INTEGRATED CIRCUITS

Product specification

1999 Sep 30

SAA7780

ThunderBird Q3D PCI Audio Accelerator

FEATURES

- Full H/W acceleration of 64 audio sources
 - 64 H/W sample fetch channels
 - 64 H/W sample rate convertors
 - H/W mixing of 64 streams
 - H/W DSP filter/effects/music synthesis applied to 64 streams
- Concurrent processing of up to 384 audio sources
 - Up to 64 DirectSound/wavetable sources processed in H/W
 - 64 plus DirectSound sources processed on host
 - Up to 128 total DirectSound sources
 - Up to 64 3D sources
 - Up to 64 H/W wavetable voices
 - Up to 256 host wavetable voices
- QSound3DInteractive[™] interactive positional 3D
 - H/W DSP processing for maximum performance
 - Stereo speaker, headphone and quad speaker algorithms
 - Proprietary technology eliminates crosstalk cancellation and broadens "sweet spot"
 - A3D[™] compatible
- QSound Multi-Speaker System[™] stereo-to-quad processing
 - Transforms ordinary stereo applications to quadraphonic
 - Non-3D games become immersive quad 3D games
 - Enhanced DVD movie playback
 - True quadraphonic music playback from CD's, music DVD's and MP3 players
 - Effective with both stereo and Dolby Pro-Logic[™] encoded material
- QSound Environmental Modeling[™]

- Add's reverb as an additional positional que
- Reverb preset's can be applied to any DirectSound3D application
- EAX[™] Compatible
- QXpander[™] and Stereo to 3D remapping
- Second Generation ActiMedia[™] ProgrammableDSP architecture
- Comprehensive Real Mode DOS and DOS window support
 - SoundBlaster Pro[™] Compatibility
 - PC/PCI, DDMA and LAM[™] PCI DMA support
 - FM, MIDI stereo and MIDI quad music in Real Mode DOS
- Supports low cost AC97 1.0 and serial stereo DAC output
- Dual gameport accelerator with legacy and digital joystick modes
- Integrated 16650 UART for Modem or other serial port applications
- Windows^(R) 95, Windows^(R) 98, and Windows^(R) NT 5.0 (WDM) Drivers
- 0.35u TLM manufacturing technology
- 3.3v operation with 5v tolerant I/O

GENERAL DESCRIPTION

The SAA7780 ThunderBird Q3D[™] is a high-performance PCI audio accelerator targeting PC gaming and music applications. Developed by QSound Labs and Philips Semiconductors, it combines the most compelling 3D, guadraphonic and music synthesis technologies available with the powerful yet cost effective ActiMedia[™] DSP architecture. Full H/W acceleration of DirectSound[™], 3D audio, music synthesis, and gameport functions guarantees exceptional system performance. QSound's new Q3D[™] algorithms not only render exceptional 3D soundscapes for 3D applications but add a new dimension to stereo applications using their unique stereo-to-3D and stereo-to-quad remapping capabilities. Three available PCI DMA modes assure full SoundBlaster Pro[™] compatibility on most platforms without additional hardware. The Intel AC97 architecture provides high audio quality using a low cost AC97 codec.

SAA7780

ORDERING INFORMATION

TYPE	PACKAGE			
NUMBER	NAME	DESCRIPTION	VERSION	
SAA7780	QFP160	plastic quad flat pack; 160 leads (lead length 1.60 mm); body 28 x 28 x 3.42 mm	25-90019	

QUICK REFERENCE DATA

Condition	Symbol	Maximum Ratings
Ambient Operating Temperature	T _A	0°C to +70°C
Ambient Storage Temperature	T _S	-65°C to +150°C
Non-Operating Core and Ring Supply Voltage	VDD, VDDIC	-0.5V to 4.6V *
Operating Core Supply Voltage	VDDIC	-0.5V to 3.63V *
Operating Ring Supply Voltage	VDD	3.0V to 3.63V *
5V Tolerant Supply (5.0V nominal supply)	NWELL	-0.5V to 5.5V *
NWELL to VDD Differential	NWELL-VDD	$0 \le (NWELL-VDD) < 4.0V$
3V Tolerant I/O DC Input Voltage	V _{I3}	-0.5V to VDD+0.5V (≤ 4.6V max)+
3V Tolerant I/O DC Output Voltage	V _{O3}	-0.5V to VDD+0.5V (≤ 4.6V max)+
5V Tolerant I/O DC Input Voltage	V _{I5}	-0.5V to 5.5V (≤ 6.0V max)+
5V Tolerant I/O DC Output Voltage	V _{O5}	-0.5V to VDD+0.5V (≤ 4.6V max)+
DC Input Current (at V _I < 0V or V _I > VDD)	I _I	± 20mA
DC Output Current (at $V_O < 0V$ or $V_O > VDD$)	Ι _Ο	± 20mA
Power Dissipation	PD	500mW

*Refer to Section 3.1 to ensure proper power supply sequencing as well as voltage ranges.

+Items in parenthesis are non-operating conditions.

SAA7780

SAA7780

PINNING

PIN #	PIN NAME	PIN #	PIN NAME	PIN #	PIN NAME	PIN #	PIN NAME	PIN #	PIN NAME
1	VDD	35	PCGNT#	69	TRDY#	103	MD15	137	MA10
2	SYNC	36	PCREQ#	70	DEVSEL#	104	VSS	138	VDDIC
3	BIT_CLK	37	GNT#	71	STOP#	105	MD14	139	MA11
4	SDATA_OUT	38	REQ#	72	PERR#	106	MD13	140	MA12
5	SDATA_IN	39	AD31	73	SERR#	107	MD12	141	MA13
6	AC_RST#	40	VSS	74	VSS	108	MD11	142	VDD
7	JAB1	41	VDD	75	PAR	109	MD10	143	MA14
8	JBB1	42	AD30	76	C/BE1#	110	MD9	144	MCS#
9	JACX	43	AD29	77	AD15	111	MD8	145	TXD
10	JBCX	44	AD28	78	AD14	112	VDD	146	RXD
11	MIDIOUT	45	AD27	79	AD13	113	MD7	147	VSSIC
12	JBCY	46	AD26	80	VDD	114	MD6	148	RTS#
13	JACY	47	VSS	81	VSS	115	MD5	149	DTR#
14	JBB2	48	AD25	82	AD12	116	MD4	150	CTS#
15	VSS	49	AD24	83	AD11	117	NWELL	151	DSR#
16	JAB2	50	C/BE3#	84	VDD	118	MD3	152	DCD#
17	VSSIC	51	IDSEL	85	AD10	119	MD2	153	RI#
18	MIDIIN	52	AD23	96	AD9	120	VSS	154	GPIO0
19	PLLAGND	53	AD22	87	AD8	121	VDD	155	GPIO1
20	PSUB	54	VDD	88	C/BE0#	122	MD1	156	GPIO2
21	PLLAPWR	55	AD21	89	AD7	123	MD0	157	MSI
22	PLLDPWR	56	VDDIC	90	VSS	124	MA0	158	MCLK
23	XTALIN	57	AD20	91	AD6	125	MA1	159	MLRCK
24	XTALOUT	58	NWELL	92	AD5	126	MA2	160	VSS
25	PLLDGND	59	AD19	93	AD4	127	MA3		
26	VSS	60	VSSIC	94	AD3	128	VSS		
27	DSPCLK	61	AD18	95	AD2	129	MA4		
28	VDD	62	VSS	96	VDD	130	MA5		
29	TRI#	63	AD17	97	AD1	131	MA6		
30	NAND#	64	AD16	98	AD0	132	MA7		
31	INTA#	65	C/BE2#	99	VDDIC	133	MWE#		
32	IRQSER	66	FRAME#	100	CLKRUN#	134	MA8		
33	RST#	67	IRDY#	101	CFGDAT	135	VDD		
34	PCLK	68	VDD	102	CFGCLK	136	MA9		

SAA7780

FUNCTIONAL OVERVIEW

True Hardware Acceleration

The ThunderBird PCI[™] products are true hardware accelerators. Positional 3D, music synthesis and SoundBlaster[™] functions are performed on the ActiMedia[™] DSP which frees the host CPU to perform other tasks, boosting graphic frame rates and raising system benchmark performance.

High Concurrency

Today's multimedia applications demand concurrent, independent audio processing of many diverse audio streams. Mainstream applications may require 32 or more wavetable synthesis voices and 24 or more sound effects positioned in 3D space concurrently with other audio stream processing. The ThunderBird Q3D[™] can simultaneously process 64 combined audio and wavetable voice streams in H/W plus an additional 64 audio streams using QSound's efficient MMX host engine for a total of 128 audio and wavetable streams. For greater concurrency and higher music polyphony a professional quality 256 voice soft-synth is available. This can be used for all music synthesis reserving all 128 streams for other audio sources bringing the total concurrency to 384 streams.

Immersive 3D Audio

The ThunderBird Q3D[™] is armed with the most advanced arsenal of 3D technology available. The listener is immersed in a realistic 3 dimensional soundscape. QSound's technology renders 3D applications using stereo speakers, headphones or quad speakers; and transforms ordinary stereo applications from games to CD players into 3D and quad applications.

QInteractive3D[™] (QI3D[™]) utilizes the ActiMedia DSP to interactively position DirectSound streams in 3D space around the listener. Three different 3D engines based on HRTF and patented QSound Technology are used to render over 2 speakers, headphones or quad speakers. Since the unique 2 speaker engine requires no signal cross cancellation, QI3D provides a more robust 3D imaging than ordinary HRTF processing with minimal sensitivity to speaker placement, speaker quality and listener location. QI3D utilizes the industry standard DirectSound3D API and is compatible with DirectSound3D and A3D[™] applications.

QSound Environmental Modeling[™] (QEM[™]) adds further realism by using reverb as an additional positional que. With QEM enabled each DirectSound3D sound source receives reverb simulating acoustic reflections based on the regions reverb preset and the sources current position relative to the listener. Reverb presets can also me manually enabled by the listener for DirectSound3D applications that do not support EAX. QEM is EAX[™] 1.0 compatible.

QSound Multi-Speaker SystemTM(QMSSTM) utilizes a proprietary stereo-to-quad remapping algorithm to transform ordinary stereo applications into more immersive quad applications. Unlike some other implementations that simply mirror the front speaker content in the rear speakers QMSS creates 4 individual channels. For musical applications different instruments or sounds will seem to emanate from one or more speakers. For 1st person gaming applications and movie playback, QMSS will estimate approximate placement of each sound based on the stereo mix and adjust it's amplitude and timing in each speaker accordingly.

QMSS can be used to dramatically enhance numerous stereo applications. DirectSound games become more realistic with action all around the listener. Music CD, MP3, and MIDI playback become more immersive. Stereo and Dolby ProLogic[™] film clips become the theatre-like in presentation without a decoder required. QMSS can also be used to enhance Dolby Digital DVD playback using only the stereo or Dolby ProLogic audio tracks. Many viewers prefer this alternative to standard Dolby digital playback because of the additional audio content in the rear speakers. QI3D can also be used for more traditional quad playback of Dolby Digital DVD's when combined with a soft-DVD player using the DirectSound3D API.

QXpander enhances 2 speaker playback by broadening the sound field and mapping stereo positions to 3D positions.

SAA7780

SAA7780

CD Quality Wavetable Synthesis with 320 Total Voices

ThunderBird Q3D[™] includes two wavetable synthesis engines. When configured for wavetable synthesis only the ActiMedia DSP can produce up to 64 wavetable 44KHz, 16 bit voices. Using the ActiMedia engine minimizes CPU consumption and is ideal for games with MIDI music tracks. Also available is a professional quality soft-synth that can produce up to 256 voices including special effects. The soft-synth is highly configurable and can be optimized for highest quality with pure music applications or for minimum CPU consumption in gaming applications.

Both engines maximize quality and minimize cost by using system memory for wavetable sample sets and the ActiMedia engine can be used to accelerate DirectMusic and DLS (Down Loadable Sound) sample sets using WDM drivers.

ActiMedia DSP Architecture

The ActiMedia architecture combines the strengths of both programmable and fixed function DSP architectures. A programmable DSP processor enables custom features, field up-grade and ease of development. An array of gate-efficient fixed function DSP processors (accelerators) operate in parallel with the programmable DSP, providing an extremely high performance-to-cost ratio. Unlike fixed-point DSP's that must use a single resolution for all audio processing, each accelerator is designed with the optimum resolution for its function. This preserves the audio integrity without the cost of a high-resolution or floating point programmable DSP implementation. The result is a performance, quality and concurrency that requires 10 times the MIPS on a classical DSP architecture.

Digital Mode Dual Game Port

The S/W polling used by analog game ports can consume up to 10% of the host CPU. ThunderBird PCI products utilize a digital operating mode that can eliminate S/W polling and accelerate the game port function resulting in significantly improved system performance. Joystick buttons can be polled or interrupt driven to further enhance performance. A default analog mode assures compatibility with DOS and other non-DirectInput[™] applications.

PCI Interface

The ThunderBird Q3DTM is a PCI 2.1 compliant multifunction device including audio, game port and 16650 UART functions capable of bursting at 132 MB data rates. The high bandwidth and low latency of the PCI bus reduces the need for host based processing and local memory. The PCI bus consumption of each audio stream is reduced by a factor of 10 compared to ISA solutions. The PCI and CPU busses are no longer locked during slow ISA DMA transactions and system performance is improved as much as 20%.

To maximize performance, the PCI interface includes dual 32 bit bus masters: DMA, DirectSound and wavetable synthesis acceleration. A 16 bit DSP Master Device is used to transfer data directly between the host and DSP or AC97 interface. Additional slave devices support legacy and MIDI interfaces. All I/O is re-mappable creating a true "Plug and Play" device.

Comprehensive Legacy Audio Support

SoundBlaster Pro compatibility in both Real Mode DOS and DOS windows is achieved through H/W SoundBlaster and OPL 3 (FM) emulation registers. Legacy DMA over the PCI bus is supported on all major platforms utilizing PC/PCI, DDMA, or VLSI's proprietary Legacy Accommodation Mode[™] (LAM[™]). DOS music synthesis includes stereo MIDI playback, quad MIDI playback, and FM emulation.

Integrated I/O and Peripherals

ThunderBird Q3D products include all the required features to implement a PCI audio solution with minimal chip count. I/O includes an AC97 link for a AC97 1.0 codec, stereo DAC serial port for multi-channel or low cost playback

SAA7780

applications, MPU-401 UART with MIDI IN and MIDI Out connections for external keyboard, sequencer, synthesizer or other MIDI devices, 16650 UART for modem, other serial connections or usage as GPIO's, I²C configuration port for storage of SubSystem/Vendor ID's and other data in serial EEPROM, dual Game Port and 3 GPIO's, and an external SRAM interface for DSP code development or field programmable applications. Only a single 14.318 MHz crystal is required to support the internal PLL. A 20bit, 1_us resolution timer is provided for DirectX[™] audio/video synchronization.

Operating System Support

VXD driver support includes: WIN95, WIN98, and NT 4.0. WDM driver support will include WIN98 and NT 5.0/WIN2000.

Power Management

ThunderBird Q3D provides localized clock control and full event monitoring including interrupts, I/O and S/W events. Independent power down control of the PLL, DSP, and codec is provided and PCI CLKRUN protocol is supported. Power management h/w hooks exist to achieve compliancy with ACPI and "On Now" initiatives.

SAA7780

Architectural Overview

The ThunderBird Q3D - SAA7780 is a multi-functional device that provides full duplex sound processing, DirectSound acceleration, 3D audio acceleration, SoundBlaster emulation, FM emulation, wavetable synthesis, and other audio effects utilizing its ActiMedia DSP processor. The ActiMedia processor consists of a number of fixed function DSP accelerator blocks and a programmable Pine DSP core. Included within the SAA7780 are interfaces for an AC97 codec, serial DAC, MIDI port, and standard analog and digital joysticks as well as optional external code RAM.

SAA7780

Systems that provide DDMA or have the ISA bridge on the primary PCI bus are able to perform SoundBlaster emulation enabling the operation of legacy DOS based games. The SAA7780 chip provides two 8237 style DMA channels to perform legacy DMA cycles on selected systems. The same two 8237 channels provide Distributed DMA support as well. PC/PCI is also supported to provide legacy DMA support on chipsets that support said protocol.

DirectSound acceleration, both for 2D and 3D audio along with wavetable sample fetching, is accomplished using the SAA7780 chip PCI 2.1 bus master. This bus master provides the means for the SAA7780 chip to accelerate DirectSound audio streams as well as fetch wavetable samples for the 64 voice wavetable synthesis and effects algorithms. Wavetable sample fetching is always retrieved from system memory saving the cost of an external wavetable ROM. Downloadable sample sets, with software, are also supported using the bus master hardware.

Additionally, the SAA7780 chip follows the AC97 Architecture to provide high quality audio by the use of a separate codec. Serial DACs, as well as an AC97 CODEC can be selected to provide audio into the analog world. A serial DAC is used in case the system designer wishes to use an inexpensive playback converter and does not require a record function. A codec and a DAC can be used if multi-channel audio is required.

The SAA7780 chip supports additional interfaces to sustain both required and optional features. These interfaces include a standard 4-axis/4 button joystick, external MIDI port, an SRAM interface for external DSP code or enhanced reverb, and a 16650 UART for an external modem.

The ActiMedia DSP runs the audio algorithms for wavetable synthesis, FM synthesis, special effects such as reverb and chorus, along with sample rate conversion and data management. The imbedded DSP core and its peripherals are managed solely by the DSP and require no intervention from the host. The DSP can pass messages to and from each domain to provide a host software interface into the DSP domain.

Structural and Functional Overview

The SAA7780 contains components to implement the sound generation with accessories to add value to a gaming type environment. In short, there are three basic types of blocks to implement all of the advanced features present in this chip. The three types of blocks are PCI domain, DSP domain and mailbox. The PCI domain type of blocks refer to the blocks that connect only to the internal and external PCI interfaces. The DSP domain blocks connected only to the DSP code or data busses. The mailbox type interfaces between both worlds providing both functional and test operations between the two domains. The following sections will give more details on the function and operation of each block.

PCI Interface, Configuration and Interrupt Serializer

The SAA7780 chip PCI interface is composed of master and slave state machines, an address/data/byte enable datapath, a bus arbiter for the two on chip masters, control logic for the master and slave internal busses, an interrupt serializer, and the standard PCI configuration register header.

The standard PCI configuration header is also supported. Since the SAA7780 is a multi-function device, there are three PCI configuration spaces allocated for each function. The three functions are the audio device, the joystick and the 16650 UART. The purpose of the multiple configuration headers is to ensure PCI compliance and enable the operating system to select the correct software driver for each individual device. The Serial CFG Port is used to shift in subvendor specific data for each of the PCI configuration headers. The Serial CFG port is an industry standard I²C[™] format. The configuration headers are included in the PCI interface to reduce inter-block routing. All other PCI configuration space registers are included in the blocks that utilize these registers.

16650 UART

In order to support an external hardware modem chip set, a 16650 UART is included in the SAA7780 chip. The 16650 UART excludes the need for an additional ISA based UART thereby reducing system costs. The 16650 UART resides in I/O space and is re-mappable.

SAA7780

Clocks and the PLL Subsystem

Clocks for operation of the SAA7780 are derived from two sources; an external crystal and bit clock from the AC97 CODEC. The SAA7780 PLL Subsystem derives its reference from the external crystal.

FIGURE 4

The SAA7780 substem consists of a fixed layout PLL cell and a digital interface to the 8 bit PS bus. The PLL is designed to drive the clocks for the DSP subsystem. The implementation calls for the PLL to be utilized with complete programmable register interface to enable the tuning of the frequencies as necessary.

Multimedia Timer

The SAA7780 chip supplies a 20-bit, 1_u S resolution timer for game synchronization. The timer data can be accessed as an I/O device. This timer can be used by game developers to keep track of time elapsed to synchronize the video to the audio stream. The timer can be polled or interrupt driven and is selectable by the user application.

DMA is for the Sound Blaster registers, the DSP Mastering Device (DMD), and the Audio codec. To cover as many systems as possible, the DMA interface supports three modes for legacy support: Mobile PC/PCI DMA Arbitration (PC/PCI), Distributed DMA (DDMA), and Legacy Accommodation Mode (LAM).

Legacy Accommodation Mode allows the SAA7780, in an architecturally compatible system, to snoop and snarf selected DMA cycles on the PCI bus that were intended to the ISA Bridge. If a chip set supports Distributed DMA, the SAA7780 will use this method since it is more efficient than LAM. Additionally, PC/PCI can be utilized as well if neither DDMA nor LAM are supported on the selected chip set.

AC Link and the DSP Master Device Interface

The SAA7780 chip provides support for the AC97 specification by supplying an AC Link interface to communicate with an industry standard AC97 CODEC. The AC Link interface is set up to allow the PCI, DMA and DSP busses to interface with the AC97 codec via the AC Link. The AC Link is compliant with the release 1.03 of the AC97 specification.

Sound Blaster Registers

The other device that requires DMA is the SoundBlaster registers. DMA is used to transfer SoundBlaster digital audio files from the host to a codec for playback in addition to providing a mailbox for other commands. In order for the DSP to emulate the Sound Blaster sound effects, a legacy register set must be implemented to capture these commands. These sixteen, 16-bit registers are used primarily to emulate SoundBlaster Pro register set as well as the SoundBlaster

SAA7780

Pro mixer registers. These registers are used as a mailbox to the DSP data bus to deliver data to the SoundBlaster Emulation code. The SAA7780 chip supports DMA to the Sound Blaster that legacy code requires. All data transmitted over the SoundBlaster Registers is processed by the DSP to emulate the Sound Blaster Pro hardware.

OPL3 Registers and the FM Accelerator

The OPL3 register interface is a subset of the complete SoundBlaster register set. The OPL3 registers are separate to point out that the FM legacy is supported at the register level. The OPL3 registers simply pass FM synthesis commands to the SoundBlaster Emulation code and receive status from the same code.

Virtual Registers

The Virtual Registers interfaces the PCI bus and two substantial wavetable synthesis accelerators: the Sample Fetch and Address Generation accelerators. The Virtual Registers is responsible for setting up the PCI interface for master cycles data fetches and retrieving those fetches into a sample buffer. The Virtual Registers get commands from the Address Generation accelerator and turns them into PCI master requests. Once the data has been retrieved, the Virtual Register then instructs the Sample Fetch accelerator to process a block of data. Once the processing is complete, the Sample Fetch Accelerator notifies the Virtual Registers that all is clear and that new data can be processed.

Address Generation Accelerator

The Address Generation accelerator is a preprocessing unit for the sample fetching mechanism inside the Virtual Registers. The Address Generator will get a set of parameters from the DSP code on a per voice basis for either DirectSound processing or wavetable synthesis. Once these voice parameters are set, the hardware is instructed to translate the addresses and fetch the audio samples from system memory. The Address Generator is also capable of looping with intervention from the DSP code. The DSP kills voices by instructing the Address Generator to stop fetching data. Once the samples are fetched, they are stored in the Virtual Register's input sample buffer for processing by the Sample Fetch Accelerator.

Sample Fetch Accelerator

The Sample Fetch accelerator is used to process audio samples fetched by the Virtual Registers and deliver them to the DSP code for further processing. This processing can include pitch shifting or rate conversion. The degree of pitch shifting is under direction of DSP code indicating the Sample Fetch accelerator is programmable. The input samples are taken from the Virtual Register's input sample buffer and stored in DSP memory space.

MIDI Registers and UART

An MPU401 compatible UART is supplied to enable external MIDI devices to use the SAA7780 chip synthesizers as well as its external device's own synthesizer. The MIDI register interface is used to pass the MIDI command stream from the host to the DSP firmware for parsing into synthesizer commands. The MPU401 UART always operates in "dumb" mode. Both the PCI and DSP can access the MIDI UART directly. Data is presented from/to the MPU401 Registers in a mailbox fashion to the MPU401 UART.

Music DAC Interface

The music DAC interface allows for an inexpensive, high quality, playback of the final stereo mix or for providing the unique QUAD feature when used in conjunction with the standard AC97 V1.03 CODEC. The interface is a standard EIAJ format supporting many brands of inexpensive 16 bit DACs. The Music DAC interface is capable of playback sample rates from 22.05 - 48.0 KHz.

SAA7780

General Purpose Input/Output

There are five general purpose I/O pins that are controlled by the DSP. These pins can be used for power management of external devices or for test and debug of DSP code. All are full time available under DSP code control. These GPIOs are not controllable from the PCI bus and are generally not available to users.

PINE DSP Core

The Pine DSP core is a programmable 16-bit integer DSP with separate code and data busses (Harvard architecture). Main features of the DSP core include 2K x 16 data RAM, 64K word code and data space, 16 x 16 bit two's complement parallel multiplier with 32-bit product, single cycle multiply/accumulate instructions, 36-bit ALU, two 36-bit accumulators, six-general purpose 16-bit pointer registers, option for up to eight user-defined 16-bit registers, zero overhead looping, repeat and block-repeat instructions with one nesting level, shifting capability, automatic saturation mode on overflow while reading content of accumulators, divide and normalize step support.

As noted on Figure 1, the DSP subsystem is supported by two dedicated Pine internal busses called the DSP code bus and the DSP data bus. All DSP peripherals are connected to the DSP data bus while the code bus is used for just that, DSP code ROM and RAM. Both the DSP code and data busses are 16-bit for the address and data lines on each bus. DSP code also enables the DSP core to act as a PCI bus master making it a powerful and flexible audio processing unit.

DSP Interrupt Controller

The DSP Interrupt Controller is a programmable, priority encoded device that encodes two interrupt signals to the Pine core. The DSP Interrupt Controller resides on the DSP data bus and is programmed by DSP code. Both sets of interrupt vectors feature an enable and status bit for each interrupt based device.

DSP Memory Controller

The DSP memory controller provides controls and decodes for the regular DSP data and code RAMs as well as the code ROMs. The Memory Controller also includes a patch mechanism to allow ROM code to be updated or fixed using a trapping device.

Game Port

The SAA7780 Game Port interface is designed to emulate the PC-AT based legacy joystick operation as well as support of a digital joystick mode. The legacy or analog, type of operation is designed to support all legacy software that uses the original joystick address and the method for resolving the joystick axes positions. The Digital Mode is designed to reduce the joystick overhead by resolving the joystick position directly and to support applications that use DirectInput.

The legacy joystick used a one shot multi-vibrator on each of the four joystick potentiometers. These one shots were set up to deliver a pulse that was proportional to the resistor value of the joystick potentiometers. Software would them poll the one shots to see if they had been set to the original value. The time it took for each axes to return to the original value was resolved into a position by the legacy software. The SAA7780 emulates the 558 based one shot circuit to support legacy games that use the PC-AT joystick. The joystick button values were routed directly to the system bus where only a decode was required to read the value of the button. Software would poll the buttons as well. All button and joystick axes data is returned in a single byte wide register.

Game Port Legacy I/O Register

This register is the legacy mode register for the 558 based joystick. Typically, this register is located at legacy address of 201h. Reads from this register will poll the status of the joystick buttons and are used to resolve the position. Writes

SAA7780

to this register will discharge the external capacitors to emulate the 558 one shots. Software can then poll the joystick register bit to resolve each of the joystick axes positions by timing. The joystick button register bits have meaning in both the digital and analog modes. The axes bits are only valid for analog mode.

Game Port 558-Based Register - Gameport (RO))

I/O GMBASE	D7	D6	D5	D4	D3	D2	D1	D0
Offset 1h	JOYB_2	JOYB_1	JOYA_2	JOYA_1	JOYB_Y	JOYB_X	JOYA_Y	JOYA_X
POR Value	1	1	1	1	0	0	0	0

Bit	Name	R/W	Function
7	JOYB_2	RO	Joystick B button 2 status. The joystick buttons should be de-bounced and de-glitched from the chip interface. The joystick button status registers are cleared when the joystick button is pressed.
6	JOYB_1	RO	Joystick B button 1 status.
5	JOYA_2	RO	Joystick A button 2 status.
4	JOYA_1	RO	Joystick A button 1 status.
3	JOYB_Y	RO	Joystick B y-coordinate. Can also be referred to as position 3.
2	JOYB_X	RO	Joystick B x-coordinate. Can also be referred to as position 2.
1	JOYA_Y	RO	Joystick A y-coordinate. Can also be referred to as position 1.
0	JOYA_X	RO	Joystick A x-coordinate. Can also be referred to as position 0.

SAA7780 Signal Definitions

PCI Local Bus Interface Signals

AD[31:0]	39,42,43,44, IO-T 45,46,48,49, 52,53,55,57, 59,61,63,64, 77,78,79,82, 83,85,86,87,	PCI Address/Data AD[31:0] contains a physical byte address during the first clock of a PCI transaction, and data during subsequent clocks. When the SAA7780 is a PCI master, AD[31:0] are outputs during the address phase of a transaction. They are either inputs or outputs
	89,91,92,93, 94,95,97,98	during the data phase, depending on the type of PCI cycle in process.
		When the SAA7780 is a PCI slave, AD[31:0] are inputs during the address phase. They are either inputs or outputs during the data phase, depending on the type of PCI cycle in process.

ThunderBird Q3D PCI Audio Accelerator			SAA7780
C/BE#[3:0]	50,65,76,88	IO-T	PCI Bus Command and Byte Enables
			C/BE#[3:0] defines the bus command during the first clock of a PCI transaction, and the byte enables during subsequent clocks.
			C/BE#[3:0] are outputs when the SAA7780 is a PCI bus master and inputs when it is a PCI bus slave.
DEVSEL#	70	IO-STS	PCI Bus Device Select
			When the SAA7780 is a PCI bus master the SAA7780 uses DEVSEL# to determine whether a master abort should occur if DEVSEL# is not sampled active by clock 5 of the transaction, or to determine whether a cycle is to be aborted or retried when a target- initiated termination occurs.
			When the SAA7780 is a PCI bus slave, DEVSEL# is an output which the SAA7780 drives LOW during the second PCLK after FRAME# assertion to the end of a transaction if the SAA7780 is selected.
FRAME#	66	IO-STS	PCI Bus Cycle Frame
			When the SAA7780 is a PCI master, FRAME# is an output which indicates the beginning of a SAA7780-initiated bus transaction. While FRAME# is asserted data transfers continue. When FRAME# is deasserted the transaction is in the final data phase.
			When the SAA7780 is a PCI slave, FRAME# is an input that initiates an I/O, memory or configuration register access if the SAA7780 is selected for the transaction. The SAA7780 latches the C/BE#[3:0] and AD[31:0] signals on the PCLK edge on which it first samples FRAME# active.
RDY#	67	IO-STS	PCI Bus Initiator Ready
			When the SAA7780 is a PCI master, IRDY# is an output which indicates the SAA7780's ability to complete the data phase of the current transaction. It is always asserted from the PCLK cycle after FRAME# is asserted to the last clock of the transaction.
			When the SAA7780 is a PCI slave, IRDY# is an input which causes the SAA7780 to hold-off completion of a read or write cycle until sampled active.
STOP#	71	IO-STS	PCI Bus Stop (Target Initiated Termination)
			When the SAA7780 is a PCI master, STOP# is an input which causes the SAA7780 to complete, abort or retry the transfer, depending on the state of TRDY# and DEVSEL#.
			When the SAA7780 is a PCI slave, it drives STOP# as active (LOW) to terminate or retry a transaction.

ThunderBird Q3D PCI Audio Accelerator			SAA7780
 FRDY#	69	IO-STS	PCI Bus Target Ready
			When the SAA7780 is a PCI master, TRDY# is an input which indicates the target agent's ability to complete the data phase of the transaction. After initiation of a PCI bus transaction, the SAA7780 inserts wait cycles until TRDY# is sampled active.
			When the SAA7780 is a PCI slave, it drives TRDY# active to indicate that the SAA7780 has sampled the data from AD[31:0] during a write phase, or presented valid data on AD[31:0] during a read phase.
PAR	75	IO-T	PCI Bus Parity
			When the SAA7780 is a PCI master, it drives PAR to reflect the correct value for even parity on the AD[31:0] and C/BE#[3:0] buses one clock after the address phase and after each write data phases.
			When the SAA7780 is a PCI slave, it drives PAR to reflect the correct value for even parity on the AD[31:0] and C/BE#[3:0] buses one clock after completion of each read data phase.
PCREQ#	36	O-TS	PC/PCI DMA Request
			This signal requests DMA servies from en external chipset that supports PC/PCI protocols. The SAA7780 chip asserts PCGNT# according to the desired DMA channel required by either the SoundBlaster or AC97 interfaces. The requested channel is encoded serially on the PCGNT# pin.
			The SAA7780 will become the bus owner when it receives an asserted PCGNT# signal. This handshaking is synchronous to PCLK.
PCGNT#	35	I-T	PC/PCI DMA Grant
			An asserted PCGNT# pin indicates that the external PC/PCI master arbiter has granted DMA services to the the encoded DMA channel to the requesting DMA agent on the SAA7780 chip.
REQ#	38	O-TS	PCI Bus Request
			This signal controls the PCI bus arbitration between the SAA7780 chip and the PCI master arbiter. When REQ# is asserted, the SAA7780 indicates a desire to become the PCI bus owner. The SAA7780 will become the bus owner when it receives an asserted grant signals (GNT# is LOW). This handshaking is synchronous to PCLK.
			REQ# is three-stated while RST# is active.

Thund Accele		PCI Audio	SAA7780
GNT#	37	I-T	PCI Bus Grant An asserted GNT# pin indicates that the PCI master arbiter has granted bus ownership to the SAA7780 chip.
IRQSER	32	IO-OD	PCI Bus Serial Interrupts This pin is used to output the serial interrupt stream for legacy interrupts. It is used only if the SAA7780 is used in a Common Architecture system. Otherwise it is tri-stated.
INTA#	31	IO-OD	<u>PCI Bus Interrupt A</u> The interrupt output is a PCI compatible active low level sensitive interrupt. It is only used if the SAA7780 is used in a non Common Architecture system. Otherwise it is tri-stated. It is driven low when any of the internal interrupts are asserted.
PERR#	72	IO-STS	PCI Bus Parity Error This signal indicates a data parity error for any cycle type other than a Special Cycle command. PERR# is made active two clocks after the completion of the data phase which caused the parity error. This error signal may result in the generation of a non-maskable interrupt (NMI) or other high priority interrupt sent to the CPU.
SERR#	73	IO-OD	PCI Bus System Error This signal indicates an address parity error, data parity errors on Special Cycle commands or any other catastrophic system error. SERR# is an open-drain bidirectional pin which is driven low for a single PCLK cycle by the agent reporting the error. This error may result in the generation of a non-maskable interrupt (NMI) or other high priority interrupt sent to the CPU.
IDSEL	51	I-T	Initialization Device Select IDSEL is used as a chip select during configuration register read and write operations. One system board address line from AD[31:11] is used as IDSEL to select the SAA7780 configuration space in the SAA7780 chip when used on the PCI bus.
CLKRUN#	100	O-OD	PCI Bus Clock Run Request The SAA7780 uses CLKRUN# according to the Mobile PCI protocol to start the PCI clock or keep the clock running whenever an internal PCI device requires it.

Thunc Accele	derBird Q3D erator	PCI Audio	SAA7780
PCLK	34	I-T	PCI Bus Clock Input PCLK is the PCI bus clock input. It is used to synchronize all PCI bus operations and typically runs at 33MHz.
RST#	33	Ι	PCI Bus Reset An active low version of the system reset, this signal causes the PCI interface to return to the idle states in all state machines and asynchronously three-states all PCI bus signals. All registers will be reset to their default values as well. The CODEC interface line should be all driven inactive along with the external memory interface. This reset will assert the DSP reset.
Serial Config	guration Port		
CFGDAT	101	I,PU-T	Serial Configuration Data This pin is used to shift in PCI configuration data for the Subsystem ID and the Subsystem Vendor ID in each of the PCI configuration headers present in the SAA7780 chip. The Serial Configuration Port is a standard I ² C interface. This line should never be pulled low.
CFGCLK	102	O-T	Serial Configuration Clock The serial clock is a 400 KHz clock generated from OSC and supplied to an external serial EEPROM to synchronize the serial configuration data.
Test Interfac	e		
TRI#	29	I-T	<u>Tri-State Test Enable</u> When this pin is pulled low and RST# is pulsed asserted, all output and I/O pins of the SAA7780 will be forced into a three-state condition. Pulsed assertion of the RST# signal will release the SAA7780 from this test mode.
NAND#	30	I-T	NAND Tree Test Enable When this pin is pulled low and RST# is pulsed asserted, the SAA7780 will enter the parametric NAND tree test mode. The details of the NAND tree test mode are described later in this document.

	underBird Q3D celerator	PCI Audio	SAA7780
16650 UA	RT Interface		
RXD	146	I-T	UART Serial Data Input
			This pin provides the serial bit stream to the 550-compatible UART. This input is ignored when the Loop Mode is enabled.
TXD	145	0-Т	UART Serial Data Output
			This pin is an output from UART, providing the serial bit stream to external buffers or devices. This signal is forced high whenever the transmitter is disabled, RST# is asserted, the transmit register is empty, or the UART is in the Loop Mode.
RTS#	148	О-Т	UART Request To Send
			An active low output that is the inverted value of the Modem Control Register (MCR) bit 1, as follows:
			When MCR[1] = 1, RTS# is low.
			When MCR[1] = 0, RTS# is high.
			When RST# is asserted, RTS# is forced high.
DTR#	149	О-Т	UART Data Terminal Ready
			An active low output that is the inverted value of the Modem Control Register bit 0, as follows:
			When MCR[0] = 1, DTR# is low.
			When MCR[0] = 0, DTR# is high.
			When RST# is asserted, DTR# is forced high.
CTS#	150	I-T	UART Clear To Send
			The status of this input can be determined by reading bit 4 of the Modem Status Register. When MSR[4] is read, it will be the inverted value of CTS#. A change in status of CTS# sets the Delta CTS bit in the Modem Status Register.
			If the CTS# line changes state while the modem status interrupts are enabled, an interrupt packet will be generated.
DSR#	151	I-T	UART Data Set Ready
			The status of this input can be determined by reading bit 5 of the Modem Status Register. When MSR[5] is read, it will be the inverted value of DSR#. A change in status of DSR# sets the Delta DSR bit in the Modem Status Register.
			If the DSR# line changes state while the modem status interrupts are enabled, an interrupt will be generated.

Thunc Accel	derBird Q3D erator	PCI Audio	SAA7780
DCD#	152	I-T	UART Data Carrier Detect
			The status of this input can be determined by reading bit 7 of the Modem Status Register. When MSR[7] is read, it will be the inverted value of DCD#. A change in status of DCD# sets the Delta DCD bit in the Modem Status Register.
			If the DCD# line changes state while the modem status interrupts are enabled, an interrupt will be generated.
RI#	153	I-T	UART Ring Indicator
			The status of this input can be determined by reading bit 6 of the Modem Status Register. When MSR[6] is read, it will be the inverted value of RI#. Bit 2 (TERI) of the Modem Status Register indicates whether the RI# input signal has changed from a low to a high, since the previous reading of the Modem Status Register.
			If modem status interrupts are enabled when MSR[6] changes from a 1 to a 0, an interrupt will be generated.
loystick/Ga	me Port		
IACX	9	I/O-C,S	<u>Joystick A X Axis</u> Joystick A X-position.
IACY	13	I/O-C,S	Joystick A Y Axis Joystick A Y-position.
IBCX	10	I/O-C,S	Joystick B X Axis Joystick B X-position.
BCY	12	I/O-C,S	Joystick B Y Axis Joystick B Y-position.
AB[2:1]	7	I-T	Joystick A Button Interface Joystick A buttons. These buttons are internally de-bounced and de glitched using a low speed clock and metastable hardened flip-flops
IBB[2:1]	14	I-T	Joystick B Button Interface
			Joystick B buttons. These buttons are internally de-bounced and de glitched using a low speed clock and metastable hardened flip-flops

Thund Accele) PCI Audio	SAA7780								
MIDI Interfac	MIDI Interface										
MIDIIN	18	I-T	MIDI Serial Data Input								
			This signal is part of the standard 2 wire MIDI interface. This input receives MIDI data at a rate of 31.25Kbaud. Optical isolation is required.								
MIDIOUT	11	O-T	MIDI Serial Data Output								
			This signal is part of the standard 2 wire MIDI interface. This output transmits MIDI data at a rate of 31.25Kbaud. Optical isolation is required.								
PLL/DSP CLI	K Subsysten	n Interface									
XTALIN	23	I-C	OSC Clock Crystal Pad								
XTALOUT	24	O-C	This pin pair describes the pad required for the 14.31818MHz OSC pad oscillator. The OSC clock is used to provide a fixed timebase for many functions within the SAA7780 device.								
DSPCLK	27	I-T	DSP Clock Input								
			This pin can be used as the clock input for the SAA7780 for the DSP subsystem in place of the PLL driving the clock. DSPCLK is also used to drive the DSP subsystem for controllability during testing.								
PSUB	20	AGND	PLL Substrate								
PLLDPWR	22	DPWR	PLL Digital Power								
PLLDGND	25	DGND	PLL Digital Ground								
PLLAPWR	21	APWR	PLL Analog Power								
PLLAGND	19	AGND	PLL Analog Ground								

DSP External Memory Interface

MA[14:0]	143,141,140, O-T	External Memory Address
	139,137,136, 134,132,131, 130,129,127, 126,125,124	Address lines for the external SRAM devices. The external memory interface can be used for DSP code space if the EXT_SRAM_EN (in HDCFG, bit 5) is set. Otherwise, the reverb accelerator will use the external SRAM.

Thunde Accelera	rBird Q3D PC ator	I Audio	SAA7780
MD[15:0]	103,105,106, 107,108,109, 110,111,113, 114,115,116, 118,119,122, 123		External Memory Data Bus Word wide data bus for the external SRAM. Use 6ns memory for DSP code usage and 20 ns memory for reverb usage.
MCS#	144	О-Т	External Memory Chip Select Chip select line for the external SRAM devices.
MWE#	133	O-T	External Memory Read/Write Control Selects the external SRAM for reading or writing.
AC'97 CODEC	Interface		
SYNC	2	O-T	AC'97 Codec Synchronization/Frame Output This signal is used to frame the tag packet from the AC link designer from the SAA7780 chip.
BIT_CLK	3	I	AC'97 Data Bit Clock This signal is used to clock synchronous data on the AC link interface.
SDATA_OUT	4	O-T	AC'97 Serial Data Out This is the time division multiplexed serial output data stream from the SAA7780 controller.
SDATA_IN	5	I	AC'97 Serial Data In This is the time division multiplexed serial input data stream the external AC'97 codec.
AC_RST_N#	6	O-T	AC'97 Master Reset The external AC'97 codec has a master reset line which is has a separate control. The codec status must report a ready before any audio or modem data is transmitted to the codec.

SAA7780

Music DAC	Interface		
MSI	157	IO-T	Music DAC Serial Data Output
			This signal is the serial bit stream used to transmit PCM data to a industry standard serial DAC. Any mono or stereo PCM audio stream can be played from the DSP to this interface to provide music without the need for an AC'97 codec.
			If the serial port is disabled, then this pin can be used for general purpose I/O control.
MCLK	158	IO-T	Music DAC Data Bit Clock
			The MSI data is synchronized to this clock used by an external Music DAC.
			If the serial port is disabled, then this pin can be used for general purpose I/O control.
MLRCK	159	IO-T	Music DAC Data Word Clock
			This signal is used to frame the left and right channel PCM data being transmitted to the external Music DAC.
			If the serial port is disabled, then this pin can be used for general purpose I/O control.
General Pur	pose Input/O	utput	
GPIO0	154	І/О-Т	<u>General Purpose I/O Bit 0</u>
			This pin can be used for general purpose I/O control.
GPIO1	155	I/O-T	<u>General Purpose I/O Bit 1</u>
			This pin can be used for general purpose I/O control.

GPIO2	156	I/O-T	<u>General Purpose I/O Bit 2</u>
			This pin can be used for general purpose I/O control.

Power and Ground Pins

VDDIC	138,99	DPWR	Core Power
VSSIC	60,147	DGND	Core Ground
VSS	26,15,40,47, 62,74,81,90, 104,120,128, 160	DGND	<u>Ring Ground</u>

SAA7780

VDD	54,6	2,28,41, DPWR 8,80,96, 121,135,	<u>Ring Power</u>				
VWELL	117	DPWR	External N-Well Bias				
			Tie these pins to 5V for proper 5 volt tolerant operation. The 5V supply must be powered up before the 3V supply. Likewise, the 3V supply must be powered down before the 5V supply.				
Legend:	С	CMOS-compatible inp	ut				
U	AGND	Analog ground					
	DGND	Digital ground pin					
	1	0 0 1	come bidirectional for test mode)				
	IO	Bidirectional pin	,				
	0	•	ecome bidirectional for test mode)				
	APWR	Analog power supply	pin .				
	DPWR	Digital power supply p	in				
	Т	TTL-compatible input					
	PD	Indicates a high-impeo resistor on pin)	dance with approximately 10 K¾ minimum resistance to VSS (internal pull-down				
	PU	Indicates a high-impec tor on pin)	lance with approximately 10 K $ m \%$ minimum resistance to VDD (internal pull-up res				
	PUB	Inidcates that this pin r 10K ohm resistor is no	needs an external pull-up resistor when the chip is installed on a board or tester. minal				
	S	Indicates a Schmitt-trig	gger input with hysteresis for noise immunity				
	TS	Three-state pin					
	STS	Sustained three-state	output / TTL input (if applicable)				
	OD	Open drain pad					
	A	Analog based I/O. Use a pad with ESD protection					
	CP	-	a pad that supplies power for the core of the chip only				
	CG		a pad that supplies ground to the core only				
	RP		a pad that supplies power to the pads only				
	RG		a pad that supplies ground to the ring only				
	RPD	Ring power with option core side connector ca	n to power core level shifter. Denotes a pad that supplies power to the ring while an optionally supply internal level shifters				
	RCG	0 0	notes a pad that supple a ground connection to the ring and core				
	HZ		n in a three state test mode, this pin will be forced into a high impedance state				
	NT		NAND tree test mode, this pin will be included in the parametric NAND tree logic				
	NTO		en in a NAND tree test mode, this pin is the output of the parametric NAND tree				
	FSB	Function System Block	k test. Denotes that his pin is not timing critical and is available for FSB multiplexi				

SAA7780

SAA7780 Functional Block Descriptions

Register Table Document Description and Example

The next table gives an example of how registers are documented in this specification.

SPACE	D15	D14	D13	D12	D11	D10	D9	D8
Offset nnh	R	R	R	R	R	R	R	R
POR Value	0	0	0	0	0	0	0	0
	D7	D6	D5	D4	D3	D2	D1	D0
	EXDATA[7:0]							
POR Value	0	0	0	0	0	0	0	0

Example Register - Regex (RW/RO)

Bit	Name	R/W	Function
15:8	R	RO	Reserved. These bits always return zeros.
7:0	EXDATA	RW	Example data. The example data for all to see.

In the above table example, the EXAMPLE REGISTER text would be a descriptive title for the register that we wish to detail. Following the register description would be a register mnemonic used in register summary tables and the like. In this example the mnemonic is REGEX. Following the mnemonic is the read/write access allowed into this register. If the entire register is readable and writable, then the RW key is assigned. If some bits are read/write while others are read only, then the key will indicate this fact. In the example, this register has both read/write and read only bits. The register memory map location is marked in the table cell marked SPACE. SPACE could be substituted with PCI CFG n (for PCI configuration register), DSP DATA (for DSP data memory mapped registers), MEM MSTR (indicating a PCI master in memory space), and DSP CODE (indicating a DSP code memory mapped register. Just below the SPACE marker is the offset from the base address specified in the SPACE field. The rest of the table should be obvious.

SAA7780 PCI Interface

Overview

The SAA7780 chip PCI interface is designed to interface the external PCI bus interface to all of the selected devices in the SAA7780 chip. The PCI interface composed of master and slave state machines, an address/data/byte enable datapath, a bus arbiter for the two on chip masters, control logic for the master and slave internal busses, and standard PCI configuration register headers. The Interrupt Serializer will be discussed in a later chapter. This section of the specification will describe the PCI interface in more detail along with design considerations for both the slave, master, and datapath. The configuration header will be discussed in the SAA7780 PCI Configuration Registers section of this specification.

The discussion will begin with the PCI master and target systems. The PCI bus master has the capability to burst double words to/from the two internal bus masters, the Distributed DMA and the Virtual Registers. The full address range is supported for these master devices. Since there are two masters, an arbiter is required to determine priority between the two devices. Details on the arbiter can be found in the PCI master section.

SAA7780

The PCI datapath block contains the multiplexors and registers to steer the data to and from the PCI interfaces. The data is de-multiplexed from the external PCI interface to the internal master and slave busses. Control logic from the master and slave devices control the datapath.

The SAA7780 is considered a multi-function device since the operating system may wish to load different drivers for certain functions. These functions are the audio subsystem, the joystick and the 16650 UART. Each of these major functions must have a separate PCI configuration space. The standard PCI configuration header for these three functions are supported in the PCI interface.

The SAA7780 PCI interface responds to and initiates PCI cycles with positive decoding according to the PCI 2.1 specification. The interface asserts DEVSEL# after the first clock following FRAME# making it a medium responder. For specific LAM cycles, the SAA7780 will be a fast responder. The following table indicates which cycles the PCI interface responds to or initiates.

c/be#[3:0]	Command Type	SAA7780 Response to Cycle
0000	Interrupt Acknowledge	This cycle is not claimed.
0001	Special Cycle	This cycle is not claimed.
0010	I/O Read	All I/O Read cycles directed to the SAA7780 are claimed by the target interface.
0011	I/O Write	All I/O Write cycles directed to the SAA7780 are claimed by the target interface.
0100	Reserved	This cycle is not claimed.
0101	Reserved	This cycle is not claimed.
0110	Memory Read	This cycle is not claimed.
0111	Memory Write	This cycle is not claimed.
1000	Reserved	This cycle is not claimed.
1001	Reserved	This cycle is not claimed.
1010	Configuration Read	All Configuration Read cycles are claimed by the target interface provided IDSEL is sampled asserted during the address/cmd phase.
1011	Configuration Write	All Configuration Write cycles are claimed by the target interface provided IDSEL is sampled asserted during the address/cmd phase.
1100	Memory Read Multiple	This cycle is not claimed.
1101	Dual Address Cycle	The SAA7780 supports 32-bit addresses only.
1110	Memory Read Line	This cycle is not claimed.
1111	Memory Write and Invalidate	This cycle is not claimed.

PCI Bus Command Definitions and SAA7780 Responses

The SAA7780 will respond to byte, word, tri-byte or double word access for configuration read and configuration write cycles provided PCI addressing rules are followed. Byte and word width accesses allowed for I/O cycles depend largely on the target I/O device. In general, 24-bit and 32-bit accesses are not allowed to I/O devices and will result in a target abort. The SAA7780 performs double word accesses when initiating master cycles. Note that the SAA7780 cannot initiate a master cycle to itself. The next table summarizes the access rules for configuration and I/O cycles.

BIT Width Device Access Rules

ThunderBird Q3D PCI Audio Accelerator

SAA7780

Device	Cycle Types	Data Width	Comments
PCI Configuration Registers	Config Read Config Write	Any	Follow PCI addressing rules, otherwise assert a target abort. Note that configuration registers, no matter where they are, are accessed by configuration cycles only. Note that the PLL will only allow 8 bit configuration accesses, the Virtual Registers TBLBASE registers are 32 bit access only, and the VRCFG is 16 bit access only.
Game Port	I/O Read I/O Write	8	Any other access will result in a target abort.
AC'97 Codec	I/O Read I/O Write	16	For PIO type accesses, only 16 bit I/O cycles are allowed, other wise a target abort will result.
DMA Interface	I/O R/W	Any	
Sound Blaster Registers	I/O Read I/O Write	8	Any other access will result in a target abort.
Host/DSP Interface	I/O Read I/O Write	8,16	Word accesses must be word aligned.
Virtual Registers	Mem Read	Any	Follow PCI addressing rules.
Host/DSP Interface	I/O Read I/O Write	8,16	Usually, only 16 bit accesses will be used to download and access the DSP. Byte wide are also allowed for DSP configuration accesses. Word access must be on word boundaries.
MPU401 Registers	I/O Read I/O Write	8	Any other access will result in a target abort.
16650 UART	I/O Read I/O Write	8	Any other access will result in a target abort.

The PCI interface consists of three major blocks, the PCI master interface, the PCI slave interface and the PCI datapath. The PCI master interface contains the master state machine, the master control logic, and the PM bus arbiter. The PCI slave interface contains the target state machine, the target control logic and configuration register headers. The PCI datapath is the de-multiplexing logic for the address, data and byte enable data paths for the PS and PM busses. The PM and PS busses are described in detail in the SAA7780 Internal Busses section. Partitioning of these PCI blocks is done in this manner to reduce block inter-connectivity and to provide an interface between the three major sections of the PCI interface.

PCI Master Interface

The SAA7780 PCI master interface performs the memory read and write cycles initiated by the DMA or Virtual Registers blocks. The major components of the PCI master interface are the master state machine, the PM bus arbiter and the master control logic. Each of the functional blocks will be discussed in detail.

PCI Master State Machine

This block performs the handshaking between the PCI interface and the PM internal bus. The PCI master will perform

SAA7780

bursting in a linear incrementing type fashion. The PCI master state machine may also wish to provide a target lockout signal. This signal prevents the PCI target interface from responding to any master signals.

PC/PCI Legacy Support

The PCI block supports the PC/PCI sideband signals for legacy support of the soundblaster. The PC/PCI can be enabled by a configuration register bit and one channel selected. The PCI slave block will provide the serial encoded request signal (PCREQ#) in response to a request from the soundblaster and decode the serial encoded PCGNT# line. The PCI slave will then claim I/O writes to address 0000h or 0004h with the PCGNT# line asserted as writes to the SoundBlaster and pass the data to the SoundBlaster.

PCI Target State Machine A

The PCI target state machine controls all SAA7780 target responses on the PCI bus in addition to handling the PS internal bus.

PCI Target Control Logic

The target control logic handles the address decoding for the ps_NNNcs# signals, bus command decoding for the ps_XXXrd# and ps_XXXwr# signals, determination of target abort conditions, and data path/pad control logic from the target interface. Also included in this logic are the controls for the PCI datapath and I/O pads. These controls are sent to the datapath logic where they are combined with the master controls and then sent to the datapath and pad devices. The control logic also includes an interface to the PCI configuration headers.

Serial Configuration Port

The Subsystem Vendor ID and Subsystem ID for each of the configuration headers presents a special case. These three 32 bit registers must be programmed by the Subsystem Vendor. It is impractical to hard wire the Subsystem ID registers since each Subsystem Vendor will have a unique ID. Therefore an external serial EEROM device is used to download the proper values into the ID registers after reset and before begin read by the BIOS or other configuration software. The PCI interface should force a retry if any of the subsystem registers have not completed a loading. The Serial Configuration Port is a standard two pin I²C interface. The SAA7780 will supply the 400 KHz clock to the external serial EEPROM on the CFGCLK pin. The serial data stream will arrive on the CFGDAT input pin. Please refer to a 24LC00 128 bit I²C Bus Serial EEPROM data sheet for interface protocols and timings.

Serial Configuration Port Programming

The SAA7780 uses an inexpensive external EEPROM, programmed before installation, to download the Subsystem Vendor ID and Subsystem ID registers for each function for a total of 96 bits (six 16 bit registers). The recommended device, a Microchip 24LC01B 1K Bit (128 Byte) Serial EEPROM, can be programmed using a conventional DATA I/O programmer.

SAA7780

FIGURE 5

In each of the three SAA7780 functions PCI configuration space there is a Subsystem Vendor ID register at an offset of 2Ch and a Subsystem ID register at an offset of 2Eh. Each register is 16 bits in length and is write-only by the serial EEPROM and read-only from the PCI interface. The data from the EEPROM is loaded into the registers immediately after PCI reset. If no EEPROM is detected, the default values are loaded as shown and reflect the default values for the System ID and Vendor ID for that function.

Function	Device Type	Offset	Register Name	Default Value
0	Audio Subsystem	2Ch	Subsystem Vendor ID	1004h
0	Audio Subsystem	2Eh	Subsystem ID	0304h
1	Joystick	2Ch	Subsystem Vendor ID	1004h
1	Joystick	2Eh	Subsystem ID	0305h
2	16650 UART	2Ch	Subsystem Vendor ID	1004h
2	16650 UART	2Eh	Subsystem ID	0306h

Subsystem Register Default Values

The EEPROM contains bits 000h through 3FFh. Only bits 000h through 05Fh are utilized to program the Subsystem ID and Subsystem Vendor ID registers. The bit assignments between the EEPROM and the configuration registers are shown below.

EEPROM BIT Assignments to Subsystem Registers

Funct	Function 0 - Audio Subsystem				Function 1 - Joystick				Function 2 - 16650 Modem UART			
Subsystem Vendor ID - Offset S 2Ch		Subsystem ID - Offset 2Eh		Subsystem Vendor ID - Offset 2Ch		Subsystem ID - Offset 2Eh		Subsystem Vendor ID - Offset 2Ch		Subsystem ID - Offset 2Eh		
EEPROM Bit #	Reg Bit #	EEPROM Bit #	Reg Bit #	EEPROM Bit #	Reg Bit #	EEPROM Bit #	Reg Bit #	EEPROM Bit #	Reg Bit #	EEPROM Bit #	Reg Bit #	
000h	15	010h	15	020h	15	030h	15	040h	15	050h	15	
001h	14	011h	14	021h	14	031h	14	041h	14	051h	14	
002h	13	012h	13	022h	13	032h	13	042h	13	052h	13	

SAA7780

Funct	tion 0 - Au	idio Subsyste	em	Function 1 - Joystick				Function 2 - 16650 Modem UART				
Subsystem Vendor ID - Offset 2Ch Subsystem ID - Offset 2Eh		Subsystem Vendor ID - Offset 2Ch		Subsystem ID - Offset 2Eh		Subsystem Vendor ID - Offset 2Ch		Subsystem ID - Offset 2Eh				
EEPROM Bit #	Reg Bit #	EEPROM Bit #	Reg Bit #	EEPROM Bit #	Reg Bit #	EEPROM Bit #	Reg Bit #	EEPROM Bit #	Reg Bit #	EEPROM Bit #	Reg Bit #	
003h	12	013h	12	023h	12	033h	12	043h	12	053h	12	
004h	11	014h	11	024h	11	034h	11	044h	11	054h	11	
005h	10	015h	10	025h	10	035h	10	045h	10	055h	10	
006h	9	016h	9	026h	9	036h	9	046h	9	056h	9	
007h	8	017h	8	027h	8	037h	8	047h	8	057h	8	
008h	7	018h	7	028h	7	038h	7	048h	7	058h	7	
009h	6	019h	6	029h	6	039h	6	049h	6	059h	6	
00Ah	5	01Ah	5	02Ah	5	03Ah	5	04Ah	5	05Ah	5	
00Bh	4	01Bh	4	02Bh	4	03Bh	4	04Bh	4	05Bh	4	
00Ch	3	01Ch	3	02Ch	3	03Ch	3	04Ch	3	05Ch	3	
00Dh	2	01Dh	2	02Dh	2	03Dh	2	04Dh	2	05Dh	2	
00Eh	1	01Eh	1	02Eh	1	03Eh	1	04Eh	1	05Eh	1	
00Fh	0	01Fh	0	02Fh	0	03Fh	0	04Fh	0	05Fh	0	

These bits correspond to Function 0, Subsystem ID (offset 2Eh) bits 2, 1, and 0, respectively. The Vendor should choose and ID that corresponds to the peripherals present and program the EEPROM accordingly.

PCI Data Path

The PCI datapath provides the flip flop and multiplexers required to convert the external PCI interface address, data, command and byte enables busses to the internal PM and PS busses.

PCI Configuration Registers

Since the SAA7780 is a multi-function device, there are three configuration headers. They are defined as the audio configuration header as function 0, the joystick configuration header as function 1, and the UART configuration header defined as function 2. Each configuration space is divided up into two groups, the registers that stay with the PCI interface and the registers that do not. This section will describe the PCI configuration registers that bunk with the PCI interface. These registers include the PCI standard configuration header registers and the base address registers for various blocks in the SAA7780 chip.

To be more specific, the registers in the offset config space from 00h - 3Fh are the predefined PCI configuration header. All three PCI configuration header registers will reside with the PCI interface. The remainder of the registers are function specific and can be found in the block section itself.

The following sections will detail each of the configuration header spaces for each of the SAA7780 functions: audio, joystick and UART.

PCI Configuration Space 0

The following table is a summary of all the PCI configuration space registers. The registers that are block-mates with the PCI interface (offset 00h - 44h) will be detailed following the PCI configuration space table. The remainder of the

registers will be detailed with the blocks they control.

PCI Configuration Space 0 Register Map

Byte 3		Byte 2	Byte 1	Byte 0	Offset			
	Dev	ice ID	Ver	ndor ID	00h			
	Sta	atus	Cor	nmand	04h			
		Class Code		Revision ID	08h			
BIST		Header Type	Master Latency Timer	Cache Line Size	0Ch			
		SC	NGBASE	•	10h			
		ç	SBBASE		14h			
		Ν	IDBASE		18h			
		l	ALBASE		1Ch			
		F	Reserved		20-2Bh			
	SUBSY	STEM ID	SUBSYSTE	M VENDOR ID	2Ch			
		F	Reserved		30-3Bh			
Max_Lat		Min_Gnt	Interrupt Pin	Interrupt Line	3Ch			
	DMA	BASE	DMA	ABASE	40h			
		F	Reserved		44-57h			
Reserved	l	Reserved	Reserved	MSCCFG	58h			
Reserved	Reserved Reserved		Reserved	ACLCFG0	5Ch			
Reserved	1	Reserved	VF	VRCFG				
Reserved	Reserved Reserved		Reserved	TIMRCFG0	64h			
Reserved	Reserved Reserved		H	DCFG	68h			
		F	Reserved		6Ch			
Reserved		Reserved	DM	DMACFG				
		F	Reserved		74-77h			
Reserved		Reserved	Reserved	DPLLCTL0	78h			
Reserved		Reserved	Reserved	DPLLCTL1	7Ch			
Reserved		Reserved	Reserved	DPLLCTL2	80h			
		F	Reserved		84-87h			
Reserved	I	Reserved	Reserved	TESTCTL0	88h			
		F	Reserved	·	8C-8Fhł			
		TE	BLBASE0		90h			
		TE	BLBASE1		94h			
		TE	BLBASE2		98h			
		TI	BLBASE3		9Ch			
Reserved	1	Reserved	Reserved	IRQCTL0	A0h			
Reserved	1	Reserved	Reserved	IRQCTL1	A4h			
Reserved	1	Reserved	Reserved	IRQCTL2	A8h			
Reserved	1	Reserved	Reserved	IRQCTL3	ACh			
Reserved	I	Reserved	Reserved	IRQCTL4	B0h			
Reserved	1	Reserved	Reserved	IRQCTL5	B4h			
Reserved		Reserved	Reserved	IRQCTL6	B8h			

SAA7780

SAA7780

Reserved	Reserved	Reserved	IRQCTL7	BCh						
Reserved	Reserved	Reserved	COMARCH0	C0h						
	Reserved									
DM	ACCNT	DMAA	F0h							
DM	BCCNT	DMAE	F4h							
DMAMASK	DMACMD	DMAAMODE	Reserved	F8h						
Reserved	Reserved	DMABMODE	Reserved	FCh						

Vendor ID Register- Vendor _ID (RO)

PCI CFG 0	D15	D14	D13	D12	D11	D10	D9	D8			
Offset 00h		VENDOR_ID[15:8]									
POR Value	0	0	0	1	0	0	0	0			
	D7	D6	D5	D4	D3	D2	D1	D0			
	VENDOR_ID[7:0]										
POR Value	0	0	0	0	0	1	0	0			

Bit	Name R/W		Function
15:0	VENDOR_ID	RO	The PCI Vendor ID for Philips Semiconductors (VLSI Technology) is 1004h.

Device ID Register - Device_ID (RO)

PCI CFG 0	D15	D14	D13	D12	D11	D10	D9	D8			
Offset 02h		DEVICE_ID[15:8]									
POR Value	0	0	0	0	0	0	1	1			
	D7	D6	D5	D4	D3	D2	D1	D0			
	DEVICE_ID[7:0]										
POR Value	0	0	0	0	0	1	0	0			

Bit	Name	R/W	Function
15:0	DEVICE_ID	RO	The Device ID for the SAA7780, function 0 is 0304h.

Command Register - Command (RO/RW)

PCI CFG 0	D15 D14	D13	D12	D11	D10	D9	D8
-----------	---------	-----	-----	-----	-----	----	----

SAA7780

Offset 04h	R	R	R	R	R	R	FBACK_ ENB	SERR_R ESP
POR Value	0	0	0	0	0	0	0	0
	D7	D6	D5	D4	D3	D2	D1	D0
	STEP-	PERR_	SNOOP_	MEM_	SPEC_	MAST_	MEM_	IO_
	PING	RESP	ENB	INV_EN	CNTL	CNTL	CNTL	CNTL
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
15:10	R	RO	Reserved. These bits always return zero.
9	FBACK_ENB	RO	Fast Back-to-Back Enable: the SAA7780, function 0 does not support fast back to back master cycles therefore this bit always returns a zero.
8	SERR_RESP	RW	System Error Response: When set to 1, the SAA7780, function 0 responds to detected PCI bus address parity errors by asserting SERR#. When 0, the SAA7780 ignores these errors.
7	STEPPING	RO	Address / Data Stepping: Always returns 0.
6	PERR_RESP	RW	Parity Error Response: When set to 1, the SAA7780, function 0 responds to detected PCI bus data parity errors by asserting PERR#. When 0, the SAA7780 ignores PCI bus data parity errors.
5	SNOOP_ENB	RO	VGA Snoop Enable. The SAA7780, function 0 does not support VGA snoop enable, therefore this bit always returns a zero.
4	MEM_INV_EN	RO	Memory Write and Invalidate Enable: Always returns 0.
3	SPEC_CNTL	RO	Special Cycle Control: Controls the devices ability to respond to Special Cycle Operations. A value of 0 causes the SAA7780, function 0 to ignore all Special Cycles.
2	MAST_CNTL	RW	Master Control: Controls the devices ability to act as a master on the PCI bus. A value of 0 disables the ability of the SAA7780, function 0, to act as a primary PCI master. A value of 1 enables the SAA7780, function 0 to become a PCI bus master.
1	MEM_CNTL	RO	Memory Response Control: The SAA7780, function 0 does not support target memory cycles therefore this bit always returns a zero.
0	IO_CNTL	RW	I/O Response Control: Controls the SAA7780, function 0's response to I/O space. A value of 0 disables the device response. A value of 1 allows the device to respond to I/O space accesses.

Status Register - Status (RO/RW)

PCI CFG 0	D15	D14	D13	D12	D11	D10	D9	D8
	R_PERR	S_SERR	SM_	RT_	ST_	DEVSEL_TMG		S_PERR
Offset 06h			ABORT	ABORT	ABORT			

SAA7780

POR Value	0	0	0	0	0	0	1	0
	D7	D6	D5	D4	D3	D2	D1	D0
	F_	UDF	MHz66	R	R	R	R	R
	BK2BK							
POR Value	1	0	0	0	0	0	0	0

Bit	Name	R/W	Function
15	R_PERR	RC	Received Parity Error: When set to 1, this bit indicates that the SAA7780, function 0 has detected a PCI bus parity error at least once since this bit was last reset.
14	S_SERR	RC	Signalled System Error: When set to 1, this bit indicates that the SAA7780, function 0 has reported a system error on the SERR# signal at least once since this bit was last reset.
13	SM_ABORT	RC	Signalled Master Abort: When set to 1, this bit indicates that the SAA7780, function 0 (acting as a master) had to initiate a master abort at least once since this bit was last reset.
12	RT_ABORT	RC	Received Target Abort: When set to 1, this bit indicates that the SAA7780, function 0 (acting as a master) has received a target abort at least once since this bit was last reset.
11	ST_ABORT	RC	Signalled Target Abort: When set to 1, this bit indicates that the SAA7780, function 0 has signalled a target abort at least once since this bit was last reset.
10:9	DEVSEL_TM G	RO	DEVSEL Timing: This field indicates the timing of the DEVSEL output (when a PCI master is accessing a SAA7780, function 0 resource). It always returns 01 (Bin).
			00 = Fast 01 = Medium (Default Timing) 10 = Slow
8	S_PERR	RC	Signalled Parity Error: When set to 1, this bit indicates that the SAA7780, function 0 was a bus master for a cycle in which PERR# was activated. This bit cannot be set if the PERR_RESP bit in the command register is not enabled.
7	F_BK2BK	RO	Always returns 1 to indicate support of fast back to back cycles when the SAA7780, function 0 is the target.
6	UDF	RO	User Definable Features. Always returns 0.
5	MHz66	RO	66 MHz Capable. Always returns 0.
4:0	R	RO	Reserved. These bits always return zero.

Note: An RC indicates that this bit can be reset to 0 by writing a 1. Writing a zero leaves this bit unchanged.

SAA7780

Revision	ID	Reaister	-	Revision	(RO))
					(/

PCI CFG 0	D7	D6	D5	D4	D3	D2	D1	D0	
Offset 08h	REVISION_ID[7:0]								
POR Value	0	0	0	0	0	0	0	0	

Bit	Name	R/W	Function
7:0	REVISION_ID	RO	The current revision ID for the SAA7780, function 0, the audio subsystem.

Class Code Register - Class (RO)

PCI CFG 0	D23	D22	D21	D20	D19	D18	D17	D16		
Offset 09h	BASE_CLASS[7:0]									
POR Value	0	0	0	0	0	1	0	0		
	D15	D14	D13	D12	D11	D10	D9	D8		
	SUB_CLASS[7:0]									
POR Value	0	0	0	0	0	0	0	1		
	D7	D6	D5	D4	D3	D2	D1	D0		
	PGM_IFACE[7:0]									
POR Value	0	0	0	0	0	0	0	0		

Bit	Name	R/W	Function
23:16	BASE_CLASS	RO	The base class of 04h describes a PCI multimedia device.
15:8	SUB_CLASS	RO	The sub class of 01h describes a PCI audio multimedia device.
7:0	PGM_IFACE	RO	Device generic function identification.

CACHELINE Size Register - CACHELINE (RO)

PCI CFG 0	D7	D6	D5	D4	D3	D2	D1	D0	
Offset 0Ch	CACHELINE[7:0]								
POR Value	0	0	0	0	0	0	0	0	
SAA7780

Bit	Name	R/W	Function
7:0	CACHELINE	RO	Reserved for cache line size indicator.

Master Latency Timer Register - Latime (RW)

PCI CFG 0	D7	D6	D5	D4	D3	D2	D1	D0
Offset 0Dh				LATIN	1E[7:0]			
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	LATIME	RW	The primary bus latency timer specifies the number of primary clocks that the primary master may consume. The timer is reloaded at each assertion of FRAME# by the primary master. If the primary master loses its bus grant, then it must relinquish the bus after the timer expires.

Header Type Register - Header (RO)

PCI CFG 0	D7	D6	D5	D4	D3	D2	D1	D0
Offset 0Eh	MULTI_ FN			ŀ	HEADER[6:0]		
POR Value	1	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7	MULTI_FN	RO	A 1 indicates that the SAA7780 is a multi-function device. The three PCI configuration headers are accessed by the configuration cycle address bits 10-8. The function definitions are as follows: 0 = Audio Subsystem 1 = Joystick 2 = 16650 UART
6:0	HEADER	RO	Header Type. A 00h indicates this device is a not a PCI-to-PCI bridge.

BIST Register - BIST (RO)

PCI CFG 0	D7	D6	D5	D4	D3	D2	D1	D0	
Offset 0Fh	BIST	START	R	R		CODE[3:0]			
POR Value	0	0	0	0	0	0			

SAA7780

Bit	Name	Name R/W Function						
7	BIST	RO	BIST capable. BIST is not supported in the SAA7780, function 0 at this revision. It may be desired to include a BIST test for the DSP at a later time.					
6	START	RO	If BIST capable, this bit will start the BIST. Writing a 1 will start the test and the BIST should write this bit to a zero when complete. Software should fail the device if the BIST is not complete after 2 seconds.					
5:4	R	RO	Reserved. These bits always return zero.					
3:0	CODE	RO	Completion Code. A value of zero means the device has passed its test. Non-zero values means the device has failed using device specific failure codes.					

SAA7780 CFG Space 0 Non-Legacy Base Address Registers

The ThunderBird Base Address Register (SONGBASE) is used to I/O map all of the non-legacy I/O devices in the SAA7780 chip. The SONGBASE register maps the two DMA channels, the AC Link registers, the Host/DSP interface, the Serial Port interfaces, and the Multimedia Timer. The offset index for each are shown below.

Device Name	Byte 3	Byte 2	Byte 1	Byte 0	Offset
	TMCOUNT2	TMCOUNT1	TMCOUNT0	TMSTAT	00h
Multimedia Timer	Reserved	Reserved	Reserved	Reserved	04h
Multimedia Timer	Reserved	Reserved	Reserved	Reserved	08h
	Reserved Reserved		Reserved	Reserved	0Ch
	Res	eserved Reserved		10h	
Serial Ports	Res	erved	Rese	erved	14h
Senar Pons	Res	erved	Res	erved	18h
	Res	Reserved		Reserved	1Ch
	HDF	PCTL	HDD	20h	
Host/DSP Interface	HD	DLA	HDF	24h	
HUSI/DSP Interface	Res	erved	HD	28h	
	Res	erved	Res	erved	2Ch
	ACE	DATA	ACA	DDR	30h
AC Link Interface	ACS	STAT	ACC	TRL	34h
AC LINK INTERTACE		ACF	PCML	38h	
		ACF	PCMR		3Ch
Serial IRQ	Reserved	Reserved	Reserved	IRQCTL	40h
Thunderbird Reserved		Res	erved		44-7Fh

SAA7780 Non-Legacy I/O Device Map

SAA7780

Thunderbird Ba	ase Address	Register -	Songbase (RW/RO)							
PCI CFG 0	D31	D30	D29	D28	D27	D26	D25	D24			
Offset 10h	SONGBASE[31:24]										
POR Value	0	0	0	0	0	0	0	0			
	D23	D22	D21	D20	D19	D18	D17	D16			
	623	DZZ	DZI			510		510			
			1	SUNGBA	SONGBASE[23:16]						
POR Value	0	0	0	0	0	0	0	0			
	D15	D14	D13	D12	D11	D10	D9	D8			
	D15	D14	D13		D11 ASE[15:8]	D10	D9	D8			
POR Value	D15	D14	D13			D10	D9 0	D8			
POR Value				SONGBA	ASE[15:8]						
POR Value				SONGBA	ASE[15:8]						
POR Value	0	0	0	SONGBA 0	ASE[15:8] 0	0	0	0			
POR Value	0 D7	0 D6	0 D5	SONGBA 0 D4	ASE[15:8] 0 D3	0 D2	0 D1	0 D0			

Bit	Name	R/W	Function
31:7	SONGBASE	RW	Thunderbird non-legacy device base address register. This register supplies the I/O base address for the non-legacy I/O devices within the SAA7780 chip.
6:1	R	RO	Reserved. These bits are reserved a must always return a zero for plug and play.
0	IO	RO	I/O flag. This read only bit indicates that this is an I/O range.

SAA7780 CFG Space 0 Legacy Base Address Registers

The SAA7780 contains three legacy I/O base registers in configuration space 0. These legacy devices are the Sound Blaster register, the AdLib registers and the MIDI interface registers. They are described in detail in the next three tables.

Sound Blaster Base Address - SBBASE (RW/RO)

PCI CFG 0	D31	D30	D29	D28	D27	D26	D25	D24
Offset 14h	SBBASE[31:24]							
POR Value	0	0	0	0	0	0	0	0

SAA7780

	D23	D22	D21	D20	D19	D18	D17	D16		
		SBBASE[23:16]								
POR Value	0	0	0	0	0	0	0	0		
	D15	D14	D13	D12	D11	D10	D9	D8		
				SBBAS	E[15:8]	·				
POR Value	0	0	0	0	0	0	0	0		
	D7	D6	D5	D4	D3	D2	D1	D0		
		SBBAS	SE[7:4]		R	R	R	Ю		
POR Value	0	0	0	0	0	0	0	1		

Bit	Name	R/W	Function
31:4	SBBASE	RW	Sound Blaster programmable base address. The address should be on a 16 byte boundary. For reference, the Sound Blaster legacy base addresses are 220h and 240h. Note that accesses from the AdLib base address are mapped into a subset of the SoundBlaster registers.
3:1	R	RO	Reserved. These bits are reserved and always return zeros for plug and play.
0	IO	RO	I/O flag. This read only bit indicates that this is an I/O range.

MIDI Base Address - MDBASE (RW/RO)

PCI CFG 0	D31	D30	D29	D28	D27	D26	D25	D24
Offset 18h		L	I	MDBAS	E[31:24]		L	I
POR Value	0	0	0	0	0	0	0	0
	D23	D22	D21	D20	D19	D18	D17	D16
		MDBASE[23:16]						
POR Value	0	0	0	0	0	0	0	0
	D15	D14	D13	D12	D11	D10	D9	D8
				MDBAS	SE[15:8]			
POR Value	0	0	0	0	0	0	0	0
	D7	D6	D5	D4	D3	D2	D1	D0

SAA7780

		MDBASE[7:2]						IO
POR Value	0	0	0	0	0	0	0	1

Bit	Name	R/W	Function
31:2	MDBASE	RW	MIDI port programmable base address. The address should be on a double word boundary. For reference the MIDI port legacy base addresses are 220h, 230h, 240h, 250h, 300h, 320h, 330h, 332h, 334h, 336h, 340h, and 360h.
1	R	RO	Reserved. This bit is reserved a must always return a zero for plug and play.
0	10	RO	I/O flag. This read only bit indicates that this is an I/O range.

ADLIB Base Address Register - ALBASE (RW/RO)

	_		-	-				
PCI CFG 0	D31	D30	D29	D28	D27	D26	D25	D24
Offset 1Ch		l		ALBAS	E[31:24]			
POR Value	0	0	0	0	0	0	0	0
	D23	D22	D21	D20	D19	D18	D17	D16
				ALBAS	E[23:16]			
POR Value	0	0	0	0	0	0	0	0
	D15	D14	D13	D12	D11	D10	D9	D8
		·		ALBAS	E[15:8]			
POR Value	0	0	0	0	0	0	0	0
	D7	D6	D5	D4	D3	D2	D1	D0
			ALBASE[7:3]		R	R	IO
POR Value	0	0	0	0	0	0	0	1

Bit	Name	R/W	Function
31:3	ALBASE	RW	AdLib registers programmable base address. The address should be on a quad word (64 bit) boundary. For reference, the AdLib legacy base address is at 388h and maps into a subset of the Sound Blaster registers.
2:1	R	RO	Reserved. These bits are reserved and always return zeros for plug and play.
0	Ю	RO	I/O flag. This read only bit indicates that this is an I/O range.

SAA7780

Subsystem Vendor ID - SUBVENID (RO)

		-	-					
PCI CFG 0	D15	D14	D13	D12	D11	D10	D9	D8
Offset 2Ch				SUBVEN	_ID[15:8]			
POR Value	0	0	0	1	0	0	0	0
	D7	D6	D5	D4	D3	D2	D1	D0
				SUBVEN	N_ID[7:0]			
POR Value	0	0	0	0	0	1	0	0

Bit	Name	R/W	Function
15:0	SUBVEN_ID	RO	Subsystem Vendor ID. The Subsystem Vendor ID register allows the manufacturer to uniquely identify their board since more than one board OEM may use the SAA7780 chip. The Subsystem Vendor ID register is loaded by an external EEPROM via the Serial Configuration Port after reset and before any access to the PCI configuration header. The PCI target logic should force a retry if the Subsystem Vendor ID register has not completed loading. The Subsystem Vendor ID is read only to the PCI interface. If no external EEPROM is present, then the default Subsystem Vendor ID is 1004h, that of Philips Semiconductors (VLSI Technology).

Subsystem ID - SUBSYSID (RO)

PCI CFG 0	D15	D14	D13	D12	D11	D10	D9	D8
Offset 2Eh				SUBSYS	_ID[15:8]			
POR Value	0	0	0	0	0	0	1	1
	D7	D6	D5	D4	D3	D2	D1	D0
				SUBSYS	6_ID[7:0]			
POR Value	0	0	0	0	0	1	0	0

Bit	Name	R/W	Function
15:0	SUBSYS_ID	RO	Subsystem ID. The Subsystem ID register allows the manufacturer to uniquely identify their board since more than one board OEM may use the SAA7780 chip. The Subsystem ID register is loaded by an external EEPROM via the Serial Configuration Port after reset and before any access to the PCI configuration header. The PCI target logic should force a retry if the Subsystem ID register has not completed loading. The Subsystem ID is read only to the PCI interface. If no external EEPROM is present, then the default Subsystem ID is 0304h, identical to the SAA7780 function 0 Device ID.

SAA7780

Interrupt Line Register - INTLINE (RW)

PCI CFG 0	D7	D6	D5	D4	D3	D2	D1	D0
Offset 3Ch	INTLINE[7:0]							
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	INTLINE	RW	Interrupt Line. The Interrupt Line register is an eight bit register used to communicate interrupt line routing information. The value in this register tells which input of the system interrupt controller(s) the SAA7780 Device's interrupt pin is connected to. If serial interrupts are enabled (COMARCH0 Register IRQSER=1) then the INT_LINE register will be read only and will have the value of all 1's. If Serial Interrupts are disabled (IRQSER=0) then the INT_LINE register will be readable/writable.

Interrupt PIN Register - INTPIN (RO)

PCI CFG 0	D7	D7 D6 D5 D4 D3 D2 D1 D0									
Offset 3Dh		INTPIN[7:0]									
POR Value	0	0 0 0 0 0 0 1									

Bit	Name	R/W	Function
7:0	INTPIN	RO	Interrupt Pin. The interrupt pin register tells which interrupt the SAA7780 device uses. If serial interrupts are enabled (COMARCH0 Register IRQSER=1) then the INT_PIN register will have the read only value of all 0's implying that the SAA7780 device does not use any of the PCI Interrupt pins. If Serial Interrupts are disabled (IRQSER=0) then the INT_PIN register will have the read only value of 01h implying that the SAA7780 device uses INT A interrupt pin.

MIN_GNT Register - MINGNT (RO)

PCI CFG 0	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Offset 3Eh		MINGNT[7:0]								
POR Value	0	0 0 0 0 1 0 1								

SAA7780

Bit	Name	R/W	Function
7:0	MINGNT	RO	Minimum grant specifies how long of a burst period the device needs assuming a clock speed of 33MHz. Since the SAA7780, function 0, will burst a maximum of 64 double words, therefore requiring about 75 33MHz clocks or 2.25 microseconds. The time units specified are in 0.25 microsecond increments.

MAX_LAT Register - MAXLAT (RO)

PCI CFG 0	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Offset 3Fh		MAXLAT[7:0]								
POR Value	0	0 0 1 0 1 0 0 0								

Bit	Name	R/W	Function
7:0	MAXLAT	RO	Maximum latency specifies how often a device needs to gain access to the PCI bus. The SAA7780, function 0, should only request the bus a a maximum of every 10 microseconds. The MAXLAT value is computed using the same parameters as the MINGNT.

SAA7780 CFG Space 0 DMA Base Registers

This section will describe the PCI configuration registers that provide functions such as base address remapping and the like. These registers reside within the PCI interface.

DMA Channel A Base Address Register - DMAABASE (RW)

PCI CFG 0	D15	D14	D13	D12	D11	D10	D9	D8			
Offset 40h		DMAABASE[15:8]									
POR Value	0	0	0	0	0	0	0	0			
	D7	D6	D5	D4	D3	D2	D1	D0			
	DMAA	R	DMAAB	ASE[5:4]	R	XFRS	IZ[1:0]	DDMAA			
	BASE[7]							EN			
POR Value	0	0	0	0	0	1	0	0			

Bit	Name	R/W	Function
15:7	DMAABASE	RW	DMA channel A programmable base address, bits 15:7.
6	R	RO	Reserved. This bit must always be zero.

SAA7780

Bit	Name	R/W	Function
5:4	DMAABASE	RW	DMA channel A programmable base address, bits 5:4. These bits select a channel number for this channel. In LAM DMAABASE[5:4] select the channel number that this DMA represents, it should be different than DMABBASE[5:4].
3	R	RO	Reserved. This bit must always be zero.
2:1	XFRSIZ	RW	DMA transfer size.
			00 = reserved
			10 = double word
			11 = reserved
			01 = reserved
0	DDMAAEN	RW	DDMA channel A enable. This DDMA channel is enabled when this bit is set to a one.

DMA Channel B Base Address Register - DMABBASE (RW)

PCI CFG 0	D31	D30	D29	D28	D27	D26	D25	D24			
Offset 42h		DMABBASE[15:8]									
POR Value	0	0	0	0	0	0	0	0			
	D23	D22	D21	D20	D19	D18	D17	D16			
	DMAB	R	DMABB	ASE[5:4]	R	R	R	DDMAB			
	BASE[7]							EN			
POR Value	0	0	0	0	0	0	0	0			

Bit	Name	R/W	Function
15:7	DMABBASE	RW	DMA channel B programmable base address. Normally this base is set the same as DMA channel A except for DMABBASE[5:4] which selects the channel number. This is a requirement of some PC chipsets. Future chipsets may eliminate this requirement. In LAM DMABBASE[5:4] select the channel number that this DMA represents, it should be different than DMAABASE[5:4].
6	R	RO	Reserved. This bit must always be zero.
5:4	DMABBASE	RW	DMA channel B programmable base address, bits 5:4. These bits select a channel number for this channel. In LAM DMABBASE[5:4] select the channel number that this DMA represents, it should be different than DMAABASE[5:4].
3:1	R	RO	Reserved. These bits must always be zeros.
0	DDMABEN	RW	DMA channel B enable. This DDMA channel is enabled when this bit is set to a one.

SAA7780

Miscellaneous Configuration Register - MSCCFG (RO/RW)

PCI CFG 0	D7	D6	D5	D4	D3	D2	D1	D0
	ASYMCLK[1:0] F		RDY_EN	CFGCLK	BHEN	PCCH[1:0]		PCPCI
Offset 58h								_EN
POR Value	0 0		0	0	0	0	0	0

Bit	Name	R/W	Function
7:6	ASYMCLK	RW	Asymmetrical Clock Select. These bits program the duty cycle for the input for the two phase DSP clock generator.
5	RDY_EN	RW	Music registers ready enable. When set, the music registers will cause the PCI interface to retry when either of the music registers (music0 or music1) are full.
4	CFGCLK	RW	Serial Configuration Port Clock Select. This bit selects the clock output to the Configuration Serial Port.
			0 = Ouput a 400 KHz clock. Incoming data will be synchronized to this clock.
			1 = Output the PCI clock.
3	BHEN	RW	Bus Hog Fix Enable.
2:1	PCCH	RW	These two bits are the encoded channel number that the soundblaster will be on in the PC/PCI mode and are valid only when the PC/PCI mode is enabled.
0	PCPCI_EN	RW	PC/PCI mode enable bit. This bit, when set = 1, will enable the PC/PCI sideband signals for the Soundblaster legacy mode.

PCI Configuration Space 1

The following table is a summary of all the PCI configuration space registers. The registers that are block-mates with the PCI interface (offset 00h - 3Ch) will be detailed following this table. The remainder of the registers will be detailed with the blocks they control. This register space is for the joystick.

PCI Configuration Space 1 Register Map

Byte 3	Byte 2	Byte 1	Byte 0	Offset				
[Device ID	Ven	dor ID	00h				
	Status	Corr	nmand	04h				
	Class Code		Revision ID	08h				
BIST	Header Type	Master Latency Timer	Cache Line Size	0Ch				
GMBASE								
	R	eserved		14-2B				
Su	bsystem ID	Subsyster	n Vendor ID	2Ch				
	R	eserved		30-3Bł				
Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line	3Ch				
Reserved								
Reserved	Reserved	Reserved	GAMECFG0	6Ch				

SAA7780

ThunderBird Q3D PCI Audio Accelerator

Reserved

70-FFh

Vendor ID Register - VENDOR_ID (RO)

PCI CFG 1	D15	D14	D13	D12	D11	D10	D9	D8		
Offset 00h		VENDOR_ID[15:8]								
POR Value	0	0	0	1	0	0	0	0		
	D7	D6	D5	D4	D3	D2	D1	D0		
		VENDOR_ID[7:0]								
POR Value	0	0	0	0	0	1	0	0		

Bit	Name	R/W	Function
15:0	VENDOR_ID	RO	The PCI Vendor ID for Philips Semiconductors (VLSI Technology) is 1004h.

Device ID Register - DEVICE_ID (RO)

PCI CFG 1	D15	D14	D13	D12	D11	D10	D9	D8
Offset 02h				DEVICE	_ID[15:8]			
POR Value	0	0	0	0	0	0	1	1
	D7	D6	D5	D4	D3	D2	D1	D0
				DEVICE	_ID[7:0]			
POR Value	0	0	0	0	0	1	0	1

Bit	Name	R/W	Function
15:0	DEVICE_ID	RO	The Device ID for the SAA7780, function 1 is 0305h.

Command Register - COMMAND (RO/RW)

PCI CFG 1	D15	D14	D13	D12	D11	D10	D9	D8
Offset 04h	R	R	R	R	R	R	FBACK_ ENB	SERR_R ESP
POR Value	0	0	0	0	0	0	0	0
	D7	D6	D5	D4	D3	D2	D1	D0

SAA7780

	STEP-	PERR_	SNOOP_	MEM_	SPEC_	MAST_	MEM_	IO_
	PING	RESP	ENB	INV_EN	CNTL	CNTL	CNTL	CNTL
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
15:10	R	RO	Reserved. These bits always return zero.
9	FBACK_ENB	RO	Fast Back-to-Back Enable: the SAA7780, function 1 does not support fast back to back master cycles therefore this bit always returns a zero.
8	SERR_RESP	RW	System Error Response: When set to 1, the SAA7780, function 1 responds to detected PCI bus address parity errors by asserting SERR#. When 0, the SAA7780 ignores these errors.
7	STEPPING	RO	Address / Data Stepping: Always returns 0.
6	PERR_RESP	RW	Parity Error Response: When set to 1, the SAA7780, function 1 responds to detected PCI bus data parity errors by asserting PERR#. When 0, the SAA7780 ignores PCI bus data parity errors.
5	SNOOP_ENB	RO	VGA Snoop Enable. The SAA7780, function 1 does not support VGA snoop enable, therefor this bit always returns a zero.
4	MEM_INV_EN	RO	Memory Write and Invalidate Enable: Always returns 0.
3	SPEC_CNTL	RO	Special Cycle Control: Controls the devices ability to respond to Special Cycle Operations. A value of 0 causes the SAA7780, function 1 to ignore all Special Cycles.
2	MAST_CNTL	RO	Master Control: The SAA7780, function 1 does not have any master functions.
1	MEM_CNTL	RO	Memory Response Control: The SAA7780, function 1 does not support target memory cycles therefore this bit always returns a zero.
0	IO_CNTL	RW	I/O Response Control: Controls the SAA7780, function 1's response to I/O space. A value of 0 disables the device response. A value of 1 allows the device to respond to I/O space accesses.

Status Register - STATUS (RO/RW)

PCI CFG 1	D15	D14	D13	D12	D11	D10	D10 D9	
	R_PERR	S_SERR	SM_	RT_	ST_	DEVSEL_TMG		S_PERR
Offset 06h			ABORT	ABORT	ABORT			
POR Value	0	0	0	0	0	0	1	0
	D7	D6	D5	D4	D3	D2	D1	D0
	F_	UDF	MHz66	R	R	R	R	R
	BK2BK							
POR Value	1	0	0	0	0	0	0	0

SAA7780

Bit	Name	R/W	Function
15	R_PERR	RC	Received Parity Error: When set to 1, this bit indicates that the SAA7780, function 1 has detected a PCI bus parity error at least once since this bit was last reset.
14	S_SERR	RC	Signalled System Error: When set to 1, this bit indicates that the SAA7780, function 1 has reported a system error on the SERR# signal at least once since this bit was last reset.
13	SM_ABORT	RO	Signalled Master Abort: The SAA7780, function 1, does not act as a master.
12	RT_ABORT	RO	Received Target Abort: The SAA7780, function 1 does not act as a master.
11	ST_ABORT	RC	Signalled Target Abort: When set to 1, this bit indicates that the SAA7780, function 1 has signalled a target abort at least once since this bit was last reset.
10:9	DEVSEL_TM G	RO	DEVSEL Timing: This field indicates the timing of the DEVSEL output (when a PCI master is accessing a SAA7780, function 1 resource). It always returns 01 (Bin). 00 = Fast 01 = Medium (Default Timing) 10 = Slow
8	S_PERR	RO	Signalled Parity Error: The SAA7780, function 1, does not act as a bus master.
7	F_BK2BK	RO	Always returns 1 to indicate support of fast back to back cycles when the SAA7780, function 1 is the target.
6	UDF	RO	User Definable Features. Always returns 0.
5	MHz66	RO	66 MHz Capable. Always returns 0.
4:0	R	RO	Reserved. These bits always return zero.

Note: An RC indicates that this bit can be reset to 0 by writing a 1. Writing a zero leaves this bit unchanged.

Revision ID Register - REVISION (RO)

PCI CFG 1	D7	D6	D5	D4	D3	D2	D1	D0
Offset 08h	REVISION_ID[7:0]							
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	REVISION_ID	RO	The current revision ID for the SAA7780 joystick.

SAA7780

Class Code Register - CLASS (RO)

	0	()						
PCI CFG 1	D23	D22	D21	D20	D19	D18	D17	D16
Offset 09h			·	BASE_CI	ASS[7:0]			
POR Value	0	0	0	0	1	0	0	1
			BASE_CLASS[7:0]					
	D15	D14	D13	D12	D11	D10	D9	D8
				SUB_CL	ASS[7:0]			
POR Value	1	0	0	0	0	0	0	0
	D7	D6	D5	D4	D3	D2	D1	D0
				PGM_IF	ACE[7:0]			
POR Value	0	0	0	0	0	0	0	0
	1	1	1	1			1	I

Bit	Name	R/W	Function
23:16	BASE_CLASS	RO	The base class of 09h describes an input device.
15:8	SUB_CLASS	RO	The sub class of 80h describes a "other" input controller.
7:0	PGM_IFACE	RO	Device generic function identification.

CACHELINE Size Register - CACHELINE (RO)

PCI CFG 1	D7	D6	D5	D4	D3	D2	D1	D0
Offset 0Ch				CACHEL	_INE[7:0]			
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	CACHELINE	RO	Reserved for cache line size indicator.

Master Latency Timer Register - LATIME (RW)

PCI CFG 1	D7	D6	D6 D5 D4 D3 D2 D1 D2 LATIME[7:0] 0	D0				
Offset 0Dh				LATIM	IE[7:0]			
POR Value	0	0	0	0	0	0	0	0

SAA7780

Bit	Name	R/W	Function
7:0	LATIME	RO	The primary bus latency timer specifies the number of primary clocks that the primary master may consume. It is set to zero since the joystick is a target only.

Header Type Register - HEADER (RO)

PCI CFG 1	D7	D6	D5	D4	D3	D2	D1	D0	
	MULTI_		HEADER[6:0]						
Offset 0Eh	FN								
POR Value	1	0	0	0	0	0	0	0	

Bit	Name	R/W	Function
7	MULTI_FN	RO	For the SAA7780, function 1, this bit has no meaning.
6:0	HEADER	RO	Header Type. A 00h indicates this device is not a PCI-to-PCI bridge.

BIST Register - BIST (RO)

PCI CFG 1	D7	D6	D5	D4	D3	D2	D1	D0
Offset 0Fh	BIST	START	R	R		COD	E[3:0]	
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7	BIST	RO	BIST capable. BIST is not supported in the SAA7780, function 1 at this revision.
6	START	RO	If BIST capable, this bit will start the BIST. Writing a 1 will start the test and the BIST should write this bit to a zero when complete. Software should fail the device if the BIST is not complete after 2 seconds.
5:4	R	RO	Reserved. These bits always return zero.
3:0	CODE	RO	Completion Code. A value of zero means the device has passed its test. Non-zero values means the device has failed using device specific failure codes.

SAA7780 CFG Space 1 Legacy Base Address Registers

The SAA7780, contains one legacy I/O base registers in configuration space 1. The joystick is the sole legacy I/O base address register and is documented here.

SAA7780

PCI CFG 1	D31	D30	D29	D28	D27	D26	D25	D24			
Offset 10h	GMBASE[31:24]										
POR Value	0	0	0	0	0	0	0	0			
	D23	D22	D21	D20	D19	D18	D17	D16			
				GMBAS	E[23:16]						
POR Value	0	0	0	0	0	0	0	0			
	D15	D14	D13	D12	D11	D10	D9	D8			
				GMBAS	SE[15:8]						
POR Value	0	0	0	0	0	0	0	0			
	D7	D6	D5	D4	D3	D2	D1	D0			
		(GMBASE[7:3	5]		R	R	IO			
POR Value	0	0	0	0	0	0	0	1			

Bit	Name	R/W	Function
31:3	GMBASE	RW	Game port programmable base address. The address should be on a 8 byte boundary. For reference, the game port legacy base address is 201h.
2:1	R	RO	Reserved. These bits are reserved and always return zeros for plug and play.
0	Ю	RO	I/O flag. This read only bit indicates that this is an I/O range.

Subsystem Vendor ID - SUBVENID (RO)

PCI CFG 1	D15	D14	D13	D12	D11	D10	D9	D8
Offset 2Ch				SUBVEN	_ID[15:8]			
POR Value	0	0	0	1	0	0	0	0
	D7	D6	D5	D4	D3	D2	D1	D0
				SUBVEN	N_ID[7:0]			
POR Value	0	0	0	0	0	1	0	0

SAA7780

Bit	Name	R/W	Function
15:0	SUBVEN_ID	RO	Subsystem Vendor ID. The Subsystem Vendor ID register allows the manufacturer to uniquely identify their board since more than one board OEM may use the SAA7780 chip. The Subsystem Vendor ID register is loaded by an external EEPROM via the Serial Configuration Port after reset and before any access to the PCI configuration header. The PCI target logic should force a retry if the Subsystem Vendor ID register has not completed loading. The Subsystem Vendor ID is read only to the PCI interface. If no external EEPROM is present, then the default Subsystem Vendor ID is 1004h, that of Philips Semiconductors (VLSI Technology).

Subsystem ID - SUBSYSID (RO)

PCI CFG 1	D15	D14	D13	D12	D11	D10	D9	D8
Offset 2Eh				SUBSYS	_ID[15:8]			
POR Value	0	0	0	0	0	0	1	1
	D7	D6	D5	D4	D3	D2	D1	D0
				SUBSYS	6_ID[7:0]			
POR Value	0	0	0	0	0	1	0	1

Bit	Name	R/W	Function
15:0	SUBSYS_ID	RO	Subsystem ID. The Subsystem ID register allows the manufacturer to uniquely identify their board since more than one board OEM may use the SAA7780 chip. The Subsystem ID register is loaded by an external EEPROM via the Serial Configuration Port after reset and before any access to the PCI configuration header. The PCI target logic should force a retry if the Subsystem ID register has not completed loading. The Subsystem ID is read only to the PCI interface. If no external EEPROM is present, then the default Subsystem ID is 0305h, identical to the SAA7780 function 1 Device ID.

Interrupt Line Register - INTLINE (RO)

PCI CFG 1	D7	D6	D5	D4	D3	D2	D1	D0
Offset 3Ch	INTLINE[7:0]							
POR Value	0	0	0	0	0	0	0	0

SAA7780

Bit	Name	R/W	Function
7:0	INTLINE	RO	Interrupt Line. The Interrupt Line register is an eight bit register used to communicate interrupt line routing information. The value in this register tells which input of the system interrupt controller(s) the SAA7780 Device's interrupt pin is connected to. It is set to 00h to use function 0's interrupt line. There is no legacy interrupt support for function 1.

Interrupt PIN Register - INTPIN (RO)

PCI CFG 1	D7	D6	D5	D4	D3	D2	D1	D0
Offset 3Dh	INTPIN[7:0]							
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	INTPIN	RO	Interrupt Pin. The interrupt pin register tells which interrupt the SAA7780 device uses. The read only value of 00h implies that the SAA7780 device shares the INT A interrupt pin with function 0. There is no legacy interrupt support for function 1.

MIN_GNT Register - MINGNT (RO)

PCI CFG 1	D7	D6	D5	D4	D3	D2	D1	D0
Offset 3Eh	h MINGNT[7:0]							
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	MINGNT	RO	Minimum grant specifies how long of a burst period the device needs assuming a clock speed of 33MHz. Since the SAA7780, function 1, is a target only, this register is read only and set to zero.

MAX_LAT Register - MAXLAT (RO)

PCI CFG 1	D7	D6	D5	D4	D3	D2	D1	D0
Offset 3Fh				MAXL	AT[7:0]			
POR Value	0	0	0	0	0	0	0	0

SAA7780

Bit	Name	R/W	Function
7:0	MAXLAT	RO	Maximum latency specifies how often a device needs to gain access to the PCI bus. The SAA7780, function 1, is a target only, this register is read only and set to zero.

PCI Configuration Space 2

The following table is a summary of all the PCI configuration space registers. The registers that are block-mates with the PCI interface (offset 00h - 3Ch) will be detailed following this table. The remainder of the registers will be detailed with the blocks they control. This register space is for the 16650 UART.

PCI Configuration Space 2 Register Map

Byte 3	Byte 2	Byte 1	Byte 0	Offset
C	evice ID	Ven	dor ID	00h
	Status	Con	mand	04h
	Class Code	·	Revision ID	08h
BIST	Header Type	Master Latency Timer	Cache Line Size	0Ch
	UA	RTBASE		10-13h
	Re	eserved		14-2B
Sul	osystem ID	Subsyster	2Ch	
	Re	eserved		30-3Bł
Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line	3Ch
Reserved	Reserved	Reserved	UARTCFG0	40h
Reserved	Reserved	Reserved	SFCR	44h
	Re	eserved		48-FF

Vendor ID Register - VENDOR_ID (RO)

PCI CFG 2	D15	D14	D13	D12	D11	D10	D9	D8		
Offset 00h		VENDOR_ID[15:8]								
POR Value	0	0	0	1	0	0	0	0		
	D7	D6	D5	D4	D3	D2	D1	D0		
				VENDOF	R_ID[7:0]					
POR Value	0	0	0	0	0	1	0	0		

Bit	Name	R/W	Function
15:0	VENDOR_ID	RO	The PCI Vendor ID for Philips Semiconductors (VLSI Technology) is 1004h.

SAA7780

Device ID Register - DEVICE_ID (RO)

PCI CFG 2	D15	D14	D13	D12	D11	D10	D9	D8		
Offset 02h		DEVICE_ID[15:8]								
POR Value	0	0	0	0	0	0	1	1		
	D7	D6	D5	D4	D3	D2	D1	D0		
				DEVICE	_ID[7:0]					
POR Value	0	0	0	0	0	1	1	0		

Bit	Name	R/W	Function
15:0	DEVICE_ID	RO	The Device ID for the SAA7780, function 2 is 0306h.

Command Register - COMMAND (RO/RW)

PCI CFG 2	D15	D14	D13	D12	D11	D10	D9	D8
Offset 04h	R	R	R	R	R	R	FBACK_ ENB	SERR_R ESP
POR Value	0	0	0	0	0	0	0	0
	D7	D6	D5	D4	D3	D2	D1	D0
	STEP-	PERR_	SNOOP_	MEM_	SPEC_	MAST_	MEM_	IO_
	PING	RESP	ENB	INV_EN	CNTL	CNTL	CNTL	CNTL
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
15:10	R	RO	Reserved. These bits always return zero.
9	FBACK_ENB	RO	Fast Back-to-Back Enable: the SAA7780, function 2 does not support fast back to back master cycles therefore this bit always returns a zero.
8	SERR_RESP	RW	System Error Response: When set to 1, the SAA7780, function 2 responds to detected PCI bus address parity errors by asserting SERR#. When 0, the SAA7780 ignores these errors.
7	STEPPING	RO	Address / Data Stepping: Always returns 0.
6	PERR_RESP	RW	Parity Error Response: When set to 1, the SAA7780, function 2 responds to detected PCI bus data parity errors by asserting PERR#. When 0, the SAA7780 ignores PCI bus data parity errors.
5	SNOOP_ENB	RO	VGA Snoop Enable. The SAA7780, function 2 does not support VGA snoop enable, therefor this bit always returns a zero.

SAA7780

Bit	Name	R/W	Function
4	MEM_INV_EN	RO	Memory Write and Invalidate Enable: Always returns 0.
3	SPEC_CNTL	RO	Special Cycle Control: Controls the devices ability to respond to Special Cycle Operations. A value of 0 causes the SAA7780, function 2 to ignore all Special Cycles.
2	MAST_CNTL	RO	Master Control: The SAA7780, function 2 does not have any master functions.
1	MEM_CNTL	RO	Memory Response Control: The SAA7780, function 2 does not support target memory cycles therefore this bit always returns a zero.
0	IO_CNTL	RW	I/O Response Control: Controls the SAA7780, function 2's response to I/O space. A value of 0 disables the device response. A value of 1 allows the device to respond to I/O space accesses.

Status Register - STATUS (RO/RW)

PCI CFG 2	D15	D14	D13	D12	D11	D10	D9	D8
	R_PERR	S_SERR	SM_	RT_	ST_	DEVSE	L_TMG	S_PERR
Offset 06h			ABORT	ABORT	ABORT			
POR Value	0	0	0	0	0	0	1	0
	D7	D6	D5	D4	D3	D2	D1	D0
	F_	UDF	MHz66	R	R	R	R	R
	BK2BK							
POR Value	1	0	0	0	0	0	0	0

Bit	Name	R/W	Function
15	R_PERR	RC	Received Parity Error: When set to 1, this bit indicates that the SAA7780, function 2 has detected a PCI bus parity error at least once since this bit was last reset.
14	S_SERR	RC	Signalled System Error: When set to 1, this bit indicates that the SAA7780, function 2 has reported a system error on the SERR# signal at least once since this bit was last reset.
13	SM_ABORT	RO	Signalled Master Abort: The SAA7780, function 2, does not act as a master.
12	RT_ABORT	RO	Received Target Abort: The SAA7780, function 2 does not act as a master.
11	ST_ABORT	RC	Signalled Target Abort: When set to 1, this bit indicates that the SAA7780, function 2 has signalled a target abort at least once since this bit was last reset.

SAA7780

Bit	Name	R/W	Function
10:9	DEVSEL_TM G	RO	DEVSEL Timing: This field indicates the timing of the DEVSEL output (when a PCI master is accessing a SAA7780 resource). It always returns 01 (Bin).
			00 = Fast 01 = Medium (Default Timing) 10 = Slow
8	S_PERR	RO	Signalled Parity Error: The SAA7780, function 2, does not act as a bus master.
7	F_BK2BK	RO	Always returns 1 to indicate support of fast back to back cycles when the SAA7780, function 2 is the target.
6	UDF	RO	User Definable Features. Always returns 0.
5	MHz66	RO	66 MHz Capable. Always returns 0.
4:0	R	RO	Reserved. These bits always return zero.

Note: An RC indicates that this bit can be reset to 0 by writing a 1. Writing a zero leaves this bit unchanged.

Revision ID Register - REVISION (RO)

PCI CFG 2	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Offset 08h				REVISIO	N_ID[7:0]					
POR Value	0	0 0 0 0 0 0 0 0								

Bit	Name	R/W	Function
7:0	REVISION_ID	RO	The current revision ID for the SAA7780, function 2 joystick.

Class Code Register - CLASS (RO)

PCI CFG 2	D23	D22	D21	D20	D19	D18	D17	D16			
Offset 09h	BASE_CLASS[7:0]										
POR Value	0	0	0	0	0	1	1	1			
	D15	D14	D13	D12	D11	D10	D9	D8			
				SUB_CL	ASS[7:0]						
POR Value	0	0	0	0	0	0	0	0			
	D7	D6	D5	D4	D3	D2	D1	D0			
				PGM_IF	ACE[7:0]						
POR Value	0	0	0	0	0	0	1	0			

SAA7780

Bit	Name	R/W	Function
23:16	BASE_CLASS	RO	The base class of 07h describes simple communication devices.
15:8	SUB_CLASS	RO	The sub class of 00h describes serial controllers.
7:0	PGM_IFACE	RO	The interface of 02h details a 16550 compatible serial controller.

CACHELINE Size Register - CACHELINE (RO)

PCI CFG 2	D7 D6 D5 D4 D3 D2 D1 D0								
Offset 0Ch				CACHEL	_INE[7:0]				
POR Value	0	0 0 0 0 0 0 0 0							

Bit	Name	R/W	Function
7:0	CACHELINE	RO	Reserved for cache line size indicator.

Master Latency Timer Register - LATIME (RW)

PCI CFG 2	D7	D7 D6 D5 D4 D3 D2 D1 D0								
Offset 0Dh				LATIM	1E[7:0]					
POR Value	0	0 0 0 0 0 0 0 0								

Bit	Name	R/W	Function
7:0	LATIME	RO	The primary bus latency timer specifies the number of primary clocks that the primary master may consume. It is set to zero since the 16650 UART is a target only.

Header Type Register - HEADER (RO)

PCI CFG 2	D7	D6	D5	D4	D3	D2	D1	D0
	MULTI_		HEADER[6:0]					
Offset 0Eh	FN							
POR Value	1	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7	MULTI_FN	RO	For the SAA7780, function 2, this bit has no meaning.
6:0	HEADER	RO	Header Type. A 00h indicates this device is not a PCI-to-PCI bridge.

SAA7780

BIST Register - BIST (RO)

PCI CFG 2	D7	D6	D5	D4	D3	D3 D2 D1 D0		
Offset 0Fh	BIST	START	R	R		CODE[3:0]		
POR Value	0	0	0	0	0	0 0 0 0		0

Bit	Name	R/W	Function
7	BIST	RO	BIST capable. BIST is not supported in the SAA7780, function 2 at this revision.
6	START	RO	If BIST capable, this bit will start the BIST. Writing a 1 will start the test and the BIST should write this bit to a zero when complete. Software should fail the device if the BIST is not complete after 2 seconds.
5:4	R	RO	Reserved. These bits always return zero.
3:0	CODE	RO	Completion Code. A value of zero means the device has passed its test. Non-zero values means the device has failed using device specific failure codes.

SAA7780 CFG Space 1 Legacy Base Address Registers

The SAA7780, contains one legacy I/O base registers in configuration space 1. The joystick is the sole legacy I/O base address register and is documented here.

16650 UART Base Address- UARTBASE (RW/RO)

PCI CFG 2	D31	D30	D29	D28	D27	D26	D25	D24	
Offset 10h	h UARTBASE[31:24]								
POR Value	0	0	0	0	0	0	0	0	
	D23	D22	D21	D20	D19	D18	D17	D16	
	UARTBASE[23:16]								
POR Value	0	0	0	0	0	0	0	0	
	D15	D14	D13	D12	D11	D10	D9	D8	
				UARTBA	SE[15:8]				
POR Value	0	0	0	0	0	0	0	0	
	D7	D6	D5	D4	D3	D2	D1	D0	
	D7		D5 ARTBASE[7		D3	D2 R	D1 R	D0 IO	

SAA7780

Bit	Name	R/W	Function
31:3	UARTBAS E	RW	16650 UART base address. The address should be on a 8 byte boundary. For reference, 550 compatible UART legacy base addresses are 3E8h, 338h, 2E8h, 220h, 238h, 2E0h, 228h, 3F8h, and 2F8h.
2:1	R	RO	Reserved. These bits are reserved and always return zeros for plug and play.
0	10	RO	I/O flag. This read only bit indicates that this is an I/O range.

Subsystem Vendor ID - SUBVENID (RO)

PCI CFG 2	D15	D14	D13	D12	D11	D10	D9	D8			
Offset 2Ch		SUBVEN_ID[15:8]									
POR Value	0	0	0	1	0	0	0	0			
	D7	D6	D5	D4	D3	D2	D1	D0			
				SUBVEN	1_ID[7:0]						
POR Value	0	0	0	0	0	1	0	0			

Bit	Name	R/W	Function
15:0	SUBVEN_ID	RO	Subsystem Vendor ID. The Subsystem Vendor ID register allows the manufacturer to uniquely identify their board since more than one board OEM may use the SAA7780 chip. The Subsystem Vendor ID register is loaded by an external EEPROM via the Serial Configuration Port after reset and before any access to the PCI configuration header. The PCI target logic should force a retry if the Subsystem Vendor ID register has not completed loading. The Subsystem Vendor ID is read only to the PCI interface. If no external EEPROM is present, then the default Subsystem Vendor ID is 1004h, that of Philips Semiconductors (VLSI Technology).

Subsystem ID - SUBSYSID (RO)

PCI CFG 2	D15	D14	D13	D12	D11	D10	D9	D8			
Offset 2Eh		SUBSYS_ID[15:8]									
POR Value	0	0	0	0	0	0	1	1			
	D7	D6	D5	D4	D3	D2	D1	D0			
				SUBSYS	6_ID[7:0]						
POR Value	0	0	0	0	0	1	1	0			

SAA7780

Bit	Name	R/W	Function
15:0	SUBSYS_ID	RO	Subsystem ID. The Subsystem ID register allows the manufacturer to uniquely identify their board since more than one board OEM may use the SAA7780 chip. The Subsystem ID register is loaded by an external EEPROM via the Serial Configuration Port after reset and before any access to the PCI configuration header. The PCI target logic should force a retry if the Subsystem ID register has not completed loading. The Subsystem ID is read only to the PCI interface. If no external EEPROM is present, then the default Subsystem ID is 0306h, identical to the SAA7780 function 2 Device ID.

Interrupt Line Register - INTLINE (RO)

PCI CFG 2	D7	D6	D5	D4	D3	D2	D1	D0
Offset 3Ch				INTLIN	NE[7:0]			
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	INTLINE	RO	Interrupt Line. The Interrupt Line register is an eight bit register used to communicate interrupt line routing information. The value in this register tells which input of the system interrupt controller(s) the SAA7780 Device's interrupt pin is connected to. It is set to 00h to use function 0's interrupt line. There is no legacy interrupt support for function 2.

Interrupt PIN Register - INTPIN (RO)

PCI CFG 2	D7	D6	D5	D4	D3	D2	D1	D0
Offset 3Dh				INTPI	N[7:0]			
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	INTPIN	RO	Interrupt Pin. The interrupt pin register tells which interrupt the SAA7780 device uses. The read only value of 00h implies that the SAA7780 device shares the INT A interrupt pin with function 0. There is no legacy interrupt support for function 2.

MIN_GNT Register - MINGNT (RO)

PCI CFG 2	D7	D6	D5	D4	D3	D2	D1	D0
Offset 3Eh				MING	NT[7:0]			

SAA7780

POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	MINGNT	RO	Minimum grant specifies how long of a burst period the device needs assuming a clock speed of 33MHz. Since the SAA7780, function 2, is a target only, this register is read only and set to zero.

MAX_LAT Register - MAXLAT (RO)

PCI CFG 2	D7	D6	D5	D4	D3	D2	D1	D0
Offset 3Fh				MAXL	AT[7:0]			
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	MAXLAT	RO	Maximum latency specifies how often a device needs to gain access to the PCI bus. The SAA7780, function 2, is a target only, this register is read only and set to zero.

Multimedia Timer

Overview

The Multimedia Timer is a 20 bit, 1 microsecond resolution timer that is used for game audio/video synchronization. The timer subsystem consists of the actual 20-bit timer and I/O space registers to report the status and count.

In a hypothetical operation, the multimedia timer is started at the end of a set of audio commands. The timer then starts counting while the game control will play its video frames. If the system interrupts the video while the audio is playing, the game application can read to multimedia timer to see which video frame should be displayed and make corrections as necessary. The counter value must be read in three PS bus cycles.

The 1-uS resolution timer will get its time base from dividing down the OSC clock. An interrupt and flag is provided to determine if the timer count has rolled over. The timer can either start from zero or be preloaded with a start value. Only 8 bit accesses are allowed to this device.

SAA7780

Multimedia Timer Register Definition

There are five registers that control the multimedia timer. These registers are the timer control register, timer status, and timer count registers. The timer control register resides in PCI configuration space. The remainder of the timer registers are in I/O space.

Multimedia Timer PCI Configuration Registers

PCI CFG 0	D7	D6	D5	D4	D3	D2	D1	D0
Offset 64h	R	R	R	R	R	FSTCLK	TMRRST	R
POR Value	0	0	0	0	0	0	0	0

Multimedia Timer Configuration Register 0 - TIMRCFG0 (RW/RO)

Bit	Name	R/W	Function
7:3	R	RO	Reserved. These bits return zeros.

SAA7780

Bit	Name	R/W	Function
2	FSTCLK	RW	Fast clock enable. When set, the timer counter will use the PCI clock instead of the 1 micro second timer clock. This function will reduce the simulation and test time of the timer.
1	TMRRST	RW	Timer reset. When set, this bit holds the multimedia timer in reset. The multimedia timer is also reset by the system reset.
0	R	RO	Reserved. This bit returns a zero.

Multimedia Timer I/O Space Registers

Multimedia Timer Status Register - TMSTAT (RW/RO)

SONGBASE	D7	D6	D5	D4	D3	D2	D1	D0
Offset 00h	R	R	R	R	TPLD	TRE- SUME	TMINT	TINTEN
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:4	R	RO	Reserved. These bits return zeros.
3	TPLD	RW	Timer preload indicator. When set, this indicates the timer will start counting from the values set in the timer count registers. When cleared, the timer will start counting from zero or its last value when stopped
2	TRESUME	RW	Timer resume. When set, the timer will resume counting at the next 1uS clock edge. When cleared, the timer will stop counting.
1	TMINT	RC	Timer interrupt. When asserted, the multimedia timer has flagged an interrupt when the timer has counted to zero. The timer will continue to count. Writing a one to this bit will clear the interrupt.
0	TINTEN	RW	Timer interrupt enable. When set, the multimedia timer will generate an interrupt.

Multimedia Timer Count Registers

There are three registers required to hold the timer value. These three registers can be read at different cycles, It is recommended that the least significant byte be read first for the most accuracy.

Multimedia Timer Count Register 2 - TMCOUNT2 (RW/RO)

SONGBASE	D7	D6	D5	D4	D3	D2	D1	D0
Offset 03h	R	R	R	R		TMCOU	NT2[7:0]	
POR Value	0	0	0	0	0	0	0	0

SAA7780

Bit	Name	R/W	Function
7:4	R	RO	Reserved. These bits return zeros.
3:0	TMCOUNT2	RW	High nibble timer count. This nibble is the most significant digits of the timer value.

Multimedia Timer Count Register 1 - TMCOUNT1 (RW)

SONGBASE	D7	D6	D5	D4	D3	D2	D1	D0
Offset 02h				TMCOU	NT1[7:0]			
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	TMCOUNT1	RW	Middle byte timer count. This byte is the middle significant digits of the timer value.

Multimedia Timer Count Register 0 - TMCOUNT0 (RW)

SONGBASE	D7	D7 D6 D5 D4 D3 D2 D1 D0						
Offset 01h		TMCOUNT0[7:0]						
POR Value	0	0	0	0	0	0	0	0

Bit	Name	R/W	Function
7:0	TMCOUNT0	RW	Low byte timer count. This byte is the least significant digits of the timer value.

SAA7780

Absolute Maximum Ratings

Absolute maximum ratings are those values which damage to the device may occur. Functional operation under these conditions or at any other condition beyond those indicated in the operational sections of this specification is not implied.¹

Power Supply Operating Requirements

SAA7780 Minimum VDD Operating Requirement

IMPORTANT: The SAA7780 requires VDD >= 3.0V. If VDD < 3.0V, excessive damage from hot electrons might occur.

SAA7780 Power Supply Sequencing Requirement

0 <= (NWELL - VDD) < 4.0V

IMPORTANT: The 5.0V (NWELL) supply must power up ahead of the 3.3V (VDD, not VDDIC) supply. Likewise, the 3.0V supply must power down before the 5.0V supply. More specifically, the voltage level of the 5.0V supply must always exceed, or at least equal, the voltage level of the 3.3V supply during power up or down, but not by more than 4.0V. This is due the biasing of the P+ source junctions and that some pad gate oxides see the (NWELL-VDD) voltage level. If this level exceeds 4.0V or becomes less than 0V, damage will occur.

Device Maximum Ratings

The following table notes both the operating and non-operating conditions for both the 3.0V and 5.0V tolerant pads. Remember that the ranges imply an operating range unless otherwise noted. The 5.0V tolerant pads signal at 3.0V levels and are CMOS and TTL compatible.

Symbol	Maximum Ratings
T _A	0°C to +70°C
Τ _S	-65°C to +150°C
VDD, VDDIC	-0.5V to 4.6V *
VDDIC	-0.5V to 3.63V *
VDD	3.0V to 3.63V *
NWELL	-0.5V to 5.5V *
NWELL-VDD	$0 \le (NWELL-VDD) < 4.0V$
V _{I3}	-0.5V to VDD+0.5V (≤ 4.6V max)+
V _{O3}	-0.5V to VDD+0.5V (≤ 4.6V max)+
V _{I5}	-0.5V to 5.5V (≤ 6.0V max)+
V _{O5}	-0.5V to VDD+0.5V (≤ 4.6V max)+
I _I	±20mA
Ι _Ο	± 20mA
	T _A T _S VDD, VDDIC VDD VDD NWELL NWELL-VDD V _{I3} V _{O3} V _{I5} V _{O5} I ₁

Device Maximum Ratings

1. Adapted from the JEDEC standards JESD8-A and JESD36.

SAA7780

Condition	Symbol	Maximum Ratings
Power Dissipation	P _D	500mW

*Refer to Section 3.1 to ensure proper power supply sequencing as well as voltage ranges. +Items in parenthesis are non-operating conditions.

DC Characteristics

All parameters apply across the recommended operating temperature range unless noted.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units	Notes
T _A	Ambient Temperature	0	+70	°C	
VDD	Ring Power Supply	3.15	3.63	V	VSS = 0V typical
NWELL	5V Tolerant Supply	4.75	5.50	V	See IMPORTANT notes on previous page.
V _{IN}	Input Signal Voltage	0	5.50	V	For 5.0V tolerant inputs only.
V _{IN}	Input Signal Voltage	0	VDD+.3	V	For 3.3V signal inputs only.
V _{OUT}	Output Voltage Active	0	VDD	V	

DC Characteristics of CMOS and TTL Inputs

Symbol	Parameter	Min	Max	Units	Test Condition (Note 1)
VIH	High-Level Input Voltage	2.0	NWELL	V	$V_{OUT} \ge V_{OH}$ (min) or
V _{IL}	Low-Level Input Voltage	-0.3	0.8	V	V _{OUT} ≤ V _{OL} (max)
I _{IN}	Input Current		± 5	uA	$V_{IN} = 0V \text{ or } V_{IN} = VDD \text{ (Note 2)}$

Note 1: For conditions shown as 'min' or 'max', use the appropriate value shown in DC Characteristics of TTL/CMOS Outputs.

Note 2: Excluding common Input/Output terminals.

DC Characteristics of Joystick Axis Inputs

Symbol	Parameter	Min	Max	Units	Test Condition (Note 1)
V _{IH}	High-Level Input Voltage	2.8	NWELL	V	$V_{OUT} \ge V_{OH}$ (min) or
V _{IL}	Low-Level Input Voltage	-0.3	0.4	V	$V_{OUT} \le V_{OL}$ (max)

DC Characteristics of TTL Outputs

Symbol	Parameter	Min	Max	Units	Test Condition
V _{OH}	V _{OH} High-Level Output Voltage			V	VDD = min, I _{OH} = -2mA

SAA7780

Symbol	Parameter	Min	Max	Units	Test Condition
V _{OL}	Low-Level Output Voltage		0.4	V	VDD = min, I _{OL} = 2mA

DC Characteristics of CMOS Outputs

Symbol	Parameter	Min	Max	Units	Test Condition
V _{OH}	High-Level Output Voltage	VDD-0.2		V	VDD = min, I _{OH} = -100uA
V _{OL}	Low-Level Output Voltage		0.2	V	VDD = min, I _{OL} = 100uA

DC Current Drive of Non-Standard Outputs¹

Symbol	Parameter	Min	Max	Units	Test Condition
I _{OL}	MIDI and Memory Interface Output Sink	8		mA	V _{OUT} = 0.4V
I _{OH}	MIDI and Memory Interface Output Source	12		mA	V _{OUT} = 2.4V
I _{OL}	UART, GPIO, Music DAC, and Serial Configuration Output Sink	4		mA	V _{OUT} = 0.4V
I _{OH}	UART, GPIO, Music DAC, and Serial Configuration Output Source	7		mA	V _{OUT} = 2.4V

^{1.} Refer to the PCI LOCAL BUS SPECIFICATION, revision 2.1, June 1995 for DC current capabilities on the PCI bus. Refer to the Audio Codec'97 Specification, revision 1.02, for DC current capabilities on the AC-Link interface.

SAA7780

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1999 All rights reserved. Printed in U.S.A.

Date of release: 09-99

Document order number:

9397 750 06456

Let's make things better.

