
Porting dummyet to Linux and

Windows (and userland)

Luigi Rizzo, Università di Pisa

May 14, 2010

Summary

In this talk we will describe the issues and lessons learned in
porting a network-related kernel module from FreeBSD to
different operating systems.
In detail:

◮ motivation and objectives;

◮ description of the system being ported;

◮ porting strategy;

◮ identification of the subsystems involved;

◮ system-specific issues;

◮ lessons learned.

2 / 25

Motivation for this work

As part of the ONELAB2 project www.onelab.eu we needed to
implement in-node emulation for PlanetLab.

We opted for a port of ipfw and dummynet because:
◮ existing Linux solutions (tc+netem; NISTnet; netpath)

were not as flexible as dummynet;
◮ a non-negligible integration and porting work was still

needed even with the above systems;
◮ a Linux port was desirable in itself.

3 / 25

Objectives

During the work, we decided to address the following issues:

◮ add scheduler support (direct requirement of the Onelab
project);

◮ improve scalability (fixes a performance issue in Onelab);

◮ provide some user-level testing tools (ease development,
improve the quality of the software);

◮ create a generic Linux port, because Planetlab nodes use
different Linux versions;

◮ develop OpenWRT and Windows versions, as it only
required a limited additional effort, and would make the
tool available to a much larger user base.

4 / 25

The systems to be ported

Ipfw and Dummynet info.iet.unipi.it/∼luigi/dummynet/ are a
firewall and traffic shaper/network emulator, made of:

◮ a user interface, /sbin/ipfw, running in user space and
communicating with the kernel through a control socket;

◮ several kernel modules (ipfw.ko, dummynet.ko,
schedulers...) attached to the pfil hooks to intercept
packets.

The original code was not specifically designed for portability,
so it uses several FreeBSD-specific structures and subsystems:

◮ mbufs, pfil hooks, memory allocator, locking, timer
services;

◮ ip output() and netisr dispatch();

◮ routing table, module management, control sockets.

5 / 25

Porting approach

Our approach was to port the code to Linux with as little
modifications as possible to the original code:

◮ faster, less error prone;

◮ easier to keep the software up to date;

◮ small performance loss is not a concern.

Workplan:

◮ identify differences among platforms;

◮ provide replacements for headers;

◮ provide wrappers for similar functions/subsystems;

◮ develop glue code to map FreeBSD kernel APIs to
underlying OS APIs.

We do not require nor use any GPL code.

6 / 25

Porting the userspace code

Porting the userspace code to Linux/Cygwin was almost
straightforward:

◮ language and APIs are relatively portable across platforms
(BSD, Linux, Cygwin);

◮ no strange linker tricks in the code;
Main points:

◮ header adaptation – discussed next;
◮ missing library functions (humanize number(), ...)

obtained from the original, BSD-licensed source code;
◮ Windows: remap setsockopt() to DeviceIoControl()

(similar in principle, device handle instead of a socket);
◮ sysctl emulated over the control interface;

All extensions are in one file, glue.c – 800 lines (mostly for
library functions and sysctl emulation).

7 / 25

Building userspace code with Windows tools

Windows porting with native tools (MSVC, tcc) is slightly
more difficult:

◮ useful because it produces a GPL-free binary;

◮ larger differences in headers, APIs and basic data types
(WORD DWORD FAR ...);

◮ missing functionalities (fork, process control, printf
formats ...);

◮ missing compiler features (e.g. C99 initializers in MSVC).

Problems solved with some headers tricks, minor rewrites or
removing some functions: only two small "#ifdef TCC ..."

sections in ∼7000 lines of code.

8 / 25

Porting the kernel side

Porting the kernel code is much more challenging and
interesting:

◮ lack of cross-platform standards, both for header names
and content, and kernel APIs;

◮ many more subsystems involved.

Header remapping and large use of macros go a long way in
reducing differences.

9 / 25

Step 0: userspace version of the kernel code

We started by building a userspace version of the kernel code:

◮ quickly identify missing headers and libraries;

◮ experiment with various porting approaches.

Not a wasted effort:

◮ eventually, we had a daemon that could talk to
/sbin/ipfw through emulated *sockopt();

◮ useful to test rule injection and listing;

◮ opened the way to develop the scheduler testing code;

◮ we plan to add packet handling (e.g. from a PCAP file)
to test packet matching functionality and performance.

10 / 25

Step 1: Header remapping

There are significant differences in kernel headers:
◮ some BSD headers are missing on other systems;
◮ some have the same name but different content;
◮ some have different names for a given content;

From many headers we need only a handful of lines, so:
◮ -include ... to import common definitions (2 files,

∼1000 lines);
◮ a subtree -Iinclude/ contains ∼30 headers copied

almost verbatim from FreeBSD;
◮ a subtree -Iinclude e/ is populated with ∼50 empty

headers, for files with no (remaining) content.

Kernel compile flags start with
-nostdinc -include ../glue.h -include missing.h

-Iinclude -Iinclude e ...

11 / 25

Header contents

The -include’d headers do a variety of remapping tricks:
#define ifnet net_device /* remap */

#define printf (fmt , arg ...) printk (KERN_ERR fmt , ##arg)

#define bcopy(_s, _d , _l) memcpy (_d, _s , _l)

#define IP_FW_SETSOCKOPT \

CTL_CODE (FILE_DEVICE_IPFW , IP_FW_BASE_CTL + 1, \

METHOD_BUFFERED , FILE_WRITE_DATA)

#define _SYSCTL_BASE(_name , _var , _ty , _perm) \

module_param_named(_name , *(_var), _ty , \

((_perm) == CTLFLAG_RD) ? 0444: 0644)

Most of these macros are the result of a comparison of how
the various subsystems are implemented on different platforms.

12 / 25

Step 2..N: handle kernel subsystems

An interesting part of the work has been identifying the
differences in various subsystems:

◮ packet representation and packet hooks;

◮ memory allocation;

◮ locking;

◮ timers (API and resolution);

◮ module support;

◮ userland/kernel communication;

◮ OS-specific issues.

These will be described in the next slides.

13 / 25

Packet representation

In-kernel packet representation always uses a descriptor to
store metadata and a linked lists of buffers:

◮ mbufs on FreeBSD;

◮ skbufs on Linux;

◮ NDIS PACKETs on Windows.

Our code uses mbufs, so we do the following:
◮ create mbuf lookalikes on entry;

◮ copy metadata from native
representation;

◮ reference or copy data;

◮ destroy the wrapper on exit.

Exact details depend on packet hooks behaviour.

14 / 25

Packet filtering hooks

Dummynet must sometimes hold/delay/drop packets. Slightly
different semantics among systems:

FreeBSD pfil hooks allow a hook function to free or hold a packet;

Linux netfilter hooks require all packets to be marked and
returned. Packets can be held on a subsequent QUEUE
call;

Windows NDIS miniport modules do not allow modifications to
packets. A module must replicate the packet to
hold/modify it.

Some unnecessary data copies could be saved if FreeBSD had
a clear separation between classification and action on the
packet.

15 / 25

Memory allocation

malloc() remapped to OS-specific allocators:

◮ kmalloc()/ kfree() on Linux;

◮ ExAllocatePoolWithTag()/ExFreePool() on
Windows;

UMA allocators are replaced by a much simpler version:
typedef int uma_zone_t ; /* the zone size */

#define uma_zcreate (name , len , _3 , _4, _5 , _6 , _7 , _8) (len)

#define uma_zalloc (zone , flags) malloc (zone , M_IPFW , flags)

#define uma_zfree (zone , item) free(item , M_IPFW)

#define uma_zdestroy(zone) do {} while (0)

16 / 25

Locking

Fortunately we use a very simple locking mechanisms (rwlocks,
rmlocks, mtx).

◮ define/declare/lock/unlock/destroy wrapped in macros;

◮ map to spinlock t on Linux;

◮ map to FAST MUTEX on Windows.

17 / 25

Timers (and callouts)

Used for two purposes:

◮ Return the time of day, with < 10µs resolution and
precision.

◮ getmicrouptime() or microuptime() on FreeBSD;
◮ do gettimeofday() on Linux;
◮ custom replacement (TSC-based) on Windows as we

could not find a function with less than 10ms resolution.

◮ Wake me up after time T:
◮ callout init/callout reset on FreeBSD.
◮ mapped onto init timer()/add timer() on linux;
◮ Deferred Procedure Calls (DPC) on Windows:

KeInitializeDpc()/KeSetTimer()
◮ hardest part was locating the right API to set the kernel

tick on Windows (ExSetTimerResolution()).

18 / 25

Module support

Modules have descriptors to indicate constructors, destructors
and dependencies:
DECLARE_MODULE(dummynet , dummynet_mod ,

SI_SUB_PROTO_IFATTACHDOMAIN , SI_ORDER_ANY -1);

MODULE_DEPEND(dummynet , ipfw , 2, 2, 2);

DECLARE_MODULE(ipfw_nat , ipfw_nat_mod ,

SI_SUB_PROTO_IFATTACHDOMAIN , SI_ORDER_ANY);

MODULE_DEPEND(ipfw_nat , libalias , 1, 1, 1);

MODULE_DEPEND(ipfw_nat , ipfw , 2, 2, 2);

◮ heavily based on linker sets;
◮ potential portability issues with different toolchains (e.g.

we use MSVC and possibly TCC).

Possible workarounds:
◮ make the descriptors globally visible;
◮ manually (or automatically) build the list of module

descriptors.
19 / 25

Kernel – userland communication

◮ getsockopt()/setsockopt() on a raw socket.

◮ Linux has a similar mechanism, slightly different API;

◮ Windows uses DeviceIoControl(), which operates on a
device descriptor;

◮ in both cases, ported using wrappers to adapt the API;

◮ the interface has been extended to emulate sysctl for
platforms missing them.

20 / 25

Linux specific issues and features

◮ sysctl mapped to /sys/module/ entries on 2.6.x,
implemented via sockopt on 2.4.x (openwrt);

◮ jail-id replaced by vserver id;

◮ IPV6 and in-kernel NAT not implemented yet.

Only one major complaint: very unstable kernel APIs.
The code is cluttered by many (∼ 30) conditional sections for
specific kernel versions;

21 / 25

Windows specific issues and features

◮ sysctl implemented via sockopt;

◮ no jail/uid/gid matching;

◮ no matching on interface names;

◮ IPV6 and in-kernel NAT not implemented yet;

◮ loopback traffic does not go through NDIS;

◮ NDIS glue mostly coming from the miniport driver;

◮ installer files available;

◮ signed kernel modules for 64-bit systems in the works;

22 / 25

Overall porting effort

> wc glue.h tcc_glue .h ipfw/glue.c ...

543 2187 16385 glue.h

232 884 7141 tcc_glue .h

841 3051 23538 ipfw/glue.c // sysctl and libraries

627 2480 18627 dummynet2 /missing .h

547 1802 12914 dummynet2 / bsd_compat .c

906 3681 25957 dummynet2 / ipfw2_mod .c

630 2624 20104 dummynet2 /md_win .c

225 934 7100 dummynet2 / winmissing .h

4551 17643 131766 total

23 / 25

Lessons learned

The original code was reasonably portable, despite the lack of
any specific effort. Some things could and should be improved:

◮ need better split between classification and emulation;

◮ confusion on the endianness of certain fields (ip len,
etc.) obfuscates the code and requires writable buffers;

◮ nested #include would have made header mapping a lot
simpler;

◮ when it comes to locking and other architecture-specific
functions, hiding details behind macros is a big advantage.

24 / 25

Availability and Credits

Latest code at http://info.iet.unipi.it/∼luigi/dummynet/
The new code is available for

◮ FreeBSD HEAD and stable/8

◮ Linux/OpenWRT

◮ Windows XP, Windows 7 (32 and 64 bit)

◮ OSX ? (currently older version. Ask Apple...)

Credits:

◮ Marta Carbone (Linux port)

◮ Fabio Checconi (QFQ, KPS)

◮ Riccardo Panicucci (scheduler API)

◮ Francesco Magno (Windows port)

25 / 25

	Summary
	Motivation
	ipfw and dummynet
	Porting approach
	Porting userspace
	Porting kernel

