
NEe Electronics Inc.

USER'S
MANUAL

NEe
October 1986

pPD70108 (V20TM)
8/16-Bit

CMOS Microprocessor

pPD70116 (V30™)
16-Bit

CMOS Microprocessor

www.ceibo.com

NEC

V-Series

V20- V25 - V30 - V40 - V50

Ceibo In-Circuit

Emulator

Supporting

MCS-86:

DS-186

http://ceibo.com/eng/products/ds186.shtml

NEe Electronics Inc.

pPD70108 (V20)
8/16-Bit CMOS Microprocessor

pPD70116 (V30)
16-Bit CMOS Microprocessor

October 1986
Stock No. 500350

©1986 NEe Electronics Inc.lPrinted in U.S.A.

NEe

NEe Electronics Inc.

Section

1
2
3

4

5
6

7
8

9

10

11

12

Introduction
Pin Description
Functional Description

Execution Unit (EXU)
Bus Control Unit (BCU)

Memory and I/O Configuration
Memory Configuration
Memory Accessing
I/O Configuration and Accessing

Read/Write Timing
Interrupts

Maskable Interrupts
BRK Flag (Single-Step Interrupt)
Interrupt Disable Timing
Interrupts During Block Instructions ..

Reset Operation
Native and pPD8080AF
Emulation Modes

Native and 8080 Mode Shifting
Native to 8080 Emulation Mode

Standby Mode
Entering Standby Mode
Status Signals in Standby Mode
Exiting Standby Mode by
External Interrupts
Exiting Standby Mode
by Reset

Logical and Physical Addresses
Physical Address Generation
Memory Segments

Addressing Modes
Instruction Address
Memory Operand Address

I nstruction Set
Data Transfer
Repeat Prefixes
Primitive Block Transfer
Bit Field Manipulation
InpuVOutput
Primitive Input/Output
Addition/Subtraction
BCD Arithmetic
Increment/Decrement
Multiplication
Division
BCD Adjust
Data Conversion
Comparison
Complement Operation
Logical Operation
Bit Manipulation
Shift
Rotate

ttlEC
CONTENTS

Page Section

1-1
2-1
3-1
3-1
3-4
4-1
4-1
4-2
4-3
5-1
6-1
6-2
6-3
6-4
6-4
7-1

8-1
8-1
8-2
9-1
9-1
9-1

9-1

9-1
10-1
10-1
10-1
11-1
11-1
11-2
12-1
12-4

12-14
12-16
12-21
12-25
12-28
12-29
12-42
12-47
12-50
12-56
12-61
12-63
12-65
12-68
12-70
12-81

12-100
12-118

12 Instruction Set (cont)
Subroutine Control
Stack Operation
Branch
Conditional Branch
Break
CPU Control
Segment Override Prefix
Emulation Mode

Appendix
A pPD70108170116 Instruction Index

Table
1-1 pPD70108170116 Pin Identification
4-1 Data Type and Addressing
6-1 Interrupt Sources
9-1 Signal Status in Standby Mode
12-1 Operand Types
12-2 Instruction Words
12-3 Operation Description
12-4 Flag Operations
12-5 Memory Addressing
12-6 Selection of 8- and 16-Bit Registers
12-7 Selection of 8-Bit and

Segment Register

Figure
1-1 pPD70108170116 Simplified Block

Diagram
1-2 Pin Configuration,

40-Pin Plastic or Ceramic DIP
1-3 Pin Configuration,

44-Pin PLCC
1-4 Pin Configuration,

52-Pin Plastic Miniflat
3-1 pPD70108170116 Block Diagram
3-2 Effective Address Generator
4-1 Memory Map
4-2 Word and Double Word Placement

in Memory
4-3 pPD70108 Memory Interface
4-4 pPD70116 Memory Interface
4-5 I/O Map
5-1 Read Timing of pPD70108 Memory

and I/O (Sma"-Scale Systems)
5-2 Write Timing of pPD70108 Memory

and I/O (Sma"-Scale Systems)
5-3 Read Timing of pPD70116 Memory

and I/O (Sma"-Scale Systems)
5-4 Write Timing of pPD70116 Memory

and I/O (Small-Scale Systems)

Page

12-142
12-146
12-154
12~157

12-167
12-171
12-176
12-176

A-1

1-2
4-1
6-1
9-1

12-1
12-2
12-2
12-3
12-3
12-3

12-3

1-1

1-2

1-3

1-3
3-2
3-3
4-1

4-1
4-2
4-2
4-3

5-1

5-1

5-1

5-1

NEe Electronics Inc. !tt{EC
CONTENTS (coni)

Figure Page

5-5 Read Timing of pPD70108 Memory
and I/O (Large-Scale Systems) 5-2

5-6 Write Timing of pPD70108 Memory
and I/O (Large-Scale Systems) 5-2

5-7 Read Timing of pPD70116 Memory
and I/O (Large-Scale Systems) 5-2

5-8 Write Timing of pPD70116 Memory
and I/O (Large-Scale Systems) 5-2

6-1 Interrupt Vector Table 6-1
6-2 pPD70108 Interrupt Acknowledge

Timing 6-2
6-3 pPD70116 Interrupt Acknowledge

Timing 6-2

Revision History

Aug 1985

Sep 1986

Original Issue

Table 1-1 revised, figures 1-3 and 1-4
added, Section 2 revised and re­
arranged. Marginal arrows (~) identify
significant changes in Sections 1, 2,
and 12.

Figure Page

8-1 Corresponding Registers 8-1
8-2 Corresponding PSW and Flags 8-1
8-3 Mode Shift Operation of CPU 8-2
8-4 Shift from Native to 8080 Mode

Using BRKEM Instruction 8-3
8-5 Shift from Native to 8080 Mode

Using RETI Instruction ••••••••••••••• 0 ••• 8-3
8-6 Shift from 8080 to Native Mode

Using NMI, INT, and
CALLN Instruction 8-4

8-6 Shift from 8080 to Native Mode
Using RETEM Instruction 8-5

10-1 Physical Addressing •• 0 ••••••••••••••••••• 10-1

t-IEC
Description

The tlPD70108 (V20) and tlPD70116 (V30) are high­
performance, low-power CMOS microprocessors with
a 16-bit internal architecture. The tlPD70108 has an
8-bit external data bus and the tlPD70116 has a 16-bit
external data bus. Figure 1 is a simplified block
diagram.

The tlPD70108170116 has a powerful instruction set
that is a superset of the tlPD8086/8088 instruction set
and provides the following enhanced operations:

• Multidigit BCD addition, subtraction, comparison
of 1- to 254-digit BCD strings

• High-speed multiplication/division

• Bit field manipulations
- Data transfer of 1- to 16-bit fields between

memory and accumulator

• Bit manipulation instructions
- 8- or 16-bit register/memory operands
- Set, clear, invert, or test any bit

Dedicated hardware performs high-speed multipli­
cation/division (4 to 6 tiS at 8 MHz) and effective
address calculation. In addition, an internal dual bus
system reduces processing time.

The tlPD70108170116 has three operating modes:
native, emulation, and standby. Native mode executes
the tlPD70108170116 instruction set; emulation mode
directly executes the tlPD8080AF instruction set.
The standby mode significantly reduces power
consumption.

Features

D 101 instructions
D 250-ns instruction execution time (8-MHz clock)
D 1-Mbyte addressable memory
D Various memory addressing modes
D 14- x 16-bit register set
D High-speed block transfers

- tlPD70108: 1.0 Mbytes/second (at 8 MHz)
- tlPD70116: 2.0 Mbytes/second (at 8 MHz)

D Various interrupt processing functions
D IEE-796 bus-compatible interface

~ D 5-, 8-, 10-MHz clock
~ D 40-pin plastic/ceramic DIP, 44-pin PLCC, and 52-pin

plastic miniflat packages
D Single +5-volt power source

V20 and V30 are trademarks of NEC Corporation.

Section
Introduction

Figure 1-1. tlPD70108170116 Simplified Block
Diagram

Bus Control Un" (BCUr-) ---..,~--t

BCU Registers

Bus Buller and Control

Clock, Interrupt, Standby,
and T-St8le logic

Effective Address
& Microcode

Data

Address

Control

ClK

INT

Execution Unit (EXU)

Sub-Data Bus Main Data Bus

49-000405A

Pin Identification

Table 1 lists pins in alphabetical order by ~ymbol and
briefly describes pin functions. Section 2 gives
additional descriptions.

Figures 1-2,1-3, and 1-4 are pin configuration drawings
of the four package types: 40-pin plastic or ceramic
DIP, 44-pin plastic leaded chip carrier (PLCC), and
52-pin plastic miniflat.

1-1

pPD7010sn0116

~ Table 1-1. pPD70108170116 Pin Identification

Symbol

ADrADo (Note 1)

AD15-ADO (Note 2)

ASTB (OSo)

BUFEN (BSo)

BUFR/W (BS1)

ClK

GND

HlDAK (ROI AK1)

HlDRO (ROI AKo)

IC

INT

INTAK (OS1)

101M (BS2)
(Note 1)

101M (BS2)
(Note 2)

lBSO (HIGH)
(Note 1)

NC

NMI

POll

RD

READY

RESET

S/lG

UBE (Note 2)

Voo
WR (BUS lOCK)

Note:

(1) pPD70108 only.

(2) pPD70116 only.

DIrection

Out

Out

In/Out

In/Out

Out

Out

Out

In

Out
(In/Out)

In
(In/Out)

In

Out

Out

Out

In

In

In

Out

In

In

In

In

Out

Function (Note 3)

High-order address bitsl
Processor status bits

Middle address bits

Address/data bus

Address/data bus

Address strobe
(Queue status bit 0)

Buffer enable
(Bus status bit 0)

Buffer read I write
(Bus status bit 1)

Clock

Ground

Hold acknowledge output
(Bus hold request inputl
Acknowledge output 1)

Hold request input
(Bus hold request inputl
Acknowledge output 0)

Internally connected (Note 4)

Maskable interrupt

Interrupt acknowledge
(Queue status bit 1)

Access is I/O or memory
(Bus status bit 2)

Access is I/O or memory
(Bus status bit 2)

latched bus status 0
(Always high)

Not connected

Nonmaskable interrupt

Poll

Read strobe

Ready

Reset

Small-scale system inputl
large-scale system input

Upper byte enable

+5-volt power supply

Write strobe
(Bus lock)

(3) Where pins have different functions in small- and large-scale
systems, the large-scale system pin symbol and function are in
parentheses.

1-2

t-{EC
Figure 1-2. Pin Configuration, 40-Pln Plastic or

Ceramic DIP

IC

A14

A13

A12

A11

A10

Ag

As

AD7

ADs

ADs

AD4

AD3

AD2

AD1

ADo

NMI

INT

CLK

GND

IC

AD14

AD13

AD12

AD11

AD10

ADg

ADa

A D7

AD6

ADs

AD4

AD3

AD2

AD1

ADO

NMI

INT

CLK

GND

pPD
70108

pPD
70116

(4) Ie should be connected to ground.

VDO

A1S

A16/PSO

A17/PS1

A1S/PS2

A19/PS3

LBSO [HIGH]

S/LG

RD

HLDRQ [RQ/AKO]

HLDAK [RQ/AK1]

WR [BUSLOCK]

10/M [BS2]

BUFR/W [BS1]

BUFEN [BSo]

ASTB [QSo]

INTAK [QS1]

POLL

READY

RESET

VOO

AD1S

A1&1PSO

A17/PS1

A1S/PS2

A19/PS3

UBE

S/LG

RD

HLDRQ [RQ/AKo]

HLDAK [RQ/AK1]

WR [BUSLOCK]

IO/M [BS2]

BUFR/W [BS1]

BUFEN [BSo]

ASTB [QSo]

INTAK [QS1]

POLL

READY

RESET

83-004104B

(5) Unused input pins should be tied to ground or Voo to minimize
power dissipation and prevent potentially harmful current flow.

NEe
~ Figure 1-3. Pin Configuration, 44-Pin Plastic

Leaded Chip Carrier (PLCC)

~ ~ ~ ~ ~ ~ ~ ~ M
A1S/PS2 40

A17/PS1 41

A16/PSO

A15

Voo

NC

GND

A14

A13

A12

An

42

43

44

10
2

3

4

5

6

tJPD
70108

o en
'" '" 28 ASTB [OSo]

27 INTAK [OS1]

26

25

24

23

22

21

20

19

18

POll

READY

RESET

NC

GND

ClK

INT

NMI

NC

Q ~ ~ ~ ~ ~ ~ M N ~ Q < ~ ~ 0 0 0 0 0 0 0 0
~ ~ ~ ~ ~ ~ ~ ~

'" en
~ w 10

o ~ lID ~ 10
Z~:Jena:

~ ~ ~ ~ ~ ~ ~ ~ M
AD1S/PS2 40

AD17/PS1

AD16/PSo

AD15

41

42

43

Voo 44

NC 1 0
GND 2

AD14 3

AD13 4

AD12 5

AD11 6

tJPD
70116

o en
'" '" 28 ASTB [OSo]

27

26

25

INTAK [OS1]

POll

READY

24 RESET

23 NC

22 GND

21 ClK

20 INT

19 NMI

18 NC

o ~ ~ ~ ~ ~ ~ M N ~ 0
cOOOOOOOOOO
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

83-0041028

Section 1
Introduction

~ Figure 1-4. Pin Configuration, 52-Pin Plastic
Mlnlflat

I~
I~
o
a:
o
.... 0
J: Z

N ~ 0 m ~ ~ ~ ~ ~ M N
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

A1S/PS2 1 0
A17/PS1 2

A16/PSO 3

A15 4

VOO 5
VOO 6
GND 7

GND 8

IC 9

A14 10

A13 11

A12 12

A11 13

AD1S/PS2

AD17/PS1

AD16/PSO

AD15

VOO
VOO
GND

GND

IC

10
2

AD14 10

AD13 11

AD12 12

AD11 13

tJPD
70108

pPD
70116

,.... 0
... ...

39 ASTB [OSO]

38 INTAK [OS1]

37

36

35

34

33

32

31

30

29

28

POll

READY

RESET

GND

GND

NC

GND

ClK

INT

NMI

27 NC

39

38

ASTB [OSo]

INTAK [OS1]

37 POll

36 READY

35 RESET

34 GND

33 GND

32 NC

31 GND

30 ClK

29 INT

28 NMI

27 NC

o 0 ~ w ~ ~ ~ ~ M N ~ 0 0
Z COO 0 000 0 0 0 0 Z

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

83-0041038

1-3

pPD7010sn0116 NEe

1-4

NEe
.~ This section describes the functions of input and

output signals. Descriptions are in alphabetical order
by pin symbol. Unless otherwise specified, they apply
to pPD70108 and pPD70116 in small-scale and large­
scale systems.

The width of the data bus is different for the pPD70108
and pPD70116. Therefore, each microprocessor uses
the address/data bus in a different manner.

Memory identification signals for the two processsors
are also different. The pPD70108 uses an 10/M signal;
the pPD70116 uses an iO/M signal.

A19-A1e1PS3-PSO [Address Bus/Processor
Status]

These lines are time-multiplexed to operate as an
address bus and also to output the processor status
signals.

When used as the address bus, A19-A16 are the four
high-order bits of the 20-bit memory address. During
an I/O bus cycle all four bits are O.

Processor status signals are for memory and I/O use.
PS3 is always 0 in the native mode and always 1 in the
emulation mode. The contents of the interrupt enable
flag (IE) are carried via PS2. Signals PS1 and PSo
indicate which memory segment is being accessed.

A17-PSI AI6-PSO Memory Segment

0 0 Data segment 1

0 1 Stack segment

0 Program segment

Data segment 0

These pins are tri-state and become high impedance
during hold acknowledge.

A1s-Aa [Address Bus]

I n the pPD70108 only, A15-Aa are the middle 8 bits of the
20-bit address. This bus is tri-state and becomes high
impedance during hold acknowledge. An address bit is
1 when high and 0 when low.

AD7-ADO [Address/Data Bus]

In the pPD70108 only, ADrADo is a time-multiplexed
address/data bus. These lines output either the lower 8
bits of the 20-bit address or 8 bits of data. Input/output
of 16-bit data is performed in two steps: low byte
followed by high byte.

This is a tri-state bus and becomes high impedance
during hold and interrupt acknowledge. An AD bit is 1
when high and 0 when low.

Section Ci))
Pin Description (6

AD1S-ADO [Address/Data Blis]

In the pPD70116 only, AD15-ADo is a time-multiplexed
address/data bus. An AD bit is 1 when high and 0 when
low. The bus contains the lower 16 bits of the 20-bit
address during T1 of the bus cycle. The bus is used as a
16-bit data bus during T2, T3, and T4 of the bus cycle.

The address/data bus is tri-state and can be at a high or
low level in standby mode. The bus is at high impedance
during hold acknowledge and interrupt acknowledge.

ASTB [Address Strobe]

In a small-scale system, the CPU generates ASTB to
latch address information at an external latch. ASTB is
held to a low level in standby mode.

BS2-BSO [Bus Status]

In a large-scale system, the CPU uses these status
signals to allow an external bus controller to monitor
the current bus cycle. The external bus controller
decodes BS2-BSO and generates the control signals
required to perform a memory or I/O device access.

The BS2-BSO signals are tri-state outputs and become
high impedance during hold acknowledge. They are
held to a high level in the standby mode.

BS2 BSI BSg Bus Cycle

0 0 0 Interrupt acknowledge

0 0 1 1/0 read

0 0 1/0 write

0 1 Halt

0 0 Program fetch

0 1 Memory read

0 Memory write

Passive state

BUFEN [Buffer Enable]
=-:-::=:-:-

In a small-scale system, BUFEN is used as the output
enable signal for an external bidirectional buffer. The
CPU generates this signal during data transfer opera­
tions with an external memory or I/O device or during
the input of an interrupt vector.

The BUFEN signal is held to a high level in the standby
mode and becomes high impedance during hold
acknowledge. ~

2-1

pPD7010an0116

~ BUFR/W [Buffer Read/Write]

In a small-scale system, the level of this signal
determines the direction of data transfer with an
external bidirectional buffer. A high signal specifies
data transmission from the CPU to an external device.
A low signal specifies data transmission from the
external device to the CPU.

This output can be a high or low level in the standby
mode. It becomes high impedance during hold
acknowledge.

BUSlOCK [Bus lock]

In a large-scale system, the CPU uses this signal to
secure the bus while executing the instruction immedi­
atelyfollowing the BUSlOCK prefix. Thesignal inhibits
other bus masters in a multiprocessor system from
using the system bus during this time. The output is
held to a high level in the standby mode, but is a low
level if the BUSlOCK instruction is executed immedi­
ately before a HALT instruction.

The signal is tri-state and becomes high impedance
during hold acknowledge.

ClK [Clock]

The ClK pin is the external clock input.

HlDAK [Hold Acknowledge]

In a small-scale system, HlDAK indicates the CPU has
accepted a hold request signal (HlDRQ). While
HlDAK is high, the address bus, address/data bus, and
control lines are held in the high-impedance state.

HlDRQ [Hold Request]

In a small-scale system, external devices input the
HlDRQ signal to request that the CPU release the
address, address/data, and control buses.

IC [Internally Connected]

The IC pin is used for factory tests. Normally, the
pPD70108170116 is used with this pin at ground
potential.

2-2

t-IEC
INT [Maskable Interrupt]

The INT pin is used for interrupt requests that can be
masked by software. This input is an active high level
and is sensed during the last clock of the current
instruction. The interrupt will be accepted ifthe system
is in the interrupt enable state (interrupt enable flag
IE = 1). The CPU generates INTAK to notify external
devices that the interrupt request is being acknowl­
edged. INT must be held high until the INTAK signal is
returned.

If NMI and INT interrupts occur at the same time, NMI
has priority and INT will not be accepted. A hold
request will be accepted even during interrupt
acknowledge.

INT causes the microprocessor to exit the standby
mode.

INTAK [Interrupt Acknowledge]

In a small-scale system, when the CPU accepts an INT
signal, it asserts the INTAK signal active low. The
interrupting device synchronizes with the signal and
puts the interrupt vector number on the data bus
(ADrADo)·

During standby mode, INTAK is held to a high level.

IO/M [IO/Memory]

In a small-scale pPD70108 system, the CPU outputs
this signal to indicate either an I/O or memory access. A
high-level output specifies an I/O access and a low­
level output specifies a memory access. This output
can be a high or low level in the standby mode.

The pin is tri-state and becomes high impedance
during hold acknowledge.

IO/M [IO/Memory]

In a small-scalepPD70116 system, the CPU generates
this signal to specify either an I/O access or a memory
access. A low-level output specifies an I/O access and
a high-level output specifies a memory access. The
output can be a high or low level in the standby mode.

The pin is tri-state and becomes high impedance
during hold acknowledge. ~

ftt{EC
~ LBSO [Latched Bus Status 0]

In a small-scale pPD70108 system, the CPU uses this
signal (along with the 101M and BUFR/W signals) to
inform external devices of the status of the cu rrent bus
cycle. See below.

101M BUFR/W LBSO BUS Cycle

0 0 0 Program fetch

0 0 1 Memory read

0 0 Memory write

0 1 1 Passive state

0 0 Interrupt acknowledge

0 1 1/0 read

0 1/0 write

Held

NMI [Nonmaskable Interrupt]

The NMI signal is used for interrupt requests that
cannot be masked by software The interrupt is triggered
on the rising edge of NMI and can be sensed during any
clock cycle. NMI must be held high for at least five
clock cycles after its rising edge. Actual interrupt
processing begins after completion of the instruction
in progress.

The contents of interrupt vector 2 determines the
starting address for the interrupt servicing routine. A
hold request will be accepted even during NMI
acknowledge. This interrupt will cause the micro­
processor to exit the standby mode.

POLL [Poll]

The CPU checks the input at this pin when executing
the POLL instruction. If the input is low, execution
continues. If the input is high, the CPU will check the
state of the input every five clock cycles until the input
again becomes low.

These functions synchronize CPU program execution
with the operation of external devices.

Section 2
Pin Description

QS1, QSo [Queue Status]

In a large-scale system, the CPU uses QS1 and QSo to
allow external devices, such as the floating-point
arithmetic processor chip, to monitor the status of the
internal CPU instruction queue.

QSo

o o
o

o

Instruction Queue Status

NOP (queue did not change)

First byte of an instruction taken from queue

Flush queue

Subsequent byte of instruction taken from
queue

The instruction queue status indicated by these signals
is the status when the execution unit (EXU) accesses
the instruction queue. The data output from QSo and
QS1 is therefore valid only for one clock immediately
following queue access.

QS1 and QSo enable the floating-point processor chip
to monitor the CPU's program execution status. In this
manner, the floating-point processor can synchronize
its operation with the CPU whenever it gains control
from a floating-point operation instruction (FPO).

QS1 and QSo are held to a low level during standby
mode.

RD [Read Strobe]

The CPU outputs the RD signal during a data read from
an 1/0 device or memory. The 101M or 101M signal
determines whether the read is 1/0 or memory. RD is a
tri-state output and becomes high impedance during a
hold acknowledge.

READY [Ready]

READY indicates that the data transfer is complete. A
high indicates READY is true; a low indicates READY is
false (not ready).

When READY goes high during a read cycle, the data is
latched one clock cycle later and the bus cycle is
terminated. When READY goes high during a write
cycle, the bus cycle is terminated one clock cycle later

2-3

pPD7010sn0116

~ RESET [Reset]

RESET is the CPU reset signal and is an active high
level. This signal has priority over all other operations.
After RESET returns to the low level, the CPU begins
execution of the program starting at address FFFFOH.

RESET causes the microprocessor to exit the standby
mode.

RQ/AK1, RQ/AKO Hold Request Acknowledge

In a large-scale system, these pins function as the bus
hold request inputs (RQ), and the bus hold acknow­
ledge outputs (AK). The RQ/AKo signal has priority
over the RQ/AK1 signal.

These signals have tri-state outputs with on-chip pull­
up resistors that keep the pins at a high level when the
output is at the high-impedance state.

S/LG [Small/Large]

This signal determines the operating mode ofthe CPU.
The signal is fixed at either a high or low level. When
the signal is high level, the CPU operates in the small­
scale system mode. When the signal is low level, the
CPU operates in the large-scale system mode. A small­
scale system will have at most one additional bus
master requesting use of the bus. A large-scale system
can have more than one.

As noted in table 1-1, some pins have different symbols
and functions in small-scale and large-scale systems.

2-4

tt(EC
UBE [Upper Byte Enable]

USE indicates the use of the upper 8 bits (AD15-ADs) of
the data bus. This signal is active low during T1-T4 of
the bus cycle. Sus cycles in which the signal is active
are shown below:

Type of Number of
Bus Operation UBE ADD Bus Cycles

Word to even address 0 0 1

Word to odd address 0* 1
1** 0 2

Byte to even address 0

Byte to odd address 0

* First bus cycle
** Second bus cycle

USE goes low continuously during the interrupt
acknowledge state. The signal is held high during
standby mode. The signal is a tri-state output and
becomes high impedance during a hold acknowledge.

Section 4, Memory Accessing, contains detailed infor­
mation on the use of USE.

WR [Write Strobe]

In a small-scale system, the CPU asserts WR during a
write to an 1/0 device or memory. The 101M or 101M
signal selects either 1/0 or memory. The WR output is
held to a high level in the standby mode.

The pin is tri-state and becomes high impedance
during hold acknowledge.

t-IEC
As shown in figure 3-1, the pPD70108 and pPD70116
both contain two internal, independent processing units:
an execution unit (EXU) and a bus control unit (BCU).

The EXU controls the internal data processing that exe­
cutes the instruction set of the pPD70108170116.

The BCU is the interface between the EXU and the exter­
nal bus. It prefetches instructions for the instruction
queue - 4 bytes in the pPD70108 and 6 bytes in the
pPD70116. It also accesses memory (upon request from
the EXU) for additional operands, or stores EXU results.

EXECUTION UNIT (EXU)

The EXU includes the following functional elements:

• Program Counter
• General Purpose Registers (AW, BW, CW, DW)
• Pointers (SP, BP) and Index Registers (IX, IY)
• Temporary Register/Shifter (TA/TB)
• Temporary Register C (TC)
• Arithmetic and Logic Unit (ALU)
• Program Status Word (PSW)
• Loop Counter (LC)
• Effective Address Generator (EAG)
• Instruction Decoder
• Microaddress Register
• Microinstruction ROM
• Microinstruction Sequencer
• Dual data bus

Program Counter (PC)

The program counter is a 16-bit binary counter that con­
tains the segment offset of the program memory address
of the next instruction which the EXU is to execute.

The PC increments each time the microprogram fetches
a byte from the instruction queue. A new location value
is loaded into the PC each time a branch, call, return, or
break instruction is executed. At this time, the contents
of the PC are the same as the Prefetch Pointer (PFP).

General Purpose Registers (AW, BW, CW, OW)

There are four 16-bit general-purpose registers. Each
one can be used as one 16-bit register or as two 8-bit
registers. This is accomplished by dividing the registers
into their high and low bytes (AH, AL, BH, BL, CH, CL,
DH, DL).

Each register is also used as a default register for
processing specific instructions. The default assign­
ments are:

AW

AL

Word multiplication/division, word I/O, data
conversion

Byte multiplication/division, byte I/O, BCD
rotation, data conversion, translation

Section 6;5)
Functional Description \9)

AH

BW

Byte multiplication / division

Translation

CW Loop control branch, repeat prefix

CL Shift instructions, rotation instructions, BCD
operations

DW Word multiplication/division, indirect
addressing, I/O

Pointers (SP, BP) and Index Registers (IX, IV)

These registers serve as base pOinters or index registers
when accessing memory using based, indexed, or base
indexed addressing.

These registers can also be used for data transfer and
arithmetic and logical operations in the same manner as
the general-purpose registers. They cannot be used in
these areas as 8-bit registers.

Also, the SP, IX, and IV registers act as default registers
for specific operations. The default assignments are:

SP Stack operations

IX Block transfer, BCD string operations
(source)

IV Block transfer, BCD string operations
(destination)

Temporary Register/Shifter (TA/TB)

TA/TB are 16-bittemporary registers/ shifters used in the
execution of multiply/divide and shift/rotate (including
BCD rotate) instructions. Execution of multiplication/ divi­
sion instructions can be accomplished approximately
four times faster than when using the microprogramming
method.

When executing a multiply or divide instruction, TA+ TB
operates as a 32-bit temporary register / shifter. TB oper­
ates as a 16-bit temporary register/shifter when execut­
ing shift/rotate instructions. Both TA and TB can be read
from or written to. When this is done from the internal
bus, the upper byte and lower byte may be accessed
independently. The contents of TA and TB are inputs to
the ALU.

Temporary Register C (TC)

The TC is a 16-bit temporary register used for internal
processing such as a multiply or divide operation. The
contents of TC are inputs to the ALU.

Arithmetic and Logic Unit (ALU)

The ALU consists of a full adder and a logical operation
unit. The ALU performs the following arithmetic
operations:

3-1

pPD7010S/70116 NEe
Figure 3-4. pPD7010BI70116 Block Diagram

3-2

,--------------------------------------,

,
Bus

Contro
Unit

(BCl,I)

I
I
I
I
I
I
I
I
I
I
I
(--

I

Executlo
Unit

(EXU)
I

I
I
I
I
I
I
I
I
I
I
I

n

I

1\

-"II

;L-
'-.["-

\
II

'I

-

I
ADM

I
PS

55

DSO

OSI

PFP

DP

TEMP

QO

Q2

Q4

I I
lC

PC

AW

BW

CW

OW

IX

IV

BP

SP

TC

TA

TB

1
AlU

I I

psw

A

Internal Address/Data Bus (IADo·IAD,e) 1\
Bus 'I

Buffer

V
'JI

~ 'I

1~ r-

Status
Control

;l--l\,
\f'-y

Q1 Vi- I T·State II Bus Hold I: Q3 f\r- Control Control

Q5 2 it
~l Cycle

JI
Interrupt I: Decision Control

I .,J..J,..

I J I I· I
Queue Standby
Control Control

-

fl--J\ Effective Address Generator

i'rY"
-

~ t ~ -.~ . fL Instruction

!II ~iil !v' Storage
~ ..

~ £)
I:

SHIFTER CD '---I:
CD

~
i

fLSequence III
I: Control ..

I
§

~ 1\ Instruction Decoder

-V
V

II ~

'I v_
I Sub-data Bus Main Data Bus

12

1\
8

~
4

~
16

r

8

:

~

I
I
I
I
I
I
I
I
I

LBSO'[UBEJZ I
BUFFEN [BSOJ, BUFRIW [BS1) I
101M [BSz) [Note 1)
10/M [BSzJ [Not. 2)
ASTB [QSOJ, INTAK [QS1)
RD, WR [BUSLOCKl

S/lG
READV
RESET
POll

HLDRQ (RQ/AKo)

HLDAK (RQ/AKtI

NMI

INT

ClK

Microinstruction Bua

I ~~ ~~
L ___________________________________ ~
Notes. I. IlPD70108 only

2. IlPD70116 only

49000!43C

t\'EC
• Add, subtract, multiply, and divide
• Increment, decrement, and two's complement

The ALU also performs the following logical operations:

• AND, OR, XOR, complement
• Bit test, set, clear, and complement

Program Status Word (PSW)

The PSW contains six status flags:

• V (Overflow)
• S (Sign)
• Z (Zero)
• AC (Auxiliary carry)
• P (Parity)
• CY (Carry)

The program status word also contains four control flags:

• MD (Mode)
• DIR (Direction)
• IE (Interrupt enable)
• BRK (Break)

When the PSW is pushed onto the stack, the word format
of the various flags is as follows:

PSW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M V 0 I B S Z 0 A 0 P C
0 I E R C y

R K

The status flags are set and reset depending on the result
of each type of instruction executed. Instructions are
provided that set, reset, and complement the CY flag
directly. Other instructions set and reset the control flags
and control the operation of the CPU.

Loop Counter (LC)

The loop counter (LC) is a 16-bit register which counts:

• Loop times specified in the primitive block transfer
• I/O instructions controlled with repeat prefix instruc-

tions such as REP and REPC
• Shifts for the mUlti-bit shift/rotate instructions

The processing speed for multiple-bit rotation of a reg­
ister is approximately twice as fast as when using the
microprogram method.

Example:

RORC AW,CL ;CL=5

Microprogram Method

8 + (4 X 5) = 28 clocks

Loop Counter Method

7 + 5 = 12 clocks

Section 3
Functional Description

Effective Address Generator (EAG)

The effective address generator (EAG) performs a high­
speed effective address calculation for memory access.
While the microprogramming method normally requires
5 to 12 clock cycles to calculate an address, the EAG
completes all the EA calculations in 2 clocks for all ad­
dressing modes (see figure 3-2).

The EXU fetches the instruction bytes that have the oper­
and field and determines if the instruction will require a
memory access. If it does, the EAG calculates the effec­
tive address and transfers it to the DP (data pointer)
which generates control signals that handle the ALU and
corresponding registers. In addition, if it is necessary, the
EAG requests a bus cycle from the BCU.

Instruction Decoder

The instruction decoder decodes the first byte of an
instruction into groups with specific functions and holds
them during the instruction execution.

Microaddress Register

The microaddress register specifies the starting address
in the microinstruction ROM of the next instruction to be
executed. At the beginning of a new instruction, the first
byte of the instruction is taken from the prefetch queue
and put into the microaddress register. The register then
specifies the starting address of the corresponding
microinstruction sequence.

Microinstruction ROM

The microinstruction ROM has 1024 microinstructions.
Each microinstruction is 29 bits wide.

Figure 3-2. Effective Address Generator

Mod Mem

1
EA Generator

1
Effective Address

49-000036A

3-3

pPD7010S/70116

Microinstruction Sequencer

The microinstruction sequencer controls the microad­
dress register operation, microinstruction ROM output,
and the synchronization of the EXU with the BCU.

Dual Data Bus

The pPD70108170116 contains a dual, 16-bit data bus
that consists of a main and subdata bus. The dual data
bus reduces the number of processing steps for instruc­
tion execution. For addition/subtraction and logical
and comparison operations, processing time is approx­
imately 30% faster then in single-bus systems.

Example:

ADD AW,BW

Single-Bus System

1. TA-AW
2. TB-BW
3. AW-TA+TB

;AW-AW+BW

Dual-Bus System

TA-AW, TB - BW
AW-TA+TB

BUS CONTROL UNIT (BCU)

The BCU includes the following functional elements:

• Prefetch Pointer (PFP)
• Prefetch Oueue (00-03/00-05)
• Data Pointer (DP)
• Temporary Communication Register (TEMP)
• Segment Registers (PS, SS, DSo, DS1)
• Address Modifier (ADM)

Prefetch Pointer (PFP)

The PFP is a 16-bit binary counter that contains a pro­
gram segment offset. The offset is used to calculate a
phYSical address that the Bus Control Unit (BCU) uses
to prefetch the next byte or word for the instruction
queue. The contents of the PFP are an offset from the
Program Segment register (PS).

The PFP is incremented each time the BCU prefetches
an instruction from the program memory. A new location
will be loaded into the PFP whenever a branch, call,
return, or break instruction is executed --- this provides
a time savings of several clocks since the PC does not
require adjustment. At that time, the contents of the PFP
will be the same as those of the program counter (PC).

3-4

ttlEC
Prefetch Queue (QO-Q3/QO-QS)

The pPD70108170116 has a prefetch queue that can
store 4/6 instruction bytes that are prefetched by the
BCU. The instruction bytes stored in the queue are taken
from the queue and executed by the EXU. The queue is
cleared when a branch, call, return, or break instruction
has been executed, or when an external interrupt has
been acknowledged.

Normally, the pPD70108 prefetches a byte if the queue
has one or more empty bytes. ThepPD70116 prefetches
if the queue has one or more empty words (two bytes).
If the time required to prefetch the instruction code from
external memory is less than the mean execution time
of instructions executed sequentially, the actual instruc­
tion cycle will be shortened by the time needed to fetch
the instructions. This occurs because the next instruc­
tion code to be executed by the EXU will be available
in the queue immediately after the completion of the
previous instruction. As a result, the processing speed
is increased when compared with a conventional CPU
where the fetch and execute times do not overlap.

The queuing effect will be lowered if there are many
instructions which clear the queue; for example, a
branch instruction, or a series of instructions with a short
instruction time.

Data Pointer (DP)

The DP is a 16-bit register that contains the read/write
addresses of variables. Effective addresses calculated
by the effective address generator are transferred to
the DP.

Temporary Communication Register (TEMP)

The TEMP is a 16-bit temporary register that stores data
being transferred between the external data bus and
the EXU.

The TEMP can be read from or written to independently
by the upper or lower byte. Basically, the EXU completes
a write operation by transferring data to the TEMP and
completes a read operation by taking the data transferred
to the TEM P from the external data bus.

t-IEC
Segment Registers (PS, SS, DSo, DS1)

The memory addresses accessed by the pPD701081
70116 are divided into 64 Kbyte logical segments. The
starting (base) address of each segment is specified by
a segment register. The offset from this starting address
is specified by the contents of another register or by the
effective address.

The pPD70108170116 uses four types of segment
registers:

Segment Register

PS (Program Segment)
SS (Stack Segment)

DSo (Data Segment 0)
DS1 (Data Segment 1)

Address Modifier (ADM)

Default Offset

PFP
SP, Effective Address
IX, Effective Address
IY, Effective Address

The address modifier logic generates a physical memory
or 1/0 address by adding the segment register and PFP
(or DP) contents.

Section 3
Functional Description

3-5

pPD7010S/70116 NEe

3-6

NEe
MEMORY CONFIGURATION
Memory contains instructions, interrupt handler start
addresses, stack data, and general data. Some of this
data is stored in bytes and other in words. The
JlPD7010S/70116 can access up to 1 Mbyte (512 Kwords)
of memory by using the 20-bit address bus (A19-AO)'

As the memory map in figure 4-1 shows, the first 1 Kbytes
of addresses (OH-3FFH) are used for the interrupt vector
table. Parts of this area may also be used for other pur­
poses in some systems. The 12 bytes from address
FFFFOH to FFFFBH are always used by the CPU when
it is reset, and therefore cannot be used for any other
purpose.

The four bytes from addresses FFFFCH to FFFFFH are
reserved for future use and are not available.

Memory data can be stored in both even (Ao = 0) and
odd (Ao = 1) addresses. The area where the interrupt
start addresses (interrupt vector table) are stored must
use even addresses. The JlPD70116 can access a word
regardless of whether the word is at an even or odd
address. This allows both even and odd addresses to be
used for an instruction. Table 4-1 shows the type and
configuration of data, and address requirements. Figure
4-2 shows the placement of word and double word data
in memory.

Figure 4-1. Memory Map

OH }

r-
_____ lnl_er_ru_pl_ve_C_'Or_"_ab_le ___ -----! ~~eo':~i~.'

3FFH
400H

General

FFFEFH
FFFFOH

RESET

FFFFBH
FFFFCH

Reserved

FFFFFH

1 Byte

Section ~
Memory and 1/0 Configuration ~

Table 4-1 Data Type and Addressing

Data Address Data Conllguratlon

I nstruction Code Even or odd 1-6 bytes

Interrupt Vector Table Even 2 words/vector

Stack

General Variable

Figure 4-2.

FFFFFH 1
Increasing
addresses

OOOOOH

....

Even or odd Word

Even or odd Byte, word, or double
word

Word and Double Word Placement in
Memory

1
i"

High Order Byte (Bils 24-31)

(Bils 16-23)

(Bils 8-15)

Low Order Byte (Bils 0-7)

High Order Byte (Bils 8-15)

Low Order Byte (Bils 0-7)
Jword

----1 Byte ---

49-0000383A

4-1

pPD7010S/70116

MEMORY ACCESSING
Since the pP070108 data bus is only 8 bits wide, only
one byte (8 bits) is accessed during one bus cycle. Two
bus cycles are required to access a data word from either
an even or odd address. Figure 4-3 shows the interface
between memory and the pP070108. Figure 4-4 shows
the interface between memory and the pP070116.

The address space for the pP070116 is 1 Mbyte, but
because the pP070116 can transfer both bytes and
words of data, the physical memory appears to be two

Figure 4-3. pPD70108 Memory Interface

NEe
banks, each containing 512 Kbytes of data (figure 4-4).
Oata lines 07-00 are connected to the low-order memory
bank and address bit Ao selects this bank when Ao=O.
Oata lines 015-08 are connected to the high-order
memory bank and signal USE is used to select this bank
when USE is low. Address bits 19-1 contain the physical
address within a data bank where the byte of data is to
be accessed.

A,.-Ao'l Address Busr:.(2::,.O B::;;;it:::!s) ________ ---'

'---------'----'~J t

Memory
(1 MBytes)

li
OrOo\L-________ ~0~am~B~U~s(~8B~it~S) _________________ ~

Figure 4-4. pPD70116 Memory Interface

'I Address Bus (19 Bits) 'I

19 19

1 '" 7 ~7
BSEL BSEL

Memory Memory
High-Order Low-Order

Bank Bank

(512 KBytes) (512KBytes)

8 D,s-D. 80r Oo

0'5-0 0) Data Bus (16 Bits))

4-2

49-000053A

49·000052A

t-IEC
The following chart shows how Ao and UBE are used.
Memory transfer operations are described after the
chart.

Type 01 Bus
Operation UBE AO Number 01 Bus Cycles

Word to even address 0 0 1

Word to odd address 0* 1 2
1** 0

Byte to even address 1 0

Byte to odd address 0

Notes: * First bus cycle
** Second bus cycle

When transferring a word of data to an even address, the
pP070116 puts the low-order data byte on 07-00, the
high-order data byte on 015-08, and sets both UBE and
Ao to O. In this manner, both the low- and high-order
memory banks are simultaneously selected and the
transfer is performed in one bus cycle.

The transfer of a word of data to an odd address requires
two bus cycles. In the first cycle, the pP070116 puts the
low-order data byte on 015-08, sets UBE to 0, sets Ao
to one, and transfers the first byte to the high-order
memory bank. In the second cycle, thepP070116 incre­
ments the address by +1, puts the high-order data byte

. on 07-00, sets UBE to 1, sets Ao to 0, and transfers the
second byte to the low-order data bank.

When transferring a byte of data to an even address, the
pP070116 puts the data byte on 07-00, sets UBE to 1,
Ao to 0, and transfers the data byte to the low-order
memory bank.

When transferring a byte of data to an odd address, the
pP070116 puts the data byte on 015-08, sets UBE to 0,
sets Ao to 1, and transfers the data byte to the high-order
memory bank.

The pP070116 normally prefetches instruction ,codes in
words. However, if a branch operation to an odd address
takes place, only one byte is fetched from that odd
address. After that, instruction codes are prefetched in
words.

When the interrupt vector table is accessed in response
to an interrupt, even addresses are always used. Ouring
an interrupt, two bus cycles are required because two
words (segment base, and offset) are required.

One memory bus cycle requires four clocks. Thus, each
time a word from an odd address is accessed, four addi­
tional clocks are required than when accessing an even­
address word. When transferring a word from one
memory area to another, the memory must be accessed

Section 4
Memory and 1/0 Configuration

twice. The word must be read from the source first and
then written to the destination. If both the source and the
destination are odd addresses, the execution time will be
maximized. The following example shows the number of
clocks required to execute the MOV reg, mem instruction
for both a byte and word of data.

Data Processor Number 01 Clocks

Bytes pPD70108/70116 11

Words pPD70116 (even address) 11

Words pPD701 08/70116 (odd 15
address)

The above stack information is also true during a stack
operation since all stack data is organized as words.
Twice as many bus cycles are required during a stack
operation using an odd rather than even address.

110 CONFIGURATION AND ACCESSING

The pP070108170116 can access up to 64 Kbytes (32
Kwords) of 1/0 address area independent of memory.
However, the upper 256 bytes (FFOOH-FFFFH) are re­
served by NEC for future use. The 1/0 address area is
addressed by the lower 16 bits of the address bus. Figure
4-5 shows the I I 0 map.

Unlike memory, segment registers are not used in 1/0 .
When the address bus carries 1/0 addresses, address
bits A19-A16 are all zeros. Since data is transferred
between the CPU and 1/0 in bytes or words, both 8-bit
and 16-bit 1/0 devices can be connected to the
pP070116. Only 8-bit 1/0 devices can be connected to
the pP070108.

In the pP070116, only one bus cycle is required to access
a word on an even address; two bus cycles are required
to access a word on an odd address.

When the pP070116 accesses an 8-bit 1/0 device, bits
Ao and UBE select the device. Bit A1 and higher bits
select a device and the registers within that device. When

Figure 4-5. 110 Map

OHr----------,

FEFFH 1-______ .--,
FFOOH

RESERVED
FFFFH'--______ --'

----'1 Byte---

49-0000S1A

4-3

JlPD7010S/70116

accessing 8-bit I/O devices, only even addresses should
be assigned to the device and its internal registers. This
allows the registers to be selected using only even
addresses. Similarly, 8-bit I/O devices with internal reg­
isters assigned odd addresses must be accessed using
odd addresses.

If a memory-mapped I/O configuration (memory address
space allocated to an I/O device) is used, the I/O
addresses can be allocated to a portion of the 1 Mbyte
memory area. In this manner, all CPU addressing modes
and instructions can be directly performed on the I/O
device. For example, if a bit operation instruction for
memory is used, one line of a specific I/O port can be
tested for 1 or 0, set to 1, cleared to 0, or inverted. In a
memory-mapped I/O configuration, control signals from
the CPU are used exactly as for memory. Therefore, the
110 device is distinguished from memory only by its
address. Care must be taken so that addresses of vari­
ables or the stack do not conflict with the addresses
allocated to a memory-mapped I/O device.

4-4

NEe

NEe
Bus Cycles and Memory Access

One bus cycle is required for each access (read/write)
of memory or I/O. A bus cycle is basically made up of
four states (clocks): T1 through T 4. When the microproc­
essor operates at 8 MHz, one state is 125 ns. The
pPD70108 and pPD70116 fetch instructions and read
data, using exactly the same timing (figures 5-1, 5-3, 5-5,
and 5-7).

Figure 5-1. Read Timing of pPD70108 Memory and
110 (Small-Scale Systems)

T4

ClK

A,./PS3-A,./PSo __ ~Xo...:..:A""".-...:.A.:.!.!,.,-,X"---_...:.P...:S,,-3-,,,:,PS::l!O ___ --Ll.X

A'5-A• __Ll.x ___ ---'-A'''''5-...:.A"". _____ ...L.\x

AD7-ADo ====x=~K=A~7~A~oJ-----<~>---t-C-

ASTB __ .J

BUFEN ~ \ __ -----1
BUFR/W~ _----l~ _________ ___'r=---'-_

\\.... ____ ...JI

101M __ ..J.X"'--__________ X
lBSO __I.X"---__________ ...L.\X

Figure 5-2.

ClK

49-000050A

Write Timing of pPD70108 Memory and
/10 (Small-Scale Systems)

1:== 1 Bus Cycle j
T4 n-+-T2-1--T3-1--T4

A,./PS3-A,./PSo __ -""X_A"",._-A-",.'-'X"'--__ P_S"-3-_PS....::O'--__ ~X

A'5-A• __ ~XOo-___ ...:.A"""5-...:.A"'-. _____ ~X

AD7-ADo ====X=::3K:=!A~7~A~o JXC==:JD&:7~D~o ===>E

ASTB __ ...J

BUFEN~

BUFR/W~

\\.... ______ -...J;---

\ ____ ...JI

101M __ X"--_________ ... X~

L8SO __ ... X"--_________ ... X.>.....-
49-000049A

Section ~
Read/Write Timings ~

The EXU fetches an instruction from the instruction
queue and executes it. The BCU continues prefetching
instructions for the instruction queue until the queue
becomes full. If the EXU does not fetch an instruction
from the queue because another instruction is still being
executed and the instruction queue is full, the BCU will
not prefetch the next instruction. Instead, it automatically
inserts an idle state (TI) after state T3. More idle states

Figure 5-3. Read Timing of pPD70116 Memory and
/10 (Small-Scale Systems)

ClK

A,./PS3-A,./PSo __Ll.X...:.A.!!.,.-...:.A-'-",.'--'X"--_---'-'PS"'-3--'-P..;:.,SO'---__ ~X

UBE __ -""X __________ --uX

AD1S-ADo ===x=:::;K:::!A~'52;Ao;:)_) --~~~--+C-

ASTB __ ...J

BUFEN ~ \\.... ___JI

BUFR/W ~_--"-__________ __'r='---_
\\.... ____ --'1

iQ/M __ ...I.X.l..-__________ ~X
49-00048A

Figure 5-4. Write Timing of pPD70116 Memory and
110 (Small-Scale Systems)

T4

ClK

A,./PS3-A,./PS, __ -ClX....:.A:!.!, • ...:.-A2'.!!....IX"--_~PS"'-3-....:.P..;:.,SO'---__ ___'_"_X

UBE ____ ~XOo-______________ _uX

AD,5-A,==3x=A~,;:5 ~Ao;:::XZ===D~';:5 ~Do~==>E:

ASTB __ ...J

BUFEN~

BUFR/W~

\\.... ______ -...J;---

\\.... ____ ...JI
~/M __ __'X"--____________ ~X

49-000047A

5-1

pPD70108/70116

are inserted until the EXU finishes executing the instruc­
tion being processed. Then it fetches the next instruction
from the instruction queue. When the next instruction is
fetched, the BCU advances the state of the bus cycle from
state T 4 to T1.

When a memory or I/O device has a long access time,
the BCU samples the READY signal (sent from memory
or an I/O device). If READY is low, the BCU will insert
wait states TW between T3 and T 4. When READY

Figure 5-5. Read Timing of pPD70108 Memory and
/10 (Large-Scale Systems)

I- 1 Bus Cycle ~
T4 r-n-+-T2-+-T3--J--T4--j

ClK

A,9/PS3-A,./PSo __ -,X-,---,A,,,-9-_A.!-"., • .Llx'--_P....:S 3-_PS-"'o'--___ ~X

A,5-A. __ -'X~ __ '--A:.!.215....:-A-"'-. _____ __<.>.X

E
ASTB ~~ _______ --JI

BS2-BSo '\ 7
\ I

X X X X X

£ I [M-R-D ::~-:~-: ----""----------'
:::t DBEN _____ ---' L-___

49-000045A

Figure 5-6. Write Timing of pPD70108 Memory and
110 (Large-Scale Systems)

T4

ClK

A,5-A. __ ~X<>--__ ---'A-""5'__-"-"A.'____ ____ _'_'X

AD7-ADo ====:):=3« ~A:c7-~Ao~X==~D,.-C!D~o===E
ASTB~ ________ _

BS2-BSo \\..-________ --J7

aSo. aSl __ .J.X~_.J.X~_.LXlo...__.LXlo...__.LlX~ lMWiiORIOWR

U
IL /: DBEN ____J

~ AMWii OR AiOWR -------,
~--------'

49-00004SA

5-2

t'tIEC
becomes high, the BCU goes to T4 and then to T1 so
that the next instruction can be fetched. When wait state
TW is inserted, the current level of each signal is not
changed and the read/write timing is longer for that
cycle.

Figures 5-1 through 5-8 show read/write timing for
pPD70108170116 memory and I/O. The timing diagrams
are for small- and large-scale systems.

Figure 5-7. Read Timing of pPD70116 Memory and
110 (Large-Scale Systems)

I- 1 Bus Cycle -l
T4 I--n-+-T2-+-T3---+-T4--j

ClK

A'./PS3-A'./PSo __ -'-"X'"'-A""'9 __ -A-"".'--'X'-'---_-'P--"-S3"-.--_PS"'-O ___ ~X

UBE __ ~X ____________ ~X

AD'5-ADo~=A~';:5 ~Ao0-) ---{(:ED~'5~1~Do;::::)>----EC=

ASTB~~ _______ _

BS2-BSo \'-_____J7

\'---____JI

~ ____________ ~r___
'--____ -Jr___

~
49-000044A

Figure 5-8. Write Timing of pPD70116 Memory and
110 (Large-Scale Systems)

I- 1 Bus Cycle ~
T4 I-n-+-T2-+---T3--l-T4~

ClK

UBE __ .LXlo..._ _________ -U

AD'5-ADo~_A___'_'5"_-_'Ao'-'X'->--__ _"'____"__ __

ASTB~ ________ __

BS2-BSo '\'--________ ..J

aso. asl __ XA-__ X"'--_---'>-_---''''---_~_

1 DBEN

U -- --------,
IL /: AMWRor AIOWR

~L~ORI~-------.~_~-----
49-000043A

NEe
There are two types of interrlipts in the pP07010S/70116.
One is caused by an external interrupt request and the
other is caused internally by software. Both types of inter-

rupts are vectored. When an interrupt occurs, a location
in the interrupt vector table is selected either automat­
ically (fixed vector) or by software (variable vector). This
selected location determines the start address of the
corresponding interrupt routine.

Table 6-1 shows the types of interrupts, interrupt source,
number of clocks required to process each interrupt,
vector, and priority.

Figure 6-1 shows the interrupt vector table. This table
is allocated in a 1 Kbyte memory area (addresses OOOH
to 3FFH) and can hold up to 256 vectors (four bytes
required per vector).

The interrupt sources for vectors 0 to 5 are predeter­
mined and vectors 6 to 31 are reserved for future use.
Vectors 32 to 255 are for general use. These vectors are
used for the four interrupt sou rces: 2-byte break, BRKEM,
CALLN instructions (during emulation), and INT input.

Four bytes are used for each interrupt vector. The two
bytes of the lower address and the two bytes of the higher
address are loaded respectively into the program coun­
ter (PC) as an offset, and a segment register (PS) as
a base.

Table 6-1. Interrupt Sources

Interrupt Source No. of Vector Priority
Clocks*

External NMI (rising-edge 58/38 2 2
triggered)

INT (high-level active) 68/49 32-255 3

Software DIVU divide by 0 error 65/45

DIV divide by 0 error 65-751 0
45-55

CHKIND boundary 81-841 5
over 53-56

BRKV instruction 60/40 4

BRK3 (breakpoint) 3

BRK irnm8 58/38

BRKEM imm8 32-255
CALLN imm8

BRK flag 4
(single step)

Note: *The number to the left of the slash (I) is for the pPD70108 and
the number to the right is for the pPD70116.

Section @
Interrupts \Q)

Figure 6-1. Interrupt Vector Table

OOOH
Vector 0

004H
1

OOSH
2

OOCH
3

010H
4

014H
5

018H
6

07CH
31

080H
32

,re·1 2~5

Example: Vector 0

Location OH

1H

2H

3H

~

OOH

01H

02H

03H

Divide error

Break flag
(Single Step)

NMI input

BRK 3 instruction
(Breakpoint)

BRKV instruction

CHKIND instruction

Reserved

General
• BRK imm 8 instruction
• BRKEM instruction
• INT input (external)
• CALLN instruction

49-000042A

PS - (003H, 002H)
PC - (001 H, OOOH)

The contents of the vectors are initialized at the begin­
ning of a program. The basic steps when program
execution jumps to an interrupt routine are:

(SP-1, SP-2) - PSW

(SP-3, SP-4) - PS

(SP-5, SP-6) - PC

SP - SP-6

IE - O,BRK - O,MO - 1

PS - higher vector from interrupt vector table

PC - lower vector from interrupt vector table

The interrupt enable (IE) and break (BRK) flags are reset
when an interrupt routine is started. Therefore, maskable
interrupts (INT) and single-step interrupts are disabled.

pPD70108/70116 NEe
MASKABLEINTERRUPTS
If an INT input signal is a high level at the end of an
instruction and the interrupt is enabled (IE = 1), the INT
interrupt request will be acknowledged, unless the NMI
or hold request signals are active at the same time. The
program execution then enters an iriterrupt acknowl­
edge cycle (figures 6-2 and 6-3).

The interrupt acknowledge cycle consists of two bus
cycles. The INTAK, ASTB, and BUFEN signals are gener­
ated during the first cycle. Although the bus cycle is
started, no read/write operation is performed and the
address/data bus becomes high impedance. During this
time, a hold request is not accepted. If~e
pPD70108170116 is in the maximum mode, the BUS-

Figure 6-2. pPD70108 Interrupt Acknowledge Timing

ClK

ASTB

RD--4------------+~--------------------,

IOiM

AD,..-ADo -+---------::~~=:::~:-----~-=:j
Read Interrupt Vector ~pe low·Order Addr ... Byte low-Order Byte

o! Interrupt Vector Table o! Interrupt On.et-Word

A,5-A. -+------------t+----------------~~~~~~===~
High"()rder Byte of Interrupt Vector
Table Address

BUSlOCK

Figure 6-3. pPD70116 Interrupt Acknowledge Timing

6-2

iQ/M ~----------------1-------~----~/

BUSLOCK \, ________________ ...J/
(Maximum mode only) -

AD,S-ADO-------------------------<C=>>-------------_c:::r--c::r--
Low'()rder Interrupt Interrupt

Byte Vector 0Haet
Read Interrupt Vector ~pe Table Word

Address

49-000040A

49-000039A

ttlEC
LOCK signal is also generated inhibiting other devices
from using the bus. Figures 6-2 and 6-3 show the timing
for the interrupt acknowledge bus cycles.

The first interrupt acknowledge cycle is necessary to
synchronize the external interrupt controller with the
pPD7010a170116. When the INTAK, ASTB, and BUFEN
signals are output during the second interrupt acknowl­
edge cycle, the external interrupt controller puts the inter­
rupt vector number on the data bus (ADrADo).

After the second interrupt acknowledge cycle has been
completed, the location in the interrupt vector table cor­
responding to the vector obtained during the interrupt
acknowledge cycle is accessed. Before calling the inter­
rupt routine, the contents of the PSW, PS, and PC are
saved in the stack. The interrupt start address is then
loaded into the PS and PC registers from the interrupt
vector table and the interrupt routine is started.

The following are sequential lists of interrupt acknowl­
edge operations performed by the pPD7010a and
pPD70116.

pPD70108

(1) Acknowledge cycle (first)
(2) Acknowledge cycle (second)
(3) Save lower byte of PSW to stack
(4) Save higher byte of PSW to stack
(5) Save lower byte of PS to stack
(6) Save higher byte of PS to stack
(7) Save lower byte of PC to stack
(a) Save higher byte of PC to stack
(9) SP - SP-6

(10) Read lower byte of offset word to PC
(11) Read higher byte of offset word to PC
(12) Read lower byte of segment word to PS
(13) Read higher byte of segment word to PS
(14) Jump to interrupt start address

pPD70116

(1) Acknowledge cycle (first)
(2) Acknowledge cycle (second)
(3) Save PSW word to stack
(4) Save PS word to stack
(5) Save PC word to stack
(6) Sp· - SP-6
(7) Read offset word to PC
(a) Read segment word to PS
(9) Jump to interrupt start address

Section 6
Interrupts

During the first pPD7010a interrupt acknowledge bus
cycle, no idle TI states are inserted in the bus cycle.
However, the pPD70116 inserts three TI states during the
first interrupt acknowledge cycle. During the second
interrupt acknowledge cycle, five TI states are inserted
in the bus cycles of both microprocessors. Both the
pPD7010a and pPD70116 read an a-bit vector during the
second interrupt acknowledge cycle.

The number of cycles required to save the contents of
the PSW, PS, and PC are different for the two microproc­
essors. This is because the width of the pPD7010a data
bus is smaller than that of the pPD70116. Two bus cycles
are required forthepPD7010a to read the offset word and
segment word. Two bus cycles per word are also
required to save the PSW, PS, and PC. The pPD70116
performs each of these operations in one bus cycle. The
pPD70116 UBE signal remains low during the first and
second interrupt acknowledge cycles and during the
subsequent accessing of the offset and segment words.

BRK FLAG (SINGLE.STEP INTERRUPT)

ThepPD7010a170116 is provided with a single-step inter­
rupt function that is useful for program debugging. The
Break Flag (bit a of the PSW) controls this interrupt. There
is no instruction that directly sets or resets the BRK flag;
therefore, the PSW must be saved from the stack to
control the BRK flag. By restoring the contents of the
PSW from the stack, the BRK flag can be set or reset by
using OR and AND instructions on the PSW in the stack.
When the BRK flag is set, an interrupt routine specified
by vector 1 starts after the current instruction has been
executed. The BRK and interrupt enable (IE) flags are
also reset at this point.

The debug program checks the number of single steps
while the interrupt routine is being executed.lfthe single­
step operation can be terminated, a memory operation
instruction resets the BRK flag that is saved in the stack.
The program then returns to the main routine and the
next sequence of instructions is successively carried out.
If the program returns to the main routine without chang­
ing the BRK flag, the BRK flag (1 in the PSW) will be
restored from the stack. The program then executes one
instruction of the main routine and the vector 1 interrupt
occurs again.

6-3

pPD70108/70116

INTERRUPT DISABLE TIMING
NMI and INT interrupts are not acknowledged when

• An instruction that directly sets data in the segment
register is being executed; for example

MOV sreg, reg16
MOV sreg, mem16

• The program is between one of the following and the
next instruction

MOV sreg, reg16
MOV reg16, sreg
MOV sreg, mem16
MOV mem16, sreg
POP sreg

• Program execution is between one of the following
three types of prefix instructions and the next single
instruction

Segment override prefix (PS:, SS:, OSO:, OS1:)
Repeat prefix (REPC, REPNC, REP, REPE, REPZ,
REPNE, REPNZ)
Bus lock prefix (BUSLOCK)

• Program execution is between the EI instruction and
the next instruction (INT only)

Only an NMI request signal generated during the above
interrupt disable timing will be internally retained. The
request will be acknowledged on completion of the sub­
sequent single instruction.

6-4

NEe
INTERRUPTS DURING BLOCK
INSTRUCTIONS
If an external interrupt (NMI or INT with interrupts
enabled) occurs while a primitive block transfer, compar­
ison,or 1/0 instruction is being executed, the CPU will
acknowledge the interrupt and branch to the interrupt
address. At the beginning of the interrupt routine, the
contents of the CW register (a counter for block data) will
be saved to the stack. After the contents of the CW have
been restored at the end of the interrupt routine, the
execution of the CPU will be returned to the original
routine. In this manner, the interrupted block operation
is resumed.

If prefix instructions have existed before the block oper­
ation instruction, up to three will be retained.

When the program returns from the interrupt routine,
execution must return to the address at which the prefix
instruction is held. For this reason, thepP070108170116
modifies the return address (minus one address per
prefix instruction) when it is saved.

To best use the pP0701 08170116, do not place more than
three prefix instructions before a block operation
instruction.

Correct Example:

BUSLOCK

REPC

NMI - CMPBKB SS: src-block, dst-block

In the correct example, the BUSLOCK, REPC, and SS
instructions are executed when program execution has
been returned from the NMI interrupt process.

Incorrect Example:

BUSLOCK

REP

REPC

NMI - CMPBK SS: src-block, dst-block

In the incorrect example, only the REP, REPC, and SS
instructions will be executed when the program returns
from the NMI interrupt process. Since more than three
prefix instructions were placed before the block oper­
ation instruction, program execution incorrectly returns
to the REP instruction instead of the BUSLOCK
instruction.

NEe
To reset and initialize the pPD70108170116, a positive
pulse must be present on the RESET pin for at least four
clock periods.

A CPU reset signal initializes the pPD70108170116 as
follows.

• Clears the following registers to OOOOH.
PFP (prefetch pointer)
PC (program counter)
SS (stack segment)
DSo (data segment 0)
DS1 (data segment 1)

• Sets PS (program segment) register to FFFFH
• Flushes the instruction queue
• Sets or resets the following PSW (program status

word (flags:
MD = 1 (native mode)
DIR = 0 (address direction used during block
transfer, Autoincrements)
IE = 0 (INT disabled)
BRK = 0 (single-step interrupt disabled)

All other registers are undefined.

After the reset signal returns to the low level, the CPU
begins execution of the program starting at address
FFFFOH.

Section 7J
Reset Operation U

7-1

pPD70108/70116 NEe

7-2

fttIEC Section (f5)
Native and pPD8080AF Emulation Modes (Q)

The pP070108/70116 has two CPU operating modes:
native and 8080 emulation. In native mode, the
pP070108170116 executes all the instructions given in
Section 12, with the exception of the RETEM and CALLN
instructions. In 8080 mode, the microprocessor executes
the instruction set for the pP08080AF and the RETEM
and CALLN instructions. These modes are selected by
special instructions or by using an interrupt. The most
significant bit of the PSW is a mode (MO) flag that con­
trols mode selection.

NATIVE AND 8080 MODE SHIFTING

When the operating mode is changed from native to
emulation or vice versa, the registers will be mapped into
the emulation mode as shown in figure 8-1. The lower
eight bits of the AW register and both the lower and
higher eight bits of the BW, CW, and OW registers of the
pP070108170116 serve as the accumulator and six
general-purpose registers of the pP08080AF. Figure 8-2
shows the lower eight bits of the PSW of the pP070108/
70116 serving as pP08080AF flags. These flags corre­
spond to the lower eight bits of the PSw.

The SP register serves as the stack pOinter of the
pP08080AF in native mode while the BP register acts as
the stack pointer in the emulation mode. In this way, the
pP070108170116 employs independent stack pointers
and stack areas in each mode. Using independent stack
pointers prevents destruction of the contents of a stack
pointer in one mode due to misoperation of the stack
pointer in the other mode. The AH, SP, IX, and IY registers
and the four segment registers (PS, SS, OSo, OS1) are not
addressable from emulation mode.

In emulation mode, the segment base of the program is
determined by the PS register whose contents have been
specified by an interrupt vector before the CPU entered
emulation mode. The segment base of the memory oper­
ands (including the stack) is determined by the OSo reg­
ister whose contents the programmer specifies before
the CPU enters emulation mode.

Figure 8.2. Corresponding PSW and Flags

: 9 8 7 6

I IE BRK S I z I
7 6

I S z I

5

0

5

0

The bus hold function (available by the hold request/
acknowledge signal) and standby function (available
when the HLT instruction is executed) can be used in
emulation mode in the same way as in native mode.

The pP070108170116 operates in terms of its normal
BCU hardware even in emulation mode. Therefore, I/O
operations between the pP0701 08/70116 and peripheral
circuits or memory are exactly the same as those
performed in native mode. However, the BUSLOCK and
POLL functions are unavailable for use in emula­
tion mode.

Figure 8.1. Corresponding Registers

Native Mode 8080 Mode

~~}-~= H L HL

B C BC

o E DE

~ BP }-- I SP

IX

IV

J-PS ·Code Segment

OSo ·Data Segment

SS

OS,

-EBJ- ca~ Flags

·User transparent in 8080 mode

49-000031 A

4 3 2 0

I AC 0 I P I 1 CV I PSW

4 3 2 0

AC 0 I P I 1 C I Flag

49-000030A

8-1

pPD7010S/70116

To determine externally ifthepPD70108170116 is in emu­
lation mode, confirm that the processor status PS3 signal
output during apPD70108170116 bus cycle has become
high. This signal is always at a low level in native mode.
Figure 8-3 shows the mode shift operation of the CPU.

The CPU can reenter emulation mode when INT is pres­
ent (even if interrupts are disabled) and restart program
execution beginning with the instruction after the. HLT
instruction. This is true only if the CPU entered the
standby mode from emulation mode.

If RESET or NMI is present instead of INT - or if INT is
present while interrupts are enabled - the CPU will enter
native mode from standby mode. If this happens, the CPU
can reenter emulation mode from native mode; in other
words, from the NMI or INT interrupt routine in native
mode, through execution of the RETI instruction. If the
CPU entered standby mode from native mode, the CPU
can reenter native mode by inputting RESET, NMI, or INT
regardless of whether interrupts are disabled or enabled.

Figure 8-3. Mode Shift Operation of CPU

NEe
NATIVE TO 8080 EMULATION MODE

Two instructions cause the operating mode to be
changed from native the 8080 emulation mode. These
instructions are BRKEM (break for emulation) and RETI
(return from interrupt).

BRKEM immS Instruction

The BRKEM instruction starts the 8080 emulation mode.
It saves the contents of the PSW, PS, and PC, and resets
the MD flag to O. The segment base and offset values are
then loaded into the PS and PC registers respectively
from the interrupt vector table. The interrupt vector
number is specified by the immediate operand of the
BRKEM instruction.

When the 8080 emulation mode is started by the BRKEM
instruction (MD = 0), the CPU executes the program in
the 64 Kbyte segment area specified by the contents of
the PS, starting from the address indicated by the con-

HALT---

49-0001428

8-2

ttlEC Section 8
Native and pPD8080AF Emulation Modes

tents of the PC. The instruction code fetched at this pOint
is interpreted as the pPD8080AF instruction and is exe­
cuted (figure 8-4).

Figure 8-5. Shift trom Native to 8080 Mode Using
RETllnstruction

RETllnstruction

The RETI instruction is generally used when returning
program execution to the main routine from an interrupt
routine started by an external interrupt or BRK, or CALLN
instruction. When the RETI instruction restores the con­
tents of the PSW, PS, and PC, it also restores the status
of the mode (MD) flag before the mode was changed from
8080 to native. This restored MD flag allows the CPU to
be returned to the emulation mode again (figure 8-5).

For this reason, if the RETI instruction is executed in
native mode at the end of the interrupt routine that has
been started by the interrupt instruction CALLN, or by an
external interrupt while the CPU is in 8080 mode, the
CPU can reenter 8080 mode.

8080 EMULATION TO NATIVE MODE
The following signals and instructions are used to
change the operating mode from 8080 to native.

• RESET
• NMlorlNT
• CALLN (call native)
• RETEM (return from emulation)

Memory Stack AI1I8

Native Mode
Reglater Sat

Native Mode

PC

PS

I l FLAG L.. ____

8080 Emulation Mode
Reglater Sat

8080 Mode

Figure 8-4. S#lift trom Native to 8080 Emulation Mode Using BRKEM Instruction

I

PC

1 :1 1

PS Memory
Stack AI1IB

PSW

r--'
0--' MD I

I I
I---~

Interrupt r----
Vector Table I PSW FLAG

Imm8x4+2 Segment Base PS

imm8x4 Offset PC J PC

Native Mode 8080 Emulation Mode
Regiater Set Register Sat

'-

. Native Mode 8080 Emulation Mode-

49-000034A

49-000035A

8-3

pPD70108/70116

RESET Operation

When the RESET signal is present, a reset operation is
performed on the CPU the same as in native mode. The
8080 emulation in progress is aborted.

NMI or INT Operation

When the NMI or INT signal is present, the interrupt
process is performed the same as in native mode. Pro­
gram execution of the CPU will return to the main routine
from the interrupt routine in native mode. From native
mode, the CPU can reenter the 8080 emulation mode by
executing the RETI instruction (figure 8-6).

CALLN Instruction

The CALLN instruction is used exclusively in the emu­
lation mode when calling a native mode subroutine not
written in 8080code.lfthe CALLN instruction is executed
in 8080 mode, it causes the CPU to save the contents
of the PS, PC, and PSW, and sets the mode flag to 1. This
instruction also loads the segment base of an interrupt

ttlEC
vector to the segment register (PS) and the offset to the
program counter (PC) (figure 8-6).

When the RETI instruction is executed at the end of the
interrupt routine, program execution can be returned to
the main routine in 8080 emulation mode from the inter­
rupt routine in native mode started by the CALLN
instruction.

RETEM Instruction

The RETEM instruction is used exclusively as a return
from 8080 mode to native mode when the BRKEM instruc­
tion caused the shift to the 8080 mode. The RETEM
instruction is executed in 8080 emulation mode; program
execution of the CPU will return from the BRKEM inter­
rupt routine to the main routine. Consequently, the con­
tents of the PS, PC, and PSW are restored and the CPU
reenters native mode. At this time, the MD ,flag (MD=1),
which was saved to the stack by the BRKEM instruction,
is restored, causing the CPU to enter native mode
(figure 8-7).

Figure 8-6. Shift From 8080 to Native Mode Using NMI, INT, or CALLN Instruction

PC

Memory Stack Area PS

: I FLAG L.. _____

Interrupt Vector Table

Sagment Base

I Offset 1----: ----IH

NatIve Mode 8080 Emulation Mode
Register Set Register Set

NatIve Mode Emulation Mode

49-000033A

8-4

NEe Section 8
Native and pPD8080AF Emulation Modes

Figure 8-7. Shift from 8080 to Native Mode Using RETEM Instruction

PC

PS Memory stack area

PSW

Native mode
register set

. Native mode

EMULATION NESTING
In a native mode called by CALLN or an NMI or INT
interrupt from emulation mode, emulation mode can­
not be called again by a BRKEM instruction. If this
nesting is attempted, MD won't work normally, and
normal operation cannot be expected.

8080 Emulation mode
register set

Emulation mode -

49-000032A

8-5

pPD70108/70116 NEe

8-6

t\'EC
ThepPD70108/70116 can operate in a standby mode. In
standby mode, program execution can be terminated
and resumed as required while retaining all internal state
information. The clock is not supplied to any circuitry
except those required by the hold and standby functions.
As a result, power consumption in the standby mode can
be reduced to approximately one-tenth of that required
for the native or emulation mode. All CPU registers pres­
ent before standby mode are retained.

ENTERING STANDBY MODE
Standby mode is entered whenever the HALT instruction
is executed in native or 8080 mode.

STATUS SIGNALS IN STANDBY MODE
Although the bus hold function can be used in the
standby mode, the CPU reenters the standby mode when
the hold acknowledge cycle is completed.

Table 9-1 shows the status of each output signal in
st~ndby mode.

Table 9-1. Signal Status in Standby Mode

output Signal Status

Large-scale aS1, aSO Fixed at low level
system mode

BS2-BSO Fixed at high level

BUS LOCK Fixed at high level (fixed at
low level if BUSLOCK
instruction was decoded
before HALT instruction)

Small-scale INTAK Fixed at high level
system mode BUFEN

WR
RD

ASTB Fixed at low level

BUFR/W Fixed at either high or
.!Q/M (pPD70108) low level
101M (pPD70116)
LBSO (pPD70108)

Large- and UBE (pPD70116) Fixed at high level
small-scale A19/PS3-A16/PSO Fixed at either high or
system modes A15-A8 (pPD70108) low level

AD7-ADO (pPD70108)
AD15-ADO (pPD70116)

The control outputs are maintained at inactive levels
during the standby mode. The presence of a RESET
Signal, an external interrupt (NMI or INT), or a bus request
from an external bus master will cause the pPD701081
70116 to exit the standby mode.

Section {Q\
Standby Mode @

EXITING STANDBY MODE BY
EXTERNAL INTERRUPTS
The pPD70108/70116 will exit standby mode when NMI
or INT is asserted. When the standby mode is released
by an INT signal, the operation the CPU next performs
depends upon the state of the IE flag when the HALT
instruction is executed.

Releasing Standby Mode with NMI

Whether the CPU enters standby mode from the native
or emulation mode, the standby mode is unconditionally
released when the NMI interrupt is present. If the RETI
instruction is executed at the end of the NMI servicing
routine, the CPU will reenter the mode that existed before
the CPU entered the standby mode. The program is then
resumed starting from the instruction which immediately
follows the HALT/HLT instruction that caused the
standby mode.

Releasing Standby Mode with INT

When Interrupts are Disabled (01). On exiting standby
mode, the CPU enters the mode that was set before
standby mode. For example, if standby mode was set
while the CPU was in native mode, the CPU returns to
native mode when it exits standby mode. If the CPU was
in emulation mode when standby mode was set, it returns
to the 8080 mode. Program execution will be resumed
starting from the instruction immediately following the
HALT or HLT instruction.

Note: When exiting the stanby mode by INT (interrupts disabled), INT
must be kept at a high level, until the instruction immediately
following the HALT/HLT instruction is executed. Therefore, INT
must remain at a high level for at least 15 clocks. This assumes
the instruction queue is empty after executing the HALT/HLT
instruction. If wait states are inserted, the number of inserted
wait states must be added to the 15 clocks.

When Interrupts are Enabled (EI). Standby mode is
exited when the interrupt routine in native mode is
started, regardless of whether the CPU was in native or
emulation mode before standby mode was set. If a RETI
instruction is executed at the end of the interrupt routine,
the CPU will return to the mode that was present just
before standby mode was entered. Program execution
will start at the instruction immediately following the
HALT/HLT instruction.

EXITING STANDBY MODE BY RESET
Standby mode is unconditionally exited when RESET
becomes active regardless of whether the standby mode
was set while the CPU was in native or emulation mode.
On exiting the standby mode, a normal CPU reset oper­
ation is performed in the native mode.

9-1

pPD7010S/70116 NEe

9-2

ttiEC Section ~ '0'
Logical and Physical Addresses U \gJ

The pPD70108/70116 has a 20-bit address bus (the
lower 8/16 bits are also used as a data bus) and can
access up to 1 Mbyte of memory area. The processor
employs a memory segment architecture that allows the
1 Mbyte memory area to be treated as logical addresses.
The logical addresses are not necessarily the same
number as the physical addresses where data is stored.

PHYSICAL ADDRESS GENERATION

To obtain a physical address, the contents of a segment
register are multiplied by 16 and an offset value known
as the "effective address" is then added to the segment
register. The result is used as a physical address. The
contents of the segment register and the offset value are
treated as unsigned data. Also, since the segment reg­
ister value is multiplied by 16, the segment register may
only access physical memory locations which are on a
16 byte boundary; for example, locations OOH, 10H 20H,
and so on.

Figure 10-1 shows the relation between a segment reg­
ister, offset, and physical address.

Using the memory segment method of addressing, you
can write programs and only be concerned with the
contents of the segment registers and the offset value of
the contents. The contents of the segment registers may
be a default or specified as an override. If the contents
of a segment register constitute address 0, the offsets of
the addresses in the segment specified by that segment
register can be treated as logical addresses.

A program written as a aggregate of segments specified
by logical addresses is compiled, assembled, and treated
as object modules. Each object module has its own seg­
ment name, size, partition, and control information.
These object modules are tied together by the linker and
the segment bases corresponding to physical addresses
are specified. The object modules can then be loaded
into memory.

Figure 10-1. Physical Addressing

Unless a specific program is executing an instruction
that modifies a segment base - for example, a branch
instruction or a variable reference in another segment
- the addresses in the program can be determined by
the offset from the contents of a segment register. The
program can be loaded to any memory area simply by
loading the contents Of the segment reigster with the first
physical address of the memory area to which the pro­
gram is to be loaded.

By using segmentation, a program stored in an external
file such as a floppy disk can be loaded to any available
buffer memory. It will run when the program is called by
the program currently being executed by the CPU. In this
manner, a program stored in a file or separated into many
files can be loaded to an available memory area. This
is called "dynamically relocatable code."

MEMORY SEGMENTS

Four types of segments are used: Program, Stack, Data
0, and Data 1. The physical address in memory of a
segment location is calculated by shifting the value in the
segment register to the left four places. An offset value
("effective address") is then added to the shifted segment
register value; this sum is the phYSical address.

The logical segment is specified by one of the four 16-bit
registers: PS, SS, DSO, DS1. Each 16-bit register corre­
sponds to one of four logical segments as follows:

Segment Register Default Offset
PS PFP
SS SP, Effective Address

DSO IX, Effective Address
DS1 IY, Effective Address

The function of each segment register is described
below.

1 19 ______ 1_6-_Bit_Seg_me_nl_R_eg_lst_er _____
41 3 __ 0_----'°1 Segment Regislerx16

+
.... [5 _______ 16-_B_iIOff_set ______ ---'1 EffecliveAddress

2O-Bit Physical Address

49-000038A

10-1

pPD70108/70116

Program Segment

The first address of the program segment is determined
by the program segment (PS) register. The offset from the
first address is specified by the prefetch pointer (PFP).
This segment is primarily used for instruction codes.
Data in this segment can be accessed as general var­
iables or source block data by using the segment over­
ride prefix (PS:) instruction.

Stack Segment

The first address of the stack segment is determined by
the stack segment (SS) register. The offset from the first
address is specified by the stack pOinter (SP). This seg­
ment is used as an area that saves the contents of the
PC (return address), PSw, and general purpose registers.
The data in the stack segment can be accessed by using
the segment override prefix.(SS:) instruction.

When addressing the stack, the SS register automatically
becomes the segment register if the BP register is spec­
ified as the base register. The offset is specified by the
effective address.

10-2

fttIEC
Data Segment 0

The first address of data segment 0 is determined by the
contents of data segment 0 (OSO) register. The offset from
the first address is specified by an effective address.
When executing a block transfer or BCD string operation
instruction, this segment is used to store the source block
data. However, the offset is determined then by the con­
tents of the IX register.

When the BP is specified as base register, the default
segment register is SS. In this case, you can override with
the segment override prefix (OSO:), and the data in data
segment 0 can be addressed with OSO + BP.

Data Segment 1

The first address of data segment 1 is determined by the
data segment 1 register (OS1). The offset from the first
address is specified by the IV register. This segment is
used to store the destination block data when executing
a block transfer or BCD string operation instruction. The
data in this segment can be accessed as general var­
iables (offset determined by an effective address). The
data can also be accessed as source block data (offse~
determined by the contents of the IX register,).

NEe
INSTRUCTION ADDRESS

The current address of the J.IPD70108170116 program
counter (PC) is automatically incremented to the starting
location of the next instruction every time the current
instruction is about to be executed. In addition, the
microprocessor employs the following instruction ad­
dressing modes:

• Direct
• Relative
• Register
• Register Indirect
• Indexed
• Based
• Based Index

Direct Addressing

In direct addressing, two bytes of immediate instruction
data are directly loaded to the PC or, two bytes are loaded
into the PS and two other bytes are loaded into the PC.
The immediate data is then used by the PS and PC as
a branch address. Direct addressing is used when
executing the following instructions:

CALL far-proc
CALL memptr16
CALL memptr32
BR far-label
BR memptr16
BR memptr32

Relative Addressing

In relative addressing, 1 or 2 bytes of immediate instruc­
tion data are treated as a signed displacement value and
added to the contents ofthe PC. The result ofthis addition
is the effective address and is used as a branch address.

The sign bit of an 8-bit displacement value is extended
and added to the contents of the PC as a 16-bit value.
When addition is performed, the contents of the PC
indicate the first address of the next instruction.

Relative addressing is used when executing the follow­
ing instructions:

CALL near-proc
BR near-label
BR short-label
Conditional branch instruction short-label

Section cfI cfI
Addressing Modes U U

Register Addressing

In register addressing, the contents of any 16-bit register
specified by the 3-bit register field in the instruction are
loaded to the PC as a branch address. This addressing
method allows the use of all eight 16-bit registers (AW,
BW, CW, DW, IX, IY, SP, and BP). Register addressing is
used when executing the following instructions:

CALL regptr16
BR regptr16

Example:
CALL AW
BR BW

Register Indirect Addressing

In register indirect addressing, a 16-bit register (IX, IY, or
BW) is specified by the register field in an instruction. The
specified register then addresses memory.

The addressed contents are then loaded to the PC (or
to both the PC and PS) as a branch address.

CALL
CALL
BR
BR

Example:
CALL
CALL
BR
BR

memptr16
memptr32
memptr16
memptr32

WORD PTR [IX]
DWORD PTR [IY]
WORD PTR [BW]
DWORD PTR [IX]

Note: Instruction code memptr16 and memptr32 are generated by the
assembler in response to keywords WORD PTR, and DWORD
PTR, respectively.

Indexed Addressing

In indexed addressing, 1 or 2 bytes of immediate data
in an instruction are treated as a signed displacement
value and are added to the contents of a 16-bit register
that serves as an index register (IX or IY).

The result of this addition addresses memory and is
loaded to the PC as a branch address.

CALL
CALL
BR
BR

memptr16
memptr32
memptr16
memptr32

11-1

pPD70108/70116

Example:
CAll
CAll
BR
BR

var [IX] [2]
var [IV]
var [IV]
var [IX + 4]

Based Addressing

In based addressing, 1 or 2 bytes of immediate data in
an instruction are treated as a signed displacement value
and are added to the contents of a 16-bit register (BP
or BW) that serves as a base register. The contents of
the memory addressed by the result of this addition are
loaded to the PC as an effective address.

Based addressing is used when executing the following
instructions:

CAll memptr16
CAll memptr32
BR memptr16
BR memptr32

Example:
CAll var [BP + 2]
CAll var [BP]
BR var [BW] [2]
BR var [BP]

Note: Instruction code memptr16 is generated by the assembler if
variable var has a word attribute. If it has a double word attribute,
instruction code memptr32 is generated.

Based Indexed Addressing

In based indexed addressing, 1 or 2 bytes of immediate
data in an instruction are treated as a signed displace­
ment value. This value is added to the contents of a 16-bit
register that serves as a base register (BP or BW) and
to the contents of a 16-bit register that serves as an index
register (IX or IV). The result of this addition is the effective
address. The addressed memory contents are loaded to
the PC as a branch address. Based indexed addressing
is used when executing the following instructions:

CAll memptr16
CAll memptr32
BR memptr16
BR memptr32

Example:
CAll var
CAll var
BR var
BR var

[BP] [IX]
[BW + 2] [IVI
[BW] [2] [IX]
[BP + 4] [IV]

Note: Instruction code memptr16 is generated by the assembler if
variable var has a word attribute. If it has a double word attribute,
instruction code memJ'tr32 is generated.

11-2

ttlEC
MEMOAYOPEAANDADDAESS
Several addressing modes and registers are used for
particular instruction formats. The memory operand
addressing modes are listed below and discussed in the
following sections.

• Register
• Immediate
• Direct
• Register Indirect
• Autoincrement/Oecrement
• Indexed
• Based
• Based Indexed

• Bit

Register Addressing

In register addressing, the contents of the register field
(reg = 3-bit field, sreg = 2-bit field) in an instruction,
addresses a register. See figure 11-1.

Figure 11-1. Bit Format

49-000655A

The 3-bit field "reg" is used with bit W of the same
instruction and indicates whether a word or a byte reg­
ister is to be specified. Eight types of word registers (AW,
BW, CW, OW, BP, SP, IX, IV) and eight types of byte reg­
isters (Al, AH, Bl, BH, Cl, CH, Ol, OH) are specified.

The 2-bit field "sreg" specifies four types of segment
registers (PS, SS, OSo, and OS1). Sometimes the oper­
ation code of an instruction specifies a register. Register
addressing is employed when executing instructions
that have the following operand formats:

Item Format
reg AW, BW, CW, OW, SP, BP, IX, IV, Al AH,

Bl,BH,Cl,CH,Ol,OH
reg16
reg8
sreg
acc

Example:

AW, BW, CW, OW, SP, BP, IX, IV
Al, AH, Bl, BH, Cl, CH, Ol, OH

PS, SS, OSo, OS1
AW, Al

When MOV reg, reg is specified:
MOV BP,SP
MOV Al,Cl

NEe
Immediate Addressing

In immediate addressing, one or two bytes of immediate
data in an instruction are used.

Immediate addressing is used when executing instruc­
tions that have the following operand formats:

Format Item
imm

imm16
imm8

pop-value

8/16-bit immediate data
16-bit immediate data
8-bit immediate data
16-bit immediate data

If imm is specified alone, the assembler checks the value
of imm written as an operand or the attribute of other
operands that may be written at the same time. The
assembler then judges whether the value of imm is 8 or
16 bits. The status of the word/byte specifying bit W is
then determined.

Example:
When

MOV
When

MUL

MOV reg,imm is specified:
AL, 5 ;Byte - specified by AL.
MUL reg16, reg16, imm16 is specified:
AW,BW,1000H ;word - specified by

;AWand BW.

Direct Addressing

In direct addressing, the immediate data in an instruction
addresses memory.

Direct addressing is used when executing the instruc­
tions that have the following operand formats:

Format Item
mem

dmem

imm4

Example:
When

When

16-bit variable specifying 8 or 16-bit
memory data

16-bit variable specifying 8 or 16-bit
memory data

4-bit variable specifying bit length of
the bit field data

MOV mem,imm is specified:
MOV WORDVAR, 2000H

MOV acc,dmem is specified:
MOV AL, BYTEVAR

Register Indirect Addressing

In register indirect addressing, a 16-bit register (IX, IY, or
BW) is determined by the register field in an instruction.
The specified register then addresses memory.

Register indirect addressing is used when executing the
instructions that have the following operand formats:

Format Method
mem [IX], [IY], [BW]

Section 11
Addressing Modes

Example:
When SUB mem,reg is specified:

SUB [IX],AW

Autoincrementl Decrement Addressing

Autoincrementl decrement addressing falls into the cate­
gory of register indirect addressing.

The contents of a default register addresses a register
or memory. Then - if a byte operation is performed -
the contents of the default register are automatically
incremented/ decremented by one. If a word operation
is used, the register contents are incremented/decre­
mented by two. The address is automatically modified by
this addressing function. This addressing method is
always applicable to default registers and is used when
executing the instructions that have the following oper­
and formats:

Format
dst-block
src-block

Default Register
IY
IX

This addressing will control block data instructions when
it is used in combination with counter CW that counts
the number of repetitions of the operation.

Indexed Addressing

In indexed addressing, one or two bytes of immediate
data in an instruction are treated as a signed displace­
ment value and are added to the contents of a 16-bit
register that serves as an index register (IX or IY). The
result of this addition forms the effective address used
to address a memory operand. Indexed addressing is
useful when accessing an array of data. The displace­
ment value indicates the starting address of the array.
The contents of the index register determine the address
of the data to be accessed.

This addressing method is employed when executing the
instructions that have the following operand formats:

Example:
When
TEST
TEST
TEST

Format
mem

mem16
mem8

Method
var [IX], var [IY]

var [IX]
var [IX]

TEST mem,imm is specified:
BYTEVAR[IX], 7FH
BYTEVAR[IX+8],7FH
WORDVAR[IX] [8], 7FFFH

Note: If variable var has a byte attribute, a byte operand is speci­
fied. If it has a word attribute, a word operand is specified.
The assembler generates an instruction code to each
operand.

11-3

pPD70108/70116

Based Addressing

In based addressing, one or two bytes of immediate data
in an instruction are treated as a signed displacement
value and are added to the contents of a 16-bit base
register that serves as a base register (BP or BW). The
result of this addition forms the effective address used
to address a memory operand.

Based addressing is useful to access structural data that
is stored at separate memory locations. The base register
indicates the starting address of each structural data and
the displacement value selects one piece of data from
each structural data.

This addressing method is employed when executing the
instructions that have the following operand formats:

Format Method
mem var[BP],var[BW]

mem16 var[BP]
mem8 var[BP]

Example:
When SHL mem,1 is specified:

SHL BVTEVAR[BP],1
SHL WORDVAR[BP+2],1
SHL BVTEVAR[BP] [4],1

Note: If variable var has a byte attribute, a byte operand is specified.
If it has a word attribute, a word operand is specified. The
assembler generates an instruction code corresponding to
each operand.

Based Indexed Addressing

One or two bytes of immediate data in an instruction are
treated as a signed displacement value that is added to
the contents of two 16-bit registers. One of the registers
is a base register (BP or BW) and the other is an index
register (IX or IV). The result of the addition forms the
effective address that is used to address a memory
operand.

Since based indexed addressing allows accessing data
by modifying the contents of both the base and index
registers, it is useful when accesing arrays of structural
data.

For example, the contents of the base register indicate
the first address of each structural data. The displace­
ment value in turn indicates the offset from that first
address to the first address of a data array. The index
register indicates a specific data in the data array.

Based indexed addressing is used when executing
instructions that have the following operand formats:

11-4

Format

mem
mem16
mem8

Example:

NEe
Item

var [base register] [index register]
var [base register] [index register]
var [base register] [index register]

When
PUSH
PUSH
PUSH

PUSH mem16 is specified:
WORD-VAR [BP] [IX]
WORD-VAR [BP+2] [IX+6]
WORD-VAR [BP] [4] [IX] [8]

Bit Addressing

In bit addressing, three or four bits of immediate data in
an instruction, or the lower three or four bits of the CL
register, specify one bit of an 8 or 16-bit register or
memory location.

With bit addressing, a specific single bit in a register or
memory can be tested for 0 or 1, set, cleared, or inverted
without affecting the other bits. When using the AND or
OR instruction to set or reset a bit, a byte or word mask
has to be prepared to change one bit. Bit addressing is
used when executing the instructions that have the
following operand formats:

Format
imm4
imm3

CL

Example:
TEST1
TEST1
NOT1
NOT1
CLR1
CLR1
SET1
SET1

Item
Bit number of word operand
Bit number of byte operand

CL

reg8,CL
AL,CL
reg8,imm3
CL,S
mem16,CL
WORDVAR[IX],CL
mem16,imm4
WORDVAR[BP],9

NEe
The following sections include instruction formats,
descriptions, and examples for the pPD7010S170116
instruction set. For an alphabetical listing by instruction
mnemonic, see Appendix A.

The number of clocks assumes the instruction byte(s)
have been prefetched and includes the following times:

• Decoding
• EA generation
• Operand fetch
• Execution

The following is a description of the contents of tables
12-1 through 12-7.

Table

12-1

12-2

12-3

12-4

12-5
to
12-7

Contents

Identifier and description for the different
types of pPD7010S170116 operands

Identifiers and descriptions for pPD7010S/
70116 instruction words

Identifier and description of the operations
for the pPD7010S170116 instruction set

Identifier and description for the different
status flags

Information about memory addressing,
selection of S- and 16-bit registers,
and selection of segment registers.

Section cfl u))
Instruction Set U ~

Table 12-1. Operand Types

Identifier

reg

reg8

reg16

mem

mem8

mem16

mem32

dmem

imm

imm3

imm4

imm8

imm16

acc

sreg

src-table

src-block

dst-block

near-proc

far-proc

near-label

short-label

far-label

regptr16

memptr16

memptr32

pop-value

fp-op

R

DS1-spec

Seg-spec

[]

Description

8- or 16-bit general-purpose register

8-bit general-purpose register

16-bit general-purpose register

8- or 16-bit memory location

8-bit memory location

16-bit memory location

32-bit memory location

16-bit direct memory address

8- or 16-bit immediate data

3-bit immediate data

4-bit immediate data

8-bit immediate data

16-bit immediate data

AW or AL accumulator

Segment register

Name of 256-byte translation table

Name of source block addressed by IX register

Name of destination block addressed by
IV register

Procedure within the current program segment

Procedure located in another program segment

Label in current program segment

Label within range of -128 or +127 bytes
from end of instruction

Label in another program segment

16-bit general-purpose register containing an
offset within the current program segment

16-bit memory address containing an offset
within the current program segment

32-bit memory address containing the offset
and segment data of another program segment

Number of bytes of the stack to be discarded
(O-64K, usually even addresses)

Immediate value to identify instruction code
of the external floating point processer chip

Register set (AW, BW, CW, DW, SP, BP,
IX, IV)

(1) DS1
(2) Segment of group name assumed to DS1

(1) Any name or segment register
(2) Segment or group name assumed to

segment register

Optional, may be omitted

12-1

pPD7010S/70116 tt{EC
Table 12-2. Instruction Words Table 12-3. Operation Description

Identifier DescriptiDn Identifier Description

W Word/Byte specification bit (1 = word, AW Accumulator (16 bits)
0= byte) AH Accumulator (high byte)

reg 8/16-bit general register specification bit
AL Accumulator (low byte) (000-111)

mod,mem Memory addressing specification bits BW BW register (16 bits)

(mod = 00-10, mem = 000-111) CW CW register (16 bits)

(disp-Iow) Optional 16-bit displacement lower byte CL CL register (low byte)

(disp-high) Optional 16-bit displacement higher byte OW OW register (16 bits)

disp-Iow 16-bit displacement lower byte for PC relative SP Stack pointer (16 bits)
addition

PC Program counter (16 bits)
disp-high 16-bit displacement higher byte for PC

PSW Program status word (16 bits) relative addition

imm3 Hit immediate data IX Index register (source) (16 bits)

imm4 4-bit immediate data PS Program segment register (16 bits)

imm8 8-bit immediate data DS1 Data segmen~ 1 register (16 bits)

imm16-low 16-bit immediate data lower byte DSO Data segment 0 register (16 bits)

imm16-high 16-bit immediate data higher byte SS Stack segment register (16 bits)

addr-Iow 16-bit direct address lower byte AC Auxiliary carry flag

addr-high 16-bit direct address higher byte CY Carry flag

sreg Segment register specification bit P Parity flag

s Sign-extension specification bit (1 = sign S Sign flag

extension, 0 = no sign extension) Z Zero flag

offset-low Low byte of 16-bit offset data loaded to PC DIR Direction flag

offset-high High byte of 16-bit offset data loaded to PC IE Interrupt enable flag

seg-Iow Low byte of 16-bit segment data loaded V Overflow flag
to PS

BRK Break flag
pop-value-low Low byte of 16-bit data which specifies

MD Mode flag number of bytes of stack to be discarded

pop-value-high High byte of 16-bit data which specifies (...) Values in parentheses are memo~ contents

number of bytes of stack to be discarded disp Displacement (8 or 16 bits)

disp8 8-bit displacement added to PC temp Temporary register (8, 16, or 32 bits)

X Operation codes for extemal floating point seg Immediate segment data (16 bits)
XXX processor chip

offset Immediate offset data (16 bits) YYY
ZZZ - Transfer direction

+ Addition

Subtraction

X Multiplication

Division

% Modulo

AND Logical and

OR Logical or

XOR Exclusive or

XXH 2-digit Hexadecimal data

XXXXH 4-digit Hexadecimal data

12-2

NEe
Table 12-4. Flag Operations

Identifier Description

(blank) No change

o Cleared to 0

Set to 1

x Set or cleared according to the result

U Undefined

R Value saved earlier is restored

Table 12-5. Memory Addressing

mod

mem 00 01 10

000 BW+IX BW + IX + disp8 BW + IX + disp16

001 BW+ IV BW + IV + disp8 BW + IV + disp16

010 BP + IX BP + IX + disp8 BP + IX + disp16

011 BP+ IV BP + IV + disp8 BP + IV + disp16

100 IX IX + disp8 IX + disp16

101 IV IV + disp8 IV + disp16

110 Direct Address BP + disp8 BP + disp16

111 BW BW + disp8 BW + disp16

Table 12-6.

reg

000

001

010

011

100

101

110

111

Section 12
Instruction Set

Selection of 8- and 16-8it Regls_ters

w=o W=1
AL AW

CL CW

DL DW

BL BW

AH SP

CH BP

DH IX

BH IV

Table 12-7. Selection of Segment Registers

sreg

00 DS1

01 PS

10 SS

11 DSO

12-3

pPD7010S/70116

DATA TRANSFER
MOVreg,reg

Move register to register

7 o
1 0 0 0 1 o 1 W

1 1 reg reg

reg - reg

Transfers the c::ontents of the 8- or 16-bit register spec­
ified by the second operand to the 8- or 16-bit register
specified by the first operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation: None

Example:
MOV BP,SP
MOV AL,CH

12-4

tt{EC
MOV mem,reg

Move register to memory

7

1

I
mod

o

(mem) - reg

o o 1

reg

I I
(disp-Iow)

I I
(disp-high)

o
o o W

I I
mem

Transfers the contents of the 8- or 16-bit register spec­
ified by the second operand to the 8- or 16-bit memory
location specified by the first operand.

Bytes: 2/3/4

Clocks:
When W=O:
When W= 1:

Transfers: 1

Flag operation:

Example:

9
13, pPD70108
13, pPD70116 odd addresses
9, pPD70116 even addresses

None

MOV
MOV

[BP][IX],AW
BYTE-VAR,BL

t-IEC
MOV reg,mem

Memory to register

7

1

I
mod

o

reg - (mem)

o
o

o 1 o 1 W

I I
reg mem

I I
(disp-Iow)

I I
(disp-high)

Transfers the 8- or 16-bit memory contents specified by
the second operand to the 8- or 16-bit register specified
by the first operand.

Bytes: 2/3/4

Clocks:
When W= 0: 11
When W = 1: 15, pPD70108

Transfers: 1

Flag operation:

Example:

15, pPD70116 odd addresses
11, pPD70116 even addresses

None

MOV
MOV

AW,[BW][IY]
CL,BYTE_VAR

Section 12
Instruction Set

MOVmem,imm

Immediate data to memory

7

1

I
mod

1 o

o

o o

o o
I I

(disp-Iow)

I I
(disp-high)

I I I

1

imm8- or imm16-low

(mem) - imm

. I . I
Imm16-hlgh

I
mem

1

o
W

Transfers the 8- or 16-bit immediate data specified by the
second operand to the 8- or 16-bit memory location
addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W= 0: 11
When W = 1: 15, pPD70108

15, pPD70116 odd addresses
11, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example:

MOV BYTE PTR [BP][IX],O
MOV WORD PTR [BW],12
MOV [BP][IX],5 ;Note: assembler assumes

;WORD PTR as default.
MOV BYTE_VAR,123
MOV WORD_VAR,1000H

12-5

JlPD70108/70116

MOVreg,imm

Immediate data to register

7

1 o 1 1

3

W

I I I

2

imm8- or imm16-low

I I
imm16-high

reg - imm

o
reg

Transfers the 8- or 16-bit immediate data specified by the
second operand to the 8- or 16-bit register specified by
the first operand.

Bytes: 2/3

Clocks: 4

Transfers: None

Flag operation: None

Example: MOV BP,8000H

NEe
MOV acc,dmem

Memory to accumulator

7

1 o 1 o o

I
addr-Iow

I I
addr-high

When W = 0 AL - (dmem)

o o

When W = 1 AH - (dmem + 1), AL - (dmem)

o
W

Transfers the memory contents addressed by the second
operand to the accumulator (AL or AW) specified by the
first operand.

Bytes: 3

Clocks:
WhenW=O: 10
When W = 1: 14: pPD70108

Transfers: 1

Flag operation:

Example:

pPD70116 odd addresses
10: pPD70116 even addresses

None

MOV
MOV

AW,WORD_VAR
AL,BYTE-VAR

t-{EC
MOV dmem,acc

Accumulator to memory

7

1 o 1 o o
I

addr-Iow

I I
addr-high

When W = 0, (dmem) +- AL

o 1

When W = 1, (dmem + 1) +- AH, (dmem) +- AL

o
W

Transfers the contents of the accumulator (AL or AW)
specified by the second operand to the 8- or 16-bit mem­
ory location addressed by the first operand.

Bytes: 3

Clocks:
WhenW=O:
When W = 1:

Transfers: 1

9
13, pPD70108
13, pPD70116 odd addresses

9, pPD70116 even addresses

Flag operation: None

Example:

MOV WORD_VAR,AW
MOV BYTE_VAR,AL

MOV sreg,reg16

Register to segment register

7

1 o o

1 o

o

I
sreg

Section 12
Instruction Set

o
1 1 o

reg

sreg +- reg16 sreg: SS,DSo,DS1

Transfers the contents of the 16-bit register specified by
the second operand to the segment register (except PS)
specified by the first operand. External interrupts (NMI,
INT) or a single-step break is not accepted between this
instruction and the next.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation: None

Example: MOV SS,AW

12-7

pPD7010S/70116

MOV sreg,mem16

Memory to segment register

7

1

I
mod

o o

o

o

I
sreg

1

I I
(disp-Iow)

I I
(disp-high)

sreg - (mem16) sreg: SS,DSo,DS1

1 1

I
mem

o
o

Transfers the 16-bit memory contents addressed by the
second operand to the segment register (except PS)
specified by the first operand. However, external inter­
rupts (NMI, INT) or a single-step break is not accepted
during the period between this instruction and the next.

Bytes: 2/3/4

Clocks:
When W= 0: 11
When W = 1: 15, pPD70108

Transfers: 1

15, pPD70116 odd addresses
11, pPD70116 even addresses

Flag operation: None

Example:
MOV DSO,[BW][IX]
MOV SS,WORD_VAR

12-8

MOV reg16,sreg

Segment register to register

7

1 o

1 1

reg 16 - sreg

o

o

o
I

sreg

t\'EC

o
1 1 o o

reg

Transfers the contents of the segment register specified
by the second operand to the 16-bit register specified
by the first operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation: None

Example: MOV AW,DS1

ftt{EC
MOY mem16,sreg

Segment register to memory

7 0

1 0 0 0 1 1 0 0

I I I I
mod 0 sreg mem

. I
(dlsp-Iow)

I

I I
(disp-high)

(mem16) - sreg

Transfers the contents of the segment register specified
by the second operand to the 16-bit memory location
addressed by the first operand.

Bytes: 2/3/4

Clocks:
WhenW=O:
WhenW= 1:

Transfers: 1

10
14, pPD70108
14, pPD70116 odd addresses
10, pPD70116 even addresses

Flag operation: None

Example:

MOV [I~],PS

Section 12
Instruction Set

MOY DSO,reg16,mem32

32-bit memory to 16-bit register and DSO

7

1 1 0 0 0 1

I I

0

I
mod reg mem

I

reg 16 - (mem32)
DSo - (mem32 + 2)

. I
(dlsp-Iow)

I

I I
(disp-high)

o
1

I

Transfers the lower 16 bits (offset word of a 32-bit pointer
variable) addressed by the third operand to the 16-bit
register specified by the second operand, and the higher
16 bits (segment word) to the DSo segment register.

Bytes: 2/3/4

Clocks:

26, pPD70108
26, pPD70116 odd addresses
18, pPD70116 even addresses

Transfers: 2

Flag operation: None

Example: MOV DSO,BW,DWORD_VAR

12-9

pPD70108/70116

MOV DS1,reg16,mem32

32-bit memory to 16-bit register and DS1

7

1 1 0

I
mod

reg16 - (mem32)
DS1 - (mem32 + 2)

0 0 1

I
reg

. I I
(dlsp-Iow)

I I
(disp-high)

o
0 o

I
mem

Transfers the lower 16 bits (offset word of a 32-bit pointer
variable) addressed by the third operand to the 16-bit
register specified by the second operand, and the higher
16 bits (segment word) to the DS1 segment register.

Bytes: 2/3/4

Clocks:
26, pPD70108
26, pPD70116 odd addresses
18, pPD70116 even addresses

Transfers: 2

Flag operation: None

Example: MOV DS1,IY,DWORD_VAR

12-10

MOVAH,PSW

PSWtoAH

7

I 1 I 0 o 1

AH - S,Z,X,AC,X,P,X,CY

NEe

o
1 1 1 1

Transfers flags S, Z, AC, P, and CY of PSW to the AH
register. Bits 5, 3, and 1 are undefined.

Bytes: 1

Clocks: 2

Transfers: None

Flag operation: None

Example: MOV AH,PSW

NEe
MOV PSW,AH

AH to PSW

7

I 1 I 0 o 1

S,Z,X,AC,X,P,X,CY - AH

o
1 1 1 o

Transfers bits 7, 6, 4, 2, 0 of the AH register to flags S,
Z, AC, P, and CY of PSw.

Bytes: 1

Clocks: 3

Transfers: None

Flag operation:

P CY
x x

Example: MOV PSW,AH

Section 12
Instruction Set

LDEA reg16, mem16

Load effective address to register
<;

7

1

I
mod

o o

reg16 - mem16

o 1

reg

I I
(disp-Iow)

I I
(disp-high)

o
1 o 1

I I
mem

Loads the effective address (offset) generated by the
second operand to the 16-bit general-purpose register
specified by the first operand. Used to set starting
address values to the registers that automatically specify
the operand for TRANS or block instructions.

Bytes: 2/3/4

Clocks: 4

Transfers: None

Flag operation: None

Example: LDEA BW,TABLE[IX]

12-11

JlPD7010S/70116

TRANS no operand
TRANS sre-table
TRANSB no operand

Translate byte

7

I 1 I 1 o

AL - (BW +AL)

1 o
o

1 1 1

Transfers to the AL register one byte specified by the BW
and AL registers from the 256-byte conversion table. This
time, the BW register specifies the starting (base)
address of the table, while the AL register specifies the
offset value within 256 bytes of the starting address.

Bytes: 1

Clocks: 9

Transfers: 1

Flag operation: None

Example:

TRANS TABLE
TRANS
TRANSB

12-12

XCH reg,reg

Exchange register with register

7

1 o o 0 o

1 1 reg

reg ... reg

t-{EC

o
1 1 W

reg

~.xchanges t~e contents of the 8- or 16-bit register spec­
Ified by the first operand with the contents of the 8- or
16-bit register specified by the second operand.

Bytes: 2

Clocks: 3

Transfers: None

Flag operation: None

Example:

XCH
XCH

CW,BW
AH,AL

NEe
XCH mem,reg
XCH reg,mem

Exchange memory with register

7

1

I
mod

o

(mem) reg

o o o

reg

I I
(disp-Iow)

I I
(disp-high)

1 1

I
mem

o
W

Exchanges the 8- or 16-bit memory contents addressed
by the first operand with the contents of the 8- or 16-bit
register specified by the second operand.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24, pPD70108

Transfers: 2

24, pPD70116 odd addresses
16,pPD70116 even addresses

Flag operation: None

Example:
XCH WORD_VAR,CW
XCH AL,TABLE[BW]

XCH AW,reg16
XCH reg16,AW

Section 12
Instruction Set

Exchange accumulator with register

7 o
1

AW reg16

o I
reg

Exchanges the contents of the accumulator (AW only)
specified by the first operand with the contents of the
16-bit register specified by the second operand.

Bytes: 1

Clocks: 3

Transfers: None

Flag operation: None

Example:
XCHAW,DW
XCH CW,AW

12-13

pPD70108/70116

REPEAT PREFIXES
REPC (no operand)

Repeat while carry

7

I 0 I 1 1 o o
o

1 o 1

While CW =F 0, the block comparison instruction
(CMPBK or CMPM) placed in the following byte is exe­
cuted and CW is decremented (-1). If the result of the
block comparison instruction is CY =F 1, the instruction
terminates. CW is checked against the condition imme­
diately before the execution of the block comparison
instruction. Therefore, if CW = 0 the first time the REPC
instruction is executed, the program will proceed imme­
diately to the instruction following the block comparison
instruction and the block comparison instruction will not
be executed at all. The contents of CY immediately before
the first execution of the REPC instruction are "don't
care."

Bytes: 1

Clocks: 2

Transfers: None

Flag operation: None

Example: REPC CMPBKW

12-14

REPNC (no operand)

Repeat while no carry

7

I 0 I 1 1 o o

t\'EC

o
1 o o

While CW =F 0, the block comparison instruction
(CMPBK or CMPM) placed in the following byte is exe­
cuted and CW is decremented (-1). If the result of the
comparison instruction is CY = 1, the instruction termi­
nates. CW is checked against the condition immediately
before the execution ofthe block comparison instruction.
Therefore, if CW = 0 the first time the REPNC instruction
is executed, the program will proceed immediately to the
instruction following the block comparison instruction
and the block comparison instruction will not be exe­
cuted at all. The contents of CY immediately before the
first execution of the REPNC iristruction are "don't care."

Bytes: 1

Clocks: 2

Transfers: None

Flag operation: None

Example: REPNC CMPMB

NEe
REP/REPE/REPZ

Repeat/repeat while equal/repeat while zero

REP
REPE/REPZ

7

I 1 I 1 1

(no operand)
(no operand)

1 o o 1

o
1

While CW =F 0, the following instruction is executed and
CW is decremented (-1).

REP is used with MOVBK, LDM, STM, OUTM, or INM
instructions and performs repeat operations while
CW =F O. The Z flag is disregarded.

REPZ or REPE is used with the CMPBK or CMPM
instruction. A program will exit the loop if the comparison
result by each block instruction is Z =F 1 or when CW
becomes O.

CW is checked against the condition immediately before
the execution of REP/REPE/REPZ instruction. Conse­
quently, if CW=O the first time the REP/REPE/REPZ
instruction is executed, the program will move to the
instruction following the block instruction and the block
instruction will not be executed at all.

A zero flag check is performed against the result of the
block instruction. The contents immediately before the
first execution of the REPE/REPZ instruction are
"don't care."

Bytes: 1

Clocks: 2

Transfers: None

Flag operation: None

Example:
REP MOVBKW
REPZCMPBKW
REPECMPMB

Section 12
Instruction Set

REPNE/REPNZ (no operand)

Repeat while not equal/repeat while not zero

7

I 1 I 1 1 1 o o 1

o
o

While CW =F 0, the block comparison instruction
(CMPBK, CMPM) is executed and CW is decremented
(-1). If the result of the block comparison instruction is
Z =F 0 or CW becomes 0, the instruction terminates. CW
is checked against the condition immediately before the
execution of the block comparison instruction. Conse­
quently, if CW = 0 the first time the REPNE/REPNZ
instruction is executed, the program will proceed imme­
diately to the instruction following the block comparison
instruction, and the block comparison instruction will not
be executed at all.

A zero flag check is performed to test the result of the
block comparison instruction. The contents of Z imme­
diately before the first execution of the REPNE/REPNZ
instruction are "don't care."

Bytes: 1

Clocks: 2

Transfers: None

Flag operation: None

Example:
REPNE CMPMB
REPNZ CMPBKW

12-15

pPD7010S/70116

PRIMITIVE BLOCK TRANSFER
MOVBK/MOVBKB/MOVBKW
(repeat) MOVBK [DS1-spec:]dst-block,[Seg-spec:]
src-block
(repeat) MOVBKB (no operand)
(repeat) MOVBKW (no operand)

Move block/move block byte/move block word

7 0

o o 1

When W = 0, (IV) - (IX)
DIR = 0: IX - IX + 1, IV - IV + 1
DIR = 1: IX-IX - 1, IV - IV - 1

When W = 1, (IV + 1, IV) - (IX + 1, IX)
DIR=O: IX -IX+2, IV-IV+2
DIR = 1: IX -IX - 2, IV -IV- 2

o W

Transfers the block addressed by the IX register to the
block addressed by the IV register by repeating the data
word byte. In order to transfer the next byte/word, the
IX or IV register is automatically incremented (+1 or +2)
or decremented (-1 or -2) each time a byte/word is
transferred. The direction of the block is determined by
the direction flag (DIR).

Byte or word specification is made by the attribute of the
operand when the MOVBK is used. If the MOVBKB or
MOVBKW is used, the type is specified by the instruction.

The destination block must always be located within
the segment specified by the DS1 segment register. The
default segment for the source block register is DSo, and
a segment override is permitted. The source block may
be located in a segment specified by any of the segment
registers.

Bytes: 1

Clocks:
Repeat:

When W=O: 11+S/rep
When W=1: 11+16/rep, pPD7010S

pPD70116 odd, odd
addresses

11+16/rep,pPD70116 odd, even

12-16

addresses
11+S/rep, pPD70116 even, even

addresses

NEe
Single operation:

When W=O: 11
When W=1: 19, pPD7010S

19, pPD70116 odd, odd addresses
15, pPD70116 odd, even addresses
11, pPD70116 even, even addresses

Transfers:
Repeat: 2/rep
Single operation: 2

Flag operation: None

Examples:

1. MOV AW,SEG SRC_BLOCK
;point to source

MOV DSO,AW
;segment and offset

MOV IX,OFFSET SRC_BLOCK
MOV AW,SEG DST _BLOCK

;point to destination
MOV DS1,AW
MOV IV,OFFSET DST _BLOCK
MOV CW,22

;set count
REP MOVBKW

;move 22 words

2. MOV IX,SP
;source will be stack

MOV DS1,IV,DST _DWPTR
;fetch pOinter to destination

MOV CW,5
;set count

REP MOVBK DS1 :DST _BLOCK,SS:[IX]
;move from stack (override prefix)
;to destination

DATAO SEGMENT AT 0
SRC_BLOCK DW 22 DUP (?)
SRCJ)WPTR DD SRC_BLOCK
DST _DWPTR DD DST _BLOCK
DATAO ENDS
DATA1 SEGMENT AT 1000H
DST _BLOCK DW 22 DUP (?)
DATA1 ENDS

NEe
CMPBK/COMPBKB/CMPBKW
(repeat) CMPBK [Seg-spec:]src-block,[DS1-spec:]dst­
block
(repeat) CMPBKB (no operand)
(repeat) CMPBKW (no operand)

Compare block/compare block byte/compare block
word

7

1 0 1

WhenW=O:
DIR=O:
DIR=1:

When W=1:
DIR=O:
DIR=1:

o o 1

(IX) - (IV)
IX - IX+1, IV - IV+1
IX - IX-1, IV - IV-1
(IX+1, IX) - (IV+1, IV)
IX - IX+2, IV - IV+2
IX - IX-2, IV - IV-2

o
1 W

Repeatedly compares the block addressed by the IV reg­
ister with the block addressed by the IX register, byte by
byte or word by word. The result of the comparison is
shown by the flag. In order to process the next byte or
word, IX and IV are automatically incremented (+1 or +2)
or decremented (-1 or -2) each time one byte or word
is processed. The direction of the block is determined
by the direction flag (DIR).

The byte or word specification is made by the attribute
of the operand when CMPBK is used. If CMPBKB or
CMPBKW is used, it is specified directly to be the byte
or word type.

The destination block must always be located within the
segment specified by the DS1 register. The default seg­
ment register for the source block is DSo and a segment
override prefix is permitted.

Bytes: 1

Clocks:
Repeat:

When W=O: 7+14/rep
When W=1: 7+22/rep, pPD7010S pPD70116 odd,

odd addresses
7+1S/rep, pPD70116 odd, even

addresses
7+14/rep, pPD70116 even, even

addresses

Single operation:
When W=O: 13
When W=1: 21,

21,

17:

13:

Transfers:
Repeat: 1 / rep
Single operation: 2

Flag operation

AC
X

Example:

Section 12
Instruction Set

pPD7010S
pPD70116 odd, odd
addresses
pPD70116 odd, even
addresses
pPD70116 even, even
addresses

P CV

X X

MOV DSO,IX,SRC-DWPTR

LESS:

;point to areas to compare
MOV DS1,IV,DST -DWPTR
MOV CW,16

;set count
REPNC CMPBKB

;compare 16 pairs of bytes
BCWZ GREATER

;if CW = 0, then SRC ~ DST

12-17

pPD70108/70116

CMPM/CMPMB/CMPMW

(repeat) CMPM [DS1-spec:]dst-block
(repeat) CMPMB (no operand)
(repeat) CMPMW (no operand)

Compare multiplel compare multiple byte I compare
multiple word

7

1 o 1

WhenW=O:
DIR=O:

WhenW=1:
DIR=O:
DIR=1:

o 1

(AL) - (IV)
IY-IY+1,

1

DIR=1: IY -IY-1
AW - (IY+1, IV)
IY-IY+2
IY-IY-2

o
1 W

Repeatedly compares the block addressed by the IY with
the accumulator (AL or AW). To process the next byte or
word, the IY is automatically incremented (+1 or +2) or
decremented (-1 or -2) each time one byte or word is
processed. The direction of the block is determined by
the direction flag (DIR). Byte or word specification is
made by the attribute of the operand when CMPM is
used. If CMPMB or CMPMW is used, it is specified
directly by the instruction.

The destination block must always be located within the
segment specified by the DS1 segment register.

Bytes: 1

12-18

ttlEC
Clocks:
Repeat:

When W=O: 7+10/rep
When W=1: 7+14/rep,pPD70108

7+14/rep, pPD70116 odd addresses
7+10/rep, pPD70116 even addresses

Single operation:
WhenW=O: 7
When W=1: 11, pPD70108

Transfers:

11, pPD70116 odd addresses
7, pPD70116 even addresses

Repeat: 1 I rep
Single operation: 1

Flag operation

Example:
MOV

MOV
MOV

REPNZ

AC P CY

x x x

DS1,IY,DST _DWPTR
;point to destination block

AL,'I\
CW,20

;search for first '1\
CMPMB

t-IEC
LDM/LDMB/LDMW
(repeat) LDM [Seg-spec:]src-block
(repeat) LDMB (no operand)
(repeat) LDMW (no operand)

Load multiple/load multiple byte/load multiple word

7

o 1

When W=O: AL - (IX)
DIR=O: IX -IX+1
DIR=1: IX -IX-1

When W=1: AW - (IX+1, IX)
DIR=O: IX -IX+2
DIR=1: IX - IX-2

o
1 o W

Transfers the block addressed by the IX register to the
accumulator (AL or AW). To process the next byte or word
the IX register is automatically incremented (+1 or +2)
or decremented (-1 or -2) each time one byte or word
is processed. The direction of the block is determined
by the direction flag (DIR). Byte or word specification is
made by the attribute of the operand when LDM is used.
If LOMB or LDMW is used, it is specified directly to be

/the byte or word type. The instruction may have a repeat
prefix, but is usually used without one.

The default segment register for the source block is DSo,
and therefore segment override is possible. The source
block may be located within the segment specified by
any (optional) segment register.

Bytes: 1

Clocks:
Repeat:

When W=O: 7+91 rep
When W=1: 7+13/rep:pPD70108

7+13/rep: pPD70116 odd addresses
7+9/rep : pPD70116 even addresses

Single operation:
WhenW=O: 7,
When W=1: 11,pPD70108

Transfers:

11, pPD70116 odd addresses
7, pPD70116 even addresses

Repeat: 11 rep
Single operation: 1

Flag operation:

Example:

MOV

MOV

MOV

HERE: LDM

ADD

STMB

DBNZ

None

Section 12
I nstruction Set

;Add a constant to a string
DS1,IY,DST _DWPTR

;point DS1 :IY to string
IX,IY

;point DS1 :IX to same area
CW,10

;Iength of string
BYTE PTR DS1 :[IX]

;fetch byte (from DS1, with
segment override prefix),
increment IX

AL,20H
;add constant
;replace modified value at
DS1:IY,
;increment IY

HERE
;Ioop until CW =0

12-19

pPD70108/70116

STM/STMB/STMW
(repeat) STM [OS1-spec:]dst-block
(repeat) STMB (no operand)
(repeat) STMW (no operand)

Store multiple/store multiple byte/store multiple word

7

o 1

When W=O: (IY) - AL
DIR=O: IY - IY+1
DIR=1: IY -IY-1

When W=1: (IY+1,1y) - AW
DIR=O: IY - IY+2
DIR=1: IY -IY-2

o
o 1 W

Transfers the contents of AL or AW to the block ad­
dressed by IY.

To process the next byte or word, IY is automatically
incremented (+1 or +2) or decremented (-1 or -2) each
time one byte or word is processed. The direction of the
block is determined by the direction flag (DIR).

Byte or word specification is made by the attribute of the
operand when STM is used. If STMB or STMW is used,
it is specified directly to be the byte or word type.

The destination block must always be located within the
segment specified by the DS1 segment register.

Bytes: 1

Clocks:
Repeat:

When W=O: 7+4/rep
When W=1: 7+8/rep: pPD70108

7+8/rep: pPD70116 odd addresses
7+4/rep: pPD70116 even addresses

Single operation:
When W=O: 7
When W=1: 11, pPD70108

Transfers:

11, pPD70116 odd addresses
7, pPD70116 even addresses

Repeat: 1 / rep
Single operation: 1

Flag operation: None

12-20

ttiEC
Example:

;Fill memory area with a constant
MOV DS1,IY,DST_DWPTR

;point to block
XOR AW,AW

;zero the accumulator
MOV CW,10

;count = 10
REP STMW

;fill 10 words with zero

ttlEC
BIT FIELD MANIPULATION
INSTRUCTIONS

~ INS reg1, reg2

Insert bit field (register)

7 0

0 0 0 0 1 1 1 1

0 0 1 1 0 0 0 1

I
1 1 reg2 reg1

16-bit field - AW

Transfers the lower data bits of the 16-bit AW register (bit
length is specified by the 8-bit register of the second
operand) to the memory location determined by the byte
offset (addressed by the DS1 segment register and the
IV index register) and bit offset (specified by the 8-bit
register of the first operand).

After the transfer, the IV register and the 8-bit register
specified by the first operand are automatically updated
to point to the next bit field.

Only the lower 4 bits (0-15) will be valid for the 8-bit
register of the first operand that specifies the bit offset
(maximum length: 15 bits). Also, only the lower 4 bits

:

Section 12
Instruction Set

(0-15) will be valid for the 8-bit register of the second
operand that specifies the bit length (maximum length:
16 bits). 0 specifies a 1-bit length, and 15 specifies a
16-bit length.

Bit field data may overlap the byte boundary of memory.

Note: For correct operation the upper four bits of the 8-bit registers
used as first and second operands must be set to O.

Bytes: 3

Clocks:
35-113: pPD70108
35-113: pPD70116 odd addresses
31-117: pPD70116 even addresses

Transfers: 2 or 4

Flag operation:

Example: INS

l
I

Byte boundary

(IV)
Byteoflset

::

P CV

u u

DL,CL (See below for detailed
example)

'I :-I (
Segment base

(0$1)

49.000011A

12-21

pPD70108/70116

INS reg8,imm4

Insert bit field (immediate data)

7 0

0 0 0 0 1 1 1 1

0 0 1 1 1 0 0 1

I
1 1 0 0 0 reg8

I
imm4

16-bit field +- AW

Transfers the lower data bits of the 16-bit AW register (bit
length specified by the 4-bit immediate data of the
second operand) to the memory location determined by
the byte offset (addressed by the DS1 segment register
and the IY register) and bit offset (specified by the 8-bit
register of the first operand). After the transfer, the IY
register and the 8-bit register specified by the first oper­
and are updated to point to the next bit field;

Only the lower 4 bits (0-15) for the 8-bit register of the
first operand (15 bits maximum length) are valid. The
immediate data value of the second operand (16 bits
maximum length) is valid only from 0-15.

o specifies a 1-bit length, and 15 specifies a 16-bit length.
The bit field data may overlap the byte boundary of
memory.

Note: For correct operation, set the upper four bits of the 8-bit register
used as the first operand to O.

Bytes: 4

Clocks:
75-103:
75-103:
67-87:

12-22

pPD70108
pPD70116 odd addresses
pPD70116 even addresses

Transfers: 2 or 4

Flag operation:

Example:

P

u

MOV DS1,IY,DST _DWPTR

NEe

CY

u

;Point to destination
MOV Cl,3

;Start at bit 3
MOV Dl,4

;Insert 5 bits
(A) MOV AW,5555H

;Pattern to insert (A)
(B) INS Cl,Dl

;Insert 5 bits at bit 3 (B)
(C) INS Cl,12

;Insert 13 bits at bit 8 (C)

at (A) memory =
MSB lSB I MSB lSB
xxx X XXXX XXXX XXX X XXX X XXXX XXXX XXXX
Cl = 3, IY = base

at (B) memory = I
~ XXXX XXXX XXXX XXXX XXXX XXXX 1010 1XXX

Cl = 8, IY = base

at (C) memory = I
~ XXXX XXX X XXX1 0101 0101 0101 1010 1XXX

Cl = 5, IY = base + 2

~

~

ttlEC
EXT reg 1 , reg2

Extract bit field (register)

7 0

I 0 0 0 0 1 1 1 1

I 0 0 1 1 0 0 1 1

I I I
1 1 reg2 reg1

AW - 16-bit field

Loads the bit field data (bit length specified by the 8-bit
register of the second operand) into the AW register. The
segment base of the memory location of the bit field is
specified by the DSo register, the byte offset by the IX
index register, and the bit offset by the 8-bit register of
the first operand. At the same time zeros are loaded to
the remaining upper bits of the AW register.

After the transfer, the IX register and the 8-bit register
specified by the first operand are updated to point to the
next bit field. Only the lower 4 bits (0-15) of the 8-bit
register of the first operand (maximum length: 15 bits) are

Bit

~' ;
I 15 0

Awl 0 -
Bit

Section 12
Instruction Set

valid. Only the lower 4 bits of the 8-bit regis~er of the
second operand (maximum length: 16 bits) are valid.

o specifies a 1-bit length, and 15 specifies a 16-bit length.
Bit field data may overlap the byte boundary of memory.

Note: For correct operation, the upper 4 bits of the 8-bit registers
used as first and second operands must be set to O.

Bytes: 3

Clocks:
34-59: J.IPD70108
34-59: J.IPD70116 odd addresses
26-55: J.IPD70115 even addresses

Transfers: 1 or 2

Flag operation:

P CY
u u

Example: EXT CL,DL (See below for detailed
example)

(IX)
Offset

l
Byte Offset

'I :: ~MemOry

I I
Byte Boundary Segment Base

(080)

,49.000012A

12-23

pPD70108/70116

EXT reg8,imm4

Extract bit field (immediate data)

7 0

0 0 0 0 1 1 1

0 0 1 1 1 0 1 1

1 1 0 0 0 reg

I
imm4

AW +- 16-bit field

Loads bit field data from the memory location specified
by the byte offset to the AW register (addressed by the
DSo segment register and the IX index register) and
the bit offset (specified by the 8-bit register of the first
operand).

The bit length is specified by the 4-bit immediate data
of the second operand.

After the transfer, the IX register and the 8-bit register
specified by the first operand are updated to point to the
next bit field. Only the lower 4 bits (0-15) of the 8-bit
register ofthe first operand (maximum length: 15 bits) will
be valid. The immediate data value of the second oper­
and (maximum length: 16 bits) will bevalid only from 0-15.

Zero specifies a 1-bit length, and 15 specifies a 16-bit
length. Bit field data may overlap the byte boundary of
memory.

Note: For correct operation, set the upper 4 bits of the 8-bit register
used as the first operand to O.

Bytes: 4

Bil

&id'
15 I 0

Awl 0 W$l1

12-24

Bit

NEe
Clocks:
25-52: pPD70108
25-52: pPD70116 odd addresses
21-44: pPD70116 even addresses

Transfers: 1 or 2

Flag operation:

Example:
MOV

MOV

MOV
MOV

(A) MOV

(B) EXT

(C) EXT

AC P CY

u u u

DSO,IX,SRC-DWPTR
;Point to area to extract

[IX],5555H
;Fill in sample patterns

[IX+2],3333H
CL,3

;Start at bit 3
DL,4

;(A)
CL,DL

;Extract 5 bits starting at 3 (B)
CL,12

;Extract 13 bits starting at 8 (C)

at (A) memory =
MSB LSB I MSB LSB
0011 0011 0011 0011 0101 0101 0101 0101
CL = 3, IX = base, AW = unknown

at (B)
CL = 8, IX = base, AW = (0000 0000 000)01010

at (C)
CL = 5, IX = base + 2, AW = (000)1 0011 0101 0101

(IX)
OIIset

l
Byte OIIsel

'j :: ~ Memory

I I
Byte Boundary Segment Base

(050)

49000012AI

NEe
INPUT IOUTPUT
IN acc,imm8

Input specified I/O device

7

1 1 1 o o
I

immS

When W=O AL - (immS)

1 o

When W=1 AH - (immS+1), AL - (immS)

o
W

Inputs the contents of the I/O device specified by the
second operand to the accumulator (AL or AH) speci­
fied by the first operand.

Bytes: 2

Clock:
WhenW=O:
When W=1:

Transfers: 1

9
13, pP07010S
13,pP070116 odd addresses
9, pP070116 even addresses

Flag operation: None

Example:
IN AL,20H
IN AW,4SH

Section 12
Instruction Set

IN acc,DW

Input to device indirectly specified by OW

7

I 1 I 1 1 o 1 1

When W=O: AL - (OW)
When W=1: AH - (OW+1),AL - (OW)

o
o W

Inputs the contents of the I/O device specified by the OW
register to the accumulator (AL or AW) specified by the
first operand.

Bytes: 1

Clocks:
When W=O: S
When W=1: 12,pP070108

Transfers: 1

12, pP070116 odd addresses
S, pP070116 even addresses

Flag Operation: None

Example: IN AL,OW

12-25

pPD7010S/70116

OUT imm8,8cc

Output to directly specified I/O device

7

1 1 1 o o

1

immB

When W=O: (immB) +- AL

1 1

When W=1: (immB+1) +- AH, (immB) +- AL

o
W

Outputs the contents ofthe accumulator (AL or AH) spec­
ified by the second operand to the I/O device specified
by the first operand.

Bytes: 2

Clocks:
When W=O:
When W=1:

Transfers: 1

B
12, pP07010B
12, pP070116 odd addresses

B, pP070116 even addresses

Flag operation: None

Example: OUT 30H,AW

12-26

NEe
OUT DW,8cc

Output to indirectly specified (by OW) I/O device

7 0

111110111 W

When W=O: (OW) +- AL
When W=1: (OW+1) +- AH, (OW) +- AL

Outputs the contents of the accumulator (AL or AW) spec­
ified by the second operand to the I/O device specified
by the first operand.

Bytes: 1

Clocks:
When W=O:
When W=1:

Transfers: 1

B
12, pP07010B
12, pP070116 odd addresses
B, pP070116 even addresses

Flag operation: None

Example: OUT OW,AW

t\'EC
OUT DW,acc

Output to indirectly specified (by OW) 1/0 device

7 o
1 1 W

When W=O: (OW) - AL
When W=1: (OW+1) - AH, (OW) - AL

Outputs the contents ofthe accumulator (AL or AW) spec­
ified by the second operand to the 1/0 device specified
by the first operand.

Bytes: 1

Clocks:
When.W=O:
When W=1:

Transfers: 1

8
12, pP070108
12, pP070116 odd addresses

8, pP070116 even addresses

Flag operation: None

Example: OUT OW,AW

Section 12
Instruction Set

12-27

pPD7010S/70116

PRIMITIVE INPUT/OUTPUT
(repeat) INM [DS1-spec:]dst-block,DW

Input multiple

7

I 0 I 1 1 o

When W=O: (IY) - (OW)
Oir=O: IY - IY+1
Oir=1: IY -IY-1

1 1

When W=1: (IY+1,IY) - (OW+1,OW)
Oir=O: IY - IY+2
Oir=1: IY -IY-2

o
o W

Transfers the contents of the I/O device addressed by
the OW register to the memory location addressed by the
IY index register.

When this instruction is paired with a repeat prefix (REP),
the REP prefix controls the number of times the transfer
will be repeated. When transfers are repeated, the con­
tents (address of the I/O device) of the OW register are
fixed. However, to transfer the next byte or word, the IX
index register is automatically incremented (+1 or +2)
or decremented (-1 or-2) each time one byte or word
is transferred. The direction of the block is determined
by the direction flag (OIR).

Byte or word specification is performed according to the
attribute of the operand. The destination block must
always be located within the segment specified by the
OS1 segment register, and a segment override prefix is
prohibited.

12-28

Bytes: 1

Clocks:
Repeat:

When W=O: 9+8/rep

NEe

When W=1: 9+16/rep: pP070108
9+16/rep: pP070116 odd-odd

addresses
9+12/rep: pP070116 odd-even

addresses
9+8/rep: pP070116 even-even

addresses

Single operation:
When W=O: 10
When W=1: 18,pP070108

Transfers:

18, pP070116 odd-odd addresses
14, pP070116 odd-even addresses
10, pP070116 even-even addresses

Repeat: 2/rep
Single operation: 2

Flag operation: None

Example:
MOV
MOV
REP

CW,30
IY,OFFSET BYTE-VAR
INM BYTE_VAR,OW

;Input 30 bytes

NEe
OUTM DW,[seg-spec:]src-block

Output multiple

7

I 0 i 1 1 o

When W=O: (OW) - (IX)
OIR=O: IX - IX+1
0IR=1: IX - IX-1

1 1

When W=1: (OW+1, OW) - (IX+1,IX)
OIR=O: IX -IX+2
0IR=1: IX - IX-2

o
1 W

Transfers the memory contents addressed by the IX
index register to the 1/0 device addressed by the OW
register. When this instruction is paired with a repeat
prefix (REP), REP controls the number of times the
transfer will be repeated. When transfers are repeated,
the contents (address of the 1/0 device) of the OW reg­
ister are fixed. However, to transfer the next byte or word,
the IX index register is automatically incremented (+1 or
+2) or decremented (-1 or -2) each time one byte or
word is transferred. The direction or the block is deter­
mined by the direction flag (OIR).

Byte or word specification is performed according to the
attribute of the operand. The default segment register for
the source block is OSo, and segment override is pos­
sible. The source block may be located within the seg­
ment specified by any (optional) segment register.

Bytes: 1

Clocks:
Repeat:

When W=O: 9+8/rep
When W=1: 9+16/rep,pP070108

9+16/rep, pP070116 odd-odd
addresses

9+12/rep, pP070116 odd-even
addresses

Single operation:

9+8/rep, pP070116 even-even
addresses

When W=O: 10
When W=1: 18, pP070108

Transfers:

18, pP070116 odd-odd addresses
14, pP070116 odd-even addresses
10, pP070116 even-even addresses

Repeat: 2 I rep
Single operation: 2

Flag operation: None

Example:

REP OUTM OW,BYTE PTR OS1 :[IX]

Section 12
Instruction Set

ADDITION/SUBTRACTION
ADD reg,reg

Add register with register to register

7

o o o o o o

1 1 reg

reg - reg + reg

o
1 W

reg

Adds the contents of the 8- or 16-bit register specified
by the second operand to the contents of the 8- or 16-bit
register specified by the first operand. Stores the result
in the register specified by the first operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

I
V

I
S

I
z

i

AC P CY
X X X X X X

Example: AOO AW,BW

12-29

pPD70108/70116

ADD mem,reg

Add memory with register to memory

7 0

0 0 0 0 0 0 0 W

I I
mod reg mem

I I
(disp-Iow)

I I
(disp-high)

(mem) - (mem) + reg

Adds the contents of the 8- or 16-bit register specified
by the second operand to the 8- or 16-bit memory con­
tents addressed by the first operand. Stores the result in
the memory location addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24, pPD70108

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:
ADD
ADD

12-30

AC

x

WORD_VAR,AW
[IX],CW

P CY
x x

NEe
ADD reg,mem

Add register with memory to register

7 0

0 0 0 0 0 0 1 W

I I
mod reg mem

I
(disp-Iow)

I

I I
(disp-high)

reg - reg + (mem)

Adds the 8- or 16-bit memory contents addressed by the
second operand to the contents of the 8- or 16-bit reg­
ister specified by the first operand. Stores the result in
the register specified by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 11
When W=1: 15, pPD70108

15, pPD70116 odd addresses
11, pPD70116 even addresses

Transfers: 1

Flag operation:

Example:

AC

x

ADD
ADD

AW,WORD_VAR
BW,[BP](IX]

P CY

x x

NEe
. ADD reg,imm

Add register with immediate data to register

7

1 o o o o o S

1 1 o o o reg

I I I
imm8 or imm16-low

I I
imm16-high

reg - reg + imm

o
W

Adds the 8- or 16-bit immediate data specified by the
second operand to the contents of the 8- or 16-bit reg­
ister specified by the first operand, and stores the result
in the register specified by the first operand.

Bytes: 2/3/4

Clocks: 4

Transfers: None

Flag operation:

P CY

x x

Example: ADD DL,10

Section 12
Instruction Set

ADD mem,imm

Add memory with immediate data to memory

7 0

1 0 0 0 0 0 S W

I I I
mod 0 0 0 mem

I I
(disp-Iow)

I I
(disp-high)

I I I
imm8 or imm16-low

I I
imm16:-high

(mem) - (mem) + imm

Adds the 8- or 16-bit immediate data specified by the
second operand to the 8- or 16-bit memory contents
addressed by the first operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=O: 18
When W=1: 26, pPD70108

Transfers: 2

Flag operation:

Example:

26, pPD70116 odd addresses
18, pPD70116 even addresses

AC P CY

x x x

ADD
ADD

BYTE_VAR[BP],100
WORD_VAR[BW][IX],1234H

12-31

pPD7010S/70116

ADDacc,imm

Add accumulator with immediate data to accumulator

7

o o o o o 1

I I I
imm8 or imm16-low

I I
imm16-high

When W=O: AL - AL imm
When W=1: AW - AW imm

o
o W

Adds the 8- or 16-bit immediate data specified by the
second operand to the contents of the accumulator (AL
or AW) specified by the first operand. Stores the result
in the accumulator specified by the first operand.

Bytes: 2/3

Clocks: 4

Transfers:. None

Flag operation:

AC

Example:
ADD
ADD

12-32

AL,3
AW,2000H

x
p CY

x x

NEe
ADDC reg,reg

Add with carry, register with register to register

7

o o o 1 o o 1

1 1 reg reg

reg - reg + reg + CY

o
W

Adds the contents of the 8- or 16-bit register specified
by the second operand and the contents of the carry flag
to the contents of the 8- or 16-bit register specified by
the first operand. Stores the result in the register spec­
ified by the fi rst operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

p CY

x x

Example: ADDC BW,DW

ttlEC
ADDC mem,reg

Add with carry. memory with register to memory

7 0

0 0 0 1 0 0 0 W

I I
mod reg mem

I I
(disp-Iow)

I I
(disp-high)

(mem) - (mem) + reg + CY

Adds the contents of the 8- or 16-bit register specified
by the second operand and the contents of the carry
flag to the 8- or 16-bit memory contents addressed by
the first operand. Stores the result in the memory location
addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24. pPD70108

24. pPD70116 odd addresses
16. pPD70116 even addresses

Transfers: 2

Flag operation:

Example: AD DC

P
x

CY

x

Section 12
Instruction Set

AD DC reg,mem

Add with carry. register with memory to register

7 0

0 0 0 1 0 0 1 W

I I
mod reg mem

I I
(disp-Iow)

I I
(disp-high)

reg - reg + (mem) + CY

Adds the 8- or 16-bit memory contents addressed by the
second operand and the contents of the carry flag to the
contents of the 8- or 16-bit register specified by the first
operand. Stores the result in the register specified by the
first operand.

Byte: 2/3/4

Clocks:
When W=O: 11
When W=1: 15. pPD70108

15. pPD70116 odd addresses
11. pPD70116 even addresses

Transfers: 1

Flag operation:

P
x

Examples:
ADDC
ADDC

AW.WORD_VAR
BW.[BP][IX]

CY

x

12-33

pPD70108/70116

ADDC reg,imm

Add with carry, register with immediate data to register

7 0

1 0 0 0 0 0 S W

1 0 1 0 reg

I I I
imm8 or imm16-low

I
imm16-high

I

reg +- reg + imm + CY

Adds the 8- or 16-bit immediate data specified by the
second operand and the contents of the carry flag to the
contents of the 8- or 16-bit register specified by the first
operand. Stores the result in the register specified by the
first operand.

Bytes: 3/4

Clocks: 4

Transfers: None

Flag operation:

AC

Example:
ADDC
ADDC

12-34

CW,404H
DL,3

x
P CY

x x

NEe
ADDC mem,imm

Add with carry, memory with immediate data to memory

7

I
mod

o o o o o

o 1 o

I I
(disp-Iow)

I I
(disp-high)

I I I
imm8 or imm16-low

I I
imm16-high

(mem) +- (mem) + imm + CY

S

I
mem

o
W

Adds the 8- or 16-bit immediate data specified by the
second operand and the contents of the carry flag to the
8- or 16-bit memory contents addressed by the first oper­
and. Stores the result in the memory location addressed
by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=O: 18
When W=1: 26, pPD70108

Transfers: 2

Flag operation:

26, pPD70116 odd addresses
18, pPD70116 even addresses

P CY

x x

Example: AD DC WORD_VAR,2000H

NEe
AD DC acc,imm

Add with carry, accumulator with immediate data to
accumulator

7

o o o 1 o 1

I I I
imm8 or imm16-low

I I
imm16-high

When W=O: AL - AL + imm8 + CY
When W=1: AW - AW + imm16 + CY

o
o W

Adds the 8- or 16-bit immediate data specified by the
second operand and the contents of the carry flag to the
accumulator (AL or AW) specified by the first operand.
Stores the result in the accumulator specified by the first
operand.

Bytes: 2/3

Clocks: 4

Transfers: None

Flag operation:

Example: ADDC AL,7

p CY

x x

SUB reg,reg

Section 12
Instruction Set

Subtract register from register to register

7 o
o o 1 o 1 o 1 W

1 1 reg reg

reg - reg - reg

Subtracts the contents of the 8- or 16-bit register spec­
ified by the second operand from the contents of the 8- or
16-bit register specified by the first operand. Stores the
result in the register specified by the first operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

p CY

x x

Example: SUB BW,CW

12-35

pPD70108/70116

SUB mem,reg

Subtract register from memory to memory

7

o
I

mod

o o

reg

(mem) +- (mem) - reg

o o

I
mem

o
W

Subtracts the contents of the 8- or 16-bit register spec­
ified by the second operand from the 8- or 16-bit memory
contents addressed by the first operand. Stores the result
in the memory location addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24, pPD70108

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:
SUB
SUB

12-36

AC

x

WORDIVAR,BW
[IX],AL

P CY
x x

NEe
SUB reg,mem

Subtract memory from register to register

7 0

0 0 0 1 0 1 W

I I
mod reg mem

I I
(disp-Iow)

I I
(disp-high)

reg +- reg - (mem)

Subtracts the 8- or 16-bit memory contents addressed
by the second operand from the 8- or 16-bit register
specified by the first operand. Stores the result in the
register specified by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 11
When W=1: 15, pPD70108

Transfers: 1

Flag operation:

Example: SUB

15, pPD70116 odd addresses
11, pPD70116 even addresses

P CY
x x

NEe
SUB reg,imm

Subtract immediate from register to register

7

1 o o o o o S

1 1 1 o 1 reg

I I I
imm8 or imm16-low

I I
imm16-high

reg - reg - imm

o
W

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the contents of the 8- or 16-bit
register specified by the first operand. Stores the result
in the register specified by the first operand.

Bytes: 3/4

Clocks: 4

Transfers: None

Flag operation:

P CY
x x

Example: SUB IX,4

Section 12
Instruction Set

SUB mem,imm

Subtract immediate data from memory to memory

7

1

I
mod

o o o o o

1 o 1

I I
(disp-Iow)

I I
(disp-high)

I I I
imm8 or imm16-low

I I
imm16-high

(mem) - (mem) - imm

o
S W

I I
mem

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the 8- or 16-bit memory con­
tents addressed by the first operand. Stores the result in
the memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=O: 18
When W=1: 26, pPD70108

Transfers: 2

Flag operation:

Example: SUB

26, pPD70116 odd addresses
18, pPD70116 even addresses

P CY
x x

12-37

pPD7010S/70116

SUB acc,imm

Subtract immediate data from accumulator
to accumulator

7

o o o 1 1

I I I
imm8 or imm16-low

I I
imm16-high

When W=O: AL +- AL - imm8
When W=1: AW +- AW - imm16

o
o
W

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the accumulator (AL or AW)
specified by the first operand. Stores the result in the
accumulator specified by the first operand.

Bytes: 2/3

Clocks: 4

Transfers: None

Flag operation:

AC

x

Example: SUB AL,8

12-38

p CY

x x

NEe
SUBC reg,reg

Subtract with carry, register from register to register

7 o
o o o 1 1 o 1 W

1 1 reg reg

reg +- reg - reg - CY

Subtracts the contents of the 8- or 16-bit register spec­
ified by the second operand and the contents of the carry
flag from the 8- or 16-bit register specified by the first
operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

Example: SUBC

p CY

x x

BW,DW

t-IEC
SUBC mem,reg

Subtract with carry, register from memory to memory

7

o
I

mod

o o

reg

I I
(disp-Iow)

I I
(disp-high)

(mem) +- (mem) - reg - CY

o o
I

mem

o
W

Subtracts the contents of the 8- or 16-bit register spec­
ified by the second operand and the contents of the carry
flag from the 8- or 16-bit memory contents specified by
the first operand. Stores the result in the memory location
addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24, pPD70108

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Example: SUBC

P

x
Cy
x

Section 12
Instruction Set

SUBC reg,mem

Subtract with carry, memory from register to register

7 0

0 0 0 1 1 0 1 W

I I
mod reg mem

I I
(disp-Iow)

I
(disp-high)

I

reg +- reg - (mem) - CY

Subtracts the contents of the 8- or 16-bit memory ad­
dressed by the second operand and the contents of the
carry flag from the 8- or 16-bit register specified by the
first operand. Stores the result in the register specified
by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 11
When W=1: 15, pPD70108

15, pPD70116 odd addresses
11, pPD70116 even addresses

Transfers: 1

Flag operation:

Example: SUBC

P

x
CY

x

12-39

pPD70108/70116

SUBC reg,imm

Subtract with carry, immediate data from register
to register

7

1 0 0 0 0 0 S

1 0 1 1 reg

I I I
imm8 or imm16-low

I I
imm16-high

reg -- reg - imm - CY

o
W

Subtracts the contents of the 8- or 16-bit immediate data
specified by the second operand and the contents of the
carry flag from the 8- or 16-bit register specified by the
first operand. Stores the result in the register specified
by the first operand.

Bytes: 3/4

Clocks: 4

Transfers: None

Flag operation:

P CY

x x

Example: SUBC DL,10

12-40

NEe
SUBC mem,imm

Subtract with carry, immediate data from memory
to memory

7 o
1 o o o o o S W

I
mod o 1 1

I I
(disp-Iow)

I I
(disp-high)

I I I
imm8 or imm16-low

I I
imm16-high

(mem) -- (mem) - imm - CY

I
mem

Subtracts the contents of the 8- or 16-bit immediate data
specified by the second operand and the contents of
the carry flag from the 8- or 16-bit memory contents
addressed by the first operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=O:
When W=1:

Transfers: 2

Flag operation:

18
26, pPD70108
26, pPD70116 odd addresses
18, pPD70116 even addresses

P CY

x x

Example: SUBC

ttlEC
SUBC acc,imm

Subtract with carry, immediate data from accumulator
to accumulator

7

I 0 0 0 1 1 1

I
I I I

immS or imm16-low

I
I I

imm16-high

When W=O: AL - AL - immS .::... CY
When W=1: AW - AW - imm16 - CY

0

0 W

Subtracts the S- or 16-bit immediate data specified by
the second operand and the contents of the carry flag
from the accumulator (AL or AW) specified by the first
operand. Stores the result in the accumulator specified
by the first operand.

Bytes: 2/3

Clocks: 4

Transfers: None

Flag operation:

I

V

I

S

:

z
:

AC p CY
X X X X X X

Example: SUBC AL,S

Section 12
Instruction Set

12-41

I1PD70108/70116

BCD ARITHMETIC
ADD4S [DS1-spec:]dst-string,[seg-spec:]src-string
ADD4S (no operand)

Add nibble string

7 o
o o o o 1 1 1 1

o o 1 o o o o o

BCD string (IY,Cl) - BCD string (IY,Cl) + BCD string
(IX,Cl)

Adds the packed BCD string addressed by the IX index
register to the packed BCD string addressed by the IY
index register. Stores the result in the string addressed
by the IY register. The length of the string (number of BCD
digits) is specified by the Cl register and can vary from
1 to 254 digits.

When the number of digits is even, the zero and carry
flags will be set according to the result of the operation.
When the number of digits is odd, the zero and carry flags
may not be set correctly. In this case, (Cl = odd), the zero
flag will not be set unless the upper 4 bits of the highest

ByteOflset +m

:: Memo; i
Digit Offset +CL

12-42

i

NEe
byte are all zero. The carry flag will not be set unless there
is a carry out ofthe upper 4 bits ofthe highest byte. When
Cl is odd, the contents of the upper 4 bits of the highest
byte of the result are undefined.

The destination string must always be located within the
segment specified by the DS1 segment register. Segment
override is prohibited.

The default segment register for the source string is DSo
and segment override is possible. The source string may
be located within the segment specified by any (optional)
segment register.

The format for the packed BCD string follows.

Bytes: 2

Clocks: 7 + 19n, where n = one-half the number of
BCD digits

Transfers: 3n

Flag operation:

P CY

u X

Example: See example for CMP4S

IX
IV

+1 +0 I j
+4 +3 +2 +1 0

49.000013A

tt1EC
SUB4S [DS1-spec:]dst-string,[seg-spec:]src-string
SUB4S (no operand)

Subtract nibble string

7 0

0 0 0 0 1 1 1 1

~I 0 0 1 0 0 0 1 0

BCD string (IY,CL) - BCD string (IY,CL) - BCD string
(IX,CL)

Subtracts the packed BCD string addressed by the IX
index register from the packed BCD string addressed by
the IY index register. Stores the result in the string
addressed by the IY register.

The length of the string (number of BCD digits) is spec­
ified by the CL register and can vary from 1 to 254 digits.

When the number of digits is even, the zero and carry
flags will be set according to the result of the operation.
When the number of digits is odd, the zero and carry flags
may not be set correctly. In this case, (CL = odd), the zero
flag will not be set unless the upper 4 bits of the highest
byte are all zero. The carry flag will not be set unless there

Byte Offset +m

Memo7 i
Digi10ffset

+CL :: i

Section 12
Instruction Set

is a carry out of the upper 4 bits of the highest byte. When
CL is odd, the contents of the upper 4 bits of the highest
byte of the result are undefined.

The destination string must always be located within the
segment specified by the DS1 segment register. Segment
override is prohibited.

The default segment register for the source string is DSo,
and segment override is possible. The source string may
be located within the segment specified by any (optional)
segment register.

The format for the packed BCD string is shown as
follows.

Bytes: 2

Clocks: 7 + 19 n, where n = one-half the number of
BCD digits

Transfers: 3n

Flag operation:

P

u
CY

X

Example: See example for CMP4S

IX
IV

+1 +0 ! i

i
,
,
I

+4 +3 +2 +1 0

49 OCXX1LlA

12-43

pPD70108/70116

CMP4S

[DS1-spec:]dst-string,[seg-spec:]src-string
CMP4S (no operand)
Compare nibble string

7

o o o o 1 1 1

o o 1 o o 1 1

BCD string (IY,Cl) - BCD string (IX,Cl)

o
1

o

Subtracts the packed BCD string addressed by the IX
index register from the packed BCD string addressed by
the IY index register. The result is not stored and only
the flags are affected. The length of the string (number
of BCD digits) is specified by the Cl register and can vary
from 1 to 254 digits.

When the number of digits is even, the zero and carry
flags will be set according to the result of the operation.
When the number of digits is odd, the zero and carry flags
may not be set correctly. In this case, (Cl = odd), the zero
flag will not be set unless the upper 4 bits of the highest
byte are all zero. The carry flag wili not be set unless there
is a carry out of the upper 4 bits of the highest byte. When
Cl is odd, the contents of the upper 4 bits of the highest
byte of the result are undefined.

The default segment register for the source string is DSo
and segment override is possible.

The source string may be located within the segment
specified by any (optional) segment register. The format
for the packed BCD string is shown below.

Bytes: 2

Clocks: 7 + 19n, where n = one-halfthe numberof BCD
digits

Transfers: 2

Flag operation:

v S Z AC P CY

U U X U U X

Byte Off'"-set_~-.:.;+m~,----.,..--1H

Memo; i $$ i
Digit Offset + CL

12-44

NEe
Example:

;pPD70116 BCD string operation
MOV

MOV
MOV
MOV

MOV
MOV

CMP4S
ADD4S

CMP4S
SUB4S

SUB4S

SUB4S

HALT

AW,PS ;Set both data
;segments to

DSO,AW ;same as program
DS1,AW ;segment
IX,OFFSET STRO

;Point to BCD strings
IY,OFFSET STR1
Cl,8 ;Eight digits

;instrings (A)
;Compare (B)
;Add stringO
;to string1 (C)
;Compare again (D)
;Subtract stringO
;from string1 (E)
;again (result is
zero) (F)
;and again
;(underflow) (G)

STRO OW 4321 H,0765H
;BCD# 07654321

STR1 OW 4321 H,0765H
;BCD# 07654321

; at (A), STRO = 7654321,
STR1 = 7654321, Z=?, CY =?

; at (B), STRO = 7654321,
STR1 = 7654321, Z = 1, CY = 0

; at (C), STRO = 7654321,
STR1 = 15308642, Z = 0, CY = 0

; at (D), STRO = 7654321,
STR1 = 15308642, Z = 0, CY = 0

; at (E), STRO = 7654321,
. STR1 = 7654321, Z = 0, CY = 0

; at (F), STRO = 7654321,
STR1 = 00000000, Z = 1, CY = 0

; at (G), STRO = 7654321,
STR1 = 92345679, Z = 0, CY = 1

+1

i
+4 +3 +2

IX
IV

" ! i :
+1 0

49(J(J(i)' iA

NEe
ROL4 reg8

Rotate left nibble, 8-bit register

7 0

0 0 0 0 1 1 1 1

0 0 1 0 1 0 0 0

1 1 0 0 0 reg

reg8

.----- ALL Higher Lower I--4 Bits 4 Bits

49.000024A

Treats the byte data of the 8-bit register specified by the
operand as a two-digit BCD and uses the lower 4 bits
of the AL register (ALJ to rotate that data one digit to
the left.

Due to the result of this instruction, the contents of the
upper 4 bits of the AL register are not assured.

Bytes: 3

Clocks: 25

Transfers: None

Flag operation: None

Example:
MOV
MOV
ROL4

BL,95H
AL,03H
BL ;BL = 53H, AL = X9H

Section 12
Instruction Set

ROL4 mem8

Rotate left nibble, 8-bit memory

7 0

0 0 0 0 1 1 1 1

0 0 1 0 1 0 0 0

I I
mod 0 0 0 mem

I I
(disp-Iow)

I I
(disp-high)

(mem8)

- ALL Higher Lower I---
4 Bits 4 Bits

49-<lOO406A

Treats the byte data of the 8-bit memory location
addressed by the operand as a two-digit BCD and uses
the lower 4 bits of the AL register (ALd to rotate that data
one digit to the left.

Due to the result of this instruction, the contents of the
upper 4 bits of the AL register are not assured.

Bytes: 3/4/5

Clocks: 28

Transfers: 2

Flag operation: None

Example:
MOV
MOV
ROL4

BYTE PTR [IX],12H
AL,03H
[IX] ;[IX] = 23H, AL = X1 H

12-45

pPD70108/70116

ROR4 reg8

Rotate right nibble, 8-bit register

7 0

0 0 0 0 1 1 1 1

0 0 0 1 0 1 0

1 1 0 0 0 reg

regS

r--- ALL Higher Lower -
4 Bits 4 Bits

49.000025A

Treats the byte data of the 8-bit register specified by the
operand as two-digit BCD and uses the lower 4 bits of
the AL register (ALL,) to rotate the data one digit to
the right.

Due to the result of this instruction, the contents of the
upper 4 bits of the AL register are not assured.

Bytes: 3

Clocks: 29

Transfers: None

Flag operation: None

Example:
MOV
MOV
ROR4

12-46

CL,95H
AL,03H
CL ;CL = 39H, AL = X5H

~

~

NEe
ROR4 mem8

Rotate right nibble, 8-bit memory

7 0
. I

0 0 0 0 1 1 1 1

0 0 1 0 1 0 1 0

I I
mod 0 0 0 mem

i i
(disp-Iow)

i i
(disp-high)

(mem8)

- ALL Higher Lower r--4 Bits 4 Bits

49-000407A

Treats the byte data of the 8-bit memory location
addressed by the operand as a two-digit BCD and uses
the lower 4 bits of the AL register (ALL,) to rotate that data
one digit to the right. Due to the result of this instruction,
the contents of the upper 4 bits of the AL register are not
assured.

Bytes: 3/4/5

Clocks: 33

Transfers: 2

Flag operation: None

Example:
MOV
MOV
ROR4

BYTE PTR [IX],12H
AL,03H
[IX] ;[IX] = 31 H, AL = X2H

NEe
INCREMENT/DECREMENT
INC regS

Increment 8-bit register

7

1 1 1 1

1 1 o o

reg8 - reg + 1

1 1

o

o
1 o

reg

Increments by 1 the contents of the 8-bit register spec­
ified by the operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

P CY

x

Example: INC BL

Section 12
I nstruction Set

INC mem

Increment memory

7 o
1 1 1 1 1 1 1 W

I
mod o

(mem) - (mem) + 1

o o
I I

(disp-Iow)

I I
(disp-high)

I
mem

Increments by 1 the contents of the 8- or 16-bit memory
location specified by the operand.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24, pPD70108

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:

AC

x

INC
INC

WORD_VAR
BYTE PTR [BW]

P CY

x

12-47

pPD70108/70116

INC reg16

Increment 16-bit register

7

I 0 I 1 I 0 I 0

reg16 - reg16 + 1

o
o

reg

Increments by 1 the contents of the 16-bit register spec­
ified by the operand.

Bytes :1

Clocks: 2

Transfers: None

Flag operation:

Example:
INC BW
INC IX

12-48

AC p CY

x x

NEe
DEC reg8

Decrement 8-bit register

7 0

1 1 1 1 1 1 1 0

1 1 0 0 1 reg

reg8 - reg8 - 1

Decrements by 1 the contents of the 8-bit register spec­
ified by the operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

I
V

I
s

I
z

I
AC P CY

X X X X X

Example: DEC DH

NEe
DEC mem

Decrement memory

7 0

1 1 1 1 1 1 1 W

i i
mod 0 0 1 mem

i i
(disp-Iow)

i i
(disp-high)

(mem) - (mem) - 1

Decrements by 1 the 8- or 16-bit memory contents
addressed by the operand.

Bytes: 2/3/4

Clocks:
When w=o: 16
When W=1: 24, pPD70108

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:

AC P

x x

DEC
DEC

BYTE_VAR
WORD_VAR[BW][IX]

CY

DEC reg16

Decrement 16-bit register

7

I 0 i 1 o o

reg16 - reg16-1

1

Section 12
Instruction Set

o
reg

Decrements by 1 the contents of the 16-bit register spec­
ified by the operand.

Bytes: 1

Clocks: 2

Transfers: None

Flag operation:

I
V

I
s

I
z

I
AC P CY

X X X X X

Example: DEC BP

12-49

/

pPD7010S/70116

MULTIPLICATION
MULU reg8

Multiply unsigned, 8-bit register

7

1 1 1 1

1 1 0

AW -ALX reg8
When AH=O: CY - 0, V - 0
When AH#O: CY - 1, V - 1

0

0

0

1 1 0

reg

Performs unsigned multiplication of the contents of the
AL register and the contents of the 8-bit register specified
by the operand. Stores the word result in the AL and AH
registers. When the upper half (AH) of the result is not
0, the carry and overflow flags are set.

Bytes: 2

Clocks: 21 or 22 (according to data)

Transfers: None

Flag operation:

Example:

MOV
MOV
MULU

12-50

AC P
U U

AL,13 ;AW = XXODH
CL,5

CY

x

CL ;AW=0041H=65,C=V=0

MULU mem8

Multiply unsigned, 8-bit memory

7

1 1 1 1 0

I
mod 1 0 0

I I
(disp-Iow)

I I
(disp-high)

AW - AL X (mem8)
When AH=O: CY - 0, V - 0
When AH#O: CY -1, V-1

NEe

0

1 1 0

I
mem

Performs unsigned multiplication of the contents of the
AL register and the 8-bit memory location addressed by
the operand. Stores the word result in the AL and AH
registers. When the upper half (AH) of the result is not
0, the carry and overflow flags are set.

Bytes: 2/3/4

Clocks: 27 or 28 (according to data)

Transfers: 1

Flag operation:

AC P CY

U U x

Example:

MOV AL,35
;AW=XX23H

MOV BYTE_VAR,20
MULU BYTE_VAR

;AW = 02BCH = 700, C = V = 1

• •
MULU BYTE PTR [IX]

NEe
MULU reg16

Multiply unsigned, 16-bit register

7

1 1 1 1 o

1 1 1 o o

OW, AW - AW X reg16
When OW=O: CY - 0, V - 0
When OW#O: CY -1, V-1

o
1 1 1

reg

Performs unsigned multiplication of the contents of the
AW register and the contents of the 16-bit register spec­
ified by the operand. Stores the double-word result in the
AW and OW registers. When the upper half (OW) of the
result is not 0, the carry and overflow flags are set.

Bytes: 2

Clocks: 29 or 30 (according to data)

Transfers: None

Flag operation:

Example:
MOV
MOV
MULU

AC

AW,1234H
CW,3
CW

U

P CY

U x

;OW = OOOOH, AW = 369CH,
;C=V=O

Section 12
Instruction Set

MULU mem16

Multiply unsigned, 16-bit memory

7

1 1 1 1 0

I
mod 1 0 0

I I
(disp-Iow)

I I
(disp-high)

OW, AW - AW X (mem16)
When OW=O: CY - 0, V - 0
When OW#O: CY -1, V-1

0

1 1 1

I
mem

Performs unsigned multiplication of the contents of the
AW register and the 16-bit memory contents addressed
by the operand. Stores the double-word result in the AW
and OW registers. When the upper half (OW) of the result
is not 0, the carry and overflow flags are set.

Bytes: 2/3/4

Clocks:
39 or 40, pP070108
39 or 40, pP070116 odd addresses
35 or 36,pP070116 even addresses

Transfers: 1

Flag operation:

Example:

MOV
MOV
MULU

AC P

U U

AW,400H
WORO_VAR,9310H
WORO_VAR

CY

x

;OW = 024CH,AW = 4000H,
;C=V= 1

12-51

pPD70108/70116

MUL reg8

Multiply signed, 8-bit register

7

1 1 1 1 o

1 1 1 o 1

AW -ALX reg8

1 1

reg

When AH=sign extension of AL: CY - 0, V - 0
When AH:;;6sign extension of AH: CY - 1, V - 1

o
o

Performs signed multiplication of the contents of the AL
register and the contents of the 8-bit register specified
by the operand. Stores the double-word result in the AL
and AH registers. When the upper half (AH) of the result
is not the sign extension of the lower half (AL), the carry
and overflow flags are set.

Bytes: 2

Clocks: 33 to 39 (according to data)

Transfers: None

Flag operation:

AC p CY

U U x

Example:
MOV AL,18

;AW=XX12H
MOV CL,-2

;CL= FEH
MUL CL

;AW = FFDC = -36, C = V = 0

12-52

NEe
MULmem8

Multiply signed, 8-bit memory

7 0

1 1 1 1 0 1 1 0

I I
mod 1 0 1 mem

I I
(disp-Iow)

I I
(disp-high)

AW - AL X (mem8)
When AH=sign extension of AL: CY - 0, V - 0
When AH:;;6sign extension of AH: CY -1, V-1

Performs signed multiplication of the contents of the AL
register and the 8-bit memory location addressed by the
operand. Stores the double-word result in the AL and AH
registers. When the upper half (AH) of the result is not
the sign extension of the lower half (AL), the carry and
overflow flags are set.

Bytes: 2/3/4

Clocks: 39 to 45 (according to data)

Transfers: None

Flag operation:

AC p CY

U U x

Example:
MOV AL,100

;AW= XX64H
MOV BYTE_VAR,-4

;=FCH
MUL BYTE_VAR

;AW = FE70H = -400, C = V = 1

NEe
MUL reg16

Multiply signed, 16-bit register

7 0

1 1 1 1 0 1 1 1

1 1 1 0 1 reg

ow, AW - AW X reg16
When OW=sign extension of AW: CY - 0, V -- 0
When OW#sign extension of AH: CY - 1, V - 1

Performs signed multiplication of the contents of the AW
register and the contents of the 16-bit register specified
by the operand. Stores the double-word result in the AW
and OW registers. When the upper half (OW) of the result
is not the sign extension of the lower half (AW), the carry
and overflow flags are set.

Bytes: 2

Clocks: 41 to 47 (according to data)

Transfers: None

Flag operation:

Example:

MOV

MOV

MUL

AC P

U U

AW,-10
;AW= FFF6H

BW,-10
;BW= FFF6H

BW

CY

x

;OW = 0000, AW = 0064H = 100,
;C=V=O

Section 12
Instruction Set

MULmem16

Multiply signed, 16-bit memory

7 0

1 1 1 1 0 1 1 1

I I I
mod 1 0 1 mem

I I
(disp-Iow)

I I
(disp-high)

Ow, AW - AW X (mem16)
When OW=sign extension of AW: CY - 0, V - 0
When OW#sign extension of AW: CY - 1, V - 1

Performs signed multiplication of the contents of the AW
register and the 16-bit memory contents addressed by
the operand. Stores the double-word result in the AWand
OW registers. When the upper half (OW) of the result is
not the sign extension of the lower half (AW), the carry
and overflow flags are set.

Bytes: 2/3/4

Clocks:
51 to 57, pP070108
51 to 57, pP070116 odd addresss
47 to 53, pP070116 even addresses

Transfers: 1

Flag operation:

Example:

MOV AW,-10

AC P

U U

;AW= FFF6
MOV [IX],-20

;= FFEC
MUL WORD PTR [IX]

CY
x

;OW = 0000, AW = 00C8H = 200,
;C=V=O

12-53

JlPD70108/70116

MUL reg16,reg16,imm8
MUL reg16,imm8

Multiply signed, 16-bit register X 8-bit immediate data
to 16-bit register

7

o 1 1

1 1

o 1

reg

I
imm8

reg16 - reg16 X imm8
Product:::; 16 bits: CY - 0, V - 0
Product> 16 bits: CY -1, V-1

o
o 1 1

reg

Performs signed multiplication of the contents of the
16-bit register specified by the second operand. (If a two­
operand description, then performs signed multiplication
on the contents specified by the first operand.) Performs
signed multiplication on the 8-bit immediate data spec­
ified by the third operand. (If a two-operand description
then performs signed multiplication on the data specified
by the second operand.)

When the source register and the destination register are
the same, a two-operand description is acceptable.

Bytes: 3

Clocks: 28 to 34 (according to data)

Transfers: None

Flag operation:

AC P CY

U U x

Example:
MUL AW,BW,10

;AW= BW*10
MUL CW,25

;CW=CW*25

12-54

NEe
MUL reg16,mem16,imm8

Multiply signed, 16-bit memory X 8-bit immediate data
to 16-bit register

7 0

01101011

I
mod reg

I I
(disp-Iow)

I I
(disp-high)

I
imm8

reg16 - (MEM16) X imm8
Product:::; 16 bits: CY - 0, V - 0
Product> 16 bits: CY - 1, V - 1

I
mem

Performs signed multiplication of the contents of the
16-bit memory contents addressed by the second oper­
and and the 8-bit immediate data specified by the third
operand. Stores the result in the 16-bit register specified
by the first operand.

Bytes: 3/4/5

Clocks:
38 to 44, pPD70108
38 to 44, pPD70116 odd addresses
34 to 40, pPD70116 even addresses

Transfers: 1

Flag operation:

Example:

AC P

U U

MUL CW,WORD_VAR,7

CY

x

;CW = [WORD_VAR)*7
MUL AW,[IX),22

;AW = [IX)*22

NEe
MUL reg16,reg16,imm16
MUL reg16,imm16

Multiply signed, 16-bit register X 16-bit immediate data
to 16-bit register

7

0 1 1 0 1

1 1 reg

I I
imm16-low

I I
imm16-high

reg16 - reg16 X imm16
If product:::; 16 bits: CY - 0, V - 0
If product> 16 bits: CY - 1, V - 1

0

0 0 1

reg

Performs signed multiplication of the contents of the
16-bit register specified by the second operand - the
first operand, when a two-operand description - and the
16-bit immediate data specified by the third (second)
operand. Stores the result in the 16-bit register specified
by the first operand.

When the source register and the destination register are
the same, a two-operand description is possible.

Bytes: 4

Clocks: 36 to 42 (according to data)

Transfers: None

Flag operation:

Example:
MUL

MUL

AC P

U U

AW,BW,200H
;AW = BW*200H

IX,300
;IX = IX*300

CY

x

Section 12
Instruction Set

MUL reg16,mem16,imm16

Multiply signed, 16-bit memory X 16-bit immediate data
to 16-bit register

7

0 1 0 1

I
mod reg

I I
(disp-Iow)

I I
(disp-high)

I I
imm16-low

I I
imm16-high

reg16 - (mem16) X imm16

If product:::; 16 bits: CY - 0, V - 0
If product> 16 bits: CY - 1, V - 1

0

0 0 1

I
mem

Performs signed multiplication of the 16-bit memory con­
tents specified by the second operand and the 16-bit
immediate data specified by the third operand. Stores the
result in the 16-bit register specified by the first operand.

Bytes: 4/5/6

Clocks:
46 to 52, JlPD70108
46 to 52, JlPD70116 odd addresses
42 to 48, JlPD70116 even addresses

Transfers: 1

Flag operation:

Example:

AC P

U U

MUL CW,WORD_VAR,200H

CY

x

;CW = [WORD_VAR]*200H
MUL AW,[IX],850

;AW = [IX]*850

12-55

pPD7010S/70116

DIVISION

DIVU regS

Divide unsigned, 8-bit register

7

1 1 1 1

1 1 1

temp -AW
When temp -;- reg 3::; FFH:

AH - temp % reg8
AL - temp -;- reg8

When temp -;- reg8 > FFH:
(SP-1,SP-2) - PSW,
(SP-3,SP-4) - PS,
(SP-5,SP-6) - PC,
SP - SP - 6,
IE-O,
BRK-O,
PS - (003H, 002H),
PC - (001 H, OOOH)

o

o

o
1 1 o

reg

Divides (using unsigned division) the contents of the AW
16-bit register by the contents of the 8-bit register spec­
ified by the operand. The resulting quotient is stored in
the AL register. Any remainder is stored in the AH register.

When the quotient exceeds FFH (the capacity of the AL
destination register) the vector a interrupt is generated.
When this occurs, the quotient and remainder become
undefined. This usually occurs when the divisor is O. The
fractional quotient is rounded off.

Bytes: 2

Clocks: 19

Transfers: None

Flag operation:

Example:
MaV
MaV
DIVU

AW,204
CL,10
CL

AC

U

P CY

U U

;AL = 20, AH = 4

12-56

DIVU memS

Divide unsigned, 8-bit memory

7

I
mod

1 1

1

a

o
I I

(disp-Iow)

I I
(disp-high)

temp-AW
When temp -;- (mem8) = FFH:

AH - temp % (mem8),
AL - temp -;- (mem8).

When temp -;- (mem8) > FFH:
(SP-1,SP-2) - PSW,
(SP-3,SP-4) - PS,
(SP-5,SP-6) - PC,
SP - SP - 6
IE-a,
BRK-O,
PS - (003H, 002H),
PC - (001 H, OOOH),

1

t-IEC

1

I
mem

o
o

Divides (using unsigned division) the contents of the AW
16-bit register by the 8-bit memory contents specified by
the operand. The quotient is stored in the AL register and
the remainder, if any, is stored in the AH register.

When the quotient exceeds FFH - the capacity of the
AL destination register - the vector 0 interrupt is gener­
ated. When this occurs, the quotient and remainder
become undefined. This especially occurs when the di­
visor is O. The fractional quotient is rounded off.

Bytes: 2/3/4

Clocks: 25

Transfers: 1

Flag operation:

AC P CY

U U U

Example:

MaV AW,3410
MaV [BW],19
DIVU [BW]

;AL = 179, AH = 9

NEe
DIVU reg16

Divide unsigned, 16-bit register

7

1 1 1 1 0

1 1 1 1 0

temp - DW,AW
When temp -7- reg16 > FFFFH:

(SP-1,SP-2) - PSw,
(SP-3,SP-4) - PS,
(SP-5,SP-6) - PC,
SP -SP-6
IE-O,
BRK-O
PS +- (003H, 002H),
PC +- (001 H, OOOH)

All other times:

1 1

reg

DW - temp % reg16, AW +- temp -7- reg16

0

1

Divides (using unsigned division) the contents of the DW
and AW 16-bit register pair by the contents of the 16-bit
register specified by the operand. The quotient is stored
in the AW register. The remainder, if any, is stored in the
DW register. When the quotient exceeds FFFFH (the
capacity ofthe AW destination register) the vector 0 inter­
rupt is generated, and the quotient and remainder
become undefined. This most often occurs when the
divisor is O. The fractional quotient is rounded off.

Bytes: 2

Clocks: 25

Transfers: None

Flag operation:

Example:
MOV
MOV

MOV
DIVU

AC

DW,0348H
AW,2197H

U

P CY
U U

;DW,AW = 03482197H
BW,2000H
BW

;AW = 1A41 H,DW = 0197H

Section 12
Instruction Set

DIVU mem 16

Divide unsigned, 16-bit memory

7

1

I
mod

1

temp - DW,AW

1

o

1 o
I I

(disp-Iow)

I I
(disp-high)

When temp -7- (mem16) > FFFFH:
(SP-1,SP-2) +- PSW,
(SP-3,SP-4) - PS,
(SP-5,SP-6) +- PC,
SP +- SP-6
IE-O,
BRK +- 0,
PS +- (003H, 002H),
PC +- (001 H, OOOH)

All other times:

1 1

I
mem

o
1

DW +- temp % (mem16), AL +- temp -7- (mem16)

Divides (using unsigned division) the contents of the DW
and AW 16-bit register pair by the 16-bit memory con­
tents specified by the operand. The quotient is stored in
the AW register. The remainder, if any, is stored in the DW
register.

When the quotient exceeds FFFFH (the capacity of the
AW destination register) the vector 0 interrupt is gener­
ated and the quotient and remainder become undefined.
This especially occurs when the divisor is O. The frac­
tional quotient is rounded off.

Bytes: 2/3/4

Clocks:
35, pPD70108
35, pPD701'16 odd addresses
31, pPD70116 even addresses

Transfers: 1

Flag operation:

Example:
MOV
MOV
MOV
DIVU

DW,O
AW,100
[IX][BX],5
[IX][BX]

P

U

CY
U

;AW = 0014H = 20,DW = 0

12-57

IlPD70 10S/70116

DIV reg8

Divide signed, 8-bit register

7

1 1

1 1 1 1

temp +-AW

o

1

o
1 1 o

reg

When temp -;- reg8 > 0 and temp -;- reg8 > 7FH or temp
-;- reg8 > 0 and temp -;- reg8 > 0-7FH-1:

(SP-1,SP-2) +- PSw,
(SP-3,SP-4) +- PS,
(SP-5,SP-6) +- PC,
SP +- SP - 6,
IE +-0,
BRK +- 0,
PS +- (003H, 002H),
PC +- (001 H, OOOH)

All other times:
AH +- temp % reg8,
Al +- temp -;- reg8

Divides (using signed division) the contents of the AW
16-bit register by the contents of the 8-bit register spec­
ified by the operand. The quotient is stored in the Al 8-bit
register. The remainder, if any, is stored in the AH register.
The maximum value of a positive quotient is +127 (7FH),
and the minimum value of a negative quotient is
-127 (81 H).

When a quotient is greater than either maximum value(s)
the quotient and remainder become undefined, and the
vector 0 interrupt is generated. This especially occurs
when the divisor is O. A fractional quotient is rounded off.
The remainder will have the same sign as the dividend.

Bytes: 2

Clocks: 29 to 34 (according to data)

Transfers: None

Flag operation:

Example:
MOV
MOV
DIV

AW,-247
Cl,3
Cl

AC P CY
u u u

;Al = -82,AH = -1

12-58

DIV mem8

Divide signed, 8-bit memory

7

1 1 0

I
mod 1 1

I
(disp-Iow)

I
(disp-high)

temp +-AW

1

I

I

NEe

1

I
mem

o
o

When temp -;- (mem8) > 0 and (mem8) > 7FH or
temp -;- (mem8) < 0 and temp -;- (mem8) > 0-7FH-1:

(SP-1,SP-2) +- PSw,
(SP-3,SP-4) +- PS,
(SP-5,SP-6) +- PC,
SP +- SP - 6,
IE +-0,
BRK +- 0,
PS +- (003H, 002H),
PC +- (001 H, OOOH),

All other times:
AH +- temp % (mem8), Al +- temp -;- (mem8)

Divides (using signed division) the contents of the AW
16-bit register by the contents of the 8-bit memory loca­
tion specified by the operand. The quotient is stored in
the 8-bit Al register, while the remainder, if any, is stored
in the AH register. The maximum value of a positive quo­
tient is +127 (7FH), and the minimum value of a negative
quotient is -127 (81 H). When a quotient is greater than
either maximum value(s), the quotient and remainder
become undefined and the vector 0 interrupt is
generated.

This especially occurs when the divisor is O. A fractional
quotient is rounded off. The remainder will have the same
sign as the dividend.

Bytes: 2/3/4

Clocks: 35 to 40 (according to data)

Transfers: 1

Flag operation:

Example:
MOV
MOV
DIV

AW,1234
[BW], -20
[BW]

P CY
u u

;Al = -61, AH = 14

t-{EC
DIV reg16

Divide signed, 16-bit register

7

1 1 1 1

1 1 1 1

temp - DW,AW

o
o 1 1 1

1 reg

When temp ...;- reg16 > 0 and temp ...;- reg16 < 7FFFH or
temp...;- reg16 < 0 and temp...;- reg16 > 0-7FFFH-1:

(SP-1,SP-2) - PSW,
(SP-3,SP-4) - PS,
(SP-5,SP-6) - PC,
SP - SP - 6,
IE-O,
BRK-O,
PS - (003H, 002H),
PC - (001 H, OOOH)

All other times:
DW - temp % reg16, AW - temp ...;- reg16

Divides (using signed division) the contents of the DW
and AW 16-bit register pair by the contents of the 16-bit
register specified by the operand. The quotient is stored
in the AW 16-bit register, while the remainder, if any, is

Section 12
Instruction Set

stored in the DW register. The maximum value of a pos­
itive quotient is +32,767 (7FFFH) and the minimum value
of a negative quotient is -32,767 (8001 H). When the
quotient is greater than either maximum value(s), the
quotient and remainder become undefined, and the vec­
tor 0 interrupt is generated. This especially occurs when
the divisor is O. A fractional quotient is rounded off. The
remainder will have the same sign as the dividend.

Bytes: 2

Clocks: 38 to 43 (according to the data)

Transfers: None

Flag operation:

Example:
MOV
MOV
MOV
DIV

AC

DW,0123H
AW,4567H
CW,1000H
CW

u
P CY
u u

;AW = 1234H, DW = 0567H

12-59

pPD70108/70116

DIVmem16

Divide signed, 16-bit memory

7 0

1 1 1 1 0 1 1 1

I I I
mod 1 1 1 mem

I I
(disp-Iow)

I
(disp-high)

I

temp-DW,AW
When temp -:- (mem16) >0 and temp -:- (mem16) <7FFFH
or temp -:- (mem16) < 0 and temp -:- (mem16) >
0-7FFFH-1:

(SP-1,SP-2) - PSW,
(SP-3,SP-4) - PS,
(SP-5,SP-6) - PC,
SP-SP-6,
IE-O,
BRK-O,
PS - (003H, 002H),
PC - (001 H, OOOH)

All other times:
OW - temp % (mem16), AW - temp -:- (mem16)

Divides (using signed division) the contents of the OW
and the AW 16-bit register pair by the contents of the
16-bit memory location specified by the operand. The
quotient is stored in the AW 16-bit register, while the

12-60

NEe
remainder, if any, is stored in the OW register. The max­
imum value of a positive quotient is +32,767 (7FFFH), and
the minimum value of a negative quotient is -32,767
(8001 H). When ·the quotient is greater than either max­
imum value(s), the quotient and remainder become unde­
fined and the vector 0 interrupt is generated. This
especially occurs when the divisor is O. A fractional quo­
tient is rounded off. The remainder will have the same
sign as the dividend.

Bytes: 2/3/4

Clocks:
48 to 53, pPD70108
48 to 53, pPD70116 odd addresses
44 to 49, pPD70116 even addresses

Transfers: 1

Flag operation:

Example:
MOV
MOV
MOV

DW,O
AW,-34
[IY], -2
DIV [IY]

AC P
u u

;AW = 17, OW = 0

CY

u

ttlEC
BCD ADJUST

ADJBA (no operand)

Adjust byte add

7

I I I
~ 0 1

o
1 o 1 1 1

Adjusts the result of unpacked decimal addition stored
in the AL register into a single unpacked decimal number.
The higher 4 bits become zero.

When AL AND OFH > 9 or AC=1:
AL-AL+6,
AH-AH+1,
AC-1,
CY-AC,
AL - AL AND OFH

Bytes: 1

Clocks: 3

Transfers: None

Flag operation:

I
V

I
s

I

z

I
AC

U U U X

Example: ADJBA

P
U

CY

X

ADJ4A (no operand)

Adjust Nibble Add

7

I I I o 0 1 o o

Section 12
Instruction Set

o
1 1 1

When AL AND OFH < 9 or AC=1:
AL-AL+6,
CY -CYORAC,
AC-1

When AL > 9FH or CY=1:
AL-AL+60H,
CY-1

Adjusts the result of packed decimal addition stored in
the AL register into a single packed decimal number.

Bytes: 1

Clocks: 3

Transfers: None

Flag operation:

I
V

I
s

I
z

I

AC P CY

X X X X X X

Example: ADJ4A

12-61

pPD70108/70116

ADJBS (no operand)

Adjust byte subtract

7

I 0 I 0 I 1 I 1 1

When AL AND OFH > 9 or AC=1:
AL-AL-6,
AH-AH-1,
AC-1,
CY-AC,
AL - AL AND OFH

o
1 1 1

Adjust the result of unpacked decimal subtraction stored
in the AL register into a single unpacked decimal number.
The higher 4 bits become zero.

Bytes: 1

Clocks: 7

Transfers: None

Flag operation:

I

V

I

S

I

z
I

AC P CY
U U U X U X

Example: ADJBS

12-62

ADJ4S (no operand)

Adjust nibble subtract

7

1

When AL AND OFH > 9 or AC=1:
AL-AL-6,
CY-ACORCY,
AC-1,

When AL> 9FH or CY=1:
AL-AL- 60H,
CY-1

NEe

o
1 1 1

Adjusts the result of packed decimal subtraction stored
in the AL register into a single packed decimal number.

Bytes: 1

Clocks: 7

Transfers: None

Flag operation:

I

V

I

S

I

z
I

AC P CY

U X X X X X

Example: ADJ4S

NEe
DATA CONVERSION
CVTBO (no operand)

Convert binary to decimal

7 0

1 1 0 1 0 1 0 0

0 0 0 0 1 0 1 0

AH -AL+OAH
AL - AL ... 0/0 OAH

Converts the binary 8-bit value in the AL register into a
two-digit unpacked decimal number.

The quotient of AL divided by 10 is stored in the AH
register. The remainder of this operation is stored in the
AL register.

Bytes: 2

Clocks: 15

Transfers: None

Flag operation:

p CY
x u

Example: CVTBO

CVTOB (no operand)

Convert decimal to binary

7

1 1 0 1

0 0 0 0

AL - AH X OAH + AL
AH-O

0

1

Section 12
Instruction Set

0

1 0 1

0 1 0

Converts a two-digit unpacked decimal number in the
AH and AL registers into a single 16-bit binary number.
The value in the AH is multiplied by 10. The product is
added to the contents of the AL register and the result
is stored in AL. AH becomes O.

Bytes: 2

Clocks: 7

Transfers: None

Flag operation:

p CY
x u

Example: CVTOB

12-63

pPD7010S/70116

CVTBW (no operand)

Convert byte to word

7

I 1 I 0 o

When AL < BOH:
AH-O

All other times
AH - FFH

1 1

o
o o o

Expands the sign of the byte in the AL register to the AH
register. Use this instruction to produce a double-length
(word) dividend from a byte before a byte division is
performed. .

Bytes: 1

Clocks: 2

Transfers: None

Flag operation: None

Example: CVTBW

12-64

CVTWL (no oPEtrand)

Convert word to long word

7

I 1 I 0 o 1

When AW < BOOOH:
OW-O

All other times:
OW - FFFFH

t-IEC

o
1 o o

Expands the sign of the word in the AW register to the
OW register. Use this instruction to produce a double­
length (double-word) dividend from a word before a word
division is performed.

Bytes: 1

Clocks: 4 or 5 (according to data)

Transfers: None

Flag operation: None

Example: CVTWL

NEe
COMPARISON
CMP reg,reg

Compare register and register

7

o o 1 1 1

1 reg

reg - reg

o
o 1 W

reg

Subtracts the contents of the 8- or 16-bit register spec­
ified by the second operand from the contents of the 8- or
16-bit register specified by the first operand. The result
is not stored and only the flags are affected.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

Example:
CMP
CMP

AW,BW
CH,DL

AC P CY

x x x

Section 12
Instruction Set

CMP mem,reg

Compare memory and register

7 0

0 0 1 1 1 0 0 W

I I
mod reg mem

I I
(disp-Iow)

I I
(disp-high)

(mem) - reg

Subtracts the contents of the 8- or 16-bit register spec­
ified by the second operand from the 8- or 16-bit memory
contents addressed by the first operand. The result is not
stored and only the flags are affected.

Bytes: 2/3/4

Clocks:
When W=O: 11
When W=1: 15, pPD70108

15, pPD70116 odd addresses
11, pPD70116 even addresses

Transfers: 1

Flag operation:

Example:
CMP
CMP
CMP

AC

x

WORD_VAR,IX
BYTE_VAR,CL
[BW],AH

P CY

x x

12-65

pPD7010S/70116

CMP reg,mem

Compare register and memory

7 0

0 0 1 1 1 0 1 W

I I I
mod reg mem

I I
(disp-Iow)

I I
(disp-high)

Subtracts the 8- or 16-bit memory contents addressed
by the second operand from the contents of the 8- or
16-bit register specified by the first operand. The result
is not stored and only the flags are affected.

reg - (mem)

Bytes: 2/3/4

Clocks:
When W=O: 11
When W=1: 15, pPD70108

15, pPD70116 odd addresses
11, pPD70116 even addresses

Transfers: 1

Flag operation:

Example:
CMP
CMP

12-66

AC

x

AW,[IX]
CH,BYTE_VAR

P CY

x x

CMPreg,imm

Compare register and immediate data

7

1 0 0 0 0 0

1 1 1 1 1

I I I
imm8 or imm16-low

I
imm16-high

I

reg - imm

ttlEC

o
S W

reg

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the contents of the 8- or 16-bit
register specified by the first operand. The result is not
stored and only the flags are affected.

Bytes: 3/4

Clocks: 4

Transfers: None

Flag operation:

AC

Example:
CMP
CMP

BL,5
DW,1200H

x
P CY

x x

NEe
CMP mem,imm

Compare memory and immediate data

7

I
mod

o

(mem) - imm

o o o o

1 1

I I
(disp-Iow)

I I
(disp-high)

I I I
imm8 or imm16-low

I I
imm16-high

S

I
mem

o
W

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the 8- or 16-bit memory con­
tents addressed by the first operand. The result is not
stored and only the flags are affected.

Bytes: 3/4/5/6

Clocks:
When W=O: 13
When W=1: 17, JlPD70108

17, JlPD70116 odd addresses
13, JlPD70116 even addresses

Transfers: 1

Flag operation:

Example:

AC P

x x

CMP
CMP

BYTE PTR [BW],3
WORD_VAR,7000H

CY

x

Section 12
Instruction Set

CMP acc,imm

Compare accumulator and immediate data

7

o o 1 1 1 1

I I I
imm8 or imm16-low

I I
imm16-high

When W=O: AL - imm8
When W=1: AW - imm16

o
o
W

Subtracts the 8- or 16-bit immediate data specified by
the second operand from the accumulator (AL or AW)
specified by thefirst operand. The result is not stored and
only the flags are affected.

Bytes: 2/3

Clocks: 4

Transfers: None

Flag operation:

Example:
CMP
CMP

AL,O
AW,800H

AC P CY

x x x

12-67

pPD7010S/70116

COMPLEMENT OPERATION
NOT reg

Not register

7

1 1 1 1 o 1

1 1 o 1 o

reg +- reg

o
1 W

reg

NOTmem

Not memory

7

1

t
mod

1

o

1 o

1 o
t t

(disp-Iow)

t t
(disp-high)

NEe

o
1 W

t t
mem

Inverts (by performing a 1 's complement) each bit of the
8- or 16-bit register specified by the operand and stores
the result in the specified register. (mem) +- (mem)

Bytes: 2

Clocks: 2

Transfers: None

Flag operation: None

Example:
NOT BW
NOT CL

12-68

Inverts (by performing a 1 's complement) each bit of the
8- or 16-bit memory location addressed by the operand
and stores the result in the addressed memory location.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24, pPD70108

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation: None

Example:
NOT
NOT

WORD_VAR[IX][2]
BYTE PTR [IY]

t\'EC
NEG reg

Negate register

7

1

1

reg +- reg + 1

1

o

1

1

o
o 1 1 W

1 reg

Takes the 2's complement of the contents of the 8- or
16-bit register specified by the operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

Note: * = 0 if the contents of the operand register is O.

Example:

NEG
NEG

BL
AW

Section 12
Instruction Set

NEG mem

Negate memory

7

1

I
mod

1 1

0

(mem) +- (mem) + 1

1 0

1

I
(disp-Iow)

I
(disp-high)

1

I

I

1

I
mem

o
W

Takes the 2's complement of the 8- or 16-bit memory
contents addressed by the operand.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24, pPD70108

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Note: * = 0 if the contents of the memory operand is O.

Example:
NEG
NEG

WORD_VAR
BYTE PTR [BW][IX]

12-69

pPD7010S/70116

LOGICAL OPERATION
TEST reg,reg

Test register and register

7

1 o o o

1 1 reg

reg AND reg

o
o

1 o W

reg

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit register specified
by the second operand. The result is not stored and only
the flags are affected.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

Example:
TEST
TEST

12-70

AW,CW
CL,AH

P CY

x o

NEe
TEST mem,reg or TEST reg,mem

Test register and memory

7

1

I
mod

o

(mem) AND reg

o o o

reg

I I
(disp-Iow)

I I
(disp-high)

1 o

I
mem

o
W

ANDs the contents of the 8- or 16-bit second operand
and the contents of the 8- or 16-bit first operand.

The result is not stored and only the flags are affected.

Bytes: 2/3/4

Clocks:
When W=O: 10
When W=1: 14, pPD70108

14,pPD70116 odd addresses
10, pPD70116 even addresses

Transfers: 1

Flag operation:

Example:

AC

u

TEST
TEST

BYTE_VAR,DL
AH, [IX]

P CY

x o

NEe
TEST reg,imm

Test immediate data and register

7

1 1 o

1 1 o o o

I I I

1

imm8 or imm16-low

I I
imm16-high

reg AND imm

o
1 W

reg

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit immediate data
specified by the second operand. The result is not stored
and only the flags are affected.

Bytes: 3/4

Clocks: 4

Transfers: None

Flag operation: .

Example:
TEST
TEST

CW,1
AL,50H

AC P CY

u x o

Section 12
Instruction Set

TEST mem,imm

Test immediate data and memory

7

I
mod

1 1

o

1 o

o o
I I

(disp-Iow)

I I
(disp-high)

I I I

1

imm8 or imm16-low

I I
imm16-high

(mem) AND imm

I
mem

o
W

ANDs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec­
ified by the second operand. The result is not stored and
only the flags are affected.

Bytes: 3/4/5/6

Clocks:
When W=O:
When W=1:

Transfers: 1

Flag operation:

Example:

11
15, pPD70108
15, pPD70116 odd addresses
11, pPD70116 even addresses

AC P CY

u x o

TEST
TEST

BYTE PTR [BW],80H
WORD_VAR,OOFFH

12-71

JlPD7010S/70116

TEST acc,imm

Test immediate data and accumulator

7

1 o 1 o 1 o
I I I

imm8 or imm16-low

I I
imm16-high

When W=O: AL AND imm8
When W=1: AW AND imm16

o
o W

ANDs the contents of the accumulator (AL or AW) spec­
ified by the first operand and the 8- or 16-bit immediate
data specified by the second operand. The result is not
stored and only the flags are affected.

Bytes: 2/3

Clocks: 4

Transfers: None

Flag operation:

Example:
TEST
TEST

12-72

AC

u

AL,12H
AW,8000H

p CY

x o

AND reg,reg

AND register with register to register

7

o o 1 o o o

1 1 reg

reg +- reg AND reg

tttfEC

o
W

reg

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the contents of the 8- or 16-bit
register specified by the second operand. Stores the
result in the register specified by the first operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

Example: AND IX,AW

ttlEC
AND mem,reg

AND memory with register to memory

7 0

0 0 1 0 0 0 0 W

I I
mod reg mem

. I I
(dlsp-Iow)

I I
(disp-high)

(mem) - (mem) AND reg

ANDs the 8- or 16-bit memory contents addressed by the
first operand and the contents of the 8- or 16-bit register
specified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24,pPD70108

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:

AC

u

AND
AND

[BW][IX]3,AL
WORD_VAR,CW

P CY

x o

Section 12
Instruction Set

AND reg,mem

AND register with memory to register

7 0

0 0 1 0 0 0 1 W

I I I
mod reg mem

I I
(disp-Iow)

I I
(disp-high)

reg - reg AND (mem)

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit memory contents
addressed by the second operand. Stores the result in
the register specified by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 11
When W=1: 15,pPD70108

15, pPD70116 odd addresses
11, pPD70116 even addresses

Transfers: 1

Flag operation:

Example:
AND
AND

CL,BYTE_VAR
DW,[IY]

P CY

x o

12-73

pPD70108/70116

AND reg,imm

AND register with immediate data to register

7

1 0 0 0 0 0 0

1 1 1 0 0 reg

I I I
imm8 or imm16-low

I I
imm16-high

reg - reg AND imm

o
W

ANDs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit immediate data
specified by the second operand. Stores the result in the
register specified by the first operand.

Bytes: 3/4

Clocks: 4

Transfers: None

Flag operation:

Example:

AND
AND

12-74

CL,OFEH
DW,14H

AC P CY

u x 0

t-{EC
ANDmem,imm

AND memory with immediate data to memory

7 0

1 0 0 0 0 0 0 W

I I I
mod 1 0 0 mem

I I
(disp-Iow)

I I
(disp-high)

I I I
imm8 or imm16-low

I I
imm16-high

(mem) - (mem) AND imm

ANDs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec­
ified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=O: 18
When W=1: 26, pPD701 08

26, pPD70116 odd addresses
18, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:

AC P
u x

AND
AND

BYTE PTR [1Y],30H
[IY],3000H

CY

o

NEe
AND acc,imm

AND accumulator with immediate data to accumulator

o 1 o o 1

I I I
imm8 or imm16-low

I I
imm16-high

When W=O: AL +- AL AND imm8
When W=1: AW +- AW AND imm16

o
o W

ANDs the contents of the accumulator (AL or AW) spec­
ified by the first operand and the 8- or 16-bit immediate
data specified by the second operand. Stores the result
in the accumulator specified by the first operand.

Bytes: 2/3

Clocks: 4

Transfers: None

Flag operation:

Example:
AND
AND

AL,80H
AW,OFH

AC p CY
u x o

OR reg,reg

Section 12
Instruction Set

OR register and register to register

7 o
o o o o o 1 W

1 1 reg reg

reg +- reg OR reg

ORs the contents of the 8- or 16-bit register specified by
the first operand and the contents of the 8- or 16-bit
register specified by the second operand. Stores the
result in the register specified by the first operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

AC p CY
u x o

Example:
OR AL,AH
OR BW,CW

12-75

JlPD7010S/70116

OR mem,reg

OR memory and register to memory

7 0

0 0 0 0 1 0 0 W

I I I
mod reg mem

I
(disp-Iow)

I

I
(disp-high)

I

(mem) - (mem) OR reg

ORs the 8- or 16-bit memory contents addressed by the
first operand and the contents ofthe 8- or 16-bit register
specified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24, pPD70108

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:

AC P
u x

OR
OR

BYTE_VAR,CL
WORD_VAR [BP),AW

12-76

CY

o

ttlEC
OR reg,mem

OR register and memory to register

7 0

0 0 0 0 1 0 1 W

I I
mod reg mem

I
(disp-Iow)

I

I I
(disp-high)

reg - reg OR (mem)

ORs the contents of the 8- or 16-bit register specified by
the first operand and the 8- or 16-bit memory contents
addressed by the second operand. Stores the result in
the register specified by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 11
When W=1: 15, pPD70108

15, pPD70116 odd addresses
11, pPQ70116 even addresses

Transfers: 1

Flag operation:

AC

u

Example
OR
OR

CL,[IX)
CW,WORD_VAR

P CY

x o

NEe
OR reg,imm

OR register with immediate data to register

7

1 0 0 0 0 0 0

1 1 0 0 1 reg

I I I
imm8 or imm16-low

I I
imm16-high

reg - reg OR imm

o
W

ORs the contents of the 8- or 16-bit register specified by ,
the first operand and the 8- or 16-bit immediate data
specified by the second operand. Stores the result in the
register specified by the first operand.

Bytes: 3/4

Clocks: 4

Transfers: None

Flag operation:

AC P CY

u x o

Example:
OR CL,80H
OR AW,OFH

Section 12
Instruction Set

ORmem,imm

OR memory with immediate data to memory

7 0

1 0 0 0 0 0 0 W

I I
mod 0 0 1 mem

I I
(disp-Iow)

I I
(disp-high)

I I I
imm8 or imm16-low

I I
imm16-high

(mem) - (mem) OR imm

ORs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec­
ified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=O: 18
When W=1: 26, pPD70108

26, pPD70116 odd addresses
18, pPD70116 even addresses

Transfers: 2

Flag operation:

I
V

I
S

I
0 X

Example:

z AC

X U

OR BYTE_VAR,2

I

P

X

OR WORD PTR [IX),OFH

CY

0

12-77

pPD70108/70116

OR acc,imm

OR accumulator with immediate data to accumulator

7

o o o o 1 1

I I I
imm8 or imm16-low

I I
imm16-high

When W=O: AL - AL OR imm8
When W=1: AW - AW OR imm16

o
o W

ORs the contents ofthe accumulator (AL or AW) specified
by the first operand and the 8- or 16-bit immediate data
specified by the second operand. Stores the result in the
accumulator specified by the first operand.

Bytes: 2/3

Clocks: 4

Transfers: None

Flag operation:

AC p CY
u x o

Example:
OR AL,34H
OR AW,1

12-78

NEe
XOR reg,reg

Exclusive OR, register and register to register

7

o o 1 1 o o 1

1 1 reg reg

reg - reg XOR reg

o
W

XORs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit register specified
by the second operand. Stores the result in the register
specified by the first operand.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

Example:
XOR
XOR

AL,AH
CW,BW

AC p CY
u x o

NEe
XOR mem,reg

Exclusive OR, memory and register to memory

7 0

0 0 1 1 0 0 0 W

I I
mod reg mem

I I
(disp-Iow)

I I
(disp-high)

(mem) - (mem) XOR reg

XORs the 8- or 16-bit memory contents addressed by the
first operand and the contents of the 8- or 16-bit register
specified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24, pPD70108

24, pPD70116 odd addresses
16,pPD70116 even addresses

Transfers: 2

Flag operation:

AC

u

Example
XOR
XOR

[BW],CL
WORD_VAR,BP

P CY
x o

Section 12
Instruction Set

XOR reg,mem

Exclusive OR, register and memory to register

7 0

0 0 1 1 0 0 1 W

I I
mod reg mem

I I
(disp-Iow)

I I
(disp-high)

reg - reg XOR (mem)

XORs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit memory contents
addressed by the second operand. Stores the result in
the register specified by the first operand.

Bytes: 2/3/4

Clocks:
When W=O: 11
When W=1: 15, pPD70108

15, pPD70116 odd addresses
11,pPD70116 even addresses

Transfers: 1

Flag operation:

AC

u

Example
XOR
XOR

BH,[IX]
AW,WORD_VAR

P CY
x o

12-79

pPD70108/70116

XOR reg,lmm

Exclusive OR, register with immediate data to register

7 o
1 o o o o o o W

1 1 1 1 o reg

I I I
imm8 or imm16-low

I I
imm16-high

reg - reg XOR imm

XORs the contents of the 8- or 16-bit register specified
by the first operand and the 8- or 16-bit immediate data
specified by the second operand. Stores the result in the
register specified by the first operand.

Bytes: 3/4

Clocks: 4

Transfers: None

Flag operation:

Example
XOR
XOR

CL,2
IX,OFFOOH

XORmem,imm

12-80

NEe
Exclusive OR, memory with immediate data to memory

7 o
1 0 o o o o 0 W

I
mod 1 1 o

I I I
imm8 or imm16-low

I I
imm16-high

I I
(disp-Iow)

I I
(disp-high)

(mem) - (mem) XOR imm

I I
mem

XORs the 8- or 16-bit memory contents addressed by the
first operand and the 8- or 16-bit immediate data spec­
ified by the second operand. Stores the result in the
memory location addressed by the first operand.

Bytes: 3/4/5/6

Clocks:
When W=O: 18
When W=1: 26, pPD70108

26, pPD70116 odd addresses
18, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:

AC P

u x

XOR
XOR

BYTE PTR [1y],OFH
WORD_VAR,OFH

CY

o

NEe
XORacc,imm

Exclusive OR, accumulator with immediate data to
accumulator

7 o
o o 1 1 o 1 o W

I I I
immS or imm16-low

I I
imm16-high

XORs the contents of the accumulator (AL or AW) spec­
ified by the first operand and the S- or 16-bit immediate
data specified by the second operand. Stores the result
in the accumulator specified by the first operand.

When W=O: AL - AL XOR immS
When W=1: AW - AW XOR imm16

Bytes: 2/3

Clocks: 4

Transfers: None

Flag operation:

AC

Example:
XOR
XOR

AL,OFFH
AW,SOOOH

u
p CY
x o

Section 12
Instruction Set

BIT MANIPULATION

TEST1 reg8,CL

Test bit CL of the S-bit register

7 0

0 0 0 0 1 1 1 1

0 0 0 1 0 0 0 0

1 1 0 0 0 reg

When bit CL of regS=O: Z-1
When bit CL of regS=1: Z-O

Sets the Z flag to 1 when bit CL of the S-bit register
(specified by the first operand) is O. Resets the Z flag to
o when bit CL is 1. Only the lower 3 bits of CL are used
to address the bit.

Bytes: 3

Clocks: 3

Transfers: 1

Flag operation:

p CY
u o

Example: TEST1 AL,CL

12-S1

pPD70108/70116

TEST1 mem8,CL

Test bit CL of the 8-bit memory

7

0 0 0 0 1

0 0 0 1 0

I
mod 0 0 0

I I
(disp-Iow)

I I
(disp-high)

When bit CL of (mem8) = 0: Z +- 1
When bit CL of (mem8) = 1: Z +- 0

1

o

1

o

I
mem

o
1

o

Sets the Z flag to 1 when bit CL of the 8-bit memory
(addressed by the first operand) is O. Resets the Z flag
to 0 when the CL bit is 1. Only the lower 3 bits of CL are
used to address the bit.

Bytes: 3/4/5

Clocks: 12

Transfers: 1

Flag operation. -

Efl ~ i ~ I A~ ! : i ~y I
Example: TEST1 BYTE PTR [BW],CL

12-82

NEe
TEST1 reg16,CL

Test bit CL of the 16-bit register

7 0

0 0 0 0 1 1 1 1

0 0 0 1 0 0 0 1

1 1 0 0 0 reg

When bit CL of reg16 = 0: Z+-1
When bit CL of reg16 = 1: Z+-O

Sets the Z flag to 1 when bit CL of the 16-bit register
(specified by the first operand) is O. Resets the Z flag to
o when the bit is 1. Only the lower 4 bits of CL are used
to address a bit.

Bytes: 3

Clocks: 3

Transfers: 1

Flag operation:

P CY

u o

Example: TEST1 AW,CL

ttlEC
TEST1 mem16,CL

Test bit CL of the 16-bit memory

7

0 0 0 0 1 1

0 0 0 1 0 0

I
mod 0 0 0

I I
(disp-Iow)

I I
(disp-high)

When bit CL of (mem16) = 0: Z +- 1
When bit CL of (mem16) = 1: Z +- 0

0

1

0

I
mem

The first operand specifies the 16-bit memory location
and the second operand (CL) specifies the bit position.
When the bit specified by CL is 0, the Z flag is set to 1.
When that bit is 1, the Z flag is reset to O. Only the lower
4 bits of CL are used to address a bit.

Bytes: 3/4/5

Clocks:
16, pPD70108
16, pPD70116 odd addresses
12, pPD70116 even addresses

Transfers: 1

Flag operation:

P

u
CY
o

Example: TEST1 WORD PTR [BW],CL

~

Section 12
Instruction Set

TEST1 regS, imm3

Test bit imm3 of the 8-bit register

7

0 0 0 0 1

0 0 0 0

1 0 0 0

I
imm3

When bit imm3 of reg8 = 0: Z +- 1
When bit imm3 of reg8 = 1: Z +- 0

0

1

0 0

reg

Sets the Z flag to 1 when bit imm3 of the 8-bit register
(specified by the first operand) is O. Resets the Z flag to
o when the bit is 1. Only the lower 3 bits of the immediate
data are used to identify a bit.

Bytes: 4

Clocks: 4

Transfers: None

Flag operation:

Example: TEST1 BH,1

P CY
u o

12-83

pPD70108/70116

TEST1 mem8,imm3

Test bit imm3 of the a-bit memory

7

o 0 0 0 1 1

o

I
mod

o o

o

1 1

o o

(disJ-IOW) I

I I
(disp-high)

. I
Imm3

o

When bit imm3 of (mem8) = 0: Z - 1
When bit imm3 of (mem8) = 1: Z - 0

1

o
I

mem

o
1

o

The first operand specifies the 8-bit memory location and
the second operand (imm3) specifies the bit position.
When the bit specified by imm3 is 0, the Z flag is set to
1. When that bit is 1, the Z flag is reset to O. Only the lower
3 bits of the immediate data are used to address a bit.

Bytes: 4/5/6

Clocks: 13

Transfers: 1

Flag operation:

Example: TEST1

12-84

p CY

u o

TEST1 reg16, imm4

Test bit imm4 of the 16-bit register

7

0 0 0 0 1 1

0 0 0 1 1 0

1 1 0 0 0

I
imm4

When bit imm4 of reg16 = 0: Z-1
When bit imm4 of reg16 = 1: Z - 0

NEe

0

1 1

0 1

reg

The first operand specifies the 16-bit register and the
second operand (imm4) specifies the bit position. When
the bit specified by imm4 is 0, the Z flag is set to 1. When
that bit is 1, the Z flag is reset to O. Only the lower 4 bits
of the immediate data are used to address a bit.

Bytes: 4

Clocks: 4

Transfers: None

Flag operation:

- . --

I

V

I
S

I
Z

I

AC P CY

I 0 u X U U 0

Example: TEST1 AW,15

ttlEC
TEST1 mem16,imm4

Test bit imm4 of the 16-bit memory

7

0 0 0 0 1 1

0 0 0 1 1 0

I I
mod 0 0 0

I I
(disp-Iow)

When bit imm4 of (mem16) = 0: Z - 1
When bit imm4 of (mem16) = 1: Z - 0

0

1 1

0 1

I
mem

The first operand specifies the 16-bit memory and the
second operand (imm4) specifies the bit position. When
the bit specified by imm4 is 0, the Z flag is set to 1. When
that bit is 1, the Z flag is reset to O. The immediate data
in the last byte of the instruction is valid only for the lower
4 bits.

Bytes: 4/5/6

Clocks:
17, J.lPD701 08
17, J.lPD70116 odd addresses
13, J.lPD70116 even addresses

Transfers: 1

Flag operation:

P

u
CY

o

Example: TEST1 WORD PTR [BP],8

Non reg8,CL

Section 12
Instruction Set

Not bit CL of the 8-bit register

7 0

0 0 0 0 1 1 1 1

0 0 0 1 0 1 1 0

1 1 0 0 0 reg

Bit CL of reg8 - bit CL of reg8

The CL register (second operand) specifies which bit of
the 8-bit register (specified by the first operand) is to be
inverted. Only the lower 3 bits ofthe CL register are used.

Bytes: 3

Clocks: 4

Transfers: None

Flag operation: None

Example: NOn BH,CL

12-85

pPD70108/70116

NOT1 mem8,CL

Not bit CL of the 8-bit memory

7

o 0 001

o
I

mod

o o

o

1 o

o o

I I
(disp-Iow)

. I I
(disp-high)

1

1

Bit CL of (mem8) - bit CL of (mem8)

o
1 1

1 o

I I
mem

The CL register (second operand) specifies which bit of
the 8-bit memory location (specified by the first operand)
is to be inverted. Only the lower 3 bits of the CL register
are used.

Bytes: 3/4/5

Clocks: 18

Transfers: 2

Flag operation: None

Example: NOn BYTE_VAR,CL

12-86

NEe
NOT1 reg16, CL

Not bit CL of the 16-bit register

7 0

0 0 0 0 1 1 1 1

0 0 0 1 0 1 1 1

1 1 0 0 0 reg

Bit CL of reg16 - bit CL of reg16

The CL register (second operand) specifies which bit of
the 16-bit register (specified by the first operand) is to
be inverted. Only the lower 4 bits of the CL register are
used.

Bytes: 3

Clocks: 4

Transfers: None

Flag operation: None

Example: NOT1 AW,CL

NEe
NOT1 mem16,CL

Not bit CL of the 16-bit memory

7 0

0 0 0 0 1 1 1 1

0 0 0 1 0 1 1 1

I I I
mod 0 0 0 mem

I I
(disp-Iow)

I I
(disp-high)

Bit CL of (mem16) - bit CL of (mem16)

The CL register (second operand) specifies which bit of
the 16-bit memory location (addressed by the first oper­
and) is to be inverted. Only the lower 4 bits of the CL
register are used.

Bytes: 3/4/5

Clocks:
26, pPD70108
26,pPD70116 odd addresses
18,pPD70116 even addresses

Transfers: 2

Flag operation: None

Example: NOT1 WORD_VAR,CL

Section 12
Instruction Set

NOT1 reg8,imm3

Not bit imm3 of the 8-bit register

7 0

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 0

1 1 0 0 0 reg

I
imm3

Bit imm3 of reg8 - bit imm3 of reg8

Bit imm3 (second operand) specifies which bit of the 8-bit
register (specified by the first operand) is to be inverted.
Only the lower 3 bits of the immediate data at the fourth
byte of the instruction are used.

Bytes: 4

Clocks: 5

Transfers: None

Flag operation: None

Example: NOT1 AH,3

12-87

pPD70108/70116

NOT1 mem8,imm3

Not bit imm3 of 8-bit memory

7

0 0 0

0 0 0

I
mod 0

0 1

1 1

0 0

I I
(disp-Iow)

I I
(disp-high)

I
imm3

1

1

Bit imm3 of mem8 - bit imm3 of mem8

0

1 1

1 0

I
mem

Bit imm3 (second operand) specifies which bit ofthe 8-bit
memory location (addressed by the first operand) is to
be inverted. Only the lower 3 bits of the immediate data
are used in the last byte of the instruction.

Bytes: 4/5/6

Clocks: 19

Transfers: 2

Flag operation: None

Example: NOT1 BYTE PTR [BW][IX]34H,4

12-88

NEe
NOT1 reg16,imm4

Not bit imm4 of the 16-bit register

7 0

0 0 0 0 1 1 1

0 0 0 1 1 1 1

1 0 0 0 reg

I
imm4

Bit imm4 of reg16 - bit imm4 of reg16

Bit imm4 (second operand) specifies which bit of the
16-bit register (specified by the first operand) is to be
inverted. Only the lower 4 bits of the immediate data are
used in the fourth byte of the instruction.

Bytes: 4

Clocks: 5

Transfers: None

Flag operation: None

Example: NOT1 BW.15

t\'EC
NOT1 mem16,imm4

Not bit imm4 of the 16-bit memory

7

o 0 0 0 1 1

o
I

mod

o o

o

1 1 1

o o
I I

(disp-Iow)

1

1

I I
mem

Bit imm4 of (mem16) - bit imm4 of (mem16)

o
1

1

The bit imm4 (second operand) specifies which bit of the
16-bit memory location (addressed by the first operand)
is to be inverted. Only the lower 4 bits of the immediate
data are used in the last byte of the instruction.

Bytes: 4/5/6

Clocks:
27, J.lPD70108
27, J.lPD70116 odd addresses
19, J.lPD70116 even addresses

Transfers: 2

Flag operation: None

Example: NOn WORD_VAR,O

NOT1 CY

Not carry flag

7

I
I

1 1 1

CY-Cy

Inverts the CY flag.

Bytes: 1

Clocks: 2

Transfers: None

Flag operation:

I

V

I

s
I

z
U U U

Example: NOT1

1

I

AC

U

CY

Section 12
Instruction Set

o
o 1 o 1

P CY

u x

12-89

pPD7010S/70116

CLR1 reg8,CL

Clear bit CL of the 8-bit register

7 0

0 0 0 0 1 1 1 1

0 0 0 1 0 0 1 0

1 1 0 0 0 reg

Bit CL of reg8 +- 0

Clears the bit specified by CL of the 8-bit register (spec­
ified by the first operand) to O. Only the lower three bits
of CL are used.

Bytes: 3

Clocks: 5

Transfers: None

Flag operation: None

Example: CLR1 AL,CL

12-90

CLR1 mem8,CL

Clear bit CL of the 8-bit memory

7

o 0 0 0 1 1

o
I

mod

o o

o

1 o

o o
I I

(disp-Iow)

I I
(disp-high)

Bit CL of (mem8) +- 0

o

NEe

1

1

I
mem

o
1

o

Clears the bit specified by CL of the 8-bit memory loca­
tion (addressed by the first operand) to O. Only the lower
three bits of CL are used.

Bytes: 3/4/5

Clocks: 14

Transfers: 2

Flag operation: None

Example: CLR1 BYTE_VAR,CL

NEe
CLR1 reg16,CL

Clear bit CL of the 16-bit register

7 0

0 0 0 0 1 1 1 1

i
0 0 0 1 0 0 1 1

1 1 0 0 0 reg

Bit CL of reg16 - 0

Clears the bit specified by CL of the 16-bit register (spec­
ified by the first operand) to O. Only the lower four bits
of CL are used.

Bytes: 3

Clocks: 5

Transfers: None

Flag operation: None

Example: CLR1 AW,CL

Section 12
Instruction Set

CLR1 mem16,CL

Clear bit CL of the 16-bit memory

7 o
0 0 0 0 1 1 1 1

0 0 0 1 0 o 1 1

i i i
mod 0 0 0 mem

i i
(disp-Iow)

i i
(disp-high)

Bit CL of (mem16) - 0

Clears the bit specified by CL of the 16-bit memory loca­
tion (addressed by the first operand) to O. Only the lower
4 bits of CL are used.

Bytes: 3/4/5

Clocks:
22, pPD70108
22, pPD70116 odd addresses
14, pPD70116 even addresses

Transfers: 2

Flag operation: None

Example: CLR1 WORD_VAR,CL

12-91

pPD7010S/70116

CLR1 reg8,imm3

Clear bit imm3 of the 8-bit register

7 0

0 0 0 0 1 1 1 1 I
0 0 0 1 1 0 1 0 I
1 1 0 0 0 reg I

I

I imm3

Bit imm3 of reg8 - 0

Clears the bit specified by the 3-bit immediate data
(second operand) of the 8-bit register (specified by the
first operand) to O. Only the lower 3 bits of the immediate
data are used in the fourth byte of the instruction.

Bytes: 4

Clocks: 6

Transfers: None

Flag operation: None

Example: CLR1 BH,1

12-92

CLR1 mem8,imm3

Clear bit imm3 of the 8-bit memory

7

0 0 0

0 0 0

I
mod 0

0 1

1 1

0 0

I I
(disp-Iow)

I I
(disp-high)

I
imm3

Bit imm3 of (mem8) - 0

1

o

t\'EC

1

1

I
mem

o
1

o

Clears the bit specified by the 3-bit immediate data
(second operand) of the 8-bit memory location
(addressed by the first operand) to O. Only the lower 3
bits of immediate data are used in the last byte of the
instruction.

Bytes: 4/5/6

Clocks: 15

Transfers: 2

Flag operation: None

Example: CLR1 BYTE_VAR[BW],6

NEe
CLR1 reg16,imm4

Clear bit imm4 of the 16-bit register

7 0

0 0 0 0 1 1 1 1

0 0 0 1 1 0 1 1

1 1 0 0 0 reg

I
imm4

Bit imm4 of reg16 - 0

Clears the bit specified by the 4-bit immediate data
(second operand) of the 16-bit register (specified by the
first operand) to O. Only the lower 4 bits of the immediate
data are used in the fourth byte of the instruction.

Bytes: 4

Clocks: 6

Transfers: None

Flag operation: None

Example: CLR1 CW,5

Section 12
Instruction Set

CLR1 mem16,imm4

Clear bit imm4 of the 16-bit memory

7 0

0 0 0 0 1 1 1 1

0 0 0 1 1 0 1 1

I I I
mod 0 0 0 mem

I
imm4

I I
(disp-high)

I
imm4

Bit imm4 of (mem16) - 0

Clears the bit specified by the 4-bit immediate data
(second operand) of the 16-bit memory location
(addressed by the first operand) to O. Only the lower 4
bits of immediate data are used in the last byte of the
instruction.

Bytes; 4/5/6
,

Clocks:
23, J.lPD70108
23, J.lPD70116 odd addresses
15, J.lPD70116 even addresses

Transfers: 2

Flag operation: None

Example: CLR1 WORD PTR [BP],O

12-93

pPD70108/70116 NEe
CLR1 CY CLR1DIR

Clear carry flag Clear direction flag

7 0 7 0

I
I

I
I

1 1 1 1 1 0 0 0 1 1 1 1 1 0 0

CY-O DIR-O

Clears the CY flag. Clears the DIR flag. Sets index registers IX and IY to

Bytes: 1 autoincrement when MOVBK, CMPBK, CMPM, LDM
STM, INM, and OUTM are executed.

Clocks: 2
Bytes: 1

Transfers: None
Clocks: 2

Flag operation:
Transfers: None

I

V

I

S

I

z
I

AC P CY Flag operation: I DbR I
U U U U U 0

pIe: CLR1 DIR Exam
Example: CLR1 CY

12-94

t-{EC
SET1 reg8,CL

Set bit CL of the 8-bit register

7 0

0 0 0 0 1 1 1 1

0 0 0 1 0 1 0 0

1 1 0 0 0 reg

Bit CL of reg8 - 1

Sets the bit specified by CL of the a-bit register (specified
by the first operand) to 1. Only the lower three bits of CL
are used.

Bytes: 3

Clocks: 4

Transfers: None

Flag operation: None

Example: SET1 BL,CL

Set bit CL of the a-bit memory

SET1 mem8,CL

7

0 0 0 0

0 0 0 1

I
mod 0 0

Bit CL of (mem8) - 1

1

0

0

Section 12
Instruction Set

0

1 1 1

1 0 0

I
mem

Sets the bit specified by CL of the 8-bit memory location
(addressed by the first operand) to 1. Only the lower three
bits of CL are used.

Bytes: 3/4/5

Clocks: 13

Transfers: 2

Flag operation: None

Example: SET1 BYTE PTR [BW],CL

12-95

pPD70108/70116

SET1 reg16,CL

Set bit CL of the 16-bit register

7 0

0 0 0 0 1 1 1 1

0 0 0 1 0 1 0 1

1 1 0 0 0 reg

Bit CL of reg16 - 1

Sets the bit specified by CL of the 16-bit register (spec­
ified by the first operand) to 1. Only the lower four bits
of CL are used.

Bytes: 3

Clocks: 4

Transfers: None

Flag operation: None

Example: SET1 BW,CL

12-96

SET1 mem16,CL

Set bit CL of the 16-bit memory

7

0 0 0 0 1

0 0 0 1 0

I
mod 0 0 0

I I I
(disp-Iow)

I I
(disp-high)

Bit CL of (mem16) - 1

1

1

NEe

1

o

I
mem

o
1

1

Sets the bit specified by CL of the 16-bit memory location
(addressed by the first operand) to 1. Only the lower 4
bits of CL are used.

Bytes: 3/4/5

Clocks:
21, pPD701 08
21, pPD70116 odd addresses
13, pPD70116 even addresses

Transfers: 2

Flag operation: None

Example: SET1 WORD_VAR,CL

t\'EC
SET1 reg8,imm3

Set bit imm3 of the 8-bit register

7 0

0 0 0 0 1 1 1

0 0 0 1 1 1 0 0

1 1 0 0 0 reg

I
imm3

Bit imm3 of reg8 - 1

Sets the bit specified by the 8-bit immediate data (second
operand) of the 8-bit register (specified by the first oper­
and) to 1. Only the lower 3 bits of the immediate data are
used in the fourth byte of the instruction.

Bytes: 4

Clocks: 5

Transfers: None

Flag operation: None

Example: SEn AL,4

Section 12
Instruction Set

SET1 mem8,imm3

Set bit imm3 of the 8-bit memory

7

0 0 0

0 0 0

I
mod 0

0 1

1 1

0 0

I I
(disp-Iow)

I I
(disp-high)

I
imm3

Bit imm3 of (mem8) - 1

1

1

1

o
I

mem

o
1

o

Sets the bit specified by the 3-bit immediate data (second
operand) of the 8-bit memory location (addressed by the
first operand) to 1. Only the lower 3 bits of the immediate
data are used in the last byte of the instruction.

Bytes: 4/5/6

Clocks: 14

Transfers: 2

Flag operation: None

Example: SET1 BYTE_VAR,5

12-97

pPD7010S/70116

SEn reg16,imm4

Set bit imm4 of the 16-bit register

7 0
I.

0 0 0 0 1 1 1 1

0 0 0 1 1 1 0 1

1 1 0 0 0 reg

I
imm4

Bit imm4 of reg16 -1

Sets the bit specified by the 4-bit immediate data (second
operand) of the 16-bit register (specified by the first oper­
and) to 1. Only the lower 4 bits of the immediate data are
used in the 4th byte of the instruciton.

Bytes: 4

Clocks: 5

Transfers: None

Flag operation: None

Example: SET1 CW,O

12-98

SEn mem16,imm4

Set bit imm4 of the 16-bit memory

7

0 0 0

0 0 0

I
mod 0

0 1

1 1

0 0

I I
(disp-Iow)

I I
(disp-high)

I
imm4

Bit imm4 of (mem16) - 1

1

1

NEe

1

o
I

mem

o
1

1

Sets the bit specified by the 4-bit immediate data (second
operand) of the 16-bit memory location (addressed by the
first operand) to 1. Only the lower 4 bits of immediate data
are used in the last byte of the instruction.

Bytes: 4/5/6

Clocks:
22, pPD70108
22, pPD70116 odd addresses
14, pPD70116 even addresses

Transfers: 2

Flag operation: None

Example: SET1 Word_Var,15

ttlEC
SET1 CY

Set carry flag

7

I
i

1 1 1 1 1 a

CY-1

Sets the CY flag.

Bytes: 1

Clocks: 2

Transfers: None

Flag operation:

I
V

I

S

I
z

I
AC P CY

U u U U U 1

Example: SET1 CY

a
a 1

SET1DIR

Set direction flag

7

I
i

1 1 1

Dir-1

1 1

Section 12
Instruction Set

a
1 a 1

Sets the DIR flag. Sets index registers IX and IY to auto-
decrement when MOVBK, CMPBK, CMPM, LDM STM,
INM, and OUTM are executed.

Bytes: 1

Clocks: 2

Transfers: None

Flag operation: I D~R I

Example: SET1 DIR 1 Exam

12-99

pPD70108/70116

SHIFT
SHL reg,1

Shift left register, single bit

7

1 1 0 1 0

1 1 1 0 0

CY -- MSB of reg, reg -- reg X2
When MSB of reg #CY: V -- 1
When MSB of reg =CY: V -- 0

0

0 0 W

reg

Performs a shift left (1 bit) of the 8- or 16-bit register
specified by the first operand. Zero is loaded to the LSB
of the specified register and the MSB is shifted to the CY
flag. If the sign bit is the same after the shift, the V flag
is cleared.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

Example:
SHL BH,1
SHL AW,1

AC

u

CY 1517 14/6 Reg8/16 0

DI+---l. r='-rl I--=-r-~uf---~r-0

12-100

NEe

P CY

x x

49000026A

NEe
SHL mem,1

Shift left memory, single bit

7

1 0 1 0 0 0

I
mod 1 0 0 mem

I I
(disp-Iow)

I I
(disp-high)

CY +- MSB of (mem), (mem) +- (mem) X2
When MSB of (mem) =1= CY: V+-1
When MSB of (mem) = CY: V+-O

0

W

I

Performs a shift left (1 bit) of the 8- or 16-bit memory
location addressed by the first operand. Zero is loaded
to the addressed memory LSB and the MSB is shifted
to the CY flag. If the sign bit (bit 7 or 15) remains the same
after the shift, the V flag is cleared.

Bytes: 2/3/4

Clocks:
When W=O: 16

Section 12
Instruction Set

When W=1: 24, J,lPD70108
24, J,lPD70116 odd addresses
16, J,lPD70116 even addresses

Transfers: 2

Flag operation:

Example:

AC

u

SHL
SHL

BYTE PTR [IX1,1
WORD_VAR,1

P CY

x x

(MemS/16)
CY ~15~/7~1~4~~ ________ ~~.~~ ________ -.~o~

Df4-------1· ~; ro

49-QOO408A

12-101

pPD7010S/70116

SHl reg, Cl Bytes: 2

Clocks: Shift left register, variable bit

7 o 7 + n, where n = number of shifts

1 1 o 1 o o

1 1 1 o o

temp - Cl, while temp ::f 0
repeat this operation, CY - MSB of reg,
reg - reg X 2, temp - temp - 1

1 W

reg

Performs a shift left of the 8- or 16-bit register specified
by the first operand by the number in the CL register. Zero
is loaded to the specified register's LSB. MSB is shifted
to the CY flag.

Transfers: None

Flag operation:

Example:
SHL
SHL

CL,CL
BW,CL

CY 15/7 Reg8116 0

DI----------l' ==-~~;~: -----L...--....~O

12-102

P CY

x x

t\'EC

NEe
SHL mem, CL

Shift left memory, variable bit

7

1 1 0 1 0 0

I
mod 1 0 0

I I
(disp-Iow)

I I
(disp-high)

temp - CL, while temp =F 0,
repeat operation, CY - MSB of (mem),
(mem) - (mem) X 2, temp - temp - 1

0

1 W

I
mem

Performs a shift left of the 8- or 16-bit memory location
addressed by the first operand by the number in the CL
register. Zero is loaded to the addressed memory LSB
and the MSB is shifted to the CY flag.

Bytes: 2/3/4

Clocks:

Section 12
I nstruction Set

When W=O: 19 + n
When W=1: 27 + n, pPD70108

Transfers: 2

Flag operation:

Example:

27 + n, pPD70116 odd addresses
19 + n, pPD70116 even addresses

where n = number of shifts.

P CY

x x

SHL
SHL

BYTE PTR [1y],CL
WORD PTR [1y],CL

~~. __ ~~1~~7,-______ (M_em~~.~:' ____ ~~O~~O

49-000409A

12-103

pPD70108/70116

SHL reg,imm8

Shift left register, multibit

Bytes: 3

Clocks:

7 0 7 + n, where n = number of shifts

1 1 0 0 0 0

1 1 1 0 0

I
imm8

Temp - imm8, while temp #- 0,
repeat operation, CY - MSB of reg,
reg - reg X 2, temp - temp - 1

0 W

reg

Performs a shift left of the 8- or 16-bit register (specified
by the first operand) by the 8-bit immediate data (second
operand). Zero is loaded to the specified register's LSB.
MSB is shifted to the CY flag.

Transfers: None

Flag operation:

I
V

I
S

I
Z

U X X

Example:
SHL AH,3
SHL DW,15

CY 1517 RegBl16

AC

U

o

01-----------10 ~~:: I ~o

12-104

P CY

X X

NEe

NEe
SHL mem,imm8

Shift left memory, multi bit

7

1 1 0

I
mod 1

0 0

0 0

I I
(disp-Iow)

. I. I
(dlsp-hlgh)

. I
Imm8

temp - imm8, while temp =/; 0,

0

repeat operation, CY - MSB of (mem)
(mem) - (mem) X 2, temp - temp - 1

0

0 W

I
mem

Performs a shift left of the 8- or 16-bit memory location
addressed by the first operand by the bits specified by
the 8-bit immediate data (second operand). Zero is
loaded to the specified memory locations's LSB. The
MSB is shifted to the CY flag.

Bytes: 3/4/5

Clocks:
When W=O: 19 + n

Section 12
Instruction Set

When W=1: 27 + n, pPD70108

Transfers: 2

Flag operation:

Example:

27 + n, pPD70116 odd addresses
19 + n, pPD70116 even addresses

where n = number of shifts

P CY

x x

SHL
SHL

BYTE PTR [IX] [2],7
WORD_VAR,5

CY ,..-::151:;.:..7....--___ (Mem----s8l16) 0

01------1' _,I----: ---r--=---,~o
49-000409A

12-105

pPD7010S/70116

SHR reg,1

Shift right register, single bit

7 0

1 1 0 1 0 0 0 W

1 1 1 0 1 reg

CY - MSB of reg, reg - reg -7- 2
When MSB of reg # bit following MSB of reg: V - 1
When MSB of reg = bit following MSB of reg: V - 0

Performs a logical shift right (1 bit) of the 8- or 16-bit
register specified by the first operand. Zero is loaded to
the MSB of the specified register and the LSB is shifted
to the CY flag. If the sign bit (7 or 15) is the same after
the shift, the V flag is cleared.

1517 14/6

0-1 I

12-106

t\'EC
Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

V S Z AC P CY

X X X U X X

Example:
SHR BH,1
SHR AW,1

o

h
49.000019A

NEe
SHR mem,1

Shift right memory, single bit

7 0

1 1 0 1 0 0 0 W

I I
mod 1 0 1 mem

I I
(disp-Iow)

I I
(disp-high)

CY - MSB of (mem), (mem) - (mem) -:- 2
When MSB of (mem) =F bit following MSB of (mem):

V-1
When MSB of (mem) = bit following MSB of (mem):

V-O

Performs a logical shift right (1 bit) of the 8- or 16-bit
memory location addressed by the first operand. Zero is
loaded to the memory location's MSB and the LSB is
shifted to the CY flag. If the sign bit (bit 7 or 15) remains
the same after the shift, the V flag is cleared.

Bytes: 2/3/4

Clocks:

Section 12
Instruction Set

When W=O: 16
When W=1: 24, pPD701 08

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: . 2

Flag operation:

Example:

AC

u
P
x

SHR
SHR

BYTE_VAR [BW1,1
WORD_VAR [IX1,1

CY

x

CY 15/7 14/6 (MernB/16) 0 cD '--1~~-----{:;r---~b
49-000410A

12-107

pPD70108/70116

SHR reg,CL

Shift right register, variable bit

7

1 1 o 1 o

1 1 1 o 1

temp - Cl, while temp :F 0,

o

repeat operation, CY - MSB of reg,
reg - reg -;- 2, temp - temp - 1

o
1 W

reg

Performs a logical shift right of the 8- or 16-bit register
(specified by the first operand) by the number in the Cl
register. Zero is loaded to the specified register's MSB.
The lSB is shifted to the CY flag.

1517 1416

0-1 I

12-108

Bytes: 2

Clocks:
7 + n, where n = number of shifts

Transfers: None

Flag operation:

Example:
SHR
SHR

Al,Cl
BW,Cl

o

p CY
x x

b

ttlEC

49000019A

fttIEC
SHR mem,CL

Shift right memory, variable bit

7

1 1 0 1 0 0

I
mod 1 0 1

I I
(disp-Iow)

I I
(disp-high)

temp - CL, while temp :F 0,
repeat operation, CY - MSB of (mem),
(mem) - (mem) + 2, temp - temp - 1

0

1 W

I
mem

Performs a logical shift right of the 8- or 16-bit memory
location (addressed by the first operand) by the number
in the CL register. Zero is loaded to the addressed
memory MSB and the LSB is shifted to the CY flag.

Bytes: 2/3/4

Clocks:

Section 12
Instruction Set

When W=O: 19 + n
When W=1: 27 + n, pPD70108

Transfers: 2

Flag operation:

Example:

27 + n, pPD70116 odd addresses
19 + n,pPD70116 even addresses

where n = number of shifts

AC P CY

u x x

SHR
SHR

BYTE_VAR,CL
WORD PTR [1y],CL

CY 1517 (MemBll6) 0 cQ --1,......:.;;.;--~;;t------r--=--,h

49.00002OA

12-109

pPD70108/70116

SHR reg,imm8

Shift right register, multibit

Bytes: 3

Clocks:

7 0 7 + n, where n = number of shifts

1 1 0 0 0 0

1 1 1 0 1

. I
Imm8

temp - imm8, while temp =F 0,
repeat operation, CY - MSB of reg,
reg - reg + 2, temp - temp - 1

0 W

reg

Performs a shift right ofthe 8- or 1S-bit register (specified
. by the first operand) by the 8-bit immediate data (second

operand). Zero is loaded to the specified register's MSB.
The lSB is shifted to the CY flag.

Transfers: None

Flag operation:

I
V

I
S

I
Z AC

U X X U

Example:
SHR Bl,S
SHR IX,2

1517 Reg8fl6 0

0-1L....-....L.-----(;~,---- ---.---::--.~h

12-110

P CY

X X

NEe

490000411A

NEe
SHR mem,imm8

Shift right memory, multi bit

7

1 1 0

I
mod 1

0 0

I
0 1

I I
(disp-Iow)

I I
(disp-high)

I
imm8

temp - imm8, while temp :F 0,

0

repeat operation, CY - MSB of (mem),
(mem) - (mem) -;- 2, temp - temp - 1

0

0 W

I
mem

Performs a shift right of the 8- or 16-bit memory location
(addressed by the first operand) by the bits specified by
the 8-bit immediate data (second operand). Zero is
loaded to the specified memory location's MSB. The LSB
is shifted to the CY flag.

Bytes: 3/4/5

Clocks:

Section 12
Instruction Set

When W=O: 19 + n
When W=1: 27 + n, pPD70108

Transfers: 2

Flag operation:

Example:

27 + n, pPD70116 odd addresses
19 + n, pPD70116 even addresses

where n = number of shifts

AC P CY

u x x

SHR
SHR

BYTE PTR [BW],2
WORD_VAR,13

CY 15/7 (Mem8l16) 0 cD --1'-----'-~I:t---~b
49.000020A

12-111

pPD70108/70116

SHRA reg,1

Shift right arithmetic

7 0

1 1 0 1 0 0 0 W

1 1 1 1 1 reg

CY -- LSB of reg,
reg -- reg -:- 2, V -- 0
MSB of operand does not change

Performs an arithmetic shift right (1 bit) of the 8- or 16-bit
register specified by the first operand. A bit with the same
value as the original bit is shifted to the specified reg­
ister's MSB. The LSB is shifted to the CY flag. The sign
remains unchanged after the shift.

12-112

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

Example:
SHRA CL,1
SHRA AW,1

AC

u

NEe

p CY

x x

49.000021A

NEe
SHRA mem,1

Shift right arithmetic, memory, single bit

7 0

1 1 0 1 0

I
mod 1 1

I I
(disp-Iow)

I I
(disp-high)

CY - LSB of (mem),
(mem) - (mem) -;- 2, V - 0
MSB of operand does not change

0 o W

I
mem

Performs an arithmetic shift right (1 bit) of the 8- or 16-bit
memory location addressed by the first operand. A bit
with the same value as the original bit is shifted to the
memory location's MSB. The LSB is shifted to the CY flag.
The sign remains unchanged after the shift.

Bytes: 2/3/4

Clocks
When W=O: 16

Section 12
Instruction Set

When W=1: 24, pPD70108
24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:
SHRA
SHRA

BYTE_VAR,1
WORD_VAR,1

P CY

x x

CY 1517 (Mem8l16) 0

cD d~"r------.--=---.h
49-000412A

12-113

pPD70108/70116

SHRA reg,CL

Shift right arithmetic, register, variable bit

7

1 1 o 1 o

1 1 1 1 1

temp - CL, while temp :1= 0,
repeat operation, CY - LSB of reg,
reg - reg -:- 2, temp - temp - 1

o
o

1 W

reg

Performs an arithmetic shift right of the 8- or 16-bit reg­
ister (specified by the first operand) by the number of bits
specified by the CL register. A bit with the same value
as the original bit is shifted to the register's MSB. The
LSB is shifted to the CY flag. The sign remains
unchanged after the shift.

12-114

Bytes: 2

Clocks:
1 + n, where n = number of shifts

Transfers: None

Flag operation:

Example:
SHRA
SHRA

BL,CL
DW,CL

AC p CY

u x x

NEe

49-000413A

NEe
SHRA mem,CL

Shift right arithmetic, memory, variable bit

7

1

I
mod

1 o

1

1 o

1 1

I I
(disp-Iow)

I I
(disp-high)

temp +- CL, while temp #- 0,

o

repeat operation, CY +- LSB of (mem),
(mem) +- (mem) -:- 2, temp +- temp - 1,
MSB of operand does not change

1

I
mem

o
W

Performs an arithmetic shift right of the 8- or 16-bit
memory location (addressed by the first operand) by the
number of bits specified in the CL register. A bit with the
same value as the original bit is shifted to the memory
location's MSB. The LSB is shifted to the CY flag. The
sign remains unchanged after the shift.

Bytes: 2/3/4

Clocks:
When W=O: 19 + n

Section 12
Instruction Set

When W=1: 27 + n, IlPD70108
27 + n, IlPD70116 odd addresses
19 + n, IlPD70116 even addresses

where n = number of shifts

Transfers: 2

Flag Operation:

Example:
SHRA
SHRA

AC

u

BYTE_VAR,CL
WORD_VAR,CL

P CY

x x

CV 15/7 (Mem8l16) 0 cD d-----,---------,r--: --'--:--'h
49-000412A

12-115

pPD70108/70116

SHRA reg,imm8

Shift right arithmetic, register, multi bit

7

1 1 o

1 1 1

o o

1 1

i
immS

temp - immS, while temp ¥- 0,
repeat operation, CY - LSB of reg,
reg - reg +- 2, temp - temp -1;
MSB of operand does not change

o
o

o W

reg

Performs an arithmetic shift right of the S- or 16-bit reg­
ister (specified by the first operand) by the S-bit imme­
diate data in the second operand. A bit with the same
value as the original bit is shifted to the register's MSB.
The LSB is shifted to the CY flag. The sign remains
unchanged after the shift.

12-116

Bytes: 3

Clocks:
7 + n, where n = number of shifts

Transfers: None

Flag operation:

Example:
SHRA
SHRA

CL,3
BW,7

p CY

x x

NEe

49-000413A

NEe
SHRA mem,immS

Shift right arithmetic, memory, multi bit

7

1

I
mod

1 o

1

o o

1 1

I I
(disp-Iow)

I I
(disp-high)

I
immS

temp - immS, while temp =1= 0,

o o
I I

mem

repeat this operation, CY - LSB of (mem),
(mem) - (mem) -:- 2, temp - temp - 1,
MSB of operand does not change

o
W

Performs an arithmetic shift right of the S- or 16-bit
memory location (addressed by the first operand) by the
number specified by the S-bit immediate data in the
second operand. A bit with the same value as the original
bit is shifted to the register's MSB. The LSB is shifted to
the CY flag. The sign remains unchanged after the shift.

Bytes: 3/4/5

Clocks:
When W=O: 19 + n

Section 12
Instruction Set

When W=1: 27 + n, pPD7010S

Transfers: 2

Flag operation:

Example:

27 + n, pPD70116 odd addresses
19 + n, pPD70116 even addresses

where n = number of shifts

P CY

x x

SHRA
SHRA

BYTE_VAR,5
WORD_VAR,7

CY (Mem8116) 0 cQ dr--L-1517 -------i,I----:~ _ --'--::--'-L...-h
49-000412A

12-117

pPD7010S/70116

ROTATE
ROL reg,l

Rotate left, register, single bit

7

1 1 0 1 0 0

1 1 0 0 0

CY +- MSB of reg, reg +- reg X 2 + CY
MSB of reg #= CY: V+-1
MSB of reg = CY: V+-O

0

0 W

reg

Rotates the 8- or 16-bit register specified by the first
operand left by one bit. If the MSB changes, the V flag
is set. If the MSB stays the same, the V flag is cleared.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

Example:
ROL
ROL

AH,1
DW,1

AC

CY 15/7 14/6 Reg8116 0

p

D· I """---"'-1 ~~:f----: ---L....-b

12-118

t-iEC

CY

x

49000022A

ttlEC
ROL mem,1

Rotate left, memory, single bit

7

1

I
mod

1 o

o

CY +- MSB of (mem),

1 o

o o
I I

(disp-Iow)

I I
(disp-high)

(mem) +- (mem) X 2 + CY
MSB of (mem) ¥- CY: V+-1
MSB of (mem) = CY: V+-O

o o
I

mem

o
W

Rotates the 8- or 16-bit memory location (addressed by
the first operand) left by one bit. If the MSB changes, the
V flag is set; if it stays the same, the V flag is cleared.

Bytes: 2/3/4

Clocks:

Section 12
Instruction Set

When W=O: 16
When W=1: 24, pPD70108

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:

AC P

ROL
ROL

BYTE_VAR,1
WORD PTR [IXU7],1

CY
x

CV 15/7 14/6 (Mem8/16) 0

D· II r=-'--r--=-'--~-:i----: ----=---L---.Jb
49-000414A

12-119

pPD70108/70116

ROL reg,CL Bytes: 2

Clocks: Rotate left, register, variable bit

7
7 + n, where n = number of shifts

1 1 o 1 o o

1 1 o o o

temp .-- Cl, while temp # 0,
repeat operation, CY .-- MSB of reg,
reg .-- reg X 2 + CY,
temp .-- temp - 1

o
w

reg

Rotates the 8- or 16-bit register specified by the first
operand left by the number of bits specified by the Cl
register.

Transfers: None

Flag operation:

Example:
ROl Dl,Cl
ROl BP,Cl

CY r~15~/7.-______ R_~_M~6r ______ ,-~o,

0"1 1 :; h

12-120

P CY
x

NEe

49000023A

NEe
ROLmem,CL

Rotate left, memory, variable bit

7

1 1 0

I
mod 0

1 0

0 0

I I
(disp-Iow)

. I. I
(dlsp-hlgh)

temp - Cl, while temp =1= 0,

0

repeat operation, CY - MSB of (mem),
(mem) +- (mem) X 2 + CY,
temp - temp - 1

0

1 W

I
mem

Rotates the 8- or 16-bit memory location addressed by
the first operand left by the number of bits specified in
the Cl register.

Bytes: 2/3/4

Clocks:

Section 12
Instruction Set

When W=O: 19 + n
When W=1: 27 + n, pPD70108

Transfers: 2

Flag operation:

Example:

27 + n, pPD70116 odd addresses
19 + n, pPD70116 even addresses

where n = number of shifts

P CY

x

ROl
ROl

BYTE PTR [IX],Cl
WORD_VAR,Cl

CY 1517 (Mem8J16) 0

D· I----r"1 ------i:t-----j -----'----'h
49-000415A

12-121

pPD7010S/70116

ROL reg,imm8

Rotate left, register, multibit

Bytes: 3

Clocks:

7 0
7 + n, where n = number of shifts

1 1 0 0 0 0

1 1 0 0 0

I
imm8

temp - imm8, while temp ¥= 0,
repeat operation, CY - MSB of reg,
reg - reg X 2 + CY,
temp - temp - 1

0 W

reg

Rotates the 8- or 16-bit register (specified by the first
operand) left by the number of bits specified by the 8-bit
immediate data in the second operand. The register's
MSB is shifted to the CY flag and to the LSB.

Transfers: None

Flag operation:

AC p

Example:
ROL DH,3

ROL IY,7

CY ~1~~~1~~~ _______ ~~~~_6 ________ ~O~

0,\1 I ;; h

12-122

CY

x

NEe

49000022A

NEe
ROL mem,imm8

Rotate left, memory, multi bit

7

1 0

I
mod 0

0 0

0 0

I I
(disp-Iow)

I I
(disp-high)

I
immS

temp - immS, while temp "# 0,

0

repeat operation, CY - MSB of (mem),
(mem) - (mem) X 2 + CY,
temp - temp - 1

0

0 W

I
mem

Rotates the S- or 16-bit memory location (addressed by
the first operand) left by the number of bits specified by
the S-bit immediate data in the second operand. The
memory location's MSB is shifted to the CY flag and to
the LSB.

Bytes: 3/4/5

Clocks:
When W=O: 19 + n

Section 12
Instruction Set

When W=1: 27 + n,pPD7010S

Transfers: 2

Flag operation:

Example:

27 + n, pPD70116 odd addresses
19 + n, pPD70116 even addresses

where n = number of shifts

AC P CY

x

ROL
ROL

BYTE_VAR,7
WORD_VAR,2

CY 1517 (Mem8116) o

D I '--L....I ~:+----; ~b
49-000415A

12-123

pPD7010S/70116

ROR reg,1

Rotate right, register, single bit

7

1 1 0 1 0

1 1 0 0 1

CY -- LSB of reg, reg -- reg ...;- 2,
MSB of reg -- CY

0 0

reg

MSB of reg ¥- bit following MSB of reg: V -- 1
MSB of reg = bit following MSB of reg: V -- 0

0

W

Rotates the 8- or 16-bit register (specified by the first
operand) right by 1 bit. If the MSB of the specified register
changes, the overflow flag is set. If the MSB stays the
same, the overflow flag is cleared.

12-124

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

Example:
ROR AL,1
ROR CW,1

AC

NEe

p CY
x

49.000014A

1ttIEC
ROR mem,1

Rotate right, memory, single bit

7

1 1 0 1 0 0 0

I I
mod 0 0 1 mem

I I
(disp-Iow)

I I
(disp-high)

CY - LSB of (mem), (mem) - (mem) -:- 2
MSB of (mem) - CY

0

W

I

MSB of (mem) oF bit following MSB of (mem): V - 1
MSB of (mem) = bit following MSB of (mem): V - 0

Rotates the 8- or 16-bit memory location addressed by
the first operand right by 1 bit.lfthe MSB of the addressed
memory changes, the overflow flag is set. If the MSB
stays the same, the overflow flag is cleared.

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24, pPD70108

Section 12
Instruction Set

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:
ROR
ROR

P

BYTE_VAR,1
WORD PTR [BW],1

CY
x

cO Q--L-1517
14---l..---16 _(M-iT"1------,--' b

49-000416A

12-125

pPD70108/70116

ROR reg,CL

Rotate right, register, variable bit

Bytes: 2

Clocks:

7 0
7 + n, where n = number of shifts

t,
1 1 0 1

1 1 0 0

temp - CL, while CL =F 0,
repeat operation,

0

1

CY - LSB of reg, reg - reg + 2,
MSB of reg - CY,
temp - temp - 1

0 1 W

reg

Rotates the 8- or 16-bit register (specified by the first
operand) right by the number of bits specified by the CL
register.

Transfers: None

Flag operation:

Example:
ROR
ROR

AH,CL
AW,CL

CY 1517 Reg8l16f--__ -.--.:..O,

cD d~;f--f ---,--b

12-126

p CY

x

NEe

49.000015A

t-IEC
ROR mem,CL

Rotate right, memory, variable bit

7

1 1 0 1 0 0 1

I I
mod 0 0 1 mem

I I
(disp-Iow)

I I
(disp-high)

temp - CL, while temp ,c 0,
repeat operation,
CY - LSB of (mem), (mem) - (mem) -;- 2,
MSB of (mem) - CY,
Temp - temp - 1

0

W

I

Rotates the 8- or 16-bit memory location (specified by
the first operand) right by the number of bits specified
by the CL register.

Bytes: 2/3/4

Clocks:

Section 12
Instruction Set

When W=O: 19 + n
When W=1: 27 + n, pPD70108

27 + n, pPD70116 odd addresses
19 + n, pPD70116 even addresses

where n = number of shifts

Transfers: 2

Flag operation:

Example:

AC P

ROR
ROR

BYTE_VAR,CL
WORD PTR [IX]2,CL

CY

x

49-000417A

12-127

pPD70108/70116

ROR reg,imm8

Rotate right, register, multi bit

7

1 1 0 0 0

1 1 0 0 1

I
imm8

temp - imm8, while temp # 0,
repeat operation,
CY - LSB of reg, reg - reg + 2,
MSB of reg - CY,
temp - temp - 1

0

0 0 W

reg

Rotates the 8- or 16-bit register (specified by the first
operand) right by the number of bits specified by the 8-bit
immediate data in the second operand. The register's
LSB is shifted to the MSB and the CY flag.

12-128

Bytes: 3

Clocks:
7 + n, where n = number of shifts

Transfers: None

Flag operation:

AC p CY

x

Example:
ROR AL,2
ROR IX,3

ttlEC

49.000015A

ttlEC
ROR mem,imm8

Rotate right, memory, multi bit

7

1 0 0 0 0 0

I
mod 0 0 1 mem

I I
(disp-Iow)

I I
(disp-high)

I
imm8

temp +- imm8, while temp #- 0,
repeat operation,
CY +- LSB of (mem), (mem) +- (mem) -:- 2,
temp +- temp - 1

0

W

I

Rotates the 8- or 16-bit memory location addressed by
the first operand right by the number of bits specified by
the 8-bit immediate data in the second operand. The
memory location's LSB is shifted to the MSB as well as
to the CY flag.

Bytes: 3/4/5

Clocks:

Section 12
Instruction Set

When W=O: 19 + n
When W=1: 27 + n, IlPD70108

Transfers: 2

Flag operation:

Example:

27 + n, IlPD70116 odd addresses
19 + n, IlPD70116 even addresses

where n = number of shifts

AC P CY

x

ROR
ROR

BYTE_VAR,6
WORD_VAR [IX],7

CY 1517 (Mem8116) 0

cD d'-----'--------::~b
49-000417A

12-129

pPD70108/70116

ROLe reg,1

Rotate left with carry, register, single bit

7

1 1 0 1 0

1 1 0 1 0

tmpcy - CY, CY - MSB of reg,
Reg - reg X 2 + tmpcy,
MSB of reg = CY: V - 0
MSB of reg ¥- CY: V - 1

0

0

0 W

reg

Rotates the 8- or 16-bit register specified by the first
operand left, including the CY flag, by one bit. If the
register's MSB changes, the V flag is set. If it stays the
same, the V flag is cleared.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

Example:
ROLC BL,1
ROLC IY,1

cQl------I' L--...I.-

1517 '11416~T

12-130

NEe

AC p CY
x

o

h
49.000016A

ttlEC
ROLe mem,1

Rotate left with carry, memory, single bit

7

1 1 0 1 0

i
mod 0 1 0

i i
(disp-Iow)

i i
(disp-high)

tmpcy - CV, CV - MSB of (mem),
(mem) - (mem) X 2 + tmpcy,
MSB of (mem) = CV: V - 0
MSB of (mem) oF CV: V - 1

0

i

0

0 W

i
mem

Rotates the 8- or 16-bit memory location (addressed by
the first operand) left by one bit. The rotation includes
the CV flag. If the MSB of the memory location changes,
the V flag is set. If it stays the same, the V flag is cleared.

Section 12
Instruction Set

Bytes: 2/3/4

Clocks:
When W=O: 16
When W=1: 24, pPD70108

24, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 2

Flag operation:

Example:

P

ROLC
ROLC

BVTE_VAR,1
WORD PTR [IV],1

o

b

CV

x

49-000418A

12-131

pPD70108/70116

ROLC reg,CL

Rotate left with carry, register, variable bit

7

1 1 o 1 o

1 1 o 1 o

temp - CL, while temp =F 0,
repeat operation, tmpcy - CY,

o 1

reg

CY - MSB of reg, reg - reg X 2 + tmpcy,
temp - temp - 1

o
W

Rotates the 8- or 16-bit register (specified by the first
operand) left by the number in the CL register. Rotation
includes the CY flag.

cO·

12-132

Bytes: 2

Clocks:
7 = n, where n = number of shifts

Transfers: None

Flag operation:

Example:
ROLC
ROLC

AL,CL
BW,CL

p CY

x

ttlEC

49.000017A

ttlEC
ROLC mem,CL

Rotate left with carry, memory, variable bit

7

1 1 0 0 0

I I

1

mod 0 1 0 mem

I
(disp-Iow)

I
(disp-high)

temp - CL, while temp =1= 0,
repeat operation, tmpcy - Cy,
CY - MSB of (mem),
(mem) - (mem) X 2 + tmpcy,
temp - temp - 1

I

I

o
W

I

Rotates the 8- or 16-bit memory location (addressed by
the first operand) left by the number in the CL register.
Rotation includes the CY flag.

cQ. 15/7

Bytes: 2/3/4

Clocks:
When W=O: 19 + n

Section 12
Instruction Set

When W=1: 27 + n, pPD70108

Transfers: 2

Flag operation:

Example:

27 + n, pPD70116 odd addresses
19 + n, pPD70116 even addresses

where n = number of shifts

AC P CY

x

ROLC
ROLC

BYTE PTR [IY],CL
WORD_VAR,CL

49-000419A

12-133

pPD70108/70116

ROLe reg,imm8

Rotate left with carry, register, multi bit

7

1 1 0 0 0

1 1 0 1 0

• I
Imm8

temp - imm8, while temp ¥- 0,
repeat operation, tmpcy - CY,

0 0

reg

CY - MSB of reg, reg - reg X 2 + tmpcy,
temp - temp - 1

0

W

Rotates the 8- or 16-bit register (specified by the first
operand) left by the number of bits specified by the 8-bit
immediate data of the second operand. Rotation includes
the CY flag.

cy 15/7

jD'

12-134

Bytes: 3

Clocks:
7 + n, where n = number of shifts

Transfers: None

Flag operation:

Example:
ROLC
ROLC

Reg8J16

;;

BL,3
AW,14

I

AC p CY
x

0

b

NEe

49000017A

t-IEC
ROLe mem,imm8

Rotate left with carry, memory, multi bit

7 0

1 1 0 0 0

I
mod 0 1 0

I
(disp-Iow)

I
(disp-high)

I
imm8

temp +- imm8, while temp =1= 0,
repeat operation, tmpcy +- CY,
CY +- MSB of (mem),
(mem) +- (mem) X 2 + tmpcy,
temp +- temp - 1

0

I

I

o W

I
mem

Rotates the 8- or 16-bit memory location (addressed by
the first operand) left by the number of bits specified by
the 8-bit immediate data of the second operand. Rotation
includes the CY flag.

Bytes: 3/4/5

Clocks:
When W=O: 19 + n

Section 12
Instruction Set

When W=1: 27 + n, J.lPD70108

Transfers: 2

Flag operation:

Example:

27 + n, J.lPD70116 odd addresses
19 + n, J.lPD70116 even addresses

where n = number of shifts

AC P CY

x

ROLC
ROLC

BYTE_VAR,3
WORD_VAR,5

49-{)(J()419A

12-135

pPD7010S/70116

RORe reg,1

Rotate right with carry, register, single bit

7 a
1 1 a 1 a a a w

1 1 a 1 1 reg

tmpcy - CY, CY - LSB of reg,
reg - reg -;- 2, MSB of reg - tmpcy,
MSB of reg #- bit following MSB of reg: V-1,
MSB of reg = bit following MSB of reg: v-a
Rotates the 8- or 16-bit register, specified by the first
operand, right (including the CY flag) by one bit. If the
MSB changes, the V flag is set. If it remains unchanged,
the V flag is cleared.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation:

I
V

I

S

:

z AC P

X

Example:
RORC BH,1
RORC BP,1

Cy

cD
15/7 14/6 Reg8l16 0

·IL.--.-L---<------1111---L--...Jh

12-136

NEe

CY

X

49.000018A

t-IEC
RORCmem,1

Rotate right with carry, memory, single bit

7

1

i
mod

1 o

o

1 o

1 1

i i
(disp-Iow)

I i
(disp-high)

tmpcy - CY, CY - LSB of (mem),

o o

i
mem

(mem) - (mem) -:- 2, MSB of (mem) - tmpcy,

o
W

MSB of (mem) ¥- bit following MSB of (mem): V - 1
MSB of (mem) = bit following MSB of (mem): V - 0

Rotates the 8- or 16-bit memory location (addressed by
the first operand) right (including the CY flag) by one bit.
If the MSB changes, the V flag is set. If it remains
unchanged, the V flag is cleared.

Bytes: 2/3/4

Clocks:
WhenW=O:
When W=1:

Transfers: 2

Flag operation:

Example:

16

Section 12
Instruction Set

24, pPD70108
24, pPD70116 odd addresses
16, pPD70116 even addresses

P CY

x

RORC
RORC

BYTE PTR [BW].1
WORD_VAR [BW] [IX],1

o

h
49-000420A

12-137

pPD70108/70116

RORC reg,CL

Rotate right with carry, register, variable bit

7

1 1 o o

1 1 o 1

temp ~ CL, while temp "# 2,
repeat operation, tmpcy ~ CY,
CY ~ LSB of reg, reg ~ reg -;- 2

o

MSB of reg ~ tmpcy, temp ~ temp - 1,

1

reg

o
W

Rotates the 8- or 16-bit register specified by the first
operand right (including the CY flag) by the number in
the CL register.

12-138

Bytes: 2

Clocks:
7 + n, where n = number of shifts

Transfers: None

Flag operation:

Example:
RORC
RORC

AL,CL
CW,CL

AC p

NEe

CY

x

49000028A

ttlEC
RORC mem,CL

Rotate right with carry, memory, variable bit

7

1 1 0 1 0

I
mod 0 1 1

I I
(disp-Iow)

I I
(disp-high)

temp - Cl, while temp =1= 0,
repeat operation, tmpcy - CY,

0

CY +- lSB of (mem), reg - reg -:- 2,

1

mem

MSB of (mem) - tmpcy, temp - temp - 1

0

W

I

Rotates the 8- or 16-bit memory location specified by the
first operand right (including the CY flag) by the number
in the Cl register.

Bytes: 2/3/4

Clocks:

Section 12
Instruction Set

When w=o: 19 + n
When W=1: 27 + n, pPD70108

Transfers: 2

Flag operation:

Example:

27 + n, pPD70116 odd addresses
19 + n, pPD70116 even addresses

where n = number of shifts

RORC
RORC

BYTE_VAR,Cl
WORD_VAR [BP],Cl

49-000421 A

12-139

pPD70108/70116

RORe reg,imm8

Rotate right with carry, register, multibit

7

1 1 o

1 1 o

o

1

o

1

I
imm8

temp - imm8, while temp "# 0,
repeat operation, tmpcy - CY,
CY - LSB of reg, reg - reg -+ 2,

o

MSB of reg - tmpcy, t~mp - temp - 1

o
o W

reg

Rotates the 8- or 16-bit register specified by the first
operand right (including the CY flag) by the number of
bits specified by the 8-bit immediate data of the second
operand.

12-140

Bytes: 3

Clocks:
7 + n, where n = number of shifts

Transfers: None

Flag operation:

I
V

I
S

I
z AC P CY

X X

Example:
RORC CH,S
RORC BW,10

t\'EC

49.000028A

NEe
RORC mem,imm8

Rotate right with carry, memory multi bit

7

1

I
mod

1 o

o

o o

1 1

I I
(disp-Iow)

I I
(disp-high)

. I
Imm8

temp - imm8, while temp # 0,
repeat operation, tmpcy - CY,

o o

I
mem

CY - LSB of (mem), (mem) - (mem)+ 2,
MSB of (mem) - tmpcy, temp - temp - 1

o
w

Rotates the 8- or 16-bit memory location addressed by
the first operand right (including the CY flag) by the
number of bits specified by the 8-bit immediate data of
the second operand.

Bytes: 3/4/5

Clocks:
When W=O:
When W=1:

Transfers: 2

Flag operation:

Example:

19 + n

Section 12
Instruction Set

27 + n, pPD70108
27 + n, pPD70116 odd addresses
19 + n, pPD70116 even addresses

where n = number of shifts

AC P CY

x

RORC
RORC

BYTE_VAR,3
WORD PTR [BWl,10

49-000421A

12-141

pPD70108/70116

SUBROUTINE CONTROL

CALL near-proc

Call, relative, same segment

7

1 1 1 o 1

I I
(disp-Iow)

I I
(disp-high)

(SP - 1, SP - 2) - PC,
SP-SP-2,
PC - PC +disp

o
o o o

Saves the PC to the stack and loads the 16-bit displace­
ment to the PC. Enables calls to any address within the
current segment.

Bytes: 3

Clocks:
20, pPD70108
20, pPD70116 odd addresses
16, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example: CALL NEAR_PROC

12-142

CALL regptr16

Call, register, same segment

7

1 1 1 1

1 1 0 1

(SP - 1, SP - 2) - PC,
SP-SP-2,
PC - regptr16

NEe

0

1 1 1 1

0 reg

Saves the PCto the stack and loads the value of the 16-bit
register specified by the operand to the PC. Enables calls
to any address within the current segment.

Bytes: 2

Clocks:
18, pPD70108
18, pPD70116 odd addresses
14, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example: CALL BX

NEe
CALL memptr16

Call, memory, same segment

7 0

1 1 1 1 1 1 1 1

i i
mod 0 1 0 mem

i i
(disp-Iow)

i i
(disp-high)

(SP - 1, SP - 2) - PC,
SP - SP - 2, PC - (memptr16)

Saves the PC to the stack and loads the contents of the
16-bit memory location addressed by the operand to the
PC. Enables calls to any address within the current
segment.

Bytes: 2/3/4

Clocks:
31, JlPD70108
31, JlPD70116 odd addresses
23, JlPD70116 even addresses

Transfers: 2

Flag operation: None

Example: CALL TABLE_ENTRY [IX]

Section 12
I nstruction Set

CALL far-proc

Call, direct, external segment

7

1 o o 1 1

i i
(offset-low)

iii
(offset-high)

i
(seg-Iow)

i i
(seg-high)

(SP - 1, SP - 2) - PS,
(SP - 3, SP - 4) - PC,
SP -SP-4,
PS -seg,
PC - offset

o
o 1 o

Saves the PS and PC to the stack. Loads the fourth and
fifth bytes of the instruction to the PS and the second and
third bytes to the PC. Enables calls to any address in any
segment.

Bytes: 5

Clocks:
29, JlPD70108
29, JlPD70116 odd addresses
21, JlPD70116 even addresses

Transfers: 2

Flag operation: None

Example: CALL FAR_PROC

12-143

pPD70108/70116

CALL memptr32

Call, memory, external segment

7

1 1 1 1 1

I
mod 0 1 1

I I
(disp-Iow)

I I
(disp-high)

(SP - 1, SP - 2) - PS,
(SP - 3, SP - 4) - PC,
SP-SP-4,

1

PS - (memptr32 + 3, memptr32 + 2),
PC - (memptr32 + 1, memptr32)

0

1 1

I
mem

Saves the PS and PC to the stack. Loads the higher two
bytes of the 32-bit memory addressed by the operand
to the PS. Loads the lower two bytes to the PC. Enables
calls to any address in any segment.

Bytes: 2/3/4

Clocks:
47, pPD70108
47, pPD70116 odd addresses
31, pPD70116 even addresses

Transfers: 4

Flag operation: None

Example: CALL FAR_TABLE [IV]

12-144

RET (no operand)

Return from procedure, same segment

7

I 1 I 1 o

PC - (SP + 1, SP),
SP-SP+2

o o o

NEe

o
1 1

Used for returning from intrasegment calls. Restores the
PC from the stack. The assembler automatically distin­
guishes this instruction from the other RET instruction
with no operand.

Bytes: 1

Clocks:
19, pPD70108
19, pPD70116 odd addresses
15, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example: RET

NEe
RET pop-value

Return from procedure, SP jump, same segment

7

1 1 o o o

I I I
pop-value-low

I I I
pop-value-high

PC - (SP + 1, SP),
SP-SP+2,
SP - SP + pop-value

o 1

o
o

Restores the PC from the stack and adds the 16-bit pop­
value specified by the operand. Effective for jumping a
desired number of parameters when the parameters
saved in the stack become unnecessary to the program.
Used for returning from intrasegment calls. The
assembler automatically distinguishes this instruction
from the other RET pop-value instruction.

Bytes: 3

Clocks:
24, pPD70108
24, pPD70116 odd addresses
20, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example: RET 8

Section 12
Instruction Set

RET (no operand)

Return from procedure, external segment

7

I 1 I 1 o o

PC - (SP + 1, SP),
PS - (SP + 3, SP + 2),
SP-SP+4

1 o
o

1 1

Restores the PC and PS from the stack. Used for return­
ing from intersegment calls. The assembler automatically
distinguishes this instruction from the RET instruction
without an operand.

Bytes: 1

Clocks:
29, pPD70108
29, pPD70116 odd addresses
21, pPD70116 even addresses

Transfers: 2

Flag operation: None

Example: RET

12-145

pPD70108/70116

RET pop-value

Return from procedure, SP jump, intersegment

7

1 1 o o 1

I I I
pop-value-low

I I I
pop-value-high

PC - (SP + 1, SP),
PS - (SP + 3, SP + 2),
SP-SP+4,
SP - SP + pop-value

o 1

o
o

Restores the PC and PS from the stack and adds the
16-bit pop-value specified by the operand to the SP. This
command is effective for jumping the SP value when the
parameters saved in the stack subsequently become
unnecessary to the program. Used for returning from
intersegment calls. The assembler automatically distin­
guishes this instruction from the other RET pop-value
instruction.

Bytes: 3

Clocks:
32, pPD70108
32, pPD70116 odd addresses
24, pPD70116 even addresses

Transfers: 2

Flag operation: None

Example: RET 4

12-146

STACK OPERATION
PUSH mem16

Push, 16-bit memory

7

1 1 1 1 1

I
mod 1 1 0

I I
(disp-Iow)

I I
(disp-high)

(SP - 1, SP - 2) - (mem16),
SP-SP-2

NEe

0

1 1 1

I
mem

Saves the contents of the 16-bit memory location
addressed by the operand to the stack.

Bytes: 2/3/4

Clocks:
26, pPD70108
26, pPD70116 odd addresses
18, pPD70116 even addresses

Transfers: 2

Flag operation: None

Example: PUSH DATA [IX]

ttlEC
PUSH reg16

Push, 16-bit register

7

I 0 I 1 o 1

(SP -1, SP - 2) - reg16,
SP-SP-2

o
o reg

Saves the 16-bit register specified by the operand to
the stack.

Bytes: 1

Clocks:
12, pPD70108
12, pPD70116 odd addresses
8, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example: PUSH IY

PUSH sreg

Push, segment register

7

I 0 I 0 I 0 I I
sreg

(SP -1, SP - 2) - sreg,
SP-SP-2

Section 12
I nstruction Set

o
1 1 o

Saves the segment register specified by the operand to
the stack.

Bytes: 1

Clocks:
12, pPD70108
12, pPD70116 odd addresses

8, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example: PUSH PS

12-147

pPD70108/70116

PUSH PSW

Push, program status word

7

(SP - 1, SP - 2) - PSW,
SP-SP-2

Saves the PSW to the stack.

Bytes: 1

Clocks:
12, pP0701 08
12, pP070116 odd addresses

8, pP070116 even addresses

Transfers: 1

Flag operation: None

Example: PUSH PSW

12-148

o
1 o o

PUSHR

Push, register set

7

I I I
o 1 1

temp -SP,

o

(SP - 1, SP - 2) - AW,
(SP - 3, SP - 4) - CW,
(SP - 5, SP - 6) - OW,
(SP - 7, SP - 8) - BW,
(SP - 9, SP - 10) - temp,
(SP -11, SP -12) - BP,
(SP -13, SP -14) -IX,
(SP -15, SP -16) -IY,
SP -SP-16

NEe

o
o o o o

Saves eight 16-bit registers (AW, BW, CW, Ow, SP, BP, IX,
and IY) to the stack.

Bytes: 1

Clocks:
67, pP070108
67, pP070116 odd addresses
35, pP070116 even addresses

Transfers: 8

Flag operation: None

Example: PUSH R

NEe
PUSH imm8

Push, 8-bit immediate data, sign expansion

7

o 1 1 o 1

. I
Imm8

o 1

(SP - 1, SP - 2) - Sign expansion of imm8,
SP-SP-2

o
o

Expands the sign of the 8-bit immediate data specified
by the operand. Saves the data as 16-bit data to the stack
addressed by the SP.

Bytes: 2

Clocks:
11, pPD70108
11, pPD70116 odd addresses

7, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example:
PUSH 5
PUSH -1

Section 12
Instruction Set

PUSH imm16

Push, 16-bit immediate data

7

o 1 1 o 1

I I
imm16-low

I I
imm16-high

(SP - 1, SP - 2) - imm16,
SP -SP-2

o
o o o

Saves the 16-bit immediate data described by the oper­
and to the stack addressed by the SP.

Bytes: 3

Clocks:
12, pPD70108
12, pPD70116 odd addresses
8, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example: PUSH 1234H

12-149

pPD70108/70116

POP mem16

Pop, 16-bit memory

7

1

I
mod

o o

o

o 1

o o

I I
(disp-Iow)

I I
(disp-high)

(mem16) - (SP + 1, SP),
SP-SP+2

1 1

I
mem

o

Transfers the contents of the stack to the 16-bit memory
location addressed by the operand.

Bytes: 2/3/4

Clocks:
25, pPD70108
25, pPD70116 odd addresses
17, pPD70116 even addresses

Transfers: 2

Flag operation: None

Example: POP DATA

12-150

POP reg16

Pop, 16-bit register

7

I 0 I 1 o 1 1

reg16 - (SP + 1, SP), SP - SP + 2

NEe

o
reg

Transfers the contents of the stack to the 16-bit register
specified by the operand.

Bytes: 1

Clocks:
12, pPD70108
12, pPD70116 odd addresses

8, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example: POP BP

NEe
POP sreg

Pop, segment register

7

I a I a a I
sreg

sreg - (SP + 1, SP), SP - SP + 2

a
1 1

Transfers the contents of the stack to the segment reg­
ister (except PS) specified by the operand. External inter­
rupts NMI and INT, and single-step breaks will not be
acknowledged between this instruction and the next.

Bytes: 1

Clocks:
12, pPD70108
12, pPD70116 odd addresses

8, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example: POP DS1

Section 12
Instruction Set

POP PSW

Pop, program status word

7

I 1 I a a 1 1

PSW +- (SP + 1, SP), SP +- SP + 2

1 a

Transfers the contents of the stack to the PSw.

Bytes: 1

Clocks:
12, pPD70108
12, pPD70116 odd addresses

8, pPD70116 even addresses

Transfers: 1

Flag operation:

IM~*I V DIR IE I B:K
R R R

I I
AC P

R R

S Z
R R

CY

R

a
1

*The Mode flag (MD) can only be modified by POP PSW
during Native mode calls from 8080 Emulation mode; i.e.
between the execution of BRKEM and RETEM instruc­
tions.ln Native mode outside of Emulation mode, the MD
flag will remain set to 1 regardless of the contents of the
stack. Do not alter the MD flag during Native mode calls
from Emulation mode, or during Native mode interrupt
service routines which may be executed by interrupting
Emulation mode execution.

Example: POP PSW

12-151

pPD7010S/70116

POP R

Pop, register set

7

I 0 I 1

IY - (SP + 1, SP),

o

IX +- (SP + 3, SP + 2),
BP +- (SP + 5, SP + 4),
BW +- (SP + 9, SP + a),
ow +- (SP + 11, SP + 10),
CW - (SP + 13, SP + 12),
AW +- (SP + 15, SP + 14),
SP -SP+ 16

o
o

o o 1

Restores the contents of the stack to the following 16-bit
registers: AW, BW, CW, OW, BP SP, IX, and IY.

Bytes: 1

Clocks:
75, pP07010a
75, pP070116 odd addresses
43, pP070116 even addresses

Transfers: 7

Flag operation: None

Example: POP R

12-152

NEe
PREPARE imm16,imm8

Prepare new stack frame

7

1 1 0 0 1

I
imm16-low

I
imm16-high

(SP - 1, SP - 2) +- BP,
SP +- SP - 2,
temp +- SP,

I
imma

o
0 0 o

I

I

When imma > 0, repeat these operations "imma - 1"
times:

(SP - 1, SP - 2 +- (BP - 1, BP - 2)
SP +- SP - 2 (*1, see notes)
BP +- BP - 2

and perform these operations:
(SP - 1, SP - 2) +- temp
SP +- SP - 2 (*2, see notes)

Then perform these operations:
BP +- temp
SP +- SP - imm16

Notes: When imm8=1, *1 is not performed,
When imm8=O, *1 and *2 are not performed.

Used to generate "stack frames" required by the block
structures of high-level languages such as Pascal and
Ada. The stack frame includes a local variable area as
well as pointers. These frame pointers point to other
frames containing variables that can be referenced from
the current procedure.

The first operand (16-bit immediate data) specifies (in
bytes) the size of the local variable area. The second
operand (a-bit immediate data) specifies the depth (or
lexical level) of the procedure block. The frame base
address generated by this instruction is set in the BP
base pointer.

First the old BP value is saved to the stack so that BP
of the calling procedure can be restored when the called
procedure terminates. The frame pointer (BP value saved
to the stack) that indicates the range of variables that can
be referenced by the called procedure is placed on the
stack. This range is always a value one less than the
lexical level of the procedure. If the lexical level of a
proced u re is greater than one, the poi nters of that proce­
dure will also be saved on the stack. This enables the
frame pointer of the calling procedure to be copied when
frame pointer copy is performed within the called
procedure.

NEe
Next, the new frame pointer value is set in the BP and
the area for local variables used by the procedure is
reserved in the stack. In other words, SP is decremented
only for the amount of stack memory required by the local
variables.

Bytes: 4

Clocks:
When imm B = 0: 16, J.lPD7010B

16, J.lPD70116 odd addresses
12, J.lPD70116 even addresses

When B> 1: 23 + 16 (immB - 1), J.lPD7010B
23 + 16 (immB - 1), J.lPD70116
odd addresses

Transfers:

19 + B (immB -1), J.lPD70116
even addresses

When immB = 0: none
When immB> 1: 1 + 2(immB-1)

Flag operation: None

Example: PREPARE 10, 3

DISPOSE (no operand)

Dispose a stack frame

7

I 1 I 1 o

SP - BP,
BP - (SP + 1, SP),
SP -SP +2

o 1

Section 12
Instruction Set

o
o o 1

Releases the last stack frame generated by the PREPARE
instruction. A value that points to the preceding frame is
loaded in the BP and the bottom of the frame value is
loaded in SP.

Bytes: 1

Clocks:
10, J.lPD7010B
10, J.lPD70116 odd addresses

6 J.lPD70116 even addresses

Transfers: 1

Flag operation: None

Example: DISPOSE

12-153

pPD7010S/70116

BRANCH

BR-near-Iabel

Branch Relative, Same Segment BR near-label

7

1 1 o 1 o o
I I

(disp-Iow)

I I
(disp-high)

PC - PC +disp

o
1

Loads the current PC value plus a 16-bit displacement
value to the PC. If the branch address is in the current
segment, the assembler automatically generates this
instruction.

Bytes: 3

Clocks: 12

Transfers: None

Flag operation: None

Example: BR LABEL 1

12-154

BR short-label

Branch short relative, same segment

7

1 1 o

PC - PC + ext-disp8

1

I
disp8

o

NEe

o
1 1

Loads the current PC value plus an 8-bit (actually, sign­
extended 16-bit) displacement value to the PC. When the
branch address is in the current segment and within
±127 bytes of the instruction, the assembler automati­
cally generates this instruction.

Bytes: 2

Clocks: 12

Transfers: None

Flag operation: None

Example: BR SHORT_LABEL

NEe
BR regptr16

Branch register, same segment

7 0

1 1 1 1 1 1 1 1

1 1 1 0 0 reg

PC - regptr16

Loads the contents of the 16-bit register specified by the
operand to the PC. This instruction can branch to any
address in the current segment.

Bytes: 2

Clocks: 11

Transfers: None

Flag operation: None

Example: BR BX

Section 12
Instruction Set

BR memptr16

Branch memory, same segment

7

1 1 1 1 1

I
mod 1 0 0

I
(disp-Iow)

I
(disp-high)

PC - (memptr16)

o
1 1 1

I I
mem

I

I

Loads the contents of the 16-bit memory location ad­
dressed by the operand to the PC. This instruction can
branch to any address in the current segment.

Bytes: 2/3/4

Clocks:
24,IlPD70108
24,IlPD70116 odd addresses
20,IlPD70116 even addresses

Transfers: 1

Flag operation: None

Example: BR TABLE [IX]

12-155

pPD7010S/70116

BR far-label

Branch direct, external segment

7

1 1

PC - offset,
PS -seg

1 0 1

I
offset-low

I
offset-high

I
seg-Iow

I
seg-high

o
0 1 o

I

I

Loads the 16-bit offset data (second and third bytes of
the instruction) to the PC and the 16-bit segment data
(fourth and fifth bytes) to the PS. This instruction can
branch to any address in any segment.

Bytes: 5

Clocks: 15

Transfers: None

Flag operation: None

Example: BR FAR_LABEL

12-156

BR memptr32

Branch memory, external segment

7

1 1 1 1 1 1

I
mod 1 0 1

I I
(disp-Iow)

I I
(disp-high)

PS - (memptr32 + 3, memptr32 + 2)
PC - (memptr32 + 1, memptr32)

NEe

0

1 1

I
mem

Loads the upper two bytes and lower two bytes of the
32-bit memory addressed by the operand to the PS and
PC, respectively. This instruction can branch to any
address in any segment.

Bytes: 2/3/4

Clocks:
35, pPD70108
35, pPD70116 odd addresses
27, pPD70116 even addresses

Transfers: 2

Flag operation: None

Example: BR FAR_SEGMENT [IV]

t\'EC
CONDITIONAL BRANCH
BV short-label

Branch if overflow

7

o 1 1 1 o
I

disp8

When V = 1, PC +- PC + ext-disp8

o
o o o

When the V flag is 1, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within ±127 bytes of the instruction in the current
segment.

Bytes: 2

Clocks:
When V = 1: 14
When V = 0: 4

Transfers: None

Flag operation: None

Example: BV OVERFLOW_ERROR

BNV short-label

Branch if not overflow

7

o 1 1 1 0

I
disp8

Section 12
Instruction Set

o
o o 1

When V = 0, PC +- PC + ext-disp8

When the V flag is 0, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within ±127 bytes of the instruction in the current
segment.

Bytes: 2

Clocks:
When V = 0: 14
When V = 1: 4

Transfers: None

Flag operation: None

Example: BNV NO_ERROR

12-157

pPD7010S/70116

BC short-label
BL short-label

Branch if carry /Iower

7

o 1 1 1 o
I

disp8

o

When CY = 1, PC - PC + ext-disp8

o
1 o

When the CY flag is 1, load the current PC value plus
the 8-bit (actually, sign-extended 16-bit) displacement
value to the PC. This instruction can branch to any
address within ±127 bytes of the instruction in the cur­
rent segment.

Bytes: 2

Clocks:
When CY = 1: 14
When CY=O: 4

Transfers: None

Flag operation: None

Example:
BC CARRY_SET
BL LESS_THAN

12-158

BNC short-label
BNL short-label

Branch if not carry/not lower

7

o 1 1 1 o
I

disp8

o

When CY = 0, PC - PC + ext-disp8

NEe

o
1 1

When the CY flag is 0, load the current PC value plus
the 8-bit (actually, sign-extended 16-bit) displacement
value to the PC. This instruction can branch to any
address within ±127 bytes of the instruction in the cur­
rent segment.

Bytes: 2

Clocks:
When CY = 0: 14
When CY = 1: 4

Transfers: None

Flag operation: None

Example:
BNC
BNL

CARRY_CLEAR
GREATER_OR_EQUAL

NEe
BE short-label
BZ short-label

Branch if equal/zero

7

o 1 1 1 o

I
disp8

When Z = 1, PC - PC + ext-disp8

o
1 o o

When the Z flag is 1, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within ±127 bytes of the instruction in the current
segment.

Bytes: 2

Clocks:
When Z = 1: 14
When Z=O, 4

Transfers: None

Flag operation: None

Example:
BE EQUALITY
BZ ZERO

BNE short-label
BNZ short-label

Branch if not equal/not zero

7

o 1 1 1 o
I

disp8

Section 12
Instruction Set

o
1 o 1

When Z = 0, PC - PC + ext-disp8

When the Z flag is 0, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within ±127 bytes of the instruction in the current
segment.

Bytes: 2

Clocks:
When Z = 0: 14
When Z = 1: 4

Transfers: None

Flag operation: None

Example:
BNE NOT_EQUAL
BNZ NOT_ZERO

12-159

pPD70108/70116

BNH short-label

Branch if not higher

7

o 1 1 1 o
I

disp8

1 1

When CY OR Z = 1, PC - PC + ext-disp8

o
o

When the logical sum of the CY and Z flags is 1, load
the current PC value plus the 8-bit (actually, sign­
extended 16-bit) displacement value to the PC. This
instruction can branch to any address within ±127 bytes
of the instruction in the current segment.

Bytes: 2

Clocks:
When CY OR Z = 1: 14
When CY OR Z = 0: 4

Transfers: None

Flag operation: None

Example: BNH NOT_HIGHER

12-160

BH short-label

Branch if higher

7

o 1 1 o
I

disp8

NEe

o
1 1 1

. When CY OR Z = 0, PC - PC + ext-disp8

When the logical sum of the CY and Z flags is 0, load
the current PC value plus the 8-bit (actually, sign­
extended 16-bit) displacement value to the PC. This
instruction can branch to any address within ±127 bytes
of the instruction in the current segment.

Bytes: 2

Clocks:
When CY ORZ = 0: 14
When CYORZ= 1: 4

Transfers: None

Flag operation: None

Example: BH HIGHER

NEe
BN short-label

Branch if negative

7

o 1 1 1 1

I
disp8

When S = 1, PC PC + ext-disp8

o
o o o

When the S flag is 1, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within ±127 bytes of the instruction in the current
segment.

Bytes: 2

Clocks:
When S = 1: 14
When S=O: 4

Transfers: None

Flag operation: None

Example: BN NEGATIVE

BP short-label

Branch if positive

7

o 1 1 1

I
disp8

Section 12
Instruction Set

o
o o 1

When S = 0, PC PC + ext-disp8

When the S flag is 0, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within ±127 bytes of the instruction in the current
segment.

Bytes: 2

Clocks:
When S = 0: 14
When S = 1: 4

Transfers: None

Flag operation: None

Example: BP POSITIVE

12-161

pPD70108/701i6

aPE short-label

Branch if parity even

7

o 1 1 1 1

I
disp8

When P = 1, PC - PC + ext-disp8

o
o 1 o

When the P flag is 1, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) dispacement value
to the PC. This instruction can branch to any address
within ±127 bytes of the instruction in the current
segment.

Bytes: 2

Clocks:
When P = 1: 14
When P=O: 4

Transfers: None

Flag operation: None

Example: BPE PARITY_EVEN

12-162

BPO short-label

Branch if parity odd

7

o 1 1 1 1

I
disp8

When P = 0, PC - PC + ext-disp8

NEe

o
o 1 1

When the P flag is 0, load the current PC value plus the
8-bit (actually, sign-extended 16-bit) displacement value
to the PC. This instruction can branch to any address
within ±127 bytes of the instruction in the current
segment.

Bytes: 2

Clocks:
When P = 0: 14
When P = 1: 4

Transfers: None

Flag operation: None

Example: BPO PARITY_ODD

ttlEC
BlT short-label

Branch if less than

7

o 1 1 1 1

I
disp8

1 o

When S XORV = 1, PC - PC + ext-disp8

o
o

When the exclusive OR of the S and V flags is 1, load
the current PC value plus the 8-bit (actually, sign­
extended 16-bit) displacement value to the PC. This
instruction can branch to any address within ±127 bytes
of the instruction in the current segment. When the con­
ditions are unsatisfied, proceeds to the next instruction.

Bytes: 2

Clocks:
WhenSXORV=1: 14
When S XOR V = 0: 4

Transfers: None

Flag operation: None

Example: BLT LESS_THAN

Section 12
Instruction Set

BGE short-label

Branch if greater than or equal

7

o 1 1 1 1

I
disp8

1 o

When S XOR V = 0, PC - PC + ext-disp8

o
1

When the Exclusive OR of the S and V flags is 0, load
the current PC value plus the 8-bit (actually, sign­
extended 16-bit) displacement value to the PC. This
instruction can branch to any address within ±127 bytes
of the instruction in the current segment. When the con­
ditions are unsatisfied, proceeds to the next instruction.

Bytes: 2

Clocks:
When S XOR V = 0: 14
When S XOR V = 1: 4

Transfers: None

Flag operation: None

Example: BGE GREATER_OR_EQUAL

12-163

JlPD70108/70116

BLE short-label

Branch if less than or equal

7

o 1 1

I
disp8

o
1 o

When (S XOR V) OR Z = 1, PC +- PC + ext-disp8

When the Exclusive OR of the S and V flags and the
logical sum of that result and the Z flag is 1, loads the
current PC value plus the 8-bit (actually, sign-extended
16-bit) displacement val ue to the PC. Th is instruction can
branch to any address within ±127 bytes of the instruc­
tion in the current segment. When the conditions are
unsatisfied, proceeds to the next instruction.

Bytes: 2

Clocks:
When (S XOR V) OR Z = 1: 14
When (S XOR V) OR Z = 0: 4

Transfers: None

Flag operation: None:

Example: BLE LESS_OR_EQUAL

12-164

BGT short-label

Branch if greater than

7

o 1 1 1

I
disp8

ttlEC

o
1 1

When (S XOR V) OR Z = 0, PC +- PC + ext-disp8

When the exclusive OR of the S and V flags and the
logical sum of that result and the Z flag is 0, load the
current PC value plus the 8-bit (actually, sign-extended
16-bit) displacement value to the PC. This instruction can
branch to any address within ±127 bytes of the instruc­
tion in the current segment. When the conditions are
unsatisfied, proceeds to the next instruction.

Bytes: 2

Clocks:
When (S XOR V) OR Z = 0: 14
When (S XOR V) OR Z = 1: 4

Transfers: None

Flag operation: None

Example: BGTGREATER

t\'EC
DBNZNE short-label

Decrement and branch if not zero and not equal

7 o
1 1 1 o o o o o

CW-CW-1
When CW =I' 0 and Z = 0, PC - PC + ext-disp8

When the 16-bit register CW is decremented (-1), the
resultant CW value is not 0, arid the Z flag is cleared, load
the current PC value plus the 8-bit (actually, sign­
extended 16-bit) displacement value to the PC. This
instruction can branch to any address within ±127 bytes
of the instruction in the current segment.

Bytes: 2

Clocks:
When CW =F 0 and Z = 0: 14
When others: 5

Transfers: None

Flag operation: None:

Example: PBNZNE LOOP_AGAIN

Section 12
Instruction Set

DBNZE short-label

Decrement and branch if not zero and equal

7

1 1 1 o

CW-CW-1

o
I

disp8

o o

When CW =F 0 and Z = 1, PC - PC + ext-disp8

o
1

When the 16-bit register CW is decremented (-1), the
CW is not zero, and the Z flag is set, load the current PC
value plus the 8-bit (actually, sign-extended 16-bit) dis­
placement value to the PC. This instruction can branch
to any address within ±127 bytes ofthe instruction in the
current segment.

Bytes: 2

Clocks:
When CW =F 0 and Z = 1: 14
When others: 5

Transfers: None

Flag operation: None

Example: DBNZE LOOP_AGAIN

12-165

pPD70108/70116

DBNZ short-label

Decrement and branch if not zero

7

1 1

CW+-CW-1

1 o o

I
disp8

o

When CW # 0, PC +- PC + ext-disp8

o
1 o

When the 16-bit register CW is decremented (-1) and
the CW value is not zero, load the current PC value plus
the 8-bit (actually, sign-extended 16-bit) displacement
value to the PC. This instruction can branch to any
address within ±127 bytes of the instruction in the cur­
rent segment.

Bytes: 2

Clocks:
When CW # 0: 13
When CW=O: 5

Transfers: None

Flag operation: None

Example: DBNZ LOOP_AGAIN

12-166

BCWZ short-label

Branch if CW equals zero

7

1 o o
I

disp8

If CW = 0, PC +- PC + ext-disp8

NEe

o
o 1 1

When the 16-bit register CW is 0, load the current PC
value plus the 8-bit (actually sign-extended 16-bit) dis­
placement value to the PC. This instruction can branch
to any address within ±127 bytes of the instruction in the
current segment.

Bytes: 2

Clocks:
When CW = 0: 13
When CW#O: 5

Transfers: None

Flag operation: None

Example: BCWZ CW_ZERO

NEe
BREAK
BRK3

Break, vector 3

7

I I I
1 1 0 o

(SP -1, SP - 2) - PSW
(SP - 3, SP - 4) - PS
(SP - 5, SP - 6) - PC
SP-SP-6
IE-O
BRK-O
PC - (13,12)
PS - (15,14)

o
1 1 o o

Saves the PSW, PS, and PC to the stack and resets the
IE and BRK flags to O. Then loads the lower two bytes
and higher two bytes of vector 3 of the interrupt vector
table to the PC and PS, respectively.

Bytes: 1

Clocks:
50, pPD70108
50, pPD70116 odd addresses
38, pPD70116 even addresses

Transfers: 5

Flag operation:

Example: BRK 3

Section 12
Instruction Set

BRK imm8 (=F3)

Break, immediate data

7

1 1 o o 1

I
imm8

(SP - 1, SP - 2) - PSW
(SP - 3, SP - 4) - PS
(SP - 5, SP - 6) - PC
SP -SP-6
IE-O
BRK-O
PC - (immB X4 + 1, imm8 X4)
PS - (immB X4 + 3, imm8 X4 + 2)

o
1 o 1

Saves the PSw, PS, and PC to the stack and resets the
IE and BRK flags to O. Then loads the lower two bytes
and upper two bytes of the interrupt vector table (4 bytes)
specified by the 8-bit immediate data to the PC and PS,
respectively.

Bytes: 1

Clocks:
50, pPD70108
50, pPD70116 odd addresses
38, pPD70116 even addresses

Transfers: 5

Flag operation:

Example: BRK 10H ;PC = (40H,41 H),
;PS = (42H,43H)

12-167

pPD7010S/70116

BRKV (no operand)

Break if overflow

7

I 1 I 1 o

When V = 1,

o

(SP - 1, SP - 2) - PSW
(SP - 3, SP - 4) - PS
(SP - 5, SP - 6) - PC
SP -SP-6
IE-O
BRK-O
PC - (011 H, 010H)
PS - (013H, 012H)

o
1 o

When the V flag is set, saves the PSW, PS, and PC to
the stack and resets the IE and BRK flags to O. Then loads
the lower two bytes and upper two bytes of vector 4 of
the interrupt vector table to the PC and PS, respectively.
When the V flag is reset, proceeds to the next instruction.

Bytes: 1

Clocks:
When V = 1: 52,pPD70108

52, pPD70116 odd addresses
When V = 0: 40, pPD70116 even addresses

Transfers: 5

Flag operation:

Example: BRKV

12-168

RETI (no operand)

Return from interrupt

7

I 1 I 1 o

PC - (SP + 1, SP)

o

PS - (SP + 3, SP + 2)
PSW - (SP + 5, SP + 4)
SP-SP+6

ttlEC

o
1 1

Restores the contents of the stack to the PC, PS, and
PSW Used for return from interrupt processing.

Bytes: 1

Clocks:
39, pPD70108
39, pPD70116 odd addresses
27, pPD70116 even addresses

Transfers: 3

Flag operation:

IM~*I V DIR

R R

I
AC

i
P CY

R R R*

IE I a:K I R

S Z
R R

*The Mode flag (MD) can only be modified by RETI
during Native mode calis from 8080 Emulation mode; i.e.
between the execution of BRKEM and RETEM instruc­
tions.ln Native mode outside of Emulation mode, the MD
flag will remain set to 1 regardless of the contents of the
stack. Do not alter the MD flag during Native mode calis
from Emulation mode, or during interrupt service rou­
tines which may be executed by interrupting Emulation
mode execution. The RETI instruction should be used to
exit Native mode service routines and to return to Emu­
lation mode. The RETI instruction should be the last
instruction executed in the Native mode service routine.

Example: RETI

t-{EC
BRKEM immS

Break for emulation

7

0 0 0 0 1

1 1 1 1

I
imm8

(SP - 1, SP - 2) +- PSW
(SP - 3, SP - 4) +- PS
(SP - 5, SP - 6) +- PC
SP +- SP - 6
MD +- 0, write enable MD

1

1

PS +- (imm 8 X 4 + 3, imm 8 X 4 + 2)
PC +- imm 8 X 4 + 1, imm 8 X 4)

o
1 1

1 1

Starts the emulation mode. Saves the PSW, PS, and PC
and resets the MD bit to 0 and jumps to the emulation
location addressed by the interrupt vector specified by
the 8-bit immediate data specified by the operand. After
fetching the instruction code ofthe jumped interruptserv­
ice routine (for emulation), the CPU interprets and exe­
cutes the code as an instruction of the pPD808AF. Use
either the RETEM or CALLN instruction to return from the
emulation mode to the native mode (pPD70108170116).
CALtN temporarily returns the program from Emulation
to Native Mode and RETEM completes Emulation mode.

Bytes: 3

Clocks:
50, pPD70108

Section 12
Instruction Set

50, pPD70116 odd addresses
38, pPD70116 even addresses

Transfers: 5

Flag operation:

Example: BRKEM 80H

12-169

pPD70108/70116

CHKIND reg16,mem32

Check index

7

0 1 1 0

I
mod reg

0

I
(disp-Iow)

I

I I
(disp-high)

0 1

I I
mem

When (mem32) > reg16 or (mem32 + 2) < reg16
(SP - 1, SP - 2) - PSW
(SP - 3, SP - 4) - PS
(SP - 5, SP - 6) - PC
SP-SP-6
IE-O
BRK-O
PS - (23, 22)
PC - (21, 20)

0

0

Used to check whether the index value in reg16 is within
the defined array bounds. Initiates a BRK 5 when the
index does not satisfy the condition. The definition region
should be set beforehand in the two words (first word
for the lower limit and second word for the upper limit)
of memory.

12-170

NEe
Bytes: 2/3/4

Clocks:
When interrupt condition is fulfilled:

73-76, pP070108
73-76, pP070116 odd addresses
53-56, pP070116 even addresses

When interrupt condition is not fulfilled:
26, pP070108
26, pP070116 odd addresses
18, pP070116 even addresses

Transfers:
When interrupt condition is fulfilled: 7
When interrupt condition is not fulfilled: 2

Flag operation:

When interrupt condition is fulfilled:

Example:
When interrupt condition is not fulfilled: None:

Example:
MOV IX,23
CHKINO IX,BOUNOS1 ;OK
MOV BW,87
CHklNO BW,BOUNOS2 ;causes

;BRK5
BOUNOS1 OW 5,37
BOUNOS2 OW 2,80

Memory

o

(Upper Limit)

(Lc!wer Limit)

49000029A

ttlEC
CPU CONTROL

HALT (no operand)

Halt

7

I 1 1 1

o
1 o 1 o o

Sets the halt state. The halt state is released by the
RESET, NMI, or INT input.

Bytes: 1

Clocks: 2

Transfers: None

Flag operation: None:

Example: HALT

POLL (no operand)

Poll and wait

7

I 1 I 0 o 1 1

Section 12
Instruction Set

o
o 1 1

Keeps the CPU in the idle state until the POLL pin
becomes an active low level.

Bytes: 1

Clocks: 2 + Sn, where n = number of times POLL pin
is sampled

Transfers: None

Flag operation: None

Example: POLL

12-171

pPD70108/70116

01 (no operand)

Disable interrupt

7 a

I
I

1 1 1 1 1 a 1 a

IE-O

Resets the IE flag and disables the external maskable
interrupt input (INT). Does not disable the external non­
maskable interrupt input (NMI) or software interrupt
instructions.

Bytes: 1

Clocks: 2

Transfers: None

Flag operation:

Example: 01

12-172

NEe
EI (no operand)

Enable interrupt

7 a

I
I

1 1 1 1 a 1 1

EI-1

Sets the EI flag and enables the external maskable inter­
rupt input (INT). The system does not enter the interrupt­
enable state until executing the instruction immediately
after EI.

Bytes: 1

Clocks: 2

Transfers: None

Flag operation: rn
Example: EI

NEe
BUSLOCK (no operand)

Bus lock prefix

7

I 1 i 1 1 1 o

In the large-scale mode (S/LG = 0)

o
o o o

Outputs the buslock signal (BUSLOCK) while the instruc­
tion immediately after the BUSLOCK instruction is being
executed. When BUSLOCK is used for a block operation
instruction with a repeat prefix, the BUSLOCK signal is
kept at an active low level until the end of the block
operation instruction.

Hold request is inhibited when BUSLOCK is active. The
BUSLOCK instruction is effective when you do not want
to acknowledge a hold request during block operations.

In small-scale mode (S/LG = 1)

The BUSLOCK signal is not an output. However, the
BUSLOCK instruction can be used to delay a hold
acknowledge response to a hold request until execution
of the locked instruction is completed.

Bytes: 1

Clocks: 2

Transfers: None

Flag operation: None

Example: BUSLOCK REP MOVBKB

FP01 fp-op

Section 12
Instruction Set

Floating point operation 1, register

7 o
1 1 o 1 1 x x x

1 1 y y y z z z

Used when the floating point arithmetic chip is con­
nected externally. Causes the CPU to leave arithmetic
processing to the floating point chip. When the floating
point chip monitors this instruction, it treats the instruc­
tion as its own and executes it.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation: None

Example:
FP01
FP01

FABSO
FCMPR2

12-173

pPD70108/70116

FP01 fp-op,mem

Floating point operation 1, memory

7

1

i
mod

1 o

y

Data bus - (mem)

1

y y

i i
(disp-Iow)

i i
(disp-high)

x x
i

mem

o
x

Used when the floating point arithmetic chip is externally
connected. Causes the CPU to leave arithmetic process­
ing to the floating point chip and instead, carries out
auxiliary processing such as calculation of effective
address, generation of physical addresses, and start of
memory read cycles when necessary.

When the floating point chip monitors this instruction, it
treats the instruction as its own and executes it. In this
case, depending on the type of instruction, the floating
point chip selects either the address information of the
memory read cycle started by the CPU or both the
address and read data. The CPU does not use the read
data on the data bus in the memory read cycle which
the CPU has initiated.

Bytes: 2/3/4

Clocks:
15, pPD70108
15, pPD70116 odd addresses
11, pPD70116 even addresses

Transfers: 1

Flag operation: None

Example:
FP01
FP01

12-174

FCMP,DWORD_VAR
FMUL,QWORD PTR [BW]

NEe
FP02 fp-op

Floating pOint operation 2, register

7 0

0 1 1 0 0 1 1 X

1 1 Y Y Y Z Z Z

Used with an externally connected floating point arith­
metic chip. Causes the CPU to leave processing to the
floating point chip. When the floating point chip monitors
this instruction, it interprets the instruction as its own and
executes it.

Bytes: 2

Clocks: 2

Transfers: None

Flag operation: None

Example: FP02 FSINRO

NEe
FP02 fp-op, mem

Floating point operation 2, memory

7 0

0 1 1 0 0 1 X

I I
mod y y y mem

I I
(disp-Iow)

I I
(disp-high)

Data bus -- (mem)

Used with an externally connected floating point arith­
metic chip. Causes the CPU to leave arithmetic process­
ing to the floating point chip and instead carries out
auxiliary processing such as calculation of effective
addresses, generation of physical addresses, and start
of memory read cycles when necessary.

When the floating point chip monitors this instruction, it
treats the instruction as its own and executes it. In this
case, depending on the type of instruction, the operating
chip selects either the address information of the
memory read cycle started by the CPU or both the
address and read data.

Bytes: 2/3/4

Clocks:
15, pPD70108
15, pPD70116 odd addresses
11,pPD70116 even addresses

Transfers: 1

Flag operation: None

Example: FP02 FCOS,DWORD PTR [IX][BW]

NOP (no operand)

No operation

7

I 1 I 0 o 1

Section 12
Instruction Set

o
o o o o

Causes the processor to do nothing for three clocks.

Bytes: 1

Clocks: 3

Transfers: None

Flag operation: None

Example: NOP

12-175

pPD70108/70116

SEGMENT OVERRIDE PREFIXES

OSO:
OS1:
PS:
SS:

7

I 0 o 1
I

sreg 1 1

o
o

When appended to the operand, specifies the segment
register to be used for access of a memory operand
expecting segment override.

You can define the segment override by assembler direc­
tive ''ASSUME'' without describing the segment override
prefix directly (see Assembler Operating Manual).

Bytes: 1

Clocks: 2

Transfers: None

Flag operation: None

Example:
MOV
REP

12-176

IX,OS1 :[IY]
MOVBKB OEST _BLK,SS:SRC-BLK

EMULATION MODE
CALLN imm8

Call native

7

1 1 1 0 1

1 1 0 1

I
imm8

(SP - 1, SP - 2) -- PSW
(SP - 3, SP - 4) -- PS
(SP - 5, SP - 6) -- PC
SP-- PS-6
MO--1
PS -- (imm8 X4 + 3, imm8 X4 + 2)
PC -- (imm8 X4 + 1, imm8 X4)

~EC

0

1 0 1

1 0 1

When executed in the emulation mode, the CPU inter­
prets the instruction as a pP08080AF command. The
CPU saves the PS, PC, and PSW to the stack (MO = 0
is also saved). Then the MO flag is set to 1. The interrupt
vector specified by the 8-bit immediate data of the oper­
and is loaded into PS and PC. This command allows you
to call a native mode interrupt routine from the emula­
tion mode.

The RETI command is used to return to emulation mode
from the interrupt routine.

Bytes: 3

Clocks:
58, pP070108
58, pP070116 odd addresses
38, pP070116 even addresses

Transfers: 5

Flag operation:

Example: CALLN 40H

NEe
RETEM

Return from emulation

7 0

1 1 1 0 1 1 0 1

1 1 1 1 1 1 0 1

PC - (SP + 1, SP)
PS - (SP + 3, SP + 2)
PSW - (SP + 5, SP + 4)
SP-SP+6
Write disable MD

When executed in the emulation mode, the CPU inter­
prets this instruction as a pPD8080AF command. The
CPU restores the PS, PC, and PSW saved by the BRKEM
command in the same manner as when returning from
interrupt processing. When the BRKEM instruction is
executed, the MD flag is write disabled, so the MD flag
is not restored by executing the RETI or POP PSW
instructions.

Bytes: 2

Clocks:
39, pPD70108

Section 12
Instruction Set

39, pPD70116 odd addresses
27, pPD70116 even addresses

Transfers: 3

Flag operation:

MD v DIR

R R R

P CY

R R

Example: RETEM

z AC

R R

12-177

pPD7010S/70116 t-IEC

12-178

NEe
Instruction

ADD

ADDC

ADD4S
ADJBA
ADJBS
ADJ4A
ADJ4S
AND

BC
BCWZ
BE
BGE
BGT
BH
BL
BLE
BLT
BN
BNC
BNE
BNH
BNL
BNV
BNZ
BP
BPE
BPO
BR

BRK

BRKEM
BRKV
BUSLOCK
BV
BZ

Page

reg,reg 12-29
mem,reg 12-30
reg,mem 12-30
reg,imm 12-31
mem,imm 12-31
acc,imm 12-32
reg,reg 12-32
mem,reg 12-33
reg,mem 12-33
reg,imm 12-34
mem,imm 12-34
acc,imm 12-35
.. 12-42
.. 12-61
.. 12-62
.. 12-61
.. 12-62
reg, reg 12-72
mem,reg 12-72
reg,mem 12-73
reg,imm 12-74
mem,imm 12-74
acc,imm 12-75
short-label 12-158

.................................... 12-166
II •••••••••••••••••••••••••••••••••••• 12-159
I' 12-163

.................................... 12-164

.................................... 12-160
., 12-158

.................................... 12-164
., 12-163
., 12-161
short-label 12-158
., 12-159
., 12-160
., 12-158
., 12-157
., 12-159
., 12-161
., 12-162
., 12-162
near-label 12-154
short-label 12-154
regptr16 12-155
memptr16 12-155
far-label 12-156
memptr32 12-156
3 12-167
imm8 12-167
imm8 12-169
... ; 12-168
...................................... 12-173
short-label 12-157
., 12-159

Instruction

CALL

CALLN
CHKIND
CLR1

CMP

CMPBKB
CMPBKW
CMP4S
CMPM
CMPMB
CMPMW
CVTBD
CVTBW
CVTDB
CVTWL
DBNZ
DBNZE
DBNZNE
DEC

01
DISPOSE
DIV

DIVU

DSO:
DS1:
EI
EXT

Appendix 1&
Instruction Index ~

Page

near-proc 12-142
regptr16 12-142
memptr16 12-143
far-proc 12-143
memptr32 12-144
imm8 12-176
reg16,mem32 12-170
reg8,CL 12-90
mem8,CL 12-90
reg16,CL 12-91
mem16,CL 12-91
reg8,imm3 12-92
mem8,imm3 12-92
reg16,imm4 12-93
mem16,imm4 12-93
CY 12-94
DIR 12-94
reg,reg 12-65
mem,reg 12-65
reg,mem 12-66
reg,imm 12-66
mem,imm 12-67
acc,imm 12-67
CMPBK 12-17
.. 12-17
.. 12-17
.. 12-44
.. 12-18
.. 12-18
.. 12-18
.. 12-63
.. 12-64
.. 12-63
.. 12-64
short-label 12-166
., 12-165
., 12-165
reg8 12-48
mem 12-49
reg16 12-49
...................................... 12-172
...................................... 12-153
reg8 12-58
mem8 12-58
reg16 12-59
mem16 12-60
reg8 12-56
mem8 12-56
reg16 12-57
mem16 12-57
...................................... 12-176
...................................... 12-176
...................................... 12-172
reg18,reg28 12-23
reg8,imm4 12-24

A-1

JlPD7010S/70116

Instruction

FP01

FP02

HALT
IN

INC

INM
INS

LDEA
LDM
LDMB
LDMW
MOV

MOVBK
MOVBKB
MOVBKW
MUL

MULU

NEG

NOP
NOT

A-2

Page

fp-op 12-173
fp-op,mem 12-174
fp-op 12-174
fp-op,mem 12-175
...................................... 12-171
acc,imm8 '" 12-25
acc,DW 12-25
reg8 12-47
mem ;-. 12-47
reg16 12-48
dst-block,DW 12-28
reg18,reg28 12-21
reg8,imm4 12-22
reg16,mem16 12-11
src-block 12-19
.. 12-19
.. 12-19
reg, reg 12-4
mem,reg 12-4
reg,mem 12-5
mem,imm 12-5
reg,imm 12-5
acc,dmem 12-6
dmem,acc 12-7
sreg,reg16 12-6
sreg,mem16 12-8
reg16,sreg 12-8
mem16,sreg 12-9
DSO,reg16,mem32 12-9
DS1,reg16,mem32 12-10
AH,PSW 12-10
PSW,AH 12-11
dist-block,src-block 12-16
.. 12-16
.. 12-16
reg8 12-52
mem8 12-52
reg16 12-53
mem16 12-53
reg16,reg16,imm8 12-54
reg16,mem16,imm8 12-54
reg16,reg16,imm16 12-55
reg16,mem16,imm16 12-55
reg8 12-50
mem8 12-50
reg16 12-51
mem16 12-51
reg 12-69
mem 12-69
...................................... 12-175
reg 12-68
mem 12-68

Instruction

NOT1

OR

OUT

OUTM
POLL
POP

PREPARE
PS:
PUSH

REP
REPC
REPE
REPNC
REPNE
REPNZ
REPZ
RET

RETEM
RET1
ROL

NEe
Page

reg8,CL 12-85
mem8,CL 12-86
reg16,CL 12-86
mem16,CL 12-87
reg8,imm3 12-87
mem8,imm3 12-88
reg16,imm4 12-88
mem16,imm4 12-89
CY 12-89
reg,reg 12-75
mem,reg 12-76
reg,mem 12-76
reg,imm 12-77
mem,imm 12-77
acc,imm 12-78
imm8,acc 12-26
DW,acc 12-26
DW,src-block 12-29
." 12-171
mem16 12-150
reg16 12-150
sreg 12-151
PSW 12-151
R 12-152
imm16,imm8 12-152
...................................... 12-176
imm8 12-149
imm16 12-146
mem16 12-146
reg16 12-147
sreg 12-147
PSW 12-148
R 12-148
.. 12-15
.. 12-14
.. 12-15
.. 12-14
.. 12-15
.. 12-15
.. 12-15
...................................... 12-144
pop-value 12-145
...................................... 12-177
...................................... 12-168
reg,1 12-118
mem,1 12-119
reg,CL 12-120
mem,CL 12-121
reg,imm8 12-122
mem,imm8 12-123

NEe
Instruction

ROLC

ROL4

ROR

RORC

ROR4

SET1

SHL

SHR

SHRA

Page

reg,1 12-130
mem,1 12-131
reg,CL 12-132
mem,CL 12-133
reg,imm8 12-134
mem,imm8 12-135
mem8 12-45
reg8 12-45
reg,1 12-124
mem,1 12-125
reg,CL 12-126
mem,CL 12-127
reg,imm8 12-128
mem,imm8 12-129
reg,1 12-136
mem,1 12-137
reg,CL 12-138
mem,CL 12-139
reg,imm8 12-140
mem,imm8 12-141
reg8 12-46
mem8 12-95
reg8,CL 12-95
mem8,CL 12-95
reg16,CL 12-96
mem16,CL 12-96
reg8,imm3 12-97
mem8,imm3 12-97
reg16,imm4 12-98
mem16,imm4 12-98
CY 12-99
DIR 12-99
reg,1 12-100
mem,1 12-101
reg,CL 12-102
mem,CL 12-103
reg,imm8 12-104
mem,imm8 12-105
reg,1 12-106
mem,1 12-107
reg,CL 12-108
mem,CL 12-109
reg,imm8 12-110
mem,imm8 12-111
reg,1 12-112
mem,1 12-113
reg,CL 12-114
mem,CL 12-115
reg,imm8 12-116
mem,imm8 12-117

Instruction

SS:
STM
STMB
STMW
SUB

SUBC

SUB4S
TEST

TEST1

TRANS
TRANSB
XCH

XOR

Appendix A
Instruction Set

Page

...................................... 12-176
dst-block 12-20
.. 12-19
.. 12-19
reg,reg 12-35
mem,reg 12-36
reg,mem 12-36
reg,imm 12-37
mem,imm 12-37
acc,imm 12-38
reg, reg 12-38
mem,reg 12-39
reg,mem 12-39
reg,imm 12-40
mem,imm 12-40
acc,imm 12-41
.. 12-43
reg,reg 12-70
mem,reg 12-70
reg,imm 12-71
mem,imm 12-71
acc,imm 12-72
reg8,CL 12-81
mem8,CL 12-82
reg16,CL 12-82
mem16,CL 12-83
reg8,imm3 12-83
mem8,imm3 12-84
reg16,imm4 12-84
mem16,imm4 12-85
src-table 12-12
. 12-12
reg,reg 12-12
mem,reg 12-13
AW,reg16 12-13
reg,reg 12-78
mem,reg 12-79
reg,mem 12-79
reg,imm 12-80
mem,imm 12-80
acc,imm 12-81

A-3

pPD7010S/70116 NEe

A-4

pPD70108/70116

ftt{EC
NEe Electronics Inc.
CORPORATE HEADQUARTERS

401 Ellis Street
P.O. Box 7241
Mountain View, CA 94039
TEl 415-960-6000
TWX 910-379-6985

" 1986 NEC Electronics Inc./Printed in U.S.A.

For Literature Call Toll Free: 1-800-632-3531
1-800-632-3532 (In California)

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC
Electronics Inc. The information in this document is subject to change without notice. Devices sold by NEC Electronics Inc.
are covered by the warranty and patent indemnification provisions appearing in NEC Electronics Inc. Terms and Conditions
of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied , or by description , regarding the
information set forth herein or regarding the freedom of the described devices from patent infringement. NEC Electronics
Inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. assumes no responsibility for any
errors that may appear in this document. NEC Electronics Inc. makes no commitment to update or to keep current the
information contained in this document.

NECEL-000254-1086
STOCK NO. 500350

-- -- - -----~-------

	000
	001
	002
	003
	004
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	10-01
	10-02
	11-01
	11-02
	11-03
	11-04
	12-001
	12-002
	12-003
	12-004
	12-005
	12-006
	12-007
	12-008
	12-009
	12-010
	12-011
	12-012
	12-013
	12-014
	12-015
	12-016
	12-017
	12-018
	12-019
	12-020
	12-021
	12-022
	12-023
	12-024
	12-025
	12-026
	12-027
	12-028
	12-029
	12-030
	12-031
	12-032
	12-033
	12-034
	12-035
	12-036
	12-037
	12-038
	12-039
	12-040
	12-041
	12-042
	12-043
	12-044
	12-045
	12-046
	12-047
	12-048
	12-049
	12-050
	12-051
	12-052
	12-053
	12-054
	12-055
	12-056
	12-057
	12-058
	12-059
	12-060
	12-061
	12-062
	12-063
	12-064
	12-065
	12-066
	12-067
	12-068
	12-069
	12-070
	12-071
	12-072
	12-073
	12-074
	12-075
	12-076
	12-077
	12-078
	12-079
	12-080
	12-081
	12-082
	12-083
	12-084
	12-085
	12-086
	12-087
	12-088
	12-089
	12-090
	12-091
	12-092
	12-093
	12-094
	12-095
	12-096
	12-097
	12-098
	12-099
	12-100
	12-101
	12-102
	12-103
	12-104
	12-105
	12-106
	12-107
	12-108
	12-109
	12-110
	12-111
	12-112
	12-113
	12-114
	12-115
	12-116
	12-117
	12-118
	12-119
	12-120
	12-121
	12-122
	12-123
	12-124
	12-125
	12-126
	12-127
	12-128
	12-129
	12-130
	12-131
	12-132
	12-133
	12-134
	12-135
	12-136
	12-137
	12-138
	12-139
	12-140
	12-141
	12-142
	12-143
	12-144
	12-145
	12-146
	12-147
	12-148
	12-149
	12-150
	12-151
	12-152
	12-153
	12-154
	12-155
	12-156
	12-157
	12-158
	12-159
	12-160
	12-161
	12-162
	12-163
	12-164
	12-165
	12-166
	12-167
	12-168
	12-169
	12-170
	12-171
	12-172
	12-173
	12-174
	12-175
	12-176
	12-177
	12-178
	A-01
	A-02
	A-03
	A-04
	xBack

