GEOM_SCHED: A Framework for
Disk Scheduling within GEOM

Luigi Rizzo and Fabio Checconi

May 8, 2009

GEOM_SCHED
A framework for disk scheduling within GEOM

Luigi Rizzo

Dipartimento di Ingegneria dell'Informazione
via Diotisalvi 2, Pisa, ITALY

Fabio Checconi

SSSUP S. Anna,
via Moruzzi 1, Pisa, ITALY

2/40

Summary

Motivation for this work
Architecture of GEOM_SCHED
Disk scheduling issues

Disk characterization

An example anticipatory scheduler

Performance evaluation

vV v vV vV VvV VY

Conclusions

3/40

Motivation

vV v v v Y

Performance of rotational media is heavily influenced by the
pattern of requests;

anything that causes seeks reduces performance;
scheduling requests can improve throughput and/or fairness;
even with smart filesystems, scheduling can help;
FreeBSD still uses a primitive scheduler (elevator/C-LOOK);

we want to provide a useful vehicle for experimentation.

4/ 40

Where to do disk scheduling

To answer, look at the requirements. Disk scheduling needs:

» geometry info, head and platter position;
> necessary to exploit locality and minimize seek overhead;
» known exactly only within the drive's electronics;

» classification of requests;

» useful to predict access patterns;
> necessary if we want to improve fairness;
» known to the OS but not to the drive.

5/40

Where to do disk scheduling

Possible locations for the scheduler:
» Within the disk device

» has perfect geometry info;

> requires access to the drive's firmware;

» unfeasible other than for specific cases.
» Within the device driver

> lacks precise geometry info.

» feasible, but requires modification to all drivers;
» Within GEOM

» lacks precise geometry info;

> can be done in just one place in the system;

» very convenient for experimentations.

6/ 40

Why GEOM_SCHED

Doing scheduling within GEOM has the following advantages:

» one instance works for all devices;

> can reuse existing mechanisms for datapath (locking) and
control path (configuration);

» makes it easy to implement different scheduling policies;

» completely optional: users can disable the scheduler if the disk
or the controller can do better.

Drawbacks:

» no/poor geometry and hardware info (not available in the
driver, either);

» some extra delay in dispatching requests (measurements show
that this is not too bad).

7/40

Part 2 - GEOM_SCHED architecture

» GEOM_SCHED goals
» GEOM basics
» GEOM_SCHED architecture

8 /40

GEOM _SCHED goals

Our framework has the following goals:

» Support for run-time insertion/removal/reconfiguration;

» support for multiple scheduling algorithms;

» production quality.

9/40

GEOM Basics

Geom is a convenient tool for manipulating disk I/O requests.

>
>

Geom modules are interconnected as nodes in a graph;

Disk 1/0O requests ("bio’s") enter nodes through " provider”
ports;

arbitrary manipulation can occur within a node;

if needed, requests are sent downstream through " consumer”
ports;

one provider port can have multiple consumer ports connected
to it;

the top provider port is connected to sources (e.g. filesystem);
the bottom node talks to the device driver.

=}

L]
L1
Wl_l 10 / 40

Disk requests

A disk request is represented by a struct bio , containing control
info, a pointer to the buffer, node-specific info and glue for
marking the return path of responses.

struct bio {

uint8_t bio_cmd;

struct cdev *bio_dev;
long bio_bcount;
caddr_t bio_data;

void *bio_driverl;
void *bio_driver2;
void *bio_callerl;
void *bio_caller2;

TAILQ_ENTRY(bio) bio_queue;
const char *bio_attribute;
struct g_consumer *bio_from;
struct g_provider *bio_to;

/*

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

I/0 operation. */

Device to do I/0 on. */
Valid bytes in buffer. */
Memory, superblocks, indire

Private use by the provider
Private use by the provider
Private use by the consumer
Private use by the consumer
Disksort queue. */
Attribute for BIO_[GS]ETATT
GEOM linkage */

GEOM linkage */

11 / 40

Adding a GEOM scheduler

Adding a GEOM scheduler to a system should be as simple as this:

» decide which scheduling algorithm to use (may depend on the
workload, device, ...);

» decide which requests we want to schedule (usually everything
going to disk);

» insert a GEOM_SCHED node in the right place in the
datapath.

Problem: current "insert” mechanisms do not allow insertion
within an active path;
» must mount partitions on the newly created graph to use of
the scheduler;

» or, must to devise a mechanism for transparent
insertion/removal of GEOM nodes.

12 / 40

Transparent Insert

Transparent insertion has been implemented using existing GEOM
features (thanks to phk's suggestion): GEOM_SCHED

NODE
L

> create new geom, provider and
consumer;

» hook new provider to existing geom;
» hook new consumer to new provider;

» hook old provider to new geom.

M -

13 / 40

Transparent removal

GEOM_SCHED

Revert previous operations:

» hook old provider back to old geom;
» drain requests to the consumer and provider (careful!);
» detach consumer from provider;

» destroy provider.

14 / 40

GEOM _SCHED architecture

geom_sched.ko

GEOM_SCHED is made of three parts:

> a userland object (geom_sched.so), to set/modify
configuration;

> a generic kernel module (geom_sched.ko) providing glue code
and support for individual scheduling algorithms;

» one or more kernel modules, implementing different scheduling
algorithms (gsched_rr.ko, gsched_as.ko, ...).

15 / 40

GEOM_SCHED: geom_sched.so

geom_sched.so is the userland module in charge of configuring the
disk scheduler.

insert a scheduler in the existing chain
geom sched insert <provider>

before: [pp -—> gp ..]
after: [pp --> sched_gp --> cpl [new_pp -=> gp ...]

restore the original chain
geom sched destroy <provider>.sched.

16 / 40

GEOM_SCHED: geom_sched.ko

geom _sched.ko:

» provides the glue to construct the new datapath;

» stores configuration (scheduling algorithm and parameters);

» invokes individual algorithms through the GEOM_SCHED API;

geom{} g_sched_softc{}
e + B + o+
| softc *—|--->| sc_gsched *-|-->|
| .. | | | |
[| | [hash table]l | |
Fo—mm + | | |
| | +

| |

| I
| | +
| sc_data *—|—=>|
+ + |
+

g_gsched{}

gs_init
gs_fini
gs_start

algorithm-
specific

17 / 40

Scheduler modules

Specific modules implement the various scheduling algorithms,
interfacing with geom _sched.ko using the GEOM_SCHED API

/* scheduling algorithm creation and destruction */
typedef void *gs_init_t (struct g_geom *geom) ;
typedef void gs_fini_t (void *data);

/* request handling */

typedef int gs_start_t (void *data, struct bio *bio);

typedef void gs_done_t (void *data, struct bio *bio);

typedef struct bio *gs_next_t (void *data, int force);

/* classifier support */

typedef int gs_init_class_t (void *data, void *priv, struct thread *tp
typedef void gs_fini_class_t (void *data, void *priv);

18 / 40

GEOM_SCHED API, control and support

» gs_init() : called when a scheduling algorithm starts being
used by a geom_sched node.

» gs_fini() : called when the algorithm is released.

» gs_init_class() : called when a new client (as determined by
the classifier) appears.

» gs_fini_class() : called when a client (as determined by the
classifier) disappears.

19 / 40

GEOM_SCHED API, datapath

» gs_start() : called when a new request comes in. It should
enqueue the request and return 0 on success, or non-zero on
failure (meaning that the scheduler will be bypassed, in this
case bio->bio_callerl is set to NULL).

» gs_next() : called i) in a loop by g sched_dispatch() right after
gs_start(); ii) on timeouts; iii) on 'done’ events. Should return
immediately, either a pointer to the bio to be served or NULL
if no bio should be served now. Always return an entry if
available and the "force” argument is set.

» gs_done() : called when a request under service completes. In
turn the scheduler should either call the dispatch loop to serve
other pending requests, or make sure there is a pending
timeout to avoid stalls.

20 / 40

Classification

» Schedulers rely on a classifier to group requests. Grouping is
usually done basing on some attributes of the creator of the
request.

» long term solution:

» add a field to the struct bio (cloned as other fields);
» add a hook in g_io_request() to call the classifier and write the
" flowid" .

» For backward compatibility, the current code is more
contrived:

» on module load, patch g_io_request to write the " flowid” into a
seldom used field in the topmost bio;

» when needed, walk up the bio chain to find the " flowid";

» on module unload, restore the previous g_io_request.

» this is just experimental, but lets us run the scheduler on
unmodified kernels.

21/ 40

Part 3 - disk scheduling basics

22 /40

Disk scheduling basics

Back to the main problem, disk scheduling for rotational media (or
any media where sequential access is faster than random access).

» Contiguous requests are served very quickly;

> non contiguous requests may incur rotational delay or a seek
penalty.

» In presence of multiple outstanding requests, the scheduler
can reorder them to exploit locality.

» Standard disk scheduling algorithm: C-SCAN or "elevator”;
> sort and serve requests by sector index;

» never seek backwards.

23 / 40

Disksort (and its API)

> bioqg_disksort is a data structure that implements the C-SCAN
algorithm;
» provides an API to force ordering;

» biog_disksort() performs an ordered insertion;

» biog_first() return the head of the queue, without removing;

> bioq_takefirst() return and remove the head of the queue,
updating the 'current head position’ as biog->last_offset =
bio->bio_offset + bio->bio_length;

> biog.insert_tail() insert an entry at the end. It also creates a
'barrier’ so all subsequent insertions through bioq_disksort()
will end up after this entry;

» biog_insert_head() insert an entry at the head, update
biog->last_offset = bio->bio_offset so that all subsequent
insertions through bioq_disksort() will end up after this entry;

> biog_remove() remove a generic element from the queue, act

as bioq_takefirst() if invoked on the head of the queue. a0

Capture

» Requests are sorted by position, so a greedy, sequential client
can "capture” the disk;

offset --->

> likely to happen with writers, which are asynchronous;

» can be addressed by advancing the 'current’ head position
after a few sequential requests;

» the trick still does not protect from scattered request patterns.

25 / 40

Deceptive ldleness

» Readers tend to be synchronous: no request is sent before the
previous one is complete;

offset --—>

Arrival order: ABabab ..
Service order: A [seek] B [seek] a [seek] b ...

» the stream of requests from a process doing synchronous 1/0
is never seen as continuously backlogged by the scheduler.

> the interval between subsequent requests from the same client
is called "think time".

26 / 40

Possible Solution: Anticipation

Basic idea: wait a bit before serving non contiguous requests, just
in case a contiguous one comes soon.

» Useful with synchronous clients;
> may cause unnecessary idleness;

» may need some tuning of parameters (estimate the think time,
don’t wait much longer than that);

» helps fair schedulers to distribute disk bandwidth.

27 / 40

Addressing Fairness

Goal: assign resources according to some specific allocation
pattern.

» Actual allocation should be independent from requests from
competing clients (isolation);

» actual allocation should not alter the rate of our requests
(impossible to achieve with synchronous clients);

» usually addressed by controlling the service delay experienced
by our requests;

> same as the other two problems, relies on classification of
requests.

28 / 40

Part 4 - disk characterization

Some measurements to analyse the behaviour of different
schedulers.

» Characterize disk (and device driver) behaviour;

» important to design and understand the behaviour of
scheduling algorithms.

29 / 40

H

CDF

ow to do measurement 7

1

09 |

08 [

0.7 |

06 [

05

04

03 [

02

01 0.25 0.3 0.35 0.4

0

A . . .
0 0.2 0.4 06 08 1
Latency (ms)

» Userland, ktrace, ktr 7

» small difference even with 2k blocks;

» userland is often good enough;

» be careful to discard outliers (initial seeks, scheduling
artifacts, etc.)

30 / 40

Latency vs blocksize, streaming

limited by the disk/interface/bus throughput;

latency also grows with the blocksize.

left: 250GB SATA, 7200 RPM, peak 88MB/s;

right: 250MB, ATA+USB, 700 RPM, USB2 peak 27TMB/s

vV v v .Y

31/40

Latency vs blocksize, streaming(2)

» Two more disks:
> left: 160GB laptop, 19MB/s; right: 320MB 7200 RPM SATA,
peak 75MB/s

32 /40

Delay vs seek distance

Seek delays have 3 parts:

> Acceleration/settle time;

» moving (proportional to distance)
» rotational delay.

» below: 250GB Sata, 7200 RPM

i g

/

{

/

/

1 ¥
G
16 *

im o
256m
4G

64G o

/[/

/[/

avi

5000

20000

25000

33 /40

More delay vs seek distance

left: USB, 7200 RPM; right: laptop, 3600 rpm

T -1 7
]’I»'f ’/ /&ﬁ“
l~/f /
f"‘/u ///
ey 7/
/ /
iy, Y4
AW /f
2L L

34 / 40

Remarks on measurements

vV v. v Y

we don't have exact geometry info, so we cannot easily
predict the exact seek latency;

media has variable throughput (and probably variable density);
beware of caching;
we don't know caching/readahead policies.

Some measurement can be made at runtime and used to tune
the scheduler.

35 /40

Part 5 - an example disk scheduler

36 / 40

Example scheduler: gsched rr

Per-client queues sorted using C-SCAN;

Round robin between queues;

Anticipation on the queue currently under service;

Bounded number of requests for each queue.

Parameters:

kern
kern
kern
kern
kern
kern

.geom.
.sched.

.geom

.geom.
.sched.

.geom

.geom.
.sched.

.geom

sched.

sched.

sched.

rr
rr
rr
rr
rr
rr

.wait_ms
.bypass
.w_anticipate
.quantum_kb
.quantum_ms
.queue_depth

5

0

1
8192
50

1

37 /40

Exported sysctl's

There are a few sysctl’'s exported by geom schedulers, for stats and
debugging

kern.
kern.
kern.
kern.
kern.
kern.
kern.
kern.
kern.

geom

geom.
geom.
geom.
geom.

geom

geom.
geom.
geom.

.sched.
sched.

sched
sched

sched.
.sched.
sched.

sched

requests:
in_flight:

.in_flight_w:
.in_flight_b:
in_flight_wb:

done:
algorithms:

.debug:
sched.

expire_secs:

total requests
requests in flight
writes in flight

bytes in flight

write bytes in flight
completed requests
registered algorithms
verbosity

classifier hash expire

38 /40

gsched_rr performance

Some preliminary results on scheduler’s performance in some easy
cases (the focus here is on the framework).
Measurement is using multiple dd instances on a filesystems, all
speeds in MiB/s.
> two greedy readers, throughput improvement
NORMAL: 6.8 + 6.8 ; GSCHED_RR: 27.0 4 27.0

> one greedy reader, one greedy writer, capture effect
NORMAL: R: 0.234 W:72.3 ; GSCHED_RR: R:12.0 W:40.0

» multiple greedy writers, only small loss of througput
NORMAL: 16+16; RR: 15.5 4+ 155

> one sequential reader, one random reader (fio)
NORMAL: Seq: 4.2 Rand: 4.2; RR: Seq: 30 Rand: 4.4

39 /40

Conclusions

» We have presented GEOM_SCHED, a framework for disk
scheduling within GEOM,;

> extremely simple to use and non intrusive

» Already able to give performance improvements in simple
cases

» no or small regression in generic case (low overhead)
» need some autotuning to achieve better performance

» open to experimentation (e.g. readahead in geom 7)

Questions ? luigi@freebsd.org
Code: http://info.iet.unipi.it/ luigi/FreeBSD/

40 / 40

