New developments
in link emulation

and packet scheduling
in FreeBSD, linux and Windows

Luigi Rizzo, Universita di Pisa

March 29, 2010

Summary

Some recent, network related projects at UNIPI:

» The dummynet emulator: new features,
performance, Linux and Windows ports
(mostly supported by the ONELAB2 project - European
Commission)

» Fast packet scheduling algorithms: QFQ
(joint work with Fabio Checconi and Paolo Valente, partly
supported by the NETOS project - Univ. di Pisa)

2/43

Dummynet

Why emulation

Emulation is a standard tool in protocol and application
testing. It gives you:

» ease of configuration/setup;

» reproducibility;

» more realistic results than simulation.
Several existing options:

» dummynet, NISTnet, tc+netem, netpath...

4/ 43

Dummynet

Dummynet is a network emulator developed in 1997 on
FreeBSD, and substantially revised in recent years.
Now available on FreeBSD, OSX, Linux/Openwrt, Windows.

? sockets |
................................. |

m '
: T s
Bl __J oL | iofw

packets I device driver

i s

» intercepts packets in various points of the protocol stack;

» passes packets through a classifier and then to pipes,
which model communication links;

» on exit, packets are reinjected in the protocol stack or in

the classifier.
5/ 43

User interface

/sbin/ipfw is the main user interface for the system.
Use is very simple:

ipfw add 100 pipe 1 out dst-ip 1.2.3.4
ipfw add 100 pipe 2 in src-ip 1.2.3.4

ipfw pipe 1 config bw 256Kbit/s delay 12ms
ipfw pipe 2 config bw 4Mbit/s delay 2ms

sockets |

packets device driver

i s

6/43

Main applications

\ Qe) Q
g —

» link emulator (protocol/app testing):
» in-node emulator (workstation, Planetlab);
» transparent bridge;
» local traffic shaping:
» share or reserve bandwidth for certain apps;
» outgoing or incoming traffic shaping;
» traffic shaper in testbeds (Emulab/Planetlab) or ISPs:
» must scale to thousands of pipes;
» needs extra features for quick classification/demux.

7/43

Emulation in Planetlab

As part of the ONELAB2 project, we added dummynet as an
in-node emulator in Planetlab:

» users can define independent emulated links;

» a frontend hides the complexity of configuration:

» client and server modes create typical configurations.

netconfig + sockets |
user user f/ I LemTTTTTTTEmTmmmmmmmmmm e, .~ I
Slice [+o+[Sslice : B
context context ipfw ipfw
I Vsys system [Ij [Ij [Ij [Ij V
vsys-server | _——> : \ J / :
------ in/i ipfw ipfw
root context /sbinfipfw H H
A]
packets ' device driver +
[o BREEE e

netconfig config client 22,80 IN bw 6Mbit/s OUT bw 256Kbit/s

8 /43

Dummynet internals: Pipes

delay
mEEE ﬁ EEn
Input packets Output packets

queue bw

» Only model basic features of a link:
» queue with configurable size and management policy
(FIFO, RED);
» programmable link bandwidth;
» deterministic propagation delay;
» avoid non deterministic behaviour:
» do not deal with error/loss/delay models;
» use real traffic to cause perturbations;
» ... except for some useful features:
» random packet drop and random rule match;
» you don't have to use them if you don’t like the model.

9/43

Classifier

A classifier is used to send traffic to different pipes.

A sockets 1

packets ' device driver *
Y RPN AR

» we use FreeBSD's ipfw, which is easy to use and has a
large number of packet matching options;
» ipfw has been extend with custom features:

» multiple passes, to emulate complex networks;
» probabilistic match, to emulate multipath and reordering;
» table lookup, to speed up classification and dispatch.

10 / 43

Beyond pipes: queues, schedulers, links

More complex configurations require to split a pipe in its
components — queue, scheduler, link — so we can:

Input packets queues Scheduler

ss s NN
sses THEE E!
s es TN delay

» attach multiple queues to one scheduler;
» configure scheduler features (algorithm, weights, etc.);
» model more complex links (e.g. radio).

11 /43

Per-flow queues / Flowsets

A flowset is an abstraction used to model per-flow queues. It
has several attributes:

» a flow-mask, used to create per-flow queues;

» a scheduler to which queues are attached to;

» weight/priority and other scheduling parameters;

ipfw queue 1 config sched 5 weight 10

ipfw queue 2 config sched 5 mask dst-ip Oxff weight 1
ipfw add 100 queue 1 src-ip luigi-pc

ipfw add 100 queue 2 src-ip my-subnet/24

fs 1 fs 2

12 /43

Links

Links can model more than bandwidth and delay:

» uniform random loss;

ipfw pipe 1 config plr 0.06 // 6% loss on this link

» reordering (through probabilistic matching):
// 30% of packets go to pipe 1, 70% go to pipe 2
ipfw add 100 prob 0.3 pipe 1 dst-ip 1.2.3.4
ipfw add 100 pipe 2 dst-ip 1.2.3.4
ipfw pipe 1 config delay 100ms
ipfw pipe 2 config delay 20ms

» MAC overheads (preambles, contentions, link-level rxmit):
» use profiles or model the MAC as a scheduler.

13 / 43

Link Profiles

Profiles model the extra air-time for a packet transmission
» an empirical function gives the distribution of extra

air-time;
CDFA Packet loss CD
1 4 1
1 2
Retransmissions
0. N 0 N
' delay - ' delay’
No contention Contention effects

» not tied to a specific technology. Can be used for wireless
or wired links of various kinds;

» can model low level features (preambles, inter-frame
gaps...) or more complex ones (contentions,
retransmissions, collisions);

» of course it is not as precise as full emulation.
14 / 43

Schedulers

Schedulers arbitrate access of multiple flows to the same link

—
1
.
» newly designed API supports configurable schedulers:

FIFO, DRR, PRIO, WF2Q+, QFQ, KPS;
» a MAC layer is a scheduler, too. An 802.11b scheduler

will be available shortly;
» schedulers have masks, too:

ipfw queue 1 config sched 5 weight 10 // used for ssh

ipfw queue 2 config sched 5 weight 1 // all other traffic
ipfw add 100 queue 1 out proto tcp src-port 22,53

ipfw add 100 queue 2 out

// each /24 subnet has its own instance

ipfw sched 5 config type QFQ mask src-ip Oxffffff00

15 / 43

Schedulers (cont)

The scheduler API makes dummynet a tool for testing
schedulers, too:

» adding a new scheduler is straightforward;

» you can concentrate on your algorithm, don't have to
worry about classification, getting traffic, locking, etc..

> wc dn_schedx*.c

120 5563 3766 dn_sched_fifo.c
229 939 6367 dn_sched_prio.c
653 2225 16724 dn_sched_kps.c
864 3466 23302 dn_sched_qfq.c
307 1110 7297 dn_sched_rr .c

373 1854 12080 dn_sched_wf2q.c

16 / 43

Overall structure

Relation between flowsets, masks, queues and schedulers.

fs 1 fs 2

mask src-ip mask src-ip

__.--------

P e
L d
:-ﬁ' :l'
T -
. —
T ’..

sched
mask dst-ip

-
PR
-
-"--
-

i

i

17 / 43

Testing framework

We have support to run schedulers in user space.

Controller

Packet
generator

Scheduler

» generate traffic for a programmable number of flows,
packet size and weight distribution;
» carefully control the operating point of the scheduler;

./test
dn_rr

./test
dn_qfq
./test
dn_kps

-alg rr -gmin 4n -qmax 30n -flowsets 1::512,8::64

n 5004288 10000000 time O.
-alg qfq -qmin 4n -gmax 30n
n 5004288 10000000 time O.
-alg kps -qmin 4n -gmax 30n
n 5004288 10000000 time 2.

683968 136.676
-flowsets 1::512,8::64
974142 194 .661
-flowsets 1::512,8::64
855963 570.703

18 / 43

Accuracy

At least three main factors influence the accuracy of
emulation:

» timer accuracy (20 ps .. 1 ms or less);
» competing traffic (120 ps .. 1.2 ms per competing link);

» Operating System interference (virtually unbounded;
normally in the 30 .. 200 us range).

Accuracy can be improved addressing these three factors.
100 ps is a reasonable target on modern hardware.

19 / 43

Performance

Per-packet processing is the main factor limiting performance.
» detailed analysis in April 2010 CCR paper;
» split classifier + scheduling + emulation cost;

» classifier cost is C + O(R) (number of rules). Normally
400 .. 1000 ns with up to 20 rules.

scheduling from O(1) to O(log N);
» emulation: O(log V), 700 .. 1500 ns with 1 .. 1000 flows.
Overall, 2-3 us/pkt on entry level PC hardware.

v

20/ 43

Porting

Dummynet has been recently ported to Linux and Windows.
» We use the same codebase for all platforms;
» very little conditional code (except in headers);

» glue libraries to map FreeBSD kernel APIs to underlying
OS APls.

Main differences between platforms:
» internal packet representation;
» locking;

» packet filtering hooks;
» timers (APl and resolution);
» module loading/unloading;

» userland/kernel communication.

21 /43

Packet representation

sk_buff

—>» metadata

In-kernel packet representation /)
is similar in principle, differ-| pseudo mbu

ent in details between BSD metadats —] data
(mbufs), Linux (skbufs) and _zoid_*ga_tg_/_/
Windows (NDIS_PACKET). struct sk_buf*

» create mbuf lookalikes on entry, fill with metadata from
native representation;

» internally, only use mbufs;
» destroy the wrapper on exit.

22 /43

Locking and other OS APlIs

» mostly dealt with through macros, preprocessor magic
and wrapper functions;

» a 1:1 mapping between equivalent functions was almost
always possible;

» hardest part was locating the right API to use (e.g.,
ExSetTimerResolution() on Windows);

» changing kernel APlIs are very challenging too (Linux
netfilter APl is a moving target even within 2.6.X);

23 /43

Availability and Credits

See http://info.iet.unipi.it/~luigi/dummynet/
Supported operating systems:
» FreeBSD (since 1998), OSX (2006)
» Linux/OpenWRT (2009)
» Windows XP, Windows 7 (2010)
Credits:
Marta Carbone (Linux port)
Fabio Checconi (QFQ, KPS)

Riccardo Panicucci (scheduler API)

v

vV v Vv

Francesco Magno (Windows port)

24 /43

O(1) packet scheduling at high
data rates

O(1) packet scheduling at high data rates

NI |

Why do we care about packet scheduling ?
» arbitrate access to common resources;
» provide service guarantees and resource isolation;

» overprovisioning is not always possible/desirable, today’s
CPUs are too fast;

» links are very fast too, so schedulers must keep up with
high data rates and number of flows.

26 / 43

Problem setting and definitions

Many definitions for Service Guarantees. We consider the
deviations of our actual scheduler (Packet System) from the
service offered by an Ideal Fluid System.

: _I W=1 W=1
- | - Lo -

» each flow has a weight ®;, and should receive a fraction
o,/ Zj ®; of the total link capacity at any time;
» the Fluid System serves all flows simultaneously;

» the Packet System serves one packet at a time, is non
preemptable, online, and possibly work-conserving;

27 / 43

Service Guarantees

Because of its nature, a Packet System cannot guarantee
perfect sharing at all times. The magnitude of deviations is an
indicator of the quality of the scheduler.

» various quality metrics including

B-WFI = max [0, W(At) — Wi(At)]
At

> in the best possible Packet System (e.g. WF2Q),
B-WFI = 1 MSS (Optimal B-WFI);

» tradeoff between guarantees and complexity:
Xu-Lipton 2002: optimal B-WFI requires Q(log N) time;
Valente 2004: an O(log N) version of WF3Q;

» breaking the O(log N) barrier implies relaxed guarantees.

28 /43

State of the art of fast schedulers

» Priority-based schedulers are fast but give no guarantees
except to the flow with highest priority;

» Round Robin schedulers have O(1) time but poor
guarantees (O(N) B-WFI);

» some timestamp-based schedulers such as WF2Q give
optimal service guarantees in O(log N) time;

» approximated variants of timestamp-based schedulers
(KPS - Karsten 2006; GFQ - Stephens,Bennet,Zhang
1999) have near-optimal guarantees and O(1) time
complexity (but several times slower than RR).

29 /43

Our result

QFQ is a practical O(1) approximated timestamp-based
scheduler with

» near-optimal guarantees (B-WFI ~5 MSS);

» truly constant complexity, independent of number of flows
and configuration parameters;

» uses very simple CPU instructions;

» 110 ns/pkt on common workstations, compared to 55 ns
for DRR and 400 ns for KPS.

Fair Queueing in software (or inexpensive hardware) is feasible
at GBit/s rates.

30 /43

QFQ overview

QFQ operates as other timestamp-based schedulers:
» track the behaviour of a Fluid System;
» for each packet, compute Virtual Start and Finish times

» schedule in Finish time order among packets that are i)
available and ii) already started in the Fluid Server.

The sorting steps imply a O(logN) complexity.
» use approximated sorting to reduce complexity;
» use careful approximations to preserve guarantees;

» use extra data structures to reduce constants.

31/43

QFQ data structures

N

i

enqueue()

3

OH

P — dequeue()

R

» Approximated sorting based on rounded timestamps and
splitting flows into a constant number of groups;

» flow i belongs to group [log, L;/®;];
» rounding intervals grow exponentially.

32/43

QFQ data structures — sorting

A

— —— enqueue()

K

]« dequeue()

» Use approximate timestamps for sorting, but exact values
when computing timestamps;

» within each group, there is only a finite number of slots,
so we can use bucket sort;

» for selection purposes, use same (F — S) for all flows in a

group, so the order on F and S is the same.
33 /43

QFQ data structures — selection

A

— e—— enqueue()

K

= dequeue()

» Manage four Set of Groups. In each set, index reflects
Virtual Time ordering;

» the eligible flow with minimum F can be found with one
FFS instruction instead of scanning the groups;

» moving groups between sets does not require loops,

either.
34 /43

QFQ - enqueue

N

—_— < enqueue()
I I|i-|| 1]
P— O — dequeue()

R

» bucket-insert in the group;

» update group state and sets.

3543

QFQ - dequeue

A

— —— enqueue()

K

]« dequeue()

locate first bit in set ER;
serve first flow in the first slot of the corresponding group;
possibly put the flow in a new slot;

vV v. v Y

update group state and sets.

36 /43

Service guarantees

Service guarantees for QFQ:
B-WFI¥ = 3¢%0; + 2¢"L

(remember that L*/®, < o; < 2LK/®))

AL 1
T-WFI* = (3 [@W +2L> E

(R is the link’s rate).

37 /43

Experimental results

Measurements taken by running the kernel code in userspace:

Controller

Packet
generator

Scheduler

» generate traffic for a programmable number of flows,
packet size and weight distribution;
» carefully control the operating point of the scheduler;

./test
dn_rr

./test
dn_qfq
./test
dn_kps

-alg rr -gmin 4n -qmax 30n -flowsets 1::512,8::64

n 5004288 10000000 time O.
-alg qfq -qmin 4n -gmax 30n
n 5004288 10000000 time O.
-alg kps -qmin 4n -gmax 30n
n 5004288 10000000 time 2.

683968 136.676
-flowsets 1::512,8::64
974142 194 .661
-flowsets 1::512,8::64
855963 570.703

38 /43

Performance comparison — scalability

enqueue() + dequeue() time, ns

700 —
T WE2Q+
600 B P E]GB o] S-K;PS
= T E! [S

500 - |
2 400 |
> P
£ 300 t]

0 I I L | |))
1 4 16 64 256 1k 4k 32k

39 /43

Mixed workloads

Measurement results in ns for an enqueue()/dequeue() pair
and packet generation. Standard deviations are within 3% of
the average.

Flows || NONE | FIFO | DRR | QFQ | KPS [WF2Q+
1 62| 83| 105| 221 450 210
8 60| 80| 102 | 163 | 543 344
64 59| 80| 100 | 158 | 540 526
512 64| 85| 110 | 175| 560 740
4k 74| 102 | 157 | 197 | 590 1110
32k 62| 117 | 147 | 222 601 1690
1:32k,2:4k,4:2k,8:1k,128:16,1k:1 flows
mx || 92| 119| 160 | 255 | 612| 1715

40 / 43

Conclusions

v

QFQ is a Timestamp-based scheduler with near optimal
service guarantees and true O(1) run time;

» 110 ns/pkt, only 2 times slower than RR and 4 times
faster than comparable algorithms;

» already available as part of dummynet, together with
several other schedulers;

» technical report and code at
http://info.iet.unipi.it/~1luigi/qfq/
» Joint work with Fabio Checconi and Paolo Valente;

» soon available as a Click module;

41/ 43

Future work

Future work:

» detailed performance analysis on low-end hardware
(OpenWRT platforms);

» identify performance bottlenecks, memory access
patterns;

» investigate feasibility of hardware implementations
(including NETFPGA).

42 /43

Links and further info

» For dummynet
http://info.iet.unipi.it/~1luigi/dummynet/

» For QFQ
http://info.iet.unipi.it/~1luigi/qfq/

For everything else, there's www.google.com

43 / 43

	Summary
	Dummynet
	Introduction
	Architecture
	Applications
	Internals
	Advanced features
	Accuracy and performance

	Fast packet scheduling
	Introduction
	State of the art
	QFQ
	Background on timestamp-based schedulers
	Performance analysis

