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ABSTRACT

Supporting network I/O at high packet rates in virtual ma-
chines is fundamental for the deployment of Cloud data cen-
ters and Network Function Virtualization.

Historically, SR-IOV and hardware passthrough were
thought as the only viable solution to reduce the high cost
of virtualization. In previous work [11] we showed how even
plain device emulation can achieve VM-to-VM speeds of mil-
lions of packets per second (Mpps), though still at least 3
times slower than bare metal. In this paper we present ar-
chitectural solutions to fill this gap.

Our design, called ptnetmap, implements a virtual
passthrough network device based on the netmap frame-
work. ptnetmap allows VMs to connect to any netmap port
(physical devices, software switches, netmap pipes), conserv-
ing the speed and isolation of the native netmap system, and
removing the constraints of hardware passthrough.

Our work includes two key features not present in previ-
ous related works with comparable performance: we provide
a high speed path also to untrusted VMs, and do not re-
quire dedicated polling cores/threads, which is fundamental
to achieve an efficient use of resources. Besides these fea-
tures, our speed is also beyond previously published values.
Running on top of ptnetmap, VMs can saturate a 10 Gbit
link at 14.88 Mpps, talk at over 20 Mpps to untrusted VMs,
and over 70 Mpps to trusted VMs.

ptnetmap extends the netmap framework, and currently sup-
port Linux and QEMU/KVM. Support for FreeBSD and
bhyve is under active development.
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1. INTRODUCTION

Virtual Machines (VMs) are one of the most popular tools
for building “cloud” services through the composition of mul-
tiple independent components. Running services in VMs
has a higher cost (especially for I/O) compared to simpler
isolation mechanisms, such as separate processes or contain-
ers [6]. However, the various components may have conflict-
ing constraints on their required libraries, platforms, kernels.
This often makes VMs or separate physical machines the
only viable alternative, VMs provide much higher flexibility
and ease of management, as well as significant cost reduc-
tions, due to the availability of systems with large amounts
of memory, powerful 1/O, (relatively) large number of cores,
and native CPU support for virtualization.

VMs do introduce performance bottlenecks, especially for
I/O intensive workloads which are common in networking
services involving firewalls, software routers and middle-
boxes. The techniques used to support virtualization in fact
have a hard time dealing with the very high packet rates
that may appear on today’s fast network interfaces. As a
matter of fact, even conventional operating systems running
on physical servers (“bare metal”) suffer at high packet rates,
and in recent years we have seen a number of techniques that
try to bypass the entire operating system (commonly called
“OS-bypass”, such as [5, 2]) or at least the network stack
and device driver while still using some OS services (this is
called “network stack bypass”, as in [9, 13]) to achieve better
throughput.

Adopting the same solutions within VMs has historically
relied on the use of a technique called hardware passthrough,
where the host OS gives exclusive control of a physical device
to the guest operating system, which in turn can run its own
OS-bypass or network-bypass code on top of the physical
device. Hardware support in modern CPUs, chipsets and
Network Interface Cards (NICs) can provide proper memory
protection (IOMMU) and the illusion of independent I/O
ports for each VMC (SR-IOV).

As described in more detail in Section 2, hardware
passthrough has drawbacks, such as having to pass all com-
munications (even VM-to-VM) through a (relatively) slow
PCle bus, and binding the VM to a specific device hence
making migration difficult [14].



A couple of recent works try to address the performance
problem. In [11] we have shown how VMs can communicate
very high speed (our current numbers are around 8 Mpps)
using standard device emulation. [11] uses the netmap API
to communicate with a software switch called VALE [10],
and adopts a number of ideas to amortize or eliminate VM
exits and some data copies. While extremely fast, our pre-
vious work is still 2..4 times slower (or less resource efficient,
when the bottleneck is in the hardware) than the best bare-
metal bypass techniques [10].

netvm [4] instead leverages the DPDK framework [5] to
achieve line rate speed between VMs and 10 Gbit/s inter-
faces, but at the price of high CPU overhead (DPDK re-
quires active polling to detect events) and flexibility (the
use of huge pages to maximize performance prevents the use
of the high speed channel with untrusted VMs).

In this paper we present a virtual device passthrough mecha-
nism called ptnetmap that uses the netmap API as the “de-
vice” model exported to VMs. This makes us completely
independent from the hardware, enabling communication
at memory speed with physical NICs, software switches, or
high-performance point-to point links (netmap pipes).

The two most important contributions of this work are the
ability to provide high throughput even to untrusted VMs,
and the presence of a proper synchronization framework,
that does not require on always-active threads as it is the
case for DPDK-based solutions. These features do not im-
pair performance: ptnetmap can saturate 10 Gbit NICs
(14.88 Mpps with 64-byte frames), and achieve over 20 Mpps
between untrusted VMs and over 70 Mpps between trusted
VMs.

In the rest of the paper, Section 2 presents the problem
in more detail; Section 3 describes the architecture of pt-
netmap. Section 4 describes the implementation of our sys-
tem, while Section 5 gives a detailed performance evaluation.
Related work is addressed in Section 6.

Our code is part of the netmap framework, and will be dis-
tributed with it, together with the (small) modifications for
hypervisors and guest operating systems. We currently sup-
port Linux and QEMU/KVM, but FreeBSD and bhyve sup-
port is in the works.

2. BACKGROUND

In this Section we present some background information on
the implementation of the network path in VMs, and on the
netmap framework that we use to develop our system.

2.1 VM networking, standard approach

A “guest” virtual machine normally runs within one or more
CPU threads, talking to the virtualization support software
(hypervisor) through system calls that in turn access the
true or emulated peripherals physically managed by the host
system, and assigned to the VM.

As shown in Figure 1, the network device driver in the VM
normally interacts with a frontend component in the host,
which emulates the hardware the guest device driver expects
to talk to. Popular examples are the Intel E1000 family,
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Figure 1: Standard configuration for the network
path in a VM

or the virtio-net device. In this arrangement, data are
transferred through in-memory queues and buffers while a
set of (emulated) PCI registers are used for the control path,
and emulated interrupts dispatch notifications from the host
to the guest.

Guest’s accesses to the emulated PCI registers trigger “VM
exits”, i.e. switch of the CPU from guest to host execution
mode, where the code in the frontend and backend is run.
These exits are extremely expensive (up to several microsec-
onds) because they not only need to save (and later restore)
a substantial amount of CPU state, but also because they
often trigger subsequent system calls to emulate the desired
effect, such as sending or receiving packets. The transfer of
data packets to the actual network port on the host (a phys-
ical device, a tap port on a virtual switch, a netmap port) is
done through the help of a device-specific backend compo-
nent on the host. Between the frontend and the backend, it
is normally necessary to perform a data format conversion,
which involves touching every packet and typically also one
data copy. While the cost of this conversion is not substan-
tial, it has severe performance implications, especially when
running at very high packet rates and with fast backends.

Optimizations do exist, as described in detail in [11], to re-
duce the number of VM exits and possibly system calls, by
placing the frontend and backend in the kernel, and using
additional threads to replace exits and interrupts with in-
memory communication. However even these optimizations
cannot eliminate the need for an additional copy of data and
descriptors.

As a reference number, even on bare metal, a typical appli-
cation running on top of a socket or a tap interface peaks
at 1-2 Mpps and is CPU bound when using short packets.
Moving the application to a VM, the additional conversion
work adds to the CPU load and reduces the throughput sig-
nificantly, even with the best implementations [11]. Is it easy
to imagine how the performance decays badly with higher
packet rates. Consider for instance the case when the guest
VM (hence the frontend) uses netmap and transfers packets
in batches, and the backend attaches to a VALE port us-



ing netmap. Individually each of these components is able
to handle approximately 20 Mpps (at full CPU utilization),
but cascading the two ports and adding the conversion and
other VM-related overheads brings the throughput down to
only a few Mpps.

2.2 VM networking, hardware passthrough
To eliminate the cost of device emulation, a solution called
hardware passthrough (HPT) has emerged in the past few
years, with hardware supporting it. First, the host OS gives
the guest VM direct access to some of its hardware peripher-
als. If the device exports multiple “Virtual Functions” (e.g.
multiple logical network interfaces within a single physical
device, a functionality called SR-IOV), the design scales rea-
sonably well as each VM gets access to one VF. Protection is
implemented using an IOMMU [3], which is used to trans-
late physical memory addresses in requests issued by the
VF's into actual physical memory addresses. With this com-
bination of features, the guest OS will be able to access and
program the peripherals (VFs) without VM exits, and the
host will be able to enforce protected access to memory. All
1/0 involving the device occurs within the guest OS, includ-
ing the dispatching of interrupts. The host is only involved
in setting up initial access to the device, and then for mem-
ory protection, through the use of the IOMMU .

Note that VF's require actual hardware resources, such as
separate register sets and buffers, and logic in the device to
arbitrate access to the shared blocks, such as the PCle bus,
and the TX/RX units in a NIC.

2.3 Accelerating I/0: the Netmap framework
The device driver, both in the host and the guest OS, is
a significant bottleneck in the performance of the network
stack, and several solutions in recent years have been de-
signed to provide speedier access to the NICs. In this work
we leverage the features of the netmap framework, because
it is extremely flexible and efficient, and it is a perfect tool
to implement our virtual passthrough mechanism.

The netmap framework [9], which includes the VALE [10]
software switch, provides high speed network ports to clients,
which are normally userspace applications (but can also be
within the operating system’s kernel). Logically, each port
is a set of transmit and receive queues and associated packet
buffers, which clients mmap () to support zero copy 1/0 (Fig-
ure 2, top). The (in-kernel) backend for a port can be a
device driver for a physical NIC, a port of a software switch,
which enforces isolation between clients through memory
copies; a high performance, shared memory channel called
netmap pipe (see Figure 2, bottom). Other types of ports
are also present, e.g. for mirroring, logging etc.

2.3.1 Data access

Clients access netmap by creating a file descriptor with an
open("/dev/netmap"), binding it to a specific device or port
with an ioctl(fd, NIOCREGIF, ...), and then use mmap()
to access the shared memory. From this point on, data
transfers occur through the queues using ioctl() for non-
blocking I/0O, and select(), poll(), kqueue(), epoll()
for blocking I/0.
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Figure 2: Top: a netmap port is associated to trans-
mit and receive queues and buffers in shared mem-
ory, which are also accessed by different types of
backends (in the figure, a hardware NIC). Bottom:
the various types of ports supplied by the netmap
framework

Each queue (and its buffers) is logically divided in two re-
gions: one owned by the client, the other owned by the
kernel. The boundary between the two regions is marked by
two pointers, head and tail, as shown in Figure 2, top. A
third pointer, cur, is used for notifications. In detail:

head is only updated by the client, and points to the first
queue slot owned by the client. It is advanced when the
client is done with the buffer, e.g. because it has con-
sumed an incoming packet or filled a buffer for trans-
mission, and is used to pass ownership to the kernel.

tail is only updated by the kernel during a system call, and
points to the first slot owned by the kernel. Is it used to
notify the client of newly available buffers, e.g. newly
received packets or completed transmissions.

cur is only updated by the client, and is used to indicate
when the clients want to be notified on a blocking sys-
tem call. Normally, head and cur are moved together,
and blocking system calls return whenever the client-
owned region is non empty. However, at times the
client may want to hold some buffers without releas-
ing them (e.g. because it still has to complete process-
ing), or it may need a minimum amount of buffers to
complete processing. In these cases, cur can be moved
ahead of head, and the kernel will wake up the client
when tail moves past cur.

The kernel guarantees mutual exclusion with the client by
only reading and updating the pointers during system calls,
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Figure 3: Internal architecture of netmap. The col-
ored block are part of the kernel, whereas white
blocks are in userspace.

and only accessing the slots and buffers of the queue portion
it owns, based on the pointer values observed during the last
system call. This gives the application simple semantics,
similar to other legacy system calls and free from memory
ordering issues.

The netmap API is extremely efficient not only because of
memory sharing, which saves some data copies, but also
because the pointers can be advanced by any amount (com-
patibly with the available space), so batching of packet pro-
cessing is possible in both directions.

The memory region holding queues and buffers can be pri-
vate to a port (i.e., shared only between client and kernel),
or shared with other netmap ports and clients. Private re-
gions are used when the client attached to the port is not
trusted, or we want to isolate the port from others in the sys-
tem. As an example, this is the approach used in the VALE
switch, which copies data across its ports. Shared regions
are instead used when the isolation is not necessary, either
because the clients are trusted, or because it provides no
advantage (e.g. point to point links). Traffic between ports
attached to the same region can be done by simply swap-
ping buffer pointers, which permits extremely low overhead
communication.

2.4 Netmap internals

Internally, netmap is implemented by three main blocks, as
shown in Fig. 3: the core implements all the system calls
issued by the applications, and the logic to interact with all
kinds of netmap ports; a port driver interacts with each type
of netmap port (devices, switches, pipes etc.), and a mem-
ory allocator creates the memory regions used for queues
and buffers. All these components reside in the OS kernel,
but the distinction is important because in the design of pt-
netmap some of these functions need to be split between the
host and the guest VM.

The allocator is only involved at bind time, when memory
regions are created and mapped. Subsequent data transfers
only require the interaction between the core and the port
driver, through a couple of functions:

e sync(), which is used to synchronize the state of the
kernel owned parts of the port queues with the under-
lying device;

e notify(), which is used to notify the core that the

queues need updating (typically issued as a result of
an hardware interrupt).

Note that the core is the only code accessing the queue point-
ers (in blue), while the port code only accesses the queue
slots and buffers (in green). The mutual exclusion rules
outlined above allow for the port code to be executed asyn-
chronously with the application. This is also important for
the ptnetmap implementation, where the port driver runs
in a completely different domain from the core and has no
access to the running state of the user application.

3. PTNETMAP ARCHITECTURE

While in principle the performance of a guest with an HPT
device can be very close to that of bare metal, the sharing
of resources in the physical device (and the bus) can become
a severe bottleneck. On top of this, HPT makes migration
difficult as it binds the VM to specific hardware (though this
problem can be addressed with a bit of cooperation in the
guest OS, see [14]).

To overcome these limitations, we designed a Virtual
Passthrough solution, called ptnetmap, focused on network-
ing. The NIC “device” exported to the VM is not a piece of
hardware but a software port implemented by the netmap [9]
framework. Protection is inherited from the underlying
netmap port, so we can restrict untrusted VMs to use ports
of a software switch [10], or attach trusted or mutually co-
operating VMs to ports corresponding to physical devices
(with hardware access still mediated by the host OS) or to
shared-memory, high performance channels called netmap
pipes.

The advantage of ptnetmap over HPT are in the fact that
the VM is not bound to a specific piece of hardware, so it
can be migrated seamlessly to hosts with different backing
devices. Also, communication between VMs does not need
to go through the PCle bus, and can in fact run at memory
speed, achieving surprisingly high packet and data rates.

At a high level, ptnetmap is extremely simple to understand.
The difficulty in its implementation comes in building a dat-
apath that avoids the data copies generally involved in pe-
ripheral emulation, and in constructing an efficient path to
dispatch asynchronous notifications.

The idea of netmap passthrough is to give the netmap core
running in the guest kernel direct access to a netmap port
instantiated on the host, as shown in Fig. 4. This is a funda-
mental feature that permits transferring data and descrip-
tors between the host and the guest without expensive copies
or descriptor conversions. At the same time, the guest is un-
aware of the exact nature (physical port, pipe, switch port)
of the underlying netmap port. This direct access is achieved
by letting the allocator on the guest forward its request to
the allocator on the host, as shown in the left part of Fig-
ure 4.

The architecture of the control path is slightly more com-
plex. A requirement of the netmap architecture is that own-
ership of the ring pointers is controlled through system calls.
As a consequence, only the guest can access those fields.
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Each ring does have a set of (internal) pointers, which are
visible only within the kernel components both on the host
and the guest. As a consequence, the sync() call from spe-
cific port driver in the guest (“pt port driver”) is passed
directly to the host’s kernel, either through VM exits or
through a shared memory block (“CSB” in the figure). In
the host, an “adapter” module (associated with a thread
which is woken up on demand) will process these requests,
and communicate with the specific host port driver to ac-
cess the shared rings and buffers, Return information are
posted into the CSB and possibly trigger a notify to the pt
port driver in the guest, which will in turn update the queue
pointers at the next opportunity.

This setup preserves the netmap semantics, since the queue
pointers (in blue) are only accessed by the guest netmap
core, synchronously with the guest application. Asyn-
chronous updates by the host port will only address the
netmap owned portion of the shared queues, as it is already
the case for the non-passthrough setup.

In ptnetmap, the per-packet cost of transmission and recep-
tion becomes exactly the same for a netmap application run-
ning in the guest and a netmap application running directly
on the host. The per-batch cost, which is paid whenever a
netmap system call is issued, is different in the two settings.
The actions of the pt port driver are extremely simple, and
since it does not access the queue (unlike other port drivers),
it may run extremely quickly. On the other hand, sometimes
(especially at low data rates), the pt port driver may require
a VM exit, which has a big impact especially in the latency

of the system call. The actual queue processing is done by a
thread associated to the adapter and running in the host’s
kernel. This thread is woken up on demand so it does not
consume CPU resources when there is no traffic.

3.1 Mitigating VM exits

The techniques to mitigate VM exits and interrupts to the
guest VM are described in detail in [11], but we summarize
them briefly here. The key idea is to have one thread on
each side of the communication that can be activated on
demand. In our case, these are the application on the guest,
and the kernel thread in the adapter on the host. activated
on demand. The threads share a block of memory (CSB) to
exchange messages and information on their status.

When one the application wants to notify the other thread,
it posts the message in the CSB, and checks (in the CSB)
whether the other thread is active; if not, it executing a VM
exit to actually wake up the thread and have it process the
message. Similarly, in the other direction, the host kernel
thread posts the message in the CSB, checks the status of
the guest thread, and if necessary issues a guest interrupt,
which eventually wakes up the guest thread. Double checks
and memory barriers are used to make sure that events are
not lost due to data races.

3.2 Busy wait versus proper signalling

We conclude this section with a brief discussion of a com-
monly used approach in building high performance services,
namely the use of busy wait instead of proper signalling sup-
port.

A critical problem in building a distributed system is no-
tifying components of events. In our context, these events
can be packet arrivals or transmit completions, and they are
reported by the NIC by setting the content of internal reg-
isters and at the same time by triggering an interrupt. The
hardware involved is managed by the host OS, but the no-
tifications should be delivered to processes running on the
guest OS.

A simple way to detect the event is for the recipient to spin,
actively polling the resource (device register, memory loca-
tion etc.) where the event is reported. The obvious ad-
vantages of this approach are that i) none or little! system
support is necessary, and ii) event detection can be almost
immediate. The price to pay, however, is high: a full CPU is
burned to spin on the resource even in absence of load, and
in case the system has other activities to perform we have no
way to implement an asynchronous notification mechanism.

The alternative approach is to build a proper chain of han-
dlers that will react to the interrupts reported by the hard-
ware, and dispatch the information to the processes involved.
Conventional device drivers work (and netmap, too) use this
technique, which requires a substantial amount of additional
code in the system, both to implement a notification de-
livery mechanism (e.g., creating a file descriptor that can
be used to dispatch notifications), and to make sure that

Lif the resource is not directly accessible, such as a device
register for a userspace program, some minimal OS support
in the form of a non blocking system call may be necessary.



notifications are not lost due to races. Additionally, noti-
fications may incurs a significant latency (several microsec-
onds). Even in the best case, waking up and starting a
sleeping thread, possibly on a different processor, requires
the scheduler to perform a global notification to all cores
in the system; the newly started thread will work from a
cold cache, thus incurring substantial latency to bring data
to memory. Finally, especially with high speed network de-
vices, interrupts are typically throttled (a mechanism called
interrupt moderation) to avoid overloading the system, and
this results in additional latency in the order of 20..50 us.

The advantage of proper signalling is however that the sys-
tem’s load grows proportionally with the amount of traffic,
and it is possible to have asynchronous notifications thus
supporting energy efficient solutions. We should note that
having proper signalling only adds flexibility to a system,
and does not prevent from running it in polling mode when-
ever there is a strong reason to.

For these reasons, both netmap and ptnetmap include a com-
plete signalling chain.

4. IMPLEMENTATION

In this Section we give some details on the implementation
of ptnetmap. Our system requires some extensions to the
netmap code to implement the additional functions, plus
some small changes in the guest device driver and the hy-
pervisor.

netmap: With reference to Figure 4, the netmap code
(which runs both in the host and guest OS) has been
extended with two simple additional components:

pt allocator: an allocator for passthrough ports,
which simply issues requests (through emulated
PCI registers) to the backend for the memory re-
gion to use, instead of allocating it locally;

adapter a module that runs in the host’s kernel, pro-
viding the hypervisor access to the internal data
structures associated to a netmap port. It regis-
ters with the hypervisor’s kernel part (e.g. KVM)
to receive notifications on accesses to specific PCI
registers.

Additionally, the core is extended to handle the ad-
ditional requests to set the port in passthrough mode
and create the adapter.

guest device driver: The netmap-related part of the
guest device driver is what we call the “port driver”.
This code is logically part of netmap, and the re-
quired modifications involve just exchanging notifica-
tions with the adapter on the host kernel, rather than
operating directly on the physical device to send or
receive packets and reclaim buffers.

Hypervisor: the hypervisor needs only small extensions in
the frontend for the device and the netmap backend,
enabling the use of an additional set of PCI registers
that support the pt allocator and port driver requests.

The current prototype has been developed on QEMU/KVM
and Linux, using the 1000 device driver to support the
passthrough mode. Given the minimal amount of modifica-
tions in the guest and hypervisors, porting to other systems
which already support netmap (such as bhyve and FreeBSD)
will be trivial.

Note that a VM using a ptnetmap backend can dynamically
switch between the standard mode described in Section 2.1,
and the passthrough mode. As a consequence, guest appli-
cations using sockets will continue to work, of course with
the performance constraints imposed by the guest OS.

4.1 Operation
We briefly summarize here the runtime operations involved
with the use of ptnetmap.

The device initialization (executed when the guest device
driver is loaded) is not critical for performance, and it only
informs the guest and the host of the mutual availability of
the ptnetmap mode.

When the guest NIC operates in standard mode, the
passthrough datapath remains dormant and the guest device
driver will talk to the regular frontend as shown in Figure 1.
The backend will still use the netmap API, thus potentially
allowing much higher speed than a standard tap backend.

When the guest switches the interface in netmap mode, the
netmap port on the guest is created, attached to the memory
region created on the host, and the notification paths are set
to forward requests through the adapter module in the host.

These actions will be undone when the interface is switched
back to standard mode.

The notifications between the guest and host port driver
occur with the help of the kernel thread described in Sec-
tion 3.1, represented by the thick dashed line in Figure 5.
The thread is in charge of multiple tasks:

e it acts as an interrupt handler on the host, reacting to
incoming packets or completed transmissions;

e it performs actions on the host on behalf of the guest
VM, so that kernel exits can return quickly without
waiting for completion (as an example, transmissions
through a VALE switch requires a data copy and can
be time consuming);

e it implements the VM exit and interrupt mechanism
described in Section 3.1, which relies on the presence
of a thread that actively polls the CSB when there is
traffic.

In principle these task could be offloaded to other entities
or removed, but the impact on performance is huge, and
since the thread sits idle when there is no traffic, the impact
on system resources is limited. We note that the last task,
when successful essentially removes all guest-host notifica-
tions (and this normally happens under high load, when it
is most needed).
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S. PERFORMANCE EVALUATION

This Section presents experimental results on the perfor-
mance of ptnetmap. Our test machine is equipped with an
Intel Core i7-3770K CPU at 3.50GHz (4 core / 8 threads),
8GB RAM DDR3 at 1.33GHz and Intel 82599ES dual-port
10Gbps NIC. When needed, we use a second machine run-
ning netmap as a traffic source/sink over a 10 Gbit/s NIC.

The host OS is Linux 3.17.6, and we use QEMU-KVM as
our hypervisor (git master c¢79805 - Aug 2014), extended
to support ptnetmap. The guest VMs run Linux 3.12, and
use an e1000 driver, modified to connect to the host using
out virtual passthrough mode when the guest switches the
interface in netmap mode.

5.1 Performance metrics

The three metrics of interest in ptnetmap are throughput,
latency and CPU efficiency. We should start with a cou-
ple of mandatory warnings (at the risk of stating something
obvious to researchers working on high speed systems).

First, there are huge tradeoffs between these metrics, and it
is easy to achieve high values in one of them sacrificing one or
the others. In particular, latency and throughput are often
conflicting goals (e.g., larger batch sizes improve throughput
at the expense of latency); and relaxing on CPU efficiency
usually improves performance in the other dimensions (e.g.,
busy wait normally improves latency; or, oversizing parts of
the system can help saturate other parts such as fixed-speed
links, thus hiding inefficiencies).

Second, especially at high loads, the interactions between
components may lead to inverse proportionality (such as,
making one faster actually slows down the entire system, see
Section 5.3.3 for an example), or even unstable behaviours.
Hence, it is important to evaluate the system under different
load patterns.

With this in mind, it does make sense to discuss the peak
performance values and how to maximise them because they
represent the boundary of the operating region, but individ-
ual metrics should not be considered in isolation without
understanding the tradeoffs involved.

5.2 Comparison with other systems

It is customary to compare systems with similar one, but
to the best of our knowledge, the only two system which
are comparable in performance to ptnetmap are our previ-
ous work on QEMU [11], which ptnetmapimproves signifi-
cantly, and one recent proposal, netvm [4]. Other proposals
for software switches exist, but they are all based on classi-
cal architectures described in Section 2.1, and barely reach
2 Mpps.

Netvm features are discussed in detail in Section 6. In terms
of performance, it has been evaluated by the authors only on
physical interfaces, with throughput capped to 14.88 Mpps
and an RTT in the 60-70 pus range, probably also constrained
by the hardware. On the other hand, the architectural
choices of netvm (based on DPDK) severely limit its ap-
plicability compared to ptnetmap.

5.3 Throughput

Measuring communication costs (hence throughput) at very
high speed is non trivial because of the highly non linear
behaviour with varying input patterns, and also the steep
memory bandwidth and latency changes that occur when
the working set exceeds the cache size.

Apart from these effects, the cost of communication has a
very weak dependency on the packet size (especially when
using a zero-copy datapath), and the dominant components
are per-packet and per batch costs. For this reason, we
will show our results with variable batch sizes, and express
our performance in packets per second? using minimum size

2we use pps as a metric following the common practice for
reporting throughput. Its inverse, time-per-packet, would be
a better metric to use as it is additive and eases predicting
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Figure 6: Throughput across a VALE switch, with
different placements of the source and sink, and 60
byte packets. In these experiments the queue size is
1024 slots.

packets.

For throughput measurement, we use the netmap’s pkt-gen
program, which is a general purpose sender/receiver with
configurable packet size, rate, batch size and number of
threads. pkt-gen normally uses poll() to do I/O, hence
it blocks when there are no slots in the queue to send or
receive. We use two instances of pkt-gen (one sender and
one receiver) with a single thread each, running on the host
or the guest. The sender runs in unlimited rate mode, mini-
mum size Ethernet frames (60-byte packets excluding CRC),
and variable TX batch size. VALE ports and pipes are con-
figured to use a single queue with 1024, 2048 or 4096 slots.
NICs are configured with 4 queues and 2048 slots.

In these tests results are very stable and repeatable, with
variations of less than 2% on physical ports and VALE ports,
and less than 5% on netmap pipes (we will explain the larger
variations in this case). For simplicity we only report the
average values in our experiments, taken from runs lasting
10 s each.

IMPORTANT NOTE: by itself, pkt-gen does not touch
the payload of the packets, so it is an excellent tool to mea-
sure the overhead of just the communication channel, with-
out adding unnecessary operations. As an example, this
feature lets us identify clearly the performance difference
between netmap pipes and VALE ports, as well as the loca-
tion of the bottleneck in the various combinations of sender
and receiver.

Real world, data touching applications as data source and
sink would be up to one order of magnitude slower than
ptnetmap, and their use would transform the experiments in
a benchmark of the source/sink themselves, and hide most
details on the behaviour of ptnetmap.

5.3.1 Throughput over VALE switch

Figure 6 shows the throughput when source and sink com-
municate across a VALE switch. VALE transfers packets
by executing a data copy to guarantee isolation between the

performance with multiple components.
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Figure 7: Throughput across a netmap pipe, with
different placements of source and sink, and 60 byte
packets. In this case the queue size is set to 2048
slots to emphasize the behaviour described in Sec-
tion 5.3.3.

ports, so in this experiment, the bottleneck is the thread (on
the sender side) that executes the data copy.

Our reference curve is the throughput between two ports
on the Host (red in the Figure); in this case the bottle-
neck thread is the client application on the sender side. As
expected, the curve climbs up as the system call time is
amortized over larger batches.

When the receiver is moved within a VM (the Host-Guest
case, blue curve) there is an additional thread involved in
the data transfer (see Figure 5, middle), but it operates on
the receive side, so the bottleneck remains unchanged and
throughput is very similar to the Host-Host case.

Moving the source on the Guest instead yields a higher
throughput for comparable burst size, and also a modest
throughput increase. This is not surprising: the sending
thread (now on the Guest) only has to notify the port
adapter in the host, while the expensive work — copying
packets — is performed by the kernel thread on the host-
transmit side (see Figure 5, top). This thread (which is
the bottleneck) runs entirely in the kernel, and the time it
takes to wakeup is much lower than that of the pol1() sys-
tem call used in the Host-Host case. This explains both the
slightly higher throughput, and the steeper curve at small
batch sizes.

In the Guest-Guest case, the interaction involves two addi-
tional kernel threads besides the sender and the receiver (see
Figure 5, bottom). The bottleneck thread is the same as in
the Guest-Host case, hence we have similar throughput.

5.3.2  Throughput over netmap pipes

Figure 7 shows the throughput of a sender-receiver pair com-
municating over netmap pipes. Since this time there is no
data copy involved, the absolute throughput is much higher
than on VALE ports, and in fact dominated by the speed
of memory, the effectiveness of the cache, the overhead of
system calls and interference of OS activities related to the
scheduling of threads. Because of the latter, different runs



have larger variations, around 5%, than in the VALE case.
We have run this experiment with a larger queue (2048 slots)
to emphasize some peculiar behaviours of the system.

The baseline throughput between two host ports exceeds
100 Mpps for large enough batches. This is because the per-
packet cost is now extremely small (pipes only swap packet
descriptors between the sender and receiver queue) and it
takes much larger batches to make the system call overhead
negligible with respect to the per-packet cost. Keep in mind
that a data-touching workload will significantly reduce these
values, as the pipe (and ptnetmap) are not the bottleneck
anymore.

Moving the sender on a VM (Guest-Host case), the be-
haviour is similar to that on VALE ports: the maximum
throughput increases much faster with the burst size, and to
higher values (green curve in Figure 7). The peak through-
put in this case is much higher, because the per-batch cost
is the limiting factor for throughput, and splitting the work
between the two threads greatly reduces it. The large drop
of performance with even higher batch sizes will be explained
in detail in the next section.

The remaining two cases, in which the receiver is on the
guest, give no surprises. apart from a slightly lower peak
performance than with the host-based receivers due to more
delay in releasing buffers in the receive thread (the receiver
in the guest has to notify a thread in the host adapter, which
in turn wakes up the sender).

5.3.3  Short queue regime

An interesting phenomenon (in the Guest-Host case) is the
performance drop as the batch size grows. It is worth dis-
cussing it as it appears many times in high performance sys-
tems. Remember how in this case the sender is extremely
fast, as the total work is divided between the guest and the
host-tx thread. When the batch size is small, the sender
is the bottleneck and throughput grows with the batch size.
Above some threshold, the bottleneck in the system switches
from the sender to the receiver, and the sender will periodi-
cally block because the transmit queue fills up. The blocking
in turn causes additional load also on the receiver, which not
only has to read input packets but also wake up the sending
thread, and this explains the drop as the batch size grows.

Figure 8 shows how the total queue size impacts the phe-
nomenon. As expected the peak throughput increases with
the maximum queue size because both sender and receiver
benefit from it, and the dip is less severe because larger
queues allow a higher receive throughput.

Note that a fast receiver is less subject to blocking than a
fast sender: the receiver normally returns whatever amount
of packets is queued, and at low speeds it will simply be-
come less efficient (system call costs are amortized on shorter
batches). Blocking will only occur when the sender’s rate is
less than one packet per receive system call, a rate so low
that does not cause visible performance problems.

5.3.4  Throughput over physical ports
Our last throughput test involves physical ports. Here the
results (see Figure 9), are unsurprising, with the guest able
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Figure 8: Throughput on pipes, Guest to Host, for
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Figure 9: Throughput on physical port (Intel

10Gbps NIC) from the guest in ptnetmap mode.

to reach full line rate even with modest batch sizes. This
result matches the performance of other passthrough solu-
tions [4] and of netmap on bare metal.

5.4 Cascaded VMs

To evaluate how ptnetmap behaves with multiple VMs on
the same host, we ran some experiment by chaining VMs as
shown in Figure 10. Each VM runs a simple program (called
bridge, also part of the netmap suite) that passes packets
from one port to the other, doing an actual memory copy.
We chose not to use zero-copy in the application running
in the VM to make sure that the application itself creates
a sufficient load on the system, otherwise the results might
have been misleading, with all CPU resources potentially
consumed by the kernel threads associated to each ptnetmap
port. At the same time, we made the application sufficiently
simple so that it would not, by itself, be too slow to stress
the system adequately.

The experiment is run with a transmit batch size of 32 pack-
ets, queues with 2048 slots, and B (varying between 1 and
4) bridge instances. The Host has 4 physical cores (8 with
hyperthreading). The baseline for our experiment is when
all bridge programs, together with the source and sink, run
on the Host. In this case the total number of active threads
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Figure 10: Topology for the experiments with cas-
caded VMs. The “bridge” application on each VM
copies packets from one port to another. All VMs,
and the source and sink run on the same host and
are connected through netmap pipes.
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is 2+ B, and the throughput is shown by the top (red) curve
in Figure 11.

The absolute performance, around 20 Mpps, is in line with
what we see with another packet-copy solution, namely
VALE ports. The slight degradation is expected and due
to the delay that is incurred in releasing packets across the
pipes. Fine tuning the batch sizes and the application would
surely yield much better and stable throughput, but that
was not the goal of experiment: instead, our goal was to see
how, without any special tuning, the system degrades when
applications are moved to VMs.

The second set of measurements runs the bridge applica-
tions in different VMs. Due to the additional kernel thread®
that ptnetmap creates for each passthrough port, now the
total number of threads is 2+ 3B, which largely exceeds the
number of available cores. Fortunately (actually, by design!)
the kernel threads are activated on demand, so they do not
consume too many additional CPU cycles. As a result, the
performance degradation when running the cascade on the
VMs is very modest, in the order of 15%. This is a witness
of the goodness of our architecture, and also of its efficient
use of resources.

5.5 Latency

3

we ignore the NAPI threads that each linux kernel runs.

Latency is another parameter that must be considered with
extreme care. It is extremely easy to reduce it significantly
by replacing all notification mechanisms with busy wait loop;
but in this way, the efficiency at low load plummets and
the approach is simply not acceptable in large scale deploy-
ments.

Since ptnetmap uses several thread handoffs to dispatch no-
tifications, it is expected that latency will suffer, especially
at the beginning of a communication when the kernel thread
are idle and the mitigation technique of Section 3.1 is not
effective.

For the latency measurement we use pkt-gen program in
ping mode: the sender transmits the packet and blocks on a
poll() waiting for a response; the receiver waits for a packet
(also using a po11 (), and immediately bounces it back. Each
packets carries a timestamp generated by the sender, which
can easily measure the Round Trip Time upon receiving the
response.

The use of blocking system calls is the normal behaviour for
CPU-conscious applications. However, the absolute num-
bers we derive would not tell us much on how far we are
from an ideal (in terms of latency) situation, where threads
use non blocking calls and busy wait to exchange messages.
For this reason we ran a second set of experiments where
pkt-gen is modified to use non-blocking ioctl() to send
and receive, and the kernel threads are forced in an active
state, thus avoiding all interrupts, VM exits and process
wakeups.

The results of the two sets of experiments are shown in Ta-
ble 1, in the Blocking and Busy-wait columns, respec-
tively. The results are interesting and encouraging, but not
surprising.

In the busy-wait case, the latency is less than 400 ns per
hop (remember messages travel back and forth), marginally
higher in the VALE cases which has an extra copy and ad-
ditional locking in the path. This is the latency that pt-
netmap clients can actually experience when the system is
kept streaming (e.g. when a sufficient amount of traffic is
flowing through the port.

In the efficient, Blocking case, which represents the worst
case scenario, we incur an average of about 25 us in the
Guest-Guest case, a time that is dominated by the cost of
two VM exits and two VM interrupts. The value is in the
same range of a ping between two physical machines con-
nected by 10 Gbit/s network cards, so we are not particu-
larly sure that is should classified as an unacceptably large
latency. In any case it is worth noting that ptnetmap does
give the user a choice between a latency (between VMs) com-
parable to that between physical hosts with efficient CPU
usage, and a much lower one while streaming or while de-
sired, if the user has CPU cycles to spare.

5.6 CPU efficiency
We would like to conclude with a few remarks on CPU effi-
ciency.

Systems such as DPDK [5] and derived ones completely give



Round Trip Time [usec]

Blocking | Busy-Wait
Configuration | Backend || Min | Avg || Min | Avg
Host - Host pipe 2.6 4.6 0.5 0.8
Host - Host vale 3.3 | 5.2 0.8 1.2
Host - Guest pipe 7.3 | 142 1.1 1.6
Host - Guest vale 83 | 14.2 || 1.2 1.6
Guest - Host pipe 91 | 145 1.5 1.6
Guest - Host vale 9.6 | 146 || 1.5 1.7
Guest - Guest | pipe 21.4 | 245 || 1.6 2.1
Guest - Guest | vale 214|246 | 1.6 2.1

Table 1: Round Trip Time between two clients in
different configurations.

up on CPU efficiency at low loads. This choice allows signif-
icant simplifications in the implementation (see Section 3.2),
with advantages on the latency (and possibly throughput)
side. While it is in theory possible for those systems to build
a proper notification support mechanism, it is not obvious
that the result may be better than what exists in various OS
kernels (such as Linux and FreeBSD) or hypervisors such as
KVM, which have benefited from a huge amount of optimiza-
tion work over the years. As a consequence, it is prudent to
exclude systems based on busy wait from the reasoning on
CPU efficiency.

Regarding systems such as ptnetmap, which use proper syn-
chronization, a comparison is extremely difficult for two rea-
sons. First, reliable measurements of the CPU utilization is
extremely elusive, because depending on the architecture,
functions can be shifted between components (kernels, hy-
pervisors, user threads etc.) in a way that makes it difficult
to account for the total amount of cycles used for a commu-
nication.

Furthermore, depending on the input load, systems such as
ptnetmap, virtio and others, that use interrupt and VM-
exit moderation techniques, exhibit an all-or-nothing be-
haviour, because the packet processing time is comparable
or often much smaller than the time it takes to start a sleep-
ing thread. Hence, when the event rate is low enough to let
threads go to sleep, the average CPU usage will be extremely
low. Conversely, when the inter-event time approaches the
wakeup time, CPU utilization quickly ramps up to 100%,
and remaining stable for a wide range of input loads.

Under these circumstances, the two parameters of interest
are the maximum throughput of the system, which is an
indirect measurement of the efficiency of use of resources,
and the event rate that marks the switch between the two
regimes of operation. We have measured the former in Sec-
tion 5.3, whereas for the latter we postpone the investigation
to future work, both because of lack of space, and because
the threshold itself (which we can estimate in one event every
10-20 ps, according to our latency measurements) is most of
the time inherited by the underlying operating system.

6. RELATED WORK

Achieving very high network performance (1 Mpps and
more) in Virtual Machines relies on three groups of tech-
niques: performance enhancement techniques also used on

bare metal; hardware support in CPUs and peripherals; and
software solutions adopted in hypervisors to overcome hard-
ware limitations.

6.1 OS and network stack bypass

The first group typically addresses inefficiencies in the OS’s
network when processing traffic at the high packet rates that
firewalls, software routers, DNS servers etc. may have to
deal with. Proposals in this group try to provide an alter-
nate, more efficient path for packets between applications
and the physical link. One approach, “OS-bypass”, relies on
an almost complete bypass of the operating system for net-
work communication. The hardware is directly controlled
by the application program using custom libraries [5, 2]
which provide efficient transmit and receive functions. High
throughput is generally achieved by direct mapping of packet
buffers and batched I/O. At the speeds of interest, even the
misses in the virtual to physical address translation buffers
(TLB) are prohibitively expensive, hence systems often use
huge memory pages (e.g. 1 GByte) to reduce the number of
TLB entries in use. A feature that is frequently missing in
OS-bypass solutions is the ability to receive interrupts. This
is for two reasons: first and foremost, when the device is con-
trolled by the application, the OS has no good way access
the device in response to interrupts. Secondly, as discussed
in Section 3.2, busy wait permits lower latency in responding
to events. For this reason, OS-bypass techniques normally
rely on additional processes which are continuously active
monitoring the hardware.

netmap [9] belongs to the “network-bypass” family of solu-
tions, and differs from OS-bypass as it relies heavily on the
operating system for dealing with the hardware. In netmap,
slightly modified device drivers provide a high speed data
path to the hardware (or to the VALE [10] virtual switch,
or to high speed netmap pipes), but resource management,
synchronization, protection are still implemented by the op-
erating system. As a result of the tight integration with
the OS, netmap can use blocking I/O functions, resulting
in a much more efficient use of resources. A similar ap-
proach, targeted to socket-based applications, is used by the
OpenOnload [13] framework.

In terms of absolute performance, most OS-bypass and net-
work bypass solutions (DPDK, DNA, netmap) can drive the
NIC to its limits even with just one core. Ideally, this means
14.88 Mpps on a 10 Gbit/s interface with 64-byte frames, but
several 10 Gbit/s NICs have hardware limitations and are
unable to reach line rate with small frames. At 40 Gbit/s,
we have measured 45 Mpps with netmap [1].

6.2 Hardware support

The hardware support for fast networking in VMs comes
from three places. First, generic CPU support for virtu-
alization helps running the VM at native speed at least
when not accessing (pseudo)-hardware resources. VM ex-
its when accessing I/O devices are expensive, but their cost
can be mitigated with the solutions indicated in Section 3.1,
and with CPU support that permits injecting interrupts di-
rectly in the VM without requiring an exit. Second, IOMMU
permits protected direct access to hardware resources from
VMs, remapping memory access generated from I/O devices.
This permits, for instance, a safe implementation of hard-



ware passthrough. Third, NICs (and peripherals, in general)
can ease their use in VMs through a mechanism (called SR-
I0V) which allows a single physical device to export multiple
independent instances (Virtual Functions, VF) of the device
itself, each associated with hardware resources. This is a
key feature to implement hardware passthrough in a scal-
able way, as each VF can be dedicated to a VM with zero
overhead. The fast frameworks of Section 6.1 can be run on
top of a VF, but VFs share the same I/O bus and output
link, so the actual communication capacity even between
VMs is severely limited.

6.3 Virtualization solutions

Fast networking support for VMs generally relies on the
techniques shown in Section 3.1 to mitigate some of the
drawbacks of device emulation. Solutions such as virtio [12]
are normally used in most virtualization systems, though
they are often bottlenecked by the upper (guest network
stack) and lower (host switch) connections.

Research on software switches has been mostly focused on
the flexibility of the control plane, such as Open vSwitch [7],
and performance on large TCP flows [8]. The VALE soft-
ware switch [10] has shown that extremely high speed packet
switching is possible without exceeding complexity, and
its integration with hypervisors can reach extremely high
speeds, as shown in [11]. ptnetmap clearly builds extensively
on this previous work of ours.

A very related work is netvm [4], which implements a zero-
copy userspace software switch on top of DPDK. VMs at-
tach to netvm using a virtual passthrough mechanism, using
DPDK as the communication API. The authors show that
netvm is capable of supporting 14.88 Mpps (line rate) on
10 Gbit interfaces and between VMs, and a round trip time
for VMs in the 40-70 ps range, not much higher than that of
bare metal. Because of the use of DPDK as the underlying
transport, netvm lacks interrupts, and depends critically on
the use of shared memory and huge pages, hence it cannot
be used directly between untrusted VMs, and instead re-
lies on a much slower channel through the ordinary network
stack for those cases.

7. CONCLUSIONS AND FUTURE WORK

We have presented a solution for efficient network ac-
cess from Virtual Machines through the use of a Virtual
Passthrough mechanism.

Unlike hardware passthrough, we do not depend on the pres-
ence of specific hardware. Our architecture is also funda-
mentally different from other proposals in two aspects: we
make a high speed data path available also to untrusted
VMs, and we do not require busy-wait loops for synchro-
nization. Implementing these two features (while preserving
high speed operation) is way more challenging than simpler
shared-memory, active polling systems proposed in the past,
but it is the only way to develop truly scalable and efficient
solutions for network function virtualization.

Our performance numbers are not penalized by our archi-
tecture: we still manage to reach line rate (14.88 Mpps) on
10 Gbit/s NICs, and go even much further in local communi-
cation, reaching over 20 Mpps between untrusted VMs and

well over 70 Mpps between trusted VMs.

Our code has been developed as an extension of the netmap
framework, and is publicly available. Currently we support
Linux guests and KVM hosts, but given the relatively small
size of the changes we expect a FreeBSD guest support to
be available soon. Work is in progress on a bhyve host im-
plementation.
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