

Description

The μ PD41464 is a 65,536-word by 4-bit dynamic RAM designed to operate from a single + 5-volt power supply and fabricated with a double polylayer, N-channel silicon-gate process for high density, high performance, and high reliability. A single-transistor storage cell and advanced dynamic circuitry ensure minimum power dissipation, while an on-chip feature internally generates the negative voltage substrate bias—automatically and transparently.

The three-state I/O is controlled by \overline{CAS} independent of \overline{RAS} . After a valid read or hidden refresh cycle, data is held by holding \overline{CAS} low. Data input and output is returned to high impedance by returning \overline{CAS} high. Hidden refreshing allows \overline{CAS} to be held low to maintain output data while \overline{RAS} is used to execute \overline{RAS} -only refresh cycles.

Refreshing may be accomplished by means of a \overline{CAS} before \overline{RAS} cycle that internally generates the refresh address, by means of \overline{RAS} -only refresh cycles, or by normal read or write cycles on the 256 address combinations of A₀ through A₇ during a 4-ms refresh period.

Features

- 65,536-word by 4-bit organization
- Single + 5-volt ± 10% power supply
- CAS before RAS internal refreshing
- Multiplexed address inputs
- On-chip substrate bias generator
- Low power dissipation
 - 28 mA max (standby)
- -440 mW (active, $t_{RC} = t_{RC} \text{ min}$)
- Nonlatched, TTL-compatible inputs and outputs
- Low input capacitance
- □ 256 refresh cycles every 4 ms
- Standard 18-pin plastic DIP and PLCC packaging

Ordering Information

Part Number	Row Access Time (max)	Package
µPD41464C-80	80 ns	18-pin plastic DIP
C-10	100 ns	-
C-12	120 ns	-
µPD41464L-80	80 ns	18-pin PLCC
L-10	100 ns	-
L-12	120 ns	-

Pin Configurations

18-Pin Plastic DIP

Pin Identification

Name	Function	
A ₀ - A ₇	Address inputs	
1/01 - 1/04	Data inputs and outputs	
CAS	Column address strobe	
ÕE	Output enable	
RAS	Row address strobe	
WE	Write enable	
GND	Ground	
Vcc	+5-volt power supply	
NC	No connection	

Absolute Maximum Ratings

Voltage on any pin relative to GND	-1.0 to +7.0 V
Operating temperature, T _{OPR}	0 to +70°C
Storage temperature, TSTG	-55 to +125°C
Short-circuit output current, IOS	50 mA
Power dissipation, PD	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	
Input voltage, high	VIH	2.4		V _{CC} + 1	V	
Input voltage, low	VIL	1		0.8	V	
Supply voltage	Vcc	4.5	5.0	5.5	v	
Ambient temperature	TA	0		70	°C	

RAS RAS Clock CAS Clock Generator Generator WE Clock Generator CAS WE CAS Before RAS OE Clock Internal Refresh Generator ŌĒ Clock Data-in Buffer 101 Data I/O Bus Refresh Address VO4 Counter Data-out Column Decoder Buffer Sense Amplifier A₀-Address Buffer A1 • Multiplexer Row Decoder A2 • A3 • Memory Array A4 • A5 • A₆ • A7 83IH-6300B

Capacitance

$T_A = 25^{\circ}C; f = 1 MHz$

Parameter	Symbol	Max	Unit	Pins Under Test
Input capacitance	C _{I1}	5	pF	A ₀ through A ₇
	C _{I2}	8	рF	RAS, CAS, WE, OE
Input/output capacitance	Co	7	pF	I/O1 through I/O4

Block Diagram

DC Characteristics

 $T_A = 0$ to +70°C; $V_{CC} = +5.0$ V ±10%

Parameter	Symbol	Min	Max	Unit	Test Conditions
Standby current	lcc2		5.0	mA	$\overline{RAS} = \overline{CAS} = V_{IH}$
Input leakage current	h(L)	10	10	μA	$V_{IN} = 0 V$ to V_{CC} ; all other pins not under test = 0 V
Output leakage current	I _{O(L)}	-10	10	μA	I/O is high-Z; $V_{VO} = 0 V$ to V_{CC}
Output voltage, low	VoL	0	0.4	v	$l_{OL} = 4.2 \text{ mA}$
Output voltage, high	VOH	2.4	Vcc	v	l _{OH} = −5 mA

AC Characteristics

 $T_A = 0$ to +70°C; $V_{CC} = +5.0$ V ±10%

		μPD41	464-80	μPD41	464-10	μPD41	464-12		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Operating current, average	ICC1		85		80		75	mA	\overline{RAS} , \overline{CAS} cycling; $t_{RC} = t_{RC}$ min (Note 5)
Operating current, refresh cycle, average	ICC3		70		65		60	mA	\overline{RAS} cycling; $\overline{CAS} = V_{IH}$; $t_{RC} = t_{RC} min (Note 5)$
Operating current, page cycle, average	lcc4		60		55		50	mA	$\overline{RAS} = V_{iL}; \overline{CAS}$ cycling; $t_{PC} = t_{PC} min (Note 5)$
Operating current, CAS before RAS refresh cycle, average	I _{CC5}		70		70		65	mA	
Random read or write cycle time	t _{RC}	160		200		220		ns	(Note 6)
Read-write cycle time	t _{RWC}	230		270		300		ns	(Note 6)
Page cycle time	t _{PC}	70		100		120		ns	(Note 6)
Refresh period	tREF		4		4		4	ms	
Access time from RAS	t _{RAC}		80		100		120	ПS	(Notes 7, 8)
Access time from CAS	tCAC		40		50		60	ns	(Notes 7, 9)
Ouput buffer turnoff delay	^t OFF	0	20	0	25	0	30	ns	(Note 10)
Rise and fall transition time	tτ	3	50	3	50	3	50	ns	(Notes 2, 3)
RAS precharge time	t _{RP}	70		90		90		ns	
RAS pulse width	tRAS	80	10000	100	10000	120	10000	ns	
RAS hold time	t _{rsh}	40		50		60		ns	
CAS pulse width	tCAS	40	10000	50	10000	60	10000	ns	
CAS hold time	tсsн	80		100		120		ns	
RAS to CAS delay time	t _{RCD}	20	40	20	50	25	60	ns	(Note 11)
CAS to RAS precharge time	^t CRP	10		10		10		ns	(Note 12)
CAS precharge time for nonpage cycle	^t CPN	25		25		25		ns	
CAS precharge time for page cycle	t _{CP}	30		40		50		ns	
RAS precharge CAS hold time	tRPC	0		0		0		nŝ	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	tRAH	10		10		15		ns	
Column address setup time	tASC	0		0		0		ns	
Column address hold time	tCAH	15		15		20		ns	
Column address hold time referenced to RAS	t _{AB}	55		65		80		ns	·

AC Characteristics (cont)

		μPD41464-		0 µPD41464-10		µPD41464–12				
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Conditions	
Read command hold time referenced to RAS	1 488.H	10		10		10		ns	(Note 13)	
Read command hold time referenced to CAS	¹ ясн	0		0		0		ns	(Note 13)	
Write command hold time	ŧwcн	20		25		30		ns		
Write command hold time referenced to RAS	WCR	60		75		90		ns		
Write command pulse width	₩P	20		15		20		ns		
Write command to RAS lead time	^t RWL	30		35		40		ns		
Write command to CAS lead time	¹ CWL	30		35		40		ns		
Data-in setup time	tos	0		0		0		ns	(Note 14)	
Data-in hold time	tон	20		25		30		ns	(Note 14)	
Data-in hold time referenced to RAS	^t OHR	60		75		90		ns		
Write command setup time	wcs.	0		0		0		ns	(Note 15)	
RAS to WE delay	tewo	105		130		155		ns	(Note 15)	
CAS to WE delay	towo	65		80		95		ns	(Note 15)	
Access time from OE	^t OEA		20		25		30	ns		
Data delay time	tOED	20		25		30		ns		
OE command hold time	tOEH	0		0		0		ns		
Output turnoff delay from OE	tOEZ	0	20	0	25	0	30	ns		
OE to RAS inactive setup time	tOES	10		10		10		ns		
Read or write cycle time for counter test cycle	tTRC	185		220		245		ns	(Note 16)	
Read or write cycle time for counter test cycle	1TRWC	245		290		325		ns	(Note 16)	
CAS setup time for CAS before RAS refresh cycle	^t CSR	10		10		10		ns		
CAS hold time forCAS before RAS refresh cycle	^t CHR	15		20		25		ns		

Notes:

- An initial pause of 100 μs (RAS inactive) is required after power-up, followed by any eight RAS cycles, before proper device operation is achieved.
- (2) AC measurements assume t_T = 5 ns.
- (3) V_{IH} (min) and V_{IL} (max) are reference levels for measuring the timing of input signals.
- (4) All voltages are referenced to GND.
- (5) I_{CC1}, I_{CC3}, I_{CC4}, and I_{CC5} depend on output loading and cycle rates. Specified values are obtained with the output open. For lot code K of the μPD41464-15, t_{RC} (min) must be 270 ns and I_{CC3} = 60 mA.
- (6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range ($T_A = 0$ to +70°C) is assured. For lot code K of the µPD41464-15, $t_{\rm RC}$ (min) must be 270 ns.
- (7) Load = 2 TTL loads and 100 pF
- (8) Assumes that $t_{RCD} \le t_{RCD}$ (max). If t_{RCD} is greater than the maximum recommended value in this table, t_{RAC} increases by the amount that t_{RCD} exceeds the value shown. For a CAS before RAS refresh counter test cycle, t_{RAC} is specified as $t_{RAC} = t_{CHR} + t_{CP} + t_{CAC} + 2t_{T}$ and is greater than the maximum specified value shown in this table.
- (9) Assumes that $t_{RCD} \ge t_{RCD}$ (max).

- (10) t_{OFF} (max) and t_{OEZ} (max) define the time at which the output achieves the open-circuit condition and are not referenced to V_{OH} or V_{OL}.
- (11) Operation within the t_{RCD} (max) limit assures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than t_{RCD} (max), access time is controlled exclusively by t_{CAC}.
- (12) The t_{CRP} requirement should be applicable for $\overline{RAS}/\overline{CAS}$ cycles preceded by any cycle.
- (13) Either t_{RBH} or t_{RCH} must be satisfied for a read cycle.
- (14) These parameters are referenced to the leading edge of CAS for early write cycles and to the leading edge of WE for delayed write or read-modify-write cycles.
- (15) t_{WCS} , t_{CWD} , and t_{RWD} are restrictive operating parameters in read-write/read-modify-write cycles only. If $t_{WCS} \ge t_{WCS}$ (min), the cycle is an early write cycle and the data I/O pins will remain high impedance throughout the entire cycle. If $t_{CWD} \ge t_{CWD}$ (min), $t_{RWD} \ge t_{RWD}$ (min), the cycle is a read-write cycle and the data I/O pins will contain data read from the selected cell. If neither of the above conditions is met, the condition of the data I/O pins (at access time and until CAS returns to V_{IH}) is indeterminate.
- (16) t_{TRC} and t_{TRWC} are applicable for CAS before RAS refresh counter test cycles.

Timing Waveforms

Read Cycle

µPD41464

Timing Waveforms (cont)

Early Write Cycle

OE -Controlled Write Cycle

Read-Write/Read-Modify-Write Cycle

Page Read Cycle

Page Write Cycle (Early Write)

Page Read-Write/Read-Modify-Write Cycle

RAS-Only Refresh Cycle

3b

CAS Before RAS Refresh Cycle

Hidden Refresh Cycle

CAS Before RAS Refresh Counter Test

The µPD41464 provides a method to verify proper operation of the internal address counter used in CAS before RAS refreshing. After a CAS before RAS refresh cycle is initiated, CAS satisfies a hold time (t_{CHR}), a precharge time (t_{CP}), and then returns low while RAS is held low to enable read, write, or read-modify-write operation. As shown in the appropriate timing waveforms, a refresh counter test can be initiated at this point on specified row and column addresses. The row is selected by the internal address counter, and the column is defined by an external address supplied at the second falling edge of CAS. Test patterns can be generated in several ways; the following example is one possibility. Any pattern must be preceded by the normal power-up procedure containing a pause of 100 μ s and then eight \overline{RAS} cycles to initialize the internal counter.

- Write "0" into 256 memory cells with 256 CAS before RAS refresh counter test write cycles. Use the same column address in each cycle.
- (2) Use a counter test read-modify-write cycle to read the "0" written in the first cycle of step 1 and then write a "1" into that location in the same cycle. Perform this operation 256 times, until a "1" is written into each of the 256 memory cells. Continue using the same column address as specified in step 1.
- (3) Read each "1" written in step 2 using a counter test read cycle.
- (4) Complement the test pattern and repeat steps 1, 2, and 3.

µPD41464

Timing Waveforms (cont)

CAS Before RAS Refresh Counter Test Read Cycle

CAS Before RAS Refresh Counter Test Write Cycle

CAS Before RAS Refresh Counter Test Read-Modify-Write Cycle

