

Intel486™ DX2 MICROPROCESSOR

• Binary Compatible with Large • IEEE 1149.1 Boundary Scan
Software Base Compatibility
- MS-DOS·, OS/2··, Windows • High Performance Design
- UNIX·*" System V /lnte1386 - 50 MHz/66 MHz Core Speed Using
-iRMX®, iRMKTM Kernels 25 MHz/33 MHz Bus Clocks

• High Integration Enables On-Chip - RISC Integer Core with Frequent
- 8 Kbyte Code and Data Cache Instructions Executing in One Core
- Floating Point Unit Clock
- Paged, Virtual Memory Management - 80, 106 Mbyte/sec Burst Bus

• Easy To Use - Dynamic Bus Sizing for 8-, 16-, and

- Built-In Self Test 32-Bit Busses

- Hardware Debugging Support - Complete 32-Bit Architecture

• 168-Pin Grid Array Package • Multiprocessor Support

- Pin Compatible with Intel486TM OX - Cache Consistency Protocols

Microprocessor - Support for Second Level Cache

The Intel486 DX2 CPU offers the highest performance for DOS, OS/2, Windows, and UNIX System V/lntel386
applications. It is 100% binary compatible with the Intel386™ CPU. Over one million transistors integrate the
RISC integer core, 8 Kbyte cache memory, floating point hardware, and memory management on-chip while
retaining binary compatibility with previous members of the Inte1386/lnte1486 architectural family. The RISC
integer core executes frequently-used instructions in one core clock cycle, providing leadership performance
levels. An 8 Kbyte unified code and data cache allow the high performance levels to be sustained. A
106 MByte/sec burst bus at 33 MHz bus clock ensures high system throughput even with inexpensive DRAMs.

New features enhance multiprocessing systems; new instructions speed manipulation of memory-based sem­
aphores; and on-chip hardware ensures cache consistency and provides hooks for multilevel caches.

The built-in self-test extensively tests on-chip logic, cache memory, and the on-chip paging translation cache.
Debug features include breakpoint traps on code execution and data accesses.

Intel486™ DX2 Microprocessor Pipelined 32-Bit Microarchitecture
~i" Bit Interunit Transfer Bus

32-bit Data Bus

,---or-, 32 bit Data BUI

II II
Barrel Shifter Basel

1-----1 Index
~ Descriptor

Register rne ~ Registers

1-----1 32 I--:l-:-,m""n .-.,,.--l
Al" Attribute

PLA

32

32

II Linear Address;::."":.' ~ ___ .., .u. 32 II
Paging

Unit

Translation
Lockaside

Buffer

PCD. PWT

20
Physical
Addreas

cache Unit

8k Byte
cache

Core

I Clock
Clock ClK

doubler I

Bue Interface A2-A31,
B[0.-B[3.

~ A.ddress Drivers -
~

Write Buffers
"x 32

------------ DO-03'

T:~~~:rs ~/R# D/e#
~J 32 W/IO. PCO.PWT

128 U Bus Control BOF'F# A,201ol# BREQ llf ~ 1..F ROY. LOCk" PlOCK#

I L_--:= __ -.-:::,,--I---r--:~~-l Request Sequencer ~~~D NHw'iDA RESET

J-.m.'e<.o-.'.".,."ct.'o •• -to--"-.-.-.-.-.-,D:iSPO::::I"_=mo,,,.,..::""::.. +;3:22 _1---,::P,::,",::O':::ChO::"_-I __ .. ________ .. ~IGNNE#

r-~FI .. ~tI:--•• .%-, Control and • I s;:em 32 ~:u;od. _~u:s~~:_~~r~I __ ~BLAST#
..::::: Point Protection Test Instruction I 24 2 x 16 Bytn Bus Size Control 8516" 9SS*

-======: Unit 1-_"_"_' --I Decodo' I Deoode ----- ---- ~FLUSH.
Instruction Cache Control AHOlD, EADS.

~i~ Regist.,. Co;,~ol Path L.... __ .J ____________ ~

::~t&~~~~ration ~3
------------- TCK

Bou=~a~can ~~~~
TOO

241245-1

Intel Corporation assumes no responsibility for the use of any circuitry other than Circuitry embodied in an Intel product. No other circuit patent
licenses are implied. Information contained herein supersedes previously published specffications on these devices from Intel. July 1992
© INTEL CORPORATION, 1992 Order Number: 241245.(102

infel .. Intel486TM DX2 MICROPROCESSOR

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376'"
Above'"
ActionMedia4!>
BITBUS'"
Code Builder'"
DeskWare'"
Digital Studio'"
DVI4!>
EtherExpress '"
ETOX'"
ExCA'"
Exchange and Go '"
FaxBACK'"
FlashFile'"
Grand Challenge'"
i4!>
ICE'"
iLBX'"
Inboard'"
i287'"
i386'"
i387'"
i486'"
i487'"

i7504!>
i860'"
i960'"
Inte1287'"
Inte1386'"
Inte1387'"
Inte1486'"
Inte1487'"
Intel4!>
intel inside. 'M
Intellec4!>
iPSC4!>
iRMX4!>
iSBC4!>
iSBX'"
iWARP'"
LANDesk'"
LANPrini4!>
LAN Protect'"
LANSelect4l>
LANShell®
LAN Sight'"
LANSpace@
LANSpool@

MAPNET'"
Matched'"
Media Mail'"
MCS@
NetPort'"
NetSentry'"
OpenNET'"
OverDrive'"
Paragon'"
ProSolver'"
RapidCAD'"
READY-LAN'"
Reference Point@
RMX/80'"
RxServer'"
SatisFAXtion@
Snapln 386'"
Storage Broker'"
Sugarcube'"
The Computer Inside. '"
TokenExpress'"
Visual Edge '"
WYPIWYF®

MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk
Data Sciences Corporation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade­
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
LiteJature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

©INTEL CORPORATION 1992

iRMX, iRMK, Intel386, i386, Intel387, i387, Intel486, i486, Intel487, i487 are trademarks of Intel Corporation.
'MS-DOS@ is a registered trademark of Microsoft Corporation.

"OS/2TM and Windows™ are trademarks of Microsoft Corporation.
"'UNIXTM is a trademark of UNIX Systems Laboratories.

ii

Quick Reference to Chapters

CONTENTS PAGE CONTENTS PAGE

1.0 INTRODUCTION 1-1

2.0 ARCHITECTURAL OVERViEW 2-1

3.0 REAL MODE ARCHITECTURE 3-1

4.0 PROTECTED MODE
ARCHITECTURE 4-1

5.0 ON-CHIP CACHE 5-1

6.0 HARDWARE INTERFACE 6-1

7.0 BUS OPERATION 7-1

8.0 TESTABILITy 8-1

9.0 DEBUGGING SUPPORT 9-1

iii

10.0 INSTRUCTION SET SUMMARY ... 10-1

11.0 DIFFERENCES WITH THE
Intel386™ MICROPROCESSOR 11-1

12.0 UPGRADE SOCKET 12-1

13.0 CONVERTING AN EXISTING
Intel486TM CPU-BASED SYSTEM 13-1

14.0 ELECTRICAL DATA 14-1

15.0 MECHANICAL DATA 15-1

16.0 SUGGESTED SOURCES FOR
Intel486 ACCESSORIES 16-1

Intel486™ DX2 Microprocessor

CONTENTS PAGE CONTENTS PAGE

1.0 INTRODUCTION 1-1
2.7.8 Double Fault 2-30

Pinout 1-1
2.7.9 Floating Point Interrupt

Vectors 2-30
Brief Pin Descriptions 1-4

3.0 REAL MODE ARCHITECTURE 3-1
2.0 ARCHITECTURAL OVERViEW 2-1 3.1 Real Mode Introduction 3-1

2.1 Register Set 2-1 3.2 Memory Addressing 3-2
2.1.1 Base Architecture

Registers 2-2

2.1.2 System Level Registers 2-6

2.1.3 Floating Point Registers 2-10

3.3 Reserved Locations 3-2

3.4 Interrupts 3-2

3.5 Shutdown and Halt 3-2

2.1.4 Debug and Test Registers ... 2-17 4.0 PROTECTED MODE
2.1.5 Register Accessibility 2-17 ARCHITECTURE 4-1

2.1.6 Compatibility 2-18 4.1 Introduction 4-1

2.2 Instruction Set 2-19 4.2 Addressing Mechanism 4-1

2.3 Memory Organization 2-19 4.3 Segmentation 4-2

2.3.1 Address Spaces 2-19 4.3.1 Segmentation Introduction 4-2

2.3.2 Segment Register Usage 2-20 4.3.2 Terminology 4-2

2.4 I/O Space 2-20 4.3.3 Descriptor Tables 4-2

2.5 Addressing Modes 2-21 4.3.4 Descriptors 4-3

2.5.1 Addressing Modes
Overview 2-21

4.4 Protection 4-12

4.4.1 Protection Concepts 4-12

2.5.2 Register and Immediate 4.4.2 Rules of Privilege 4-12
Modes 2-21 4.4.3 Privilege Levels 4-12

2.5.3 32-Bit Memory Addressing
Modes 2-21 4.4.4 Privilege Level Transfers 4-15

2.5.4 Differences between 16- and
4.4.5 Call Gates 4-16

32-Bit Addresses 2-23 4.4.6 Task Switching 4-16

2.6 Data Formats 2-23 4.4.7 Initialization and Transition to

2.6.1 Data Types 2-23

2.6.2 Little Endian vs Big Endian
Data Formats 2-27

Protected Mode 4-17

4.4.8 Tools for Building Protected
Systems 4-18

2.7 Interrupts 2-27

2.7.1 Interrupts and Exceptions 2-27

2.7.2 Interrupt Processing 2-27

2.7.3 Maskable Interrupt 2-28

4.5 Paging 4-18

4.5.1 Paging Concepts 4-18

4.5.2 Paging Organization 4-19

4.5.3 Page Level Protection
(R/W, U/S Bits) 4-20

2.7.4 Non-Maskable Interrupt 2-29 4.5.4 Page Cacheability
2.7.5 Software Interrupts 2-29 (PWT, PCD Bits) 4-21

2.7.6 Interrupt and Exception 4.5.5 Translation Lookaside
Priorities 2-29 Buffer 4-21

2.7.7 Instruction Restart 2-30 4.5.6 Paging Operation 4-22

4.5.7 Operating System
Responsibilities 4-23

iv

CONTENTS PAGE CONTENTS PAGE

4.6 Virtual 8086 Environment 4-23 6.2.15 Address Bit 20 Mask

4.6.1 Executing 8086 Programs 4-23 (A20M#) 6-8

4.6.2 Virtual 8086 Addressing
Mechanism 4-23

6.2.16 Boundary Scan Test
Signals 6-8

4.6.3 Paging in Virtual Mode 4-23 6.3 Write Buffers 6-9

4.6.4 Protection and Virtual 8086
Mode to I/O Permission

6.3.1 Write Buffers and I/O
Cycles 6-10

Bitmap 4-24 6.3.2 Write Buffers Implications on

4.6.5 Interrupt Handling 4-25 locked Bus Cycles 6-10

4.6.6 Entering and leaving Virtual
8086 Mode 4-26

6.4 Interrupt and Non-Maskable
Interrupt Interface 6-10

6.4.1 Interrupt logic 6-10
5.0 ON-CHIP CACHE 5-1 6.4.2 NMI logic 6-11

5.1 Cache Organization 5-1 6.5 Reset and Initialization 6-11
5.2 Cache Control 5-2

5.3 Cache Line Fills 5-2
6.5.1 Pin State during Reset 6-12

5.4 Cache Line Invalidations 5-3 7.0 BUS OPERATION 7-1

5.5 Cache Replacement 5-3 7.1 Data Transfer Mechanism 7-1

5.6 Page Cacheability 5-4 7.1.1 Memory and 1/0 Spaces 7-1

5.7 Cache Flushing 5-5

5.8 Caching Translation lookaside
Buffer Entries 5-5

7.1.2 Memory and 1/0 Space
Organization 7-2

7.1.3 Dynamic Data Bus Sizing 7-3

7.1.4 Interfacing with 8-, 16- and 32-
6.0 HARDWARE INTERFACE 6-1 bit Memories 7-4

6.1 Introduction 6-1 7.1.5 Dynamic Bus Sizing during

6.2 Signal Descriptions 6-2

6.2.1 Clock (ClK) 6-2

Cache Line Fills 7-6

7.1.6 Operand Alignment 7-6

6.2.2 Address Bus 7.2 Bus Functional Description 7-7

(A31-A2, BEO#-BE3#) 6-2 7.2.1 Non-Cacheable Non-Burst

6.2.3 Data Lines (D31-DO) 6-3 Single Cycle 7-7

6.2.4 Parity 6-3 7.2.2 Multiple and Burst Cycle Bus
Transfers 7-8

6.2.5 Bus Cycle Definition 6-3

6.2.6 Bus Control 6-4
7.2.3 Cacheable Cycles 7-12

7.2.4 Burst Mode Details 7-15
6.2.7 Burst Control 6-4

6.2.8 Interrupt Signals 6-5

6.2.9 Bus Arbitration Signals 6-5

6.2.10 Cache Invalidation 6-6

6.2.11 Cache Control 6-7

7.2.58- and 16-Bit Cycles 7-19

7.2.6 locked Cycles 7-21

7.2.7 Pseudo-locked Cycles 7-22

7.2.8 Invalidate Cycles 7-22

7.2.9 Bus Hold 7-26
6.2.12 Page Cacheability Outputs

(PWT, PCD) 6-7 7.2.10 I nterrupt Acknowledge 7-26

6.2.13 Numeric Error Reporting 6-7 7.2.11 Special Bus Cycles 7-28

6.2.14 Bus Size Control 7.2.12 Bus Cycle Restart 7-29

(BS16#, BS8#) 6-8 7.2.13 Bus States 7-30

7.2.14 Floating Point Error
Handling 7-31

v

CONTENTS PAGE

8.0 TESTABILITY 8-1
8.1 Built-In Self Test (BIST) 8-1

8.2 On-Chip Cache Testing 8-1

8.2.1 Cache Testing Registers TR3,
TR4 and TR5 8-1

8.2.2 Cache Testability Write 8-2
8.2.3 Cache Testability Read 8-4

8.2.4 Flush Cache 8-4

8.3 Translation Lookaside Buffer (TLB)
Testing 8-4

8.3.1 Translation Lookaside Buffer
Organization 8-4

8.3.2 TLB Test Registers: TR6 and
TR7 8-5

8.3.3 TLB Write Test 8-7

8.3.4 TLB Lookup Test 8-7

8.4 3-state Output Test Mode 8-7
8.5 Intel486TM DX2 Microprocessor

Boundary Scan (JTAG) 8-7

8.5.1 Boundary Scan
Architecture 8-8

8.5.2 Data Registers 8-8

8.5.3 Instruction Register 8-9

8.5.4 Test Access Port (TAP)
Controller 8-11

8.5.5 Boundary Scan Register
Cell 8-14

8.5.6 TAP Controller Initialization .. 8-14

8.5.7 Boundary Scan Description
Language (BSDL) 8-15

9.0 DEBUGGING SUPPORT 9-1

9.1 Breakpoint Instructions 9-1

9.2 Single Step Instructions 9-1

9.3 Debug Registers 9-1

9.3.1 Linear Address Breakpoint
Registers 9-2

9.3.2 Debug Control Register 9-2

9.3.3 Debug Status Register 9-5

9.3.4 Use of Resume Flag (RF) in
Flag Register 9-5

vi

CONTENTS PAGE

10.0 INSTRUCTION SET SUMMARY ... 10-1
10.1 Intel486TM DX2 Microprocessor

Instruction Encoding and Clock
Count Summary 10-1

10.2 Instruction Encoding 10-20

10.2.1 Overview 10-20
10.2.2 32-Bit Extensions of the

Instruction Set 10-21

10.2.3 Encoding of Integer
Instruction Fields 10-21

10.2.4 Encoding of Floating Point
Instruction Fields 10-27

11.0 DIFFERENCES WITH THE
Intel386TM MICROPROCESSOR 11-1

12.0 UPGRADE SOCKET 12-1
12.0.1 Upgrade Processor

Overview 12-2

12.1 Upgrade Circuit Design 12-2

12.2 Socket Layout 12-3

12.2.1 Backward Compatibility 12-3

12.2.2 Physical Dimensions 12-3

12.2.3 "End User Easy" 12-4

12.2.4 LlF and ZIF Socket
Vendors 12-5

12.3 Thermal Management 12-5

12.3.1 Thermal Calculations for
Hypothetical System 12-5

12.3.2 Heat Sinks 12-6

12.3.3 Airflow 12-6
12.4 BIOS and Software 12-7

12.4.1 Intel486 DX2 Upgrade
Processor Detection 12-7

12.4.2 Timing Dependent Loops ... 12-7

12.5 Test Requirements 12-7
12.6 Upgrade Socket Pinout 12-7

12.6.1 Pinout 12-8

12.6.2 Pin Description 12-10

12.6.3 Reserved Pin
Specification 12-10

12.7 D.C.lA.C. Specifications 12-11

CONTENTS PAGE CONTENTS PAGE

13.0 CONVERTING AN EXISTING 15.0 MECHANICAL DATA 15-1
Intel486™ CPU-BASED SYSTEM 13-1 15.1 Package Thermal

14.0 ELECTRICAL DATA 14-1
Specifications 15-2

14.1 Power and Grounding 14-1 16.0 SUGGESTED SOURCES FOR

14.2 Maximum Ratings 14-1 Intel486 DX2 ACCESSORIES 16-1

14.3 D.C. Specifications 14-2

14.4 A.C. Specifications 14-2

vii

DATA SHEET DESIGNATONS
Intel uses various data sheet markings to designate each phase of the document as it relates to the product.
The marking appears in the upper, right-hand corner of the data sheet. The following is the definition of these
markings:

Data Sheet Marking

Product Preview

Advanced Information

Preliminary
No Marking

Description

Contains information on products in the design phase of development. Do not
finalize a deSign with this information. Revised information will be published when
the product becomes available.
Contains information on products being sampled or in the initial production phase
of development. •
Contains preliminary information on new products in production.'
Contains information on products in full production. •

'Specifications within these data sheets are subject to change without notice. Verify with your local Intel sales
office that you have the latest data sheet before finalizing a design.

int:eL Intel486TM DX2 MICROPROCESSOR

1.0 INTRODUCTION

A B C D E F G H J K L M N P Q R S

1 020 019 011 09 VSS OPl VSS VSS VCC VSS VSS VSS 02 DO A31 A28 A27 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 022 021 018 013 VCC 08 VCC 03 05 VCC 06 VCC 01 A29 VSS A25 A26 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 TCK VSS ClK 017 010 015 012 OP2 016 014 07 04 OPO A30 A17 VCC A23 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 023 VSS VCC A19 VSS NC 4
0 0 0 0 0 0

5 OP3 VSS VCC A21 A18 A14 5
0 0 0 0 0 0

6 024 025 027 A24 VCC VSS 6
0 0 0 0 0 0

7 vss VCC 026 A22 A15 A12 7
0 0 0 0 0 0

8 029 031 028 A20 VCC VSS 8
0 0 0 0 0 0

9 vss VCC 030
Intel486 DX2 MICROPROCESSOR

A16 vcc vss 9
0 0 0 PIN SIDE VIEW 0 0 0

10 NC NC NC A13 VCC VSS 10
0 0 0 0 0 0

11 vss VCC UP# A9 vce vss 11
0 0 0 0 0 0

12 Ne NC NC A5 All vss 12
0 0 0 0 0 0

13 NC NC NC A7 A8 Al0 13
0 0 0 0 0 0

14 TOI TMS FERR# A2 VCC vss 14
0 0 0 0 0 0

15 IGNNE# NMI FlUSH# A20t.t# HOlO KEN# NC BROY# BE2# BEO# PWT o/c# lOCK# HlOA BREQ A3 A6 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 INTR TOO RESET BS8# vec ROY# VCC vee BE1# VCC VCC VCC M/IO# VCC PLOCK# BLAST# A4 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 AHOLO EADS# 8516# BOFF# VSS BE3# VSS VSS PCO VSS VSS VSS W/R# VSS PCHK# NC AOS# 17
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A B C D E F G H J K L M N P Q R S
241245-2

Figure 1.1

1-1

int:eL Intel486TM DX2 MICROPROCESSOR

S R Q P N M L K J H G F E D C B A

1 A27 A28 A31 00 02 VSS VSS VSS VCC VSS VSS OPl VSS 09 011 019 020 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 A26 A25 VSS A29 01 VCC 06 VCC 05 03 VCC 08 VCC 013 018 021 022 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 A23 VCC A17 A30 OPO 04 07 014 016 OP2 012 015 010 017 CLK VSS TCK 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 NC VSS A19 VCC VSS 023 4
0 0 0 0 0 0

5 AU A18 A21 VCC VSS OP3 5
0 0 0 0 0 0

6 vss vcc A24 027 025 024 6
0 0 0 0 0 0

7 A12 A15 A22 026 VCC VSS 7
0 0 0 0 0 0

8 vss VCC A20 028 031 029 8
0 0 0 0 0 0

9 vss VCC A16 Intel486 DX2 MICROPROCESSOR 030 vcc VSS 9
0 0 0 0 0 0

TOP SIDE VIEW
10 10 vss VCC A13 NC NC NC

0 0 0 0 0 0

1 1 vss VCC A9 UP# VCC vss 11
0 0 0 0 0 0

12 VSS All AS NC NC NC 12
0 0 0 0 0 0

13 Al0 A8 A7 NC NC NC 13
0 0 0 0 0 0

14 vss VCC A2 FERR# TMS TOI 14
0 0 0 0 0 0

15 A6 A3 BREQ HLOA LOCK# o/c# PWT BEO# BE2# BROY# NC KEN# HOLD A20M# FLUSH# NMI IGNNE# 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 A4 BlAST# PLOCK# VCC M/IO# VCC VCC VCC BE1# vcc VCC RDY# vcc BS8# RESET TOO INTR 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 AOS# NC PCHK# vss W/R# VSS VSS vss pco vss VSS BE3# vss BOFf# 8516# EADS# AHOLD 17
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S R Q P N M L K J H G F E D C B A
241245-3

Figure 1.2

1-2

intet Intel486TM DX2 MICROPROCESSOR

Pin Cross Reference by Pin Name

Address Data Control Test(1) N/C Vee Vss
A2 014 Do Pi A20M# 015 TCK A3 A10 B7 A7
A3 R15 01 N2 A08# 817 TDI A14 A12 B9 A9
A4 816 02 N1 AHOLO A17 TOO B16 A13 B11 A11
A5 012 03 H2 BEO# K15 TM8 B14 B12 C4 B3
A6 815 04 M3 BE1# J16 B13 C5 B4
A7 013 05 J2 BE2# J15 C10 E2 B5
A8 R13 06 L2 BE3# F17 C13 E16 E1
A9 011 07 L3 BLA8T# R16 G15 G2 E17
AlO 813 08 F2 BOFF# 017 R17 G16 G1
A11 R12 09 01 BROY# H15 84 H16 G17
A12 87 010 E3 BREO# 015 J1 Hi
A13 010 011 C1 B88# 016 K2 H17
A14 85 012 G3 B816# C17 K16 K1
A15 R7 013 02 CLK C3 L16 K17
A16 09 014 K3 O/C# M15 M2 L1
A17 03 015 F3 OPO N3 M16 L17
A18 R5 016 J3 OP1 F1 P16 M1
A19 04 017 03 OP2 H3 R3 M17
A20 08 018 C2 OP3 A5 R6 P17
A21 05 019 B1 EA08# B17 R8 02
A22 07 020 A1 FERR# C14 R9 R4
A23 83 021 B2 FLU8H# C15 RiO 86
A24 06 022 A2 HLOA P15 R11 88
A25 R2 023 A4 HOLD E15 R14 89
A26 82 024 A6 IGNNE# A15 810
A27 81 025 B6 INTR A16 811
A28 R1 026 C7 KEN# F15 812
A29 P2 027 C6 LOCK# N15 814
A30 P3 028 C8 M/IO# N16
A31 01 029 A8 NMI B15

030 C9 PCO J17
031 B8 PCHK# 017

PWT L15
PLOCK# 016
ROY# F16
RE8ET C16
RE8J{I) B10
RE8_B(1) C12
UP#(1) C11
W/R# N17

NOTE:
1. These pins were No-Connects on the 25 MHz and 33 MHz Intel486 OX microprocessors. For compatibility with old
designs they can still be left unconnected.

1-3

intel .. Intel486TM DX2 MICROPROCESSOR

QUICK PIN REFERENCE

What follows is a brief pin description. For detailed signal descriptions refer to Section 6.

Symbol Type Name and Function

ClK I Clock provides the fundamental timing for the bus interface unit and is multiplied by
two (2x) to provide the internal frequency for the Intel486 OX2. All external timing
parameters are specified with respect to the rising edge of ClK.

ADDRESS BUS

A31-A4 1/0 A31-A2 are the address lines of the microprocessor. A31-A2, together with the
A2-A3 a byte enables BEO # - BE3 #, define the physical area of memory or inputloutput

space accessed. Address lines A31-A4 are used to drive addresses into the
microprocessor to perform cache line invalidations. Input signals must meet setup
and hold times t22 and t23' A31-A2 are not driven during bus or address hold.

BEO-3# a The byte enable signals indicate active bytes during read and write cycles. Ouring
the first cycle of a cache fill, the external system should assume that all byte
enables are active. BE3# applies to 024-031, BE2# applies to 016-023, BE1 #
applies to 08-015 and BEO# applies to 00-07. BEO#-BE3# are active lOW and
are not driven during bus hold.

DATA BUS

031-00 1/0 These are the data lines for the Intel486 OX2 microprocessor. Lines 00-07 define
the least significant byte of the data bus while lines 024-031 define the most
significant byte of the data bus. These signals must meet setup and hold times t22
and t23 for proper operation on reads. These pins are driven during the second and
subsequent clocks of write cycles.

DATA PARITY

OPO-OP3 1/0 There is one data parity pin for each byte of the data bus. Oata parity is generated
on all write data cycles with the same timing as the data driven by the Intel486 OX2
microprocessor. Even parity information must be driven back into the
microprocessor on the data parity pins with the same timing as read information to
insure that the correct parity check status is indicated by the Intel486 OX2
microprocessor. The signals read on these pins do not affect program execution.
Input signals must meet setup and hold times t22 and t23' OPO-OP3 should be
connected to Vee through a pullup resistor in systems which do not use parity.
OPO-OP3 are active HIGH and are driven during the second and subsequent clocks
of write cycles.

PCHK# a Parity Status is driven on the PCHK # pin the clock after ready for read operations.
The parity status is for data sampled at the end of the previous clock. A parity error
is indicated by PCHK# being lOW. Parity status is only checked for enabled bytes
as indicated by the byte enable and bus size signals. PCH K # is valid only in the
clock immediately after read data is returned to the microprocessor. At all other
times PCHK # is inactive (HIGH). PCHK # is never floated.

1-4

int'eL Intel486™ DX2 MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol Type Name and Function

BUS CYCLE DEFINITION

M/IO# 0 The memory/input-output, data/control and write/read lines are the primary bus
O/C# 0 definition signals. These signals are driven valid as the AOS# signal is asserted.
W/R# 0 M/IO# D/C# W/R# Bus Cycle Initiated

0 0 0 Interrupt Acknowledge
0 0 1 Halt/Special Cycle
0 1 0 1/0 Read
0 1 1 110 Write
1 0 0 Code Read
1 0 1 Reserved
1 1 0 Memory Read
1 1 1 Memory Write

The bus definition signals are not driven during bus hold and follow the timing of the
address bus. Refer to Section 7.2.11 for a description of the special bus cycles.

LOCK# 0 The bus lock pin indicates that the current bus cycle is locked. The Intel486 OX2
microprocessor will not allow a bus hold when LOCK # is asserted (but address
holds are allowed). LOCK # goes active in the first clock of the first locked bus cycle
and goes inactive after the last clock of the last locked bus cycle. The last locked
cycle ends when ready is returned. LOCK # is active LOW and is not driven during
bus hold. Locked read cycles will not be transformed into cache fill cycles if KEN# is
returned active.

PLOCK # 0 The pseudo-lock pin indicates that the current bus transaction requires more than
one bus cycle to complete. Examples of such operations are floating point long
reads and writes (64 bits), segment table descriptor reads (64 bits), in addition to
cache line fills (128 bits). The Intel486 OX2 microprocessor will drive PLOCK # active
until the addresses for the last bus cycle of the transaction have been driven
regardless of whether ROY # or BROY # have been returned.
Normally PLOCK # and BLAST # are inverse of each other. However during the first
bus cycle of a 64-bit floating point write, both PLOCK # and BLAST # will be
asserted.
PLOCK# is a function of the BS8#, BS16# and KEN# inputs. PLOCK# should be
sampled only in the clock ready is returned. PLOCK # is active LOW and is not
driven during bus hold.

BUS CONTROL

AOS# 0 The address status output indicates that a valid bus cycle definition and address are
available on the cycle definition lines and address bus. AOS# is driven active in the
same clock as the addresses are driven. ADS # is active LOW and is not driven
during bus hold.

ROY# I The non-burst ready input indicates that the current bus cycle is complete. ROY #
indicates that the external system has presented valid data on the data pins in
response to a read or that the external system has accepted data from the Intel486
OX2 microprocessor in response to a write. ROY # is ignored when the bus is idle
and at the end of the first clock of the bus cycle.
ROY # is active during address hold. Data can be returned to the processor while
AHOLO is active.
ROY # is active LOW, and is not provided with an internal pull up resistor. ROY #
must satisfy setup and hold times t16 and t17 for proper chip operation.

1-5

intel~ Intel486™ DX2 MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol Type Name and Function

BURST CONTROL

BRDY# I The burst ready input performs the same function during a burst cycle that RDY #
performs during a non-burst cycle. BRDY # indicates that the external system has
presented valid data in response to a read or that the external system has accepted data
in response to a write. BRDY # is ignored when the bus is idle and at the end of the first
clock in a bus cycle.
BRDY # is sampled in the second and subsequent clocks of a burst cycle. The data
presented on the data bus will be strobed into the microprocessor when BRDY # is
sampled active. If RDY # is returned simultaneously with BRDY #, BRDY # is ignored
and the burst cycle is prematurely interrupted
BRDY # is active LOW and is provided with a small pullup resistor. BRDY # must satisfy
the setup and hold times t16 and t17.

BLAST # a The burst last signal indicates that the next time BRDY # is returned the burst bus cycle
is complete. BLAST # is active for both burst and non-burst bus cycles. BLAST # is
active LOW and is not driven during bus hold.

INTERRUPTS

RESET I The reset input forces the Intel486 DX2 microprocessor to begin execution at a known
state. The microprocessor cannot begin execution of instructions until at least 1 ms after
Vee and CLK have reached their proper DC and AC specifications. The RESET pin
should remain active during this time to insure proper microprocessor operation. RESET
is active HIGH. RESET is asynchronous but must meet setup and hold times t20 and t21
for recognition in any specific clock.

INTR I The maskable interrupt indicates that an external interrupt has been generated. If the
internal interrupt flag is set in EFLAGS, active interrupt processing will be initiated. The
Intel486 DX2 microprocessor will generate two locked interrupt acknowledge bus cycles
in response to the INTR pin going active. INTR must remain active until the interrupt
acknowledges have been performed to assure that the interrupt is recognized.
INTR is active HIGH and is not provided with an internal pulldown resistor. INTR is
asynchronous, but must meet setup and hold times t20 and t21 for recognition in any
specific clock.

NMI I The non-maskable interrupt request signal indicates that an external non-maskable
interrupt has been generated. NMI is rising edge sensitive. NMI must be held LOW for at
least four CLK periods before this rising edge. NMI is not provided with an internal
pulldown resistor. NMI is asynchronous, but must meet setup and hold times t20 and t21
for recognition in any specific clock.

BUS ARBITRATION

BREQ a The internal cycle pending signal indicates that the Intel486 DX2 microprocessor has
internally generated a bus request. BREQ is generated whether or not the Intel486 DX2
microprocessor is driving the bus. BREQ is active HIGH and is never floated.

HOLD I The bus hold request allows another bus master complete control of the Intel486 DX2
microprocessor bus. In response to HOLD going active the Intel486 DX2 microprocessor
will float most of its output and input/output pins. HLDA will be asserted after completing
the current bus cycle, burst cycle or sequence of locked cycles. The Intel486 DX2
microprocessor will remain in this state until HOLD is deasserted. HOLD is active high
and is not provided with an internal pulldown resistor. HOLD must satisfy setup and hold
times t18 and t19 for proper operation.

HLDA a Hold acknowledge goes active in response to a hold request presented on the HOLD
pin. HLDA indicates that the Intel486 DX2 microprocessor has given the bus to another
local bus master. HLDA is driven active in the same clock that the Intel486 DX2
microprocessor floats its bus. HLDA is driven inactive when leaving bus hold. HLDA is
active HIGH and remains driven during bus hold.

1-6

intel· Intel486TM DX2 MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol Type Name and Function

BUS ARBITRATION (Continued)

BOFF# I The backoffinput forces the Intel486 DX2 microprocessor to float its bus in the next
clock. The microprocessor will float all pins normally floated during bus hold but HLDA
will not be asserted in response to BOFF #. BOFF # has higher priority than RDY # or
BRDY #; if both are returned in the same clock, BOFF # takes effect. The
microprocessor remains in bus hold until BOFF # is negated. If a bus cycle was in
progress when BOFF # was asserted the cycle will be restarted. BOFF # is active LOW
and must meet setup and hold times t18 and t19 for proper operation.

CACHE INVALIDATION

AHOLD I The address hold request allows another bus master access to the Intel486 DX2
microprocessor's address bus for a cache invalidation cycle. The Intel486 DX2
microprocessor will stop driving its address bus in the clock following AHOLD going
active. Only the addres.s bus will be floated during address hold, the remainder of the
bus will remain active. AHOLD is active HIGH and is provided with a small internal
pulldown resistor. For proper operation AHOLDmust meet setup and hold times t18 and
t19'

EADS# I This signal indicates that a valid external address has been driven onto the Intel486 DX2
microprocessor address pins. This address will be used to perform an internal cache
invalidation cycle. EADS# is active LOW and is provided with an internal pullup resistor.
EADS# must satisfy setup and hold times t12 and t13 for proper operation.

CACHE CONTROL

KEN# I The cache enable pin is used to determine whether the current cycle is cacheable.
When the Intel486 DX2 microprocessor generates a cycle that can be cached and
KEN # is active, the cycle will bec.ome a cache line .fill cycle. Returning KEN # active one
clock before ready during the last read in the cache line fill will cause the line to be
placed in the on-chip cache. KEN # is active LOW and is provided with a small internal
pullup resistor. KEN # must satisfy setup and hold times t14 and t15 for proper operation.

FLUSH# I The cache flush input forces the Intel486 DX2 microprocessor to flush its entire internal
cache. FLUSH # is active low and need only be asserted for one clock. FLUSH # is
asynchronous but setup and hold timest20 and t21 must be met for recognition in any
specific clock. FLUSH # being sampled low in the clock before the falling edge of
RESET causes the Intel486 DX2 microprocessor to enter the tri-state test mode.

PAGE CACHEABILITY

PWT 0 The page write-through and page cache disable pins reflect the state of the page
PCD 0 attribute bits, PWT and PCD, in the page table entry or page directory entry. If paging is

disabled or for cycles that are not paged, PWT and PCD reflect the state of the PWT and
PCD bits in control register 3. PWT and PCD have the same timing as the cycle definition
pins (M/IO#, D/C# and W/R#). PWT and PCD are active HIGH and are not driven
during bus hold. PCD is masked by the cache disable bit (CD) in Control Register O.

NUMERIC ERROR REPORTING

FERR# 0 The floating point error pin is driven active when a floating point error occurs. FERR # is
similar to the ERROR # pin on the Intel387TM math coprocessor. FERR # is included for
compatibility with systems using DOS type floating point error reporting. FERR # will not
go active if FP errors are masked in FPU register. FERR # is active LOW, and is not
floated during bus hold.

1-7

intel. Intel486TM DX2 MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol Type Name and Function

NUMERIC ERROR REPORTING (Continued)

IGNNE# I When the ignore numeric effor pin is asserted the Intel486 DX2 microprocessor will
ignore a numeric error and continue executing non-control floating point instructions, but
FERR # will still be activated by the Intel486 DX2. When IGNNE # is deasserted the
Intel486 DX2 microprocessor will freeze on a non-control floating point instruction, if a
previous floating point instruction caused an error. IGNNE # has no effect when the NE
bit in control register 0 is set. IGNNE # is active LOW and is provided with a small
internal pullup resistor. IGNNE# is asynchronous but setup and hold times t20 and t21
must be met to insure recognition on any specific clock.

BUS SIZE CONTROL

8516# I The bus size 16 and bus size 8 pins (bus sizing pins) cause the Intel486 DX2
858# I microprocessor to run multiple bus cycles to complete a request from devices that

cannot provide or accept 32 bits of data i'1 a single cycle. The bus sizing pins are
sampled every clock. The state of these pins in the clock before ready is used by the
Intel486 DX2 microprocessor to determine the bus size. These signals are active LOW
and are provided with internal pullup resistors. These inputs must satisfy setup and hold
times t14 and t15 for proper operation.

ADDRESS MASK

A20M# I When the address bit 20 mask pin is asserted, the Intel486 DX2 microprocessor masks
physical address bit 20 (A20) before performing a lookup to the internal cache or driving
a memory cycle on the bus. A20M # emulates the address wraparound at one Mbyte
which occurs on the 8086. A20M # is active LOW and should be asserted only when the
processor is in real mode. This pin is asynchronous but should meet setup and hold
times t20 and t21 for recognition in any specific clock. For proper operation, A20M #
should be sampled high at the falling edge of RESET.

TEST ACCESS PORT

TCK I Test Clock is an input to the Intel486 DX2 CPU and provides the clocking function
required by the JT AG boundary scan feature. TCK is used to clock state information and
data into and out of the component. State select information and data are clocked into
the component on the rising edge of TCK on TMS and TDI, respectively. Data is clocked
out of the part on the falling edge of TCK on TOO.

TOI I Test Data Input is the serial input used to shift JTAG instructions and data into the
component. TOI is sampled on the rising edge of TCK, during the SHIFT -IR and the
SHIFT-DR TAP controller states. During all other tap controller states, TOI is a "don't
care".

TOO 0 Test Data Output is the serial output used to shift JT AG instructions and data out of the
component. TOO is driven on the falling edge of TCK during the SHIFT-IR and
SHIFT-DR TAP controller states. At all other times TOO is driven to the high impedance
state.

TMS I Test Mode Select is decoded by the JTAG TAP (Tap Access Port) to select the
operation of the test logic. TMS is sampled on the rising edge of TCK. To guarantee
deterministic behavior of the TAP controller TMS is provided with an internal pull-up
resistor.

1-8

intel· Intel486TM DX2 MICROPROCESSOR

QUICK PIN REFERENCE (Continued)

Symbol Type Name and Function

POWER DOWN MODE (UPGRADE PROCESSOR SUPPORT)

UP# I The Upgrade Present pin forces the Intel486 DX2 to 3-state all of its outputs and enter
the power down mode. When the Upgrade Present pin is sampled asserted by the CPU in
the clock before the falling edge of RESET, the power down mode is enabled. UP# has
no effect on the power down status except during this edge. The CPU is also forced to 3-
state all of it's outputs immediately in response to this signal. The UP# signal must
remain asserted in order to keep the pins 3-stated. UP# is active low and is provided with
an internal pull-up resistor.

Table 1.1. Output Pins Table 1.2. Input Pins

Name
Active When
Level Floated

Name
Active Synchronousl
Level Asynchronous

BREQ HIGH CLK
HLDA HIGH RESET HIGH Asynchronous

BEO#-BE3# LOW Bus Hold HOLD HIGH Synchronous
PWT,PCD HIGH Bus Hold AHOLD HIGH Synchronous

W/R#, D/C#, M/IO# HIGH Bus Hold EADS# LOW Synchronous
LOCK# LOW Bus Hold BOFF# LOW Synchronous

PLOCK # LOW Bus Hold FLUSH# LOW Asynchronous
ADS# LOW Bus Hold A20M# LOW Asynchronous

BLAST # LOW Bus Hold BS16#, BS8# LOW Synchronous
PCHK# LOW KEN# LOW Synchronous
FERR# LOW RDY# LOW Synchronous
RES_B LOW BRDY# LOW Synchronous
A2-A3 HIGH Bus, Address Hold INTR HIGH Asynchronous

NMI HIGH Asynchronous
IGNNE# LOW Asynchronous
RESJ LOW Asynchronous

UP# LOW Asynchronous

Table 1.3.lnput/Output Pins Table 1-4. Test Pins

Name
Active When
Level Floated

Name
Input or Sampledl
Output Driven On

DO-D31 HIGH Bus Hold TCK Input N/A
DPO-DP3 HIGH Bus Hold
A4-A31 HIGH Bus, Address Hold

TOI Input Rising Edge of TCK

TOO Output Falling Edge of TCK

TMS Input RiSing Edge of TCK

1-9

infel .. Intel486™ DX2 MICROPROCESSOR

2.0 ARCHITECTURAL OVERVIEW
The Intel486 OX2 microprocessor is a fully compati­
ble member of the Intel486 family.

The Intel486 microprocessor family is a 32-bit archi­
tecture with on-chip memory management, floating
point and cache memory units.

The Intel486 OX microprocessor contains all the
features of the Intel386TM microprocessor with en­
hancements to increase performance. The instruc­
tion set includes the complete Intel386 microproces­
sor instruction set along with extensions to serve
new applications. The on-chip memory management
unit (MMU) is completely compatible with the In­
tel386 microprocessor MMU. The Intel486 OX mi­
croprocessor brings theintel387™ math coproces­
sor on-chip. All software written for the Intel386 mi­
croprocessor, Intel387 math coprocessor and previ­
ous members of the 86/87 architectural family will
run on the Intel486 OX microprocessor without any
modifications.

Several enhancements have been added to the In­
tel486 OX microprocessor to increase performance.
On-chip cache memory allows frequently used data
and code to be stored on-chip reducing accesses to
the external bus. A clock doubler has been added to
speed up internal operations to twice that of an In­
tel486 OX microprocessor running with the same
bus clock. RiSe design techniques have been used
to reduce instruction cycle times. A burst bus feature
enables fast cache fills. All of these features, com­
bined, lead to performance greater than triple that of
a Intel386 microprocessor.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows management of the logical address space by
providing easy data and code relocatibility and effi­
cient sharing of global resources. The paging mech­
anism operates beneath segmentation and is trans­
parent to the segmentation process. Paging is op­
tional and can be disabled by system software. Each
segment can be divided into one or more 4 Kbyte
segments. To implement a virtual memory system,
the Intel486 OX microprocessor supports full restart­
ability for all page and segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes (232

bytes) in size. A segment can have attributes associ­
ated with it which include its location, size, type (i.e.,
stack, code or data), and protection characteristics.
Each task on a Intel486 OX microprocessor can
have a maximum of 16,381 segments, each up to
four gigabytes in size. Thus each task has a maxi­
mum of 64 terabytes (trinion bytes) of virtual memo­
ry.

2-1

The segmentation unit provides four-levels of pro­
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the deSign of systems
with a high degree of integrity.

The Intel486 OX microprocessor has two modes of
operation: Real Address Mode (Real Mode) and Pro­
tected Mode Virtual Address Mode (Protected
Mode). In Real Mode the Intel486 OX microproces­
sor operates as a very fast 8086. Real Mode is re­
quired primarily to set up the processor for Protected
Mode operation. Protected Mode provides access to
the sophisticated memory management paging and
privilege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks deSignated as Virtual 8086
Mode tasks. Each virtual 8086 task behaves with
8086 semantics, allowing 8086 software (an applica­
tion program or an entire operating system) to exe­
cute.

The on-chip floating point unit operates in parallel
with the arithmetic and logiC unit and provides arith­
metic instructions for a variety of numeric data types.
It executes numerous built-in transcendental func­
tions (e.g., tangent, sine, cosine, and log functions).
The floating point unit fully conforms to the ANSI!
IEEE standard 754-1985 for floating point arithmetic.

The on-chip cache is 8 Kbytes in size. It is 4-way set
associative and follows a write-through policy. The
on-chip cache includes features to provide flexibility
in external memory system design. Individual pages
can be designated as cacheable or non-cacheable
by software or hardware. The cache can also be en­
abled and disabled by software or hardware.

Finally the Intel486 OX2 microprocessor has fea­
tures to facilitate high performance hardware de­
signs. The 1x bus clock eases high frequency board
level designs. While the 2x clock doubler improves
execution performance without increasing the board
design complexity. This 2x clock doubler enhances
all operations operating out of the cache and/or not
blocked by external bus accesses. The burst bus
feature enables fast cache fills. These features are
described beginning in Section 6.

2.1 Register Set

The Intel486 OX microprocessor register set in­
cludes all the registers contained in the Intel386 mi­
croprocessor and the Intel387 math coprocessor.

Intel486TM DX2 MICROPROCESSOR

The register set can be split into the following cate­
gories:

I

I

Base Architecture Registers
General Purpose Registers
Instruction Pointer
Flags Register
Segment Registers

Systems Level Registers
Control Registers
System Address Registers

Floating Point Registers

Data Registers

Tag Word

Status Word

Instruction and Data Pointers

Control Word

Debug and Test Registers

General Purpose Registers
31 24123 16 15 al7 0

AH AX AL

BH BX BL

CH CX CL

OH OX OL

Sl

01

BP

SP

Segment Registers
15 0

EAX

EBX

ECX

EOX

ESI

EOI

EBP

ESP

CS Code Segment

SS Stack Segment

00) ES
Data Segments

FS

GS

Instruction Pointer
31 16 15 0

I IP I EIP

Flags Register

I FLAGS I EFLAGS

Figure 2.1. Base Architecture Registers

2-2

The base architecture and floating point registers
are accessible by the applications program. The sys­
tem level registers are only accessible at privilege
level 0 and are used by the systems level program.
The debug and test registers are also only accessi­
ble at privilege level o.

2.1.1 BASE ARCHITECTURE REGISTERS

Figure 2.1 shows the Intel486 DX2 microprocessor
base architecture registers. The contents of these
registers are task-specific and are automatically
loaded with a new context upon a task switch opera­
tion.

The base architecture includes six directly accessi­
ble descriptors, each specifying a segment up to
4 Gbytes in size. The descriptors are indicated by
the selector values placed in the Intel486 DX2 mi­
croprocessor segment registers. Various selector
values can be loaded as a program executes.

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

2.1.1.1 General Purpose Registers

The eight 32-bit general purpose registers are
shown in Figure 2.1. These registers hold data or
address quantities. The general purpose registers
can support data operands of 1, 8, 16 and 32 bits,
and bit fields of 1 to 32 bits. Address operands of 16
and 32 bits are supported. The 32-bit registers are
named EAX, EBX, ECX, EDX, ESI, EDI, EBP and
ESP.

The least significant 16 bits of the general purpose
registers can be accessed separately by using the
16-bit names of the registers AX, BX, CX, OX, 51, 01,
BP and SP. The upper 16 bits of the register are not
changed when the lower 16 bits are accessed sepa­
rately.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of the general purpose registers AX, BX, CX and
OX. The lowest bytes are named AL, BL, CL and DL
respectively. The higher bytes are named AH, BH,
CH and DH respectively. The individual byte acces­
sibility offers additional flexibility for data operations
but is not used for effective address calculation.

2.1.1.2 Instruction Pointer

The instruction pointer, shown in Figure 2.1, is a 32-
bit register named EIP. EIP holds the offset of the
next instruction to be executed. The offset is always
relative to the base of the code segment (CS). The
lower 16 bits (bits 0-15) of the EIP contain the 16-bit

int'eL Intel486™ DX2 MICROPROCESSOR

FLAGS

3322222222221111111111
10987654321098765432109876543210

[FlAGS RESERVED FOR INTEL

ALlGN~ENT CHE~~K====~J VIRTUAL MODE
RESUIiIE FLAG
NESTED TASK FLAG ------~
I/o PRIVILEGE LEVEL -------~

OVERFLOW ~~~=========~J DIRECTION FLAG
INTERRUPT ENABLE

241245-4

NOTE:
~indicates Intel Reserved: do not define; see Section 2.1.6.

Figure 2.2. Flags Register

instruction pointer named IP, which is used for 16-bit
addressing.

2.1.1.3 Flags Register

The flags register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS control certain operations and indicate
status of the Intel486 DX2 microprocessor. The low­
er 16 bits (bits 0-15) of EFLAGS contain the 16·bit
register named FLAGS, which is most useful when
executing 8086 and 80286 code. EFLAGS is shown
in Figure 2.2.

EFLAGS bits 1, 3, 5,15 and 19-31 are "undefined".
When these bits are stored during interrupt process·
ing or with a PUSHF instruction (push flags onto
stack), a one is stored in bit 1 and zeros in bits 3, 5,
15 and 19-31.

The EFLAGS register in the Intel486 OX microproc­
essor contains a new bit not previously defined. The
new bit, AC, is defined in the upper 16 bits of the

register and it enables faults on accesses to misa­
ligned data.

AC (Alignment Check, bit 18)

The AC bit enables the generation of faults if a
memory reference is to a misaligned address.
Alignment faults are enabled when AC is set
to 1. A mis-aligned address is a word access
to an odd address, a dword access to an ad­
dress that is not on a dword boundary, or an
8-byte reference to an address that is not on a
64·bit word boundary. See Section 7.1.6 for
more information on operand alignment.

Alignment faults are only generated by pro­
grams running at privilege level 3. The AC bit
setting is ignored at privilege levels 0, 1 and 2.
Note that references to the descriptor tables
(for selector loads), or the task state segment
(TSS) , are implicitly level 0 references even if
the instructions causing the references are
executed at level 3. Alignment faults are re­
ported through interrupt 17, with an error code
of O. Table 2.1 gives the alignment required
for the Intel486 OX microprocessor data
types.

Table 2.1. Data Type Alignment Requirements

Memory Access Alignment (Byte Boundary)

Word 2
Dword 4
Single Precision Real 4
Double Precision Real 8
Extended Precision Real 8
Selector 2
48-Bit Segmented Pointer 4
32-Bit Flat Pointer 4
32-Bit Segmented Pointer 2
48-Bit "Pseudo-Descriptor" 4
FSTENV IFLDENV Save Area 4/2 (On Operand Size)
FSAVE/FRSTOR Save Area 4/2 (On Operand Size)
Bit String 4

2-3

Intel486™ DX2 MICROPROCESSOR

IMPLEMENTATION NOTE:
Several instructions on the Intel486 DX microproc­
essor generate misaligned references, even if their
memory address is aligned. For example, on the In­
tel486 DX microprocessor, the SGDT/SIDT (store
global/interrupt descriptor table) instruction reads/
writes two bytes, and then reads/writes four bytes
from a "pseudo-descriptor" at the given address.
The Intel486 DX microprocessor will generate misa­
ligned references unless the address is on a 2 mod
4 boundary. The FSAVE and FRSTOR instructions
(floating point save and restore state) will generate
misaligned references for one-half of the register
save/restore cycles. The Intel486 DX microproces­
sor will not cause any AC faults if the effective ad­
dress given in the instruction has the proper align­
ment.

VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode within
Protected Mode. If set while the Intel486 DX
microprocessor is in Protected Mode, the In­
tel486 DX microprocessor will switch to Virtual
8086 operation, handling segment loads as
the 8086 does, but generating exception 13
faults on privileged opcodes. The VM bit can
be set only in Protected Mode, by the IRET
instruction (if current privilege level = 0) and
by task switches at any privilege level. The
VM bit is unaffected by POPF. PUSHF always
pushes a a in this bit, even if executing in Vir­
tual 8086 Mode. The EFLAGS image pushed
during interrupt processing or saved during
task switches will contain a 1 in this bit if the
interrupted code was executing as a Virtual
8086 Task.

RF (Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at
instruction boundaries before breakpoint pro­
cessing. When RF is set, it causes any debug
fault to be ignored on the next instruction. RF
is then automatically reset at the successful
completion of every instruction (no faults are
signalled) except the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing a task switch). These in­
structions set RF to the value specified by the
memory image. For example, at the end of the
breakpoint service routine, the IRET instruc­
tion can pop an EFLAG image having the RF
bit set and resume the program's execution at
the breakpoint address without generating an­
other breakpoint fault on the same location.

NT (Nested Task, bit 14)

This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates

2-4

that the current nested task's Task State Seg­
ment (TSS) has a valid back link to the previ­
ous task's TSS. This bit is set or reset by con­
trol transfers to other tasks. The value of NT
in EFLAGS is tested by the IRET instruction to
determine whether to do an inter-task return
or an intra-task return. A POPF or an IRET
instruction will affect the setting of this bit ac­
cording to the image popped, at any privilege
level.

10PL (Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
10PL indicates the numerically maximum CPL
(current privilege level) value permitted to ex­
ecute I/O instructions without generating an
exception 13 fault or consulting the I/O Per­
mission Bitmap. It also indicates the maximum
CPL value allowing alteration of the IF (INTR
Enable Flag) bit when new values are popped
into the EFLAG register. POPF and IRET in­
struction can alter the 10PL field when execut­
ed at CPL = O. Task switches can always al­
ter the 10PL field, when the new flag image is
loaded from the incoming task's TSS.

OF (Overflow Flag, bit 11)

OF is set if the operation resulted in a signed
overflow. Signed overflow occurs when the
operation resulted in carry/borrow into the
sign bit (high-order bit) of the result but did not
result in a carry/borrow out of the high-order
bit, or vice-versa. For 8-, 16-, 32-bit opera­
tions, OF is set according to overflow at bit 7,
15,31, respectively.

DF (Direction Flag, bit 10)

DF defines whether ESI and/or EDI registers
postdecrement or postincrement during the
string instructions. Postincrement occurs if DF
is reset. Postdecrement occurs if DF is set.

IF (INTR Enable Flag, bit 9)

The IF flag, when set, allows recognition of
external interrupts signalled on the INTR pin.
When IF is reset, external interrupts signalled
on the INTR are not recognized. 10PL indi­
cates the maximum CPL value allowing altera­
tion of the IF bit when new values are popped
into EFLAGS or FLAGS.

TF (Trap Enable Flag, bit 8)

TF controls the generation of exception 1 trap
when single-stepping through code. When TF
is set, the Intel486 DX microprocessor gener­
ates an exception 1 trap after the next instruc­
tion is executed. When TF is reset, exception
1 traps occur only as a function of the break­
point addresses loaded into debug registers
DRO-DR3.

Intel486TM DX2 MICROPROCESSOR

SF (Sign Flag, bit 7)

SF is set if the high-order bit of the result is
set, it is reset otherwise. For 8-, 16-, 32-bit
operations, SF reflects the state of bit 7, 15,
31 respectively.

ZF (Zero Flag, bit 6)

ZF is set if all bits of the result are o. Other­
wise it is reset.

AF (Auxiliary Carry Flag, bit 4)

The Auxiliary Flag is used to simplify the addi­
tion and subtraction of packed BCD quanti­
ties. AF is set if the operation resulted in a
carry out of bit 3 (addition) or a borrow into bit
3 (subtraction). Otherwise AF is reset. AF is
affected by carry out of, or borrow into bit 3
only, regardless of overall operand length: 8,
16 or 32 bits.

PF (Parity Flags, bit 2)

PF is set if the low-order eight bits of the oper­
ation contains an even number of "1's" (even
parity). PF is reset if the low-order eight bits
have odd parity. PF is a function of only the
low-order eight bits, regardless of operand
size.

CF (Carry Flag, bit 0)

CF is set if the operation resulted in a carry
out of (addition), or a borrow into (subtraction)
the high-order bit. Otherwise CF is reset. For
8-, 16- or 32-bit operations, CF is set accord­
ing to carry/borrow at bit 7,15 or 31, respec­
tively.

SEGMENT

NOTE:
In these descriptions, "set" means "set to 1," and
"reset" means "reset to 0."

2.1.1.4 Segment Registers

Six 16-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. In protected mode, each segment may
range in size from one byte up to the entire linear
and physical address space of the machine, 4
Gbytes (232 bytes). In real address mode, the maxi­
mum segment size is fixed at 64 Kbytes (216 bytes).

The six addressable segments are defined by the
segment registers CS, SS, DS, ES, FS and GS. The
selector in CS indicates the current code segment;
the selector in SS indicates the current stack seg­
ment; the selectors in DS, ES, FS and GS indicate
the current data segments.

2.1.1.5 Segment Descriptor Cache Registers

The segment descriptor cache registers are not pro­
grammer visible, yet it is very useful to understand
their content. A programmer invisible descriptor
cache register is associated with each programmer­
visible segment register, as shown by Figure 2.3.
Each descriptor cache register holds a 32-bit base
address, a 32-bit segment limit, and the other neces­
sary segment attributes.

REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)

r ~

15

Selector

Selector

Selector

Selector

Selector

Selector

\ r ~

Other
Segment

0 Physical Base Address Segment Limit Attributes from Descriptor

CS-

SS-

DS-

ES-

FS-

GS-

Figure 2.3. Intel486™ DX Microprocessor Segment Registers
and Associated Descriptor Cache Registers

2-5

-

-
- -
- -
- -
- -

\

-
-

-
-
-

int:et Intel486TM DX2 MICROPROCESSOR

When a selector value is loaded into a segment reg­
ister, the associated descriptor cache register is au­
tomatically updated with the correct information. In
Real Address Mode, only the base address is updat­
ed directly (by shifting the selector value four bits to
the left), since the segment maximum limit and attri­
butes are fixed in Real Mode. In Protected Mode,
the base address, the limit, and the attributes are all
updated per the contents of the segment descriptor
indexed by the selector.

Whenever a memory reference occurs, the segment
descriptor cache register associated with the seg­
ment being used is automatically involved with the
memory reference. The 32-bit segment base ad­
dress becomes a component of the linear address
calculation, the 32-bit limit is used for the limit-check
operation, and the attributes are checked against
the type of memory reference requested.

2.1.2 SYSTEM LEVEL REGISTERS

The system level registers, Figure 2.4, control opera­
tion of the on-chip cache, the on-chip floating point

31 24123 16115

unit (FPU) and the segmentation and paging mecha­
nisms. These registers are only accessible to pro­
grams running at privilege level 0, the highest privi­
lege level.

The system level registers include three control reg­
isters and four segmentation base registers. The
three control registers are CRO, CR2 and CR3. CR1
is reserved for future Intel processors. The four seg­
mentation base registers are the Global Descriptor
Table Register (GDTR), the Interrupt Descriptor Ta­
ble Register (IDTR), the Local Descriptor Table Reg­
ister (LDTR) and the Task State Segment Register
(TR).

2.1.2.1 Control Registers

Control Register 0 (CRO)

CRO, shown in Figure 2.5, contains 10 bits for con­
trol and status purposes. Five of the bits defined in
the Intel486 DX microprocessor's CRO are newly de­
fined. The new bits are CD, NW, AM, WP and NE.
The function of the bits in CRO can be categorized
as follows:

al7 0

CRO

PAGE FAULT LINEAR ADDRESS REGISTER CR2

PAGE DIRECTORY BASE REGISTER I
SYSTEM ADDRESS REGISTERS

47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0

GDTRI
IDTR I I

SYSTEM SEGMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)

• ;.

~5 0'
(

32-BIT LINEAR BASE ADDRESS 20·BIT SEGMENT LIMIT

TR I SELECTOR I
I I LDTR I SELECTOR I

Figure 2.4. System Level Registers

indicates Intel reserved: Do not define; See Section 2.1.6

Figure 2.5. Control Register 0

2-6

MSW

CR3

ATTRIBUTES'

II II

intel .. Intel486TM DX2 MICROPROCESSOR

Intel486 DX Microprocessor Operating Modes: PG,
PE (Table 2.2)

On-Chip Cache Control Modes: CD, NW (Table 2.3)

On-Floating Point Unit Control: TS, EM, MP, NE
(Table 2.4)

Alignment Check Control: AM

Supervisor Write Protect: WP

Table 2.2. Processor Operating Modes

PG PE Mode

0 0 REAL Mode. Exact 8086 semantics,
with 32-bit extensions available with
prefixes.

0 1 Protected Mode. Exact 80286
semantics, plus 32-bit extensions
through both prefixes and "default"
prefix setting associated with code
segment descriptors. Also, a sub-
mode is defined to support a virtual
8086 within the context of the
extended 80286 protection model.

1 0 UNDEFINED. Loading CRO with this
combination of PG and PE bits will
raise a GP fault with error code O.

1 1 Paged Protected Mode. All the
facilities of Protected mode, with
paging enabled underneath
segmentation.

Table 2.3. On-Chip Cache Control Modes

CD NW Operating Mode

1 1 Cache fills disabled"write-through and
invalidates disabled.

1 0 Cache fills disabled, write-through and
invalidates enabled.

0 1 INVALID. If CRO is loaded with this
configuration of bits, a GP fault with
error code is raised.

0 0 Cache fills enabled, write-through and
invalidates enabled.

Table 2.4. On-Chip Floating Point Unit Control

CROBIT Instruction Type

EM TS MP Floating-Point Wait

0 0 0 Execute Execute
0 0 1 Execute Execute
0 1 0 Trap 7 Execute
0 1 1 Trap 7 Trap 7

. 1 0 0 Trap 7 Execute
1 0 1 Trap 7 Execute
1 1 0 Trap 7 Execute
1 1 1 Trap 7 Trap 7

2-7

The low-order 16 bits of CRO are also known as the
Machine Status Word (MSW), for compatibility with
the 80286 protected mode. LMSW and SMSW (load
and store MSW) instructions are taken as special
aliases of the load and store CRO operations, where
only the low-order 16 bits of CRO are involved. The
LMSW and SMSW instructions in the Intel486 DX
microprocessor work in an identical fashion to the
LMSW and SMSW instructions in the 80286 (i.e.,
they only operate on the low-order 16 bits of CRO
and ignores the new bits). New Intel486 DX micro­
processor operating systems should use the MOV
CRO, Reg instruction.

The defined CRO bits are described below.

PG (Paging Enable, bit 31)

The PG bit is used to indicate whether paging is
enabled (PG= 1) or disabled (PG=O). See Ta­
ble 2.2.

CD (Cache Disable, bit 30)

The CD bit is used to enable the on-chip cache.
When CD = 1, the cache will not be filled on
cache misses. When CD = 0, cache fills may be
performed on misses. See Table 2.3.

The state of the CD bit, the cache enable input
pin (KEN #), and the relevant page cache dis­
able (PCD) bit determine if a line read in re­
sponse to a cache miss will be installed in the
cache. A line is installed in the cache only if
CD = 0 and KEN # and PCD are both zero. The
relevant PCD bit comes from either the page
table entry, page directory entry or control reg­
ister 3. Refer to Section 5.6 for more details on
page cacheability.

CD is set to one after RESET.

NW (Not Write-Through, bit 29)

The NW bit enables on-chip cache write­
throughs and write-invalidate cycles (NW = 0).
When NW = 0, all writes, including cache hits,
are sent out to the pins. Invalidate cycles are
enabled when NW = o. During an invalidate cy­
cle a line will be removed from the cache if the
invalidate address hits in the cache. See Table
2.3.

When NW = 1, . write-throughs and write-invali­
date cycles are disabled. A write will not be sent
to the pins ilthe write hits in the cache. With
NW =1 the only Write cycles that reach the ex­
ternal bus are cache misses. Write hits with
NW = 1 will never update main memory. Invali­
date cycles are ignored when NW = 1.

AM (Alignment Mask, bit 18)

The AM bit controls whether the alignment
check (AC) bit in the flag register (EFLAGS) can
allow an alignment fault. AM = 0 disables the
AC bit. AM = 1 enables the AC bit. AM = 0 is the
Intel386 microprocessor compatible mode.

intel .. Intel486™ DX2 MICROPROCESSOR

Intel386 microprocessor software may load in­
correct data into the AC bit in the EFLAGS reg­
ister. Setting AM = 0 will prevent AC faults from
occurring before the Intel486 OX microproces­
sor has created the AC interrupt service routine.

WP (Write Protect, bit 16)

WP protects read-only pages from supervisor
write access. The Intel386 microprocessor al­
lows a read-only page to be written from privi­
lege levels 0-2. The Intel486 OX microproces­
sor is compatible with the Intel386 microproces­
sor when WP = O. WP = 1 forces a fault on a
write to a read-only page from any privilege lev­
el. Operating systems with Copy-on-Write fea­
tures can be supported with the WP bit. Refer
to Section 4.5.3 for further details on use of the
WPbit.

NE (Numerics Exception, bit 5)

The NE bit controls whether unmasked floating
point exceptions (UFPE) are handled through
interrupt vector 16 (NE = 1) or through an exter­
nal interrupt (NE = 0). NE = 0 (default at reset)
supports the DOS operating system error re­
porting scheme from the 8087, 80287 and In­
tel387 math coprocessor. In DOS systems,
math coprocessor errors are reported via exter­
nal interrupt vector 13. DOS uses interrupt vec­
tor 16 for an operating system call. Refer to
Sections 6.2.13 and 7.2.14 for more information
on floating point error reporting.

For any UFPE the floating pOint error output pin
(FERR#) will be driven active.

For NE = 0, the Intel486 OX microprocessor
works in conjunction with the ignore numeric er­
ror input (IGNNE#) and the FERR# output
pins. When a UFPE occurs and the IGNNE#
input is inactive, the Intel486 OX microproces­
sor freezes immediately before executing the
next floating point instruction. An external inter­
rupt controller will supply an interrupt vector
when FERR # is driven active. The UFPE is ig­
nored if IGNNE# is active and floating point ex­
ecution continues.

NOTE:

The freeze does not take place if the next in­
struction is one of the control instructions
FNCLEX, FNINIT, FNSAVE, FNSTENV,
FNSTCW, FNSTSW, FNSTSW AX, FNENI,
FNOISI and FNSETPM. The freeze does occur
if the next instruction is WAIT.

For NE = 1, any UFPE will result in a software
interrupt 16, immediately before executing the
next non-control floating point or WAIT instruc­
tion. The ignore numeric error input (IGNNE#)
signal will be ignored.

2-8

TS (Task Switched, bit 3)

The TS bit is set whenever a task switch opera­
tion is performed. Execution of a floating point
instruction with TS = 1 will cause a device not
available (DNA) fault (trap vector 7). If TS = 1
and MP= 1 (monitor coprocessor in CRO) a
WAIT instruction will cause a DNA fault. See
Table 2.4.

EM (Emulate Coprocessor, bit 2)

The EM bit determines whether floating point
instructions are trapped (EM = 1) or executed. If
EM = 1, all floating point instructions will cause
fault 7.

NOTE:
WAIT instructions are not affected by the state
of EM. See Table 2.4.

MP (Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS bit
to determine if WAIT instructions should trap. If
MP=1 and TS=1, WAIT instructions cause
fault 7. Refer to Table 2.4. The TS bit is set to 1
on task switches by the Intel486 OX microproc­
essor. Floating point instructions are not affect­
ed by the state of the MP bit. It is recommended
that the MP bit be set to one for the normal
operation of the Intel486 OX microprocessor.

PE (Protection Enable, bit 0)

The PE bit enables the segment based protec­
tion mechanism. If PE = 1 protection is enabled.
When PE = 0 the Intel486 OX microprocessor
operates in REAL mode, with segment based
protection disabled, and addresses formed as
in an 8086. Refer to Table 2.2.

All new CRO bits added to the Intel386 and Intel486
OX microprocessors, except for ET and NE, are up­
ward compatible with the 80286 because they are in
register bits not defined in the 80286. For strict com­
patibility with the 80286, the load machine status
word (LMSW) instruction is defined to not change
the ET or NE bits.

Control Register 1 (CR1)

CR1 is reserved for use in future Intel microproces­
sors.

Control Register 2 (CR2)

CR2, shown in Figure 2.6, holds the 32-bit linear ad­
dress that caused the last page fault detected. The
error code pushed onto the page fault handler's
stack when it is invoked provides additional status
information on this page fault.

in1:et Intel486™ DX2 MICROPROCESSOR

31 0

LI _____________________ PA_G_E __ FA_U_L_T_L_IN_E_A_R __ A_D_D_R_ES_S_R_E_G_I_S_T_ER ____________________ ~ICR2
31

PAGE DIRECTORY BASE REGISTER

NOTE:
P indicates Intel reserved: Do not define; See Section 2.1.6.

Figure 2.6. Control Registers 2 and 3

Control Register 3 (CR3)

CR3, shown in Figure 2.6, contains the physical
base address of the page directory table. The In­
tel486 OX microprocessor page directory is always
page aligned (4 Kbyte-aligned). This alignment is en­
forced by only storing bits 20-31 in CR3.

In the Intel486 OX microprocessor CR3 contains two
new bits, page write-through (PWT) (bit 3) and page
cache disable (PC D) (bit 4). The page table entry
(PTE) and page directory entry (POE) also contain
PWT and PCO bits. PWT and PCO control page
cacheability. When a page is accessed in external
memory, the state of PWT and PCO are driven out
on the PWT and PCO pins. The source of PWT and
PCO can be CR3, the PTE or the POE. PWT and
PCO are sourced from CR3 when the POE is being
updated. When paging is disabled (PG = 0 in CRO),
PCO and PWT are assumed to be 0, regardless of
their state in CR3.

A task switch through a task state segment (TSS)
which changes the values in CR3, or an explicit load
into CR3 with any value, will invalidate all cached
page table entries in the translation lookaside buffer
(TLB).

The page directory base address in CR3 is a physi­
cal address. The page directory can be paged out
while its associated task is suspended, but the oper­
ating system must ensure that the page directory is
resident in physical memory before the task is dis­
patched. The entry in the TSS for CR3 has a physi­
cal address, with no provision for a present bit. This
means that the page directory for a task must be
resident in physical memory. The CR3 image in a
TSS must point to this area, before the task can be
dispatched through its TSS.

2-9

2.1.2.2 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286, In­
tel386 and Intel486 OX microprocessor protection
model. These tables or segments are:

GOT (Global Descriptor Table)
lOT (Interrupt Descriptor Table)
LOT (Local Descriptor Table)
TSS (Task State Segment)

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers, illustrated in Figure 2.4.
These registers are named GOTR, 10TR, LOTR and
TR respectively. Section 4, Protected Mode Archi­
tecture, describes the use of these registers.

System Address Registers: GDTR and IDTR

The GOTR and 10TR hold the 32-bit linear base ad­
dress and 16-bit limit of the GOT and lOT, respec­
tively.

Since the GOT and lOT segments are global to all
tasks in the system, the GOT and lOT are defined by
32-bit linear addresses (subject to page translation if
paging is enabled) and 16-bit limit values.

System Segment Registers: LDTR and TR

The LOTR and TR hold the 16-bit selector for the
LOT descriptor and the TSS descriptor, respectively.

Since the LOT and TSS segments are task specific
segments, the LOT and TSS are defined by selector
values stored in the system segment registers.

NOTE:
A programmer-invisible segment descriptor register
is associated with each system segment register.

Intel486TM DX2 MICROPROCESSOR

2.1.3 FLOATING POINT REGISTERS

Figure 2.7 shows the floating point register set. The
on·chip FPU contains eight data registers, a tag
word, a control register, a status register, an instruc­
tion pointer and a data pointer.

RO

R1

R2

R3

R4

R5

R6

R7

79 78 64 63

Sign Exponent

15 0

Control Register

Status Register

Tag Word

Tag
Field

0 1 0

Significand
,----

f---

I---

f---

I---

f---

f---

I---

'---

47 0

I Instruction Pointer I
I Data Pointer I

Figure 2.7. Floating Point Registers

The operation of the Intel486 OX microprocessor's
on-chip floating point unit is exactly the same as the
Intel387 math coprocessor. Software written for the
Intel387 math coprocessor will run on the on-chip
floating point unit (FPU) without any modifications.

2.1.3.1 Data Registers

Floating point computations use the Intel486 OX mi­
croprocessor's FPU data registers. These eight 80-
bit registers provide the equivalent capacity of twen­
ty 32-bit registers. Each of the eight data registers is
divided

15

TAG (7) TAG (6) TAG (5) TAG (4)

NOTE:

into "fields" corresponding to the FPU's extended­
precision data type.

The FPU's register set can be accessed either as a
stack, with instructions operating on the top one or
two stack elements, or as a fixed register set, with
instructions operating on explicitly designated regis­
ters. The TOP field in the status word identifies the
current top-of-stack register. A "push" operation
decrements TOP by one and loads a value into the
new top register. A "pop" operation stores the value
from the current top register and then increments
TOP by one. Like other Intel486 OX microprocessor
stacks in memory, the FPU register stack grows
"down" toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc­
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to use. This explicit
register addressing is also relative to TOP.

2.1.3.2 Tag Word

The tag word marks the content of each numeric
data register, as shown in Figure 2.8. Each two-bit
tag represents one of the eight data registers. The
principal function of the tag word is to optimize the
FPUs performance and stack handling by making it
possible to distinguish between empty and nonemp­
ty register locations. It also enables exception han­
dlers to check the contents of a stack location with­
out the need to perform complex decoding of the
actual data.

2.1.3.3 Status Word

The 16-bit status word reflects the overall state of
the FPU. The status word is shown in Figure 2.9 and
is located in the status register.

o
TAG (3) TAG (2) TAG (1) TAG (0)

The index i of tag(i) is not top-relative. A program typically uses the "top" field of Status Word to determine which tag(i)
field refers to logical top of stack.
TAG VALUES:

00 = Valid
01 = Zero
10 = ONaN. SNaN. Infinity. Denormal and Unsupported Formats
11 = Empty

Figure 2.8. FPU Tag Word

2-10

inteL Intel486™ DX2 MICROPROCESSOR

r---------------------------------------BUSY

r-,--.--------------------------- TOP OF STACK POINTER

r-+--+--+--r-.----.--------------------- CONDITION CODE

ERROR SUMMARY STATUS

STACK FLAG -----------------'

EXCEPTION FLAGS:

PRECISION -------------------'

UNDERFLOW

OVERFLOW

ZERO DIVIDE --------------------------'

DENORMALIZED OPERAND

INVALID OPERATION

ES is set il any unmasked exception bit is set; cleared otherwise.
See Table 2.5 lor interpretation 01 condition code.
TOP values:

000 ~ Register a is Top 01 Stack
001 ~ Register 1 is Top 01 Stack .
111 ~ Register 7 is Top 01 Stack

For delinitions 01 exceptions, reler to the Section entitled
"Exception Handling".

Figure 2.9. FPU Status Word

241245-5

The B bit (Busy, bit 15) is included for 8087 compati­
bility. The B bit reflects the contents of the ES bit (bit
7 of the status word).

The four numeric condition code bits, CO-C3, are
similar to the flags in EFLAGS. Instructions that per·
form arithmetic operations update CO-C3 to reflect
the outcome. The effects of these instructions on
the condition codes are summarized in Tables 2.5
through 2.8.

Bits 13 -11 (TOP) point to the FPU register that is
the current top-of-stack.

2-11

int:et Intel486TM DX2 MICROPROCESSOR

Table 2.5. FPU Condition Code Interpretation

Instruction CO(S) I C3(Z) C1 (A) C2(C)

FPREM, FPREM1 Three least significant bits
Reduction

(see Table 2.3) of quotient
0= complete

02 00 01
orO/U# 1 = incomplete

FCOM, FCOMP,
FCOMPP, FTST, Result of comparison

Zero
Operand is not

FUCOM, FUCOMP, (see Table 2.7)
orO/U#

comparable
FUCOMPP, FICOM, (Table 2.7)
FICOMP

FXAM Operand class Sign Operand class
(see Table 2.8) orO/U# (Table 2.8)

FCHS, FABS, FXCH,
FINCTOP, FDECTOP,
Constant loads,

UNDEFINED
Zero

UNDEFINED
FXTRACT, FLD, or O/U#
FILD, FBLD,
FSTP (ext real)

FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL,
FDIV, FDIVR,

UNDEFINED
Roundup

UNDEFINED
FSUB, FSUBR, orO/U#
FSCALE, FSORT,
FPATAN, F2XM1,
FYL2X, FYL2XP1

FPTAN, FSIN Roundup Reduction
FCOS, FSINCOS UNDEFINED orO/U#, 0= complete

undefined 1 = incomplete
ifC2 = 1

FLDENV, FRSTOR Each bit loaded from memory

FINIT Clears these bits

FLDCW, FSTENV,
FSTCW, FSTSW, UNDEFINED
FCLEX, FSAVE

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPT AN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

2-12

infel .. Intel486TM DX2 MICROPROCESSOR

Table 2.6. Condition Code Interpretation after FPREM and FPREM11nstructions

Condition Code
Interpretation after FPREM and FPREM1

C2 C3 C1 CO

Incomplete Reduction:
1 X X X further interaction required

for complete reduction

01 00 02 o MOD8

0 0 0 0
0 1 0 1

Complete Reduction:
1 0 0 2

0
1 1 0 3

CO, C3, C1 contain three least

0 0 1 4
significant bits of quotient

0 1 1 5
1 0 1 6
1 1 1 7

Table 2 7 Condition Code Resulting from Comparison ..
Order C3 C2 CO

TOP> Operand 0 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 1 1

Table 2.8. Condition Code Defining Operand Class

C3 C2 C1 CO Value at TOP

0 0 0 0 + Unsupported
0 0 0 1 + NaN
0 0 1 0 - Unsupported
0 0 1 1 - NaN
0 1 0 0 + Normal
0 1 0 1 + Infinity
0 1 1 0 - Normal
0 1 1 1 - Infinity
1 0 0 0 +0
1 0 0 1 + Empty
1 0 1 0 -0
1 0 1 1 - Empty
1 1 0 0 + Denormal
1 1 1 0 - Denormal

2-13

Intel486TM DX2 MICROPROCESSOR

Bit 7 is the error summary (ES) status bit. The ES bit
is set if any unmasked exception bit (bits 0-5 in the
status word) is set; ES is clear otherwise. The
FERR# (floating point error) signal is asserted when
ES is set.

Bit 6 is the stack flag (SF). This bit is used to distin­
guish invalid operations due to stack overflow or un­
derflow. When SF is set, bit 9 (C1) distinguishes be­
tween stack overflow (C1 = 1) and underflow
(C1 =0).

Table 2.9 shows the six exception flags in bits 0-5
of the status word. Bits 0-5 are set to indicate that
the FPU has detected an exception while executing
an instruction.

The six exception flags in the status word can be
individually masked by mask bits in the FPU control
word. Table 2.9 lists the exception conditions, and
their causes in order of precedence. Table 2.9 also
shows the action taken by the FPU if the corre­
sponding exception flag is masked.

An exception that is not masked by the control word
will cause three things to happen: the corresponding
exception flag in the status word will be set, the ES
bit in the status word will be set and the FERR#
output signal will be asserted. When the Intel486 DX
microprocessor attempts to execute another floating
point or WAIT instruction, exception 16 occurs or an
external interrupt happens if the NE = 1 in control

register o. The exception condition must be resolved
via an interrupt service routine. The FPU saves the
address of the floating point instruction that caused
the exception and the address of any memory oper­
and required by that instruction in the instruction and
data pointers (see Section 2.1.3.4).

Note that when a new value is loaded into the status
word by the FLDENV (load environment) or
FRSTOR (restore state) instruction, the value of ES
(bit 7) and its reflection in the B bit (bit 15) are not
derived from the values loaded from memory. The
values of ES and B are dependent upon the values
of the exception flags in the status word and their
corresponding masks in the control word. If ES is set
in such a case, the FERR# output of the Intel486
DX microprocessor is activated immediately.

2.1.3.4 Instruction and Data Pointers

Because the FPU operates in parallel with the ALU
(in the Intel486 DX and Intel486 microprocessors
the arithmetic and logic unit (ALU) consists of the
base architecture registers), any errors detected by
the FPU may be reported after the ALU has execut­
ed the floating point instruction that caused it. To
allow identification of the failing numeric instruction,
the Intel486 DX microprocessor contains two pointer
registers that supply the address of the failing nu­
meric instruction and the address of its numeric
memory operand (if appropriate).

Table 2.9. FPU Exceptions

Exception Cause
Default Action

(if exception is masked)

Invalid Operation on a Signaling NaN, unsupported format, Result is a quiet NaN, integer
Operation indeterminate form (0' 00, 0/0, (+ 00) + (- 00), etc.), or indefinite, or BCD indefinite

stack overflow/underflow (SF is also set).

Denormalized At least one of the operands is denormalized, i.e., it has Normal processing
Operand the smallest exponent but a nonzero significand. continues

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is 00
nonzero number.

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value
format. or 00

Underflow The true result is nonzero but too small to be Result is denormalized or
represented in the specified format, and, if underflow zero
exception is masked, denormalization causes loss of
accuracy.

Inexact The true result is not exactly representable in the Normal processing
Result specified format (e.g., 1/3); the result is rounded continues
(Precision) according to the rounding mode.

2-14

int'et Intel486™ DX2 MICROPROCESSOR

The instruction and data pointers are provided for
user-written error handlers. These registers are ac­
cessed by the FLDENV (load environment),
FSTENV (store environment), FSAVE (save state)
and FRSTOR (restore state) instructions. Whenever
the Intel486 DX microprocessor decodes a new
floating point instruction, it saves the instruction (in­
cluding any prefixes that may be present), the ad­
dress of the operand (if present) and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the Intel486 DX microprocessor (protected mode or
real-address mode) and depending on the operand­
size

attribute in effect (32-bit operand or 16-bit operand).
When the Intel486 DX microprocessor is in the virtu­
al-86 mode, the real address mode formats are
used. The four formats are shown in Figures 2.10-
2.13. The floating point instructions FLDENV,
FSTENV, FSAVE and FRSTOR are used to transfer
these values to and from memory. Note that the val­
ue of the data pointer is undefined if the prior float­
ing point instruction did not have a memory operand.

NOTE:
The operand size attribute is the D bit in a segment
descriptor.

32-BIT PROTECTED MODE FORMAT
31

31

23 15 7 0

RESERVED CONTROL WORD

RESERVED STATUS WORD

RESERVED TAG WORD

IPOFFSET

00000 I OPCODE10 .. 0 CSSELECTOR

DATA OPERAND OFFSET

RESERVED OPERAND SELECTOR

Figure 2.10. Protected Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format

0000 I

0000 I

23
32-BIT REAL-ADDRESS MODE FORMAT

15 7

RESERVED CONTROL WORD

RESERVED STATUS WORD

RESERVED TAG WORD

RESERVED INSTRUCTION POINTER 15 .. 0

INSTRUCTION POINTER 31 .. 16 I 0 I OPCODE 10 .. 0

RESERVED OPERAND POINTER 15 .. 0

OPERAND POINTER 31..16 I 0000 00000000

Figure 2.11. Real Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format

2-15

o

0

4

8

C

10

14

18

o

4

8

C

10

14

18

int:et Intel486TM DX2 MICROPROCESSOR

16-BIT PROTECTED MODE FORMAT
15 7 0

CONTROL WORD

STATUS WORD

TAG WORD

IPOFFSET

CSSELECTOR

OPERAND OFFSET

OPERAND SELECTOR

Figure 2.12. Protected Mode FPU
Instruction and Data Pointer

Image in Memory, 16-Bit Format

2.1.3.5 FPU Control Word

o

2

4

6

S

A

C

16-BIT REAL-ADDRESS MODE AND
VIRTUAL-SOS6 MODE FORMAT

15 7

CONTROL WORD

STATUS WORD

TAG WORD

INSTRUCTION POINTER 15 .. 0

IP19.16 101 OPCODE 10 .. 0

OPERAND POINTER 15 .. 0

o

DP 19.16 I 0 I 0 0 0 0 0 0 0 0 000

Figure 2.13. Real Mode FPU
Instruction and Data Pointer

Image in Memory, 16-Bit Format

o

2

4

6

S

A

C

The FPU provides several processing options that are selected by loading a control word from memory into
the control register. Figure 2.14 shows the format and encoding of fields in the control word.

r-,--,------------------ RESERVED

,---------------- RESERVED'

,--,-------------- ROUNDING CONTROL

,-,------------ PRECISION CONTROL

RESERVED ______ -'-..J

EXCEPTION MASKS:

PRECISION ---------'

UNDERFLOW

• "0" AFTER RESET OR FINIT;
CHANGEABLE UPON LOADING THE
CONTROL WORD (CW). PROGRAMS
MUST IGNORE THIS BIT.

OVERFLOW

ZERO DIVIDE --------------'
DENORMALIZED OPERAND

INVALID OPERATION

Precision Control
00-24 bits (single precision)
01-(reserved)
10-53 bits (double precision)
11--.04 bits (extended precision)

Rounding Control
OO-Round to nearest or even
01-Round down (toward - 00)
10-Round up (toward + 00)
11-Chop (truncate toward zero)

Figure 2.14. FPU Control Word

2-16

241245-6

intel~ Intel486TM DX2 MICROPROCESSOR

The low-order byte of the FPU control word config­
ures the FPU error and exception masking. Bits 0-5
of the control word contain individual masks for each
of the six exceptions that the FPU recognizes.

The high-order byte of the control word configures
the FPU operating mode, including precision and
rounding.

RC (Rounding Control, bits 10-11)

The RC bits provide for directed rounding and
true chop, as well as the unbiased round to
nearest even mode specified in the IEEE stan­
dard. Rounding control affects only those in­
structions that perform rounding at the end of
the operation (and thus can generate a preci­
sion exception); namely, FST, FSTP, FIST, all
arithmetic instructions (except FPREM,
FPREM1, FXTRACT, FABS and FCHS), and all
transcendental instructions.

PC (Precision Control, bits 8-9)

The PC bits can be used to set the FPU internal
operating precision of the significand at less
than the default of 64 bits (extended precision).
This can be useful in providing compatibility with
early generation arithmetic processors of small­
er precision. PC affects only the instructions
ADD, SUB, DIV, MUL, and SORT. For all other
instructions, either the precision is determined
by the opcode or extended precision is used.

2.1.4 DEBUG AND TEST REGISTERS

2.1.4.1 Debug Registers

The six programmer accessible debug registers, Fig­
ure 2.15, provide on-chip support for debugging. De­
bug registers DRO-3 specify the four linear break­
points. The Debug control register DR7, is used to
set the breakpoints and the Debug Status Register,
DR6, displays the current state of the breakpoints.
The use of the Debug registers is described in Sec­
tion 9.

2-17

Debug Registers

LINEAR BREAKPOINT ADDRESS 0 DRO

LINEAR BREAKPOINT ADDRESS 1 DR1

LINEAR BREAKPOINT ADDRESS 2 DR2

LINEAR BREAKPOINT ADDRESS 3 DR3

Intel Reserved Do Not Define DR4

Intel Reserved Do Not Define DR5

BREAKPOINT STATUS DR6

BREAKPOINT CONTROL DR?

Test Registers

CACHE TEST DATA TR3

CACHE TEST STATUS TR4

CACHE TEST CONTROL TR5

TLB TEST CONTROL TR6

TLB TEST STATUS TR?

TLB = Translation Lookaside Buffer

Figure 2.15

2.1.4.2 Test Registers

The Intel486 OX microprocessor contains five test
registers. The test registers are shown in Figure
2.15. TR6 and TR7 are used to control the testing of
the translation lookaside buffer. TR3, TR4 and TR5
are used for testing the on-chip cache. The use of
the test registers is discussed in Section 8.

2.1.5 REGISTER ACCESSIBILITY

There are a few differences regarding the accessibil­
ity of the registers in Real and Protected Mode. Ta­
ble 2.10 summarizes these differences. See Section
4, Protected Mode Architecture, for further details.

int'et Intel486TM DX2 MICROPROCESSOR

Table 2.10. Register Usage

Use in Use in Use in

Register Real Mode Protected Mode Virtual 8086 Mode

Load Store Load Store Load Store

General Registers Yes Yes Yes Yes Yes Yes

Segment Register Yes Yes Yes Yes Yes Yes

Flag Register Yes Yes Yes Yes IOPL IOPL*

Control Registers Yes Yes PL = 0 PL = 0 No Yes

GDTR Yes Yes PL = 0 Yes No Yes

IDTR Yes Yes PL = 0 Yes No Yes

LDTR No No PL = 0 Yes No No

TR No No PL = 0 Yes No No

FPU Data Registers Yes Yes Yes Yes Yes Yes

FPU Control Registers Yes Yes Yes Yes Yes Yes

FPU Status Registers Yes Yes Yes Yes Yes Yes

FPU Instruction Pointer Yes Yes Yes Yes Yes Yes

FPU Data Pointer Yes Yes Yes Yes Yes Yes

Debug Registers Yes Yes PL = 0 PL = 0 No No

Test Registers Yes Yes PL = 0 PL = 0 No No

NOTES:
PL = 0: The registers can be accessed only when the current privilege level is zero.
*IOPL: The PUSHF and POPF instructions are made I/O Privilege Level sensitive in Virtual 86 Mode.

2.1.6 COMPATIBILITY

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer­
tain Intel486 microprocessor register bits are
Intel reserved. When reserved bits are called
out, treat them as fully undefined. This is essen­
tial for your software compatibility with future
processors! Follow the guidelines below:

1) Do not depend on the states of any unde­
fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde­
fined bits when storing them to memory or
another register.

2-18

3) Do not depend on the ability to retain infor­
mation written into any undefined bits.

4) When loading registers always load the unde­
fined bits as zeros.

5) However, registers which have been previ­
ously stored may be reloaded without mask­
ing.

Depending upon the values of undefined regis­
ter bits will make your software dependent upon
the unspecified Intel486 OX microprocessor
handling of these bits. Depending on undefined
values risks making your software incompatible
with future processors that define usages for
the Intel486 microprocessor-undefined bits.
AVOID ANY SOFTWARE DEPENDENCE UPON
THE STATE OF UNDEFINED Intel486 MICRO­
PROCESSOR REGISTER BITS.

intel~ Intel486™ DX2 MICROPROCESSOR

2.2 Instruction Set

The Intel486 OX microprocessor instruction set can
be divided into 11 categories of operations:

Data Transfer
Arithmetic
Shift/Rotate
String Manipulation
Bit Manipulation
Control Transfer
High Level Language Support
Operating System Support
Processor Control
Floating Point
Floating Point Control

The Intel486 OX microprocessor instructions are list­
ed in Section 10. Note that all floating point unit in­
struction mnemonics begin with an F.

All Intel486 OX microprocessor instructions operate
on either 0, 1, 2 or 3 operands; where an operand
resides in a register, in the instruction itself or in
memory. Most zero operand instructions (e.g., CLI,
STI) take only one byte. One operand instructions
generally are two bytes long. The average instruc­
tion is 3.2 bytes long. Since the Intel486 OX micro­
processor has a 32-byte instruction queue, an aver­
age of 10 instructions will be prefetched. The use of
two operands permits the following types of com­
mon instructions:

Register to Register
Memory to Register
Memory to Memory
Immediate to Register
Register to Memory
Immediate to Memory

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
Intel486 OX, Intel486 or Intel386 microprocessors
(32-bit code), operands are 8 or 32 bits; when exe­
cuting existing 80286 or 8086 code (16-bit code),
operands are 8 or 16 bits. Prefixes can be added to
all instructions which override the default length of
the operands (Le., use 32-bit operands for 16-bit
code, or 16-bit operands for 32-bit code).

2.3 Memory Organization

Introduction

Memory on the Intel486 OX microprocessor is divid­
ed up into 8-bit quantities (bytes), 16-bit quantities
(words), and 32-bit quantities (dwords). Words are
stored in two consecutive bytes in memory with the
low-order byte at the lowest address, the high order

2-19

byte at the high address. Dwords are stored in four
consecutive bytes in memory with the low-order byte
at the lowest address, the high-order byte at the
highest address. The address of a word or dword is
the byte address of the low-order byte.

In addition to these basic data types, the Intel486
OX microprocessor supports two larger units of
memory: pages and segments. Memory can be di­
vided up into one or more variable length segments,
which can be swapped to disk or shared between
programs. Memory can also be organized into one
or more 4 Kbyte pages. Finally, both segmentation
and paging can be combined, gaining the advan­
tages of both systems. The Intel486 OX microproc­
essor supports both pages and segments in order to
provide maximum flexibility to the system designer.
Segmentation and paging are complementary. Seg­
mentation is useful for organizing memory in logical
modules, and as such is a tool for the application
programmer, while pages are useful for the system
programmer for managing the physical memory of a
system.

2.3.1 ADDRESS SPACES

The Intel486 OX microprocessor has three distinct
address spaces: logical, linear, and physical. A
logical address (also known as a virtual address)
consists of a selector and an offset. A selector is the
contents of a segment register. An offset is formed
by summing all of the addressing components
(BASE, INDEX, DISPLACEMENT) discussed in Sec­
tion 2.5.3 Memory Addressing Modes into an ef­
fective address. Since each task on the Intel486 OX
microprocessor has a maximum of 16K (214 -1) se­
lectors, and offsets can be 4 gigabytes, (232 bits)
this gives a total of 246 bits or 64 terabytes of logi­
cal address space per task. The programmer sees
this virtual address space.

The segmentation unit translates the logical ad­
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad­
dress corresponds to the physical address. The
paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro­
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as­
sociated with it. The linear base address is stored in
one of two operating system tables (Le., the Local
Descriptor Table or Global Descriptor Table). The
selector's linear base address is added to the offset
to form the final linear address.

Intel486TM DX2 MICROPROCESSOR

EFFECTIVE ADDRESS CALCULATION

I INDEX J
II BASE I ~ I DISPLACEIIENT I

I SCALE J
1,2,4,8

.~
-~

l32 EFFECTIVE

ADDRESS
15 320 LOGICAL OR

II R L VIRTUAL ADDRESS
1~

SELECTOR PL I DESCRIPTOR

INDEX
SEGIIENT
REGISTER

SEGMENTATION
UNIT

31 0

PHYSICAL
IIEIIORY

8E3#- BEO#
A31-A2

32 PAGING UNIT 32

LINEAR (OPTIONAL USE) PHYSICAL
ADDRESS ADDRESS

241245-7

Figure 2.16. Address Translation

Figure 2.16 shows the relationship between the vari­
ous address spaces.

2.3.2 SEGMENT REGISTER USAGE

The main data structure used to organize memory is
the segment. On the Intel486 OX microp~ocessor,
segments are variable sized blocks of linear ad­
dresses which have certain attributes associated
with them. There are two main types of segments:
code and data, the segments are of variable ~ize
and can be as small as 1 byte or as large as 4 giga­
bytes (232 bytes).

In order to provide compact instruction encoding,
and increase processor performance, instructions
do not need to explicitly specify which segment reg­
ister is used. A default segment register is automati­
cally chosen according to the rules of Table 2.11
(Segment Register Selection Rules). In general, data
references use the selector contained in the OS reg­
ister; Stack references use the SS register and In­
struction fetches use the CS register. The contents
of the Instruction Pointer provide the offset. Special
segment override prefixes allow the ~xplicit u~e o! ~
given segment register, and over~lde th~ ImpliCit
rules listed in Table 2.11. The override prefixes also
allow the use of the ES, FS and GS segment regis­
ters.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero

2-20

and create a system with a four gigabyte linear ad­
dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further details of segmentation are dis­
cussed in Section 4.1.

2.4 I/O Space
The Intel486 OX microprocessor has two distinct
physical address spaces: Memory and I/O. General­
ly, peripherals are placed in I/O space although the
Intel486 OX microprocessor also supports memory­
mapped peripherals. The I/O space consists of
64 Kbytes, it can be divided into 64K 8-bit ports, 32K
16-bit ports, or 16K 32-bit ports, or any combination
of ports which add up to less than 64 Kbytes. The
64K I/O address space refers to physical memory
rather than linear address since I/O instructions do
not go through the segmentation or paging hard­
ware. The MIIO# pin acts as an additional address
line thus allowing the system designer to easily de­
termine which address space the processor is ac­
cessing.

The I/O ports are accessed via the IN and OUT 110
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
OX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The 110 in­
structions cause the M/IO# pin to be driven low.

110 port addresses 00F8H through OOFFH are re­
served for use by Intel.

intel .. Intel486TM DX2 MICROPROCESSOR

Table 2.11. Segment Register Selection Rules

Type of
Memory Reference

Code Fetch

Destination of PUSH, PUSHF, INT,
CALL, PUSHA Instructions

Source of POP, POPA, POPF,
IRET, RET instructions

Destination of STOS, MOVS, REP
STOS, REP MOVS Instructions
(01 is Base Register)

Other Data References, with
Effective Address Using Base
Register of:

[EAX]
[EBX]
[ECX]
[EDX]
[ESi]
[EDI]
[EBP]
[ESP]

2.5 Addressing Modes

2.5.1 ADDRESSING MODES OVERVIEW

The Intel486 OX microprocessor provides a total of
11 addressing modes for instructions to specify op­
erands. The addressing modes are optimized to al­
low the efficient execution of high level languages
such as C and FORTRAN, and they cover the vast
majority of data references needed by high-level lan­
guages.

2.5.2 REGISTER AND IMMEDIATE MODES

Two of the addressing modes provide for instruc­
tions that operate on register or immediate oper­
ands:

Register Operand Mode: The operand is located in
one of the 8-, 16- or 32-bit general registers.

Immediate Operand Mode: The operand is includ­
ed in the instruction as part of the opcode.

Implied (Default) Segment Override
Segment Use Prefixes Possible

2-21

CS None

SS None

SS None

ES None

OS
OS
OS
OS

All
OS
OS
ss
ss

2.5.3 32-BIT MEMORY ADDRESSING MODES

The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg­
ment base address and an effective address. The
effective address is calculated by using combina­
tions of the following four address elements:

DISPLACEMENT: An 8-, or 32-bit immediate value,
following the instruction.

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char­
acters.

SCALE: The index register's value can be multiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index

Intel486TM DX2 MICROPROCESSOR

mode is especially useful for accessing arrays or
structures.

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is
pipelined with the execution of other instructions.
The one exception is the simultaneous use of Base
and Index components which requires one addition­
al clock.

As shown in Figure 2.17, the effective address (EA)
of an operand is calculated according to the follow­
ing formula.

EA = Base Reg + (Index Reg * Scaling) + Displacement

Direct Mode: The operand's offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis­
placement.
EXAMPLE: INC Word PTR [500]

Register Indirect Mode: A BASE register contains
the address of the operand.
EXAMPLE: MOV [ECX], EDX

SS
GS

FS

SEGMENT REGISTER

ES

EFFECTIVE
ADDRE SS

LINEAR

Based Mode: A BASE register's contents is added
to a DISPLACEMENT to form the operand's offset.
EXAMPLE: MOV ECX, [EAX + 24]

Index Mode: An INDEX register's contents is added
to a DISPLACEMENT to form the operand's offset.
EXAMPLE: ADD EAX, TABLE[ESIl

Scaled Index Mode: An INDEX register's contents is
multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operand's offset.
EXAMPLE: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to
form the effective address of an operand.
EXAMPLE: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an IN­
DEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE regis­
ter to obtain the operand's offset.
EXAMPLE: MOV ECX, [EDX*S] [EAX]

/'
"\

SEGMENT
LIMIT

DESCRIPTOR REGISTERS ADDRESS

• TARGET ADDRESS

SS
GS

FS
ES

DS

ACCESS RIGHTS CS

LIMIT

BASE ADDRESS ------~
SEGMENT BASE ADDRESS

Figure 2.17. Addressing Mode Calculations

2-22

./

SELECTED
SEGMENT

241245-8

intel .. Intel486™ DX2 MICROPROCESSOR

Based Index Mode with Displacement: The contents
of an INDEX Register and a BASE register's con­
tents and a DISPLACEMENT are all summed to­
gether to form the operand offset.
EXAMPLE: ADD EDX, [ES!] [EBP + OOFFFFFOH]

Based Scaled Index Mode with Displacement: The
contents of an INDEX register are multiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand~s offset.
EXAMPLE: MOV EAX, LOCALTABLE[EDI04]
[EBP+80]

2.5.4 DIFFERENCES BETWEEN 16- AND 32-BIT
ADDRESSES

In order to provide software compatibility with the
80286 and the 8086, the Intel486 DX Microproces­
sor can execute 16-bit instructions in Real and Pro­
tected Modes. The processor determines the size of
the instructions it is executing by examining the D bit
in the CS segment Descriptor. If the D bit is 0 then
all operand lengths and effective addresses are as­
sumed to be 16 bits long. If the D bit is 1 then the
default length for operands and addresses is 32 bits.
In Real Mode the default size for operands and ad­
dresses is 16 bits.

Regardless of the default precision of the operands
or addresses, the Intel486 DX Microprocessor is
able to execute either 16- or 32-bit instructions. This
is specified via the use of override prefixes. Two pre­
fixes, the Operand Size Prefix and the Address
Length Prefix, override the value of the D bit on an
individual instruction basis. These prefixes are auto­
matically added by Intel assemblers.

Example: The processor is executing in Real Mode
and the programmer needs to access the EAX regis­
ters. The assembler code for this might be MOV
EAX, 32-bit MEMORYOP, ASM486 Macro Assem­
bler automatically determines that an Operand Size
Prefix is needed and generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[E51°2]. The assembler uses an

Address Length Prefix since, with D = 0, the default
addressing mode is 16 bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
DX.

The OPERAND LENGTH and Address Length Pre­
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64 Kbytes to be accessed in
Real Mode. A memory address Which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad­
ditional Intel486 DX Microprocessor addressing
modes.

When executing 32-bit code, the Intel486 DX Micro­
processor uses either 8-, or 32-bit displacements,
and any register can be used as base or index regis­
ters. When executing 16-bit code, the displacements
are either 8, or 16 bits, and the base and index regis­
ter conform to the 80286 model. Table 2.12 illus­
trates the differences.

2.6 Data. Formats

2.6.1 DATA TYPES

The Intel486 DX Microprocessor can support a wide
variety of data types. In the following descriptions,
the on-chip floating point unit (FPU) consists of the
floating point registers. The central processing unit
(CPU) consists of the base architecture registers.

2.6.1.1 Unsigned Data Types

The FPU does not support unsigned data types. Re­
fer to Table 2.13.

Byte: Unsigned 8-bit quantity

Word: Unsigned 16-bit quantity

Dword: Unsigned 32-bit quantity

The least significant bit (LSB) in a byte is bit 0, and
the most significant bit is 7.

Table 2.12. BASE and INDEX Registers for 16- and 32-Blt Addresses

16-Bit Addressing 32-Bit Addressing

BASE REGISTER BX,BP Any 32-bit GP Register
INDEX REGISTER 51,DI Any 32-bit GP Register

Except ESP
SCALE FACTOR none 1,2,4,8
DISPLACEMENT 0,8,16 bits 0,8,32 bits

2-23

Intel486TM DX2 MICROPROCESSOR

2.6.1.2 Signed Data Types

All signed data types assume 2's complement nota­
tion. The signed data types contain two fields, a sign
bit and a magnitude. The sign bit is the most signifi­
cant bit (MSB). The number is negative if the sign bit
is 1. If the sign bit is 0, the number is positive. The
magnitude field consists of the remaining bits in the
number. Refer to Table 2.13.

8-bit Integer: Signed 8-bit quantity

16-bit Integer: Signed 16-bit quantity

32-bit Integer: Signed 32-bit quantity

54-bit Integer: Signed 54-bit quantity

The FPU only supports 16-, 32- and 64-bit integers.
The CPU only supports 8-, 16- and 32-bit integers.

2.6.1.3 Floating Point Data Types

Floating point data type in the Intel486 OX micro­
processor contain three fields, sign, significand and
exponent. The sign field is one bit and is the MSB of
the floating point number. The number is negative if
the sign bit is 1. If the sign bit is 0, the number is
positive. The significand gives the significant bits of
the number. The exponent field contains the power
of 2 needed to scale the significand. Refer to Table
2.13.

Only the FPU supports floating point data types.

Single Precision Real: 23-bit significand and 8-
bit exponent. 32 bits total.

Double Precision Real: 52-bit significand and 11-
bit exponent. 64 bits total.

Extended Precision Real: 64-bit significand and 15-
bit exponent. 80 bits total.

2-24

2.6.1.4 BCD Data Types

The Intel486 OX microprocessor supports packed
and unpacked binary coded decimal (BCD) data
types. A packed BCD data type contains two digits
per byte, the lower digit is in bits 0-3 and the upper
digit in bits 4-7. An unpacked BCD data type con­
tains 1 digit per byte stored in bits 0-3.

The CPU supports 8-bit packed and unpacked BCD
data types. The FPU only supports 80-bit packed
BCD data types. Refer to Table 2.13.

2.6.1.5 String Data Types

A string data type is a contiguous sequence of bits,
bytes, words or dwords. A string may contain be­
tween 1 byte and 4 Gbytes. Refer to Table 2.14.

String data types are only supported by the CPU.

Byte String: Contiguous sequence of bytes.

Word String: Contiguous sequence of words.

Dword String: Contiguous sequence of dwords.

Bit String: A set of contiguous bits. In the Intel486
OX microprocessor bit strings can be up to 4 gigabits
long.

2.6.1.6 ASCII Data Types

The Intel486 OX microprocessor supports ASCII
(American Standard Code for Information Inter­
change) strings and can perform arithmetic opera­
tions (such as addition and division) on ASCII data.
Refer to Table 2.14.

Intel486TM DX2 MICROPROCESSOR

Table 2.13. Intel486TM OX Microprocessor Data Types
Supported by Supported by

Base Registers FPU Least Significant Byte
1. 1. 1.

Data Format Range Precision 7 017 017 017 017 017 017 017 017 017 0

Byte X 0-255 8 bits C
15 0

Word X 0-64K 16 bits r

31 0

Dword X 0-4G 32 bits I

8-Bit Integer X 102 8 bits Two's .cr
Complement

SignBil t

15 0

16-Bit Integer X X 104 16 bits Two's I I
Complement

SignBil t

31 0

32-Bit Integer X X 109 32 bits Two's I I
Complement

Sign Bft t

63 0

64-Bit Integer X 1019 64 bits Two's I I
Complement

Sign Bil t

7 0

8-Bit Unpacked BCD X 0-9 1 Digit One BCD Digit per Byte I

7 0

8-Bit Packed BCD X 0-9 2 Digits Two BCD Digits per Byte I

79 72 0

80-Bit Packed BCD X ±10±18 18 Digits I Ignored I
t Sign Bft

31 23 0

Single Precision Real X ±10±38 24 Bits I IBms<dl Exp. Significand

SignBil t

63 52 0

Double Precision Real X ±10±308 53 Bits I IB~;'dl Significand

SignBil t

79 63 0

Extended Precision Real X ± 10±4932 64 Bits I Biased
11

Significand Exp.

t SignBft

2-25

Intel486™ DX2 MICROPROCESSOR

Table 2.14. String and ASCII Data Types

String Data Types

Address A+N A+1 A

Byte String CJ ... 17

1

017

0

01

A+2N+1 A+2N A+3 A+2 A+1 A

115

I

01 115

I

0115

I

01
Word String N ... 1 0

A+4N+3 A+4N+2 A+4N+1 A+4N A+7 A+6 A+5 A+4 A+3 A+2 A+1 A

Dword!
i I i

01 131

i I i

0131

i I i

01
N ... 1 0

String 31

A + 268,435,455 A - 268,435,456
-J, A+3 A+2 A+1 A A-1 A-2 A-3 -J,

Bit !
017 01 II 17 017 017 017 ... 1 017 017 017 01 II 17 017 01 String 7

i i i i i
+2,147,483,647 +7 +10 ~2,147,483,648

ASCII Data Types

ASCII Character D
2.6.1.7 Pointer Data Types Table 2.15. Pointer Data Types

A pointer data type contains a value that gives the
address of a piece of data. The Intel486 OX micro­
processor supports two types of pointers. Refer to
Table 2.15,

48-bit Pointer: 16-bit selector and 32-bit offset

32-bit Pointer: 32-bit offset

2-26

Data Format I I I

48-Bit Pointer

32-Bit Pointer

Least Sig Byte

-J,

I I I I I I
47 31 0

I Selector I Offset

31 0

I Offset

Intel486TM DX2 MICROPROCESSOR

2.6.2 LITTLE ENDIAN vs BIG ENDIAN
DATA FORMATS

The Intel486 DX microprocessor, as well as all other
members of the 86 architecture use the "Iittle-endi­
an" method for storing data types that are larger
than one byte. Words are stored in two consecutive
bytes in memory with the low-order byte at the low­
est address and the high order byte at the high ad­
dress. Dwords are stored in four consecutive bytes
in memory with the low-order byte at the lowest ad­
dress and the high order byte at the highest address.
The address of a word or dword data item is the byte
address of the low-order byte.

Figure 2.18 illustrates the differences between the
big-end ian and little-end ian formats for dwords. The
32 bits of data are shown with the low order bit num­
bered bit 0 and the high order bit numbered 32. Big­
end ian data is stored with the high-order bits at the
lowest addressed byte. Little-endian data is stored
with the high-order bits in the highest addressed
byte.

The Intel486 DX microprocessor has two instruc­
tions which can convert 16- or 32-bit data between
the two byte orderings. BSWAP (byte swap) handles
four byte values and XCHG (exchange) handles two
byte values.

m+3 m+2 m+1 m
31 24 23 16 15 8 7 0

I
Dword in Little-Endlan Memory Format

m m+1 m+2 m+3
31 24 23 16 15 8 7 0

Dword in Big-Endian Memory Format

Figure 2.18. Big vs Little Endian Memory Format

2.7 Interrupts

2.7.1 INTERRUPTS AND EXCEPTIONS

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be­
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro­
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

2-27

Hardware interrupts occur as the result of an exter­
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately af­
ter the interrupted instruction. Sections 2.7.3 and
2.7.4 discuss the differences between Maskable and
Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth­
er or not restart of the instruction causing the excep­
tion is supported. Faults are exceptions that are de­
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system, when the processor referenced a
page or a segment which was not present. The oper­
ating system would fetch the page or segment from
disk, and then the Intel486 DX microprocessor
would restart the instruction. Traps are exceptions
that are reported immediately after the execution of
the instruction which caused the problem. User de­
fined interrupts are examples of traps. Aborts are
exceptions which do not permit the precise location
of the instruction causing the exception to be deter­
mined. Aborts are used to report severe errors, such
as a hardware error, or illegal values in system ta­
bles.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep­
tion fault routine will always point at the instruction
causing the exception and include any leading in­
struction prefixes. Table 2.16 summarizes the possi­
ble interrupts for the Intel486 DX microprocessor
and shows where the return address points.

The Intel486 DX microprocessor has the ability to
handle up to 256 different interrupts/ exceptions. In
order to service the interrupts, a table with up to 256
interrupt vectors must be defined. The interrupt vec­
tors are simply pointers to the appropriate interrupt
service routine. In Real Mode (see Section 3.1), the
vectors are 4 byte quantities, a Code Segment plus
a 16-bit offset; in Protected Mode, the interrupt vec­
tors are 8 byte quantities, which are put in an Inter­
rupt Descriptor Table (see Section 4.3.3.4). Of the
256 possible interrupts, 32 are reserved for use by
Intel, the remaining 224 are free to be used by the
system designer.

2.7.2 INTERRUPT PROCESSING

When an interrupt occurs the following actions hap­
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-

Intel486TM DX2 MICROPROCESSOR

2.7.3 MASKABLE INTERRUPT plied to the Intel486 DX microprocessor which iden­
tifies the appropriate entry in the interrupt table. The
table contains the starting address of the interrupt
service routine. Then, the user supplied interrupt
service routine is executed. Finally, when an IRET
instruction is executed the old processor state is re­
stored and program execution resumes at the appro­
priate instruction.

The 8-bit interrupt vector is supplied to the Intel486
DX microprocessor in several different ways: excep­
tions supply the interrupt vector internally; software
INT instructions contain or imply the vector; maska­
ble hardware interrupts supply the 8-bit vector via
the interrupt acknowledge bus sequence. Non­
Maskable hardware interrupts are assigned to inter­
rupt vector 2.

Maskable interrupts are the most common way used
by the Intel486 DX microprocessor to respond to
asynchronous external hardware events. A hard­
ware interrupt occurs when the INTR is pulled high
and the Interrupt Flag bit (IF) is enabled. The proc­
essor only responds to interrupts between instruc­
tions, (REPeat String instructions, have an "interrupt
window", between memory moves, which allows in­
terrupts during long string moves). When an interrupt
occurs the processor reads an 8-bit vector supplied
by the hardware which identifies the source of the
interrupt, (one of 224 user defined interrupts). The
exact nature of the interrupt sequence is discussed
in Section 7.2.10.

Table 2.16. Interrupt Vector Assignments

Instruction Which
Return Address

Function
Interrupt

Can Cause
Points to

Type
Number Faulting

Exception
Instruction

Divide Error 0 DIV,IDIV YES FAULT

Debug Exception 1 Any Instruction YES TRAP'

NMllnterrupt 2 INT20rNMI NO NMI

One Byte Interrupt 3 INT NO TRAP

Interrupt on Overflow 4 INTO NO TRAP

Array Bounds Check 5 BOUND YES FAULT

Invalid OP-Code 6 Any Illegal Instruction YES FAULT

Device Not Available 7 ESC,WAIT YES FAULT

Double Fault 8 Any Instruction That Can ABORT
Generate an Exception

Intel Reserved 9

InvalidTSS 10 JMP, CALL, IRET, INT YES FAULT

Segment Not Present 11 Segment Register Instructions YES FAULT

Stack Fault 12 Stack References YES FAULT

General Protection Fault 13 Any Memory Reference YES FAULT

Page Fault 14 Any Memory Access or Code Fetch YES FAULT

Intel Reserved 15

Floating Point Error 16 Floating Point, WAIT YES FAULT

Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT

Intel Reserved 18-31

Two Byte Interrupt 0-255 INTn NO TRAP

'Some debug exceptions may report both traps on the prevIous Instruction, and faults on the next Instruction.

2-28

int:eL Intel486TM DX2 MICROPROCESSOR

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter­
rupts. When an IRET instruction is executed the
original state of the IF is restored.

2.7.4 NON-MASKABLE INTERRUPT

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine. When the NMI
input is pulled high it causes an interrupt with an
internally supplied vector value of 2. Unlike a normal
hardware interrupt, no interrupt acknowledgment se­
quence is performed for an NMI.

While executing the NMI servicing procedure, the In­
tel486 OX microprocessor will not service further
NMI requests until an interrupt return (IRET) instruc­
tion is executed or the processor is reset. If NMI
occurs while currently servicing an NMI, its presence
will be saved for servicing after executing the first
IRET instruction. The IF bit is cleared at the begin­
ning of an NMI interrupt to inhibit further INTR inter­
rupts.

2.7.5 SOFTWARE INTERRUPTS

A third type of interrupt/exception for the Intel486
OX microprocessor is the software interrupt. An INT
n instruction causes the processor to execute the
interrupt service routine pointed to by the nth vector
in the interrupt table.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug­
ging tool.

A final type of software interrupt is the single step
interrupt. It is discussed in Section 9.2.

2-29

2.7.6 INTERRUPT AND EXCEPTION
PRIORITIES

Interrupts are externally-generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at in­
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the Intel486 OX microprocessor invokes
the NMI service routine first. If, after the NMI service
routine has been invoked, maskable interrupts are
still enabled, then the Intel486 OX microprocessor
will invoke the appropriate interrupt service routine.

Table 2.17a. Intel486TM OX Microprocessor
Priority for Invoking Service Routines in

Case of Simultaneous External Interrupts

1. NMI

2.INTR

Exceptions are internally-generated events. Excep­
tions are detected by the Intel486 OX microproces­
sor if, in the course of executing an instruction, the
Intel486 OX microprocessor detects a problematic
condition. The Intel486 OX microprocessor then im­
mediately invokes the appropriate exception service
routine. The state of the Intel486 OX microprocessor
is such that the instruction causing the exception
can be restarted. If the exception service routine has
taken care of the problematic condition, the instruc­
tion will execute without causing the same excep­
tion.

It is possible for a single instruction to generate sev­
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper­
and location spans two "not present" pages). How­
ever, only one exception is generated upon each at­
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex­
ception, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe­
cutes successfully.

As the Intel486 OX microprocessor executes instruc­
tions, it follows a consistent cycle in checking for
exceptions, as shown in Table 2.17b. This cycle is
repeated as each instruction is executed, and oc­
curs in parallel with instruction decoding and execu­
tion.

int'eL Intel486™ DX2 MICROPROCESSOR

Table 2.17b. Sequence of Exception Checking

Consider the case of the Intel486 DX microproc­
essor having just completed an instruction. It
then performs the following checks before reach­
ing the point where the next instruction is com­
pleted:

1. Check for Exception 1 Traps from the instruc­
tion just completed (single-step via Trap Flag,
or Data Breakpoints set in the Debug Regis­
ters).

2. Check for Exception 1 Faults in the next in­
struction (Instruction Execution Breakpoint
set in the Debug Registers for the next in­
struction).

3. Check for external NMI and INTR.

4. Check for Segmentation Faults that prevent­
ed fetching the entire next instruction (excep­
tions 11 or 13).

5. Check for Page Faults that prevented fetching
the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction
(exception 6 if illegal opcode; exception 6 if in
Real Mode or in Virtual 8086 Mode and at­
tempting to execute an instruction for Protect­
ed Mode only (see Section 4.6.4); or excep­
tion 13 if instruction is longer than 15 bytes, or
privilege violation in Protected Mode (Le., not
at IOPL or at CPL = 0).

7. If WAIT opcode, check if TS= 1 and MP= 1
(exception 7 if both are 1).

8. If opcode for Floating Point Unit, check if
EM = 1 or TS = 1 (exception 7 if either are 1).

9. If opcode for Floating Point Unit (FPU), check
FPU error status (exception 16 if error status
is asserted).

10. Check in the following order for each memo­
ry reference required by the instruction:

a. Check for Segmentation Faults that pre­
vent transferring the entire memory quan­
tity (exceptions 11, 12, 13).

b. Check for Page Faults that prevent trans­
ferring the entire memory quantity (ex­
ception 14).

NOTE:
The order stated supports the concept of the
paging mechanism being "underneath" the seg­
mentation mechanism. Therefore, for any given
code or data reference in memory, segmenta­
tion exceptions are generated before paging ex­
ceptions are generated.

2-30

2.7.7 INSTRUCTION RESTART

The Intel486 DX microprocessor fully supports re­
starting all instructions after faults. If an exception is
detected in the instruction to be executed (exception
categories 4 through 10 in Table 2.17b), the Intel486
DX microprocessor invokes the appropriate excep­
tion service routine. The Intel486 DX microprocessor
is in a state that permits restart of the instruction, for
all cases but those in Table 2.17 c. Note that all such
cases are easily avoided by proper design of the
operating system.

Table 2.17c. Conditions Preventing
Instruction Restart

An instruction causes a task switch to a task
whose Task State Segment is partially "not
present". (An entirely "not present" TSS is re­
startable.) Partially present TSS's can be avoid­
ed either by keeping the TSS's of such tasks
present in memory, or by aligning TSS segments
to reside entirely within a single 4K page (for TSS
segments of 4 Kbytes or less).

NOTE:
These conditions are avoided by using the oper­
ating system designs mentioned in this table.

2.7.8 DOUBLE FAULT

A Double Fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so, detects an exception
other than a Page Fault (exception 14).

A Double Fault (exception 8) will also be generated
when the processor attempts to invoke the Page
Fault (exception 14) service routine, and detects an
exception other than a second Page Fault. In any
functional system, the entire Page Fault service rou­
tine must remain "present" in memory.

When a Double Fault occurs, the Intel486 DX micro­
processor invokes the exception service routine for
exception 8.

2.7.9 FLOATING POINT INTERRUPT VECTORS

Several interrupt vectors of the Intel486 DX micro­
processor are used to report exceptional conditions
while executing numeric programs in either real or
protected mode. Table 2.18 shows these interrupts
and their causes.

int:et Intel486™ DX2 MICROPROCESSOR

Table 2.18. Interrupt Vectors Used by FPU

Interrupt
Cause of Interrupt

Number

7 A Floating Point instruction was encountered when EM or TS of the Intel486 DX processor
control register zero (CRO) was set. EM = 1 indicates that software emulation of the
instruction is required. When TS is set, either a Floating Point or WAIT instruction causes
interrupt 7. This indicates that the current FPU context may not belong to the current task.

13 The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at the
Floating Point instruction that caused the exception, including any prefixes. The FPU has
not executed this instruction; the instruction pointer and data pointer register refer to a
previous, correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer and
data pointer registers. Only Floating Point and WAIT instructions can cause this interrupt.
The Intel486™ DX processor return address pushed onto the stack of the exception
handler points to a WAIT or Floating Point instruction (including prefixes). This instruction
can be restarted after clearing the exception condition in the FPU. The FNINIT, FNCLEX,
FNSTSW, FNSTENV, and FNSAVE instructions cannot cause this interrupt.

2-31

inteL Intel486TM DX2 MICROPROCESSOR

3.0 REAL MODE ARCHITECTURE

3.1 Real Mode Introduction

When the processor is reset or powered up it is ini­
tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the
32-bit register set of the Intel486 microprocessor
family. The addressing mechanism, memory size, in­
terrupt handling, are all identical to the Real Mode
on the 80286.

All of the Intel486 microprocessor instructions are
available in Real Mode (except those instructions
listed in Section 4.6.4). The default operand size in
Real Mode is 16 bits, just like the 8086. In order to
use the 32-bit registers and addressing modes, over­
ride prefixes must be used. In addition, the segment
size on the Intel486 microprocessor in Real Mode is
64 Kbytes so 32-bit effective addresses must have a
value less the OOOOFFFFH. The primary purpose of
Real Mode is to set up the processor for Protected
Mode Operation.

The LOCK prefix on the Intel486 microprocessor,
even in Real Mode, is more restrictive than on the
80286. This is due to the addition of paging on the
Intel486 microprocessor in Protected Mode and Vir­
tual 8086 Mode. Paging makes it impossible to guar­
antee that repeated string instructions can be
LOCKed. The Intel486 microprocessor can't require
that all pages holding the string be physically pres­
ent in memory. Hence, a Page Fault (exception 14)
might have to be taken during the repeated string
instruction. Therefore the LOCK prefix can't be sup­
ported during repeated string instructions.

15 o

19 o

These are the only instruction forms where the
LOCK prefix is legal on the Intel486 DX2 microproc­
essor:

Opcode
Operands

(Dest, Source)

BIT Test and Mem, Reg/immed
SET IRESET ICOMPLEMENT

XCHG Reg, Mem
XCHG Mem, Reg
ADD, OR, ADC, SBB, Mem, Reg/immed

AND, SUB, XOR
NOT, NEG, INC, DEC Mem
CMPXCHG, XADD Mem, Reg

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above. For example, even the
ADD Reg, Mem is not LOCKable, because the Mem
operand is not the destination (and therefore no
memory read/modify/operation is being performed).

Since, on the Intel486 microprocessor, repeated
string instructions are not LOCKable, it is not possi­
ble to LOCK the bus for a long period of time. There­
fore, the LOCK prefix is not IOPL-sensitive on the
Intel486 microprocessor. The LOCK prefix can be
used at any privilege level, but only on the instruc­
tion forms listed above.

SELECTED
SEGMENT

~----------~~--------~---
SEGMENT BASE

241245-9

Figure 3.1. Real Address Mode Addressing

3-1

intel .. Intel486TM DX2 MICROPROCESSOR

3.2 Memory Addressing

In Real Mode the maximum memory size is limited to
1 megabyte. Thus, only address lines A2 - A 19 are
active. (Exception, after RESET address lines A20-
A31 are high during CS-relative memory cycles until
an intersegment jump or call is executed (see Sec­
tion 6.5».

Since paging is not allowed in Real Mode the linear
addresses are the same as physical addresses.
Physical addresses are formed in Real Mode by
adding the contents of the appropriate segment reg­
ister which is shifted left by four bits to an effective
address. This addition results in a physical address
from OOOOOOOOH to 0010FFEFH. This is compatible
with 80286 Real Mode. Since segment registers are
shifted left by 4 bits, Real Mode segments always
start on 16 byte boundaries.

All segments in Real Mode are exactly 64 Kbytes
long, and may be read, written, or executed. The
Intel486 microprocessor will generate an exception
13 if a data operand or instruction fetch occurs past
the end of a segment (i.e., if an operand has an
offset greater than FFFFH, for example a word with
a low byte at FFFFH and the high byte at OOOOH).

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64 Kbytes an­
other segment can be overlayed on top of the un­
used portion of the previous segment. This allows
the programmer to minimize the amount of physical
memory needed for a program.

3.3 Reserved Locations

There are two fixed areas in memory which are re­
seNed in Real address mode: system initialization
area and the interrupt table area. Locations OOOOOH
through 003FFH are reseNed for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reseNed for it. Locations FFFFFFFOH
through FFFFFFFFH are reseNed for system initiali­
zation.

3.4 Interrupts

Many of the exceptions shown in Table 2.16 and
discussed in Section 2.7 are not applicable to Real
Mode operation, in particular exceptions 10, 11, 14,
17, will not happen in Real Mode. Other exceptions
have slightly different meanings in Real Mode; Table
3.1 identifies these exceptions.

3.5 Shutdown and Halt

The HL T instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF= 1), or RESET will force the Intel486 DX2 micro­
processor out of halt. If interrupted, the saved CS:IP
will point to the next instruction after the HL T.

As in the case in protected mode, the shutdown will
occur when a severe error is detected that prevents
further processing. In Real Mode, shutdown can oc­
cur under two conditions:

An interrupt or an exception occur (exceptions 8 or
13) and the interrupt vector is larger than the Inter­
rupt Descriptor Table (i.e., there is not an interrupt
handler for the interrupt).

A CALL, INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even (i.e.,
pushing a value on the stack when SP = 0001 re­
sulting in a stack segment greater than FFFFH).

An NMI input can bring the processor out of shut­
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least
0017H) and the stack has enough room to contain
the vector and flag information (i.e., SP is greater
than 0005H). If these conditions are not met, the
Intel486 DX2 CPU is unable to execute the NMI and
executes another shutdown cycle. In this case, the
processor remains in the shutdown and can only exit
via the RESET input.

Table 3_1. Exceptions with Different Meanings in Real Mode (see Table 2.16)

Interrupt Related Return
Function

Number Instructions Address Location

Interrupt table limit too small 8 INT Vector is not Before
within table limit Instruction

CS, OS, ES, FS, GS 13 Word memory reference Before
Segment overrun exception beyond offset = FFFFH. Instruction

An attempt to execute
past the end of CS segment.

SS Segment overrun exception 12 Stack Reference Before
beyond offset = FFFFH Instruction

3-2

Intel486TM DX2 MICROPROCESSOR

4.0 PROTECTED MODE ARCHITECTURE

4.1 Introduction

The complete capabilities of the Intel486 DX2 micro­
processor are unlocked when the processor oper­
ates in Protected Virtual Address Mode (Protected
Mode). Protected Mode vastly increases the linear
address space to four gigabytes (232 bytes) and al­
lows the running of virtual memory programs of al­
most unlimited size (64 terabytes or 246 bytes). In
addition Protected Mode allows the Intel486 DX2 mi­
croprocessor to run all of the existing 8086, 80286
and Intel386 microprocessor software, while provid­
ing a sophisticated memory management and a
hardware-assisted protection mechanism. Protected
Mode allows the use of additional instructions espe­
cially optimized for supporting multitasking operating
systems. The base architecture of the Intel486 mi­
croprocessor remains the same, the registers, in­
structions, and addressing modes described in the
previous sections are retained. The main difference
between Protected Mode, and Real Mode from a
programmer's view is the increased address space,
and a different addressing mechanism.

48/32 BIT POINTER

4.2 Addressing Mechanism

Like Real Mode, Protected Mode uses two compo­
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg­
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha­
nism maps the 32-bit linear address into a 32-bit
physical address.

The difference between the two modes lies in calcu­
lating the base address. In Protected Mode the se­
lector is used to specify an index into an operating
system defined table (see Figure 4.1). The table
contains the 32-bit base address of a given seg­
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Intel486 microprocessor family. As
such, paging operates beneath segmentation. The
paging mechanism translates the protected linear
address which comes from the segmentation unit
into a physical address. Figure 4.2 shows the com­
plete Intel486 DX2 addressing mechanism with pag­
ing enabled.

SEGMENT LIMIT

0------+ MEMORY OPERAND ,

ACCESS RIGHTS

LIMIT

BASE ADDRESS

SEGMENT
DESCRIPTOR

SEGMENT BASE
ADDRESS

Figure 4.1. Protected Mode Addressing

4-1

SELECTED
SEGMENT

241245-10

Intel486TM DX2 MICROPROCESSOR

48 BIT POINTER ,. "' PHYSICAL ADDRESS

I SEGMENT I OFFSET 4K BYTES

15 31 I 0

4K BYTES

Intol486 DX

ACCESS RIGHTS CPU
PAGING PHYSICAL

4K BYTES

LIMIT ~ P MECHANISM

~
ADDRESS

MEMORY OPERAND PHYSICAL PAGE:
4K BYTES BASE ADDRESS ~ LINEAR;'

PAGE FRAME

SEGMENT ADDRESS ADDRESS
DESCRIPTOR

4K BYTES

4K BYTES

4K BYTES

241245-11

Figure 4.2. Paging and Segmentation

4.3 Segmentation

4.3.1 SEGMENTATION INTRODUCTION

Segmentation is one method of memory manage­
ment. Segmentation provides the basis for protec­
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam­
ple, all of the code of a given program could be con­
tained in a segment, or an operating system table
may reside in a segment. All information about a
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in tables recognized by hardware.

4.3.2 TERMINOLOGY

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection:

PL: Privilege Level-One of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically smaller than less privileged
levels.

RPL: Requestor Privilege Level-The privilege level
of the original supplier of the selector. RPL is deter­
mined by the least two significant bits of a selector.

DPL: Descriptor Privilege Level-This is the least
privileged level at which a task may access that de­
scriptor (and the segment associated with that de­
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

4-2

CPL: Current Privilege Level-The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.
CPL can also be determined by examining the low­
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level-The effective privi­
lege level is the least privileged of the RPL and DPL.
Since smaller privilege level values indicate greater
privilege, EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

4.3.3 DESCRIPTOR TABLES

4.3.3.1 Descriptor Tables Introduction

The descriptor tables define all of the segments
which are used in a Intel486 microprocessor system.
There are three types of tables on the Intel486 DX2
microprocessor which hold descriptors: the Global
Descriptor Table, Local Descriptor Table, and the In­
terrupt Descriptor Table. All of the tables are vari­
able length memory arrays. They can range in size
between 8 bytes and 64 Kbytes. Each table can hold
up to 8192 8-byte descriptors. The upper 13 bits of a
selector are used as an index into the descriptor ta­
ble. The tables have registers associated with them
which hold the 32-bit linear base address, and the
16-bit limit of each table.

intel .. Intel486™DX2 MICROPROCESSOR

Each of the tables has a register associated with it,
the GDTA, LDTA, and the IDTR (see Figure 4.3).
The LGDT, LLDT, and LlDT instructions, load the
base and limit of the Global, Local, and Interrupt De­
scriptor Tables, respectively, into the appropriate
register. The SGDT, SLDT, and SIDT store the base
and limit values. These tables are manipulated by
the operating system. Therefore, the load descriptor
table instructions are privileged instructions.

LDTR

IDTR

GDTR

.---111!1----------• r-;..---.., :
• • '--___ ..I.

• •
,.-___ .,0 :

•

15 o

LOT LIMIT

lOT LIMIT • PROGRAM INVISIBLE
_.&------4 : AUTOMATICALLY LOADED

• FROM LOT DESCRIPTOR ._------------..
o

J!41245-12

Figure 4.3. Descriptor Table Registers

4.3.3.2 Global Descriptor Table

The Global Descriptor Table (GDT) contains de­
scriptors which are possibly available to all of the
tasks in a system. The GDT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e., interrupt and trap
descriptors). Every Intel486 microprocessor system
contains a GDT. Generally the GDT contains code
and data segments used by the operating systems
and task state segments, and descriptors for the
LDTs in a system.

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null
selector defines a null pointer value.

4.3.3.3 Local Descriptor Table

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de­
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LOTs provide a mecha-

4-3

nism for isolating a given task's code and data seg­
ments from the rest of the operating system,. while
the GDT contains descriptors for segments. which
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro­
vides both isolation and protection for a task's seg­
ments, while still allowing global data to be shared
among tasks.

Unlike the 6 byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in
the GDT.

4.3.3.4 Interrupt Descriptor Table

The third table needed for Intel486 microprocessor
systems is the Interrupt Descriptor Table. (See Fig­
ure 4.4.) The IDT contains the descriptors which
point to the location of up to 256 interrupt service
routines. The IDT may contain only task gates, inter­
rupt gates, and trap gates. The IDT should be at
least 256 bytes in size in order to hold the descrip­
tors for the 32 Intel Reserved Interrupts. Every inter­
rupt used by a system must have an entry in the lOT.
The IDT entries are referenced via INT instructions,
external interrupt vectors, and exceptions. (See Sec­
tion 2.7 Interrupts).

GATE FOR
INTERRUPT #n

GATE FOR
INTERRUPT 1

GATE FOR
INTERRUPT .. 1

INTERRUPT
DESCRIPTOR
TABLE
(lOT)

"" 241245-13

Figure 4.4. Interrupt Descriptor
Table Register Use

4.3.4 DESCRIPTORS

4.3.4.1 Descriptor Attribute Bits

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re­
gion of linear address space (i.e., a segment). These

intel~ Intel486™ DX2 MICROPROCESSOR

attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or
32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. Figure 4.5 shows the gen­
eral format of a descriptor. All segments on the In­
tel486 microprocessor have three attribute fields in
common: the P bit, the DPL bit, and the S bit. The
Present P bit is 1 if the segment is loaded in physical
memory, if P = 0 then any attempt to access this
segment causes a not present exception (exception
11). The Descriptor Privilege Level DPL is a two-bit
field which specifies the protection level 0-3 associ­
ated with a segment.

31

The Intel486 OX microprocessor has two main cate­
gories of segments: system segments and non-sys­
tem segments (for code and data). The segment S
bit in the segment descriptor determines if a given
segment is a system segment or a code or data seg­
ment. If the S bit is 1 then the segment is either a
code or data segment, if it is 0 then the segment is a
system segment.

4.3.4.2 Intel486 CPU Code, Data Descriptors
(S= 1)

Figure 4.6 shows the general format of a code and
data descriptor and Table 4.1 illustrates how the bits
in the Access Rights Byte are interpreted.

0 BYTE
ADDRESS

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0
0

BASE 31. .. 24 1 G I D I 0 I AVL 11~~~~~6 pi DPL I S I TYPE I A I BASE +4

I I I
23 ... 16

BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit 1 = Present 0= Not Present
DPL Descriptor Privilege Level 0-3
S Segment Descriptor 0= System Descriptor 1 = Code or Data Segment Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity Bit 1 = Segment length is page granular 0= Segment length is byte granular
D Default Operation Size (recognized in code segment descriptors only)

1 = 32·bit segment 0= 16-bit segment
0 Bit must be zero (0) for compatibility with future processors
AVL Available field for user or as
NOTE:
In a maximum-size segment (i.e., a segment with G = 1 and segment limit 19 ... 0 = FFFFFH), the lowest 12 bits of the
segment base should be zero (i.e., segment base 11 ... 000=000H).

Figure 4.5. Segment Descriptors

31 0

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0

LIMIT
ACCESS BASE

BASE 31 ... 24 G 0 0 AVL
19 ... 16

RIGHTS
23 ... 16

+4
BYTE

DIB 1 = Default Instruction Attributes are 32-Bits
0= Default Instruction Attributes are 16-Bits

AVL Available field for user or as
G Granularity Bit 1 = Segment length is page granular

0= Segment length is byte granular
0 Bit must be zero (0) for compatibility with future processors

Figure 4.6. Segment Descriptors

4-4

infel .. Intel486™ DX2 MICROPROCESSOR

Table 4.1. Access Rights Byte Definition for Code and Data Descriptions

Bit
Name Function

Position

7 Present (P) P=1 Segment is mapped into physical memory.
P=O No mapping to physical memory exits, base and limit are

not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.

Level (DPL)
4 Segment Descrip· S=1 Code or Data (includes stacks) segment descriptor.

tor (S) S=O System Segment Descriptor or Gate Descriptor.

Type
Field
Definition

3
2

1

Executable (E)
Expansion Direc·
tion (ED)
Writeable (W)

E ~ 0 ""-"" type • data ... ment r
ED = 0 Expand up segment, offsets must be :s: limit. Data
ED = 1 Expand down segment, offsets must be > limit. Segment
W = 0 Data segment may not be written into. (S = 1,
W = 1 Data segment may be written into. E = 0)

3 Executable (E) E = 1 Descriptor type is code segment:

r 2 Conforming (C) C=1 Code segment may only be executed Code
when CPL :?: DPL and CPL Segment
remains unchanged. (S = 1,

1 Readable (R) R=O Code segment may not be read. E = 1)
R = 1 Code segment may be read.

0 Accessed (A) A=O Segment has not been accessed.
A=1 Segment selector has been loaded into segment register

or used by selector test instructions.

Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev­
er the processor accesses a descriptor. The A bit is
used by operating system~ to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. Intel486 DX microprocessor seg­
ments can be one megabyte long with byte granular­
ity (G = 0) or four gigabytes with page granularity
(G = 1), (i.-e., 220 pages each page is 4 Kbytes in
length). The granularity is totally unrelated to paging.
A Intel486 DX microprocessor system can consist of
segments with byte granularity, and page granularity,
whether or not paging is enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E = 1, S = 1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R = 0, and execute/read if R = 1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases. Alias­
es are writeable data segments which occupy the
same range of linear address space as the code
segment.

4-5

The D bit indicates the default length for operands
and effective addresses. If D= 1 then 32-bit oper­
ands and' 32·bit addressing modes are assumed. If
D = 0 then 16-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 80286
code segments will execute on the Intel486 DX mi­
croprocessor assuming the D bit is set o.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C = 1,
can be executed and shared by programs at differ­
ent privilege levels. (See Section 4.4 Protection.)

Segments identified as data segments (E=O, S= 1)
are used for two types of Intel486 DX microproces­
sor segments: stack and data segments. The expan­
sion direction (ED) bit specifies if a segment ex­
pands downward (stack) or upward (data). If a seg­
ment is a stack segment all offsets must be greater
than the segment limit. On a data segment all off­
sets must be less than or equal to the limit. In other
words, stack segments start at the base linear ad­
dress plus the maximum segment limit and grow
down to the base linear address plus the limit. On
the other hand, data segments start at the base lin­
ear address and expand to the base linear address
plus limit.

intel· Intel486TM DX2 MICROPROCESSOR

The write W bit controls the ability to write into a
segment. Data segments are read-only if W = O. The
stack segment must have W = 1.

The B bit controls the size of the stack pointer regis­
ter. If B = 1, then PUSHes, POPs, and CALls all use
the 32-bit ESP register for stack references and as­
sume an upper limit of FFFFFFFFH. If B = 0, stack
instructions all use the 16-bit SP register and as­
sume an upper limit of FFFFH.

4.3.4.3 System Descriptor Formats

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 4.7
shows the general format of system segment de­
scriptors, and the various types of system segments.
Intel486 DX microprocessor system descriptors con­
tain a 32-bit base linear address and a 20-bit seg­
ment limit. 80286 system descriptors have a 24-bit
base address and a 16-bit segment limit. 80286 sys­
tem descriptors are identified by the upper 16 bits
being all zero.

4.3.4.4 LDT Descriptors (S = 0, TYPE = 2)

LDT descriptors (S = 0, TYPE = 2) contain informa­
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Since the instruction to load the LDTR is only
available at privilege level 0, the DPL field is ignored.
LDT descriptors are only allowed in the Global De­
scriptor Table (GDT).

4.3.4.5 TSS Descriptors (S = 0,
TVPE= 1,3,9, B)

A Task State Segment (TSS) descriptor contains in­
formation about the location, size, and privilege level
of a Task State Segment (TSS). A TSS in turn is a
special fixed format segment which contains all the
state information for a task and a linkage field to

31 16

SEGMENT BASE 15 ... 0

BASE31 ... 24 1 G I 0 I 0 I 0 11i~~~~6
Type Defines
0 Invalid
1 Available 80286 TSS
2 LDT
3 Busy 80286 TSS
4 80286 Call Gate
5 Task Gate (for 80286 or Intel486™ DX CPU Task)
6 80286 Interrupt Gate
7 80286 Trap Gate

permit nesting tasks. The TYPE field is used to indi­
cate whether the task is currently BUSY (i.e., on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a
80286 or an Intel486 DX microprocessor TSS. The
Task Register (TR) contains the selector which
points to the current Task State Segment.

4.3.4.6 Gate Descriptors (S = 0,
TVPE=4-7, C, F)

Gates are used to control access to entry points
within the target code segment. The various types of
gate descriptors are call gates, task gates, inter­
rupt gates, and trap gates. Gates provide a level of
indirection between the source and destination of
the control transfer. This indirection allows the proc­
essor to automatically perform protection checks. It
also allows system designers to control entry points
to the operating system. Call gates are used to
change privilege levels (see Section 4.4 Protec­
tion), task gates are used to perform a task switch,
and interrupt and trap gates are used to specify in­
terrupt service routines.

Figure 4.8 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop­
ied from the caller's stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter­
rupts (resets the IF bit) while the trap gate does not.

0

SEGMENT LIMIT 15 ... 0 0

pi DPL I 0 I TYPE I BASE
23 ... 16

+4

Type Defines
8 Invalid
9 Available Intel486TM DX CPU TSS
A Undefined (Intel Reserved)
B Busy Intel486TM DX CPU TSS
C Intel486TM DX CPU Call Gate
D Undefined (Intel Reserved)
E Intel486TM DX CPU Interrupt Gate
F Intel486TM DX CPU Trap Gate

Figure 4.7. System Segment Descriptors

4-6

int:et Intel486™ DX2 MICROPROCESSOR

4.3.4.7 Differences Between Intel486 DX2 Task gates are used to switch tasks. Task gates
may only refer to a task state segment (see Section
4.4.6 Task Switching) therefore only the destination
selector portion of a task gate descriptor is used,
and the destination offset is ignored.

Microprocessor and 80286 Descriptors

Exception 13 is generated when a destination selec­
tor does not refer to a correct descriptor type, i.e., a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de­
scriptors. P = 1 indicates that the gate contents are
valid. P = 0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de­
scriptor privilege level and specifies when this de­
scriptor may be used by a task (see Section 4.4 Pro­
tection). The S field, bit 4 of the access rights byte,
must be 0 to indicate a system control descriptor.
The type field specifies the descriptor type as indi­
cated in Figure 4.8.

In order to provide operating system compatibility
between the 80286 and Intel486 DX2 microproces­
sor, the Intel486 DX microprocessor supports all of
the 80286 segment descriptors. Figure 4.9 shows
the general format of an 80286 system segment de­
scriptor. The only differences between 80286 and
Intel486 DX microprocessor descriptor formats are
that the values of the type fields, and the limit and
base address fields have been expanded for the In­
tel486 DX microprocessors. The 80286 system seg­
ment descriptors contained a 24-bit base address
and 16-bit limit, while the Intel486 DX microproces­
sor system segment descriptors have a 32-bit base
address, a 20-bit limit field, and a granularity bit.

31

SELECTOR

OFFSET 31 ... 16

Name
Type

P

Value
4
5
6
7
C
E
F
o
I

24 16

OFFSET 15 ... 0

P DPL 0 TYPE

Gate Descriptor Fields
Description

80286 call gate
Task gate (for 80286 or Intel486TM DX CPU task)
80286 interrupt gate
80286 trap gate
Intel486™ DX CPU call gate
Intel486™ DX CPU interrupt gate
Intel486™ DX CPU trap gate
Descriptor contents are not valid
Descriptor contents are valid

8 5 o
o

WORD
0 0 0 COUNT +4

4 ... 0

DPL-Ieast privileged level at which a task may access the gate. WORD COUNT 0-31-the number of parameters to copy from caller's stack
to the called procedure's stack. The parameters are 32-bit quantities for Intel486TM DX CPU gates, and 16-bit quantities for 80286 gates.

DESTINATION
SELECTOR

DESTINATION
OFFSET

31

16·bit
selector

Selector to the target code segment
or
Selector to the target task state segment for task gate

offset Entry point within the target code segment
16-bit 80286
32-bit Intel486™ DX CPU

Figure 4.8. Gate Descriptor Formats

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0

Intel Reserved
P I DPL lsi Set to 0

TYPE I BASE
23 ... 16

BASE Base Address of the segment DPL Descriptor Privilege Level 0-3
LIMIT The length of the segment S System Descriptor O~System I ~User
P Present Bit I ~Present o ~ Not Present TYPE Type of Segment

Figure 4.9. 80286 Code and Data Segment Descriptors

4-7

0

0

+4

intel .. Intel486™ DX2 MICROPROCESSOR

By supporting 80286 system segments the Intel486
OX microprocessor is able to execute 80286 appli­
cation programs on an Intel486 OX microprocessor
operating system. This is possible because the proc­
essor automatically understands which descriptors
are 80286-style descriptors and which descriptors
are Intel486 OX Microprocessor-style descriptors. In
particular, if the upper word of a descriptor is zero,
then that descriptor is a 80286-style descriptor.

The only other differences between 80286-style de­
scriptors and Intel486 OX microprocessor-style de­
scriptors is the interpretation of the word count field
of call gates and the B bit. The word count field
specifies the number of 16-bit quantities to copy for
80286 call gates and 32-bit quantities for Intel486
OX microprocessor call gates. The B bit controls the
size of PUSHes when using a call gate; if B = 0
PUSHes are 16 bits, if B = 1 PUSHes are 32 bits.

4.3.4.8 Selector Fields

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (TI), Descriptor

SELECTOR

15 4 3 2 1 0

Entry Index (Index), and Requestor (the selector's)
Privilege Level (RPL) as shown in Figure 4.10. The
TI bits select one of two memory-based tables of
descriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de­
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector's
privilege attributes.

4.3.4.9 Segment Descriptor Cache

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, a" references to that seg­
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg­
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor's val­
ue.

SEGMENT
REGISTER I 0 I 0 ---- 0 I 0 1111~11 R~L I .

INDEX

N

6

5

4

~}

2

1
0

.
TABLE
INDICATOR

TI=l

DESCRiPTOR

LOCAL
DESCRIPTOR

TABLE

/:

N

DESCRIPTOR
NUMBER

6

5

4

3

2

1
0

TI-O l

NULL

GLOBAL
DESCRIPTOR

TABLE

Figure 4.10. Example Descriptor Selection

4-8

241245-14

intel® Intel486TM DX2 MICROPROCESSOR

4.3.4.10 Segment Descriptor Register Settings

The contents of the segment descriptor cache vary
depending on the mode the Intel486 OX microproc­
essor is operating in. When operating in Real Ad­
dress Mode, the segment base, limit, and other attri­
butes within the segment cache registers are de­
fined as shown in Figure 4.11. For compatibility with

the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at
OOOOFFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. In
Real Address Mode, the internal "privilege level" is
always fixed to the highest level, level 0, so 1/0 and
other privileged opcodes may be executed.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS

32 - BIT BASE

(UPDATED DURING SELECTOR
LOAD INTO SEGMENT REGISTER)

CONfORMING PRIVILEGE

32 - BIT LIMIT

(FIXED)

OTHER ATTRIBUTES

(FIXED)

STACK SIZE --------------------------,
EXECUTABLE ------------------------,
WRITEABLE ------------------------,
READABLE ----------------------,
EXPANSION DIRECTION

GRANULARITY 1
ACCESSED 1
PRIVILEGE LEVEL !
~R~S_E~T ________ ~A~E ____________ :I~I~ ___ l_ ~ _ _ _ __ .
CS l6X CURRENT CS SELECTOR OOOOFFFFH Y 0 Y B U Y Y

SS l6X CURRENT SS SELECTOR OOOOFFFFH Y 0 Y B U Y Y

OS l6X CURRENT OS SELECTOR OOOOFFFFH Y 0 Y B U Y Y
ES l6X CURRENT ES SELECTOR OOOOFFFFH Y 0 Y B U Y Y

FS l6X CURRENT FS SELECTOR OOOOFFFFH Y 0 Y B U Y Y

GS l6X CURRENT GS SELECTOR OOOOFFFFH Y 0 Y B U Y Y

Y

N

N

N

N

N

-
W

-
-
-
-

N

-
-
-
-
-

241245-15

'Except the 32·bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (Le., intersegment CALL, or
intersegment JMP, or INT). (See Figure 4.13 Example.)

Key: Y = yes
N = no
o = privilege level 0
1 = privilege level 1
2 = privilege level 2
3 = privilege level 3
U = expand up

o = expand down
B = byte granularity
P = page granularity
W = push/pop 16·bit words
F = push/pop 32·bit dwords
- = does not apply to that segment cache register

Figure 4.11. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes are Fixed)

4-9

Intel486™ DX2 MICROPROCESSOR

When operating in Protected Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4.12.
In Protected Mode, each of these fields are defined

according to the contents of the segment descriptor
indexed by the selector value loaded into the seg­
ment register.

SEGMENT

32 - BIT BASE

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

CONFORMING PRIVILEGE

DESCRIPTOR CACHE REGISTER CONTENTS

32 - BIT LIMIT

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

OTHER ATTRIBUTES

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

STACKSIZE--,
EXECUTABLE ----------------------------------,
WRITEABLE
READABLE -------------------------------,
EXPANSION DIRECTION

GRANULARITY 1
ACCESSED 1
PRIVILEGE LEVEL !
~R~S~:T _____ ~~S: ___________ ~I~I~ ______ t t _ _ __
CS

SS

OS

ES

FS

GS

Key: Y ~ fixed yes
N ~ fixed no

BASE PER SEG DESCR

BASE PER SEG DESCR

BASE PER SEG DESCR

BASE PER SEG DESCR

BASE PER SEG DESCR

BASE PER SEG DESCR

d ~ per segment descriptor

LIMIT PER SEG DESCR P d d

LIMIT PER SEG DESCR P d d

LIMIT PER SEG DESCR P d d

LIMIT PER SEG DESCR P d d

LIMIT PER SEG DESCR P d d

LIMIT PER SEG DESCR P d d

p ~ per segment descriptor; descriptor must indicate "present" to avoid exception 11
(exception 12 in case of 55)

d

d

d

d

d

d

r ~ per segment descriptor, but descriptor must indicate "readable" to avoid exception 13
(special case for 55)

w = per segment descriptor, but descriptor must indicate "writable" to avoid exception 13
(special case for 55)

- ~ does not apply to that segment cache register

d d

d r

d d

d d

d d

d d

N y - d

w N d

d N - -
d N - -
d N - -
d N - -

241245-16

Figure 4.12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

4-10

in1et Intel486™ DX2 MICROPROCESSOR

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de­
fined as shown in Figure 4.13. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at

OOOOFFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in­
structions and level-a-only instructions.

SEG~ENT DESCRIPTOR CACHE REGISTER CONTENTS

32 - BIT BASE

(UPDATED DURING SELECTOR
LOAD INTO SEG~ENT REGISTER)

CONFOR~ING PRIVILEGE

32 - BIT LI~IT

(FIXED)

OTHER ATTRIBUTES

(FIXED)

STACK SIZE ------------------------,
EXECUTABLE -------------------------.
WRITEABLE ----------------------,

READABLE -------------------------.
EXPANSION DIRECTION

GRANULARITY 1
ACCESSED 1
~:~~_~~~~ ~~V:L ____ B~~E ____________ ~I~I~ ___ l_11 ____ _
CS 16X CURRENT CS SELECTOR OOOOFFFFH Y 3 Y B U Y Y Y -

SS 16X CURRENT SS SELECTOR OOOOFFFFH Y 3 Y B U Y Y N W

DS 16X CURRENT DS SELECTOR OOOOFFFFH Y 3 Y BUY Y N -
ES 16X CURRENT ES SELECTOR OOOOFFFFH Y 3 Y B U Y Y N -
FS 16X CURRENT FS SELECTOR OOOOFFFFH Y 3 Y B U Y Y N -

N

-
-
-
-

GS 16X CURRENT GS SELECTOR OOOOFFFFH Y 3 Y B U Y Y N - -

Key: Y ~ yes
N ~ no

D ~ expand down
B ~ byte granularity
p ~ page granularity
W ~ push/pop 16·bil words
F ~ push/pop 32-bil dwords

241245-17

o ~ privilege level 0
1 ~ privilege level 1
2 ~ privilege level 2
3 ~ privilege level 3
U ~ expand up

- ~ does not apply to that segment cache register

Figure 4.13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode
(Segment Limit and Attributes are Fixed)

4-11

intel" Intel486TM DX2 MICROPROCESSOR

4.4 Protection

4.4.1 PROTECTION CONCEPTS

CPU
ENFORCED
SOFTWARE
INTERFACES

HIGH SPEED
OPERATING
SYSTEM
INTERFACE

241245-18

Figure 4.14. Four-Level Hierarchical Protection

The Intel486 OX Microprocessor has four levels of
protection which are optimized to support the needs
of a multi-tasking operating system to isolate and
protect user programs from each other and the op­
erating system. The privilege levels control the use
of privileged instructions, I/O instructions, and ac­
cess to segments and segment descriptors. Unlike
traditional microprocessor-based systems where
this protection is achieved only through the use of
complex external hardware and software the In­
tel486 OX Microprocessor provides the protection
as part of its integrated Memory Management Unit.
The Intel486 OX Microprocessor offers an additional
type of protection on a page basis, when paging is
enabled (See Section 4.5.3 Page Level Protec­
tion).

The four-level hierarchical privilege system is illus­
trated in Figure 4-14. It is an extension of the user/
supervisor privilege mode commonly used by mini­
computers and, in fact, the user/supervisor mode is
fully supported by the Intel486 OX Microprocessor
paging mechanism. The privilege levels (PL) are
numbered 0 through 3. Level 0 is the most privileged
or trusted level.

4.4.2 RULES OF PRIVILEGE

The Intel486 OX Microprocessor controls access to
both data and procedures between levels of a task,
according to the following rules.

• Oata stored in a segment with privilege level p
can be accessed only by code executing at a
privilege level at least as privileged as p.

• A code segment/procedure with privilege level p
can only be called by a task executing at the
same or a lesser privilege level than p.

4-12

4.4.3 PRIVILEGE LEVELS

4.4.3.1 Task Privilege

At any point in time, a task on the Intel486 OX Micro­
processor always executes at one of the four privi­
lege levels. The Current Privilege Level (CPL) speci­
fies the task's privilege level. A task's CPL may only
be changed by control transfers through gate de­
scriptors to a code segment with a different privilege
level. (See Section 4.4.4 Privilege Level Transfers)
Thus, an application program running at PL = 3 may
call an operating system routine at PL = 1 (via a
gate) which would cause the task's CPL to be set to
1 until the operating system routine was finished.

4.4.3.2 Selector Privilege (RPL)

The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector's RPL is only used to es­
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task's effective privilege level (EPL). The
EPL is defined as being the least privileged (Le. nu­
merically larger) level of a task's CPL and a selec­
tor's RPL. Thus, if selector's RPL = 0 then the CPL
always specifies the privilege level for making an ac­
cess using the selector. On the other hand if RPL =
3 then a selector can only access segments at level
3 regardless of the task's CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi­
nated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL)
instruction is provided to force the RPL bits to the
originator's CPL.

4.4.3.3 I/O Privilege and I/O Permission Bitmap

The I/O privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which I/O instructions can be unconditionally per­
formed. I/O instructions can be unconditionally per­
formed when CPL ~ 10PL. (The I/O instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS.)
When CPL > 10PL, and the current task is associat­
ed with a 286 TSS, attempted I/O instructions cause
an exception 13 fault. When CPL > 10PL, and the
current task is associated with an Intel486 OX Micro­
processor TSS, the I/O Permission Bitmap (part of
an Intel486 OX Microprocessor TSS) is consulted on
whether I/O to the port is allowed, or an exception
13 fault is to be generated instead. For diagrams of
the I/O Permission Bitmap, refer to Figures 4.15a
and 4.15b. For further information on how the I/O
Permission Bitmap is used in Protected Mode or in
Virtual 8086 Mode, refer to Section 4.6.4 Protection
and I/O Permission Bitmap.

Intel486TM DX2 MICROPROCESSOR

31 16 15
o 0 .J TSS BASE

0000000000000000 I BACK LINK

ESPO 4

0000000000000000 I SSO 8

ESPI C STACKS

0000000000000000 I SSI 10 FOR
CPL 0,1,2

ESP2 14

0000000000000000 I SS2 18

CR3 lC

EIP 20

EFLAGS 24

EAX 28

ECX 2C

EOX 30

EBX 34

ESP 38

EBP 3C

40
CURRENT

ESI TASK

EOI 44 STATE

0000000000000000 ES 48

0000000000000000 CS 4C

0000000000000000 SS 50

0000000000000000 OS 54

0000000000000000 FS 58

0000000000000000 GS 5C

0000000000000000 LDT 60

BIT _MAP _OFFSET(15:0) 0000000000000000 IT
64

NOTE: AVAILABLE --- ~ DEBUG
BIT -MAP_OFFSET o TRAP BIT must be ,;; DFFFH SYSTEM STATUS, ETC.

IN Int.1486OX CPU TSS

31 24 23 16 15 8 7 0

63 56 55 48 47 40 39 32 I 'BILMAP .OFFSET

95 88 87 80 79 72 71 64

.-------------. 96 OFFSET + C
I

ACCESS I TSS
I

I I f- OFFSET + 10
I RIGHTS LIMIT I
I I
I l,

~
I BASE I/o PERMISSION BITMAP ~ I
I I

'31 0 '
65407 (ONE BIT PER BYTE I/o OFFSET + 1 FEC

I PROGRAM I PORT. BITMAP MAY BE
I INVISIBLE I 65439

TRUNCATED USING TSS LIMIT.)
OFFSET + 1 FFO

.... _----- ____ - ... 01

TASK REGISTER 65471 I OFFSET + lFF4

t- 65503 I 65472 OFFSET + 1 FF8
TR SELECTOR

I 65535 65504 OFFSET + 1 FFC

15 0 "FFH" OFFSET + 2000

t TSS LIIIIT = OFFSET + 2000H

31 Intol486 DX CPU TSS DESCRIPTOR (IN GDT) a

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 .. 0

BASE 31 .. 24IGI+101IL!~\~ pID~LH .TYrE• I
BASE

23 .. 16

241245-19
Type = 9: Available Intel486TM OX CPU TSS,
Type = B: Busy Intel486TM OX CPU TSS

Figure 4.15a.lntel486TM DX Microprocessor TSS and TSS Registers

4-13

intel .. Intel486TM DX2 MICROPROCESSOR

31

63

95

127

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 0 o 0 o 0 1 1 1 1 0 1 o 0 1 1 o 0 o 0 0 0 0 0 1 1

0 0 1 0 o 0 1 1 1 1 o 0 1 0 1 0 1 1 1 1 1 1 o 0 1 1 1 1 1 0 0 1

1

0 0 0 0 o 0 o 0 o 0 o 0 000 o 0 o 0 o 0 000 o 0 0 0 0 0 o 0

1 1 1 1 1 1 1 1

't'. ole.

110 Ports Accessible: 2 ~ 9, 12, 13, 15, 20 ~ 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 ~ eo, 62, 63, 96 ~ 127 241245-20

Figure 4.15b. Sample 110 Permission Bit Map

Table 4.2. Pointer Test Instructions

Instruction Operands Function

ARPL Selector, Adjust Requested Privi-
Register lege Level: adjusts the

RPL of the selector to the
numeric maximum of
current selector RPL value
and the RPL value in the
register. Set zero flag if
selector RPL was
changed.

VERR Selector VERify for Read: sets the
zero flag if the segment
referred to by the selector
can be read.

VERW Selector VERify for Write: sets the
zero flag if the segment
referred to by the selector
can be written.

LSL Register, Load Segment Limit: reads
Selector the segment limit into the

register if privilege rules
and descriptor type allow.
Set zero flag if successful.

LAR Register, Load Access Rights: reads
Selector the descriptor access

rights byte into the register
if privilege rules allow. Set
zero flag if successful.

The 110 privilege level (IOPL) also affects whether
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called "IOPL-sensitive" instructions and they are
CLI and STI. (Note that the LOCK prefix is not 10PL­
sensitive on the Intel486 microprocessor.)

The 10PL also affects whether the IF (interrupts en­
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL !S: 10PL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL > 10PL, the IF bit
cannot be changed by a new value POP'ed into (or
otherWise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exceptIon is
generated.

4-14

4.4.3.4 Privilege Validation

The Intel486 OX microprocessor provides several in­
structions to speed pointer testing and help maintain
system integrity by verifying that the selector value
refers to an appropriate segment. Table 4.2 summa­
rizes the selector validation procedures available for
the Intel486 OX microprocessor.

This pointer verification prevents the common prob­
lem of an application at PL = 3 calling a operating
systems routine at PL = 0 and passing the operat­
ing system routine a "bad" pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc­
tion to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

4.4.3.5 Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Oeter­
mining the ability of a task to access a segment in­
volves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL,
RPL, and OPL as described above.

Any time an instruction loads data segment registers
(OS, ES, FS, GS) the Intel486 DX microprocessor
makes protection validation checks. Selectors load­
ed in the OS, ES, FS, GS registers must refer only to
data segments or readable code segments. The
data access rules are specified in Section 4.4.2
Rules of Privilege. The only exception to those
rules is readable conforming code segments which
can be accessed at any privilege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen­
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In­
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-

infel~ Intel486™ DX2 MICROPROCESSOR

ments. The OPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

4.4.4 PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 4.3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

- Privilege level transitions can only occur via
gates.

- JMPs can be made to a non-conforming code
segment with the same privilege or to a conform­
ing code segment with greater or equal privilege.

- CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to a
more privileged level.

- Interrupts handled within the task obey the same
privilege rules as CALLs.

- Conforming Code segments are accessible by
privilege levels which are the same or less privi­
leged than the conforming-code segment's OPL.

- Both the requested privilege level (RPL) in the
selector pointing to the gate and the task's CPL
must be of equal or greater privilege than the
gate's OPL.

- The code segment selected in the gate must be
the same or more privileged than the task's CPL.

- Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

- Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who's DPL is less privi­
leged or the same privilege as the old task's CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi­
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see Section 4.4.6 Task Switching).
During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis­
ters and the previous stack pointer is pushed onto
the new stack.

Table 4.3. Descriptor Types Used for Control Transfer

Control Transfer Types

Intersegment within the same privilege level

Intersegment to the same or higher privilege level
Interrupt within task may change CPL

Intersegment to a lower privilege level
(changes task CPL)

Task Switch

'NT (Nested Task bit of flag register) = 0
"NT (Nested Task bit of flag register) = 1

Operation Types

JMP, CALL, RET, IRET'

CALL

Interrupt Instruction,
Exception, External
Interrupt

RET,IRET'

CALL,JMP

CALL,JMP

IRET"
Interrupt Instruction,
Exception, External
Interrupt

4-15

Descriptor Descriptor
Referenced Table

Code Segment GOT/LOT

Call Gate GOT/LOT

Trap or lOT
Interrupt
Gate

Code Segment GOT/LOT

Task State GDT
Segment

Task Gate GDT/LOT

Task Gate lOT

intel .. Intel486TM DX2 MICROPROCESSOR

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou­
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate's word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust­
ment value will correctly restore the previous stack
pointer upon return.

4.4.5 CALL GATES

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust­
ed procedures (such as those which allocate memo­
ry, or perform I/O).

Gate descriptors follow the data access rules of priv­
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor's OPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou­
tine. When an inter-level Intel486 OX call gate is ac­
tivated, the following actions occur.

1. Load CS:EIP from gate check for validity

2. SS is pushed zero-extended to 32 bits

3. ESP is pushed

4. Copy Word Count 32-bit parameters from the
old stack to the new stack

5. Push Return address on stack

The procedure is identical for 80286 Call gates, ex­
cept that 16-bit parameters are copied and 16-bit
registers are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disable further interrupts (i.e. the IF
bit is set to 0), and Trap gates leave the interrupt
status unchanged.

4.4.6 TASK SWITCHING

A very important attribute of any multi-tasking/multi­
user operating systems is its ability to rapidly switch

4-16

between tasks or processes. The Intel486 OX micro­
processor directly supports this operation by provid­
ing a task switch instruction in hardware. The In­
tel486 OX microprocessor task switch operation
saves the entire state of the machine (all of the reg­
isters, address space, and a link to the previous
task), loads a new execution state, performs protec­
tion checks, and commences execution in the new
task, in about 10 microseconds. Like transfer of con­
trol via gates, the task switch operation is invoked by
executing an inter-segment JMP or CALL instruction
which refers to a Task State Segment (TSS), or a
task gate descriptor in the GOT or LOT. An INT n
instruction, exception, trap, or external interrupt may
also invoke the task switch operation if there is a
task gate descriptor in the associated lOT descriptor
slot.

The TSS descriptor points to a segment (see Figure
4.15) containing the entire Intel486 OX microproces­
sor execution state while a task gate descriptor con­
tains a TSS selector. The Intel486 OX microproces­
sor supports both 80286 and Intel486 OX microproc­
essor style TSSs. Figure 4.16 shows a 80286 TSS.
The limit of an Intel486 OX microprocessor TSS
must be greater than 0064H (002BH for a 80286
TSS), and can be as large as 4 Gigabytes. In the
additional TSS space, the operating system is free
to store additional information such as the reason
the task is inactive, time the task has spent running,
and open files belong to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
Intel486 OX microprocessor called the Task State
Segment Register (TR). This register contains a se­
lector referring to the task state segment descriptor
that defines the current TSS. A hidden base and limit
register associated with TR are loaded whenever TR
is loaded with a new selector. Returning from a task
is accomplished by the IRET instruction. When IRET
is executed, control is returned to the task which
was interrupted. The current executing task's state
is saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status
word (CRO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT = 0, the IRET
instruction performs the regular return; when NT =
1, IRET performs a task switch operation back to the
previous task. The NT bit is set or reset in the follow­
ing fashion:

Intel486TM DX2 MICROPROCESSOR

15 0

BACK LINK SELECTOR TO TSS

SP FOR CPL 0

SS FOR CPL 0

SP FOR CPL 1

SS FOR CPL 1

SP FOR CPL 2

SS FOR CPL 2

IP (ENTRY POINT)

FLAGS

AX

CX

OX

ax
SP

BP

SI

01

ES SELECTOR

CS SELECTOR

SS SELECTOR

OS SELECTOR

TASK'S LOT SELECTOR

AVAILABLE

o

4

6 INITIAL

A

C

10

12

14

16

18

1A

I C

IE

20

22

24

26

28

2A

STACKS
FOR CPL 0, 1,2

CURRENT
TASK
STATE

241245-21

Figure 4.16. 80286 TSS

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector, The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The Intel486 OX Microprocessor Task State Seg­
ment is marked busy by changing the descriptor type
field from TYPE 9H to TYPE BH. An 80286 TSS is
marked busy by changing the descriptor type field
from TYPE 1 to TYPE 3. Use of a selector that refer­
ences a busy task state segment causes an excep­
tion 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM = 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch (see Section 4.6 Virtual Mode).

The FPU's state is not automatically saved when a
task switch occurs, because the incoming task may
not use the FPU. The Task Switched (TS) Bit (bit 3 in
the CRO) helps deal with the FPU's state in a multi­
tasking environment. Whenever the Intel486 OX Mi-

4-17

croprocessor switches tasks, it sets the TS bit. The
Intel486 OX Microprocessor detects the first use of a
processor extension instruction after a task switch
and causes the processor extension not available
exception 7. The exception handler for exception 7
may then decide whether to save the state of the
FPU. A processor extension not present exception
(7) will occur when attempting to execute a Floating
Point or WAIT instruction if the Task Switched and
Monitor coprocessor extension bits are both set (Le.
TS = 1 and MP = 1).

The T bit in the Intel486 OX Microprocessor TSS
indicates that the processor should generate a de­
bug exception when switching to a task. If T = 1
then upon entry to a new task a debug exception 1
will be generated.

4.4.7 INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Since the Intel486 OX Microprocessor begins exe­
cuting in Real Mode immediately after RESET it is
necessary to initialize the system tables and regis­
ters with the appropriate values.

The GOT and lOT registers must refer to a valid GOT
and lOT. The lOT should be at least 256 bytes long,
and GOT must contain descriptors for the initial
code, and data segments. Figure 4.17 shows the ta­
bles and Figure 4.18 the descriptors needed for a
simple Protected Mode Intel486 OX Microprocessor
system. It has a single code and single data/stack
segment each four gigabytes long and a single privi­
lege level PL = O.

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CRO, R/M
instruction. This puts the Intel486 OX Microproces­
sor in Protected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
which is especially appropriate for multi-tasking op­
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GOT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.

infel ..

2

Intel486TM DX2 MICROPROCESSOR

15 0

ss~

GS~

CS

GDTR ~;,;.;.;~;;;;;;.:..,

IDTR ---....,;...;;.;..,

3 •• 1-R-E-SE-T-R-0-UT-IN-E-S.....::0 FFFFFFFF

~';';;;;;~;;;;:':'::':':;;:""-I FFFFFFFO
INITIALIZATION

ROUTINES

00000118]
t--"';';';';";;;;;";"~-I 00000110

t-~"';';;;';;;';;';";';;;';"'-I 00000108 GOT

'\....o. ~~;;;;;;.;.;.;;.;;...-I 00000100

INTERRUPT
DESCRIPTORS (32)

+
lOT

t
'-<0-'-_____ 00000000

Figure 4.17. Simple Protected System

BASE 31 ... 24 G D 0
LIMIT

00 (H)
0 19.16 1 001 o 0

1 1 F(H)

241245-22

1
o BASE 23 ... 16

00 (H)

DATA SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0
DESCRIPTOR 0118 (H) FFFF(H)

BASE 31 ... 24 G D
LIMIT

1 00 (H) 0 0 19.16 1 o 0 1 1 o 1 o BASE23 ... 16
1 1

F(H)
00 (H)

CODE SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0
DESCRIPTOR 0118 (H) FFFF(H)

NULL DESCRIPTOR

0

31 24 16 15 8 0

Figure 4.18. GOT Descriptors for Simple System

4.4.8 TOOLS FOR BUILDING PROTECTED
SYSTEMS

In order to simplify the design of a protected multi­
tasking system, Intel provides a tool which allows
the system designer an easy method of constructing
the data structures needed for a Protected Mode
Intel486 DX microprocessor system. This tool is the
builder BLD-386™. BLD-386 lets the operating sys­
tem writer specify all of the segment descriptors dis­
cussed in the previous sections (LDTs, IDTs, GDTs,
Gates, and TSSs) in a high-level language.

4-18

4.5 Paging

4.5.1 PAGING CONCEPTS

Paging is another type of memory management
useful for virtual memory multitasking operating sys­
tems. Unlike segmentation which modularizes pro­
wam~ ~nd data into vari.able length segments, pag­
Ing divides programs Into multiple uniform size
pages. Pages bear no direct relation to the logical

int:et Intel486™ DX2 MICROPROCESSOR

structure of a program. While segment selectors can
be considered the logical "name" of a program
module or data structure, a page most likely corre­
sponds to only a portion of a module or data struc­
ture.

By taking advantage of the locality of reference dis­
played by most programs, only a small number of
pages from each active task need be in memory at
anyone moment.

4.5.2 PAGING ORGANIZATION

4.5.2.1 Page Mechanism

The Intel486 DX Microprocessor uses two levels of
tables to translate the linear address (from the seg­
mentation unit) into a physical address. There are
three components to the paging mechanism of the
Intel486 DX Microprocessor: the page directory, the
page tables, and the page itself (page frame). All
memory-resident elements of the Intel486 DX Micro­
processor paging mechanism are the same size,
namely, 4 Kbytes. A uniform size for all of the ele­
ments simplifies memory allocation and reallocation
schemes, since there is no problem with memory
fragmentation. Figure 4.19 shows how the paging
mechanism works.

4.5.2.2 Page Descriptor Base Register

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al­
ways page aligned. Loading it via a MOV CR3, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CRO. (See 4.5.5 Translation
Lookaside Buffer).

4.5.2.3 Page Directory

The Page Directory is 4 Kbytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta­
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4.20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

TWO LEVEL PAGING SCHEME

31 22 12 0

~ DIRECTORY I TABLE I OFFSET I USER
LINEAR

lot
I

MEMORY
ADDRESS 12

10

'f 31
ADDRESS

Intel486 OX CPU
31 'f 31 0

CRO I
CRl t f-+

PAGE TABLE
CR2

CR3 ROOT
DIRECTORY

CONTROL REGISTERS

241245-23

Figure 4.19. Paging Mechanism

31 12 11 10 9 8 7 6 5 4 3 2 1 0

OS P P U R
PAGE TABLE ADDRESS 31..12 RESERVED 0 0 D A C W - - P

D T S W

Figure 4.20. Page Directory Entry (Points to Page Table)

4-19

infel .. Intel486TM DX2 MICROPROCESSOR

31 12 11 10 9 8 7 6 5 4 3 2 1 0

OS P P U R
PAGE FRAME ADDRESS 31 .. 12 RESERVED 0 0 0 A C W - - P

0 T S W

Figure 4.21. Page Table Entry (Points to Page)

4.5.2.4 Page Tables

Each Page Table is 4 Kbytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4.21). Ad­
dress bits A 12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper­
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi­
cal address. Page tables can be shared between
tasks and swapped to disks.

4.5.2.5 Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If
P = 1 the entry can be used for address translation
if P = 0 the entry can not be used for translation,
and all of the other bits are available for use by the
software. For example the remaining 31 bits could
be used to indicate where on the disk the page is
stored.

The A (Accessed) bit 5, is set by the Intel486 OX
microprocessor for both types of entries before a
read or write access occurs to an address covered
by the entry. The D (Dirty) bit 6 is set to 1 before a
write to an address covered by that page table entry
occurs. The 0 bit is undefined for Page Directory
Entries. When the P, A and 0 bits are updated by the
Intel486 OX microprocessor, the processor gener­
ates a Read-Modify-Write cycle which locks the bus
and prevents conflicts with other processors or per­
pherials. Software which modifies these bits should
use the LOCK prefix to ensure the integrity of the
page tables in multi-master systems.

The 3 bits marked OS Reserved in Figure 4.20 and
Figure 4.21 (bits 9-11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem­
ory since being accessed, an operating system can
implement a page replacement algorithm like Least
Recently Used.

4-20

The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri­
butes for individual pages.

4.5.3 PAGE LEVEL PROTECTION
(R/W, U/S BITS)

The Intel486 OX microprocessor provides a set of
protection attributes for paging systems. The paging
mechanism distinguishes between two levels of pro­
tection: User which corresponds to level 3 of the
segmentation based protection, and supervisor
which encompasses all of the other protection levels
(0,1,2).

The R/W and U/S bits are used in conjunction with
the WP bit in the flags register (EFLAGS). The In­
tel386 microprocessor does not contain the WP bit.
The WP bit has been added to the Intel486 OX mi­
croprocessor to protect read-only pages from super­
visor write accesses. The Intel386 microprocessor
allows a read-only page to be written from protection
levels 0, 1 or 2. WP = 0 is the Intel386 microproces­
sor compatible mode. When WP = 0 the supervisor
can write to a read-only page as defined by the U/S
and R/W bits. When WP = 1 supervisor access to a
read-only page (R/W = 0) will cause a page fault (ex­
ception 14).

Table 4.4 shows the affect of the WP, UlS and R/W
bits on accessing memory. When WP = 0, the super­
visor can write to pages regardless of the state of
the R/W bit. When WP = 1 and R/W = 0 the supervi­
sor cannot write to a read-only page. A user attempt
to access a supervisor only page (U/S = 0), or write
to a read only page will cause a page fault (excep­
tion 14).

The R/W and U/S bits provide protection from user
access on a page by page basis since the bits are
contained in the Page Table Entry and the Page Di­
rectory Table. The U/S and R/W bits in the first level
Page Directory Table apply to all entries in the page
table pointed to by that directory entry. The U/S and
R/W bits in the second level Page Table Entry apply
only to the page described by that entry. The most
restrictive of the U/S and R/W bits from the Page
Directory Table and the Page Table Entry are used
to address a page.

Example: If the UlS and R/W bits for the Page Di­
rectory entry were 10 (user read/execute) and the

Intel486TM DX2 MICROPROCESSOR

U/S and R/W bits for the Page Table Entry were 01
(no user access at all), the access rights for the
page would be 01, the numerically smaller of the
two.

Note that a given segment can be easily made read­
only for level 0, 1 or 2 via use of segmented protec­
tion mechanisms. (Section 4.4 Protection).

4.5.4 PAGE CACHEABILITY
(PWT AND PCD BITS)

PWT (page write through) and PCD (page cache dis­
able) are two new bits defined in entries in both lev­
els of the page table structure, the Page Directory
Table and the Page Table Entry. PCD and PWT con­
trol page cacheability and write policy.

PWT controls write policy. PWT = 1 defines a write­
through policy for the current page. PWT = 0 allows
the possibility of write~back. PWT is ignored internal­
ly because the Intel486 OX microprocessor has a
write-through cache. PWT can be used to control
the write policy of a second level cache.

PCD controls cacheability. PCD=O enables caching
in the on-chip cache. PCD alone does not enable
caching, it must be conditioned by the KEN# (cache
enable) input signal and the state of the CD (cache
disable bit) and NW (no write-through) bits in control
register 0 (CRO). When PCD = 1, caching is disabled
regardless of the state of KEN#, CD and NW. (See
Section 5.0, On-Chip Cache).

The state of the PCD and PWT bits are driven out on
the PCD and PWT pins during a memory access.

The PWT and PCD bits for a bus cycle are obtained
either from control register3 (CR3), the Page Direc­
tory Entry or the Page Table Entry, depending on the
type of cycle run. However, when paging is disabled
(PG = 0 in CRO) or for cycles which bypass paging
(i.e., I/O (input/output) references, INTR (interrupt
request) and HALT cycles), the PCD and PWT bits
of CR3 are ignored. The Intel486 OX CPU assumes
PCD = 0 and PWT = 0 and drives these values on
the PCD and PWT pins.

When paging is enabled (PG = 1 in CRO), the bits
from the page table entry are cached in the transla­
tion lookaside buffer (TLB), and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles run with paging enabled,
the PWT and PCD bits are taken from the Page Ta­
ble Entry. During TLB refresh cycles when the Page
Directory and Page Table entries are read, the PWT
and PCD bits must be obtained elsewhere. The bits
are taken from CR3 when a Page Directory Entry is
being read. The bits are taken from the Page Direc­
tory Entry when the Page Table Entry is being updat­
ed.

The PCD or PWT bits in CR3 are initialized to zero at
reset, but can be set to any value by level 0 soft­
ware.

4.5.5 TRANSLATION LOOKASIDE BUFFER

The Intel486 OX Microprocessor paging hardware is
designed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the processor was required to access
two levels of tables for every memory reference. To
solve this problem, the Intel486 OX Microprocessor
keeps a cache of the most recently accessed pages,
this cache is called the Translation Lookaside Buffer
(TLB). The TLBjs a four-way set associative 32-en­
try page table cache. It automatically keeps the most
commonly used Page Table Entries in the proces­
sor. The 32-entry TLB coupled with a 4K page size,
results in coverage of 128 Kbytes of memory ad­
dresses. For many common multi-tasking systems,
the TLB will have a hit rate of about 98%. This
means that the processor will only have to access
the two-level page structure on 2% of all memory
references. Figure 4.22 illustrates how the TLB com­
plements the Intel486 OX Microprocessor's paging
mechanism.

Reading a new entry into the TlB (TLB refresh) is a
two step process handled by the Inte1486>DX micro­
processor hardware. The sequence of data cycles to
perform a TLB refresh are:

Table 4.4. Page Level Protection Attributes

U/S R/W WP User Access Supervisor Access

0 0 0 None Read/Write/Execute
0 1 0 None Read/Write/Execute
1 0 0 Read/Execute Read/Write/Execute
1 1 0 Read/Write/Execute Read/Write/Execute
0 0 1 . None Read/Execute
0 1 None Read/Write/Execute

0 Read/Execute Read/Execute
Read/Write/Execute Read/Write/Execute

4-21

int:et Intel486™ DX2 MICROPROCESSOR

1. Read the correct Page Directory Entry, as point­
ed to by the page base register and the upper
10 bits of the linear address. The page base
register is in control register 3.

1 a. Optionally perform a locked read/write to set
the accessed bit in the directory entry. The di­
rectory entry will actually get read twice if the
Intel486 OX microprocessor needs to set any of
the bits in the entry. If the page directory entry
changes between the first and second reads,
the data returned for the second read will be
used.

2. Read the correct entry in the Page Table and
place the entry in the TLB.

2a. Optionally perform a locked read/write to set
the accessed and/or dirty bit in the page table
entry. Again, note that the page table entry will
actually get read twice if the Intel486 OX micro­
processor needs to set any of the bits in the
entry. Like the directory entry, if the data chang­
es between the first and second read the data
returned for the second read will be used.

Note that the directory entry must always be read
into the processor, since directory entries are never
placed in the paging TLB. Page faults can be sig­
naled from either the page directory read or the
page table read. Page directory and page table en­
tries may be placed in the Intel486 OX on-chip
cache just like normal data.

4.5.6 PAGING OPERATION

32 ENTRIES
PHYSICAL

TRANSLATION MEMORY

~I~~::SS-- LOOKASIDE
BUFFER HIT

MISS

31 0

LJ -

4

PAGE PAGE
DIRECTORY TABLE

.98% HIT RATE
241245-24

Figure 4.22. Translation Lookaside Buffer

The paging hardware operates in the following fash­
ion. The paging unit hardware receives a 32-bit lin­
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en­
tries in the TLB to determine if there is a match. If
there is a match (i.e., a TLB hit), then the 32-bit
physical address is calculated and will be placed on
the address bus.

4-22

However, if the page table entry is not in the TLB,
the Intel486 OX Microprocessor will read the appro­
priate Page Directory Entry. If P = 1 on the Page
Directory Entry indicating that the page table is in
memory, then the Intel486 OX Microprocessor will
read the appropriate Page Table Entry and set the
Access bit. If P = 1 on the Page Table Entry indicat­
ing that the page is in memory, the Intel486 OX Mi­
croprocessor will update the Access and Dirty bits
as needed and fetch the operand. The upper 20 bits
of the linear address, read from the page table, will
be stored in the TLB for future accesses. However, if
P = 0 for either the Page Directory Entry or the
Page Table Entry, then the processor will generate a
page fault, an Exception 14.

The processor will also generate an exception 14
page fault, if the memory reference violated the
page protection attributes (Le., U/S or R/W) (e.g.,
trying to write to a read-only page). CR2 will hold the
linear address which caused the page fault. If a sec­
ond page fault occurs, while the processor is at­
tempting to enter the service routine for the first,
then the processor will invoke the page fault (excep­
tion 14) handler a second time, rather than the dou­
ble fault (exception 8) handler. Since Exception 14 is
classified as a fault, CS: EIP will point to the instruc­
tion causing the page fault. The 16-bit error code
pushed as part of the page fault handler will contain
status bits which indicate the cause of the page
fault.

The 16-bit error code is used by the operating sys­
tem to determine how to handle the page fault. Fig­
ure 4.23a shows the format of the page-fault error
code and the interpretation of the bits.

NOTE:
Even though the bits in the error code (U/S, W/R,
and P) have similar names as the bits in the Page
Directory/Table Entries, the interpretation of the er­
ror code bits is different. Figure 4.23b indicates
what type of access caused the page fault.

15 3 2 1 0

[u[u[u[u[u[u[u[u[u[u[u[u[u[u[~[~[p[
Figure 4.23a. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0).

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W/R = 0) or a Write
(W/R = 1).

intel.. Intel486™ DX2 MICROPROCESSOR

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1).

U: UNDEFINED

U/S W/R Access Type

0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write . Descnptor table access WIll fault WIth U/S ~ 0, even if the program

is executing at level 3.

Figure 4.23b. Type of Access
Causing Page Fault

4.5.7 OPERATING SYSTEM RESPONSIBILITIES

The Intel486 DX Microprocessor takes care of the
page address translation process, relieving the bur­
den from an operating system in a demand-paged
system. The operating system is responsible for set­
ting up the initial ~age tables, and handling any page
faults. The operating system also is required to inval­
idate (Le., flush) the TLB when any changes are
made to any of the page table entries. The operating
system must reload eR3 to cause the TLB to be
flushed.

Setting. up the tables is simply a matter of loading
eR3 ~Ith the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper­
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
system sets the P present bit of page table entry to
zero, the TLB must be flushed. Operating systems
may want to take advantage of the fact that eR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

4.6 Virtual 8086 Environment

4.6.1 EXECUTING 8086 PROGRAMS

The Intel486 DX Microprocessor allows the execu­
tion of 8086 application programs in both Real Mode
and in the Virtual 8086 Mode (Virtual Mode). Of the
two. methods, Virtual 8086 Mode offers the system
designer the most flexibility. The Virtual 8086 Mode
allows the execution of 8086 applications, while still
allowing the system designer to take full advantage
of the Intel486 DX Microprocessor protection mech-

4-23

anism. In particular, the Intel486 DX Microprocessor
allows the simultaneous execution of 8086 operating
systems and its applications, and an Intel486 DX Mi­
croprocessor operating system and both 80286 and
Intel486 DX Microprocessor applications. Thus, in a
multi-user Intel486 DX Microprocessor computer,
one person could be running an MS-DOS spread­
sheet, another person using MS-DOS, and a third
person could be running multiple Unix utilities and
applications. Each person in this scenario would be­
lieve that he had the computer completely to him­
self. Figure 4.24 illustrates this con~ept.

4.6.2 VIRTUAL 8086 MODE ADDRESSING
MECHANISM

One of the major differences between Intel486 DX
Microprocessor Real and Protected modes is how
the segment selectors are interpreted. When the
processor is executing in Virtual 8086 Mode the seg­
ment registers are used in an identical fashion to
Real Mode. The contents of the segment register is
shifted left 4 bits and added to the offset to form the
segment base linear address.

!he Intel486 DX Microprocessor allows the operat­
Ing system to specify which programs use the 8086
style address mechanism, and which programs use
Protected Mode addressing, on a per task basis.
Through the use of paging, the one megabyte ad­
dress space of the Virtual Mode task can be mapped
to anywhere in the 4 gigabyte linear address space
of the Intel486 DX Microprocessor. Like Real Mode
Virtual Mode effective addresses (Le., segment off~
sets) that exceed 64 Kbyte will cause an exception
13. However, these restrictions should not prove to
be important, because most tasks running in Virtual
8086 Mode will simply be existing 8086 application
programs.

4.6.3 PAGING IN VIRTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec­
tion a~d operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo­
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad­
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum 4 gig­
abyte physical address space of the Intel486 DX Mi­
croprocessor. In addition, since eR3 (the Page Di­
rectory Base Register) is loaded by a task switch
each Virtual Mode task can use a different mapping
scheme to map pages to different physical locations.

infel .. Intel486TM DX2 MICROPROCESSOR

Finally, the paging hardware allows the sharing of
the 8086 operating system code between multiple
8086 applications. Figure 4.24 shows how the In­
tel486 OX Microprocessor paging hardware enables
multiple 8086 programs to run under a virtual memo­
ry demand paged system.

4.6.4 PROTECTION AND 1/0 PERMISSION
BITMAP

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual
8086 Mode programs are subject to all of the protec­
tion checks defined in Protected Mode. (This is dif­
ferent from Real Mode which implicitly is executing
at privilege level 0, the level of greatest privilege.)
Thus, an attempt to execute a privileged instruction
when in Virtual 8086 Mode will cause an exception
13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level o. Therefore, at­
tempting to execute these instructions in Virtual
8086 Mode (or anytime CPL > 0) causes an excep­
tion 13 fault:

VIRTUAL MODE
8086 TASK

PAGE DIRECTORY
ROOT

VIRTUAL MODE
8086 TASK

TASK 1 PAGE
TABLE

PAGE DIRECTORY
TASK 1

LIDT;
LGDT;
LMSW;
CLTS;
HLT;

MOV DRn,reg;
MOV TRn, reg;
MOV CRn,reg;

MOV reg,DRn;
MOV reg,TRn;
MOV reg,CRn.

Several instructions, particularly those applying to
the multitasking model and protection model, are
available only in Protected Mode. Therefore, at­
tempting to execute the following instructions in
Real Mode or in Virtual 8086 Mode generates an
exception 6 fault:

LTR;
LLDT;
LAR;
LSL;
ARPL.

STR;
SLDT;
VERR;
VERW;

The instructions which are IOPL-sensitive in Protect­
ed Mode are:

IN;
OUT;
INS;
OUTS;

STI;
CLI

REP INS;
REP OUTS;

PHYSICAL
MEMORY

~~~~~ 02000000(H) 

OOOOOOOO(H) 

• TASK 1 • 8086 OS 
MEMORY MEMORY 

I?77J TASK 2 ~ Int.,386TW CPU OS 
f{ll;I MEMORY ~ MEMORY 

241245-25 

Figure 4.24. Virtual 8086 Environment Memory Management 

4-24 



int:et Intel486TM DX2 MICROPROCESSOR 

In Virtual 8086 Mode, a slightly different set of in­
structions are made 10PL-sensitive. The following in­
structions are 10PL-sensitive in Virtual 8086 Mode: 

INT n; STI; 
PUSHF; eLI; 
POPF; IRET 

The PUSHF, POPF, and IRET instructions are 10PL­
sensitive in Virtual 8086 Mode only. This provision 
allows the IF flag (interrupt enable flag) to be virtual­
ized to the Virtual 8086 Mode program. The INT n 
software interrupt instruction is also 10PL-sensitive 
in Virtual 8086 Mode. Note, however, that the INT 3 
(opcode OCCH), INTO, and BOUND instructions are 
not 10PL-sensitive in Virtual 8086 mode (they aren't 
10PL sensitive in Protected Mode either). 

Note that the JlO instructions (IN, OUT, INS, OUTS, 
REP INS, and REP OUTS) are not 10PL-sensitive in 
Virtual 8086 mode. Rather, the 110 instructions be­
come automatically sensitive to the 1/0 Permission 
Bitmap contained in the Intel486 DX Microproces­
sor Task State Segment. The 110 Permission Bit­
map, automatically used by the Intel486 DX micro­
processor in Virtual 8086 Mode, is illustrated by Fig­
ures 4.15a and 4.15b. 

The 110 Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset 
BiLMap_Offset in the current TSS. BiLMap_ 
Offset must be :s:: DFFFH so the entire bit map and 
the byte FFH which follows the bit map are all at 
offsets :s:: FFFFH from the TSS base. The 16-bit 
pointer BiLMap_Offset (15:0) is found in the word 
beginning at offset 66H (102 decimal) from the TSS 
base, as shown in Figure 4.15a. 

Each bit in the 110 Permission Bitmap corresponds 
to a single byte-wide 110 port, as illustrated in Figure 
4.15a. If a bit is 0, 110 to the corresponding byte­
wide port can occur without generating an excep­
tion. Otherwise the 110 instruction causes an excep­
tion 13 fault. Since every byte~wide 110 port must be 
protectable, all bits corresponding to a word-wide or 
dword-wide port must be 0 for the word-wide or 
dword-wide 110 to be permitted. If all the referenced 
bits are 0, the 110 will be allowed. If any referenced 
bits are 1, the attempted 110 will cause an exception 
13 fault. 

Due to the use of a pointer to the base of the 110 
Permission Bitmap, the bitmap may be located any­
where within the TSS, or may be ignored completely 
by pointing the BiLMap_Offset (15:0) beyond the 
limit of the TSS segment. In the same manner, only 
a small portion of the 64K 110 space need have an 
associated map bit, by adjusting the TSS limit to 
truncate the bitmap. This eliminates the commitment 
of 8K of memory when a complete bitmap is not 

4-25 

required, while allowing the fully general case if de­
sired. 

EXAMPLE OF BITMAP FOR 110 PORTS 0-255: 
Setting the TSS limit to {biLMap_Offset + 31 
+ 1"l [*' see note below] will allow a 32-byte bit­
map for the 110 ports #0-255, plus a terminator 
byte of all 1 's [ •• see note below]. This allows the 
110 bitmap to control 110 Permission to 110 port 0-
255 while causing an exception 13 fault on attempt­
ed 110 to any 110 port 80256 through 65,565. 

"IMPORTANT IMPLEMENTATION NOTE: Beyond 
the last byte of 110 mapping information in the 110 
Permission Bitmap must be a byte containing all 1 'so 
The byte of all 1 's must be within the limit of the 
Intel486 microprocessor TSS segment (see Figure 
4.15a). 

4.6.5 INTERRUPT HANDLING 

In order to fully support the emulation of an 8086 
machine, interrupts in Virtual 8086 Mode are han­
dled in a unique fashion. When running in Virtual 
Mode all interrupts and exceptions involve a privi­
lege change back to the host Intel486 DX micro­
processor operating system. The Intel486 DX micro­
processor operating system determines if the inter­
rupt comes from a Protected Mode application or 
from a Virtual Mode program by examining the VM 
bit in the EFLAGS image stored on the stack. 

When a Virtual Mode program is interrupted and ex­
ecution passes to the interrupt routine at level 0, the 
VM bit is cleared. However, the VM bit is still set in 
the EFLAG image on the stack. 

The Intel486 DX operating system in turn handles 
the exception or interrupt and then returns control to 
the 8086 program. The Intel486 DX operating sys­
tem may choose to let the 8086 operating system 
handle the interrupt or it may emUlate the function of 
the interrupt handler. For example, many 8086 oper­
ating system calls are accessed by PUSHing param­
eters on the stack, and then executing an INT n in­
struction. If the 10PL is set to 0 then alllNT n instruc­
tions will be intercepted by the Intel486 DX operat­
ing system. The Intel486 DX operating system could 
emUlate the 8086 operating system's call. Figure 
4.25 shows how the Intel486 DX operating system 
could intercept an 8086 operating system's calJ to 
"Open a File". 

A Intel486 DX operating system can provide a Virtu­
al 8086 Environment which is totally transparent to 
the application software via intercepting and then 
emulating 8086 operating system's calls, and inter­
cepting IN and OUT instructions. 



int:eL Intel486TM DX2 MICROPROCESSOR 

4.6.6 ENTERING AND LEAVING VIRTUAL 
8086 MODE 

Virtual 8086 mode is entered by executing an IRET 
instruction (at CPL = 0), or Task Switch (at any CPL) 
to a Intel486 OX task whose Intel486 OX TSS has a 
FLAGS image containing a 1 in the VM bit position 
while the processor is executing in Protected Mode. 
That is, one way to enter Virtual 8086 mode is to 
switch to a task with a Intel486 OX TSS that has a 1 
in the VM bit in the EFLAGS image. The other way is 
to execute a 32-bit IRET instruction at privilege level 
0, where the stack has a 1 in the VM bit in the 
EFLAGS image. POPF does not affect the VM bit, 
even if the processor is in Protected Mode or level 0, 
and so cannot be used to enter Virtual 8086 Mode. 
PUSHF always pushes a 0 in the VM bit, even if the 
processor is in Virtual 8086 Mode, so that a program 
cannot tell if it is executing in REAL mode, or in Vir­
tual 8086 mode. 

The VM bit can be set by executing an IRET instruc­
tion only at privilege level 0, or by any instruction or 
Interrupt which causes a task switch in Protected 
Mode (with VM = 1 in the new FLAGS image), and 
can be cleared only by an interrupt or exception in 
Virtual 8086 Mode. IRET and POPF instructions exe­
cuted in REAL mode or Virtual 8086 mode will not 
change the value in the VM bit. 

The transition out of virtual 8086 mode to Intel486 
OX protected mode occurs only on receipt of an in­
terrupt or exception (such as due to a sensitive in­
struction). In Virtual 8086 mode, all interrupts and 
exceptions vector through the protected mode lOT, 
and enter an interrupt handler in protected Intel486 
OX mode. That is, as part of interrupt processing, 
the VM bit is cleared. 

Because the matching IRET must occur from level 0, 
if an Interrupt or Trap Gate is used to field an inter­
rupt or exception out of Virtual 8086 mode, the Gate 
must perform an inter-level interrupt only to level O. 
Interrupt or Trap Gates through conforming seg­
ments, or through segments with OPL> 0, will raise a 
GP fault with the CS selector as the error code. 

4.6.6.1 Task Switches To/From Virtual 
8086 Mode 

Tasks which can execute in virtual 8086 mode must 
be described by a TSS with the Intel486 OX Micro­
processor format (TYPE 9 or 11 descriptor). 

A task switch out of virtual 8086 mode will operate 
exactly the same as any other task switch out of a 
task with an Intel486 OX TSS. All of the programmer 
visible state, including the FLAGS register with the 
VM bit set to 1, is stored in the TSS. 

4-26 

The segment registers in the TSS will contain 8086 
segment base values rather than selectors. 

A task switch into a task described by a Intel486 OX 
TSS will have an additional check to determine if the 
incoming task should be resumed in virtual 8086 
mode. Tasks described by 80286 format TSSs can­
not be resumed in virtual 8086 mode, so no check is 
required there (the FLAGS image in 80286 format 
TSS has only the low order 16 FLAGS bits). Before 
loading the segment register images from a Intel486 
OX TSS, the FLAGS image is loaded, so that the 
segment registers are loaded from the TSS image 
as 8086 segment base values. The task is now 
ready to resume in virtual 8086 execution mode. 

4.6.6.2 Transitions Through Trap and Interrupt 
Gates, and IRET 

A task switch is one way to enter or exit virtual 8086 
mode. The other method is to exit through a Trap or 
Interrupt gate, as part of handling an interrupt. and 
to enter as part of executing an IRET instruction. 
The transition out must use a Intel486 OX Micro­
processor Trap Gate (Type 14), or Intel486 OX Inter­
rupt Gate (Type 15), which must pOint to a non-con­
forming level 0 segment (OPL = 0) in order to permit 
the trap handler to IRET back to the Virtual 8086 
program. The Gate must point to a non-conforming 
level 0 segment to perform a level switch to level 0 
so that the matching IRET can change the VM bit. 
Intel486 OX gates must be used, since 80286 gates 
save only the low 16 bits of the FLAGS register, so 
that the VM bit will not be saved on transitions 
through the 80286 gates. Also, the 16-bit IRET (pre­
sumably) used to terminate the 80286 interrupt han­
dier will pop only the lower 16 bits from FLAGS, and 
will not affect the VM bit. The action taken for a 
Intel486 OX Trap or Interrupt gate if an interrupt oc­
curs while the task is executing in virtual 8086 mode 
is given by the following sequence. 

(1) Save the FLAGS register in a temp to push later. 
Turn off the VM and TF bits, and if the interrupt 
is serviced by an Interrupt Gate, turn off IF also. 

(2) Interrupt and Trap gates must perform a level 
switch from 3 (where the VM86 program exe­
cutes) to level 0 (so IRET can return). This pro­
cess involves a stack switch to the stack given 
in the TSS for privilege level O. Save the Virtual 
8086 Mode SS and ESP registers to push in a 
later step. The segment register load of SS will 
be done as a Protected Mode segment load, 
since the VM bit was turned off above. 



intet Intel486™ DX2 MICROPROCESSOR 

8086 Application makes "Open File Call" -> causes 
General Protection Fault (Arrow # 1) 
Virtual 8086 Monitor intercepts call. Calls Intel486TM OX as (Arrow # 2) 
Intel486™ OX as opens file returns control to 8086 as (Arrow # 3) 
8086 as returns control to application. (Arrow #4) 
Transparent to Application 

241245-26 

Figure 4.25. Virtual 8086 Environment Interrupt and Call Handling 

(3) Push the 8086 segment register values onto the 
new stack, in the order: GS, FS, OS, ES. These 
are pushed as 32-bit quantities, with undefined 
values in the upper 16 bits. Then load these 4 
registers with null selectors (0). 

(4) Push the old 8086 stack pointer onto the new 
stack by pushing the SS register (as 32-bits, high 
bits undefined), then pushing the 32-bit ESP reg­
ister saved above. 

(5) Push the 32-bit FLAGS register saved in step 1. 

(6) Push the old 8086 instruction pointer onto the 
new stack by pushing the CS register (as 32-bits, 
high bits undefined), then pushing the 32-bit EIP 
register. 

(7) Load up the new CS:EIP value from the interrupt 
gate, and begin execution of the interrupt routine 
in protected Intel486 OX Microprocessor mode. 

The transition out of virtual 8086 mode performs a 
level change and stack switch, in addition to chang­
ing back to protected mode. In addition, all of the 
8086 segment register images are stored on the 
stack (behind the SS:ESP image), and then loaded 

4-27 

with null (0) selectors before entering the interrupt 
handler. This will permit the handler to safely save 
and restore the OS, ES, FS, and GS registers as 
80286 selectors. This is needed so that interrupt 
handlers which don't care about the mode of the 
interrupted program can use the same prolog and 
epilog code for state saving (i.e., push all registers in 
prolog, pop all in epilog) regardless of whether or not 
a "native" mode or Virtual 8086 mode program was 
interrupted. Restoring null selectors to these regis­
ters before executing the IRET will not cause a trap 
in the interrupt handler. Interrupt routines which ex­
pect values in the segment registers, or return val­
ues in segment registers will have to obtain/return 
values from the 8086 register images pushed onto 
the new stack. They will need to know the mode of 
the interrupted program in order to know where to 
find/return segment registers, and also to know how 
to interpret segment register values. 

The IRET instruction will perform the inverse of the 
above sequence. Only the extended Intel486 OX 
IRET instruction (operand size=32) can be used, 
and must be executed at level 0 to change the VM 
bit to 1. 



intel" Intel486TM DX2 MICROPROCESSOR 

(1) If the NT bit in the FLAGs register is on, an inter­
task return is performed. The current state is 
stored in the current TSS, and the link field in the 
current TSS is used to locate the TSS for the 
interrupted task which is to be resumed. 

Otherwise, continue with the following se­
quence. 

(2) Read the FLAGS image from SS:S [ESP] into the 
FLAGS register. This will set VM to the value 
active in the interrupted routine. 

(3) Pop off the instruction pointer CS:EIP. EIP is 
popped first, then a 32-bit word is popped which 
contains the CS value in the lower 16 bits. If 
VM=O, this CS load is done as a protected 
mode segment load. If VM = 1, this will be done 
as an SOS6 segment load. 

(4) Increment the ESP register by 4 to bypass the 
FLAGS image which was "popped" in step 1. 

4-2S 

(5) If VM = 1, load segment registers ES, OS, FS, 
and GS from memory locations SS:[ESP+S], 
SS:[ESP+ 12], SS:[ESP+ 16], and 
SS:[ESP+ 20], respectively, where the new val­
ue of ESP stored in step 4 is used. Since VM = 1 , 
these are done as SOS6 segment register loads. 

Else if VM = 0, check that the selectors in ES, 
OS, FS, and GS are valid in the interrupted rou­
tine. Null out invalid selectors to trap if an at­
tempt is made to access through them. 

(6) If (RPL(CS) > CPL), pop the stack pointer 
SS:ESP from the stack. The ESP register is 
popped first, followed by 32-bits containing SS in 
the lower 16 bits. If VM = 0, SS is loaded as a 
protected mode segment register load. If VM = 1 , 
an SOS6 segment register load is used. 

(7) Resume execution of the interrupted routine. The 
VM bit in the FLAGS register (restored from the 
interrupt routine's stack image in step 1) deter­
mines whether the processor resumes the inter­
rupted routine in Protected mode of Virtual SOS6 
mode. 



int'et Intel486TM DX2 MICROPROCESSOR 

5.0 ON-CHIP CACHE 
To meet its performance goals the Intel486 DX2 mi­
croprocessor contains an eight Kbyte cache. The 
cache is software transparent to maintain binary 
compatibility with previous generations of the In­
tel386™ IIntel486™ architecture. 

The on-chip cache has been designed for maximum 
flexibility and performance. The cache has several 
operating modes offering flexibility during program 
execution and debugging. Memory areas can be de­
fined as non-cacheable by software and external 
hardware. Protocols for cache line invalidations and 
replacement are implemented in hardware, easing 
system design. 

....J21 Bit k.. 
-I rag 1 

,,·EO 
o 

5.1 Cache Organization 

The on-chip cache is a unified code and data cache. 
The cache is used for both instruction and data ac­
cesses and acts on physical addresses. 

The cache organization is 4-way set associative and 
each line is 16 bytes wide. The eight Kbytes of 
cache memory are logically organized as 128 sets, 
each containing four lines. 

The cache memory is physically split into four 
2-Kbyte blocks each containing 128 lines (see Fig­
ure 5.1). Associated with each 2-Kbyte block are 
128 21-bit tags. There is a valid bit for each line in 
the cache. Each line in the cache is either valid or 
not valid. There are no provisions for partially valid 
lines. 

r- 16-Byte Line Size --l 

c=Jk Bytes Js 
Sets 

~ 

o c=J 
o c=J 

r -3 LRU ~ 4 valid-j 
Bits I Bits I 

IJ ....... _----_ ... 
Figure 5.1. On-Chip Cache Physical Organization 

5-1 

241245-27 



intel" Intel486™ DX2 MICROPROCESSOR 

The write strategy of on-chip cache is write-through. 
All writes will drive an external write bus cycle in 
addition to writing the information to the internal 
cache if the write was a cache hit. A write to an 
address not contained in the internal cache will only 
be written to external memory. Cache allocations 
are not made on write misses. 

5.2 Cache Control 

Control of the cache is provided by the CD and NW 
bits in CRO. CD enables and disables the cache. NW 
controls memory write-through and invalidates. 

The CD and NW bits define four operating modes of 
the on-chip cache as given in Table 5.1. These 
modes provide flexibility in how the on-chip cache is 
used. 

Table 5.1. Cache Operating Modes 

CD NW Operating Mode 

1 1 Cache fills disabled, write-through and 
invalidates disabled 

1 0 Cache fills disabled, write-through and 
invalidates enabled 

0 1 INVALID. IF CRO is loaded with this 
configuration of bits, a GP fault with 
error code of 0 is raised. 

0 0 Cache fills enabled, write-through and 
invalidates enabled 

CD=1, NW=1 

The cache is completely disabled by setting 
CD = 1 and NW = 1 and then flushing the 
cache. This mode may be useful for debug­
ging programs where it is important to see 
all memory cycles at the pins. Writes which 
hit in the cache will not appear on the exter­
nal bus. 

It is possible to use the on-chip cache as 
fast static RAM by "pre-loading" certain 
memory areas into the cache and then set­
ting CD = 1 and NW = 1. Pre-loading can be 
done by careful choice of memory refer­
ences with the cache turned on or by use of 
the testability functions (see Section 8.2). 
When the cache is turned off the memory 
mapped by the cache is "frozen" into the 
cache since fills and invalidates are dis­
abled. 

5-2 

CD=1, NW=O 

Cache fills are disabled but write-throughs 
and invalidates are enabled. This mode is 
the same as if the KEN # pin was strapped 
HIGH disabling cache fills. Write-throughs 
and invalidates may still occur to keep the 
cache valid. This mode is useful if the soft­
ware must disable the cache for a short pe­
riod of time, and then re-enable it without 
flushing the original contents. 

CD=O, NW=1 

INVALID. If CRO is loaded with this bit con­
figuration, a General Protection fault with 
error code of 0 is raised. Note that this 
mode would imply a non-transparent write­
back cache. A future processor may define 
this combination of bits to implement a 
write-back cache. 

CD=O, NW=O 

This is the normal operating mode. 

Completely disabling the cache is a two step pro­
cess. First CD and NW must be set to 1 and then the 
cache must be flushed. If the cache is not flushed, 
cache hits on reads will still occur and data will be 
read from the cache. 

5.3 Cache Line Fills 

Any area of memory can be cached in the Intel486 
OX microprocessor. Non-cacheable portions of 
memory can be defined by the external system or by 
software. The external system can inform the In­
tel486 OX microprocessor that a memory address is 
non-cacheable by returning the KEN # pin inactive 
during a memory access (refer to Section 7.2.3). 
Software can prevent certain pages from being 
cached by setting the PCD bit in the page table en­
try. 

A read request can be generated from program op­
eration or by an instruction pre-fetch. The data will 
be supplied from the on-chip cache if a cache hit 
occurs on the read address. If the address is not in 
the cache, a read request for the data is generated 
on the external bus. 

If the read request is to a cacheable portion of mem­
ory, the Intel486 OX microprocessor initiates a 
cache line fill. During a line fill a 16-byte line is read 
into the Intel486 OX microprocessor. 

Cache fills will only be generated for read misses. 
Write misses will never cause a line in the internal 
cache to be allocated. If a cache hit occurs on a 
write, the line will be updated. 



infel~ Intel486™ DX2 MICROPROCESSOR 

Cache line fills can be performed over 8- and 16-bit 
busses using the dynamic bus sizing feature. Refer 
to Section 7.1.3 for a description of dynamic bus 
sizing. 

Refer to Section 7.2.3 for further information on 
cacheable cycles. 

5.4 Cache Line Invalidations 

The Intel486 OX microprocessor contains both a 
hardware and software mechanism for invalidating 
lines in its internal cache. Cache line invalidations 
are needed to keep the Intel486 OX microproces­
sor's cache contents consistent with external mem­
ory. 

Refer to Section 7.2.8 for further information on 
cache line invalidations. 

5.5 Cache Replacement 

When a line needs to be placed in its internal cache 
the Intel486 OX microprocessor first checks to see if 
there is a non-valid line in the set that can be re­
placed. If all four lines in the set are valid, a pseudo 
least-recently-used mechanism is used to determine 
which line should be replaced. 

A valid bit is associated with each line in the cache. 
When a line needs to be placed in a set, the four 

valid bits are checked to see if there is a non-valid 
line that can be replaced. If a non-valid line is found, 
that line is marked for replacement. 

The four lines in the set are labeled 10, 11, 12, and 13. 
The order in which the valid bits are checked during 
an invalidation is 10, 11, 12 and 13. All valid bits are 
cleared when the processor is reset or when the 
cache is flushed. 

Replacement in the cache is handled by a pseudo 
least recently used (LRU) mechanism when all four 
lines in a set are valid. Three bits, BO, B1 and B2, 
are defined for each of the 128 sets in the cache. 
These bits are called the LRU bits. The LRU bits are 
updated for every hit or replace in the cache. 

If the most recent access to the set was to 10 or 11, 
BO is set to 1. BO is set to 0 if the most recent ac­
cess was to 12 or 13. If the most recent access to 
10:11 was to 10, B1 is set to 1, else B1 is set to O. If 
the most recent access to 12:13 was to 12, B2 is set to 
1, else B2 is set to O. 

The pseudo LRU mechanism works in the following 
manner. When a line must be replaced, the cache 
will first select which of 10:11 and 12:13 was least re­
cently used. Then the cache will determine which of 
the two lines was least recently used and mark it for 
replacement. This decision tree is shown in Figure 
5.2. When the processor is reset or when the cache 
is flushed all 128 sets of three LRU bits are set to O. 

All four lines in the set valid? ~ Replace non-valid line 

80=0? 
Ves: 10 or 11 least recently used No: 12 or 13 least recently used 

B1 = O? B2=0? 

~ ~ 
Replace 

10 
Replace Replace 

11 12 
Replace 

13 

Figure 5.2. On-Chip Cache Replacement Strategy 

5-3 

241245-28 



Intel486TM DX2 MICROPROCESSOR 

5.6 Page Cacheability 

Two bits for cache control, PWT and PCD, are de­
fined in the page table and page directory entries. 
The state of these bits are driven out on the PWT 
and PCD pins during memory access cycles. 

The PWT bit controls write policy for second level 
caches used with the Intel486 DX microprocessor. 
Setting PWT= 1 defines a write-through policy for 
the current page while PWT = 0 allows the possibility 
of write-back. The state of PWT is ignored internally 
by the Intel486 DX microprocessor since the on-chip 
cache is write through. 

CRa 

CACHE CONTROL LOGIC 

CACHE MEMORY 

31 22 12 

The PCD bit controls cacheability on a page by page 
basis. The PCD bit is internally ANDed with the 
KEN # signal to control cacheability on a cycle by 
cycle basis (see Figure 5.3). PCD=O enables cach­
ing while PCD = 1 forbids it. Note that cache fills are 
enabled when PCD=O AND KEN# =0. This logical 
AND is implemented physically with a NOR gate. 

The state of the PCD bit in the page table entry is 
driven on the PCD pin when a page in external mem­
ory is accessed. The state of the PCD pin informs 
the external system of the cacheability of the re­
quested information. The external system then re­
turns KEN # telling the Intel486 DX microprocessor 
if the area is cacheable. The Intel486 DX microproc­
essor initiates a cache line fill if PCD and KEN # 
indicate that the requested information is cacheable. 

FLUSH# 

KEN# 

a 

LINEAR 
DIRECTORY 1 TABLE -I aFFSET-1 

ADDRESS 1aV 
1t 

31 a 31 a 

I 31 a 
I C 
I 

Ra 

R1 

R2 

I C 
I 

IC 
I 

IC 
I 

R3 

I 

<r 
I 

PCD, PWT 

I CONTROL REGISTERS 
I 

pca, PWT t 
DIRECTORY 

PCD, PWT 

PAGE TABLE CD 
(From CRO) 

Figure 5.3. Page Cacheability 

5-4 

PCD 

PWT 

241245-29 



intel .. Intel486TM DX2 MICROPROCESSOR 

The PCD bit is masked with the CD (cache disable) 
bit in control register 0 to determine the state of the 
PCD pin. If CD = 1 the Intel486 OX microprocessor 
forces the PCD pin HIGH. If CD=O the PCD pin is 
driven with the value for the page table entry/direc­
tory. See Figure 5.3. 

The PWT and PCD bits for a bus cycle are obtained 
from either CR3, the page directory or page table 
entry. These bits are assumed to be zero during real 
mode, whenever paging is disabled, or for cycles 
that bypass paging, (110 references, interrupt ac­
knowledge and Halt cycles), the PWT and PCD bits 
are taken from CR3. These bits are initialized to 0 on 
reset, but can be set to any value by level 0 soft­
ware. 

When paging is enabled, the bits from the page table 
entry are cached in the TLB, and are driven any time 
the page mapped by the TLB entry is referenced. 
For normal memory cycles, PWT and PCD are taken 
from the page table entry. During TLB refresh cycles 
where the page table and directory entries are read, 
the PWT and PCD bits must be obtained elsewhere. 
During page table updates the bits are obtained from 
the page directory. When the page directory is up­
dated the bits are obtained from CR3. 

5_7 Cache Flushing 
The on-chip cache can be flushed by external hard­
ware or by software instructions. Flushing the cache 
clears all valid bits for all lines in the cache. The 
cache is flushed when external hardware asserts the 
FLUSH# pin. 

The flush pin needs to be asserted for one clock if 
driven synchronously or for two clocks if driven 
asynchronously. The flush input is asynchronous but 
setup and hold times must be met. The flush pin 
should be deasserted after the cache flush is com­
plete. Failure to deassert the pin will cause execu­
tion to stop as the processor will be repeatedly flush­
ing the cache. If external hardware activates flush in 
response to an 1/0 write, flush must be asserted for 
at least two clocks prior to ready being returned for 
the 1/0 write. This ensures that the flush completes 
before the CPU begins execution of the instruction 
following the OUT instruction, 

Flush is recognized during HOLD just like EADS#. 

The instructions INVD and WBINVD cause the on­
cache to be flushed. External caches connected to 
the Intel486 OX microprocessor are signalled to 
flush their contents when these instructions are exe­
cuted. 

6.2.5 for the bus cycle definition pins and Section 
7.2.11 for special bus cycles). Refer to the Intel486 
OX microprocessor programmers reference manual 
for detailed instruction definitions. 

The results of the INVD and WBINVD instructions 
are identical for the operation of the Intel486 OX mi­
croprocessor's on-chip cache since the cache is 
write-through. Note that the INVD and WBINVD in­
structions are machine dependent. Future members 
of the Intel486 OX microprocessor family may 
change the definition of this instruction. 

5.8 Caching Translation Lookaside 
Buffer Entries 

The Intel486 OX microprocessor contains an inte­
grated paging unit with a translation lookaside buffer 
(TLB). The TLB contains 32 entries. The TLB has 
been enhanced over the Intel386 microprocessor's 
TLB by upgrading the replacement strategy to a 
pseudo-LRU (least recently used) algorithm. The 
pseudo-LRU replacement algorithm is the same as 
that used in the on-chip cache. 

The paging TLB operation is automatic whenever 
paging is enabled. The TLB contains the most re­
cently used page table entries. A page table entry 
translates the linear address pointing to a particular 
page to the physical address where the page is 
stored in memory (refer to Section 4.5, Paging). 

The paging unit will look up the linear address in the 
TLB in response to an internal bus request. The cor­
responding physical address is passed on to the on­
chip cache or the external bus (in the event of a 
cache miss) when the linear address is present in 
the TLB. 

The paging unit will access the page tables in exter­
nal memory if the linear address is not in the TLB. 
The required page table entry will be read into the 
TLB and'then the cache or bus cycle for the actual 
data will take place. The process of reading a new 
page table entry into the TLB is called a TLB refresh. 

A TLB refresh is a two step process. The paging unit 
must first read the page directory entry which points 
to the appropriate page table. The page table entry 
to be stored in the TLB is then read from the page 
table. Control register 3 (CR3) points to the base of 
the page directory table. 

The Intel486 OX microprocessor will allow page di­
rectory and page table entries (returned during TLB 
refreshes) to be stored in the on-chip cache. Setting 

WBINVD will cause an external write-back cache to the PCD bits in CR3 and the page directory entry to 
write back dirty lines before flushing its contents. 1 will prevent the page directory and page table en-
The external cache is signalled using the bus cycle tries from being stored in the on-chip cache (see 
definition pins and the byte enables (refer to Section Section 5.6, Page Cacheablllty). 

5-5 





Intel486TM DX2 MICROPROCESSOR 

6.0 HARDWARE INTERFACE 

6.1 Introduction 

The Intel486 OX2 microprocessor bus has been de­
signed to be identical with the Intel486 micropro­
cessor bus. Several new features have been added 
to the Intel486 OX2 to increase performance and 
testability. New features include a speed doubler for 
the core logic, and IEEE 1149.1 boundary scan sup­
port. 

The Intel486 OX2 is driven by what can be called a 
%x clock, as opposed to the 1x clock in the Intel486 
OX and the 2x clock in the Intel386 micropro­
cessors. Thus a 50 MHz Intel486 OX2 is driven by a 
25 MHz clock, in contrast with 25 MHz processors 
like the Intel486 OX2 and the Intel386 requiring 
25 MHz and 50 MHz, respectively. Since the In­
tel486 OX has a clock doubler driving its core, but 
not its bus interface, it provides a simpler system 
design for a given performance level than the In­
tel486 OX. In reality, this permits dramatic increases 
in performance by just plugging in the Intel486 

ClK 

Intel"S6DX2 

OX2 in a system that had already been designed for 
the Inte1486. This performance is supplied because 
the bus interface is identical to that of an Intel486 
OX and all of the core is running at twice the speed 
of the comparable Intel486 OX. This speedup in­
cludes the internal cache memory, the floating point 
unit, the instruction decode unit, the ALU and every­
thing except the bus interface. 

Like the Intel386 microprocessor, the Intel486 OX 
microprocessor has separate parallel busses for 
data and addresses. The bidirectonal data bus is 
32 bits in width. The address bus consists of two 
components: 30 address lines (A2-A31) and 4 byte 
enable lines (BEO#-BE3#). The address bus ad­
dresses external memory in the same manner as the 
Intel386 microprocessor: The address lines form the 
upper 30 bits of the address and the byte enables 
select individual bytes within a 4 byte location. The 
address lines are bidirectional for use in cache line 
invalidations. 

A 

" 
BE3# 

" ) 
-y 

32-Bi\ 
Address 
Bu. 

32-Bi\ {00-031 
Data 

DATA BUS 

A " 
t.ticroprocessor BE2# 

A2-A31 ) 

)~ .. 
Bu. 
Control 

Interrupt 
Signals 

{ 

{ 
Cache { 
Invalidation 

Cache 
Control 

Page 
Caching 
Control 

Numeric 
Error 
Reporting 

Address Bit 
20 totask 

{ 
{ 
{ 

Boundary 1 
Scan 

< 
ADS# 

ROY# 

INTR 

RESET 

NMI 

AHOlD 

EADS# 

KEN# 

FlUSH# 

PWT 

PCD 

FERR# 

IGNNE# 

A20M# 

TCK 

HAS 

TOI 

TDO 

BEI# 

BEO# 

M/IO# 

D/c# 
W/R# 

lOCK# 

PlOCK# 

HOLD 

HlDA 

BOFF# 

BREQ 

BRDY# 

BlAST# 

BS8# 

BSI6# 

DP3 

DP2 

DPI 

DPO 

PCHK# 

Byt. 

) 
Bu. Cycl. 
Definition 

) 
Bu. 
Arbitration 

} 
Bur.\ 
Control 

} 
Bu. Size 
C0ntrol 

Figure 6.1. Functional Signal Groupings 

6-1 

241245-30 



int:et Intel486™ DX2 MICROPROCESSOR 

The Intel486 OX microprocessor's burst bus mecha­
nism enables high-speed cache fills from external 
memory. Burst cycles can strobe data into the proc­
essor at a rate of one item every clock. Non-burst 
cycles have a maximum rate of one item every two 
clocks. Burst cycles are not limited to cache fills: all 
bus cycles requiring more than a single data cycle 
can be bursted. 

The Intel486 OX microprocessor has a bus hold fea­
ture similar to that of the Intel386 microprocessor. 
During bus hold, the Intel486 OX microprocessor re­
linquishes control of the local bus by floating its ad­
dress, data and control busses. 

The Intel486 OX microprocessor has an address 
hold feature in addition to bus hold. During address 
hold only the address bus is floated, the data and 
control busses can remain active. Address hold is 
used for cache line invalidations. 

Ahead is a brief description of the Intel486 OX mi­
croprocessor input and output signals arranged by 
functional groups. Before beginning the signal de­
scriptions a few terms need to be defined. The # 
symbol at the end of a signal name indicates the 
active, or asserted, state occurs when the signal is 
at a low voltage. When a # is not present after the 
Signal name, the signal is active at the high voltage 
level. The term "ready" is used to indicate that the 
cycle is terminated with ROY # or BRDY # . 

Section 6 and 7 will discuss bus cycles and data 
cycles. A bus cycle is at least two clocks long and 
begins with ADS # active in the first clock and ready 
active in the last clock. Data is transferred to or from 
the Intel486 OX microprocessor during a data cycle. 
A bus cycle contains one or more data cycles. 

t)( = input setup times 
ty = input hold times, output float, valid and hold times 

6.2 Signal Descriptions 

6.2.1 CLOCK (ClK) 

elK provides the fundamental timing and the inter­
nal operating frequency for the Intel486 DX2 micro­
processor. All external timing parameters are speci­
fied with respect to the rising edge of elK. 

The Intel486 DX2 microprocessor can operate over 
a wide frequency range but elK's frequency cannot 
change rapidly while RESET is inactive. elK's fre­
quency must be stable for proper chip operation 
since a single edge of elK is used internally to gen­
erate four phases. elK only needs TTL levels for 
proper operation. Figure 6.2 illustrates the elK 
waveform. 

6.2.2 Address Bus (A31-A2, BEO#-BE3#) 

A31-A2 and BEO#-BE3# form the address bus 
and provide physical memory and 1/0 port address­
es. The Intel486 OX microprocessor is capable of 
addressing 4 gigabytes of physical memory space 
(OOOOOOOOH through FFFFFFFFHl, and 64 Kbytes 
of 1/0 address space (OOOOOOOOH through 
OOOOFFFFH). A31-A2 identify addresses to a 4-byte 
location. BEO#-BE3# identify which bytes within 
the 4-byte location are involved in the current trans­
fer. 

Addresses are driven back into the Intel486 OX mi­
croprocessor over A31-A4 during cache line invali­
dations. The address lines are active HIGH. When 
used as inputs into the processor, A31-A4 must 
meet the setup and hold times, t22 and t23. A31-A2 
are not driven during bus or address hold. 

241245-31 

Figure 6.2. ClK waveform 

6-2 



infel~ Intel486™ DX2 MICROPROCESSOR 

The byte enable outputs, BEO#-BE3#, determine 
which bytes must be driven valid for read and write 
cycles to external memory. 

BE3# applies to 024-031 

BE2# applies to 016-023 

BE1 # applies to 08-015 

BEO# applies to 00-07 

BEO#-BE3# can be decoded to generate AO, A1 
and BHE# signals used in 8- and 16-bit systems 
(see Table 7.5). BEO#-BE3# are active LOW and 
are not driven during bus hold. 

6_2.3 DATA LINES (D31-DO) 

The bidirectional lines, 031-00, form the data bus 
for the Intel486 OX microprocessor. 00-07 define 
the least significant byte and 024-031 the most sig­
nificant byte. Oata transfers to 8- or 16-bit devices is 
possible using the data bus sizing feature controlled 
by the BS8# or BS16# input pins. 

031-00 are active HIGH. For reads, 031-00 must 
meet the setup and hold times, t22 and t23. 031-00 
are not driven during read cycles and bus hold. 

6.2.4 PARITY 

Data Parity Input/Outputs (DPO-DP3) 

OPO-OP3 are the data parity pins for the processor. 
There is one pin for each byte of the data bus. Even 
parity is generated or checked by the parity genera­
torsi checkers. Even parity means that there are an 
even number of HIGH inputs on the eight corre­
sponding data bus pins and parity pin. 

Oata parity is generated on all write data cycles with 
the same timing as the data driven by the Intel486 
OX microprocessor. Even parity information must be 
driven back to the Intel486 OX microprocessor on 
these pins with the same timing as read information 
to insure that the correct parity check status is indi­
cated by the Intel486 OX microprocessor. 

The values read on these pins do not affect program 
execution. It is the responsibility of the system to 
take appropriate actions if a parity error occurs. 

Input signals on OPO-OP3 must meet setup and 
hold times t22 and t23 for proper operation. 

Parity Status Output (PCHK#) 

Parity status is driven on the PCHK# pin, and a pari­
ty error is indicated by this pin being LOW. PCHK# 
is driven the clock after ready for read operations to 
indicate the parity status for the data sampled at the 

6-3 

end of the previous clock. Parity is checked during 
code reads, memory reads and 1/0 reads. Parity is 
not checked during interrupt acknowledge cycles. 
PCHK # only checks the parity status for enabled 
bytes as indicated by the byte enable and bus size 
signals. It is valid only in the clock immediately after 
read data is returned to the Intel486 OX microproc­
essor. At all other times it is inactive (HIGH). 
PCHK# is never floated. 

Driving PCHK # is the only effect that bad input pari­
ty has on the Intel486 OX microprocessor. The In­
tel486 OX microprocessor will not vector to a bus 
error interrupt when bad data parity is returned. In 
systems that will not employ parity, PCHK# can be 
ignored. In systems not using parity, OPO-OP3 
should be connected to Vee through a pullup resis­
tor. 

6.2.5 BUS CYCLE DEFINITION 

M/IO#, D/C#, W/R# Outputs 

MIIO#, O/C# and W/R# are the primary bus cycle 
definition signals. They are driven valid as the AOS# 
signal is asserted. M/IO# distinguishes between 
memory and 1/0 cycles, O/C# distinguishes be­
tween data and control cycles and W/R# distin­
guishes between write and read cycles. 

Bus cycle definitions as a function of MilO #, O/C # 
and W/R# are given in Table 6.1. Note there is a 
difference between the Intel486 OX microprocessor 
and Intel386 microprocessor bus cycle definitions. 
The halt bus cycle type has been moved to location 
001 in the Intel486 OX microprocessor from location 
101 in the Intel386 microprocessor. Location 101 is 
now reserved and will never be generated by the 
Intel486 OX microprocessor. 

Table 6.1. ADS# Initiated Bus Cycle Definitions 

M/IO# D/C# W/R# Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Halt/Special Cycle 
0 0 1/0 Read 
0 1 1 I/O Write 

0 0 Code Read 
0 1 Reserved 

0 Memory Read 
Memory Write 

Special bus cycles are discussed in Section 7.2.11. 

Bus Lock Output (LOCK #) 

LOCK # indicates that the Intel486 OX microproces­
sor is running a read-modify-write cycle where the 
external bus must not be relinquished between the 



intel .. Intel486TM DX2 MICROPROCESSOR 

read and write cycles. Read-modify-write cycles are 
used to implement memory-based semaphores. 
Multiple reads or writes can be locked. 

When LOCK # is asserted, the current bus cycle is 
locked and the Intel486 DX microprocessor should 
be allowed exclusive access to the system bus. 
LOCK # goes active in the first clock of the first 
locked bus cycle and goes inactive after ready is 
returned indicating the last locked bus cycle. 

The Intel486 DX microprocessor will not acknowl­
edge bus hold when LOCK # is asserted (though it 
will allow an address hold). LOCK# is active LOW 
and is floated during bus hold. Locked read cycles 
will not be transformed into cache fill cycles if KEN # 
is returned active. Refer to Section 7.2.6 for a de­
tailed discussion of Locked bus cycles. 

Pseudo-Lock Output (PLOCK #) 

The pseudo-lock feature allows atomic reads and 
writes of memory operands greater than 32 bits. 
These operands require more than one cycle to 
transfer. The Intel486 DX microprocessor asserts 
PLOCK # during floating point long reads and writes 
(64 bits), segment table descriptor reads (64 bits) 
and cache line fills (128 bits). 

When PLOCK # is asserted no other master will be 
given control of the bus between cycles. A bus hold 
request (HOLD) is not acknowledged during pseudo­
locked reads and writes, with one exception. During 
non-cacheable non-bursted code prefetches, HOLD 
is recognized on memory cycle boundaries even 
though PLOCK# is asserted. The Intel486 DX mi­
croprocessor will drive PLOCK # active until the ad­
dresses for the last bus cycle of the transaction 
have been driven regardless of whether BRDY # or 
RDY # are returned. 

A pseudo-locked transfer is meaningful only if the 
memory operand is aligned and if its completely con­
tained within a single cache line. A 64-bit floating 
point number must be aligned to an 8-byte boundary 
to guarantee an atomic access. 

Normally PLOCK# and BLAST# are inverse of 
each other. However during the first cycle of a 64-bit 
floating point write, both PLOCK # and BLAST # will 
be asserted. 

Since PLOCK # is a function of the bus size and 
KEN # inputs, PLOCK # should be sampled only in 
the clock ready is returned. This pin is active LOW 
and is not driven during bus hold. Refer to Section 
7.2.7 for a detailed discussion of pseudo-locked bus 
cycles. 

6-4 

6.2.6 BUS CONTROL 

The bus control Signals allow the processor to indi­
cate when a bus cycle has begun, and allow other 
system hardware to control burst cycles, data bus 
width and bus cycle termination. 

Address Status Output (ADS#) 

The ADS # output indicates that the address and 
bus cycle definition signals are valid. This signal will 
go active in the first clock of a bus cycle and go 
inactive in the second and subsequent clocks of the 
cycle. ADS# is also inactive when the bus is idle. 

ADS# is used by external bus circuitry as the indica­
tion that the processor has started a bus cycle. The 
external circuit must sample the bus cycle definition 
pins on the next riSing edge of the clock after ADS # 
is driven active. 

ADS# is active LOW and is not driven during bus 
hold. 

Non-burst Ready Input (RDY #) 

RDY # indicates that the current bus cycle is com­
plete. In response to a read, RDY # indicates that 
the external system has presented valid data on the 
data pins. In response to a write request, RDY # indi­
cates that the external system has accepted the In­
tel486 DX microprocessor data. RDY # is ignored 
when the bus is idle and at the end of the first clock 
of the bus cycle. Since RDY # is sampled during ad­
dress hold, data can be returned to the processor 
when AHOLD is active. 

RDY # is active LOW, and is not provided with an 
internal pullup resistor. This input must satisfy setup 
and hold times t16 and t17 for proper chip operation. 

6.2.7 BURST CONTROL 

Burst Ready Input (BRDY #) 

BRDY # performs the same function during a burst 
cycle that RDY # performs during a non-burst cycle. 
BRDY # indicates that the external system has pre­
sented valid data on the data pins in response to a 
read or that the external system has accepted the 
Intel486 DX microprocessor data in response to a 
write. BRDY # is ignored when the bus is idle and at 
the end of the first clock in a bus cycle. 

During a burst cycle, BRDY # will be sampled each 
clock, and if active, the data presented on the data 
bus pins will be strobed into the Intel486 DX micro­
processor. ADS # is negated during the second 
through last data cycles in the burst, but address 



int:el.. Intel486™ DX2 MICROPROCESSOR 

lines A2-A3 and byte enables will change to reflect 
the next data item expected by the Intel486 DX mi­
croprocessor. 

If RDY # is returned simultaneously with BRDY #, 
BRDY # is ignored and the burst cycle is premature­
ly aborted. An additional complete bus cycle will be 
initiated after an aborted burst cycle if the cache line 
fill was not complete. BRDY # is treated as a normal 
ready for the last data cycle in a burst transfer or for 
non-burstable cycles. Refer to Section 7.2.2 for 
burst cycle timing. 

BRDY # is active lOW and is provided with a small 
internal pullup resistor. BRDY # must satisfy the set­
up and hold times t16 and t17. 

Burst Last Output (BLAST #) 

BLAST # indicates that the next time BRDY # is re­
turned it will be treated as a normal RDY #, terminat­
ing the line fill or other multiple-data-cycle transfer. 
BLAST # is active for all bus cycles regardless of 
whether they are cacheable or not. This pin is active 
lOW and is not driven during bus hold. 

6.2.8 INTERRUPT SIGNALS (RESET, INTR, 
NMI) 

The interrupt signals can interrupt or suspend exe­
cution of the processor's current instruction stream. 

Reset Input (RESET) 

RESET forces the Intel486 DX2 microprocessor to 
begin execution at a known state. For a power-up 
(cold start) reset, Vee and ClK must reach their 
proper DC and AC specifications for at least 
1 ms before the Intel486 DX2 microprocessor be­
gins instruction execution. The RESET pin should 
remain active during this time to ensure proper In­
tel486 DX2 microprocessor operation. However, for 
a warm boot-up case, RESET is required to re­
main active for a minimum of 15 clocks. The test­
ability operating modes are programmed by the fail­
ing (inactive going) edge of RESET. (Refer to Sec­
tion 8.0 for a description of the test modes during 
reset.) 

Maskable Interrupt Request Input (INTR) 

INTR indicates that an external interrupt has been 
generated. Interrupt processing is initiated if the IF 
flag is active in the EFLAGS register. 

The Intel486 DX microprocessor will generate two 
locked interrupt acknowledge bus cycles in re­
sponse to asserting the INTR pin. An 8-bit interrupt 
number will be latched from an external interrupt 
controller at the end of the second interrupt ac­
knowledge cycle. INTR must remain active until the 
interrupt acknowledges have been performed to as-

6-5 

sure program interruption. Refer to Section 7.2.10 
for a detailed discussion of interrupt acknowledge 
cycles. 

The INTR pin is active HIGH and is not provided with 
an internal pulldown resistor. INTR is asynchronous, 
but the INTR setup and hold times, t20 and t21, must 
be met to assure recognition on any specific clock. 

Non-maskable Interrupt Request Input (NMI) 

NMI is the non-maskable interrupt request signal. 
Asserting NMI causes an interrupt with an internally 
supplied vector value of 2. External interrupt ac­
knowledge cycles are not generated since the NMI 
interrupt vector is internally generated. When NMI 
processing begins, the NMI signal will be masked 
internally until the IRET instruction is executed. 

NMI is rising edge sensitive after internal synchroni­
zation. NMI must be held lOW for at least four elK 
periods before this rising edge for proper operation. 
NMI is not provided with an internal pulldown resis­
tor. NMI is asynchronous but setup and hold times, 
t20 and t21 must be met to assure recognition on any 
specific clock. 

6.2.9 BUS ARBITRATION SIGNALS 

This section describes the mechanism by which the 
processor relinquishes control of its local bus when 
requested by another bus master. 

Bus Request Output (BREQ) 

The Intel486 DX microprocessor asserts BREa 
whenever a bus cycle is pending internally. Thus, 
BREa is always asserted in the first clock of a bus 
cycle, along with ADS#. Furthermore, if the Intel486 
DX microprocessor is currently not driving the bus 
(due to HOLD, AHOlD, or 80FF#), BREa is assert­
ed in the same clock that ADS# would have been 
asserted if the processor were driving the bus. After 
the first clock of the bus cycle, 8REa may change 
state. It will be asserted if additional cycles are nec­
essary to complete a transfer (via 8S8 #, 8S 16 # , 
KEN#), or if more cycles are pending internally. 
However, if no additional cycles are necessary to 
complete the current transfer, 8REa can be negat­
ed before ready comes back for the current cycle. 
External logic can use the 8REa signal to arbitrate 
among multiple processors. This pin is driven re­
gardless of the state of bus hold or address hold. 
BREa is active HIGH and is never floated. During a 
hold state, internal events may cause 8REa to be 
deasserted prior to any bus cycles. 

Bus Hold Request Input (HOLD) 

HOLD allows another bus master complete control 
of the Intel486 DX microprocessor bus. The Intel486 



intel. Intel486TM DX2 MICROPROCESSOR 

OX microprocessor will respond to an active HOLD 
signal by asserting HLDA and placing most of its 
output and input/output pins in a high impedance 
state (floated) after completing its current bus cycle, 
burst cycle, or sequence of locked cycles. In addi­
tion, if the Intel486 OX CPU receives a HOLD re­
quest while performing a non-cacheable, non-burst­
ed code prefetch and that cycle is backed off 
(BOFF #), the Intel486 OX CPU will recognize HOLD 
before restarting the cycle. The BREQ, HLDA, 
PCHK # and FERR # pins are not floated during bus 
hold. The Intel486 OX microprocessor will maintain 
its bus in this state until the HOLD is deasserted. 
Refer to Section 7.2.9 for timing diagrams for a bus 
hold cycle. 

Unlike the Intel386 microprocessor, the Intel486 DX 
microprocessor will recognize HOLD during re­
set. Pullup resistors are not provided for the outputs 
that are floated in response to HOLD. HOLD is ac­
tive HIGH and is not provided with an internal pull­
down resistor. HOLD must satisfy setup and hold 
times t18 and t19 for proper chip operation. 

Bus Hold Acknowledge Output (HLDA) 

HLDA indicates that the Intel486 OX microprocessor 
has given the bus to another local bus master. HLDA 
goes active in response to a hold request presented 
on the HOLD pin. HLDA is driven active in the same 
bus clock cycle that the Intel486 OX microprocessor 
floats its bus. 

HLDA will be driven inactive when leaving bus hold 
and the Intel486 OX microprocessor will resume 
driving the bus. The Intel486 OX microprocessor will 
not cease internal activity during bus hold since the 
internal cache will satisfy the majority of bus re­
quests. HLDA is active HIGH and remains driven 
during bus hold. 

Backoff Input (BOFF #) 

Asserting the BOFF# input forces the Intel486 OX 
microprocessor to release control of its bus in the 
next clock. The pins floated are exactly the same as 
in response to HOLD. The response to BOFF # dif­
fers from the response to HOLD in two ways: First, 
the bus is floated immediately in response to 
BOFF # while the Intel486 OX microprocessor com­
pletes the current bus cycle before floating its bus in 
response to HOLD. Second the Intel486 OX does 
not assert HLDA in response to BOFF#. 

The processor remains in bus hold until BOFF # is 
negated. Upon negation, the Intel486 OX microproc­
essor restarts the bus cycle aborted when BOFF # 
was asserted. To the internal execution engine the 
effect of BOFF # is the same as inserting a few wait 
states to the original cycle. Refer to Section 7.2.12 
for a description of bus cycle restart. 

6-6 

Any data returned to the processor while BOFF # is 
asserted is ignored. BOFF # has higher priority than 
ROY # or BRDY #. If both BOFF # and ready are 
returned in the same clock, BOFF # takes effect. If 
BOFF# is asserted while the bus is idle, the Intel486 
OX microprocessor will float its bus in the next bus 
clock. BOFF # is active LOW and must meet setup 
and hold times t18 and t19 for proper chip operation. 

6.2.10 CACHE INVALIDATION 

The AHOLD and EADS# inputs are used during 
cache invalidation cycles. AHOLD conditions the In­
tel486 OX microprocessors address lines, A4-A31, 
to accept an address input. EADS# indicates that 
an external address is actually valid on the address 
inputs. Activating EADS# will cause the Intel486 OX 
microprocessor to read the external address bus 
and perform an internal cache invalidation cycle to 
the address indicated. Refer to Section 7.2.8 for 
cache invalidation cycle timing. 

Address Hold Request Input (AHOLD) 

AHOLD is the address hold request. It allows anoth­
er bus master access to the Intel486 OX microproc­
essor address bus for performing an internal cache 
invalidation cycle. Asserting AHOLD will force the 
Intel486 OX microprocessor to stop driving its ad­
dress bus in the next clock. While AHOLD is active 
only the address bus will be floated, the remainder 
of the bus can remain active. For example, data can 
be returned for a previously specified bus cycle 
when AHOLD is active. The Intel486 OX microproc­
essor will not initiate another bus cycle during ad­
dress hold. Since the Intel486 OX microprocessor 
floats its bus immediately in response to AHOLD, an 
address hold acknowledge is not required. If AHOLD 
is asserted while a bus cycle is in progress, and no 
readies are returned during the time AHOLD is as­
serted, the Intel486 OX will redrive the same ad­
dress (that it originally sent out) once AHOLD is neg­
ated. 

AHOLD is recognized during reset. Since the entire 
cache is invalidated by reset, any invalidation cycles 
run during reset will be unnecessary. AHOLD is ac­
tive HIGH and is provided with a small internal pull­
down resistor. It must satisfy the setup and hold 
times t18 and t19 for proper chip operation. This pin 
determines whether or not the built in self test fea­
tures of the Intel486 OX microprocessor will be exer­
cised on assertion of RESET. 

External Address Valid Input (EADS#) 

EADS# indicates that a valid external address has 
been. driven onto the Intel486 OX address pins. This 
address will be used to perform an internal cache 
invalidation cycle. The external address will be 
checked with the current cache contents. If the ad-



Intel486™ DX2 MICROPROCESSOR 

dress specified matches any areas in the cache, that 
area will immediately be invalidated. 

An invalidation cycle may be run by asserting 
EADS# regardless of the state of AHOLD, HOLD 
and BOFF#. EADS# is active LOW and is provided 
with an internal pullup resistor. EADS# must satisfy 
the setup and hold times t12 and t13 for proper chip 
operation. 

6.2.11 CACHE CONTROL 

Cache Enable Input (KEN#) 

KEN # is the cache enable pin. KEN # is used to 
determine whether the data being returned by the 
current cycle is cacheable. When KEN # is active 
and the Intel486 OX microprocessor generates a cy­
cle that can be cached (most any memory read cy­
cle), the cycle will be transformed into a cache line 
fill cycle. 

A cache line is 16 bytes long. During the first cycle of 
a cache line fill the byte-enable pins should be ig­
nored and data should be returned as if all four byte 
enables were asserted. The Intel486 OX microproc­
essor will run between 4 and 16 contiguous bus cy­
cles to fill the line depending on the bus data width 
selected by BS8# and BS16#. Refer to Section 
7.2.3 for a description of cache line fill cycles. 

The KEN # input is active LOW and is provided with 
a small internal pullup resistor. It must satisfy the 
setup and hold times t14 and t15 for proper chip op­
eration. 

Cache Flush Input (FLUSH#) 

The FLUSH # input forces the Intel486 OX micro­
processor to flush its entire internal cache. FLUSH # 
is active LOW and need only be asserted for one 
clock. FLUSH # is asynchronous but setup and hold 
times t20 and t21 must be met for recognition on any 
specific clock. 

FLUSH # also determines whether or not the 3-state 
test mode of the Intel486 OX microprocessor will be 
invoked on assertion of RESET. 

6.2.12 PAGE CACHEABILITY (PWT, PCD) 

The PWT and PCD output signals correspond to two 
user attribute bits in the page table entry. When pag­
ing is enabled, PWT and PCD correspond to bits 3 
and 4 of the page table entry respectively. For cy­
cles that are not paged when paging is enabled (for 
example 110 cycles) PWT and PCD correspond to 
bits 3 and 4 in control register 3. When paging is 
disabled, the Intel486 OX CPU ignores the PCD and 
PWT bits and assumes they are zero for the purpose 
of caching and driving PCD and PWT. 

fi-7 

PCD is masked by the CD (cache disable) bit in con­
trol register 0 (CRO). When CD = 1 (cache line fills 
disabled) the Intel486 OX microprocessor forces 
PCD HIGH. When CD = 0, PCD is driven with the 
value of the page table entry/directory. 

The purpose of PCD is to provide a cacheable/non­
cacheable indication on a page by page basis. The 
Intel486 OX will not perform a cache fill to any page 
in which bit 4 of the page table entry is set. PWT 
corresponds to the write-back bit and can be used 
by an external cache to provide this functionality. 
PCD and PWT bits are assigned to be zero during 
real mode or whenever paging is disabled. Refer to 
Sections 4.5.4 and 5.6 for a discussion of non­
cacheable pages. 

PCD and PWT have the same timing as the cycle 
definition pins (M/IO#, D/C#, W/R#). PCD and 
PWT are active HIGH and are not driven during bus 
hold. 

6.2.13 NUMERIC ERROR REPORTING 
(FERR#,IGNNE#) 

To allow PC-type floating point error reporting, the 
Intel486 OX microprocessor provides two pins, 
FERR# and IGNNE#. 

Floating Point Error Output (FERR #) 

The Intel486 OX microprocessor asserts FERR # 
whenever an unmasked floating point error is en­
countered. FERR # is similar to the ERROR # pin on 
the Intel387 math coprocessor. FERR # can be 
used by external logic for PC-type floating point error 
reporting in Intel486 OX microprocessor systems. 
FERR # is active LOW, and is not floated during bus 
hold. 

In some cases, FERR # is asserted when the next 
floating point instruction is encountered and in other 
cases it is asserted before the next floating point 
instruction is encountered depending upon the exe­
cution state of the instruction causing the exception. 

The following class of floating point exceptions drive 
FERR # at the time the exception occurs (Le., before 
encountering the next floating point instruction). 

1. The stack fault, invalid operation, and denormal 
exceptions on all transcendental instructions, in­
teger arithmetic instructions, FSQRT, FSCALE, 
FPREM(1), FXTRACT, FBLD, and FBSTP. 

2. Any exceptions on store instructions (including 
integer store instructions). 

The following class of floating point exceptions drive 
FERR # only after encountering the next floating 
point instruction. 



intel .. Intel486™ DX2 MICROPROCESSOR 

1. Exceptions other than on all transcendental in­
structions, integer arithmetic instructions, 
FSQRT, FSCALE, FPREM(1), FXTRACT, F8LO. 
and F8STP. 

2. Any exception on all basic arithmetic, load, com­
pare, and control instructions (i.e., all other in­
structions). 

Ignore Numeric Error Input (IGNNE#) 

The Intel486 OX microprocessor will ignore a numer­
ic error and continue executing non-control floating 
point instructions when IGNNE # is asserted, but 
FERR # will still be activated. When deasserted, the 
Intel486 OX microprocessor will freeze on a non­
control floating point instruction if a previous instruc­
tion caused an error. IGNNE# has no effect when 
the NE bit in control register 0 is set. 

The IGNNE# input is active LOW and is provided 
with a small internal pullup resistor. This input is 
asynchronous, but must meet setup and hold times 
t20 and t21 to insure recognition on any specific 
clock. 

6.2.14 BUS SIZE CONTROL (BS16#, BS8#) 

The 8S16# and 8S8# inputs allow external 16- and 
8-bit busses to be supported with a small number of 
external components. The Intel486 OX CPU sam­
ples these pins every clock. The value sampled in 
the clock before ready determines the bus size. 
When asserting 8S16# or 8S8# only 16 or 8 bits of 
the data bus need be valid. If both 8S16# and 
BS8 # are asserted, an 8-bit bus width is selected. 

When 8S16# or 8S8# are asserted the Intel486 OX 
microprocessor will convert a larger data request to 
the appropriate number of smaller transfers. The 
byte enables will also be modified appropriately for 
the bus size selected. 

BS16# and 8S8# are active LOW and are provided 
with small internal pullup resistors. 8S16# and 
BS8# must satisfy the setup and hold times t14 and 
t15 for proper chip operation. 

6.2.15 ADDRESS BIT 20 MASK (A20M#) 

Asserting the A20M# input causes the Intel486 OX 
microprocessor to mask physical address bit 20 be­
fore performing a lookup in the internal cache and 
before driving a memory cycle to the outside world. 
When A20M # is asserted, the Intel486 OX micro­
processor emulates the 1 Mbyte address wrap­
around that occurs on the 8086. A20M # is active 
LOW and must be asserted only when the processor 
is in real mode. The A20M # is not defined in Pro­
tected Mode. A20M # is asynchronous but should 
meet setup and hold times t20 and t21 for recogni-

6-8 

tion in any specific clock. For correct operation of 
the chip, A20M # should be sampled high 2 clocks 
before and 2 clocks after RESET goes low. 

6.2.16 BOUNDARY SCAN TEST SIGNALS 

Test Clock (TCK) 

TCK is an input to the Intel486 OX2 CPU and pro­
vides the clocking function required by the JT AG 
boundary scan feature. TCK is used to clock state 
information and data into and out of the component. 
State select information and data are clocked into 
the component on the rising edge of TCK on TMS 
and TOI, respectively. Oata is clocked out of the part 
on the falling edge of TCK on TOO. 

In addition to using TCK as a free running clock, it 
may be stopped in a low, 0, state, indefinitely as 
described in IEEE 1149.1. While TCK is stopped in 
the low state, the boundary scan latches retain their 
state. 

When boundary scan is not used, TCK should be 
tied high or left as a NC (This is important during 
power up to avoid the possibility of glitches on the 
TCK which could prematurely initiate boundary scan 
operations). TCK is supplied with an internal pullup 
resistor. 

TCK is a clock signal and is used as a reference for 
sampling other JT AG signals. On the riSing edge of 
TCK, TMS and TOI are sampled. On the falling edge 
of TCK, TOO is driven. 

Test Mode Select (TMS) 

TMS is decoded by the JTAG TAP (Tap Access 
Port) to select the operation of the test logic, as de­
scribed in Section 8.5.4. 

To guarantee deterministic behavior of the TAP con­
troller, TMS is provided with an internal pull-up resis­
tor. If boundary scan is not used, TMS may be tied 
high or left unconnected. TMS is sampled on the 
rising edge of TCK. TMS is used to select the inter­
nal TAP states required to load boundary scan in­
structions to data on TOI. For proper initialization of 
the JTAG logiC, TMS should be driven high, "1", for 
at least four TCK cycles following the riSing edge of 
RESET. 

Test Data Input (TDI) 

TOI is the serial input used to shift JT AG instructions 
and data into the component. The shifting of instruc­
tions and data occurs during the SHIFT-IR and 
SHIFT-OR controller states, respectively. These 
states are selected using the TMS signal as de­
scribed in Section 8.5.4. 



int'eL Intel486TM DX2 MICROPROCESSOR 

An internal pull-up resistor is provided on TOI to en­
sure a known logic state if an open circuit occurs on 
the TOI path. Note that when "1" is continuously 
shifted into the instruction register, the BYPASS 
instruction is selected. TOI is sampled on the 
rising edge of TCK, during the SHIFT-IR and the 
SHIFT-OR states. Ouring all other TAP controller 
states, TOI is a "don't care". 

Test Data Output (TOO) 

TOO is the serial output used to shift JT AG instruc­
tions and data out of the component. The shifting of 
instructions and data occurs during the SHIFT-IR 
and SHIFT-OR TAP controller states, respectively. 
These states are selected using the TMS signal as 
described in Section 8.5.4. When not in SHIFT-IR or 
SHIFT-OR state, TOO is driven to a high impedance 
state to allow connecting TOO of different devices in 
parallel. 

TOO is driven on the falling edge of TCK during the 
SHIFT-IR and SHIFT-OR TAP controller states. At 
all other times TOO is driven to the high impedance 
state. 

6.3 Write Buffers 

The Intel486 OX2 microprocessor contains four 
write buffers to enhance the performance of consec­
utive writes to memory. The buffers can be filled at a 
rate of one write per clock until all four buffers are 
filled. 

When all four buffers are empty and the bus is idle, a 
write request will propagate directly to the external 
bus bypassing the write buffers. If the bus is not 
available at the time the write is generated internally, 
the write will be placed in the write buffers and prop­
agate to the bus as soon as the bus becomes avail­
able. The write is stored in the on-chip cache imme­
diately if the write is a cache hit. 

Writes will be driven onto the external bus in the 
same order in which they are received by the write 
buffers. Under certain conditions a memory read will 
go onto the external bus before the memory writes 
pending in the buffer even though the writes oc­
curred earlier in the program execution. 

A memory read will only be reordered in front of all 
writes in the buffers under the following conditions: If 
all writes pending in the buffers are cache hits and 
the read is a cache miss. Under these conditions the 
Intel486 OX microprocessor will not read from an 
external memory location that needs to be updated 
by one of the pending writes. 

6-9 

Reordering of a read with the writes pending in the 
buffers can only occur once before all the buffers 
are emptied. Reordering read once only maintains 
cache consistency. Consider the following example: 
The CPU writes to location X. Location X is in the 
internal cache, so it is updated there immediately. 
However, the bus is busy so the write out to main 
memory is buffered (see Figure 6.3(a)). At this point, 
any reads to location X would be cache hits and 
most up-to-date data would be read. 

Intel486 DX2 
cpu Cache Write Buffer Main Memory 

'I-~"I '1--' 1 w 
X data x 
y data y 
Z 

Figure 6.3(a) 

The next instruction causes a read to location Y. 
Location Y is not in the cache (a cache miss). Since 
the write in the write buffer is a cache hit, the read is 
reordered. When location Y is read, it is put into the 
cache. The possibility exists that location Y will re­
place location X in the cache. If this is true, location 
X would no longer be cached (see Figure 6.3(b)). 

Intel486 DX2 
CPU Cache Write Buffer 

Figure 6.3(b) 

Main Memory 

Cache consistency has been maintained up to this 
point. If a subsequent read is to location X (now a 
cache miss) and it was reordered in front of the buff­
ered write to location X, stale data would be read. 
This is why only 1 read is allowed to be reordered. 
Once a read is reordered, all the writes in the write 
buffer are flagged as cache misses to ensure that no 
more reads are reordered. Since one of the condi­
tions to reorder a read is that all writes in the write 
buffer must be cache hits, no more reordering is al­
lowed until all of those flagged writes propogate to 
the bus. Similarly, if an invalidation cycle is run all 
entries in the write buffer are flagged as cache 
misses. 

For multiple processor systems and/or systems us­
ing OMA techniques, such as bus snooping, locked 
semaphores should be used to maintain cache con­
sistency. 



inteL Intel486™ DX2 MICROPROCESSOR 

6.3.1 WRITE BUFFERS AND 1/0 CYCLES 

Input/Output (1/0) cycles must be handled in a dif­
ferent manner by the write buffers. 

110 reads are never reordered in front of buffered 
memory writes. This insures that the Intel486 OX mi­
croprocessor will update all memory locations be­
fore reading status from an 1/0 device. 

The Intel486 OX microprocessor never buffers sin­
gle 110 writes. When processing an OUT instruction, 
internal execution stops until the 1/0 write actually 
completes on the external bus. This allows time for 
the external system to drive an invalidate into the 
Intel486 OX microprocessor or to mask interrupts 
before the processor progresses to the instruction 
following OUT. REP OUTS instructions will be buff­
ered. 

1/0 device recovery time must be handled slightly 
differently by the Intel486 OX microprocessor than 
with the Intel386 microprocessor. 1/0 device back­
to-back write recovery times could be guaranteed by 
the Intel386 microprocessor by inserting a jump to 
the next instruction in the code that writes to the 
device. The jump forces the Intel386 microprocessor 
to generate a prefetch bus cycle which can't begin 
until the 1/0 write completes. 

Inserting a jump to the next write will not work with 
the Intel486 OX microprocessor because the pre­
fetch could be satisfied by the on-chip cache. A read 
cycle must be explicitly generated to a non-cache­
able location in memory to guarantee that a read 
bus cycle is performed. This read will not be allowed 
to proceed to the bus until after the 1/0 write has 
completed because 1/0 writes are not buffered. The 
1/0 device will have time to recover to accept anoth­
er write during the read cycle. 

6.3.2 WRITE BUFFERS IMPLICATIONS ON 
LOCKED BUS CYCLES 

Locked bus cycles are used for read-modify-write 
accesses to memory. During a read-modify-write ac­
cess, a memory base variable is read, modified and 
then written back to the same memory location. It is 
important that no other bus cycles, generated by 
other bus masters or by the Intel486 OX microproc­
essor itself, be allowed on the external bus between 
the read and write portion of the locked sequence. 

During a locked read cycle the Intel486 OX micro­
processor will always access external memory, it will 
never look for the location in the on-chip cache, but 
for write cycles, data is written in the internal cache 
(if cache hit) and in the external memory. All data 
pending in the Intel486 OX microprocessor's write 
buffers will be written to memory before a locked 
cycle is allowed to proceed to the external bus. 

6-10 

The Intel486 OX microprocessor will assert the 
LOCK # pin after the write buffers are emptied dur­
ing a locked bus cycle. With the LOCK# pin assert­
ed, the microprocessor will read the data, operate 
on the data and place the results in a write buffer. 
The contents of the write buffer will then be written 
to external memory. LOCK # will become inactive 
after the write part of the locked cycle. 

6.4 Interrupt and Non-Maskable 
Interrupt Interface 

The Intel486 OX microprocessor provides two asyn­
chronous interrupt inputs, INTR (interrupt request) 
and NMI (non-maskable interrupt input). This section 
describes the hardware interface between the in­
struction execution unit and the pins. For a descrip­
tion of the algorithmic response to interrupts refer to 
Section 2.7. For interrupt timings refer to Section 
7.2.10. 

6.4.1 INTERRUPT LOGIC 

The Intel486 OX microprocessor contains a two­
clock synchronizer on the interrupt line. An interrupt 
request will reach the internal instruction execution 
unit two clocks after the INTR pin is asserted, if 
proper setup is provided to the first stage of the syn­
chronizer. 

There is no special logic in the interrupt path other 
than the synchronizer. The INTR signal is level sen­
sitive and must remain active for the instruction exe­
cution unit to recognize it. The interrupt will not be 
serviced by the Intel486 OX microprocessor if the 
INTR signal does not remain active. 

The instruction execution unit will look at the state of 
the synchronized interrupt signal at specific clocks 
during the execution of instructions (if interrupts are 
enabled). These specific clocks are at instruction 
boundaries, or iteration boundaries in the case of 
string move instructions. Interrupts will only be ac­
cepted at these boundaries. 

An interrupt must be presented to the Intel486 OX 
microprocessor INTR pin three clocks before the 
end of an instruction for the interrupt to be acknowl­
edged. Presenting the interrupt 3 clocks before the 
end of an instruction allows the interrupt to pass 
through the two clock synchronizer leaving one 
clock to prevent the initiation of the next sequential 
instruction and to begin interrupt service. If the inter­
rupt is not received in time to prevent the next in­
struction, it will be accepted at the end of next in­
struction, assuming INTR is still held active. The in­
terrupt service microcode will start after two dead 
clocks. 



infel· Intel486™ DX2 MICROPROCESSOR 

The longest latency between when an interrupt re­
quest is presented on the INTR.pin and when the 
interrupt service begins is: longest instruction used 
+ the two clocks for synchronization + one clock 
required to vector into the interrupt service micro­
code. 

6.4.2 NMI LOGIC 

The NMI pin has a synchronizer like that used on the 
INTR line. Other than the synchronizer, the NMllog­
ic is different from that of the maskable interrupt. 

NMI is edge triggered as opposed to the level trig­
gered INTR signal. The rising edge of the NMI signal 
is used to generate the interrupt request. The NMI 
input need not remain active until the interrupt is ac­
tually serviced •. The NMI pin only needs to remain 
active for a single clock if the required setup and 
hold times are met. NMI will operate properly if it is 
held active for an arbitrary number of clocks. 

The NMI input must be held inactive for at least four 
clocks after it is asserted to reset the edge triggered 
logic. A subsequent NMI may not be generated if the 
NMI is not held inactive for at least two clocks after 
being asserted. 

The NMI input is internally masked whenever the 
NMI routine is entered. The NMI input will remain 
masked until an IRET (return from interrupt) instruc­
tion is executed. Masking the NMI signal prevents 
recursive NMI calls. If another NMI occurs while the 
NMI is masked off, the pending NMI will be executed 
after the current NMI is done. Only one NMI can be 
pending while NMI is masked. 

6.5 Reset and Initialization 
The Intel486 OX microprocessor has a built in self 
test (BIST) that can be run during reset. The BIST is 
invoked if the AHOLO pin is asserted for 2 clocks 
before and 2 clocks after RESET is deasserted. RE­
SET must be active for 15 clocks with or with no 
BIST being enabled. Refer to Section 8.0 for infor­
mation on Intel486 OX microprocessor testability. 

The Intel486 OX microprocessor registers have the 
values shown in Table 1.5 after RESET is per­
formed. The EAX register contains information on 
the success or failure of the BIST if the self test is 
executed. The OX register always contains a compo­
nent identifier at the conclusion of RESET. The up­
per byte of OX (OH) will contain 04 and the lower 
byte (OL) will contain a stepping identifier (see Table 
1.5). The floating point registers are initialized as if 
the FINIT IFNINIT (initialize processor) instruction 
was executed if the BIST was performed. If the BIST 
is not executed, the floating point registers are un­
changed. 

6-11 

Table 6.2. Register Values after Reset 

Register 
Initial Value Initial Value 

(BIST) (NoBlst) 

EAX Zero (Pass) Undefined 
ECX Undefined Undefined 
EOX 0400+ Revision 10 0400+ Revision 10 
EBX Undefined Undefined 
ESP Undefined Undefined 
EBP Undefined Undefined 
ESI Undefined Undefined 
EOI Undefined Undefined 
EFLAGS 00000OO2h 00000002h 
EIP OFFFOh OFFFOh 
ES OOOOh OOOOh 
CS FOOOh· FOOOh· 
SS OOOOh OOOOh 
OS OOOOh OOOOh 
FS OOOOh OOOOh 
GS OOOOh OOOOh 
10TR Base = 0, Limit=3FFh Base=O, Limit=3FFh 
CRO 60000010h 60000010h 
OR7 OOOOOOOOh OOOOOOOOh 

CW 037Fh Unchanged 
SW OOOOh Unchanged 
TW FFFFh Unchanged 
FIP OOOOOOOOh Unchanged 
FEA OOOOOOOOh Unchanged 
FCS OOOOh Unchanged 
FOS OOOOh Unchanged 
FOP OOOh Unchanged 
FSTACK Undefined Unchanged 

Table 6.3. Component and Revision ID 

Intel486 DX2 CPU Component Revision 
Stepping Name ID ID 

A 04h 32h 

8 04h 33h 

The Intel486 OX microprocessor will start executing 
instructions at location FFFFFFFOH after RESET. 
When the first InterSegment Jump or Call is execut­
ed, address lines A20-A31 will drop LOW for CS-rel­
ative memory cycles, and the Intel486 OX micro­
processor will only execute instructions in the lower 
one Mbyte of physical memory. This allows the sys­
tem designer to use a ROM at the top of physical 
memory to initialize the system and take care of 
RESETs. 



intal.. Intel486TM DX2 MICROPROCESSOR 

RESET forces the Intel486 OX microprocessor to 
terminate all execution and local bus activity. No in­
struction or bus activity will occur as long as RESET 
is active. 

All entries in the cache are invalidated by RESET. 

6.5.1 PIN STATE DURING RESET 

The Intel486 DX2 microprocessor recognizes and 
can respond to HOLD, AHOLD, and BOFF # re­
quests regardless of the state of RESET. Thus, even 
though the processor is in reset, it can still float its 
bus in response to any of these requests. 

While in reset, the Intel486 OX microprocessor bus 
is in the state shown in Figure 6.4 if the HOLD, 
AHOLD and BOFF # requests are inactive. Note that 
the address (A31-A2, BE3#-BEO#) and cycle defi­
nition (M/IO#, D/C#, W/R#) pins are undefined 
from the time reset is asserted up to the start of the 
first bus cycle. All undefined pins (except FERR#) 
assume known values at the beginning of the first 
bus cycle. The first bus cycle is always a code fetch 
to address FFFFFFFOH. FERR# reflects the state 
of the ES (error summary status) bit in the floating 
point unit status word. The ES bit is initialized when­
ever the floating point unit state is initialized. The 
floating point unit's status word register can be ini­
tialized by BIST or by executing FINIT IFNINIT in­
struction. Thus, after reset and before executing the 
first FINIT or FNINIT instruction, the values of the 
FERR# and the numeric status word register bits 
0-7 depends on whether or not BIST is performed. 
Table 6-4 shows the state of FERR# signal after 
reset and before the execution of the FINIT IFNINIT 
instruction. 

Table&-4 

BIST FERR# 
FPU Status 

Performed Pin 
Word Register 

Bits 0-7 

YES 
Inactive Inactive 
(High) (Low) 

NO 
Undefined Undefined 

(Low or High) (Low or High) 

6-12 

After the first FINIT or FNINIT instruction, FERR# 
pin and the FPU status word register bits (0-7) will 
be inactive irrespective of the Built-In Self-Test 
(BIST). 

Power Down Mode (Upgrade Processor 
Support) 

The Power Down Mode on the Intel486 DX2 micro­
processor, when initiated by the upgrade processor, 
reduces the power consumption of the Intel486 DX2 
CPU (seeTable 14-2 D.C. Specifications), as well as 
forces all of its output signals to be 3-stated. The 
UP# pin on the Intel486 DX2 microprocessor is 
used for enabling the Power Down Mode. 

Once the UP# pin is driven active by the upgrade 
processor upon power-up, the Intel486 .DX2 micro­
processor's bus is floated immediately. The Intel486 
DX2 CPU enters the Power Down Mode when the 
UP# pin is sampled asserted in the clock before the 
falling edge of RESET. The UP# pin has no effect 
on the power down status, except during this edge. 
The Intel486 DX2 CPU then remains in the Power 
Down Mode until the next time the RESET signal is 
activated. For warm resets, with the upgrade proces­
sor in the system, the Intel486 DX2 CPU will remain 
3-stated and re-enter the Power Down Mode once 
RESET is de-asserted. Similarly for power-up resets, 
if the upgrade processor is not taken out of the sys­
tem, the Intel486 DX2 CPU will 3-state its outputs 
upon sensing the UP# pin active and enter the Pow­
er Down Mode after the falling edge of RESET. 



:!! 
CD c: ... 
CD 

!» 
~ 

" 3" 

~ 
fn 

~ (,.) 
1/1 
a. c: 
:l-
:::I 

CD 
:II 
m 
fn 
m 
-I 

ClK 

RESET 1----..... 219 elKs if .. "-test ----+I 

AHOlD 

FlUSH# 
(aync) 

FlUSH# 
(urnc) 

A20M" 
(sync) 

A20N" 
(oyne) 

ADS" 

BREQ 

A31 -A .. , MIO#, BLAST UNDEFINED .., 
BED-BE3". PWT. PCD 

A3, A21 PLOCK# 
! 

UNDEFINED 

D/c_. W/R" 
PCHK". 

lOCK# 7777 
D3,-Do· 

DPO-3 
________ .... >:.,{,)""')(.J)}-------------------------------:---------------------

HlDA ® 
241245-32 

NOTES: 
1. RESET is an asynchronous input. t20 must be met only to guarantee recognition on a specific clock edge. 
2a. When A20M# is driven synchronously. it must be driven high (inactive) for the CLK edge prior to the falling edge of RESET to ensure proper operation. A20M# 
setup and hold times must be met. -
2b. When A20M# is driven asynchronously. it must be driven high (inactive) for two CLKs prior to and two CLKs after the falling edge of RESET to ensure proper 
operation. 
3a. When FLUSH# is driven synchronously. it should be driven low (active) for the CLK edge prior to the falling edge of RESET to invoke the 3-state Output Test 
Mode. All outputs are guaranteed 3-stated within 10 CLKs of RESET being deasserted. FLUSH# setup and hold times must be met. 
3b. When FLUSH# is driven asynchronously, it must be driven low (active) for two CLKs prior to and two CLKs after the falling edge of RESET to invoke the 3-state 
Output Test Mode. All outputs are guaranteed 3-stated within 10 CLKs of RESET being deasserted. 
4. AHOLD should be driven high (active) for the CLK edge prior to the falling edge of RESET to invoke the Built-In-Self-Test (BISn. AHOLD setup and hold times 
must be met. 
5. Hold is recognized normally during RESET. On power-up HLDA is indeterminate until RESET is recognized by the CPU. 
6. 15 CLKs RESET pulse width for warm resets. Power-up resets require RESET to be asserted for at least 1 ms after Vee and CLK are stable. 





int:el.. Intel486TM DX2 MICROPROCESSOR 

7.0 BUS OPERATION 

7.1 Data Transfer Mechanism 

All data transfers occur as a result of one or more 
bus cycles. Logical data operands of byte, word and 
dword lengths may be transferred without restric­
tions on physical address alignment. Oata may be 
accessed at any byte boundary but two or three cy­
cles may be required for unaligned data transfers. 
See Section 7.1.3 Oynamic Bus Sizing and 7.1.6 Op­
erand Alignment. 

The Intel486 OX microprocessor address signals are 
split into two components. High-order address bits 
are provided by the address lines, A2-A31. The byte 
enables, BEO#-BE3#, form the low-order address 
and provide linear selects for the four bytes of the 
32-bit address bus. 

The byte enable outputs are asserted when their as­
sociated data bus bytes are involved with the pres­
ent bus cycle, as listed in Table 7.1. Byte enable 
patterns which have a negated byte enable separat­
ing two or three asserted byte enables will never 
occur (see Table 7.5). All other byte enable patterns 
are possible. 

Table 7.1. Byte Enables and Associated 
Data and Operand Bytes 

Byte 
Enable Associated Data Bus Signals 
Signal 

BEO# 00-07 (byte O-Ieast significant) 

BE1# 08-015 (byte 1) 

BE2# 016-023 (byte 2) 

BE3# 024-031 (byte 3-most significant) 

7-1 

Address bits AO and A 1 of the physical operand's 
base address can be created when necessary. Use 
of the byte enables to create AO and A 1 is shown in 
Table 7.2. The byte enables can also be decoded to 
generate BLE# (byte low enable) and BHE# (byte 
high enable). These signals are needed to address 
16-bit memory systems (see Section 7.1.4 Inter­
facing with 8- and 16-bit memories). 

A31 

A31 

A31 

A31 

A31 

A31 

Table 7.2. Generating AO-A31 from 
BEO#-BE3# and A2-A31 

Intel486TM OX CPU Address Signals 

......... A2 BE3# BE2# BE1# 

Physical Base 

Address 

......... A2 A1 AO 

......... A2 0 0 X X X 

......... A2 0 1 X X Low 

......... A2 1 0 X Low High 

. ........ A2 1 1 Low High High 

7.1.1 MEMORY AND 1/0 SPACES 

BEO# 

Low 

High 

High 

High 

Bus cycles may access physical memory space or 
I/O space. Peripheral devices in the system may ei­
ther be memory-mapped, or I/O-mapped, or both. 
Physical memory addresses range from OOOOOOOOH 
to FFFFFFFFH (4 gigabytes). I/O addresses range 
from OOOOOOOOH to OOOOFFFFH (64 Kbytes) for pro­
grammed I/O. See Figure 7.1. 



infel .. Intel486TM DX2 MICROPROCESSOR 

FFFFFFFFH 

PHYSICAL 
MEMORY 

4GBYTE 

~ I/(~~ 

I ~ 
/NOT I). 

~ 
OOOOOOOOH L.. __ --' 

:W1 
OOOOFFFFH B} ACCESSIBLE 

64 kBYTE PROGRAMMED 
OOOOOOOOH I/o SPACE 241245-33 

Physical Memory Space 1/0 Space 

Figure 7.1. Physical Memory and 1/0 Spaces 

7.1.2 MEMORY AND 1/0 SPACE. 
ORGANIZATION 

The Intel486 OX microprocessor data path to memo­
ry and input/output (110) spaces can be 32-, 16- or 
8-bits wide. The byte enable signals, BEO#-BE3#, 
allow byte granularity when addressing any memory 
or 110 structure whether 8, 16 or 32 bits wide. 

The Intel486 OX microprocessor includes bus con­
trol pins, BS16 # and BS8 #, which allow direct con­
nection to 16- and 8-bit memories and 110 devices. 
Cycles to 32-, 16- and 8-bit may occur in any se­
quence, since the 8S8# and 8S16# signals are 
sampled during each bus cycle. 

32-bit wide memory and 110 spaces are organized 
as arrays of physical 4-byte words. Each memory or 
110 4-byte word has four individually addressable 
bytes at consecutive byte addresses (see Figure 
7.2). The lowest addressed byte is associated with 
data signals 00-07; the highest-addressed byte 
with 024-031. Physical 4-byte words begin at ad­
dresses divisible by four. 

7-2 

32-Bit Wide Organization 

m"'~ I I I I r~'~ 
00000003H '-. • • • • • ~ oOOOOOOOH 

BE3# BE2# BE1# 9EO# 
241245-34 

16-Blt Wide Organization 

FFFFFFFFH OJ FFFFFFFEH 

OOOOOOOlH oOOOOOOOH L........w • ,....-J 

9HE# 9LE# 
241245-35 

Figure 7.2. Physical Memory 
and 1/0 Space Organization 



intel@ Intel486TM DX2 MICROPROCESSOR 

16-bit memories are organized as arrays of physical 
2-byte words. Physical 2-byte words begin at ad­
dresses divisible by two. The byte enables 8EO#-
8E3#, must be decoded to A1, 8LE# and 8HE# to 
address 16-bit memories (see 8ection 7.1.4). 

To address 8-bit memories, the two low order ad­
dress bits AO and A 1, must be decoded from 8EO #-
8E3 #. The same logic can be used for 8- and 16-bit 
memories since the decoding logic for 8LE# and AO 
are the same (see 8ection 7.1.4). 

7.1.3 DYNAMIC DATA BUS SIZING 

Oynamic data bus sizing is a feature allowing proc­
essor connection to 32-, 16- or 8-bit buses for mem­
ory or liD. A processor may connect to all three bus 
sizes. Transfers to or from 32-, 16- or 8-bit devices 
are supported by dynamically determining the bus 
width during each bus cycle. Address decoding cir­
cuitry may assert 8816# for 16-bit devices, or 
888# for 8-bit devices during each bus cycle. 888# 
and 8816# must be negated when addressing 32-
bit devices. An 8-bit bus width is selected if both 
8816# and 888# are asserted. 

8816#.and 888# force the Intel486 OX microproc­
essor to run additional bus cycles to complete re­
quests larger than 16- or 8 bits. A 32-bit transfer will 
be converted into two 16-bit transfers (or 3 transfers 
if the data is misaligned) when 8816# is asserted. 
Asserting 888# will convert a 32-bit transfer into 
four 8-bit transfers. 

Extra cycles forced by 8816# or 888# should be 
viewed as independent bus cycles. 8816# or 888# 
must be driven active during each of the extra cycles 
unless the addressed device has the ability to 
change the number of bytes it can return between 
cycles. 

The Intel486 OX microprocessor will drive the byte 
enables appropriately during extra cycles forced by 
888# and 8816#. A2-A31 will not change if ac­
cesses are to a 32-bit aligned area. Table 7.3 shows 
the set of byte enables that will be generated on the 
next cycle for each of the valid possibilities of the 
byte enables on the current cycle. 

The dynamic bus sizing feature of the Intel486 OX 
microprocessor is significantly different than that of 
the Intel386 microprocessor. Unlike the Intel386 mi­
croprocessor, the Intel486 OX microprocessor re­
quires that data bytes be driven on the addressed 
data pins. The simplest example of this function is a 
32-bit aligned, 8816# read. When the Intel486 OX 
microprocessor reads the two high order bytes, they 
must be driven on the data bus pins 016-031. The 
Intel486 OX microprocessor expects the two low or­
der bytes on 00-015. The Intel386 microprocessor 
expects both the high and low order bytes on 00-
015. The Intel386 microprocessor always reads or 
writes data on the lower 16 bits of the data bus when 
8816# is asserted. 

The external system must contain buffers to enable 
the Intel486 OX microprocessor to read and write 
data on the appropriate data bus pins. Table 7.4 
shows the data bus lines where the Intel486 OX mi­
croprocessor expects data to be returned for each 
valid combination of byte enables and bus sizing op­
tions. 

Valid data will only be driven onto data bus pins cor­
responding to active byte enables during write cy­
cles. Other pins in the data bus will be driven but 
they will not contain valid data. Unlike the Intel386 
microprocessor, the Intel486 OX microprocessor will 
not duplicate write data onto parts of the data bus 
for which the corresponding byte enable is negated. 

Table 7.3. Next Byte Enable Values for BSn# Cycles 

Current Next with BS8 # Next with BS16# 
BE3# BE2# BE1# BEO# BE3# BE2# BE 1# BEO# BE3# BE2# BE 1# BEO# 

1 1 1 0 n n n n n n n n 
1 1 0 0 1 1 0 1 n n n n 
1 0 0 0 1 0 0 1 1 0 1 1 
0 0 0 0 0 0 0 1 0 0 1 1 
1 1 0 1 n n n n n n n n 
1 0 0 1 1 0 1 1 1 0 1 1 
0 0 0 1 0 0 1 1 0 0 1 1 
1 0 1 1 n n n n n n n n 
0 0 1 1 0 1 1 1 n n n n 
0 1 1 1 n n n n n n n n 

"n" means that another bus cycle Will not be reqUired to satisfy the request. 

7-3 



infel .. Intel486TM DX2 MICROPROCESSOR 

Table 7.4. Data Pins Read with Different Bus Sizes 

BE3# BE2# BE1# BEO# 

1 1 1 0 
1 1 0 0 
1 0 0 0 
0 0 0 0 
1 1 0 1 
1 0 0 1 
0 0 0 1 
1 0 1 1 
0 0 1 1 
0 1 1 1 

7.1.4 INTERFACING WITH 8-,16- AND 32-BIT 
MEMORIES 

In 32-bit physical memories such as Figure 7.3, each 
4-byte word begins at a byte address that is a multi­
ple of four. A2-A31 are used as a 4-byte word se­
lect. BEO#-BE3# select individual bytes within the 
4-byte word. B88# and B816# are negated for all 
bus cycles involving the 32-bit array. 

32 DATA BUS (00-031) 

ADDRESS BUS (BEO#-BE3#,A2-A31) 

"HIGH" "HIGH" 
241245-36 

Figure 7.3. Intel486™ DX Microprocessor 
with 32-Bit Memory 

wlo BS8# IBS16# wBS8# WBS16# 

07-00 07-00 07-00 
015-00 07-00 015-00 
023-00 07-00 015-00 
031-00 07-00 015-00 
015-08 015-08 015-08 
023-08 015-08 015-08 
031-08 015-08 015-08 
023-016 023-016 023-016 
031-016 023-016 031-016 
031-024 031-024 031-024 

16- and 8-bit memories require external byte swap­
ping logic for routing data to the appropriate data 
lines and logic for generating BHE #, BLE # and A 1. 
In systems where mixed memory widths are used, 
extra address decoding logic is necessary to assert 
B816# or B88#. 

Figure 7.4 shows the Intel486 OX microprocessor 
address bus interface to 32-, 16- and 8-bit memo­
ries. To address 16-bit memories the byte enables 
must be decoded to produce A1, BHE# and BLE# 
(AO). For 8-bit wide memories the byte enables must 
be decoded to produce AO and A 1. The same byte 
select logic can be used in 16- and 8-bit systems 
since BLE# is exactly the same as AO (see Table 
7.5). 

BEO#-BE3# can be decoded as shown in Table 
7.5 to generate A1, BHE# and BLE#. The byte se­
lect logic necessary to generate BHE# and BLE# is 
shown in Figure 7.5. 

Intel486 ox Addre •• Bu. (A31-A2 BEO#-BE3#) 32-Bit 
~ icroprocessor Uemory 

58# 1 1 BS16# 

A31-A2 

B 

Addre •• 
~ 

16-8it 
Decode BHE#, BLE#, A 1 

Memory 

8EO#-8E3# Byte 
Select Logic 

AO(BLE#), A 1 

a-Bit 

A31-A2 Memory 

241245-37 

Figure 7.4. Addressing 16- and 8-Bit Memories 

7-4 



intel~ Intel486™ DX2 MICROPROCESSOR 

Table 7.5. Generating A1, BHE# and BLE# for Addressing 16·Bit Devices 

Intel486TM DX CPU Signals 8, 16·Bit Bus Signals 
Comments 

BE3# BE2# BE1# BEO# A1 BHE# BLE# (AO) 

H* H* H* H* x x x x-no active bytes 
H H H L L H L 
H H L H L L H 
H H L L L L L 
H L H H H H L 
H* L* H* L* x x x x-not contiguous bytes 
H L L H L L H 
H L L L L L L 
L H H H H L H 
L* H* H* L* x x x x-not contiguous bytes 
L* H* L* H* x x x x-not contiguous bytes 
L* H* L* L* x x x x-not contiguous bytes 
L L H H H L L 
L* L* H* L* x x x x-not contiguous bytes 
L L L H L L H 
L L L L L L L 

BLE# asserted when 00-07 of 16-bit bus is active. 
BHE # asserted when 08-015 of 16-bit bus is active. 
A 1 low for all even words; A 1 high for all odd words. 

Key: 
x = don't care 
H = high voltage level 
L = low voltage level 
• = a non-occurring pattern of Byte Enables; either none are asserted, 

or the pattern has Byte Enables asserted for non-contiguous bytes 

BEO# 

_BE_1_#-a..[_~ 
241245-38 

BE1# 

_BE_3_#-a..[_~ 
241245-39 

BLE# (OR AO) 

241245-40 

Figure 7.5. Logic to Generate A1, BHE# and BLE# for 16·Bit Busses 

Combinations of BEO#-BE3# which never occur 
are those in which two or three asserted byte en­
ables are separated by one or more negated byte 
enables. These combinations are "don't care" con­
ditions in the decoder. A decoder can use the non­
occurring BEO # - BE3 # combinations to its best ad­
vantage. 

7-5 

Figure 7.6 shows a Intel486 OX microprocessor data 
bus interface to 16- and 8-bit wide memories. Exter­
nal byte swapping logic is needed on the data lines 
so that data is supplied to, and received from the 
Intel486 OX microprocessor on the correct data pins 
(see Table 7.4). 



Intel486™ DX2 MICROPROCESSOR 

00-07 4 

Inlol486 OX 
08-015 4 32-Bil 

Microprocessor 016-023 4 Memory 
024-031 4 

BSS # 
BS16# (A2-A31, BEO#-BE3#) 

·1 I 
Bylo 

, 16 16-Bil Swap • ) Memory logic 

·1 I Address Bylo , 8 8-Bit 
Decode Swap • , Memory 

Logic 

241245-41 

Figure 7.6. Data Bus Interface to 16- and 8-bit Memories 

7.1.5 DYNAMIC BUS SIZING DURING CACHE 
LINE FILLS 

BS8# and BS16# can be driven during cache line 
fills. The Intel486 OX microprocessor will generate 
enough 8- or 16-bit cycles to fill the cache line. This 
can be up to 16 8-bit cycles. 

The external system should assume that all byte en­
ables are active for the first cycle of a cache line fill. 
The Intel486 OX microprocessor will generate prop­
er byte enables for subsequent cycles in the line fill. 
Table 7.6 shows the appropriate AO (BLE#), A1 and 
BHE # for the various combinations of the Intel486 
OX microprocessor byte enables on both the first 
and subsequent cycles of the cache line fill. The ... " 
marks all combinations of byte enables that will be 
generated by the Intel486 OX microprocessor during 
a cache line fill. 

7.1.6 OPERAND ALIGNMENT 

Physical 4-byte words begin at addresses that are 
multiples of four. It is possible to transfer a logical 
operand that spans more than one physical 4-byte 
word of memory or liD at the expense of extra cy­
cles. Examples are 4-byte operands beginning at ad­
dresses that are not evenly divisible by 4, or 2-byte 
words split between two physical 4-byte words. 
These are referred to as unaligned transfers. 

Operand alignment and data bus size dictate when 
multiple bus cycles are required. Table 7.7 describes 
the transfer cycles generated for all combinations of 
logical operand lengths, alignment, and data bus siz­
ing. When multiple cycles are required to transfer a 
multi-byte logical operand, the highest-order bytes 
are transferred first. For example, when the proces­
sor does a 4-byte unaligned read beginning at loca­
tion x11 in the 4-byte aligned space, the three high 
order bytes are read in the first bus cycle. The low 
byte is read in a subsequent bus cycle. 

Table 7.6. Generating AD, A1 and BHE# from the Intel486™ OX Microprocessor Byte Enables 

BE3# BE2# BE1# BED# 
First Cache Fill Cycle Any Other Cycle 

AD A1 BHE# AD A1 BHE# 

1 1 1 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 

'0 0 0 0 0 0 0 0 0 0 
1 1 0 1 0 0 0 1 0 0 
1 0 0 1 0 0 0 1 0 0 

'0 0 0 1 0 0 0 1 0 0 
1 0 1 1 0 0 0 0 1 1 

'0 0 1 1 0 0 0 0 1 0 
'0 1 1 1 0 0 0 1 1 0 

7-6 



int'et Intel486TM DX2 MICROPROCESSOR 

Table 7.7. Transfer Bus Cycles for Bytes, Words and Dwords 

Physical Byte Address in 
Memory (Low Order Bits) 

Transfer Cycles 
over 32-Bit Bus 

Transfer Cycles over 
16-Bit Data Bus 
II = BS16# Asserted 

Transfer Cycles over 
8-Bit Data Bus 
\1 = BS8 # Asserted 

KEY: 
b = byte transfer 
w = 2-byte transfer 
3 = 3-byte transfer 
d = 4-byte transfer 

xx 00 

b w 

b w 

b 

h = high-order portion 
I = low-order portion 
m = mid-order portion 

01 

w 

The function of unaligned transfers with dynamic 
bus sizing is not obvious. When the external systems 
asserts BS16# or BS8# forcing extra cycles, law­
order bytes or words are transferred first (opposite 
to the example above). When the Intel486 OX micro­
processor requests a 4-byte read and the external 
system asserts BS16#, the lower 2 bytes are read 
first followed by the upper 2 bytes. 

In the unaligned transfer described above, the proc­
essor requested three bytes on the first cycle. If the 
external system asserted B$16# during this 3-byte 
transfer, the lower word is transferred first followed 
by the upper byte. In the final cycle the lower byte of 
the 4-byte operand is transferred as in the 32-bit ex­
ample above. 

7.2 Bus Functional Description 

The Intel486 OX microprocessor supports a wide va­
riety of bus transfers to meet the needs of high per­
formance systems. Bus transfers G;an be single cycle 
or multiple cycle, burst or non-burst, cacheable or 
non-cacheable, 8-, 16- or 32-bit, and pseudo~locked. 
To support multiprocessing systems there are cache 
invalidation CYcles and locked cycles. 

7-7 

10 11 

4-Byte Operand Ib mlb I mhb I hb 

i i 
byte with byte with 
lowest highest 
address address 

This section begins with basic non-cacheable non­
burst single cycle transfers. It moves on to multiple 
cycle transfers and introduces the burst mode. 
Cacheability is introduced in Section 7.2:3. The re­
maining sections describe locked, pseudo-locked, 
invalidate, bus hold and interrupt cycles. 

Bus cycles and data cycles are discussed in this 
section. A bus cycle is at least two clocks long and 
begins with ADS# active in the first clock and ready 
active in the last clock. Data is transferred to or from 
the Intel486 OX microprocessor during a data cycle. 
A bus cycle contains one or more data cycles. 

Refer to Section 7.2.13 for a description of the bus 
states shown in the timing diagrams. 

7.2.1 NON-CACHEABLE NON-BURST SINGLE 
CYCLE 

7.2.1.1 No Walt States 

The fastest non-burst bus cycle that the Intel486 OX 
microprocessor supports is two clocks long. These 
cycles are called 2-2 cycles because reads and 
writes take two cycles each. The first 2 refers. to 



infel .. Intel486TM DX2 MICROPROCESSOR 

reads and the second to writes. For example, if a 
wait state needs to be added to a write, the cycle 
would be called 2-3. 

Basic two clock read and write cycles are shown in 
Figure 7.7. The Intel486 DX microprocessor initiates 
a cycle by asserting the address status signal 
(ADS#) at the rising edge of the first clock. The 
AOS# output indicates that a valid bus cycle defini­
tion and address is available on the cycle definition 
lines and address bus. 

The non-burst ready input (RDY #) is returned by the 
external system in the second clock. RDY # indi­
cates that the external system has presented valid 
data on the data pins in response to a read or the 
external system has accepted data in response to a 
write. 

The Intel486 OX microprocessor samples ROY # at 
the end of the second clock. The cycle is complete if 
ROY # is active (LOW) when sampled. Note that 
ROY # is ignored at the end of the first clock of the 
bus cycle. 

The burst last signal (BLAST #) is asserted (LOW) 
by the Intel486 OX microprocessor during the sec­
ond clock of the first cycle in all bus transfers illus­
trated in Figure 7.7. This indicates that each transfer 
is complete after a single cycle. The Intel486 DX 
microprocessor asserts BLAST# in the last cycle of 
a bus transfer. 

The timing of the parity check output (PCHK#) is 
shown in Figure 7.7. The Intel486 DX microproces­
sor drives the PCHK# output one clock after ready 
terminates a read cycle. PCHK # indicates the parity 
status for the data sampled at the end of the previ­
ous clock. The PCHK# signal can be used by the 
external system. The Intel486 OX microprocessor 
does nothing in response to the PCHK # output. 

7.2.1.2 Inserting Wait States 

The external system can insert wait states into the 
basic 2-2 cycle by driving ROY # inactive at the end 
of the second clock. RDY # must be driven inactive 
to insert a wait state. Figure 7.8 illustrates a simple 
non-burst, non-cacheable signal with one wait state 
added. Any number of wait states can be added to 
an Intel486 DX microprocessor bus cycle by main­
taining ROY # inactive. 

The burst ready input (BRDY #) must be driven inac­
tive on all clock edges where ROY# is driven inac­
tive for proper operation of these simple non-burst 
cycles. 

7-8 

7.2.2 MULTIPLE AND BURST CYCLE BUS 
TRANSFERS 

Multiple cycle bus transfers can be caused by inter­
nal requests from the Intel486 DX microprocessor or 
by the external memory system. An internal request 
for a 64-bit floating point load or a 128-bit pre-fetch 
must take more than one cycle. Internal requests for 
unaligned data may also require multiple bus cycles. 
A cache line fill requires multiple cycles to complete. 
The external system can cause a multiple cycle 
transfer when it can only supply 8 or 16 bits per 
cycle. 

Only multiple cycle transfers caused by internal re­
quests are considered in this section. Cacheable cy­
cles and 8- and 16-bit transfers are covered in Sec­
tions 7.2.3 and 7.2.5. 

7.2.2.1 Burst Cycles 

The Intel486 DX microprocessor can accept burst 
cycles for any bus requests that require more than a 
single data cycle. During burst cycles, a new data 
item is strobed into the Intel486 OX microprocessor 
every clock rather than every other clock as in non­
burst cycles. The fastest burst cycle requires 2 
clocks for the first data item with subsequent data 
items returned every clock. 

The Intel486 DX microprocessor is capable of burst­
ing a maximum of 32 bits during a write. Burst writes 
can only occur if BS8# or BS16# is asserted. For 
example, the Intel486 DX microprocessor can burst 
write four 8-bit operands or two 16-bit operands in a 
single burst cycle. But the Intel486 OX microproces­
sor cannot burst multiple 32-bit writes in a single 
burst cycle. 

Burst cycles begin with the Intel486 OX microproc­
essor driving out an address and asserting ADS# in 
the same manner as non-burst cycles. The Intel486 
OX microprocessor indicates that it is willing to per­
form a burst cycle by holding the burst last signal 
(BLAST #) inactive in the second clock of the cycle. 
The external system indicates its willingness to do a 
burst cycle by returning the burst ready Signal 
(BRDY #) active. 

The addresses of the data items in a burst cycle will 
all fall within the same 16-byte aligned area (corre­
sponding to an internal Intel486 DX microprocesSor 
cache line). A 16-byte aligned area begins at loca­
tion XXXXXXXO and ends at location XXXXXXXF. 
During a burst cycle, only BEO-3#, A2, and A3 may 
change. ~-A31, MIIO#, D/C#, and W/R# will re­
main stable throughout a burst. Given the first ad­
dress in a burst, external hardware can easily calcu­
late the address of subsequent transfers in advance. 
An external memory system can be designed to 
quickly fill the Intel486 DX microprocessor internal 
cache lines. 



intel., Intel486TM DX2 MICROPROCESSOR 

Ti T1 T2 T1 T2 11 12 T1 T2 Ti 

ClK 

ADS# \ / \ / \ / \ / 
A2-A31 

M/IO# 
X X X X D/C# 

BEO-3# 

W/R# \ / \ / 
RDY# 

BlAST# X \ / ~ / \ / ~ C 
DATA TO FROM CPU CPU FROM CPU 

PCHK# 

0) 
I 

OJ 
READ WRITE READ WRITE 

241245-42 

Figure 7.7. Basic 2-2 Bus Cycle 

Ti 11 T2 T2 11 T2 T2 Ti 

ClK 

ADS# \ / \ / 
A2-A31 

M/IO# 

X X D/C# 
BEO-3# 

W/R# \ / 
RDY# 

BLAST# X \ / \ C 
I 
I 

® 
I 

DATA ( : FROM CPU )-CPU 
I 

READ WRITE 

241245-43 

Figure 7.8. Basic 3-3 Bus Cycle 

7-9 



inial. li1te1486TM DX2 MICROPROCESSOR 

Burst cycles are not limited to cache line fills. Any 
multiple cycle read request by the Intel486 OX mi­
croprocessor can be converted into a burst cycle. 
The Intel486 OX microprocessor will only burst the 
number of bytes needed to complete a transfer. For 
example, eight bytes will be bursted in for a 64-bit 
floating point non-cacheable read. 

The external system converts a multiple cycle re­
quest into a burst cycle by returning BROY # active 
rather than ROY # (non-burst ready) in the first cycle 
of a transfer. For cycles that cannot be bursted such 
as interrupt acknowledge and halt, BROY # has the 
same effect as ROY #. BROY"" is ignored if both 
BROY # and ROY # are returned in the same clock. 
Memory areas and peripheral devices that cannot 
perform bursting must terminate cycles with ROY"". 

7.2.2.2 Terminating Multiple and 
Burst Cycle Transfers 

The Intel486 OX microprocessor drives BLAST# in­
active for all but the last cycle in a multiple cycle 
transfer. BLAST# is driven inactive in the first cycle 
to inform the external system that the transfer could 
take additional cycles. BLAST# is driven active in 
the last cycle of the transfer indicating that the next 
time BROY # or ROY"" is returned the transfer is 
complete. 

BLAST # is not valid in the first clock of a bus cycle. 
It should be sampled only in the second and subse­
quent clocks when ROY # or BROY # is returned. 

The number of cycles in a transfer is a function of 
several factors including the number of bytes the mi­
croprocessor needs to complete an internal request 
(1, 2, 4, 8, or 16), the state of the bus size inputs 
(BS8# and BS16#), the state of the cache enable 
input (KEN #) and alignment of the data to be trans­
ferred. 

When the Intel486 OX microprocessor initiates a re­
quest it knows how many bytes will be transferred 
and if the data is aligned. The external system must 
tell the microprocessor whether the data is cache­
able (if the transfer is a read) and the width of the 
bus by returning the state of the KEN#, BS8# and 
BS16# inputs one clock before ROY# or BROY# is 
returned. The Intel486 OX microprocessor deter­
mines how many cycles a transfer will take based on 
its internal information and inputs from the external 
system. 

BLAST # is not valid in the first clock of a bus cycle 
because the Intel486 OX microprocessor cannot de­
termine the number of cycles a transfer will take until 

the external system returns KEN#, BS8# and 
BS16#. BLAST# should only be sampled in the 
second and subsequent clocks of a cycle when the 
external system returns ROY # or BROY #. 

The system may terminate a burst cycle by returning 
ROY # instead of BROY #. BLAST # will remain 
deasserted until the last transfer. However, any 
transfers required to complete a cache line fill will 
follow the burst order, e.g., if burst order was 4, 0, C, 
8 and ROY # was returned at after 0, the next trans­
fers will be from C and 8. 

7.2.2.3 Non-Cacheable, Non-Burst, Multiple 
Cycle Transfers 

Figure 7.9 illustrates a 2 cycle non-burst, non-cache­
able multiple cycle read. This transfer is simply a 
sequence of two single cycle transfers. The Intel486 
OX microprocessor indicates to the external system 
that this is a multiple cycle transfer by driving 
BLAST # inactive during the second clock of the first 
cycle. The external system returns ROY # active in­
dicating that it will not burst the data. The external 
system also indicates that the data is not cacheable 
by returning KEN # inactive one clock before it re­
turns ROY # active. When the Intel486 OX micro­
processor samples ROY # active it ignores BROY #. 

Each cycle in the transfer begins when AOS# is 
driven active and the cycle is complete when the 
external system returns ROY # active. 

7-10 

The Intel486 OX microprocessor indicates the last 
cycle of the transfer by driving BLAST# active. The 
next ROY # returned by the external system termi­
nates the transfer. 

7.2.2.4 Non-Cacheable Burst Cycles 

The external system converts a multiple cycle re­
quest into a burst cycle by returning BROY # active 
rather than ROY # in the first cycle of the transfer. 
This is illustrated in Figure 7.10. 

There are several features to note in the burst read. 
AOS# is only driven active during the first cycle of 
the transfer. ROY"" must be driven inactive when 
BROY # is returned active. 

BLAST # behaves exactly as it does in the non-burst 
read. BLAST# is driven inactive in the second clock 
of the first cycle of the transfer indicating more cy­
cles to follow. In the last cycle, BLAST# is driven 
active telling the external memory system to end the 
burst after returning the next BROY #. 



int:eL Intel486TM DX2 MICROPROCESSOR 

Ti Tl T2 Tl T2 Ti 

ClK 

ADS# \ / \ / 
A2-A31 

M/IO# 

X X D/C# 
W/R# 

BEO-3# 

RDY# 

BRDY# 

KEN# 

BlAST# X 7 ~ ~ I 
I I 

DATA ® CPU ®--CPU 

I I 

1st DATA 2nd DATA 
241245-44 

Figure 7.9. Non-Cacheable, Non-Burst, Multiple Cycle Transfers 

Ti Tl T2 T2 Ti Ti 

ClK 

ADS# \ / 
A2-A31 

M/IO# 

X X D/C# 
W/R# 

BEO-3# 

RDY# 

BRDY# 

KEN# 

BlAST# X 7 \ L 
I 

DATA ~ CPU CPU 

241245-45 

Figure 7.10. Non-Cacheable Burst Cycle 

7-11 



int:el.. Intel486TM DX2 MICROPROCESSOR 

7.2.3 CACHEABLE CYCLES 

Any memory read can become a cache fill operation. 
The external memory system can allow a read re­
quest to fill a cache line by returning KEN # active 
one clock before ROY # or BROY # during the first 
cycle of the transfer on the external bus. Once 
KEN # is asserted and the remaining three require­
ments described below are met, the Intel486 OX mi­
croprocessor will fetch an entire cache line regard­
less of the state of KEN #. KEN # must be returned 
active in the last cycle of the transfer for the data to 
be written into the internal cache. The Intel486 OX 
microprocessor will only convert memory reads or 
prefetches into a cache fill. 

KEN # is ignored during write or 1/0 cycles. Memory 
writes will only be stored in the on·chip cache if 
there is a cache hit. 1/0 space is never cached in 
the internal cache. 

To transform a read or a prefetch into a cache line 
fill the following conditions must be met: 

1. The KEN # pin must be asserted one clock pri­
or to ROY # or BROY # being returned for the 
first data cycle. 

2. The cycle must be of the type that can be inter­
nally cached. (Locked reads, 1/0 reads, and 
interrupt acknowledge cycles are never cach­
ed). 

3. The page table entry must have the page 
cache disable bit (PCO) set to o. To cache a 
page table entry, the page directory must have 
PCO=O. To cache reads or prefetches when 
paging is disabled, or to cache the page direc­
tory entry, control register 3 (CR3) must have 
PCO=O. 

4. The cache disable (CO) bit in control register 0 
(CRO) must be clear. 

External hardware can determine when the Intel486 
OX microprocessor has transformed a read or pre­
fetch into a cache fill by examining the KEN # , 
M/IO#, O/C#, W/R#, LOCK#, and PCO pins. 
These pins convey to the system the outcome of 
conditions 1-3 in the above list. In addition, the In­
tel486 OX drives PCO high whenever the CO bit in 
CRO is set, so that external hardware can evaluate 
condition 4. 

Cacheable cycles can be burst or non-burst. 

7-12 

7.2.3.1 Byte Enables during a Cache Line Fill 

For the first cycle in the line fill, the state of the byte 
enables should be ignored. In a non-cacheable 
memory read, the byte enables indicate the bytes 
actually required by the memory or code fetch. 

The Intel486 OX microprocessor expects to receive 
valid data on its entire bus (32 bits) in the first cycle 
of a cache line fill. Oata should be returned with the 
assumption that all the byte enable pins are driven 
active. However if BS8 # is asserted only one byte 
need be returned on data lines 00-07. Similarly if 
BS16# is asserted two bytes should be returned on 
00-015. 

The Intel486 OX microprocessor will generate the 
addresses and byte enables for all subsequent cy­
cles in the line fill. The order in which data is read 
during a line fill depends on the address of the first 
item read. Byte ordering is discussed in Section 
7.2.4. 

7.2.3.2 Non-Burst Cacheable Cycles 

Figure 7.11 shows a non-burst cacheable cycle. The 
cycle becomes a cache fill when the Intel486 OX 
microprocessor samples KEN # active at the end of 
the first clock. The Intel486 OX microprocessor 
drives BLAST # inactive in the second clock in re­
sponse to KEN #. BLAST # is driven inactive be­
cause a cache fill requires 3 additional cycles to 
complete. BLAST # remains inactive until the last 
transfer in the cache line fill. KEN # must be re­
turned active in the last cycle of the transfer for the 
data to be written into the internal cache. 

Note that this cycle would be a single bus cycle if 
KEN # was not sampled active at the end of the first 
clock. The subsequent three reads would not have 
happened since a cache fill was not requested. 

The BLAST # output is invalid in the first clock of a 
cycle. BLAST # may be active during the first clock 
due to earlier inputs. Ignore BLAST # until the sec­
ond clock. 

Ouring the first cycle of the cache line fill the exter­
nal system should treat the byte enables as if they 
are all active. In subsequent cycles in the burst, the 
Intel486 OX microprocessor drives the address lines 
and byte enables (see Section 7.2.4.2 for Burst and 
Cache Line Fill Order). 



Intel486TM DX2 MICROPROCESSOR 

Ti Tl T2 Tl T2 T1 T2 T1 T2 Ti 

elK 

ADS# ''---!--If ''-----L.......If 
A2-A31 

1.4/10# 
D/C# 
W/R# ____ ~X~_r----~X~~----~X~_r----~XL_r-------

BEO-3# 

RDY# 

BRDY# 

I 

KEN# W w 
BlAST# ____ ~x'--............... / \'--.....J....-'.l...-.-_C,---

DATA ------~------~----~~~----~----~~~----~----~~~----~----~ 
241245-46 

Figure 7.11. Non-Burst, Cacheable Cycles 

7.2.3.3 Burst Cacheable Cycles 

Figure 7.12 illustrates a burst mode cache fill. As in 
Figure 7.11, the transfer becomes a cache line fill 
when the external system returns KEN # active at 
the end of the first clock in the cycle. 

7-13 

The external system informs the Intel486 OX micro­
processor that it will burst the line in by driving 
BROY # active at the end of the first cycle in the 
transfer. 

Note that during a burst cycle ADS# is only driven 
with the first address. 



intel .. Intel486TM DX2 MICROPROCESSOR 

Ti T1 T2 T2 T2 T2 Ti 

ClK 

ADS# \\.-....J........I! 
A4-A31, 

1.1/10#, 
O/C#, 
W/R# ____ ~x~~--~----~--~--~----

A2-A3, 
BEO-3# 

RDY# 

BRDY# 

KEN# 

BlAST# 

DATA 

PCHK# 

I 
I 

\J) 
I 

_~x i / 

241245-47 

Figure 7.12. Burst Cacheable Cycle 

7.2.3.4 Effect of Changing KEN# during a 
Cache Line Fill 

KEN# can change multiple times as long as it ar· 
rives at its final value in the clock before ROY # or 
BROY# is returned. This is illustrated in Figure 7.13. 
Note that the timing of BLAST# follows that of 
KEN# by one clock. The Intel486 OX samples 
KEN # every clock and uses the value returned in 
the clock before ready to determine if a bus cycle 

7·14 

would be a cache line fill. Similarly, it uses the value 
of KEN # in the last cycle, before early ROY # to 
load the line just retrieved from the memory into the 
cache. KEN # is sampled every clock, it must satisfy 
setup and hold time. 

KEN # can also change multiple times before a burst 
cycle as long as it arrives at its final value one clock 
before ready is returned active. 



intet Intel486™ DX2 MICROPROCESSOR 

Ti T1 T2 T2 T2 T1 T2 

ClK 

ADS# \ / \ / 
A4-A31, 

1.4/10#, ~ D/C#, 
W/R# 

A2-A3, 

~ ~ BEO-3# 

RDY# 

I 

KEN# W W 
BlAST# X / \ / \ / 

DATA @ CPU @-CPU 

241245-48 

Figure 7.13. Effect of Changing KEN# 

7.2.4 BURST MODE DETAILS data into the chip when either ROY # or BRDY # are 
active. Driving BRDY # and ROY # inactive adds a 

7.2.4.1 Adding Wait States to Burst Cycles 
wait state to the transfer. A burst cycle where two 
clocks are required for every burst item is shown in 

Burst cycles need not return data on every clock. Figure 7.14. 

The Intel486 OX microprocessor will only strobe 

7-15 



int:et 

CLK 

ADS# 

A4-A31, 
t.l/IO#, 
D/C#, 
W/R# 

A2-A3, 
BEO-3# 

RDY# 

BRDY# 

KEN# 

BLAST# 

Ti Tl 

\ 

X 

X 

Intel486™ DX2 MICROPROCESSOR 

T2 T2 T2 T2 T2 T2 T2 

I 

X X X 

I 

\JJ 

I I I 

DATA ffi ffi ffi fTo\ -----1'----!--~~)----7---<~~---!----<~)----!---~ 

241245-49 

Figure 7.14. Slow Burst Cycle 

7.2.4.2 Burst and Cache Line Fill Order 

The burst order used by the Intel486 DX microproc­
essor is shown in Table 7.7. This burst order is fol­
lowed by any burst cycle (cache or not), cache line 
fill (burst or not) or code prefetch. 

This burst order is optimized for a two-way inter­
leaved memory architecture. This means that if the 
memory is built as 64-bit (versus 32-bit) words which 
are multiplexed into the 32-bit data bus, the Intel486 
CPU will read all 64 bits before accessing the next 
location. 

The microprocessor presents each request for data 
in an order determined by the first address in the 
transfer. For example, if the first address was 104 
the next three addresses in the burst will be 100, 
10C and 108. 

7-16 

Table 7.7. Burst Order 

First Second Third Fourth 
Addr. Addr. Addr. Addr. 

0 4 8 C 
4 0 C 8 
8 C 0 4 
C 8 4 0 

An example of burst address sequencing is shown in 
Figure 7.15. 



intel~ Intel486™ DX2 MICROPROCESSOR If>OO~I!..O~OOO~OOW 

Ti Tl T2 T2 T2 T2 Ti 

ClK 

ADS# \ / 
A2-A31 X 

104 X 100 i X 10C i X 108: 

RDY# 

BRDY# 

I 

KEN# W W 
BlAST# X / \ r= 

DATA 

241245-50 

Figure 7.15. Burst Cycle Showing Order of Addresses 

The sequences shown in Table 7.7 accommodate 
systems with 64-bit busses as well as systems with 
32-bit data busses. The sequence applies to all 
bursts, regardless of whether the purpose of the 
burst is to fill a cache line, do a 64-bit read, or do a 
pre-fetch. If either BS8# or BS16# is returned ac­
tive, the Intel486 OX microprocessor completes the 
transfer of the current 32-bit word before progress­
ing to the next 32-bit word. For example, a BS16# 
burst to address 4 has the following order: 4-6-0-2-
C-E-8-A. 

7.2.4.3 Interrupted Burst Cycles 

Some memory systems may not be able to respond 
with burst cycles in the order defined in Table 7.7. 
To support these systems the Intel486 OX micro­
processor allows a burst cycle to be interrupted at 

7-17 

any time. The Intel486 OX microprocessor will auto­
matically generate another normal bus cycle after 
being interrupted to complete the data transfer. This 
is called an interrupted burst cycle. The external sys­
tem can respond to an interrupted burst cycle with 
another burst cycle. 

The external system can interrupt a burst cycle by 
returning ROY # instead of BROY #. ROY # can be 
returned after any number of data cycles terminated 
with BROY#. 

An example of an interrupted burst cycle is shown in 
Figure 7.16. The Intel486 OX microprocessor imme­
diately drives ADS # active to initiate a new bus cy­
cle after ROY # is returned active. BLAST # is driven 
inactive one clock after ADS # begins the second 
bus cycle indicating that the transfer is not complete. 



int:et Intel486TM DX2 MICROPROCESSOR 

Ti T1 T2 T2 T1 T2 T2 Ti 

ClK 

ADS# \L....---!---If 
A2-A31 ___ ..L.-..JX~_i-_1_04_-i-..JX 100 : X~_i-_1_0C_-i-....IX~1_08-+-: __ _ 

RDY# 

BRDY# 

KEN# w 
BlAST# '\...-......1........1 \,--_LL.....-

DATA 

241245-51 

Figure 7.16. Interrupted Burst Cycle 

KEN # need not be returned active in the first data 
cycle of the second part of the transfer in Figure 
7.16. The cycle had been converted to a cache fill in 
the first part of the transfer and the Intel486 OX mi­
croprocessor expects the cache fill to be completed. 
Note that the first half and second half of the trans­
fer in Figure 7.16 are each two cycle burst transfers. 

The order in which the Intel486 OX microprocessor 
requests operands during an interrupted burst trans­
fer is determined by Table 7.7. Mixing ROY# and 
BROY # does not change the order in which oper­
and addresses are requested by the Intel486 OX mi­
croprocessor. 

7-18 

An example of the order in which the Intel486 OX 
microprocessor requests operands during a cycle in 
which the external system mixes ROY # and 
BROY# is shown in Figure 7.17. The Intel486 OX 
microprocessor initially requests a transfer begin­
ning at location 104. The transfer becomes a cache 
line fill when the external system returns KEN # ac­
tive. The first cycle of the cache fill transfers the 
contents of location 104 and is terminated with 
ROY #. The Intel486 OX microprocessor drives out a 
new request (by asserting AOS#) to address 100. If 
the external system terminates the second cycle 
with BROY #, the Intel486 OX microprocessor will 
next request/expect address 10C. The correct order 
is determined by the first cycle in the transfer, which 
may not be the first cycle in the burst if the system 
mixes ROY # with BROY #. 



Intel486™ DX2 MICROPROCESSOR 

Ti Tl T2 T1 T2 T2 T2 Ti 

ClK 

ADS# \ / \ / 
A2-A31 X 

104 
X 

100 X 10C i X 108: 

RDY# 

BRDY# 

KEN# W W 
BlAST# X / \ / \ C 

DATA TO 
CPU 

241245-52 

Figure 7.17. Interrupted Burst Cycle with Unobvious Order of Addresses 

7.2.5 8- AND 16-BIT CYCLES 

The Intel486 DX microprocessor supports both 16-
and 8-bit external busses through the 8816# and 
888# inputs. 8816# and 888# allow the external 
system to specify, on a cycle by cycle basis, whether 
the addressed component can supply 8, 16 or 32 
bits. 8816# and 888# can be used in burst cycles 
as well as non-burst cycles. If both 8816# and 
888 # are returned active for any bus cycle, the In­
tel486 DX microprocessor will respond as if only 
8S8 # were active. 

The timing of 8816# and 888# is the same as that 
of KEN#. B816# and B88# must be driven active 
before the first RDY # or BRDY # is driven active. 

7-19 

Driving the B816# and B88# active can force the 
Intel486 DX microprocessor to run additional cycles 
to complete what would have been only a single 
32-bit cycle. B88# and B816# may change the 
state of BLA8T # when they force subsequent cy­
cles from the transfer. 

Figure 7.18 shows an example in which B88# 
forces the Intel486 DX microprocessor to run two 
extra cycles to complete a transfer. The Intel486 DX 
microprocessor issues a request for 24 bits of infor­
mation. The external system drives B88# active in­
dicating that only eight bits of data can be supplied 
per cycle. The Intel486 DX microprocessor issues 
two extra cycles to complete the transfer. 



intel .. Intel486™ DX2 MICROPROCESSOR 

Ti T1 T2 T1 T2 T1 T2 Ti 

ClK 

ADS# \'------!---II \'------!---II L 
A2-A31 

M/IO# 
D/C# 
W/R# 

__ ~~X~~ ____ ~~ ____ ~ ____ C= 
BEO-3# __ -+~X~~ __ ~X~~ __ ~X~~ ____ c= 

RDY# 

BS8# \JJ \JJ \JJ 
I 

BlAST# cb ,'----I--\J..-...+--'-c_ 
DATA rrt\ rrt\ ~ ----T----'----(Y:!:V>----'--~Y:!:V>---~----;~ 

241245-53 

Figure 7.18. 8-Bit Bus Size Cycle 

Extra cycles forced by the BS 16 # and BS8 # should 
be viewed as independent bus cycles. BS16# and 
BS8# should be driven active for each additional 
cycle unless the addressed device has the ability to 
change the number of bytes it can return between 
cycles. The Intel486 DX microprocessor will drive 
BLAST # inactive until the last cycle before the 
transfer is complete. 

Refer to Section 7.1.3 for the sequencing of ad­
dresses while BS8# or BS16# are active. 

7-20 

BS8# and BS16# operate during burst cycles in ex­
actly the same manner as non-burst cycles. For ex­
ample, a single non-cacheable read could be trans­
ferred by the Intel486 DX microprocessor as four 
8-bit burst data cycles. Similarly, a single 32-bit write 
could be written as four 8-bit burst data cycles. An 
example of a burst write is shown in Figure 7.19. 
Burst writes can only occur if BS8# or BS16# is 
asserted. 



intel., Intel486TM DX2 MICROPROCESSOR 

Ti T1 T2 T2 T2 T2 Ti 

ClK 

ADS# 

ADDR 
SPEC -J.........Jx'----...;.....---i----i-------r-----+---': C 

I 

BEO-3# 

RDY# 

BRDY# 

8S8# \'--__ -_--.J/ 
BlAST# _---T""--IX'---+--', 

DATA -----r---...J..--« : FROM CPU )-
~~: --~--~----~ 

241245-54 

Figure 7.19. Burst Write as a Result of BS8# or BS16# 

7.2.6 LOCKED CYCLES 

Locked cycles are generated in software for any in­
struction that performs a read-modify-write opera­
tion. During a read-modify-write operation the proc­
essor can read and modify a variable in external 
memory and be assured that the variable is not ac­
cessed between the read and write. 

Locked cycles are automatically generated during 
certain bus transfers. The xchg (exchange) instruc­
tion generates a locked cycle when one of its oper­
ands is memory based. Locked cycles are generat­
ed when a segment or page table entry is updated 
and during interrupt acknowledge cycles. Locked cy­
cles are also generated when the LOCK instruction 
prefix is used with selected instructions. 

7-21 

Locked cycles are implemented in hardware with the 
LOCK # pin. When LOCK # is active, the processor 
is performing a read-modify-write operation and the 
external bus should not be relinquished until the cy­
cle is complete. Multiple reads or writes can be 
locked. A locked cycle is shown in Figure 7.20. 
LOCK # goes active with the address and bus defini­
tion pins at the beginning of the first read cycle and 
remains active until RDY # is returned for the last 
write cycle. For unaligned 32 bits read-modify-write 
operation, the LOCK # remains active for the entire 
duration of the multiple cycle. It will go inactive when 
RDY # is returned for the last write cycle. 



Intel486™ DX2 MICROPROCESSOR 

Ti Tl T2 Tl T2 Ti 

CLK 

ADS# \ / \ / 
A2-A31 

1.1/10# 

X X D/C# 
8EO-3# 

W/R# \ I 
RDY# 

I I 

@ I 

DATA ( FROM PPU )-CPU 

I 

LOCK# 

\ f 
READ WRITE 

241245-55 

Figure 7.20. Locked Bus Cycle 

When LOCK# is active, the Intel486 OX microproc­
essor will recognize address hold and backoff but 
will not recognize bus hold. It is left to the external 
system to properly arbitrate a central bus when the 
Intel486 OX microprocessor generates LOCK#. 

7.2.7 PSEUDO-LOCKED CYCLES 

Pseudo-locked cycles assure that no other master 
will be given control of the bus during operand trans­
fers which take more than one bus cycle. Examples 
include 64-bit floating point read and writes, 64-bit 
descriptor loads and cache line fills. 

Pseudo-locked transfers are indicated by the 
PLOCK # pin. The memory operands must be 
aligned for correct operation of a pseudo-locked cy­
cle. 

PLOCK# need not be examined during burst reads. 
A 64-bit aligned operand can be retrieved in one 
burst (note: this is only valid in systems that do not 
interrupt bursts). 

The system must examine PLOCK # during 64-bit 
writes since the Intel486 OX microprocessor cannot 
burst write more than 32 bits. However, burst can be 
used within each 32-bit write cycle if BS8 # or 
B816# is asserted. BLAST will be deasserted in re­
sponse to BS8 # or BS 16 #. A 64-bit write will be 
driven out as two non-burst bus cycles. BLAST # is 
asserted during both writes since a burst is not pos­
sible. 

7-22 

PLOCK# is asserted during the first write to indicate 
that another write follows. This behavior is shown in 
Figure 7.21. 

The first cycle of a 64-bit floating point write is the 
only case in which both PLOCK# and BLAST# are 
asserted. Normally PLOCK# and BLAST# are the 
inverse of each other. 

During all of the cycles where PLOCK# is asserted, 
HOLD is not acknowledged until the cycle com­
pletes. This results in a large HOLD latency, espe­
cially when BS8# or BS16# is asserted. To reduce 
the HOLD latency during these cycles, windows are 
available between transfers to allow HOLD to be ac­
knowledged during non-cacheable, non-bursted 
code prefetches. PLOCK # will be asserted since 
BLAST # is negated, but it is ignored and HOLD is 
recognized during the prefetch. 

PLOCK # can change several times during a cycle 
settling to its final value in the clock ready is re­
turned. 

7.2.8 INVALIDATE CYCLES 

Invalidate cycles are needed to keep the Intel486 
OX microprocessor's internal cache contents con­
sistent with external memory. The Intel486 OX mi­
croprocessor contains a mechanism for listening to 
writes by other devices to external memory. When 
the processor finds a write to a Section of external 



inlet Intel486TM DX2 MICROPROCESSOR 

ClK 

ADS# 

A2-A31 
t.t/IO# 
D/C# 

BEO-3# 

W/R# 

PlOCK# 

RDY# 

BlAST# 

Ti T1 T2 

\L..--+--" 

X ~ 

Tl T2 Ti 

\L..--+--" 

L 

, I 

l ~ C 
I 
I 

DATA ~ fROM CPU ) ~ fROM CPU )-
WRITE WRITE 

241245-56 

Figure 7.21. Pseudo Lock Timing 

memory contained in its internal cache, the proces­
sor's internal copy is invalidated. 

Invalidations use two pins, address hold request 
(AHOlD) and valid external address (EADS#). 
There are two steps in an invalidation cycle. First, 
the external system asserts the AHOlD input forcing 
the Intel486 DX microprocessor to immediately relin­
quish its address bus. Next, the external system as­
serts EADS# indicating that a valid address is on 
the Intel486 DX microprocessor's address bus. 
EADS# and the invalidation address, Figure 7-22 
shows the fastest possible invalidation cycle. The 
Intel486 DX CPU recognizes AHOlD on one ClK 
edge and floats the address bus in response. To 
allow the address bus to float and avoid contention, 
EADS # and the invalidation address should not be 
driven until the following ClK edge. The microproc­
essor reads the address over its address lines. If the 
microprocessor finds this address in its internal 
cache, the cache entry is invalidated. Note that the 
Intel486 DX microprocessor's address bus is input! 
output unlike the Intel386 microprocessor's bus, 
which is output only. 

The Intel486 DX microprocessor immediately relin­
quishes its address bus in the next clock upon as­
sertion of AHOlD. For example, the bus could be 3 
wait states into a read cycle. If AHOlD is activated, 
the Intel486 DX microprocessor· will immediately 

7-23 

float its address bus before ready is returned termi­
nating the bus cycle. 

When AHOlD is asserted only the address bus is 
floated, the data bus can remain active. Data can be 
returned for a previously specified bus cycle during 
address hold (see Figures 7.22, 7.23). 

EADS# is normally asserted when an external mas­
ter drives an address onto the bus. AHOlD need not 
be driven for EADS# to generate an internal invali­
date. If EADS# alone is asserted while the Intel486 
DX microprocessor is driving the address bus, it is 
possible that the invalidation address will come from 
the Intel486 DX microprocessor itself. 

Note that it is also possible to run an invalidation 
cycle by asserting EADS# when HOLD or BOFF# 
is asserted. 

Running an invalidate cycle prevents the Intel486 
DX microprocessor cache from satisfying other inter­
nal requests, so invalidations should be run only 
when necessary. The fastest possible invalidate cy­
cle is shown in Figure 7.22, while a more realistic 
invalidation cycle is shown in 7.23. Both of the ex­
amples take one clock of cache access from the 
rest of the Intel486 DX microprocessor. 



infel~ Intel486TM DX2 MICROPROCESSOR 

Ti T1 T2 Ti Ti Tl T2 Ti 

ClK 

ADS# \ / \ / , , 
AD DR X ) ® CPu ( i C 

AHOlD /' \ 
, 

EADS# \JJ , , 
RDY# 

, , 
DATA @ CPU ~ CPU I , 

BREQ / \ \ 
241245-57 

Figure 7.22. Fast Internal Cache Invalidation Cycle 

Ti Tl T2 Ti Ti Ti T1 T2 

ClK 

ADS# \ / \ I 
, 

ADDR X ) ® CPu ( 

AHOlD /' \ 
EADS# \JJ , 

RDY# 

DATA @ I CPU J 

BREQ / \ \ / 
241245-58 

Figure 7.23. Typical Internal Cache Invalidation Cycle 

7-24 



int:et Intel486™ DX2 MICROPROCESSOR 

7.2.8.1 Rate of Invalidate Cycles 

The Intel486 OX microprocessor can accept one in­
validate per clock except in the last clock of a line 
fill. One invalidate per clock is possible as long as 
EAOS# is negated in ONE or BOTH of the following 
cases: 

1. In the clock ROY # or BROY # is returned for 
the last time. 

2. In the clock following ROY # or BROY # being 
returned for the last time. 

This definition allows two system designs. Simple 
designs can restrict invalidates to one every other 
clock. The simple design need not track bus activity. 
Alternatively, systems can request one invalidate 
per clock provided that the bus is monitored. 

7.2.8.2 Running Invalidate Cycles Concurrently 
with Line Fills 

Precautions are necessary to avoid caching stale 
data in the Intel486 OX microprocessor's cache in a 
system with a second level cache. An example of a 
system with a second level cache is shown in Figure 
7.24. An external device can be writing to main 
memory over the system bus while the Intel486 OX 
microprocessor is retrieving data from the second 
level cache. The Intel486 OX microprocessor will 
need to invalidate a line in its internal cache if the 
external device is writing to a main memory address 
also contained in the Intel486 OX microprocessor's 
cache. 

Intel486 ox 
Microprocessor 

Address, Data &: Control Bus 

Second 
Level 

Cache 

241245-59 

Figure 7.24. System with Second Level Cache 

A potential problem exists if the external device is 
writing to an address in external memory, and at the 
same time the Intel486 OX microprocessor is read­
ing data from the same address in the second level 
cache. The system must force an invalidation cycle 
to invalidate the data that the Intel486 OX micro­
processor has requested during the line fill. 

If the system asserts EAOS# before the first data in 
the line fill is returned to the Intel486 OX microproc­
essor, the system must return data consistent with 
the new data in the external memory upon resump­
tion of the line fill after the invalidation cycle. This is 
illustrated by the asserted EAOS# signal labeled 1 
in Figure 7.25. 



int'et Intel486™ DX2 MICROPROCESSOR 

Ti T1 T2 T2 T2 T2 T2 T2 Ti 

ClK 

I 

ADS# U.-J I 
I I I 
I I I 

ADDR ____ ~~X i )~~---~----~----7-~(~~ ____ _ 
AHOlD _--;----11 I 

\ I 

I I 

EADS# \:Jf\2J I I 

RDY# 

BRDY# 

KEN# 

DATA 

NOTES: 

I 

UJ 
I 
I 

241245-60 

1. Data returned must be consistent if its address equals the invalidation address in this clock 
2. Data returned will not be cached if its address equals the invalidation address in this clock 

Figure 7.25. Cache Invalidation Cycle Concurrent with Line Fill 

If the system asserts EAOS # at the same time or 
after the first data in the line fill is returned (in the 
same clock that the first ROY # or BROY # is re­
turned or any subsequent clock in the line fill) the 
data will be read into the Intel486 OX microproces­
sors input buffers but it will not be stored in the on­
chip cache. This is illustrated by asserted EAOS# 
signal labeled 2 in Figure 7.25. The stale data will be 
used to satisfy the request that initiated the cache fill 
cycle. 

7.2.9 BUS HOLD 

The Intel486 OX microprocessor provides a bus 
hold, hold acknowledge protocol using the bus hold 
request (HOLD) and bus hold acknowledge (HLOA) 
pins. Asserting the HOLD input indicates that anoth­
er bus master desires control of the Intel486 OX mi­
croprocessor's bus. The processor will respond by 
floating its bus and driving HLOA active when the 
current bus cycle, or sequence of locked cycles is 
complete. An example of a HOLO/HLOA transaction 
is shown in Figure 7.26. Unlike the Intel386 micro-

7-26 

processor, the Intel486 OX microprocessor can re­
spond to HOLD by floating its bus and asserting 
HLOA while RESET is asserted. 

Note that HOLD will be recognized during un-aligned 
writes (less than or equal to 32-bits) with BLAST # 
being active for each write. For greater than 32-bit or 
un-aligned write, HOLO# recognition is prevented 
by PLOCK # getting asserted. 

The pins floated during bus hold are: BEO#-BE3#, 
PCO, PWT, W/R#, O/C#, MIIO#, LOCK#, 
PLOCK#, AOS#, BLAST # , 00-031, A2-A31, 
OPO-OP3. 

7.2.10 INTERRUPT ACKNOWLEDGE 

The Intel486 OX microprocessor generates interrupt 
acknowledge cycles in response to maskable inter­
rupt requests generated on the interrupt request in­
put (INTR) pin. Interrupt acknowledge cycles have a 
unique cycle type generated on the cycle type pins. 



int'eL Intel486™ DX2 MICROPROCESSOR 

ClK 

ADS# 

A2-A31 
M/IO# 
D/C# 
W/R# 

8EO-3# 

RDY# 

Ti Ti Tl T2 Ti Ti T1 

\~--~----~~U~ __ __ 

DATA ---......----+-----i---« FROM :CPU )>--......----+----

HOLD _-----I. __ ~I 

HlDA 

241245-61 

Figure 7.26. HOLD/HLDA Cycles 

An example interrupt acknowledge transaction is 
shown in Figure 7.27. Interrupt acknowledge cycles 
are generated in locked pairs. Data returned during 
the first cycle is ignored. The interrupt vector is re­
turned during the second cycle on the lower 8 bits of 
the data bus. The Intel486 DX microprocessor has 
256 possible interrupt vectors. 

Ti Tl T2 Ti 

ClK 

\ / I. 
ADS# 

ADDR X 

RDY# 

DATA 

lOCK# 
\'---i-------i 

The state of A2 distinguishes the first and second 
interrupt acknowledge cycles. The byte address 
driven during the first interrupt acknowledge cycle is 
4 (A31-A3 low, A2 high, BE3#-BE1 # high, and 
BEO# low). The address driven during the second 
interrupt acknowledge cycle is 0 (A31-A2 low, 
BE3#-BE1 # high, BEO# low). 

Ti Tl T2 Ti 

4 CLOCKS I .: \ / 
X 

~ 
----r-------<~ 

;-------;---+---11 
241245-62 

Figure 7.27. Interrupt Acknowledge Cycles 

7-27 



int:et Intel486TM DX2 MICROPROCESSOR 

Each of the interrupt acknowledge cycles are termi­
nated when the external system returns ROY # or 
BROY #. Wait states can be added by withholding 
ROY # or BROY #. The Intel486 OX microprocessor 
automatically generates four idle clocks between the 
first and second cycles to allow for 8259A recovery 
time. 

7.2.11 SPECIAL BUS CYCLES 

The Intel486 OX microprocessor provides four spe­
cial bus cycles to indicate that certain instructions 
have been executed, or certain conditions have oc­
curred internally. The special bus cycles in Table 7.8 
are defined when the bus cycle definition pins are in 
the following state: MIIO#=O, OfC#=O and 
W fR # = 1. During these cycles the address bus is 
driven low while the data bus is undefined. 

Two of the special cycles indicate halt or shutdown. 
Another special cycle is generated when the In­
tel486 OX microprocessor executes an INVO (invali­
date data cache) instruction and could be used to 
flush an external cache. The Write Back cycle is 
generated when the Intel486 OX microprocessor ex­
ecutes the WBINVO (write-back invalidate data 
cache) instruction and could be used to synchronize 
an external write-back cache. 

Ti Tl T2 Tb Tb 

ClK 

I I 

ADS# 

I I 

A2-A31 I I 

M/IO# 
D/C# 

BEO-3# 

RDY# 

BRDY# 

I 
I 

KEN# W 
BOFF# 

, 
I 
I 

BlAST# 'LlJ \ 
I 
I 
I 

DATA 

I 

The external hardware must acknowledge these 
special bus cycles by returning ROY # or BROY #. 

Table 7.8. Special Bus Cycle Encoding 

BE3# BE2# BE1# BEO# 
Special 

Bus Cycle 

1 1 1 0 Shutdown 
1 1 0 1 Flush 
1 0 1 1 Halt 
0 1 1 1 Write Back 

7.2.11.1 Halt Indication Cycle 

The Intel486 OX microprocessor halts as a result of 
executing a HALT instruction. Signaling its entrance 
into the halt state, a halt indication cycle is per­
formed. The halt indication cycle is identified by the 
bus definition signals in special bus cycle state and a 
byte address of 2. BEO# and BE2# are the only 
signals distinguishing halt indication from shutdown 
indication, which drives an address of o. During the 
halt cycle undefined data is driven on 00-031. The 
halt indication cycle must be acknowledged by 
ROY # or BROY # asserted. 

Tlb T2 T2 T2 T2 

I 

LlJ 
I 
I 

I I 
I I 

W un 
I 

I 

I 

CD U 
I I 
I I 

241245-63 

Figure 7.28. Restarted Read Cycle 

7-28 



intel® Intel486TM DX2 MICROPROCESSOR 

Asserting BOFF# during a burst, BS8# or BS16# 
cycle will force the Intel486 DX microprocessor to 
ignore data returned for that cycle only. Data from 
previous cycles will still be valid. For example, if 
BOFF # is asserted on the third BRDY # of a burst, 
the Intel486 DX microprocessor assumes the data· 
returned with the first and second BRDY # 's is cor­
rect and restarts the burst beginning with the third 
item. The same rule applies to transfers broken into 
multiple cycle by BS8# or BS16#. 

There are two possible solutions to this problem. 
The first is to have all devices recognize this condi­
tion and ignore ADS# until ready comes back. The 
second approach is to use a "two clock" backoff: in 
the first clock AHOLD is asserted, and in the second 
clock BOFF # is asserted. This guarantees that 
ADS# will not be floating low. This is only necessary 
in systems where BOFF # may be asserted in the 
same clock as ADS#. 

Asserting BOFF # in the same clock as ADS # will 
cause the Intel486 DX microprocessor to float its 
bus in the next clock and leave ADS# floating low. 
Since ADS# is floating low, a peripheral may think 
that a new bus cycle has begun even though the 
cycle was aborted. 

7.2.13 BUS STATES 

A bus state diagram is shown in Figure 7.30. A de­
scription of the signals used in the diagram is given 
in Table 7.9. 

State 

Ti 

T1 

T2 

T1b 

Tb 

(RDY# ASSERTED + (BRDY# • BLAST#)ASSERTED) • 
(HOLD + AHOLD + NO REQUEST) • 
BOFF# NEGATED 

REQUEST PENDING • 
(RDY# ASSERTED + (BRDY# • BLAST#)ASSERTED) • 

REQUEST PENDING • 
HOLD NEGATED • 
AHOLD NEGATED .­
BOFF# NEGATED 

HOLD NEGATED • 
AHOLD NEGATED • 
BOFF# NEGATED • 

BOFF# NEGATE/ 

BOFF # ~~~ '*' "~ 
~v:<''' BOFF# 

ASSERTED / ".c,c,~~ NEGATED 

/BOFF# ASSERTED 

AHOLD NEGATED • 
BOFF# NEGATED • 
(HOLD NEGATED 0) 

• HOLD is only factored into this stote transition if Tb was entered while a 
non-cacheable, non-bursted, code prefetch was in progress. 
Otherwise, ignore HOLD. 

Figure 7.30. Bus State Diagram 

Table 7.9. Bus State Description 

Means 

241245-65 

Bus is idle. Address and status signals may be driven to undefined values, or the bus may be 
floated to a high impedance state. 

First clock cycle of a bus cycle. Valid address and status are driven and ADS# is asserted. 

Second and subsequent clock cycles of a bus cycle. Data is driven if the cycle is a write, or data is 
expected if the cycle is a read. RDY # and BRDY # are sampled. 

First clock cycle of a restarted bus cycle. Valid address and status are driven and ADS# is 
asserted. 

Second and subsequent clock cycles of an aborted bus cycle. 

7-30 



intel@ Intel486™ DX2 MICROPROCESSOR 

7.2.14 FLOATING POINT ERROR HANDLING 

The Intel486 DX microprocessor provides two op­
tions for reporting floating point errors. The simplest 
method is to raise interrupt 16 whenever an un­
masked floating point error occurs. This option may 
be enabled by setting the NE bit in control register 0 
(CRO). 

The Intel486 DX microprocessor also provides the 
option of allowing external hardware to determine 
how floating point errors are reported. This option is 
necessary for compatibility with the error reporting 
scheme used in DOS based systems. The NE bit 
must be cleared in CRO to enable user-defined error 
reporting. User-defined error reporting is the default 
condition because the NE bit is cleared on reset. 

Two pins, floating point error (FERR#) and ignore 
numeric error (IGNNE#), are provided to direct the 
actions of hardware if user-defined error reporting is 
used. The Intel486 DX microprocessor asserts the 
FERR # output to indicate that a floating point error 
has occurred. FERR # corresponds to the ERROR # 
pin on the Intel387 math coprocessor. However, 
there is a difference in the behavior of the two. 

In some cases FERR# is asserted when the next 
floating point instruction is encountered and in other 
cases it is asserted before the next floating point 
instruction is encountered depending upon the exe­
cution state of the instruction causing the exception. 

The following class of floating point exceptions drive 
FERR # at the time the exception occurs (Le., before 
encountering the next floating point instruction). 

1. The stack fault, invalid operation, and denormal 
exceptions on all transcendental instructions, in­
teger arithmetic instructions, FSQRT, FSEALE, 
FPREM(1), FXTRACT, FBLD, and FBSTP. 

2. Any exceptions on store instructions (including 
integer store instructions). 

7-31 

The following class of floating point exceptions drive 
FERR # only after encountering the next floating 
point instruction. 

1. Exceptions other than on all transcendental in­
structions, integer arithmetic instructions, 
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, 
and FBSTP. 

2. Any exception on all basic arithmetic, load, com­
pare, and control instructions (Le., all other in­
structions). 

For both sets of exceptions above, the Intel387 
Math Coprocessor asserts ERROR # when the error 
occurs and does not wait for the next floating point 
instruction to be encountered. 

IGNNE # is an input to the Intel486 DX microproces­
sor. 

When the NE bit in CRO is cleared, and IGNNE# is 
asserted, the Intel486 DX microprocessor will ignore 
a user floating point error and continue executing 
floating point instructions. When IGNNE# is negat­
ed, the Intel486 DX microprocessor will freeze on 
floating point instructions which get errors (except 
for the control instructions FNCLEX, FNINIT, 
FNSAVE, FNSTENV, FNSTCW, FNSTSW, FNSTSW 
AX, FNENI, FNDISI and FNSETPM). IGNNE# may 
be asynchronous to the Intel486 DX clock. 

In systems with user-defined error reporting, the 
FERR # pin is connected to the interrupt controller. 
When an unmasked floating point error occurs, an 
interrupt is raised. If IGNNE# is high at the time of 
this interrupt, the Intel486 DX microprocessor will 
freeze (disallowing execution of a subsequent float­
ing point instruction) until the interrupt handler is in­
voked. By driving the IGNNE# pin low (when clear­
ing the interrupt request), the interrupt handler can 
allow execution of a floating point instruction, within 
the interrupt handler, before the error condition is 
cleared (by FNCLEX, FNINIT, FNSAVE or 
FNSTENV). If execution of a non-control floating 
point instruction, within the floating point interrupt 
handler, is not needed, the IGNNE# pin can be tied 
HIGH. 



int:eL Intel486™ DX2 MICROPROCESSOR 

RESET 

I/O PORT FO 
Address decoder 

I 
Processor Bus 

I) I 
olI CLR 

Q 

-- FERR# 

0 
PR 

Y.... 5V 

Intel487™ sx 

! 
oLI 

Math 
CoProcessor 

CLR 

Q 

~ 

r0- O 
PR 

8259A L 5V 
Programmable 

Interrupt IGNNE# 

IRQ13 Controller 

INTR 

241245-96 

Figure 7-31. DOS Compatible Numerics Error Circuit 

7-32 



intel® Intel486™ DX2 MICROPROCESSOR 

ClK 

ADS# 

ADDR 
SPEC 

RDY# 

BRDY# 

BOFF# 

Ti Tl T2 

\ I 

X 
100 

Tb Tb Tlb T2 Ti 

\ 
\ I 

) ( 100 C 

DATA -------7-~( FROM ~PU )~--:------+-----7"--1( FROM :CPU )-

241245-64 

Figure 7.29. Restarted Write Cycle 

A halted Intel486 OX microprocessor resumes exe­
cution when INTR (if interrupts are enabled) or NMI 
or RESET is asserted. 

7.2.11.2 Shutdown Indication Cycle 

The Intel486 OX microprocessor shuts down as a 
result of a protection fault while attempting to pro­
cess a double fault. Signaling its entrance into the 
shutdown state, a shutdown indication cycle is per­
formed. The shutdown indication cycle is identified 
by the bus definition signals in special bus cycle 
state and a byte address of O. 

7.2.12 BUS CYCLE RESTART 

In a mUlti-master system another bus master may 
require the use of the bus to enable the Intel486 OX 
microprocessor to complete its current bus request. 
In this situation the Intel486 OX microprocessor will 
need to restart its bus cycle after the other bus mas­
ter has completed its bus transaction. 

A bus cycle may be restarted if the external system 
asserts the backoff (BOFF#) input. The Intel486 OX 
microprocessor samples the BOFF # pin every 
clock. The Intel486 OX microprocessor will immedi­
ately (in the next clock) float its address, data and 
status pins when BOFF # is asserted (see Figure 
7.28). Any bus cycle in progress when BOFF # is 

7-29 

asserted is aborted and any data returned to the 
processor is ignored. The same pins are floated in 
response to BOFF # as are floated in response to 
HOLD. HLOA is not generated in response to 
BOFF #. BOFF # has higher priority than ROY # or 
BROY #. If either ROY # or BROY # are returned in 
the same clock as BOFF #, BOFF # takes effect. 

The device asserting BOFF # is free to run any cy­
cles it wants while the Intel486 OX microprocessor 
bus is in its high impedance state. If backoff is re­
quested after the Intel486 OX microprocessor has 
started a cycle, the new master should wait for 
memory to return ROY # or BROY # before assum­
ing control of the bus. Waiting for ready provides a 
handshake to insure that the memory system is 
ready to accept a new cycle. If the bus is idle when 
BOFF # is asserted, the new master can start its 
cycle two clocks after issuing BOFF # . 

The external memory can view BOFF # in the same 
manner as BLAST #. Asserting BOFF # tells the ex­
ternal memory system that the current cycle is the 
last cycle in a transfer. 

The bus remains in the high impedance state until 
BOFF# is negated. Upon negation, the Intel486 OX 
microprocessor restarts its bus cycle by driving out 
the address and status and asserting ADS #. The 
bus cycle then continues as usual. 



int:et Intel486™ DX2 MICROPROCESSOR 

8.0 Intel486 DX2 CPU TESTABILITY 
Testing the Intel486 DX2 microprocessor can be di­
vided into three categories: Built-In Self Test (BIST), 
Boundary Scan, and external testing. BIST performs 
basic device testing on the Intel486 DX2 CPU, in­
cluding the non-random logic, control ROM (CROM), 
translation lookaside buffer (TLB), and on-chip 
cache memory. Boundary Scan provides additional 
test hooks that conform to the IEEE Standard Test 
Access Port and Boundary Scan Architecture (IEEE 
Std.1149.1). The Intel486 DX2 microprocessor also 
has a test mode in which all of its outputs are 3-stat­
ed. Additional testing can be performed by using the 
test registers within the Intel486 DX2 CPU. 

8.1 Built-In Self Test (BIST) 

The BIST is initiated by holding the AHOLD (address 
hold) pin HIGH for 2 CLKs before and 2 CLKs after 
RESET going from HIGH to LOW as shown in Figure 
6.4. The BIST takes approximately 600 thousand 
clocks, or approximately 24 milliseconds with a 
50 MHz Intel486 DX2 microprocessor. No bus cy­
cles will be run by the Intel486 DX2 microprocessor 
until the BIST is concluded. Note that for the In­
tel486 DX2 microprocessor the RESET must be ac­
tive for 15 clocks with or without BIST being enabled 
for warm resets. 

The results of BIST is stored in the EAX register. 
The Intel486 DX2 microprocessor has successfully 
passed the BIST if the contents of the EAX register 
are zero. If the results in EAX are not zero then the 
BIST has detected a flaw in the microprocessor. The 
microprocessor performs reset and begins normal 
operation at the completion of the BIST. 

The non-random logic, control ROM, on-chip cache 
and translation lookaside buffer (TLB) are tested 
during the BIST. 

The cache portion of the BIST verifies that the 
cache is functional and that it is possible to read and 
write to the cache. The BIST manipulates test regis­
ters TR3, TR4 and TR5 while testing the cache. 
These test registers are described in Section 8.2. 

The cache testing algorithm writes a value to each 
cache entry, reads the value back, and checks that 
the correct value was read back. The algorithm may 
be repeated more than once for each of the 512 
cache entries using different constants. 

The TLB portion of the BIST verifies that the TLB is 
functional and that it is possible to read and write to 
the TLB. The BIST manipulates test registers TR6 
and TR? while testing the TLB. TR6 and TR? are 
described in Section 8.3. 

8-1 

8.2 On-Chip Cache Testing 

The on-chip cache testability hooks are designed to 
be accessible during the BIST and for assembly lan­
guage testing of the cache. 

The Intel486 DX2 microprocessor contains a cache 
fill buffer and a cache read buffer. For testability 
writes, data must be written to the cache fill buffer 
before it can be written to a location in the cache. 
Data must be read from a cache location into the 
cache read buffer before the microprocessor can 
access the data. The cache fill and cache read buff­
er are both 128 bits wide. 

8.2.1 CACHE TESTING REGISTERS TR3, TR4 
AND TR5 

Figure 8.1 shows the three cache testing registers: 
the Cache Data Test Register (TR3), the Cache 
Status Test Register (TR4) and the Cache Control 
Test Register (TR5). External access to these regis­
ters is provided through MOV reg,TREG and MOV 
TREG, reg instructions. 

Cache Data Test Register: TR3 

The cache fill buffer and the cache read buffer can 
only be accessed through TR3. Data to be written to 
the cache fill buffer must first be written to TR3. Data 
read from the cache read buffer must be loaded into 
TR3. 

TR3 is 32 bits wide while the cache fill and read 
buffers are 128 bits wide. 32 bits of data must be 
written to TR3 four times to fill the cache fill buffer. 
32 bits of data must be read from TR3 four times to 
empty the cache read buffer. The entry select bits in 
TR5 determine which 32 bits of data TR3 will access 
in the buffers. 

Cache Status Test Register: TR4 

TR4 handles tag, LRU and valid bit information dur­
ing cache tests. TR4 must be loaded with a tag and 
a valid bit before a write to the cache. After a read 
from a cache entry, TR4 contains the tag and valid 
bit from that entry, and the LRU bits and four valid 
bits from the accessed set. 

Cache Control Test Register: TR5 

TR5 specifies which testability operation will be per­
formed and the set and entry within the set which 
will be accessed. 



intet Intel486™ DX2 MICROPROCESSOR 

The seven bit set select field determines which of 
the 128 sets will be accessed. 

The functionality of the two entry select bits depend 
on the state of the control bits. When the fill or read 
buffers are being accessed, the entry select bits 
point to the 32-bit location in the buffer being ac­
cessed. When a cache location is specified, the en­
try select bits point to one of the four entries in a set. 
Refer to Table 8.1. 

Five testability functions can be performed on the 
cache. The two control bits in TR5 specify the oper­
ation to be executed. The five operations are: 

1. Write cache fill buffer 

2. Perform a cache testability write 

3. Perform a cache testability read 

4. Read the cache read buffer 

5. Perform a cache flush 

3t 

DATA 

Table 8.1 shows the encoding of the two control bits 
in TR5 for the cache testability functions. Table 8.1 
also shows the functionality of the entry and set se­
lect bits for each control operation. 

The cache tests attempt to use as much of the nor­
mal operating circuitry as possible. Therefore when 
cache tests are being performed, the cache must be 
disabled (the CD and NW bits in control register 
must be set to 1 to disable the cache. See Section 
5). 

8_2.2 CACHE TESTABILITY WRITE 

A testability write to the cache is a two step process. 
First the cache fill buffer must be loaded with 128 
bits of data and TR4 loaded with the tag and valid 
bit. Next the contents of the fill buffer are written to a 
cache location. Sample assembly code to do a write 
is given in Figure 8.2. 

o 

Cache Data I
TR3 

'--_________________________________ ---'TestReglster 

i0 = unused 

Control Bits 

Bit 1 Bit 0 

0 0 

0 1 

1 0 

1 1 

2 

TR4 
Cache Status 
Test Register 

4 3 2 t 0 

TR5 
Set Select 

Test Register 

Figure 8.1. Cache Test Registers 

Table 8.1. Cache Control Bit Encoding and Effect of 
Control Bits on Entry Select and Set Select Functionality 

Operation 
Entry Select Bits 

Set Select Bits 
Function 

Enable 
{ Fill Buffer Write Select 32-bit location in fill/read 

Read Buffer Read buffer 
-

Perform Cache Write Select an entry in set. Select a set to write to 

Perform Cache Read Select an entry in set. Select a set to read from 

Perform Flush Cache - -

8-2 



infel .. Intel486™ DX2 MICROPROCESSOR 

Sample Assembly Code 

An example assembly language sequence to perform a cache write is: 

eax. ebx. ecx. edx contain the cache line to write 
edi contains the tag information to load 
CRO already says to enable reads/write to TR5 

fill the cache buffer 
mov eSi,O set up command 
mov tr5,esi load to TR5 
mov tr3,eax load data into cache fill buffer 
mov esi,4 
mov tr5,esi 
mov tr3,ebx 
mov esi,8 
mov tr5,esi 
mov tr3,ecx 
mov esi,Och 
mov tr5,esi 
mov tr3,edx 

load the Cache Status Register 

mov tr4,edi 

perform the cache write 

mov eSi,l 
mov tr5,esi 

; load 21-bit tag and valid bit 

; write the cache (set 0, entry 0) 

An example assembly language sequence to perform a cache read is: 

data into eax, ebx, eox, edx; status into edi 

read the cache line back 

read 

read 

mov esi,2 
mov tr5,esi 

the data from 

mov esi,O 
mov tr5,esi 
mov eax,tr3 
mov eSi,4 
mov tr5,esi 
mov ebx,tr3 
mov esi,8 
mov tr5,esi 
mov ecx,tr3 
mov esi,Och 
mov tr5,esi 
mov edx,tr3 

; do cache testability read (set 0, entry 0) 

the read buffer 

the status from TR4 

mov edi,tr4 

Figure 8.2 Sample Assembly Code for Cache Testing 

8-3 



infel .. Intel486TM DX2 MICROPROCESSOR 

Loading the fill buffer is accomplished by first writing 
to the entry select bits in TRS and setting the control 
bits in TRS to 00. The entry select bits identify one of 
four 32-bit locations in the cache fill buffer to put 32 
bits of data. Following the write to TRS, TR3 is writ­
ten with 32 bits of data which are immediately 
placed in the cache fill buffer. Writing to TR3 initiates 
the write to the cache fill buffer. The cache fill buffer 
is loaded with 128 bits of data by writing to TRS and 
TR3 four times using a different entry select location 
each time. 

TR4 must be loaded with the 21-bit tag and valid bit 
(bit 10 in TR4) before the contents of the fill buffer 
are written to a cache location. 

The contents of the cache fill buffer are written to a 
cache location by writing TRS with a control field of 
01 along with the set select and entry select fields. 
The set select and entry select field indicate the lo­
cation in the cache to be written. The normal cache 
LRU update circuitry updates the internal LRU bits 
for the selected set. 

Note that a cache testability write can only be done 
when the cache is disabled for replaces (the CD bit 
is control register 0 is reset to 1). Also note that care 
must be taken when directly writing to entries in the 
cache. If the entry is set to overlap an area of mem­
ory that is being used in external memory, that 
cache entry could inadvertently be used instead of 
the external memory. Of course, this is exactly the 
type of operation that one would desire if the cache 
were to be used as a high speed RAM. 

8.2.3 CACHE TESTABILITY READ 

A cache testability read is a two step process. First 
the contents of the cache location are read into the 
cache read buffer. Next the data is examined by 
reading it out of the read buffer. Sample assembly 
code to do a testability read is given in Figure 8.2. 

Reading the contents of a cache location into the 
cache read buffer is initiated by writing TRS with the 
control bits set to 10 and the desired seven-bit set 
select and two-bit entry select. In response to the 
write to TRS, TR4 is loaded with the 21-bit tag field 
and the single valid bit from the cache entry read. 
TR4 is also loaded with the three LRU bits and four 
valid bits corresponding to the cache set that was 
accessed. The cache read buffer is filled with the 
128-bit value which was found in the data array at 
the specified location. 

The contents of the read buffer are examined by 
performing four reads of TR3. Before reading TR3 
the entry select bits in TRS must loaded to indicate 
which of the four 32-bit words in the read buffer to 

8-4 

transfer into TR3 and the control bits in TRS must be 
loaded with 00. The register read of TR3 will initiate 
the transfer of the 32-bit value from the read buffer 
to the specified general purpose register. 

Note that it is very important that the entire 128-bit 
quantity from the read buffer and also the informa­
tion from TR4 be read before any memory refer­
ences are allowed to occur. If memory operations 
are allowed to happen, the contents of the read buff­
er will be corrupted. This is because the testability 
operations use hardware that is used in normal 
memory accesses for the Intel486 DX2 microproc­
essor whether the cache is enabled or not. 

8.2.4 FLUSH CACHE 

The control bits in TRS must be written with 11 to 
flush the cache. None of the other bits in TRS have 
any meaning when 11 is written to the control bits. 
Flushing the cache will reset the LRU bits and the 
valid bits to 0, but will not change the cache tag or 
data arrays. 

When the cache is flushed by writing to TRS the 
special bus cycle indicating a cache flush to the ex­
ternal system is not run (see Section 7.2.11, Special 
Bus Cycles). The cache should be flushed with the 
instruction INVD (Invalidate Data Cache) instruction 
or the WBINVD (Write-back and Invalidate Data 
Cache) instruction. 

8.3 Translation Lookaside Buffer 
(TLB) Testing 

The Intel486 DX2 microprocessor TLB testability 
hooks are similar to those in the Intel386 microproc­
essor. The testability hooks have been enhanced to 
provide added test features and to include new fea­
tures in the Intel486 DX2 microprocessor. The TLB 
testability hooks are designed to be accessible dur­
ing the BIST and for assembly language testing of 
the TLB. 

8.3.1 TRANSLATION LOOKASIDE BUFFER 
ORGANIZATION 

The Intel486 DX2 microprocessors TLB is 4-way set 
associative and has space for 32 .entries. The TLB is 
logically split into three blocks shown in Figure 8.3. 

The data block is physically split into four arrays, 
each with space for eight entries. An entry in the 
data block is 22 bits wide containing a 20-bit physi­
cal address and two bits for the page attributes. The 
page attributes are the PCD (page cache disable) bit 
and the PWT (page write-through) bit. Refer to Sec­
tion 4.S.4 for a discussion of the PCD and PWT bits. 



intel® Intel486TM DX2 MICROPROCESSOR 

.-- Tag Page 
I 17 Bits Protection 

8 TS L-____ ...... ~i_~_itS_ ..... 
Physical Page + 
Address Attributes 1 
20 Bits 2 Bits 8 Entries 

L---_"'----....I~ 

1,-------III '-------I 

1,-------III~ ______ 
I~ ------II ~ ______ 

[JRU t 
Bits 8 

:r 
241245-66 

Figure 8.3. TLB Organization 

The tag block is also split into four arrays, one for 
each of the data arrays. A tag entry is 21 bits wide 
containing a 17-bit linear address and four protec­
tion bits. The protection bits are valid (V), user/su­
pervisor (U/S), read/write (R/W) and dirty (D). 

The third block contains eight three bit quantities 
used in the pseudo least recently used (LRU) re­
placement algorithm. These bits are called the LRU 
bits. The LRU replacement algorithm used in the 

31 

Linear Address 

31 

Physical Address 

TLB is the same as used by the on-chip cache. For a 
description of this algorithm refer to Section 5.5. 

8.3.2 TLB TEST REGISTERS TR6 AND TR7 

The two TLB test registers are shown in Figure 8.4. 
TR6 is the command test register and TR7 is the 
data test register. External access to these registers 
is provided through MOV reg,TREG and MOV 
TREG,reg instructions. 

12 11 10 9 8 7 6 5 4 o 

I
v 1 D ID#I u lu#1 wlw) : ""~:1 Option I~~: Command 

. . . . . . . 1 ''''," " p :~ .Test Register 

12 11 10 9 8 7 6 5 4 3 2 1 o 
TR7 

" c TLB Data 

'--__________________ -'-_'---'-__ --'=.."""""'-..L.-'-_-'-....... ~_''''' Test Register 

t 
Replacement Pointer Select (Writes) Replacement Pointer (Writes) 

Hit Indication (Lookup) Hit Location (Lookup) 

Figure 8.4. TLB Test Registers 

8-5 



intel .. Intel486TM DX2 MICROPROCESSOR 

Command Test Register: TR6 

TR6 contains the tag information and control infor­
mation used in a TLB test. Loading TR6 with tag and 
control information initiates a TLB write or lookup 
test. 

TR6 contains three bit fields, a 20-bit linear address 
(bits 12-31), seven bits for the TLB tag protection 
bits (bits 5-11) and one bit (bit 0) to define the type 
of operation to be performed on the TLB. 

The 20-bit linear address forms the tag information 
used in the TLB access. The lower three bits of the 
linear address select which of the eight sets are ac­
cessed. The upper 17 bits of the linear address form 
the tag stored in the tag array. 

The seven TLB tag protection bits are described be­
low. 

V: The valid bit for this TLB entry 

D,D#: The dirty bit for/from the TLB entry 

U,U#: The user/supervisor bit for/from the TLB 
entry 

W,W#: The read/write bit for/from the TLB entry 

Two bits are used to represent the D, U/S and R/W 
bits in the TLB tag to permit the option of a forced 
miss or hit during a TLB lookup operation. The 
forced miss or hit will occur regardless of the state 
of the actual bit in the TLB. The meaning of these 
pairs of bits is given in Table 8.2. 

The operation bit in TR6 determines if the TLB test 
operation will be a write or a lookup. The function of 
the operation bit is given in Table 8.3. 

Table 8.3. TR6 Operation Bit Encoding 

TR6 TLB Operation 
BitO to Be Performed 

0 TLB Write 
1 TLB Lookup 

Data Test Register: TR7 

TR7 contains the information stored or read from the 
data block during a TLB test operation. Before a TLB 

test write, TR7 contains the physical address and 
the page attribute bits to be stored in the entry. After 
a TLB test lookup hit, TR7 contains the physical ad­
dress, page attributes, LRU bits and entry location 
from the access. 

TR7 contains a 20-bit physical address (bits 12-31), 
two bits for PCD (bit 11) and PWT (bit 10) and three 
bits for the LRU bits (bits 7-9). The LRU bits in TR7 
are only used during a TLB lookup test. The func­
tionality of TR7 bit 4 differs for TLB writes and look­
ups. The encoding of bit 4 is defined in Tables 8.4 
and 8.5. Finally TR7 contains two bits (bits 2-3) to 
specify a TLB replacement pointer or the location of 
a TLB hit. 

Table 8.4. Encoding of Bit 4 of TR7 on Writes 

TR7 Replacement Pointer 
Bit 4 Used on TLB Write 

0 Pseudo-LRU Replacement Pointer 
1 Data Test Register Bits 3:2 

Table 8.5. Encoding of Bit 4 of TR7 on Lookups 

TR7 Meaning after TLB 
Bit4 Lookup Operation 

0 TLB Lookup Resulted in a Miss 
1 TLB Lookup Resulted in a Hit 

A replacement pointer is used during a TLB write. 
The pointer indicates which of the four entries in an 
accessed set is to be written. The replacement 
pointer can be specified to be the internal LRU bits 
or bits 2-3 in TR7. The source of the replacement 
pointer is specified by TR7 bit 4. The encoding of bit 
4 during a write is given by Table 8.4. 

Note that both testability writes and lookups affect 
the state of the internal LRU bits regardless of the 
replacement pointer used. All TLB write operations 
(testability or normal operation) cause the written 
entry to become the most recently used. For exam­
ple, during a testability write with the replacement 
pointer specified by TR7 bits 2-3, the indicated en­
try is written and that entry becomes the most re­
cently used as specified by the internal LRU bits. 

Table 8.2. Meaning of a Pair of TR6 Protection Bits 

TR6 Protection Bit TR6 Protection Bit# Meaning on Meaning on 
(B) (B#) TLB Write Operation TLB Lookup Operation 

0 0 Undefined Miss any TLB TAG Bit B 
0 1 Write 0 to TLB TAG Bit B Match TLB TAG Bit B if 0 
1 0 Write 1 to TLB TAG Bit B Match TLB TAG Bit B if 1 
1 1 Undefined Match any TLB TAG Bit B 

8-6 



inteL Intel486TM DX2 MICROPROCESSOR 

There are two TLB testing operations: write entries 
into the TLB, and perform TLB lookups. One major 
enhancement over TLB testing in the Intel386 micro­
processor is that paging need not be disabled while 
executing testability writes or lookups. 

Note that any time one TLB set contains the same 
linear address in more than one of its entries, look­
ing up that linear address will not result in a hit. 
Therefore a single linear address should not be writ­
ten to one TLB set more than once. 

8.3.3 TLB WRITE TEST 

To perform a TLB write TR7 must be loaded fol­
lowed by a TR6 load. The register operations must 
be performed in this order since the TLB operation is 
triggered by the write to TR6. 

TR7 is loaded with a 20-bit physical address and 
values for PCD and PWT to be written to the data 
portion of the TLB. In addition, bit 4 of TR7 must be 
loaded to indicate whether to use TR7 bits 3-2 or the 
internal LRU bits as the replacement pointer on the 
TLB write operation. Note that the LRU bits in TR7 
are not used in a write test. 

TR6 must be written to initiate the TLB write opera­
tion. Bit 0 in TR6 must be reset to zero to indicate a 
TLB write. The 20-bit linear address and the seven 
page protection bits must also be written in TR6 to 
specify the tag portion of the TLB entry. Note that 
the three least significant bits of the linear address 
specify which of the eight sets in the data block will 
be loaded with the physical address data. Thus only 
17 of the linear address bits are stored in the tag 
array. 

8.3.4 TLB LOOKUP TEST 

To perform a TLB lookup it is only necessary to write 
the proper tags and control information into TR6. Bit 
o in TR6 must be set to 1 to indicate a TLB lookup. 
TR6 must be loaded with a 20-bit linear address and 
the seven protection bits. To force misses and 
matches of the individual protection bits on TLB 
lookups, set the seven protection bits as specified in 
Table 8.2. 

A TLB lookup operation is initiated by the write to 
TR6. TR7 will indicate the result of the lookup opera­
tion following the write to TR6. The hit/miss indica­
tion can be found in TR7 bit 4 (see Table 8.5). 

TR7 will contain the following information if bit 4 indi­
cated that the lookup test resulted in a hit. Bits 2-3 
will indicate in which set the match occurred. The 22 
most significant bits in TR7 will contain the physical 
address and page attributes contained in the entry. 

8-7 

Bits 9-7 will contain the LRU bits associated with 
the accessed set. The state of the LRU bits is previ­
ous to their being updated for the current lookup. 

If bit 4 in TR7 indicated that the lookup test resulted 
in a miss the remaining bits in TR7 are undefined. 

Again it should be noted that a TLB testability lookup 
operation affects the state of the LRU bits. The LRU 
bits will be updated if a hit occurred. The entry which 
was hit will become the most recently used. 

8.4 3-State Output Test Mode 

The Intel486 DX2 microprocessor provides the abili­
ty to float all its outputs and bidirectional pins. This 
includes all pins floated during bus hold as well as 
pins which are never floated in normal operation of 
the chip (HLDA, BREQ, FERR# and PCHK#). 
When the Intel486 DX2 microprocessor is in the 3-
state output test mode external testing can be used 
to test board connections. 

The 3-state test mode is invoked by driving 
FLUSH # low for 2 clocks before and 2 clocks after 
RESET going low. The outputs are guaranteed to 3-
state no later than 10 clocks after RESET goes low 
(see Figure 6.4). The Intel486 DX2 microprocessor 
remains in the 3-state test mode until the next 
RESET. 

8.5 Intel486™ DX2 Microprocessor 
Boundary Scan (JTAG) 

The Intel486 DX2 microprocessor provides testabili­
ty features compatible with the IEEE Standard Test 
Access Port and Boundary Scan Architecture (IEEE 
Std.1149.1). The test logic provided allows for test­
ing to insure that components function correctly, that 
interconnections between various components are 
correct, and that various components interact cor­
rectly on the printed circuit board. 

The boundary scan test logic consists of a boundary 
scan register and support logic that are accessed 
through a test access port (TAP). The TAP provides 
a simple serial interface that makes it possible to 
test all signal traces with only a few probes. 

The TAP can be controlled via a bus master. The 
bus master can be either automatic test equipment 
or a component (PLD) that interfaces to the four-pin 
test bus. 



int:et Intel486™ DX2 MICROPROCESSOR 

8.5.1 BOUNDARY SCAN ARCHITECTURE 

The boundary scan test logic contains the following 
elements: 

- Test access port (TAP), consisting of input pins 
TMS, TCK, and TOI; and output pin TOO. 

- TAP controller, which interprets the inputs on the 
test mode select (TMS) line and performs the 
corresponding operation. The operations per­
formed by the TAP include controlling the in­
struction and data registers within the compo­
nent. 

- Instruction register (IR), which accepts instruc­
tion codes shifted into the test logic on the test 
data input (TOI) pin. The instruction codes are 
used to select the specific test operation to be 
performed or the test data register to be ac­
cessed. 

- Test data registers: The Intel486 OX2 microproc­
essor contains three test data registers: Bypass 
register (BPR), Device Identification register 
(DID), and Boundary Scan register (BSR). 

The instruction and test data registers are separate 
shift-register paths connected in parallel and have a 
common serial data input and a common serial data 
output connected to the TAP signals, TOI and TOO, 
respectively. 

8.5.2 DATA REGISTERS 

The Intel486 OX2 CPU contains the two required 
test data registers; bypass register and boundary 
scan register. In addition, they also have a device 
identification register. 

Each test data register is serially connected to TOI 
and TOO, with TOI connected to the most significant 
bit and TOO connected to the least significant bit of 
the test data register. Data is shifted one stage (bit 
position within the register) on each riSing edge of 
the test clock (TCK). 

In addition the Intel486 OX2 CPU contains a runbist 
register to support the RUNBIST boundary scan in­
struction. 

8.5.2.1 Bypass Register 

The Bypass Register is a one-bit shift register that 
provides the minimal length path between TOI and 
TOO. This path can be selected when no test opera­
tion is being performed by the component to allow 
rapid movement of test data to and from other com­
ponents on the board. While the bypass register is 
selected, data is transferred from TOI to TOO with­
out inversion. 

8.5.2.2 Boundary Scan Register 

The Boundary Scan Register is a single shift register 
path containing the boundary scan cells that are 
connected to all input and output pins of the Intel486 
OX2 CPU. Figure 8.1 shows the logical structure of 
the boundary scan register. While output cells deter­
mine the value of the signal driven on the corre­
sponding pin, input cells only capture data; they do 
not affect the normal operation of the device. Data is 
transferred without inversion from TOI to TOO 
through the boundary scan register during scanning. 
The boundary scan register can be operated by the 
EXTEST and SAMPLE instructions. The boundary 
scan register order is described in Section 8.5.5 . 

. --------------------------------------------------. 

SYSTEM 
LOGICI---.,-i 

INPUT I 

TCK 

I 

I 
I 
I 
I 
I 
I 
I ._-------

TDI 

BOUNDARY SCAN REGISTER 

SYSTEM 
LOGIC 

TOO 

Figure 8.1. Logical Structure of Boundary Scan Register 

8-8 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I SYSTEM 

BIDIRECTIONAL 
I PIN 
I 
I 
I 
I 
I 
I 
I 
I 
I SYSTEM 

3-STATE 
I OUTPUT 
I 
I 
I 
I 
I 
I 

241245-67 



int'eL Intel486™ DX2 MICROPROCESSOR 

8.5.2.3 Device Identification Register 

The Device Identification Register contains the man­
ufacturer's identification code, part number code, 
and version code in the format shown in Figure 8.2. 
Table 8.1 lists the codes corresponding to the In­
tel486 DX2 CPU. 

8.5.2.4 Runbist Register 

The Runbist Register is a one bit register used to 
report the results of the Intel486 DX2 CPU BIST 
when it is initiated by the RUNBIST instruction. This 
register is loaded with a "1" prior to invoking the 
BIST and is loaded with "0" upon successful com­
pletion. 

8.5.3 INSTRUCTION REGISTER 

The Instruction Register (IR) allows instructions to 
be serially shifted into the device. The instruction 
selects the particular test to be performed, the test 
data register to be accessed, or both. The instruc-

tion register is four (4) bits wide. The most significant 
bit is connected to TDI and the least significant bit is 
connected to TOO. There are no parity bits associat­
ed with the Instruction register. Upon entering the 
Capture-IR TAP controller state, the Instruction reg­
ister is loaded with the default instruction "0001 ", 
SAMPLE/PRELOAD. Instructions are shifted into 
the instruction register on the rising edge of TCK 
while the TAP controller is in the Shift-IR state. 

8.5.3.1 Intel486 DX2 CPU Boundary Scan 
Instruction Set 

The Intel486 DX2 CPU supports all three mandatory 
boundary scan instructions (BYPASS, SAMPLE/ 
PRELOAD, and EXTEST) along with two optional in­
structions (IDCODE and RUNBIST). Table 8.2 lists 
the Intel486 DX2 CPU boundary scan instruction 
codes. The instructions listed as PRIVATE cause 
TOO to become enabled in the Shift-DR state and 
cause "0" to be shifted out of TOO on the rising 
edge of TCK. Execution of the PRIVATE instructions 
will not cause hazardous operation of the Intel486 
DX2 CPU. 

/31302926/27262524232221201918171615141312/11109676543 21/0/ 

VERSION PART NUMBER 
MANUfACTURER 

1 
IDENTITY 

/ 
241245-66 

Figure 8.2. Format of Device Identification Register 

Table 8.1 

Component Code Version Code Part Number Code Manufacturer Identity 

Intel486 DX2 CPU (Ax) OOh 0432h 09h 

Intel486 DX2 CPU (Bx) OOh 0433h 09h 

8-9 



Intel486TM DX2 MICROPROCESSOR 

Table 8.2 the component without interfering with 

Instruction Code Instruction Name 

0000 EXTEST 

0001 SAMPLE 

0010 IDCODE 

0011 PRIVATE 

0100 PRIVATE 

0101 PRIVATE 

0110 PRIVATE 

0111 PRIVATE 

1000 RUNBIST 

1001 PRIVATE 

1010 PRIVATE 

1011 PRIVATE 

1100 PRIVATE 

1101 PRIVATE 

1110 PRIVATE 

1111 BYPASS 

EXT EST The instruction code is "0000". The EX­
TEST instruction allows testing of cir­
cuitry external to the component pack­
age, typically board interconnects. It 
does so by driving the values loaded 
into the Intel486 DX2 CPU's boundary 
scan register out on the output pins cor­
responding to each boundary scan cell 
and capturing the values on Intel486 
DX2 CPU input pins to be loaded into 
their corresponding boundary scan reg­
ister locations. I/O pins are selected as 
input or output, depending on the value 
loaded into their control setting loca­
tions in the boundary scan register. Val­
ues shifted into input latches in the 
boundary scan register are never used 
by the internal logic of the Intel486 DX2 
CPU. 

NOTE: 

After using the EXTEST instruction, the 
Intel486 DX2 CPU must be reset before 
normal (non-boundary scan) use. 

SAMPlE/ The instruction code is "0001". The 
PRELOAD SAMPLE/PRELOAD has two functions 

that it performs. When the TAP control­
ler is in the Capture-DR state, the SAM­
PLE/PRELOAD instruction allows a 
"snap-shot" of the normal operation of 

8-10 

that normal operation. The instruction 
causes boundary scan register cells as· 
sociated with outputs to sample the val· 
ue being driven by the Intel486 DX2 
CPU. It causes the cells associated with 
inputs to sample the value being driven 
into the Intel486 DX2 CPU. On both out­
puts and inputs the sampling occurs on 
the rising edge of TCK. When the TAP 
controller is in the Update-DR state, the 
SAMPLE/PRELOAD instruction pre­
loads data to the device pins to be driv­
en to the board by executing the 
EXTEST instruction. Data is preloaded 
to the pins from the boundary scan reg­
ister on the falling edge of TCK. 

IDCODE The instruction code is "0010". The ID­
CODE instruction selects the device 
identification register to be connected 
to TDI and TDO, allowing the device 
identification code to be shifted out of 
the device on TDO. Note that the de­
vice identification register is not altered 
by data being shifted in on TDI. 

BYPASS The instruction code is "1111". The 
BYPASS instruction selects the bypass 
register to be connected to TDI or TDO, 
effectively bypassing the test logic on 
the Intel486 DX2 microprocessor by re­
ducing the shift length of the device to 
one bit. Note than an open circuit fault 
in the board level test data path will 
cause the bypass register to be select­
ed following an instruction scan cycle 
due to the pull-up resistor on the TDI 
input. This has been done to prevent 
any unwanted interference with the 
proper operation of the system logic. 

RUNBIST The instruction code is "1000". The 
RUNBIST instruction selects the one (1) 
bit runbist register, loads a value of "1" 
into the runbist register, and connects it 
to TDO. It also initiates the built-in self 
test (BISn feature of the Intel486 DX2 
CPU, which is able to detect approxi­
mately 60% of the stuck-at faults on the 
Intel486 DX2 CPU. The Intel486 DX2 
CPU AC/DC Specifications for Vee and 
ClK must be met and reset must have 
been asserted at least once prior to ex­
ecuting the RUNBIST boundary scan in­
struction. After loading the RUNBIST in­
struction code in the instruction register, 
the TAP controller must be placed in 
the Run-Test/Idle state. BIST begins on 
the first rising edge of TCK after enter­
ing the Run-Test/Idle state. The TAP 



int:et Intel486™ DX2 MICROPROCESSOR 

controller must remain in the Run-Test! 
Idle state until BIST is completed. It re­
quires 1.2 million clock (ClK) cycles to 
complete BIST and report the result to 
the runbist register. After completing 
the 1.2 million clock (ClK) cycles, the 
value in the runbist register should be 
shifted out on TOO during the Shift-OR 
state. A value of "0" being shifted out 
on TOO indicates BIST successfully 
completed. A value of "1" indicates a 
failure occurred. After executing the 
RUNBIST instruction, the Intel486 OX2 
CPU must be reset prior to normal oper­
ation. 

8.5.4 TEST ACCESS PORT (TAP) 
CONTROLLER 

The TAP controller is a synchronous, finite state ma­
chine. It controls the sequence of operations of the 
test logic. The TAP controller changes state only in 
response to the following events: 

1. a rising edge of TCK 

2. power-up. 

The value of the test mode state (TMS) input signal 
at a rising edge of TCK controls the sequence of the 
state changes. The state diagram for the TAP con­
troller is shown in Figure 8.3. Test designers must 
consider the operation of the state machine in order 
to design the correct sequence of values to drive on 
TMS. 

8.5.4.1 Test-Logic-Reset State 

In this state, the test logic is disabled so that normal 
operation of the device can continue unhindered. 
This is achieved by initializing the instruction register 
such that the IOCOOE instruction is loaded. No mat­
ter what the original state of the controller, the con­
troller enters Test-logic-Reset state when the TMS 
input is held high (1) for at least five rising edges of 
TCK. The controller remains in this state while TMS 
is high. The TAP controller is also forced to enter 
this state at power-up. 

8.5.4.2 Run-Test/Idle State 

A controller state between scan operations. Once in 
this state, the controller remains in this state as long 

Figure 8.3. TAP Controller State Diagram 

8-11 



intel® Intel486TM DX2 MICROPROCESSOR 

as TMS is held low. In devices supporting the 
RUNBIST instruction, the BIST is performed during 
this state and the result is reported in the runbist 
register. For instruction not causing functions to exe­
cute during this state, no activity occurs in the test 
logic. The instruction register and all test data regis­
ters retain their previous state. When TMS is high 
and a rising edge is applied to TCK, the controller 
moves to the Select-DR state. 

8.5.4.3 Select-OR-Scan State 

This is a temporary controller state. The test data 
register selected by the current instruction retains its 
previous state. If TMS is held low and a rising edge 
is applied to TCK when in this state, the controller 
moves into the Capture-DR state, and a scan se­
quence for the selected test data register is initiated. 
If TMS is held high and a rising edge is applied to 
TCK, the controller moves to the Select-IR-Scan 
state. 

The instruction does not change in this state. 

8.5.4.4 Capture-DR State 

In this state, the boundary scan register captures 
input pin data if the current instruction is EXT EST or 
SAMPLE/PRELOAD. The other test data registers, 
which do not have parallel input, are not changed. 

The instruction does not change in this state. 

When the TAP controller is in this state and a rising 
edge is applied to TCK, the controller enters the 
Exit1-DR state if TMS is high or the Shift-DR state if 
TMS is low. 

8.5.4.5 Shift-DR State 

I n this controller state, the test data register con­
nected between TDI and TOO as a result of the cur­
rent instruction, shifts data one stage toward its seri­
al output on each rising edge of TCK. 

The instruction does not change in this state. 

When the TAP controller is in this state and a rising 
edge is applied to TCK, the controller enters the 
Exit1-DR state if TMS is high or remains in the Shift­
DR state if TMS is low. 

8.5.4.6 Exit1-0R State 

This is a temporary state. While in this state, if TMS 
is held high, a rising edge applied to TCK causes the 
controller to enter the Update-DR state, which termi-

8-12 

nates the scanning process. If TMS is held low and a 
rising edge is applied to TCK, the controller enters 
the Pause-DR state. 

The test data register selected by the current in­
struction retains its previous value during this state. 
The instruction does not change in this state. 

8.5.4.7 Pause-Dr State 

The pause state allows the test controller to tempo­
rarily halt the shifting of data through the test data 
register in the serial path between TDI and TOO. An 
example of using this state could be to allow a tester 
to reload its pin memory from disk during application 
of a long test sequence. 

The test data register selected by the current in­
struction retains its previous value during this state. 
The instruction does not change in this state. 

The controller remains in this state as long as TMS 
is low. When TMS goes high and a rising edge is 
applied to TCK, the controller moves to the Exit2-DR 
state. 

8.5.4.8 Exit2-0R State 

This is a temporary state. While in this state, if TMS 
is held high, a rising edge applied to TCK causes the 
controller to enter the Update-DR state, which termi­
nates the scanning process. If TMS is held low and a 
rising edge is applied to TCK, the controller enters 
the Shift-DR state. 

The test data register selected by the current in­
struction retains its previous value during this state. 
The instruction does not change in this state. 

8.5.4.9 Update-DR State 

The boundary scan register is provided with a 
latched parallel output to prevent changes at the 
parallel output while data is shifted in response to 
the EXT EST and SAMPLE/PRELOAD instructions. 
When the TAP controller is in this state and the 
boundary scan register is selected, data is latched 
onto the parallel output of this register from the shift­
register path on the falling edge of TCK. The data 
held at the latched parallel output does not change 
other than in this state. 

All shift-register stages in test data register selected 
by the current instruction retains its previous value 
during this state. The instruction does not change in 
this state. 



intet Intel486™ DX2 MICROPROCESSOR 

8.5.4.10 Select-IR-Scan State 

This is a temporary controller state. The test data 
register selected by the current instruction retains its 
previous state. If TMS is held low and a rising edge 
is applied to TCK when in this state, the controller 
moves into the Capture-IR state, and a scan se­
quence for the instruction register is initiated. If TMS 
is held high and a rising edge is applied to TCK, the 
controller moves to the Test-Logic-Reset state. 

The instruction does not change in this state. 

8.5.4.11 Capture-IR State 

In this controller state the shift register contained in 
the instruction register loads the fixed value "0001" 
on the riSing edge of TCK. 

The test data register selected by the current in­
struction retains it previous value during this state. 
The instruction does not change in this state. 

When the controller is in this state and a rising edge 
is applied to TCK, the controller enters the Exit1-IR 
state if TMS is held high, or the Shift-IR state if TMS 
is held low. 

8.5.4.12 Shift-IR State 

In this state the shift register contained in the in­
struction register is connected between TDI and 
TDO and shifts data one stage towards its serial out­
put on each rising edge of TCK. 

The test data register selected by the current in­
struction retains its previous value during this state. 
The instruction does not change in this state. 

When the controller is in this state and a rising edge 
is applied to TCK, the controller enters the Exit1-IR 
state if TMS is held high, or remains in the Shift-IR 
state if TMS is held low. 

8.5.4.13 Exit1-IR State 

This is a temporary state. While in this state, if TMS 
is held high, a rising edge applied to TCK causes the 

8-13 

controller to enter the Update-IR state, which termi­
nates the scanning process. If TMS is held low and a 
rising edge is applied to TCK, the controller enters 
the Pause-IR state. 

The test data register selected by the current in­
struction retains its previous value during this state. 
The instruction does not change in this state. 

8.5.4.14 Pause-IR State 

The pause state allows the test controller to tempo­
rarily halt the shifting of data through the instruction 
register. 

The test data register selected by the current in­
struction retains its previous value during this state. 
The instruction does not change in this state. 

The controller remains in this state as long as TMS 
is low. When TMS goes high and a rising edge is 
applied to TCK, the controller moves to the Exit2-IR 
state. 

8.5.4.15 Exit2-IR State 

This is a temporary state. While in this state, if TMS 
is held high, a rising edge applied to TCK causes the 
controller to enter the Update-IR state, which termi­
nates the scanning process. If TMS is held low and a 
rising edge is applied to TCK, the controller enters 
the Shift-IR state. 

The test data register selected by the current in­
struction retains its previous value during this state. 
The instruction does not change in this state. 

8.5.4.16 Update-IR State 

The instruction shifted into the instruction register is 
latched onto the parallel output from the shift-regis­
ter path on the falling edge of TCK. Once the new 
instruction has been latched, it becomes the current 
instruction. 

Test data registers selected by the current instruc­
tion retain the previous value. 



int:et Intel486™ DX2 MICROPROCESSOR 

8.5.5 BOUNDARY SCAN REGISTER CELL 

The boundary scan register contains a cell for each 
pin, as well as cells for control of 1/0 and 3-state 
pins. 

The following is the bit order of the Intel486 DX2 
CPU boundary scan register: (from left to right and 
top to bottom). 

TOI - WRCTL ABUSCTL BUSCTL MISCCTL 
ADS# BLAST# PLOCK# LOCK# PCHK# 
BRDY# BOFF# BS16# BS8# RDY# KEN# 
HOLD AHOLD CLK HLDA WR# BREQ BEO# 
BE1 # BE2# BE3# MIO# DC# PWT PCD 
EADS# A20M# RESET FLUSH# INTR NMI 
UP# FERR# IGNNE# D31 D30 D29 D28 D27 
D26 D25 D24 DP3 D23 D22 D21 020 019 D18 
D17 D16 DP2 D15 D14 D13 D12 D11 D10 D9 
D8 DP1 D7 D6 05 D4 D3 D2 D1 DO DPO A31 
A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 
A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 
A10 A9 A8 A7 A6 RESERVED A5 A4 A3 
A2-TDO 

8-14 

"RESERVED" corresponds to no connect "NC" sig­
nals on the Intel486 DX2 CPU. 

All the 'CTL cells are control cells that are used to 
select the direction of bidirectional pins or 3-state 
output pins. If "1" is loaded into the control cell 
(*CTL), the associated pin(s} are 3-stated or select­
ed as input. The following lists the control cells and 
their corresponding pins. 

1. WRCTL controls the D31-0 and DP3-0 pins. 

2. ABUSCTL controls the A31-A2 pins. 

3. BUSCTL controls the ADS#, BLAST#, 
PLOCK#, LOCK#, WR#, BEO#, BE1#, BE2#, 
BE3#, MIO#, DC#, PWT, and PCD pins. 

4. MISCCTL controls the PCHK#, HLDA, BREQ, 
and FERR # pins. 

8.5.6 TAP CONTROLLER INITIALIZATION 

The TAP controller is automatically initialized when a 
device is powered up. In addition, the TAP controller 
can be initialized by applying a high signal level on 
the TMS input for five TCK periods. 



int:et Intel486™ DX2 MICROPROCESSOR 

8.5.7 BOUNDARY SCAN DESCRIPTION LANGUAGE (BSDL) 

Intel i486(tm)DX2 CPU BSDL description 

entity Intel486TM_DX2 is 
generic(PHYSICAL_PIN_MAP : string .- 'PGA_17xI7'); 

port in bit; 
out bit; 
out bit; 

(A20M 
ABUS2 
ABUS3 
ABUS 
ADS 
AHOLD 
BE 
BLAST 
BOFF 
BRDY 
BREQ 
BS8 
BS16 
CLK 
DBUS 
DC 

inout bit_vector (4 to 31); -- Address bus (words) 

DP 
EADS 
FERR 
FLUSH 
HLDA 
HOLD 
IGNNE 
INTR 
KEN 
LOCK 
MIO 
NC 
Ncl 
NMI 
PCD 
PCHK 
PLOCK 
PWT 
RDY 
RESE 
TC 
T 
UP 
VCC 
VSS 
WR 

out 
in 
out 
out 
in 
in 
out 
in 
in 
in 
inout 
out 
inout 
in 
out 
in 
out 
in 

bit; 
bit; 
bit_vector(O 
bit; 
bit; 
bit; 
bit; 
bit; 
bit; 
bit; 
bit _vector ( 
bit; 
bit_vect 
bit; 
bit; 
bit· 
bit 

bit; 
bit; 
bit; 

in bit; 
out bit; 
in bit; 

to 

linkage bit_vector(1 
linkage bit_vector(1 
out bit); 

3) ; 

to 12); -- No Connects 

Scan Port inputs 
Scan Port output 

to 24); VCC 
to 28); VSS 

attribute PIN_MAP of Intel486TM_DX2 : entity is PHYSICAL_PIN_MAP; 

constant PGA_17x17 : PIN_MAP_STRING .- -- Define Pin Out of PGA 
'A20M DIS,' & 
'ABUS2 Q14, , & 
'ABUS3 R15. ' & 
'ABUS (SI6, Q12, 

'ADS 
'AHOLD 

S7, QI0, 
Q7, S3, 

S17, , I< 
A17, , & 

SIS, Q13, R13, Qll, S13, R12,' &. 
S5, R7, Q9, Q3, R5, Q4, Q8, 
Q6, R2, 82, SI, Rl, P2, P3, 

'BE (KI5, J16, J15, FI7), , I< 

Intel486™ DX2 CPU BSDL Model for Boundary Scan 

8-15 

Q5,' & 
Q1),' I< 

241245-97 



intel .. Intel486TM DX2 MICROPROCESSOR 

'BLAST 
'BOFF 
'BRDY 
'BREQ 
'BS8 
'BS16 
'CLK 
'DBUS 

'DC 
'DP 
'EADS 
'FERR 
'FLUSH 
'HLDA 
'HOLD 
'IGNNE 
'INTR 
'KEN 
'LOCK 
'MID 
'NC 

'NC1 
'NMI 
'PCD 
'PCHK 
'PLOCK 
'PWT 
'RDY 
'RESET 
'TCK 
'TDI 
'TDO 
'TMS 
'UP 
'VCC 

'VSS 

'WR 

R16, & 
D17, & 
HIS, & 
Q1S, & 
D16, & 
C17, & 
C3, & 
(P1, N2, N1, H2, M3, 
C1, G3, D2, K3, F3, 
A2, A4, A6, B6, C7, 

MIS, & 
(N3, F1, H3, AS) , 
B17, & 
C14, & 
C15, & 
P15, , 

& 
E15, & 
A15, & 
A16, & 
F15, & 
N15, & 
N16, & 
(RI7, G15, C10, C12, 
A10, A12, A13), ' & 

S4, & 
B1S, & 
J17, & 
Q17, & 
Q16, & 
L1S, & 
F16 t & 
C16, & 
A3, & 
A14, & 
B16, & 
B14, & 
Cll, & 
(R8, R9, 
J1, H16, 
R3, R6 

(S6, 
M17, 
B3,*, B 

N17' ; 

J2, L2, 
J3, D3, 
C6, C8, 

& 

L3, F2, 
C2, B1, 
A8, C9, 

true; 
true; 

is true; 

01, E3, & 
AI, B2, , 

& 
B8), ' & 

K2, 
B9, 

Q2, P17, 
G17, E!. 

attribute Tap_Scan_In of 
attribute Tap_Scan_Mode of 
attribute Tap_Sca~Out of 
attribute Tap_Scan_Clock 0 is (25.0e6, BOTH); 

attribute th of Inte1486TM_DX2: entity is 4; 

attribute Instruc code of Inte1486TM_DX2: entity is 
'BYPASS (1 & 
'EXTEST (0 & 
'SAMPLE (00, & 
'IDCODE (0010),' & 
'RUNBIST (1000),' & 

K16, 
Bll, 

M1, 
E17, 

'PRIVATE (0011,0100,0101,0110,0111,1001,1010,1011,1100,1101,1110)'; 

attribute Instruction_Capture of Inte1486TM_DX2: entity is '0001'; 
-- there is no Instruction_Disable attribute for Inte1486TM_DX2 

attribute Instruction_Private of Inte1486TM_DX2: entity is 'private'; 

attribute Instruction_Usage of Inte1486TM_DX2: entity is 
'RUNBIST (registers BIST; , & 
'result 0;' & 
'clock CLK in Run_Test_Idle;'& 
'length 1200000)'; 

attribute Idcode_Register of 
'0000' & 
'0000010000010001' & 
'00000001001' & 
'1'; 

Inte1486TM_DX2: entity is 
--version 
--new part number 
--manufacturers identity 
--requi red by the standard 

attribute Register_Access of Inte1486TM_DX2: entity is 
'BIST!l] (RUNBIST)' ; 

& , 
& 

& 
& 

Intel486TM DX2 CPU BSDL Model for Boundary Scan (Continued) 

8-16 

241245-98 



infel~ Intel486™ DX2 MICROPROCESSOR 

--(*******************************************************************} 
--( The first cell is closest to TDO ) 
--{++*****************************************************************} 

attribut.e Boundat-y_Length of Inte1486TM_DX2: entity is 105; 
atLtibut.e Boundary_Cells oE Inte1486TM_DX2 : entity is 'BC_2, BC_l, BC_6' ; 

attrIbute Boundary_Register of InteI486TM_DX2: entity is 
'0 IRC_2, ABUS2, output3, X, 102, 1, Z), ' & 
'I IBC_2, ABUS3, output3, X, 102, 1, Z), ' & 
'2 IBC_6, ABUS(4), bidi r, X, 102, 1, Z), ' & 
'3 IBC_6, ABUS 15), bidir, X, 102, 1, Z), ' & 
'4 I BC_1- NC1, input, X), ' & 
'5 IBC_6, ABUS (6), bidir, X, 102, & 
'6 IBC_6, ABUS (7), bidir, X, 102, & 
'7 IBC6, ABUS(8) , bidir, X, 102, & 
'8 IBC_6, ABUS(9), bidir, X, 102, & 
, 9 IBC_6, ABUS(10) , bidir, X, 102, & 
'10 (BC_6, ABUS(ll), bidir, X, 102, 
'11 IBC _6, ABUS (12) , bidir, X, 102, 
'12 (BC_6, ABUS(13) , bidi r, X, 102, 
'13 IRC_6, ABUS(14), bidir, X, 102, 
'14 (BC_6, ABUS(IS) , bidir, X, 102, 
'15 IRC_6, ABUS(16) , bidir, X, 102, 
'16 (BC6, ABUS(17) , bidir, X, 102, 
'17 (BC_6, ABUS (18), bidir, X, 102, 
'18 IRC_6, ABUS(19) , bidir, X, 102, 
'19 (BC_6, ABUS(20) , bidir, X, 1 
'20 (BC_6, ABUS (21), bidi r, X, 
'21 IBC_6, ABUS(22) , bidi r, X, 
'/.7. I R(·_.G , ABlIS(23) , bidi r, 
'23 (BC_6, ABUS(24) , bidir, 
'24 (BC6, ABUS(2S) , bidir 
'25 (BC6, ABUS (26) , bidi 
'26 (BC_6, ABUS(27) , bi 
'27 (BC6, ABUS(28) , 
'28 (BC_6, ABUS (29), 
'29 (BC_6, ABUS(30) , 
'30 (BC_6, ABUS (31) & 

'31 (BC6, DP(O) , ),' & 
'32 (BC6, DBUS( Z), ' & 

'33 (BC_6, DBUS( Z), ' & 

'34 (BC_6, D~(2), 1, Z), ' & 

'35 (BC_6, DBUS(3) , 1, Z), ' & 

'36 (BC_6, DBUS(4) , 
103 : 

1, Z), ' & 
'37 (BC_6, [lBUS(S) 1, Z), ' & 

'38 (BC6, DBUS(6) 103, 1, Z), ' & 

'39 (BC_6, DBUS(?) , 103, 1, Z), ' & 

'40 (BC_6, DP( 103, 1, Z), ' & 
'41 (BC_6, D bidi r, 103, 1, Z), ' & 

'42 (BC6, bidir, 103, L Z), ' & 

'43 (BC_6, ), bidi r, X, 103, 1, Z), ' & 

'44 (BC 6 (11) , bidir, X, 103, 1, Z), ' & 
'45 (BC S( 12), bidir, X, 103, 1, Z), ' & 

'46 (BC_ BUS(13) , bidi r, X, 103, 1, Z), ' & 

'47 (BC_6, DBUS(14) , bidir, X, 103, 1. Z), ' & 
'48 (BC_6, DBUS(lS) , bidi r, X, 103, 1, Z), ' & 

'49 (BC_6, DP(2) , bidir, X, 103, 1, Z), ' & 

'50 (BC_6, DBUS(16) , bidir, X, 103, 1, Z), ' & 
'51 (RC6, DBUS(17) , bidi r, X, 103, 1, Z), ' & 
'52 (BC6, DBUS(18) , bidir, X, 103, 1, Z), ' & 
'53 (BC_6, DBUS(19), bidir, X, 103, 1, Z), ' & 
'54 (BC_6, DBUS(20) , bidir, X, 103, 1, Z), ' & 
'55 (BC_6, DBUS(211 , bidi r, X, 103, 1, Z), ' & 
'56 (Bc_6, DBUS(22) , bidir, X, 103, L Z), ' & 
'57 (BC_6, DBUS(23) , bidi r, X, 103, 1, Z), ' & 
'58 (BC_6, DP(3) , bidir, X, 103, 1- Z), ' & 
'59 (BC_6, DBUS(24) , bidi r, X, 103, 1, Z), ' & 
'60 (BC_6, DBUS (25) , bidir, X, 103, 1, Z), ' & 

'61 (BC6, DBUS(26) , bidir, X, 103, 1, Z), ' & 

'62 (BC_6, DBUS(27) , bidir, X, 103, 1. Z), ' & 

'63 (BC6, DBUS(28) , bidir, X, 103, 1, Z), ' & 

'64 (BC_6, DBUS (29), bidir, X, 103, 1, Z), ' & 

'65 (BC_6, DBUS(30) , bidir, X, 103, 1, Z), ' & 

'66 (BC_6, DBUS(31) , bidir, X, 103, 1, Z), ' & 

'67 (BC_1- IGNNE, input, X), ' & 

'68 (BC2, FERR, output3, X, 100, L Z), ' & 

'69 (BC_1- UP, input, X), ' & 

'70 (BCl, NMI, input, X), ' & 

'71 (BC1, INTR, input, X), ' & 

Intel486TM DX2 CPU BSDL Model for Boundary Scan (Continued) 

8-17 

241245-99 



Intel486TM DX2 MICROPROCESSOR 

'72 (BC_l. FLUSH. input. X). ' & 
'73 (BC_l. RESET. input. X). ' & 
'74 (BC_l. A20M. input. X). ' & 
'75 (BC_l. EADS. input. X). ' & 
'76 (BC_2. PCD. output3. X. 101. 1. Z) • ' & 
'77 (BC_2. PWT. output3. X. 101. 1. Z) • ' [. 

'78 (BC_2. DC. output3. X. 101. 1. Z) • ' & 
'79 (BC_2. MIO. output3. X. 101. 1. Z) • ' & 

'80 (BC2. BE(3) • output3. X. 101. 1. Z) • ' & 

'81 (BC_2. BE(2) • output3 • x. 101. 1. Z). ' & 
'82 (BC_2. BE(l) • output3. X. 101. 1. Z). ' & 
'83 (BC2. BE(O) • output3. X. 101. 1. Z). ' & 

'84 (BC2. BREQ. output3. X. 100. 1. Z), ' & 
'85 (BC2. WR. output3. X. 101. 1. Z). ' & 
'86 (BC_2. HLDA. output3. X. 100. 1. Zl. ' 
'87 (BC_l. CLK. input. X). ' & 
'88 (BC_l. AHOLD. input. Xl. ' 
'89 (BC_l. HOLD. input. X). ' 
'90 (BC_l. KEN. input. Xl. ' 
'91 (BC_l. ROY. input. Xl. ' 
'92 (BC_l. BS8. input. Xl 
'93 (BC_t. BS16. input. X) 
'94 (BC_I. BOFF. input. 
'95 (BC_1. BRDY. inpu 
'96 (BC_2. PCHK. ou & 
, 97 (BC_2. LOCK. & 

'98 (BC_2. PLOCK. & 
'99 (BC_2. BLAST. & 

'100 (BC_2. ADS, & 
'101 (BC_2. * DISMISC 
"102 (BC_2. * . DISBUS 
"103 (BC_2. DISABUS 
"104 (BC_2. DISWR 

end Inte1486TM_DX2; 
241245-A1 

8-18 



int'et Intel486™ DX2 MICROPROCESSOR 

9.0 DEBUGGING SUPPORT 
The Intel486 microprocessor family provides several 
features which simplify the debugging process. The 
three categories of on-chip debugging aids are: 

1) the code execution breakpoint opcode (OCCH), 

2) the single-step capability provided by the TF bit 
in the flag register, and 

3) the code and data breakpoint capability provided 
by the Debug Registers DRO-3, DR6, and DR7. 

9.1 Breakpoint Instruction 

A single-byte-opcode breakpoint instruction is avail­
able for use by software de buggers. The breakpoint 
opcode is OCCH, and generates an exception 3 trap 
when executed. In typical use, a debugger program 
can "plant" the breakpoint instruction at all desired 
code execution breakpoints. The single-byte break­
point opcode is an alias for the two-byte general 
software interrupt instruction, INT n, where n=3. 
The only difference between INT 3 (OCCh) and INT n 
is that INT 3 is never IOPL-sensitive but INT n is 
IOPL-sensitive in Protected Mode and Virtual 8086 
Mode. 

9.2 Single-Step Trap 

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a 

9-1 

single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1. Pre­
cisely, exception 1 occurs as a trap after the instruc­
tion following the instruction which set TF. In typical 
practice, a debugger sets the TF bit of a flag register 
image on the debugger's stack. It then typically 
transfers control to the user program and loads the 
flag image with a signal instruction, the IRET instruc­
tion. The single-step trap occurs after executing one 
instruction of the user program. 

Since the exception 1 occurs as a trap (that is, it 
occurs after the instruction has already executed), 
the CS:EIP pushed onto the debugger's stack points 
to the next unexecuted instruction of the program 
being debugged. An exception 1 handler, merely by 
ending with an IRET instruction, can therefore effi­
ciently support single-stepping through a user pro­
gram. 

9.3 Debug Registers 

The Debug Registers are an advanced debugging 
feature of the Intel486 microprocessor family. They 
allow data access breakpoints as well as code exe­
cution breakpoints. Since the breakpoints are indi­
cated by on-chip registers, an instruction execution 
break-point can be placed in ROM code or in code 
shared by several tasks, neither of which can be 
supported by the INT3 breakpoint opcode. 



int:et Intel486™ DX2 MICROPROCESSOR 

The Intel486 microprocessor contains six Debug 
Registers, providing the ability to specify up to four 
distinct breakpoints addresses, breakpoint control 
options, and read breakpoint status. Initially after re­
set, breakpoints are in the disabled state. Therefore, 
no breakpoints will occur unless the debug registers 
are programmed. Breakpoints set up in the Debug 
Registers are autovectored to exception number 1. 

9.3.1 LINEAR ADDRESS BREAKPOINT 
REGISTERS (DRO-DR3) 

Up to four breakpoint addresses can be specified by 
writing into Debug Registers DRO-DR3, shown in 
Figure 9.1. The breakpoint addresses specified are 
32-bit linear addresses. Intel486 microprocessor 
hardware continuously compares the linear break­
point addresses in DRO-DR3 with the linear ad­
dresses generated by executing software (a linear 
address is the result of computing the effective ad­
dress and adding the 32-bit segment base address). 
Note that if paging is not enabled the linear address 

31 

BREAKPOINT 0 LINEAR ADDRESS 

BREAKPOINT 1 LINEAR ADDRESS 

BREAKPOINT 2 LINEAR ADDRESS 

BREAKPOINT 3 LINEAR ADDRESS 

Intel reserved. Do not define. 

Intel reserved. Do not define. 

31 

NOTE: 

equals the physical address. If paging is enabled, 
the linear address is translated to a physical 32-bit 
address by the on-chip paging unit. Regardless of 
whether paging is enabled or not, however, the 
breakpoint registers hold linear addresses. 

9.3.2 DEBUG CONTROL REGISTER (DR7) 

A Debug Control Register, DR? shown in Figure 9.1, 
allows several debug control functions such as en­
abling the breakpoints and setting up other control 
options for the breakpoints. The fields within the De­
bug Control Register, DR?, are as follows: 

LENi (breakpoint length specification bits) 

A 2-bit LEN field exists for each of the four break­
points. LEN specifies the length of the associated 
breakpoint field. The choices for data breakpoints 
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu­
tion breakpoints must have a length of 1 (LENi = 

00). Encoding of the LENi field is as follows: 

16 15 o 

16 15 o 

ORO 

DR1 

DR2 

DR3 

DR4 

DR5 

DR6 

DR? 

!indicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 9.1. Debug Registers 

9-2 



int'et Intel486TM DX2 MICROPROCESSOR 

Usage of Least 
LENi Breakpoint Significant Bits in 

Encoding Field Width Breakpoint Address 
Register i, (i = 0 - 3) 

00 1 byte All 32-bits used to 
specify a single-byte 
breakpoint field. 

01 2 bytes A 1-A31 used to specify 
a two-byte, word-
aligned breakpoint field. 
AO in Breakpoint 
Address Register is not 
used. 

10 Undefined-
do not use 

this encoding 

11 4 bytes A2-A31 used to specify 
a four-byte, dword-
aligned breakpoint field. 
AO and A1 in 
Breakpoint Address 
Register are not used. 

The LENi field controls the size of breakpoint field i 
by controlling whether all low-order linear address 
bits in the breakpoint address register are used to 
detect the breakpoint event. Therefore, all break­
point fields are aligned; 2-byte breakpoint fields be­
gin on Word boundaries, and 4-byte breakpoint 
fields begin on Dword boundaries. 

The following is an example of various size break­
point fields. Assume the breakpoint linear address in 
DR2 is OOOOOOOSH. In that situation, the following 
illustration indicates the region of the breakpoint 
field for lengths of 1, 2, or 4 bytes. 

9-3 

DR2 = 00000005H; LEN2 = OOB 

I "I Ibk.tfl'21 0 1:::=: 
DR2=00000005H; LEN2 = 01B 

31 1 0 

I 00000008H 
r---~-----+----~----~ 

+- bkpt fld2 -- 00000004H 

I OOOOOOOOH L-____ ~ ____ ~ ______ ~ ____ ~ 

DR2=00000005H; LEN2 = 11B 

31 I I 1 0 

I I 00000008H 

+- bkpt fld2 -- 00000004H 
r-----~-----r----_,r-----, I I OOOOOOOOH 

RWi (memory access qualifier bits) 

A 2-bit RW field exists for each of the four break­
points. The 2-bit RW field specifies the type of usage 
which must occur in order to activate the associated 
breakpoint. 



int"eL Intel486TM DX2 MICROPROCESSOR 

RW Usage 
Encoding Causing Breakpoint 

00 Instruction execution only 
01 Data writes only 
10 Undefined-do not use this encoding 
11 Data reads and writes only 

RW encoding 00 is used to set up an instruction 
execution breakpoint. RW encodings 01 or 11 are 
used to set up write-only or read/write data break­
points. 

Note that instruction execution breakpoints are 
taken as faults (Le., before the instruction exe­
cutes), but data breakpoints are taken as traps 
(Le., after the data transfer takes place). 

Using LENi and RWi to Set Data Breakpoint i 

A data breakpoint can be set up by writing the linear 
address into DRi (i = 0-3). For data breakpoints, 
RWi can = 01 (write-only) or 11 (write/read). LEN 
can = 00,01, or 11. 

If a data access entirely or partly falls within the data 
breakpoint field, the data breakpoint condition has 
occurred, and if the breakpoint is enabled, an excep­
tion 1 trap will occur. 

Using LENi and RWi to Set Instruction Execution 
Breakpoint i 

An instruction execution breakpoint can be set up by 
writing address of the beginning of the instruction 
(including prefixes if any) into DRi (i = 0-3). RWi 
must = 00 and LEN must = 00 for instruction exe­
cution breakpoints. 

If the instruction beginning at the breakpoint address 
is about to be executed, the instruction execution 
breakpoint condition has occurred, and if the break­
point is enabled, an exception 1 fault will occur be­
fore the instruction is executed. 

Note that an instruction execution breakpoint ad­
dress must be equal to the beginning byte address 
of an instruction (including prefixes) in order for the 
instruction execution breakpoint to occur. 

GD (Global Debug Register access detect) 

The Debug Registers can only be accessed in Real 
Mode or at privilege level 0 in Protected Mode. The 
GD bit, when set, provides extra protection against 
any Debug Register access even in Real Mode or at 
privilege level 0 in Protected Mode. This additional 
protection feature is provided to guarantee that a 
software debugger can have full control over the De-

9-4 

bug Register resources when required. The GD bit, 
when set, causes an exception 1 fault if an instruc­
tion attempts to read or write any Debug Register. 
The GD bit is then automatically cleared when the 
exception 1 handler is invoked, allowing the excep­
tion 1 handler free access to the debug registers. 

GE and LE (Exact data breakpoint match, global and 
local) 

The breakpoint mechanism of the Intel486 micro­
processor family differs from that of the Inte1386. 
The Intel486 microprocessor always does exact 
data breakpoint matching, regardless of GE/LE bit 
settings. Any data breakpoint trap will be reported 
exactly after completion of the instruction that 
caused the operand transfer. Exact reporting is pro­
vided by forcing the Intel486 microprocessor execu­
tion unit to wait for completion of data operand 
transfers before beginning execution of the next in­
struction. 

When the Intel486 microprocessor performs a task 
switch, the LE bit is cleared. Thus, the LE bit sup­
ports fast task switching out of tasks, that have 
enabled the exact data breakpoint match for their 
task-local breakpoints. The LE bit is cleared by the 
processor during a task switch, to avoid having ex­
act data breakpoint match enabled in the new task. 
Note that exact data breakpoint match must be re­
enabled under software control. 

The Intel486 microprocessor GE bit is unaffected 
during a task switch. The GE bit supports exact data 
breakpoint match that is to remain enabled during all 
tasks executing in the system. 

Note that instruction execution breakpoints are al­
ways reported exactly. 

Gi and Li (breakpoint enable, global and local) 

If either Gi or Li is set then the associated breakpoint 
(as defined by the linear address in DRi, the length 
in LENi and the usage criteria in RWi) is enabled. If 
either Gi or Li is set, and the Intel486 microproces­
sor detects the ith breakpoint condition, then the ex­
ception 1 handler is invoked. 

When the Intel486 microprocessor performs a task 
switch to a new Task State Segment (TSS), all Li 
bits are cleared. Thus, the Li bits support fast task 
switching out of tasks that use some task-local 
breakpoint registers. The Li bits are cleared by the 
processor during a task switch, to avoid spurious ex­
ceptions in the new task. Note that the breakpoints 
must be re-enabled under software control. 

All Intel486 microprocessor Gi bits are unaffected 
during a task switch. The Gi bits support breakpoints 
that are active in all tasks executing in the system. 



int:et Intel486™ DX2 MICROPROCESSOR 

9.3.3 DEBUG STATUS REGISTER (DR6) 

A Debug Status Register, DR6 shown in Figure 9.1, 
allows the exception 1 handler to easily determine 
why it was invoked. Note the exception 1 handler 
can be invoked as a result of one of several events: 

1) ORO Breakpoint fault/trap. 

2) DR1 Breakpoint fault/trap. 

3) DR2 Breakpoint fault/trap. 

4) DR3 Breakpoint fault/trap. 

5) Single-step (TF) trap. 

6) Task switch trap. 

7) Fault due to attempted debug register access 
when GD=1. 

The Debug Status Register contains single-bit flags 
for each of the possible events invoking exception 1. 
Note below that some of these events are faults (ex­
ception taken before the instruction is executed), 
while other events are traps (exception taken after 
the debug events occurred). 

The flags in DR6 are set by the hardware but never 
cleared by hardware. Exception 1 handler software 
should clear DR6 before returning to the user pro­
gram to avoid future confusion in identifying the 
source of exception 1. 

The fields within the Debug Status Register, DR6, 
are as follows: 

Bi (debug fault/trap due to breakpoint 0-3) 

Four breakpoint indicator flags, BO-B3, correspond 
one-to-one with the breakpoint registers in DRO­
DR3. A flag Bi is set when the condition described 
by DRi, LENi, and RWi occurs. 

If Gi or Li is set, and if the ith breakpoint is detected, 
the processor will invoke the exception 1 handler. 
The exception is handled as a fault if an instruction 
execution breakpoint occurred, or as a trap if a data 
breakpoint occurred. 

9-5 

IMPORTANT NOTE: A flag Bi is set whenever the 
hardware detects a match condition on enabled 
breakpoint i. Whenever a match is detected on at 
least one enabled breakpoint i, the hardware imme­
diately sets all Bi bits corresponding to breakpoint 
conditions matching at that instant, whether enabled 
or not. Therefore, the exception 1 handler may see 
that multiple Bi bits are set, but only set Bi bits corre­
sponding to enabled breakpoints (Li or Gi set) are 
true indications of why the exception 1 handler was 
invoked. 

BD (debug fault due to attempted register access 
when GO bit set) 

This bit is set if the exception 1 handler was invoked 
due to an instruction attempting to read or write to 
the debug registers when GO bit was set. If such an 
event occurs, then the GO bit is automatically 
cleared when the exception 1 handler is invoked, 
allowing handler access to the debug registers. 

BS (debug trap due to single-step) 

This bit is set if the exception 1 handler was invoked 
due to the TF bit in the flag register being set (for 
single-stepping). 

BT (debug trap due to task switch) 

This bit is set if the exception 1 handler was invoked 
due to a task switch occurring to a task having a 
Intel486 microprocessor TSS with the T bit set. Note 
the task switch into the new task occurs normally, 
but before the first instruction of the task is execut­
ed, the exception 1 handler is invoked. With respect 
to the task switch operation, the operation is consid­
ered to be a trap. 

9.3.4 USE OF RESUME FLAG (RF) IN FLAG 
REGISTER 

The Resume Flag (RF) in the flag word can sup­
press an instruction execution breakpoint when the 
exception 1 handler returns to a user program at a 
user address which is also an instruction execution 
breakpoint. 





int'eL Intel486™ DX2 MICROPROCESSOR 

10.0 INSTRUCTION SET SUMMARY 
This section describes the Intel486 DX2 microproc­
essor instruction set. Tables 10.1 through 10.3 list all 
instructions along with instruction encoding dia­
grams and clock counts. Further details of the in­
struction encoding are then provided in Section 
10.2, which completely describes the encoding 
structure and the definition of all fields occurring 
within the Intel486 DX2 microprocessor instructions. 

10.1 Intel486™ DX2 Microprocessor 
Instruction Encoding and Clock 
Count Summary 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Tables 10.1 
through 10.3 by the processor core clock period 
(e.g., 20 ns for a 50 MHz Intel486 DX2 microproces­
sor). 

For more detailed information on the encodings of 
instructions, refer to Section 10.2 Instruction Encod­
ings. Section 10.2 explains the general structure of 
instruction encodings, and defines exactly the en­
codings of all fields contained within the instruction. 

INSTRUCTION CLOCK COUNT ASSUMPTIONS 

The Intel486 DX2 microprocessor instruction core 
clock count tables give clock counts assuming data 
and instruction accesses hit in the cache. The com­
bined instruction and data cache hit rate is over 
90%. 

A cache miss will force the Intel486 DX2 microproc­
essor to run an external bus cycle. The Intel486 DX2 
microprocessor 32-bit burst bus is defined as 
r-b-w. 

Where: 

r = The number of bus clocks in the first cycle of a 
burst read or the number of clocks per data 
cycle in a non-burst read. 

b = The number of bus clocks for the second and 
subsequent cycles in a burst read. 

w = The number of bus clocks for a write. 

The fastest bus the Intel486 DX2 microprocessor 
can support is 2 -1 - 2 assuming 0 wait states. The 
clock counts in the cache miss penalty column as­
sume a 2-1-2 bus. For slower busses add r-2 
clocks to the cache miss penalty for the first dword 
accessed. Other factors also affect instruction clock 
counts. 

Instruction Clock Count Assumptions 

1. The external bus is available for reads or writes 
at all times. Else add bus clocks to reads until 
the bus is available. 

10-1 

2. Accesses are aligned. Add three core clocks to 
each misaligned access. 

3. Cache fills complete before subsequent access­
es to the same line. If a read misses the cache 
during a cache fill due to a previous read or pre­
fetch, the read must wait for the cache fill to 
complete. If a read or write accesses a cache 
line still being filled, it must wait for the fill to 
complete. 

4. If an effective address is calculated, the base 
register is not the destination register of the pre­
ceding instruction. If the base register is the 
destination register of the preceding instruction 
add 1 to the core clock counts shown. Back-to­
back PUSH and POP instructions are not affect­
ed by this rule. 

5. An effective address calculation uses one base 
register and does not use an index register. 
However, if the effective address calculation 
uses an index register, 1 core clock may be 
added to the clock count shown. 

6. The target of a jump is in the cache. If not, add r 
clocks for accessing the destination instruction 
of a jump. If the destination instruction is not 
completely contained in the first dword read, 
add a maximum of 3b bus clocks. If the destina­
tion instruction is not completely contained in 
the first 16 byte burst, add a maximum of anoth­
er r + 3b bus clocks. 

7. If no write buffer delay, w bus clocks are added 
only in the case in which all write buffers are full. 

8. Displacement and immediate not used together. 
If displacement and immediate used together, 1 
core clock may be added to the core clock 
count shown. 

9. No invalidate cycles. Add a delay of 1 bus clock 
for each invalidate cycle if the invalidate cycle 
contends for the internal cache/external bus 
when the Intel486 DX2 CPU needs to use it. 

10. Page translation hits in TLB. A TLB miss will add 
13, 21 or 28 bus clocks + 1 possible core clock 
to the instruction depending on whether the Ac­
cessed and/or Dirty bit in neither, one or both of 
the page entries needs to be set in memory. 
This assumes that neither page entry is in the 
data cache and a page fault does not occur on 
the address translation. 

11. No exceptions are detected during instruction 
execution. Refer to Interrupt core Clock Counts 
Table for extra clocks if an interrupt is detected. 

12. Instructions that read multiple consecutive data 
items (i.e. task switch, paPA, etc.) and miss the 
cache are assumed to start the first access on a 
16-byte boundary. If not, an extra cache line fill 
may be necessary which may add up to (r + 3b) 
bus clocks to the cache miss penalty. 



int:et Intel486™ DX2 MICROPROCESSOR 

Table 10.1. Intel486™ DX2 Microprocessor Integer Core Clock Count Summary 
INSTRUCTION FORMAT Cache Hit Notes 

INTEGER OPERATIONS 

MOV ~ Move: 

reg1 to reg2 I 1000100W 11 reg1 reg21 1 

reg2 to reg1 I 1000101w 11 reg1 reg21 1 

memory to reg I 1000101w mod reg rim I 1 

reg to memory I 1000100w mod reg rim 1 1 

Immediate to reg I 1100011 w 11000 reg I immediate data 1 

or I 1011w reg immediate data 1 

Immediate to Memory I 1100011 w mod 000 
I I displacement 

r m immediate 
1 

Memory to Accumulator I 1010000w full displacement 1 

Accumulator to Memory I 1010001w full displacement 1 

MOVSX/MOVZX ~ Move with Sign/Zero Extension 

re92 to re91 I 00001111 1 1011 z11 w 111 re91 re92 1 3 

memory to reg I 00001111 1 1011 z11 w 1 mod reg rim 1 3 

z instruction 

0 MOVZX 

1 MOVSX 

PUSH ~ Push 

reg I 11111111 111 110 reg 1 4 

or 101010 reg 1 1 

memory I 11111111 1 mod 110 rim 1 4 

immediate 1 01101080 1 immediate data 1 

PUSHA ~ Push All I 01100000 1 11 

POP ~ Pop 

reg 1 10001111 111 000 reg 1 4 

or 101011 reg 1 1 

memory I 10001111 1 mod 000 rim 1 5 

POPA ~ PopAIl 1 01100001 1 9 

XCHG ~ Exchange 

reg1 with r9g2 1000011w 111 re91 reg21 3 

Accumulator with reg 10010 reg 1 3 

Memory with reg 1000011w 1 mod reg rim 1 5 

NOP ~ No Operation 10010000 1 1 

LEA ~ Load EA to Register 10001101 1 mod reg r/ml 
no index register 1 
with index register 2 

10-2 



intet Intel486™ DX2 MICROPROCESSOR 

Table 10.1.lnteI486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued) 
INSTRUCTION FORMAT Cache Hit Notes 

INTEGER OPERATIONS (Continued) 

Instruction TIT 

ADD ~ Add 000 
ADC ~ Add with Carry 010 
AND ~ Logical AND 100 
OR ~ Logical OR 001 
SUB ~ Subtract 101 
SSB = Subtract with Borrow 011 
XOR ~ Logical Exclusive OR 110 

regl toreg2 I OOTTTOOw 11 regl reg21 1 

reg2to regl I OOTTTOlw 11 regl reg21 1 

memory to register I OOTTTOlw mod reg rim I 2 

register to memory I OOTTTOOw mod reg rim I 3 U/L 

immediate to register I 100000sw 11 TTT reg I immediate register 1 

immediate to accumulator I 00TTT10w immediate data 1 

immediate to memory I 100000sw mod TTT rim I immediate data 3 U/L 

Instruction TIT 

INC = Increment 000 
DEC = Decrement 001 

reg I lllllllw 111 TTT reg I 1 

or 101TTT reg I 1 

memory I lllllllw I mod TTT rim I 3 U/L 

Instruction TIT 

NOT ~ Logical Complement 010 
NEG ~ Negate 011 

reg I 1111011 w 111 TTT reg I 1 

memory I 1111011 w I mod TTT rim I 3 U/L 

CMP ~ Compare 

re91 with re92 0011100w 111 regl reg21 1 

re92 with reg1 0011101 w 111 re91 re92 1 1 

memory with register 0011100w I mod reg rlml 2 

register with memory 0011101 w I mod reg rlml 2 

immediate with register 100000sw 111 111 reg I immediate data 1 

immediate with acc. 0011110w I immediate data 1 

immediate with memory I 100000sw I mod 111 rim I immediate data 2 

TEST ~ Logical Compare 

re91 and re92 1000010w 111 regl r9g21 1 

memory and register 1000010w I mod reg rlml 2 

immediate and register 1111011 w 111 000 reg I immediate data 1 

immediate and acc. 1010100w I immediate data 1 

immediate and memory 1111011 w I mod 000 rIm I immediate data 2 

10·3 



intel" Intel486™ DX2 MICROPROCESSOR 

Table 10.1.lnteI486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued) 
INSTRUCTION FORMAT Cache Hit Notes 

INTEGER OPERATIONS (Continued) 

MUL ~ Multiply (unsigned) 

ace. with register I 1111011 w 111 100 reg 1 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

acc. with memory I 1111011w I mod 100 rIm 1 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

IMUL ~ Integer Multiply (signed) 

ace. with register I 1111011 w 111 101 reg 1 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

acc. with memory 1 1111011 w 1 mod 101 rIm 1 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

regl with reg2 I 00001111 1 10101111 111 regl reg21 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

register with memory I 00001111 1 10101111 1 mod reg rIm 1 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

reg1 with imm. to re92 1 01101 Os 1 111 regl reg21 immediate data 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

memo with imm. to reg. I 01101 Os 1 1 mod reg rIm 1 immediate data 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

DIV ~ Divide (unsigned) 

acc. by register I 1111011 w 111 110 reg 1 

Divisor-Byte 16 

Word 24 

Dword 40 

acc. by memory I 1111011w 1 mod 110 rIm 1 

Divisor-Byte 16 

Word 24 

Dword 40 

IDIV ~ Integer Divide (signed) 

acc. by register 1 1111011 w 111 111 reg 1 

Divisor-Byte 19 

Word 27 

Dword 43 

10-4 



intaL Intel486TM DX2 MICROPROCESSOR 

Table 10.1. Intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued) 
INSTRUCTION FORMAT CacheHil Notes 

INTEGER OPERATIONS (Continued) 

acc. by memory 11111011wlmodlll rlml 

Divisor~Byte 20 
Word 28 
Dword 44 

CBW/CWOE ~ Convert Byte to Wordl 
Convert Word 10 Oword 1100110001 3 

CWO/COO ~ Convert Word to Dwordl 
Convert Dword to 110011001 I 3 
Ouadword 

Instruction TTT 

ROL ~ Rotate Left 000 
ROR ~ Rotate Right 001 
RCL ~ Rotate through Carry Left 010 
RCR ~ Rotate through Carry Right 011 
SHL/SAL ~ Shift Logical! Artthmetic Left 100 
SHR ~ Shift Logical Right 101 
SAR ~ Shift Arithmetic Right 111 

Nol Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

reg by 1 1 1101000w 11 TTT reg 3 

memorybyl I 1101000w mod TTT rim 4 

reg byCL I 1101001 w 11 TTT reg 3 

memorybyCL 1 1101001 w mod TTT rim 4 

reg by immediate count 1 1100000w 11 TTT reg immediate 8-bit data 2 

mem by immediate count 1 1100000w mod TTT r/m·1 immediate a-bit data 4 

Through Carry (RCL and RCR) 

reg by 1 1101000w 11 TTT reg I 3 

memory by 1 1101000w mod TTT rlml 4 

reg byCL 1101001 w 11 TTT reg I 8/30 MN/MX,4 

memory by CL 1101001 w mod TTT rlml 9/31 MN/MX,5 

reg by immediate count 1100000w 11 TTT reg I immediate a-bit data 8/30 MN/MX,4 

mam by immediate count 1100000w mod TTT rim I immediate B-bit data 9/31 MN/MX,5 

Instruction TTT 

SHLD ~ Shift Left Double 100 
SHRD ~ Shift Right Double 101 

register with immediate 00001111 10TTT100 111 reg2 regl I imm a·bit data 2 

memory by immediate 00001111 10TTT100 I mod reg rim I imm 8-bit data 3 

register by CL 00001111 10TTT10l 111 reg2 regll 3 

memorybyCL 00001111 10TTT10l I mod reg rim I 4 

BSWAP ~ Byte Swap 00001111 11001 reg I 1 

XADD ~ Exchange and Add 

regl, reg2 1 00001111 11100000W 111 reg2 regll 3 

memory, reg I 00001111 11100000w I mod reg r/mi 4 U/L 

CMPXCHG ~ Compare and Exchange 

regl,reg2 1 00001111 11011000W 111 reg2 regll 6 

memory, reg 1 00001111 11011000W I mod reg rIm I 7/10 6 

10-5 



infel .. Intel486TM DX2 MICROPROCESSOR 

Table 10.1.lnteI486lM DX2 Microprocessor Integer Core Clock Count Summary (Continued) 
INSTRUCTION FORMAT cache Hit Notea 

CONTROL TRANSFER (within ""IImant) 

NOTE: Times are jump takenlnot taken 

Jccc = Jump on ccc 

S·blt displacement I 0111111n I 8·bitdisp. I 3/1 TINT, 23 

full displacement I 00001111 I 10001lin I lull displacement 3/1 TINT, 23 

NOTE: Times are jump takenlnot taken 

SETcccc = Set Byte on cccc (TIm .. are cccc true/false) 

reg I 00001111 I 1001111n 111 000 reg I 4/3 

memory I 00001111 I 1001111n I mod 000 rIm I 3/4 

Mnemonic 
CondlUon mn 

eccc 

0 Overflow 0000 
NO NoOVerilow 0001 
B/NAE Below/Not Above or Equal 0010 
NB/AE Not Belowl Above or Equal 0011 
EIZ EquallZero 0100 
NEINZ Nol Equal/Nol Zero 0101 
BEINA Below or EquallNot Above 0110 
NBE/A Nol Below or Equall Above 0111 
S Sign 1000 
NS NolSign 1001 
PIPE ParitylParity Even 1010 
NP/PO Not ParitylParity Odd 1011 
LlNGE Less ThanlNol Grealer or Equal 1100 
NL/GE Nol Less ThanlGreater or Equal 1101 
LEING Less Than or EquallGreater Than 1110 
NLE/G Not Less Than or Equal/Grealer Than 1111 

LOOP = LOOP CX Tim .. 11100010 8·bitdisp. 716 LINL,23 

LOOPZ/LOOPE = Loop with 11100001 8-bitdisp. 9/6 LINL,23 
Zero/Equal 

LOOPNVLOOPNE = Loop while 11100000 8-bildlsp. 9/8 LINL,23 
Not Zero 

JCXZ = Jump on CX Zero 11100011 8-bildlsp. 8/5 TINT, 23 

JECXZ = Jump on ECX Zero 11100011 8-bil disp. 8/5 TINT, 23 

(Address Size Prefix OHIerentiates JC Z lor JECXZ) 

JMP = UncondlUonal Jump (within ""IIment) 

Short I 11101011 I 8-bil disp. I 3 7,23 

Direct I 11101001 I full displacement 3 7,23 

Register Indirect I 11111111 111 100 reg I 5 7,23 

Memory Indirect I 11111111 Imedl00 rIm I 5 7 

CALL = can (within ugment) 

Direct I 11101000 I full displacement 3 7,23 

Register Indirect I 11111111 111 010 reg I 5 7,23 

Memory Indirect I 11111111 Imedolo rIm I 5 7 

RET = Return from CALL (within ""IImant) 

I 11000011 I 5 

Adding Immediate to SP I 11000010 I 16-b~ disp. I 5 

10-6 



intet Intel486TM DX2 MICROPROCESSOR 

Table 10.1. Intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Notes 

CONTROL TRANSFER (within aegment) (Continued) 

ENTER - Enter Procedure I 11001000 116-bitdisp., 6-bit level 

Level- 0 14 
Level- 1 17 
LeveI(L) > 1 17+3L 8 

LEAVE - Leave Procedure I 11001001 1 5 

MULTIPLE-sEGMENT INSTRUCTIONS 

MOV- Move 

reg. to segment reg. I 10001110 111 sreg3 reg I 3/9 RVlP, 9 

memory to segment reg. I 10001110 I mod sreg3 rIm 1 3/9 RVlP,9 

segment reg. to reg. I 10001100 111 .reg3 reg 1 3 

segment reg. to memory 1 10001100 1 mod .reg3 rIm 1 3 

PUSH - Push 

segment reg. 1000sreg21101 3 
(ES, CS, SS, or OS) 

segment reg. (FS or GS) 1 00001111 110 .reg3000 1 3 

POP - Pop 

segment reg. 1000sreg2111 3/9 RV/P,9 
(ES, SS, or OS) 

segment reg. (FS or GS) 1 00001111 10 sreg30011 3/9 RV/P,9 

LDS - Load Pointer to DS I 11000101 mod reg rIm 1 6/12 RVlP, 9 

LES - Load Pointer to ES I 11000100 mod reg rIm 1 6/12 RVlP, 9 

LFS - Load Pointer to FS I 00001111 10110100 1 mod reg rIm 1 6/12 RVlP, 9 

LGS - Load PoInter to GS I 00001111 10110101 1 mod reg rIm 1 6112 RVlP, 9 

LSS - Load Pointer to SS I 00001111 10110010 1 mod reg rIm 1 6/12 RVlP, 9 

CALL - Call 

Direct intersegment I 10011010 1 unsigned full offset, selector 18 R,7,22 

to same level 20 P,9 
thru Gate to same level 35 P,9 
to inner level, no parameters 69 P,9 
to inner level, x parameter (d) words n+4X P,11,9 
toTSS 37+TS P,10,9 
thru Task Gete 38+TS P,10,9 

Indirect intersegment 1 11111111 1 mod 011 rIm 1 17 R,7 

to same level 20 P,9 
thru Gate to same level 35 P,9 
to inner level, no parameters 89 P,9 
to inner level, x parameter (d) words 77+4X+n P,11,9 
toTSS 37+TS P,10,9 
thru Task Gate 38+TS P,10,9 

RET - Retum from CALL 

Intersegment I 11001011 1 13 R,7 

to same level 17 P,9 
to outer level 35 P,9 

intersegment adding I 11001010 1 16-bitdisp. 1 
Imm.to SP 14 R,7 

to same level 18 P,9 
to outer level 36 P,9 

10·7 



intel~ Intel486™ DX2 MICROPROCESSOR 

Table 10.1. Intel486TM DX2 Microprocessor Integer Core Clock Count Summary (Continued) 

INSTRUCTION FORMAT CacheHl1 Notes 

MUL TIPLE-8EGMENT INSTRUCTIONS (Continued) 

JMP ~ Unconditional Jump 

Direct intersegment I 11101010 I unsigned full offset, selector 17 A,7,22 

to same level 19 P,9 
thru Call Gate to same level 32 P,9 
thruTSS 42+TS P, 10,9 
thru Task Gate 43+TS P,10,9 

Indirect intersegment I 11111111 I mod 101 r/ml 13 A,7,9 

to same level 18 P,9 
thru Call Gate to same level 31 P,9 
thruTSS 41+TS P,10,9 
thru Task Gate 42+TS P,10,9 

BIT MANIPULATION 

BT ~ Test bit 

register, immediate I 00001111 I 10111010 111 100 reg I imm. 8-bit data 3 

memory, immediate I 00001111 I 10111010 I mod 100 rim I imm. 8-bit data 3 

regl, reg2 I 00001111 110100011 111 reg2 regll 3 

memory, reg I 00001111 I 10100011 I mod reg rim I 8 

Instruction TTT 

BTS ~ Test Bit and Set 101 
BTA ~ Test Bit and Aeset 110 
BTC ~ Test Bit and Compliment 111 

register. immediate I 00001111 I 10111010 111 TTT reg I imm. 8-bit data 6 

memory. immediate I 00001111 I 10111010 I mod TTT rIm I imm. a-bit data 8 U/L 

regl, reg2 100001111 I 10TTTOIl 111 reg2 regll 6 

memory, reg I 00001111 I 10TTTOIl I mod reg rim 1 13 U/L 

BSF ~ Scan Bil Forward 

regl, reg2 I 00001111 I 10111100 111 reg2 regll 6/42 MN/MX,12 

memory, reg I 00001111 I 10111100 I mod reg rim 1 7/43 MN/MX,13 

BSR ~ Scan Bit Reverse 

regl, reg2 I 00001111 I 10111101 111 reg2 regll 6/103 MN/MX,14 

memory,reg 1 00001111 I 10111101 I mod reg rim I 7/104 MN/MX,15 

STRING INSTRUCTIONS 

CMPS ~ Compare Byte Word I 1010011 w I 8 16 

LODS ~ Load Byte/Word I 1010110w I 5 
to ALiAX/EAX 

MOYS ~ Move Byte/Word I 1010010w I 7 16 

SCAS ~ Scan Byte/Word I 1010111 w I 6 

STOS ~ Store Byte/Word 1 1010101w I 5 
from AL/ AX/EX 

XLAT ~ Translate Siring I 11010111 I 4 

10·8 



int:et Intel486TM DX2 MICROPROCESSOR 

Table 10.1. Intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued) 
INSTRUCTION FORMAT Cache Hit Notes 

REPEATED STRING INSTRUCTIONS 

Repeated by Count in CX or ECX (C ~ Count in CX or ECX) 

REPE CMPS ~ Compare string I 11110011 I 1010011 w I 
(Find Non-Match) 
C~O 5 
C>O 7+7c 16,17 

REPNE CMPS ~ Compare String I 11110010 I 1010011 w I 
(Find Match) 
C~O 5 
C>O 7+7c 16,17 

REP LODS ~ Load SIring I 11110011 I 1010110w I 
C~O 5 
C>O 7+4C 16,18 

REP MOVS ~ Move String I 11110011 I 1010010w I 
C~O 5 
C~1 13 16 
C>1 12+3c 16,19 

REPE SCAS ~ Scan String I 1111 oq 11 I 1010111 w I 
(Find Non-ALI AX/EAX) 
C~O 5 
C>O 7+5c 20 

REPNE SCAS ~ Scan string I 11110010 I 1010111 w I 
(Find ALI AX/EAX) 
C~O 5 
C>O 7+5c 20 

REP STOS ~ Store String I 11110011 I 1010101w I 
C~O 5 
C>O 7+4c 

FLAG CONTROL 

CLC ~ Clear Carry Flag 11111000 I 2 

STC ~ Set Carry Flag 11111001 I 2 

CMC ~ Complement Carry Flag 11110101 I 2 

CLD ~ Clear Direction Flag 11111100 I 2 

STD ~ Set Direction Flag 11111101 I 2 

CLI ~ Clear Interrupt I 11111010 I 5 

Enable Flag 

STI ~ Set Interrupt I 11111011 I 5 

Enable Flag 

LAHF ~ Load AH Into Flag I 10011111 I 3 

SAHF ~ store AH Into Flags I 10011110 I 2 

PUSHF ~ Push Flags I 10011100 I 4/3 RV/P 

POPF ~ Pop Flags I 10011101 I 9/6 RV/P 

DECIMAL ARITHMETIC 

AAA ~ ASCII Adjust lor Add I 00110111 I 3 

AAS ~ ASCII Adjust lor I 00111111 I 3 

Subtract 

AAM ~ ASCII Adjust lor I 11010100 I 00001010 I 15 

Multiply 

10-9 



intel· Intel486TM DX2 MICROPROCESSOR 

Table 10.1. Intel486TM DX2 Microprocessor Integer Core Clock Count Summary (Continued) 
INSTRUCTION FORMAT ClIChe Hit Nole8 

DECIMAL ARITHMETIC (Continued) 

AAD ~ ASCII AdJUst for I 11010101 I 00001010 I 14 
Divide 

DAA ~ Declmal AdJust for Add I 00100111 I 2 

DAS ~ DecImal AdJust for SUbtract I 00101111 I 2 

PROCESSOR CONTROL INSTRUCTIONS 

HLT ~ Halt I 11110100 I 4 

MOV ~ Move To and From Control/DebuglTast Registers 

CRO from register 00001111 00100010 11 000 reg I 17 

CR2/CR3 from register 00001111 00100010 11 eee reg I 4 

Reg from CRO-3 00001111 00100000 11 eee reg I 4 

DRO-3 from register 00001111 00100011 11 eee reg I 10 

OR6-7 from register 00001111 00100011 11 eee reg I 10 

Register from DR6-7 00001111 00100001 11 eee reg I 9 

Register from DRO-3 00001111 00100001 11 eee reg 9 

TR3 from register 00001111 00100110 11 011 reg 4 

TR4-7 from register 00001111 00100110 11 eee reg 4 

Register from TR3 00001111 00100100 11 011 reg 3 

Register from TR4-7 00001111 00100100 11 eee reg 4 

CL 18 ~ Clear Task SWitched Flag 00001111 00000110 7 

INVD ~ Invalidate Date cache 00001111 00001000 4 

WBINVD ~ Wrlte-_ and Invalidate I 00001111 00001001 5 
Date Cache 

INVLPG ~ Invall_ TLB Entry 

INVLPG memory I 00001111 I 00000001 I mod 111 rIm I 12/11 HINH 

PREFIX BYTES 

Add ... SIze PreIIx I 01100111 I 1 

LOCK ~ Bus Lock Prellx I 11110000 I 1 

Operand Size Prefix I 01100110 I 1 

Segment OVerrIde Prefix 

cs: 00101110 1 

OS: 00111110 1 

ES: 00100110 1 

FS: 01100100 1 

GS: 01100101 1 

88: 00110110 , 

10-10 



int:et Intel486TM DX2 MICROPROCESSOR 

Table 10.1. Intel486™ DX2 Microprocessor Integer Core Clock Count Summary (Continued) 
INSTRUCTION FORMAT Cache Hit Notes 

PROTECTION CONTROL 

ARPL ~ Adjust Requested Privilege Level 

From register I 01100011 111 reg1 reg21 9 

From memory I 01100011 1 mod reg rIm 1 9 

LAR ~ Load Access Rights 

From register I 00001111 1 00000010 111 reg1 reg21 11 

From memory I 00001111 1 00000010 1 mod reg rIm 1 11 

LGDT ~ Load Global Descriptor 

Table register I 00001111 I 00000001 Imod010 rIm 1 12 

LlDT ~ Load Interrupt Descriptor 

Table register I 00001111 1 00000001 I mod 011 rIm 1 12 

LLDT ~ Load Local Descriptor 

Table register from reg. I 00001111 1 00000000 111 010 reg 1 11 

Table register from memo I 00001111 1 00000000 Imod010 rIm I 11 

LMSW ~ Load Machine Status Word 

From register I 00001111 1 00000001 111 110 reg 1 13 

From memory I 00001111 1 00000001 1 mod 110 rIm 1 13 

LSL ~ Load Segment Limit 

From register I 00001111 1 00000011 111 reg1 reg21 10 

From memory I 00001111 1 00000011 1 mod reg rIm 1 10 

L TR ~ Load Task Register 

From Register I 00001111 1 00000000 111 011 reg 1 20 

From Memory I 00001111 1 00000000 1 mod 011 rIm 1 20 

SGDT ~ Store Global Descriptor Table 

I 00001111 1 00000001 1 mod 000 rIm 1 10 

SIDT ~ Store Interrupt Descriptor Table 

I 00001111 I 00000001 1 mod 001 rIm 1 10 

SLDT ~ Store Local Descriptor Table 

To register I 00001111 1 00000000 111 000 reg I 2 

To memory I 00001111 1 00000000 1 mod 000 rIm 1 3 

SMSW ~ Store Machine Status Word 

Teregister I 00001111 1 00000001 111 100 reg 1 2 

To memory I 00001111 1 00000001 1 mod 100 rIm I 3 

STR ~ Store Task Register 

To register I 00001111 1 00000000 111 001 reg 1 2 

To memory I 00001111 1 00000000 1 mod 001 rIm 1 3 

VERR ~ Verify Read Access 

Register I 00001111 1 00000000 111 100 r/ml 11 

Memory I 00001111 1 00000000 1 mod 100 r/ml 11 

VERW ~ Verify Write Access 

To register I 00001111 1 00000000 111 101 reg 1 11 

To memory I 00001111 1 00000000 1 mod 101 rIm 1 11 

10-11 



intel.. Intel486TM DX2 MICROPROCESSOR 

Table 10.1. Inte1486TM DX2 Microprocessor Integer Core Clock Count Summary (Continued) 
INSTRUCTION FORIIAT C8ch_HIt Notes 

INTERRUPT INSTRUCTIONS 

INT n = Intanupt Type n I 11001101 I type I INT+4/0 RVlP,21 

INT 3 = Interrupt Type 3 I 11001100 I INT+O 21 

INTO = Interrupt 41f I 11001110 I 
Overflow Flag Set 
Taken INT+2 21 
NoITaken 3 21 

BOUND = Interrupt 511 Detect I 01100010 I mod reg rIm I 
Value Out Range 

If in range 7 21 
If out of range INT+24 21 

IRET = Intanupt Return I 11001111 I 
Real ModelVirtual Mode 15 
Protected Mode 

To same level 20 9 
To outer level 36 9 
To nested task (EFLAGS.NT =' 1) " TS+32 9, 10 

Extemellnterrupt INT+ll 21 

NIII = Non-lleskable Interrupt INT+3 21 

Peg_Fault INT+24 21 

VM86 Exceptions 
eLi INT+8 21 
STI INT+8 21 
INTn INT+9 
PUSHF INT+9 21 
POPF INT+8 21 
IRET INT+9 
IN 

Fixed Port INT+50 21 
Variable Port INT+51 21 

OUT 
Fixed Port INT+50 21 
Variable Port INT+51 21 

INS INT+50 21 
OUTS INT+50 21 
REP INS INT+51 21 
REP OUTS INT+51 21 

Task SWitch Clock Counts Table 

Method 
Value.orTS 

Cache Hit 

VM/intel486 DX2 CPU/286 TSS To Intel486 DX2 CPU TSS 162 
VM/intel486 DX2 CPU/286 TSS To 286 TSS 143 
VMllntel486 DX2 CPU/286 TSS To VM TSS 140 

10-12 



Intel486™ DX2 MICROPROCESSOR 

Interrupt Clock Counts Table 

Method 

Real Mode 

Protected Mode 
Interrupt/Trap gate, same level 
Interrupt/Trap gate, different level 
Task Gate 

Virtual Mode 
Interrupt/Trap gate, different level 
Task gate 

AbbrevlaUons 
16/32 

Definition 
16/32 bit modes 
unlocked/locked 
minimum/maximum 
loop/no loop 

U/L 
MN/MX 
LlNL 
RVIP 
R 
P 
T/NT 
H/NH 

NOTES: 

real and virtual mode/protected mode 
real mode 
protected mode 
taken/not taken 
hitlno hit 

Cache Hit 

26 

44 
71 

37 + T5 

82 
37 + T5 

Value for INT 

1. Assuming that the operand address and stack address fall in different cache sets. 
2. Always locked, no cache hit case. 
3. Clocks = 10 + max(log2(lml),n) 

m = multiplier value (min clocks for m = 0) 
n = 3/5 for ±m 

4. Clocks = /quotient(countloperand length)J*7+9 
= 8 if count s; operand length (8/16/32) 

5. Clocks = {quotient(count/operand length)}*7+9 
= 9 if count s; operand length (8/16/32) 

6. Equal/not equal cases (penalty is the same regardless of lock). 

Notes 

9 
9 

9, 10 

10 

7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different cache sets. 
8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame. 
9. Add 11 clocks for each unaccessed deSCriptor load. 

10. Refer to task switch clock counts table for value of TS. 
11. Add 4 extra clocks to the cache miss penalty for each 16 bytes. 
For notes 12-13: (b = 0-3, non-zero byte number); 

(i = 0-1, non-zero nibble number); 
(n = 0-3, non bit number in nibble); 

12. Clocks = 8+4 (b+1) + 3(i+1) + 3(n+1) 
= 6 if second operand = 0 

13. Clocks = 9+4(b+1) + 3(i+1) + 3(n+1) 
= 7 if second operand = 0 

For notes 14-15: (n = bit position 0-31) 
14. Clocks = 7 + 3(32 - n) 

6 if second operand = 0 
15. Clocks = 8 + 3(32-n) 

7 if second operand = 0 
16. Assuming that the two string addresses fall in different cache sets. 
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare. 
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load. 
19. Cache miss penalty: add 4 clocks for every 16 bytes moved. 

(1 clock for the first operation and 3 for the second) 
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned. 

(2 clocks each for first and second operations) 
21. Refer to interrupt clock counts table for value of INT 
22. Clock count includes one clock for using both displacement and immediate. 
23. Refer to assumption 6 in the case of a cache miss. 

10-13 



intel .. Intel486TM DX2 MICROPROCESSOR 

Table 10.2.lnteI486TM DX2 Microprocessor 1/0 Instructions Core Clock Count Summary 

Real Protected Protected Virtual Ie INSTRUCTION FORMAT 
Mode Mode Mode Mode Notes 

(CPL':IOPL) (CPL>IOPL) 

1/0 INSTRUCTIONS 

IN = Input from: 

Fixed Port 1111001 Ow 1 port number I 17 12 32 30 

Variable Port 1111011 Ow 1 17 11 31 30 

OUT = Output to: 

Fixed Port 11110011 wi port number 1 19 14 34 32 

Variable Port 11110111W 1 19 13 33 32 

INS = Input BytalWord 0110110w 20 13 35 33 
trom DX Port 

OUTS = Output BytelWord 0110111 w 20 13 35 33 1 
toDXPort 

REP INS = Input Siring 111110011 1011011 Ow 1 19+11c 13+11c 33+11c 32+11c 2 

REP OUTS = Output SIrIng 111110011 1 0110111w I 2O+8c 14+8c 34+8c 33+8c 3 

NOTES: 
1. Two clock cache miss penalty in all cases. 
2. c = count in CX or ECX. 
3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation. 

10·14 



infel~ Intel486TM DX2 MICROPROCESSOR 

Table 10.3. Intel486TM DX2 Microprocessor Floating Point Core Clock Count Summary 
Cache Hit 

INSTRUCTION FORMAT Avg(Lower Notes 
Range ••• 

Upper Range) 

DATA TRANSFER 

FLO ~ Real Load to ST(O) 

32·Mmemory 111011 0011 mod 000 rIm I s-i·b/disp. I 3 

64-bilmemory 111011 1011mod 000 rIm I s-i·b/disp. I 3 

8().bilmemory 111011 0111modl0l rIm I s-i·b/disp. I 6 

ST(i) 111011 001111000 STO) I 4 

FILD ~ Integer Load to ST(O) 

16-b~ memory 111011 1111 mod 000 rIm I s·i·b/dlsp. I 14.5(13-16) 

32-1>il memory 111011 0111mod 000 rIm I S-;'b/disp. I 11.5(9-12) 

64-1>il memory 111011 1111 mod 101 rIm I s-i·b/disp. I 16.8(10-18) 

FBLD ~ BCD Load to ST(O) 111011 l111modloo rIm I s-i·b/disp. I 75(70-103) 

FST ~ Store Real from ST(O) 

32-bit memory 111011 0011 mod 010 rIm I s-i·b/disp. I 7 1 

64-Mmemory 111011 1011 mod 010 rIm I s·i·b/disp. I 8 2 

ST(ij 111011 101111010 STO) I 3 

FSTP ~ Store Real from ST(O) and Pop 

32·bilmemory 111011 oOllmod all rIm I s~-I>/disp. I 7 1 

64-bilmemory 111011 1011mod all rIm I s-i·b/disp. I 8 2 

80·bilmemory 111011 0111 mod 111 rIm I s-I·b/disp. I 6 

ST(i) 111011 101111001 STO) I 3 

FIST ~ Store Integer from ST(O) 

16-1>il memory 111011 l111mod 010 rIm I s-;'b/disp. I 33.4(Z9-34) 

32·Mmemory 111011 0111mod 010 rIm I s·;'b/disp. I 32.4(28-34) 

FISTP ~ Store Integer from ST(O) and Pop 

16-b~ memory 111011 111 mod all rIm I s-i·b/disp. I 33.4(29-34) 

32·bilmemory 111011 all mod all rIm I s-i·b/disp. I 33.4(29-34) 

64-Mmemory 111011 111 mod 111 rIm I s-i·b/disp. I 33.4(29-34) 

FBSTP ~ Store BCD from 111011 111 mod 110 rIm I s-i·b/disp. I 175(172-176) 
ST(O) and Pop 

FXCH ~ Exchange ST(O) and ST(I) 111011 001 11001 STool 4 

COMPARISON INSTRUCTIONS 

FCOM ~ Compare ST(O) with Real 

32·b~ memory 111011 ooolmodolo rIm I s-i·b/disp. I 4 

64-bilmemory 111011 100lmodol0 rIm I s-i-l>/disp. I 4 

ST(ij 111011 000111010 STool 4 

FCOMP ~ Compare ST(O) with Real and Pop 

32-1>~ memory 111011 oooimod all rIm I s-;'b/disp. I 4 

64-1>il memory 111011 100lmod all rIm I s-;'b/disp. I 4 

STO) 111011 000 111 all ST(I) I 4 

10·15 



intel .. Intel486TM DX2 MICROPROCESSOR 

Table 10.3. Intel486™ DX2 Microprocessor Floating Point Core Clock Count Summary (Continued) 
Cache Hit 

INSTRUCTION FORMAT Avg(Lower Notes 
Range ... 

Upper Range) 

COMPARISON INSTRUCTIONS (Continued) 

FCOMPP = Compare ST(O) wllh 111011 11011101 10011 5 
ST(I) and Pop Twice 

FICOM = Compare ST(O) with Integer 

16~bit memory 111011 110lmod 010 rim I s-i-b/disp. I 18(16-20) 

32-bitmemory 111011 ololmod 010 rim I s-i-bl disp. I 16.5(15-17) 

FICOMP = Compare ST(O) with Integer 

16-bit memory 111011 110 mod 011 rim s-i-b/disp. I 18(16-20) 

32-bitmemory 111011 010 mod 011 rim s-i-b/disp. I 16.5(15-17) 

FTST = Compare ST(O) with 0.0 111011 001 1110 0100 4 

FUCOM = Unordered compare 111011 101 11100 STeil 4 
ST(O) with ST(I) 

FUCOMP = Unordered compare 111011 101 11101 STeil 4 
ST(O) wllh ST(I) and Pop 

FUCOMPP = Unordered compare 111011 010 1110 1001 5 
ST(O) wtth ST(I) and Pop Twice 

FXAM = Examine ST(O) 111011 001 1110 0101 I 8 

CONSTANTS 

FLOZ = Load + 0.0 Into ST(O) 111011 001 1110 1110 4 

FLOI = Load + 1.0 Inlo ST(O) 111011 001 1110 1000 4 

FLOPI = Load 'IT Inl0 ST(O) 111011 001 1110 1011 8 

FLOL2T = Load 1092110) Inlo ST(O) 111011 001 1110 1001 8 

FLDL2E = Load Iog2le) Into ST(O) 111011 001 1110 1010 8 

FLOLG2 = Load 109,0(2) Into ST(O) 111011 001 1110 1100 8 

FLOLN2 = Load 1090(2) Inl0 ST(O) 111011 001 1110 1101 I 8 

ARITHMETIC 

FADD = Add Real with ST(O) 

ST(O) ..... ST(O) + 32-bit memory 111011 000 I mod 000 rim I s-i-bl disp. I 10(8-20) 

ST(O) ..... ST(O) + 64-bit memory 111011 100lmodOOO rim I s-i-bl disp. I 10(8-20) 

ST(d) ..... ST(O) + STeil 111011 doolll000 STeil I 10(8-20) 

FADDP = Add real with ST(O) and 111011 110111000 STeil I 10(8-20) 
Pop (ST(I) ..... ST(O) + ST(i» 

FSUB = Subtract reallrom ST(O) 

ST(O) ..... ST(O) - 32-bit memory 111011 ooolmod 100 rim I s-i-bl disp. I 10(8-20) 

ST(O) ..... ST(O) - 64-bit memory 111011 100lmod 100 rim I s-i-b/disp. I 10(8-20) 

ST(d) ..... ST(O) - STeil 111011 doollll0d STeil I 10(8-20) 

FSUBP = Subtract reallrom ST(O) 111011 110111101 STeil I 10(8-20) 
and Pop (ST(I) ..... ST(O) - ST(i» 

10-16 



Intel486™ DX2 MICROPROCESSOR 

Table 10.3.lnteI486™ DX2 Microprocessor Floating Point Core Clock Count Summary (Continued) 
Cache Hit 

INSTRUCTION FORMAT Avg(Lower Notes 
Range .•. 

Upper Range) 

ARITHMETIC (Conlinued) 

FSUBR ~ Subtract real reversed (Subtract ST(O) from real) 

ST(O) +- 32-bit memory - ST(O) 111011 oooimod 101 rim I s-i-b/ disp. I 10(8-20) 

ST(O) +- 64-bil memory - ST(O) 111011 100lmod 101 r/ml s-i-b/disp. I 10(8-20) 

ST(d) +- ST(i) - ST(O) 111011 doollll0d STeil I 10(8-20) 

FSUBRP ~ Subtract real reversed 111011 110111100 ST<il1 10(8-20) 

and Pop (ST(I) +- ST(I) - ST(O» 

FMUL ~ Multiply real with ST(O) 

ST(O) +- ST(O) x 32-bit memory 111011 oooimod 001 rim I s-i-b/disp_ I 11 

ST(O) +- ST(O) x 64-bil memory 111011 100lmod 001 rim I s-i-b/ disp. I 14 

ST(d) +- ST(O) x ST(i) 111011 dooll1001 STeil I 16 

FMULP ~ Multiply ST(O) with ST(I) 111011 110111001 STeil I 16 

and Pop (ST(I) +- ST(O) x ST(I» 

FDIV ~ Divide ST(O) by Real 

ST(O) +- ST(0)/32-bij memory 111011 oooimod 110 rim I s-i-b/disp. I 73 3 

ST(O) +- ST(0)/64-bit memory 111011 100lmod 110 rim I .-i-b/ disp. I 73 3 

ST(d) +- ST(O)/ST(i) 111011 dOO 11111 d ST(i) I 73 3 

FDIVP ~ Divide ST(O) by ST(I) and 111011 110111111 STO) I 73 3 

Pop (ST(I) +- ST(O)/ST(i» 

FDIVR.~ Divide real reversed (Real/ST(O» 

ST(O) +- 32-bit memory/ST(O) 111011 oooimod 111 rim I 8-i-b/disp. I 73 3 

ST(O) +- 64-bij memory/ST(O) 111011 tOol mod 111 r/ml s-i-b/disp. I 73 3 

ST(d) +- ST(i)/ST(O) 111011 dOO 11111 d STeil I 73 3 

FDIVRP ~ Divide real reversed and 111011 110111110 ST(i) I 73 3 

Pop (ST(I) +- ST(i)/ST(O» 

FIADD ~ Add Integer to ST(O) 

ST(O) +- ST(O) + 16-bij memory 111011 1101 mod 000 rim I .-i-b/disp. I 24(20-35) 

ST(O) +- ST(O) + 32-bil memory 111011 ololmod 000 r/ml s-i-b/disp. I 22.5(19-32) 

FISUB ~ SUbtract Integer from ST(O) 

ST(O) +- ST(O) - 16-bit memory 111011 1101 mod 100 r/ml s-i-b/disp. I 24(20-35) 

ST(O) +- ST(O) - 32-bit memory 111011 ololmod 100 rim I s-i-b/ disp. I 22.5(19-32) 

FISUBR ~ Integer Subtract Reversed 

ST(O) +- 16-bit memory - ST(O) 111011 1101 mod 101 r/ml s-i-bl disp. I 24(20-35) 

ST(O) +- 32-bit memory - ST(O) 111011 ololmod 101 r/ml s-i-b/disp. I 22.5(19-32) 

FIMUL ~ MuHiply Integer with ST(O) 

ST(O) +- ST(O) x 16-bit memory 111011 1101 mod 001 rim I s-i-b/disp. I 25(23-27) 

ST(O) +- ST(O) x 32-bit memory 111011 0101 mod 001 r/ml s-i-b/disp. I 23.5(22-24) 

FIDIV ~ Integer Divide 

ST(O) +- ST(0)/16-bij memory 111011 1101 mod 110 rim I s-i-b/disp. I, 87(85-89) 3 

ST(O) +- ST(0)/32-bit memory 111011 0101 mod 110 r/ml s-i-b/disp. I 85.5(84-86) 3 

10-17 



inteL Intel486TM DX2 MICROPROCESSOR 

Table 10.3. Intel486TM DX2 Microprocessor Floating Point Core Clock Count Summary (Continued) 
Cache Hit 

INSTRUCTION FORMAT Avg(Lower Notes 
Range .•• 

Upper Range) 

ARITHMETIC (Continued) 

FIDIVR ~ Integer Divide Reversed 

ST(O) <-16-bit memoryIST(O) 111011 110 mod 111 rIm s-i-bl disp. I 87(85-89) 3 

ST(O) <- 32-bit memory IST(O) 111011 010 mod 111 rIm s-i-bl disp. I 85.5(84-86) 3 

FSORT ~ Square Root 111011 001 1111 1010 85.5(83-87) 

FSCALE ~ Scale ST(O) by ST(I) 111011 001 1111 1101 31(30-32) 

FXTRACT ~ Extract components 111011 001 1111 0100 19(16-20) 

ofST(O) 

FPREM ~ Partial Reminder 111011 001 1111 1000 84(70-138) 

FPREMI ~ Partial Reminder (IEEE) 111011 001 1111 0101 94.5(72-167) 

FRNDINT ~ Round ST(O) to integer 111011 001 1111 1100 29.1 (21-30) 

FABS ~ Absolute value of ST(O) 111011 001 1110 0001 3 

FCHS ~ Change sign of ST(O) 111011 001 1110 0000 6 

TRANSCENDENTAL 

FCOS ~ Cosine of ST(O) 11011 001 1111 11111 241(193-279) 6,7 

FPT AN ~ Partial tangent of ST(O) 11011 001 1111 00101 244(200-273) 6,7 

FPATAN ~ Partial arctangent 11011 001 1111 0011 289(218-303) 6 

FSIN ~ Sine of ST(O) 11011 001 1111 1110 241(193-279) 6,7 

FSINCOS ~ Sine and cosine of ST(O) 11011 001 1111 1011 291 (243-329) 6,7 

F2XMl ~ t1T(O) - 1 11011 001 1111 0000 242(140-279) 6 

FYL2X ~ ST(I) x log2(ST(0» 11011 001 1111 0001 311(196-329) 6 

FYL2XPI ~ ST(I) x 10g2CST(0) + 1.0) 11011 001 1111 10011 313(171-326) 6 

PROCESSOR CONTROL 

FINIT ~ Initialize FPU 111011 01111110 0011 I 17 4 

FSTSW AX ~ Store status word 111011 11111110 00001 3 5 

into AX 

FSTSW ~ Store status word 111011 1011 mod 111 rIm s-i-b/disp. I 3 5 

Into memory 

FLDCW ~ Load control word 111011 oOllmod 101 rIm s-i-b/disp. I 4 

FSTCW = Store control word 111011 001 I mod 111 rIm s-i-b/disp. I 3 5 

FCLEX ~ Clear exceptions 111011 01111110 0010 7 4 

FSTENV ~ Store environment 111011 oOllmod 110 rIm s-i-b/disp. I 
Real and Virtual modes 16-bit Address 67 4 
Real and Virtual modes 32-bit Address 67 4 
Protected mode 16-bit Address 56 4 
Protected mode 32-bit Address 56 4 

FLDENV ~ Load environment 111011 oOllmod 100 rIm I sMi-b/disp. I 
Real and Virtual modes 16-bit Address 44 
Real and Virtual modes 32-bit Address 44 
Protected mode 16-bit Address 34 
Protected mode 32-bit Address 34 

10-18 



int'et Intel486™ DX2 MICROPROCESSOR 

Table 10.3. Intel486™ DX2 Microprocessor Floating Point Core Clock Count Summary (Continued) 
Cache Hit 

INSTRUCTION FORMAT Avg(Lower Notes 
Range ... 

Upper Range) 

PROCESSOR CONTROL (Continued) 

FSAVE ~ Save state 111011 1011 mod 110 rIm I s-i-b/disp. I 
Real and Virtual modes 16-bit Mdress 154 4 
Real and Virtual modes 32-bit Address 154 4 
Protected mode 16-bit Address 143 4 
Protected mode 32-bit Address 143 4 

FRSTOR ~ Restore state 111011 1011 mod 100 rIm I s-i-bl I 
Real and Virtual modes 16-bit Address 131 
Real and Virtual modes 32-bit Address 131 
Protected mode IS-bit Address 120 
Protected mode 32-bH Address 120 

FINCSTP ~ Increment Stack Pointer 11011 00111111 0111 I 3 

FDECSTP ~ Decrement Stack Pointer 11011 00111111 01101 3 

FFREE ~ Free ST(I) 11011 101111000 ST(i) I 3 

FNOP ~ No operations 11011 00111101 00001 3 

WAIT ~ Wait until FPU ready 10011011 I 
(Minimum/Maximum) 113 

NOTES: 
1. If operand is 0 clock counts = 27_ 
2. If operand is 0 clock counts = 28. 
3. If CW_PC indicates 24 bit precision then subtract 38 clocks. 

If CW_PC indicates 53 bit precision then subtract 11 clocks. 
4. If there is a numeric error pending from a previous instruction add 17 clocks_ 
5. If there is a numeric error pending from a previous instruction add 18 clocks. 
6. The INT pin is polled several times while this instruction is executing to assure short interrupt latency. 
7. If ABS(operand) is greater than '11"14 then add n clocks_ Where n = (operand/('11"14)). 

10-19 



int'et Intel486™ DX2 MICROPROCESSOR 

10.2 Instruction Encoding 

10.2.1 OVERVIEW 

All instruction encodings are subsets of the general 
instruction format shown in Figure 10.1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rim" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields-,may be defined. These fields vary. ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements. register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rim 
byte, specifies the address mode to be used. Certain 
encodings of the mod rim byte indicate a second 

addressing byte, the scale-index-base byte, follows 
the mod rim byte to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. If a displacement is present, the possible 
sizes are S, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the. instruction. 

Figure 10.1 illustrates several of the fields that can 
appear in an instruction, such as the mod field and 
the rim field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 10.4 is a complete list of all fields ap­
pearing in the Intel4S6 DX2 microprocessor instruc­
tion set. Further ahead, following Table 10.4, are de­
tailed tables for each field. 

ITTTTTTTTI TTTTTTTTI modTTTr/m I ssindexbase Id321161s1 nonedata32 I 161s1 none 

:z 07 0/\.765320/\.765320J\.. I\, / 
~------~~------~ ¥ ¥ ~--~---- ~----~----

opcode 
(one or two bytes) 
(T represents an 

opcode bit.) 

\. 

"mod rim" 
byte 

"s-i-b" 
byte 

register and address 
mode specifier 

/ 

address 
displacement 
(4, 2, 1 bytes 

or none) 

Figure 10.1. General Instruction Format 

immediate 
data 

(4, 2, 1 bytes 
or none) 

Table 10.4_ Fields within Intel486TM DX2 Microprocessor Instructions 

Field Name Description Number of Bits 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits) 1 
d Specifies Direction of Data Operation 1 
s Specifies if an Immediate Data Field Must be Sign-Extended 1 
reg General Register Specifier 3 
mod rim Address Mode Specifier (Effective Address can be a General Register) 2 for mod; 

3 for rim 
ss Scale Factor for Scaled Index Address Mode 2 
index General Register to be used as Index Register 3 
base General Register to be used as Base Register 3 
sreg2 Segment Register Specifier for CS, SS, OS, ES 2 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 3 
mn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 4 

NOTE: 
Tables 10.1-10.3 show encoding of individual instructions. 

10-20 



int'et Intel486TM DX2MICROPROCESSOR 

10.2.2 32-BIT EXTENSIONS OF THE 
INSTRUCTION SET 

The Intel486 DX2 supports all Intel486 extensions to 
the 8086/80186/80286 instruction set. 

With the Intel486 microprocessor, the 8086/801861 
80286 instruction set was extended in two orthogo· 
nal directions: 32·bit forms of all 16·bit instructions 
are added to support the 32-bit data types, and 
32·bit addressing modes are made available for all 
instructions referencing memory. This orthogonal in· 
struction set extension is accomplished having a De­
fault (D) bit in the code segment descriptor, and by 
having 2 prefixes to the instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the 0 bit in 
the code segment descriptor, which gives the de· 
fault length (either 32 bits or 16 bits) for both oper· 
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a 0 value of 0 is assumed internally by the In­
tel486 DX2 microprocessor when operating in those 
modes (for 16·bit default sizes compatible -with the 
8086/80186/80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32·bit effective address computa· 
tions. 

These 32-bit extensions are available in all Intel486 
microprocessor modes, including the Real Address 
Mode or the Virtual 8086 Mode. In these modes the 
default is always 16 bits, so prefixes are needed to 
specify 32·bit operands or addresses. For instruc· 
tions with more than one prefix, the order of prefixes 
is unimportant. 

10·21 

Unless specified otherwise, instructions with 8-bit 
and 16·bit operands do not affect the contents of 
the high·order bits of the extended registers. 

10.2.3 ENCODING OF INTEGER 
INSTRUCTION FIELDS 

Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 

10.2.3.1 Encoding of Operand Length (w) Field 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16·bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wField During 16-Blt During 32-Blt 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

10.2.3.2 Encoding of the General 
Register (reg) Field 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. 

Encoding of reg Field When w Field 
Is not Present In Instruction 

Register Selected Register Selected 
reg Field During 16-Blt During 32-Blt 

Data Operations Data Operations 

000 AX EAX 
001 CX ECX 
010 OX EDX 
011 BX EBX 
100 SP ESP 
101 BP EBP 
110 SI ESI 
111 01 EDI 



intel· Intel486TM DX2 MICROPROCESSOR 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Encoding of reg Field When w Field 
Is Present In Instruction 

Register Specified by reg Field 
During 16~Blt Data Operations: 

Function of w Field 

(whenw = 0) (whenw = 1) 

AL AX 
CL CX 
OL OX 
BL BX 
AH SP 
CH BP 
OH SI 
BH 01 

Register Specified by reg Field 
During 32-Blt Data Operations 

Function of w Field 

(whenw = 0) (whenw = 1) 

AL EAX 
CL ECX 
OL EOX 
BL EBX 
AH ESP 
CH EBP 
OH ESI 
BH EOI 

10.2.3.3 Encoding of the Segment 
Register (sreg) Field 

The sreg field in certain instructions is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the Intel486 OX2 Microprocessor 
FS and GS segment registers to be specified. 

2-Blt sreg2 Field 

2-Blt 
Segment 

sreg2Fleid 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 OS 

3-Bit sreg3 Field 

3-Bit 
Segment 

sreg3Fieid 
Register 
Selected 

000 ES 
001 CS 
010 SS 
011 OS 
100 FS 
101 GS 
110 do not use 
111 do not use 

10.2.3.4 Encoding of Address Mode 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rIm" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rIm" byte has rIm = 100 and mod = 00,01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rIm" byte, 
also contains three bits (shown as TTl in Figure 
10.1) sometimes used as an extension of the pri­
mary opcode. The three bits, however, may also be 
used as a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the 
"mod rIm" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rIm" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 

10-22 



Intel486TM DX2 MICROPROCESSOR 

Encoding of 16-bit Address Mode with "mod rIm" Byte 

mod rIm Effective Address mod rIm Effective Address 

00000 OS:[BX+SI] 10000 OS:[BX+SI+d16] 
00001 OS:[BX+OI] 10001 OS:[BX+01+d16] 
00010 SS:[BP+SI] 10010 SS:[BP+ SI + d16] 
00011 SS:[BP+OI] 10011 SS:[BP+01+d16] 
00100 OS: [SI] 10100 OS: [SI + d16] 
00101 OS: [01] 10101 OS: [01 + d16] 
00110 OS:d16 10110 SS:[BP+d16] 
00111 OS: [BX] 10111 OS:[BX+d16] 

01000 OS: [BX + SI + d8] 11 000 register-see below 
01001 OS: [BX + 01 + d8] 11001 register-see below 
01010 SS:[BP+SI+d8] 11010 register-see below 
01011 SS:[BP+ 01 + d8] 11 011 register-see below 
01100 OS:[SI+d8] 11 100 register-see below 
01101 OS:[01+d8] 11 101 register-see below 
01110 SS:[BP+d8] 11 110 register-see below 
01 111 OS:[BX+d8] 11 111 register-see below 

Register Specified by rIm Register Specified by rIm 
During 16-Bit Data Operations During 32-Bit Data Operations 

mod rIm 
Function of w Field 

mod rIm 
Function of w Field 

(when w=O) (whenw =1) (whenw=O) (whenw = 1) 

11000 AL AX 11000 AL EAX 
11001 CL CX 11001 CL ECX 
11010 OL OX 11010 OL EOX 
11 011 BL BX 11 011 BL EBX 
11100 AH SP 11100 AH ESP 
11 101 CH BP 11 101 CH EBP 
11 110 OH SI 11 110 OH ESI 
11 111 BH 01 11 111 BH EOI 

10-23 



Intel486™ DX2 MICROPROCESSOR 

Encoding of 32-bit Address Mode with "mod rim" byte (no "s-I-b" byte present) 

mod rim Effective Address mod rim Effective Address 

00000 DS:[EAX] 10000 DS:[EAX + d32] 
00001 DS:[ECX] 10001 DS:[ECX + d32] 
00010 DS:[EDX] 10010 DS:[EDX + d32] 
00011 DS:[EBX] 10011 DS:[EBX+d32] 
00100 s-i-b is present 10100 s-i-b is present 
00101 DS:d32 10101 SS: [EBP + d32] 
00110 DS:[ESI] 10110 DS: [ESI + d32] 
00111 DS:[EDI] 10111 DS: [EDI + d32] 

01000 DS:[EAX+d8] 11000 register-see below 
01001 DS:[ECX+d8] 11001 register-see below 
01010 DS: [EDX + d8] 11010 register-see below 
01011 DS: [EBX + d8] 11 011 register-see below 
01100 s-i-b is present 11100 register-see below 
01101 SS: [EBP + d8] 11 101 register-see below 
01110 DS: [ESI + d8] 11 110 register-see below 
01 111 DS:[EDI+d8] 11 111 register-see below 

Register Specified by reg or rim Register Specified by reg or rim 
during 16-Bit Data Operations: during 32-Blt Data Operations: 

mod rim 
Function of w field 

mod rim 
Function of w field 

(whenw=O) (whenw=1) (whenw=O) (whenw=1) 

11000 AL AX 11000 AL EAX 
11001 CL CX 11001 CL ECX 
11010 DL DX 11010 DL EDX 
11 011 BL BX 11 011 BL EBX 
11100 AH SP 11100 AH ESP 
11 101 CH BP 11101 CH EBP 
11 110 DH SI 11110 DH ESI 
11 111 BH DI 11 111 BH EDI 

10-24 



int:et 

mod base 

00000 
00001 
00010 
00011 
00100 
00101 
00110 
00111 

01000 
01001 
01010 
01011 
01100 
01101 
01 110 
01 111 

10000 
10001 
10010 
10011 
10100 
10101 
10110 
10111 

NOTE: 

Intel486TM DX2 MICROPROCESSOR 

Encoding of 32-bit Address Mode ("mod rIm" byte and "s-i-b" byte present) 

Effective Address 

DS: [EAX + (scaled index)] 
DS: [ECX + (scaled index)] 
DS: [EDX + (scaled index)] 
DS: [EBX + (scaled index)] 
SS: [ESP + (scaled index)] 
DS: [d32 + (scaled index)] 
DS: [ESI + (scaled index)] 
DS: [EDI + (scaled index)] 

DS: [EAX + (scaled index) + d8] 
DS: [ECX + (scaled index) + d8] 
DS: [EDX + (scaled index) + d8] 
DS: [EBX + (scaled index) + d8] 
SS: [ESP + (scaled index) + d8] 
SS: [EBP + (scaled index) + d8] 
DS: [ESI + (scaled index) + d8] 
DS: [EDI + (scaled index) + d8] 

DS: [EAX + (scaled index) + d32] 
DS: [ECX + (scaled index) + d32] 
DS: [EDX + (scaled index) + d32] 
DS: [EBX + (scaled index) + d32] 
SS: [ESP + (scaled index) + d32] 
5S: [EBP + (scaled index) + d32] 
DS: [ESI + (scaled index) + d32] 
DS: [EDI + (scaled index) + d32] 

ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 x8 

index Index Register 

000 EAX 
001 ECX 
010 EDX 
011 EBX 
100 no index reg" 
101 EBP 
110 ESI 
111 EDI 

""IMPORTANT NOTE: 
When index field is 100, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 

Mod field in "mod rim" byte; ss, index, base fields in 
"s-i-b" byte. 

10-25 



infel .. Intel486TM DX2 MICROPROCESSOR 

10.2.3.5 Encoding of Operation 
Direction (d) Field 

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod r/m" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod r/m" or "mod ss index base" Indicates 
Source Operand 

10.2.3.6 Encoding of Sign-Extend (s) Field 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 16-bit or 32-bit destination. 

Effect on Effect on 
s Immediate Immediate 

Data& Data 16132 

0 None None 

1 Sign-Extend Data8 to Fill None 
16-Bit or 32-Bit Destination 

10.2.3.7 Encoding of Conditional 
Test (tttn) Field 

For the conditional instructions (conditional jumps 
and set on condition). mn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1 ). 
and m giving the condition to test. 

Mnemonic Condition 

0 Overflow 
NO No Overflow 
BINAE BelowlNot Above or Equal 
NB/AE Not Below/Above or Equal 
E/Z Equal/Zero 
NE/NZ Not Equal/Not Zero 
BE/NA Below or Equal/Not Above 
NBE/A Not Below or Equal/Above 
S Sign 
NS Not Sign 
PIPE Parity/Parity Even 
NP/PO Not Parity/Parity Odd 
LlNGE Less Than/Not Greater or Equal 
NL/GE Not Less Than/Greater or Equal 
LEING Less Than or Equal/Greater Than 
NLE/G Not Less or Equal/Greater Than 

10.2.3.& Encoding of Control or Debug 
or Test Register (eee) Field 

mn 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

For the loading and storing of the Control. Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 ORO 
001 DR1 
010 DR2 
011 DR3 
110 DR6 
111 DR? 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode Reg Name 

011 TR3 
100 TR4 
101 TR5 
110 TR6 
111 TR? 

Do not use any other encoding 

10-26 



int:et Intel486™ DX2 MICROPROCESSOR 

Instruction 

2 

3 

4 

5 

11011 

11011 

11011 

11011 

11011 

15-11 

First Byte 

OPA 

MF 

d P 

0 0 

0 1 

10 9 

1 

OPA 

OPA 

1 

1 

8 

10.2.4 ENCODING OF FLOATING POINT 
INSTRUCTION FIELDS 

mod 

mod 

1 

1 

1 

7 

Instructions for the FPU assume one of the five 
forms shown in the following table. In all cases, in­
structions are at least two bytes long and begin with 
the bit pattern 11011 S. 

OP = Instruction opcode, possible split into two 
fields OPA and OPS 

MF = Memory Format 
00-32-bit real 
01-32-bit integer 
10-64-bit real 
11-16-bit integer 

P = Pop 
O-Do not pop stack 
1-Pop stack after operation 

d = Destination 
O-Destination is ST(O) 
1-Destination is ST(i) 

Optional 

Second Byte Fields 

1 I OPS rim s-i-b 1 disp 

OPS rim s-i-b I disp 

1 OPS ST(i) 

1 1 I OP 

1 1 I OP 

6 5 43210 

R XOR d = O-Destination (op) Source 
R XOR d = 1-Source (op) Destination 

ST(i) = Register stack element i 
000 = Stack top 
001 = Second stack element 

• 
• 
• 

111 = Eighth stack element 

mod (Mode field) and rim (Register/Memory specifi­
er) have the same interpretation as the correspond­
ing fields of the integer instructions. 

s-i-b (Scale Index Sase) byte and disp (displace­
ment) are optionally present in instructions that have 
mod and rim fields. Their presence depends on the 
values of mod and rim, as for integer instructions. 

10-27 





Intel486™ DX2 MICROPROCESSOR 

11.0 DIFFERENCES BETWEEN THE INTEL486™ DX2 
MICROPROCESSOR AND THE INTEL386™ 

MICROPROCESSOR PLUS THE INTEL387™ MATH 
COPROCESSOR EXTENSION 

The differences between the Intel486 DX2 micro­
processor and the Intel386 microprocessor are due 
to performance enhancements. The differences be­
tween the microprocessors are listed below. 

1. Instruction clock counts have been reduced to 
achieve higher performance. See Section 10. 

2. The Intel486 DX2 microprocessor bus is signifi­
cantly faster than the Intel386 microprocessor 
bus. Differences include an internally doubled 
clock, parity support, burst cycles, cacheable cy­
cles, cache invalidate cycles and 8-bit bus sup­
port. The Hardware Interface and Bus Operation 
Sections (Sections 6 and 7) of the data sheet 
should be carefully read to understand the In­
tel486 DX2 microprocessor bus functionality. 

3. To support the on-chip cache new bits have been 
added to control register 0 (CD and NW) (Section 
2.1.2.1), new pins have been added to the bus 
(Section 6) and new bus cycle types have been 
added (Section 7). The on-chip cache needs to 
be enabled after reset by clearing the CD and 
NW bit in CRO. 

4. The complete Intel387 math coprocessor instruc­
tion set and register set have been added. No 
1/0 cycles are performed during Floating Point 
instructions. The instruction and data pointers are 
set to 0 after FINIT/FSAVE. Interrupt 9 can no 
longer occur, interrupt 13 occurs instead. 

5. The Intel486 DX2 microprocessor supports new 
floating point error reporting modes to guarantee 
DOS compatibility. These new modes required a 
new bit in control register 0 (NE) (Section 2.1.2.1) 
and new pins (FERR# and IGNNE#) (Section 
6.2.13 and 7.2.14). 

6. In some cases FERR # is asserted when the next 
floating point instruction is encountered and in 
other cases it is asserted before the next floating 
point instruction is encountered, depending upon 
the execution state the instruction causing ex­
ception (see Sections 6.2.13 and 7.2.14). For 
both of these cases, the Intel387 Math Coproc-

11-1 

essor asserts ERROR # when the error occurs 
and does not wait for the next floating point in­
struction to be encountered. 

7. Six new instructions have been added: 

Byte Swap (BSWAP) 

Exchange-and-Add (XADD) 

Compare and Exchange (CMPXCHG) 

Invalidate Data Cache (INVD) 

Write-back and Invalidate Data Cache 
(WBINVD) 

Invalidate TLB Entry (INVLPG) 

8. There are two new bits defined in control regis­
ter 3, the page table entries and page directory 
entries (PCD and PWT) (Section 4.5.2.5). 

9. A new page protection feature has been added. 
This feature required a new bit in control register 
o (WP) (Section 2.1.2.1 and 4.5.3). 

10. A new Alignment Check feature has been add­
ed. This feature required a new bit in the flags 
register (AC) (Section 2.1.1.3) and a new bit in 
control register 0 (AM) (Section 2.1.2.1). 

11. The replacement algorithm for the translation 
lookaside buffer has been changed from a ran­
dom algorithm to a pseudo least recently used 
algorithm like that used by the on-chip cache. 
See Section 5.5 for a description of the algo­
rithm. 

12. Three new testability registers, TR3, TR4 and 
TR5, have been added for testing the on-chip 
cache. TLB testability has been enhanced. See 
Section 8. 

13. The prefetch queue has been increased from 16 
bytes to 32 bytes. A jump always needs to exe­
cute after modifying code to guarantee correct 
execution of the new instruction. 

14. After reset, the 10 in the upper byte of the OX 
register is 04. The contents of the base regis­
ters including the floating point registers may be 
different after reset. 





Intel486™ DX2 MICROPROCESSOR 

12.0 UPGRADE SOCKET 
This chapter contains the specifications for the Up­
grade Socket for systems based on the Intel486 
DX2 Microprocessor. All of the specifications de­
scribed herein are based on the specifications of the 
Intel486 DX2 Microprocessor. 

One of the most important features of the Intel486 
family architecture, compared with previous X86 ar­
chitectures, is its "end user easy" upgradability via 
the Upgrade Socket. Inclusion of the Upgrade Sock­
et in systems based on the Intel486 family of micro­
processors provides the end user with an easy and 
cost-effective way to increase system performance. 
The paradigm of simply installing an additional com­
ponent into an empty Upgrade Socket to achieve 
enhanced system performance is familiar to the mil­
lions of end users and dealers who have purchased 
Intel Math CoProcessor upgrades to boost system 
floating point performance. The first Upgrade Proc­
essor for Intel486 DX2 CPU based systems will pro­
vide up to 50% integer performance improvement 
and up to 150% floating point performance improve­
ment over the base system performance. This Up­
grade Processor will take advantage of Intel's next 
generation processor technology to provide this per­
formance improvement. 

The Upgrade Processor will implement a superset of 
the Intel486 DX2 Microprocessor signals. The new 
signals for the Upgrade Socket, in addition to the 
Intel486 DX2 CPU signals, support a writeback pro­
tocol for the on-chip cache in Intel's next generation 
processors. Implementation of the cache writeback 
capability for the Upgrade Socket is optional. Imple­
mentation of the Level 1 writeback protocol enables 
maximum performance gain for the Upgrade Proces­
sor over the base Intel486 DX2 system. The signals 
required to implement this writeback are detailed in 
a separate document and are marked reserved in 
this databook. 

As a new system architecture feature, the provision 
of the Upgrade Socket as a means for PC users to 
take advantage of the ever more rapid advances in 
software and hardware technology will help to main­
tain the competitiveness of X86 PC-compatible sys­
tems over other architectures into the future. 

The majority of upgrade installations which take ad­
vantage of the Upgrade Socket will be performed by 
end users and resellers. Therefore, it is important 
that the deSign be "end user easy", and that 

12-1 

the amount of training and technical expertise re­
quired to install the Upgrade Processors be mini­
mized. Upgrade installation instructions should be 
clearly described in the system user's manual. In ad­
dition, by making installation simple and foolproof, 
PC manufacturers can reduce the risk of system 
damage, warranty claims and service calls. Feed­
back from Intel's Math CoProcessor upgrade cus­
tomers highlights three main characteristics of end 
user easy designs: accessible Upgrade Socket loca­
tion, clear indication of upgrade component orienta­
tion, and minimization of insertion force. 

Upgrade Socket Location: The Upgrade Socket for 
Intel486 DX2 Microprocessor based systems is an 
empty socket which can be located on either the 
motherboard or modular CPU card. The Upgrade 
Socket should be easily accessible for installation 
and readily visible when the PC case is removed. 
The Upgrade Socket should not be located in a posi­
tion that requires removal of any other hardware 
(such as hard disk drives) in order to install the Up­
grade Processor. Since Math CoProcessor sockets 
are typically found near CPU socket on the mother­
board, similarly locating the Upgrade Socket near 
the CPU further adds to the ease of installation. 

Component Orientation: The most common mis­
take made by end users and resellers when install­
ing Math CoProcessor upgrades is incorrect orienta­
tion of the chip. This can result in irreversible dam­
age to the chip and/or the PC. To solve this prob­
lem, Intel has designed the Upgrade Socket and the 
Upgrade Processor with a keying mechanism to en­
sure proper orientation of the upgrade component 
by the PC user. The keying mechanism for the Up­
grade Processor is three missing pins on one corner 
of the device. To be effective as a keying mecha­
nism the corresponding locations in the socket must 
be plugged. The Upgrade Socket for Intel486 DX2 
CPU-based systems is designed to be backward 
compatible with the 169-pin Upgrade Socket of In­
tel486 SX and Intel486 DX systems. In order to 
maintain compatibility, the Upgrade Socket for In­
tel486 DX2 Microprocessor systems should include 
the Key Pin at location E5. In addition, the location 
of the key corner should be clearly marked on the 
motherboard or CPU card, for example by silk 
screening. 

Insertion Force: The third major concern voiced by 
end users refers to how much pressure should be 
exerted on the upgrade chip and PC board for prop-



intel .. Intel486TM DX2 MICROPROCESSOR 

er installation without damage. This becomes even 
more of a concern with the larger components which 
require up to 200 pounds of pressure for insertion 
into a standard screw machine socket. This level of 
pressure can easily result in cracked traces and 
stress to solder joints. To minimize the risk of sys­
tem damage, it is recommended that a Zero Inser­
tion Force (ZIF) socket be used for the Upgrade 
Socket. Designing with a ZIF socket eliminates the 
need to design in additional structural support to 
prevent flexing of the PC board during installation, 
and results in improved end user and reseller prod­
uct satisfaction due to easy "drop-in" installation. 

12.0.1 UPGRADE SOCKET OVERVIEW 

The Upgrade Socket for Intel486 DX2 CPU-based 
systems is deSigned such that when an Upgrade 
Processor is, installed in the Upgrade Socket, the 
original CPU relinquishes control of the system to 
the Upgrade Processor by backing off the bus. The 
circuit design requirements for the Upgrade Socket 
are discussed in Section 12.1. In addition to the Up­
grade Socket circuits, there are layout considera­
tions for the Upgrade Socket and Upgrade Proces­
sor spatial requirements. These issues are dis­
cussed in Section 12.2. Because future high-per­
formance Upgrade Processors must function in the 
Upgrade Socket, the Upgrade Socket heat dissipa-

CTRl 

ADDR 

DATA 

tion specifications must be implemented. Section 
12.3 shows the Upgrade Processor heat dissipation 
requirements for a hypothetical system design at 25 
MHz and 33 MHz. Because the system must operate 
correctly with any Upgrade Processor without a 
BIOS change, BIOS and software restrictions and 
recommendations are provided in Section 12.4. Sec­
tion 12.5 discusses Upgrade Socket test require­
ments. Finally, Sections 12.6 and 12.7 specify the 
pinout and electrical characteristics of the Upgrade 
Processor, respectively. 

12.1 Upgrade Circuit Design 

The Upgrade Socket for Intel486 DX2 Microproces­
sor-based systems is designed to reside on the 
same processor bus as the Intel486 DX2 CPU. This 
Upgrade Socket specifies a UP# output (Upgrade 
Present) pin which should be connected directly to 
the UP# input pin of the Intel486 DX2 Microproces­
sor. When the Upgrade Processor occupies the Up­
grade Socket, the UP# signal (active low) forces the 
Intel486 DX2 Microprocessor to 3-state all outputs 
and reduce power consumption. When the Upgrade 
Processor is not in the Upgrade Socket, a pullup re­
sistor, internal to the Intel486 DX2 Microprocessor, 
drives UP# inactive and allows the Intel486 DX2 Mi­
croprocessor to control the processor bus. 

DATA ADDR CTRl DATA ADDR CTRl 

7, RESERVED UP# UP# 

UPGRADE Int.1486 DX2 
SOCKET CPU 

r>ClK I>ClK 

ClK -- 241245-83 

Figure 12·1. Upgrade Socket Circuit Diagram 

12-2 



int:eL Intel486™ DX2 MICROPROCESSOR 

12.2 Socket Layout 

This section discusses four aspects for the Upgrade 
Socket: compatibility, size, upgradability, and ven­
dors. 

12.2.1 BACKWARD COMPATIBILITY 

The Upgrade Socket for Intel486 OX2 Microproces­
sor-based systems is designed to be compatible 
with the Upgrade Processor for Intel486 OX2 CPU­
based systems as well as the Upgrade Processor for 
Intel486 SX CPU- and Intel486 OX CPU-based sys­
tems. 

The Upgrade Socket for Intel486 OX2 microproces­
sor-based systems has a fourth row of contacts 
around the outside of the 169 contacts defined for 
the Intel486 SX CPU- and Intel486 OX CPU-based 
Upgrade Processor sockets. The three inner rows, 
with inner key pin, are 100% compatible with the 
169-pin PGA Upgrade Processor, for Intel486-based 
systems. For backward compatibility, the inner row 
key pin location (E5) must be included in the Up­
grade Socket for Intel486 OX2 CPU-based systems. 

12.2.2 PHYSICAL DIMENSIONS 

The Upgrade Socket for Intel486 OX2 microproces­
sor-based systems is equivalent to a standard 
240-lead PGA package with three corner pins re-

B 

I· A 

moved for orientation purposes. The Upgrade Proc­
essor will be provided with a heat sink attached (see 
Section 12.3), to dissipate heat. 

The maximum and minimum dimensions of the Up­
grade Processor package with the heat sink are 
shown in Table 12-1. 

Table 12-1. Upgrade Processor, 237-Pin, PGA 
Package Dimensions with Heat Sink Attached 

Dimension (Inches) Minimum Maximum 

A. Heat Sink Width 1.772 1.790 

B. PGA Package 1.950 1.975 
Width 

C. Heat Sink Edge 0.037 0.138 
Gap 

O. Heat Sink Height 0.312 0.360 

E. Adhesive 0.008 0.012 
Thickness 

F. Package Height 0.140 0.180 
from Stand-Ofts 

G. Total Height from 0.460 0.552 
Stand-Ofts to Top 
of Heat Sink 

=:j ,1= 
UPGRADE PROCESSOR f f 

OMNI-DIRECTIONAL HEAT SINK D G 

/ADHESIVE LL 
"""----

UPGRADE PROCESSOR, 237 PIN, PGA PACKAGE 11 
i I . 

241245-84 

Figure 12-2. Upgrade Processor, 237-Pin, PGA Package with Heat Sink Attached 

12-3 



Intel486TM DX2 MICROPROCESSOR 

12.2.3 "END USER EASY" 

PC buyers value easy and safe upgrade installation. 
PC manufacturers can make upgrade component in-

stallation in the Upgrade Socket simple and fool­
proof for the end user and reseller by implementing 
the suggestions listed in Table 12-2. 

Table 12-2. Upgrade Socket and Layout Considerations 

"End User Easy" 
Implementation 

Feature 

Visible Upgrade Socket The Upgrade Socket should be easily visible when the PC's cover is 
removed. Label the Upgrade Socket and the location of Pin 1 by silk 
screening this information on the PC board. 

Accessible Upgrade Socket Make the Upgrade Socket easily accessible to the end user (Le., do not 
place the Upgrade Socket under a disk drive). If a Low Insertion Force (LlF) 
or screw machine socket is used, position the Upgrade Socket on the PC 
board such that there is enough clearance around the socket to use a chip 
removal tool. 

Foolproof Chip Orientation This Upgrade Socket must insure proper orientation of the Upgrade 
Processor for Intel486 DX2 CPU-based systems and also the Upgrade 
Processor for Intel486 SX/intel486 DX CPU-based systems. The 237-pin, 
PGA package of the Upgrade Processor for Intel486 DX2 CPU-based 
systems is oriented by the three corner pins that have been removed from 
the "Pin 1" corner. These three contacts (A1, A2, and 81) should be 
plugged, such that PGA pins cannot be inserted, in order to assure correct 
orientation. The 169-pin PGA package of the Upgrade Processor for 
Intel486 SXllntel486 DX CPU-based systems is oriented by the "key" pin 
located in the inside corner of the "Pin 1" corner. All inside contacts (11 
innermost rows) should be plugged, except the "key" pin (ES), to ensure 
correct orientation and alignment. The total number of contacts for the 
Upgrade Socket is therefore 238; a standard 240-pin socket plus the inside 
"key" pin and less the three outside corner pins. Supplying a 238-pin 
socket as the Upgrade Socket eliminates the possibility of end users or 
resellers damaging the PC board or Upgrade Processor by powering up the 
system with the Upgrade Processor in an incorrect orientation. 

Zero Insertion Force The high pin count of the Upgrade Processor makes the insertion force 
Upgrade Socket required for installation in a screw machine PGA socket excessive by end 

users or resellers. Even most Low Insertion Force (LlF) sockets often 
require more than 60 Ibs. of insertion force. A Zero Insertion Force (ZIF) 
socket ensures that the chip insertion force does not damage the PC board. 
If the ZIF socket has a handle, be sure to allow enough clearance for the 
socket handle. If a LlF or screw machine socket is used, additional PC 
board support is recommended. 

"Plug and Play" Jumper or switch changes should not be needed to electrically configure 
the system for the Upgrade Processor. 

Thorough Documentation Describe the Upgrade Socket and the installation procedure for the 
Upgrade Processor in the PC's User Manual. 

12-4 



int:eL Intel486™ DX2 MICROPROCESSOR 

12.2.4 LlF AND ZIF SOCKET VENDORS 

The following lists provide socket vendor information 
based on products offered for the Upgrade Socket 
for Intel486 OX and Intel486 SX CPU Systems 

NOTE: 
This is not a comprehensive list. Intel has not test­
ed the sockets listed below and cannot guarantee 
that these sockets will meet every PC manufactur­
er's specific requirements. 

Zero Insertion Force Upgrade Sockets and 
Vendors: 

1. AMP Inc. 
P.O. Box 3608 
Harrisburg, PA 17105-3608 
Tel: (800) 522-6752 
Part Number: TBD 
Contact: Rick Simonic, New Product Manager 

(717) 561-6143 

2. Aries Electronics 
P.O. Box 130 
Frenchtown, NJ 08825 
Tel: (908) 996-6841 
Part Number: TBD 
Contact: Frank Folmsbee, Marketing Manager 

(908) 996-6841 

3. JAE 
599 N. Mathilda Ave., Suite 8 
Sunnyvale, CA 94086 
Tel: (408) 733-0493 
Part Number: TBD 
Contact: Bob Gerleman, Western Sales 

Manager (408) 733-0493 

4. Thomas and Betts 
200 Executive Center Drive 
P.O. Box 24901 
Greenville, SC 29616-2401 
Tel: (803) 676-2900 
Part Number: TBD 
Contact: Scott Roland, Product Marketing 

Manager (803) 676-2910 

5. Yamaichi Electronics 
1420 Koll Circle, Suite B 
San Jose, CA 95112 
Tel: (408) 452-0797 
Part Number: TBD 
Contact: Jim Bennett, Sales Manager 

(408) 452-0797 

12-5 

12.3 Thermal Management 

The Upgrade Socket must be designed to dissipate 
the heat generated by the Upgrade Processor. In the 
following Sections the airflow required over the Up­
grade Socket is calculated for a hypothetical system 
design where there is a maximum ambient tempera­
ture of 45DC inside the system box. 

12.3.1 THERMAL CALCULATIONS FOR 
HYPOTHETICAL SYSTEM 

The maximum temperature specification for the Up­
grade Processor is 80DC (with heat sink attached). 
Therefore, the temperature of the heat sink surface 
(T S) cannot exceed BODC under the worst case spec­
ified operating conditions for the system. The vari­
ables which affect the heat sink temperature include 
ambient temperature inside the system box (T A)' 
Vee, and Icc. An equation for the approximate Up­
grade Processor temperature (T S) is: 

TS = TA + Power' (JSA where Power = Vcc' Icc 

In the above equation, the variables under worst 
case conditions are specified as follows: 

T S: Specified as 80DC for the Upgrade Processor. 

T A: Specified by the PC manufacturer for the 
worst case system operating conditions. 

Vee: Specified for the Upgrade Processor as 5V. 

Icc: Specified for the Upgrade Processor and relat­
ed to clock frequency. 

(}SA: (}SA = (}JA - (}JS· 
(}JA and (}JS are specified in Table 12-4. 

ICC is dependent upon the system's Vee, bus load­
ing, software code sequences, and silicon process 
variations. For the Upgrade Socket specifications, 
the typical Icc value will be derived by testing a sam­
ple of components under the following worst case 
conditions: Vee = 5.3V, full D.C. current loads on all 
output pins, and running a file with the predicted 
worst case software code sequences at the speci­
fied frequency. Icc typical is not a guaranteed speci­
fication. 

The Icc maximum values in Table 12-3 is the best 
known design estimate and should be used as a 
guaranteed maximum specification. 



intel.. Intel486TM DX2 MICROPROCESSOR 

Table 12-3. Upgrade Processor 
Typical and Maximum Icc Values 

System 
Upgrade Upgrade 

Processor Processor 
Frequency 

Typical Maximum 
(MHz) 

ICC (mA) ICC (mA) 

25 TBD 1600 
33 TBD 1900 

The Upgrade Processor for Intel486 DX2 CPU­
based systems will be provided with a heat sink. The 
OJS and OJA values for the Upgrade Processor with a 
heat sink are shown in Table 12-4. The maximum T A 
values for the 25 MHz and 33 MHz Upgrade Proces­
sor are shown in Table 12-5. The maximum TA val­
ues shown in Table 12-5 were calculated using Ts 
= 80·C, Vcc = 5V, the maximum Icc value shown 
in Table 12-3, and the OJC and OJS values shown in 
Table 2-4. 

Table 12-4. Thermal Resistance 
eC/W) OJS and OJA 

Upgrade CPU l OJS Airflow (ftlmin, LFM) 

with Heat Sink 12.ooC/W o J 20014001600 Isoo 
OJA ("C/W) 10.41 6.81 4.9 J 4.1 1 3.7 

Table 12-5. Maximum T A for 25 MHz and 
33 MHz Upgrade Processor 

Upgrade Linear Airflow (ft/mln) 
Processor 
with Heat fCLK 

Sink (MHz) 
0 200 400 600 SOO 

TA 25 9.44 39.68 55.64 62.36 65.72 
("C) 33 -3.8 32.12 51.07 59.05 63.04 

12.3.2 HEAT SINKS 

The Upgrade Processor will be shipped with a heat 
sink attached. Because of the heat sink attached to 
the Upgrade Processor, it is vital that vertical clear­
ance is provided for the Upgrade Socket. The height 
of the package and the heat sink is shown in Table 
12-1 in Section 12.2.2. 

12.3.3 AIRFLOW 

The Upgrade Socket for Intel486 DX2 Microproces­
sor-based systems must be positioned such that the 
airflow over the socket has the velocity, volume, and 
ambient temperature to satisfy the thermal calcula­
tions in Section 12.3.1. Because the heatsink at­
tached to the Upgrade Processor is omni-directional, 
the specified airflow may come from any direction. 
However, because the Upgrade Processor will gen­
erate more power than the Intel486 DX2 Microproc­
essor, it is recommended that the airflow reach the 
Upgrade Socket before or at the same time that it 
reaches the Intel486 DX2 CPU. 

12-6 

NOTE: 
An airflow of at least 400 linear feet per minute 
(LFM) will be required to cool the Upgrade Proces­
sor at 33 MHz. It is essential that care be taken to 
ensure sufficient airflow over the Upgrade Socket. 



int:et Intel486™ DX2 MICROPROCESSOR 

12.4 BIOS and Software 

The following should be considered when designing 
the Upgrade Socket for a Intel486 OX2 microproces­
sor-based system. 

12.4.1 UPGRADE PROCESSOR DETECTION 

The component identifier and stepping/revision 
identifier for the Upgrade Processor for Intel486 OX2 
CPU-based systems is readable in the OH and OL 
registers respectively, immediately after RESET, 
where 

DH = 15h 

DL = 30h-3Fh 

As with the Intel486 OX2 microprocessor specifica­
tion, it is recommended that the BIOS save the con­
tents of the OX register, immediately after RESET, 
so that this information can be used later, if required. 

12.4.2. TIMING DEPENDENT LOOPS 

The Upgrade Processor for Intel486 OX2 microproc­
essor-based systems executes instructions at twice 
the frequency of the input clock. This Upgrade Proc­
essor also will use advanced design techniques to 
decrease the number of clocks per instruction (cpi) 
from that of the Intel486 OX2 microprocessor. Thus 
software, such as instruction-based timing loops, will 
execute faster on this Upgrade Processor than on 
either the Intel486 OX CPU or the Intel486 OX2 mi­
croprocessor at the same input clock frequency. In­
structions such as Nap, LOOP, and JMP $+2 are 
frequently used by the BIOS to implement timing 
loops that are required, for example, to enforce re­
covery time between consecutive accesses for I/O 
device~. These instruction-based, timing-loop imple­
mentations may require modification to be compati­
ble with this Upgrade Socket. 

In order to avoid any incompatibilities, timing loops 
must be implemented in hardware rather than in 
software. This provides transparency and also does 
not require any change in BIOS or 110 device drivers 
in the future when moving to higher processor clock 
speeds. 

12-7 

As an example, a timing loop may be implemented 
as follows: The software performs a dummy I/O in­
struction to an unused 110 port. The hardware for 
the bus controller logic recognizes this I/O instruc­
tion and delays the termination of the I/O cycle by 
keeping ROY # or BROY # deasserted for the appro­
priate amount of time. 

12_5 Test Requirements 

The Upgrade Socket's electrical functionality can be 
verified by fully testing the PC with a populated Up­
grade Socket. We recommend that the system is 
tested with all available Upgrade Processors to en­
sure that there are no BIOS issues. This Upgrade 
Socket can be electrically tested with the Upgrade 
Processor for Intel486 SXllntel486 OX CPU-based 
systems. The Upgrade Processor for Intel486 OX2 
CPU-based systems should also be used to test the 
hardware and software when it is available. The 
BIOS requirements to maintain compatibility with all 
Upgrade Processors are discussed in Section 12.4 
of this document. All Upgrade Processors undergo 
thorough application software compatibility testing 
prior to their introduction. 

12.6 Upgrade Socket Pinout 

The Upgrade Socket for Intel486 OX2 Microproces­
sor-based systems specifies 238 contacts. The 238 
contacts correspond to a standard 240-pin socket 
with one "KEY" contact inside and three "orienta­
tion" contacts plugged on the outside corner. The 
"KEY" contact provides backward compatibility for 
the Intel487 SX Math CoProcessor and the Upgrade 
Processor for Intel486 SX/lntel486 OX CPU-based 
systems. The three contacts plugged on the outside 
corner ensure proper orientation for the Upgrade 
Processor for Intel486 OX2 CPU-based systems. 
Additionally, all 120 inner contacts of a standard 
240-pin socket (the inner 11 rows minus the "KEY" 
pin) should be plugged to ensure proper alignment 
of the 169-pin PGA Intel487 SX Math CoProcessor 
and Upgrade Processor. 



int:et Intel486TM DX2 MICROPROCESSOR 

12.6.1 PINOUT 

2 

u T s R 

o o o o 
Ne 

Ne 
vss 

vee 

Q 

o 
vss 

P N 

o 
Ne 

o 
Ne 

M 

o 
vss 

L K J H G F E o C B 

o o o o o o o o o 
vee 

vee 
vee 

vss 
Ne 

Ne 
vss 

vee 
vss 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Ne 

A27 
A28 

A31 
DO 

D2 
vss vss 

vss 
vee 

vss 
vss 

DPI 
vss 

D9 
D11 

D19 
D20 

A • 

2 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
vss A26 A25 vss A29 

Dl 
vee 

D6 
vee 

D5 
D3 

vee 
D8 vee 013 D18 

D21 
D22 

vss 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
vee A23 vee A17 A30 

DPO 
04 

07 
014 

D16 
OP2 D12 D15 Dl0 017 elK VSS Ne 

vee 

5 o 0 0 0 o 0 0 0 5 
VSS 

NC 
VSS 

A19 vee vss 023 VSS 

6 o 0 0 0 00006 
Ne AU A18 A21 vee vss OP3 Ne 

7 o 0 0 0 o 0 0 0 7 
Ne VSS vee A24 027 025 024 RES 1 

8 o 000 o 0 0 0 8 
VSS A12 A15 A22 026 vee VSS 

VSS 

9 o 0 0 0 o 0 0 0 9 
vee 

VSS vee A20 D28 
D31 

029 
vce 

10 o 000 o 0 0 0 10 
vee 

VSS vee A16 D30 vee VSS 
vec 

11 o 000 o 0 0 0 11 
vee 

VSS vee A13 Ne 
Ne Ne vee 

12 o 0 0 0 o 0 0 0 12 
VSS 

VSS 
vee 

A9 NC 
VCC VSS VSS 

13 000 0 o 0 0 0 13 
Ne 

VSS Al1 AS Ne 
Ne 

Ne 
Ne 

14 o 000 o 0 0 0 14 
RES7 AID A8 

A7 Ne Ne FERR# RES2 

15 o 0 0 0 o 0 0 0 15 
VSS 

VSS 
vee A2 Ne UP# Ne 

VSS 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 

17 

18 

vee 

o 
A6 

o 
u~~~~-_~~~~~_~~-= 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
VSS A4 BLAST# PLOCK# vee M/IO# vee vee vee BE 1 # vee vee ROY# vee BS8# RESET Ne INTR VSS 

o o 0 0 0 0 0 o 0 o o o 0 0 0 0 0 0 0 
Ne ADS# Ne PCHK# vss W/R# vss VSS VSS PCD 

VSS VSS 8E3# VSS fA)FF# 8516# EADS# AHOlD NC 

17 

18 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 
Ne Ne vss vee vss RES6 RESS vss vee vee vee vss RES4 RES3 vss vee vss Ne NC 

u T s R Q P N M L K J H G F E o C B A 
241245-85 

Figure 12-3. Upgrade Socket Pinout for Intel486 DX2 Microprocessor System (Top Side View) 

12-8 



int:el.. Intel486TM DX2 MICROPROCESSOR 

A B 

2 o 
020 

c D E F G H J K L M N p Q R S T u 

o 0 0 0 0 000 0 0 0 0 0 0 0 0 0 
vss 
o 

019 

vee 

o 
011 

vss HC 

o o 
09 

vss 

NC 
vss 

VCC 
VCC 

o o o o 
OPl 

vss vss vee 

VCC 

o 
vss 

vss 

o 
HC 

o 
vss vss 

NC vss 
o o 
02 

DO 

vee 

o 
A31 

vss 
o 

A28 

HC 

o 
A27 

HC 

o 
HC 

2 

3 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 003 
vss 022 

021 018 013 VCC 
08 

VCC 
03 

05 vee 06 
VCC 

01 
A29 

vss 
A25 A26 vss 

4 0 0 0 0 0 0 000 000 0 0 0 0 0 .0 0 4 
VCC HC vss ClK 017 010 015 012 

OP2 016 014 

5 o 0 0 0 
vss 023 vss VCC 

6 o 0 0 0 
NC 

OP3 vss VCC 

7 o 0 0 0 
RES 1 024 025 027 

8 0 0 0 0 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

VSS vss VCC 026 

o .0 0 0 
vee 
o 

vee 
o 

VCC 

029 

o 
vss 

o 
NC 

031 

o 
vee 
o 
HC 

028 

o 
030 

o 
HC 

o 0 0 0 
vss 
o 
NC 

o 

vss 

o 
HC 

o 

VCC 

o 
NC 

o 

HC 

o 
NC 

o 
RES2 FERR# HC NC 

o 000 
vss HC UP# NC 

o o o o o o o o o o o 
vee IGNNE# NWI FLU5H# A20t.t# HOLD KEN# Ne BROY# BE2# B[O# 

o 0 0 .0 0 0 000 0 0 
VSS INTR NC RESET BS8# vee ROY# VCC VCC BE1# vee 

o 0 0 0 0 0 000 o o 
HC AHOLD EADS# BS16# BOFF# VSS BE3# VSS VSS PCO VSS 

07 
0< 

OPO 
A30 

A17 vee A23 VCC 

o 0 0 0 5 
A19 vss HC vss 
o 0 0 0 6 

A21 A18 A14 NC 

o 0 007 
A24 vcc VSS NC 

o 0 008 
A22 

A15 A12 VSS 

o 0 0 0 9 
A20 vec vss vce 

o 000 10 
A16 VCC vss VCC 

o 0 0 0 11 
A13 vcc vss vee 

o 0 0 0 12 
A9 VCC vss vss 

o 000 13 
A5 All VSS HC 

o 000 14 
A7 A8 Al0 RES7 

o 0 0 0 15 
A2 VCC vss vss 

o o o o o 000 16 
PWT o/c# lOCK# HlOA BREQ A3 A6 

VCC 

o 000 0 0 o 
vee vcc M/IO# VCC PLOCK#BLAST# A4 

o 
vss 

000 0 0 0 o 0 
VSS VSS W/R# VSS PCHK# HC ADS# Ne 

17 

18 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 
Ne Ne vss vee vss RES3 RES4 vss vee vee vee vss RESS RES6 vss vee vss Ne Ne 

A B c D E F G H J K L N p Q R S T u 
241245-86 

Figure 12-4. Upgrade Socket Pinout for Intel486 DX2 Microprocessor System (Bottom Side View) 

12-9 



intel .. Intel486TM DX2 MICROPROCESSOR 

Table 12-6. Upgrade Socket Pin Cross Reference 

Address Data Control Control N/C Vee Vss 

A2 R15 00 02 A20M# E16 PLOCK# R17 A6 A4 C8 A3 B8 
Aa 816 01 P3 A08# T18 ROY# G17 A18 A9 C10 A5 B10 

AJ. T17 02 P2 AHOLO B18 RE8ET 017 A19 A10 C12 A8 B12 
A5 R13 Oa J3 BEO# L16 W/R# P18 B4 A11 05 A12 C4 

Ae T16 04 N4 BE1# K17 UP# C15 B11 A16 06 A15 C5 
A7 R14 05 K3 BE2# K16 Reserved B13 01 F3 A17 C6 
As 814 06 M3 BE3# G18 B15 019 F17 C1 F2 
Ag R12 07 M4 BLA8T# 817 RE81 A7 B19 J1 H3 C19 F18 
AlO T14 Os G3 BOFF# E18 RE82 A14 C11 J19 H17 E1 H2 
A11 813 09 E2 BROY# J16 RE83 F19 C13 K1 J17 E19 H18 
A12 T8 010 F4 BREO# R16 RE84 G19 C14 K19 K2 H1 J2 
A13 R11 011 02 B88# E17 RE85 N19 C17 L1 L3 H19 J18 
A14 T6 012 H4 B816# 018 RE86 P19 011 L19 L17 M1 L2 
A15 88 013 E3 CLK 04 RE87 U14 012 R1 M17- M19 L18 
A16 R10 014 L4 O/C# N16 Position 013 R19 N3 01 M2 
A17 R4 015 G4 OPO P4 014 U4 N17 019 M18 
A1S 86 016 K4 OP1 G2 KEY E5 015 U9 017 81 N2 
A19 R5 017 E4 OP2 J4 PLUG A1 F1 U10 84 819 N18 
A20 R9 018 03 OP3 B6 PLUG A2 G1 U11 87 U3 018 
A21 R6 019 C2 EA08# C18 PLUG B1 H16 U16 89 U5 R3 
A22 R8 020 B2 FERR# B14 N1 810 U8 85 
A23 T4 021 C3 FLU8H# 016 P1 811 U12 T7 
A24 R7 022 B3 HLOA 016 818 812 U15 T9 
A25 83 023 B5 HOLO F16 T1 815 U17 T10 
A26 T3 024 B7 IGNNE# 816 T5 T11 
A27 T2 025 C7 INTR B17 T19 T12 
A28 82 026 08 KEN# G16 U1 T13 
A29 03 027 07 LOCK# P16 U2 T15 
A30 04 028 09 M/IO# P17 U6 
A31 R2 029 B9 NMI C16 U7 

030 010 PCO K18 U13 
031 C9 PCHK# R18 U18 

PWT M16 U19 

NOTE: 
The Upgrade Socket for Intel486 DX2 Microprocessor-based systems provides orientation guides for Upgrade Processors 
via one "KEY" pin and three c~rner plugs. 

12.6.2 PIN DESCRIPTION 

The signal pin descriptions for the Upgrade- Proces­
sor are identical to the pin descriptions for the In­
tel486 OX2 Microprocessor except for the Upgrade 
Present pin (UP#) and KEY pin. The pin descrip­
tions for these two signals are shown in Table 12-7. 

12.6.3 RESERVED PIN SPECIFICATION 

8even pins in the Upgrade 80cket are defined as 
reserved. The function of these pins is documented 
separately. These signals will be used to implement 
a Write Back level 1 (on-chip) cache protocol. These 
signals must not be connected unless they are used 
to implement a level 1 Write Back solution using the 
information available separately. 

12-10 



infel .. Intel486TM DX2 MICROPROCESSOR 

Table 12-7. Upgrade Socket Pin Description 

Symbol Type Name and Function 

Intel486 DX2 CPU INTERFACE 

UP# 0 The Upgrade Present pin is used to signal the Intel486 DX2 microprocessor to float its 
outputs and get-off the bus. It is active low and is never floated. UP# is driven low at 
power-up and remains active for the entire duration of the Upgrade Processor 
operation. 

KEY PIN 

KEY The Key pin is an electrically non-functional pin which provides backward compatibility 
to the Upgrade Processor for Intel486 SX/lntel486 OX CPU-based systems and is 
used to ensure correct orientation for 169-pin upgrade products. Proper orientation of 
the Upgrade Processor for Intel486 DX2 Microprocessor systems (237 -pin PGA) is 
insured by the three socket contacts which must be plugged (A 1, A2, and B 1); the 
Upgrade Processor will not have pins in these locations. 

12.7 D.C'! A.C. Specifications 

The electrical specifications in this section represent 
the electrical interface of the Upgrade Processor for 
a Intel486 DX2 microprocessor-based system. The 

Upgrade Processor will be compatible to the maxi­
mum ratings and A.C. Specifications of the Intel486 
DX2 Microprocessor. Table 12-8 provides the D.C. 
Operating Conditions for the Upgrade Processor. 

Table 12-8. Upgrade Socket D.C. Parametric Values(1) 

Symbol Parameter Min Max Unit Notes 

VIL Input low Voltage -0.3 +0.8 V 

VIH Input High Voltage 2.0 VCC + 0.3 V 

VOL Output low Voltage 0.45 V (Note 2) 

VOH Output High Voltage 2.4 V (Note 3) 

Icc Power Supply Current 
ClK = 25 MHz 1600 mA 
ClK = 33 MHz 1900 

III Input leakage Current ±15 p.A (Note 4) 

IIH Input leakage Current 200 p.A (Note 5) 

IlL Input leakage Current -400 p.A (Note 6) 

ILO Output leakage Current ±15 p.A 

CIN Input Capacitance 13 pF FC = 1 MHz(7) 

Co I/O or Output Capacitance 17 pF FC = 1 MHz(7) 

CCLK ClK Capacitance 15 pF Fc = 1 MHz(7) 

NOTES: 
1. Functional operating range: Vee = 5V; Ts = O"C to +80"C. 
2. This parameter is measured at: 

....;. Address, Data, BEn 4.0 mA 
- Definition, Control 5.0 mA 

3. This parameter is measured at: 
- Address, Data, BEn -1.0 mA 
- Definition, Control -0.9 mA 

4. This parameter is for inputs without pullups or pulldowns and 0 ,;;; VIN ,;;; Vee. 
5. This parameter is for inputs with pulldowns and VIH = 2.4V. 
6. This parameter is for inputs with pullups and VIL = 0.45V. 
7. Not 100% tested. 

12-11 





intel· Intel486™ DX2 MICROPROCESSOR 

13.0 CONVERTING AN EXISTING 
Intel486™ DX CPU DESIGN 

Converting an Intel486 OX CPU system design to an 
Intel486 OX2 CPU design provides more perform­
ance for a small difference in cost. Three conversion 
possibilities are available as shown in Table 13.1. 
Migrating from a 33 MHz Intel486 OX CPU to a 50 
MHz Intel486 OX2 CPU could increase performance 
by 35%, and migrating from a 25 MHz Intel486 OX 
CPU to a 50 MHz Intel486 OX2 CPU could increase 
performance by an average of 70%. See the In­
te1486fM DX2 Microprocessor Performance Brief 
(Order # 241254) for more details on performance. 
Conversion can be as easy as replacing one or two 
devices. 

Table 13.1. Converting Intel486™ DX CPU 
Designs to Intel486™ DX2 CPU Designs 

Initial Converted Typical 
Design Design Performance 

(Intel486 OX CPU) (Intel486 DX2 CPU) Gain 

25 MHz 50 MHz 70% 

33 MHz 50 MHz 35% 

33 MHz 66 MHz 70% 

A few system details should be checked first to be 
sure the design is ready for the Intel486 OX2 CPU. 
Check with your BIOS vendor to be sure any BIOS 
issues have been resolved. The BIOS for the In­
tel486 OX CPU may have timing loops. Since the 
Intel486 OX2 CPU runs instructions twice as fast as 
the Intel486 OX CPU, timing loops may no longer 
return the re"quired results. Most of the timing loops 
have been removed from a standard BIOS, but there 
may be some versions that need updating. Another 
BIOS issue that may not be critical, is the processor 
identification code. There are different 10 codes in 
the Intel486 OX CPU and the Intel486 OX2 CPU. 
The BIOS may need to be modified to identify the 
Intel486 OX2 CPU properly. Refer to Table 6.3 for 
the component 10 code. 

Other system parameters to watch out for are the 
thermal and power supply specifications. Table 14.2 
details the Power Supply Current information, and 
Table 15.2 outlines the Thermal Resistance. Since 
the processor core runs twice as fast for the same 
input clock, the Intel486 OX2 CPU uses more power 
and generates more heat than the Intel486 OX CPU. 
Be sure that there is adequate cooling and adequate 
power built into the design. A heat sink is a recom­
mended method to help provide cooling for the In­
tel486 OX2 CPU. 

13-1 

The system checks mentioned above are common 
to all conversions from an Intel486 OX CPU to an 
Intel486 OX2 CPU regardless of the speed of the 
processor or system. 

A few system implications exist for converting from 
one frequency to another as shown in Figure 13.1. 
The first case is migrating from a 25 MHz Intel486 
OX CPU to a 50 MHz Intel486 DX2 CPU (the bus 
runs at the same speed for both parts). System 
hardware modifications need not be made to plug in 
the 50 MHz Intel486 OX2 CPU and achieve the de­
sired performance. When all instructions are running 
out of the on-chip cache, performance increases by 
a maximum of 100%. 

The second case is migrating from a 33 MHz In­
tel486 OX CPU to a 50 MHz Intel486 OX2 CPU. This 
conversion is a two step process. The first step is to 
change the frequency source for the CPU from 33 
MHz to 25 MHz. The Intel486 OX2 CPU can then be 
inserted into the system. Without any tuning of the 
memory and depending on the application, only a 
modest performance improvement may be ob­
served. For programs running entirely out of the on­
chip cache, however, performance can increase up 
to 50%. There are many factors which contribute to 
the performance of an application, including whether 
there is a second-level (L2) cache, the cache size if 
present, the memory subsystem design, and many 
other factors beyond the scope of this introduction. 
A comprehensive memory subsystem design guide, 
AP469: Cache and Memory Design Considerations 
for Intel486fM DX2 Microprocessor, is available 
which includes more detailed information on how 
each of these many factors affects Intel486 OX2 
CPU-based system performance. 

Because the Intel486 OX2 core runs twice as fast as 
its external bus, it is more sensitive to wait states. 
The Intel486 OX2 CPU needs to be fed instructions 
and data quickly. Either a high performance memory 
subsystem is needed or an external cache should be 
added. An external cache benefits the Intel486 OX2 
CPU even more than it benefits the Intel486 OX 
CPU, and helps to hide the effects of a slower mem­
ory subsystem. The Intel486 OX CPU gains an aver­
age of 3%-9% performance by the addition of a 
second-level cache, but the Intel486 OX2 CPU gains 
an average of 20-30% performance by adding a 
second level cache. It should be noted however, 
that an external cache does not preclude the bene­
fits of tuning the memory subsystem. 



intel.. Intel486™ DX2 MICROPROCESSOR 

25 MHz Intel486™ OX CPU 

REMOVE 
Intel486 OX 

CPU 

INSTALL 
NEW BIOS 
VERSION 

MODIFY 
POWER AND 

COOLING 

INSERT 
Inte1486Tt.l DX2 

CPU 

241245-92 

33 MHz Intel486TM OX CPU 

REMOVE 
Intel486 OX 

CPU 

REPLACE 
33 MHz CPU 

CRYSTAL 
WITH 25 MHZ 

INSERT 
Inte1486Tt.l DX2 

CPU 

INSTALL 
NEW BIOS 
VERSION 

MODIFY 
POWER AND 

COOLING 

TUNE 
MEMORY 
SYSTEM 

241245-93 

Figure 13.1. Flowchart for Intel486™ OX CPU to Intel486TM OX2 CPU Conversion 

13·2 



intet Intel486TM DX2 MICROPROCESSOR 

The graph shown in Figure 13.2 shows a set of 
benchmarks known to have a poor cache hit rate. 
This is shown for purposes of memory tuning and 
not to be taken as absolute performance. Please re­
fer to the /nte/486TM DX2 Microprocessor Perform­
ance Brief (Order # 241254) for performance de­
tails. 

With the absence of a second-level cache, the mem­
ory subsystem becomes critical to gaining perform­
ance when converting from a 33 MHz Intel486 OX 
CPU to a qO MHz Intel486 DX2 CPU. For slow mem­
ory systems without tuning, the 50 MHz Intel486 
DX2 CPU can possibly run slower than the 33 MHz 
Intel486 OX CPU (see Figure 13.2). By tuning the 
memory design, the 50 MHz Intel486 DX2 CPU can 
reach equivalent performance to the 33 MHz In­
tel486 OX CPU running applications with low cache 
hit rates, and increase performance for applications 
with higher hit rates. Tuning the memory design can 
be done easily by either removing a wait state from 
the memory design (if timing permits), and/or adding 
faster DRAM and removing wait state(s) from the 
memory deSign. 

Changing the wait state configuration for the system 
is often done by programming the DRAM controller 
in the chip set on the motherboard. Each chip set is 
programmed differently at the BIOS level, requiring a 
BIOS modification. For testing purposes, the chip 
set may be programmed on the fly from a DOS pro­
gram if the register locations are known. 

-- 33MHz 
Inlel486 ox 
CPu 

140.00% 

20.00% 

'-0- 33Mliz 
Inlel486 ox 
cpu 
wI cache 

A typical ISA chip set with an L2 cache, for example, 
allows 6-4-4-4 bus cycles at 33 MHz with 80 ns 
DRAMs for the Intel486 OX CPU. Without modifying 
the memory subsystem, the 50 MHz Intel486 DX2 
CPU achieved an average of 7%-12% improve­
ment over the 33 MHz Intel486 OX CPU. By reduc­
ing the bus cycles at 25 MHz to 5-2-2-2 (still with 
80 ns DRAMs), the 50 MHz Intel486 DX2 CPU im­
proved to achieve an average of 15%-20% more 
performance than the 33 MHz Intel486 OX CPU. By 
replacing the DRAMs with faster devices (70 ns) bus 
cycles could be reduced to 4-2-2-2 at 25 MHz, im­
proving the performance of the 50 MHz Intel486 
DX2 CPU even greater. 

A typical EISA solution is shown in Figure 13.3, using 
the Intel 82350DT Chip Set, which was specifically 
designed to permit variation in CPU type and fre­
quency. 

In an 82350DT based design the memory subsys­
tem iscQntrolled by the combination of a flexible 
Programmable State Tracker (PST) and a highly 
configurable 82359 DRAM Controller. The PST, 
which is typically implemented as a 3 to 5 PLD solu~ 
tion, is responsible for converting the CPU's clock­
dependent handshake protocol into a clock-less 
memory interface protocol. The 82359 in turn uses 
the clock-less memory interface protocol to control 
main memory as well as to forward host CPU cycles 
to the EISA bus if needed. As a result of this clock-

-- 50MHz 
Inlel4860X2 
cpu 

-<>- 50MHz 
Inlel4860X2 
cpu 
wI cache 

0.00% +----II----+-,-...,..--t---+---t---f---i 
0000(0) 3121(6) 3121(6) 3222(7) 3222(8) 4222(8) 4333(8) 6444(9) 

0(0) 2(6) 3(6) 2(6) 3(6) 3(6) 3(6) 4(7) 

Decreasing Uemory Subsystem Performance - Read Bus 
Cycles (Page lIiss) I Wrile Bus Cycles (Page Miss) 

241245-94 

Figure 13.2. Performance of 50 MHz Intel486TM DX2 CPU vs. 33 MHz Intel486TM DX CPU 

13-3 



HOST BUS 

EISA BUS 

Asynch Interface 

MAIN 
MEMORY 

Modular 

128-BIT 

EVEN BYTE ~=============i====:i DATA g 

128-BIT 

ODD BYTE 11:==========: DATA .. 

X-Bus 

241245-95 

_. 
l 

5' -CD 

i 
Ii! 
c 
>< 
N 

is: 
(; 
:zJ 
o 
'U 
:zJ g 
m 

~ 
:zJ 



intel .. Intel486TM DX2 MICROPROCESSOR 

less protocol, the system design becomes indepen­
dent of the CPU and cache combination being used 
and the speed of the CPU clock. Therefore, whenev­
er a new CPU and cache combination is to be used 
with an 82350DT based system, the only re-design 
that is necessary is to the CPU subsection, leaving 
the main memory and EISA subsections unchanged. 
Typically, this CPU subsection re-design entails 
modifying only the PST functionality and the pro­
grammable registers of the 82359. 

There are five steps to determine whether wait 
states can be removed from the main memory de­
sign of an 82350DT system when converting from a 
33 MHz Intel486 DX CPU to a 50 MHz Intel486 DX2 
CPU. An overview of these five steps is covered 
here; the system designer is referred to the 
82350DT EISA Chip Set Design Guide (Order 
# 296911) for detailed design information. 

1. Calculate the 82359 delay line tap values for opti­
mal 25 MHz operation 

2. Determine all memory cycle lengths for operation 
at 25 MHz 

3. Re-evaluate the PST design (deterministic & 
snoop cycle trackers) 

4. Modify the PLD equations for the PST 

5. Update system BIOS to reflect new 82359 pro-
grammable register values 

Step one is to perform a timing analysis· of the main 
memory subsystem to determine the minimum num­
ber of CPU clocks required for each memory cycle. 
Once the memory cycle lengths are known, the PST 
design can be re-evaluated with the goal of remov­
ing unnecessary wait states. Before the system de­
signer can determine the memory cycle lengths, the 
delay line timings of the 82359 must be analyzed. 

The timing for the DRAM control and address sig­
nals of the 82359 is based on four integrated asyn­
chronous delay line elements which can be con­
trolled by the 82359 programmable registers. Once 
the delay line tap values have been verified or modi­
fied, the system designer should determine the mini­
mum number of CPU clocks required for the differ­
ent memory cycles (Le., read page hit, page miss 
write, burst read, etc.). Armed with the delay line tap 
programming values and the number of CPU clocks 
required for each type of memory cycle, the system 
designer can now evaluate the PST design to deter­
mine if any unneeded wait states can be removed. 

The PST for an 82350DT based system can be sep­
arated into four primary functions: bus cycle Gontrol 
(including arbitration and posted write control), cycle 

13-5 

length tracking, CPU "Ready" generation, and 
cache invalidation control. Although the PST con­
tains a number of state machines only a few of the 
state machines need to be re-evaluated to deter­
mine whether any wait states can be removed for 
converting from a 33 MHz Intel486 DX CPU to a 
50 MHz Intel486 DX2 CPU. The state machines that 
need to be re-evaluated are the deterministic cycle 
tracker and the snoop cycle tracker. 

The deterministic cycle tracker is responsible for 
generating RDY or BRDY to the CPU and cache for 
cycles that are deterministic in length. All main mem­
ory cycles, except locked cycles which require EISA 
arbitration, are deterministic cycles. Once the deter­
ministic cycle tracker knows that a deterministic cy­
cle is occurring, it uses the 82359 CYCLN(2:0) and 
PAGEHIT# outputs to determine when to generate 
RDY or BRDY to the CPU. For burst cycles the de­
terministic cycle tracker also uses the IF(1 :0) and 
SPEED(1 :0) outputs of the 82359 for generating 
BRDY. After this analysis has been completed the 
system designer can then determine if the determi­
nistic cycle tracker can be optimized to take advan­
tage of converting from a 33 MHz Intel486 DX CPU 
to a 50 MHz Intel486 DX2 CPU. 

The other state machine that must be re-evaluated 
for correct system functionality is the snoop cycle 
tracker. The snoop cycle tracker state machine de­
sign must meet two goals; respond to a SNUPRQ 
with a SNUPACK # within 180 ns (based on an EISA 
burst write cycle), and maintain a snoop cycle fre­
quency capability that is equal to or faster than the 
fastest system bus master write cycle frequency. 
Due to the change of CPU clock frequency from 
33 MHz to 25 MHz, the system designer must re­
evaluate the snoop cycle tracker state machine to 
determine if the two design goals are still being met 
in the 50 MHz Intel486 DX2 CPU implementation. 

In conclusion, when converting an 82350DT based 
design from a 33 MHz Intel486 DX CPU to a 50 MHz 
Intel486 DX2 CPU the system designer must re-eval­
uate the main memory cycle timings to determine 
whether the PST and 82359 programmable registers 
need to be modified to take advantage of the in­
creased performance benefits of the 50 MHz In­
tel486 DX2 CPU. Once the system designer has de­
cided to modify the PST and the 82359 programma­
ble registers, the conversion from a 33 MHz Intel486 
DX CPU to a 50 MHz Intel486 DX2 CPU is usually 
just as simple as modifying the PLD equations, re­
programming the PST PLDs, and upgrading the sys­
tem BIOS to reflect the new 82359 programmable 
register values. 





inteL Intel486™ DX2 MICROPROCESSOR 

14.0 ELECTRICAL DATA 
The following sections describe recommended elec­
trical connections for the Intel486 DX2 microproces­
sor, and its electrical specifications. 

14.1 Power and Grounding 

14.1.1 POWER CONNECTIONS 

The Intel486 DX2 microprocessor is implemented in 
CHMOS V technology and has modest power re­
quirements. However, its high clock frequency out­
put buffers can cause power surges as multiple out­
put buffers drive new signal levels simultaneously. 
For clean on-chip power distribution at high frequen­
cy, 24 Vee and 28 Vss pins feed the Intel486 DX2 
microprocessor. 

Power and ground connections must be made to all 
external Vee and GND pins of the Intel486 DX2 mi­
croprocessor. On the circuit board, all Vee pins must 
be connected on a Vee plane. All VSS pins must be 
likewise connected on a GND plane. 

14.1.2 POWER DECOUPLING 
RECOMMENDATIONS 

Liberal decoupling capacitance should be placed 
near the Intel486 DX2 microprocessor. The Intel486 
DX2 microprocessor driving its 32-bit parallel ad­
dress and data busses at high frequencies can 
cause transient power surges, particularly when driv­
ing large capacitive loads. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening 
circuit board traces between the Intel486 DX2 micro­
processor and decoupling capacitors as much as 
possible. Capacitors specifically for PGA packages 
are also commercially available. 

14-1 

14.1.3 OTHER CONNECTION 
RECOMMENDATIONS 

N.C. pins should always remain unconnected. 

For reliable operation, always connect unused in­
puts to an appropriate signal level. Active LOW in­
puts should be connected to Vee through a pullup 
resistor. Pullups in the range of 20 KO are recom­
mended. Active HIGH inputs should be connected to 
GND. 

14.2 Maximum Ratings 

Table 14.1 is a stress rating only, and functional op­
eration at the maximums is not guaranteed. Function 
operating conditions are given in 14.3 D.C. Specifi­
cations and 14.4 A.C. Specifications. 

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the In­
tel486 DX2 microprocessor contains protective cir­
cuitry to resist damage from static electric discharge, 
always take precautions to avoid high static voltages 
or electric fields. 

Table 12.1. Absolute Maximum Ratings 

Case Temperature under Bias ... - 65°C to + 110°C 

Storage Temperature .......... - 65°C to + 150°C 

Voltage on Any Pin with 
Respect to Ground ......... -0.5 to Vee + 0.5V 

Supply Voltage with 
Respectto Vss ............... -0.5V to + 6.5V 



ini'eL Intel486™ DX2 MICROPROCESSOR 

14.3 Intel486 DX2 D.C. Specifications 
Functional Operating Range: Vcc = 5V ± 5%; T CASE = O°C to + 85°C 

Table 14-2. DC Parametric Values 

Symbol Parameter Min 

VIL Input low Voltage -0.3 

VIH Input High Voltage 2.0 

VOL Output low Voltage 

VOH Output High Voltage 2.4 

ICC Power Supply Current 
(66 MHz) 
(50 MHz) 

ICCF Power Supply Current in 
Power Down Mode 

III Input leakage Current 

IIH Input leakage Current ,~,r:f&" 
IlL Input leakage curren\r&~$? 
ILO Output leakage Curr~t 

CIN Input Capacitance 

Co 1/0 or Output Capacitance 

CCLK ClK Capacitance 

NOTES: 
1. This parameter is measured at: 

Address, Data, BEn 4.0 mA 
Definition, Control 5.0 mA 

2. This parameter is measured at: 
Address, Data, BEn -1.0 mA 
Definition, Control -0.9 mA 

3. Typical supply current: 
775 mA @ 50 MHz 
975 mA @ 66 MHz 

Max Unit Notes 

+0.8 V 

VCC +0.3 V 

0.45 , ~ V (Note 1) 

~,'!ki% V (Note 2) 

p ~f" 
0 mA (Note 3) 

50 mA (Note 8) 
~ 

±15 JJ-A (Note 4) 

200 JJ-A (Note 5) 

-400 JJ-A (Note 6) 

±15 JJ-A 

13 pF Fc = 1 MHz (Note 7) 

17 pF Fc = 1 MHz (Note 7) 

15 pF Fc = 1 MHz (Note 7) 

4. This parameter is for inputs without internal pullups or pulldowns and 0 ~ VIN ~ Vcc. 
5. This parameter is for inputs with internal pull downs and VIH = 2.4V. 
6. This parameter is for inputs with internal pullups and VIL = 0.45V. 
7. Not 100% tested. 
8. The ICCF specification in the above table is a target value. It has not been tested. 

14.4 A.C. Specifications 

The A.C. specifications, given in Table 14.3, consist 
of output delays, input setup requirements and input 
hold requirements. All A.C. specifications are rela­
tive to the rising edge of the ClK signal. 

A.C. specifications measurement is defined by Fig­
ures 14.1-14.7. All timings are referenced to 1.5V 
unless otherwise specified. Inputs must be driven to 

14-2 

the voltage levels indicated by Figure 14.3 when 
A.C. specifications are measured. Intel486 DX2 mi­
croprocessor output delays are specified with mini­
mum and maximum limits, measured as shown. The 
minimum Intel486 DX2 microprocessor delay times 
are hold times provided to external circuitry. Intel486 
DX2 microprocessor input setup and hold times are 
specified as minimums, defining the smallest ac­
ceptable sampling window. Within the sampling win­
dow, a synchronous input signal must be stable for 
correct Intel486 DX2 microprocessor operation. 



int:et Intel486™ DX2 MICROPROCESSOR 

Table 14.4.1.50 MHz Intel486 DX2 Microprocessor A.C. Characteristics 

VCC = 5V ±5%; Tcase = O°C to + 85°C; CI = 50 pF unless otherwise specified 

Symbol Parameter Min Max Unit Figure Notes 

Frequency 8 25 MHz 1 X Clock Driven to Intel486 DX2 

t1 ClK Period 40 125 ns 14.1 

t1a ClK Period Stability 0.1% t:.. Adjacent Clocks 

t2 ClK High Time 14 ns 14.1 at2V 

t3 ClK low Time 14 ns 14.1 at 0.8V 

t4 ClKFaliTime 4 ns 14.1 2Vto 0.8V 

t5 ClK Rise Time 4 ns 14.1 0.8Vto 2V 

t6 A2-A31, PWT, PCD, BEO-3#, 3 19 ns 14.5 
M/IO#, D/C#, W/R#, ADS#, 
lOCK#, FERR#,BREQ, HlDA 
Valid Delay 

t7 A2-A31, PWT, PCD, BEO-3#, 28 ns 14.6 (Note 1) 
M/IO#, D/C#, W/R#, ADS#, 
lOCK # Float Delay 

t8 PCHK# Valid Delay 3 24 ns 14.4 (Note 3) 

t8a BLAST #, PLOCK # Valid Delay 3 24 ns 14.5 (Note 3) 

t9 BlAST#, PlOCK# Float Delay 28 ns 14.6 (Note 1) 

t10 DO-D31, DPO-3 Write Data Valid 3 20 ns 14.5 (Note 3) 
Delay 

t11 DO-D31, DPO-3 Write Data Float 28 ns 14.6 (Note 1) 
Delay 

t12 EADS # Setup Time 8 ns 14.2 

t13 EADS # Hold Time 3 ns 14.2 

t14 KEN#, BS16#, BS8# Setup Time 8 ns 14.2 

t15 KEN #, BS16 #, BS8 # Hold Time 3 ns 14.2 

t16 RDY #, BRDY # Setup Time 8 ns 14.3 

t17 RDY #, BRDY # Hold Time 3 ns 14.3 

t18 HOLD, AHOlD, BOFF # Setup Time 8 ns 14.2 

t19 HOLD, AHOlD, BOFF # Hold Time 3 ns 14.2 

t20 RESET, FlUSH#, A20M#, NMI, 8 ns 14.2 (Note 4) 
INTR, IGNNE# Setup Time 

t21 RESET, FlUSH#, A20M#, NMI, 3 ns 14.2 (Note 4) 
INTR, IGNNE# Hold Time 

t22 DO-D31, DPO-3, A4-A31 Read 5 ns 14.2,14.3 
Setup Time 

t23 DO-D31, DPO-3, A4-A31 Read 3 ns 14.2,14.3 
Hold Time 

NOTES: 
1. Not 100% tested. Guaranteed by design characterization. 
2. All timing specifications assume CL = 50 pF. Charts 14.4.3 provides the charts that may be used to determine the delay 
due to derating, depending on the lumped capacitive loading, that must be added to these specification values. 
3. The minimum Intel486 DX2 output valid delays are hold times provided to external circuitry. 
4. A reset pulse width of 15 ClK cycles is required for warm resets. Power-up resets require RESET to be asserted for at 
least 1 ms after Vce and ClK are stable. 

14-3 



intet Intel486™ DX2 MICROPROCESSOR 

Table 14.4.266 MHz Intel486 DX2 Microprocessor A.C. Characteristics 

Vce = 5V ±5%; Tcase = O°C to + 85°C; CI = 50 pF unless otherwise specified (Note 2) 

Symbol Parameter Min Max Unit Figure Notes 

Frequency 8 33 MHz 1X Clock Driven to Intel486 DX2 

t1 ClK Period 30 125 ns 14.1 

t1a ClK Period Stability 0.1% t;. Adjacent Clocks 

t2 ClK High Time 11 ns 14.1 at2V 

t3 ClKlowTime 11 ns 14.1 atO.8V 

t4 ClK Fall Time 3 ns 14.1 2Vto 0.8V 

t5 ClK Rise Time 3 ns 14.1 

t6 A2-A31, PWT, PCD, BEO-3#, 3 14 ns 14.5 
M/IO#, D/C#, W/R#, ADS#, 
lOCK#,FERR#,BREQ,HlDA 
Valid Delay 

t7 A2-A31, PWT, PCD, BEO-3#, 
M/IO#, D/C#, W/R#, ADS#, 
lOCK # Float Delay 

ts PCHK# Valid Delay 

tSa BlAST#, PlOCK# Valid Delay 

t9 

tlO DO-D31, DPO-3 Write Da (Note 3) 
Delay 

t11 DO-D31, DPO-3 Wei 14.6 (Note 1) 
Delay 'ilk 

":&" 

t12 EADS # Setup Time 14.2 

t13 EADS # Hold Time ns 14.2 

t14 KEN#, BS16#, BS8 ns 14.2 

t15 ns 14.2 

t16 ns 14.3 

t17 RDY#, B old Time ns 14.3 

t1S HOLD, AHM:D, Setup Time ns 14.2 

t1Sa BOFF # Setup Time 7 ns 14.2 

t19 HOLD, AHOlD, BOFF # Hold Time 3 ns 14.2 

t20 RESET, FlUSH#, A20M#, NMI, 5 ns 14.2 (Note 4) 
INTR, IGNNE# Setup Time 

t21 RESET, FlUSH#, A20M#, NMI, 3 ns 14.2 (Note 4) 
INTR, IGNNE# Hold Time 

t22 DO-D31, DPO-3, A4-A31 Read 5 ns 14.2,14.3 
Setup Time 

t23 DO-D31, DPO-3, A4-A31 Read 3 ns 14.2,14.3 
Hold Time 

NOTES: 
1. Not 100% tested. Guaranteed by design characterization. 
2. All timing specifications assume CL = 50 pF. Charts 14.4.3 provides the charts that may be used to determine the delay 
due to derating, depending on the lumped capacitive loading, that must be added to these specification values. 
3. The minimum Intel486 DX2 output valid delays are hold times provided to external circuitry. 
4. A reset pulse width of 15 ClK cycles is required for warm resets. Power·up resets require RESET to be asserted for at 
least 1 ms after Vce and ClK are stable. 

14-4 



Intel486TM DX2 MICROPROCESSOR 

Table 14.4.3. Intel486 DX2 Microprocessor A.C. Characteristics for Boundary Scan Test Signals 

Vee = 5V ± 5%, T case = O·C to + 85·C, CL = 0 pF 
All Inputs and Outputs are TTL Level (Note 4) 

Symbol Parameter Min Max Unit Figure Notes 

t24 TCK Frequency 25 MHz 1xCIock 

t25 TCK Period 40 ns (Note 2) 

t26 TCK High Time 10 ns at 2.0V 

t27 TCKLowTime 10 ns at O.BV 

t28 TCK Rise Time 4 ns (Note 1) 

t29 TCKFaliTime 4 ns (Note 1) 

t30 TDI, TMS Setup Time B ns 14.7 (Note 3) 

t31 TDI, TMS Hold Time 7 ns 14.7 (Note 3) 

t32 TOO Valid Delay 3 25 ns 14.7 (Note 3) 

t33 TOO Float Delay TBD 

t34 All Outputs (Non-Test) Valid Delay 3 25 ns 14.7 (Note 3) 

t35 All Outputs (Non-Test) Float Delay 36 ns 14.7 (Note 3) 

t36 All Inputs (Non-Test) Setup Time B ns 14.7 (Note 3) 

t37 All Inputs (Non-Test) Hold Time 7 ns 14.7 (Note 3) 

NOTES: 
1. Rise/Fall times are measured between 0.8V and 2.0V. Rise/Fall times can be relaxed by 1 ns per 10 ns increase in TCK 
period. 
2. TCK period :2: ClK period. 
3. Parameter measured from TCK. 
4. Boundary Scan A.C. Specifications in the above table are target values. They have not been characterized. Therefore 
they are subject to change. 

14-5 



int:et Intel486™ DX2 MICROPROCESSOR 

1.5V 

t5 

k------- t1 ------~ 
241245-70 

Figure 14.1. elK Waveforms 

Tx Tx Tx Tx 

ClK [ 

EADS# [ 
~~~---+----~~ 

BS8#, BS 16#, [
KEN# ~~~~ __ + __ ~~~

BOFF#, AHOlD, [HOLD

RESET, FLUSH#,

[A20t.4#, IGNNE#,
INTR, Nt.41

A4-A31 [(READ)

241245-71

Figure 14.2. Input Setup and Hold Timing

Tx Tx Tx

ClK [

RDY#, BRDY# [~~~[:::t~::j~~-

DO-D31 [
DPO-DP3 ~~~;a... __ + __G~oIU

241245-72

Figure 14.3. Input Setup and Hold Timing

14-6

intel .. Intel486TM DX2 MICROPROCESSOR

Tx Tx

ClK [

BROY#, ROY# [.u.l~It.Mo"-__ -+-__,j~~

00-031 [

OPO-OP3 .u.l~It.Mo"-~--t---....,j~~

PCHK# [

ClK [

A2-A31, PWT, PCO,
BEO-3#,II/10#,

O/C#,W/R#, AOS#, [
lOCK#, fERR#, BREQ,

HlOA

00-031, DPO-3, [
(WRITE)

BlAST#, PlOCK# [

ClK [

A2-A31, PWT, PCD,
BEO-3#,II/10#,

D/C#,W/R#,ADS#, [
lOCK#, fERR#, BREQ,

HlDA

DO-D31, DPO-3, [
(WRITE)

BLAST#, PlOCK# [

Figure 14.4. PCHK# Valid Delay Timing

Tx Tx Tx

Figure 14.5. Output Valid Delay Timing

Tx Tx Tx

Figure 14.6. Maximum Float Delay Timing

14-7

Tx

241245-73

Tx

241245-74

Tx

241245-75

infel· Intel486™ DX2 MICROPROCESSOR

TCK

TOO
~~~~~~~~"~--------' 

t34i _------t3-5~ 
S~~~~! XXXXXXXXXXXXX X"'------r-

"l;:t36 t37:::j~ 
Si~~~! ~XXXXXXXXXX~~~~~~~ ~ 

Figure 14.7. Test Signal Timing Diagram 

241245-76 

14.4.1 TYPICAL OUTPUT VALID DELAY VERSUS LOAD CAPACITANCE UNDER WORST CASE 
CONDITIONS FOR THE 50 MHz AND 66 MHz INTEL486 DX2 CPU 

NOTE: 

j 
'" c 
.... 
'" 0. .... 
'" o 
-' 
~ 
ii: 
~ 

nom+6 .---.---.---.---,.......,."'" 

nom+4 1---+--, 

100 125 150 

G.. (picofarads) 

Thi.s graph will not be linear outside of the CL range shown. 
nom = nominal value given in A.C. Characteristics table. 

241245-77 

14.4.2 TYPICAL OUTPUT RISE TIME VERSUS LOAD CAPACITANCE UNDER WORST-CASE 
CONDITIONS 

241245-80 

NOTE: 
This graph will not be linear outside of the CL range shown. 

14-8 



inteL Intel486™ DX2 MICROPROCESSOR 

14.4.3.a TYPICAL LOADING DELAY VERSUS CAPACITIVE LOADING UNDER WORST-CASE 
CONDITIONS FOR A HIGH TO LOW TRANSITION ON THE INTEL486 DX2 CPU 

6 

5 

4 

3 

Loading Delay 2 
(ns) 

o 

-1 

-2 

-3 ~ 
o 

/ 
/ 

/ 
/ 

/ 
V 

./ 
V 

25 50 100 150 

Capacitive Loading (pF) 
241245-78 

14.4.3.b TYPICAL LOADING DELAY VERSUS CAPACITIVE LOADING UNDER WORST-CASE 
CONDITIONS FOR A LOW TO HIGH TRANSITION ON THE INTEL486 DX2 CPU 

3 

/ 
/ 

/ 
/ 

2.5 

2 

1.5 

/ 
/ 

./ 
./ 

-----
Loading Delay 0 5 

(ns) . 

o 

-0.5 

-1 

-1.5 

-2 
o 25 50 100 150 

Capaoitive Loading (pf) 
241245-79 

14-9 





Intel486TM DX2 MICROPROCESSOR 

15.0 MECHANICAL DATA 

SEATING _ 

PLANE = A 

A3- r--r 
+ ~L~'r-

¢1.65 @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ 
R~F. L-@@@@@@@@@@@@@@@@@ 
.-@@@@@@@@@@@@@@~@@ 
T @@@ @@@ 

@@@ @@@ 
@@@ - @@@ 
@@@ 

\ 
@@@ 

@@@ ( @@@ 
@@@ @@@ 
@@@ @@@ 

PIN C3" @ @ @ '- / @ @ @ 
@@@ @@@ mo@@@@ 
@ @ @@@ 
@@o@@@@@@@@@@@il@@ 
@@@@@@@@@@@@@@@o@ 

~@@@@@@@@@@@@@@@o@ 

r- \ 
~:;~ REF. SW~f~ED 

450 CHAMFER (4 PL) 
(INDEX CORNER) 

D 

11 ... ... 
-... 
--... ... 
-... ... 
-= ... -- -

SEATING 
PLANE ~ 

¢B (ALL PINS) I 

f=~ 
SWAGGED 

PIN 
DETAIL 

Al-~L 
BASE - A2 

PLANE-

241245-81 

Family: Ceramic Pin Grid Array Package 

Symbol 
Millimeters Inches 

Min Max Notes Min Max Notes 

A 3.56 4.57 0.140 0.180 

Al 0.64 1.14 SOLID LID 0.025 0.045 SOLID LID 

A2 2.8 3.5 SOLID LID 0.110 0.140 SOLID LID 

A3 1.14 1.40 0.045 0.055 

B 0.43 0.51 0.017 0.020 

0 44.07 44.83 1.735 1.765 

01 40.51 40.77 1.595 1.605 

91 2.29 2.79 0.090 0.110 

L 2.54 3.30 0.100 0.130 

N 168 168 

Sl 1.52 2.54 0.060 0.100 

Figure 15.1. 168 Lead Ceramic PGA Package Dimensions 

15-1 



int'et Intel486™ DX2 MICROPROCESSOR 

Table 15.1 Ceramic PGA Package Dimension Symbols 

Letter or 
Description of Dimensions 

Symbol 

A Distance from seating plane to highest point of body 

A1 Distance between seating plane and base plane (lid) 

A2 Distance from base plane to highest point of body 

A3 Distance from seating plane to bottom of body 

B Diameter of terminal lead pin 

D Largest overall package dimension of length 

D1 A body length dimension, outer lead center to outer lead center 

e1 Linear spacing between true lead position centerlines 

L Distance from seating plane to end of lead 

S1 Other body dimension, outer lead center to edge of body 

NOTES: 
1. Controlling dimension: millimeter. 
2. Dimension "e1" ("e") is non-cumulative. 
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch. 
4. Dimensions "S", "S1" and "c" are nominal. 
5. Details of Pin 1 identifier are optional. 

15.1 Package Thermal Specifications 

The Intel486 DX2 microprocessor is specified for op­
eration when T C (the case temperature) is within the 
range of DOC-85°C. T C may be measured in any en­
vironment to determine whether the Intel486 DX2 
microprocessor is within specified operating range. 
The case temperature should be measured at the 
center of the top surface opposite the pins. 

where T J, T A, T C = Junction, Ambient and Case 
Temperature respectively. OJC, OJA = Junction-to­
Case and Junction-to-Ambient Thermal Resistance, 
respectively. 

The ambient temperature (T A) is guaranteed as long 
as T C is not violated. The ambient temperature can 
be calculated from 0 JC and 0 JA from the following 
equations. 

TJ = Tc + P • i!JC 

TA=TJ-P*i!JA 

T A = T c - (P * i!CA) 

Tc = TA + P' [i!JA -i!Jcl 

P = Maximum Power Consumption 

The values for OJA and OJC are given in Table 13.2 
lor the 1.75 sq. in., 168-pin, ceramic PGA. 

Table 13.3 shows the T A allowable (without exceed­
ing T cl at various airflows and operating frequencies 
(fCLK)' 

Note that T A is greatly improved by attaching "fins" 
or a "heat sink" to the package. P (the maximum 
power consumption) is calculated by using the maxi­
mum Icc at 5V as tabulated in the DC Characteris­
tics of Section 14. 

Table 15.2. Thermal Resistance ("C/W) OJC and OCA for the 50 MHz and 66 MHz Intel486 DX2 CPU 

OCA vs Airflow-ft/min (m/sec) 

OJC 0 200 400 600 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

I With Heat Sink' 2.5 10.5 7.0 4.5 3.5 3.0 2.5 

I Without Heat Sink 2.0 16 14.0 10.5 9.0 8.0 7.5 

'0.350" high omnidirectional heat sink (AI alloy 6063, 40 mil fin width, 155 mil center-to-center fin spacing). 

15-2 



int'eL Intel486™ DX2 MICROPROCESSOR 

DDDDDDDDDDD 
DDDDDDDDDDD 

DDDDDDDDDDD 
DDDDDDDDDDD 

1.540" 

1-------1.536"'----------J 

Table 15.3. Maximum T A at Various Airflows In °C 

Airflow-ft/min (m/sec) 

0 200 400 600 
(0) (1.01) (2.03) (3.04) 

T A with Heat Sink 50 MHz 32.6 50.0 62.5 67.5 

66 MHz 18.9 40.9 56.7 62.9 

T A without Heat Sink 50 MHz 5.2 15.1 32.6 40.1 

66 MHz -15.8 -3.2 18.9 28.3 

15-3 

I 

I 

0.079"-/ I-

24124S-A2 

800 1000 
(4.06) (5.07) 

70.0 72.5 

66.1 69.3 

45.1 47.6 

34.6 37.8 





Intel486TM DX2 MICROPROCESSOR 

16.0 SUGGESTED SOURCES FOR 
INTEL486 DX2 ACCESSORIES 

Following are some suggested sources of accesso­
ries for ,the Intel486 OX2. They are not an endorse­
ment of any kind, nor a warrarity of the performance 
of any of the listed products and/or companies. 

Sockets 

1. McKenzie Technology 
44370 Old Palmspring Blvd. 
Fremont, CA 94538 
Tel: (415) 651-2700 

2. E-CAM Technology, Inc. 
14455 North Hayden Rd. 
Suite 208 
Scottsdale, AZ 85260 
Tel: (602) 443-1949 

3. Augat Inc. (for sockets with decaps) 
Interconnection Products Group 
33 Perry Ave. 
P.O. Box 779 
Attleboro, MA 02703 
Tel: (508) 222-2202 

16-1 

Heat Sinks/Fins 

1. AAVIO Engineering, Inc. 
One Kool Path 
P.O. Box 400 
Laconia, NH 03247 
Tel: (603) 528-3400 

TTL Crystals/Oscillators 

1. NFL Frequency Controls, Inc. 
357 Beloit Street 
Burlington, WI 53105 
Tel: (414) 763-3591 

2. M-Tron 
P.O. Box 630 
Yankton, SO 57078 
Tel: (605) 665-9321 

Debugging Tower 

1. Emulation Technology 
2344 Walsh Ave., Building F 
Santa Clara, CA 95051 
Tel: (408) 982-0664 



inter 
ALABAMA 

tlntal Corp. 
5015 Bradford Dr., #2 
Huntsville 35805 

~~j}~~)~~~ 
ARIZONA 

tlntel Corp. 
11225 N. 26th Dr. 
Suite D·214 
Phoenix 85029 
Tel: (602) 869-4980 
FAX: (602) 869-4294 

rJ!s ~ona Usa Rd. 
Suite 215 
Tucson 85741 
Tel: (802) 544-0227 
FAX: (602) 544·0232 

CALIFORNIA 

tlntel Corp. 
21515 Vanowen Street 
Suite 116 

~f8)amlJ:lg 
FAX: (818) 340-1144 

tlntel Corp. 
2250 E. Imperial Highway 
Suite 218 

f~~~~;)d~~ 
FAX: (213) 640-7133 

Intel Corp. 
1 Sierra Gate Plaza 
Sune 280C 
Roseville 95678 
Tel: (916) 782-11086 
FAX: (916) 782-11153 

tlntel Corp. 
9665 Chesapeake Dr. 
Suite 325 

~~f£o~~~86 
FAX: (619) 292·0628 

tlntel Corp. * 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835·9642 
TWX: 910-595·1114 
FAX: (714) 541-9157 

tlntel Corp.-
San Tomas 4 
2700 San Tomas Expressway 
2nd Floor 
Santa Clara 95051 

~(~~~= 
FAX: (408) 727-2620 

COLORADO 

Intel Corp. 
4445 Northpark Drive 
Suite 100 
Colorado Springs 80907 
Tel: (719) 5_2 
FAX: (303) 594-0720 

tlntel Corp.-
650 S. Cherry St. 
Suite 915 
Denver 80222 
Tel: (303) 321-l1088 
TWX: 910-931·2289 
FAX: (303) 322-l1670 

tSales and Service Office 
*Reld AppIicadon locatIon 

DOMESTIC SALES 
CONNECTICUT MASSACHUSETTS 

~~~r~rp. Center 
tlntel Corp.
301 Lee Farm Corporate Park
83 Wooster Heights Rd. 3 ca~lsle Rood
Danbury 06810 2nd Floor
Tel: (203) 748-3130 Westiord 01886
FAX: (203) 794-0339 Tel: (508) 692-3222

TWX: 710-343-6333

FLORIDA FAX: (508) 692·7867

~31 ~":l"6th Way
MICHIGAN

tlntel Corp. Suite 100
Ft. Lauderdale 33309 7071 Orchard Lake Rood

Suite 100 Tel: (305) 771-0800
West Bloomfield 48322 TWX: 510-956-9407
Tel: (313) 851·8096 FAX: (305) 772-11193
FAX: (313) 851·8770

tlntel Corp.
5850 T.G. Lee Blvd. MINNESOTA
Suite 340
Orlando 32822 tlntel Corp.
Tel: (4O~240-80oo 3500 W. BOth SI.
FAX: (40 240-8097 Suite 380

Bloomington 55431

~~t3~~~' Street North
Tel: (612) 835·6722
TWX: 910-576-2867

SUite 170 FAX: (612) 831·6497

f./(~~~U-!miJ6 MISSOURI
FAX: (813) 576-1607

tlntel Corp.
GEORGIA 4203 Earth Cfty Expressway

Suite 131
Earth Cfty63045 Intel Corp.

20 Technology Parkway, N.W. Tel: (314) 291·1990
Su~e 150 FAX: (314) 291-4341
Norcross 30092
Tel: (404) 449-0541 NEW JERSEY
FAX: (404) 605-9762

tlmel Corp. *
Parkway 109 Office Center ILLINOIS 328 Newman Springs Road

tlmel Corp. * Red Bank 07701
300 N. Martingale Road Tel: (201) 747·2233
Suite 400 FAX: (201) 747-0983
Schaumburg 60173
Tel: (708) 805·8031
FAX: (708) 706-9762

tlntel Corp.
280 Corporate Center
75 Uvingston Avenue
First Ftoor

INDIANA Roseland 07068

tlntel Corp.
8n7 Purdue Road

Tel: (201) 740·0111
FAX: (201) 74Q-0828

Suite 125
Indianapolis 46268 NEWVORK
Tel: (317) 875-0623 Intel Corp.-
FAX: (317) 875-11938 850 Cross Keys Office Park

IOWA
Fairport 14450
Tel: (716) 425-2750
TWX: 510-253·7391

Intel Corp. FAX: (716) 223·2561
1930 St. Andrews Drive N.E.
2nd Floor tlntel Corp. *
Cedar RapidS 52402 2950 Expressway Dr., South
Tel: (319) 393-1294 Suite 130

Islandia 11722

KANSAS
Tel: (516) 231·3300
TWX: 510·227·6238

tlntel Corp. FAX: (516) 346-7939

~~:l~~.D tlntel Corp.
Westage Business Center

Overland Park 66210 Bldg. 300, Route 9
Tel: (913) 345-2727 Fishkill 12524
FAX: (913) 345·2076 Tel: (914) 897-3860

FAX: (914) 897-3125
MARYLAND

NORTH CAROUNA
tlntel Corp. *
10010 Junction Dr. tlntel Corp.
Suite 200 5800 Executive Center Dr.
Annapolis Junction 20701 Suite 105
Tel: (301) 206-2860 Charlotte 28212
FAX: !301l206-3877 Tel: (704) 566-8966

301 206-3678 FAX: (704) 535-2238

OFFICES
Intel Corp.
5540 Centerview Or.

UTAH

Suite 215 ~::~'K400 South Raleigh 27606
Tel: (919) 851-9537 Suite 104
FAX: (919) 851·8974 Murray 84107

Tel: (801) 263-8051
OHIO FAX: (801) 268-1457

tlntal Corp. *
3401 Park Center Drive VIRGINIA
Suite 220
Dayton 45414 tlntel Corp.

i~:lJrL~~
1504 Santa Rosa Road
Sune 108

FAX: (513) 890-8658 Richmond 23288
Tel: (804) 282-5668

~~~ C~~ Pal1< Dr. 
FAX: (216) 464-2270 

Suite 100 
Beachwood 44122 WASHINGTON 
Tel: (216) 464·2738 
TWX: 810·427·9298 tlntel Corp. 
FAX: (804) 282-Q673 155 1 oath Avenue N.E. 

Suite 386 
OKLAHOMA Bellevue 98004 

~\~f~:tgo~ ll:\ 1f.~roadway FAX: (206) 451·9556 
Suite 115 
Oklahoma Cfty 73162 Intel Corp. 
Tel: (405) 846-8086 408 N. Mullan Road 
FAX: (405) 840-9819 Suite 102 

Spokane 99206 
OREGON Tel: (509) 928-11086 

FAX: (509) 928-9467 

t~~ ~~: Greenbrier Parkway 
Building B 
Beaverton 97005 

WISCONSIN 

Tel: (503) 645·8051 Intel Corp. 
TWX: 910-467·8741 330 S. Executive Dr. 
FAX: (503) 645-11181 Suite 102 

Brooktleld 53005 
PENNSYLVANIA Tel: (414) 784-8087 

FAX: (414) 796-2115 tlntel Corp.-
455 Pennsylvania Avenue 
Suite 230 

CANADA Fort Washington 19034 

~\2Jf~.:1:1g~ 
FAX: (215) 641-0785 BRITISH COLUMBIA 

tlntel Corp. * Intel Semiconductor of 
400 Penn Center Blvd. Canada, Ltd. 
Suite 610 4585 Canada Way 
Pittsburgh 15235 Suite 202 
Tel: (412) 823-4970 Burnaby VSG 4L6 
FAX: (412) 829-7578 Tel: (604) 298-0387 

PUERTO RICO 
FAX: (604) 298-8234 

tlntel Corp. 
South Industriel Park 

ONTARIO 

P.O. Box 910 tlntel Semiconductor of 
Las Piedras 00671 Canada, Ud. 
Tel: (809) 733-l1616 2650 Queensvlew Drive 

TEXAS 
Suite 250 
Ottawa K2B 8H6 

Intel Corp. Tel: (613) 829·9714 

1~~inC~~ of Texas Hwy. 
FAX: (613) 820-5936 

Tel: (512) 794-8086 tlmel Semiconductor of 
Canada, Ltd. FAX: (512) 336-9335 190 Attwell Drive 

tlntel Corp.* Suite 500 
Rexdale M9W 6H8 12000 Ford Road 

Suite 400 Tel: (416) 675-2105 
Dallas 75234 FAX: (416) 675-2438 
Tel: (214) 241-l1087 
FAX: (214) 484-1180 

QUEBEC 

;~21 ~.;t;reowey Intel Semiconductor of 
Suite 1490 Canada, Ltd. 
Houston n074 620 St. Jean Boulevard 

~m&:t~~ Pointe Clelre H9R 3K2 
Tel: (514) 694-9130 

FAX: (713) 986-3860 FAX: 514-694-0064 



FINLAND 

Intel Finland OY 
Ruosilantie 2 
00390 Helsinki 
Tel: (358) 0 544 644 
FAX: (358) 0 544 030 

FRANCE 

Intel Corporation S.A.R.L. 
1, Rue Edison-BP 303 
7805481. Quentin-en-YveJines 
Cedex 
Tel: (33) (1) 30 57 70 00 
FAX: (33) (1) 30 64 6032 

GERMANY 

Intel GmbH 
Dornacher Strasse 1 
8016 Feldkirchen bel Muenchen 
Tel: (49) 089/90992-0 
FAX: (49) 089/904/3948 

EUROPEAN SALES OFFICES 
Intel GmbH 
Abraham Lincoln $trasse 16-18 
6200 Wiesbaden 
Tel: (49) 06121/7605-0 
FAX: (49) 06121718615 

Intel GmbH 
Zettachring 1 QA 
7000 Stuttgart ao 
Tel: (49) 0711/7287-280 
FAX: (49) 0711 7280137 

ISRAEL 

Intel Semiconductor Ltd 
Atidim Industrial Park-Neve Sharet 
P.O. Box 43202 
Tel-Aviv 61430 
Tel: (972) 03-498080 
FAX: (972) 03-491870 

ITALY 

Intel Corporation Italia S.p.A. 
Milanofiori Palazzo E 
20094 Assago 
Milano 
Tel: (39) (02) 89200950 
FAX: (39) (2) 3498464 

NETHERLANDS 

Intel Semiconductor B.V. 
Postbus 84130 
3009 CC Rotterdam 
Tel: (31) 1040711 11 
FAX: (31) 10 455 46 88 

SPAIN 

Intel Iberia SA 
Zurbaran, 28 
28010 Madrid 
Tel: (34) 308 25 52 
FAX: (34) 410 7570 

SWEDEN 

Intel Sweden A. B. 
Dalvagen 24 
171 36 Salna 
Tel: (46) 8 734 01 00 
FAX: (46) 8 278085 

SWITZERLAND 

Intel Semiconductor A.G. 
Zuerichstrasse 
8185 Winkel-Rueti bei Zuerich 
Tel: (41) 01/8606262 
FAX: (41) 01/860 0201 

UNITED KINGDOM 

Intel Corporation (U.K.) Ltd. 
Pipers Way 
Swindon, Wiltshire SN3 1 RJ 
Tel: (44) (0793) 696000 
FAX: (44) (0793) 641440 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA Metrologie GmbH Lasi Elettronica S.pA SCANDINAVIA Bytech Systems 

Bacher Electronics GmbH 
Steinerstrasse 15 P.I. 00839000155 

OY Fintronic AB 
Unit 3 

8000 Muenchen 70 Viale Fulvio Testi, N.280 The Western Centre 
Rotenmuehlgasse 26 Tel: 49 89 724470 20126 Milano Heikkilantie 2a Western Road A-1120 Wien FAX: 49 89 72447111 Tel: 39 2 66101370 SF-02100 Helsinki Bracknell Tel: 43 222 81356460 FAX: 39 2 66101385 Finland Berks RG12 1 RW 
FAX: 43 222 834276 ITT Multikomponent Elektronik Tel: 358 0 6926022 Tel: 0344 55333 

Vertrieb In Multicomponents FAX: 358 0 6821251 FAX: 0344 867270 
BELGIUM Bahnhofstr. 44 P.1. 06550110156 

ITT Multikomponent A/S 
7141 Moeglmgen Palazzo E5 Milanofiori Conformix 

Inelco Belgium SA 
Tel: 49 7141 4879 20094 Assago (Milano) Naverland 29 Rapid House 

Oorlogskruisenlaan 94 
FAX: 49 7141487210 Tel: 39 2 824701 DK-2600 Glostrup Oxford Road B-1120 Bruxelles FAX: 39 2 8242631 Denmark High Wycombe Tel: 32 2 244 2811 Proelectron Vertriebs GmbH Tel: 0104542451822 Bucks 

FAX: 32 2 2163304 Max-Planck-Strasse 1-3 Silverstar Ltd. S.p.A. FAX: 010 45 42 457624 Herts HP11 2EE 
6072 Dreieich P.I. 00751300153 Nordisk Elektronik A/S Tel: 0494 474147 FRANCE Tel: 4961033040 Viale Fulvio Testi N.280 

Postboks 122 FAX: 0494452144 
Almex FAX: 49 6103 304344 20126 Milano 

Smedsvingen 4 Tel: 392 66125 Jermyn 48, Rue de l'Aubepine FAX: 39 2 66101359 N-1364 Hvalstad Vestry Estate 
B.P.102 GREECE Norway Otford Road 
92164 Antony Cedex Telcom s.r.1. - Divisione MDS Tel: 47 2 846210 Sevenoaks Tel: 33 1 40965400 Pouliadis Associates Corp. Via Trombetta FAX: 47 2 846545 Kent TN 14 5EU 
FAX: 33 1 4666 6028 5 Koumbari Street Zona Marconi - Strada Cassanese Nordisk Electronik AB Tel: 0732450144 
Jermyn Kolonaki Square Segrate - Milano Box 36 FAX: 0732 451251 

10674 Athens Tel: 39248704100 73-79 Rue des Solets Tel: 30 1 3603741 FAX: 39 2 48705355 
Torshamnsgatan 39 MMD 

Silic 585 FAX: 30 1 360 7501 S-16493 Kista 3 Bennet Court 94663 Rungis Cedex 
NETHERLANDS 

Sweden Bennet Road Tel: 33 1 49784878 Tel: 46 8 7034630 Reading 
FAX: 33 1 4978 0599 IRELAND Konin~ en Hartman B.V. FAX: 4687039845 Berkshire RG2 OOX 
Metrologie Micro Marketing Energleweg 1 

SWITZERLAND Tel: 0734313232 
Tour d'Asnieres Tony Hall 2627 AP Delft FAX: 0734 313255 
4, Avenue Laurent Cely Eglinton Terrace The Netherlands Industrade A.G. 

Tel: 31 15609906 Hertistrasse 31 Rapid Silicon 
92606 Asnieres Cedex Dundrum, Dublin 3 Bennet Court Tel: 33 1 47906240 Tel: 0001 989 400 FAX: 31 15619194 CH-8304 Wallis ellen 

Bennet Road FAX: 33 1 4790 5947 FAX: 0001 989 8282 Tel: 41 1 8328111 Reading PORTUGAL FAX: 41 1 8307550 
Tekelec-Airtronic Berks RG2 OOX 
Cite des Bruyeres ISRAEL ATD Electronica LOA UNITED KINGDOM Tel: 0734750697 
Rue Carle Vernet - BP 2 Rua Dr. Faria de Vasconcelos, 3a FAX: 0734312728 
92310 Sevres Eastronics Ltd. 1900 Lisboa Accent Elect Comp Ltd. 

Metro Systems Tel: 33 1 4534 7535 Rozanis 11 Tel: 351 1 8472200 Jubilee House 
FAX: 33 1 45072191 P.O.B.39300 FAX: 351 1 8472197 Jubilee Road Rapid House 

Tel Baruch, Tel-Aviv 61392 Letchworth Oxford Road 

GERMANY Tel: 972 3 475151 SPAIN Hertsfordshire High Wycombe 

FAX: 972 3 475125 SG610H Bucks HP11 2EE 
E2000 Vertriebs-AG ATD Electronica Tel: 0462 480888 Tel: 0494 474171 
Stahlgruberring 12 Plaza Ciudad de Viena, 6 FAX: 0462 682467 FAX: 0494 21860 
8000 Muenchen 82 ITALY 28040 Madrid 
Tel: 49 89 420010 Tel: 34 1 5344000/09 Bytech Components Limited YUGOSLAVIA 
FAX: 49 89 42001209 Intesi Div. DeHa Deutsche FAX: 34 1 534 7663 12a Cedarwood 

Divisione In Industries GmbH Chineham Business Park H.R. Microelectronics Corp. 
Jermyn GmbH P.I. 06550110156 Metrologia Iberica Crockford Lane 2005 de la Cruz Blvd., Ste. 223 
1m Dachsstueck 9 Milanoffori palazzo E5 Ctra De Fuencarral N.80 Basingstoke Santa Clara, CA 95050 
6250 Limburg 20094 Assago (Milano) 28100 Alcobendas (Madrid) Hants RG12 lRW U.S.A. 
Tel: 49 6431 5080 Tel: 39 2 824701 Tel: 34 1 6538611 Tel: 0256 707107 Tel: (1) (408) 988-0286 
FAX: 49 6431 508289 FAX: 39 2 8242631 FAX: 34 1 6517549 FAX: 0256 707162 TLX: 387452 

CG/SALE/07319 



AUSTRALIA 

Intel Australia Ply. Ltd. 
Unit 13 
Allambie Grove Business Park 
25 Frenchs Forest Road East 
Frenchs Forest, NSW, 2086 
Tel: 61-2975-3300 
FAX: 61-2975-3375 

BRAZIL 

Intel Semiconductores do Brazil LTDA 
Avenida Paulista, 1159-CJS 404/405 
01311· Sao Paulo - S.P. 
Tel: 55-11-287-5899 
TLX: 11-37-557-1508 
FAX: 55-11-287-5119 

CHINA/HONG KONG 

Intel PRC Corporation 
15/F, Office 1, Citic Bldg. 
Jian Guo Men Wai Street 
Beijing, PRC 
Tel: (1) 500-4850 
TLX: 22947 INTEL CN 
FAX: (1) 500-2953 

Intel Semiconductor Ltd, '* 
10fF East Tower 
Bond Center 
Queensway, Central 
Hong Kong 
Tel: (852) 844-4555 
FAX: (852) 868-1989 

INTERNATIONAL SALES OFFICES 
INDIA 

Intel Asia Electronics, Inc. 
4/2, Samrah Plaza 
St. Mark's Road 
Bangalore 560001 
Tel: 91-812-215773 
TLX: 953-845-2646 INTEL IN 
FAX: 091-812-215067 

JAPAN 

Intel Japan K.K. 
5-6 Tokodai, Tsukuba-shi 
Ibaraki, 300-26 
Tet: 0298-47-8511 
FAX: 0298-47-8450 

Intel Japan K.K. * 
Hachioji ON Bldg. 
4-7-14 Myojin-machi 
Hachloji-shi, Tokyo 192 
Tel: 0426-48-8770 
FAX: 0426-48-8775 

Intel Japan K. K * 
Bldg. Kumagaya 
2-69 Hon-cho 
Kumagaya-shi, Saitama 360 
Tel: 0485-24-6871 
FAX: 0485-24-7518 

Intel Japan K.K. * 
Kawa-asa Bldg. 
2-11-5 Shin-Yokohama 
Kohoku-ku, Yokohama-shi 
Kanagawa, 222 
Tel: 045-474-7661 
FAX: 045-471-4394 

Intel Japan K.K. * 
Ryokuchi-Eki Bldg. 
2-4-1 T erauchi 

+~r:oon6~~~i~io~saka 560 

FAX: 06-863-1084 

Intel Japan K.K. 
Shinmaru Bldg. 
1-5-1 Marunouchi 
Chiyoda-ku, Tokyo 100 
Tel: 03-3201-3621 
FAX: 03-3201-6850 

Intel Japan K.K. 
Green Bldg. 
1-16-20 Nishiki 
Naka-ku, Nagoya-shi 
Aichi 450 
Tel: 052-204-1261 
FAX: 052-204-1285 

KOREA 

Intel Korea, Ltd. 
16th Floor, Life Bldg. 
61 VOldo-dong, Youngdeungpo-Ku 
Seoul 150-010 
Tel: (2) 784-8186 
FAX: (2) 784-8096 

SINGAPORE 

Intel Singapore Technology, Ltd. 
101 Thomson Road #08-03/06 
United Square 
Singapore 1130 
Tel: (65) 250-7611 
FAX: (65) 250-9256 

TAIWAN 

Intel Technology Far East Ltd. 
Taiwan Branch Office 
8th Floor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886-2-5144202 
FAX: 886-2-717-2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA 

Dafsys S.R.L. 
Chacabuco, 90-6 Piso 
1069"Buenos Aires 
Tel: 54-1-34-7726 
FAX: 54-1-34-1871 

AUSTRALIA 

Email Electronics 
15-17 Hume Street 
Huntingdale, 3166 
Tel: 011-61-3-544-8244 
TLX: M30895 
FAX: 011-61-3-543-8179 

NSD-Australia 
205 Middleborough Rd. 
Box Hill, Victoria 3126 
Tel: 03 8900970 
FAX: 03 8990819 

BRAZIL 

Eleora Componentes 
Rua Geraldo Flausina Gomes, 76 
7 Andar 
04575 - Sao Paulo - S.P. 
Tel: 55-11-534-9641 
TLX: 55-11-54593/54591 
FAX: 55+11-534-9424 

CHINA/HONG KONG 

Novel Precision Machinery Co., Ltd. 
Room 726 Trade Square 
661 Cheung Sha Wan Road 
Kowloon, Hong Kong 
Tel: (852) 360-8999 
TWX: 32032 NVTNL HX 
FAX: (852) 725-3695 

INDIA 

Micronic Devices 
Arun Complex 
No. 65 D.V.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011-91-612-600-631 

011-91-812-611-365 
TLX: 9538458332 MOBG 

"'Field Application Location 

Micronic Devices 
No. 516 5th Floor 
Swastik Chambers 
Sion, Trombay Road 
Chembur 
Bombay 400 071 
TLX: 9531 171447 MOEV 

Micronic Devices 
25/6, 1st Floor 
Bada Bazaar Marg 
Old Rajinder Nagar 
New Delhi 110060 
Tel: 011-91-11-5723509 

011-91-11-589771 
TLX: 031-63253 MONO IN 

Micronic Devices 
6-3-346/12A owarakapuri Colony 
Hyderabad 500 482 
Tel: 011-91-842-226748 

S&S Corporation 
1587 Kooser Road 
San Jose, CA 95118 
Tel: (408) 978-6216 
TLX: 820281 
FAX: (408) 978-8635 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
Kitakyushu-shi 802 
Tel: 093-511-6471 
FAX: 093-551-7861 

CTC Components Systems Co., Ltd. 
4-8-1 Dobashi, Miyamae-ku 
Kawasaki-shi, Kanagawa 213 
Tel: 044-852-5121 
FAX: 044-877-4268 

Dia Semicon Systems, Inc. 
Flower Hill Shinmachi Higashl-kan 
1-23-9 Shlnmachi, Setagaya-ku 
Tokyo 154 
Tel: 03-3439-1600 
FAX: 03-3439-1601 

Okaya Koki 
2-4-18 Sakae 
Naka-ku, Nagoya-shi 460 
Tel: 052-204-2916 
FAX: 052-204-2901 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-12-22 Tsukiji 
Chuo-ku, Tokyo 104 
Tel: 03-3546-5011 
FAX: 03-3546-5044 

KOREA 

J-T ek Corporation 
Dong Sung Bldg. 9/F 
158-24. Samsung-Dong, Kangnam-Ku 
Seoul 135-090 
Tel: (822) 557-8039 
FAX: (822) 557-8304 

Samsung Electronics 
Samsung Main Bldg. 
150 Taepyung-Ro-2KA, Chung-Ku 
Seoul 100-102 
C.P.O. Box 8780 
Tel: (822) 751-3680 
TWX: KOASST K 27970 
FAX: (822) 753-9065 

MEXICO 

SSB Electronics, Inc. 
675 Palomar Street, Bldg. 4, Suite A 
Chula Vista, CA 92011 
Tel: (619) 585-3253 
TLX: 287751 CBALL UA 
FAX: (619) 585-8322 

Dicopet SA 
Tochtli 368 Fracc. Ind. San Antonio 
Azcapotzalco 
C.P. 02760-Mexico, D.F. 
Tel: 52-5-561-3211 
TLX: 177 3790 Dicome 
FAX: 52-5-561-1279 

PSI SA de C.V. 
Fco. Villa esq. Ajusco sIn 
Cuernavaca - Morelos 
Tel: 52-73-13-9412 
FAX: 52-73-17-5333 

NEW ZEALAND 

Email Electronics 
36 Olive Road 
Penrose, Auckland 
Tel: 011-64-9-591-155 
FAX: 011-64-9-592-681 

SAUDI ARABIA 

ME Systems, Inc. 
642 N. Pastoria Ave 
Sunnyvale, CA 94086 
U.SA 
Tel: (408) 732-1710 
FAX: (408) 732-3095 
TLX: 494-3405 ME SYS 

SINGAPORE 

Electronic Resources Pte, Ltd. 
17 Harvey Road 
#03·01 Singapore 1336 
Tel: (65) 283-0888 
TWX: AS 56541 EAS 
FAX: (65) 289-5327 

SOUTH AFRICA 

~j~ct~~~~~~~i~;.nroNlw~~~~eyet St.) 
Meyerspark. Pretoria, 0184 
Tel: 011-2712-803-7680 
FAX: 011-2712-803-8294 

TAIWAN 

Micro Electronics Corporation 
12th Floor, Section 3 
285 Nanking East Road 
Taipei, R.O.C. 
Tel: (886) 2-7198419 
FAX: (886) 2-7197916 

Acer Sertek Inc. 
15th Floor, Section 2 
Chien Kuo North Rd. 
Taipei 18479 R.O.C. 
Tel: 886-2-501-0055 
TWX: 23756 SEATEK 
FAX: (886) 2-5012521 

CG/SALE/C 




	000
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	03-01
	03-02
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-30
	07-31
	07-32
	07-39
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	11-01
	11-02
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	15-01
	15-02
	15-03
	15-04
	16-01
	A-01
	A-02
	A-03
	xBack

