DRAM

256K x 4 DRAM

FAST PAGE MODE

AVAILABLE AS MILITARY SPECIFICATION

- SMD 5962-90617
- MIL-STD-883

FEATURES

- · Industry standard pinout and timing
- All inputs, outputs and clocks are fully TTL compatible
- Single +5V±10% power supply
- Low power, 5mW standby; 175mW active, typical
- · Optional FAST PAGE MODE access cycle
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS and HIDDEN
- 512-cycle refresh distributed across 8ms
- Specifications guaranteed over full military temperature range (-55°C to +125°C)

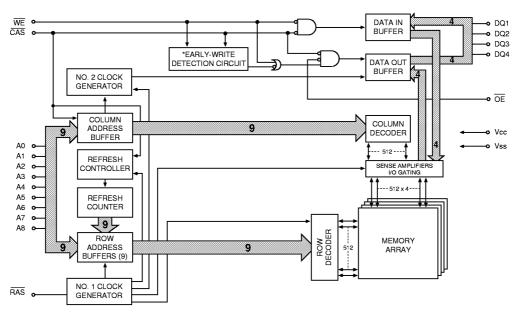
OPTIONS	MARKIN	٧G
Timing		
80ns access	- 8	
100ns access	-10	
120ns access	-12	
Packages		
Ceramic DIP (300 mil)	C	No. 103
Ceramic LCC	EC	No. 202

GENERAL DESCRIPTION

The MT4C4256 883C is a randomly accessed solid-state memory containing 1,048,576 bits organized in a 262,144 x4 configuration. During READ or WRITE cycles, each 4-bit word is uniquely addressed through the 18 address bits which are entered 9 bits (A0-A8) at a time. \overline{RAS} is used to latch the first 9 bits and \overline{CAS} the latter 9 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode.

During a WRITE cycle, data in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pins (Qs) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after data reaches the outputs (Qs), the outputs are activated and retain the selected cells' data as long as \overline{CAS} remains LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle. The four data inputs and four data

20-				20-Pin LCC			
DQ1	1 20	Vss Do	Q1 É		26 []	Vss	
DQ2	2 19	DQ#	Q2	III 2	25 []	DQ4	
WE	3 18	DO0	VE AS	III 3 III 4	24 [2]	DQ3	
RAS	4 17		г	II 5	22 ==		
NC	5 16	OE					
A0	6 15] A8					
A1	7 14	A/		II 9	18 CI	A8	
A2	8 13	h an	A1 A2	III 10 III 11	17 []] 16 []]	A7 A6	
АЗ	9 12		Г	III 12	15 00	A5	
Voc		ľv	cc [[]J 13	14 []	A4	
A3 Vcc		li vo			1		


outputs are routed through four leads using common I/O, and information direction is controlled by \overline{WE} and \overline{OE} .

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by \overline{RAS} followed by a column address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} high time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE, \overline{RAS} -ONLY, \overline{CAS} -BEFORE- \overline{RAS} , or HIDDEN refresh) so that all 512 combinations of \overline{RAS} addresses (A0-A8) are executed at least every 8ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

FAST PAGE MODE

*NOTE: $\overline{\text{WE}}$ LOW prior to $\overline{\text{CAS}}$ LOW, EW detection circuit output is a HIGH (EARLY-WRITE) $\overline{\text{CAS}}$ LOW prior to $\overline{\text{WE}}$ LOW, EW detection circuit output is a LOW (LATE-WRITE)

TRUTH TABLE

						ADDRESSES		DATA IN/OUT
FUNCTION		RAS	CAS	WE	OE	^t R	tC	DQ1-DQ4
Standby		Н	H→X	Х	Х	Х Х		High-Z
READ		L	L	Н	L	ROW	COL	Data Out
EARLY-WRITE		L	L	L	Х	ROW	COL	Data In
READ-WRITE		L	L	H→L	L→H	ROW	COL	Data Out, Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data Out
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	Х	ROW	COL	Data In
EARLY-WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data Out, Data In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data Out, Data In
RAS-ONLY REFRESH		L	Н	Х	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data Out
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Data In
CAS-BEFORE-RAS RE	FRESH	H→L	L	Х	Х	Х	Х	High-Z

ASI) AUSTIN SEMICONDUCTOR, INC.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss1	.5V to +7.0V
Storage Temperature Range65	°C to +150°C
Power Dissipation	1W
Lead Temperature (Soldering 5 Seconds)	270°C
Junction Temperature (T _I)	+175°C
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL PERFORMANCE CHARACTERISTICS

(Notes: 1, 6, 7) (-55°C \leq T_C \leq +125°C; Vcc = 5V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	МАХ	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs	Vıн	2.4	Vcc+.5	٧	
Input Low (Logic 0) Voltage, All Inputs	VIL	5	0.8	٧	
INPUT LEAKAGE CURRENT Any Input (0V \leq VIN \leq 6.5V), All other pins not under test = 0V	lı	-5	5	μΑ	
OUTPUT LEAKAGE CURRENT (Q is Disabled, 0V ≤ Vouт ≤ 6.5V)	loz	-5	5	μ A	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)	Vон	2.4		>	
Output High Voltage (Iout = -3fil/A)	Vol		0.4	٧	

			MAX			
PARAMETER/CONDITION	SYMBOL	-8	-10	-12	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	3	3	3	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V; all other inputs = Vcc-0.2V)	Icc2	1	1	1	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: RC = RC (MIN))	Іссз	70	60	50	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC (MIN))	Icc4	50	40	30	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS = Vih: ^t RC = ^t RC (MIN))	lcc5	70	60	50	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	Icce	70	60	50	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: (A0-A8), D	C _I 1		7	pF	2
Input Capacitance: RAS, CAS, WE, OE	C ₁₂		7	pF	2
Input/Output Capacitance: (DQ1-DQ4)	Co		8	pF	2

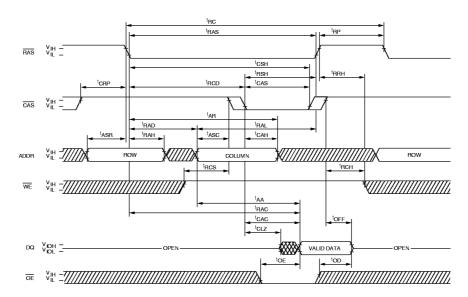
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (-55°C \leq T $_{C} \leq$ +125°C; Vcc = 5V \pm 10%)

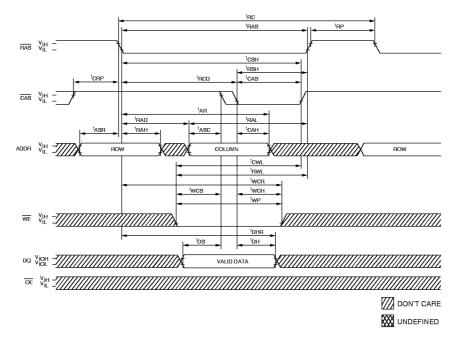
AC CHARACTERISTICS			-8	-10			12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	150		180		210		ns	
READ-WRITE cycle time	^t RWC	195		235		275		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	45		55		65		ns	
cycle time									
FAST-PAGE-MODE READ-WRITE	^t PRWC	90		110		130		ns	
cycle time									
Access time from RAS	†RAC		80		100		120	ns	14
Access time from CAS	^t CAC		20		25		30	ns	15
Output Enable	^t OE		20		25		30	ns	23
Access time from column address	^t AA		40		50		60	ns	
Access time from CAS precharge	^t CPA		40		50		60	ns	
RAS pulse width	†RAS	80	100,000	100	100,000	120	100,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	80	100,000	100	100,000	120	100,000	ns	
RAS hold time	tRSH	20		25		30		ns	
RAS precharge time	^t RP	60		70		80		ns	
CAS pulse width	^t CAS	20	100,000	25	100,000	30	100,000	ns	
CAS hold time	^t CSH	80		100		120		ns	
CAS precharge time	^t CPN	10		12		15		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		12		15		ns	
RAS to CAS delay time	^t RCD	20	60	25	75	25	90	ns	17
CAS to RAS precharge time	^t CRP	5		5		10		ns	
Row address setup time	^t ASR	0		0		0		ns	
Row address hold time	^t RAH	10		15		15		ns	
RAS to column	^t RAD	15	40	20	50	20	60	ns	18
address delay time									
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		20		20		ns	
Column address hold time	^t AR	60		70		80		ns	
(referenced to RAS)									
Column address to	^t RAL	40		50		60		ns	
RAS lead time									
Read command setup time	†RCS	0		0		0		ns	
Read command hold time	^t RCH	0		0		0		ns	19
(referenced to CAS)									
Read command hold time	^t RRH	0		0		0		ns	19
(referenced to RAS)	<u> </u>								
CAS to output in Low-Z	^t CLZ	0		0		0		ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

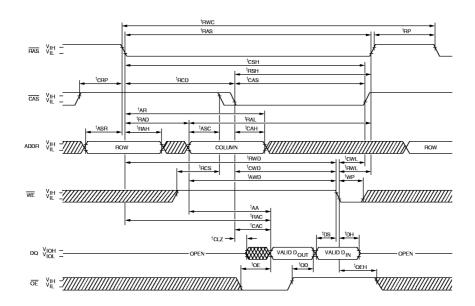
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (-55°C \leq T $_{C} \leq$ +125°C; Vcc = 5V \pm 10%)

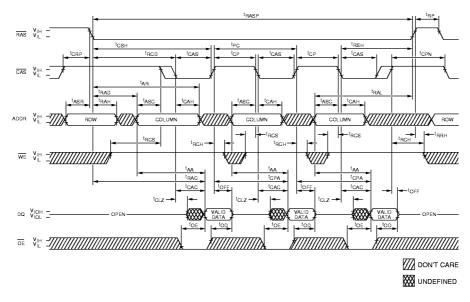

AC CHARACTERISTICS			8	-	-10		12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	20	0	20	0	25	ns	20, 26
Output disable	^t OD		20		20		25	ns	26
WE command setup time	tWCS	0		0		0		ns	21
Write command hold time	tWCH	15		20		25		ns	
Write command hold time (referenced to RAS)	tWCR	60		70		80		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	†RWL	20		25		30		ns	
Write command to CAS lead time	tCWL	20		25		30		ns	
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	†DH	15		20		25		ns	22
Data-in hold time (referenced to RAS)	^t DHR	60		70		80		ns	
RAS to WE delay time	tRWD	105		125		150		ns	21
Column address to WE delay time	^t AWD	65		75		90		ns	21
CAS to WE delay time	tCWD	45		50		60		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	
Refresh period (512 cycles)	^t REF		8		8		8	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	15		20		25		ns	5
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	20		20		25		ns	25
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	24

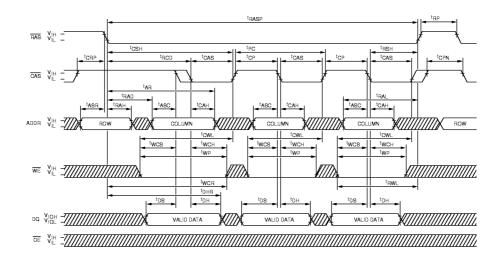
NOTES


- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$, f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (-55°C \leq T_C \leq +125°C) is assured.
- 7. An initial pause of $100\mu s$ is required after power-up followed by any eight \overline{RAS} cycles before proper device operation is assured. The eight \overline{RAS} cycle wake-up should be repeated any time the ${}^{t}REF$ refresh requirement is exceeded.
- 8. AC characteristics assume ^tT = 5ns. This parameter is not measured.
- Vih (MIN) and Vil (MAX) are reference levels for measuring timing of input signals. Transition times are measured between Vih and Vil (or between Vil and Vih).
- In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data outputs (DQs) are High-Z.
- 12. If $\overline{CAS} = V_{IL}$, data outputs (DQs) may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQs will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ${}^{t}RAD$ (MAX) limit ensures that ${}^{t}RAC$ (MIN) and ${}^{t}CAC$ (MIN) can be met. ${}^{t}RAD$

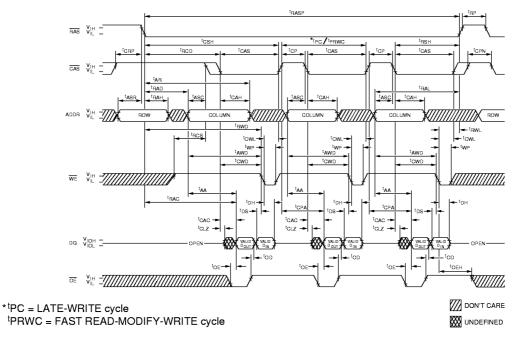
- (MAX) is specified as a reference point only; if ${}^{t}RAD$ is greater than the specified ${}^{t}RAD$ (MAX) limit, then access time is controlled exclusively by ${}^{t}AA$.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. 'OFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to VoH or VoL.
- 21. ¹WCS, ¹RWD, ¹AWD and ¹CWD are not restrictive operating parameters. ¹WCS applies to EARLY-WRITE cycles. ¹RWD, ¹AWD and ¹CWD apply to READ-MODIFY-WRITE cycles. If ¹WCS ≥ ¹WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ¹RWD ≥ ¹RWD (MIN), ¹AWD ≥ ¹AWD (MIN) and ¹CWD ≥ ¹CWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle. ¹WCS, ¹RWD, ¹CWD and ¹AWD are not applicable in a LATE-WRITE cycle.
- 22. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{\text{WE}}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. If $\overline{\text{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW and \overline{OE} = HIGH.
- 25. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 26. The DQs open during READ cycles once ^tOD or ^tOFF occur. If <u>CAS</u> goes HIGH first, <u>OE</u> becomes a "don't care." If <u>OE</u> goes HIGH and <u>CAS</u> stays LOW, <u>OE</u> is not a "don't care;" and the DQs will provide the previously read data if <u>OE</u> is taken back LOW (while <u>CAS</u> remains LOW).


READ CYCLE

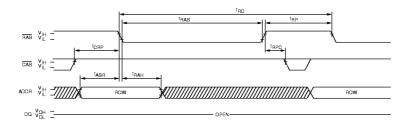

EARLY-WRITE CYCLE


READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

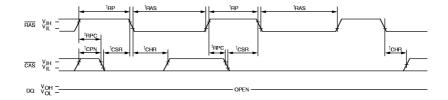
FAST-PAGE-MODE READ CYCLE



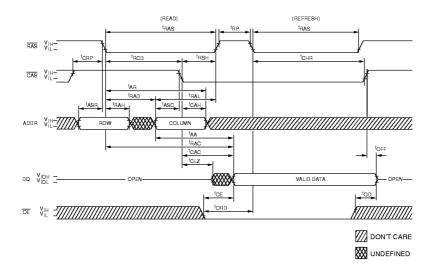
FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE

(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


RAS-ONLY REFRESH CYCLE

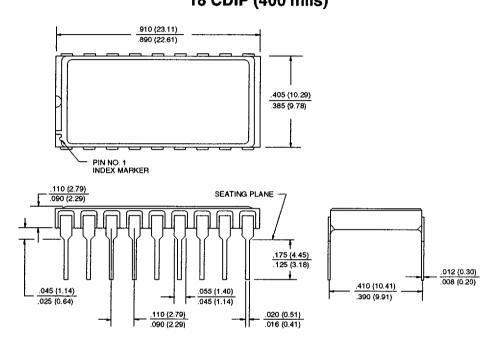
 $(ADDR = A0-A8; \overline{WE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

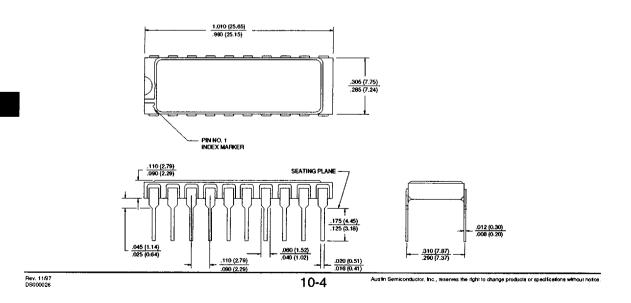
(A0-A8, $\overline{\text{WE}}$ and $\overline{\text{OE}}$ = DON'T CARE)

HIDDEN REFRESH CYCLE 24

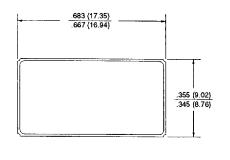
 $(\overline{WE} = HIGH, \overline{OE} = LOW)$

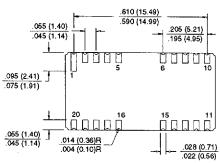

ELECTRICAL TEST REQUIREMENTS

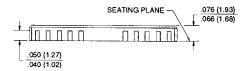
MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (per Method 5005, Table I)
INTERIM ELECTRICAL (PRE-BURN-IN) TEST PARAMETERS (Method 5004)	2, 8A, 10
FINAL ELECTRICAL TEST PARAMETERS (Method 5004)	1*, 2, 3, 7*, 8, 9, 10, 11
GROUP A TEST REQUIREMENTS (Method 5005)	1, 2, 3, 4**, 7, 8, 9, 10, 11
GROUP C AND D END-POINT ELECTRICAL PARAMETERS (Method 5005)	1, 2, 3, 7, 8, 9, 10, 11

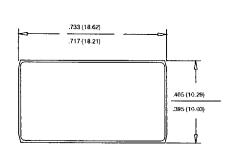

^{*} PDA applies to subgroups 1 and 7.

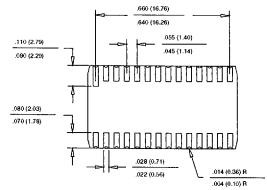
** Subgroup 4 shall be measured only for initial qualification and after process or design changes, which may affect input or output capacitance.

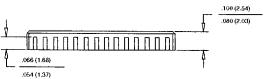

Package No. 102 18 CDIP (400 mils)




PACKAGE No. 103 20 CDIP D-8 (300 mils)


PACKAGE No. 202 20 CLCC





PACKAGE No. 203 28 CLCC

Rev. 11/97 DS000026

10-11

Austin Semiconductor, Inc., reserves the right to change products or specifications without notice.