
VALE, a Switched Ethernet for Virtual Machines

Luigi Rizzo
Dip. di Ingegneria dell’Informazione

Università di Pisa, Italy
rizzo@iet.unipi.it

Giuseppe Lettieri
Dip. di Ingegneria dell’Informazione

Università di Pisa, Italy
g.lettieri@iet.unipi.it

ABSTRACT

The growing popularity of virtual machines is pushing the
demand for high performance communication between them.
Past solutions have seen the use of hardware assistance, in
the form of “PCI passthrough” (dedicating parts of physical
NICs to each virtual machine) and even bouncing traffic
through physical switches to handle data forwarding and
replication.

In this paper we show that, with a proper design, very
high speed communication between virtual machines can be
achieved completely in software. Our architecture, called
VALE, implements a Virtual Local Ethernet that can be
used by virtual machines, such as QEMU, KVM and others,
as well as by regular processes. VALE achieves a through-
put of over 17 million packets per second (Mpps) between
host processes, and over 2 Mpps between QEMU instances,
without any hardware assistance.

VALE is available for both FreeBSD and Linux hosts, and
is implemented as a kernel module that extends our recently
proposed netmap framework, and uses similar techniques to
achieve high packet rates.

Categories and Subject Descriptors

D.4.4 [Operating Systems]: Communications Manage-
ment; D.4.7 [Operating Systems]: Organization and De-
sign

General Terms

Design, Experimentation, Performance

Keywords

Virtual Machines, Software switches, netmap

1. INTRODUCTION
A large amount of computing services nowadays are mi-

grating to virtualized environments, which offer significant

Copyright ACM, 2012. This is the author’s version of the work,
edited on 2012-10-26. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version
will be published as
Luigi Rizzo, Giuseppe Lettieri, VALE, a Switched Ethernet for
Virtual Machines, ACM CoNEXT’12, Dec.10-13, 2012, NICE,
France.
This work was funded by the EU FP7 projects CHANGE
(257422) and OPENLAB (287581). Source code and
other resources related to this work are available at
http://info.iet.unipi.it/∼luigi/vale/

advantages in terms of resource sharing and cost reduction.
Virtual machines need to communicate and access periph-
erals, which for systems used as servers mostly means disks
and network interfaces. The latter are extremely challeng-
ing to deal with even in non-virtualized environments, due
to the high data and packet rates involved, and the fact
that, unlike disks, traffic generation is initiated by external
entities on which the receiver has no control. It is then not
a surprise that virtual machines may have a tough time in
operating network interfaces at wire speed in all possible
conditions.

As it is often the case, hardware assistance comes handy to
improve performance. As shown in Section 2.2, some propos-
als rely on multiqueue network cards exporting resources to
virtual machines through PCI passthrough, and/or on exter-
nal switches to copy data between interfaces. However this
solution is expensive and not necessarily scalable. On the
other hand, software-only solutions proposed to date tend to
have relatively low performance, especially for small packet
sizes.

We then wondered if there was an inherent performance
problem in doing network switching in software. The re-
sult we found is that high speed forwarding between virtual
machines is achievable even without hardware support, and
at a rate that exceeds that of physical 10 Gbit/s interfaces,
even with minimum-size packets.

Our contribution: The main result we present in this
paper is a system called VALE, which implements a Virtual
Local Ethernet that can be used to interconnect virtual ma-
chines, or as a generic high speed bus for communicating
processes. VALE is accessed through the netmap API, an
extremely efficient communication mechanism that we re-
cently introduced [17]. The same API can be trivially used
to connect VALE to hardware devices, thus also providing
communications with external systems at line rate [16].

VALE is 10..20 times faster than other software solutions
based on general purpose OSes (such as in-kernel bridging
using TAP devices or various kinds of sockets). It also out-
performs NIC-assisted bridging, being capable to deliver well
over 17 Mpps with short frames, and over 6 Mpps with 1514-
byte frames (corresponding to more than 70 Gbit/s).

The use of the netmap API is an enabling factor for such
performance, but the packet rates reported in this paper
could have not been achieved without engineering the for-
warding code in a way that exploits batched processing. Sec-
tion 3.3 discussed the solutions we use.

To prove that VALE’s performance can be exploited
by virtual machines, we then added VALE support to

guest

host

guest

hypervisor

NIC

switch

D

hypervisor

guest

Figure 1: Possible paths in the communication
between guests: A) through the hypervisor; B)
through the host, e.g. via native bridging; C)
through virtual queues the NIC; D) through an ex-
ternal network switch.

QEMU [4] and KVM [9], and measured speedups between 2
and 6 times for applications running on the guest OS1, reach-
ing over 2.5 Mpps with short frames, and about 2 Mpps with
1514-byte frames, corresponding to 25 Gbit/s. We are con-
fident that we will be able to reach this level of performance
also with other hypervisors and guest NIC drivers.

The paper is structured as follows. In Section 2 we define
the problem we are addressing in this paper, and present
some related work that is also relevant to describe the so-
lutions we adopted. Section 3 details the architecture of
our Virtual Local Ethernet, discussing and motivating our
design choices. Section 4 comments on some implementa-
tion details, including the hypervisor modifications needed
to make use of the VALE infrastructure, and device em-
ulation issues. We then move to a detailed performance
measurement of our system, comparing it with alternatives
proposed in the literature or implemented in other products.
We first look at the raw switch performance in Section 5,
and then study the interaction with hypervisors and guest
in Section 6. Finally, Section 7 discusses how our work can
be used by virtualization solutions to achieve large speedups
in the communication between virtual machines, and indi-
cates some directions for future work.

2. PROBLEM DEFINITION
The problem we address in this paper is how to imple-

ment a high speed Virtual Local Ethernet that can be used
as a generic communication mechanism between virtual ma-
chines, OS processes, and physical network interfaces.

Solutions to this problem may involve several components.
Virtual machine instances in fact use the services supplied by
a hypervisor (also called Virtual Machine Monitor, VMM)
to access any system resource (from CPU to memory to
communication devices), and consequently to communicate
with each other. Depending on the architecture of the sys-
tem, resource access from the guest can be mediated by the
hypervisor, or physical resources may be partially or com-

1especially when we can overcome the limitations of the em-
ulated device driver, see Section 6

pletely allocated to the guest, which then uses them with
no interference from the hypervisor (except when triggering
protection mechanisms).

Figure 1 illustrates implementations of the above concepts
in the case of network communication between virtual ma-
chines. In case A, the hypervisor does a full emulation of
the network interfaces (NICs), and intercepts outgoing traf-
fic so that any communication between the virtual machine
instances goes through it; in QEMU, this is implemented
with the -net user option. In case B, the hypervisor still
does NIC emulation, but traffic forwarding is implemented
by the host, e.g. through an in-kernel bridge (-net-tap) or
a module such as the one we present in this paper.

Other solutions give the virtual machine direct access to
the NIC (or some of its queues). In this case, the NIC itself
can implement packet forwarding between different guests
(see the path labeled C), or traffic is forwarded to an external
switch which in turn can bounce it back to the appropriate
destination (path D).

NIC emulation, as used in A and B, gives the hypervisor
a lot of control on the operations done by the guest, and
works as a nice adaptation layer to run the guest on top of
hardware that the guest OS would not know how to control.

Common wisdom suggests that NIC emulation is slow, and
direct NIC access (as in C and D) is generally necessary for
good virtual network performance, even though it requires
some form of hardware support to make sure that the guest
does not interfere with other critical system resources.

However, the belief that NIC emulation is inherently slow
is wrong, and mostly the result of errors in the emulation
code [15] or missing emulation of features (such as inter-
rupt moderation, see [14]) that are fundamental for high rate
packet processing. While direct hardware access may help in
communication between the guest and external nodes, vir-
tio [20], proprietary virtual device emulators [22,23], and as
we show in this paper, even e1000 emulation, done properly,
provide excellent performance, comparable or even exceed-
ing that of real hardware in VM-to-VM communication.

2.1 Organization of the work
In summary, the overall network performance in a virtual

machine depends on three components:

• the guest/hypervisor communication mechanism;

• the hypervisor/host communication mechanism;

• the host infrastructure that exposes multiple physical
or virtual NIC ports to its clients.

In this paper we first present an efficient architecture for the
last component, showing how to design and implement an
extremely fast Virtual Local Ethernet (VALE) that can be
used by the hypervisors (and possibly exported to the guest
OS), or even used directly by regular host processes. We
then extend some popular hypervisors so that their com-
munication with the host can be made efficient and exploit
the speed of VALE. Finally, we discuss mechanisms that we
implemented in previous work and that can be extremely
effective to improve performance in a virtualized OS.

2.2 Related work
There are three main approaches to virtualized I/O,

which rely on different choices in the communication be-
tween guest and hypervisor, and between hypervisor and
the host/bridging infrastructure. We examine them in turn.

2.2.1 Full virtualization

The simplest approach (in terms of requirements for the
guest) is to expose a virtual interface of the type known
to the guest operating system. This typically involves in-
tercepting all accesses to critical resources (NIC registers,
sometimes memory regions) and use them to update a state
machine in the hypervisor that replicates the behaviour of
the hardware. Historically, this is the first solution used by
most emulators, starting from VMware to QEMU [4] and
other recent systems.

With this solution the hypervisor can be a simple process
that accesses the network using standard facilities offered
by the host: TCP/UDP sockets (usually to build tunnels or
emulate ethernet segments), or BPF/libpcap [10] or virtual
interfaces (TAP) to inject raw packets into the network.

TAP is a software device with two endpoints: one is man-
aged as a network interface (NIC) by the operating system,
the other one is a file descriptor (FD) driven by a user pro-
cess. Data blocks sent to the FD endpoint appear as ether-
net packets on the NIC endpoint. Conversely, ethernet pack-
ets that the operating system sends to the NIC endpoint can
be read by the user process from the FD endpoint. A hy-
pervisor can then pass the guest’s traffic to the FD endpoint
of a TAP device, whose NIC endpoint can be connected to
other NICs (TAPs or physical devices) using the software
bridges available in the Linux and FreeBSD kernels, or other
software bridges such as Open vSwitch [12].

There also exist solutions that run entirely in user space,
such as VDE [8], providing configurable tunnels between
virtual machines. In general, this kind of solution offers the
greatest ease of use, at the expense of performance. Another
possibility is offered by MACVTAPs [1], which are a special
kind of TAP devices that can be put in a “bridge” mode,
so that they can send packets to each other. Their main
purpose is to simplify networking setup, by removing the
need to configure a separate bridge.

2.2.2 Paravirtualization

The second approach goes under the name of paravirtu-
alization [3] and requires modifications in the guest. The
guest becomes aware of the presence of the hypervisor and
cooperates with it, instead of being intercepted by it. As
far as I/O is concerned, the modifications in the guest gen-
erally come in the form of new drivers for special, “paravir-
tual” devices. VMware has always offered the possibility to
install the VMware Tools in the guest to improve interop-
erability with the host and boost I/O performance. Their
vSphere virtualization infrastructure also offers high perfor-
mance vSwitches to interconnect virtual machines [22].

Xen offers paravirtualized I/O in the form a special driver
domain and pairs of backend-frontend drivers. Frontend
drivers run in the guests and exchange data with the back-
end drivers running in the driver domain, where a standard
Linux kernel finally completes the I/O operations. This ar-
chitecture achieves fault isolation and driver reuse, but per-
formance suffers [11]. Bridging among the guests is per-
formed by a software bridge that connects the driver back-
ends in the guest domain.

XenLoop [24] is a solution that improves throughput and
latency among Xen guests running on the same host. It
uses FIFO message queues in shared memory to bypass the
driver domain. XenLoop is tightly integrated with the hy-
pervisor, and in fact, its exclusive focus seems to provide a

fast network channels to hypervisors. For this reason is not
completely comparable with the VALE switch presented in
this work, which also aims to implement be a generic com-
munication mechanism useful also outside the virtualization
world. In terms of performance, XenLoop seems to peak at
around 200 Kpps (on 2008 hardware), which is significantly
below the performance of VALE.

The KVM [26] hypervisor and the Linux kernel (both as
a guest and a host) offer support for virtio [20] paravirtual-
ization. Virtio is an I/O mechanism (including virtio-net for
network and virtio-disk for disk support) based on queues
of scatter-gather buffers. The guest and the hypervisor ex-
port shared buffers to the queues and notify each other when
batches of buffers are consumed. Since notifications are ex-
pensive, each endpoint can disable them when they are not
needed. The main idea is to reduce the number of context
switches between the guest and the hypervisor.

Vhost-net [2] is an in-kernel data-path for virtio-net.
Vhost-net is used by KVM, but it is not specifically tied to
it. In KVM, virtio-net notify operations cause a hardware-
assisted VM-exit to the KVM kernel module. Without
vhost-net, the KVM kernel module then yields control to
the KVM process in user space, which then accesses the vir-
tio buffers of the guest, and writes packets to a TAP device
using normal system calls. A similar, reversed path is fol-
lowed for receive operations.

With vhost-net enabled, instead, the KVM kernel module
completely bypasses the KVM process and triggers a kernel
thread which directly writes the virtio buffers to the TAP
device. The bridging solutions for this technique are the
same as those for full virtualization using TAP devices, and
the latter typically become the performance bottleneck.

2.2.3 Direct I/O access

The third approach is to avoid guest/hypervisor commu-
nication altogether and allow the guest to directly access the
hardware [25]. In the simplest scenario a NIC is dedicated
to a guest which gains exclusive access to it, e.g., by PCI
passthrough. This generally requires hardware support to
be implemented safely. Moreover, DMA transfers between
the guest physical memory and the peripheral benefit from
the presence of an IOMMU [7]. More complex scenarios
make use of multi-queue NICs to assign a separate queue to
each guest [21], or of programmable network devices to im-
plement device virtualization in the device itself [13]. These
solutions are generally able to achieve near native perfor-
mance in the guest, but at the cost of requiring specialized
hardware. Bridging can be performed either in the NIC it-
self, as in [21], or by connecting real external switches.

3. VALE, A VIRTUAL LOCAL ETHERNET
The first goal of this work is to show how we built a soft-

ware, high performance Virtual Local Ethernet (which we
call VALE), that can provide access ports to multiple clients,
be them hypervisors or generic host processes, as shown in
Figure 2. The target throughput we are looking for is in the
millions of packets per second (Mpps) range, comparable or
exceeding that of 10 Gbit/s interfaces. Given that the hy-
pervisor might be running the guest as a userspace process,
it is fundamental that the virtual ethernet is accessible from
user space with low overhead.

As mentioned, network I/O is challenging even for systems
running on real hardware, for the reasons described in [17]:

VALE bridge

host

vmm

guest

process

netmap API

Figure 2: A VALE local ethernet exposes multiple
independent ports to hypervisors and processes, us-
ing the netmap API as a communication mechanism.

expensive system calls and memory allocations are incurred
on each packet, while packet rates of millions of packets per
second exceed the speed at which system calls can be issued.

In netmap [16] we solved these challenges through a series
of simple but very effective design choices, aimed at amor-
tizing or removing certain costly operations from the critical
execution paths. Given the similarity to the problem we are
addressing in VALE, we use the netmap API as the commu-
nication mechanism between the host and the hypervisor. A
brief description of the netmap API follows.

3.1 The netmap API
The netmap framework was designed to implement a high

performance communication channel between network hard-
ware and applications in need of performing raw packet I/O.
The core of the framework is based on a shared memory
region (Figure 3), which hosts packet buffers and their de-
scriptors, and is accessible by the kernel and by userspace
processes. A process can gain access to a NIC, and tell the
OS to operate it in netmap mode, by opening the special
file /dev/netmap. An ioctl() is then used to select a spe-
cific device, followed by an mmap() to make the netmap data
structures accessible.

The content of the memory mapped region is shown in
Figure 3. For each NIC, it contains preallocated buffers
for transmit and receive packets, and one or more2 pairs of
circular arrays (netmap rings) that store metadata for the
transmit and receive buffers. Besides the OS, buffers are also
accessible to the NIC through its own NIC rings – circular
arrays of buffer descriptors used by the NIC’s hardware to
store incoming packets or read outgoing ones.

Using a single ioctl() or poll() system call, a process
can notify the kernel to send multiple packets at once (as
many as they fit in the ring). Similarly, receive notifications
for an entire batch of packets are reported with a single
system call. This way, the cost of system calls (up to 1 µs
or more even on modern hardware) is amortized and their
impact on individual packets can become negligible.

The other expensive operations – buffer allocations and
data copying – are removed because buffers are preallocated
and shared between the user process and (ultimately) the
NIC itself. The role of the system calls, besides notifications,
is to validate and convert metadata between the netmap and

2for NICs with multiple transmit and receive queues

indexflags len

ring_size

cur

avail

num_rings

ring_ofs[]
pkt_buf

pkt_buf

pkt_buf

pkt_buf

netmap_if netmap rings

phy_addr
len

NIC ring

Shared memory

system call

Figure 3: The memory areas shared between the
operating system and processes, and manipulated
using the netmap API.

the NIC ring, and to perform safety-critical operations such
as writing to the NIC’s register. The implicit synchroniza-
tion provided by the system call makes access to the netmap
ring safe without the need of additional locking between the
kernel and the user process.

Netmap is a kernel module made of two parts. Device-
independent code implements the basic functions (open(),
close(), ioctl(), poll()/select()), while device-
specific netmap-backends extend device drivers and are
in charge of transferring metadata between the netmap
ring and the NIC ring (see Figure 3). The backends
are very compact and fast, allowing netmap to send or
receive packets at line rate even with the smallest packets
(14.88 Mpps on a 10 Gbit/s interface) and with a single
core running at less than 900 MHz. True zero-copy between
interfaces is also supported, achieving line-rate switching
with minimum-sized packets at a fraction of the maximum
CPU speed.

3.2 A netmap-based Virtual Local Ethernet
From a user’s perspective, our virtual switch shown in

Figure 2 offers each user an independent, virtual NICs con-
nected to a switch and accessible with the netmap API. NIC
names start with the prefix vale (to differentiate them from
physical NICs); both virtual NICs and switches are created
dynamically as users access them.

When the netmap API requests to access a NIC named
valeX:Y (where X and Y are arbitrary strings), the system
creates a new VALE switch instance called X (if not exist-
ing), and attaches to it a port named Y.

Within each switch instance, packets are transferred be-
tween ports as in a learning ethernet bridge: the source MAC
address of each incoming packet is used to learn on which
port the source is located, then the packet is forwarded to
zero or more outputs depending on the type of destination
address (unicast, multicast, broadcast) and whether the des-
tination is known or not. The following pseudocode de-
scribes the forwarding algorithm. The set of destinations
is represented by a bitmap, so up to 64 output ports can
be easily supported. A packet is forwarded to port j if
dst & (1<<j) is non zero.

void tx_handler(ring, src_if) {
cur = ring->cur; avail = ring->avail;
while (avail-- > 0) {

pkt = ring->slot[cur].ptr;
// learn and store the source MAC
s = mac_hash(pkt->src_mac);
table[s] = {pkt->src_mac, src_if};
// locate the destination port(s)
d = mac_hash(pkt->dst_mac);
if (table[d].mac == pkt->dst_mac)

dst = table[d].src;
else

dst = ALL_PORTS;
dst &= ~(1<<src_if); // avoid src_if
// forward as needed
for (j = 0; j < max_ports; j++) {

if (dst & (1<<j)) {
lock_queue(j);
pkt_forward(pkt, ring->slot[cur].len, j);
unlock_queue(j);

}
}
cur = NEXT(cur);

}
ring->cur = cur; ring->avail = avail;

}

This code, operating on one packet at a time, is very simi-
lar to the implementation of most software switches found in
common OSes. However its performance is poor (relatively
speaking; we measured almost 5 Mpps as shown in Figure 8,
which is still 5 times faster than existing in-kernel bridging
code), for two main reasons: locking and data access latency.

The incoming queue on the destination port, in fact, must
be protected against concurrent accesses, and in the above
code the cost of locking (or equivalent mechanism) is paid
on each packet, possibly exceeding the packet processing
costs related to bridging. Secondly, the memory accesses to
read the metadata and headers of each packet may have a
significant latency if these data are not in cache.

3.3 Performance enhancements
To address these performance issues, we use a different

sequence of operations, which permits processing packets in
batches and supports data prefetching.

Batching is a well know technique to amortize the cost of
some expensive operations over a large set of objects. The
downside of batching is that, depending on how it is imple-
mented, it can increase the latency of a system. Given that
the netmap API used by VALE supports the transmission
of potentially large sets of packets on each system call, we
want to provide the system administrator with mechanisms
to enforce the desired tradeoffs between performance and
latency.

The key idea is to implement forwarding in multiple
stages. In a first stage we collect a batch of packets of
bounded maximum batch size from the input set of packets;
a short batch is created if there are fewer packets available
than the batch size. In this stage we copy metadata (packet
sizes and indexes/buffer pointers), and also issue prefetch
instructions for the payload of the packets in the batch, so
that the CPU can start moving data towards caches before
using them. Figure 4 shows how packets from the netmap
ring are copied into a working array (pool) which also has
room to store the set of destinations for each packet (these
fields will be filled in the next stage). The pseudocode for
this stage is the following:

Forwarding table

dst

0 0 0 0 1

1 0 0 0 0

0 0 0 1 0

0 0 0 1 0

1 1 1 1 1

len ptr

pool

mac addr. src

netmap ring

0 0 0 0 100:C0:22:18:12:10

Figure 4: The data structures used in VALE to
support prefetching and reduce the locking over-
head. Chunks of metadata from the netmap ring
are copied to a temporary array, while at the same
time prefetching packets’ payloads. A second pass
then runs a destination lookup in the forwarding ta-
ble, and finally the temporary array is scanned in
column order to serve each interface in a single crit-
ical section.

void tx_handler(ring, src_if) {
// stage 1, build batches and prefetch
i = 0; cur = ring->cur; avail = ring->avail;
for (; avail-- > 0; cur = NEXT(cur)) {

slot = &ring->slot[cur];
prefetch(slot->ptr);
pool[i++] = {slot->ptr, slot->len, 0};
if (i == netmap_batch_size) {

process_batch(pool, i, src_if);
i = 0;

}
}
if (i > 0)

process_batch(pool, i, src_if);
}

3.3.1 Processing a batch

The next processing stage involves updating the forward-
ing table, and computing the destination port(s) for each
packet. The fact that the packet’s payload has been brought
into caches by the previous prefetch instructions should re-
duce the latency in accessing data. Furthermore, repeated
source/destination addresses within a batch should improve
locality in accessing the forwarding table.

Once destinations have been computed, the final stage
can forward traffic iterating on output ports, which satisfies
our requirement of paying the cost of locking/unlocking a
port only once per batch. The following pseudocode shows
a simplified version of the forwarding logic.

void process_batch(pool, n, src_if) {
// stage 2, compute destinations
for (i = 0; i < n; i++) {

pkt = pool[i].ptr;
s = mac_hash(pkt->src_mac);
table[s] = {pkt->src_mac, src_if};
d = mac_hash(pkt->dst_mac);
if (table[d].mac == pkt->dst_mac)

pool[i].dst = table[d].src;
else

pool[i].dst = ALL_PORTS;
}
// stage 3, forward, looping on ports
for (j = 0; j < max_ports; j++) {

if (j == src_if)
continue; // skip src_if

lock_queue(j);
for (i = 0; i < n; i++) {

if (pool[i].dst & (1<<j))
pkt_forward(pool[i].pkt, pool[i].len, j);

}
unlock_queue(j);

}
}

In the actual implementation, the final stage is further
optimized to reduce the cost of the inner loop. As an exam-
ple, the code skips ports for which there is no traffic, and
delays the acquisition of the lock until the first packet for a
destination is found, to shorten of critical sections3.

3.3.2 Avoiding multicast

Forwarding to multiple destinations is a significant com-
plication in the system, both in terms of space and runtime.
The worst case complexity of stage 3, even for unicast traf-
fic, is still O(N) per packet, where N is the number of ports
in the bridge. If a bridge is expected to have a very large
number of ports (e.g. connected to virtual machines), it
may make sense to remove support for multicast/broadcast
forwarding4.

To achieve this, the field used to store bitmap addresses
can be recycled to build lists of packets for a given des-
tination, thus avoiding an expensive worst case behaviour.
Traffic originally directed to multiple ports (unknown desti-
nations, or ARP requests/advertisements, BOOTP/DHCP
requests, etc.) can be directed to a default port where a user-
level process will respond appropriately, e.g. serving ARP
and DHCP requests (a similar strategy is normally used in
access nodes – DSLAM/BRAS – that terminate DSL lines).

3.3.3 Alternative forwarding functions

We should note that stage 2 is the only place where the
forwarding function is invoked. It is then relatively sim-
ple, and it will be the subject of future work, to replace it
with alternative algorithms such as an implementation of a
OpenFlow dataplane.

3.4 Copying data
The final processing stage calls function pkt_forward(),

which is in charge of queueing the packet on one of the des-
tination ports. The simplest way to do this, and the one

3Computing the first and last packet for each destination
is a lot more expensive in the generic case, as it requires
iterating on the bitmap containing destinations. Even more
expensive, from a storage point of view, is tracking the exact
set of packets for a given destination.
4This feature will be implemented in future releases.

we use in VALE, is to copy the payload from the source to
the destination buffer. Copying is especially convenient be-
cause it supports the case where the source and destination
ports have buffers mapped in mutually-inaccessible address
spaces. This is exactly one of the key requirements in VALE,
where clients attached to the ports are typically virtual ma-
chines, or other untrusted entities, that should not interact
in other ways than through the packets sent to them.

Ideally, if a packet has only a single destination, we could
simply swap buffers between the transmit and the receive
queue. However this method requires that buffers be acces-
sible in both the sender and the receiver’s address spaces and
is not compatible with the need to isolate virtual machines.

While data copies may seem expensive, on modern sys-
tems the memory bandwidth is extremely high so we can
achieve good performance as long as we make sure to avoid
cache misses. We use an optimized copy function which is
extremely fast: if the data is already in cache (which is likely,
due to the prefetch() and the previous access to the MAC
header), it takes less than 15 ns to copy a 60-bytes packet,
and 150 ns for a 1514-bytes packet.

4. IMPLEMENTATION DETAILS
VALE is implemented as a kernel module, and is available

from [19] for both FreeBSD and Linux as an extension of
the netmap module. Thanks to the modular architecture of
the netmap software, the additional features to implement
VALE required less than 1000 additional lines of code, and
the system was running on both FreeBSD and Linux from
the very first version. The current prototype supports up to
8 switches per host (the number is configurable at compile
time), with up to 64 ports each.

4.1 External communication
As presented, VALE implements only a local ethernet

switch, whose use is restricted to processes and hypervisors
running on the same host. The connection with external net-
works is however trivially achieved with one of the tools that
are part of our netmap framework, which can bridge two ar-
bitrary netmap interfaces at line rate, using an arrangement
similar to that in Figure 5. We can use one netmap-bridge
to connect to the host stack, and one or more to connect to
physical interfaces.

Because the relevant code is already existing and opera-
tional with the desired performance, we will not discuss it in

VALE

to the

hypervisors

em0

host stack

...

netmap

bridge

Figure 5: The connection between VALE, physical
network interfaces and the host stack can be built
with existing components (netmap bridge) which
implement zero-copy high speed transfer between
netmap-compatible ports.

the experimental section. As part of future work, we plan to
implement a (trivial) extension of VALE to directly access
the host stack and network interfaces without the help of
external processes.

4.2 Hypervisor changes
In order to make use of the VALE network, hypervisors

must be extended to access the new network backend. For
simplicity, we have made modifications only to two popular
hypervisors, QEMU [4] and KVM [9], but our changes apply
in a similar way to VirtualBox and other systems using host-
based access to network interfaces. We do not foresee much
more complexity in making VALE ports accessible to Xen
DomU domains.

The QEMU/KVM backend is about 400 lines of code and
it implements the open and close routines, and the read and
write handlers called on the VALE file descriptor when there
is traffic to transfer.

Both QEMU and KVM access the network backend by
poll()’ing on a file descriptor, and invoking read/write han-
dlers when ready. For VALE, the handlers do not need to
issue system calls to read or write the packets: the payload
and metadata are already available in shared memory, and
information on new packets to send or receive are passed to
the kernel the next time the hypervisor calls poll(). This
enables the hypervisor to exploit the batching, in turn con-
tributing to reduce the I/O overhead.

As we will see in the performance evaluation, VALE is
much faster than other software solutions used to imple-
ment the network backend. This extra speed may stress the
hypervisor in unusual ways, possibly emphasizing some pre-
existing performance issue or bugs. We experienced similar
problems when modifying Open vSwitch to use netmap [18],
and we found similar issues in this work.

Specifically, we encountered two performance-related bugs
in the NIC emulation code in QEMU.

First of all, after some asymmetric tx versus rx perfor-
mance results [15], we discovered that the code involved in
the guest-side emulation of most network cards was missing
a notification to the backend when the receive queue changed
status from full to not-full. This made the input processing
timeout-based rather than traffic based, effectively limiting
the maximum receive packet rate to 100-200 Kpps. The fix,
which we pushed to the QEMU developers, was literally one
line of code and gave us a speedup of almost 10 times, letting
us reach 1-2 Mpps range depending on the hypervisor.

The second problem involves the emulation of interrupt
moderation, a feature that is fundamental to achieve high
packet rates even on real hardware. Moderation is even more
important in virtual machines where the handling of inter-
rupts (which involves numerous accesses to I/O ports) is
exceptionally expensive. We found that the e1000 emula-
tion code implements the registers related to moderation,
but then makes no use of them, causing interrupts to be
generated immediately on every packet transmission or re-
ception. We developed a partial fix [14] which improved the
transmit performance by 7-8 times with this change alone.

We note that problems of this kind are extremely hard to
identify (it takes a very fast backend to generate this much
traffic, and a fast guest to consume it) and easy to misat-
tribute. As an example, the complexity of device emulation
is usually indicated as the main reason for poor I/O perfor-

mance, calling for alternative solutions such as virtio [20]
or other proprietary APIs [23].

4.3 Guest issues
A fast network backend and a fast hypervisor do not im-

ply that the guest machines can communicate at high speed.
Several papers in the literature show that even on real hard-
ware, packet I/O rates on commodity operating systems are
limited to approximately 1 Mpps per core. High speed com-
munication (1..10 Gbit/s) is normally achieved thanks to
a number of performance-enhancing techniques such as the
use of jumbo buffers and hardware offloading of certain func-
tions (checksum, segmentation, reassembly).

As we recently demonstrated [16], this low speed is not
an inherent limitation in the hardware, but rather the result
of exceeding complexity in the operating system, and we
have shown how to achieve much higher packet rates using
netmap as the mechanism to access the network card.

As a consequence, for some of our high speed tests we
will use the network device in netmap mode also within the

guest. The same reasons that make netmap very fast on real
hardware, also help when running on emulated hardware:
on both the transmit and the receive side, operations that
need to be run in interpreted mode, or to trap outside the
emulator, are executed once per each large batch of packets,
thus contributing to improving performance.

5. PERFORMANCE EVALUATION
We have measured the performance of VALE on a few dif-

ferent multicore systems, running both FreeBSD and Linux
as the host operating systems, and QEMU and KVM as
hypervisors. In general, these experiments are extremely
sensitive to CPU and memory speeds, as well as to data lay-
out and compiler optimizations that may affect the timing of
critical inner loops of the code. As a consequence, for some
of the (many) tests we have run there are large variations
(10-20%) of the experimental results, also due to slightly dif-
ferent versions of the code or to the synchronization of the
processes involved. We also noted a steady and measurable
decline in QEMU/KVM network throughput (about 15% on
the same hardware) between versions 0.9, 1.0 and 1.1.

This said, the difference in performance between VALE
and competing solutions is much larger (4..10 times) than
the variance on the experimental data, so we can draw cor-
rect conclusions even in presence of noisy data.

For the various tests, we have used a combination of the
following components:

• Hardware and host operating systems:
i7-2600K (4 core, 3.2 GHz) + FreeBSD-9;
i7-870 (4 core, 2.93 GHz) + FreeBSD-10;
i5-750 (4 core, 2.66 GHz) + Linux 3.2.12.
i7-3930K (6 core/12 threads, 3.2 GHz) + Linux 3.2.0.
In all cases RAM is DDR3-1.33 GHz and the OS is
running in 64-bit mode.

• Hypervisors: QEMU 1.0.1 (both FreeBSD and
Linux); KVM 1.0.1/1.1.0 (Linux).

• Network backends: TAP with/without vhost-net
(Linux); VALE (Linux and FreeBSD).

• Guest network interface/OS: plain e1000, e1000-
netmap (Linux and FreeBSD); virtio (only Linux).

Not all combinations have been tested due to lack of signif-
icance, unavailability, or bugs which prevented certain con-
figurations from working. We should also mention that, es-
pecially for the data reporting peak performance, the num-
bers we report here are conservative. During the develop-
ment of this work we have implemented some optimizations
that shave a few nanoseconds from each packet’s process-
ing time, resulting in data rates in excess of 20 Mpps at
minimum packet sizes.

Following the same approach as in the description of the
system, we first benchmark the performance of the virtual
local ethernet, be it our VALE system or equivalent ones.
This is important because in many cases the clients are much
slower, and their presence would lead to an underestimate
of the performance of the virtual switch.

5.1 Bridging performance
The first set of tests analyzes the performance of various

software bridging solutions. The main performance metric
for packet forwarding is the throughput, measured in packets

per second (pps) and bits per second (bps).
pps is normally the most important metric for routers,

where the largest cost factors (source and destination
lookup, queueing) are incurred on each packet and are rel-
atively independent of packet size. Bridges and switches,
however, need also (but not only) a characterization in bps,
because they operate at very high rates and often hit other
bottlenecks such as memory or bus bandwidth. We will
then run our experiments with both minimum and maxi-
mum ethernet-size packets (60 and 1514 bytes).

Note that many bps figures reported in the literature are
actually measured using jumbograms (8-9 Kbytes). The cor-
responding pps rates are between 1/6 and 1/150 of those
shown here.

The traffic received by a bridge should normally go to a
single destination, but there are cases (multicast or unknown
destinations) where the bridge needs to replicate packets to
multiple ports. Hence the number of active ports impacts
the throughput of the system.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8

F
o

rw
a

rd
in

g
 r

a
te

 (
M

p
p

s
)

Destinations

VALE, 60 bytes
NIC, 60 bytes

VALE, 1514 bytes
NIC, 1514 bytes

TAP, 60 bytes

Figure 6: Forwarding rate versus number of destina-
tions. VALE beats even NIC-based bridging, with
over 17 Mpps (vs. 14.88) for 60-byte packets, and
over 6 Mpps (vs. 0.82) for 1514-byte packets. TAP
is at the bottom, peaking at about 0.8 Mpps in the
best case.

In Figure 6 we compare the forwarding throughput when
using 60 and 1514 byte packets, for three technologies:
TAP plus native Linux bridging5, our VALE bridge, and
NIC/switch-supported bridging (in this case we report the
theoretical maximum throughput on a 10 Gbit/s link).

Since the traffic directed to a bridge can be forwarded6

to a single output port (when the destination is known), or
to multiple ports (for multicast/broadcast traffic, or for un-
known destinations), we expect a decrease in the forwarding
rate as the number of active ports grows.

Indeed, all the three solutions (VALE, NIC, TAP) expose
a 1/N behaviour. For VALE and TAP this is because the
forwarding is done by a single core while the work is pro-
portional to the number of ports. For switch-based bridging,
the bottleneck is instead determined by the bandwidth avail-
able on the link from the switch, which has to carry all the
replicas of the packet for the various destinations. A similar
phenomenon occurs for NIC-based bridging, this time the
bottleneck being the PCI-e bus.

In absolute terms, for traffic delivered to a single des-
tination and 60-byte packets, the best options available for
Linux bridging achieve a peak rate of about 0.80 Mpps. Next
comes NIC-based forwarding, which is limited by the band-
width on the PCI-e interconnection between the NIC and
the system. Most 10 Gbit/cards on the market use 4-lane
PCI-e slots per port, featuring a raw speed of 16 Gbit/s per
port per direction. Considering the overhead for the trans-
fer of descriptors, each port has barely enough bandwidth
to sustain line rate. In fact, as we measured in [16], packet
sizes that are not multiple of a cache line size cannot even
achieve line rate due to extra traffic generated to read and
write entire cache lines.

The curves for VALE are still above, peaking at 17.6 Mpps
for a single destination and 60-byte packets, again decreasing
as the number of receivers grows. Here the bottleneck is
given by the combination of CPU cycles (needed to do the
packet copies) and memory bandwidth.

The numbers for 1514-byte packets are even more im-
pressive. Linux bridging is relatively stable at a low value
(packet size is not a major cost item). NIC based forwarding
is still limited to line rate, approximately 820 Kpps, whereas
VALE reaches over 6 Mpps, or 72 Gbit/s.

5.1.1 Per packet time

Using the same data as in Figure 6, Figure 7 shows the
per-packet processing time used by VALE depending on the
number of destinations. This representation gives a better
idea of the time budget involved with the various opera-
tions (hashing, address lookups, data copies, loop and lock-
ing overheads). Among other things, these figures can be
used to determine a suitable batch size so that the total
processing time matches the constraint of latency-sensitive
applications.

The figure shows that for one port and small packets the
processing time is 50-60 ns per packet when using large
batches (128 and above). With separate measurements we
estimated that about 15 ns are spent in computing the Jenk-

5we also tested the in-kernel Open vSwitch module, but it
was always slightly slower than native bridging.
6In principle we should also consider the case of traffic being
dropped by the bridge, but this is always much faster than
the other cases (as an example, VALE can drop packets at
almost 100 Mpps), so we do not need to worry about it.

 100

 1000

 1 2 3 4 5 6 7 8

n
s
/p

k
t

Destinations

VALE, 1514 bytes
VALE, 60 bytes

Figure 7: Per-packet time versus number of destina-
tions for VALE. See text in Section 5.1.1 for details.

ins hash function, taken from the FreeBSD bridging code,
and approximately 15 ns are also necessary to perform a
copy of a 60-byte packet (with data in cache). The cost of
copying a 1514 byte packet is estimated at about 150 ns.

As mentioned in Section 3.4, VALE uses data copies in
all cases. In the case of multicast/broadcast traffic, the only
alternative to copying data would be to implement shared
readonly buffers and a reference-counted mechanism to track
when the buffer can be freed. Apart from the complications
of the mechanism, the cost in accessing the reference count
from different CPU cores is likely comparable or greater than
the data copy costs, even for 1514-byte packets.

5.2 Effectiveness of batching
The huge difference in throughput between VALE and

other solutions depends on both the use of the netmap API,
which amortizes the system call costs, and also on the pro-
cessing of packets in batches in the forwarding loop. Figure 6
has been computed for a batch size of 1024 packets, but as
we will show, even smaller batch sizes are very effective.

There are in fact three places where batching takes place:
on the TX and RX sides, where its main goal is to amortize
the cost of the system call to exchange packets with the
kernel; and within the kernel, as discussed in Section 3.3,
where the goal is to reduce locking contention.

The following experiments show the effect of various com-

 0

 5

 10

 15

 20

 1 10 100 1000

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Kernel Batch size

60 bytes

Figure 8: Throughput versus kernel batch size.
Sender and receiver use batch=1024.

 0

 5

 10

 15

 20

 1 10 100 1000

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Rx Batch size

60 bytes

Figure 9: Throughput versus receive batch size.
Kernel and sender use batch=1024.

binations of these three batching parameters. Experiments
have been run on a fast i7-3930K using Linux 3.2, and uni-
cast traffic between one sender and one receiver; the CPU
has multiple cores so we expect sender and receiver to run
in parallel on different cores.

Figure 8 shows the throughput versus kernel batch size,
when both sender and receiver use a large value (1024) to
amortize the system call cost as much as possible. Starting
at about 5 Mpps with a batch of 1, we achieve dramatic
increase even with relatively small kernel batches (e.g. 8
packets), and there is a diminishing return as we move above
128 packets. Here we have the following dynamics: the ker-
nel, with its small batch size, acts as the bottleneck in the
chain, waking up the receiver frequently with small amounts
of packets. Because it uses a large batch size, the receiver
cannot become the bottleneck: if during one iteration it is
too slow in processing packets, in the next round it will be
able to catch up draining a larger set of packets.

Figure 9 shows the behaviour of the system with different
receiver batch sizes, and kernel and sender using a batch
of 1024. In this experiment the receiver is the bottleneck,
and the main cost component here is the system call, which
however always finds data available so it never needs to sleep
(a particularly costly operation). As a consequence, a small
batching factor suffices to reach the peak performance.

Finally, Figure 10 shows the effect of different transmit

 0

 5

 10

 15

 20

 1 10 100 1000

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

Tx Batch size

rx-batch=1024
rx-batch=1

Figure 10: Throughput versus transmit batch size.
Kernel uses batch=1024.

batch sizes. The kernel is always using a batch of 1024.
The top curve, with a receive batch of 1024, resembles the
behaviour of Figure 8. The kernel (and the receiver) indeed
behave in a similar way in the two cases, because the sender
in the first place is feeding the bridge with only a few packets
at a time. The initial region, however, shows lower absolute
values because the interval between subsequent invocations
of process_batch() now includes a complete system call, as
opposed to a simple iteration in tx_handler().

The bottom curve, computed with a receive batch of 1
packet, gives a better idea of where the bottleneck lies de-
pending on the tx and rx batch sizes. A small batching fac-
tor on the receiver will definitely limit throughput no matter
how the other components work, but the really poor oper-
ating point – about 2 Mpps in these experiments – is when

the entire chain processes one packet at a time. It is unfor-
tunate that this is exactly what happens in practice with
most network APIs.

5.3 Processing time versus packet size
Coming back to the comparative analysis of different

bridging solutions, we now move to the evaluation of the
effect of packet size on throughput. Same as in Section 5.2,
we run the test between one sender and one receiver con-
nected through a bridge (VALE or native linux bridging),
and for variable packet sizes. The measurement is done in
the best possible conditions (which, for VALE, means large
batches). Also, it is useful to study the effect of packet
sizes by looking at the time per packet, rather than absolute
throughput.

Figure 11, presents the packet processing time versus the
packet size. At these timescales the most evident phe-
nomenon is the cost of data copies. VALE and TAP operate
at the speed of the memory bus. This is confirmed by the
experimental data, as the two curves have a similar slope.
TAP of course has a much higher base value, which is the
root cause of its overall poor performance. The curve for
NIC-based bridging, instead, is much steeper. This is also

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 256 512 768 1024 1280 1536

n
s
/p

k
t

Packet size

TAP
NIC

VALE

Figure 11: Per-packet time versus packet size. This
experiments shows the impact of data copies. VALE
and TAP have a similar slope, as they operate at
memory bus speed. NIC-based bridging operates at
a much lower (PCI-e or link) speed, hence producing
a steeper curve.

expected, because the bottleneck bandwidth (PCI-e or link
speed) is several times smaller than that of the memory bus.

The curve for TAP presents a small dip between 60 and
128 bytes, which has been confirmed by a large number of
tests. While we have not investigated the phenomenon, it is
not unlikely that the code tries (and fails) to optimize the
processing of small packets.

5.4 Latency
We conclude our performance analysis with an investi-

gation on the communication latency. This test is mostly
pointing out the poor performance of the operating system’s
primitives involved, rather than the qualities of the bridg-
ing code. Nevertheless it is important to know what kind
of latency we can expect at best between communicating
processes on the same system.

Figure 12 shows the round trip time between two processes
talking through VALE (bottom curve) or a TAP bridge
(top curve). In this experiment a “client” transmits a single
packet and then blocks until a reply is received. The“server”
instead issues a first system call to receive the request, and
a second one to send the response. The actual amount of
processing involved in the process (in the sender, receiver
and forwarding code) is negligible, well below 1 µs, which
means that the cycle is dominated by the system calls and
the interactions with the scheduler (both client and server
block waiting for the incoming packet).

As expected, VALE is almost unaffected by the message
size (in the range of interest), as there is only a single, and
very fast, copy in each direction. TAP instead uses at least
two (and possibly three) copies on each direction, hence the
different slope.

Care should be taken in comparing these numbers with
other RPC mechanisms (e.g. InfiniBand, RDMA, etc.) de-
signed to achieve extremely low latency. These system in
fact exploit a number of latency-removal techniques that of-
ten require direct hardware access (such as exposing device
registers to userspace to save the cost of system calls), are
not efficient (such as running a busy-wait loop on the client
to remove the scheduler cost), and rely on hardware sup-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 256 512 768 1024 1280 1536

R
o

u
n

d
 T

ri
p

 T
im

e
 (

n
s
)

Packet size

TAP
VALE

Figure 12: Round trip time in the communication
between two processes connected through a linux
native bridge (top) or VALE (bottom). In both
cases, the times are dominated by the cost of the
poll() system call on the sender and the receiver.

Speed, Mpps
Configuration TAP VALE Notes

tx rx tx rx
Raw bridge speed .90 .90 19.7 19.7
e1000 QEMU .018 .014 .023 .023
e1000 KVM .020 .020 .024 .024
netperf virtio QEMU .012 .010 .023 .012
virtio KVM .400 .300 .480 .470 kvm 1.0.1
virtio KVM .370 .300 1.200 – kvm 1.1.1
virtio KVM vhost .600 .580
pkt-gen e1000 QEMU .490 .490 2.400 1.850

pkt-gen e1000 KVM .550 .550 3.470 2.550

pkt-gen e1000 KVM .500 .490 2.300 2.000 1514 b
vmxnet3 ESX .800 .800 - - see [22]
vmxnet3 vSphere .800 .800 - - see [23]

Table 1: Communication speed between virtual
machine instances for different combinations of
source/sink (netperf if not specified), emulated de-
vice, and hypervisor. Some combinations were not
tested due to software incompatibilities. The num-
bers for VMWare are extracted from [23] and [22]
and refer to their own software switch.

port (e.g. in RDMA the the server side is completely done
in hardware, thus cutting almost half of the processing cost).

Some improvements could be achieved also in our case,
e.g. spinning on a shared memory location to wait for data,
but our goal is mostly to show what level of performance
can be achieved with safe and energy-efficient techniques
without hardware assist.

6. RUNNING A HYPERVISOR ON A FAST

BRIDGE
The final part of this paper measures how the hypervisor

and the guest OS can make use of the fast interconnection
provided by VALE. All tests involve:

• a traffic source and sink, running in the guest. We use
netperf, a popular test tool which can source or sink
TCP or UDP traffic, and pkt-gen, a netmap-based
traffic source/sink which generates UDP traffic;

• an emulated network device. We use e1000 (emulating
a 1 Gbit/s device) and virtio, which provides a fast
I/O interface that can talk efficiently to the hypervisor;

• a hypervisor. We run our tests with QEMU and KVM;

• a virtual bridge. We use native linux bridging accessed
with TAP+vhost, and VALE.

The performance of some of the most significant combi-
nations is shown in Table 1. In some cases we were unable
to complete the tests due to incompatibilities between the
various options.

All tests were run on an i7-3930K CPU running Linux 3.2
in the host, and with Linux guests.

In the table, the top row reports the raw speed of the
bridge for both TAP and VALE. This serves as a baseline
to evaluate the virtualized versus native throughput.

The next two rows report standard configurations with
netperf and e1000 driver, running on QEMU or KVM. In
both cases the packet rate is extremely low, between 14 and
24 Kpps. The interrupt moderation patches [14] bring the
transmit rate to 56 and 140 Kpps, respectively, though we
are still far from the the throughput that can be achieved

on real hardware (about 1.3 Mpps in this configuration).
Measurements on QEMU show that, on each packet trans-
mission, the bottom part of the device driver emulation con-
sumes almost 50 µs, a big part of which is spent for handling
interrupts.

The virtio driver improves the situation at least when run-
ning on top of KVM. Here the use of VALE as a backend
gives some improvements7, although limited by the fact that
both source and sink process only one packet at a time.

With such a high per-packet overhead, replacing the TAP
bridge with the (much faster) VALE switch can only have a
very limited effect on performance. The recipe for improving
performance is thus to make better use of the (emulated)
network device. The netmap API comes to our help in this
case, and the numbers using pkt-gen prove that.

When running pkt-gen on top of e1000+QEMU (or
KVM), the throughput increases by a large factor, even with
the TAP bridge (from 20 to ≈500 Kpps). The main reasons
are that pkt-gen accesses the NIC’s registers very sparingly,
typically once or twice per group of packets, thus making the
emulation a lot less expensive. The improvement is even
more visible when running on top of the VALE, which can
make use of the aggregation in the guest, and issue a reduced
number of system calls to transfer packets from/to the host.

This experiment shows that even without virtio is in prin-
ciple possible to transfer minimum-size packets at rates that
exceed the speed of a 1 Gbit/s interface, and for 1514-byte
packets we reach 20 Gbit/s even without virtio.

A lot of these performance improvements come from the
use of larger batch sizes when talking to the backend. We
are investigating solutions to exploit this operating regime,
both with the help of modified device drivers in the host, and
implementing mechanisms similar to interrupt moderation
within the VALE switch.

6.1 Comparison with other solutions
QEMU and KVM are neither the only nor the fastest hy-

pervisors on the market. Commercial solutions go to great
lengths to increase the speed of virtualized I/O devices. To
the best of our knowledge, solutions such as vSphere [23]
and ESX [22] are among the best performer on the market8,
claiming a speed of about 800 Kpps between two virtual
machines (which translates to slightly less than 10 Gbit/s
with 1514-byte packets). The vendor’s documentation [23]
reports up to 27 Gbit/s TCP throughput with jumbo frames
(9000 bytes) which should correspond to packet rates in the
4-500 Kpps range.

These numbers cannot be directly compared with the ones
we achieved on top of VALE. Even though we get higher
packet rates, we are not running through a full TCP stack
on the guest; on the other hand we have a much worse vir-
tualization engine and device driver to deal with. What we
can still claim, however, is that we are able to achieve the
same level of performance of high-end commercial solutions.

7. CONCLUDING REMARKS
We have presented the architecture of VALE, a high speed

Virtual Local Ethernet freely available for FreeBSD and
Linux, and given a detailed performance evaluation compar-

7the low number for KVM+VALE on the receive side seems
due to a livelock in KVM 1.1.1 which we are investigating
8possibly not the only ones to provide such speeds.

ing VALE with NIC-based bridging and with various exist-
ing options based on linux bridging. Additionally, we have
developed QEMU and KVM modifications that show how
these hypervisors, with proper traffic sources and sinks, can
make use of the fast interconnect and achieve very significant
speedups.

We should note that VALE is neither limited to use with
virtual machines, nor to pure ethernet bridging.

Indeed, the fact that VALE ports use the netmap API,
and the availability of libpcap emulation library for netmap,
means that a VALE switch can be used to interconnect var-
ious packet processing tools (traffic generators, monitors,
firewalls etc.), and this permits performance testing at high
data rates without the need of expensive hardware.

As an example, we recently used VALE switches to test
a high speed version of the ipfw and dummynet traffic
shaper [5], including the QFQ packet scheduler [6]. In this
environment we were able to validate operation at rates ex-
ceeding 6 Mpps, well beyond the ability of regular OSes to
source or sink traffic, let alone pass it to applications.

Also, the code that implements the forwarding decision
(which in VALE is simply a lookup of the destination MAC
address) can be trivially replaced with more complex ac-
tions, such as a software implementation of an OpenFlow
switch. The main contribution of VALE, in fact, is in the
framework to move traffic efficiently between ports and the
module implementing forwarding decisions.

We are confident that, as part of future work, we will be
able to make VALE compatible with better hypervisors and
emulated device drivers (virtio and similar ones), and make
its speed exploitable also by the network stack in the guest.
At the high pps rates supported by VALE, certain operating
systems functions (schedulers, synchronizing system calls)
and emulator-friendliness need to be studied in some detail
to identify possible performance bottlenecks.

The simplicity of our system and its availability should
help the identification and removal of performance problems
related to virtualization in hypervisors, device drivers and
operating systems.

Acknowledgements

This work was funded by the EU FP7 projects CHANGE
(257422) and OPENLAB (287581).

8. REFERENCES
[1] http://virt.kernelnewbies.org/MacVTap.
[2] http://www.linux-kvm.org/page/VhostNet.
[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In SOSP’03, Bolton Landing, NY,
USA, pages 164–177. ACM, 2003.

[4] F. Bellard. Qemu, a fast and portable dynamic translator.
In USENIX Annual Technical Conference ATC’05,
Anaheim, CA. USENIX Association, 2005.

[5] M. Carbone and L. Rizzo. An emulation tool for planetlab.
Computer Communications, 34:1980–1990.

[6] F. Checconi, P. Valente, and L. Rizzo. QFQ: Efficient
Packet Scheduling with Tight Guarantees. IEEE/ACM
Transactions on Networking, (to appear,
doi:10.1109/TNET.2012.2215881), 2012.

[7] Y. Dong, J. Dai, Z. Huang, H. Guan, K. Tian, and
Y. Jiang. Towards high-quality I/O virtualization. In
SYSTOR 2009: The Israeli Experimental Systems
Conference, pages 12:1–12:8. ACM, 2009.

[8] M. Goldweber and R. Davoli. VDE: an emulation
environment for supporting computer networking courses.
SIGCSE Bull., 40(3):138–142, June 2008.

[9] R. A. Harper, M. D. Day, and A. N. Liguori. Using KVM
to run Xen guests without Xen. In 2007 Linux Symposium.

[10] J. R. Lange and P. A. Dinda. Transparent network services
via a virtual traffic layer for virtual machines. In 16th Int.
Symposium on High Performance Distributed Computing,
HPDC’07, pages 23–32, Monterey, California, USA, 2007.
ACM.

[11] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing
network virtualization in xen. In USENIX Annual
Technical Conference ATC’06, Boston, MA. USENIX
Association, 2006.

[12] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado,
and S. Shenker. Extending networking into the
virtualization layer. In Proc. of workshop on Hot Topics in
Networks (HotNets-VIII), 2009.

[13] H. Raj and K. Schwan. High Performance and Scalable I/O
Virtualization via Self-Virtualized Devices. In Proc. of
HPDC’07, pages 179–188, 2007.

[14] L. Rizzo. Email to qemu-devel mailing list re. interrupt
mitigation for hw/e1000.c, 24 july 2012.
https://lists.gnu.org/archive/html/qemu-devel/2012-
07/msg03195.html.

[15] L. Rizzo. Email to qemu-devel mailing list re. speedup for
hw/e1000.c, 30 may 2012.
https://lists.gnu.org/archive/html/qemu-devel/2012-
05/msg04380.html.

[16] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O.
In USENIX Annual Technical Conference ATC’12, Boston,
MA. USENIX Association, 2012.

[17] L. Rizzo. Revisiting network I/O APIs: the netmap
framework. Communications of the ACM, 55(3):45–51,
2012.

[18] L. Rizzo, M. Carbone, and G. Catalli. Transparent
acceleration of software packet forwarding using netmap. In
Infocom 2012. IEEE, 2012.

[19] L. Rizzo and G. Lettieri. The VALE Virtual Local Ethernet
home page. http://info.iet.unipi.it/∼luigi/vale/.

[20] R. Russell. virtio: towards a de-facto standard for virtual
I/O devices. Operating Systems Review, 42(5):95–103, 2008.

[21] S. Tripathi, N. Droux, T. Srinivasan, and K. Belgaied.
Crossbow: from hardware virtualized nics to virtualized
networks. In 1st ACM workshop on Virtualized
infrastructure systems and architectures, VISA ’09, pages
53–62, Barcelona, Spain, 2009. ACM.

[22] VMWare. Esx networking performance.
http://www.vmware.com/files/pdf/
ESX networking performance.pdf.

[23] VMWare. vSphere 4.1 Networking performance.
http://www.vmware.com/files/pdf/techpaper/
PerformanceNetworkingvSphere4-1-WP.pdf.

[24] J. Wang, K.-L. Wright, and K. Gopalan. Xenloop: a
transparent high performance inter-vm network loopback.
In Proceedings of the 17th international symposium on
High performance distributed computing, HPDC ’08, pages
109–118, New York, NY, USA, 2008. ACM.

[25] P. Willmann, S. Rixner, and A. L. Cox. Protection
strategies for direct access to virtualized I/O devices. In
USENIX 2008 Annual Technical Conference, ACT’08,
pages 15–28, Boston, Massachusetts, 2008. USENIX
Association.

[26] B. Zhang, X. Wang, R. Lai, L. Yang, Z. Wang, Y. Luo, and
X. Li. Evaluating and Optimizing I/O Virtualization in
Kernel-based Virtual Machine (KVM). In NPC’10, pages
220–231, 2010.

