DRAM controller described
later in this book).

The LOCALSTATE state machine keeps track of the local bus state and is specified by
signals L2, L1, and LO. Although the local bus state usually follows the 80386 bus state, so
that the LOCALSTATE and BUSSTATE states are the same, there are times when the
local bus cycle lags the 80386 bus cycle in order to handle data-float and peripheral recovery
times correctly. Therefore, it is easier to implement this PAL using the two separate state
machines. LOCALSTATE uses the 80386 W/R# signal and various chip-select inputs to
determine what type of cycle to run.

A third, simpler state machine is also implemented in PAL-1. Q1 and QO comprise a
SEQUENCE counter that is used to implement the various time delays required by the local
bus state machine.

lntel LOCAL BUS CONTROL PAL DESCRIPTIONS

The NA# output of PAL-1 activates address pipelining for the I/O and 1-wait-state devices.
For 0-wait-state devices, external logic generates NA#, because these devices require NA#
sooner than PAL-1 can generate it.

PAL-2 FUNCTIONS

PAL-2 generates most bus control signals, including all five command signals, the READY#
signal, and the latch and transceiver enable signals. PAL-2 inputs the three LOCALSTATE
signals from PAL-1 and the three 80386 bus cycle definition pins (MIO#, DC#, and WR#)
in order to follow the local bus state. PAL-2 also inputs the 0-wait-state chip-select signal
in order to set output signals quickly enough for zero wait states.

Note that the transceiver direction enable (DT/R#) is simply a latched version of W /R#.
This saves a PAL output and also guarantees that the transceiver direction does not change
while DEN# is enabled.

PAL EQUATIONS

The equations for PAL-1 and PAL-2 are shown in Figures A-1 and A-2, respectively. These
equations are shown in a high-level PAL language (ABEL, by Data I/O) that allows the
PAL to be described as a series of states rather than equations. This language frees the
designer of the tedious task of implementing the state machine and reducing the logical
equations manually. The language saves time not only in the initial design, but also in
debugging the state machines. The automated term reduction of the high-level PAL language
allows the designer to explore many implementations quickly, which is a useful feature for
complex PAL designs. ‘

Figures A-3 and A-4 show the PAL equations for PAL-1 and PAL-2 using PALASM by
Monolithic Memories.

el

LOCAL BUS CONTROL PAL DESCRIPTIONS

module Bus_Control_386_Pal_1 flag '-r3'
title
'80386 Local Bus Controller - pal 1 Intel Corp'
BC386P1 device 'P16R8'; "use a 16R8 B-speed PAL for 16MHz 386
" Constants:
ON = 1;
OFF = 0;
H = 1;
L = 0;
X = X7 " ABEL 'don't care' symbol
c = .C.s " ABEL 'clocking input' symbol

" State definitions for BUSSTATE (bus cycle state):

IDLEBUS
PIPEBUS
ACTIVEBUS
ILLEGALBUS

~b01l;
~bl10;
~b00;
~bll;

"bus is idle or first CLK of unpipelined
"first CLK of pipelined cycle
"subsequent CLKs of active bus

"unused

" State definitions for LOCALSTATE (local cycle state):

WAITING
SAMPLECS
CMDDELAY
I0

ENDIO
MEMORY
FLOAT
NOTLOCAL

W

~blOl;
~bl100;
~b000 7
~b010;
~bllo;
~b0ll;
Ablll;
~b001;

"waiting for next bus cycle

"CLK2 before ALE falls and CS is sampled
"delay before CMD active

"IO CMD active

"IO CMD inactive

"1WS CMD active

"data bus float delay

"0OWS cycle or bus cycle not to the local bus

" State definitions for SEQUENCE (local cycle sequence counter):

SEQO
SEQ1
SEQ2
SEQ3

" Pin names:

CLK
ADS
READY
WR
CSOWS
CS1ws
CSIOo
RESET

CLK2
OE

NA
IDLE
PIPE
L2
Ll
Lo
Q1
Qo0

BUSSTATE
LOCALSTATE
SEQUENCE

nnnn

pin
pin
pin
pin
pin
pin
pin
pin
pin
pin

pin

~b00;
Ab01;
~bll;
~bl10;
" Input pins
2; " 82384 CLK
3; " 80386 ADS#
i " 80386 READY#
H " 80386 W/R#
H " chip-select for 0 wait-state (piped) devices
i " chip-select for 1 wait-state (piped) devices
7 " chip-select for peripheral devices
9; " 80386/82384 RESET
H " Clock pin - 82384 CLK2
11; " output Enable pin
" output pins
19; " NEXT ADDRESS (NA) for 1WS and IO devices
18; " bus state: IDLE or first CLK of unpiped cycle
17; " bus state: first CLK of pipelined cycle
16; " local cycle state
15; " local cycle state
14; " local cycle state
13; " local cycle sequence counter
12; " local cycle sequence counter
[PIPE, IDLE]:; " bus cycle state
(L2, L1, LO]}: " local cycle state
[Q1, QO1; " local cycle sequence counter

Figure A-1. PAL-1 State Listings

A-3

ntd LOCAL BUS CONTROL PAL DESCRIPTIONS

" Macros:

COUNTING macro
{ (QL # Q0) }: !

LOWCOUNTING macro
{ (Q0) 1}; " true until sequencer counts down to zero
" same as COUNTING except used to reduce PAL
" terms and only works if count less than 3

true until sequencer counts down to zero

LR R T RN R R R T L R R R NN L T R TR RN T R TRy N RN TN TR R R TR (R AT R TR RN R IR TR TR TRTR TR TR

state_diagram BUSSTATE

state IDLEBUS: "bus is idle or first CLK of unpipelined
if RESET then IDLEBUS "reset to IDLEBUS
else if !CLK # ADS then IDLEBUS "remain til sample ADS active
else ACTIVEBUS; "...then go ACTIVE
state ACTIVEBUS: "subsequent CLKs of active bus
if RESET then IDLEBUS "reset to IDLEBUS
else if !CLK # READY then ACTIVEBUS '"remain til sample READY active
else if !ADS then PIPEBUS "...then next cycle either piped
else IDLEBUS; ",..or idle
state PIPEBUS: "first CLK of pipelined cycle
if RESET then IDLEBUS "reset to IDLEBUS
else if !CLK then PIPEBUS "remain for just one CLK
else ACTIVEBUS; "...then go ACTIVE
state ILLEGALBUS: "unused state - should never occur
goto IDLEBUS; "if entered upon power-up...go IDLE

LURURURIR TR IR LR IR LR LR LR LR R LR R CR LR R LR R R LR R LR IR LR LR DR LR R LR IR TR IR DR DR LR R R DR R DL TR LR LR LR DR LR R LR LR LR R LR LR R LR LR

state _diagram LOCALSTATE

state WAITING: "waiting for next bus cycle
NA := OFF;
if RESET then WAITING "reset to WAITING
else if ICLK
#(ADS & IDLE) "remain while idle bus

#(!CSIO & LOWCOUNTING) then WAITING "..and remain for recovery time
else SAMPLECS;"..else begin bus cycle

state SAMPLECS: "CLK2 before ALE falls and CS is sampled

NA := OFF;

if RESET then WAITING "reset to WAITING

else if !CS1WS then MEMORY "start 1WS access
else if !CSIO then CMDDELAY "start IO access
else NOTLOCAL: "start non-local access

state CMDDELAY: "delay before CMD active

NA := OFF;

if RESET then WAITING "reset to WAITING

else I0; Yonly in state for 1 CLX2, then IO

state IO: "IO CMD active

NA := (!COUNTING & CLK) # NA; "activate NA after count down to zero

if RESET then WAITING "reset to WAITING

else if !NA then IO "remain until NA active
else ENDIO; ", ..then ENDIO

state ENDIO: "IO CMD active

NA := OFF;

if RESET then WAITING "reset to WAITING

else if LOWCOUNTING then ENDIO "remain while COUNTING down

else FLOAT; ", ..then FLOAT

Figure A-1. PAL-1 State Listings (Cont’d.)

A-4

'1td LOCAL BUS CONTROL PAL DESCRIPTIONS

state MEMORY: "1WS CMD active
NA := (INA & CLK) # (NA & !CLK); "activate NA on second and third CLK2
if RESET then WAITING "reset to WAITING
else if LOWCOUNTING then MEMORY "remain while COUNTING down
else FLOAT; "...then FLOAT
state FLOAT: "data bus float delay
NA t= OFF;
if RESET then WAITING "reset to WAITING

else if !IDLE & !CLK & CSOWS & CS1WS & CSIO then NOTLOCAL
"watch for non-local bus cycle to start

else if COUNTING then FLOAT ",..else remain while COUNTING down
else WAITING; "...then WAIT
state NOTLOCAL: "OWS cycle or bus cycle not to the local bus
NA := OFF;
if RESET then WAITING "reset to WAITING
else if READY # !CLK then NOTLOCAL "remain until bus cycle ends
else if COUNTING then FLOAT ", ..then finish FLOAT if still COUNTING
else if !ADS then SAMPLECS ",,.else SAMPLECS if next bus piped
else WAITING; ",..else WAIT

LR R R R LN RN IR TR NIRRT R R R R TR RO LR TR RN TR LN LR TR R RN NI IR URIR CRR R IR TR LR LR R LR LR IR LR LR R TR IR RN R LR IR LR R R

state_diagram SEQUENCE Ycounter for LOCALSTATE
state SEQ3:
if RESET then SEQO "reset to SEQuence 0
else if !CLK then SEQ3 "no change if CLK low
else SEQ2; "count down every time CLK high
state SEQ2:

if RESET then SEQO
else if !CLK then SEQ2
else SEQl;

state SEQl:
if RESET then SEQO
else if !CLK then SEQ1

else SEQO:
state SEQO: "once count all the way down, figure out what to count next
case
RESET ¢ SEQO; "reset to SEQuence 0
!RESET & (LOCALSTATE == WAITING) : SEQO; "count not used
!RESET & (LOCALSTATE == SAMPLECS) & !CS1WS : SEQ2; "set up for 1WS MEMORY
!RESET & (LOCALSTATE == SAMPLECS) & CS1WS : SEQO; "other than 1WS MEMORY
{RESET & (LOCALSTATE == CMDDELAY) & WR : SEQ3; "set up for IO write
IRESET & (LOCALSTATE == CMDDELAY) & !WR : SEQ2; "set up for IO read
!RESET & (LOCALSTATE == I0) & INA : SEQO; "still in IO...remain
!RESET & (LOCALSTATE == IO) & NA : SEQl; "set up for ENDIO
{RESET & (LOCALSTATE == ENDIO) : SEQ3; "set up for IO float
!RESET & (LOCALSTATE == MEMORY) : SEQl; "set up for 1WS MEMORY
IRESET & (LOCALSTATE == FLOAT) : SEQl; "set up for IO recovery
!RESET & (LOCALSTATE == NOTLOCAL) : SEQO; "count not used
endcase;

Figure A-1. PAL-1 State Listings (Cont’d.)

A-5

I'ltel LOCAL BUS CONTROL PAL DESCRIPTIONS

LORL R R LR TR R R L R R R R TR LN R R RN NN LR TN IR TR N TR RN LR TR R R KR TN TR R R R IR TR LN LR R TR R R IR UR LR

test_vectors ([CLK2, CLK, RESET, ADS, READY, WR, CSOWS, CS1WS, CSIO] ->
[LOCALSTATE, NA])

"[inputs] =-> [outputs]

"CC R AR W CcCC N

"LL E DE R S S8S A

"WK S SA 01TI LOCALSTATE

"2 E D WWO

" T Y S 8

[c,x, H, x,%x, X, X,X,X] => [WAITING, L];"initialize to IDLE and WAITING state
{e,L, L, H,H, %X, X,%,x] =-> [WAITING, L]:

[c,H, L, H,H, %X, X,%,X] -> [WAITING, L];

(e,L, L, x,H, %, %,%,x] -> [WAITING, L]:

{¢,H, L, L,H, X, X,%,X] -> [SAMPLECS, L]:"100nS SRAM read

(¢,L, L, x,H, L, L,H,H] => [NOTLOCAL, L];"NA: activated externally
(¢,H, L, H,H, %X, x,%x,Xx] -> [NOTLOCAL, L]:

(c,L, L, x,L, X, X,X,X] -> [NOTLOCAL, L];

(¢,H, L, L,L, x, X,X,x] => [SAMPLECS, L];"100nS SRAM read

{¢,L, L, x,H, L, L,H,H] -> [NOTLOCAL, L];"NA: activated externally
(¢c,H, L, H,H, X, X,X,X] -> [NOTLOCAL, L];

[¢,L, L, %,L, X, %,x,Xx] -> [NOTLOCAL, L];

{¢,H, L, L,L, x, X,%,X] =-> [SAMPLECS, L];"100nS SRAM write

(e¢,L, L, x,H, H, L,H,H] -> [NOTLOCAL, L];"NA: activated externally
[c,H, L, H,H, %, X,%x,x] => [NOTLOCAL, L];

(¢,L, L, x,H, %, %x,%x,%x] -> [NOTLOCAL, L];

(e,H, L, %x,H, %X, %,%x,x] -> [NOTLOCAL, L];

(e,L, L, %x,L, %X, X,X,X] -> [NOTLOCAL, L];

(¢,H, L, L,L, %X, X,x,X] -> [SAMPLECS, L]:;"100nS SRAM read

[e,L, L, x,H, L, L,H,H] -> [NOTLOCAL, L]:;"NA: activated externally
{c,H, L, H,H, X, X,X,%x] -> [NOTLOCAL, L];

(e,L, L, x,L, %X, X,X,X] -> [NOTLOCAL, L];

(¢,H, L, L,L, %, %X,x,x] =-> [SAMPLECS, L]:"non-local

{¢,L, L, x,H, x, H,H,H] -> [NOTLOCAL, L];

[c,H, L, H,H, %, x,X,x] =-> [NOTLOCAL, L];

{e,L, L, x,L, %X, %X,X,X] => [NOTLOCAL, LJ];

{e,H, L, L,L, %, ¥X,X,x] -> [SAMPLECS, L];"100nS SRAM read

(c,L, L, %x,H, x, L,H,H] =-> [NOTLOCAL, L];"NA: activated externally
[c,H, L, H,H, ¥, X,%,x] -> [NOTLOCAL, L]:

(e,L, L, H,L, %X, X,%,X] => [NOTLOCAL, L];

[¢c,H, L, H,L, %, X,%,xX] => [WAITING, L];"idle

[c,L, L, H,H, %, X,%x,X] -> [WAITING, L];

[c,H, L, 4,H, x, X,x,x] => [WAITING, L]:

[e,L, L, x,H, X, X,X,Xx] -> [WAITING, L];

[¢c,H, L, L,H, %, X,x,x] -> [SAMPLECS, L];"100nS SRAM write

[e,L, L, x,H, H, L,H,H] -> [NOTLOCAL, L];"NA: activated externally
[c,H, L, H,H, %, X,X,x] => [NOTLOCAL, Lj;

(e,L, L, x,H, x, X,%x,x] => [NOTLOCAL, LJ];

{c,H, L, H,H, X, X,x,x] =-> [NOTLOCAL, L];

(e,L, L, x,L, x, X,%X,X] => [NOTLOCAL, L];

(¢,H, L, H,L, %, x,%x,x] -> [WAITING, L];"idle

(e,L, L, H,H, %X, X,%,X] => [WAITING, LJ];

[c,H, L, H,H, x, %x,x,x] =-> [WAITING, L];

{e,L, L, x,H, %X, x,%x,x] => [WAITING, L];

(¢,H, L, L,H, %X, X,%,x] -> [SAMPLECS, L]:"150nS ROM read

[c,L, L, x,H, L, H,L,H] -> [MEMORY , L];

[c,H, L, H,H, X, X,x,X] -> [MEMORY , H];

(e,L, L, H,H, %, X,%x,X] =-> [MEMORY , H];

[¢c,H, L, H,H, x, %X,%x,X] => [MEMORY , L];

(e,L, L, x,L, %X, X,%Xx,x] => [FLOAT , L];

[c,H, L, L,L, %X, X,X,x] => [FLOAT , L];

[e,L, L, x,H, %, L,x,Xx] -> [WAITING, L];

[¢,H, L, H,H, x, X,%x,H] -> [SAMPLECS, L];"100nS SRAM read

(¢,L, L, x,H, L, L,H,H] -> [NOTLOCAL, L];"NA: activated externally
(¢,H, L, x,H, X, x,%,X] =-> [NOTLOCAL, L];

Figure A-1. PAL-1 State Listings (Cont’d.)

A-6

LOCAL BUS CONTROL PAL DESCRIPTIONS

@

[}
r] Le] o
L] -t o o
o H] 4]
o 3] o
H
3 3 2 3
~ %) 7] 7]
)
2 2 2 ¢ £ o
[=] o [=] ﬂ N ﬂ
9 9 9 T 1 3
et e e e
AAADR DAl dAEEAd AN ddAdAAd AmEAdAld
R e
M%YYYYTTM%YYYYTTM%YYYYTTMMMwYYYYTTMM
CERRRRAAIERRRRAAIMRRRRAAIIIERRRRA.AII
MLOOOOMMT 299999H OOOOMMTTT OooommTT
SEEEREPREEEREE R EEEE R R R EEREE Y
OMMHMW_ WWMMMM WMMMMW WWWWMMMM e <3
<N < T . A . N
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAA
(O T O O O O O O O T Y I O I }
P £ T) £ 1 £ 7)) e e e e) e e e e e e e
B4 06T B4 X ¢ X M MM X X M M M M I M M M M XM X M XM MM XXX XXX
PR EE R R E R R R E R R R EEEE R R R]
PR E R R R R EEEEE E - R R T]
NN NN N NN NN NN NN RRNARNNNHNNN KRR TN NN N KRN R

[T ~ s s n s s~

T._LHHHHLLHHHHHHLLHHHHHHLLHHHHHHHHLLHH

[PSS aaRe e YN I T T

N RmEm XA N m i XA N i X K m % A
Addddddadaddadddadaddaadadadaadadadas

LHLIHLHLHLHLHLHLHLHLHLHLHLHLHLHLHLHLH

[l es e RS [S S ae

VVVLDVDUVDVULDLUDUDUDVDODODUDUVDUDDUODLDOLDLDLODLUODODLODOULOLDOLDO

P P P s T s PP i P i i

L]

: 3

] Y]

3 —

o

vl N

[})

& &

o sl

N 9

o o

& 2
oot
AAAAAAAAAEEAAAAddAAdARAAAAAAA
G ST TTTITIST IS ssssssasssosnn
v O [CRCRURS]
Nmm OOTTTTTTNNNEm
HdMOO0O00O0OHHAIALLILHHHIBMOO0O0CO
TPDIIIIIIIDDmmmmmwTTTPDIIIIII
Mmm MMFFFFFFMMMMM
Zwo EEF0O
P U N et ot s P P PR T
AAAAAAAAANAAAAAAAAAAAAAAAAAAAA
(O O O O O O O Y Y I I L I O O O O I O O

-

Figure A-1. PAL-1 State Listings (Cont’'d.)

A-7

LOCAL BUS CONTROL PAL DESCRIPTIONS

[cIHI I"I I-III‘II xl xI)(I)‘]
(e,L, L, H,H, X, X,X,X]
[(c,H, L, HH, %X, X,X,X]
[cILI Ll xII'I xI xlxlx]
(¢,H, L, L,L, x, X,X,X]
(e,L, L, x,H, x, L,X%,X]
[CIHI LI HIHI xl xlex]
[e,L, L, H,H, %X, L,x,X]
[CIHI LI HIHI xl xlxlx]
(e,L, L, H,H, X, L,x,X]
(c,H, L, H,H, %X, x,%,H]
(e,L, L, H,H, L, L,H,H]
[clHI LI HIHI x! xlxlx]
(e,L, L, x,L, %X, X,%X,X]
(¢,H, L, L,L, X, X,X,X]
(e,L, L, x,H, H, H,H,L]
(¢,H, L, H,H, H, X,X,X]
[CILI LI HIHI xI xlxlx]
(c,H, L, H,H, X, X,X,X]
[cILI I"I HIHI xI xlxlx]
[c,H, L, H,H, X, X,X,X]
[e,L, L, HH, X, X,X,X]
(¢,H, L, H,H, X, X,X,X]
(c¢,L, L, H,H, X, X,X,X]
[¢,H, L, H,H, x, X,X,X]
(c,L, L, H,H, x, %X,X,X]
[CIHI LI HIHI xl x'xlx]
(e,L, L, x,L, %, X,X,X]
[e,H, L, x,L, X, X,%,X]

end Bus_Control_386_ Pal

->
->
->
->
->
-
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->

->
->
->
->

_1;

{ 1Io
[ENDIO
[ENDIO
[FLOAT
[FLOAT
{ FLOAT
[FLOAT
[FLOAT
[FLOAT
[WAITING
[SAMPLECS,
[NOTLOCAL,
[NOTLOCAL,
[NOTLOCAL,
[SAMPLECS ,
[CMDDELAY,
0 |,
10
I0
10
10
10
10
I0
I0
ENDIO
ENDIO
FLOAT
FLOAT

R

prpzmnenonponEenEnsEEEREEEEES

Ne Ne N8 %o N NI Ne N8 N6 S8 Ve N6 NE Ne %o Ve N6 N Ne %o Se Ne S@ e Se e va e Se

Lo L Lo s L L L R Tan Lo Lan o}

R R R)

"100nS SRAM read
"NA: activated externally

"peripheral write

Figure A-1. PAL-1 State Listings (Cont’d.)

A-8

intal

LOCAL BUS CONTROL PAL DESCRIPTIONS

WAITING
SAMPLECS
CMDDELAY
IO

ENDIO
MEMORY
FLOAT
NOTLOCAL

" Pin names:

CLK
MIO
DC

MRDC
MWTC
IORC
IOWC
INTA
ALE
DEN
RDY

LOCALSTATE

' Macros:

{1 V|

pin
pin
pin
pin
pin
pin
pin
pin

pin
pin

pin
pin
pin
pin
pin
pin
pin
pin

i1ifMEMORYREAD macro
{ (MIO &

ifIOREAD macro
{ (!MIO & DC & !WR)

ifIOWRITE macro
{ (IMIO & DC & WR)

ifINTACK macro
{ (!MIO &

module Bus_Control_386_Pal_2 flag '-r3'
title
'80386 Local Bus Controller - pal 2 Intel Corp'
BC386P2 device 'Pl6R8'; "use a 16R8 B-speed PAL for 16MHz 386
" Constants:
ON = 1;
OFF = 0;
H = 1;
L = 0;
b4 = Xos " ABEL 'don't care' symbol
c = .C.; " ABEL 'clocking input' symbol

" sState definitions for LOCALSTATE (local cycle state):

Abl01; "waiting for next bus cycle

~b100; "CLK2 before ALE falls and CS is sampled

Ab000; "delay before CMD active

~b010; "IO CMD active

Abl10; "IO CMD inactive

Ab011; "1WS CMD active

~blll; "data bus float delay

~b001; "OWS cycle or bus cycle not to the local bus
" Input pins

2; " 82384 CLK

3; " 80386 M/IO#

4; " 80386 D/C#

5; " 80386 W/R#

6; " local cycle state (from PAL 1)

73 " local cycle state (from PAL 1)

8; " local cycle state (from PAL 1)

9; " chip-select for 0 wait-state (piped) devices

1; " Clock pin - 82384 CLK2

11; " Output Enable pin
" output pins

19; " Memory Read Control signal

18; " Memory Write Control signal

17; " I/0 Read Control signal

16; " I/0 Write Control signal

15; " Interrupt Acknowledge Control signal

14; " Address Latch Enable Control signal

13; " Data Transceiver Enable Control signal

12; " READY signal

[L2, L1, LO]: " local cycle state

WR)

ifMEMORYWRITE macro
{ (MIO & DC & WR)

IDC & !WR)

yio "

Yi

yi "

); "

true for memory data or code read

true for memory data write

true for I/O data read

true for I/O data write

true for interrupt acknowledge cycle

Figure A-2. PAL-2 State Listings

el

LOCAL BUS CONTROL PAL DESCRIPTIONS

LURLELR R IR R LR TR TR UR LR IR U R UR IR LR R LR LR R LR LR LR LR LR U DR LR LR U DR LR R R LR LR R LR LU LR U LR R LR LR R LU LR TR LR LR R LR R L)

equations

!MRDC :=
((LOCALSTATE==WAITING)

((LOCALSTATE==SAMPLECS)
((LOCALSTATE==CMDDELAY)
((LOCALSTATE==10)

((LOCALSTATE==ENDIO)

((LOCALSTATE==MEMORY)

((LOCALSTATE==FLOAT)

((LOCALSTATE==NOTLOCAL)

IMWTC
((LOCALSTATE==WAITING)
((LOCALSTATE==SAMPLECS)
((LOCALSTATE==CMDDELAY)
((LOCALSTATE==I0)
((LOCALSTATE==ENDIO)
((LOCALSTATE==MEMORY)
((LOCALSTATE==FLOAT)
((LOCALSTATE==NOTLOCAL)
!IORC :=
((LOCALSTATE==WAITING)
((LOCALSTATE==SAMPLECS)
((LOCALSTATE==CMDDELAY)
((LOCALSTATE==I0)
((LOCALSTATE==ENDIO)
((LOCALSTATE==MEMORY)
((LOCALSTATE==FLOAT)
((LOCALSTATE==NOTLOCAL)
LIOWC :=
((LOCALSTATE==WAITING)
((LOCALSTATE==SAMPLECS)
((LOCALSTATE==CMDDELAY)
((LOCALSTATE==I0)
(LOCALSTATE==ENDIO)
(LOCALSTATE==MEMORY)
(LOCALSTATE==FLOAT)

#
#
:
((LOCALSTATE==NOTLOCAL)

(

(

(

(

IINTA :=
((LOCALSTATE==WAITING)

((LOCALSTATE==SAMPLECS)

((LOCALSTATE==CMDDELAY)

((LOCALSTATE==I10)

((LOCALSTATE==ENDIO)

((LOCALSTATE==MEMORY)

#(

#(

(LOCALSTATE==FLOAT)
(LOCALSTATE==NOTLOCAL)

ALE :=
(LOCALSTATE==WAITING)
(LOCALSTATE==SAMPLECS)
(LOCALSTATE==CMDDELAY)
(LOCALSTATE==I0)
(LOCALSTATE==ENDIO)
(LOCALSTATE==MEMORY)
(LOCALSTATE==FLOAT)

(
#(
#(
#(
#(
#(
#(
((LOCALSTATE==NOTLOCAL)

PR R MR

RO

&
&
&
&
&
&
&
&

OFF)
ifMEMORYREAD & !CSOWS) "activate if OWS access
OFF)
((1fMEMORYREAD & DEN) # !MRDC)) "activate if IO
((LEMEMORYREAD & DEN) # IMRDC)) ‘"remain if IO
((LEMEMORYREAD & DEN) # !MRDC)) "activate 1WS
OFF)
(!MRDC & (RDY # !CLK))): "remain if OWS
OFF)
ifMEMORYWRITE & !CSOWS)
OFF)
((LEMEMORYWRITE & DEN) # (!MWTC & RDY)))
((1EMEMORYWRITE & DEN) # (!MWIC & RDY)))
((1£MEMORYWRITE & DEN) # !MWTC))
OFF)
(IMWTC & RDY));
OFF)
ifIOREAD & !CSOWS)
OFF)
((1£IOREAD & DEN) # !IORC))
((L£IOREAD & DEN) # !IORC))
((L£IOREAD & DEN) # !IORC))
OFF)
(1IORC & (RDY # !CLK))):
OFF)
ifIOWRITE & !CSOWS)
OFF)
((AfIOWRITE & DEN) # (!IOWC & RDY)))
((1£IOWRITE & DEN) # (!IOWC & RDY)))
((L£IOWRITE & DEN) # !Iowc))
OFF)
(!IOWC & RDY)):
OFF)
ifINTACK & !CSOWS)
OFF)
((L£INTACK & DEN) # !INTA))
((LEINTACK & DEN) # !INTA))
((LEINTACK & DEN) # !INTA))
OFF)
(LINTA & (RDY # ICLK))):
ON) "activate ALE while waiting
OFF)
OFF)
OFF)
OFF)
OFF)
OFF)
"activate ALE if not-local

((DEN & CSOWS)
ALE "if active...remain active

#(!RDY & CLK))); "activate if last CLK2 of OWS access

Figure A-2. PAL-2 State Listings (Cont’d.)

A-10

ntd LOCAL BUS CONTROL PAL DESCRIPTIONS

IDEN :=

((LOCALSTATE==WAITING) & OFF)
((LOCALSTATE==SAMPLECS) & OFF)
((LOCALSTATE==CMDDELAY) & OFF)
((LOCALSTATE==I0) & ON) "activate DEN while in IO
((LOCALSTATE==ENDIO) & ON) "activate DEN while in IO
((LOCALSTATE==MEMORY) & ON) "activate DEN while in 1WS access
((LOCALSTATE==FLOAT) & (!MWTC # !IOWC)) "remain active 1 CLK2 if write
((LOCALSTATE==NOTLOCAL) & ((!ALE & !CSOWS) "activate DEN if OWS access

!DEN) "if active...remain active
& (RDY # !CLK)): ", ..until last CLK2 of OWS access

{RDY =
((LOCALSTATE==WAITING)
((LOCALSTATE==SAMPLECS) OFF)
((LOCALSTATE==CMDDELAY) & OFF)

& OFF)
&
&

((LOCALSTATE==I0) & OFF)
&
&

#
((LOCALSTATE==ENDIO) ON) "activate RDY at end of IO
((LOCALSTATE==MEMORY) ((RDY & !DEN & CLK) # (!RDY & !CLK)))
Yactivate RDY at end of 1WS access
((LOCALSTATE==FLOAT) & OFF)
#((LOCALSTATE==NOTLOCAL) & ((RDY & CLK & ((!MRDC # !IORC # !INTA)
#((!MWTC 4 !IOWC) & !DEN)}))
#(!RDY & !CLK))):

"activate RDY at end of OWS access

LR R R R T R R TR NIRRT TN RN RN TR TN LR R R TR TR IR LRI TR LR TR LR IR TN TR TR TR (R]

test_vectors ([CLK2, CLK, LOCALSTATE, MIO, DC, WR, CSOWS] ->

[MRDC, MWTC, IORC, IOWC, INTA, ALE, DEN, RDY])
"[inputs] =-> [outputs]

"ccC MDW C MMIITI ADR

"L L ICR s RWOON LED

"K K LOCALSTATE O 0 DTRWT ENY

"2 w cccca

n s

{c,L, X , X,%X,%, X] -> [X,X,X,X,X, X,%X,x];"initialize to IDLE and WAITING

(e,H, x , X,X,X, X] => [X,X,X,X,X, X,X,X];

[e,L, X » X,X,X, X} => [X,X,X,X,X, X,X,X]}

[e,H, X) X,%X,%, X] -> [%X,%,X,X,X, X,X,X];

(c,L, X ¢ X, X, X, X] => [x,%x,x,%,%, X,X,X];

(c,H, X , X, X%, X] -> [X,%X,X,X,X, X,X,X];

[e,L, X , X,%X,%X, X] => [X,X,%X,X,X, X,X,X];

(e,H, x , X,%X,X, X] => [X,X,X,X,X, X,X,X]);

[e,L, WAITING, x,x,x, X} -> (H,H,H,H,H, H,H,H];

[c,H, WAITING, x,X,x, X] -> [H,H,H,H,H, H,H,H];

[e,L, WAITING, x,x,x, X] -> [H,H,H,H,H, HHH];

(ec,H, WAITING, x,x,x%x, x] -> [H,H,H,H,H, H,H,H];"100nS SRAM read

[c,L, SAMPLECS, H,L,L, L] -> [L,H,H,H,H, L,H,H];

[c,H, NOTLOCAL, x,x%,x, L] -> [L,H,H,H,H, L,L,L];

[c,L, NOTLOCAL, x,x,x, x] -> [L,H,H,H,H, L,L,L];

[¢,H, NOTLOCAL, x,Xx,x, x] -> [H,H,H,H,H, H,H,H];"100nS SRAM read

[ec,L, SAMPLECS, H,H,L, L] -> (L,H,H,H,H, L,H,H];

[c,H, NOTLOCAL, x,%,x, L} -> [L,H,H,H,H, L,L,L];

[c,L, NOTLOCAL, x,x,x, x] -> [L,H,H,H,H, L,L,L];

[c,H, NOTLOCAL, x,%,xX, x] -> [(H,H,H,H,H, H,H,H];"100nS SRAM write

{c,L, SAMPLECS, H,H,H, L] -> [H,L,H,H,H, L,H,H];

{c,H, NOTLOCAL, x,x,x, L)} -> [H,L,H,H,H, L,L,H];

[c,L, NOTLOCAL, x,X,x, x] -> [H,L,H,H,H, L,L,H];

Figure A-2. PAL-2 State Listings (Cont'd.)

LOCAL BUS CONTROL PAL DESCRIPTIONS

[c,H, NOTLOCAL, x,x,x, x] -> [H,L,H,H,H, L,L,L];

[c,L, NOTLOCAL, x,x,x, x] -> [H,H,H,H,H, L,L,L];

[¢c,H, NOTLOCAL, x,x,x, X] -> [H,H,H,H,H, H,H,H];"100nS SRAM read

[c,L, SAMPLECS, H,H,L, L) -> [L,H,H,H,H, L,H,H);

{c,H, NOTLOCAL, x,x,x, L] -> [L,H,H,H,H, L,L,L];

[c,L, NOTLOCAL, x,x,x, x] -> (L,H,H,H,H, L,L,L];

[c,H, NOTLOCAL, x,X,x, x] -> [H,H,H,H,H, H,H,H];"non-local

{c,L, SAMPLECS, x,X,x, H] -> [H,H,H,H,H, L,H,H];

[c,H, NOTLOCAL, x,x,x, H] =-> (H,H,H,H,H, H,H,H];"READY: activated externally

[c,L, NOTLOCAL, Xx,X,X, X] -> [H,H,H,H,H, H,H,H];

[c,H, NOTLOCAL, x,X,x, x] -> [H,H,H,H,H, H,H,H];"100nS SRAM read

{c,L, SAMPLECS, H,L,L, L] -> [L,H,H,H,H, L,H,H];

[c,H, NOTLOCAL, X,X%,x, L] -> [L,H,H,H,H, L,L,L];

[c,L, NOTLOCAL, x,x,x, x] -> [L,H,H,H,H, L,L,L];

[c,H, NOTLOCAL, x,X,X, X] =-> (H,H,H,H,H, H,H,H];"idle

[c,L, WAITING, x,X,X, x] -> [H,H,H,H,H, H,H,H];

[c,H, WAITING, x,x,x, X] -> [H,H,H,H,H, H,H,H];

[c,L, WAITING, x,X,x, X] -> [H,H,H,H,H, HHH];

[c,H, WAITING, x,x,%, X] -> [H,H,H,H,H, H,H,H];"100nS SRAM write

(e¢,L, SAMPLECS, H,H,H, L] -> [H,L,H,H,H, L,H,H];

[c,H, NOTLOCAL, x,x,x, L] -> [H,L,H,H,H, L,L,H];

[c,L, NOTLOCAL, x,x,x, x] -> [H,L,H,H,H, L,L,H];

[c,H, NOTLOCAL, x,x,x, x] -> [H,L,H,H,H, L,L,L];

[c,L, NOTLOCAL, x,x%,x, x] -> [H,H,H,H,H, L,L,L];

[c,H, NOTLOCAL, x,x,x, X] -> [H,H,H,H,H, H,H, H];"idle

{c,L, WAITING, x,x,x, x] -> [H,H,H,H,H, HH,H];

[c,H, WAITING, x,x,X, x] -> [H,H,H,H,H, H,H,H];

{e,L, WAITING, x,x,%x, x] -> [H,H,H,H,H, H,HH];

(c,H, WAITING, x,X,x, X] -> [H,H,H,H,H, H,H,H];"150nS ROM read

[ec,L, SAMPLECS, x,x,x, H] -> [H,H,H,H,H, L,H,H];

[c,H, MEMORY , H,H,L, x] -> [L,H,H,H,H, L,L,H];

[¢,L, MEMORY , x,Xx,x, x] -> [L,H,H,H,H, L,L,H];

{c,H, MEMORY , x,x,x, x] -> [(L,H,H,H,H, L,L,L];

[¢,L, MEMORY , x,Xx,x, x] -> [L,H,H,H,H, L,L,L];

[c,H, FLOAT , x,x,x, x] -> [H,H,H,H,H, L,HH];

(e, L, FLOAT , x,X,x, x] -> [H,H,H,H,H, L,H,H];

[¢c,H, WAITING, x,X,X, X] =-> [H,H,H,H,H, H,H,H];"100nS SRAM read

[¢,L, SAMPLECS, H,L,L, L)} -> [L,H,H,H,H, L,H,H];

(c,H, NOTLOCAL, x,X%,x, L} -> [L,H,H,H,H, L,L,L];

[¢,L, NOTLOCAL, x,x,x, %] -> [L,H,H,H,H, L,L,L];

[c,H, NOTLOCAL, x,X,x, x] -> [H,H,H,H,H, H,H,H];"150nS ROM read

[c,L, SAMPLECS, x,x,x, H] -> [H,H,6H,H,H, L,H,H];

{c,H, MEMORY , H,L,L, x] -> (L,H,H,H,H, L,L,H];

[c,L, MEMORY , x,x,x, x] -> [L,H,H,H,H, L,L,H];

[c,H, MEMORY , x,x,x, x] -> [L,H,H,H,H, L,L,L];

[c,L, MEMORY , x,x,x, x] -> [L,H,H,H,H, L,L,L];

[c,H, FLOAT , x,X,x, %] -> [H,H,H,H,H, L,H,H];

[c,L, FLOAT , X,X,X, X] -> [H,H,H,H,H, L,H,H];

[c,H, WAITING, x,%,Xx, X] -> [H,H,H,H,H, H,H,H];"150nS SRAM write

[c,L, SAMPLECS, x,x,x, H] -> [H,H,H,H,H, L,H,H];

[c,H, MEMORY , H,H,H, x] -> [H,L,H,H,H, L,L,H];

[c,L, MEMORY , x,x,x, x] -> [H,L,H,H,H, L,L,H];

[c,H, MEMORY , x,x,x, x] -> [H,L,H,H,H, L,L,L];

[c,L, MEMORY , x,x,x, x] -> [H,L,H,H,H, L,L,L];

[c,H, FLOAT , Xx,X,x, X] -> [H,H,H,H,H, L,L,H];

[e,L, FLOAT , x,X,x, xX] -> [H,H,H,H,H, L,H,H];

[c,H, WAITING, x,x,x, X] -> [H,H,H,H,H, H,H,H];"150nS SRAM read

[c,L, SAMPLECS, x,X,x, H] -> [H,H,H,H,H, L,H,H];

[c,H, MEMORY , H,H,L, x] -> (L,H,H,H,H, L,L,H];

(c,L, MEMORY , x,X,x, x] -> [L,H,H,H,H, L,L,H];

[c,H, MEMORY , x,Xx,x, x] -> [L,H,H,H,H, L,L,L];

[e,L, MEMORY , x,x,x, X] -> [L,H,H,H,H, L,L,L]);

[¢,H, FLOAT , x,x,x, X] -> (H,H,H,H,H, L,H,H];

[c,L, FLOAT , x,X,Xx, X} =-> [H,H,H,H,H, L,H,H];"idle

[c,H, WAITING, x,x,x, X] -> [H,H,H,H,H, HH,H];

[c,L, WAITING, x,x,x, X] -> [H,H,6H,H,H, HHH];

[c,H, WAITING, ¥%,X%x,Xx, X] -> [H,H,H,H,H, H,H,H];:"150nS SRAM read
Figure A-2. PAL-2 State Listings (Cont’d.)

LOCAL BUS CONTROL PAL DESCRIPTIONS

e

"peripheral interrupt ack.
"100nS SRAM read
"peripheral write

"peripheral read

"idle

Sn Sh SN L Bm Sn S G4 Sn Su Sa a Sm Gn a Sn Pu Sn S Sm Sw Sn On Sn Gn Sn fa Sa G Sa Sa Gn Ga On Ga Gu Su Sn Su Sa e Sn Sa Om Sa Sn Su T Sn Tn Ga Su Bw S n SL n Ba L Sa Ga Wn Sm Sn e m en
I T I T P R O T T T P T T T T T T O I O U O T O P I T e O P e O I e O O M I O I O O I O L O O O O T I T e e e e e e e ey

MK momndombmnxddAan H"huuﬁnnuuﬂ mnmdongondnAdndononn A ddondnonnonnidadinc

PN NN NN N D N N N e N S

mAAAA M HnﬂhﬂvuL.hL,uL'uL.LH"HH"HH"nH“nH"HH.hL,uquL.hL.LH"nH"nH"nH“nL.hH"nH.LLvuL.hL.hL.hL-unuH

[e R N A R N N N N N N N N N Y N S N O e O L A O A Ny

A AR EEAAdlAd d A3 lAAAAAREEEAAAAAA A AR A E Al AARAAdAARA

nuH th"uUuH) uuH“nnuH"nuuH"nuuH“nnuH H"nuun“H"nuuH i ddd AddddEm e H"nnuH“uuuH"nUuH"nuuwnH“uuuH“nu“ﬂnH

NN R NN RN I N I e N N N N

H"H“nuuwuH o nnHuH R H"ﬂu“H"nuuK i i i i i i i H"uuunuﬂ“nuuﬁununﬁnnuuﬂ.ufuL.utﬂL.uruL.uuanH

[N NS NN I I YN NSNS YNy I RN

nRonENEEE EERREd A ddddd N nmimmimm H"nuuuuuuﬂuﬂu“ﬂuhUuH i H"Huuﬂnnuuﬂunuuunﬂuﬂ i i i i i i i i i

NN YN YN Y NN YT [N NS RN RN EEYE YT T

L] H"nuuHuH”H 0 i i i i i i m i H"ﬂuuuuuuH R H“nnuH"HuuuuH“H"ﬂuuH"uuuH"nunH“nnuH"nuuH"nuuH"nuuH"HuuH B

~ s s s s [N I N N I N NN RNy

w3 i i e i e e i A A O 0T O 0T T O 9T T G T 5T i3 I i T i i T i o it i i 3 3 4T i i 3 it i i i i d i i i it it i

parpe
A
)

->[

—
A
1

-> [
x] => [
-> [

——
AA
[]

- [
-> [
-> [

r X, X, %, X] => [

[are]
AA
[]

-> [
- [
- [

—— e
A A
! [}

->
->
(X, X, X] => [

X, X, X]
, XX, %, X] => [

r X, X, X, X]

—
AA
(]

-> [
1 X, X, X] -> [
x]

X,x,

-> [
- [
- [

—
A
]

x] => [

X]
X]
X]
r XX, %X, X] => [
X]

x]
’ xlexl x]

x]
X, %X,%X, X] => [

x]

x]

X, X, X]

lexl

X, X, X)
X, %, X] => [

1 XX, X]
x,%, X] => [
X, X, X] => [

X, %X, X]
X, X, X] =>
XX, X] => [
1 XX, X] => [
X,X,%X, X] => [
P X, %X,%, X] => [

’
’
’

x,%X,%x, H]
X, X, %X, X] => [

X,X,X%,
, L,H,L, x] =-> [

CMDDELAY,
I0
I0
I0
Io
I0
I0
Io

L,L,L, x)
; X %X,X, X]
’ xlxlx' x]

xlxlxl
X,X,X%,

;) X, X, X, X] => [
x
x
x
b
x
x
x
x

r X, X,%, X] => [
P XX, X, X] => [
r X%, X%, X] => [
r X, ¥, X, X]
r XX, %, X] > [
r X%, X, X]
¢ XX, X, X]
: X, %X, X, X]
¢ X, %X, %, X]

¢ X, XX,
r X, XX,
r X, XX,
,» L,H,H,

'

’

’
’
’
’
’
’
’
’
’
’

I0
I0
I0
I0
I0
I0
I0

WAITING, X,X,X, X} =-> [
Io
I0
I0
I0
I0
I0
10
I0
10

FLOAT , x,x,x, x] =-> [
WAITING, X,x,x, X] -> [
[c,L, SAMPLECS, H,L,L, L] -> [

FLOAT , x,%,X,
WAITING,

FLOAT

FLOAT

WAITING, x,x,X, X] -> [
WAITING, x,x,%, xX] => [
CMDDELAY, X,X,X, X] -> [
ENDIO

ENDIO

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

FLOAT

ENDIO

ENDIO

FLOAT

FLOAT

[c,L, SAMPLECS, x,x,x, H] =-> [

[CIHI

MEMORY , H,L,L, x] =-> [
MEMORY , Xx,x,x, X] -> [
MEMORY , x,x%,x,

MEMORY ,

WAITING, x,x,%x, X] => [
SAMPLECS,

ENDIO

ENDIO

FLOAT

FLOAT

FLOAT

WAITING, x,X,x, X] => [

FLOAT
[c,H, CMDDELAY, X,X,X, X] => [

[¢,L, SAMPLECS, x,x,x, H] -> [
[(¢,H, NOTLOCAL, x,x,x, L] =-> [
[¢,L, NOTLOCAL, x,x,%x, X] => [
[c,H, NOTLOCAL, X,x,%, X] =-> [
{e,L, SAMPLECS, x,x,x, H] =-> [
{e,L,

[clH’
[c’LI
[c'H'
[c, L,
[c’Hl
[clL’
[c,H,
[c’L’
[CIHI
[clLl
[c,Hl
[c'L’
[¢,H,
(e, L,
[CIHI
[c'Ll
[c’H’
[c'L'
[c'H'
[c,L,
[c'Hl
(e, L,
[c,H,
[CIL'
[c,H,
[CILI
[cIHI
[e,L,
[e,H,
[c,L,
[C,H,
[c'LI
[¢,H,
[e,L,
[¢,H,
[clL,
[e,H,
[c’Ll
[c,H,
[¢,L,
[c'Hl
[c'L’
[clH'
[clLI
[c'H’
[¢,H,
(e, L,
[cIHI
[CILI
[c’Hl
[c'L’
[c’H’
[c’Ll
[c’H’
[e,L,
[c,H,
[CILI

end Bus_Control_386_Pal_2;

Figure A-2. PAL-2 State Listings (Cont’d.)

A-13

LOCAL BUS CONTROL PAL DESCRIPTIONS

PAL16R8 PAL DESIGN SPECIFICATIONS
PART NUMBER: 80386 LOCAL BUS CONTROLLER - PAL 1

80386 LOCAL BUS CONTROLLER : PAL 1 OF 2

INTEL, SANTA CLARA, CALIFORNIA

CLK2 CLK ADS READY WR CSOWS CS1WS CSIO RESET GND

OE Q0 Q1 Lo Ll L2 PIPE IDLE NA vee
/PIPE := RESET

+ /CLK * /PIPE

+ CLK * PIPE

+ /PIPE * READY

+ IDLE

+ ADS * /PIPE

JIDLE := /CLK * /IDLE * /RESET
+ JIDLE * PIPE * /RESET
+ /IDLE * READY * /RESET
+ /ADS * CLK * /PIPE * /RESET

J/NA := /L1
12

/CLK * /NA

CLK * LO * NA
JLO * /NA * QO
JLO * /NA * Q1

44+ +

/L2 := /CLK * /L1 * /L2 * /RESET

JLO * /L2 * /NA * /RESET

/Ll * /L2 * READY * /RESET

L0 * L1 * /L2 * Q0 * /RESET

/LO * /L1 * /RESET

/CLK * CSOWS * CSIWS * CSIO * /IDLE * LO * L1 * L2 * /RESET

4+

/Ll := RESET
J/CLK * LO * /L1

L0 * /L1 * READY

CSIWS * /L1 * L2

LO * /L1 * L2

LO * L2 *+ /Q0 * /Q1

LO * /L1 * /Q0 * /Ql

/CLK * CSOWS * CSIWS * CSIO * /IDLE * LO * L2

++++ 4+ +

/L0

/L0 * /L2 * /RESET
JLO * L1 * Q0 * /RESET

CS1WS * /CSIO * /LO * /L1 * /RESET

/ADS * CLK * CSIO * LO * /L1 * L2 * /RESET

/ADS * CLK * LO * /Ll * L2 * /QO * /RESET

CLK * CSIO * /IDLE * LO * /L1 * L2 * /RESET

CLK * /IDLE * LO * /L1 * L2 * /QO * /RESET

/ADS * CLK * /L1 * /L2 * /QO * /Ql * /READY * /RESET

4+

RESET
Q0 * /Q1

CLK * QO

10 * /Q1

CSIWS * /L1 * L2 * /Ql
L1 * /L2 * /Q1

/Q1

+ 4+ ++

/Q0 := RESET
+ /CLK * /Q0 * Q1
+ CLK * Q0 * /Q1
+ /LO * L1 * L2 * /Q0 * /Q1
+ 10 * /L1 * /Q0 * /Q1
+ CSIWS * /L1 * L2 * /Q0 * /Q1
+ /L1 * /L2 * /QO0 * /Q1 * WR
+ /L0 *# L1 * /NA * /Q0 * /Ql

DESCRIPTION

This PAL is the first of two PALs that implement a 386 bus controller

Figure A-3. PAL-1 Equations

A-14

LOCAL BUS CONTROL PAL DESCRIPTIONS

PAL16R8 PAL DESIGN SPECIFICATIONS
PART NUMBER: 80386 LOCAL BUS CONTROLLER - PAL 2

80386 LOCAL BUS CONTROLLER : PAL 2 OF 2

INTEL, SANTA CLARA, CALIFORNIA

CLK2 CLK MIO DC WR Lo L1 L2 CSOWS GND

OE RDY DEN ALE INTA IOWC IORC MWTC MRDC VCC

JMRDC := /L0 * L1 * /MRDC
L1 * /L2 * /MRDC

JCLK * L0 * /L2 * /MRDC

L0 * /L2 * /MRDC * RDY

/CSOWS * /L0 * /L1 * L2 * MIO * /WR
DEN * /LO * L1 * MIO * /WR

DEN * L1 * /L2 * MIO * /WR

+ 4+ + A+ + o+

/MHTC := L0 * L1 * /L2 * /MWTC

/L0 * L1 * /MWTC * RDY

LO * /L2 * /MWTC * RDY

/CSOWS * DC * /LO * /L1 * L2 * MIO * WR
DC * DEN * /LO * L1 * MIO * WR

DC * DEN * L1 * /L2 * MIO * WR

/IORC := /IORC * /LO * L1

/IORC * L1 * /L2

/CLK * /IORC * LO * /L2

/I0RC * LO * /L2 * RDY

/CSOWS * DC * /LO * /L1 * L2 * /MIO * /WR
DC * DEN * /LO * L1 * /MIO * /WR

DC * DEN * L1 * /L2 * /MIO * /WR

JIOWC := /IOWC * LO * L1 * /L2

JI0HC * /LO * L1 * RDY

7I0WC * 10 * /L2 * RDY

/CSOWS * DC * /L0 * /L1 * L2 * /MIO * WR
DC * DEN * /L0 * L1 * /MIO *

DC * DEN * L1 * /L2 * /MIO * wn

/INTA * /L0 * L1
+ /INTA * L1 * /L2
+ /CLK * /INTA * LO * /L2
+ /INTA * LO * /L2 * RDY
+ /CSOWS * /DC * /LO * /L1 * |2 * /MIO * /WR
+ /DC * DEN * /LO * L1 * /MIO *
+ /DC * DEN * L1 * /L2 * /MIO * /NR

/ALE * /CLK * /CSOWS * /L2
+ /ALE * /CLK * /DEN * /L2
+ /ALE * /CSOWS * /L2 * RDY
+ /L0

+ 4+ A+ + 4+ 4+ + +

+ o+ o+ o+ +

/INTA :

1

/ALE :

"

+ L1
+ /ALE * /DEN * /L2 * RDY

/L0 * L1
L1 * /L2

/I0WC * L1

L1 * /MWTC

JCLK * /DEN * LO * /L2

/DEN * L0 * /L2 * RDY

JALE * /CLK * /CSOMS * L0 * /L2
/ALE * /CSOMS * LO * /L2 * RDY

/L0 * L1 * L2

/CLK * LO * /L2 * /RDY

CLK * /DEN * LO * L1 * /L2 * RDY
CLK * /INTA * LO * /L1 * /L2 * RDY
CLK * /IORC * LO * /L1 * /L2 * RDY
CLK * L0 * /L1 * /L2 * /MRDC * RDY
CLK * /DEN * /IOWC * LO * /L2 * RDY
CLK * /DEN * LO * /L2 * /MWTC * RDY

DESCRIPTION

/DEN :

A+

/RDY :

+ o+

This PAL is the second of two PALs that implement a 386 bus controller

Figure A-4. PAL-2 Equations

Appendix
80387 Emulator PAL
Description

APPENDIX B
80387 EMULATOR PAL DESCRIPTION

This section describes the PAL equations for the Math Control PAL in the 80386 emulator

circuit. These equations are listed in Figure B-1.

The primary function of the PAL is to decode the 80386 outputs and generate 80287 inputs.
The CLK16D#, DVALID#, and AVALID¢# signals provide for the correct timing of the
outputs. The TP2 input provides the ability to force the PAL outputs to the high impedance

state. For normal operation, TP2 is pulled high.

PAL16LSB PAL DESIGN SPECIFICATION
386/100 27 February 1986 ED JACKS
PAL: MATH CYCle MATHCYC

INTeL Corporation
/RDY A31 LRESET /ADS MIO /RD /AVALID /DVALID /CLK16 GND
TP2 /CLK16D /READYO /DVALIDD /AVALIDD NC /IORDD /IOWCD /READYOD VCC

IF (TP2) AVALIDD = ADS * RDY * /LRESET * CLK16 * /AVALID
+# /RDY * A31 * /MIO * /LRESET * AVALID
+ A31 * /MIO * /LRESET * AVALID * DVALID
¢+ ADS * /LRESET * CLK16 * /AVALID * DVALID
+ /LRESET * /CLK16 * AVALID

IF C(TP2) DVALIDD = /LRESET * CLK16 * AVALID * DVALID
+ /RDY * /LRESET * DVALID
+ ADS * /LRESET * CLK16 * /DVALID
+ /LRESET * /CLK16 * DVALID

IF (TP2) I1ORDD = /RDY * A31 * /MIO * /RD * AVALID * DVALID
+ A31 * /MIO * /CLK16 * RD * AVALID * DVALID

I[F (TP2) I10WCD = /RDY * A31 * /MIO * RD * AVALID * DVALID
+ A31 * /MIO * /CLK16 * /RD * AVALID * DVALID

IF (TP2) READYOD = A31 * /MIO * /CLK16 * READYOD * AVALID * DVALID
+ /RDY * A31 * /MIO * CLK16 * AVALID * DVALID

CLK16D = /LRESET * /CLK16

Figure B-1. 80387 Emulator PAL Equations

Appendix
DRAM PAL Descriptions

APPENDIX C
DRAM PAL DESCRIPTIONS

This section describes the inputs, outputs, and functions of each of the PALs in the DRAM
design described in Chapter 6. The terms Start-Of-Phase and Middle-Of-Phase used to
describe PAL input sampling times refer to the 80386 internal CLK phase and are defined
in Figure C-1.

The setup, hold, and propagation delay times for each PAL input and output can be deter-
mined from the PAL data sheets. In a few cases, the setup and hold times during certain
events must be violated; in these cases, the PAL equations mask these inputs so they are not
sampled. Because the states are fully registered and because inputs are masked when their
setup or hold times cannot be guaranteed, no hazards exist.

DRAM STATE PAL

The DRAM State PAL determines when to run a new DRAM cycle and tracks the state of
the DRAM through the cycle. The inputs sample DRAM requests from the processor (or
any other bus master) as well as requests for refresh. The outputs store state information
and generate the two RAS signals and two multiplexer control signals. Table C-1 contains
a description of the outputs and inputs.

The equations for the 3-CLK DRAM State PAL are shown in Figure C-2; those for the
2-CLK DRAM State PAL are shown in Figure C-3. The DRAM State PAL is implemented
in a 16R8 PAL if the RAS signals are registered internally, or in a 16R6 PAL if external
registers are used. For a 16-MHz system, B-series PAL speeds are required.

START-OF-PHASE START-OF-PHASE
MIDDLE-OF-PHASE MIDDLE-OF-PHASE

N/ N/ Y e/ N
e NN Vo N

G30107

Figure C-1. PAL Sampling Edges

C-1

DRAM PAL DESCRIPTIONS

Table C-1. DRAM State PAL Pin Description

PAL CONTROLS
Name Connects From PAL Usage
CLK2 Systems CLK2 PAL register clock
OE Tied low Outputs always enabled
PAL INPUTS
Name Connects From PAL Usage Sampled
CLK System CLK Indicates clock phase Every CLK2
CSO# Chip-Select Logic DRAM access is begun (or Start-Of-Phase
CS1# (uses Address, queued if another cycle is in (Queue cleared
CS2# M/I10, W/R, D/C) progress) when all selects after first cycle of
CS3# are sampled active access)
CS4+#
DT/R# DRAM CONTROL Indicates write/read Start-Of-Phase on
PAL DT/R# out Used only in 2-CLK 2nd CLK of access
A2 System Address Selects one of the two DRAM Start-Of-Phase in
bit 2 banks which DRAM
access starts
RFRQ Refresh Interval Starts refresh cycle as soon Middle-Of-Phase
Count as possible
PAL OUTPUTS
Name Connects To PAL Usage Changes State
RASO# DRAM Bank 0 Controls DRAM RAS signals Start-Of-Phase
RAS1# DRAM Bank 1
ROWSEL Addr MUX select Select DRAM row/column Middle-Of-Phase
MUXOE# Addr MUX enable Disable MUX on refresh Middle-Of-Phase
A2REG Not connected Store active DRAM bank
DRAMSELECT Not connected Queue DRAM requests
Qo For NA in 2-CLK Stores PAL State
Q1 Not connected

DRAM PAL DESCRIPTIONS

PAL16R8 PAL DESIGN SPECIFICATIONS
PART NUMBER: 3-CLK DRAM STATE PAL

DRAM STATE PAL OF INTERLEAVED DRAM CONTROLLER FOR 80386 SYSTEMS

INTEL, SANTA CLARA, CALIFORNIA

CLK2 CLK A2z CSO CS1 (€S2 CS3 CS4 RFRQ GND

OE RASO ROWSEL MUXOE Q0 Q1 AZREG DRAMSELECT RAS1 VCC

/DRAMSELECT := CSO * /DRAMSELECT
+ CS1 * /DRAMSELECT
+ €S2 * /DRAMSELECT
+ /CS3 * /DRAMSELECT
+ /CS4 * /DRAMSELECT
+ JCLK * /DRAMSELECT
+ /MUXOE * ROWSEL * /Q1 * /Q0 * /CLK

/ROWSEL := /ROWSEL * QO * CLK
+ /ROWSEL * /Q1
+ ROWSEL * /Q1 * /Q0 * /CLK
+ ROWSEL * /Q1 * QO * /CLK * MUXOE * RFRQ

/Ql:= ROWSEL * /Q1 * /00 * /CLK

ROWSEL * Q0 * CLK

/ROWSEL * /Q0 * CLK

ROWSEL *Q1* /QO * CLK * /CSO * /CS1 * /CS2 * CS3 * (S4
* /MUXOE * A2 * A2R

ROWSEL * Q1 * /Q0 * CLK * /CSO * /CS1 * /CS2 * CS3 * CS4

* /MUXOE * /A2 * /A2REG
ROWSEL * /Q1 * Q0 * /CLK * /MUXOE
ROWSEL * /Q1 * Q0 * /CLK * /RFRQ

/Q0 := /ROWSEL * Q1 * Q0 * /CLK
/ROWSEL * /Q0 * Q1 * CLK
ROWSEL * /Q1 * /Q0 * /CLK
ROWSEL * Q1 * CLK * /CSO * /CS1 * /CS2 * CS3 * (CS4
* /MUXOE * A2 * G
ROWSEL * Q1 * CLK * /CSO * /CS1 * /CS2 * CS3 * (S4
* /MUXOE * /A2 * /A2REG
ROWSEL * /Q1 * Q0 * CLK * /CSO * /CS1 * /CS2 * CS3 * CS4 * /MUXOE
ROWSEL * /Q1 * QO * CLK * DRAMSELECT * /MUXOE
ROWSEL * /Q1 * Q0 * /CLK * MUXOE * RFRQ

++ o+ +++
+ + +

+

+ + +

/RASO := ROWSEL * /Q1 * /Q0 * /CLK * /A2REG
+ ROWSEL * /Q1 * /Q0 * /CLK * MUXOE
+ /ROWSEL * /A2REG
+ /ROWSEL * MUXOE
+ ROWSEL * Ql * CLK * /A2 * /AZREG * /CSO * /CS1 * /CS2 * (CS3 * CS4
* /MUXOE
+ ROWSEL * /Q1 * Q0 * CLK * /A2 * /CSO * /CS1 * /CS2 * CS3 * (S4

E
+ RONSEL * /Q1 * QO * CLK * /A2 * DRAMSELECT * /MUXOE

/RAS1 := ROWSEL * /Q1 * /Q0 * /CLK * A2REG

+ ROWSEL * /Q1 * /Q0 * /CLK * MUXOE

+ /ROWSEL * A2REG

+ /ROWSEL * MUXOE

+ RONSEL * Q1 * CLK * A2 * A2REG * /CSO * /CS1 * /CS2 * CS3 * CS4
* /MUXOE

+ ROWSEL * /Ql * Q0 * CLK * A2 * /CSO * /CS1 * /CS2 * CS3 * CS4
* /MUXOE

+ ROWSEL * /Q1 * Q0 * CLK * A2 * DRAMSELECT * /MUXOE

/MUXOE := /MUXOE * /Q0
+ /MUXOE * CLK
+ /MUXOE * /ROWSEL * /Q1
+ /RFRQ * ROWSEL * /Q1 * Q0 * /CLK
+ /MUXOE * /RFRQ * Q1 * Q0 * /CLK

/A2REG := /A2REG * /Q0
+ /A2REG * Q1 * CLK
+ /A2REG * ROWSEL * Q1
+ /A2REG * /ROWSEL * /Q1
+ AZREG * /ROWSEL * Q1 * Q0 * /CLK
+ /A2 * ROWSEL * /Q1 * QO

Figure C-2. 3-CLK DRAM State PAL Equations

C-3

DRAM PAL DESCRIPTIONS

FUNCTION TABLE

OE CLK2 CLK CSO CS1 CS2 CS3 (CS4 A2 RFRQ

)

CLK2
CLK
| /CSO

/MUXOE
DRAMSELECT

ROWSEL Q1 QO RASO RAS1 MUXOE DRAMSELECT A2REG
;0

;inputs
soutputs

L;
L;
L;

3

x

H
H;
H;
H;
L;

X
X
X
X
X
X
L

L

L

L

L

L
H H;
L

L

L

L

L

L

L

L

L X;
L
L
H
H
H

ACCESS3
ACCESS4
ACCESS5
ACCESS6

H; PRECHARGE1
H; PRECHARGE2

ACCESS1
ACCESS2
ACCESS3
ACCESS4
ACCESS5
ACCESS6

L; PRECHARGE]
L ; PRECHARGE2

IDLE1
IDLE2
IDLE1
IDLE2
IDLE]

; REFSTART2

ACCESS1

initialize to
initialize to
initialize to
initialize to
initialize to
initialize to
initialize to
continue DRAM
continue DRAM
continue DRAM
continue DRAM

no dram request pending

wait for precharge
start DRAM cycle to
continue DRAM cycle
continue DRAM cycle
continue DRAM cycle
continue DRAM cycle
continue DRAM cycle

other bank

no dram request pending

wait for precharge

no dram request pending

wait for precharge

no dram request pending
refresh request sampled
can’t start: refresh pending

refresh address set-

start refresh cycle

up

[ttt el sl sl sl el sl sl sl el el el sl el sl el el sl el
OO0 OOO0OOO0
= Nl Sl =N = =l e = i o e ol i J - o - A -
DI DM XM >IN NT T T T T
22D DKM DKM DX XD M DK MK DX DX XX DX X <
(o PP e ol o o i o = o o B R e Ra Ra R a o B oo
b o falt o o = o S g i =i o B o P ke Ra Raka bk ool
IR IO LIPS I PP IO XD P>
I 5< D< DK D DK TE DK DK DK DK DKM DK DK DK DK D XK XK XK XX XXX

[l el el sl el el ol el skl ell el el el sl el el sl sl ol el
XTI I IS I XK X
X T Trrrr T T T e e e << << <
T IXIXrr~ XTI XXX
XXX XTI Irrr-r-r XXX XXX
b ol al ol aall el sl e s e i e e e e o e B o Rotoat okl
el sl el sl el el ol el el ol sl sl el all il it 2 o 8 2

~XXIIIT
TR IR

IDLE1
IDLE2
IDLE1
IDLE2
IDLE1
IDLE2
ACCESS1
ACCESS2
ACCESS3
ACCESS4
ACCESS5
ACCESS6
ACCESS1
ACCESS2
ACCESS3
ACCESS4
ACCESSS
ACCESS6

initialize to
initialize to
initialize to
initialize to
initialize to
remain in IDLE
remain in IDLE
remain in IDLE
remain in IDLE
remain in IDLE
remain in IDLE
start DRAM cycle

continue DRAM cycle
continue DRAM cycle
continue DRAM cycle
continue DRAM cycle
continue DRAM cycle
start DRAM cycle to
continue DRAM cycle
continue DRAM cycle
continue DRAM cycle
continue DRAM cycle
continue DRAM cycle

new request

other bank

PRECHARGE]1 can’t start same bank cycle

Figure C-2.

3-CLK DRAM State PAL Equations (Cont’d.)

c-4

DRAM PAL DESCRIPTIONS

L;PRECHARGE2 wait for precharge
5 IDLEl can’t start same bank cycle
X; IDLE2 wait for precharge
H; ACCESS1 start DRAM cycle to same bank
H; ACCESS2 continue DRAM cycle

ACCESS3 continue DRAM cycle
H; ACCESS4 continue DRAM cycle
H; ACCESS5 continue DRAM cycle new request

3 ACCESS6 continue DRAM cycle refresh req

L;PRECHARGE] can’t start: refresh pending
L;PRECHARGE2 wait for precharge
X; IDLE1 can’t start: refresh pending
X; REFSTART2 wait for precharge
X; ACCESS1 start refresh cycle
X; ACCESS2 continue refresh cycle
X; ACCESS3 continue refresh cycle
X; ACCESS4 continue refresh cycle
X; ACCESS5 continue refresh cycle
X; ACCESS6 continue refresh cycle
X;PRECHARGE] can’t start: refresh precharge
X;PRECHARGE2 wait for precharge
X; IDLE1 can’t start: refresh precharge
X; IDLE2 wait for precharge
L; ACCESS1 start DRAM cycle
L; ACCESS2 continue DRAM cycle

[ralergivr

[l ol el el el el el et sl pundl sl madl conll alh munll mnll pagll sunll sl sl ol Sl o
OCOOOOOOOOOOOOOOOOOOOOOOO0O0
rEr—r~-TXT—-T~-ITr-IC-TTC-IXC-IIrrTxTrTexTe
P> > T > T > T > > >< M > >< T >< T > >
>C > > > > > 3 BE DC DC B 3 3 I D DT > D <
5 3¢ > DE D >C >< D D BC D BC D [D<= > 1 > 3> >< > >
3 3< >< 3 > 3 > >E < < > > > I B< I >< T > > < > > T <
5 D¢ 3¢ D< D < >< > 3 D< > P< DS T D< T > L > > >3 > L >
5< = 3¢ D€ D¢ D¢ 3¢ > D DC D >< B¢ I >< TE > > > > >< T > T >
Lol el el el el el sl el e i = =i == =i =i e == =i == == = pll pull
FIXTITITTXI~~~FCFTI~CTXTTCCCCITTX
rrr—rLTIXITITXrFCFICFTIXITTTCCCrCE
FFXITXTTI-~ITETE~-~CFITIT~CEITETICCTIT
~—XXTXT-r~FCFFITXTXTTTTETTITITIT
IrrrxrTr-rrrFrCTTXTXTCCCCCCTIX
FFFITITTITITIXXTTTITTTOCCCOCos
FITTTITIIITTIITITIETTIITI~CCITETT
S

DESCRIPTION
*%% NOTE - SOME VERSIONS OF PALASM WILL CRASH IF THE FILE IS TOO LONG ***
*%% [F YOURS DOES, DELETE THIS DESCRIPTION (FROM HERE TO END-OF-FILE) ***

This PAL implements the main state machine of the DRAM controller.
The state machine is described below.

For brevity, the following keywords are used

SELECT = (/CSO * /CS1 * /CS2 * CS3 * CS4 * CLK)
schip selects and clock must be active to select

SELECTED = (SELECT + DRAMSELECT) ;true if DRAM is now or has been selected
STARTACCESS = (SELECTED * /MUXOE) ;start dram access cycle from idle

The states are defined below and indicated by [ROWSEL:Q1:Q0:CLK].
The 4-bit binary number following the state name represents these four signals.

/ \

| state REFSTART2 = 0101 ;cycle preceding refresh

| /RASO := ON snext cycle is first RAS for refresh|

| /RAS1 := ON |---+

{ MUXOE := MUXOE smaintain MUXOE state | always
/

A

|MUXOE * RFRQ
|

/RASO := OFF sboth RAS’s idle
/RAS1 OFF
MUXOE := RFRQ ;sample refresh request

WO

e ——

\
state IDLE1 = 1010 ;waiting for access or refresh

|

|

|

/

A

|
|/(MUXOE * RFRQ) | /STARTACCESS
v |

Figure C-2. 3-CLK DRAM State PAL Equations (Cont’d.)

DRAM PAL DESCRIPTIONS

————

state IDLE2 = 1011

swaiting for access or refresh

/RASO := (/A2 * STARTACCESS) ;start access
(A2 * STARTACCESS)

/RAS1 :=
A2REG :=
MUXOE :=

A2
MUXOE

;sample A2 state

smaintain MUXOE state
/

\
|
|
|
|
|

|
| STARTACCESS
v

e —

state ACCESS1

A\
= 1000 ;first cycle of access or refresh|<--+

/RASO := /A2REG + MUXOE ;RAS corresponding to A2
A2REG + MUXOE sor refresh
;maintain state of sampled A2|

/RAS] :=
AZREG :=
MUXOE :=

AZREG
MUXOE

smaintain MUXOE state

|<----- +

|always
v

A\
stjtz ACCESSZ = 0001;second cycle of access or refresh|

/RAS1
AZREG :
MUXOE :

/A2REG + MUXOE sRAS corresponding to A2
A2REG + MUXOE sor refresh

AZREG
MUXOE

smaintain state of sampled A2

smaintain MUXOE state

————

|always
v

/

e e e e NN

\
state ACCESS3 = 0010 ;third cycle of access or refresh|
/RASO :

/RAS1 :=
A2REG :=
MUXOE :=

/A2REG + MUXOE ;RAS corresponding to A2
A2REG + MUXOE sor refresh

A2REG
MUXOE

smaintain state of sampled A2|

smaintain MUXOE state

|always
v

/

S ————\

\
state ACCESS4 = 0111;fourth cycle of access or refresh|

/RASO := /A2REG + MUXOE ;RAS corresponding to A2

/RAS1 := A2REG + MUXOE sor refresh
A2REG := AZ2REG ;maintain state of sampled A2|
MUXOE := MUXOE smaintain MUXOE state

|always
v

~—

e ™

state ACCESSS

/RASO := /A2REG + MUXOE ;RAS corresponding to A2
A2REG + MUXOE sor refresh

A2REG := /AZREG

sinvert state of sampled A2

\
= 1110 ;fifth cycle of access or refresh|
|
|
|
|

MUXOE + RFRQ ;sample refresh request

|
always|
v

(STARTACCESS * ((A2 * A2REG)
+(/A2 * /AEREG)))

————"

state Acczsss
/RAS

/RASl
A2REG
MUXOE

/A2 * /A2REG * STARTACCESS;start next..
A2 * A2REG * STARTACCESS;interleave accesl —————— +
smaintain state of interleave A2|

AZREG
MUXOE

smaintain MUXOE state

1101 ;sixth cycle of access or refresh|

|
/

/

I/(STARTACCESS * ((A2 * A2REG)
+(/A2 * /A2REG)))

Figure C-2. 3-CLK DRAM State PAL Equations (Cont’d.)

C-6

DRAM PAL DESCRIPTIONS

/ \
| state PRECHARGE1 = 1110 ;first precharge after access |
| /RASO := OFF ;both RAS’s idle
| /RAS1 := OFF |
| A2REG := AZ2REG ;maintain state of interleave A2|
| MUXOE := MUXOE + RFRQ ssample refresh request
\ | /
always| (STARTACCESS * ((A2 * A2REG)
v +(/A2 * /A2REG)))
/
| state PRECHARGE2 = 1111 ;second precharge after access|
| /RASO := /A2 * /A2REG * STARTACCESS;start next...
| /RAS1 := A2 * A2REG * STARTACCESS;interleave acces|--------- +
| A2REG := A2REG ;maintain state of interleave A2|
{ MUXOE := MUXOE ;maintain MUXOE state
/
/(STARTACCESS * ((A2 * A2REG) |

+(/A2 * JRZREG)))#=--=n=mmmmmmmmmmmcmmm o +

Finally, the karnaugh maps for the following signals are:

ROWSEL\QO
QI\CLK 00 01 11 10
\
00 MUX MUX
01 MUX MUX MR
11 MUX MUX M+R
10 MUX MUX RFR
ROWSEL\QO
QI\CLK 00 01 11 10
00 AZR A2R
o1 AR AR /A2R
11 AR A2R AR
10 A2R A2; A2;
ROWSEL\QO
QI\CLK 00 01 11 10
00 7AM AN 7AN AN
01 ON ON /AM AM /AM AM
11 /AL Al /AI Al OFFOFF
10 | /AM AM /AS AS OFFOFF
ROWSEL\QO
QI\CLK 00 01 11 10
\
00 0010 0111
01 1000 0110 1101
11 1110 10i0 1111
10 | 0001 10s0 mMml
ROWSEL\QO
QI\CLK 00 01 11 10
\
00 0010 0111
01 1000 0110 1101
11 140 10i0 1111
10 | 0001 10s0 mMml
ROWSEL\QO
QINCLK 00 01 11 10
\
00] 0010 0111
01 | 1000 0110 1101
1 | 1410 10i0 1111
10 | 0001 10s0 mMml

key:

AZ;

A2

3

R

nonon

MUXOE
MUXOE
MUXOE + RFRQ
RFRQ

A2REG

A2
A2REG

RAS signals
[RASO:RAS1]
A2REG + MUXOE
A2 * STARTACCESS
A2 * STARTACCESS * interleave

ROWSEL state circled
[ROWSEL:Q1:Q0:CLK]
MUXOE * RFRQ
STARTACCESS
STARTACCESS * interleave

Q1 state circled

Q0 state circled

Figure C-2. 3-CLK DRAM State PAL Equations (Cont’d.)

C-7

DRAM PAL DESCRIPTIONS

PAL16R6 PAL DESIGN SPECIFICATIONS
PART NUMBER: 2-CLK DRAM STATE PAL

DRAM STATE PAL OF INTERLEAVED DRAM CONTROLLER FOR 80386 SYSTEMS

INTEL, SANTA CLARA, CALIFORNIA

CLK2 CLK A2 CSO (CS1 CS2 CS3 DT%R RFRQ GND

OE RASO ROWSEL MUXOE Q0 Q1 A2REG DRAMSELECT RAS1 VCC

/DRAMSELECT := €SO * /DRAMSELECT
+ CS1 * /DRAMSELECT
+ CS2 * /DRAMSELECT
+ /CS3 * /DRAMSELECT
+ /CLK * /DRAMSELECT
+ /MUXOE * ROWSEL * /Q1 * /Q0 * /CLK

/ROWSEL := /ROWSEL * Q0 * CLK
+ /ROWSEL * /Q1
+ ROWSEL * /Q1 * /Q0 * /CLK
+ ROWSEL * /Q1 * Q0 * /CLK * MUXOE * RFRQ

/ui:= ROMSEL * /q1 * /qo * /CLK
+ ROWSEL * QO *
+Ql * /Q0 * CLK
+ /ROWSEL * /Q1 * /Q0 * CLK * DT%R * /MUXOE
+ ROWSEL * /Q1 * Q0 * /CLK * /MUXOE
+ ROWSEL * /Q1 * Q0 * /CLK * /RFRQ

/00 := /ROWSEL * Q1 * QO * /CLK
/ROWSEL * /Q0 * Q1 * CLK
ROWSEL * /Q1 * /Q0 * /CLK
+ ROWSEL * Q1 * CLK * /cso * /CS1 * /CS2 * CS3
* /MUXOE * A2 * AZREG
ROWSEL * Q1 * CLK * /cso * /CS1 * /CS2 * CS3
* /MUXOE * /A2 * /A2REG
ROWSEL * /Q1 * QO * CLK * /CSO * /CS1 * /CS2 * CS3 * /MUXOE
ROWSEL * /Q1 * QO * CLK * DRAMSELECT * /MUXOE
+ ROWSEL * /QL * Q0 * /CLK * MUXOE * RFRQ

/RASO = ROWSEL * /Q1 * /Q0 * /CLK * /A2REG
+ ROWSEL * /Q1 * /Q0 * /CLK * MUXOE
+ /ROWSEL * /AZREG
+ /ROWSEL * MUXOE

+

+

+

+ +

+ ROWSEL * Q1 * CLK * /A2 * /A2REG * /CSO * /CS1 * /CS2 * CS3 * /MUXOE
+ ROWSEL * /Q1 * Q0 * CLK * /A2 * /CSO * /CS1 * /CS2 * CS3 * /MUXOE

+ ROWSEL * /Q1 * Q0 * CLK * /A2 * DRAMSELECT * /MUXOE

/RAS1 = ROWSEL * /Q1 * /Q0 * /CLK * A2REG
+ ROWSEL * /Q1 * /Q0 * /CLK * MUXOE
+ /ROWSEL * A2REG
+ /ROWSEL * MUXOE

+ ROWSEL * Q1 * CLK * A2 * A2REG * /CSO * /CS1 * /CS2 * CS3 * /MUXOE
+ ROWSEL * /Q1 * Q0 * CLK * A2 * /CSO * /CS1 * /CS2 * CS3 * /MUXOE

+ ROWSEL * /Q1 * Q0 * CLK * A2 * DRAMSELECT * /MUXOE

/MUXOE := /MUXOE * /Q0
+ /MUXOE * CLK
+ /MUXOE * /ROWSEL * /Q1
+ /RFRQ * ROWSEL * /Q1 * Q0 * /CLK
+ /MUXOE * /RFRQ * Q1 * Q0 * /CLK

JA2REG := /A2REG * /Q0
+ /A2REG * Q1 * CLK
+ /AZREG * ROWSEL * Q1
+ /A2REG * /ROWSEL * /Q1
+ A2REG * /ROWSEL * Q1 * Q0 * /CLK
+ /A2 * ROWSEL * /Q1 * Q0

Figure C-3. 2-CLK DRAM State PAL Equations

DRAM PAL DESCRIPTIONS

FUNCTION TABLE
OE CLK2 CLK €SO €Sl CS2 CS3 (CS4 A2 RFR

sinputs

Q P
ROWSEL Q1 QO RASO RAS1 MUXOE DRAMSELECT A2REG soutputs

| CLK ROWSEL
| | /cso | Q1

S

MUXOE
DRAMSELECT
| A2REG

—— 328

MAMANARARANAIA ARG

D D€ DK DL DL D P D > DK

IDLE1
IDLE2
IDLE]
IDLE2
IDLE1
IDLE2
ACCESS1
ACCESS2
ACCESS3
; ACCESS4
L; ACCESS5
H; ACCESS6
H; ACCESS1
H; ACCESS2
3 ACCESS5
L; ACCESS6
X; IDLE1
X; IDLE2
H; ACCESS1
H; ACCESS2
H; ACCESS3
H; ACCESS4
H; ACCESS5
ACCESS6
IDLE1
IDLE2
ACCESS1
ACCESS2
ACCESS3
ACCESS4
ACCESSS
ACCESS6
IDLEIL
REFSTART2
ACCESS1
ACCESS2
ACCESS5
ACCESS6
IDLEL
IDLE2

PAENAMARARARAN

[l s o R et e ot otototototatokotolatakalal

.o

[l ettt el e el el el el el ol el el el e el ol el el el el ol el el el el i and el sl el sl st mlt el el el N
-
M

2 aiaiaiaiaiaiaintain i el el el ot ot e N N e R e N e N e N e N N e R R R R R N R e Y Y Yo R e Na N s e i sdai ni niaa i n i o i n A o X n A ol
[L Al Ll L Rl T F - Sl Sl Sl Sl F e Aol - S - =l —E o=l = e e
P > I <> LI T3 > > I3 I > X I X XN XN NN T TITTITIITXTITTITI
e L e e R Y ol e e R e L o R N A R o Tt B =2 oo latalabalaRa ol oo Rl
5< D D DC BE H< D [B< [D< D D D D ™ D 1= D<K D D D 3 1 DL B D<= D<M 5K 3< 3 D<K I D<K D<K D DK DK DD DD I <<
< D€ >< 3 D D< D T D I DX DC D< > > I < I B< D<K > <D< T D< [>< I D¢ I D<M D<K IE D<K DK B> DE DE 3E 3 DE DK D3I DK 3K >
<3< DC D< DE DC DL D D¢ > D I H< D< D< >< D€ D >< I D< D >< T S< M 3K IE B< D< D< T DK DK DK DL DK B B DK D DE D D DK DK D D > <
D€ D€ D D< D< > D T < < B¢ B D IE D IE H< D<K D B< DE IE 3 T D<K D<K DK I D< DK DE D DK 1 D DK B DK D¢ 3K D<K DC DK D DK DC D <3< > >
[adl - == 3= = = - = = =l ol aal ol el el o 0 5 20l el cdl s ol ol el sl ok ol ettt Sl LS St
IXTErr I ITrrrrCFCITITEITCCCC TS T XTI T T T > KO >3
(et it et T T ekl et ad mt -1 Ll sl ol ol ol - Sl k- 3 =Sl ol kil ol el aal ad b o BB o B o3 o P o PP 8 'S
E ol Sl ol - ol - = F ol - B ¥l i e o ol e o of el o ol e - = - gl = o e - - 3= B iatata o Rt ok o R o R o P ol
el e el F L P XX T3 L 5l ol el = e S R o R b P o ok R e Rl
ITX~rrrFXTI-~~~~F~II-~FF~~TTX~~~~XTITITITTITTT T OO >R
1 il ol el el el el el el el el el el el el el ol pll el ol kil ol) i 6iaiaiatatatalo kel
IrF I XTI T XTI T~ T T XIS e e 3O
==

PV AN A TR TR T T T D

tokaketototototelm 11 X ol

COMMENTS

initialize to IDLE

initialize to IDLE

initialize to IDLE

initialize to IDLE

initialize to IDLE

initialize to IDLE

initialize to IDLE

initialize to IDLE

initialize to IDLE

initialize to IDLE

initialize to IDLE

remain in IDLE

remain in IDLE

remain in IDLE

remain in IDLE

remain in IDLE

remain in IDLE

start DRAM cycle

continue DRAM cycle

continue DRAM cycle: it’s write
continue DRAM cycle

continue DRAM cycle new request
continue DRAM cycle

start DRAM cycle to other bank
continue DRAM cycle

continue DRAM cycle: it’s read
continue DRAM cycle

can’t start same bank cycle
wait for precharge

start DRAM cycle to same bank
continue DRAM cycle

continue DRAM cycle: it’s write
continue DRAM cycle

continue DRAM cycle new request
continue DRAM cycle

can’t start same bank cycle
wait for precharge

start DRAM cycle to same bank
continue DRAM cycle

continue DRAM cycle: it’s write
continue DRAM cycle

continue DRAM cycle new request
continue DRAM cycle refresh req
can’t start: refresh pending
wait for precharge

start refresh cycle

continue refresh cycle

continue refresh cycle

continue refresh cycle

can’t start: refresh precharge
wait for precharge

Figure C-3. 2-CLK DRAM State PAL Equations (Cont’d.)

DRAM PAL DESCRIPTIONS

LCHHXXXXLL HLLLHLHL; ACCESS] start DRAM cycle
LCLXXXXXXL LLLLHLLL; ACCESS2 continue DRAM cycle
LCHLLL L XL LHHLHLHL; ACCESSS continue DRAM cycle: it’s read
LCLXXXXX L HHLLHLHH; ACCESS6 continue DRAM cycle
LCHLLL®YXAL HLLHLLHH; ACCESS]I start DRAM cycle to other bank
LCLXXXXXXL LLLHLLLH; ACCESS2 continue DRAM cycle
LCHHXXXLXL LHHHLLLH; ACCESSS continue DRAM cycle: it’s read
LCLXXXXXXL HHLHLLLL; ACCESS6 continue DRAM cycle
LCHHXXXXXL HLHHHLLX; IDLEl no dram request pending
LCLXXXXXXI HLHHHLLX; IDLE2 wait for precharge
LCHHXXXXXHk HLHHHLLX; IDLEl] no dram request pending
LCLXXXXXXH HLHHHHLX; IDLE2 refresh request sampled
LCHLLLHXHH HLHHHHHX; IDLEl] can’t start: refresh pending
LCLXXXXXXH L HLHHHHX; REFSTART2 refresh address set-up
LCHHXXXXXH HLLLLHHX; ACCESSI start refresh cycle
DESCRIPTION

% NOTE - SOME VERSIONS OF PALASM WILL CRASH IF THE FILE IS TOO LONG *
%* TF YOURS DOES, DELETE THIS DESCRIPTION (FROM HERE TO END-OF-FILE) *

This PAL implements the main state machine of the DRAM controller.
The state machine is described below.

For brevity, the following keywords are used

SELECT = (/CSO * /CS1 * /CS2 * CS3 * CLK)
schip selects and clock must be active to select

SELECTED = (SELECT + DRAMSELECT) ;true if DRAM is now or has been selected
STARTACCESS = (SELECTED * /MUXOE) ;start dram access cycle from idle

The states are defined below and indicated by ROWSEL:Q1:Q0:CLK.
The 4-bit binary number following the state name represents these four signals.

\

| state REFSTART2 = 0101 j;cycle preceding refresh
| /RASO := ON ;hext cycle is first RAS for refresh|
i /RAS1 := ON : |---+
| MUXOE := MUXOE smaintain MUXOE state | always
\ - /

|MUXOE * RFRQ

|
/ \
| state IDLE1 = 1010 ;waiting for access or refresh |
| /RASO := OFF ;both RAS’s idle |<--]-------- +
| /RAS1 := OFF |
| MUXOE := RFRQ ;sample refresh request
\ /

A

|
|/(MUXOE * RFRQ) |/STARTACCESS
v |

/ \
| state IDLE2 = 1011 ;waiting for access or refresh
| /RASO := (/A2 * STARTACCESS) ;start access |
| /RAS1 := (A2 * STARTACCESS) |
| A2REG := A2 ;sample A2 state
| MUXOE := MUXOE smaintain MUXOE state|
\ I /
| STARTACCESS
v

Figure C-3. 2-CLK DRAM State PAL Equations (Cont’d.)

DRAM PAL DESCRIPTIONS

———"x

state ACCESS1 = 1000 ;first cycl

/RASO := /A2REG + MUXOE ;RAS
/RAS1 := A2REG + MUXOE

A2REG := A2REG ;mainta
MUXOE := MUXOE smai

\ |
e of access or refresh|<--+
corresponding to A2 |
;or refresh
in state of sampled A2|
ntain MUXOE state }< ----- +

|always
v

state ACCESSZ = 0001;second cycl
/RA /A2REG + MUXOE ;RAS

/RASl A2REG + MUXOE
A2REG := AZREG smainta
MUXOE := MUXOE smai

e of access or refresh|
corresponding to A2 |

;or refresh |--+

in state of sampled A2|
ntain MUXOE state |

e ———{

%/(/DT%R +
v

/
/DT%R + MUXOE
MUXOE)

e e e e N

state ACCESS3 = 0010 ;third cycl

/RASO := /A2REG + MUXOE sRAS corresponding to A2 |
/RAS1 := AZREG + MUXOE sor refresh
A2REG := A2REG smaintain state of sampled A2|
MUXOE := MUXOE smaintain MUXOE state

e of access or refresh]|

|always
v

/

e ——

state ACCESS4 = 0111;fourth cycl
/RASO

JRAS] := A2REG + MUXOE
AZREG := AZREG ;mainta
MUXOE := MUXOE _ smai

/A2REG + MUXOE ;RAS corresponding to A2 |

e of access or refresh]|

sor refresh |
in state of sampled A2|
ntain MUXOE state

|always
v

/

e

state ACCESS5 = 1110 ;fifth cycl
/RASO := /A2REG + MUXOE ;RAS

JRAS1 := AZREG + MUXOE
A2REG := /AZREG ;inver
MUXOE :=

MUXOE + RFRQ ;sample refresh request

e of access or refresh|
corresponding to A2 |
sor refresh |

t state of sampled A2 |
|

/

<-+

|
always| (STARTACCESS * ((A2 * A2REG)
v

/

+(/A2 * /A{REG)))

state ACCESS6 = 1101 ;sixth cycle of access or refresh| |

/RASO :=
/RAS1 :=
A2REG := A2REG smaintain
MUXOE := MUXOE ;mai

/A2 * /A2REG * STARTACCESS;start next...
A2 * A2REG * STARTACCESS;interleave acces|------ +

state of interleave A2|

e —

(STARTACCESS * ((A2 * A2REG) |
+(/A2 * /A2REG)))+

ntain MUXOE state |
/

Figure C-3. 2-CLK DRAM

State PAL Equations (Cont’d.)

DRAM PAL DESCRIPTIONS

ROWSEL\QO
QI\CLK 00 01 11 10
\
00 MUX MUX
01 MUX MUX M+R
11 MUX
10 MUX MUX RFR
ROWSEL\QO
QI\CLK 00 01 11 10
\
00 A2R A2R
01 A2R A2R A2R
11 A2R
10 A2R A2; A2;
ROWSEL\QO
QI\CLK 00 01 11 10
00 /AM AM /AM AM
01 ON ON /AM AM /AM AM
11 Al Al
10 | /AM AM /AS AS OFFOFF
ROWSEL\QO
QI\CLK 00 01 11 10
00 0W10 0111
01 1000 0110 1101
11 10i0
10 0001 10s0 mMml
ROWSEL\QO
QI\CLK 00 01 11 10
\
00 | OW10 0111
01 | 1000 0110 1101
11 | 10i0
10 | 0001 10s0 mMml
ROWSEL\QO
QI\CLK 00 01 11 10
\
10 | OW10 0111
11 | 1000 0110 1101
01 | 10i0
00 | 0001 10s0 mMml

Finally, the karnaugh maps for the following signals are:

MUXOE
key:
MUX = MUXOE
M+R = MUXOE + RFRQ
RFR = RFRQ
AZREG
key:
A2; = A2
A2R = AZREG
RAS signals
key: [RASO:RAS1]
AM = A2REG + MUXOE

AS
Al

key:

E-0n=X

[)

nouon

A2 * STARTACCESS

A2 * STARTACCESS * interleave

ROWSEL state circled
[ROWSEL:Q1:Q0:CLK]
MUXOE * RFRQ
STARTACCESS
STARTACCESS * interleave
W%R + MUXOE

Q1 state circled

Q0 state circled

Figure C-3. 2-CLK DRAM State PAL Equations (Cont’d.)

Intel DRAM PAL DESCRIPTIONS

DRAM CONTROL PAL

The DRAM Control PAL generates the majority of the control signals for the DRAM circuit.
The inputs sample the W/R# and byte-enable outputs of the 80386 as well as status signals
from the DRAM State PAL. The outputs generate the four CAS signals, two transceiver
_control signals, and the signals for the 80386 READY# and Next Address (NA#) logic.
Table C-2 contains a description of the outputs and inputs.

The equations for the 3-CLK DRAM Control PAL are shown in Figure C-4; those for the
2-CLK DRAM Control PAL are shown in Figure C-5. A 16R8 PAL is needed to register
the CAS signals internally. A 16R4 PAL is needed when external registers drive the CAS
signals. For a 16-MHz system, B-series PAL speeds are required.

REFRESH INTERVAL COUNTER PAL

The Refresh Interval Counter PAL, which periodically generates refresh requests to the
DRAM State PAL, operates as a counter decremented every CLK cycle. Once the counter
reaches a preset value, it resets its value to 255 and activates its RFRQ (refresh request)
output. This output remains active until both REFACK (refresh acknowledge) inputs are
sampled simultaneously active.

Setup and hold times for RFRQ to the DRAM State PAL are guaranteed even with a large
CLK2-t0-CLK skew because the Refresh Interval Counter PAL is clocked by the rising edge
of CLK, and the RFRQ output is only sampled by the DRAM State PAL at the middle-of-
phase CLK?2 edge. However, the CLK2-to-CLK and output delays can add up so that the
setup and hold times for the REFACK inputs are not met. Therefore, the REFACK inputs
are activated for a minimum of four CLK2 periods to ensure deactivation of RFRQ. The
exact CLK in which RFRQ is deactivated is not critical.

Table C-3 shows the inputs and outputs of the Refresh Interval Counter PAL. Figure C-6
shows its PAL equations. The same equations are used for both the 3-CLK and 2-CLK
designs. A 20X10 PAL is used to implement this counter. For 16-MHz systems, A-series
PAL speeds are sufficient.

REFRESH ADDRESS COUNTER PAL

The Refresh Address Counter PAL maintains the address of the next DRAM row to be
refreshed. After every refresh cycle, the PAL increments this address. Table C-4 shows the
inputs and outputs of the Refresh Address Counter PAL.

PAL equations are shown in Figure C-7. Both the 3-CLK and the 2-CLK design use the
same equations. Most DRAMs require only 8-bits or fewer for the refresh row address, so a
16R8 PAL can be used. If necessary, 10 bits of row address can be provided using a 20X10
PAL. For a system operating at any speed, standard-PAL speeds are sufficient.

C-13

DRAM PAL DESCRIPTIONS

Table C-2. DRAM Control PAL Pin Description

PAL CONTROLS

Name Connects From PAL Usage
CLK2 System CLK2 PAL register clock
OE Tied low Outputs always enabled
PAL INPUTS
Name Connects From PAL Usage Sampled
CLK System CLK Indicates clock phase Every CLK2
BEO# System Byte-Enables Used to enable the DRAM Start-Of-Phase for
BE1# CAS signals corresponding internal reg. Every
BE2# to the active bytes CLK2 with exter-
BE3# nal reg
W/R# System W/R# Select write/read Every CLK2
ROWSEL DRAM STATE PAL Initiate DRAM access Middle-Of-Phase
DISABLE DRAM STATE PAL Disable controls during Middle-Of-Phase
MUXOE refresh
PAL OUTPUTS
Name Connects To PAL Usage Changes State
CASO# DRAM Byte 0
Start-Of-Phase for
CAS1# DRAM Byte 1 Controls DRAM CAS signals read active and
(Separate controls for writes read/write inactive
CAS2# DRAM Byte 2 to individual bytes) Middle-Of-Phase
for write active
CAS3# DRAM Byte 3
DEN# Transceiver Control xcvr enable Start-Of-Phase
DT/R# Transceiver Control xcvr direction Any time DEN#
off
RDY System Ready Logic Control system ready Rise: Start-Phase
Fall: Middle-Phase
wWC DRAM WE# and Stores PAL state used only Rise: Start-Phase
System NA# logic in 3-CLK . Fall: Middle-Phase
WE# DRAM WE# Control DRAM WE# used Rise: Start-Phase

only in 2-CLK

Fall: Middle-Phase

DRAM PAL DESCRIPTIONS

PAL16R8 PAL DESIGN SPECIFICATIONS
PART NUMBER: 3-CLK DRAM CONTROL PAL

DRAM CONTROL PAL OF INTERLEAVED DRAM CONTROLLER FOR 80386 SYSTEMS

INTEL, SANTA CLARA, CALIFORNIA

CLK2 CLK BEO BE1l BE2 BE3 WZR ROWSEL DISABLE GND

OE CASO CAS1 DT%R DEN RDY WC CAS2 CAS3 VvCC

/CASO := /ROWSEL * CLK * /DT%R * /DISABLE ;drop CAS on read
+ /ROWSEL * WC * RDY * /CLK * /BEO ;drop on write
+ /ROWSEL * /CASO ;maintain throughout cycle
;BEx can disappear after CAS drop
sDISABLE must be maintained through last /ROWSEL * CLK

/CAS1 := /ROWSEL * CLK * /DT%R * /DISABLE ;drop CAS on read
+ /ROWSEL * WC * RDY * /CLK * /BE1 ;drop on write
+ /ROWSEL * /CAS1 ;maintain throughout cycle

/JCAS2 := /ROWSEL * CLK * /DT%R * /DISABLE ;drop CAS on read
+ /ROWSEL * WC * RDY * /CLK * /BE2 ;drop on write
+ /ROWSEL * /CAS2 ;smaintain throughout cycle

/CAS3 := /ROWSEL * CLK * /DT%R * /DISABLE ;drop CAS on read
+ /ROWSEL * WC * RDY * /CLK * /BE3 ;drop on write

+ /ROWSEL * /CAS3 smaintain throughout cycle
/DT%R := ROWSEL * DEN * /W%R ;sample W%R when /ROWSEL * DEN

+ /ROWSEL * /DT%R ;otherwise: maintain state

+ /DEN * /DT%R
/DEN := CLK * /ROWSEL * /DISABLE ;when CLK: sample ROWSEL

+ /CLK * /DEN ;otherwise: maintain state
/WC := DISABLE ;keep low if DISABLE

+ ROWSEL H or /ROWSEL

+ /RDY H or /RDY

+ /WC * /CLK H or already low * /CLK
/RDY := WC * CLK ;drop RDY

+ /RDY * /DEN ;maintain RDY

Figure C-4. 3-CLK DRAM Control PAL Equations

C-15

DRAM PAL DESCRIPTIONS

FUNCTION TABLE
OE CLK2 CLK

;OE

BEO BEl BE2 BE3 W%R ROWSEL DISABLE ;inputs
CASO CAS1 CAS2 CAS3 DT%ZR DEN RDY WC

W%R

| ROWSEL

| | DISABLE
[

soutputs

COMMENTS

initialize to IDLE

IDLE: DT%R tracking W%R
IDLE: DT%R tracking W%R
IDLE: DT%R tracking W%R
begin read: assert all CAS’s
continue read:

continue read: RDY active
Tast read cycle

CAS’s and DEN rise

DT%R and RDY rises

begin write: assert DEN and WE
continue write: assert valid CAS’s
continue write: RDY active
continue write:

CAS’s and DEN rise

RDY rises

begin read: assert all CAS’s
continue read:

continue read: RDY active
Tast read cycle

CAS’s and DEN rise

RDY rises

begin refresh

continue refresh

continue refresh

Tast refresh cycle

1D

DESCRIPTION

This PAL implements most of the control signals of the DRAM controller.

Figure C-4. 3-CLK DRAM Control PAL Equations (Cont’d.)

C-16

DRAM PAL DESCRIPTIONS

PAL16R4 PAL DESIGN SPECIFICATIONS
PART NUMBER: 2-CLK DRAM CONTROL PAL

DRAM CONTROL PAL OF INTERLEAVED DRAM CONTROLLER FOR 80386 SYSTEMS

INTEL, SANTA CLARA, CALIFORNIA

CLK2 CLK BEO BE1 BE2 BE3 W%R ROWSEL DISABLE GND

OE CASO CAS1 DT%R DEN RDY WE CAS2 CAS3 VCC

/CASO /ROWSEL * /DT%R * CLK * /DISABLE ;drop CAS on read
+ /ROWSEL * /DT%R * /DEN smaintain CAS on read
+ /ROWSEL * /DEN * /BEO * /DISABLE ;activate CAS on write
;BEx must be maintained throughout
;DISABLE must be maintained through last /ROWSEL * CLK

L]

/CAS1 /ROWSEL * /DT%R * CLK * /DISABLE ;drop CAS on read
+ /ROWSEL * /DT%R * /DEN smaintain CAS on read

+ /ROWSEL * /DEN * /BEl * /DISABLE jactivate CAS on write

/ROWSEL * /DT%R * CLK * /DISABLE ;drop CAS on read
+ /ROWSEL * /DT%R * /DEN smaintain CAS on read
+ /ROWSEL * /DEN * /BE2 * /DISABLE ;activate CAS on write

/ROWSEL * /DT%R * CLK * /DISABLE ;drop CAS on read
+ /ROWSEL * /DT%R * /DEN smaintain CAS on read
+ /ROWSEL * /DEN * /BE3 * /DISABLE ;activate CAS on write

/OT%R := ROWSEL * DEN * /W%R ;sample W%R when /ROWSEL * DEN
+ /ROWSEL * /DT%R ;otherwise: maintain state
+ /DEN * /DT%R

/DEN := CLK * /ROWSEL * /DISABLE swhen CLK: sample ROWSEL
+ /CLK * /DEN ;otherwise: maintain state

/WE := /ROWSEL * DT%R * RDY * /DISABLE ;only drops for writes
/RDY := /RONSEL * /DT%R * /DISABLE * CLK ;drop RDY immediately for read

+ /WE * CLK ;drop RDY later for write
+ /RDY * /DEN ;maintain RDY

/CAS2

/CAS3

[}

Figure C-5. 2-CLK DRAM Control PAL Equations

C-17

DRAM PAL DESCRIPTIONS

FUNCTION TABLE

OE CLK2 CLK BEO BEl
CASO CAS1

| WiR

ROWSEL
DISABLE
|

CAS2 CAS3 DT%R DEN RDY WE

BE2 BE3 W%R ROWSEL DISABLE ;inputs
soutputs
ASO
CAS1
| CAS2
| | CAS3
| | | DT%R
| || | DEN
| 111 RDY
.
RN COMMENTS

; initialize to IDLE

5 IDLE: DT%R tracking W%R
; IDLE: DT%R tracking WZR
; IDLE: DT%R tracking WZ4R
; begin read: assert all CAS’s
; last read cycie

3 CAS’s and DEN rise
; DT%R and RDY rises
; begin write: assert DEN and WE
; continue write: assert valid CAS’s
; continue write: RDY active
; continue write:

5 CAS’s and DEN rise
5 RDY rises

;5 begin read: assert all CAS’s
; last read cycle

5 CAS’s and DEN rise

5 RDY rises

; begin refresh
; continue refresh
5 continue refresh
; last refresh cycle
5 IDLE
; IDLE

DESCRIPTION

This PAL implements most of the control signals of the DRAM controller.

Figure C-5. 2-CLK DRAM Control PAL Equations (Cont’d.)

DRAM PAL

DESCRIPTIONS

Table C-3. Refresh Interval Counter PAL Pin Description

PAL CONTROLS

Name Connects From PAL Usage
CLK Systems CLK PAL register clock
OE Tied low Outputs always

enabled
PAL INPUTS

Name Connects From PAL Usage Sampled
REFACKO# DRAM RASO# Indicates when refresh Every CLK that
REFACK1# DRAM RAS1# starts: turns off RFRQ RFRQ is active
NCO
NC1
NC2
NC3
NC4 Not connected Not used Never
NC5
NC6
NC7

PAL OUTPUTS

Name Connects To PAL Usage Changes State
RFRQ DRAM STATE RFRQ Latch refresh request Any CLK
Qo
Q1
Q2
83 Not connected Implements up to 9-bit Any CLK
Qs modulo counter y
Q6
Q7
Q8

DRAM PAL DESCRIPTIONS

PAL20X10 PAL DESIGN SPECIFICATIONS
PART NUMBER: 16 MHz REFRESH INTERVAL COUNTER PAL

REFRESH INTERVAL PAL OF INTERLEAVED DRAM CONTROLLER FOR 80386 SYSTEMS
INTEL, SANTA CLARA, CALIFORNIA

CLK REFACKO REFACKI NC NC NC NC NC NC NC NC GND

OE RFRQ NC Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 VCC

/RFRQ := /RFRQ * Q7 * Q6 * Q5 * Q4 * Q3 * Q2 * Q1 * Q0 ;raise at 255
+ RFRQ * /REFACKO * /REFACK1 ;clear when both ACKs Tlow
/RFRQ ;else: don’t change state

/00 = /Q0 sleast-significant bit of counter
+/Q7 * /Q6 * /Q5 * /Q4 * /Q3 ;set at 7 or less
t+: VCC ;else decrement
/a1 = /a1
+/Q7 * /Q6 * /Q5 * /Q4 * /Q3 ;set at 7 or less
41 /Q7 * /Q6 * /Q5 * /Q4 * /Q3 ;set at 7 or less
+ /Q0 ;else decrement
/2 = /Q2
+/Q7 * /Q6 * /Q5 * /Q4 * /Q3 ;set at 7 or less
41 /Q7 * /06 * /Q5 * /Q4 * /Q3 ;set at 7 or less
+/Q1 * /Q0 ;else decrement
/@B = /@3
+/Q7 * /Q6 * /Q5 * /Q4 * /Q3 ;set at 7 or less
4 /Q7 * /06 * /Q5 * /Q4 * /Q3 ;set at 7 or less
+/Q2 * /Q1 * /QO0 ;else decrement
/4 = /04
+/Q7 * /Q6 * /Q5 * /Q4 * /Q3 ;set at 7 or less
41 /Q7 * /Q6 * /Q5 * /Q4 * /Q3 ;set at 7 or less
+/Q3 * /Q2 * /Q1 * /QO0 ;else decrement
/05 = /Q5
+/Q7 * /06 * /05 * /Q4 * /Q3 ;set at 7 or less
4 /Q7 * /Q6 * /Q5 * /Q4 * /Q3 ;set at 7 or less
+/Q4 * /Q3 * /Q2 * /Q1 * /QO ;else decrement
/06 = /Q6
+/Q7 * /06 * /Q5 * /Q4 * /Q3 ;set at 7 or less
4 /Q7 * /06 * /Q5 * /Q4 * /Q3 ;set at 7 or less
+/Q5 * /Q4 * /Q3 * /Q2 * /Q1 * /Q0 ;else decrement
/A7 = /q7 smost-significant bit of counter
+/Q7 * /06 * /Q5 * /Q4* /Q3 ;set at 7 or less

41 /Q7 * /Q6 * /Q5 * /Q4 * /Q3 ;set at 7 or less
+/Q6 * /Q5 * /Q4 * /Q3 * /Q2 * /Q1 * /Q0 ;else decrement

Figure C-6. Refresh Interval Counter PAL Equations

C-20

DRAM PAL DESCRIPTIONS

FUNCTION TABLE

OE CLK REFACKO REFACK1
RFRQ Q7 Q6 Q5 Q4 Q3 Q2 Q1 QO

sinputs
soutputs

COMMENTS

rIXI-IrI>I>I>I-rI>rI

initialize(ignore errors on vector)
decrement

decrement

decrement

decrement to 7

reset to 255

decrement, activate RFRQ

decrement, sample REFACKs
decrement, sample REFACKs
decrement, both REFACKs: clear RFRQ
decrement

H Q7

H | Q6

H | | Q5

3 | || 04

3 | 111Q3
3 REFACKO 1111 1Q
o3 | REFACK1 Pl ra
;| CLK |1 RFRQ [L1111
il | | Frrrrrl
LC HX H LLLLHLH
LC XH H LLLLHLH
LcC LL L LLLLHLL
LcC X X L LLLLHLL
LcC X X L LLLLLHH
LC XX L HHHHHHH
LC XX H HHHHHHH
LC H X H HHHHHHL
LcC X H H HHHHHHL
LC LL L HHHHHLH
Lc X X L HHHHHLH
DESCRIPTION

This PAL implements the counter to determine when distributed
refresh cycles should be run. This counter counts intervals of 249
clocks which is just under 15 uS at 16 MHz.

The counter counts backwards from 255 to 7. The clock after the
counter reaches 7, the counter is set to 255 and will then continues

to decrement. Also when 7 is hit, RFRQ

is activated until both

REFACKO and REFACK1 are simultaneously sampled low.

Figure C-6. Refresh Interval Counter PAL Equations (Cont’d.)

c-21

ntel DRAM PAL DESCRIPTIONS

Table C-4. Refresh Address Counter PAL Pin Description

PAL CONTROLS

Name Connects From PAL Usage
CLOCK RFRQ & MUXOE# PAL register clock
OE RFRQ & MUXOE# outputs enable on refresh

PAL INPUTS

Name Connects From PAL Usage Sampled
NCO
NC1
NC2
NC3
NC4 Not connected Not used Never
NC5
NC6
NC7

PAL OUTPUTS

Name Connects To PAL Usage Changes State
Qo Muxed Addr 0
a1 Muxed Addr 1
Q2 Muxed Addr 2
Q3 Muxed Addr 3 .
Q4 Muxed Addr 4 Implements 8-bit counter Any Clock
Q5 Muxed Addr 5
Q6 Muxed Addr 6
Q7 Muxed Addr 7

Cc-22

DRAM PAL DESCRIPTIONS

PAL16R8 PAL DESIGN SPECIFICATIONS
PART NUMBER: REFRESH ADDRESS COUNTER PAL

“ REFRESH ADDRESS PAL OF INTERLEAVED DRAM CONTROLLER FOR 80386 SYSTEMS
INTEL, SANTA CLARA, CALIFORNIA
CLOCK NC NC NC NC NC NC NC NC GND
OE A0 Al A2 A3 A4 A5 A6 A7 VCC

/A0 := A0 ;least significant bit of 8-bit counter

/Al = Al * AQ
+/Al */A0

/A2 = A2 * Al * AD
+/A2 */Al
+/A2 */A0

/A3 i= A3 % A2 * Al * AO
+/A3 */A2
+/A3 */Al
+/A3 */A0

/M4 = A4 * A3 * A2 * Al * AD
+/A4 */A3
+/A& */A2
+/A8 */A1
+/A4 */A0

/A5 := A5 * A4 * A3 * A2 * A] * AD
+/R5 */A4
+/A5 */A3
+/A5 */A2
+/A5 */A1
+/A5 */A0

JA6 = A6 * A5 * A4 * A3 * A2 * Al * AQ
+/A6 */A5
+/A6 */Ad
+/A6 */A3
+/R6 */A2
+/A6 */Al
+/A6 */A0

A7 * A6 * A5 * A4 * A3 * A2 * Al * AO;most-significant bit of counter
+/A7T */A6
+/A7 */A5
+/AT */A4
+/A7 */A3
+/A7 */A2
+/A7 */Al
+/AT */A0

/A7

Figure C-7‘. Refresh Address Counter PAL Equations

Cc-28

DRAM PAL DESCRIPTIONS

FUNCTION TABLE

OE CLOCK sinputs
A7 A6 A5 A4 A3 A2 Al AO ;outputs
H A7
H | A6
; | | A5
; I 11 A4
H [
; 1111 A2
;0F [T 1Al
spClock | [[1111 Ao
H I I COMMENTS
LC HHHHHHHH; initialize (ignore any errors on this vector)
LC LLLLLLLL; increment
LC tLLLLLLBH; increment
LC LLLLLLHL; increment
LC LLLLLLBHH; increment
LC LLLLLHLL; increment
H H 2111711711 1; high-impedence state
DESCRIPTION

This PAL implements a simple 8-bit counter which is used to
generate the refresh row address by the DRAM controller.

Figure C-7. Refresh Address Counter PAL Equations (Cont’d.)

C-24

|nte| DRAM PAL DESCRIPTIONS

TIMING PARAMETERS
Figure C-8 shows the timing of signals for DRAM read and write cycles. Table C-5 displays

the worst-case timing parameters for six DRAM circuits, each of which uses a different type
of DRAM.

C-25

92-0

| READ-1 I READ-2 r READ-3 { | WRITE-1 } WRITE-2 l WRITE-3 ‘ l

| " | " i " | " ’ " I " p'RDLA|7$"‘“7“K_'| " | " { " I " ’_-"'W"LA").L"‘MJ"“)I " |
[#] [?] [?]] [#]
ROWSEL-—_\—/—_———__—_\ /__—\
o} 4 . | \ L Y |
L) o lo] lal o]

l Tcap ! } trsh(R) [l ..__4,7__' B. }‘ trsu(W). 1, }
2R? [R ———teasi®) toasiW)
¥

tesk 1 |R!, L]

we T] Y S —
[whtver i - st e —]
! 1,
I [w "

I
f——tot twix—]
o X ROW X COLUMN D ROW X COLUMN X

—tcac

}.—INM:—>
,‘——.h—'QN

DRAM
DATA

{ RD DATA) WRT DATA ‘)——-—
}-— 'xcva—+— t21 ¢ - btv'xcin A{__ql-—'x ——| }‘hzofoltcvn.l
12

386 { >—_< >—
DATA \

G30107

Figure C-8. DRAM Circuit Timing Diagram

SNOILdIHOS3A 1vd WvHa

18-0

Chip

82384

82384
82384
82384

386

386+MUX

PAL

PALOrREG

Register

PAL +NAND

Transcvr

Symbot

t1

traWALT

386 DRAM Controller

TIMING PARAMETERS

10 Description

0 CLK2 period

O CLKperiod(s) rd WaitState

tertWAIT O CLKperiod(s) wt WaitState
tBAK2BAK O CLKperiod(s) back-to-back

t12

t21
t22
t6+ tMUX

P

Il

tXCVR

O write data out-delay

0 read data gset-up
0 read data hold
0 addr fr 386 thru LatchMux

0 clock to PAL outputs

0 clock to PAL or REG outpt

0 clock to register output

0 pal and write logic delay

O transcvr prop in-to-out

Min Max

n

32

From To Min Max Min Max Min Max
51C64-8 51C64-10 51C25¢-12 51C256-15
clk2 7/ ck2 7/ 31 32 31 3R 40 42
CLk2 / ck2 7/
k2 /7 Clk2 /
CLk2 /7 cCLk2 /
ctk2 7/ ck2 7/
cLk2 / k2 7/
cLk2 7/ ck2 /
k2 /7 ck2 /
cLlk2 / cwk2 /
cLk2 7/ ck2 /
k2 / cke /
ck2 /7 k2 /
cLk2 7/ ck2 /
k2 / ck2 /
ck2 7/ ck2 /
k2 / k2 / 0 0 0 0 0 []
CLk2 /4 CLk2 / 62 64 62 64 B0 B84
CLlk2 /7 CLk2 / 62 64 62 64 160 168
clk2 7/ k2 7/
CLK2 / 386 Data< 1 50 1 50 1 50
CLK2 / 386 Data>
386 pata< CLk2 / 0 10 0 10 0 10
CLK2 / 386 Data> 2 99 2 999 2 99
K2/ rows 3 46 3 46 3 46
CcLk2 / romw<
CLk2 / Row Sel\ 0 12 0 12 0 12
CLK2 / Row Sel/
CLK2 / Row Sel\
CLK2 / Row Sel/
CLk2 / Row Sel\
CLK2 / RAS® \ 0 12 0 12 a 12
CLK2 / RAS¥ /
CLK2 / RAS¥ \
CLK2 / RASK /
CLK2 / RASK \
CLk2 / cas# /0 12 0 12 0 12
CLk2 / CAS# \
CLK2 / CAs# /
CLK2 /7 CAS# \
CLK2 / CAS# /
CLK2 / CAS# \
CLK2 / WE# / 2 18 2 18 2 18
CLk2 / WE¥ \
CLK2 / WE# /
rd data< 386 Data< 2 7 0 0 2 7

DramData> 386 Data>
386 Data< wrt data<
386 Data> DramData>

Min Max

3

32

Min Max
2164-15 51€256-20

40

160

-

o wNno

42

333

50
10
46

Table C-5.

DRAM Circuit Timing Parameters

SNOILdIHOS3A Tvd Wvida

8¢-0

Chip

DRAN
DRAM
DRAM
DRAM

DRAM
DRAM
DRAM

DRAM
DRAM

DRAM
DRAM

DRAM

DRAM
ORAM
DRAM
DRAM

DRAM
DRAM
DRAM
DRAM
DRAM
DRAM
DRAM
DRAM
DRAM
DRAM
DRAM
DRAM
DRAM
ORAM
DRAM
DRAM
DRAM
DRAM

* % s s

Symbol

tRAS
tRC
tRP
tCsH

tCAS(R)
TCAS(W)
TWRP

TRWH
tASR

tRAH
tce

tCRP

tRCD
tASC
tCAH
tAR

tON
tOFF
tRAC
tCAC
TCAA
tRSK(R)
tRCS
TCAR
tRCH
tRRH
TRSH{W)
TRWL
teuL
twp
twWes
tWCH
t0s

TOH

386 DRAM Control ler

TIMING PARAMETERS

10 Description

RAS# pulse width
random read/write cycle
RAS# precharge time
CAS# hold time

CAS# pulse width(rd cycl)
CAS# pulse width(urt cyc)
write to RAS# precharge

RAS# to write hold time
row address set-up time

row eddress hold time
CAS# precharge

CAS# to RAS# precharge

RAS# to CASK delay
column address set-up
colum address hold
column addr hold fr RAS#

output buffer turn on
output buffer turn off
access time from RAS#
access time from CAS#
access time fr column adr
RAS# hold time (rd cycle)
read command set-up time
column address to RASH
read com hold ref to CAS#
read com hold ref to RAS#
RAS# hold time (wrt cycl)
write command to RAS#
write command to CAS#
write command pulse width
write command set-up time
write command hold time
data-in set-up time
data-in hold time

From To
RASE \ RASK /
RAS# \ RASH# /
RAS# \ RAS# \
RASH# \ RAS# \
RAS# / RASH \
RASE / RASH \
RASH \ CAS¥ 7/
RASK \ CAS¥ 7/
CAS# \ CAs# /
CAS¥ \ cCas®# ¢
WEF¥ / RASK \
VE# / RASK¥ \
RAS# \ wE¥ \
row< RASH# \
row< RASH# \
RAS# \ columc
RAS# \ columnc
CAS# / CASH \
CASE / CAS# \
CASH / RASKE \
CAS# / RAS¥ \
CAS# / RASH \
RASH# \ CAS# -\
RAS# \ CAS# \
colum< CAS¥ \
colum< CAS¥ \
CAS# \ DramAddr<
CAS# \ DramAddr<
RAS# \ DremAddr<
RAS# \ DramAddr<
CAs# \ rd data<
CAS# / wrt datac<
RAS# \ rd data<
CAS# \ rd datac<
colum< rd data<
CASE \ RASK /
RAS# \ rd data<
colum< RASK /
CASH 7/ WE# \
RASH / wWEK \
CASK \ RASK¥ 7/
WE# \ RASH /
WE# \ CASK /
WEX \ WE¥ /
WE# \ CAS¥ \
CAS¥ \ WE# /
wrt data< CAS# \
CAS* \ DramData>

Min Max
51C64-8

80 9999
140 9999
50 9999
80 9999
15 9999
25 9999
-30 9999

0 999
0 9999

15 9999

35

Hiiig ol

33333330933 3934

o
weowo

NN

~
cCeovodwnwwnnoo

~

Hin Max
51C64-10

100 9999
160 9999
50 9999
100 9999
20 9999
30 9999
-30 9999

0 9999
0 9999

15 9999
10 9999
-20 999

30 9999
0 9999

Min Max
51c256-12

120 9999
200 9999
70 9999
120 9999
25 9999
25 9999
10 999

15 9999
0 9999

15 9999
10 9999
-20 9999

Nin Max
51€256-15

150 9999
245 9999
85 9999
150 9999
30 9999
30 9999
10 9999

20 9999
0 9999

20 9999
10 9999

3

Hiiid

HHRRE

-y D
3388

ERRERRAMARREE

T

~

N
cowocoooooD

Bot

Min Max
2164-15

150 9999
260 9999
100 9999
150 9999
85 9999
85 9999
-30 9999

0 9999
0 9999

20 9999
25 9999
-20 9999

30 9999

T

Min Max
51C256-20

200 9999
315 9999
105 9999
200 9999
35 9999
35 9999
10 9999

25 9999
0 9999

25 9999
10 9999

8
¥

uBuu 8 8 w 2
3833 3 3 § ¢

90 9999
10 9999
0 9999
90 9999
0 9999
10 9999
35 9999
35 9999
35 9999
30 9999
0 9999
35 9999
0 9999
30 9999

Table C-5. DRAM Circuit Timing Parameters (Cont’d.)

SNOILLdIHOS3A Tvd WvHa

62-0

Chip

DRAM
+Q

+Q

ORAM
+Q

+Q

ORAM
+Q
+Q

DRAM
+R

+R

DRAM
+R

ORAM
R

DRAM
+Q
+Q

DRAM
W

DRAM
+Q
+Q

DRAM
+ tMUX
+tMUX

386 DRAM Control ler

TIMING CALCULATIONS

Symbol 10 Description From

tRAS RAS# pulse width

+ErdwAIT +t1 +t1 +t1 +t1 -Q
RASE \
+turtWAIT+t1 +t1 +t1 +t1 -Q
RAS¥ \
tRC random read/write cycle
+tBAK2BAK+traWAIT +t1 +t1 +t1 +t1
RAS#
+tBAK2BAK+twrtWAIT+t1 +t1 +t1 +t1
RASE \
tRP RAS# precharge time
+tBAK2BAK-Q RASH /
+tBAK2BAK-Q RASE 7

tCSH CAS# hold time
+EraWAlT +t1 +t1 +t1 +t1 -a

+turtWAI T+t +t1 +t1 +t1 -Q

tCAS(R) CAS# pulse width(rd cycl)
+t1 -R

+traWAlT +tt CAS# \
tCAS(W) CASH pulse width(wrt cyc)

+turtWAl T+t -R CAS# \
TWRP write to RAS# precharge

+t1 -w ER /
+tBAK2BAK+twrtWAlT-t1 " NE# /
tRWH RAS# to write hold time

+t1 3 -a RASH \
tASR row address set-up time

1 +t1 - 16+ tMUX rou<
+tBAK2BAK+traWAl T - té+tMUX row<
tRAH row address hold time

+P +t1 -Q RASK \
P +t1 -Q RASH \

To
RASE /
RASE 7
RAS# \
RASE \
RASH \
RASHE \
CAS® /
CASE /
CASY /
CAS# /
RASE \
RASH \
VE# \
RASH
RASH \
column<
column<

Min Max
51c64-8

80 9999
12 140
174 204

140 9999
174 204
236 268
50 9999
50 76
50 76
80 9999
12 140
174 204

15 9999
50 76

25 9999
81 108

-30 9999
13 &2
7% 107

0 9999
52 82

0 9999
16 73
16 73

15 9999
23 55
23 55

Min Max
51C64-10

100 9999
112 140
1764 204

160 9999
174 204
236 268
50 9999
50 76
50 76
100 9999
12 140
174 204

20 9999
50 76

30 9999
81 108

-30 9999
13 42
7% 107

0 9999
52 82

0 9999
% 73
16 73

15 9999
23 55
23 55

Min Max
51C256-12

120 9999
148 180
228 264

200 9999
308 348
388 432
70 9999
148 180
148 180
120 9999
148 180
228 264

25 9999
68 96

25 9999
108 .138

10 9999
22 52
180 222

15 9999
70 102

0 9999
3, 93
14 177

15 9999
32 65
32 65

Min Max
51C256-15

150 9999
174 204
174 204

245 9999
298 332
298 332
85 9999
112 140
112 140
150 9999
176 204
174 204

30 9999
12 140

30 9999
81 108

10 9999
13 42
136 11

20 9999
52 82

0 9999
16 73
140 201

20 9999
23 55
23 55

Min Max
2164-15

150 9999
180 198
180 198

260 9999
304 326
304 326
100 9999
18 134
18 134
150 9999
180 198
180 198

85 9999
118 134

85 9999
87 102

-30 9999
17 40
140 169

0 9999
54 78

0 9999
2 7N
144 199

20 9999
25 5
25 5

Min Max
51C256-20

200 9999
228 264
228 264

315 9999
388 432
388 432
105 9999
148 180
148 180
200 9999
228 264
228 264

35 9999
148 180

35 9999
108 138

10 9999
22 52
180 222

25 9999
70 102

0 9999
3 93
194 261

25 9999
32 65
32 65

Table C-5. DRAM Circuit Timing Parameters (Cont’d.)

SNOILdIHOS3Aa Tvd Wvda

0€-0

Chip
DRAM
+R
+R
DRAM
+Q
+Q
+Q
DRAM
+R
ORAN

+R
R

DRAM
+THUX
+TMUX
DRAM
+tHUX

+TMUX

DRAM
*IXCVR

DRAM
+IXCVR

DRAM
- tXCVR

DRAM
- tXCVR

-

-

386 DRAM Controller

TIMING CALCULATIONS

To
CAS¥ \
CAS# \
RASK \
RASH \
RASE# \
CAS# \
CAS#
CAs# \
CASH \
OramAddr<
DramAddr<
-Q
DramAddr<
-Q
OramAddr<
rd data<
wrt data<

-Q
RAS# \ rd data<

Symbol 10 Description From
tcP CAS¥ precharge
+t1 +t1 +t1 +tBAK2BAK-R
CAS¥ /
+t1 +t1 +tBAK2BAK-R CASK /
tCRP CAS# to RAS# precharge
R CAS¥ /
+tBAKZBAK-R CAS® /
+tBAK2BAK-R CAs# /
tRCD RAS# to CAS# delay
+t!) -Q RASK \
+t1 +t1 +t1 -Q RASKE \
TASC column address set-up
+t1 -P - tHUX colum<
+t1 +t1 -P - tHUX columnc<
tCAH column address hold
+*» +t1 +t1 +t1 ‘R
CAS# \
+*+ +t +t1 -R CAS# \
tAR column addr hold fr RAS#
+P +t1 +t1 +tt +t1 +t1
RASE \
+» +t1 ot +t1 +t1 *t
RAS#
10N output buffer turn on
-t21 +ULraWAIT +tl +t1 R
CAS#¥ \
tOFF output buffer turn off
+t12 +t1 +UBAK2BAK-R CAS¥ /
tRAC access time from RAS#
-t21 +LraWAIT +t1 +t1 +t1 +t1
tcac access time from CAS#
-2l +LraWALT +tt +t1 -R
CASE \

rd data<

Nin Max
51C64-8

10 9999
143 172
12 %0

-20 9999
12 1
50 76
50 76

30 9999
50 76
81 108

0 9999
8 40
39 7
10 9999
8 119
56 &7
40 9999
147 183
147 183

20 9999
33 62

20 9999
84 153

80 9999
95 126

20 9999
33 82

Min Max
51C64-10

10 9999
1“3 172
112 140

-20 9999
12 12
50 76
50 76

30 9999
50 76
a1 108

0 9999
8 40
39 7
10 9999
85 19
54 87
40 9999
147 183
147 183

20 9999
40 64

20 9999
82 146

100 9999
102 128

20 9999

40 64

Min Max
51c256-12

10 9999
268 306
228 264

-20 9999
12 1R
148 180
148 180

30 9999
68 96
108 138

5 9999
17 50
57 9
15 9999

112 149
72 107
60 9999

192 233

192 233

25 9999
51 8

20 9999
191 267

120 9999
131 166

25 9999
51 82

Min Max
51C256-15

10 9999
205 236
174 204

-20 9999
12 1
112 140
112 140

35 9999
50 76
81 108

5 9999

8 40
39 7
20 9999
85 119
54 87
70 9999
147 183
147 183

30 9999
9 126

25 9999
1% 217

150 9999
157 190

30 9999
95 126

Hin Max
2164-15

25 9999
211 230
180 198

20 9999
6 6
18 134
118 134

30 9999
56 70
87 102

0 9999
12 38
3 70
25 9999
87 115
56 83
90 9999

%9 9
149 179

85 9999
97 122

30 9999
148 213

150 9999
159 186

85 9999
97 122

Hin Max
51C256-20

10 9999
268 306
228 264

-20 9999
121
148 180
148 180

40 9999
68 96
108 138

5 9999
17 50
57 9
25 9999

112 149
72 107
80 9999
192 233
192 233

35 9999
131 166

30 9999
191 267

200 9999
211 250

35 9999
131 166

Table C-5. DRAM Circuit Timing Parameters (Cont’d.)

SNOILdIYOS3A Tvd WvHa

1e-0

Chip

DRAN *
- IXCVR

DRAM
+Q

DRAM
- tXCVR

DRAM
+Q

DRAM
-

DRAM
w

DRAM
+Q

DRAM
+Q

DRAM
+R

DRAM
AL

DRAM
+R

DRAM
W

386 DRAM Controller

TIMING CALCULATIONS

Symbol 10 Description From To
tCAA access time fr colum adr
-t21 +trdWAIT o1 +t1 +t1 -P - tMUX
colum< rd data<
tRSH(R) RAS# hold time (rd cycle)
+LrAWALT +t1 +t -R CAS# \ RAS# /
tRCS read command set-up time
-t21 +traWAlT +ti +t1 +t1 +t1
RAS# \ rd data<
tCAR column address to RASH
+trdWAlT +t +t1 +t1 -P - tHUX
column< RAS¥ /
tRCH read com hold ref to CAS¥
+t1 +t1 +tBAK2BAK-R CASE / WER
TRRH read com hold ref to RAS#
+tt +t1 +tBAK2BAK-Q RASE / WEN \
tRSH(W) RAS# hold time (wrt cycl)
+turtWAlT+tl -R CAS# \ RASE® /
tRWL write command to RAS#
+turtWAlT+td +t1 N VEX \ RASK /
tewL write command to CAS#
+turtWAl T+t +t1 W WEX \ CASH¥ /
WP write command pulse width
+t1 +tl +t1 W MEX \ WER /
twes write command set-up time
+tl - WEX \ CAS# \
tWCH write command hold time
+t1 +tl -R CASK \ WE# /

Min Max
51c64-8

45 9999
53 90
10 9999
S0 76
0 9999
95 126

45 9999
70 104

0 9999
1% 146

10 9999
114 146

35 9999
81 108

25 9999
106 138

25 9999
106 138

20 9999
7o

0 9999
13 42

25 9999
52 82

Min Max
51C64-10

55 9999
60 92
10 9999
50 76

0 9999
102 128

55 9999
70 104

0 9999
14 146

10 9999
114 146

35 9999
81 108

30 9999
106 138

30 9999
106 138

20 9999
7 112

0 9999
13 42

30 9999
52 8

Min Max
51C256-12

55 9999
80 ‘120
10 9999
68 96

0 9999
131 166

55 9999
97 134

0 9999
230 270

10 9999
230 270

25 9999
108 138

25 9999
%2 178

25 9999
142 178

20 9999
104 142

0 9999
22 52

25 9999
70 102

Hin Max
51€256-15

70 9999
15 154
10 9999
112 140
0 9999
157 190

70 9999
132 168

0 9999
176 210

10 9999
176 210

30 9999
81 108

30 9999
106 138

30 9999
106 138

25 9999
7 112

0 9999
13 42

30 9999
52 82

Nin Max
2164-15

85 9999
15 154
85 9999
118 134
0 9999
159 186

85 9999
136 166

5 9999
178 206

20 9999
178 206

85 9999
87 102

40 9999
110 136

40 9999
110 136

30 9999
7 12

=10 9999
17 40

30 9999
54 78

Min Max
51C256-20

90 9999
160 204
10 9999
148 180
0 9999
211 250

90 9999
177 218

0 9999
230 270

10 9999
230 270

35 9999
108 138

35 9999
1%2 178

35 9999
142 178

30 9999
104 142

0 9999
2 52

35 9999
70 102

Table C-5. DRAM Circuit Timing Parameters (Cont’d.)

SNOILdIHOS3A TvVd WvHA

e e

UNITED STATES

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

JAPAN

Intel Japan K.K.
5-6 Tokodai Toyosato-machi
Tsukuba-gun, Ibaraki-ken 300-26

Japan

FRANCE

Intel Paris

1 Rue Edison, BP 303

78054 Saint-Quentin en Yvelines
France

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Piper’s Way
Swindon

Wiltshire, England SN3 1R]

WEST GERMANY

Intel Semiconductor GmbH
Seidlstrasse 27
D-8000 Munchen 2

West Germany

Printed in U.S.A./C-337/0886/28K/RRD JM Microprocessors ISBN 1-55512-024-5

