
Revisiting virtualized network adapters

Luigi Rizzo, Giuseppe Lettieri, Vincenzo Maffione, Università di Pisa, Italy

rizzo@iet.unipi.it, http://info.iet.unipi.it/∼luigi/vale/

Draft 5 feb 2013. Please do not redistribute, ask a copy to the authors.

Abstract

Network performance on virtual machines (VMs) is

of critical importance for the virtualization of packet

switching devices and middleboxes, largely used in Soft-

ware Defined Networks. Nevertheless, most of the work

on VM network performance so far has focused on work-

loads, such as bulk TCP traffic, which cover more classi-

cal applications of virtualization.

We expect packet processing boxes to become more

and more important over time, so we studied how to deal

with rates of millions of packets per second within VMs.

In this paper we show that the goal is achievable with-

out subverting existing architectures, and demonstrate

a combination of techniques that let two VMs, using a

slightly modified e1000 device, exchange over 600 Kpps

/ 5 Gbit/s using sockets and 1500-byte frames, and al-

most 5 Mpps / 25 Gbit/s using the netmap API.

These results are comparable or superior to the state

of the art even for paravirtualized devices, and have been

achieved with very small modifications to existing device

drivers and backends. The ideas we used are easily ap-

plicable to other devices and virtualizers, and our code is

publicly available.

1 Introduction

Virtualization is a technology in heavy demand to imple-

ment server consolidation, improve service availability,

and make efficient use of the many cores present in to-

day’s CPUs. Of course, users want to exploit the features

offered by this new platform without losing too much (or

possibly, anything) of the performance achievable on tra-

ditional, dedicated hardware (bare metal).

Ingenious software solutions [5], and later hardware

support [13, 3], have filled the gap for CPU performance.

Storage peripherals and bulk network traffic have com-

parable performance on VMs and bare metal, especially

when I/O can be coerced to use large blocks (e.g. through

TSO/RSC) and limited transaction rates (e.g., say less

than 50 K trans/s).

A class of applications, made relevant by the rise of

Software Defined Networking (SDN), still struggles un-

der virtualization. Software routers, switches, firewalls

and other middleboxes, need to deal with very high

packet rates (millions per second) that are not amenable

to reduction through the usual Network Interface Card

(NIC) offloading techniques. The “direct mapping” of

portions of virtualization-aware NICs to individual VMs

can provide some relief, but it has scalability and flexi-

bility constraints.

We then decided to explore and experiment with solu-

tions to let VMs deal with millions of packets per second

without requiring special hardware, or imposing massive

changes to OSes or hypervisors. In this paper we report

our results with four techniques, that can be used individ-

ually or in combination, to improve the packet processing

rate of guests on top of QEMU-KVM while still using an

emulated e1000 device.

Our contribution: in detail, we i) emulate interrupt

moderation, ii) implement “Send Combining”, a driver-

based form of batching and interrupt moderation; iii) in-

troduce an extremely simple but very effective paravirtu-

alized extension for the e1000 devices (or other NICs),

providing the same performance of virtio and alikes

with almost no extra complexity, and iv) adapt the hy-

pervisor to our high speed VALE [18] backend.

In our experiments with QEMU-KVM and e1000 we

reached a VM-to-VM rate of almost 5 Mpps with short

packets, and 25 Gbit/s with 1500-byte frames, and even

higher speeds between a VM and the host. These large

speed improvements have been achieved with a very

small amount of code1, and our approach can be easily

applied to other OSes and virtualization platforms.

Certainly this paper contains more engineering than

fundamental theoretical contributions. Nevertheless we

1We are pushing the relevant changes to QEMU, FreeBSD and

Linux.

1

believe that our experience can help the design and devel-

opment of systems that are more virtualization-friendly

and generally more efficient.

In the rest of this short paper, Section 2 introduces the

necessary background and terminology on virtualization

and discusses related work. Section 3 describes in detail

the four components of our proposal, whereas Section 4

presents experimental results, and also discusses the lim-

itations of our work.

2 Background and Related work

In our (rather standard) virtualization model, Virtual Ma-

chines (VMs) run on a Host which manages hardware re-

sources with the help of a component on the Host called

Virtual Machine Monitor (VMM). Each VM has a num-

ber of Virtual CPUs (VCPUs, typically implemented as

threads in the host), and also runs additional IO threads

to emulate and access peripherals. The VMM (typi-

cally implemented partly in the kernel and partly in user

space) controls the execution of the VCPUs, and com-

municates with the I/O threads. Assuming virtualization

support [13, 3] in the host CPU2, most of the code for

the guest OS is run directly on the host CPU operating in

“VM” mode. Whenever critical resources (peripherals,

etc.) need to be accessed, or interrupts must be delivered

to the guest OS, a somewhat expensive context switch

(“VM exit”) is generated, and the VMM puts the CPU in

host mode to perform appropriate actions, including em-

ulating peripherals (these components of the VMM are

called “backends”).

VM exits are not needed for hardware that is directly

accessible to the guest, either because it is a dedicated

device or because it can expose multiple virtual peripher-

als; hardware mechanism such as IOMMU [4] help pro-

tecting from unauthorized peripheral access from guests.

Likewise, it is possible for interrupts to be delivered di-

rectly to the guest without causing VM exits3. As an

example, ELI [8] removes interrupt-related VM exits on

direct-access peripherals by swapping the role of host

and guest: the system is programmed so that all inter-

rupts are sent to the guest, which reflects back those

meant for the host.

Apart from these cases, VM exits often constitute the

main source of overhead in the guest. In particular, high

network packet rates generally result in a correspond-

ingly high rate of VM exits. Part of this work presents

2A recent paper [5], long but very instructive, shows how the x86

architecture was virtualized without CPU support. The evolution of

these techniques is documented in [1].
3Another way to remove interrupt-related exits is to have the guest

poll the memory region, such as buffer descriptors, where peripherals

post results. This is used quite often, especially for latency-sensitive

applications.

techniques to limit them.

2.1 I/O virtualization

Virtualization of I/O peripherals is described in [22],

which also proposes some ways to accelerate the emu-

lation. In order to further improve these early results,

research and products have followed three routes:

1) hardware support in the peripherals (“virtual func-

tions” and IOMMU’s), so that guest machines can access

directly and in a protected way subsets of the device and

run at native speed;

2) run-time optimizations in the VMM. As an exam-

ple, [2] shows how short sequences of code involving

multiple I/O instructions can be profitably run in inter-

preted mode to save some VM exits;

3) reduce some costly operations in peripheral emulation

(I/O instructions and interrupts) by designing “virtual”

device models more amenable to emulation.

The latter approach (“paravirtualization”) produced

several different NIC models (vmxnet [23], virtio [19],

xenfront [6]), in turn requiring custom device drivers in

the guest OS. Synchronization between the guest and

the VMM uses a shared memory block, accessed in a

way that limits the number of interrupts and VM exits.

One contribution of this paper is to show that paravirtu-

alization can be introduced with minimal extensions into

physical device models.

2.2 High speed networking

Handling 10 Gbit/s or faster interfaces is challenging

even on bare metal. Packet rates can be reduced us-

ing large frames, or NIC support for segmentation and

reassembly (named TSO/GSO and RSC/GRO, respec-

tively), but these solutions do not help for packet process-

ing devices (software routers, switches, firewalls), which

must cope with true line rate in terms of packet rates.

Only recently we have seen software solutions that can

achieve full line rate at 10 Gbit/s on bare metal [16, 7,

12]. In the VM world, apart from the trivial case of

directly mapped peripherals, already discussed [8], the

problem has not seen many contributions in the literature

so far. Among the most relevant:

Measurements presented in [20] show that packet cap-

ture performance in VMs is significantly slower than on

native hardware, but the study does not include the recent

techniques mentioned above, nor proposes solutions. In-

terrupt coalescing and Virtual Receive Side Scaling have

been studied in [10] within Xen; the system used in that

paper is limited to about 100 Kpps per core, and the solu-

tions proposed impose a heavy latency/throughput trade-

off and burn massive amounts of resources to scale per-

formance. ELVIS [9] addresses the reduction of VM ex-

2

its in host-guest notifications: a core on the host monitors

notifications posted by the guest(s) using shared memory,

whereas inter-processor interrupts are used in the other

direction, delivered directly to the guest as in the ELI

case.

3 Our proposal

On bare metal and suitably fast NICs, clients using a

socket API are generally able to reach 1 Mpps per core,

peaking at 2..4 Mpps per system due to driver and OS

limitations. Recent OS-bypass techniques [16, 7, 14, 21]

can reach much higher rates, and are generally I/O

bound, easily hitting line rate (up to 14.88 Mpps on a

10 Gbit/s interfaces) or other NIC or PCIe bus limits.

Within a VM, at least when emulating regular NICs

(e.g. the popular Intel’s e1000), common VMMs reach

rates of about 100 Kpps on the transmit side, and

marginally higher on the receive side (see Fig. 1 and 2).

Paravirtualized devices (virtio etc.) can help signif-

icantly, but support for them is neither as good nor as

widespread as it is for popular hardware NICs, so there

is still a strong motivation for efficient NIC emulation.

Taking QEMU-KVM and e1000 as a prototype plat-

form, we then investigated how we could improve the

performance of a generic, non paravirtualized network

device. The techniques we propose in the following can

be easily applied to other systems.

3.1 Adding interrupt moderation

Far from being a new idea, since interrupts are a sig-

nificant source of uncontrolled system load, our first

step was to implement the interrupt moderation registers,

which are present in most NICs and used by operating

systems, but not always implemented by emulators4.

This requires modifications only in the emulator, and

helps reducing interrupt storms at high packet rates,

which can cause receiver livelock and (in a VM) severe

reductions of the transmit rate. See the effect in Fig. 1,

comparing the lines itr=0 and itr=100 (itr is the min-

imum value between interrupts, in 250 ns units).

3.2 Send Combining

Device drivers typically notify the NIC immediately

when new packets are ready for transmission. This nor-

mally requires an IO or MMIO instruction, moderately

inexpensive on real hardware, but causing a VM exit in a

VM. To reduce the number of such exits we used an idea

similar to what in [22, Sec.3.3] is called “Send Combin-

ing” (SC): the driver knows about pending TX interrupts,

4QEMU and VMware Player do not implements them; VirtualBox

introduce them only in very recent versions.

it can defer transmission requests until the arrival of the

interrupt. At that point, all pending packets are flushed

(with a single write on one of the NIC’s registers), so

there is only on VM exit per batch. Transmissions may

be delayed by up to the interrupt moderation delay (often

in the order of 20..100 µs), but a similar worst case delay

already occurs on the receive path due to interrupt mod-

eration. The system administrator can pick appropriate

tradeoffs, and both SC and moderation can be tuned to

kick in only above a certain packet rate.

Ideally, one should strive for solutions that do not re-

quire changes to the guest; the original Send Combining

could be implemented entirely in the VMM, because it

ran I/O instructions in “binary translation” mode. When

using CPU-based virtualization support we do not have

this luxury, and the only way to intercept I/O is VM exits.

However the driver modifications involved are small (25

lines of code), and the benefits are huge – 3..5x speedups

on the transmit side, see Fig. 1.

3.3 Paravirtualized e1000

Paravirtualized devices (virtio, vmxnet, xenfront) gener-

ally reduce the number of VM exits by establishing a

shared memory region (we call it Communication Status

Block or CSB) through which the guest and the VMM

can exchange I/O requests. Notifications (called kicks)

issued to wake up the other peer do cause VM exits,

but are only used to start up the communication. After

a kick, the two peers poll the CSB to look for new work

(new packets available) or post results (packet processing

completed), and go to sleep when no work is available for

a while.

The way Send Combining works is actually very close

to paravirtualization: the register write to start transmis-

sions and the completion interrupt are perfectly equiva-

lent to a “kick” in virtio terminology; packet buffers and

metadata (descriptor rings) are already in shared mem-

ory and accessible without VM exits. Hence all it takes

to build a full paravirtualized device is a small region of

memory to implement the CSB, and the code to exchange

information through it. Overall, this modification re-

quired about 90 lines of code in the device driver, and 100

lines in the QEMU side5. Two additional PCI registers

have been added to the emulated e1000 to point to the

mapped CSB, the new capability is advertised through

the PCI subdevice ID, and the device driver must explic-

itly enable the feature for the backend to use it.

Once again this modification requires changes in the

guest OS; once again it would be wonderful to im-

prove performance without guest modifications, but this

5as of this writing we have only implemented the transmit side of

the paravirtualization; the receive code will be smaller as it can reuse a

lot of the infrastructure we added.

3

change is much less intrusive than adding a brand new

paravirtualized device to the system, yet it makes our par-

avirtualized e1000 perform as well as virtio.

3.4 VALE, a fast backend

With all the enhancements described above, we have

pushed our VM to the maximum rate supported by the

backends (sockets, tap, host bridges,...) used to intercon-

nect virtual machines. This bottleneck used to be hardly

visible due to general slowness in the guest and device

emulation, but the problem clearly emerges now. Some

room for improvement still exists: as an example, the

VHOST feature [11] avoids going through the IO thread

for sending and receiving packets, and instead does the

forwarding directly within the kernel. In our experiments

VHOST almost doubles the peak pps rate over TAP for

the virtio cases, slightly surpassing our best result with

CSB (our e1000 still does not support VHOST).

Nevertheless, reaching our target of several millions of

packets per second requires a substantially faster back-

end. We have then implemented a QEMU backend that

uses the VALE [18] software switch, which in itself is

capable of handling up to 20 Mpps with current proces-

sor technology. Attaching QEMU to VALE pointed out a

number of small performance issues in the flow of pack-

ets through the hypervisor (mostly, redundant data copies

and lookups of information that could be cached). Our

initial implementations could “only” reach 2.5 Mpps be-

tween guest and host, a value that has been more than

doubled in the current prototype.

4 Experimental results

We present now some results on the data rates we

achieved between Guest and Host (GH), and between

two guests (GG), with different emulators and combina-

tions of features. Our source code containing all QEMU

and guest modifications is available at [17].

General notes

For basic UDP, TCP and latency tests we have used the

popular netperf program, or other socket-based appli-

cations. For very high speed tests, exceeding the data

rates achievable with sockets, we have used the pkt-gen

program part of the netmap [15] framework. pkt-gen

accesses the network card bypassing the network stack

and can sustain line rate packet rates even at 10 Gbit/s

and 64-byte frames.

Our host systems run a recent Linux (3.2 or 3.7).

QEMU-KVM is the git-master version as of Jan.2013,

extended with all the mechanisms described in the previ-

ous Section6. We use tap or VALE as backends.

Our guests are FreeBSD HEAD or Linux 3.7, nor-

mally using the e1000 device with small extensions to

implement Send Combining (SC) and Paravirtualization

(CSB). The interrupt moderation delay is controlled by

the itr parameter (in 250 ns units).

We also ran some tests using other hypervisors (Vir-

tualBox, VMware Player) and/or features (virtio,

VHOST, TSO) to have some absolute performance ref-

erences and evaluate the impact of the features we are

still missing.

Note: the goal of this paper is to study the behaviour

of the system at high packet rates, as those that may oc-

cur in routers, firewalls and other network middleboxes.

Hence, our main focus are streams of UDP or raw pack-

ets. TCP throughput is only reported for completeness,

but we did not try or want to optimize TCP parameters

(buffer and window sizes, path delays, etc.) for maxi-

mum throughput but rely on system defaults, for good or

bad as they are. For the same reason, we have normally

disabled TSO, not because we neglect its importance, but

because its use would otherwise hide other bottlenecks.

Notations and measurement strategy

We have used some significant combinations of the many

parameters that influence results: the VMM (typically

QEMU, but we ran some limited tests with VMware

Player and VirtualBox); the backend (TAP or equiva-

lent, or VALE); the number of VCPUs per guest; the

moderation delay (itr); the use of either of the SC or

CSB extensions; packet size (8 or 1460 bytes for UDP)

or write() size for TCP (we used 1460, labeled TCP, or

netperf defaults, labeled TCPw).

Guest-Host (GH) measurements are useful to evaluate

separately the transmit and receive path (the host being

generally a faster source/sink). Tests between two guests

(GG) show the end-to-end behaviour (on the same host).

We repeated each experiment several times, and in

many cases there are significant fluctuations (+/-5%) in

the results. For brevity we have omitted confidence inter-

vals, but keep these variations in mind when comparing

results. Entries not present in the tables of results are

missing because not relevant or because of technical is-

sues.

4.1 Effect of NIC improvements

Figure 1 shows how performance changes with various

combinations of the parameters. The lines labeled BASE

correspond to unmodified QEMU and guest.

6The CSB is only implemented for packets transmitted from the

guest; receive performance, however, is already reasonably good.

4

FreeBSD on QEMU-KVM, TAP backend, Guest-Host

1 VCPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+-----+------+------+------+------
TX itr=0 BASE | 30 27 314 228 603 17.0
TX itr=100 | 82 71 831 520 650 4.5
TX itr=100 SC | 317 202 2366 1239 1256 4.5
TX itr=0 CSB | 711 332 3874 2272 1925 17.2
TX itr=100 CSB | 717 326 3810 2226 2067 4.7

|
RX itr=0 BASE | 260 236 2760 1150 1150
RX itr=100 | 310 292 3421 1060 1060
RX itr=100 SC | 1943 1950
RX itr=100 CSB | 2140 2150

2 VCPU | UDP8 | UDP-1460 | TCP | TCP-w| TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+-----+------+------+------+------
TX itr=0 BASE | 80 72 835 750 730 22.0
TX itr=100 | 83 74 840 730 815 4.5
TX itr=100 SC | 316 196 2291 1850 1730 4.4
TX itr=0 CSB | 700 318 3710 2498 2562 18.5
TX itr=100 CSB | 710 315 3684 2488 2505 4.4

|
RX itr=0 BASE | 480 403 4717 1250 1230
RX itr=100 | 490 418 4890 1250 1230
RX itr=100 SC | 2300 2320
RX itr=100 CSB | 4400 4300

|
TX pkt-gen | 720 660 7780
RX pkt-gen | 576 517 6040

FreeBSD on QEMU-KVM, TAP backend, Guest-Guest

2 CPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
TX = RX | Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+------+------+------+------+------
itr=0 BASE | 67 64 755 645 700 8.7
itr=100 | 67 61 715 600 680 6.8
itr=100 SC | 275 177 2073 1230 1150 6.4
itr=0 CSB | 440 281 3284 1787 1800 7.1

FreeBSD on QEMU-KVM, VALE backend, Guest-Guest

2 CPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
TX = RX | Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+------+------+------+------+------
itr=0 BASE | 111 92 1077 830 967 n.a.
itr=100 | 110 90 1050 1002 1043 1.9
itr=100 SC | 540 299 3050 907 899 1.9
itr=0 CSB | 629 480 5620 2551 2931 7.2

TX pktgen GG | 6300 2700 31530
RX pktgen GG | 4700 2200 25700

TX pktgen GH | 7400 3440 40180
RX pktgen GH | 5400 3310 38660

Figure 1: Our performance with TAP or VALE.

Guest-to-Host: Receive rates are generally good even

in the base case, because the backend submits traffic in

batches, and TCP flow control prevents overloads or live-

locks. On the transmit side the BASE performance is

much worse: only 30 Kpps with one VCPU, and 80 Kpps

with two (the extra CPU can absorb the interrupt load,

but the sender is still limited by excessive VM exits).

Moderation by itself slightly helps with one VCPU or in

the receive path, where interrupts constitute a huge load.

SC or CSB (mutually exclusive) really make a difference

when combined with moderation, greatly reducing resid-

ual VM exits7 and letting the VM saturate the backend

at over 700 Kpps (on bare metal, this guest does about

900 Kpps). The fact that the TAP interface becomes the

limiting factor is shown by using pkt-gen: with TAP it

is barely faster than netperf, whereas it becomes almost

7There are almost no interrupts with CSB, and the few VM exits

occur only when the sender and the IO thread overrun each other.

10 times faster with VALE.

Guest-to-Guest: communication between two guests

(still using TAP) is slightly slower than Guest-Host due

to the additional delays and bottlenecks, but has the same

response to optimizations. Overall the two guests can ex-

change up to 440 Kpps and 3.2 Gbit/s with UDP sockets,

1.8 Gbit/s with TCP (without TSO), and slightly more

with pkt-gen.

VALE: this backend gives a further boost at high pps

rates. Guest-to-Guest figures grow up to 630 Kpps and

5.6 Gbit/s with UDP, almost 3 Gbit with unoptimized

TCP, and 4.7 Mpps and 25.7 Gbit/s with pkt-gen.

As a comparison, Figure 3 shows the best perfor-

mance achievable with virtio and a combination of

various related optimizations (VHOST, TSO, which can

be added also to our e1000 emulation). In absence of

extra optimizations, our e1000 performance is compa-

rable to virtio, and the use of VALE supports much

higher packet rates (presumably VALE could improve

the virtio performance as well).

4.2 Comparison with other solutions

The huge performance improvements that we see with

respect to the baseline could be attributed to inferior per-

formance of QEMU-KVM compared to other solutions,

but this is not the case. Figure 2 shows that the perfor-

mance of VirtualBox and VMware Player in a similar

configuration is comparable with our BASE configura-

tion with QEMU. We hope to be able, in the future, to

run comparisons against other VMMs.

We also tried to use Send Combining on an unmodi-

fied VirtualBox (without moderation), and at least in the

2-VCPU case, see Fig.2, this is still able to give signif-

icant performance improvements, presumably due to a

reduction in the number of VM exits on transmissions.

Linux on VirtualBox and VMware, 2 CPU

| UDP8 | UDP-1460 | TCP | TCPw | TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | Ktps

----------------+------+-----+------+------+-------+------
VBox TX GH | 22 23 264 84 633 10.9
VBox TX GG | 22 21 244 1121 1255 4.2

VMware TX GH | 52 51 590 250 1332 13.2
VMware TX GG | 65 64 748 3375 4138 9.2

FreeBSD on VirtualBox, vboxnet, Guest-Host

1 cpu, std | 24 24 273 219 666 16.9
1 cpu, SC | 24 24 273 232 928 17.0

2 cpu, std | 60 58 676 570 690 14.7
2 cpu, SC | 225 176 2064 1060 1100 14.7

Backend performance:

pktgen, tx | 540 470.0 5500
pktgen, rx | 670 270.0 3153

Figure 2: Performance of other VMMs (e1000 device).

SC can help even without VMM modifications.

5

Linux on QEMU, VIRTIO, no accelerations

| UDP8 | UDP1460 | TCP | TCPw | TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | Ktps

----------------+------+-----+------+------+-------+------
2 CPU TX GH | 380 354 4143 3842 3834 28.6
2 CPU TX GG | 438 395 4613 3661 3661 15.0
2 CPU RX GG | 438 288 3369

Linux on QEMU, VIRTIO, VHOST

2 CPU TX GH | 853 733 8572 6732 4603 36.1
2 CPU TX GG | 983 844 9865 1071 1090 22.3
2 CPU RX GG | 5 21 250 (*** livelock)

Linux on QEMU, VIRTIO, VHOST, TSO

2 CPU TX GH | 649 582 6814 7460 22900 32.3
2 CPU TX GG | 812 714 8343 2873 13746 18.6
2 CPU RX GG | 3 10 120 (*** livelock)

Figure 3: Effect of virtio, VHOST and TSO

4.3 Limitations and missing features

Latency8 is an area where our mechanisms cause some

loss of performance, as they try to group events to amor-

tize expensive operations over large sets of packets. The

Round Trip Time is generally worse (as shown by the

TCP RR tests), and the extra delay and batched trans-

missions may have negative effects on TCP.

We plan to add features such as VHOST (should help

reducing latency, but has marginal effects on the pps rate)

and TSO (which should instead have huge benefits on

TCP performance, as shown in Figure 3) to our e1000

emulation.

5 Conclusions and future work

Some small and simple modifications to hypervisors and

device drivers, such as the ones shown in this paper, can

go a long way into making network performance on vir-

tual machine very close to that of bare metal, in par-

ticular for the case of high packet rate workloads. The

work presented here still needs improvements in sev-

eral areas, as well as more extensive performance eval-

uation and comparison with more performant platforms,

but the results achieved so far are extremely encouraging

and useful, especially considering the simplicity of the

techniques used. Our modifications, which are publicly

available, will hopefully contribute to deploy high per-

formance SDN components in virtualized environments,

and also help the study and development of high speed

protocol and applications over virtual machines.

8A bug in the netmap backend discovered during the measurements

impacts the latency-related tests. We expect to have it fixed for the final

version of the paper. Of course!

References

[1] AGESEN, O., GARTHWAITE, A., SHELDON, J., AND SUBRAHMANYAM,

P. The evolution of an x86 virtual machine monitor. SIGOPS Oper. Syst.

Rev. 44, 4 (Dec. 2010), 3–18.

[2] AGESEN, O., MATTSON, J., RUGINA, R., AND SHELDON, J. Software

techniques for avoiding hardware virtualization exits. USENIX ATC’12,

USENIX Association, pp. 35–35.

[3] AMD. Secure virtual machine architecture reference manual.

http://www.mimuw.edu.pl/∼vincent/lecture6/sources/amd-pacifica-

specification.pdf, 2005.

[4] BEN-YEHUDA, M. Utilizing iommus for virtualization in linux and xen.

[5] BUGNION, E., DEVINE, S., ROSENBLUM, M., SUGERMAN, J., AND

WANG, E. Y. Bringing virtualization to the x86 architecture with the orig-

inal vmware workstation. ACM Trans. Comput. Syst. 30, 4 (Nov. 2012),

12:1–12:51.

[6] CHISNALL, D. The Definitive Guide to the Xen Hypervisor. Prentice Hall,

2007.

[7] DERI, L. PFRING DNA page. http://www.ntop.org/products/pf ring/dna/.

[8] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M., LANDAU,

A., SCHUSTER, A., AND TSAFRIR, D. Eli: bare-metal performance for

i/o virtualization. SIGARCH Comp. Arch. News 40, 1 (Mar. 2012), 411–

422.

[9] GORDON, A., HAR’EL, N., LANDAU, A., BEN-YEHUDA, M., AND

TRAEGER, A. Towards exitless and efficient paravirtual i/o. SYSTOR

’12, ACM, pp. 4:1–4:6.

[10] GUAN, H., DONG, Y., MA, R., XU, D., ZHANG, Y., AND LI, J. Perfor-

mance enhancement for network i/o virtualization with efficient interrupt

coalescing and virtual receive side scaling. IEEE Transactions on Parallel

and Distributed Systems 99, PrePrints (2013), 1.

[11] HAJNOCZI, S. QEMU Internals: vhost architecture.

http://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html,

2011.

[12] HAN, S., JANG, K., PARK, K., AND MOON, S. Packetshader: a gpu-

accelerated software router. ACM SIGCOMM Computer Communication

Review 40, 4 (2010), 195–206.

[13] INTEL. Intel virtualization technology. Intel Tech. Journal 10 (Aug. 2006).

[14] INTEL. Intel data plane development kit.

http://edc.intel.com/Link.aspx?id=5378 (2012).

[15] RIZZO, L. Netmap home page. Università di Pisa,

http://info.iet.unipi.it/∼luigi/netmap/ .

[16] RIZZO, L. netmap: A Novel Framework for Fast Packet I/O. In USENIX

ATC’12 (2012), Boston, MA, USENIX Association.

[17] RIZZO, L., AND LETTIERI, G. The VALE Virtual Local Ethernet home

page. http://info.iet.unipi.it/∼luigi/vale/.

[18] RIZZO, L., AND LETTIERI, G. Vale, a switched ethernet for virtual ma-

chines. In Proceedings of the 8th international conference on Emerging

networking experiments and technologies (New York, NY, USA, 2012),

CoNEXT ’12, ACM, pp. 61–72.

[19] RUSSELL, R. virtio: towards a de-facto standard for virtual i/o devices.

SIGOPS Oper. Syst. Rev. 42, 5 (July 2008), 95–103.

[20] SCHULTZ, M., AND CROWLEY, P. Performance analysis of packet capture

methods in a 10 gbps virtualized environment. In Computer Communica-

tions and Networks (ICCCN), 2012 21st International Conference on (30

2012-aug. 2 2012), pp. 1 –8.

[21] SOLARFLARE. Openonload. http://www.openonload.org/ (2008).

[22] SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-H. Virtualizing

i/o devices on vmware workstation’s hosted virtual machine monitor. In

USENIX ATC 2002 (Berkeley, CA, USA, 2001), USENIX Association,

pp. 1–14.

[23] VMWARE. Performance evaluation of vmxnet3.

http://www.vmware.com/pdf/vsp 4 vmxnet3 perf.pdf.

6

