

µPD41256 262,144 x 1-Bit Dynamic NMOS RAM

Description

The µPD41256 is a 262,144-word by 1-bit dynamic RAM designed to operate from a single +5-volt power supply and fabricated with a double polylayer, N-channel, silicon-gate process for high density, high performance, and high reliability. A single-transistor storage cell and advanced dynamic circuitry, including 1024 sense amplifiers, ensure that power dissipation is minimized, while an on-chip circuit generates the negative-voltage sub-strate bias—automatically and transparently.

The three-state output is controlled by CAS independent of RAS. After a valid read or read-modify-write cycle, data is held on the output by holding CAS low. The data output is returned to high impedance by returning CAS high. A hidden refresh feature allows CAS to be held low to maintain output data while RAS is used to execute refresh cycles.

Refreshing may be accomplished by means of RAS-only refresh cycles, hidden refresh cycles, CAS before RAS refresh cycles, or by normal read or write cycles on the 256 address combinations of A₀ through A₇ during a 4-ms refresh period.

Features

- 262,144-word x 1-bit organization
- High-density plastic DIP and PLCC packaging
- Multiplexed address inputs
- Single +5-volt power supply
- On-chip substrate bias generator
- Low power dissipation of 28 mW max (standby)
- Nonlatched, three-state outputs
- Fully TTL-compatible inputs and outputs
- Low input capacitance
- 256 refresh cycles every 4 ms
- Optional page cycle
- RAS-only, hidden, and CAS before RAS refreshing

Pin Configurations

mint along With

16-Pin Plastic DIP

18-Pin Plastic Leaded Chip Carrier (PLCC)

µPD41256

NEC

Ordering Information

Part Number	Row Access Time (max)	R/W Cycle (min)	Page Cycle (min)	Power Supply Tolerance	Package
µPD41256C-80	80 ns	160 ns	70 ns	±5%	16-pin plastic DIP of of com
C-85	85 ns	165 ns	70 ns	while not if but has	AND REAL AND A MUSICIPAL
C-10	100 ns	200 ns	100 ns	±10%	information of the side of the side
µPD41256L-80	80 ns	160 ns	70 ns	±5%	18-pin plastic leaded chip carrier
L-85	85 ns	165 ns	70 ns	analogi shiku palana	b digitari probasiyon (gala
L-10	100 ns	200 ns	100 na	±10%	and the minority of studies.

Pin Identification

Name	Function
Ao - Aa	Address inputs
CAS	Column address strobe
DIN	Data input
Dout	Data output
RAS	Row address strobe
WE	Write enable
GND	Ground
Vcc	+5-volt power supply
NC	No connection

Capacitance

T_A = 25°C; f = 1 MHz

Parameter	Symbol	Max	Unit	Pins Under Test
Input capacitance	Cit	5	pF	Ao - Aa, DiN
	Ci2	8	pF	RAS, CAS, WE
Output capacitance	COUT	7	p₽	DOUT

Absolute Maximum Ratings

Voltage on any pin relative to GND, VT	-1.0 to +7.0 V
Operating temperature, T _A (ambient)	0 to +70°C
Storage temperature, TSTG	-55 to +125°C
Short-circuit output current, IOS	50 mA
Power dissipation, PD	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	4.5	5.0	5.5	٧
Input voltage, high	VIH	2.4		V _{CC} + 1.0	٧
Input voltage, low	V _{IL}	-1.0		0.8	٧
Ambient temperature	TA	0	10-17	70	°C

Notes:

(1) $V_{CC} = +5 V \pm 5\%$ for the -80 and -85 versions.

DC Characteristics

TA = 0 to +70°C; 1	/cc = +5.0	V ±10%
--------------------	------------	--------

Parameter	Symbol	Min	Min Max		Test Conditions RAS = V _{IH} : D _{OUT} = high impedance			
Standby supply current	ICC2	5.0		Unit				
Input leakage current	h(L)	-10	10	μА	V _{IN} = 0 V to V _{CC} ; all other pins not under test = 0 V			
Output leakage current	LO(L)	-10	10	μА	Dour disabled; Vour = 0 V to VCC			
Output voltage, low	VOL		0.4	v	I _{OL} = 4.2 mA			
Output voltage, high	VOH	2.4		V	lout = -5 mA			

µPD41256

AC Characteristics

 $T_A = 0$ to $+70^{\circ}C$

		#PD41	256-80	µPD41	255-85	µPD41	256-10		en en estado
Parameter	Symbol	Min	Мах	Min	Max	Min	Max	Unit	Test Conditions
Supply voltage	Vcc	4.75	5.25	4.75	5.25	4.5	5,5		ALC: NOT THE REAL PROPERTY OF
Operating supply current, average	ICC1	- 69	90	12	90		80	mA	RAS, CAS cycling: $t_{RC} = t_{RC} (min);$ $t_0 = 0 mA (Note 5)$
Operating supply current, RAS-only refresh cycle, average	loca	1	80	K	80	1	65	mA	$\label{eq:rescaled} \begin{array}{l} \overline{\text{RAS}} \text{ cycling; } \overline{\text{CAS}} \geq V_{\text{IH}}; \\ t_{\text{RC}} = t_{\text{RC}} \ (\text{min}); \ t_{\text{O}} = \\ 0 \ \text{mA} \ (\text{Note 5}) \end{array}$
Operating supply current, page cycle, average	loc4		70		70		60	mA	$\overrightarrow{RAS} \leq V_{IL}$; \overrightarrow{CAS} cycling; $t_{PC} = t_{PC}$ (min); $t_{O} =$ 0 mA (Note 5)
Operating current, CAS before RAS refresh cycle, average	loos	1	80	10	80	01 03	65	mA	$\overline{CAS} \le V_{IL}$; \overline{RAS} cycling; $t_{RC} = t_{RC}$ (min); I/O = 0 mA (Note 5)
Random read or write cycle time	tac	180		165	1.	200		ns	(Note 6)
Read-write cycle time	trwc	185		195		240	10	ns	(Note 6)
Page cycle time	tec	70		70		100	100	ns	(Note 6)
Access time from RAS	1RAC	0.00	80	1.00	85	05	100	ns	(Notes 7, 8)
Access time from CAS	[‡] CAC	1.9	40	10.0	40	, P	50	ns	(Notes 7, 9)

6

µPD41256

AC Characteristics (cont)

		µPD41	256-80	µPD41256-85		µPD41256-10			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Output buffer turnoff delay	TOFF	0	20	0	20	0	25	ns	(Note 10)
Rise and fall transition time	tT	3	50	3	50	3	50	ns	(Note 4)
RAS precharge time	t _{RP}	70		70		90		ns	A CARLES AND
RAS pulse width	1RAS	80	16,000	85	16,000	100	10,000	ns	
RAS hold time	1RSH	40		40	_	50		ns	fern light
CAS pulse width	ICAS	40	10,000	40	10,000	50	10,000	ns	the second second
CAS hold time	tcsH	80	- 205	85		100		ns	town when the
RAS to CAS delay time	taco	20	40	20	45	20	50	ns	(Note 11)
CAS to RAS precharge time	1CRP	10	and a	10		10	1	ns	(Note 12)
CAS precharge time, nonpage cycle	^t CPN	25	and the	25		25		ns	The second
CAS precharge time, page cycle	t _{CP}	20		20	1	40		ns	
RAS precharge CAS hold time	[†] RPC	0		0		0	(Sul	ns	
Row address setup time	TASR	0	- Shurt for	0	-	0		ns	12.16
Row address hold time	t _{RAH}	10		10	-	10	1-28	ns	14 Mar
Column address setup time	TASC	0	1.202	D		0		na	Sec. 16
Column address hold time	1CAH	15	1	20		15		na	A Real -
Column address hold time referenced to RAS	t _{AR}	55		65		65		ns	
Read command setup time	Incs	0	-	0		0	10-	ns	and the second
Read command hold time referenced to RAS	1 RRH	10		10		10		ns	(Note 13)
Read command hold time referenced to CAS	tясн	0	1	0		0	1	ns	(Note 13)
Write command hold time	WCH .	20	65.0	20		25		ns	
Write command hold time referenced to RAS	twork	60	10	65		75		ns	Conco Antes da
Write command pulse width	5 _{WP}	20		15	-	15		ns	(Note 17)
Write command to RAS lead time	IRWL	20		30	-	35		ns	- preserve
Write command to CAS lead time	ICWL	20	Sax.	50	ar.	35		ns	EAST AND
Data-in setup time	tos	0		0		0		ns	(Note 14)
Data-in hold time	Чон	20		20		25		ns	(Note 14)
Data-in hold time referenced to RAS	tohn	60		65		75		ns	
Refresh period	NEF		4		4		4	ms	Addresses Ao - Ag
WE command setup time	twcs	0		0		0		ns	(Note 15)
CAS to WE delay	towp	40		40		50		na	(Note 15)
RAS to WE delay	1RWD	80	1.1	85	36	100		ns	(Note 15)
CAS setup time for CAS before PAS refresh cycle	tCSR	10	13	10	10	10		ns	(Note 16)

NEC

µPD41256

AC Characteristics (cont)

	μPD41256-80		µPD41256-85		µPD41256-10			and in the second
Symbol	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
[‡] СНЯ	20	1000	15		20		ns	(Note 16)
†TRC	N/A		N/A	-	220		ns	(Note 18)
¹ TRWC	N/A		N/A		260		ns	(Note 16)
	¹ СНЯ ¹ ТВС	Symbol Min t _{CHR} 20 t _{TRC} N/A	Symbol Min Max t _{CHR} 20 t _{TRC} N/A	Symbol Min Max Min t _{CHR} 20 15 15 t _{TBC} N/A N/A N/A	Symbol Min Max Min Max t _{CHR} 20 15	Symbol Min Max Min Max Min t _{CHR} 20 15 20 t _{TRC} N/A N/A 220	Symbol Min Max Min Max Min Max ^t CHR 20 15 20 ^t TRC N/A N/A 220	Symbol Min Max Min Max Min Max Unit ¹ CHR 20 15 20 ns ¹ TIBC N/A N/A 220 ns

Notes:

- [1] All voltages are referenced to GND.
- (2) An initial pause of 100 µs is required after power-up, followed by any eight FAS cycles, before proper device operation is achieved.
- AC measurements assume t_T = 5 ns.
- (4) V_{IH} (min) and V_{IL} (max) are reference levels for measuring the timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- (5) ICC1, ICC3, ICC4, and ICC5 depend on output loading and cycle rates. Specified values are obtained with the output open.
- (5) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range (T_A = 0 to +70°C) is assured.
- (7) Output load = 2 TTL loads and 100 pF
- (5) Assumes that t_{RCD} ≤ t_{RCD} (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- (9) Assumes that t_{RCD} ≥ t_{RCD} (max)
- (IC) topp (max) defines the time at which the output achieves the open-circuit condition and is not referenced to VoH or VoL.
- (11) Operation within the t_{RCD} (max) limit assures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.

- (12) The t_{CRP} requirement should be applicable for RAS/CAS cycles preceded by any cycle.
- (13) Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- (14) These parameters are referenced to the leading edge of CAS in early write cycles and to the leading edge of WE in delayed write or read-modify-write cycles.
- (15) f_{WCS} , f_{CWD} , and f_{HWD} are restrictive operating parameters in read-write and read-modify-write cycles only. If $f_{WCS} \ge f_{WCS}$ (min), the cycle is an early write cycle and the data output will remain open-circuit throughout the entire cycle. If $f_{CWD} \ge f_{CWD}$ (min) and $f_{RWD} \ge f_{RWD}$ (min), the cycle is a read-write cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the condition of the data output (at access time and until CAS goes back to V_{IH}) is indeterminate.
- (16) DIP products with process codes E, K, P and X do not have the CAS before RAS refresh feature. All other package types and process codes do have CAS before RAS refreshing.

On DIP products with process codes E, K, P and X, the external address inputs are required in hidden refresh cycles and the address timing must satisfy t_{ASR} and t_{RAH}, which are specified with respect to the falling edge of RAS.

- (17) t_{WP} is applicable for a delayed write cycle. If the cycle is early write, it should be satisfied with the specified value of t_{WCH}.
- (18) T_{TRC} and t_{TRWL} are applicable for a CAS before RAS refresh counter test cycle.