MT4067 883C

MILITARY DRAM

64K x 4 DRAM

DRAM

AVAILABLE AS M SPECIFICATION • SMD 5962-87676 • MIL-STD-883, Class B		PIN ASSIGNMENT (Top Vie 18L/300 DIP (D-6)				
 Optional PAGE MOD Refresh modes: RAS- HIDDEN 256-cycle refresh distr 	d clocks are fully TTL er supply andby; 150mW active, typical E access cycle ONLY, CAS-BEFORE-RAS, and ributed across 4 ms teed over full military DRAM	OE 1 • 18 Vss DQ1 2 17 DQ4 DQ2 3 16 CAS WE 4 15 DQ3 RAS 5 14 A0 A6 6 13 A1 A5 7 12 A2 A4 8 11 A3 Vcc 9 10 A7				
OPTIONS • Timing 100ns access 120ns access 150ns access • Packages Ceramic DIP Ceramic LCC	MARKING -10 -12 -15 C EC	$18L/LCC$ $\boxed{O} \boxtimes \overset{\circ}{>} \overset{\circ}{O}$ $2 1 18 17$ $2 1 18 17$ $\boxed{OQ2} 3 16 \square CAS$ $\boxed{WE} 3 4 15 \square DQ3$ $\boxed{RAS} 3 5 14 \square A0$ $\boxed{A6} \square 6 13 \square A1$ $\boxed{A5} \square 7 12 \square A2$ $\boxed{8 9 10 11}$				

GENERAL DESCRIPTION

The MT4067 883C is a randomly accessed solid-state memory containing 262,144 bits organized in a 65,536 x4 configuration. The 16 address bits are entered 8 bits at a time using RAS to latch the first 8 bits and CAS the latter 8 bits. If WE goes LOW after data reaches the output pins, the output pins are activated and retain the selected cell data as long as CAS and \overline{OE} remain LOW (regardless of WE or RAS). This late WE pulse results in a READ-MODIFY-WRITE cycle. Data in is latched when WE strobes LOW.

By holding \overline{RAS} LOW, \overline{CAS} may be toggled to execute

several faster READ, WRITE or READ-MODIFY-WRITE cycles within the RAS address defined page boundary. Returning RAS HIGH terminates the memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing a RAS (READ, WRITE, RAS-ONLY or HIDDEN REFRESH) cycle so that all 256 combinations of RAS addresses are executed at least every 4ms (regardless of sequence).

A3 /00 A3

TRUTH TABLE

					Addr	esses	
Function	RAS	CAS	WE	ŌE	^t R	ťC	
Standby	Н	н	н	н	Х	x	High-Z
READ	L	L	н	L	RÓW	COL	Data Out
WRITE (EARLY-WRITE)	L	L	L	х	ROW	COL	Data In
READ-WRITE	L	L	H→L→H	L⊸H	ROW	COL	Data Out, Data In
PAGE-MODE READ	L	H→L→H	н	L	ROW	COL	Data Out, Data Out
PAGE-MODE WRITE	L	H→L→H	L	х	ROW	COL	Data In, Data In
PAGE-MODE READ-WRITE	L	H→L→H	H→L→H	L→H	ROW	COL	Data Out, Data In
RAS-ONLY REFRESH	L	н	x	н	ROW	n/a	High-Z
HIDDEN REFRESH	L→H→Ł	L	н	L	ROW	COL	Data Out
CAS-BEFORE- RAS REFRESH	H→L	L	×	Х	x	х	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss1.5V to +7.0V
Storage Temperature Range65°C to +150°C
Power Dissipation
Lead Temperature (soldering 5 seconds)
Junction Temperature (Tj)+150°C
Short Circuit Output Current

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL PERFORMANCE CHARACTERISTICS

(Notes: 4, 6, 7) (-55°C \leq T $_{C} \leq$ +110°C; Vcc = 5.0V ±10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Current from Vcc (Active); \overline{RAS} and \overline{CAS} Cycling; ^t RC = ^t RC (MIN)	Icc1		55	mA	2
Supply Current from Vcc (Active, PAGE MODE); $\overline{RAS} = V_{IL}$, \overline{CAS} Cycling; ¹ PC = ¹ PC (MIN)	ICC2		55	mA	2
Supply Current from Vcc (Standby); RAS and $\overline{CAS} = V_{IH}$	Іссз		8	mA	
Supply Current from Vcc (REFRESH, RAS-ONLY); RAS Cycling, CAS = Viн	ICC4		45	mA	2
Supply Current from Vcc (REFRESH, CAS-BEFORE-RAS); RAS and CAS Cycling	ICC5		55	mA	2
Output High Voltage (Iон = -5mA)	Voн	2.4		v	1
Output Low Voltage (Io∟ = 5mA)	Vol		0.4	V	1
Input Leakage	Ін	-10	10	μA	
Any Input ($0V \le V_{IN} \le V_{CC}$); All Other Pins = $0V$	hL.	-10	10	μA	
Output Leakage (0 ≤ Vou⊤ ≤ Vcc)	loz	-10	10	μA	

DC OPERATING CONDITIONS

(Notes: 4, 6, 7) (-55°C \leq T $_{C}$ \leq +110°C; Vcc = 5.0V $\pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc Supply Voltage	Vcc	4.5	5.5	V	
Vss Power Supply and Signal Reference	Vss	0.0	0.0	V	1
High-Level Input Voltage (All Inputs)	Viн	2.4	Vcc+1	v	1
Low-Level Input Voltage (All Inputs)	ViL	-1.0	0.8	ν	1

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: (A0-A7)	CI1		5	pF	3
Input Capacitance: RAS, CAS, WE, OE	Ci2		8	pF	3
Input/Output Capacitance: (DQ1-DQ4)	Co		7	pF	3

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 4, 5, 6, 7, 8) (-55°C \leq T_C \leq +110°C; Vcc = 5.0V ±10%)

AC CHARACTERISTICS		-	10	-	12	-	15		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRitE cycle time	^t RC	195		220		250		ns	
READ-MODIFY-WRITE cycle time	^t RWC	250	1	290		315		ns	20
PAGE-MODE cycle time	^t PC	90		100		120		ns	20
Access time from RAS	^t RAC		100		120		150	ns	9
Access time from CAS	^t CAC		50		60		75	ns	10
RAS pulse width	^t RAS	100	10,000	120	10,000	150	10,000	ns	
CAS pulse width	^t CAS	50	10,000	60	10,000	75	10,000	ns	
RAS precharge time	tRP	80		80		90		ns	
RAS hold time	tRSH	50		60		75		ns	
RAS to CAS delay time	^t RCD	25	50	30	60	30	75	ns	16
CAS precharge time	¹ CPN	25		25		30		ns	20
CAS precharge time (PAGE MODE)	¹ CP	30		30		35	1	ns	11
CAS to RAS setup time	^t CRP	5		5	1	5		ns	
CAS hold time	tCSH	110	1	120	1	150		ns	
Row address setup time	^t ASR	0	1	0	-	0	1	ns	20
Row address hold time	tRAH	15		20		20	1	ns	
Column address setup time	tASC	0	-	0		0	1	ns	20
Column address hold time	^t CAH	20		30		30		ns	
Column address hold time referenced to RAS	tAR	70		80		100	1	ns	
Read command setup time	tRCS	0		0		0		ns	20
Read command hold time	^t RCH	0		0	1	0		ns	20
referenced to CAS		-		-		_			
Read command hold time	^t RRH	10		10		10		ns	1
referenced to RAS									
Output disable delay	^t OFF	0	40	0	40	ō	40	ns	12
Output disable	top	_	35		40		40	ns	
Output enable	tOE		25		25		30	ns	13
Write command setup time	twcs	0		0		0		ns	14
Write command hold time	tWCH	35		40		45		ns	1
Write command hold time	^t WCR	85		100		120	1	ns	1
referenced to RAS									
Write command pulse width	tWP	35		40		45		ns	
Write command to RAS lead time	tRWL	35	1	40		45	-	ns	
Write command to CAS lead time	^t CWL	35		40		45	-	ns	
Data-in setup time		0	+	0		0		ns	15.20
Data-in hold time	^t DH	35		35		45	+	ns	15
Data-in hold time referenced to RAS		85		100		120		ns	
CAS to write delay	tCWD	70	-	90	-	110	-	ns	14
RAS to write delay	tRWD	120		150	+	185	+	ns	14
Transition time (rise or fall)		3	100	3	100	3	100	ns	20
CAS setup time	tCSR	10	100	10	100	10	1.00	ns	17
(CAS setup time (CAS-BEFORE-RAS REFRESH)									
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	20		25		30		ns	17
Refresh period (256 cycles distributed)	^t REFD	1	4		4		4	ms	18
Refresh period (256 cycles burst)	^t REFB	1	4		4	1	4	ms	19
RAS to CAS precharge time	^t RPC	0		0		0	1	ns	20

NOTES

- 1. Vss is common for all voltages.
- 2. Specified values are obtained with the output load equal to 2TTL loads and 100pF to Vss.
- 3. This parameter is sampled, not 100% tested. Capacitance is measured with Vcc = 5.0V, f = 1MHz at less than 50mVrms, $T_A = 25^{\circ}C \pm 3^{\circ}C$, Vbias = 2.4V applied to each input and output individually with remaining inputs and outputs open.
- An initial pause of 100µs is required after power-up followed by any eight RAS cycles, (READ, WRITE, READ-MODIFY-WRITE, RAS REFRESH) before proper device operation is assured.
- 5. AC characteristics assume transition time (^tT) = 5ns. This parameter is not measured.
- VIL (MAX) and VIH (MIN) are reference levels for measuring timing of input signals. Transition times are measured between VIL and VIH.
- In addition to meeting the transition rate specification, all input signals must transit between VIL and VIH (or between VIH and VIL) in a monotonic manner.
- 8. If $\overline{CAS} = V_{IH}$ or $\overline{OE} = V_{IH}$, DQs are High-Z. If $\overline{CAS} = V_{IL}$, and $\overline{OE} = V_{IL}$, DQs may contain data from the last valid READ cycle.
- 9. Assumes that ${}^{t}RCD < {}^{t}RCD$ (MAX).
- 10. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 11. If CAS is LOW at the falling edge of RAS, DQs will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 12. ^tOFF (MAX) defines the time at which the outputs achieve the open circuit condition. ^tOFF (MAX) is not referenced to VOH or VOL.
- If OE is taken LOW then HIGH, DQs go open. If OE is tied permanently LOW a READ-WRITE or READ-MODIFY-WRITE operation requires a separate READ and WRITE cycle.

- 14. ^tWCS, ^tCWD and ^tRWD are restrictive operating parameters in the READ-MODIFY-WRITE cycle only. If ^tWCS ≥ ^tWCS (MIN) the cycle is an EARLY-WRITE cycle and the DQs will remain open circuit throughout the entire cycle. If ^tCWD ≥ ^tCWD (MIN) and ^tRWD ≥ ^tRWD (MIN) the cycle is a READ-WRITE and the DQs will contain data read from the selected address. When performing LATE-WRITE cycle ^tWCS, ^tCWD and ^tRWD do not apply.
- 15. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and to the WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 16. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if 'RCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 17. Enables on-chip refresh and address counters.
- 18. A 256-cycle distributed refresh consists of an address location refresh cycle being performed within 15.625µS so that all 256 RAS address combinations are executed within 4ms (regardless of sequence). Micron recommends distributed refresh.
- 19. A 256-cycle burst refresh consists of refreshing, as rapidly as minimum cycle time allows, all 256 combinations of RAS addresses (regardless of sequence). The refresh mode must be executed within 4ms.
- 20. This parameter is a "conditionally" guaranteed parameter that is specified to aid with device application. It is not directly verified by a specific test but is used, with several other parameters, in the performance verification of other attributes.
- 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW and \overline{OE} = HIGH.

READ CYCLE

EARLY-WRITE CYCLE (OE = DON'T CARE)

*Not required for LATE-WRITE cycle

PAGE-MODE READ CYCLE

PAGE-MODE EARLY-WRITE CYCLE

HIDDEN REFRESH CYCLE (WE = HIGH)²¹

ELECTRICAL TEST REQUIREMENTS

J	
Þ	
Ζ	

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (per Method 5005, Table I)
INTERIM ELECTRICAL (PRE-BURN-IN) TEST PARAMETERS (Method 5004)	2, 8A, 10
FINAL ELECTRICAL TEST PARAMETERS (Method 5004)	1*, 2, 3, 7*, 8, 9, 10, 11
GROUP A TEST REQUIREMENTS (Method 5005)	1, 2, 3, 4**, 7, 8, 9, 10, 11
GROUP C AND D END-POINT ELECTRICAL PARAMETERS (Method 5005)	1, 2, 3, 7, 8, 9, 10, 11

*

PDA applies to subgroups 1 and 7. Subgroup 4 shall be measured only for initial qualification and after process or design changes which may affect input ** or output capacitance.