
A Study of Speed Mismatches Between Communicating
Virtual Machines

Luigi Rizzo, Stefano Garzarella, Giuseppe Lettieri, Vincenzo Maffione
Dipartimento di Ingegneria dell’Informazione

Università di Pisa

ABSTRACT
This work addresses an apparently simple but elusive prob-
lem that arises when doing high speed networking on Virtual
Machines. When a VM and its peer (usually the hypervisor)
process packets at different rates, the work required for syn-
chronization (interrupts and“kicks”) may reduce throughput
well below the slowest of the two parties.

The problem is not peculiar to VMs: I/O on magnetic
tapes and rotating disks has similar issues. What is challeng-
ing with VM networking is the timescale at which interac-
tions may occur: down to tens or hundreds of nanoseconds,
versus the 1..100 milliseconds in mechanical I/O devices.

In this paper we study the impact of producer/consumer
synchronization on throughput and overall efficiency of the
system; identify different operating regimes depending on
the operating parameters; and validate the accuracy of our
model on an actual prototype that resembles the operation
of a VM and its hypervisor.

Our goal, to be expanded in future work, is to use these
findings to derive strategies that can provide good or optimal
throughput while being cost effective, robust and practical,
i.e., without unnecessarily keeping cores active all the time,
or depending on precise timing measurements or unreason-
able assumptions on the system’s behaviour.

1. INTRODUCTION
Computer systems have many components that need to

exchange data and synchronize with each other (i.e. deter-
mine when new data can be sent or received). The timescales
of these interactions span from the nanosecond range for on-
chip hardware (CPU, memory), to hundreds of nanosecond
or microseconds for processes or Virtual Machines and their
hypervisors, up to milliseconds or more for peripherals with
moving parts (such as disks or tapes), or long distance com-
munication.

Synchronization can be implicit, e.g. when a piece of hard-
ware has a guaranteed response time, or explicit, requiring
asynchronous notifications (e.g. interrupts) and/or polling,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ANCS ’16 March 17-18, 2016, Santa Clara, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4183-7/16/03.

DOI: http://dx.doi.org/10.1145/2881025.2881037

i.e. repeatedly reading memory or I/O registers to figure
out when to proceed.

The cost of synchronization can be highly variable, and
sometimes even much larger than the data processing costs.
This used to be a well known problem with when access-
ing magnetic tapes, which must be kept streaming to avoid
abysmal performance (and mechanical wear) due to frequent
start/stops. Large buffers in that case came to help in
achieving decent throughput; the inherently unidirectional
(and sequential) nature of tape I/O does not call for more
sophisticated solutions.

We are interested in a similar problem in the commu-
nication between user processes (or virtual machines) and
physical or virtual network devices. In these cases, we aim
at throughputs of tens of Gigabits per second, millions of
packets per second, and reasonably low delays (microseconds
or less) in the delivery of data. The latency aspect, tightly
related with the bidirectional nature of network communi-
cation, is what makes the problem a hard one.

Synchronization here typically requires interrupts, context
switches and thread scheduling for incoming traffic, system
calls and I/O register access (which translates in expen-
sive “VM exits” on virtual machines) for outgoing traffic.
The high cost of these operations (often in the microsecond
range) means we cannot afford a synchronization on each
packet without killing throughput.

Amortizing the synchronization cost on batches of pack-
ets [3, 10, 11] greatly improves throughput, but has an im-
pact on latency, which is why several network I/O frame-
works [2, 4, 6, 14] rely on polling (or busy wait) to remove
the cost of asynchronous notifications and keep latency un-
der control.

Pure polling however has a significant drawback related to
resource usage: it consumes a full CPU core, may keep busy
the datapath to the device or memory being monitored, and
the power dissipated in the polling loop may prevent the use
of higher clock speeds on other cores on the same chip.

A middle ground between asynchronous notifications and
pure polling is implemented by modern “paravirtualized”
VM devices [12] and interrupt handling [1] strategies. In
these solutions, the system uses polling under high load con-
ditions, but reverts to asynchronous notifications after some
unsuccessful poll cycles.

The key problem in these solutions is that strategies to
switch from one to another mechanism are normally not
adaptive, and very susceptible to fall into pathological situa-
tions where small variations in the speed of one party cause
significant throughput changes. In our tests, we have fre-

Producer Consumer

Figure 1: System model. Producer and consumer exchange
messages through a queue, blocking when full/empty, and
exchanging notifications to wake up the blocked peer.

quently seen system moving from 100-200 Kpps to 1 Mpps
with minuscule changes in operating conditions [11]. Even
when the throughput shows less dramatic variations, the sys-
tem’s resource usage may be heavily affected, which is why
we need to understand and address this instability.

To this purpose, in Section 2, we provide a model of the
system explaining how different operating regimes may arise
and what kind of impact on performance comes by speed
differences, delays and queues. We use this model to de-
rive criteria to select reasonable operating regimes basing
on operating parameters, and also understand the impact of
erroneous decisions due to incorrect estimates of the param-
eters.

2. SYSTEM MODEL
To gain a better understanding of the problem of our in-

terest, in this Section we will study the behaviour of a sys-
tem made of two communicating parties, as in Figure 1: a
Producer P and a Consumer C, where P sends one or more
messages at a time to C, either continuously or periodically,
through a shared queue with L slots.

When P (or C) cannot proceed because the queue is full
(or empty), they either poll the queue’s status for opportu-
nities to do more work, or go to sleep and wait for a noti-
fication from the other party to restart. Polling can waste
large amounts CPU cycles when there is no communication.
Notifications on the other hand involve extra work to be sent
and received, and may be delivered with some delay.

As defined above, our model is very general and covers
a large number of actual situations. P and C are typically
processes running on one of the CPUs of a system, with
the queue implemented in memory. However the model also
applies to cases where P and/or C are implemented as part
of a peripheral device, such as a network or disk controller,
and the queue may be supported by I/O registers.

Ideally, we would like our system to process messages at
a rate set by the slowest of the two parties, and with the
minimum possible latency and energy per message. As we
will see, actual performance may be very far from our ex-
pectations and from optimal values.

Before starting our analysis, we define below the parame-
ters used to model the system.

Name Description

L the length of the queue
WP cost for P to process one message and enqueue it
WC cost for C to dequeue one message and process it

kP

threshold used by P to notify C. When C is blocked
and P queues a message, a notification is sent when
the queue reaches kP messages (typically kP = 1)

kC
threshold used by C to notify P (notifications are
sent when kC slots are available)

NP the cost for P to notify C about the state change
NC the cost for C to notify P about the state change

SP the cost for P to start after a notification from C
SC the cost for C to start after a notification from P

We measure the cost (i.e. the amount of work) of the
various operations in clock cycles rather than time. This
will ease reasoning about efficiency when our system has
the option to use different clock speeds to achieve a given
throughput.

We assume that P always sends a message as soon as it
can. Moreover, we assume that all the time spent in SC and
SP is actual work that the CPU must perform to complete
the notification and schedule the notified task.

2.1 Operating regimes
The combinations of parameters can give rise to a large

number of operating regimes, which we describe next. As
we will see, some regimes are more favourable than others,
so we will try to determine the conditions that cause the
system operate in a given regime x, and for each of them
we will determine the average time between messages,
Tx (the inverse of the throughput), and the total cost per
message Ex (which includes the work of both P and C).

In the following we consider greedy regimes, where P sends
messages as fast as it can, constrained only by the processing
times of the P and C.

2.1.1 GP (polling)
When the system uses polling, P and C are always

active, and the slowest of the two spins for the other to
be ready. On each message, this requires on average a
number of cycles PGP = |WP −WC | equal to the difference
in processing work between the two parties. Hence we have

TGP = max{WP ,WC}
EGP = 2TGP = WP +WC + |WP −WC |

(1)

2.2 Notification based regimes
When the system uses notifications instead of polling, we

can identify five different regimes depending on whether the
producer is faster or slower than the consumer, and also
depending on whether the the queue between P and C is
sufficiently long to absorb the startup times SP and SC .

With a sufficiently long queue, the slowest party will de-
termine the overall throughput, but the need to periodically
stop and restart using notifications will add an overhead
(which can be significantly large) to the message processing
time.

When the queue becomes too short to absorb the notifica-
tion latency, one party may block despite being slower than
the other one, significantly reducing throughput.

Two non intuitive results of our analysis are that i) the
system’s performance can be improved by slightly slowing
down the fastest party, in order to reduce the overhead of
notifications, and ii) the threshold for notifications has op-
posite effects depending on whether we are in a long or short
queue regime.

As a consequence, correctly identifying the operating
regime is fundamental for properly tuning (either manually,
or automatically) the system’s parameters.

In our model the system may be in one of five operating
regimes, depending on the relative size of the system pa-
rameters. The conditions to check can be grouped in three
inequalities, whose possible states are summarized in Ta-
ble 1 together with the corresponding regime. Each regime

(L − kP)WP − WC (L − kC)WC − WP

WC < WP
> SC − FC
< SC > SP SCS

WC > WP
> SC < SP SPS
− > SP FP

− < SC < SP SS

Table 1: Conditions for the notification based regimes (‘−’
means ‘don’t care’). Detailed explanations are in Sec-
tions 2.2.1 to 2.2.5.

is identified by an acronym (FC, FP, SCS, SPS and SS)
which is explained below.

2.2.1 FC (fast consumer)
When C is faster than P (i.e., WC < WP), C will start

after the notification from P and eventually drain the queue
and block. If C starts fast enough (i.e., SC < (L−kP)WP −
WC), the queue will never become full and therefore P will
never block. The (periodic) evolution of the system over
time is shown below. Grey blocks represent message process-
ing, whereas the triangles indicate notifications and wake-
ups.

P:

C:

kP

m

In this regime P is always active, and periodically gener-
ates notifications when C is blocked and the queue contains
kP messages. The number of messages processed by C (and

P) in each round is m =
⌊

SC+(kP−1)WC
WP−WC

⌋
+kP . The number

m is derived noting that C starts processing with an initial
delay SC , and then catches up draining the queue a little
bit at a time. Knowing m, it is easy to determine TFC and
EFC , considering that the notifications and startup costs are
amortized over batches of m messages:

TFC = WP +
NP

m

EFC = WP +WC +
NP + SC

m

(2)

A large m improves the performance of the system, and since
m ≥ kP we would like kP to be large. However, systems
normally use kP = 1 for two reasons: a larger kP often
increases the latency of the system (latency is not one of
our metrics, but it is an important one for some systems),
and more importantly, P often cannot tell whether there will
be more messages to send after the current one.

2.2.2 FP (fast producer)
When WC > WP we can identify a different regime, which

we call FP (fast producer) regime, which behaves like FC but
with the roles of P and C reversed. P is faster than C, so the
queue eventually fills up and P blocks. The notification from
C to restart P is sent when there are kC empty slots in the
queue. If P starts fast enough (i.e., SP < (L−kC)WC−WP))
it refills the queue before it becomes empty and therefore C
never blocks.

We omit the formulas for brevity, but the graphs and ex-
periments in the rest of the paper also cover this regime.

Note that as WP approaches WC , the burst m grows to

infinity in both FC and FP, and P and C proceed in lockstep
at the ideal rate of one message every WP = WC cycles.

2.2.3 SCS (slow consumer startup)
SCS differs from regime FP in that C is fast but has a long

startup delay, so P can fill the queue before C has a chance
to remove the first message. This forces P to block until kC
messages are drained and C generates a notification. The
situation then repeats periodically once C has drained the
queue, as shown by the following diagram:

P:

C:

L − kP

kC

m kP

L − kC
m

The cycle contains L+m messages, where

m =

⌊
(L− kC)WC − (SP +WP)

WP −WC

⌋
+ 1. (3)

We omit the formulas for TSCS and ESCS as they are long
and not particularly useful. However, important insights
on the performance in this regime come from the analysis
of the above diagram and Equation (3). The slow party
(P) has to wait because of a large SC , and increasing
kC harms in two ways: it extends the idle time for
P, and reduces m, thus increasing the amortized cost of
notifications and startups.

Note that kC has opposite effects on performance in the
two regimes SCS and FP, due to the slow startup time: in
FP, a large kC improves performance, whereas in SCS we
should use a small kC .

2.2.4 SPS (slow producer startup)
This regime is symmetric to SPS, and it appears when the

producer is faster than the consumer, but slow to respond
to a notification. For brevity we omit the formulas, which
be obtained from the SCS case by swapping every P with C.
The long startup time leads to different choices for the pa-
rameter kP : in regime FC we aim for a large kP , whereas in
regime SPS we should use a small value for that parameter.

2.2.5 SS (slow producer and consumer startup)
This regime combines the previous two, and alternates

operation of the producer and consumer due to the large
startup delays. Individual speeds only matter in relation to
the startup times, and operation in the system alternates
between P and C as shown in the following diagram.

P:

C:

L − kC

L − kP

kC

kP

Each round in this case comprises exactly L messages, and
TSS and ESS have a relatively simple form:

TSS =
kPWP + kCWC +NP + SP +NC + SC

L

ESS = WP +WC +
NP + SP +NC + SC

L

(4)

Just looking at the equation, it might seem that there is
a good amortization of the notifications and wakeup costs
(once per L messages). However the timing diagram shows

TGP

WC

TSS

WP

T

WCWC−SP
kC

NC
kC

TFP

kP WC + SC

NP
kP

TFC

FP FP FC FC

Figure 2: The time for each message as a function of WP ,
in the greedy regimes. Note that the message rate decreases
as we move away from WP = WC . The curve for TSS repre-
sent the best case for regime SS, actual values may be much
larger.

EGP

2WP

ESS

WC

C

WP

NC+SP
kC

NP +SC
kP

Figure 3: The total cost for each message as a function of
WC . There may be regions where polling (thin line) is more
energy efficient than notifications (thick and dotted lines).

clearly that P and C alternate their operation, making the
throughput less than half of that of the fastest party.

In general, the regimes with short queues are unfavourable
and we should avoid operating the system in them.

3. THROUGHPUT AND COST ANALYSIS
In the rest of this Section we explore how throughput and

efficiency change depending on the parameters, using the
equations for Tx and Ex derived in Section 2. These equa-
tions use an idealized model where the various times are
constant. We then validate the model using both a simula-
tor and an actual prototype with variable costs, whose values
and distributions are derived from actual measurements.

3.1 Throughput
We start our analysis looking at the time between mes-

sages, Tx. In Figure 2 we plot Tx in the greedy regimes for
a given WC (processing time on the consumer) and variable
WP (processing time on the producer). The region to the
left of WP = WC corresponds to a fast producer.

There are three curves of interest here. The dotted line at
the bottom represents the minimum distance between mes-
sages, which is TGP = max{WP ,WC}. This corresponds to
the best throughput we can achieve if efficiency is not an is-
sue, and can be obtained with pure polling, i.e. keeping
the fastest party continuously spinning for new opportuni-
ties to work.

The next curve (solid line) represents TFC and TFP , cor-
responding to the first two non-polling regimes. Here the

distance between messages is higher than in the ideal case
due to the effect of notifications and startup times. These
are amortized on the number m of messages per notification;
m changes in a discrete way with the ratio WP /WC , hence
the curve the staircase shape.

It should be noted that depending on the queue size L and
the values of the operating parameters, we cannot guarantee
that the system operates in regimes FC or FP. Sections 2.2.3,
2.2.4 and 2.2.5 indicate the conditions for which we may
enter one of the three regimes SCS, SPS or SS, all of which
have a larger inter message time than FC and FP.

Hence our third curve of interest is labeled TSS , which
corresponds to WP + WC + NP /L + NC/L and marks the
best possible performance in regime SS. Operating curves
for SCS and SPS lay between TG and TSS .

IMPORTANT: performance can jump between TFC ,
TFP and TSS even for small variations of the operating pa-
rameters. Hence it is imperative to either make the region
between the two curves small, or set parameters to minimize
the change of regime changes.

Going back to the analysis of operating regimes, we note
that both FC and FP have two different regions, separated
by the vertical dotted lines in the figure. These boundaries
occur when the batch of messages processed on each notifi-
cation reaches the minimum value, respectively kP and kC .
The fact that kP is usually 1 makes the jump much higher
in regime FC than in regime FP.

Since the equations governing the system are completely
symmetric, the curves for a fixed WP and variable WC have
a shape similar to those in Figure 2. This shows that there
are regions of operation where increasing the processing
costs (WP in FP, WC in FC) increases throughput.

While the graphs focus on variations of WP and WC , they
also show the sensitivity of the curves to other parameters.
As an example, the distance between TFC , TFP and the op-
timal value TGP is bounded by NC/kC and NP /kP , so we
have knobs to reduce the gaps. Also, the position of the last
big jump in throughput in regime FC can be controlled by
increasing SC . This means that, all the rest being the same,
a slower wakeup time improves performance.

3.2 Efficiency
While regime GP is always the one with the highest

throughput, its performance may come at a high cost in
terms of CPU usage. In regime GP, the fast party must burn
cycles proportionally to the difference of processing times,
|WC −WP |. This can possibly double the total overall cost
in terms of time/cycles, and can have even worse impact on
performance if the fast party has higher cost per cycle. As
an example, the fast party could be an expensive, dedicated
CPU/NIC/controller.

As a consequence, another metric of interest is one that
takes into account the total cost per message. In our model,
assuming for simplicity that both P and C have the same
cost per cycle, this number is represented by the values Ex

determined in Section 2.1. We see that the Ex values have
the form WP +WC+X where the additional term X depends
on the operating regime.

Similarly to the previous analysis for throughput, in Fig-
ure 3 we show the cost per message in different regimes. For
simplicity, here we use only one graph with variable WC ,
having already established that the system is symmetric and
we can repeat the same reasonings for variable WP . Even in

this case we have three curves of interest, but they are not
as nicely ordered as in Figure 2.

3.2.1 Greedy regimes
Figure 3 show that the curve for the polling regime GP

(solid thin line) is no more the absolute best in terms of
efficiency. This is because the additional term X in EGP

is |WC −WP |, whereas in other cases the term X is up-
per bounded by some constant independent of the difference
WC−WP . As a consequence, the slope of EGP is twice that
of the other curves, and when WC becomes too large (or
more precisely, when |WC −WP | becomes large) polling is
the worst option in terms of cycles (or energy) per message.

The energy curve (solid thick in Figure 3) for regimes FC
and FP has the same stepwise behaviour as the ones for
inter-message time. The slope is however unitary (it grows
as max {WP ,WC}), and lies within the grey region in the
figure depending on the actual parameters. As the graph
shows, the curves for polling (solid thin) and non polling
(solid thick) regimes may intersect in several points, whose
values and position depend heavily on the actual parameters.

The shape of the curves and their discontinuities make it
difficult to identify intervals in which one regime is preferable
to another. We can compute them using the equations in
Section 2.1, but these rely on perfect knowledge of the oper-
ating parameters, hence the information is of little practical
use.

Comparing the total cost per message in regime GP with
the other regimes however can give some useful practical
insight. Polling consumes an extra |WP −WC | cycles per
message, so it is convenient when the cost is lower than
the extra notification and startup cost, which is NP+SC

m
in

FC, NC+SP
m

in FP. Since in FP we have m ≥ kC and kC
is typically large, it very unlikely that polling can be cost
effective.

3.2.2 Short queue
The energy efficiency when the queue fills up is heavily

dependent on the values of the parameters. Equation 4 for
ESS shows that the extra term includes all the four startup
and notification times instead of only two of them for EFC

and EFP . Given that we expect one of SC , SP to be large,
this might be a significant cost.

On the other hand, the energy efficiency of these regimes
is not too bad, because producer and consumer tend to have
significant idle times, and the overheads are amortized over
relatively large batches (e.g. the entire queue size in regime
SS). This phenomenon is evidenced by the curve ESS (dot-
ted) in Figure 3, which also intercepts the others.

3.3 Model validation
The model of Section 2, and the subsequent analysis, as-

sume constant processing times. To validate how the results
hold with variable times and/or in a real system, we have
developed a simulator and a synthetic system.

The simulator is a classical event-based simulator. It is
written in go to keep the producer and consumer inside
their own (go)routine, instead of scattering them into sev-
eral event handlers. This gives full control on the model
parameters, but of course does not provide any insight on
value and distribution of the parameters in a real system.

To address this limitation, we have developed a synthetic
system using OS processes that exchange messages through

0

2

4

6

8

0 1 2 3 4 5

T
[µ
s]

WP [µs]

synthetic
math. model

simulator

Figure 4: Average per-packet time as a function of WP with
a fixed WC = 1.1µs. The throughput observed on the syn-
thetic system agrees with the value predicted by the math-
ematical model and the simulator.

shared memory, and use OS and hypervisor primitives for
scheduling and notifications.

The per-packet work is replaced by a configurable amount
of spinning, so we can run the experiments with different
values of WP and WC . The purpose of such synthetic system
is to observe the behaviour of real world notifications and
startup times, distilled from the unrelated complexity of real
application workloads.

Specifically, the producer runs in a thread inside a
QEMU/KVM [5] virtual machine (guest), while the con-
sumer runs in a kernel thread in the host. Notifications
involve interrupts, VM exits and thread wakeups in the OS,
mimicking mechanisms commonly used in modern hypervi-
sors.

By our measurements on an Intel Core i7-3770K with
clock fixed at 3.5 GHz and C-states disabled, we have found
NP = 2.4µs, SP = 3.9µs, NC = .2µs and SC = .2µs.
The Producer parameters are much larger than the ones for
the Consumer, but this is expected due to the asymmetric
nature of our prototype: the Consumer is a kernel thread
in the host, ready to react to events, whereas the Producer
runs within a guest VM hence requiring more expensive op-
erations such as VM exits and multiple thread handoffs to
be notified.

We have then used the measured parameters into the
equations from Section 2, as well as in the simulator. Fig-
ure 4 shows that in all three cases the curves may be made to
agree with great accuracy, suggesting that we have actually
captured the most relevant features of the system.

4. CONTROLLING THE SYSTEM
Since our goal is not only to observe the behaviour of the

system but modify it to our advantage, we try to identify
which regimes are more interesting, and how we can mod-
ify operating parameters (either statically or dynamically)
to achieve the desired results. Our ability to change oper-
ating parameters is limited to queue size (L) and wakeup
thresholds (kC , kP), but these already help moving between
regimes and operating points. We can also make a judicious
use of a mixture of polling and sleeping to reduce the cost
of notifications. Somewhat surprisingly, slowing down the
fast party in the communication can also lead to improved
performance.

Maximising throughput

The first (and obvious) indication that the graphs give us is
that for maximum throughput, using pure polling is always
a winning strategy. This however is conditioned to the fact
that we have enough CPU resources to keep both producer
and consumer active at all times, even when there are no
messages to send.

Maximising efficiency

From an efficiency standpoint, things are not as clear. We
can only tell that polling becomes the worst option as
|WP −WC | becomes large. Intuitively, with pure polling
we never know when it is time to stop spinning, and we end
up with both parties using 100% of their capacity even with
little or no messages to deliver.

For all other cases, the regions where one regime is more
or less convenient depends on the actual values of the param-
eters. Outside of polling, we see that the size of the queue
between producer and consumer may significantly impact
the performance of the system. Depending on the operating
conditions, small changes in one or more parameters may
cause the queue to fill up and introduce sudden changes of
throughput (between the curves TSS and TFC in Figure 2).

While the regimes where queues saturate are not horri-
ble in terms of energy efficiency, their impact on throughput
suggests that we should avoid ending up in one of them. De-
pending on the operating environment, it is possible that the
notification and/or startup costs (NP , NC , SP , SC) are 1-2
orders of magnitude larger than the work times WP and WC ,
and throughput variations of 5-10 times are not unheard of.

4.1 Towards a practical control scheme
Throughput depends on sometimes non intuitive ways on

the parameters:

• exiting from the “short queue” regimes requires reduc-
ing the thresholds kP and kC . Conversely, in regimes
FC and FP we would like to keep these thresholds
larger in order to improve the throughput;

• in regimes FC and FP, a higher wakeup time (SP ,
SC) helps improving the throughput (much like an in-
creased notification threshold);

• still in regimes FC and FP, when the producer and
consumer’s speeds are different, slowing down the fast
party improves performance. This is shown by the
negative slope of the curves TFP in Figure 2.

We have tried to use these dependencies to steer the system
towards more favourable operating regimes.

Our preliminary (but not conclusive) experiments on
adapting thresholds kC and kP have not given good results,
probably because they do not prevent the fast peer from
blocking or entering a short queue regime.

Instead, a more promising avenue seems to be the use of
schemes where the fast peer reacts to an upcoming blocking
situation by increasing its processing time. This can be done
in multiple ways, e.g. by doing I/O in smaller batches, or ex-
ecuting short busy wait loops, or opportunistically running
short, low priority housekeeping tasks or short sleeps.

The judicious use of spinning and sleeping instead of
blocking, based on the state of the peer and some practi-
cal running estimate of the system parameters, can prevent

0

2

4

6

8

0 1 2 3 4 5

T
[µ
s]

WP [µs]

synthetic-control
synthetic-nocontrol

(a) Average per-packet time as a function of WP .

0

2

4

6

8

10

12

0 1 2 3 4 5

C
[µ
s]

WP [µs]

synthetic-control
synthetic-nocontrol

simulator-polling

(b) Average per-packet cost as a function of WP .

Figure 5: Experimental control for the same setup as Fig. 4.
For all values of WP , the control is able to reduce per-packet
time at a reduced cost with respect to polling.

peers from using expensive synchronisation primitives, thus
retaining both high throughput, and reasonable efficiency.

Fig. 5 shows some preliminary results where the previous
strategy is applied to the simple scenario of Fig. 4, where we
can see that this control scheme is able to achieve optimum
throughput at a reduced cost with respect to pure polling.

5. RELATED WORK
Pure polling (also known as “busy wait” or “spinning”)

is probably the oldest form of synchronization, and the
most expensive in terms of system resource usage. Its use
is mostly justified by its simplicity and not reliance on
any hardware support. Pure polling is used by a num-
ber of high speed networking applications such as the Click
Modular Router [6], Intel’s DPDK [4], and Luca Deri’s
PFRING/DNA [2].

Aside from high energy consumption, polling may also
abuse of shared resources, such memory or I/O buses. This
changes the problem from a simple annoyance (high energy
consumption) to a threat to other parts of the system, and
requires some form of mitigation.

In the FreeBSD polling architecture [9], polling occurs pe-
riodically on timer interrupts and opportunistically on other
events. An adaptive limit on the maximum amount of work
to be performed in each iteration is used to schedule the
CPU between user processes and kernel activities. Adap-
tive polling schemes are also widely used in radio protocols,
sensor networks, multicast protocols.

A seminal work on interrupt moderation [7] points out
how mixed strategies (notifications to start processing, fol-
lowed by polling to process data as long as possible) can re-

duce system’s overhead. The linux NAPI architecture [1,13]
is based on the above ideas. When an interrupt comes,
NAPI activates a kernel thread to process packets using
polling, and disables further interrupts until done with pend-
ing packets. A bound on the maximum amount of work to be
performed by the polling thread in each round helps reduc-
ing latency and fairness on systems with multiple interfaces.
NAPI does not use any special strategy to adapt the speed
of producer and consumer, and as such it is subject to the
performance instabilities discussed in this paper.

The Virtio framework [8, 12] is used to provide high per-
formance network support to QEMU guests, and uses a no-
tification system similar to the one presented in Section 2.
The notification thresholds in this model are typically cho-
sen as kP = 1, kC = 2/3 of queue occupation at start. This
form of adaptivity is not particularly useful, and it is only
effective with high load and slow consumers. In particular,
it often degenerates to use a threshold kC = 1 even for the
consumer side, making the system unnecessarily inefficient.

6. CONCLUSIONS AND FUTURE WORK
We have presented a model of the operation of a packet

producer and consumer in a typical Virtual Machine envi-
ronment; described how throughput and efficiency are af-
fected by operating parameters; and validated the model
against a simplified prototype running on a hypervisor. We
have discussed some options to implement a control mecha-
nism that can steer the operating regime of the system to-
wards a more favourable region, and presented preliminary
results on its behavuiour.

We plan to further explore the ideas discussed in Sec-
tion 4.1, and integrate them in the network path of common
hypervisors.

7. ACKNOWLEDGEMENTS
This paper has received funding from the European

Union’s Horizon 2020 research and innovation programme
2014-2018 under grant agreement No. 644866. This paper
reflects only the authors’ views and the European Commis-
sion is not responsible for any use that may be made of the
information it contains.

8. REFERENCES
[1] Linux Net:NAPI (”New API”).

http://www.linuxfoundation.org/en/Net:NAPI.

[2] L. Deri. PFRING DNA page.
http://www.ntop.org/products/pf ring/dna/.

[3] S. Garzarella, G. Lettieri, and L. Rizzo. Virtual device
passthrough for high speed vm networking. In
Proceedings of ACM/IEEE ANCS 2015, pages 99–110,
2015.

[4] Intel. Intel data plane development kit.
http://edc.intel.com/Link.aspx?id=5378, 2012.

[5] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the linux virtual machine monitor. In
2007 Linux Symposium, Ottawa, volume 1, pages
225–230, 2007.

[6] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. Kaashoek. The click modular router. ACM
Transactions on Computer Systems (TOCS),
18(3):263–297, 2000.

[7] J. C. Mogul and K. Ramakrishnan. Eliminating
receive livelock in an interrupt-driven kernel. ACM
Transactions on Computer Systems, 15(3):217–252,
1997.

[8] G. Motika and S. Weiss. Virtio network
paravirtualization driver: Implementation and
performance of a de-facto standard. Computer
Standards & Interfaces, 34(1):36–47, 2012.

[9] L. Rizzo. Polling versus interrupts in network device
drivers. BSDConEurope 2001, 2001.

[10] L. Rizzo. netmap: A Novel Framework for Fast Packet
I/O. In USENIX ATC’12, Boston, MA. USENIX
Association, 2012.

[11] L. Rizzo, G. Lettieri, and V. Maffione. Speeding up
packet I/O in virtual machines. In Proceedings of the
Ninth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’13,
pages 47–58, Piscataway, NJ, USA, 2013. IEEE Press.

[12] R. Russell. virtio: towards a de-facto standard for
virtual I/O devices. ACM SIGOPS Operating Systems
Review, 42(5):95–103, 2008.

[13] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond
softnet. In Proceedings of the 5th annual Linux
Showcase & Conference, volume 5, pages 18–18, 2001.

[14] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G.
Andersen. Scalable, high performance ethernet
forwarding with cuckooswitch. In Proceedings of the
ninth ACM conference on Emerging networking
experiments and technologies, pages 97–108. ACM,
2013.

