
GEOM SCHED: A Framework for

Disk Scheduling within GEOM

Luigi Rizzo and Fabio Checconi

May 8, 2009

GEOM SCHED

A framework for disk scheduling within GEOM

Luigi Rizzo

Dipartimento di Ingegneria dell’Informazione
via Diotisalvi 2, Pisa, ITALY

Fabio Checconi

SSSUP S. Anna,
via Moruzzi 1, Pisa, ITALY

2 / 40

Summary

◮ Motivation for this work

◮ Architecture of GEOM SCHED

◮ Disk scheduling issues

◮ Disk characterization

◮ An example anticipatory scheduler

◮ Performance evaluation

◮ Conclusions

3 / 40

Motivation

◮ Performance of rotational media is heavily influenced by the
pattern of requests;

◮ anything that causes seeks reduces performance;

◮ scheduling requests can improve throughput and/or fairness;

◮ even with smart filesystems, scheduling can help;

◮ FreeBSD still uses a primitive scheduler (elevator/C-LOOK);

◮ we want to provide a useful vehicle for experimentation.

4 / 40

Where to do disk scheduling

To answer, look at the requirements. Disk scheduling needs:

◮ geometry info, head and platter position;
◮ necessary to exploit locality and minimize seek overhead;
◮ known exactly only within the drive’s electronics;

◮ classification of requests;
◮ useful to predict access patterns;
◮ necessary if we want to improve fairness;
◮ known to the OS but not to the drive.

5 / 40

Where to do disk scheduling

Possible locations for the scheduler:

◮ Within the disk device
◮ has perfect geometry info;
◮ requires access to the drive’s firmware;
◮ unfeasible other than for specific cases.

◮ Within the device driver
◮ lacks precise geometry info.
◮ feasible, but requires modification to all drivers;

◮ Within GEOM
◮ lacks precise geometry info;
◮ can be done in just one place in the system;
◮ very convenient for experimentations.

6 / 40

Why GEOM SCHED

Doing scheduling within GEOM has the following advantages:

◮ one instance works for all devices;

◮ can reuse existing mechanisms for datapath (locking) and
control path (configuration);

◮ makes it easy to implement different scheduling policies;

◮ completely optional: users can disable the scheduler if the disk
or the controller can do better.

Drawbacks:

◮ no/poor geometry and hardware info (not available in the
driver, either);

◮ some extra delay in dispatching requests (measurements show
that this is not too bad).

7 / 40

Part 2 - GEOM SCHED architecture

◮ GEOM SCHED goals

◮ GEOM basics

◮ GEOM SCHED architecture

8 / 40

GEOM SCHED goals

Our framework has the following goals:

◮ Support for run-time insertion/removal/reconfiguration;

◮ support for multiple scheduling algorithms;

◮ production quality.

9 / 40

GEOM Basics

Geom is a convenient tool for manipulating disk I/O requests.
◮ Geom modules are interconnected as nodes in a graph;
◮ Disk I/O requests (”bio’s”) enter nodes through ”provider”

ports;
◮ arbitrary manipulation can occur within a node;
◮ if needed, requests are sent downstream through ”consumer”

ports;
◮ one provider port can have multiple consumer ports connected

to it;
◮ the top provider port is connected to sources (e.g. filesystem);
◮ the bottom node talks to the device driver.

10 / 40

Disk requests

A disk request is represented by a struct bio , containing control
info, a pointer to the buffer, node-specific info and glue for
marking the return path of responses.

struct bio {

uint8_t bio_cmd; /* I/O operation. */

...

struct cdev *bio_dev; /* Device to do I/O on. */

long bio_bcount; /* Valid bytes in buffer. */

caddr_t bio_data; /* Memory, superblocks, indirect

...

void *bio_driver1; /* Private use by the provider.

void *bio_driver2; /* Private use by the provider.

void *bio_caller1; /* Private use by the consumer.

void *bio_caller2; /* Private use by the consumer.

TAILQ_ENTRY(bio) bio_queue; /* Disksort queue. */

const char *bio_attribute; /* Attribute for BIO_[GS]ETATTR

struct g_consumer *bio_from; /* GEOM linkage */

struct g_provider *bio_to; /* GEOM linkage */

...

}; 11 / 40

Adding a GEOM scheduler

Adding a GEOM scheduler to a system should be as simple as this:

◮ decide which scheduling algorithm to use (may depend on the
workload, device, ...);

◮ decide which requests we want to schedule (usually everything
going to disk);

◮ insert a GEOM SCHED node in the right place in the
datapath.

Problem: current ”insert” mechanisms do not allow insertion
within an active path;

◮ must mount partitions on the newly created graph to use of
the scheduler;

◮ or, must to devise a mechanism for transparent
insertion/removal of GEOM nodes.

12 / 40

Transparent Insert

Transparent insertion has been implemented using existing GEOM
features (thanks to phk’s suggestion):

◮ create new geom, provider and
consumer;

◮ hook new provider to existing geom;

◮ hook new consumer to new provider;

◮ hook old provider to new geom.

13 / 40

Transparent removal

Revert previous operations:

◮ hook old provider back to old geom;

◮ drain requests to the consumer and provider (careful!);

◮ detach consumer from provider;

◮ destroy provider.

14 / 40

GEOM SCHED architecture

GEOM SCHED is made of three parts:

◮ a userland object (geom sched.so), to set/modify
configuration;

◮ a generic kernel module (geom sched.ko) providing glue code
and support for individual scheduling algorithms;

◮ one or more kernel modules, implementing different scheduling
algorithms (gsched rr.ko, gsched as.ko, ...).

15 / 40

GEOM SCHED: geom sched.so

geom sched.so is the userland module in charge of configuring the
disk scheduler.

insert a scheduler in the existing chain

geom sched insert <provider>

before: [pp --> gp ..]

after: [pp --> sched_gp --> cp] [new_pp --> gp ...]

restore the original chain

geom sched destroy <provider>.sched.

16 / 40

GEOM SCHED: geom sched.ko

geom sched.ko:
◮ provides the glue to construct the new datapath;
◮ stores configuration (scheduling algorithm and parameters);
◮ invokes individual algorithms through the GEOM SCHED API;

geom{} g_sched_softc{} g_gsched{}

+----------+ +---------------+ +-------------+

| softc *-|--->| sc_gsched *-|-->| gs_init |

| ... | | | | gs_fini |

| | | [hash table] | | gs_start |

+----------+ | | | ... |

| | +-------------+

| |

| | g_*_softc{}

| | +-------------+

| sc_data *-|-->| algorithm- |

+---------------+ | specific |

+-------------+

17 / 40

Scheduler modules

Specific modules implement the various scheduling algorithms,
interfacing with geom sched.ko using the GEOM SCHED API

/* scheduling algorithm creation and destruction */

typedef void *gs_init_t (struct g_geom *geom);

typedef void gs_fini_t (void *data);

/* request handling */

typedef int gs_start_t (void *data, struct bio *bio);

typedef void gs_done_t (void *data, struct bio *bio);

typedef struct bio *gs_next_t (void *data, int force);

/* classifier support */

typedef int gs_init_class_t (void *data, void *priv, struct thread *tp);

typedef void gs_fini_class_t (void *data, void *priv);

18 / 40

GEOM SCHED API, control and support

◮ gs init() : called when a scheduling algorithm starts being
used by a geom sched node.

◮ gs fini() : called when the algorithm is released.

◮ gs init class() : called when a new client (as determined by
the classifier) appears.

◮ gs fini class() : called when a client (as determined by the
classifier) disappears.

19 / 40

GEOM SCHED API, datapath

◮ gs start() : called when a new request comes in. It should
enqueue the request and return 0 on success, or non-zero on
failure (meaning that the scheduler will be bypassed, in this
case bio->bio caller1 is set to NULL).

◮ gs next() : called i) in a loop by g sched dispatch() right after
gs start(); ii) on timeouts; iii) on ’done’ events. Should return
immediately, either a pointer to the bio to be served or NULL
if no bio should be served now. Always return an entry if
available and the ”force” argument is set.

◮ gs done() : called when a request under service completes. In
turn the scheduler should either call the dispatch loop to serve
other pending requests, or make sure there is a pending
timeout to avoid stalls.

20 / 40

Classification

◮ Schedulers rely on a classifier to group requests. Grouping is
usually done basing on some attributes of the creator of the
request.

◮ long term solution:
◮ add a field to the struct bio (cloned as other fields);
◮ add a hook in g io request() to call the classifier and write the

”flowid”.

◮ For backward compatibility, the current code is more
contrived:

◮ on module load, patch g io request to write the ”flowid” into a
seldom used field in the topmost bio;

◮ when needed, walk up the bio chain to find the ”flowid”;
◮ on module unload, restore the previous g io request.

◮ this is just experimental, but lets us run the scheduler on
unmodified kernels.

21 / 40

Part 3 - disk scheduling basics

22 / 40

Disk scheduling basics

Back to the main problem, disk scheduling for rotational media (or
any media where sequential access is faster than random access).

◮ Contiguous requests are served very quickly;

◮ non contiguous requests may incur rotational delay or a seek
penalty.

◮ In presence of multiple outstanding requests, the scheduler
can reorder them to exploit locality.

◮ Standard disk scheduling algorithm: C-SCAN or ”elevator”;

◮ sort and serve requests by sector index;

◮ never seek backwards.

23 / 40

Disksort (and its API)

◮ bioq disksort is a data structure that implements the C-SCAN
algorithm;

◮ provides an API to force ordering;

◮ bioq disksort() performs an ordered insertion;
◮ bioq first() return the head of the queue, without removing;
◮ bioq takefirst() return and remove the head of the queue,

updating the ’current head position’ as bioq->last offset =
bio->bio offset + bio->bio length;

◮ bioq insert tail() insert an entry at the end. It also creates a
’barrier’ so all subsequent insertions through bioq disksort()
will end up after this entry;

◮ bioq insert head() insert an entry at the head, update
bioq->last offset = bio->bio offset so that all subsequent
insertions through bioq disksort() will end up after this entry;

◮ bioq remove() remove a generic element from the queue, act
as bioq takefirst() if invoked on the head of the queue.

24 / 40

Capture

◮ Requests are sorted by position, so a greedy, sequential client
can ”capture” the disk;

offset --->

+---+

| WWWWW.... XXX... YY.... |

+---+

◮ likely to happen with writers, which are asynchronous;

◮ can be addressed by advancing the ’current’ head position
after a few sequential requests;

◮ the trick still does not protect from scattered request patterns.

25 / 40

Deceptive Idleness

◮ Readers tend to be synchronous: no request is sent before the
previous one is complete;

offset --->

+---+

| Aaaaaaa... Bbbbbb... |

+---+

Arrival order: A B a b a b ...
Service order: A [seek] B [seek] a [seek] b ...

◮ the stream of requests from a process doing synchronous I/O
is never seen as continuously backlogged by the scheduler.

◮ the interval between subsequent requests from the same client
is called ”think time”.

26 / 40

Possible Solution: Anticipation

Basic idea: wait a bit before serving non contiguous requests, just
in case a contiguous one comes soon.

◮ Useful with synchronous clients;

◮ may cause unnecessary idleness;

◮ may need some tuning of parameters (estimate the think time,
don’t wait much longer than that);

◮ helps fair schedulers to distribute disk bandwidth.

27 / 40

Addressing Fairness

Goal: assign resources according to some specific allocation
pattern.

◮ Actual allocation should be independent from requests from
competing clients (isolation);

◮ actual allocation should not alter the rate of our requests
(impossible to achieve with synchronous clients);

◮ usually addressed by controlling the service delay experienced
by our requests;

◮ same as the other two problems, relies on classification of
requests.

28 / 40

Part 4 - disk characterization

Some measurements to analyse the behaviour of different
schedulers.

◮ Characterize disk (and device driver) behaviour;

◮ important to design and understand the behaviour of
scheduling algorithms.

29 / 40

How to do measurement ?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Latency (ms)

ktrace
fio
ktr

 0.3

 0.4

 0.5

 0.6

 0.7

 0.25 0.3 0.35 0.4

◮ Userland, ktrace, ktr ?
◮ small difference even with 2k blocks;
◮ userland is often good enough;
◮ be careful to discard outliers (initial seeks, scheduling

artifacts, etc.)

30 / 40

Latency vs blocksize, streaming

◮ limited by the disk/interface/bus throughput;

◮ latency also grows with the blocksize.

◮ left: 250GB SATA, 7200 RPM, peak 88MB/s;

◮ right: 250MB, ATA+USB, 700 RPM, USB2 peak 27MB/s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

2k
4k
8k

16k
32k
64k

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

2k
4k
8k

16k
32k
64k

31 / 40

Latency vs blocksize, streaming(2)

◮ Two more disks:
◮ left: 160GB laptop, 19MB/s; right: 320MB 7200 RPM SATA,

peak 75MB/s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

2k
4k
8k

16k
32k
64k

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

2k
4k
8k

16k
32k
64k

32 / 40

Delay vs seek distance

Seek delays have 3 parts:

◮ Acceleration/settle time;

◮ moving (proportional to distance)

◮ rotational delay.

◮ below: 250GB Sata, 7200 RPM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000

128G
16G

1G
1m

256m
4G

64G

33 / 40

More delay vs seek distance

left: USB, 7200 RPM; right: laptop, 3600 rpm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000

128G
128M

16G
16M

1G
256M

64G

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000

16G
1G
1m
4G

64m

34 / 40

Remarks on measurements

◮ we don’t have exact geometry info, so we cannot easily
predict the exact seek latency;

◮ media has variable throughput (and probably variable density);

◮ beware of caching;

◮ we don’t know caching/readahead policies.

◮ Some measurement can be made at runtime and used to tune
the scheduler.

35 / 40

Part 5 - an example disk scheduler

36 / 40

Example scheduler: gsched rr

◮ Per-client queues sorted using C-SCAN;

◮ Round robin between queues;

◮ Anticipation on the queue currently under service;

◮ Bounded number of requests for each queue.

◮ Parameters:

kern.geom.sched.rr.wait_ms 5

kern.geom.sched.rr.bypass 0

kern.geom.sched.rr.w_anticipate 1

kern.geom.sched.rr.quantum_kb 8192

kern.geom.sched.rr.quantum_ms 50

kern.geom.sched.rr.queue_depth 1

37 / 40

Exported sysctl’s

There are a few sysctl’s exported by geom schedulers, for stats and
debugging

kern.geom.sched.requests: total requests

kern.geom.sched.in_flight: requests in flight

kern.geom.sched.in_flight_w: writes in flight

kern.geom.sched.in_flight_b: bytes in flight

kern.geom.sched.in_flight_wb: write bytes in flight

kern.geom.sched.done: completed requests

kern.geom.sched.algorithms: registered algorithms

kern.geom.sched.debug: verbosity

kern.geom.sched.expire_secs: classifier hash expire

38 / 40

gsched rr performance

Some preliminary results on scheduler’s performance in some easy
cases (the focus here is on the framework).
Measurement is using multiple dd instances on a filesystems, all
speeds in MiB/s.

◮ two greedy readers, throughput improvement
NORMAL: 6.8 + 6.8 ; GSCHED RR: 27.0 + 27.0

◮ one greedy reader, one greedy writer, capture effect
NORMAL: R: 0.234 W:72.3 ; GSCHED RR: R:12.0 W:40.0

◮ multiple greedy writers, only small loss of througput
NORMAL: 16+16; RR: 15.5 + 15.5

◮ one sequential reader, one random reader (fio)
NORMAL: Seq: 4.2 Rand: 4.2; RR: Seq: 30 Rand: 4.4

39 / 40

Conclusions

◮ We have presented GEOM SCHED, a framework for disk
scheduling within GEOM;

◮ extremely simple to use and non intrusive

◮ Already able to give performance improvements in simple
cases

◮ no or small regression in generic case (low overhead)

◮ need some autotuning to achieve better performance

◮ open to experimentation (e.g. readahead in geom ?)

Questions ? luigi@freebsd.org
Code: http://info.iet.unipi.it/ luigi/FreeBSD/

40 / 40

