
intJ
386SX™ MICROPROCESSOR

• Full 32-Bit Internal Architecture
- 8-, 16-, .32-Bit Data Types
- 8 General Purpose 32-Bit Registers

• Runs Intel386TM Software in a Cost
Effective 16-Bit Hardware Environment
- Runs Same Applications and O.S.'s

as the 386™ Processor
- Object Code Compatible with 8086,

186, 286, and 386 Processors
- Runs MS-DOS·, OS/2' and UNIX"

• Very High Performance 16-Bit Data Bus
-16 MHz Clock
- Two-Clock Bus Cycles
-16 Megabytes/Sec Bus Bandwidth
- Address Pipelining Allows Use of

Slower/Cheaper Memories

• Integrated Memory Management Unit
- Virtual Memory Support
- Optional On-Chip Paging
- 4 Levels of Hardware Enforced

Protection
- MMU Fully Compatible with Those of

the 286 and 386 CPUs

INTRODUCTION

•

•

•
•
•

•
•

Virtual 8086 Mode Allows Execution of
8086 Software in a Protected and
Paged System

Large Uniform Address Space
- 16 Megabyte Physical
- 64 Terabyte Virtual
- 4 Gigabyte Maximum Segment Size

High Speed Numerics Support with the
80387SX Coprocessor

On-Chip Debugging Support Including
Breakpoint Registers

Complete System Development
Support
- Software: C, PL/M, Assembler
- Debuggers: PMON-386, ICETM-386SX
- Extensive Third-Party Support: C,

Pascal, FORTRAN, BASIC, Ada"· on
VAX, UNIX", MS-DOS·, and Other
Hosts

High Speed CHMOS III Technology

100-Pin PlastiC Quad Flatpack Package
(See Packaging Outlines and Dimensions .. 231369)

The 386SXTM microprocessor is a 32-bit CPU with a 16-bit external data bus and a 24-bit ex1ernal address
bus. The 386SX CPU brings the high-performance software of the Intel386™ architecture to midrange sys­
tems. It provides the performance benefits of a 32-bit programming architecture with the cost savings associ­
ated with 16-bit hardware systems.

The 386SX microprocessor is 100% object code compatible with the 386, 286 and 8086 microprocessors.
System manufacturers can provide 386 CPU based systems optimized for performance and 386SX CPU
based systems optimized for cost, both sharing the same operating systems and application software. Sys­
tems based on the 386SX CPU can access the world's largest existing microcomputer software base, includ­
ing the growing 32-bit software base. Only the Intel386 architecture can run UNIX, OS/2 and MS-DOS.

Instruction pipelining, high bus bandwidth, and a very high performance ALU ensure short average instruction
execution times and high system throughput. The 386SX processor is capable of execution at sustained rates
of 2.5-3.0 million instructions per second.

The integrated memory management unit (MMU) includes an address translation cache, advanced multi-task­
ing hardware, and a four-level hardware-enforced protection mechanism to support operating systems. The
virtual machine capability of the 386SX CPU allows simultaneous execution of applications from multiple
operating systems such as MS-DOS and UNIX.

The 386SX processor offers on-chip testability and debugging features. Four breakpoint registers allow condi­
tional or unconditional breakpoint traps on code execution or data accesses for powerful debugging of even
ROM-based systems. Other testability features include self-test, tri-state of output buffers, and direct access to
the page translation cache.

'MS-DOS and OS/2 are trademarks of Microsoft Corporation.
"UNIX is a trademark of AT&T.
, •• Ada is a trademark of the Deptartment of Defense.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. May 1988
@ Intel Corporation. 1988 Order Number: 240187-001

Intel 386SXTM MICROPROCESSOR

Chapter 1 PIN DESCRiPTION 3
Chapter 2 BASE ARCHITECTURE .. 7
2.1 Register Set .. 7
2.2 Instruction Set. .. 10
2.3 Memory Organization ... 10
2.4 Addressing Modes ... 11
2.5 Data Types ... 14
2.6 I/O Space .. 14
2.7 Interrupts and Exceptions ... 16
2.8 Reset and Initialization ... 19
2.9 Testability .. 19
2.10 Debugging Support ... 20
Chapter 3 REAL MODE ARCHITECTURE . .. 21
3.1 Memory Addressing .. 21
3.2 Reserved Locations .. 22
3.3 Interrupts ... 22
3.4 Shutdown and Halt. .. 22
3.5 LOCK Operations .. 22
Chapter 4 PROTECTED MODE ARCHITECTURE .. 23
4.1 Addressing Mechanism ... 23
4.2 Segmentation ... 23
4.3 Protection .. 28
4.4 Paging ... 32
4.5 Virtual 8086 Environment ... 35
Chapter 5 FUNCTIONAL DATA 38
5.1 Signal Description Overview ... 38
5.2 Bus Transfer Mechanism .. .44
5.3 Memory and I/O Spaces44
5.4 Bus Functional Description .. 44
5.5 Self-test Signature ... 62
5.6 Component and Revision Identifiers .. 62
5.7 Corprocessor Interfacing .. 62
Chapter 6 PACKAGE THERMAL SPECiFiCATIONS 63
Chapter 7 ELECTRICAL SPECiFiCATIONS .. . 63
7.1 Power and Grounding .. 63
7.2 Maximum Ratings .. 64
7.3 D.C. Specifications ... 65
7.4 AC. Specifications ... 66
7.5 Designing for ICE-386SX Use (Preliminary Data) ... 72
Chapter 8 DIFFERENCES BETWEEN THE 80386SX and the 80386 73
Chapter 9 INSTRUCTION SET 74
9.1 80386SX Instruction Encoding and Clock Count Summary ... 74

2

inter 386SXTM MICROPROCESSOR

1.0 PIN DESCRIPTION

100
240187-1

Figure 1.1. 80386SX Pin out Top View

Table 1.1. Pin Assignments

A Row BRow CRow DRow

Pin Label Pin Label Pin Label Pin Label

1 Do 26 LOCK# 51 A2 76 A21
2 Vss 27 N/C 52 A3 77 Vss
3 HLDA 28 N/C 53 A4 78 Vss
4 HOLD 29 N/C 54 As 79 A22
5 Vss 30 N/C 55 As 80 A23
6 NA# 31 N/C 56 A7 81 DIs
7 READY# 32 Vee 57 Vee 82 D14
8 Vee 33 RESET 58 As 83 D13
9 Vee 34 BUSY# 59 A9 84 Vee

10 Vee 35 Vss 60 AlO 85 Vss
11 Vss 36 ERROR# 61 Al1 86 D12
12 Vss 37 PEREQ 62 A12 87 Dll
13 Vss 38 NMI 63 Vss 88 Dl0
14 Vss 39 Vee 64 A13 89 D9
15 CLK2 40 INTR 65 A14 90 Ds
16 ADS# 41 Vss 66 AIS 91 Vee
17 BLE# 42 Vee 67 Vss 92 D7
18 Al 43 N/C 68 Vss 93 D6
19 BHE# 44 N/C 69 Vee 94 Ds
20 N/C 45 N/C 70 A16 95 D4
21 Vee 46 N/C 71 Vee 96 D3
22 Vss 47 N/C 72 A17 97 Vee
23 M/IO# 48 Vee 73 AIS 98 Vss
24 D/C# 49 Vss 74 A19 99 D2
25 W/R# 50 Vss 75 A20 100 Dl

3

386SX™ MICROPROCESSOR

1.0 PIN DESCRIPTION (Continued)

The following are the 80386SX pin descriptions. The following definitions are used in the pin descriptions:

The named signal is active LOW.
I Input signal.
o Output signal.
I/O Input and Output signal.

No electrical connection.

Symbol Type Pin Name and Function

CLK2 I 15 CLK2 provides the fundamental timing for the 80386SX. For
additional information see Clock (page 39).

RESET I 33 RESET suspends any operation in progress and places the
80386SX in a known reset state. See Interrupt Signals (page
43) for additional information.

015- DO I/O 81-83,86-90, Data Bus inputs data during memory, I/O and interrupt
92-96,99-100,1 acknowledge read cycles and outputs data during memory and

I/O write cycles. See Data Bus (page 39) for additional
information.

A23-A1 0 80-79,76-72,70, Address Bus outputs physical memory or port I/O addresses.
66-64,62-58, See Address Bus (page 40) for additional information.
56-51,18

W/R# 0 25 Write/Read is a bus cycle definition pin that distinguishes write
cycles from read cycles. See Bus Cycle Definition Signals
(page 40) for additional information.

O/C# 0 24 Data/Control is a bus cycle definition pin that distinguishes data
cycles, either memory or I/O, from control cycles which are:
interrupt acknowledge, halt, and code fetch. See Bus Cycle
Definition Signals (page 40) for additional information.

M/IO# 0 23 Memory/iO is a bus cycle definition pin that distinguishes
memory cycles from input/output cycles. See Bus Cycle
Definition Signals (page 40) for additional information.

LOCK# 0 26 Bus Lock is a bus cycle definition pin that indicates that other
system bus masters are not to gain control of the system bus
while it is active. See Bus Cycle Definition Signals (page 40) for
additional information.

ADS# 0 16 Address Status indicates that a valid bus cycle definition and
address (W/R#, O/C#, M/IO#, BHE#, BLE# and A23-A1 are
being driven at the 80386SX pins. See Bus Control Signals
(page 41) for additional information.

NA# I 6 Next Address is used to request address pipelining. See Bus
Control Signals (page 41) for additional information.

READY# I 7 Bus Ready terminates the bus cycle. See Bus Control Signals
(page 41) for additional information.

BHE#, BLE# 0 19,17 Byte Enables indicate which data bytes of the data bus take part
in a bus cycle. See Address Bus (page 40) for additional
information.

4

inter 386SXTM MICROPROCESSOR

1.0 PIN DESCRIPTION (Continued)

Symbol Type Pin Name and Function

HOLD I 4 Bus Hold Request input allows another bus master to request
control of the local bus. See Bus Arbitration Signals (page 41)
for additional information.

HLDA 0 3 Bus Hold Acknowledge output indicates that the 80386SX has
surrendered control of its local bus to another bus master. See
Bus Arbitration Signals (page 41) for additional information.

INTR I 40 Interrupt Request is a maskable input that signals the 80386SX
to suspend execution of the current program and execute an
interrupt acknowledge function. See Interrupt Signals (page 43)
for additional information.

NMI I 38 Non-Maskable Interrupt Request is a non-maskable input that
signals the 80386SX to suspend execution of the current
program and execute an interrupt acknowledge function. See
Interrupt Signals (page 43) for additional information.

BUSY# I 34 Busy signals a busy condition from a processor extension. See
Coprocessor Interface Signals (page 42) for additional
information.

ERROR# I 36 Error signals an error condition from a processor extension. See
Coprocessor Interface Signals (page 42) for additional
information.

PEREa I 37 Processor Extension Request indicates that the processor has
data to be transferred by the 80386SX. See Coprocessor
Interface Signals (page 42) for additional information.

N/C - 20,27-31,43-47 No Connects should always be left unconnected. Connection of
a N/C pin may cause the processor to malfunction or be
incompatible with future steppings of the 80386SX.

Vee I 8-10,21,32,39 System Power provides the + 5V nominal DC supply input.
42,48,57,69,
71,84,91,97

Vss I 2,5,11-14,22 System Ground provides the OV connection from which all
35,41,49-50, inputs and outputs are measured.
63,67-68,
77-78,85,98

5

63

386SX™ MICROPROCESSOR

31 16 15 87

AH ~ AL EAX

BH I BL EBX

CH (CL ECX

DH [DL EDX

ESI

EDI

EBP

ESP

15

CS

SS

OS

ES

FS

GS

47 16 15 0

~I
I

GDTR] IDTR

LDTR

TR

31

LINEAR BREAKPOINT ADDRESS 0 ORO

LINEAR BREAKPOINT ADDRESS 1 DRI

LINEAR BREAKPOINT ADDRESS 2 DR2

DR3

DR4

DRS

DR6

BREAKPOINT CONTROL DR7

31

TEST CONTROL

TEST STATUS

TR6] TR7

IZ:) - INTEL RESERVED DO NOT USE

Figure 2.1. 80386SX Base Architecture Registers

6

GENERAL PURPOSE
REGISTERS

SEG~ENT
REGISTERS

SYSTE~ ADDRESS
REGISTERS

DEBUG
REGISTERS

TEST
REGISTERS

240187-2

inter 386SX™ MICROPROCESSOR

2.0 BASE ARCHITECTURE

The S03S6SX consists of a central processing unit, a
memory management unit and a bus interface.

The central processing unit consists of the execu­
tion unit and the instruction unit. The execution unit
contains the eight 32-bit general purpose registers
which are used for both address calculation and
data operations and a 64-bit barrel shifter used to
speed shift, rotate, multiply, and divide operations.
The instruction unit decodes the instruction opcodes
and stores them in the decoded instruction queue
for immediate use by the execution unit.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability, and effi­
cient sharing. The paging mechanism operates be­
neath and is transparent to the segmentation pro­
cess, to allow management of the physical address
space.

The segmentation unit provides four levels of pro­
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The S03S6SX has two modes of operation: Real Ad­
dress Mode (Real Mode), and Protected Virtual Ad­
dress Mode (Protected Mode). In Real Mode the
S03S6SX operates as a very fast SOS6, but with 32-
bit extensions if desired. Real Mode is required pri­
marily to set up the processor for Protected Mode
operation.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual SOS6
Mode tasks. Each such task behaves with SOS6 se­
mantics, thus allowing SOS6 software (an application
program or an entire operating system) to execute.
The Virtual SOS6 tasks can be isolated and protect­
ed from one another and the host S03S6SX operat­
ing system by use of paging.

Finally, to facilitate high performance system hard­
ware designs, the S03S6SX bus interface offers ad­
dress pipelining and direct Byte Enable signals for
each byte of the data bus.

2.1 Register Set

The S03S6SX has thirty-four registers as shown in
Figure 2-1. These registers are grouped into the fol­
lowing seven categories:

7

General Purpose Registers: The eight 32-bit gen­
eral purpose registers are used to contain arithmetic
and logical operands. Four of these (EAX, EBX,
ECX, and EDX) can be used either in their entirety as
32-bit registers, as 16-bit registers, or split into pairs
of separate S-bit registers.

Segment Registers: Six 16-bit special purpose reg­
isters select, at any given time, the segments of
memory that are immediately addressable for code,
stack, and data.

Flags and Instruction Pointer Registers: The two
32-bit special purpose registers in figure 2.1 record
or control certain aspects of the S03S6SX processor
state. The EFLAGS register includes status and con­
trol bits that are used to reflect the outcome of many
instructions and modify the semantics of some in­
structions. The Instruction Pointer, called EIP, is 32
bits wide. The Instruction Pointer controls instruction
fetching and the processor automatically increments
it after executing an instruction.

Control Registers: The four 32-bit control register
are used to control the global nature of the
S03S6SX. The CRO register contains bits that set the
different processor modes (Protected, Real, Paging
and Coprocessor Emulation). CR2 and CR3 regis­
ters are used in the paging operation.

System Address Registers: These four special
registers reference the tables or segments support­
ed by the S02S6/S03S6SX/S03S6 protection model.
These tables or segments are:

GDTR (Global Descriptor Table Register),
IDTR (Interrupt Descriptor Table Register),
LDTR (Local Descriptor Table Register),
TR (Task State Segment Register).

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debug­
ging. The use of the debug registers is described in
Section 2.10 Debugging Support.

Test Registers: Two registers are used to control
the testing of the RAM/CAM (Content Addressable
Memories) in the Translation Lookaside Buffer por­
tion of the S03S6SX. Their use is discussed in
Testability.

EFLAGS REGISTER

The flag register is a 32-bit register named EFLAGS.
The defined bits and. bit fields within EFLAGS,
shown in Figure 2.2, control certain operations and
indicate the status of the S0386SX. The lower 16
bits (bits 0-15) of EFLAGS contain the 16- bit flag
register named FLAGS. This is the default flag regis­
ter used when executing SOS6, 802S6, or real mode
code. The functions of the flag bits are given in Ta­
ble 2.1.

386SXTM MICROPROCESSOR

SPECIAL FIELDS:

STAtuS FLAGS:

.---------------OVERFLOW

r--------- SIGN

.---------- ZERO

~---- AUX CARRY

.----PARITY

CONTROL FLAGS

'-----TRAP

'------INTERRUPT

'-------OIRECTION

'--------------RESUME

'---------------VIRTUAL 8086 MODE

PROTECTION ENABLE ---------,

CARRY

EFLAGS

,...------PAGING ENABLE MONITOR COPROCESSOR -------,

eRO

240187-3

Figure 2.2. Status and Control Register Bit Functions

Table 2.1. Flag Definitions

Bit Position Name Function

0 CF Carry Flag-Set on high-order bit carry or borrow; cleared
otherwise.

2 PF Parity Flag-Set if low-order 8 bits of result contain an even
number of 1-bits; cleared otherwise.

4 AF Auxiliary Carry Flag-Set on carry from or borrow to the low
order four bits of AL; cleared otherwise.

6 ZF Zero Flag-Set if result is zero; cleared otherwise.

7 SF Sign Flag-Set equal to high-order bit of result (0 if positive, 1 if
negative).

8 TF Single Step Flag-Once set, a single step interrupt occurs after
the next instruction executes. TF is cleared by the single step
interrupt.

9 IF Interrupt-enable Flag-When set, maskable interrupts will cause
the CPU to transfer control to an interrupt vector specified
location.

8

386SX™ MICROPROCESSOR

Table 2.1. Flag Definitions (Continued)

Bit Position Name Function

10 OF Direction Flag-Causes string instructions to auto· increment
(default) the appropriate index registers when cleared. Setting
OF causes auto·decrement.

11 OF Overflow Flag-Set if result is a too large positive number or a
too small negative number (excluding sign- bit) to fit in
destination operand; cleared otherwise.

12,13 10PL I/O Privilege Level-Indicates the maximum CPL permitted to
execute I/O instructions without generating an exception 13 fault
or consulting the I/O permission bit map while executing in
protected mode. For virtual 86 mode it indicates the maximum
CPL allowing alteration of the IF bit.

14 NT Nested Task-Indicates that the execution of the current task is
nested within another task.

16 RF Resume Flag-Used in conjunction with debug register
breakpoints. It is checked at instruction boundaries before
breakpoint processing. If set, any debug fault is ignored on the
next instruction.

17 VM Virtual 8086 Mode-If set while in protected mode, the 80386SX
will switch to virtual 8086 operation, handling segment loads as
the 8086 does, but generating exception 13 faults on privileged
opcodes.

CONTROL REGISTERS

The 80386SX has three control registers of 32 bits, CRO, CR2 and CR3, to hold the machine state of a global
nature. These registers are shown in figures 2.1 and 2.2. The defined CRO bits are described in table 2.2.

Table 2.2. CRD Definitions

Bit Position Name Function

0 PE Protection mode enable-places the 80386SX into protected
mode. If PE is reset, the processor operates again in Real Mode.
PE may be set by loading MSW or CRO. PE can be reset only by
loading CRO, it cannot be reset by the LMSW instruction.

1 MP Monitor coprocessor extension-allows WAIT instructions to
cause a processor extension not present exception (number 7).

2 EM Emulate processor extension--causes a processor extension
not present exception (number 7) on ESC instructions to allow
emulating a processor extension.

3 TS Task switched-indicates the next instruction using a processor
extension will cause exception 7, allowing software to test
whether the current processor extension context belongs to the
current task . .

31 PG Paging enable bit-is set to enable the on-Chip paging unit. It is
reset to disable the on·chip paging unit.

9

inter 386SXTM MICROPROCESSOR

2.2 Instruction Set

The instruction set is divided into nine categories of
operations:

Data Transfer
Arithmetic
Shift/Rotate
String Manipulation
Bit Manipulation
Control Transfer
High Level Language Support
Operating System Support
Processor Control

These 80386SX instructions are listed in Table 8.1
80386SX Instruction Set and Clock Count Sum­
mary.

All 80386SX instructions operate on either 0, 1, 2 or
3 operands; an operand resides in a register, in the
instruction itself, or in memory. Most zero operand
instructions (e.g CLI, STI) take only one byte. One
operand instructions generally are two bytes long.
The average instruction is 3.2 bytes long. Since the
80386SX has a 16 byte prefetch instruction queue,
an average of 5 instructions will be prefetched. The
use of two operands permits the following types of
common instructions:

Register to Register
Memory to Register
Immediate to Register
Memory to Memory
Register to Memory
Immediate to Memory.

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
80386SX (32 bit code), operands are 8 or 32 bits;
when executing existing 8086 or 80286 code (16-bit
code), operands are 8 or 16 bits. Prefixes can be
added to all instructions which override the default
length of the operands (Le. use 32-bit operands for
16-bit code, or 16-bit operands for 32-bit code).

2.3 Memory Organization

Memory on the 80386SX is divided into 8-bit quanti­
ties (bytes), 16-bit quantities (words), and 32-bit
quantities (dwords). Words are stored in two consec­
utive bytes in memory with the low-order byte at the
lowest address. Dwords are stored in four consecu­
tive bytes in memory with the low-order byte at the
lowest address. The address of a word or dword is
the byte address of the low-order byte.

10

In addition to these basic data types, the 80386SX
supports two larger units of memory: pages and seg­
ments. Memory can be divided up into one or more
variable length segments, which can be swapped to
disk or shared between programs. Memory can also
be organized into one or more 4K byte pages. Final­
ly, both segmentation and paging can be combined,
gaining the advantages of both systems. The
80386SX supports both pages and segmentation in
order to provide maximum flexibility to the system
designer. Segmentation and paging are complemen­
tary. Segmentation is useful for organizing memory
in logical modules, and as such is a tool for the appli­
cation programmer, while pages are useful to the
system programmer for managing the physical mem­
ory of a system.

ADDRESS SPACES

The 80386SX has three types of address spaces:
logical, linear, and physical. A logical address
(also known as a virtual address) consists of a se­
lector and an offset. A selector is the contents of a
segment register. An offset is formed by summing all
of the addressing components (BASE, INDEX, DIS­
PLACEMENT), discussed in section 2.4 Addressing
Modes, into an effective address. This effective ad­
dress along with the selector is known as the logical
address. Since each task on the 80386SX has a
maximum of 16K (214 -1) selectors, and offsets
can be 4 gigabytes (with paging enabled) this gives a
total of 246 bits, or 64 terabytes, of logical address
space per task. The programmer sees the logical
address space.

The segmentation unit translates the logical ad­
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad­
dress is truncated into a 24-bit physical address.
The physical address is what appears on the ad­
dress pins.

The primary differences between Real Mode and
Protected Mode are how the segmentation unit per­
forms the translation of the logical address into the
linear address, size of the address space, and pag­
ing capability. In Real Mode, the segmentation unit
shifts the selector left four bits and adds the result to
the effective address to form the linear address.
This linear address is limited to 1 megabyte. In addi­
tion, real mode has no paging capability.

Protected Mode will see one of two different ad­
dress spaces, depending on whether or not paging
is enabled. Every selector has a logical base ad­
dress associated with it that can be up to 32 bits in
length. This 32-bit logical base address is added to
the effective address to form a final 32-bit linear

inter 386SXTM MICROPROCESSOR

EFFECTIVE ADDRESS CALCULATION

I INDEX I
II BASE I ~ I """'''''' I

I I SCALE
1,2,4,8

t
Y
h2 EFFECTIVE

ADDRESS
15 2 0 LOGICAL OR I R 11 4 VIRTUAL ADDRESS

SELECTOR P
L I DESCRIPTOR

SEGMENT
REGISTER

INDEX

SEGMENTATION
UNIT

15 0

PHYSICAL
MEMORY

BHE#,BLE#
A1 - A23

32 PAGING UNIT 24

LINEAR (OPTIONAL USE) PHYSICAL
ADDRESS ADDRESS

240187-4

Figure 2.3. Address Translation

address. If paging is disabled this final linear ad·
dress reflects physical memory and is truncated so
that only the lower 24 bits of this address are used
to address the 16 megabyte memory address space.
If paging is enabled this final linear address reflects
a 32-bit address that is translated through the pag­
ing unit to form a 16-megabyte physical address.
The logical base address is stored in one of two
operating system tables (Le. the Local Descriptor
Table or Global Descriptor Table).

Figure 2.3 shows the relationship between the vari­
ous address spaces.

SEGMENT REGISTER USAGE

The main data structure used to organize memory is
the segment. On the 80386SX, segments are vari­
able sized blocks of linear addresses which have
certain attributes associated with them. There are
two main types of segments, code and data. The
segments are of variable size and can be as small
as 1 byte or as large as 4 gigabytes (232 bits).

In order to provide compact instruction encoding
and increase processor performance, instructions
do not need to explicitly specify which segment reg­
ister is used. The segment register is automatically
chosen according to the rules of Table 2.3 (Segment
Register Selection Rules). In general, data refer­
ences use the selector contained in the DS register,
stack references use the SS register and instruction

11

fetches use the CS register. The contents of the In­
struction Pointer provide the offset. Special segment
override prefixes allow the explicit use of a given
segment register, and override the implicit rules list­
ed in Table 2.3. The override prefixes also allow the
use of the ES, FS and GS segment registers.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero
and create a system with a four gigabyte linear ad­
dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further details of segmentation are dis­
cussed in chapter 4 PROTECTED MODE ARCHI­
TECTURE.

2.4 Addressing Modes

The B0386SX provides a total of 8 addressing
modes for instructions to specify operands. The ad­
dreSSing modes are optimized to allow the efficient
execution of high level languages such as C and
FORTRAN, and they cover the vast majority of data
references needed by high-level languages.

REGISTER AND IMMEDIATE MODES

Two of the addressing modes provide for instruc­
tions that operate on register or immediate oper­
ands:

inter 386SX™ MICROPROCESSOR

Table 2.3. Segment Register Selection Rules

Type of Implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fetch

Destination of PUSH,
PUSHA instructons

Source of POP, POPA
instructions

Destination of STOS,
MOVE, REP STOS, and
REP MOVS instructions

Other data references,
with effective address
using base register of:

[EAX)
[EBX)
[ECX)
[EDX)
[ESI)
[EDI)
[EBP)
[ESP)

Register Operand Mode: The operand is located in
one of the 8, 16 or 32·bit general registers.

Immediate Operand Mode: The operand is includ­
ed in the instruction as part of the opcode.

32·BIT MEMORY ADDRESSING MODES

The remaining 6 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg­
ment base address and an effective address. The
effective address is calculated by summing any
combination of the following three address elements
(see figure 2.3):

DISPLACEMENT: an 8, 16 or 32-bit immediate val­
ue, following the instruction.

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char­
acters. The index register's value can be multiplied
by a scale factor, either 1,2,4 or 8. The scaled index
is especially useful for accessing arrays or struc­
tures.

CS None

SS None

SS None

ES None

OS CS,SS,ES,FS,GS
OS CS,SS,ES,FS,GS
OS CS,SS,ES,FS,GS
OS CS,SS,ES,FS,GS
OS CS,SS,ES,FS,GS
OS CS,SS,ES,FS,GS
SS CS,DS,ES,FS,GS
SS CS,DS,ES,FS,GS

12

Combinations of these 3 components make up the 6
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is
pipelined with the execution of other instructions.
The one exception is the simultaneous use of Base
and Index components which requires one addition­
al clock.

As shown in Figure 2.4, the effective address (EA) of
an operand is calculated according to the following
formula:

EA ~ BaSeRegiste, + (IndeXRegiste,'scaling) +
Displacement

1. Direct Mode: The operand's offset is contained
as part of the instruction as an 8, 16 or 32-bit
displacement.

2. Register Indirect Mode: A BASE register con­
tains the address of the operand.

3. Based Mode: A BASE register's contents are
added to a DISPLACEMENT to form the oper­
and's offset.

4. Scaled Index Mode: An INDEX register's con­
tents are multiplied by a SCALING factor, and the
result is added to a DISPLACEMENT to form the
operand's offset.

inter 386SXTM MICROPROCESSOR

SEGMENT REGISTER

SS
GS

fS
ES

OS

+M------t

EffECTIVE
ADORE SS

LINEAR

/

"

SEGMENT
LIMIT

DESCRIPTOR REGISTERS ADDRESS

SS
GS

fS
ES

OS

ACCESS RIGHTS CS

LIMIT

~ TARGET ADDRESS

SELECTED
SEGMENT

BASE ADDRESS ------~
./

SEGMENT BASE ADDRESS

240167-5

Figure 2.4. Addressing Mode Calculations

5. Based Scaled Index Mode: The contents of an
INDEX register are multiplied by a SCALING fac­
tor, and the result is added to the contents of a
BASE register to obtain the operand's offset.

6. Based Scaled Index Mode with Displacement:
The contents of an INDEX register are multiplied
by a SCALING factor, and the result is added to
the contents of a BASE register and a DISPLACE­
MENT to form the operand's offset.

DIFFERENCES BETWEEN 16 AND 32 BIT
ADDRESSES

In order to provide software compatibility with the
8086 and the 80286, the 80386SX can execute 16-
bit instructions in Real and Protected Modes. The
processor determines the size of the instructions it is
executing by examining the D bit in a Segment De­
scriptor. If the D bit is 0 then all operand lengths and
effective addresses are assumed to be 16 bits long.
If the D bit is 1 then the default length for operands
and addresses is 32 bits. In Real Mode the default
size for operands and addresses is 16 bits.

13

Regardless of the default precision of the operands
or addresses, the 80386SX is able to execute either
16 or 32-bit instructions. This is specified through
the use of override prefixes. Two prefixes, the
Operand Length Prefix and the Address Length
Prefix, override the value of the D bit on an individu­
al instruction basis. These prefixes are automatically
added by assemblers.

The Operand Length and Address Length Prefixes
can be applied separately or in combination to any
instruction. The Address Length Prefix does not al­
low addresses over 64K bytes to be accessed in
Real Mode. A memory address which exceeds
OFFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad­
ditional 80386SX addressing modes.

When executing 32-bit code, the 80386SX uses ei­
ther 8 or 32-bit displacements, and any register can
be used as base or index registers. When executing
16-bit code, the displacements are either 8 or 16-
bits, and the base and index register conform to the
286 model. Table 2.4 illustrates the differences.

intJ 386SX™ MICROPROCESSOR

Table 2.4. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing 32-Bit Addressing

BASE REGISTER BX,BP
INDEX REGISTER SI,DI

SCALE FACTOR None
DISPLACEMENT 0,8,16-bits

2.5 Data Types

The 80386SX supports all of the data types com­
monly used in high level languages:

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits, which
spans a maximum of four bytes.

Bit String: A set of contiguous bits; on the 80386SX,
bit strings can be up to 4 gigabits long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.

Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit quan­
tity. All operations assume a 2's complement repre­
sentation.

Unsigned Integer (Word): An unsigned 16-bit
quantity.

Unsigned Long Integer (Double Word): An un­
signed 32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.

Unsigned Quad Word: An unsigned 64-bit quantity.

Pointer: A 16 or 32-bit offset-only quantity which in­
directly references another memory location.

Long Pointer: A full pointer which consists of a 16-
bit segment selector and either a 16 or 32-bit offset.

Char: A byte representation of an ASCII Alphanu­
meric or control character.

String: A contiguous sequence of bytes, words or
dwords. A string may contain between 1 byte and 4
gigabytes

14

Any 32-bit GP Register
Any 32-bit GP Register
Except ESP
1,2,4,8
0, 8, 32-bits

BCD: A byte (unpacked) representation of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0-9 storing one digit in each nibble.

When the 80386SX is coupled with its numerics co­
processor, the 80387SX, then the following common
floating point types are supported:

Floating Point: A signed 32, 64, or 80-bit real num­
ber representation. Floating point numbers are sup­
ported by the 80387SX numerics coprocessor.

Figure 2.5 illustrates the data types supported by the
80386SX and the 80387SX.

2.6 1/0 Space

The 80386SX has two distinct physical address
spaces: physical memory and I/O. Generally, pe­
ripherals are placed in I/O space although the
80386SX also supports memory-mapped peripher­
als. The I/O space consists of 64K bytes which can
be divided into 64K 8- bit ports or 32K 16-bit ports,
or any combination of ports which add up to no more
than 64K bytes. The 64K I/O address space refers
to physical addresses rather than linear addresses
since I/O instructions do not go through the seg­
mentation or paging hardware. The M/IO# pin acts
as an additional address line, thus allowing the sys­
tem designer to easily determine which address
space the processor is accessing.

The 110 ports are accessed by the IN and OUT in­
structions, with the port address supplied as an im­
mediate 8-bit constant in the instruction or in the OX
register. All 8-bit and 16-bit port addresses are zero
extended on the upper address lines. The I/O in­
structions cause the MIIO# pin to be driven LOW.
I/O port addresses 00F8H through OOFFH are re­
served for use by Intel.

infef 386SXTM MICROPROCESSOR

7 0
SIGNED rrnT'"TI

BYTEI.L.:.......J
SIGN BIT...IL--,J

MAGNITUDE

7 0

+N
7 0

BINARY (TTTTTTTJ
CODEDL:.......J •••

DECIMAL BCD
(BCD) DIGIT N

+N
7 0

+1 0
7 07 0

1"'1"'1"'1'''1
BCD BCD

DIGIT 1 DIGIT 0

+1 o
7 07 0

UNSIGNED (TTTTTTTJ
BYTEL:.......J

L...-...J
MAGNITUDE

ASCII~ ••• 1"'1"'1"'1"'1
ASCII

CHARACTERN

ASCII ASCII
CHARACTER 1 CHARACTERO

+1 0
1514 87 0

s~~~g II ' , I' , , I ' , , I ' , , I
SIGN BIT...I,~MSB I

MAGNITUDE

+1 0
15 0

UNS~~~g I' , , I ' , , I' , , I ' , , I
, I

MAGNITUDE

+N
7 0

PACKED (TTTTTTTJ
BCDL:.......J·· •

LJ
MOST
SIGNIFICANT DIGIT

+1 0
7 07 0

1"'1"'1"'1"'1
LJ

LEAST
SIGNIFICANT DIGIT

+N +1 0
7/15 0 7 /15 0 7/15 0

ST~YJ~~ .. ·1"'1"'1"'1"'1

+3 +2 +1 0 -2 GIGABITS
31 1615 0 +2 GIGABITS 210

SIGNED DO~~~~II' 'I" 'I" 'I" 'I'" I'" I' "I "'I STRI~I~lmllmll~-'"""'TTII-~\ \ II I II
SIGN BIT...I,~MSB I BITO ______LII.&.I.I

MAGNITUDE

+3 +2 +1 o +3 +2 +1 0
31 0 31 0

UNSIGNED DO~~~~ I ' , , I ' , , I ' , , I ' , , I ' , , I ' , , I ' , , I ' , 'I ;~..o~~I"'I"'I"'I"'I"'I"'I"'I"'1
POINTER ---'-. ---'-. ---'-. __ ..I. , , , ,

MAGNITUDE OFFSET

+7 +6 +5 +5 +3 +2 +1 0 +5 +4 +3 +2 +1 0
63 4847 3231 1615 0 47 0

SIGNED ~~~g II I I I I I I I I p6~1~H'" I " , I " 'I " , I " 'I " , I " 'I " , I " , I " , I " 'I " , I
SIGN BIT...I, ... ~_M_S_B _________ ...J" I '

MAGNITUDE SELECTOR

+9 +8 +7 +6 +5 +4 +3 +2 +1 0
79 0

FLOATING II
POINT· I I I I I I I I I I

SIGN BIT...I, I I
EXPONENT MAGNITUDE

+5 +4 +3 +2 +1 0

BIT3~~~~IIIIIIIIIIIIIII'I"'IIIIII'II'III'IIIII'I'" I'" I
I. BIT FIELD .1

1 TO 32 BITS

Figure 2.5. 80386SX Supported Data Types

15

OFFSET

·SUPPORTED BY
80387SX
NUMERIC DATA
COPROCESSORS

240187-6

inter 386SXTM MICROPROCESSOR

Table 2 5. Interrupt Vector Assignments

Return Address
Interrupt Instruction Which Points to

Function Number Can Cause Faulting Type
Exception Instruction

Divide Error 0 DIV,IDIV YES FAULT

Debug Exception 1 any instruction YES TRAP'

NMllnterrupt 2 INT 2 or NMI NO NMI

One Byte Interrupt 3 INT NO TRAP

Interrupt on Overflow 4 INTO NO TRAP

Array Bounds Check 5 BOUND YES FAULT

Invalid OP-Code 6 Any illegal instruction YES FAULT

Device Not Available 7 ESC, WAIT YES FAULT

Double Fault 8
Any instruction that can

ABORT
generate an exception

Coprocessor Segment Overrun 9 ESC NO ABORT

Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT

Segment Not Present 11 Segment Register Instructions YES FAULT

Stack Fault 12 Stack References YES FAULT

General Protection Fault 13 Any Memory Reference YES FAULT

Page Fault 14 Any Memory Access or Code Fetch YES FAULT

Coprocessor Error 16 ESC, WAIT YES FAULT

Intel Reserved 17-32

Two Byte Interrupt 0-255 INTn NO TRAP

'Some debug exceptions may report both traps on the prevIous instruction and faults on the next Instruclion.

2.7 Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow in order to handle external events, report errors
or exceptional conditions. The difference between
interrupts and exceptions is that interrupts are used
to handle asynchronous external events while ex­
ceptions handle instruction faults. Although a pro­
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

Hardware interrupts occur as the result of an exter­
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately
after the interrupted instruction.

16

Exceptions are classified as faults, traps, or aborts,
depending on the way they are reported and wheth­
er or not restart of the instruction causing the excep­
tion is supported. Faults are exceptions that are de­
tected and serviced before the execution of the
faulting instruction. Traps are exceptions that are
reported immediately after the execution of the in­
struction which caused the problem. Aborts are ex­
ceptions which do not permit the precise location of
the instruction causing the exception to be deter­
mined.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep­
tion fault routine will always point to the instruction
causing the exception and will include any leading
instruction prefixes. Table 2.5 summarizes the possi­
ble interrupts for the 80386SX and shows where the
return address points to.

inter 386SX™ MICROPROCESSOR

The 80386SX has the ability to handle up to 256
different interrupts/exceptions. In order to service
the interrupts, a table with up to 256 interrupt vec­
tors must be defined. The interrupt vectors are sim­
ply pointers to the appropriate interrupt service rou­
tine. In Real Mode, the vectors are 4-byte quantities,
a Code Segment plus a 16-bit offset; in Protected
Mode, the interrupt vectors are 8 byte quantities,
which are put in an Interrupt Descriptor Table. Of the
256 possible interrupts, 32 are reserved for use by
Intel and the remaining 224 are free to be used by
the system designer.

INTERRUPT PROCESSING

When an interrupt occurs, the following actions hap­
pen. First, the current program address and Flags
are saved on the stack to allow resumption of the
interrupted program. Next, an 8-bit vector is supplied
to the 80386SX which identifies the appropriate en­
try in the interrupt table. The table contains the start­
ing address of the interrupt service routine. Then,
the user supplied interrupt service routine is execut­
ed. Finally, when an IRET instruction is executed the
old processor state is restored and program execu­
tion resumes at the appropriate instruction.

The 8-bit interrupt vector is supplied to the 80386SX
in several different ways: exceptions supply the in­
terrupt vector internally; software INT instructions
contain or imply the vector; maskable hardware in­
terrupts supply the 8-bit vector via the interrupt ac­
knowledge bus sequence. Non-Maskable hardware
interrupts are assigned to interrupt vector 2.

Maskable Interrupt

Maskable interrupts are the most common way to
respond to asynchronous external hardware events.
A hardware interrupt occurs when the INTR is pulled
HIGH and the Interrupt Flag bit (IF) is enabled. The
processor only responds to interrupts between in­
structions (string instructions have an 'interrupt win­
dow' between memory moves which allows inter­
rupts during long string moves). When an interrupt
occurs the processor reads an 8-bit vector supplied
by the hardware which identifies the source of the
interrupt (one of 224 user defined interrupts).

Non-Maskable Interrupt

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. When the NMI input
is pulled HIGH it causes an interrupt with an internal­
ly supplied vector value of 2. Unlike a normal hard­
ware interrupt, no interrupt acknowledgment se­
quence is performed for an NMI.

17

While executing the NMI servicing procedure, the
80386SX will not service any further NMI request or
INT requests until an interrupt return (IRET) instruc­
tion is executed or the processor is reset. If NMI
occurs while currently servicing an NMI, its presence
will be saved for servicing after executing the first
IRET instruction. The IF bit is cleared at the begin­
ning of an NMI interrupt to inhibit further INTR inter­
rupts.

Software Interrupts

A third type of interrupt/exception for the 80386SX
is the software interrupt. An INT n instruction causes
the processor to execute the interrupt service rou­
tine pointed to by the nth vector in the interrupt table.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug­
ging tool.

A final type of software interrupt is the single step
interrupt. It is discussed in Single Step Trap (page
20).

INTERRUPT AND EXCEPTION PRIORITIES

Interrupts are externally generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at in­
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the 80386SX invokes the NMI service
routine first. If maskable interrupts are still enabled
after the NMI service routine has been invoked, then
the 80386SX will invoke the appropriate interrupt
service routine.

As the 80386SX executes instructions, it follows a
consistent cycle in checking for exceptions, as
shown in Table 2.6. This cycle is repeated as each
instruction is executed, and occurs in parallel with
instruction decoding and execution.

INSTRUCTION RESTART

The 80386SX fully supports restarting all instruc­
tions after Faults. If an exception is detected in the
instruction to be executed (exception categories 4
through 10 in Table 2.6), the 80386SX invokes the
appropriate exception service routine. The 80386SX
is in a state that permits restart of the instruction, for
all cases but those given in Table 2.7. Note that all
such cases will be avoided by a properly designed
operating system.

inter 386SXTM MICROPROCESSOR

Table 2.6. Sequence of Exception Checking

Consider the case of the 80386SX having just completed an instruction. It then performs the following
checks before reaching the point where the next instruction is completed:

1. Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or Data
Breakpoints set in the Debug Registers).

2. Check for external NMI and INTR.

3. Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the Debug
Registers for the next instruction).

4. Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions 11 or 13).

5. Check for Page Faults that prevented fetching the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction (exception 6 if illegal opcode; exception 6 if in Real Mode
or in Virtual 8086 Mode and attempting to execute an instruction for Protected Mode only; or exception
13 if instruction is longer than 15 bytes, or privilege violation in Protected Mode (i.e. not at IOPL or at
CPL=O).

7. If WAIT opcode, check if TS= 1 and MP= 1 (exception 7 if both are 1).

8. If ESCape opcode for numeric coprocessor, check if EM = 1 or TS = 1 (exception 7 if either are 1).

9. If WAIT opcode or ESCape opcode for numeric coprocessor, check ERROR # input signal (exception 16
if ERROR # input is asserted).

10. Check in the following order for each memory reference required by the instruction:

a. Check for Segmentation Faults that prevent transferring the entire memory quantity (exceptions 11,
12, 13).

b. Check for Page Faults that prevent transferring the entire memory quantity (exception 14).

NOTE:
Segmentation exceptions are generated before paging exceptions.

Table 2.7. Conditions Preventing Instruction Restart

1. An instruction causes a task switch to a task whose Task State Segment is partially 'not present' (An
entirely 'not present' TSS is restartable). Partially present TSS's can be avoided either by keeping the
TSS's of such tasks present in memory, or by aligning TSS segments to reside entirely within a single 4K
page (for TSS segments of 4K bytes or less).

2. A coprocessor operand wraps around the top of a 64K-byte segment or a 4G-byte segment, and spans
three pages, and the page holding the middle portion of the operand is 'not present'. This condition can
be avoided by starting at a page boundary any segments containing coprocessor operands if the
segments are approximately 64K-200 bytes or larger (Le. large enough for wraparound of the coproces­
sor operand to possibly occur).

Note that these conditions are avoided by using the operating system designs mentioned in this table.

18

inter 386SXTM MICROPROCESSOR

Table 2.8. Register Values after Reset

Flag Word (EFLAGS) uuuuOO02H Note 1
Machine Status Word (CRO) uuuuuuuOH Note 2
Instruction Pointer (EIP) OOOOFFFOH
Code Segment (CS) FOOOH Note 3
Data Segment (OS) OOOOH Note 4
Stack Segment (SS) OOOOH
Extra Segment (ES) OOOOH Note 4
Extra Segment (FS) OOOOH
Extra Segment (GS) OOOOH
EAX register OOOOH Note 5
EOX register component and stepping 10 Note 6
All other registers undefined Note 7

NOTES:
1. EFLAG Register. The upper 14 bits of the EFLAGS register are undefined, all defined flag bits are zero.
2. CRO: All of the defined fields in CRO are o.
3. The Code Segment Register (CS) will have its Base Address set to OFFFFOOOOH and Limit set to OFFFFH.
4. The Data and Extra Segment Registers (OS, ES) will have their Base Address set to OOOOOOOOOH and Limit set to
OFFFFH.
5. If self·test is selected, the EAX register should contain a 0 value. If a value of 0 is not found then the self·test has
detected a flaw in the part.
6. EDX register always holds component and stepping identifier.
7. All undefined bits are Intel Reserved and should not be used.

DOUBLE FAULT

A Double Fault (exception 8) results when the proc·
essor attempts to invoke an exception service rou·
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so detects an exception
other than a Page Fault (exception 14).

One other cause of generating a Double Fault is the
80386SX detecting any other exception when it is
attempting to invoke the Page Fault (exception 14)
service routine (for example, if a Page Fault is de·
tected when the 80386SX attempts to invoke the
Page Fault service routine). Of course, in any func·
tional system, not only in 80386SX·based systems,
the entire page fault service routine must remain
'present' in memory.

2.8 Reset and Initialization

When the processor is initialized or Reset the regis·
ters have the values shown in Table 2.8. The
80386SX will then start executing instructions near
the top of physical memory, at location OFFFFFOH.
When the first Intersegment Jump or Call is execut·
ed, address lines A20-A23 will drop LOW for CS·rel·
ative memory cycles, and the 80386SX will only exe·
cute instructions in the lower one megabyte of physi·
cal memory. This allows the system designer to use
a shadow ROM at the top of physical memory to
initialize the system and take care of Resets.

19

RESET forces the 80386SX to terminate all execu·
tion and local bus activity. No instruction execution
or bus activity will occur as long as Reset is active.
Between 350 and 450 CLK2 periods after Reset be·
comes inactive, the 80386SX will start executing in·
structions at the top of physical memory.

2.9 Testability

The 80386SX, like the 80386, offers testability fea·
tures which include a self·test and direct access to
the page translation cache.

SELF-TEST

The 80386SX has the capability to perform a self·
test. The self-test checks the function of all of the
Control ROM and most of the non-random logic of
the part. Approximately one-half of the 80386SX can
be tested during self-test.

Self-Test is initiated on the 80386SX when the RE­
SET pin transitions from HIGH to LOW, and the
BUSY # pin is LOW. The self-test takes about 220
clocks, or approximately 33 milliseconds with a 16
MHz 80386SX. At the completion of self-test the
processor performs reset and begins normal opera­
tion. The part has successfully passed self-test if the
contents of the EAX are zero. If the results of the
EAX are not zero then the self-test has detected a
flaw in the part.

386SXTM MICROPROCESSOR

COIAIAAND-----------------------....,

WRITABLE ------------------,

USER-----------------,

DlRTY-------------....,
VALlD------------,

LINEAR ADDRESS

31

PHYSICAL ADDRESS

31

lZ:l - INTEL RESERVED DO NOT USE

TEST
STATUS

~PLI+~TR7
12 .. 3 2

240187-7

Figure 2.6. Test Registers

TLB TESTING

The 80386SX also provides a mechanism for testing
the Translation Lookaside Buffer (TLB) if desired.
This particular mechanism may not be continued in
the same way in future processors.

There are two TLB testing operations: 1) writing en­
tries into the TLB, and, 2) performing TLB lookups.
Two Test Registers, shown in Figure 2.6, are provid­
ed for the purpose of testing. TR6 is the "test com­
mand register", and TR? is the "test data register".
For a more detailed explanation of testing the TLB,
see the 80386 Programmer's Reference Manual.

2.10 Debugging Support

The 80386SX provides several features which sim­
plify the debugging process. The three categories of
on-chip debugging aids are:

1. The code execution breakpoint opcode (OCCH).

2. The single-step capability provided by the TF bit
in the flag register.

3. The code and data breakpoint capability provided
by the Debug Registers DRO-3, DR6, and DR?

BREAKPOINT INSTRUCTION

A single-byte software interrupt (Int 3) breakpoint in­
struction is available for use by software debuggers.

20

The breakpoint opcode is OCCh, and generates an
exception 3 trap when executed.

SINGLE-STEP TRAP

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1.

DEBUG REGISTERS

The Debug Registers are an advanced debugging
feature of the 80386SX. They allow data access
breakpoints as well as code execution breakpoints.
Since the breakpoints are indicated by on-chip regis­
ters, an instruction execution breakpoint can be
placed in ROM code or in code shared by several
tasks, neither of which can be supported by the INT
3 breakpoint opcode.

The 80386SX contains six Debug Registers, consist­
ing of four breakpoint address registers and two
breakpoint control registers. Initially after reset,
breakpoints are in the disabled state; therefore, no
breakpoints will occur unless the debug registers are
programmed. Breakpoints set up in the Debug Reg­
isters are auto-vectored to exception 1. Figure 2.?
shows the breakpoint status and control registers.

inter 386SXTM MICROPROCESSOR

BREAKPOINT 0 DEBUG FAULT/TRAP --------------------,

BREAKPOINT I D£BUG FAULT/TRAP -------------------,

BREAKPOINT 2 D£BUG FAULT/TRAP -----------------,

BREAKPOINT 3 DEBUG FAULT/TRAP ----------------,
DEBUG
STATUS
REGISTER

REGISTER ACCESS FAULT -----,

6

Gtl,Gtg~:t ::~~~g:~~ ~~:m: 1------------,
LOCAL EXACT BREAKPOINT WATCH --------,

GLOBAL EXACT BREAKPOINT WATCH -------.

GLOBAL D£BUG REGISTER ACCESS DETECT

BREAKPOINT
,..-___ -'-___ -, CONTROL

DR7

[LENI, BREAKPOINT LENGTH I '-------------1 RWi: MEMORY ACCESS QUALIFIER i

fZ:) - INTEL RESERVED DO NOT USE

240187-8

Figure 2.7. Debug Registers

3.0 REAL MODE ARCHITECTURE

When the processor is reset or powered up it is ini­
tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the
32-bit register set of the 80386SX. The addressing
mechanism, memory size, and interrupt handling are
all identical to the Real Mode on the 80286.

The default operand size in Real Mode is 16 bits, as
in the 8086. In order to use the 32-bit registers and
addressing modes, override prefixes must be used.
In addition, the segment size on the 80386SX in
Real Mode is 64K bytes so 32-bit addresses must
have a value less then OOOOFFFFH. The primary
purpose of Real Mode is to set up the processor for
Protected Mode operation.

21

3.1 Memory Addressing

In Real Mode the linear addresses are the same as
physical addresses (paging is not allowed). Physical
addresses are formed in Real Mode by adding the
contents of the appropriate segment register which
is shifted left by four bits to an effective address.
This addition results in a 20-bit physical address or a
1 megabyte address space. Since segment registers
are shifted left by 4 bits, Real Mode segments al­
ways start on 16-byte boundaries.

All segments in Real Mode are exactly 64K bytes
long, and may be read, written, or executed. The
80386SX will generate an exception 13 if a data op­
erand or instruction fetch occurs past the end of a
segment.

inter 386SX™ MICROPROCESSOR

Table 3.1. Exceptions in Real Mode

Function
Interrupt
Number

Interrupt table limit 8
too small

CS, OS, ES, FS, GS 13
Segment overrun exception

SS Segment overrun 12
exception

3.2 Reserved Locations

There are two fixed areas in memory which are re­
served in Real address mode: the system initializa­
tion area and the interrupt table area. Locations
OOOOOH through 003FFH are reserved for interrupt
vectors. Each one of the 256 possible interrupts has
a 4-byte jump vector reserved for it. Locations
OFFFFFOH through OFFFFFFH are reserved for sys­
tem initialization.

3.3 Interrupts

Many of the exceptions discussed in section 2.7 are
not applicable to Real Mode operation; in particular,
exceptions 10, 11 and 14 do not occur in Real
Mode. Other exceptions have slightly different
meanings in Real Mode; Table 3.1 identifies these
exceptions.

3.4 Shutdown and Halt

The HL T instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF= 1), or RESET will force the 80386SX out of halt.
If interrupted, the saved CS:IP will point to the next
instruction after the HL T.

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode,
shutdown can occur under two conditions:

1. An interrupt or an exception occurs (Exceptions 8
or 13) and the interrupt vector is larger than the
Interrupt Descriptor Table.

2. A CALL, INT or PUSH instruction attempts to
wrap around the stack segment when SP is not
even.

An NMI input can bring the processor out of shut­
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least

Related Return
Instructions Address Location

INT vector is not Before
within table limit Instruction

Word memory reference Before
with offset = OFFFFH. Instruction
an attempt to execute
past the end of CS segment.

Stack Reference Before
beyond offset = OFFFFH Instruction

22

OOOFH) and the stack has enough room to contain
the vector and flag information (i.e. SP is greater that
0005H). Otherwise, shutdown can only be exited by
a processor reset.

3.5 LOCK operation

The LOCK prefix on the 80386SX, even in Real
Mode, is more restrictive than on the 80286. This is
due to the addition of paging on the 80386SX in Pro­
tected Mode and Virtual 8086 Mode. The LOCK pre­
fix is not supported during repeat string instructions.

The only instruction forms where the LOCK prefix is
legal on the 80386SX are shown in Table 3.2.

Table 3.2. Legal Instructions for the LOCK Prefix

Opcode
Operands

(Dest, Source)

BIT Test and
SET/RESET Mem, Reg/Immediate
/COMPLEMENT

XCHG Reg, Mem

XCHG Mem, Reg

ADD, OR, ADC, SBB,
AND, SUB, XOR Mem, Reg/Immediate

NOT, NEG, INC, DEC Mem

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above.

The LOCK prefix is not IOPL-sensitive on the
80386SX. The LOCK prefix can be used at any privi­
lege level, but only on the instruction forms listed in
Table 3.2.

386SXTM MICROPROCESSOR

4.0 PROTECTED MODE
ARCHITECTURE

The complete capabilities of the 80386SX are un­
locked when the processor operates in Protected
Virtual Address Mode (Protected Mode). Protected
Mode vastly increases the linear address space to
four gigabytes (232 bytes) and allows the running of
virtual memory programs of almost unlimited size
(64 terabytes (246 bytes)). In addition, Protected
Mode allows the 80386SX to run all of the existing
80386 (using only 16 megabytes of physical memo­
ry), 80286 and 8086 software, while providing a so­
phisticated memory management and a hardware­
assisted protection mechanism. Protected Mode al­
lows the use of additional instructions specially opti­
mized for supporting multitasking operating systems.
The base architecture of the 80386SX remains the
same; the registers, instructions, and addressing
modes described in the previous sections are re­
tained. The main difference between Protected
Mode and Real Mode from a programmer's view­
point is the increased address space and a different
addressing mechanism.

4.1 Addressing Mechanism

Like Real Mode, Protected Mode uses two compo­
nents to form the logical address; a 16-bit selector is
used to determine the linear base address of a seg­
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as a 24-bit physical ad­
dress, or if paging is enabled the paging mechanism
maps the 32-bit linear address into a 24-bit physical
address.

The difference between the two modes lies in calcu­
lating the base address. In Protected Mode, the se­
lector is used to specify an index into an operating
system defined table (see Figure 4.1). The table
contains the 32-bit base address of a given seg­
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the 80386SX, as such paging operates
beneath segmentation. The page mechanism trans­
lates the protected linear address which comes from
the segmentation unit into a physical address. Figure
4.2 shows the complete 80386SX addressing mech­
anism with paging enabled.

4.2 Segmentation

Segmentation is one method of memory manage­
ment. Segmentation provides the basis for protec-

23

tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam­
ple, all of the code of a given program could be con­
tained in a segment, or an operating system table
may reside in a segment. All information about each
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in descriptor tables which are recognized
by hardware.

TERMINOLOGY

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection:

PL: Privilege Level-One of the four hierarchical
privilege levels. Level 0 is the most privileged
level and level 3 is the least privileged.

RPL: Requestor Privilege Level-The privilege level
of the original supplier of the selector. RPL is
determined by the least two significant bits of
a selector.

DPL: Descriptor Privilege Level-This is the least
privileged level at which a task may access
that descriptor (and the segment associated
with that descriptor). Descriptor Privilege Lev­
el is determined by bits 6:5 in the Access
Right Byte of a descriptor.

CPL: Current Privilege Level-The privilege level at
which a task is currently executing, which
equals the privilege level of the code segment
being executed. CPL can also be determined
by examining the lowest 2 bits of the CS regis­
ter, except for conforming code segments.

EPL: Effective Privilege Level-The effective privi­
lege level is the least privileged of the RPL
and the DPL. EPL is the numerical maximum
of RPL and DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

DESCRIPTOR TABLES

The descriptor tables define all of the segments
which are used in a 80386SX system. There are
three types of tables on the 80386SX which hold
descriptors: the Global Descriptor Table, Local De­
scriptor Table, and the Interrupt Descriptor Table. All
of the tables are variable length memory arrays and
can vary in size from 8 bytes to 64K bytes. Each
table can hold up to 8192 8-byte descriptors. The
upper 13 bits of a selector are used as an index into
the descriptor table. The tables have registers asso­
ciated with them which hold the 32-bit linear base
address and the 16-bit limit of each table.

inter 386SXTM MICROPROCESSOR

48/32 BIT POINTER

ACCESS RIGHTS

LIt.4IT

BASE ADDRESS

SEGt.4ENT
DESCRIPTOR

0----+ t.4Et.40RY OPERAND

SEGt.4ENT BASE
ADDRESS

SEGt.4ENT LIt.4IT

SELECTED
SEGt.4ENT

Figure 4.1. Protected Mode Addressing

48 BIT POINTER

PHYSICAL ADDRESS

240187-9

1 SEGt.4ENT I OFFSET ! 4KBYTES

15 31 l
ACCESS RIGHTS

Llt.4IT

• BASE ADDRESS

SEGt.4ENT
DESCRIPTOR

o

80386SX
PAGING

t.4ECHANISt.4 PHYSICAL
ADDRESS ~ ,

~ LlNEAR~
ADDRESS

t.4Et.40RY OPERAND
PAGE FRAt.4E

ADDRESS

Figure 4.2. Paging and Segmentation

15 0 15 0

LDTR l LOT DESCR
SELECTOR I LOT LIt.4IT

I LOT BASE

15 0
LINEAR ADDRESS

llDT LIt.4IT

32
PROGRAt.4 INVISIBLE
AUTOt.4ATICALL Y LOADED I lOT BASE
FROt.4 LOT DESCRIPTOR :

IDTR LINEAR ADDRESS ------------_ ..
31 0

15 0

I GOT Llt.4IT r GOT BASE
GDTR LINEAR ADDRESS

31 0

FIgure 4.3. Descriptor Table Registers

24

240187-11

! 4KBYTES

! 4KBYTES

! PHYSICAL PAGE:
4KBYTES

! 4KBYTES

4KBYTES

4KBYTES

240187-10

inter 386SXTM MICROPROCESSOR

Each of the tables has a register associated with it:
GDTR, LDTR, and IDTR; see Figure 2.1. The LGDT,
LLDT, and LlDT instructions load the base and limit
of the Global, Local, and Interrupt Descriptor Tables
into the appropriate register. The SGDT, SLDT, and
SIDT store the base and limit values. These are priv­
ileged instructions.

Global Descriptor Table

The Global Descriptor Table (GDT) contains de­
scriptors which are available to all of the tasks in a
system. The GDT can contain any type of segment
descriptor except for interrupt and trap descriptors.
Every 80386SX system contains a GDT.

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null
selector defines a null pointer value.

Local Descriptor Table

LOTs contain descriptors which are associated with
a given task. Generally, operating systems are de­
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LOTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro­
vides both isolation and protection for a task's seg­
ments while still allowing global data to be shared
among tasks.

31

Unlike the 6-byte GOT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in
the GDT (see figure 2.1).

Interrupt Descriptor Table

The third table needed for 80386SX systems is the
Interrupt Descriptor Table. The IDT contains the de­
scriptors which point to the location of the up to 256
interrupt service routines. The IDT may contain only
task gates, interrupt gates, and trap gates. The IDT
should be at least 256 bytes in size in order to hold
the descriptors for the 32 Intel Reserved Interrupts.
Every interrupt used by a system must have an entry
in the IDT. The IDT entries are referenced by INT
instructions, ex1ernal interrupt vectors, and excep­
tions.

DESCRIPTORS

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re­
gion of linear address space. These attributes in­
clude the 32-bit base linear address of the segment,
the 20-bit length and granularity of the segment, the
protection level, read, write or execute privileges,
the default size of the operands (16-bit or 32-bit),
and the type of segment. All of the attribute informa­
tion about a segment is contained in 12 bits in the
segment descriptor. Figure 4.4 shows the general
format of a descriptor. All segments on the 80386SX
have three attribute fields in common: the P bit, the
DPL bit, and the S bit. The P (Present) Bit is 1 if the

o BYTE
ADDRESS

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 o

BASE 31 ... 24 G D 0 0
LIMIT

P DPL S TYPE A
BASE

19 ... 16
I I I

23 ... 16
+4

BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit I ~ Present 0 ~ Not Present
DPL Descriptor Privilege Level 0-3
S Segment Descriptor 0 ~ System Descriptor I ~ Code or Data Segment Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity Bit I ~ Segment length is page granular 0 ~ Segment length is byte granular
D Default Operation Size (recognized in code segment descriptors only) I ~ 32-bit segment 0 ~ 16-bit segment
o Bit must be zero (0) for compatibility with future processors

Figure 4.4. Segment Descriptors

25

386SXTM MICROPROCESSOR

segment is loaded in physical memory. If P = 0 then
any attempt to access this segment causes a not
present exception (exception 11). The Descriptor
Privilege Level, DPL, is a two bit field which specifies
the protection level, 0-3, associated with a seg­
ment.

given segment is a system segment or a code or
data segment. If the S bit is 1 then the segment is
either a code or data segment; if it is 0 then the
segment is a system segment.

Code and Data Descriptors (5= 1)

The 80386SX has two main categories of segments:
system segments and non-system segments (for
code and data). The segment bit, S, determines if a

Figure 4.5 shows the general format of a code and
data descriptor and Table 4.1 illustrates how the bits
in the Access Right Byte are interpreted.

31 o
SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 o

LIMIT
ACCESS BASE

BASE 31 ... 24 G D 0 0
19 ... 16

RIGHTS
23 ... 16

BYTE
+4

DIB 1 = Defaul1 Ins1ruc1ions Attribu1es are 32·Bi1s
0= Default Instruction Attributes are 16·Bits

G Granularity Bit 1 = Segment length IS page granular
0= Segment length is by1e granular

o Bit must be zero (0) for compatibility with future processors

Figure 4.5. Code and Data Descriptors

Table 4.1. Access Rights Byte Definition for Code and Data Descriptors

Bit
Name Function

Position

7 Present (P) P = 1 Segment is mapped into physical memory.
P=O No mapping to physical memory exists, base and limt are

not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.

Level (DPL)
4 Segment Descrip- S = 1 Code or Data (includes stacks) segment descriptor

tor (S) S=O System Segment Descriptor or Gate Descriptor

3 Executable (E) E=O Descriptor type is data segment:

}
If

2 Expansion Direc- ED = 0 Expand up segment, offsets must be ,,;: limit. Data
tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment

1 Writeable (W) W = 0 Data segment may not be written into. (S = 1,
W = 1 Data segment may be written into. E = 0)

3 Executable (E) E = 1 Descriptor type is code segment: If
2 Conforming (C) C=1 Code segment may only be executed

} ~d. when CPL :?: DPL and CPL Segment
remains unchanged. (S = 1,

1 Readable (R) R=O Code segment may not be read. E = 1)
R = 1 Code segment may be read.

0 Accessed (A) A=O Segment has not been accessed.
A=1 Segment selector has been loaded into segment register

or used by selector test instructions.

26

inter 386SXTM MICROPROCESSOR

31 16 0

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0

BASE31 ... 24I G I 0 I 0 I 0 11;~~~~6 pi DPL I 0 I TYPE I BASE
23 ... 16

+4

Type Defines Type Defines

0 Invalid 8 Invalid
1 Available 286 TSS 9 Available 80386SX TSS
2 LDT A Undefined (Intel Reserved)
3 Busy 286 TSS B Busy 80386SX TSS
4 286 Call Gate C 80386SX Call Gate
5 Task Gate (for 286 or 80386SX Task) D Undefined (Intel Reserved)
6 286 Interrupt Gate E 80386SX Interrupt Gate
7 286 Trap Gate F 80386SX Trap Gate

Figure 4.6. System Descriptors

Code and data segments have several descriptor
fields in common. The accessed bit, A, is set when­
ever the processor accesses a descriptor. The gran­
ularity bit, G, specifies if a segment length is byte­
granular or page-granular.

System Descriptor Formats (S = 0)

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 4.6
shows the general format of system segment de­
scriptors, and the various types of system segments.
80386SX system descriptors (which are the same as
386 system descriptors) contain a 32-bit base linear
address and a 20-bit segment limit. 80286 system
descriptors have a 24-bit base address and a 16-bit
segment limit. 80286 system descriptors are identi­
fied by the upper 16 bits being all zero.

Differences Between 80386SX and 286
Descriptors

In order to provide operating system compatibility
between the 80286 and the 80386SX, the 80386SX
supports all of the 80286 segment descriptors. The
80286 system segment descriptors contain a 24-bit
base address and 16-bit limit, while the 80386SX
system segment descriptors have a 32-bit base ad­
dress, a 20-bit limit field, and a granularity bit. The
word count field specifies the number of 16-bit quan­
tities to copy for 286 call gates and 32-bit quantities
for 80386SX call gates.

27

Selector Fields

A selector in Protected Mode has three fields: Local
or Global Descriptor Table indicator (TI), Descriptor
Entry Index (Index), and Requestor (the selector's)
Privilege Level (RPL) as shown in Figure 4.7. The TI
bit selects either the Global Descriptor Table or the
Local Descriptor Table. The Index selects one of 8k
descriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector's
privilege attributes.

Segment Descriptor Cache

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg­
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg­
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor's val­
ue.

386SXTM MICROPROCESSOR

SELECTOR

15 4 3 2 1 0

SEGMENT
REGISTER 1010 ---- 010 1111~IIR~L I . .

INDEX TABLE
INDICATOR

N

6

5

4

~
2

1

0

TI-l

•

DESCRIPTOR

LOCAL
DESCRIPTOR

TABLE

N

DESCRIPTOR
NUMBER

6

5

4

3

2

1

0

TI=O!

NULL

GLOBAL
DESCRIPTOR

TABLE
240187-12

Figure 4.7. Example Descriptor Selection

4.3 Protection

The 80386SX has four levels of protection which are
optimized to support a multi-tasking operating sys­
tem and to isolate and protect user programs from
each other and the operating system. The privilege
levels control the use of privileged instructions, I/O
instructions, and access to segments and segment
descriptors. The 80386SX also offers an additional
type of protection on a page basis when paging is
enabled.

The four-level hierarchical privilege system is an ex­
tension of the user/supervisor privilege mode com­
monly used by minicomputers. The user/supervisor
mode is fully supported by the 80386SX paging
mechanism. The privilege levels (PL) are numbered
o through 3. Level 0 is the most privileged level.

RULES OF PRIVILEGE

The 80386SX controls access to both data and pro­
cedures between levels of a task, according to the
following rules.

- Data stored in a segment with privilege level p
can be accessed only by code executing at a
privilege level at least as privileged as p.

- A code segment/procedure with privilege level p
can only be called by a task executing at the
same or a lesser privilege level than p.

28

PRIVILEGE LEVELS

At any point in time, a task on the 80386SX always
executes at one of the four privilege levels. The Cur­
rent Privilege Level (CPL) specifies what the task's
privilege level is. A task's CPL may only be changed
by control transfers through gate descriptors to a
code segment with a different privilege level. Thus,
an application program running at PL = 3 may call an
operating system routine at PL = 1 (via a gate) which
would cause the task's CPL to be set to 1 until the
operating system routine was finished.

Selector Privilege (RPL)

The privilege level of a selector is specified by the
RPL field. The selector's RPL is only used to estab­
lish a less trusted privilege level than the current
privilege level of the task for the use of a segment.
This level is called the task's effective privilege level
(EPL). The EPL is defined as being the least privi­
leged (numerically larger) level of a task's CPL and a
selector's RPL. The RPL is most commonly used to
verify that pointers passed to an operating system
procedure do not access data that is of higher privi­
lege than the procedure that originated the pointer.
Since the originator of a selector can specify any
RPL value, the Adjust RPL (ARPL) instruction is pro­
vided to force the RPL bits to the originator's CPL.

inter 386SXTM MICROPROCESSOR

Table 4.2. Descriptor Types Used for Control Transfer

Control Transfer Types

Intersegment within the same privilege level

Intersegment to the same or higher privilege level
Interrupt within task may change CPL

Intersegment to a lower privilege level
(changes task CPL)

Task Switch

<NT (Nested Task bit of flag register) = 0
«NT (Nested Task bit of flag register) = 1

1/0 Privilege

The 1/0 privilege level (IOPL) lets the operating sys­
tem code executing at CPL = 0 define the least privi­
leged level at which I/O instructions can be used. An
exception 13 (General Protection Violation) is gener­
ated if an I/O instruction is attempted when the CPL
of the task is less privileged then the 10PL. The
10PL is stored in bits 13 and 14 of the EFLAGS reg­
ister. The following instructions cause an exception
13 if the CPL is greater than 10PL: IN, INS, OUT,
OUTS, STI, CLI, LOCK prefix.

Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Oeter­
mining the ability of a task to access a segment in­
volves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL,
RPL, and OPL as described above.

Any time an instruction loads a data segment regis­
ter (OS, ES, FS, GS) the 80386SX makes protection
validation checks. Selectors loaded in the OS, ES,
FS, GS registers must refer only to data segment or
readable code segments.

Operation Types
Descriptor Descriptor

Referenced Table

JMP, CALL RET, IRET' Code Segment GOT/LOT

CALL Call Gate GOT/LOT

Interrupt instruction Trap or lOT
Exception External Interrupt
Interrupt Gate

RET,IRET' Code Segment GOT/LOT

CALL, JMP Task State GOT
Segment

CALL, JMP Task Gate GOT/LOT

IRET" Task Gate lOT
Interrupt instruction,
Exception, External
Interrupt

29

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL, an exception 13 (gen­
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In­
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg­
ments. The OPL and RPL must equal the CPL of all
other descriptor types or a privilege level violation
will cause an exception 13. A stack not present fault
causes an exception 12.

PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 4.2.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only by
control transfers, using gates, task switches, and in­
terrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13.

inter 386SXTM MICROPROCESSOR

31 16 15

0000000000000000 I BACK LINK

ESPO

0000000000000000 I SSO

ESP1

0000000000000000 I SSl

ESP2

0000000000000000 I SS2

CR3

EIP

EFLAGS

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

0000000000000000 ES

0000000000000000 CS

0000000000000000 SS

0000000000000000 OS

0000000000000000 FS

0000000000000000 GS

0000000000000000 LOT

BILMAP _OFFSET(15:0) 0000000000000000 1T
AVAILABLE ----SYSTEM STATUS, ETC.

r IN 80386SX TSS

31 24 23 16 15 8 7 0

63 56 55 48 47 40 39 32

95 88 87 80 79 72 71 64

.. -------------. 96
0 0
0 ACCESS I TSS t+ -0 RIGHTS LIMIT
0 0
0 0

0 BASE 0

0 0 I/O PERMISSION BITMAP
0 0

: 31 PROGRAM 0:
65407 (ONE BIT PER BYTE I/O

0 INVISIBLE 0 65439 PORT. BITMAP MAY BE

._-----------_ .. TRUNCATED USING TSS LIMIT.)

TASK REGISTER 65471 I

1- 65503 I 65472
TR SELECTOR

65535 I 65504

15 0 "FFH"

00 J TSS BASE

4

8

C

10

14

18

1C

20

24

28

2C

30

34

38

3C

40

44

48

4C

50

54

58

5C

60

STACKS
FOR
CPL 0,1,2

C
T
S

URRENT
ASK
TATE

~. TR

r

BUG
AP BIT

BILMAP

OFFSET

OFFSET

+ C

+ 10

OFFSET +

OFFSET +

OFFSET +

OFFSET +

OFFSET +

OFFSET +

1 FEC

1 FFO

1 FF4

1 FF8

1 FFC

2000

+- TSS LIMIT = OFFS ET + 2000H

31

Type = 9. Available 803868X T88.
Type = B: Busy 803868X T88.

80386SX TSS DESCRIPTOR (IN GOT)

SEGMENT BASE 15 .•• 0 SEGMENT LIMIT 15 •• 0

BASE 31 241 G 11 01 0 1 LIMIT •• 19.16 pID~LIOIITYrEI 1

Figure 4.8. 80386SX TSS and TSS Registers

30

0

BASE
23 •• 16 240187-13

inter 386SXTM MICROPROCESSOR

313029282726252423222120191817161514131211109876543210

31

63

95

127

....

1 1 1 1 0 1 1 000 o 0 1 1 1 1

o 0 1 000 1 1 1 1 o 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

o 0 0 0 0 000 o 0 0 0 0 0 0 0

etc.

0 1 001 1 o 0 000 0 0 0 1 1

1 1 1 1 1 1 o 0 1 1 1 1 1 o 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

o 0 0 0 0 0 0 0 o 0 0 0 000 0

1 1 1 1 1 1 1 1

~
240187-14

1/0 Ports Accessible: 2 - 9,12,13,15,20 - 24,27,33,34,40,41,48,50,52,53,58 - 60,62,63,96 -127

Figure 4.9. Sample 1/0 Permission Bit Map

CALL GATES

Gates provide protected indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust­
ed procedures.

TASK SWITCHING

A very important attribute of any multi-tasking/multi­
user operating system is its ability to rapidly switch
between tasks or processes. The 80386SX directly
supports this operation by providing a task switch
instruction in hardware. The 80386SX task switch
operation saves the entire state of the machine (all
of the registers, address space, and a link to the
previous task), loads a new execution state, per­
forms protection checks, and commences execution
in the new task. Like transfer of control by gates, the
task switch operation is invoked by executing an in­
ter-segment JMP or CALL instruction which refers to
a Task State Segment (TSS), or a task gate descrip­
tor in the GOT or LOT. An INT n instruction, excep­
tion, trap, or external interrupt may also invoke the
task switch operation if there is a task gate descrip­
tor in the associated lOT descriptor slot.

The TSS descriptor points to a segment (see Figure
4.8) containing the entire 80386SX execution state.
A task gate descriptor contains a TSS selector. The
80386SX supports both 286 and 80386SX-type
TSSs. The limit of a 80386SX TSS must be greater
than 64H (2BH for a 286 TSS), and can be as large
as 16 megabytes. In the additional TSS space, the
operating system is free to store additional informa­
tion such as the reason the task is inactive, time the
task has spent running, or open files belonging to
the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
80386SX called the Task State Segment Register
(TR). This register contains a selector referring to
the task state segment descriptor that defines the
current TSS. A hidden base and limit register associ­
ated with TSS descriptor are loaded whenever TR is
loaded with a new selector. Returning from a task is
accomplished by the IRET instruction. When IRET is
executed, control is returned to the task which was

31

interrupted. The currently executing task's state is
saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status
word (CRO) give information about the state of a
task which is useful to the operating system. The
Nested Task bit, NT, controls the function of the
IRET instruction. If NT=O the IRET instruction per­
forms the regular return. If NT= 1 IRET performs a
task switch operation back to the previous task. The
NT bit is set or reset in the following fashion:

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and
the back link field of the new TSS set to the old
TSS selector. The NT bit of the new task is set
by CALL or INT initiated task switches. An in­
terrupt that does not cause a task switch will
clear NT (The NT bit will be restored after exe­
cution of the interrupt handler). NT may also be
set or cleared by POPF or IRET instructions.

The 80386SX task state segment is marked busy by
changing the descriptor type field from TYPE 9 to
TYPE OBH. A 286 TSS is marked busy by changing
the descriptor type field from TYPE 1 to TYPE 3.
Use of a selector that references a busy task state
segment causes an exception 13.

The VM (Virtual Mode) bit is used to indicate if a task
is a virtual 8086 task. If VM = 1 then the tasks will
use the Real Mode addressing mechanism. The vir­
tual 8086 environment is only entered and exited by
a task switch.

The coprocessor's state is not automatically saved
when a task switch occurs. The Task Switched Bit,
TS, in the CRO register helps deal with the coproces­
sor's state in a multi-tasking environment. Whenever
the 80386SX switches task, it sets the TS bit. The
80386SX detects the first use of a processor exten­
sion instruction after a task switch and causes the
processor extension not available exception 7. The
exception handler for exception 7 may then decide
whether to save the state of the coprocessor.

The T bit in the 80386SX TSS indicates that the
processor should generate a debug exception when
switching to a task. If T = 1 then upon entry to a new
task a debug exception 1 will be generated.

inter 386SX™ MICROPROCESSOR

INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Since the 80386SX begins executing in Real Mode
immediately after RESET it is necessary to initialize
the system tables and registers with the appropriate
values. The GDT and IDT registers must refer to a
valid GDT and IDT. The IDT should be at least 256
bytes long, and the GDT must contain descriptors
for the initial code and data segments.

Protected Mode is enabled by loading CRO with PE
bit set. This can be accomplished by using the MOV
CRO, RIM instruction. After enabling Protected
Mode, the next instruction should execute an inter­
segment JMP to load the CS register and flush the
instruction decode queue. The final step is to load all
of the data segment registers with the initial selector
values.

An alternate approach to entering Protected Mode is
to use the built in task-switch to load all of the regis­
ters. In this case the GDT would contain two TSS
descriptors in addition to the code and data descrip­
tors needed for the first task. The first JMP instruc­
tion in Protected Mode would jump to the TSS caus­
ing a task switch and loading all of the registers with
the values stored in the TSS. The Task State Seg­
ment Register should be initialized to point to a valid
TSS descriptor.

4.4 Paging

Paging is another type of memory management use­
ful for virtual memory multi-tasking operating sys­
tems. Unlike segmentation, which modularizes pro­
grams and data into variable length segments, pag­
ing divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical
structure of a program. While segment selectors can
be considered the logical 'name' of a program mod­
ule or data structure, a page most likely corresponds
to only a portion of a module or data structure.

PAGE ORGANIZATION

The 80386SX uses two levels of tables to translate
the linear address (from the segmentation unit) into
a physical address. There are three components to
the paging mechanism of the 80386SX: the page
directory, the page tables, and the page itself (page
frame). All memory-resident elements of the
80386SX paging mechanism are the same size,
namely 4K bytes. A uniform size for all of the ele­
ments simplifies memory allocation and reallocation
schemes, since there is no problem with memory
fragmentation. Figure 4.10 shows how the paging
mechanism works.

TWO LEVEL PAGING SCHEME

31 22 12 0

• DIRECTORY I TABLE I OFFSET I USER
LINEAR

10}
I

MEMORY
ADDRESS 12

10
OFFFFFFH

31
ADDRESS

386 'r 31 'f 31 0

CRO I

t f-+ CRl

o

PAGE TABLE
CR2

CR3 ROOT
DIRECTORY

CONTROL REGISTERS

Figure 4.10. Paging Mechanism

31 12 11 10 9 8 7 6 5 4

System
PAGE TABLE ADDRESS 31 .. 12 Software 0 0 D A 0

Defineable

Figure 4.11. Page Directory Entry (POints to Page Table)

32

240187-15

3 2 1 0

U R
0 - - P

S W

intJ 386SX™ MICROPROCESSOR

31 12 11 10 9 8 7 6 5 4 3 2 1 0

System U R
PAGE FRAME ADDRESS 31 .. 12 Software 0 0 D A 0 0 - - P

Defineable S W

Figure 4.12. Page Table Entry (Points to Page)

Page Fault Register

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
Page Fault detected.

Page Descriptor Base Register

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory (this value is truncated to a 24-bit
valu~ associated with the 80386SX's 16 megabyte
physical memory limitation). The lower 12 bits of
CR3.are always zero to ensure that the Page Direc­
tory IS always page aligned. Loading it with a MOV
eR3, reg instruction causes the page table entry
cache to be flushed, as will a task switch through a
TSS which changes the value of CRO.

Page Directory

The Page Directory is 4k bytes long and allows up to
1024 page directory entries. Each page directory en­
try contains information about the page table and
the address of the next level of tables, the Page
Tables .. T~e contents of a Page Directory Entry are
shown In figure 4.11. The upper 10 bits of the linear
address (A31-A22) are used as an index to select
the correct Page Directory Entry.

The page table address contains the upper 20 bits
of a 32-bit physical address that is used as the base
address for the next set of tables, the page tables.
The lower 12 bits of the page table address are zero
so that the page table addresses appear on 4 kbyte
boundaries. For an 80386 system the upper 20 bits
will select one of 220 page tables, but for an
80386SX system the upper 20 bits only select one of
212 page tables. Again, this is because the 80386SX
is Ii~ited to a 24-bit physical address and the upper
8 bits (A24-A31) are truncated when the address is
output on its 24 address pins.

Page Tables

Each Page Table is 4K bytes long and allows up to
1024 Page table Entries. Each page table entry con­
tains information about the Page Frame and its ad-

33

dress. The contents of a Page Table Entry are
shown in figure 4.12. The middle 10 bits of the linear
address (A21-A12) are used as an index to select
the correct Page Table Entry.

The Page Frame Address contains the upper 20 bits
of a 32-bit physical address that is used as the base
address for the Page Frame. The lower 12 bits of the
Page Frame Address are zero so that the Page
Frame addresses appear on 4 kbyte boundaries. For
an 80386 system the upper 20 bits will select one of
220 Page Frames, but for an 80386SX system the
upper 20 bits only select one of 212 Page Frames.
Again, this is because the 80386SX is limited to a
24-bit physical address space and the upper 8 bits
(A24-A31) are truncated when the address is output
on its 24 address pins.

Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit indicates if a Page Directory or Page
Table entry can be used in address translation. If
P = 1, the entry can be used for address translation.
If P=O, the entry cannot be used for translation. All
of the other bits are available for use by the soft­
ware. For example, the remaining 31 bits could be
used to indicate where on disk the page is stored.

The A (Accessed) bit is set by the 80386SX for both
types of entries before a read or write access occurs
~o an address covered by the entry. The D (Dirty) bit
IS set to 1 before a write to an address covered by
that page table entry occurs. The D bit is undefined
for Page Directory Entries. When the P, A and D bits
are updated by the 80386SX, the processor gener­
ates a Read- Modify-Write cycle which locks the bus
~nd prevents conflicts with other processors or pe­
npherals. Software which modifies these bits should
use the LOCK prefix to ensure the integrity of the
page tables in mUlti-master systems.

The 3 bits marked system software definable in Fig­
. ures 4.11 and Figure 4.12 are software definable.

System software writers are free to use these bits
for whatever purpose they wish.

inter 386SXTM MICROPROCESSOR

PAGE LEVEL PROTECTION (R/W, U/S BITS)

The 80386SX provides a set of protection attributes
for paging systems. The paging mechanism distin­
guishes between two levels of protection: User,
which corresponds to level 3 of the segmentation
based protection, and supervisor which encompass­
es all of the other protection levels (0, 1, 2). Pro­
grams executing at Level 0, 1 or 2 bypass the page
protection, although segmentation-based protection
is still enforced by the hardware.

The UlS and R/W bits are used to provide User/Su­
pervisor and Read/Write protection for individual
pages or for all pages covered by a Page Table Di­
rectory Entry. The U/S and R/W bits in the second
level Page Table Entry apply only to the page de­
scribed by that entry. While the U/S and R/W bits in
the first level Page Directory Table apply to all pages
described by the page table pointed to by that direc­
tory entry. The U/S and R/W bits for a given page
are obtained by taking the most restrictive of the U/
Sand R/W from the Page Directory Table Entries
and using these bits to address the page.

TRANSLATION LOOKASIDE BUFFER

The 80386SX paging hardware is designed to sup­
port demand paged virtual memory systems. Howev­
er, performance would degrade substantially if the
processor was required to access two levels of ta­
bles for every memory reference. To solve this prob­
lem, the 80386SX keeps a cache of the most recent­
ly accessed pages, this cache is called the Transla­
tion Lookaside Buffer (TLB). The TLB is a four-way
set associative 32-entry page table cache. It auto­
matically keeps the most commonly used page table
entries in the processor. The 32-entry TLB coupled
with a 4K page size results in coverage of 128K
bytes of memory addresses. For many common mul­
ti-tasking systems, the TLB will have a hit rate of
greater than 98%. This means that the processor
will only have to access the two-level page structure
for less than 2% of all memory references.

PAGING OPERATION

The paging hardware operates in the following fash­
ion. The paging unit hardware receives a 32-bit lin­
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en­
tries in the TLB to determine if there is a match. If
there is a match (i.e. a TLB hit), then the 24-bit phys­
ical address is calculated and is placed on the ad­
dress bus.

If the page table entry is not in the TLB, the
80386SX will read the appropriate Page Directory
Entry. If P = 1 on the Page Directory Entry, indicating
that the page table is in memory, then the 80386SX
will read the appropriate Page Table Entry and set
the Access bit. If P=1 on the Page Table Entry,

34

indicating that the page is in memory, the 80386SX
will update the Access and Dirty bits as needed and
fetch the operand. The upper 20 bits of the linear
address, read from the page table, will be stored in
the TLB for future accesses. If P = 0 for either the
Page Directory Entry or the Page Table Entry, then
the processor will generate a page fault Exception
14.

The processor will also generate a Page Fault (Ex­
ception 14) if the memory reference violated the
page protection attributes. CR2 will hold the linear
address which caused the page fault. Since Excep­
tion 14 is classified as a fault, CS:EIP will point to the
instruction causing the page-fault. The 16-bit error
code pushed as part of the page fault handler will
contain status bits which indicate the cause of the
page fault.

The 16-bit error code is used by the operating sys­
tem to determine how to handle the Page Fault. Fig­
ure 4.13 shows the format of the Page Fault error
code and the interpretation of the bits. Even though
the bits in the error code (U/S, W/R, and P) have
similar names as the bits in the Page Directory/Ta­
ble Entries, the interpretation of the error code bits is
different. Figure 4.14 indicates what type of access
caused the page fault.

15 3 2 1 0

lulululululululululululululul~I~lpl
Figure 4.13. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0)

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W/R = 0) or a Write
(W/R = 1)

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1)

U = Undefined

U/S W/R Access Type

0 0 Supervisor· Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

"Descriptor table access will fault with U/S = 0, even if
the program is executing at level 3.
Figure 4.14. Type of Access Causing Page Fault

inter 386SXTM MICROPROCESSOR

OPERATING SYSTEM RESPONSIBILITIES

When the operating system enters or exits paging
mode (by setting or resetting bit 31 in the CRO regis­
ter) a short JMP must be executed to flush the
80386SX's prefetch queue. This ensures that all in­
structions executed after the address mode change
will generate correct addresses.

The 80386SX takes care of the page address trans­
lation process, relieving the burden from an operat­
ing system in a demand-paged system. The operat­
ing system is responsible for setting up the initial
page tables and handling any page faults. The oper­
ating system also is required to invalidate (Le. flush)
the TLB when any changes are made to any of the
page table entries. The operating system must re­
load CR3 to cause the TLB to be flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper­
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
systems sets the P (Present) bit of page table entry
to zero. The TLB must be flushed by reloading CR3.
Operating systems may want to take advantage of
the fact that CR3 is stored as part of a TSS, to give
every task or group of tasks its own set of page
tables.

4.5 Virtual 8086 Environment

The 80386SX allows the execution of 8086 applica­
tion programs in both Real Mode and in the Virtual
8086 Mode. The Virtual 8086 Mode allows the exe­
cution of 8086 applications, while still allowing the
system designer to take full advantage of the
80386SX protection mechanism.

VIRTUAL 8086 ADDRESSING MECHANISM

One of the major differences between 80386SX
Real and Protected modes is how the segment se­
lectors are interpreted. When the processor is exe­
cuting in Virtual 8086 Mode, the segment registers
are used in a fashion identical to Real Mode. The
contents of the segment register are shifted left 4
bits and added to the offset to form the segment
base linear address.

The 80386SX allows the operating system to specify
which programs use the 8086 address mechanism

35

and which programs use Protected Mode address­
ing on a per task basis. Through the use of paging,
the one megabyte address space of the Virtual
Mode task can be mapped to anywhere in the 4 gig­
abyte linear address space of the 80386SX. Like
Real Mode, Virtual Mode addresses that exceed one
megabyte will cause an exception 13. However,
these restrictions should not prove to be important,
because most tasks running in Virtual 8086 Mode
will simply be existing 8086 application programs.

PAGING IN VIRTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec­
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo­
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad­
dress produced by a Virtual Mode program to be
divided into as many as 256 pages. Each one of the
pages can be located anywhere within the maximum
16 megabyte physical address space of the
80386SX. In addition, since CR3 (the Page Directory
Base Register) is loaded by a task switch, each Vir­
tual Mode task can use a different mapping scheme
to map pages to different physical locations. Finally,
the paging hardware allows the sharing of the 8086
operating system code between multiple 8086 appli­
cations.

PROTECTION AND 1/0 PERMISSION BIT MAP

All Virtual Mode programs execute at privilege level
3. As such, Virtual Mode programs are subject to all
of the protection checks defined in Protected Mode.
This is different than Real Mode, which implicitly is
executing at privilege level O. Thus, an attempt to
execute a privileged instruction in Virtual Mode will
cause an exception 13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level O. Attempting to
execute these instructions in Virtual 8086 Mode (or
anytime CPL?:O) causes an exception 13 fault:

LlDT; MOV DRn,REG; MOV reg,DRn;
LGDT; MOV TRn,reg; MOV reg,TRn;
LMSW; MOV CRn,reg; MOV reg,CRn;

CLTS;
HLT;

386SXTM MICROPROCESSOR

Several instructions, particularly those applying to
the multitasking and the protection model, are avail­
able only in Protected Mode. Therefore, attempting
to execute the following instructions in Real Mode or
in Virtual BOB6 Mode generates an exception 6 fault:

LTR;
LLOf;
LAR;
LSL;
ARPL;

STR;
SLOT;
VERR;
VERW;

The instructions which are 10PL sensitive in Protect­
ed Mode are:

IN; STI;
OUT; CLI
INS;
OUTS;
REP INS;
REP OUTS;

In Virtual 80B6 Mode the following instructions are
10PL -sensitive:

INTn; STI;
PUSHF; CLI;
POPF; IRET;

The PUSHF, POPF, and IRET instructions are 10PL­
sensitive in Virtual BOB6 Mode only. This provision
allows the IF flag to be virtualized to the virtual 80B6
Mode program. The INT n software interrupt instruc­
tion is also 10PL-sensitive in Virtual B086 mode.
Note that the INT 3, INTO, and BOUND instructions
are not 10PL-sensitive in Virtual 80B6 Mode.

The I/O instructions that directly refer to addresses
in the processor's I/O space are IN, INS, OUT, and
OUTS. The B03B6SX has the ability to selectively
trap references to specific I/O addresses. The struc­
ture that enables selective trapping is the //0 Per­
mission Bit Map in the TSS segment (see Figures
4.B and 4.9). The I/O permission map is a bit vector.
The size of the map and its location in the TSS seg­
ment are variable. The processor locates the I/O
permission map by means of the 1/0 map base field
in the fixed portion of the TSS. The 1/0 map base
field is 16 bits wide and contains the offset of the
beginning of the I/O permission map. The upper limit
of the I/O permission map is the same as the limit of
the TSS segment.

In protected mode when an I/O instruction (IN, INS,
OUT or OUTS) is encountered, the processor first
checks whether CPL:s; 10PL. If this condition is true,
the I/O operation may proceed. If not true, the proc­
essor checks the I/O permission map (in Virtual
8086 Mode, the processor consults the map without
regard for the 10PL).

36

Each bit in the map corresponds to an I/O port byte
address; for example, the bit for port 41 is found at
I/O map base + 5, bit offset 1. The processor tests
all the bits that correspond to the I/O addresses
spanned by an I/O operation; for example, a double
word operation tests four bits corresponding to four
adjacent byte addresses. If any tested bit is set, the
processor signals a general protection exception. If
all the tested bits are zero, the I/O operations may
proceed.

It is not necessary for the I/O permission map to
represent all the I/O addresses. I/O addresses not
spanned by the map are treated as if they had one­
bits in the map. The 1/0 map base should be at
least one byte less than the TSS limit, the last byte
beyond the I/O mapping information must contain
all 1 'so

Because the I/O permission map is in the TSS seg­
ment, different tasks can have different maps. Thus,
the operating system can allocate ports to a task by
changing the I/O permission map in the task's TSS.

IMPORTANT IMPLEMENTATION NOTE: Beyond
the last byte of I/O mapping information in the I/O
permission bit map must be a byte containing all 1 'so
The byte of all 1 's must be within the limit of the
B0386SX's TSS segment (see Figure 4.B).

Interrupt Handling

In order to fully support the emulation of an BOB6
machine, interrupts in Virtual BOB6 Mode are han­
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi­
lege change back to the host 803B6SX operating
system. The B03B6SX operating system determines
if the interrupt comes from a Protected Mode appli­
cation or from a Virtual Mode program by examining
the VM bit in the EFLAGS image stored on the
stack.

When a Virtual Mode program is interrupted and ex­
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The B0386SX operating system in turn handles the
exception or interrupt and then returns control to the
80B6 program. The 80386SX operating system may
choose to let the B086 operating system handle the
interrupt or it may emulate the function of the inter­
rupt handler. For example, many 80B6 operating
system calls are accessed by PUSHing parameters
on the stack, and then executing an INT n instruc­
tion. If the 10PL is set to 0 then all INT n instructions
will be intercepted by the 803B6SX operating sys­
tem.

intJ 386SX™ MICROPROCESSOR

An 80386SX operating system can provide a Virtual
8086 Environment which is totally transparent to the
application software by intercepting and then emu­
lating 8086 operating system's calls, and intercept­
ing IN and OUT instructions.

Entering and Leaving Virtual 8086 Mode

Virtual 8086 mode is entered by executing a 32-bit
IRET instruction at CPL = 0 where the stack has a 1
in the VM bit of its EFLAGS image, or a Task Switch
(at any CPL) to a 80386SX task whose 80386SX
TSS has a EFLAGS image containing a 1 in the VM
bit position while the processor is executing in the
Protected Mode. POPF does not affect the VM bit
but a PUSHF always pushes a 0 in the VM bit.

The transition out of virtual 8086 mode to 80386SX
protected mode occurs only on receipt of. an inter­
rupt or exception. In Virtual 8086 mode, all Interrupts
and exceptions vector through the protected mode
lOT and enter an interrupt handler in protected
80386SX mode. As part of the interrupt processing
the VM bit is cleared.

Because the matching IRET must occur from level 0,
Interrupt or Trap Gates used to field an interrupt or
exception out of Virtual 8086 mode must perform an
inter-level interrupt only to level o. Interrupt or Trap
Gates through conforming segments, or through
segments with OPL>O, will raise a GP fault with the
CS selector as the error code.

Task Switches To/From Virtual 8086 Mode

Tasks which can execute in virtual 8086 mode must
be described by a TSS with the 80386SX format
(type 9 or 11 descriptor). A task switch out of virtual
8086 mode will operate exactly the same as any oth­
er task switch out of a task with a 80386SX TSS. All
of the programmer visible state, including the
EFLAGS register with the VM bit set to 1, is stored in
the TSS. The segment registers in the TSS will con­
tain 8086 segment base values rather than selec­
tors.

A task switch into a task described by a 80386SX
TSS will have an additional check to determine if the
incoming task should be resumed in virtual 8086
mode. Tasks described by 286 format TSSs cannot
be resumed in virtual 8086 mode, so no check is
required there (the FLAGS image in 286 format TSS
has only the low order 16 FLAGS bits). Before load­
ing the segment register images from a 80386SX
TSS the FLAGS image is loaded, so that the seg­
ment registers are loaded from the TSS image as
8086 segment base values. The task is now ready to
resume in virtual 8086 mode.

37

Transitions Through Trap and Interrupt Gates,
andlRET

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an int~rrupt, ~nd
to enter as part of executing an IRET Instruction.
The transition out must use a 80386SX Trap Gate
(Type 14), or 80386SX Interrupt Gate (Type 15),
which must point to a non-conforming level 0 seg­
ment (OPL = 0) in order to permit the trap handler to
IRET back to the Virtual 8086 program. The Gate
must point to a non-conforming level 0 segment. to
perform a level switch to level 0 so that the matching
IRET can change the VM bit. 80386SX gates must
be used since 286 gates save only the low 16 bits of
the EFLAGS register (the VM bit will not be saved).
Also the 16-bit IRET used to terminate the 286 in­
terrupt handler will pop only the lowe~ 16 bits fr?m
FLAGS and will not affect the VM bit. The action
taken f~r a 80386SX Trap or Interrupt gate if an in­
terrupt occurs while the task is executing in virtual
8086 mode is given by the following sequence:

1. Save the FLAGS register in a temp to push later.
Turn off the VM, TF, and IF bits.

2. Interrupt and Trap gates must perform a level
switch from 3 (where the Virtual 8086 Mode pro­
gram executes) to level 0 (so IRET can return).

3. Push the 8086 segment register values onto the
new stack, in this order: GS, FS, OS, ES. These
are pushed as 32-bit quantities. Then load these 4
registers with null selectors (0).

4. Push the old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits), then
pushing the 32-bit ESP register saved above.

5. Push the 32-bit EFLAGS register saved in step 1.

6. Push the old 8086 instruction onto the new stack
by pushing the CS register (as 32-bits), then push­
ing the 32-bit EIP register.

7. Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected 80386SX mode.

The transition out of V86 mode performs a level
change and stack switch, in addition to changing
back to protected mode. Also all of the 8086 seg­
ment register images are stored on the stack (be­
hind the SS:ESP image), and then loaded with null
(0) selectors before entering the interrupt handler.
This will permit the handler to safely save and re­
store the OS, ES, FS, and GS registers as 286 selec­
tors. This is needed so that interrupt handlers which
don't care about the mode of the interrupted pro­
gram can use the same prologue and epilogue code
for state saving regardless of whether or not ~ 'na­
tive' mode or Virtual 8086 Mode program was inter­
rupted. Restoring null selectors to these registers

386SX™ MICROPROCESSOR

before executing the IRET will cause a trap in the
interrupt handler. Interrupt routines which expect or
return values in the segment registers will have to
obtain/return values from the 8086 register images
pushed onto the new stack. They will need to know
the mode of the interrupted program in order to
know where to find/return segment registers, and
also to know how to interpret segment register val­
ues.

The IRET instruction will perform the inverse of the
above sequence. Only the extended 80386SX IRET
instruction (operand size=32) can be used and
must be executed at level 0 to change the VM bit to
1.

1. If the NT bit in the FLAGS register is on, an inter­
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the in­
terrupted task which is to be resumed. Otherwise,
continue with the following sequence:

2. Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value ac­
tive in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VM = 0, this CS load is done as a protected mode
segment load. If VM = 1, this will be done as an
8086 segment load.

4. Increment the ESP register by 4 to bypass the
FLAGS image which was 'popped' in step 1.

5. If VM = 1, load segment registers ES, OS, FS, and
GS from memory locations SS:[ESP+8],
SS:[ESP+ 12], SS:[ESP+ 16], and
SS: [ESP = 20], respectively, where the new value
of ESP stored in step 4 is used. Since VM = 1 ,
these are done as 8086 segment register loads.

Else if VM = 0, check that the selectors in ES, OS,
FS, and GS are valid in the interrupted routine.
Null out invalid selectors to trap if an attempt is
made to access through them.

6. If RPl(CS) > CPl, pop the stack pointer SS:ESP
from the stack. The ESP register is popped first,
followed by 32-bits containing SS in the lower 16
bits. If VM = 0, SS is loaded as a protected mode
segment register load. If VM = 1, an 8086 seg­
ment register load is used.

7. Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine's stack image in step 1) deter­
mines whether the processor resumes the inter­
rupted routine in Protected mode or Virtual 8086
Mode.

38

5.0 FUNCTIONAL DATA

The 80386SX features a straightforward functional
interface to the external hardware. The 80386SX
has separate parallel buses for data and address.
The data bus is 16-bits in width, and bi-directional.
The address bus outputs 24-bit address values us­
ing 23 address lines and two byte enable Signals.

The 80386SX has two selectable address bus cy­
cles: address pipelined and non-address pipelined.
The address pipelining option allows as much time
as possible for data access by starting the pending
bus cycle before the present bus cycle is finished. A
non-pipelined bus cycle gives the highest bus per­
formance by executing every bus cycle in two proc­
essor ClK cycles. For maximum design flexibility,
the address pipelining option is selectable on a cy­
cle-by-cycle basis.

The processor's bus cycle is the basic mechanism
for information transfer, either from system to proc­
essor, or from processor to system. 80386SX bus
cycles perform data transfer in a minimum of only
two clock periods. The maximum transfer bandwidth
at 16 MHz is therefore 16 Mbytes/sec. However,
any bus cycle will be extended for more than two
clock periods if external hardware withholds ac­
knowledgement of the cycle.

The 80386SX can relinquish control of its local bus­
es to allow mastership by other devices, such as
direct memory access (OMA) channels. When relin­
quished, HlOA is the only output pin driven by the
80386SX, providing near-complete isolation of the
processor from its system (all other output pins are
in a float condition).

5.1 Signal Description Overview

Ahead is a brief description of the 80386SX input
and output signals arranged by functional groups.
Note the # symbol at the end of a signal name indi­
cates the active, or asserted, state occurs when the
signal is at a lOW Voltage. When no # is present
after the signal name, the signal is asserted when at
the HIGH voltage level.

Example signal: M/IO# - HIGH voltage indicates
Memory selected

- lOW voltage indicates
I/O selected

The signal descriptions sometimes refer to AC tim­
ing parameters, such as 't25 Reset Setup Time' and
't26 Reset Hold Time.' The values of these parame­
ters can be found in Table 7.4.

intJ 386SX™ MICROPROCESSOR

CLOCK (CLK2) DATA BUS (015-00)

CLK2 provides the fundamental timing for the
80386SX. It is divided by two internally to generate
the internal processor clock used for instruction exe­
cution. The internal clock is comprised of two phas­
es, 'phase one' and 'phase two'. Each CLK2 period
is a phase of the internal clock. Figure 5.2 illustrates
the relationship. If desired, the phase of the internal
processor clock can be synchronized to a known
phase by ensuring the falling edge of the RESET
signal meets the applicable setup and hold times t25
and t26'

These three-state bidirectional signals provide the
general purpose data path between the 80386SX
and other devices. The data bus outputs are active
HIGH and will float during bus hold acknowledge.
Data bus reads require that read-data setup and
hold times t21 and t22 be met relative to CLK2 for
correct operation.

CLK2 • " ADDRESS BUS
BHE# v

2X CLOCK (

BLE# ENABLES A
i(DATA BUS 16-BIT(DO_D15

DATA

1\

A1-A23]24_BIT

}
BYTE ADDRESS

BUS[
CONTROL

BUS[
ARBITRATION

INTERRUPTS [

~

CLK2[

INTERNAL [
PROCESSOR CLOCK

"
ADS# W/R#

NA# 80386SX D/C#

READY# • PROCESSOR M/IO# • LOCK# 1 '"' "'" "'''"'''
HOLD PEREO

HLDA • BUSY#

ERROR#

R~~~ : vee

• GND •

} COPROCESSOR SIGNALLING

} POWER CONNECTIONS

Figure 5.1. Functional Signal Groups

PROCESSOR CLOCK
PERIOD

PROCESSOR CLOCK
PERIOD

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD .1 .2 .1 .2

62.5 ns MIN.
(16 MHz MAX)

Figure 5.2. CLK2 Signal and Internal Processor Clock

39

240187-16

240187-17

infef 386SXTM MICROPROCESSOR

ADDRESS BUS (A23-A1, BHE#, BLE#)

These three-state outputs provide physical memory
addresses or 1/0 port addresses. A23-A16 are LOW
during 1/0 transfers except for 1/0 transfers auto­
matically generated by coprocessor instructions.
During coprocessor 1/0 transfers, A22-A16 are driv­
en LOW, and A23 is driven HIGH so that this ad­
dress line can be used by external logic to generate
the coprocessor select signal. Thus, the 1/0 address
driven by the 80386SX for coprocessor commands
is 8000F8H, the 1/0 address driven by the 80386SX
for coprocessor data is 8000FCH for cycles to the
80387SX.

The address bus is capable of addressing 16 mega­
bytes of physical memory space (OOOOOOH through
FFFFFFH), and 64 kilobytes of 1/0 address space
(OOOOOOH through OOFFFFH) for programmed 1/0.
The address bus is active HIGH and will float during
bus hold acknowledge.

The Byte Enable outputs, BHE # and BLE # directly
indicate which bytes of the 16-bit data bus are in­
volved with the current transfer. BHE # applies to
D15-D8 and BLE# applies to Dy-Do. If both BHE#
and BLE # are asserted, then 16 bits of data are
being transferred. See Table 5.1 for a complete de­
coding of these signals. The byte enables are active
LOW and will float during bus hold acknowledge.

BUS CYCLE DEFINITION SIGNALS (W/R#, DI
C#, M/IO#, LOCK#)

These three-state outputs define the type of bus cy­
cle being performed: W/R# distinguishes between

write and read cycles, D/C# distinguishes between
data and control cycles, M/IO# distinguishes be­
tween memory and 1/0 cycles, and LOCK# distin­
guishes between locked and unlocked bus cycles.
All of these signals are active LOW and will float
during bus acknowledge.

The primary bus cycle definition signals are W IR #,
D/C# and M/IO#, since these are the signals driv­
en valid as ADS# (Address Status output) becomes
active. The LOCK # is driven valid at the same time
the bus cycle begins, which due to address pipelin­
ing, could be after ADS# becomes active. Exact bus
cycle definitions, as a function of W IR #, D/C#, and
M/IO# are given in Table 5.2.

LOCK# indicates that other system bus masters are
not to gain control of the system bus while it is ac­
tive. LOCK # is activated on the CLK2 edge that be­
gins the first locked bus cycle (i.e., it is not active at
the same time as the other bus cycle definition pins)
and is deactivated when ready is returned at the end
of the last bus cycle which is to be locked. The be­
ginning of a bus cycle is determined when READY #
is returned in a previous bus cycle and another is
pending (ADS# is active) or the clock in which
ADS# is driven active if the bus was idle. This
means that it follows more closely with the write
data rules when it is valid, but may cause the bus to
be locked longer than desired. The LOCK # Signal
may be explicitly activated by the LOCK prefix on
certain instructions. LOCK # is always asserted
when executing the XCHG instruction, during de­
scriptor updates, and during the interrupt acknowl­
edge sequence.

Table 5.1. Byte Enable Definitions

BHE# BLE# Function

0 0 Word Transfer
0 1 Byte transfer on upper byte of the data bus, D15-D8
1 0 Byte transfer on lower byte of the data bus, Dy-Do
1 1 Never occurs

Table 5.2. Bus Cycle Definition

M/IO# D/C# W/R# Bus Cycle Type Locked?

0 0 0 Interrupt Acknowledge Yes
0 0 1 does not occur -
0 1 0 110 Data Read No
0 1 1 1/0 Data Write No
1 0 0 Memory Code Read No
1 0 1 Halt: Shutdown: No

Address = 2 Address = 0
BHE# = 1 BHE# = 1
BLE# = 0 BLE# = 0

1 1 0 Memory Data Read Some Cycles
1 1 1 Memory Data Write Some Cycles

40

inter 386SX™ MICROPROCESSOR

BUS CONTROL SIGNALS (ADS#, READY#,
NA#)

The following signals allow the processor to indicate
when a bus cycle has begun, and allow other system
hardware to control address pipelining and bus cycle
termination.

Address Status (ADS #)

This three-state output indicates that a valid bus cy­
cle definition and address (W/R#, D/C#, M/IO#,
BHE#, BLE# and A23-A1) are being driven at the
80386SX pins. ADS# is an active LOW output.
Once ADS # is driven active, valid address, byte en­
ables, and definition signals will not change. In addi­
tion, ADS# will remain active until its associated bus
cycle begins (when READY # is returned for the pre­
vious bus cycle when running pipelined bus cycles).
When address pipelining is utilized, maximum
throughput is achieved by initiating bus cycles when
ADS# and READY # are active in the same clock
cycle. ADS# will float during bus hold acknowledge.
See sections Non-Pipelined Address (page 49)
and Pipelined Address (page 50) for additional in­
formation on how ADS# is asserted for different bus
states.

Transfer Acknowledge (READY #)

This input indicates the current bus cycle is com­
plete, and the active bytes indicated by BHE# and
BLE # are accepted or provided. When READY # is
sampled active during a read cycle or interrupt ac­
knowledge cycle, the 80386SX latches the input
data and terminates the cycle. When READY # is
sampled active during a write cycle, the processor
terminates the bus cycle.

READY # is ignored on the first bus state of all bus
cycles, and sampled each bus state thereafter until
asserted. READY # must eventually be asserted to
acknowledge every bus cycle, including Halt Indica­
tion and Shutdown Indication bus cycles. When be­
ing sampled, READY # must always meet setup and
hold times t19 and t20 for correct operation.

Next Address Request (NA#)

This is used to request address pipelining. This input
indicates the system is prepared to accept new val­
ues of BHE#, BLE#, A23-A1, W/R#, D/C# and
M/IO# from the 80386SX even if the end of the
current cycle is not being acknowledged on
READY #. If this input is active when sampled, the
next address is driven onto the bus, provided the
next bus request is already pending internally. NA#
is ignored in CLK cycles in which ADS# or READY #

41

is activated. This Signal is active LOW and must sat­
isfy setup and hold times t15 and t16 for correct op­
eration. See Pipelined Address (page 50) and
Read and Write Cycles (page 47) for additional in­
formation.

BUS ARBITRATION SIGNALS (HOLD, HLDA)

This section describes the mechanism by which the
processor relinquishes control of its local buses
when requested by another bus master device. See
Entering and Exiting Hold Acknowledge (page
57) for additional information.

Bus Hold Request (HOLD)

This input indicates some device other than the
80386SX requires bus mastership. When control is
granted, the 80386SX floats A23-A1, BHE#, BLE#,
D15- Do, LOCK#, M/IO#, D/C#, W/R# and
ADS#, and then activates HLDA, thus entering the
bus hold acknowledge state. The local bus will re­
main granted to the requesting master until HOLD
becomes inactive. When HOLD becomes inactive,
the 80386SX will deactivate HLDA and drive the lo­
cal bus (at the same time), thus terminating the hold
acknowledge condition.

HOLD must remain asserted as long as any other
device is a local bus master. External pull-up resis­
tors may be required when in the hold acknowledge
state since none of the 80386SX floated outputs
have internal pull-up resistors. See Resistor Rec­
ommendations (page 64) for additional information.
HOLD is not recognized while RESET is active. If
RESET is asserted while HOLD is asserted, RESET
has priority and places the bus into an idle state,
rather than the hold acknowledge (high-impedance)
state.

HOLD is a level-sensitive, active HIGH, synchronous
input. HOLD signals must always meet setup and
hold times t23 and t24 for correct operation.

Bus Hold Acknowledge (HLDA)

When active (HIGH), this output indicates the
80386SX has relinquished control of its local bus in
response to an asserted HOLD signal, and is in the
bus Hold Acknowledge state.

The Bus Hold Acknowledge state offers near-com­
plete signal isolation. In the Hold Acknowledge
state, HLDA is the only signal being driven by the
80386SX. The other output signals or bidirectional
signals (D15-DO, BHE#, BLE#, A23-A1, W/R#, DI
C#, M/IO#, LOCK# and ADS#) are in a high-im­
pedance state so the requesting bus master may

inter 386SX™ MICROPROCESSOR

control them. These pins remain OFF throughout the
time that HLDA remains active (see Table 5.3». PulI­
up resistors may be desired on several signals to
avoid spurious activity when no bus master is driving
them. See Resistor Recommendations (page 64)
for additional information.

When the HOLD signal is made inactive, the
80386SX will deactivate HLDA and drive the bus.
One rising edge on the NMI input is remembered for
processing after the HOLD input is negated.

Table 5.3. Output pin State During HOLD

Pin Value Pin Names

1 HLDA
Float LOCK#, MfIO#, DfC#, WfR#,

ADS#, A23-A1, BHE#, BLE#, 015-00

In addition to the normal usage of Hold Acknowl­
edge with DMA controllers or master peripherals,
the near-complete isolation has particular attractive­
ness during system test when test equipment drives
the system, and in hardware fault-tolerant applica­
tions.

HOLD Latencies

The maximum possible HOLD latency depends on
the software being executed. The actual HOLD la­
tency at any time depends on the current bus activi­
ty, the state of the LOCK # signal (internal to the
CPU) activated by the LOCK # prefix, and interrupts.
The 80386SX will not honor a HOLD request until
the current bus operation is complete. Table 5.4
shows the types of bus operations that can affect
HOLD latency, and indicates the types of delays that
these operations may introduce. When considering
maximum HOLD latencies, designers must select
which of these bus operations are possible, and
then select the maximum latency from among them.

As indicated in Table 5.4, wait states affect HOLD
latency. The 80386SX will not honor a HOLD re­
quest until the end of the current bus operation, no
matter how many wait states are required. Systems
with DMA where data transfer is critical must insure
that READY # returns sufficiently soon.

{*** Not Available At This Time *** l

Table 5.4. Locked Bus Operations Affecting
HOLD Latency in Systems Clocks

42

COPROCESSOR INTERFACE SIGNALS (PEREQ,
BUSY#, ERROR#)

In the following sections are descriptions of signals
dedicated to the numeric coprocessor interface. In
addition to the data bus, address bus, and bus cycle
definition signals, these following signals control
communication between the 80386SX and its
80387SX processor extension.

Coprocessor Request (PEREQ)

When asserted (HIGH), this input Signal indicates a
coprocessor request for a data operand to be trans­
ferred toffrom memory by the 80386SX. In re­
sponse, the 80386SX transfers information between
the coprocessor and memory. Because the
80386SX has internally stored the coprocessor op­
code being executed, it performs the requested data
transfer with the correct direction and memory ad­
dress.

PEREQ is a level-sensitive active HIGH asynchro­
nous signal. Setup and hold times, t29 and t30, rela­
tive to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. This signal is
provided with a weak internal pull-down resistor of
around 20 K-ohms to ground so that it will not float
active when left unconnected.

Coprocessor Busy (BUSY #)

When asserted (LOW), this input indicates the co­
processor is still executing an instruction, and is not
yet able to accept another. When the 80386SX en­
counters any coprocessor instruction which oper­
ates on the numerics stack (e.g. load, pop, or arith­
metic operation), or the WAIT instruction, this input
is first automatically sampled until it is seen to be
inactive. This sampling of the BUSY # input prevents
overrunning the execution of a previous coprocessor
instruction.

The FNINIT, FNSTENV, FNSAVE, FNSTSW,
FNSTCW and FNCLEX coprocessor instructions are
allowed to execute even if BUSY # is active, since
these instructions are used for coprocessor initializa­
tion and exception-clearing.

BUSY # is an active LOW, level-sensitive asynchro­
nous signal. Setup and hold times, t29 and t30, rela­
tive to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around
20 K-ohms to Vcc so that it will not float active when
left unconnected.

BUSY # serves an additional function. If BUSY # is
sampled LOW at the falling edge of RESET, the

infef 386SXTM MICROPROCESSOR

80386SX performs an internal self-test (see Bus Ac­
tivity During and Following Reset, page 58). If
BUSY # is sampled HIGH, no self-test is performed.

Coprocessor Error (ERROR#)

When asserted (LOW), this input signal indicates
that the previous coprocessor instruction generated
a coprocessor error of a type not masked by the
coprocessor's control register. This input is automat­
ically sampled by the 80386SX when a coprocessor
instruction is encountered, and if active, the
80386SX generates exception 16 to access the er­
ror-handling software.

Several coprocessor instructions, generally those
which clear the numeric error flags in the coproces­
sor or save coprocessor state, do execute without
the 80386SX generating exception 16 even if ER­
ROR# is active. These instructions are FNINIT,
FNCLEX, FNSTSW, FNSTSWAX, FNSTCW,
FNSTENV and FNSAVE.

ERROR # is an active LOW, level-sensitive asyn­
chronous signal. Setup and hold times, t29 and t30,
relative to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around
20 K-ohms to Vcc so that it will not float active when
left unconnected.

INTERRUPT SIGNALS (INTR, NMI, RESET)

The following descriptions cover inputs that can in­
terrupt or suspend execution of the processor's cur­
rent instruction stream.

Maskable Interrupt Request (INTR)

When asserted, this input indicates a request for in­
terrupt service, which can be masked by the
80386SX Flag Register IF bit. When the 80386SX
responds to the INTR input, it performs two interrupt
acknowledge bus cycles and, at the end of the sec­
ond, latches an 8-bit interrupt vector on D7-DO to
identify the source of the interrupt.

INTR is an active HIGH, level-sensitive asynchro­
nous Signal. Setup and hold times, t27 and t28, rela­
tive to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. To assure rec­
ognition of an INTR request, INTR should remain
active until the first interrupt acknowledge bus cycle
begins. INTR is sampled at the beginning of every
instruction in the 80386SX's Execution Unit. In order
to be recognized at a particular instruction boundary,
INTR must be active at least eight CLK2 clock peri-

43

ods before the beginning of the instruction. If recog­
nized, the 80386SX will begin execution of the inter­
rupt.

Non-Maskable Interrupt Request (NMI»

This input indicates a request for interrupt service
which cannot be masked by software. The non­
maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt
table. Because of the fixed NMI slot assignment, no
interrupt acknowledge cycles are performed when
processing NMI.

NMI is an active HIGH, riSing edge-sensitive asyn­
chronous signal. Setup and hold times, t27 and t28,
relative to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. To assure rec­
ognition of NMI, it must be inactive for at least eight
CLK2 periods, and then be active for at least eight
CLK2 periods before the beginning of the instruction
boundary in the 80386SX's Execution Unit.

Once NMI processing has begun, no additional
NMl's are processed until after the next IRET in­
struction, which is typically the end of the NMI serv­
ice routine. If NMI is re-asserted prior to that time,
however, one rising edge on NMI will be remem­
bered for processing after executing the next IRET
instruction.

Interrupt Latency

The time that elapses before an interrupt request is
serviced (interrupt latency) varies according to sev­
eral factors. This delay must be taken into account
by the interrupt source. Any of the following factors
can affect interrupt latency:

1. If interrupts are masked, an INTR request will not
be recognized until interrupts are reenabled.

2. If an NMI is currently being serviced, an incoming
NMI request will not be recognized until the
80386SX encounters the IRET instruction.

3. An interrupt request is recognized only on an in­
struction boundary of the 80386SX's Execution
Unit except for the following cases:
- Repeat string instructions can be interrupted

after each iteration.

- If the instruction loads the Stack Segment reg­
ister, an interrupt is not processed until after
the following instruction, which should be an
ESP. This allows the entire stack pointer to be
loaded without interruption.

- If an instruction sets the interrupt flag (enabling
interrupts), an interrupt is not processed until
after the next instruction.

inter 386SXTM MICROPROCESSOR

The longest latency occurs when the interrupt re­
quest arrives while the 80386SX is executing a
long instruction such as multiplication, division, or
a task-switch in the protected mode.

4. Saving the Flags register and CS:EIP registers.

5. If interrupt service routine requires a task switch,
time must be allowed for the task switch.

6. If the interrupt service routine saves registers that
are not automatically saved by the 80386SX.

RESET

This input signal suspends any operation in progress
and places the 80386SX in a known reset state. The
80386SX is reset by asserting RESET for 15 or more
CLK2 periods (80 or more CLK2 periods before re­
questing self-test). When RESET is active, all other
input pins are ignored, and all other bus pins are
driven to an idle bus state as shown in Table 5.5. If
RESET and HOLD are both active at a pOint in time,
RESET takes priority even if the 80386SX was in a
Hold Acknowledge state prior to RESET active.

RESET is an active HIGH, level-sensitive synchro­
nous Signal. Setup and hold times, t25 and 126, must
be met in order to assure proper operation of the
80386SX.

Table 5.5. Pin State (Bus Idle) During Reset

Pin Name Signal Level During Reset

AOS# 1
015-00 Float
BHE#, BLE# 0
A23-A1 1
W/R# 0
O/C# 1
M/IO# 0
LOCK# 1
HLOA 0

5.2 Bus Transfer Mechanism

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte and word
lengths may be transferred without restrictions on
physical address alignment. Any byte boundary may
be used, although two physical bus cycles are per­
formed as required for unaligned operand transfers.

The 80386SX address signals are designed to sim­
plify external system hardware. Higher-order ad­
dress bits are provided by A23-A1. BHE# and
BLE # provide linear selects for the two bytes of the
16-bit data bus.

44

Byte Enable outputs BHE# and BLE# are asserted
when their associated data bus bytes are involved
with the present bus cycle, as listed in Table 5.6.

Table 5.S. Byte Enables and Associated Data
and Operand Bytes

Byte Enable
Associated Data Bus Signals

Signal

BLE# OrOo I (byte 0 - least significant)
BHE# 015-08 (byte 1 - most significant)

Each bus cycle is composed of at least two bus
states. Each bus state requires one processor clock
period. Additional bus states added to a single bus
cycle are called wait states. See section 5.4 Bus
Functional Description.

5.3 Memory and 1/0 Spaces

Bus cycles may access physical memory space or II
o space. Peripheral devices in the system may ei­
ther be memory-mapped, or I/O-mapped, or both.
As shown in Figure 5.3, physical memory addresses
range from OOOOOOH to OFFFFFFH (16 megabytes)
and 110 addresses from OOOOOOH to OOFFFFH (64
kilobytes). Note the 1/0 addresses used by the auto­
matic 1/0 cycles for coprocessor communication are
8000F8H to 8000FFH, beyond the address range of
programmed 110, to allow easy generation of a co­
processor chip select signal using the A23 and MI
10# signals.

5.4 Bus Functional Description

The 80386SX has separate, parallel buses for data
and address. The data bus is 16-bits in width, and
bidirectional. The address bus provides a 24-bit val­
ue using 23 signals for the 23 upper-order address
bits and 2 Byte Enable signals to directly indicate the
active bytes. These buses are interpreted and con­
trolled by several definition signals.

The definition of each bus cycle is given by three
signals: M/IO#, W/R# and O/C#. At the same
time, a valid address is present on the byte enable
signals, BHE # and BLE #, and the other address
signals A23-A1. A status signal, AOS#, indicates
when the 80386SX issues a new bus cycle definition
and address.

Collectively, the address bus, data bus and all asso­
ciated control signals are referred to simply as 'the

intJ 386SXTM MICROPROCESSOR

FFFFFFH .-----.

PHYSICAL
MEMORY

I NOT I
ACCESSIBLE I

I

8000FFH .----------?--.., COPROCESSOR
8000F8H L..._";==::::-_.J

(NOTE) ;

I
I
I

NOT :
I ACCESSIBLE I
I I
I
I
I
I I

64 kBYTE PROGRAMMED
OOFFFFH B' , } ACCESSIBLE

OOOOOOH OOOOOOH I/O SPACE

NOTE: PHYSICAL MEMORY SPACE I/O SPACE 240187-18

Since A23 is HIGH during automatic communication with coprocessor, A23 HIGH and M/IO# LOW can be used to
easily generate a coprocessor select Signal.

Figure 5.3. Physical Memory and 1/0 Spaces

CLK2 [
(INPUT)

BHE#,BLE#,A I-A23, [
M/IO#, D/C#, W/R#

(OUTPUTS)

ADS#[
(OUTPUT)

NA# [
(INPUT)

READY# [
(INPUT)

LOCK# [
(OUTPUT)

DO-DI5[
(INPUT DURING READ)

CYCLE 1
NON-PIPELINED

(READ)

T1 T2

.' 1.2 .' 1.2

CYCLE 2 CYCLE 3
NON-PIPELINED NON-PIPELINED

(READ) (READ)

T1 T2 T1 T2

.' 1.2 .' 1.2 .' 1.2 .' 1.2

Fastest non-pipelined bus cycles consist of Tl and T2

.'

Figure 5.4. Fastest Read Cycles with Non-pipelined Address Timing

45

240187-19

infef 386SXTM MICROPROCESSOR

bus'. When active, the bus performs one of the bus
cycles below:

1. Read from memory space

2. Locked read from memory space

3. Write to memory space

4. Locked write to memory space

5. Read from 1/0 space (or coprocessor)

6. Write to 1/0 space (or coprocessor)

7. Interrupt acknowledge (always locked)

8. Indicate halt, or indicate shutdown

Table 5.2 shows the encoding of the bus cycle defi­
nition signals for each bus cycle. See Bus Cycle
Definition Signals (page 40) for additional informa­
tion.

When the 80386SX bus is not performing one of the
activities listed above, it is either Idle or in the Hold

CLK2[
(iNPUT)

BHE#,BLE#.A l-A23, [
M/IO#, D/C#, W /R#

(OUTPUTS)

ADS# [
(OUTPUT)

NA# [
(INPUT)

READY# [
(INPUT)

LOCK# [
(OUTPUT)

DO-D15[
(INPUT DURING READ)

CYCLE 1
PIPELINED

(READ)

T1P T2P

Acknowledge state, which may be detected exter­
nally. The idle state can be identified by the
80386SX giving no further assertions on its address
strobe output (ADS#) since the beginning of its
most recent bus cycle, and the most recent bus cy­
cle having been terminated. The hold acknowledge
state is identified by the 80386SX asserting its hold
acknowledge (HLDA) output.

The shortest time unit of bus activity is a bus state. A
bus state is one processor clock period (two CLK2
periods) in duration. A complete data transfer occurs
during a bus cycle, composed of two or more bus
states.

The fastest 80386SX bus cycle requires only two
bus states. For example, three consecutive bus read
cycles, each consisting of two bus states, are shown
by Figure 5.4. The bus states in each cycle are
named T1 and T2. Any memory or 1/0 address may
be accessed by such a two-state bus cycle, if the
external hardware is fast enough.

CYCLE 2
PIPELINED

(READ)

T1P T2P

CYCLE 3
PIPELINED

(READ)

T1P T2P

240187-20
Fastest pipelined bus cycles consist of T1 P and T2P

Figure 5.5. Fastest Read Cycles with Pipe lined Address Timing

46

inter 386SX™ MICROPROCESSOR

Every bus cycle continues until it is acknowledged
by the external system hardware, using the 80386SX
READY # input. Acknowledging the bus cycle at the
end of the first T2 results in the shortest bus cycle,
requiring only T1 and T2. If READY # is not immedi­
ately asserted however, T2 states are repeated in­
definitely until the READY # input is sampled active.

The address pipelining option provides a choice of
bus cycle timings. Pipelined or non-pipelined ad­
dress timing is selectable on a cycle-by-cycle basis
with the Next Address (NA #) input.

When address pipelining is selected the address
(BHE#, BLE# and A23-Al) and definition (W/R#,
D/C#, M/IO# and LOCK#) of the next cycle are
available before the end of the current cycle. To sig­
nal their availability, the 80386SX address status

output (ADS#) is asserted. Figure 5.5 illustrates the
fastest read cycles with pipelined address timing.

Note from Figure 5.5 the fastest bus cycles using
pipelined address require only two bus states,
named T1P and T2P. Therefore cycles with pipe­
lined address timing allow the same data bandwidth
as non-pipelined cycles, but address-to-data access
time is increased by one T-state time compared to
that of a non-pipelined cycle.

READ AND WRITE CYCLES

Data transfers occur as a result of bus cycles, classi­
fied as read or write cycles. During read cycles, data
is transferred from an external device to the proces­
sor. During write cycles, data is transferred from the
processor to an external device.

IDLE I CYCLE 1
NON-PIPELINED

(WRITE)

CYCLE 2 I
NON-PIPELINED

(READ)

CYCLE 3
NON-PIPELINED

(WRITE)

IDLE I CYCLE 4
NON-PIPELINED

(READ)

IDLE I

Ti

CLK2 [

PROCESSOR CLK [

BHE#,BLE#. [
A1-A23.

MjIO#,DjC#

wjR# [

ADS# [

READY# [

LOCK # [

DO-D1S[

Ti T1 T2 T1 T2 T1 T2 Ti T1 T2

240187-21
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus
cycle can immediately follow the write cycle.

Figure 5.S. Various Bus Cycles with Non-Pipelined Address (zero wait states)

47

infef 386SX™ MICROPROCESSOR

Two choices of address timing are dynamically se­
lectable: non-pipelined or pipelined. After an idle bus
state, the processor always uses non-pipelined ad­
dress timing. However the NA# (Next Address) in­
put may be asserted to select pipelined address tim­
ing for the next bus cycle. When pipelining is select­
ed and the 80386SX has a bus request pending in­
ternally, the address and definition of the next cycle
is made available even before the current bus cycle
is acknowledged by READY #.

Terminating a read or write cycle, like any bus cycle,
requires acknowledging the cycle by asserting the
READY # input. Until acknowledged, the processor
inserts wait states into the bus cycle, to allow adjust­
ment for the speed of any external device. External
hardware, which has decoded the address and bus
cycle type, asserts the READY # input at the appro­
priate time.

At the end of the second bus state within the bus
cycle, READY # is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY #, the bus cycle terminates as shown in Fig­
ure 5.6. If READY # is negated as in Figure 5.7, the
80386SX executes another bus state (a wait state)
and READY# is sampled again at the end of that
state. This continues indefinitely until the cycle is ac­
knowledged by READY # asserted.

When the current cycle is acknowledged, the
80386SX terminates it. When a read cycle is ac­
knowledged, the 80386SX latches the information
present at its data pins. When a write cycle is ac­
knowledged, the 80386SX's write data remains valid
throughout phase one of the next bus state, to pro­
vide write data hold time.

IDLE I CYCLE 1
NON-PIPELINED

(READ)

CYCLE 2
NON-PIPELINED

(WRITE)

IDLE I

Ti

CYCLE 3
NON-PIPELINED

(READ)

I IDLE

Ti

ClK2 [

PROCESSOR ClK [

BHE#.BlE#. [
A1-A23.

MilO #.D/c#

ADS# [

READY # [

lOCK # [

DO-D1S[

Ti T1 T2 T1 T2 T2 T1 T2 T2

240187-22
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus
cycle can immediately follow the write cycle.

Figure 5.7. Various Bus Cycles with Non-Pipelined Address (various number of wait states)

48

inter 386SX™ MICROPROCESSOR

Non-Pipelined Address

Any bus cycle may be performed with non-pipelined
address timing. For example, Figure 5.6 shows a
mixture of read and write cycles with non-pipelined
address timing. Figure 5.6 shows that the fastest
possible cycles with non-pipelined address have two
bus states per bus cycle. The states are named T1
and T2. In phase one of T1, the address signals and
bus cycle definition signals are driven valid and, to
signal their availability, address strobe (ADS#) is
simultaneously asserted.

During read or write cycles, the data bus behaves as
follows. If the cycle is a read, the 80386SX floats its
data Signals to allow driving by the external device
being addressed. The 80386SX requires that all
data bus pins be at a valid logic state (HIGH or
LOW) at the end of each read cycle, when
READY # is asserted. The system MUST be de­
signed to meet this requirement. If the cycle is a
write, data signals are driven by the 80386SX begin­
ning in phase two of T1 until phase one of the bus
state following cycle acknowledgment.

Figure 5.7 illustrates non-pipelined bus cycles with
one wait state added to Cycles 2 and 3. READY # is
sampled inactive at the end of the first T2 in Cycles
2 and 3. Therefore Cycles 2 and 3 have T2 repeated
again. At the end of the second T2, READY # is
sampled active.

When address pipelining is not used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and it is desir­
able to maintain non-pipelined address timing, it is
necessary to negate NA# during each T2 state ex­
cept the last one, as shown in Figure 5.7 Cycles 2
and 3. If NA# is sampled active during a T2 other
than the last one, the next state would be T21 or T2P
instead of another T2.

When address pipelining is not used, the bus states
and transitions are completely illustrated by Figure
5.8. The bus transitions between four possible
states, T1, T2, Ti, and T h. Bus cycles consist of T1
and T2, with T2 being repeated for wait states. Oth­
erwise the bus may be idle, Ti, or in the hold ac­
knowledge state T h.

HOLD ASSERTED

ALWAYS

READY# ASSERTED'
HOLD NEGATED'

REQUEST PENDING

READY# NEGATED'
NA# NEGATED

Bus States:
T1-first clock of a non-pipe lined bus cycle (80386SX drives new address and asserts ADS#).
T2-subsequent clocks of a bus cycle when NA # has not been sampled asserted in the current bus cycle.
Ti-idle state.
Th-hold acknowledge state (80386SX asserts HLDA).
The fastest bus cycle consists of two states T1 and T2.
Four basic bus states describe bus operation when not using pipelined address.

Figure 5.8. 80386SX Bus States (not using pipelined address)

49

240187-23

386SX™ MICROPROCESSOR

Bus cycles always begin with T1. T1 always leads to
T2. If a bus cycle is not acknowledged during T2 and
NA # is inactive, T2 is repeated. When a cycle is
acknowledged during T2, the following state will be
T1 of the next bus cycle if a bus request is pending
internally, or Ti if there is no bus request pending, or
T h if the HOLD input is being asserted.

Use of pipelined address allows the 80386SX to en­
ter three additional bus states not shown in Figure
5.8. Figure 5.12 on page 53 is the complete bus
state diagram, including pipe lined address cycles.

Pipelined Address

Address pipelining is the option of requesting the
address and the bus cycle definition of the next in-

ternally pending bus cycle before the current bus
cycle is acknowledged with READY # asserted.
ADS # is asserted by the 80386SX when the next
address is issued. The address pipelining option is
controlled on a cycle-by-cycle basis with the NA #
input signal.

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus
state, the NA# input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur­
ing non-pipelined bus cycles NA # is sampled at the
end of phase one in every T2. An example is Cycle 2
in Figure 5.9, during which NA# is sampled at the
end of phase one of every T2 (it was asserted once
during the first T2 and has no further effect during
that bus cycle).

IDLE ~ONC!~I~~l1INED
(WRITE)

CYCLE 2
NON-PIPELINED

CYCLE 3
PIPELINED

CYCLE 4
PIPELINED

IDLE

ClK2 [

PROCESSOR ClK [

BHE#,BlE#, [
A1 - A23,

M/IO#,D/C#

W/R# [

ADS# [

READY# [

00-015 [

-
Ti T1 T2 T1

(READ) (WRITE) (READ)

T2 T2P T1 P T2P T1 P T21 Ti

240187-24
FOllowing any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA# is only sampled
during wait states. Therefore, to begin address pipelining during a group of non-pipelined bus cycles requires a non-pipe·
lined cycle with at least one wait state (Cycle 2 above).

Figure 5.9. Transitioning to Pipelined Address During Burst of Bus Cycles

50

386SX™ MICROPROCESSOR

If NA # is sampled active, the 80386SX is free to
drive the address and bus cycle definition of the next
bus cycle, and assert ADS #, as soon as it has a bus
request internally pending. It may drive the next ad­
dress as early as the next bus state, whether the
current bus cycle is acknowledged at that time or
not.

Regarding the details of address pipelining, the
80386SX has the following characteristics:

1. The next address may appear as early as the bus
state after NA# was sampled active (see Figures
5.9 or 5.10). In that case, state T2P is entered
immediately. However, when there is not an inter­
nal bus request already pending, the next address
will not be available immediately after NA# is as­
serted and T21 is entered instead of T2P (see Fig-

ClK2 [

PROCESSOR ClK [

BHE#,BlE#, [
Al- 23,

M/IO#,D/C#

W/R# [

ADS# [

READY# [

00- 015 [

IDLE

Ti T1

CYCLE 1
NON-PIPELINED

(WRITE)

T2 T2P

ure 5.11 Cycle 3). Provided the current bus cycle
isn't yet acknowledged by READY # asserted,
T2P will be entered as soon as the 80386SX does
drive the next address. External hardware should
therefore observe the ADS # output as confirma­
tion the next address is actually being driven on
the bus.

2. Any address which is validated by a pulse on the
80386SX ADS# output will remain stable on the
address pins for at least two processor clock peri­
ods. The 80386SX cannot produce a new address
more frequently than every two processor clock
periods (see Figures 5.9, 5.10, and 5.11).

3. Only the address and bus cycle definition of the
very next bus cycle is available. The pipelining ca­
pability cannot look further than one bus cycle
ahead (see Figure 5.11 Cycle 1).

CYCLE 2
PIPELINED

CYCLE 3
PIPELINED

CYCLE 4
PIPELINED

IDLE

(READ) (WRITE) (READ)

T1P T2P T1P T2P T1P T21 T21 Ti

240187-25
Following any bus state (Ti) the address is always non-pipelined and NA# is only sampled during wait states. To start
address pipelining after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above)
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states.

Figure 5.10. Fastest Transition to Pipelined Address Following Idle Bus State

51

inter 386SX™ MICROPROCESSOR

The complete bus state transition diagram, including
operation with pipelined address is given by Figure
5.12. Note it is a superset of the diagram for non­
pipelined address only, and the three additional bus
states for pipelined address are drawn in bold.

The fastest bus cycle with pipelined address con­
sists of just two bus states, T1 P and T2P (recall for
non-pipelined address it is T1 and T2). T1 P is the
first bus state of a pipelined cycle.

CLK2 [

PROCESSOR CLK [

BHE#.BLE#. [
A1-A23.

M/IO#. D/C#

W/R# [

ADS# [

READY# [

LOCK# [

DO- 015 [

T1P

CYCLE 1
PIPELINED
(WRITE)

T2P T2P

ASSERTING NA# MORE
THAN ONCE DURING
ANY CYCLE HAS.NO
ADDITIONAL EFFECTS

T1P

CYCLE 2
PIPELINED

(READ)

T2 T2P

NA# COULD HAVE
BEEN ASSERTED

IN T1 P IF DESIRED.
ASSERTION NOW IS

THE LATEST TIME
POSSIBLE TO ALLOW

80386SX TO ENTER T2P
STATE TO MAINTAIN

PIPELINING IN CYCLE 3

T1P

CYCLE 3
PIPELINED

(WRITE)

T21 T2P T1P

Figure 5.11. Details of Address Pipelining During Cycles with Wait States

52

CYCLE 4
PIPELINED

(READ)

240187-26

inter 386SX™ MICROPROCESSOR

Bus States:

HOLD ASSERTED

READY # ASSERTED"
HOLD NEGATED"

NO REQUEST

T1-first clock of a non-pipe lined bus cycle (80386SX drives
new address and asserts ADS#).
T2-subsequent clocks of a bus cycle when NA# has not been
sampled asserted in the current bus cycle.
T21-subsequent clocks of a bus cycle when NA# has been
sampled asserted in the current bus cycle but there is not yet
an internal bus request pending (80386SX will not drive new
address or assert ADS#).
T2P-subsequent clocks of a bus cycle when NA # has been
sampled asserted in the current bus cycle and there is an inter­
nal bus request pending (80386SX drives new address and as­
serts ADS#).
T1 P-first clock of a pipelined bus cycle.
Ti-idle state.
Th-hold acknowledge state (80386SX asserts HLDA).
Asserting NA # for pipelined address gives access to three
more bus states: T21, T2P and T1P.
Using pipelined address, the fastest bus cycle consists of T1 P
and T2P.

READY# NEGATED

<:> z
0
is
0-

">-
01/) c •. C)
>-:0 coz ffiS ~~~~ ~o:

~~S~ <"
1/)%>- ,,"0

~:'9~ < ...
z~ ~~~5

0: ~ %
0
..J
0
:I::

240187-27

Figure 5.12. 80386SX Complete Bus States (including pipelined address)

53

0
~
e'i
I/)
I/)
<

"" >-
0
~
0:

386SXTM MICROPROCESSOR

Initiating and Maintaining Pipelined Address

Using the state diagram Figure 5.12, observe the
transitions from an idle state, Tj, to the beginning of
a pipelined bus cycle T1 P. From an idle state, Tj, the
first bus cycle must begin with T1, and is therefore a
non-pipe lined bus cycle. The next bus cycle will be
pipelined, however, provided NA # is asserted and
the first bus cycle ends in a T2P state (the address
for the next bus cycle is driven during T2P). The fast­
est path from an idle state to a bus cycle with pipe­
lined address is shown in bold below:

Tj, Tj, Th T1 - T2 - T2P, T1P - T2P,
idle non-pipe lined pipelined
states cycle cycle

T1-T2-T2P are the states of the bus cycle that es­
tablish address pipelining for the next bus cycle,
which begins with T1 P. The same is true after a bus
hold state, shown below:

Th, Th, Th, T1 - T2 - T2P, T1P - T2P,
hold acknowledge non-pipelined pipelined

states cycle cycle

The transition to pipelined address is shown func­
tionally by Figure 5.10 Cycle 1. Note that Cycle 1 is
used to transition into pipelined address timing for
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA# input is asserted at the appropriate
time to select address pipelining for Cycles 2, 3 and
4.

Once a bus cycle is in progress and the current ad­
dress has been valid for one entire bus state, the
NA # input is sampled at the end of every phase one
until the bus cycle is acknowledged. Sampling be­
gins in T2 during Cycle 1 in Figure 5.10. Once NA#
is sampled active during the current cycle, the
80386SX is free to drive a new address and bus
cycle definition on the bus as early as the next bus
state. In Figure 5.10 Cycle 1 for example, the next
address is driven during state T2P. Thus Cycle 1
makes the transition to pipelined address timing,
since it begins with T1 but ends with T2P. Because
the address for Cycle 2 is available before Cycle 2
begins, Cycle 2 is called a pipelined bus cycle, and it

54

begins with T1 P. Cycle 2 begins as soon as
READY # asserted terminates Cycle 1.

Examples of transition bus cycles are Figure 5.10
Cycle 1 and Figure 5.9 Cycle 2. Figure 5.10 shows
transition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad­
dress pipelining. Figure 5.9 Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In
any case, a transition cycle is the same whenever it
occurs: it consists at least of T1, T2 (NA# is assert­
ed at that time), and T2P (provided the 80386SX has
an internal bus request already pending, which it al­
most always has). T2P states are repeated if wait
states are added to the cycle.

Note that only three states (T1, T2 and T2P) are
required in a bus cycle performing a transition from
non-pipe lined address into pipelined address timing,
for example Figure 5.10 Cycle 1. Figure 5.10 Cycles
2, 3 and 4 show that address pipelining can be main­
tained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting
NA # and detecting that the 80386SX enters T2P
during the current bus cycle. The current bus cycle
must end in state T2P for pipelining to be maintained
in the next cycle. T2P is identified by the assertion of
ADS #. Figures 5.9 and 5.10 however, each show
pipelining ending after Cycle 4 because Cycle 4
ends in T21. This indicates the 80386SX didn't have
an internal bus request prior to the acknowledge­
ment of Cycle 4. If a cycle ends with a T2 or T21, the
next cycle will not be pipelined.

Realistically, address pipelining is almost always
maintained as long as NA# is sampled asserted.
This is so because in the absence of any other re­
quest, a code prefetch request is always internally
pending until the instruction decoder and code pre­
fetch queue are completely full. Therefore, address
pipelining is maintained for long bursts of bus cycles,
if the bus is available (Le., HOLD inactive) and NA#
is sampled active in each of the bus cycles.

inter 386SX™ MICROPROCESSOR

INTERRUPT ACKNOWLEDGE (INTA) CYCLES

In response to an interrupt request on the INTR in­
put when interrupts are enabled, the 80386SX per­
forms two interrupt acknowledge cycles. These bus
cycles are similar to read cycles in that bus definition
signals define the type of bus activity taking place,
and each cycle continues until acknowledged by
READY # sampled active.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A23-A3, A1, BLE# LOW, A2 and BHE# HIGH).
The byte address driven during the second interrupt
acknowledge cycle is 0 (A23-A1' BLE# LOW, and
BHE# HIGH).

PREVIOUS I INTERRUPT

I
CYCLE ACKNOWLEDGE

CYCLE 1

T2 T1 T2 T2 Ti

The LOCK # output is asserted from the beginning
of the first interrupt acknowledge cycle until the end
of the second interrupt acknowledge cycle. Four idle
bus states, Ti, are inserted by the 80386SX between
the two interrupt acknowledge cycles for compatibil­
ity with spec TRHRL of the 8259A Interrupt Control­
ler.

During both interrupt acknowledge cycles, 015-00
float. No data is read at the end of the first interrupt
acknowledge cycle. At the end of the second inter­
rupt acknowledge cycle, the 80386SX will read an
external interrupt vector from DrDo of the data
bus. The vector indicates the specific interrupt num­
ber (from 0-255) requiring service.

IDLE

I

INTERRUPT I IDLE (4 BUS STATES) ACKNOWLEDGE
CYCLE 2

Ti TI Ti T1 T2 T21 Ti

CLK2 [_ rm rtJL n..Jl n..Jl rm rm rtJL n..Jl n..Jl rm rm rm
PROCESSOR CLK [- V V-\.f \.f V V V-\.f \.f V V V

BHE#[X ~ Y I'\XXX lXXXX XXX}. XXX}.y I'\XXX lX.XX.X
/ r

BLE#,A 1,A3-A23, [X XXX X I..<XXx XX XX)(XXXX~ £XXX XXX)(M/IO#, D/C#. W/R#

A2[X
/

XXX}. r I'\XXX XX XX XJ<.X ~ "<'XXX XX

/
,/

~ LOCK# [XXXXX).

ADS#['--I 1\--1
NA# [)(XXX)(XXX)(Y X xXX XXX)(XXX)(Xxx IXXXX>" J.XXX)(XXX)(

READY#[X XXX IXXX IXXY '\\'\\ ..<X xx xx xx xxx XY '\\'\ OJ,
IGNORED VECTOR

00-07 [• ---- ----- --------0-- ---_. ----- ----- ----- ----- --0---
IGNORED IGNORED

D8-D1S[• ---- ----- ----- --cp-- ---- ----- ----- ----- ---- --cp---
240187-28

Interrupt Vector (0-255) is read on 00-07 at end of second interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is followed by idle bus states. asserting NA# has no practical effect.
Choose the approach which is simplest for your system hardware design.

Figure 5.13. Interrupt Acknowledge Cycles

55

inter 386SXTM MICROPROCESSOR

HALT INDICATION CYCLE The halt indication cycle is identified by the state of
the bus definition signals shown on page 40, Bus
Cycle Definition Signals, and an address of 2. The
halt indication cycle must be acknowledged by
READY # asserted. A halted 80386SX resumes exe­
cution when INTR (if interrupts are enabled), NMI or
RESET is asserted.

The 80386SX execution unit halts as a result of exe­
cuting a HL T instruction. Signaling its entrance into
the halt state, a halt indication cycle is performed.

/

CYCLE 1 /
NON-PIPELINED

(WRITE)

T1 T2

CYCLE 2 /IDLE
NON-PIPELINED

(HALT)

T1 T2 Ti

CLK2[

PROCESSOR eLK [

n Ti Ti

BHE#,BLE#. [
1.1/10#. W/R#

"v""":":'~:-:--~,....-1---b~7'Vb'\~1d- 80386SX REMAINS HALTED
UNTIL INTR. NMI OR

"-lo~~~~1- RESET IS ASSERTED.

I I A2-A23.[
D/C# ""''''-"''1"---+---+---~~~~~~ 80386SX RESPONDS TO

ADS#[

NA#[

__ + __ +-__ +- HOLD INPUT WHILE IN
THE HALT STATE.

READY# [

LOCK# [""''''--t---.((

DO-D [-T-~"'-+--+"""".a...._+_--+_..I - (fLOATING) - - --

I I

Figure 5.14. Example Halt Indication Cycle from Non-Pipelined Cycle

56

240187-29

inter 386SXTM MICROPROCESSOR

SHUTDOWN INDICATION CYCLE

The 80386SX shuts down as a result of a protection
fault while attempting to process a double fault. Sig­
naling its entrance into the shutdown state, a shut­
down indication cycle is performed. The shutdown
indication cycle is identified by the state of the bus
definition signals shown in Bus Cycle Definition
Signals (page 40) and an address of O. The shut­
down indication cycle must be acknowledged by
READY # asserted. A shutdown 80386SX resumes
execution when NMI or RESET is asserted.

CYCLE 1
PIPELINED

(READ)

CYCLE 2
PIPELINED

(SHUTDOWN)

ENTERING AND EXITING HOLD
ACKNOWLEDGE

The bus hold acknowledge state, T h, is entered in
response to the HOLD input being asserted. In the
bus hold acknowledge state, the 80386SX floats all
outputs or bidirectional signals, except for HLDA.
HLDA is asserted as long as the 80386SX remains
in the bus hold acknowledge state. In the bus hold
acknowledge state, all inputs except HOLD and RE­
SET are ignored.

T1 P T2P T1P

I IDLE

T21 TI Ti TI Ti

ClK2[

PROCESSOR ClK [

BHE#,[
M/IO#, W/R#

BLE#.A l-A23 [
D/C#

ADS#[

READY#[

lOCK#[

DO-D1S[

~---+..,..-+---Irl_~""'r"7'r''ft'''l"~1tT-80386SX REMAINS SHUTDOWN

"."K.;I'-lI'-K..K.l"".ll'~~~ UNTil NMI OR RESET
IS ASSERTED.

I
~---+~-+--~~."K.;~'-K..K.l~."K.;~80386SX RESPONDS TO

HOLD INPUT WHILE IN --+--+---+----i- THE SHUTDOWN STATE.

240187-30

Figure 5.15. Example Shutdown Indication Cycle from Non- pipelined Cycle

57

intJ 386SX™ MICROPROCESSOR

T h may be entered from a bus idle state as in Figure
5.16 or after the acknowledgement of the current
physical bus cycle if the LOCK # signal is not assert­
ed, as in Figures 5.17 and 5.18.

This exited in response to the HOLD input being
negated. The following state will be Ti as in Figure
5.16 if no bus request is pending. The following bus
state will be T1 if a bus request is internally pending,
as in Figures 5.17 and 5.18. This exited in response
to RESET being asserted.

If a rising edge occurs on the edge-triggered NMI
input while in T h, the event is remembered as a non­
maskable interrupt 2 and is serviced when This exit­
ed unless the 80386SX is reset before This exited.

RESET DURING HOLD ACKNOWLEDGE

RESET being asserted takes priority over HOLD be­
ing asserted. If RESET is asserted while HOLD re-

PROCESSOR CLK [

HOLD[

HLDA[

BHE#,BLE#, [
Al-A23, M/IO#

D/C#, W/R#

ADS#[

READY#[

IDLE

n

mains asserted, the 80386SX drives its pins to de­
fined states during reset, as in Table 5.5 Pin State
During Reset, and performs internal reset activity
as usual.

If HOLD remains asserted when RESET is inactive,
the 80386SX enters the hold acknowledge state be­
fore performing its first bus cycle, provided HOLD is
still asserted when the 80386SX would otherwise
perform its first bus cycle.

BUS ACTIVITY DURING AND FOLLOWING
RESET

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is assert­
ed. A bus cycle in progress can be aborted at any
stage, or idle states or bus hold acknowledge states
discontinued so that the reset state is established.

I-- HOLD ----l I _ ACKNOWLEDGE _ I
Th Th Th

(FLOATING) _ •••

I
(FLOATING) _ •••

IDLE

Ti

LOCK#[~~~':if •••• (FLOATING)-···

I
(FLOATING) ----------~----00-015 [-

240187-31

NOTE:
For maximum design flexibility the 80386SX has no internal pullup resistors on its outputs. Your design may require an
external pullup on ADS# and other 80386SX outputs to keep them negated during float periods.

Figure 5.16. Requesting Hold from Idle Bus

58

inter

NOTE:

386SXTM MICROPROCESSOR

CLK2[

PROCESSOR CLK[

HOLD [

HLDA [

BHE#,BLE#.A l-A23, [
M/IO#, D/c#. W/R#

ADS# [

T1

CYCLE 1
NON-PIPELINED

(READ)

T2

HOLD CYCLE 2
ACKNOWLEDGE NON-PIPELINED

(WRITE)

T2 Th Th T1 T2

240187-32

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 5.17. Requesting Hold from Active Bus (NA# inactive)

59

386SX™ MICROPROCESSOR

RESET should remain asserted for at least 15 CLK2
periods to ensure it is recognized throughout the
80386SX, and at least 80 CLK2 periods if 80386SX
self-test is going to be requested at the falling edge.
RESET asserted pulses less than 15 CLK2 periods
may not be recognized. RESET pulses less than 80
CLK2 periods followed by a self-test may cause the
self-test to report a failure when no true failure ex­
ists.

Provided the RESET falling edge meets setup and
hold times t25 and t26, the internal processor clock
phase is defined at that time as illustrated by Figure
5.19 and Figure 7.7.

NOTE:

CLK2[

PROCESSOR CLK[

HOLD [

HLDA [

BHE#,BLE#.A 1-A23, [
M/IO#. D/c#. W/R#

ADS# [

T1P

CYCLE 1
PIPELINED

(WRITE)

T21

An 80386SX self-test may be requested at the time
RESET goes inactive by having the BUSY # input at
a LOW level as shown in Figure 5.19. The self-test
requires (220 + approximately 60) CLK2 periods to
complete. The self-test duration is not affected by
the test results. Even if the self-test indicates a prob­
lem, the 80386SX attempts to proceed with the re­
set sequence afterwards.

After the RESET falling edge (and after the self-test
if it was requested) the 80386SX performs an inter­
nal initialization sequence for approximately 350 to
450 CLK2 periods.

HOLD CYCLE 2
ACKNOWLEDGE NON-PIPELINED

(READ)

T21 Th Th T1 T2

240187-33

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 5_18_ Requesting Hold from Idle Bus (NA# active)

60

inter

CLK2 [

RESET [

CLK (INTERNAL) [

PROCESSOR CLK [

BUSY# [

ERROR# [

BHE#.BLE#.
W/R#. M/IO#. [

HLDA

A1-A23. [
D/C#.LOCK#

ADS# [

READY# [

386SXTM MICROPROCESSOR

INTERNAL
1+----RESET----+---INITIALIZATION------+1
~ 1 5 CLK2 DURATION IF
NOT GOING TO REOUEST
SELF-TEST.

DURING RESET

DURING RESET

DURING RESET

DO-D15# [XXXXXX)(} --- -(FLOATING) -- -- -- -- -- - -- - -- -

NOTES:

CYCLE 1

NON-PIPELINED
(READ)

T1 T2

240187-34

1. BUSY # should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge
occurs.
2. If self-test is requested the 80386SX output remain in their reset state as shown here.

Figure 5.19. Bus Activity from Reset Until First Code Fetch

61

inter 386SX™ MICROPROCESSOR

5.5 Self-test Signature

Upon completion of self-test (if self-test was re­
quested by driving BUSY # LOW at the falling edge
of RESET) the EAX register will contain a signature
of OOOOOOOOH indicating the 80386SX passed its
self-test of microcode and major PLA contents with
no problems detected. The passing signature in
EAX, OOOOOOOOH, applies to all 80386SX revision
levels. Any non-zero Signature indicates the
80386SX unit is faulty.

5.6 Component and Revision
Identifiers

To assist 80386SX users, the 80386SX after reset
holds a component identifier and revision identifier in
its OX register. The upper 8 bits of OX hold 23H as
identification of the 80386SX component (The lower
nibble, 03H, refers to the 80386 Architecture. The
upper nibble, 02H, refers to the second member of
the 80386 family). The lower 8 bits of OX hold an
8-bit unsigned binary number related to the compo­
nent revision level. The revision identifier will, in gen­
eral, chronologically track those component step­
pings which are intended to have certain improve­
ments or distinction from previous steppings. The
80386SX revision identifier will track that of the
80386 where possible.

The revision identifier is intended to assist 80386SX
users to a practical extent. However, the revision
identifier value is not guaranteed to change with ev­
ery stepping revision, or to follow a completely uni­
form numerical sequence, depending on the type or
intention of revision, or manufacturing materials re­
quired to be changed. Intel has sole discretion over
these characteristics of the component.

Table 5.7. Component and
Revision Identifier History

80386SX Stepping name Revision Identifier

AD 04H
B 05H

5.7 Coprocessor Interfacing

The 80386SX provides an automatic interface for
the Intel 80387SX numeric floating-point coproces­
sor. The 80387SX coprocessor uses an I/O mapped
interface driven automatically by the 80386SX and
assisted by three dedicated signals: BUSY #, ER­
ROR # and PEREQ.

As the 80386SX begins supporting a coprocessor
instruction, it tests the BUSY # and ERROR # sig­
nals to determine if the coprocessor can accept its
next instruction. Thus, the BUSY # and ERROR #
inputs eliminate the need for any 'preamble' bus cy-

62

cles for communication between processor and co­
processor. The 80387SX can be given its command
opcode immediately. The dedicated signals provide
instruction synchronization, and eliminate the need
of using the 80386SX WAIT opcode (9BH) for
80387SX instruction synchronization (the WAIT op­
code was required when the 8086 or 8088 was used
with the 8087 coprocessor).

Custom coprocessors can be included in 80386SX
based systems by memory-mapped or I/O-mapped
interfaces. Such coprocessor interfaces allow a
completely custom protocol, and are not limited to a
set of coprocessor protocol 'primitives'. Instead,
memory-mapped or I/O-mapped interfaces may use
all applicable 80386SX instructions for high-speed
coprocessor communication. The BUSY # and ER­
ROR # inputs of the 80386SX may also be used for
the custom coprocessor interface, if such hardware
assist is desired. These signals can be tested by the
80386SX WAIT opcode (9BH). The WAIT instruction
will wait until the BUSY # input is inactive (interrupta­
ble by an NMI or enabled INTR input), but generates
an exception 16 fault if the ERROR # pin is active
when the BUSY # goes (or is) inactive. If the custom
coprocessor interface is memory-mapped, protec­
tion of the addresses used for the interface can be
provided with the 80386SX's on-chip paging or seg­
mentation mechanisms. If the custom interface is
liD-mapped, protection of the interface can be pro­
vided with the 80386SX 10PL (liD Privilege Level)
mechanism.

The 80387SX numeric coprocessor interface is I/O
mapped as shown in Table 5.8. Note that the
80387SX coprocessor interface addresses are be­
yond the OH-OFFFFH range for programmed I/O.
When the 80386SX supports the 80387SX coproc­
essor, the 80386SX automatically generates bus cy­
cles to the coprocessor interface addresses.
Table 5.8. Numeric Coprocessor Port Addresses

Address in 80386SX 80387SX Coprocessor
I/O Space Register

8000F8H Opcode Register
8000FCH/8000FEH* Operand Register

'Generated as 2nd bus cycle dUring D word transfer.

To correctly map the 80387SX registers to the ap­
propriate I/O addresses, connect the CMOO and
CM01 lines of the 80387SX as listed in Table 5.9.

Table 5.9. Connections for CMDO
and CMD1 Inputs for the 80387SX

Signal Connection

CMOO Connect to latched version
of 80386SX A2 signal

CM01 Connect to ground.

386SXTM MICROPROCESSOR

Software Testing for Coprocessor Presence

When software is used to test for coprocessor
(80387SX) presence, it should use only the following
coprocessor opcodes: FINIT, FNINIT, FSTCW mem,
FSTSW mem and FSTSW AX. To use other coproc­
essor opcodes when a coprocessor is known to be
not present, first set EM = 1 in the 80386SX's CRO
register.

6.0 PACKAGE THERMAL
SPECIFICATIONS

The 80386SX is specified for operation when case
temperature is within the range of 0·C-85·C. The
case temperature may be measured in any environ­
ment, to determine whether the 80386SX is within
specified operating range. The case temperature
should be measured at the center of the top surface
opposite the pins.

The ambient temperature is guaranteed as long as
T c is not violated. The ambient temperature can be
calculated from the 8jc and 8ja from the following
equations:

Tj = Tc + P*8jc

Ta = Tj - P*8ja

Tc = Ta + P*[8ja - 8jcl

Values for 8ja and 8jc are given in table 6.1 for the
100 lead fine pitch. 8ja is given at various airflows.
Table 6.2 shows the maximum T a allowable (without
exceeding T cl at various airflows. Note that T a can
be improved further by attaching 'fins' or a 'heat
sink' to the package. P is calculated by using the
maximum hot Icc.

7.0 ELECTRICAL SPECIFICATIONS

The following sections describe recommended elec­
trical connections for the 80386SX, and its electrical
specifications.

7.1 Power and Grounding

The 80386SX is implemented in CHMOS III technol­
ogy and has modest power requirements. However,
its high clock frequency and 47 output buffers (ad­
dress, data, control, and HLDA) can cause power
surges as multiple output buffers drive new signal
levels simultaneously. For clean on-chip power dis­
tribution at high frequency, 14 Vcc and 18 Vss pins
separately feed functional units of the 80386SX.

Power and ground connections must be made to all
external Vcc and GND pins of the 80386SX. On the
circuit board, all Vcc pins should be connected on a
Vcc plane and all Vss pins should be connected on
a GND plane.

POWER DECOUPLING RECOMMENDATIONS

Liberal decoupling capacitors should be placed near
the 80386SX. The 80386SX driving its 24-bit ad­
dress bus and 16-bit data bus at high frequencies
can cause transient power surges, particularly when
driving large capacitive loads. Low inductance ca­
pacitors and interconnects are recommended for
best high frequency electrical performance. Induc­
tance can be reduced by shortening circuit board
traces between the 80386SX and decoupling capac­
itors as much as possible.

Table 6.1. Thermal Resistances rC/Watt) 8/c and 8/a•

8ja versus Airflow - ft/min (m/sec)
Package 8jc 0 200 400 600 800 1000

(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100 Lead
7 33 27 24 21 18 17

Fine Pitch

Table 6.2: Maximum T a at various airflows.

T ArC) versus Airflow - ft/min (m/sec)
Package 0 200 400 600 800 1000

(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100 Lead
33 45 51 57 63 65

Fine Pitch
Max. T A calculated at 5.0V and max Icc.

63

inter 386SXTM MICROPROCESSOR

Table 7 1 Recommended Resistor Pull-ups to Vcc

Pin Signal Pull-up Value

16 ADS# 20 K-Ohm ± 10%

26 LOCK# 20 K-Ohm ± 10%

RESISTOR RECOMMENDATIONS

The ERROR # and BUSY # inputs have internal pull­
up resistors of approximately 20 K-Ohms and the
PEREa input has an internal pull-down resistor of
approximately 20 K-Ohms built into the B03B6SX to
keep these signals inactive when the B03B7SX is not
present in the system (or temporarily removed from
its socket).

In typical designs, the external pull-up resistors
shown in Table 7.1 are recommended. However, a
particular design may have reason to adjust the re­
sistor values recommended here, or alter the use of
pull-up resistors in other ways.

OTHER CONNECTION RECOMMENDATIONS

For reliable operation, always connect unused in­
puts to an appropriate signal level. N/C pins should
always remain unconnected. Connection of N/C
pins to Vcc or Vss will result in component mal­
function or incompatibility with future steppings
of the 80386SX.

Particularly when not using interrupts or bus hold (as
when first prototyping), prevent any chance of spuri­
ous activity by connecting these associated inputs to
GND:

Pin
40
3B

4

Signal
INTR
NMI
HOLD

64

Purpose

Lightly pull ADS# inactive during
B03B6SX hold acknowledge states

Lightly pull LOCK # inactive during
B03B6SX hold acknowledge states

If not using address pipelining, connect pin 6, NA # ,
through a pull-up in the range of 20 K-Ohms to Vcc.

7.2 Maximum Ratings

Table 7.2. Maximum Ratings

Parameter Maximum Rating

Storage temperature -65·Cto 150·C
Case temperature under bias -65·C to 110·C
Supply voltage with respect

toVss -.5Vt06.5V
Voltage on other pins - .5V to (Vcc + .5)V

Table 7.2 gives stress ratings only, and functional
operation at the maximums is not guaranteed. Func­
tional operating conditions are given in section 7.3,
D.C. Specifications, and section 7.4, A.C. Specifi­
cations.

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the
B03B6SX contains protective circuitry to resist dam­
age from static electric discharge, always take pre­
cautions to avoid high static voltages or electric
fields.

inter 386SXTM MICROPROCESSOR

7.3 D.C. Specifications
Functional operating range: Vcc = 5V ± 10%; T CASE = O°C to 85°C

Table 7.3. 80386SX D.C. Characteristics

Symbol Parameter Min Max Unit Notes

VIL Input LOW Voltage -0.3 +0.8 V

VIH Input HIGH Voltage 2.0 Vcc+0.3 V

VILC CLK2 Input LOW Voltage -0.3 +0.8 V

VIHC CLK2 Input HIGH Voltage Vcc-O.S Vcc+0.3 V

VOL Output LOW Voltage
IOL =4mA: A23-Al,DI5-DO 0.45 V
IOL =5mA: BHE#,BLE#,w/R#, 0.45 V

D/C#,M/IO#,LOCK#,
ADS#,HLDA

VOH Output high voltage
IOH= -1mA: A23-Al,DI5-DO 2.4 V
IOH = - 0.2 mA: A23-Al,DI5-DO Vcc-0.5 V

IOH = - O.gmA: BHE#,BLE#,w/R#, 2.4 V
D/C# ,M/IO# ,LOCK #,

ADS#,HLDA
IOH= -0.18 mA: BHE#,BLE#,w/R#, Vcc-0.5

D/C#,M/IO#,LOCK#,
ADS#,HLDA

III Input leakage current ±15 /LA OV~VIN~VCC
(for all pins except
PEREQ, BUSY # and ERROR #)

IIH Input Leakage Current 200 /LA VIH = 2.4V, Note 1
(PEREQpin)

IlL Input Leakage Current -400 /LA VIL=0.45V, Note 2
(BUSY # and ERROR # pins)

ILO Output leakage current ±15 /LA 0.45V ~VOUT~VCC

Icc Supply current 400 mA Icc typ = 300mA, Note 3
(CLK2 = 32 MHz)

CIN Input capacitance 10 pF Fc = 1 MHz, Note 4

COUT Output or 1/0 capacitance 12 pF Fc= 1 MHz, Note 4

CCLK CLK2 Capacitance 20 pF Fc= 1 MHz, Note 4
.. Tested at the minimum operating frequency of the part.

NOTES:
1. PEREQ input has an internal pull-down resistor.
2. BUSY# and ERROR# inputs each have an internal pull-up resistor.
3. Icc max measurement at worst case load, frequency, Vcc and temperature.
4. Not 100% tested.

65

386SXTM MICROPROCESSOR

7.4 A.C. Specifications

The AG. specifications given in Table 7.4 consist of
output delays, input setup requirements and input
hold requirements. All AG. specifications are rela­
tive to the GLK2 rising edge crossing the 2.0V level.

AG. spec measurement is defined by Figure 7.1. In­
puts must be driven to the voltage levels indicated
by Figure 7.1 when AG. specifications are mea­
sured. 80386SX output delays are specified with
minimum and maximum limits measured as shown.
The minimum 80386SX delay times are hold times

CLK2[

OUTPUTS

provided to external circuitry. 80386SX input setup
and hold times are specified as minimums, defining
the smallest acceptable sampling window. Within
the sampling window, a synchronous input signal
must be stable for correct 80386SX operation.

Outputs NA#, W/R#, D/G#, M/IO#, LOGK#,
BHE#, BLE#, A23-A1 and HLDA only change at
the beginning of phase one. D15-DO (write cycles)
only change at the beginning of phase two. The
READY#, HOLD, BUSY#, ERROR#, PEREa and
D15-DO (read cycles) inputs are sampled at the be­
ginning of phase one. The NA#, INTR and NMI in­
puts are sampled at the beginning of phase two.

(A 1-A23.BHEN.BLEN. [
AOSN.M/IO#.O/CN. 1.5V OUT~~~On+1

W/RN.LOCKN.HLOA) ____ Q".~..;:...~~.3..........;..;..-..;..;,...;.;...;..

OUTPUTS [
(00-015)

INPUTS [
(N/A#.INTR.NMI)

INPUTS
(REAOYN.HOLO. [
ERROR#.BUSY N.
PEREQ.00-015)

LEGEND
A - Maximum Output Delay Spec
B - Minimum Output Delay Spec
C - Minimum Input Setup Spec
D - Minimum Input Hold Spec

3.0V ,.....,..,.."""--......:..--~~~~

OV~~~-----........ ~~·

3.0V ,...,..,.."'"-----~.-+-..........
OV~~~-----........ ~~·

240187-35

Figure 7.1. Drive Levels and Measurement Points for A.C. Specifications

66

infef 386SXTM MICROPROCESSOR

A.C. SPECIFICATONS TABLES
Functional operating range: Vee = 5V ± 1 0%; T CASE = O°C to 85°C

Table 7.4. 80386SX A.C. Characteristics at 16 MHz

Symbol Parameter Min Max Unit Figure Notes

Operating frequency 4 16 MHz Half CLK2 Freq

t1 CLK2 period 31 125 ns 7.3

t2a CLK2 HIGH time 9 ns 7.3 at 2V(3)

t2b CLK2 HIGH time 5 ns 7.3 at (Vee - 0.8)V(3)

t3a CLK2 LOW time 9 ns 7.3 at 2V(3)

t3b CLK2 LOW time 7 ns 7.3 at 0.8V(3)

t4 CLK2 fall time 8 ns 7.3 (Vee - 0.8)V to 0.8V(3)

t5 CLK2 rise time 8 ns 7.3 0.8V to (Vee-0.8)V(3)

t6 A23-A1 valid delay 4 36 ns 7.5 CL = 120pF(4)

t7 A23-A1 float delay 4 40 ns 7.6 (Note 1)

t8 BHE#, BLE#, LOCK#
valid delay 4 36 ns 7.5 CL = 75pF(4)

t9 BHE#, BLE#, LOCK#
float delay 4 40 ns 7.6 (Note 1)

tlO W/R#, M/IO#, D/C#,
ADS # valid delay 6 33 ns 7.5 CL = 75pF(4)

t11 W/R#, M/IO#, D/C#
ADS # float delay 6 35 ns 7.6 (Note 1)

t12 015-00 Write Data
Valid Delay 4 40 ns 7.5 CL = 120pF(4)

t13 015-00 Write Data
Float Delay 4 35 ns 7.6 (Note 1)

t14 HLDA valid delay 6 33 ns 7.5 CL = 75pF(4)

t15 NA# setup time 5 ns 7.4

t16 NA # hold time 21 ns 7.4

t19 READY # setup time 19 ns 7.4

t20 READY # hold time 4 ns 7.4

t21 015-00 Read Data
setup time 9 ns 7.4

t22 015-00 Read Data
hold time 6 ns 7.4

t23 HOLD setup time 26 ns 7.4

t24 HOLD hold time 5 ns 7.4

t25 RESET setup time 13 ns 7.7

t26 RESET hold time 4 ns 7.7

67

intJ 386SXTM MICROPROCESSOR

Functional operating range: Vee = 5V ± 10%; T CASE = O°C to 85°C

Table 7.4. 80386SX A.C. Characteristics at 16 MHz (Continued)

Symbol Parameter Min Max Unit Figure Notes

t27 NMI, INTR setup time 16 ns 7.4 (Note 2)

t28 NMI, INTR hold time 16 ns 7.4 (Note 2)

t29 PEREQ,ERROR#,BUSY#
setup time 16 ns 7.4 (Note 2)

t30 PEREQ,ERROR#,BUSY#
hold time 5 ns 7.4 (Note 2)

NOTES:
1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100%
tested.
2: These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.
3: These are not tested. They are guaranteed by design characterization.
4: Tested with Cl set at 50 pf and derated to support the indicated distributed capacitive load. See figure 7.8 for the
capacitive derating curve.

A.C. TEST LOADS A.C. TIMING WAVEFORMS

80386SXo------,
OUTPUT ..L

~Cl
240187-36

240187-37

Figure 7.2. A.C. Test Loads Figure 7.3. CLK2 Waveform

68

inter 386SX™ MICROPROCESSOR

Tx Tx

CLK2 [

READY# [~~'-I.----+----'!;~IU

HOLD [~~'-I.-__ *-__ -A~~

DO-D15 [
(INPUT) ~~~ __ ~I-__ a.l~

BUSY#. [
ERROR#

PEREQ ~~~I.---+---....A:~IU

NA# [

INTR. [
Nilli

Tx

Figure 7.4. A.C. Timing Waveforms-Input Setup and Hold Timing

CLK2 [

BHE#.BLE#. [
LOCK#

W/R#.IIl/IO#. [
D/C#.ADS#

A1-A23 [

DO-D15 [
(OUTPUT)

HLDA [

Tx

Figure 7.5. A.C. Timing Waveforms-Output Valid Delay Timing

69

240187-38

240187-39

inter

CLK2 [

BHE#.BLE#. [LOCK#

W/R#. M/IO#. [D/C#.ADS#

A1-A23 [

00-015 [

HLDA [

386SXTM MICROPROCESSOR

Th Ti OR T1

(HIGH Z)

@ALSO APPLIES TO DATA FLOAT WHEN WRITE
CYCLE IS FOLLOWED BY READ OR IDLE

240187-40

Figure 7.6. A.C. Timing Waveforms-Output Float Delay and HLDA Valid Delay Timing

-RESET-I ----INITIALIZATION SEQUENCE ----

CLK2 [

RESET [

240187-41

Figure 7.7. A.C. Timing Waveforms-RESET Setup and Hold Timing and Internal Phase

70

-;;-
.5-
>-
j
~
0
:J ..
>
0-
::> ..
0-
::>
0

386SX™ MICROPROCESSOR

NOt.4+4
NOM+3
NOM+2
NOM+l 17

NOM
NOIA-l ./

.;I NOM-2
V NOM-3

/ NOIA-4 V NOM-5
NOM-6 /

NOIA-7 V
25 50 75 100 120

LOAD CAPACITANCE (pf)

240187-42

Figure 7.8. Capacitive
Derating Curve

0

.5-
"" 0-...
'"
~
...J
III

150

7

6

5

4

3

2

./
./ ./

./ It'

o

O~--~--~--L-~--~

25 50 75 100 120 150

CAPACITANCE (pF)

• - RISE TIt,jES (0.4-3.5V)

o - FALL Tlt,jES (3.5-0.4V)

240187-43

Figure 7.9. CMOS Level Slew Rates for Output Buffers

./

V

/
V" ./
[7

V • - RISE TIt,jES (0.8-2.0V)

o - FALL TIt,jES (2.0-0.8V)

25 50 75 100 120 150

CAPACITANCE (pF)
240187-44

Figure 7.10. TTL Level Slew Rates for Output Buffers

ICC t,jEASURED AT WORST CASE VCC AND TEt,jPERATURE

o4L------L----~8------1~0------IL2------1L4----~16

FREQUENCY (t,jHz)
240187-45

Figure 7.11. Typical Icc vs Frequency

71

inter 386SXTM MICROPROCESSOR

7.5 Designing for ICETM-386SX Use
(Preliminary Data)

The 80386SX in-circuit emulator product is ICE-
386SX. This emulator is designed to connect to the
user's target by an adapter that will replace the nor­
mal 80386SX component in a socket on the user's
system. Because of the high operating frequency of
80386SX systems and of the ICE-386SX, there is no
buffering between the 80386SX emulation proces­
sor in the ICE-386SX probe and the target system. A
direct result of the non-buffered interconnect is that
the ICE-386SX shares the address and data bus
with the user's system, and the RESET signal is in­
tercepted by the ICE hardware. In order for ICE-
386SX to be functional in the user's system the de­
sign must satisfy the following restrictions:

1. The user bus controller must only drive the data
bus during valid read cycles of the 80386SX or
while the processor is in the hold state.

2. Before the user system drives the address bus,
the system must gain control of the address bus
by asserting HOLD and receiving the HLDA re­
sponse.

3. The RESET signal to the emulation processor is
delayed in emulation by 2 or 4 CLK2 cycles (cor­
rect phase is guaranteed).

In addition to the above considerations, the ICE-
386SX processor module has several electrical and
mechanical characteristics that should be taken into
consideration when designing the 80386SX system.

A C

D

PIN 1

USER
80386SX
SOCKET

B

Capacitive loading: ICE-386SX adds up to 27 pF to
each 80386SX signal.

Drive Requirements: ICE-386SX adds one FAST
TTL load on the CLK2, control, address, and data
lines. These loads are within the processor module
and are driven by the 80386SX emulation processor,
which has standard drive and loading capability list­
ed in Tables 7.3 and 74 ..

Power Requirements: For noise immunity and
CMOS latch- up protection the ICE-386SX proces­
sor module is powered by the user system. The cir­
cuitry on the processor module draws up to 1.5
Amps plus the maximum 80386SX Icc from the user
80386SX socket.

80386SX Location and Orientation: The ICE-
386SX processor module may require lateral clear­
ance illustrated in Figure 7.12, viewed from above
the 80386SX socket. The ICE-386SX processor
module alone requires vertical clearance of 1.25
inches above the height of the surrounding Circuitry.
The optional isolation board (OIB), which provides
extra electrical buffering and has the same lateral
clearance requirements as Figure 7.12, adds 0.5
inches to the vertical clearance requirement.

Optional Isolation Board (OIB) and the CLK2
speed reduction: Due to the unbuffered probe de­
sign, the ICE-386SX is susceptible to errors on the
user's bus. The OIB allows the ICE-386SX to func­
tion in user systems with faults (shorted signals,
etc.). After electrical verification the OIB may be re­
moved. When the OIB is installed, the user system
must have a maximum CLK2 frequency of 16 MHz.

CLEARANCE

A: 1.500 INCHES (3.81 CM)
B: 2.300 INCHES (5.84 CM)
C: 0.450 INCHES (1.14 CM)
D: 3.950 INCHES (10.03 CM)

MINIMUM CABLE BEND RADIUS: 2 INCHES (5.08 CM)

240187-46

Figure 7.12: Preliminary ICETM·386SX Processor Module Clearance Requirements (inches)

72

inter 386SX™ MICROPROCESSOR

8.0 DIFFERENCES BETWEEN THE
80386SX AND THE 80386

The following are the major differences between the
80386SX and the 80386:

1. The 80386SX generates byte selects on BHE #
and BLE # (like the 8086 and 80286) to distin­
guish the upper and lower bytes on its 16-bit data
bus. The 80386 uses four byte selects, BEO #­
BE3 #, to distinguish between the different bytes
on its 32-bit bus.

2. The 80386SX has no bus sizing option. The
80386 can select between either a 32-bit bus or a
16-bit bus by use of the BS 16 # input. The
80386SX has a 16-bit bus size.

3. The NA# pin operation in the 80386SX is identi­
cal to that of the NA# pin on the 80386 with one
exception: the 80386's NA# pin cannot be acti­
vated on 16-bit bus cycles (where BS16# is LOW
in the 80386 case), whereas NA# can be activat­
ed on any 80386SX bus cycle.

4. The contents of all 80386SX registers at reset are
identical to the contents of the 80386 registers at
reset, except the OX register. The OX register
contains a component-stepping identifier at reset,
i.e.

in 80386, after reset OH = 3 indicates 80386
OL = revision number;

in 80386SX, after reset OH = 23H
indicates 80386SX

OL = revision number.

73

5. The 80386 uses A31 and M/IO# as selects for
the numerics coprocessor. The 80386SX uses
A23 and M/IO# as selects.

6. The 80386 prefetch unit fetches code in four-byte
units. The 80386SX prefetch unit reads two bytes
as one unit (like the 80286). In BS16 mode, the
80386 takes two consecutive bus cycles to com­
plete a prefetch request. If there is a data read or
write request after the prefetch starts, the 80386
will fetch all four bytes before addressing the new
request.

7. Both 80386 and 80386SX have the same logical
address space. The only difference is that the
80386 has a 32-bit physical address space and
the 80386SX has a 24-bit physical address space.
The 80386SX has a physical memory address
space of up to 16 megabytes instead of the 4
gigabytes available to the 80386. Therefore, in
80386SX systems, the operating system must be
aware of this physical memory limit and should
allocate memory for applications programs within
this limit. If an 80386 system uses only the lower
16 megabytes of physical address, then there will
be no extra effort required to migrate 80386 soft­
ware to the 80386SX. Any application which uses
more than 16 megabytes of memory can run on
the 80386SX if the operating system utilizes the
80386SX's paging mechanism. In spite of this dif­
ference in physical address space, the 80386SX
and 80386 CPUs can run the same operating sys­
tems and applications within their respective
physical memory constraints.

386SXTM MICROPROCESSOR

9.0 INSTRUCTION SET

This section describes the 80386SX instruction set.
Table 9.1 lists all instructions along with instruction
encoding diagrams and clock counts. Further details
of the instruction encoding are then provided in the
following sections, which completely describe the
encoding structure and the definition of all fields oc­
curring within 80386SX instructions.

9.1 80386SX Instruction Encoding and
Clock Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 9.1 be­
low, by the processor clock period (e.g. 62.5 ns for
an 80386SX operating at 16 MHz). The actual clock
count of an 80386SX program will average 5% more
than the calculated clock count due to instruction
sequences which execute faster than they can be
fetched from memory.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor access to the bus.

4. No exceptions are detected during instruction ex­
ecution.

5. If an effective address is calculated, it does not
use two general register components. One reg-

74

ister, scaling and displacement can be used within
the clock counts shown. However, if the effective
address calculation uses two general register
components, add 1 clock to the clock count
shown.

Instruction Clock Count Notation

1. If two clock counts are given, the smaller refers to
a register operand and the larger refers to a mem­
ory operand.

2. n = number of times repeated.

3. m = number of components in the next instruc­
tion executed, where the entire displacement (if
any) counts as one component, the entire imme­
diate data (if any) counts as one component, and
all other bytes of the instruction and prefix(es)
each count as one component.

Misaligned or 32-Bit Operand Accesses

- If instructions accesses a misaligned 16-bit oper­
and or 32-bit operand on even address add:
2* clocks for read or write
4 •• clocks for read and write

- If instructions accesses a 32-bit operand on odd
address add:
4 • clocks for read or write
8' * clocks for read and write

Wait States

Wait states add 1 clock per wait state to instruction
execution for each data access.

inter 386SX™ MICROPROCESSOR

Table 8-1" 80386SX Instruction Set Clock Count Summary
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

GENERAL DATA TRANSFER
MOV ~ Move:

Register to Register/Memory I 1000100w I mad rag r/ml 2/2 2/2" b h

Register/Memory to Register 1000101w I mad rag r/ml 2/4 2/4" b h

Immediate to Register/Memory 1100011 w I modOOO rIm I immediate data 2/2 2/2" b h

Immediate to Register (short form) 1011 w reg I immediate data 2 2

Memory to Accumulator (short form) 1010000w I full displacement 4" 4" b h

Accumulator to Memory (short form) 1010001w I full displacement 2' 2" b h

Register Memory to Segment Register I 10001110 I modsreg3 r/ml 2/5 22/23 b h, i,j

Segment Register to Register/Memory I 10001100 I modsreg3 r/ml 2/2 2/2 b h

MOVSX ~ Move With Sign Extension

Register From Register/Memory I 00001111 I 1011111 w I mod reg rim I 3/S" 3/S' b h

MOVZX ~ Move With Zero Extension

Register From Register/Memory I 00001111 I 1011011 w I mod reg r/ml 3/S" 3/S' b h

PUSH Push:

Register/Memory 11111111 I mod 11 0 r/ml 5/7" 7/9" b h

Register (short form) 01010 reg I 2 4 b h

Segment Register (ES, CS, SS or OS)
000sreg2110 I 2 4 b h (shorttorm)

Segment Register (ES, CS, SS, OS, 00001111 I 10sreg3000 I 2 4 b h FS or GS)

Immediate 011010s0 I immediate data 2 4 b h

PUSHA "" Push All 01100000 I 18 34 b h

POP Pop

Register/Memory 10001111 modOOO r/ml 517 7/9 b h

Register (short form) 01011 reg S S b h

Segment Register (ES, CS, SS or OS) 000sreg2111 7 25 b h,l, j (shorttorm)
Segment Register (ES, CS, SS or OS), 00001111 10sreg3001 I 7 25 b h, i, j FS orGS

POPA ~ Pop All 01100001 24 40 b h

XCHG ~ Exchange

Register/Memory With Register I 1000011w I mod reg r/ml 3/5"" 3/5'" b, t t, h

Register With Accumulator (short form) 110010 reg I ClkCount 3 3

Virtual
IN Input from: 8086 Mode

Fiked Port I 1110010w I port number t2S 12' S'/2S' s/t,m

Variable Port 1 1110110w I t27 13" 7' 127" s/t,m

OUT Output to:

Fixed Port I 1110011 w I port number t24 10" 4"/24' s/t,m

Variable Port 1 1110111 w I t25 11" 5'/25" s/t,m

LEA Load EA to Register I 10001101 I mod reg rim I 2 2

75

inter 386SXTM MICROPROCESSOR

Table 8-1, 80386SX Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

SEGMENT CONTROL

LOS ~ Load Pointer to OS I 1 1000101 I mod reg r/ml 7' 28' b h, i,j

LES ~ Load Pointer to ES I 11000100 I mod reg r/ml 7' 28' b h, i, j

LFS = Load POinter to FS I 00001111 I 10110100 I mod reg rim I 7' 31' b h, I, j

LGS ~ Load Pointer to GS I 00001111 I 10110101 I mod reg rim I 7' 28' b h, 1, J

LSS ~ Load Pointer to SS I 00001111 I 10110010 I mod reg rim I 7' 28' b h, I, I

FLAG CONTROL

CLC ~ Clear Carry Flag I 11111000 2 2

CLD ~ Clear Direction Flag I 1 111 1 100 2 2

CLI ~ Clear Interrupt Enable Flag I 11111010 8 8 m

CLTS ~ Clear Task Switched Flag I 00001 1 1 1 00000110 I 5 5 c I

CMC ~ Complement Carry Flag I 11110101 2 2

LAHF ~ Load AH into Flag I 10011111 2 2

POPF ~ Pop Flags I 1001 1 101 I 5 5 b h, n

PUSHF ~ Push Flags I 10011100 I 4 4 b h

SAHF = Store AH into Flags I 10011110 I 3 3

STC ~ Set Carry Flag I 11111001 I 2 2

STO = Set Direction Flag I 11111001 I 11111101 I 2 2

STI = Set Interrupt Enable Flag I 11111011 I 8 8 m

ARITHMETIC

ADD ~ Add

Register to Register OOOOOOdw mod reg r/ml 2 2

Register to Memory OOOOOOOw mod reg r/ml 7" 7" b h

Memory to Register 0000001w mod reg r/ml 6' 6' b h

Immediate to Register/Memory 100000sw modOOO rim I immediate data 217" 217" b h

Immediate to Accumulator (short form) 0000010w immediate data 2 2

ADC ~ Add With Carry

Register to Register I 000100dw I mod reg rIm I 2 2

Register to Memory I 0001000w I mod reg rim I 7" 7" b h

Memory to Register I 0001001w I mod reg r/ml 6' 6' b h

Immediate to Register/Memory I 100000sw Imod010 r/ml immediate data 217" 2/7" b h

Immediate to Accumulator (short form) I 0001010w I immediate data 2 2

INC = Increment

Register/Memory I 1111111w ImodDDD r/ml 2/6" 2/6" b h

Register (short form) 101000 reg I 2 2

SUB ~ Subtract

Register from Register I 001010dw I mod reg r/ml 2 2

76

386SX™ MICROPROCESSOR

Table 8-1, 80386SX Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Modear Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

iARITHMETIC (Continued)

~egister from Memory I 0 0 1 0 1 0 0 w ImOd reg r/ml 7" r' b h

~emory from Register 10010101 w Imod reg r/ml 6' 6' b h

mmediata from Register/Memory 11 OOOOOsw Imod 101 r / ml immediate data 217" 2/7" b h

mmediate from Accumulator (short form) 10010110wl immediate data 2 2

~BB Subtract with Borrow

~egister from Register 100011 Odw ImOdreg r/ml 2 2

~egister from Memory I 000 1 1 00 w !mOd reg r/ml 7" 7" b h

~omory from Register I 0001 1 0 1 w ImOd reg r/ml 6' 6' b h

mmedtate from Register/Memory 11 0000 0 5 W ImOd 0 1 1 r/ml immediate data 217" 2/7" b h

mmedtste from Accumulator (short form) 10001110wl immediate data 2 2

DEC Decrement

Register/Memory 111111 11 w Ireg 001 r/ml 2/6 2/6 b h

Register (short form) 101001 regl 2 2

CMP Compare

Register With Register I 00 1 1 1 0 d w ImOd reg r/ml 2 2

Memory WIth Register I 0 0 1 1 1 0 0 w ImOd reg r/ml 5' 5' b h

Register with Memory I 00 1 1 1 0 1 w ImOd reg r/ml 6' 6' b h

Immodlato with Register 1M emory 11 OOOOOsw ImOdlll r/ml immediate data 2/5' 2/5' b h

mmedlate with Accumulator (short form) 1001111 Ow 1 immediate data 2 2

NEG Change Sign 11 1 1 1 0 1 1 w Imod 0 1 1 r/ml 2/6' 2/6· b h

AAA ASCII Adjust lor Add 1 00110111 1 4 4

AAS ASCII Adjust lor Subtract I 00111111 I 4 4

DAA Decimal Adjust lor Add I 00100111 I 4 4

DAS Oeclmal Adjust for Subtract I 00101111 1
4 4

MUL Multiply (unsigned)

Accumulator with Register I Memory 11111011wlmOdl00 r/ml

Multiplier-Byte 12-17/15-20' 12-17/15-20' b, d d, h

-Word 12-25/15-28' 12-25/15-28' b,d d, h

-Doubleword 12-41/17-46' 12-41/17-46' b, d d, h

MUL Integer Multiply (signed)

ccumulatorwith RegisterlMemory 11 1 1 1 0 1 1 w ImOd 1 0 1 r/ml
Multiplier-Byte 12-17/15-20' 12-17/15-20' b, d d, h

-Word 12-25/15-28' 12-25/15-28' b, d d, h

-Ooubleword 12-41/17-46' 12-41/17-46' b, d d, h

~ogister With Register/Memory 1 00001111 I 10101111 Imod reg r/ml

Multiplier-Byte 12-17 115-20' 12-17/15-20' b, d d, h

-Word 12-25/15-28' 12-25/15-28' b, d d, h

-Ooubleword 12-41/17-46' 12-41/17-46' b, d d, h

fogister/Memory with Immediate to Registerl 01 1 01 0 s 1 ImOd reg r/ml immediate data

-Word 13-26 13-26/14-27 b, d d, h

-Doubleword 13-42 13-42/16-45 b, d d, h

77

Inter 386SX™ MICROPROCESSOR

Table 8-1. 80386SX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Addre •• Protected

Mode or Virtual Mode or Virtual
Virtual Addre .. Virtual Addre ..
8086 Mode 8086 Mode
Mode Mode

ARITHMETIC (Continued)
DIV ~ Divide (Unsigned)

Accumulator by Register/Memory 11 1 11 01 1 w Imod 11 0 r/ml

Divisor-Byte 14/17 14/17 b,e e,h
-Word 22/25 22/25 b,e e,h
-Doubleword 38/43 38/43 b,e e,h

IDIV ~ Integer Divide (Signed)

Accumulator By Register/Memory 111 1 1 011 w Imod 1 11 r/ml

Divisor-Byte 19/22 19/22 b,e e,h
-Word 27/30 27/30 b,e e.h
-Doubleword 43/48 43/48 b,e e,h

AAD ~ ASCII Adjust for Divide I 11010101 1000010101 19 19

AAM ~ ASCII Adjust for Multiply 1110101001000010101 17 17

CBW ~ Convert Byte to Word 1100110001 3 3

CWD ~ Convert Word to Double Word I 10011001 1 2 2

LOGIC

Shift Rotate Instructions

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

RegisterlMemory by 1 11101 OOOw ImOdTTT r/ml 3/r* 317" b h

RegisterlMemory by CL 11101001w ImOdTTT r/ml 317' 3/7* b h

Register/Memory by Immediate Count 11100000w ImodTTT r/mlimmed 8-bit data 3/7' 3/7* b h

Through Carry (RCL and RCR)

RegisterlMemory by 1 11101 OOOw ImOdTTT r/ml 9/10' 9/10' b h

RegisterlMemory by CL 11101001 w I mod TTT r/ml 9/10' 9/10' b h

Register/Memory by Immediate Count I 11 OOOOOw ImodTTT r/mlimmed 8-bit data 9/10' 9/10' b h

TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR

100 SHL/SAL

101 SHR
111 SAR

SHLD ~ Shift Left Double

Register/Memory by Immediate 100001111 1 10100100lmOdreg r/mlimmed 8-bit data 3/7·· 317"

RegisterlMemory by CL 100001111 1 10100101 ImOdreg r/ml 3/r* 3/7"

SHRD ~ Shift Right Double

RegisterlMemory by Immediate I 00001111 1 10101100 1 mod reg r/mlimmed 8-bit data 3/7·· 317"

RegisterlMemory by CL I 00001111 I 10101101 Imodreg r/ml 317" 317"

AND ~ And

Register to Register I 001000dw 1 mod reg r/ml 2 2

78

intJ 386SXTM MICROPROCESSOR

Table 8-1. 80386SX Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Addre .. Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Add
8086 Mode 8086 Mode
Mode Mode

LOGIC (Continued)

Register to Memory I 001 OOOOw ImOdreg r/ml 7" 7" b h

Memory to Register I 00 1000 I w I mod reg r/ml 6' 6' b h

Immediate to RegisterlMemory I 1000000w ImodlOO rIm I immediate data 2/7' 217·· b h

Immediate to Accumulator (Short Form) I 00 100 lOw I immediate data 2 2

TEST = And Function to Flags, No Result

Register/Memory and Register I 1000010w Imodreg r/ml 2/5'" 2/5· b h

Immediate Data and Register/Memory I 1III01lw ImodOOO rIm I immediate data 2/5' 2/5' b h

Immediate Data and Accumulator
(Short Form) I I 0 I 0 I 0 0 w I immediate data 2 2

OR = Or

Register to Aegister 100001 Odw Imodreg r/ml 2 2

Register to Memory 100001 OOw Imodreg r/ml 7" 7" b h

Memory to Register I OOOOIOlw Imodreg r/ml 6' 6' b h

Immediate to RegisterlMemory II OOOOOOw ImodOOI r/ml immediate data 2/7·· 2/7·· b h

Immediate to Accumulator (Short Form) 0000 II Ow I immediate data 2 2

XOR Exclusive Or

Register to Register 0011 OOdw ImOdreg r/ml 2 2

Register to Memory 0011 OOOw I mod reg r/ml 7" 7" b h

Memory to Register 0011001 w I mod reg r/ml 6' 6' b h

Immediate to RegisterlMemory I OOOOOOw I mod II 0 r/ml immediate data 2/7" 217" b h

Immediate to Accumulator (Short Form) o 0 I I 0 lOw I immediate data 2 2

NOT ~ Invert Register/Memory I 1III01lw ImodOIO r/ml 2/6·· 2/6·· b h
Clk

STRING MANIPULATION Count
Virtual

CMPS - Compare Byte Word I 1010011 w
8086

10' 10' b h Mode

INS ~- Input Byte/Word from DX Port 10110110w I t29 9·/29·· b s/t,h,m

LODS ~ Load Byte/Word to AL/ AX/EAX I 1010110w 5 5' b h

MOVS Move Byte Word I 1010010w 7 7" b h

OUTS Output BytelWord to DX Port 10110111 w I t28 14 8·/28- b s/t,h,m

SCAS Scan Byte Word I 1010111 w 7' 7' b h

STOS Store BytelWord from

AL/AX/EX I 1010101 wi 4' 4' b h

XLA T - Translate Siring I 11010111 I 5' 5' h

REPEATED STRING MANIPULATION
Ropeated by Count in CX or ECX

REPE CMPS = Compare String

(Find Non-Match) I 11110011 I 1010011 wi 5 + 9nu 5 + 9n·· b h

79

intJ 386SX™ MICROPROCESSOR

Table 8-1, 80386SX Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Add Protected Add Protected

Modeor Virtual Mode or Virtual
Virtual Addre .. Virtual Addre ..
8086 Mode 8086 Mode
Mode Mode

REPEATED STRING MANIPULATION (Continued)

REPNE CMPS = Compare String ClkCount

(Find Match) I ttll00l0ll0l00llWI
Virtual 5+9n"'· 5+9n"'· b h 8086 Mode

REP INS = Input String 11111001010110110wI I t 13+60· 7+60"" b s/t,h,m
27+60·

REP LODS = Load String 11111001011010110wl 5+60" 5+Sn' b h

REP MOVS = Move String 11111001011010010wl 7+4n'" 7+40" b h

REP OUTS = Output String 111110010 I 0110111 w I I t 12+5n' 6+50"" b s/t,h,m
26+50·

REPE SCAS = Scan String

(Find Non-ALI AX/EAX) 11111001111010111Wl 5+8n" 5+80" b h

REPNE SCAS = Scan String

(Find ALI AX/EAX) 11111001011010111Wl 5+80" 5+80" b h

REP STOS = Store Strtng 11111001011010101Wl 5+50'" 5+50" b h

BIT MANIPULATION

BSF = Scan Bit Forward 100001111110111100lmOdreg r/ml 10+3n' 10+30" b h

BSR = Scan Bit Reverse 1000011111101111011mOdreg r/ml 10+3n' 10+30" b h

BT = Test Bit

Register/Memory, Immediate 100001111110111010lmodl00 r/mlimmed S-bit data 3/S' 3/S' .b h

RegisterlMemory, Register 100001111 110100011 ImOdreg r/~ 3/12' 3/12' b h

BTC = Teat Bit and Complement

Register/Memory, Immediate 100001111 110111010 Imod 111 r/mlimmed 8-bit da~ SIS' SIS' b h

Register IMemory, Register 100001111 110111011 ImOdreg r/ml S/13' S/13' b h

BTR = Test Bit and Reset

RegisterlMemory, Immediate I 00001111 11 011 101 0 Imod 11 0 r/mlimmed S-bH dat~ SIS' SIS' b h

Register/Memory, Register 100001111 110110011 Imodreg r/ml S/13' S/13' b h

BTS = Test Bit and Set

Register IMemory, Immediate I 00001111 110111010 Imod 101 r/mlimmed S-bit da~ SIS' SIS' b h

Register IMemory, Register 1000011111101010111modreg r/ml S/13' S/13' b h

CONTROL TRANSFER

CALL = Call

Direct Within Segment 111101000 IfulidisPlaoement 7+m'" 9+m" b r

RegisterlMemory

Indirect WHhin Segment 111111111 ImodO 1 0 r/ml 7+m"'/10+m'" 9+ml b h,r

12+m'"

Direct Intersegment 11 0 0 1 1 0 1 0 IUnSigned full offset, selector 17+m'" 42 + m'" b j,k,r

NOTE:
t Clock count shown applies jf 1/0 permission allows 1/0 to the port in virtual 8086 mode. If 1/0 bit map denies permission
exception 13 fault occurs; refer to clock counts for INT 3 instruction.

80

inter 386SX™ MICROPROCESSOR

Table 8-1. 80386SX Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Modear Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

CONTROL TRANSFER (Continued)

Protected Mode Only (Direct Intersegment)

Via Call Gate to Same Privilege Level 64+m h,i,k,r

Via Call Gate to Different Privilege Level,
(No Parameters) 98+m h,i,k,r

Via Call Gate to Different Privilege Level,
(x Parameters) 106+8x+m h,i,k,r

From 286 Task to 286 TSS 285 h,i,k,r

From 286 Task to 386 TSS 310 h,i,k,r

From 286 Task to Virtual 8086 Task (386 TSS) 229 h,i,k,r

From 386 Task to 286 TSS 285 h,i,k,r

From 386 Task to 386 TSS 392 h,i,k,r

From 386 Task to Virtual 8086 Task (386 TSS) 309 h,i,k,r

Indirect Intersegment 111111111 Imodo 11 r/ml 46+m b h,i,k,r

Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 68+m h,i,k,r

Via Call Gate to Different Privilege Level,
(No Parameters) 102+m h,i,k,r

Via Call Gate to Different Privilege Level,
(x Parameters) 110+8x+m h,i,k,r

From 286 Task to 286 TSS h,i,k,r

From 286 Task to 386 TSS h,i,k,r

From 286 Task to Virtual 8086 Task (386 TSS) h,i,k,r

From 386 Task to 286 TSS h,i,k,r

From 386 Task to 386 TSS 399 h,i,k,r

From 386 Task to Virtual 8086 Task (386 TSS) h,i,k,r

JMP -- Unconditional Jump

Short I 11101011 la-bit displacement I 7+m r

Direct within Segment I 11101001 I full displacement 7+m r

Register/Memory Indirect within Segment I 11111111 Imodl00 r/ml 9+m/14+m b h,r

Direct Intersegment I 11101010 I unsigned full offset, selector 31 +m i,k,r

Protected Mode Only (Direct Intersegment)

Via Call Gate to Same Privilege Level 53+m h,i,k,r

From 286 Task to 286 TSS h,i,k,r

From 286 Task to 386 TSS h,i,k,r

From 286 Task to Virtual 8086 Task (386 TSS) h,i,k,r

From 386 Task to 286 TSS h,i,k,r

From 386 Task to 386 TSS h,i,k,r

From 386 Task to Virtual 8086 Task (386 TSS) 395 h,i.k,r

Indirect Intersegment 111111111 I mod 1 0 1 r/ml 31+m b h,i,k,r

Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 49+m h,i,k,r

From 286 Task to 286 TSS h,i,k,r

From 286 Task to 386 TSS h,i,k,r

From 286 Task to Virtual 8086 Task (386 TSS) h,i,k,r

From 386 Task to 286 TSS h,i,k,r

From 366 Task to 386 TSS 328 h,i,k,r

From 386 Task to Virtual 8086 Task (386 TSS) h,i,k,r

81

386SXTM MICROPROCESSOR

Table 8-1. 80386SX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Addr ...
8086 Mode 8086 Mod.
Mode Mode

CONTROL TRANSFER (Continued)

RET ~ Return from CALL:

Within Segment I 110 000 11 I 12+m b g. h. r

Within Segment Adding Immediate to SP I 11000010 I 16-bit displ I 12+m b g. h. r

Intersegment I 11001011 I 36+m b g. h. i. k. r

Intersegment Adding Immediate to SP I 11001010 I 16-bit displ I 36+m b g. h. i. k. r

Protected Mode Only (RET):

to Different Privilege Level

Intersegment 72 h. i. k. r
Intersegment Adding Immediate to SP 72 h. i. k. r

CONDITIONAL JUMPS

NOTE: Times Are Jump "Taken or Not Taken"

JO ~ Jump on Overflow

8·Bit Displacement I 01110000 I B-bitdispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000000 I full displacement 7+mor3 7+mor3 r

JNO ~ Jump on Not Overflow

8-Bit Displacement I 01110001 I B-bit displ I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000001 I full displacement 7+mor3 7+mor3 r

JB/JNAE ~ Jump on BelowlNot Above or Equal

8-Bit Displacement I 01110010 I B-bit displ I 7+mor3 7+ m or 3 r

Full Displacement I 0000 1 1 1 1 I 1 00 000 1 0 I full displacement 7+mor3 7+mor3 r

JNB/JAE ~ Jump on Not Below/Above or Equal

8-Blt Displacement I 01110011 I 8-bit displ I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000011 I full displacement 7+mor3 7+mor3 r

JE/JZ ~ Jump on Equal/Zero

8-Bit Displacement I 01110100 I 8-bit displ I 7+m or3 7+mor3 r

Full Displacement I 00001111 I 10000100 I full displacement 7+mor3 7+mor3 r

JNE/JNZ ~ Jump on Not Equal/Not Zero

8-Bit Displacement I 01110101 I 8-bitdispl I 7+mor3 7+ m or 3 r

Full Displacement I 00001111 I 10000101 I full displacement 7+mor3 7+mor3 r

JBE/JNA = Jump on Below or Equal/Not Above

8-Bit Displacement I 01110110 I B-bit displ I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000110 I full displacement 7+mor3 7+mor3 r

JNBE/JA ~ Jumpon Not Below or Equal/Above

8-Bit Displacement I 01110111 I 8-bitdispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10000111 I full displacement 7+mor3 7+mor3 r

JS ~ Jump on Sign

8-Bit Displacement I 01111000 I 8-bit displ I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001000 I full displacement 7+mor3 7+mor3 r

82

infef 386SXTM MICROPROCESSOR

Table 8-1. 80386SX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

CONDITIONAL JUMPS (Continued)

JNS ~ Jump on Not Sign

8~Bit Displacement I 01111001 I 8-bit displ I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001001 I full displacement 7+mor3 7+mor3 r

JP / JPE ~ Jump on Parity/Parity Even

8-Blt Displacement I 01111010 I 8-bit displ I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001010 I full displacement 7+m or3 7+mor3 r

JNP/JPO ~ Jump on Not Parity/Parity Odd

8-Bit Displacement I 0111 1011 I 8-bit displ I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001011 I full displacement 7+mor3 7+mor3 r

JL/ JNGE ~ Jump on LesslNot Greater or Equal

8-Bit Displacement I 01111100 I B-bitdispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001100 I full displacement 7+m or3 7+mor3 r

JNL/JGE ~ Jump on Not Less/Greater or Equal

8-Bit Displacement I 01111101 I 8-bit displ I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001101 I full displacement 7+mor3 7+ m or 3 r

JLE/JNG ~ Jump on Less or EquallNot Greater

8-Bit Displacement I 01111110 I 8-bildispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001110 I full displacement 7+mor3 7+mor3 r

JNLE/JG ~ Jump on Not Less or Equal/Greater

a-Bit Displacement I 01111111 I B-bitdispl I 7+mor3 7+mor3 r

Full Displacement I 00001111 I 10001111 I full displacement 7+mor3 7+mor3 r

JCXZ Jump on ex Zero I 11100011 I 8-bit displ I 9+mor5 9+morS r

JECXZ ~ Jump on ECX Zero I 11100011 I 8-bit displ I 9+morS 9+mor5 r

(Address Size Prefix Differentiates JCXZ from JECXZ)

LOOP - Loop CX Times I 11100010 I 8-bitdispl I 11+m 11+m r

LOOPZ/LOOPE ~ Loop with
Zero/Equal I 11100001 I 8-bitdispl I 11+m 11+m r

LOOPNZ/LOOPNE ~ Loop While
Not Zero I 11100000 I B-bitdispl I 11+m 11+m r

CONDITIONAL BYTE SET

NOTE: Times Are Register/Memory

SETO· Set Byte on Overflow

To Register/Memory I 00001111 I 10010000 I modOOO r/ml 4/5' 4/5' h

SETNO Set Byte on Not Overflow

To Register/Memory I 00001111 I 10010001 ImodOOO r/ml 4/5' 4/5' h

SETB/SETNAE ~ Set Byte on Below/Not Above or Equal

To Register/Memory I 00001111 I 10010010 I modOOO r/ml 4/5' 4/5' h

83

inter 386SX™ MICROPROCESSOR

Table 8-1, 80386SX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Modear Virtual Mode or Virtual
Virtual Address Virtual Addre.s
8086 Mode 8086 Mode
Mode Mode

CONDITIONAL BYTE SET (Conlinued)

SETNB ~ Set Byte on Not Below/Above or Equal

To Register/Memory I 0000 1111 I 10010011 I madDDD r/ml 4/5* 4/5' h

SETE/SETZ ~ Set Byte on Equal/Zero

To Register/Memory I 00001111 I 10010100 I modOOO rim I 4/5' 4/5' h

SETNE/SETNZ ~ Set Byte on Not Equal/Not Zero

To Register/Memory I 00001111 I 10010101 I modOOO rim I 4/5' 4/5' h

SETBE/SETNA ~ Set Byte on Below or EquallNot Above

To Register/Memory I 00001111 I 10010110 I modOOO rim I 4/5' 4/5' h

SETNBE/SETA ~ Set Byte on Not Below or Equal/Above

To Register/Memory I 00001111 I 10010111 I modOOO r/ml 4/5' 4/5' h

SETS ~ Set Byte on Sign

To Register/Memory I 00001111 I 10011000 I modOOO rim I 4/5' 4/5' h

SETNS ~ Set Byte on Not Sign

To Register/Memory I 00001111 I 10011001 I modOOO r/ml 4/5' 4/5' h

SETP ISETPE ~ Set Byte on Parity/Parity Even

To Register/Memory I 00001111 I 10011010 I modOOO r/ml 4/5' 4/5' h

SETNP/SETPO ~ Set Byte on Not Parity/Parity Odd

To Register/Memory I 00001111 I 10011011 I modOOO r/ml 4/5' 4/5' h

SETL/SETNGE ~ Set Byte on LesslNol Greater or Equal

T~ Register/Memory I 00001111 I 10011100 I modOOO r/ml 4/5' 4/5' h

SETNL/SETGE ~ Set Byte on Not Less/Greater or Equal

To Register/Memory I 00001111 I 01111101 I modOOO rim I 4/5' 4/5' h

SETLE/SETNG ~ Set Byte on Less or EquallNot Greater

To Register/Memory I 00001111 I 10011110 I modOOO rim I 4/5' 4/5' h

SETNLE/SETG ~ Set Byte on Not Less or Equal/Greater

Tc Register/Memory I 00001111 I 10011111 I modOOO r/ml 4/5' 4/5' h

ENTER = Enter Procedure l. 11001000 1.16-bitdisPlacement,B-bitlevel I
L ~ 0 10 10 b h
L ~ 1 14 14 b h

L> 1 17 + 17 + b h

8(n -1) 8(n - 1)

LEAVE = Leave Procedure I 11001001 I 4 4 b h

84

inter 386SX™ MICROPROCESSOR

Table 8-1. 80386SX Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT AcId .. ss Protected AcId .. ss Protected

Mode or Virtual Mod_or Virtual
Virtual Add .. ss Virtual Address
8086 Mode 8086 Mode
Mode Mode

INTERRUPT INSTRUCTIONS

INT = Interrupt

Type Specified I 11001101 I type I 37 b

Type 3 I 11001100 I 33 b

INTO = Interrupt 41f OVerflow Flag Set I 11001110 I
If OF = 1 35 b,e

II OF = 0 3 3 b,e

Bound = Interrupt 5 II Detect Value I 01100010 I mod reg rIm I
Out 01 Range

II Out of Range 44 b,e e,g,h,j, k,r

II In Range 10 10 b,e e,g,h,j, k,r

Protected Mode Only (INT)

INT: Type Specified

Via Interrupt or Trap Gate

to Same Privilege Level 71 g,j, k, r

Via Interrupt or Trap Gate

to Different Privilege Level 111 g,j, k, r

From 286 Task to 286 TSS via Task Gate 438 g,j, It, r

From 286 Task to 386 TSS via Task Gate 485 g,j, k, r

From 286 Task to vir! 8086 md via Task Gate 382 g,j, k, r

From 386 Task to 286 TSS via Task Gate 440 g, j, k, r

From 386 Task to 386 TSS via Task Gate 467 g,j, k, r

From 386 Task to vir! 8086 md via Task Gate 384 g,j, k, r

From vir! 8086 md to 286 TSS via Task Gate 445 g,j, k, r

From vir! 8086 md to 386 TSS via Task Gate 472 g, j, k, r

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 275

INT:TVPE3

Via Interrupt or Trap Gate

to Ssme Prtvilege Level 71 g, j, k, r

Via Interrupt or Trap Gate

to Different Privilege Level 111 g,j,k, r

From 286 Task to 286 TSSvia Task Gate 382 g,j, k, r

From 286 Task to 386 TSS via Task Gate 409 g,j, k, r

From 288 Task to Virt 8086 md via Task Gate 326 g,j,k,r

From 386 Task to 286 TSS via Task Gate 384 g,j,k, r

From 386 Task to 386 TSS via Task Gate 411 g,j,k, r

From 386 Task to Vir! 8086 md via Task Gate 328 g,j, k, r

From vir! 8086 md to 286 TSS via Task Gate 389 g,j,k,r

From vir! 8086 md to 386 TSS via Task Gate 416 g,j,k,r

From vir! 8086 md to priv level 0 via Trap Gate or Interrupt Gate 223

INTO:

Via Interrupt or Trap Grate

10 Same Privilege Level 71 g,j, k,r

Via Interrupt or Trap Gate

to Different Privilege Level 111 g,j, k, r

From 286 Task to 286 TSS via Task Gate 384 g,j, k, r

From 286 Task to 386 TSS via Task Gate 411 g,j, k,r

From 286 Task to vir! 8086 md via Task Gate 328 g,j, k,r

From 386 Task to 286 TSS via Task Gate 386 g,j,lt,r

From 386 Task to 386 TSS via Task Gate 413 g,j, k,r

From 386 Task to vir! 8086 md via Task Gate 329 g,j, k,r

From vir! 8086 md to 286 TSS via Task Gate 391 g,j, k,r

From vir! 8086 md to 386 TSS via Task Gate 418 g,j, It, r

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 223

85

Intel 386SX™ MICROPROCESSOR

Table 8-1. 80386SX Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode

INTERRUPT INSTRUCTIONS (Continued)

BOUND:

Via Interrupt or Trap Gate

to Same Privilege Level 71 g,j,k,r

Via Interrupt or Trap Gate
to Different Privilege Level 111 g,j,k, r

From 286 Task to 286 TSS via Task Gate 358 g,j, k, r

From 286 Task to 386 TSS via Task Gate 388 g,j, k, r

From 268 Task to virt 8OB6 Mode via Task Gate 335 g,j, k,r

From 386 Task to 286 TSS via Task Gate 368 g,j, k, r

From 386 Task to 386 TSS via Task Gate 398 g,j, k, r

From 368 Task to virt 8086 Mode via Task Gate 347 g, j, k, r,

From virt 8086 Mode to 286 TSS via Task Gate 368 g,j,k,r

From virt 8086 Mode to 386 TSS via Task Gate 398 g,j, k, r

From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 223

INTERRUPT RETURN

IRET ~ Interrupt Return I 11001111 I 24 g,h,j,k,r

Protected Mode Only (IREn

To the Same Privilege Level (within task) 42 g, h, j, k, r

To Different Privilege Level (w~hin task) 86 g, h, j, k, r

From 286 Task to 286 TSS 285 h, j, k, r

From 286 Task to 386 TSS 318 h,j, k, r

From 286 Task to Virtual 6086 Task 267 h,j, k, r

From 286 Task to Virtual 8086 Mode (within task) 113

From 386 Task to 286 TSS 324 h, j, k, r

From 386 Task to 386 TSS 328 h,j, k, r

From 386 Task to Virtual 8086 Task 377 h, j, k, r

From 386 Task to Virtual 8086 Mode (within task) 113

PROCESSOR CONTROL

HLT ~ HALT I 11110100 I 5 5 I

MOV ~ Move to and From Control/Debug/Test Registers

CRO/CR2/CR3 from register I 00001111 00100010 11 eee reg 10/4/5 10/4/5 I

Register From CRO-3 I 00001111 00100000 11 aee reg 6 6 I

DRO-3 From Register 00001111 00100011 11 eeereg 22 22 I

DR6-7 From Register 00001111 00100011 11 eee reg 16 16 I

Register from DR6-7 00001111 00100001 11 eee reg 14 14 I

Register from DRO-3 00001111 00100001 11 eeereg 22 22 I

TR6-7 from Register 00001111 00100110 11 eee reg 12 12 I

Register from TR6-7 00001111 00100100 11 eee reg I 12 12 I

NOP ~ No Operation 10010000 3 3

WAIT ~ Walt until BUSY" pin Is negated 1 00 11 011 6 6

86

inter 386SX™ MICROPROCESSOR

Table 8·1. 80386SX Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Addre •• Virtual Address
8086 Mode 8086 Mode
Mode Mode

PROCESSOR EXTENSION INSTRUCTIONS

Processor Extension Escape I 11011 TTT ImOdLLL r/ml See h

TTT and LLL bits are opcode 80387SX

information for coprocessor. data sheet for

clock counts

PREFIX BYTES

Address Size Prefix I 01100111 I 0 0

LOCK ~ Bus Lock Prefix I 11110000 I 0 0 m

Operand Size Prefix I 01100110 I 0 0

Segment Override Prefix

CS: I 00101110 I 0 0

DS: I 00111110 I 0 0

ES: I 00100110 I 0 0

FS: I 01100100 I 0 0

GS: I 01100101 I 0 0

SS: I 00110110 I 0 0

PROTECTION CONTROL

ARPL ~ Adjust Requested Privilege Level

From Register/Memory I 01100011 I mod reg r/ml N/A 20/21" a h

LAR = Load Access Rights

From Register/Memory I 00001111 I 00000010 I mod reg r/ml N/A 15/16' a g, h, i, P

LGDT = Load Global Descriptor

Table Register I 00001111 I 00000001 ImOd010 rim I 11' 11" b, C h, I

LlDT = Load Interrupt Descriptor

Table Register I 00001111 I 00000001 I mod011 rim I 11' 11' b, C h, I

LLDT = Load Local Descriptor

Table Register to
Register/Memory I 00001111 I 00000000 I mod01 0 r/ml N/A 20/24' a g, h, j, I

LMSW = Load Machine Status Word

From Register/Memory I 00001111 I 00000001 I mod 11 0 rim I 10/13 10/13' b, C h, I

LSL ~ Load segment Limit

From Register/Memory I 00001111 I 00000011 I mod reg rim I
Byte~Granular Limit N/A 20/21' a g, h,i, P
Page-Granular Limit N/A 25/26' a g, h,i, P

LTR = Load Task Register

From Register/Memory I 00001111 I 00000000 ImOd001 r/ml N/A 23/27' a g, h, i, I

SGDT ~ Store Global Descriptor

Table Register I 00001111 I 00000001 I modOOO rim I g' g' b, C h

SIDT = Store Interrupt Descriptor

Table Register I 00001111 I 00000001 I mod001 rim I g' g' b, C h

SLDT = Store Local Descriptor Table Register

To Register/Memory I 00001111 I 00000000 I modOOO rim I N/A 212' a h

87

386SXTM MICROPROCESSOR

Table 8-1_ 80386SX Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES

Real Real
INSTRUCTION FORMAT Address Protected Address Protected

Mode or Virtual Mode or Virtual
Virtual Address Virtual Addre ••
8086 Mode 8086 Mode
Mode Mode

SMSW = Store Machine
Status Word I 00001111 I 00000001 Imod100 rIm I 212- 212- b, C h, I

STR = Store Task Register

To Register/Memory I 00001111 I 00000000 Imod001 r/ml N/A 212" a h

VERR = Verify Read Access

Register IMemory I 00001111 I 00000000 Imod100 rIm I N/A 10/11" a g, h, i, P

VERW = Verify Write Access I 00001111 I 00000000 I mod 101 rIm! N/A 15/16" a g, h,i, P

INSTRUCTION NOTES FOR TABLE 8·1

Notes a through c apply to 80386SX Real Address Mode only:
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).
b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully
extends beyond the maximum CS, OS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit.
c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected
Mode.

Notes d through g apply to 80386SX Real Address Mode and 80386SX Protected Virtual Address Mode:
d. The 80386SX uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most
significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula:
Actual Clock = if m < > 0 then max ([IOg2 Imll. 3) + b clocks:

if m = 0 then 3+b clocks
In this formula, m is the multiplier, and
b = 9 for register to register,
b = 12 for memory to register,
b = 10 for register with immediate to register,
b = 11 for memory with immediate to register.

e. An exception may occur, depending on the value of the operand.
I. LOCK # is automatically asserted, regardless of the presence or absence of the LOCK # prefix.
g. LOCK # is asserted during descriptor table accesses.

Notes h through r apply to 80386SX Protected Virtual Address Mode only:
h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, OS, ES, FS or GS cannot be used
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment
limit violation or not present) occurs.
i. For segment load operations, the CPL, RPL, and OPL must agree with the privilege rules to avoid an exception 13 fault
(general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, OS, ES, FS, GS not
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit
violation or not present) occurs.
j. All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK # to maintain
descriptor integrity in multiprocessor systems.
k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is violated.
I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).
m. An exception 13 fault occurs if CPL is greater than IOPL.
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are
updated only if CPL = O.
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero
flag is cleared.
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation
or not present) will occur if the stack limit is violated by the operand's starting address.
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault
(general protection violation) will occur.
sit. The instruction will execute in s clocks if CPL ~ IOPL. If CPL > IOPL, the instruction will take t clocks.

88

ALABAMA

~~~ ir~ord Dr .• #2 
Huntsville 35805 
Tel: (205) 830-4010 

ARlZONA 

t~r:s ~~th Dr. 
SulteD-214 
Phoenix 85029 
Tel: (602) 869-4980 

nm-I ~O:Dorado Place 
Suite 301 
Tucson 85715 
Tel: (602) 299-6815 

CALIFORNIA 

~~n5'1k CO':~n Street 
Sulle116 

~:rre1a8f~:'?~ 

tlnteiCorp. 

~~b~a~ ~u;~ulte 101 

Tel: (916) 920-8096 

tlntel CQlP.' 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 

~Jn~5~~24 

COLORADO 

m~I~~ark Drive 
Suite 100 

~~o(= ~~~Z:0907 
tlnteiCorp.' 
~!r~2I St., Suite 915 

Tel: (303) 32t·8086 
lWX: 910-931-2289 

CONNECTICUT 

tlntelCorp. 
26 Mill Plain Road 
2nd Roor 

~~~~i~11~ 
FLORIDA

~~~~~~uite100 
~~~6?;5~= 
FAX: 305-772-8193

tlntelCorp.
11300 4th Street North

~~:.i~~~~~·~2,,"i'!1~316
FAX: 81 -1607

tSaies and Service Office
'Field Appllcallon location

DOMESTIC SALES OFFICES

GEORGIA

!~r: = Parkway
Suite 200
Noroross30092
Tel: (404) 449·0541

ILLINOIS

tlntelCorp.'

~~:u~~rtlnB~~7~oad, Suite 400
Tel: (312) 3rpO-8031

INDIANA

t~7~I.fu~~e Road
Suite 125

~~~(~~~~~~:1 
IOWA 

Intel Corp. 
1930 St. Andrews Drive N.E. 
2nd Floor 
Cedar Rapids 52402 
Tel: (319)393-5510 

KANSAS 

tlnteiCorp. 
84ooW.11Dth Street 
Suile170 
OVerland Park 66210 
Tel: (913) 345-2727 

MARYLAND 

tlnteiCorp: 
7321 Parkway Drive South 
SuiteC 
Hanover 21076 
Tal: (301) 796-7500 
lWX: 710-862·1944 

tlntalCorp. 
7833 Walker Drive 
Suite 550 
Greenbelt 20770 
Tel: (301) 441·1020 

MASSACHUSEnS 

tlntelCorp.' 
Wastford Corp. Center 
3 Carlisle Road 
2nd Roor 
Westford 01886 

~J~~r~~~23 
MlauGAN 

tlntelCorp. 
UrT1 OrChard Lake Road 
Suite 100 
West Bloomfield 48033 
Tel: (313) 851-8096 

MINNESOTA 

MISSOURI 

lm:IEfa~'city Expressway 
Suite 131 

f:r~W::r~~~ 
NEWJEASEY 

t~:~~rf~ Office Center 
328 Newman Springs Road 
Red Bank 07701 
Tel: (201) 747-2233 

~~~c:r~ate Center 
75 Livingston Avenue
First FlOor
Roseland 07068

~:X~~U:g-~~~~

NEW MEXICO

1kr:;I~~~UI Boulevard N.E.
Suite B295

~~~(~~~2~ 
NEW YORK 

~~~~~~eys Office Pari< 
Fairport 14450

~J;J~~~2553-¥:'
tlntelCorp:
300 Motor Parkway

$~~~2\~
tlnteiCorp.
15 Myers Comer Road
Suite2B
Hollowbrook Park

~rri~!~90
NORTH CAROLINA

tlntelCorp.
5700 Executive Drive
Suite 213
CharlOtte 28212
Tel: (704) 568·8966

~~~I~:m Road 

~~I:~B~9~~~~~8022 
OHIO 

~~'1I.fa~6enter Drive 
Suite 220 

$sJ~Jkl:B 
tlntelCorp: 
25700 Science Park Dr., Suite 100 
BeachWOOd 44122 

~~J~b!e:i~l:8 
OKLAHOMA 

tlntelCorp. 
6801 N. Broadway 
Suite 115 
OklahOma City 73162 
Tel: (405) 848-8086 

OREGON 

tkn2~~: Greenbrier Parkway 
BuildingB 
Beaverton 97006 

~~6~/e<'75411 
PENNSYLVANIA 

lknJ~~~v~vania Avenue 
Suite 230 

iJ~T'~~~034 
Intel Corp: 
400 Penn Center Blvd., Suite 610 

~(~rghJ~:70 
PUERTO RICO 

tlntel Microprocessor Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733·8616 

TEXAS 

!~~teJ.C'f~~~rlon Lane 
Suite 314 
Austin 78752 
Tel: (512) 454-3628 

tlnteiCorp: 
12000 Ford Road 
Suite 400 
Dallas 75234 

~~X~~11'.l~~t~~ 
tlntelCorp.* 
7322 S.W. Freeway 
Suite 1490 
Houston 77074 

~fJ~~9::;-~2':~ 
UTAH 

l~nJeJ~rC400 South 
Suite 104 

~~~~:;'~-8051 
VIRGiNiA

tlntelCorp.

WASHINGTON

tintelCorp.
155108th Avenue N.E.
Suite 386
Bellevue 98004
Tel: (206) 453-8086
TWX: 910-443·3002

tlntelCorp.
408 N. Mullan Road
Suite 102
Spokane 99206
Tel: (509) 928-8088

WISCONSIN

~~~.CJ:cUtive Or. 
Suite 102 
BrOOkfield 53005 
Tel: (414) 784-8087 
FAX: (414) 796·2115 

CANADA 
BRITISH COWMBIA 

ONTARIO 

=I=':~i:~~': Canada, Ltd. 

Suite 250 
Ottawa K2B8H8 

~~~~1~:714 

tlntel Semiconductor of canada, Ltd.
190Attwelt Drive
SulleSOO

QUEBEC

mte~t~~~~:~: Canada, Ltd.

Points Claire H9R 3K2

~~J~~~t~1~

00-3/4/88

DOMESTIC DISTRIBUTORS

ALABAMA

Arrow Electronics, Inc.
1015 Henderson Road
Huntsville 35816
Tel: (205) 837-6955

Pioneer(Technologies Group Inc.

~~~~U~~~:r6square 

~~~~~a;I6~~7 
ARIZONA

tHamiltonjAvnet Electronics
505 S. Madison Drive
Tempe 85281

~~~~~9e:O-~67~ 
Kierulff Electronics, Inc. 
4134 E. Wood Street 
Phoenix 85040 

~~f6Jlo~-~~:g~gg 

~lJ~5D~.tr~~~:~~~~~~ Highway 
Phoenix 85023 

~~~66~~_~~~~g~ 
CALIFORNIA

Arrow Electronics, Inc.
19748 Dearborn Street
Chatsworth 91311
Tel: (818) 701-7500
FAX: 818-772-8930

Arrow Electronics, Inc.
9511 Ridgehaven Court
San Die~o 92123
Tel: (61 565-4800
FAX: 61 -279-0862

tArrow Electronics, Inc.
521 Weddell Drive

~~?~i~:~g
Arrow Electronics, Inc.
2961 Dow Avenue
Tustin 92680

~~lir7~~-~J!1~~
tAvnet Electronics
350 McCormick Avenue
Costa Mesa 92626

~~~l7~~-~~t~~i 
HamiltonjAvnet Electronics 
1175 Bordeaux Drive 

~~?~r~~~i~ 
tHamiltonjAvnet Electronics 
4545 Viewridge Avenue 

~~~~~~~~~~~!?~ 
tHamiitonjAvnet Electronics
9650 Desoto Avenue
Chatsworth 91311
Tel: (818) 700-1222, 6500
FAX: 818-700-6553

l~03m~Hg~h~~~:~~=~~Jcs
Sacramento 95834

~~l~~~-~~~~~g
tHamiltonjAvnet Electronics
3002 G Street
Ontario 91311
Tel: (714)989-9411
FAX: 714-980-7129

t~~sc;'~~(t:~~~~6~r~,~gs
~~,':V(21~;~~:~~8
FAX: 213-558-2248

tHamilton Electro Sales
3170 Pullman Street
Costa Mesa 92626

~~~~77~~_~~j~~g 

CALIFORNIA (Cont'd.) 

Kierulff ElectroniCS, Inc. 

b~~~!s~O~~6reet 
~;.'Xj77~~_~~~~gg 
tKierulff Electronics, Inc. 

~1~J~:~~:rnue 
~~f~o':L~i~gg 
tKierulff Electronics, Inc. 
14242 Chamber Rd. 
Tustln92680 

~~~~711~_~~~~~ 
tKierulffElectronics, Inc.
800VarielSt.

Chattsworth91311

~~X~2~1~l~~~~
Wyle Distribution Group

~~~:~a~sA3,0aO~ Rd. 

~~'xf~',~g:~~n 
tWyle Distribution Group 
17872 Cowan Avenue 
Irvine 92714 
Tel: (714) 863-9953 
FAX: 714-863-0473 

Wyle Distnbul!on Group 
11151 Sun Center Drive 
Rancho Cordova 95670 

~~X~~'~-~~~~~ 
~~IJec~~!~~~~~~ g~i~~P 
San Dim:J2123 
Tel:i61 56&-9171 
TW : 91 71-9592 
FAX: 619-565-9171 ext. 274 

tWyle Distribution Group 
3000 Bowers Avenue 
Santa Clara 95051 
Tel; (408) 727-2500 
FAX: 408-727·5896 

WyleMilitary 
18910 Teller Avenue 
Irvine 92715 
Tel: (714) 851-9958 
TWX: 310-371-9127 
FAX: 714-851-8366 

Wyle Systems 
7382 Lampson Avenue 
Garden Grove 92641 

~~~7~~-~~~~~~~ 
COLORADO

Arrow Electronics, Inc.
1390 S. Potomac Street
Suite 136
Aurora 80012
Tel: (303) 696·1111

~HamiitonjAVnet Electronics
765 E. Orchard Road

Suite 708
Englewood 80111
Tel: (303) 740-1017
TWX: 910-935-0787

tWyle Distribution Group
451 E.124thAvenue
Thornton 80241

~~~~b~I6.9iilo 
CONNECTICUT 

tArrow ElectroniCS, Inc. 
12 Beaumont Road 

~e~~1~2~mrg6~~~~1 
TWX: 710-476-0162 

Hamilton/Avnet Electronics 
Commerce Industrial Park 
Commerce Drive 

~~i~~lf£i:~rag 
tPioneer Northeast Electronics 
112 Main Street 
Norwalk 06851 
~203)853-1515 

:710-468-3373 

tMicrocomputer System Technical Distributor Center 

FLORIDA INDIANA (Cont'd.) 

tArrowElectromcs,lnc. ~:~~~o;y,~v8::'ectronics 350 Fairway Drive 
Deerfield Beach 33441 Carmel 46032 

~i~g~~~~8:S°6 Tel: (317) 844-9333 
FAX: 317-844-5921 

Arrow Electronics, Inc. t:ioneer Electronics 
1001 NW. 62nd St., Ste. 108 ~ Castleplace Drive 
Ft. Lauderdale 33309 

m~~l[~ia~~l ~i~~~~~is.~6 
tArrow Electronics, Inc. 
1530 Bottlebrush N.E. 

KANSAS 

~:1~3~~r l~g~80 tHamiiton/Avnet Electronics 
219 Qulvera Road 

Overland Park 66215 
lHamiltonjAvnet Electronics 

F~0~a~d~;d~~!n:aaJ9 ~~~99~~~~:~~~ 

i~~~~-~~~~~ Pioneer Electronics 
10551 Lackman Rd. 
Lenexa 66215 

HamlitonjAvnet Electronics 
3245 Tech Drive North ~~f99~~.!~~:~~ 
St. Petersburg 33702 
Tel: (813) 576-3930 
TWX: 810-863-0374 

KENTUCKY 

Hamiiton/AvnetElectronics 
HamiltonjAvnet Electronics 805-A Newtown Circle 

:~ie~ni~:3~~9~oUlevard ~~:fi~~~~li~~ ~txf3!_~~~]~: ext. 40 
MARYLAND 

tPioneerElectronics 
337 N. Lake Blvd., Ste. 1000 Arrow Electronics, Inc. 

~~~ (~)t~~88g 32701 
8300 Guilford Rd., Suite H
Rivers Center

TWX: 810-853-0284 Columbia 21046

Pioneer Electronics ~:i~~1 ~:35i~~0025
6745. Military Trail
Deerfield Beach 33442

FAX: 301-381-3854

Tel: (305) 428-8877
TWX: 510-955-9653

lHamiltonjAvnet EJectronics
822 Oak Hall Lane

Columbia 21045
GEORGIA ~~xj3J'dl-~~~~gg
tArrow ElectrOniCs, Inc.
3155 Northwoods Parkway
Suite A tr2~s~~~:~~~J,~~~r.
Norcross 30071 Columbia 21046

~~~~~J.~~:~~ Tel: (301) 720-5020 
TWX: 710-828-9702 

~~"Ji~nt~~~~:r~eg~~~~~~ East 
~Pionee~ Electronics 

100 GaIther Road 
Norcross 30092 Gaithersburg 20877 

~;i;gi~4f~?~2 i~!l~~b~8~~~S;4~ 
Pioneer ElectrOniCS MASSACHUSETTS 
3100 F. Northwoods Place 
Norcross 30071 tArrow Electronics, Inc. 

~~x~~'liJ-::t~~j6 1 Arrow Drive 
Woburn 01801 

ILLINOIS ~~gb~~6'l700 
tArrow Electronics, Inc. ronics 

~:uE~~~~n~~~71treet 

~~x~3dlJ_~~;~mg 
tHamiiton/Avnet Electronics Kierulff Electronics, Inc. 
1130 Thorndale Avenue 13 Fortune Dr. 
Bensenville 60106 Billerica 01821 
Tel: (312) 860-7780 
TWX: 910-227-0060 

Tel: (617) 667-8331 
1WX:710-390-1449 
FAX: 617-663-1754 

KierulffElectronics, Inc. 
1140 W. Thorndale Pioneer Northeast Electronics 
Itasca 60143 44 HartweJlAvenue 

~~~~~~2Jj~g:~~ i:ti(~l~) 806~~~~00 
FAX: 617-863-1547

~,~SJ.,s::ri'h~~~~~'e MICHIGAN
Itasca 60143
Tel: (312) 773-2300 Arrow Electronics, Inc.

755 Phoenix Drive
tPioneer Electronics Ann Arbor 48108
1551 Carmen Drive ~~~~1~-~;~:~~ i~~; T3~2i 4~~~9~8~0007
TWX: 910-222-1834 tHamiltonjAvnet Electronics

32487 Schoolcraft Road
INDIANA Livonia 48150

Tel: (313) 522-4700
tArrow Electronics, Inc. TWX; 610-242-8775
2495 Directors Row, Suite H FAX: 313-522-2624
Indianapolis 46241
Tel: (317) 243-9353
TWX; 810-341·3119

HamiitonjAvnet Electronics
221529th Street S.E.
Space AS
Grand Rapids 49508

~~J~~24.J~~2~
FAX: 616-243-0028

MICHI~AN (Conl'd.)

Pioneer Electronics
4505 Broadmoor Ave. S.E.
Grand Raplds 49508

~~X~~~~~~1~
tPioneer Electronics
13485 Stamford
Livonia 48150
Tel: (313) 525-1800
TWX: 810-242-3271

MINNESOTA

tArrow Electronics, Inc.
5230 W. 73rd Street
Edina 55435
Tel: (612) 830-1800
FAX: 612-830-1856

tPioneer Electronics
10203 Bren Road East
Minnetonka 55343

~~~~~~~-~:~~ 
MISSOURI 

!ArrOW ElectrOniCS, Inc. 
380 Schuetz 

St. Louis 63146 

~~j~~~-~~~:~~~ 
tHamiltonjAvnet Electronics 
13743 Shoreline Court East 
Earth City 63045 

~~~~~~-~:~ 
Kierulff Electronics, Inc.
11804 Borman Dr.
St.Louis63146

~~~~~~-~~~== 
NEW HAMPSHIRE 

tArrow Electronics, Inc. 
3 Perimeter Road 
Manchester 03103 
Tel: (603) 668-6968 
FAX: 603-688-3484 

Hamilton/Avnet ElectroniCS 
444 E. Industrial Drive 
Manchester 03103 

~~I~~~~3J.~~t~gg 
NEW JERSEY 

tArrow Electronics, Inc. 
6000 Lincoln Drive East 
Marlton 08053 

~~I~~~~9J_~:~g 
tArrow Electronics, Inc. 
6 Century Drive 

~:f:sl~6~)nx:~0 
FAX: 201-538-4962 

tHamilton/Avnet ElectroniCS 
1 Keystone Ave., Bldg. 36 

~~,:(~~)il~~:~:10 
TWX: 710-940-0262 
FAX: 609-751-8624 

tHamllton/Avnet Electronics 
10lndustriai 
Fairfield 07006 

~~IX~~OO~_~~~~~~ 
tPioneer Northeast Electronics 
45 Route 46 
Pinebrook 07058 
Tel: (201) 575-3510 
FAX: 201-575-3454 

tMTI Systems Sales 
37 Kulick Rd. 
Fairfieid07006 
Tel: (201) 227-5552 
FAX: 201-575-6336 

CG-3j4/88 



inter 
DOMESTIC DISTRIBUTORS 

NEW MEXICO NORTH CAROLINA (Cont'd.) PENNSYLVANIA (Cont'd.) WASHINGTON ONTARIO 

Alliance ElectroniCS Inc. Pioneer Electronics Pioneer Electronics tAlmac Electronics Corp. Arrow Electronics Inc. 
11030 Cochiti S.E. 9801 A·Southern Pine Blvd. 259 Kappa Drive 14360 S.E. EastgateWay 1093 Meyerslde Drive 
AlbU~qUe 87123 Charlone 28217 

s~~~rf~:ia~ 
BelleVue 98007 Unit 2 

~A'X~5~-~~~ Tel: (704) 527-8188 ~~~~~~W~ r~~\i!~~~~~ M4 
TWX: 810-621-0366 

FAX: 412·963-8255 
HamiltonfAvnet Electronics OHIO Arrow Electronics, Inc. 

. .E. ~Ioneer Electronics 14320 N.E. 21st Street Arrow Electronics Inc. 
Arrow Electronics, Inc. , Gibraltar Road Bellevue 98007 Napean K2E 7W5 
7620 McEwen Road Horsham 19044 ~~lx~~~m."1m ~~X~~l~~~~g~ Centerville 45459 ~~~J~~6le~~ 

NEW YORK ~~~~\~:~ FAX: 215·674-31Q7 ~:~~~~~2~~\ ~=~nlcs ~H8mllton/Avnet Electronics 
845 Rexwood Road 

Arrow Electronics, Inc. ~ow Electronics,lnc., TEXAS Bellevue 98005 Units 3-5 
25 Hub Drive Cochran Road ~~~22~~~~ ~~1~\i!f~~~~r2 MelVille 11747 5010n44139 

~~J~b.~~~6 ~~~~\~-~~i~~ ~e Distribution Group 
FAX: 516-391-1401 1 50 132nd Ave., N.E. Hamllton/Avnet Electronics 

Hamllton/Avnet Electronics Bellevue 98005 3688 Nashua Dr. 
tArrow Electronics, Inc. 7T1 ~:.'X~~J.:~~ Units 9 and 10 
3375 Brlghton-Henriena Towntlne Rd. tArrow Electronics, Inc. 

r~1~~i!~~~~~M5 Rochester 14623 10899 Klnghurst Dr. 

~~j77~6~~i:~gg Suite 100 WISCONstN 
Houston n099 

Arrow Electronics, Inc. 
tHamllton/Avnet Electronics 
954 Senate Drive ~:~j77\~~~g~~~ !~r~~ ~:~0~:::,1~1e. 100 

tHamliton/AvnetElectmnlcs 
190 Colonnade Road South 

20 Our Avenue 

fffsd,;~tli~~ 
Brookfield 53005 Napean K2E 7J5 

~~~:ifgrrg~g 
!An"OWElectronics, Inc. ~~~~',~.i~~:g1~g ~:~j~,~-~~t~~~ 227 W. Braker lane
Austin 18758

~:~~a7~~~i~~~ E~~~r~~~ A ~:I~j~',~_~~~~~ HamiHon/Avnet Electronics tZentronics
Hamilton/Avnet Electronics 2975 Moorland Road 8 Tilbury Court
2060 Townline Rd. Solon 44139 New Berlin 53151

!iT~~~~~~~~~ Rochester 14623 ~:I~j22',6J.~~~~~ tHamiiton/Avnet Electronics ~~~~',~.itt~~~ ~~~17',6Jjit~~~~ 1807A W. Braker lane
Austin 78758

~neer Electronics ~~~55"~.~~~~ KierulffElectronics, Inc. tZentronics

t~~~I~nb~~~~ronics InterpointBlvd. 2238-E W. Bluemound Rd. 155 Colonnade Road
Dayton 45424 Waukesha 53186 Unit 17

Syracuse 13206 ~~X~55',i~~r,o~ tHamilton/Avnet Electronics ~~~~~',~_~tt~~ Nepean K2E 7Kl

~~~~33\~~:g~~ 2111 W. Walnut Hill Lane ~A~~~',~,g::= 
tPioneer Electronics ~ir22~i~~~g CANADA tHamlHon/Avnet Electronics 4800E.131stStreet SASKATCHEWAN 

933 Motor Parkway Cleveland 441 05 

f~~l=f!~ ~i~J~~~~~ l:i%~9fl~~d~I~:01n9~s ALBERTA Zentronics 
173-1222 Alberta Avenue 

FAX: 216-587-3906 Hamilton/Avnet EleCtronics Saskatoon 57K 1 R4 

tMTI Systems Sales OKLAHOMA ~~j7i,3J.~m~~ 281621stStreetN.E. ~:I~~33~~~~~g~, 2207 

38 Harbor Park Drive ~il:~~~i~ii~~ P.O. 801(271 Arrow Electronics, Inc. Kierulff Eleclronics, Inc. QUEBEC 

i~f~m~!=050 
3158 s. 108 East Ave., Ste. 210 2010 Merritt Drive 
Tulsa 74146 Garland 75040 Zentronics tArrow Electronics Inc. 

~~j~,BJ.~~tiigg ~~j2i,~_~~~g 6815 8th Street, N.E., Ste. 100 4050 Jean Talon Quest 

f~~\i~iii~: 
Montreel H4P lW1 

tPioneer Northeast Electronics 
OREGON ~~f55~~~1~~ 68 Corporate Drive tPloneerElectronics 

Binghamton 13904 1826-0 Kramer Lane 

~::,I~j6Jlli.i~t~~ tAlmac Electronics Corp. Austin 78758 BRITISH COLUMBIA Arrow Electronics Inc. 
1885 N.W. 169th Place ~A~j5~1~_~~m 909 Charest Blvd. 
Beaverton 97006 Hamilton/Avnet ElectroniCS Quebec 61N 269 

tPioneer Northeast Electronics ~~~~55~~:k~~ ~~~~a~~uv~~~::" 51e. 115 ~~~~\8J_~:~:m~ 60 Crossway Park West tPioneerElectronics 

~j1[9~i~~~and 11797 tHamiHon/Avnet Electronics ~~~!~ ?52~a Road ~~js:.l.:g~~~~~ Hamiiton/Avnet Electronics 
6024 S.W. Jean Road ~:if22\~~~:~~ 2795 Rue Halpern 

FAX: 516-921-2143 Bldg.C, Suite 10 Zentronics SI. Laurenl H4S 1 P8 

tPioneer Northeast Electronics ~:15~1!~~T tPioneer Electronics ~?~h~~~g ~J~~~ort Road ~:if55\~~~1~~ 
840 Fairport Park 5853 Point Wesl Drive 

~~~s:l-~~t~~~ Fairport 14450 Houston n036 Zentronics 

~~~7',~t~~~~ ~~ ~~~~~~~o~o~~U~arkway ~:ij7i,3J.~:t~~~~ MANITOBA ~~.7 ~~~~~~4~t1 N4 
Suite 600 ~~j55\~_i~i~~~~g NORTH CAROLINA Hillsboro 97124 UTAH Zentronics 

tArrow Electronics, Inc. ~~~i~-~~g tHamilton/Avnet Electronics 
60-1313 Border Street 
Wlnn~ R3H OX4 5240 Greens Dairy Road 1585 West 2100 South Tel: ( 04 694·1957 

~:II:e1B~ 9278s:.a'32 
PENNSYLVANIA f:1~ (~~i ~7~_mJ9 FAX: 2 -633-9255 

FAX: 91~-876-3132, ext. 200 ArrCPN Electronics. Inc. FAX: 801-974-9675 
650 Seco Road 

tHsmltlon/Avnet Electronics Monroeville 15146 Kierulff ElectrOniCs, Inc. 

~~~ St!"~'9~orest Drive ~~I~j~,~-~t~m 1 

~:~~J~~a;2~~ Hamilton/Avnet ElectroniCS

~~~b~~~'5~22" Bldg. E 
f~~ ~:~~~~~n :~~p Tel: (41~ 281-4150 

FAX:41 -281-8662 SuiteE 

~:I~ (~~ ~jZ_::JJ9 
FAX: 801-972-2524 

tMlcrocomputer System Technical Distributor Cen1er CG-3/4j88 



UNITED STATES, Intel Corporation 
3065 Bowers Ave., Santa Clara, CA 95051 

Tel: (408) 765-8080 

JAPAN, Intel Japan K.K. 
5-6 Tokodai, Tsukuba-shi, Ibaraki, 300-26 

Tel: 029747-8511 

FRANCE, Intel Corporation S.a.r.P. 
1, Rue Edison, BP 303,78054 Saint-Quentin-en-Yvelines Cedex 

Tel: (33) 1-30 57 70 00 

UNITED KINGDOM, Intel Corporation (U.K.) Ltd. 
Pipers Way, Swindon, Wiltshire, England SN3 1 RJ 

Tel: (0793) 696000 

WEST GERMANY, Intel Semiconductor GmbH 
Seidlstrasse 27, 0-8000 Muenchen 2 

Tel: (89) 53891 

HONG KONG, Intel Semiconductor Ltd. 
10/F East Tower, Bond Center, Queensway, Central 

Tel: (5) 8444-555 

CANADA, Intel Semiconductor of Canada, Ltd. 
190 Attwell Drive, Suite 500 
Rexdale, Ontario M9W 6H8 

Tel: (416) 675-2105 

Printed in U.SA/0588/SM8409/6K/BL LD 
Microprocessors 

CG-4/1/88 


