netmap: memory mapped
access to network devices

Luigl Rizzo, Matteo Landi, Universita di Pisa, Italy
http://info.1et.unipi.it/~luigl/netmp/

+ 8%

rizzo@et.unipi.it

Moving packets quickly between the wire and the applicatgoa must for system
such as software routers, switches, firewalls, traffic generatorsnandors. But at

are a few custom solutions [1, 2, 3, 4, 5] that run really fast. But Howe achiev

10 Gbit/s line rate equals to 14.88 Mpps per port, or 67.2 ns aekad. Sure, the(r{
N

such speeds (and remain compatible with applications writtéma past 20 years)
general purpose OS designed when “fast” was 2-3 orders of magriduer ?

netmap [6] addresses the problem by making the datapath between theamalre
userspace applications as fast as possible, but otherwisedaachanged the rest of
the OS, and most/all user APIs. As a result we achieved 10nistiaster 1/O rates

with minimal modifications to the operating system and ajaions.

Why current APlsareslow ?

Raw packet access normally uses a socket ARIlidopcap. This involves syscall
and memory copy costs (often per packet) just to enter the kaMi#in the kernel,

device drivers encapsulate packets into containers (mbuf/$kdhigt?acket) adding

even more overhead due to allocations, copies, buffer shaginghsonization.

Operating System
Hardware P gy

As a result, current per-core
performance on standard OS Is
0.5 Mpps for userspace apps, up
to 1..2 Mpps for in-kernel apps,
and poor scalability with num-
ber of cores. Custom systems
(in-kernel Click [1]) reach about
4 Mpps, and scale slightly better
with cores. \.
The NIC would be able to manage circular lists of buffers withditio CPU inter-
vention, but the OS does not make good use of these features.

4)

NIC registers

NIC ring

mbufs

=
==y

Buffers

base
head

tail ‘
n descs |

\§ A/

netmap’skey ideas

sSample code for a packet generator:

struct netmap i f =*nifp;
struct nnreq red;

char

* e m

struct pollfd fds;

bzero(& eq, sizeof(req));:

bzer o(& ds,

f

strcpy(reqg. nm nane,

si zeof (fds));
ds.fd = open("/dev/ net map",
lli XOlI);
octl (fds.fd, N OCREG &req);

O RDVR) :

mem = mmap(0, req.nensize, fds.fd);
nifp = NETMAP_| F(nem req.offset);

f
f

}

ds. events = PCOLLQOUT;
or (;;) {
poll (fds, 1, -1);
for (r = 0; r < reqg.numqueues; r++) {
struct netmap_ring *ring = NETMAP_TXRI NE ni f p,
while (ring->avail--
Int | = ring->cur;
char *buf = NETMAP_BUF(ri ng,
... prepare packet in buf ...
ring->slot[i].len = ... packet length ...
ring->cur = NETMAP_NEXT(ring, 1);
}
}

r);
> 0) {

ring->slot[i].buf_index);

Perfor mance
*6 " Wire limit: 14.88 Mpps netmap uses 70..90 CPU clocks
14 to send or receive one packet, 10-
12 20 times less than standard APIs,
i and has with very good scalabillity
8 on clock frequency and number of

Throughput (Mpps)

e a shadow copy of the NIC’s ringqnétmap ring) supports batching of requests and

removes the need for mbufs/skbufs;
e efficient synchronization usingol | () ;
e carefully designed API, event loops need only one syscall peatibn;
e full support for multicore and multigueue NICs througt af fi ni ty() ;

ﬁetmap_if _ \
/_‘

num rings

netmap ring NIC ring
ring size
cur
avail
flags
buf ofs

ring ofs|[]

J

b/

=
i

Expensive software modifications are minimized as follows:
e device Independent API, does not rely on specific hw features;

e minimal, mostly mechanical modifications to existing devilrivers;
e packets from/to the host stack can still use the NIC;

e We provide an efficient libpcap emulation library on top of thaveAPI.

Most of these ideas above have been proposed before, but sgpakxiae of the
existing systems to date (though [4] comes close) puts aletfezdures together int
a high performance and general purpose framework for packet I/O from asersp
well engineered architecture is much more than a collectionm$ pa

=

mmap()-ed regiov

HW rings

_

Using netmap (native API)

Threads open/ dev/netmap and issue an'.- '*
loctl () to switch the NIC to “netmap”)
mode, disconnectiong the datapath from the hilil
stack. Data packets and netmap rings are in{ih
nmap() 'ed region with well defined ownership|s
so that lock free access Is possible. Netmap rifigs —
are updated bypol | () orioctl (), and their
content Is validated by the kernel so a faulty pr&
gram cannot crash the system. File descript

and threads can be associated to individual ri

Host RX

netmap client .
ring

(and cores). A thread can manage multiple int%
faces and do zero-copy forwarding to other inteitc rx
faces or to the host stack. rings

cores.
With netmap we do line rate

packet generation at 10 Ghit/s
(14.88 Mpps) with a single core
running at 1.2 GHz (and low CPU
occupation at higher clock rates).
Packet reception is equally fast.

4 cores mgum
2 COTreS m@uum
1 core

0.5 1 1.5 2.5

Frequency (GHz)

Simple packet forwarding runs at over 10 Mpps again using a secugk

In many cases the bottleneck is not any m%?é)pllcatlon Speed
the CPU, but the NIC itself (most models have o (Mpps)
limitations on RX or TX rates at some or all"-Kérnel bridging - 0.69
packet sizes) and the 1/O buses. Other thBatlve netmap forwarding 10.66
that, performance usually beats that of the b&§tmapcap forwarding =~ 7.50
in-kernel applications. libpcap OpenvSwitch ~ 0.78
We have built anetmapcap, a libpcap emula- N€tmapcap OpenvSwitch 2.98
tion library on top of netmap so that porting?“Ck userspace 0.40
applications is straightforward. hetmapcap Click 3.95

Applications, especially I/O intensive ones, esperienagel@peedups. As an exam-
ple, Click userspace is now competitive or better than the medesersion.

netmap (available for FreeBSD) consists of about 2000 lines of code forcde
functions (ioctl, select/poll) and driver support, plus indwal driver modifications
(mostly mechanical, about 500 lines each) to interact witm#tenap rings. To date,
netmap support is available for the Intel 10 Gbit/s adapters @xayover), and for
various 1 Gbit/s adapters (Intel, RealTek, Nvidia), more are beidgad

OACknowledgements: Work supported by EC FP7-ICT Project “CHANGE” (n.

257422). Thanks to Intel Research Berkeley for funding the hardwadstosan the
experiments.

References

[1] E.Kohler, R.Morris, B.Chen, J.Jannotti, M.F.Kaashoeke Tick modular router, ACM TOCS, vol.18 n.3, pp.263-297,

ACM, 2000

[2] M.Dobrescu, N.Egi, K.Argyraki, B.G.Chun, K.Fall, G. lamccone, A.Knies, M.Manesh, S.Ratnasamy, RouteBricks: Ex-

ploiting parallelism to scale software routers, ACM SOSR)20

[3] S. Han, K.Jang, K.Park, S.Moon, PacketShader: a GPBlaated software router, Proc. of ACM SIGCOMM 2010, New

4]
3]
6]

Delhi, India
Kaist’'s Packet I/O engine, http://shader.kaist.edaketshader/i@ngine/
Max Krasnyansky, UIO-IXGBE, Qualcomm, https://opensmugualcomm.com/wiki/UIO-IXGBE

L. Rizzo, netmap: fast and safe access to network adafdensser programs, Tech. Report, Univ. di Pisa, June 2011,
http://info.iet.unipi.it/~~luigi/netmap/

