
mSwitch: A Highly-Scalable, Modular Software Switch

Michio Honda§

⇤
, Felipe Huici†, Giuseppe Lettieri‡, Luigi Rizzo‡

NetApp Inc.§, NEC Europe Ltd.†, Universita‘ di Pisa‡

michio@netapp.com, felipe.huici@neclab.eu, {g.lettieri,rizzo}@iet.unipi.it

ABSTRACT
In recent years software network switches have regained em-
inence as a result of a number of growing trends, including
the prominence of software-defined networks, as well as their
use as back-ends to virtualization technologies, to name a
few. Consequently, a number of high performance switches
have been recently proposed in the literature, though none
of these simultaneously provide (1) high packet rates, (2)
high throughput, (3) low CPU usage, (4) high port density
and (5) a flexible data plane. This is not by chance: these
features conflict, and while achieving one or a few of them is
(now) a solved problem, addressing the combination requires
significant new design e↵ort.

In this paper we fill the gap by presenting mSwitch. To
prove the flexibility and performance of our approach, we use
mSwitch to build four distinct modules: a learning bridge
consisting of 45 lines of code that outperforms FreeBSD’s
bridge by up to 8 times; an accelerated Open vSwitch mod-
ule requiring small changes to the code and boosting per-
formance by 2.6-3 times; a protocol demultiplexer for user-
space protocol stacks; and a filtering module that can direct
packets to virtualized middleboxes.

Categories and Subject Descriptors
C.2.6 [Computer-communication Networks]: Internet-
working; D.4.4 [Operating Systems]: Communications
Management; D.4.8 [Operating Systems]: Performance

General Terms
Algorithms, Design, Performance

Keywords
Software switch, Scalability, Programmability

⇤The work was mostly performed while at NEC.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
SOSR ’15 June 17–18, 2015, Santa Clara, CA, USA
ACM 978-1-4503-3451-8/15/06.
http://dx.doi.org/10.1145/2774993.2775065

1. INTRODUCTION
Software packet switching has been part of operating sys-

tems for almost 40 years, but mostly used as a prototyping
tool or as a low-cost alternative to hardware-based devices.
A number of recent events have brought renewed importance
to software switches: the increased importance of virtualiza-
tion technologies which rely on a back-end software switch to
multiplex packets between physical interfaces and contain-
ers or VMs; the growing prominence of middleboxes [25, 24]
in today’s networks along with their virtualization (NFV [6,
14]); and the widespread use of Software-Defined Network-
ing, for which software switches provide significant flexibil-
ity.

In the SDN field in particular, a recent trend named SDNv2
and targeting operator networks calls for a model compris-
ing a simple, hardware-based core network providing limited
functionality, with complex functionality being pushed into
software switches at the edge [23]; a similar call has been
made in the context of data centers [2]. Another recent
and important trend is the growing popularity of containers,
which will require higher port densities in software switches,
beyond what current solutions o↵er.

These trends suggest the need for a software switch that
enables SDN research and experimentation on commodity
servers by allowing for easy customization of switching fab-
rics while yielding production-quality packet rates. This re-
quires simultaneous support for (1) a programmable data
plane (beyond what Openflow supports), (2) high through-
put, (3) high packet rates, (4) e�cient CPU usage and (5)
high port density. These features are di�cult to harmonize,
and there are, to the best of our knowledge, no available
solutions, either as products or research prototypes, that si-
multaneously provide all of them. Next, we briefly cover
existing switches.

1.1 State of the Art
Software switches embedded in commodity OSes (Linux

and FreeBSD) have a relatively slow data plane, o↵ering de-
cent performance (up to 30-40 Gbit/s) only for bulk TCP
tra�c using large (32-64 K) TSO segments. Packet rates are
limited to 1-2 Mp/s, significantly below the peak 14.88 Mp/s
for a 10 Gbit/s interface, due to the high per-packet I/O
costs. This limitation is shared by the in-kernel version of
Open vSwitch [16] which provides flexible processing fea-
tures but inherits the low performance of the OS’s data-
plane [20].

In contrast, high packet rates are supported by “OS by-
pass”or“network stack bypass”frameworks such as DPDK [11]

and netmap [19] which rely heavily on batched I/O. DPDK
uses direct hardware access from userspace (UIO) and a
number of optimizations (e.g., huge pages, vector instruc-
tions, direct cache access) to achieve impressive packet I/O
rates and latency. However, the interconnection between
clients in DPDK-based switches either gives up protection
(as in NetVM [10], which provides a slow fallback path
through the host stack for untrusted VMs), or relies on mul-
tiqueue NICs with SR-IOV to implement a protected dat-
apath, as in IX [3]. Further, the use of active polling not
only keeps one (or more) cores always busy, but also makes
it di�cult to scale to large number of ports due to an explo-
sion of the amount of unnecessary polls on idle resources 1.
Two switches based on DPDK are CuckooSwitch [26], which
achieves high throughput when handling very large numbers
of L2 rules but is targeted at replacing hardware Ethernet
switches and so does not have a flexible switching logic; and
DPDK vSwitch [13], which takes the Open vSwitch code
base and accelerates it by using DPDK, inheriting the dis-
advantages of DPDK already mentioned.

The VALE software switch [21] based on the netmap frame-
work [19] uses a di↵erent approach: an in-kernel module
provides a high packet rate, protected datapath between
virtual ports using memory copy. Full support for inter-
rupts and synchronization avoids the need for active polling
loops (so that the CPU load is proportional to the actual
load), but since there is no free lunch, VALE pays this with
slightly worse latency and throughput than pure zero-copy
solutions2. The original VALE only supports a few tens of
ports (the Linux/FreeBSD datapaths in principle scale to
very large numbers, but at 1/10 or lower throughput) and
has limited output port parallelism (same as other published
software switches).

Hardware-based solutions relying on SR-IOV give VMs
direct access to one of the NIC’s “virtual functions”, thus
potentially supporting wire speed and high packet rates (at
least with one of the high performance frameworks men-
tioned above), as well as isolating virtual ports thanks to
data copies done by the NIC. Arrakis [17], for instance,
leverages this hardware feature, and so does IX [3]. The
convenience in delegating switching and protection to the
NIC comes with three limitations: low aggregate bandwidth,
limited filtering capabilities, and reduced scalability. The
switch in the NIC sits behind a PCIe bus, so the aggre-
gate bandwidth for all VMs is limited to the bus’ speed (20-
40 Gbit/s typically); this is less than what software switches
o↵er for a single port (e.g., Hyper-Switch [18] reports up to
81 Gbit/s between two VMs; Linux/OVS datapath gives
more than 30 Gbit/s). The fact that filtering is limited to
whatever the NIC supports aggravates the bandwidth prob-
lem, requiring additional filtering to be performed in soft-
ware after an expensive transfer through the bus. Finally,
scalability is directly related to the number of virtual func-
tions supported by the hardware, which is not always large
(e.g., the popular 82599 chipset from Intel only supports 64
VFs).

1.2 Our contributions
The system we propose in this paper, mSwitch, simul-

1The polling thread could of course be stopped periodically,
but that would trash the latency.
2We note that netmap does provide a true zero-copy point-
to-point channel called a netmap pipe.

taneously addresses all five requirements that we consider
necessary to deploying e�cient, scalable software switches
in next-generation SDN networks: (1) a programmable data
plane, (2) high throughput, (3) high packet rates, (4) e�-
cient CPU usage and (5) high port density.

mSwitch extends the VALE software switch in various
ways, providing features not available in (and which could
not be easily added to) other solutions proposed in the lit-
erature. Among our contributions we have:

• A clear separation between a high-performance switch-
ing fabric (the dataplane that switches packets be-
tween ports) and the switching logic (which decides
a packet’s destination port). The latter can be imple-
mented with C functions and plugged at runtime into
the switching fabric without sacrificing performance,
thus providing the flexibility needed to accommodate
di↵erent use cases and drive experimentation.

• Scalability to large numbers of virtual ports. To the
best of our knowledge, this is the first paper to evaluate
a software switch with up to 120 ports.

• Parallel access to destination ports, to achieve high
throughput when multiple senders (e.g., processes, con-
tainers or VMs) collide onto a single destination port
(e.g., a NIC). mSwitch reaches speeds of 75 Mp/s (small
packets) or 476 Gbit/s (large segments) to a single des-
tination port on an inexpensive server.

We validate our approach by implementing or porting a
range of di↵erent types of mSwitch switching logics: a learn-
ing bridge consisting of 45 lines of code which outperforms
the FreeBSD one by up to 8 times; an Open vSwitch mod-
ule comprising small code changes and resulting in a 2.6-3
times boost; a filtering module that allows mSwitch to act
as a back-end switch to direct packets to virtualized mid-
dleboxes (and drop unwanted ones); and a module used to
support user-level network stacks.

mSwitch and all of these modules are open source and
available for FreeBSD and Linux.

1.3 A Note on Novelty
At first sight, mSwitch might seem like a trivial exten-

sion to VALE, with the techniques used appearing to be
well known, simple, or too incremental for publication. We
humbly suggest that this is not the case, as explained below.

VALE [21] was published in December 2012 and widely
used since then. Despite this, none of the subsequent pa-
pers on the same topic (e.g., CuckooSwitch, NetVM, Hy-
perSwitch, Arrakis, IX) provides (and could not, as de-
signed) the features we introduce in mSwitch: hardware-
based solutions cannot possibly scale to higher bandwidths;
DPDK-based solutions fail to provide isolation at the same
time as e�ciency. In truth, with one exception (Hyper-
Switch [18], which performs well for large TSO segments),
related work does not address dataplane performance other
than by reusing existing solutions (SR-IOV or DPDK) and
inheriting their limitations.

2. REQUIREMENTS AND PROBLEM SPACE
As mentioned, there are a number of requirements for a

software switch to be viable in next generation SDN net-
works and as NFV back-ends, including flexibility, high through-
put, packet rates and port density, and reasonable CPU uti-
lization. Before developing yet another software switch, it

makes sense to see if any of the existing solutions meet these
requirements.
Throughput: To study the throughput of a number of soft-
ware switches, we ran a simple experiment which measured
the forwarding rate for packets of di↵erent sizes between two
10 Gbit/s ports (Intel 82599 chipset cards) using a single
CPU core (Figure 1).

 1
 2

 4

 6

 8

 10

60 124 252 508 1020 1514

Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (bytes, excluding CRC)

FreeBSD bridge
Linux OVS

DPDK vSwitch
VALE

mSwitch

Figure 1: Forwarding throughput between two
10 Gbit/s NICs for major software switches.

The native FreeBSD switch and Open vSwitch only reach
line rate at moderately large packet sizes (the Linux bridge
module produces similar results). In all, such “standard”
switches su↵er from a combination of ine�ciencies includ-
ing heavyweight packet data representation, per-packet I/O
semantics and queuing.

More recent o↵erings such as VALE 3 and DPDK vSwitch 4

yield much higher performance by eliminating these short-
comings. As shown in the graph, these, along with mSwitch,
yield line rate for almost all packet sizes. DPDK vSwitch
edges mSwitch out by a small margin for short packets, but
as we will see next, at the cost of utilizing significantly more
CPU cycles. CuckooSwitch [26], based on DPDK, provides
high throughput for all packet sizes. Finally, Hyper-Switch
relies on unoptimized Open vSwitch code to process packets,
and so results in lower throughput speeds for non jumbo-
sized packets.
CPU Usage: To get a sense of the switches’ e�ciency, we
measured the utilization of all 12 CPU cores in our system
while forwarding packets at high rates using DPDK vSwitch
or VALE (the other switches do not yield high throughput
or are not publicly available). In terms of CPU usage, the
fundamental feature of DPDK vSwitch, and indeed, of any
DPDK-based package, is that DPDK’s poll-mode driver re-
sults in 100% utilization irrespective of the tra�c rates being
processed. In contrast, VALE relies on interrupts, so that
user processes are woken up only on packet arrival. In our
experiments, for the 10 CPU cores handling packets this
results in a cumulative CPU utilization of about 140% for
mSwitch (which also adopts an interrupt-based model) and
a much higher but expected 1,000% for DPDK vSwitch (the
full results for these experiments are in Section 4.2).
High Density: Despite its high throughput, VALE, as we
will show in Section 4, scales poorly when packets are for-

3We modified the original VALE slightly so that it supports
connecting NICs to switch ports.
4We used DPDK vSwitch 1.1.0-27.

warded to an increasing number of ports, and the through-
put further drops when packets from multiple senders are
sent to a common destination port; both of these are com-
mon scenarios for a back-end virtualization switch contain-
ing a single NIC and multiple containers or VMs.

For DPDK vSwitch, its requirement of having a core ded-
icated to each port limits its density. While it is possible
to have around 62-78 or so cores on a system (e.g., 4 AMD
CPU packages with 16 cores each, minus a couple of cores for
the control daemon and operating system, or 4 Intel 10-core
CPUs with hyper threading enabled), that type of hardware
represents an expensive proposition, and ultimately it may
not make sense to have to add a CPU core just to be able to
connect an additional VM or process to the switch. Finally,
CuckooSwitch targets physical NICs (i.e., no virtual ports),
so the experiments presented in that paper are limited to 8
ports total.
Flexibility: Most of the software switches currently avail-
able do not expressly target a flexible forwarding plane, lim-
iting themselves to L2 forwarding. This is the case for the
standard FreeBSD and Linux bridges, but also for newer sys-
tems such as VALE and CuckooSwitch. In contrast, Open
vSwitch supports the OpenFlow protocol, and as such pro-
vides the ability to match packets against a fairly compre-
hensive number of packet headers, and to apply actions to
matching packets. However, as shown in Figure 1 and in [20],
Open vSwitch does not yield high throughput.

Throughput CPU Usage Density Flexibility

FreeBSD switch ⇥
p p

⇥
Linux switch ⇥

p p
⇥

Open vSwitch ⇥
p p p

Hyper-Switch ⇥
p

⇥
p

DPDK vSwitch
p

⇥ ⇥
p

CuckooSwitch
p

⇥ ⇥ ⇥
VALE

p p
⇥ ⇥

Table 1: Characteristics of software switches with
respect to throughput, CPU usage, port density and
flexibility.

Summary: Table 1 summarizes the characteristics of each
of the currently available software switches with respect to
the stated requirements; none of them simultaneously meet
them.

3. mSwitch DESIGN
The discussion in the previous section leads us towards

a number of design principles. First, in terms of through-
put, there is no need to re-invent the wheel: several existing
switches yield excellent performance, and we can leverage
the techniques they use such as packet batching [5, 7, 19,
21], lightweight packet representation [7, 19, 11] and opti-
mized memory copies [21, 18, 11] to achieve this.

In addition, the switch’s data plane should be programmable
while ensuring that this mechanism does not harm the sys-
tem’s ability to quickly switch packets between ports. This
points towards a split between highly optimized switch code
in charge of switching packets, and user-provided code to de-
cide destination ports and potentially modify or filter pack-
ets.

Further, to obtain relatively low CPU utilization and flex-
ible core assignment we should opt for an interrupt-based
model (and variants of it such as NAPI [22]), such that idle

ports do not unnecessarily consume cycles that can be better
spent by active processes, containers, or VMs. This is cru-
cial if the switch is to act as a back-end, and has the added
benefit of reducing the system’s overall power consumption.

Finally, we should design a forwarding algorithm that is
lightweight and that, ideally, scales linearly with the number
of ports on the switch; this would allow us to reach higher
port densities than current software switches. Moreover, for
a back-end switch muxing packets from a large number of
sending virtual ports to a common destination port (e.g.,
a NIC), it is imperative that the forwarding algorithm is
e�ciently able to handle this incast problem.

3.1 Starting Point
Having identified a set of design principles, the next ques-

tion is whether we should base a solution on one of the ex-
isting switches previously mentioned, or start from scratch.
The Linux, FreeBSD and Open vSwitch switches are non-
starters since they are not able to process packets with high
enough throughput. CuckooSwitch provides the best per-
formance, but it has high CPU utilization, does not support
virtual ports, targets L2 forwarding only and, on a more
practical level, source code for it is not available. DPDK
vSwitch su↵ers from the same CPU utilization issue and
has a di�cult programming environment.

VALE is limited to at most 64 ports and can only do L2
forwarding. However, it is based on an interrupt model and
provides high throughput (at least for small port numbers),
two of our four design principles. It is also actively main-
tained and provides the widest compatibility with di↵erent
operating systems and hardware devices. The question then
is whether it is possible to re-architect VALE to achieve high
port densities and provide a programmable data plane while
retaining its high performance.

We answer in the a�rmative, and spend the rest of the
section providing an in-depth description of mSwitch’s archi-
tecture, including the algorithms and mechanisms that allow
it to achieve high performance, high port densities and the
ability to have di↵erent modules be seamlessly plugged into
the switch, even at run-time.

3.2 Architecture
mSwitch is based around the principle of a split data plane

consisting of a switch fabric in charge of moving packets
quickly between ports; and the switch logic, the modular
part of mSwitch which looks at incoming packets and decides
which their destination port(s) should be. This split allows
mSwitch to provide a fast fabric that yields high throughput,
while giving users the ability to program the logic without
having to worry about the intricacies of high performance
packet I/O.

Figure 2 shows mSwitch’s overall architecture. mSwitch
can attach virtual or physical interfaces as well as the pro-
tocol stack of the system’s operating system. From the
switch’s point of view, all of these are abstracted as ports,
each of which is given a unique index in the switch. When
a packet arrives at a port, mSwitch switches it by relying
on the (pluggable) packet processing stage to tell it which
port(s) to send the packet to5. In addition, multiple in-
stances of mSwitch can be run simultaneously on the same

5The processing function is completely arbitrary, so it can
also apply transformations to the packet such as encap/de-
cap, NAT, etc.

app1/vm1

Switching fabricNIC

Switching logic

Kernel
Userapps

OS stack
Virtual

interfaces

appN/vmN

N
et

m
ap

A
PI

. . .

. . .

Socket API

N
et

m
ap

A
PI

Figure 2: mSwitch architecture: the switch fab-
ric handles e�cient packet delivery between ports,
while the switch logic (forwarding decisions, filter-
ing etc.) is implemented through loadable kernel
modules.

system, and ports can be created and connected to a switch
instance dynamically.

Virtual ports are accessed from user space using the netmap
API: they can be connected to virtual machines (e.g., QEMU
instances), or generic netmap-enabled applications. The
netmap API uses shared memory between the application
and the kernel, but each virtual port uses a separate address
space to prevent interference between clients. Physical ports
are also connected to the switch using a modified version of
the netmap API, providing much higher performance than
the default device drivers. Each port can also contain mul-
tiple packet rings which can be assigned to separate CPU
cores in order to scale the performance of a port.

Ports connected to the host network stack are linked to a
physical (NIC) port. Tra�c that the host stack would have
sent to the NIC is diverted to mSwitch instead, and from
here can be passed to the NIC, or to one of the virtual ports
depending on the packet processing logic running on the
switch. Likewise, tra�c from other ports can reach the host
stack if the switch logic decides so. For instance, the Multi-
Stack module presented in Section 5 directs incoming tra�c
matching 3-tuple rules to specific ports, and all other tra�c
to the host stack; the latter allows us to keep compatibility
with socket-based applications using the host stack (we of
course have to take care that there are no 3-tuple rules with
an IP address/port in use by the host stack).

Packet forwarding is always performed within the kernel
and in the context of the thread that generated the packet.
This is a user application thread (for virtual ports), a kernel
thread (for packets arriving on a physical port), or either for
packets coming from a host port, depending on the state of
the host stack protocols. Several sending threads may thus
contend for access to destination ports; in Section 3.3 we
discuss a mechanism to achieve high throughput even in the
face of such contention.

mSwitch always copies data from the source to the des-
tination netmap bu↵er. In principle, zero-copy operation
could be possible (and cheap) between physical ports and/or
the host stack, but this seems an unnecessary optimization:
for small packet sizes, once packet headers are read (to make
a forwarding decision), the copy comes almost for free; for
large packets, the packet rate is much lower so the copy cost
(in terms of CPU cycles and memory bandwidth) is not a
bottleneck. Cache pollution might be significant, so we may
revise this decision in the future.

a bc bbac
2536

0123456

Next buf

Buf index
0
1

3
5

4 6

head tail
Packet queue Scratchpad

[a]
[b]
[c]

Figure 3: mSwitch’s list-based packet forwarding.
Packet bu↵ers are labeled 0 to 6 and together con-
stitute a batch. Destination port indices are labeled
a to c.

Copies are instead the best option when switching pack-
ets from/to virtual ports: bu↵ers cannot be shared between
virtual ports for security reasons, and altering page map-
pings to transfer ownership of the bu↵ers is immensely more
expensive.

3.3 Switch Fabric Algorithm
In order to scale to large numbers of ports, mSwitch needs

a di↵erent algorithm than VALE’s. For reference, VALE’s
algorithm works, at a high level, as follows. For each batch
of packets, it goes through all ports on the switch (whether
they are active, meaning that there are packets destined for
them, or idle), and for each it scans the entire list of packets
in the batch to see if there’s a packet for that port. If there
is, it locks that port and delivers the packet; the lock is then
released when the last packet in the batch is scanned, so
that a lock is acquired and released only once when multiple
packets are destined for a port.

This algorithm means that VALE incurs overheads that
are linear with respect to the number of ports, irrespective
of whether they are idle or active. Since it is a common
scenario to have batches that do not contain packets for
every port, VALE’s algorithm is ine�cient as port density
increases. Worse, if the batch contains a single packet for a
port, the algorithm still goes through the entire batch, even
once that packet has been processed.

Instead, mSwitch takes a significant departure from VALE’s
algorithm and consists of two phases (see Figure 3). In the
first phase, the algorithm creates a list of packets for each
destination port. For instance, in the figure there are 3 des-
tination ports labeled a through c. The scratchpad structure
keeps track of the head and the tail packet bu↵er for each
port: the head allows us, in the second phase, to reach the
first packet for the port without having to traverse the entire
batch; and the tail lets us, in the first phase, append a packet
to the list, again without having to traverse it. When a new
packet destined for port “a” arrives, the algorithm looks up
the list’s tail (e.g., 5 for port “a” in the figure), sets that
packet bu↵er’s “Next buf” pointer to the new packet, and
the tail gets also set to the new packet.

In the second phase, mSwitch goes through each port in
the scratchpad, that is, only through ports on the switch
which are active, i.e., those that have packets in the batch
destined to them. For each port, the algorithm looks up the
head and retrieves the packets destined to it by following
the linked list. mSwitch also supports broadcast by using
a separate list and a special value to denote a broadcast
destination.

Finally, a short word on using a lock to resolve contention
on a destination port (e.g., a NIC receiving outgoing pack-
ets from multiple processes, containers or VMs). While we
could rely on technologies such as hardware multi-queue to
alleviate the costs related to the lock, we opt for a generic
solution that does not depend on hardware support, and
show that we can obtain good performance with it. More
importantly, we want to allow virtual ports to be processed
by any CPU core, which is important for flexible CPU core
assignment of VMs (with hardware multi-queue, each queue
has to be assigned its own CPU core, seriously restricting
the flexibility of the scheduling).
Destination Port Parallelism: Once the list of packets
destined to a given port has been identified, the packets must
be copied to the destination port and made available on the
ring. However, care must be taken in scenarios where a
potentially large number of sender ports overwhelm a single
destination port, somewhat akin to the incast problem in
data centers.

In order to cope with this, mSwitch achieves destination
port parallelism by implementing a two-phase mechanism:
a sender reserves (under lock6) a su�ciently large contigu-
ous range of slots in the output queue, then releases the
lock during the copy, allowing concurrent operation on the
queue, and finally acquires the lock again to advance queue
pointers. This latter phase also handles out-of-order comple-
tions of the copy phases, which may occur for many reasons
(di↵erent batch or packet sizes, cache misses, page faults).
With this strategy, the queue is locked only for the short
intervals needed to reserve slots and update queue point-
ers. As an additional side benefit, we can now tolerate page
faults during the copy phase, which allows using userspace
bu↵ers as data sources. We provide evaluation results for
this mechanism in Section 4.4.

3.4 Modular Switching Logic
mSwitch runs in the kernel, and each switch instance can

define its own switch logic function by loading a suitable
kernel module which implements it. The function is called
once for each packet in a batch, before the actual forwarding
takes place, and the response is used to add the packet to
the unicast or broadcast lists discussed in Section 3.3. The
function receives a pointer to the packet’s bu↵er and its
length, and should return the destination port (with special
values indicating “broadcast” or “drop”). The function can
perform arbitrary actions on the packet, including modifying
its content or length, within the size of the bu↵er. It can
possibly even block, and this will only harm the current
sending port, not the whole switch. The mSwitch switching
fabric will take care of performance optimizations (such as
prefetching the payload if necessary), as well as validating
the return values (e.g., making sure that packets are not
bounced back to their source port).

By default, any newly created mSwitch instance uses a
switch logic that implements a basic level-2 learning bridge.
At any time during the bridge’s lifetime, however, the logic
may be replaced.

Writing a basic module is straightforward and involves
registering a function with mSwitch. The following code
shows a full implementation of a simple module which uses
6The spinlock could be replaced by a lock-free scheme, but
we doubt this would provide any measurable performance
gain.

the 8 least significant bits of the destination IP address to
select an output port:

i n t my lookup fn (char ⇤buf , i n t l en ,
s t r u c t i f n e t ⇤ s r c i f) {

s t r u c t i p ⇤ i ph ;

i ph = (s t r u c t i p ⇤) (buf + ETHER HDR LEN) ;
r e t u r n n t oh l (iph�>i p d s t) & 0 x f f ;

}

vo id my modu l e r e g i s t e r (char ⇤ sw i t c h i n s t a n c e name) {
b d g c t l (sw i t ch i n s t anc e name , REG LOOKUP,

my lookup fn) ;
}

3.5 Other Extensions
The netmap API only supported fixed-size packet bu↵ers

(2 Kbytes by default) allocated by the kernel. Many virtual-
ization solutions achieve huge performance improvements by
transferring larger frames or even entire 64 Kbyte segments
across the ports of the virtual switch [18]. As a consequence,
we extended the netmap API to support scatter-gather I/O,
allowing up to 64 segments per packet. This has an observ-
able but relatively modest impact on the throughput, see
Figure 6. More importantly, it permits significant speedups
when connected to virtual machines, because the (emulated)
network interfaces on the guest can spare the segmentation
of TSO messages.

Additionally, forcing clients to use netmap-supplied bu↵ers
to send packets might cause an unnecessary data copy if the
client assembles outgoing packets in its own bu↵ers, as is
the case for virtual machines. For this reason, we imple-
mented another extension to the netmap API so that senders
can now store output packets in their own bu↵ers. Access-
ing those bu↵ers (to copy the content to the destination
port) within the forwarding loop may cause a page fault,
but mSwitch can handle this safely because copies are done
without holding a lock as described in Section 3.3.

4. PERFORMANCE EVALUATION
In this section we evaluate the performance of mSwitch’s

switch fabric, including its scalability with increasing num-
ber of ports and NICs, its CPU utilization and its latency.
One of the switch’s biggest assets is its flexible data plane;
in the next section we will give examples of this through the
implementation and performance evaluation of four di↵erent
modules.

In all experiments we run mSwitch on a server with an
Intel Xeon E5-2695@2.8GHz 12-core CPU (3.2 GHz with
Turbo Boost), 32GB of DDR3-1600 RAM (quad channel)
and a dual-port, 10 Gbit/s Intel X520-T2 NIC. An addi-
tional machine is used for external tra�c sources/sinks as
needed. The operating system is FreeBSD 10 for most ex-
periments, and Linux 3.9 for the Open vSwitch experiments
in the next section.

We normally run the CPU of the mSwitch machine at
3.2 GHz, but in some experiments we also vary the CPU
frequency using OS-specific interfaces (sysctl on FreeBSD,
sysfs on Linux). Further, we disable hyper-threading and
enable direct cache access (DCA).

To generate and count packets we use pkt-gen, a fast gen-
erator that uses the netmap API and so can drive both NICs
and mSwitch’s virtual ports. Throughout, we use Gb/s to
mean Gigabits per second and Mp/s for millions of pack-
ets per second. Unless otherwise specified, we use a batch

 0

 2

 4

 6

 8

 10

 0.9 1.5 2.1 2.4 3.2

Th
ro

ug
hp

ut
 (G

bp
s)

CPU Clock Frequency (Ghz)

60B
124B
252B

(a) CPU frequency, single core

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (G

bp
s)

of CPU cores (NIC rings)

0.9Ghz, 60B
0.9Ghz, 124B

(b) Number of CPU cores

Figure 4: mSwitch throughput between two
10 Gbit/s NICs for di↵erent CPU frequencies

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 1 64 256 512 1024

Th
ro

ug
hp

ut
 (G

bp
s)

batch size (# of packets)

1.2Ghz,60B
1.2Ghz,124B

3.2Ghz,60B
3.2Ghz,124B

(a) Two 10Gbit/s NICs

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1 64 256 512 1024

Th
ro

ug
hp

ut
 (G

bp
s)

batch size (# of packets)

3.2Ghz, 60B
3.2Ghz, 124B
0.9Ghz, 60B

0.9Ghz, 124B

(b) Two virtual ports

Figure 5: Throughput between 10 Gbit/s NICs and
virtual ports for di↵erent batch sizes.

size of 1,024 packets. Finally, packet sizes in the text and
graphs do not include the 4-byte Ethernet checksum; this is
for consistency with virtual ports experiments, where there
is no CRC.
Note: the bandwidths reported in the figures do not include
framing overheads (160 bits) and CRC. As a result, the max-
imum net rate on a 10 Gbit/s link varies from 7.14 Gb/s
for 60-byte frames to 9.84 Gb/s for maximum sized (1514-
byte) frames. The corresponding packet rates vary from
14.88 Mp/s to 0.81 Mp/s, respectively.

4.1 Basic Performance
To derive the baseline performance of the switch fabric,

we use a simple switch logic that for each input port re-
turns a statically configured output port; the processing cost
(just an indirect function call) is thus practically negligible.
We then evaluate mSwitch’s throughput for di↵erent packet
sizes and combinations of NICs and virtual ports.

Forwarding rates between NICs are bounded by CPU or
NIC hardware, and mSwitch achieves higher forwarding rates
with increasing CPU frequency (Figure 4(a)) and number of
CPU cores (Figure 4(b)). We need relatively small batch
sizes, such as 128 or 256 packets, to obtain line rate (Fig-
ure 5(a)), because the rates are limited by the NIC hard-
ware. Note that the rates for 1 CPU core in Figure 4(b)
are slightly lower than those in Figures 4(a) and 5(a) due to
costs associated with our use of Flow Director [12], in charge
of distributing packets to multiple CPU cores.

Packet forwarding between virtual ports exhibits similar
characteristics, except that the rates are not bounded by the
NIC hardware. Figure 6 shows throughput when assigning

 0

 100

 200

 300

 400

 500

60 508 1514 8K 65K

Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (Bytes)

1 ring
2 rings
3 rings
4 rings
5 rings
6 rings

Figure 6: Forwarding performance between two vir-
tual ports and di↵erent number of CPU cores/rings
per port.

an increasing number of rings to each port (up to 6 per port,
at which point all 12 CPU cores in our system are in use).
Packet rates scale fairly linearly with increasing number of
rings and CPU cores, achieving a maximum of about 75
million packet per second for minimum-sized packets, a rate
of 390 Gb/s for maximum-sized ones and a maximum rate
of 466 Gb/s for 8K and bigger frames. Note that the e↵ect
of using larger batch sizes is more pronounced than in the
experiment with NICs since here the throughputs are higher
(Figure 5(b)).

The reader may have noticed that this last rate exceeds
the maximum memory bandwidth supported by our quad-
channel, DDR3-1600 memory (12.8 GB/s per channel, for
a total of 409Gb/s). We note that the 466 Gb/s is not an
error, but rather the result of cache e↵ects (recall that we
run all experiments on a single CPU package server).

Finally, packet forwarding between a NIC and a virtual
port (Figures 7(a) and 7(b)) is slightly cheaper than that
between NICs, because passing packets to and from a vir-
tual port does not need to convert bu↵er descriptors, issue
memory-mapped I/O instructions to the hardware, nor han-
dle interrupts.

 0

 5

 10

 15

 20

 0.9 1.5 2.1 2.4 3.2

Th
ro

ug
hp

ut
 (G

bp
s)

CPU Clock Frequency (Ghz)

60B
124B
252B

(a) NIC to virtual port

 0

 5

 10

 15

 20

 0.9 1.5 2.1 2.4 3.2

Th
ro

ug
hp

ut
 (G

bp
s)

CPU Clock Frequency (Ghz)

60B
124B
252B

(b) Virtual port to NIC

Figure 7: Throughput between a 10 Gbit/s NIC and
a virtual port for di↵erent CPU frequencies. Gray
plots show results with an extra pair of NIC and
virtual port (20 Gbit/s total).

4.2 CPU Utilization
To test CPU utilization, we first compare mSwitch to

DPDK vSwitch. We forward minimum-sized packets from
a single NIC to an increasing number of receivers attached

to virtual ports. To direct packets mSwitch uses a learning
bridge module described in Section 5.1 and DPDK vSwitch
inserts equivalent rules. DPDK vSwitch requires a separate
CPU core per virtual port or user process, so we are limited
to 9 ports (our system has 12 cores, of which 1 is used for the
NIC, 1 for the vswitchd control daemon, 1 for the operat-
ing system and the remaining ones for the ports). As shown
in Figure 8(a), DPDK vSwitch’s poll-mode driver results in
100% utilization for all cores handling packets (10 in total:
9 for the virtual ports and one for the NIC). In contrast,
mSwitch relies on interrupts so that user processes are wo-
ken up only on packet arrival, resulting in a maximum cumu-
lative utilization of around 140%, versus 1000% for DPDK
vSwitch for almost the same throughput. To quantify this
even further, Figure 8(b) shows the power consumption for
each of the two switches (removing the consumption used by
the server when idle): for 9 ports, DPDK vSwitch consumes
up to 80W, almost double what mSwitch uses.

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9

 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

Th
ro

ug
hp

ut
 (G

bp
s)

Cu
m

ul
at

iv
e

CP
U

 u
til

iz
at

io
n

(%
)

of destination virtual ports (# of CPU cores - 1)

mSwitch
DPDK vSwitch

mSwitch (% CPU)
DPDK vSwitch (% CPU)

(a) mSwitch versus DPDK vSwitch

 0
 20
 40
 60
 80

 1 2 3 4 5 6 7 8 9En
er

gy
 u

se
 (W

)

of destination virtual ports (# of CPU cores - 1)

mSwitch DPDK vSwitch

(b) Power consumption

Figure 8: CPU utilization, throughput and power
consumption. DPDK vSwitch edges out mSwitch in
terms of throughput but at the cost of much higher
CPU utilization and energy use.

Next, we compare mSwitch to VALE. For VALE we are
not limited by the one-core-per-port requirement, and so
we push the number of ports to 60 (out of its maximum
of 64) for VALE and 120 for mSwitch (Figure 9) while still
forwarding packets from a single NIC to all of the ports.
One CPU core (NIC-CPU) is dedicated to packet switching
and forwarding from the NIC. A user process runs on each
virtual port and all the user processes share a single CPU
core (App-CPU), for a total of two CPU cores in all for
this experiment. Thanks to mSwitch’s scalable forwarding
algorithm, its throughput does not decrease as quickly as
VALE’s, and CPU consumption (NIC-CPU) is lower, espe-
cially for larger number of virtual ports (30–80). The reason
why the CPU utilization for the user processes (App-CPU)
on VALE is lower than mSwitch’s for 1–50 virtual ports is

 1

 2

 3

 4

 5

 6

 7

 1 10 20 30 40 50 60 70 80 90 100 110 120

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Th
ro

ug
hp

ut
 (G

bp
s)

CP
U

 u
til

iz
at

io
n

(%
)

of destination virtual ports

mSwitch (Throughput)
VALE (Throughput)
mSwitch (NIC-CPU)

VALE (NIC-CPU)
mSwitch (App-CPU)

VALE (App-CPU)

Figure 9: mSwitch outperforms VALE both in terms
of scalability and throughput

that packet forwarding on the NIC-CPU is a bottleneck in
VALE, resulting in the virtual ports CPU being more idle
than in mSwitch’s case.

4.3 Ports Scalability
Out of the available high performance software switches,

VALE’s the only one that can have a large number of virtual
ports, and so in this experiment we perform a head-to-head
comparison against it. First, we set up a single sender and
11 receivers, each of these assigned one of the system’s 12
CPU cores. The sender sends packets to only one of the
destination ports, so that the remaining ones are essentially
“idle”. Figures 10(a) and 10(b) show that VALE’s algorithm
incurs costs with increasing number of ports, even if they are
not currently receiving packets; this would have negative
e↵ects when acting as a back-end switch to containers or
VMs, since idle ones would a↵ect the performance of active
ones. mSwitch, instead, experiences minor or no throughput
degradation.

Next, we conduct the same experiment but change the
switch logic so that packets from the sender are delivered
to all 11 destination ports in a round-robin fashion. Fig-
ures 10(c) and 10(d) show a similar general pattern as be-
fore. For short packets, mSwitch’s throughput now degrades
with increasing number of ports as a result of the algorithm
having to handle a larger number of linked lists, one per
active destination port.

To test the algorithm’s scalability to much larger port
numbers, we would have to have much larger number of
CPU cores. We could, of course, simply add more ports and
have them share whatever CPU cores are available, but this
would mean that we would measure the system’s ability to
process packets from destination ports’ rings, rather than
mSwitch’s algorithm itself. To get around this, we automat-
ically drain the receivers’ rings right after forwarding, as if
packets were immediately consumed for “free”. We do this
from the sender’s context, meaning that only the CPU core
of the sender is doing actual work.

Further, we use a constant batch size of N=1,024 on
the sender irrespective of the number of ports P , hence in
each batch the number of packets per output port is N/P .
Smaller batches mean that the per-output costs (locking,
synchronization) are amortized on fewer packets. We thus

 0
 2

 4
 6
 8

 10

 1 2 3 4 5 6 7 8 9 10 11

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (G
bp

s)

of destination ports

mSwitch (60B)
VALE (60B)

(a) 1 active dst, 60B

 0
 10
 20
 30
 40
 50
 60
 70

 1 2 3 4 5 6 7 8 9 10 11

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (G
bp

s)

of destination ports

VALE (1514B)
mSwitch (1514B)

(b) 1 active dst, 1514B

 0
 2

 4
 6
 8

 10

 1 2 3 4 5 6 7 8 9 10 11

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (G
bp

s)

of destination ports

mSwitch (60B)
VALE (60B)

(c) All dsts active, 60B

 0
 10
 20
 30
 40
 50
 60
 70

 1 2 3 4 5 6 7 8 9 10 11

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (G
bp

s)

of destination ports

VALE (1514B)
mSwitch (1514B)

(d) All dsts active, 1514B

Figure 10: Packet forwarding from a single sender
to multiple destination ports. The experiment uses
virtual ports only (no NICs) and one CPU core for
each of the 11 receiver and the single sender.

expect the aggregate throughput to decay with increasing
number of output ports, and that of mSwitch to do so less
quickly than VALE thanks to the new algorithm.

This is precisely what Figure 11 shows when comparing
mSwitch’s algorithm with VALE’s in the presence of up to
1,000 destination ports. While both curves decay with in-
creasing number of ports, mSwitch retains more than 50%
of the throughput when going from 1 to 250 ports, whereas
VALE drops to 25% with only 60 outputs.

As a final, more realistic, port density test, we configure
mSwitch to have up to 120 virtual ports sharing a CPU
core, and a NIC port with its own core (two total). Packets
arriving at the NIC are sent to the 120 ports in a round-
robin fashion and we measure throughput (Figure 9). As
opposed to the previous test, which used a dummy module,
this test uses an actual L2 learning bridge module (described
in more detail in Section 5). As shown, while the through-
put decreases with more ports, it does so linearly, and still
achieves a respectable rate of 1.35 Gbit/s for 120 ports and
minimum-sized packets on a single CPU core.

4.4 Destination Port Parallelization
We now evaluate the performance gains derived from using

mSwitch’s parallelization when handling the output rings
(recall from Section 3.3 that mSwitch allows concurrent copies
to the output bu↵ers). This feature is useful when several
sender ports converge on a single output one, a situation
common in virtualized server environments.

To create contention on a single destination port, we use
one receiver and up to eleven senders, for a total of 12, the
number of CPU cores in our system. The results in Figure 12

 0
 2
 4
 6
 8

 10

 1 100 200 300 400 600 800 1000

A
gg

re
ga

te

 th
ro

ug
hp

ut
 (G

bp
s)

of destination ports

mSwitch Algo (60B)
VALE Algo (60B)

(a) 60B packets.

 0
 10
 20
 30
 40
 50
 60
 70

 1 100 200 300 400 600 800 1000

A
gg

re
ga

te

 th
ro

ug
hp

ut
 (G

bp
s)

of destination ports

VALE Algo (1514B)
mSwitch Algo (1514B)

(b) 1514B packets.

Figure 11: Comparison of mSwitch’s and VALE’s
forwarding algorithms in the presence of many
ports. Batch size is set to 1,024.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 1 2 3 4 5 6 7 8 9 10 11

Th
ro

ug
hp

ut
 (G

bp
s)

of senders

60B 508B 1514B

(a) mSwitch, batch size 64.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 1 2 3 4 5 6 7 8 9 10 11

Th
ro

ug
hp

ut
 (G

bp
s)

of senders

60B 508B 1514B

(b) mSwitch, batch size 512.

Figure 12: mSwitch output ring management per-
formance for di↵erent packet and batch sizes.

show mSwitch’s througput with di↵erent packet and batch
sizes, and exactly match our expectations. With small batch
sizes the output ring is large enough to support concurrent
operation for all senders. mSwitch exploits this opportu-
nity and scales almost linearly (Figure 12(a) up to the point
where memory bandwidth starts becoming a bottleneck, i.e.,
for large packets. With a larger batch (512 packets versus
a ring size of 1,024) only a couple of senders at a time can
e↵ectively work in parallel, and mSwitch saturates with just
2 senders (Figure 12(b)). Overall, mSwitch achieves a max-
imum throughput of 532 Gb/s (1514-byte packets, batch of
64, 11 senders) and 65 Mp/s (60-byte packets, batch of 64
and 6 senders).

Note that in Figure 12(a) only the 508B curve seems to
collapse (for x > 9). In fact, all three curves in the graphs
do: the 60B curve does so for 7 senders (even if it is some-
what di�cult to see from the graph) and the 1514B would
do if we had more CPU cores to extend the X axis values.
These drops are the result of higher contention on the single
destination port, leading to livelock.

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

60 124 252 508 1020 1514

RT
T

(m
ic

ro
 se

co
nd

s)

Packet size (Bytes)

FreeBSD bridge
DPDK vSwitch

mSwitch (virt. port)

mSwitch (NIC)
mSwitch-OVS

Figure 13: RTT of a request-response transaction
(going through the switch twice).

4.5 Switch Latency
Virtualization technologies are infamous for inserting ad-

ditional delay in paths, and so it is paramount that a back-
end switch, if at all possible, does not make matters worse.
To show that this is not the case for mSwitch, for the final
basic performance test we measure the latency of the switch.
The experiment uses a request-response transaction (similar
to ping) between a client and a server connected through
mSwitch operating as a learning bridge. In this configura-
tion, the round trip time (RTT) includes twice the latency
of the switch, plus two thread wakeups (which consume at
least 0.5� 1 µs each). When running between two mSwitch
virtual ports, the latency is extremely low (see Figure 13).

For reference we also include results when using two phys-
ical 10 Gbit/s ports for various switches. For mSwitch and
the native FreeBSD bridge, these two curves practically over-
lap, because the bulk of the delay in each RTT is the same
in both cases, and it is due to interrupt processing (4 times),
thread wakeups (4 times) traversals of buses (PCIe and link),
and processing delays in the NIC. mSwitch’s Open vSwitch
module (mSwitch-OVS), discussed in Section 5.4, exhibits
higher latency because of more complex packet processing
(see Figure 16), as does DPDK vSwitch.

It is worth pointing out that the fact that there is almost
no latency di↵erence between mSwitch-OVS, which adopts
an interrupt model and performs OpenFlow packet match-
ing, and DPDK vSwitch, which uses a polling model with
the same packet matching, demonstrates that the latency
penalty arising from the interrupt model is negligible.

Finally, the di↵erence in RTT between 60- and 1514-byte
packets seems high but has a clear explanation. When travers-
ing each link, the packet must be transferred, in sequence,
through the PCIe bus (16 Gbit/s) on the transmit side, then
the link (10 Gbit/s) and then the PCIe bus on the receive
side (memory copies in mSwitch are negligible because of
the much larger memory bandwidth). The di↵erence in size
between small and large packets is over 11 Kbits, and adding
the transmission times for the 8 PCIe bus and 4 link traver-
sals gives a figure in the order of 12� 15 µs, which matches
the numbers in the graph rather well.

5. USE CASES
Having a clear understanding of the performance of mSwitch’s

switching fabric, we can focus on its flexible data plane and
the sort of use cases it can enable. We further provide a per-
formance evaluation to show how mSwitch is a↵ected by dif-

ferent switching logics. As case studies we implemented four
systems as modules: i) a basic layer-2 learning bridge (45
LoC); ii) a simple 3-tuple wildcard filter used for directing
packets to virtualized middleboxes (50 LoC); iii) a 3-tuple
exact-match filter used for user-level network stacks [8] (150
LoC); and iv) an mSwitch instance using the Open vSwitch
datapath code as switching logic to drive the mSwitch fabric
(only about 500 modified lines of code out of 10,000 total).

5.1 Layer 2 Learning Bridge
This system relies on a hash table to store forwarding

entries (<src-mac,src-port> pairs, learned from incoming
tra�c). On each packet, the switching logic hashes the
source MAC address to possibly insert a <src-mac,src-

port> entry in the table, and then hashes the destination
MAC to determine the destination port, returning a “broad-
cast” response if not found. We use SpookyHash [4] as the
hash function.

The implementation (excluding the hash function) con-
sists of only 45 lines of code. This module is used in mea-
surement of throughput in Section 2, and measurement of
throughput and CPU utilization in Section 4.2 and 4.3. The
complexity of this module is also discussed in Section 5.5.

5.2 Virtualized Middlebox Filter
It is becoming increasingly common to run instances of

middleboxes as virtualized, software-based functions run-
ning on commodity hardware, a model championed by the
NFV trend. In many cases, such middleboxes are only in-
terested in a subset of tra�c, and so it would be wasteful to
send packets from the NIC through the back-end software
switch and onto the container or VM (i.e., the middlebox)
only to be discarded. Instead, we can let mSwitch perform
this filtering early and thus reduce load on the system. To
this end, we program a simple module that carries out wild-
card matching on source or destination ports, which is a rea-
sonable filter type for a number of di↵erent middleboxes [9].

More specifically, we keep two simple arrays, one for UDP
tra�c and another one for TCP, containing mappings of
protocol ports to switch ports. When a packet arrives, we
attempt to match its source or its destination UDP/TCP
port (to capture two-way tra�c); if there is no match the
packet is discarded.

To measure the performance of this module, we populate
the mappings such that no packets are dropped, and packets
are either all sent to a single destination port (Figure 14(a))
or sent to all available destination ports in a round-robin
fashion (Figure 14(b)). For the former, mSwitch achieves
89% of line rate in the presence of 16 destination ports,
compared to about 55% for a version that adopts VALE’s
forwarding algorithm. For the latter, mSwitch achieves line
rate for all packet sizes for up to 8 ports (the rates are higher
than in the previous graph because the additional active
destinations mean that there are more CPU cores processing
packets). Note that in Figure 14(b) the sudden throughput
degradation at 16 ports is due to the fact that half of the
receivers have to share CPU cores (again, our system has 12
cores in total).

5.3 Support for Userspace Protocol Stacks
User-space transport protocol implementations can greatly

ease testing and quick deployment of new features [8]. How-
ever, when the protocol shares the namespace (protocol num-

 0

 2

 4

 6

 8

 10

 1 2 4 6 8 10 12 16

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (G
bp

s)

of destination ports

w/ VALE algo
mSwitch

(a) 1 active dst.

 0

 2

 4

 6

 8

 10

 1 2 4 6 8 10 12 16

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (G
bp

s)

of destination ports

w/ VALE algo
mSwitch

(b) All dsts active.

Figure 14: Performance of the virtual middlebox de-
multiplexer module. Minimum-sized packets arrive
at a single NIC and the module distributes them
to the corresponding destination ports. CPU cores
are distributed among destination ports in a round-
robin fashion.

ber, port numbers) with existing in-kernel implementations,
the OS must make sure that each instance receives its own
tra�c and does not interfere with the other.

These requirements can be met with an mSwitch module
which we call MultiStack. In greater detail, we implement
a filter able to direct packets between mSwitch ports based
on the <protocol, local IP, local port> 3-tuple. User-
level processes (which include a protocol’s implementation)
can connect to an mSwitch virtual port, and request the use
of a given 3-tuple through an ioctl(). If the request does
not collide with tuples already in use, the 3-tuple is reserved
by the OS (preventing bind()s on it) and inserted in a hash
table along with the mSwitch port number. Matching in-
coming packets from a NIC are then sent to the relevant
virtual port, whereas others are sent to the host’s network
stack. The hash table is also used for output verification
(using the source IP/port) to make sure that clients only
generate tra�c for addresses they “own”.

We tested the 3-tuple mSwitch performance by forwarding
tra�c between two 10 Gbit/s ports, reaching about 10 Mp/s
(68% of line rate, see Figure 16) for 60-byte packets, and full
line rate for larger packet sizes These values are only slightly
lower than the mSwitch learning bridge, and largely above
the speed of a host stack.

Taking this approach one step further, we also built a sim-
ple user-level TCP stack library along with an HTTP server
built on top of it. Using these, and relying on mSwitch’s
3-tuple filter module for back-end support, we were able to
achieve HTTP rates of up to 8 Gbps for 16 KB and higher
fetch sizes, and about 100 K requests per second for short
requests; for more details on this experiment see [8].

5.4 Open vSwitch Datapath
In our final use case, we study how di�cult and e↵ective

it is to integrate existing software with the mSwitch switch
fabric. In particular, we used Open vSwitch 2.3’s code to
implement the switch logic of what we term mSwitch-OVS.
We modified only Open vSwitch’s datapath part, which is
implemented as a Linux kernel module and consists of about
10,000 LoC. This required the implementation of some glue
code (approximately 100 LoC) to create an mSwitch in-
stance on startup, and an additional 400 LoC (including

70 modified lines) to hook the Open vSwitch code to the
mSwitch switching logic. In essence, mSwitch-OVS replaces
Open vSwitch’s datapath, which normally uses Linux’s stan-
dard packet I/O, with mSwitch’s fast packet I/O. As a re-
sult, we can avoid expensive, per-packet sk_buff allocations
and deallocations.

 0

 2

 4

 6

 8

 10

60 124 252 508 10201514

Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (Bytes)

OVS
mSwitch-OVS

(a) Between NICs.

 0
 5

 10
 15
 20
 25
 30
 35

60 124 252 508 10201514

Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (Bytes)

OVS
mSwitch-OVS

(b) Between virtual ports.

Figure 15: Throughput of mSwitch’s Open vSwitch
module (mSwitch-OVS) as opposed to that of stan-
dard Open vSwitch (OVS) on a single CPU core.
Measurements are done when forwarding between
NICs (left) and between virtual ports (right). In
the latter, for standard Open vSwitch we use tap

devices.

The results when forwarding between NICs using a sin-
gle CPU core (Figure 15(a)) show that with relatively few
small changes to Open vSwitch, mSwitch is able to achieve
important throughput improvements: For small packets, we
notice a 2.6-3x speed-up. The di↵erence is also large when
forwarding between virtual ports (Figure 15(b)), although
part of those gains are certainly due to the presence of slow
tap devices for Open vSwitch.

5.5 Module Complexity
As the final evaluation experiment, we look into how ex-

pensive the various modules are with respect to CPU fre-
quency. Figure 16 summarizes how the throughput of mSwitch
is a↵ected by the complexity of the switching logic for minimum-
sized packets and di↵erent CPU frequencies. As shown,
hash-based functions (learning bridge or 3-tuple filter) are
relatively inexpensive and do not significantly impact the
throughput of the system. The middlebox filter is even
cheaper, since it does not incur the cost of doing a hash
look-up.

Conversely, Open vSwitch processing is much more CPU
intensive, because OpenFlow performs packet matching against
several header fields across di↵erent layers; the result is re-
flected in a much lower forwarding rate, and also an almost
linear curve even at the highest clock frequencies.

6. GENERALITY AND LESSONS LEARNED
Through the process of designing, implementing and ex-

perimenting with mSwitch we have learned a number of
lessons, as well as developed techniques that we believe are
general and thus applicable to other software switch pack-
ages:

 2
 4
 6
 8

 10
 12
 14

 1.2 1.5 2.1 2.4 3.2Th
ro

ug
hp

ut
 (M

pp
s)

CPU Clock Frequency (Ghz)

Baseline
Filter

L2 learn
3-tuple

mSwitch-OVS

Figure 16: Throughput comparison between di↵er-
ent mSwitch modules for 60 Byte packets.

• Interrupt vs. Polling Model: Using a polling model
can yield some throughput gains with respect to an
interrupt-based one, but at the cost of much higher
CPU utilization. For a dedicated platform (e.g., Cuck-
ooSwitch, which uses the server it runs on solely as a
hardware-switch replacement) this may not matter so
much, but for a system seeking to run a software switch
as a back-end to processes, containers, or virtual ma-
chines, an interrupt-based model (or a hybrid one such
as NAPI) is more e�cient and spares cycles that those
processes can use. Either way, high CPU utilization
equates to higher energy consumption which is always
undesirable. We also showed that latency penalty aris-
ing from the use of an interrupt model is negligible for
OpenFlow packet matching (Section 4.5).

• Data Plane Decoupling: Logically separating mSwitch
into a fast, optimized switching fabric and a special-
ized, modular switching logic achieves the best from
both worlds: the specialization required to reach high
performance with the flexibility and ease of develop-
ment typically found in general packet processing sys-
tems (Section 3.4).

• High Port Density: The algorithm presented in Sec-
tion 3.3 permits the implementation of a software switch
with both high port density and high performance.
The algorithm is not particular to mSwitch, and so it
can be applied to other software packages.

• Destination Port Parallelism: Given the preva-
lence of virtualization technologies, it is increasingly
common to have multiple sources in a software switch
(e.g., the containers or VMs) needing to concurrently
access a shared destination port (e.g., a NIC). The
algorithm described in Section 3.3 yields high perfor-
mance under these scenarios and is generic, so appli-
cable to other systems.

• Huge Packets: Figure 6 suggests that huge packets
provide significant advantages for the switching plane
in a high performance switch. Supporting these pack-
ets is important when interacting with entities (e.g.,
virtual machines) which have massive per packet over-
heads (e.g., see [18]).

• Zero-Copy Client Bu↵ers: Applications or virtual
machines connected to ports on a software switch are
likely to assemble packets in their own bu↵ers, di↵erent
from those of the underlying switch. To prevent costly
transformations and memory copies, the switch should
allow such clients to store output packets in their own
bu↵ers (Section 3.5).

• Application Model: How should functionality be

split between an mSwitch instance and the user-level
application or container/VM connecting to a switch
port? The experience in writing the modules in this
paper suggests that the best approach is to place com-
putationally expensive processing in the application,
leaving only basic functionality to the switch (e.g., run-
ning some filtering and demuxing packets to the right
switch ports, as in Section 5.2 and 5.3, respectively).
Following this model ensures that the system does not
unnecessarily drop “cheap” packets while handling ex-
pensive ones. This is akin to OpenFlow’s model: fast,
simple rule matching in hardware with more advanced
processing carried out by software.

7. CONCLUSIONS
We have presented mSwitch, a flexible software switch

targeted at next generation software-defined networks and
providing high throughput, low CPU utilization, high port
density and a programmable data plane. Through an ex-
tensive performance evaluation we have shown that it can
switch packets at rates of hundreds of gigabits per second
on inexpensive, commodity hardware. We have further pre-
sented four di↵erent modules to give a flavor of the use cases
that could be implemented using the switch.

As future work, we will implement the ability for mSwitch’s
modules to receive entire batches of packets instead of hav-
ing per-packet semantics. This should further increase per-
formance, as well as allow the module to split and coalesce
packets, useful, for example, for implementing re-segmenting
middleboxes [9].

mSwitch has been integrated in the netmap/VALE code [1],
is part of standard FreeBSD distributions, and available in
source format for a wide range of Linux kernels. All the
modules introduced in Section 5 are also publicly available
at [15]

8. ACKNOWLEDGEMENTS
Michio Honda and Felipe Huici have received funding from

the European Union’s Horizon 2020 research and innovation
program 2014-2018 under grant agreement No. 644866 (SSI-
CLOPS). The authors would like to thank Costin Raiciu for
help with steering the paper.

9. REFERENCES
[1] The netmap project.

http://info.iet.unipi.it/~luigi/netmap/.
[2] M. Alizadeh, S. Yang, S. Katti, N. McKeown,

B. Prabhakar, and S. Shenker. Deconstructing
datacenter packet transport. In Proc. ACM HotNets,
pages 133–138, 2012.

[3] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. Ix: A protected
dataplane operating system for high throughput and
low latency. In Proc. USENIX OSDI, pages 49–65,
Oct. 2014.

[4] Bob Jenkins’ Web Site. SpookyHash: a 128-bit
noncryptographic hash. http:
//www.burtleburtle.net/bob/hash/spooky.html,
October 2013.

[5] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and

S. Ratnasamy. Routebricks: exploiting parallelism to
scale software routers. In Proc. ACM SOSP, pages
15–28, 2009.

[6] ETSI Portal. Network Functions Virtualisation: An
Introduction, Benefits, Enablers, Challenges and Call
for Action.
http://portal.etsi.org/NFV/NFV_White_Paper.pdf,
October 2012.

[7] S. Han, K. Jang, K. Park, and S. Moon. Packetshader:
a gpu-accelerated software router. In Proc. ACM
SIGCOMM, September 2010.

[8] M. Honda, F. Huici, C. Raiciu, J. Araujo, and
L. Rizzo. Rekindling network protocol innovation with
user-level stacks. ACM CCR, 44(2):52–58, Apr. 2014.

[9] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it Still Possible to
Extend TCP? In Proc. ACM IMC, pages 181–192,
2011.

[10] J. Hwang, K. Ramakrishnan, and T. Wood. Netvm:
high performance and flexible networking using
virtualization on commodity platforms. In Proc.
USENIX NSDI.

[11] Intel. Intel DPDK: Data Plane Development Kit.
http://dpdk.org, September 2013.

[12] Intel. Intel Ethernet Flow Director.
http://www.intel.com/content/www/us/en/

ethernet-controllers/

ethernet-flow-director-video.html, May 2015.
[13] Intel Corporation. Packet Processing - Intel DPDK

vSwitch - OVS.
https://github.com/01org/dpdk-ovs, January 2014.

[14] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. Clickos and the
art of network function virtualization. In Proc.
USENIX NSDI, pages 459–473, Apr. 2014.

[15] NEC Laboratories Europe. Cloud Networking
Performance Lab. http://cnp.neclab.eu/.

[16] OPEN VSWITCH. Open vSwitch.
http://openvswitch.org, 2013.

[17] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The operating system is the control plane. In
Proc. USENIX OSDI, pages 1–16, Oct. 2014.

[18] K. K. Ram, A. L. Cox, and S. Rixner. Hyper-switch:
A scalable software virtual switching architecture. In
Proc. USENIX ATC, 2013.

[19] L. Rizzo. netmap: a novel framework for fast packet
I/O. In Proc. USENIX ATC, 2012.

[20] L. Rizzo, M. Carbone, and G. Catalli. Transparent
acceleration of software packet forwarding using
netmap. In Proc. IEEE INFOCOM, pages 2471–2479,
2012.

[21] L. Rizzo and G. Lettieri. Vale: a switched ethernet for
virtual machines. In Proc. ACM CoNEXT, December
2012.

[22] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond
softnet. In Proc. USENIX Linux Showcase and
Conference, 2001.

[23] SDNCentral.com. Time for an SDN Sequel? Scott
Shenker Preaches SDN Version 2.
https://www.sdxcentral.com/articles/news/

scott-shenker-preaches-revised-sdn-sdnv2/2014/

10/, October 2014.
[24] V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and

G. Shi. Design and implementation of a consolidated
middlebox architecture. In Proc. USENIX NSDI, 2012.

[25] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making middleboxes
someone else’s problem: network processing as a cloud
service. In Proc. ACM SIGCOMM, pages 13–24, 2012.

[26] D. Zhou, B. Fan, H. Lim, D. G. Andersen, and
M. Kaminsky. Scalable, high performance ethernet
forwarding with cuckooswitch. In Proc. ACM
CoNEXT, December 2013.

