NEC Electronics Inc. NEC

USER’S October 1986
MANUAL

vPD70108 (V20™)

8/16-Bit
CMOS Microprocessor

uPD70116 (V30™)

16-Bit
CMOS Microprocessor

DJW’@W%M

NEC V20- V25 -V30-V40 - V50
V-Series

Ceibo In-Circuit | PDS-186

Emulator
Supporting

MCS-86: http://ceibo.com/eng/products/ds186.shtml

Parts Number Mickname
uPDT0108 V20
uPDT0116 V30
uPD70108H V20HL
uPD70320H V25HL
uPD70116H V30HL
uPDT0208 V40
uPDT0216 V50
uPD70208H VAOHL
uPD70216H VE0HL

www.ceibo.com

NEC Electronics Inc. NEC

uPD70108 (V20)
8/16-Bit CMOS Microprocessor

uPD70116 (V30)
16-Bit CMOS Microprocessor

October 1986
Stock No. 500350
©1986 NEC Electronics Inc./Printed in U.S.A.

NEC Electronics Inc. NEC

CONTENTS
Section Page Section Page
1 Introduction ...l 1-1 12 Instruction Set (cont)
2 Pin Descriptionccociiiiinn.. 21 Subroutine Control 12-142
3 Functional Description 3-1 Stack Operation 12-146
Execution Unit (EXU) 3-1 Branch ... 12-154
Bus Control Unit (BCU) 3-4 Conditional Branch 12-157
4 Memory and I/O Configuration 41 Breakooiiiii 12-167
Memory Configuration 4-1 CPUControloooiiiiinl . 12-171
Memory Accessing 4-2 Segment Override Prefix 12-176
1/0 Configuration and Accessing 4-3 EmulationMode 12-176
5 Read/Write Timing 5-1
6 Interrupts ... 6-1 Appendix
Maskable Interrupts 6-2 A uPD70108/70116 Instruction Index A-1
BRK Flag (Single-Step Interrupt) 6-3
Interrupt Disable Timing 6-4 Table
Interrupts During Block Instructions .. 6-4 1-1 uPD70108/70116 Pin Identification 1-2
7 Reset Operation 7-1 4-1 Data Type and Addressing 4-1
8 Native and uPD8080AF 6-1 |Interrupt Sources 6-1
Emulation Modes 8-1 9-1 Signal Status in Standby Mode 9-1
Native and 8080 Mode Shifting g’ 8-1 12-1 Operand TYPEeS ..., 12-1
Native to 8080 Emulation Mode 8-2 12-2 InstructionWords 12-2
9 StandbyModeL 9-1 12-3 Operation Description 12-2
Entering Standby Mode 9-1 12-4 Flag Operations 12-3
Status Signals in Standby Mode 9-1 12-5 Memory Addressingcc........ 12-3
Exiting Standby Mode by 12-6 Selection of 8- and 16-Bit Registers 12-3
External Interrupts 9-1 12-7 Selection of 8-Bit and
Exiting Standby Mode Segment Register 12-3
byResetccciiiiiiiiiii 9-1
10 Logical and Physical Addresses 10-1 Figure
Physical Address Generation 10-1 1-1 uPD70108/70116 Simplified Block
Memory Segments 10-1 Diagramoooiiiiiiiii 1-1
11 AddressingModes 111 1-2 Pin Configuration,
Instruction Address 111 40-Pin Plastic or Ceramic DIP 1-2
Memory Operand Address 11-2 1-3 Pin Configuration,
12 InstructionSet 12-1 44-PinPLCCccooiiiiiiiiiin 1-3
Data Transfer 12-4 1-4 Pin Configuration,
Repeat Prefixes 12-14 52-Pin Plastic Miniflat 1-3
Primitive Block Transfer................. 12-16 3-1 uPD70108/70116 Block Diagram 3-2
Bit Field Manipulation 12-21 3-2 Effective Address Generator 3-3
Input/Output 12-25 41 MemoryMapccoeiiiiiiiiiiia. 41
Primitive Input/Output 12-28 4-2 Word and Double Word Placement
Addition/Subtraction 12-29 inMemory ... 4-1
BCD Arithmetic 12-42 4-3 uPD70108 Memory Interface 4-2
Increment/Decrement................... 12-47 4-4 pPD70116 Memory Interface 4-2
Multiplication 12-50 4-5 1/JOMAp ..o 4-3
Division ... 12-56 5-1 Read Timing of uPD70108 Memory
BCD Adjust ... 12-61 and 1/0 (Small-Scale Systems) 5-1
Data Conversion 12-63 5-2 Write Timing of uPD70108 Memory
Comparisoncceiiiiiii s, 12-65 and I/O (Small-Scale Systems) 5-1
Complement Operation 12-68 5-3 Read Timing of uPD70116 Memory
Logical Operation 12-70 and I/0 (Small-Scale Systems) 5-1
Bit Manipulation 12-81 5-4 Write Timing of uPD70116 Memory
Shift .. 12-100 and I/0 (Small-Scale Systems) 5-1

NEC Electronics Inc. NEC

CONTENTS (cont)

Figure Page Figure Page

5-5 Read Timing of uPD70108 Memory 8-1 Corresponding Registers 8-1
and 1/0O (Large-Scale Systems) 5-2 8-2 Corresponding PSW and Flags 8-1

5-6 Write Timing of uPD70108 Memory 8-3 Mode Shift Operation of CPU 8-2
and I/0O (Large-Scale Systems) 5-2 8-4 Shift from Native to 8080 Mode

5-7 Read Timing of uPD70116 Memory Using BRKEM Instruction 8-3
and I/O (Large-Scale Systems) 5-2 8-5 Shift from Native to 8080 Mode

5-8 Write Timing of uPD70116 Memory Using RETI Instruction 8-3
and I/O (Large-Scale Systems) 5-2 8-6 Shift from 8080 to Native Mode

6-1 Interrupt Vector Table 6-1 Using NMI, INT, and

6-2 wPD70108 Interrupt Acknowledge CALLN Instructiono.ee 8-4
Timing ..o 6-2 8-6 Shift from 8080 to Native Mode

6-3 wuPD70116 Interrupt Acknowledge Using RETEM Instruction 8-5
TiMiNG ..o 6-2 10-1 Physical Addressing 10-1

Revision History

Aug 1985 Original Issue

Sep 1986 Table 1-1 revised, figures 1-3 and 1-4

added, Section 2 revised and re-
arranged. Marginal arrows (») identify
significant changes in Sections 1, 2,
and 12.

NEC

Section
Iintroduction

Description

The uPD70108 (V20) and uPD70116 (V30) are high-
performance, low-power CMOS microprocessors with
a 16-bit internal architecture. The yuPD70108 has an
8-bit external data bus and the uPD70116 has a 16-bit
external data bus. Figure 1 is a simplified block
diagram.

The uPD70108/70116 has a powerful instruction set
that is a superset of the uPD8086/8088 instruction set
and provides the following enhanced operations:

® Multidigit BCD addition, subtraction, comparison
of 1- to 254-digit BCD strings

® High-speed multiplication/division
® Bit field manipulations

— Data transfer of 1- to 16-bit fields between
memory and accumulator

® Bit manipulation instructions
— 8- or 16-bit register/memory operands
— Set, clear, invert, or test any bit

Dedicated hardware performs high-speed multipli-
cation/division (4 to 6 us at 8 MHz) and effective
address calculation. In addition, an internal dual bus
system reduces processing time.

The pPD70108/70116 has three operating modes:
native, emulation, and standby. Native mode executes
the uPD70108/70116 instruction set; emulation mode
directly executes the uPD8080AF instruction set.
The standby mode significantly reduces power
consumption.

Features

[0 101 instructions
[0 250-ns instruction execution time (8-MHz clock)
O 1-Mbyte addressable memory
O Various memory addressing modes
[0 14- x 16-bit register set
[0 High-speed block transfers
— uPD70108: 1.0 Mbytes/second (at 8 MHz)
— puPD70116: 2.0 Mbytes/second (at 8 MHz)
O Various interrupt processing functions
O IEE-796 bus-compatible interface

» [5-, 8-, 10-MHz clock

» [0 40-pin plastic/ceramic DIP, 44-pin PLCC, and 52-pin
plastic miniflat packages
0 Single +5-volt power source

V20 and V30 are trademarks of NEC Corporation.

Figure 1-1. uPD70108/70116 Simplified Block

Diagram
Bus Control Unit (BCU)
e—Data
- Bus Buffer and Control |«—s Address
ADM
I\ |+— Control
Clock, Interrupt, Standby,[* CLK
BCU Regi and T-State Logic INT
|
'—7 EXU & Temp Regi
Effective Address
& Microcode
N/
ALV
Execution Unit (EXU)
Sub-Data Bus Main Data Bus
49-000405A

Pin Ildentification

Table 1 lists pins in alphabetical order by symbol and
briefly describes pin functions. Section 2 gives
additional descriptions.

Figures 1-2, 1-3, and 1-4 are pin configuration drawings
of the four package types: 40-pin plastic or ceramic
DIP, 44-pin plastic leaded chip carrier (PLCC), and
52-pin plastic miniflat.

1-1

uPD70108/70116 N E C

» Table 1-1. uPD70108/70116 Pin Identification Figure 1-2. Pin Configuration, 40-Pin Plastic or
Symbol Direction Function (Note 3) Ceramic DIP
Aq9-A16/PS3-PSy Out High-order address bits/
Processor status bits ic O+ " awpBvoo
- - - Ay 02 391 A5
A15-Ag (Note 1) Out Middle address bits Ars s 38 F1 A1e/PSo
AD7-ADg (Note 1) In/Out Address/data bus A12[]4 37 [1 A17/PS1
AD45-ADg (Note 2) In/Out Address/data bus An(Qgs 36 [1 A1e/PS2
A 6 35 [1 A19/PS
ASTB (0Sy) Out Address strobe 100 H A19/PSs
(Queue status bit 0) Ae QY7 34 L1 LBSO [HIGH]
Ag[]8 33 [S/LG
BUFEN (BSg) Out Buffer enable. AD7]9 32 [1RD
(Bus status bit 0) ADg[J10 4PD 31 [JHLDRQ [RQ/AK0]
BUFR/W (BS1) Out Buffer read/write ADs[J11 70108 30 [7HLDAK [RQ/AK1]
(Bus status bit 1) ADa [12 29 [7] WR [BUSLOCK]
CLK n Clock AD3 []13 28 [110/M [BS2]
AD2 [} 14 27 [71 BUFR/W [BS1]
GND Ground AD1[]15 26 [BUFEN [BSo]
HLDAK (RQ/AK7) Out Hold acknowledge output ADo [16 25] ASTB [QSo]
(In/0ut) (Bus hold request input/ NMI [17 24 [1INTAK [QS1]
Acknowledge output 1) INT [18 23 [JPOLL
HLDRQ (RQ/AKp) In Hold request input e 22 L 1READY
(In/0ut) (Bus hold request input/ GND [20 21 [1RESET
Acknowledge output 0)
IC Internally connected (Note 4) ic 1 " spbvop
INT In Maskable interrupt ADy 2 39 [1AD1s
AD13[]3 38 [A16/PSo
INTAK (QS4) Out Ir(llterrupttatckng\qn;adge AD12 4 37 13 A17/PS1
_ (Queue status bit 1) AD11 d 5 36 11 A1a/PS2
10/M (BSy) Out Access is 1/0 or memory AD10 [] 6 35 [A19/PS3
(Note 1) (Bus status bit 2) ADg [}7 34 [1 UBE
" 10/M (BS) Out Access is 1/0 or memory ADs L8 B3P s/LG
(Note 2) (Bus status bit 2) AD7 [0 32[1RD o
LBSO (HIGH) In Latched bus status 0 ADgJ10 4PD 3111 HLDRQ [RQ/AK0)
(Note 1) (Always high) ADs []11 7016 30 |] HLDAK [RG/AK7]
ADg []12 29 [] WR [BUSLOCK]
NC Not connected AD3] 13 28 [10/M [BS2]
NMI In Nonmaskable interrupt AD2 []14 27 [[1 BUFR/W [BS1]
== AD{ [15 26 [BUFEN [BSgq]
TLL In Poll ADg [16 25 [ASTB [QSo]
RD Out Read strobe NmI {17 24 [1INTAK [QS1]
READY In Ready INT [] 18 23 [1POLL
9 READY
RESET In Reset :rl;:; E ;o Zi g RESET
S/LG In Small-scale system input/ sroosrods
Large-scale system input
UBE (Note 2) In Upper byte enable (4) I1C should be connected to ground.
_\@ +5-volt power supply (5). Unused input pins should be tied to ground or Vpp to minimize
WR (BUSLOCK) Out Write strobe power dissipation and prevent potentially harmful current flow.
(Bus lock)
Note:

(1) uPD70108 only.
(2) uPD70116 only.

(3) Where pins have different functions in small- and large-scale
systems, the large-scale system pin symbol and function are in
parentheses.

1-2

Section 1
Introduction

C

» Figure 1-3. Pin Configuration, 44-Pin Plastic

Pin Configuration, 52-Pin Plastic

Minifiat

» Figure 1-4.

Leaded Chip Carrier (PLCC)

—— —_ [:1]
- v - @
g8 g8 :
mmummDD L — m_mummDD Qv , = :
7E[BE828e85esy mmﬁnummmmamwm
OoooonoooOnooQnn ooononoOononnQo
INOJUw 3 835883835383 &JNHON N3 3588333583 KN%HON
[osg] zmu_:mm Ly sz [0 oav [0sg] N3dng] 1v sz [1oav
[tsal m/ddna O zv ve [tav [tsal m/ddna [ey ve [1tav
[esal w/oi ev €2 [1Zav [esal w/ol [ev €g []eav
[M001sngl um] vv 2 [tav [@o01snal um [vv 2z [tav
[tMv/04] ¥vaTH [sv © i2favav [iv/odldvaiH O sy © e vav
on[]er &2 0z Wmn< oN [ov eF 0z [15av
[oMv/0H] DHATH [] L il 61 [79av [0Mv/0H] DHATH] v RS 6L [J9%av
ad [sy] _u5< ay] sy 8l [1iav
9Vs [e L8y oV/s [6v L1 [18av
[HOIH] 0s81] 0 9l mo{ 34an [os 9L [6av
esdtv [1is O SL[Joty gsd/ty [J1s O Si [Jotav
N r novwor~wooer ™ 2r[loN N[5 - nw s wonrowo 2T N 200N
oo ooooogoogd L B
§¢85585822°2233% £8858822°25584
TR °~>0O0 WWWAVVGG < <<«
L G 4 (el =R =]
<<
8
8 58 :
c S c = 3
e > - I >
BEE8Y 0%, s mvumﬁ ox, s
mm*mnummamwm mm_mn“mmammm
ononoooonQonQ nnnnoOoOonnnnn
sg] Naana]z & 8 K & S I & & & 2 2 4 Hoay sginaang ez & 8 8 8 I I X &K 22) Hoav
[tsa] m/yang [oe 9L [J tav [tsg] m/adna] oe oL] tav
[2zsal w/ol [e st [J2av [esal w/oi] 1e st eav
[@001sn8l um] z¢ vi[]€av [¥001snal um [] z¢ v []€av
[Iv/0d] ¥vaiH] e © €Ldvav [hv/odl wvaiH] ee © eL[Jvav
[0Mv/0H] DYATH [] ve &g zi1sav [oMv/oY] o¥aTH [ve ecE a2 sav
ay]se R 1 Jeav au] se s 1 geav
9V/s] 9e€ ot [1lav oV/s] ee oL [Jiav
[HOIH] 0sa1] ¢ 6 [18v gn ¢ 6J8av
£sd/6lv [8¢ O g[16v €sd/6by] 8¢ @) g [J6av
025@@%“&““123456 h\H_c:x Uznmnmﬂﬂﬂu123456 \.\Uc—n_<
oo oOooood O
Fefegegizes FEFE8985E85
RS WWWA Caqaqac«
< aqd« -
< <<

©xPD70108/70116 N E C

1-4

NEC

Section 2
Pin Description

» This section describes the functions of input and

output signals. Descriptions are in alphabetical order
by pin symbol. Unless otherwise specified, they apply
to uPD70108 and uPD70116 in small-scale and large-
scale systems.

The width of the data bus is different for the uPD70108
and uPD70116. Therefore, each microprocessor uses
the address/data bus in a different manner.

Memory identification signals for the two processsors
are also different. The #PD70108 uses an 10/M signal;
the uPD70116 uses an IO/M signal.

A19-A16/PS3-PSq [Address Bus/Processor
Status]

These lines are time-multiplexed to operate as an
address bus and also to output the processor status
signals.

When used as the address bus, Aig-A4g are the four
high-order bits of the 20-bit memory address. During
an I/0 bus cycle all four bits are 0.

Processor status signals are for memory and /0O use.
PSj3 is always 0 in the native mode and always 1 in the
emulation mode. The contents of the interrupt enable
flag (IE) are carried via PSy. Signals PSy and PSgp
indicate which memory segment is being accessed.

Ay7-PS; A15-PSp Memory Segment
0 0 Data segment 1

0 1 Stack segment

1 0 Program segment
1 1 Data segment 0

These pins are tri-state and become high impedance
during hold acknowledge.

A15-Ag [Address Bus]

Inthe uPD70108 only, A45-Ag are the middle 8 bits of the
20-bit address. This bus is tri-state and becomes high
impedance during hold acknowledge. An address bit is
1 when high and 0 when low.

AD7-ADg [Address/Data Bus]

In the uPD70108 only, AD7-ADq is a time-multiplexed
address/data bus. These lines output either the lower 8
bits of the 20-bit address or 8 bits of data. Input/output
of 16-bit data is performed in two steps: low byte
followed by high byte.

This is a tri-state bus and becomes high impedance
during hold and interrupt acknowledge. An AD bit is 1
when high and 0 when low.

0
0
0

0
1
]
1
1

AD15-ADg [Address/Data Bus]

In the uPD70116 only, AD15-ADg is a time-multiplexed
address/data bus. An AD bitis 1 when high and O when
low. The bus contains the lower 16 bits of the 20-bit
address during T1 of the bus cycle. The busisused as a
16-bit data bus during T2, T3, and T4 of the bus cycle.

The address/data bus is tri-state and can be ata high or
low level in standby mode. The bus is at high impedance
during hold acknowledge and interrupt acknowledge.

ASTB [Address Strobe]

In a small-scale system, the CPU generates ASTB to
latch address information at an external latch. ASTB is
held to a low level in standby mode.

BS2-BSq [Bus Status]

In a large-scale system, the CPU uses these status
signals to allow an external bus controller to monitor
the current bus cycle. The external bus controller
decodes BSy-BSp and generates the control signals
required to perform a memory or 1/0O device access.

The BS>-BSg signals are tri-state outputs and become
high impedance during hold acknowledge. They are
held to a high level in the standby mode.

BS2

@
g

BSg Bus Cycle
0 Interrupt acknowledge
1 1/0 read

0 1/0 write

1 Halt
0

1

0

1

Program fetch
Memory read

Memory write
Passive state

—_ ||l ol

BUFEN [Buffer Enable]

In a small-scale system, BUFEN is used as the output
enable signal for an external bidirectional buffer. The
CPU generates this signal during data transfer opera-
tions with an external memory or I/0 device or during
the input of an interrupt vector.

The BUFEN signal is held to a high level in the standby
mode and becomes high impedance during hold
acknowledge.

2-1

uPD70108/70116

NEC

» BUFR/W [Buffer Read/Write]

In a small-scale system, the level of this signal
determines the direction of data transfer with an
external bidirectional buffer. A high signal specifies
data transmission from the CPU to an external device.
A low signal specifies data transmission from the
external device to the CPU.

This output can be a high or low level in the standby
mode. It becomes high impedance during hold
acknowledge.

BUSLOCK [Bus Lock]

In a large-scale system, the CPU uses this signal to
secure the bus while executing the instruction immedi-
ately following the BUSLOCK prefix. The signal inhibits
other bus masters in a multiprocessor system from
using the system bus during this time. The output is
held to a high level in the standby mode, but is a low
level if the BUSLOCK instruction is executed immedi-
ately before a HALT instruction.

The signal is tri-state and becomes high impedance
during hold acknowledge.

CLK [Clock]
The CLK pin is the external clock input.

HLDAK [Hold Acknowledge]

In asmall-scale system, HLDAK indicates the CPU has
accepted a hold request signal (HLDRQ). While
HLDAK s high, the address bus, address/data bus, and
control lines are held in the high-impedance state.

HLDRQ [Hold Request]

In a small-scale system, external devices input the
HLDRQ signal to request that the CPU release the
address, address/data, and control buses.

IC [Internally Connected]

The IC pin is used for factory tests. Normally, the
uPD70108/70116 is used with this pin at ground
potential.

2-2

INT [Maskable Interrupt]

The INT pin is used for interrupt requests that can be
masked by software. This input is an active high level
and is sensed during the last clock of the current
instruction. The interrupt will be accepted if the system
is in the interrupt enable state (interrupt enable flag
IE = 1). The CPU generates INTAK to notify external
devices that the interrupt request is being acknowl-
edged. INT must be held high until the INTAK signal is
returned.

If NMI and INT interrupts occur at the same time, NMI
has priority and INT will not be accepted. A hold
request will be accepted even during interrupt
acknowledge.

INT causes the microprocessor to exit the standby
mode.

INTAK [Interrupt Acknowledge]

In a small-scale system, when the CPU accepts an INT
signal, it asserts the INTAK signal active low. The
interrupting device synchronizes with the signal and
puts the interrupt vector number on the data bus
(AD7-ADy).

During standby mode, INTAK is held to a high level.

10/M [10/Memory]

In a small-scale uPD70108 system, the CPU outputs
this signal to indicate either an I/O or memory access. A
high-level output specifies an 1/0 access and a low-
level output specifies a memory access. This output
can be a high or low level in the standby mode.

The pin is tri-state and becomes high impedance
during hold acknowledge.

10/M [10/Memory]

In a small-scale uPD70116 system, the CPU generates
this signal to specify either an 1/0 access or a memory
access. A low-level output specifies an I/0 access and
a high-level output specifies a memory access. The
output can be a high or low level in the standby mode.

The pin is tri-state and becomes high impedance
during hold acknowledge.

NEC

Section 2
Pin Description

» LBSO [Latched Bus Status 0]

In a small-scale uPD70108 system, the CPU uses this
signal (along with the 10/M and BUFR/W signals) to
inform external devices of the status of the current bus
cycle. See below.

QS1, QSg [Queue Status]

In a large-scale system, the CPU uses QS1 and QSg to
allow external devices, such as the floating-point
arithmetic processor chip, to monitor the status of the
internal CPU instruction queue.

10/M BUFR/W LBSO BUS Cycle 08 0Sg Instruction Queue Status

0 0 0 Program fetch 0 0 NOP (queue did not change)

0 0 1 Memory read 0 1 First byte of an instruction taken from queue

0 1 0 Memory write 1 0 Flush queue

0 1 1 Passive state 1 1 Subsequent byte of instruction taken from
queue

1 0 0 Interrupt acknowledge

! 0 1 170 read The instruction queue status indicated by these signals

1 1 0 110 write is the status when the execution unit (EXU) accesses

]]] Held the instruction queue. The data output from QSg and

NMI [Nonmaskable Interrupt]

The NMI signal is used for interrupt requests that
cannot be masked by software The interruptis triggered
on therising edge of NMI and can be sensed during any
clock cycle. NMI must be held high for at least five
clock cycles after its rising edge. Actual interrupt
processing begins after completion of the instruction
in progress.

The contents of interrupt vector 2 determines the
starting address for the interrupt servicing routine. A
hold request will be accepted even during NMI
acknowledge. This interrupt will cause the micro-
processor to exit the standby mode.

POLL [Poll]

The CPU checks the input at this pin when executing
the POLL instruction. If the input is low, execution
continues. If the input is high, the CPU will check the
state of the input every five clock cycles until the input
again becomes low.

These functions synchronize CPU program execution
with the operation of external devices.

QS is therefore valid only for one clock immediately
following queue access.

QS, and QS enable the floating-point processor chip
to monitor the CPU’s program execution status. In this
manner, the floating-point processor can synchronize
its operation with the CPU whenever it gains control
from a floating-point operation instruction (FPO).

QS and QSg are held to a low level during standby
mode.

RD [Read Strobe]

The CPU outputs the RD signal during a dataread from
an 1/0 device or memory. The 10/M or 10/M signal
determines whether the read is I/0 or memory. RD is a
tri-state output and becomes high impedance during a
hold acknowledge.

READY [Ready]

READY indicates that the data transfer is complete. A
highindicates READY is true; alow indicates READY is
false (not ready).

When READY goes high during aread cycle, the data is
latched one clock cycle later and the bus cycle is
terminated. When READY goes high during a write
cycle, the bus cycle is terminated one clock cycle later. 4

2-3

uPD70108/70116

NEC

» RESET [Reset]

RESET is the CPU reset signal and is an active high
level. This signal has priority over all other operations.
After RESET returns to the low level, the CPU begins
execution of the program starting at address FFFFOH.

RESET causes the microprocessor to exit the standby
mode.

RQ/AK1{, RQ/AKq Hold Request Acknowledge

In a large-scale system, these pins function as the bus
hold request inputs (RQ),_and the bus hold acknow-
ledge outputs (AK). The RQ/AKq signal has priority
over the RQ/AKj signal.

These signals have tri-state outputs with on-chip pull-
up resistors that keep the pins at a high level when the
output is at the high-impedance state.

S/LG [Small/Large]

This signal determines the operating mode of the CPU.
The signal is fixed at either a high or low level. When
the signal is high level, the CPU operates in the small-
scale system mode. When the signal is low level, the
CPU operates in the large-scale system mode. A small-
scale system will have at most one additional bus
master requesting use of the bus. A large-scale system
can have more than one.

As noted in table 1-1, some pins have different symbols
and functions in small-scale and large-scale systems.

UBE [Upper Byte Enable]

UBE indicates the use of the upper 8 bits (AD15-ADg) of
the data bus. This signal is active low during T1-T4 of
the bus cycle. Bus cycles in which the signal is active
are shown below:

Type of . Number of
Bus Operation UBE ADg Bus Cycles
Word to even address 0 0 1
Word to odd address 0* 1

1** 0 2
Byte to even address 1 0 1
Byte to odd address 0 1 1

* First bus cycle
** Second bus cycle

UBE goes low continuously during the interrupt
acknowledge state. The signal is held high during
standby mode. The signal is a tri-state output and
becomes high impedance during a hold acknowledge.

Section 4, Memory Accessing, contains detailed infor-
mation on the use of UBE.

WR [Write Strobe]

In a small-scale system, the CPU asserts WR during a
write to an 1/0 device or memory. The 10/M or [O/M
signal selects either I/0 or memory. The WR output is
held to a high level in the standby mode.

The pin is tri-state and becomes high impedance
during hold acknowledge.

NEC

Section 3
Functional Description

As shown in figure 3-1, the uPD70108 and uPD70116
both contain two internal, independent processing units:
an execution unit (EXU) and a bus control unit (BCU).

The EXU controls the internal data processing that exe-
cutes the instruction set of the uPD70108/70116.

The BCU is the interface between the EXU and the exter-
nal bus. It prefetches instructions for the instruction
queue — 4 bytes in the uPD70108 and 6 bytes in the
uPD70116. It also accesses memory (upon request from
the EXU) for additional operands, or stores EXU results.

EXECUTION UNIT (EXU)
The EXU includes the following functional elements:

Program Counter

General Purpose Registers (AW, BW, CW, DW)
Pointers (SP, BP) and Index Registers (IX, 1Y)
Temporary Register/Shifter (TA/TB)
Temporary Register C (TC)

Arithmetic and Logic Unit (ALU)

Program Status Word (PSW)

Loop Counter (LC)

Effective Address Generator (EAG)
Instruction Decoder

Microaddress Register

Microinstruction ROM

Microinstruction Sequencer

Dual data bus

Program Counter (PC)

The program counter is a 16-bit binary counter that con-
tains the segment offset of the program memory address
of the next instruction which the EXU is to execute.

The PC increments each time the microprogram fetches
a byte from the instruction queue. A new location value
is loaded into the PC each time a branch, call, return, or
break instruction is executed. At this time, the contents
of the PC are the same as the Prefetch Pointer (PFP).

General Purpose Registers (AW, BW, CW, DW)

There are four 16-bit general-purpose registers. Each
one can be used as one 16-bit register or as two 8-bit
registers. This is accomplished by dividing the registers
into their high and low bytes (AH, AL, BH, BL, CH, CL,
DH, DL).

Each register is also used as a default register for
processing specific instructions. The default assign-
ments are:

AW Word multiplication/division, word 1/0, data
conversion

AL Byte multiplication/division, byte 1/0, BCD
rotation, data conversion, translation

AH Byte multiplication/division
BW Translation
cw Loop control branch, repeat prefix

CL Shift instructions, rotation instructions, BCD
operations

DW Word multiplication/division, indirect
addressing, 1/0

Pointers (SP, BP) and Index Registers (IX, 1Y)

These registers serve as base pointers or index registers
when accessing memory using based, indexed, or base
indexed addressing.

These registers can also be used for data transfer and
arithmetic and logical operations in the same manner as
the general-purpose registers. They cannot be used in
these areas as 8-bit registers.

Also, the SP, IX, and IY registers act as default registers
for specific operations. The default assignments are:

SP Stack operations

IX Block transfer, BCD string operations
(source)
Y Block transfer, BCD string operations

(destination)

Temporary Register/Shifter (TA/TB)

TA/TBare 16-bittemporary registers/shifters used in the
execution of multiply/divide and shift/rotate (including
BCD rotate) instructions. Execution of multiplication/divi-
sion instructions can be accomplished approximately
four times faster than when using the microprogramming
method.

When executing a multiply or divide instruction, TA+TB
operates as a 32-bit temporary register/shifter. TB oper-
ates as a 16-bit temporary register/shifter when execut-
ing shift/rotate instructions. Both TA and TB can be read
from or written to. When this is done from the internal
bus, the upper byte and lower byte may be accessed
independently. The contents of TA and TB are inputs to
the ALU.

Temporary Regisier C (TC)

The TC is a 16-bit temporary register used for internal
processing such as a multiply or divide operation. The
contents of TC are inputs to the ALU.

Arithmetic and Logic Unit (ALU)

The ALU consists of a full adder and a logical operation
unit. The ALU performs the following arithmetic
operations:

3-1

uPD70108/70116

Figure 3-4. 1 PD70108/70116 Block Diagram

Buffer

Ag-A,s - Note 1
h ADy-AD,

i

Internal Address/Data Bus (IADo-1AD1g) > Bus

ADM

. 17

4 >
A,6/PSo—Ao/PS;

i

AD,-AD, I-Note 2

LBSO'[UBE]?

BUFFEN [BS0], BUFR/W [BS1]

10/M [BS,] [Note 1]

Control Ps M 10/M [BS;] [Note 2]
(ggg) ASTB [QS0], INTAK [QS1]
| ss Status RD, WR [BUSLOCK]
| DSO L Control
| DSt |¢«—— S/ILG
PFP] j«—————— READY
| f«——————— RESET
I DP |J«—— POLL
| TEMP
| Q0 ar TState BusHold [+—= HLDRQ (RG/AKo)
l Q2 a3 Control Control l«———— HLDAK (R—Q /A_K{)
[Q4 Qs |2 ﬁ
NMI
I l______— — Cycle Interrupt “
I Decision Control INT
l Le Queue Standby
: PC Control Control CLK
| AW _ _ _ _
| BW
l ow Effective Addi G t
'ective ress Generator
| ya— ow <:>
l N— IX
| v
I BP
l SP EE))
|) §%):f‘> » Ig::::;gon @ Microinstruction Bus
Exed:l.n.ttion o @
uli
(EXU) T
! TA g
| SHIFTER 8
TB g
| g
|] w Sequence
H Control
' __/ e
I ALU
| : > Instruction Decoder
I <;
| I PSW
|
| Sub-data Bus Main Data Bus
| (16) (16)
L __l

Notes: 1. uPD70108 only
2. uPD70116 only

49000143C

3-2

NEC

Section 3
Functional Description

® Add, subtract, multiply, and divide
® Increment, decrement, and two’s complement

The ALU also performs the following logical operations:

® AND, OR, XOR, complement
® Bit test, set, clear, and complement

Program Status Word (PSW)
The PSW contains six status flags:

® V (Overflow)

® S (Sign)

® Z (Zero)

® AC (Auxiliary carry)
® P (Parity)

® CY (Carry)

The program status word also contains four control flags:

® MD (Mode)

® DIR (Direction)

® |E (Interrupt enable)
® BRK (Break)

When the PSW is pushed onto the stack, the word format
of the various flags is as follows:

PSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

M 111 Vv DI BS Z 0AO0P 1 C

D I E R C Y
R K

The status flags are set and reset depending on the result
of each type of instruction executed. Instructions are
provided that set, reset, and complement the CY flag
directly. Other instructions set and reset the control flags
and control the operation of the CPU.

Loop Counter (LC)

The loop counter (LC) is a 16-bit register which counts:

® Loop times specified in the primitive block transfer

® |/0 instructions controlled with repeat prefix instruc-
tions such as REP and REPC

® Shifts for the multi-bit shift/rotate instructions

The processing speed for multiple-bit rotation of a reg-
ister is approximately twice as fast as when using the
microprogram method.

Example:

RORC AW CL CL=5
Microprogram Method
8 + (4 X 5) = 28 clocks

Loop Counter Method
7 + 5 =12 clocks

Effective Address Generator (EAG)

The effective address generator (EAG) performs a high-
speed effective address calculation for memory access.
While the microprogramming method normally requires
5 to 12 clock cycles to calculate an address, the EAG
completes all the EA calculations in 2 clocks for all ad-
dressing modes (see figure 3-2).

The EXU fetches the instruction bytes that have the oper-
and field and determines if the instruction will require a
memory access. If it does, the EAG calculates the effec-
tive address and transfers it to the DP (data pointer)
which generates control signals that handle the ALU and
corresponding registers. In addition, if itis necessary, the
EAG requests a bus cycle from the BCU.

Instruction Decoder

The instruction decoder decodes the first byte of an
instruction into groups with specific functions and holds
them during the instruction execution.

Microaddress Register

The microaddress register specifies the starting address
in the microinstruction ROM of the next instruction to be
executed. At the beginning of a new instruction, the first
byte of the instruction is taken from the prefetch queue
and put into the microaddress register. The register then
specifies the starting address of the corresponding
microinstruction sequence.

Microinstruction ROM

The microinstruction ROM has 1024 microinstructions.
Each microinstruction is 29 bits wide.

Figure 3-2. Effective Address Generator

Mod Mem

EA Generator

Effective Address

49-000036A

3-3

wPD70108/70116

NEC

Microinstruction Sequencer

The microinstruction sequencer controls the microad-
dress register operation, microinstruction ROM output,
and the synchronization of the EXU with the BCU.

Dual Data Bus

The uPD70108/70116 contains a dual, 16-bit data bus
that consists of a main and subdata bus. The dual data
bus reduces the number of processing steps for instruc-
tion execution. For addition/subtraction and logical
and comparison operations, processing time is approx-
imately 30% faster then in single-bus systems.

Example:
ADD AW, BW AW — AW + BW
Single-Bus System Dual-Bus System
1. TA<— AW TA < AW, TB «— BW
2. TB <~ BW AW — TA+ TB
3. AW—TA+TB

BUS CONTROL UNIT (BCU)

The BCU includes the following functional elements:

® Prefetch Pointer (PFP)

® Prefetch Queue (Qp-Q3/Qg-Qs)

® Data Pointer (DP)

® Temporary Communication Register (TEMP)
® Segment Registers (PS, SS, DSy, DS4)

® Address Modifier (ADM)

Prefetch Pointer (PFP)

The PFP is a 16-bit binary counter that contains a pro-
gram segment offset. The offset is used to calculate a
physical address that the Bus Control Unit (BCU) uses
to prefetch the next byte or word for the instruction
queue. The contents of the PFP are an offset from the
Program Segment register (PS).

The PFP is incremented each time the BCU prefetches
an instruction from the program memory. A new location
will be loaded into the PFP whenever a branch, call,
return, or break instruction is executed — this provides
a time savings of several clocks since the PC does not
require adjustment. At that time, the contents of the PFP
will be the same as those of the program counter (PC).

3-4

Prefetch Queue (Qg-Q3/Qq-Qs)

The uPD70108/70116 has a prefetch queue that can
store 4/6 instruction bytes that are prefetched by the
BCU. The instruction bytes stored in the queue are taken
from the queue and executed by the EXU. The queue is
cleared when a branch, call, return, or break instruction
has been executed, or when an external interrupt has
been acknowledged.

Normally, the uPD70108 prefetches a byte if the queue
has one or more empty bytes. The uPD70116 prefetches
if the queue has one or more empty words (two bytes).
If the time required to prefetch the instruction code from
external memory is less than the mean execution time
of instructions executed sequentially, the actual instruc-
tion cycle will be shortened by the time needed to fetch
the instructions. This occurs because the next instruc-
tion code to be executed by the EXU will be available
in the queue immediately after the completion of the
previous instruction. As a result, the processing speed
is increased when compared with a conventional CPU
where the fetch and execute times do not overlap.

The queuing effect will be lowered if there are many
instructions which clear the queue; for example, a
branch instruction, or a series of instructions with a short
instruction time.

Data Pointer (DP)

The DP is a 16-bit register that contains the read/write
addresses of variables. Effective addresses calculated
by the effective address generator are transferred to
the DP.

Temporary Communication Register (TEMP)

The TEMP is a 16-bit temporary register that stores data
being transferred between the external data bus and
the EXU.

The TEMP can be read from or written to independently
by the upper or lower byte. Basically, the EXU completes
a write operation by transferring data to the TEMP and
completes a read operation by taking the data transferred
to the TEMP from the external data bus.

NEC

Section 3
Functional Description

Segment Registers (PS, SS, DSy, DS1)

The memory addresses accessed by the uPD70108/
70116 are divided into 64 Kbyte logical segments. The
starting (base) address of each segment is specified by
a segment register. The offset from this starting address
is specified by the contents of another register or by the
effective address.

The wuPD70108/70116 uses four types of segment
registers:

Segment Register Default Offset
PS (Program Segment) PFP
SS (Stack Segment) SP, Effective Address
DSy (Data Segment 0) IX, Effective Address
DS, (Data Segment 1) IY, Effective Address
Address Modifier (ADM)

The address modifier logic generates a physical memory
or /0 address by adding the segment register and PFP
(or DP) contents.

3-5

vPD70108/70116

NEC

3-6

NEC

Section

Memory and 170 Configuration

MEMORY CONFIGURATION

Memory contains instructions, interrupt handler start
addresses, stack data, and general data. Some of this
data is stored in bytes and other in words. The
uPD70108/70116 can access up to 1 Mbyte (512 Kwords)
of memory by using the 20-bit address bus (A1g-Ag).

As the memory map in figure 4-1 shows, the first 1 Kbytes
of addresses (OH-3FFH) are used for the interrupt vector
table. Parts of this area may also be used for other pur-
poses in some systems. The 12 bytes from address
FFFFOH to FFFFBH are always used by the CPU when
it is reset, and therefore cannot be used for any other
purpose.

The four bytes from addresses FFFFCH to FFFFFH are
reserved for future use and are not available.

Memory data can be stored in both even (Ag = 0) and
odd (Ag = 1) addresses. The area where the interrupt
start addresses (interrupt vector table) are stored must
use even addresses. The uPD70116 can access a word
regardless of whether the word is at an even or odd
address. This allows both even and odd addresses to be
used for an instruction. Table 4-1 shows the type and
configuration of data, and address requirements. Figure
4-2 shows the placement of word and double word data
in memory.

Figure 4-1. Memory Map

Table 4-1 Data Type and Addressing

Data Address Data Configuration

Instruction Code Even or odd 1-6 bytes

Interrupt Vector Table Even 2 words/vector

Stack Even or odd Word

General Variable Even or odd Byte, word, or double
word

Figure 4-2. Word and Double Word Placement in
Memory

OH

See Fig. 6-1

Interrupt Vector Table for Details.

3FFH
400H

~ General

FFFEFH
FFFFOH

RESET

FFFFBH
FFFFCH

Reserved

FFFFFH

1 Byte

)

)
)
A\

Increasing) "
addresses High Order Byte (Bits 24-31)

(Bits 16-23)
(Bits 8-15)
Low Order Byte (Bits 0-7)

Double Word

High Order Byte (Bits 8-15)
Word
Low Order Byte (Bits 0-7)

00000H

1Byte

49-0000383A

4-1

vPD70108/70116

NEC

MEMORY ACCESSING

Since the uPD70108 data bus is only 8 bits wide, only
one byte (8 bits) is accessed during one bus cycle. Two
bus cycles are required to access a data word from either
an even or odd address. Figure 4-3 shows the interface
between memory and the uPD70108. Figure 4-4 shows
the interface between memory and the uPD70116.

The address space for the uPD70116 is 1 Mbyte, but
because the uPD70116 can transfer both bytes and
words of data, the physical memory appears to be two

Figure 4-3. uPD70108 Memory Interface

banks, each containing 512 Kbytes of data (figure 4-4).
Data lines D7-Dg are connected to the low-order memory
bank and address bit Ag selects this bank when Ay=0.
Data lines D15-Dg are connected to the high-order
memory bank and signal UBE is used to select this bank
when UBE is low. Address bits 19-1 contain the physical
address within a data bank where the byte of data is to
be accessed.

A-A, Address Bus (20 Bits))
Memory
(1 MBytes)
D~Do | Data Bus (8 Bits) B
49-000053A
Figure 4-4. uPD70116 Memory Interface
A=A Address Bus (19 Bits) \

Ao

19

S 14l

'}

Memory
High-Order
Bank

(512 KBytes)

BSEL

Memory
Low-Order
Bank

(512 KBytes)

,,oo

Dis-D, l

Data Bus (16 Bits) \

49-000052A

NEC

Section 4
Memory and 170 Configuration

The following chart shows how Ag and UBE are used.
Memory transfer operations are described after the
chart.

Type of Bus -

Operation UBE Ag Number of Bus Cycles
Word to even address 0 0 1

Word to odd address 0* 1 2

1h* 0
Byte to even address 1 0 1
Byte to odd address 0 1 1
Notes: * First bus cycle

** Second bus cycle

When transferring a word of data to an even address, the
uPD70116 puts the low-order data byte on D7-Dg, the
high-order data byte on D15-Dg, and sets both UBE and
Ag to 0. In this manner, both the low- and high-order
memory banks are simultaneously selected and the
transfer is performed in one bus cycle.

The transfer of a word of data to an odd address requires
two bus cycles. In the first cycle, the uPD70116 puts the
low-order data byte on D45-Dg, sets UBE to 0, sets Ag
to one, and transfers the first byte to the high-order
memory bank. In the second cycle, the uPD70116 incre-
ments the address by +1, puts the high-order data byte
-on D7-Dg, sets UBE to 1, sets Ag to 0, and transfers the
second byte to the low-order data bank.

When transferring a byte of data to an even address, the
uPD70116 puts the data byte on D7-Dg, sets UBE to 1,
Ag to 0, and transfers the data byte to the low-order
memory bank.

When transferring a byte of data to an odd address, the
uPD70116 puts the data byte on D45-Dg, sets UBE to 0,
sets Ag to 1, and transfers the data byte to the high-order
memory bank.

The uPD70116 normally prefetches instruction codes in
words. However, if a branch operation to an odd address
takes place, only one byte is fetched from that odd
address. After that, instruction codes are prefetched in
words.

When the interrupt vector table is accessed in response
to an interrupt, even addresses are always used. During
an interrupt, two bus cycles are required because two
words (segment base, and offset) are required.

One memory bus cycle requires four clocks. Thus, each
time a word from an odd address is accessed, four addi-
tional clocks are required than when accessing an even-
address word. When transferring a word from one
memory area to another, the memory must be accessed

twice. The word must be read from the source first and
then written to the destination. If both the source and the
destination are odd addresses, the execution time will be
maximized. The following example shows the number of
clocks required to execute the MOV reg, mem instruction
for both a byte and word of data.

Data Processor Number of Glocks

Bytes uPD70108/70116 11

Words uPD70116 (even address) 11

Words uPD70108/70116 (odd 15
address)

The above stack information is also true during a stack
operation since all stack data is organized as words.
Twice as many bus cycles are required during a stack
operation using an odd rather than even address.

170 CONFIGURATION AND ACCESSING

The uPD70108/70116 can access up to 64 Kbytes (32
Kwords) of I/0 address area independent of memory.
However, the upper 256 bytes (FFOOH-FFFFH) are re-
served by NEC for future use. The I/0 address area is
addressed by the lower 16 bits of the address bus. Figure
4-5 shows the 1/0 map.

Unlike memory, segment registers are not used in 1/0.
When the address bus carries 1/0 addresses, address
bits Aqg-A4g are all zeros. Since data is transferred
between the CPU and I/0 in bytes or words, both 8-bit
and 16-bit I/O devices can be connected to the
uPD70116. Only 8-bit I/0 devices can be connected to
the uPD70108.

Inthe uPD70116, only one bus cycle is required to access
a word on an even address; two bus cycles are required
to access a word on an odd address.

When the uPD70116 accesses an 8-bit 1/0 device, bits
Ap and UBE select the device. Bit Ay and higher bits
selecta device and the registers within that device. When

Figure 4-5. 1/0 Map

OH

FEFFH
FFOOH

RESERVED
FFFFH

<+——1Byte ———>

49-000051A

4-3

wPD70108/70116

NEC

accessing 8-bit1/0 devices, only even addresses should
be assigned to the device and its internal registers. This
allows the registers to be selected using only even
addresses. Similarly, 8-bit 1/0 devices with internal reg-
isters assigned odd addresses must be accessed using
odd addresses.

If a memory-mapped /0 configuration (memory address
space allocated to an 1I/0O device) is used, the 1/0
addresses can be allocated to a portion of the 1 Mbyte
memory area. In this manner, all CPU addressing modes
and instructions can be directly performed on the 1/0
device. For example, if a bit operation instruction for
memory is used, one line of a specific 1/0 port can be
tested for 1 or 0, set to 1, cleared to 0, or inverted. In a
memory-mapped /O configuration, control signals from
the CPU are used exactly as for memory. Therefore, the
170 device is distinguished from memory only by its
address. Care must be taken so that addresses of vari-
ables or the stack do not conflict with the addresses
allocated to a memory-mapped 1/0 device.

4-4

NEC

Section
Read/Write Timings

Bus Cycles and Memory Access

One bus cycle is required for each access (read/write)
of memory or I/0. A bus cycle is basically made up of
four states (clocks): T1 through T4. When the microproc-
essor operates at 8 MHz, one state is 125ns. The
uPD70108 and uPD70116 fetch instructions and read
data, using exactly the same timing (figures 5-1,5-3, 5-5,

and 5-7).

Figure 5-1.
1/0 (Small-Scale Systems)

Read Timing of uPD70108 Memory and

The EXU fetches an instruction from the instruction
queue and executes it. The BCU continues prefetching
instructions for the instruction queue until the queue
becomes full. If the EXU does not fetch an instruction

from the queue because another instruction is still being

executed and the instruction queue is full, the BCU will
not prefetch the next instruction. Instead, it automatically
inserts an idle state (TI) after state T3. More idle states

Figure 5-3. Read Timing of uPD70116 Memory and
1/0 (Small-Scale Systems)

1Bus Cycle

CLK

|
T4 L—n——k—rz—ﬂ«—ra-—-i‘—m

1Bus Cycle |
T4 T1———f<——T2—+—T3—-}<—T4——|
CLK | | | |
A,o/PS;-A,6/PS, X Avo=Ase PS,-PS, X
UBE X X
AD15-ADq
ASTB / \ /
BUFEN / \ /
BUFR/W \ /
RD ~
iom X X
49-00048A

Ao/PS;=A 4IPS, X As-As X PS,-PS, X

As-Ag X A,s-Ag X

ASTB /~ \ /

BUFEN _/ ./

BUFR/W __ \ YA

m N/

10/ X X

LBSO X X
49-000050A
Figure 5-2. Write Timing of uPD70108 Memory and

1/0 (Small-Scale Systems)

Figure 5-4. Write Timing of uPD70116 Memory and
1/0 (Small-Scale Systems)

o []

1Bus Cycle ————j
T4 fe—Ti—efe— T2 —wfa— T3 —ofe—T4

Ag/PS;-Ac/PS,

X A=A X

PS,—PS,

A'S_AB X A'IS_AB

AD,~AD, — X _A-A, X D,-D,

ASTB / \

BUFEN 7 \

BUFR/W /

(RIS

49-000049A

+——————1Bus Cycle ——— ————
T4 T T2—f«—T3—}« T4
ck |

A,o/PS;-A,/PS, X A=A X PS,-PS, X
UBE X X
AD,-A, —X Ais—As X D,s-D, =
ASTB /7 \ /

BUFEN / \ /

BUFR/W / \
- N\ 2
oM X X

49-000047A

uPD70108/70116

NEC

are inserted until the EXU finishes executing the instruc-
tion being processed. Then it fetches the nextinstruction
from the instruction queue. When the next instruction is
fetched, the BCU advances the state of the bus cycle from
state T4 to T1.

When a memory or I/0 device has a long access time,
the BCU samples the READY signal (sent from memory
or an 1/0 device). If READY is low, the BCU will insert
wait states TW between T3 and T4. When READY

Figure 5-5. Read Timing of uPD70108 Memory and
170 (Large-Scale Systems)

T4 l::n—-’-—TLB—uilsyfn——ﬁ-—n::l
e L LT L LT
X Ap—Asg X
A15_A0 X
ASTB /- L /
n___ 7
m 0/
as,, @s, X X X X X
BUFR/W | —
MRD OR iORD 1 f

DBEN 1

Ao/PS;-A,/PS, PS,—PS, X

Ais—As

BS,-BS,

From
©PD71088

49-000045A

Figure 5-6. Write Timing of uPD70108 Memory and
1/0 (Large-Scale Systems)

o

1Bus Cycle
T4 e ‘n—-f+— T2—>fe— T3—>fe— T4

Ao/PS;~A/PS, X Ars=Ass X PS;-PS, X
As—Ag X Ais-Ag X
AD,-AD, ———X A,~A, X D,-D, —
ASTB /- \
BS,-BS, \ /-
QSg, @S X X X X X
MWR OR IOWR [
§8
K DBEN | |
=

AMWR OR AIOWR : | I

49-000046A

becomes high, the BCU goes to T4 and then to T1 so
that the next instruction can be fetched. When wait state
TW is inserted, the current level of each signal is not
changed and the read/write timing is longer for that
cycle.

Figures 5-1 through 5-8 show read/write timing for
uPD70108/70116 memory and /0. The timing diagrams
are for small- and large-scale systems.

Figure 5-7. Read Timing of uPD70116 Memory and
1/0 (Large-Scale Systems)

1Bus Cycle ——————————»

T4 T1—+—T2—->r—T3————|<—T4——

CLK | [[LI L

X Aus_Am X

UBE X X

AD. 5~ AD, X e Y D105 ———
ASTB / \

BS,-BS, \ /

A,o/PS,—A,/PS, PS,;-PS, X

From

J
J 17

49-000044A

Figure 5-8. Write Timing of uPD70116 Memory and
1/0 (Large-Scale Systems)

1Bus Cycle {
T4 |e—Ti—sf—T2 T3— T4—»|
ex [LI LT LT L
A,o/PS;—A/PS, X Ais—Ais X PS;-PS, X
UBE X X
AD15"ADO_X_A|3‘A0 2(Dys—Dg £
ASTB / \
BS,-BS, \ V4
QSgq, QsS4 X X X X X
DBEN | l
EQ
08 | ——
& T 4 AMWRor AIOWR | |
8| __
MWR OR IOWR | |

49-000043A

NEC

There are two types of interrupts in the uPD70108/70116.
One is caused by an external interrupt request and the
other is caused internally by software. Both types of inter-

rupts are vectored. When an interrupt occurs, a location
in the interrupt vector table is selected either automat-
ically (fixed vector) or by software (variable vector). This
selected location determines the start address of the
corresponding interrupt routine.

Table 6-1 shows the types of interrupts, interrupt source,
number of clocks required to process each interrupt,
vector, and priority.

Figure 6-1 shows the interrupt vector table. This table
is allocated in a 1 Kbyte memory area (addresses 000H
to 3FFH) and can hold up to 256 vectors (four bytes
required per vector).

The interrupt sources for vectors 0 to 5 are predeter-
mined and vectors 6 to 31 are reserved for future use.
Vectors 32 to 255 are for general use. These vectors are
used for the four interrupt sources: 2-byte break, BRKEM,
CALLN instructions (during emulation), and INT input.

Four bytes are used for each interrupt vector. The two
bytes of the lower address and the two bytes of the higher
address are loaded respectively into the program coun-
ter (PC) as an offset, and a segment register (PS) as
a base.

Table 6-1. Interrupt Sources
Interrupt Source No. of Vector Priority
Clocks*
External NMI (rising-edge 58/38 2 2
triggered)
INT (high-level active) 68/49 32-255 3
Software DIVU divide by 0 error 65/45
DIV divide by 0 error ~ 65-75/ 0
45-55
CHKIND boundary - 81-84/ 5 1
over 53-56
BRKV instruction - 60/40
BRK3 (breakpoint)
BRK imm8 58/38
BRKEM imm8 32-255
CALLN imm8
BRK flag 1 4
(single step)

Note: *The number to the left of the slash (/) is for the uPD70108 and
the number to the right is for the uPD70116.

Section @
Figure 6-1. Interrupt Vector Table
T
000K 1 Vector 0 | Divide error
004H | 1 -| Break flag
(Single Step)
008H | 2 - NMlinput g
‘@
2
o
00CH | 3 - BRK3instruction |
n (Breakpoint)
010H = 4 -1 BRKV instruction
014H 1 5 - CHKIND instruction
018H i |
s 6 .
3 & [Reserved
07CH
31 B
080H]
= 32 E
N General
+ BRK imm 8 instruction
I «+ BRKEM instruction
« INT input (external)
+ CALLN instruction
3FCH 255 i
49-000042A

Example: Vector 0

Location OH O00H
1H 01H
2H 02H
3H 03H

PS <« (003H, 002H)
PC <« (001H, 000H)

The contents of the vectors are initialized at the begin-
ning of a program. The basic steps when program
execution jumps to an interrupt routine are:

(SP-1,SP-2) «— PSW

(SP-3,SP-4) < PS

(SP-5,SP-6) «— PC

SP — SP-6

IE « 0,BRK «— O,MD <« 1

PS <« higher vector from interrupt vector table
PC

The interrupt enable (IE) and break (BRK) flags are reset
when an interrupt routine is started. Therefore, maskable
interrupts (INT) and single-step interrupts are disabled.

lower vector from interrupt vector table

uPD70108/70116

NEC

MASKABLE INTERRUPTS

If an INT input signal is a high level at the end of an
instruction and the interrupt is enabled (IE = 1), the INT
interrupt request will be acknowledged, unless the NMI
or hold request signals are active at the same time. The
program execution then enters an interrupt acknowl-
edge cycle (figures 6-2 and 6-3).

Figure 6-2. uPD70108 Interrupt Acknowledge Timing

The interrupt acknowledge cycle consists of two bus
cycles. The INTAK, ASTB, and BUFEN signals are gener-
ated during the first cycle. Although the bus cycle is
started, no read/write operation is performed and the
address/data bus becomes high impedance. During this
time, a hold request is not accepted. If_the
uPD70108/70116 is in the maximum mode, the BUS-

1ST Interrupt 2ND Interrupt
l«— Bus Cycle Bus Cycle

T4 | T |T2 | T3 | T4| TI| T2] T3] T1| Ti| T Ti| T1] T4l T1l T2 | T3] |
ok \ /]
ASTB /\ /) /\
INTAK __L/ N\ /
D /T
BUFEN \ /) / \ /
_ \
10/M
AD,~AD,
Read Interrupt Vector Type Low-Order Address Byte Low-Order Byte
of Interrupt Vector Table of Interrupt Offset-Word
A15_A8 (
High-Order Byte of Interrupt Vector
Table Address
BUSLOCK \

49-000040A

Figure 6-3. uPD70116 Interrupt Acknowledge Timing

| T4] T T2 T3] T T} T1] T4 T T2)] T3] 1| Ti| T T T T4] 71| T2 T3] |
CLK

aste___/\ /\ /\
INTAK \ / \ /
RD n——/
BUFEN \ / | S
oM™\ /
BUSLOCK /
(Maximum mode only)
AD,5-AD, VN
Low-Order Interrupt Interrupt
Byte Vector Offset
Read Interrupt Vector Type Table Word
Address

49-000039A

NEC

Section 6
Interrupts

LOCK signal is also generated inhibiting other devices
from using the bus. Figures 6-2 and 6-3 show the timing
for the interrupt acknowledge bus cycles.

The first interrupt acknowledge cycle is necessary to
synchronize the external interrupt controller with the
uPD70108/70116. When the INTAK, ASTB, and BUFEN
signals are output during the second interrupt acknowl-
edge cycle, the external interrupt controller puts the inter-
rupt vector number on the data bus (AD7-ADg).

After the second interrupt acknowledge cycle has been
completed, the location in the interrupt vector table cor-
responding to the vector obtained during the interrupt
acknowledge cycle is accessed. Before calling the inter-
rupt routine, the contents of the PSW, PS, and PC are
saved in the stack. The interrupt start address is then
loaded into the PS and PC registers from the interrupt
vector table and the interrupt routine is started.

The following are sequential lists of interrupt acknowl-
edge operations performed by the wPD70108 and
uPD70116.

uPD70108

(1) Acknowledge cycle (first)

(2) Acknowledge cycle (second)

(3) Save lower byte of PSW to stack

(4) Save higher byte of PSW to stack

(5) Save lower byte of PS to stack

(6) Save higher byte of PS to stack

(7) Save lower byte of PC to stack

(8) Save higher byte of PC to stack

99 SP «— SP-6
(10) Read lower byte of offset word to PC
(11) Read higher byte of offset word to PC
(12) Read lower byte of segment word to PS
(13) Read higher byte of segment word to PS
(14) Jump to interrupt start address

uPD70116

(1) Acknowledge cycle (first)

(2) Acknowledge cycle (second)
(3) Save PSW word to stack

(4) Save PS word to stack

(5) Save PC word to stack

(6) SP <« SP-6

(7) Read offset word to PC

(8) Read segment word to PS

(9) Jump to interrupt start address

During the first uPD70108 interrupt acknowledge bus
cycle, no idle Tl states are inserted in the bus cycle.
However, the uPD70116 inserts three Tl states during the
first interrupt acknowledge cycle. During the second
interrupt acknowledge cycle, five Tl states are inserted
in the bus cycles of both microprocessors. Both the
uPD70108 and uPD70116 read an 8-bit vector during the
second interrupt acknowledge cycle.

The number of cycles required to save the contents of
the PSW, PS, and PC are different for the two microproc-
essors. This is because the width of the uPD70108 data
bus is smaller than that of the uPD70116. Two bus cycles
are required for the uPD70108 to read the offset word and
segment word. Two bus cycles per word are also
required to save the PSW, PS, and PC. The uPD70116
performs each of these operations in one bus cycle. The
uPD70116 UBE signal remains low during the first and
second interrupt acknowledge cycles and during the
subsequent accessing of the offset and segment words.

BRK FLAG (SINGLE-STEP INTERRUPT)

The uPD70108/70116 is provided with a single-step inter-
rupt function that is useful for program debugging. The
Break Flag (bit 8 of the PSW) controls this interrupt. There
is no instruction that directly sets or resets the BRK flag;
therefore, the PSW must be saved from the stack to
control the BRK flag. By restoring the contents of the
PSW from the stack, the BRK flag can be set or reset by
using OR and AND instructions on the PSW in the stack.
When the BRK flag is set, an interrupt routine specified
by vector 1 starts after the current instruction has been
executed. The BRK and interrupt enable (IE) flags are
also reset at this point.

The debug program checks the number of single steps
while the interrupt routine is being executed. Ifthe single-
step operation can be terminated, a memory operation
instruction resets the BRK flag that is saved in the stack.
The program then returns to the main routine and the
nextsequence of instructions is successively carried out.
If the program returns to the main routine without chang-
ing the BRK flag, the BRK flag (1 in the PSW) will be
restored from the stack. The program then executes one
instruction of the main routine and the vector 1 interrupt
occurs again.

vPD70108/70116

NEC

INTERRUPT DISABLE TIMING
NMI and INT interrupts are not acknowledged when

® An instruction that directly sets data in the segment
register is being executed; for example

MOV sreg, reg16
MOV sreg, mem16

® The program is between one of the following and the
next instruction

MOV sreg, reg16
MOV reg16, sreg
MOV sreg, mem16
MOV mem16, sreg
POP sreg

® Program execution is between one of the following
three types of prefix instructions and the next single
instruction

Segment override prefix (PS;, SS;, DSO0:, DS1:)
Repeat prefix (REPC, REPNC, REP, REPE, REPZ,
REPNE, REPNZ)

Bus lock prefix (BUSLOCK)

® Program execution is between the El instruction and
the next instruction (INT only)

Only an NMI request signal generated during the above
interrupt disable timing will be internally retained. The
request will be acknowledged on completion of the sub-
sequent single instruction.

6-4

INTERRUPTS DURING BLOCK
INSTRUCTIONS

If an external interrupt (NMI or INT with interrupts
enabled) occurs while a primitive block transfer, compar-
ison, or 170 instruction is being executed, the CPU will
acknowledge the interrupt and branch to the interrupt
address. At the beginning of the interrupt routine, the
contents of the CW register (a counter for block data) will
be saved to the stack. After the contents of the CW have
been restored at the end of the interrupt routine, the
execution of the CPU will be returned to the original
routine. In this manner, the interrupted block operation
is resumed.

If prefix instructions have existed before the block oper-
ation instruction, up to three will be retained.

When the program returns from the interrupt routine,
execution must return to the address at which the prefix
instruction is held. For this reason, the uPD70108/70116
modifies the return address (minus one address per
prefix instruction) when it is saved.

To best use the uPD70108/70116, do not place more than
three prefix instructions before a block operation
instruction.

Correct Example:
BUSLOCK
REPC
NMI — CMPBKB SS: src-block, dst-block

In the correct example, the BUSLOCK, REPC, and SS
instructions are executed when program execution has
been returned from the NMI interrupt process.

Incorrect Example:
BUSLOCK
REP
REPC
NMI — CMPBK SS: src-block, dst-block

In the incorrect example, only the REP, REPC, and SS
instructions will be executed when the program returns
from the NMI interrupt process. Since more than three
prefix instructions were placed before the block oper-
ation instruction, program execution incorrectly returns
to the REP instruction instead of the BUSLOCK
instruction.

NEC

Section
Reset Operation

To reset and initialize the uPD70108/70116, a positive
pulse must be present on the RESET pin for at least four
clock periods.

A CPU reset signal initializes the uPD70108/70116 as
follows.

® Clears the following registers to 0000H.
PFP (prefetch pointer)
PC (program counter)
SS (stack segment)
DSq (data segment 0)
DS (data segment 1)

® Sets PS (program segment) register to FFFFH

® Flushes the instruction queue

® Sets or resets the following PSW (program status
word(flags:
MD =1 (native mode)
DIR = 0 (address direction used during block
transfer, Autoincrements)
IE =0 (INT disabled)
BRK = 0 (single-step interrupt disabled)

All other registers are undefined.

After the reset signal returns to the low level, the CPU
begins execution of the program starting at address
FFFFOH.

7-1

vPD70108/70116 NEC

7-2

NEC

Section

Native and u/PD808O0OAF Emulation Modes

The uPD70108/70116 has two CPU operating modes:
native and 8080 emulation. In native mode, the
pPD70108/70116 executes all the instructions given in
Section 12, with the exception of the RETEM and CALLN
instructions. In 8080 mode, the microprocessor executes
the instruction set for the uPD8080AF and the RETEM
and CALLN instructions. These modes are selected by
special instructions or by using an interrupt. The most
significant bit of the PSW is a mode (MD) flag that con-
trols mode selection.

NATIVE AND 8080 MODE SHIFTING

When the operating mode is changed from native to
emulation or vice versa, the registers will be mapped into
the emulation mode as shown in figure 8-1. The lower
eight bits of the AW register and both the lower and
higher eight bits of the BW, CW, and DW registers of the
uPD70108/70116 serve as the accumulator and six
general-purpose registers of the uPD8080AF. Figure 8-2
shows the lower eight bits of the PSW of the uPD70108/
70116 serving as uPD8080AF flags. These flags corre-
spond to the lower eight bits of the PSW.

The SP register serves as the stack pointer of the
uPD8080AF in native mode while the BP register acts as
the stack pointer in the emulation mode. In this way, the
uPD70108/70116 employs independent stack pointers
and stack areas in each mode. Using independent stack
pointers prevents destruction of the contents of a stack
pointer in one mode due to misoperation of the stack
pointer in the other mode. The AH, SP, IX, and IY registers
and the four segment registers (PS, SS, DSp, DS+) are not
addressable from emulation mode.

In emulation mode, the segment base of the program is
determined by the PS register whose contents have been
specified by an interrupt vector before the CPU entered
emulation mode. The segment base of the memory oper-
ands (including the stack) is determined by the DS reg-
ister whose contents the programmer specifies before
the CPU enters emulation mode.

Figure 8.2. Corresponding PSW and Flags

The bus hold function (available by the hold request/
acknowledge signal) and standby function (available
when the HLT instruction is executed) can be used in
emulation mode in the same way as in native mode.

The uPD70108/70116 operates in terms of its normal
BCU hardware even in emulation mode. Therefore, I/0
operations between the uPD70108/70116 and peripheral
circuits or memory are exactly the same as those
performed in native mode. However, the BUSLOCK and
POLL functions are unavailable for use in emula-
tion mode.

Figure 8.1. Corresponding Registers

Native Mode 8080 Mode
AW l AL AC ACC
BW H L HL
cw B [BC
DW D E DE

SP

e —

PS *Code Segment

|

DSo *Data Segment

SS

DSq

PC

]
PSW l —I

Flags

'—_—PC
L

*User transparent in 8080 mode

49-000031A

. 9 8 7 6 4 3 2 1 0
7
IE BRK S z AC 0 P 1 cy PSW
s
’
7 6 4 3 2 1 0
s P4 AC 0 P 1 Cc Flag
49-000030A

8-1

vPD70108/70116

NEC

To determine externally if the uPD70108/70116 is in emu-
lation mode, confirm that the processor status PSj signal
output during a uPD70108/70116 bus cycle has become
high. This signal is always at a low level in native mode.
Figure 8-3 shows the mode shift operation of the CPU.

The CPU can reenter emulation mode when INT is pres-
ent (even if interrupts are disabled) and restart program
execution beginning with the instruction after the. HLT
instruction. This is true only if the CPU entered the
standby mode from emulation mode.

If RESET or NMI is present instead of INT — or if INT is
present while interrupts are enabled — the CPU will enter
native mode from standby mode. If this happens, the CPU
can reenter emulation mode from native mode; in other
words, from the NMI or INT interrupt routine in native
mode, through execution of the RETI instruction. If the
CPU entered standby mode from native mode, the CPU
can reenter native mode by inputting RESET, NMI, or INT
regardless of whether interrupts are disabled or enabled.

Figure 8-3. Mode Shift Operation of CPU

NATIVE TO 8080 EMULATION MODE

Two instructions cause the operating mode to be
changed from native the 8080 emulation mode. These
instructions are BRKEM (break for emulation) and RETI
(return from interrupt).

BRKEM immS8 Instruction

The BRKEM instruction starts the 8080 emulation mode.
It saves the contents of the PSW, PS, and PC, and resets
the MD flag to 0. The segment base and offset values are
then loaded into the PS and PC registers respectively
from the interrupt vector table. The interrupt vector
number is specified by the immediate operand of the
BRKEM instruction.

When the 8080 emulation mode is started by the BRKEM
instruction (MD = 0), the CPU executes the program in
the 64 Kbyte segment area specified by the contents of
the PS, starting from the address indicated by the con-

Bus Hold

RESET,
NMI, INT
Native Mode

. BN

Bus Hold

()

Standby Mode

INT (DI)

Emulation Mode

Bus Hold

49-0001428

8-2

NEC | Section 8
Native and x\PD808OAF Emulation Modes

tents of the PC. The instruction code fetched at this point
is interpreted as the uPD8080AF instruction and is exe-
cuted (figure 8-4).

RETI Instruction

The RETI instruction is generally used when returning
program execution to the main routine from an interrupt
routine started by an external interrupt or BRK, or CALLN
instruction. When the RETI instruction restores the con-
tents of the PSW, PS, and PC, it also restores the status
ofthe mode (MD) flag before the mode was changed from
8080 to native. This restored MD flag allows the CPU to
be returned to the emulation mode again (figure 8-5).

For this reason, if the RETI instruction is executed in
native mode at the end of the interrupt routine that has
been started by the interrupt instruction CALLN, or by an
external interrupt while the CPU is in 8080 mode, the
CPU can reenter 8080 mode.

8080 EMULATION TO NATIVE MODE

The following signals and instructions are used to
change the operating mode from 8080 to native.

® RESET

® NMIl or INT

® CALLN (call native)

® RETEM (return from emulation)

Figure 8-5. Shift from Native to 8080 Mode Using

RETI Instruction

PC

Memory Stack Area PS
! FLAG

| I .

Native Mode 8080 Emulation Mode

Register Set Register Set

~<—————— Native Mode 8080 Mode ————
49-000034A

Figure 8-4. Shift from Native to 8080 Emulation Mode Using BRKEM Instruction

PC
Memory
Ps Stack Area
PSW
r—=1
0——! MD |
[SR ——
- P—
Vector Table ! PSW it
imm8x4+2 Segment Base PS
imm8x4 Offset PC { PC J

Native Mode 8080 Emulation Mode
Register Set Register Set
8080 E ion Mode ——>

Native Mode

49-000035A

8-3

wPD70108/70116

NEC

RESET Operation

When the RESET signal is present, a reset operation is
performed on the CPU the same as in native mode. The
8080 emulation in progress is aborted.

NMiI or INT Operation

When the NMI or INT signal is present, the interrupt
process is performed the same as in native mode. Pro-
gram execution of the CPU will return to the main routine
from the interrupt routine in native mode. From native
mode, the CPU can reenter the 8080 emulation mode by
executing the RETI instruction (figure 8-6).

CALLN Instruction

The CALLN instruction is used exclusively in the emu-
lation mode when calling a native mode subroutine not
written in 8080 code. If the CALLN instruction is executed
in 8080 mode, it causes the CPU to save the contents
of the PS, PC, and PSW, and sets the mode flag to 1. This
instruction also loads the segment base of an interrupt

vector to the segment register (PS) and the offset to the
program counter (PC) (figure 8-6).

When the RETI instruction is executed at the end of the
interrupt routine, program execution can be returned to
the main routine in 8080 emulation mode from the inter-
rupt routine in native mode started by the CALLN
instruction.

RETEM Instruction

The RETEM instruction is used exclusively as a return
from 8080 mode to native mode when the BRKEM instruc-
tion caused the shift to the 8080 mode. The RETEM
instruction is executed in 8080 emulation mode; program
execution of the CPU will return from the BRKEM inter-
rupt routine to the main routine. Consequently, the con-
tents of the PS, PC, and PSW are restored and the CPU
reenters native mode. At this time, the MD flag (MD=1),
which was saved to the stack by the BRKEM instruction,
is restored, causing the CPU to enter native mode
(figure 8-7).

Figure 8-6. Shift From 8080 to Native Mode Using NMI, INT, or CALLN Instruction

PC
Memory Stack Area PS
4 FLAG
= - —
Interrupt Vector Table
PS Seg Base
PC Offset
Native Mode 8080 Emulation Mode
Register Set Register Set
«—————— Native Mode Emulation Mode
49-000033A

8-4

NEC Section 8
Native and x/PD808S8OAF Emulation Modes

Figure 8-7. Shift from 8080 to Native Mode Using RETEM Instruction

PC
PS Memory stack area
PSW
Native mode 8080 Emuiation mode
register set register set
Native mode Emulation mode
49-000032A

EMULATION NESTING

In a native mode called by CALLN or an NMI or INT
interrupt from emulation mode, emulation mode can-
not be called again by a BRKEM instruction. If this
nesting is attempted, MD won’t work normally, and
normal operation cannot be expected.

vPD70108/70116 NEC

8-6

NEC
Standby Mode
The uPD70108/70116 can operate in a standby mode.in EXITING STANDBY MODE BY

standby mode, program execution can be terminated
and resumed as required while retaining all internal state
information. The clock is not supplied to any circuitry
exceptthose required by the hold and standby functions.
As aresult, power consumption in the standby mode can
be reduced to approximately one-tenth of that required
for the native or emulation mode. All CPU registers pres-
ent before standby mode are retained.

ENTERING STANDBY MODE

Standby mode is entered whenever the HALT instruction
is executed in native or 8080 mode.

STATUS SIGNALS IN STANDBY MODE

Although the bus hold function can be used in the
standby mode, the CPU reenters the standby mode when
the hold acknowledge cycle is completed.

Table 9-1 shows the status of each output signal in
standby mode.

Table 9-1. Signal Status in Standby Mode
Output Signal Status
Large-scale QS4, QSp Fixed at low level

system mode

BS9-BSg Fixed at high level

BUSLOCK Fixed at high level (fixed at
low level if BUSLOCK
instruction was decoded

before HALT instruction)
Fixed at high level

Small-scale INTAK
system mode BUFEN

WR

RD

ASTB Fixed at low level

BUFR/W Fixed at either high or

10/M (uPD70108) low level

10/M («PD70116)

LBSO («PD70108)
Large-and UBE (uPD70116) Fixed at high level
small-scale o - i ither hi

19/PS3-A16/PSq Fixed at either high or

system modes Ay5-Ag (uPD70108) low level

AD7-ADg (uPD70108)
AD{5-ADg (uPD70116)

The control outputs are maintained at inactive levels
during the standby mode. The presence of a RESET
signal, an external interrupt (NMI or INT), or a bus request
from an external bus master will cause the uPD70108/
70116 to exit the standby mode.

EXTERNAL INTERRUPTS

The uPD70108/70116 will exit standby mode when NMI
or INT is asserted. When the standby mode is released
by an INT signal, the operation the CPU next performs
depends upon the state of the IE flag when the HALT
instruction is executed.

Releasing Standby Mode with NMI

Whether the CPU enters standby mode from the native
or emulation mode, the standby mode is unconditionally
released when the NMI interrupt is present. If the RETI
instruction is executed at the end of the NMI servicing
routine, the CPU will reenter the mode that existed before
the CPU entered the standby mode. The program is then
resumed starting from the instruction which immediately
follows the HALT/HLT instruction that caused the
standby mode.

Releasing Standby Mode with INT

When Interrupts are Disabled (DI). On exiting standby
mode, the CPU enters the mode that was set before
standby mode. For example, if standby mode was set
while the CPU was in native mode, the CPU returns to
native mode when it exits standby mode. If the CPU was
in emulation mode when standby mode was set, it returns
to the 8080 mode. Program execution will be resumed
starting from the instruction immediately following the
HALT or HLT instruction.

Note: When exiting the stanby mode by INT (interrupts disabled), INT
must be kept at a high level, until the instruction immediately
following the HALT/HLT instruction is executed. Therefore, INT
must remain at a high level for at least 15 clocks. This assumes
the instruction queue is empty after executing the HALT/HLT
instruction. If wait states are inserted, the number of inserted
wait states must be added to the 15 clocks.

When Interrupts are Enabled (El). Standby mode is
exited when the interrupt routine in native mode is
started, regardless of whether the CPU was in native or
emulation mode before standby mode was set. If a RETI
instruction is executed at the end of the interrupt routine,
the CPU will return to the mode that was present just
before standby mode was entered. Program execution
will start at the instruction immediately following the
HALT/HLT instruction.

EXITING STANDBY MODE BY RESET

Standby mode is unconditionally exited when RESET
becomes active regardless of whether the standby mode
was set while the CPU was in native or emulation mode.
On exiting the standby mode, a normal CPU reset oper-
ation is performed in the native mode.

uPD70108/70116 NEC

9-2

NEC

Section d|] @
Logical and Physical Addresses

The uPD70108/70116 has a 20-bit address bus (the
lower 8/16 bits are also used as a data bus) and can
access up to 1 Mbyte of memory area. The processor
employs a memory segment architecture that allows the
1 Mbyte memory area to be treated as logical addresses.
The logical addresses are not necessarily the same
number as the physical addresses where data is stored.

PHYSICAL ADDRESS GENERATION

To obtain a physical address, the contents of a segment
register are multiplied by 16 and an offset value known
as the “effective address” is then added to the segment
register. The result is used as a physical address. The
contents of the segment register and the offset value are
treated as unsigned data. Also, since the segment reg-
ister value is multiplied by 16, the segment register may
only access physical memory locations which are on a
16 byte boundary; for example, locations 00H, 10H 20H,
and so on.

Figure 10-1 shows the relation between a segment reg-
ister, offset, and physical address.

Using the memory segment method of addressing, you
can write programs and only be concerned with the
contents of the segment registers and the offset value of
the contents. The contents of the segment registers may
be a default or specified as an override. If the contents
of a segment register constitute address 0, the offsets of
the addresses in the segment specified by that segment
register can be treated as logical addresses.

A program written as a aggregate of segments specified
by logical addresses is compiled, assembled, and treated
as object modules. Each object module has its own seg-
ment name, size, partition, and control information.
These object modules are tied together by the linker and
the segment bases corresponding to physical addresses
are specified. The object modules can then be loaded
into memory.

Figure 10-1. Physical Addressing

Unless a specific program is executing an instruction
that modifies a segment base — for example, a branch
instruction or a variable reference in another segment
— the addresses in the program can be determined by
the offset from the contents of a segment register. The
program can be loaded to any memory area simply by
loading the contents of the segment reigster with the first
physical address of the memory area to which the pro-
gram is to be loaded.

By using segmentation, a program stored in an external
file such as a floppy disk can be loaded to any available
buffer memory. It will run when the program is called by
the program currently being executed by the CPU. In this
manner, a program stored in afile or separated into many
files can be loaded to an available memory area. This
is called “dynamically relocatable code.”

MEMORY SEGMENTS

Four types of segments are used: Program, Stack, Data
0, and Data 1. The physical address in memory of a
segmentlocation is calculated by shifting the value in the
segment register to the left four places. An offset value
(“effective address”) is then added to the shifted segment
register value; this sum is the physical address.

The logical segment is specified by one of the four 16-bit
registers: PS, SS, DS0, DS1. Each 16-bit register corre-
sponds to one of four logical segments as follows:

Segment Register Default Offset
PS PFP
SS SP, Effective Address
DSO IX, Effective Address
DS1 lY, Effective Address

The function of each segment register is described:
below.

19

43 0

16-Bit Segment Register

0 Segment Register x 16

+

0

16-Bit Offset

Effective Address

19

20-Bit Physical Address

49-000038A

10-1

uPD70108/70116

NEC

Program Segment

The first address of the program segment is determined
by the program segment (PS) register. The offset from the
first address is specified by the prefetch pointer (PFP).
This segment is primarily used for instruction codes.
Data in this segment can be accessed as general var-
iables or source block data by using the segment over-
ride prefix (PS:) instruction.

Stack Segment

The first address of the stack segment is determined by
the stack segment (SS) register. The offset from the first
address is specified by the stack pointer (SP). This seg-
ment is used as an area that saves the contents of the
PC (return address), PSW, and general purpose registers.
The data in the stack segment can be accessed by using
the segment override prefix (SS:) instruction.

When addressing the stack, the SS register automatically
becomes the segment register if the BP register is spec-
ified as the base register. The offset is specified by the
effective address.

10-2

Data Segment 0

The first address of data segment 0 is determined by the
contents of data segment 0 (DS0) register. The offset from
the first address is specified by an effective address.
When executing a block transfer or BCD string operation
instruction, this segment is used to store the source block
data. However, the offset is determined then by the con-
tents of the IX register.

When the BP is specified as base register, the default
segmentregister is SS. In this case, you can override with
the segment override prefix (DS0:), and the data in data
segment 0 can be addressed with DSO + BP.

Data Segment 1

The first address of data segment 1 is determined by the
data segment 1 register (DS1). The offset from the first
address is specified by the Y register. This segment is
used to store the destination block data when executing
a block transfer or BCD string operation instruction. The
data in this segment can be accessed as general var-
iables (offset determined by an effective address). The
data can also be accessed as source block data (offse?
determined by the contents of the IX register).

NEC

Section
Addressing Modes dl] lﬂ

INSTRUCTION ADDRESS

The current address of the uPD70108/70116 program
counter (PC) is automatically incremented to the starting
location of the next instruction every time the current
instruction is about to be executed. In addition, the
microprocessor employs the following instruction ad-
dressing modes:

® Direct

Relative

® Register
Register Indirect
Indexed

Based

Based Index

Direct Addressing

In direct addressing, two bytes of immediate instruction
data are directly loaded to the PC or, two bytes are loaded
into the PS and two other bytes are loaded into the PC.
The immediate data is then used by the PS and PC as
a branch address. Direct addressing is used when
executing the following instructions:

CALL far-proc
CALL memptr16
CALL memptr32
BR far-label
BR memptr16
BR memptr32

Relative Addressing

In relative addressing, 1 or 2 bytes of immediate instruc-
tion data are treated as a signed displacement value and
added to the contents of the PC. The result of this addition
is the effective address and is used as a branch address.

The sign bit of an 8-bit displacement value is extended
and added to the contents of the PC as a 16-bit value.
When addition is performed, the contents of the PC
indicate the first address of the next instruction.

Relative addressing is used when executing the follow-
ing instructions:

CALL near-proc
BR near-label
BR short-label

Conditional branch instruction short-label

Register Addressing

In register addressing, the contents of any 16-bit register
specified by the 3-bit register field in the instruction are
loaded to the PC as a branch address. This addressing
method allows the use of all eight 16-bit registers (AW,
BW, CW, DW, IX, 1Y, SP, and BP). Register addressing is
used when executing the following instructions:

CALL regptr16

BR regptr16
Example:

CALL AW

BR BW

Register Indirect Addressing

In register indirect addressing, a 16-bit register (IX, IY, or
BW) is specified by the register field in an instruction. The
specified register then addresses memory.

The addressed contents are then loaded to the PC (or
to both the PC and PS) as a branch address.

CALL memptri6

CALL memptr32

BR memptri16

BR memptr32

Example:

CALL WORD PTR [IX]
CALL DWORD PTR [IY]
BR WORD PTR [BW]
BR DWORD PTR [iX]

Note: Instruction code memptr16 and memptr32 are generated by the
assembler in response to keywords WORD PTR, and DWORD
PTR, respectively.

Indexed Addressing

In indexed addressing, 1 or 2 bytes of immediate data
in an instruction are treated as a signed displacement
value and are added to the contents of a 16-bit register
that serves as an index register (IX or 1Y).

The result of this addition addresses memory and is
loaded to the PC as a branch address.

CALL memptr16
CALL memptr32
BR memptri16
BR memptr32

NEC

uPD70108/70116
Example:

CALL var[IX][2]

CALL var [IY]

BR var [IY]

BR var [IX + 4]
Based Addressing

In based addressing, 1 or 2 bytes of immediate data in
an instruction are treated as a signed displacement value
and are added to the contents of a 16-bit register (BP
or BW) that serves as a base register. The contents of
the memory addressed by the result of this addition are
loaded to the PC as an effective address.

Based addressing is used when executing the following
instructions:

CALL memptr16

CALL memptr32

BR memptr16

BR memptr32

Example:

CALL var [BP + 2]
CALL var [BP]

BR var [BW] [2]
BR var [BP]

Note: Instruction code memptr16 is generated by the assembler if
variable var has a word attribute. If it has a double word attribute,
instruction code memptr32 is generated.

Based Indexed Addressing

In based indexed addressing, 1 or 2 bytes of immediate
data in an instruction are treated as a signed displace-
ment value. This value is added to the contents of a 16-bit
register that serves as a base register (BP or BW) and
to the contents of a 16-bit register that serves as an index
register (IX or IY). The result of this addition is the effective
address. The addressed memory contents are loaded to
the PC as a branch address. Based indexed addressing
is used when executing the following instructions:

CALL memptr16

CALL memptr32

BR memptr16

BR memptr32
Example:

CALL var [BP] [IX]
CALL var [BW + 2] [IY]
BR var [BW] [2] [IX]
BR var [BP + 4] [lY]

Note: Instruction code memptr16 is generated by the assembler if
variable var has a word attribute. Ifit has a double word attribute,
instruction code memptr32 is generated.

11-2

MEMORY OPERAND ADDRESS

Several addressing modes and registers are used for
particular instruction formats. The memory operand
addressing modes are listed below and discussed in the
following sections.

® Register
® Immediate

® Direct

® Register Indirect

® Autoincrement/Decrement
® Indexed

® Based

® Based Indexed

® Bit

Register Addressing

In register addressing, the contents of the register field
(reg = 3-bit field, sreg = 2-bit field) in an instruction,
addresses a register. See figure 11-1.

Figure 11-1. Bit Format

7 0 7 54 32 0

Opcode Diw Mod Sreg Reg

49-000655A

The 3-bit field “reg” is used with bit W of the same
instruction and indicates whether a word or a byte reg-
ister is to be specified. Eight types of word registers (AW,
BW, CW, DW, BP, SP, IX, IY) and eight types of byte reg-
isters (AL, AH, BL, BH, CL, CH, DL, DH) are specified.

The 2-bit field “sreg” specifies four types of segment
registers (PS, SS, DSp, and DS4). Sometimes the oper-
ation code of an instruction specifies a register. Register
addressing is employed when executing instructions
that have the following operand formats:

Format Item
reg AW, BW, CW, DW, SP, BP, IX, IY, AL AH,
BL, BH, CL, CH, DL, DH
reg16 AW, BW, CW, DW, SP, BP, IX, IY
reg8 AL, AH, BL, BH, CL, CH, DL, DH
sreg PS, SS, DSg, DS
acc AW, AL
Example:
When MOV reg,reg is specified:
MOV BPSP
MOV AL,CL

NEC

Section 11
Addressing Modes

Immediate Addressing

In immediate addressing, one or two bytes of immediate
data in an instruction are used.

Immediate addressing is used when executing instruc-
tions that have the following operand formats:

Format item
imm 8/16-bit immediate data
imm16 16-bit immediate data
imm8 8-bit immediate data
pop-value 16-bit immediate data

Ifimm is specified alone, the assembler checks the value
of imm written as an operand or the attribute of other
operands that may be written at the same time. The
assembler then judges whether the value of imm is 8 or
16 bits. The status of the word/byte specifying bit W is
then determined.

Example:
When MOV reg,imm is specified:
MOV AL,5 ;Byte — specified by AL.
When MUL reg16, reg16, imm16 is specified:
MUL AW,BW,1000H ;word — specified by
;AW and BW.
Direct Addressing

In direct addressing, the immediate data in an instruction
addresses memory.

Direct addressing is used when executing the instruc-
tions that have the following operand formats:

Format Item
mem 16-bit variable specifying 8 or 16-bit
memory data
dmem 16-bit variable specifying 8 or 16-bit
memory data
imm4 4-bit variable specifying bit length of
the bit field data
Example:
When MOV mem,imm is specified:

MOV WORDVAR, 2000H
MOV acc,dmem is specified:
MOV AL, BYTEVAR

When

Register Indirect Addressing

In register indirect addressing, a 16-bit register (X, IY, or
BW) is determined by the register field in an instruction.
The specified register then addresses memory.

Register indirect addressing is used when executing the

instructions that have the following operand formats:
Method

(X, [1Y], [BW]

Format
mem

Example:
When SUB mem,reg is specified:

SUB [IX],AW

Autoincrement/Decrement Addressing

Autoincrement/decrement addressing falls into the cate-
gory of register indirect addressing.

The contents of a default register addresses a register
or memory. Then — if a byte operation is performed —
the contents of the default register are automatically
incremented/decremented by one. If a word operation
is used, the register contents are incremented/decre-
mented by two. The address is automatically modified by
this addressing function. This addressing method is
always applicable to default registers and is used when
executing the instructions that have the following oper-
and formats:

Format Default Register
dst-block Y
src-block IX

This addressing will control block data instructions when
it is used in combination with counter CW that counts
the number of repetitions of the operation.

Indexed Addressing

In indexed addressing, one or two bytes of immediate
data in an instruction are treated as a signed displace-
ment value and are added to the contents of a 16-bit
register that serves as an index register (IX or 1Y). The
result of this addition forms the effective address used
to address a memory operand. Indexed addressing is
useful when accessing an array of data. The displace-
ment value indicates the starting address of the array.
The contents of the index register determine the address
of the data to be accessed.

This addressing method is employed when executing the
instructions that have the following operand formats:

Format Method
mem var [IX], var [IY]
mem16 var [IX]
mem8 var [IX]
Example:

When TEST mem,imm is specified:

TEST BYTEVAR([IX], 7FH

TEST BYTEVAR(IX+8], 7FH

TEST WORDVARI[IX] [8], 7FFFH

Note: If variable var has a byte attribute, a byte operand is speci-
fied. If it has a word attribute, a word operand is specified.
The assembler generates an instruction code to each
operand.

NEC

vPD70108/70116

Based Addressing Format Item

In based addressing, one or two bytes of immediate data mem - var [base register] [index register]
in an instruction are treated as a signed displacement mem16 var [base register] [index register]
value and are added to the contents of a 16-bit base mem8 var [base register] [index register]
register that serves as a base register (BP or BW). The Example:

result of this addition forms the effective address used When PUSH memi16 is specified:

to address a memory operand. PUSH WORD-VAR [BP] [IX]

Based addressing is useful to access structural data that PUSH WORD-VAR [BP+2] [IX+6]

is stored at separate memory locations. The base register PUSH WORD-VAR [BP] [4] [IX] [8]

indicates the starting address of each structuraldataand .

the displacement value selects one piece of data from Bit Addressing

each structural data.

This addressing method is employed when executing the
instructions that have the following operand formats:

Format Method
mem var[BP],var[BW]
mem16 var[BP]
mems8 var[BP]
Example:
When SHL mem,1 is specified:
SHL BYTEVARI[BP}],1
SHL WORDVAR[BP+2],1
SHL BYTEVAR[BP] [4],1

Note: If variable var has a byte attribute, a byte operand is specified.
If it has a word attribute, a word operand is specified. The
assembler generates an instruction code corresponding to
each operand.

Based Indexed Addressing

One or two bytes of immediate data in an instruction are
treated as a signed displacement value that is added to
the contents of two 16-bit registers. One of the registers
is a base register (BP or BW) and the other is an index
register (IX or 1Y). The result of the addition forms the
effective address that is used to address a memory
operand.

Since based indexed addressing allows accessing data
by modifying the contents of both the base and index
registers, it is useful when accesing arrays of structural
data.

For example, the contents of the base register indicate
the first address of each structural data. The displace-
ment value in turn indicates the offset from that first
address to the first address of a data array. The index
register indicates a specific data in the data array.

Based indexed addressing is used when executing
instructions that have the following operand formats:

In bit addressing, three or four bits of immediate data in
an instruction, or the lower three or four bits of the CL
register, specify one bit of an 8 or 16-bit register or
memory location.

With bit addressing, a specific single bit in a register or
memory can be tested for 0 or 1, set, cleared, or inverted
without affecting the other bits. When using the AND or
OR instruction to set or reset a bit, a byte or word mask
has to be prepared to change one bit. Bit addressing is
used when executing the instructions that have the
following operand formats:

Format Item
imm4 Bit number of word operand
imm3 Bit number of byte operand
CL CL
Example:
TEST1 reg8,CL
TEST1 ALCL
NOT1 reg8,imm3
NOT1 CL5
CLR1 mem16,CL
CLR1 WORDVARI[IX],CL
SET1 mem16,imm4
SET1 WORDVAR[BP],9

NEC

Section
Instruction Set ﬂ 2

The following sections include instruction formats,
descriptions, and examples for the uPD70108/70116
instruction set. For an alphabetical listing by instruction
mnemonic, see Appendix A.

The number of clocks assumes the instruction byte(s)
have been prefetched and includes the following times:

® Decoding
® EA generation
® Operand fetch
® Execution

The following is a description of the contents of tables
12-1 through 12-7.

Table Contents

12-1 Identifier and description for the different
types of uPD70108/70116 operands

12-2 Identifiers and descriptions for uPD70108/
70116 instruction words

12-3 Identifier and description of the operations
for the uPD70108/70116 instruction set

12-4 Identifier and description for the different
status flags

12-5 Information about memory addressing,
to selection of 8- and 16-bit registers,
12-7 and selection of segment registers.

Table 12-1. Operand Types

Identifier Description

reg 8- or 16-bit general-purpose register

reg8 8-bit general-purpose register

regi6 16-bit general-purpose register

mem 8- or 16-bit memory location

mem8 8-bit memory location

mem16 16-bit memory location

mem32 32-bit memory location

dmem 16-bit direct memory address

imm 8- or 16-bit immediate data

imm3 3-bit immediate data

imm4 4-bit immediate data

imm8 8-bit immediate data

imm16 16-bit immediate data

acc AW or AL accumulator

sreg Segment register

src-table Name of 256-byte transiation table

src-block Name of source block addressed by IX register

dst-block Name of destination block addressed by
1Y register

near-proc Procedure within the current program segment

far-proc Procedure located in another program segment

near-label Label in current program segment

short-label Label within range of —128 or +127 bytes
from end of instruction

far-label Label in another program segment

regptr16 16-bit general-purpose register containing an
offset within the current program segment

memptri6 16-bit memory address containing an offset
within the current program segment

memptr32 32-bit memory address containing the offset
and segment data of another program segment

pop-value Number of bytes of the stack to be discarded
(0-64K, usually even addresses)

fp-op Immediate value to identify instruction code
of the external floating point processer chip

R Register set (AW, BW, CW, DW, SP, BP,
1X, 1Y)

DS1-spec (1) DSy
(2) Segment of group name assumed to DSq

Seg-spec (1) Any name or segment register
(2) Segment or group name assumed to

segment register :
[1 Optional, may be omitted

12-1

NEC

Table 12-3. Operation Description

wPD70108/70116

Table 12-2. Instruction Words

Identifier Description Identifier Description
w Word/Byte specification bit (1 = word, AW Accumulator (16 bits)
0= by'te) . — AH Accumulator (high byte)
reg % 3 g-?;tgeneral register specification bit AL Accumulator (low byte)
mod,mem Memory addressing specification bits BW BW register (16 bits)
(mod = 00-10, mem = 000-111) cw CW register (16 bits)
(disp-low) Optional 16-bit displacement lower byte CL CL register (low byte)
(disp-high) Optional 16-bit displacement higher byte DW DW register (16 bits)
disp-low 16-bit displacement lower byte for PC relative SP Stack pointer (16 bits)
addition PC Program counter (16 bits)
disp-high 16-bit displacerent higher byte for PG PSW Program status word (16 bits)
imm3 3-bit immediate data IX Index register (source) (16 bits)
imma 4-bit immediate data PS Program segment register (16 bits)
imm8 8-bit immediate data DS1 Data segment 1 register (16 bits)
imm16-low 16-bit immediate data lower byte Dso Data segment 0 register (16 bits)
imm16-high 16-bit immediate data higher byte S8 Stack segment register (16 bits)
addr-low 16-bit direct address lower byte AC Awiiliary carry flag
addr-high 16-bit direct address higher byte cy Cary flag
sreg Segment register specification bit Parity flag
s Sign-extension specification bit (1 = sign Sign flag
extension, 0 = no sign extension) Zero flag
offset-low Low byte of 16-bit offset data loaded to PC DIR Direction flag
offset-high High byte of 16-bit offset data loaded to PC IE Interrupt enable flag
seg-low Low byte of 16-bit segment data loaded \' Overflow flag
o PS _ _ — BRK Break flag
opelon - Loueo tob s it e
pop-value-high High byte of 16-bit data which specifies () Values in parentheses are memary contents
number of bytes of stack to be discarded disp Displacement (8 or 16 bits)
disp8 8-bit displacement added to PC temp Temporary register (8, 16, or 32 bits)
X Operation codes for external floating point seg Immediate segment data (16 bits)
6\)((\)((processor chip offset Immediate offset data (16 bits)
72 -— Transfer direction
+ Addition
- Subtraction
X Multiplication
+ Division
% Modulo
AND Logical and
OR Logical or
XOR Exclusive or
XXH 2-digit Hexadecimal data
XXXXH 4-digit Hexadecimal data

12-2

N E C Inst:li‘::i‘:ins‘ezt

Table 12-4. Flag Operations Table 12-6. Selection of 8- and 16-Bit Registers
Identifier Description reg wW=0 w=1
(blank) No change 000 AL AW
0 Cleared to 0 001 CL- CwW
1 Set to 1 010 DL DW
X Set or cleared according to the result 011 BL BW
u Undefined 100 AH SP
R Value saved earlier is restored 101 CH BP
110 DH IX
Table 12-5. Memory Addressing 111 BH Iy
mod
mom 00 o1 10 Table 12-7. Selection of Segment Registers
000 BW + IX BW + IX + disp8 BW + IX + disp16 sreg
001 BW + IY BW + IY + disp8 BW + IY + disp16 00 DS1
010 BP + IX BP + IX + disp8 BP + IX + disp16 01 PS
011 BP + 1Y BP + 1Y + disp8 BP + IY + disp16 10 sS
100 IX IX + disp8 IX + disp16
101 Y IY + disp8 IY + disp16 11 DSO
110 Direct Address BP + disp8 BP + disp16
11 BW BW + disp8 BW + disp 16

12-3

uPD70108/70116
DATA TRANSFER MOV mem,reg
MOV reg,reg Move register to memory
Move register to register 7 0
T T T T T T |
7 0 1 0 0 0 1 0 0
1 T T T T T |
1 6 o o 1 0 1 T I T | | T T
mod reg mem
1 T T T T | T
1 1 reg reg T T T T
(disp-low)
reg < reg | 1 l
Transfers the contents of the 8- or 16-bit register spec- (disp-high)

ified by the second operand to the 8- or 16-bit register
specified by the first operand.

Bytes: 2
Clocks: 2
Transfers: None
Flag operation: None
Example:
MOV BP,SP
MOV AL,CH

12-4

(mem) <« reg

Transfers the contents of the 8- or 16-bit register spec-
ified by the second operand to the 8- or 16-bit memory
location specified by the first operand.

Bytes: 2/3/4

Clocks:
WhenW=0: 9
When W=1: 13, uPD70108

13, uPD70116 odd addresses
9, uPD70116 even addresses

Transfers: 1

Flag operation: None
Example:
MOV [BP][IX],AW
MOV BYTE_VAR,BL

N E C Instli‘:::i:ns.'e%

MOV reg,mem MOV mem,imm
Memory to register Immediate data to memory
7 0 7 0
u T T T T T 1 1 T T T T 1 T
1 0 0 0 1 0 1 W 1 1 0 0 0 1 1
T | T T T T T T T T | | T T
mod reg mem mod 0 0 0 mem
T] T T T T T T |
(disp-low) (disp-low)
| T T 1 T
(disp-high) " T T (disp-high)'
— T T T 1
reg < (mem) imm8- or imm16-low
Transfers the 8- or 16-bit memory contents specified by
the second operand to the 8- or 16-bit register specified l | l imm 1[6-hi hl l
by the first operand. 9
Bytes: 2/3/4 (mem) < imm
Clocks: Transfers the 8- or 16-bitimmediate data specified by the
When W=0: 11 second operand to the 8- or 16-bit memory location
When W =1: 15, uPD70108 addressed by the first operand.
15, uPD70116 odd addresses _
11, uPD70116 even addresses Bytes: 3/4/5/6
Transfers: 1 Clocks:
) When W=0: 11
Flag operation: None When W =1: 15, uPD70108
Example: 15, uPD70116 odd addresses
MOV AW,[BW][IY] 11, uPD70116 even addresses
MOV CL,BYTE_VAR Transfers: 1

Flag operation: None

Example:

MOV BYTE PTR [BP][IX],0

MOV WORD PTR [BW],12

MOV [BP][IX],5 ;Note: assembler assumes
;WORD PTR as default.

MoV BYTE_VAR,123

MOV WORD_VAR,1000H

12-5

uPD70108/70116
MOV reg,imm MOV acc,dmem
Immediate data to register Memory to accumulator
7 3 2 0 7 0
| T T T T T T T | T T | T T
1 0 1 1 w reg 1 0 1 0 0 0 0
T | T T | T
|] imr|n8- or imm16|-low | addr-low
T | T T | | T T
imm16-high addr-high

reg «— imm

Transfers the 8- or 16-bitimmediate data specified by the
second operand to the 8- or 16-bit register specified by
the first operand.

Bytes: 2/3

Clocks: 4

Transfers: None

Flag operation: None
Example: MOV BP,8000H

12-6

When W = 0 AL < (dmem)
When W =1 AH <« (dmem + 1), AL < (dmem)

Transfers the memory contents addressed by the second
operand to the accumulator (AL or AW) specified by the
first operand.

Bytes: 3
Clocks:
When W=0: 10
When W =1: 14: uPD70108

uPD70116 odd addresses
10: uPD70116 even addresses

Transfers: 1

Flag operation: None

Example:

MOV AWWORD_VAR
MOV AL,BYTE_VAR

NEC

Section 12
Instruction Set

MOV dmem,acc

Accumulator to memory

T T T
addr-low

T T |
addr-high

When W = 0, (dmem) < AL
When W = 1, (dmem + 1) < AH, (dmem) <« AL

Transfers the contents of the accumulator (AL or AW)
specified by the second operand to the 8- or 16-bit mem-
ory location addressed by the first operand.

Bytes: 3
Clocks:
WhenW=0: 9
When W =1: 13, uPD70108

13, uPD70116 odd addresses
9, uPD70116 even addresses

Transfers: 1

Flag operation: None
Example:

MOV WORD_VARAW
MOV BYTE_VARAL

MOV sreg,regi6

Register to segment register

T T
sreg reg

sreg < reg16 sreg: SS,DS(, DS

Transfers the contents of the 16-bit register specified by
the second operand to the segment register (except PS)
specified by the first operand. External interrupts (NMI,
INT) or a single-step break is not accepted between this
instruction and the next.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation: None
Example: MOV SS,AW

12-7

uPD70108/70116
MOV sreg,mem16 MOV regi6,sreg
Memory to segment register Segment register to register
7 7 0
T T 1 T T T T 1 T T T 1 |
1 0 0 0 1 1 1 1 0 0 0 1 1 0 0
| T T T T T T T T T T T T 1
mod 0 sreg mem 1 1 0 sreg reg
T T T T T T
(disp-low) reg 16 <« sreg
' : | | Transfers the contents of the segment register specified
(disp-high) by the second operand to the 16-bit register specified

sreg < (mem16) sreg: SS,DS;,DS4

Transfers the 16-bit memory contents addressed by the
second operand to the segment register (except PS)
specified by the first operand. However, external inter-
rupts (NMI, INT) or a single-step break is not accepted
during the period between this instruction and the next.

Bytes: 2/3/4
Clocks:
WhenW=0: 11
When W =1: 15, uPD70108

15, uPD70116 odd addresses
11, uPD70116 even addresses

Transfers: 1

Flag operation: None
Example:
MoV DSO,[BW][IX]
MOV SS,WORD_VAR

12-8

by the first operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation: None
Example: MOV AW,DS1

NEC

Section 12
Instruction Set

MOV mem16,sreg

Segment register to memory

u T 1 T T T |
1 0 0 0 1 1 0
T T T T T T T
mod 0 sreg mem
| T LI T T
(disp-low)
| T T . 1 1
(disp-high)

(mem16) <« sreg

Transfers the contents of the segment register specified
by the second operand to the 16-bit memory location
addressed by the first operand.

Bytes: 2/3/4

Clocks:
WhenW=0: 10
When W =1: 14, uPD70108
14, uPD70116 odd addresses
10, uPD70116 even addresses

Transfers: 1
Flag operation: None
Example:

MOV [IX},PS

MOV DS0,reg16,mem32
32-bit memory to 16-bit register and DSO
7 0
T T T T T T T
1 1 0 0 0 1 0
T | T T T | T
mod reg mem
T T T T
(disp-low)
T T T . 1
(disp-high)

reg 16 < (mem32)
DSy «— (mem32 + 2)

Transfers the lower 16 bits (offset word of a 32-bit pointer
variable) addressed by the third operand to the 16-bit
register specified by the second operand, and the higher
16 bits (segment word) to the DSy segment register.

Bytes: 2/3/4
Clocks:

26, uPD70108
26, uPD70116 odd addresses
18, uPD70116 even addresses

Transfers: 2
Flag operation: None
Example: MOV DS0,BW,DWORD_VAR

12-9

uPD70108/70116

MOV DS1,reg16,mem32
32-bit memory to 16-bit register and DS4

MOV AH,PSW
PSW to AH

7
| T T T T T T
1 1 0 0 0 1 0
T T T ! l T T
mod reg mem
I T | | | T
(disp-low)
T T T T
(disp-high)
reg16 < (mem32)

DS1 «— (mem32 + 2)

Transfers the lower 16 bits (offset word of a 32-bit pointer
variable) addressed by the third operand to the 16-bit
register specified by the second operand, and the higher
16 bits (segment word) to the DS segment register.

Bytes: 2/3/4

Clocks:
26, uPD70108
26, uPD70116 odd addresses
18, uPD70116 even addresses

Transfers: 2
None
DS1,lY,DWORD_VAR

Flag operation:
Example: MOV

12-10

AH <« S, ZX,AC X,PX,CY

Transfers flags S, Z, AC, P, and CY of PSW to the AH
register. Bits 5, 3, and 1 are undefined.

Bytes: 1
Clocks: 2
Transfers: None

Flag operation: None

Example: MOV AH,PSW

NEC

Section 12
Instruction Set

MOV PSW,AH
AH to PSW
7

S,ZX,ACX,PX,CY «— AH

Transfers bits 7, 6, 4, 2, 0 of the AH register to flags S,
Z, AC, P, and CY of PSW.

Bytes: 1
Clocks: 3
Transfers: None

Flag operation:

Vv S Z | AC P | CY
X X X X X
Example: MOV PSW,AH

LDEA reg16, mem16

Load effective addregs to register

1

7 0
| | | T T I T
1 0 0 0 1 1 0
T T T T T T |
mod reg mem
T 1 | T
(disp-low)
1 T . 1 T
(disp-high)

reg16 <— mem16

Loads the effective address (offset) generated by the
second operand to the 16-bit general-purpose register
specified by the first operand. Used to set starting
address values to the registers that automatically specify
the operand for TRANS or block instructions.

Bytes: 2/3/4

Clocks: 4

Transfers: None

None
BW,TABLE[IX]

Flag operation:
Example: LDEA

12-11

vPD70108/70116

TRANS no operand XCH reg,reg

TRANS src-table . . :

TRANSB no operand Exchange register with register

Translate byte ’ I T i l l T T 0
7 0 1 0 0 0 0 1 1

AL « (BW + AL)

Transfers to the AL register one byte specified by the BW
and AL registers from the 256-byte conversion table. This
time, the BW register specifies the starting (base)
address of the table, while the AL register specifies the
offset value within 256 bytes of the starting address.

Bytes: 1
Clocks: 9
Transfers: 1
Flag operation: None
Example:

TRANS
TRANS
TRANSB

TABLE

12-12

reg « reg

Exchanges the contents of the 8- or 16-bit register spec-
ified by the first operand with the contents of the 8- or
16-bit register specified by the second operand.

Bytes: 2
Clocks: 3
Transfers: None
Flag operation: None
Example:
XCH cw,BW
XCH AH,AL

NEC

Section 12
Instruction Set

XCH mem,reg
XCH reg,mem

Exchange memory with register

7 0
T T T T T T T
1 0 0 0 0 1 1 W
T T T T T T T
mod reg mem
T T I— T |
(disp-low)
T T T . 1 T
(disp-high)

(mem) < reg

Exchanges the 8- or 16-bit memory contents addressed
by the first operand with the contents of the 8- or 16-bit
register specified by the second operand.

Bytes: 2/3/4

Clocks:
When W=0: 16
When W=1: 24, uPD70108
24, yPD70116 odd addresses
16, uPD70116 even addresses
Transfers: 2
Flag operation: None

Example:
XCH WORD_VAR,CW
XCH AL, TABLE[BW]

XCH AW,reg16
XCH reg16,AW

Exchange accumulator with register

AW « reg16

Exchanges the contents of the accumulator (AW only)
specified by the first operand with the contents of the
16-bit register specified by the second operand.

Bytes: 1
Clocks: 3
Transfers: None
Flag operation: None

Example:
XCH AWDW
XCH CWAW

12-13

uPD70108/70116

REPEAT PREFIXES REPNC (no operand)

REPC (no operand) Repeat while no carry

Repeat while carry 7 1 | | | | 1 | 0
7 0 0 1 1 0 0 1 0

While CW 0, the block comparison instruction
(CMPBK or CMPM) placed in the following byte is exe-
cuted and CW is decremented (—1). If the result of the
block comparison instruction is CY # 1, the instruction
terminates. CW is checked against the condition imme-
diately before the execution of the block comparison
instruction. Therefore, if CW = 0 the first time the REPC
instruction is executed, the program will proceed imme-
diately to the instruction following the block comparison
instruction and the block comparison instruction will not
be executed atall. The contents of CY immediately before
the first execution of the REPC instruction are “don’t
care.”
Bytes: 1
Clocks: 2
Transfers: None
Flag operation: None

Example: REPC CMPBKW

12-14

While CW 0, the block comparison instruction
(CMPBK or CMPM) placed in the following byte is exe-
cuted and CW is decremented (—1). If the result of the
comparison instruction is CY = 1, the instruction termi-
nates. CW is checked against the condition immediately
before the execution of the block comparison instruction.
Therefore, if CW = 0 the first time the REPNC instruction
is executed, the program will proceed immediately to the
instruction following the block comparison instruction
and the block comparison instruction will not be exe-
cuted at all. The contents of CY immediately before the
first execution of the REPNC instruction are “don’t care.”

Bytes: 1
Clocks: 2
Transfers: None
Flag operation: None

Example: REPNC CMPMB

NEC

Section 12
Instruction Set

REP/REPE/REPZ
Repeat/repeat while equal/repeat while zero

REP
REPE/REPZ

(no operand)
(no operand)

While CW # 0, the following instruction is executed and
CW is decremented (—1).

REP is used with MOVBK, LDM, STM, OUTM, or INM
instructions and performs repeat operations while
CW # 0. The Z flag is disregarded.

REPZ or REPE is used with the CMPBK or CMPM
instruction. A program will exit the loop if the comparison
result by each block instruction is Z# 1 or when CW
becomes 0.

CW is checked against the condition immediately before
the execution of REP/REPE/REPZ instruction. Conse-
quently, if CW=0 the first time the REP/REPE/REPZ
instruction is executed, the program will move to the
instruction following the block instruction and the block
instruction will not be executed at all.

A zero flag check is performed against the result of the
block instruction. The contents immediately before the
first execution of the REPE/REPZ instruction are
“don’t care.”

Bytes: 1
Clocks: 2
Transfers: None
Flag operation: None

Example:
REP MOVBKW
REPZ CMPBKW
REPE CMPMB

REPNE/REPNZ (no operand)

Repeat while not equal/repeat while not zero

While CW#0, the block comparison instruction
(CMPBK, CMPM) is executed and CW is decremented
(—1). If the result of the block comparison instruction is
Z # 0 or CW becomes 0, the instruction terminates. CW
is checked against the condition immediately before the
execution of the block comparison instruction. Conse-
quently, if CW =0 the first time the REPNE/REPNZ
instruction is executed, the program will proceed imme-
diately to the instruction following the block comparison
instruction, and the block comparison instruction will not
be executed at all.

A zero flag check is performed to test the result of the
block comparison instruction. The contents of Z imme-
diately before the first execution of the REPNE/REPNZ
instruction are “don’t care.”

Bytes: 1
Clocks: 2
Transfers: None
Flag operation: None

Example:
REPNE CMPMB
REPNZ CMPBKW

12-15

uPD70108/70116

NEC

PRIMITIVE BLOCK TRANSFER

MOVBK/MOVBKB/MOVBKW

(repeat) MOVBK [DS1-spec:]dst-block,[Seg-spec:]
src-block

(repeat) MOVBKB (no operand)

(repeat) MOVBKW (no operand)

Move block/move block byte/move block word

When W=0, (IY) < (IX)
DR=0: IX<—IX+11Y —IY+1
DR=1: IX<—IX—1,IY «—IY—1

When W=1, (IY +1,1Y) — (X + 1, 1X)
DIR=0: IX<—IX+2IY —IY+2
DR=1: IX—IX—2IY —IY—2

Transfers the block addressed by the IX register to the
block addressed by the IY register by repeating the data
word byte. In order to transfer the next byte/word, the
IX or IY register is automatically incremented (+1 or +2)
or decremented (—1 or —2) each time a byte/word is
transferred. The direction of the block is determined by
the direction flag (DIR).

Byte or word specification is made by the attribute of the
operand when the MOVBK is used. If the MOVBKB or
MOVBKW is used, the type is specified by the instruction.

The destination block must always be located within
the segment specified by the DS segment register. The
default segment for the source block register is DSg, and
a segment override is permitted. The source block may
be located in a segment specified by any of the segment
registers.

Bytes: 1
Clocks:
Repeat:
When W=0: 11+8/rep
When W=1: 11+16/rep, uPD70108
uPD70116 odd, odd
addresses
11+16/rep, uPD70116 odd, even
addresses
11+8/rep, uPD70116 even, even
addresses

12-16

Single operation:
When W=0: 11
When W=1: 19, uPD70108
19, uPD70116 odd, odd addresses
15, uPD70116 odd, even addresses
11, uPD70116 even, even addresses

Transfers:
Repeat: 2/rep
Single operation: 2
Flag operation: None
Examples:
1. MOV AW,SEG SRC_BLOCK
;point to source
MOV DS0,AW
;segment and offset
MOV IX,OFFSET SRC_BLOCK
MOV AW,SEG DST_BLOCK
;point to destination
MOV DS1,AW
MOV IY,OFFSET DST_BLOCK
MOV Ccw,22
;set count

REP MOVBKW
;move 22 words

2. MOV IX,SP
;source will be stack
MOV DS1,lY,DST_DWPTR
;fetch pointer to destination
MOV CWw,5
;set count

REP MOVBK DS1:DST_BLOCK,SS:{IX]
: ;move from stack (override prefix)
;to destination

DATAO SEGMENT AT 0
SRC_BLOCK DW 22 DUP (?)
SRC_DWPTR DD SRC_BLOCK
DST_DWPTR DD DST_BLOCK
DATAO ENDS

DATA1 SEGMENT AT 1000H
DST_BLOCK DW 22 DUP (?)
DATA1 ENDS

NEC

Section 12
Instruction Set

CMPBK/COMPBKB/CMPBKW

(repeat) CMPBK [Seg-spec:]src-block,[DS1-spec:]dst-
block

(repeat) CMPBKB (no operand)

(repeat) CMPBKW (no operand)

Compare block/compare block byte/compare block
word

When W=0:
DIR=0:
DIR=1:

When W=1:

(1X) — (1Y)

IX «— IX+1, IY < IY4+1
IX — IX—1, 1Y < IY—1
(IX+1, 1X) — (Y41, 1Y)
DIR=0: IX « IX+2, IY « IY+2
DIR=1: IX «— IX=2,IY — IY—2

Repeatedly compares the block addressed by the 1Y reg-
ister with the block addressed by the IX register, byte by
byte or word by word. The result of the comparison is
shown by the flag. In order to process the next byte or
word, IX and IY are automatically incremented (+1 or +2)
or decremented (—1 or —2) each time one byte or word
is processed. The direction of the block is determined
by the direction flag (DIR).

The byte or word specification is made by the attribute
of the operand when CMPBK is used. If CMPBKB or

CMPBKW is used, it is specified directly to be the byte:

or word type.

The destination block must always be located within the
segment specified by the DS register. The default seg-
ment register for the source block is DSg and a segment
override prefix is permitted.

Bytes: 1
Clocks:
Repeat:
When W=0: 7+14/rep
When W=1: 7+22/rep, uPD70108 uPD70116 odd,
odd addresses
7+18/rep, uPD70116 odd, even
addresses
7+14/rep, uPD70116 even, even
addresses

Single operation:

When W=0: 13
When W=1: 21, uPD70108
21, uPD70116 odd, odd
addresses
17: uPD70116 odd, even
addresses
13: uPD70116 even, even
addresses
Transfers:
Repeat: 1/rep
Single operation: 2
Flag operation
\" S 2 AC P CcYy
X X X X X X
Example:
MoV DSO0,IX,SRC_DWPTR
;point to areas to compare
MOV DS1,lY,DST_DWPTR
MOV CW,16
;set count
REPNC CMPBKB
;compare 16 pairs of bytes
BCWZ GREATER
;if CW =0, then SRC = DST
LESS: ———

12-17

vPD70108/70116 NEC

CMPM/CMPMB/CMPMW Clocks:

Repeat:
(repeat) CMPM [DS1-spec:]dst-block —n
(repeat) CMPMB (no operand) When W=0: 7+10/rep

When W=1: 7-+14/rep, uPD70108
(repeat) CMPMW (no operand) 7+14/rep, uPD70116 odd addresses

Compare multiple/compare multiple byte/compare 7+10/rep, uPD70116 even addresses
multiple word

Single operation:

7 0 When W=0: 7
T | T l | ! T When W=1: 11, uPD70108
1 0 1 0 1 1 ! w 11, uPD70116 odd addresses

7, uPD70116 even addresses

When W=0: (AL) — (1Y)
DIR=0: IY < IY+H1, Transfers:
DIR=1: 1Y —IY —1 Repeat: 1/rep
When W=1: AW — (IY+1, 1Y) Single operation: 1
DIR=0: IY < IY+2 .
DIR=1 IY < [Y—2 Flag operation
Repeatedly compares the block addressed by the Y with Vv S Z | AC P | CY
the accumulator (AL or AW). To process the next byte or X X X X X X
word, the IY is automatically incremented (+1 or +2) or
decremented (—1 or —2) each time one byte or word is
processed. The direction of the block is determined by =~ Example:
the direction flag (DIR). Byte or word specification is MOV DS1,lY,DST_DWPTR
made by the attribute of the operand when CMPM is ;point to destination block
used. If CMPMB or CMPMW is used, it is specified MOV ALA
directly by the instruction. MOV CW,20
L o ;search for first ‘A
The destination block must always be Iocat_ed within the REPNZ CMPMB
segment specified by the DSy segment register.
Bytes: 1

12-18

NEC

Section 12
Instruction Set

LDM/LDMB/LDMW

(repeat) LDM [Seg-spec:]src-block
(repeat) LDMB (no operand)
(repeat) LDMW (no operand)

Load multiple/load multiple byte/load multiple word

When W=0: AL <« (IX)
DIR=0: IX < IX+1
DIR=1: IX « IX—1

When W=1: AW « (IX+1, IX)
DIR=0: IX <« IX+2
DIR=1: IX «IX—2

Transfers the block addressed by the IX register to the
accumulator (AL or AW). To process the next byte or word
the IX register is automatically incremented (+1 or +2)
or decremented (—1 or —2) each time one byte or word
is processed. The direction of the block is determined
by the direction flag (DIR). Byte or word specification is
made by the attribute of the operand when LDM is used.
If LDMB or LDMW is used, it is specified directly to be
/the byte or word type. The instruction may have a repeat
prefix, but is usually used without one.

The default segment register for the source block is DS,
and therefore segment override is possible. The source
block may be located within the segment specified by
any (optional) segment register.

Bytes: 1
Clocks:
Repeat:
When W=0: 7+9/rep
When W=1: 7+13/rep: uPD70108

7+13/rep: uPD70116 odd addresses
7+9/rep : uPD70116 even addresses
Single operation:
When W=0: 7,
When W=1: 11, uPD70108
11, uPD70116 odd addresses
7, uPD70116 even addresses

Transfers:
Repeat: 1/rep
Single operation: 1

Flag operation: None
Example:
;Add a constant to a string
MOV DS1,lY,DST_DWPTR
;point DS1:1Y to string
MOV IX,lY
;point DS1:IX to same area
MOV CwW,10
;length of string
HERE: LDM BYTE PTR DS1:[IX]
;fetch byte (from DS1, with
segment override prefix),
increment IX
ADD AL,20H
;add constant
STMB ;replace modified value at
DS1ilY,
;increment IY
DBNZ HERE

;loop until CW =0

12-19

NEC

uPD70108/70116
STM/STMB/STMW Example:
(repeat) STM [DS1-spec:]dst-block ;Fill memory area with a constant
(repeat) STMB (no operand) MOV DS1,lY,DST_DWPTR
(repeat) STMW (no operand) ;point to block
. . . XOR AW AW

Store multiple/store multiple byte/store multiple word zero the accumulator

7 0 MOV Cw,10

I T I] [] I :count =10
1 0 1 0 1 0 1 w REP STMW

When W=0: (IY) «— AL
DIR=0: IY «— IY+1
DIR=1: IY « IY—1

When W=1: (IY+1, IY) — AW
DIR=0: IY « IY42
DIR=1: IY « IY—2

Transfers the contents of AL or AW to the block ad-
dressed by Y.

To process the next byte or word, 1Y is automatically
incremented (+1 or +2) or decremented (—1 or —2) each
time one byte or word is processed. The direction of the
block is determined by the direction flag (DIR).

Byte or word specification is made by the attribute of the
operand when STM is used. If STMB or STMW is used,
it is specified directly to be the byte or word type.

The destination block must always be located within the
segment specified by the DS segment register.

Bytes: 1
Clocks:
Repeat:
When W=0: 7+4/rep
When W=1: 7+8/rep: uPD70108

7+8/rep: uPD70116 odd addresses
7+4/rep: uPD70116 even addresses
Single operation:
When W=0: 7
When W=1: 11, uPD70108
11, uPD70116 odd addresses
7, uPD70116 even addresses

Transfers:

Repeat: 1/rep
Single operation: 1

Flag operation: None

12-20

fill 10 words with zero

NEC

Section 12
Instruction Set

BIT FIELD MANIPULATION
INSTRUCTIONS

» INS reg1, reg2

Insert bit field (register)

I | | |
reg2 regi

16-bit field «— AW

Transfers the lower data bits of the 16-bit AW register (bit
length is specified by the 8-bit register of the second
operand) to the memory location determined by the byte

(0-15) will be valid for the 8-bit register of the second
operand that specifies the bit length (maximum length:
16 bits). O specifies a 1-bit length, and 15 specifies a
16-bit length.

Bit field data may overlap the byte boundary of memory.

Note: For correct operation the upper four bits of the 8-bit registers
used as first and second operands must be set to 0.

Bytes: 3

Clocks:
35-113:
35-113:
31-117:

uPD70108
uPD70116 odd addresses
uPD70116 even addresses

‘Transfers: 2or4

Flag operation:

offset (addressed by the DS segment register and the v S a AC P cY
IY index register) and bit offset (specified by the 8-bit U U U U U U
register of the first operand).
After the transfer, the IY register and the 8-bit register ~ £x@mple: INS DL,CL (See below for detailed
specified by the first operand are automatically updated example)
to point to the next bit field. '
Only the lower 4 bits (0-15) will be valid for the 8-bit
register of the first operand that specifies the bit offset
(maximum length: 15 bits). Also, only the lower 4 bits
A ///// Bit (1Y)
offset Byte offset
b4 T 35 $
’ —55
Byte boundary Segment base
(os1)

49.000011A

12-21

uPD70108/70116

NEC

INS reg8,imm4
Insert bit field (immediate data)

16-bit field «— AW

Transfers the lower data bits of the 16-bit AW register (bit
length specified by the 4-bit immediate data of the
second operand) to the memory location determined by
the byte offset (addressed by the DS segment register
and the Y register) and bit offset (specified by the 8-bit
register of the first operand). After the transfer, the IY
register and the 8-bit register specified by the first oper-
and are updated to point to the next bit field.

Only the lower 4 bits (0-15) for the 8-bit register of the
first operand (15 bits maximum length) are valid. The
immediate data value of the second operand (16 bits
maximum length) is valid only from 0-15.

0 specifies a 1-bitlength, and 15 specifies a 16-bit length.
The bit field data may overlap the byte boundary of
memory.

Note: For correct operation, set the upper four bits of the 8-bit register
used as the first operand to 0.

Bytes: 4

Clocks:

75-103: w©PD70108

75-103: uPD70116 odd addresses
67-87: uPD70116 even addresses

112-22

B XXXX XXXX XXX1 0101 |0101 0101

2or4

Flag operation:

Transfers:

\" S Z AC P CcY
U U U u U U
Example:
MOV DS1,lY,DST_DWPTR
;Point to destination
MOV CL3
;Start at bit 3
MOV DL,4
;insert 5 bits
(A) MOV AW,5555H
;Pattern to insert (A)
(B) INS CL,DL
;insert 5 bits at bit 3 (B)
(C) INS CL,12
;insert 13 bits at bit 8 (C)

at (A) memory =
MSB LSB |MSB LSB
XXXX XXXX XXXX XXXX [XXXX XXXX XXXX XXXX
CL=3,IY =Dbase

at (B) memory =

P XXXX XXXX XXXX XXXX | XXXX XXXX 1010 1XXX

CL =28, 1Y =Dbase

at (C) memory =

1010 1XXX

CL=25,lY =base + 2

NEC

Section 12
Instruction Set

» EXT regi, reg2

Extract bit field (register)

T | T
reg2 regi

AW « 16-bit field

Loads the bit field data (bit length specified by the 8-bit
register of the second operand) into the AW register. The
segment base of the memory location of the bit field is
specified by the DSy register, the byte offset by the IX
index register, and the bit offset by the 8-bit register of
the first operand. At the same time zeros are loaded to
the remaining upper bits of the AW register.

After the transfer, the IX register and the 8-bit register
specified by the first operand are updated to point to the

valid. Only the lower 4 bits of the 8-bit regis’er of the
second operand (maximum length: 16 bits) are valid.

0 specifies a 1-bitlength, and 15 specifies a 16-bit length.
Bit field data may overlap the byte boundary of memory.

Note: For correct operation, the upper 4 bits of the 8-bit registers
used as first and second operands must be set to 0.

Bytes: 3

Clocks:
34-59: uPD70108
34-59: uPD70116 odd addresses

26-55: uPD70115 even addresses
Transfers: 1or2

Flag operation:

\' S AC P 0} 4
u u u U U u

N

Example: EXT CL,DL (See below for detailed

o . . example)
next bit field. Only the lower 4 bits (0-15) of the 8-bit *
register of the first operand (maximum length: 15 bits) are
Bit (IX)
Length Offset Byte Offset
f T 1 4
L 0 Byte Boundal Segment Base
M| o ////// i (DS0)

.49.000012A

12-23

uPD70108/70116

NEC

EXT reg8,imm4
Extract bit field (immediate data)

AW < 16-bit field

Loads bit field data from the memory location specified
by the byte offset to the AW register (addressed by the
DSy segment register and the IX index register) and
the bit offset (specified by the 8-bit register of the first
operand).

The bit length is specified by the 4-bit immediate data
of the second operand.

After the transfer, the IX register and the 8-bit register
specified by the first operand are updated to point to the
next bit field. Only the lower 4 bits (0-15) of the 8-bit
register of the first operand (maximum length: 15 bits) will
be valid. The immediate data value of the second oper-
and (maximum length: 16 bits) will be valid only from 0-15.

Zero specifies a 1-bit length, and 15 specifies a 16-bit
length. Bit field data may overlap the byte boundary of
memory.

Note: For correct operation, set the upper 4 bits of the 8-bit register
used as the first operand to 0.

Bytes: 4

Clocks:

25-52: uPD70108

25-52: uPD70116 odd addresses
21-44: uPD70116 even addresses

1or2
Flag operation:

Transfers:

Vv S V4 AC P CcY
U U u U u u
Example:
MOV DS0,IX,SRC_DWPTR
;Point to area to extract
MOV [1X],5555H
;Fill in sample patterns
MOV [IX+2],3333H
MOV CL3
;Start at bit 3
(A) MOV DL,4
(A)
(B) EXT CL,DL
;Extract 5 bits starting at 3 (B)
(C) EXT CL,12

;Extract 13 bits starting at 8 (C)
at (A) memory =

MSB LSB | MSB LSB
0011 0011 0011 0011 0101 0101 0101 0101
CL =3, IX = base, AW = unknown

at (B)
CL = 8, IX = base, AW = (0000 0000 000)01010

at (C)

CL =5, IX = base + 2, AW = (000)1 0011 0101 0101

Bit
Length

Bit (IX)
Offset Byte Offset

. Wi,

A

! ' Memory

AW 0

Byte Boundary Segment Base

(DS0)

49 000012A

12-24

NEC

Section 12
Instruction Set

INPUT/OUTPUT
IN acc,imm8

Input specified 1/0 device

I I |

I
imm8

When W=0 AL « (imm8)
When W=1 AH <« (imm8+1), AL « (imm8)

Inputs the contents of the 1/0 device specified by the
second operand to the accumulator (AL or AH) speci-
fied by the first operand.

Bytes: 2
Clock:
When W=0: 9
When W=1: 13, uPD70108

13, uPD70116 odd addresses
9, uPD70116 even addresses

Transfers: 1
Flag operation: None

Example:
IN AL,20H
IN AW,48H

IN acc,DW
Input to device indirectly specified by DW

When W=0: AL « (DW)
When W=1: AH «— (DW+1),AL — (DW)

Inputs the contents of the /O device specified by the DW
register to the accumulator (AL or AW) specified by the
first operand.

Bytes: 1

Clocks:

When W=0: 8

When W=1: 12, uPD70108

12, uPD70116 odd addresses
8, uPD70116 even addresses

Transfers: 1
Flag Operation: None

Example: IN ALDW

12-25

NEC

uPD70108/70116
OUT imm8,acc OUT DW,acc
Output to directly specified 1/0 device Output to indirectly specified (by DW) 1/0 device
7 0 7 0

imm8

When W=0: (imm8) «— AL
When W=1: (imm8+1) < AH, (imm8) «— AL
Outputs the contents of the accumulator (AL or AH) spec-

ified by the second operand to the 170 device specified
by the first operand.

Bytes: 2
Clocks:
When W=0: 8
When W=1: 12, uPD70108

12, uPD70116 odd addresses
8, uPD70116 even addresses

Transfers: 1
None
30H,AW

Flag operation:
Example: OUT

12-26

When W=0: (DW) «— AL
When W=1: (DW+1) «— AH, (DW) «— AL

Outputs the contents of the accumulator (AL or AW) spec-
ified by the second operand to the I/0 device specified
by the first operand.

Bytes: 1
Clocks:

When W=0: 8

When W=1: 12, uPD70108

12, uPD70116 odd addresses
8, uPD70116 even addresses

Transfers: 1
None
DWAW

Flag operation:
Example: OUT

NEC

Section 12
Instruction Set

OUT DW,acc
Output to indirectly specified (by DW) I/0 device
7 0

When W=0: (DW) «— AL
When W=1: (DW+1) «<— AH, (DW) < AL
Outputs the contents ofthe accumulator (AL or AW) spec-

ified by the second operand to the I/0 device specified
by the first operand.

Bytes: 1

Clocks:
When W=0: 8
When W=1: 12, uPD70108
12, uPD70116 odd addresses
8, uPD70116 even addresses

Transfers: 1
Flag operation: None
Example: OUT DW,AW

12-27

uPD70108/70116

NEC

PRIMITIVE INPUT/OUTPUT
(repeat) INM [DS1-spec:]dst-block,DW
Input multiple

When W=0: (IY) < (DW)
Dir=0: IY «— IY+1
Dir=1: 1Y «— IY—1
When W=1: (IY+1, IY) < (DW+1,DW)
Dir=0: IY «— IY+2
Dir=1: IY — IY—2

Transfers the contents of the 1/0 device addressed by
the DW register to the memory location addressed by the
IY index register.

When this instruction is paired with a repeat prefix (REP),
the REP prefix controls the number of times the transfer
will be repeated. When transfers are repeated, the con-
tents (address of the 1/0 device) of the DW register are
fixed. However, to transfer the next byte or word, the IX
index register is automatically incremented (+1 or +2)
or decremented (—1 or—2) each time one byte or word
is transferred. The direction of the block is determined
by the direction flag (DIR).

Byte or word specification is performed according to the
attribute of the operand. The destination block must
always be located within the segment specified by the
DS, segment register, and a segment override prefix is
prohibited.

12-28

Bytes: 1
Clocks:
Repeat:
When W=0: 9+8/rep
When W=1: 9+16/rep: uPD70108
9+16/rep: uPD70116 odd-odd
addresses
9+12/rep: uPD70116 odd-even
addresses
9+8/rep: uPD70116 even-even
addresses
Single operation:
When W=0: 10
When W=1: 18, uPD70108

18, uPD70116 odd-odd addresses
14, uPD70116 odd-even addresses
10, uPD70116 even-even addresses

Transfers:
Repeat: 2/rep
Single operation: 2
Flag operation: None
Example:
MOV CW,30
MOV IY,OFFSET BYTE_VAR
REP INM BYTE_VAR,DW

;input 30 bytes

NEC

Section 12
Instruction Set

OUTM DW,[seg-spec:]src-block
Output multiple

When W=0: (DW) < (IX)
DIR=0: IX < IX+1
DIR=1: IX « IX—1

When W=1: (DW+1, DW) — (IX+1,IX)
DIR=0: IX « IX+2
DIR=1: IX « IX—2

Transfers the memory contents addressed by the IX
index register to the 170 device addressed by the DW
register. When this instruction is paired with a repeat
prefix (REP), REP controls the number of times the
transfer will be repeated. When transfers are repeated,
the contents (address of the I/0 device) of the DW reg-
ister are fixed. However, to transfer the next byte or word,
the IX index register is automatically incremented (+1 or
+2) or decremented (—1 or —2) each time one byte or
word is transferred. The direction or the block is deter-
mined by the direction flag (DIR).

Byte or word specification is performed according to the
attribute of the operand. The default segment register for
the source block is DSp, and segment override is pos-
sible. The source block may be located within the seg-
ment specified by any (optional) segment register.

Bytes: 1
Clocks:
Repeat:
When W=0: 9-+8/rep
When W=1: 9+16/rep, uPD70108
9+16/rep, uPD70116 odd-odd
addresses
9+12/rep, uPD70116 odd-even
addresses
9+8/rep, uPD70116 even-even
addresses
Single operation:
When W=0: 10
When W=1: 18, uPD70108

18, uPD70116 odd-odd addresses
14, uPD70116 odd-even addresses
10, uPD70116 even-even addresses

Transfers:
Repeat: 2/rep
Single operation: 2
Flag operation: None
Example:

REP OUTM DW,BYTE PTR DS1:[IX]

ADDITION/SUBTRACTION
ADD reg,reg
Add register with register to register

reg < reg + reg

Adds the contents of the 8- or 16-bit register specified
by the second operand to the contents of the 8- or 16-bit
register specified by the first operand. Stores the result
in the register specified by the first operand.

Bytes: 2
Clocks: 2
Transfers: None

Flag operation:

\' S Z | AC CY
X X X X X X

v

Example: ADD AWBW

12-29

uPD70108/70116

NEC

ADD mem,reg
Add memory with register to memory

ADD reg,mem
Add register with memory to register

7 0 7 0
T T T T T T T T | T T T T T
0 0 0 0 0 0 0 w 0 0 0 0 0 0 1 w
T T T | T T T T T T T T T T
mod reg mem mod reg mem
T T — T - T T — T T
(disp-low) (disp-low)
T T . 1 T T T I
(disp-high) (disp-high)

(mem) < (mem) + reg

Adds the contents of the 8- or 16-bit register specified
by the second operand to the 8- or 16-bit memory con-
tents addressed by the first operand. Stores the result in
the memory location addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 16
When W=1: 24, uPD70108
24, uPD70116 odd addresses
16, uPD70116 even addresses

Transfers: 2

Flag operation:

\Y S z AC P CcY

X X X X X X
Example:

ADD WORD_VARAW

ADD [IX],CW

12-30

reg < reg + (mem)

Adds the 8- or 16-bit memory contents addressed by the
second operand to the contents of the 8- or 16-bit reg-
ister specified by the first operand. Stores the result in
the register specified by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 11
When W=1: 15, uPD70108 .
15, uPD70116 odd addresses
11, uPD70116 even addresses

Transfers: 1

Flag operation:

Vv S AC P CcY
X X X X X X

N

Example:
ADD AW,WORD_VAR
ADD BW,[BP][IX]

NEC

Section 12
Instruction Set

ADD reg,imm
Add register with immediate data to register
7 0
T T T | T T 1

T T T
imm8 or imm16-low

T T T
imm16-high

reg < reg + imm

Adds the 8- or 16-bit immediate data specified by the
second operand to the contents of the 8- or 16-bit reg-
ister specified by the first operand, and stores the result
in the register specified by the first operand.

Bytes: 2/3/4

Clocks: 4
Transfers: None

Flag operation:

\ S Y4 AC CcY
X X X X X X

o

Example: ADD DL,10

ADD mem,imm

Add memory with immediate data to memory

T |
(disp-low)

" (disp-high)

T T T
imm8 or imm16-low

" imm16-high

(mem) < (mem) + imm

Adds the 8- or 16-bit immediate data specified by the
second operand to the 8- or 16-bit memory contents
addressed by the first operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=0: 18
When W=1: 26, uPD70108
26, uPD70116 odd addresses
18, uPD70116 even addresses

Transfers: 2

Flag operation:

\Y S Y4 AC P CcY

X X X X X X
Example:

ADD BYTE_VAR[BP],100

ADD WORD_VAR[BW][IX],1234H

12-31

NEC

uPD70108/70116
ADD acc,imm ADDC reg,reg
Add accumulator with immediate data to accumulator Add with carry, register with register to register
7 0 7 0

T T T
imm8 or imm16-low

T T]
imm16-high

When W=0: AL < ALimm
When W=1: AW «— AW imm

Adds the 8- or 16-bit immediate data specified by the
second operand to the contents of the accumulator (AL
or AW) specified by the first operand. Stores the result
in the accumulator specified by the first operand.

Bytes: 2/3
Clocks: 4
Transfers. None

Flag operation:

Vv S b4 AC P cY

X X X X X X
Example:

ADD AL3

ADD AW,2000H

12-32

reg < reg + reg + CY

Adds the contents of the 8- or 16-bit register specified
by the second operand and the contents of the carry flag
to the contents of the 8- or 16-bit register specified by
the first operand. Stores the result in the register spec-
ified by the first operand.

Bytes: 2
Clocks: 2
Transfers: None

Flag operation:

v S Z | AC CcY
X X X X X X

o

Example: ADDC BW,DW

NEC

Section 12
Instruction Set

ADDC mem,reg

Add with carry, memory with register to memory

ADDC reg,mem
Add with carry, register with memory to register

(mem) < (mem) + reg + CY

Adds the contents of the 8- or 16-bit register specified
by the second operand and the contents of the carry
flag to the 8- or 16-bit memory contents addressed by
the first operand. Stores the resultin the memory location
addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 16
When W=1: 24, uPD70108

24, uPD70116 odd addresses
16, uPD70116 even addresses

Transfers: 2

Flag operation:

Vv S Z | AC CcY
X X X X X X

)

Example: ADDC WORD_VAR,CW

| T T | T T | T | | | | T T
0 0 0 1 0 0 0 0 0 0 1 0 0 1
| T T T T T T T T T | | T T
mod reg mem mod reg mem
| T I 1 T T T] 1 T
(disp-low) (disp-low)
T .1 T T T T T
(disp-high) (disp-high)

reg < reg + (mem) + CY

Adds the 8- or 16-bit memory contents addressed by the
second operand and the contents of the carry flag to the
contents of the 8- or 16-bit register specified by the first
operand. Stores the result in the register specified by the
first operand.

Byte: 2/3/4
Clocks:
When W=0: 11
When W=1: 15, uPD70108

15, uPD70116 odd addresses
11, uPD70116 even addresses

Transfers: 1

Flag operation:

Vv S V4 AC P (03 4

X X X X X X
Examples:

ADDC AWWORD_VAR

ADDC BW,[BP][IX]

12-33

NEC

uPD70108/70116
ADDC reg,imm ADDC mem,imm
Add with carry, register with immediate data to register Add with carry, memory with immediate data to memory
7 0 7 0
T T T T | T 1 T T T | 1 T T
1 0 0 0 0 0 S W 1 0 0 0 0 0 S w
| 1 T T T T T T 1 T 1 T T
1 1 0 1 0 reg mod 0 1 0 mem
T I T T T T 1 T 1 T
imm8 or imm16-low (disp-low)
' LI T T L T
imm16-high (disp-high)

reg < reg +imm + CY

Adds the 8- or 16-bit immediate data specified by the
second operand and the contents of the carry flag to the
contents of the 8- or 16-bit register specified by the first
operand. Stores the result in the register specified by the
first operand.

Bytes: 3/4
Clocks: 4
Transfers: None

Flag operation:

-V S AC CYy
X X X X X X

N
o

Example:
ADDC CW,404H
ADDC DL,3

12-34

1 T a
imm8 or imm16-low

T imm1'6-highI

(mem) < (mem) + imm + CY

Adds the 8- or 16-bit immediate data specified by the
second operand and the contents of the carry flag to the
8- or 16-bit memory contents addressed by the first oper-
and. Stores the result in the memory location addressed
by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=0: 18
When W=1: 26, uPD70108
26, uPD70116 odd addresses
18, uPD70116 even addresses

Transfers: 2

Flag operation:

\ S Z | AC CcY
X X X X X X

T

Example: ADDC WORD_VAR,2000H

NEC

Section 12
Instruction Set

ADDC acc,imm

Add with carry, accumulator with immediate data to
accumulator

T I T T
imm8 or imm16-low

T T T
imm16-high

When W=0: AL < AL +imm8 + CY
When W=1: AW <« AW + imm16 + CY

Adds the 8- or 16-bit immediate data specified by the
second operand and the contents of the carry flag to the
accumulator (AL or AW) specified by the first operand.
Stores the result in the accumulator specified by the first
operand.

Bytes: 2/3
Clocks: 4
Transfers: None

Flag operation:

SUB reg,reg

Subtract register from register to register

reg <« reg — reg

Subtracts the contents of the 8- or 16-bit register spec-
ified by the second operand from the contents of the 8- or
16-bit register specified by the first operand. Stores the
result in the register specified by the first operand.

Bytes: 2
Clocks: 2
Transfers: None

Flag operation:

V]S | z |AC|] P]|CY
X X X X X X
Example: SUB BW,CW

Y S Z AC P cY
X X X X X X
Example: ADDC AL7

12-35

NEC

uPD70108/70116
SUB mem,reg SUB reg,mem
Subtract register from memory to memory Subtract memory from register to register
7 0 7 0
T T T l | T ! T T 1 T | 1 T
0 0 1 0 1 0 0 0 0 1 0 1 0 1
T T T | 1 T 1 T | T T T T
mod reg mem mod reg mem
(mem) < (mem) — reg ' l (dis;|>-low) | |
Subtracts the contents of the 8- or 16-bit register spec-)
ified by the second operand from the 8- or 16-bit memory ! ! (displ-high) '

contents addressed by the first operand. Stores the resuit
in the memory location addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 16
When W=1: 24, uPD70108

24, uPD70116 odd addresses
16, uPD70116 even addresses

Transfers: 2

Flag operation:

Vv S Z | AC cY
X X X X X X

-

Example:
sSuB WORD|VAR,BW
SUB [IX],AL

12-36

reg < reg — (mem)

Subtracts the 8- or 16-bit memory contents addressed
by the second operand from the 8- or 16-bit register
specified by the first operand. Stores the result in the
register specified by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 11
When W=1: 15, uPD70108
15, uPD70116 odd addresses
11, uPD70116 even addresses

Transfers: 1

Flag operation:

\' S Z | AC CcY
X X X X X X

T

Example: SUB CWWORD_VAR

NEC

Section 12
Instruction Set

SUB reg,imm
Subtract immediate from register to register
7 0
T T T | T 1 T
1 0 0 0 0 0 S
T T T T T T T
1 1 1 0 1 reg

1 T T
imm8 or imm16-low

T T T
imm16-high

reg < reg — imm

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the contents of the 8- or 16-bit
register specified by the first operand. Stores the result
in the register specified by the first operand.

Bytes: 3/4
Clocks: 4
Transfers: None

Flag operation:

Vv S Z | AC (0} 4
X X X X X X

v

Example: SUB IX,4

SUB mem,imm

Subtract immediate data from memory to memory

T T
(disp-low)

" (disp-high)'

T T |
imm8 or imm16-low

| T |
imm16-high

(mem) < (mem) — imm

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the 8- or 16-bit memory con-
tents addressed by the first operand. Stores the result in
the memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=0: 18
When W=1: 26, uPD70108
26, uPD70116 odd addresses
18, uPD70116 even addresses

Transfers: 2

Flag operation:

Vv S Z | AC cY

T

X X X X X X

Example: SUB WORD_VAR,10

12-37

uPD70108/70116

NEC

SUB acc,imm

Subtract immediate data from accumulator
to accumulator

1 | 1 T
imm8 or imm16-low

I T T
imm16-high

When W=0: AL — AL —imm8
When W=1: AW «— AW —imm16

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the accumulator (AL or AW)
specified by the first operand. Stores the result in the
accumulator specified by the first operand.

Bytes: 2/3
Clocks: 4
Transfers: None

Flag operation:

\ S z AC (0} 4
X X X X X X

o

Example: SUB ALS8

12-38

SUBC reg,reg
Subtract with carry, register from register to register

7 0
I T T T T | l

0 0 0 1 1 0 1 w
T Bl | | T 1 T

1 1 reg reg

reg < reg —reg — CY

Subtracts the contents of the 8- or 16-bit register spec-
ified by the second operand and the contents of the carry
flag from the 8- or 16-bit register specified by the first
operand.

Bytes: 2
Clocks: 2
Transfers: None

Flag operation:

Vv S Z | AC cY
X X X X X X

)

Example: SUBC BwW,DW

NEC

Section 12
Instruction Set

SUBC mem,reg SUBC reg,mem
Subtract with carry, register from memory to memory Subtract with carry, memory from register to register
7 0 7 0
I T T T v l | 1 T [\ | I T
0 0 0 1 1 0 0 w 0 0 0 1 1 0 1 w
T T T T 1 | T T 1 | | T T T
mod reg mem mod reg mem
| T T | T | 1 T 1 | r T
(disp-low) (disp-low)
T | | T LN 1
(disp-high) (disp-high)

(mem) < (mem) —reg — CY

Subtracts the contents of the 8- or 16-bit register spec-
ified by the second operand and the contents of the carry
flag from the 8- or 16-bit memory contents specified by
the first operand. Stores the resultin the memory location
addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 16
When W=1: 24, uPD70108
24, yPD70116 odd addresses
16, uPD70116 even addresses

Transfers: 2

Flag operation:

reg < reg — (mem) — CY

Subtracts the contents of the 8- or 16-bit memory ad-
dressed by the second operand and the contents of the
carry flag from the 8- or 16-bit register specified by the
first operand. Stores the result in the register specified
by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 11
When W=1: 15, uPD70108
15, uPD70116 odd addresses
11, uPD70116 even addresses

Transfers: 1

Flag operation:

\" S y4 AC P CcY
X X X X X X
Example: SUBC BYTE_VAR,AL

Vv S Z | AC P CcY
X X X X X X
Example: SUBC AWWORD_VAR

12-39

vPD70108/70116

NEC

SUBC reg,imm

Subtract with carry, immediate data from register
to register

SUBC mem,imm

Subtract with carry, immediate data from memory
to memory

T T |
imm8 or imm16-low

T 1 T
(disp-low)

T 1 T
imm16-high

T . T . T
(disp-high)

reg — reg —imm — CY

Subtracts the contents of the 8- or 16-bitimmediate data
specified by the second operand and the contents of the
carry flag from the 8- or 16-bit register specified by the
first operand. Stores the result in the register specified
by the first operand.

Bytes: 3/4
Clocks: 4
Transfers: None

Flag operation:

\' S z AC CY
X X X X X X

o

Example: SUBC DL,10

12-40

] T T
imm8 or imm16-low

. T . T
imm16-high

(mem) < (mem) — imm — CY

Subtracts the contents of the 8- or 16-bitimmediate data
specified by the second operand and the contents of
the carry flag from the 8- or 16-bit memory contents
addressed by the first operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=0: 18
When W=1: 26, uPD70108

26, uPD70116 odd addresses
18, uPD70116 even addresses

Transfers: 2

Flag operation:

\ S z AC CY
X X X X X X

Y

Example: SUBC WORD_VAR,25

NEC

Section 12
Instruction Set

SUBC acc,imm

Subtract with carry, immediate data from accumulator
to accumulator

| I T
imm8 or imm16-low

T T
imm16-high'

When W=0: AL «— AL —imm8 — CY
When W=1: AW «— AW — imm16 — CY

Subtracts the 8- or 16-bit immediate data specified by
the second operand and the contents of the carry flag
from the accumulator (AL or AW) specified by the first
operand. Stores the result in the accumulator specified
by the first operand.

Bytes: 2/3
Clocks: 4
Transfers: None

Flag operation:

v S Z | AC P | CY
X X X X X X

Example: SUBC AL,8

12-41

uPD70108/70116

NEC

BCD ARITHMETIC

ADDA4S [DS1-spec:]dst-string,[seg-spec:]src-string
ADD4S (no operand)

Add nibble string

BCD string (IY,CL) < BCD string (IY,CL) + BCD string
(IX,CL)

Adds the packed BCD string addressed by the IX index
register to the packed BCD string addressed by the IY
index register. Stores the result in the string addressed
by the IY register. The length of the string (number of BCD
digits) is specified by the CL register and can vary from
1 to 254 digits.

When the number of digits is even, the zero and carry
flags will be set according to the result of the operation.
When the number of digits is odd, the zero and carry flags
may not be set correctly. In this case, (CL = odd), the zero
flag will not be set unless the upper 4 bits of the highest

byte are all zero. The carry flag will not be setunless there
is a carry out of the upper 4 bits of the highest byte. When
CL is odd, the contents of the upper 4 bits of the highest
byte of the result are undefined.

The destination string must always be located within the
segment specified by the DS segment register. Segment
override is prohibited.

The default segment register for the source string is DSy
and segment override is possible. The source string may
be located within the segment specified by any (optional)
segment register.

The format for the packed BCD string follows.
Bytes: 2

Clocks: 7 + 19n, where n = one-half the number of

BCD digits
Transfers: 3n

Flag operation:

AC
u

cY
X

\
U

S
u

Y4
X

)

Example: See example for CMP4S

Byte Ojfset

IX
Iy

+0

RS
AN

[z
Memory
¢

NS
~~

7
Digit Offset +CL

+4 +3 +2 +1 0

49.000013A

12-42

NEC

Section 12
Instruction Set

SUBA4S [DS1-spec:]dst-string,[seg-spec:]src-string
SUBA4S (no operand)

Subtract nibble string

BCD string (IY,CL) < BCD string (IY,CL) — BCD string
(IX,cL)

Subtracts the packed BCD string addressed by the IX
index register from the packed BCD string addressed by
the 1Y index register. Stores the result in the string
addressed by the IY register.

The length of the string (number of BCD digits) is spec-
ified by the CL register and can vary from 1 to 254 digits.

When the number of digits is even, the zero and carry
flags will be set according to the result of the operation.
When the number of digits is odd, the zero and carry flags
may not be set correctly. In this case, (CL = odd), the zero
flag will not be set unless the upper 4 bits of the highest
byte are all zero. The carry flag will not be setunless there

is a carry out of the upper 4 bits of the highest byte. When
CL is odd, the contents of the upper 4 bits of the highest
byte of the result are undefined.

The destination string must always be located within the
segment specified by the DS segment register. Segment
override is prohibited.

The default segment register for the source string is DSy,
and segment override is possible. The source string may
be located within the segment specified by any (optional)
segment register.

The format for the packed BCD string is shown as
follows.

Bytes: 2
Clocks: 7 + 19 n, where n = one-half the number of
BCD digits
Transfers: 3n
Flag operation:
\ S z AC P CcY

U u X u u X

Example: See example for CMP4S

Byte Offset +m

~
Memory

I
Digit Offset +CL

49 00001 3A

12-43

uPD70108/70116

NEC

CMP4S

[DS1-spec:]dst-string,[seg-spec:]src-string
CMP4S (no operand)
Compare nibble string

BCD string (IY,CL) — BCD string (IX,CL)

Subtracts the packed BCD string addressed by the IX
index register from the packed BCD string addressed by
the IY index register. The result is not stored and only
the flags are affected. The length of the string (number
of BCD digits) is specified by the CL register and can vary
from 1 to 254 digits.

When the number of digits is even, the zero and carry
flags will be set according to the result of the operation.
When the number of digits is odd, the zero and carry flags
may not be set correctly. In this case, (CL = odd), the zero
flag will not be set unless the upper 4 bits of the highest
byte are all zero. The carry flag will not be setunless there
is a carry out of the upper 4 bits of the highest byte. When
CL is odd, the contents of the upper 4 bits of the highest
byte of the result are undefined.

The default segment register for the source string is DSg
and segment override is possible.

The source string may be located within the segment
specified by any (optional) segment register. The format
for the packed BCD string is shown below.

Bytes: 2

Clocks: 7+ 19n, where n=one-halfthe number of BCD

digits
Transfers: 2

Flag operation:

\ S AC cY
u u X u u X

N
)

Example:
;#PD70116 BCD string operation

MOV AWPS ;Set both data

;segments to
MOV DSO0,AW ;same as program
MOV DS1,AW ;segment
MOV IX,OFFSET STRO

;Point to BCD strings
MOV IY,OFFSET STR1
MOV CL,8 ;Eight digits

;in strings (A)
CMP4S ;Compare (B)
ADD4S ;Add string0

;to string1 (C)
CMP4S ;Compare again (D)
SuUB4S ;Subtract string0

;from string1 (E)
SUB4S ;again (result is

zero) (F)
SUB4S ;and again

;(underflow) (G)
HALT
STRO DW 4321H,0765H

;BCD# 07654321
STR1 DW 4321H,0765H
;BCD# 07654321

; at (A), STRO = 7654321,

; STR1=7654321,Z2=7,CY =7

; at (B), STRO = 7654321,

; STR1=7654321,Z2=1,CY =0

; at (C), STRO = 7654321,

; STR1=15308642,Z=0,CY =0
; at (D), STRO = 7654321,

; STR1 =15308642,Z=0,CY =0
; at (E), STRO = 7654321,

; STR1=7654321,Z=0,CY=0

; at (F), STRO = 7654321,

; STR1 = 00000000,Z=1,CY =0
; at (G), STRO = 7654321,

; STR1 =92345679,Z=0,CY =1

’

Byte Offset +m
&

X
[\ 4

RS
¥

7
Memory
¢

~A
~~

7
Digit Offset +CL

+4 +3 +2 +1 0

A9 0000 3A

12-44

NEC

Section 12
Instruction Set

ROL4 reg8
Rotate left nibble, 8-bit register

ROL4 mem8
Rotate left nibble, 8-bit memory

Treats the byte data of the 8-bit register specified by the
operand as a two-digit BCD and uses the lower 4 bits
of the AL register (AL) to rotate that data one digit to
the left.

Due to the result of this instruction, the contents of the
upper 4 bits of the AL register are not assured.

Bytes: 3
Clocks: 25
Transfers: None
Flag operation: None
Example:
MoV BL,95H
MOV AL,03H
ROL4 BL ;BL=53H, AL= X9H

1 1 0 0 0 reg mod 0 0 0 mem
l |] | l
(disp-low)
| . T 1
reg8 (disp-high)
il I
(mem8)
AL, Higher Lower
49.000024A 4 Bits 4 Bits

49-000406A

Treats the byte data of the 8-bit memory location
addressed by the operand as a two-digit BCD and uses
the lower 4 bits of the AL register (AL) to rotate that data
one digit to the left.

Due to the result of this instruction, the contents of the
upper 4 bits of the AL register are not assured.

Bytes: 3/4/5
Clocks: 28
Transfers: 2
Flag operation: None
Example:
MOV BYTE PTR [IX],12H
MOV AL,03H
ROL4 [IX] ;[IX]=23H, AL=X1H

12-45

uPD70108/70116
ROR4 reg8 ROR4 mem8
Rotate right nibble, 8-bit register Rotate right nibble, 8-bit memory
7 0 7 0

0 0 0 0 1 1 1 1

1 1 0 0 0 reg mod 0 0 0 mem
T T T L T T
(disp-low)
T T T di lh_ hl T
regs (disp-high)
AL, Higher Lower
4 Bits 4 Bits
(mem8)
AL, Higher Lower
4 Bits 4 Bits
49.000025A

Treats the byte data of the 8-bit register specified by the
operand as two-digit BCD and uses the lower 4 bits of
the AL register (AL,) to rotate the data one digit to
the right.

Due to the result of this instruction, the contents of the
upper 4 bits of the AL register are not assured.

Bytes: 3
Clocks: 29
Transfers: None
Flag operation: None
Example:
MOV CL,95H
MOV AL,03H
ROR4 CL ;CL=39H, AL=X5H

12-46

49-000407A

Treats the byte data of the 8-bit memory location
addressed by the operand as a two-digit BCD and uses
the lower 4 bits of the AL register (AL\) to rotate that data
one digit to the right. Due to the result of this instruction,
the contents of the upper 4 bits of the AL register are not
assured.

Bytes: 3/4/5
Clocks: 33

Transfers: 2

Flag operation: None
Example:
MOV BYTE PTR [IX],12H
MOV AL,03H
ROR4 [IX] ;[IX]=31H, AL=X2H

NEC

Section 12
Instruction Set

INCREMENT/DECREMENT
INC reg8

Increment 8-bit register

reg8 «——reg + 1

Increments by 1 the contents of the 8-bit register spec-
ified by the operand.

Bytes: 2
Clocks: 2
Transfers: None

Flag operation:

\% S AC
X X X X X

N
T

cY

Example: INC BL

INC mem

Increment memory

| | l | | | T
1 1 1 1 1 1 1
T T T T T T T
mod 0 0 0 mem
| T 1 T T
(disp-low)
1 L
(disp-high)

(mem) < (mem) + 1

Increments by 1 the contents of the 8- or 16-bit memory
location specified by the operand.

Bytes: 2/3/4

Clocks:
When W=0: 16
When W=1: 24, uPD70108
24, uPD70116 odd addresses
16, uPD70116 even addresses

Transfers: 2

Flag operation:

\Y S AC

N
o

(0} 4

X X X X X

Example:
INC WORD_VAR
INC BYTE PTR [BW]

12-47

uPD70108/70116
INC reg16 DEC reg8
Increment 16-bit register Decrement 8-bit register
7 0 7
T T T | x 1 | 1 T T T T T T
0 1 0 0 0 reg 1 1 1 1 1 1 1
I’eg16 - reg16 + 1 1 ! 1 ! 0 ‘ 0 ! 1 !] reg !

Increments by 1 the contents of the 16-bit register spec-
ified by the operand.

Bytes :1
Clocks: 2
Transfers: None

Flag operation:

\' S AC P | CY
X X X X X

N

Example:
INC BW
INC IX

12-48

reg8 «— reg8 — 1

Decrements by 1 the contents of the 8-bit register spec-
ified by the operand.

Bytes: 2
Clocks: 2
Transfers: None

Flag operation:

Vv S Z | AC P | CY
X X X X X

Example: DEC DH

NEC

Section 12
Instruction Set

DEC mem
Decrement memory
7 0
T T | T T | T
1 1 1 1 1 1 1
| T T T 1 | |
mod 0 0 1 mem
T T T |
(disp-low)
T T . 1
(disp-high)

(mem) «— (mem) — 1

Decrements by 1 the 8- or 16-bit memory contents
addressed by the operand.

Bytes: 2/3/4
Clocks:

DEC reg16
Decrement 16-bit register
7 0
T T | T T T |
0 1 0 0 1 reg

reg16 «— reg16 — 1

Decrements by 1 the contents of the 16-bit register spec-
ified by the operand.

Bytes: 1
Clocks: 2
Transfers: None

Flag operation:

\Y S Z | AC

T

CcY

When W=0:
When W=1:

16
24, uPD70108

X X X X X

Example: DEC BP

24, uPD70116 odd addresses
16, uPD70116 even addresses

Transfers: 2

Flag operation:

\" S b4 AC P CYy

X X X X X
Example:

DEC BYTE_VAR

DEC WORD_VAR[BW][IX]

12-49

uPD70108/70116
MULTIPLICATION MULU mem8
MULU reg8 Multiply unsigned, 8-bit memory
Multiply unsigned, 8-bit register 7 0
T T T 1 1 T T
7 1 1 1 1 0 1 1 0
T T T T T T T
1 1 1 1 0 1 1 T T | , , | ,
mod 1 0 0 mem
| T T I T T T
1 1 1 0 0 reg T T T T T T
(disp-low)
AW «— AL X reg8 : : : : |
When AH=0: CY < 0,V <0 (disp-high)
When AH#0: CY «— 1,V «— 1
Performs unsigned multiplication of the contents of the =~ AW < AL X (mem8)

AL register and the contents of the 8-bit register specified
by the operand. Stores the word result in the AL and AH
registers. When the upper half (AH) of the result is not

0, the carry and overflow flags are set.
Bytes: 2

Clocks: 21 or 22 (according to data)
Transfers: None

Flag operation:

Vv S AC cY
X u u u u X

N
o

Example:
MOV AL13 ;AW = XXO0DH
MOV CL,5
MULU CL ;AW =0041H=65,C=V=0

12-50

When AH=0: CY < 0,V < 0
When AH#0: CY «— 1,V <1

Performs unsigned multiplication of the contents of the
AL register and the 8-bit memory location addressed by
the operand. Stores the word result in the AL and AH
registers. When the upper half (AH) of the result is not

0, the carry and overflow flags are set.
Bytes: 2/3/4

Clocks: 27 or 28 (according to data)
Transfers: 1

Flag operation:

Vv S Z | AC P cY

X u u u u X

Example:

MOV AL35

;AW = XX23H
MOV BYTE_VAR,20
MULU BYTE_VAR

;AW = 02BCH = 700,

MULU BYTE PTR[IX]

c=v=1

NEC

Section 12
Instruction Set

MULU reg16
Multiply unsigned, 16-bit register

DW, AW — AW X reg16
When DW=0:CY <0,V <0
When DW=0: CY «— 1,V «— 1

Performs unsigned multiplication of the contents of the
AW register and the contents of the 16-bit register spec-
ified by the operand. Stores the double-word resultin the
AW and DW registers. When the upper half (DW) of the
result is not 0, the carry and overflow flags are set.
Bytes: 2

Clocks: 29 or 30 (according to data)

Transfers: None

Flag operation:

\' S Z | AC P CcY
X u u u U X

Example:
MOV AW,1234H
MOV CW3
MULU Cw
;DW = 0000H, AW = 369CH,
C=V=0

MULU mem16
Multiply unsigned, 16-bit memory
7 0
T T T | T T T
1 1 1 1 0 1 1
T T T | T T T
mod 1 0 0 mem
T T T T T
(disp-low)
IR B T
(disp-high)

DW, AW «— AW X (mem16)
When DW=0: CY < 0,V <0
When DW#0: CY «— 1,V «— 1

Performs unsigned multiplication of the contents of the
AW register and the 16-bit memory contents addressed
by the operand. Stores the double-word result in the AW
and DW registers. When the upper half (DW) of the result
is not 0, the carry and overflow flags are set.

Bytes: 2/3/4

Clocks:
39 or 40, uPD70108
39 or 40, uPD70116 odd addresses
35 or 36, uPD70116 even addresses

Transfers: 1

Flag operation:

\Y S AC CY
X u u u u X

N
)

Example:
MOV AW400H
MOV WORD_VAR,9310H
MULU WORD_VAR
;DW = 024CH,AW = 4000H,
C=V=1

12-51

uPD70108/70116
MUL reg8 MUL mem8
Multiply signed, 8-bit register Multiply signed, 8-bit memory
7 7 0
1 T T T | T 1 | T T | | 1 T
1 1 1 1 0 1 1 1 1 1 1 0 1 1 0
T | T | T T T | T | T 1 T 1
1 1 1 0 1 reg mod 1 0 1 mem
AW — AL X reg8 ! ! (disp-low) ! !
When AH=sign extension of AL: CY < 0,V <0
When AH#sign extension of AH: CY «— 1,V « 1 T T | R T
(disp-high)
Performs signed multiplication of the contents of the AL)
register and the contents of the 8-bit register specified AW «— AL X (mem8)

by the operand. Stores the double-word result in the AL
and AH registers. When the upper half (AH) of the result
is not the sign extension of the lower half (AL), the carry
and overflow flags are set.

Bytes: 2
Clocks: 33 to 39 (according to data)
Transfers: None

Flag operation:

\'% S AC cY
X U u u u X

N
o

Example:
MoV AL,18
;AW = XX12H
MoV CL,—2
;CL=FEH
MUL CL

AW =FFDC=-36,C=V=0

12-52

When AH=sign extension of AL: CY «<— 0,V < 0
When AHs#sign extension of AH: CY «— 1,V «— 1

Performs signed multiplication of the contents of the AL
register and the 8-bit memory location addressed by the
operand. Stores the double-word resultin the ALand AH
registers. When the upper half (AH) of the result is not
the sign extension of the lower half (AL), the carry and
overflow flags are set.

Bytes: 2/3/4
Clocks: 39 to 45 (according to data)
Transfers: None

Flag operation:

o
Ql
<

\Y S 4 AC
X U U U U X
Example:
MOV AL,100
;AW = XX64H
MOV BYTE_VAR—4
;=FCH
MUL BYTE_VAR

;AW = FE70H = —400,C =V =1

NEC

Section 12
Instruction Set

MUL reg16
Multiply signed, 16-bit register

DW, AW «— AW X reg16 ,
When DW=sign extension of AW: CY «— 0,V <0
When DWs#sign extension of AH: CY «— 1,V « 1

Performs signed multiplication of the contents of the AW
register and the contents of the 16-bit register specified
by the operand. Stores the double-word result in the AW
and DW registers. When the upper half (DW) of the result
is not the sign extension of the lower half (AW), the carry
and overflow flags are set.

Bytes: 2
Clocks:
Transfers: None

41 to 47 (according to data)

Flag operation:

Vv S AC P cYy
X u u u u X

N

Example:

MOV AW—10
;AW = FFF6H

MOV BW,—10
;BW = FFF6H

MUL BW
;DW = 0000, AW = 0064H = 100,
C=V=0

MUL mem16
Multiply signed, 16-bit memory
7 0
T T T T T T T
1 1 1 1 0 1 1 1
T T T T T | T
mod 1 0 1 mem
1 T L T 1
(disp-low)
T | B T
(disp-high)

DW, AW — AW X (mem16)
When DW=sign extension of AW: CY «<— 0,V «— 0
When DW=%sign extension of AW: CY «— 1,V « 1

Performs signed multiplication of the contents of the AW
register and the 16-bit memory contents addressed by
the operand. Stores the double-word resultin the AW and
DW registers. When the upper half (DW) of the result is
not the sign extension of the lower half (AW), the carry
and overflow flags are set.

Bytes: 2/3/4

Clocks:
51 to 57, uPD70108
51 to 57, uPD70116 odd addresss
47 to 53, uPD70116 even addresses

Transfers: 1

Flag operation:

\ S Z AC P CY
X U U U U X
Example:

MOV AW,—10
;AW = FFF6

MOV [1X],—20
;=FFEC

MUL WORD PTR [IX]
;DW = 0000, AW = 00C8H = 200,
C=V=0

12-53

uPD70108/70116

NEC

MUL reg16,reg16,imm8
MUL reg16,imm8

Multiply signed, 16-bit register X 8-bit immediate data
to 16-bit register

imm8

reg16 < reg16 X imm8
Product < 16 bits: CY «<— 0,V <0
Product > 16 bits: CY «— 1,V «— 1

Performs signed multiplication of the contents of the
16-bit register specified by the second operand. (If a two-
operand description, then performs signed multiplication
on the contents specified by the first operand.) Performs
signed multiplication on the 8-bit immediate data spec-
ified by the third operand. (If a two-operand description
then performs signed multiplication on the data specified
by the second operand.)

When the source register and the destination register are
the same, a two-operand description is acceptable.

Bytes: 3
Clocks: 28 to 34 (according to data)
Transfers: None

Flag operation:

\Y S Z | AC (0} 4
X u u U U X

v

Example:
MUL AWBW,10
;AW = BW*10
MUL Cw,25
;CW = CW*25

12-54

MUL reg16,mem16,imm8

Multiply signed, 16-bit memory X 8-bit immediate data
to 16-bit register

7 0
T T u T T T T
0 1 1 0 1 0 1 1
| T T | | T T
mod reg mem
T : 1 T T
(disp-low)
T T | T T
(disp-high)
: T T T T
imm8

reg16 < (MEM16) X imm8
Product < 16 bits: CY < 0,V <0
Product > 16 bits: CY «— 1,V «— 1

Performs signed multiplication of the contents of the
16-bit memory contents addressed by the second oper-
and and the 8-bit immediate data specified by the third
operand. Stores the result in the 16-bit register specified
by the first operand.

Bytes: 3/4/5

Clocks:
38 to 44, uPD70108
38 to 44, uPD70116 odd addresses
34 to 40, uPD70116 even addresses

Transfers: 1

Flag operation:

Vv S Z AC P CcY
X U U U U X
Example:
MUL CWWORD_VAR,7
;CW = [WORD_VAR]*7
MUL AW|IX}],22
;AW = [IX]*22

NEC

Section 12
Instruction Set

MUL reg16,reg16,imm16
MUL reg16,imm16

Multiply signed, 16-bit register X 16-bit immediate data
to 16-bit register

T T T
imm1i6-low

. T
imm16-high

reg16 < reg16 X imm16
If product < 16 bits: CY < 0,V <0
if product > 16 bits: CY «<— 1,V «— 1

Performs signed multiplication of the contents of the
16-bit register specified by the second operand — the
firstoperand, when atwo-operand description — and the
16-bit immediate data specified by the third (second)
operand. Stores the result in the 16-bit register specified
by the first operand.

When the source register and the destination register are
the same, a two-operand description is possible.

Bytes: 4
Clocks:
Transfers:

36 to 42 (according to data)
None

Flag operation:

MUL reg16,mem16,imm16

Multiply signed, 16-bit memory X 16-bit immediate data
to 16-bit register

T 1 T
(disp-low)

LN
(disp-high)

. T T
immi6-low

T R
imm16-high

reg16 «— (mem16) X imm16

If product < 16 bits: CY <~ 0,V <0
If product > 16 bits: CY «— 1,V <1

Performs signed multiplication of the 16-bit memory con-
tents specified by the second operand and the 16-bit
immediate data specified by the third operand. Stores the
result in the 16-bit register specified by the first operand.

Bytes: 4/5/6

Clocks:
46 to 52, uPD70108
46 to 52, uPD70116 odd addresses
42 to 48, uPD70116 even addresses

Transfers: 1

Flag operation:

Vv S Z AC P CcY
X u U U U X
Example:
MUL AW,BW,200H
_ ;AW = BW*200H
MUL 1X,300
;IX = 1X*300

v

S

N

AC

o

CcY

X

U

C

Example:

MUL CW,WORD_VAR,200H
;CW = [WORD_VAR]*200H
AW][1X],850

AW = [IX]*850

MUL

12-55

vPD70108/70116
DIVISION DIVU mem8
DIVU reg8 Divide unsigned, 8-bit memory
Divide unsigned, 8-bit register 7
T T T T T T T
7 0 1 1 1 1 0 1 1
| T ‘ w T 1 T
mod 1 1 0 mem
l | l T T T T
1 1 1 1 0 reg I [I I ,
(disp-low)
temp — AW
When temp + reg3= FFH: ! ' (disp'-high)l !
AH <« temp % reg8
AL < temp =+ reg8 temp «— AW

When temp ~+ reg8 > FFH:
(SP—1,SP—2) < PSW,
(SP—3,SP—4) < PS,
(SP—5,SP—6) < PC,
SP «— SP — 6,

IE <0,

BRK <0,

PS < (003H, 002H),
PC < (001H, 000H)

Divides (using unsigned division) the contents of the AW
16-bit register by the contents of the 8-bit register spec-
ified by the operand. The resulting quotient is stored in
the AL register. Any remainder is stored in the AH register.

When the quotient exceeds FFH (the capacity of the AL
destination register) the vector 0 interrupt is generated.
When this occurs, the quotient and remainder become
undefined. This usually occurs when the divisoris 0. The
fractional quotient is rounded off.

Bytes: 2
Clocks: 19
Transfers: None

Flag operation:

\'% S AC cYy
u u U u u u

N
o

Example:
MOV AW,204
MOV CL,10
DIVU CL

JAL=20,AH=4

12-56

When temp + (mem8) = FFH:
AH <« temp % (mem8),
AL <— temp =+ (memS§).
When temp <+ (mem8) > FFH:
(SP—1,SP—2) «— PSW,
(SP—3,SP—4) «— PS,
(SP—5,SP—6) < PC,
SP—SP—6
IE <0,
BRK «— 0,
PS « (003H, 002H),
PC < (001H, 000H),

Divides (using unsigned division) the contents of the AW
16-bit register by the 8-bit memory contents specified by
the operand. The quotient is stored in the AL register and
the remainder, if any, is stored in the AH register.

When the quotient exceeds FFH — the capacity of the
AL destination register — the vector 0 interrupt is gener-
ated. When this occurs, the quotient and remainder
become undefined. This especially occurs when the di-
visor is 0. The fractional quotient is rounded off.

2/3/4
Clocks: 25
Transfers: 1

Bytes:

Flag operation:

\ S AC (0 4
U u u u u u

N
o

Example:
MOV AW,3410
MOV [BW],19
DIVU [BW]

JAL=179, AH=9

NEC

Section 12
Instruction Set

DIVU reg16
Divide unsigned, 16-bit register

temp <— DWAW
When temp -+ reg16 > FFFFH:
(SP—1,SP—2) «— PSW,
(SP—3,SP—4) — PS,
(SP—5,SP—6) < PC,
SP —SP—6
IE <0,
BRK <0
PS < (003H, 002H),
PC <« (001H, 000H)
All other times:
DW < temp % reg16, AW < temp =+ reg16

Divides (using unsigned division) the contents of the DW
and AW 16-bit register pair by the contents of the 16-bit
register specified by the operand. The quotient is stored
in the AW register. The remainder, if any, is stored in the
DW register. When the quotient exceeds FFFFH (the
capacity of the AW destination register) the vector O inter-
rupt is generated, and the quotient and remainder
become undefined. This most often occurs when the
divisor is 0. The fractional quotient is rounded off.

Bytes: 2
Clocks: 25
Transfers: None

Flag operation:

\' S AC cY
U u U u U U

N
el

Example:
- MOV DW,0348H
MOV AW,2197H
;DW,AW = 03482197H
MOV BW,2000H
DIVU BW

;AW = 1A41H,DW = 0197H

DIVU mem 16
Divide unsigned, 16-bit memory
7 0
T T T T T T T
1 1 1 1 0 1 1
T T 1 T T T T
mod 1 1 0 mem
T T 1 T T
(disp-low)
| | | R T
(disp-high)
temp < DWAW

When temp + (mem16) > FFFFH:
(SP—1,SP—2) «— PSW,
(SP—3,SP—4) « PS,
(SP—5,SP—6) « PC,

SP <« SP—6

IE <0,

BRK < 0,

PS < (003H, 002H),
PC < (001H, 000H)

All other times:

DW « temp % (mem16), AL < temp + (mem16)

Divides (using unsigned division) the contents of the DW
and AW 16-bit register pair by the 16-bit memory con-
tents specified by the operand. The quotient is stored in
the AW register. The remainder, if any, is stored in the DW
register.

When the quotient exceeds FFFFH (the capacity of the
AW destination register) the vector O interrupt is gener-
ated and the quotient and remainder become undefined.
This especially occurs when the divisor is 0. The frac-

tional quotient is rounded off.
Bytes: 2/3/4

Clocks:
35, uPD70108
35, uPD70116 odd addresses
31, uPD70116 even addresses

Transfers: 1
Flag operation:

Vv S Z | AC CY
u U U U u u

T

Example:
MOV DW,0
MOV AW,100
MoV [IX][BX]1,5
DivU [IX][BX]

;AW = 0014H = 20,DW =0
12-57

uPD70108/70116

DIV reg8
Divide signed, 8-bit register

temp — AW
When temp -~ reg8 > 0 and temp -~ reg8 > 7FH or temp
-+ reg8 > 0 and temp <+ reg8 > 0-7FH-1:
(SP—1,SP—2) — PSW,
(SP—3,SP—4) — PS,
(SP—5,SP—6) «— PC,
SP «— SP — 6,
IE <0,
BRK « 0,
PS <« (003H, 002H),
PC <« (001H, 000H)
All other times:
AH <« temp % reg8,
AL < temp -+ reg8

Divides (using signed division) the contents of the AW
16-bit register by the contents of the 8-bit register spec-
ified by the operand. The quotientis stored in the AL 8-bit
register. The remainder, if any, is stored in the AH register.
The maximum value of a positive quotient is +127 (7FH),
and the minimum value of a negative quotient is
—127 (81H).

When a quotient is greater than either maximum value(s)
the quotient and remainder become undefined, and the
vector O interrupt is generated. This especially occurs
when the divisor is 0. A fractional quotient is rounded off.
The remainder will have the same sign as the dividend.

Bytes: 2
Clocks: 29 to 34 (according to data)
Transfers: None

Flag operation:

Vv S AC cY
u u u u U U

N
T

DIV mem8
Divide signed, 8-bit memory

T 1 T T]
(disp-low)

T T 1
(disp-high)

temp «— AW
When temp +~ (mem8) > 0 and (mem8) > 7FH or
temp <+ (mem8) < 0 and temp + (mem8) > 0-7FH-1:
(SP—1,SP—2) «— PSW,
(SP—3,SP—4) — PS,
(SP—5,SP—6) — PC,
SP «— SP — 6,
IE <0,
BRK < 0,
PS <« (003H, 002H),
PC <« (001H, 000H),
All other times:
AH < temp % (mem8), AL < temp =+ (mem8)

Divides (using signed division) the contents of the AW
16-bit register by the contents of the 8-bit memory loca-
tion specified by the operand. The quotient is stored in
the 8-bit AL register, while the remainder, if any, is stored
in the AH register. The maximum value of a positive quo-
tientis +127 (7FH), and the minimum value of a negative
quotient is —127 (81H). When a quotient is greater than
either maximum value(s), the quotient and remainder
become undefined and the vector 0 interrupt is
generated.

This especially occurs when the divisor is 0. A fractional
quotientis rounded off. The remainder will have the same
sign as the dividend.

2/3/4
35 to 40 (according to data)

Bytes:
Clocks:
Transfers: 1

Flag operation:

Example:
MOV AW, —247
MOV CL,3
DIV CL

12-58

AL = —82,AH = —1

\ S y4 AC P CY
U U U u U U
Example:
MOV AW,1234
MOV [BW], —20
DIV [BW]
;AL=—61,AH =14

NEC

Section 12
Instruction Set

DIV reg16
Divide signed, 16-bit register

temp «<— DWAW
When temp - reg16 > 0 and temp + reg16 < 7FFFH or
temp + reg16 < 0 and temp =+ reg16 > 0-7FFFH-1:
(SP—1,SP—2) «— PSW,
(SP—3,SP—4) « PS,
(SP—5,SP—6) < PC,
SP «— SP — 6,
IE <0,
BRK « 0,
PS <« (003H, 002H),
PC <« (001H, 000H)
All other times:
DW <« temp % reg16, AW < temp = reg16

Divides (using signed division) the contents of the DW
and AW 16-bit register pair by the contents of the 16-bit
register specified by the operand. The quotient is stored
in the AW 16-bit register, while the remainder, if any, is

stored in the DW register. The maximum value of a pos-
itive quotient is +32,767 (7FFFH) and the minimum value
of a negative quotient is —32,767 (8001H). When the
quotient is greater than either maximum value(s), the
quotient and remainder become undefined, and the vec-
tor O interrupt is generated. This especially occurs when
the divisor is 0. A fractional quotient is rounded off. The
remainder will have the same sign as the dividend.

Bytes: 2
Clocks: 38 to 43 (according to the data)
Transfers: None

Flag operation:

\' S 4 AC P cY

U U U U u U
Example:

MoV DW,0123H

MoV AW,4567H

MOV CW,1000H

DIV CcwW

;AW = 1234H, DW = 0567H

12-59

NEC

uPD70108/70116
DIV mem16
Divide signed, 16-bit memory
7 0
T T T T l T T
1 1 1 1 0 1 1
1 1 T T T T 1
mod 1 1 1 mem
| 1 1 T T
(disp-low)
T LN
(disp-high)
temp «— DWAW

When temp =+ (mem16) >0 and temp <+ (mem16) <7FFFH
or temp + (mem16) < 0 and temp <+ (memi6) >
0-7FFFH-1:

(SP—1,SP—2) < PSW,
(SP—3,SP—4) — PS,
(SP—5,SP—6) «— PC,
SP «— SP — 6,
IE <0,
BRK < 0,
PS <« (003H, 002H),
PC <« (001H, 000H)
All other times:
DW <« temp % (mem16), AW < temp -+ (mem16)

Divides (using signed division) the contents of the DW
and the AW 16-bit register pair by the contents of the
16-bit memory location specified by the operand. The
quotient is stored in the AW 16-bit register, while the

12-60

remainder, if any, is stored in the DW register. The max-
imum value of a positive quotientis +32,767 (7FFFH), and
the minimum value of a negative quotient is —32,767
(8001H). When the quotient is greater than either max-
imum value(s), the quotientand remainder become unde-
fined and the vector O interrupt is generated. This
especially occurs when the divisor is 0. A fractional quo-
tient is rounded off. The remainder will have the same

sign as the dividend.
Bytes: 2/3/4

Clocks:
48 to 53, uPD70108
48 to 53, uPD70116 odd addresses
44 to 49, uPD70116 even addresses

Transfers: 1
Flag operation:

N
o

\' S AC (03 4

u u u U u u

Example:
MOV DW,0
MOV AW, —34
MOV IY],—2
DIV [IY]

AW =17, DW =0

NEC

Section 12
Instruction Set

BCD ADJUST
ADJBA (no operand)
Adjust byte add

ADJ4A (no operand)
Adjust Nibble Add

Adjusts the result of unpacked decimal addition stored
in the AL register into a single unpacked decimal number.
The higher 4 bits become zero.

When AL AND OFH > 9 or AC=1:
AL < AL + 6,
AH < AH + 1,
AC <1,
CY < AC,
AL <— AL AND OFH
Bytes: 1
Clocks: 3
Transfers: None

Flag operation:

\'% S Z | AC 10} 4
u U u X u X

T

Example: ADJBA

When AL AND OFH <9 or AC=1:
AL < AL + 6,
CY < CY OR AC,
AC <1
When AL > 9FH or CY=1:
AL < AL + 60H,
CY «1

Adjusts the result of packed decimal addition stored in
the AL register into a single packed decimal number.

Bytes: 1
Clocks: 3
Transfers: None
Flag operation:

v S Z | AC cY
X X X X X X

T

Example: ADJ4A

12-61

uPD70108/70116
ADJBS (no operand) ADJ4S (no operand)
Adjust byte subtract Adjust nibble subtract
7 0 7 0

When AL AND OFH > 9 or AC=1:
AL — AL — 6,
AH «— AH —1,
AC <1,
CY <« AC,
AL < AL AND OFH

Adjust the result of unpacked decimal subtraction stored
in the AL register into a single unpacked decimal number.
The higher 4 bits become zero.

Bytes: 1
Clocks: 7
Transfers: None

Flag operation:

\Y S Z | AC P | CY
U U u X u X

Example: ADJBS

12-62

When AL AND OFH > 9 or AC=1:
AL — AL — 6,
CY «— AC OR CY,
AC 1,
When AL > 9FH or CY=1:
AL «<— AL — 60H,
CY <1

Adjusts the result of packed decimal subtraction stored
in the AL register into a single packed decimal number.

Bytes: 1
Clocks: 7
Transfers: None

Flag operation:

Y S Z | AC CY

v

u X X X X X

Example: ADJ4S

NEC

Section 12
Instruction Set

DATA CONVERSION
CVTBD (no operand)

Convert binary to decimal

AH <— AL -+ OAH
AL «<— AL ..% OAH

Converts the binary 8-bit value in the AL register into a
two-digit unpacked decimal number.

The quotient of AL divided by 10 is stored in the AH
register. The remainder of this operation is stored in the
AL register.

Bytes: 2
Clocks: 15
Transfers: None

Flag operation:

CVTDB (no operand)
Convert decimal to binary

AL < AH X 0AH + AL
AH <~ 0

Converts a two-digit unpacked decimal number in the
AH and AL registers into a single 16-bit binary number.
The value in the AH is multiplied by 10. The product is
added to the contents of the AL register and the result
is stored in AL. AH becomes 0.

Bytes: 2
Clocks: 7
Transfers: None
Flag operation:

v

S

z

AC

T

cY

U

X

X

v

S

z

AC

)

CY

u

X

X

Example: CVTBD

Example: CVTDB

12-63

uPD70108/70116
CVTBW (no operand) CVTWL (no operand)
Convert byte to word Convert word to long word
7 7 0

When AL < 80H:
AH <0

All other times
AH <— FFH

Expands the sign of the byte in the AL register to the AH
register. Use this instruction to produce a double-length
(word) dividend from a byte before a byte division is
performed.
Bytes: 1

Clocks: 2
Transfers: None
Flag operation: None

Example: CVTBW

12-64

When AW < 8000H:
DW <« 0

All other times :
DW <« FFFFH

Expands the sign of the word in the AW register to the
DW register. Use this instruction to produce a double-
length (double-word) dividend from a word before a word
division is performed.

Bytes: 1

Clocks: 4 or 5 (according to data)
Transfers: None
Flag operation: None

Example: CVTWL

NEC

Section 12
Instruction Set

COMPARISON
CMP reg,reg

Compare register and register

reg — reg

Subtracts the contents of the 8- or 16-bit register spec-
ified by the second operand from the contents of the 8- or
16-bit register specified by the first operand. The result
is not stored and only the flags are affected.

Bytes: 2
Clocks: 2
Transfers: None

Flag operation:

\' S AC cY
X X X X X X

N
)

Example:
CMP AWBW
CMP CH,DL

CMP mem,reg

Compare memory and register

T | T T T] 1
0 0 1 1 1 0 0
T] T T T T 1
mod reg mem
T T 1 | T
(disp-low)
| | T 1 T
(disp-high)
(mem) — reg

Subtracts the contents of the 8- or 16-bit register spec-
ified by the second operand from the 8- or 16-bit memory
contents addressed by the first operand. The result is not
stored and only the flags are affected.

Bytes: 2/3/4

Clocks:
When W=0: 11
When W=1: 15, uPD70108
15, uPD70116 odd addresses
11, uPD70116 even addresses

Transfers: 1

Flag operation:

v S AC 0 4
X X X X X X

N
T

Example:
CMP WORD_VAR,IX
CMP BYTE_VAR,CL
CMP [BW],AH

12-65

uPD70108/70116

NEC

CMP reg,mem

Compare register and memory

CMP reg,imm

Compare register and immediate data

T I T | | T l T T T I T T T
0 0 1 1 1 0 1 1 0 0 0 0 0 S
| T T | T | | T T T T T T T
mod reg mem 1 1 1 1 1 reg
T T 1 | T T T 1 T T |
(disp-low) imm8 or imm16-low
I R | T T L T
(disp-high) imm16-high
Subtracts the 8- or 16-bit memory contents addressed reg —imm

by the second operand from the contents of the 8- or
16-bit register specified by the first operand. The result
is not stored and only the flags are affected.

reg — (mem)
Bytes: 2/3/4

Clocks:
When W=0: 11
When W=1: 15, uPD70108
15, uPD70116 odd addresses
11, uPD70116 even addresses

Transfers: 1

Flag operation:

Vv S AC CcY
X X X X X X

N
T

Example:
CMP AW[IX]
CMP CH,BYTE_VAR

12-66

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the contents of the 8- or 16-bit
register specified by the first operand. The result is not
stored and only the flags are affected.

Bytes: 3/4
Clocks: 4
Transfers: None

Flag operation:

\Y S AC cYy

N
o

X X X X X X

Example:
CMP BL,5
CMP DW,1200H

NEC

Section 12
Instruction Set

CMP mem,imm

Compare memory and immediate data

7 0
T T T T T l T
1 0 0 0 0 0 S
T T T T T T T
mod 1 1 1 mem
l T T T T
(disp-low)
T LN 1
(disp-high)

T T T
imm8 or imm16-low

T 1
imm16-high

(mem) — imm

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the 8- or 16-bit memory con-
tents addressed by the first operand. The result is not
stored and only the flags are affected.

Bytes: 3/4/5/6

Clocks:
When W=0: 13
When W=1: 17, uPD70108
17, uPD70116 odd addresses
13, uPD70116 even addresses

Transfers: 1

Flag operation:

v S AC CcYy
X X X X X X

N
)

Example:
CMP BYTE PTR [BW],3
CMP WORD_VAR,7000H

CMP acc,imm

Compare accumulator and immediate data

B T T
imm8 or imm16-low

T, L
imm16-high

When W=0: AL —imm8
When W=1: AW —imm16

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the accumulator (AL or AW)
specified by the first operand. The resultis not stored and
only the flags are affected.

Bytes: 2/3
Clocks: 4
Transfers: None

Flag operation:

Y S 4 AC P CcY

X X X X X X
Example:

CMP AL,0

CMP AW,800H

12-67

uPD70108/70116
COMPLEMENT OPERATION NOT mem
NOT reg Not memory
Not register 7 ' | ’ | | l | 0
7 0 1 1 1 1 0 1 1
1 T 1 T T T l
1 1 1 1 0 1 1 w T T T T T T T
mod 0 1 0 mem
T T T T T 1 1
1 1 0 1 0 reg T I T I T
(disp-low)
reg < reg T T . 1 T
Inverts (by performing a 1’s complement) each bit of the (disp-high)

8- or 16-bit register specified by the operand and stores
the result in the specified register.

Bytes: 2
Clocks: 2
Transfers: None
Flag operation: None
Example:
NOT BW
NOT CL

12-68

(mem) < (mem)

Inverts (by performing a 1’s complement) each bit of the
8- or 16-bit memory location addressed by the operand
and stores the result in the addressed memory location.

Bytes: 2/3/4

Clocks:
When W=0: 16
When W=1: 24, uPD70108
24, uPD70116 odd addresses
16, uPD70116 even addresses
Transfers: 2
Flag operation: None

Example:
NOT
NOT

WORD_VARI[IX][2]
BYTE PTRIY]

NEC

Section 12
Instruction Set

NEG reg
Negate register

NEG mem

Negate memory

7 0 7 0
T T T T T T T T T] |] T T
1 1 1 1 0 1 1 w 1 1 1 1 0 1 1 w
T T 1 1 1 T T T T T | x T |
1 1 0 1 1 reg mod 0 1 1 mem
reg < reg + 1 T (disp-low) |
Takes the 2’'s complement of the contents of the 8- or
16-bit register specified by the operand. ! " (disp-high)'
Bytes: 2
-— + 1
Clocks: 2 (mem) < (mem)
Takes the 2's complement of the 8- or 16-bit memory
Transfers: None

Flag operation:

\'

S

p4

AC

CY*

X

X

X

X

Note: * = 0 if the contents of the operand register is 0.

contents addressed by the operand.

Bytes: 2/3/4

Clocks:
When W=0:
When W=1;

16

24, uPD70108

24, uPD70116 odd addresses
16, uPD70116 even addresses

Example: Transfers: 2
NEG Flag operation:
NEG
\" S Z AC P CY*
X X X X X 1

Note: * = 0 if the contents of the memory operand is 0.

Example:
NEG WORD_VAR
NEG BYTE PTR [BW][IX]

12-69

uPD70108/70116
LOGICAL OPERATION TEST mem,reg or TEST reg,mem
TEST reg,reg Test register and memory
Test register and register 7 1 | | | | ' | 0
7 0 1 0 0 0 0 1 0 w
T T T T T T |
1 0 0 0 0 1 0 T = T T I , |
mod reg mem
] N] T T eq T x T reg T
T T T T T |
(disp-low)
reg AND reg I I T " T hiah T 1
ANDs the contents of the 8- or 16-bit register specified (disp-high)

by the first operand and the 8- or 16-bit register specified
by the second operand. The result is not stored and only
the flags are affected.

Bytes: 2
Clocks: 2
Transfers: None

Flag operation:

\Y S AC Cy
0 X X u X 0

N
T

Example:
TEST AW,CW
TEST CL,AH

12-70

(mem) AND reg

ANDs the contents of the 8- or 16-bit second operand
and the contents of the 8- or 16-bit first operand.

The result is not stored and only the flags are affected.

Bytes: 2/3/4

Clocks:
When W=0: 10
When W=1: 14, uPD70108
14, uPD70116 odd addresses
10, uPD70116 even addresses

Transfers: 1

Flag operation:

\ S 4 AC P cY

0 X X u X 0
Example:

TEST BYTE_VAR,DL

TEST AH, [IX]

NEC

Section 12
Instruction Set

TEST reg,imm TEST mem,imm
Test immediate data and register Test immediate data and memory
7 0 7 0
T T] T x x | T T | [T T T
1 1 1 1 0 1 1 W 1 1 1 1 0 1 1
T T T T T | | 1 | | 1 T T T
1 1 0 0 0 reg mod 0 0 0 mem
| T T | | ! | T L T
imm8 or imm16-low (disp-low)
1 T T L T T UL
imm16-high (disp-high)
; T l T T
reg AND imm imm8 or imm16-low

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit immediate data
specified by the second operand. The result is not stored
and only the flags are affected.

Bytes: 3/4
Clocks: 4
Transfers: None

Flag operation:

\' S Z | AC cY
0 X X u X 0

0

Example:
TEST CW,1
TEST AL,50H

T UL
imm16-high

(mem) AND imm

ANDs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec-
ified by the second operand. The result is not stored and
only the flags are affected.

Bytes: 3/4/5/6

Clocks:

When W=0: 11

When W=1: 15, uPD70108
15, uPD70116 odd addresses
11, uPD70116 even addresses

Transfers: 1

Flag operation:

Vv S AC (03 4

N
T

0 X X U X 0

Example:
TEST BYTE PTR [BW],80H
TEST WORD_VAR,00FFH

12-71

NEC

uPD70108/70116
TEST acc,imm AND reg,reg
Test immediate data and accumulator AND register with register to register
7 0 7 0
T | | | T T T 1 1 | T T | T
1 0 1 0 1 0 0 0 0 1 0 0 0 1
T 1 T | T | T | T T T T
imm8 or imm16-low 1 1 reg reg

T o]
imm16-high

When W=0: AL AND imm8
When W=1: AW AND imm16

ANDs the contents of the accumulator (AL or AW) spec-
ified by the first operand and the 8- or 16-bit immediate
data specified by the second operand. The result is not
stored and only the flags are affected.

Bytes: 2/3
Clocks: 4
Transfers: None

Flag operation:

Vv S AC 0} 4
0 X X u X 0

N
o

Example:
TEST AL,12H
TEST AW,8000H

12-72

reg < reg AND reg

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the contents of the 8- or 16-bit
register specified by the second operand. Stores the
result in the register specified by the first operand.
Bytes: 2
Clocks: 2
Transfers: None

Flag operation:

Y S Z | AC (0} 4

T

0 X X | U X 0

Example: AND IX,AW

NEC

Section 12
Instruction Set

AND mem,reg

AND memory with register to memory

T T | l | | |
0 0 1 0 0 0 0
T T T T | T T
mod reg mem
1 T 1 T l
(disp-low)
1 T . 1 T
(disp-high)

(mem) «<— (mem) AND reg

ANDs the 8- or 16-bit memory contents addressed by the
first operand and the contents of the 8- or 16-bit register
specified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 16
When W=1: 24, uPD70108
24, uPD70116 odd addresses
16, uPD70116 even addresses

Transfers: 2

Flag operation:

\Y S Z AC P CcYy

0 X X U X 0
Example:

AND [BW][IX]3,AL

AND WORD_VAR,CW

AND reg,mem

AND register with memory to register

T | | T T T |
0 0] 1 0 0 0 1
T T T T T T T
mod reg mem
| T T T T
(disp-low)
T T T T . 1
(disp-high)

reg «<— reg AND (mem)

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit memory contents
addressed by the second operand. Stores the result in
the register specified by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 11
When W=1: 15, uPD70108
15, uPD70116 odd addresses
11, uPD70116 even addresses

Transfers: 1

Flag operation:

Vv S AC | P | CY

N

0 X X U X 0

Example:
AND CLBYTE_VAR
AND DW]IY]

12-73

NEC

uPD70108/70116
AND reg,imm AND mem,imm
AND register with immediate data to register AND memory with immediate data to memory
7 0 7 0
: T | | 1 l | | T | T T l I
1 0 0 0 0 0 0 w 1 0 0 0 0 0 0 w
[T T 1 z T | t | | T | T T
1 1 1 0 0 reg mod 1 0 0 mem
| T I T T T | 1 T l
imm8 or imm16-low (disp-low)
T UL . T,]
imm16-high (disp-high)

reg < reg AND imm

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit immediate data
specified by the second operand. Stores the result in the
register specified by the first operand.

Bytes: 3/4
Clocks: 4
Transfers: None

Flag operation:

\' S AC P cY
0 X X u X 0

N

Example:
AND CL,0FEH
AND DW,14H

12-74

. T T
imm8 or imm16-low

U
imm16-high

(mem) «— (mem) AND imm

ANDs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec-
ified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=0: 18
When W=1: 26, uPD70108
26, uPD70116 odd addresses
18, uPD70116 even addresses

Transfers: 2

Flag operation:

Vv S Z | AC CY
0 X X u X 0

T

Example:
AND BYTE PTR [IY],30H
AND [1Y1,3000H

NEC

Section 12
Instruction Set

AND acc,imm

AND accumulator with immediate data to accumulator

OR reg,reg

OR register and register to register

| T T
imm8 or imm16-low

T T T
imm16-high

When W=0: AL <« AL AND imm8
When W=1: AW <« AW AND imm16

ANDs the contents of the accumulator (AL or AW) spec-
ified by the first operand and the 8- or 16-bit immediate
data specified by the second operand. Stores the result
in the accumulator specified by the first operand.

Bytes: 2/3
Clocks: 4
Transfers: None

Flag operation:

\' S AC CcY
0 X X u X 0

N
o

Example:
AND AL,80H
AND AW,0FH

reg — reg OR reg

ORs the contents of the 8- or 16-bit register specified by
the first operand and the contents of the 8- or 16-bit
register specified by the second operand. Stores the
result in the register specified by the first operand.

Bytes: 2
Clocks: 2
Transfers: None

Flag operation:

N
)

v S AC CcY

0 X X U X 0

Example:
OR AL,AH
OR BW,CW

12-75

uwPD70108/70116

OR mem,reg

OR memory and register to memory

OR reg,mem

OR register and memory to register

T T a T T T | T T T 1 T T |
0 0 0 0 1 0 0 w 0 0 0 0 1 0 1
T T T T T T T T T T T T | |
mod reg mem mod reg mem
| 1 T | 1 T] T T
(disp-low) (disp-low)
T T | T T | B T
(disp-high) (disp-high)

(mem) < (mem) OR reg

ORs the 8- or 16-bit memory contents addressed by the
first operand and the contents of the 8- or 16-bit register
specified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 16
When W=1: 24, uPD70108

24, uPD70116 odd addresses
16, uPD70116 even addresses

Transfers: 2

Flag operation:

\) z AC P CcYy
0 X X U X 0
Example:

OR BYTE_VAR,CL
OR WORD_VAR [BP],AW

12-76

reg < reg OR (mem)

ORs the contents of the 8- or 16-bit register specified by
the first operand and the 8- or 16-bit memory contents
addressed by the second operand. Stores the result in
the register specified by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 11
When W=1: 15, uPD70108
15, uPD70116 odd addresses
11, uPD70116 even addresses

Transfers: 1

Flag operation:

\Y S 4 AC P CcY

0 X X U X 0
Example

OR CL,[IX]

OR CWWORD_VAR

NEC

Section 12
Instruction Set

OR reg,imm

OR register with immediate data to register

7 0
1 0 0 0 0 0 0

OR mem,imm

OR memory with immediate data to memory

reg < reg OR imm

ORs the contents of the 8- or 16-bit register specified by

the first operand and the 8- or 16-bit immediate data
specified by the second operand. Stores the resultin the
register specified by the first operand.

Bytes: 3/4
Clocks: 4
Transfers: None

Flag operation:

\ S Y4 AC P cYy

0 X X U X 0
Example:

OR CL,80H

OR AW,0FH

1 1 0 0 1 reg mem
| T T T T T 1 L T T
imm8 or imm16-low (disp-low)
T T T T T T . T .] [
imm16-high (disp-high)
T T

1 T T
imm8 or imm16-low

" imm16-high

(mem) < (mem) OR imm

ORs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec-
ified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=0: 18
When W=1: 26, uPD70108
26, uPD70116 odd addresses
18, uPD70116 even addresses

Transfers: 2
Flag operation:

\ S AC P (0} 4

N

0 X X u X 0

Example:
OR BYTE_VAR,2
OR WORD PTR [IX],0FH

12-77

4PD70108/70116

NEC

OR acc,imm

OR accumulator with immediate data to accumulator

XOR reg,reg
Exclusive OR, register and register to register

T T 1 T T
imm8 or imm16-low

l l T
imm16-high

When W=0: AL «<— AL ORimm8
When W=1: AW «— AW OR imm16

ORs the contents of the accumulator (AL or AW) specified
by the first operand and the 8- or 16-bit immediate data
specified by the second operand. Stores the result in the
accumulator specified by the first operand.

Bytes: 2/3
Clocks: 4
Transfers: None

Flag operation:

\ S AC cY
0 X X u X 0

N
T

Example:
OR AL,34H
OR AW,1

12-78

reg < reg XOR reg

XORs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit register specified
by the second operand. Stores the result in the register
specified by the first operand.

Bytes: 2
Clocks: 2
Transfers: None

Flag operation:

Vv S AC (0} 4

N
)

0 X X u X 0

Example:
XOR ALAH
XOR Cw,BW

NEC

Section 12
Instruction Set

XOR mem,reg

Exclusive OR, memory and register to memory

XOR reg,mem

Exclusive OR, register and memory to register

T T T T T T | T | T 1 1 | |
0 0 1 1 0 0 0 0 0 1 1 0 0 1
T | T T T T T T | T 1 T T T
mod reg mem mod reg mem
1 T I T T] T | T T
(disp-low) (disp-low)
T T . 1] T T T
(disp-high) (disp-high)

(mem) «<— (mem) XOR reg

XORs the 8- or 16-bit memory contents addressed by the
first operand and the contents of the 8- or 16-bit register
specified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 16
When W=1: 24, uPD70108
24, uPD70116 odd addresses
16, uPD70116 even addresses

Transfers: 2

Flag operation:

reg < reg XOR (mem)

XORs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit memory contents
addressed by the second operand. Stores the result in
the register specified by the first operand.

Bytes: 2/3/4

Clocks:
When W=0: 11
When W=1: 15, uPD70108
15, uPD70116 odd addresses
11, uPD70116 even addresses

Transfers: 1

Flag operation:

Y S Z AC cY

0 X X U 0
Example

XOR [BW],CL

XOR WORD_VAR,BP

\" S z AC P CcYy

0 X X U X 0
Example

XOR BH,[IX]

XOR AWWORD_VAR

12-79

uPD70108/70116

NEC

XOR reg,imm
Exclusive OR, register with immediate data to register

T | T
imm8 or imm16-low

Exclusive OR, memory with immediate data to memory

T T T
imm8 or imm16-low

T | T
imm16-high
T
| " imm16-high
1 |
reg <— reg XOR imm (disp-low)
XORs the contents of the 8- or 16-bit register specified L !
(disp-high)

by the first operand and the 8- or 16-bit immediate data
specified by the second operand. Stores the result in the
register specified by the first operand.

Bytes: 3/4
Clocks: 4
Transfers: None

Flag operation:

Vv S Z AC P cYy

0 X X U X 0
Example

XOR CL,2

XOR IX,0FFOOH

XOR mem,imm

12-80

(mem) < (mem) XOR imm

XORs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec-
ified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=0: 18
When W=1: 26, uPD70108
26, uPD70116 odd addresses
18, uPD70116 even addresses

Transfers: 2
Flag operation:

U

\" S AC (0} 4
0 X X u X 0

N

Example:
XOR BYTE PTR [IY],0FH
XOR WORD_VAR,0FH

NEC

Section 12
Instruction Set

XOR acc,imm

Exclusive OR, accumulator with immediate data to
accumulator

T T T
imm8 or imm16-low

T . T
imm16-high

XORs the contents of the accumulator (AL or AW) spec-
ified by the first operand and the 8- or 16-bit immediate
data specified by the second operand. Stores the result
in the accumulator specified by the first operand.

When W=0: AL < AL XOR imm8
When W=1: AW «— AW XOR imm16
Bytes: 2/3
Clocks: 4
Transfers: None

Flag operation:

Vv S b4 AC P CcY

0 X X U X 0
Example:

XOR AL,OFFH

XOR AW,8000H

BIT MANIPULATION
TEST1 reg8,CL
Test bit CL of the 8-bit register

When bit CL of reg8=0: Z « 1
When bit CL of reg8=1: Z <0

Sets the Z flag to 1 when bit CL of the 8-bit register
(specified by the first operand) is 0. Resets the Z flag to
0 when bit CL is 1. Only the lower 3 bits of CL are used
to address the bit.

Bytes: 3
Clocks: 3
Transfers: 1

Flag operation:

Vv S Z | AC cY

Y

0 u X U u 0

Example: TEST1 AL,CL

12-81

vPD70108/70116

TEST1 mem8,CL
Test bit CL of the 8-bit memory

(disp-low)

T
| (disp-high)I

When bit CL of (mem8) = 0: Z « 1
When bit CL of (mem8) =1:Z — 0

Sets the Z flag to 1 when bit CL of the 8-bit memory
(addressed by the first operand) is 0. Resets the Z flag
to 0 when the CL bit is 1. Only the lower 3 bits of CL are
used to address the bit.

Bytes: 3/4/5
Clocks: 12

Transfers: 1

TEST1 reg16,CL

Test bit CL of the 16-bit register

7 0
0 0 0 0 1 1 1

1 1 0 0 0 reg

When bit CL of reg16 =0: Z <1
When bit CL ofreg16 =1: Z <0

Sets the Z flag to 1 when bit CL of the 16-bit register
(specified by the first operand) is 0. Resets the Z flag to
0 when the bit is 1. Only the lower 4 bits of CL are used
to address a bit.

Bytes: 3
Clocks: 3
Transfers: 1

Flag operation:

\Y S Z | AC (0} 4
0 u X U u 0

o

Example: TEST1 BYTE PTR [BW],CL

12-82

Example: TEST1

AW,CL

NEC

Section 12
Instruction Set

TEST1 mem16,CL
Test bit CL of the 16-bit memory

] I
(disp-low)

T T T
(disp-high)

When bit CL of (mem16) = 0. Z «— 1
When bit CL of (mem16) =1: Z <0

The first operand specifies the 16-bit memory location
and the second operand (CL) specifies the bit position.
When the bit specified by CL is 0, the Z flag is set to 1.
When that bit is 1, the Z flag is reset to 0. Only the lower
4 bits of CL are used to address a bit.

Bytes: 3/4/5

Clocks:
16, uPD70108
16, uPD70116 odd addresses
12, uPD70116 even addresses

Transfers: 1

Flag operation:

TEST1 reg8, imm3

Test bit imm3 of the 8-bit register

7 0
0 0 0 0 1 1 1 1

| | |
imm3

When bitimm3 ofreg8 =0: Z «— 1
When bitimm3 of reg8 =1: Z <0

Sets the Z flag to 1 when bit imm3 of the 8-bit register
(specified by the first operand) is 0. Resets the Z flag to
0 when the bit is 1. Only the lower 3 bits of the immediate
data are used to identify a bit.

Bytes: 4
Clocks: 4
Transfers: None

Flag operation:

\Y S z AC 0} 4

o

0 u X u u 0

\ S

z

AC

e

CY

0 u

X

u

Example: TEST1

WORD PTR [BW],CL

Example: TEST1 BH,1

12-83

uPD70108/70116

TEST1 mem8,imm3
Test bit imm3 of the 8-bit memory

mem
]] T | T
(disp-low)
T 1 T T
(disp-high)
l T T T — T
imm3

When bit imm3 of (mem8) =0: Z «— 1
When bit imm3 of (mem8) =1: Z <0

The first operand specifies the 8-bit memory location and
the second operand (imm3) specifies the bit position.
When the bit specified by imm3 is 0, the Z flag is set to
1. When that bitis 1, the Z flag is reset to 0. Only the lower
3 bits of the immediate data are used to address a bit.

Bytes: 4/5/6
Clocks: 13
Transfers: 1

Flag operation:

TEST1 reg16, imm4
Test bit imm4 of the 16-bit register

T
imm4

When bitimm4 of reg16 =0: Z <1
When bitimm4 ofreg16 =1: Z <0

The first operand specifies the 16-bit register and the
second operand (imm4) specifies the bit position. When
the bit specified by imm4 is 0, the Z flag is set to 1. When
that bit is 1, the Z flag is reset to 0. Only the lower 4 bits
of the immediate data are used to address a bit.

Bytes: 4
Clocks: 4
Transfers: None

Flag operation:

\ S Z | AC P CcYy
0 U X u U 0
Example: TEST1 AW,15

Vv S b4 AC P CcY
0 U X u U 0
Example: TEST1 BYTE_VAR,5

12-84

NEC

Section 12
Instruction Set

TEST1 mem16,imm4
Test bit imm4 of the 16-bit memory

(dis;|>-low) I

When bit imm4 of (mem16) =0: Z <1
When bit imm4 of (mem16) =1: Z <0

The first operand specifies the 16-bit memory and the
second operand (imm4) specifies the bit position. When
the bit specified by imm4 is 0, the Z flag is set to 1. When
that bit is 1, the Z flag is reset to 0. The immediate data
in the last byte of the instruction is valid only for the lower
4 bits.

Bytes: 4/5/6

Clocks:
17, uPD70108
17, uPD70116 odd addresses
13, uPD70116 even addresses

Transfers: 1

Flag operation:

\'

S

z

AC

T

cY

0

V)

X

u

Example: TEST1

WORD PTR [BP],8

NOT1 reg8,CL
Not bit CL of the 8-bit register

Bit CL of reg8 <« bit CL of reg8

The CL register (second operand) specifies which bit of
the 8-bit register (specified by the first operand) is to be
inverted. Only the lower 3 bits of the CL register are used.

Bytes: 3
Clocks: 4
Transfers: None

Flag operation: None

Example: NOT1 BH,CL

12-85

uPD70108/70116 NE C

NOT1 mem8,CL NOT1 reg16, CL
Not bit CL of the 8-bit memory Not bit CL of the 16-bit register
7 0 7 0
| a T T T T T T | | T T T 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
T T T T T x T R T T T T T T
0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1
T T T 1 | T T T T T T T T [
mod 0 0 0 mem 1 1 0 0 0 reg
T Bit CL of reg16 < bit CL of reg16
The CL register (second operand) specifies which bit of
' ! ! (disp[-high)l ! the 16-bit register (specified by the first operand) is to
be inverted. Only the lower 4 bits of the CL register are
Bit CL of (mem8) < bit GL of (mem8) used.

The CL register (second operand) specifies which bitof ~ BYtes: 3
the 8-bit memory location (specified by the first operand) Clocks: 4

is to be inverted. Only the lower 3 bits of the CL register
Transfers: None

are used.
Bytes: 3/4/5 Flag operation: None
Clocks: 18 Example: NOT1 AW,CL

Transfers: 2
Flag operation: None
Example: NOT1 BYTE_VAR,CL

12-86

NEC

Section 12
Instruction Set

NOT1 mem16,CL
Not bit CL of the 16-bit memory

(disp-low) |

T T . T
(disp-high)

Bit CL of (mem16) « bit CL of (mem16)

The CL register (second operand) specifies which bit of
the 16-bit memory location (addressed by the first oper-
and) is to be inverted. Only the lower 4 bits of the CL
register are used.

Bytes: 3/4/5

Clocks:
26, uPD70108
26, uPD70116 odd addresses
18, uPD70116 even addresses

Transfers: 2
None
WORD_VAR,CL

Flag operation:
Example: NOT1

NOT1 reg8,imm3

Not bit imm3 of the 8-bit register

7 0
0 0 0 0 1 1 1 1

I [I

|
imm3

Bit imm3 of reg8 <« bit imm3 of reg8

Bitimm3 (second operand) specifies which bit of the 8-bit
register (specified by the first operand) is to be inverted.
Only the lower 3 bits of the immediate data at the fourth
byte of the instruction are used.

Bytes: 4

Clocks: 5

Transfers: None

Flag operation: None
Example: NOT1 AH,3

12-87

vPD70108/70116

NOT1 mem8,imm3
Not bit imm3 of 8-bit memory

(disp-low)

| | 1
(disp-high)

l
imm3

Bit imm3 of mem8 «— bit imm3 of mem8

Bitimm3 (second operand) specifies which bit of the 8-bit
memory location (addressed by the first operand) is to
be inverted. Only the lower 3 bits of the immediate data
are used in the last byte of the instruction.

Bytes: 4/5/6
Clocks: 19
Transfers: 2
None
BYTE PTR [BW][IX]34H,4

Flag operation:
Example: NOT1

12-88

NOT1 reg16,imm4
Not bit imm4 of the 16-bit register

imm4

Bit imm4 of reg16 < bit imm4 of reg16

Bit imm4 (second operand) specifies which bit of the
16-bit register (specified by the first operand) is to be
inverted. Only the lower 4 bits of the immediate data are
used in the fourth byte of the instruction.

Bytes: 4

Clocks: 5

Transfers: None

Flag operation: None
Example: NOT1 BW,15

NEC

Section 12
Instruction Set

NOT1 mem16,imm4
Not bit imm4 of the 16-bit memory

7 0
| T | T T T 1

0 0 0 0] 1 1 1 1
| T T T T T T

0 0 0 1 1 1 1 1
| T T T 1T | T

mod 0 0 0 mem
T T T T T
(disp-low)

Bit imm4 of (mem16) < bit imm4 of (mem16)

The bitimm4 (second operand) specifies which bit of the
16-bit memory location (addressed by the first operand)
is to be inverted. Only the lower 4 bits of the immediate

data are used in the last byte of the instruction.
Bytes: 4/5/6

Clocks:
27, uPD70108
27, uPD70116 odd addresses
19, uPD70116 even addresses

Transfers: 2
None
WORD_VAR,0

Flag operation:
Example: NOT1

NOT1 CY
Not carry flag

CY —CY

Inverts the CY flag.
Bytes: 1

Clocks: 2
Transfers: None

Flag operation:

\' S z AC (03 4

)

U U u u u X

Example: NOT1 CcYy

12-89

vPD70108/70116

CLR1 reg8,CL
Clear bit CL of the 8-bit register

Bit CL of reg8 «<— 0

Clears the bit specified by CL of the 8-bit register (spec-
ified by the first operand) to 0. Only the lower three bits
of CL are used.

Bytes: 3

Clocks: 5

Transfers: None

Flag operation: None
Example: CLR1 AL,CL

12-90

CLR1 mem8,CL
Clear bit CL of the 8-bit memory

T T a | T T T
0 0 0 1 0 0 1 0
; T T T T | T
mod 0 0 0 mem
T 1 T T
(disp-low)
T . 1
(disp-high)

Bit CL of (mem8) «— 0

Clears the bit specified by CL of the 8-bit memory loca-
tion (addressed by the first operand) to 0. Only the lower
three bits of CL are used.

Bytes: 3/4/5

Clocks: 14

Transfers: 2

Flag o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>