SEPTEMBER 1987 - REVISED NOVEMBER 1989

	SEPTEMBER 1987 - REVISED NOV
• 65,536 × 4 Organization	JD PACKAGE
 Single 5-V Supply (10% Tolerance) 	(TOP VIEW)
JEDEC Standardized Pinout	
 Pinout Identical to SMJ4416 (16K × 4 Dynamic RAM) 	$DQ2 \boxed{3} 16 \boxed{CAS}$ $W \boxed{4} 15 \boxed{DQ3}$
 Performance Ranges: ACCESS ACCESS READ READ- TIME TIME OR MODIFY- ROW COLUMN WRITE WRITE ADDRESS ADDRESS CYCLE CYCLE 	RAS 5 14 0 A6 6 13 A1 A5 7 12 A2 A4 8 11 A3 VDD 9 10 A7
(MAX) (MAX) (MIN) (MIN) SMJ4464 12 120 ns 60 ns 230 ns 320 ns SMJ4464·15 150 ns 75 ns 260 ns 345 ns SMJ4464·20 200 ns 100 ns 330 ns 435 ns	FV PACKAGE (TOP VIEW) C S S C O I U U S
Long Refresh Period 4 ms (Max)	
 Low Refresh Overhead Time As Low As 1.3% of Total Refresh Period 	DQ2]] 3 16 [] CAS W]] 4 15 [] DQ3
On-Chip Substrate Bias Generator	RAS 5 14 A0 A6 6 13 A1
 All Inputs, Outputs, and Clocks Fully TTL Compatible 	A6 06 130 A1 A5 7 120 A2 <u>8 9 10 11</u>
3-State Unlatched Output	A A A A A A A A A A A A A A A A A A A
 Early Write or G to Control Output Buffer Impedance 	NOTE: Prn 1 indicator on back.
Page-Mode Operation for Faster Access	PIN NOMENCLATURE
 Power Dissipation As Low As: Operating 275 mW (Typ) Standby 12.5 mW (Typ) 	A0 A7 Address Inputs CAS Column-Addreess Strobe DQ1 DQ4 Data In Data Out G Output Enable
RAS-Only Refresh Mode	RAS Row Address Strobe
CAS-Before-RAS Refresh Mode	V _{DD} 5 V Supply V _{SS} Ground

description

The SMJ4464 is a high-speed, 262,144-bit dynamic random-access memory, organized as 65,536 words of four bits each. It employs state-of-the-art SMOS (scaled MOS) N-channel double-level polysilicon/polycide gate technology for very high performance combined with low cost and improved reliability.

 \overline{W}

This device features maximum RAS access times of 120 ns, 150 ns, or 200 ns. Typical power dissipation is as low as 275 mW operating and 12.5 mW standby.

New SMOS technology permits operation from a single 5-V supply, reducing system power supply and decoupling requirements, and easing board layout. IDD peaks of 125 mA are typical, and a -0.7-V input voltage undershoot can be tolerated, minimizing system noise considerations.

All inputs and outputs, including clocks, are compatible with Series 54 TTL. All address and data-in lines are latched on-chip to simplify system design. Data out is unlatched to allow greater system flexibility.

Write Enable

The SMJ4464 is offered in 18-pin 300-mil ceramic side-braze dual-in-line and 18-pad leadless ceramic chip carrier packages. It is guaranteed for operation from -55 °C to 110 °C for the S version and from 0 °C to 70 °C for the L version. The dual-in-line package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers).

operation

address (A0 through A7)

Sixteen address bits are required to decode 1 of 65,536 storage locations. Eight row-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (\overline{RAS}). Then the eight column-address bits are set up on pins A0 through A7 and latched onto the chip by the column-address strobe (\overline{CAS}). All addresses must be stable on or before the falling edges of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select, activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle, permitting common I/O operation.

data in (DQ1-DQ4)

Data is written during a write or a read-modify-write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latches. These latches can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed-write or a read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal. In a delayed or read-modify write cycle, \overline{G} must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines.

data out (DQ1-DQ4)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fanout of two Series 54 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until \overline{CAS} is brought low. In a read cycle the output goes active after the access time interval ta(C) that begins with the negative transition of \overline{CAS} as long as ta(R) and ta(G) are satisfied. The output becomes valid after the access time has elapsed and remains valid while \overline{CAS} and \overline{G} are low. \overline{CAS} or \overline{G} going high returns it to a high-impedance state. In a delayed-write or read-modify-write cycle, the output must be put in the high-impedance state prior to applying data to the DQ input. This is accomplished by bringing \overline{G} high prior to applying data, thus satisfying tGHD.

output enable (G)

The \overline{G} input controls the impedance of the output buffers. When \overline{G} is high, the buffers will remain in the high-impedance state. Bringing \overline{G} low during a normal cycle will activate the output buffers, putting them in the low-impedance state. It is necessary for both \overline{RAS} and \overline{CAS} to be brought low for the output buffers to go into the low-impedance state. Once in the low-impedance state they will remain in the low-impedance state until \overline{G} or \overline{CAS} is brought high.

refresh

A refresh operation must be performed at least once every four milliseconds to retain data. This can be achieved by strobing each of the 256 rows (A0-A7). A normal read or write cycle will refresh all bits in each row that is selected. A \overrightarrow{RAS} -only operation can be used by holding \overrightarrow{CAS} at the high (inactive) level, thus conserving power as the output buffer remains in the high-impedance state.

operation (continued)

CAS-before-RAS refresh

The \overline{CAS} -before- \overline{RAS} refresh is utilized by bringing \overline{CAS} low earlier than \overline{RAS} (see parameter t_{CLRL}) and holding it low after \overline{RAS} falls (see parameter t_{RLCHR}). For successive \overline{CAS} -before- \overline{RAS} refresh cycles, \overline{CAS} can remain low while cycling \overline{RAS} . The external address is ignored and the refresh address is generated internally.

page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing random column addresses onto the chip. Thus, the time required to set up and strobe sequential row addresses for the same page is eliminated. The maximum number of columns that can be addressed is determined by $t_{w(RL)}$, the maximum RAS low pulse duration.

power up

To achieve proper device operation, an initial pause of 200 μ s is required after power up, followed by a minimum of eight initialization cycles.

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for the dual-in-line package.

functional block diagram RAS CAS w G TIMING AND CONTROL ROW 32K ARRAY 32K ARRAY DECODE ROW ADDRESS 256 SENSE AMPS 256 SENSE AMPS BUFFERS (8) ROW 32K ARRAY 32K ABRAY DATA DECODE OUT 1/0 REG COLUMN DECODE BUFFFRS A0 (4) A1 DATA ROW 32K ARRAY DQ1-DQ4 32K ARRAY IN A2 COLUMN DECODE REG ADDRESS A3 BUFFERS 256 SENSE AMPS 256 SENSE AMPS Α4 (8) Α5 ROW 32K ARRAY 32K ARRAY A6 DECODE A7

absolute maximum ratings over operating temperature range (unless otherwise noted)[†]

Voltage on any pin including VDD supp	ly (see Note 1)
Short circuit output current	50 mA
Power dissipation	· · · · · · · · · · · · · · · · · · ·
Minimum operating free-air temperature	: S version
	L version
Maximum operating case temperature:	S version
	L version
Storage temperature range	65°C to 150°C

¹Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values in this data sheet are with respect to VSS.

recommended operating conditions

		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{DD} Sup	ply voltage	4.5	5	5.5	4.5	5	5.5	v
V _{SS} Sup	ply voltage		0			0		v
VIH High	-level input voltage	2.4		V _{DD} +0.3	2.4		V _{DD} + 0.3	V
V _{IL} Low	-level input voltage (see Note 2)	- 0.7		0.7	- 0.7		0.7	V
T _A Ope	rating free-air temperature	- 55			0			°C
T _C Ope	rating case temperature			110			70	°C

NOTE 2: The algebraic convention, where the negative (less positive) limit is designated as maximum, is used in this data sheet for logic voltage levels only.

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

				SMJ4464-12				
	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT		
Vон	High-level output voltage	I _{OH} = -5 mA	2.4			V		
VOL	Low-level output voltage	$I_{OL} = 4.2 \text{ mA}$			0.4	V		
4	Input current (leakage)	$V_I = 0 V$ to 5.8 V, $V_{DD} = 5 V$, All outputs open			± 10	μA		
10	Output current (leakage)	$V_0 = 0 V$ to 5.5 V, $V_{DD} = 5 V$, \overline{CAS} high			± 10	μA		
IDD1	Average operating current during read or write cycle	t _C = minimum cycle, All outputs open		65	80	mA		
^I DD2	Standby current	After 1 memory cycle, $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ high, All outputs open		2.5	8	mA		
IDD3	Average refresh current	t _c = minimum cycle, RAS cycling, CAS high, All outputs open		50	60	mA		
IDD4	Average page-mode current	t _{CIP)} = minimum cycle, RAS low, CAS cycling, All outputs open		45	55	mA		

PARAMETER				SMJ4464-15		SI	VJ4464	-20	UNIT
		TEST CONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	МАХ	UNIT
Vон	High-level output voltage	I _{OH} = -5 mA	2.4			2.4			V
VOL	Low-level output voltage	10L = 4.2 mA			0.4			0.4	V
4j	Input current (leakage)	$V_1 = 0 V$ to 5.8 V, $V_{DD} = 5 V$, All outputs open			± 10	1		± 10	μΑ
ю	Output current (leakage)	$V_{O} = 0 V$ to 5.5 V, $V_{DD} = 5 V$, CAS high			± 10			± 10	μA
IDD1	Average operating current during read or write cycle	t _c = minimum cycle, All outputs open		55	70		50	60	mA
IDD2	Standby current	After 1 memory cycle, RAS and CAS high, All outputs open		2.5	8		2.5	8	mA
DD3	Average refresh current	t_{c} = minimum cycle, RAS cycling, CAS high, All outputs open		45	55		40	50	mA
IDD4	Average page-mode current	$t_{C(P)}$ = minimum cycle, RAS low, CAS cycling, All outputs open		40	50		30	40	mA

[†]All typical values are at $T_{\mbox{A}}$ = 25 °C and nominal supply voltages.

capacitance over recommended supply voltage range and operating temperature range, f = 1 MHz[‡]

PARAMETER	SMJ4464		
	MIN TYP [†] MAX	UNIT	
Ci(A) Input capacitance, address inputs	4 6	pF	
Ci(RC) Input capacitance, strobe inputs	6 8	pF	
Ci(W) Input capacitance, write enable input	6 8	pF	
Ci/o Output capacitance	7 8	DF	

 $^{\dagger}All$ typical values are at T_A = 25 °C and nominal supply voltages. $^{\ddagger}V_{CC}$ equal to 5.0 V and the bias on pins under test is 0.0 V

switching characteristics over recommended supply voltage range and operating temperature range

PARAMETER		TEST CONDITIONS §	ALT.	SMJ4		
			SYMBOL	MIN	MAX	UNIT
^t a(C)	Access time from CAS	$t_{RLCL} \ge MAX, C_L = 80 \text{ pF}, I_{OH} = -5 \text{ mA},$ I_OL = 4.2 mA	^t CAC		60	ns
t _{a(R)}	Access time from RAS	$t_{RLCL} = MAX, C_{L} = 80 \text{ pF}, I_{OH} = -5 \text{ mA},$ I_{OL} = 4.2 mA	tRAC		120	пs
t _{a(G)} §	Access time after \overline{G} low	$C_L = 80 \text{ pF}, I_{OH} = -5 \text{ mA}, I_{OL} = 4.2 \text{ mA}$	tGAC		35	ns
tdis(CH)	Output disable time after \overline{CAS} high	$C_L = 80 \text{ pF}, I_{OH} = -5 \text{ mA}, I_{OL} = 4.2 \text{ mA}$	tOFF	0	30	ns
tdis(G)	Output disable time after \overline{G} high	$C_L = 80 \text{ pF}, I_{OH} = -5 \text{ mA}, I_{OL} = 4.2 \text{ mA}$	tGOFF	0	38	ns

switching characteristics over recommended supply voltage range and operating temperature range

PARAMETER		PARAMETER TEST CONDITIONS [§]		ALT. SMJ4464-15		SMJ4464-20			
			SYMBOL	MIN	MAX	MIN	MAX	UNIT	
ta(C)	Access time from CAS	$t_{RLCL} \ge MAX, C_{L} = 80 \text{ pF},$			75			-	
-a(C)		$I_{OH} = -5 \text{ mA}, I_{OL} = 4.2 \text{ mA}$	^t CAC		75		100	ns	
ta(R)	Access time from BAS	$t_{RLCL} = MAX, C_{L} = 80 pF,$							
(R)		$I_{OH} = -5 \text{ mA}, I_{OL} = 4.2 \text{ mA}$	^t RAC		150		200	ns	
t _{a(G)} ¶	Access time after \overline{G} low	$C_{L} = 80 \text{ pF}, I_{OH} = -5 \text{ mA},$							
·a(G) ·	Access time after g low	I _{OL} = 4.2 mA	tGAC		45		55	пs	
taiaronn	Output disable time after CAS high	$C_{L} = 80 \text{ pF}, I_{OH} = -5 \text{ mA},$							
(UH)		I _{OL} = 4.2 mA	tOFF	0	30	0	35	ns	
tdis(G)	Output disable time often C high	$C_L = 80 \text{ pF}, I_{OH} = -5 \text{ mA},$							
-uis(U)	Output disable time after \overline{G} high	l _{OL} = 4:2 mA	tGOFF	0	38	0	38	ns	

§ Figure 1 shows the load circuit; CL values shown are typical for test system used. Ita(C) and ta(R) must be satisfied to guarantee ta(G).

timing requirements	over	recommended	supply	voltage	range	and	operating	temperature	range
---------------------	------	-------------	--------	---------	-------	-----	-----------	-------------	-------

		ALT.	ALT. SMJ4464-12		
		SYMBOL	MIN	MAX	UNIT
t _{c(P)}	Page-mode cycle time [†]	tPC	120		ns
^L c(PM)	Page-mode cycle time (read-modify-write cycle) [†]	^t PCM	205		ns
tc(rd)	Read cycle time [†]	^t RC	230		ns
t _c (W)	Write cycle time [†]	twc	230		ns
t _{c(rdW)}	Read-write/read-modify-write cycle time [†]	^t RWC	320		ns
tw(CH)P	Pulse duration, CAS high (page mode)	tCP	50		ns
tw(CH)	Pulse duration, CAS high (non-page mode)	^t CPN	50		ns
tw(CL)	Pulse duration, CAS low [‡]	^t CAS	60	10,000	ns
tw(RH)	Pulse duration, RAS high	tRP	100		ns
tw(RL)	Pulse duration, RAS low [§]	tRAS	120	10,000	ns
tw(W)	Write pulse duration	tWP	40		ns
t _{su} (CA)	Column-address setup time	^t ASC	0		ns
t _{su} (RA)	Row-address setup time	^t ASR	0		ns
t _{su(D)}	Data setup time	tDS	10		ns
tsu(rd)	Read-command setup time	^t RCS	0		ns
t _{su} (WCL)	Early-write command setup time before CAS low	twcs	0		ns
t _{su} (WCH)	Write-command setup time before CAS high	^t CWL	40		ns
t _{su} (WRH)	Write-command setup time before RAS high	^t RWL	40		ns
th(CLCA)	Column-address hold time after CAS low	*CAH	20		ns
th(RA)	Row-address hold time	^t RAH	15		ns
th(RLCA)	Column-address hold time after RAS low	tAR	80		ns
th(CLD)	Data hold time after CAS low	^t DH	35		ns
th(RLD)	Data hold time after RAS low	^t DHR	95		ns
th(WLD)	Data hold time after W low	tDH	35		ns
th(CHrd)	Read-command hold time after CAS high	tRCH	0		ns
th(RHrd)	Read-command hold time after RAS high	tBBH	10		ns
	Write-command hold time after CAS low	tWCH	35		ns
thiCLW)	Write-command hold time after RAS low	tWCR	95		ns
th(RLW)	Delay time, RAS low to CAS high	^t CHR	25		ns
TRLCHR	Delay time, RAS low to CAS high	tCSH	120		ns
^t RLCH	Delay time, CAS high to RAS low	^t CRP	6		ns
tCHRL	Delay time, RAS high to CAS low	tRCP	0		ns
TRHCL	Delay time, CAS low to RAS high	tree tree tree tree tree tree tree tree	60		ns
^t CLRH	Delay time, CAS low to RAS high Delay time, CAS low to \overline{W} low (read-modify-write cycle only)#		100		ns
^t CLWL		tccp	25		ns
^t CLRL	Delay time, CAS low to RAS low	tCSR	+ 23		+
^t RLCL	Delay time, RAS low to CAS low (maximum value specified only	^t RCD	25	60	ns
	to guarantee access time)		160		ns
^t RLWL	Delay time, RAS low to W low (read-modify-write cycle only)#	tRWD	25		ns
tGHD	Delay time, G high before data applied at DQ	tGDD	20	4	m
t _{rf}	Refresh time interval	^t REF	<u> </u>		<u> </u>

[†] All cycle times assume $t_t = 5$ ns.

[‡] In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time (tw(CL)).

 $\frac{1}{5}$ In a read-modify-write cycle, t_{RLWL} and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time (t_w(RL)). $\frac{1}{5}$ CAS before RAS refresh option only.

 $\#\overline{G}$ must disable the output buffers prior to applying data to the device.

NOTE 3: System transition times (rise and fall) for RAS and CAS are to be a minimum of 3 ns and a maximum of 50 ns.

	equirements over recommended supply voltage re		ope	anny	remb	range	
		ALT.	SMJ	4464-15	SMJ	UNIT	
		SYMBOL	MIN	MAX	MIN	MAX	UNIT
t _C (P)	Page-mode cycle time [†]	tPC	145		190		ns
t _c (PM)	Page-mode cycle time (read-modify-write cycle) [†]	^t PCM	230		295		ns
t _{c(rd)}	Read cycle time [†]	^t RC	260		330		ns
t _c (W)	Write cycle time [†]	twc	260		330		ns
tc(rdW)	Read-write/read-modify-write cycle time [†]	^t RWC	345		435		пŝ
tw(CH)P	Pulse duration, CAS high (page mode)	^t CP	60		80		ns
tw(CH)	Pulse duration, CAS high (non-page mode)	[†] CPN	60		80		ns
tw(CL)	Pulse duration, CAS low [‡]	tCAS	75	10,000	100	10,000	ns
tw(RH)	Pulse duration, RAS high	tRP	100		120		ns
tw(RL)	Pulse duration, RAS low §	tRAS	150	10.000	200	10,000	ns
tw(W)	Write pulse duration	twp	45		55		ns
t _{su(CA)}	Column-address setup time	tASC	0		0		ns
t _{su(RA)}	Row-address setup time	^t ASR	0		0		ns
t _{su(D)}	Data setup time	tDS	10		10		ns
tsu(rd)	Read-command setup time	^t RCS	0		0		ns
tsu(WCL)	Early-write command setup time before CAS low	twcs	0		0		ns
tsu(WCH)	Write-command setup time before CAS high	^t CWL	45		60		ns_
t _{su(WRH)}	Write-command setup time before RAS high	^t RWL	45		60		ns
th(CLCA)	Column-address hold time after CAS low	^t CAH	25		45		ns
th(RA)	Row-address hold time	^t RAH	15		20		ns
th(RLCA)	Column-address hold time after RAS low	^t AR	100		145		ns
th(CLD)	Data hold time after CAS low	^t DH	45		55		ns
^t h(RLD)	Data hold time after RAS low	^t DHR	120		155		ns
^t h(WLD)	Data hold time after W low	^t DH	45		55		ns
th(CHrd)	Read-command hold time after CAS high	^t RCH	0		0		ns
th(RHrd)	Read-command hold time after RAS high	1RRH	10		15		ns
th(CLW)	Write-command hold time after CAS low	tWCH	45		55		ns
th(RLW)	Write-command hold time after RAS low	tWCR	120		155		ns
TRLCHR	Delay time, RAS low to CAS high	^t CHR	30		35		ns
TRLCH	Delay time, RAS low to CAS high	^t CSH	150		200		ns
^t CHRL	Delay time, CAS high to RAS low	¹ CRP	0		0		ns
^t RHCL	Delay time, RAS high to CAS low	TRCP	10		15		ns
^t CLRH	Delay time, CAS low to RAS high	tRSH	75		100		ns
^t CLWL	Delay time, CAS low to W low (read-modify-write cycle only)#	tCWD	110		140		ns
[†] CLRL	Delay time, CAS low to RAS low		30		35	 	
	Delay time, RAS low to CAS low (maximum value specified only	^t CSR	30		ູ່ວວ		ns
TRLCL	to guarantee access time}	^t RCD	25	75	30	100	ns
RLWL	Delay time, RAS low to W low (read-modify-write cycle only)#	towo	185		240		
	Delay time, G high before data applied at DQ		25		35		ns
t _{rf}	Refresh time interval	tGDD tREF	20	4	39	4	ns ms

timing requirements over recommended supply voltage range and operating temperature range

[†] All cycle times assume $t_t = 5$ ns.

t in a read-modify-write cycle, tCLWL and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time (tw(CL)).

 $\frac{1}{8}$ In a read-modify-write cycle, t_{RLWL} and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time (t_{w(RL)}).

CAS-before-RAS refresh option only.

 $\#\overline{G}$ must disable the output buffers prior to applying data to the device.

NOTE 3: System transition times (rise and fall) for RAS and CAS are to be a minimum of 3 ns and a maximum of 50 ns.

PARAMETER MEASUREMENT INFORMATION

FIGURE 1. TYPICAL LOAD CIRCUIT

read cycle timing

read-write/read-modify-write cycle timing

page-mode read cycle timing

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

page-mode read-modify-write cycle timing

MEMORY CYCLE REFRESH CYCLE REFRESH CYCLE tw(RH) tw(RH) tw(RL) tw(RL) ٧н RAS VIL TRLCHR + tw(CL) VIH CAS VIL t_{su(R}A) (+ th(RA) tsu(CA) ٧H A0-A8 ROW COL VIL t_{su(rd)} th(RHrd) ۷н Ŷ Ô Ŵ \mathbf{Y} VIL ta(C) tdis(CH) 🖛 ^{- t}a(R) **-**● ۴ ∨он VALID DATA DQ • VOL " tdis(G) - t_{a(G)} ۲ VIH G ٧IL

hidden refresh cycle

SMJ4464 65,536-Word by 4-bit Dynamic Random-Access Memory

RAS-only refresh cycle timing

CAS-before-RAS refresh cycle timing

APPLICATIONS LITERATURE AVAILABLE

The following literature is available from Texas Instruments for assistance in DRAM system design. Please contact your local TI sales office to obtain a copy.

Application Reports

 The TMS4464 Topology — In order to effectively test the interaction between individual cells in the TMS4464, it is necessary to have a knowledge of the memory array organization and cell topology. Cell sensitivity can be tested by accessing surrounding cells and monitoring the selected cell for changes in the stored data. (SMBA641)

Technical Paper Reprints

 A 256K DRAM Organized for Applications Solutions – As applications software becomes more sophisticated, the need for high density DRAM will continue to increase. The latest generation of DRAMs, the 256K, will provide four times the amount of memory in the same board area as with 64K DRAMs. In addition, more device features will provide the flexibility to maximize utilization of 256K DRAMs in specific applications. This paper describes a 256K DRAM, its technology and architecture, and how it simplifies the needs of expanding applications. (SMQY001)

Technical Article Reprints

- 256K Dynamic RAM is More Than Just an Upgrade Silicides, lightly doped drain structures are being tuned for mass production of a next-generation part that improves on the 64K workhorse. (SMQY014)
- Designers Weigh Options for 256K Dynamic-RAM Processes Hidden-refresh modes make dynamic RAMs look static, while alternate addressing modes vary width of single parts. (5MQY017)

Related Data Sheets

- SMJ4416 Data Sheet Specifications for the 16K X 4 Dynamic RAM. (SGMS416)
- SMJ4256 Data Sheet Specifications for the 256K X 1 Dynamic RAM. (SGMS256A)

