

mes-4

FOUR-BIT PARALLEL MICRO COMPUTER SET

Features

® Microprogrammable m 2-Phase Dynamic Operation
General Purpose Computer m 10.8 Microsecond
Set Instruction Cycle

m 4-Bit Pa_rallel CPU With 45 ' m CPU Directly Compatible
Instructions With MCS-4 ROMs and

m Instruction Set Includes RAMs
Condltlonal Bran.Chlng, [} Easy Expansion — One CPU
Jump to Subroutine and can Directly Drive up to
Indirect Fetching 32,768 Bits of ROM and up

m Binary and Decimal to 5120 Bits of RAM
Arithmetic Modes ® Unlimited Number of

m Addition of Two 8-Digit Output Lines
Numbers in 850 m Packaged in 16-Pin Dual
Microseconds In-Line Configuration

MCS-4 CAPABILITIES ARE EXPANDED BY THE
ADDITION OF THE 4008/4009, THE STANDARD
MEMORY AND 1/0 INTERFACE SET.

Expanded Features

m Directly Compatible With s Each Port May be Both Input and
4004 CPU Output-- Up to 16 4-bit Input

» Interface 17702A PROMs Directly Ports and 16 4-bit Output Ports
to 4004 CPU --Completely & Number of 1/0 Ports is
Eliminates TTL Interface Independent of the Size of

m Permits Program Storage in the Program Memory
Alterable Memory & |/0 Ports and Control Lines

s Execute MCS-4 Programs from are TTL Compatible
any Mix of Standard Intel PROMs, ® New Instruction WPM (Write
ROMs and RAMs Program Memory) is Used for

s Expanded 1/0 Po.* Capability Loading Alterable Program

Storage (RAM)

CONTENTS

Page

[Introduction e 1
A. General Discussion S e 1
B. Applications for the MCS-4 Micro Computer Setttt 2
C. Featuresof the MCS-4 ittt 3
11, " MCS-4 System Description.t e e e e e 4
A. General Description e e e e e 4
B. Basic System Operation e 5
C. MCS-4 Logic Definitions i e 6
D. Basic System Timing ittt e e e e e e e 6
. 4 Bit Central Processor Unit (CPU) — 4004 uuriuiunninnn.. .7
A. Description e e e e e e e e e e e e e e e e e e e 7

B. CPU Instruction Set Format, Index Register Organization and :
Operation of the Address Register and Command Linesc.00o.... 10
1. Instruction Set Format e e e e 10
2. Index Register Organization P 12
3. Operation of the Address Registerttt ittt 12
4. Operation of the Command Linesand the SRCCommand 13
C. BasicinstructionSet0 . 16
v 4001-256 x 8 Mask Programmable ROM and 4 Bit1/OPort 18
V. 4002-320 Bit RAMand 4 BitOutputPort 20
VI 4003-10 Bit Serial In/Parallel-Out, Serial Out Shift Register . . . e 23
Vi, Detailed Instruction Repertoire of the MCS-4 24
AL INStruction Format e e e e e e e e 24
B. Symbols and Abbreviations L e e e e 24
C. Format for Describing Each Instruction PPN e e 25
D. One-word Machine INStructions ittt ittt et ittt en i ee o 25
E. Two-word Machine Instructions it ittt it e et i 27
F. Input/Output and RAM Instructions ittt ittt e e s 29
G. Accumulator Group Instructions e 30
ViiL An Introduction to Programming the MCS-4 33
1X. Programming Examples e e e e e e 43
A. MCS-4 Program Routine FormatNotes 0. it ininnennnn 43
B. 16-Digit Decimal Addition Routine.t L..44
C. BCD to Binary Conversionc.otuiiiuuenennnnnnnnns e eaie e 46
D. A-D Converter Using DACwith MCS-4 i 48
E. MCS-4 Software and Firmware Library e 50
X. Interface Design for the MCS-4 System ititninnnnn, 51
A. General DisCUSSION v vt ittt i e e e e e e e e e 51
B. Keyboards e e e e e 51
Lo 0 1« L 53
D. Teletype Interface ot i et e e e i e e 54
XL SIM4-01/SIM4-02 Prototyping SYStemttt tet e e 56
A. General System Description e e e e e e e 56
B. SIM4-01/SIM4-02 Specificationso v it ittt ottt et e e e 61
C. MCS-4 Standard Memory and Interface Set (4008/4009) 61
D. SIM4-01 Prototype System i e et e, 64
E. SIM4-02 PrOtOTYPE SYSTOM . o vt ittt i e e e e e e e e e «.. 70

Xil., Sample Sixteen Digit Decimal Addition Program

(Intel ROM Program Number AO700)t i 77
XHI. MCS-4 PROM Programming System ittt innaee s 82
A. General System Description and Operating Instructions 82
B. MP7-03 Programming System T 89
XIv. MCS-4 Evaluation Kit Using the 4001-0009 innrenunenns 96
XV, APPENAICES e e e e 102
A. Electrical Characteristics of the MCS-4. ittt ittt 102
B. System Applications of the 4008/4009. . . ,......: L 109
C. MCS-4 Custom ROM Order FOrmottt it ittt e i 113
D. Teletype Modifications for SIM4-01/SIM4-02 it 117
E. System Interface and Control Modules - MCB4-10/MCB4-20 121
F. SIM4 Hardware Assembler for SIM4-010orSIM4-02 129
G. SIM4A Hardware Simulatorttt e e 141
H. MCS-4 Fortran Assembler/Simulator Software Package 153
I. MCS-4 Programming Examplest tiinnneenonmnannann 165
XVI. Ordering Information 172
A. Sales Offices S 172
B. DistribULOrSt i e e e e e e et e e e 173
C. Ordering Information/Packaging Information Lo 174

NOTICE: The circuits contained herein are suggested applications only. Intel Corporation makes no warranties whatsoever with res-
pect to the completeness, accuracy, patent or copyright status, or applicability of the circuits to a user’s requirements. The user is
cautioned to check these circuits for applicability to his specific situation prior to use. The user is further cautioned that in the event
a patent or copyright claim is made against him as a result of the use of these circuits, Intel shail have no liability to user with respect
to any such claim,

4004 Photomicrograph With Pin Designations

I. INTRODUCTION — THE ALTERNATIVE TO RANDOM LOGIC SYSTEMS

A. General Discussion

Since its inception, digital computer applications have evolved from
calculation/ through data processing and into control. The develop-
ment of the minicomputer has vastly increased the scope of computer
usage. In particular, the use of minicomputers in dedicated appli-
cations has had a profound effect on systems design.

Many engineers have found having a minicomputer.at the heart of a
system offers significant advantages. Minicomputer systems are

more flexible, can be easily personalized for a particular customer's
requirements, and can be more easily changed or updated than fixed-
logic design systems. For most designers, the programming of a mini-
computer is a much easier and more straightforward procedure than
‘designing a controller with random logic. :

Unfortunately, the size and cost of even the smallest minicomputer has
limited its use to relatively large and costly systems. This has
r?sulted in many smaller systems being implemented with complicated
random logic. INTEL NOW OFFERS ANOTHER ALTERNATIVE. . . THE MCS-4
MICRO COMPUTER SET. .

This new concept in LSI technology makes the power of a general pur-
pose computer available to almost every logic designer and represents
a strong attack on the dependency of systems manufacturers on compli-
cated random logic systems. This component computer fromﬁintel can
provide the same arithmetic, control and computing functions of a
minicomputer in as few as two 16 pin DIP's and costs neafiy 2 orders

of magnitude less.

The set is not designed to compete with the minicomputer, but rather
to extend the power of the concept into new ranges of applicationms.
For example, many systems now built of SSI and MSI TTL can now be
implemented with a totally self-contained system built around this
set of devices.

Heart of each system is a single chip central processor unit (CPU)
which performs all control and data processing functions. Auxiliary
to the CPU are ROM's which store microprograms and data tables; RAM's
which store data and instructions, and Shift Registers which can
expand the I/0 capacity of the system. The MCS-4 system communicates
with circuits and devices outside the family through "ports' provided
on each RAM and ROM. :

A system using this set of devices will usually consist of one CPU,
from one to 16 ROM's, up to 16 RAM's and an arbitrary number of SR's.
A minimum system could be designed with just one CPU and pne ROM.

With these components, you can build distributed computers, dedicated
computers, or personalized computers and utilize the'almost infinite
combinations of microprogramming. The designer buys standard devices,
and with microprogramming of the ROM fulfills his own unique circuit
requirements. °

The three major advantages of Intel microcomputers:

Great system flexibility, with easy program changes, ability
to expand or shrink the system, and small size and low power.

Expediency of design, because ROM programming is easier than
random circuit design, system checkout is easier using electri-
cally programmable and erasable ROM's, and ability to insert
new microprograms helps prevent system obsolescence.

Manufacturing economies come from simple DIP package design,
automatic insertion, lower labor costs, lower inventory of
parts and boards. '

‘

When designing with random logic (logic gates, flip flops, etc.),
the designer will usually start with a description of the desired
function and attempt to wire counters, gates, etc. to achieve this
function. Switches, displays, etc. are also connected to the logic.
To correct errors or make changes in a design usually requires sig-
nificant changes in wiring, often requiring that circuit boards be
scrapped and replaced by new ones.

To do the same design with the MCS-4 Micro Computer Set, the designer
again starts with the functional description. However, he implements
these functions by encoding suitable sequences of instructions in ROM.
The MCS-4 instruction set is quite complete and allows a wide variety
of functions to be performed: decimal or binary arithmetic, counting,
decisions, table-lookup, etc. Switches, displays, etc. are connected
to the system via the input and output ports.

As a result of this organization, almost the entire logic, the entire
‘"personality" of the machine is determined by the instructions in ROM.
Very significant modifications of machine characteristics can be made
by changing or adding ROM's without making any changes in wiring or
circuit boards.

Thus the set offers tremendous flexibility of design and allows the

user to have many of the desirable features of a custom MOS LSI design--
small package count, a set of components which is uniquely his own

(for each user's program routines are his proprietary property)--

and yet have none of the disadvantages of long development cycle, high
development costs, etc. The short design cycle and flexibility asso-
ciated with ROM programming allows much more rapid response to market
demands than is possible with custom LSI and thus provides insurance
against obsolescence.

B. Applications for the MCS-4 Micro Computer Set

Heart of the MCS-4 micro computer set is the 4004 CPU. This device

has a powerful and versatile instruction set which allows the system

to perform a wide variety of arithmetic, control and decision functions.
The microprograms stored in the ROM devices give the designer the

power of designing custom computers with standard components. You can

use the MCS-4 almost anyﬁhere. Here are a few examples:

Control Functions - Because of low initial cost and flexibility
of programming, the MCS-4 can be used in place of random -logic
in systems such as those in process control, numeric controls,
elevator controls, highway and rail traffic controls. By chang-
ing ROM microprograms the whole system can easily be modified

and updated. -

Computer Peripherals - The system can be conveniently used in
peripheral equipment to control displays, keyboards, printers,
readers, plotters and to give intelligence to terminals.

Computing Systems — The MCS-4 system is ideally suited for such
devices as billing machines, cash registers, point of sale ter-
minals and accounting machines. For example, the adding of two
8-digit numbers can be done in /850 microseconds. In addition,

the MCS-4 can be efficiently used to decentralize central com—-

puter functions.

Other Applications - The elements of the MCS-4 have many applica-
tions within transportation, automotive, medical electronics and
test systems, where inexpensive dedicated computers can improve
system performance.

C.. Features of the MCS-4

® 4-bit parallel CPU with 45 instructions

. Decimal and binary arithmetic modes

L 10.8 us instruction cycle

e Addition of Two 8-digit numbers in 850 psec.

U Sixtgen 4-bit general purpose registers

. Nesting of subroutines up to 3 levels -

L] Instruction Set includes conditional branching, jump to subroutlne,

and indirect fetching

. 2-phase dynamic operation

. Synchronous operation with memories

. Direct compatibility with 4001, 4002 and 4003

° No interface circuitry to memory and I/0 required

e Directly drives up to: 4K by 8 ROM (16 4001's)
1280 by 4 RAM (16 4002's)
128 1/0 lines (without 4003)
Unlimited I/0 (with 4003's)

¢ Memory capacity expandable through bank sw1tch1ng

® 16-pin DIP package

® P~channel Silicon Gate MOS

® Minimum system: CPU and one ROM

MCS-4 SYSTEM DESCRIPTION

A. General Description

Each MCS-4 circuit constitues a basic standard building block which
allows the design of many different types of systems which can be
fabricated using the same parts. The only custom part is the ROM
chip which will store a microprogram defined by the user and requires
a metal mask option for each new program.

The MCS~-4 micro computer set consists of the following 4 chips, each
packaged in a 16 pin DIP package:

(1) A Central Processor Unit Chip -CPU - 4004
(2) A Read Only Memory Chip - ROM - 4001

(3) A Random Access Memory Chip - RAM - 4002
(4) A Shift Register Chip - SR - 4003

The CPU contains the control unit and the arithmetic unit of a general
purpose microprogrammable computer. The ROM stores microprograms and
data tables, the RAM stores data and instructions, and the Shift Regis-
ter is used in conjunction with I/0 devices to effectively increase

the number of I/0 lines.

The MCS-4 set has been designed for optimum interfaceability; the
CPU communlcates with the RAM's and ROM's by means of a 4-line data
bus (D . This single data bus is used for all infor-
matlon flow be%ween the chips except for control signals which are
sent to RAM and ROM over 5 additional lines. One.CPU controls up
to 16 ROM's (4K x 8 words), 16 RAM's (1280 x 4 words), and 128 I/O
lines without requiring any interface circuit. With the addition
of few gates up to 48 ROMS & RAMS combined and 192 I/0 lines can be
controlled by one CPU.

The I/0 function, although different from the ROM and RAM functions,
is physically located in the ROM and RAM chips. Each 4001 and 4002
has 4 I/0 lines for communication with I/0 devices.

4001 ROM - The 4001 is a 2048 Bit metal mask programmable ROM providing

custom microprogramming capability for the MCS-4 micro
computer set. Each chip is organized as 256 x 8 bit words
which can be used for storing programs or data tables. Each
chip also has a 4 bit input-output (I/0) port which is used
to route information to and from the data bus lines in and
out of the system.

4002~-RAM - The 4002 performs two functions. As a RAM it stores 320

bits arranged as 4 registers of twenty 4-bit characters each.
As a vehicle of communication with peripheral devices, it

is provided with 4 output lines and associated control logic
to perform output operations.

4003-SR - The 4003 is a 10 bit Serial-in/parallel-out, serial-out

shift register. Its function is to increase the number of
output lines to interface with I/0 devices such as keyboards,
displays, printers, teletypewriters, switches, readers, A-D
converters, etc.

4004-CPU - The 4004 is a central processor unit designed to work in
conjunction with the other members of the MCS-4 micro
computer set to form a completely self-contained system.
The CPU communicates with the other members of the set
through a four line data bus and with the peripheral devices
through the RAM, ROM or SR I/0 ports. The CPU chip con-
tains 5 command control lines, four of which are used to
control the RAM chips (each line can control up to 4 RAM
chips for a total system capacity of 16 RAM's) and one
which is used to control a bank of up to 16 ROM's.

] Vpp GND ¢, ¢,
wos [SYNC
[~— RESET
cw.ROM [CMRAMO
out Vop OUT out out
A T A Wity i
0| 40021 e 40021 |*— Po] aoo22 [*— T 40022 [+ SYNC
1/0 4981 =] =0 k) L =1 _#2 Je Pg|_#3 Je—RESET
—
e
SYNG 29 Vo
SYNC RESET Po | 4002-1 40021 |« Po| 40022 |« T 40022 }e SYNC
| Ll 0 fsg Pl =1 = L] s2 Jo R _#3 Je-REsET
o o 1L H 111 it
.= CM-RAM,
? f C CM-RAM,
SYNC RESET
: SYNC 1t11 P 1ttt Voo 1'?1 1’11 Vop
i —=[20021 o —{ 20021 |_T —f 20022 | Po —f 40022 | T
1 RESET #0 j__ — #1 Py — #2 _3__ — #3 Py
I = =
|
— SYNC Py sl Voo P Voo
4001 — ™ 40021 _:IO_ 40021 | T ~*| 40022 __‘i ~*1 40022 | T
e o 1 5 il 1
|
i) 1
cp SY?NC RESETLD"D’Dzof* CM-RAM ce . '
DATA IN 4003 |- SERIAL OUT DATAIN L’ 4003 307’ 4003 S%F:J';‘L
ENABLE [> 1 l l ENABLEr Pl l l
Q O Qg Q 0 Qo Q10 Q13 Q9

Figure 1. MCS-4 System Interconnection

B. Basic System Operation

The MCS-4 uses a 10.8 usec instruction cycle. The CPU (4004) generates
a synchronizing signal (SYNC), indicating the start of an instruction
cycle, and sends it to the ROM's (4001) and RAM's (4002).

Basic instruction execution requires 8 or 16 cycles of a 750 kHz
clock. In a typical sequence, the CPU sends 12 bits of address (in
three 4 bit bytes on the data bus) to the ROM's in the first three
cycles (A,, A,, A3). This address selects 1 out of 16 chips and 1

out of 25% 8—§it words in that chip. The selected ROM chip sends

back 8 bits of instruction (OPR, OPA) to the CPU in the next two
cycles (M, , M2) This instruction is sent over the 4 line data bus in
two 4 bitlbytes. The instruction is then interpreted and executed

in the final three cycles (Xl, XZ’ X3). (See Figure 2)

When an I/0 instruction is. received from the ROM, data is transferred
to or from the CPU accumulator on the four ROM I/0 lines during X2
time.

A set of four RAM's is controlled by one of four command control

lines from the CPU. The address of a RAM chip, register and character
is stored in two index registers in the CPU and is transferred to the
RAM during X,, X, time when a RAM instruction is executed. When the
RAM output instruction is received by the CPU, the content of the CPU
accumulator is transferred to the four RAM output lines.

The CPU, RAM's and ROM's can be controlled by an external RESET line.
While RESET is activated the contents of the registers and flip-flops
are cleared. After RESET, the CPU will start from address 0 and CM-
RAMO is selected.

The interconnection of the MCS-4 system is shown in Figure 1. An
expanded configureation is shown. The minimum system configuration
consists of one CPU (4004) and one ROM (4001).

C. MCS-4 Logic Definitions

The MCS-4 devices operate with negative Logic. Logic "1" is defined
as the low voltage (negative voltage) Level and Logic "0" is defined
as the high voltage Level (Vgg). This definitiofh will be used
throughout the manual..

D. Basic System Timing

For the correct operation of the system two non-overlapping clock
phases - ¢l, ¢2 - must be externally supplied to the 4001, 4002 and
4004. (1) The” 4004 will generate a SYNC signal every 8 clock periods
and will send it to the 4001's and 4002's. The SYNC signal marks the
beginning of each instruction cycle. The 4001's and 4002's will then
generate internal timing using SYNC and 01, QZ.

(1) The 4003 is a static shift register and does not use these two clocks
for its operation.

01 st

_/ _/ _/ /TS T\ T Y

INSTRUCTION CYCLE

Instruction Sent to
la——— Address Sent to ROM From CPU ———»|«—— CPU From ROM — > Execution of Instruction ——————

Data is Operated on in the CPU, Or
e 1.35 us —»] Data or Address is Sent to/from the CPU

22 -
SYNC -\ r I_
Memory
Subcycles Ay A, Aj My M, X4 X, X3

11 IOR™ The
The Selected 4001 Is Enabled The CPU The CPU
The CPU Is Enabled Selected 4001
Device Is Enabled Or 4002 Are Is Enabled
Controlling Enabled, Other-
Data Bus wise The CPU
Qutput Is Enabled
. " X . X . Data or Address
Data Lower 4-bit Middle 4-bit Higher 4-bit [« Instruction to CPU —>| OPA Qut . Address to
to RAM's and .
Bus Address to Address to Address to ROM's If 1011 RAM's If
Contents ROM's ROM’s ROM's (Chip p OPA to CPU 2 SRC(2)
Select Code) OPR to CPU and ROM's {Not Used) Or SRC
and RAM's Data to CPU
I1f 100 i [OR™
10 instructions control the flow of inf ion & in CPU, I/0 lines in ROM’s and RAM’s and RAM storage. JOR stands for IO Read. In this

case the CPU will receive data from RAM storage locations or I/O input lines of 4001°s.

The SRC instruction designates the chip number and address for a following 10 instruction.

Figure 2. MCS-4 Basic Instruction Cycle

Figure 2 shows how a basic instruction cycle is subdivided and what
the activity is on the data bus during each clock period. Each data
bus output buffer has three possible states: "1", "0" and floating.

At a given time, only 1 output buffer is allowed to drive a data
line, therefore all the other buffers must be in a floating condition.
However, more than 1 input buffer per data line can receive data at
the same time.

Il 4 BIT CENTRAL PROCESSOR UNIT (CPU) — 4004

~A. Description

The 4004 block diagram shown in Figure 3 contains the following
functional blocks:

(1) Address register (program counter and stack organizaed as 4
words of 12 bits each) and address incrementer.

(2) Index register (64 bits organized as 16 words of 4 bits each.

(3) 4-bit adder.

(4) Instruction register (8 bits wide), decoder and control.

(5) Peripheral circuitry.

The functional blocks communicate internally through a 4-line bus
and are shown in Figure 3. The function and composition of each
block is as follows:

1. Address Register (Program counter & Stack) & Address Incrementer

The address register is a dynamic RAM cell array of 4 x 12 bits.
It contains one level used to store the instruction address
(program counter) and 3 levels used as a stack for subroutine
calls. The stack address is provided by the effective address
counter and by the refresh counter, and it is multiplexed to the
decoder.

The address when read is storedin an address buffer and is
demultiplexed to the internal bus during A, AZ’ and A, in three 4-
bit slices (see Figure 2 for basic instruc%ion cycle).” The address
is incremented by a 4-bit carry look-ahead circuit (address incre-
menter) after each 4-bit slice is sent out on the data bus. The
incremented address is transferred back to the address buffer and
finally written back into the address register.

t ; SYNC TEST RESET
\I‘ H OQ% o 0,] CM-RAM,
: » pata [0 CM-RAM, | memoRy
S fFCONTROL
10 (o,] CM-RAM, | DUTPUTS
« CM CM CM CM .
Voo Vec RAM, RAM, RAM, RAM, LI SYNC L= CM-RAMy]
. OUTPUT INTERNAL
o A BND Vs [] Vop -5V
, BUFFER RESET srocx EMOR
{ ‘ ‘} F/F PHASE |]""C CM-ROM {3?"{:3'“1
¢ raner 3120 TesT
nu’,‘,’,'l“!:'} sync[] RESET
t Empam
OUTPUT BUFFERS TIMING
x '
- ADDRESS
] P o INCREMENTER]
c™ -, t
ROM | cM-ROM COMMAND DOUBLE CONDITION
O—a—] OUTPUT }-= CONTROL |- CYCLE | LOGIC |
BUFFER REGISTER F/F & FIF »| AMPLI. & MULTIPLEXER
3]
!] CONTROL ' ADDRESS
IN-OUT FOR
BUFFER | 0—f SPECIAL L] THE REGISTER
CONTROL - ROMs ADDRESS %%ﬁelggﬂ (PROGRAM
REGISTER COUNTER
Do INOUT & > & ™ &stack
O—e—>] BUFFER || ACCUMULATOR | | INDEX MUX 4x 12 BIT
1 AND CARRY F/F OPA OPR REGISTER DYNAMIC
DECODER DECODER RAM
D ADDER
1 42 MUX & T
O—> & SHIFTER [Acc. [‘ﬂ —
CONTROL FFER
INSTRUCTION DECODER REFRESH BU -—
0, | counter | [T]REGISTER
own{ ADDER] EFFECTIVE 1
INSTRUCTION REGISTER | »| ADDRESS y
0, oPA | OPR COUNTER AMPLI.
ADB REGISTER REGISTER | &Mux
O—w»] #4 BUFFER REG. [T
! ,
e DECODER INDEX
REFRESH DRIVER REGISTER
COUNTER[™ & [™ 1t6xamir
MUX DYNAMIC RAM
INTERNAL DATA BUS

Figure 3. 4004 CPU Block Diagram

8

Index Register

The index register is a dynamic RAM cell array of 16 x 4 bits
and has two modes of operation. In one mode of operation the
index register provides 16 directly addressable storage loca-
tions for intermediate computation and control. In the second
mode, the index register provides 8 pairs of addressable stor-
age locations for addressing RAM and ROM as well as for storing
data fetched from ROM.

The index register address is provided by the internal bus
and by the refresh counter and is multiplexed to the index
register decoder,

The content of the index register is transferred to the internal
bus through a multiplexer. Writing into the register is accom-
plished by transferring the content of the internal bus into a
temporary register and then to the index register.

4-Bit Adder

The 4-bit adder is of the ripple-through carry type. One term of
the addition comes from the "ADB" register which communicates
with the internal bus on one side and can transfer data or data
to the adder. The other term of the addition comes from the
accumulator and carry flip-flop. Both data and data can be
transferred. The output of the adder is transferred to the
accumulator and carry FF. The accumulator is provided with a
shifter to implement rotate right and rotate left instructions.
The accumulator also communicates with the command control
register, special ROM's, the condition flip-flop and the internal
bus. The command control register holds a 3-bit code used for
CM-RAM line switching. The special ROM's perform a code conver-
sion for DAA (decimal adjust accumulator) and KBP (Keyboard
Process) instructions. The special ROM's also communicate with
the internal bus. The condition logic senses ADD = O and

ACC = 0 conditions, the state of the carry FF, and the state of
an external signal (TEST) to implement JCN (jump on condition)
and ISZ (increment index register skip if zero) instructions.

Instruction Register Decoder and Control

The instruction register (consisting of the OPR Register and

OPA Register each 4 bits wide) is loaded with the contents of

the internal bus (at M, and time in the instruction cycle)
through a multiplexer and holds the instruction fetched from

ROM. The instructions are decoded in the instruction decoder

and appropriately gated with timing signals to provide the con-
trol signals for the various functional blocks. A double cycle

FF is set from any one of 5 double-length instructions. Double-
length instructions are instructions whose OP-code is 16 bits wide
(instead of 8 bits)and that require two system cycles (16 clock
cycles) for their execution. Double length instructions are stored
in two successive locations in ROM. A condition FF controls JCN
and ISZ instructions and is set by the condition logic. The state
of an external pin '"test' can control one of the conditions in the
JCN instruction.

Peripheral Circuitry

This includes:

a. The data bus input-output buffers communicating between
data pads and internal bus.

b. Timing and SYNC generator.

c. 1 ROM command control (CM—ROM) and the 4 RAM command control
(CMrRAMi) output buffers.

d. Reset flip-flop.

During reset (Reset pin low), all RAM's and static FF's are cleared,

and the data bus is set to "0". After reset, program control will

start from "O" step and CM-RAM 1is selected. To completely clear

all registers and RAM locationf in the CPU the reset signal must be applied
for at least 8 full instruction cycles .(64 clock cycles) to allow the
index register refresh counter to scan all locations in memory.

(256 clock cycles for the 4002 RAM).

Instruction Repertoire

Phe instruction repertoire of the 4004 consists of:

a. 16 machine instructions (5 of which are double length)
b. 14 accumulator group instructions

c. 15 input/output and RAM instructions

The instruction set and its format will be briefly described in
the next section. Section VII will then describe each instruction
in detail. ; '

CPU Instruction Set Format, Index Register Organization,

and Operation of 'the Address Register and Command Lines

1. Instruction Set Format

a. Machine Instructions

¢ l-word instructions - 8 bits wide and requiring
8 clock periods (1 instruction cycle)

e 2-word instructions -16 bits wide and requiring
16 clock periods (2 instruction cycles) for
execution

A 1-word instruction occupies one location in ROM
(each location can hold one 8-bit word) and a

2-word instruction occupies two successive loca-
tions in ROM. Each instruction word is divided into
two 4-bit fields. The upper 4 bits is called the
OPR and contains the operation code. The lower 4
bits is called the OPA and contains the modifier.
For a single word machine instruction the operation
code (OPR) contains the code of the operation that
is to be performed (add, subtract, load, etc.). The
modifier (OPA) contains one of 4 things:

(1) A register address

(2) A register pair address

(3) 4 bits of data

(4) An instruction modifier
10 i

For a 2-word machine instruction the lst word is similar
to a l1-word instruction, however, the modifier (OPA)
contains one of 4 things:

(1) A register address

(2) A register pair address

(3) The upper portion of another ROM address
(4) A condition for jumping

ONE WORD INSTRUCTIONS

TWO WORD INSTRUCTIONS

1st INSTRUCTION CYCLE ’ 2nd INSTRUCTION CYCLE
D3 D Dy Dp D3 D, D; Dy D3 D, Dy Dy D3 D, Dy Dy D3 D Dy Dy D3 D Dy Dy
X X
OPR OPA OPR OPA OPR OPA
OP CODE MODIFIER OP CODE MODIFIER) OP CODE MODIFIER
INDEX REGISTER UPPER ADDRESS MIDDLE ADDRESS LOWER ADDRESS
X X X X AE,';DRESS R x| X x| x A3 Az A3z Az A A Ay A | AL Ay Ay A
OR OR
INDEX REGISTER PAIR CONDITION MIDDLE ADDRESS LOWER ADDRESS
B X X
Xop xop x| ox ADRDRES% X 1 Xle oy oc Az Ay Ap A | A1 A A A
OR OR
DATA INDEX REGISTER MIDDLE ADDRESS LOWER ADDRESS
X x| X Xlbys 5 p b x| x|x ADDRESS A, Ay A A A A A A
OR
x| x| x| x INDEX REGISTER PAIR UPPER DATA LOWER DATA
D, D D, D, } Dy Dy Dy D
Table | - Machine Instruction Format
The 2nd word contains either the middle portion (in OPR) and
lower portion (in OPA) of another ROM address or 8 bits of
data (the upper 4 bits in OPR and the lower 4 bits in OPA).
The upper 4 bits of instruction (OPR) will always be fetched
before the lower 4 bits of instruction (OPA) during M. and
M, times respectively. Table I illustrates the conteiits of
each 4-bit field in the machine instructions.
b. Input/Output & RAM Instructions and Accumulator Group

Instructions

In these instructions (which are all single word) the OPR
contains a 4-bit code which identifies either the I/0
instruction or the accumulator group instruction and the OPA
contains a 4-bit code which identifies the operation to be
performed.Table IT illustrates the contents of each 4-bit field.

INPUT/OUTPUT &
RAM INSTRUCTIONS

ACCUMULATOR GROUP
INSTRUCTIONS

D3 D, D, Dy D3 D, D D,

X X X X X X X X

OPR OPA

1 1 1 0 X X X X

1 1 1 1 X X X X

WHERE X = EITHER A “0” OR A “1".

Table H - 1/0 and Accumulator Group Instruction Formats

1

Index Register Organization

The index register can be addressed in two modes

a. By specifying 1 out of 16 possible locations with an OPA
code of the form RRRR{(1) (See Table III).

b. By specifying 1 out of 8 pairs with an OPA code of the
form RRRX(2) (See Table III).

When the index register is used as a pair register, the even
number register (RRRO) is used as the location of the middle
address or the upper data fetched from the ROM, the odd number
register (RRR1) is used as the location of the lower address
or the lower data fetched from the ROM.

SINGLE REGISTER ADDRESSING REGISTER PAIR ADDRESSING
T
14 15 7
¢
. T
12 13 6
1
l
wwmE—— e | s
|
I
8 9 4
i
i NUMBER
4 5 2
1
1
2 3 1
L
: 1
0 1 °
]
Table 111 - Index Register Organization

Operation of the Address Register (Program Counter and Stack)

The address register contains four 12-bit registers; one register
is used as the program counter and stores the instruction address.
the other 3 registers make up the push down stack.

Initially any one of the 4 registers can be used as the program
counter to store the instruction address. In a typical sequence
the program counter is incremented by 1 after the last address

is sent out. This new address then becomes the effective address.
If a JMS (Jump to Subroutine) instruction is received by the CPU,
the program control is transferred to -the address called out in
JMS instruction. This address is stored in the register just
above the old program counter which now saves the address of

the next instruction to be executed following the last Jus. (3)
This return address becomes the effective address following

the BBL(Branch back and load) instruction at the end of the
subroutine.

(1) In this case the instruction is executed on the 4-bit content addressed

by RRRR.

(2) 1In this case the instruction is executed on the 8-bit content addressed
by RRRX, where X is specified for each instruction.

(3) Since the JMS instruction is a 2-word instruction the old effective
address is incremented by 2 to correctly give the address of the next
instruction to be executed after the return from JMS.

12

NO JMS
RECEIVED

EFFECTIVE
ADDRESS

JMS #2
RECEIVED

JMS #4
RECEIVED

THE DEEPEST RETURN ADDRESS IS LOST PROGRAM COUNTER PUSHED DOWN ONE LEVEL

ADDRESS REGISTER ADDRESS REGISTER

IMS #1
- ™ RECEIVED ™ PROGRAM COUNTER |«— il;l;ERCETgE

PROGRAM COUNTER - RETURN ADDRESS #1

PROGRAM COUNTER PUSHED UP ONE LEVEL

JMS #3
PROGRAM COUNTER —*RECEIVED — RETURN ADDRESS #3
RETURN ADDRESS #2 ' RETURN ADDRESS #2
RETURN ADDRESS #1 ’ RETURN ADDRESS #1

PROGRAM COUNTER

RETURN ADDRESS #3 RETURN ADDRESS #3

BBL
RETURN ADDRESS #2 _’RECHVED — RETURN ADDRESS #2

PROGRAM COUNTER

RETURN ADDRESS #4 PROGRAM COUNTER

Table IV - Operation of the Address Register on a Jump to Subroutine Instruction

In summary, then, a JMS instruction pushes the program counter
up one level and a BBL instruction pushes the program counter
down one level. Since there are 3 registers in the push down
stack, 3 return addresses may be saved. If a fourth JMS occurs,
the deepest return address (the first one stored) is lost.

Table IV shows the operation of the address stack.

Operation of The Command Lines and the SRC Command

The CPU command lines (CM-ROM, CM—RAMi) are used to control the
ROM's and RAM's by indicating to them how to interpret the data
bus content at any given time.

The command lines allow the implementation of RAM bank, chip,
register and character addressing, ROM chip addressing, as well
as activating the instruction control in each ROM and RAM chip
at the time the CPU receives an I/0 and RAM group instruction.

In a typical system configuration the CM-ROM line can control
up to sixteen 4001's and each CM-RAM; line can control up to
four 4002's.

Each CM-RAM; line can be selected by the execution of the DCL
(Designate Command Line) instruction. The CM-ROM line, however,
is always enabled. (1)

(1) If the number of ROM's in the system needs to be more than 16, external
circuitry can be used to route CM-ROM to two ROM banks. The same comment
applies to the CM-RAM; lines if more than 16 RAM's need to be used.

13

For the execution of an I/0 and RAM group instruction the follow-
ing steps are necessary:

(1)
(2)

(3)

The appropriate command line must be selected (by DCL)

The ROM chip and RAM chip, register and character must

be selected using the SRC (Send Register Control) instruction.
An I/0 and RAM instruction must be fetched (WRM, RDM, WRR,
S | :

iX3IA1‘A2’A3'M1IM2|X1‘XZIX3|A1IA2!A3IM1|leX1’X2(X3‘A1IAZ‘A3’M1’M2|X1|X2|X3|A1‘AZIA3‘M11M2‘

syne L_f J | . -/
DCL | | SRC 1/0 AND RAM
FETCHED [~ ! y ™ FETCHED * ™ INSTRUCTION FETCHED
CM-RAM, CODE IS TRANSFERRED TO
THE COMMAND CONTROL REGISTER
CM-ROM | W | | - | . | U W | &
CM-RAM, | . |
}_‘— CM-RAM,, IS DEACTIVATED
CM-RAM4 ‘-' ‘—, w ‘—I
|-_ CM-RAM, IS ACTIVATED
DATA

BUS

—
THE 8-BIT ADDRESS THE MODIFIER (OPA)
SENT BY THE CPU OF THE 1/0 AND RAM
IS RECEIVED BY INSTRUCTION IS RECEIVED
ROM’s AND RAM’s BY ROM’s AND RAM's

Figure 4. Operation of the Command Control Lines

Following is a detailed explanation of each step.

(1)

(2)

Prior to execution of the DCL instruction the desired
CM-RAM; code must be stored in the accumulator (for example
through an LDM instruction).

During DCL the CM-RAMj code is transferred from the accumu-
lator to the command control register in the CPU. One '
CM-RAM; line is then activated (selecting one RAM bank)
during the next instruction which would be an SRC.

The CM~RAM; code remains in the command control register until
a new DCL instruction is received. Each time a new SRC
instruction is executed it will operate on the same RAM bank.
This allows all RAM and I/0 instructions to be executed
within the same RAM bank without the necessity of executing
another DCL instruction each time. DCL does not affect
CM-ROM. Only the RAM on the designated command line will latch the SRC.

If up to 4 RAM chips are used in a system, it is convenient
to arrange them in a bank controlled by CM-RAM,. This is
because CM-RAM, is automatically selected after the appli-
cation of at least one RESET (usually at start-up time.) In
this case DCL is unnecessary and Step 1 & 2 are omitted).

14

(3)

(4)

The SRC instruction specified an index register pair in

the CPU, whose content is an 8-bit address (this 8-bit
address has previously been stored in the register pair)
used to select a RAM chip, register and character and a ROM
chip. This address is sent to the data bus during X2 and
X3 time of the SRC instruction cycle. At X2 time the
CM-ROM line and the selected CM-RAM; line are in a logic
true state to indicate which bank of RAMs and ROMs are to
respond to the 8-bit address that is now on the data bus.
The 8-bit address is interpreted in the following way:

a) The first 4-bits (X2 time) select
one chip out of 16; a flip-flop is

by the ROM's set in the selected chip.
b) The second 4-bits (X3 time) are
ignored.
—

a) The first four bits sent out at X2 time
select one out of four chips and one out
of four registers. The two higher order
bits (D3, D2) select the chip and the two
lower order bits (Dj, Do) select the
register.

by the RAM's <

b) The second 4-bits (X3 time) select one
4-bit character out of 16; The address
is stored in the address register of

___ the selected chip.

(See Section V for a detailed description
of the RAM chip)

At this time one ROM chip and one RAM chip, register and
character,have been selected. If the CPU fetches an I/0
and RAM instruction, it will cause the CM-ROM and the
selected CM-RAMj line to be logical true at My time. This
allows the previously selected ROM's and RAM's to receive
the modifier of the instruction. The selected ROM and
RAM will decode the instruction (as well as the CPU) and
appropriately execute it during the execution time of the
same instruction cycle.

It should be added that the CM-ROM and the selected CM-RAM;
lines are always in a logical true state at Aj time of any
instruction cycle. ’

CM-ROM equals "'1" at A3 time indicates to ROM's that the
code at A3 time is the chip number of a ROM within their
bank. This feature allows the user to expand the system
to more than 16 ROM chips.

CM-RAM; equals "1" at A3 time has no meaning for the RAM
chips, however, it could be meaningful if ROM's and RAM's
were controlled by a CM-RAMj line.

Figure 4 summarizes the operation of the command lines in
the various instruction cycles.

15

[Those instructions preceded by an asterisk (*) are 2 word instructions that occupy 2 successive locations in ROM]

C.

Basic Instruction Set

Table V shows the basic instruction set of the 4004 (CPU).
Section VII will describe each instruction in detail.

MACHINE INSTRUCTIONS (Logic 1 = Low Voltage = Negative Voltage; Logic 0 = High Voltage = Ground)

OPR OPA
MNEMONIC D3 D, D, Dy D3 D, D, Dy DESCRIPTION OF OPERATION
NOP 00 O00O 0000 No operation.
. Jump to ROM address Agp Ag Ag Ap, A1 A1 Aq Aq (within the same
JCN 0001 C1C2C3C4 ROM that contains this JCN instruction) if condition C1 Cp C3 C4“)
A AgAz Ay A1A1 AL A is true, otherwise skip (go to the next instruction in sequence).
*FIM 0010 R R RO Fetch immediate (direct) from ROM Data Do, D1 to index register pai}
D, D, D, D, Dy D4 D, D, location RRR.{2)
SRC 0010 R R R 1 Send register control. Send the address (contents of index register pair RRR)
to ROM and RAM at X3 and X3 time in the Instruction Cycle.
FIN 001 1 RR RO Fetch indirect from ROM. Send contents of index register pair location 0
out as an address. Data fetched is placed into register pair location RRR.
JIN 00 1 1 RRR 1 Jump indirect. Send contents of register pair RRR out as an address
at Aq and Ag time in the Instruction Cycle.
' Ana Aq Aq A
*JUN 0100 3737373 iti i
An As As A A AT AL A Jump unconditional to ROM address A3, Ag, Aq
2727272 171 ™M™ ;
*JMS 010 1 AzAgzAz Ag Jump to subroutine ROM address A3, Ay, A1, save old address. {Up 1 level
A2 A2 A2 A2 A1 A-‘ A-' A1 in stack.)
INC 0110 R RRR Increment contents of register RRRR, (3)
*1SZ 01 1 1 RRRR Increment contents of register RRRR. Go to ROM address Ag, Aq
Ao As An A A, Al AL A (within the same ROM that contains this ISZ instruction) if result #0,
2727272 LA R Ray | otherwise skip (go to the next instruction in sequence).
ADD 1 00O R R RR Add contents of register RRRR to accumulator with carry.
SUB 1t 001 R R RR Subtract contents of register RRRR to accumulator with borrow,
LD 1010 R R RR Load contents of register RRRR to accumulator.
XCH 10 11 R RRR Exchange contents of index register RRRR and accumulator.
BBL 1100 DDDD Branch back (down 1 level in stack) and load data DDDD to accumulator.
LDM DDDD Load data DDDD to accumulator.

Table V - Basic CPU Instruction Set

16

INPUT/OUTPUT AND RAM INSTRUCTIONS

(The RAM's and ROM's operated on in the 1/O and RAM instructions have been previously selected by the last SRC instruction executed.)

MNEMONIC D3 :;& Dg D, D(;Pa Oy DESCRIPTION OF OPERATION

WRM 1110 0000 \&Vxﬁ ::::izo':::‘i; :fc :'gfaz(t:g:mulamr into the previously selected

WMP 1110 000 1 \gx:; :::)et :3:\:;!;!: ?8 ;tt\; :tc(':-\:rr‘r;:)lator into the previously selected
——WRR T 11 0 0010 ‘ggth: g:let ggtn:g:tts (().f/ (t)ht :::::s\;mulator into the previously selected

Write the contents of the accumulator into the previously selected

WPM 1110 0011 half byte of read/write program memory {for use with 4008/4009 only)

WR (4) 1110 0100 \.I‘VR;: ;:raetsgr;:'ear;;i :)thae accumulator into the previously selected

WR1 (4) 1110 010 1\ \g;:;; ;:\aetsgr;}:::;i :)J[t]h.e accumulator into the previously selected

WR 2(4) 1110 0110 \év:;: ;:\:t::'c‘::lea?;:: :)efr t;e accumulator into the previously selected »

WR 3(4) 1110 01 1 1 \gzth: :r:tﬁ‘s)z;ea’:;i: ?e'r tge accumulator into the prefliously selected

SBM 1110 1000 g:g:ﬁﬁ:attg? 5’::;'%‘3% ::Iected RAM main r.nemory character from

RDM 1110 100 1 iFr‘:gdt ':Zeagzz\:;t:‘t::lt\é :elected RAM main memory character

T 10 | 1010 | e o e e o o e o

ADM 1110 101 1 :\3:(; ':‘huel apt':rvsxi\:;l\::a s:erl:.cted RAM main memory character to

RD¢ () 1110 1100 Read the previously selected RAM status character O into accumulator.

RDI“) 1110 11 01 Read the previously selected RAM status character 1 into accumulator.

302(4) 1110 1110 Read the previously selected RAM status character 2 into accumulator,

RD3(4) 1110 11 11 Read the previously selected RAM status character 3 into accumulator.

ACCUMULATOR GROUP INSTRUCTIONS

cLB Tt 1 1 0 00O Clear both. (Accumulator and carry)
CLC 1 11 ; 1 0 0 0 1 Clear carry.
IAC 11 11 0010 Increment accumulator.
CcMC I T B | 00 11 Complement carry.
CMA 11 11 0100 Complement accumulator.
RAL - Tt 1 11 010 1 Rotate left. (Accumulator and carry)
RAR _ t 11t 0110 Rotate right. {Accumulator and carry)
TCC 11 11 o1 11 Transmit carry to accumulator and clear carry.
DAC 11 1 1 1000 Decrement accumulator.
. TCS 11 11 10 0 1 Transfer carry subtract and clear carry.
STC L B 1010 Set carry.
DAA 11 11 1011 Decimal adjust accumulator.
KBP 11 1100 oK::t;?:rg‘;;rooucfz; d(;otr;v:rg r::rey c:;\‘;ee?ts of the accumulator from a
DCL 11 11 1101 Designate command line.

NOTES: “)The condition code is assigned as follows:

C1 =1 Invert jump condition Cq =1 Jump if accumulator is zero Cq=1 Jump if test signal is a 0
C1 =0 Not invert jump condition C3 =1 Jump if carry/link isa 1

Q’RRR is the address of 1 of 8 index register pairs in the CPU.
(3RRRR is the address of 1 of 16 index registers in the CPU.

(4)gach RAM chip has 4 registers, each with twenty 4-bit characters subdivided into 16 main memory characters and 4 status characters.
Chip number, RAM register and main memory character are addressed by an SRC instruction. For the selected chip and register, however,
status character locations are selected by the instruction code (OPA),

Table V - Basic CPU Instruction Set (Continued)
17

IV. 4001 - 266 x 8 MASK PROGRAMMABLE ROM AND 4 BIT 1/0 PORT

(1

The 4001 performs two basic and distinct functions: As a ROM it stores

256 x 8 words of program or data tables; as a vehicle of communication

with peripheral devices it is provided with 4 I/0 pins and associated control
logic to perform input and output operations. (The block diagram is shown

in Figure 5.) '

In the ROM mode of operation the 4001 will receive an 8-bit address during
Al and A) time (see Figure 2) and a chip number, together with CM-ROM
during A3 time. When CM-ROM is present, only the chip whose metal option
code matches the chip number code sent during A3 (CSE = "1") is allowed
to send data out during the following two cycles: My and M2. The activity
of the 4001 in the ROM mode ends at My. Before going into the I/0 mode

of operation we must first review two basic instructions used in conjunc-
tion with it.

1. SRC Instruction (Send address to ROM and RAM)

When the CPU executes an SRC instruction it will send out 8 bits of
data during Xy and X3 and will activate the CM-ROM and one CM-RAM(1)
line at X2. Data at Xy, with simultaneous presence of CM-ROM, is in-
terpreted by the 4001 as the chip number of the unit that should later
perform an I/0 operation. Data at X3 is ignored. In the case of the
4002, data at Xy will designate the chip number (one out of 4 chips)

and the register number (one out of 4 registers); data at X3 will desig-
nate the 4-bit character (one out of 16) to be operated upon. After
SRC only one 4001 and one 4002 will be ready to execute a following

I/0 instruction. '

2. 1I/0 and RAM Instructions

I/0 and RAM instructions allow the CPU to communicate with the I/0 ports
of the 4001's and 4002's. When the CPU receives an I/0 instruction it
will activate the CM-ROM and one CM-RAM line during M2, in time for
4001's and 4002's to receive the second part (OPA) of the I/0
instruction. The OPA portion of the I/0 instruction is a code
specifying which I/0 operation should be performed. There are

15 different operations possible. The only ones affecting the

4001 operation are RDR - read ROM port, and WRR - write ROM port.

In the I/0 mode of operation, the selected 4001 (by SRC) after receiving
RDR will transfer the information present at its I/0 pins to the data
bus at Xp. If the instruction received was WRR, the data present on

the data bus at X5.p will be latched on the output flip-flops associated
with the I/0 lines.

Only one out of four CM-RAM lines is allowed to be activated at any given
time. CM-RAM line selection (RAM bank switching) is accomplished by the
CPU when a "designate command line" (DCL) instruction is.executed. If no
DCL is executed prior to SRC, the CM-RAM, will automatically be activated
at Xp provided that RESET was applied at least once to the System (most
likely at the start-up time). See detailed definition of system instruc-
tion in Section VII.

18

Figure 5 shows the block organization of the 4001. The ROM array has a
dynamic mode of operation and is divided into two blocks of 16 x 64
cells each. Multiplexing is needed for both address to address register
and data to data bus output buffer operationmns. .

The MTC flip-flop controls the outputting of data. It is set at A,,

(see Figure 2), if CM-ROM and CSE (chip select) are "1'". CSE is a“single
4-input AND gate of the 4 data bus lines, using Di or i according to

the chip number that the user wants to assign to the chip. This

is accomplished by metal mask option.

The SRC flip-flop is set by CM-ROM and CSE at X,, (see Figure 2), and
presets the I/0 logic for a following input or output operation.

TIMING generates all internal timing signals for the ROM and 1/0
control using SYNC, @1 and @fp. A RESET 1) signal will clear all static
flip-flops and will inhibit data out.

The output flip-flops associated with I/0 pins can also be cleared
using an external CL pin. ‘

(1) RESET is used for the start-up of the system.

[0o] o

RESET Vpp GND :
T T (r oara | 90 Y0 ey
BUS OUTPUT
o {o, 170, LINES

1 0,] 1104,
62 —i ROM TIMING GND Vs [] Yop -16V
. MEMORY
SYNC —»— aveater] m{::'?':jrrnm

phage 2)¢2 O] o {F5R Vo Lines
e Fsne RESET
) PRECHARGE & READ
INPUT PARTIAL ADDRESS X .
surrers [T oecooer [MYX] recisTer [T JoEcoper|™] 16 x 64 ROM 41— CONTROL
- ¢2 —f
TIMING
SYNC —»{
»| SENSING & Y DECODE l """"" l l
MULTIPLEXING DATA
BUS
SENSING & Y DECODE {4 LINES)
MUX »] ouTPUT BUFFERS
4) -
X INH
DECODER 16 x 64 ROM y
PRECHARGE 8 READ 1/0 CONTROL INHIBIT
LOGIC ' LOGIC
CSE INPUT OUTPUT | SRC MTC
PORT PORT fe FF FF

Do
S - W - T o o g‘ &
i 0 CL RESET CM 2
. (4 LINES) D3
N ’

Figure 5. 4001 ROM Block Diagram/

19

ROM Options and Ordering the ROM

Each I/O pin on each ROM can be uniquely pamoM ey 1 mux > OEJ:S:T 0D,
chosen to be either an input or output line BUFFER {PIN 1)
by metal option. Also each input or output)
can either be inverted or direct. When the 1]
pin is chosen as an input it may have an on- : SET OUTPUT
chip resistor connected to either VDD or VSS. LoGic FIF
Figure 6 shows the available options for each 2 .
1/O pin. :,|‘L é‘.
When ordering a 4001 the following informa- | 1 ° vog
tion must be specified: _5 To-r(im 16}
0 O
1. Chip number ‘ : o
2. All the metal options for each I/O pin e . I e
3. ROM pattern to be stored in each of the I,
256 locations. o o 92
A blank customer truth table is available upon 8 . v
request from Intel. A copy of this table is . T
shown in the appendix. *1/Qy, 1/07, AND 1/03 k2 I
FOLLOW THE SAME FORMAT. — Vgg = GND T

Figure 6. 4001 Available Metal Options for Each 1/O Pin

V. 4002 - 320 BIT RAM AND 4 BIT OUTPUT PORT

The 4002 performs two distinct functions. As a RAM it stores 320 bits
arranged in 4 registers of twenty 4-bit characters each (16 main memory
characters and 4 status characters). As a vehicle of communication

with peripheral devices, it is provided with 4 output lines and associated
control logic to perform output operations. (The block diagram is

shown in Figure 7). '

In the RAM mode, the operation is as follows: When the CPU receives

an SRC instruction it will send out the content of the designated index
register pair during Xy and X3 and will activate one CM-RAM line at Xy for
the previously (1) selected RAM bank.

The data at Xy and X5 is interpreted as shown below:

X2 X3
D3 D3 D1 Do D3 Dz Dy Do
Chip No. Register No. Main Memory Character No.
(0 through 3) . (0 through 3) {0 through 15)

The status character location (0 through 3) as well as the operation to be
performed on it are selected by the OPA portion of the I/0 and RAM instructions.

(1) Bank switching is accomplished by the CPU after receiving a "DCL"
(designate command line) instruction. Prior to execution of the
DCL instruction the desired CM-RAM code has been stored in the ac-
cumulator (for example through an LDM instruction.) During DCL
the CM-RAM code is transferred from the accumulator to the CM-RAM
register. The RAM bank is then selected starting with the next
instruction.

20

For chip selection, the 4002 is available in two metal options, 4002-1

and 4002-2. An external pin, Pg, is also available for chip selection.
The chip number is assigned as follows:
Chip No. | 4002 Option | Po | D3Dz@Xz
0] 4002-1 GND 0o
1 4002-1 VpD 01
2 4002-2 GND 10
3 4002-2 VDD 11
4 PRECHARGE
STATUS CHARACTER MEMORY
STATUS 4x4x4CELLS
MEMORY >
xavoness | | cxanacren ,
REGISTER @
- x =
2 >
a &
H % MAIN MEMORY
g 4x16x 4 CELLS
MAIN
MAIN %ﬁ";:u'E‘rD — q MEMORY %
TIMING o REFRESH DECODER
: COUNTER
-
SYNC
10 1 REFRESH AMPLIFIERS
42 0——
1/0 MULTIPLEXER
A
c™M o— —1 Y-REGISTER]] T 111]
PO O— |} | Y YVYYY
e I i HEEE 117y
INH. IN
oata |]2 ouTPUT DATA BUSS © Vbp '
sus LINES 1/0 BUFFERS OUTPUT FLIP/FLOPS |«——0 RESET
1/0 |0, [] 1o, -+———0 GND
INH. OUT
[Nm N 130,
GND Ves [J5 12 vpp -15V é i l 2 RESET i i i !
cLoeK MEMORY
i e 1 ow] CoNTROL Dy Dy D, Dy 0g 0, 0, Oy
rnse 327 w[e, {?.‘.‘5";!1'25? '
SYNC INPUT
mPur}“’"‘ - RESET

Figure 7. 4002 RAM Block Diagram

Presence of CM-RAM during'XZ tells 4002"%s that an SRC instrucfion was
For a given combination of data at X, on Dy, D5, only the

received.

chip with the proper metal option and P
I/0 or RAM operation that follows.

o State will be ready for the

The twenty 4-bit characters for each 4002 register are arraﬁged as

follows:

1.

16 characters addressable bj an SRC instruction:

Four 16-

character registers constitute the "main" memory.

2,

4 characters addressable by the OPA of an I/0 instruction:

Four 4-character registers constitute the "status character"

memory.

21

Two separate X decoders switch between main and status character
memories.

When an I/0 or RAM instruction is received by the CPU, the CPU
will activate one CM-RAM line during My , in time for the 4002's
to receive the OPA (2nd part of the instruction), which will
specify the I/0 or RAM operation to be performed. Shown below
is a list of the 15 possible I/0 and RAM operations.

The I/0 and RAM operations are divided into Read operations (IOR)
and Write operations (IOW). The state of D, will determine if
the operation is a read or a write. D5 = 1 for IOR, D3 = 0 for
IOW (see Basic Instruction Set, shown in Section IIIc).

For each I/0 instruction the action is as shown in the following
table:

Instr.
Mnem,

4001 4002 4002 4001 Data Bus Output 4002 Data Bus Output 4004 Data Bus Output
1/0 Oper. 1/0 Oper. RAM Op. Buffer Enabled Buffer Enabled Buffer Enabled

WRM

X X

WMP

WRR

WR@

WR1

WR2

WR3

X [X [X | X | X | X

SBM

RDM

X |xX |x |x |xX|Xx

X

RDR

ADM

x

RDE

RD1

x
X | X | X

RD2

X

RD3

X I X | X

X

In the I/0 mode of operation, the selected 4002 chip (by SRC), after
receiving the OPA of an I/0 instruction (CM-RAM activated at My),
will decode the instruction.

If the instruction is WMP, the data present on the data bus during
X2.¢2 will set the output flip-flops associated with the I/0
pins. That information will be available until next WMP for
peripheral devices control.

An external signal - RESET - when applied to the chip, will
cause a clear of all output and control static flip-flops and
will clear the RAM array. To completely clear the memory, RESET
must be applied for at least 32 instruction cycles (256 clock
periods) to allow the internal refresh counter to scan the mem-
ory. During RESET the data bus output buffers are inhibited
(floating condition).

Figure 7 shows the block organization of the 4002. The RAM
array uses a dynamic cell, therefore it must be periodically
refreshed. A refresh counter scans the memory array and the
memory content is refreshed during an idle portion of the sys-
tem cycle (M; and My). An address multiplexer allows loading
the content of either the refresh counter or the address regis-
ter into the decoder.

22

The RAM control is composed of an SRC flip-flop, chip selection
logic, an instruction register, instruction decoder and I/0 con-
trol logic. This block controls the loading of the address
register, the status and main memory decoder switching, the gen-
eration of memory timing, the enable of the data bus input-output
buffers, the RAM read/write operations, and the loading of the
output flip-flops.

Vi. 4003 10-BIT SERIAL-IN/PARALLEL-OUT, SERIAL-OUT SHIFT REGISTER

The 4003 is a 10-bit serial-in, parallel-out, serial-out shift
register with enable logic. The 4003 is used to expand the number
of ROM and RAM I/0 ports to communicate with peripheral devices
such as keyboards, printers, displays, readers, teletypewriters,
etc.

Data is loaded serially and is available in parallel on 10 output

lines which are accessed through enable logic. When enabled (E = low),
the shift register contents is read out; when not enabled (E = high),
the parallel-out lines are at Vgg. The serial-out line is not af-
fected by the enable logic. .

Data is also available serially permitting an indefinite number
of similar devices to be cascaded together to provide shift register
length multiples of 10.

The data shifting‘is controlled by the CP signal. An internal
power-on-clear circuit will clear the shift register (Qi = Vgg)
between the application of the supply voltage and the first CP sig-
nal.

The 4003 output buffers are push-pull ratio type, useful for mul-

tiple key depression rejection when a 4003 is used in conjunction

with a keyboard. 1In this mode if wup to three output lines are connected
together, the state of the output is high (Logic "0") if at least one

lire is high.

The 4003 is a single phase static shift register; however, the
clock pulse (CP) maximum width is limited to 10 msec. Data-in
and CP can be simultaneous . To avoid race conditions, CP is
internally delayed. '

Fig. 8 shows the block organization of the 4003.

€LOCK
POWER euse e fer CJ1

ON CLEAR IRER ' Y | Y ’TII 13 SERIAL e

IN ouT
DATA —
N iN
Vpp GND >

T T
:10 BIT slmrir REIGISLER: l "‘"“m{% b
DELAY | . OUTPUTS
{ (STATIC CELL) | | : 0.0} 12 e
— o |
CPp Cl‘or’ H |
I I PARALLEL

|
| i | 1 | L
L1 MG | oureuts
BINARY PARALLEL

16 JE ENABLE INPUT

15|]SERIAL OUT

COUNTER outeruts]® Y7
cP

—| DELAY

Yy VY Vv))
HE R T 1
E_ [P [:
(ENABLE) | 10 BIT PARALLEL |
| : OUTPUT BUFFERl | :
1 1
| L l l l l } I 1

U R

Q, @, Q; Q3 Q4 Q5 Qg Q; Qg Qg

Figure 8. 4003 Shift Register Block Diagram
23

VII. DETAILED INSTRUCTION REPERTOIRE OF THE MCS-4

A. Instruction Format

As previously discussed, the MCS-4 micro computer set has two types
of instruction.

a) 1 word instruction with an 8-bit code and an execution time of
10.8 usec.

b) 2 word instruction with a 16-bit code and an execution time of
21.6 usec.

Due to the time multiplexed operation of the system, the 8-bit in~
struction is fetched 4-bits at a time on two successive clock periods.
The first 4-bit code is called OPR, the second 4-bit code is called
OPA.

The instruction formats were illustrated in Tables I and II

B. Symbols and Abbreviations

The following Symbols and abbreviations will be used thorughout the
next few sections:

() the content of

—_— is transferred to

ACC Accumulator (4-bit)

CcY Carry/link Flip-Flop

ACBR Accumulator Buffer Register (4-bit)

RRRR Index register address

RRR Index register pair address

Py, Low order program counter Field (4-bit)
Py Middle order program counter Field (4-bit)
PH High order program counter Field (4-bit)
aji . Order i content of the accumulator

CM5 Order i content of the command register

M RAM main character location

Mgy RAM status character i

DB (T) Data bus content at time T

Stack The 3 registers in the address register other than

the program counter.

Throughout the text '"page' means a block of 256 instructions whose ad-
dress differs only on the most significant 4 bits. (all of the instruc-
tions on one page are all stored in one ROM).

Example: page 7 means all locations having addresses between
0111 0000 0000 and 0111 1111 1111

24

Format for Describing Each Instruction

Each instruction will be described as follows:

(1) Mnemonic symbol and meaning

(2) OPR and OPA code

(3) Symbolic representation of the instruction

(4) Description of the instruction (if necessary)

(5) Example and/or exceptions (if necessary)

D. One Word Machine Instructions

Mnemonic: NOP (No Operation)

OPR OPA: 0000 0000

Symbolic: Not applicable

Description: No operation performed

Mnemonic: LDM (Load Data to Accumlator)

OPR OPA: 1101 DDDD

Symbolic: DDDD .—> ACC

Description: The 4 bits of data, DDDD stored in the OPA field of
instruction word are loaded into the accumulator. The
previous contents of the accumlator are lost. The
carry/link bit is unaffected.

Mnemonic: LD (Load index register to Accumulator)

OPR OPA: 1010 RRRR

Symbolic: (RRRR)—=ACC

Description: The 4 bit content of the designated index register (RRRR)
is loaded into the accumulator. The previous contents
of the accumulator are lost. The 4 bit content of the
index register and the carry/link bit are unaffected.

Mnemonic: XCH (Exchange index register and accumlator)

OPR OPA: 1011 RRRR

Symbolic: (ACC)— ACBR, (RRRR)—= ACC, (ACBR)—=> RRRR

Description: The 4 bit content of the designated index register is
loaded into the accumulator. The prior content of the
accumulator is loaded into the designated register. ' The
carry/link bit is unaffected.

Mnemonic: ADD (Add index register to accumulator with carry)

OPR OPA: 1000 RRRR

Symbolic: (RRRR) + (ACC) + (CY) — AcC, CY

Description: The 4 bit content of the designated index register is
added to the content of the accumulator with carry.
The result is stored in the accumlator. The carry/link
is set to 1 if a sum greater than 15,4 was generated to
indicate a carry out; otherwise, the carry/link is set
to 0. The 4 bit content of the index register is un-
affected.

Example: Augend Addend
(ACO) (cY) (RRRR)

v
az az aj g
cg &

+)

I3 r2 r) 1‘0 d S

CARRY ——> ¢4 s3 s2 s] sg <— SUM

(CY) (ACC)

25

Mnemonic: SUB (Subtract index register from accumulator with

borrow)
OPR OPA: 1001 RRRR CQT)
Symbolic: (ACC) + (RRRR) + (CY) — AcC, CY

Description: The 4 bit content of the designated index register is
complemented (ones complement) and added to content of
the accumulator with borrow and the result is stored in
the accumulator. If a borrow is generated, the carry
bit is set to 0; otherwise, it is set to 1. The 4 bit
content of the index register is unaffected.

Example: Minuend Subtrahend
(AcC) (€cY) (RRRR)
a3 az a1 a9
P
<0

+) 13 15 T] T0

Borrow ——> €4 83 Sy S1 8¢ €<— Result
i

(CY) (acc)
Mnemonic: INC (Increment index register)
OPR OPA: 0110 RRRR
Symbolic: (RRRR) +1 —> RRRR

Description: The 4 bit content of the designated index régister is
incremented by 1. The index register is set to zero
in case of overflow. The carry/link is unaffected.

Mnemonic: BBL (Branch back and load data to the accumulator)
OPR OPA: 1100 DDDD .
Symbolic: (Stack)—» Py, Py, PH; DDDD —> ACC

Description: The program counter(address stack)is pushed down one
level. Program control transfers to the next instruction
following the last jump to subroutine (JMS) instruction.

The 4 bits of data DDDD stored in the OPA portion
of the instruction are loaded to the accumulator.

BBL is used to return from subroutine to main program.

Mnemonic: JIN (Jump indirect)
OPR OPA: 0011 RRR1
Symbolic: (RRRO) — Py

(RRR1) — Pr; Py unchanged

Description: The 8 bit content of the designated index register pair
is loaded into the low order 8 positions of the program
counter. Program control is transferred to the instruc-
tion at that address on the same page (same ROM) where the JIN
instruction is located. The 8 bit content of the index
register is unaffected.

EXCEPTIONS : When JIN is located at the address (Pg) 1111 1111 pro-
gram control is transferred to the next page in sequence
and not to the same page where the JIN instruction is
located. That is, the next address is (Py + 1) (RRRO)
(RRR1) and not (Pg) (RRRO) (RRR1)

Mnemonic: SRC (Send register control)
OPR OPA: 0010 RRR1
Symbolic: (RRRO)—> DB (X2)

(RRR1)—> DB (X3)

Description: The 8 bit content of the designated index register pair
is sent to the RAM address register at X3 and X3. A
subsequent read, write, or I/0 operation of the RAM will
utilize this address. 'Specifically, the first 2 bits of
the address designate-.a RAM chip; the second 2 bits desig-
nate 1 out of 4 registers within the chip; the last 4 bits
designate 1 out of 16 4-bit main memory characters within
the register. This command is also used to designate a
ROM for a subsequent ROM I/O port operation. The first
4 bits designate the ROM chip number to be selected. The
address in ROM or RAM is not cleared until the next SRC
instruction is executed. The 8 bit content of the index
register is unaffected. B

26

Mnemonic:
OPR OPA:
Symbolic:

Description:

EXCEPTIONS:

FIN (Fetch indirect from ROM)

0011 RRRO

(Pg) (0000) (0001) —> ROM address

(OPR) — RRRO

(OPA) —> RRRI

The 8 bit content of the 0 index register pair (0000)
(0001) is sent out as an address in the same page

where the FIN instruction is located. The 8 bit word

at that location is loaded into the designated index
register pair. The program counter is unaffected; after
FIN has been executed the next instruction in sequence
will be addressed. The content of the 0 index register
pair is unaltered unless index register 0 was designated.

a) Although FIN is a l-word instruction, its execution
requires two memory cycles (21.6 psec).
b) When FIN is located at address (Py) 1111 1111 data

will be fetched from the next page(ROM) in sequence and
not from the same page (ROM) where the FIN instruction is
located. That is, next address is (PH + 1) (0000)
(0001) and not (Py) (0000) (0001).

E.

Mnemonic:
1st word OPR OPA:
2nd word OPR OPA:

Two Word Machine Instruction

JUN (Jump unconditional)
0100 A3 A3 A3 A4
Ay Ay Ay A2 Ap Al A Ay

Symbolic: Al A} A] Ay —>Pr, Ay Ay A Ay —» Py, A3 A3 A3 A3 — PH

Description: Program control is unconditionally transferred to the
instruction locater at the address A3 A3 A3 A3, Ay A2 Ay A,
Al Ay Ay Aj.

Mnemonic: JMS (Jump to Subroutine)

1st word OPR OPA:
2nd word OPR OPA:

0101 A3 A3 A3 A3
A A2 A2 A2 Al Al A)

Symbolic: (Pyg, PM, PL + 2)—> Stack
Ay Al A] A) —>PL, A2 A2 Ay A) —> Py,
A3 A3 A3 A3 —Py v
Description: The address of the next instruction in sequence following
JMS (return address) is.saved in the push down stack.
Program control is transferred to the instruction located
at the 12 bit address (A3A3A3A3A2A2A2A2AlAlAlAl). Execu-
tion of a return instruction (BBL) will cause the saved
address to be pulled out of the stack, therefore, program
control is transferred to the next sequential instruction
after the last JMS.
The push down stack has 4 registers. One of them is used
as the program counter, therefore nesting of JMS can occur
up to 3 levels.
EXAMPLE : Stack . Stack
No JMS JMS #1
received - ™ received -
Program Counter
Program Counter Return address #1
Stack Stack
Program Counter
S #2 Program Counter JMS #3 Return address #3
T received > received -
, Return address #2 Return address #2
Return address #1 Return address #1
Stack
Return address #4 Program Counter
Return address #3 BBL Return Address #3
—> JuS #4 —> received - al
received -
Return address #2 Return Address #2
Program Counter

The deepest return address is lost

27

Mnemonic: JCN (Jump conditional)
1st word OPR OPA: 0001 C3C2C3C4
2nd word OPR OPA: A2A2A2A2 A]AJAjA]
Symbolic: If C1C2C3C4 is true, ApA2A2A7 ——>»PM
AlAlAlAl ")PL s Py unchanged
if C1C2C3C4 is false,
(PH) — PH, (PM) - PM’ (PL + 2)— PL
Description: If the designated condition code is true, program control
is transferred to the instruction located at the 8 bit
address AjAjAjA;, AjAjAjA; on the same page (ROM) where JCN is
located.
If the condition is not true the next instruction in
sequence after JCN is executed.
The condition bits are assigned as follows:

C1 = 0 Do not invert jump condition

C1 = 1 Invert jump condition

€2 =1 Jump if the accumulator content is zero

C3 =1 Jump if the carry/link content is 1

C4 =1 Jump if test signal (pin 10 on 4004) is zero.
Example: OPR OPA

#
[uy

0001 0110 Jump if accumulator is zero or carry

Several conditions can be tested simutaneously.

The logic equation describing the condition for a
jump is give below:

JUMP = C; . ((ACC =0) . Cp + (CY = 1) . C3 + TEST . Cs) +

Cy . ((ACC

0) . Co + (CY = 1) . C3 + TEST . C4)

EXCEPTIONS: If JCN is ldcated on words 254 and 255 of a ROM page,
when JCN is executed and the condition is true, program
control is transferred to the 8-bit address on the next
page where JCN is located.

Mnemonic: ISZ (Increment index register skip if zero)
1st word OPR OPA: 0111 RRRR
2nd word OPR OQPA: AZAZA AZ AlAlA‘A
Symbolic: (RRRR§ + 1 — RRRR, if result = 0
(Pg) — PH , (Pw) —»> PM, (Pp + 2) — Py
if result # 0 (Pg)—> Py,
A2A2A2A25PM, A1A1A1A1 - PL
Description: The content of the designated index register is incremented
by 1. The accumulator and carry/link are unaffected.
If the result is zero, the next instruction after 1SZ is
executed. If the result is different from 0O, program control
is transferred to the instruction located at the 8 bit
address A2A2A2A7, A1AJA1A] on the same page (ROM) where
the ISZ instruction is located.

EXCEPTIONS: If ISZ is located on words 254 and 255 of a ROM page, when
ISZ is executed and the result is not zero, program control
is transferred to the 8-bit address located on the next
page in sequence and not on the same page where ISZ is
located.

Mnemonic: FIM (Fetched immediate from ROM)
lst word OPR OPA: 0010 RRRO
2nd word OPR OPA: D2D2D2D2 D3D1D1D1
Symbolic: D2D2D2D2 - RRRO
D1D31D1D]1 —» RRR1
Description: The 2nd word represents 8-bits of data which are loaded
into the designated index‘register pair.

Input/Output and RAM Instructions

(The RAM's and ROM's operated on in the I/0 and RAM instructions have
been previously selected by the last SRC instruction executed.)

Mnemonic: RDM (Read RAM character)

OPR OPA: 1110 1001

Symbolic: ™) — AcCC

Description: The content of the previously selected RAM main memory

: character is transferred to the accumulator. The carry/link
is unaffected. The 4-bit data in memory is unaffected.

Mnemonic: RDO (Read RAM status character 0)

OPR OPA: 1110 1100

Symbolic: (Mgp) —, ACC

Description: The 4-bits of status character 0 for the previously selected
RAM register are transferred to the accumulator. The
carry/link and the status character are unaffected.

Mnemonic: RD1 (Read RAM status character 1)

OPR OPA: 1110 1101

Symbolic: (Mg1) — ACC

Mnemonic: RD2 (Read RAM status characer 2)

OPR OPA: 1110 1110

Symbolic: Mg2) — ACC

Mnemonic: RD3 (Read RAM status character 3)

OPR OPA: 1110 1111

Symbolic: (Ms3) —» ACC

Mnemonic: RDR (Read ROM port)

OPR OPA: 1110 1010

Symbolic: (ROM input lines) —3 ACC

Description: The data present at the input lines of the previously
selected ROM chip is transferred to the accumulator. The
carry/link is unaffected.

If the I/0 option has both inputs and outputs within the same
4 I/0 lines, the user can choose to have either "0" or
"1" transferred to the accumulator for those I/0 pins
coded as outputs, when an RDR instruction is executed.
EXAMPLE: Given a 4001 with I/0 coded with 2 inputs and 2 outputs,
when RDR is executed the transfer is as shown below:
I3 02 01 Ig (AcC)
1 X X O 1 (loro lor0) O
=)« ’)
Input Data User can choose

Mnemonic: WRM (Write accumulator into RAM character)

OPR OPA: 1110 0000 .

Symbolic: (ACC) ~—> M :

Description: The accumulator content is written into the previously
selected RAM main memory charact®r location. The accu-
mulator and carry/link are unaffected.

Mnemonic: WRO - (Write accumulator into RAM status character 0)

OPR OPA: 1110 0100

Symbolic: (ACC) — Mgo

Description: The content of the accumulator is written into the RAM
status character 0 of the previously selected RAM register.
The accumulator and the carry/link are unaffected.

Mnemonic: WR1 (Write accumulator into RAM status character 1)

OPR OPA: 1110 0101

Symbolic: (ACC) — Mgy

Mnemonic: WR2 (Write accumulator into RAM status character 2)

OPR OPA: 1110 0110

Symbolic: (ACC) —» Mgy

Mnemonic: WR3 (Write accumulator into RAM status character 3)

OPR OPA: 1110 0111

Symbolic: (ACC) —> Mg

Mnemonic: WRR (Write ROM port)

OPR OPA: 1110 0010

Symbolic: (ACC) —>» ROM output lines

Description: = The content of the accumulator is transferred to the ROM
output port of the previously selected ROM chip. The data
is available on the output pins until a new WRR is executed
on the same chip. The ACC content and carry/link are un-
affected. (The LSB bit of the accumulator appears on 1/00,
pin 16, of the 4001). No operation is performed on 1/0
lines coded as inputs.

Mnemonic: WMP- (Write memory port)

OPR OPA: 1110 0001 .

Symbolic: (ACC) —»y RAM output register

Description: The content of the accumulator is transferred to the RAM
output port of the previously selected RAM chip. The data
is available on the output pins until a new WMP is executed
on the same RAM chip. The content of the ACC and the
carry/link are unaffected. (The LSB bit of the accumultor
appears on Og, Pin 16, of the 4002.)

Mnemonic: ADM (Add from memory with carry)

OPR OPA: 1110 1011

Symbolic: (M) + (ACC) + (CY) —> AcCC, CY

Description: The content of the previously selected RAM main memory
character is added to the accumulator with carry. The
RAM character is unaffected. '

‘Mnemonic: SBM (Subtract from memory with borrow)

OPR OPA: 1110 1000 .

Symbolic: M) + (ACC) + (CY) —» ACC, CY

Description: The content of the previously selected RAM character is
subtracted from the accumulator with borrow. The RAM
character is unaffected.

G. Accumulator Group Instructions

Mnemonic: CLB (Clear both)

OPR OPA: 1111 0000

Symbolic: 0 —» ACC, 0 —> CY

Description: Set accumulator and carry/link to O.

Mnemonic: CLC (Clear carry)

OPR OPA: 1111 0001

Symbolic: 0-—> CY

Description: Set carry/link to O

Mnemonic: CMC (Complement carry)

OPR OPA: 1111 0011

Symbolic: (cYy) — cY

Description: The carry/link content is complemented

Mnemonic: STC (Set carry)

OPR OPA: 1111 1010

Symbolic: 15 CY.

Description: Set carry/link to a l

Mnemonic: CMA (Complement Accumulator)

OPR OPA: 1111 0100

Symbolic: a3jazajag —» ACC

Description: The content of the accumulator is complemented. The

carry/link is unaffected,

30

Mnemonic: IAC (Increment accumulator)
OPR OPA: 1111 0010
Symbolic: (ACC) + 1 —> ACC
Description: The content of the accumulator is incremented by 1. No
overflow sets the carry/link to 0; overflow sets the
carry/link to a 1.
Mnemonic: DAC (decrement accumulator)
OPR OPA: 1111 1000
Symbolic: (ACC) - 1 — ACC
Description: The content of the accumulator is decremented by 1. A
borrow sets the carry/link to 0; no borrow sets the
carry/link to a 1.
EXAMPLE: (ACC)
a3 a3 a1 39
+) 1 1 1 1
C4 53 Sz Sl So
¥ —_—!
CcY ACC
Mnemonic: RAL (Rotate left)
OPR OPA: 1111 0101 .
Symbolic: Cop —ag, 8y —> aj4 1, a3 — CcY
Description: The content of the accumulator and carry/link are rotated
left.
Mnemonic: RAR (Rotate right)
OPR OPA: 1111 0110
Symbolic: ag —CY, aj — aj.1, Cp—> ajg
Description: The content of the accumulator and carry/link are rotated
right.
Mnemonic: TCC (Transmit carry and clear)
OPR OPA: 1111 0111
Symbolic: 0 —»ACC, (CY) — ap, 0 — CY
Description: The accumulator is cleared. The least significant posi~-
tion of the accumulator is set to the value of the
carry/link. The carry/link is set to O.
Mnemonic: DAA (Decimal adjust accumulator)
OPR OPA: 1111 1011
Symbolic: (ACC) + 0000 — ACC
or
0110
Description: The accumulator is incremented by 6 if either the carry/link
is 1 or if the accumulator content is greater than 9. The
carry/link is set to a 1 if the result genmerates a carry,
otherwise it is unaffected.
Mnemonic: TCS (Transfer carry subtract)
OPR OPA: 1111 1001
Symbolic: 1001 —» ACC if (CY) =0
1010 —> ACC if (CY) =1
0 — CY
Description: The accumulator is set to 9 if the carry/link is O.

The accumulator is set to 10 if the carry/link is a 1.
The carry/link is set to O.

31

Mnemonic: KBP (Keyboard process)

OPR OPA: 1111 1100

Symbolic: (ACC) —» KBP ROM —» ACC

Description: A code conversion is performed on the accumulator content,
from 1 out of n to binary code. If the accumulator con-
tent has more than one bit on, the accumulator will be
set to 15 (to indicate error). The carry/link is unaffected.
The conversion table is shown below

(ACC) before KBP (ACC) after KBP

0000 —_— 0000
0001 _— 0001
0010 _——D 0010
0100 —_— 0011
1000 —_— 0100
0011 —— 1111
0101 ———————, 1111
0110 —— 1111
0111 —_— 1111
1001 _—— 1111
1010 —_— > 1111
1011 _— 1111
1100 —_— 1111
1101 —_—— 1111
1110 —) 1111
1111 _—_— 1111

Mnemonic: DCL (Designate command line)

OPR OPA: 1111 1101 '

Symbolic: ag —» Mg, a; —> My, ayg—> M

Description: The content of the three least significant accumulator
bits is transferred to the comand control register within
the CPU.
This instruction provides RAM bank selection when multiple
RAM banks are used.(If no DCL instruction is sent out,
RAM Bank number zero is automatically selected after appli-
cation of at lease one RESET)..DCL remains latched until it is changed.

The selection is made according to the following truth

table.
(Acc) CM - RAM; Enabled Bank No.
X000 CM - RAMg Bank 0
X001 CM - RAM;, Bank 1
X010 CM - RAMo : Bank 2
X100 CM - RAM3 Bank 3
X011 CM - RAM¢, CM - RAM> Bank 4
X101 CM - RAMq, CM - RAM3 Bank 5
X110 CM - RAM3, CM - RAM3 Bank 6
X111 CM - RAM;, CM - RAMg, CM - RAM3 | Bank 7

A 3205 (3 of 8 decoder) or low power TTL equivalent may be tied to the CM-RAM3,
CM-RAMo, and CM-RAM3 lines to expand the number of RAM banks to 8. Note that
the command lines must be buffered for MOS compatibility. See below.

CM-RAMg RAM BANKO
o0 | _
M-RAM; A)
15 |0 RAM1 Ao}, o8 > RAM BANK{
CM-RAM, A, Og
e 2 10 G—D— !
- A
.13 3 223 i n=2 > !
0
4004 3205 12} —3 |
CPU DECODER 02 N
18f= > |
14 61 >—
15 —2 [>—— RramBANK;

VIll. AN INTRODUCTION TO PROGRAMMING THE MCS-4

A. Introduction

Writing sequences of instructions for a computer is known as programm-
ing. To be able to program a computer effectively, the programmer

must understand the action of each of the machine instructions. (The
instruction set of the MCS-4 is described in detail in the last section.)

Each machine instruction manipulates data in some way. The data may
be the contents of the program counter which indicates where the next
instruction is to be found, the contents of one of the CPU registers,
accumulator, or carry flip-flop, the contents of RAM or ROM, or the
signals at a port.

Programming is probably most easily learned by use of examples. In the
pages that follow, a number of sample program segments are described.
In general, the examples are shown in order of increasing complexity.
These examples have been chosen to illustrate the use of the I/0 ports,
basic program loops, multiple precision arithmetic, and the use of
subroutines.

EXAMPLE #1

. Consider the case where it is desired to test the status of a single
switch connected to the CPU (4004 chip) on the test input (pin 10).

A jump on condition instruction (JCN) can be used to perform this test.
Suppose the JCN instruction: JCN TEST, 16 (2 word instruction) is stored
at ROM memory locations 2 and 3. The instruction would look as follows:

OPR OPA
€1C2C3C4
Location #2 0001 0001
(JCN) (Jump if test signal = Logic "0")
Location #3 0001 0000

(Jump to ROM memory Location # 16)

When this instruction is executed , if the switch connects a logic "0"
(ground) to the test pin of the CPU, the program counter in the address
register in the CPU will jump to 16. (That is,the next instruction to
be executed would be fetched from ROM Memory location 16). If the switch
had been connected to a logic "1" (negative voltage) the program counter
would not jump but would be incremented by 1 and hence the instruction
in ROM memory location 4 would be executed next. Thus the switch status
can be tested simply with one instruction. Furthermore, if it were
desired to jump if a test signal equalled a logic "1'", the JCN instruction
. could be coded

OPR OPA
C1C2C3Cs
Location #2 0001 1001 Inverted jump condition
j .
Location #3 0001 0000

33

In this case the invert condition bit C] is used to indicate a jump
is to be made on a logic "1" on the test signal.

If more switches are required a ROM port may be used as shown in the
next example.

EXAMPLE #2

Consider the case where it is desired to test the status of a switch
connected to the port of ROM #2. To make access to the port, it is
necessary to execute and SRC instruction. The SRC instruction utilizes
the contents of a pair of registers, which must contain the proper num-
bers to select the desired port. Register pairs may be most easily
loaded using the FIM instruction.

Thus the sequence

Mnemonic Description
FIM O /Fetch immediate (direct) from ROM data (0010, 0000),
2,0 to index regiser pair O.
SRC O /Send the contents of index register pair O to select

a ROM. The first 4 bits of data sent out at X; time
(0010) select ROM #2.

RDR /Read to contents of the previously selected ROM (ROM #2)
input port into the accumulator

has the effect of loading the accumulator with the values appearing at
ROM port #2. 1Individual bits may be tested by shifting them into the
carry flip-flop and using a jump on condition instruction. In this
manner up to 4 switches can be interrogated from one set of ROM input
ports (4 of them).

EXAMPLE #3

Suppose a series of 10 clock pulses must be generated, perhaps to drive
the clock line of a 4003 port expander. Let us assume that RAM #3 is
to be used. The high order 2 bits of data sent out at X2 time during
an SRC instruction selects the RAM chip. Hence 1100 (binary equivalent
of 12) is required at X2 to select RAM #3.

Since we must select the port on RAM #3 we will require

FIM 0
12, 0
SRC 0

This pair of instructions sets up the desired port for use. To generate
the clock pulses, we must alternately write a 1 and an 0 into the appro-
priate port bit. Let us assume that we will only use the high order bit
of the port on RAM #3 and that it is initially set at zero (so that the
program does not have to reset it). Furthermore, let us assume that we
do not care about the other three bits of the port.

34 ‘ \

First let us set the accumulator to O
ILDM O /Set accumulator to 0

We may then complement the high order bit of the accumulator by the
sequence ,

RAL /Rotate left (accumulator and carry)
CMC /Complement carry
RAR /Rotate right (accumulator and carry)

which achieves the operation by shifting the bit into the carry flip-flop,
complementing it, and shifting it back.

An alternate way to complement the high order bit is to add 8 (binary
1000) to the accumulator. We may set the contents of one register,
say register 15, to 8 by the sequence:

DM 8 /Load data DDDD (1000) to the accumulator.
XCH 15 /Exchange contents of iﬁdex register 15 and accumulator
IDM O /Load (0000) to accumulator

The first instruction loads the binary number 1000 into the accumulator

and the second places the contents of the accumulator into register 15.

Since the prior contents of register 15 are also placed in the accumula-
tor, an LDM instruction is then executed to clear the accumulator.

Now the operation ADD 15 will add the binary value 1000 to the accumula-
tor, because Register 15 contains the value 8.

Note the difference in how the LDM and the XCH and ADD instructions
utilize the second half of the instruction. The LDM loads the accumu-
lator with the value carried by the instruction i.e. in binary code

LDM 8 appears as 1101 1000 and loads the accumulator with 1000. How-
ever, the ADD and XCH select a register, and the contents of the regis-
ter are used as data. That is, ADD 8 would add the contents of register
8 to the accumulator, not the value 8.

To generate the sequence of 10 clock pulses, one could repeat the
following 4 instructions 10 times.

ADD 15 /Add contents of register 15 (1000 |
previously stored in the register)
to accumulator

WMP /Write Fhe contents_?f the accumu- | one clock pulse
lator into the previously selected
generated
RAM output port
ADD 15
WMP

However, this would take some 40 instructions. The indexing operation
available with the ISZ instruction allows a program loop to be repeated
10 times.

The ISZ instruction increments a selected register. If the register
injtially contained any value other than the value 15 (binary 1111)
the instruction performs a JUMP to an address specified by the in-
struction. This address must be on the same page (within the same
ROM) as the instruction immediately following the ISZ.

If however, the register originally contained 15, the CPU will proceed
to execute the next instruction in sequence.

By loading a register, say register 14, with the value 6, on the 10th
execution of an ISZ, the processor will proceed to the next instruction

in sequence rather than jump.

Execution of the ISZ does not affect the accumulator, so that the
accumulator does not have to be "saved'" prior to its execution.

The program sequence which performs the desired action is then

Address
Instruction # Name Mnemonic OPA Description
(D LDM 8 /Load 1000 to accumulator
(2) . XCH 15 /Exchange contents of index register 15
and accumulator
(3) LDM 6 /Load 0110 to accumulator
(4) XCH 14 /Exchange contents of index register 14
and accumulator
(5) FIM 0 /Fetch immediate from ROM, Data (1100 0000)
12, 0 to index register pair location O
(6) SRC 0 /Send address (contents of index register
pair 0) to RAM
(7) LDM 0 /Set accumulator to O
(8) —> LOOP ADD 15 /Add contents of register 15 to accumu-
lator
(9) WMP /Write contents of accumulator into RAM
output ports
(10) ADD 15 /Add contents of Register 15 to accumu~
lator
(11) ‘ WMP /Write contents of accumulator into RAM
output ports
(12) ISz 14 /Increment contents of register 1l4. Go
‘ LOOP to ROM address A, Ay (called Loop) if

result #0, otherwise skip.

Explanation of Program

(a) Instruction #1 and #2

(b) Instruction #3 and #4

(¢) Instruction # 5

(d) 1Instruction #6

(e) 1Instruction #7

(f) Instruction #8, 9, 10,
and 11 -

Loads the number 8 (1000) into index regis-
ter number 15 (1111)

Loads the number 6 (0110) into index regis-
ter number 14 (1110)

Fetches the address of the desired RAM and
stores it in an index register pair

Sends the stored address to the RAM bank
and selects the desired RAM

Initializes the accumulator to 0000.

Generates one clock pulse as follows:

Complement of highest order bit of accumulator and
Send back to RAM output port (Instruction #8 and 9)

1\

Initial state of RAM
output port

(g) 1Instruction #12 -

Example #4

)r

Highest order bit of accumulator
is complemented again and sent
back to the RAM output port (In-
structions 10 and 11)

The contents of Register 14 is incremented
by 1 (0001). The number 7 (0111) is now
stored in register 14. Since this result

is not equal to zero, program control jumps
to the address specified in the 2nd word

of this instruction. In this case the
address stored in the 2nd word is the address
of instruction #8. The program then exe-
cutes the next 4 instructions in sequence
and generates a 2nd clock pulse. This
sequence is repeated a total of 10 times,
thus generating 10 clock pulses. On the 10th
time when the contents of register 14 is
incremented it goes to the value 0000 and

the program skips to the next instruction

in sequence and gets out of the loop.

Clock pulse streams of the type derived above are often used to drive
groups of 4003 shift registers. It may often be desirable to transfer
the contents of a RAM register to a group of 4 shift registers via two
output ports. Fig. 9 shows the connection used. /

To operate this system, it is necessary to fetch a character from RAM
and present it at port #2, then issue the clock pulse at port #l. This
sequence requires three SRC commands, one for the RAM selection, one
for port #1 selection, and one for port # 2 selection.

37

In addition, the location in RAM must be incremented each time to pro-
vide selection of the next character.

7 SEGMENT DISPLAY
4003 r_
cLock 29 I
— B Do _|
— = Do 1Th
RAMPORT 14
D 0y 0, T
4003 L o
l o
q, 0, 4003
4003 [
_OATA | >
RAMPORT2{ — © 4003
_Cc 4003 Qo 0y
‘ Do
I— Do DP (NOT USED)
Figure 9. RAM Output Ports Driving Groups of Shift Figure 10. Shift Registers Driving Seven Segment LED
Registers Displays
The main loop is then as follows:
Loop, -SRC /Send address to selected RAM
RDM » /Read selected RAM character into accumulator
SRC /Send address to RAM #2
WMP /Write contents of accumulator (previously slected RAM
SRC character) into Port #2
/Send address to RAM #1
LDM 0 /Set accumulator to '"O"
ADD 15
WMP -
ADD 15 P4 Generate 1 clock pulse
wMP , , .
INC /Increment by 1 the contents of the register pair holding

the selected RAM address
ISZ 14 Loop /Increment contents of register 1110. Jump if result # O,
otherwise skip.

The loop above uses 3 pairs of registers for RAM and port selection,
and two registers for temporary storage and indexing. The initiali-
zation must provide for loading each of these registers.

Example #5

The example above might be extended if for example, the 4003's were
driving seven segment LED displays: A 4 line to 7 segment code con-
verter could be used for each display device driven. However, the
ROM table lookup capability of the 4004 can be utilized to advantage
to save these converters. Suppose the LED displays are wired as
shown in Fig.10 with each LED using two adjacent locations in each of
the 4003's.

The instruction FIN allows a ROM table to be accessed based on the
contents of registers 0 and 1. To save register space, the fetched
data may be loaded over the table addresses. The table address may
be intialized by an FIM or by the sequence

LDM

XCH
where the data in the LDM represents the high-order 4-bits of the
table address. The low order 4 bits will be derived from the data
character itself.

38

The main loop now becomes as follows:

FIM 0 /initial table address

SRC /fetch. data character

RDM /Read into ACC

XCH 1 /store at register 1

FIN 0 /fetch from ROM table

SRC /select output port

XCH 0 /fetch 1lst half of 7 segments
WMP /transfer to output port
SRC /select clock port

1L.DM 0 /Set accumulator to '"QO"
ADD 15 L

WMP

ADD 15 , /generate one clock pulse
WMP

SRC /select output port

XCH 1 /transfer 2nd half of display
WMP /transfer to output port
SRC /select clock port

1.DM 0 /Set accumulator to "0O"

ADD 15

WMP

ADD 15 > /generate one clock pulse
WMP

INC /set next RAM character

I1SZ 14 /test for no. of characters

Note that two data characters (8 bits) are transferred for each digit
to be displayed.

This loop must be initialized by setting the registers to their initial
conditions. The following sequence of 4 instructions is sufficient:

FIM /select RAM register for display
FIM /initialize clock port selector
FIM /initialize output port selector
FIM /initialize no. of digits and set reg. = 8

Example #6 - Subroutines

Proceeding with the example outlined above, suppose that the user finds
it necessary to display the contents of a number of different RAM
registers, at different places in the program. The sequence of instruc-
tions could be used whenever this was necessary. However, by making

the entire sequence a "subroutine', the user can call out the sequence
each time it's needed with only a JMS instruction.

The JMS utilizes the address push down stack. When a JMS is executed,
the program counter is pushed up one level and is reloaded with the
address to which the jump to take place, and execution will proceed

from this new location. However, before the program counter is reloaded,
the old value is saved in the '"stack'". This stack operates as follows:*

1. Each time a JMS is executed, all addresses saved in the stack are
pushed down 1 level. The last value of the program counter is
loaded into the top of the stack, the program counter value corres-
ponds to the instruction immediately following the JMS.

2. The BBL instruction raises every entry in the stack one level, with
the top value in the stack entering the program counter.

In the example shown, if the RAM register to be transferred to the dis-
play is different in different parts of the program, the FIM which
selects the RAM register should not be made part of the subroutine.

The subroutine would then include the three FIM instructions followed
by the main loop and terminated by the BBL.

To display any register from any point in the program, the programmer
need use only 4 bytes of ROM:

FIM
JMS

The FIM selects the register and the JMS calls the subroutine.

Example #7: Storing and Fetching a floating point decimal number in
the 4002 RAM (How to use the Status and Main Memory Char-
acters in the 4002 RAM)

The 4002 RAM has 4 registers, each with twenty 4-bit characters sub-
divided into 16 main memory characters and 4 status characters. (320
bits total). Each register is capable of storing a 20 digit, unsigned,
fixed point, binary-coded decimal (BCD) number. A more practical usage
for the register is the storage of a signed, floating point, BCD number
having a 16-digit mantissa (fraction) and a 2-digit exponent.

Consider the number

+.1372994157387406 x 1075
V
Mantissa (16 digits) Exponent (2 digits)

Storage is required for both the sign of the mantissa (in this case
positive) and the sign of the exponent (in this case negative), 16
digits of mantissa and 2 digits of exponent. The 4 status characters
of the register can be used to hold the signs (in this case a "1" re-
presents minus - this definition is completely arbitrary and is com-
pletely up to the user) and the 2 digit exponent. The 16 main memory
characters are used to hold the 16 digit mantissa.

* Ihis description of the operation of the address stack is equivalent to the
description in Section IIIB (3). It just looks at it from a different view-
point.

For example let's store the

Chip number #3, register #1.

previously shown number in Bank #2,
It would be stored in the 4002 as

follows:
Register #1 .
Decimal digit - 6 0 1 1 0 |0
Decimal digit - 0 0 0 0 0 j1
Decimal digit - 4 0 1 0 0 |2
Decimal digit - 7 0| 1 |1 |1 |3
Decimal digit - 8 1 0 0 0 |4
Decimal digit - 3 0 0 1 1 5
Decimal digit - 7 0 1 1 1 |6
Decimal digit - 5 0 1 0 1 |7 L} Main Memory
Character #
Decimal digit - 1 0 0 0 1 |8
Decimal digit - 4 0 1 0 0 |9
Decimal digit - 9 i 0 0 1 |10
Decimal digit - 9 1 0 0 1 (11
Decimal digit - 2 ol o |1 o |12
Decimal digit - 7 0 1 1 1 |13
Decimal digit - 3 0 0 1 1 14
Decimal digit - 1 0 0 0 1 15
=
Exponent Value J 1 0 0 1 40
59
L 0 1 0 1 11
> Status Character
Exponent Sign - Negative 0 0 0 1 |2 #
Mantissa Sign - Positive 0 0 0 0o |3}
—

The following instructions would be used to fetch character #6, the signs,

and exponent value?

41

Mnemonic Machine Language
OPR OPA

LDM 2 1101 0010
Select bank #2 {:;CL 1111 1101

EL 0010 1000
13, 6 ,_0110

-
o

r

w

Jo
=

€4 druw
1# 193s133y
9%

1930vIRYD AloWaW UTRK <

Select
Chip #3, Register #1 <
Character #6

. SRC 4

,..
o
S
2

0010

Fetch the Mantissa sign RD3 1110 1111
From status Character #3

to Register #10 in the

CPU XCH 10 101 1010

RD2 1110 1110
XCH 11 1011 1011

Fetch the exponent sign
from status character #2
to Register #11 in the
CPU

=

RD1 1110 1101
XCH 12 1011 1100

Fetch the exponent from
status Character #1 and
RDO 1110 1100
XCH 13 1011 1101

#0 to Register #12 and
#13 respectively

oy

Fetch the previously 1110 1001
selected main memory
character #6 (which
stored the decimal digit 7

to the accumulator

' 2!

-

Example 8 - Interpretive Mode

Interpretive mode programming may be used to reduce the amount
of ROM required to implement a particular system function. 1In
this mode, data words fetched from ROM or RAM are treated as
instructions of a computer which might be quite different than
the MCS~4. The MCS-4 program "interprets' the data, using it to
call appropriate subroutines which simulate the instructions of
the different computer. In effect another computer architecture
is simulated.

In the interpretive mode, the instructions of the simulated com-
puter (pseudo instructions) may be derived from RAM or ROM. The
instructions are fetched from RAM via the normal RAM operations
(SRC, RDM), using a simulated program counter to maintain the
address. The JIN instruction is often useful for interpreting
the fetched instruction. (Address for the JIN is computed from
the fetched pseudo instruction. Each address value is the loca-
tion of a JMP, or JMS to an appropriate routine, or the routine
itself.)

When fetching pseudo instructions from ROM, the FIN is used. As
the FIN instruction must be located on the same ROM chip as the
fetched data, one cannot use all 256 8~bit bytes of a ROM for
pseudo instructions. It is sufficient to allow an FIN followed
by a BBL on the ROM chip. Thus up to 254 bytes of each ROM chip
can be used for pseudo instructions. The simulated program
counter must correspond to this address structure. If the FIN
and BBL instructions are located in the first two locations of
the ROM chip, the 254 step program address counter can be imple-
mented by initializing the chip address to location 2 rather than
location 0. If the interpretive mode program exceeds 254 bytes,
the program control routine must determine the proper chip to
find the next pseudo instruction. The instruction is then fetched
by a JMS to address 0 of the appropriate chip.

42

IX. PROGRAMMING EXAMPLES

A. MCS-4 Program Routine Format Notes

Routines A, B, and C Assume the Form Shown Below.
Routine D uses Decimal Values for Column 1 and 2.

Example
Column #| 1 2 3 4 | 5 6 7
0001 | 0040
0002 | 0000 | ADpITN, | FIM |d<; |4 / | IR(8-1)=0
Where:

The first column represents the octal address of this byte.
The second column represents the octal byte value of the instruction word.
The third column is the address label field and can be blank.

The fourth column is the mneumonic field, terminated by a space or a
semicolon (;).

The fifth column is the OPA field for the lst byte terminated by a semi-
colon (;) or space or slash (/) or carriage return.

The sixth column is the second byte specification field (for a 2-word
instruction).

The last column is the comment field preceded by a slash (/).

SPECIAL NOTES:

e Each complete line followed by a carriage return is considered
a symbolic record. ' ‘

e All source data following a slash will be considered comment data
by the assembler (ignored).

e Any operand followed by a less—than sign (<) will be truncated
at three (3) bits and used as an octal numeral.

e The (<) will only work with those instructions which manipulate
register pairs in the 4004.

e The semicolon (;) is used to indicate the end of argument for the
first byte of a two (2)-byte instruction. Arguments for the second

_byte must immediately follow the semicolon.

B.

16 - Digit Decimal Addition Routine

This program performs the addition of two 16-digit decimal
numbers. These numbers are stored in RAM chip @, register @
and 3. The least significant digit of each of these numbers

is located in the character § of each RAM register and the
most significant digits are in character 15 respectively. The
contents in the corresponding characters of the registers are
added. 1If there is a carry it will be added to the next char-
acter. The subtotal is stored back into RAM register $. Index
register 6 is used as a 4-bit binary digit counter. Every time
the corresponding digits in the registers are added IR(6) is
incremented by one. As the 16th digits are added IR(6) is
reset back to zero. Then the program proceeds to check for
overflow; i.e., to check whether the carry is "1". 1If the
carry is "1" the program will print out 16 x's, clear RAM
register @, and jump to location NEXT of the main program that
calls for the ADD routine. Otherwise, the program will jump

directly to location "NEXT." The following flow chart further
clarifies the sequence of the program.

SPECIFY, RAM (i,), k):
- ' 1% i = RAM CHIP #

i=
ot AND 3 j = RAM REG. SET #
A k = RAM CHARACTER #

SET DIGIT COUNTER TO 4:

IR(6) = ¢ (4-BIT BINARY. CONTR) IR = INDEX REGISTER

L= RaAM (s, 0, ki + RAM (4, 3, k)]

|__storerinRram s, 0.0 |

| wme-me+1 k=k+1]

PRINT X...X
{INDICATION
OF OVERFLOW)
AND CLEAR
RA (¢, ¢, k)

[sum T ROM ADDRESS “NEXT" |

Figure 11. Flow Chart for 16 Digit Decimal Routine

44

0000
@081
0082
72003
0004
2005
0086
2007
2010
2011
2012
2013
@014
6015
2016
6017
0020

po21

paz22

2023
P924
2025
8026
en27
9039
9931
2082
2033
0034
0235
@836
0037
00 48
0@ 41
00 42

B0 40
20Do
PB44
Po60
0320
266
B361
2045
8351
2841
@353
2373
D340
2141
2145
P166
0007

po22
pe25
2100
2310
0320
Ba272
PP 42
2330
o120
8536
n172
0027
PB44
0000
0120
P454
n100
2310

16~-DIGIT DECIMAL ADDITION ROUTINE

ADDITN, FIM

FIMm
L DM
XCH
CLC
AD1, SRC
RDM
SRC
ADM
DAA
WRM
INC
INC

1Sz

OVERFL» JCN
JUN
XXX LDM
XCH
OVFL1, FIM
JMS
1Sz
FIM
JMS

JUN

P<30

~

‘D<3 48

o
6

2«

Q<

1
S

63AD1

CN3 XXX
SNEXT

0

10
1<3216
3PRINT
1850VFL1
2<30

3 CLRRAM

3NEXT

/DUMMY ARGUMENTS

CLRRAM=0300
NEXT=02200
PRINT=350

2123 4

$(2 NEXT,
ASSEMBLY

NNNNNMNNNNNNNNNN

BITS ©6-1 SELECT
BITS 2-3 SELECT
BITS 4~7 SELECT

NEXT CAN BE THE

5 67

NN N NNNNNNNNN N

N

NN N

IR(B-1)=0

IRC4)=331R(5)=0

LOAD ® TO AC :
EXCHANGE C(AC) AND IR(6)
CLEAR CARRY REG.

DEFINE RAM ADDRESS $(1
READ RAM TO AC

DEFINE RAM ADDRESS

ADD C(RAM) TO AC» CARRY ENABLED
DECIMAL ADDRESS ACC
WRITE AC TO RAM
INCREMENT IRC1)
INCREMENT IR(S)

IR(6)=IR(6I+13 SKIP IF CC(IR6)=0

TEST CARRY3 JUMP IF 1
SEE NOTE $(2

LOAD AC WITH @
EXCHANGE IRC182) AND AC

IRC(1)=831R(2)=13 [X]

IRC19)=]IRC10)+13SKIP IF IRC1@)8
SET IR(4-5)=0

CLEAR RAM DATA

SEE NOTE $(2

$(1 RAM ADDRESSING DEFINE AS TO STANDARDS IN
SPEC SHEET.
BITS NUMBERED FROM LEFT TO RIGHT MSB TO LSB

RAM CHIP 1 OF 4
RAM REGISTER 1 OF 4
REGISTER CHARACTER 1 OF 16

PRINT AND CLRRAM ARE ADDkESS TAGS USED FOR

45

RETURN POINT OF THIS ROUTINE
CLRRAM AND PRINT ARE ROUTINES CALLED BY THIS PROGRAM

C. BCD to Binary Conversion

The following program converts BCD numbers (@ - 255) to its binary
equivalent. In this program it is assumed that a 3 - digit BCD number
is previously stored in character @, 1, and 2 of register § in RAM chip
¢ by the main program. Then this program proceeds as follows:
First it sets index registers @, 1, 2, 3, and 4 to zero (0000), index
register 5 to 10 (1010), and index register 6 to 14 (1110). Then the
conversion begins by transfering the least significant digit (which is
the content of character ¢ in the RAM) into index register 3, IR (3).
No conversion is made on this digit since it has the same bit pattern as
its binary representation. Now recall that each unit value of the second
digit of the BCD number (which is the content of character 1 in the RAM)
has a value of 10. Hence the program continues as follows: Transfer
the second digit to the accumulator (AC) and examine whether the digit
is zero. If the digit is not zero the content of the AC is decreased by
one (i.e. the value of the second digit is decreased by one), and the
result is stored back into the same location in the RAM. Then the content
of index register 3 is transfered to AC and the content of index register
5 (which is 10) is added to AC. The result is then stored back into index
register 3. Next the content of index register 2, IR (2) is transfered to
AC and the content of index register 4 (which is zero) is added to AC; and
the result is stored back into index register 2. The process of checking
the second digit is repeated until it is down count to zero. Then the
program proceeds to set IR (4) to 6 and IR (5) to 4, examines the last
BCD digit (which is the content of character 2 in the RAM) and repeats the
process in the same manner except, in this case, the content of IR (5) is
added to index register 3 and the contents of IR(4) is added to index
register 2. This is equivalent to adding 100 (in binary form) to an 8 - bit
binary number. The binary number obtained is stored in IR (2) and IR (3).
IR (3) contains the lower order 4 bits and IR (2) contains the higher order
4 bits. Index register 6, IR (6), is used as a digit counter to verify that
all the 3 BCD digits has been checked.

The following flow chart further explains the details of the program.

BCD TO BINARY CONVERSION ROUTINE

GoNd VD49
20¢1 VAV BCLBIN, FIM V<30 / 1IRCO-12=0

vov2 Bu4a2

DPa3 BUYO FIM 1<31 / ITR(2-3)=0

Doba VY44

BGYS VvlL2 FIM 2<31¢ / IRC4)=03IR(SY=10Q

P06 0336 LD 14 / LOAD AC WITH 14

2007 V266 XCH 6 / EACHANGE 1RC6) AN AC
BwU1e 3041 SKC ©< / DEFINE RAM ADDRESS
“gull 6351 RDM / READ rRAM DATA TO AC
012 2263 ACH 3 / EXCHANGE AC WITH IRC3)
$¥13 Vl4al BDBN, INC 1 / IRCII=SIRCII+1

PP14 QB4l SKC @< / DEFINE RrAM ADDRESS
2015 9351 BB1, RDM 7/ READ RAM DATA TO AC
wolée V24

2017 BOB33 JCN AZ3BBRZ / JumpP 1F AC-0

2028 0370 DAC /7 AC=AC-1

o2l ©340 WM / WRITE AC 19 KAM

BY22 Y361 CLC / CLEAK CARRY REG

vwH23 V243 LD 3 / LIAD AC WITH CCIRC3))
Bv24 V205 ~ ADD b / ADD IRC(SY 1V AC

0925 V263 XCH 3 / EXCHANGE IRC3> AND AC
Yuzée w242 LD 2 / LOADL AC WI'TH Ir(2)
Dea27 vl2v4 ADD 4 / ADD 1RC4) T2 AC

P30 veee XCH 2 / EXCHANGE AC wITH IkRC(2)
wu31 U160

V@32 BB1S JUN 3 EBI / JUMP UNCONDITIONAL
WE33 ana4

0934 D144 BB2, FIM 2<3 100 / IRCAI=631R(5)I=4

AP35 V166

PU36 WB13 1S4 63 BDBN / IRCEI=IRCEI+13SKIP IF IR(6)=0
2037 vV3vY BBL / RETURN 10 CALLING ROUTINE AC=0

N

SET INDEX REGS:
IR(¢) = ¢, IR(1} = ¢
IR(2) = ¢, IR(3) = ¢
IR{4) = ¢, IR(S) = 1p

SET DIGIT CONTR: IR{6) = 14

READ THE LS DIGIT
TO AC AND THEN
TRANSFER THE CONTENT

OF AC TO IR(3)
| IR(6) = IR(6) + 1]

READ NEXT DIGIT
FROM RAM—AC

YES SET
IR(4) = 6,IR(5) = 4
NO

| ac=ac— | | ®6) =1Ri6)+1 |

TRANSFER CONTENT NO
OF AC TO RAM 0, e
REG 0, CHARACTER 1
- YES
B8BL

CLEAR CARRY -

AC = AC + IR(5)

AC-~-IR(3)

AC = AC + IR(4)

Figure 12. Flow Chart for BCD to Binary Conversion

47

D. A-D CONVERTER USING DAC With-MCS-4

One application using the Intel MCS-4 single-chip computer family is to determine the value of an analog
voltage. While it was possible to use the conventional approach of interfacing an analog to digital converter
to the microprocessor, a cost saving is achieved by having a microprocessor execute a program which enables
a digital to analog converter and a comparator to perform the analog digital converter function. The first
figure shows how the conversion is achieved. The MCS-4 uses a *‘port”” for input/output communication.

A four-wire port is associated with each read-only memory or read-write memory chip. Two of these output
ports have been used to drive the inputs of a digital to analog converter (DAC). The DAC is wired to a
comparator which allows the output of the DAC to be compared with the analog input signal. The output
of the comparator is in turn wired to the test input of the 4004 central processor. This test input line is
interrogated when the central processor executes a certain conditional jump instruction. Whereas the normal
instruction execution flow within the MCS-4 system is sequential through program memory, when the con-
ditional jump is executed, the processor jumps to a new location in memory, starting a new instruction
sequence.

The second figure lists the program for the analog to digital convertor in MCS-4 assembly language. The
program implements a successive approximation conversion technique. Starting with the highest order bit,
each bit in turn is turned on and the output of the comparator tested, If turning on the bit results in a
signal from the DAC that is larger than the analog input, the bit is turned off and the next bit in turn
tested. However, if turning on a bit leaves the output of the digital-to analog converter still smaller than
the analog input signal, then that bit will be left turned on. The coding for the program consists of testing
each of the lines of one port in turn using in-line coding, then repeating the sequence for the next set of
port lines by looping back. Setting a bit is accomplished by loading the accumulator with a load immediate
instruction (LDM) and then writing the contents of the accumulator to the output port. The output port
is selected at the beginning of the program by the combination of fetch immediate (FIM) and send register
control (SRC) instructions. Register #4 (R4) is used to contain the current estimate of the value for the
4-bits being tested. A bit under test is retained or cleared by updating or not updating the contents of
register 4. At the end of the basic 4-line test sequence of instructions, the contents of register 4 are saved
in an alternate location by a series of exchange (XCH) instructions and the instruction increment and skip
on zero (ISZ) is used to perform the function of counting the number of passes through the loop and jump-
ing back to the loop start. The loop selects the next port in turn by the increment (INC) instruction

which modified registers RO so that when the next SRC instruction is executed, it will select the next

port in sequence. This basic program can be easily modified to handle 12 bit binary or 2 or 3 digit decimal
conversions. Execution of the sequence of instructions takes less than one millisecond and as can be seen
from the listing, occupies some 29 words of read-only memory.

A multiplexer for multiple analog inputs can be added quite easily by providing a separate comparator for
each analog input and performing digital multiplexing at the input to the test terminal of the 4004 central
processor. An alternate use of the structure shown in the first figure permits determining which, if any, of the
several signals is above or below some predetermined analog threshold value. The analog threshold value

is deposited at the output ports driving the DAC and the outputs of the comparators are then read into

the MCS-4 system at an input port or at the test terminal of the CPU.

4002
RAM

4004 | TEST
CPU

4001 f ANALOG ANALOG
ROM INPUT INPUT
' 1

Block Diagram of A-D Cbnverter using DAC and MCS-4

48

/SET UP FOR SELECTION OF ROM OUTPUT PORT (RO, Ri=PQ),
USING RI /AS A LOOP COUNTER -- VALUES IN BINAR
0000 00032 ’ FiM PO 00001111B :
00015
/CLEAR REGISTERS R4, R5. (THESE TWO REGISTERS ARE
/DESIGNATED PAIR 20R P2 BY THE FIM INSTRUCTION).
R4 AND R5 /WILL BE USED TO RECEIVE THE RESULT OF THE

CONVERSION
0002 00036 FIMP20
00000
/START OF MAIN LOOP
0004 00033 ADLP, SRCPO /SELECT PORT USING CONTENTS OF RO, RI
0005 00240 cLB /CLEAR ACCUMULATOR AND CARRY FLIP-FLOP
0006 00216 LDM 8 /LOAD ACCUMULATOR WITH 1000
/LDM 8 SETS THE HIGH ORDER BIT OF THE ACCUMULATOR
0007 00226 WRR /WRITE ACCUMULATOR TO ROM OUTPUT PORT
0008 00025 JCN TI *+3 /JUMP PAST SCH IF RESULT TOO BIG
00011
0010 00180 XCH R4 /SAVE RESULT IF NOT TOO BIG
/NOW REPEAT FOR 2ND HIGHEST BIT
0011 00212 LDM 4 /LOAD ACCUMULATOR WITH 0100
0012 00132 ADD R4 /ADD RESULT OF PREVIOUS TEST
0013 00226 WRR /WRITE TO ROM OUTPUT PORT
0014 00025 JCN T1 *+3 /JUMP PAST XCH IF RESULT TOO BIG
00017
0016 00180 XCH R4 /SAVE CURRENT RESULT IF NOT TOO BIG
/REPEAT PROCEDURE FOR LAST TWO BITS OF THIS PORT
0017 11210 LDM 2 /LOAD ACCUMULATOR WITH 0010
0018 00132 ADD R4
0019 00226 WRR
0020 00025 JCN T) *+3
00023 _
0022 00180 XCH R4
0023 00209 LDM 1 /LOAD ACCUMULATGR WITH 0001
0024 00132 ADD R4
0025 00226 WRR
0026 00025 JCN T1 *+3
00029
0028 00180 XCH R4
/NOW WRITE FINAL RESULT TO ROM PORT
0029 00164 LD R4 /LOAD FINAL RESULT TO ACCUMULATOR
0030 00226 WRR /WRITE TO ROM OUTPUT PORT

/NEXT MOVE THESE 4 BITS TO R5 AND CLEAR R4 AND CLEAR R4 FOR NEXT PASS
/NOTE R5 INITIALLY CONTAINED ZERO

0031 00181 XCH R5 /ACCUMULATOR TO R5, R5 TO ACCUMULATOR
0032 00180 XCH R4 /CLEARS R4 IF AT END OF FIRST PASS
0033 00096 INC RO /PREPARE FOR SELECTION OF NEXT ROM PORT
0034 00113 ISZ Rl ADLP /RETURN FOR SECOND PASS AFTER PASS 1

- 00004

/AFTER PASS 2, PROGRAM CONTINUES PAST THIS POINT. HIGH ORDER
/BITS OF RESULT WILL BE IN R4, LOW ORDER BITS IN R5.

Program for A-D Converter Using DAC and MCS-4

49

> E. MCS-4 SOFTWARE AND FIRMWARE LIBRARY

MCS-4 Assembler and Simulator Software Package
Intel now offers an assembler and simulator software package to help develop programs for micro computer systems built from
Intel’s MCS-4 set of integrated computer circuits.

The software is written in general Fortran {V for the PDP-10 computer, and may be adapted for most other computers by
minor modifications. The package consists of a simulating routine, which enables the computer to simulate the operation of
an MCS-4 micro computer, and an assembly routine, used primarily as an aid to programming the simulated micro computer.
See Appendix H for complete details.

The routines may be procured from Intel on paper tape or punched cards. Alternatively, designers may contract three nation-
wide computer time-sharing services — AL/COM, G.E., and Tymshare — for access to the programs.

SIM4 Hardware Assembler :
The SIM4 hardware assembler is a program which translates a symbolic assembly language into bit patterns suitable for MCS-4
control storage programming. |t operates on the SIM4-01 or the SIM4-02 micro computer system with an ASR-33 teletype.

The assembler accepts input source text from the teletype keyboard or paper tape reader on each of two required passes. A
name table and source listing are created on the first pass. On the second pass, the source text is re-read and a programming
paper tape and associated listing are generated. The programming tape is suitable for programming of the 1702 PROM using
the MP7-03 programmer system. The same tape may be used for programming the 4001 metal mask ROM. See Appendix F.

SIM4 Hardware Simulator .
The SIM4-02 Hardware Simulator is a program written for the MCS-4. This program will provide interactive control over the
debugging of other MCS-4 programs. See Appendix G.

The minimum configuration required is a SIM4-02 prototype card with three 4002 RAMs and a Teletype. When fully stuffed
with 16 RAMs, test programs up to 512 bytes (locations) in length may be accomodated. The hardware simulation program
itself occupies nine full ROM:s.

The Hardware Simulation Program has two basic functions:
1. To simulate the execution of a test program, tracing its progress, and apprehending gross errors.
2. To allow the user to dynamically interact with and/or modify his test program, in order to facilitate the debugging process.

These two functions are implemented by means of a set of directives or commands which the user types in at the teletybe
keyboard. Some of the directives call for typeouts by the simulator program, some of the directives signal the input of data
or program modifications, and some of the directives involve both typeouts and input response or data.

4. MCS-4 Program Library

® Text editor, assembler and loader for the MCS-4 ® Teletype Keyboard Input Routine
that runs on the PDP-8, ® PROM Programming Software Package for the SIM4-01/
® - Subroutine for driving a Seiko printer. MP7-03 and SIM4-02/MP7-03 PROM Programming
® Program which enables a computer to sample liquid System. (A0540, A0541, A0543)[1]
levels in bottles. ® A-D Converter using DAC and MCS-4.
® RAM test program for the SIM4-01/SIM4-02. ® SIM4 Hardware Assembler. Four PROMs (A0740, A0741,
® Program to control the tape motion of an IBM tape drive. A0742, A0743) []plug into either SIM4 prototype board
® Hex programmer for the SIM4-01/MP7-03 enabling assembly of programs on the micro computer
PROM programmer itself.
® MCS-4 logic subroutines AND, XOR, IOR, LOGIC ® SIM4 Hardware Simulator. Nine PROMs (A0750-A0758) "
® Sixteen Digit Decimal Addition Routine (A0700)!1] plug into the SIM4-02 providing capability for program -
® Exerciser Program (4001-0009)2] debugging.
® Chebychev polynominal approximation subroutines for ~ ® PROM Duplication and Verification Program. (A0544-11]
addition, subtraction, multiplication, division, sine, cosine, see Appendix E)
arctangent, exponential, and natural logs. ® BCD to Binary Conversion Routine

These program listings are available to all Intel micro computer users. We encourage all users to submit all non-proprietary
programs to Intel to add to the program library so that we may make them available to other users.

NOTES:

1. These are the program numbers that should be used when ordering the programs in PROMs,
2. This is the number that should be used when ordering this program. The program is contained in a standard 4001 ROM,

50

X. INTERFACE DESIGN FOR THE MCS-4 SYSTEM

A.

General Discussion

MCS-4 computer systems are often used to replace random logic
controllers in a wide variety of systems. In each of these sys-
tems a number of peripheral devices, such as keyboards, switches,
indicator lamps, numeral displays, printer mechanisms, relays,
solenoids, etc., may have to be interrogated or controlled. The
engineer who wishes to utilize an MCS-4 system must include, as
part of his design, suitable interface circuits and programs.

Devices to be operated or interrogated by an MCS-4 computer are
attached to the system via the input and output data ports as-
sociated with the 4001 ROM and 4002 ROM. The design of an inter-
face consists of the following steps:

1. Assign peripheral device connections to port conmnections.
If the number of available output ports is insufficient,
4003 output port expanders may be used. When the number
of input lines is insufficient, multiplexers must be added.
These multiplexers must be controlled by output ports.

2. Develop the necessary level conditioning circuits for each
signal. Port inputs and outputs are at MOS levels (logic
P = OV with a series output resistance of typically 150n,
logic 1 = -7v with a series resistance of typically 2k
for outputs. Inputs use the same levels, and appear as a
capacitive load of approximately 5Pf), These levels must
be converted to the levels necessary to drive solenoids,
nixies, etc. For TTL compatibility refer to Appendix A.

3. Write the programs necessary to interpret inputs and gen-
erate the output levels necessary for proper operation of
the peripherals.

Any interface design requires all three of these steps. Each
design will typically involve decisions concerning the inter-
action of the three areas. For example, techniques which reduce
the number of output lines may result in more complicated pro-
grams.

The following sections describe typical interfaces for a number
of common peripheral devices.

Keyboards

The MCS-4 can be programmed to scan and debounce a keyboard or
can interface to a keyboard which presents precoded (such as
ASCII) data. The output lines from a keyboard with precoded
data are read at one or more input ports. An input port line
or the test line of the 4004 CPU may be interrogated to deter-
m1ne if a key has been pressed.

51

Scanning and debouncing a keyboard takes a more elaborate pro-
gram. The keyboard is usually arranged as an n x m (n colums,
m rows) matrix of key switches. This type of keyboard is con-
nected as if it had n inputs and m outputs - that is, it requires
n output lines from the MCS-4 and m input lines. Under program
control, each output is activated in turn. The input ports con-
nected to the keyboard are read and tested to see if a key has
been pressed. This testing may utilize the KBP instruction.

After reading (into the ACC) 4 bits corresponding to key status
information for one column of the keyboard arrays, execution of
the KBP rearranges the data as follows:

1. 1If no key is pressed (ACC=0000), the ACC remains at 0000.
2. 1If more than one key is pressed, ACC is set to 1111.

3. If one key is pressed, the ACC indicates the bit position
of the key, as shown below.

ACC before ACC after

0001 0001
0010 KBD 0010
0100 —————> 0011
1000 0100

Scanning of a keyboard is implemented by moving a single "@" in

a field of "1"s across the lines driving the keyboard inputs.

The 4003 shift register is useful for generating the scans. 1In
addition, the 4003 has the characteristic that if two outputs are
connected, with one at a logic "1" (-6v) and the other at a logic
"@", the result will be equivalent to a logic "@". By scanning a
keyboard with a moving "@", multiple key presses in a row can be
resolved. Furthermore, if the 4003 is disabled, all outputs go to
logic "@" and all keys can be sampled simutaneously to determine
if a scan is required..

Figure 13 shows the keyboard interface. The ROM inputs are complemented.

Debouncing of the keyboard inputs, etc., is accomplished by testing
for the same '"press" condition on several successive scans.

E

ouTPUT cP 4003
PORT DATA IN

futla

INPUT
PORT l—o/o-—« ﬁo—«
o

L O I O
[T

Figure 13. Keyboard Interface - (Scanned Array)

52

Display

Display devices such as NIXIE tubes and LED arrays are easily
interfaced to the MCS-4 system. These displays may be DC
driven or multiplexed. (In the multiplexed mode, a number of
display devices are activated one at a time in rapid sequence.
For sufficiently rapid scanning, the eye accepts the data as

a continuous display.) To use the multiplexed mode, the dis-
play device usually requires some form of coincident selection
. technique. For example, NIXIE tubes are activated only when
the anode supply is present at the same time that the appropri-
ate cathode is grounded (through the proper resistance). 1In

a multiplexed NIXIE array, one set of (10 or 11) cathode
drivers is used in combination with one anode driver for each
NIXIE tube. Under program control, the array is scanned. One '
tube is selected; the cathode driver corresponding to the
numeral for that position is activated, and then the anode
driver for that position is activated for a period. The same
steps are executed for the next position in turn.

To avoid flicker, a scan rate of approximately 100 complete
scans per second (or higher) should be maintained. This. figure
allows a scanning program to have up to 60 instruction execu-
tions per displayed digit, giving a 16-digit display.

Multiplexed displays typically require high peak driving cur-
rents to maintain reasonable average brightness. The drivers
used must be capable of supplying the peak currents.

Although the technique described above specifically mentioned
NIXIE tubes, the same technique can be applied to 7 segment
LED numeral displays.

In systems which combine a numeric display and a keyboard,
considerable savings in program memory space and external hard-
ware can be achieved by combining the.display scan and keyboard
scan. The same loop control and output port logic can be used
for keyboard column selection and numeral digit position selec-
tion.

53

D. Teletype Interface

The MCS-4 system is designed to interface with all types
of terminal devices. Interface with teletype is a typical
example. The interface consists of three simple transistor
circuits which is shown in Fig. 15 One transistor is used for
receiving serial data from the teletype, one for transmitting
data back into the teletype, and the third one for tape reader
control.

It requires approximately 100 msec for the teletype to
transmit or receive serially 8 data plus 3 control bits. The
first and the last bits are idling bits. . The second bit is a
start bit. The following eight bits are data. Each bit stays
on for about 9.09 msec. The MCS-4 system is ideal for this timing
control. Following is a simple program which is written for
this purpose. This program not only controls the teletype
timing but also stores the data temporarily in the index regis-

ter 2 and 3 in 4004 CPU chip and prints out the character. The
flow chart further explains the details of the program.
TTY TAPE
v TRANSMITTER READER CONTROL
I SUPPRESS TTY | +5 +5
- DATA FROM DATA FROM
- MCS-4 (4001 MCS-4 {4001
J) OR 4002) OR 4002)
{ ‘

CHECK
PRESENCE OF
START BIT

| DELAY FOR = 5.5 msec
INITIATE TTY,
SET DATA COUNTER = ¢ 4§ TTY
I DELAY FOR =2.75 msec J
Y]
-10 -10 —-10
I READ DATA BIT J
* TTY
3 +5 RECEIVER +5
SEND DATA BIT
A BACK INTO TTY
l DELAY FOR 5.5 msec I { .
* DATA TO
4001
TTY

DATA COUNTER
=8

STORE 8 BITS DATA 10
IN INDEX REGS.#2 & 3

1

Figure 14. Flow Chart for Teletype Interface Figure 15. MCS-4 & Teletype Interface Circuits

54

KEYBOARD INPUT ROUTINE

7APe @337 BEGIN, LDM 15 /SILENCE TTY
2901 0240
BRI NP0 FIM 0<30 7/ BY SETTINT BIT 3 OF ©-TO 3 T0 1
BIn3 004l SRC @ 7/ DEFINE RAM ADDRESS
PId4 VB34l Wi P / WRITE DATA TO RAM PORT
¥BY5 ©¥361 cLc
0906 BB21 :
30807 BP06 ST» JCN TZ3ST / WAIT FOR DATA INPUT SIGNAL
2V10 V120
@911 9265 J¥S; SBR1 / 5.00MS TIME OUT
2212 BB49
0B13 vo1S FIM 0<313 / IR(®)=031RC1)=13
2014 0161
0715 PG14 TEST, 1SZ 13 TEST / COMPLETE TIMMING FOR BIT SAMPLE
2016 0B4l SRC @< / DEFINE ROM PORT ADDRESS
Q017 0352 RDR / READ ROM INPUT TO AC
2020 V364 cMa
P21 0341 WM P / COMPLEMENT DATA AND ECHO
2222 9120
W23 VbT4 JMS3 SBR2 / D) FINAL TIME DUT 300 MS
N4 BOan
0V2S Bpeo FIM 9<;3@ / IR(Y-1=0
nv2e B320 LDvM 2
2027 @262 XCH 2 / IR(2)=0
2030 #320 LD @
8031 ¥263 XCH 3 / IR(3)=p
0¥32 9330 LDM %
2033 08264 ACH 4 / IR(4)=8
VP34 0120
0035 BB6S STis JMS 3 SBR1
WB36 V361 CLC
AV37 V041 SKC V<
Q040 V352 RDR / READ DATA INPUT
N0 41 9364 cMA
VP42 6341 WMp
BP43 9366 RAR / STORE DATA IN CARRY
D044 D242 LD 2 / LOAD AC=1R(2)
0045 8366 RAR 7/ TRANSFER BIT
P46 BR62 XCH 2 / RESIORE NEW DATA W)RD
2047 0243 LD 3
BUSY V366 RAR
0051 0263 XCH 3 7/ EXTEND REGISTER T0 MAKE 8 BITS
2052 0120
PPS53 2074 JMS 3 SBR2
U¥S4 V164
WO55 0034 182 43 ST1
PUS6 V337 LDM 15
AN57 0040
Vo608 BBOD FIM @<;30 .
a061 8P4l SRC 9<
He62 0341 WM P
Vre3 B1oY
P64 WON6 JUN ST / RETURN T3 INPUT
/
/
/
/ SUBROUTINES
’
BU6S PVaD
W66 DVBO SBR1S FIM 0<30 / IRC(B=13=8
/5.474S TIME O
VW67 D166
BBTY BB6T L1, 152 vsL1
@071 D161
0972 0n67 1Sz 1501
0B73 0309 BHEL
/
7
WOT4 ND4Q
WOTS VP12 SBR2, FIM 9<38 / IR(BY=us IRC1)=Y
2076 (168
PA77 BBT6 L2, 1Sz vsL2 /7 2.75MS$ 1IME DUT
ey 2161
3101 9R76 ISz 1512
B1e2 N30 BBL
/
e

55

Xl.

SIM4-01/S1M4-02 PROTOTYPING SYSTEM

A.

General System Description

During the development phase of the equipment using the MCS-4 micro-
computer set, the designer will often find it helpful to have a means
for testing out his program. An interface circuit in which 1701 or
1702 electrically programmable and erasable read only memories simu-
late the 4001 mask programmable read only memories will help serve
this purpose. Using this interface, it is possible for the system
designer to program the 1701's or 1702's, plug them into the system,
check out the programs and make corrections as necessary. In this
way, the development check-out cycle can be typically reduced to one
hour or less. With mask programmable ROM's, this cycle is usually four
to six weeks. Intel has developed two microcomputer prototyping kits,
SIM4-01 and SIM4-02, which use the electrically programmable and
erasable ROM.

The maximum directly addressable system configuration is available with

the SIM4-02. The 4004 CPU directly controls up to sixteen 1701's or 1702's
and up to sixteen RAMs. Eight ROM output ports and eight ROM input ports
are provided. These ports are associated with the first eight ROM in

the system. Of course, the user must be aware that individual lines of

a ROM port can be used for input or output but not both. The input-
output option is of course fixed at the time that the 4001 is mask-
programmed. Sixteen RAM output ports are also provided. In addition,

all data, timing, and memory controls signals are brought to the connector
to permit future memory expansion.

The SIM4-01 is designed for small systems. This board contains provision
for up to four 1701's or 1702's and four 4002's. It provides up to four
RAM output ports (each port contains 4-bits), four ROM output ports and
four ROM input ports.

Both systems come complete with the 4004 CPU and four 4002 RAMs. Addi-
tional RAMs and ROMs may be added as required. Sockets are provided on
the boards for all MCS-4 components and for all ROMs. Note that all Programs
written for the SIM4-01 may be used without alterations on the SIM4-02.

IMPORTANT

It should be noted that the 1701 and 1702's are described in the data
sheet with respect to '"positive logic" (high level = p-logic 1). On
the other hand the MCS-4 system is defined in terms of '"negative logic"
(low level = n-logic 1). As a result, when 1701 or 1702 ROM's are be-
ing programmed to simulate the 4001, characters should be defined as
P = high level = n-logic 0 or an N = low level = n-logic 1. For instance,
consider the instruction code for ADM (one of the 45 instructions for the
MCS-4).

11101011

When preparing the program tape it should be typed,
BNNNPNPNNF

This is the code that will be put into the 4001 when the final system is
defined. It will correctly simulate the 4001 operation when the 1701 or
1702 is used with the SIM4-01 or SIM4-02 system.

56

The schematics and block diagrams for both prototyping systems are shown
on the following pages. The 4004 and the 4002's are used as they would
be in a conventional system. Additional circuitry is used to simulate
the 4001 ROM's. The two phase clocks are generated by the 9602 single
shot multivibrator using discrete clock drivers.

400ns | 400w ! _400ms !
!
Vpp =10V - 150ns
Vg = Ve =5V

Prototype System Clock Drivers

The 9316 counter together with the 3205 - one of eight decoder - serve
to decode the cycle timing for the system, thus simulating one of the
functions implemented on the 4001 chips. The output of the 3205 decoder’
indicates which cycle the unit is executing; i.e., the Aj, the Ay, the
A3, the Mj, etc. The discrete transistors serve to convert data bus
levels to TTL levels and vice versa. Two 3404 hex latches are wired as
the equivalent of three quad latch units. These latches act as address
registers for the 1701 or 1702 memory array. The quad latch units are
loaded on the Aj, A2, and A3 cycles respectively. Those address bits
loaded during A; and A2 drive the 1701 or 1702 address line directly,
while a 3205 decoder is used to generate the chip select signals for

the 1701 or 1702 memory array from the four bits loaded during A3. Two
such decoders would be used if a full array of sixteen 1701's or 1702's
were to be utilized. The output of the 1701 or 1702 array is one byte
or 8 bits wide. A multiplexer is used to gate four bits at a time onto
the four bit wide data bus. The first four bits are selected on the M1
cycle, the second four bits on the M2 cycle. The signals at the output
of the multiplexer are at TTL levels. These levels are converted to the
MOS levels on the 4004 data bus by means of a set of four discrete level
shifter circuits. The pull down resistors for these circuits are connected
via diode disconnects to a pull down resistor activator circuit. This
circuit is activated during the M; and My cycles via the two input NAND
gate driver. This driver receives two of its three inputs from the M1
and M2 decoder.

The balance of the circuitry shown in the schematic is used to implement
the input/output port functions associated with the 4001 read only mem-
ories. The execution of an SRC instruction (which is used to activate

a port) is indicated to the port control circuitry by the presence of
the command signal at Xy time. This condition is decoded and used to
load a two latch port selection register. The contents of this register

57

are in turn decoded by means of four two-input NAND gates. Execution of
a port control instruction is indicated by the presence of the command
signal (CM) during My time combined with the appropriate code on the data
bus. For instance the READ ROM INPUT condition is detected by a seven-
input NAND gate. When this instruction is detected a flip-flop consisting
of two-input NAND gates is set. (The presence of a "1" in the port read-
control flip-flop is used to enable the inputs from one of two multi-
plexers onto the data bus during X2 time.) Data is then transferred into
the 4004 from an input port at X2 time. The port read-control flip-flop
is reset at X3 time so that it will not influence operations .on the
instruction.

In general, the number of output ports provided by the array of 4002s
is adequate. However, to fully duplicate the effects of the 400ls,

it may be necessary to implement ROM output ports as well as input ports.
Although the two latch port selection register and decoder need not be
duplicated, another seven-input NAND gate together with a flip-flop is
provided to detect the condition for a WRITE ROM OUTPUT port. A four
bit latch is provided for each output port to be implemented. During
the subsequent X, cycle, the data on the data bus is loaded into the
selected port latches. These latches then retain the data. The flip-
flop controlling this operation should also be reset at X, time. The
ROM outputs invert the output data and are TTL compatible: RAM outputs
are MOS compatible. Refer to the schematics and pin configurations for
both the SIM4-01 and SIM4-02.

Discrete interface circuits are provided on the cards to communicate with
a teletype.- Data can be entered through the simulated ROM input ports
either from the keyboard or the paper tape reader of the teletype. The
receiving and transmitting of data are in serial form. Other terminal
devices such as typical commercial keyboards, printers, LED's, CRTs and
cassettes can readily communicate with the system with proper single
interface.

These systems may be reset to zero by using a RESET switch as indicated
on the board pin connector list. Debouncing for the switch is provided
on the board. '

The TEST signal may be transmitted directly to the TEST pin of the 4004
or through a debouncer and one-shot multivibrator. When the TEST signal
comes from the one-shot, the program executed by the CPU should be
looping through a JCN instruction waiting for TEST signal.

Teletype Interface

The MCS-4 is designed to operate with all types of terminal devices. A
typical example of peripheral interface is the teletype (ASR-33). The
SIM4 contains three simple transistor TTY interface circuits. Refer

SIM4-01 SIM4-02

()
_ FULL DUPLEX | @ FULL DUPLEX
| @
RECEIVE 6 |~ O 4214 RECEIVE
{ 7 o| @ —1OVJ>
' w| Q@
SEND 53 «| @ J2-82 SEND
{ 49 ol @ +5V }
~ O
- @
)

Teletype Terminal Strip
(See Appendix D for details)

to the appropriate SIM4 schematics for the actual circuit diagrams. One
transistor is used for receiving serial data from the teletype, one for
transmitting data back to the teletype, and the third for tape reader
control.

The teletype must be operating in the full duplex mode. Refer to your
teletype operating manual for making connections within the TTY itself.
Since all teletypes are not identical, it is impossible to present a
general interconnection scheme with either of the SIM4 boards. Many
models include a nine terminal barrier strip in the rear of the machine.

It is at this point where the connections are made for full duplex oper-
ation. The interconnections to the SIM4 for transmit and receive are made
at this same point. ‘

To use the teletype reader with the SIM4, the machine must contain a
reader power pack. The contacts of a 10V dc relay must be connected in
series with the TTY automatic reader (refer to TTY manual) and the coil
is connected to the SIM4 tape reader control as shown. This relay must
be supplied by the user. '

Note that the SIM4 clock generator must remain set at 750 kHz.

In order to sense the start character, data in is also sensed at the TEST
input. It requires approximately 110ms for the teletype to transmit or
receive eight serial data bits plus three control bits. The first and
last bits are idling bits, the second is the start bit, and the following
eight bits are data. Each bit stays 9.09ms. While waiting for data to

be transmitted, the 4004 is executing a JCN based on the TEST input. When
the start character is received, the processor jumps to the TTY processing
routine. Under software control, the processor can determine the duration
of each bit and strobe the character at the proper time.

A listing of a teletype control program is shown in Section X, Part D.

59

CAUTION:

In one mode of operation, these prototype systems do not truly simulate the activity of the 4001. After the system is reset and
the program counter in the CPU is returned to address zero, a two word instruction in the first two steps of the program may be
improperly executed. (This is characteristic of the prototype boards, not of the MCS-4 components.) This is the result of an asyn-
chronous reset pulse applied to the "simulated"' 4001 ROM memory.

To insure proper operation of the prototype systems one of the following techniques must be implemented:

1. Use a NOP in the first location of program memory (ADDRESS 0). Any other single word instruction may also be used.
2. Use the SYNC pulse to synchronize the reset signal to the system. Then the prototype system will truly simulate the program
memory in the 4001.

B. SIM4-01/SIM4-02 Specifications

FEATURES:

e Complete Micro Computer System for Prototyping and/or Production ® Reprogrammable ROMs
Simulate 4001s ® TTY Interface on Clock ® Two Phase Clock Generator on Card ® Test and
Reset Signal Generator on Card

SiM4-01 SPECIFICATIONS SiM4-02 SPECIFICATIONS
Card Dimensions: . Card Dimensions:
8.4 inches high 11.5 inches high
5.7 inches deep 9.5 inches deep
MCS-4 Components included on Board: MCS-4 Components included on Board:
(sockets included for memory expansion) (sockets included for memory expansion)
one 4004 one 4004
four 4002s . four 4002s
Maximum Memory Configuration: Maximum Memory Configuration:
four 4002 RAMs — 320 x 4 sixteen 4002 RAMs — 1280 x 4
four 1702 ROMs — 1024 x 8 sixteen 1702 ROMs — 4096 x 8
Operating Speed: Operating Speed:
1.35us clock period 1.35us clock period
10.8 us instruction cycle 10.8 us instruction cycle
DC Power Requirement: DC Power Requirement:
Voltage— Voltage—
Vee = Vsg =5V £5% Vee = Vgs =5V £5%
TTL GND =0V TTLGND =0V -~
Vpp =—10V +56% Vpp =—10V 5%
Current— Current—
No load operation No load operation
lee = 1.5 amp Icc = 1.8 amp
IDD =0.6 amp IDD =0.95 amp
Worst case loading (16 TTL inputs and outputs) Worst case loading (32 TTL inputs and outputs)
lec = 1.6 amp lec =2.75 amps
lop =1.5amp Ipp = 1.8bamp
Connector: Connector
a. Solder lug type/Amphenol Wire Wrap type/Amphenol
72 pin connector 86 pin connector
P/N 225-23621-101 P/N 261-10043-2

b. Wire Wrap type/Amphenol
72 pin connector
P/N 261-15636-2
c. Wire Wrap type/CDC
72 pin connector
P/N VPBOIE36300A1

il I .im, it

SIM4-01 Prototyping Board SIM4-02 Prototyping Board

60

C. MCS-4 STANDARD MEMORY AND INTERFACE SET (4008/4009)

Both prototype systems, the SIM4-01 and SIM4-02 are designed to permit the use of 1702A PROM:s instead
of metal masked 4001 ROMs. The TTL used in the prototype systems to simulate the control logic of the
4001 is now embodied in two special interface devices. These new devices, the 4008 and 4009, provide
direct interface to standard program memory, either ROM or RAM, and to TTL 1/O ports.

The 4008 is used as the address latching unit, accepting twelve bits of address in each of three time periods
A1, A2, A3. The address is available to the program memory during M1 and M2 when the CPU accepts
instructions and data. The program memory may contain up to sixteen 256 byte pages. The 4008 also
stores the 1/0 port selection code so the appropriate input or output port can be selected during the execu-
tion times X2 and X3. Demultiplexing of the eight-bit instruction word from program memory and trans-
mission to the data bus is carried out by the 4009 at M1 and M2 time. By way of a four-bit 1/O bus which

can communicate with up to sixteen input and output ports, data is transmitted to and from the accumulator
of the CPU via the 4009.

These silicon gate p-channel MOS devices packaged in 24-pin ddal-in-line packages can replace more than
twelve packages of standard TTL logic in systems similar to either the SIM4-01 or SIM4-02. Appendix B
provides the complete specification for the 4008 and 4009 along with examples of various system con-
figurations, '

FEATURES

Directly Compatible With 4004 CPU
Interface 1702A PROMs Directly to 4004 CPU — Completely Eliminates TTL Interface
Permits Program Storage in Alterable Memory

Easily Combine PROMs (1702A), Metal Mask ROMs (1301), and RAMs (1101, 2102)
for Program Storage

® Expanded 1/O Port Capability

Each Port May be Both Input and Output — Up to 16 4-bit Input Ports and 16 4-bit
Output Ports

Number of 1/O Ports is Independent of the Size of the Program Memory
1/0 Ports and Control Lines are TTL Compatible
Execute MCS-4 Programs from any Mix of Standard Intel ROMs and RAMs

New Instruction WPM (Write Program Memory) is Used for Loading Alterable Program
Storage (RAM)

OUTPUT OuUTPUT

(16 RAN!S !VIA'XIMUM) 4002 RAM []

4004 4002 RAM

CPY REGISTERS REGISTERS | > | : l »

A ¢ # * (16 INPUT PORTS
Y - + AND 16 OUTPUT

A
\

(4 BIT DATA BUS) . PORTS MAXIMUM)

4008 — - 4009 _,_[E}._._
ADDRESS » - 1301 ROM > - 110
LATCH — DEVICE

L [e YO

(MAXIMUM 4k x 8) - 1/0 PORTS
SELECT GATING

Basic MCS-4 System Using 4008 and 4009
61

»1 22
o5 =Rl ~
Py - S ———
3 22 —_
+5
.2
oty ——sl>e
bb ? e 13
7e04 W2
43 4 7400
3 3060 1
bob2" z iz _do ‘l° 2 2 n . 140 D!
A _E. 7>°—‘“' '——I,, >°;1404- — 404
F112 10 r404 — n.c _{‘ S0—¢
o 6""3' >D¢ o _di u| 20'® xz 2 %04
"
7404 J404 . 7 " » Y
bz 62K ll: » ' 2 d2 g ” " 5
s 7404 1404 3060 1400 1600
109 6.2« 8 3 43 ’q,_
"“W“h‘, >° b a do 2 2 9
7404 Is04 & > 1 f
4 a2l 3015 . "
vy 3 3
Do i 0y D3 A & ow " 92)
To 4004 oz H @ 30
°] 4e i e :: 1404 7400 03
N— SF— N &
K~ 1
1404 - 13
4
_ﬁ’— —
T
L —
™
—
= —3
Y
- 5
TIY N :) ¥ N g e :zog b:'
\.;:: ",::«:‘d 8234 f___-g s ‘po."i.
> 22 ¢2 p: ispdd
¢ = X2
?: s -f .21 PP - Mer)
9 ' t1 s t wpAL_
IZ 14 d 2 0.2 Jio ": . :: oz
s lu . - :a fort] reos) n M
3] "
" 0 ' —a 1400
; : o = : 5 " %) >e
3003 q s 2404 T 10
£e s 28939 83 3003
3 —:«:/sz - Bli‘ 78 AR AR AR L # 3404
2 " A = iz - " 2 2 5 " 3 vgp{ N ’Qﬁ |
ap i “ 2 M A T ~ do "
12 7404 03 P 21 7 5 ' A %= e sl
s003 7400 4o 9p 0 B 5 22 ol ! |
) s : | ny
A 13 [85 8,8, 8, 4 4 | . 8
[240 5 --e:l] “a 3 ' ¥ s 4. :u]
4 taf— M2 "y - !
R et bl =S L
5 3404 ~ 9 _ u
| | 7400 - -~ N 5
+5 3404 i It ':L/“
I | Y
| | 7400 4
: IR | | = 2 3003
<
J:»::» 333 cs'azsq» : : '
35
29 Y ! !
27 1o i !
21 T3 t !
33 5 ap— | | T
31 z 3 p— I 1
25 " (X3 !
23 e 13 | !
, 3oo3 7 | |
1 Z
) e L) Ds
I
. 53903 | i 3404 3003
. e | ! do =
: I ! Fral NOTES: UNLESS OTHERWISE SPECIFIED
1 3
| I 43],, 1 . ALL DIODES ARE IN9I4
! : l;g 2, ALL TRANSISTOR ARE EN2907
I | “p RESISTOR VALUES ARE IN OHMS 1/4W, 5%.
| 344, . 2400 , 9P- SV
|
a1]
L= Figure 16. Detail Drawing — 4001 ROM Simulator
Using 1701/1702 as Used on Both the SIM4-01
and SIM4-02 Boards.
I
1

62

63

|<¢— ROM
4_' INPUT
[<¢— PORTS

YYY)

1702 ROM
N ARRAY

ADDR REG

Inu}

HM

3

ROM

YYY

vy

PORT

OUTPUT

REGISTERS

WYY

D. SIM4-01 Prototype System
4004
CPU
COMMAND LINES
TO RAM
c™m
RAMo BUFFERS
AND
MPXERS
RAM — 00 - —e
OUTPUT] oam
PORT — y
RAM —
ouTPUT] ;OAO; 4 L
PORT —
. -9
RAM —d I BUFFERS
outpur —] 4092
PORT RAM
cM [Y
ROM
RAM —] ———L o
OUTPUT —] ?:;
PORT — SYNC

TIMING AND PORT

LOGIC

¢

y 73 Yy YA

t

DATA
BUS

bt

¢ @2

MCS-4 System Using 1701 PROM

cLock
CENERATOR

H
Al
X
h N
Q N
S ¥ 3
3 « 3
O T |
TEST RESET ¥ x K
rrsT 4 RESET rrr
SIENAL CENLRATOR INTER FANCE

SEE DETAIL SCHEMATIC PAGE 63

Figure 17. SIM4-01 System Block Diagram

*5V a4
4 JBx *
zooPs 1B loo P#
rIH H —— TO 4004 B
2 s 14| .yt)
4 2) ¢————» TO 4002 2AM CMIP O
" STl {1
" $———— TO 4002 RAM CHIP |
+5 7 ? o 240 © e
— — oo ¢
+s s50p¢ §———= TO 4002 RAM CHIP 2
. L & TO 4002 RAM cHIP 3
TWO PHASE
cLOCK ﬁ
GENERATOR
+5 +6
3% ‘t* $ 13k $x
200Pf ¢ |ocn'4I 4 S +s +5
1
! r‘ _ ———— TO 4004 @2
T2 1S 14] g2t 22
s 2 0 ¢————® T0 4001 RAM CHIP O
9e02 9602 3240 R | o
- " d2r2f).1e | —
’ 9 A { 240 ' TO 4002 RAM CHIP |
= —" —
+5 Sops ———> TO 4002 RAM CHIP 2
‘ < le————— TO 4007 RAWM CHIP 3
b
-io 4
47| 2o
/- +5 +5 +5 41
356K
J2a0n
<
Lk euza0n
S0P TESY vel
|l
470N
Yew
N.C
-10
TEST AND RESET
SIGNAL +5 +5 +5
GENER ATOR)
+5 ar w 27k S %
>240 .
4 EM 2907
50 P§ '\L RESET E]
410
Zow
-10
+5 +5
TO 4007 RAM s TO 4002 RAM le 2K NZ907

Elr—

+5
F0 -
@ TTv
f/‘/@g}’ﬁﬁ 6.2K3 0.1 1f
TR LEROER

TTY RECEIVER

=

CHIP I
QuUTPWLT O

TTY IN

X FACTORY S&cs07&0

Z2N2907

390

INgis &

:
1

- 10

TAPE READER CONTROL

CHIP O
OUTPUT O

2TTY
RNTER

TTY TRANSMITTER

J

Y.
MCS-4 AND TELETYRT
INTERFACE CIRCUITS

Figure 18. SIM4-01 Clock Generator, Test Signal, Reset Generator and Teletype Interface Detail Drawings

65

s

RO (A-0)

»S .
THEV £ xns
o i l 8234 I iy
3 03333 es | A% S 12k azz
W — R 5 abe 70
ROM | 77 z a4 N oo Al
S "] e 390 69
5 3% o & a5 * &
8 Wel 7 234,026 2 | 15 a9\ 8
B 4 %A . " /Du Jy 2% 7 77y N
A 35 6.2k A5 1< , 2 T il LN 7/
33 YL — NTE detd 'ﬂ‘?' __(_d‘ . 61:{\7_. .
g 3003 o2 snvt:t/r i 2239 R37 62K l{."‘ TN ds 4
e 13333333 %l,, o 'l:Alh f X3
7904 i
35 LAIZ rt
oo, | 2 / - 3003
27 o4 2]y
23003 33 S
3 w#om 31 2 ”
433 Pririgt g v 3 o Op
d 2y » o5 Oi
As3)E i sa 02
) O3
3003
30 LT 2!
> o 7&2 / JAf | 2 32
Azz A 240 »5 o | y I
7404 b1z 7008 can L7 2003 sl al ¢
a3 LN 1t " . s 7200 _l‘ - A T e 28
72| 474 > 5 1Py - 52 o’ Vi) a27 + |
/3 8if 7704 Ll L3 /0 21
13404 arz - z¥00 [IMANY 1 : 5" ;}. bl 30
Al2 Al [xa¥ e 11 L\ . | jr
8/ -), 10
‘ 7900 “QQ' e { I 2 o & 1) 22
50 e oA, uA."l‘: 1 1 "\ | 3
i) AL L La—r L=
; : 3:7 ” P rmcs p] aom .._," 710, -==73
3 2 5 Vi L8~ oM -Ram o / Z
5 ¢ e Y 2 ARG 334 R et "
o » om0 SlE 5 3|3} 5] ‘g/:'mnu«,,u ¢ slo, w58 Lo [Ta1 «!
13404 1985 9 5‘3 ‘. 9 : _‘;;:":-’;,’ 10} 20 +5V 2 /8
iz 1886 ; : &) o v 43 s M ‘A“u 3404 o | |
77 A7 g 2 r, e—"1 7904 A e
w Ld/sds) t 8 ; "" 8.1 9 “#A 1z T2 4 ’A &) »20
T; +& 11701/ T ecser (24 g el | 12
sywe oA | |
M4 1702 v ! i 3 A Sy WL
| A 12! [—1’47 ”| 1)y g ; 5 | |
Az WR o 7], s A Phiag [) PR
FECar ey T, ~ U=—_gJ L= At7 Z
za 4 e /islo. > 54 b2 2 - ‘s r——1
s nt /910> 52 3 s A
1 2z 7 s 73} 0y 50 > 7P 4
] : 1 2o n1 £ . 2 il 7900 !
3 4 1 9 ar ste AL Is | [~} <
/5Ae ’ 4002 37 é
o 9 7 42y) | |
f 03 6
13404 11701/ | il 3, y
£r
[ri\
Al3 Al3 #q 1702 lo——— 24 1.0 A 9
3404 =7 3003 by 2
r=enen OATA anp 1 £ “
| |, 700 7 A3 ouT W 16[0, > P 3 > -j
Az —H 73 o ¢ . S s|o, w16 27 —J
! 1jA 24 gfe 3y 9 No-wes / 3404
| v /a2 CJ & 30w 42 5
| 1]+, . a4 S ! P /0| POPIV h 2z
! ! lAl4 20 4 3 Ao 3
Al — " i 4002 p
720 (Wi S50 986 9 B 2 K5 P
-5 - 4 Y LI n Ed /2] A8 U
L e meser AL ~as0 704
= o 19 & " Zir* s Azo 3060
NN s 1701/ . Za 1 A9 ::
1702 Us 7 . i IN
*5 — A CE X
2 L1z slo»38 |& 3
Lvoad 3m0 4 P4 3 o, 360 R A6
e zm gyl ¢ 713}0ye 24 Uil ______]
" ’ Az py i 10} Po-100 & -)o -jo
] -) 71 A3
3 7 A3l e
J 2om slL 4002
< Y : -2 5
18 86
STr 6.2k e e T reser))
e ash #0121 146 2 of NOTES: 1. Pin numbers are shown for wirewrap connector.
L1 1701/ b J—i— 77w 2. All 1/O pins are designated with respect to negative logic.
73 $— ~iov .
1702 | | 53194 *Resistor Factory Selected.

3. V¢ (+#5V) —pin 5, Vpp (—10V) —pin 1

GND —pin 3

67

(PC 114-C)

55

0 (A-0)
0 (A1)
0(A2)
0 (A3)

0 (B-0)
0 (B-1)
0(8-2)
0(B-3)

0(C0)
0 (C-1)
0{(C-2)

0{(C-3)

0 (D-0)
0 (D-1)
0(D2)

0(D-3)

Figure 19. SIM4-01 Complete Schematic

N

= e ~ =
Cll +©
Al A2 A3 A4 o
A9
I o] = o o) o)
AlS Ale Al7 Al8 Al9 A20
Cc7
<>
oD (¢ — — = =
AR A A~
T E PEN é @ A25) A28 A27
. o - o ——
—
A3 A34<A35
e}
% : %
g: ko]

Solder Connector P/N 226.23621-10% RPNMIKIJIHWHTFEDTGCEBAZY XWVUTSAPNMLT KT UIHTFTETDTE CSEBA

{ At
71 69 67 65 63 61 59 57 55 63 51 49 47 45 43 41 39 37 35 33 31 29 27 26 23 21 19 17 1513 11 9 7 § 3 1

Wirewrap Connector P/N 261-15636-2

Wirewrap Connector P/N VPBO1E3GEQCAT 72 70 68 66 64 62 60 58 56 S4 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 coc

Figure 20. Component Side of SIM4-01 Board

Solder Connector P/N 225-23621-101 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

zlmphcml
B 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Wirewrap Connector P/N 261-15636-2 2 4 6

Wirewrap Connector P/N VPBOTE3SEGOAT 1 3 5 7 9 1t 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 69 61 63 65 67 69 71 COC

Figure 21. Pin Definition — Reverse Side of SIM4-01 Board

68

{Pin numbers are shown for wirewrap connector —
All inputs and outputs are designated with respect to negative logic)

PIN

No. | syMBOL DESCRIPTION

1 -10v -10VDC POWER SUPPLY - Vpp

3 GND ov - TTL GROUND

5 +5V +5VDC POWER SUPPLY - VCC AND Vss

37 TS TEST SWITCH CONTROL (NORMALLY OPEN) .

45 R TEST SWITCH CONTROL (NORMALLY CLOSED)

41 RSy RESET SWITCH CONTROL (NORMALLY OPEN)

43 RS2 RESET SWITCH CONTROL (NORMALLY CLOSED)

49 TTY(RL) TELETYPE KEYBOARD or TAPE READER CONNECTION 1

53 TTY(R2) TELETYPE KEYBOARD or TAPE READER CONNECTION 2

55 TTY(T1) TELETYPE TAPE READER CONTROL

69 TTY (X1) TELETYPE PRINTER CONNECTION 1

71 TTY(X2) TELETYPE PRINTER CONNECTION 2

51 811 PHASE 1 CLOCK

47 do1 PHASE 2’ CLOCK

67 Do DATA BUS 0

65 Dy DATA BUS 1

o4 2, DATA BUS 2 MOS COMPATIBLE OUT
63 Dy DATA BUS 3

66 SYNC MACHINE CYCLE SYCHRONIZATION SIGNAL

61 CM-RAM; RAM BANK 1 COMMAND LINE

59 CM-RAM RAM BANK 2 COMMAND LINE

57 CM-RAM3 RAM BANK 3 COMMAND LINE

68 TEST TEST SIGNAL USED IN CONJUNCTION WITH JCN INSIR.

72 RESET RESET SIGNAL USED TO CLEAR THE SYSTEM

39 1 (4-0) ROM INPUT PORT, ROM O

17 I (a-1) ROM INPUT PORT, ROM O W

13 1 (a-2) ROM INPUT PORT, ROM 0

9 1 (A-3) ROM INPUT PORT, ROM O

15 1 (8-0) ROM INPUT PORT, ROM 1

19 I (B-1) ROM INPUT PORT, ROM 1

11 1 (8-2) ROM INPUT PORT, ROM 1

7 1 (B-3) ROM INPUT PORT, ROM 1

35 1 (C-0) ROM INPUT PORT, ROM 2 | TTL COMPATIBLE IN
29 1 (Cc-1) ROM INPUT PORT, ROM 2

27 1 (c-2) ROM INPUT PORT, ROM 2

21 1 (C-3) ROM INPUT PORT, ROM 2

33 1 (D-0) ROM INPUT PORT, ROM 3

31 1 (D-1) ROM INPUT PORT, ROM 3

25 1 (D-2) ROM INPUT PORT, ROM 3

23 I (D-3) ROM INPUT PORT, ROM 3 _| .

2 G (a-0) ROM OUTPUT PORT, ROM 0 |

24 0 (A1) ROM OUTPUT PORT, ROM O

10 G (A2) ROM OUTPUT PORT, ROM O

12 0 (a-3) ROM OUTPUT PORT, ROM O

32 0 (B-0) ROM OUTPUT PORT, ROM 1

28 0 (-1 ROM OUTPUT PORT, ROM 1

30 0 (B-2) ROM OUTPUT PORT, ROM 1

22 G (8-3) ROM OUTPUT PORT, RoM 1 [~ TTL COMPATIBLE OUT
16 o (¢c-0) ROM OUTPUT PORT, ROM 2

18 § (1) ROM OUTPUT PORT, ROM 2

20 0 (c-2) ROM OUTPUT PORT, ROM 2

14 0 (-3 ROM OUTPUT PORT, ROM 2

4 o (D0) ROM OUTPUT PORT, ROM 3

6 0 (-1 ROM OUTPUT PORT, ROM 3

8 o (0-2) ROM OUTPUT PORT, ROM 3

2 0 (0-3) ROM OUTPUT PORT, ROM 3 _|

70 RO(a-0) RAM OUTPUT PORT, RaM 0 —— TRANSISTOR BUFFER OUT
62 RO(A-1) RAM OUTPUT PORT, RAM 0 |

60 RO(A-2) RAM OUTPUT PORT, RAM 0 |[— MOS COMPATIBLE OUT
58 RO(A-3) RAM OUTPUT PORT. RAM 0 _]

3 RO(3-0) RAM OUTPUT PoRT, RaM 1 —— TRANSISTOR BUFFER O
54 RO(B-1) RAM OUTPUT PORT, RAM 1 ~ | g
52 RO(B-2) RAM OUTPUT PORT, RAM 1

50 RO(B-3) RAM OUTPUT PORT, RAM 1

48 RO(C-0) RAM OUTPUT PORT, RAM 2

46 RO(C-1) RAM OUTPUT PORT, RAM 2

44 RO(C-2) RAM OUTPUT PORT, RaM 2 [— MOS COMPATIBLE OUT
42 RO(C-3) RAM OUTPUT PORT, RAM 2

40 RO(D-0) RAM OUTPUT PORT, RAM 3

38 RO(D-1) RAM OUTPUT PORT, RAM 3

36 RO(D-2) RAM OUTPUT PORT, RAM 3

34 RO(D-3) RAM OUTPUT PORT, RAM 3 _|

69

s-%3438"
FEE] iz
T g
v P
i3 i:
bR vy
‘ L\
P o CHIP o CHIP o
V8S —d5 N cM-RAM 06—y Ves—5 | i cm-Ram 1 —d VeSS | lif— CM-EAM 2 CcHIP O .
6 —e 3 1}~pe e 5 0 & — 3 oe . eams - o .—1..
—4+ €& 210 Gz 92— 2~ © ves— W= eu- —1] o [
“ue—’ LI ey e s o syme -8 % 3 os @ e ~ 100 Do 400! gOM 0: — ponr [—1Is
o 13 Y s ~ o — IMULATOR he—— 1
tsst-Ho Y 4l py eEsaT—{o RESET— 9 af— Dy 92 —71 I 2r-0 ol e e OPA Dz —] ‘l"
7w T e, e L o 7 l-os sywc —8 & 3}-pa2 D‘] uewe | veo vy — —om.
NOO <112 & o, vop —it o VOD—I12 o 18O gesET—9 J 41— D3 vs’s— —-or
Qo l4f-o03 Py 0 r4—o0¢ +5—ho T =00 P #>o —’3!
9 o3 [S 3l-oy vop—fiz & (51—0, d #0 [%
¢ + v 140z Frre—
0 sl-o, Sywe—]
cHip) cup cHIp 1 |
vag—l5 _ it cu-thmo —f ves —s e M- BAM | —d 5 cHip | ! |
o ey il-oa 9 —& 3 i-De P | N \
gz —1 4 2—0 ¢ <+ & 1o, T4 ves—{5 _ uf—en-mam 3 — __ |
’vue—.: s~ oy sywe —8 4 sl py s ¥ & e 3 1=De -z |
ZEsar—{ o o}—Ds eEssT- 9 Y al-Dy 9 ™ 62 —v < 2o it 1 "
% —w T el Oe ~re—16 . 16} 0 e . sync —{@8 o 3}-D2 —)
VOP —j1z 8 W0, vop —12 \ 6o, vz REseT—9 N ap-D3 i ’
'] — oy o ‘4}—03 r A s I |
M - Q18— o S oD —»2 16—
¢ % b s + v *S o !]
3 1f-os | |
cHIP 2 cwir z cHIP 2 | \
5 . il en-mame —df ves—5 2 |- cM-mAM 1 —md ves—E _ if—cm-mamz —y cutP 2 | |
. |- oe e Je I Lo, o —e 3 1oe) 1
a 3 1o, o 41 & oo 92 41 < 2o, ves—5 nh—er-maM 3 — o | |
8 302 syuec —{e , 3—p, srne—{8 ¥ si_p, ¢ —e 3 i[—Do |
= s vV 4Dy REoeT— o 4f— Dy ReesT—9 ~ 4f— Dy P —7 & D - | |
A e % -0 # 1o N re—0, syne —8 8 3}—Dy — |
k15— o voo—12 o 1510 voo—iz o 150 gesgr—o Y a}—Dy |
0 1al- 0 o 14—0p. o t4f—o0, +s—ia 8 1ef—Oe | |
3 13— 03 g 130y g 303 vop—i2 § 16— O 1
o iAt—or |
3 1305 | I
cuip 9 cHip s cHIP 3 |
V86 A5 o~ i} cr-mar 0 —d 5 o em-mam (— ves —{5 uf— e m-ram 2
. —e I |—D. “ 5 tf—-po — | @ o T if-0o s . "";'m 0 .—:.‘
- - — m ~ - cm-gam s — - —
N -1 s o 1 & 1_0- ¥ 47 < 7o _l‘)‘: Do = 4001 ROM o.‘ q roer o 1.
syue [3 3~ Dy L2 3+— 0z sYuc —{8 3[—Da o, —
—s YV 4}~ ~oos S P o . BIMULATOR 02 — — 13
eESET — o 4~ Dy v 4—0g ————— RESEY— 9 4}—Da U o2 — N& 1702A 2 E
s L oy 0 N jul—o. ~0—10 w 1bj—00 [o, or 7] um | voo oy — =2
voo—i o 18}~0, n & 150 vob—iz \ i5f~-0, o3 — V’_’_ —’o_
o 1al-o, o ta|—0: o 40z — @ e — #7 ""‘s:
S o 8 B2 S nf-oy :g' i #i5
o: svme —
H
N
) FERIE PR
g8 88 8
DSy 821 & Vop = -10v
*z TEsT eESET ';« N E [S o4
T T t s T 1 Vss = #5v
CLOCK TEST & RESET TTY
GENERATOR SIGNAL GENERATOR INTERFACE
! L 1
1 I . e
+5 +5 d +&] . +5
28¢ hadd 282 ENz2707
et S 35 S¥ €5 2 a9 34 pes +s c19 eam as To 4002 2AM 8 -
200p; 100 p¢ 10 .08 1 Te 4002 £84 282907 cwr o Q
2401 21
- GANK O 5.8k VTPUT O
L% —AA—>gann gt ouTPLT O 124 °©
- 22 +—WN—DBaN4 2 o 81 51422 :J’;,,., 25
A 8ANK 3 ATS PR Jt
278 Qo [= Yo
i1 K 3014 J2 1 : +5
i ___D TEST 2105 2TTY
5 "w
"]‘ I 4 | | gios PN
80P soor 1 Sk 1 ,
cie OTTY N 17
i : ~1o N3oIA <&
a9 144 3 (442-22) bt IN9I4 ¥ FAcTORY SELECTED
264 |] 7400
[1¥ S . — 10V
+5 +6 ! I Hr 8O -tov
R8Y,) | | or PERDER R 5
Clie (AT - - -
* * 4 ITTex
200#f 100 P4 R 2404 ! TAPE READER CONTEOL TTY TRANSM
’ 8ok 0 p o sV TTY RECEIVER
g9 [BRNA | ¢2 Lot
22 —A——>gon 2
P—A——>55n4 3
Q13
ET-ITY Jz
]lv dzL
[
2907
Qn
L34
2T A

70

r::«‘j g
L4 S0 d-lo n: 1,
(5 sel T ;
— P B
— ryee al et
7 i
I |+ | romg
a1 A >°—‘
ll E‘;m o o 4z LN F7Y = A3\ :
x
5 7404 : : i
5 asf | {1l
seaf | 5] 3K N 4 t i~z | — st e Abi 3
+s |1 3 Wy <7y =2y !
s w| 5] o ot Fe0d TaNos . 4740 b=z T
[t T W '>‘ 3N ot T ™ :):}, T 158
I I i i
ni—‘ 3 :f" 43e0a 4380e . ¢ T Harzps
== 5N o O 3003 T I”r 143
o E 3 259 Altos AtSes 4 ! I e~
: o =1
il j_] L2 AN 8 A _:_ 430 ervdl Larepe!
‘15. q a1 Kis [5] | ! L
. yaoa Aihea lierzpal 3
S 1 "{4 7
’. . iz [le
m »5 hid tle 5 sy |
1 Sk asd) & 7)
— R+ Im \ [w 4 3003 2 As o
21 ¥ 5 a4 I3 5 |
4 M 5o " SO ll L 2om2
| M 5 > e
2 [o m w0 73 T 72
| § . 1400 P
= : - T | e ; e
) Jn ad3 Asr 2 . Neo refahe
= s a i s o 22 e e
) ‘ .,: 4 1430 T4No4 13 Bf—— w6 " 7 _—_f_{w 1’
[— SHH e se i W LT —
Ow | —d
3 L_ l) ith *‘l—/u el : iy ol 7]
— 1) 1 1 [FeoM3
= P Cand Uspe oo
id 2] L
2= 10)A34 } ,j'r)
3003 ez el o
T oP—T 3
i s
(i (N pen IV
/] 38 fiz " T T 12
g[o— = o [T T
[e b LIg Y "I =
W= _ 1 [feoms
o v i - ezl 5
E— e
= Lz e
tad 9 W7 Lo - T e8] 3
a4 4004 3 o \j E i T
AP
E_J rEsGT 154 o - PR T Ll g
T 9 - - —— H :
3 P, 3 &

I To PIL & OF gooz ? ol - 43 P T m
hipdad I 10 1 r _Z 5T 1 [eonn
™ JEST o Y1 N ol =1

— 22] Bhn R --- Epes]
k2] fea}— v 241 [MEMHEMIE M] 1
= lm? .8 249 249 w5 5 el

o : he] |,

[r ¥ 7t 7= 5+ o e (] a2 A e
3 % LY +5 | s FREHE R . "”; . W 2 | S0 5)
! & — 2
¢} — P— b [3ee PR T2 o Vi 4 ¢s oy « N | d
» a7 Q oy T
m gz ar 5}" oot |:_ e AE 3 -+ ,2.,” re Carr ey MTI.‘:_{‘,
— ad S 5o ? ndd 4 aze wot oS I8 Ap | %9 1 t heome
n el o a vt w A1 syl
® s o1 P id R Ly ‘I = [!
5 < _— . Ui
Tars ew a D il NI SEry 2 “abr—< |,
esavee cn S e PRI} J2) b I sy * A N
CONTROL .2 ry e ' s L4 i3
I R as)y L %002 ¢ «I:F. 5 ™ s1ly 4a 1, s
oy 2 6,1 55, Abbg NEE] 13 As T IR
53,] - v an > a
s wr . - 5% f ot o — =550 HAEb o)
B o™ NED pimn ¥ L o i | 7 Leown
i s o T empel
a 42 T Je__o Rl vz R H ! L%
= ’ T i * Torsrs! =
a003-2 T = A] 75
§ 123 ast e N ”A'ff,'. 24 | 740 14 | |\j! 2] j3
A L les} D I 1 | | E== i
N L 2 3 |65} 2 RN L8 1 g
HREZ pm i T !
i . Lt I ol
z ‘ e pihrgl o) |)
: — . ||=0 P X ‘
fuS frw 11" | 1 ! i
3k H 4 L we |l [d
Joott, — . 1o -0 1 I L
5 a3 22 soerd l,2 I da
& <) o s i ! =
) SiTe H — ast 5“” ! | I) | a0 11
e 1} [
H— = 1] St o 2
r - | e
Rue | d2 245 1 J2 e | I 11 ! C
3= e o] [7] [RAEN
iad yooat v} > = 1 |
20021
— |7 asa 2 4 '8 aer 2 |
st H 5
ad M L \4.¢ N
154 Y a kd |
g2 [T e J2 o . 3 !
D a2 D = |
NI s 2 2-1 |
B Padd - 'S av2 2 #'
§ o] JETIA i a | 54— ::
= - 4] 3 45 2
3 i —1—g w e S 1 AL
] § A% e as
d| & T) e e g — :
x| P ooz P! o o e re
73 x| [40022 o4 re
- a5t Ry oo . 0
4’ LEL] 16 3 s b Tie csia
Kl _ 'S ez - "
i . -~ 25 ne
A ar
0 28 g —
5 2 e
Kd T, 3 e T | 8> aa
y 83 ¢ .
- o 3 b oot o 2 e NOTES: UNLESS OTHERWISE SPECIFIED T3i9s
 as ad s - S
g0 w5 = kd AP " A*] . ME IR ‘g A |. ALL DIODES ARE INSI4.
5 3 —]
-7 A S L2 ? EEEERNE S e o 2. ALL TRANSISTOR ARE EN2907.
It
Ei"m E_h“’““" 3. RESISTOR VALUES ARE IN OHMMS /4 W, 10% .
$33us ' L min, 4. CAPACITORS VALUES ARE IN MICROFARADS. [¢
i ' 1
i (s} [E=> cri 10 RS ARE OPTIONAL -9
100 - 6 ¥FacToRY Setecreo.
7 ALL S/GNALS REFERENCED TD NEGATIVE LOG/C.
! Az—A! 292~ AI9 PIM 12,13,i%, 22,75 ARE TIED To +Sv.
rolra] 2|0 p|w|al2] 1)
3 F -3 s
~ a 60
LR R

Figure 24. SIM4-02 Complete Schematic

72 73

A2 A3 Al A5 A6 AT Y] A9
(Zc26)
U U 9] U U U U 8)
A12 A3 Al4 AlS Al Al7 Alg Al9
ucw

3 o CEH1O
- é
. @-e-:&%‘"’ g
. CR1IG—CD—O &
Ra ®,@ @) im0 Swme
o g0
R %

@
@] o <4 r’ @@'@ v
' =lE i) 000 -
- A
A32 A3l A37| A3 S %‘ig Ad0
. J 2 20 (KT7%0
—] e
S
SIS

o QO
:r-?
—J L] K
(O {R112
-:% '® ‘e‘v’mﬁ o
o o) o o ’— (o)
Ad3 Ad4 AdS A4g 451 As2 A53 As4 ASS As6 AS?
SHER 54
[eXianan) o
> o o a59 A62 K63 A6k K65 A66) A67 A6g
e A
fex o
[e 3]
a0
(k83O o
@ G o
CR17
| LRI CTROCTTOTT LRI 7
l.llMllﬂﬂ”u’ﬂ“w".ﬂ-ﬂ)‘ﬂ-- 2 8 10 4 2 W XM N LMW MM RN MM R W

NOTES: Unless otherwise specified.

All diodes are 1N914,

All transistors are EN2907

. Reslstor values are in ohms 1/4 W, 10%
Capacitor values are in microfarads
A29.and A30 was 3015

R1-R8 option for additional memory only
*Factory Selected

Amphenol Connector
PN 261-10043-2

Do s N

Figure 25. Component Side of SIM4-02 Board

“CN O o

Figure 26. Pin Definition — Reverse Side of $IM4-02 Board

74

SIM4-02 Board Pin Description

(Inputs and outputs designated with respect to negative logic)

‘;(I,I_‘ CONNECTOR SYMBOL DESCRIPTION ;gj CONNECTOR| SYMBOL DESCRIPTION

6 &8 J2 +5V +5VDC Power Supply 67 J1 0 (D-0) ROM OUTPUT PORT, ROM 3 7

10 & 12 J2 -10v -10VDC Power Supply 72 J1 0 (0-1) ROM OUTPUT PORT, ROM 3

284 - 32 GND Ground 70 J1 0 (0-2) ROM OUTPUT PORT, ROM 3

2684 J1 SPARE Not Used 74 I 0 (0-3) ROM OUTPUT PORT, ROM 3

1 Ja I (a-0) ROM INPUT PORT, ROM @ | 57 J1 0 (E-0) ROM OUTPUT PORT, ROM 5

5 J1 1 (A-1) ROM INPUT PORT, ROM ¢ 64 J1 0 (B-1) ROM OUTPUT PORT, ROM 5

13 J1 I (4-2) ROM INPUT PORT, ROM ¢ 68 J1 0 (E-2) ROM OUTPUT PORT, ROM 5

9 J1 I (A-3) ROM INPUT PORT, ROM ¢ 63 J1 0 (E-3) ROM OUTPUT PORT, ROM 5 E

17 J1 I (8-0) ROM INPUT PORT, ROM 1 58 I 0 (F-0) ROM OUTPUT PORT, ROM 4 E

3 J1 1 (B-1) ROM INPUT PORT, ROM 1 60 n 0 (F-1) ROM OUTPUT PORT, ROM 4 |— %

15 J1 1 (B-2) ROM INPUT PORT, ROM 1 55 Rl 0 (F-2) ROM OUTPUT PORT, ROM 4 8

7 J1 I (B-3) ROM INPUT PORT, ROM 1 62 J1 0 (F-3) ROM OUTPUT PORT, ROM 4 E

20 J1 I (c-0) ROM INPUT PORT, ROM 2 59 J 0 (6-0) ROM OUTPUT PORT, ROM 6

21 J1 I (c-1) ROM INPUT PORT, ROM 2 61 J1 0 (G-1) ROM OUTPUT PORT, ROM 6

27 J1 1 (C-2) ROM INPUT PORT, ROM 2 66 11 0 (G-2) ROM OUTPUT PORT, ROM 6

22 J1 I (C-3) ROM INPUT PORT, ROM 2 65 1 0 (G-3) ROM OUTPUT PORT, ROM 6

23 J1 1 (p-0) ROM INPUT PORT, ROM 3 |_“_) 80 71 0 (2-0) ROM OUTPUT PORT, ROM 7

19 Ji 1 (D-1) ROM INPUT PORT, ROM 3 § 78 7 0 (8-1) ROM OUTPUT PORT, ROM 7 |5

25 J1 I (D-2) ROM INPUT PORT, ROM 3 ; 73 IJ1 0 (8-2) ROM OUTPUT PORT, ROM 7 o]

18 J1 I (D-3) ROM INPUT PORT, ROM 3 E_:’ 75 71 0 (8-3) ROM OUTPUT PORT, ROM 7 _J ﬁ

29 J1 1 (E-0) ROM INPUT PORT, ROM & 'E 1 12 R0 (A0 RAM OUTPUT PORT BANK 0, RaM 0 — 5

a AND TTY TRANSMITTER

26 J1 I (E-1) ROM INPUT PORT, ROM 4 g 20 32 RO (A-1) RAM OUTPUT PORT BANK O, RAM O] «©

33 J1 I (E-2) ROM INPUT PORT, ROM 4 3 19 12 RO (A-2) RAM OUTPUT PORT, BANK O, RAM O —ug)

30 J1 I (E-3) ROM INPUT PORT, ROM 4 t 18 12 RO (A-3) RAM OUTPUT PORT, BANK O, RAM O_|

31 J1 1 (F-0) ROM INPUT PORT, ROM 5 45 12 m RAM OUTPUT PORT, BANK O, RAM 1— 5
AND TAPE READER (@]

24 J1 I (F-1) ROM INPUT PORT, ROM 5 27 2 RO (A-5) RAM OUTPUT PORT, BANK 0, RAM 1 | ¢C

35 J1 I (F-2) ROM INPUT PORT, ROM 5 25 12 RO (A-6) RAM OUTPUT PORT, BANK O, RAM 1 E

28 J1 1 (F-3) ROM INPUT PORT, ROM 5 26 32 RO (A-7) RAM OUTPUT PORT, BANK O, RAM 1 8

37 J 1 (G-0) ROM INPUT PORT, ROM 6 36 12 RO (A-8) RAM OUTPUT PORT, BANK O, RAM 2

3 it T o) ROM_INPUT PORT, ROM 6 35 32 RO (A-9) RAM OUTPUT PORT, BANK O, RAM 2

42 7 12 ROM INPUT PORT, ROM 6 33 32 RO (A-10) RAM OUTPUT PORT, BANK O, RAM 2

“w it L3 _Rou INPUT PORT, ROM 6 34 52 RO (A-11) RAM OUTPUT PORT, BANK O, RAM 2

3 a1 1 (1-0) ROM INPUT PORT, ROM 7 44 12 RO (A-12) RAM OUTPUT PORT, BANK O, RAM 3

32 a1 T 6D RoM INPUT PORT, ROM 7 43 52 RO (A-13) | RAM OUTPUT PORT, BANK O, RAM 3

41 a I (@®-2) ROM INPUT PORT, ROM 7 41 J2 RO (A-14) RAM OUTPUT PORT, BANK O, RAM 3

» 1 T -3 ROM INPUT ‘PORT’ R 7 - 42 J2 RO (A-15) RAM OUTPUT PORT, BANK O, RAM 3 EJJ

82 2 TTY () TELETYPE RECEIVER CONNECTION 53 12 Rl (A-0) RAM OUTPUT PORT, BANK 1, RaM 0 | 2

14 J2 TTY (X) TELETYPE TRANSMITTER CONNECTION s 1 RL (A1) RAM OUTPUI PORT, BANK 1, RAM 0 E

45 72 T () TAPE READER CONTROL 52 32 Rl (A-2) RAM OUTPUT PORT, BANK 1, RAM O g

48 7 0G0 ROM OUTPUT PORT, RoM 0 | 51 J2 RL (A-3) RAM OUTPUT PORT, BANK 1, RAM 0 3

4 7 0 GD ROM OUTPUT PORT, ROM § 59 J2 Rl (A-4) RAM OUTPUT PORT, BANK 1, RAM 1 g

34 L 0 (a-2) ROM OUTPUT PORT, ROM @ 64 J2 Rl (a-5) RAM OUTPUT PORT, BANK 1, RAM 1

51 a1 0 G- ROM "OUTPUT PORT, ROM § L_‘IJ 62 J2 R1 (A-6) RAM OUTPUT PORT, BANK 1, RAM 1

46 Ji 0 (8-0) ROM OUTPUT PORT, ROM 1 'n__: 5 12 &L (A7) RAM OUTPUT PORT, BANK 1, RAM 1

43 1 0 (- ROM OUTPUT PORT, ROM 1 | g 76 32 R1 (A-8) RAM OUTPUT PORT, BANK 1, RAM 2

44 J1 0 (B-2) ROM OUTPUT PORT, ROM 1 8 73 12 RL (A-9) RAM OUTPUT PORT, BANK 1, RAM 2

45 a1 0 (8-3) ROM OUTPUT PORT, ROM 1 - 71 72 RL (A-10) RAM OUTPUT PORT, BANK 1, RAM 2

49 J1 0 (c-0) ROM OUTPUT PORT, ROM 2 . 69 12 R1 (A-11) RAM OUTPUT PORT, BANK 1, RAM 2

50 a1 0 (D ROM OUTPUT PORT, ROM 2 78 32 RL (A-12) RAM OUTPUT PORT, BANK 1, RAM 3

52 n 0 (¢-2) ROM QUIPUT PORT, ROl 2 77 12 R1 (A-13) RAM OUTPUT PORT, BANK 1, RAM 3

56 J1 0 (c-3) ROM OUTPUT PORT, ROM 2 _| 80 12 R1 (A-14) RAM OUTPUT PORT, BANK 1, RAM 3

75

:?.I CONNECTOR | sYMBoL DESCRIPTION ;3’ CONNECTOR SYMBOL DESCRIPTION
79 32 Rl (a-15) RAM OUTPUT PORT, BANK 1, 32 J2 R3 (A-11) RAM OUTPUT PORT, BANK 3, RAM 2 ']
47 J2 R2 (A-0) RAM OUTPUT PORT, BANK 2, 38 J2 R3 (A-12) RAM OUTPUT PORT, BANK 3, RAM 3 5
48 32 R2 (A-1) RAM OUTPUT PORT, BANK 2, 37 J2 R3 (A-13) RAM OUTPUT PORT, BANK 3, RAM 3 E
50 J2 R2 (A-2) RAM OUTPUT PORT, BANK 2, 39 J2 R3 (A-14) RAM OUTPUT PORT, BANK 3, RAM 3 .‘f
49 32 R2 (A-3) RAM OUTPUT PORT, BANK 2, 40 32 R3 (4-15) RAM OUTPUT PORT, BANK 3, RAM 3 -§
56 52 R2 (A-4) RAM OUTPUT PORT, BANK 2, 86 s CM-RAM, RAM BANK 1 COMMAND LINE @
55 2 R2 (A-5) RAM QUTPUT PORT, BANK 2, 83 J1 CM-RAM, RAM BANK 2 COMMAND LINE =
58 12 R2 (A-6) RAM OUTPUT PORT, BANK 2, 16 2 CM-RAM, RAM BANK 3 COMMAND LINE .
60 J2 R2 (A-7) RAM OUTPUT PORT, BANK 2, 84 Iz swe(rrL) E?TC{{ %Sﬂf} 7 SYNCHRONIZATION ST6.
66 32 R2 (A-8) | RAM OUTPUT PORT, BANK 2, s 2 Cr-ROM MO (EXPANSION)
63 12 R2 (4-9) RAM OUTPUT PORT, BANK 2, w 81 J2 51 TEST SWITCH CONTROL (NORMALLY OPEN)
65 72 R2 (A-10) RAM OUTPUT PORT, BANK 2, § 8s J2 TS, TEST SWITCH CONTROL (NORMALLY CLOSED)
67 2 &2 (A-11) RAM OUTPUT PORT, BANK 2, E 83 J2 RS1 RESET SWITCH CONTROL (NORMALLY OPEN)
74 1 B2 (A-12) RAM QUTPUT PORT, BANK 2, = 86 J2 RS2 RESET SWITCH CONTROL (NORMALLY CLOSED)
72 12 R2 (A-13) | RAM OUTPUT PORT, BANK 2, ?, 5 2 91L 05 PHASE 1 CLOCK
70 12 R2 (A-14) | RAM OUTPUT PORT, BANK 2, g 7 72 #2u wos PHASE 2 CLOCK
68 12 R2 (A-15) RAM OUTPUT PORT, BANK 2, 3 J2 RESET RESET SIGNAL FOR 4004 (EXPANSION)
1 2 R3 (A-0) RAM OUTPUT PORT, BANK 3, 1 12 TEST TEST SIGNAL FOR 4004 (EXPANSION)
13 12 R3 (A-1) RAM OUTPUT PORT, BANK 3, 38 J1 SRI ROM INPUT PORT STROBE (EXPANSION)
15 n‘ R3 (4-2) RAM OUTPUT PORT, BAFK 3, 53 J1 SRO ROM OUTPUT PORT STROBE (EXPANSION)
17 12 R3 (A-3) RAM OUTPUT PORT, BANK 3, 16 J1 RDg ROM DATA OUTPUT O (EXPANSION)
22 32 R3 (A-4) RAM OUTPUT PORT, BANK 3, 14 a1 RDy ROM DATA OUTPUT 1 (EXPANSTON)
21 12 R3 (A-5) RAM OUTPUT PORT, BANK 3, 12 J1 RD) ROM DATA OUTPUT 2 (EXPANSION)
23 12 R3 (A-6) RAM OUTPUT PORT, BANK 3, 10 J RD3 ROM DATA OUTPUT 3 (EXPANSION)
24 32 R3 (A-7) RAM OUTBUT PORT, BANK 3, 8 J1 RD4 ROM DATA OUTPUT 4 (EXPANSION)
30 J2 R3 (A-8) RAM OUTPUT PORT, BANK 3, 6 i RD5 ROM DATA OUTPUT 5 (EXPANSION)
29 2 R3 (A-9) RAM OUTPUT PORT, BANK 3, 4 J1 RDg ROM DATA OUTPUT 6 (EXPANSION)
31 52 R3 (A-10) | RAM OUTPUT PORT, BANK 3,] 2 J1 RD7 ROM DATA OUTPUT 7 (EXPANSION)
79 Jl A 02 ROM MIDDLE ADDRESS SELECT EXPANSION
82 J1 A1 02 ROM LOWER ADDRESS SELECT EXPANSTON
81 J A3 02 ROM UPPER ADDRESS SELECT EXPANSION
85 J1 dq DATA BUS O (TTL COMPATIBLE)
76 Ji 4 DATA BUS 1 (TTL COMPATIBLE)
71 J1 d, DATA BUS 2 (TTL COMPATIBLE)
77 J1 dq DATA BUS 3 (TTL COMPATIBLE)

76

X11. SAMPLE SIXTEEN DIGIT DECIMAL ADDITION PROGRAM WITH TTY KEYBOARD
and PRINTER INTERFACE (Intel ROM Program Number A0700)

An MCS-4 program has been developed to demonstrate both the control
and arithmetic features of this microcomputer system. This program
adds a sixteen digit integer to the content of the accumulator and
prints the new content of the accumulator. The programmed ROM may

be used with either the SIM4-01 or SIM4-02 prototyping system.

Input /output capability is provided by an ASR 33 teletype. The
prototyping system and the teletype should be connected as shown

in Section XIII. The TTY, keyboard interrogation, arithmetic operation,
and TTY Printer output are all controlled by the CPU (4004) using

this special decimal addition program.

To use this program:

1) 1Insert the ROM in ROM position zero in the prototype
system and reset the system, including the accunmulator,
to zero. '

2) Enter from one to sixteen integers from the TTY keyboard.

3) Tf fewer than sixteen digits are entered, depress the(:)
key.

4) The number entered is added to the content of the accumu-
lator.

5) This procedure may be repeated until the content of the
sixteen digit accumulator overflows (X's will be printed).
This overflow will automatically reset the system.

6) To reset the system at any other time, use the reset switch.

This program uses both the keyboard process routine and decimal
addition routine explained earlier in this manual. In additionm,
the TTY printing subroutine is used.

Example of Addition Program .

Printout On Teletype
Reset System

1234 (:) Enter number and add command
1234 » Printed result

22 (:) - Enter number and add command
1256 Printed result
111111113131171311 Enter sixteen digits
1111111111112367 Printed result
9999999999999999 Enter sixteen digits
XXXXXXXXXXXXXXXX : Resulting overflow

System automatically reset

The listing of tape A0700 follows.

77

H

noBo
0001

0002
oan3
0204
0205
2206
2007
0010
0211

vai12
2113
0014
nn1s
Ba16
an11?
P20
Bo21

o222
0023
nu24
0025
PN26
Ba27

2030
nv31
no32
2033

0034,

PO35
nPA36
ana37
0040
@241
2R 42
043
PR4a
A0 45
B0 46
[1X]
PAS0
@951
2352
PBS3
RPDS4
P0SS
2056
@057
N260
061
BR62
AB63
8064
0265
0266
0067
[4]% %)
0071
2872

2073

PO74
2A1S
876
277
0100

SIXTEEN DIGIT INTEGER ADDITION MICROPROGRAM WITH TTY

2337
Q042
[d514]%]
N4l

034t

hn32@
0244
P030
Vo246
Bo12
Q045
2342
hl144a
167
2212
2320
2275
0044
PA6D
V120
08260
2120
0367
n361

02321
23030
2120
02171
AN 4n
2015
2161
0036
2041
9352
v364
8341
8120
0300
004D
2000
9320
0262
9320
9263
n330
0264
0120
0271
0361
041
2352
8364
8341
0366
8242
0366
262
0243
8366
0263
2120
2390
0164
A056
0337

KEYBOARD AND PRINTER INTERFACE

/ PROPERTY OF INTEL CORP SANTA CLARA CALIFORNIA
/
/ PROGRAM APE-(CO20-4 14004 16-DIGIT ADDING-
/ MACHINE W/TTY-«KBD DRIVER
/
/
/ PROGRAMMER PHIL TAI 3APPLICATIONS ENGINEERING
/ DATE OCTOBER 27,1971 @ #3830
/ PALL-1V ASSEMBLER
/
*0000
DECIMAL
BEGIN, LDM 158 / SET RAM (@) PIORT TD 11118
FIM 0<30
SRC @<
wMP
LDM @
FIM 2<30 /1R(4~-5)=0
FIM 3<310 /1IR(6I=03IR(TI=10
REP,» SRC 2«<
WRR
INC a4
1SZ 73 REP
NEXT» LDM 2 / SET DIGIT CNTR
XCH 13 / IRC13)=0
FIM 2<; 48 / IRC4)=331R(5)=0
JMS 3 CLRRAM / CLEAR RAM
JMS 3 CRLF / POSITION CARRIAGE
CcLC
7/

¥ TEST TTY/KBD INPUTS
/

ST, JCN TZ23ST
JMS3 SBR1
FIM 0<313 / IR(OI=03IRC1I=13

TEST» ISZ 13TEST
SRC @<
RDR
CMA
WwMP

JMS; SBR2

FIM 0<30 / IR(B-1)=0
LDM
XCH
LDM
XCH
L. DM
XCH

/7 IR(2)=D

/ IR(3)=9

rRLEVES

/7 1IRCa)-8

ST1, JMS 3 SBR1
CLC
SRC @<
RDR / READ DATA INPUT
CMA
wmp
RAR
LD 2
RAR
XCH 2
LD 3
RAR
XCH 3 / EXTEND REGISTER TO MAKE 8 BITS

STORE DATA IN CARRY
LOAD AC=1R(2)
TRANSFERE BIT

RESTORE NEW DATA WORD

NN NN

JMS SBR2

.

I1SZ 45STi
LbDM 15

78

D40
20nN0Y
2041
8341
9333
n223
N361
0024
Q154

0059
0100
0243
P0BS1
@342
2150
V242
vas1
2342

0040
2001
[JRE]
ne17
BR4a6
nNAT6
aBat
0351
2N 4S5
2340
2245
2370
p265
@361
247
0370
8267
0361
V161
2131
0243
2045
D340
2175
0030

2120
a367
DV 40
Po00
P44
0060
2329
0266
8361
B0 45
0351
Vo al
2353
8373
0340
0141
2145
B166
0165

P22
n242
B054
2017
n329
0272
NR 44
PO
2321
@0 4asS
9344
2045
8354
0366
20855
0351

COMADD>»

/

WRITE,

/

STORE»

REP1,

/

ADDI TN,

AD1»

/

JVERFL >

AD2,

FIM
SRC
WP
L DM
SUB
CcLC

JCN

Fim
LD 3
SRC
WRR
INC
LD 2
SRC
WRR

Fln

FIM

Fim
SRC
RDM
SRC
WRM
LD S
DAC
XCH
CLC
LD 7
DAC
XCH
cLC

ISz
LD 3
SRC
WRM

1sz

JMS
FIM

FimM
LDM
XCH
cLC
SRC
RDM
SRC
ADM
DAA
WRM
INC
INC

1S2

JCN

FIm

XCH

FIm
L DM
SRC
WRO
SRC
RD@
RAR
SRC
RDM

P<;0
Q<

AZ3ADDITN

4<3 64
4<
8

4<

<31
2<363

3<362
3<

2<

5

7

13 REP1

2<

13;ST

3CRLF
B<;0

2<3 48

2<

<

1
S

63AD1

CN3 XXX
6<315
4]

12
2<30

1

2<

2<

6<

/ IF AC=@3 JuMP

/ IR(8)=43;1R(9)=0

/ IRC(@)=¥3IIRC) =1
/ IRC4)=331IR(S5)=15

/ IRC6)=331R(T)=14

/ POSITION CARRIAGE
/ 1IR(B-1)=0

/ 1R(4)=331IR(5)=0

/ TEST FOR CARRY

/ IRC12)-03IRC13)=15

79

02117
0229
8221
@222
v223
0224
0225
0226
0227
0230
0231
@232
0233
R234
9235
0236
0237
72 40
P24}
V242
0243
D244
0245
D246
0247
8250
2251
9252
9253
0254
0255
v256
0257
0260
0261
0262
0263
0264
0265
0266
na267
2270

0271
0272

B273
B274
0275
0276
02717

2300
0301
8302
0303
2324
23085
A306

0307
2310
8311
8312
2313
8314
0315
2316
8317
0320
8321
8322
8323
0324
8325
0326
0327

0034
0223
vR22
9233
ne263
0333
v262
03290
0045
0344
120
2307
0255
0370
2275
2172
o212
B100
oa17
0320
neia
0042
n330
0120
2307
2172
B24a4
BR4a4
09920
2120
0260
2100
0o17
320
0261
2329
0045
2340
0145
nle6l
n262
@300

0040
2000

0160

0273
2161
0273
0300

0040
0010
N160
2302
0161
2302
0300

04aB
2020
a3217
P04l
D340
f141
h263
PB4l
0340
2141
2262
PR 4l
2340
0050
o202
0042
0320

SKP1,

SKIP,

XXX»

OVFL1L,

CLRRAM,

CLEARs

NN NN

SBR1.,

L,

SBR2,

L2,

PRINT

NN NN NN

PRINT,

JCN AN SKP1

JCN CN3 SKIP
XCH 3

LDM 11

XCH 2
LbM o
SRC 2
WRO

<

JMS 3 PRINT
LD 13

pAC

XCH 13

1Sz 185AD2
JUN NEXT
LDM 0

XCH 10

FIM 1<3216
JMS 3 PRINT
ISZ 1030VFL1
FIM 2<30
JMS 3 CLRRAM
JUN 3NEXT
LDM @

XCH 1

LDM @

SRC 2<

WRM

INC 5

ISZ 13CLEAR
BBL

SUBROUTINE

FIM 0<30

I1SZ oL

ISZ 1511
BBL

FIM @<38
1Sz p3L2

I1SZ 1312
BBL '

ROUTINE

FIM 0<;16
LDM 7
SRC @<
WRM
INC 1
XCH 3
SRC B8<
WRM
INC 1
XCH 2
SRC @<
WRM

FIM 4<316

FIM 1<3208

80

/ TEST FOR AC.NE.®

/ TEST FOR CA=1

/ IRC1)=831R(2)=13 (X)

/ IR(P-1)=0
/547

/ 1R(BY=B,IR(1)=8

/ 275

/ IR(@)=131RC(1)=0

/ IR(BY=131R(9)=9

/ IR(2)=13,1R(3)=0

0330 0044

@331 0014 ST, FIM 2<312 /7 IRC4Y=0,IR(S5)=12
9332 0051 SRC 4«
2333 8351 " RDM
0334 8341 S5T8» wMPpP
0335 0264 XCH 4 / SAVE CCAC) IN INDEX REG 4
9336 0120
8337 0271 JMS3 SBR1 / DELAY ROUTINE #1
B340 0120
0341 02300 JMS3 SBR2 / DELAY ROUTINE #2
0342 0264 XCH 4 / RESTORE SAVED C(AC)
9343 0165
D344 0360 1SZ 53519 / NUMBER OF ROTATIONS
2345 A151 INC 9 / NUMBER OF DIGITS
0346 0000 NOP
0347 0000 NOP
9350 @000 NOP
0351 Y000 NOP
2352 0000 NOP
D353 0162
0354 8330 1SZ 2;3ST7 / NUMBER OF 4-BIT WORDS
0355 ©337 LDM 15
0356 0341 WM P
9357 6300 BBL
@360 0046
@361 BO14 ST9, FIM 3<312 /7 IR(EI=Q3IRC(TI=12
0362 0167
8363 0362 ST12, 1SZ 73ST12
9364 0366 RAR
0365 0100
8366 0334 JUN @3STS8
/

/ CR/LF ROUTINES
/

8367 0042
0378 0215 CRLF.,» FIM 1<3 141l / IR(2)=831R(3)=13 (CR)
9371 9120
p372 V307 JMS3 PRINT
9373 0042
0374 02212 LF, FIM 1<3138 /7 IR(2)=831R(3)=10 (LF>
0375 0120
0376 V307 JMS 3PRINT
9377 9300 BBL
/
/
OCTAL
/
ADDRESS LABELS USED IN PROGRAM
ADDITN @154 AD1 165 AD2 0212 BEGIN 0000
CLEAR 0262 CLRRAM 0260 COMADD 0105 CRLF 0367
LF 0373 L1 0273 L2 0302 NEXT 0017
OVERFL 0177 OVFL1 @244 PRINT 0307 REP oe12
REP1 0131 SBR1 - 0271 SBR2 0300 SKIP 0233
SKP1 0223 ST 2039 STORE 0123 STt 0056
ST12 8362 ST7 3330 ST8 0334 ST9 0360
TEST 0036 WRITE @112 XXX 0242

81

Xlll. MCS-4 PROM PROGRAMMING SYSTEM

A. General System Description and Operating Instructions

Intel has developed a low-eost micro computer programming system for its electrically programmable
ROMs. Using Intel’s eight bit micro computer system and a standard ASR 33 teletype (TTY), a
complete low cost and easy to use ROM programming system may be assembled. The system features
the following functions:

1) Memory loading

2) Format checking

3) ROM programming’

4) Error checking

5) Program listing

For specifications of the Intel PROMs, refer to the Intel Data Catalog.

CONTROL PROGRAM
1
! 1
3
J

L
% IM4-01 OR SIM4-02 MP7.03

|
ROM SOCKETS I PROM SOCKET

541 |-
543 [~

ROM PROGRAMMING BOARD

!

=

TTY
ASR 33

Figure 27. MCS-4 PROM Programming System

~ This programming system has four basic parts:
1) The micro computer (SIM4-01 or SIM4-02) ,
This is the MCS-4 prototype board, a complete micro computer which uses 1702A
PROMs for the microprogram control. The total system is controlled by the 4004 CPU.

2) The control program (A0540, A0541, A0543)
These control ROMs contain the microprograms which control the bootstrap loading, pro-
gramming, format and error checking, and listing functions. For high speed programming
of Intel’s new 1702A PROM (three minutes) use control PROM A0543 in place of A0542.
3) The programmer (MP7-03)
This is the programmer board which contains all of the timing and level shifting required to
program the Intel ROMs. This is the successor of the MP7-02.

4) ASR 33 (Automatic Send Receive) Teletype
This provides both the keyboard and paper tape 1/0 devices for the programming system.

In addition, a short-wave ultraviolet light is required if the erasable and reprogrammable 1702s
are used. :

This system has two modes of operation:

1) Automatic — A paper tape is used in conjunction with the tape reader on the teletype.
The tape contains the program for the ROM.

2) Manual — The keyboard of the TTY is used to enter the data content of the word to
be programmed.

82

PROGRAMMING THE 1602A/1702A

Information is introduced by selectively programming “1"’s (output high) and ““0”’s (output low) into the
proper bit locations. Note that these ROMs are defined in terms of positive logic.

Word address selection is done by the same decoding circuitry used in the READ mode. The eight
output terminals are used as data inputs to determine the information pattern in the eight bits of
each word. A low data input level (ground — P on tape) will leave a “1”” and a high data input level
(+48V — N on tape) will allow programming of ““0". All eight bits of one word are programmed
simultaneously by setting the desired bit information patterns on the data input terminals.

TAPE FORMAT

The tape reader used with a model 33 ASR teletype accepts 1" wide paper tape using 7 or 8 bit

ASCII code. For a tape to correctly program a 1602A/1702A, it must follow exactly the format
rules below: v

Start Characterl Stop Character Data Field MSB (Pin 11) LSB (Pin 4)
Leader: BPPPNNNNNFBNNNNNNPPF...BNPNPPPNNF Trailer:
Rubout for at \ S ., N » Rubout for at
least 25 frames. T T T least 25 frames
Word Field 0 Word Field 1 Word Field 255

The format requirements are as follows:

1) There must be exactly 266 word fields in consecutive sequence, starting with word field O
(all address lines low) to program an entire ROM, If a short tape is needed to program only
a portion of the ROM, the same format requirements apply.

2) Each word field must consist of ten consecutive characters, the first of which must be the
start character B. Following that start character, there must be exactly eight data characters
(P's or N's) and ending with the stop character F. NO OTHER CHARACTERS ARE
ALLOWED ANYWHERE IN A WORD FIELD. If an error is made while preparing a tape
and the stop character ‘’F’' has not been typed, a typed ’B’” will eliminate the previous
characters entered. This is a feature not available on Intel’s 7600 programmer; the format
shown in the Intel Data Catalog must be used when preparing tapes for other programming
systems. An example of this error correcting feature is shown below:

TYPED ON TTY PROGRAMMED IN ROM
one letter removed

BNPPNN/PNPN//NNF > NPPNPNNN
last two letters removed

BNNPPNPBNPPPNPNPF > NPPPNPNP
data word

eliminated

If any character other than P or N is entered, a format error is indicated. If the stop
character is entered before the error is noticed, the entire word field, including the B
and F, must be rubbed out. Within the word field, a P results in a high level output,
and N results in a low level output. The first data character corresponds to the desired
output for data bit 8 (pin 11), the second for data bit 7 (pin 10), etc.

3) Preceding the first word field and following the last word field, there must be a leader/
trailer length of at least 25 characters. This should consist of rubout punches.

83

4)

Between word fields, comments not PROM PIN CONFIGURATION
containing B’s or F’s may be inserted. 2T TE= Y veo
It is important that a carriage return a2
and line feed characters be inserted Ao 3
(as a “‘comment”) just before each "DATAOUT 1 4
word field or at least between every *DATA OUT 2 5 B[A
6
7
8
9

23 ¢4
24,

(LSB) 21| a3

four word fields. When these carriage PATAOUT 3 o As

*DATA OUT 4 181 Ag

returns are inserted, the tape may be
easily listed on the teletype for
purposes of error checking. It may
also be helpful to insert the word
number (as a ‘‘comment”) at least veed 12 I
every four Word fields' . “THIS PIN IS THE DATA INPUT LEAD FOR THE

1602/1702 DURING PROGRAMMING

*DATA OUT 5 ~ 17 Ay

*DATA OUT 6 16 |- Vg
*DATA OUT 7 10 15 [Vg

*DATA OUT 8— 11 (MSB} 1l s

IMPORTANT

It should be noted that the PROM's are described in the
data sheet with respect to '"positive logic" (high level =
p~logic 1). On the other hand the MCS~4 system is defined
in terms of '"negative logic" (low level = n-logic 1), As
' a result, when 1602/1702 ROM's are being
programmed to simulate the 4001, characters should be defined
as P=high level = n~logic 0 or an N = low level =
n-logic 1, For instance, consider the instruction code
for ADM (one of the 45 instructions for the MCS-4),

11101011

When entering this code to the programmer it should be
typed,

BNNNPNPNNF

This is the code that will be put into the 4001 when the
final system is defined,

OPERATING THE PROGRAMMER

ming a PROM:

The SIM4 is used as the micro computer controller for the programming.
It presents data and addresses to the PROM to be programmed and controls
the programming pulse. The following steps must be followed when program-

. Place control ROMs (A0540, A0541, A0543) in SIM4 board.

. Turn on system power.

. Turn on TTY to “line” position.

. Reset system.

. Insert PROM into MP7-03.

. Load data from TTY and program PROM.

. Remove PROM from MP7-03. To prevent programming of unwanted
bits, never turn power on or off while the PROM is in the MP7-03.

=1 O b

84

OPERATING THE PROGRAMMER

PROGRAMMING
Two different modes of operation are available*®

1) A complete program tape consisting of 256 data words in sequential
order may be used.

a) To program the complete ROM place the ROM to be programmed into
the socket on the MP7-02 board, and then type,

s (start command)

o) (initial address
—address ¢ of the ROM)

255 ‘ (final address
~address 255 of the ROM)

Start the tape (data words may also be entered in sequence manually).
The ROM will be programmed in all 256 locatioms,

b) To skip a section of the ROM (skipping the same number of data words
on the tape) and then program a section of the ROM while still
keeping the addresses in sequential form on the complete tape, type,

S (start command)
XXX (initial address)’
YYY (final address)

Start the tape. The ROM will only be programmed in the specified
locations.

*Operate the TTY in the "line" position. Depress the RETURN key'ég:> after
each manual data word entry, When using the tape reader to enter the
program data, switch the reader to "start' after the final address is
entered,

85

EXAMPLE 1:

Typed S < start command
by @305 ¢ initial address
User __¢_1¢ - final address

@¢¢ BNPNPNPNNF |
¢@1 BPPPPPPPPF

Listing @@2 BPPPPPPPPF &4 —————data vords skipped on
of @33 BPPNPPPNPF programming tape
tape | ¢4 BPPPPPPPPF__
by @@5 BNNPNNPPPF* ¢—————— programming begins
TTY #36 BNPNNPNPPF

@37 BPNPNPPPPF
@@8 BNPNPPNPPF
#@9 BNNNNPPPNF
@#1¢ BPPNPPPPNF
o F) programming completed

. In this example the first five data words on the tape are skipped
and the next six data words are programmed in the ROM locations
@95 to @1@, The "*" indicates the first instruction programmed,
and the "F" at end of the listing indicates the completion of the
programming.

2) To program any portion of the ROM without skipping a section of the
tape, use a short tape (data words in sequence) and type

P (program command)
XXX (initial address)
YYY (final address)

Start the tape (data words may also be entered manually).

EXAMPLE 2:
Typed P & program command
by —Jflle initial address
User | 316 @ final address
@11 BNNNNPNPPF
Listing @12 BNNNPPPPNF
of __1P13 BNNNNPNNPF
tape @#14 BNPNPPPNPF
by @15 BNNNNPNNPF
TTY @16 BNPNNPPNPF

F ¢ programming completed

86

This example shows that the first six instruction words in sequence
on a tape are read and directly programmed into ROM locations @11
through @16 without skipping.

FORMAT CHECKING

When the programmer detects the first format error (data words enter either
on tape or manually), it will stop programming the ROM, and it will print

out the address where the format error occurred. If a tape is being used,
the programming system will continue to list the content of the tape and will
print out the address of each subsequent format error,

EXAMPLE 3:
Typed P
by —192¢
User L¢_2_5_
¢2¢ BNPNPNPNPF
@21 BPPPPNNNNF
#22 BNNNNPPPPN
Listing FE @22 4———— format error indicated at
of . address #@22 (too many char-
Tape by — acters in data field).
TTY #23 BNPNPNPNPF
@24 BPNM
FE @24 44— format error indicated at
address #024 (illegal char~
acter in data field).

F 4 sequence completed

If data words are being entered manually and a format error is encountered,
programming may be continued by entering the PROGRAM command, “P”,
the address of the error, and the final address. The error may be corrected
and programming completed. '

ERROR CHECKING

After each location in ROM is programmed, the content of the location is
read and compared against the programming data, In the event that the
programming is not correct, the ROM location will be programmed again. The
MCS~4 programming system allows each location of the ROM to be reprogrammed
up to four times. A "$" will be printed for each reprogramming, If a loca-
tion in ROM will not accept a data word after the fourth time, the system
will stop programming and a "?" will be printed, This feature of the system
guarantees that the programmed ROM will be correct, and incompletely

erased or defective ROM's will be identified,

87

EXAMPLE 4:

Typed P
by 936
User @99

1st programming

System BNNNPNPNPF$$$7¢ failure to program

_ [2nd’ programming
Listed l 3rd programming
by ‘
gge

F &4 - programming stopped"

If a location in the ROM will not program, a new ROM must be inserted in the
programmer, The system must be reset before continuing. (If erasable ROMs
are being used, the "faulty'" ROM should be erased and reprogrammed),

»

PROGRAM LISTING

After the programming is complete, the complete content of the ROM, or any
portion may be listed on the teletype, A duplicated programming tape may
also be made using the teletype tape punch, To list the ROM, type

L (list command)
XXX (initial address)
YYY (final address)
EXAMPLE 5;
Typed _L—
by —] d¢g
User | 310

Listed [ggg BPPPPPPPPF; (g1 BPPPPPPPPF; @2 BPPPPPPPPF; (g3 BPPPPPPPPF;
by _|¢@4 BPPPPPPPPF; (g5 BNNPNNPPPF; @6 BNPNNPNPPF; @@¢7 BPNPNPPPPF;

System ¢@8 BNPNPPNPPF; (@9 BNNNNPPPNF; (1§ BPPNPPPPNF;
F ¢ listing complete

Note that this is a listing of the ROM programmed in Example 1, The

listing feature may also be used to verify that a 1701 or 1702 is completely
erased, If the PROM is completely erased, "P's" will be listed in every
location.

1701, 1702 ERASING PROCEDURE

The 1701 and 1702 may be erased by exposure to high intensity short-wave ultraviolet light at a
wavelength of 2537 A. The recommended integrated dose (i.e., UV intensity x exposure time) is
6W-sec/cm?. Example of ultraviolet sources which can erase the 1702A in 10 to 20 minutes

is the Model S-52 and Model UVS-54 short-wave ultraviolet lamps manufactured by Ultra-Violet
Products, Inc. (San Gabriel, California). The lamps should be used without short-wave filters, and
the 1702A to be erased should be placed about one inch away from the lamp tubes.

MP7-03 Programming System

The MP7-03 is the PROM programming board which easily interfaces with the MCS-4. All

address and data lines are completely TTL compatible. The MP7-03 requires +5VDC @ 0.8 amps,
—10VDC @ 0.1 amps, and 50 Vrms @ 1 amp. Two Stancor P8180 (or equivalent) filament transformers
(25.2 Vrms @ 1 amp) with their secondaries connected in series provide the 50 Vrms.

This programmer board is the successor of the MP7-02. The MP7-03 enables programming of Intel’s
new 1702A, a pin-for-pin replacement for the 1702,

When the MP7-03 is used under SIM4-01 or SIM4-02 control with control ROM A0542 replaced by
A0543, the 1702A may be programmed five times faster than the 1702 in less than five minutes.

IMPORTANT:
Only use the A0543 control PROM when programming the new 1702A. Never use it when programming
the 1702. The programming duty cycle is too high for the 1702 and it may be permanently damaged.

The MP7-03 features three data control options:

1) Data-in switch (Normal-Complement). If this switch is in the complement position, data
into the PROM is complemeénted.

2) Data-out switch (Normal-Complement). If this switch is in the complement position, data
read from the PROM is complemented.

3) Data-out switch (Enable-Disable). If this switch is in the enable position, data may be read
from the PROM. In the disable position, the output line may float up to a high level
(logic ““1”'). As a result, the input ports on the prototype system may be used for other
functions without removing the MP7-03 card.

MP7-03 Programmer Board Specifications

Features: Connector:
e High speed programming of Intel’s new a. Solder lug type/Amphenol
1702A (three minutes) 72 pin connector

P/N 225-23621-101

® Inputs and outputs TTL !
compatible b. ere_wrap type - Amphenol
e Board sold complete with trans- ' 72 pin connector
formers, capacitor and connector P/_N 261-15636
® Directly interfaces with SIM4-01 ~ C. ere'wrap type - CDC
or SIM4-02 Boards 72 pin connector
P/N VPBO1E36EOQCA1
Dimensions: '

8.4 inches high
9.5 inches deep

Power Requirement:
Vee = +b @ 0.8 amps *This board may be' used leth a ‘—10V
TTL GRD = 0V supply because a pair of diodes {i.e. 1N914

*\/ =_10V @ 0.1 or equivalent) are located on the board in
DD T — -1 amps series with the supply. Select the appropriate

Ve =50Vrms @ 1 amp pin for either —9V or —10V operation,

A micro computer bulletin which describes the modification of the MP7-02 for programming the
1602A/1702A is available on request. These modifications include complete failsafe circuitry (now
on MP7-03) to protect the PROMs and the 50V power supply.

89

MCB4-10 SYSTEM INTERCONNECT
and CONTROL MODULE

This module provides the complete
interconnection between the SIM4-01
and the MP7-03. In addition to the
connectors for both boards, there are
LED data displays of each microcom-
puter output port, control switches,
the 50Vrms transformers, and a socket
for the PROM being programmed. Plug-
in connectors for each input and out-
put port are provided. The SIM4-01
when used alone with the MCB4-10 is
a complete microcomputer (except for
power supplies). See Appendix E for a
complete description of the MCB4-10.

MCB4-20 SYSTEM INTERCONNECT
and CONTROL MODULE

This module provides the complete
interconnection between the SIM4-02
and the MP7-03. This total package
may be used for both a PROM pro-
grammer and a microcomputer develop-
mental system. The MCB4-20 has the
same basic features as the MCB4-10,
and in addition, it provides a socket
which can be used for duplication. The
MCB4-20 is also fully described in
Appendix E.

90

+5V GND -10V

|

ROM ENABLE *3 -
1 3 5 OUTPUT As] 13.15 19,21 28
" 45 47 a3 DATA OUT
Al
2 - 45 DISABLE °]
A2 =
TEST 10 - - 43
— T&. 37 A3 14 +5V
12 a1
Ad 6
ne |2 32 > - 55
RESET B 21 es 31
A A6
— Tﬁ9_41 30 - > 51
. _ Lyl J 3
6 _ o1}, NORMAL +_5
18 D2 WP7.03 37——0/9___--< DATA IN
7-
D3
I “1° smaor 20 - 27 ROM COMPLEMENT
TTY 14 D4} g PROGRAMMER LRMAOL/Q;_ DATA OUT
TAPE z, a D5} .8 35
READER D6 COMPLEMENT
6 50
I D
55 8 s> 5
2 > D8J e
7 ROM = 39
35| INPUT 2., =
Ty z - TBE 2.P-8180 STANCOR
PRINTER | ¢ 2 4 I0_3 * 252V RMS ® " !
s {! .
| 27 i = 36 1.0A
69 2 - +H1+—3s
- £ 11 D5
3 T 'Bgl‘w " szvams
iy] 111
3 - 55142 1.0A
1111
Y | A G T 10.12
KEYBOARD OR 23 Pty b8 : T2 % AMPS
TTTTTTT g)48 =l 2-P-8180 SLO BLO
TAPE READER| o (1702)
L—1s3 52 WENEENELT . 30004 STANCOR
75-100 VD!
5 (17028) ENENENE c
RW
FLEEETTS 5V
(RERERY |—|>-—{<1——aw\,——<.
- NOTES: RN N
1. 5IM4-01 and MP7-03 Connectors: ' I I I I I L |> I< AAA s
a. Solder lug type/Amphenol
72 pin connector, P/N 225.23621-101. LT
b. Wire wrap type/Amphenol (shown above) | I ' ' I — —D———N——'\/W—
72 pin connector, P/N 261-15636-2.
2. If the use of the 24 pin socket on the MP7-03 1111 L
is not desired, the pin connections for external — —‘D—N\—V\N——(
socket are as follows. I | I |
EXTERNAL SOCKET PROGRAMMING [—D—M_—W_
. MP7-03 MP7-03 ay
FUNCTION iy FUNCTION i [— —D_M—W\'_
A, "OUT” DEVICE UNDER TEST 56 D 63 I
n = o o |t=—— D> —w—
Ay 60 D, 59 |
Ay 62 Dg 57 - AAA
A, 64 CHIP SELECTOUT 72 LED 2200
As 66 PROGRAM OUT 22 SN7407N vyios "W
Ag 68 Ve OUT 24 T monsaNTO
A, 70 Vgg OUT 26)
D, “OUT”DEVICE UNDER TEST 71° Vg OUT 24
D, 69 Vpp OUT 30
Dy 67 #1, 62 OUT 2 This is a simple module that can be built in the laboratory to interconnect
Dy 65

the MP7-03 and the SIM4-01. The complete interconnection between the
SIM4-01 and the MP7-03 is provided by the MCB4-10 system interface and

control module.

Figure 28. MP7-03/SIM4-01 PROM Prograﬁnming System

91

+6V GND —10V

l

ROM : ENABLE *B
121012 32 42 y1] ouTPUT as[1315 182128 ‘
e 1285 24 6848 47 33| DATA OUT
J:c/[— 147 Al s mSAaLE"__]
A2 =
TEST J1-54 - - 43
= T_NL J2-81 A3 4 +5V
J1-51 41 N
TR dkad nae s ®
RESET a3 s u
= o, na Asle |
4145 Ao 3
+!
s] NORMAL 5
4150 D2} % Ib——""" loatam
[—4— 1245 " p3l,, M9 |compLeMENT
M. D. =
v SIM4-02 ;1.5 - o: 29PROGRAMMER [NormaL g~] baTa our
TAPE 2, ne? 48 35)
COMPLEMENT
READER | T "2 06| o
—10v n-70 - = 52 8
N D8Res .
l—*— J214 . ROM _ 39
n-20 HNPUT 32 -
TTY PRINTER | 2, n21 - ’ " 2-P-8180 STANCOR
Nz - +1 36
o s nz - tHHZ s
39092 - I | D5
"2 140 1" 262v Ams
119 ++H 42 10A
J2-82 n-2s ammEE a4 10,12
TTY l
J1-18 | hg T2 % AMPS
';i‘;g%‘g%g: TTTTTTI 46 = 2.P-8180 SLO BLO
(1702) LIty STANCOR
ey 3225 11118 17 3000 uf
12.27 M 16 75- 100 VDC
3900 {1702A) ITTrrrTt R
NOTES: RN E RN +5V
1. SIM4-02 Connector:
Wire wrap type/Amphenol I I I I ' l | LD—M—"NV——
86 pin connector P/N 261-10043-2. | ‘ | | | | I
2. MP7-03 Connectors: L
a. Solder lug type/Amphenol l 111 - p
72 pin connector P/N 225-23621-101. | | ’ I ' |
b. Wire wrap type/Amphenol (Shown above) — _D_N_—M_‘
72 pin connector P/N 261-15636-2. I I | | |
3. f the use of the 24 pin socket on the MP7-03 is not desired, l | ' ‘ L
the pin connections for external socket are as follows. I I l l — —D_H'_MA'—'
— — s
EXTERNAL SOCKET PROGRAMMING : : :
MP7-03 MP7-03
FUNCTION IN FUNCTION N I D i AAA |
A, *OUT” DEVICE UNDER TEST 56 Ds 63 11
o s o o |t —m—dy
A 60 D 59
A: 62 D; 57 !_ - D I AAA
Aq 64 CHIPSELECTOUT 72 2200
Ag 66 PROGRAM OUT 22 SN7407N ,;ED %W
™ Vv-108
Ag 68 Vee OUT 24 MONSANTO
A 70 Vgg OUT 26
D; “OUT” DEVICE UNDER TEST 71 Vgg OUT 24
D, 69 Vpp OUT 30
D3 67 ¢4, ¢ OUT 2
D, 65

This is a simple module that can be built in the laboratory to interconnect
the MP7-03 and the SIM4-02, The complete interconnection between the
SIM4-02 and the MP7-03 is provided by the MCB4-20 system interface and
control module. '

Figure 29. MP7-03/SiM4-02 PROM Programming System

92

o™
e o
e
26 HO
T <D
@

M 29 JOC _ G G{@a €
\ o O fJoEre o-Cemre

. ()—{' Rl }-{)
"n —
it G- MR O ez 1O
o) R4 : \

GiEm o GE _FOpQ @ [=22}-O

I O HY e

[F3)

)
o)

R22 HO
£33

G-{Ee
235

(1]

G{ez28}©

G{=25}©

CaERI D)
{ 40

G{eaz}o
R4

Ozee O
247 1O
L R4g

C{e2e}©
e37
=13

39

e

SRS 3ed
- Bas

OH{eezl©

Rw3

Gizearo

OH®323©
o520

0161610

HOOE
®
®

(580

®
®
DD

@D

o
@

D
~N
&

©
®

R5(p)

32

O
9‘3
,60

3 B5TO 3 Benr€
®

J

<
<)

ke

—~

<
rO
£,
O
)

[4%x]
Rée

[CaVETY20)
G(Reo
a0
g8z
CaCT
O(Raaro
285

(

EaUAlYe0)]

R13

214
o{=215 }©

B

" R1?
L oHzisto

' GC-&n O

(@er-m}
s

o
~N
L
‘N
n
(V]
o
-
wm
|
o
L
3
]
Qe
@
n
K
O

P
»
A
3
L
<7
A
o
L J
e,
o
)
[S-F
(X
Lgﬁo
I

~ ")
HilHmnmmmnin |

Solder Connector P/N 225-23621-101 ﬁiN‘ﬁfi]REEEEEAZYXWVUTSRPNMLKJHFEDCBA

| Amphenat
Wirewrap Connector P/N 261-15636-2 71 69 67 65 63 61 59 67 55 53 51 49 47 45 43 41 39 37 36 33 31 20 27 25 23 2119 17 1513 11 9 7 5 3)

Wirewrap Connector P/N VPBO1E36ECOAT 72 70 68 66 64 62 60 58 56 54 52 50 4B 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 €bCc

Component Side of MP7-03 Card

Solder Connector P/N 225-23621-101 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 27 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 (
. Amphenol
Wirewrap Connector P/N 261156362 2 4 6 8 1012 14 16 18 20 22.24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54.56 58 60 62 64 66 68 O 72

Wirewrap Connector P/N VPBOTE36EO0AT 1 3 "5 7 9 11 13 15 17 19 21 23 25 27 20 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 CDC

Pin Definition — Reverse Side of MP7-03 Card

'

93

POWER SUPPLY REGULATOR
| .

L
= R3 27K CR3
MA 1N914
R CAP R8 10, %W
+sov [10} ALTER C R14 Q a3 22
4.7, %W MJE 1102 R12 CR1 | PIN13
AAA
VR4 RIS 10K N270 D.UT.
1N5258A 2 3 3¢ R10'9 : =
o3 390 S 100 = 1
- —K - -
A1 SCR1
22K ¢ o MCR-106-3 0
s ; - I
+5 N
F VR6 L L
1009 1N52628 CRo CR4 = = = =
» 1N270 ¥ 1N4002 Vees OUT
. ! PIN12
VR2 R27 puT.
1N5258A 3300
1N4753A a1 PIN 14
EN2907 rnur
cs ~
s 7]
S R52 < R53
47€ S 1K
PIN 16
L Veo D.U.T.
26]
L PIN 15
D.UT.
1N914 - 1N914 Q9
—BE CR8 CR7 EN2907 . Voo @
_L c3 a10 e L PIN 24
T TuF 1N4002 D.UT.
PROGRAM PULSE TIMING
1
1
+5
R
20K (3.25) Rz
+5 20K (3.0ms) +80V
R62 R26
10K 47K *5
R2 R19
. ca : 1K 27K
oty 1.0uF
T2 “Tis [1anc | e
+5 6 . _' 1
4 9602 12 9602 10 SN7406
D ic12 |y 1c12 | o1
+1] 5 p-'
5 Ne 1T SR21
= > 27K
R64 11 10
10K
SN7405 CR5
iIc 11 1N914
4700pF r20{ | < R16
15 {14 27K 47K
10 13N 12
9602 »
ic13 | SN7405 =
iIc 11
+5
R23
470
(] P2
Ic 13
5 SN7405
7 Ic 1
+5
R22
4.7K
3 1
D |
5 :: ﬂ_ _I_ _L +5 f‘lz\uﬁos NOTES: Unless otherwise specified—
——] 11 Tes Tero k 1. RESISTORS ARE RATED IN Qs %W, 10%.
17 SAuF| AuF | AuF 2. TRANSISTORS ARE SE6021, or 2N3658 or 2N3722.
ono [ra] 10V 3. PIN NUMBERS ARE SPECIFIED FOR AMPHENOL
— = = WIRE WRAP CONNECTORS.
21
94

R47
+5 6.8K

DATAIN1 ‘% w 8
DATAIN
Sonrro 1 sN7403
DATA OUT 1[32}— Slice]s BGN &]
DATA OUT [
ENABLE
s SN7486 SN7403
[— 6
1 ’[ucw} Hco
SN7403
. 4 sNrage
B iC8 |5 5{ i 7]@
DATA IN
enasLE (3
SN7486 SN7403
12
1
13 >!ac 1o>1 :; 1o
SN7403
» i3 s
{3e}— ics 12 u@@z
DATA OUT [
CONTROL

SN7486

SN7403
3

253

SN7403

2
1J1C9

SN7486

1
—i@z_‘

SN7486

SN7403

SN7403

9
“l10Q1C3 8

SN7486

10
8 Iceg9

SN7486

SN7403

5
Iy }ima >6
SN7403
4

(-3

SN7486

SN7403

12
13 'iICA ,L“
/

SN7403
13

1

1
16 12

12 1
3] 1c3

SN7486

13
"< ICSI‘ 12

SN7403

2 3

1jiIC3

SN7486

T
DATA DRIVER

ADDRESS
CONTROL

12 R72
fast— @ L Q18

B
|

(2]
.

Por T

4

SN7486N
2 3 R67
j, 031
330
SN7486N
12 11 Res
13’ Q26
330
SN7486N
5 ¢ Re9
i Q19
330

Vees OUT

R28
6.8K

SN7486N
SN7486N

SN7486N

SN7486N
g R4
Q30
330

SN7486N
R70

A7
PIN 17
D.U.T.
1 : = 1
ADDRESS DRIVER
A2 1 24 Vbp
a1l 2 23b——o,
A0 3 22 92
DATA OUT 1 4 (LSB) 21 A3
2 5 20 A4
3 6 19 A5
) 7 18— A6
5 ——s8 17 A7
6 9 16 Vag
7 10 15 Vsg
DATA OUT 8 11 (msB) 14 cs
Vee | 12 13 pb——— PROGRAM

F igure 32.

DEVICE TO BE PROGRAMMED

MP7-03 PROM Programmer
Board Schematic

95

XIV. MCS-4 EVALUATION KIT USING THE 4001-0009

This kit provides both a convenient way of evaluating the MCS-4 parts
and an educational vehicle to better understand the MCS-4 operation.

The 4001-009 stores a microprogram that exercises the 4004 and 4002's
and executes all of the 45 instructions in the MCS-4 instruction set.

Fig. 33 shows the hardware that should be used. The circuit for single pass/
continuous can be omitted if only continuous operation is sought. In this
case 0, (RAM #0) should be connected directly to TEST.

The RESET signal can be provided by either a one-shot circuit or by a pulse
generator in the "single pulse' mode. The width of the RESET signal must

be at least 32 x 8 clock periods (22350 psec) to fully clear the RAM storage.
If the system is operated in the continuous mode, RESET needs to be applied-
only at power on. If the system works in the single pass mode, when END of
SEQUENCE (Pin 04) is "1", the 4004 will "hang" on a loop where the address
to Jump to on a jump on TEST = 1 condition is the address of the same jump
on condition. To get out of the loop RESET must be applied.

To monitor the program operation a scope should be used in the "B delayed
by A" mode. By using the delay time multiplier the program execution can
be easily seen. The synchronization signals for the B and A traces are
pin 13 of 4002-1 #0 and SYNC, pin 8 of the 4004, respectively.

The 4001-0009 has been coded with the internal chip select circuit always
activated, therefore any address at A, time will cause the 4001 to be
selected. This is different from the normal operation of the 4001 where
only one code (out of 16) at A3 time selects the 4001. The reason for doing
so is that we can show the execution of JMS and JUN instructions to any chip
number (the A3 time code) and still use only 1 ROM chip.

The I1/0 pins of the 4001-0009 are all connected as inverting inputs with no
resistors connected.

The two phase clocks, (@] and @) must be supplied externally according to
the MCS-4 data sheet specs.

The program execution is 110 msec, using a clock period of 1.3 usec.
Although the CMZ—RAMi lines are not used in this configuration, they are
being pulsed.. If a scope is hooked up to these lines the waveforms may be

observed.

Both 4002-1's must be used in order to fully execute the program stored
in the ROM.

Attached is the prbgram flow (with comments) and the truth table.

- 96

Yoy CM- RAM o
’ ol 3 CH- RAMm ¢
2 Ve O - L
s 4004 ’u—-———) om- tl: ;
M
. “ Cot-RONr
—7
—e -
TEST
e
74 v¢’o
, 151 ::n.
: :: :ﬂo
v ,
e ry
¢ 4001
{7
»{s 0009 /o---j_
4 B
76| _09
71 'o"
3 Y, 0z’
3 /3]
v 3 Oy
s ’,
¢ 4002-1
——7
e # Voo Vo»
4
EN3906
r Y SINGLE Pass
o4 O)
’ Z3 Or
74| Lz ConTihvaus
3 3 o3
v 72 Voo
5 4
A s
[T s-4002-1 END of Sta.
- #0 “’M__L
©o s le= EN390%
o)
02 CAH-om
Syac
03 KracT "Voo
P o
r.n;.‘ _v\ /
¢ I o%e | b I-(
¢ | $Kor~ |—oO
¢,
Figure 33. MCS-4 Evaluation Kit Using the 4001-0009
TIME IN MILLISECONDS
4 5 o 15 20 25 30 3 40 45 50 55 60 65 70 75 8O 8 90 95 100 05 110
T msec
0. B
4002 -13#0 «3’; msr’!_—
J“%—u L
4002-14 o° '
#0000 T 1L L]
o 1| L
. 0o
4002 -1 #0 I \I
o .
4002"140 1]
— -
R Ty
CMPRAM, T
C-RA Ty
M -RAM -
CHRAMS IRIIRERRRE

Figure 34. Timing Diagram for the MCS-4 Evaluation Kit Using the 4001-0009

97

4001-0009 MCS-4 EXERCISER PROGRAM

ROM
ADDRESS MNEMONIC COMMENTS
4 A
Times 0 WRR Check accumulator and carry
[1 BBL, 15 Check stack content
2 FIM, 5 Loan pointer 4002-1 #1
l 3 4, 1
from 4 JMS Jump to LD MK subroutine. This sub-
214, 221 5 (LD MK) routine is used to mark the progress
of the program by sending out a
pattern on the output lines of 4002-1
#1.
6 JMS Jump to CK IDX subroutine
7 (CK IDX) (Checks the content of all index
1 . register locations)
1 s FIN O : Load FIN address
9 254
Bl | 10 JMS) Jump to CK FIN subroutine.
7 11 (CK FIN) (Loads all index register locations
with the data stored in location 254)
12 JMS
13 (CK IDX) :
14 JMs Loads all index register locations
15 (CK FIN) with the data stored in location
255.
16 JMS
17 (CK IDX)
18 FIM, 5 Restore pointer 4002-1 #1
19 4, 2
20 JMS 15 I—
21 255 Location 255 contains NOP, program
4322 JMs 7 | % 255 NOP counter is incremented to 0; 0; O
23 26 2 i
"Fég ‘;EN 8 4 This portion of the program is used
26 IMs 15 L to check JMS and JUN. instructions
27 255___J and load the stack with a checkerboard.
) 28 JMS 3
""'\‘29 32
*30 JUN 12
L 31 24
—32 JMS 15
33 255 w—
— 34 JUN 15
35 255 st —
———3 36 FIM 1
37 12, 11
38 CLB /)
39 SRC 5 I~ Reset marker outputs on 4002-1 #1
40 WMP — .
dde SRC 0O —
. 2_?3 WRM Send pointer to 4002-1 {#0
IAC
16 tig 44 Isz 1 Go to next character
45 41
46 WR@
47 IAC This portion of the program is
4 times 48 WR1 |~ used to load a checkerboard into
49 IAC 4002-1 #0.
50 ° WR2
51 TAC
52 WR3
53 INC O Go to next register
54 ISz 2
— 55 41]
56 STC

ROM

ADDRESS MNEMONIC COMMENTS
57 JMS CK DCL subroutine is used to check
58 (CK DCL) CM-RAM lines switching.
5 times
59 Isz 3
60 57 h—
61 SRC 2 Pointer to 4002-1 #0
62 STC
—>63 RAL
64 WMP
65 JCN =0
1’5’666 71
367 JCN A#0
68 79 h—
69 JCN T=1
1 70 80
6 71 JCN CY=1 L. This section is used to check the
72 80 jump on condition instruction.
2l 73 JCN A=0 The numbers refer to the sequence
74 82 7 to which the jumps occur.
75 JCN T=0
76 67
3 77 JUN O
4,8 78 69
79 CLB &«
—3 80 JUN O
81 63 L0]
82 FIM 6 —4 Load address for following JIN
83 102
84 FIM 7
85 89
86 FIM 0 Restore 4002-1 #0 pointer
87 0 0
88 JIN 6
- 89 SRC O i
\ 90 ADD 4
es 91 ADD 5
\92 WRM
FoA — Check Add
95 89
fOnes 96 15z 5
—97 89 — .
98 JMS Load markers
99 (LD MK)
100 JUN O
101 117
—3102 JMS Load markers
103 (LD MK)
104 SRC O
% g 105 SUB 4
%106 SUB 5
107 WRM
108 CLB Check SUB instruction
109 1Sz 4
110 104
mes111 sz 5
112 104
113 CLB Clear Markers
114 SRC 5
115 WMP
—— 116 JIN 7
117 STC e -—
118 INC 8
119 LD 8
120 WRM
ig; EC)H 3 — Check INC, LD, XCH, DAA instructions
123 WRR
124 DAA
125 WRM
126 ISZ 4
127 117 —
128 CLB —
129 DAC
130 WRM
131 KBP — Check DAC, KBP instructions
132 WRM
133 I1SZ 4
—134 129 —
135 CLB -
136 DAA
137 WRM —~ Check DAA, IAC instructions
138 IAC
139 ISZ 4
— 140 136) T ——

ROM

219
L 220
221

ADDRESS MNEMONIC
141 LDM 15
142 WRM
143 TCC .
144 WRM -
145 JCN A# 0
146 141
147 CLB
148 SRC 5
149 “WMP
150 LDM 15
151 TCS
152 WRM
153 STC
154 TCS
155 WRM

3156 CcMC
157 RAR
158 WRM
159 1Sz 4

— 160 156
161 FIM 2
162 12 0

3163 SRC 0O
164 RDM
165 ISZ 1

— 166 163
167 RDP
168 RD1
169 RD2
170 RD3
171 INC O
172 1Sz 4

. 173 163
174 FIM 0
175 2 0
176 FIM 1
177 3 0
178 SRC 0
179 SBM
180 INC 1
181 SRC 1
182 SBM
183 WRM
184 sz 3
185 178
186 FIM 0
187 0 0
188 FIM 0
189 1 0
190 CLB
191 SRC 5
192 WMP

193 SRC. O
194 ADM
195 INC 1
196 SRC 1
197 ADM
198 WRM
199 1szZ 3

L. 200 193
201 SRC 5
202 RD@
203 JCN A=0
204 215
205 LDM 8
206 SRC 0
207 WMP
208 CLB
209 SRC 5
210 WRS
211 JCN T=1
212 211
213 JUN 0

~ 214 2

Ly 215 IAC
216 WRQ
217 LDM 2
218 SRC 0

WMP
JUN 0
2

IL[Jvl

.

||

—

/|

—

100

COMMENTS

—— Check TCC instruction

Clear markers

Check TCS instruction

[— Check TCC, CMC, RAR instructions

‘| — Read content of all memory

locations

Check SBM instruction

Check ADM instruction

' This portion controls the cycle.
Status character @ stores the cycle
number. At the end of the 2nd
cycle, if pin 13 of the 4002-1

#0 is connected to test of the 4004,
the program will stop. To start
again RESET signal must be applied
to the system (single pass operation).
If pin 13 is not connected to TEST
the program will be in continuous
mode.

LD MK

CK IDX

CK FIN

CK DCL

SUBROUTINES

Data——____[:

101

222
223
224
225
226
227
228

229
230
231
232
233
234
235
236
237

238
239
240
241
242
243
244
245
246

247
248
249
250
251
252

253
254
255

SRC 5
Lp 11
CLC

RAL
XCH 11
BBL, 0

SRC
SRC
SRC
SRC
SRC
SRC
SRC
SRC
BBL,

oNoOUVEWNFO

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
BBL,

CONOUVMPHWNE

LD 4
RAL
DCL
XCH

o~

BBL, O

NOP
1111 1111
0000 0000 (NOP)

XV. APPENDICES

APPENDIX A. Electrical Characteristics of the MCS-4

The following pages provide the electrical characteristics for
the MCS-4 system. For TTL compatibility, a resistor should be
added between the output and Vpp. All outputs are push-pull
MOS outputs.

Vpp = —10V Vpp = —10V

______ L _I ———— e ——

— | 12KQ l 5.6K%
— , — |
4001/4002 ®] ®—>» OU 4003 ’_____._>I u
OUTPUT PORT i ° T_ OUTPUT | out

- | I

— | — |

| |

_______ S RS RS
Vgs = Ve = +5V Vgs = Ve = 5V

Figure 38. MCS-4 Output Configuration for TTL Compatibility

The input options for the 4001 are shown with the detailed des-
cription of the 4001 I/O ports. All other inputs are high impedance
MOS inverters. Inputs to the 4001 and 4003 are TTL compatible (the
4001 non-inverting option is an exception).

Voo

_____ r—A

I

— |

|

|

————>ourt

|

|

._' '

|

_____ |
Vss Vss

Figure 39. Typical MCS-4 Input and Output Circuitry

102

Absolute Maximum Ratings*

Ambient Temperature Under 8ias 0°C to +70°C *COMMENT
Storage Temperature —55°C to +150°C . Stresses above those listed under ‘‘Absolute Maximum Ratings”
Input Voltages and Supply Voltage may cause permanent damage to the device. This is a stress rating
With Respect to V +0.5 to —20V only and functional operation of the device at these or any other
SS . -

- B condition above those indicated in the operational sections of this
1.0W specification is not implied.

D. C. and Operating Characteristics — 4001, 4002, 4003, 4004

Ta =0°C 10 +70°C; Vpy = —15V +5%, Vgg = GND, tgpw = t¢p = 400 nsec. tgppy = 150 nsec, unless otherwise specified
Logic 0" is defined as the more positive voltage (Vy, Vo), Logic **1" is defined as the more negative voltage Vi Voo!

Power Dissipation

SUPPLY CURRENT

LT
PRODUCT SYMBOL PARAMETER MmN, TYR.(V max. UNIT TEST CONDITIONS
4001 bp1 AVERAGE SUPPLY CURRENT 15 30 mA T = 25°C
4002 \op2) AVERAGE SUPPLY CURRENT o 17 33 mA Ta = 250C
4003 1oD3 AVERAGE SUPPLY CURRENT 5.0 85 mA twi = twH - Busec; T = 259C
4004 1DD4 AVERAGE SUPPLY CURRENT 30 40 mA T = 25°C
INPUT CHARACTERISTICS (ALL INPUTS EXCEPT 1/O INPUT PINS)
4001/2/4 L INPUT LEAKAGE CURRENT) 10> MA ViL = Vop
4001/2/4 Vin “INPUT HIGH VOLTAGE Vgs—1.5 Vgs+0.3 v
(EXCEPT CLOCKS)
4001/2/4 ViU INPUT LOW VOLTAGE Vbp Vgs-55 | V
) {EXCEPT CLOCKS)
4001/2/4 ViLe CLOCK INPUT LOW VOLTAGE Vbo Vgs—134 | v
4001/2/4 ViHe CLOCK INPUT HIGH VOLTAGE Vgs—1.5 Vgs+0.3 v

OUTPUT CHARACTERISTICS (ALL OUTPUTS EXCEPT 1/0 OUTPUT PINS}

4001/2/4 Lo DATA BUS OUTPUT LEAKAGE 10 MA VouT = —12V, Chip disabled
CURRENT
4001/2/4 VoH QUTPUT HIGH VOLTAGE Vss Vgg—-0.5 \Y Driving 4000 Series toads only
4001/2/4 oLt DATA LINES SINKING 10 18 mA VouTt =0V
CURRENT ““1” LEVEL
4004 foLs CM-ROM SINKING CURRENT 6.5 12 mA \Y =0V
0 “1" LEVEL out
4004 loLs CM-RAM LINES SINKING 25 4 mA VOUT =0V
CURRENT 1" LEVEL .
4001/2/4 Vour DATA LINES, CM LINES, Vgs—12 Vgg—10 Vgs—65| V IoLy = 500 uA
SYNC OUTPUT LOW VOLTAGE
4001/2/4 RoH1 OUTPUT RESISTANCE 150 250 Q Vour = ~0.5V
DATA LINES "0 LEVEL
4004 RoHs CM-ROM OUTPUT 320 600 Q Vourt = —0.5V
RESISTANCE “0"” LEVEL
4004 RoHE CM-RAM LINES OUTPUT 1.1 18 KQ Vout = —0.5V
RESISTANCE 0" LEVEL
1/0 INPUT CHARACTERISTICS
4001/3 I INPUT LEAKAGE CURRENT 10 [y Vi = Voo
4001/3 ViH INPUT HIGH VOLTAGE Vgs—1.5 Vgs+0.3
4001/3 V“_(Z) INPUT LOW VOLTAGE Vop Vgs—4.2 A%
4001 R| 1/0O PINS tNPUT RESISTANCE 10 18 35 K Internat input resistor is optional

1/0 OUTPUT CHARACTERISTICS

4001/2 loL2 1/0 QUTPUT LINES SINKING 25 5 mA VouT =0V. For T2L compatibility a
CURRENT, “1"" LEVEL J— 12K © (+10%) resistor between out-
put and Vpp should be added!(3)
4003 oL PARALLEL OUT PINS 0.6 1.0 mA VouT =0V. For T2L compatibility a
SINKING CURRENT, “1"" LEVEL . 5.6K 2 (£10%) resistor between out-
put and Vpp should be added(3),
4003 loLa SERIAL OUT SINKING 1.0 2.0 mA VOUT =0V
CURRENT, “1"” LEVEL
4001/2 VorL2 1/0 OUTPUT LINES Vgg—12 Vgg—7.5 Vgg—6.5 A loL2 = BOMA
OUTPUT LOW VOLTAGE
4003 Vor3 OUTPUT LOW VOLTAGE Vgg—11 Vgg—7.5 Vg5—6.5 \Y toLz = 10 HA
4001/2 RoH2 OUTPUT RESISTANCE 12 8 KQ Vout = —05V
1/0 LINES 0" LEVEL i
4003 RoH3 PARALLEL-OUT PINS OUTPUT 400 750 Q Vour = ~0.5V
RESISTANCE “0” LEVEL \
4003 RoH4 SERIAL OUT QUTPUT 650 1200 Q Vouyr = ~0.5V
RESISTANCE "0 LEVEL
(1) Typical values are for T = 269C and Nominal Supply Voltages. (3) For T2L compatibility on the I/0 lines the supply voltages should be
{2) 1f non-inverting input option is used, Vi = —6.5 Volts maximum. Vpp = 10V + 5% Vgg =+5V + 5%

103

Typical D. C. Characteristics

POWER SUPPLY CURRENT (mA) - Ipp,

POWER SUPPLY CURRENT (mA) - [pp3

OUTPUT CURRENT (mA) - o, 5

POWER SUPPLY CURRENT
VS. TEMPERATURE
(4001)

!

t,pw = t,p1 = 400 nsec
top2 = 150 nsec

16

Vpp= —15.75V

12

AMBIENT TEMPERATURE (°C)

POWER SUPPLY CURRENT
VS. TEMPERATURE
(4003)

twL = twH = 8 usec

] _Vop--15.75

\\ -15.0
\\

[} 20 40 60 80

AMBIENT TEMPERATURE ({°C)

OUTPUT CURRENT VS.
OUTPUT VOLTAGE
(4001, 4002)

l Vpp= —15.0V
Ta=0C topw = topq = 400 nsec]
+25°C t,p2= 150 nsec

|

+70°C

\\

’,J

6o -1 -2 -3 -4 -5 -6 -7
OUTPUT VOLTAGE (V)

104

POWER SUPPLY CURRENT (mA) - Ipp, POWER SUPPLY CURRENT {(mA) - Ipp,

OUTPUT CURRENT (mA) - Ig 5

21

POWER SUPPLY CURRENT

VS. TEMPERATURE

(4002)

tew = top1
t,p2 = 150 nsec

400 nsec

/V

Vpp = —16.75V

36

32

28

24

20

OUTPUT VOLTAGE (V)

1428V
\
20 - 40 60 80
AMBIENT TEMPERATURE (°C)
POWER SUPPLY CURRENT
VS. TEMPERATURE
(4004)
topw = typq = 400 nsec
t,p2 = 150 nsec
\
~—
Vpp = —16.75V
\\ 15.0V S~
T _14.25v ~
—
\
0 20 40 60 80
AMBIENT TEMPERATURE (°C)
OUTPUT CURRENT VS.
OUTPUT VOLTAGE
(4003)
Vpp = —15.0V
twiL= KWH=l Busec |
\\\
\ L Ta=0°C
X\// 125°C
L +70°C
\\\
RN
AN
o 1 2 -3 -4 -5 g -3

4001, 4002, 4004 A.C. Characteristics

TA =09C to +70°C; Vpp = —16V £ 5%, Vg = GND

LMt
PRODUCT SYMBOL TEST MIN. max, | UNMIT | CONDITIONS
4001/2/4 tey CLOCK PERIOD 1.35 2 usec
tsR CLOCK RISE AND 50 nsec
toF FALL TIMES
topw CLOCK WIDTH 380 480 nsec
t4D1 CLOCK DELAY 400 550 nsec
FROM ¢1 TO ¢2
t4n2 CLOCK DELAY 150 nsec
FROM ¢ TO ¢q
tw DATA-IN WRITE - 350 nsec
TIME
tH DATA-IN HOLD 40 nsec
TIME
tosll SET TIME FOR 0 nsec CouTt = 500pF for data lines
DATA OUT, SYNC, §00pF for SYNC
CM-ROM, (2\cm- 160pF for CM-ROM
RAM,(2) LINES 50pF for CM-RAM
toH HOLD TIME FOR 50 nsec CouT = 20pF
DATA OUT, SYNC,
CM-ROM, CM-RAM,
LINES
tRtf RISE AND FALL 500 nsec CouT = S500pF for data lines
TIMES FOR DATA 500pF for SYNC
OUT, SYNC, CM-ROM, 160pF for CM-ROM
CM-RAM, LINES 50pF for CM-RAM
4001/2 tp 1/0 OUTPUT LINES 600 nsec CouT = 20pF
DELAY
twe CM WRITE TIME 350 nsec
tHe CM HOLD TIME 10 nsec
4001 s 1/0 INPUT LINES 50 nsec
SET TIME
tH 1/0 INPUT LINES 100 nsec
HOLD TIME
tdd 1/0 QUTPUT LINES 200 nsec CouT = 20pF
DELAY ON CLEAR

4001, 4002, 4004 Timing Diagram

Outputs with loading conditions specified on A.C. Characteristics table.

M Data out, SYNC, CM-ROM, and CM-RAM, fines are clocked out with

the trailing edge of the §7 clock.
The CM-ROM and the selected CM-RAM; lines are always activeted
during'A3 time. They are also activated during M2 time if an /0 and
RAM instruction was fetched by the CPU, and during X3 time if an
(3,SRC instruction wes fetched by the CPU.

Pin C|_on 4001 is used to asynchronously clear the output flip-flops
associated with the 1/ lines.

NOTES:
2

DATA BUS LINES
(Dg. Dy, Dy. D3}

tey

4002 OUTPUT LINES, 4001 1/0 QUTPUT LINES

45 . p—
" tH ‘F -t .
W |-~ 1, pa— OH™ =
/ s @-1v s f
DATA IN £ _sv ® _sv DATA OUT L
1 t
p R
@ -1v
le=t-tos - tOH
CM ouT
. I

CM LINES
_\ 4001 1/0 INPUT LINES
s ——l —

4007 CLEAR LINE (C(}

4001 1/0 OUTPUT LINES

105

4003 A.C. Characteristics

T, = 0°C to +70°C; V= —15 + 5%, Vg = GND

LiMIT
SYMBOL TEST MIN. MAX. UNIT CONDITIONS
twi CP LOWWIDTH 6 10,000 psec
twH CP HIGH WIDTH & Note (1) Hset
tcp CLOCK-ON TO DATA-OFF TIME 3 usec
og CP TO DATA SET DELAY Note (2) 250 nsec
41 CP TO DATA OUT DELAY 250 1,750 nsec
tg2 ENABLE TO DATA OUT DELAY 350 nsec Cout - 20 pF
ty3 CP TO SERIAL OUT DELAY 200 1.250 nsec Cour = 20 pF
NOTES: “)!WH can be any time greater than 6 Usec.
(2)Data can occur prior to CP.
4003 Timing Diagram
t— typy ——»] 5
\. @ -1V
cP ® -5V TwH >
e—1tcp
—_—
DATA IN _sv
—1pg |
—
@ -1V
“ DATA OUT @ -5V
(a;)
<14, "‘ 42 —| tyo I<_~
ENABLE
@ -5y
+ (E) !
.
SERJIAL OUT
| g3 |ee—
Capacitance
f=1MHz; Vy=0V; T,= 25°C ; Unmeasured Pins Grounded.
LIMIT (pF) LIMIT (pF)
PRODUCT | SYMBOL TEST TYP. | MAX. PRODUCT | SYMBOL TEST TYP. [Max.
4001/2/3/14| Cpy INPUT(T) 5 10 4002/4 Cpy DATA BUS 65 10
CAPACITANCE 1/0 LINES
CAPACITANCE
4001/2 Cg1.Cgp | CLOCK INPUT 8 15
CAPACITANCE 4001 Cpa DATA 8US 9.5 15
1/0 LINES
4004 Cgr.Cpa | CLOCK INPUT 14 20 CAPACITANCE
CAPACITANCE .

NOTE: (1) Refers to all input pins except data bus 1/O and (1)1 and oz.

Typical Load Characteristics

SET TIME VS. OUTPUT CAPACITANCE
(DATA LINES FOR 4001, 4002, 4004
& SYNC FOR 4004)
700 T T

topw = 380 nsec

@
3
S

@
S
=)

@

2

3 400

£

@

Z 300

5

- I

8 [~
200

Ty = 0°C I~ N
100 +25°C ™~
¥70°C

. I

100 200 300 400 500 600 700 BOO

OUTPUT CAPACITANCE (pF)

106

SET TIME VS. OUTPUT CAPACITANCE
(CM-ROM 4004)

700 ' !
topw = 380 nsec
600 typy = 400 nsec
typz = 150 nsec
" t,n T top - 40 nsec
£ s00 Vpp = —15.0v
LY |
- 400
Z
[~
-
& 300 Ta =0°C T
\ I o5ec
200
™ +70°C
100
0 100 200 300 400 500 600

OUTPUT CAPACITANCE {pF}

Absolute Maximum Ratings*

Ambient Temperature Under Bias

Storage Temperature

Input Volitages and Supply Voltage
With' Respect to VSS
Power Dissipation

0°C to +70°C

—55°C 1o +150°C

+0.5 to —20V
1.0wW

" *COMMENT

Stresses above those listed under ‘‘Absolute Maximum Ratings”
may cause permanent damage to the device, This is a stress rating
only and functional operation of the device at these or any other
condition above those indicated in the operational sections of this
specification is not implied,

4008, 4009
D. C. and Operating Characteristics

Ta = 0°C to 70°C, VSS—VDD[” =15V 5%, topw = tpD1 = 400ns, typ2 = 150ns unless otherwise specified.

Symbol Parameter Product | Min. Typl2ll Max. | Unit Test Conditions -
I Input Leakage Current 4008/9 10 UA Vin = Vgg —16V, Pins 1-8 (4008)
Pins 1-8, 11, 13-15 (4009)
Ibp Average Supply Current 4008 10 20 mA T, = 25°C Unloaded
, 4009 13 30 mA
Viu Input High Voltage 4008/9 | Vgg Vss \Y%
-15 +0.3
ViLe Clock Input Low Voltage 4008/9 | Vpp Vss \Y
—-12.5
Viul Input Low Voltage 4008/9 VDb Vss \Y) Pins 1-6 (4008), Pins 11, 15,
(Except 1/0) -5.5 20-23 (4009)
VL2 1/0 Input Low Voltage 4009 Vbp Vgg 'S Pins 1-8, 16-19
—4.2
Voo Output Low Voltage 4008/9 | Vgg Vss Vsg \% Capacitive Load Only
-12 —-10 —6.5
loLq (3] Address Line Sinking 4008 8 12 mA Vout =Vss
Current
toL2 Chip Select and 4008 9 13 mA Vout =Vss
F/L Sinking Current 1.6 2.5 mA Vout =Vss —4.85V
oLz 41 | W Output Sinking Current 4008 2.5 5.0 mA Vout =Vss
toLa Data Bus Sinking Current 4009 9 - 15 mA Vout =Vss : Pins 20-23
loLs 1/0 and Strobe Output 4009 5 12 mA Vout =Vss
Sinking Current 16" 4 mA Vout =Vss —4.85V
Rou1 Output on Resistance 4008 0.6 1.2 kQ | Vout=Vss —0.5V
Ron2 ~Data Bus Output On 4009 130 250 Q Vout =Vss —2V, Pins 20-23
Resistance
RoHna 1/0 and Strobe Qutput 4009 250 1000 Q Vout =Vss —2V, Pins 9,10,16-19
on Resistance
Ice Output Clamp Current - 4008/9 16 mA Vout =Vss —6V. All outputs on
4008. Pins 9,10,16-19 (4009)
NOTES:

1. For TTL compatibility on the 1/O lines, the supply voltages should be Vgg = +6V 5%, Vpp = —10V £ 5%.
2. Typical values are for Ta = 259C and nominal supply voltages.
3. The address lines will drive a TTL load if a resistor of 470 ohms is connected in series between the address output and the TTL input.
4, A 6.8kohm resistor must be connected between Pin W and Vpp for TTL capability.

107

4008, 4009 A.C. Characteristics

Ta = 0°C to 70°C, Vgg—Vpp = 15V * 5%. All clock, sync, CM ROM, data bus, and I/O timing specifications are identical
with the 4001 and 4004,

—
Limit . "
Symbol Parameter Product i Mo, Unit Test Conditions
toy Clock Period 4008/4009 | 1.35 2.0 us
tyr.tor | Clock Rise and Fall Time 4008/4009 50 ns
topw Clock Width 4008/4009 380 480 ns
teD1 Clock Delay from ¢, to ¢, 4008/4009 400 500 ns /
tep2 Clock Delay from ¢, to ¢, 4008/4009 150 ns
T Address to Output Delay at Aq,A5, X4 4008 1 us C, =350pF
tes Chip Select Output Delay at A, 4008 300 ns C, =50pF
two W Output Delay 4008 600 ns C_=100pF
tep F/L Output Delay 4008 0.1 1 us C_ = 100pF .
twi Data In Write Time 4009 600 ~ ns C_ = 200pF on data bus
tp 1/0 Output Delay 4009 1.0 us C,_ =300pF
tg4 N Strobe Delay 4009 450 ns C_ =50pF
tgo OUT Strobe Delay 4009 1.0 Ms C_=50pF
- L] - * . \\, i
Timing Diagram N
FP D I S T I R S N 5 O B T
S U W an n W o W e |\
& U] ul U A u g |/ |
SYNC (4004) / H ’ \ \\\ I & /_
CM-ROM (4004} , N— -T/a— - ’ ," \;_TFSRC B /
Ag ~ A3 (4008))< 7 SRC REGISTE L‘OW 4 BITS
Ag~ A7 (4008) SRC RE!GISTE! HIGH 4 |BITS
—=] ty fu— | 1cg l l
Co ~ C3 (4008) SRC REGISTER HIGH 4 BITS (except WPM)
*PROGRAM MEMORY ACCESS —a] p— fa— 1 ot S/
Dy ~ D} =
(FROM ROM OR RAM) PROGRAM INSTRUCTION
DATA BUS H\gi]So;;)
W (4008} s Al l"— I'E':’_ iw_n: J .
F/L (4008) \ “TVIGH FOR FIRST WPM. LOW F_gn?s.caumﬂb T
trp— "— ."D"i trp: I‘-
1/0 OUTPUT (4009} FLOATIN]
| DS—
N 2ot N N
IN STROBE {4009) \l" ROR "ﬁ /L_ IF WRR \
tsi—s po— /:s, INSTR } Q
OUT STROBE (4009) e T i C;
DURING SHADE "T.J‘Z'ﬁé o] o s Y
L -/ - U
1/0 INPUT (4009) DON'T CARE] DON'T CARE \U
*PROGRAM MEMORY ACCESS TIME {CHIP SELECT TO DATA OUT) MUST BE LESS THAN 900ns. { g p; D

Capacitance - 1wz, vy = vss, Ta - 250,

\

y

N
Limit (pF) —— Limit (pF)
Symbol P: P
ymbo arameter roduct Typ. Mox. Symbol Parameter Product Typ. Max.
Cin Input Capacitance 4008 5 10 Ci/o Data Bus and 1/0 4008/9 8 10
4009 8 15 " Capacitance
Cout Output Capacitance | 4008/9 8 10 Cs Clock Capacitance 4008/9 12 20

108

APPLICATION OF THE 4008/4009 IN AN MCS-4 SYSTEM

The standard memory and 1/0 interface set (4008/4009)
provides the complete control functions performed by
the 4001 in MCS-4 systems. The 4008/4009 are com-
pletely compatible with other members of the MCS-4
family. All activity is still under control of the 4004
CPU. One set of 4008/4009 and several TTL decoders
is sufficient to interface to 4k words of program mem-
ory, sixteen four-bit input ports and sixteen four-bit
output ports.

It should be noted that in any MCS-4 system the pro-
gram memory is distinct from the read/write data storage
(4002 RAM). Using the 4008/4009, programs can now
be stored and executed from RAM memory, but this
RAM memory is distinct from the 4002 read/write data
storage. RAM program memory will be organized in eight
bit words and 256 word pages, just like the memory array
inside the 4001. Any combination of PROM, ROM, and
RAM will be referred to as program memory.

The accompanying diagrams show the internal organiza-
tion of both the 4008 and 4009.

The 4008 is the address latch chip which interfaces
the 4004 to standard PROMs, ROMs and RAMs used
for program memory. The 4008 latches the eight bit
program address sent out by the CPU during A1 and
A2 time. During A3 time it latches the ROM chip num-
ber from the 4004. The eight bit program address is
then presented at pins AQ through A7 and the four bit
chip number (also referred to as page number) is present-
ed at pins CO through C3. These four bits must be de-
coded externally and one page of program memory is
selected.

The 4009 then transfers the eight bit instruction from
program memory to the 4004 four bits at a time at M1
and M2. The command signal sent by the CPU activates
the 4009 and initiates this transfer.

When the CPU executes an SRC (Send Register Control)
instruction, the 4008 responds by storing the 1/O address
in its eight bit SRC register. The content of this SRC
register is always transferred to the address lines (AQ
through A7) and the chip select lines {(CO through C3)
at X1 time. The appropriate 1/O port is then selected
by decoding the chip select lines. The IN and OUT lines
of the 4009 indicate whether an input or output opera-
tion will occur.

The 4009 is primarily an instruction and 1/O transfer de-
vice. When the CPU executes an RDR (Read ROM Port)
instruction, the 4009 will send an input strobe (pin 9)
to enable the selected input port. It also enables 1/O
input buffers to transfer the input data from the 1/0 bus
to the data bus. When the 4009 interprets a WRR
(Write ROM Port) instruction, it transfers output data
from the CPU to the 1/O bus and sends an output strobe
(pin 10) to enable the selected output port.

A formerly undefined instruction is now used in conjunction with the 4008/4009 to write data into the RAM program memory,
This new instruction is called WPM (Write Program Memory — 1110 0011). When an instruction is to be stored in RAM
program memory, it is written in two four-bit segments. The F/L signal from the 4008 keeps track of which half is being
written. When the CPU executes a WPM instruction, the chip select lines of the 4008 are jammed with ““1111”. In the system
design this should be designated as the RAM channel. The W line on the 4008 is also activated by the WPM instruction.
The previously selected SRC address on line' A0 through A7 of the 4008 becomes the address of the RAM word being

written. By appropriately decoding the chip select lines, the W line, and F/L, the write strobes can be generated for the memory,
The F/L line is initially high when power comes on. It then pulses low when every second WPM is executed. A high on the

F/L line means that the first four bits are being written, and a low means that the last four bits are being written. The 4009
transfers the segment of the instruction to the |/O bus at X2 of the WPM instruction. The SRC address sent to RAM is only

8 bits. When more than one page of RAM (256 bytes) is being written, an output port must be used to supply additional
address lines for higher order addresses.

Definition of Write Program Memory Instruction

Mnemonic: WPM Description: The chip select lines of the 4008 are forced to ““1111"”

OPR OPA: 1110 0011 at X1 time and the content of the accumulator is available on the

Symbolic: 4009 1/0 bus at X2. RAM program memory can be loaded four
1111-» C35C,C1Cq of 4008 bits at a time. The previous SRC address is sent out on lines AQ
ACC - 1/031/021/041/0g of 4009 through A7 of 4008.

SRC Address — A, — A, of 4008
System llustrations Using the 4008 and 4009

Four systems are shown where the MCS-4 components are used with standard Intel memory elements as the program memory.
Notice that several different approaches to chip select, port decoding, and the /0 elements are shown.

Example 1: Four 1702A PROMs and Four 1/0 Ports.

This configuration is equivalent to the SIM4-01 system. Four 1702As are used for program storage and four four-bit 1/0 ports
are used. In this case D-type output latches are used and a one of eight decoder (3205) is used to decode both the input and
output strobes. Note that the /O bus is buffered from the outputs. Buffers are needed only when the current sinking require-
ment on the bus exceeds 1.6 mA. In small systems low power TTL could be used and buffers could be avoided.

Example 2: Read/Write Memory for Program Storage.

This example shows only the RAM portion of a system when RAM is used for program memory. Note that the chip selects
are tied together in groups of four. The chip selects are gated with the F/L control line for writing only four bits at a time
when executing a WPM instruction. They are also gated with the decoding of the chip selects from the 4008 for normal program
execution. The 1101 {256 words x 1 bit) is shown. A similar system using the 2102 (1k words x 1 bit) could be developed.
Example 3: Seven 1702A PROMs, one RAM block, and seven 1/0 Ports.

This example uses a single page of RAM program memory shown in Example 2 in a complete system. In this case the input
ports are 8:1 multiplexes which are buffered from the 1/0 bus by a quad three state buffer. The input port selection is then
the function of the multiplexers. The output ports are Intel 3404 latches and the port selection is done using an Intel

3205 decoder.

Example 4: Eight 1702A PROMs, eight RAM Blocks, and eight 1/0 Ports.

Program memory organized with 2k bytes in ROM and 2k bytes in RAM. Each basic RAM block can be organized as in Example
2. When more than one block of RAM is used, the write chip select (WCS) for each RAM block is generated by properly
gating chip select 15 with special decoding for page selection. Output port eight is dedicated to this selection function. This is
only necessary when the RAM program memory is being written. In this example standard TTL logic elements are used for
1/O port selection rather than decoders as shown in previous examples. In this case all input ports are three state buffers.

IMPORTANT:

The following differences exist between an MCS-4 system using 4001 program memory and a system using 4C08/4009 program memory.

1. For normat operation, 4001 ROMs cannot be used in the same system with 4008/4009.

2. Memory address, memory data, /0 bus, and control lines from both 4008 and 4009 are defined with respect to positive logic. The MCS-4 data
and control lines from the 4004 are defined with respect to negative logic. As a result, in program memory used with the 4009, programs should
be coded with logic “1”” = high level and logic *“0’’ = low level (i.e., NOP = 0000 0000 = NNNN NNNN). Note that programs are defined for
the 4001 in terms of negative logic such that NOP = 0000 0000 = PPPP PPPP. Carefully check all tapes submitted for metal mask ROMs to be
sure that the correct logic definitions are used.

3. Input and output data from the 4009 /O bus is defined in terms of positive logic. If these interface devices are used for prototyping a 4001
program memory, care should be taken to be sure that the 1/O ports for the 4001s are defined consistent with the 4008/4009 system.

4. An 1/0O port associated with the 4009 can have lines with both input and output capability. On the 4001 each 1/O line may have only a single
function, either input or output.

5. The RAM program memory cannot be used as a substitute for the 4002 read/write data storage. They perform distinctly different functions.

6. CM-ROM and CM-RAMg cannot be used to control 4002s when CM-ROM is used for 4008/4009 and the WPM instruction is being used. The
reason is that the WPM instruction is interpreted as a Write Memory (WRM) by 4002s connected to the same CM line as 4008/4009.
CM-RAMyg in absence of a DCL behaves exactly like CM-ROM.

110

RAM RAM
CM RAM O PORT 0 PORT 3
14004 SYNC Hn nn
™ 4002 4002
Dy Dy D, D, | ROM l—’RAmo l—“ RAM 3 "’
DATA BUS
14008 - i1702A
ROM 0 i4009
Co C1C; Cy cs N
I f. out
/o
11702A
ROM 3
[
THREE
Lo STATE
‘ BUFFER
Ao Op
c
A, O - 1
LA, o LP4BIT [OUTPUT
18 5 D TYPE LATCH———" PORT 0
13205 o L —
q
Ogp— - :
Of— ° e -
% LP4BIT [ouTPuT
D TYPE LATCH—— PORT 3
THREE STATE [S——— INPUT
BUFFER [$——— PORTO
THREE STATE [—— INPUT
BUFFER |=———PORT3

Example 1. Four 1702As and Four 1/0 Ports (SIM4-01 Equivalent)

~ RCS (CHIP SELECT
DECODED FROM 4008)

—~ WCSi—

| FL—— WCS: WRITE CHIP SELECT ACTIVE LOW
WRITE w - (DERIVED FROM ALL 4008 CHIP SELECTS “HIGH")
CONTROL RCS: READ CHIP SELECT ACTIVE LOW
FROM 4008) 6.8k
. Ld
Vop
ADDRESS
FROM
4008 b & A 4) 4) 6 T T T]
1L I 4 171 1T 1T 1Y, 11l
[111 [111 [111 {111 [111 [111 (111 [11]
RW R/W R/W
Ll 1100 s 10 L 10 L] Mo Ll Mo Ll 1101 Ll 1o L 10

| To

4009

Dy

*NOTE THAT A SIMILAR MEMORY MODULE CAN BE DEVELOPED USING INTEL'S
2102 1k STATIC RAM. AN OUTPUT PORT MUST BE USED TO SUPPLY HIGHER ORDER
ADDRESS BITS FOR WRITING A 2102 MEMORY. HANDLE IN THE SAME MANNER AS

A MULTIPLE PAGE 1101 SYSTEM.

l—«—— FROM

4009

1/0 8US

Example 2. Read/Write Memory for Program Storage

11

CM RAM AW

SYNC 14002 [+ ouTPUT

CM ROM PORT
Dy 0, 0,04 B [

H—
—
—

17024 .
#0 14009 THREE
4008 STATE
cs N BUFFER
¥ _
Co..CaF/L W ouF
p_‘: :j_1 10
ey 17024
BUFFER| YT | =1
JH4 o s
A]
NS . [i ol g -
A 13‘2/:5 eeeeena : vesrens BUFFE“IVVS i“ E, ?;
A, DECODER | [50 0 8 O —-:0 -
— -
[+ Y A, 13205 b=
17024 142 -~
%6 ke
[
N
—t
] 13404 OUTPUT
— 0 PORT 0
— | |
L —3]
RAM*
] 3404 ouTPUT
1 1 PORT 1
._:’:r-\ z Hitt -
*] > 3404 OUTPUT
. I 5= WS] s PORT 6 INPUT
PORT6 ———

*A detailed RAM memory interconnection is shown in an accompanying figure.

Example 3. Program Memory with Seven Pages of PROM and One Page of RAM

RAM 0 OUT RAM 3 0UT
. CM-RAM (X11) (Y1)
SYNC 4002 4002
4004 RAMO] " RAM 3
o™
ROM I
]
l { cm cm i 1
—— A, poa’
0
= 17024 =
W T =0 14009
F/L 11
C3CaCeC 1 1] A; T3 N
} SUT
——
.. — BUFFER |2
Ao 1 YL B
l [- X ° s02n F—H . II DRIVER |
: 1
Az Ay Ag 1Az Ay Ag . A7’ D
L1, ' s 10 1
13205 i3206 R ,_:D HEH] THREE ey
: *i: STATE *"‘}mo
1T T Ag . [1 surFer =
w| | ™ s (8 7 il o : 117024] 3408 }oum
een e . =7
A '—‘ N
TO ALL A
RAMS I (] 1 y S 4 Iy
i — I L} THREE o
3 = 1 e e B o
1 eurFer [a—
; T Ao - .
- Lol —] 3408 out
RCS 8 RAM* .) uT . :
wess |- *8 . : _1'\ :
HIN A = Y U] TeRee o
2 | g STATE [R= N7
RCS9 | Ram 3 BUFFER [*—
WCs 9 #9 ;
1
- 1 i3s04 }ou1'7
—lfg | | paTaneur [344
t i e — /| 7o ALL RaMs
RSC 15 RAM
=15 <
I_______.__W_Eﬂ‘_. . i3408 I
I . -
-
1 Ao ouT B
3205 Ay - - -
Al —

*RAM memory is used for program storage. An accompanying RAM memory figure shows the memory
interconnect in detail. if Intel’s 2102 RAM is used, four RAM memory sections can be reduced to one.

Example 4. Program Memory with Eight Pages of PROM and Eight Pages of RAM
- 112

APPENDIX C
MCS-4 CUSTOM ROM ORDER FORM

4001 Metal Masked ROM '

All custom ROM orders must be submitted on forms provided by Intel. Programming information should be sent
in the form of computer punched cards or punched paper tape. In either case, a print-out of the truth table
must accompany the order. Refer to Intel’s Data Catalog for complete pattern specifications. Alternatively, the
accompanying truth table may be used. Additional forms are available from Intel.

For Intel use only
CUSTOMER S# PPPP —_
STD 2z —
P.O. NUMBER
APP . DD i —
DATE v DATE i/0 -

INTEL STANDARD MARKING

Intel Pattern

| I

The marking as shown at right must contain the Intel logo, ® p4001 ' PPPP Number

the product type (P4001), the four digit Intel pattern num- I

ber (PPPP), a date code (XXXX), and the two digit chip |XXXX| L (24 1 Chip Number or
number (DD). An optional customer identification number T Cusr:omer Numb: zr

may be substituted for the chip number (22). ate Code

Optional Customer Number (Maximum 6 characters or spaces)

MASK OPTION SPECIFICATIONS
A. CHIP NUMBER (Must be specified — any number from 0 through 15 — DD)

/

B. 1/0 OPTION — Specify the connection numbers for each 1/0 pin (next page). Examples of some of the possibl'e 1/0
options are shown below:

EXAMPLES — DESIRED OPTION/CONNECTIONS REQUIRED
Non-inverting output — 1 and 3 are connected.
. Inverting output — 1 and 4 are connected.
Non-inverting input (no input resistor) — only 5 is connected.
Inverting input (input resistor to Vgg) —2, 6, 7, and 9 are connected,
Non-inverting input (input resistor to Vpp) — 2, 7, 8, and 10 are connected.
If inputs and outputs are mixed on the same port, the pins used as the outputs must have the internal resistor connected to either
Vpp or Vgg (8 and 9 or 8 and 10 must be connected). This is necessary for testing purposes, For example, if there are 1:wo in-
verting inputs (with no input resistor) and 2 non-inverting outputs the connection would be made as follows:
Inputs — 2 and 6 are connected
OQutputs — 1, 3, 8 and 9 are connected or
1, 3, 8 and 10 are connected
If the pins on a port are all inputs or all outputs the internal resistors do not have to be connected.

C. 4001 CUSTOM ROM PATTERN — Programming information should be sent in the form of computer puriched
cards or punched paper tape. In either case, a print-out of the truth table must accompany the order. Refer to Intel’s. Data
Catalog for complete pattern specifications. Alternatively, the accompanying truth table may be used. Based on thuz par-
ticular customer pattern, the characters should be written as a P’ for a high level output = n-logic 0" (negative logic “'0"')
or an “N’’ for a low level output = n-logic “*1" (negative logic “1”).

Note that NOP = BPPPP PPPPF = 0000 0000

113

Qo prON =

4001 1/0 Options

DATA
ROM BUS
MUX —— -0 D
PATTERN OUTPUT s n
BUFFER

N |

SET OUTPUT
LOGIC FIF

3 .
: o orom,
5 6 LD
6 l 2
7
L——o
8 R Voo
T

170, (PIN 16)
CONNECTIONS DESIRED (LIST NUMBERS & CIRCLE
CONNECTIONS ON SCHEMATIC)

a. For T2L compatibility on the 1/0 lines the supply voltages should be
Vpp =-10V 5%, Vgg =+5V +5%

DATA
ROM BUS
-] mux 0 D
PATTERN OUTPUT (P|N12)
BUFFER

I |
—

SET OUTPUT
weic [#F
. Q Q

ol P
—1—OTO 1/0,

o T R)

5
O
6

O
*—0

o_oq_zl__o_zoJ
Q. o ?7 VVDD

&;,I

170, (PIN 15)
CONNECTIONS DESIRED (LIST NUMBERS & CIRCLE
CONNECTIONS ON SCHEMATIC)

a. For T2L compatibility on the 1/0 lines the supply voltages should be
Vpp = =10V £6%, Vgg =+5V 6%

b. If non-inverting input option is used, V| =—6.5 Volts maximum (not TTL). b. If non-inverting input option is used, V;; = —6.5 Volts maximum (not TTL).
. DATA DATA
ROM BUS ROM BUS
paTreRn [MUX 1 oureur :1"2'23) paTTERN [MYX 1 oureur -0 Dy
BUFFER BUFFER (AN4)

170, (PIN 14)
CONNECTIONS DESIRED (LIST NUMBERS & CIRCLE
CONNECTIONS ON SCHEMATIC)

a. For T2L compatibility on the I/0 lines the supply voltages should be
Vpp = —10V 6%, Vgg =+5V +5%
b. If non-inverting input option is used, ViL = —6.5 Volts maximum (not TTL).

—

SET ouTPUT
waic ™ #rF
Q Q
3! ; Il .
s -0 1/0,
5 1 N
L 5 PN 13)
0" o o
: s ~ g 2
|7
o o b

Vss

1705 (PIN 13)
CONNECTIONS DESIRED (LIST NUMBERS & CIRCLE
CONNECTIONS ON SCHEMATIC)

a. For T2L compatibility on the 1/0 lines the supply voltages should be
Vpp =10V 6%, Vgg =+5V 5%
b. If non-inverting input option is'used, V|| = —6.5 Volts maximum (not TTL).

114

4001 CUSTOM ROM TRUTH TABLE Customer
P.O. No.
Chip No. .
Date

The customer truth pattern should be placed in the blue screen area. The white section above the screen area
will be used by Intel to verify the customer pattern.

Based on the particular customer pattern, the characters should be written as a “’P’’ for a high level output =
n-logic ‘0" (negative logic “0"') or an N’ for a low level output = n-logic ‘1"’ (negative logic **1"’).

INSTRUCTION INSTRUCTION INSTRUCTION INSTRUCTION
Word OPR OPA Word OPR OPA Word OPR OPA Word OPR OPA

Num ber nln1D\3 D392D1DO Nu mber D3DID1DD ?3D2D1nﬂ Nu m mr DZD';‘D“DR DEDQD1DO Numbe' D3020|DU D, n‘[_IU

32 96

33 97

34 98
35 99
36
37

38

39
40
a
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
94

62 126

63 | . 95 . 127
INTEL CORP. 3065 Bowers Avenue, Santa Clara, California 95051 & (408) 246-7501

115

Customer
P.O. No.
Chip No.

4001 CUSTOM ROM TRUTH TABLE

Date

The customer truth pattern should be placed in the blue screen area. The white section above the screen area
will be used by Intel to verify the customer pattern.

Based on the particular customer pattern, the characters should be written as a ’P”’ for a high level output =
n-logic “'0" (negative logic “0") or an "N"" for a low level output = n-logic *“1”' (negative logic ““1"').

INTEL CORP.

116

Word (!DI\:)S;;FRUCTS;Q Word INSTRUCTIO%X Word Word BI\LSF:'HUCT(I)OPR
Number Iopo, b,0,00] Number 00,00, Number Number 010;0,0, '030201'5“

128 160 192 224
129 161 193 225
130 162 194

131 163 195

132 164 196

133 165 197

134 166 198 230
135 167 199 231
136 168 200 232
137 169 201 233
138 170 “ 202 234
139 171 203 235
140 172 204 236
141 173 205 237
142 174 7 206 238
143 175 207 239
144 176 208 240
145 177 209 241
146 178 210 242
147 179 211 243
148 180 212 244
149 181

150 182

151 183 215 247
152 184 216 248
153 185 217

154 186 218

156 187 219

156 188 220 252
157 189 221 253
158 222 254
159 223 255

3065 Powers Avenue, Santa Clara, California 95051 e (408) 246-7501

APPENDIX D
TELETYPE MODIFICATIONS FOR SIM4-01/SIM4-02

The SIM4-01 and SIM4-02 micro computer systems and associated software have been designed for
interface to a model ASR 33 teletype wired in accordance with the following description.

The ASR 33 teletype must receive the following internal modifications and external connections:

Internal Modifications

1.

The current source resistor value must be thanged to 1450 ohms. This is accomplished by moving a
single wire. (See Figures 5 and 6.)

. A full duplex hook-up must be created internally. This is accomplished by moving two wires on a

terminal strip. (See Figures 4 and 6.)

. The receiver current level must be changed from 60mA to 20mA. This is accomplished by moving a

single wire. (See Figures 4 and 6.)

. A relay circuit must be introduced into the paper tape reader drive circuit. The recommended circuit

consists of a relay, a resistor, a capacitor and suitable mounting fixture, An alternate circuit utilizes
a thyractor for suppression of inductive spikes. This change requires the assembly of a small “‘vector”
board with the relay circuit on it. 1t may be mounted in the teletype by using two tapped holes in
the mounting plate shown in Figure 1. The relay circuit may then be added without alteration of

the existing circuit. (See Figures 2, 3, and 6.) That is, wire ‘A", to be connected to the brown wire
in Figure 2, may be spliced into the brown wire near its connector plug. The “line’’ and “local’ wires
must then be connected to the mode switch as shown. Existing reader control circuitry within the
teletype need not be altered.

External Connections

1.

A two-wire receive loop must be created. This is accomplished by the connection of two wires between
the teletype and the “SIM’’ board in accordance with Figure 6.

2. A two-wire send loop similar to the receive loop must be created. (See Figure 6.)

3. A two-wire tape reader loop connecting the reader control relay to the “SIM’’ board must be

created. (See Figure 6.)

= MOUNTING POSITION
FOR CIRCUIT CARD

Figure 1. Relay Circuit (Alternate)
117

YELLOW WIRE

Figure 3. Mode Switch (Rear View)
118 '

Figure 5. Current Source Resistor
119

L1501

|
|zo.n.!' 9} ‘I

ae
thﬁw-l
sPamg

WHEELOCK 3002101AB

CURZENT SOURCE CESISTOR

TOP VIEW

TELETYPE MODEL 33TC

Figure 7. Block Diagram

120

e | TERMINAL STRIP 15141 SEE iz 5
ALTERNATE RELAY CIRCUIT SEE Fla. 4
SEE Fi&a | /‘\
@
vIio 20 ma_
SM 4 -1 | 4-07 [8-O) |FuLL DuPLEX " ®< YEL 00 ma (BE):'
4 @(BLL/ @@y SEE FlG.4 @
R FA) N N e i
RECEIVE R hiidheieg
T JiZ-10{d2-40— — — — —
o wuf/;,.f/ P rull oupley
W w BRN/ vEL 1\@3—
[i |_ _ ™ L
g =3 Ji-8z|J-31 - — — — — aed -
2 SEND - T — %2 et owmeex [0
é A S okl i S8 eeo SEE Fla 4
of @ o % B BLk
¢] wur 1V ac
5 - [} WHT
w
: N 2TETRE
Q SEE Flem 2
U [T een m
N 85 Jd2-45|12-:8 <
| ! IAL‘ (Eu
: e | 3o s -
CCONTROL T S uF oI KUE aron.
| J2-12 [u2-28 : I:) | L - —
e g 1
e ===
z | POTTER € BRUNMFIELD I - f1
| RELAY (nO 12VDC | ' O o
HOTES. UNLESS OTUERWISE SPECFrED #UR-1005 9| .0K IA =
. sw Lo R
CUSTOMER EXTERWNAL COMMECTIONS L SEE Fla]
MEM® WITHIN DASHED LINES RreeesciuTs - - - - - - - [et ——— ’
CUSTOMER BREQUIRED MODHT\QATION$r : MODE SWITCH
(FRONT VIEW)
IM 1S INTERNAL MODIFICATION s€E Fla 3
EC IS EXTERNAL CONNECTION
/ Figure 6. Schematic
] |
SWITCH ‘ | l
| KEY BOARD | TADE
MOUNT l | |renced
REED | |
RELAY | |
' |
| PRINTER UNIT ’
CAPACITOR —% : ||
PUNCH
CURRENT | " 1 |
SOURCE SRR ’§ | D TEIBUTSJE |
RESISTOR AR | Z‘ﬂ:gﬁgsg |
POWER | : l
(rj F;, (F
SUPPLY e | O {voTor) |
\ ‘ I
TERMINAL | I
]
STRIP \ 1 |

1S Ac
Common

APPENDIX E
SYSTEM INTERFACE AND CONTROL MODULES

MCB4-10)

The MCB4-10 is a completely assembled interconnect, display and control switch module which eliminates all hand wiring
associated with an MP7-03/SIM4-01 setup. With the additions noted below, it becomes a self-contained system featuring the
following:

1. Automatic PROM Programming (with SIM4-01, PROM set A0540, A0541, A0543, MP7-03 power supplies, TTY).

2. General Purpose Micro Processor with 1/0 and Display (with SIM4-01, power supplies).

3. Test System for checkout of PROMs (with SIM4-01, power supplies).

The MCB4-10 includes the following:

1. All interconnect circuitry necessary to implement the programming system described in section XItl of the “MCS-4
Users Manual”’.

2. Connectors for the SIM4-01 and MP7-03 boards.

3. A zero insertion force 24-pin socket for PROMs to be programmed. Appropriate connections to the MP7-03 connector
are provided.)

4, Teletype receive conditioning circuit, transmit source circuit, punch and reader control interface circuits. Access to these
signals is provided by a 16 pin socket.

5. Control switches (2) and logic necessary for complementation of programmer input or output data.

. Breakout and buffering of computer signals to open sockets for ease of access. This includes 16 ROM outputs, 16 ROM

inputs, and 16 RAM outputs.

. SIM4-01 ROM and RAM 1/0 port binary display using light emitting diodes. This includes 32 bits of display.

. Data enable control switch which enables the MP7-03 output buffer.

. A PROM selector switch which facilitates addition of a select function on the MP7-03 board for future use.

. Two momentary pushbutton switches which drive the *“test’” and “reset”” input lines on the SIM4-01 board.

. Two transformers, 115Vrms, capacitors, fuse holder and AC input jack wired to develop a raw supply and filtering for

development of the programming voltage.
12. A control switch for disabling the programming voltage.
13. Input jacks for applying externally supplied +5V DC and —10V DC to the assembly. (Note: Internal supplies are not
included.)

The setup for the PROM programming application requires an MP7-03 {rear) and a SIM4-01 board installed in the MCB4-10.
Also shown are flat cabies interfaced via two 16-pin DIP sockets to the system.

(=2}

-_
-0 O~

MCB4-10/MP7-03/SIM4-01 System

121

1. Micro Processor System

When the MCB4-10 is used as a micro processor, its features, such as the display for the output ports and input ports, may be
utilized at the discretion of the user. As an example, consider the testing of SIM4-01 boards loaded with a PROM (1702) con-
taining the following program: read ROM port 0 and ROM port 1, add the two values and store the result at RAM ports 0 and 1.
The test could be implemented by connecting 8 switches to the “ROM input” socket. The actual switch circuit would consist

of a single pole double throw switch wired with one pole to ground and the wiper wired to the appropriate socket connector

pin in accordance with the MCB4-10 schematic (A3-1, A3-16 ... A3-13). The SIM4-01 is then inserted into the ‘'SIM4-01"
connector and a bench supply connected to the +5V DC and —10V DC input jacks. The actual test may now be performed. The
reset button is depressed, clearing the system’s memories and registers and the program executes. The result appears at the LED
display and may be verified for correctness. The display lights of interest are identified on the system’s printed circuit board as
“OUTPUT PORTS"”, “RAM 0", “RAM 1”, “BITS"” 0, 1, 2, and 3. ' \

2. Programming System

Consider the actual programming (in the hardware sense) of the 1702A PROM in the example above. The system can perform
this function with the addition of an MP7-03 board inserted into the “PROGRAMMER BOARD" connector. An automatic
programming system which allows data entry from a keyboard or papertape, automatic verification, listing of ROM contents,
and hands-off programming is provided by the further addition of a SIM4-01 board with three pre-programmed PROMs A0540,
A0541, A0543 and a modified teletype. The switches added in the manual set-up are deleted. The teletype modification con-
sists of the addition of simple relay network described by MCS-4 Users Manual. The procedure for programming a 1602A/
1702A PROM, then, is as follows:

. Insert MP7-03 and SIM4-01 boards (SIM4-01 loaded with PROM A0540, A0541, A0543).

. Connect teletype to “TTY" socket. ’

. Connect +5V DC, —10V DC and 115Vrms.

. Depress “RESET".

Set “PROG.AC"” to “ON".

Set “DATA ENABLE” to “DATA ENABLE".

. Set “PROM SELECTOR” to “1601A/1701A".

. Place teletype in “ON-LINE” mode.

Depress “RESET". ' \

10. Insert PROM. ’

11. Place paper tape in TTY reader and set reader to “START".

12. Type in program command *“P”” and beginning and ending address.

©CONDO D WN =

Refer to section X111 for a complete description of the MCS-4 micro computer controlied programming system. The PROM is
then automatically programmed and checked for correct content.

7,

’p PROGRAMMER BOARD I
72 2
0000000000000000000000 0000000000000

ROM . ——t
OUTPUT

TTY

)

»
~

I

NOTE: 1. Allsignals are defined with respect
to negative logic at the dual-in-line
/O socket (i.e., True [n-logic 1] =
GND, False [n-logic 0] = +5V),
2. 1TTL Load/Drive = 1,6mA @ 4V,

s
EXPANSION
san

z

>

<

=

11}
Hnoan

§=§ 1601/1701 @1 PORT LOGIC COMPATIBILITY
”MM' wrow seLecron (@) ROM Input Port True TTLIn
. o o2 ROM Output Port False TTL Qut
©0 0ATA\@ OATA RAM Output Port False TTL Out
our ENABLE

COMP.

S3800008 aBeRNROD J00008N0 tERRERENSE -
TE Ty 332 (fvews
RAM 3 2 1 0
%o © oo

PORTS
s e e s s s 0
s s 2 L
® 3 21 9 321

s MCB 410 Micro CompuTER CONNECTOR BoaRD ~ TEsT RESET PROG. AC.

L $ 32 Jva
2 1 0 2 1 0er

o o
o

° ON

o o

OFF

w oe

]

MCB4-10. Interconnect and Control Module Printed Circuit Board
o 122

Rom ouTvr cHim Bir
26 3,40
Mo~ O o 7,
L2 | S——
24 rJ 7 €5, A/
I—'\M—N—- L_‘,.,,, 2 B aniedd DATA OUT
0 P VA
| SEUVPVIFVICE S S * o
z) ¥ 47,43 _"’/e—v‘r,.mm
EnnT
L«M—N—-- | S 37 2078 1N
45 i 8 GRS G sS4 o—o¥»
resr s 2 1 — /-3 aas S5 s puc comricmonr
° 7 | VYRS | S 4] 204 our
o—or
2 i r3 T
- 43 L'\Mz—ﬂ— | S L4 :——04'
T 22 - 5 15,47 %
o——royv LYY | S
= 78 5 r 23, o/ 3 *Sy
| SPVWRIFES | S— i
/e 3 2.5, 02 &
I—‘VW—N—- i ’ monee
27,03 ” l $O¥ I summy
20 z z i
| SEDUYNIFILE) | S— b4
2} 22, o¢
- I—‘VW—.}—.- I [_.‘,.,, 4 g ¥
’ 1805 4
3]
| EDYeNrS | S———
s 1= 50,26 2 +5Y
I—-'VW—N—' | S 47K
g] z 2,07 3
[—'\N\:—ﬂ—- L—l/'l
R rom_ ey] ¥ ¥ 59, 08
Py | SV -
o o A 3 ol e| o [A [=
43
PRV D) ” 2 34,02 ’ 0
2 N 4
437 ;
2z A2 3 27 96,27
i ’ O
436
o 32 A ’ 2 38,00 . 8
z RN - *
4317
’ o 433 15 3 90,00 3
E] o | *
43-7 v
’ AR} I R 24 s 7 71 et vZ,04 ,’;’ nEvac
’ 2z Are " 25 3T = 1 PP 9,07 , o0y I'L
- ’
- —J
7 3 A3 2 23 N 1 . 16,00 L Cwassis
0.
StM4-01 - cHL Q MP7-03
N p 24O~
ov bd
rower - i ” 4er SacNer
sommy Y e o 2P0s AAA—P % 3 a0
[Py, G— . A% P z ar
40
L agz it !oae
Bz A 2
s e VWA—Pt a2 2/ A
| N Avss
- Az-72 24 o 20 A¢
INTER CONTROL) CHI2 4
Az 7 o A v “ d
-~
) nz-7 a5 £8P | 74 A6
TAPRE cowTL - L5 Av3 i
A2-6 —— AoV P e ’>°‘—T—ﬂw-ﬂ—' » /7 47
az-s 53 B8 *
N80 52 ok WA—Pt ¥ it
Az-4 1 | Pl . o s o2
230 A—
o o vWA—t a7 6 oy
.-va\,] - as4-13
&5 7 2%
CHIP &3 8 o5
“ a3t L‘é.. i
.Sy TIR] = I "','_‘A :_ a7 2 26
row P Py)y oY AA—Pt y: /0 07
v J SN : Apse 57 2¢
] | P 2z 18 cwrm seLecr
or ” "'l>.” WA—P} 22 13 PROGLAM
L] | Agsr ‘
2 /2 vee
=
L e 2 /6 vee
o L yr 112%44 | 4 /S vos
2 §|>° '3 I : : : N 4 E/ 29 Yoo
.MM,,.] Av-/0 z 23 4
n 24 Ao —A—P ’
) "l i9-8 zz42
rov ql;:_ 'S —t
34 wA—Pt
| YW] L— ay-2
Hore:
1. AU DIODS ABE L.ED ETCEPT AS WI/CATED. :,:; =
2. WL RESISTORS L ow EXLEPS A3 INOIEATED .
MCB4-10 Schematic

CAUTION:
Permanent damage may result to MP7-03 board and PROM to be programmed if the DC POWER is turned OFF
BEFORE the PRGM AC is turned off. The SIM4-01and MP7-03 should never be inserted into their respective

sockets with either the DC or AC power applied.
APPLY DC POWER BEFORE AC POWER AND REMOVE AC POWER BEFORE DC POWER.

123

MiCB4-20

T'he MCB4-20 is a completely assembled interconnect, display and control switch assembly which eliminates all hand wiring
_asisociated with an MP7-03/S1M4-02 setup. With the additions noted below, it becomes a self-contained system featuring the
following:

1..
2.,
3.
4.

Automatic PROM Programming (with SIM4-02, PROM set A0540, A054 1, A0543, MP7-03, power supplies, TTY).
Automatic PROM Duplicating/Comparing (with SIM4-02, MP7-03, A0544 PROM Program, power supplies).
General Purpose Micro Processor With 1/O and Display (with SIM4-02, power supplies).

Test System for checkout of PROM Programs (with SIM4-02, power supplies).

T he MCB4-20 includes the following:

1..

2
3.

o

8.
9.
10.
11.

12.
13.

All interconnect circuitry necessary to implement the programming system described in paragraph X1l of the MCS-4
Users Manual.

.. Connectors for the SIM4-02 and MP7-03 boards.

Two zero insertion force 24-pin sockets for PROMs. One socket for the “PROM to be programmed’’, one socket for a
“Duplicating REF PROM”, and appropriate connections to the MP7-03 connector.

. Teletype receive conditioning circuit, transmit source circuit, punch and reader control interface circuits (on the SIM4-02)

and a TTY connect/disconnect switch. Access to these signals is provided by a 16 pin dip socket labeled “TTY"’ socket (J4).
Flat cable is provided for the connector to TTY. ’

. Two control switches for complementing programmer input or output data.
. Eleven 16 pin DIP sockets provide easy access to SIM4-02 input, output and miscellaneous control signals. This includes

32 ROM inputs (8 ports x 4 bits), 32 ROM outputs (8 ports x 4 bits), and 64 RAM outputs (16 ports x 4 bits).

. SIM4-02 ROM and RAM output port binary display using light emitting diodes. This includes 32 bits of ROM output

display and 32 bits of RAM output display. The additional 32 bits of RAM output are not displayed but brought out to
16 pin sockets J6 and J7. '

Data out control switch enables or disables the data from the MP7-03 to the SIM4-02 input ports or provides CPU software
control of data out when in the duplicating position,

A DC power control switch which connects the external +5V and —10V power supplies to the SIM4-02 and MP7-03.

Two mementary pushbutton switches which drive the “test’ and “reset’” input lines on the SIM4-02 board.

Two transformers, a switch for 115V AC/220V AC, capacitor, fuse holder and AC input jack wired to develop the unregu-
lated 80V DC which in turn is regulated on MP7-03 to 47V DC programming voltage. :

A PRGM AC switch which controls the programming AC voltage.

Input jacks for applying externally supplied +5V DC and —10V DC to the assembly. (Note: Internal supplies are not in-
cluded, 5V @ 4A and —10V @ 2A supplies required [worst case] :)

T he setup for the PROM Programming application is shown below. The MP7-03 (rear) and the SIM4-02 board are installed in
the MCB4-20.

MCB4-20/MP7-03/SIM4-02 System

124

1. Micro Processor System

When the MCB4-20 is used as a micro processor, its features, such as the output ports (with displays) and input ports, may be
utilized at the discretion of the user. As an example, consider the testing of SIM4-02 boards loaded with a PROM containing
the following program: read ROM port 0 and ROM port 1, add the two values and store the result at RAM ports 0 and 1. The
test could be implemented by connecting eight switches to the “ROM input” socket. The actual switch circuit would consist
of a single pole double throw switch wired with one pole to ground and the wiper wired to the appropriate socket connector
pin in accordance with the MCB4-20 schematic (GND on input port equals a logic 1). The SIM4-02 is then inserted into the
“SIM4-02"* connector and a bench supply connected to the +5V DC and —10V DC input jacks. The actual test may now be
performed. The DC power switch is turned on and the reset button is depressed, clearing the system’s memories and registers.
The program begins to execute. The result appears at the LED display and may be verified for correctness. The LED displays
of interest are identified on the systgm’s printed circuit board as “OUTPUT PORTS”, “RAM 07, “RAM 17, “BITS”" 0, 1, 2,
and 3.

2. Programming System

Consider the actual programming (in the hardware sense) of the 1702A PROM in the example above. The system can perform
this function with the addition of an MP7-03 board inserted into the “MP7-03"" connector. An automatic programming sys-
tem which allows data entry from a keyboard or papertape, automatic verification, listing of ROM contents, and hands-off
programming is provided by the further addition of a SIM4-02 board with three pre-programmed PROMs A0540, A0541,
A0543, and a modified teletype. The teletype modification consists of the addition of simply relay network described by
MCS-4 Users Manual or TTY application note. The procedure for programming a PROM, then, is as follows:

. Insert MP7-03 and SIM4-02 boards (SIM4-02 loaded with PROM A0540, A0541, A0543).

. Connect teletype to “TTY" socket using the flat cable provided.

. Connect +5V DC, —10V DC and 115V AC/220V AC.

Set “’DC Power”’ switch to ““ON" (See Caution below).

. Depress “RESET"".

. Set “PRGM AC” to “ON"’.

. Set Data Out to “Enable".

. Set ““Data In’* and ‘’Data Out”’, “True/Compl’’, to desired position.

. Set TTY switch to “TTY Connect”.

10. Place teletype in “ON-LINE’* mode.

11. Depress “RESET".

12. Insert an erased 1702A PROM into the “PROM to be Programmed’’ 24 pln zero force socket.

13. Place paper tape in TTY reader and set reader to ““START".

14, Type in program comman ‘’P” and beginning and ending addresses.

©CONDODOT DA WN =

The steps above are fully described in section Xl |1 of the MCS-4 Users Manual The PROM is then automatically programmed
and checked for correct content.

CAUTION:

Permanent damage may result to MP7-03 board and PROM to be programmed if the DC POWER is turned OFF
BEFORE the PRGM AC is turned off. The SIM4-02 and MP7-03 should never be inserted into their respective
sockets with either the DC or AC power applied.

APPLY DC POWER BEFORE AC POWER AND REMOVE AC POWER BEFORE DC POWER.

3. Automatic PROM Duplicating/Comparing

The MCB4-20 may be used to duplicate or compare 1702/1702A PROM:s by the use of the SIM4-02, MP7-03, external
power supplies and A0544 PROM. The following procedure should be followed for duplicating or comparing 1702/1702A
PROM:s, ‘ '
1. Insert SIM4-02 into the MCB4-20.

. Install A0544 PROM in SIM4-02 PROM socket O.

. Insert MP7-03 into the MCB4-20.

. Connect external power supplies and AC power cord.

. Turn “DC Power’’ switch on (See Caution note).

. Press ““Rest’’ button.

\

OO N WN

125

7. Provide a ground potential to “ROM Input (0-3)" socket J9; pin number in accordance with desired operation:
a. Duplicate 1702A PROMs: GND J9-5
b. Duplicate 1702 PROMs: GND J9-6
c. Compare 1702/1702A PROMs: GND J9-7
8. Set “Data Out” control switch to ““ROM Duplicate” (for duplicate and compare). .
9. Set both ““Data In” and "“Data Out’" switches to either “True” (for exact duplicate) or “Complement” (for complement
duplicate). For compare, always set the switches to “True”, \

10. Set TTY switch to “TTY Disconnect”’.

11. Press “‘Reset’’ button.

12. Turn “PRGM AC" switch ““On”’ (for duplicating ONLY).

13. Insert REF PROM into “Duplicating REF PROM"* socket and other PROM in “PROM to be Programmed" socket.

14. Press “Test” button. BANK 0, RAM 0, Bit 1 will light indicating “‘Start”".

15. a. If an error occurs during duplicating or comparing, BANK 0 RAM 0, Bit 2 will light. To continue, press “Test”, other-
wise press ‘‘Reset” and remove “PROM to be Programmed’”. During duplicating or comparing, four passes are made
before claiming an error. DURING DUPLICATE, PROMs ARE AUTOMATICALLY COMPARED AFTER EACH
LOCATION IS PROGRAMMED.

b. If the program finishes, Bank 0, RAM 0, Bit 3 will light. Remove “PROM to be Programmed”.

16. Remove REF PROM from socket.

17. Turn “PRGM AC" switch Off.

18. Turn ““DC Power’’ switch Off.

[
ln ® ou’ 3 2 |
o ar2 °MCE1420 L——— ROM QUTPUT PORTS

® ..
LINE SOCKET

GND -0V 45V

o000 o
ite]

E——/— .
5::::::::'::::.:..w3 A //F/:/‘—//_FE?\%&/
—. MH{Z///_“”—* //_'* 2

TTY
CONNECT

TTY
DISCONNECY

DUPLICATING
REF PROM

oM
DUPLICATE

ENABLE

DATA
ouT

JT

DISABLE

-
RAM OUT RAM OUT
BANK O -

TRUE

DATA DATA
IN | out

COMPLEMENT

”
cas oM

o

°88 =M

PROM TO BE
PROGRAMED

08 5= 08
g
TR
<
ous o u

*
YT T I
~an ~ 00
-n
TR
TR

1 3

Ran’ 0 ' TEST RESET
ouTPuUT PORTS - 1 .

SYSTEM INTERFACE AND CONTROL MODULE

NOTE: 1. All signals are defined with respect to negative logic at the dual-in-line 1/0 socket (i.e., True [n-logic 1] = GND, False [n-logic 0] =+5V),

2, 1 TTL Load/Drive = 1.6mA @ .4V,

PORT LOGIC COMPATIBILITY
ROM Input Port 0-7 True TTLIn
ROM Output Port 0-7 False TTL Out
RAM Output Port 0-3, Bank 0-1 False TTL Out
RAM Output Port 0-3, Bank 2-3 True TTL Out

126

pare wav s TV

1
= To] P indino Loar Ghor vl SO OvZ EBY SITIVA meiEWR TN s
2 = ..
m ms n u o33 (05156 AW mw el MY b
I i ir ;
osnewayds 0Z-vaON @ (e | e ccavivemynn i Ty San Bama ™Y 6
K t .
A mle | - ‘AP S1SAwiD O Omimnow <TI|
il [To] sows cwezosy 3aamn vz g o1 el lar ©VL FBY SITIVA BoASIeFE TW I
T
(=] 8] s <3a3001 237 wod CBUIDIAE IGMIINIG $EIINM (SILON
=1 Y [——e—
[+} e0pic 1308 ANGLAO B
d :
[<] o] e ed —
] & e 1] ¢
5 m_l||~ S G R T Il = Wl | Lo uzes
v;.lﬁ_ e . miﬁm. e - S [78] 1 2o wea = - Lrar aa
ST "]
e T T * . a) e
O I TR o 0o ey o I : g Bk
3] - > (2]s I~ |2 o uBas
- hdl [} L \ oz
— 5 B> | (rosnwmn) . ingn
= |2 e |n 18100 _
hd i A!!ﬂio hd = vavo woa T m b A
= I <] e o] e - s
]y o wuwe — 97
g gk . ot = ~ T e | o non aes
orl B 1 B el [s - = Sram woa
ot I L . aan e
= - V] (sow)y i er w had) =1 15] w 3]
o— | v ' B 15
vy 95 |m._ 133y S [T] (sovd swsm _M r woud #33 0 o8 ¢
> (-] =1] oryasns 2 o ! van A_ﬂ, 2L a0]] =,)
. 1 < , [+ e : e 73] [<} 1<) v wop 20
o F o—ie {3 ad = ‘ Kl ey =1 ol b v g snam noz
semn H/«o = Faen : &) e ,T||. = ; N T 7] o 19l
2 ; 75| (i ! [T = ol “ E o
= = H i oo s B3 — e
| Tl‘. = — 583 | [awee ves “ ! - =] 1 tel
i -~ ! o % i
et 4 — =T o 2
. - si
3] = 2] ol | , [el -~ 152 #1dl tal — =) = & o uzes
FH-ElE Co O e o b M. T e
Ny [las] 611
H L - e I 5 [e]
L] e =1 e [w o+ J [T — - 1
1 v & am b —
S Y % vz s h 4 =T ol <) » 19|
& aewve Uz L TAE] | v oo P 7 G [«
] % s] ul ingiro vz m] jrm o[= L] T]
m w1 i ki gy pvpag R I o on i R PR — u =
) H [i r T Y E
{ R -1 - m } pad snaire v =1)
e - S [e = o 2L sal9] "= J :
= Tox
i) = } : T e p— mh
) — | €2 T o ! $21 |. 4ino wivg — m .
! U3 [b {o]¢ o) v) A m £ s Mas axa_| %of L}] L i T | 2 e taos
Ll vy Wy ' I..A\IMm,.ﬁ = AndLno wva k Tuen — onuvreno o [o¢] T - h=, anant woa
i (- — al
Y gl sl [} A e M by o[z — =] I
] e 3w LT 5e 2 v — I ! ° e = S L
a1 p - 2 nva sz J e} —
i xarvve 2o . h i 1)
i 3 Lrdine wea — | e) anaaro wya 2 0y . i s [+] 71 S
T2l By rrom . : | e oY T | s en o o[e
o 5 h . Lruino o b - 7 T)s
| At L] ool s oo~ '~ 1 | . w[v < s L)
1] - kd =
eH=El g = JET e &t - n
i i - I 1 - | Eanam— .
> S 152] 5] o [H 1 W P g e ! = | erties
9 e ' —] s ! o am — — H) " inari wea
h - — el
j = . z H | =]
pisoink e |, o . S ool
| ™) V2 - L 2 areve 1208 . | {van .ﬂ s
| AN b & e izcd Lt Taed , inarno vevd . ' ezt . s
- ,;__ [d]) | tresneww Al e s 1 = o1 o b v ion umas H_, =
|] [@A) 4 1 1neano way v &
T3] THE v v 7 gt = v |
O 2]+ e Sy gy “ ! z o an |
o J 1
i T = 4 L <.
g S S] = [e m e | e
v uls agr N i ! o a3 —_] [iadm wou
Sy gy > ! ~] 3
g ATee] =, v S I e |
AE | L. EEE | L | | SEowame e
L2 e { b crve 30w il 132 ' 1naino v m ‘a2 1 7] =] -
st 1resre v 7 fov] + - Y ot 2 .
T MN_A . LT e & | ! m e =]
s) t) A ' [~ tnesna wou
sl f =] = AR . N
- ; -
o) d h {z]
- : 1> om
o 7 w H 3] 10
e 19| # 1]
b @
H €] or ar |
- o 1 — JEIH fa
. " irdiro va —] [~ ess . H. _ ~wvg | — ico wava
] T4 4 S L] an £ [v]| | omvvaveas | | [-t i
i —r— “[a e s | | e
R B s nls
I ! L L v o 2 won sz T
iebund _ 1o\ ! " ~vava | 2 1 T [Lrosno won nes— o[}——Ti "
I | PRRRE R L = ! By By =
200000 [2 < g Iy H — : =
g Lt J .
g o L] 1 17¢5%] = s [] :ml-, |
e [0 VAR Tes y ~ Sewrcay ¢ rrpe Rt ;] [[
7| =t e P = g (=
\ ; 4 4 L
| [™Mt I) 1= »8 ol noag h | H P
oot i] Lt = 9ear i :
; i e i L 1% . i = R e
< e ! al - 2_ e G = hai . - i :
-~ 1 Vo3 a0d v
. a (sl 1 ~ o [v 5532007 | vy[o7] EX
L _ & e L ey = 5 o[e v iR [P I il e C ey i .
51 b — |27 o B »ornoad | ol e o e
L | ! — — . y
“ _ s T =]) - S EllllA s]% -_“H]
- — ;
e — 1= v om ! ' N
il - o] 2w
~[F 1 — €Y mmJ oo | o | oo uro =] =)
~Banon <v[i7] - Rd fov o 39 AU wozd T i b oea-th |
e e —E PRy i T
=[1] = e = b o2'i00 i : [el
- v
P B e o= B -2t N e = e ezl |
\ z =] - La
vz} # e L] e or <
f L
: LT —] e # o0
«le] | - ud
v €} e — T —
Barzd — ue -
jons

127

The following table lists the indicators used in the AO544 PROM Duplicator/
Comparator Program to provide pertinent status, control, address, data in
and data out information:

Bark ¢, RAM &, Bit 1: "Start"

Bank ¢, RAM &, Bit 2: "Error" Status
Bank &, RAM ¢, Bit 3: "Finish"

Bank ¢, RAM 1, Bit 1: 1702A R/W Control

Bank ¢, RAM 1, Bit 2: 1702 R/W Control Control
Bank ¢, RAM 1, Bit 3: . Prom DE/REF ROM CS

Bank &, RAM 2, Bit &: - D1

Bank ¢, RAM 2, Bit 1: D2

Bank ¢, RAM 2, Bit 2: D3

Bank ¢, RAM 2, Bit 3: D4 PROM to be PRGM
Bank ¢, RAM 3, Bit &: L3 Data Out
Bank &, RAM 3, Bit 1: D6

Bank ¢, RAM 3, Bit 2: D7

Bank ¢f, RAM 3, Bit 3: D8

ROM ¢, Bit g: AQ
ROM ¢, Bit 1: Al
ROM ¢, Bit 2: A2

ROM ¢, Bit 3: A3 > PROM to be
ROM 1, Bit ¢J: Ad PRGM/REF ROM
ROM 1, Bit 1: AS Address

ROM 1, Bit 2: A6
ROM 1, Bit 3: A7

-/
ROM 2, Bit @;: D1 B
ROM 2, Bit 1: D2
ROM 2, Bit 2: D3 PROM to be PRGM
ROM 2, Bit 3: D4 Data in/(REF ROM
ROM 3, Bit & Ds ? Data Out) '
ROM 3, Bit1: D6
ROM 3, Bit 2: D7
ROM 3, Bit 3: D8 J

The complete program is shown in Appendix H.

128

APPENDIX F

SIM4 HARDWARE ASSEMBLER for SIM4-01 or SIM4-02

INTRODUCTION

The SIM4 Hardware assembler is a program stored in Intel PROMs A0740, A0741, A0742 and A0743 which translates a
symbolieasserﬁﬁlyy language into bit patterns suitable for MCS-4 control storage programming. |t operates on the SIM4-01
or the SIM4-02 micro computer system with at least 3 RAMs and an ASR-33 teletype. A block diagram is given in figure 1.1.

The assembler accepts input source text from the teletype keyboard or paper tape reader on each of two required passes.

A name table and source listing are created on the first pass. On the second pass, the source text is reread and a programming
paper tape and associated listing are generated. The programming tape is suitable for programming of the Intel 1702A
erasable PROM (using the MP7-03 programmer system) or for the Intel 4001 metal mask ROM.

ASSEMBLER ROMs
1 .

I |
0 1 2 3
< MANUAL
3 b g ‘3 CONTROL
~ ~ ~ ~
[=] (=] [=] Q
< < < <
‘ POWER
' SUPPLY

CHIP 0O 1

N
BANKO |8
<

SIM4-01 ‘ ’ TELETYPE

or SIM4-02 ASR 33

RAM MEMORY (Minimum)

=a

Figure 1.1. Assembler Hardware Block Diagram

DESCRIPTION
Assembly Passes

During pass 1, the assembler constructs a name table from the source text and generates a listing. The source text entries
are prompted by an address location printed on each line of the listing. Paper tape reader on/off controls are issued by the
assembler during the prompting.

Diagnostics are performed during pass 1. Errors such as duplicated labels, name table overflows, and unrecognized
instruction mnemonics are flagged. Operator intervention of the reader operation and subsequent keyboard entries can be
used to edit an erroneous source entry.

A programming tape and a listing of its contents are created during pass 2. Entry of the source tape and any editing
during pass 1 must be repeated. The assembler decodes the instruction mnemonics, searches the name table for addresses,
and forms binary representations of the machine instructions. Simultaneously, it controls the read operation, punches and
lists the object tape and executes further diagnostics. The diagnostics will flag errors such as unrecognized instruction
mnemonics, undefined names and off page references.

Operating Procedures

Two normal modes of operation are possible with the assembler. A source tape may be prepared in advance, off-line,
using the perforator backspace and rubout character to correct minor errors. This tape may be fed, with the reader,

to the assembler twice, with the perforator turned off during pass 1, and on during pass 2 (if a ROM programmer tape is
desired). '

Alternatively, a good teletypist may type the source program directly in on-line, with the perforator turned on, using the
punched tape to feed the source back in on pass 2. This tape may also be edited manually off-line for purposes of updating
the program for re-assembly. Most minor errors in typing may be corrected by cancelling the line (control-X or escape)
and restarting, or by modification of the partially typed line.

129

A combination of the two methods is also possible, reading the tape from an earlier edition in on pass 1 with the perforator
turned on, making corrections manually by stopping the reader, pulling portions to be deleted through, and keying in
portions to be added. The repunched tape is used as text input on pass 2.

Samples of the listing generated during pass 1 and pass 2 are given in Figures 2.1 and 2.2. Another example with a step-by-
step procedure is given in Appendix B. - '

@03/ TYPICAL ASSEMBLY FOR A VERY SMALL SAMPLE PROGRAM.

B:PS =10 ‘ASSIGN VALUE 10 TO NAME PS
9: s 1S

153 NOP

16tLABA, CLB

172 FIM PS5 89 /NOTE COMMENT
19: SRC PS5

20:LAB2, RDR

21: JTN LAB2

23: JMS TR3

25 JUN LABA

27:TR3» LDM 8

28: ADD 11

29: XCH S

30: BBL 7

31:%

Figure 2.1. Pass 1 Listing

8: @t @: 15:BPPPPPPPPF
16: BNNNNPPPPF | 7: BPPNPNPNPF BPNPNNPPNF 19 : BPPNPNPNNF
20:BNNNPNPNPF 21:BPPPNNPPNF BPPPNPNPPF 231 BPNPNPPPPF
BPPPNNPNNF 25:BPNPPPPPPF BPPPNPPPPF 27: BNNPNNPPPF
28BNPPPNPNNF 29 :BNPNNPNPNF. 30:BNNPPPNNNF 313
F . . ‘

Figure 2.2, Pass 2 Listing

Assembly Language

The assembler operates with the 64-character subset of ASCI| generated by the ASR-33 teletype, along with the control
characters: carriage return, linefeed, escape, start of heading, start of text, and delete or rubout. The 31 character subset
containing the lower case letters are ignored by the assembler, and are treated the same as the delete character.

Source instruction mnemonic statements include all of those specified in the MCS-4 Users Manual. This set is augmented
by extended mnemonics for conditional jumps and a pseudo operand used for equating labels to values or modification of
the assembly address.

Symbolic addressing is provided for by definition of labels consisting of one or more characters.

The use of comment fields and transparent headers is also provided for by the assembler.

CONTROL CHARACTERS

In the discussion to follow, the following generic terms will be used freely:
Control: Any of the first 32 codes in the full ASCII set, obtained on the teletype by one of the special keys,
linefeed, return, or ESC; or by holding down the “CTRL" key while typing a letter key. ’

Separator: Any of the first 48 codes in the full ASCII set, including the control, space, comma, plus, minus, slash,
etc. Any number of separators may be linked together wherever a separator is to be used, but the other separators
should normally be used singly.

Digit: Any of the ten digits, 0-9.
Letter: Any of the 26 capital letters of the alphabet.
Special significance is attached to the following characters by the assembler:

LINEFEED: Source text lines are initiated by linefeed characters, which are recognized by the assembler to condition
the prefixing of the address value of the current location to be assembled.

SOH (Start of Heading — Control A): If the first character after a linefeed is an SOH, all characters following it until
the next ST/X are ignored by the assembler and not printed on pass 1 of the assembly.

130

STX (Start of Text — Control B): Heading information initiated by an SOH is terminated by a STX. Another SOH may
follow the STX, with more heading information, which is in turn followed by another STX, and so on, as desired. The
assembler delimits the address counter typeout with an SOH-STX pair, so that its presence on the tape will not interfere
with the subsequent use of the tape as source text input.

ESC (Escape): An erroneous line of input source text may be cancelled by an escape character or a cancel (Control-X) if
it is typed in before the terminal separator of the mnemonic or any required operands. The assembler responds to an
escape or a cancel by typing the up arrow () then ringing the bell. The line will be restarted after the next linefeed.

If the up-arrow and bell response is not forthcoming, the cancel has been ignored, because either it is too late in the line
(i.e., the terminal delimiter has already been accepted) or the line has been identified by the assembler as a comment line.

RUBOUT (Delete): This character is ignored by the assembler, and may occur anywhere in the input text except in front
of an SOH. The preparation of tapes of source text is facilitated by the fact that erroneous characters accidentally
punched into the tape may be effectively removed by backing the tape up in the perforator and repunching the frames
with rubouts.

$: A dollar sign as the first character following the linefeed or STX signals the end of the source text to the assembler,
and conditions the punching of the leader or trailer in the object tape.

+ —: A plus or minus sign serves simultaneously as an operational sign in the computation of an operand value, and as
the terminal delimiter for the term immediately preceeding it.

* : The asterisk is recognized by the assembler in an operand field to have a value equal to the address of the
(first byte of the) current instruction.

NUMBER SYSTEM

All numeric values in the source code are recognized by the assembler as decimal, and all numeric values generated by the
assembler are in decimal. Since the internal representation of the numeric values is 12-bit binary, the largest value that
may be accommodated is 4095 (212 — 1). Decimal numbers in the source text must not exceed 4095 for correct
operation of the assembler, although there is no such restriction on the computation of values, except that the value

will truncate modulo 4096 at each step. Negative numbers may be calculated, and are handled in two’s complement
notation, e.g., —N = 4096 —N.

FORMAT

The assembler is a line-statement, free-format assembler in the following sense: each line of the source text (except for
comment lines) assembles into one machine instruction or one byte of data each field of the source code line is defined
by its context and not by its fixed position in the line.

The typical line of source code begins with a linefeed. The next character determmes the interpretation of the line.

If it is a dollar sign, $, the previous line is considered as the end of the source text and the assembler proceeds to the
next pass. If it is a control A (ASCII start of header, SOH) header information terminated by a Control B (ASCII start
of text, STX) is anticipated. If it is an alphabetic character, it is interpreted as the first character of a label. A space

is interpreted as the terminator for a null label field. The assembler then expects a mnemonic or

a pseudo operand. Ifa“[”, “]", “@", "/, }", or “<", is entered, a fatal error results. If the first character is

any other than those mentioned above, the remainder of the line is treated as comment. /

131

LINE NUMBER AND COLON
PRINTED BY ASSEMBLER POSSIBLE OPERANDS COMMENT

7:
LABEL SEPARATOR PSEUDO-OP OR SEPARATORS TERMINATOR
INSTRUCTION MNEMONIC

M e MM M7

Figure 5.1. Statement

The division of a statement by fields is exemplified in Figure 5.1. The following sections describe the various elements
in detail. Statements accordingly may assume several configurations.

Names

Eight entries in the name table are accomodated by each 4032 RAM chip. Maximums of 31 and 127 names are provided
for the SIM4-01 and SIM4-02 boards respectively. A name consists of one or more characters, the first of which is a letter.
The rest of the éharacters‘may be letters, digits, or any of the following special characters: *:’*, **;'", /<" “=" ">",
o, L, 1, 4, <="". No imbedded separators are allowed.

To assure consistent operation, distinct names should be unique through the first three characters, although in some cases
this may not be essential (the sum of the binary representations of all characters after the third, modulo 4, is used to
distinguish names which are identical in the first three characters). The following are some examples of valid names:
CLB
cz
POLO
A
G=3A
XYz
XYZW
Note that the first three are valid names, and have no pre-assigned values. The following are examples of invalid names:
35A (does not begin with a letter)
C/D (contains an imbedded separator)

Labels

The label field of the line of source text begins immediately after the linefeed (or STX} and ends with the first separator.
If the label field is null (i.e., no label in the line) the first separator must be a space to avoid making the whole line a
comment line. All labels must conform to the rules for the orthography of names. Every name used in an operand field
in the program to be assembled must occur exactly once in a label field, and the numeric value of the name is equal to
the address of the instruction or datum on the line with the lable, or the value assigned to the label by the "= pseudo-op.
If the name occurs in more than one label field, an error is indicated, and the most recent value applies. If the name does
not occur in a label field an error is indigated, and the value zero (0) is used.

132

Instruction Mnemonics

All of the instruction mnemonics defined in the MCS-4 Users Manual are recognized by the assembler. In addition, the
following extended mnemonics are recognized as particular cases of the conditional jump:

JTZ Jump on test zero

JTN Jump on test not zero

JTO Jump on test one .

Jcz Jump on carry/line zero

JNC Jump on no carry (i.e. = 0)

JCo Jump on carry/link ene

JOoC Jump on carry

JAZ Jump on accumulator zero

JNZ Jump on accumulator not zero

JAN Jump on accumulator not zero

All of the memory and accumulator group instructions, and the NOP instruction require no operand field; the 1SZ, FIM
and JCN instructions require two operand fields; all other instructions, including the extended mnemonics for the conditional
jump instruction, require one operand field.

Pseudo-Operators ' .

The assembler is provided with one pseudo-operator having two functions. It serves to equate labels to values other than
instruction addresses, and it enables assembly to begin at some address other than 0. The pseudo-op consists of one of
the following characters in the mnemonic field of a source text line:

a0 as 00 a2 9 ose_rr a 0o
A P

This special character is followed by a single operand field, which, when evaluated, becomes the value of the pseudo-op.
If the labe! field of the pseudo-op line is null, the value of the operand field becomes the address of the next instruction
to be assembled. If the label field contains a name it is assigned the value of the operand. It should be noted that the
excessive use of this pseudo-op to define the address of the next instruction, other than at the beginning of individual
ROM pages, will lead to discontinuities in the object code which are not recognized by the 1701 programmer, and the
practice should be avoi@ Note also that when using the pseudo-op to define the address of the next instruction
to be assembled, the operand field may not contain (as yet) undefined names, since this will result in ambiguities which
will not be flagged as erroneous. The following are some examples of the proper use of the pseudo-op:

Cz=10

POLL=6

: 0 (This is unnecessary at the beginning of a program, since the assembler always begins at zero anyway).

NEXT: 512
?Next (Start at the beginning of ROM page 2)

Operand Fields

An operand field begins after the space(s) which terminates the mnemonic field, or after the separator which terminates the
previous operand field. It consists of one or more terms separated by operational signs (+ or —) and is terminated by a
separator other than an operational sign (such as a space, comma, or carriage return), with no imbedded separators other
than the operations signs. Each term in the operand field may be a decimal number, a register pair designation, a register
designation, a name, or the special symbol “**, which has a value equal to the address of the first byte of the current instruc-
tion. The value of the operand is equal to the two’s complement algebraic sum of the terms, modulo 4096. If the

operand is larger than the receiving field in the instruction, it is truncated on the left (i.e., the most significant bits are
removed as necessary) to fit, with no error indication, except for off-page references in the address field of the ISZ and
conditional jJump instructions. Some examples of valid operand fields:

ABC

5,

B+6 » ,

*—1 (The address of the byte immediately preceding the current instruction)
A-B+13=0Q

3P Register Pair 3, value 6
(Null operand, value zero))
It should be noted that null operand fields must be terminated by a parenthesis, asterisk, period, comma, or slash. Some
invalid operand fields:
O/F (Imbedded Separator) 4
=3A (Invalid term may not begin with =) -
$ (Separator is ignored, and search continues for operand)

133

Register Designators

Instructions which operate on register pairs must be coded with the even-numbered register number, or an equivalent
expression, in the operand field. Thus “SRC 2" refers to registers 2 and 3, not pair 2 in the sense of registers 4 and 5. If
it is desired to code register pair numbers, the same instruction may be coded ““SRC 1P”’. Any register pair (or in fact
any even numbered register) may be so defined by a single digit followed by a letter or other non-digit, non-separator.
It is essential that the register operand field evaluate to an even number for those instructions which operate on register
pairs, since if the operand evaluates to an odd number the instruction op code will be altered, with no indication of
error. The following are some examples of valid register pair operands:

5P

-3
PO11 (assuming PO11 has been equated to an even number)
513-7 (truncated to 10)

Conditional Jumps

The first operand field in the JCN instruction is evaluated in a strictly numeric fashion, just as all other operand fields.
Thus to effect a jump on the condition of zero carry, the numeric value of the first operand field of the JCN must be 10.
If it is desired to use mnemonic condition names such as CZ or AN, etc., these names must be equated to their numeric
equivalents:

Cz=10

AN =12

JCN CZ Label
To avoid using up valuable name table space on condition names, the extended mnemonics may be used for the conventional
conditional jumps. The following three instructions will assemble to the same object code, provided CZ has been
equated to 10:

JCN CZ LABEL

JCN 10 LABEL

JCZ LABEL

Data Constants -)

It is desirable to define numeric or address constants to be assembled into the ROM image independent of any instructions
(such as might be accessed by a FIN instruction). This is possible by using a null mnemonic field. The assembler will
then expect one operand field, the first term of which must be a positive number. In all other respects, the operand field
is evaluated the same as any other operand field, and it is assembled into one byte of object code, truncating to eight
bits if necessary with no error indication. The following are some examples of valid data constants:

0 ‘ . ;

4095 (truncated to 255)

00+ABC (equal to the address ABC)
The following are some examples of invalid constant data fields:

ABC (does not begin with a number)

—-18 (number is not positive)

134

ERROR FLAGS

Five errors are recognized by the assembler, and each one is indicated by a single character typeout followed by a bell.
Some of the errors are detected in pass 1, and some of them are not detected until pass 2. The typeout for errors
detected in pass 2 occurs between the colon typed with the location address, and the *“B’’ which begins the object code
for that instruction. Corrective action is indicated where it is possible.

FLAG PASS DESCRIPTION

’ 1 Duplicate label. The value assigned on this line supercedes the previous value for all subsequent
references. If typing in source text manually, recovery may be effected by equating this label to
its former value, then selecting a new name to restart the line. For example:

25: ABCSRC2 Original Label.

43: ABCD " =25 Old Value Reassigned
43: ABCD1 ADM New Line Restarted

% 1 Name table overflow. May occur on pass 2 if the source text differs from that used in pass 1, a procedure
not recommended. The label so flagged has not been added to the name table, and any reference to it
will be flagged as undefined on pass 2. No remedy is possible except to add more 4002 RAM (up to the
limit of 16 RAMs), or to remake the source program with fewer labels.

I Tor2 Unrecognized instruction mnemonic. One byte, with an op code of zero and a four-bit operand is
assembled. The line may be cancelled before the terminal delimiter of the operand, and re-typed
with the corrected mnemonic.

? 2 Undefined name in an operand field. The entire operand is assembled as a zero value to facilitate
correction of a PROM (any remaining terms are not examined, and may be incorporated
" into a second operand field). Since this flag is issued only on pass 2, reference must be made
'~ to the corresponding line of the pass 1 listing to determine (by conjecture) the offending
name. Unless the error is patchable, re-assembly is normally required.

& 2 Off page reference by JCN or ISZ instruction operand. Normally, no recovery is possible, and
the source program must be rearranged and re-assembled to correct the error.

OUTPUT TAPE

The assembler generates a ROM programming tape in the “BNPF*’ format required by the MP7-02 programmer system,
when connected to the SIM4 system. It may also be used as mask development on the 4001 ROM. The output tape is
preceeded and followed by 12 inches of nulls, and has an average of four locations per line. Each instruction is identified
with the address in decimal, followed by a colon, for correlation with the pass 1 listing.

Extensive use of pseudo-ops {which generate no object code, but which punch an address anyway) and cancelled lines
will cause the listing of the object code to pile up on the right margin, but this will not adversely affect the operation
of the ROM programming.

PROGRAMMING SUGGESTIONS

Users of the Fortran program, ASM4, will find it convenient to limit their programming habits in some of the following ways
to enhance compatibility between the two assemblers:

1. Names should not exceed five characters in length, and should be constructed only of letters and digits.

2. Standard condition names and register identifier names should not be used for any other purpose.

3. Instruction mnemonics should not be used as names.

4. Labels should be terminated by a comma-space.

5. Operand fields should be delimited by spaces.

6. All numeric values should be in decimal.

7. All conditional jumps should be coded with the JCN mnemonic and the appropriate condition name.

8. Comments on source text lines should be preceded by slashes, and comment lines must have a slash in column 1
(i.e., the first character after the linefeed).

9. Pseudo-ops should be avoided, except to assign values to condition names at the beginning or end of the program

tape (where they are easily removed).

135

LIST OF OPERATING INSTRUCTIONS

[Those instructions preceded by an asterisk (*) are 2 word instructions that occupy 2 successive locations in ROM]

MACHINE INSTRUCTIONS (Logic 1 = Low Voltage = Negative Voltage; Logic 0 = High Voltage = Ground).

OPR OPA
MNEMONIC D3D, D, Dy D30, D4 Oy DESCRIPTION OF OPERATION
NOP 0000 0000 No operation.
Jump to ROM address A2 A2 Ag Ag, A1 Aq Ay Aq (within the same
*JCN 0001 C1C2C3€4 ROM that contains this JCN instruction) if condition C4 C2 C3 C4(”
AgAxAg Ay AjAJA A, is true, otherwise skip (go to the next instruction in sequence).
*FIM 0010 R R RO Fetch immediate (direct) from ROM Data D9, D1 to index register pair
Dz 02 Dz Dz Dd" 01 D1 D" location RRR.
SRC 0010 R R R 1 Send register control. Send the address (contents of index register pair RRR)
to ROM and RAM at X2 and X3 time in the Instruction Cycle.
FIN 0011 RRRO Fetch indirect from ROM, Send contents of index register pair location 0
out as an address, Data fetched is placed into register pair location RRR.
JIN 00 11 R RR 1 Jump indirect. Send contents of register pair RRR out as an address
at Aq and Ag time in the Instruction Cycle.
*JUN 0100 Az Az Az Az i
Ao An An An A AT AT A Jump unconditional to ROM address Az, Ag, Aq.
2 72 "2 7\2 171 ™
*JMS 0101 AzAzAz3 A3 Jump to subroutine BOM address A3, Ag, Aq, save old address. (Up 1 level
. A2 A2 A2 Az A' A1 A1 A1 in stack.) N
INC 0110 R RRR 4Ancrement contents of register RRRR. 3
"1s2Z 01 11 RRRR Increment contents of register RRRR, 90 to !’IOM addresi Az, Aq
An An A As As Ad A (within the same ROM that contains this ISZ instruction) if result #0,
2A2A2A7 LAl Ba B otherwise skip {go to the next instruction in sequence).
ADD 1000 R R RR Add contents of register RRRR to accumulator with carry.
sus 1. 006 1 R RRR Subtract contents of register RRRR to accumulator with borrow.
LD 1010 R RRR Load contents of register RRRR to accumulator.
XCH 10 11 R R RR Exchange contents of index register RRRR and accumulator.
BBL 1100 DDDD Branch back (down 1 level in stack) and load data DDDD to accumulator.
LDM 11 1 DDDD Load data DDDD to accumulator,
Tz 0001 0001 Jump if test zero (5)
A2A2A%A; A1A1A1A, :
JTN 0 1 1 Jump if test not zero (5)
A2A2A2A, A1A1A1A,
JTo 0 0O 10 0 1 Jump if test one (5)
A2A2A2A AqA1Aq A
Jcz 0 0 1 1 Jump if carry/link zero (5)
AsAzA5A, AjA A A,
JNC 01 1010 Jump if no carry (5)
A2A2A%A, A1A1A1A,
‘ 0 00 1 0 0 J if i
JCo ump if on carry/link one (5)
A2AzAzA, Ar1A1A1A
JocC 00 01 0010 Jump on carry (5)
A2A2A2A2 A1 A1 A1 A1 .
IAZ 00 01 01 00 Jump if accumulator equalt to 0 (5)
A2A2A3A; A1A1A 1A
JNZ 00 01 1100 Jump if accumulator non zero (5)
A2Az2A2A; Ar1Aq1A1 A4
JAN 0 00 1 1100 Jump if accumulator non zero (5)
AzA2AzA, A1A1A A4

136

INPUT/OUTPUT AND RAM INSTRUCTIONS

{The RAM’s and ROM's operated on in the 1/O and RAM instructions have been previously selected by the last SRC instruction executed.)

MNEMONIC D, Dong‘ Dy 05 D‘;Pé\1 Dy DESCRIPTION OF OPERATION
WRM 1110 000 0 \évlr\.;: :'r’:ael sor:::;sr ;ch ;::;;g::mulator into the prevpously selected
WMP 1110 000 1 %VX;: :)t:jet :3::)9(;? ?6 :‘r:; ua‘ctl:_t::;t:)lator into the previously selected
WRR 1110 0010 :RVS}\; :)rl‘.let :3:1:;:2 ?lf/gleL iar::(;:sl;mulator into the previously selected
wel® | 1110 | 00 1 | e e e e aacs ao0g ey
WRo (4) 1110 0100 \gx:; ;?:tﬁgzzear:;scgrtgfz accumulator into the previously selectedv
WR1 (4) 1110 010 1 \gRtMe :?:tﬁgg}g:;igrt‘:\.e accumulator into the previously selected
wR2(4 111 0 0110 \'/?vx;: ;?t\:tsgr;:::rgi toefrt;‘e accumulator into the previously selected
WR3(4) 1110 01 11 !viv;;:; ;r:t::rt‘::\ea':;i grt;e accumulator into the previously selected
SEM 1110 100 0 g:x:sltattgt %i;i%gtl"\g vsilected RAM main memory character from
RDM 1110 100 1 iFri;Zdt;Zeagéz\::‘c:::zlt\érs‘elected RAM main memory character
110 | 10 vo | Hend e comtems of b ey o oMo pon
ADM 1110 101 1 ;\cc(l:ﬂ rtnhu.ﬁ zﬁ':vyiwoi‘:::\::a srerlsf:ted RAM main memory character to
RD¢ () 1110 1100 Read the previously selected RAM status character 0 into accumulator.
RD1 (4) 1110 11 0 1 Read the previously selected RAM status character 1 into accumulator.
rD2(4) . 1110 1110 Read the previously selected RAM status character 2 into accumulator.
rp3!4) 1110 11 1 Read the previously selected RAM status character 3 into accumulator.

ACCUMULATOR GROUP INSTRUCTIONS

CLB 1111 ‘ 0 00O Clear both. (Accumulator and carry)

CcLC 11 11 0 001 Clear carry.

1AC 11 11 0010 Increment accumulator.

CMC 11 11 0011 Complement carry,

CMA 1111 0100 Complement accumulator.

RAL 11 11 0101 Rotate left. (Accumulator and carry)

RAR 11 11 0110 Rotate right. (Accumulator and carry)

TCC v 11 11 o1 11 Transmit carry to accumulator and clear carry.
DAC 11 11 1000 Decrement accumulator.

TCS 11 11 10 0 1 Transfer carry subtract and clear carry.

STC 11 1 1 1010 Set carry.

DAA 1T 1 11 10 1 1 Decimal adjust accumulator.

KBP 11 1 1 1100 oK:ggmrgfp;:’cre(s; d(;otr;v:rlt)s' nt:rey c:onJ:nts of the accumulator from a
DCL IR 1101 Designate command fine.

NOTES: “)The condition code is assigned as follows:

C, =1 invert jump condition C2 =1 Jump if accumulator is zero C4q =1 Jump if test signal isa O
C1 =0 Not invert jump condition 03 =1 Jump if carry/link is a 1

(2)RRR is the address of 1 of 8 index register pairs in the CPU.
(3IRRRR is the address of 1 of 16 index registers in the CPU.

(4)Each RAM chip has 4 registers, each with twenty 4-bit characters subdivided into 16 main memory characters and 4 status characters.
Chip number, RAM register and main memory character are addressed by an SRC instruction. For the selected chip and register, however,
status character locations are selected by the instruction code (OPA).

(S)E xtended Mnemonic

(B)The SIM4 Hardware Assembler is currently being modified to accept the WPM instruction associated with the 4008/4009.

137

SAMPLE ASSEMBLY with a STEP-by-STEP PROCEDURE

As an example, assume that one wishes to perform a logical ““and” function on the data at two 4 bit ROM input ports and

display the result at a RAM output port.
The first step of course, is to write the program using the MCS-4 instruction set. The result may be as shown in Figure B-1.

/ FOUR BIT ""AND" ROUTINE
START, FIM 4P O 7/ LOAD ROM PORT © ADDRESS
SRC 4P / SEND ROM PORT ADDRESS
RDR / READ INPUT A
XCH @ / A T0 REGISTER ©
INC 8 / LOAD ROM PORT 1| ADDRESS
SRC 4P / SEND ROM PORT ADDRESS
RDR / READ INPUT B ,
XCH 1 / B TO REGISTER 1
JMS AND / EXECUTE °‘AND*
XCH 2 / LOAD RESULT C
WMP / STORE AT MEMORY PORT ©
JUN START / RESTART
NOP
=104
/. : *AND'* SUBROUTINE
AND, CLB /7 CLEAR ACCUMULATOR AND CARRY
XCH 2 7/ CLEAR REGISTER 2
LDM 4 / LOAD LOOP COUNT (LC)
- XCH @ 7/ LOAD A LC TO REGISTER 0
RAR / ROTATE LEAST SIGNIFICANT BIT TO CARRY
XCH @ / RETURN ROTATED A TO REG @, LC TO ACC.
JCN CZ ROTR1 / JUMP TO ROTR1 IF CARRY ZERO
XCH 1 / LOAD B» LC TO ACCUMULATOR
RAR / ROTATE LEAST SIGNIFICANT BIT TO CARRY
XCH 1. / RETURN ROTATED B TO REG.1s LC TO ACC.
ROTR2, XCH 2 / LOAD PARTIAL RESULT C» LC TO REGISTER 2
RAR / ROTATE CARRY INTO PARTIAL RESULT MSB
XCH 2 / LOAD LC» RETURN C TO REGISTER 2
DAC / DECREMENT THE ACCUMULATOR (LC?
JCN ANZ AND+3 7/ LOOP IF LC NON ZERO
BBL 9 / RETURN
ROTR1» XCH 1 / LOAD Bs LC TO REGISTER 1
RAR / ROTATE B
XCH 1 / RETURN ROTATED B TO REG. 1, LC TO ACC.
CLC / CLEAR CARRY
JUN ROTR2 /7 RETURN TO LOOP
Cz =10
ANZ =12
$

Figure 1. Source Listing

Figure B-1 was transcribed from a handwritten copy to a teletype print out and punched paper tape to facilitate loading
during actual assembly. To accomplish this, an ASR 33 teletype was used and the following steps were taken:

1. The TTY was placed in the “offline”” mode.
2. The paper tape punch control was placed in an “on” condition.
3. Handwritten data was keyed into the teletype keyboard.

Some typographical errors were edited by using the TTY's backspace punch control and rubout character. The rubout
is an all ““1''s character which effectively deletes any character over which it is superimposed. The procedure is as follows:

1. Determine the number of backspaces required to return the punch to the erroneous character.

2. Depress the paper tape punch backspace control until the erroneous character is reached.

3. Enter a “rubout” from the keyboard. If a new character must be inserted, the previous character and the remaining
line or lines must be deleted with rubouts.

4. Enter the desired character and remaining lines.

138

The assembler’s editing features may also be used to simplify the task of correcting errors. As an example, assume the 18th
instruction of the listing “RAR"’, were incorrectly entered as “RBR” (it would be unrecognized when

assembled). A control-X (control characters are entered by simultaneously depressing the control key and character) could
be entered after the error. The assembler would detect this and respond by requesting the line again. The correct line is then
entered. The assembler maintains control of the tape reader during these operations but when editing directly from the
paper tape it is advisable to manually advance the reader. This may be accomplished by using the reader’s manual start/

stop control switch. (Do not attempt to advance the tape directly).

Some comments regarding the format of the listing are present below.

1. Each line must be preceded by a carriage return and a linefeed.

2. Lines which are entirely comment must begin with any separator other than a space.

3. All unlabeled lines must begin with a space.

4. Al condition mnemonics must be defined by decimal constants. For example, the 20th line of the listing contains a CZ
which is later defined as a 10"’ on line 35. '

5. The pseudo operator is used to adjust the assembly address. Line 13 consists of a space, equal sign, and the number 104.
The assembler will interpret this as a command to define the next line as line 104. The subroutine, ‘and”, will
thereby be located, at address 104.

6. The pseudo operator is also used in the last two lines of the listing to define constants. If the equal sign is preceeded
by a label the assembler will assign the subsequent value to the label.

7. The dollar sign is an assembly terminator.

Pass 1 of the assembly procedure mayv now be completed. The corrected paper tape will be read line by line by the
assembler. During this operation a name table is generated and a listing (figure B-2). Preceding each line will be an

" X¥4 FOUR BIT 'AND"™ ROUTINE

@3 START, FIM 4P 0 7/ LOAD ROM PORT @ ADDRESS

23 SRC 4P / SEND ROM PORT ADDRESS

3: RDR / READ INPUT A ’

4: XCH @ / A TO REGISTER ©

S: INC 8 / LOAD ROM PORT 1 ADDRESS

6t SRC 4P / SEND ROM PORT ADDRESS

7¢ RDR / READ INPUT B

8: XCH 1 / B TO REGISTER 1

9: JIMS AND / EXECUTE "AND"

11: XCH 2 / LOAD RESULT C

12: WMP / STORE AT MEMORY PORT 0

13: JUN START / RESTART

15: NOP

16: =104
1043/ "AND"” SUBROUTINE
194:ANDs CLB /7 CLEAR ACCUMULATOR AND CARRY
185t XCH 2 / CLEAR REGISTER 2
1906t LDM 4 7/ LOAD LOOP COUNT (LC)
1072 XCH © / LOAD A, LC TO REGISTER @ ;
108: RAR / ROTATE LEAST SIGNIFICANT BIT TO CARRY
109: XCH © / RETURN ROTATED A TO REG ©0» LC TO ACC.
1183 JCN CZ ROTR! / JUMP TO ROTR1 IF CARRY ZERO
112 XCH 1 / LOAD Bs» LC TO ACCUMULATOR
1132 RAR / ROTATE LEAST SIGNIFICANT BIT TO CARRY
1143 XCH 1 / RETURN ROTATED B TO REGe1, LC TO ACC.
115¢ROTR2, XCH 2 7/ LOAD PARTIAL RESULT Cs» LC TO REGISTER 2
116t RAR / ROTATE CARRY INTO PARTIAL RESULT MSB
117 XCH 2 / LOAD LC» RETURN C TO REGISTER 2
118: DAC / DECREMENT THE ACCUMULATOR (LC)
1198 JCN ANZ AND+3 / LOOP IF LC NON ZERO '
121; BBL O / RETURN
122:ROTR1» XCH 1 / LOAD B, LC TO REGISTER 1
123t RAR / ROTATE B
1243 XCH 1 / RETURN ROTATED B TO REGe. 1s LC TO ACC.
125: CLC / CLEAR CARRY
126: JUN ROTR2 / RETURN T LOOP
128:CZ =10
1283ANZ =12
128: $

Figure 2. Pass 1 Listing
139

address and a colon printed by the assembler. The line itself is read by the assembler and echoed back to the printer.
The listing thereby acts as a rough check on the serial link between the TTY and SIM4 hardware. The procedure is
as follows:

1. Assemble the appropriate hardware consting of the following
a. SIM4-01 or SIM4-02 board with a minimum of 3 RAMs (Intel 4002), and the 4 assembler ROMs A0740, A0741,
A0742 and A0743. ‘
b. An ASR 33 (with reader, punch, and ASCI! keyboard) teletype wired with a reader on/off control relay and
serial data link described in the MCS-4 Users Manual.
c. SIM4 Power Supplies. Ref. MCS-4 Users Manual.
d. Customer supplied interconnect wiring. Ref. MCS-4 Users Manual.

. Connect the hardware as shown in block diagram of figure 1.1.

. Place the TTY punch in an “off”’ mode.

. Place the TTY reader in a “free” or “off”* condition and position the tape on the leader.
. Reset the SIM4 board. A customer-supplied reset switch is assumed.

. Start the TTY reader.

~N o oA wN

. If an error occurs (flagged by a bell and a special character) stop the reader and take corrective action with the keyboard
if possible. Tape position must be carefully controlled during editing to avoid further erroneous input.

8. The tape will be read until the dollar sign $ is reached. At this point pass 1 of the assembly is complete and the assembler
is awaiting the second entry of the tape for pass 2. :

9. Turn the punch “on’’.
10. Place the taPe reader in the ““free’’ or "‘off’’ condition and position the tape on the leader.
11. The assembler will punch approximately 12 inches of leader and wait for reader input.
12. Place the reader in the “’start” mode.

The assembler will read the tape, ignore comments, and output line addresses and “BNPF’’ formatted instruction codes.
With the punch on a programming tape is created and a listing of the tape such as that shown in figure B-3 is generated.
Any editing performed during pass 1 must be repeated during pass 2.

o 0: BPPNPNPPPF BPPPPPPPNF 2: BPPNPNPPNF 3t BNNNPNPNPF
43 BNPNNPPPPF St BPNNPNPPPF 62 BPPNPNPPNF T3 BNNNPNPNPF
8 ¢ BNPNNPPPNF 9 : BPNPNPPPPF BPNNPNPPPF 11: BNPNNPPNPF
123 BNNNPPPPNF 13: BPNPPPPPPF BPPPPPPPPF 15:BPPPPPPPPF
163 1043 10A:BNNNNPPPPF 105:BNPNNPPNPF 106sBNNPNPNPPF 107t BNPNNPPPP
108 s BNNNNPNNPF 189 :BNPNNPPPPF 110sBPPPNNPNPF BPNNNNPNPF
112: BNPNNPPPNF 113tBNNNNPNNPF 1143 BNPNNPPPNF 1153 BNPNNPPNPF
116:BNNNNPNNPF 11 T7sBNPNNPPNPF 118:BNNNNNPPPF 119:BPPPNNNPPF
BPNNPNPNNF 121 :BNNPPPPPPF 122: BNPNNPPPNF 123t BNNNNPNNPF
124: BNPNNPPPNF 125:BNNNNPPPNF 126:BPNPPPPPPF BPNNNPPNNF
128: 128: 128:
F

Figure 3. Programming Tape Listing

Completion of pass 2 is signalled by the printing of an *‘F’* and the punching of a 12 inch trailer.
At this point the assembly is complete and PROM or ROM programming may proceed.

140

APPENDIX G
SIM4 HARDWARE SIMULATOR

INTRODUCTION

The SIM4-02 Hardware Simulator is a program written for the MCS-4™ series Micro Computer System. This program
will provide interactive control over the debugging of other MCS-4 ™ programs.

The minimum configuration required is a SIM4-02 prototype card with three 4002 RAMs and a Teletype. When fully stuffed
with 16 RAMs, test programs up to 512 bytes (locations) in length may be accomodated. The hardware simulation program
itself occupies nine full ROMs,

The Hardware Simulation Program has two basic functions:
1. To simulate the execution of a test program, tracing its progress, and apprehending gross errors.

2. To allow the user to dynamically interact with and/or modify his test program, in order to facilitate the debugging
process.

These two functions are implemented-by means of a set of directives or commands which the user types in at the teletype
keyboard. Some of the directives call for typeouts by the simulator program, some of the directives signal the input of data
or program modifications, and some of the directives involve both typeouts and-input response or datd.

A directive is identified by a single letter of the alphabet (except the arithmetic conversion directives = and ”’). If the
directive is associated with output only, the typing (or punching) will commence immediately. If input is allowed or re-
. quired with the directive, the simulation program will enable the paper tape reader control, and wait for valid input data.

NUMBER SYSTEMS .

Two number radices are standard with the hardware simulation program: binary and decimal. Index register values, pro-
gram counter and instruction location values, chip numbers, and some pointers are handled in decimal for convenience.
ROM instructions, the accumulator value, and one-bit indicators are handled in binary. Any input number may be entered
in either radix by prefixing it with a suitable indentifier (’D’’ for decimal, “B’’ for binary), regardless of the expectations of
the program. Unless so identified, however, all input should be in the radix used in the corresponding typeout.

To facilitate working with program tapes in the “BNPF’ format, the hardware simulation program will accept binary num-
bers coded either as strings of ones and zeroes, or as strings of “P”’s and “’N’’s, where the letter P is interpreted as a zero, and
the letter N is interpreted as a one. '

All input numbers are right-justified into the receiving register or field. If the number is smaller than the receiving field,
leading zeroes are implied as necessary. |f the number is larger than the receiving field, the excess bits are lost from the most-
significant end of the number. Thus, if it is attempted to load an index register with the value 20, the resuit will be 4 in the
register. This may be used to advantage in the event of an inadvertant error typein, by typing in as many zeroes as there are
bits in the receiving field, then re-typing the number, all as one string of digits. A number typed in may end with a carriage
return, a comma, a space, or the letter “‘F”*, or in the case of the = directive, with plus or minus sign. Any other characters
will give unpredictable results, and should be avoided. Rubouts are the only non ““numeric” characters which may be imbed-
ded within the input number strings with no adverse effects. Rubouts are ignored in all cases.

DESCRIPTION

The hardware simulation program allocates a user-selected block of RAM main memory locations to hold the ROM instruc-
tions to be simulated, assigning two RAM locations for each simulated ROM location. Thus, to simulate 512 locations of
ROM, all 16 RAMs must be used. Any RAM locations not allocated for program storage may be accessed in the normal way
by the test program. In addition, the hardware simulation program uses the status characters in twelve consecutive RAM

. - S\ . /
registers {equivalent to three RAM chips) to hold simulation parameters. RAM is assumed to be organized as four consecu-
tive banks (with wraparound) of sixteen registers each, so that if less than 16 RAMs are used, those allocated to program and
parameter storage must be in one block of contiguous banks and registers within banks. ‘ '

" The program to be tested may have an address anywhere in the 4096 locations of addressable ROM, since the hardware
simulator program adds a bias value to all addresses which reference the simulated ROM. If the program attempts to jump or
increment to outside the range of the simulated ROM, an error interrupt occurs.

Another error interrupt occurs in the event of an illegal instruction op code during simulated execution. The op codes which
cause this interrupt are: 11111110, 11111111, 11100011, and all instructions with OPR = 0000 except for 00000000 (NOP).

M

A breakpoint register is associated with the simulated execution mode of operation, allowing the user to pre-set a location
which will cause an interrupt before execution. The BREAK key on the teletype may also be used to interrupt execution and
some other types of output.

During simulated execution, a count is kept of the number of simulated machine cycles (i.e., sync pulses) used by the test
program, to assist in checking out programs with critical timing problems.

"

Qr,s.e

In

Pn,m

Mn,i

Dr,n

DIRECTIVES

Binary conversion .
This directive accepts a single {decimal) number, and types out its equivalent in binary. A maximum of 12 bits (num-
bers to 4095) may be accomodated at once.

Decimal adder

This directive accepts a string of (decimal) numbers separated by plus and minus signs, and types out the algabraic

sum, modulo 4096. If the algebraic sum is negative, 4095 is logically added to it to give a positive result. This directive
may be used to perform binary to decimal conversion thus: =Bnnnn

RAM/ROM chip assignment

This directive must be entered before any other letter directive. |f the first character after the Q is a space or comma,
the current values are typed out. Then, or immediately after the Q, three parameters separated by commas or spaces
are required. !f any of the three parameters is omitted, or if a RETURN is typed instead of the first parameter, the
current values will be unchanged. r is the (decimal) RAM register number {0-63) which is used as the lowest in the
black allocated to ROM. The simulation program has no way of preventing the test program from accessing RAM loca-
tions allocated to simulated ROM, so the user must use care in selecting a value for this parameter which will reduce
the likelihood of improper access. If r is greater than 63, the previous value is used. s is the starting address of the
ROM segment to be simulated. Any attempt to execute an instruction with an address less than this number will result
in an out-of-bounds interrupt. e is the (decimal) ending address of the ROM segment to be simulated. Any program
access to ROM locations greater than this address will result in an out-of-bounds interrupt. This directive clears the
option word to zeroes. ‘ :

Zero ‘
This directive simulates the hardware reset function, and clears to zero all simulated registers, counters, and all RAMs
not allocated to program. The Q directive executes a Z each time the parameters are changed.

Input .

This directive accepts a sequence of (binary) numbers and stores them in consecutive simulated ROM locations, begin-
ning with location n. Spaces, commas, returns, and linefeeds may occur with any frequency or pattern between the
individual numbers. Input is terminated by a free-standing letter F in the sequence. An ASCIHI SOH (control A} may be
used to introduce a (decimal) number which, like n, becomes the new starting address for subsequent instruction bytes.
The program counter in the current stack level is altered by this directive.

Punch

This directive will punch out, in “BNPF" format with location numbers, the contents of the simulated ROM beginning
at location n (decimal), and ending with location m. The currently selected program counter, and the breakpoint regis-
ter are altered by this directive. Four inches of leader and trailer are punched on the tape, with an “’F"’ after the last
location. If the BREAK key on the teletype is depressed between locations, the typeout will be aborted, with no trailer.
Both the breakpoint register and the program counter in the current stack level are altered by this directive.

Memory input

This directive accepts a sequence of (decimal) numbers (0-15) and stores them sequentially in consecutive RAM loca-
tions, beginning in register n (decimal, 0-63) and location i (decimal, 0-19). If the starting location is in main memory
(i less than 16), only main memory locations are filled. The next number after the one which goes into register r, digit
15, goes into register r + 1, digit 0. If the starting location is a status character (i greater than 15), only status characters
are filled. The sequence ends with a carriage return following the terminal delimiter of the last number.

Dump RAM
This directive types out in decimal the contents of each RAM location {both main memory and status) of n registers,
beginning with register r. The typeout may be ended prematurely by depressing the BREAK key.

142

Xn

Accumulator

This directive may be used to display and/or alter the contents of the simulated accumulator. A space or comma follow-
ing the A will display in binary, the contents of the simulated accumulator. This or the A may be followed either by a
new value to be entered, or by a carriage return to end the directive.

Carry/Link
This directive may be used to display and/or alter the contents of the simulated Carry/Link bit. The use of this direct
ive is the same as for A.

Index

This directive may be used to display and/or alter the contents of any one or pair of the simulated index registers. |f
a space or comma follows the X, all 16 index registers are displayed (in decimal). Otherwise, if the (decimal) number
n is followed by a space, index register n may be displayed and/or altered as in A. If the number n is followed by a
comma, slash, or period, index pair number n may be displayed (in decimal) and/or altered as a unit. (Index registers
2n and 2n + 1 are handled together as a single 8-bit number.)

Stack pointer

This directive may be used to display and/or alter the contents of the subroutine stack pointer. The current loca-
tion counter is the one pointed to by this pointer. This pointer is incremented by JMS instructions and decremented
by BBL instructions.

Location Counter
This directive may be used to display and/or alter the contents of the current location counter. Note that altering
the value of the stack pointer will cause a different register to be current location counter.

Examine Everything
This directive combines the display functions of the C, A, S, L, R, and X directives. All four program counters in the
stack are displayed. No modification is possible.

RAM/ROM selection

This directive may be used to display and/or modify the simulated memory chip/location selection. A space or comma
after the R types out an 11-bit binary number, of which the most-significant 3 bits represent the command line
selection effected by the last DCL instruction, and the least-significant 8 bits represent the contents of the index pair
as last used by an SRC instruction.

Breakpoint .
This directive may be used to display and/or modify the contents of the breakpoint register. The simulated execution
will always be interrupted before processing the instruction pointed to by the breakpoint. If the breakpoint points to

the second byte of a two-byte instruction, no breakpoint action will occur during instruction simulation.

When
This directive may be used to display and/or alter the contents of the simulated sync cycle counter. This is a 12-bit
(decimal) counter used to tally the number of instruction cycles used during instruction simulation.

Trace

This directive causes the simulation program to begin simulated execution of the test program, beginning at the address
in the current location counter. If instruction execution simulation s interrupted by a breakpoint, the keyboard
BREAK key, or an illegal instruction, the T directive will cause the program to resume where it left off, just as if the
program was never interrupted, except insofar as program parameters or registers were modified while interrupted. The
basic format of the trace listing is

where pppp is the decimal location counter; iiiiiiii is the binary representation of the (first byte of the) instruction
being simulated; ¢ is the resultant carry/link bit; aaaa is the resultant accumulator value; and rr is the resultant (decimal)
index or index pair used in the instruction. (value, not index number) Any or all of the last three numbers may be
omitted on instructions which do not reference their respective registers.

Non-trace
This directive is identical to the T directive, except that execution proceeds without tracing,

Options
This directive may be used to display and/or alter the current option status bits, Thisisa 4-bit binary number with the
following significance:
1 Input, Output, and CPU test instructions are executed directly when this bit is on, |nstead of typing out
on the teletype the port number and then typing or accepting the data.
10 No interrupt for subroutine stack overflow or underflow will occur when this bit is on.
1000 Unconditional jumps and subroutine jumps to ROM page 0 (chip 0) are executed directly instread of
interpretively, permitting direct byte 1/0 during checkout.

143

ERROR MESSAGES

Most of the errors which can be detected by the simulation program are identified by a single character typeout, followed
by ringing the bell once. Six different types of errors are identified this way:

CODE SIGNIFICANCE

? This is not a valid directive. Any printed graphic normally generated by the ASR33, which is not a valid directive,
evokes this response. A question mark-bell combination also calls attention to a simulated input request.

Break condition recognized. This occurs normally, either when the location counter reaches the value in the break
register in execution simulation, or when the BREAK key is depressed in simulation or ROM or RAM dumping.

> Location counter out of range. This error occurs in simulation or ROM punching, if an attempt is made to access an
address out of the range specified in the most recent Q directive.

! Invalid op code. This error occurs and is recognized during execution simulation, after the instruction byte is
typed out, but before the location counter is incremented, so that if it occurs under the control of the N directive,
the T directive may be entered to examine the error by trying to execute it again.

% Location counter stack overflow or underflow. This error is unique in that the interruption occurs after the instruc-
tion has been executed in simulation. A T or an N directive will resume execution with the next instruction {jumped
or returned to). '

+ Cancel. This is the program response to a Cancel (Control “*X"" or ESCAPE) typein, during data input. Except for
I, M, T, and N directives, it cancels the entire directive. If used in the | or M directives, only the current datum is
canceled, and the directive is terminated at that point. Previous values, if any, have already been stored in memory.
If used while the simulation program is requesting input data from a simulated ROM port or the simulated CPU

" Test line, it is equivalent to a break at the beginning of the instruction. 1n each case the simulation program returns
“to accept another directive.

OPERATING INSTRUCTIONS

1. Assemble Program

First assemble the test program on the Hardware Assembler (A0740 to A0743). /mportant: the Hardware Simulation

- Program will not accept ROM program tapes created by the FORTRAN assembler, ASM4, as these tapes have bit patterns
and addresses together, with no identifier for the addresses. It is not necessary to assemble the program in one contiguous
block of ROM locations, since the | directive in the simulation program is able to recognize the address fields (by the
Control ‘A", SOH preceding them), and place the instruction patterns into the proper simulated ROM locations.

2. Prepare SIM4-02 Hardware

Remove ROM chips A0740 through A0743 and plug in the Hardware Simulation Program chips, AO750-A0758. Press
RESET. The teletype should type out a carriage return-linefeed, and an asterisk to show that the simulation program is
ready to accept a directive,

Determine how much simulated ROM is needed to test the program, and which RAMs are least likely to be accessed by the
test program, using if necessary the = and ** directives. Then type in the Q directive for this program. From now until the
testing of this program has been completed and the amended program tape has been punched out, DO NOT touch the
RESET button. If the RESET button is pressed, the simulation parameters and any program in the simulated ROM will be
destroyed.

3. Load Program

Place the object tape in the teletype reader, and type in I. The simulation program will read both the addresses and the
instructions from the tape and store them in the proper locations. Reading will be terminated by any error or by the
terminal F punched by the assembler. Note that any instructions or data which fall outside the limits defined in the Q
directive will be ignored. Note also that if the Q directive defines the ROM limits to be more than 512 bytes, wraparound
overlap is possible. Thus, location 100 would be overwritten by instructions going into location 612. When the program is
loaded, a simulated RESET may be effected by the Z directive. If starting at other than location zero, or with registers pre-
loaded with data, the appropriate directives may be used to set these up. A breakpoint may be set if desired, and RAM may
be loaded up with data if desired. If a subroutine or a part of a subroutine is being tested, the stack may be loaded with a

3

144

return address using the L directive. That may then be pushed down with the S directive, so that the starting address may
be loaded into the first subroutine level, or the process may be repeated up to three times. If it is desired to force an inter:
rupt at the first occurrence of a JMS instruction, the stack pointer may be set to 3 initially, so that the first JMS instruction
causes a stack overflow. If it is desired to achieve more than one breakpoint, illegal instructions may be assembled or in-
serted into the program at the desired points. When the simulation attempts execution of one of these locations, an inter-
rupt occurs, and the instruction may be replaced, or the program counter incremented around it to proceed.

4. Execute Program Simulation

To start the execution simulation, type a T (for Trace mode) or an N (for non-Trace mode). If at any time it is desired to
stop execution simulation, whether because of program errors, to examine register contents, or to make corrections, the
BREAK key may be depressed, and the simulation will be interrupted at the completion of the current instruction. Execu-
tion will resume as if uninterrupted, if the T or N directive is typed in after a break.

5. Edit Program

. To make corrections to the program, the | directive is used, giving an address, and the value(s) to be entered. The | directive
alters the contents of the current location counter. Thus, it should either be noted and restored, or the stack pointer may
be incremented first and decremented afterwards — (unless of course, the simulation is interrupted at subroutine nest level 3).

6. Punch New “BNPF” Tape

After the program works correctly, an amended ROM tape may be punched in the “BNPF" format using the P directive.
Four inches of leader and trailer are punched by this directive. |f more is needed, rubouts or nulls (shift-control-P) may be
punched while the simulation program is waiting for a directive. This will not in any way interfere with normal operation
of the program. The user should remember to turn on the paper tape punch after typing in the second address in the P
directive if a tape is to be made. If it is desired only to examine the contents of a simulated ROM location, this is not
necessary.

7. Simulation of Segmented Programs

If a program is not very large, but is scattered over a wide range of addresses, it may be possible to accomodate the program
in segments. Suppose the program occupies the first 32 locations in each of four ROMs. 128 locations must be reserved
by the Q directive to hold all of this. Suppose further that the program accesses only bank zero in RAM. The Q directive
would be something like this:

Q16, 0, 127
Then the first 32 locations of the program tape are read in using the | directive. The entire tape may be read with no
deleterious effects, if that is convenient, or an F may be typed in manually at the end of the first 32 locations’ worth of
data. Then the Q directive is used again, to re-assign the same locations to the next block of addresses:

Q99, 224, 355
Note that the address limits have been offset by 32, to prevent the obliteration of the first 32 locations. The object tape
may be read in again, or at least that part of it which includes the next block of data or instructions. Then the area is
reassigned again: i ‘

Q99, 448, 575 .
The process is repeated until the whole program is loaded. To execute, the Q directive for the starting block of code is
typed in again. If the segments are placed correctly, each time a jump is made to another segment, an out-of-range interrupt
occurs. The Q directive for the segment jumped to is entered, and the program may proceed. This technique may also be
used to relocate a program in ROM: for example, the following sequence of commands will effectively move (shift) a
program up one position in ROM:

Qo, 0, 255

10 (program)

Qo, 1, 256

P1, 256

JUMPS TO PAGE 0

Because of the nuisance of doing serial-to parallel conversion, and properly timing the bit frames in teletype input and output,
the simulation program is provided with an option to perform subroutine calls and unconditional jumps to ROM page O
directly, returning to simulation mode upon return. ROM page O contains subroutines to perform teletype reader and
keyboard input, 7 bits wide (the parity bit is ignored), teletype output 8 bits wide, binary to decimal conversion and output,

145

the typing of some specialized sequences of characters, partial decimal to binary conversion on input, and 6-bit teletype char-
acter input with control character checking. A test program may use these subroutines to facilitate checkout of complex
programs, or the ROM may be included in the final program if teletype interface and the same antillary routines are needed.

The following is a summary of the subroutines and their calling parameters:
NAME ADDRESS (X) FUNCTION

KEY 120 (11-15) This routine inputs one 7-bit character from the teletype keyboard, and returns it, left-justified,
in index registers 14 and 15. Index registers 12 and 13 are cleared to zero. The least significant bit of
register 11 determines whether the character is echoed back (0 = yes, 1 = no)}. The carry is set if the
character typed in is printable.

TTI 117 (11-15) This routine inputs one 7-bit character from the teletype paper tape reader or keyboard (the
reader control is enabled), and is otherwise exactly the same as KEY.

TXX 234 (10, 11, 14, 15) This routine examines the carry bit set by KEY or TTI as well as the accumulator value
and the character in registers 14 and 15 to determine if one of the following conditions obtains:

1. The character is some printable graphic between “@" and “‘«". If so, the character is biased to a six-
bit value, centered in the byte. The carry is turned on if it is a letter. A normal return is taken, acc=0.

2. The character is a control character between null and ETB {(control-Y) or a printable graphic between
space and slash. An indirect jump to the address in ROM page 1 contained in index registers 10 and 11
is taken,

3. The character is a control between CAN (Control-X) and US (Shift-Control-0). An unconditional jump
to location 256 is taken. \

4. The character is one of those not generated by a KSR33 teletype, or a rubout. A normal return is taken,
with the accumulator non-zero. '

T6R 205 (10-15) This routine combines TT} and TXX such that normal return occurs only on characters ““0”
through “". Characters in group (4) above are ignored, and the alternate exits are taken for control
characters and delimiters. Note that if the address to which the delimiter return is to be made is odd,
no echo occurs. On normal return, the character is right-justified in registers 14 and 15, and the carry
is set if the character is a letter or higher.

T6L 220 (10-15) This routine is the same as T6R, except that on normal return the carry is always Zero, and the
character is left-justified in registers 14 and 15, leaving the lower two bits zero. Both T6R and T6L
contain subroutine calls nested three deep, and may only be called from the main program, except
during simulation.

D10 183 (4-7, 10-15) This subroutine multiplies the 12-bit binary number in registers 5-7 times ten, and adds the
number in register 15 to the product, then goes to T6R to input another digit. This routine may be
called repeatedly to input and convert to binary a decimal number. A terminal delimiter takes the
alternate exit in registers 10 and 11. Register 4 is used for scratch.

247 6 (4-7) This routine clears registers 4 through 7 to binary zero in preparation for D10.

PUN 80 (11-15) This routine prints or punches the character in registers 14 and 15 out on the teletype. Registers
11 through. 15 are cleared to zero on return.:

IPR 70 {11-15) This routine does the same as PUN, except that if register 11 is initially even (echo mode on input),
a 15 ms delay occurs to allow the teletype printer to settle.

RETN 107 (11-158) This routine types out a carriage return, a.null, and a linefeed. It may only be called from the
main routine.

MSG 66 (11-16) This routine types out the character in registers 14 and 15, then follows it with a bell.
SPACE 63 (11-15) This routine types one space. '

DIGIT 53 (10-15) This routine types an ASCII digit corresponding to the BCD number in the accumulator. If it is
zero, and the register 10 contains 15, a space is typed instead. Unless a space is typed, register 10 is

incremented.
PDN 40 - (4-7, 10-18) This routine will print, with zero suppression, the four-digit decimal number in registers
4 through 7.
BCD 11 (1-7, 10-16) This routine converts the 12-bit binary number in registers 1-3 into decimal, and prints the

four digits with zero suppression.

146

RAM USAGE

The simulation program, to facilitate full usage of the RAM, has organized it into a nominal block of 64 registers, each
containing 16 main memory locations and four status locations. Directives which reference RAM as such (i.e., Q, M, and D),
always address it by a register number, and sometimes by a character position within the register. The following chart
illustrates this addressing scheme:

REGISTER DIGIT (selected by odd index in SRC instr.)
{selected by
even index
in SRC instr.) . [Status)
0 1 2 3] 4 5 6 7] 8 9 10 |11 {12 |13 |14] 15 16 11718 | 19
(1]
Bank O 1
RAMO
(Port 0) 2
3
4
Bank 0 5
RAM 1 6
7
8
9
16
Bank 1 17
RAMO 18
(Port 4)
19
20
44
Bank 2 45 »
RAM 3 46
(Port 11)
47
‘ 48
Bank 4 49
RAMO 50
(Port 12) 51
52
60
Bank 4 61
RAM 3
62
{Port 15)
63

147

The bank number in the chart above is the value of the accumulator during a DCL instruction, needed to address that bank -
of RAMs. The port number given corresponds to the number typed out during simulation of the WMP instruction. Register
positions 16-19 (i.e., the status locations) are normally addressed in the program by the RDO/WRO, RD1/WR1, etc.,
instructions, respectively.

The Q directive is used to define and set aside some part of RAM for use by the simulation program as simulated ROM and
other registers and parameters. Whole RAM registers are taken by the Q directive, beginning with the register identified in
the first parameter. The status locations from exactly 12 registers are used by the simulator. The number of main memory
locations used is determined by the difference between the second and third parameters of the Q directive. Wheres and e
represent the values in the second and third parameters of the Q directive, the number of registers used is determined by the
formula: n=(s+e)/8+1

This value may be more or less than 12, the number of registers whose status locations are used, with no ill effects.

RAM main memory locations reserved by the Q directive are used solely for program storage. The instruction with an
address equal to the second parameter of the Q instruction is loaded into digits 0 and 1 of the register designated by the

first parameter of the Q directive; subsequent instructions are loaded into the following digit pairs, according to the
addresses.

The RAM status locations reserved by the simulation program are allocated to the following functions:

Relative .

REGISTER = LOC'N. FUNCTIONS

r+0 0 Simulated Accumulator

0 1-3 Low ROM address limit

1 0 Option word

1 13 High ROM address limit

2 R ¢ Execution parameters

2 1-3 Breakpoint address

3 0 Simulated Carry

3 1-3 Simulation Cycle counter

4 0 Simulated Stack pointer

4-7 1-3 * Simulated Stack

5 0 Simulated Command line selection

6,7 0 Simulated ROM or RAM chip selection

8-11 0-3 Simulated index registers
EXAMPLES

Figures 1, 2, and 3 are annotated listings generated during actual simulation. Figure 1 is a simulation of the “AND"’
program described in figures 4 and 5. Figures 2 and 3 represent the simulator’s response to various directives entered
viaa TTY keyboard.

148

ASTERISK IS SIMULATOR OUTPUT
READY INDICATION
1

INITIALIZE \

MEMORY BLOCK

L
Q3 ¥ 128
19

IS ASSIGNED
/ 81 @1BPPNPNPPPF BPPPPPPPNF 21 BPPNPNPPNF 31 BNNNPNPNPF
_ INPUT COMMAND / a:a‘w.:.:pppzr 51BPNNPNPPPF 61 BPPNPNPPNF 73 BNNNPNPNPF
41BNPNNPPPNF 9:BPIPNPPPPF BPNNPNPPPF 111BNPNNPPNPF
SPECIFIES OR'G'N/ 12:BNNNPPPPNF 131BPNPPPPPPF BPPPPPPPPF 15:BPPPPPPPPF
16t 1041 1041BNNNNPPPPF 10S1BNPNNPPNPF 1868 BNNPNPNPPF 73BNP)
SIMULATOR ASSIGNS ADDRESS 1081 BNNINPNIPF 1091 BNPNNPPPPF llO!BPPPNNPNP; BP:::N:NPF 1071 BAPANPEEP
1121 BNPNVPPPIF 1131BNNNNPNNPF 1141BNPNNPPPNF 1151 BNPNNPPNPF
IN ACCORDANCE WITH DATA 1162BNNNNPNNPF 1171 BNPNNPPNPF 1181 BNNNINPPPF 119 4BPPPNNNPPF
DELIMITED BY “"CONTROL A” BPNNPNPNNF 121 tBNNPPFPPPF 122:BNPNNPPPNF 1233 BNNNNPNNPF
CHARACTERS (HARDWARE 12435 BNPNNPPPIF 125:BNINNPPPNF 1263 BPNPPPPPPF BPNNNPPNNF
128: 1283 1283
ASSEMBLER) F
:lé wlgs ° L PRE-PUNCHED
*B 2 TAPE INPUT
TRACE MODE IS INITIATED *T .
0100101000
AFTER PROGRAM COUNTERS cioo101081 i LOCATION COUNTER
HAVE BEEN SET 311010 HAS ADVANCED TO
R ¢ 70111, 0
RDR INSTRUCTION IS 110110020 @ 0000 128. RESETTO 0O
EXECUTED. REQUEST 5101121800 & @000
y STACK ISRESET TO 0O
FOR DATA IS REPLIED i oeles T
TO WITH “0111” ENTRY R la::;:?ewm o 0000
FROM KEYBOARD 9101010000 BREAKPOINT IS LEFT AT O
104111110900 @ 2000
105:10110810 0 8008 ©
106111010108 0 0182 @ .
187118110288 @ 8111 & CONTENTS OF PAIR 4 (DECIMAL)
108:11110110 1 @@11
199118110000 1 @128 3
110100011210 | 8100 ACCUMULATOR (BINARY)
112110110001 1 1118 4
113111110110 2 1111
114:10110081 @ 2108 1S
115110110012 @ 0688 4
116111112110 8. 20800
117118110010 @ 0108 0 CARRY
118311111000 1 0011 '
119190011124 1 @811
197118110000 1 @11 3
188111110110 | 1001
109116110000 | @811 9 CONTENTS OF REGISTER
119100011010 1 @211
112110118001 1 1111 3 OPERATED ON (DECIMAL)
113111118112 1 1111
114310110001 | 8211 15
;ngggsc;r'ON 115110110010 | 0020 3
- 116111110110 @ 1020
TRACE MODE 117:10110012 @ 2211 8
118111111002 1 2210
119100011102 1 @018
FIRSTBYTE 1973110110008 1 1001 2
108311110118,1 1100
OF INSTRUCTION 189110110000 1 2018 12
119:000110128 1 20910
112510110001 1 1111 2
113111110112 1 1111
11410110021 1 @410 15
115110110210 1 1080 2
ieiiotia o Jlos TO STOP TRACE MODE AT A
116:11111080 1 0081 POINT OTHER THAN THE BREAK-
:;‘;}:T:?:;;:g : f?gé \ POINT, DEPRESS BREAK KEY
126111110118 @ 1118 - NEAR COMPLETION OF A LINE,
189110110002 @ 0231 14
110:00011018 © 2021
122110110001 © 1111 1
123111110118 1 9111
124110110801 | 2021 7
125111110001 0 0001
126101080000
115110110010 @ 1108 1
116111110110 02113
117110110010 @ 2881 6
OUTPUT TO 1183111111000 | 0008
MEMORY PORT 119100011100 1 9009
121111020002 .
\ 11118110010 1 2118 @
12111180001
N Mo o110
13101000000 ¢ BREAKPOINT AT
NEXT LOCATION
NON-TRACE MODE w,®
s 8
IS INITIATED \ B, TERMINATES TRACE
NET
. R @ 78111
NON-TRACE MODE -4 R I 71118
M2 o1n ¢
-

Figure 1. Trace and Nontrace Modes.

149

REG. 3
REG. 7
REG. 11
REG. 15

REG. 2
REG. 6
REG. 10
REG. 14

USED FOR CPU REGISTER SIMULATION

Q-LOW ADDRESS LIMIT
Q-HIGH ADDRESS LIMIT
BREAKPOINT ADDRESS
CYCLE COUNTER
PROGRAM COUNTER LEVEL 0O
STACK LEVEL 1

STACK LEVEL 2

STACK LEVEL 3

REG. 1

REG.5

REG. 9

REG. 13

CHIP SELECT
CHIP SELECT

PARAMETER
CARRY
REG. 0
REG. 4
REG. 8

EXECUTION
STACK

ACC.
OPTION
POINTER
CMD. LINE
SELECTION
REG. 12

RDR

DUMP RAM

COMMAND

!

LOCATION 3
1110 1010

FIRST LINE
NUMBER OF LINE

USED FOR STATUS WORD SIMULATION

SAMPLE PROGRAM LOCATED
AT 000 TO 015 AND 104 TO 128

R SN NMNMIVSS
- - -

TR SI -0
POV IVIIRE
NSO~ NITIEESD
WIS OVCTIICICN—OSES
VISR~ —~NASIS

-
O~ DNOEINSOVO RS
~ TNV ~IEES
—— - -
eaﬂaggaABoﬂaﬂoganvagﬂﬂ
-
TN~ NS
- - -

PN ENDID T~ ~OIES

ANV MN==OE8SS

g

l@BBEGUOOBGOBZGGQGGOMnI

AN ENHPIE~NUNESEIW
e R adad 0 n

3
VD ~EROSEDNECOIR~~0D O

-

et
W21ﬂ00000690005160000”
- - *

8 9 16 11 12 13 14 15
112345678910 11 12131415

6

*M16

ERRONEQUS ENTRY CANCELED

WITH CONTROL “X"
MEMORY INPUT TO
RESULT OF MEMORY INPUT

LINES 4 AND 18

SOOI SOIRRDIES

oenes 00030°¢6000*ﬂ°

ONEINEEORTARNNEIVE
- - - -
400@“@030300011100‘0
- - -
900D3000006900800ﬂ30
- - -
NSNS~ NITITOENS
- - -
PO I~V TWN DS ~®
- -
VIO~~~ NS
- - =
P~ 0800OSVVVO~8OOS
~ IOV DNNN <O
- - -
L L L E L KRR
-
T~EOEVOISPEDNRRS~—~NOOVYS
- - -
PNOONOEOESNDSSTI=~CRNE
abaﬂoaaaﬂﬂﬂﬂG.Jllﬂﬂﬂo
- -

15000690699302636530

VOSSR ~NNOSNS

-

2
NN~ DD~ =08~8

-

2
R L E L R R R RO R R
* - -

Figure 2. Memory Dump/Input.
150

*Z

*W

*T
d:00101000
2100101001
3s111010190

R @ 70111

4310112000 6 0000 7

1 2 9'14 108'11

@3 BPPNPNPPPF
43 BNPNNPPPPF
8 1BNPNNPPPPF
123 BPPPPPPPPF

18 BPPPPPPPNF
S$BPNNPNPPPF
93 BPPPPPPPPF
133 BPPPPPPPPF

@ 6 8 2 9 14180

231 BPPNPNPPNF
631 BPPNPNPPNF
183 BPPPPPPPPF
143 BPPPPPPPPF

Figure 3. Miscellaneous Directives.

151

33 BNNNPNPNPF
7sBNNNPNPNPF
1131BPPPPPPPPF
153 BPPPPPPPPF

0s/ FOUR BIT "AND'"™ ROUTINE

B:1START, FIM 4P @ 7/ LOAD ROM PORT @ ADDRESS
2t SRC 4P / SEND ROM PORT ADDRESS
3: RDR / READ INPUT A
4: XCH 0 / A TO REGISTER ©
St INC 8 / LOAD ROM PORT 1 ADDRESS
63 SRC 4P / SEND ROM PORT ADDRESS
7¢ RDR / READ INPUT B
8t XCH 1 / B TO REGISTER 1
93 JMS AND / EXECUTE “AND"
113 XCH 2 7/ LOAD RESULT C
12t WMP / STORE AT MEMORY PORT ©
13t JUN START / RESTART ‘
15: NOP
16: =184
104:/ “AND" SUBROUTINE
184:AND,» CLB / CLEAR ACCUMULATOR AND CARRY
185: XCH 2 / CLEAR REGISTER 2
1063 LDM 4 7/ LOAD LOOP COUNT (LC)
187: XCH @ / LOAD A, LC TO REGISTER @
108: RAR 7 ROTATE LEAST SIGNIFICANT BIT TO CARRY
1893 XCH © / RETURN ROTATED A TO REG @, LC TO ACCe
11803 JCN CZ ROTRI / JUMP TO ROTRI IF CARRY ZERO
112: XCH 1 / LOAD B> LC TO ACCUMULATOR
1131 RAR / ROTATE LEAST SIGNIFICANT BIT TO CARRY
1143 XCH 1 / RETURN ROTATED B TO REG.1, LC TO ACC.
115:ROTR2, XCH 2 7/ LOAD PARTIAL RESULT C» LC TO REGISTER 2
1162 RAR 7/ ROTATE CARRY INTO PARTIAL RESULT MSB
117t XCH 2 / LOAD LC» RETURN C TO REGISTER 2
118: DAC 2 / DECREMENT THE ACCUMULATOR (LC)
1191 JCN ANZ AND+ / LOOP IF LC NON ZERO
121: BBL 0 / RETURN
122:ROTR1> XCH 1 / LOAD B, LC TO REGISTER 1
123: RAR / ROTATE B
1243 XCH 1 / RETURN ROTATED B TO REG. 1, LC TO ACC.
125: CLC / CLEAR CARRY
126: JUN ROTR2 / RETURN TD LOOP

128:CZ =10
1283ANZ =]2

128: %
Figure 4. Pass 1 Listing.
as @: BPPNPNPPPF BPPPPPPPNF 2:§PPNPNPPNF 31 BNNNPNPNPF

43 BNPNNPPPPF S$ BPNNPNPPPF 63 BPPNPNPPNF 731 BNNNPNPNPF
8 s BNPNNPPPNF 9 : BPNPNPPPPF BPNNPNPPPF 11: BNPNNPPNPF .
1 2s BNNNPPPPNF 13:BPNPPPPPPF BPPPPPPPPF 15t BPPPPPPPPF
16t 1043 104:BNNNNPPPPF 105:BNPNNPPNPF 106:BNNPNPNPPF 1071 BNPNNPPPP
1081 BNNNNPNNPF 109 :BNPNNPPPPF 1101 BPPPNNPNPF BPNNNNPNPF
112:BNPNNPPPNF 11331 BNNNNPNNPF 1143BNPNNPPPNF 1153 BNPNNPPNPF
1163 BNNNNPNNPF 11 7sBNPNNPPNPF 118:BNNNNNPPPF 1193 BPPPNNNPPF
BPNNPNPNNF 121 3BNNPPPPPPF 122:BNPNNPPPNF 1231 BNNNNPNNPF
12A4: BNPNNPPPNF 125: BNNNNPPPNF 126:BPNPPPPPPF BPNNNPPNNF
128: 128: 128:
F

Figure 5. Programming Tape Listing.

152

APPENDIX H
MCS-4™M ASSEMBLER/SIMULATOR
SOFTWARE PACKAGE

This appendix describes the use and operation of the assembler and
simulator software package for the MCS-4 micro computer set.

This assembler-simulator package is offered through Tymshare, Inc.,
G.E. Timeshare, and AL/COM, nationwide computer timesharing services.
The software package allows the user to: (1) prepare and edit his
program; (2) assemble these programs into MCS-4 compatible binary
code; (3) simulate the MCS-4 system's execution of this code; and
(4) generate tapes in a format suitable for programming 1602A or
1702A field programmable and erasable read-only memories. The
output tapes so generated can also be delivered to Intel for
preparation of masks for the 4001 mask-programmed read-only memory.

The assembler performs a number of error diagnostics, checking
for code overlapping, invalid mnemonics, illegal off-page refer-
ences and several other common errors.

The simulator allows one to operate in a trace mode or to intro-

duce a break point in a program and to interrogate the contents
of registers when the program arrives at the break point.

The MCS-4 Assembly Language

Table 1 lists the instructions associated with the MCS-4 computer
set. Listed for each instruction is the standard mnemonic code
used to describe that instruction to the assembler and its binary
equivalent. The number of bytes (one or two) occupied by the
instruction and the types of modifiers which must accompany the
instruction are also indicated in Table 1. The types of modifiers
required may be none, as in the case of NOP, CLB, CLC, etc.; a
register designator indicating one of the sixteen registers on

the central processor chip as in the case of Add, Load, Exchange,
etc.; a 4-bit data item as in the case of the BBL or LDM instruc-
tion, an 8-bit data item as in the case of the FIM instruction;

a register pair designator as in the case of the SRC or JIN instruc-
tion; an 8-bit address as in the case of the 1ISZ, or a 1l2-bit
address as in the case of the JUN instruction. In general, such
addresses will be expressed symbolically by use of labels.

The JCN, FIM and ISZ instructions require two modifiers. The

JCN must include a condition code in addition to the address code.
The ISZ instruction must include a single register designator

as well as address code, while the FIM requires a register pair
designation and an 8-bit data item. In each case, the modifiers
must occur in the sequence shown with address or data items
following condition codes, register or register pair designations.

For use by the assembler, numeric data may be entered in binary,
decimal or octal format. See below under "Pseudo Operators".

153

INSTRUCTION

No Operation

Jump Conditional
Fetch Immediate

Send Register Control
Fetch Indirect :
Jump Indirect

Jump Unconditional
Jump to Subroutine
Increment

Increment and Skip
Add

Subtract

Load

Exchange ‘
Branch Back and Loa
Load Immediate

Write Main Memory
WRite RAM Port

Write ROM Port

Write Status Char @
 Write Status' Char 1
Write Status Char 2
Write Status Char 3
Subtract Main Memory
Read Main Memory
Read ROM Port
Add Main Memory
Read Status Char
Read Status Char
Read Status Char
Read Status Char
Clear Both

Clear Carry
Increment Accumulator
Complement Carry

- Complement

Rotate Left

Rotate Right

WN =S

Transfer Carry and Clear

Decrement Accumulator

Transfer Carry Subtract

Set Carry

Decimal Adjust Accumulator

Keyboard Process
Designate Command Line

MNEMONIC

NOP
JCN
FIM
SRC
FIN
JIN
JUN
JIMS
INC
- 1Sz
ADD
SUB
LD
XCH
BBL
LDM
WRM
WMP
WRR
WR@
WR1
WR2
WR3
SBM
RDM
RDR
ADM
RD@
RD1
RD2
RD3
CLB
CLC
IAC
cMC
CMA
RAL
RAR
TCC
DAC
TCS
STC
DAA
KBP
DCL

TABLE 1.

BINARY EQUIVALENT

1st byte

30000000
@g@diccce
@@1PRRRY
@P10RRR1
@F11RRRY
@@11RRR1
B1PGAAAA
@1P1AAAA
@11GRRRR
@#111RRRR
100GRRRR
13@1RRRR
1#1¥RRRR
1#11RRRR
11¢¢DDDD
11¢1DDDD
11100009
11100901
11100010
111991069
11104161
111¢¢11¢
111¢¢111
11191409
11191001
11101019
11141011
1110110¢
11191191
11191119
111¢1111
11119000
1111¢¢¢1
11110010
1111¢¢11
11119100
11119101
11119110
11114111
11111000
11111¢¢1

- 11111919

11111011
111111¢4g
111111¢1

2nd byte

AAAAAAAA
DDDDDDDD

MODIFIERS

none
condition
register
register
register
register
address
address
register
register,
register
register
register
register
data
data
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none

, address
pair, data

pair
pair
pair

address

NOTE: The MCS-4 Assembler is currently being modified to accept the WPM instruction associated with the 4008/4009.

154

A register pair may be designated by including the numeric
value corresponding to the even numbered register of the pair,
by a P followed immediately by the number (@ through 7) of the
register pair in decimals, or by a P followed immediately by a
3-bit binary code. Examples of acceptable forms are: g, 2,
Pggl, Pl, P7. A register may be designated by including the
register number or by the form RF through R15.

A condition code may be satisfied by the inclusion of a numeric
value corresponding to the desired condition code, or by using
one of the condition codes shown in Table 2. Note that Table 2
does not include all possible condition codes for the JCN
instruction.

A label is a tag attached to a particular line of code. The
label will take on value corresponding to the address assigned
to that line of code by the assembler. To associate a tag with
a line of code, the tag or label is made the first item of the
line and is followed by a comma. Figure 1 below shows examples
of labelled and unlabelled instructions. Addresses, as used
with the JUN, ISZ or JCN instructions and data, as used with the
FIM instruction, can refer to these labels. Labels attached to
double word instructions always refer to the address of the
first word. ~

Acceptable forms for use as addresses in this assembler are a-
numeric value, a label, or a label plus or minus a numeric

value. However, when the form label plus or minus a numeric value
is used, the numeric value corresponds to the number of bytes
displaced from the label, not the number of instructions. Thus,
one must remember which instructions occupy one byte and which
occupy two bytes when using this displaced form. The form *

plus or minus a numeric value refers to a displacement equal

to the numeric value from the current address.

For more detailed descriptions of the functions of each of the

instructions of the MCS-4 instruction set, the user is referred
to the MCS-4 Micro Computer Set User's Manual.

Pseudo Operators

A number of pseudo operations are available in the MCS-4 assembler
system. For example, the number system used with the MCS-4 assem-
bler is initially decimal. However, the user may change the
number system to be used by inserting one of the three pseudo
operators: .B for binary, .0 (letter 0) for octal, .D for decimal.
For example, the pseudo operator, .B, will signal the assembler

to interpret any number (not otherwise indicated as being in.
another number system) as a binary number.

At any point in the program, the current number system can be
~overridden by following the typed number with the letter B, D,

155

TABLE 2

Condition Codes for JCN Instruction

Condition (Jump If:) Mnemonic* Binary Equivalent
no condition NC 0000
test equals zero TZ, TP 0001
test equals one TN, T1 1001
carry equals one CN, Cl1 0010
carry equals zero Cz, Cg 1010
accunmulator equals zero AZ, Ag 0100
accumulator non zero ’ AZ, NZA 1100

*When more than one mnemonic is shown, any one of the forms
is acceptable.

a.)
L1, CLB
DCL
b.)
JCN TZ *
c.)
TAG, JMS L1l+1

Figure 1., Examples of labelled and unlabelled lines

a.) Ll is a label, but the second line is unlabelled.

b.) The line is unlabelled, but the * implies that the
jump occurs back to this instruction as long as
the CPU test line is at a logic zero.

€.) TAG is a label, and the Jump to subroutine will
enter the routine at L1+l (ie., the DCL instruction
of Figure 1la.)

156

or O in the position immediately following the last digit of the
number. This input will not alter the number system used for
numbers not so labelled.

Numbers designating register pairs or registers of the form
RO-R15 P@@@-Pl1l, P@P-P7 are not subject to this number system
input convention.

If the assembler comes across a number which will not fit
within the number system chosen, it will indicate an error.

To set the starting address for a group of instructions, the
group may be preceded by a define origin pseudo operator. This
pseudo operator takes the form of an asterisk (*) followed by
the numeric value of the desired address. This numeric value
follows the number sytem conventions described above.

Figure 2 shows how number systems, pseudo-operators, and comments
are used with the assembler.

Any statements following a slash (/) are interpreted as comments
They do not alter or affect the other instructions in the system.
A comment line may stand alone or a comment may be appended at
the end of a line.

No end statement is necessary. The end of the file signifies
the end of the program.

.D
*1024 . /DECIMAL 1024
STRT, LDM 1101B /BINARY 1101 = DECIMAL 13 v
FIM Plgg 100 /REGISTERS 8,9 DATA=100 DECIMAL
/THE NEXT PSEUDO OPERATOR CHANGES THE NUMBER SYSTEM
/TO BINARY
.B
LD 1100 /REGISTER 12
XCH 4D /REGISTER 4

Figure 2. Example of Pseudo Opekators and Comments

157

Running the Assembly

Once the source file with the MCS-4 assembly language code has
been prepared, it may be assembled into MCS-4 binary code by
running the assembler. To perform this operation, the user should
make sure he is in PDP-10 monitor mode. He then types RUN (*)
ASF4L2 . The system will then indicate that the assembler program
-is being loaded. Once execution of the assembly begins, the
program will type the following:

SOURCE NAME FILE =
The user should then type the name of the file containing his
symbolic code followed by a carriage return. As all valid names
are of the form: name.DAT, only the portion left of the period
is typed. The assembler will then request whether or not the
user desires a listing of his program as it is assembled by
typing the statement: LIST?(Y,N): If you wish to have a listing
generated, type Y. If the user desires to have a listing gener-
ated, the assembler program will then request which output device,
the disk, teletype or line printer, the output is to be generated
on. The user should then type the three letter code corresponding
to the desired output device (DSK, TTY, LPT) followed by a
carriage return.

If the disk has been chosen as the output device, the program
will then request a name for the output file. The system will
also request which number system is to be used for the address

and data portion of the output assembly. Binary, octal or

decimal may be chosen by typing B, O, or D respectively. Note
that this option has no affect on the number system options within
the assembly code.

Error Messages

If, in the course of an assembly, the error diagnostic routines
discover errors within the user's source program; error messages
will be typed, followed by the erroneous line of code. The
error message will include the line number on which the error
occurred and the address where the error occurred. 1In some cases,
the line number or address may be off by one or two positions.
After typing the error message and the offending line of code,
the program prints a star. After the star appears, the user may
type in a corrected line of code if he wishes. This corrected
line will be used by the assembler when generating the output
listing. ,

Error messages in most cases appear before the listing is
generated. '

The most common types of errors are invalid characters within
the input record, invalid mnemonics or modifiers (such as pair
designators, condition codes, etc.), the use of incorrect or
undefined labels or illegal off-page references, or the use of
numbers which are invalid in the number system chosen.

Once the assembler has completed its assembly and generated
a listing, the assembler will type a message requesting whether
or not a symbol or label table is required. The user should

158

type a Y or an N immediately following the message and then

the carriage return. If a symbol table has been chosen, it
will be output on the user teletype. The numeric value assigned
to each label is also output with the symbol table. The number
system to be used for this numeric output is requested prior to
typing the symbol table.

After the symbol table has been typed, the assembler will type
the message: 1601 OUTPUT? Y,N: This message requests whether

the user wishes to generate tapes of a form compatible with pro-
gramming 1601, 1602, 1701 or 1702 field programmable and field
erasable read-only memories. If the user wishes to generate such
tapes at this time, he types Y. The program will then request
what output device he wishes the tapes to be generated on. The
choices are: the paper tape punch located at the computer center,
the user's teletypewriter, or the disk. If the disk is selected,
the program will request an output file name.

Following the request for an output file name, if any, the pro-
gram will type: PAGE NO., T OR C =. The user may then type the
number of the page (ROM chip) for which he wishes to generate
the programming tape. Page 0 corresponds to addresses @ through
255, page 1 to addresses 256 through 511, etc., so the user

must type a 1 or 2 digit decimal number in the range @-15. This
must be followed by a comma or a space, followed in turn by the
letter T or C, indicating whether the page is to be output in
true (1=P, @=N) or complemented (1=N, @#=P) form. For example, .
tapes for use with the SIM4-01 and SIM4-02 boards should be
prepared in complemented form. After each tape has been gen-
erated, the program will request another page number. 1In the
case where output is to disk, another file name will be requested
prior to the page number. :

If no more tapes are desired, typing any character other than

a valid page number will cause the program to exit. Upon exiting,
the program will print the amount of central processor time and
the amount of terminal time used for the assembly.

Figure 3 shows an example of the TTY output for a very small
sample program. Only the first 36 words of 1601 tape are shown.

159

SOURCE FILE NAME=TST4

LIST?(Y,N):Y

OUTPUT TO?(DSK,TTY,LPT) :TTY

NUMBER SYSTEM? (B,0,D) :B

ASSEMBLY OF TST4 .DAT ON 17-MAY-72 AT 13:17

Figure 3.

160

.D
*16
000000010000 11110000 LABA, CLB
000000010001 00101010 ;.. FIM P5 89 /NOTE COMMENT
01011001 - ~~
000000010011 00101011 SRC P5
000000010100 11101010 LAB2, RDR
000000010101 00011001 JCN T1 LAB2
00010100
000000010111 01010000 JMS TR3
: 00011011
1000000011001 01000000 JUN LABA
00010000
000000011011 11011000 TR3, LDM 8
000000011100 10001011 ADD 11
000000011101 10110101 XCH 5
000000011110 11000111 BBL 7
SYMBOL TABLE (Y,N)?Y
NUMBER SYSTEM? (B,0,D) :D
LAB2, 000020 LABA 000016 TR3 000027
1601 OUTPUT? (Y,N) :Y
OUTPUT TO? (PTP,TTY,DSK) : TTY
PAGE NO.,T OR C=0,T
0 BNNNNNNNNF BNNNNNNNNF BNNNNNNNNF BNNNNNNNNF
4 BNNNNNNNNF BNNNNNNNNF BNNNNNNNNF BNNNNNNNNF
8 BNNNNNNNNF BNNNNNNNNF BNNNNNNNNF BNNNNNNNNF
12 BNNNNNNNNF BNNNNNNNNF BNNNNNNNNF BNNNNNNNNF
16 BPPPPNNNNF BNNPNPNPNF BNPNPPNNPF BNNPNPNPPF
20 BPPPNPNPNF BNNNPPNNPF BNNNPNPNNF BNPNPNNNNF
24 BNNNPPNPPF BNPNNNNNNF BNNNPNNNNF BPPNPPNNNF
28 BPNNNPNPPF BPNPPNPNPF BPPNNNPPPF BNNNNNNNNF
32 BNNNNNNNNF BNNNNNNNNF BNNNNNNNNF BNNNNNNNNF

Operation of SIM (MCS-4 Simulator)

The MCS-4 simulator program SIM allows the user to simulate exe-
cution of programs which have been assembled by the assembler
ASF4. ASF4 generates a file ROMAR.DAT containing a packed image
of the read-only memory contents. ROMAR.DAT is read by SIM as
an input.

Other files in the same format may be read prior to ROMAR.DAT.
Each successive file overlays the data of preceeding files,
except where zeroes (NOP's) occur in the new file. See below.

To run the simulator, after having assembled a program, type
RUN (*) SIM4Q . After typing a header message, the simulator
types: , ~

FOR INSTRUCTION LIST, TYPE Q:
If the user types the letter Q followed by a carriage return,
the program responds by typing a list of recognized commands.
The simulator indicates it is ready for input commands by
typing an asterisk (*) at the left side of the teletype page.

A command to the simulator consists of a letter or a letter
followed by a 1 to 5 digit number. The letter must be the first
character typed. Each letter corresponds to a different command.
Commands allow setting a starting address or a break point,
initializing a trace mode, or interrogating registers. The
following commands are recognized by SIM4:

An Set the program counter of the simulated MCS-4 to n and
then return to command mode.

Bn Set the break point at n and return to command mode.

Cn Call a subroutine starting at ROM address n. Continue exe-
cution until the subroutine exits with a BBL or until the
instruction limit counter overflows. :

D Dump read/write memory.

En Examine RAM word n. (n must be between 0 and 63. Words
0-15 are in bank @, words 16-31 are in bank 2, etc.)
When printed, main character #15 will be printed first,
followed by the remaining main characters of the word in
descending order. A space follwed by status characters
g-31 in ascending order is printed after the main characters.
Output is in hexadecimal with A-F corresponding to 1#-15.

Fn If n=1, read only memory input port data is read from a
file rather than from the teletype. Data in the file must
consist of a single numeric value per record, with the
numeric value lying between @ and 15 (decimal). If n#l,
the input port data will be requested from the teletype-
writer.

H Prints a two-line leader record corresponding to the data
printed during trace mode or printed upon reaching break
points, BBL exits, or overflowing the instruction limit
counter.

In Re-initializes the program counter to 0 and clears read/
write memory. If n#@, the instruction limit counter is

161

Jn

Ln

Mn

On

Tn

Un

Wn

X

set to n. If n=@, the instruction limit counter is left
unchanged. (The initial value for the instruction limit
counter is 10,000.)

Jump to and begin execution at ROM address n. Stop either
when the break point is reached or the instruction limit
counter overflows.

Operate trace mode with output to the line printer rather
than TTY (not available on time-shared versions).

Input to RAM word n. (n must be between @ and 63). The
terminal will respond by requesting 20 characters. Exactly
20 must be typed, in the same sequence as used for the

"E" command above. However, no space is allowed between
main characters and status characters. The inputs allowed
are @-9, A-F and -. @-F correspond to hexadecimal inputs
of # through 15, while a typed - leaves the corresponding
character position unchanged.

If n=1, a shorter form of input and output will be used
for ROM input port requests, etc. If n#l, the long form
will be used.

Examine CPU registers.
Examine stack and stack pointers.

Operate trace mode for the next n instructions, starting

at the current program counter value. Break points will

terminate the sequence, but the instruction limit counter
is disabled.

Execute n instructions, then stop and print the status in-
formation for the last instruction. Break points will
terminate the sequence, but the instruction limit counter
is disabled.

Write into ROM word n. (n must fall between @ and 4095).
The terminal will request a numeric value (in decimal) be-
tween @ and 255 which will be written into the selected
ROM word.

Exit from the program.

(A1l commands are followedby a typed carriage return. In each
case, n represents a 1-5 digit decimal number.)

For example, to run trace mode for 50 instructions starting at
address 100 (decimal), the user may type:

or he might type:

A100Q
T50&

B100Q
JoR
TS50 : .

in each case, waiting for a * before typing the next command

line.

In the second case, the instructions between @ and 100

are executed where, in the first case, they are not.

162

At a break or in trace mode, the contents of CPU registers
are displayed. The following sequence is used for long form
output:

Program counter 4 digit decimal
Instruction and 3 character symbolic OP code
Modifiers 2 characacter modifier
4 character address or data
CY FF 1 digit (0,1)
Accumulator 2 digit decimal (g-15)
Registers 16 hexadecimal characters in
order R@F to R15
RAM Bank No. 1 digit decimal
RAM Register No. 2 digit decimal
RAM Main Char. No. 2 digit decimal
Cycle counter 5 digit decimal

Short form output omits the modifier and RAM data.

When an RDR instruction (read ROM port) is executed, the simu-
lator types:

INPUT REQUESTED FROM ROM PORT #N (IN DEC)

* .

' The usér types a one or two digit decimal value corresponding
to the 4 lines of the input port. When short form messages
are used, the request message is:

ROMPT INPUT #N?
*

163

Note on use of input files

The simulator program will request an input file name with the
message:
INPUT FILE NAME=,

To input the standard data file ROMAR.DAT, merely type a carriage
return.

However, it is possible to break a program into segments and
load several of the segments into the simulator one at a time.
As each segment is assembled, the assembler will produce

the assembled code in the file ROMAR.DAT. To save the segment,
so that it will not be destroyed by the next assembly, the user
must rename the ROMAR.DAT file with some other name with the
extension .DAT.

The last segment assembled is left in the ROMAR.DAT file.

When the simulator requests the input file name, each segment
can be loaded by typing the file name. For example, a file
SEG1.DAT is loaded by typing SEGl when the file name is
requested. After each such named data file is loaded, the pro-
gram will request another file. The last file, ROMAR.DAT, is
loaded by typing just the carriage return.

Each file so loaded overlays all previously loaded data, except
where the newly loaded file contains zeroes (NOP's). If any
previously non zero locations are changed by the loading of

the file, the addresses of the first and last changed locations
are typed.

When assembling a program in segments, care must be used to
provide sufficient label information for each segment. Because
NOP's do not cancel previously loaded data, dummy labels may be
used as in the following example:

Suppose a program must call a subroutine LBl at address
1100 decimal, which has been assembled in a previous
segment. The proper linkage can be established in the
~current segment by including the pair of statements:

*1100D
LBl1, NOP

or the pair

*1100D
LBl, ¢

164

Intel tapes A0540, A0541, A0543 — Listings are provided for reference only and

APPENDIX 1.

MCS-4 PROGRAMMING EXAMPLE —

8000 NA209 START, DM 1 7/ SUPPRESS TTY

9801 20032 FIM PP @
20000 .

28043 @09 33 SRC PO

20094 PP225 WMP / SEND TO RAM PORT

2995 09082 STAL1, JMS CRLF /POSITION POINTER
ne226

2807 20080 JMS ST/ RECIELVE INPUT DATA
28240

8809 00038 FIM P3 88 /IR(6Y=5, IR(7)=2, (P)
[LLEL]

2911 0@081 JMS COMPR
P 0B 33

9213 29028 JCN AN LISTN
70032

2015 Bon32 FIM PO 32 /IR(B)22, IR(1)=0
20032

8017 90289 LOM 1

2918 Aep33 SRC PO

P919 80230 WR2

8020 80064 JUN STA2
7pB45

n822 9pp38 NEXT, FIM P3 83 /IR(6)=5, IR(7)=3, (S)
20n83

oA24 2pB8Y JMS COMPR
80033

BA26 29020 JCN AZ STA2
29045

8028 .00080 JUMS ERROR
20135

2030 20364 JUN STl
00005

0832 ?o038 LISTN, FIM P3 76 /IR(6)=4, IR(7)=12, (L)
29076

9034 20081 JMS COMPR
20933

P036 20028 JCN AN NEXT
28022

2038 2g22¢ LDM 12

2039 074191 XCH 15 / [R(15)=15

P840 20032 “FIM PE 32 /IR(@)=2, IR(1)=0
20032

042 06209 LDM 1

8043 A0A33 SRC P@t

8044 90229 WR1

8045 00082 STA2, JUMS CRLF
20226

o847 80222 LOM 14 / ENTER ADDRESS

8048 80186 - XCH 1@ / IR(10)314

0049 20221 ADRS2, LDM 13

0057 00185 XCH 9/ [R(9)=13

2051 09080 ADRS1, JUMS ST
20240)

9253 20080 JMS STORE
00149

8855 79121 ISZ 9 ADRS1
20851

8057 0eos0 JMS CRLF
29226

o859 80122 1SZ 18 ADRS2
29249

8061 00080 JMS LF
20230

0063 800880 JMS LF
20239

2065 0an81 JMS ADDTN
20046 p

PP67 20232 FIM PO 2
20000

2069 90980 JMS DBIN /FINAL ADDRESS
29105

2271 80163 LD 3

2072 #2238 WR2 / Ct@),R(8),CH(2),LORD 4-BITS

#0873 20162 LD

pe74 20231 WR3 / C(B),R(B),CH(3),HIORD 4=-BITS

2975 20032 FIM PO 3 /I1R(B)=0, [R(1)a3
29083

677 20080 JMS DBIN /INITIAL ADDRESS
29105

0079 20163 Lo 3

0088 22228 WRQ / C(@),R(¥),CH(B), LORD 4-BITS

o281 09162 Lo 2

0082 09229 WR1 / C(B),R(2),CH(1),HIORD 4-BITS

2083 208336 PRGM1, FIM P2 € / IR(4-5)=@
29000

2085 20032 FIM PO @ / ADDRESS 1781 READ TO WRITE
20000

2987 0@a33 SRC PO

#@8s8 2n236 RDO

0989 20226 WRR

2090 70108 INC 4

0091 28237 RO1

0092 PEP37 SRC P2

8093 80226 WRR

8294 2@2332 FIM PD 32 /1R(3) =2, IR(1)=0
20832

8896 7A@33 SRC PP

8897 00237 RD1

0898 00246 RAR

0999 . 60018 JCN CN NEXT1
201923

8101 20065 JUN REPT / CALL FOR INPUT DATA
deo73

0103 #8866 NEXT1, JUN LISTR /CALL LISTING ROUTINE
22187 : :

/ BCD TO BINARY CONVERSION ROUTINE

0105 00034 DBIN, FIMPL D /IR(2)z9, IR(3)=0
7 pp 0R

0127 20036 FIM P2 10 /1R(4)z8, IR(5)=18

165

2189
2110
#111
#112
8113
2114
2115
2116
2117

0119
e12¢
8121
@122
8123
8124
8125
2126
e127
2128

2130
2132
2134
4

/
8135
8137

2139
4
/
/
9140

p142
7144

0146
2147
0148
0149
2159
9151
152
8153
9154
9155
2156
8157
9158

0160
2161
8162
2163

|N NN NN NN

164
2166
2168

o170
/

/
2171
2173
8175
Q2177
/

/
2178

0180
2181
2182
2183
2184
p185
2186
0187
2188
2189
@190
2191

2193
02195

@197
0198

CONTROL PROGRAM FOR PROM PROGRAMMING

may be used as examples when developing your own programs.

29010
Ap222 LOM
?p182 XCH
20633 SRC
20233 RDM
20179 XCH
ara97 80BN, INC
20033 SRC
223233 881, ROM
20020 JCN
22138
7@248 DAC
29224 WRM
2@241 cLe
@163 Lo 3
20133 ADD
fa179 XCH
0162 L 2
73132 ADD
Gg178 XCH
20064 JUN
09116
29036 832, FIM
es10e
72118 182
24114
79192 BBL
29N 34 ERROR, FIM
29191
#op80 JMS
A@178
79192 88L
29632 STORE, FIM
20911
20036 FIM
20953
20038 FIM
28852
20039 REP1, SRC
29233 RDM
2po37 SRC
ne224 KRM
QA165 Lo 5
20248 DAC
2a181 XCH
2p241 cLe
?n167 LD 7
73248 BAC
89183 XCH
pp241 cLC
20113 12
20146
20163 e 3
Ane37 SRC
29224 WRM
ng192 BEL
TIMING SUBROUTINES
opp32 SBR1., FIM
- BpRA0
20112 L1, 182
70166
39113 1SZ
70166
00192 88L
39032 SBR2, FIM
2508028
29112 L2, 152
o173
08113 1s2
29173
290192 BBL
PRINT ROUTINE
28032 PRINT, FIM
20816
88215 LDM
00933 SRC
8@224 WRM
70097 INC
39179 XCH
79833 SRC
20224 WRM
e0s97 INC
73178 XCH
020833 SRC
208224 WRM
20040 FiM
22916
2pa34 FIM
80208)
20836 ST7, FimM
0an12
20041 SRC
2n233 RDM
00225 ST8, WMP

2199

14
6
PO
3
1
P@

AZ 8B2

5
3

4

2

BB1

P2 120

6 BDBN

P1 191

PRINT

P 11
P2 53
P3 52

P2

5

7

1 REP1

P2

4]

PR @
[
11

P2 8
g L2
112

PB 16

Pa

P4 16
P1 2p¢8
P2 12

P4

/1R(4)=6, IR(5)24

/1R(2)=13, IR(3)=15,

/IR(D}=0, IR(1)=11

/1R(4)=3, [R(5)=5

/1E(6) =3, IR(7)=4

/ IR(@=1)=0
/547 MEMORY CYCLES

/ IR(2)=9,1R(1)=8
/ 275

/IR(B)=1, IR(1)=20

/IR(8Y=1, IR(9)=0
/ IR(2)=13,1R(3) =0
/ IR(4)=8,1R(5)=212

(&3]

8200 03180 XCH 4 /7 SAVE C(AC) IN INDEX REG 4 2289 29241 COMPR, CLC /DATA COMPARE ROUTINE
9201 #oB80 JMS SBR1 / DELAY ROUTINE #1 0298 002183 XCH 7
88164 6291 09147 suB 3
0283 20080 JMS SBR2 / DELAY ROUTINE #2 9292 2on28 JCN AN NEG /TEST FOR AC IS NOT #
Ba171 24045
0205 23117 1S 5 §79 / NUMBER OF ROTATIONS 8294 Ap241 cLC
20218 ' #8295 @@182 XCH 6
2287 @0105 INC 9/ NUMBER OF DIGITS 8296 0p146 5uB 2
@208 0pa0R NOP 8297 90241 cLc
0209 Aeace NOP 2298 29228 JCN AN NEG
0212 22009 NOP 20045
0211 72700 NOP 2302 78192 BBL @
p212 20000 NOP 8321 82193 NEG, BBL 1
p213 20114 s T - /
ggiés 152 2 s17 / NUMBER OF 4-BIT WORDS p302 GOR32 ADDTN, FIM PO B /IR(2)=9, [R(1)=P
8215 29209 LOM 1 egaoe
2216 29225 WMP 2304 00036 FIM P2 48 /1R(4)=3, 1R(5)=8
8217 »@192 BRL @ 00948
8218 2a220 ST9, LOM 12 7/ C(AC)=12 9306 PA218 LOM 18
@219 22183 XCH 7 / Ct7y=12 6327 #2182 XCH 6
8220 20180 XCH 4/ RESTORE SAVED C(AC) 0308 B@241 cLC
0221 20119 sT12, 1s2 7 ST12 83069 0pn37 ADYL, SRC P2
89221 2310 29233 ROM
0223 p@246 RAR 8311 #2233 SRC P@
0224 29264 JUN ST8 2312 #@235 ADM
nA199 8313 @@251 DAA
/ - 8314 23224 WRM
/ 9315 @on97 INC 1
/ CR/LF ROUTINE 2316 #p1901 INC 5
/ 0317 09118 1SZ 6 AD1
p226 B@a34 CRLF, FIM P1 141 /IR(2)=8, IR(3)=13, (CR) 80853
93141 8319 22192 BBL @
9228 Ao@80 JUMS PRINT /
28178 @320 09208 CLRAM, LDM'@
92308 20234 LF, FIM P1 138 /1R(2)=8, [R(3)=108, (LF) 8321 #@177 XCH 1
20138 2322 0@¢208 CLEAR, LDM @
9232 0p@B0 JMS PRINT 9323 20037 SRC P2
23178 2324 0p@224 WRM
8234 #@192 8BL @ 8325 B@101 INC 5
0326 20113 1SZ 1 CLEAR
/ 80p866
/ 9328 29192 BBL @
/ - /
/ ROUTINES FOR COMPARE FROGRAM ;
/
/ /
/ TELETYPE INPUT HANOLER ;
/
8235 AP2929 TTY, LOM 1 /
P236 2pa32 FIM PR 64 8329 0op38 REPT, FIM P3 66 /1R(6)=z4, IR(7)=2, (B)
nog64 20066
0238 20033 SRC PO . 9331 6@p8P JMS TTY / CALL INPUT ROUTINE
9239 @p225 WHMP 609235
g24n Bge17 ST, JCN TZ ST /WALIT FOR START BIT 9333 20081 JMS COMPR /CALL FOR COMPARE ROUTINE
27248 . 22833 ')
B242 00032 FIM P8 64 / SET RAM 1 ADDRESS B335 opp28 JCN AN REPT /TEST FOR NONZERC AC
20064 22973
. @244 00933 SRC P2 / SEND RAM ADDRESS p337 00216 REPTB, LDM 8 /ACCEPT 8 DATA BITS
8245 202028 LDM © 0338 00185 XCH 9
B2 46 39225 WM P / STOP READER 2339 0@@80 0ATAL, JMS TTY 7/ LOOK FOR A DATA WORD
p247 PPP8R JMS SBR?2 29235
29171 9341 00038 FIM P3 80 /1IR(6)=5, IR(7)=28, (P)
2249 22932 FIM PO B : aep8e
. 70220 9343 20081 JMS COMPR
#9251 #0833 SRC PB 29933
0252 29234 ROR 9345 30020 JCN AZ CONT /TEST FOR A MATCH
7253 0p244 CMA 2111
p254 Bp225 WM P . 2347 @0P038 FIM P3 78 /1R(6) =4, [R(7)=z14, (N)
2255 AQ@8@ JMS SBR1 /TIME OUT START BIT Pep78
00164 2349 @pa8L JMS COMPR
0257 2034 FIM P1 @ / RESET DATA LOCATION 2@e33
32000 8351 29020 JCN AZ CONT /1F AC=@ PRINT
2259 29216 LDM 8 20111
9262 #0160 XCH 4 P353 20838 FIM P3 66 /IR(6) =4, [R(7)=2, (B)
@261 70080 ST1, JMS SBR2 /5,6 MSEC, DELAY 80066
2a171 7355 82281 JMS COMPR
8263 @p241 cLe / 1T TREATS REG, PAIR 1 (2-3) #2233 :
2264 90033 SRC P@ /7 AS IF IT WERE 1 8 BIT SHIFT 8357 @e@20 JCN AZ REPTB
2265 2M234 RDR / REGISTER, TO INPUT DATA ego81
P66 20244 CMA 8359 20038 FIM P3 127 /IR(6)37, IR(7)=5, (R®)
@267 Ap225 WMP 89127
0268 P0246 RAR / COMPLEMENT DATA TO TRUE STATE 8361 220981 JMS COMPR
0269 00162 LD 2 / AND LINK INTO REG 2 HIORD WORD 8p¢33
0270 20246 RAR p363 22028 JCN AN FORMT
8271 20178 XCH 2 22158
0272 00163 L0 3 / THEN LINK REG 2 OVERFLOW TO 9365 23065 JUN RBNUT
08273 20246 RAR @144
B274 20179 XCH 3/ LORD WORD TO COMPLETE SHIFT 8367 20032 CONT, FIM PP 16 / DATA STORAGE
2275 deB8p JMS SBR1 8pa16
20164 P369 20833 - SRC P#
9277 20116° 1SZ 4 ST1 / 8 DATA BITS ACCEPTED? 8379 #0163 Lo 3
20995 0371 83245 RAL
#8279 @gese JMS SBR1 8372 88237 RD1 / CHIP @, REG. 1, HAR 1
P0A164 B373 @245 RAL
9281 A@2489 LDM 1 8374 99229 WR1 / LEAST SIGNIFICANT BIT, DATA
8282 89225 WMP / RE-SUPPRESS TELETYPE 0375 99236 RD® / CHIP @,REG. 1, CHAR 2
8283 07162 LD 2 / INPUT COMPLETE NOW 2376 80245 RAL
2284 09245 RAL 0377 20228 WR® / MOST SIGNIFICANT BIT,DATA
0285 B@241 cLC / ELIMINATE PARITY BIT p378 @g@121 ISZ 9 DATAL
2286 09246 RAR 09883
2287 20178 XCH 2 9380 800808 FINAL, JMS TTY / GET NEXT CHAR
9288 ©0192 BBL ® / EXIT WITH DATA INT PAIR 1 (2-3) 29235 _
’ - 2382 @ge3e FIM P3 78 /IR(6)=4, [R(7)26, (F)
/ 20079
/ 8384 0pp81 JMS COMPR
/ : 89233
/ COMPARE ROUTINE, ACCEPTS INPUT IN PAIR 3 2386 20020 JCN AZ CONA /4C=8, 1F NOT RESTART INPUT
/ AND PAIR 1 WILL OUTPUT A (1) IF COMPARE 29189
/ FAILS, p388 dpa3s FIM P3 66 /1R(6)=4, IR(7)=2, (B)
/ 200 66

8390
8392
0394
8396
8398
0400

8402
2483
p404
2405
0406
g407
2408
84029
04190
9411
2412

2414
2416
2418
8420

8422
2423
P424
0425

0427
2428
0429

0431
8432
2433
2434
2435
2436

8438
2439
9440
284 41
04 42

§4 44
/
0445

8447
2448
0449
450
0451
2452
2453
0454

2456
9457
2458
6459

9461

0463
8464
2465
0466
2467
2468
469
2470
2471
@472
8473
2474

8476
0478
04 80
2482

p484
9485
9486
0487

@489

9491
9492
2493
2494
9495
2496
8497

82081
28633
800820
22981
28038
gg127
(L LI}
22933
29928
80158
22032
ga816
20933
29236
00246
20228
pp237
008246
99229
29169
02248
20185
22065
00883
00089
29226
0p982
20174
Poe81
09171
6a042
208 32
28209
22843
03228
20066
20125

20221
09188
2pa42
22053
20043
20233
@a179
Bo219
29178
2?0082
29178
20171
2p248
29187
29241
80124
20175
290192

ane 32
08016
28033
20237
2p244
an229
008236
28244
29228
29232
28032
80033
Bp238
2p246
2p218
2p247
o2 32
2oa20
200933
2236
20183
29237
20182
20096
20033
20238
29179
2@239
#9178
pe@81
20033
29028
28249
20p34
80179
2on 80
20178
29832
22832
00209
20033
23230
20832
22000
22836
AaE16
22033
22238
20242
20a37
@232
20208
29178

RBOUT,

FORMT,

PRINL,

PRINA,

FORM1,

CONA,

JMS
JCN
FIM
JMS
JCN
FIM
SRC
RDO
RAR
WRD
RD1

RAR
WR1

LD 9

DAC
XCH
JUN
JMS
JMS
JMS

FIM

COMPR

AZ REPTB
P3 127 /1R(6)=7, IR(7)=15, (RO)
COMPR

AN FORMT /CHECK, FOR FORMAT ERROR
PB 16

4

DATAL
CRLF /POSITION CARRIAGE
FMER

PRINA
P5 32

/1R(18)=2, [R(11)=9

LDM 1

SRC
WRO
JUN

LDM
XCH
FIM

SRC
RDM
XCH
LOM

PS5
/ CHIP B,REG. 2,CHAR 8@
sT8

13 /PRINT FMERROR ADDRESS
12 /IR(12)213
P5 53 /IR(18)=3, IR(11)=5

P5 / PRINT QUT ADDRESS

3
11

XCH 2

JMS

PRINT

LD 11

DAC
XCH
cLC
152

BBL
FIM

SRC
RD1
CMA
WR1
RDO
CMA
WR2
FIM

SRC
RD2
RAR
JCN

FImM

SRC
RD2
XCH
RD1
XCH
INC
SRC
RD2
XCH
RD3
XCH
JMS

JCN
FIM
JMS
FIM

LOM
SRC
WR2
FIM

FIM

SRC
RO2
IAC
SRC
WR2
LOM
XCH

11

12 FORM1
[}

P2 16

PR

P2 32
P@

CN CONT2

P2 9 /IR(@YaB, IR(1)=0,
24"]
7
6
[}
Po
3

2
COMPR

AN SRCH
P1 170 /1R(2)=12,1IR(3)=10, (»)
PRINT
PE 32

/1R(B)=2, [R(1)=0

1 / SET INIT ADR FLAG
P2
PO 2 / IR(B-1)=p

P2 16 /1R(4)=1, IR(5)=8

PR

P2

/1R(2)2, IR(1)=0, INIT ADR

ADR COMP

167

9498
2499
a5a9
2501
p502
2583

8505

2507
@508
25089
2510
2511
2512
8513
@514
8515
2516

2518

2528
8521
8522
2523

8525
@527
8529

@531
8532
8533
8534
8535
2536
8537
2538
8539
@540
85 41
2542

25 44
2545
8546

2547
8548
8549

P551
p553
2555
8557
p559
08561
2563

2565
2566
8567

25 69
8571

@573
#9574
8575
@576
8577
2578
8579
2588
8581
2582
2583
0584
@5 85
#586
0587
2588
2589
8599
2591
8592
2593
8594
2595
@596

598
2680
26082

s60@4
2685

2e033
22239
00130
29837
2p231
02566
22006
2p832
209816
28033
20238
po242
00230
a@2a8
h@178
22239
00130
22231
28065
ep073
20032
22032
20033
2p236
Bp246
eeaz26
29315
09766
nep9e
2an32
apB16
op836
20032
23233
809237
Aon37
8@226
20333
89236
%p109
apn37
20226
en222
20186
39238
20264
290539
7enes
NgAG0D

np21e0
a2 25
Aea36
eapea
2e040
oas11
20116
dpmay
97117
LLLERN
20120
23341
don8a
2p164
Qon8p
2p171
0g121
20041
%e208
Ap225
2nn 36
2a128
700 89
23164
apv8n
2164
20996
20096
79233
2234
22037
n@225
22183
20212
#3132
7@180
202996
Anp33
002234
24037
02225
22182
28209
22176
29233
#n236
20178
on237
aa179
202081
20933
@320
aep9e
00066
a@162
20032
202000
neA33
2p236

CONT2,
SRCH,

CONT1.,

NOFE,

PRGRM,

DELY1,

READ,

ADCHK,

SRC
RD3
ADD
SRC
WR3
JUN

FIM

SRC
RD2
1AC
WR2
LDM
XCH
RD3
ADD
WR3
JUN

FIM

SRC
RDP
RAR
JCN

LOM
WP
FIM

S FIM

1s2
1Sz
1s2
JMS
JMS
1s2

LOM
WM P
FIM

JMS
JMS

INC
INC
SRC
RDR
SRC
WMP
XCH
LOM
A0D
XCH
INC
SRC
ROR
SRC
WMP
XCH
LDM
XCH
SRC
RD2
XCH
RO1
XCH
JMS

JCN
JUN
FIM

SRC
RDO

PO

2
P2

CONT1

Pe
Po

e
2

2

16 /IR(B)=1, IR(1)=0

/ INC INIT ADDRESS BY ONE (1)

REPT

P@
Po

cZ

22 /1R(®)=2, [R(1)=9

/ CHECK FORMAT ERROR EXIST

NOFE

ADCHK

PR
P2
PO
P2
Po

4
P2

12
12
P3

P3

2
P2

P4

i6 /IR(@)=1, IR(1)=0

32 /1IR(4)=22, IR(5)=0

/ WRITE DATA ToO 1701

/ LS 4-BITS, DATA

/ MS 4-BI1TS, DATA

64 /IR(6)=4, IR(7)=0

/PULSING FOR 517 MSEC,
(4 /IR(4)=0, [R(5)=8

11 /1R(8)=@, IR(9)=1l

4 DELY1

5 DELY1

8 DELY1

SBR1

SBR2

9 DELY1

2

P2

SBR1
SBR1

2
3

128 /IRt4)=8, [R(5)=0

/ READ DELAY (5,6 MS)
/ READ DELAY

/ LS 4-B17S,17@81 OUTPUT DATA

/ MS 45,1781 OUTPUT DATA

/ MS 4-BITS, INPUT DATA

/ LS 4-BITS, INPUT DATA

COMPR

AZ

ADCHK

RPRGM

PB @

P2

0606 80179 © XCH 3 8686 PAB34 FMER, FIM P1 198 /IR(2)=12, IR(3)=6, (F)
0607 29237 RD1 79198
9698 89178 XCH 2 08688 ' 2a@8R JMS PRINT
p6u9 09238 RD2 89178
0610 33183 XCH 7 0699 2334 FIM P1 197 /IR(2)=12, IR(3)%5, (E)
p611 83239 RD3 20197
8612 89182 XCH 6 8692 80082 JMS PRINT
0613 20081 JMS COMPR) an178
p0033 2694 D234 FIM P1 168 /IR(2)=18, 1R(3)=B, (SP)
9615 POP28 JCN AN INADR 29160
29124 0696 20280 JMS PRINT
9617 22A88 sT8, JMS CRLF 08178
29226 2698 Am192 BBL @
0619 2e@34 FIM P1 70 /IR(2) =4, [R(3)=5, (F) /
89878 /
0621 29080 JMS PRINT 2699 #2881 LISTR, JMS PRINA
20178 @171
0623 oep3z - FIM PB 32 2701 Qan34 FIM P 168 /IR(2)=1¢, IR(3)=0. (SP)
200832 20160
8625 90A33 SRC PO 9783 Pansp JMS PRINT
0626 0208 LOM @ 2A178
8627 0g228 WR@ B7085 2nn34 FIM P1 194 /1R(2)=12, IR(3)=2, (B)
p628 20229 WR1 00194
9629 Bp230 WR2 2707 A@paR JMS PRINT
0638 20036 FIM P2 8 2p178
0pe00 27 0% Ap222 LDM 14
8632 0pE81 JMS CLRAM 2719 NB186 XCH 18 /SET BIT COUNTER
00864 0711 Ape 44 FIM P& 48 /1R(12)23, IR(13)=8
0634 PAB64 JUN STA1 2p048
[.LLIL #8713 89222 SECON, LDM 12
8636 20036 INADR, FIM P2 2 /ADDRESS INCREMENT 8714 901862 XCH 6
(L1 8715 20745 SRC P6
2638 PAA81 JMS CLRAM 8716 22234 ROR
ARG 64 . . 8717 20245 ROTAT, RAL
0647 0232 E FIM P8 3 /1R(D)=p, IR(1)=3 9718 3A190 XCH 14
#oaA3 0719 22426 JCN CZ PRNTN
0642 PEA33 SRC FO) 28215
0643 #p2089 LDM 1 9721 0nB34 FIM P1 228 /1R(2)=13, [R(3)=8, (P)
644 Fp224 WRM 09208
9645 2onB8L JMS ADOTN B723 do@8n JMS PRINT
REB46 0p178
p647 Bp032 FIM PO D 8725 00066 JUN NEXT2
290 0e oa219
B649 2pa 36 FIM P2 48 /1R(4) =3, [R(5)=0 8727 B@n34 PRNTN, FIM P1 236 /IR(2)=12, IR(3) =14, (N)
00048 - B ap206 .
9651 Q@218 LOM 12 n729 Aoean M5 PRINT
P652 8p182 XCH 6 80178 \
9653 82033 STOR1, SRC P# 9731 29190 NEXT2, XCH 14
7654 @p233 ROM 732 00118 1SZ 6 ROTAT
655 0a037 SRC P2 2¢205
8656 #0224 WRM 8734 6p172 LD 12
657 @0p97 INC 1 9735 00248 Dac
8658 Pp1EL INC 5 @736 00188 XCH 12
08659 20118 1SZ 6 STOR1 8737 8@122 ISZ 1@ SECON
| 99141 20221
2661 #R032 FIM PR @ B739 Goo34 FIM P1 198 /IR(2Y=12, 1R(3)=6, (F)
UL 29198 .
663 22033 SRC PO 9741 0no8Y JMS PRINT
8664 BE236 ROO n@178
0665 20242 1AC 8743 Pon34 FiM P1 187 /IR(2) =11, IR(3) =11, (SC)
8666 00228 WRO 2187
09667 00208 . LOM P 8745 20083 JMS PRINT
P668 #2178 XCH 2 #0178
8669 90237 RO1 747 Pp127 IS2 15 AINC
0678 20130 ADD 2 008245
8671 00229 WR1 B749 @p228 LOM 12
0672 20064 JUN PRCML - 9750 02191 XCH 15
20083 2751 298l JMS CRLF
P674 89122 RPRGM, 1SZ 1@ PRGMA 20226
09168 8753 éoasp JMS LF
B676 Roose JMS ERROR 08239
23135 8755 20066 JUN ‘ADCHK
B678 2pas5 JUN PRINL [LLLT)
8162 9757 00034 AINC, FIM P1 168 / SPACE
0689 ARo34 PRGMA, FIM P1 164 /1R(2) =18, IR(3)z4, (DS) #1168
20164 . 2759 D@n8A JMS PRINT
02682 23080 JMS PRINT 00178
20178 @761 00234 FIM P1 160 - / SPACE
2684 20066 JUN PRGRM 029160
2230 2763 Aonba JMS PRINT
/ . 00178 ’
/ B765 20066 JUN ADCHK
(LI LT

PROM and ROM Duplication and Verification Program (A0544)
Refer to the MCB4-20 description (Appendix E) for a description of this program’s use.

0000 20000 NOP 0820 PB173 Lo 13 / LOAD ROM ADR L =~ AC

0091 oogoE NOP 8021 2226 WRR / WRITE ROM ADR L (OP @)

P@d2 80017 STARY, JCN TZ START / WAIT FOR TEST 2022 BB096 INC @ / SET SRC - ROM 1 (ROM ADR H)
egep2 2323 60633 SRC PO / SEND ROM 1 (OP 1)

8004 00246 FIM P7 192 /SET PASS CTR = 4 0024 80172 - Lo 12 / LOAD ROM ADR H =~ AC
90192 2025 29226 WRR / WRITE ROM ADR H (OP 1)

ép06 AeP32 FIM PO D / SET SRC - RAM @ 0026 Pop32 FIM PO 64 / SET SRC - RAM 1 (ROM CS)
dopen 20064

2008 804033 SRC P2 / SEND RAM @ /

2089 @¢0210 LDM 2 / LOAD STARTLAMP BIT o028 20033 SRC PO / SEND RAM 1

0018 @@225 WMP / START LAMP ON (B81) 0029 89216 LDM 8 / LOAD ROM CSBIT

2011 2d0a96 INC / SET SRC - ROM 1 /

8012 20033 SRC P9 / SEND ROM (IP1) P32 @@225 WMP / ENABLE ROM CS (213)

2913 08234 RDR / READ MODE SELECT (IP1) 031 2or8n JMS DLYTO /ROM READ DELAY (18 MS)

P14 20191 XCH 15 /STORE MODE SELECT (R15) 02199

2915 20344 FIM P6 @ /CLEAR ROM ADR REG Pe33 29832 FIM P8 32 / SET SRC -~ ROM 2 (ROM DATA L)
gpoee 2p032

PB17 20832 ROMAD, FIM PR @ / SET SRC -~ ROM @ (ROM ADR L) 2035 P0A33 SRC PP / SEND ROM 2 (IP 2)
2oaee 0036 BA234 ROR / READ ROM DATA { (1P 2)

0219 2oe33 SRC P@ / SEND ROM @ (OP @) 2837 00244 CMA / COMPLEMENT DATA’

168

o838 20187 XCH 11 / STORE ROM DATA L (R11) 0148 20178 LD 1@ / LOAD ROM DATA H.- AC
2039 P28 96 INC @ / SET SRC - ROM 3 (ROM DATA H) 8149 20152 suB 8 / SUB PROM DATA OUT L
8040 20833 SRC P2 / SEND ROM 3 (1P 3) 9150 09241 cLe / CLEAR CY
0941 @2234 ROR / READ ROM DATA H (IP 3) 9151 D@28 JCN AN NOCMP / JUMP [F DATA H NO COMP
PB42 D244 CMA / COMPLEMENT DATA % Lo 28155
9843 80186 XCH 18 / STORE ROM DATA H (R L@) 2153 08264 UN INADR / JUMP - R P
8844 20332 FIM PB 64 / SET SRC - RAM 1 (ROM CS) 20168 JUN INAD W INADR IF DATA COM
P90 64 8155 #2126 NOCMP, ISZ 14 MODE / INC PASS CTR, JUMP~MODE IF NOT
046 BBB3II SRC PO / SEND RAM 1 4TH
PB47 20240 cLB / CLEAR ROM CS BIT 70049
09048 2d225 WMP / DISABLE ROM CS (@13) #157 29#34 ERROR, FIM P1 2 / SET SRC - RAM 2 ROR L AMP)
PA49 @@248 MODE, CLB / CLEAR AC, CY 20800 - } .
285¢ 22175 LD 15 /LOAD MODE SELECT - AC 2159 20235 SRC P1 / SEND RAM g »7
PB51 B@246 RAR / CHECK 1702A MODE P168 D0214 LOM & / LOAD ERROR LAMP ON BIT
9852 @018 JCN C1 OUP / JUMP IF CY=1 = DUP P161 20225 WMP / ERROR LAMP ON (£282).
20078 0162 209817 WAIT, JCN T# WAIT / CONTINUE IF TEST PRESSED
P854 00246 RAR / CHECK 1702 MODE 20162
6055 22018 JCN Cc1 OuP / JUMP IF CYs1 - DyP 0164 20210 LOM 2 / LOAD ERROR LAMP OFF BIT
2ea78 #1585 Ap225 WMP / ERROR LAMP OFF (222)
0857 28246 RAR /CHECK COMPARE MODE B166 70229 LnM 12 / RESET PASS CTR = 4
P@58 92p26 JCN CB STOP / JUMP IF CY = @ - STOP 8167 20199 XCH 14 / LOAD PASS CTR
8071 /
0069 29832 FIM PR 32 / SET SRC - ROM .2 (ROM DATA L) /
#0232 /
2062 20033 SRC PO / SEND ROM 2 (1P 2) ’
0063 29171 Lo 11 0168 @173 INADR, LD 13 / LOAD ROM ADR L - AC:
0064 08226 WRR / WRITE ROM DATA L 8169 009241 CLC / CLEAR CARRY
2065 22896 INC @ / SET SRC - ROM 3 (ROM DATA H) 172 22242 1AC / INC ROM ADR L
2066 20933 SRC PO / SEND ROM 3 (1P 3) B171 09189 XCH 13 / STORE NEW ROM ADR L
2967 #2170 LD 1@ 172 00018 JCN C1 TRAH / JUMP - INC ROM ADR H IF OVFL
0868 3226 WRR / WRITE ROM DATA L 282176
2069 BAR64 JUN COMP @174 00064 JUN ROMAD / JUMP « RCOM ADR DATA
20122 . nee17
2071 0@@32 STOP, FIM PR @ / SET SRC - RAM @ 8176 80172 IRAH, LD 12 / LOAD ROM ADR H - AC
2po 00 B177 B@242 1AC / INC ROM ADR H
po73 BpD 33 SRC PO /7 SEND RAM 2 p178 20188 XCH 12 / STORE NEW ROM ADR {
P074 09240 cLB / CLEAR AC, CY P179 2@218 JCN C1 FIN
875 60225 WMP / START LAM P OFF '(801) 29183
8076 20064 ~ JUN START / JUMP TO START 0181 20064 JUN ROMAD
2892 2en1?
0078 98932 DUP, FIM PB 32 / SET SRC - ROM 2 (PROM DATA IN L) |@183 20@34 FIN, FIM P1 2
90032 . 307200
P80 PPA33 SRC PP / SEND ROM 2 (OP 2) 2185 02835 SRC P1
981 08171 LD 11 ./ LOAD ROM DATA L - AC 9186 80216 LDM 8 / LOAD FINISH LAMP BIT
0082 008226 WRR / WRITE PROM DATA IN L (OP 2) 0187 008225 WMP / FINISH LAMP CN
2283 20896 INC P /SET SRC - ROM 3 (PROM DATA IN H) P188 24064 JUN START
o084 00P33 SRC P@ / SEND ROM 3 (OP 3) 39002
9885 20179 L0 10 / LOAD ROM DATA H = AC /
PB86 99226 WRR / WRITE PROM DATA IN H (OP 3) /
g087 Bpe8e JMS DLYTO / DATA SETTLE DELAY (18 MS) /SUBROUT INES
20190 /
0089 23240 cLs / CLEAR AC, CY /
pe9P 99175 LD 15 / LOAD MODE SELECT - AC 2197 2PP38 OLYTO, FIM PI @ / DELAY TIME OUT = 9,08MS
2091 09246 RAR / CHECK 1702A MODE 20000
0292 20018 JCN C1 PGMA 7/ JUMP IF CY=1 = PGMA 0192 20828 TLT, NOP
20099 2193 20119 ISz 7 TLT
D94 2p246 RAR / CHECK 1702 MODE 80192
0895 00818 JCN C1 PGM@2 7/ JUMP IF CY=1 - PROGRAM 1782 2195 Apped NOP
209110 , 2196 @onde NOP
PB97 2864 JUN STOP / JUMP -~ STOP IFNOT PGM MODE 0197 002118 1S2 6 TLT
g7 208192
2899 PP@32 PGMA, FIM PB 64 / SET SRC - RAM 1 2199 P@192 88L ©
00064 . 02088 APR34 OLYA, FIM P17 / DELAY A = 517MS
p1p1 20233 SRC PP / SEND RAM 1 00000
0182 00210 LOM 2 / LOAD R/WA BIT 2202 29036 FIM P2 11
8193 20225 WMP / ENABLE 1702A PGM (@11) 29011
0104 @2p8@ JMS DLYA / PGM TIME (517 MS) P204 02114 TLA, 1S2 2 TLA
20200 79204
0106 AP208 LOM B / CLEAR R/WA BIT 9206 09115 IS2 3 TLA
09197 29225 WMP / DISABLE 1782A PGM (B11) 2204
01098 PPP64 JUN coMP / JUMP - COMP p208 29116 IS2 4 TLA
99122 en204
9110 #pp32 PGMB2, FIM PR 64 / SET SRC - RAM 1 9210 0An8e JMS DLYTO
20064 73190
2112 20233 SRC PR / SEND RAM 1 9212 84117 1SZ2 5 TLA
2113 PB212 LDM 4 / LOAD R/W 02 BIT 80204
9114 09225 WMP / ENABLE 1702 PGM (212) . p214 99192 BBL €
0115 20080 JMS DLYB2 / PROGRAM TIME (5.6 SEC) 2215 2p932 DLYB2, FIM PO 4 / DELAY @2 = 5,6SEC
20215 20004
9117 ¢p208 LDM € / CLEAR R/W 02 BIT 8217 #aA113 TL2, ISZ2 1 A / (LOOP SCT = 11)
9118 290832 FIM PB 64 80220
0064 p219 #9192 BBL @~
0120 29033 SRC PP 8220 00082 A, JMS DLYA
0121 PpP225 WMP / DISABLE 1782 PGM (B812) 20200
0122 2pp88 COMP, JMS DLYTO / DATA SETTLE TIME (10MS) 9222 20064 JUN TL2
204190 0217
0124 00832 FIM PR 32 / SET SRC - ROM 2 (PROM DATA OUT L) |,
20832
P126 22034 FIM P1 128 / SET SRC - RaM 2 (DATA DSPLY) ;
20128
0128 00033 SRC PO / SEND ROM 2 (1P2)
2129 08234 RDR / READ PROM DATA OUT L (1P2) M f
0130 99835 SRC P1 / SEN$ RAM 2 (P$on DATA OUT DSPLY L SYMBOL TARLE
p131 Bg225 WMP / WRITE PROM DATA OUT DSPLY L (82) 2
8132 29185 XCH 9 / STORE PROM DATA OUT L (R9) éomp 33532 E;TDR ;2}23 §$2§$ gggé;
2133 20996 INC 8 / SET SRC - ROM 3 (PROM DATA OUT H) DLYB2 30215 IRAH @2176 SToP @871
0134 pe212 LDM 4 / LOAD '64' BIT FOR RAM 3 SRC DLYA @08200 MODE 00849 T2 ee217
2135 20138 AOD 2 / SET SRC - RAM 3 OLYTO 02198 NOCHP 22155 TLA 88204
0136 22178 . XCH 2 / LOAD SRC H pUP p2¢78 PGMB2 20118 TLT @@192
0137 20033 SRC Po / SEND ROM 3 (IP3) ERROR 00157 PGMA BOABYY WAIT p@162
9138 9p234 RDR / READ PROM DATA OUT H (IP3)
29139 2@935 SRC P1 / SEND RAM 3 (PROM DATA OUT DSPLY H)
0140 9@225 WMP / WRITE PROM DATA OUT DSPLY H (23)
2141 20184 XCH 8 / STORE PROM DATA OUT H (R8)
0142 N@241 cLe / CLEAR CY.
0143 90171 LD 11 / LOAD ROM DATA L - AC
2144 99153 SuB 9 / SUB PROM DATA OUT L
0145 20828 JCN AN NOCMP / JUMP IF DATA L NO COMP
29155
0147 0g241 cLce / CLEAR CY

169

INTEL MICRO COMPUTERS

POINT-OF-SALE
TERMINALS

Staid, Inc. of Casselberry, Florida is-using Intel
micro computers to build advanced point-of-
sale terminals for a large chain of cafeterias in
the Southeast. Operated by the cashier, the ter-
minal automatically enters item prices, totals
items, adds taxes, prints a sales slip, dispenses
change, adjusts the inventory of each item as it
is sold, and transmits all this information to cor-
porate headquarters. It can handie 100 separate
jtems and is expandable to accommodate 200.

Staid says the Intel micro computer on only two
PC cards does the work of about a dozen cards
of random logic, and increases estimated relia-
bility by an order of magnitude. Cost reduction,
compared to random logic, is estimated to
range from 20% to 30%.

Since the micro computers are programmed by
Intel PROMs, Staid can produce point-of-sale
terminals for the other types of businesses that
have different requirements without redesign.
They simply change the PROMs to make the
terminal perform according to the new cus-
tomer’s requirements. Obviously, this saves a
lot of money and enables them to deliver sys-
tems soon after receipt of order.

170

DATA
COMMUNICATIONS
PROCESSING

Action Communication Systems of Dallas used
Intel micro computers as front-end processors
in this high-speed dial-up communications con-
troller built for The Bekins Company.

Action adopted Intel micro computers in order
to save both development time and system cost.
The Bekins system was fully developed and de-
livered only 90 days after Action decided to use
Intel micro computers. And Action estimates
they saved about $10,000 in over-all cost.

The Bekins controller, located in Glendale;
California, is the heart of a nationwide multi-
terminal system that carries administrative mes-
sages, financial data, shipping notices and cus-
tomer inquiries. A micro computer on each of

. fives lines puts messages in a binary synchro-

nous format, checks for errors, and signals for
re-transmission when an error is detected.

Action used Intel’s standard SIM4-02 micro
computer boards in the system, and did the
final programming with Intel’s electrically-pro-
grammed PROMs. Intel’s Micro Computer Sys-
tems Group worked very closely with Action in
both the design and debugging phases of the
project. ‘

COMPACT
BUSINESS
- MACHINES

This general-purpose data processing machine
for small businesses is built by Omni Electron-
ics using an Intel micro computer as the heart
of the system. Suitably programmed, this ma-
chine will tabulate accounts, type invoices,
write checks, and even produce personalized
form letters.

Omni says they saved about $3,000 by using an
Intel micro computer in place of a mini. More-
over, the micro computer enabled them to re-
duce the whole system to typewriter size.

They say the micro computer has even more
speed than they need, and offers the extraordi-
nary reliability they require in this application.
In addition to the Intel integrated CPU, which
does all central processing, the machine uses
Intel’'s electrically-programmed PROMs for
bootstrap programming and Intel’s 2102 N-
channel 1024-bit MOS RAMs as the central
memory, a memory which stores up to 16K 8-bit
bytes. Peripheral memory is supplied by one to
eight Omni tape decks, which store 15,000,000
bits per cartridge.

171

An Intel micro computer does all the thinking for
this automatic bottle-loading machine. The
micro computer, built by Comstar Corporation
of Edina, Minnesota, for Conveyor Specialities,
tells the machine how to load bottles of different
sizes and when to perform each step in the
loading process.

The little computer in a 6” x 6” x 1%” space
replaces several racks of counters, timers and
relays that would otherwise be required. Ac-
cording to Comstar, the computer’s flexible pro-
gramming is a major advantage. Programs on
PROMs can be changed in half an hour.

Comstar estimates that the micro computer
halved the cost of the control portion of this
system, and reduced the time required to build
it by a factor of two or three. The company is
now building other types of systems with Intel
micro computers, including an automatic meat
weighing and packaging machine.

SALES OFFICES

NATIONAL
SALES MANAGER

CALIFORNIA

Hank O’Hara

3065 Bowers Avenue

408/246-7501 TWX: 910-338-0026
Telex: 34-6372

Santa Clara 95051

ARIZONA
Engineering Sales
7155 E. Thomas Road, No. 6
602/945-5781
Scottsdale 86252

CALIFORNIA

Jess Huffman

3065 Bowers Avenue
408/246-7501
*Santa Clara 95051

Jerry Plymire

3065 Bowers Avepue
408/246-7501
*Santa Clara 95051

John Alfoldy

17401 Irvine Blvd., Suit K

714/838-1126, TWX: 910-595-1114
_ *Tustin 92680

Jim Saxton
17401 Irvine Bivd., Suite K~

CALIFORNIA

William T. O’Brien
17401 Irvine Bivd,, Suite K

714/838-1126, TWX: 910-595-1114

*Tustin 92680

FLORIDA

Semtronic Associates

5100 DuPont Blvd., Suite 8E
DuPont Towers
305/782-1596

Ft. Lauderdate 33310

Semtronic Associates

100 Maitland Avenue, Suite 216
305/831-6851

Altamonte Springs 32701

ILLINOtS

Mar-Con Associates, Inc.
4836 Main Street
312/675-6450
Skokie 60076

MARYLAND

Barnhill and Associates
1931 Greenspring Drive

U.S. REGIONAL SALES OFFICES

MASSACHUSETTS

Myles Franklin

594 Marrett Road, Suite 27
617/861-1136, Telex: 92-3493
*Lexington 02173

U. S. SALES OFFICES
MICHIGAN

Sheridan Assoc., Inc.
33708 Grand River Avenue
313/477-3800

Farmington 48024

MINNESOTA

Carl Branger

800 Southgate Office Plaza
5001 West 78th Street
612/835-6722
*Bloomington 556437

ECR., Inc

4004 W. 78th Street

612/927-4547, TWX: 910-576-3153
Minneapolis 55435

MISSOURI

Sheridan Assoc., Inc.
110 S. Highway 140, Suite 10
314/837-5200

MINNESOTA

Mick Carrier

800 Southgate Office Plaza
5001 West 78th Street
612/835-6722
*Bloomington 55437

NEW YORK {Continued)

Ossmann Components Sales Corp.
280 Metro Park

716/442-3290

Rochester 14623

Ossmann Components Sales Corp.
1911 Vestal Parkway E.
607/785-9949

Vestal 13850

Ossmann Components Sales Corp.
132 Pickard Building
315/454-4477

Syracuse 13211

Ossmann Components Sales Corp.
411 Washington Avenue
914/338-5505

Kingston 12401

NORTH CAROLINA

Barnhill and Associates
6030 Bellow Street

PENNSYLVANIA
Vantage Sales Company
21 Bala Avenue
215/667-0990
Bala Cynwyd 19004
John Kitzrow
21 Bala Avenue
215/664-6636
Bala Cynwyd 19004

Sheridan Assoc., Inc.
4268 North Pike,
North Pike Pavilion
412/373-1070
Monroeville 15146
TENNESSEE
Barnhitl and Associates
206 Chicashaw Drive
703/846-4624
Johnson City 37601
TEXAS
Evans and McDowell Assoc.

. : -595. X Florissant 63033
ey S i 21093 - Retagh 27502 13333, Ceneral Exprosey
NEW JERSEY Room 180 214/238-7157
Dave Neubauer Barnhill and Associates Addem OHIO Dallas 75222
17401 trvine Blvd., Suite K
A0 r_vme .une X P.O. Box 251 Post Office Box 231 Sheridan Assoc., Inc. Evans and McDowell Assoc.
714/838-1126, TWX: 910-5695-1114 301/252-5610 R 88 N 7 2
*Tustin 92680 Glen Arm 21057 516/567-5900 10 Knoticrest Drive 14 Triola Lane 713/777-128
Earte A \ en Arm Keashey 08832 513/761-5432, TWX: 810-461-2670 Houston 77036
arie Associates, Inc. Cincinnati 15237 VIRGINIA
;:i?zsgnévz:151reet, Suite A MAS?“E""USETTS NEW YORK Sheridan Assoc,, Inc. Barnhill and Associates
y Bilt D*Eramo Ossmann Components Sales Corp. 7800 Wall Street P.0.Box 1104
San Diego 92111 504 Marrett Road, Suite 27 395 Cleveland Drive 216/524-8120 703/846-4624
COLORADO ?1 7/?61 -1136, Telex: 92-3493 716/832-4271 Cleveland 44125 Lynchburg 24505
Waugaman Associates, Inc. Lexington 02173 Butfalo 14215 Sheridan Assoc., Inc. WASHINGTON
4643 Wadsworth, Suite C Datcom Addem Shiloh Bldg., Suite 250 SD.F!2 Products and Sales
303/423-1020, TWX: 910-938-0750 7A Cypress Drive 37 Pioneer Bivd. 5045 North Main Street 14040 N.E. 8th Street
Wheatridge 80033 617/273-2990 516/567-5900 513/277-8911 206/747-9424
«Direct Intel Sales Office Burlington 01803 Huntington Station, L.1. 11746 Dayton 45405 Bellevue 98007
EUROPEAN MARKETING EUROPEAN DISTRIBUTORS
HEADQUARTERS
BELGIUM
Jens Pautsen AUSTRIA FRANCE NETHERLANDS SWITZERLAND
Intel Office Bacher Electronische Gerate GmbH Tekelec Airtronics) INELCO NV Industrade AG
216 Avenue Louise 022293 01 43, Telex: (01) 1532 626-02-35, Telex: 26997 020 44 16 66, Telex: 12534 01-60-22-30, Telex: 56788
492003, Telex: 846-21060 Vienna Paris Amstordam Zurich
*Bruxelles 1050 BELGIUM GERMANY NORWAY UNITED KINGDOM

EUROPEAN MARKETING
OFFICES
FRANCE
Intel Office
Cidex R-141
94-534 Rungis
(1) 677-60-75
*France
ENGLAND
Intel Corporation
Broadfield House
4 Between Towns Road
72992
Cowley, Oxford

S.A. In€lco N.V.
02/60.00.12, Telex: 25441
Bruxelles

DENMARK
Scandinavian Semiconductor Supply
Aegir 5090, Telex: 19037
Copenhagen

FINLAND
Havulinna Oy
90-61451, Telex: 12426
Helsinki

Ing. Erich Sommer

Elektronik GmbH
0611-55-02-89, Telex: 414069
Frankfurt

ISRAEL

Telsys Ltd. Engineering Co.
25 28 39, Telex: TSEE-tL 333192
Tel-Aviv

ITALY

Eledra 3§,
(02) 86-03-07
Milano

Nordisk Elektronik (Norge)
602590, Telex: 16963
Oslo

SOUTH AFRICA

Walmore Electronics Lid.,
01-836-0201, Telex: 28752
London

Electronic Building Elements {PTY) Ltd.

P.O. Box 4609
Pretoria

SWEDEN

Nordisk Elektronik AB
08-24-8340, Telex: 10547
Stockholm

ORIENT MARKETING HEADQUARTERS

JAPAN

Y. Magami

Intel, Japan

Han-Ei 2nd Bidg.

1-1, Shinjuku, Shinjuku-Ku
034034747, Telex: 781-28426
*Tokyo 160

ORIENT DISTRIBUTORS

JAPAN

Pan Electron Inc.,
045-471-8321, Telex: 7814773
Yokohama

172

DISTRIBUTORS

WEST

ARIZONA

Hamilton/Awvnet Electronics
1739 N, 28th Avenue
602/269-1391

Phoenix 85009

Cramer/Arizona
2816 N, 16th Street
602/263-1112
Phoenix 86006

CALIFORNIA

Hamilton/Avnet Electronics
340 E. Middlefield Road
415/961-7000

Mountain View 94041

Cramer/San Francisco
695 Veterans Bivd.
416/365-4000
Redwood City 94063

Hamiiton Efectro Sales
10912 W. Washington Bivd.
213/870-7171

Culver City 90230

Cramer/Los Angeles
17201 Daimler Street

714/979-3000

irvine 92705

Hamilton/Avnet Electronics
8817 Complex Drive
714/279-2421

San Diego 92123

Cramer/San Diego
7719 Convoy Court
714/279-6300

San Diego 92111

COLORADO

Cramer/Denver

5465 E. Evans Place at Hudson
303/758-2100

Denver 80222

Hamiiton/Avnet Electronics
5921 N. Broadway
303/534-1212

Denver 80216

NEW MEXICO

Crarmer/New Mexico
137 Vermont, N.E.
506/265-5767
Albuquerque 87108

OREGON

Almac/Stroum Electronics
' 8888 S.W. Canyon Road

503/292-3534

Portland 97225

UTAH

Cramer/Utah

391 W. 2600 South
801/487-3681

Salt Lake City 84115

Hamiiton/Avnet Electronics
647 W, Billinis Road
801/262-8451

Salt Lake City 84115

WASHINGTON

Almac/Stroum Electronics
6811 Sixth Avenue South
206/763-2300
Seattle 98108

Cramer/Seattle

5602 6th Avenue South
206/762-6755

Seattle 98108

Hamilton/Avnet Electronics
2320 Sixth Avenue
206/624-5930

Seattle 98121

U. S. DISTRIBUTORS

MID-AMERICA
ILLINOIS OHIO
Cramer/Chicago Cramer/Tri-States Inc.
1911 South Busse Road 666 Redna Terrace
312/593-0230 613/771-6441

Mt. Prospect 60056

Hamilton/Avnet Electronics

3901 North 25th Avenue

312/678-6310

Schiller Park 60176
INDIANA

Sheridan Assoc., inc.

4165 Millersville Road, Suite DI-C7

317/542-0661
Indianapolis 46205

KANSAS

Hamilton/Avnet Electronics
3500 W. 75th Street, Suite 1
913/362-3250

Prairie Village 66208

MICHIGAN

Sheridan Assoc., inc.
33708 Grand River Avenue
313/477-3800

Farmington 48024

Cramer/Detroit
13193 Wayne Road
313/425-7000
Livonia 48150

Hamilton/Avnet Electronics
13150 Wayne Road
313/522-4700

Livonia 48150

MINNESOTA

Cramer/Minneapolis

8053 Bloomington Freeway,
612/881-8678

Bloomington 55420

Cramer/Bonn

7275 Bush Lake Road
612/941-4860

Edina 55435

Hamilton/Avnet Electronies
4940 Viking Drive
612/854-4800

Minneapolis 55431

Industrial Components, Inc.
4004 West 78th Street
612/927-9991

Minneapolis 55431

MISSOURI

Sheridan Assoc., Inc,

110 South Highway 140, Sui
314/837-6200

Florissant 63033

Hamilton Electro Sales
392 Brookes Lane
314/731-1144
Hazelwood 63042

OKLAHOMA

Cramer/Tulsa

6336 East 13th Street
918/836-3371

Tulsa 7411 2“

06

Suite 105

te 10

Cincinnati 45215

Sheridan Assoc., Inc.
10 Knolicrest Drive
513/761-5432
Cincinnati 46237

Cramer/Cleveland
5835 Harper Road
216/248-7740
Cleveland 44139

Sheridan Assoc., inc.
7800 Wall Street
216/5248120
Cleveland 44125

Sheridan Assoc., Inc.
Shiloh Bldg., Suite 260
5045 North Main St.
613/277-8911

Dayton 45405

TEXAS

Cramer Electronics
2970 Blystone
214/350-1355
Dallas 76220

Hamilton/Avnet Electronics
2403 Farrington
214/638-2850

Dallas 75207

Hamilton/Avnet Electronics
1216 West Clay
713/526-4661

Houston 77019

WISCONSIN

Cramer/Wisconsin
5626 N. 91st Street
414/462-8300
Milwaukee 53225

173

NORTHEAST

CONNECTICUT

Cramer/Connecticut

35 Dodge Avenue, North Haven
203/239-5641

New Haven 06473

MARYLAND

Cramer/EW Baltimore
922-24 Patapsco Avenue
301/354-0100
Baltimore 21230

Cramer/EW Washington
16021 Industrial Drive
301/948-0110
Gaithersburg 20760

Hamilton/Avnet Electronics
7255 Standard Drive
301/796-5000

Hanover 20176

MASSACHUSETTS

Cramer Electronics, Inc.
85 Wells Avenue
617/969-7700

Newton 02159

Hamilton/Avnet Electronics
185 Cambridge Street
617/273-2120

Burlington 01803

NEW JERSEY

Hamilton Electro Saies
220 Little Falls Road
201/239-0800

Cedar Grove 07009

Cramer/New Jersey
No. 1 Barett Avenue
201/935-5600
Moonachie 07074

Hamilton/Avnet Electronics
18608 Mariton Pike
609/662-9337

Cherry Hill 08034

Cramer/Pennsylvania, Inc.
7300 Route 130 North
609/662-5061
Pennsauken 08110

NEW YORK

Cramer/Binghamtaon
3220 Watson Boulevard
607/754-6661

Endwell 13760

Cramer/Rochester

3259 Winton Road South
716/275-0300

Rochester 14623

Cramer/Syracuse
6716 Joy Road
315/437-6671

East Syracuse 13057

Hamilton/Avnet Electronics
6400 Joy Road
315/437-2642

Syracuse 13211

Cramer/Long Island

29 Oser Avenue
516/231-5600
Hauppauge, L.1. 11787

Hamilton/Avnet Electronics
70 State Street
516/3335800

Westbury, L.I. 11590

PENNSYLVANIA

Sheridan Assoc., Inc.
4268 North Pike
North Pike Pavilion
412/373-1070
Monroeville 15146

SOUTHEAST
ALABAMA

Cramer/EW Huntsville, Inc.
2310 Bob Wallace Avenue
205/639-5722

Huntsville 35805

FLORIDA

Cramer/EW Hollywood
4035 North 29th Avenue
305/923-8181
Hollywood 33020

Hamilton/Avnet Electronics
4020 North 29th Avenue
305/925-5401

Hollywood 33020

Cramer/EW Orlando
345 North Graham Ave.
305/841-1550

Orlando 32814

GEORGIA

Cramer/EW Atlanta
3130 Marjan Drive
404/448-9050
Atianta 30340

Hamilton/Avnet Electronics

6700 Interstate 85 Access Road

404/448-0800
Atfanta 30071

NORTH CAROLINA

Cramer/EW Raleigh
3901 Winton Road
919 876-2371
Raleigh 27604

Cramer/EW Winston-Salem
938 Burke Street
919.725-8711
Winston-Salem 27102

PUERTO RICO

Cramer Electronics de
Puerto Rico
Subdivision Industrial,
8o Retiro

San German 00753

CANADA
ONTARIO

Cramer/Canada

920 Atness Avenue, Unit No. 9

Downsview
416/661-9222
Toronto 392

Hamilton/Avnet Electronics
6291 Dormain Rd. No. 19
416/677-7432

Mississauga

Hamitton/Avnet Electronics
880 Lady Ellen Place
613/725-3071

Ottawa

QUEBEC

Hamilton/Avnet Electronics
935 Monte De Liesse
514/735-6393

St. Laurent, Montreal 377

10.

12

Ordering Information

The 4004 (CPU) is available in ceramic only and should be
ordered as C4004.

. The 4001 (ROM), 4002 (RAM) and 4003 (SR) are presently

available off the shelf in plastic only. Standard devices should be
ordered as follows:

P4001 Plastic Package

P4002-1 (Metal Option #1) - Plastic Package

P4002-2 (Metal Option #2) - Plastic Package

P4003 Plastic Package

. The 4008 and 4009 standard memory and 1/O interface set are

available in plastic only (24 pin DIP). They should be used as a
set and ordered as P4008 and P4009.

Mask Programming of the 4001

The custom patterns, chip numbers and 1/O options (including
inverting and non-inverting inputs or outputs and on-chip resistor
connected to either Vpp or Vgg) must be specified on a truth
table for each 4001 ordered. Blank custom truth tables are avail-
able upon request from Intel.

. SIM4-01 Prototyping System

An interface board in which 1702A electrically programmable
and erasable ROMs simulate the 4001 mask programmable ROMs
provides a design tool for developing a system, This board con-
tains one 4004, four 4002s and has provision for up to four
1702As. The board should be ordered as SIM4-01, The PROMs
should be ordered separately.

. SIM4-02 Prototyping System

This board is an expanded version of the SIM4-01. It contains
one 4004, four 4002s, and has provision for an additional twelve
4002s and sixteen 1702As. The board should be ordered as
SIM4-02 (the type and number of PROMs and RAMs should
also be indicated). '

. MP7.03 PROM Programmer

This is the programmer board for 1602A/1702A. The three
1702A control ROMs used with the SIM4 cards for an automatic
programming system are specified by pattern numbers A0540,
A0541, A0543. All items should be ordered individually,

. SIM4 Hardware Assembler

Four PROMs plug into either prototyping board enabling the
micro computer prototype to help program itself. To order this
set of PROMs, specify pattern numbers A0740, A0741, A0742,
and A0743.

. SIM4 Hardware Simulator

Nine PROMs plug into the SIM4-02 to aid in debugging of pro-
grams. To order this set of PROMs, specify pattern numbers
A0750 through A0758,

MCS-4 Assembler and Simulator Software Package’

This software package converts a list of instruction mnemonics
into machine instructions and then simulates the operation of
the MCS-4 program. These programs are written in Fortran 1V

and are available via time-sharing service or directly from Intei.
. MCB4-10 System Interconnect and Controi Module

This module provides control, display and 1/O interconnect capa-
bility for the SIM4-01. In addition, it provides complete inter-
connection between the SIM4-01 and the MP7-03, To order the
interconnect module only, specify MCB4-10.

MCB4-20 System Interconnect and Control Module

This module provides control, display and 1/O interconnect eapa-

- bility for the SIM4-02, In addition, it provides complete inter-

connection between the SIM4-02 and the MP7-03. To order the
interconnect module only, specify MCB4-20.

Packaging Information

16-LEAD CERAMIC DUAL IN-LINE PACKAGE OUTLINE

. 735 o

r 830
- PIN %
5 o ane |

i o B oo T e S e |

295
325

055
“E 260
.050 MAX.]—-‘25 See
= 295
045 | }__ 1
5 I 1 | I
1 220
MAX
010 £ .002
015 020
023 \ 100 MIN 0
010 fe—sl—.100 £ 010 032 REF. l—— 290 ——l
065 A 310

'

16-LEAD PLASTIC DUAL IN-LINE PACKAGE OUTLINE

745 _ _
| 855 PIN 1 {
.060/.075 REF 245
; 255 le_ :290 ____‘
i 310
0607125 REF |
| 025 REF
4 — T, .
125 200 f
155 MAX
. — — 008
¥ | 0z
1020 MIN. ‘ 1100 MIN.
,025/.063 [
REF qa5 290
065 = 210

24-LEAD PLASTIC DUAL IN-LINE PACKAGE OUTLINE

.0500.
PIN #1 IDENTIFICATION

T

.190 REF.

‘ 150 REF.

-2
.u7oLREF.Tt r‘ .

t
=T
3

MIN,
100 032 REF. -{1%0 w0 ﬂ/L
ke - E:
080 REF. o o1z

020

VILO-4 IMstruction >et
[Those instructions preceded by an asterisk {*) are 2 word instructions that occupy 2 successive locations in ROM]
MACHINE INSTRUCTIONS

MNEMO! OPR OPA
EMONIC
D3D,;D,4 Dy D30, Dy Dy DESCRIPTION OF OPERATION
NOP 0000 0000 No operation,
*JCN 000 1 CqCrCnC Jump to ROM address Ay Ay Ay Ap, Ay Ay Ay A (within the same
1-2%-3%4 ROM that contains this JCN instruction) if condition Cq Cp C3 C4!1)
Ay A2 A Ay Aq A1 ArAy is true, otherwise skip {go to the next instruction in sequence).
*FiM 0010 R R RO Fetch immediate (direct) from ROM Data Dy, D1 to index register pair
D, 05D, D, D; Dy Dy Dy location RRR.{2)
SRC 0010 R R R 1 Send register control. Send the address (contents of index register pair RRR)
to ROM and RAM at X3 and X3 time in the Instruction Cycle.
FIN 001 1 RRRO Fetch indirect from ROM. Send contents of index register pair location 0
out as an address. Data fetched is placed into register pair location RRR
JIN 00 1 1 R R R 1 Jump indirect. Send contents of register pair RRR out as an address
at Aj and Ag time in the Instruction Cycle.
*JUN 0100 A3 A3 Az Az Jump unconditional to ROM address A3, Ag, A
Ay Ay A, A Ay A] A A 3 Az A
2727272 1711 ™
*IMS 0101 Ag A3 Ag A3 Jump to subroutine ROM address A3, Aj, Aq, save old address. (Up 1 level
Ay AyAjy Ay Ay A AL A, in stack.)
INC 0110 R RRR Increment contents of register RRRR., (3)
sz 001 1 1 RR AR Imfrerf;ent contents of register HF!RR. (_.‘-o 0 BOM ac[dreS§ A, Ay
An As An A A, A A, A {within the same ROM that contains this ISZ instruction) if result #0,
2727272 LIl B e | otherwise skip (go to the next instruction in sequence).
ADD 1000 R RRR Add contents of register RRRR to accumulator with carry,
suB 1001 R R R R Subtract contents of register RRRR to accumulator with borrow.
LD 1010 R R RR Load contents of register RRRR to accumulator.
XCH 10 1t R RRR Exchange contents of index register RRRR and accumulator.
BBL 1100 DDDD Branch back (down 1 tevel in stack} and load data DDDD to accumulator.
LDM 11 01 0O DDD Load data DDDD to accumulator.

INPUT/OUTPUT AND RAM INSTRUCTIONS

{The RAM's and ROM's operated on in the (/O and RAM instructions have been previously selected by the last SRC instruction executed.)

MNEMONIC Dy Do;;' Dy Dy DOZPI;| Dy DESCRIPTION OF OPERATION
waM 11 0000 RAM main mermory charseterr o e P Y
wme trvo 0001 mf\: ::lelpul port. %:r;:m Lines) ntothe p M
WRR 1110 0010 :;vg;; ;Tt::tn;?rtts (()Iflg-i'a::;mulawr into the previously selected
whMm trao 00111 :\larlil‘i::: g?rr‘;:g;\jv?i't;hperagram memorictrf(::]is'; wl‘th 4‘(;0589}:8‘33 only)
WRY (4) 1110 0100 :v::: ::\:‘S:xg:‘(:r;;sc;frtohle accumulator into the previously selected
WR1 (4) 1110 010 1 \évx;; ::\:t:grc\:;r:;sc?:rt;\.e accumulator into the previously selected
WRQM) 1110 o110 \élz:; ::‘aetus charac:’e‘r t;e ' into the previously sel
w3l tt10 0111 ‘F’iv:'l\: ;:‘:lus charat:toe'r';e ' into the previ vee! i
SBM 1110 1y 000 as:cbut:z:a([:;: pwr;:i;zsrlr\:)vs:lected RAM main memory character from
RDM 1110 100 1 il::gd(;:e previously s.elected RAM main memory character
RDR rrro roro i?:;dtr‘\geaccumuia(g:‘tms Lines) N @ RO input port
ADM 1110 101 1 ::ciﬂ:uelap‘;ervis;:'s‘lyusf'lz?ted RAM main memory character to
RD¢ @) 1110 1100 Read the previously selected RAM status character 0 into accumulator.,
RD1(4) 1110 1101 Read the previously selected RAM status character 1 into accumulator.
nnz(‘” 1110 1110 Read the previously selected RAM status character 2 into accumulator.
rRD3'4 1110 111 Read the previously selected RAM status character 3 into accumulator.

ACCUMULATOR GROUP INSTRUCTIONS

cLB 111 0000 Clear both. {Accumulator and carry)
CcLC 111 0 001 Clear carry.
1AC 111 0010 Increment accumulator.
CMC 1T 1 1t 1 00111 Complement carry.
CMA 11 0100 Camplement accumulator.
RAL 1111 o1 01 Rotate left. (Accumulator and carry)
RAR 11 11 0110 Rotate right. {Accumulator and carry)
TCC L B] o1 11 Transmit carry to accumulator and clear carry.
DAC LR T I 1000 Decrement accumulator
TCS 111 1001 Transfer carry subtract and clear carry
STC 1T 1 1 1010 Set carry.
DAA 11 11 1.0 1 1 Decimal adjust accumulator
KBP 11011 1100 ':::Zza('gf?g‘cre:;diotlv:r:;;:fyC:or:;:_n's of the accumulator from a
DCL 11 11 11 01 Designate command line.
NOTES: {1'The condition code is assigned as follows - &
C1 =1 Invert jump condition % =1 Jump if accumulator is zero CA =1 Jump if test signal isa 0 In

C; =0 Not invert jump condition C3 =1 Jump if carry/tink isa 1
(21RA is the address of 1 of 8 index register pairs in the CPU.
(31RRRR is the address of 1 of 16 index registers in the CPU.

(4)gach RAM chip has 4 registers, each with twenty 4-bit characters subdivided into 16 main memory characters and 4 status characters,
Chip number, RAM register and main memory character are addressed by an SRC instruction.-For the selected chip and register, however,
status character locations are selected by the instruction code (OPA).

IVANVIN SH3SN - 13S HI1NdINOD OYIIW ..v-SIN

€L61 AHvNda3d

I ®
nU INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 * (408) 246-7501

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	064
	065
	066
	068
	069
	070
	072
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	xBack

