
Speeding Up Packet I/O in Virtual Machines

Luigi Rizzo
Università di Pisa, Italy
rizzo@iet.unipi.it

Giuseppe Lettieri
Università di Pisa, Italy
lettieri@iet.unipi.it

Vincenzo Maffione
Università di Pisa, Italy

v.maffione@gmail.com

ABSTRACT

Most of the work on VM network performance has focused
so far on bulk TCP traffic, which covers classical applica-
tions of virtualization. Completely new “paravirtualized de-
vices” (Xenfront, VIRTIO, vmxnet) have been designed and
implemented to improve network throughput.

We expect virtualization to become widely used also for
different workloads: packet switching devices and middle-
boxes, Software Defined Networks, etc.. These applica-
tions involve very high packet rates that are problematic
not only for the hypervisor (which emulates network inter-
faces) but also for the host itself (which switches packets
between guests and physical NICs).

In this paper we provide three main results. First, we
demonstrate how rates of millions of packets per second
can be achieved even within VMs, with limited but tar-
geted modifications on device drivers, hypervisors and the
host’s virtual switch. Secondly, we show that emulation of
conventional NICs (e.g., Intel e1000) is perfectly capable of
achieving such packet rates, without requiring completely
different device models. Finally, we provide sets of modifi-
cations suitable for different use cases (acting only on the
guest, or only on the host, or on both) which can improve
the network throughput of a VM by 20 times or more.

These results are important because they enable a new
set of applications within virtual machines. In par-
ticular, we achieve guest-to-guest UDP speeds of over
1 Mpps with short frames (and 6 Gbit/s with 1500-byte
frames) using a conventional e1000 device, and socket-based
sender/receivers. This matches the speed of the OS on bare
metal. Furthermore, we reach over 5 Mpps when guests use
the netmap API.

Our work requires only small changes to device drivers
(about 100 lines, both for FreeBSD and Linux version of
e1000), similarly small modifications to the hypervisor (we
have a QEMU prototype available) and the use of the VALE
switch as a network backend. Relevant changes are be-
ing incorporated and/or distributed as external patches for
FreeBSD, QEMU and Linux.

Categories and Subject Descriptors

D.4.4 [Operating Systems]: Communications Manage-
mentNetwork Communication

General Terms

Design, Experimentation, Performance

Keywords

Software Switches; Virtual Machines; netmap

1. INTRODUCTION
Virtualization is a technology in heavy demand to im-

plement server consolidation, improve service availability,
and make efficient use of the many cores present in today’s
CPUs. Of course, users want to exploit the features offered
by this new platform without losing too much (or possibly,
anything) of the performance achievable on traditional, ded-
icated hardware (bare metal).

Over time, ingenious software solutions [5], and later hard-
ware support [13, 3], have mostly filled the gap for CPU
performance. Likewise, performance for storage peripherals
and bulk network traffic is now comparable between VMs
and bare metal, especially when I/O can be coerced to use
large blocks (e.g., through TSO/RSC) and limited transac-
tion rates (e.g., say less than 50 K trans/s).

However a class of applications, made relevant by the
rise of Software Defined Networking (SDN), still struggles
under virtualization. Software routers, switches, firewalls
and other middleboxes, need to deal with very high packet
rates (millions per second) that are not amenable to reduc-
tion through the usual Network Interface Card (NIC) of-
floading techniques. The “direct mapping” of portions of
virtualization-aware NICs to individual VMs can provide
some relief, but it has scalability and flexibility constraints.

We then decided to explore solutions to let VMs deal
with millions of packets per second without requiring special
hardware, or imposing massive changes to OSes or hypervi-
sors. In this paper we discuss the general problem of network
performance in virtual machines, identifying the main causes
of performance loss compared to bare metal, and design and
experiment with a comprehensive set of mechanisms to fill
the performance gap.

Our contribution: in detail, we i) emulate interrupt
moderation, ii) implement“Send Combining”, a driver-based
form of batching and interrupt moderation; iii) introduce
an extremely simple but very effective paravirtualized ex-
tension for the e1000 devices (or other NICs), providing the
same performance of VIRTIO and alikes with almost no ex-
tra complexity; iv) adapt the hypervisor to our high speed
VALE [20] backend, and v) characterize the behaviour of
device polling under virtualization.

Some of the mechanisms we propose help immensely, espe-
cially within packet processing machines (software routers,
IDS, monitors . . .). Especially, the fact that we provide so-
lutions that apply only to the guest, only to the host, or to

Figure 1: In our virtualized execution environment
a virtual machine uses one VCPU thread per CPU,
and one or more I/O threads to support asyn-
chronous operation. The hypervisor (VMM) has
one component that runs in userspace (QEMU) and
one kernel module (KVM). The virtual switch also
runs within the kernel.

both, makes them applicable also in presence of constraints
(e.g., legacy guest software that cannot be modified; or pro-
prietary VMMs).

In our experiments with QEMU-KVM and e1000 we
reached a VM-to-VM rate of almost 5 Mpps with short
packets, 25 Gbit/s with 1500-byte frames, and even higher
speeds between a VM and the host. These large speed im-
provements have been achieved with a very small amount of
code, and our approach can be easily applied to other OSes
and virtualization platforms. We are pushing the relevant
changes to QEMU, FreeBSD and Linux.

In the rest of this paper, Section 2 introduces the necessary
background and terminology on virtualization and discusses
related work. Section 3 describes in detail the components
of our proposal, whereas Section 4 presents experimental
results, and also discusses the limitations of our work.

2. BACKGROUND AND RELATED WORK
In our (rather standard) virtualization model (Figure 1),

Virtual Machines (VMs) run on a Host which manages hard-
ware resources with the help of a component on the Host
called hypervisor or Virtual Machine Monitor (VMM, for
brevity). Each VM has a number of Virtual CPUs (VCPUs,
typically implemented as threads in the host), and also runs
additional I/O threads to emulate and access peripherals.
The VMM (typically implemented partly in the kernel and
partly in user space) controls the execution of the VCPUs,
and communicates with the I/O threads.

The way virtual CPUs are emulated depends on the fea-
tures of the emulated CPU and of the host. The x86
architecture does not lend itself to the trap and emulate
implementation of Virtualization [1], so historical VMMs
(VMware, QEMU) relied for the most part on binary trans-
lation for “safe” instructions, and calls to emulation code

guest

kvm

qemu

IOthread

VMenter VMexit

VMSTART

VCPU

intr

a b c

Figure 2: Different ways to emulate IO register ac-
cesses. They can be taken care of directly in the
kernel component of the hypervisor (case “a”), or in
the host component (case “b”), or handed off to the
I/O thread (case “c”) in case of long activities.

for others. A recent paper [5], long but very instructive,
shows how the x86 architecture was virtualized without spe-
cial support for virtualization on the host CPU. The evolu-
tion of these techniques is documented in [1]. A slowdown
of 2..10 times can be expected for typical code sequences
that run in the virtual machine; slightly better performance
can be achieved if kernel support is available to intercept
memory accesses to invalid locations.

Modern CPUs provide hardware support for virtualiza-
tion (Intel VTX, AMD V) [13, 3], so that most of the code
for the guest OS is run directly on the host CPU operating
in “VM” mode. In practice, the kernel side of a VMM en-
ters VM mode through a system call (typically an ioctl(..

VMSTART ..)), which starts executing the guest code within
the VCPU thread, and returns to host mode as described
below.

2.1 Device emulation
Emulation of I/O devices [25] generally interprets accesses

to I/O registers and replicates the behaviour of the corre-
sponding hardware. The VMM component reproducing the
emulated device is called frontend. Data from/to the fron-
tend are in turn passed to a component called backend which
communicates with a physical device of the same type: a
network interface or switch port, a disk device, USB port,
etc.

Access to peripherals from the guest OS, in the form of IO
or MMIO instructions, causes a context switch (“VM exit”)
that returns the CPU to “host”mode. VM exits often occur
also when delivering interrupts to a VM. On modern hard-
ware, the cost of a VM exit/VM enter pair and IO emulation
is 3..10 µs, compared to the 100-200 ns for IO instructions
on bare metal.

The detour into host mode is used by the VCPU thread
to interact with the frontend and emulate the actions that
the real peripheral would perform on that specific register
access. In some cases these are trivial (such as reading or
writing a memory word); other times, a register access may
involve copying one or more blocks of data, e.g. network
frames, between the emulated device and the actual periph-
eral on the host.

This emulation can be done in different ways, as illus-
trated in Figure 2. For frequently accessed peripherals that

are a standard part of an architecture, such as interrupt
control registers, the kernel side of the VMM can do the
emulation directly; this is represented by case “a” in Fig-
ure 2).

In other cases, the task can be performed in the user side
of the VMM (see case “b”), which gives greater flexibility
but also adds cost to the operation. As an example in one
of our systems (Intel i5-2450M @ 2.5 GHz, memory @ 1333
MHz) a register access requires 1.2µs when executed by the
kernel component of the hypervisor (KVM), and 3.7µs when
dispatched to the userspace component.

In the worst case, the VCPU thread may actually even
be descheduled, or block waiting for I/O. This can be prob-
lematic as I/O accesses often occur under some kind of lock-
ing, so changing the execution time from 100 ns to poten-
tially much longer times may significantly reduce the ability
of other VCPU threads to perform useful work. It follows
that potentially long operations are better served by running
them within an independent thread (I/O thread), to which
the VCPU hands off the request (case “c”). I/O threads are
also used to handle events (e.g., I/O completions, timeouts)
generated from the host OS.

This description illustrates the fundamental performance
issues and tradeoffs in using emulated peripherals within a
VM. While regular code runs at full speed, IO instructions
consume thousands of clock cycles, and can block other VC-
PUs for very long times. Also, the latency in performing the
actual I/O operation is badly affected by the thread handoffs
that are necessary to return quickly from a VM exit.

Hence, a significant challenge in VM environments is the
reduction or elimination of VM exits, which are especially
frequent when dealing with high packet rate network traffic.
Our work is actually providing a number of solutions in this
space.

2.2 Reducing VM exits
It is not uncommon that instructions leading to VM exits

are close to each other – as an example, within device drivers
where multiple registers are accessed at once. A recent pro-
posal [2] shows how short sequences of code involving mul-
tiple I/O instructions can be profitably run in interpreted
mode to save some VM exits. Implementing this technique
is non trivial, but it can be done completely within the VMM
without any change in the guest OS.

VM exits are not needed for hardware that is directly ac-
cessible to the guest VM: we can give it full control of a
physical device (or part of it, if the device supports “vir-
tual functions”) as long as we can make sure that the VM
cannot fiddle with other reserved parts of the hardware.
IOMMU [4] and related technologies (generally referred to
as PCI passthrough) comes to our help here, as they provide
the necessary protections as well as translation between the
guest’s physical address space and the host physical address
space. Again, this approach can be almost completely trans-
parent for the guest OS, and relies only on support in the
hardware and the VMM.

2.2.1 Paravirtualized devices

Another popular approach to reduce VM exits is to de-
sign new device models more amenable to emulation. This
approach, called “paravirtualization”, has produced several
NIC models (vmxnet [26], VIRTIO [21], xenfront [6]), in
turn requiring custom device drivers in the guest OS. Syn-

chronization between the guest and the VMM uses a shared
memory block, as described in Section 3.5, accessed in a way
that limits the number of interrupts and VM exits. One con-
tribution of this paper is to show that paravirtualization can
be introduced with minimal extensions into existing NICs.

2.2.2 Interrupt handling

Interrupts to the guest frequently cause exits, either di-
rectly or indirectly (because they trigger accesses to registers
of interrupt controllers and devices). Mechanisms to reduce
interrupt rates, as those shown in Section 3.1 and following,
help significantly.

Likewise, it is possible for interrupts to be delivered di-
rectly to the guest without causing VM exits. As an exam-
ple, ELI [8] removes interrupt-related VM exits on direct-
access peripherals by swapping the role of host and guest:
the system is programmed so that all interrupts are sent to
the guest, which reflects back those meant for the host.

2.3 High speed networking
Handling 10 Gbit/s or faster interfaces is challenging even

on bare metal. Packet rates can be reduced using large
frames, or NIC/OS support for segmentation and reassem-
bly (named TSO/GSO and RSC/LRO, respectively). These
solutions do not help for packet processing devices (software
routers, switches, firewalls), which are not sourcing or ter-
minating connections, hence must cope with true line speed
in terms of packet rates.

Only recently we have seen software solutions that can
achieve full line rate at 10 Gbit/s on bare metal [18, 7, 12].
In the VM world, apart from the trivial case of directly
mapped peripherals, already discussed [8], the problem has
not seen many contributions in the literature so far. Among
the most relevant:
Measurements presented in [23] show that packet capture
performance in VMs is significantly slower than on native
hardware, but the study does not include the recent tech-
niques mentioned above, nor proposes solutions. Interrupt
coalescing and Virtual Receive Side Scaling have been stud-
ied in [10] within Xen; the system used in that paper is lim-
ited to about 100 Kpps per core, and the solutions proposed
impose a heavy latency/throughput tradeoff and burn mas-
sive amounts of resources to scale performance. ELVIS [9]
addresses the reduction of VM exits in guest-host notifica-
tions: a core on the host monitors notifications posted by
the guest(s) using shared memory, whereas inter-processor
interrupts are used in the other direction, delivered directly
to the guest as in the ELI case.

2.4 State of the art in VM networking
On bare metal and suitably fast NICs, clients using a

socket API are generally able to reach 1 Mpps per core,
peaking at 2..4 Mpps per system due to driver and OS lim-
itations. Recent OS-bypass techniques [18, 7, 14, 24] can
reach much higher rates, and are generally I/O bound, easily
hitting line rate (up to 14.88 Mpps on a 10 Gbit/s interfaces)
unless limited by NIC or PCIe bus constraints.

Within a VM, at least when emulating regular NICs (e.g.,
the popular Intel’s e1000), common VMMs reach rates of
about 100 Kpps on the transmit side, and marginally higher
rates on the receive side (see Figure 4, 5 and 10). Paravir-
tualized devices (VIRTIO etc.) can help significantly, but
support for them is neither as good nor as widespread as

it is for popular hardware NICs. This is especially true in
the presence of old/legacy systems that cannot be decom-
missioned: they are often run within a VM due to lack of
suitable hardware. So there is still a strong motivation for
efficient NIC emulation, which motivates some of the solu-
tions that we propose, requiring none or minimal modifica-
tions to the guest OS — much less than adding an entirely
new device driver.

Note that our work goes beyond a simple replacement
of paravirtualized devices. We address packet rates be-
yond those supported by the usual virtual switches, so we
needed to identify and fix performance bottlenecks in mul-
tiple places of the architecture, from the guest operating
system to the virtual switch itself.

3. OUR WORK
Taking QEMU-KVM as a prototype platform, we have

investigated how to improve the network performance of
guests, using both regular (e.g., Intel e1000) and paravir-
tualized network devices. Given the huge number of dimen-
sions in the problem space, we initially focus the presenta-
tion on the cases in dire need of improvement: guest to guest
communication, high packet rates, non-paravirtualized de-
vices. Other configurations will be discussed and evaluated
in Section 4.

For the host OS we used Linux 3.8, with KVM. For the
guest OS we used both Linux 3.8 and FreeBSD HEAD. The
differences in device driver and network stack architectures
helped pointing out different phenomena and also the pecu-
liarities in running in a VMs rather than on bare metal.

We should also keep in mind the constraints that may
limit the solution space. Sometimes the guest OS cannot
be modified or extended, hence we can only operate on the
host side; in other cases the hypervisor is instead propri-
etary, hence we should look for guest-only solutions. And
of course, in absence of such constraints, we should look for
performance improvement techniques across the board. We
believe that the set of solutions presented in this paper cov-
ers nicely the various situations, and can be easily applied
to other systems/platforms than the ones we used for our
experiments.

3.1 Interrupt moderation on emulated NICs
Interrupt moderation [15] is a widely used technique to

reduce interrupt load, and it is normally available on mod-
ern NICs and supported by OSes. It struck our attention
that the feature is rarely implemented by VMMs: QEMU
and VMware Player do not emulate moderation registers;
VirtualBox supports them only in very recent versions.

This was surprising since interrupts storms from NICs at
high packet rates are a significant source of uncontrolled sys-
tem load, leading to receiver livelock and severe reductions
of the transmit rate.

One reason for the omission may be that modern Operat-
ing Systems employ various interrupt avoidance techniques
in software (e.g., the NAPI architecture in Linux [22], de-
vice polling in FreeBSD [17]; lazy buffer recovery on the
transmit side, see Sec. 3.3). However, except for [17], such
techniques do not provide guarantees on the maximum in-
terrupt rate, so interrupt moderation is still useful to avoid
livelock, though not as much as for older OSes and drivers
that do not exploit interrupt avoidance techniques. Also,
having interrupt moderation in the device enables the use of

Send Combining (discussed next in Sec. 3.2) on the transmit
side which has significant benefits in a VM.

Our first modification was to implement the interrupt
moderation registers in QEMU. The (small) change of the
code affects only the hypervisor, and can work even if guest
OS or the original NIC do not support moderation, as we
can enforce the feature on the emulated device. Hence this
makes a good solution for old or not modifiable guests.

3.1.1 Effects on transmission

On the transmit side, moderation more than doubles the
transmit rate for UDP, especially with a single VCPU (on
Linux, we go from 29 to 82 Kpps with 64-byte frames, 28
to 70 Kpps with 1500-byte frames). The reason is that on
the VM, in absence of moderation, a transmit request (trig-
gered by a write to one of the NIC registers, in turn causing
a VM exit) is instantly followed by an interrupt, that causes
a burst of VM exits in the interrupt service routine. As a
consequence, each interrupt serves exactly one packet. With
moderation, one exit per packet is still used in the transmit
routine, but the cost of the interrupt routine is now amor-
tized over a larger set of packets.

The effect of moderation is more limited with 2 VCPUs,
because in this case the interrupt service routine can run
in parallel with the transmit requests, and this gives some
chances to serve more than one packet per interrupt. De-
pending on the OS, we may still see some improvement, but
more limited, e.g., Linux goes from 40 to 82 Kpps.

Note that adding a second VCPU increases the base
throughput from 29 to 40 Kpps, but it has little or no effect
when moderation is used (we have observed about 82 Kpps
in both cases). This can be explained as follows: the effect
of the second VCPU is to offload some interrupt processing
from the first VCPU thread, which is the bottleneck in these
benchmarks; but the second VCPU is only activated by the
NIC generated interrupts, and therefore it has much less op-
portunities to kick in if interrupt moderation is used. This
can be confirmed by looking at the CPU utilization of the
second VCPU thread in the two scenarios: 56% in the base
case, but only 13% when moderation is turned on. This
much smaller effect is likely counterbalanced by increased
overheads.

3.1.2 Effects on reception

On the receive side, the effect of moderation depends on
the arrival pattern of traffic. In some cases, traffic received
by the VM already comes in batches (with one interrupt per
batch) because this is how it is passed on by the incoming
(physical) interface, virtual switch and/or the backend. Yet,
even in these cases, the use of interrupt moderation can
help increase the batch size and further amortize the cost of
interrupt processing, and increase the rate at which receive
livelock may appear (see Section 3.4).

3.2 Send Combining
Device drivers typically notify the NIC immediately when

new packets are ready for transmission; this is relatively
inexpensive on bare metal, but causes a VM exit in a VM.

To reduce the number of such exits we used an idea similar
to what in [25, Sec.3.3] is called “Send Combining” (SC):
since the driver knows about pending TX interrupts, it can
defer transmission requests until the arrival of the interrupt.
At that point, all pending packets are flushed (with a single

write on one of the NIC’s registers), so there is only one VM
exit per batch.

SC is a trivial (about 25 lines of code in our case), guest
only modification of the transmit path. However it has no
effect if TX interrupts are instantaneous, so it is mostly use-
ful when coupled with moderation, or with device polling,
see Section 3.3.2, because it reduces the system load from
one VM exit per packet to one VM exit per batch.

On the negative side, send combining may delay trans-
missions by up to the moderation/polling delay (20..100 µs
for moderation, 250..1000 µs for polling), similarly to what
happens on the receive path with these techniques. The
inconvenience can be reduced by tuning SC (and interrupt
moderation) to kick in only above a certain packet rate,
and by choosing appropriate tradeoffs between delay and
throughput.

The combination SC plus moderation gives a fantastic
boost on the transmit path: on Linux, we went from 40
to 354 Kpps with 2 VCPUs, and from 30 to 221 Kpps with
1 VCPU. The reason for these high speedups is the massive
reduction of VM exits (by far the most expensive operation),
which are now well below one per packet. We are now ap-
proaching rates where the virtual switch and the data path
within the VMM may become a performance bottleneck.

As a final note in this section, we should mention that
unlike our version, the original Send Combining in [25] was
implemented entirely in the VMM, because it ran I/O in-
structions in “binary translation” mode. When using CPU-
based virtualization support we do not have this luxury, and
we cannot intercept I/O requests before they cause a VM
exit.

3.3 Reducing interrupts
Interrupt moderation in the emulated device is not the

only way to reduce interrupts. There are other techniques
that can be implemented in the guest OS, and lead to similar
or better performance improvements. The following ones are
not new contributions of this work, but it is important to
understand how they relate to virtualization. Especially, the
benefits of polling within VMs has not been documented so
far.

3.3.1 Lazy TX completion

As long as there are resources available, it is not neces-
sary to interrupt on each transmitted packet to recover the
buffer. Lazy TX completion recovers completed transmis-
sion in batches (we can think of it as moderation based on
packet counts rather than time), or opportunistically during
subsequent transmissions. This technique is implemented in
some device drivers, and also in the netmap [18] framework.
Note that it can almost completely remove transmit inter-
rupts (they are still necessary when the transmit queues are
full, as a notification that new transmit resources are avail-
able), so it is not compatible with send-combining, which
instead relies on interrupts to flush pending transmissions.

3.3.2 FreeBSD’s device polling

The FreeBSD’s device polling framework [17] completely
disables NIC interrupts, and runs the equivalent of the in-
terrupt service routines at every timer tick (0.2 .. 1 ms on
most systems) and optionally in the system’s idle thread.
The framework was designed for a totally different purpose
(enabling moderation for devices that do not support it, and

0 1000 2000 3000 4000 5000 6000

Input rate (Kpps)

0

200

400

600

800

1000

1200

1400

1600

R
x
 r
a
te
 (
K
p
p
s)

Receive livelock response

FreeBSD-polling

linux-virtio

linux-vhost

linux-csb

linux-NAPI

Figure 3: UDP receive throughput for different in-
put traffic. Only Linux-VIRTIO (without VHOST)
and FreeBSD polling are able to sustain their peak
rate for input rates up to 20 Mpps (the graph is
truncated to 6 Mpps for clarity).

preventing livelock under high network load), but turns out
to be extremely effective when used within a virtual ma-
chine.

In fact, by removing interrupts, polling also removes the
many VM exits that are generated to access the interrupt
controller registers, so it is even more effective than interrupt
moderation. Coupled with send combining, device polling
also achieves great rates on the transmit path. As an exam-
ple, just enabling polling on FreeBSD, with proper param-
eters, supports receive rates of up 890 Kpps, and to about
450 Kpps on the transmit side.

3.4 Receive livelock
Receive livelock [15] refers to a significant throughput de-

crease as the input rate grows. It generally arises when
incoming traffic is not processed to completion in a single
stage, and the initial processing stage (e.g., interrupt han-
dling) is given priority over others.

Livelock is a serious problem in high speed network en-
vironments. Interrupt moderation, coupled with modern,
powerful CPUs, is often sufficient to alleviate the problem.

Within VMs, the problem is aggravated by two factors:
the much higher cost of I/O operations, and the fact that
emulated hardware can be subject to much higher input
rates than the physical devices they emulate. As an example,
the e1000 driver normally manages 1 Gbit/s cards, result-
ing in at most 1.488 Mpps. However in a VM the driver can
receive much higher packet rates, e.g. the VALE[20] back-
end presented in Section 3.6 is able to drive it with up to
20 Mpps and 70 Gbit/s. This defeats all livelock prevention
mechanisms that rely on abundance of CPU resources.

To illustrate the phenomenon, Figure 3 shows the receive
throughput for an UDP socket under variable input load
(with input coming in bursts of 100 packets), with differ-
ent combinations of operating system (FreeBSD or Linux),
device driver (e1000 or VIRTIO), operating mode (NAPI,
paravirtualized driver as described in Section 3.5, FreeBSD
polling [17]), and network backend (TAP and VALE, de-
scribed in Section 3.6).

For most configurations (including several not shown) the
receive rate drops to very low values, or even to 0, as the
input rate grows. In our experiments, only two solutions
resisted to extreme input rates without incurring in livelock:
the FreeBSD polling framework and Linux VIRTIO (without
VHOST).

The robustness of FreeBSD polling comes from two rea-
sons: first, the maximum interrupt rate is limited to a rel-
atively low rate (1..20 K per second), which does not pose
problems even with the expensive VM exits; second, a con-
trol mechanism dynamically adjusts the work performed in
the interrupt routines to guarantees a configurable amount
of CPU time to other processes. This makes sure that, even
under extreme input loads, the desired fraction of CPU ca-
pacity is still available to perform work and complete pro-
cessing of the input.

The robustness of VIRTIO-based configurations is instead
accidental, and derives from the inability of the VIRTIO
QEMU frontend (which in the non-VHOST case runs in the
userspace emulator) to deliver more than 700Kpps (in our
experiment) to the VM. As a consequence, in this config-
uration we do not see livelock only because the guest is
never running out of CPU. When VIRTIO is accelerated
with VHOST, the VIRTIO frontend (which is now in the
host kernel) is no more the bottleneck, and we do see the
livelock for high rates.

3.5 Paravirtualizing real NICs
Paravirtualized devices (VIRTIO, vmxnet, xenfront) gen-

erally reduce the number of VM exits by establishing a
shared memory region (we call it Communication Status
Block or CSB) through which the guest and the VMM can
exchange I/O requests without VM exits.

The mechanism works as follows: on the first packet after
an idle interval, the traffic source (either the guest or the
I/O thread) issues an initial notifications (called kick) to
wake up the other peer. Kicks from the guest are writes
to a NIC register, and do cause a VM exit; kicks from the
host (typically issued by the I/O thread) are interrupts, and
cause VM exits too. The entity that receives a kick polls the
CSB to look for new work (new packets available), and posts
indications to the CSB as they are processed. The polling
continues until there is no more pending work, at which
point the entity reports in the CSB that is about to go to
sleep, and actually does so when no more work is available
for a while.

Same as other mechanisms discussed earlier, paravirtual-
ization reduces the number of VM exits to one (or a few) per
batch of packets, and becomes more effective as the load in-
creases, a nice scaling property. The mechanisms required to
implement paravirtualization do not differ much from what
is already available in modern NICs; in fact:

• the hardware already reports packet receptions and
transmit completions through status bits in the de-
scriptor ring, which is accessible through shared mem-
ory without VM exits;

• the register writes that start transmissions, and the
receive interrupts are perfectly equivalent to a “kick”
in VIRTIO terminology (in fact these two mechanisms
are used to implement VIRTIO as a PCI device, which
is the implementation used in the VMMs).

The only missing features to support paravirtualization are
copies of the registers used to indicate new transmissions
and new buffers for the receive ring, which the guest can
update without VM exits.

Hence all it takes to build a full paravirtualized device
is a small region of memory to implement the CSB (which
includes the two registers mentioned above, plus some extra
control information), and the code to exchange information
through it.

We have implemented paravirtualization support for the
e1000 and r8169 devices and drivers by adding two PCI
registers to the emulated NIC to point to the mapped CSB.
The new capability is advertised through the PCI subdevice
ID, and the device driver must explicitly enable the feature
for the emulator frontend to use it.

Overall, this modification required about 100 lines of code
in the guest device driver, and approximately the same
amount in the frontend. The same CSB structure is used
for both NICs.

This is immensely simpler than writing an entirely new
device driver (about 3000 lines for VIRTIO-net) and fron-
tend (about 1500 lines). In terms of performance, our par-
avirtualized NICs perform as well as VIRTIO. As such, this
is a more viable approach to extend both guests and hy-
pervisors that do not have paravirtualized devices (or have
incompatible ones: it is amusing that even among paravirtu-
alized NICs, each manufacturer has gone its own way, lead-
ing to the existence of at least three contenders — VIRTIO,
vmxnet, xenfront — which replicate similar functionality).

3.6 VALE, a fast backend
As the experiments in the next Section will show, with

the enhancements described so far have become faster than
the maximum packet rates supported by the backends (sock-
ets, tap, host bridges, . . .) that interconnects virtual ma-
chines. This bottleneck used to be hardly visible due to
general slowness in the guest and device emulation, but the
problem clearly emerges now.

Some room for improvement still exists: as an example,
the VHOST feature [11] for VIRTIO avoids going through
the emulator userspace code for sending and receiving pack-
ets, and instead does the forwarding directly within the host
kernel. In our experiments VHOST almost doubles the peak
pps rate over TAP for the VIRTIO cases, slightly above our
best result with e1000-CSB (which still does not have an
equivalent optimization).

Nevertheless, our target of several millions of packets per
second requires a substantially faster backend. We have then
implemented a QEMU backend that uses the VALE [20]
software switch, which in itself is capable of handling up
to 20 Mpps with current processor technology. Attaching
QEMU to VALE pointed out a number of small performance
issues in the flow of packets through the hypervisor (mostly,
redundant data copies and lookups of information that could
be cached). Our initial implementations could “only” reach
2.5 Mpps between guest and host, but this value has been
more than doubled in the current prototype.

4. EXPERIMENTAL RESULTS
We have anticipated some performance numbers in the

previous Section, but here we provide a more comprehen-
sive comparison of the various mechanism presented. Ex-
ploring all possible combinations of components (guest OS;

virtual CPUs; NICs; hypervisors; backends; virtual switch;
load conditions) would be prohibitively time consuming, so
we restrict our analysis to a (still large) number of relevant
configurations.

We present now some results on the data rates we achieved
between Guest and Host (GH), and between two guests
(GG), with different emulators and combinations of features.
Our source code containing all QEMU and guest modifica-
tions is available at [19].

General notes

For basic UDP, TCP and latency tests we have used the
popular netperf program. A socket-based program (net-
send from FreeBSD) has been used to generate rate-limited
UDP traffic. For very high speed tests, exceeding the data
rates achievable with sockets, we have used the pkt-gen pro-
gram part of the netmap [16] framework. pkt-gen accesses
the NIC (or the VALE port) bypassing the network stack,
acts as a sink or as a source with programmable rate, and
can sustain tens of millions of packets per second.

Our host system uses an Intel i7-3930K CPU @ 3.20GHz
running Linux 3.8.11; QEMU-KVM is the git-master version
as of May 2013, extended with all the mechanisms described
in this paper. We use tap or VALE as backends.

Our guests are FreeBSD HEAD or Linux 3.8, normally
using the e1000 driver with small extensions to implement
Send Combining (SC) and Paravirtualization (CSB). The
interrupt moderation delay (i.e., the minimum interval be-
tween two interrupts) is controlled by the itr parameter (in
256 ns units).

We also ran some tests using other hypervisors (Virtual-
Box, VMware Player) and/or features (VIRTIO, VHOST,
TSO) to have some absolute performance references and
evaluate the impact of the features we are still missing.

Note: the goal of this paper is to study the behaviour
of the system at high packet rates, as those that may occur
in routers, firewalls and other network middleboxes. Hence,
our main focus are streams of UDP or raw packets. TCP
throughput is only reported for completeness, but we did
not try or want to optimize TCP parameters (buffer and
window sizes, path delays, etc.) for maximum throughput
but rely on system defaults, for good or bad as they are.
More details on TCP performance are in Section 4.3.

Notations and measurement strategy

In the following tables of results and related discussions,
configurations are labeled according to the main parameters
that have an influence on results, namely:

• the guest operating system (Linux or FreeBSD);

• the VMM (typically QEMU, but we ran some limited
tests with VMware Player and VirtualBox);

• the backend (TAP or or VALE);

• whether communication is between between a Guest
and the Host (GH), or between two Guests VMs (GG).
GH measurements are useful to evaluate separately the
transmit and receive path (the host being generally a
faster source/sink). Tests between two guests (GG)
show the end-to-end behaviour (on the same host);

• the number of VCPUs per guest;

Linux on QEMU-KVM, TAP backend, Guest-Host

1 VCPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+-----+------+------+------+------
TX itr=0 BASE | 30 28 326 103 182 11.8
TX itr=250 | 83 71 827 135 249 14.2
TX itr=250 SC | 216 138 1613 1309 1521 4.6
TX itr=0 CSB | 353 242 2828 2620 2594 21.2
TX itr=250 CSB | 360 239 2794 2590 2757 7.6

|
RX itr=0 BASE | 3370 3327 12.3
RX itr=100 SC | 3912 3890 13.4
RX itr=100 CSB | 7179 7493

2 VCPU | UDP8 | UDP-1460 | TCP | TCP-w| TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+-----+------+------+------+------
TX itr=0 BASE | 45 38 452 239 349 13.5
TX itr=250 | 84 54 630 329 396 13.5
TX itr=250 SC | 291 136 1592 1723 1761 11.3
TX itr=0 CSB | 369 190 2223 1993 1959 20.7
TX itr=250 CSB | 343 172 2011 1690 1683 10.4

|
RX itr=0 BASE | 3938 4118
RX itr=100 | 1250 2894
RX itr=100 SC | 2300 5128
RX itr=100 CSB | 4400 7566

Linux on QEMU-KVM, TAP backend, Guest-Guest

1 VCPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
TX = RX | Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+------+------+------+------+------
itr=0 BASE | 29 28 321 416 462 7.1 *
itr=250 | 82 70 827 522 598 6.5
itr=250 SC | 221 138 1615 1265 1661 5.1
itr=0 CSB | 458 269 3147 2923 2982 11.8 *

2 VCPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
TX = RX | Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+------+------+------+------+------
itr=0 BASE | 40 38 439 302 372 5.1
itr=250 | 82 70 815 578 646 6.1
itr=250 SC | 354 163 1913 2174 2185 5.0
itr=0 CSB | 409 258 3016 2747 2824 11.0

|
pkt-gen | 400 360 4205

Linux on QEMU-KVM, VALE backend, Guest-Guest

1 VCPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
TX = RX | Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+------+------+------+------+------
itr=0 BASE | 32 31 363 559 805 7.4 *
itr=250 | 125 98 1143 792 859 7.1
itr=250 SC | 455 186 2173 1856 2450 6.7
itr=0 CSB | 1526 480 5616 4190 4206 12.3 *

2 VCPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
TX = RX | Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+------+------+------+------+------
itr=0 BASE | 77 66 767 456 548 7.3
itr=250 | 118 90 1059 813 900 7.0
itr=250 SC | 468 286 3350 2144 3130 6.6
itr=0 CSB | 1221 447 5226 4380 4849 11.2

|
pkt-gen | 2800

Figure 4: Performance of the various solutions with
TAP or VALE as a backend, and Linux as the guest
OS. Lines with an * indicate that the receiver is not
able to sustain the transmit rate.

• the moderation delay (itr);

• the use of either of the SC or CSB extensions;

• packet size (8 or 1460 bytes for UDP) or write()
size for TCP (we used 1460, labeled TCP, or netperf
defaults, labeled TCPw);

• the emulated device, normally e1000 except for Fig-
ure 11 which measures the throughput with VIRTIO.

The full experimental results in a variety of configurations
for Linux and FreeBSD are listed in Figures 4, 5, 10 and 11.

FreeBSD on QEMU-KVM, TAP backend, Guest-Host

1 VCPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+-----+------+------+------+------
TX itr=0 BASE | 17 18 207 181 516 14.6
TX itr=250 | 64 55 640 267 538 8.9
TX itr=250 SC | 237 167 1947 1060 1041 10.1
TX itr=0 CSB | 392 247 2886 1783 1534 16.5
TX itr=250 CSB | 379 244 2851 1767 1684 7.2

2 VCPU | UDP8 | UDP-1460 | TCP | TCP-w| TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+-----+------+------+------+------
TX itr=0 BASE | 17 17 193 176 500 14.1
TX itr=250 | 59 53 625 251 522 12.2
TX itr=250 SC | 244 165 1930 1068 1001 11.6
TX itr=0 CSB | 400 244 2851 1862 1611 17.3
TX itr=250 CSB | 388 243 2844 1746 1658 7.2

FreeBSD on QEMU-KVM, TAP backend, Guest-Guest

1 VCPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
TX = RX | Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+------+------+------+------+------
itr=0 BASE | 20 19 224 185 633 7.1
itr=250 | 54 46 543 357 516 3.8
itr=250 SC | 251 180 2109 739 770 3.9 *
itr=0 CSB | 475 262 3055 1512 1496 9.5 *

2 VCPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
TX = RX | Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+------+------+------+------+------
itr=0 BASE | 16 16 187 157 549 6.6
itr=250 | 50 48 564 422 531 3.8
itr=250 SC | 250 170 1996 704 723 3.8 *
itr=0 CSB | 464 268 3131 1350 1327 8.0

FreeBSD on QEMU-KVM, VALE backend, Guest-Guest

1 CPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
TX = RX | Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+------+------+------+------+------
itr=0 BASE | 20 18 205 160 804 7.9
itr=250 | 91 60 697 547 661 4.3
itr=250 SC | 459 268 3126 927 936 5.7 *
itr=0 CSB | 838 456 5325 1835 1821 9.9 *

2 CPU | UDP8 | UDP-1460 | TCP | TCPw | TCPRR
TX = RX | Kpps | Kpps Mbps | Mbps | Mbps | KTps

---------------+------+------+------+------+------+------
itr=0 BASE | 20 20 230 183 730 7.3
itr=250 | 85 65 764 439 621 4.3
itr=250 SC | 440 258 3018 906 921 5.0 *
itr=0 CSB | 817 449 5248 1684 1690 9.1 *

|
pkt-gen | 5000 1890 22075

Figure 5: Performance of the various solutions with
TAP or VALE as a backend, and FreeBSD as the
guest OS. Lines with an * indicate that the receiver
is not able to sustain the transmit rate.

We will provide a detailed discussion of some of the most
significant configurations in the rest of this Section.

4.1 Effect of NIC improvements
We show here a few graphs to compare the effect of NIC

improvements on the communication speed.
Figure 6 shows how performance is affected by various

combinations of the parameters, using TAP (grey) or VALE
(black) as a backend, and short UDP packets (the effect
on large UDP frames is similar, as can be seen from the
tables). The graph shows clearly that with a TAP back-
end, paravirtualization of the e1000 NIC (column labeled
csb) matches the performance of VIRTIO without VHOST.
This was expected as the two mechanisms operate in a very
similar way and have comparable overheads. As discussed,
VIRTIO with VHOST has slightly superior performance be-
cause it avoids going through the I/O thread hence reduces
the overall packet processing costs. However, when VALE

e10
00

BAS
E int.m

od
sc+

mod csb VIRT
IO

VIRT
IO

vho
st

0

200

400

600

800

1000

1200

K
p
p
s

UDP 64 bytes, guest-guest, 2 VCPU

tap

VALE

Figure 6: UDP throughput with various configura-
tions.

is used as a backend, our emulated e1000 is significantly
faster than all other modes, because our modified e1000

frontend can exploit the ability of the VALE backend to
handle batches of packets in a single system call.

We note that even if we cannot use paravirtualization
(which requires support in both the guest OS and to the
VMM), the other options that we provide still give substan-
tial benefits. Plain interrupt moderation, which is a VMM-
only feature that has now been imported in QEMU and we
can expect to be available on other hypervisors, more than
doubles the packet rate. Moderation with send combining,
which is a trivial device driver modification for the guest
OS, almost matches the throughput of VIRTIO.

4.2 Latency
Figure 7 presents the results of the “request-response” test

(TCPRR) in netperf. The test, after establishing a TCP
connection, exchanges one-byte packets between the peers,
measuring the number of exchanges per unit of time. Hence,
it measures the average latency of the path.

e10
00

BAS
E int.m

od
sc+
mod csb VIRT

IO
VIRT

IO

vho
st

0

5

10

15

20

K
 t
ra
n
sa
ct
io
n
s/
se
co
n
d

TCPRR, guest-guest, 2 VCPU

tap

VALE

Figure 7: TCPRR rates with various configurations.

None of our mechanisms is designed specifically to improve
latency, and in fact there is normally a tradeoff between la-
tency and throughput. The goal of these tests is to verify
that our modifications are not affecting negatively the com-
munication delay

As expected, we see that send combining is not effective as
there is normally only one packet in flight. Interrupt mod-
eration has mixed effects, as it may slightly reduce transmit
interrupts, but may also delays receive notifications. The
paravirtualized mode (CSB) gives some benefits (actually
halving the latency of the path) and almost matching the
performance of VIRTIO. This also was expected, given the
similarity of the two mechanisms; VIRTIO has a small ad-
vantage in that in the e1000 driver the interrupt that issues
the receive kick is more expensive than the one for VIRTIO
(which uses MSI-X and does not need to clear a status regis-
ter). As usual, VIRTIO+VHOST gets a performance boost
as it avoids going the extra delay induced by the handoff to
the I/O thread, which is the really expensive operation in
this type of test.

Finally, we see that the VALE switch, although faster than
TAP, gives only a modest improvement to the transaction
rate, because the switch is responsible only for a small frac-
tion of the overall delay of the path.

4.3 TCP throughput
As mentioned, TCP throughput is not the main goal of

this paper. High bulk transfer rates are generally achieved
by reducing the delay of the path, so that even modest win-
dow sizes suffice to keep the link streaming, and using large
segments, possibly beyond the maximum frame size of the
link, to reduce the CPU load on the sender and receiver;
hardware support (TSO and LRO) can perform segmenta-
tion and reassembly relieving the CPU from this task, and
also reducing packet rates by a factor of 10 or more.

TSO and LRO are particularly useful in the case of virtual
machines residing on the same host, because the emulated
device can completely skip the segmentation, and pass the
entire TSO segment to the other endpoint. A similar tech-
nique can be applied to checksumming. Both optimizations

e1000

BASE int.mod
sc+mod csb

VIRTIO
VIRTIO

vhost

0

1

2

3

4

G
b

it
/s

TCP, guest-guest, 2 VCPU

tap

VALE

Figure 8: Guest-Guest TCP throughput with differ-
ent frontend/backend (only Linux guests, no TSO).

e10
00

BAS
E int.m

od
sc+

mod csb VIRT
IO

VIRT
IO

vho
st

0

1

2

3

4

5

6

7

8

G
b
it
/s

TCP, TAP, various guest/host combinations

Guest->Host

Guest->Guest

Host->Guest

Figure 9: TCP throughput with various guest/host
combinations (only TAP backend).

are normally used by the VIRTIO driver when running on
top of a TAP backend.

We are addressing TCP optimization in a separate work.
In this paper, we want to verify how the proposed mecha-
nism impact TCP throughput in absence of accelerations,
hence the tests in this section are run without TSO/LRO.

Figure 8 shows the behaviour of the various solutions for
TCP traffic, again between two guests, and without us-
ing TSO. As we can see, the paravirtualized e1000 almost
matches VIRTIO+TAP, and is slightly less performant than
VIRTIO+VHOST due to the different delay of the path
(in particular VIRTIO is able to avoid computing the TCP
checksum, while the e1000 device does the checksum com-
putation in the device emulator). While increasing the TCP
window/socket buffer size can mitigate the effects of delay,
large windows also introduce side effects such as increased
memory footprint and reduced cache locality, which at the
rates we are dealing with (several Gbit/s) can still have a
measurable impact on throughput.

When one of the endpoints is on the host, it can act as
a faster source or sink of traffic, and put under stress the
other endpoint on the guest. In Figure 9 we compare the
throughput of a connection when the sender and the re-
ceiver are placed on the host or on the guest. What is evi-
dent here is that the basic e1000 device is unable to send at
high speed (columns Guest→Host and Guest→Guest) but
the receive direction has much better performance (column
Host→Guest), presumably because packets arrive in bursts.
As we bring in interrupt moderation and send combining,
the transmit direction starts exhibiting good performance,
and the paravirtualized mode performs almost as good as
VIRTIO.

Similarly, the receive direction exhibits a very good receive
performance when the transmitter is on the host (column
Host→Guest), especially in paravirtualized mode.

4.4 VALE backend
We introduced the VALE switch to replace the TAP back-

end because the latter had become a bottleneck in the com-
munication between the virtual machines.

The throughput between two ports of the VALE virtual
switch, on our test machine, is approximately 20 Mpps with
small UDP frames, and 70 Gbit/s with 1500-byte frames.
When used to interconnect VMs, the VALE port is attached
to the VMM backend and from there to the frontend. These
components introduce extra data copies and delays in the
communication, leading to a reduction in the throughput1.

An estimate of the maximum guest-to-guest through-
put can be determined by running instances of netmap-
based traffic sources and sinks (pkt-gen) within the two
guest. This experiment achieved about 5 Mpps with 64-byte
frames, and 1.89 Mpps with 1500-byte frames, correspond-
ing to 22.7 Gbit/s.

All these numbers are significantly higher than the packet
rates we experience using regular sockets. This suggests
that the VALE switch is not acting as a bottleneck for the
system. Indeed, as shown in Figure 6 (the black column for
the CSB case) even socket based applications running in the
two guests can exchange about 1.2 Mpps, which is the same
rate we achieve for the same system on bare metal.

4.5 Summary
In this paragraph we summarize the proposed optimiza-

tions and the situations to which they apply. Recall that
this work is mostly focused on improving packet rate.

• When only the hypervisor can be modified, implement-
ing an interrupt moderation mechanism improves the
TX and RX packet rates by amortizing the interrupt
overhead over many processed packets. It is not even
necessary that the real device or guest OS actually
supports a moderation mechanisms.

Effect: up to two-fold speed-up on TX side, and up to
10x improvement of the maximum RX rate.

• When only the guest driver can be modified, send com-
bining (SC) can improve the TX rate, but only when
the guest manages to enqueue many TX requests to the
device before a TX completion interrupts comes. The
presence of multiple VCPUs, and especially the avail-
ability of interrupt moderation boost the effectiveness
of this mechanism.

Effect: up to 5-10x TX speedup.

Alternatively, lazy TX completion can be imple-
mented, to suppress most of the TX interrupts by keep-
ing them disabled as far as the device TX queue(s)
are not full. Benefits are more limited (up to 2x TX
speedup) and the mechanism is not compatible with
send combining.

Pure polling is another solution that completely
suppress device interrupts, dramatically improving
TX/RX performance. However, it may affects receive
latency.

Effect: over 10x speedup on TX side, and up to 20x
increase of the maximum RX rate.

• When both the driver and the hypervisor can be mod-
ified, a simple paravirtual extension can remove most

1the delay has an impact too, because the ports of the switch
have a bounded queue and new packets cannot be sent until
the queue has been drained. The mechanism is similar to
what happens for window-limited TCP connections.

of the virtualization overheads, and reach the highest
possible packet-rates, without negatively affecting la-
tency.

Effect: over 10x speedup on TX side, and up to 30x
increase of the maximum RX rate.

In addition to that, when the hypervisor can be modi-
fied, adding a backend support for VALE usually improves
performances, being generally faster than the popular TAP
backend. In our experiments, the speedups for the TX side
become 4x with interrupt moderation, 14x for send combin-
ing, and 40x with a paravirtualized device.

Linux on VirtualBox and VMware, 2 CPU

| UDP8 | UDP-1460 | TCP | TCPw | TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | Ktps

----------------+------+-----+------+------+-------+------
VBox TX GH | 22 23 264 84 633 10.9
VBox TX GG | 22 21 244 1121 1255 4.2

VMware TX GH | 52 51 590 250 1332 13.2
VMware TX GG | 65 64 748 3375 4138 9.2

FreeBSD on VirtualBox, vboxnet, Guest-Host

1 cpu, std | 24 24 273 219 666 16.9
1 cpu, SC | 24 24 273 232 928 17.0

2 cpu, std | 60 58 676 570 690 14.7
2 cpu, SC | 225 176 2064 1060 1100 14.7

Backend performance:

pktgen, tx | 540 470.0 5500
pktgen, rx | 670 270.0 3153

Figure 10: Performance of other VMMs (e1000 de-
vice). SC can help even without VMM modifica-
tions.

4.6 Comparison with other solutions
The huge performance improvements that we see with re-

spect to the baseline could be attributed to inferior perfor-
mance of QEMU-KVM compared to other solutions, but this
is not the case.

Figure 10 shows that the performance of VirtualBox and
VMware Player in a similar configuration is comparable with
our BASE configuration with QEMU. We hope to be able,
in the future, to run comparisons against other VMMs.

We also tried to use Send Combining on an unmodified
VirtualBox (without moderation), and at least in the 2-
VCPU case, see Figure 10, this is still able to give significant
performance improvements, presumably due to a reduction
in the number of VM exits on transmissions.

5. CONCLUSIONS AND FUTURE WORK
We have shown how some small and simple modifications

to hypervisors and device drivers can go a long way into
making network performance on virtual machine very close
to that of bare metal, in particular for the case of high packet
rate workloads.

Our extensions to the e1000 (and r8169) drivers can al-
ready improve the network performance of guest OSes by a
large factor. The use of VALE as a virtual switch permits
a much faster interconnection between virtual machines and
the host. Our modifications, which are publicly available,
will hopefully contribute to deploy high performance SDN
components in virtualized environments, and also help the

Linux on QEMU, VIRTIO, no accelerations

| UDP8 | UDP1460 | TCP | TCPw | TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | Ktps

----------------+------+-----+------+------+-------+------
1 CPU GH tap | 342 320 3742 3490 3485 24.3
2 CPU GH tap | 334 312 3653 3346 3335 26.7

1 CPU GG tap | 424 394 4610 3475 3480 14.5
2 CPU GG tap | 417 367 4294 3359 3416 13.8

1 CPU GG vale | 981 768 9184 4526 4532 15.3 *
2 CPU GG vale | 875 774 9044 4346 3682 14.6 *

Linux on QEMU, VIRTIO, VHOST

| UDP8 | UDP1460 | TCP | TCPw | TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | Ktps

----------------+------+-----+------+------+-------+------
1 CPU GH | 644 564 6594 7144 7303 37.0
2 CPU GH | 642 576 6724 7039 6880 35.8

1 CPU GG | 528 477 5572 5893 5868 22.7
2 CPU GG | 871 768 8976 4450 4539 21.8 *

Linux on QEMU, VIRTIO, TSO

| UDP8 | UDP1460 | TCP | TCPw | TCPRR
| Kpps | Kpps Mbps | Mbps | Mbps | Ktps

----------------+------+-----+------+------+-------+------
1 CPU GH tap | 11329 21478
1 CPU GH vhost | 13107 26750

2 CPU GH tap | 10809 21293
2 CPU GH vhost | 12687 26519

1 CPU GG tap | 19510 19435 13.7
1 CPU GG vhost | 17286 33015 22.6

2 CPU GG tap | 16558 18930 13.1
2 CPU GG vhost | 12391 26867 21.6

Figure 11: Performance with VIRTIO and TSO.

study and development of high speed protocol and applica-
tions over virtual machines.

At the time of this writing, the interrupt moderation em-
ulation has been already imported in the QEMU distribu-
tion, and we are working to integrate the other features in
FreeBSD, Linux and QEMU.

While our performance numbers are excellent for UDP,
the fact that we do not yet exploit the guest TSO support
to obtain a large effective MTU (see Section 4) is severely
penalizing for the case of bulk TCP connections. Figure 11
shows that TSO increments the TCP throughput up to 3
times for VIRTIO.We are extending the e1000 emulator and
the VALE switch so that they can support large segments
and scatter/gather I/O. Preliminary measurements indicate
that we can match the VIRTIO results even in this case.

We are also working on reducing the latency of the path
between virtual machines, so that TCP communications do
not require exceedingly large window sizes to achieve decent
throughput.

Acknowledgements

This work has been supported by the European Com-
mission and developed in the contexts of projects
CHANGE (INFSO-ICT-257422) and OPENLAB (INFSO-
ICT-287581).

6. REFERENCES
[1] Agesen, O., Garthwaite, A., Sheldon, J., and

Subrahmanyam, P. The evolution of an x86 virtual
machine monitor. SIGOPS Oper. Syst. Rev. 44, 4
(Dec. 2010), 3–18.

[2] Agesen, O., Mattson, J., Rugina, R., and

Sheldon, J. Software techniques for avoiding

hardware virtualization exits. USENIX ATC’12,
USENIX Association, pp. 35–35.

[3] AMD. Secure virtual machine architecture reference
manual.
http://www.mimuw.edu.pl/∼vincent/lecture6/
sources/amd-pacifica-specification.pdf, 2005.

[4] Ben-yehuda, M., Mason, J., Krieger, O.,

Xenidis, J., Doorn, L. V., Mallick, A., and

Wahlig, E. Utilizing IOMMUs for Virtualization in
Linux and Xen. In Proceedings of the Linux
Symposium (2006).

[5] Bugnion, E., Devine, S., Rosenblum, M.,

Sugerman, J., and Wang, E. Y. Bringing
virtualization to the x86 architecture with the original
vmware workstation. ACM Trans. Comput. Syst. 30, 4
(Nov. 2012), 12:1–12:51.

[6] Chisnall, D. The Definitive Guide to the Xen
Hypervisor. Prentice Hall, 2007.

[7] Deri, L. PFRING DNA page.
http://www.ntop.org/products/pf ring/dna/.

[8] Gordon, A., Amit, N., Har’El, N., Ben-Yehuda,

M., Landau, A., Schuster, A., and Tsafrir, D.

ELI: bare-metal performance for I/O virtualization.
SIGARCH Comp. Arch. News 40, 1 (Mar. 2012),
411–422.

[9] Gordon, A., Har’El, N., Landau, A.,

Ben-Yehuda, M., and Traeger, A. Towards
exitless and efficient paravirtual i/o. SYSTOR ’12,
ACM, pp. 4:1–4:6.

[10] Guan, H., Dong, Y., ma, R., Xu, D., Zhang, Y.,

and Li, J. Performance Enhancement for Network
I/O Virtualization with Efficient Interrupt Coalescing
and Virtual Receive Side Scaling. IEEE Transactions
on Parallel and Distributed Systems.

[11] Hajnoczi, S. QEMU Internals: vhost architecture.
http://blog.vmsplice.net/2011/09/qemu-internals-
vhost-architecture.html,
2011.

[12] Han, S., Jang, K., Park, K., and Moon, S.

Packetshader: a gpu-accelerated software router. ACM
SIGCOMM Computer Communication Review 40, 4
(2010), 195–206.

[13] Intel. Intel virtualization technology. Intel Tech.
Journal 10 (Aug. 2006).

[14] Intel. Intel data plane development kit.
http://edc.intel.com/Link.aspx?id=5378 (2012).

[15] Mogul, J., and Ramakrishnan, K. Eliminating
receive livelock in an interrupt-driven kernel. ACM
Transactions on Computer Systems (TOCS) 15, 3
(1997), 217–252.

[16] Rizzo, L. Netmap home page. Università di Pisa,
http://info.iet.unipi.it/∼luigi/netmap/ .

[17] Rizzo, L. Polling versus interrupts in network device
drivers. BSDConEurope 2001 (2001).

[18] Rizzo, L. netmap: A Novel Framework for Fast
Packet I/O. In USENIX ATC’12 (2012), Boston, MA,
USENIX Association.

[19] Rizzo, L., and Lettieri, G. The VALE Virtual
Local Ethernet home page.
http://info.iet.unipi.it/∼luigi/vale/.

[20] Rizzo, L., and Lettieri, G. VALE, a switched
ethernet for virtual machines. In Proceedings of the
8th international conference on Emerging networking
experiments and technologies (New York, NY, USA,
2012), CoNEXT ’12, ACM, pp. 61–72.

[21] Russell, R. virtio: towards a de-facto standard for
virtual I/O devices. SIGOPS Oper. Syst. Rev. 42, 5
(July 2008), 95–103.

[22] Salim, J. H., Olsson, R., and Kuznetsov, A.

Beyond softnet. In Proceedings of the 5th annual Linux
Showcase & Conference - Volume 5 (Berkeley, CA,
USA, 2001), ALS ’01, USENIX Association, pp. 18–18.

[23] Schultz, M., and Crowley, P. Performance
analysis of packet capture methods in a 10 gbps
virtualized environment.

In Computer Communications and Networks
(ICCCN), 2012 21st International Conference on (30
2012-aug. 2 2012), pp. 1 –8.

[24] Solarflare. Openonload.
http://www.openonload.org/ (2008).

[25] Sugerman, J., Venkitachalam, G., and Lim,

B.-H. Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor0. In
USENIX ATC 2002 (Berkeley, CA, USA, 2001),
USENIX Association, pp. 1–14.

[26] VMWare. Performance Evaluation of VMXNET3.
http://www.vmware.com/pdf/vsp 4 vmxnet3 perf.pdf.

