

$16 \text{K} \times 8$ HIGH-SPEED CMOS STATIC RAM

GENERAL DESCRIPTION

The W24129A is a high-speed, low-power CMOS static RAM organized as 16384 \times 8 bits that operates on a single 5-volt power supply. This device is manufactured using Winbond's high performance CMOS technology.

FEATURES

- High-speed access time: 12/15 nS (max.)
- Low-power consumption:
 - Active: 400 mW (typ.)
- Single +5V power supply
- Fully static operation

- All inputs and outputs directly TTL compatible
- Three-state outputs
- Available packages: 28-pin 300 mil SOJ and skinny DIP

PIN CONFIGURATION

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION			
A0–A13	Address Inputs			
I/O1–I/O8	Data Inputs/Outputs			
CS	Chip Select Input			
WE	Write Enable Input			
OE	Output Enable Input			
Vdd	Power Supply			
Vss	Ground			

Publication Release Date: July 1995 Revision A2

DC CHARACTERISTICS

Absolute Maximum Ratings

PARAMETER	RATING	UNIT
Supply Voltage to Vss Potential	-0.5 to +7.0	V
Input/Output to Vss Potential	-0.5 to VDD +0.5	V
Allowable Power Dissipation	1.0	W
Storage Temperature	-65 to +150	٥C
Operating Temperature	0 to +70	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

TRUTH TABLE

CS	OE	WE	MODE	I/O1-I/O8	VDD CURRENT
Н	Х	Х	Not Selected	High Z	ISB,ISB1
L	Н	Н	Output Disable	High Z	ldd
L	L	Н	Read	Data Out	ldd
L	Х	L	Write	Data In	ldd

OPERATING CHARACTERISTICS

(VDD = 5V \pm 5%, VSS = 0V, TA = 0 to 70° C)

PARAMETER	SYM.	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Input Low Voltage	VIL	-		-0.5	-	+0.8	V
Input High Voltage	Vін	-		+2.2	-	Vdd +0.5	V
Input Leakage Current	ΙLI	VIN = VSS to VDD		-10	-	+10	μΑ
Output Leakage Current	Ilo	$V_{I/O} = V_{SS}$ to V_{DD} , $\overline{CS} = V_{IH}$ or $\overline{OE} = V_{IH}$ or $\overline{WE} = V_{IL}$		-10	-	+10	μA
Output Low Voltage	Vol	IOL = +8.0 mA		-	-	0.4	V
Output High Voltage	Vон	Iон = -4.0 mA		2.4	-	-	V
Operating Power	Idd	$\overline{\text{CS}}$ = VIL, I/O = 0 mA	12	-	-	160	mA
Supply Current		Cycle = MIN	Cycle = MIN 15		-	150	mA
Standby Power Supply Current	ISB	CS = VIH Cycle = MIN, Duty = 100%		-	-	30	mA
	ISB1	$\overline{CS} \ge VDD - 0.2V$		-	-	5	mA

Note: Typical characteristics are at VDD = 5V, TA = 25° C.

CAPACITANCE

 $(\mathsf{VDD}=\mathsf{5V},\,\mathsf{TA}=\mathsf{25^{\circ}}\;C,\,\mathsf{f}=\mathsf{1}\;\mathsf{MHz})$

PARAMETER	SYM.	CONDITIONS	MAX.	UNIT
Input Capacitance	CIN	VIN = 0V	8	pF
Input/Output Capacitance	CI/O	Vout = 0V	10	pF

Note: These parameters are sampled but not 100% tested.

AC TEST CONDITIONS

PARAMETER	CONDITIONS
Input Pulse Levels	0V to 3V
Input Rise and Fall Times	5 nS
Input and Output Timing Reference Level	1.5V
Output Load	CL = 30 pF, IOH/IOL = -4 mA/8 mA

AC TEST LOADS AND WAVEFORM

AC CHARACTERISTICS

(VDD = 5V \pm 5%, VSS = 0V, TA = 0 to 70° C)

Read Cycle

PARAMETER	SYM.	W24129A-12		W24129A-15		UNIT
		MIN.	MAX.	MIN.	MAX.	
Read Cycle Time	TRC	12	-	15	-	nS
Address Access Time	ΤΑΑ	-	12	-	15	nS
Chip Select Access Time	TACS	-	12	-	15	nS
Output Enable to Output Valid	TAOE	-	6	-	7	nS
Chip Selection to Output in Low Z	TcLz*	3	-	3	-	nS
Output Enable to Output in Low Z	Tolz*	0	-	0	-	nS
Chip Deselection to Output in High Z	TCHZ*	-	6	-	7	nS
Output Disable to Output in High Z	TOHZ*	-	6	-	7	nS
Output Hold from Address Change	Тон	3	-	3	-	nS

* These parameters are sampled but not 100% tested.

Write Cycle

PARAMETER		SYM.	W2412	29A-12	W2412	29A-15	UNIT
			MIN.	MAX.	MIN.	MAX.	
Write Cycle Time			12	-	15	-	nS
Chip Selection to End of Write		Tcw	10	-	13	-	nS
Address Valid to End of Write		Taw	10	-	13	-	nS
Address Setup Time		TAS	0	-	0	-	nS
Write Pulse Width		TWP	10	-	10	-	nS
Write Recovery Time	$\overline{\text{CS}}, \overline{\text{WE}}$	Twr	0	-	0	-	nS
Data Valid to End of Write		Tow	7	-	9	-	nS
Data Hold from End of Write		Трн	0	-	0	-	nS
Write to Output in High Z		Twhz*	-	7	-	8	nS
Output Disable to Output in High Z		TOHZ*	-	7	-	8	nS
Output Active from End of Write		Tow	0	-	0	-	nS

* These parameters are sampled but not 100% tested.

TIMING WAVEFORMS

Read Cycle 1

(Address Controlled)

Read Cycle 2

(Chip Select Controlled)

Read Cycle 3

Publication Release Date: July 1995 Revision A2

W24129A

Timing Waveforms, continued

Write Cycle 1

(OE Clock)

Write Cycle 2

Notes:

1. During this period, I/O pins are in the output state, so input signals of opposite phase to the outputs should not be applied.

2. The data output from DOUT are the same as the data written to DIN during the write cycle.

3. DOUT provides the read data for the next address.

4. Transition is measured \pm 500 mV from steady state with CL = 5 pF. This parameter is guaranteed but not 100% tested.

ORDERING INFORMATION

PART NO.	ACCESS TIME (nS)	OPERATING CURRENT MAX. (mA)	STANDBY CURRENT MAX. (mA)	PACKAGE
W24129AK-12	12	160	5	300 mil skinny DIP
W24129AK-15	15	150	5	300 mil skinny DIP
W24129AJ-12	12	160	5	300 mil SOJ
W24129AJ-15	15	150	5	300 mil SOJ

Notes:

1. Winbond reserves the right to make changes to its products without prior notice.

2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.

PACKAGE DIMENSIONS

28-pin P-DIP Skinny

28-pin Small Outline J Band

W24129A

Headquarters No. 4, Creation Rd. III,

Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5792647 http://www.winbond.com.tw/ Voice & Fax-on-demand: 886-2-7197006

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan TEL: 886-2-7190505

Winbond Electronics (H.K.) Ltd. Rm. 803, World Trade Square, Tower II,

Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

Winbond Electronics North America Corp. Winbond Memory Lab. Winbond Microelectronics Corp. Winbond Systems Lab.

CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-9436668

Note: All data and specifications are subject to change without notice.