
999-802-000IS

Programmer's Guide

AT&T Personal
Computer 6300
GWBASIC By Microsoft^

v.v.v.v.v.v

• ••••••••••a •

Written by
Agora Resource, inc.
Lexington, MA

©1984,1985 AT&T
©1983,1984 By Microsoft®
Aii Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without
notice. AT&T assumes no responsibility for any errors that may
appear in this document.

o

BASIC
Programmers

Guide

Contents

Introduction

1 Introduction 1-2

1 Major Features 1-3

Syntax Conventions 1-4

Line Format 1-7

Character Set 1-9

Reserved Words 1-10

Getting Started
Initialization Procedure 2-2

Modes of Operation 2-3

Keyboard 2-4

The GWBASIC Screen Editor 2-12

Using Your System as a Calculator 2-23

Entering a Program 2-26

Listing a Program 2-29

Saving a Program 2-30

Loading a Program 2-31

Executing a Program 2-32

Program Interrupts 2-37

3
Variable Types
Constants 3-2

Variables 3-7

Expressions and Operators 3-14

BASIC
Programmers
Guide

4

5

6

7

Disk File Handling

Device Independent Input/Output 4-2
How MS-DOS Keeps Track of Your Files 4-3
File Specification 4-5
Commands for Program Files 4-18
Disk Data Files — Sequential

and Random Access 4-21

Graphics
Selecting the Screen Attributes 5-2
Text Mode 5-4

Graphics Mode 5-7

Asynchronous
Communications

Opening Communications Files 6-2
Communication I/O 6-3

Communication I/O Functions 6-4

Command References

Introduction 7-2

Commands, Statements,
and Functions with

Examples 7-16

n

B

D

Appendices

BASIC

Programmers
Guide

Tables

Hexadecimal Conversion Tables A-3

ASCII Codes A-4

Extended Codes A-8

Hexadecimal to Decimal Conversion Tables A-IO

Derived Functions A-12

Advanced Features

Memory Allocation B-2
Internal Representation B-4
Calling Subroutines B-6
Event Trapping B-22

Conversion of Programs to GWBASIC
Introduction C-2

String Dimensioning C-3
MAT Functions C-6

Multiple Assignments C-7
Multiple Statements C-8
PEEKs and POKEs C-9

IF...THEN...[ELSE...] C-10
File I/O C-11

Graphics C-12
Sounding the Bell C-13

Error Codes and Error Messages
Error Messages D-2
Error Codes D-4

Glossary

Index

Supplement: Display Enhancement Board

1
Introduction

• Introduction

• Major Features

• Syntax Conventions

• Line Format

• Character Set

• Reserved Words

-1-1

Introduction

INTRODUCTION

GWBASIC is the most extensive

implementation of BASIC available for
personal computers. It meets the requirements
of the ANSI standard for BASIC, and
supports many features rarely found in other
BASICs. It provides sophisticated string
hguidling, structured programming features,
and improved graphics.

GWBASIC gives you ease of use plus features
that make your personal computer perform at
its best.

UNIX is a trademark of AT&T Bell Laboratories.

MS™-DOS is a trademark of Microsoft Corporation.
Microsoft® is a registered trademark of Microsoft Corporation.

1-2

Introduction

MAJOR FEATURES

Some of the special features of GWBASIC are:

• UNIX™ style MS™-DOS interface for a user-
friendly operating environment

• Re-directable standard input and output

• Device communication commands to initialize

and communicate with peripheral devices

• Tree-structured disk directories

• Improved Disk I/O facilities for large files

• Advanced screen editing

• Enhanced Graphics commands

• User-defined Keyboard, Error, and Event
Trapping

• Precise error reporting with ERDEV and
ERDEVS

• Optional double precision transcendentals

• Precise control of memory allocation

• CALL statements with parameter passing

• Chaining with common variables to programs
larger than the available memory

• Optional declaration of variable names

1-3

Introduction

SYNTAX CONVENTIONS

• Uppercase letters and words, and the sym
bols listed below, should be typed in the
actual line exactly as shown.

(),;: = /#$- ><

In the statement:

WRITE # filenum, list-of-expressions

and the comma (,) after filenum should be
typed as shown.

• Lowercase letters and words represent
variable information (or parameters) that the
user must provide. In the statement:

KILL filespec

filespec should be replaced by a specific
value—for example, "MYFILE".

• The symbols listed below are used to define the
syntax of a line, but should not be typed in the
actual line:

I vertical stroke indicates alternatives

{ } braces indicate a choice

[] brackets indicate options

ellipsis indicates repetition

underscore joins parts of names in a multiple-
word parameter

1-4

rs

Introduction

• Braces group related items (divided by a
vertical stroke), such as alternatives.

{A|B|C}

indicates that you must choose one of the
items enclosed within the braces.

A or B or C

• Brackets also group related items (divided by a
vertical stroke); however, everything within the
brackets is optional and may be omitted.

[A|B|C]

indicates that you may choose one of the items
enclosed within the brackets or that you may
omit all of the items.

• An ellipsis indicates that the preceding item or
group of items may be repeated more than once
in succession.

A[,B]...

indicates that A can be typed alone or can be
followed by

,B

once or more in succession.

1-5

Introduction

1-6

'r\
Note

A [,list of B]

is also permitted and has the same meaning
as

A[,B]...

• The underscore character () can be used to
join names in a multiple-word parameter. For
example:

ENVIRONS [nth^parm]

• Characters which appear in a listing in bold
face represent characters entered through the r ^
keyboard.

r\

Introduction

LINE FORMAT

GWBASIC lines may contain a maximum of
255 characters and have the following format:

[nnnnn] statement [:statement]...['comment] CR

A GWBASIC program line always begins
with a line number (an unsigned integer in the
range 0 to 65,529), and ends with a carriage
return (CR). A program line is stored in
memory as soon as you enter CR.

A GWBASIC immediate line, i.e., a line that is
executed as soon as you enter it, always begins
with a letter, as you have to omit the line
number in this case.

More than one GWBASIC statement may be
placed on a line, but each successive statement
must be separated from the last by a colon.

At the end of a GWBASIC line (before CR)
you may enter a comment string preceded by a
single quotation mark (').

A comment string preceded either by the
keyword REM or by a single quotation mark
may also be written just after the line number.

You can extend a logical line over more than
one physical line by pressing CTRL-CR or by
continuing typing and letting the logical line
wrap around to the next physical line.

All GWBASIC lines shown in this manual
end with CR unless specifically stated
otherwise.

1-7

Introduction

Examples:

10 FOR K = 1 TO 20

is a GWBASIC program line.

100 GOSUB 1000 'branch to SUB1

is a GWBASIC program line with a comment
at the end.

1000 'SUB1

is a GWBASIC program line which contains
only a comment.

PRINT AS

is a GWBASIC immediate line.

Every GWBASIC program line begins with
a line number. Line numbers indicate the

order in which the program lines are stored in
memory. Line numbers are also used as
references in branching and editing.

For the EDIT, LIST, AUTO, and DELETE
commands, a period (.) may be used to
reference the current line.

rs

Introduction

CHARACTER SET

GWBASIC recognizes upper and lower case
letters of the alphabet, the digits 0 through 9,
and the following special characters:

Blank

= Equals sign or assignment symbol
+ Plus sign
- Minus sign
* Asterisk or multiplication symbol
I Slash or division symbol

Up arrow or exponentiation symbol
(Left parenthesis
) Right parenthesis
% Percent sign or integer type declaration

character

Number (or pound) sign or double
precision type declaration

$ Dollar sign or string type declaration
character

! Exclamation point or single precision
type declaration character

[Left bracket (*)
1 Right bracket (*)
, Comma

Period or decimal point
' Single quotation mark (apostrophe)
" Double quotation mark (string delimiter)
; Semicolon
: Colon & Ampersand
? Question mark (PRINT abbreviation)
< Less than

> Greater than

\ Backslash or integer division symbol
@ At sign

Underscore (*)
I Vertical line or pipe
{ Left brace
} Right brace

Grave accent

' Tilde

(*) Since these symbols are not used as
operators in the language, they may be used to
define the syntax (see Syntax Conventions
above). They should be typed in the actual
line only if they belong to a string constant.

1-9

Introduction

1-10

RESERVED WORDS

GWBASIC comprises a set of statements,
commands, function names, and operator
names which are treated as reserved words,
and which cannot be used as variable names.
The total list of GWBASIC reserved words is
as follows:

ABS EQV LSET

AND ERASE MERGE

ASC ERDEV MIDS
ATN ERDEVS MKDIR

AUTO ERL MKDS
BEEP ERR MKIS
BLOAD ERROR MKSS
BSAVE EXP MOD

CALL FIELD NAME

CALLS FILES NEW

CHAIN FN NEXT

CHDIR FIX NOT

CHR$ FOR OCTS
CINT FRE OFF

CIRCLE GET ON

CLEAR GOSUB OPEN

CLOSE GOTO OPTION

CLS HEXS OR

COLOR IF OUT

COM IMP PAINT

COMMON INKEYS PEEK

CONT INP PLAY

COS INPUT PMAP

CSNG INPUT# POINT

CSRLIN INPUTS POKE

CVD INSTR POS

CVI INT PRESET

CVS lOCTL PRINT

DATA lOCTLS PRINT#

DATES KEY PSET

DEF KILL PUT

DEFDBL LEFTS RANDOMIZE

DEFINT LEN READ

DEFSNG LET REM

DEFSTR LINE RENUM

DELETE LIST RESET

DIM LLIST RESTORE

DRAW LOAD RESUME

EDIT LOC RETURN

ELSE LOCATE RIGHTS
END LOF RMDIR

ENVIRON LOG RND

ENVIRONS LPOS RSET

EOF LPRINT

RUN STRING USR
SAVE STRINGS VAL

SCREEN SWAP VARPTR
SON SYSTEM VARPTRS
SHELL TAB VIEW

SIN TAN WAIT
SOUND THEN WEND
SPACES TIMER WHILE

SPC TIMES WIDTH
SQR TO WINDOW
STEP TROFF WRITE
STICK

STOP TRON WRITE#
STR$ USING XOR

Introduction

1-11

2

r\

Getting Started

Initialization Procedure

Modes of Operation

Keyboard

The GWBASIC Screen Editor

Using Your System as a
Calculator

Entering a Program

Listing a Program

Saving a Program

Loading a Program

Executing a Program

Program Interrupts

2-1

Getting Started

2-2

INITIALIZATION
PROCEDURE

To start GWBASIC, the MS-DOS operating
system must first be installed. When MS-DOS
has been installed and the system prompt:

A>

is displayed, enter the GWBASIC command:

GWBASIC

to load GWBASIC from the diskette inserted

in drive A into memory.

Upon loading, GWBASIC responds with a
screen similar to the one shown below.

GWBASIC 2.02

(C) Copyright Microsoft 1983, 1984
AT&T Personal Computer Release 1.1
Copyright (C) 1984, 1985 by AT&T, all
rights reserved
XXXXX Bytes Free
Ok

• Insert a diskette containing your GWBASIC
programs and execute a program, or

• enter GWBASIC program or immediate lines.

• To exit from GWBASIC and return to MS-

DOS, enter:

SYSTEM

This closes all data files before returning to
MS-DOS. Your GWBASIC program is no
longer in memory. MS-DOS remains resident.

Getting Started

MODES OF OPERATION

The GWBASIC Interpreter may be used in
either of two modes: direct mode or indirect

mode.

• In direct mode, statements and commands are
executed as they are entered. They are not
preceded by line numbers. After each direct
statement followed by a carriage return, the
screen will display the "Ok" prompt. Results of
arithmetic and logical operations may be
displayed immediately and stored for later use,
but the instructions themselves are lost after

execution. Direct mode is useful for debugging
and for using the GWBASIC Interpreter as a
calculator for quick computations that do not
require a complete program.

Example

Ok

PRINT 45+3

48

Ok

Indirect mode is used for entering programs.
Program lines are preceded by line numbers and
are stored in memory. The program stored in
memory is executed by entering the RUN
command.

Example Ok
10 PRINT 45+3

RUN

48

Ok

2-3

Getting Started

2-4

KEYBOARD

The Keyboard is divided into three sections:

Ten function keys, named F1 through FIO on
the left-hand side of the keyboard.

The standard typewriter keyboard in the
center, used to enter letters, numbers, special
characters and control characters.

The numeric keypad on the right-hand side of
the keyboard, used to enter numbers, numeric
operators, and the Screen Editor commands.

Getting Started

FUNCTION KEYS

There are 10 function keys on the keyboard.

These function keys can be tailored to the
user's needs using the KEY and ON KEY
statements.

The KEY statement can be used to assign a
specific command or sequence of characters to
a function key, other than the pre-assigned
standard commands. The ON KEY statement
can be used to generate program interrupts via
a specified function key.

Refer to the Reference section for further
details.

2-5

Getting Started

2-6

TYPEWRITER KEYBOARD

The standard typewriter keyboard is used to
enter letters, numbers, special characters, and
control characters.

Shift Keys

If you want to enter upper case letters or the
upper symbol on those keys containing two
symbols, hold down one of the two t keys and
press the corresponding key.

From now on we shall always refer to the T
keys as SHIFT keys by convention.

Carriage Return Key

The Carriage Return key is identified by the
symbol
By convention we shall refer to this key as the
CR key.

You must press CR to close a GWBASIC line
and send it to the system for processing.

Shift Lock for Letters

You can enable or disable Shift Lock for letters
(A-Z) by pressing CAPS LOCK.

The CAPS LOCK key is similar to a
typewriter Shift Lock Key, but it only gives
you uppercase letters, and will not give you the f *
upper symbols on the numeric or other keys.

Getting Started

Backspace

The backspace key moves the cursor one
position to the left, erasing the last character
you have typed.

To move the cursor to the left without erasing
any characters, you should use the Cursor Left
Key located on the numeric keypad.

Control Characters

You can generate control characters by
holding down the CTRL or ALT key while
pressing another key. GWBASIC recognizes a
number of control characters.

2-7

Getting Started

2-8

CTRL-BREAK

1. To interrupt the program at the following GWBASIC
instruction and return to GWBASIC Command Level.

2. To cancel automatic line numbering mode while
entering a program.

3. To return to Command Level, without saving any
changes that you made to the current line.

CTRL-G

Sounds the bell.

CTRL-NUM LOCK

Causes the system to 'pause' so as to temporarily halt printing
or program listing. The pause continues until you press any key
(except SHIFT, CTRL or ALT).

CTRL-T

Scrolls the function key display horizontally across the screen
(on the 25th screen line), when the width is 40. When the width
is 80, it toggles the Function Key display ON and OFF.

Getting Started

CTRL-ALT-DEL

Performs a System Reset by holding down the CTRL and
ALT keys, and then pressing DEL.

CTRL-PRTSC

All text sent to the screen is also sent to the system printer.
A second CTRL-PRTSC will stop printing. If you press
PRTSC while holding down SHIFT, MS-DOS will make a
single printed copy of the entire display screen.

CTRL-L

Outputs a formfeed character. It has the same function as
the CLS statement, (i.e., it clears the screen or the current
graphics viewport, if a viewport has been defined).

CTRL-Z

Sets an end of file condition (see the ''OPEN COM State
ment" in the Reference section).

2-9

Getting Started

2-10

Other control characters are described in the

subsection entitled "Special Screen Editor
Keys" later in this chapter.

Direct Entry of GWBASIC Keywords

You can type a GWBASIC Keyword by
holding down the ALT key while pressing one
of the alphabetic keys (A - Z). Keywords
associated with each letter are listed below.

A - AUTO N - NEXT

B-BSAVE 0 - OPEN
C - COLOR P - PRINT

D - DELETE Q . **♦*

E- ELSE R - RUN
F - FOR S - SCREEN
G - GOTO T- THEN

H - HEX$ U - USING

I - INPUT V - VAL
J . W- WIDTH

K - KEY X-XOR
L - LOCATE Y - »***

M- MERGE 2 - ****

**** unused keys

Getting Started

NUMERIC KEYPAD

A group of 15 keys at the right-hand side of
the keyboard. It is arranged much like a
standard calculator's keypad and is called
''numeric keypad." It includes not only the
numbers 0 through 9, the decimal point, the
plus (+) and minus (—) keys, but also cursor
movement keys, PGUP, PGDN, HOME,
NUM LOCK, SCROLL LOCK, BREAK,
END, INS, DEL, etc.

Note that some keys like SCROLL LOCK,
PGUP, and PGDN are not used by GWBASIC,
but they may be assigned meanings
within a program.

Number Lock State

You can press the NUM LOCK key to shift
the numeric keypad into upper-case. This
mode provides the numbers 0 through 9 and
the decimal point. (Holding down one of the
two SHIFT keys produces the corresponding
lower-case keys in this mode.) To return to
lower-case, press NUM LOCK once again.

2-11

Getting Started

2-12

THE GWBASIC
SCREEN EDITOR

All text entered while GWBASIC is at

command level is processed by the GWBASIC
Editor. This is a ''screen line editor" which

allows you to change a line anywhere on the
screen (only one line at a time). Changes are
only registered when you press CR on that
line.

SPECIAL SCREEN EDITOR KEYS

The GWBASIC Editor recognizes 9 numeric
Keypad Keys, the Backspace Key, and the
CTRL Key to move the cursor, insert or delete
characters.

The Keys and their functions are listed below.

HOME

Positions the cursor in the top left-hand corner of the screen.

CTRL-HOME

Clears the screen and moves the cursor to the "Home"
position.

t

Moves the cursor up one line.

I

Moves the cursor down one line.

Moves the cursor one position left. If the cursor is moved
beyond the left edge of the screen, it appears at the right
side of the screen on the preceding line.

Moves the cursor one position right. If the cursor is moved
beyond the right edge of the screen, it appears at the left
side of the screen on the following line.

Getting Started

CTRL ^

Moves the cursor to the beginning of the following word,
(i.e., to the next character to the right of the cursor in the
set) [A..Z] or [a..z] or [0..9].
For example, in the following line:

30 IF L< =0 THEN 20

The cursor is under the letter L. If you press CTRL
the cursor will move to the beginning of the next word,
which is 0:

30 IF L<=OTHEN 20

If you press CTRL again, the cursor will move to the
next word, which is THEN:

30 IFL<=0 THEN 20

CTRL ^

Moves the cursor to beginning of the preceding word, (i.e., to
the first character to the left of the cursor which is preceded
by a blank or a special character).
For example:

30 IF L< =0 THEN 20

The cursor is under the letter T. If you press CTRL the
cursor will move to 0. Pressing CTRL again, it will move
to L.

END

Moves the cursor from its current position to the end of the
logical line. Subsequent characters are appended to the line.

CTRL END

Erases from the current cursor position to the end of the
logical line, (i.e., until the carriage return is found).

2-13

Getting Started

2-14

INS

Switches into or out of Insert Mode. If Insert Mode is off
(Overwrite Mode on), then it turns it on. If Insert Mode is on,
then it turns it off (sets Overwrite Mode). The Insert Mode cursor
is a half-height blinking block (in Text Mode) and is a
blinking triangle to the left of the character (in Graphics Mode).

Overwrite mode is indicated by a different cursor, which is a
slow-blinking under line. In Insert Mode, the characters im
mediately above, together with those following the cursor,
move to the right as characters are inserted at the current
cursor position. Line folding is observed; that is, as charac
ters disappear off the right side of the screen, they return on
the left on the following line.

When in Overwrite Mode, characters typed will replace
existing characters on the line.

Insert Mode is turned off when you press the INS key again,
or if you press any of the cursor movement keys, or CR.

rs

Getting Started

TAB
When out of Insert Mode, pressing TAB moves the cursor over
characters until the next tab stop is reached. Tab stops are set
at every 8 character positions; that is, at positions 1, 9, 17, etc.
For example, suppose we have the line:

20 INPUT "Length"; L

If you press the TAB key, the cursor will move to the 17th
position as shown:

20 INPUT "Lengthll; L

When in Insert Mode, pressing TAB causes blanks to be
inserted from the current cursor position to the next tab stop.
Line folding is observed as explained under INS.
For example, suppose we have the line:

20 INPUT "Length"; L

Blanks are inserted up to the 17th position by pressing the
INS key and then the TAB key.

20 INPUT " Length"; L

DEL

Deletes the ch£u*acter at the current cursor position. All
characters which follow the deleted character shift one
position left. If a logical line extends beyond one physical
line, characters on subsequent lines shift left one position to
fill in the previous space, and the character in the first
column of each subsequent line moves up to the end of the
preceding line.

BACKSPACE

Causes the last character typed to be deleted, (i.e., on the
character to the left of the cursor). All characters to the right
of the deleted character shift left one position. Subsequent
characters and lines within the current logical line move up
as with the DEL key.

2-15

Getting Started

2-16

CTRL CR LINE FEED

Causes subsequent text to start automatically on the next
screen line.

ESC DELETE LINE

The entire logical hne containing the cursor is cleared. The
line is not entered for processing. If it is a program line, it is
not erased from the program in memory.

CTRL BREAK

Returns to Command Level, without saving any modi
fications that were made to the current line being edited.
Unlike ESC, it does not erase the line from the screen.

Getting Started

CORRECTING THE CURRENT LINE

All text entered at GWBASIC Command

Level is processed by the Screen Editor. You
can therefore use any of the Special Screen
Editor Keys.

GWBASIC remains at Command Level after

the prompt Ok and until a RUN command is
received.

Character Modification

If you make a mistake while entering a line
then proceed as follows:

1 You discover the error. For example, suppose you have
typed:

RUN "K,PROGR_

when you should have entered

RUN "A:PROGR_

2 Use Cursor-Left, or other cursor movement keys, to move
the cursor to the appropriate position:

RUN "K.PROGR

3 Type the correct characters over the wrong ones:

RUN "A:PROGR

4 Move the cursor to the end of the line using Cursor Right or
END keys:

RUN "A:PROGR_

5 Continue typing if the line is not finished:

RUN "A:PROGRAMll"_

6 Enter CR to pass the line to GWBASIC. In this case the
specified program is loaded from the diskette inserted in
drive A and run.

2-17

Getting Started

2-18

Character Insertion

If you accidentally omit characters in the line
you are entering, then proceed as follows:

You notice the error.

Suppose you entered:

10 FO K=1 T0„

instead of:

10 FOR K=1 T0_

Use Cursor-Left, or other cursor movement keys, to move
the cursor to the appropriate position:

10 F0_ K=1 TO

Press INS and type the letter R:

10 forbK=i to
Note that, entering Insert Mode, the cursor becomes a half-
height block.

Press INS again to return to Overwrite Mode and Cursor-
Right or END to move the cursor to the end of the line:
10 FOR K=1 T0_

Getting Started

Character Deletion

If you accidentally type an extra character in
the line you are entering, then proceed as
follows:

1 You discover the error.
For example, suppose you typed:

GOTTO_

instead of:

GOTO_

2 To erase the extra T, press Cursor Left, or other cursor
movement keys, to move the cursor to the appropriate
position:

GOTTO

3 Press DEL:

GOTO

4 Move the cursor using Cursor Right:

GOTO_

5 Continue typing

GOTO 1000_

Deleting Part of a Line

To erase a line from the current cursor

position, press CTRL END.

Deleting an Entire Line

To cancel the line you are entering, press ESC
anywhere in the line. It is not necessary to
press CR.

2-19

Getting Started

2-20

MODIFYING PROGRAM LINES

Any line of text beginning with a number (0 to
65529) is considered to be a 'program line'.
Suppose you have entered a program, i.e., a
sequence of program lines, that you want to
modify:

• To add a new line to your program, enter a
valid line number followed by at least one non-
blank character, followed by CR.

• To replace an existing line, enter a line
number that matches an existing one, followed
by the contents of the new line. The new line
will replace the existing one.

• To delete a line enter a line with the same line

number as the line to be deleted, followed by
CR. An "Undefined line number" error is

returned if an attempt is made to delete a line
which does not exist.

Note; ESC should not be used to delete

program lines, since this erases from the
screen only, and not from the program in
memory.

n

Getting Started

• To delete a group of lines, enter a DELETE
command indicating the range of lines to be
deleted (see the Reference Section).

• To delete the program resident in memory,
enter a NEW command (see the Reference
Section).

• To modify a program line which is already
displayed on the screen, move the cursor to the
appropriate position (by the cursor movement
keys); modify the line using any of the
techniques described above to change, delete,
or insert characters to the line; press CR to pass
the modified line to GWBASIC.

2-21

Getting Started

2-22

To modify a program line which is not
displayed on the screen, use the EDIT
command (see the Reference Section) to
display the line, or the LIST command (see the
Reference Section) to display a group of lines
including the line you want to modify, move
the cursor to the appropriate position, modify
the line, and press CR.

Note: You can edit any line as long as it is
visible on the screen. Once an immediate line

has been sent to the system pressing CR, there
is no way to edit it; this is not the case with
program lines, as they may always be recalled
for editing to the screen.

Remarks -

No modifications are made within the

program until CR is entered. It is sometimes
more practical to move around the screen
making corrections to several lines and then
return to the first line changed and strike CR
at the beginning of each line, thereby storing
the modified lines in the program.

It is not necessary to move the cursor to the
end of the logical line before typing the
carriage return. The Screen Editor remembers
where each logical line ends and transfers the
whole line even if the carriage return is typed
at the beginning of the line.

The preceding modifications only change the
program in memory. In order to save these
modifications permanently, use the SAVE
command before entering a NEW command or
leaving GWBASIC (see the SAVE and NEW
commands in the Reference Section).

Getting Started

USING YOUR SYSTEM
AS A CALCULATOR

You can use your Personal Computer as a
calculator for quick computation and for
debugging purposes.

When you are in GWBASIC, and the Ok
prompt is on the screen, you can enter PRINT
(or simply ?), followed by any expression, and
CR. The expression is evaluated and its value
displayed. You can also enter LET, followed
by any variable name, the assignment
operator (—), any expression and CR. The
value is assigned to the specified variable. You
can use the variable to represent that value in
successive computations. The keyword LET is
optional; you can begin the line simply using
the variable name.

2-23

Getting Started

2-24

CALCULATOR EXAMPLES

PRINT 3

The constant 3 is displayed.

PRINT 2+3

The expression 2+3 is evaluated, and its value
(5) is displayed.

LET A=15.21

The constant 15.21 is assigned to the variable
A. You can use A in successive computations
to represent this value.

?A-1

The expression A-1 is evaluated, and its value
(14.21) is displayed.

Note: ? is equivalent to PRINT

B=2.3

The constant 2.3 is assigned to the variable B.
The keyword LET is optional; you may begin
with a variable name.

Getting Started

?A*B

The expression A*B is evaluated. Its value
(34.983) is displayed.

?A*B-40

The expression A*B-40 is evaluated, and its
value (-5.017002) is displayed.

Note: If a value is negative, the minus sign is
displayed; if a value is positive, no sign is
displayed.

2-25

Getting Started

2-26

ENTERING A PROGRAM

A GWBASIC program consists of a series of
statements. A statement is a complete
instruction in GWBASIC, telling your
computer to perform specific operations.

You can enter either one or severed statements

per line. In the latter case, each statement
must be separated from the last by a colon (:).

Each line in a GWBASIC program begins
with a line number: an integer greater than or
equal to 0 and less than or equal to 65529.
The line ends when you press CR.

A GWBASIC line may contain a maximum of
255 characters including the carriage return.
Any extra characters will be truncated when ' ^
you enter CR.

When you are in GWBASIC, and the Ok
prompt is on the screen, you can enter a
program.

Getting Started

Example

Enter:

IMEW

This clears memory.

Then enter:

10 REM RECTANGLEI

20 INPUT "Length";L
30 iFL<=0THEN20
40 INPUT "Width";W
50 IFW<=0THEN40

60 LETAREA=L*W

^ 70 PRINT "Apea=";AREA;"L=";L;" W=";W
^ 80 GOTO 20

90 END

2-27

Getting Started

2-28

It is conventional to use an interval of 10

between each line number. This allows you to
modify the program simply by inserting
statements between existing lines.

The above statements form a complete program
that solves a very simple problem. The
problem is to find the area of a rectangle by
entering the values of length and width via
the keyboard. It has been selected both for its
simplicity and to illustrate a variety of
GWBASIC features. Other more concise solu

tions exist.

AUTOMATIC LINE NUMBERING

You can use the AUTO command (see the
Reference Section), to generate a line number
automatically each time you press OR by
pressing CTRL BREAK.

Getting Started

LISTING A PROGRAM

Once a program is in main memory it can be
displayed or listed. To list your program, enter
either the LIST command (the listing will
appear on the screen) or, if a printer is con
nected, the LLIST command (the listing will be
printed out).

The LIST and LLIST commands edit your
program by converting to upper case letters
any keywords, variable names, and function
names and to PRINT any question mark (?)
used instead of PRINT. Statements are

ordered in ascending line number sequence,
even though you may have entered them in a
different order.

To list our sample program on the screen
enter:

LIST

The screen display:

10 REM RECTANGLE1

20 INPUT "Length";L
30 iFL<=0THEN20

40 INPUT "Width"5W
50 IFW<=0THEN40

60 LETAREA=L«W

70 PRINT "Area=";AREA;" L=";L;" W=";W
80 GOTO 20

90 END

Ok

Note that at the end of a listing your system
enters command level and displays the Ok
prompt; the program can now be edited as
required.

2-29

Getting Started

2-30

SAVING A PROGRAM

A program is kept in memory as long as your
computer is switched on and GWBASIC is run
ning and LOAD is not executed. As soon as you
turn off your computer, do a system reset, exit
GWBASIC with a system command, or LOAD
another program, your program is lost. If you
want to retain your newly written program for
future use, then you must enter a SAVE
command to store the program on a disk.

You should save the current program (i.e., the
program presently resident in the main
memory) on the following occasions:

before you turn the machine off or do a system
reset

before entering a new program from the
keyboard

before loading another program in from disk

before returning to MS-DOS by entering a
SYSTEM command

to replace the old version of your program with
one you've just edited

Getting Started

LOADING A PROGRAM

If the program you want to enter into the main
memory resides on a disk, you must issue a
LOAD command. LOAD deletes all variables

and program lines currently residing in
memory. Before entering a LOAD command
save the current program if you want to use it
again, unless you already have a copy.

To load a program file from a disk, you must
specify the drive before the file name, unless
the file resides on the default drive. For

example:

LOAD "B:R00T1"

Loads the program if ROOTl resides on the
diskette inserted in drive B.

If you specify the R option, all open data files
are kept open and the program is run after it is
LOADed. For example:

LOAD "B:R00T1",R

If you do not specify the R option, LOAD
closes any data files that may be open.

2-31

Getting Started

2-32

EXECUTING A PROGRAM

Once a program is in main memory, it can be
executed (or ''run'', as this is frequently called).
To tell your system to execute a program, you
must enter a RUN command (or a LOAD with
the option R).

The RUN command runs the current program,
i.e., the program currently in memory, or loads
a program from a disk and runs it (if you enter
a file specifier after the keyword RUN). For
example:

RUN "BrRECTANGLEl"

Note that a file specifier is a string expression
or, in pgirticular, a string constant. If it is a
string constant as in the example above, it
must be enclosed within quotation marks (").

Getting Started

If you specify the R option all open data files
sure kept open, thus you can re-use these files in
the new program without having to open them
again.

Before entering a RUN filename (or RUN
filename,R), save your current program (unless
you already have a copy).

GWBASIC statements are executed in hne

number sequence, unless a control statement
(GOTO, ON...GOTO, IF...GOTO...ELSE,
IF...THEN...ELSE, FOR/NEXT,
WHILE/WEND) or a subroutine call
statement (GOSUB, ON...GOSUB) dictates
otherwise.

2-33

Getting Started

2-34

RUNNING A SAMPLE PROGRAM

Let us run our sample program. Let us suppose
it is already in memory, entered through the
keyboard or loaded from disk by the LOAD
command.

Enter:

LIST

10 REM RECTAIUGLEI

20 INPUT "Length";L
30 IF L<=0 THEN 20

40 INPUT "Width";W
50 IF W<=0 THEN 40

60 LETAREA=L*W

70 PRINT "Area=";AREA;" L=";L;" W=";W
80 GOTO 20

90 ENO

Ok

to check that this program is in main memory.
The listing will appear on the screen. At the
end of the listing, when Ok appears on the
screen, enter:

RUN

n

Getting Started

Enter values for length and width in response
to the program's prompts.

For example:

Length? 3.5

Width? 4.2

Apea= 14.7 L= 3.5 W= 4.2

Length? -7.3

Length? 7.3

Width? 1.3Q

?Redo from start

Width? 1.32

Area= 9.636 L= 7.3 W= 1.32

Length? (Press CTRL and BREAK keys)

Break in 20

Ok

2-35

Getting Started

2-36

If you enter a negative value for W, statement
40 is executed again, as statement 50 returns
control to statement Q for W) the system
displays an error message:

?Redo from start

and you must re-enter the value. This program
continues to run until you press CTRL
BREAK to stop execution. Your system
displays a ''Break in nnnnn" message and
returns to Command Level. To resume

execution enter:

CONT

Getting Started

PROGRAM INTERRUPTS

Three types of program interrupts are possible:

• Manual interrupts

• Automatic interrupts

• Programmable interrupts

If you press CTRL BREAK, (manual
interrupt), or a STOP, or an END statement is
executed (programmed interrupt), then the
program is interrupted, GWBASIC enters
Command Level and displays OK. CTRL
BREAK and STOP do not close any data file
and display a "Break in nnnnn" message.
END closes all data files and does not display
a "Break in nnnnn" message.

In any case you can resume execution by
entering a CONT command. You can display
program variables (by immediate PRINT or
PRINT USING statements) or change their
values (by immediate LET or SWAP
statements). You can also display program
lines by an EDIT or LIST command, and
modify them.

If you modify lines, you cannot continue
execution via a CONT command. You can

only rerun the program by entering RUN.

If a Syntax error is found (automatic interrupt),
then the program is interrupted, GWBASIC
displays the error message at the line that
caused the error, positioning the cursor under
the first digit of the line number.

2-37

Getting Started

2-38

You can modify the line, and then rerun the
program by entering RUN. You cannot
continue execution by entering CONT.

If you want to examine the contents of some
variables before making any modifications
you should press CTRL BREAK to return to
Command Level. After examining the
contents of the variables you can edit the line
and rerun the program.
For example:

10 A=2S6

RUN

?Syntax Error in 10

10 A=2S6

If an error (other than a Synteix error) is found
(automatic interrupt), the program is
interrupted, GWBASIC displays the error
message, enters Command Level and displays
OK.

You can either display program variables or
display program lines by an EDIT or LIST
command, and then modify them.

You cannot continue execution by entering a
CONT command, but you can rerun the
program by entering RUN.

Getting Started

For example, running a program which
contains:

100 FOR K=

will cause:

Missing operand in 100
OK

If an error occurs and the error trapping is
enabled (programmed interrupt), program
execution is transferred to the line specified by
the ON ERROR statement.

An error trapping routine should check for all
the particular errors that the user wishes to
recover from, and should specify the course of
action to be taken in each case.

This involves either correcting the error, and
resuming execution at a specified statement
or; returning to Command Level.

Example

10 ON ERROR GOTO 100

20 INPUT "WHAT IS YOUR BET";B
30 IF B>5000 THEN ERROR 200

2-39

n

3 Variable Types

• Constants

• Variables

• Expressions and Operators

3-1

Variable Types

3-2

CONSTANTS

Constants are the values that GWBASIC uses
during program execution. There are two types
of constants: string and numeric.

A string constant is a sequence of up to 255
alphanumeric characters enclosed in double
quotation marks.

Examples:

"READY"

"S80"

"acceleration rate"

Numeric constants are positive or negative
numbers. GWBASIC numeric constants
cannot contain commas. There are five types
of numeric constants:

Variable Types

• Integer constants
Whole numbers between —32768 and 32767.
Integer constants do not contain decimal
points.

• Fixed-point constants
Positive or negative real numbers, i.e.,
numbers that contain decimal points.

• Floating-point constants
Positive or negative numbers represented in
exponential form (similar to scientific
notation). A floating-point constant consists of
an optionally signed integer or fixed-point
number (the mantissa) followed by the letter E
and an optionally signed integer (the
exponent). The range for floating-point
constants is 10"^® to 10+^®.

Examples:

235.988E-7 = .0000235988

2359E6 = 2359000000

(Double precision floating-point constants are
denoted by the letter D instead of E. See later
in this chapter.)

3-3

Variable Types

3-4

• Hex constants

Hexadecimal numbers denoted by the prefix
&H.

Examples:

&H76

&H32F

&HFFAA

• Octal constants

Octal numbers denoted by the prefix &0 or &.

Examples:

&0347

S1I234

Variable Types

SINGLE AND DOUBLE PRECISION FOR

NUMERIC CONSTANTS

Numeric constants may be either single
precision or double precision numbers. Single
precision numeric constants are stored with 7
digits of precision, and printed with up to 6
digits of precision. Double precision numeric
constants are stored with 17 digits of precision
and printed with up to 16 digits.

A single precision constant is any numeric
constant that has one of the following
characteristics:

Seven or fewer digits and a decimal point.

Exponential form using E.

A trailing exclamation point (!).

3-5

Variable Types

Examples

Examples:

3-6

46.8

-1.09E-06

3489.0

22.5!

A double precision constant is any numeric
constant that has one of the following
characteristics:

• Eight or more digits and a decimal point.

• Exponential form using D.

• A trailing number sign (§).

345692811

-1.Q9432D-G6

3489.0#

7654321.1234

Variable Types

VARIABLES

Variables are names used to represent values
used in a GWBASIC program. The value of a
variable may be assigned explicitly by the
programmer, or it may be assigned as the
result of calculations in the program. Before a
variable is assigned a vEilue, its value is
assumed to be zero.

VARIABLE NAMES AND

DECLARATION CHARACTERS

GWBASIC variable names may be any
length. Up to 40 characters are significant.
Variable names can contain letters, numbers,
and the decimal point. However, the first
character must be a letter. Special type
declaration characters are also allowed (see
below).

A variable name may not be a reserved word,
but embedded reserved words are allowed.

Reserved words include all GWBASIC

commands, statements, function names, and
operator names. If a vEiriable begins with FN,
it is assumed to be a call to a user-defined
function. Variables may represent either a
numeric value or a string. String variable
names are written with a dollar sign ($) as the
last character. For example:

AS = "SALES REPORT"

The dollar sign is a variable type declaration
character; that is, it "declgires" that the
variable will represent a string.

3-7

Variable Types

Numeric variable names may declare integer,
single precision, or double precision values.
The type declaration characters for these
variable names are as follows:

% Integer variable

! Single precision variable

Double precision variable

The default type for a numeric variable name
is single precision. Examples of GWBASIC
variable names:

PI# Declares a double precision value.

MilMilVIUM! Declares a single precision value.

LIMIT % Declares an integer value.

IMS Declares a string value.

ABC Represents a single precision value.

There is a second method by which variable
types may be declared. The GWBASIC
statements DEFINT, DEFSTR, DEFSNG, and
DEFDBL may be included in a program to
declare the types for certain variable names.
These statements are described in detail in the

Reference Section.

3-8

Variable Types

ARRAY VARIABLES

An array is a group or table of values
referenced by the same variable name. Each
element in an array is referenced by an array
variable that is subscripted with an integer or
an integer expression. An array variable name
has as many subscripts as there are
dimensions in the array. For example V(10)
would reference a value in a one-dimension
array, T(l,4) would reference a value in a two-
dimension array, and so on. The maximum
number of dimensions for an array is 255. The
maximum number of elements per dimension
is 32,767. Both these values are also limited by
the memory size of your system.

Wherever a variable name can be entered in a

GWBASIC program line, an array element
can also be entered. From now on, when
speaking of a variable we shall mean either a
simple variable or an array element.

3-9

Variable Types

3-10

MEMORY REQUIREMENTS

The number of bytes required by strings,
variables and arrays is listed below.

Variable Type
Integer
Single Precision
Double Precision

Array Type
Integer

Single Precision

Double Precision

Bytes
2

4

Bytes
2 per

element

4 per
element

8 per
element

Strings
3 bytes overhead plus the present contents of the string.

Variable Types

TYPE CONVERSION

When necessary, GWBASIC will convert a
numeric constant from one type to another.
The following rules and examples should be
observed.

If a numeric constant of one type is set equal
to a numeric variable of a different type, the
number will be stored as the type declared in
the variable name. (If a string variable is set
equal to a numeric value or vice versa, a "Type
mismatch" error occurs.)

Example:

10 A%= 23.42

20 PRINT A%

RUN

23

Ok

During expression evaluation, all of the
operands in an arithmetic or relational
operation are converted to the same degree of
precision, (i.e., that of the most precise operand).
Also, the result of an arithmetic operation is
returned to this degree of precision.

3-11

Variable Types

3-12

Examples:

10 D# = 6#/7

20 PRilMT D#

RUIM

.8571428571428571

Ok

The arithmetic is performed in double
precision and the result is returned in D# as a
double precision value.

10 D = 6#/7

20 PRIIMT D

RUN

.8571429

Ok ^

The arithmetic is performed in double
precision and the result is returned to D (single
precision variable), rounded, and printed as a
single precision value.

Logical operators convert their operands to
integers and return an integer result.
Operands must be in the range —32768 to
32767 or an "Overflow" error occurs. A full

description of Logical Operators follows later in
this chapter.

Variable Types

• When a floating-point value is converted to an
integer, the fractional portion is rounded.

Example:

10 C%=55.88

20 PRINT C%

RUN

56

Ok

• If a double precision variable is assigned a
single precision value, only the first seven
digits (rounded) of the converted number will
be valid. This is because only seven digits of
accuracy were supplied with the single
precision value. The absolute value of the
difference between the printed double
precision number and the original single
precision value will be less than 6.3E-8 times
the original single precision value.

Example:

10 A2.04

20 B#=A

30 PRINT A;B#
RUN

2.04 2.039999961853027

Ok

3-13

Variable Types

3-14

EXPRESSIONS
AND OPERATORS

An expression may be a string or numeric
constant, a variable, or a combination of
constants and variables with operators. An
expression always produces a single value.

Operators perform mathematical or logical
operations on values. The GWBASIC
operators may be divided into four categories:

Arithmetic

Relational

Logical

Functional

Each category is described in the following
subsections.

Variable Types

ARITHMETIC OPERATORS

The arithmetic operators, in order of
precedence, are as follows:

Operator Operation
Exponentiation

— Negation
* Multiplication
I Division

\ Integer Division
MOD Modulus Arithmetic

+ Addition

— Subtraction

Sample Expression
X^Y

-X

X*Y

X/Y

X\Y

X MOD Y

X+Y

X-Y

To change the order in which the operations
are performed, use parentheses. Operations
within parentheses are performed first. Within
the parentheses, the usual order of operations
is maintained.

3-15

Variable Types

3-16

Some sample algebraic expressions follow,
together with their GWBASIC counterparts.

Algebraic GWBASIC
Expression Expression

X+2Y X+2*Y

X- - X - Y/Z

XY^
(X*Y)/Z

X+Y

(X+Y)/Z

(X')^ (X -2) "Y

X^^ X "(Y -Z)

X(-Y) X»(-Y)

Note:

Two consecutive operators must be separated
by parentheses, as shown in the X*(—Y)
example.

Variable Types

INTEGER DIVISION AND

MODULUS ARITHMETIC

Two additional operators are available in
GWBASIC: integer division and modulus
arithmetic.

Integer division is denoted by the backslash
(\). The operands are rounded to integers
before the division is performed, and the
quotient is truncated to an integer. The
operands must be within the range —32768 to
32767.

Example:

x = 10\4

PRINT X

2

Ok

Integer division follows multiplication and
floating-point division in order of precedence.

Modulus arithmetic is denoted by the operator
MOD. Modulus arithmetic yields the integer
value that is the remainder of an integer
division.

Example:

PRINT 10.4 MOD 4

2

Ok

PRINT 25.68 MOO 6.99

5

Ok

Modulus arithmetic follows integer division in
order of precedence.

3-17

Variable Types

3-18

OVERFLOW

If, during the evaluation of an expression,
division by zero is encountered, the ''Division
by zero" error message is displayed, machine
infinity (the largest number that can be
represented in floating-point format) with the
sign of the numerator is supplied as the result
of the division, and execution continues. If the
evaluation of an exponentiation operator
results in zero being raised to a negative
power, the "Division by zero" error message
again is displayed, positive machine infinity is
supplied as the result of the exponentiation,
and execution continues.

If overflow occurs, the "Overflow" error
message is displayed, machine infinity with
the algebraically correct sign is supplied as
the result, and execution continues.

Variable Types

RELATIONAL OPERATORS

Relational operators are used to compare two
values. The result of the comparison is either
"true" (—1) or "false" (0). This result may then
be used to make a decision regarding program
flow. (See *'IF" statements, in the Reference
section).

The relational operators are:

Operator Relation Tested Example
= Equality X=Y
<> or >< Inequality XoY
< Less than X<Y

> Greater than X>Y

_ <= or =< Less than or equal to X<=Y
>= or => Greater than or equal to X>=Y

3-19

Variable Types

3-20

(The equal sign is also used to assign a value
to a variable. See ''LET" Statement in the

Reference Section.)

When arithmetic and relational operators are
combined in one expression, the arithmetic
operation is always performed first. For
example, the expression

X + Y < [T-1)/Z

is true if the value of X plus Y is less than
the value of T-1 divided by Z.

More examples:

320 IF SiN(X) < 0 GOTO 1000
400 IF 1 MOO J <> 0 THEN K = K + 1

Variable Tj^es

LOGICAL OPERATORS

Logical operators perform tests on multiple
relations, bit manipulation, or Boolean
operations. The logical operator returns a
result which is either *'true" (not zero) or
*'false" (zero). In an expression, logical
operations are performed after arithmetic and
relational operations. The outcome of a logical
operation is determined as shown below.

The operators are Ksted in order of precedence.

X NOTX X Y X OR Y

1 0 1 1 0

0 1 1 0 1

0 1 1

0 0 0

X Y X AND Y X Y X EQV Y

1 1 1 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 0 0 0 1

X Y X OR Y X Y X IMP Y

1 1 1 1 1 1

1 0 1 1 0 0

0 1 1 0 1 1

0 0 0 0 0 1

3-21

Variable Types

3-22

Just as the relational operators can be used to
make decisions regarding program flow,
logical operators can connect two or more
relations and return a true or false value to be

used in a subsequent decision (see ''IF"
statements in the Reference Section.)

Example

IF D<200 AND F<4 THEN 80

IF l>10 OR K<0 THEN 50

IF NOT P THEN 100

Logical operators work by converting their
operands to 16-bit, signed, two's complement
integers in the range —32768 to 32767. (If the
operands are not in this range, an error
results.) If both operands are supplied as 0 or
—1, logical operators return 0 or —1. The given
operation is performed on these integers bit-
by-bit; i.e., each bit of the result is determined
by the corresponding bits in the two operands.

Variable Types

Thus, it is possible to use logical operators to
test bytes for a particular bit pattern. For
instance, the AND operator may be used to
''mask'' all but one of the bits of a status byte
at a machine I/O port. The OR operator may
be used to "merge" two bytes to create a
particular binary value. The following
examples will help demonstrate how the
logical operators work.

Decimal Binary

63 AND 16=16 111111 AND 010000=010000

15 AND 14=14 001111 AND 001110=001110

-1 AND 8=8 1111111111111111 AND 001000=000100

4 OR 2=6 000100 AND 000010=000110

10 OR 10=10 001010 OR 001010=001010
-1 OR -2=-l 1111111111111111 OR 1111111111111110

= 1111111111111111

The bit complement of sixteen
zeros is sixteen ones, which is
the two's complement represen
tation of -1.

NOT X=-(X+1) The two's complement of any
integer is the bit complement
plus one.

3-23

Variable Types

3-24

FUNCTIONAL OPERATORS

When a function is used in an expression, it
calls a predetermined operation that is to be
performed on an operand. GWBASIC has
''intrinsic'' functions that reside in the system,
such as SQR (square root) or SIN (sine). All
GWBASIC intrinsic functions are described in

the Reference Section.

GWBASIC also allows "user-defined"

functions that are written by the programmer.
(See "DEF FN" Statement in the Reference
Section.)

STRING OPERATORS

Strings may be concatenated by using +.

Example

10 A$ = "FILE" : BS = "NAME"

20 PRINT AS+ B$

30 PRINT "NEW " +AS-hBS

RUN

FILENAME

NEW FILENAME

Ok

Variable Types

Strings may be compared using the same
relational operators that are used with
numbers:

= <> < > <= =< >= =>

String comparisons are made by taking one
character at a time from each string and
comparing the ASCII codes. If aU the ASCII
codes are the same, the strings are equal. If
the ASCII codes differ, the lower code number
precedes the higher. If during string
comparison the end of one string is reached,
the shorter string is said to be smaller.
Leading and trailing blanks are significant.

Example

"AA"<"AB"

"FILENAME" = "FILENAME"

"XB">"X#"

"CL">"CL"

"kg">"KG"
"SMYTH" < "SMYTHE"

BS<"9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test
string values or to alphabetize strings. All
string constants used in comparison
expressions must be enclosed in quotation
marks.

Note that lower case letters have higher ASCII
codes than upper case letters.

3-25

4 Disk File
Handling

Device Independent
Input/Output

How MS-DOS Keeps Track of
Your Files

File Specification

Commands for Program Files

Disk Data Files — Sequential
and Random Access

4-1

Disk File Handling

4-2

DEVICE INDEPENDENT

INPUT/OUTPUT

GWBASIC provides device-independent
input/output that permits flexible approaches
to data processing. Using device independent
I/O means that the syntax for access is the
same for any device.

The following statements, commands, and
functions support device-independent I/O (see
individual descriptions in the Reference
section):

BLOAD LOF

BSAVE MERGE

CHAIN OPEN

CLOSE PCS

EOF PRINT ^
GET PRINT USING ^
INPUT PUT

INPUTS RUN
LINE INPUT SAVE

LIST WIDTH

LOAD WRITE

LOC

Disk File Handling

HOW MS-DOS KEEPS
TRACK OF YOUR FILES

A file is a collection of information. The names

of files are kept in directories on the fixed disk
or the diskette. These directories also contain

information on the size of the files, their
location on the fixed disk or the diskette, and
the dates that they were created and updated.
The directory you are working in is called your
current directory.

An additional system area is called the File
Allocation Table. It keeps track of the space
used by your files. It also allocates the free
space on your fixed disk or diskette so that you
can create new files.

These two system areas, the directories and
the File Allocation Table, enable MS-DOS to
recognize and organize the files on your disks.
The File Allocation Table is created on a new

fixed disk or diskette when you format it with
the MS-DOS FORMAT command, and one
empty directory is created, known as the root
directory.

To use the information in a file you must
OPEN the file to tell GWBASIC where the

information is. You may then use the file for
input and/or output.

4-3

Disk File Handling

4-4

Using GWBASIC, any type of input/output may
be treated like I/O to a file, whether you are
actually using a disk or diskette file, or are com
municating with another computer or a
peripheral device. Thus some I/O statements,
functions and commands allow you to specify or
refer to either a file or a device (e.g. OPEN,
LIST, CLOSE, etc...).

Disk File Handling

FILE SPECIFICATION

FILE NUMBERS

Up to 15 files, numbered 1 to 15, can be opened
by GWBASIC at one time. The number of files
that can be opened is specified using the IF:
option on the GWBASIC command. A file
number is associated with a file when the file is

opened.

NAMING FILES

Each file is uniquely identified. The filename is a
string expression with the following format:

"[device:]filename"

The device name (or "device") tells GWBASIC
on which device to look for the file, and the
filename tells GWBASIC which file to look for

on that device. The device name is optional. If
omitted the default device is assumed. Note the

colon (:), indicated above, must be used
whenever a device is specified.

4-5

Disk File Handling

4-6

A file name can comprise:

one to eight characters (for legal characters see
below). For example NEWFILE.

one to eight characters, followed by a period (.)
and a one to three character file name extension.

For example NEWFILE.EXE.

A file name may be made up of any of the
following characters:

A-Z 0-9 $ S # ~
% ' [) - _
(a ~ !

Alphabetic characters within the file name can
be entered in upper or lower case, but MS-DOS
will translate lower case letters into upper case.

GWBASIC supplies the extension .BAS if no
extension is given, but NAME and KILL do not
follow this rule: they do not supply any
extension.

Disk File Handling

File specification for communications devices is
slightly different. The filename is replaced with
a hst of options specifying such things as line
speed. Refer to OPEN COM statement in the
Reference section for details.

Remember that if you use a string constant for
the filename, you must enclose it in quotation
marks. The only exception to this rule is the
MS-DOS GWBASIC command, where a filename
is a string constant not included in quotation
marks.

For example in GWBASIC, you would type:

RUN "B:ARSENAL.RED"

but from MS-DOS you use:

A>gwbasic b:arsenal.red

4-7

Disk File Handling

4-8

NAMING DEVICES

The device name consists of up to four charac
ters and is always followed by a colon (:). The
colon must always be used whenever a device is
specified. The device name may be one of the
following:

A: first diskette drive (Input and Output)
B: second diskette drive (Input and

Output)
C: first hard disk drive (Input and

Output)
D: second hard disk drive (Input and

Output)
KYBD: keyboard (Input only)
SCRN: screen (Output only)
LPT1: first printer (Output only)
LPT2: second printer (Output only)
LPT3: third printer (Output only)
C0M1: RS232 Communications 1

(Input and Output)
COMB: RS232 Communications 2

(Input and Output)
CGM3: RS232 Communications 3

(Input and Output)
CGM4: RS232 Communications 4

(Input and Output)

Disk File Handling

DIRECTORY PATHS

With GWBASIC the user can organize a disk in
such a manner that files that are not part of his
current task do not interfere with that task.

Previously, only a single directory was
supported that contained all files on a disk. MS-
DOS extends this concept to allow a directory
to contain both files and directories and to

introduce the notion of the "current" directory.

To specify a file, the user could use one of two
methods: either specify a path from the root
directory to the file, or specify a path from the
current directory to the file. A "Directory Path"
(or "pathname") is a series of directory names
separated by '\' and ending with a file name. A
pathname that starts at the root begins with
the '\'.

There are two special directory entries in each
directory, denoted by and They specify
the directory itself ('.') or the parent of the
directory The root directory's parent is
itself.

4-9

Disk File Handling

4-10

Let us take a hypothetical example.

In a particular business, both sales and account
ing share a computer with a large disk and the
individual employees use it for preparation of
reports and maintaining accounting information.
One would naturally view the organization of
files on the disk as shown on the next page.

Disk File Handling

[^+<disk>+j
tnooTi

SALES

/\
JOHN MARY

I
REPORT REPORT

other

files

ACCOUNTING

STEVE SUE

REP|ORT
other

files

REPORT

Using a directory structure like the hierarchy
above, and assuming that the current directory
is at point [*] (directory JOHN), to reference the
REPORT under JOHN, the following are
equivalent:

REPORT

\SALES\JOHN\REPORT

4-11

Disk File Handling

4-12

To refer to the REPORT under MARY,
supposing that JOHN is still the current
directory, the following are equivalent:

../MARY/REPORT
/SALES/MARY/REPORT

To refer to the REPORT under SUE, supposing
that JOHN is still the current directory, the
following are equivalent;

../../ACCOUINITIIMG/SUE/REPORT
/ACCOUNTIIMG/SUE/REPORT

Disk File Handling

CURRENT DIRECTORY

GWBASIC remembers a default directory
(called the "current" directory) for each drive on
your system. This is the directory that
GWBASIC will search if you enter a filename
without specifying which directory the file is in.
A single directory is created on a disk when it is
formatted. That directory is called the "root"
directory. You can create other directories by
entering the MKDIR command, or remove
directories by entering the RMDIR command
(see the Reference section.) The CHDIR
command allows you to change the current
directory. Just after formatting a diskette the
ROOT directory is the current directory.

If a "pathname" begins with a backslash (\),
GWBASIC starts its search from the "root";
otherwise it starts its search from the current

directory. The "pathname" you specify can be a
sequence of directory names starting either with
the "root," or with the current directory. If the
file belongs to the current directory you only
need to specify the file.

4-13

Disk File Handling

4-14

There is no restriction on the depth of a tree
(the length of the longest path from root to leaf)
except in the number of allocation units
available. The root directory will have a fixed
maximum number of entries, 64 or 112 files for
a diskette. The maximum number of files in a

hard disk root directory depends on the size of
the MS-DOS partition on the disk.

Other sub-directories can also be accessed via

the root directory, and these in turn can branch
off to further files and sub-directories. The only
limit is the amount of available space on the
disk.

Old (pre 2.0) disks will appear to MS-DOS 2.0 as
having only a root directory with files in it and
no sub-directories whatever.

Disk File Handling

Each directory can also contain file and
directory names that also appear in other
directories.

Pathnames can be used for the following
commands:

BLOAD

BSAVE

CHAIN

CHDIR

FILES

GWBASIC(*)
KILL

LOAD

MERGE

MKDIR

NAME

OPEN

RMDIR

RUN

SAVE

(*) Used to initialize GWBASIC. This is an
MS-DOS command (not a GWBASIC command).

A "pathname" may be considered as an
extension of "filename" and is a string
expression of the form:

[device:]l\directory][\directory]...[\]
filename

or

[devlce:]|\directory]|\directoryl...l\directory]

4-15

Disk File Handling

4-16

All characters that are valid for a filename are

also valid for a directory name.

Examples (supposing JOHN is the current
directory):

B:\SALES\MARY\REPORT

B:..\MARY\REPORT

The GWBASIC command and some GWBASIC

commands allow you to specify a file by either a
''filename'' or a "pathname" LOAD, MERGE,
NAME, OPEN, RUN and SAVE.

Some GWBASIC commands allow you to use
only the latter form of a "pathname." They are:
MKDIR, RMDIR, and CHDIR.

The FILES command allows you to use both
forms to display either all files residing on a
directory or a single file, or a group of files by
using wild cards (* and/or ?).

Disk File Handling

A ''pathname" may not contain more than 63
characters. Pathnames longer than 63 characters
will give a "Bad Filename" error.

Specifying a "pathname" where only a "file
name" is legal, or placing a "device" other than
at the beginning of the "pathname" will result
in a "Bad Filename" error.

If you use a string constant for the "path
name," you must enclose it in quotation marks.
Only the GWBASIC commgind specifies path
names as literal strings not included in
quotation marks.

4-17

Disk File Handling

4-18

COMMANDS FOR
PROGRAM FILES

The following list reviews the commands and
statements used in program file manipulation.

With GWBASIC the asterisk (*) and question
mark (?) can be used as wild cards with the
FILES and KILL commands.

SAVE filename [,{A|P}]
or

SAVE pathname [,{A|P}]

Writes to disk the program that currently
resides in memory. Option A writes the program
as a series of ASCII characters (otherwise,
GWBASIC or uses a compressed binary format);
option P writes the program in a protected
form. (See Protected Files in this chapter.)

LOAD filename [,R]
or

LOAD pathname [,R]

Loads the program from disk into memory.
Option R runs the program immediately. LOAD
always deletes the current contents of memory
and closes all files before loading. If R is
included, however, open data files are kept open.
Thus, programs may be chained or loaded in
sections and access the same data files. LOAD

filename, R and RUN filename, R are
equivalent.

Disk File Handling

RUN filename [,R1
or

RUN pathname [,R]
Loads the program from disk into memory and runs it.
RUN deletes the current contents of memory and closes
all files before loading the program. If the R option is
included, however, all open data files are kept open. RUN
filename, R and LOAD filename,R are equivalent.

MERGE filename
or

MERGE pathname

KILL filename
or

KILL pathname

Loads the program from disk into memory but does not
delete the current contents of memory. The program line
numbers on disk merge with the line numbers in memory.
If two lines have the same number, only the line from the
disk program is saved. After a MERGE command, the
merged program resides in memory, and GWBASIC
returns to command level.

Deletes the file from the disk. The filename may be a
program file, or a sequential or random access data file.

NAME{filename} AS filename
or

NAME (pathname) AS (filename)

Changes the name of a disk file. NAME may be used with
any disk file.

4-19

Disk File Handling

4-20

PROTECTED FILES

If you want to save a program in an encoded
binary format, use the Protect option with the
SAVE command. For example:

SAVE "MYPROG",P

Because a program saved in this manner cannot
be listed or edited, you may want to save an
unprotected copy of the program for these
purposes.

Disk File Handling

DISK DATA FILES -

SEQUENTIAL AND
RANDOM ACCESS

Two types of disk data files can be created and
accessed by a GWBASIC program:

sequential files

random access files

SEQUENTIAL FILES

Sequential files are easier to create than random
access files but limit flexibility and speed when
accessing the data. The data written to a
sequential file is in the form of ASCII charac
ters which are loaded and stored, one item after
another (sequentially), in the order they are
sent.

The statements and functions used with sequen
tial files are as follows:

CLOSE

EOF

INPUTS
INPUT#

LINE INPUT#

LOG

EOF

OPEN

PRINT#

PRINT# USING
WRITE#

See the Reference section of this manual for
more information on these statements and
functions.

4-21

Disk File Handling

4-22

CREATING A SEQUENTIAL FILE

The following program steps are required to
create a sequential file and access the data in
the file:

• OPEN the file in "O" (Output) mode.

OPEN "0",#1,"DATA"

• Write data to the file using the WRITE#
statement. (You may use the PRINT# statement
instead; refer to the PRINT# statement in the
Reference section.)

WRITE#1,AS,BS,CS

Disk File Handling

• If you have opened a file in the "O" mode, to
access the data in the file, you must CLOSE the
file and reOPEN it in "1" (Input) mode.

CLOSE #1

GPEIM "I",#1,"DATA"

• Use the INPUT# statement to read data from

the sequential file to the program.

II\IPUT#1,X$,Y5,ZS

A program that creates a sequential file can
also write formatted data to the disk with
the PRINT# USING statement. For

example, the statement

PRII\IT#1,USJrMG"####.##,";A,B,C,D

could be used to write numeric data to disk
without explicit delimiters. The comma (,) at
the end of the format string serves to
separate each item in the disk file.

4-23

Disk File Handling

4-24

The LOG function, when used with a sequential
file, returns the number of sectors that have
been written to or read from the file since it was

opened. For example,

100 IF L0C(1)>50 THEN STOP

would end program execution if more than 50
sectors had been written to, or read from, file #1
since it was opened.

Program 1 is a short program that creates a
sequential file, named "DATA," from informa
tion you input at the keyboard.

10 OPEN "0",#1,"DATA" _
20 INPUT "NAME";N$
25 IF N$ = "DONE" THEN END
30 INPUT "DEPARTMENT";DS
40 INPUT "DATE HIRED";H$
50 PRINT#1,NS;",";D$;",";H$
60 PRINT:GDTD 20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

Disk File Handling

NAME? SHERLOCK HOLMES
OEPARTMENT?
OATE HIREO? 12/03/65

NAME? EBENEEZER SCROOGE
OEPARTMENT?

OATE HIREO? 04/27/78

NAME? SUPER MAN

OEPARTMENT?

OATE HIREO? 08/16/78

NAME? OONE
Ok

4-25

Disk File Handling

4-26

ACCESSING A SEQUENTIAL FILE

Program 2 accesses the file "DATA" that was
created in Program 1 and displays the name of
everyone hired in 1978.

10 OPEN "I",#1,"DATA"
20 INPUT#1,NS,DS,H$
30 IF RIGHT$(H$,2] = "78" THEN PRINT N$
40 GOTO 20
RUN

EBENEEZER SCROOGE
SUPER MAN

Input past end in 20
Ok

The progreim reads, sequentially, every item in
the file. When all the data has been read, line 20
causes an "Input past end" error. This error can
be avoided, however, by inserting an additional
line (line 15 shown below) which uses the EOF
function to test for end-of-file.

15 IF E0F(1] THEN END

Then change line 40 to GOTO 15.

Disk File Handling

ADDING DATA TO A SEQUENTIAL FILE

As soon as a sequential file is opened on disk in
''O'' mode, its current contents are destroyed.
In order to add more data to the file it is neces

sary to use the OPEN statement with the
APPEND mode, as described in the Reference
section of this manual.

4-27

Disk File Handling

4-28

RANDOM ACCESS FILES

Creating and accessing random access files
requires more program steps than with sequen
tial files, but there are advantages to using ran
dom access files. One advantage is that random
access files require less room on the disk,
because GWBASIC stores them in a packed
binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random access files is
that data can be accessed at random, i.e.,
anywhere on the disk. It is not necessary to
read through all the information on disk with
random access files, as with sequential files.
This is possible because the information is
stored and accessed in distinct units called
records and each record is numbered.

The statements and functions that are used
with random access files are:

CLOSE LOF
CVD MKD$
CVI MKI$
CVS MKS$
FIELD OPEN
GET PUT
LSET RSET
LOG

Disk File Handling

CREATING A RANDOM ACCESS FILE

Creation of a random access file requires the
following program steps.

1 OPEN the file for random access ("R" mode).
Always use the "R" (Random) mode for random
access files. "R" allows you to perform both
input and output operations on a file.

This example specifies a record length of 32
bytes. If the record length is omitted, the
default is 128 bytes.

OPEN "R",#1,"FILE",32

2 Use the FIELD statement to allocate space in
the random buffer for the variables that will be

written to the random file.

FIELD #1,20 AS NS, 4 AS AS,8 AS PS

3 Use the LSET command to move the data into

the random buffer. Numeric values must be

made into strings when placed in the buffer. To
do this, use the "make" functions. MKI$ makes
an integer value into a string, MKS$ does the
same for a single precision value, and MKD$
converts a double precision value. See the
Reference section for more information on these

functions.

4-29

Disk File Handling

4-30

LSET l\l$ = XS
LSET AS = MKSS[AMT]
P$ = TELS

Write the data from the buffer to the disk using
the PUT statement.

PUT #1,C0DE%

The LOC function, with random access files,
returns the "current record number." The cur

rent record number is one, plus the last record
number that was used in a GET or PUT

statement. For example, the statement

IF LOC(1]>50 THEN END

ends program execution if the current record
number in file#l is higher than 50.

The following example writes information that is
input at the terminal to a random access file.

10 OPEN "R",#1,"FiLE",32
20 FIELD #1,20 AS NS, 4 AS AS, 8 AS PS
30 INPUT "2-DIGIT CDDE";CDDE%
40 INPUT "NAME":XS
50 INPUT "AMDUNT";AMT
80 INPUT "PHDNE";TELS:PRINT
70 LSET NS = XS
80 LSET AS = MKSS(AMT)
90 LSET PS = TELS
100 PUT #1,CDDE%
110 GOTO 30

Disk File Handling

Each time the PUT statement is executed, a
record is written to the file. The two-digit code
that is input in line 30 becomes the record
number.

Note: Do not use a FIELDed string variable in
an INPUT or LET statement. This causes the

pointer for that variable to point into string
space instead of into the random access file
buffer.

4-31

Disk File Handling

4-32

ACCESSING A RANDOM ACCESS FILE

Reading a random access file requires the
following steps.

1 OPEN the file in "R" mode.

OPEN "R",#1,"FILE",32

2 Use the FIELD statement to allocate space
in the random buffer for the variables that

will be read from the file.

FIELD #1,20 AS NS, 4 AS AS,8 AS PS

3 Use the GET statement to move the desired

record into the random buffer.

GET #1,C0DE%

4 The data in the buffer may now be accessed by
the program. Numeric values must be converted
back to numbers using the "convert" functions.
CVI converts numeric values to integer values,
CVS converts numeric values to single precision
values, and CVD converts numeric values to
double precision values.

O

Disk File Handling

PRINT N$

PRINT CVS(A$]

The following program accesses the "FILE"
that was created in the previous example. When
the two-digit code is entered at the terminal, the
information associated with that code is read

from the file and displayed.

10 OPEN "R",#1,"FILE",32
20 FIELD #1, 20 AS N$, 4 AS AS, 8 AS PS
30 INPUT "2-DIGIT CODE":CODE%
40 GET #1, CODE%
50 PRINT N$
60 PRINT USING "$S###.##":CVS(AS]
70 PRINT PSiPRINT
80 GOTO 30

4-33

Disk File Handling

4-34

The following example is an inventory program
that illustrates random file access. In this

program, the record number is used as the part
number, and it is assumed the inventory will
contain no more than 100 different part
numbers. Lines 900 through 960 initialize the
data file by writing CHR$(255) as the first
character of each record. This is used later (line
270 and line 500) to determine whether an entry
already exists for that part number.

Lines 140 through 210 display the different
inventory functions that the program performs.
When you type in the desired function number,
line 230 branches to the appropriate subroutine.

120 0PEIM"R",#1,"INVEN.DAT",39
130 FIELD#1,1 AS FS,30 AS DS,2 AS QS,2 AS RS,4 AS PS
140 PRINT:PRINT "FUNCTIONS:":PRINT

150 PRINT 1,"INITIALIZE FILE"
160 PRINT 2,"CREATE A NEW ENTRY"
170 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
180 PRINT 4,"ADD TD STOCK"
190 PRINT 5,"SUBTRACT FROM STOCK"
200 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
210 PRINT:PRINT:INPUT"FUNCTION";FUNCTION
220 IF [FUNCTI0N>1)0R(FUNCTIDN>6) THEN PRINT "BAD

FUNCTION NUMBER":GOTO 140

230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 140

250 REM BUILD NEW ENTRY

260 GOSUB 840

270 IF ASC(FS)< >255 THEN
INPUT"OVERWRITE";AS:
IF AS "Y" THEN RETURN

Disk File Handling

280 LSET FS = CHRS[0]
290 INPUT "•ESCRIPTION";DESCS
300 LSET OS == DE5CS

310 INPUT "QUANTITY IN STQCK";a%
320 LSET QS = MKI5[Q%]
330 INPUT "REORDER LEVEL";R%
340 LSET R5 = MKIS[R%]
350 INPUT "UNIT PRICE";P
380 LSET PS = MKSS[P]
370 PUT #1,PART%
380 RETURN

390 REM DISPLAY ENTRY

400 GOSUB 840

410 IF ASC(FS] = 255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ###";PART%
430 PRINT OS

440 PRINT USING "QUANTITY ON HAND #####";CVI(QS]
450 PRINT USING "REORDER LEVEL #####";CVI[RS]
460 PRINT USING "UNIT PRICE SS##.##";CVS[PS]
470 RETURN

480 REM ADO TO STOCK

490 GOSUB 840

500 IF ASC[FS] = 255 THEN PRINT "NULL ENTRY":RETURN
510 PRINT OS:INPUT "QUANTITY TO ADO" ;A%
520 Q% =CVI[QS] + A%
530 LSET QS = MKIS(Q%]
540 PUT#1.PART%
550 RETURN

560 REM REMOVE FROM STOCK

570 GOSUB 840

580 IF ASC[FS] = 255 THEN PRINT "NULL ENTRY";RETURN
590 PRINT OS

600 INPUT "QUANTITY TO SUBTRACT"|S%
610 Q% =CVI[QS]
620 IF [Q%-S%]<0 THEN PRINT "ONLY";Q%;"IN
STOCK":GOTO 600

4-35

Disk File Handling

4-36

630Q%=Q%-S% ^
640 IF Q% = <CVi(R$) THEN PRINT "QUANTITY NOW";Q%;

" REORDER LEVEL";CVI(R$]
650 LSET a$ = MKIS(Q%)
660 PUT #1,PART%
670 RETURN

680 REM DISPLAY ITEMS BELOW REORDER LEVEL

690 FOR 1 = 1 TO 100

710 GET #1,1
715 IF ASC (F$) = 255 THEN 730
720 IF CVI[OS]<CVI(RS] THEN PRINT DS; "QUANTITY";

CVI[0$) TAB[50] "REORDER LEVEL";CVI(R$)
730 NEXT I

740 RETURN

840 INPUT "PART NUMBER";PART%
850 IF(PART%<1)0R(PART%>100) THEN PRINT "BAD

PART NUMBER": GOTO 840 ELSE

GET #1,PART%:RETURN
890 END

900 REM INITIALIZE FILE

910 INPUT "ARE YOU SURE";B$:IF BS "Y" THEN RETURN
920 LSET FS = CHR$[255)
930 FOR 1=1 TO 100 (^
940 PUT #1,1
950 NEXT I

960 RETURN

Disk File Handling

4-37

n

5 Graphics

Selecting the Screen Attributes

Text Mode

Graphics Mode

5-1

Graphics

5-2

SELECTING THE
SCREEN ATTRIBUTES

The SCREEN statement allows you to switch
between text and graphics modes and the
WIDTH statement allows you to set the
number of columns.

There are three different graphics modes you
can select with the SCREEN statement:

• Medium Resolution Mode

• High Resolution Mode

• Super Resolution Mode

They differ only in the number and size of the
points displayed and in the number of colors
allowed.

The SCREEN statement also allows you
(through the "burst" parameter) to enable color
in Text or Medium-Resolution Mode (using a
color TV set or RGB monitor), and to select the
active and display pages in Text Mode (through
the "apage" and "vpage" parameters). For a
standard monitor, the "burst" parameter has no
meaning.

Graphics

The SCREEN statement must precede any I/O
statements to the screen, as it selects the
''screen attributes'' to be used by subsequent
statements. The system assumes SCREEN
0,0,0,0 by default if no screen attributes are
specified. This selects 80 columns Text Mode,
B/W, and only one display page.

You can also use more than one SCREEN

statement to define different screen attributes

for different sections of your program.

5-3

Graphics

5-4

TEXT MODE

In Text Mode you can display text, i.e., letters,
numbers, and all special characters of the
GWBASIC character set. You can set the
character foreground and background colors
using the COLOR (Text) statement. This
statement also allows you to create blinking,
reverse image, invisible, highlighted, and
underscore characters.

Characters are displayed in 25 horizontal lines
numbered 1 through 25, from top to bottom.
Each hue has 40 (or 80) character positions. The
WIDTH command allows you to select the
number of columns.

The LOCATE statement positions the cursor on
the active screen. The cursor column and line

coordinates are returned by the POS(O) and
CSRLIN functions.

Characters are normally displayed, using the
PRINT or PRINT USING statements, at the
cursor position from left to right on each line,
from line 1 to 24. When the cursor passes to
line 25, lines 1 through 24 are scrolled up one
hne.

Graphics

Line 25 is usually reserved as a "soft key"
display (see KEY statement in the Reference
section).

Multiple Display Page

A special feature of Text Mode is multiple
display pages. Your system has a 16K-hyte
screen buffer, of which only 2K is required for
Text Mode (or 4K for 80 column width). The
buffer is therefore divided into different pages,
which can be written to and/or displayed
individually. There are 8 display pages in 40
column width and 4 display pages in 80 column
width.

Statements, Commands and Functions

The statements, commands and functions
available in Text Mode to display text are:

Statements/

Commands Functions

CLS CSRLIN

COLOR (Text) POS
LOCATE (Text) SCREEN
PRINT SPC

PRINT USING TAB

SCREEN

WIDTH

WRITE

5-5

Graphics

5-6

In Text Mode you can use 16 different colors (if
color hardware is installed):

0 Black

1 Blue

2 Green

3 Cyan
4 Red

5 Magenta
6 Brown
7 White

8 Gray
9 Light Blue

10 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 Yellow

15 High-intensity White

In a monochrome system only two colors are
available (black and white), but you can under
line characters, make characters blink, or dis
play high-intensity characters.

Graphics

GRAPHICS MODE

In Graphics Mode you can draw complex pic
tures as well as display text. To display text in
Graphics Mode you can use all the statements,
commands and functions available in Text

Mode, with the exception of the COLOR (Text)
and LOCATE (Text) statements. In Graphics
Mode you have to use the COLOR (Graphics)
and LOCATE (Graphics) statements instead.
Note also that the CLS and WIDTH statements

have different features in Graphics Mode.

In Graphics Mode all points of the screen are
addressable in medium, high or super resolution.
A point on the screen is called a 'pixel' (a con
traction of "picture element"), and a line of
pixels is called a "scanline."

To print pictures that you have generated in the
Graphics Mode, you must run the MS-DOS
GRAPHICS command before running the
BASIC program that draws the pictures. See
the User Guide to MS-DOS for details.

5-7

Graphics

5-8

Statements, Commands and Functions

The statements, functions and commands you
can use to display pictures are:

Statement/Command Function

CIRCLE PMAP
COLOR (Medium-Resolution Mode) POINT
COLOR (High-Resolution Mode)
COLOR (Super-Resolution Mode)
DRAW
GET (Graphics)
LOCATE (Graphics)
PAINT
PRESET
PSET
PUT (Graphics)
SCREEN
VIEW
WINDOW

Graphics

MEDIUM RESOLUTION MODE

In this mode, there are 320 pixels on the
horizontal axis and 200 pixels on the vertical
axis. These are numbered from left to right and
from top to bottom; thus the upper left corner
pixel is (0,0) and the lower right corner pixel is
(319, 199).

You can display four colors at a time if a color
monitor is used, otherwise the four colors will
appear as shades of grey.

Drawing Pictures

When you draw pictures on the screen using the
graphics statements (PSET, PRESET, LINE,
CIRCLE, PAINT or DRAW), you C£m specify a
color number of 0, 1, 2, or 3. This selects the
color from the current *'palette" as defined by
the COLOR statement.

If you do not specify a color number, the
default is the graphics foreground specified by
the COLOR statement, or 3 (if no graphics
foreground is given).

5-9

Graphics

5-10

The COLOR (Medium-Resolution) statement
allows you to specify both the color for color
number 0, and the ''palette" for the three
remaining color numbers (1, 2, and 3).

Palette Color 1 Color 2 Color 3

0 Green Red Yellow
1 Cyan Magenta White

If color is disabled the use of memory is
identical: the modes differ only in that the two
bits of a pixel are interpreted differently by the
hardware: medium resolution B/W displays 4
shades of grey.

Displaying Characters

When you display characters in Medium
Resolution Mode, the size of the characters is
the same as in Text Mode when you specify a
40-column width. The character foreground color
is set by the "tforeground" parameter in the
COLOR statement (that defaults to color
number 3). The character background is set by
the "background" parameter in the COLOR
statement (that defaults to color number 0, i.e.,
Black).

If color is disabled the character foreground will
be 1 (White) and the character background 0
(Black).

Graphics

HIGH RESOLUTION MODE

In this mode, there are 640 pixels on the
horizontal axis and 200 pixels on the verticeil
axis. These are numbered from left to right and
top to bottom; thus the upper left corner pixel
is (0,0) and the lower right corner pixel is
(639, 199).

There are only two colors: black (color number
0) and white (color number 1).

Drawing Pictures

When you draw pictures using the graphics
statements, you can still specify a color number
0, 1, 2, or 3.

A color of 0 indicates black and a color of 1

white. A color of 2 is treated as 0, and 3 is
treated as 1.

5-11

Graphics

5-12

If you do not specify a color number, the
default is the graphics foreground specified by
the COLOR statement, or 1 (if no graphics
foreground is given).

The COLOR statement allows you to specify the
graphics foreground color.

Displaying Characters

The size of the characters is the same as in

80-column Text Mode.

The character foreground color is 1 (white) and
the background color is 0 (black).

Graphics

SUPER RESOLUTION MODE

In this mode, there are 640 pixels on the
horizontal axis and 400 pixels on the vertical
£ixis. These are numbered from left to right and
top to bottom; thus the upper left corner pixel
is (0,0) and the lower right corner pixel is
(639, 399).

There are only two colors: black (color number
0) and white (color number 1).

Drawing Pictures

When you draw pictures using the graphics
statements, you can still specify a color number
of 0, 1, 2, or 3.

A color number of 0 indicates black and a color

number of 1 indicates white. A color number of

2 is treated as 0, and a color number of 3 is
treated as 1.

If you do not specify a color number, the
default is the graphics foreground specified by
the COLOR statement, or 1 (if no graphics
foreground is given).

5-13

Graphics

5-14

The COLOR (Super Resolution) statement
allows you to specify the graphics foreground
color. The COLOR statement also allows you to
specify 'inverse video', when you display
characters.

Displaying Characters

The size of the characters is the same as in

80-column Text Mode.

The character foreground color is 1 (white) and
the character background 0 (black), unless you
specify 'inverse video' by the COLOR
statement.

Graphics

SCREEN COORDINATES

Graphics images are positioned on the screen in
accordance with screen coordinates. These

coordinates comprise two parameters generally
referred to as x and y, where x defines the
horizontal screen position and y defines the
vertical screen position. Screen coordinates may
be of two types;

absolute coordinates

relative coordinates

Whereas absolute coordinates refer to the actual

position of a pixel on the screen, relative
coordinates indicate the position of a pixel
relative to the coordinates of the last pixel
referenced. The x and y relative coordinates are
therefore 'offset' values from the last pixel
referenced (known as the "current point").

Screen coordinates are described fully in the
Reference section (refer particularly to the
WINDOW statement); however, the following
example illustrates the use of both types of
coordinates:

10 SCREEN 1

20 PSET [100,50] 'absolute coordinates
30 PSET STEP [10,-5] 'relative coordinates

This program example illuminates two pixels on
the screen: the first at coordinates (100,50) and
the second at actual coordinates (110,45.)

5-15

Graphics

5-16

VIEW STATEMENT

The VIEW statement allows the definition of

subsets of the viewing surface. These are called
'Viewports." Onto these the contents of a
window are mapped. Initially RUN or VIEW,
with no arguments, define the whole screen as a
viewport. Refer to the Reference section for a
full description of VIEW.

rN

Graphics

WINDOW STATEMENT

WINDOW allows you to draw lines, graphs, or
objects in space not bounded by the physical
limits of the screen. This is done by using
programmer-defined coordinates called "World
coordinates."

A world coordinate is any valid single precision
floating point number pair. GWBASIC then
converts world coordinate pairs into the
appropriate physical coordinate pairs for
subsequent display within screen space. To
make this transformation from world space to
the physical space of the viewing surface
(screen), GWBASIC must know what portion of
the unbounded (floating point) world coordinate
space contains the information you want to be
displayed.

This rectangular region in world coordinate
space is called a WINDOW.

Refer to the Reference section for a full
description of the WINDOW statement.

5-17

Graphics

5-18

DISPLAYING POINTS

The most elementary graphic function is that of
illuminating the position of a single point (or
'pixel') in a specified color. This is achieved
using the PSET and PRESET statements. The
POINT function allows you to know the color
number of a specified pixel. Refer to a full
description of these in the Reference section.

Graphics

DRAWING AND COLORING LINES,
RECTANGLES, OBJECTS, CIRCLES,
ARCS, ELLIPSES

The LINE statement permits the drawing of
lines or rectangles. The DRAW statement,
governed by ''movement commands'' such as
up, down, left, and right, lets you draw any
object. Circles, arcs and ellipses can be drawn
using the CIRCLE statement, and the PAINT
statement allows any object to be filled with
color(s).

Refer to statements: LINE, CIRCLE, GET,
PUT (graphics), PAINT, and DRAW in the
Reference section for a complete description.

5-19

Graphics

5-20

LINE CLIPPING

The graphics statements CIRCLE, LINE,
PAINT, POINT, PSET, PRESET, and
WINDOW use "line clipping." This simply
means that lines which cross the screen or view

port are "chpped" at the boundaries of the view
ing area. Only the points plotted within the
screen or viewport are visible.

6 Asynchronous
Communications

• Opening Communications
Files

• Communication I/O

• Communication I/O Functions

6-1

Asynchronous Communications

6-2

OPENING

COMMUNICATIONS FILES

The OPEN COMmunications statement

allocates a buffer for input and output in a simi
lar manner as the OPEN statement for disk

files. Refer to the OPEN COM Statement in the

Reference section for a full description.

Asynchronous Communications

COMMUNICATION I/O

Since the communication port is opened as a
file, all Input/Output statements that are valid
for disk files are valid for COM.

COM sequential input statements are the same
as those for disk files. They are: INPUT §,
LINE INPUT §, and the INPUTS function.

COM sequential output statements are the same
as those for disk, and are: PRINT ft, PRINT #
USING, and WRITE #.

Refer to the descriptions of these statements in
the Reference section for details of coding
syntax and usage.

The GET and PUT statements are only slightly
different for COM files. See the GET (COM
Files) and PUT (COM Files) statements
described in the Reference section.

6-3

Asynchronous Communications

COMMUNICATION

I/O FUNCTIONS

The most difficult aspect of asynchronous
communication is being able to process
characters as fast as they are received. At rates
above 2400 bps, it may be necessary to suspend
character transmission from the host computer
long enough to catch up. This can be done by
sending XOFF (CHR$(19)) to the host and XON
(CHR$(17)) when ready to resume.

GWBASIC provides three functions which help
in determining when an over-run condition is
imminent. These are;

LOC(f) Returns the number of characters in the input
buffer waiting to be read. The input buffer can
hold more than 255 characters (determined by
the /C: switch). If there are more than 255
characters in the buffer, LOC(f) returns 255.
Since a string is limited to 255 characters, this
practical limit means that you do not have to
test for string size before reading data into it. If
fewer than 255 characters remain in the buffer,
LOC(f) returns the actual count.

LOF(f) Returns the amount of free space in the input
buffer. That is, size-LOC(f), where 'size' is the
size of the communications buffer as set by the
/C: option. LOF may be used to detect when the
input buffer is reaching its maximum capacity.

EOF(f) If true (-1), indicates that the input buffer is
empty. Returns false (0) if any characters are
waiting to be read. _

6-4

Asynchronous Communications

Possible Errors

Communication Buffer Overflow

If a read is attempted after the input buffer is
full, (i.e. LOF(f) returns 0).

Device I/O Error

If any of the following line conditions are
detected on reception: Overrun Error (OE),
Framing Error (FE), or Break Interrupt (BI).
The error is reset by subsequent inputs but the
character causing the error is lost.

Device Fault

If Data Set Ready (DSR) is lost during I/O.

6-5

Asynchronous Conununications

6-6

THE INPUTS FUNCTION FOR COM FILES

The INPUT$ function is preferable to the
INPUT# and LINE INPUT# statements when

reading COM files, since all ASCII characters
may be significant in communications. INPUT#
is least desirable because input stops when a
comma (,) or CR is received and LINE INPUT#
terminates when a CR is received.

INPUTS allows all characters read to be

assigned to a string. INPUTS (n,f) will return n
characters from the #f file. The following state
ments are therefore the most efficient for

reading a COM file:

10 WHILE NOT E0F[1] ^
20 AS = iNPUT$CLQC(1],#1)
30 . . .

40 . . . Process data returned in AS
50 . . .

60 WEND

The above statements return the characters in

the buffer into AS and process them, provided
there are characters in the buffer. If there are

more than 255 characters, only 255 will be
returned at a time to prevent String Overflow.
If this is the case, EOF(l) is false and input
continues until the input buffer is empty. The
sequence of events is therefore simple, concise,
and fast.

Asynchronous Communications

AN EXERCISE IN COMMUNICATION I/O

The following program enables your Personal
Computer to be used as a conventional terminal.
Besides Full Duplex communication with a host,
the TTY program allows data to be downloaded
to a file. Conversely, a file may be uploaded
(transmitted) to another machine.

In addition to demonstrating the elements of
Asynchronous Communication, this program
should be useful in transferring GWBASIC
programs and data to and from your system.

6-7

Asynchronous Communications

6-8

10 SCREEN G,0:WIDTH 80
15 KEY OFF:GLS:CLOSE

80 DEFINT A-Z

25 LOCATE 25,1
30 PRINT STRINGS(BO," ")
40 FALSE =:0:TRUE NOT FALSE

50 MENU = 5 'Value of MENU key Cctrl-E)
60 X0FF$ = CHRSC1S]:X0NS=:CHRS(17)
100 LOCATE 25,1:PRINT "Aeync TTY Program";
110 LOCATE 1,1:LINE INPUT "Speed? "iSPEEOS
120 COMFILS = "C0M1:" + SPEEOS + ",E,7"
130 OPEN COMFILS AS #1

140 OPEN "SCRN:" FOR OUTPUT AS #3

200 PAUSE = FALSE

210 AS = INKEYS: IF A$ = " " THEN 230

220 IF ASCCAS] = MENU THEN 300 ELSE PRINT #1,AS;
230 IF E0FC1) THEN 210
240 IF L0C(1]>128 THEN PAUSE = TRUE: PRINT #1,X0FFS:
250 A$ = INPUTSCL0C(1),#1)
253 LINEFEED = 0

255 LINEFEED = INSTR [LINEFEED+ 1, A$,CHRS(10))
257 IF LINEFEED = 0 THEN MIDSCAS, LINEFEED,1)=CHR$(0]:GOTO 255
260 PRINT #3,AS;:IF L0C(1)>0 THEN 240
270 IF PAUSE THEN PAUSE = FALSE:PRINT #1 ,XONS;
280 GOTO 210 (>
300 LOCATE 1,1:PRINT STRING8[30," "):LOCATE 1,1
310 LINE INPUT"FILE? ";DSKFILS
400 LOCATE 1,1:PRINT STRINGS(30," "):LOCATE 1,1
410 LINE INPUT"(T]RANSMIT OR (RjECEIVE? ";TXRXS
420 IF TXRXS = "T" THEN OPEN DSKFILS FOR INPUT AS #2:G0T0

1000

430 OPEN DSKFILS FOR OUTPUT AS #2

440 PRINT #1,CHRSC13];
500 IF E0F(1) THEN GOSUB 600
510 IF L0C[1]>128 THEN PAUSE = TRUE: PRINT #1,X0FFS;
520 AS = INPUTS(L0CC1),#1]
530 PRINT #2,AS;:IF L0C(1]>0 THEN 510
540 IF PAUSE THEN PAUSE =:FALSE:PRINT #1,X0FFS;
550 GOTO 500

600 FOR 1 = 1 TO 5000

610 IF NOT EOF(1) THEN 1= 9999
620 NEXT I

630 IF 1=9999 THEN RETURN

640 CLOSE #2:CLS:L0CATE 25,10:PRINT "* Download complete
650 RETURN 200

1000 WHILE NOT EOF(2]
1010 AS = INPUTSC1,#2]
1020 PRINT #1,AS:
1030 WEND

1040 PRINT #1,CHRSC26];'CTRL-Zto make close file. f \
1050 CLOSE #2:CLS:L0CATE 25,10:PRINT "** plead complete **";
1060 GOTO 200

9999 CLOSE:KEY ON

Asynchronous Communications

Line Comments

10 Sets the screen to Black and White Text Mode
and sets the Width to 80.

15 Turns off the Soft Key Display, clears the
screen, and makes sure that all files are closed.

Asynchronous implies character I/O as opposed
to line or Block I/O. Therefore, all PRINT'S
(either to the COM file or screen) are terminated
with a semicolon (;). This cancels the CR LF
normally issued at the end of a PRINT
statement.

20 Defines all numeric variables as INTEGER.

r ^ Primarily for the benefit of the subroutine at
600-620. Any program looking for speed
optimization should use integer counters in
loops where possible.

25-30 Clears the 25th line starting at column 1.

40 Defines Boolean TRUE and FALSE.

50 Defines the ASCII (ASC) value of the MENU
key.

60 Defines the ASCII XON, XOFF characters.

100-130 Prints program-id and asks for baud rate
(speed). Opens Communications to file number 1,
Even parity, 7 data bits.

This section can be modified to check for valid
baud rates before continuing.

6-9

Asynchronous Communications

6-10

200-280 This section performs Full Duplex I/O between
the Video Screen and the device connected to

the RS232 connector as follows:

Read a character from the keyboard into A$.
Note that INKEY$ returns a null string if no
character is waiting.

If no character is waiting then check to see if
any characters are being received. If a character
is waiting at the keyboard then:

If the character was the MENU Key, then the
user is ready to download a file, so retrieve the
file name.

If character (A$) is not the MENU key then
send it by writing to the communication file
(PRINT #1. . .).

At 230, check if any characters are waiting in
COM buffer. If not, then go back and check
keyboard.

At 240, if more than 128 characters are waiting,
then set the PAUSE flag, thereby suspending
input and send XOFF to the host, thus
stopping further transmission.

At 253-257, strip out linefeed characters before
sending buffer contents to the screen. Otherwise
the PC executes a LF with each CR, resulting in
double spacing.

Asynchronous Communications

• At 250-260, read and display the contents of
COM buffer on screen until empty. Continue to
monitor (in 240). Suspend transmission in the
event of an interface delay.

• Finally, resume host transmission by sending
XON only if suspended by previous XOFF.
Repeat process until MENU Key struck.

300-310 Retrieves the name of the Disk File from which

the information is to be downloaded. Opens the
file to file number 2.

400-420 Asks if file named is to be transmitted

(Uploaded) or received (Downloaded).

430-440 Sends a CR to the host to begin the download.
This program assumes that the last command
sent to the host to begin such a transfer was
missing only the terminating CR.

6-11

Asynchronous Communications

6-12

500 When no more characters are being received
(LOC(x) returns 0), then performs a time-out
routine (explained later).

510 Again, if more than 128 characters are waiting,
this line signals a pause, and in the meantime
sends XOFF to the host.

520-530 Reads all characters in the COM buffer (LOC(x))
and writes them to disk (PRINT #2..).

540-550 If a pause was issued, restart host by sending
XON and clear the pause flag. Continue process
until no characters are received for a

pre-determined time.

600-650 This is the time-out subroutine. The FOR loop
count was determined by experimentation. In
short, if no character is received from the host
for 17-20 seconds, then transmission is assumed
complete. If any character is received during
this time (line 610) then set I well above FOR
loop range to exit loop and then return to caller.
If host transmission is complete, close the disk
file.

Asynchronous Communications

1000-1060 Transmit routine. Until end of disk file do:

Read one character into A$ with INPUTS

statement. Send character to COM device in

1020. Send a CTRL Z at end of file in 1040 if
receiving device needs to close its file. Finally,
in lines 1050 and 1060, close the disk file, print
completion message, and go back to conversation
mode in line 200.

9999 Presently not executed. As an exercise, add
some lines to the routine 400-420 to optionally
exit the program via line 9999. This line closes
the COM file which is left open and restores the
Soft Key Display.

6-13

^ /

7 Command
References

• Introduction

• Commands, Statements, and
Functions with Examples

7-1

INTRODUCTION

The following GWBASIC commands, statements, and functions
are described in this chapter.

ABS Returns the absolute value of a numeric

expression.

ASC Returns the ASCII decimal code for the first
character of a given string.

ATN Returns the arctangent of the argument

AUTO Generates a line number after every carriage
return. AUTO is used only for entering
programs.

BEEP Activates the bell.

BLOAD Loads a memory image file into memory.

BSAVE Saves sections of the main memory on the
specified file.

CALL Transfers control to a machine language
subroutine. Passes unsegmented addresses.

CALLS Transfers control to a machine language
subroutine. Passes segmented addresses.

CDBL Converts a given numeric expression to a double
precision number.

CHAIN Transfers control and passes variables to another
program.

CHDIR Changes the current directory.

7-2

Introduction

CHR$ Returns a one-character string whose ASCII
decimal code is the value of the argument passed
to this function.

CINT Converts any numeric argument to an integer by
rounding the fractional portion.

CIRCLE Draws a circle or an ellipse with the specified
center and radius. (Graphics Mode.)

CLEAR Clears all numeric variables to zero, all string
variables to null, and closes all open files.
Options set the highest memory location
available for use by GWBASIC and set the
amount of stack space.

CLOSE Terminates 1/0 to a file or device.

CLS Erases all or part of the screen.

COLOR In the Text Mode, sets the foreground and
background colors. In Graphics Mode, defines the
background and foreground palette colors.

COM(n) Enables or disables event trapping of
communications activity on the specified channel.

COMMON Defines the common area that is not erased by a
CHAlNed program, and allows you to pass
variables from one program to another.

CONT Resumes program execution after a
CTRL-BREAK has been typed or a STOP or
END statement has been executed.

7-3

Introduction

COS Returns the cosine of the argument.

CSNG Converts any numeric argument to a single
precision number.

CSRLIN Returns the current line (row) position of the
cursor.

CVD Converts an eight-byte string to a double
precision number.

CVI Converts a two-byte string to an integer.

CVS Converts a four-byte string to a single precision
number.

DATA Creates an "internal file" of data items that can

be assigned to program variables using the
READ statement.

DATES The DATES statement sets the current date. The
DATES function retrieves the current date.

DEE FN Defines and names user-written functions.

DEE SEG Assigns the current segment of memory.

DEF USR Enables access to a machine language subroutine
by specifying the starting address.

DEFtype Declares the variable type in accordance with the
letter(s) specified.

DELETE Erases program lines.

7-4

Introduction

DIM Specifies the array name, the number of dimen
sions, and the subscript upper bound for each
dimension. May specify one or more arrays.

DRAW Draws an object as specified by the contents of a
string expression. (Graphics Mode.)

EDIT Lets you change a program line.

END Terminates program execution, closes all open
data files, and returns to the command level.

ENVIRON Allows a modification of parameters in
GWBASIC's Environment String Table.

ENVIRONS Retrieves the specified Environment String from
GWBASIC's Environment String Table.

EOF Indicates that the end of file has been reached.

ERASE Releases space and variable names previously
reserved for arrays.

ERDEV An integer function that contains the error code
returned by the last device to declare an error.

ERDEVS A string function that contains the name of the
device driver that generated the error.

ERL Returns the number of the line that contains the
error.

ERR Returns an error code.

7-5

Introduction

ERROR Simulates the occurrence of a GWBASIC error,
or generates a user-defined error.

EXP Returns "e" (base of natural logarithms) to the
power of the argument.

FIELD Allocates space for variables in a random file
buffer.

FILES Displays the names of the files in the specified
directory.

FIX Returns the truncated integer part of the
argument.

FOR...NEXT Allows a series of statements to be performed in
a loop a specified number of times.

FRE Returns the number of bytes in memory not
being used by GWBASIC.

GET(COM) Reads a specified number of bytes into the
communications buffer.

GET(Files) Reads a record from a random disk file into a
random buffer.

GET(Graphics) Reads graphics images from the screen.

GOSUB... GOSUB transfers control to a GWBASIC

RETURN subroutine by branching to the specified line.
RETURN transfers control to the statement

following the most recent GOSUB (or
ON...GOSUB) executed, or to a specified line.

GOTO Transfers control to a specified program line.

GWBASIC Initializes GWBASIC and the operating
environment. (MS-DOS command.)

7-6

HEX$

Introduction

Returns a string that represents the hexadecimal
value of the decimal argument.

IF...GOTO...ELSE

IF...THEN...ELSE

Makes a decision reggirding program flow based
on the result of a specified condition.

INKEY$ Returns either a one- or two-character string read
from the keyboard.

INP Returns the byte read from a port.

INPUT Allows input from the keyboard during program
execution.

INPUT#

INPUT$

INSTR

INT

lOCTL

IOCTL$

KEY

Reads data items from a sequential disk file and
assigns them to program variables.

Returns a string of characters read from the
standard input device, the keyboard, or from a
file.

Searches for the first occurrence of a given
substring in a string, and returns the position at
which the match is found.

Returns the largest integer that is less than or
equal to the argument.

Sends a ''Control Data" string to a character
device driver once the device has been OPENed.

Returns a "Control Data" string from a
character device driver that is OPEN.

Defines and/or displays the function key
assignment text.

7-7

Introduction

KEY(n)

KILL

LCOPY

LEFT$

LEN

LET

LINE

LINE INPUT

Enables, disables, or terminates interrupts caused
by a specific key.

Deletes a disk file.

Dumps the screen text to the printer.

Returns a substring extracting the leftmost
number of characters from a specified string as
specified by the **length" parameter.

Returns the number of characters in a given
string.

Assigns a value to a variable.

Draws either a line, a rectamgle, or a filled
rectangle. (Graphics Mode.)

Inputs an entire line (up to 254 characters) to a
string variable, without delimiters.

LINE INPUT# Reads an entire line (up to 254 characters)
without delimiters, from a sequential disk data
file to a string variable.

LIST

LLIST

LOAD

LOG

7-8

Lists the current program to the screen or to a
specified file or device.

Lists the current program on the printer.

Loads a program into memory from a file.

Returns the current position of the file.

Introduction

LOCATE In Graphics Mode, moves the graphics cursor to
the specified position. In Text Mode, LOCATE
moves the cursor to the specified position on the
active page. In both modes, LOCATE may also
turn the cursor on and off and define the size of

either the overwrite or the user cursor.

LOF Returns the length of the named file in bytes.

LOG Returns the natural logarithm of a positive
argument.

LPOS Returns the current position of the printhead
within the printer buffer.

LPRINT Prints data on the printer.

LPRINT Prints data on the printer using a specified
USING format.

LSET Stores a string value in a random buffer field left
justified, or left justifies a string value in a
string variable.

MERGE Merges the current program with another
program previously saved in ASCII format.

MID$ As a function, MID$ returns a substring from a
specified string. As a statement, replaces a
portion of one string with another string.

MKDIR Makes a new directory on a specified disk.

MKD$ Converts a double-precision number to an
eight-byte string.

7-9

Introduction

MKI$ Converts an integer to a two-byte string.

MKS$ Converts a single-precision number to a four-byte
string.

NAME Changes the name of a disk file.

NEW Deletes the current program and clears all
variables, so that you can enter a new program.

OCT$ A function that returns a string that is the octal
value of the decimal argument.

ON COM(n) Specifies the first line number of a trap routine
GOSUB to be activated as soon as characters arrive in

the communications buffer.

ON ERROR Enables error trapping and specifies the first line
GOTO number of a subroutine to be executed if an error

occurs.

ON...GOSUB ON...GOSUB calls one of several specified
and subroutines, depending on the value of the
ON...GOTO specified expression. ON...GOTO branches like

ON...GOSUB but does not return from the

branch.

ON KEY(n) Specifies the first line number of a subroutine to
GOSUB be executed when a specified key is pressed.

ON PLAY(n) Specifies the first hne number of a subroutine to
GOSUB be executed when the music buffer contains fewer

than "n" notes. This permits continuous
background music during program execution.

ON STRlG(n) Specifies the first line number of a subroutine to
be executed when one of the joystick buttons
(triggers) is pressed.

7-10

ON TIMER(n)
GOSUB

OPEN

OPEN COM

OPTION

BASE

OUT

PAINT

PEEK

PLAY

PLAY(n)

PLAY ON/

OFF/STOP

PMAP

POINT

POKE

Introduction

Causes an event trap every "n" seconds.

Allows I/O to a file or device.

Opens a communications file.

Defines the minimum value for array subscripts.

Transmits a byte to an output port.

Paints an enclosed area on the screen with a

specified color. (Graphics Mode.)

Returns the byte read from the specified memory
location.

Plays music in accordance with a string that
specifies the notes to be played and the way in
which the notes are to be played.

Returns the number of notes remaining in the
music background buffer.

Enables, disables, or suspends PLAY(n) trapping.

Converts physical coordinates to world
coordinates or vice versa. (Graphics Mode.)

With two arguments (x,y), returns the color
number of a pixel on the screen. If one
argument(n) is given, returns the current
graphics coordinate. (Graphics Mode.)

Writes a byte into a memory location.

7-11

Introduction

POS

PRESET

PRINT

PRINT

USING

PRINT#

PRINT#

USING

PSET

PUT

(COM files)

PUT(Files)

PUT(Graphics)

RANDOMIZE

READ

REM

RENUM

RESET

7-12

Returns the current horizontal (column) position
of the cursor.

Draws a point at the specified position on the
screen. (Graphics Mode.)

Outputs data on the screen.

Outputs data to the screen using a specified
format.

Writes data sequentially to a disk file.

Writes data sequentially to a disk file using a
specified format.

Illuminates a pixel at a specified position on the
screen. (Graphics Mode.)

Writes a specified number of bytes to a
communications file.

Writes a record from a random buffer to a

random file.

Trginsfers the graphics image stored in an array
to the screen.

Reseeds the random number generator.

Reads values from one or more data statements

and assigns them to variables.

Allows explanatory remarks to be inserted in a
program.

Changes the line numbers of the current
program.

Closes all open data files on all drives.

RESTORE

RESUME

RIGHTS

RMDIR

RND

RSET

RUN

SAVE

SCREEN

SON

SIN

SOUND

SPACES

Introduction

Permits DATA statements to be re-read either

from the beginning of the internal data or from a
specified file.

Continues program execution after an error trap
ping routine has been performed.

Returns a substring from a specified string,
extracting the rightmost characters as specified
by the 'length" parameter.

Removes an existing directory.

Returns a random number between 0 and 1.

Stores a string value in a random buffer field
right justified, or right justifies a string value in
a string variable.

Runs the current program or loads a program
from disk and runs it.

Saves the current program on disk.

The SCREEN function returns the ASCII code

(0-255) or the color number for the character at
the specified row and column. The SCREEN
statement sets the screen attributes that will be

used by subsequent statements.

Returns 1 if the argument is positive, 0 if the
argument is zero, and —1 if the argument is
negative.

Calculates the sine of the argument.

Produces a sound on the speaker.

Returns a string of a specified number of spaces.

7-13

Introduction

SPC Skips ''n" spaces in a PRINT, LPRINT, or
PRINT# statement.

SQR Returns the square root of a positive expression.

STICK Returns the x and y coordinates of two joysticks.

STOP Terminates program execution and returns.

STRIG Returns the status of the joystick buttons
(triggers).

STRIG(n) Enables and disables trapping of the joystick
buttons.

STR$ Returns the string representation of the value of
a specified numeric expression.

STRINGS Returns a string of specified length whose
characters all have the same ASCII code or equal
the first character of a given string.

SWAP Exchanges the values of two variables.

SYSTEM Closes all open data files and returns to MS-DOS.

TAB Tabs the cursor or the printhead to a specified
position in PRINT, LPRINT or PRINT#
statements.

TAN Returns the tangent of the argument.

TIME$ The TIME$ statement sets the current time. The

TIME$ function retrieves the current time.

TIMER Returns a single precision number indicating the
seconds that have elapsed since midnight or
system reset.

7-14

TIMER ON/

OFF/STOP

TROFF

TRON

USR

VAL

VARPTR

VARPTR$

VIEW

VIEW PRINT

WAIT

WHILE...

WEND

WIDTH

WINDOW

WRITE

WRITE#

Introduction

Enables, disables, or suspends event trapping.

(Trace Off) Stops the line number listing initiated
by TRON.

(Trace On) Causes the line number of each state
ment executed to be listed.

Calls a machine language subroutine.

Converts the string expression of a number to its
numeric value.

Returns the memory address of a variable or file
control block.

Returns the starting address of the file control
block for a specified file.

Defines subsets of the screen called 'Viewports.''

Sets the boundary of the text window.

Suspends program execution while monitoring
the status of a machine input port.

Loops through a series of statements as long as a
given condition remains true.

Sets the line width in characters.

Permits the redefinition of the screen coordinates.

(Graphics Mode.)

Writes data to the screen.

Writes data to a sequential file.

7-15

ABS
Function

Syntax

Remarks

Example

7-16

Returns the absolute value of a numeric

expression.

ABS (numexp)

The returned value will always be positive or
zero.

Ok

PRII\ITABS(8*[-6]]
48

Ok

ASC
Function

Returns the ASCII decimal code for the first

character of a given string.

Syntax ASC (stringexp)

Remarks The ASC function returns the ASCII code (0-
255) corresponding to the first character of the
string expression. See Appendix A for a
complete list of all ASCII codes.

If "stringexp" is null, an "Illegal function
call" error is returned.

See the CHR$ function, later in thic chapter,
for ASCITto-string conversion. CHR$ is the
inverse of the ASC function.

Example The following example shows that the ASCII
code for capital letter "T" is 84.

10X$ = "TEST"

20PRIIMTASC(X$]
RUN

84

Ok

7-17

ATN
Function

Returns the arctangent of the argument.

Syntax ATN (numexp)

Remarks The evaluation of ATN is performed in single
precision, unless you specify ID, (double
precision), when you invoke GWBASIC.

The result is expressed in radians and falls in
the range -PI/2 to PI/2 (where PI =3.141593).

Example 10 INPUT X
20 PRINT ATN[X]
RUN

?3

1.249046

Ok

7-18

Syntax

linenum

AUTO
Command

Generates a line number after every carriage
return. AUTO is used only for entering
programs.

AUTO [linenum]!,[increment]]

is the line number used to commence numbering lines. A
period may be used to indicate the current line.

increment is the value added to a line number to produce the next line
number.

Remarks AUTO begins numbering at "linenum" and
increments each subsequent line number by
"increment." The default for both values is 10.

If "linenum" is followed by a comma but
"increment" is not specified, the last
increment specified in an AUTO command is
assumed. If "linenum" is omitted but

"increment" is included, line numbering
begins with 0.

If AUTO generates a line number that is
already being used, an asterisk is displayed
after the number to warn you that any input
will overwrite the existing line. Typing a
carriage return immediately after the asterisk
saves the hne and generates the next line
number.

7-19

AUTO

Command

AUTO is terminated by pressing
CTRL and BREAK. The line in which

CTRL and BREAK is pressed is not saved.
After CTRL and Break is pressed,
GWBASIC returns to command level.

Examples • AUTO
Generates line numbers 10, 20, 30, 40 ...

• AUTQ100,20
Generates line numbers 100,120,140 ...

• AUTO 200,
Generates line numbers 200, 220, 240, 260,
The increment is 20 because 20 was the

increment in the last AUTO command.

• AUTO, 15
Generates line numbers 0,15,30,45,...

7-20

BEEP
Statement

Activates the bell.

Syntax BEEP

Remarks In the following example, the program is
checked to see if "X" is out of the accepted
range. MIN and MAX are variables containing
the limits of the accepled range.

PRINT CHR$(7); sends an ASCII BEL
character, which also activates the bell.

Example 2430 IF [X<MilM] or (X>MAX] THEN BEEP

7-21

BLOAD
Command

Syntax

filename

Loads a memory image file into memory.

BLOAD {filename} [, offset]

is a string expression that specifies the file to be loaded. If
the device is omitted, the MS-DOS default drive is assumed.

offset is an integer expression in the range 0 to 65535. This is the
offset into the segment declared by the last DEF BEG
statement at which loading is to start.

Remarks The BLOAD statement allows you to load
assembly language routines into memory.
When these routines are resident in memory,
they can be CALLed from your GWBASIC
program by a CALL statement.

The BLOAD and BSAVE statements allow

you to load and save any portion of memory.
For example, you can save and display screen
images (specifying the screen buffer as the
current segment by a DEF SEG statement).

If "offset" is omitted, the offset specified at
BSAVE is assumed and the file is loaded into

the same location from which it was saved.

7-22

o

Example

Example

BLOAD

Command

If "offset" is specified, a DEF SEG statement
should be executed before the BLOAD. When

"offset" is given, GWBASIC assumes you
want to BLOAD at an address other than the

one saved. The last known DEF SEG address

will be used. If no DEF SEG statement has

been given, the GWBASIC data segment is
used as the default (because it is the default for
DEF SEG).

Warning
BLOAD does not perform an address range
check. It is possible to load a file anywhere in
memory. Be careful not to load over
GWBASIC or the operating system.

10 'Load a machine language program
20 'into memory at 60:F000
30 'Restore Segment to GWBASIC's DS.
40 DEF SEG

50 'Load PR0G1 into the DS.

60 BLOAD "B:PROG1",&HFOOO

10 'Load the screen buffer

20 'Point segment at screen buffer
30 DEF SEG = GHB800

40 'Load FILEI into screen buffer

50 BLOAD "FILEI",0

Note the DEF SEG statement in 30 and the

offset of 0 in 50: this guaremtees that the
correct address is used.

7-23

BSAVE
Command

Syntax

Saves sections of the main memory on the
specified file.

BSAVE {filename | pathname}
.offset , length

filename is a string expression which specifies the name of the file to
be saved, with an optional device. If the device is omitted,
the MS-DOS default drive is assumed.

offset is an integer expression in the range 0 to 65535. This is the
offset into the segment declared by the last DEF SEG.
Saving starts at this position.

length is an integer expression in the range 1 to 65535, specifying
the length of the memory image to be saved.

Remarks A memory image file is a byte-for-byte copy of
what is in memory.

BSAVE saves assembly language programs
on diskette.

7-24

BSAVE

Command

The BLOAD and BSAVE statements also

allow you to load and save any portion of
memory. For instance, you can save and
display screen images (specifying the screen
buffer as the current segment by a DEF SEG
statement).

A DEF SEG statement should be executed

before the BSAVE. The last known DEF SEG

address is always used for the save.

Example 10 'Save PR0G1
20 DEF SEG = &H6000

30 BSAVE "PR0G1",&HF000,256

This example saves 256 bytes starting at
6000:F000 in the file "PRGGl.^'

Example 10 'Save the screen buffer
20 'Point segment at screen buffer
30 DEF SEG=&HB800

40 'Save screen buffer In FILE1

50 BSAVE "A:FiLE1",0,16384

The DEF SEG statement must be used to set

up the segment address to the screen buffer.
The offset of 0 and the length 16384 specify
that the entire 16K screen buffer is to be saved.

Note: The above example will not work to save
screens created with the "SCREEN 100" mode.

For "SCREEN 100" screens, save 32K (32767)
bytes.

7-25

CALL
Statement

Syntax

variable

Transfers control to a machine language
subroutine.

CALL numvar [(variable [.variable]...)]

is a numeric variable. It must equate to the starting memory
offset address of the assembly routine. The address is an
offset into the current memory segment as set by the last
DEF SEG statement.

is a numeric or string variable which serves as an argument
to pass data between the main program and the assembly
routine.

Remarks The CALL statement is one way to transfer
program flow to an external subroutine. You
can also transfer control to an external

subroutine with the USE function.

Example 110 MYROUT = &HDOOO
120 CALL MYROUT [l,J,K]

7-26

Syntax

variable

Remarks

CALLS
Statement

The CALLS statement is the same as the

CALL statement with the exceptions given
below under "Remarks."

CALLS numvar [(variable!,variable]...)]

is a numeric variable. It contains the address that is the

starting point in memory of the subroutine being CALLed

is a numeric or string variable which may be passed as an
argument to the machine language subroutine.

The CALLS statement is similar to CALL,
except that the segmented addresses of all
arguments are passed. (CALL passes
unsegmented addresses.) CALLS should be
used when accessing routines written with
FORTRAN calling conventions, since all
FORTRAN parameters are call-by-reference
segmented addresses.

CALLS uses the segment address defined by
the most recently executed DEF SEG
statement to locate the routine being called.

7-27

CDBL
Function

Converts a given numeric expression to a
double precision number.

Syntax CDBL (numexp)

Example 10 A=454.67
20 PRINT A;CDBL[A]
RUN

454.67 454.6700134277344

Ok

Note; A and CDBL (A) do not have precisely
the same value due to the difference in the way
that single and double precision numbers are
stored internally. For more information, see
the Appendix on Advanced Features.

7-28

Syntax

CHAIN
Statement

Transfers control and passes variables to
another program.

CHAIN [MERGE] filename[, [linenum]
[, [ALL] [.DELETE range]]]

filename is a string expression which specifies the name of the called
program file and optionally the drive. If the drive is omitted
the MS-DOS default drive is assumed.

linenum is a line number or an expression that evaluates to a line
number in the called program. It is the starting point for
execution of the called program. If it is omitted, execution
begins at the first line. The parameter is not affected by a
RENUM command.

range the range of line numbers to be deleted if the delete option is
used.

7-29

CHAIN

Statement

Remarks If the Merge option is used, a MERGE
operation is performed with the current
program and the CHAINed program. The
CHAINed program must be an ASCII file. If
any lines in the disk file have the same line
numbers as lines in the program in memory,
the lines from the file on disk will replace the
corresponding lines in memory. (MERGEing
may be thought of as *'inserting" the program
lines on disk into the program in memory).
The MERGE option leaves the files open,
preserves the current OPTION BASE setting,
and preserves variable types and user-defined
functions, for use by the CHAINed program.

User-defined functions should be placed before
any CHAIN MERGE statements in the
program. Otherwise, the user-defined
functions will be undefined after the merge is
complete.

If the MERGE option is omitted, the
CHAINing program is lost (except common
variables) before loading the CHAINed
program. CHAIN does not preserve variable
types or user functions. Thus, any DEFtype or
DEF FN statements containing shared
variables must be repeated in the CHAINed
program.

If the ALL option is used, every vEiriable in the
current program is passed to the CHAINed
program.

7-30

CHAIN

Statement

If the ALL option is used and 'linenum is
omitted, a comma must hold the place of
'linenum.' For example:

100 CHAIN "NEXTPROG"„ALL

is correct, but:

100 CHAIN "NEXTPROG",ALL

is incorrect. In this case, GWBASIC assumes
that ALL is a variable name and evaluates it

as a line number.

If the ALL option is omitted, the current
program must contain one or more COMMON
statements to list the variables that are

passed. (See the COMMON statement in this
chapter.)

If the DELETE option is used, a section of the
current program (specified by a 'range' of line
numbers) will be deleted before loading the
CHAlNed program.

DELETE is often used with MERGE and 'line'

options, to load overlays. After an overlay is
brought in, it is usually desirable to delete it so
a new overlay may be brought in.

Note: Before running a CHAlNed program,
CHAIN carries out a RESTORE. This resets

the pointer to the beginning of the internal Data
statements.

7-31

CHAIN

Statement

Example 1 10 ' THIS PROGRAM DEMONSTRATES
20 ' CHAINING USING COMMON

30 ' TO PASS VARIABLES

40 ' SAVE THIS MODULE ON DISK

50 ' AS "PR0G1" WITH THE A OPTION.

60 DIM AS[2],BS[2]
70 COMMON AS[],BS[]
80 AS(1] = "COMMON VARIABLES NEED'
90 A$[2] = "VALUES BEFORE CHAINING.'

100 BS(1] = " B$[2] = " "
110 CHAIN "PR0G2"

120 PRINT: PRINT BS[1]: PRINT
125 PRINT BS(2]: PRINT
130 END

7-32

10 ' THE STATEMENT "DIM A8[2],BS(2]"
20 ' MAY ONLY BE EXECUTED ONCE.

30 ' HENCE, IT DOES NOT APPEAR
40 ' IN THIS MODULE.

50 ' SAVE THIS MODULE ON THE DISK

60 ' AS "PR0G2" USING THE A

70 ' OPTION.

80 COMMON AS(},BS(]
90 PRINT: PRINT AS[1];AS(2]

100 BS(1] = "CHAIN TO LINE 90"
110 B$(2] = "TO SKIP DIM"
120 CHAIN "PROG1",90
130 END

r>

CHAIN

Statement

Example 2 10 ' THIS PROGRAM DEMOIMSTRATES
20 ' CHAIIMIIMG USING THE MERGE

30 ' AND ALL OPTIONS.

40 ' SAVE THIS MODULE ON THE DISK

50 ' AS "MAINPRG".

60 AS = "MAINPRG"

70 CHAIN MERGE "0VRLAY1",1010,ALL
80 END

1000 ' SAVE THIS MODULE ON THE DISK

1010 ' AS "0VRLAY1" USING THE A

1015 ' OPTION.

1020 PRINT AS; " HAS CHAINED TO"
1025 PRINT "0VRLAY1."

1030 AS = "0VRLAY1"

1040 BS = "0VRLAY2"

1050 CHAIN MERGE "OVRLAY2",1010,
ALL, DELETE 1000-1050

1060 END

1000 ' SAVE THIS MODULE ON THE DISK

1010 ' AS "0VRLAY2" USING THE A

1015 ' OPTION.

1020 PRINT AS; " HAS CHAINED"
1025 PRINT " TO ";BS; " . "
1030 END

7-33

CHDIR
Command

Changes the current directory.

Syntax CHDIR pathname

pathname is a string expression identifying the new directory which is
to be the current directory

ROOT

\
SALES ACCOUNTING

1 / \
FRED EMIL ANDY

I
WILMA

Assuming that the diskette in drive B has the
directory structure illustrated above, to change
the current directory from ROOT to
ACCOUNTING enter:

CHDIR "B:\ACCOUNTING"

ACCOUNTING is now the current directory
on drive B. To change the current directory
from ACCOUNTING to ANDY enter:

CHDIR "ANDY"

7-34

Syntax

CHR$
Function

Returns a one-character string whose ASCII
decimal code is the value of the argument.

CHR$ (n)

n is an integer expression which must be in the range 0 to 255.
It represents an ASCII code. If it is outside the specified range,
an "Illegal Function Call" is returned.

Remarks CHR$ is normally used to send a special
character to an output device. For instance,
the BEL character (CHR$(7)) could be sent as
a preface to an error message, or a form feed
(CHR$(12)) could be sent to clear a terminal
screen and return the cursor to the home

position.

Examples 100 PRINT CHR$[7] 'BEEP

150 PRINT CHRS[LINEFEED%]

200 IF CHRS(INP[IN.PORT%]] = "A" THEN
210 GOSUB 100

7-35

CINT
Function

Converts any numeric argument to an integer
by rounding the fractional portion.

Syntax CINT (numexp)

Remarks If "numexp" is not in the range -32768 to
32767, an "Overflow" error occurs.
If the fractional portion of "numexp" is >=.5
the integer part is rounded up; otherwise a
truncation occurs.

See the CDBL and CSNG functions for details

on converting numbers to the double precision
and single precision data type, respectively.
See also the FIX and INT functions, both of
which return integers.

Example Ok
PRINT CiNT(45.67]

46

7-36

Ok

PRINT CINT[-3.71]
-4

Ok

O

Syntax

x,y

radius

color

CIRCLE
Statement

Draws a circle (or an ellipse) with the specified
center and radius (Graphics mode only).

CIRCLE (x,y),radius[,color[,start,end
[,aspect]]]

are numeric expressions, specifying the coordinates of the
center of the circle (or ellipse). They may be given in absolute
form, or in relative form if STEP is included.

is a numeric expression returning a positive integer value. It
is the radius of the circle, or the major axis of the ellipse. It is
measured in pixels in the horizontal direction if aspect < 1,
and in vertical direction if aspect > 1.

is an integer expression in the range 0 to 3. It is the color
number of the circumference (or ellipse). See the COLOR
graphics statement (current screen mode) for details.

start,end are numeric expressions specifying angles in radians. The
range is from —2*PI to 2*PI, where PI = 3.141593. They
specify where the drawing of the circle (or ellipse) will begin
and end.

aspect is a numeric expression returning a positive value. Due to
the nonuniform distribution of the pixels on the screen, you
must specify a value of 'aspect' to draw a true circle with
different monitors. The default value of 'aspect' is 5/6 in
medium and super resolution and 5/12 in high resolution.
This value produces a circle with the standard monitor.

7-37

CIRCLE

Statement

7-38

Drawing Circles and Ellipses

The CIRCLE statement draws circles if you do
not specify the ''aspect" parameter, and
ellipses if you specify a value of "aspect"
different from the default value (5/6 in
medium and super resolution, and 5/12 in
high resolution).

The "aspect" may be thought of as a fraction,
with a separate numerator and denominator.
The numerator tells GWBASIC how many
rows the CIRCLE statement should consider

equivalent to the number of columns specified
by the denominator.

If "aspect" is less than one, then "radius" is
measured in pixels in the horizontal direction,
i.e., it is the x-radius. In this case GWBASIC
draws ellipses with the seime width, and varies
the height.

If "aspect" is greater than one, the y-radius is
given, and GWBASIC draws ellipses with the
same height and varies the width.

For example:

100 CIRCLE (100,150),50„„5/18

will draw a horizontal ellipse with an x-radius
of 50 pixels.

CIRCLE

Statement

Drawing Arcs

The CIRCLE statement can simply draw part
of a circle (or ellipse), i.e., an "arc."

To draw an arc you must enter the "start" and
"end" parameters. They specify the first and
the second arc endpoint in radians.

The angles are positioned in the standard
mathematical way, with 0 to the right and
going counterclockwise.

For example, the following statement specifies
just a quarter of a circle:

10 CIRCLE [100,150],50,1,0,3.141593/2

The angles must be measured in radians. If
you have the angles in degrees, you must
convert them to radians before executing the
CIRCLE statement. To convert from degrees
to radians, multiply by 0.0174532.

7-39

CIRCLE

Statement

7-40

Drawing Rays

The CIRCLE statement can draw a ray from
the center of the arc to either arc endpoint. A
negative endpoint generates a ray to that
endpoint. The endpoint, -0, is not treated as a
negative endpoint. To circumvent this
limitation, use a small negative number (e.g.,
-0.001 instead of -0). When both endpoints
are negative, both rays are drawn. The minus
sign does not affect the arc itself, i.e., the
angles will be treated as if they were positive.
Note that this is different from adding 2*PI
(where PI is 3.141593). The start angle may be
greater or less than the end angle. For
example:

100 CIRCLE (100,150),50,1,
-0.001, -3.141593/2

will draw a quarter of a circle delimited by two
rays.

Last Point Referenced

The last point referenced after a circle (or
eUipse) has been drawn is the center of the
circle (or ellipse).

Clipping

Points that are off the screen or the graphics
viewport are not drawn by the CIRCLE
statement.

CIRCLE
Statement

STEP Option

Coordinates can be shown as absolutes or the
STEP option can be used to reference a point
relative to the most recent point used.

For example, if the most recent point
referenced was 100,50, then:

either

CIRCLE (200,200],50

or

CIRCLE STEP (100,150],50

will draw a circle at 200,200 with radius 50.
The first example uses absolute notation; the
second uses relative notation.

Example The following example draws three
intersecting circles and colors the area of
intersection.

5 SCREEN 1

10 COLOR 0,3
20 CLS

30 CIRCLE (100,120],S0
40 CIRCLE (150,130],120
50 CIRCLE (250,120],100
60 PAINT (180,120]

7-41

CLEAR
Command

Syntax

Clears all numeric variables to zero, all string
variables to null, and closes all open files.
Options set the highest memory location
available for use by GWBASIC, and the
amount of stack space.

CLEAR [, [memory] [, stack]]

memory is an expression representing a memory location which, if
specified, sets the top of memory (i.e., the maximum extension
of the GWBASIC Data Segment)

stack is an integer expression whose value sets aside stack space
for GWBASIC. The default is 512 bytes or one-eighth of the
available memory, whichever is smaller.

Remarks The "memory" parameter should be specified
to reserve space in storage for assembly
language routines, the "stack" parameter to
use several nested GOSUBs, FOR. . .NEXT
loops, or PAINT to paint complex pictures.

7-42

GWBASIC allocates string space
dynamically. An "Out of string space" error
occurs only if there is no free memory left for
GWBASIC to use.

CLEAR

Command

If a value of 0 is given for either expression,
the appropriate default is used. The default
stack size is 512 bytes, and the default top of
memory is the current top of memory. The
CLEAR statement performs the following
actions:

• closes all files

• clears all COMMON variables

• resets the stack and string space

• resets all simple numeric variables and
numeric array elements to zero

• resets all simple string variables and string
array elements to nuU

• releases all disk buffers

• resets all DEF FN, DEFINT/SNG/DBL/STR,
DEF SEG and DEF USR statements

Examples CLEAR

CLEAR ,32768

CLEAR ,,2000

CLEAR ,32768,2000

7-43

CLOSE
Statement

Terminates I/O to a file or device. CLOSE is

usually used in a program.

Syntax CLOSE [[#] filenum[, [#]filenum]...]

filenum is the number under which the file was OPENed. A CLOSE
with no arguments closes all open files.

Remarks The association between a particular file and
file number terminates upon execution of a
CLOSE statement. The file may then be
reOPENed using the same or a different file
number; likewise, the file number may now be
reused to OPEN any file.

A CLOSE for a sequential output file writes
the final buffer of output.

The END statement and the NEW command

always close all disk files automatically.
(STOP does not close disk files.)

Example To read the data in a sequential file open for
output or append, you must first CLOSE the
file and then reOPEN it in the "I" mode. If

the file DATA was opened for output as #1;

100 CLOSE #1

110 OPEN "I", #1, "DATA"

7-44

CLS
statement

Erases all or part of the screen.

Syntax CLS [n]

n is an integer expression in the range 0 to 2.

Remarks CLS without a parameter clears the entire
screen to the current text background color,
unless a graphics viewport has been defined,
and resets the function key line (if the function
key display is enabled). If a viewport has been
defined, the current viewport only will be
cleared to the graphics background color.
Outputting a formfeed character (typing
CTRL L or PRINT CHR$(12);, will have the
same effect).

CLS 0 clears the entire screen, resetting the
function key display.

CLS 1 clears the graphics viewport to the
graphics background color (in one of the
graphics modes). If no viewport has been
defined, this will have no effect.

7-45

CLS

Statement

CLS 2 clears the text window to the text

background color, without resetting the
function key display.

CLS not only erases all or part of the screen,
but also returns the cursor to the upper
lefthand corner of the screen (in Text Mode).

If you Eire in Graphics Mode, CLS makes the
"last referenced point" the center of the screen.

The screen can also be cleared by pressing
CTRL HOME or by modifying the screen
mode using the SCREEN statement, or the
width using the WIDTH statement.

Example 10 CLS ' Clears the screen [or10 CLS ' Clears the screen (or
20 ' the current viewport]
60 CLS 0 ' Clears whole screen

90 CLS 1 ' Clears the graphics
100 * viewport
110 CLS 2 ' Clears the text window

7-46

Syntax

Text Mode

COLOR
Statement

Sets the text foreground and background
colors (Text Mode only).

COLOR [foreground] [.background]
[.dummy]

foreground is a numeric expression rounded to the nearest integer. It
must be in the range 0 to 31. It selects the character
foreground color.

background is a numeric expression rounded to the nearest integer. It
must be in the range 0 to 15, but it is interpreted modulo 8,
thus only values from 0 to 7 are taken into consideration.

dummy this parameter is allowed for compatibility with other
BASICs. It will have no effect. It may specify border color on
other systems.

Remarks (Color Text Mode)

If you enable color (see the SCREEN
statement) or the color hardware is installed
(Standard monitor), the following colors are
allowed for "foreground":

0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow

7 White 15 High-intensity White

7-47

COLOR

Statement

7-48

Text Mode

To make characters blink for a specific color,
you should set "foreground" equal to 16 plus
the color number.

You may select only colors 0 through 7 for
"background."

In a monochrome system the following values
can be used for "foreground":

• 0 Black

• 1 Underlined character with white foreground

• 2-7 White

Adding 8 to the number of the desired color
gives you the color in high-intensity.

You can make the character blink by adding
16 to the number of the desired color.

For "background" you may select the
following values:

0-6 Black

7 White

Text Mode

COLOR

Statement

Foreground and background colors may be
equal. In this case any character displayed is
invisible. Changing the foreground or
background color will make subsequent
characters visible again.

Any parameter may be omitted. Omitted
parameters assume the old value.

Upon initialization, the default values are:

foreground = 7 (White)

background = 0 (Black)

That is, if no COLOR statement exists in your
program, the system assumes:

COLOR 7,0

Examples 100 COLOR 0,2

This sets a black foreground on a green
background in color mode and a black
foreground on a black background, i.e.,
invisible characters, in B/W mode.

150 COLOR 15,1

This sets a high-intensity white on a blue
background in color mode, and a high
intensity white on a black background in B/W
mode.

7-49

COLOR

Statement

Text Mode

Possible If the COLOR statement ends in a comma (,),
Errors a **Missing operand" error is returned, but the

color will chgmge. For example:

COLOR 2,

is invalid.

If you enter a value outside the range 0 to 255
an "Illegal function call" error is returned.
Previous values are retained.

7-50

COLOR

Statement

Medium-resolution Graphics

Defines the background and foreground pallette
colors.

Syntax COLOR [background] [,palette]

background is a numeric expression rounded to the nearest integer. It
must be in the range 0 to 15. It selects color for the character
background. It defaults to 0 (Black) if unspecified.

palette is a numeric expression rounded to the nearest integer. It
must be in the range 0 through 255. This selects one of 2 palettes
for the color numbers 1, 2 and 3 that may be specified in a
graphics statement.

Palette

0

1

Color 1

Green

Cyan

Color 2

Red

Magenta

Colors

Yellow

White

Palette 0 is selected, when 'palette' is an even number. Palette
1 is selected, if 'palette' is an odd number.

Remarks When you enter a CIRCLE, DRAW, LINE,
PAINT, PRESET, or PSET statement in your
program, you can specify a color number of 0,
1, 2, or 3. This parameter selects the color from
the current "palette" as defined by the COLOR
statement.

If you do not specify a color number, the
default is color 3.

When you display text the character
foreground will be color number 3. The character
background will be set by the color statement.

Any parameter may be omitted in the COLOR
statement. Omitted parameters assume the old
value.

7-51

COLOR

Statement

Examples

7-52

Upon initialization the default values are:

• background =0
• palette =1

That is, if no COLOR statement exists in your
program, the system assumes:

COLOR 0, 1

The use of memory for color and monochrome
in medium-resolution mode is identical. The

modes differ only in that the two bits of a pixel
are interpreted differently by the hardware:
B/W medium resolution displays 4 shades of
grey.

10 SCREEN 1,0
20 COLOR 10,1

Sets the palette background to light green, and
selects palette 1 (Cyan, Magenta, White).

100 COLOR,0

The background stays light green and palette
0 is selected.

High and Super-resolution Graphics

COLOR

Statement

Defines the graphics and foreground text
colors.

Syntax COLOR [foreground] [, dummy]

foreground is a numeric expression rounded to the nearest integer. It
must be in the range 0 to 15. This specifies both graphics and
text foreground color and defaults to White (color 7). The
background color is always black.

dummy is ignored in this mode.

Remarks When you enter a CIRCLE, DRAW, LINE,
PAINT, PRESET, or PSET statement in your
program, you can specify a color number of 0,
1, 2, or 3. A color of 0 or 2 indicates black. A
color of 1 or 3 selects the color from the current

foreground as defined by the COLOR statement.

7-53

COLOR

Statement

If you do not specify a color number, the
default is the last foreground color specified.

Any parameter in the COLOR statement may
be omitted. Omitted parameters assume the
old values. Upon initialization default values
are:

• foreground = 7(White)

That is, if no COLOR statement exists in your
program, the system assumes:

COLOR 7

Example SCREEN 2
COLOR 14

This selects a yellow foreground on a black
background.

7-54

Syntax

COM(n)
Statement

Enables or disables event trapping of
communications activity on the specified
channel.

COM (n) {ON I OFF | STOP}

n is an integer expression that specifies the number of the
communications channel. It may be 1, 2, 3, or 4.

COM(n) ON enables communications event trapping. While trapping is
enabled, and if a non-zero line number is specified in the ON
COM(n) GOSUB statement, GWBASIC checks between
every statement to see if activity has occurred on the
communications channel. If it has, the ON COM(n) GOSUB
statement is executed.

COM(n) OFF disables communications event trapping.

COM(n) STOP disables communications event trapping, but if an event
occurs it is remembered, and ON COM(n) will be executed as
soon as trapping is enabled.

Example

10 C0M(1] DIM

Enables error trapping of communications
activity on channel 1.

7-55

COMMON
statement

Defines a common area which is not erased by
the CHAINed program, and allows you to pass
variables from one program to another.

Syntax COMMON variable [,variable]...

variable is the name of a numeric or string variable which is required
to be passed to the CHAINed program. For array variables
place a set of parentheses "()" after the variable name.

Remarks The COMMON statement is used in

conjunction with the CHAIN statement.
COMMON statements may appear anywhere
in a program, though it is recommended that
they appear at the beginning.

The CHAINed program need not specify,
through the use of COMMON statements, the
common variables specified by the CHAINing
program. The CHAINed program will use
those variables with the same names specified
in the CHAINing program. Each type
definition statement (DEFINT, DEFSNG,
DEFDBL, DEFSTR) referring to common
variables, must precede the associated
COMMON statements and must be repeated
in the CHAINed program.

7-56

Example

COMMON

Statement

Common variables must always be initialized
within the CHAINing program. Common
arrays must be explicitly described by DIM
statements in the CHAINing progrsim (but not
in the CHAINed program, otherwise a
"Duphcate definition" error occurs). The DIM
statements must be written before the

associated COMMON statements.

10 REM PG1

20 COMMON A1,B1,C1,D1S

80 CHAIN "A:PG2"

^ 90 END

10 REM PG2

20 PRINT A1,B1,C1,D1S
120 END

The above example shows that the CHAINed
program need not specify, through the use of
COMMON statements, the common variables
specified by the CHAINing program.

In our example the values of the variables Al,
Bl, Cl, and Dl$ in the program PGl are
passed to the CHAINed program PG2, which
displays them.

7-57

COMMON

Statement

Example

7-58

The DIM statement must be written before the

associated COMMON statement.

10 REM PG1

20 DEFDBL C1

30 COMMOIM A1,B1,C1,D1S

90 CHAIN "A:PG2"

100 END

10 REM PG2

20 DEFDBL 01

130 END

Each type definition statement (DEFINT,
DEFSNG, DEFDBL, DEFSTR) referring to
common variables, must precede the
associated COMMON statement and must be

repeated in the CHAINed program. (Note the
statements DEFDBL, both with PGl and
PG2.)

Example
10 REM PG1

20 DIM A1(15,20]
30 COMMON A1(],B1,C1

100 CHAIN "A:PG2"

110 END

10 REM PG2

50 PRINT A1[1,1)

COMMON

Statement

90 END

A COMMON statement can also specify array
names. Such specifications are followed by a
pair of parentheses.

Each use of common array must be explicitly
described by a DIM statement in the
CHAINing program (but not in the CHAINed
one, otherwise a "Duplicated Definition" error
occurs).

The DIM statement must be written before the

associated COMMON statement.

7-59

COMMON

Statement

Example

7-60

10 REM modi

20 A = 1:B = 2

30 COMMOIM A.B
50 COMMON C

60 CHAIN "modS"

10 REM mod2

20 A = 1:B = 2

30 COMMON A

40 GOTO 60

50 COMMON B

60 CHAIN "mod3"

10 REM mod3

20 PRINT A;B

For example, when executing program "modi"
an "Illegal function call in 50" is issued, as
variable C has not been initialized. When

executing program "mod2" instead, program
"mods" is CHAINed; it displays both A and B
variables, even if statement 50 of "mod2" is
jumped over.

CONT
Command

Resumes program execution after a CTRL-
BREAK has been typed or a STOP or END
statement has been executed. CONT should

only be used in immediate mode.

Syntax CONT

Remarks Execution resumes at the point where the
break occurred. If the break occurred after a

prompt from an INPUT statement, execution
continues with the reprinting of the prompt
("?" or prompt string).

CONT is usually used in conjunction with
STOP for debugging. When execution is
stopped, intermediate values may be examined
and changed using direct mode statements.
Execution may be resumed with CONT or a
direct mode GOTO, which resumes execution
at a specified line number.

CONT may not be used to continue execution
after an error has occurred. CONT is also

invalid if the program has been modified
during the break.

7-61

CONT

Command

Example

10 INPUT A,B
20 TEMP= A*B

30 STOP

40 FINAL = TEMP+ 300: PRINT FINAL

RUN

? 32, 2.4
Break in 30

Ok

PRINT TEMP

76.8

Ok

CONT

376.8

Ok

7-62

Syntax

Remarks

Example

COS
Function

Returns the cosine of the argument.

COS (numexp)

The argument "numexp" represents the angle
in radians.

The calculation of the COS function is

performed in single precision, unless "ID" is
supplied in the GWBASIC command line.

10 X = 2*C0S[.4]
20 PRilMT X

RUN

1.842122

Ok

7-63

CSNG
Function

Syntax

Remarks

Example

7-64

Converts any numeric argument to a single
precision number.

CSNG (numexp)

See the CINT and CDBL functions for

converting numbers to the integer and double
precision data types, respectively.

10A#= 975.342123217685

20 PRINT A#; CSNG[A#]
RUN

975.342123217685 975.3421

Ok

Syntax

Remarks

Example

CSRLIN
Function

Returns the current line (row) position of the
cursor.

CSRLIN

CSRLIN returns a value in the range 1 to 25.
To return the current column position use the
POS function. (See the POS function in this
chapter.)

10 Y = CSRLIIV

20 X = POS[0]
30 LOCATE 24,1
35 REM PRINT

40 LOCATE Y,X

'Record current line.

'Record current column.

:Print "HELLO"

HELLO on last line.

'Restore position to old
line, column.

7-65

CVI, CVS, CVD
Functions

Syntax 1

Syntax 2

Syntax 3

Remarks

Example

7-66

Converts string values to numeric values.

CVI(2-byte-string)

CVS(4-byte-string)

CVD(8-byte-string)

Numeric values that are read in from a

random file buffer must be converted from

strings back into numbers.

CVI converts a "2-byte-string" to an
integer.

CVS converts a "4-byte-string" to a single
precision number.

CVD converts an "8-byte-string" to a double
precision number.

See also "MKI$, MKS$, MKD$" functions,
later in this chapter.

70 FIELD #1,4 AS NS, 12 AS BS
80 GET #1

90 Y = CVS[NS]

Syntax

constant

DATA
Statement

Creates an "internal" file, i.e., a sequence of
data belonging to the program. Each data
item can then be assigned to a program
variable by a READ statement. A DATA
statement should only be used in a program.

DATA constant! , constant]...

is a numeric or string constant. Any numeric format (i.e.,
integer, hexadecimal, octal, single or double precision) is
acceptable for numeric constants. String constants in DATA
statements must be surrounded by double quotation marks
only if tbey contain commas, colons, or significant leading
or trailing spaces. Otherwise, quotation marks are not
needed.

Remarks DATA statements are non-executable and may
be placed anywhere in the program. A DATA
statement may contain as many constants as
will fit on a line (separated by commas). Any
number of DATA statements may be used in a
program.

A DATA statement in a program need not
correspond to a specific READ statement. This
is because before program execution, a data
file (the "internal file" as it is often called) is
created. It contains all the values of all the

DATA statements in the program in line
number sequence. When the program is
executed, READ takes its values from this file.

7-67

DATA

Statement

Example

7-68

The data-type of an entry in the data sequence
must correspond to the type of the variable to
which it is to be assigned; i.e., numeric
variables require numeric constants as data
(conversion from one numeric type to another
is allowed; for example, you may have a single
precision floating point constant associated
with an integer variable) and string variables
require quoted or unquoted strings as data.

DATA statements may be re-read from the
beginning by use of the RESTORE statement.

Ok

10 PRINT "CITY", "STATE", "ZIP"
20 REAO C$,SS,Z
30 DATA "BIRMINGHAM,"
35 DATA "ALABAMA,12345"
40 PRINT C$,SS,Z
RUN

CITY STATE ZIP

BIRMINGHAM, ALABAMA 12345
Ok

DATES
Function and Statement

Retrieves the date (as a function), or sets the
date (as a statement).

Syntaxl stringvar = DATES
Used as a function

Syntax2 DATES = stringexp
Used as a statement

Remarks As a function, the current date is fetched and
assigned to the string variable "stringvar"
The DATES function may also be used in any
string expression in a LET or PRINT
statement.

As a statement, the current date is set. In this
case DATES is the target of a string
assignment.

The date may also have been set by MS-DOS
prior to entering GWBASIC.

Rules

• If "stringexp" is not a valid string, a "Type
Mismatch" error will result. Previous values

are retained.

• For "stringvar" = DATES, DATES returns a 10
character string in the form "mm-dd-yyyy"
where mm is the month (01 to 12), dd is the
day (01 to 31) and yyyy is the year (1984 to
1991).

7-69

DATES

Function and Statement

• For DATES = "stringexp," "stringexp" may be
one of the following forms:

"mm-dd-yy"
or

"mm/dd/yy"
or

"mm-dd-yyyy"
or

"mm/dd/yyyy"

If the month or day is specified by the use of
only one digit, GWBASIC assumes a 0 (zero)
in front of it. If the year is specified by the use
of one digit (y), GWBASIC assumes the year
to be 200y; if two digits are specified (yy), the
year will be 19yy.

If any of the values are out of range or
missing, an "Illegal function call" error is
issued. Any previous date is retained.

Example DATES = "01-01-84"
Ok

PRINT DATES

01-01-1984

Ok

7-70

Syntax

DEF FN
Statement

Defines and names user-written function. A

DEF FN statement may only be used in a
program.

DEF FN name[(argument[,argument]...)]=
expression

a legal variable name beginning with FN. No blanks may be
inserted between FN and the remainder of the name and the

first character after FN must be a letter.

argument a "dummy" variable that is to be replaced by the corresponding
argument value when the function is called.

expression an expression that performs the operation of the function.
The type of expression must agree with the type (numeric or
string) of the function, specified by "name".

Remarks In the DEF FN statement, variable names serve
only to define the function; they do not affect
program variables that have the same name. A
variable name used in a function definition may
or may not appear in the argument list. If it
does, the value of the parameter is supplied
when the function is called. Otherwise, the
current value of the program variable is used.

7-71

DEF FN

Statement

Example

7-72

The variables in the argument list represent, on
a one-to-one basis, the argument variables or
values that are to be given in the function call.

User-defined functions may be numeric or
string. The type of the function is specified by
'*name." The type of the expression must match
the type of the function, otherwise a "Type
Mismatch" occurs. If the function is numeric

the

value of the expression is forced to that type
before the function value is returned.

If a DEF FN statement has not been executed

before the function it defines is called, an
"Undefined user function" error occurs.

400 R = 1:S = 2

410 DEF FNAB(X,Y] = X 3/Y 2
420 T = FNAB[R,S]

Line 410 defines the function FNAB. The

function T will contain the value (R" 3)
divided by (S" 2) or .25.

DEF SEG
Statement

Assigns the current segment of memory.

Syntax DEF SEG [= address}

address is a numeric expression returning an unsigned integer in the
range 0 to 65535. The address specified identifies the
segment address used by BLOAD, BSAVE, PEEK, POKE,
DEF USR, and CALL.

If 'address' is omitted, then the segment to be
used is set to GWBASIC's data segment (i.e.,
the beginning of your user workspace in
memory). This is the initial default value.

If 'address' is specified, then it will be based
upon a 16 byte boundary. For the BSAVE,
PEEK, POKE, or CALL statement, the value
is shifted left 4 bits to form the Code Segment
address for the subsequent call instruction.

Note: GWBASIC does not check if the

resultant segment is valid.

7-73

DEF SEG

Statement

7-74

If you enter a value outside the range, then an
"Illegal function call" error results. Previous
value will be retained.

If you do not separate DEF and SEG by at
least one blank, GWBASIC would interpret the
statement:

DEFSEG = 150

to assign the value 150 to the variable
DEFSEG

10 DEF SEG = &HB8Q0 'Set segment to
15 'Screen buffer

20 DEF SEG 'Restore segment to
25 'GWBASIC's DS

Note that in statement 10 the screen buffer is

at absolute address B8000 hex, as the last
hexadecimal digit is dropped on the DEF SEG
statement.

Syntax

DEF USR
Statement

Enables access to a machine language
subroutine by specifying the starting address.
The subroutine may be subsequently called by
the associated USR function. DEF USR is

usually used in a program.

DEF USR [n] = offset

may be any digit from 0 to 9. The digit corresponds to the
number of the USR routine whose address is being specified.
If 'n' is omitted, DEF USRO is assumed.

offset Offset is an integer expression in the range 0 to 65535.

Remarks Any number of DEF USR statements may
appear in a program to redefine subroutine
starting addresses, thus allowing access to as
many subroutines as necessary. To obtain the
starting address of a subroutine, GWBASIC
adds the value of "offset" to the current

segment value.

Example 100 DEF SEG = 0
200 DEF USRO = 24000

210 X = USRO[Y 2/2.89]

7-75

DEFINT/SNG/DBL/STR
Statements

Syntax

type

Declare the variable type in accordance with
the letter(s) specified. These statements are
usually used in a program.

DEF type letter[-letter][,letter[-Ietter]]...

is INT, SNG, DEL, or STR. No space should be entered
between DEF and INT, SNG, DEL, or STR.

letter represents a letter from the alphabet (A-Z)

Remarks Any variable names beginning with the
letter(s) specified in "range of letters" will be
considered. The type of variable specified by
the "type" declaration character (%,!,#,$)
always takes precedence over a DEFtype
statement.

If no type declaration statements are
encountered, GWBASIC assumes all variables
without declaration characters are single
precision variables. DEFtype statements must
precede the use of the defined variables.

Example 10 DEFDBL L-P
All variables beginning with the letters L, M,
N, O, and P will be double precision variables.

10 DEFSTR A

All variables beginning with the letter A will
be string variables.

10 DEFINT l-IM.W-Z
All variables beginning with the letters I, J, K,
L, M, N, W, X, Y, Z will be integer variables.

7-76

DELETE
Command

Erases program lines. DELETE is usually
used in immediate mode.

Syntax DELETE [linenuml][- [linenum2]]

linenuml first line to be erased.

Iinenum2 last line to be erased.

Remarks GWBASIC always returns to command level
after a DELETE is executed. If either

"linenuml" or "linenum2" does not exist, an
"Illegal function call" error occurs unless both
"linenuml" and "linenum2" are used to specify
a range of line numbers to be deleted. In this
case it is acceptable to specify a non-existent
line number for "linenuml," providing
"linenum2" is a valid line number. A period (.)
can be used instead of the line number to

indicate the current line.

DELETE 80

Deletes line 80.

DELETE 80-120

Deletes lines 80 through 120, inclusive.

DELETE -80

Deletes all lines up to and including line 80.

DELETE 80-

Deletes all lines from line 80 through the end
of the program.

7-77

DIM
Statement

Syntax

Specifies the array name, the number of
dimensions and the subscript upper bound per
dimension. The DIM statement may specify
one or more arrays.

DIM array (subscripts)[,array
(subscripts)]...

array is a valid array name. Any legal variable name may be used.

subscripts refers to one or more numeric expressions which specify the
array dimensions. Each subscript must be separated from
the next by commas. The number of subscripts specifies the
number of dimensions, and the value of each specifies the
subscript upper bound.

Remarks If an array name is used without a
corresponding DIM statement, the maximum
value of the array's subscript(s) defaults to 10.
If a subscript is used that is greater than the
maximum specified, a "Subscript out of range"
error occurs. The minimum value for a

subscript is always 0, unless otherwise
specified with the OPTION BASE statement.

If no DIM is specified, the first reference to an
array element in the program will create the
array with the specified number of
dimensions. For example, if a program
statement refers to: AR1(3,5,10) then ARl is
created with 3 dimensions and a default upper
bound of 10 for each dimension.

7-78

DIM

Statement

The DIM statement sets all numeric array
elements to an initial value of zero and

elements of string arrays to null strings.

Theoretically, the maximum number of
dimensions allowed in a DIM statement is 255

and the maximum number of elements per
dimension is 32767. In reality, however, these
numbers are limited by line length and
memory size.

If you try to redimension an array without
first erasing it, a "Duplicate definition" error
occurs. You must first use the ERASE

statement to erase an array before
redimensioning it.

Number of Elements per Dimension

no DIM is used

OPTION BASE 0 is set 11 elements (subscripts 0-10
are allowed in each dimen

sion)

OPTION BASE 1 is set 10 elements (subscripts 1-10
are allowed in each dimen

sion)

DIM is used
OPTION BASE 0 is set the number of elements in

each dimension is calcu

lated by adding 1 to each
upper bound subscript

OPTION BASE 1 is set the number of elements in

each dimension coincides
with each upper bound sub
script

7-79

DIM
Statement

Examples

7-80

To Define an Array

1 Establish the subscript lower bound. Use
OPTION BASE 1 or adopt the default OPTION
BASE 0.

2 Assign a name to the array using a DIM
statement.

3 Establish the number of dimensions using the
DIM statement.

4 Establish the subscript upper bounds per
dimension using the DIM statement.

If you do not dimension an array, its implicit
dimensions are the default values described in

remarks.

a DIM statement cannot be preceded by an
array reference

a DIM statement does not set the subscript
upper bound per dimension, in case it is
jumped over.

10 DIM AC5],BS[2G,30,15]

IQIIMPUTI

20 DIM ARRAY1[i]
30 FORK = OTOI

40 READ ARRAY1[K]
50 NEXT

DIM

Statement

Example 10 DIM A(20]
20 FOR 1 = 0 TO 20

30 READ A(i]
40 NEXT 1

Example LIST
10 1 = 1

20 GOTO 40

30 DIM A(50]
40 A(10) = 3
50 A[11] = 45
Ok

RUN

Subscript out of range in 50
Ok

The system displays:

Subscript out of range in 50

when statement 50 is executed, as statement
30 is jumped over and an upper bound of 10 is
assumed by default.

7-81

DRAW
Statement

Syntax

stringexp

Draws an object as specified by the contents of
a string expression. (Graphics Mode only.)

DRAW stringexp

is a string expression which defines an object which is
drawn when GWBASIC executes the statement. 'Stringexp'
is one or more of the movement commands below.

Remarks The DRAW statement combines most of the

capabilities of the other graphic statements
into an easy-to-use object definition language
called "Graphics Macro Language." A GML
command is a single character or a pair of
characters within the string "stringexp,"
optionally followed by one or more arguments.

Movement Each of the following movement commands
Macros begin movement from the current graphics posi

tion. This is usually the coordinate of the last
graphics point plotted with another GML com
mand, LINE, or PSET. The current position
defaults to the center of the screen when a

program is RUN.

7-82

DRAW

Statement

U[nl Move up. The number of points moved is n * scale factor (set
by the S command below). If 'n' is omitted 1 is supplied.

D[nl Move down. The number of points moved is n * scale factor
(set by the S command below). If 'n' is omitted 1 is supplied.

L[n] Move left. The number of points moved is n * scale factor (set
by the S command below). If 'n' is omitted 1 is supplied.

Rln] Move right . The number of points moved is n * scale factor
(set by the S command below). If 'n' is omitted 1 is supplied.

E|n| Move diagonally up and right. The number of points moved
is n * scale factor (set by the S command below). If 'n' is
omitted 1 is supplied.

Flnl Move diagonally down and right. The number of points moved is
n * scale factor (set by the S command below). If 'n' is omitted
1 is supplied.

G[n| Move diagonally down and left. The number of points
moved is n * scale factor (set by the S command below). If
'n' is omitted I is supplied.

H[nl Move diagonally up and left. The number of points
moved is n * scale factor (set by the S command below). If 'n'
is omitted 1 is supplied.

7-83

DRAW

Statement

lVIx,y

B

N

An

TAn

Cn

7-84

Move absolute or relative. If *x' is preceded by a plus (+) or
minus (—), 'x' and *y' are added to the current graphics
position, and connected with the current position by a line
(move relative). Otherwise, a line is drawn to point 'x,y' from
the current position (move absolute).

Move without plotting any points. B may precede any of the
above mentioned movement commands.

Move but return to original position when finished. N may
precede any of the above mentioned movement commands.

Further GML Commands

Set angle 'n'. 'n' may range from 0 to 3, where 0 is 0 degrees,
1 is 90, 2 is 180, and 3 is 270. Figures rotated 90 or 270 degrees
are scaled so that they will appear the same size as with 0 or
180 degrees on a monitor screen with the standard aspect
ratio of 4/3.

Rotate angle 'n'. 'n' is equivalent to degrees in the range -360
to 360. If *n' is positive, rotation is counter-clockwise, if 'n' is
negative, rotation is clockwise. If 'n' is outside the specified
range, an "Illegal function call" error occurs.

Set color 'n' (from 0 to 3 in medium resolution, and 0 to 1 in
high or super resolution).

Sn

Xstringexp

Pn,m

Remarks

Examples

DRAW

Statement

Set scale factor, 'n' may range from 1 to 255. The scale factor
multiplied by the distances given with U,D,L,R»E,F,G,H or
relative M commands gives the actual distance traveled.

Execute substring. This powerful command allows you to
execute a second substring from a string.

'n' is the color chosen to paint the interior of the closed figure
and 'm' is the border color. You must specify both param
eters or an error will occur. Both parameters can range
from 0 to 3 in medium resolution and from 0 to 1 in high or
super resolution mode.

In all GML commands, "n," "x," and "y"
arguments can be constants like "327" or
"=numvar;." The semicolon is necessary if you
enter a variable this way or if you use the X
command; ptherwise you can omit the
semicolon between commands. Spaces are
ignored in "stringexp." For example:

M+=A;,- = B|

To draw a box:

10 SCREEN 1

20 A = 40

30 DRAW "U = A; R = A; D=:A; L = A;"

10 US = "U30i" : DS = "D30;"
15 LS = "L40;" : RS = "R40;"
20 B0XS = US + R$ + DS + LS

30 DRAW "XBDXS;"
40 REM DRAW "XU$;XR$;XD$;XL$;"
50 'would have drawn the same box

7-85

EDIT
Command

Syntax

linenum

Lets you change a program line. EDIT is only
used in immediate mode.

EDIT [linenum|.]

is the program line number. If no such Mne exists,
"Undefined Line number" error message is displayed.

A period can be used instead of a line number to refer to the
current line.

Remarks When you enter an EDIT command,
GWBASIC displays the specified line and
positions the cursor under the first digit of the
line number. The line may then be modified by
using the special editor keys.

The EDIT command can be used to redisplay
and edit a line which has just been entered.
(The line number symbol always refers to
the current line.)

Example

7-86

LIST may also be used to display program
lines for editing.

EDIT 500

500 PRIIMT A$,B$,CS

END
Statement

Terminates program execution, closes all open
data files, and returns to command level. END
is only used in a program.

Syntax END

Remarks END statements may be placed anywhere in
the program to terminate execution. Unlike
the STOP statement, END does not cause a
"Break in line nnnnn" message to be printed.
An END statement at the end of a program is
optional. GWBASIC always returns to
command level after an END is executed.

Example 520 IF K>1G0G THEN END ELSE GO
TO 20

7-87

ENVIRON
Statement

Syntax

parm-id

Remarks

Allows modification of parameters in
GWBASIC's Environment String Table.

ENVIRON parm-id = ltext[;]]

is a valid string expression containing the new Environ
ment String parameter

The ENVIRON statement may be used, for
example, to change the "PATH" parameter for
a child process. Parameters may also be
passed to a child process by inventing a new
environment parameter.

Rules

• "parm-id" is the name of the parameter such
as "PATH."

• "parm-id" must be separated from 'text' by
or ' ' (blank) such as "PATH='. ENVIRON
takes everything to the left of the first blank or
" = " as the "parm-id," and everything to the
right as 'text.'

• "text" is the new parameter text. If "text" is a
null string, or consists only of (a single
semicolon, such as "PATH = ;") then the
parameter (including "parm-id=") is removed
from the Environment String Table and the
Table is compressed.

r>

ENVIRON

Statement

• If "parm-id" does not exist in the
Environment String Table, then "parm-id" is
added at the end of the Environment String
Table.

• If "parm-id" does exist, it is deleted, the
Environment String Table is compressed, and
the new "parm-id" is added at the end.

Examples The following MS-DOS command will create a
default "PATH" to the Root Directory on Disk
A:

PATH = A:

The PATH may be changed to a new value by:

ENVIRON"PATH =A;SALES;
A:ACCOUNTING"

A new parameter may be added to the
Environment String Table:

ENVIRON "SESAME = PLAN"

The Environment String Table now contains:

PATH = A:SALES;A:ACCGUNTING
SESAME = PLAN

If you then entered:

ENVIRON "SESAME = ;"

then you would have deleted SESAME, and
you would have a table containing:

PATH = A:SALES;A:ACCOUNTING

7-89

ENVIRON

Statement

Possible • "Type mismatch" — if "parm" is not a string,
errors

• "Out of Memory" — if the Environment Table
is full and no more can be allocated.

7-90

ENVIRONS
Function

Allows you to retrieve the specified
Environment String from GWBASIC's
Environment String Table.

Syntax ENVIRON$ [(parm) | (nth parm)]

parm is a string expression containing the parameter to be retrieved

nthparm is an integer expression returning a value in the range 1 to 255

Remarks • If a string argument is used, ENVIRON$
returns a string containing the text following
"parm=" from the Environment String Table.

• If "parm=" is not found, or no text follows
"parm=" then a null string is returned.

• If a numeric argument is used, ENVIRONS
returns a string containing the "nth parm"
from the Environment String Table including
the "parm"=text".

• If there is no "nth parm" then a null string is
returned.

Possible "Illegal function call"—If"nth parm" is out of
errors range.

"Type Mismatch"—If "parm" is not a string.
"String too long" — If the string is longer than
255 characters.

7-91

EOF
Function

Indicates that the end of a file has been

reached.

Syntax EOF (filenum)

filenum is the file number specified in the OPEN statement

Remarks For sequential files, the EOF function returns
true (-1) if there is no more data in the file and
false (0) if end-of-file has not been reached.
Use EOF to test for end-of-file while inputting,
to avoid "Input past end" errors.

EOF is significant only for a file opened for
sequential input from disk, or for a
communications file. A true value (-1) for a
communications file means that the buffer is

empty.

EOF (0) returns the end of file condition on
standard input devices used with redirection of
I/O.

7-92

r>

Example

EOF

Function

5 DIM M[500]
10 OPEN "i",1,"DATA"
20 K = 0

30 IF E0F[1] THEN 100
40 INPUT #1,M[K]
50 K = K + 1:GGT0 30

100 REM PROCESS DATA

This example reads data from the sequential
fine named "DATA." Values are read into
array M until the end of file is reached.

7-93

ERASE
Statement

Releases space and variable names previously
reserved for arrays. The data is lost and the
array(s) no longer exist.

Syntax ERASE array [, array]...

array is the name of an array to be erased.

Remarks Arrays may he redimensioned after they are
ERASEd, or the previously allocated array
space in memory may be used for other
purposes. If an attempt is made to
redimension an array without first ERASEing
it, a "Duplicate Definition" error occurs.

Example It is not good programming practice to reuse
an identifier. This may generate errors or
reduce the program readability. You may,
however, find it useful to redeclare an erased
array; for example, when an array name is
known by a subroutine and you want to pass
arrays with different number of dimensions of
subscript upper bounds to this subroutine.

10 DIM A[15,15],B[1G,20]
100 ERASE A,B
110 DIM A (100],B[2,2,2]

Upon execution of statement 100, arrays A
and B are deleted and the corresponding
memory space is made free. You may define
other arrays (see statement 110) with the same
names but different numbers of dimensions

and upper bounds.

7-94

rN

Syntax

Example

ERDEV and ERDEV$
Functions

ERDEV is an integer function which contains
the error code returned by the last device to
declare an error.

ERDEV$ is a string function which contains
the name of the device driver which generated
the error.

[ERDEV I ERDEV$]

ERDEV is set by the Interrupt X'24' handler,
when an error within MS-DOS is detected.

ERDEV will contain the INT 24 error code in

the lower 8 bits, and the upper 8 bits will
contain the "Word attribute bits" (bl5-bl3)
from the Device header block. If the error was

on a character device, ERDEV$ will contain
the 8-byte character device name.

If the error was not on a character device,
ERDEV$ will contain the two character block
device name (A:, B:, C: etc).

User installed device driver "MYLPT2" caused

a "Printer out of Paper" error via INT 24.

If the driver's error number for that problem
was 9, ERDEV contains the error number 9 in
the lower 8 bits and the device header word

attributes in the upper 8 bits.

ERDEVS contains "MYLPT2."

7-95

ERR and ERL
Functions

Syntax

Remarks

7-96

The ERR function returns the error code and

the ERL function returns the number of the

line which contains the error.

[ERR I ERL]

When an error handling routine is entered, the
function ERR contains the error code and the

function ERL contains the line number of the

line in which the error was detected.

The ERR and ERL functions are usually used
in IF. . .THEN statements to direct program
flow in the error handling routine.

If the statement that caused the error was a

direct mode statement, ERL will contain
65535.

If the line number is not on the right side of
the relational operator, it cannot be
renumbered with RENUM. Because ERL and

ERR are reserved functions, neither may
appear to the left of the equal sign in a LET
(assignment) statement.

GWBASIC error codes are listed in

Appendix A.

r\

ERR and ERL

Functions

To test whether an error occurred in a direct

statement, use IF 65535=ERL THEN

Otherwise, use

IF ERR=error code THEN

IF ERL = line number THEN_

Example LIST
10 REM RECTAIMGLES

20 ON ERROR GOTO 70

30 INPUT "Length and Width";L,W
40 IF [L<0] OR (W<0] THEN ERROR 200
50 PRINT "Area = ';L*W;" L = ';L;" W = ';W
60 GOTO 30

70 IF [ERR = 200] AND [ERL = 40]
THEN PRINT "L or W<0':RESUME 30

80 ON ERROR GOTO 0

90 END

Ok

RUN

Length and Width?
-2,5
L or W<0

Length and Width?
2,5
Area = 10L = 2W= 5

Length and Width?
C

Break in 30

Ok

7-97

ERR and ERL

Functions

7-98

If you enter a negative value for L or W, the
error handling routine is activated and the
system displays:

L or W<0

Execution is resumed at statement 30 (see
RESUME statement below). Note the use of
ERR and ERL functions in the error handling
routine.

Syntax

Remarks

Example

ERROR
Statement

Simulates the occurrence of a GWBASIC

error, or generates a user defined error.

ERROR n

is an integer expression representing an error code. It must be
greater than 0 and less than or equal to 255. If it is not an integer,
it is rounded to the nearest integer.

If the value of the integer expression equals an
error code already in use by GWBASIC, then
the ERROR is simulated, and the
corresponding error message will be displayed.

LIST

10 S = 10

20 1 = 5

30 ERROR S + T

40 END

Ok

RUN

String too long in line 30
Ok

Or, in immediate mode:

ERROR 15

String too long

7-99

ERROR

Statement

7-100

If the value of the numeric expressions is
greater than any error codes used by
GWBASIC, then the ERROR statement will
generate a user-defined error. This user-
defined error code may then be handled in the
error trapping routine (see the ON ERROR
statement in this chapter).

Note: To define your own error, use a value
that is greater than any used by GWBASIC
error codes. (It is preferable to use the highest
available values, so compatibility may be
maintained if more error codes are added to

GWBASIC.)

If an error statement specifies a code for
which no error message has been defined,
then GWBASIC responds with the message:
Unprintable error.

EXP
Function

Returns "e" (base of natural logarithms) to the
power of the argument.

Syntax EXP(numexp)

Remarks "numexp" must be < = 87.3365. If EXP
overflows, the "Overflow" error message is
displayed, machine infinity with the
appropriate sign is supplied as the result, and
execution continues.

EXP is calculated in single precision, unless
"/D" is supplied in the GWBASIC command
line.

Example 10 X = 5
20 PRINT EXP[X-1]
RUN

54.59815

Ok

7-101

FIELD
Statement

Allocates space for variables in a random file
buffer.

FIELD is always used in a program.

Syntax FIELD [#]filenum,width AS stringvar
[,width AS stringvar]...

filenum is the number under which the file was OPENed

width is the number of characters to be allocated to stringvar

stringvar is a string variable name that will be used for random file
access

Remarks A FIELD statement must be executed to

format the random file buffer, before a GET
statement or PUT statement can be executed.

The total number of bytes allocated in a
FIELD statement cannot exceed the record

length that was specified when the file was
OPENed. Otherwise, a "Field overflow" error
occurs. (The default record length is 128
bytes.)

Any number of FIELD statements may be
executed for the same file. All FIELD

statements that have been executed remain in

effect at the same time. Each new FIELD

statement redefines the buffer from the first

character position. There may be multiple
FIELD definitions for the same data.

7-102

FIELD

Statement

Do not use a FIELDed variable name in an

input statement or to the left of the equal sign
in an assignment statement. Once a variable
name is FIELDed, it points to the correct place
in the random file buffer. If a subsequent
INPUT or LET statement with that variable

name on the left side of the equal sign is
executed, the variable no longer refers to the
rsindom file buffer, but to the variables stored
in string space.

If previously defined in a FIELD statement, a
variable name may be inserted to the right of
the equal sign in an assignment statement.

Example 1 10 FIELD 1,20 AS NS,10 AS IDS,40 AS ADDS

Allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the next 10 positions to ID$, and the next 40
positions to ADDS. FIELD does NOT place
any data in the random file buffer. (See also
"GET" and "LSET/RSET" in this chapter.)

7-103

FIELD

Statement

Example 2 10 OPEN "R",#1,"A:PH0NELST",35
15 FIELD #1,2 AS RECNBR$,33 AS DUMMYS
20 FIELD #1,25 AS NAMES,10 AS PHDNENBRS
25 GET #1

30 TOTAL = CVI(RECNBR]S
35 FDR 1 = 2 TO TOTAL

40 GET #1, I
45 PRINT NAMES, PHDNENBRS
50 NEXT I

Example 3

7-104

Illustrates a record with multiply defined
fields. In statement 15, the 35 byte field is
defined for the first record to keep track of the
number of records in the file. In the next loop
of statements (35-50), statement 20 defines the
field for individual names and phone
numbers.

10 FOR LOOP%=OTO 7

20 FIELD #1,(L00P%*16) AS OFFSETS,16 AS AS[LOOP%]
30 NEXT LOOP%

Shows the construction of a FIELD statement

using an array of elements of equal size. The
result is equivalent to the single declaration:

FIELD #1,16 AS AS(0],16 AS AS(1],..., 16 AS AS[6],16 AS AS(7]

FIELD

Statement

Example 4 10 dim siZE%(4o/o]: rem array of field sizes
20 FOR LODP% = 0 TO 4%:REA0 SIZE% CLOOP%): NEXT LOOPo/o
30 DATA 9,10,12,21,41
120 DIM ASC4%]: REM ARRAY OF FIELDED VARIABLES
130 0FFSET% = 0

140 FOR L00po/o = 0 TO 4%

150 FIELD #1,0FFSET%AS OFFSET$,SIZEo/o[LOOP%]AS AS(L00P%)
160 OFFSET% = OFFSETo/o+ SIZEo/oCLOOPo/o)
170 NEXTLOOPo/o

Example 5

Creates a field in the same manner as Exam

ple 3. However, the element size varies with
each element. The equivalent declaration is:

FIELD #1,SIZEo/oCO] AS AS(0),SIZE<'/oC1]ASASC1),-
SIZEo/ofAo/o) AS AS(4%]

10 FIEL0#1,225 AS TSTS

Make sure to observe the maximum length
restriction for various variables. For example,
in the FIELD statement above the maximum

length of TST$ is 255.

7-105

FILES
Command

Displays the names of files in the specified
directory.

Syntax FILES [filename]

filename is a string expression including either a filename or a
pathname and optional device designation.

Remarks If "filename" is omitted, all the files on the
currently selected drive will be listed.
"filename" is a string formula which may
contain question marks (?) or asterisks (*)
used as wild cards. A question mark will
match any single character in the filename or
extension. An asterisk will match one or more

characters starting at the position. The
asterisk is a shorthand notation for a series of

question marks. The asterisk need not be used
when all the files on a drive are requested, e.g.,
FILES "B:".

If a filename is used and no explicit path is
given, the current directory is the default.

7-106

FILES

Command

Examples FILES
Show all files on the current directory

FILES "*.BAS"

Shows all files with an extension of .BAS

FILES "A:*.*"

Shows all files on drive A

FILES "A:"

Equivalent to the preceding example

FILES "GE07.BAS"

Shows all files on the current directory of the
MS-DOS default drive that have a filename of
4 characters beginning with GEO and an
extension of .BAS

Sub-directories are denoted by <DIR>
following the directory name.

FILES "SALES\"

Lists the files in the subdirectory SALES.

FILES "SALESX'^.BAS"

Lists the files in the subdirectory SALES that
have the extension .BAS.

7-107

FIX
Function

Returns the truncated integer part of the
argument.

Syntax FlX(numexp)

Remarks FlX(numexp) is equivalent to
SGN(numexp)*INT(ABS(numexp)). The major
difference between FIX and INT is that FIX

does not return the next lower number for a

negative argument.

Examples PRIIMT FIX[58.75]
58

Ok

PRIIMT FIX(-58.75}
-58

Ok

7-108

Syntax

y

z

FOR...NEXT
Statements

Allow a series of statements to be performed
in a loop a specified number of times.

FOR numvar=x TO y [STEP Z]

NEXT [numvar] [,numvar]

is an integer or single-precision variable used as a counter

is a numeric expression representing the initial counter value

is a numeric expression representing the final counter value

is a numeric expression used as an increment

7-109

FOR...NEXT

Statements

Remarks The program lines following the FOR
statement are executed until the NEXT

statement is encountered. Then the counter

(numvar) is incremented by the amount
specified by STEP (Z). A check is performed to
see if the value of the counter is now greater
than the final value (Y). If it is not greater,
GWBASIC branches back to the statement

after the FOR statement and the process is
repeated. If it is greater, execution continues
with the statement following the NEXT
statement. This is a FOR. . . NEXT loop.

If STEP is not specified, the increment is
assumed to be one. If STEP is negative, the
final value of the counter is set to be less than

the initial value. The counter is decreased

each time through the loop. The loop is
executed until the counter is less than the

final value.

7-110

The counter must be an integer or single
precision numeric constant. If a double
precision numeric constant is used, a 'Type
mismatch" error results.

The body of the loop is skipped if the initial
value of the loop times the sign of the STEP
exceeds the final value times the sign of the
STEP.

FOR...NEXT

Statements

Nested Loops

FOR. . . NEXT loops may be nested. A nested
loop may be placed within the context of
another FOR. . . NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for

the inside loop must appear before that for the
outside loop. If nested loops have the same
end point, a single NEXT statement may be
used for all of them. A statement of this form:

NEXT V1, V2, V3

performs the same action as this sequence of
statements:

NEXT V1

NEXT V2

NEXT V3

The variable(s) in the NEXT statement may
be omitted, in which case the NEXT statement
matches the most recent FOR statement.

If a NEXT statement is encountered before its

corresponding FOR statement, a ''NEXT
without FOR" error message is issued and
execution is terminated.

7-111

FOR...NEXT

Statements

Example 1 10 K = 10
20 FOR I = 1 TO K STEP 2

30 PRINT I;
40 K=:K + 10

50 PRINT K

60 NEXT

RUN

1 20

3 30

5 40

7 50

Example 2

9 60

Ok

10 J = 0

20 FOR 1= 1 TO J

30 PRINT I

40 NEXT I

In this example, the loop does not execute
because the initial value of the loop exceeds
the final value.

Examples 10 1= 5
20 FOR 1 = 1 TO 1+ 5

30 PRINT I;
40 NEXT

RUN

12345678910

Ok

7-112

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial value is set.

FRE
Function

Returns the number of bytes in memory not
being used by GWBASIC.

Syntax FRE(dummy)

Remarks Strings in GWBASIC have variable lengths,
changing each time you assign a value. This
dynamic manipulation of strings can cause
the string space in memory to become
fragmented.

The free function can reorganize the string
space in memory. This housekeeping
consolidates the free space.

The argument to FRE is a dummy argument.
Be patient: housekeeping may take 1 to 1-1/2
minutes.

GWBASIC, itself, initiates housekeeping
when free memory is used up. If you are doing
extensive manipulation of variable length
strings use FRE(" ") periodically.

Example PRINT FRE[0]
14542

Ok

7-113

GET (COM files)
Statement

Syntax

filenum

length

7-114

Reads a specified number of bytes into the
communications buffer.

GET [#]filenum, length

is an integer expression returning a valid file number

is an integer expression returning the number of bytes to be
transferred into the communications buffer. Length can
not exceed the value set by the IS: switch when GWBASIC
was invoked, or the value optionally given, in the OPEN
statement for the device.

GET (Files)
Statement

Reads a record from a random disk file into a

random buffer.

Syntax GET [#]filenum[,recordnum]

filenum is the number under which the file was OPENed

recordnum is the number of the record to be read, in the range 1 to
32,767. If it is omitted, the next record (after the last
GET) is read into the buffer.

Remarks The largest possible record number is 32,767.
After a GET statement is executed, INPUT#
or LINE INPUT# are executed to read

characters from the random file buffer. If a

FIELD statement has been executed, the
characters can be accessed through the
variable defined in the FIELD statement.

7-115

GET (Files)
Statement

Example

7-116

10 OPEN "r",1,"A:RAND",48
20

30

40

50

60

70

80

Ok

RUN

Super man
robin hood

Ok

FIELD# 1,20 AS R1S,20 AS R2S,8 AS R3S
FOR L = 1 TO 2

GET# 1,L
PRINT R1$,R2S,CVD(R3S]
NEXT

CLOSE# 1

END

USA

England
11234621

23462101

This program retrieves information stored in
the specified file. The data read into the buffer
may be accessed by the program. This is done
here by the PRINT statement at line 50. These
data items were written to the file by the PUT-
File statement.

GET (Graphics)
Statement

Reads graphic images from the screen.

Syntax [GET] (xl,yl)-(x2,y2), array

(xl,yl)-(x2,y2) are coordinates in either absolute or relative form defining a
screen area

array is the name assigned to the array that will hold the image

Remarks The GET statement should be used in
conjunction with the PUT statement. GET
transfers the screen image bounded by the
rectangle described by the specified points
into the array. The rectangle is defined the
same way as the rectangle drawn by the LINE
statement using the ",B" option.

PUT transfers graphics images to the screen.
GET and PUT permit animation and high
speed object motion.

The array must be numeric, but may be any
precision.

7-117

GET (Graphics)
Statement

7-118

Array Dimensions

The storage format in the array is as follows:

2 bytes giving x dimension in BITS
2 bytes giving y dimension in BITS

The data for each row of pixels is left justified
on byte boundaries. If the screen image is not
an even multiple of 8 bits, zero padding occurs
to the byte boundary. The required array size in
bytes is:

4 + INT((x*bitsperpixel + 7)/8)*y

^'bitsperpixel" is 2 for medium resolution, and 1
for high and super resolution.

The bytes per element of an array are:

2 for integer
4 for single precision
8 for double precision

GET (Graphics)
Statement

Example If you want to GET a 10 by 12 image into an
integer array, the number of bytes required is
4+INT((10*2+7)/8)*12 or 40 bytes. You need an
integer array with at least 20 elements.

It is possible to examine the ''x" and ''y"
dimensions and even the data itself if an

integer array is used. The *'x" dimension is in
element 0 of the array, and the ''y" dimension
is found in element 1. Integers are stored low
byte first, then high byte, but the data is
transferred high byte first (leftmost) and then
low byte.

7-119

GOSUB...RETURN
Statements

Syntax

linenuml

linenum2

7-120

GOSUB transfers control to a GWBASIC

subroutine by branching to the specified line.
RETURN transfers control to the statement

following the most recent GOSUB (or
ON. . , GOSUB) executed, or to a specified line.

GOSUB [linenuml] RETURN [linenum2]

is the first line number of the subroutine

is any line of your program different from linenuml and
from the hne number of the GOSUB statement

GOSUB...RETURN

Statements

Remarks A subroutine may be called any number of
times in a program. A subroutine may also be
called from within another subroutine. Such

nesting of subroutines is limited only by
available memory.

The RETURN statement(s) in a subroutine
causes GWBASIC to branch back to the

statement following the most recent GOSUB
or ON. . . GOSUB statement executed. A

subroutine may contain more than one
RETURN statement, if logic dictates a return
at different points in the subroutine.

The ''linenum2" option may be included in the
RETURN statement to return to a specific line
number from the subroutine. Use this type of
return with care, however, because any other
GOSUBs, WHILES, or FORs that were active
at the time of the GOSUB will remain active,
and errors such as 'TOR without NEXT'' may
result.

Subroutines may appear anywhere in the
program, but it is recommended that the
subroutine be readily distinguishable from the
main program. To prevent inadvertent entry
into the subroutine, precede it with a STOP,
END, or GOTO statement that directs
program control around the subroutine.

If either "linenuml" or "linenum2" does not

exist in the program, an "Undefined line
number" error is returned.

7-121

GOSUB...RETURN

Statements

Example 10 GOSUB 40
20 PRINT "BACK FROM SUBRGUTIIME"

30 END

40 PRINT "SUBROUTINE";
50 PRINT "IN";
60 PRINT " PROGRESS"

70 RETURN

RUN

SUBROUTINE IN PROGRESS

BACK FROM SUBROUTINE

Ok

7-122

Syntax

linenum

Remarks

Example

GOTO
Statement

Transfers control to a specified program line.

GOTO linenum

is the number of a line in the program

If linenum is the line number of an

executable statement, that statement and
those following are executed. If it is the hne
number of a nonexecutable statement,
execution proceeds at the first executable
statement encountered after linenum. If the

specified "linenum" does not exist in the
program, an "Undefined line number" error is
returned.

READ R

PRINT "R =';R,
A = 3.14*R a2

PRINT "AREA =';A
GOTO TO

DATA 5,7,T2

TO

20

30

40

50

60

Ok

RUN

R = 5 AREA = 78.5

R =75 AREA = 153.86

R =12 AREA = 452.18

?Out of data in 10

Ok

7-123

GWBASIC
Command

Syntax

Initializes GWBASIC and the operating
environment (GWBASIC is an MS-DOS
command, not a GWBASIC command).

[GWBASIC [filename] [<stdin] [>stdout]
[/Fmumber of files[[/Sdrecl]
[/C:buffer size]
[/M:[highest memory]
[,max block size]] [/D] [/I]

Options beginning with a slash (/) are called
switches. A "switch" is a means used to

specify parameters.

filename is a string literal (not included in quotation marks) that
specifies a GWBASIC program file. If the file is present,
GWBASIC proceeds as if a RUN 'filename' command were
given after initialization is complete.

stdin

7-124

A default extension of .HAS is used if none is supplied and
the filename is less than 9 characters long. The 'filename'
option allows GWBASIC programs to be run in batch by
putting this form of the command line in an AUTO
EXEC.BAT file. GWBASIC programs which run this way
will need to exit via the SYSTEM command in order to allow
the next command from the AUTOEXEC.BAT file to be
executed.

is a literal string (not included in quotation marks) for the
standard input file specification. GWBASIC input is
redirected from the file specified by 'stdin'. When present,
this syntax must appear before any switches. (See "Re-direc-
tion of Standard Input and Output below.)

GWBASIC

Command

stdout is a literal string (not included in quotation marks) for the
standard output file specification. GWBASIC is redirected
to the file specified by 'stdout.' When present, this syntax
must appear before any switches. (See "Re-direction of
Standard Output" below.)

IF: this switch sets the maximum number of files that may be
open simultaneously during the execution of a GWBASIC
program. It is ignored unless the II switch is specified on the
command line. Refer to the II switch below.

If this switch and the II switch are present, then the
maximum number of files is set to 'files'. Each file requires
62 bytes for the File Control Block (FCB) plus 128 bytes for
the data buffer. The data buffer size may be altered via the
IS: option switch. If the IF option is omitted, the number of
files is set to 3.

The number of open files that MS-DOS supports depends
upon the value of the FILES = parameter in the CON
FIG.SYS file. It is recommended that FILES = 10 for

GWBASIC. Remember that the first 3 are taken by 'stdin',
'stdout', 'stderr', 'stdaux', and 'stdprn'. One additional file han
dler is needed by GWBASIC for LOAD, SAVE, CHAIN, NAME
and MERGE. This leaves 6 for GWBASIC File I/O, thus /F:6
is the maximum supported by MS-DOS when FILES=10 appears
in the CONFIG.SYS file. Attempting to OPEN a file after all
the file handlers have been exhausted will result in a "Too many
files" error.

7-125

GWBASIC

Command

IS: this switch sets the maximum record length allowed
with random files. It is ignored unless the II switch is
specified on the command line (refer to the II switch below).
If this switch and the II switch are present, then the
maximum record length is set to 'Irecl'. The record length
option I'recordlength') on the OPEN statement cannot
exceed this value. If the IS: option is omitted, the record
length defaults to 128 bytes. The maximum value permitted
for 'Irecl' is 32767 bytes.

/C: buffersize if present, controls RS232 Communications. If
RS232 cards are present, /C:0 disables RS232 support. Any
subsequent I/O attempts will result in a "Device
unavailable" error. Specifying /C:n allocates 'n' bytes for
the receive buffer for each RS232 card present. If the /C:
option is omitted, GWBASIC allocates 256 bytes for the
receive buffer of each card present. GWBASIC ignores the
/C: switch when RS232 cards are not present.

7-126

GWBASIC

Command

/M:[highest memory] [,maxblock size]
when present, 'highest memory' sets the maximum number of
bytes that wiUbe used as GWBASIC workspace. GWBASIC will
attempt to allocate 64K of memory for the data and stack seg
ment. If machine language subroutines are to be used with
GWBASIC programs use the /M: switch to set the highest
memory location that GWBASIC can use. When omitted pr 0.
GW BASOC attempts to allocate all it can up to a maximum
of 65536 bytes.

If order to load programs above the GWBASIC workspace
you must use the optional parameter 'max blocksize' to reserve
areas for the workspace and your programs. 'Maxblocksize' must
be in Paragraphs (byte multiples of 16). When omitted, &H1000
(4096) is assumed. This allocates 65536 bytes (65536=4096 x 16)
for GWBASICs Data and Stack segment. If you require 65536
bytes for GWBASIC and 512 bytes for machine language subrou
tines, then use /M:,&H1010 (4096 paragraphs for GWBASIC +
16 paragraphs for your routines). /M:,2048 says: "Allocate and
use 32768 bytes maximum for data and stack". /M:32000,2048
allocates 32768 bytes maximmn but GWBASIC will only use the
lower 32000. This leaves 768 bytes available for program space.

7-127

GWBASIC

Command

ID

7-128

if present, causes the Double Precision Transcendental
maths package to remain resident. The functions that will
be calculated in double precision if this package is resident
are: ATN, COS, EXP, LOG, SIN, SQR, and TAN. If omitted,
this package is discarded and the space is freed for program
use. The amount of memory required by this package is
approximately 3,000 bytes.

GWBASIC is able to dynamically allocate space required to
support file operations. For this reason GWBASIC does not
need to support the IS and IF switches. However, some
applications are written in such a manner that certain
BASIC internal data structures must be static. In order to
provide compatibility with these BASIC programs,
GWBASIC will statically allocate space required for file
operations based on the IS and IF switches when the II
switch is specified.

Note; "number of files," "Irecl," "buffer size,"
"highest memory" and "max block size" are
numbers that may be Decimal, Octal (preceded
by &0), or Hexadecimal (preceded by &H).

GWBASIC

Command

Examples A> GWBASIC PAYROLL
Uses 64k of memory and 3 files, loads and
executes PAYROLL.BAS.

A >GWBASIC iNVENT/F:6
Uses 64k of memory and 6 files, loads and
executes INVENT.BAS.

A >GWBASIC /C;Q/M:32768
Disables RS232 support and uses only the first
32k of memory.

A>GWBASiC /F:4/S:512

Uses 4 files and allows a maximum record

length of 512 bytes.

A>GWBASiC TTY/C:512

Uses 64k of memory and 3 files, allocates 512
bytes to RS232 receive buffers, load and
execute TTY.BAS.

7-129

GWBASIC

Command

7-130

Redirection of Standard Input and
Output

Under GWBASIC you can redirect your Input
and Output. Generally, standard input is read
from the keyboard, but this can be redirected
to any file specified on the GWBASIC
command line. Standard output, generally
written to the screen, can be redirected to any
device or file specified on the GWBASIC
command line.

• When redirected, all INPUT, LINE INPUT,
INPUT$ and INKEYS statements read from

the "stdin" specified instead of from the
keyboard.

• All PRINT statements write to the "stdout"

specified instead of the screen.

• Error messages go to standard output.

• File input to "KYBD:" reads from the
keyboard.

• File output to "SCRN:" outputs to the screen.

• GWBASIC continues to trap keys from the
keyboard when the ON KEY(n) statement is
used.

• The printer echo key does not cause LPTl:
echoing if Standard Output has been
re-directed.

• Typing CTRL BREAK causes GWBASIC to
close any open files, issue the message "Break
in line <line number >" to standard output,
exit GWBASIC, and return to MS-DOS.

GWBASIC

Command

• When input is re-directed, GWBASIC
continues to read from this source until a

CTRL Z is detected. This condition may be
tested with the EOF function. If the file is not

terminated by a CTRL Z or if a GWBASIC file
input statement tries to read past end-of-file,
then any open files are closed. The message
"Read past end" is then written to standard
output, and GWBASIC returns to MS-DOS.

Examples GWBASIC MYPROG >DATA.GUT
Data read by INPUT and LINE INPUT
continue to come from the keyboard. Data
output by PRINT goes into the file
DATA.OUT.

GWBASIC MYPROG <DATA.II\I

Data read by INPUT and LINE INPUT comes
from DATA.IN. Data output by PRINT goes
to the screen.

GWBASIC MYPROG < MYIIMPUT.OAT

>MYOUTPUT.OAT

Data read by INPUT and LINE INPUT comes
from the file MYINPUT.DAT and data output
by PRINT goes into MYOUTPUT.DAT.

GWBASIC MYPROG <\SALES JOHN

TRAIMS. \SALES\SALES.OAT

Data read by INPUT and LINE INPUT will
now come from the file.

7-131

HEX$
Function

Returns a string which represents the
hexadecimal value of the decimal argument.

Syntax HEX$(numexp)

Remarks "nUmexp" is rounded to an integer before
HEX$ is evaluated. If "numexp" is negative,
the two's complement form is used.

Example 10 INPUT X
20 AS = HEXS[x]
30 PRINT X "DECIMAL IS" AS " HEXADECIMAL"

RUN

? 32

32 DECIMAL IS 20 HEXADECIMAL

Dk

See the OCT$ function later in this chapter for
details on octal conversion.

7-132

IF ... GOTO ... ELSE
IF ... THEN ... ELSE

Statements

Makes a decision regarding program flow
based on the result of a specified condition.
IF ... GOTO ... ELSE and

IF ... THEN ... ELSE are usually used in a
program.

Syntax 1 IF condition GOTO linenum [ELSE
(statements Ilinenum)]

Syntax 2 IF condition [,] THEN (statements!linenum)
[ELSE
(statements Ilinenum)]

condition may be a numeric, relational, or logical expres
sion. GWBASIC determines whether the con
dition is true or false by testing the result of
the expression for non zero and zero respec
tively. A non zero result is true and a zero
result is false. Because of this, you can test
whether the value of a variable is non zero or

zero by merely specifying the name of the
variable as 'condition'.

statements are one or more statements. Each statement
must be separated from the preceding one by a
colon (:).

linenum is a line number of the program in memory

7-133

IF ... GOTO ... ELSE

IF ... THEN ... ELSE

Statements

Remarks If the result of "condition" is true (not zero),
the GOTO or THEN clause is executed. GOTO

is always followed by a line number. THEN
may be followed by either a line number for
branching or one or more statements to be
executed. If the result of "condition" is false

(zero), the GOTO or THEN clause is ignored
and the ELSE clause, if present, is executed.
Execution continues with the next executable

statement.

Nesting of IF Statements
IF... THEN ... ELSE statements may be
nested. Nesting is limited only by the length
of the hne. For example:

7-134

IF X>Y THEN PRINT "GREATER"

ELSE IF Y>X THEN PRINT "LESS

THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN

clauses, each ELSE is matched with the
closest unmatched THEN. For example:

IF A=B THEN IF B=C THEN PRINT

"A=C"

ELSE PRINT "A< >C"

will not print "A< >C" when A< >B.

If an IF, . .THEN statement is followed by a
line number in direct mode, an "Undefined
line" error results, unless a statement with the
specified line number had previously been
entered in indirect mode.

IF... GOTO ... ELSE

IF ... THEN ...ELSE

Statements

Note: When using IF to test equality for a value
that is the result of a floating-point computa
tion, remember that the internal representation
of the value may not be exact. Therefore, the
test should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0

with a relative error of less than l.OE-6.

7-135

IF ... GOTO ... ELSE

IF ... THEN ... ELSE

Statements

Example 1 200 IF 1THEIM GET/^1,i

This statement GETs record number I if I is

not zero.

Example 2 100 iF[i<20)*(i>10) THEN DB=1979-1:G0T0 300
110 PRINT "OUT OF RANGE"

In this example, a test determines if I is
greater than 10 and less than 20. If I is in this
range, DB is calculated and execution
branches to line 300. If I is not in this range,
execution continues with line 110.

Example 3 210 IF lOFLAG THEN PRINT AS ELSE LPRINT AS

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of the variable
lOFLAG. If lOFLAG is zero, output goes to
the line printer; otherwise, output goes to the
screen.

7-136

INKEY$
Function

Returns either a one or two character string
read from the keyboard. INKEYS is always
used in a program.

Syntax INKEYS

Remarks INKEY$ returns one of the following values:

• a null string if no character is read from the
keyboard

• a one-character string in accordance with a
single character read from the keyboard

• a two-character string in accordance with an
extended ASCII code. The first character is

zero; the second indicates the scan code of the
key pressed (refer to Appendix C; Extended
Codes).

Although more than one character may be
pending in the keyboard buffer, a single
character only will be read. This value must
then be assigned to a variable before it is used
by the GWBASIC program.

7-137

INKEYS

Function

Example

7-138

The following control characters can be
entered at the keyboard, and will not be
passed to the program:

• PRTSC print the screen

• CTRL NUMLOCK set the system to pause

• CTRL BREAK stop the program

• ALT CTRL DEL reset the system

Note that CR is passed to the program like
any character string.

1000 'Timed input Subroutine
T010 RESPOIMSES = ""

1020 FOR i% = 1 TO TIMELIMIT%

1030 AS = INKEYS:IF LEIM[AS] = 0 THEN 1060
1040 IF ASC(AS] = 13 THEN TIMEOUT% = 0:RETURN
1050 RESPONSES = RESPONSES + AS

1060 NEXT 1%

1070 TIME0UT% = 1:RETURN

This subroutine returns two values:

• RESPONSES which contains the string
entered from keyboard

• TIMEOLFT% which equals 0 if the user enters
a string of characters from keyboard before a
specified number of loops (TIMELIMIT%);
otherwise equals 1.

INP
Function

Returns the byte read from a port.

Syntax INP(port)

port is a valid port number in the range 0 through 65535

Remarks INP is the complementary function to the
OUT statement. Allows input from the
keyboard during program execution. INP
is only used in a program.

7-139

INPUT
Statement

Allows input from terminal during program
execution.

Syntax INPUT[;][prompt$;]variable[$,variable]...

prompt is a string constant enclosed in quotation marks which
prompts for the necessary input

variable is a numeric or string variable which receives the input

Remarks When an INPUT statement is encountered,
program execution pauses and a question
mark is printed to indicate the program is
waiting for data. If "PROMPT" is included,
the string is printed before the question mark.
The required data is then entered at the
terminal.

A comma may be used instead of a semicolon
after the prompt string to suppress the
question mark.

If INPUT is immediately followed by a
semicolon, then the CR typed by the user to
input data does not echo a CR LF sequence.

The data that is entered is assigned to the
variable(s) given in the variable list. The
number of data items supplied must be the
same as the number of variables in the list.

Data items must be separated by commas.

The variable names in the list may be numeric
or string variable names (including
subscripted variables). The type of each data
item that is input must agree with the type
specified by the variable name. Strings input
to an INPUT statement need not be

surrounded by quotation marks.

7-140

Example

INPUT

Statement

Responding to INPUT with too many or too
few items or with the wrong type of value
(numeric instead of string, etc.) causes the
message "?Redo from start" to be printed. No
assignment of input values is made until an
acceptable response is given.

The user may use all the GWBASIC screen
editor features in responding to INPUT and
LINE INPUT statements.

10 IIMPUT X

20 PRINT X "SQUARED IS" X

30 END

RUN

? 5

5 SQUARED IS 25

Ok

Example 10 Pi = 3.14
20 INPUT "WHAT IS THE RADIUS";R
30 A = PI*R 2

40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT

60 GOTO 20

Ok

RUN

WHAT IS THE RADIUS? 7.4

THE AREA OF THE CIRCLE IS 171.9464
WHAT IS THE RADIUS?

etc.

7-141

INPUT#
Statement

Syntax

filenum

variable

Remarks

7-142

Reads data items from a sequential disk file
and assigns them to program variables.
INPUT# is usually used in a program.

INPUT#filenum,variable [,variable]

is the number used when the file was OPENed for input

is a numeric or string variable which will receive a data item
from the file. (The type of data in the file must match the
type specified by the variable name.) With INPUT#, no
question mark is printed, as with INPUT.

The data items in the file should appear just
as they would if data were being typed in
response to an INPUT statement. With
numeric values, leading spaces, carriage
returns, and line feeds are ignored. The first
character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a number. The number terminates

on a space, carriage return, line feed, or
comma.

INPUT#

Statement

If GWBASIC is scanning the sequential data
file for a string item, leading spaces, carriage
returns, and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first character
is a quotation mark ("), the string item will
consist of all characters read between the first

quotation mark and the second. Thus, a
quoted string may not contain a quotation
mark as a character. If the first character of

the string is not a quotation mark, the string
is an unquoted string, and will terminate on a
comma, carriage return, or line feed (or after
255 characters have been read). If end-of-file is
reached when a numeric or string item is
being INPUT, the item is terminated.

Example 100 ll\IPUT#1,XS,Y$,Z$

This example uses the INPUT# statement to
read three strings from a sequential file into
the program.

7-143

INPUTS
Function

Syntax

length

filenum

Remarks

7-144

Returns a string of characters read from the
standard input device, the keyboard, or from a
file.

INPUT$(length[,[#]filenum])

is an integer expression specifying the number of characters
to be read from the keyboard or a file

is the file number specifying the file to be read. If you omit
'filenum', the keyboard is read by default.

If the keyboard is used for input, no
characters will be displayed on the screen. All
characters including control characters are
passed through except CTRL BREAK which
is used to interrupt the execution of the
INPUT$ function.

When reading COM files, the INPUT$
function is preferred over INPUT# and LINE
INPUT# statements, since all ASCII
characters may be significant in
communications. INPUT# is least desirable

because input stops when a comma (,) or CR is
encountered and LINE INPUT# terminates

when a CR is encountered.

INPUTS allows all characters read to be

assigned to a string. INPUTS will return x
characters from the specified file. The
following statements then are most efficient
for reading a COM file:

INPUTS

Function

Example 1 'list the contents of a sequential file in hexadecimal
10 0PEN"I",1,"DATA"
20 IF E0F(1) THEN 50
30 PRINT HEX$CASCCINPUTSC1,#1)]);
40 GOTO 20

50 PRINT

60 END

Example 2

Example 3

100 PRINT "TYPE P TO PROCEED OR S TO STOP"

110 XS=INPUTSC1)
120 IF X$="P" THEN 500

130 IF XS="S" THEN 700 ELSE 100

10 WHILE NOT E0F(1)
20 AS=INPUTS(L0C(1],#1]
30 ...

40 ... Process data returned in AS

50 ...

60 WEND

The above sequence of statements reads:
While there is something in the output

queue, return the number of characters in the
queue and store them in AS. If there are more
than 255 characters, only 255 will be returned
at a time to prevent String Overflow". Input
continues until the input queue is empty.
(EOF(l) = true.)"

7-145

INSTR
Function

Syntax

start

Searches for the first occurrence of a given
substring in a string, and returns the position
at which the match is found.

INSTR([start,]string,substring)

is an integer expression in the range 1 to 255, which
specifies where the search is to begin. If omitted, 1 is
assumed.

string is a string expression (in particular a string constant or
variable) whose value is the string to be searched

substring is a string expression (in particular a string constant or
variable) whose first occurrence is to be reached for

7-146

INSTR

Function

Special Values

start >LEN(string) the returned value is 0

Example

start <1 or

start >255

'string' is null

'substring'
cannot be found

'substring' is
null and start

is specified

'substring' is
null and start

is omitted

an error is returned

(Illegal function call)

the returned value is 0

the returned value is 0

the returned value is 'start'

the returned value is 1

10 XS = "ABCDEB"

20 YS = "B"

30 PRINT iNSTR(XS,YS];iNSTR(4,XS,YS]
RUN

2 6

Ok

Note: The position at which the match is found
is always evaluated from the beginning of the
original string, even if start is specified.

7-147

INT
Function

Returns the largest integer that is equal to, or
less than the argument.

Syntax INT(numexp)

Remarks Refer to the CINT and FIX functions in this

chapter, which also return integer values.

Examples PRINT iNT[99.89]
99

Ok

PRINT INT(-12.11]
-13

Ok

7-148

lOCTL
Statement

Sends a "Control Data" string to a character
device driver anytime after the driver has been
OPENed.

Syntax lOCTL [#] filenum,string

filenum is the file number open to the Device Driver

string is a string expression containing the Control Data

Remarks lOCTL commands are generally 2 to 3
characters optionally followed by an
alphanumeric argument. An lOCTL command
string may be up to 255 bytes long.

The lOCTL statement works only if:

• The device driver is installed.

• The device driver processes lOCTL strings.

• GWBASIC performs an OPEN on a file on
that device. Most standard MS-DOS device

drivers do not process lOCTL strings and it is
necessary for the programmer to determine
whether the specific driver can handle the
command.

7-149

lOCTL

Statement

7-150

If you have installed a driver to replace LPTl
and that driver is able to set page length (the
number of hnes to print on a page before
issuing a form feed), then an lOCTL command
to set or change the page length is:

PLn

"n'' is the new page length.

Also see the IOCTL$ Function.

lOCTL

Statement

Example 1 • Open the new LPTl driver and set the Page
Length to 66 lines:

10 OPEN "LPT1:" FOR OUTPUT AS #1

20 lOCTL #1,"PL66'

Example 2 • Open LPTl with an initial Page Length of 56
lines.

10 OPEN "\DEV\LPT1" FOR OUTPUT AS #1

20 lOCTL #1,"PL56'

You can define other lOCTL commands such

as PTn (set Print Tabs every "n" spaces).

Possible Errors

"Bad file number" - lOCTL to a driver that is

not OPEN.

"Illegal function call" - if device does not
support lOCTL.

"Device Fault" - error in control data.

7-151

IOCTL$
Function

Returns a "Control Data" string from a
Character Device Driver that is OPEN.

Syntax IOCTL$([#] filenum)

tilenum is the file number open to the device

Remarks The IOCTL$ function is used to receive

acknowledgment that an lOCTL statement
succeeded or failed or to obtain current status

information.

IOCTL$ can also be used to ask a

communications device to return the current

baud rate, information on the last error,
logical hne width, etc.

The IOCTL$ function works only if:

• The device driver is installed.

• The device driver processes lOCTL strings.

• GWBASIC performs an OPEN on a file on
that device.

Also see the lOCTL statement.

7-152

Example

Possible

IOCTL$

Function

10 OPEN "\DEV\FOO" AS #1
20 IGCTL #1,"RAW" 'Tell device that data
is "RAW"

30 IF IQCTL$(1] = "0" THEN CLOSE 1

If Character Driver FOO gives a false return
from the Raw data mode lOCTL request, close
the files and stop processing.

"Bad file number" - lOCTL to a driver that is

Errors not OPEN.

''Illegal function call" - device does not support
lOCTL.

7-153

KEY
Statement

(Function Keys)

Syntaxl

The Key statement performs two entirely
different classes of functions depending on the
syntax you use. Syntax 1 performs one of the
following:

• Sets a function key to act as a "Soft Key", that
is, to automatically type any sequence of
characters

• Enables or disables the function key display
from the 25th hne of the screen

Displays the function key values on the screen

Syntax 2 defines special key sequences so that
you can trap for them using the Key (N)
Statement.

KEY [OFF|ONlLIST|n,stringexp]

n is the 'key number'. A constant or a numeric expression in
the range of 1 to 10.

stringexp is a string expression assigned to the key. String constants
should be enclosed in quotation marks. The 'stringexp'
value may be up to 15 characters long. Longer strings are
truncated to 15 characters.

7-154

KEY

Statement

(Function Keys)

Options KEY OFF erases the Soft Key display from
the bottom line, making this line available for
your GWBASIC program. You can use
LOCATE 25,1 followed by PRINT to display
data on the bottom line of the screen. KEY
OFF does not disable the function keys.

KEY ON causes the Soft Key values to be
displayed on the bottom line of the screen. If
the screen width is 80, all ten Soft Keys are
displayed. Five Soft Keys are displayed if the
width is 40. In either case, only the first 6
characters of each key value are displayed.

If fewer than the total number of function keys
are displayed, you can scroll the function key
display (increasing the number of the leftmost
key displayed by one each time) by pressing
<CTRL><T>. ON is the default state.

KEY LIST displays all Soft Key values on the
screen, with all 15 characters of each key
displayed.

KEY n,stringexp sets function key n. Any one
or aU of the ten Function Keys may be assigned
up to a 15 byte string by KEY n,stringexp.
When the key is pressed, the associated string
is input to GWBASIC.

7-155

KEY

Statement

(Function Keys)

Remarks

7-156

The Soft Keys default to the following values:

F1 - LIST< space >
F3 - LOAD"

F5 - CONT<CR>

F7 -TRON<CR>

F9 - KEY < space >

F2 - RUN<CR>

F4 - SAVE"

F6 - ,"LPT1:"<CR>
F8 - TROFF<CR>

FIO-SCREEN 0,0,0<CR>

• If the function key number is not in the
range 1 to 10, an "Illegal function call" error is
produced.

• The key assignment string may be 1 to 15
characters in length. If the string is longer
than 15 characters, the first 15 characters are
assigned.

• Assigning a null string (string of length 0) to a
Soft Key disables the Function Key as a Soft
Key.

• When a Soft Key is assigned, the INKEY$
function returns one character of the Soft Key
string per invocation.

rs

Examples 50 KEY DIM

KEY

Statement

(Function Keys)

Displays the Soft Keys on the bottom line.

60 KEY OFF

Erases Soft Key display.

70 KEY 1, MENU +CHRS(13]
Assigns the string "MENU" CR to Soft Key 1.
Such assignments might be used for rapid
data entry.

80 KEY 2,
Disables Soft Key 2 as a soft key.

The following routine initializes the first 5
Soft Keys:

1 KEY OFF 'Turn off key display during
init.

10 OATA KEY1,KEY2,KEYS,KEY4,KEYS
20 FOR 1=1 TO 5:REA0 SOFTKEYS$(l]
30 KEY l,SOFTKEYSS(l]
40 NEXT 1

50 KEY ON 'now display new softkeys.

7-157

KEY
Statement

(ControlKeys)

Syntax2

shift

Syntax 2 of the Key statement defines keys
15 to 20 to allow you to trap any Ctrl-Key,
Shift-Key, or Super-Shift (<ALT>)-Key. These
are often referred to as "user-defined" keys.

KEY n,
CHR$(shift) + CHRS(scan code)

is an integer expression in the range 15 to 20

is a numeric value corresponding to the following hex
values for the latched keys:

<CAPS LOCK>
<NUM LOCK>

<ALT>
<CTRL>
< SHIFT >

&H40 (Caps Lock is active)
&H20 (Num Lock is active)

&H08 (Alt Key is pressed)
&H04 (CTRL Key is pressed)
&H01, &H02, &H03

Both the left and right < SHIFT > keys can be
used, where values of &H01, &H02, or &H03
(the sum of hex 01 and hex 02) denote a
< SHIFT > key.
You can add multiple shift states, such as
<CTRL> and <ALT> keys together, by
adding the associated shift state values.

scancode is a decimal number in the range 1 to 83. It represents
the scan code (in decimal) of the key to be trapped. See
Appendix A for a complete table of scan codes and their
associated key positions.

7-158

KEY

Statement

(Control Keys)

Remarks Trapped keys are processed in the following
order:

1 CTRL PRT SC. CTRL PRT SC produces a
printed copy of the screen whether or not you
trap for it.

2 It is not necessary to define F1 to FIO and the
cursor direction keys as trap keys; they are
predefined as trap keys.

3 The user defined keys are examined (15-20).

Any key that is trapped is not passed to
GWBASIC, i.e., it does not go into the
keyboard buffer. This applies to any key,
including CTRL BREAK or CTRL ALT DEL.
By trapping for a key, you can prevent
GWBASIC users from accidentally interrupting
a program or rebooting the system.

Examples See the ON KEY(n) GOSUB statement.

7-159

KEY(n)
Statement

Syntax

7-160

Enables or disables event trapping of the
specified key.

KEY(n) [ON IOFF ISTOP]

is an integer expression in the range 1 to 20, indicating the
key to be trapped:

1-10 function keys F1 to FIG
11 Cursor up
12 Cursor left

13 Cursor right
14 Cursor down

15-20 keys defined by the form:
KEY n, CHR$(shift) -t- CHR$(scancode)

To Enable or Disable KEY(n) Trapping

• If a KEY'n' ON is executed, KEY'n' trapping is
enabled

• If a KEY'n' OFF is executed, KEY'n' trapping
is disabled

• If a KEY'n' STOP is executed, KEY'n' trapping
is suspended. If KEY(n) is pressed, the event is
remembered and an immediate trap occurs,
when a KEY'n' ON is executed.

KEY(n)
Statement

Example 10 KEY 4, SCREEN 0,0,0 'assign softkey 4
20 KEY (4] DIM 'enables KEY trapping

100 ON KEY (4) GOSUB 1000

Key 4 pressed

1000 REM KEY [4] Trap Routine

7-161

KILL
Command

Deletes a disk file.

Syntax KILL filename

filename is a string expression which specifies the file to to be
deleted. The filename must include the extension if one
exists.

Remarks KILL checks to see if the file is open, and if so
displays "File already open". KILL, like OPEN,
cannot distinguish a file in another directory
from one you may have open. You may get an
unexpected "File already open" error under
these circumstances.

KILL can only be used to delete a file. Use the
RMDIR command to remove a directory.

Example 200 KILL "A:DATA1.DAT"
300 KILL "C:DiR1\DiR2\PR0G2.BAS'>

7-162

LCOPY
Command

Dumps the screen text to the line printer.

Syntax LCOPY [screentype]

screentype is an integer expression representing the type of screen
in use

Remarks If the parameter "screentype" is not given, or
has the value 0, the text screen is printed on
the current system printer.

If "screentype" is greater than 0, and an INT 5
handler (for dumping the screen) is installed,
INT 5 is executed. Interrupt 5 is a program for
printing the screen bitmap on a graphics
printer.

If "screentype" is greater than 0, and an INT 5
handler is NOT installed, the message "Illegal
function call" is displayed.

7-163

Syntax

string

length

Remarks

Example

7-164

Returns a substring extracting the leftmost
number of characters as specified by the
"length" parameter.

LEFT$(string , length)

is a string expression whose value is the string from which
the substring is to be returned

is an integer expression from 0 to 255 which specifies the
number of the characters to be returned.

If "length" is greater than LEN(string), the
entire original string is returned. If "length" =
0, the null string (length zero) is returned.

Refer to the MID$ and RIGHTS functions in

this chapter.

Ok

10 AS = "GWBASIC"

20 B$ = LEFTS[AS,6]
30 PRINT BS

GW-BAS

Ok

LEN
Function

Returns the number of characters in a given
string.

Syntax LEN (stringexp)

stringexp is any string expression whose length is to be returned

Remarks Unprintable characters and blanks are
counted in the number of characters. If the

argument "stringexp" is a null string, LEN
returns zero.

Example 10 XS = "PORTLAND, OREGOIM"
20 PRINT LEN[X$)
RUN 16

Ok

In the above example, there are 16 characters
in the string "PORTLAND, OREGON"
because the comma and the blank space are
included.

7-165

LET
Statement

Assigns a value to a variable.

Syntax [LET] variable=expression

variable is a numeric or string variable which receives the value of
the expression.

expression is the expression whose value is assigned to the variable. The
type of expression (numeric or string) must match the type
of the variable; if not, a "Type Mismatch" error occurs.

Remarks In numeric assignments the type of the expres
sion (integer, single precision, or double preci
sion) may be different from the type of the
destination variable. In this case GWBASIC

converts the expression value to the type of the
variable. Rounding or overflow may occur in
this conversion.

The word LET is optional. The equal sign is
sufficient when assigning an expression to a
variable name.

Examples 110 LET D = 12
120 LET E = 12/2

130 LET F = 12/4

140 LET SUM = D + E-i-F

150 A(l] = 300
160 AS(K) = "ABC"

7-166

LINE
Statement

Draws either a line or a rectangle, or a filled
rectangle (Graphics Mode only).

Syntax LINE [STEP] [(xl,yl)HSTEP] (x2,y2)
[.[color] [B, [F] [.style]]

(xl.yl),(x2.y2) represent absolute co-ordinates or relative coordinates if
STEP is included. If (xl.yl) is omitted the last referenced
point is assumed.

color is the color number specifying the color in which the line or
rectangle is to be drawn (in the range 0 to 3). Refer to the
COLOR graphics statement for the current screen mode for
details.

B represents a rectangle

F represents a rectangle to be filled (with color)

style is an optional parameter that may be defined by the user to
produce varying line "styles", i.e., varieties of dotted lines.

7-167

LINE

Statement

Remarks The following example draws a line from the
last point referenced to the point specified
(x2,y2). Since no color is specified, the default
color is the foreground color.

LINE -(x2,y2]

The examples below specify start and end
points in absolute coordinates.

LINE [10,10H319,199]
'draws a diagonal line down the screen
LINE (10,100H319,100]
'draws a horizontal line across the screen

7-168

You can specify the color in which the line is
drawn:

LINE (15,15H25,25],3
draws a line in color 3

The "b" parameter is used to draw a rectangle
("box") in the foreground, where the points
(xl,yl) and (x2,y2) represent the opposite
corners. In the following example, no color
number is specified:

LINE [10,10H100,i00]„B
draws a box in foreground

Color may be included as follows:

LINE n0,10H200|300]>3sBF
fills box color 2

LINE

Statement

The B pgirameter facilitates the drawing of
rectangles, which would otherwise require the
following lengthy programming format:

LINE (x1,y1Hx2,y1] LINE (x1,y1Hx1,y2)
LINE (x2,y1Hx2,y2] LINE [x1,y2Hx2,y2]

BF fills the interior of the rectangle with the
selected color.

Out-of-range coordinates are not visible on the
screen. This is called "line chpping".

If the relative form is used for the second

coordinate, it is relative to the first coordinate.
For example:

LiNE(50,50) -STEP[15,-13]
draws a line from (50,50) to (65,37).

LINE supports the additional argument
"style." Style is a 16-bit integer mask used
when putting pixels on the screen. This is
called "Line-Styling".

7-169

LINE

Statement

7-170

Each time LINE plots a pixel on the screen, it
will use the current circulating bit in "style."
If that bit is 0, no pixel is plotted. If the bit is a
1, then a pixel is plotted. After each pixel, the
next bit position in "style" is selected.

Since a 0 bit in "style" does not clear out the
old contents, the user may wish to draw a
background line before a "styled" hne in order
to force a known background.

"Style" is used for normal lines and boxes, but
has no effect on filled boxes.

LINE [0,0]-[160,100],3„&HFF00

The example above draws a dashed line from
the upper left hand corner to the screen center.

LINE INPUT
Statement

Inputs an entire line (up to 254 characters) to a
string variable, without the use of dehmiters.
A LINE INPUT statement is only used in a
program.

Syntax LINE INPUT [;] [prompt;] stringvar

prompt is a string constant (enclosed in a pair of quotation marks)
that is displayed on the screen before input is accepted. A
question mark is not displayed unless it is part of the
"prompt" string.

stringvar is the name of a string variable to which the line is to be
assigned.

7-171

LINE INPUT

Statement

Remarks All input from the end of ''prompt" to the CR
is assigned to "stringvar". Trailing blanks are
ignored. If a linefeed/carriage return is
encountered, both characters are echoed, but
the carriage return is ignored, the linefeed is
put into "stringvar", and data input continues.

If LINE INPUT is immediately followed by a
semicolon, then the CR typed by the user to
end the input line does not echo a CR LF
sequence on the screen.

You may use all the GWBASIC screen editor
features in responding to INPUT and LINE
INPUT statements.

Example See LINE INPUT# statement.

7-172

LINE INPUT#
Statement

Reads an entire line (up to 254 characters),
without delimiters, from a sequential disk data
file to a string variable.

Syntax LINE INPUT# filenum, stringvar

filenum is the number under which the file was OPE Ned

stringvar is the string variable to which the line is to be assigned

Remarks LINE INPUT# reads all characters in the

sequential file up to a CR. It then skips over
the CR LF sequence. The next LINE INPUT#
reads all characters up to the next CR. If a LF
CR sequence is encountered, it is preserved.

LINE INPUT# is especially useful if each line
of a data file has been broken into fields, or if
a GWBASIC program saved in ASCII format
is being read as data by another program. (See
"SAVE" in this chapter.)

7-173

LINE INPUT#

Statement

Example 10 OPEN "LIST"
20 LINE INPUT "CUSTOIVIER ";C$
30 PRINT #1, CS
40 CLOSE 1

50 OPEN "I",1,"LIST"
60 LINE INPUT #1, CS
70 PRINT CS

80 CLOSE 1

RUN

CUSTOMER? I. JONES 234,4
1. JONES 234,4
Ok

7-174

Syntax

linenuml

linenum 2

device

LIST
Command

Lists the current program to the screen or a
specified file or device.

LIST [linenuml] [-[linenum2]]
[.{device | filename}]

are the line numbers of the first and the last line to be listed.

You may use a period (.) for either line number to indicate the
current line.

is a string expression for the device specification

filename is a string expression for the file specification

Remarks If you omit the "device" or "filename", the
listing is directed to the screen. You can stop
listings directed to either the screen or the
printer by pressing CTRL BREAK at any
time. You cannot interrupt listings directed to
a file or device: the listing continues until the
range is exhausted.

If you omit the line range, the entire program
is listed.

7-175

LIST

Command

Examples

7-176

The syntax allows the following options:

• If "linenuml" is given, followed by a hyphen,
that line and all higher numbered lines are
listed.

• If only a "hnenuml" is given, only that line is
listed.

• If only "linenum2" is given, all lines from the
beginning of the program through the given
line are listed.

• If both numbers are specified, the inclusive
range is listed.

When you direct a listing to a disk file, the
program is saved in ASCII format. You can
later use this file with MERGE.

LIST , LPT1:
List the program to the Line Printer.

LIST 10-90

List lines 10 through 90 to the Screen.

LIST 10- , SCRN:
List lines 10 through last to the Screen.

LLIST
Command

Lists the current program on the printer.
LLIST is usually used in immediate mode.

Syntax LLIST [linenuml] [-[linenum2]]

Remarks The line number ranges are the same as the
LIST command. LLIST assumes a 132-

character-wide printer.

GWBASIC always returns to command level
after an LLIST is executed.

Examples LLIST
Lists a complete program.

LLIST 50

Lists line 50.

LLIST 20-40

Lists lines 20-40

LLIST-150

Lists from the first program line to line 150.

7-177

LOAD
Command

Loads a program into memory from a file. You
can then run the program by nameifying the
option R.

Syntax LOAD [filename] [,R]

filename is a string expression which specifies the file to be loaded.

R (R) Run is optional. When specified, Run causes the program
to begin execution from the first statement after loading.

Remarks LOAD deletes all variables and program Hnes
currently residing in memory and closes all
open data files before it loads the specified
program. If option R is nameified, all open data
files are kept open and the program runs after
it is loaded.

RUN filename is equivalent to LOAD filename,
R.

Examples LOAD "STRTRK",R
Loads and runs the program STRTRK.BAS

LOAD "BiMYPROO"

Loads the program MYPROG.BAS from the
disk in drive B, but does not run the program.

7-178

rs

LOG
Function

Returns the current position of the file.

Syntax LOC(filenum)

filenum is the number under which the file was OPENed

Remarks For random disk files, LOC returns the record
number just read or written from a GET or
PUT Statement. If the file was opened but no
disk I/O has yet been performed, LOC returns
a '0'.

For sequential files, LOC returns the number
of sectors (128-byte blocks) read from or
written to the file since it was OPENed. Note

that the first sector is read automatically
when the file is opened, so LOC will never
return less than 1 for a sequential file.

For communications files, LOC returns the
number of characters in the input queue
waiting to be read. The input queue can hold
more than 255 characters (determined by the
/C: switch). If there are more than 255
characters in the queue, LOC returns 255.
Since a string is limited to 255 characters, you
do not need to test for string size before
reading data into a string. If fewer than 255
characters remain in the queue, LOC returns
the actual count.

Example 100 IF LOC[2]>100 THEIM STOP

7-179

LOCATE (Graphics)
Statement

Moves the graphics cursor to the specified
position. LOCATE may also turn the cursor on
and off and define the shape and blinkrate of
either the overwrite or the user cursor.

Syntax 1 LOCATE [row] [,column] [, [rate] [,
[start] [,stop]]]],

Syntax 2 LOCATE [row] [, [column] [, [rate] [,
[line] [,map]]]],

row is the screen line number. An unsigned integer expression in
the range 1 to 25.

column

rate

7-180

is the screen column number. An unsigned integer in the
range 1 to 40 or 1 to 80, depending on screen width.

is an integer expression in the range 0 to 10

0 Turn both the user and the overwrite cursors off
1 Make the specified cursor non-blinking (the

'start' parameter specifies the type of cursor)
2. . . 10 Blink the specified cursor with a period of 'rate'

units of 1/18.75 seconds

LOCATE (Graphics)
Statement

start is the cursor starting scanline. It must be an integer
expression in the range 0 to 15, or 32 to 47. If 'start' is in the
range 0 to 15 the overwrite cursor shape is programmed and
a value of rate between 1 to 10 affects the overwrite cursor. If
'start' is in the range 32 to 47, the user cursor shape is
programmed, and a non zero value of 'rate' affects the user
cursor, not the overwrite cursor. If 'start' is in the range 32 to
47, it is taken to be module 15.

stop is the cursor stop scanline. It must be a numeric expression
in the range 0 to 15.

line if the value of 'line' is between 50 and 50+M, byte number
'line - 50' of the cursor bitmap for the overwrite cursor is set
to 'map'. If the value is between 100 and 100+M, then byte
number 'line - 100' of the cursor bitmap for the user cursor is
set to 'map'. The value of M is 15 for medium-resolution
mode, 7 for high-resolution mode, and 15 for super-resolution
mode.

7-181

LOCATE (Graphics)
Statement

map if 'line' and 'map' are specified, this value replaces the
bitmap for sc£mline 'line' of the cursor specified by 'rate'.
The cursor bitmap is a byte array which is XOR'd with the
screen to display the cursor. For medium-resolution mode,
each scanline of the cursor is represented by 2 bytes; the
low-order byte of each scanline is the left one on the screen.
For other modes, there is one byte per scanline. The size of
the array is the number of scanlines per row of text times the
number of bytes per cursor scanline: this is 8 for high-
resolution mode, and 16 for the other modes. Cursor bitmaps
are kept separately for screen modes 1, 2, and 3. The cursor
state for each mode is restored if another screen mode is
selected, and the original mode is reselected. Likewise,
separate bitmaps are kept for the insert, overwrite, and user
cursors.

Remarks GWBASIC includes a blinking cursor for
graphics mode. The maximum height of this
cursor is 8 in modes 1 and 2, and 16 in mode 3.
Cursor scanlines are numbered starting with 0
for the top scanline.

7-182

The graphics mode as well as in text mode
support three different cursors (see the
LOCATE text Statement).

LOCATE (Graphics)
Statement

The insert-mode cursor will always be a
rapidly blinking small triangle at the lower
left of the character cell. The overwrite-mode

cursor is initially an underline which blinks
somewhat more slowly. The user cursor is
initially disabled, but its shape array is loaded
with OFFH bytes, so that it can easily be
made to be any underline or block shape. The
shape of the user and overwrite cursors are
programmable.

LOCATE„0 disables both the user and the
overwrite cursors. Execution of any graphics
statement disables the user cursor (so that the
cursor is removed from screen memory while
the graphics statement is executed). In this
case, the user cursor must be explicitly turned
on to be used later on.

7-183

LOCATE (Graphics)
Statement

Examples 10 LOCATE 5,1,4,2

Moves to line 5, column 1, turns the overwrite
cursor on with a blinkrate 4/18.75 seconds, and
sets the height of the cursor to 2. (All scanlines
of the cursor are initialized to &HFE, so 2
scanlines will appear unless the user has
changed the bitmap.)

100 LOCATE ,„1, &H82
110 LOCATE ,„2
120 FOR W=1 TO 2000

130 NEXT

7-184

Sets the bitmap of the second scanhne of the
user cursor to binary 10000010, sets its height
to 2, and displays the user cursor for a couple
of seconds. It wiU appear as a U-shaped
underline like the initial overwrite cursor.

Syntax

column

start

stop

LOCATE (Text)
Statement

Moves the cursor to the specified position on
the active page. LOCATE may also turn the
cursor on and off and define the size of either

the overwrite or the user cursor.

LOCATE [row] [,[column] [, [cursor] [,
[start] [,stop]]]],

is the screen line number. A numeric expression returning
an unsigned integer in the range 1 to 25.

is the screen column number. An unsigned numeric
expression returning an unsigned integer in the range 1 to
40 or 1 to 80, depending upon screen width.

determines whether or not the screen cursors are displayed. A
0 (zero) indicates off, 1 (one) indicates on.

is a numeric expression whose integer value represents the
cursor starting scanline. If 'start' is in the range 0-31, 'start'
and 'stop' will affect the overwrite cursor. If 'start' has a
larger value, it will be interpreted modulo 32, and 'start' and
'stop' will change the size of the user cursor.

is a numeric expression whose integer value represents the
cursor stop scanline. It must be in the range 0-31.

7-185

LOCATE (Text)
Statement

Remarks In GWBASIC, there are three cursors: the
insert-mode cursor, which appears when
insert-mode is in effect, the overwrite cursor,
which appears when overwrite mode is in
effect (during command entry and input with
the INPUT statement), and the user cursor,
which appears during program execution
when an INPUT statement is NOT being
executed. The overwrite cursor is the one

which appears most of the time.

The overwrite cursor is initialized to an

underline. The insert-mode cursor is a half-

height block. The user cursor is initially
disabled and undefined. The insert-mode

cursor has a fixed size; the sizes of the
overwrite and user cursors may be changed.

Following a LOCATE statement, I/O
statements to the screen begin placing
characters at the specified location. The user
cursor is normally off during program
execution, but can be turned back on using
LOCATE,,!.

Note that ''start" and "stop" parameters
enable you to define the size of the cursor by
indicating the starting and ending scanlines.
The scanlines are numbered from 0 at the top
of the character position. The bottom scanline
is 7 if a color monitor has been installed and

if a BW monitor is used. If you specify "start'
and omit "stop", this assumes the value of
"start". If "start" is greater than "stop", a
two-part cursor will be returned.

7-186

LOCATE (Text)
Statement

Normally, GWBASIC will not print to line 25
because of the soft key display. This can be
turned off, however, using KEY OFF; then use
LOCATE 25,1: PRINT. . . to display
characters on line 25.

Any parameter may be omitted, and will then
assume the current value.

Errors

Any values entered outside of the ranges
indicated will result in an "Illegal function
call" error. Previous values are retained.

7-187

LOCATE (Text)
Statement

Examples 100 LOCATE 1,1
Moves the cursor to the home position in the
upper left-hand corner.

200 LOCATE „1
Makes the user cursor visible. Its position
remains unchanged.

300 LOCATE „0
Turns both the user and overwrite cursors off.

This is useful during a program which
displays text or graphics and only uses
INPUT to input keyboard data (INPUT uses
the screen editor).

400 LOCATE 6,1,1,0,7
Moves the overwrite cursor to line 6, column 1.
Makes the cursor visible, covering the entire
character cell, starting at scanline 0 and
ending on scanhne 7 (in one of the color
modes).

LOCATE ,,1,13
Makes the overwrite cursor visible. Its position
remains unchanged. The cursor's shape will be
a thin horizontal line at the bottom of the
character cell (in monochrome).

LOCATE ,,1,45
Makes the user cursor visible. Its position
remains unchanged. The cursor's shape will be
a thin horizontal line at the bottom of the
character cell (in monochrome).

7-188

Syntax

Remarks

Example

LOF
Function

Returns the length of the named file in bytes.

LOF(filenum)

For disk files LOF returns the actual numbers
of bytes allocated to the file.

For communications files LOF returns the

amount of file space in the input buffer. The
actual value returned is:

buffersize-LOC(filenum)

Where "buffersize" is the size of the

communications buffer. It defaults to 256

bytes, but may he changed with the "/C:"
option in the GWBASIC command line.

10 OPEN "B:MYFILE" AS #2

20 GET #2,L0F[2]/128

The above statements will get the last record
of the file MYFILE (residing on the diskette
inserted in drive B) assuming that the file was
created with a record length of 128 bytes.

7-189

LOG
Function

Syntax

Remarks

Example

7-190

Returns the natural logarithm of a positive
argument.

LOG(numexp)

LOG is calculated in single precision, unless
you specify the "ID" option when you invoke
GWBASIC.

If "numexp" is negative or zero an "Illegal
function call" error is returned.

PRINT L0G(45/7]
1.860752

Ok

LPOS
Function

Returns the current position of the print head
within the printer buffer.

Syntax LPOS (printer)

printer is an integer expression whose value (1, 2, or 3) indicates
which printer is to be tested (LPTl:, LPT2:, or LPT3:).

Remarks LPOS does not necessarily give the physical
position of the print head.

Example 150 IF LP0S[1)>60 THEIM LPRIIMT
CHRS[13]

7-191

LPRINT and LPRINT USING
Statement

Syntax

Syntax

list of

expressions

format string

Remarks

Example

7-192

Prints data on the printer.

1 LPRINT[listofexpressions][,|;]

2 LPRINT

USINGformatstring;listofexpressions[,|;]

this list may include numeric and/or string expressions
separated by commas or semicolons.

is a string expression (usually a string constant or variable)
that is composed of special formatting characters.

These statements are the same as PRINT and

PRINT USING, except that the output goes to
the printer. See PRINT and PRINT USING in
this chapter. LPRINT assumes a 132
character-width printer.

10 AS = "For July "
20 X = .491

30 LPRIIMT "Results", AS,
40 LPRINT X

Ok RUN Results For July 491
The result prints on the line printer.

r>

Syntax

LSET and RSET
Statements

LSET stores a string value in a random buffer
field left justified, or left justifies a string
value in a string variable. RSET right justifies
the string value.

LSETstringvar=stringexp
RSETstringvar=stringexp

stringvar represents either a regular or fielded string variable (i.e., a
string variable previously used in a FIELD statement).

stringexp represents the string to be left or right justified in a given
field.

Remarks If "stringexp" requires fewer bytes than were
FIELDed to "stringvar", LSET left-justifies
the string in the field, and RSET right-justifies
the string. (Spaces are used to pad the extra
positions.) If the string is too long for the field,
characters are dropped from the right.
Numeric values must be converted to strings
before they are LSET or RSET. See "MK1$,
MKS$, MKD$" in this chapter. See also
Chapter 4 for a complete description of
random files.

7-193

LSET and RSET

Statements

Examples

7-194

150 LSET A$=MKS$(AMT]
160 LSET D$=MKIS[COUNT%)

LSET or RSET may also be used with a
nonfielded string variable to left-justify or
right-justify a string in a given field. For
example, the program lines:

110 AS = SPACES(20]
120 RSET AS = I\IS

right-justify the string N$ in a 20-character
field. This is useful when formatting printed
output.

Syntax

filename

MERGE
Command

Merges the current program with another
program previously saved in ASCII format.

MERGE[filename]

specifies the file, and optionally a drive. If the drive is
omitted the MS-DOS default drive is assumed.

Remarks This command allows you to merge a program
saved (in ASCII format) on a disk, with the
program in memory. MERGE is similar to
LOAD, except that the program in memory is
not erased before the disk program is loaded.
Program lines in the disk program are inserted
into the resident program as if they were typed
on the keyboard. New lines are added and old
lines are updated.

This command allows you to include common
subroutines in all of your programs.

Example MERGE "B:R00T\S1\SUBRTIM"

7-195

MID$
Function and Statement

As a function, MID$ returns a substring from
a specified string.

Syntax MID$ (string,start[,length])

string the string from which the substring is taken

start the character position of the beginning of the returned
string. It must be an integer expression whose value is >0.

length the length of the returned string. It must be an integer
expression from 0 to 255.

Remarks The function MID$ returns a substring taken
from a specified string, starting from a
specified character position start. The
"length" of the substring taken can be
specified. If length is omitted or if there are
fewer than length characters to the right of
the specified character position, all
characters to the right of the specified
character position are returned. If length is
equal to zero, or if start is greater than the
length of string, then MID$ returns a nuU
string.

Also see LEFT$ and RIGHT$ functions in this

chapter.

7-196

MID$

Function and Statement

Example Ok
10 A$ = "HELLO"

20 B$ = "JOSEPH JOHNNY JIMMY"

30 PRINT A$;MI0$(BS,8,6]
RUN

HELLO JOHNNY

Ok

7-197

MID$

Function and Statement

Syntax

string

start

As a statement, MID$ replaces a section of a
string with another string.

MID$(string,start[,length])=substring

is a string expression whose value is the string from which a
section is to be replaced

is an integer expression from 1 to 255, whose value specifies
the character position where the replacement is to begin;
'start' must be < =LEN (string)

length is an integer expression from 0 to 255. It represents the
length of the section to be replaced with substring.

substring is a string expression which replaces the characters in
'string', beginning from 'start' position

Remarks The characters in ''string", beginning from
"start" position, are replaced by the characters
in "substring". The optional "length" refers to
the number of characters from "substring"
that will be used in the replacement. If
"length" is omitted, all of the characters of
"substring" are used.

The replacement of characters never goes
beyond the original length of "string."

7-198

MID$

Function and Statement

Example Ok
10 AS = "AVIGIMOI\l, FRANCE"
20 MIDS(AS,10] = "R0UBAIX"
30 PRINT AS

RUN

AVIGNON, ROUBAIX
Ok

Note that the original string length was not
changed.

/^S

7-199

MKDIR

Command

Makes a new directory on a specified disk.

Syntax MKDIR pathname

pathname is a string expression specifying the name of the directory to
be created

Example Assume that our current directory is the root:

ROOT

I
PERSONNEL

I I
EMIL ANOY

To create a sub-directory MARKETING from
the root on the current drive, enter:

MKDIR "MARKETIIMG"

To create a sub-directory called FRED under
the directory MARKETING, enter:

MKDIR "MARKETinMG\FRED"

To create a sub-directory called WILMA under
the directory FRED, enter:

MKDIR "MARKETI1MG\FRED\WILMA"

7-200

The resulting structure will be:

ROOT
I

MKDIR

Command

MARKETIIMG PERSONNEL

FREO

I
WILMA

EMIL ANDY

7-201

MKI$,MKS$,MKD$
Functions

Syntax 1

Syntax 2

Syntax 3

Remarks

Make a string value from a numeric value.

MKI$(integer expression)

MKS$(single precision expression)

MKD$(double precision expression)

Any numeric value that is placed in a random
file buffer with an LSET or RSET statement

must be converted to a string.

MKI$ converts an integer to a 2-byte string.
MKS$ converts a single-precision number to a
4-byte string. MKD$ converts a double-
precision number to an 8-byte string.

See also "CVI, CVS, CVD Functions" in this
chapter.

Example 90 AMT = (K -H T]
100 FIELD #1,8 AS DS,20 AS IMS
110 LSET DS = MKDS [AMT]
120 LSETI\IS = AS

130 PUT #1

7-202

Syntax

filename

filename

Remarks

Changes the name of a disk file.

NAME filename AS filename

NAME
Command

is a string expression which specifies the file to be renamed.
The file must exist on the specified drive. If the drive is not
specified the MS-DOS default drive is assumed. The file
extension does not default to .BAS. Pathnames are not allowed.

the new name. The new name should not already exist for
another file.

After a NAME command, the file exists on the
same disk, with the new name. The area
allocated to the file is not changed. A file may
not be renamed with a new drive designation.
If this is attempted, a "Rename across disks"
error is generated.

7-203

NAME

Command

Example Ok
NAME "B:GRAPH.BAS" AS

"GRAPH1.BAS"

Ok

In this example, the file that was formerly
neimed GRAPH.BAS on the diskette in drive

B: will now be named GRAPHl.BAS.

7-204

NEW
Command

Deletes the current program and clears all
variables, so that you can enter a new
program.

Syntax NEW

Remarks NEW is entered at command level to clear

memory before entering a new program.
GWBASIC always returns to command level
after a NEW command is executed. NEW closes

all data files and switches off the trace flag in
the same way as TROFF.

7-205

OCT$
Function

Syntax

Returns a string which is the octal value of the
decimal argument.

OCT$(numexp)

numexp is a numeric expression from -32768 to 65535, which is
rounded to the nearest integer before OCT$ is evaluated.

Remarks When "numexp" is negative, the two's
complement form is used.

Example PRINT 0CT$[24] 30
Ok

See the HEX$ function in this chapter for
details on hexadecimal conversion.

7-206

Syntax

n

linenum

To

COM(n)

COM(n)

an

COM(n)

ON COM(n) GOSUB
Statement

Specifies the first line number of a trap
subroutine to be activated as soon as

characters arrive in the communications

buffer.

The ON COM(n) GOSUB statement is only
used in a program.

ON COM(n) GOSUBlinenum

is the number of the communications channel (1, 2, 3, or 4)

is the first line number of the trap routine. A line number of 0
disables the communications event trap.

Enable or Disable COM Trapping

ON COM(n) trapping is enabled

OFF COM(n) trapping is disabled

error trap occurs all event trapping will be disabled (including
ERROR, COM(n), KEY(n), PLAY(n))

STOP COM(n) trapping will be suspended, i.e., the GOSUB is
not performed, but is performed as soon as a COM(n) ON
statement is executed.

7-207

ON COM(n) GOSUB
Statement

Remarks To avoid recursive traps a COM(n) STOP is
automatically executed when the trap occurs.

A RETURN from the trap routine
automatically performs a COM(n) ON (unless
a COM(n) OFF was performed within the trap
routine). The RETURN line form may also be
used. Use this form with care because any
other active GOSUB, WHILEs, or FORs
remain active and errors (such as "FOR
without NEXT") may result.

Typically, the COM trap routine reads an
entire message from the COM port before
returning. Do not use the COM trap for single
character messages since, at high baud rates,
the overhead of trapping and reading for each
individual character may cause the COM
interrupt buffer to overflow.

Example This example sets up a trap routine for the
second communications channel at line 1000.

7-208

When a communications event is trapped,
program flow branches to the subroutine
defined by the ON COM(n) GOSUB statement.

100 DIM C0M[2] GOSUB 1000
110 C0M[2] ON

; 1000 REM COM activity
: 1050 RETURN 200

ON ERROR GOTO
Statement

Enables error trapping and specifies the first
line number of a subroutine to be executed if

an error occurs.

The ON ERROR GOTO statement is only used
in a program.

Syntax ON ERROR GOTO linenum

linenum is the first line number of the error trapping routine

To Enable or Disable ERROR Trapping

ON ERROR GOTO n

ERROR trapping is enabled

ON ERROR GOTO 0

ERROR trapping is
disabled. Subsequent errors
print an error message and
halt execution.

Remarks If ERROR trapping is enabled and a GWBASIC
error (or a user defined error) is found,
the ON ERROR GOTO line will be executed

and the corresponding routine activated. The
ERL and ERR functions are usually used in
IF...GOTO...ELSE or IF...THEN...ELSE

statements to direct program flow within an
error trapping routine.

7-209

ON ERROR GOTO

Statement

It is recommended that the error trapping
routine execute an ON ERROR GOTO 0 if an

error is found for which there is no recovery
action. (In this case the standard error
message will be displayed and execution will
stop.) The RESUME statement resumes
execution after the error handling routine has
been entered (see the RESUME statement in
this chapter). If a GWBASIC error (or a user-
defined error) is found, during the execution of
an error trapping routine the associated error
message is displayed and execution terminates.

Note: Error trapping does not occur within the
error trapping routine.

Example 10 ON ERROR GOTO 1000
20 INPUT R

30 IF R = 0 THEN ERROR 300

7-210

100 IF ERR = 300 THEN PRINT "RAOiUS

NEGATIVE OR ZERO"

110 IF ERL = 30 THEN RESUME 20

120 ON ERROR GOTO 0

ON...GOSUB and ON...GOTO
Statements

ON...GOSUB calls one of several specified
subroutines, depending on the value of a
specified expression. ON...GOTO branches like
GOSUB but does not return from the branch.

Syntax 1 ON numexp GOSUB linenum [,linenum]...

Syntax 2 ON numexp GOTO linenum [, linenum]...

numexp is a numeric expression (from 0 to 255) which determines which
line number in the list to use for branching. If 'numexp' is
not an integer, it is rounded up to an integer.

linenum is the line number to which the branch is made

Remarks In the ON...GOSUB statement, each line
number in the list must be the first line

number of a subroutine. If the value of

"numexp" is 1 the subroutine at the first line
number in the list will be called; a value of 2
causes the subroutine at the second line

number in the list to be called; and so on. If the
value of "numexp" is zero or greater than the
number of items in the list (but less than or
equal to 255), GWBASIC continues with the
next executable statement. If the value of

"numexp" is negative or greater than 255, an
"Illegal function call" error occurs.

Example 100 ON L-1 GOTO 150,300,320,390

7-211

ON KEY(n) GOSUB
Statement

Syntax

linenum

7-212

Specifies the first line number of a subroutine
to be executed when a specified key is pressed.

The ON KEY(n) GOSUB statement is only
used in a program.

ON KEY (n) GOSUB linenum

is an integer from 1-20. It specifies the key to be be trapped as
follows:

1-10 function keys F1 to FIO
11 Cursor Up
12 Cursor Left

13 Cursor Right
14 Cursor Down

15-20 Keys defined in the form:
KEY n, CHR$(shift)+CHR$(scan code)

(See "KEY Statement" in this chapter)

is the list line number of the routine that is to be performed
when the specified function or cursor direction key is
pressed. A line number of 0 disables the event trap.

To Enable or Disable KEY(n) Trapping

KEY(n) ON KEY(n) trapping will be
enabled

KEY(n) OFF KEY(n) trapping will be
disabled

an error trap occurs
all event trapping will be
disabled including ERROR,
COM(n), KEY(n), PLAY(n)

KEY(n) STOP KEY(n) trapping will be
suspended, i.e., the GOSUB is
not performed, but it will be
performed as soon as a
KEY(n) ON is executed.

ON KEY(n) GOSUB
Statement

Remarks If KEY(n) trapping is enabled and key n was
pressed ON KEY(n) GOSUB is executed and
the corresponding routine activated.

To avoid recursive traps a KEY(n) STOP is
automatically executed, when the trap occurs.
A RETURN from the trap routine
automatically performs a KEY(n) ON (unless
a KEY(n) OFF was performed within the trap
routine).

The RETURN line form may also be used. Use
this form with care, because any other active
GOSUBs, WHILES, or FORs remain active,
and errors may result.

You cannot use the INPUT or INKEY$

statements to find out which key caused the
trap. If you wish to assign different functions
to particular keys, you must set up a different
subroutine for each key, rather than assigning
the various functions within a single
subroutine.

Example 10 KEY 4,"SCREEN 0,0" 'assigns softkey 4
20 KEy(4] ON 'enables event trapping
70 ON KEY(4) GOSUB 200

key 4 pressed

200 'Subroutine for screen

250 RETURN

In the above, the programmer has overridden
the normal function associated with function

key 4, and replaced it with '^SCREEN 0,0",
which will be displayed whenever that key is
pressed.

7-213

ON KEY(n) GOSUB
Statement

Example

7-214

100 KEY 15, CHRS[&H04] + CHRS(83]
105 REM * * Key 15 now is CTRL DEL * *
110 KEY[15]0iM

1000 PRIIMT "if you want to stop processing
for a break"

1010 PRINT "press the CTRL key and the
DEL key at the"

1020 PRINT "same time."

1030 ON KEY[15] GDSUB 3000.

Operator presses CTRL DEL

3000 REM * * Suspend processing loop.
3010 CLOSE #1

3020 RESET

3030 CLS

3035 PRINT "Enter CONT to continue."

3040 STOP

3050 OPEN "A", #1, "ACCDUNTS.DAT"
3060 RETURN

In the above, the programmer has enabled the
CTRL DEL key to enter a subroutine which
closes the files and stops program execution
until the operator is ready to continue.

ON PLAY(n) GOSUB
Statement

Specifies the first line number of a subroutine
to be executed when the music buffer contains

fewer than "n" notes. This permits continuous
background music during program execution.

The ON PLAY(n) GOSUB statement is only
used in a program.

Syntax ON PLAY(n) GOSUB linenum

n is an integer expression in the range 1 to 32. Values outside
this range result in an "Illegal function call" error.

linenum is the first line number of the associated trap routine. A line
number of 0 disables play trapping.

To Enable or Disable PLAY(n) Trapping

PLAY ON PLAY(n) trapping is enabled

PLAY OFF PLAY(n) trapping is disabled

an error trap occurs
all event trapping is disabled

PLAY STOP PLAY(n) trapping is
suspended, i.e., the GOSUB is
not performed, but it is
performed as soon as a PLAY
ON is executed.

Remarks If PLAY(n) trapping is enabled, and the
background music buffer has gone from 'n' to
'n-1' notes, then the ON PLAY(n) GOSUB line
is executed, and the corresponding routine
activated. To avoid recursive traps, a PLAY
STOP is automatically executed when the trap
occurs

7-215

ON PLAY(n) GOSUB
Statement

Example

7-216

A RETURN from the trapping subroutine
automatically performs a PLAY(n) ON (unless
an explicit PLAY(n) OFF was performed
within the trap routine). The "RETURN
linenum" form may also be used. Use this
form with care, because any other active
GOSUBs, WHILES, or FORs will remain
active, and errors (such as "FOR without
NEXT") may result.

If PLAY(n) trapping is enabled, and the
background music buffer is empty, no
PLAY(n) trapping routine is executed.

Note:

• A PLAY event trap is only effective when
playing Background Music (PLAY "MB...").
PLAY event traps have no effect when
running in Music Foreground (PLAY "MF...").

A PLAY event trap is ineffective if the Music
Background buffer is already empty when a
PLAY ON is executed.

Care should be taken in selecting values for
"n." If "n" is a large number, event traps
occur frequently enough to reduce program
execution speed.

10 PLAY OIM

20 ON PLAYC8] GOSUB 1000
1000 'SUB PLAY[8] TRAP
1050 RETURN rs

Syntax

ON STRIG (n)
Statement

Sets up a line number for BASIC to trap to
when one of the joystick buttons (triggers) is
pressed.

ON STRIG (n) GOSUB line

n may be 0, 2, 4, or 6, and indicates the button to be trapped
as follows:

0 button A1

2 button B1

4 button A2

6 button B2

line is the line number of the trapping routine. If line is 0,
trapping of the joystick button is disabled.

Remarks The ON STRIG(n) statement causes a
program to branch to a specified routine when
a specific joystick button is pressed. A
STRIG(n) ON statement must first be executed
in order for an ON STRIG (n) statement to be
active.

The trap routine passes control back in one of
two ways. RETURN branches to the program
line at which the interrupt was detected.
RETURN n branches to line n.

To avoid recursive traps a STRIG(n) STOP is
automatically executed when the trap occurs.

A RETURN from the trap routine
automatically performs a STRIG(n) ON
(unless a STRIG(n) OFF was performed within
the trap routine). The RETURN line form may
also be used.

7-217

ON STRIG(n)

Statement

Example This is an example of a trapping routine for
the button on the first joystick.

7-218

100 DIM STRIG(0] GOSUB 2000
110 STRIG(0]OIM

2000 REM subroutine for 1st button

2100 RETURN

ON TIMER (n) GOSUB
Statement

Causes an event trap every 'n' seconds.

The ON TIMER (n) GOSUB statement is only
used in a program.

Syntax ON TIMER (n) GOSUB linenum

n is an integer expression in the range 1 through 86400 (1
second through 24 hours). Values outside this range will
result in an "Illegal function call" error.

linenum is the first line number of the TIMER trapping routine.

Remarks If event trapping is enabled, and if "line" in
the ON TIMER GOSUB statement is not zero,
GWBASIC checks between statements to see

if the time has been reached. If it has, a
GOSUB is performed to the specified line.

If a TIMER OFF statement has been executed

the GOSUB is not performed and is not
remembered.

If a TIMER STOP statement has been

executed the GOSUB is not performed, but is
performed as soon as a TIMER ON statement
is executed.

When an event trap occurs (i.e., the GOSUB is
performed), an automatic TIMER STOP is
executed so that recursive traps cannot take
place. The RETURN from the trapping
subroutine automatically performs a TIMER
ON statement unless an explicit TIMER OFF
was performed inside the subroutine.

7-219

ON TIMER (n) GOSUB
Statement

The RETURN ^^inenum'' form of the

RETURN statement may be used to return to
a specific line number from the trapping
subroutine. Use this type of return with care,
however, because any other GOSUBs,
WHILES, or FORs that were active at the time
of the trap remain active and errors such as
"FOR without NEXT" may result.

Example To display the time of day on line 1 every
minute:

7-220

10 ON TIMER [60] GOSUB 1000
20 TIMER ON

1000 OLDROW = CSRLIN 'save current

row

1010 OLDCOL = P0S(0] 'save current
column

1020 LOCATE 1,1 : PRIIMT TIMES
1030 LOCATE OLDROW, OLDCOL 'restore

row and column

1040 RETURN

OPEN
Statement

Allows I/O to a file or device. OPEN is usually
used in a program.

Syntax 1 OPEN {device|filename} [FOR model] AS
[#]filenum [LEN = reel]

Syntax 2 OPEN mode2, [#]filenum, {device]filename}
[,recl]

device is a string expression which specifies the device to be opened

filename is a string expression which specifies the file to be opened. It
may optionally include a device.

model is a literal string not enclosed in quotation marks. It
determines the initial file pointer position and the action to
be taken if the file does not exist. The valid modes and

actions taken are;

INPUT Specifies sequential input mode. Positions
the pointer to the beginning of an existing
file. A "File not found" error is given if the file
does not exist.

OUTPUT Specifies sequential output mode. Positions
the pointer to the beginning of the file. If the
file does not exist, one is created.

APPEND Specifies sequential output after the last record
on the file. Positions the pointer to the end of
the file. If the file does not exist, one is created.

If the FOR 'model' clause is omitted, the
initial position is at the beginning of the file.
If the file is not found, one is created. This is
the Random 1/0 mode. That is, records may
be read or written at any position within the
file.

7-221

OPEN

Statement

filenum is an integer expression returning a number in the range 1
through 15. The number is used to associate an I/O buffer
with a disk file or device. This association exists until a

CLOSE or CLOSE *filenum' statement is executed. The file

is referred by this number in any I/O statement.

record length is an integer expression from 2 to 32767. This value sets the
record length to be used for random files (see the FIELD
statement). If omitted, the 'record length' defaults to 128
byte records. The specified 'record length' may not be
greater than the value specified by the '/S:' switch on the
GWBASIC command. GWBASIC will ignore this option if it
is used to OPEN a sequential file.

mode2

7-222

is a string expression whose first character is one of the
following:

0 Specifies sequential output mode
1 Specifies sequential input mode
R Specifies random input/output mode

OPEN

Statement

Remarks A disk file must be opened before any disk I/O
operation can be performed on that file. OPEN
allocates a buffer for I/O to the file or device
and determines the mode of access that will be
used with the buffer. The "filenum" parameter
specifies the number which will be associated
with the file as long as it is open and is used
by other I/O statements to refer to the file or
device.

For each device or file, the following OPEN
modes are allowed:

KYBD: INPUT only
SCRN: OUTPUT only
LPTl: OUTPUT only
LPT2: OUTPUT only
LPT3: OUTPUT only
COMl:, COM2:, INPUT, OUTPUT, or random only
COM3:, and COM4:
Disk files allow all modes

7-223

OPEN

Statement

7-224

The GWBASIC file I/O system allows you to
utilize user installed devices.

Character devices are opened and used in the
same manner as disk files except that
characters are not buffered by GWBASIC as
they are for disk files. The record length is set
to one.

GWBASIC only sends a carriage return as
end of line. If the device requires a LF (line
feed), the driver must provide it.* When writing
device drivers, keep in mind that GWBASIC
users want to read and write control

information. Writing and reading of device
control data is handled by the GWBASIC
lOCTL statement and IOCTL$ function.

Rules

• If you enter a value outside of the
corresponding range, an "Illegal function call"
error is returned, and the file will not be

opened.

• If the file is opened for INPUT, attempts to
write to the file result in a "Bad File Mode"

error. If a file that is opened for input does not
exist, a "File not found" error message is
displayed.

*The exception to this is output sent to a printer (LPTl,
LPT2, or LPT3), where each line ends with a linefeed unless
the printer is opened as a random file and WIDTH is set to
255.

OPEN

Statement

When a file is opened for APPEND, the
pointer position is initially at the end of the
file and the record is set to the last record of

the file. PRINT# or WRITE# then extends the

file.

If the file is opened for OUTPUT or APPEND,
attempts to read the file result in a "Bad File
Mode" error.

If you open a file which does not exist for
output, append, or random access, that file is
automatically created.

A file can be opened for sequential input or
random access on more than one file number

at a time. A file may NOT be opened for
OUTPUT or APPEND on more than one file

number at a time.

Since you can reference the same file in a
subdirectory via different pathnames, it is
impossible for GWBASIC to know that it is
the same file simply by looking at the
pathname. For this reason, GWBASIC does
not let you open the file for OUTPUT or
APPEND if it is on the same disk, even if the
pathname is different.

7-225

OPEN

Statement

Examples 10 OPEN "l",2,"INVEN"

10 OPEN "MAILING.OAT" FOR APPENO AS 1

If you write and install a device called FOG,
then the OPEN statement can be:

10 OPEN "OEVFOO" FOR OUTPUT AS #1

To open the printer for output, you could use
the line:

100 OPEN "LPT:" FOR OUTPUT AS #1

which uses the GWBASIC device driver. You

can use part of a pathname:

100 OPEN "DEVLPT1" FOR OUTPUT AS #1

This statement uses the MS-DOS device

driver.

7-226

r\

OPEN

Statement

Examples Using the following tree structure:

ROOT

/ \
SALES ACCOUNTING

/ \ / \
JOHN MARY STEVE SUE

/ I
REPORT REPORT other

files

other REPORT

files

REPORT

If MARY is your current directory, then:

OPEIM "REPORT"...

OPEN "\SALES\MARY\REPORT"...
OPEN "..\MARY\REPORT"...

OPEN "..\..\MARY\REPORT"...

all refer to the same file.

7-227

OPEN

Statement

7-228

Possible Errors

"Bad File name"

"Bad File number"

"Bad File Mode"

"Too many files" — Too many files are open.
(See the 'IF:' switch in the GWBASIC
command line.)

"File not found" — If a file opened for input
does not exist, a "File not found" error occurs.

"Device not available" — You have attempted
to open either a directory, or a non-existent
device.

"File already open"

"Device I/O error" — Reception error. Usually
caused by an incorrectly written device driver
(user-installed).

"Illegal function call" — Usually caused by an
excessive record length. (See the 'IS:' switch in
the GWBASIC command hne.)

OPEN COM
Statement

Opens a communications file.

Syntax OPEN " COMn:[speed][,parity] [,data] [,stop]
[,RS][,CS[n]][,DS[n]][,CD[n]][,BIN][,ACS]

[,LF]" AS]#] filenum [LEN = m]

n is 1, 2, 3, or 4. It specifies the number of the Asynchronous Com
munications Adapter.

speed is an integer constant that sets the transmit/receive baud rate
to one of the following speeds: 75, 110, 150, 300, 600, 1200,1800,
2400, 4800, or 9600. The default is 300 bps.

parity designates the parity of the device to be OPENed:

E EVEN (default) M MARK (1)
O ODD S SPACE (0)
N NONE

data designates the number of data bits. Valid entries are 5, 6, 7, or
8. The default is 7.

stop designates the number of stop bits. Valid entries are 1, 1.5, or
2. Default is 2 for 75 bps and 110 bps, 1 for all other speeds.

RS suppresses the request-to-send (RTS) control character. If RS is
not used, RTS will be sent automatically as soon as the
communications line is OPENed.

7-229

OPEN COM

Statement

CS[nl

DS[n]

CD[nl

7-230

controls clear-to-send (CTS). [n] specifies the number of milli
seconds before the host times out. [n]may range from 0 to 65535.
The default is 1000. If you do not specify [n] or [n] =0, the line
status is not checked.

Subsequent communications statements will fail if you do not
include CS[n].

controls data-set-ready (DSR). [n] specifies the number of milli
seconds before the host times out. [n]may range from 0 to 65535.
The default is 1000. If you do not specify [n], the line status is
not checked.

Subsequent communications statements will fail if you do not
include DS[n].

controls carrier-detect (CD), [n] specifies the number of milli
seconds before the host times out. [n]may range from 0 to 65535.
The default is 1000. If you do not specify [n], the line status will
not be checked.

CD is also referred to as the "received line signal detect" message.

BIN

ASC

LF

OPEN COM

Statement

opens the device in binary mode. BIN is selected by default,
unless ASC is specified. See "Remarks" for further discus
sion of BIN.

opens the file in ASCII mode. See "Remarks" for further
discussion of ASC.

specifies that a linefeed is to be sent after a carriage return
(see "Remarks").

filenum is an integer expression returning a v£did file number which
is associated with the file while it is OPEN.

M

Remarks

is the maximum number of bytes that can be read from or writ
ten to the communications buffer with GET or PUT. The default
is 128.

The OPEN COM statement must be executed

before a device can be used for RS232

communications.

A COM device may be OPENed to only one
file number at a time.

Any syntax errors in the OPEN COM
statement will result in a *'Bad File name''

error. An indication as to which parameter is
in error is not given.

A ^'Device Timeout" error occurs if Data Set

Ready (DSR) is not detected.

The "speed", "parity", "data", and "stop"
options must be listed in the order shown in
the above syntax. The remaining options may
be listed in any order, but you must list them
after the "speed", "parity", "data", and "stop"
options.

7-231

OPEN COM

Statement

LF allows communication files to be printed
on a serial line printer. When LF is specified, a
linefeed character (OAH) is automatically sent
after each carriage return character (ODH).
This includes the carriage return sent as a
result of the width setting. INPUT# and
LINE INPUT#, when used to read from a
COM file that was opened with the LF option,
stop when they see a carriage return. The
linefeed is always ignored.

The LF option is superseded by the BIN
option.

In the BIN mode, tabs are not expanded to
spaces, a carriage return is not forced at the
end-of-hne, and CTRL Z is not treated as end-
of-file. When the channel is closed, CTRL Z is
sent over the RS232 line. The BIN option
supersedes the LF option.

In ASC mode, tabs are expanded, carriage
returns are forced at the end-of-line, CTRL Z
is treated as end-of-file, and XON/XOFF
protocol (if supported) is enabled. When the
channel is closed, CTRL Z will be sent over the
RS232 line.

Example 10 OPEN "COM1:960G,N,8,1,BIN" AS #2

will open communications channel 1 at a speed
of 9600 baud with no parity bit, 8 data bits, and
stop bit. Input/Output will be in the binary
mode. Other lines in the program may now
access channel 1 as file number 2.

7-232

Syntax

Remarks

OPTION BASE
Statement

Defines the minimum value for array
subscripts.

OPTION BASE n

is an integer expression and may be 1 or 0

The default base is 0. If the statement:

OPTION BASE I

is executed, the lowest value an array
subscript may have is 1.

A CHAINed program may have an OPTION
BASE statement if no arrays are passed. Other
wise, the CHAINed program will inherit the
OPTION BASE value of the chaining program.

Possible Errors

The OPTION BASE statement must be coded

before definition or usage of arrays. A
"Duplicate Definition" error occurs when the
base value is changed when arrays are in
existence.

7-233

OUT
Statement

Transmits a byte to an output port.

Syntax OUT port, byte

port is an integer expression in the range 0 through 65535 and
represents a port number

byte is an integer expression in the range 0 through 255 and
represents the data to be transmitted

Remarks OUT is the complementary statement to the
INP statement.

If "port" or "byte" is outside the specified
range, an "Illegal function call" error is
returned.

Example 100 OUT 1234,255

7-234

Syntax

x,y

paint

border

background

Remarks

PAINT
Statement

Paints an enclosed area on the screen with a

specified color (Graphics Mode only).

PAINT [STEP] (x,y)[,[paint] [.[border]
[.background]]

are the coordinates, either absolute or relative, of a point
where painting is to begin. Painting should always start on
a non-border point.

is a numeric or string expression. If it is a numeric expression
in the range 0 to 3, it represents the color number to be used
for painting (see the COLOR graphics statement for the
current screen mode, for details). If it is a string expression
then 'tiling' is performed. Tiling is described in detail later
in this section.

is an integer expression in the range 0 to 3. It identifies the
border color of the figure to be filled.

is a string expression returning one character, used in
"paint tiling."

The PAINT statement will fill in an arbitrary
figure, with edges of border color with the
specified paint color. The paint color will
default to the graphics foreground color if not
given, and the border color defaults to the
paint color.

7-235

PAINT

Statement

7-236

For example, in medium resolution you can fill
in a circle of color 1 with color 2. Visually, this
could mean a red ball with a green border (if
palette 0 were selected).

Since there are only two colors in high-
resolution and super-resolution mode, this
means ''whiting out" an area until white is
encountered, or "blacking out" an area until
black is encountered.

PAINT must stEirt on a non-border point;
otherwise PAINT will have no effect.

If the specified point already has the color
"border", the PAINT will have no effect.

PAINT can fill any figure, but PAINTing
"uneven" edges on very complex figures may
result in an "Out of Memory" error. If this
happens, you must use the CLEAR statement
to increase the amount of stack space
available.

Tiling

A figure may be "tiled" using the paint
parameter as a string expression of the form:

CHR$(&Hnn] + CHRS[&nn] -h CHRS(&Hnn)...

where the two hexadecimal numbers (&Hnn)
correspond to 8 bits. The tile mask is always 8
bits wide and the string expression may be
from 1 to 64 bytes long.

PAINT

Statement

The structure of the string expression appears
as follows:

X increases

bit of tile byte
x.y 8 7 6 5 4 3 2 1
0,0 |x|x|x|x|x|x|x|x Tile byte 0
0,1 |x|x|x|x|x|x|x|x Tile byte 1
0,2 |x|x|x|x|x|x|x|x Tile byte 2

0,63 |x|x|x|x|x|x|x|x Tile byte 63 (maximum allowed)

The tile pattern is replicated uniformly over
the entire screen.

Each byte in the tile string masks 8 bits along
the X axis when plotting points. Each byte of
the tile string is rotated as required to gilign
the y axis such that:

tile byte mask = y MOD tile length

Since there is only one bit per pixel in high-
and super-resolution modes (SCREEN 2 and
3), a point is plotted at every position in the bit
mask which has a value of 1.

7-237

PAINT

Statement

Syntax

7-238

In high- and super-resolution mode, the screen
can be painted with 'x's by the following
statement:

PAIIMT[320,100],CHR$[fiH81] +
CHR$(&H42] + CHR$(&H24] + CHR$[&H18] +
CHR$[&H18] + CHR$(&H24] + CHR$[&H42] +

CHR$(&H81]

This pattern appears on the screen as:

X increases — >

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7

|1|0
|0|1
|0|0
|0|0
|0|0
|0|0
|0|1
|1|0

0|0|0|0
0|0|0|0
1|0|0|1
0|1|1|0
0|1|1|0
1|0|0|1
0|0|0|0
0|0|0|0

0|1|
1|0|
0|0|
0|0|
0|0|
0|0|
1|0|
0|1|

CHR$
CHR$
CHR$
CHR$
CHR$
CHR$
CHR$
CHR$

(&H81)
(&H42)
(&H24)
(&H18)
(&H18)
{&H24)
(&H42)
(&H81)

Tile byte 0
Tile byte 1
Tile byte 2
Tile byte 3
Tile byte 4
Tile byte 5
Tile byte 6
Tile byte 7

Since there are 2 bits per pixel in medium-
resolution mode (SCREEN 1), each byte of the
tile pattern only describes 4 pixels. In this
case, every 2 bits of the tile byte describes 1 of
the 4 possible colors associated with each of
the 4 pixels to be put down.

If ''background" color is omitted, the default
value is CHR$(0). When supplied,
"background" specifies the "background tile"
pattern or color byte to skip when checking for
border termination.

PAINT

Statement

It may occasionally be necessary to tile paint
over an area that is the same color as two

consecutive lines in the tile pattern. Normally,
paint quits when it encounters two consecutive
lines of the same color as the point being set
(the point is surrounded). It would not be
possible to draw alternating blue and red lines
on a red background without this parameter.

Paint would stop as soon as the first red pixel
was drawn. Specifying red [CHR$(&HAA)] as
the background color, allows the red line to be
drawn over the red background.

You cannot specify more than two consecutive
bytes in the tile string that match the
background color. Specifying more than two
will result in an "Illegal function call" error.

7-239

PAINT

Statement

Example 10 SCREEN 1
20 COLOR 0,0,1,0
30 CLS

40 CIRCLE (256,128),130,2
50 PAINT (256,128],1,2
60 LINE (251,123)-8TEP[10,10),0,BF

Statement 10 selects Medium Resolution Mode.
Statement 20 selects black for color number 0,
palette 0 (green, red, yellow), green as graphics
foreground, black as graphics background.
Statement 30 clears the screen with the
background color (in this case black).
Statement 40 draws a red circumference with a
radius of 130 whose center is (256,128).
Statement 50 paints the circle green.
Statement 60 draws a black filled-in box in the
middle of the circle.

7-240

Syntax

offset

PEEK
Function

Returns the byte read from the specified
memory location.

PEEK (offset)

is a numeric expression returning an integer in the range 0
to 65535. It indicates the address of the memory location
from which a byte will be returned. It is the offset from the
current segment, which was defined by the last DEF SEG
statement.

Remarks The returned value is an integer in the range 0
to 255.

If "offset" is outside the specified range, an
"Illegal function call" error is returned.

PEEK is the complementary function of the
POKE statement.

Example A = PEEK(&H5A00]

7-241

PLAY
Statement

Syntax

stringexp

Plays music in accordance with a string which
specifies the notes to be played, and the way in
which the notes are to be played.

PLAY stringexp

is a string expression containing a series of single-character
commands

Remarks PLAY uses a concept similar to that in DRAW
(see the DRAW statement in this chapter) by
embedding a Music Macro Language into one
statement. A set of subcommands, used as
part of the PLAY statement, specifies the
particular action to be taken.

The single-character commands available for
the PLAY string are as follows:

A-G

On

7-242

Plays the specified note in the current octave. The optional
suffixes {§) or (+) produce a sharp note; suffix (-) produces a
flat note. Sharp and flat notes that do not correspond to a
black key on a piano are not allowed.

Sets the octave number, from 0 to 6.

Increments the octave and plays note n. The octave is
progressively incremented, each time note n is played, until
octave 6 is reached. Note n is subsequently played at
octave 6.

r>

PLAY

Statement

<n Decrements the octave and plays note n. The octave is
progressively decremented, each time note n is played, until
octave 0 is reached. Note n is subsequently played at octave
0.

Nn Plays one of 84 notes within the 7 possible octaves. The Nn
parameter ranges from 0 to 84; 0 indicates a rest. This
command is an alternative to specifying notes using the
note name (A-G) and octave number commands.

Pn Specifies a pause. The n parameter ranges from 1 to 64 and
corresponds to the length of each note, set by Ln.

Ln Sets the length of each note. The n parameter ranges from 1
to 64, where n=l is equivalent to a whole note; n=4 is
equivalent to a quarter note, etc. The length may also follow
the note when a change of length only is required for a
particular note. In this case, A16 is equivalent to L16A.

A dot or period after a note causes it to be played at 1Vt times
the specified length. Multiple periods may appear after a
note, and the length is adjusted accordingly; e.g., A. is 3/2,
A., is 9/4, etc. Periods may appear after a pause, and the
pause length is adjusted accordingly.

7-243

PLAY

Statement

Tn

MF

MB

MN

ML

MS

X variable

7-244

Sets the "tempo", or number of quarter notes, in one minute.
The n parameter ranges from 32 to 255, with a default value
of 120.

Sets Music Foreground. Music (PLAY statement) and
SOUND are to run in Foreground. Each successive note does
not start until the preceding note has finished. Music
foreground is the default setting.

Sets Music Background. Music (PLAY statement) and
SOUND are to run in Background. The GWBASIC program
continues as music plays in the "background." Up to 32
notes (or rests) can be played in the background at a time.

Sets "music normal", so that each note will play 7/8 of the
time determined by length (L).

Sets "music legato", so that each note will play the full _
period set by length (L).

Sets "music staccato", so that each note will play 3/4 of the
time set by length (L).

Executes the specified variable string.

PLAY

Statement

Remarks The "n" parameter may be constant or
variable, where a variable is written as:

variable;." The semicolon is necessary when
a variable is used in this way, or when the X
command is used, but it is not allowed after
MF, MB, MN, ML, or MS. In all other cases, a
semicolon is optional between commands.

When the X command is used, VARPTR$
(variable), may be substituted for 'Variable;" as
in the example below.

Example 100 PLAY "02 L4 C PI C P2 C P4

200 PLAY "XB$;XCS;XD$;'

300 PLAY "XMS;'
or

300 PLAY "X" + VARPTR$(M$]

7-245

PLAY(n)
Function

Returns the number of notes remaining in the
music background buffer.

Syntax PLAY (dummy)

dummy is a dummy argument. Any value may be supplied.

Remarks If the program is running in Music
Foreground mode, PLAY(n) returns 0.

If the program is running in Music
Background mode, PLAY(n) returns the
number of notes currently in the Music
Background buffer. The maximum value that
PLAY(n) may return is 32.

Example IF PLAY[0] = 6 GOTO 500

7-246

PLAY
ON I OFF I STOP

Statements

PLAY ON enables PLAY(n) trapping.
PLAY OFF disables PLAY(n) trapping.
PLAY STOP suspends PLAY(n) trapping.

Syntax PLAY {ON | OFF | STOP}

Remarks PLAY ON, PLAY OFF, PLAY STOP are used
in conjunction with the ON PLAY(n)
statement.

If a PLAY OFF statement has been executed

the GOSUB is not performed and is not
remembered.

If a PLAY STOP statement has been executed

the GOSUB is not performed, but will be
performed as soon as a PLAY ON statement is
executed.

When an event trap occurs (i.e., the GOSUB is
performed), an automatic PLAY STOP is
executed so that recursive traps cannot take
place. The RETURN from the trapping
subroutine will automatically perform a PLAY
ON statement unless an explicit PLAY OFF
was performed inside the subroutine.

The RETURN "linenum" form of the

RETURN statement may be used to return to
a specific line number from the trapping
subroutine. Use this type of return with care,
however, because any other GOSUBs,
WHILES, or FORs that were active at the time

of the trap will remain active, and errors such
as "FOR without NEXT" may result.

7-247

PMAP
Function

Syntax

coordinate

Converts physical coordinates to world
coordinates or vice versa (Graphics Mode
only.)

PMAP (coordinate,n)

is a numeric expression specifying the x or y coordinate of
the point to be mapped.

n is an integer in the range 0 to 3:
0 maps the world coordinate x to the physical coordinate x
1 maps the world coordinate y to the physical coordinate y
2 maps the physical coordinate x to the world coordinate x
3 maps the physical coordinate y to the world coordinate y

Remarks The four PMAP functions allow you to find
equivalent point locations between the world
coordinates created with the WINDOW

statement and the physical coordinate system
of the screen or viewport as defined by the
VIEW statement.

Examples Given a defined WilMDOW SCREEN (80,100)-
(200,200) the upper left coordinate of the
window is (80,100) and the lower right is
(200,200). The screen coordinates are (0,0) in
the upper left hand corner and (639,199) in the
lower right. Then:

7-248

r\

PMAP

Function

X= PMAP(80,0]

returns the screen x coordinate of the window

X coordinate 80: 0

Y= PMAP(200,1]

returns the screen y coordinate of the window
y coordinate 200: 199

X= PMAP(619,2]

returns the ''world" x coordinate that

corresponds to the screen or viewport x
coordinate 619: 199

The PMAP function in the statement:

Y= PMAP(100,3]

returns the "world" y coordinate that
corresponds to the screen or viewport y
coordinate 100: 140

7-249

POINT
Function

Syntax

x.y

Remarks

7-250

With two arguments (x,y) returns the color
number of a pixel on the screen. If one
argument (n) is given, returns current
graphics coordinate. (Graphics Mode only).

POINT (n)

are the absolute coordinates of the pixel to be referenced. If
the point is out of range, the value -1 is returned.

'n' may have the values 0, 1, 2, or 3:
0: Returns the current physical x coordinate
1: Returns the current physical y coordinate
2: Returns the current world x coordinate if a WINDOW
statement has been used, other-wise returns the same value
as the POINT(O) function.
3: Returns the current world y coordinate if WINDOW is
active, otherwise returns the same value as the POINT(l)
function.

vl +POINT (x,y)

returns the color number of the specified pixel
into the integer variable vl.

Examples

POINT

Function

v2+POINT (n)

returns the specified coordinate of the current
point into the single (or double) precision
variable v2.

10 SCREEN 0,0
20 FOR K = 0 TO 3

30 PSET (10,10),K
40 IF POiNT(10,10)< >K

THEN PRINT "Broken Basic!*

50 NEXT

10 SCREEN 2

20 IF POINT(l,l)< >0
THEN PRESET (1,1] ELSE PSET [1,1]

30 'Invert current state of point(l,l]
40 PSET (l,l],1-P0INT(l,l]
50 'Another way to invert a point, if the
55 'system is B/W

10 SCREEN 1

20 LETC = 3

30 PSET (10,10),C
40 IF POINT(10,10]=:C

THEN PRINT "This point is color ";C

7-251

POKE
Statement

Syntax

offset

byte

Remarks

Writes a byte into a memory location.

POKE offset,byte

is a numeric expression returning an integer in the range 0
to 65535 and indicates the address of the memory location
where the data is to be written. It is the offset from the
current segment, which was set hy the last DEF SEG
statement.

is the data byte. It must be in the range 0 to 255.

POKE can pass arguments to assembly
language routines.

If either offset or byte is outside the specified
range, an "Illegal function call" error is
returned.

PEEK is the complementary function to
POKE.

Example 10 POKE &H5AG0,GvHFF

Warning Use POKE carefully. If it is used incorrectly, it
can cause GWBASIC or MS-DOS to crash.

7-252

POS
Function

Returns the current horizontal (column)
position of the cursor.

Syntax POS (dummy)

dummy is a dummy argument. Any value is accepted.

Remarks The current horizontal (column) position of the
cursor is returned. The leftmost position is 1.
The rightmost position may be 40 or 80,
depending on the current screen width. See
CSRLIN and LPOS Functions.

Example IF POS[0]>50 THEN BEEP

7-253

PRESET
Statement

Syntax

x,y

Draws a point at the specified position on the
screen (Graphics Mode only).

PRESET[STEP]((x,y)[,color]

If the STEP option is not included, x,y are absolute
coordinates of the point to be drawn. If the STEP option is
included, x,y are the relative coordinates of the point to be
drawn.

color is the color number to be used, in the range 0 to 3. (See the
COLOR graphics statement for the current screen mode, for
details.) If no 'color' parameter is given, the graphics
background color is selected.

Remarks If the color is given, PRESET is identical to
PSET. If an out of range coordinate is given,
no action is taken and no error message is
given. A color greater than 3 results in an
"Illegal function call".

Examples PRESET (x,y]

is identical to:

7-254

PSET [x,y],0

assuming that the graphics background color
is 0 (Black). See the COLOR graphics
statement for the current mode.

PRINT
Statement

Outputs data to the screen.

Syntax PRINT [list-of-expressions!,|;}]

list-of-expressions
the expressions in the list may he numeric and/or string
expressions. (String constants must be enclosed in quotation
marks.) Each expression should be separated from the next
by a comma, blank, or semicolon.

Remarks If you include the "list-of-expressions", they
are displayed on the screen. If you omit the
"list-of-expressions", a blank line is
displayed. A question mark may be used in
place of the word PRINT in a PRINT
statement.

The position of each printed item is
determined by the punctuation used to
separate the items in the list. GWBASIC
divides the line into print zones of 14 spaces
each. In the list of expressions, a comma
causes the next value to be printed at the
beginning of the next zone. A semicolon
causes the next value to be printed
immediately after the last value. One or more
spaces between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates the list

of expressions, the next PRINT or PRINT
USING statement begins printing on the same
line spacing accordingly. If the list of
expressions terminates without a comma or a
semicolon, a carriage return is

7-255

PRINT

Statement

Examples

7-256

printed at the end of the line. If the printed
line is longer than the terminal width, GW
BASIC goes to the next physical line and
continues printing.

Printed numbers are always followed by a
space. Positive numbers are preceded by a
space. Negative numbers are preceded by a
minus sign. Single precision numbers that can
be represented with 7 or fewer digits in the
unsealed format are output using the unsealed
format. For example, lO-' is output as
.0000001 and 10-® is output as lE-08.
Double precision numbers that can be
represented with 16 or fewer digits in the
unsealed format are output using the unsealed
format. For example, ID-15 is output as
.0000000000000001 and lD-16 is output as
lD-16.

5 REM PRIIMT WITH COMMAS
10 X = 5

20 PRIIMT X + 5,X-5,X*(-5],X %5
30 EIMD

RUN

10 0 -25 3125

Ok

PRINT

Statement

5 REM WITH SEMICOLOIM AT 20

10 INPUT X

20 PRINT X "SQUARED IS" X ^2 "AND";
30 PRINT X "CUBED IS" X ^ 3

40 PRINT 'BLANK LINE

RUN

? 9

9 SQUARED IS 91 AND 9 CUBED IS 729

Dk

5 REM NUMBERS WITH SEMICDLDNS
10 FDR X = 1 TO 5

20 iJ = «l + 5

30K = K + 10

40 ?J;K;
50 NEXT X

RUN

5 10 10 20 15 30 20 40 25 50

Dk

7-257

PRINT USING
Statement

Syntax

Outputs data to the screen using a specified
format.

PRINT USING format string;
list of expressions{,|;}

format string is a string expression composed of special formatting characters.
These formatting characters (see below) determine the field and
the format of the printed strings or numbers.

list of is comprised of the string expressions or numeric expressions
expressions that are to be printed, separated by semicolons, or commas.

String constants must be enclosed in quotation marks. If a
comma or a semicolon terminates the list of expressions, the
next PRINT or PRINT USING statement begins printing
on the same line, spacing accordingly.

7-258

When PRINT USING is used to print strings,
one of three formatting characters may be
used to format the string field:

Specifies that only the first character in the
given string is to be printed.

Os

PRINT USING

Statement

\\ Specifies a number of characters to be printed.
If two backslashes are typed with no spaces,
two characters will be printed; with one space,
three characters will be printed, and so on. If
the string is longer than the field, the extra
characters are ignored.

If the field is longer than the string, the string
will be left-justified in the field and padded
with spaces on the right. For example:

10 AS = "LOOK":B$ = "OUT"

30 PRINT USING "!';AS;BS
40 PRINT USING "\ \";A$;B$
50 PRINT USING "\ \";AS:B$;"!!"
RUN

LO

LOOKOUT

LOOK OUT! I

& Specifies a variable length string field. When
the field is specified with the string is
output without modification. For example:

10 AS = "LOOK":B$ = "OUT"

20 PRINT USING "!";AS;
30 Pi

RUN

LOUT

7-259

PRINT USING

Statement

7-260

When PRINT USING is used to print
numbers, the formatting special characters
may be used to format the numeric field:

Represents each digit position. Digit positions
are always filled. If the number to be printed
has fewer digits than positions specified, the
number will be right-justified (preceded by
spaces) in the field.

A decimal point can be inserted at any
position in the field. If the format string
specifies that a digit is to precede the decimal
point, the digit wiU always be printed (as 0, if
necessary). Numbers are rounded as
necessary. For example:

PRINT USING "##.##";.78
0.78

PRINT USING "###.##";987.654
987.65

PRINT USING "##.## ";10.2,5.3,66.789,.234
10.20 5.30 68.79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.

A plus sign at the beginning or end of the
format string will cause the sign of the
number (plus or minus) to be printed before or
after the number.

PRINT USING

Statement

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign. For example:

PRINT USING " + ##.## ";-68.95,2.4,55.6,-.9
-68.95 + 2.40 + 55.60-0.90

PRINT USING "##.##-";-68.95,22.449,-7.01
68.95- 22.45 7.01-

** A double asterisk at the beginning of the
format string causes leading spaces in the
numeric field to be filled with asterisks. The **

also specifies positions for two more digits. For
example:

PRINT USING "••#.#";12.39,-0.9,765.1
•12.4* 0.9765.1

$S A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Negative numbers cannot be used unless the
minus sign trails to the right. For example:

PRINT USING "SS###.##";456.78
S456.78

7-261

PRINT USING

Statement

7-262

The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**$ specifies three more digit positions, one of
which is the dollar sign. For example:

PRINT USING "**S##.##";2.34
* **82-34

A comma that is to the left of the decimal

point in a formatting string causes a comma
to be printed to the left of every third digit to
the left of the decimal point. A comma that is
at the end of the format string is printed as
part of the string. A comma specifies the digit
position for itself. The comma has no effect if
used with the exponential () format. For
example:

PRINT USING "####,.##";1234.5
1,234.50
PRINT USING "####.##,";1234.5
1234.50,

Four carets (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carets allow
space for E+xx or D+xx to be printed. Any
decimal point position may be specified. The
significant digits are left-justified, and the
exponent is adjusted. Unless a leading+or
trailing + or - is specified, one digit position
will be used to the left of the decimal point to
print a space or a minus sign. For example:

PRINT USING

Statement

PRINT USING "##.## — ";234.56
2.35E + 02

PRINT USING ".#### — - "5888888
.8889E + 06

PRINT USING " + .## — ";123
+ .12E + 03

An underscore in the format string causes the
next character to be output as a literal
character. For example:

PRINT USING "_! ##.## _!";12.34
112.34!

The hteral character itself may be an
underscore by placing in the format
string.

If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a
percent sign will be printed in front of the
rounded number. For example:

PRINT USING "##.##"5111.22
%111.22

PRINT USING ".##"5.999
%1.00

If the number of digits specified exceeds 24, an
** Illegal function call" error will result.

7-263

PRINT# and PRINT# USING
Statements

Syntax

filenum

Write data sequentially to a disk file. PRINT#
and PRINT# USING are usually used in a
program.

PRINT# filenum, [USING format-string
;] list-of-expressions

is the number used when the file was OPENed for
OUTPUT

format-string is a string expression (usually a constant or variable)
composed of formatting characters described in the "PRINT
USING" statement

list-of-expressions
is a list of the numeric and/or string expressions to be
written to file

PRINT# does not compress data on the disk.
An image of the data is written to the disk,
just as it would be displayed on the terminal
screen with a PRINT statement. Be sure to

delimit the data so that it can be input
correctly.

Numeric expressions should be delimited by
semicolons.

Example 50 PRII\IT#'1,B;C;D;X;Y;Z

If commas are used as delimiters, the extra
blanks that are inserted between print fields
wiU also be written to the disk.

7-264

PRINT# and PRINT# USING

Statements

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
delimiters in the hst of expressions.

Example Let A$="CAMERA'' and B$=*93604-l'.
The statement:

100 PRINT#1,AS;BS

writes CAMERA93604-1 to the disk. Because

there are no delimiters, this could not be input
as two separate strings. Insert explicit
delimiters into the PRINT# statement as

follows:

200 PRINT#1,AS5",";BS

The image written to disk is

CAMERA,93604-1

If the strings themselves contain commas,
semicolons, significant leading blanks,
carriage returns, or line feeds, write them to
disk surrounded by explicit quotation marks,
CHR$(34).

Example 100 AS = "CAMERA, AUTOMATIC"
200 B$ = "93604-1"

300 PRiNT#1,ASsBS

Writes the following image to disk:

CAMERA, AUTOMATIC 93604-1

7-265

PRINT# and PRINT# USING

Statements

7-266

The statement

400 IIMPUT#1,A$,BS

Inputs "CAMERA" to A$ and "AUTOMATIC
93604-1" to B$. To separate these strings
properly on the disk, write double quotation
marks to the disk image using CHR$(34). The
statement:

500 PRINT#1,CHR$(34];AS;CHRS(34);
CHRS(34]:BS:CHR$(34]

writes:

"CAMERA, AUTOMATIC'"' 93604-1"

And the statement:

600 li\iPUT#1,AS,BS

Inputs "CAMERA, AUTOMATIC" to A$ and
" 93604-1" to B$.

The PRINT# statement may also be used with
the USING option to control the format of the
disk file:

700 PRil\iT#1,USii\IG"$S###.##,";J;K;L

See Chapter 4 (Disk File Handhng) and
"WRITE#" in this chapter.

Syntax

x,y

color

PSET
Statement

Illuminates a pixel at a specified position on
the screen. (Graphics Mode only.)

PSET [STEP] (x,y) [.color]

If the STEP option is not included, x,y are absolute
coordinates of the point to be drawn. If the STEP option is
included, x,y are the relative coordinates of the point to be
drawn.

is the color number to be used, in the range 0 to 3. (See the
COLOR graphics statement for the current screen mode, for
details.) If no "color" parameter is given, the graphics
foreground color is selected.

Remarks PSET differs from PRESET in the default if

no color is specified. PSET defaults to the
foreground color. PRESET defaults to the
background color.

See PRESET.

Examples: 5 REM DIAGONAL LINE
10 FOR i = GTO 100

20 PSET[i,i]
30 NEXT

10 REM CLEARS OUT LINE BY SETTING

EACH PIXEL TO 0:

40 FOR i = 100 TO 0 STEP -1

50 PSET[i,i],0
60 NEXT

7-267

PUT (COM files)
Statement

Syntax

filenum

length

Example

Remarks

7-268

Writes a specified number of bytes to a
communications file.

PUT [#] filenum [.length]

is an integer expression returning a valid file number

is an integer expression returning the number of bytes to be
transferred out of the communications buffer, 'length'
cannot exceed the value set by the IS: switch when GWBASIC
was invoked or the value optionally set in the OPEN
statement.

100 PUT #2, 80

This is ordinarily used only in a program, not
in direct mode.

Syntax

filenum

recordnum

Remarks

Possible

Errors

PUT (Files)
Statement

Writes a record from a random buffer to a

random file.

PUT [#]filenum [, recordnum]

is the number under which the file was OPE Ned

specifies the number of the record in the file. It must be in
the range 1 to 32,767. If omitted the current record
number is assumed (i.e., the record whose number is one
higher than that of the last record accessed).

PUT (FILES) is usually used in a program,
not in direct mode. PRINT#, PRINT# USING,
WRITE#, LSET and RSET may be used to put
characters in the random file buffer before

executing a PUT statement.

In the case of WRITE#, GWBASIC pads the
buffer with spaces up to the carriage return.

Any attempt to read or write past the end of
the buffer causes a "Field overflow" error.

7-269

PUT (Files)
Statement

Example

7-270

10 OPEIM "R",1,"A:RAND",48

20 FIELD 1,20 AS R1$,20 AS R2$,8 AS R3S

30 FOR L = 1 TO 2

40 INPUT "name";NS

50 INPUT "aclclress";M$

60 INPUT "phone";P#
70 LSETR1$ = N$

80 LSETR2S = IVI$

90 LSETR3$ = MKS$[P#]
100 PUT#1,L

110 NEXTL

120 CLOSE #1

130 END

RUN

name? Super man
address? usa

phone? 11234621

name? robin hood

address? England
phone? 23462101
Ok

Statement 10 opens the random file RAND,
with a record length of 48 on the diskette drive
in A. The file number is 1. Statement 20

divides the buffer into fields.

Statement 100 writes a record to file RAND,
with the record number being set by the
control variable of the FOR/NEXT loop.

Syntax

x,y

array

action verb

Remarks

PUT (Graphics)
Statement

Transfers the graphics image stored in an
array to the screen.

PUT (x,y), array [,action verb]

represent the top left corner of the rectangle to be displayed.

is the name of an array containing the image to be displayed.
The type of the array must be numeric.

is one of: PSET, PRESET, AND, OR, XOR. The default 'action
verb' is XOR.

The PUT and GET statements are used to

transfer graphics images to and from the
screen. PUT and GET make possible
animation and high-speed object motion in
graphics mode.

The array is used simply as a place to hold the
image and can be of any type except string. It
must be given dimensions large enough to
hold the entire image.

The PUT statement transfers the image stored
in the array onto the screen. The specified
point is the coordinate of the top left corner of
the image.

7-271

PUT (Graphics)
Statement

7-272

The Action Verb Parameter

The "actionverb" specifies the interaction
between the stored image and the one already
on the screen.

PSET transfers the data point by point onto
the screen. Each point has the exact color
taken from the screen with a GET.

PRESET is the same as PSET except that a
negative image is produced.

AND transfers the data over an existing
image on the screen. The resulting image is
the product of the logical AND expression.
Points that had the same color in both the
existing image and the PUT image will
remain the same color, in original, but should be
points that do not have the same color in both
images will be changed.

OR superimposes the image onto an existing
image.

XOR causes the points on the screen to be
INVERTED where a point exists in the array
image. This behavior is exactly like that of the
cursor. When an image is PUT against a
complex background TWICE, the background
is restored unchanged. This allows you to
move an object around the screen without
erasing the background.

PUT (Graphics)
Statement

In medium resolution AND, OR and XOR
have the following effects on color:

AND

screen

OR
screen

XOR

screen

a 0 12 3 a 0 12 3 a 0 12 3

r r r

a 0 0 0 0 0 a 0 0 12 3 a 0 0 12 3

y y y

1 0 10 1 1 113 3 1 10 3 2

V V V

a 2 0 0 2 2 a 2 2 3 2 3 a 2 2 3 0 1

1 1 I

u a 0 12 3 u 3 3 3 3 3 u 3 3 2 10

e e e

Animation

Animation proceeds as follows:

• PUT the object(s) on the screen (with the XOR
option)

• Recalculate the new position of the object)s)

• PUT the object)s) on the screen (with the XOR
option) a second time at the old location)s) to
remove the old image(s)

• Go to step 1 for the new location.

7-273

PUT (Graphics)
Statement

Movement done this way will leave the
background unchanged. Minimize the time
between steps 4 and 1, Eind make sure that
there is enough time delay between 1 and 3 to
eliminate flickering images. If more than one
object is being animated, every object should
be processed at once, one step at a time.

PSET can perform faster animations, but will
not preserve the background. This method
must use an image large or larger than the
maximum distance the object will move. Thus,
when an object is moved, this border will
effectively erase any points left by the
previous PUT. This may be faster than the
method using XOR described above, since only
one PUT is required to move an object
(although you must PUT a larger image).

Possible An ''Illegal function call" error occurs if
Errors the image is too large to fit on the screen.

7-274

Syntax

numexp

Remarks

RANDOMIZE
Statement

Reseeds the random number generator.

RANDOMIZE [numexp]

is any numeric expression. The value of the expression will
be used to seed the random numbers.

If "numexp" is omitted, GWBASIC suspends
program execution and asks for a value by
displaying:

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

To get a new random seed without prompting
the user, use the numeric TIMER function. For
example:

RANDOMIZE TIMER

If the random number generator is not
reseeded, the RND function returns the same
sequence of random numbers each time the
program is RUN. To change the sequence of
random numbers every time the program is
RUN, place a RANDOMIZE statement at the
beginning of the program and change the
argument with each RUN.

7-275

RANDOMIZE

Statement

Example

7-276

10 RANDOMIZE

20 FOR 1 = 1 TO 3

30 PRINT RNO;
40 NEXT I

Ok

RUN

Random Number Seed(-32768to32767]?3
.2226007 .3343962 .7341223

Ok

RUN

Random Number Seed (-32766 to 32767]?4
.9466615 .5775203 .6716166

Ok

RUN

Random Number 6eed(-32766 to 32767]?3
.2226007 .3343962 .7341223

READ
Statement

Reads values from one or more DATA

statements and assigns them to variables.

Syntax READ variable [, variable]...

variable each variable in the list may be a numeric or string variable.
The type of the variable must agree with the type of the
associated value in the DATA sequence.

Remarks A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA
statement values on a one-to-one basis. If the

data type (numeric or string) of an entry in the
data sequence does not correspond to the type
of the associated variable, a "Syntax error"
will result. However any numeric data type
(integer, single or double precision) may be
assigned to any numeric variable.

A single READ statement may access one or
more DATA statements (they will be accessed
in order), or several READ statements may
access the same DATA statement. If the

number of variables in the list of variables

exceeds the number of elements in the DATA

statement(s), an "Out of data" error message
is printed. If the number of variables specified
is fewer than the number of elements in the
DATA statement(s), subsequent READ
statements will begin reading data at the first
unread element. If there are no subsequent
READ statements, the extra data is ignored.

7-277

READ

Statement

To reread DATA statements from the start,
use the RESTORE statement (see
"RESTORE" later in this chapter).

Example 1 80 FOR I = 1 T010
90 READ A(l)
100 NEXT I

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values
from the DATA statements into the array A.
After execution, the value of A(l) will be 3.08,
and so on.

Example 2 10 PRINT "CITY", "STATE", " ZIP"
20 READ CS,SS,Z
30 DATA "DENVER,", CDLDRADD, 80211
40 PRINT CS,S5,Z
Dk

RUN

CITY STATE ZIP

DENVER, CDLDRADD 80211
Dk

This program READs string and numeric data
from the DATA statement in line 30.

7-278

REM
Statement

Allows explanatory remarks to be inserted in a
program.

Syntax REM remark

remark represents a sequence of characters

Remarks REM statements are not executed but are

output exactly as entered when the program is
listed.

REM statements may be branched into from a
GOTO or GOSUB statement. Execution will

continue with the first executable statement

after the REM statement.

Remarks may be added to the end of a line by
preceding the remark with a single quotation
mark (') instead of REM. The single quotation
mark may also be entered just after the Hne
number, like REM.

Note

Do not use remarks in a DATA statement,
because they would be considered legal data.

7-279

REM

Statement

Example 120 REM Calculate Average Velocity
130 FOR 1 = 1 TO 20

140 SUM = SUM + V(l)
150 IMEXT I

160 AV = SUM/20

7-280

or

120 FOR 1 = 1 TO 20 'Calculate

125 'Average Velocity
130 SUM = SUM+V(I]
140 NEXT I

150 AV = SUM/20

or

120 'Calculate Average Velocity
130 FOR 1 = 1 TO 20

140 SUM = SUM + V(I)
150 NEXT I

160 AV = SUM/20

Syntax

new linenum

RENUM
Command

Changes the line numbers of the current
program.

RENUM [new linenum] [, [old linenum] [,
increment]]

is the first line number to be used in the new sequence. The
default is 10.

old linenum is the line in the current program where renumbering is to
begin. The default is the first line of the program.

increment is the increment to be used in the new sequence. The default
is 10.

RENUM also changes all line number
references following GOTO, GOSUB, THEN,
ON . . . GOTO, ON . . . GOSUB, RESTORE,
RESUME, and ERL statements to reflect the
new line numbers. If a nonexistent line

number appears after one of these statements,
the error message "Undefined line number
xxxxx in yyyyy" is printed. The incorrect line
number reference is not changed by RENUM,
but line number yyyyy may be changed.

Note

RENUM cannot be used to change the order of
program bnes (for example, RENUM 15,30
when the program has three lines numbered
10, 20 and 30) or to create line numbers greater
than 65529. An "Illegal function call" error
will result.

7-281

RENUM

Command

Examples RENUM
Renumbers the entire program. The first new
line number will be 10. Lines will be numbered
in increments of 10.

RENUM 300„50
Renumbers the entire program. The first new
line number will be 300. Lines will be

numbered in increments of 50.

RENUM 1000,900,20
Renumbers the lines from 900 up, so they start
with line number 1000 and are numbered in

increments of 20.

7-282

RESET
Command

Closes all open data files on all drives.

Syntax RESET

Remarks RESET closes all open data files on all drives,
and forces all blocks in memory to be written
to disk. Thus, if the machine loses power, all
files will be properly updated. All files must be
closed before a disk is removed from its drive.

Note that RESET performs the same action as
CLOSE with no arguments, if all open data
files are residing on disk.

7-283

RESTORE
Statement

Permits DATA statements to be re-read either

from the beginning of the internal data file or
from a specified line.

Syntax RESTORE [linenum]

linenum must be the line number of a DATA statement

Remarks After a RESTORE statement is executed, the
next READ statement accesses the first item

in the first DATA statement in the program. If
"hnenum" is specified, the next READ
statement accesses the first data item in the

specified DATA statement.

Example 10 READ A, B, C
20 RESTORE

30 READ D, E, F
40 DATA 58, 67, 97
50 PRIIMT A; B; C; D; E; F
RUIM

58 67 97 58 67 97

Ok

7-284

n

Syntax

RESUME

or

RESUME 0

RESUME

NEXT

RESUME

linenum

RESUME
Statement

Continues program execution after an error
trapping routine has been performed.

RESUME { 0 I NEXT | linenum}

execution resumes at the statement which caused the error

execution resumes at the statement immediately following
the one which caused the error

execution resumes at the specified line

Remarks Any one of the four formats shown above may
be used, depending upon where execution is to
resume.

Example

A RESUME statement that is not in an error

handling routine causes a "RESUME without
error" message to be printed.

10 DIM ERROR GOTO 900

900 IF (ERR = 230] AND (ERL = 90] THEN
910 PRINT "TRY AGAIN" : RESUME 80

7-285

RIGHTS
Function

Syntax

string

Returns a substring from a specified string,
extracting its rightmost characters.

RIGHTS (string , length)

is a string expression whose value is the original string from
which a substring is to be returned

length is a numeric expression rounded to the nearest integer,
whose value (from 0 to 255) represents the length of the
returned string

Remarks If "length" is greater or equal to LEN(string),
then the entire original string is returned.
When length=0, the null string (length of zero)
is returned.

Example 10 AS = "THIS IS GWBASiC"
20 PRINT RIGHTS[AS,5]
RUN

BASIC

Ok

7-286

Also see the LEFT$ and MID$ functions in

this chapter.

RMDIR
Command

Removes an existing directory.

Syntax RMDIR pathname

pathname is the name of the directory which is to be deleted

Remarks RMDIR works exactly like the MS-DOS
command RMDIR. The directory to be deleted
must be empty of all files and sub-directories
except the working directory ('.') and the
parent directory entries, or a "Path not
found" error is given.

ROOT

/
SALES

/
FRED

/
WILMA

ACCOUNTING

I \
AMOS ANDY

7-287

RMDIR

Command

7-288

With reference to our sample structure above,
we decide that we no longer want the sub
directory ANDY. Let us assume that our
current directory is ROOT. Then:

RMDIR "ACCOUNTING\ANDY"

deletes the directory ANDY.

On the other hand, if you want to make
ACCOUNTING the current directory and
remove the directory called AMOS then:

CHDIR "ACCOUNTING"

RMDIR "AMOS"

Possible Errors

"Bad File name"

"Path/File Access error" usually indicates
that the directory is not empty.

Syntax

numexp

Remarks

RND
Function

Returns a random number between 0 and 1.

RND [numexp

is a numeric expression which affects the returned value.
See the following "Remarks" section.

The same sequence of random numbers is
generated each time the program is RUN
unless the random number generator is
reseeded. You may reseed the generator either
by the RANDOMIZE statement or by the RND
function (specifying numexp<0). numexp <0
always restarts the same sequence for
any given "numexp". This sequence is not
affected by RANDOMIZE, so if you want
to generate a different sequence each
time the program is run, you have to use
a different value of numexp each time.

If numexp >0 or is omitted, RND(numexp)
generates the next random number in the
sequence. RND(O) repeats the last number
generated.

To get integer random number in the range 0
(zero) to N, use:

INT [RND*[N + 1]]

7-289

RND

Function

Example 10 FOR 1= 1 TO 5
20 PRINT INTfRNDMOO];
30 NEXT

RUN

24 30 31 51 5

Ok

7-290

RUN
Command

Runs the current program or loads a program
from disk and runs it.

Syntax 1 RUN [linenum]

Syntax 2 RUN filename [,R]

linenum is the line number of the program resident in memory where
the execution must begin

filename is a string expression which specifies the program to be
loaded and run

R if this option is specified all data files (that were opened
before loading the designated program) remain open

7-291

RUN

Command

Remarks If "linenum" is specified, execution begins on
that line. Otherwise, execution begins at the
lowest Hne number. GWBASIC always
returns to command level after a RUN

command. The name used when the file was
SAVEd is the name specified by "filename" or
"pathname". (MS-DOS will append a default
.BAS filensune extension if one was not

supplied in the SAVE command.) RUN
{filename} closes all open files and deletes the
current contents of memory before loading the
designated program. However, with the "R"
option, all data files remain open.

RUN "B:IMEWFILE",R RUN AS

RUN 150

RUN "C:\R001\R0G2'

7-292

SAVE
Command

Saves the current program on disk and gives
it a name. Option A saves the program in
ASCII format. Option P saves it protected.

Syntax SAVE filename [, { A | P }]

filename is a string expression which specifies the name of the file to
be saved, and optionally the drive. If the filename extension
is omitted, .BAS is assumed. If the drive is omitted, the
default MS-DOS drive is assumed.

the A option will save the program in ASCII format.
Otherwise GWBASIC saves the file in a compressed binary
format. Programs saved in ASCII may be read as Data
Files or MERGEd.

the P option will save the program in an encoded binary
format. This is the protection option. When a protected
program is later RUN (or LOADed), any attempt to LIST or
EDIT it will fail with an "Illegal function call" error. No
way is provided to "unprotect" such a program.

7-293

SAVE

Command

Remarks If a file with the same name already exists on
the selected disk, it will be written over.

ASCII format takes more space on disk, but
some disk access requires that files be in
ASCII format. Attempts to MERGE binary
programs will result in a "Bad File Mode" error.

If the filename is eight characters or less and
no extension is supplied, MS-DOS adds the
extension .BAS to the name.

Examples SAVE "SUPERB"
Saves the program in memory on the default
drive as SUPERB.BAS.

SAVE "A:PROG",A
Saves the program in memory in ASCII form
on the diskette inserted on drive A, as
PROG.BAS; it may be later MERGEDd.

SAVE "B;SECRET",P
Saves protected the program in memory on the
diskette inserted on drive B, in protected form
as SECRET.BAS; it may not be altered.

7-294

/-N

Syntax

column

SCREEN
Function

Returns the ASCII code (0-255) or the color
number for the character at the specified row
and column.

SCREEN (row, column [.condition])

is a numeric expression returning an unsigned integer in
the range 1 to 25

is a numeric expression returning an unsigned integer in
the range 1 to 40 or 1 to 80 depending on the width

condition is a valid numeric, relational or logical expression returning
a boolean result (0 or 1). condition is only valid in Text
Mode.

Remarks In text mode, if condition is given as non-zero,
the color number for the character is returned

instead of the ASCII code. The color is a num

ber in the range 0-255. This number (x) may be
interpreted as follows:

• (x MOD 16) is the foreground color

• (((x-foreground)/16)MOD 128) is the
background color

• (x>127) is true (-1) if the character is blinking,
false (0) if not.

Refer to Appendix A for a complete list of
ASCII codes. The colors associated with each

number are listed under the COLOR

Command.

7-295

SCREEN

Function

Remarks In graphics mode the SCREEN function
returns zero if the specified location contains
graphics information.

Examples 100 X = SCREEIM [10,10]
If the character at 10,10 is A, then x will
contain 65.

110 X = SCREEN [1,1,1]
Returns the color number of the character in

the upper left hand corner of the screen.

7-296

Syntax

mode

burst

apage

vpage

SCREEN
Statement

Sets the screen attributes that will be used by
subsequent statements.

SCREEN [mode]
[apage] [,vpage]]

[burst] [,

is a numeric expression resulting in an integer value of 0, 1,
2, or 100. It defines either Text Mode (0), Medium-Resolution
Graphics Mode (1), High-Resolution Graphics Mode (2), or
Super-Resolution Graphics Mode (100).

is a numeric expression resulting in an integer value of 0 or
1. It enables color on a color TV set. In Text Mode (mode -t- 0) a
0 value disables color, and a 1 value enables color. In
Medium-Resolution Graphics Mode (mode -h 1) a 0 value
enables color, and a 1 value disables color. Both in High-
Resolution and Super-Resolution Graphics Mode (mode -1- 2
or 100) the burst value is ignored, as these two modes only
support monochrome. For a standard monitor, this
parameter has no meaning.

is an integer expression in the range 0 to 7 for width 40, or 0
to 3 for width 80. It selects the active page, i.e. the page to be
written to by output statements to the screen. If omitted, the
active page defaults to 0. This parameter is valid in Text
Mode only.

is an integer expression in the range 0 to 7 for width 40, or 0
to 3 for width 80. It selects the visual page, i.e. the page to be
displayed on the screen. The visual page may be different
from the active page. If omitted, the visual page defaults to
the active page. This parameter is valid in Text Mode only.

7-297

SCREEN

Statement

7-298

Mode and Burst Parameters

In the following table the first two columns
are the ''mode" and "burst" parameters of a
SCREEN statement.

Mode Burst Resolution

0 0 80 c. X 25 r. - B/W

Text Mode

0 1 80 c. X 25 r. - Color

Text Mode

1 0 320 hor.pixels x 200 vert.
pixels-
Color Medium Resolution

Graphics
(40 c. X 25 r.)

1 1 320 hor.pixels x 200 vert.
pixels-
B/W Medium Resolution

Graphics
(40 c. X 25 r.)

2 X 640 hor.pixels x 200 vert.
pixels-
B/W High Resolution
Graphics
(80 c. X 25 r.)

100 X 640 hor.pixels x 400 vert,
pixels-
B/W Super Resolution
Graphics
(80 c. X 25 r.)

SCREEN

Statement

Default Values

If you do not enter a SCREEN statement, the
system assumes the following default values:

mode = 0 (Text Mode)
burst = 0 (B/W)
apage = 0 (active page 0)
vpage = 0 (virtu£il page 0)

It would be the same as if you entered:

SCREEN 0,0,0,0

Apage and Vpage Parameters

If Text Mode is selected, you can specify two
more parameters *'apage" and 'Vpage" to
select the active and visual page. There are
eight display pages (numbered 0 to 7) in 40-
column Text Mode, and four display pages
(numbered 0 to 3) in 80-column Text Mode.
Only one display page is available in any of
the three graphics modes.

7-299

SCREEN

Statement

7-300

Screen Width

At initialization the width is 80 columns, thus
you should use the WIDTH statement if you
want to select a 40-column screen. If you select
the medium resolution mode by the SCREEN
statement, this also causes the number of
columns to be 40 (without using the WIDTH
statement).

While in Text Mode, the WIDTH statement
may be used to select between the 40-column
mode and the 80-column mode. Likewise, the
WIDTH statement may be used to select
between modes 1 and 2 (medium or high-
resolution mode). See the WIDTH statement in
this chapter.

If all parameters are vgilid the new screen
mode is stored, the screen is erased, the
foreground and the background colors are set
to their default values. The SCREEN

statement must precede any I/O statement to
the screen, but you can use more than one
SCREEN statement to define different screen

attributes for different sections of your
program.

If all parameters are identical to the preceding
ones nothing is changed or erased.

If you omit a parameter, it keeps the old value
(except that the visual page defaults to the
active page.)

SCREEN

Statement

If you are in Text Mode and you switch active
pages back and forth, you should save the
cursor position on the current active page (see
POS(O) and CSRLIN) before changing to
another active page. #Note: There is only one
cursor shared among all the pages.

If you are in Text Mode and you return to the
original page you can restore the cursor
position by the LOCATE (Text) statement.

Examples iOO SCREEN 0,1,1,2
Selects 80-column text-mode with color, sets
active page to 1 and visual page to 2.

200 SCREEN 1,0
Switches to 40-column medium-resolution color
graphics.

300 SCREEN 0

Switches back to text-mode. The omitted
parameters assume the old values (except the
visual page that defaults to the active page).
Note that, if the last SCREEN statement
executed was statement 200, then statement
300 would switch to 40-column BW text mode

and set the active and visual pages to 0.

7-301

SGN
Function

Returns 1 if the argument is positive, 0 if the
argument is zero, and -1 if the argument is
negative.

Syntax SGN (numexp)

Remarks If numexp>0, SGN(numexp) returns 1.
If numexp+0, SGN(numexp) returns 0.
If numexp <0, SGN(numexp) returns -1.

Example 50 DIM SGIM [X] + 2 GOTO 300,400,500
branches to:

300 if numexp is negative, 400 if numexp is 0,
and 500 if numexp is positive.

7-302

Syntax

numexp

Remarks

Example

SIN
Function

Calculates the sine of the argument.

SIN(numexp)

is a numeric expression representing the angle in radians.

The SIN function is calculated in single
precision, unless "/D" is supplied in the
GWBASIC command line.

PRINT SIN [1.5]

See also the COS function in this chapter.

7-303

SOUND
Statement

Syntax

frequency

duration

Example

Remarks

7-304

Produces sound via a speaker.

SOUND frequency, duration

is a numeric expression in the range 37 to 32767. It represents
the Hertz frequency (cycles per second).

is the duration in clock ticks. Clock ticks occur 18.2 times per
second. Duration is an integer expression in the range 0 to 65535.

100 SOUND RND*100 + 37,2

This statement creates random sounds.

Sound x,0 or SOUND 32767,x cause silence.

O

SOUND

Statement

Notes and Frequencies

The following table correlates notes with their
frequencies for two octaves.

Note Frequency Note Frequency
C 130.810 c* 523.250

D 146.830 D 587.330
E 164.810 E 659.260

F 174.610 F 698.460

G 196.000 G 783.990

A 220.000 A 880.000
B 246.940 B 97.770

C 261.630 C 1046.500

D 293.660 D 1174.700

E 329.630 E 1318.500

F 349.230 F 1396.900

G 392.000 G 1568.000

A 440.000 A 1760.000

B 493.880 B 1975.500

♦middle C

DoubUng a frequency approximates a note one
octave higher. Halving it approximates a note
one octave lower.

7-305

SOUND

Statement

7-306

Tempos and Beats/Minute

This table shows typical tempos in terms of
clock ticks.

Tempo Beats/

Minute

Ticks/

Beat

very slow Larghissimo
Largo 40-60 28.13-18.75

Larghetto 60-66 18.75-17.05

Grave

Lento

Adagio 66-76 17.05-14.8

slow Adagietto
Andante 76-108 14.8-10.42

medium Andantino

Moderate 108-120 10.42-9.38

fast Allegretto
Allegro 120-168 9.38-6.7

Vivace

Veloce

Presto 168-208 6.7-5.41

very fast Prestissimo

SPACES
Function

Returns a string of a specified number of
spaces.

Syntax SPACES (length)

length is an integer expression in the range 0 to 255. It specifies
the number of spaces i.e. the length of the returned string.

Example '10 FOR 1+ 1 TO 5
20 X$ + SPACES[I]
30 PRINT XS;i
40 NEXT 1

RUN

1

2

3

4

5

OK

7-307

SPC
Function

Syntax

Skips "n" spaces in a PRINT, LPRINT, or
PRINT# statement.

SPC (n

n is an integer expression in the range 0 to 255. It specifies the
number of spaces to be inserted in the output line.

Remarks SPC may only be used with PRINT, LPRINT
and PRINT# statements.

If "n" is greater than the defined width, then
the value used is "n MOD width". A semicolon

(;) is assumed to follow the SPC function; thus
GWBASIC does not add a carriage return if
the SPC function is at the end of the list of

data items.

Example PRINT "FOUR" SPC[15] "SEASONS"
FOUR SEASONS

See also the SPACES function in this chapter.

7-308

Syntax

Remarks

Example

SQR
Function

Returns the square root of a positive numeric
expression.

SQR (numexp)

SQR is calculated in single precision, unless
"/D" is supplied in the GWBASIC command
line.

An "Illegal function call" error results if the
argument is negative.

10 FOR X = 10 TO 25 STEP 5

20 PRINT X, SQR(X]
30 NEXT X

RUN

10 3.162278

15 3.872984

20 4.472136

25 5

Ok

7-309

STICK
Function

Syntax

Remarks

Example:

7-310

Returns the x and y coordinates of two
joysticks.

v = STICK(n)

is a numeric expression in the range 0 to 3 which affects the
result as follows:

0 returns the x coordinate for joystick A.

1 returns the y coordinate of joystick A.

2 returns the x coordinate of joystick B.

3 returns the y coordinate of joystick B.

Note: STICK(O) retrieves all four values for the coordinates,
and returns the value for STICK(O). STICK(l), STICK(2),
and STICK(3) do not sample the joystick. They get the
values previously retrieved by STICK(O).

The range of values for x and y depends on
your particular joysticks.

10 PRINT "Joystick B"
20 PRINT

30 FOR J = 1 TO 100

40 TEIVIP = STICK[0]
50 X = STICK[2]: Y = STICK[3]
60 PRINT X,Y
70 NEXT

This program takes 100 samples of the
coordinates of joystick B and prints them.

STOP
Statement

Terminates program execution and returns to
command level. STOP is only used in a
program.

Syntax STOP

Remarks A STOP statement may be used anywhere in a
program. When a STOP is encountered, the
following message is displayed:

Break in nnnnn

Where nnnn is the line number containing the
STOP statement.

The STOP statement does not close files,
unlike the END statement.

GWBASIC always returns to command level
after a STOP is executed. The CONT

command resumes execution.

Example 10 INPUT A,B,C
20 K = A 2*5.3:L = B 3/.26

30 STOP

40 M = C*K + 100:PRINT M

RUN

'12 3

BREAK IN 30

Ok

PRINT L

30.76923

Ok

CONT

115.9

Ok

7-311

STRIG
Statement and Function

Returns the status of the joystick buttons
(triggers).

Syntax As a statement:

STRIG ON

STRIG OFF

As a function:

v = STRIG(«)

7-312

is a numeric expression in the range 0 to 7. It affects the value
returned by the function as follows:

0 Returns -1 if button A1 was pressed since the last STRIG(O)
function call, returns 0 if not.

1 Returns -1 if button A1 is currently pressed, returns 0 if
not.

2 Returns -1 if button B1 was pressed since the last
STRIG(2) function call, returns 0 if not.

3 Returns -1 if button B1 is currently pressed, returns 0 if
not.

STRIG

Statement and Function

4 Returns -1 if button A2 was pressed since the last
STRIG(4) function call, returns 0 if not.

5 Returns -1 if button A2 is currently pressed, returns 0 if
not.

6 Returns -1 if button B2 was pressed since the last
STRIG(6) function call, returns 0 if not.

f Returns -1 if button B2 is currently pressed, returns 0 if
not.

Remarks STRIG ON must be executed before any
STRIG(«) function calls may be made. After
STRIG ON, every time the program starts a
new statement BASIC checks to see if a button

has been pressed.

If STRIG is OFF, no testing takes place.

7-313

STRIG(n)
Statement

Syntax

Enables and disables trapping of the joystick
buttons.

STRIG(«) ON

STRIG(n) OFF

STRIG(/i) STOP

may be 0, 2, 4, or 6, and indicates the button to be trapped
as follows:

0 button A1

2 button B1

4 button A2

6 button B2

Remarks STRIG(n) ON must be executed to enable
trapping by the ON STRIG(n) statement (see
"ON STRIG(n) Statement" in this chapter).
After STRIG(ra) ON, every time the program
starts a new statement, BASIC checks to see if
the specified button has been pressed.

If STRIG(n) OFF is executed, no testing or
trapping takes place. Even if the button is
pressed, the event is not remembered.

If a STRIG(re) STOP statement is executed, no
trapping takes place. However, if the button is
pressed it is remembered so that an immediate
trap takes place when STRIG(n) ON is
executed.

7-314

STR$
Function

Returns the string representation of the value
of a specified numeric expression.

Syntax STR$(numexp)

Remarks For positive numbers, the string generated by
STR$ has a leading blank for the sign field.

See the complementary VAL function in this
chapter.

Example 10 AS = STRS[70]
20 PRINT AS

RUN

70

Ok

70 (the argument of STR$) is a number, but
the contents of A$ is a two character string
whose value is "70".

7-315

STR$
Function

Example 5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER";N
20 ON LEN(STRS(N]] GOSUB
30,100,200,300,400,500

The entered number N is converted to a string
by the STR$ function. The program then
branches according to the number of digits in
the number entered.

Example 10 A! =1.3
20 A# = VAL(STRS(A!]]
30 PRINT A#

RUN

1.3

Ok

The conversion in line 20 causes the value in

A! to be stored accurately in the double-
precision variable A#.

7-316

STRINGS
Function

Returns a string of specified length whose
characters all have the same ASCII code or

equal the first character of a given string.

Syntax STRINGS (length , code)

STRINGS (length , stringexp)

length specifies the length of the resulting string (0-255).

code specifies the ASCII code of the character used to form the
resulting string (0-255).

stringexp is a string expression whose first character is used to form
the resulting string.

Example 10 XS -H STRIIVGS[10,45]
20 PRINT XS "MONTHLY REPORT" XS

RUN

MONTHLY REPORT

7-317

SWAP
Statement

Syntax

variable1

and

variable2

Remarks

Example

7-318

Exchanges the values of two variables.

SWAP variablel , variable2

are two variables of the same type (integer, single-precision,
double-precision, or string).

The two variables must be of the same type or
a "Type Mismatch" error occurs. The second
variable must already be defined or an
"Illegal function call" error occurs.

10 AS= "ONE" : B$ =

20 PRINT AS C$ BS

30 SWAP AS, BS
40 PRINT AS CS BS

RUN

ONE FOR ALL

ALL FOR ONE

Ok

'ALL" : CS = "FOR'

SYSTEM
Command

Closes all open data files and returns to
MS-DOS.

Syntax SYSTEM

Remarks When a SYSTEM command is executed, all
open files are closed, and control is returned to
MS-DOS. Your GWBASIC program is lost. If
you entered GWBASIC through a Batch file
from MS-DOS, the SYSTEM command returns
control to the Batch file.

7-319

TAB
Function

Syntax

Tabs the cursor or the print head to a specified
position, in PRINT, LPRINT, or PRINT#
statements.

TAB(n)

n is an integer expression in the range 1 to 255.

Remarks If the current cursor or print position is
already beyond the specified value "n" TAB
goes to that position on the next line. Space 1
is the leftmost position, and the rightmost
position is the defined width.

If the value of "n" exceeds the defined width,
the modulo operation is applied. For example,
PRINT TAB(243) on a 40-column screen is the
same as PRINT TAB(3), because 243 MOD
40+3.

A semicolon is assumed to follow the TAB

function; thus GWBASIC does not add a
carriage return if the TAB function is at the
end of the list of data items.

Example 10 PRINT "NAME" TAB[25] "AMOUNT" ;
PRINT

20 READ AS,BS
30 PRINT AS TAB(25] BS
40 DATA "G. T. JONES","S25.00'
NAME AMOUNT

7-320

G. T. JONES

Ok

S25.00

Syntax

numexp

Remarks

Example

TAN
Function

Returns the tangent of the argument.

TAN(numexp)

is a numeric expression representing the angle in radians.

TAN(numexp) is calculated in single precision
(unless "/D" is supphed in the GWBASIC
command line).

If TAN overflows, the "Overflow" error
message is displayed, machine infinity with
the appropriate sign is supplied as the result,
and execution continues.

10 Y = Q*TAN(x]/2

7-321

TIMES
Statement and Function

Syntax

The TIMES statement sets the current time.

The TIMES function retrieves the current

time.

TIMES = stringexp
stringvar = TIMES

stringexp is a string expression indicating the time to be set.

stringvar is a string variable in which the current time (8 character
string) is returned.

Remarks As a statement (TIMES=stringexp):

"stringexp" is a string expression indicating
the time in the form:

• hh (sets the hour; minutes and seconds default
to 00), or

• hh:mm (sets the hour and minutes; seconds
default to 00), or

• hh:mm;ss (sets the hour, minutes and seconds)

A 24 hour clock is used; therefore 8:00 p.m.
would be entered as 20:00:00.

A leading zero may be omitted from any of the
above values, but you must include at least
one digit for each field higher than the lowest
field set. For example, 00:00:42 is the same as
0:0:42, but :42 is incorrect.

Note that the time may also have been set by
MS-DOS prior to entering GWBASIC.

7-322

TIME$

Statement and Function

As a function (stringvar=TIME$):

The TIMES function returns an eight
character string in the form hh:mm:ss, where
hh is the hour (00 through 23), mm is minutes
(00 through 59), and ss is seconds (00 through
59).

Examples TIMES = "8:0"
Ok

PRIIMT TIMES

08:00:04

Ok

The following program displays the current
date and time on the 25th line of the screen

and assigns the number of seconds after the
minute to the variable SEC.

10 KEY OFF:SCREEIM 0,0,0:CLS
20 LOCATE 25,5
30 PRIIMT OATES„TIMES
40 SEC = VALCMIOS(TIMES,7,2]]

Possible Errors

• An "Illegal function call" error is issued, if
any of the values are out of range. The
previous time is retained.

• A "Type mismatch" error is issued, if
"stringexp" is not a valid string.

7-323

TIMER
Function

Returns a single-precision number indicating
the seconds that have elapsed since midnight
or system reset.

Syntax TIMER

Remarks TIMER is a numeric read-only function. It
calculates fractional seconds to the nearest

degree possible. It may not be used as a user
variable.

Example 10 TIMES = "23:59:59'
20 FORK = 1T0 10

30 PRINT "TIMES = ";TiMES,"TIME =";TIMER
40 NEXT

40 NEXT

7-324

TIMER {ONIOFF ISTOP}
Statements

TIMER ON enables TIMER event trapping.
TIMER OFF disables TIMER event trapping.
TIMER STOP suspends TIMER event
trapping.

Syntax TIMER {ON|OFF1STOP}

Remarks The TIMER ON statement enables real time
event trapping by an ON TIMER GOSUB
statement. While trapping is enabled with the
ON TIMER GOSUB statement, GWBASIC
checks between every statement to see if the
timer has reached the specified level. If it has,
the ON TIMER GOSUB statement is executed.

TIMER OFF disables the event trap. If an
event takes place, it is not remembered if a
subsequent TIMER ON is used.

TIMER STOP disables the event trap, but if
an event occurs, it is remembered and an ON
TIMER GOSUB statement will be executed as
soon as trapping is enabled.

Also see ON TIMER GOSUB statement in this
chapter.

7-325

TRON/TROFF
Commands

TRON (TRACE ON) causes the line number of
each statement executed to be listed.

TROFF (TRACE OFF) stops the line number
listing initiated by TRON.

Syntax TRON
TROFF

Remarks The TRON statement (executed in either
immediate or program mode) is used as a
debugging tool, since it enables a trace flag
that displays each line number of the program
as it is executed. The numbers appear enclosed
in square brackets. The trace flag is disabled
with the TROFF statement (or when a NEW
command is executed).

Example Ok
10 K = 10

20 FOR J = 1 TO 2

30 L = K + 10

40 PRIIMT J;K;L
50 K = K + 10

60 NEXT

70 END

Ok

TRON

Ok

RUN

[10][2G][30][40] 1 10 20
[50][60][30][40] 2 20 30
[50][B0][70]

Ok

7-326

n

Syntax

argument

Remarks

USR
Function

Calls a machine language subroutine.

USR [n](argument)

is in the range 0 to 9 and corresponds to the digit supplied
with the DEF USR statement for that routine. If omitted

USR 0 is assumed.

is the value passed to the subroutine. It may be any numeric
or string expression. Even if the subroutine does not require
an argument, a dummy argument must be supplied.

The type (numeric or string) of the variable
receiving the function call must be consistent
with that of the argument passed (see
Chapter 6).

Prior to calling each USR function, a
corresponding DEF USR statement must be
executed to define the USR function call offset.

This offset and the currently active DEF SEG
address determine the starting address of the
subroutine.

The CALL statement is another way to call a
machine language subroutine.

7-327

USR

Function

Example 100 DEF SEG = GH8000
110 DEF USR0 = 0

120 X = 5

130 Y = USRO(X]
140 PRINT Y

7-328

Cedls a machine language subroutine at
8000H. It passes 5 as an argument and returns
a value in Y.

VAL
Function

Converts the string representation of a
number to its numeric value.

Syntax VAL (stringexp)

Remarks VAL function strips leading blanks, tabs, and
linefeeds from the argument string.

The remaining string is converted to a
number, if it is a valid numeric representation,
otherwise VAL returns 0 (zero). For example:

VAL ["-3")

returns -3.

VAL ("ABC"]

returns 0.

See the STR$ function in this chapter for
numeric-to-string conversion.

Example OK
PRIIMT VAL["394 LOWELL ST"]

394

OK

7-329

VARPTR
Function

Returns the memory address of the variable or
file control block.

Syntax 1 VARPTR (variable)

Syntax 2 VARPTR (#filenum)

variable is the name of a numeric or string variable in the program,

filenum is the number under which the file was opened.

Remarks For both formats, the address returned is an
integer in the range 0 to 65535. This number is
the offset into GWBASIC's Data Segment.
The address is not affected by the DEF SEG
statement.

7-330

VARPTR

Function

Syntax 1 Returns the address of the first byte of data
identified with 'Variable".

A value must be assigned to "variable" prior
to execution of VARPTR. Otherwise an

"Illegal function call" error results. Any type
of variable may be used (numeric, string).

VARPTR is usually used to obtain the address
of a vgiriable or array so that it may be passed
to a machine language subroutine. A function
call of the form VARPTR(A(0)) is usually
specified when passing an array, so that the
lowest-addressed element of the array is
returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a
new simple variable is assigned.

7-331

VARPTR

Function

Syntax 2 Returns the starting address of the file control
block for the specified file.

Example 10 X = USR(VARPTR(Y]]

7-332

110 OPEN "A:FILEA.DAT" AS #2

120 GET #2 'get address of FOB
130 FCBADR = VARPTR(#2]

Syntax

variable

Remarks

VARPTR$
Function

Returns a character form of the memory
address of the variable.

VARPTRS (variable)

is a variable existing in the program.

A value must be assigned to "variable" prior
to execution of VARPTR$. Otherwise, an

"Illegal function call" error results. Any type
of variable (numeric, string) may be used.

VARPTRS returns a three-byte string in the
form:

byte 0 = type
byte 1 = low byte of address
byte 2 = high byte of address

Note that type indicates the variable type:

2 integer
3 string
4 single-precision
8 double-precision

7-333

VARPTR$

Function

7-334

Because array addresses change whenever a
new simple variable is assigned, always assign
all simple variables before calling VARPTR$
for an array element.

The returned value is the same as:

CHR$(type)+MKI$(VARPTR(variable))

You can use VARPTR$ to indicate a variable
name in the command string for DRAW. For
example:

DRAW "0 = 1;"

or

DRAW "0 = " + VARPTRS(I]

Syntax

VIEW
Statement

Defines subsets of the screen called

"viewports;" into these, window contents will
be mapped. (Graphics Mode only).

VIEW [[SCREEN] [(xl, yl) - (x2, y2)
[, [color] [, [border]]]]]

(xl,yl)-(x2,y2) represent the 'x' and 'y' coordinates within the physical
boundary of the screen that graphics will map into.
(xl,yl) are the upper-left, and (x2,y2) the lower-right
coordinates of the viewport defined.

color

border

permits the defined viewport to be filled with a specified
color. If 'color' is omitted then the viewport is not filled-in.

permits the drawing of a border-line around the viewport (if
the necessary space is available). If border is omitted, no
border-line is drawn.

7-335

VIEW

Statement

Remarks

7-336

Initially, RUN or VIEW with no arguments
define the entire screen as the viewport.

For the form:

VIEW (xl,yl) - (x2,y2)

all points plotted are relative to the viewport.
That is, ''xV and ''yV are added to the x
and y coordinates before putting down the
point on the screen.

If:

VIEW (10,10)-(200,100)

were executed, then the point set down by the
statement PSET(0,0),3 would actually be at
the physical screen location 10,10.

VIEW

Statement

For the form:

VIEW SCREEN (xl,ylHx2,y2)

all coordinates are absolute and may be inside
or outside of the screen bmits, but only those
within the VIEW limits will be plotted.

If:

VIEW SCREEN (10,10H200,100)

were executed, then the point set down by the
statement PSET(0,0),3 would actually not
appear because 0,0 is outside of the viewport.
PSET(10,10),3 is within the viewport, and
places the point in the upper-left band corner
of the viewport.

VIEW with no arguments defines the entire
viewing surface as the viewport. This is
equivalent to VIEW (0,0)-(319,199) in medium
resolution, VIEW (0,0)-(639,199) in high
resolution, and VIEW (0,0)-(639,399) in super
resolution.

Multiple viewports can be defined, but only
one viewport (called the "current viewport")
may be active at any one time. Each time a
VIEW statement is executed a viewport is
defined and this is the current viewport. Thus,
to change the current viewport, you have to
execute another VIEW statement.

7-337

VIEW

Statement

7-338

A number of VIEW statements may be
executed. If the newly described viewport is not
wholly within the previous viewport, the screen
can be re-initialized with the VIEW statement

with n arguments. Then the new viewport may
be stated. If the new viewport is entirely within
the previous one, as the first of the following
examples, the intermediate VIEW statement is
not necessary.

RUN and SCREEN will disable the viewports.

VIEW and WINDOW statements allow you to
do scaling by changing the size of your view
port. A large viewport will make your objects
large and a small viewport will make your
objects small. (Refer to ''WINDOW Statement"
in this chapter.)

VIEW

Statement

Example 1 This example opens three viewports, each
smaller than the previous one. In each case, a
line that is defined to go beyond the borders is
programmed, but appears only within the
viewport border.

260 CLS

280 VIEW: REM * * Make the viewport the entire
screen.

320 VIEW [10,10] - (300,1B0)„1
330 LINE [0,0] - [310,1901,1
360 LOCATE 1,11: PRINT "A big viewport"
380 VIEW SCREEN [50,50H250,150)„1
400 CLS:REM** Note, CLS clears only viewport
420 LINE [300,0H0,199),1
440 LOCATE 9,9: PRINT "A medium viewport"
460 VIEW SCREEN [80,80H200,125]„1
480 CLS

^ ^ 500 CIRCLE [150,100),20,1
520 LOCATE 11,9: PRINT "A small viewport"

This example demonstrates scaling with
VIEW and WINDOW.

7-339

VIEW

Statement

Example 2 10 KEY OFF:CLS:SCREEN 1,0:C0L0R 0, 0
20 WINDOW SCREEi\i(0,0)-[320,200]
30 GOSUB 70:FOR K = 1 TO 1000:i\iEXT :CLS

40 VIEW (1,1H160,90]„2:G0SUB 70
50 'Make it small

60 GOTO 100

70 'Create the picture
80 CIRCLE (160,100],60,1„,1
90 RETURN

100 END

The following example defines two viewports:

Example 3 10 SCREEN 1:VIEW:CLS:KEY OFF
20 VIEW (I.IH'ISI.OIh.l
30 VIEW (165,1H315,91)„2
40 LOCATE 2,4:PRINT "Viewport 1'
50 LOCATE 2,25:PRINT "Viewport 2'
80 VIEW (1,1H151,91]:G0SUB 500
70 VIEW (165,1H315,91]:G0SUB 1000
80 END

500 'Draw a circle in first viewport
510 CIRCLE [85,501,30,2
520 RETURN

1000 'Draw a line in second viewport
1010 LINE (45,50H90-75],1,8
1020 RETURN

7-340

Syntax

linel

line2

Remarks

Example

VIEW PRINT
Statement

Sets the boundary of the text window.

VIEW PRINT [linel TO line2]

is the top line of the text window

is the bottom line of the text window

Statements and functions which operate
within the text window include CLS,
LOCATE, and the SCREEN function. The
Screen Editor will limit functions such as

scroll and cursor movement to the text

window.

If no parameters are specified, VIEW PRINT
will initialize the text window to include the

whole screen.

VIEW PRINT 1 TO 5

creates a text window of 5 lines on the top of
the screen.

7-341

WAIT
Statement

Suspends program execution while monitoring
the status of a machine input port. WAIT may
only be used in a program.

Syntax WAIT port, i [, j]

port is the port number, in the range 0 to 65535

i,j are integer expressions in the range 0 to 255

Remarks The WAIT statement causes execution to be

suspended until a specified machine input port
develops a specified bit pattern. The data read
at the port is XORed with the integer
expression "j" and then ANDed with "i". If the
result is zero, GWBASIC loops back and reads
the data at the port again. If the result is
nonzero, execution continues with the text
statement. If "j" is omitted, it is assumed to be
zero.

Example

7-342

Note

It is possible to enter an infinite loop with the
WAIT statement.

You can do a CTRL-BREAK or a System Reset
to exit the loop.

100 WAIT 32, 2

Syntax

condition

loop

Remarks

WHILE . . . WEND
Statements

Loop through a series of statements as long as
a given condition remains true.

WHILE condition loop statements WEND

is a numeric, relational or logical expression. GWBASIC
determines whether the condition is true or false by testing
the result of the expression for non zero and zero, respec
tively. A non zero result is true and a zero result is false.
Because of this, you can test whether the value of a variable
is non zero or zero by merely specifying the name of the
variable as a condition.

statements are executed until a WEND statement is
encountered

If "condition" is not zero (i.e., true), "loop
statements" are executed until the WEND
statement is encountered. GWBASIC then
returns to the WHILE statement and checks
"condition". If it is still true, the process is
repeated. If it is zero (i.e. false), execution
resumes with the statement following the
WEND statement. WHILE/WEND loops may
be nested to any level. Each WEND will
match the most recent WHILE. An unmatched
WHILE statement causes a "WHILE without
WEND" error, and an unmatched WEND
statement causes a "WEND without WHILE"
error.

Do not direct program flow into a
WHILE/WEND loop without entering
through the WHILE statement.

7-343

WHILE . . . WEND

Statements

Example 90IM 'BUBBLE SORT ARRAY AS
100 FLIPS = 1 'FORCE ONE PASS

110 WHILE FLIPS

115 FLIPS = 0

120 F0RU1T0J-1

130 IF AS[I]>AS(I + 1] THEN 150
133 FLIPS = 1

135 SWAP AS(I], AS[I +1]
140 NEXT I

150 WEND

7-344

O

Syntax 1

Syntax 2

Syntax 3

size

filenum

device

WIDTH
Statement

Sets the line width in characters. GWBASIC
adds a carriage return after outputting the
specified number of characters.

WIDTH [LPRINT] size

WIDTH filenum, size

WIDTH device, size

is an integer expression in the range 0 to 255. It specifies the
new width. WIDTH 0 is the same as WIDTH I.

is a numeric expression in the range 1 to 15. This is the
number of a file OPBNed to one of the devices listed below.

is a string expression returning the device identifier. Valid
devices are: SCRN:, LPTl:, LPT2:, LPT3:, COMl:, COM2:,
COM3:, or COM4:.

7-345

WIDTH

Statement

7-346

WIDTH LPRINT size

Sets the line width at the line printer.

WIDTH size or WIDTH "SCRN:",size

Sets the screen width (in Text mode), selects a
text window or changes mode (in Graphics
mode). Changing the screen or text window
width, or the mode, causes the screen to be
cleared.

In Text Mode (mode 0) "size" may only have
the values 40 or 80, selecting either a 40-
column or an 80-column screen.

In Graphics Mode (mode 1, 2, or 100) you can
either change mode or select a text window of
width 40 or 80. The width of the function key
display will correspond to the selected width. If
the number of columns displayed is 40 you may
enter CTRL-T to scroll the function key display
horizontally.

rs

WIDTH

Statement

The following summarizes all possible cases.

0

(text)
40

80

select a 40-column screen

select an 80-column screen

80 place the system in high-
resolution (mode 2)

1

(medium-res)
40 create a test window of width

40

80 forces the screen into high
resolution

2

(high-res)
40 create a text window of width

40

80 create a text window of width

80

100

(super-res)
40 create a text window of width

40

80 create a text window of width

80

7-347

WIDTH

Statement

Remarks

7-348

WIDTH filenum.size

Changes the width of the device associated
with "filenum" to the new "size" specified. This
form of the WIDTH statement has meaning
only for: LPTl:, LPT2:, LPT3:, COMl:, COM2:,
COM3:, and COM4:. This allows the width to
be changed while the file is open.

WIDTH device,size

Stores the new 'size' without changing the
current width, if the device is already open. A
subsequent OPEN device FOR OUTPUT AS #
n will use this value of "size" for width as long
as the file is open.

Note that LPRINT, LLIST and LIST,"LPTn"
do an imphcit open and are therefore affected
by this statement.

When the WIDTH statement causes a change
in the screen mode, colors are set to their
default values.

You should turn the function key display off
when changing the window width (by a KEY
OFF statement), otherwise, if the width is
decreased, part of the old (wider) function key
display may be left on the screen.

WIDTH

Statement

If ''size'' is 255, the line width is "infinite";
that is, GWBASIC never inserts a carriage
return. However, the position of the cursor or
the print head, as given by the POS or LPOS
function, returns to zero after position 255.
WIDTH 255 is the default for communications

files.

Changing the width for a communications file
does not alter the receive buffer, it just tells
GWBASIC to send a carriage return after
every "size" character.

Possible Errors

If "size" is outside the above specified ranges,
an "Illegal function call" error is returned. The
previous value is retained.

7-349

WIDTH

Statement

Example 10 WIDTH "LPT1:", 5
20 OPEN "LPT1:" FOR OUTPUT AS 1
30 PRINT #1, "1234567890"
35 LPRINT

40 WIDTH #1, 6
50 PRINT #1, "1234567890"

7-350

will yield on the printer

12345

67890

123456

7890

n

WINDOW
Statement

Permits the redefinition of the screen

coordinates. (Graphics Mode only.)

Syntax WINDOW [[SCREEN] (xl, yl) - (x2, y2)]

(xl,yl) (xl.yl) represent the upper-left coordinates of the window.
•(x2,y2) (x2,y2) represent the lower-right coordinates of the window.

These coordinates may be any single precision floating
point number.

Remarks WINDOW allows you to draw lines, graphs, or
objects in space not bounded by the physical
limits of the screen. This is done by using
arbitrary programmer-defined coordinates
called "world coordinates."

A world coordinate is any valid single
precision floating point number pair. GWBASIC
then converts world coordinate pairs
into the appropriate physical coordinate pairs
for subsequent display within screen space. To
make this transformation from world space to
the physical space of the viewing surface
(screen), GWBASIC must know what portion
of the unbounded (floating point) world
coordinate space contains the information you
want to be displayed.

This rectangular region in world coordinate
space is called a window.

7-351

WINDOW
Statement

7-352

WINDOW defines the "window"

transformation from xl,yl (upper left x,y
coordinates) to x2,y2 (lower right x,y
coordinates). The x and y coordinates may be
any single precision floating point number
emd define the "World Coordinate Space" that
graphics will map into the physical coordinate
space, as defined by the VIEW statement.

Initially, RUN, or WINDOW with no
arguments, disables "Window"
transformation.

WINDOW inverts the "y" coordinate on the
subsequent graphics statement. This allows
the screen to be viewed in true cartesian
coordinates. The WINDOW SCREEN variant
does not invert the "y" coordinate.

WINDOW

Statement

In the physical coordinate system, if you run
the following:

NEW

or

SCREEN 2

the screen will appear with standard
coordinates as:

0,0 320,0

I

639,0

sy
y increases

320,100

0,199 320,199 639,199

If a window command is issued with SCREEN

omitted, the screen is viewed in the
CARTESIAN coordinates.

7-353

WINDOW

Statement

7-354

For example if:

WIIMDOW

was executed then the screen appears as:

-1,1 0,1 1,1

A\ y increases

1

1 0,0

\'/ y decreases

-1,-1 0,-1 1,-1

Note now that the "y" coordinate is inverted
so that (xl,yl) is the lower-left coordinate and
(x2,y2) is the upper-right coordinate.

If the SCREEN attribute is included then, the
coordinates are not inverted. So that, (xl,yl) is
the upper-left coordinate and (x2,y2) is the
lower-right coordinate.

For example:

WINDOW SCREEN

appears as:

-1,-1 0,-1 1,-1

/l\
1

y decreases

1
1
1

0,0

\'/ y increases

-1,1 0,1 1,1

WINDOW

Statement

All possible pairings of "x" and "y" are valid.
A restriction is that "xl" cannot equal "x2"
and "yl" cannot equal "y2'\

The WINDOW statement uses a process called
"clipping", whereby pixels which are
referenced outside a coordinate range are
excluded from the viewing area. Any object
lying partially within and partially without a
coordinate range is clipped so that only the
pixels referenced in range wiU appear.

7-355

WINDOW

Statement

Examples

7-356

WINDOW also features a "zoom in'V'zoom
out" facility. Choosing window coordinates
larger than an image will display the entire
image, but the image will be small. Choosing
window coordinates smaller than an image
will cause clipping, allowing only a portion of
the image to be displayed and magnified. By
specifying small and large window sizes, you
can zoom in until an object occupies the entire
screen, or you can zoom out until the image is
nothing but a spot on the screen.

RUN, SCREEN, and WINDOW with no
attributes will disable any WINDOW
coordinates and return the screen to physical
coordinates.

The following example demonstrates image
clipping.

10 SCREEN 100

20 CLS

30 WINDOW (-6,-6H6,6]
40 CIRCLE [4,4],5,1
50 'the circle is large - only part is visible
60 WINDOW [-100,-100]-[100,100]
70 CIRCLE [4,4],5,1 'the circle is small
80 END

WINDOW

Statement

The following example shows the effect of
zooming.

10 KEY •FF:CLS:SCREEN 1,0
20 X = 1000:WINDO\A/ (-X,-XHX,X]:R = 20
30 'create a graph with large coord range
40 GOSUB 1000:FGR K = 1 TO 1000:NEXT:CLS

50 X = 60:\A/IIMDOW [-X,-XHX,X]:R = 20
60 'smaller coord range Increases circle size
70 GOSUB 1000:FOR K = 1 TO 1000:NEXT:CLS
80 X = 100:WIN00W [-5,-5HX,X]: R = 20
90 'modify window to show only portion of axes

100 GOSUB 1000:FOR K = 1 TO lOOOrlMEXT ;CLS
110 PRINT " ZOOMING "

120 CLS:T = -50:U = 100:X = U

130 FOR K = 7 TO 1500:NEXT

140 F0RK = 1T0 45

150 T = T + 1:U = U - 1:X = X-1:R = 20

160 WINDOW [T,THU,U]:CLS:GOSUB 1000
170 NEXT K

180 END

1000 'Subroutine display
1010 LINE (X,0H-X,0],„&HAA00 'create x axis
1020 LINE [0,X]-[0,-X],„&HAA00 'create y axis
1030 CIRCLE [X/2,X/2],R 'circle has radius r
1040 FOR K = 1 TO 50:NEXT'delay'
1050 RETURN

7-357

WINDOW

Statement

7-358

The following example illustrates two lines
with the same endpoint coordinates. The first
is drawn on the default screen, and the second
is on a redefined window.

200 LINE [100,100] - [150,150], 1
220 LOCATE 2,20:PRINT "The line on the default screen"

240 WINDOW SCREEN [100,100]-[200,200]
260 LINE [100,100] - [150,150], 1
280 LOCATE 8,18:

300 PRINT "& the same line, new window"

n

Writes data to the screen.

Syntax WRITE [list_of_expressions]

WRITE
Statement

list-of-expressions
list-of-numeric and/or string expressions. They must be
separated by commas.

Remarks If "list of expressions" is omitted, a blank line
is output. If "list-of-expressions" is included,
the values of the expressions are output on the
screen.

When the values of the expressions are output,
each item is separated from the last by a
comma. Strings are delimited by quotation
marks. After the last item in the list is

displayed, GWBASIC inserts a CR LF.

WRITE and PRINT are similar. The difference

between WRITE and PRINT is that WRITE

inserts commas between the items on the

screen and delimits strings with quotation
marks. Also numbers are not preceded by
blanks.

Example 10 A = 8G:B = 9Q:CS = "THAT'S ALL"
20 WRITE A,B,CS
RUiM

80, 90,"THAT'S ALL"
Ok

7-359

WRITE#
Statement

Syntax

filenum

Writes data to a sequential file.

WRITE#filenum,list-of-expressions

is the number under which the file was OPENed in
mode (see "OPEN" Statement in this chapter).

'O"

list-of-expressions
list of string or numeric expressions. They must be sepa
rated by commas.

Remarks The difference between WRITE# and PRINT#

is that WRITE# inserts commas between the

items as they are written to the file and
delimits strings with quotation marks. Also,
WRITE# does not precede positive numbers
with blanks. Therefore, it is not necessary for
the user to put explicit delimiters in the list. A
CR LF sequence is inserted after the last item
in the line is written to the file.

7-360

O

WRITE#

Statement

Example 10 AS = "CAMERA" : BS = '93604-1'
20 WRITE#1,A$,B$

Statement 20 writes the following image to
disk:

"CAMERA","93604-1"

A subsequent INPUT# statement, such as

30 INPUT#1,A$,B$

would input "CAMERA" to A$ and "93604-1"
to B$.

7-361

n

1

2

3

4

Contents

DEB Capabilities

Introduction 1- 1

16-Color Graphics 1- 3
Look-Up Table (LUT) 1- 5
Overlay Modes 1- 6

How to Program the DEB

Programming Steps 2- 1

DEB Statements

Overview 3- 1

SCREEN Statement 3- 2

COLOR Statement 3- 4

PALETTE and PALETTE USING Statements 3- 7

Default Palettes 3-10

Blinking Color Effects for DEB Palettes 0-3 3-13
Dither Combinations for DEB Palettes 0-3 3-14

Remarks 3-15

Examples 3-16

Programming the LUT

Overview 4- 1

16-Color Graphics LUT Programming 4- 2
Overlay Modes LUT Programming 4-22

V _

1 DEB Capabilities

Introduction

16-Color Graphics

Look-Up Table (LUT)

Overlay Modes

DEB Capabilities

INTRODUCTION

The Display Enhancement Board option (DEB)
adds improved color and graphics functionality to
your AT&T PC 6300. When you use the DEB with
the PC 6300 color monitor, you can display graph
ics in up to 16 colors simultaneously or display
text-on-graphics or graphics-on-graphics overlays.
When you use the DEB with the PC 6300 mono
chrome monitor, you have the same capabilities as
you do with the color monitor, except that colors
are displayed as "shades of green."

The DEB is compatible with existing software,
so that all the programs you have already can be
used now as if the DEB were not installed. Of

course, these programs do not have access to any
of the new capabilities.

The purpose of this supplement to the GWBASIC
Programmer's Guide is to give you the information
you need to take complete advantage of the DEB's
capabilities. It assumes that you are familiar with
video programming in GWBASIC. Ifyou are not,
read the chapter on Graphics, and the portions of
the Command Reference that discuss graphics
statements, in the GWBASIC Programmer's
Guide.

Before you begin writing programs for the DEB,
follow the procedures in the DEB Installation
Manual for installing the DEB hardware and
device driver software.

1-1

DEB Capabilities

1-2

The DEB is an optional hardware component for
the AT&T PC 6300 that works in conjunction with
the PC 6300's built-in Video Display Controller
(VDC) to provide improved color and graphics
functionality.

The built-in VDC contains circuitry and memory
that supports either 4 color medium resolution
(320 X 200 pixels) graphics, 1 color high resolu
tion (640 X 200 pixels) graphics, or 1 color super
resolution (640 x 400 pixels) graphics.

The DEB contains additional circuitry and mem
ory that can be combined with the capabilities of
the built-in VDC to produce up to 16 colors in
either high or super resolution. You can also pro
gram the VDC and DEB separately, treating them
as two separate images which are combined on one
screen to produce text-on-graphics or graphics-on-
graphics overlays. These overlay modes let you use
up to 8 colors.

DEB Capabilities

16-COLOR GRAPHICS

This feature lets you display 16 colors in either
high resolution (640 x 200) or super resolution
(640 X 400). Not only can you use the standard
16 colors, you can also combine colors to form new
colors and cause pixels to blink from one color
to another.

1-3

DEB Capabilities

1-4

The DEB provides 5 palettes for you to use when
programming in color. At any point in your pro
gram, you select one of the palettes as the "active"
palette. The color combinations contained in that
palette determine what colors and effects show on
the screen.

Each of the first 4 palettes contains a default set
of 16 color combinations, but to suit the needs of
your program you can change the contents of the
palette to any one of the following:

• any of the 16 standard colors with which you are
already familiar from the standard applications.
The standard colors are:

0 = black 8 = gray
1 = blue 9 = light blue
2 = green 10 = light green
3 = cyan 11 = light cyan
4 = red 12 = light red
5 = magenta 13 = light magenta
6 = brown 14 = yellow
7 = white 15 = high-intensity white

• a mixture, or "dithering," of any 2 of the 16 stan
dard colors

• an alternation, or blinking, between any 2 of the
standard 16 colors

The fifth palette contains no default combinations.
You program the fifth palette by loading color val
ues into a 256-element array of integers. GWBASIC
uses this special palette to program the DEB's color
look-up table (LUT).

r^

DEB Capabilities

LOOK-UP TABLE
(LUT)

The LUT resides in RAM on the DEB board.

The LUT contains 256 values that determine the

colors, blinking, and dithering that appear on the
screen. Whether you need to learn about the use
and layout of the LUT depends on the application
you are writing.

Ifyou use the standard palettes, you need not be
concerned with the LUT. GWBASIC automatically
programs the LUT to correspond to the way you set
up the palettes.

Ifyou program a custom LUT, you greatly increase
the color combinations and blinking effects avail
able to you.

1-5

DEB Capabilities

OVERLAY MODES

These modes let you display text-on-graphics or
graphics-on-graphics images by treating the VDC
and DEB as separate entities that write to the
same screen. In the overlay modes, the output of
the VDC takes precedence over the output of the
DEB. Ifyou program the VDC and DEB to display
different attributes at the same pixel, the attri
butes selected by the VDC are displayed.

DEB Capabilities

You can use either of two text-on-graphics modes.
In one, you can program the DEB to display high
resolution graphics in up to 8 colors; in the other,
you can program the DEB to display super resolu
tion graphics in up to 8 colors. In both, the VDC
displays 25 lines of 80 characters each.

You can select either of two graphics-on-graphics
modes. One mode uses the VDC to display high
resolution graphics in one color while the DEB dis
plays high resolution graphics in up to 8 colors.
The other mode uses the VDC for super high reso
lution graphics in one color and the DEB for super
high resolution graphics in 8 colors.

The overlay modes offer 5 palettes. Each of the
first 4 palettes has 8 positions. These four palettes
have default colors that you can change to suit
your needs. You can choose 8 color combinations
from any of the 16 standard colors, or blink
between 2 of the standard colors. The dithering
combinations of the 16-color graphics modes are
not available. You can also use the fifth palette to
custom program the LUT.

1-7

2 How to Program
the DEB

• Programming Steps

How to Program
the DEB

PROGRAMMING STEPS

There are three steps for video programming in
GWBASIC, which apply whether or not you are
using the DEB capability:

1 Setthevideo mode by using theSCREEN
statement.

2 Select thecolor combinations and effects you want
to use.

3 Construct thegraphics images you want to
display.

This chapter describes each ofthese steps in
detail. This chapter does not describe how to use
the fifth palette to program the LUT directly. (See
Chapter 4, Programming the LUT.)

2-1

How to Program
the DEB

2-2

Setting Mode and Page

As in standard GWBASIC, you use the SCREEN
statement to select an operating mode. If you are
using one of the overlay modes, the SCREEN
statement also selects the active page, which deter
mines whether the VDC or the DEB receives the

output of PRINT or graphics display statements.
The VDC is page 0 and the DEB is page 128. In the
text-on-graphics modes, all text output statements
default to page 0 and all graphics display state
ments default to page 128. If you want text to
appear on the DEB graphics screen, you must
issue a SCREEN statement that sets the active

page to 128 before you display the text.

Setting Colors and Effects

Colors and effects are controlled by two state
ments: COLOR and PALETTE. The COLOR state

ment syntax extends the standard GWBASIC
COLOR statement, allowing you to select back
ground and foreground default colors and to select
the active palette. The PALETTE statement is
new. You use PALETTE to program color combina
tions into the active palette or to reset the active
palette to its default assignments. A form of the
statement, PALETTE USING, allows you to repro-
gram the entire active palette at once by specifying
an integer array that contains the new values.
Tables of the available color combinations and the

default values for each palette are in the next
chapter on DEB Statements.

How to Program
the DEB

Displaying Graphics Images

You use the same statements for DEB graphics as
you do for normal GWBASIC graphics. However,
in normal GWBASIC statements, you specify the
color number to be used in drawing a line or circle.
For DEB graphics, you specify the palette position
in the active palette that contains the color combi
nation or effect you want to use. For example, you
could select 16-color super resolution mode, select
palette 1 as the active palette, and draw a red cir
cle, with the following code fragment:

10 SCREEN 102 'select 640 x 400
20 REM '16-calor mode
30 COLOR „1 'set active
40 REM 'palette to 1
50 CIRCLE (320,2001,100,2 'the default color In
60 REM 'position 2 is red

2-3

y

3 DEB Statements

• Overview

• SCREEN Statement

• COLOR Statement

• PALETTE and PALETTE USING
Statements

• Default Palettes

• Blinking Color Effects for DEB
PEilettes 0-3

• Dither Combinations for DEB
Palettes 0-3

• Remarks

• Examples

DEB Statements

OVERVIEW

This chapter gives detailed descriptions of the
GWBASIC statements that you can use for DEB
graphics programming.

If you plan to use Palette 4, the LUT palette, care
fully read Chapter 4 before you begin using the
statements in this chapter to program the LUT.

3-1

DEB Statements

SCREEN
STATEMENT

SCREEN The SCREEN statement establishes the mode for
the display and lets you select the active display
page. SCREEN also selects and initializes Palette
0 as the active palette when you enter a new mode.

Syntax SCREEN
[mode][,dummyl][,apage][,dummy2]

mode is an integer expression which evaluates to one of
the following:

101 16-color graphics with a resolution of
640 X 200.

102 16-color graphics with a resolution of
640 X 400.

103 an overlay mode. The DEB image is 8-
color graphics with 640 x 200resolu-
tion. The VDC image is 80 character
by 25 line text.

104 an overlay mode. The DEB image is 8-
color graphics with 640 x 400 resolu
tion. The VDC image is 80 character
by 25 line text.

105 an overlay mode. The DEB image is
8- color graphics with 640 x 200 res
olution. The VDC image is 1-color
graphics with 640 x 200 resolution.

106 an overlay mode. The DEB image is
8-color graphics with 640 x 400 res
olution. The VDC image is 1-color
graphics with 640 x 400 resolution.

dummyl is ignored, but is allowed for compatibility with
non-DEB syntax.

3-2

apage

dummy2

Examples

DEB Statements

selects the active page, i.e., the page to be written
to by output statements to the screen. Apage is an
integer expression that results in a value of 0 or
128. Page 0 is the VDC page and page 128 is the
DEB page.

In the two 16-color graphics modes (101 and 102),
the active page is always zero.

is ignored, but is allowed for compatibility.

SCREEN 105„128

SCREEN „0

'Selects a graphics-on-graph-
ics overlay mode, with all sub

sequent output sent to the
DEB page.

'Do not change modes,
but send subsequent

output to the VDC page.

3-3

DEB Statements

COLOR

Syntax 1
(Modes 101,102)

Syntax 2

COLOR STATEMENT

The COLOR statement sets the background and
foreground colors and selects the active palette.
The syntax for the COLOR statement varies
according to the mode you select with the
SCREEN statement.

COLOR [DEBfg][,DEBbg][,palette]

COLOR [DEBfg][,DEBbg][,VDCfg]
(Modes 103,104) [,VDC bg][,palette]

Syntax 3
(Modes 105,106)

DEBfg
(foreground)

3-4

COLOR [DEBfg][,DEBbg][,VDCfg][,palette]

is an integer expression in the range 1-7 for over
lay modes and 1-15 for 16-color graphics modes.
DEBfg identifies the position in the active palette
which controls the color combination or effect of

subsequent output to the screen. The color combi
nation or effect in the DEBfg position will be used
for writing text to the screen, and also for the out
put of graphics statements unless some other posi
tion is specified in the graphics statement itself.

When you enter a DEB mode, DEBfg is set to a
default of 7. Ifyou do not enter a value for DEBfg,
it does not change from the value set by the last
COLOR statement.

DEB Statements

DEBbg is an integer expression in the range 0-255 which
(background) defines the color combination or effect to be used

for palette position 0. This is the background, or
color displayed when the value of the DEB image
for a particular pixel is 0. (See tables of combina
tions in next section on PALETTE statement.)

When you enter a DEB mode, DEBbg defaults
to 0 (black).

VDCfg

VDCbg

palette

is an integer expression in the range of 0-15 for
graphics and 0-31 for text that specifies the color
for the VDC foreground. When you enter an over
lay mode, VDCfg defaults to 7 (white).

is an integer expression in the range 0-15 that
specifies the VDC background when displaying
characters in text mode. VDCbg defaults to 0
(black) when you enter an overlay mode.

is an integer expression that sets the active pal
ette. Valid ranges are 0-3 for the standard palettes
and 4 for the LUT palette. Ifyou omit palette from
the COLOR statement, the active palette does not
change.

Remarks The values you specify in DEB COLOR statements
fall into three categories:

• a color selection for the VDC from the same ranges
as you use in the standard text mode. These selec
tions produce the same effect on the screen as they
do in the standard (non-DEB) text mode.

3-5

DEB Statements

3-6

a color selection for the DEB foreground. Here you
specify a palette position instead of a color number.
GWBASIC then looks up the color combination or
effect in the palette position you've specified, and
uses it in the PRINT statements and some of the

graphics statements that follow the COLOR state
ment. If the syntax of a particular graphics state
ment includes a parameter for specifying a palette
position, that value overrides the position specified
in the COLOR statement.

specification of the DEB background based on a
color combination from the tables following the
PALETTE statement in this chapter. You can also
set the DEB background by using the PALETTE
statement to change Palette position 0.

DEB Statements

PALETTE AND
PALETTE USING STATEMENTS

PALETTE

Syntax 1

Syntax 2

Syntax 3

Remarks

position

value

Use this statement to set values in palettes and
reset palettes to their default values.

PALETTE

PALETTE [position][,value]

PALETTE USING array (array index)

The PALETTE and PALETTE USING statements

work on the active graphics page and on the active
palette.

Syntax 1 sets the active palette to its default val
ues. (See the following tables.)

Syntax 2 lets you change the values in the active
palette, one palette position at a time.

is an integer expression which identifies the posi
tion to be changed. If the active palette is 0-3, then
the valid range for position is 0-15 for 16-color
graphics modes and 0-7 for overlay modes. For Pal
ette 4, the valid range for position is 0-255.

is an integer expression which identifies the color
combination or effect to be programmed into the
selected position in the active palette. For Palettes
0-3, valid values range from 0-255. For Palette 4,
valid values range from 0-15 and values greater
than 15 are treated modulo 16.

Syntax 3 lets you set all the values in the active
palette with one statement.

3-7

DEB Statements

array is an integer array of at least 256 elements.

array is an integer expression which defines the element
index within the specified array at which palette pro

gramming begins. At least 256 elements must
follow this element.

Standard Palettes (0-3)

The first 8 or 16 elements of the array are loaded
into the active palette. The entire active palette is
reprogrammed based on the values in the array.
The array values range from —1 to 255. Values
greater than 255 are treated modulo 256. A value
of -1 specifies that the value in the corresponding
palette position not be changed. The values from
0 to 255 come from the tables at the end of the

chapter.

NOTE: Dimension the array to have 256 elements
even though only 8 or 16 are used for the
standard palettes.

The LUT Palette (Palette 4)

All 256 elements are used to program the LUT
directly. Valid values are in the range -1 to 15.
Values greater than 15 are treated modulo 16. A
value of —1 specifies that the value in the corre
sponding position in the LUT not be changed, and
values 0-15 represent the standard 16 colors. ^

3-8

DEB Statements

In Syntax 2 and Syntax 3, if you specify a palette
position greater than the value allowed for the
mode in which you are working, the value you
specify will be put in that palette's highest posi
tion. For example, if you attempted to set palette
position 13 to red when working in overlay mode,
which has 8-position palettes, the 8th palette posi
tion would be set to red.

3-9

DEB Statements

3-10

DEFAULT
PALETTES

The defaults for each of the four palettes are:

Palette Number 0

Position Color

0 0 = black

1 2 = green
2 4 = red

3 6 = brown

4 1 = blue

5 3 = cyan
6 5 = magenta
7 7 = white

8 8 = gray
9 9 = light blue

10 10 = light green
11 11 = light cyan
12 12 = light red
13 13 = light magenta
14 14 = yellow
15 15 = high-intensity white

DEB Statements

Palette Number 1

Position Color

0 0 = black

1 3 = cyan
2 5 = magenta
3 7 = white

4 1 = blue

5 2 = green
6 4 = red

7 6 = brown

8 8 = gray
9 9 = light blue

10 10 = light green
11 11 = light cyan
12 12 = light red
13 13 = light magenta
14 14 = yellow
15 15 = high-intensity white

3-11

DEB Statements

3-12

Palettes 2 and 3 are the same, and they contain the
standard colors in numerical order.

Palette Number 2 and Palette Number 3

Position Color

0 0 = black

1 1 = blue

2 2 = green
3 3 = cyan
4 4 = red

5 5 = magenta
6 6 = brown

7 7 = white

8 8 = gray
9 9 = light blue

10 10 = light green
11 11 = light cyan
12 12 = light red
13 13 = light magenta
14 14 = yellow
15 15 = high-intensity white

DEB Statements

BLINKING COLOR EFFECTS

FOR DEB PALETTES 0-3

Color combinations 16-135 have been pre-assigned to allow you easy
access to blinking effects while using the standard palettes. The fol
lowing table describes the available combinations.

g-n III

"f

C CO
G _ <l> C!

C Ko<D 0) c fen
_ :2 p ^ a

SPoi sSoffs

black 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

blue 31 32 33 34 35 36 37 38 39 40 41 42 43 44

green 45 46 47 48 49 50 51 52 53 54 55 56 57

cyan 58 59 60 61 62 63 64 65 66 67 68 69

red 70 71 72 73 74 75 76 77 78 79 80

magenta 81 82 83 84 85 86 87 88 89 90

brown 91 92 93 94 95 96 97 98 99

white 100 101 102 103 104 105 106 107

gray 108 109 110 111 112 113 114
light blue 115 116 117 118 119 120

light green 121 122 123 124 125
light cyan 126 127 128 129

light red 130 131132
light magenta 133 134

yellow 135

NOTE: To select a value that will cause blinking between colors A and B, find
the number at the intersection of row A and column B.

3-13

DEB Statements

DITHER COMBINATIONS FOR
DEB PALETTES 0-3

Color combinations 136-255 have been pre-assigned to allow you easy
access to dithering effects while using the standard palettes. The fol
lowing table describes the available combinations.

3-14

Si^-'S>>:c:c;c.S.S'S
A j3425£ic?cS.Qsa);:3;=!s;=:;5>,

I
black

blue 136

green 137 138
cyan 139 140 141
red 142 143 144 145

magenta 146 147 148 149 150
brown 151 152 153 154 155 156

white 157 158 159 160 161 162 163

gray 164 165 166 167 168 169 170 171
light blue 172 173 174 175 176 177 178 179 180
light green 181 182 183 184 185 186 187 188 189 190
light cyan 191 192 193 194 195 196 197 198 199 200 201
light red 202 203 204 205 206 207 208 209 210 211 212 213
light magenta 214 215 216 217 218 219 220 221 222 223 224 225 226
yellow 227 228 229 230 231 232 233 234 235 236 237 238 239 240
high-intensity 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

white

NOTE: To select a value that combines colors A and B to create a new color, find
the number at the intersection of row A and column B.

^ Q> 0) c bjD
-2 3 S S -g g
S a ai nOSoofc.E^

DEB Statements

REMARKS

In the text-on-graphics overlay modes, all graph
ics statements except GET and PUT use page 128
(the DEB page). GET and PUT use the active
page only. There is no way to GET or PUT an
entire overlayed screen; you can only work with
the active page.

In the graphics-on-graphics overlay modes, all
graphics statements including GET and PUT use
the active page only.

In all DEB modes, tiling with the PAINT com
mand requires a 4-byte string rather than the
1-hyte used in standard modes.

3-15

DEB Statements

3-16

EXAMPLES

The following program demonstrates the PAL
ETTE USING statement to change the color com
binations so that each color and its high intensity
version are in consecutive positions in the palette.

50 SCREEN 102 '16 colar graphics
60 CLS;KEY OFF 'clear screen
70 PALETTE 'use default palette
80 DIM A%(2561 'array for PALETTE
85 REM USING statement

90 J = 0

100 FOR 1= 0 TO 7 'load up the array
110 A»/otJI = i:A»/o(J-m = i + 8
120 J=J+2

130 NEXTI

140 LOCATE 2,2
150 FOR 1 = 97 TO 112 'print 15 characters in
155 REM 15 colors
160 COLOR i-96,0:PRINTCHRS(i);
170 NEXTI

180 LOCATE 22,2
190 INPUT "Hit <CR> to change the colors",AS
195 REM Reprogram the entire palette
200 PALETTE USING A°/o(01
210 LOCATE 22,2
220 INPUT "Hit <CR> to change the colors" ,A$
230 PALETTE 'use default palette
240 GOTO 180

DEB Statements

The following example draws 3 interlocking circles
in 16-color graphics mode and fills each separate
section with various colors.

10 SCREEN 102 'set 16 color graphics
15 REM mode

20 CLS:KEY OFF 'clear screen and turn

25 REM functions keys off
30 COLOR „1 'use palette 1
35 REM

40 CIRCLE(320,200,100,15 'draw circle 1

50 CIRCLE(270,150),100,15 'draw circle 2

60 CIRCLE (370,150,100,15 'draw circle 3

70 PAINT (320,2001,13,15 'fill with palette
75 REM position 13
80 PAINT (269,150),12,15 'fill with palette
85 REM position 12
90 PAINT (371,1501,11,15 'fill with palette
95 REM position 11

100 PAINT (320,2501,10,15 'fill with palette
105 REM position 10
110 PAINT (320,1001,9,15 'fill with palette
115 REM position 9
120 PAINT (220,1501,8,15 'fill with palette
125 REM position 8
130 PAINT (420,1501,7,15 'fill with palette
135 REM position 7
140 FOR 1 = 7 TO 13 'loop thru the used
145 REM palette positions
150 PALETTE 1,135+ RND''120 'use a random
155 REM dithered color for

157 REM palette position
160 F0RA = 1T0 100:NEXTA 'wait awhile

170 NEXTI

180 IF LENdNKEYSl = 0 THEN GOTO 140
185 REM 'check for keypress
190 SCREEN 0,0,0 'return to normal

200 END

3-17

DEB Statements

3-18

The following program uses a tiling pattern to fill
in a circle.

30 SCREEN 102 'set 16 color graphics
40 CLS 'clear screen

50 KEY OFF 'turn function keys off
60 CIRCLE(320,2001,100,1 'draw a circle
70 REM do the tiling to fill the circle
80 PAiNTI320,200l, CHR$(&HCC) + CHR$

(&H3C) + CHR$ISHC)+ CHR$C&H3),1
90 IF(LEN(INKEY$» = 0

THEN 90 'check for keypress
100 SCREEN 0,0,0 'return to normal
110 END

This program draws a small circle and cycles
through all the available color combinations for
the standard palette.

30 SCREEN 101 '16 color 640x200

35 REM graphics
40 CLS 'clear screen

50 CIRCLE (320,1001,100,1 'draw a circle

60 PAINT (320,1001,1,1 'fill the circle with

65 REM palette position 1
70 FOR J = OTO 255 'use all color

75 REM combinations

80 PALETTE 1,J 'change the palette
85 REM position color
90 FOR A=1 TO 500:NEXT A'wait a bit

100 IF(LEN (INKEYSlloO
THEN 120 'check for

105 REM keypress
110 NEXTJ

120 SCREEN 0,0,0 'return to normal

130 END

DEB Statements

This program shows 3 ways in which a box can be
drawn with palette position 2 and filled with pal
ette position 14.

40 SCREEN 102 '16 color graphics
50 CLS:KEY OFF 'clear screen

60 DRAW "c2r50u50l50

d50br2bu2p14,2" 'draw a box

70 REM and fill it in

75 REM

80 LINE 1270,1001-
(320,1501,2,B 'draw a box

90 LINE (271,101)-
C321,151),14,BF 'fill it in

100 REM

110 LINE (220,150)-
(270,200),2,B 'draw a box

120 PAINT (221,151),14,2 'fill it in

130 IF LEN(INKEY$) = OTHEN 130
140 SCREEN 0,0,0
150 END

3-19

DEB Statements

3-20

The following example draws a wheel with the
number of spokes you specify, using random colors.
Then it uses the PALETTE statement to cycle
through the standard colors.

10 SCREEN 162: CLS:
KEY OFF 'set 16 color

15 REM graphics
20 INPUT "Number of spokes on wheel - ";N
30 ANGLE = 360 / N 'calculate # of angles
40 RADIANS = ANGLE /57.2S578
60 CLS 'clear screen
60 FOR X = 1X0 N 'do the real work
70 FORY = XTON
80 SX = SIN(XRADIANS)1S5 + 320
SO SY = SIN(YRADIANS)1S5 + 320

100 CX = CDSCXRADIANS)150 + 200
110 CY = CDSCY RADIANS)150 + 200
120 LINECSY,CY)-CSX.CX), ^

|NTCRND''(15) +1) 'draw line with
125 REM random color
130 NEXTY.X
140 FDR I = 11D 1000
150 FDR J = 1TD15

160 FDR K = 11D 15
170 PALETTE K,J 'change palette
180 IF CLENIINKEYS)) <> 0

THEN 220 'check for

185 REM keypress
ISO NEXTK

200 NEXTJ
210 NEXTI

220 SCREEN 0,0,0 'return to normal
230 END

DEB Statements

This program demonstrates overlay mode by draw
ing a box on the DEB screen and a circle on the
VDC screen. It then cycles through the blinking
color combinations on the DEB and the standard

colors on the VDC.

30 SCREEN 106

35 REM

40 CLS:KEYOFF

50 CIRCLE (320,2001,100,1
55 REM

60 PAINT (320,200),
CHR$(1) + CHRS(1),1

65 REM

70 LOCATE 23,2;
75 PRINT "The circle is on the VDC screen";
80 SCREEN ,,128 'set the active page
85 REM to the DEB screen

SO LOCATE 24,2;
35 PRINT "The box is on the DEB screen";

100 LINE (250,501-
(330,3501, 5, BF

105 REM

110 FDRJ = 0TD135
115 REM

120 SCREEN „0:PALETTE
0,J-1 MOD 15

125 REM

130 SCREEN „128:PALET1
5,J

135 REM

140 FORA=:1TD500:NEXTA'waitabit

150 IF (LENdNKEYSll <>0
THEN 170

155 REM

160 NEXTJ

170 SCREEN 0,0,0
180 END

'8 color graphics on
graphics overlay

'clear screen

'draw a circle

on the VDC screen

'fill the circle with

palette position 1

'draws a box on

the DEB screen

'use all color

combinations

'change the palette
position color on VDC

'change the palette
position color on DEB

'check for

keypress

'return to normal

3-21

DEB Statements

3-22

The following program takes two color numbers
as input and finds their position in the dither and
blinking tables and makes colored boxes in each
of the color effects.

40 SCREEN 101 '16 Color 640 x 200
45 REM graphics mode
50 CLS:KEY OFF 'clear screen

60 REM Input the two colors and do range checking
70 LOCATE 2,2:iNPUT "Enter Color 1 (0-15)" ,C1
80 IF C1 > 15 OR C1< 0 THEN GOTO 70
90 LOCATE 3,2:iNPUT "Enter Color 2 (0-15)" ,C2

100 IF C2 > 15 OR C2 < 0 THEN GOTO 90

110 IF C1 = C2 THEN INPUT "Colors must be different
hit <CR> ",A$:CL9:G0T0 70

120 REM Set one color to high and one to low to
125 REM determine the position in the respective
130 REM tables

140 IF C1 < C2THEN LOW = C1:HIGH = C2
ELSE LOW = C2:HIGH = C1

150 REM Blinking is the sum of 16-1 as I ranges
155 REM from 0 to the lower of the two colors
160 REM then adding the higher of the two colors
170 R0WMIN = 0

180 FORI = OTOLOW

190 ROWMIN = ROWMIN+(16-1)
200 NEXT I

210 BLINKCOL = ROWMIN+ (HIGH-LOW-1)
220 LOCATE 22,1
230 PRINT "Blinking Number is ";BLINKCOL;
240 REM Dithering is 136 plus the sum of I + 1
245 REM as I ranges from 1 to the higher of the
250 REM two colors plus the lower color.
260 ROWMIN = 0
270 FOR 1=1 TO HIGH

280 ROWMIN = ROWMIN+(1-1)

290 NEXT I

295 REM example continued on next page

DEB Statements

300 DITHERCOL= ROWMIIM + 136 + LOW

310 LOCATE 22,42
320 PRINT "Dithered Color Number is ";DITHERCOL
330 REM Set palette position 1 equal to the
335 REM result of the blinking color
340 REM and palette position 2 equal to the
345 REM result of the dithering color
350 PALETTE I.BLINKCOL
360 PALETTE 2,DITHERCOL
370 REM draw a box with the blinking and
375 REM dithered color effects.

380 LINE 1100,50M210,150),1,BF
390 LINE (420,50)-(530,150),2,BF
400 GOTO 70

3-23

DEB Statements

3-24

The following program shows a box containing a
circle and how the GET statement and the PUT

statement work with the DEB. The GET array
takes four times as much storage as it does in non-
DEB graphics.

40 DIM PICO/o(3000) 'GET array
50 KEY OFF 'turn off function keys
60 SCREEN 102 'set 16 color graphics
70 FOR X = 110 15

80 CLS 'clear screen

90 CIRCLE (100,1001,50,1 'draw circle
100 LINEC49,50M151,150), 15-X,B
105 REM draw a box around the circle

110 PAINT C100,100),X,1 'fill the circle
120 GETC49,50M151,150),

PIC^Vo 'get the graphics
125 REM image
130 FOR J = 1 TO 200 STEP 50

140 FOR I = OTO 50STEP 10 (^
150 PUT(RN0''537 + 1,RN0''297 + 1), PIC%,PSET
155 REM 'put it randomly on the
157 REM screen

160 IF LENdNKEYS) 0 0
THEN 210 'see if key

165 REM pressed
170 NEXT I

180 NEXTJ

190 NEXTX

200 GOTO 70

210 SCREEN 0,0,0 'return to normal
220 END

DEB Statements

The following program shows the use of a variety
of DEB features. It includes a setup procedure to
help you adjust your monitor for best viewing of
DEB effects.

1100 REM Display Enhancement Board
1200 REM Monitor Setup Program
1300 REM

1400 SCREEN 0,0,0
1500 KEYQFF:CLS

1800 REM

1700 REM The following is a way to easily center
1800 REM the title text

1900 A$ = "AT&T PC-8300"
1910 LOCATE 1,(80-LEN(A$))/2;
1920 PRINT A$ 'Center text
2000 AS = "DISPLAY ENHANCEMENT BOARD"
2010 LOCATE 2,(80-LEN(A$)l/2:PRiNT AS
2100 AS = "MONITOR SETUP PROGRAM"
2110 LOCATE 3,(80-LEN(AS))/2:PRiNT AS
2200 LOCATE 10,1:iNPUT "Enter Monitor type

('MONO' or 'C0L0R')";MS
2300 IF LEFTSCMS.1) = "M" OR LEFTSCMS,1) = "m"

THEN GOTO 2900

2400 IF LEFTS(MS,1) = "C" OR LEFTS(MS,1) = "c"
THEN GOTO 5000

2500 PRINT

2510 PRINT CHRS(7);"Can not use "';MS;"' as a monitor
type"

2800 FOR A=1 TO 3000:NEXT A

2700 GOTO 2200

2800 REM

2900 REM Monochrome Monitor Setup
3000 REM

3100 OIMPALCIS)

3200 SCREEN 102: CLS

3300 F0RA=0T015

3310 READ PAL(A):PALETTE A,PAL(A)

3-25

DEB Statements

3-26

3320 NEXT A 'setup gray levels
3400 FORA=0TO15

3500 LINE lA^^AO,401-140 + A''40,140), A,BF
3510 REM 'draw shaded areas

3600 LINE IA''40,240)- (40 + A''40,340], 15-A,BF
3610 REM draw inverted shaded areas

3700 NEXT A

3800 COLOR 15 'use high intensity white
3810 REM for text

3900 LOCATE 1,20;
3910 PRINT "Adjust to get a complete shade scale"
4000 LOCATE 11,26;
4010 PRINT "Dark < > Light"
4100 LOCATE 14,25;
4110 PRINT "Light < > Dark"
4200 LOCATE 25,30;
4210 PRINT "(Hit any key to exit)";
4300 A$ = INKEY$:IF LEN(A$) = 0 THEN 4300
4310 REM 'wait for any key to be pressed
4400 SCREEN 0

4500 REM

4600 REM The data below is the palette for
4700 REM shades of green
4800 DATA 0,8,1,9,4,12,5,13, 2,10,3,11,6,14,7,15
4900 END

5000 REM

5100 REM Color Monitor Setup
5200 REM

5300 SCREEN 102:CLS
5400 COLOR ,,2 'select standard color
5410 REM palette
5500 F0RA = 0T0 7

5600 LINE (A''40,0)-(40 + A''40,199), A,BF
5610 REM draw colored filled boxes

5700 LINE (A''40,202)-(40 + A''40,400l, A + 8,BF
5800 NEXT A

5900 COLOR 15 'use high intensity white
5910 REM for text

6000 LOCATE 6,45: PRINT "Low intensity Colors"
6100 LOCATE 20,45: PRINT "High Intensity Colors"

DEB Statements

6200 LOCATE 12,45;
6210 PRINT "Adjust Contrast and Brightness"
6300 LOCATE 13,45: PRINT "Controls to display 16"
6400 LOCATE 14,45: PRINT "different colors"
6500 LOCATE 25,50: PRINT "(Hit any key to exit)";
6600 A$ = INKEY$:IF LENCAS) = 0 THEN 6600
6610 REM wait for a key to be pressed
6700 SCREEN 0 'reset the screen mode
6800 END

3-27

DEB Statements

3-28

The following program shows a text screen scroll
ing on top of a graphics screen.

20 SCREEN 104 'set text on graphics
22 REM mode
25 CLS:KEYOFF

30 N = 15:ANGLE = 360/N 'calculate # of angles
40 RADIANS = ANGLE/57.29578
50 CLS 'clear screen

60 FOR X = i TO N 'do the real miork
70 FORY=:XTON
80 SX = SINIXRAOIANSI ' 195 + 320
90 SY = SINIYRADIANS)195 + 320

100 ex = COS(XRADIANS)150 + 200
110 CY = CDS(VRADIANS)150 + 200
120 LINE (SYCY)-(SX,CX), INT(RND''(7) +1)
125 REM draw line with random color

130 NEXTYX
140 FDR I = 11D 1000
150 X = RND^14 + 1
155 Y = RND''50 + 1

157 CDLDRmIRND''30),(RND''15)
159 GDSUB 270 'print text on VDC
160 X = RND^17 + 1
161 Y = RND^50 + 1
163 CDLDR„0,(RND''31 + 1)
165 GDSUB 270 'print text on VDC
167 CDLDR ,mO 'change palette
170 LOCATE 24,1

180 FORK = 1T07
190 PALETTE KiRND^'ISS + l 'change palette
200 PRINT 'scroll text
210 IFCLENdNKEYS)) <> 0 THEN 240
215 REM check for keypress
220 NEXTK

230 NEXT I

240 SCREEN 0,0,0 'return to normal
250 END

DEB Statements

260 REM sub to display a box of text
270 LOCATE X.Y: PRINT CHR$(201);
280 FOR 1 = 1 TO 29:PRiNT CHR$(205); :NEXT 1
290 PRINT CHR$(187);
300 LOCATE X + 1,Y;
305 PRINT CHR$(188) + "Tbis box is on the VOC

screen" +CHR$(188);
310 LOCATE X +2,Y;
315 PRINT CHR$(188) + "This is more text"

+ CHR$(188);
320 LOCATE X +3,Y;
325 PRINT CHR$(188) + "This is the last line of text"

+ CHR$C188);
330 LOCATE X + 4.Y: PRINT CHR$(200);
340 FOR I = 1 TO 29: PRINT CHR$(205);:NEXT I
350 PRINT CHR$(188I;
380 RETURN

3-29

n

4 Programming
theLUT

• Overview

• 16-Color Graphics LUT Programining

• Overlay Modes LUT Programming

Programming the LUT

OVERVIEW

This chapter descrihes programming the DEB
look-up tahle (LUT). By programming the LUT
yourself, you can create color patterns that are not
available when you use standard palettes.

You need not read this chapter if you do not want
to use this extended functionality.

The hardware uses the LUT to translate the con

tents of video memory into graphics effects. In the
standard palettes, GWBASIC programs the LUT
for you and thereby provides the pre-assigned color
combinations and effects described in previous
chapters.

To program the LUT directly, you select Palette 4
in the COLOR statement. Palette 4, also called the
"LUT palette," has a minimum of 256 positions.
The contents of each palette position is an integer
value between 0 and 15. These values map into the
LUT locations on the DEB. The 256 locations on

the DEB collectively determine the color and spe
cial effects displayed when you specify a particu
lar palette position in a graphics statement. The
color and special effect for each pixel on the screen
are determined by:

the palette position you specify

the values in the LUT

the active mode

There are some differences in the way the LUT is
structured for 16-color graphics modes and overlay
modes. This chapter describes LUT operation for
16-color graphics modes and overlay modes
separately.

4-1

Programming the LUT

LUT

Row

4-2

15

16-COLOR GRAPHICS
LUT PROGRAMMING

In these modes the LUT can be viewed as a two-
dimensional array (16 x 16). Each location con
tains one ofthe standard 16 colors.

Palette Position

15

The locations in the LUT are numbered consecu
tively from left to right and top to bottom. Thus,
location 17 corresponds to Row 1, palette position
1. This correspondence is used with both the PAL
ETTE and PALETTE USING statements. To set
location 17 to color 1 (blue) you would either use:

or

PALETTE 17,1

INTARRAY(17) = 1
PALETTE USING INTARRAY (0)

LUT

Row

11

12

15

Programming the LUT

In the 16-color graphics mode, the LUT is divided
into four "time states." At any one time, only one
quarter of the LUT determines the display on the
screen.

Palette Position

15

The hardware cycles through the LUT every sec
ond, so each quarter of the LUT is active for Vi of
each second. The cycling mechanism produces
blinking. The following examples show the details
of how you can produce several different blinking
effects hy setting different values in the LUT.

4-3

Programming the LUT

to

tl

t2

t3

4-4

In this example, the graphics statements specify
palette position 7 and the LUT is set up as shown.
Pixels are displayed as a solid red color. In the first
V4 second, the DEB displays the color in the first
quarter ofthe LUT, which in this case is red. In
the second, third, and fourth ¥4 seconds, the DEB
displays the color in the second, third, and fourth
quarters of the LUT, respectively. In this example,
the DEB keeps finding the color value for red, so
what you see on the screen is a solid (non-blink
ing) red color.

LUT

Row 0

Palette Position

7 15

0

11

12

15

Non-Blinking Color

to

tl

t2

t3

Programming the LUT

In this example, any item displayed on the screen
with palette position 7 blinks between red and
blue. For the first two Vi seconds, the DEB picks
up the color value for red from the first and second
quarters of the LUT. For the second two Vi seconds,
the DEB obtains the color value ofblue from the
LUT. The net effect is a slow blink between red
and blue.

Palette Position

LUT

Row 0 15

0

11

12

15

Slow Blink

4-5

Programming the LUX

to

tl

t2

t3

4-6

In this example, any item displayed using palette
position 7 blinks rapidly between red, blue, green,
and brown.

Palette Position

LUT

Row 0 15

0

11

12

brown

15

4-Color Fast Blink

Programming the LUT

For dithering colors, the DEB uses a scheme simi
lar to the blinking scheme. Dithering is accom
plished by manipulating groups of 4 adjacent
pixels. The screen is divided into blocks of 4 pixels.

4-7

Programming the LUT

4-8

LUT

Row

4

5

6

7

8

9

10

11

12

13

14

15

Each of the 4 time states is divided into four dither

states that determine the dithering effect. The
rows of the time state blocks correspond to the 4-
pixel blocks on the screen in the following way;

Time

Block

Row

01 01

23 23

Palette Position

15

Time

Block

Row

t(0)

t(l)

t(2)

t(3)

Programming the LUT

The pixels in the pixel blocks are so close together
that our eyes cannot perceive them as separate. If
each of the pixels in a pixel block is a different
color, our eyes perceive the pixel block as one color
— a combination of the color of the individual pix
els. If the adjacent pixels are the same color, our
eyes see just that one color.

red red

red red

0

1

2

3

0

1

2

3

0

1

2

3

Palette Position

red

red

red

red

red

red

red

red

red

red

red

red

red

red

red

red

15

"Solid" Dither showing correspondence between pixel
positions in a pixel block and time state rows

4-9

Programming the LUT

4-10

Remember the table of "pre-assigned" dithered
colors in Chapter 3. To combine colors, you check
the table for the color number for a particular
dither effect. For example, you would choose this
number to produce a dither between red and blue.

RED

BLUE

t(0)

t(l)

t(2)

t(3)

Programming the LUT

Ifyou want to program the LUT to dither red and
blue together, the LUT would look like this:

blue red blue red

blue red blue red

Time

Block

Row 0

Palette Position

7

2-Color Dither

15

4-11

Programming the LUT

t(0)

t(l)

t(2)

t(3)

4-12

You can set up the LUT to dither two, three, or four
colors together.

red blue red blue

grn brn grn brn

Palette Position

Time

Block

Row 0

4-Color Dither

green

brown

green

brown

green

brown

green

brown

15

t(0)

t(l)

t(2)

t(3)

Programming the LUT

The following examples show the actual LUT val
ues for each of the previous cases of blinking and
dithering.

LUT

Row 0

Palette Position

15

Palette Position 7 programmed for Non-Blinking Red

4-13

Programming the LUT

t(0)

t(l)

t(2)

t(3)

4-14

LUT

Row 0

Palette Position

15

Palette Position 7 programmed to blink slowly between red
and blue.

t(0)

t(l)

t(2)

t(3)

Palette Position

LUT

Row 0

4-Calor Fast Blink

(green)

(brown)

Programming the LUT

15

4-15

Programming the LUT

t(0)

t(l)

t(2)

t(3)

4-16

LUT

Row 0

Solid Red Dither

Palette Position

7 15

t(0)

t(l)

t(2)

t(3)

LUT

Row 0

Palette Position

2-Color Dither: Red and Blue

Programming the LUT

15

4-17

Programming the LUT

t(0)

t(l

t(2

t(3)

LUT

Row 0

Palette Position

15

(green)
(blue)
(brown)

4-CoIor Dither Between Red, Green, Blue, and Brown

4-18

rv

t(0)

t(l)

t(2)

t(3)

Programming the LUT

The following is an example that combines blink
ing and dithering:

LUT

Row 0

Palette Position

(green)
(brown)

15

4-19

Programming the LUT

t(o)

t(l)

t(2)

t(3)

4-20

The following table of values can be used to pro
gram the LUT for normal 16-color graphics.

Palette Position

LUT

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4

5

6

7

8

9

10

11

12

13

14

15

0,1,2,3,4, 5,6,7,8,9,10,11,12,13,14,15,
0,1, 2, 3,4, 5,6, 7, 8, 9,10,11,12,13,14,15,
0,1,2,3,4, 5,6,7,8, 9,10,11,12,13,14,15,
0,1,2,3,4, 5,6,7,8, 9,10,11,12,13,14,15,

0,1,2,3,4, 5,6, 7, 8, 9,10,11,12,13,14,15,
0,1, 2,3,4, 5,6, 7, 8, 9,10,11,12,13,14,15,
0,1,2,3,4,5,6, 7, 8, 9,10,11,12,13,14,15,
0,1,2,3,4, 5,6, 7, 8, 9,10,11,12,13,14,15,

0,1,2,3,4,5,6, 7,8,9,10,11,12,13,14,15,
0,1,2,3,4, 5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4, 5,6,7,8,9,10,11,12,13,14,15,
0,1,2,3,4, 5,6,7,8,9,10,11,12,13,14,15,

0,1, 2, 3,4, 5,6, 7, 8, 9,10,11,12,13,14,15,
0,1,2,3,4,5,6, 7, 8,9,10,11,12,13,14,15,
0,1,2,3,4,5,6, 7, 8, 9,10,11,12,13,14,15,
0,1,2,3,4, 5,6,7,8, 9,10,11,12,13,14,15,

Non-Blinking Standard Colors

t(o)

t(i)

t(2)

t(3)

Programming the LUT

Note that palette position 7 in the first two time
states has been programmed to show white and in
the second two time states to show red.

Palette Position

LUT

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8

9

10

11

12

13

14

15

0,1, 2, 3, 4, 5, 6, 7,8, 9,10,11,12,13,14,15,
0,1, 2, 3, 4, 5, 6,7,8, 9,10,11,12,13,14,15,
0,1, 2, 3, 4, 5, 6, 7,8, 9,10,11,12,13,14,15,
0,1, 2,3,4, 5, 6, 7,8, 9,10,11,12,13,14,15,

0,1, 2,3,4, 5, 6, 7,8, 9,10,11,12,13,14,15,
0,1, 2, 3, 4, 5, 6, 7,8, 9,10,11,12,13,14,15,
0,1, 2, 3, 4, 5, 6, 7,8, 9,10,11,12,13,14,15,
0,1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,

0,1, 2, 3, 4, 5, 6,4, 8, 9,10,11,12,13,14,15,
0,1, 2,3,4, 5, 6,4, 8, 9,10,11,12,13,14,15,
0,1, 2, 3,4, 5, 6,4,8, 9,10,11,12,13,14,15,
0,1, 2, 3, 4, 5, 6,4,8, 9,10,11,12,13,14,15,

0,1,2, 3, 4, 5, 6,4,8, 9,10,11,12,13,14,15,
0,1, 2, 3, 4, 5, 6,4,8, 9,10,11,12,13,14,15,
0,1, 2, 3,4, 5, 6,4,8,9,10,11,12,13,14,15,
0,1, 2,3,4, 5, 6,4,8, 9,10,11,12,13,14,15,

LUT for Blinking Between White and Red in Palette
Position 7

4-21

Programming the LUT

4-22

OVERLAY MODES
LUT PROGRAMMING

When the LUT is used in the overlay modes it can
be viewed as a two-dimensional array with 8 col
umns and 32 rows. The column values are DEB

palette positions. The row values are VDC color
values.

In overlay modes, there are 2 separately controlled
images: the VDC image and the DEB image. The
2 images are combined on the display screen. Each
pixel on the screen has 2 values associated with it:
the VDC color and the DEB palette position. The
LUT is used to resolve contention between the 2
values associated with each pixel.

VDC

image

page 0

Screen Display

DEB

image

page 128

VDC Color

0 = black

1 = blue

15=high

intensity

white

Programming the LUT

The LUT for overlay modes looks like this:

DEB

Palette

Position 0

I

a

This LUT entry contains the
color that will appear on the
screen for the particular
combination of VDC color

and DEB palette position

As in the 16-color graphics modes, the locations in
the LUT are numbered consecutively from left to
right and top to bottom. For example, location 17
corresponds to Row 2, Palette Position 0.

4-23

Programming the LUT

4-24

In the overlay modes, as in the 16-color graphics
mode, the LUT is divided into time states that
control blinking effects. However, in the overlay
modes, the LUT is only divided into two time
states. Halfof the LUT determines what is being
displayed at any time. The top half is used for the
first ¥2 ofeach second and the bottom half is used

for the second V2 ofeach second.

Using the overlay modes, you create blinking by
making the values in the top halfof the table dif
ferent from the corresponding values in the bottom
halfofthe table.

DEB Palette Position

LUT

Row 0

0

15

16

31

Programming the LUT

t(0)

4-26

The following example shows the LUT values for
standard Palette 2 of an overlay mode. The LUT is
programmed so that the DEB image is displayed
only if the VDC color is 0 (black). If the VDC
requests any other color, then that color is dis
played no matter what the DEB requests. This has
the effect ofoverlaying the VDC image "on top" of
the DEB image.

DEB Palette Position

VDC

Color

Values 01234567

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,

11,
12,

13,
14,
15,

1, 2,
1, 1,
2, 2,
3, 3,
4, 4,
5, 5,
6, 6,
7, 7,
8, 8,
9, 9,
10.10,
11.11,

12.12,
13.13,
14.14,
15.15,

3, 4,

1, 1,
2, 2,
3, 3,
4, 4,
5, 5,
6, 6,

7, 7,
8, 8,
9, 9,
10.10,

11.11,
12.12,
13.13,

14.14,
15.15,

5, 6, 7,

1, 1, 1,
2, 2, 2,
3, 3, 3,

4, 4, 4,
5, 5, 5,
6, 6, 6,

7, 7, 7,
8, 8, 8,
9, 9, 9,
10.10.10,

11.11.11,
12.12.12,
13.13.13,
14.14.14,
15.15.15,

t(l)

DEB Palette Position

VDC

Color

Values 01234567

0 0, 1, 2, 3, 4, 5, 6, 7,
1 1, 1, 1, 1, 1, 1, 1, 1,
2 2, 2, 2, 2, 2, 2, 2, 2,
3 3, 3, 3, 3, 3, 3, 3, 3,
4 4, 4, 4, 4, 4, 4, 4, 4,
5 5, 5, 5, 5, 5, 5, 5, 5,
6 6, 6, 6, 6, 6, 6, 6, 6,
7 7, 7, 7, 7, 7, 7, 7, 7,
8 8, 8, 8, 8, 8, 8, 8, 8,
9 9, 9, 9, 9. 9, 9, 9, 9,

10 10,10, 10., 10,10,10,10,10,
11 11,11,11,11,11,11,11,11,
12 12,12,12,12,12,12,12,12,
13 13,13,13,13,13,13,13,13,
14 14,14,14,14,14,14,14,14,
15 15.15,15,15,15,15,15,15,

Programming the LUT

4-27

Programming the LUT

t(0)

4-28

In this example, the standard Palette 2 is modified
so that position 2 is a blinking between blue (color
1) and red (color 4).

DEB Palette Position

VDC

Color

Values 0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7

0,

1,
2,
3,
4,
5,
6,
7,
8,
9,
10,

11,
12,
13,
14,
15,

1, 1,
1, 1,
2, 2,
3, 3,
4, 4,
5, 5,
6, 6,
7, 7,
8, 8,
9, 9,
10.10,
11.11,

12.12,
13.13,
14.14,
15.15,

3, 4,

1, 1,
2, 2,
3, 3,
4, 4,
5, 5,
6, 6,

7, 7,
8, 8,
9, 9,
10.10,
11.11,

12.12,
13.13,
14.14,
15.15,

5, 6, 7,
1, 1, 1,
2, 2, 2,
3, 3, 3,
4, 4, 4,
5, 5, 5,
6, 6, 6,
7, 7, 7,
8, 8, 8,
9, 9, 9,
10.10.10,
11.11.11,

12.12.12,
13.13.13,
14.14.14,
15.15.15,

t(l)

DEB Palette Position

VDC

Color

Values 0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7

0, 1,

1, 1,
2, 2,
3, 3,

4, 4,
5, 5,

6, 6,
7, 7,
8, 8,
9, 9,
10.10,
11.11,

12.12,
13.13,
14.14,
15.15,

4, 3,

1, 1,
2, 2,
3, 3,
4, 4,
5, 5,
6, 6,
7, 7,
8, 8,
9, 9,
10.10,

11.11,
12.12,
13.13,
14.14,
15.15,

4, 5,

1, 1,
2, 2,

3, 3,
4, 4,
5, 5,
6, 6,
7, 7,
8, 8,
9, 9,
10.10,

11.11,
12.12,
13.13,
14.14,
15.15,

6, 7,

1, 1,
2, 2,
3, 3,
4, 4,
5, 5,
6, 6,

7, 7,
8, 8,
9, 9,
10.10,

11.11,
12.12,
13.13,
14.14,
15.15,

Programming the LUT

4-29

Programming the LUT

t(o)

4-30

VDC

Color

Values

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

In this example, values in the LUT cause the
DEB's output to take precedence over the VDC's
output. The VDC's output is only displayed when
you specify DEB palette position 0 in a graphics
statement.

DEB Palette Positions

01234567

0,1,2,
1,1,2,
2,1,2,
3,1,2,
4,1,2,
5,1,2,

6,1, 2,
7,1,2,
8,1, 2,
9,1,2,

10,1,2,
11,1,2,
12,1,2,

13,1, 2,
14,1,2,
15.1.2,

3,4,5, 6, 7,
3,4,5, 6,7,
3,4,5, 6,7,
3,4,5, 6,7,
3,4,5,6,7,
3,4,5,6,7,
3,4, 5,6,7,
3,4,5,6,7,
3,4, 5,6, 7,
3,4, 5,6, 7,
3,4, 5,6, 7,
3,4, 5,6, 7,
3,4, 5,6, 7,
3,4,5,6, 7,
3,4,5,6, 7,
3,4, 5,6, 7,

t(l)

DEB Palette Positions

VDC

Color

Values 01234567

1 0,1,2,3,4,5,6,7,

1 0,1,2,3,4,5,6,7,
2 2,1,2,3,4,5,6,7,
3 3,1,2,3,4,5,6,7,

4 4,1,2,3,4,5,6,7,
5 5,1,2,3,4,5,6,7,
6 6,1,2,3,4,5,6,7,
7 7,1,2,3,4,5,6,7,
8 8,1,2,3,4,5,6,7,
9 9,1,2,3,4,5,6,7,

10 10,1,2,3,4,5,6,7,
11 11,1,2,3,4,5,6,7,
12 12,1,2,3,4,5,6,7,

13 13,1,2,3,4,5,6,7,
14 14,1,2,3,4,5,6,7,

15 15,1,2,3,4,5,6,7,

Programming the LUT

4-31

Programming the LUT

t(0)

4-32

The following LUT entirely blocks out VDC output:

DEB Palette Positions

VDC

Color

Values 01234567

0 0,1,2,3
1 0,1,2,3
2 0,1,2,3
3 0,1,2,3
4 0,1,2,3
5 0,1,2,3
6 0,1,2,3
7 0,1,2,3
8 0,1,2,3
9 0,1,2,3

10 0,1,2,3
11 0,1,2,3
12 0,1,2,3
13 0,1,2,3
14 0,1,2,3
15 0,1,2,3

^,4,
^,4,
^,4,
^,4,

',4,
^,4,
^,4,
^,4,
^,4,
^,4,

^,4,
',4,
^,4,

^,4,
1,4,

iA.

5,6,7,
5,6,7,

5, 6, 7,
5,6,7,
5,6,7,

5, 6, 7,
5,6,7,
5,6,7,

5, 6, 7,
5,6,7,
5,6,7,
5,6,7,
5,6,7,

5, 6, 7,
5,6,7,

5, 6,7,

t(l)

VDC

Color

DEB Palette Positions

Values 01234567

0 0,1,2,3,4,5,6,7,
1 0,1,2,3,4,5,6,7,
2 0,1,2,3,4,5,6,7,
3 0,1,2,3,4,5,6,7,
4 0,1,2,3,4,5,6,7,
5 0,1,2,3,4,5,6,7,
6 0,1,2,3,4,5,6,7,
7 0,1,2,3,4,5,6,7,
8 0,1,2,3,4,5,6,7,
9 0,1,2,3,4,5,6,7,

10 0,1,2,3,4,5,6,7,
11 0,1,2,3,4,5,6,7,
12 0,1,2,3,4,5,6,7,
13 0,1,2,3,4,5,6,7,
14 0,1,2,3,4,5,6,7,
15 0.1,2.3,4,5,6, 7,

Programming the LUT

4-33

APPENDICES

A Tables

B Advanced Features

C Conversion of Programs to GWBASIC

D Error Codes and Error Messages

A Tables

Hexadecimal Conversion

Tables

ASCII Codes

Extended Codes

Hexadecimal to Decimal

Conversion Tables

Derived Functions

A-l

This Page Left Intentionally Blank.

A-2

Tables

Hexadecimal Conversion Table

Control characters (codes 0 to 31) Printed characters (codes 32 to 127)

Dec Hex Char Function DecHexChar DecHexChar DecHexChar

0 GO NUL Null—no character, no action 32 20 SPace 64 40 @ 96 60 •

1 01 SOH Start of Heading* 33 21 ! 65 41 A 97 16 a

2 02 STX Start of Text* 34 22 '• 66 42 B 98 62 b

3 03 ETX End of Text (Block mode-ETX/ACK) 35 23 # 67 43 C 99 63 c

4 04 EOT End of Transmission* 36 24 $ 68 44 D 100 64 d

5 05 ENQ Enquiry* 37 25 % 69 45 E 101 65 e

6 06 ACK Acknowledge (Block mode—ETX/ACK) 38 26 & 70 46 F 102 66 f

7 07 BEL Bell—ring or beep 39 27 ' 71 47 G 103 67 g

8 08 BS Backspace—Move back one character 40 28 (72 48 H 104 68 h

9 09 HT Horizontal Tab—skip to next stop 41 29) 73 49 I 105 69 i

10 OA LF Line Feed—Move down one line 42 2A * 74 4A J 106 6A j

11 OB VT Vertical Tab* 43 2B + 75 4B K 107 6B k

12 OC FF Form Feed—Move to new page 44 2C . 76 4C L 108 6C I

13 OD CR Carriage Return—Go to start of line 45 2D- 77 4D M 109 6D m

14 OE SO Shift Out* 46 2E . 78 4E N 110 6E n

15 OF SI Shift In* 47 2F / 79 4F 0 111 6F 0

16 10 DLE Data Link Escape* 48 30 0 80 50 P 112 70 p

17 11 DCl Device Control 1-X-ON (CTRL-Q) 49 31 1 81 51 Q 113 71 q

18 12 DC2 Device Control 2* 50 32 2 82 52 R 114 72 r

19 13 DCS Device Control 3—X-OFF (CTRL-S) 51 33 3 83 53 S 115 73 s

20 14 DC4 Device Control 4* 52 34 4 84 54 T 116 74 t

21 15 NAK Negative Acknowledge* 53 35 5 85 55 U 117 75 u

22 16 SYN Synchronous Idle* 54 36 6 86 56 V 118 76 v

23 17 ETB End of Transmission Block* 55 37 7 87 57 w 119 77 w

24 18 CAN Cancel* 56 38 8 88 58 X 120 78 X

25 19 EM End of Medium* 57 39 9 89 59 Y 121 79 y

26 lA SUB Substitute* 58 3A : 90 5A Z 122 7A 2

27 IB ESC Escape (Normally calls command menu) 59 SB : 91 5B I 123 7B {

28 IC FS File Separator* 60 3C < 92 5C \ 124 7C 1

29 ID GS Group Separator* 61 3D = 93 5D I 125 7D }

30 IE RS Record Separator* 62 3E > 94 5E " 126 7E-

31 IF US Unit Separator* 63 3F ? 95 5F 127 7F DELete

Functions marked * are unused or archaic DEL (127) is actually a control character

A-3

Tables

ASCII CODES

Character

ASCII Control ASCII

value Character character value Ch

000 (null) NUL 032 (sp

001 © SOH 033 !

002 • SIX 034
t /

003 ¥ ETX 035 #

004 ♦ EOT 036 $

005 * ENQ 037 %

006 ¥ ACK 038 &

007 (beep) BEL 039
/

008 B 88 040 {
009 (tab) HI 041)
010 (line feed) LF 042

*

Oil (home) VT 043 +

012 (form feed) FF 044 r

013 (carriage return) CR 045 -

014 SO 046 •

015 SI 047 /

016 • OLE 048 0

017 DC1 049 1

018 ♦ DC2 050 2

019 !! DC3 051 3

020 r DC4 052 4

021 § NAK 053 5

022 — SYN 054 6

023 i ETB 055 7

024 4 CAN 056 8

025 EM 057 9

026 SUB 058 1

027 — ESC 059 t

028 (cursor right) FS 060 <

029 (cursor left) GS 061 -

030 (cursor up) RS 062 >

031 (cursor down) US 063 7

A-4

ASCII CODES

ASCII ASCII

value Character value Ch

064 @ 096 t

065 A 097 a

066 B 098 b

067 C 099 c

068 D 100 d

069 E 101 e

070 F 102 f

071 G 103 g

072 H 104 h

073 1 105 i

074 J 106 j

075 K 107 k

076 L 108 1

077 M 109 m

078 N 110 n

079 0 111 0

080 P 112 P

081 Q 113 d

082 R 114 r

083 S 115 s

084 T 116 t

085 U 117 u

086 V 118 V

087 w 119 w

088 X 120 X

089 Y 121 V

090 z 122 z

091 [123 {
092 \ 124

1

1

093] 125 }
094 A 126 -

095 — 127

n

Tables

A-5

Tables

A-6

ASCII CODES

ASCII ASCII

value Character value Chi

128 c 160 a

129 ij 161 t

130 e 162 6

131 a 163 u

132 a 164 n

133 a 165 N

134 a 166 a

135 ? 167 o

136
/\

e 168 <:

137 e 169 1—

138 e 170

139 *i" 171 72

140 1 172 %

141] 173 i

142 A 174 <(

143 A 175 »

144 E 176

145 ae 177

146 >e 178

147 0 179 1

148 6 180 H

149 0 181 H

150 u 182 Hi

151 183 -T»

152 V 184

153 6 185 HI

154 u 186 II

155 4 187 =n

156 £ 188

157 189 _u

158 Pt 190 =1

159 / 191 —1

ASCII CODES

ASCII ASCII

value Character value Character

192 L 224 a

193 -L 225 P
194 -r 226 r

195 h 227 IT

196 — 228 I

197 + 229 (T

198 h 230 H

199 li 231 T

200 lt 232 <5

201 F 233 -e-

202
JL

234 n

203 235 5

204 1!= 236 oo

205 - 237 0
206

JL
"ir 238 f

207 239 n

208 _ii_ 240 =

209 =F 241 +

210 -?T~ 242 >

211 U_ 243 <

212 244 r

213 F 245 j

214 rr 246

215 + 247 %

216 248
o

217 _i 249 •

218 r 250 •

219 • 251

220 252 n

221 1 253
2

222 1 254 •

223 a 255 (blank 'Fi

Tables

A-7

Tables

A-8

EXTENDED CODES

An extended code is returned by the INKEY$
system function for certain keys or key
combinations that cannot be represented in
standard ASCII code. A null character (ASCII
code 00) is returned as the first character of a
two-character string. If a two-character string
is received by INKEY$, then you should go
back and examine the second character to

determine the actual key pressed. Usually, but
not always, this second code is the scan code
of the primary key that was pressed. The
ASCII codes (in decimal) for this second
character, and the associated key(s) are listed
below.

Tables

EXTENDED CODES

Second Code Meaning
(decimal)
3 (null character) NULL

15 (shift tab)

16-25 ALT-Q,W,E,R,T,Y,U,I,0,P

30-38 ALT-A,S,D,F,G,H,J,K,L

44-50 alt-z,x,c,v,b,n,m

59-68 function keys F1 through FIO
(when disabled as soft keys)

71 HOME

72 Cursor Up
73 PGUP

75 Cursor Left

77 Cursor Right
79 END

80 Cursor Down

81 PGDN

82 INS

83 DEL

84-93 F11-F20 (SHIFT-Fl through FIO)
94-103 F21-F30 (CTRL-Fl through FIO)

104-113 F31-F40 (ALT-Fl through FIO)
114 CTRL-PRTSC

115 CTRL-Cursor Left (Previous Word)

116 CTRL-Cursor Right (Next Word)
117 CTRL-END

118 CTRL-PGDN

119 CTRL-HOME

120-131 ALT-l,2,3,4,5,6,7,8,9,0,-,=
132 CTRL-PGUP

A-9

Tables

HEXADECIMAL TO DECIMAL
CONVERSION TABLES

BYTE BYTE

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0

1 4096 1 256 1 16 1 1

2 8192 2 512 2 32 2 2

3 12288 3 768 3 48 3 3

4 16384 4 1024 4 64 4 4

5 20480 5 1280 5 80 5 5

6 24576 6 1536 6 96 6 6

7 28672 7 1792 7 112 7 7

8 32768 8 2048 8 128 8 8

9 36864 9 2304 9 144 9 9

A 40960 A 2560 A 160 A 10

B 45056 B 2816 B 176 B 11

C 49152 C 3072 C 192 C 12

D 53248 D 3328 D 208 D 13

E 57344 E 3584 E 224 E 14

F 61440 F 3840 F 240 F 15

A-IO

rN

Tables

BINARY TO HEXADECIMAL

CONVERSION TABLES

The following table shows the decimal (base
10), binary (base 2), and hex (base 16) repres
entations for the numbers 0 to 16.

;iMAL BINARY HEX

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 nil F

16 10000 10

A-ll

Tables

A-12

DERIVED FUNCTIONS

You can define a derived function in your
program by use of a DEF FN statement to
avoid coding the formula each time you need
it.

Functions that are not intrinsic to GWBASIC

may be calculated as follows.

Function

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC

COSECANT

HYPERBOLIC

COTANGENT

INVERSE HYPERBOLIC

SINE

INVERSE HYPERBOLIC

COSINE

INVERSE HYPERBOLIC

TANGENT

GWBASIC Equivalent

SEC(x| = l/COS(x) when xol.570796

CSC(x) = l/SIN(x) when xoO

COT(x)=l/TAN(x) when xoO

ARCSIN(x)=ATN(x/SQR(l-x*xH
ARCCOS(x|=1.570796-ATN(x/SQR(l-x*x|) when
ABS(x)<l

ARCSEC|x)=ATN|SQR(x*x-l)) + SGN(SGN(x)-
11*1.570796 when ABS(x)>l

ARCCSC(x)=ATN|l/SQR(x*x-l)) when
ABS(x)> 1 +(SGN(x)-l|*1.570796

ARCCOT(x) = 1.570796-ATN(x}

SINH(x)=(EXPlx»-EXP(-x))/2

C0SH(x)=(EXP(x)+EXP(-x))/2

TANH(x)=(EXPlx)-EXP(-x))/(EXP(x)+EXP(-x))
SECH(x)=2/(EXP(x)+EXP|-x))

CSCH(x)=2/(EXP(x)-EXP(-x)) when xoO

COTH(x)=(EXPlx) + EXP(-x))/{EXP(x}-EXP(-x)|
when xoO

ARCSINH(x)=LOG(x+SQR(x*x + l))

ARCCOSH(x) = LOGix+SQR(x*x-lH when x>l

ARCTANH(x)=L0G((l+x)/(l-x))/2 when
ABSlxXI

Tables

DERIVED FUNCTIONS

Function GWBASIC Equivalent

INVERSE HYPERBOLIC

SECANT ARCSECH(x)=LOGUSQR(l-x*x) + l)/x) when
0<x< = l

INVERSE HYPERBOLIC

COSECANT ARCCSCH|x)=LOG((SGN(x)*SQR(x*x+l)+l/x)
when x>0

INVERSE HYPERBOLIC

COTANGENT ARCC0THlx) = L0G((x + H/(x-l))/2

when ABS(xl > 1

LOGARITHM TO BASE'a'LOGA(x)=LOG(x)/LOG(a) when a>0 and x>0

Note: Both 'x' and 'a' can be any numeric
constant, variable, array element, function or
expression. Any values of 'x' or 'a' that would
cause error messages are noted.

A-13

B Advanced
Features

• Memory Allocation

• Internal Representation

• Calling Subroutines

• Event Trapping

B-l

Advanced Features

B-2

MEMORY ALLOCATION

Memory space must be set aside for an
assembly language subroutine before it can be
loaded. To do so, use the /M: option on the
GWBASIC command (refer to the GWBASIC
command in the Command Reference section).
The IM: option sets the highest memory location
to be used by GWBASIC.

In addition to the GWBASIC code area,

GWBASIC uses up to 64K of memory
beginning at its data (DS) segment.

If extra stack space is needed when an
assembly language subroutine is called, you
can save the GWBASIC stack and set up a
new stack for use by the assembly language
subroutine. The GWBASIC stack must be

restored, however, before you return from the
subroutine.

The assembly language subroutine can be
loaded into memory in several ways, the most
simple being to use the BLOAD commmand (see
the BLOAD Command in the Reference

section). Also, you could execute a program
that exits but stays resident, and then run
GWBASIC. As a third choice, the assembled
instructions could be stored in DATA

statements and POKEd directly into memory.

Advanced Features

The following guidelines must be observed if
you choose to BLOAD, or read and poke, an
EXE file into memory:

• Make sure the subroutines do not contain any
long references, address offsets that exceed
64K or that take the user out of the code

segment. These long references require
handling by the EXE loader.

• Skip over the first 512 bytes (the header) of the
linker's output file (EXE), then read in the rest
of the file.

B-3

Advanced Features

B-4

INTERNAL

REPRESENTATION

The following section describes the internal
representation of numbers in GWBASIC.

Single Precision-24 bit mantissa

I 0 I 1 I 2 I 3 I

I loman | | S|himan | exp

where loman — the low mantissa

S = the sign
himan = the high mantissa
exp = the exponent
man = himan:... doman

If exp=:0, then number=0.

rN

Advanced Features

If exp < >0, then the mantissa is normalized
and

number = sgn * .1 man * 2 ** (exp -80h)

That is, in single precision (hex notation -
bytes low to high)

00000080 = \.5

00008080 = -.5

Double Precision - 56 bit mantissa

I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

|loman| I I I I |S|himan| exp |

B-5

Advanced Features

Syntax

B-6

CALLING SUBROUTINES

CALL STATEMENT

The CALL statement is the recommended way
of calling machine language programs with
GWBASIC. It is preferable to the USR
function unless you are running programs
that already contain USR functions.

The syntax of the CALL statement is:

CALL numvar [(variable [,variable]. . .)]

contains the offset into the current segment that is the
starting point in memory of the subroutine being called. The
list of variables indicates variables or constants, separated
by commas, that are to be passed to the subroutine as
arguments. The current segment is either the default, or that
which has been defined by a DEF SEG statement.

Advanced Features

Invoking the CALL statement causes the
following to occur:

• For each variable specified in the statement,
the two-byte offset of the variable's location
within the GWBASIC segment is pushed onto
the stack.

• The GWBASIC return address code segment
(CS) and offset (IP) are pushed onto the Stack.

• Control is transferred to the machine

language routine using the segment address,
which is given in the last DEF SEG statement
and the offset given in numvar.

B-7

Advanced Features

B-8

The following diagrams illustrate the state of
the stack at the time the CALL statement is

executed and the condition of the stack during
execution of the called subroutine,
respectively.

high argument 0
addresses .

SP+4+(2#n)

Each argument is a 2-byte
pointer into memory

T

i

c

o

u

n

t

e

r

low

addresses

argument n-1

argument n

return segment address

return offset

SP

SP+6

SP+4

SP+2

stack pointer
(SP register
contents)

Stack Layout When CALL Statement is Activated

After the CALL statement has been activated,
the subroutine has control. Arguments may be
referenced by moving the stack pointer (SP) to
the base pointer (BP) and adding a positive
offset to BP.

high
addresses argument 0

argument 1

argument n

Advanced Features

Absent if any argument is
referenced within a nested

procedure

return segment address Absent in local procedure

return offset

local variables

(data pushed on
stack)

This space may be
used during pro
cedure execution

low

addresses

stack pointer
(SP register
contents)

1

Stack pointer may change
during procedure
execution

Stack Layout During Execution of a CALL Statement

B-9

Advanced Features

B-IO

Observe the following rules when coding a
subroutine:

• The called routine must preserve segment
registers DS, ES, SS, and BP. If interrupts are
disabled in the routine, they must be enabled
before exiting. The stack must be cleaned up
on exit.

• The called program must know the number
and length of the arguments passed. The
following routine shows an easy way to
reference arguments:

push BP
mov BP,SP
add BP, (2*number of arguments)+4

Then:

argument 0 is at BP
argument 1 is at BP-2
argument n is at BP-2*n
(number of arguments=n+l)

• Variables may be allocated either in the Code
Segment or on the stack. Be careful not to
modify the return segment and offset stored on
the stack.

Advanced Features

• The called subroutine must clean up the stack.
A preferred way to do this is to perform a RET
n statement (where n is two times the number
of arguments in the argument list) to adjust
the stack to the start of the calling sequence.

• Values are returned to GWBASIC by
including in the argument list the name of the
variable that will receive the result.

• If the argument is a string, the argument's
offset points to 3 bytes which, as a unit, are
called the string descriptor. Byte 0 of the
string descriptor contains the length of the
string (0 to 255). Bytes 1 and 2, respectively,
are the lower and upper 8 bits of the string
starting address in string space.

B-ll

Advanced Features

B-12

If the argument is a string literal in the
program, the string descriptor will point to
program text. Be careful not to alter or destroy
your program this way. To avoid
unpredictable results, Concatenate a null
string to the string literal in the program. For
example, use:

20 AS = "BASIC"+" "

This will force the string literal to be copied
into string space. Then the string may be
modified without affecting the program.

The contents of a string may be altered by
user routines, but the descriptor must not be
changed. Do not write past the end-of-string.
GWBASIC cannot correctly manipulate
strings if their lengths are modified by
external routines.

Data areas needed by the routine must be
allocated either in the CODE segment of the
user routine or on the stack. It is not possible
to declare a separate data area in the user
assembler routine.

rs

Example 100 DEF SEG = &H8000
110 F00 = &H7FA

120 CALL FOG (A,B$,C]

Advanced Features

Line 100 sets the segment to 8000 Hex. The
value of variable FOO is added into the

address as the low word after the DEF SEG
value is left shifted 4 bits, i.e., multiplied by 16.
(This is a function of the microprocessor, not
of GWBASIC.) Here, FOO is set to &H7FA, so
that the call to FOO will execute the

subroutine at location 8000:7FA Hex (absolute
address 8007FA Hex).

B-13

Advanced Features

B-14

The following sequence in 8086 assembly
language demonstrates access to the
arguments passed. The returned result is
stored in the variable C.

PUSH BP ;Set up pointer
MOV BP,BP
ADD BP,[4+2*3]
MDV BX,[BP-2] ;Get address of B$
MDV CL,[BX] ;Get length of BS
MDV DX,1[BX]

•

;Get addr of BS text

MOV

•

SI,[BP] ;Get address of 'A'
MDV DI[BP-4] ;Get pointer to 'C
MDVS WORD ;Store variable 'A'
POP BP ;Restore pointer.
RET 6 ;Restore stack

Advanced Features

Note: The called program must know the varia
ble type for the numeric arguments passed. In
the previous example, the instruction:

MOVS WORD

will copy only two bytes. This is fine if
variables A and C are integer. You would have
to copy four bytes if the variables were single
precision format and copy 8 bytes if they were
double precision.

CALLS STATEMENT

The CALLS statement should be used to

access subroutines that were written using
MS-FORTRAN caUing conventions. CALLS
works just hke CALL, except that with CALLS
the arguments £ire passed as segmented
addresses, rather than as unsegmented
addresses.

B-15

Advanced Features

Syntax

argument

B-16

Because MS-FORTRAN routines need to know

the segment value for each argument passed,
the segment is pushed and then the offset is
also pushed. For each argument, four bytes are
pushed rather than 2, as in the CALL
statement. Therefore, if your assembler routine
uses the CALLS statement, n in the RET
statement is two times the number of

girguments +2.

USR FUNCTION

Although using the CALL statement is the
recommended way of calling assembly
language routines, the USR function is also
available for this purpose. This ensures
compatibility with older programs that
contain USR functions.

The format of the USR function is:

USR [n] (argument)

is a digit from 0 to 9. It specifies which user routine is being
called. If n is omitted, USRO is assumed.

is any numeric or string expression.

Advanced Features

A DEF SEG statement must be executed prior
to a USR function call to ensure that the code

segment points to the subroutine being called.
The segment address given in the DEF SEG
statement determines the starting segment of
the subroutine.

For each USR function, a corresponding DEF
USR statement must be executed to define the

USR function call offset. This offset and the

currently active DEF SEG address determine
the starting address of the subroutine.

When the USR function call is made, register
AL contains a value that specifies the type of
X argument that was given. The value in AL
may be one of the following:

2 Two-byte integer (two's complement)
3 String
4 Single precision floating-point number
8 Double precision floating-point number

B-17

Advanced Features

B-18

If the argument is a number, the BX register
points to the Floating-Point Accumulator
(FAC) where the argument is stored.

If the argument is an integer:

FAC-2 contains the upper 8 bits of the
girgument.
FAC-3 contains the lower 8 bits of the

argument.

If the argument is a single precision floating
point number:

FAC-2 contains the middle 8 bits of mantissa.

FAC-3 contains the lowest 8 bits of mantissa.

Advanced Features

If the argument is a double precision floating
point number:

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

If the argument is a string, the DX register
points to 3 bytes which, as a unit, are called
the string descriptor. Byte 0 of the string
descriptor contains the length of the string (0
to 255 characters). Bytes 1 and 2, respectively,
are the lower and upper 8 bits of the string
starting address in the GWBASIC data
segment. If the argument is a string literal in
the program, the string descriptor will point to
program text. Be careful not to alter or destroy
the program this way.

Usually, the value returned by a USR function
is the same type (integer, string, single
precision, or double precision) as the argument
that was passed to it.

B-19

Advanced Features

B-20

GWBASIC has extended the USR function

interface to allow calls to MAKINT and

FRCINT. This allows access to these routines

without giving their absolute addresses. The
address ES:BP is used as an indirect far

pointer to the routines FRCINT and MAKINT.

To call FRCINT from a USR routine use

CALL DWORD ES:[BP]

To call MAKINT from a USR routine use

CALL DWORD ES:[BP+4]

Advanced Features

Example 110 DEF USR0 = &H8Q0Q
115 'Assumes user gave /M:32767
120 X=5

130 Y=USRO[X]
140 PRINT Y

The type (numeric or string) of the variable
receiving the function call must be consistent
with that of the argument passed.

B-21

Advanced Features

B-22

EVENT TRAPPING

Event trapping allows a program to transfer
control to a specific program line when a
certain event occurs. Control is transferred as

if a GOSUB statement had been executed to

the trap routine starting at the specified line
number. The trap routine, after servicing the
event, executes a RETURN statement that
causes the program to resume execution at the
place where it was when the event trap
occurred.

The events that can be trapped are receipt of
characters from a communication port (ON
COM (n) GOSUB), detection of certain
keystrokes (ON KEY (n) GOSUB), time
passage (ON TIMER (n) GOSUB), or
emptying of the background music queue (ON
PLAY (n) GOSUB).

Advanced Features

Event trapping is controlled by the following
statements:

Syntax 1 (to turn on trapping)

{COM(n) I KEY (n) | TIMER (n) | PLAY (n)}
ON

Syntax 2 (to turn off trapping)

{COM (n) I KEY (n) | TIMER (n) | PLAY (n)}
OFF

Syntax 3 (to temporarily turn off trapping)

(COM (n) I TIMER (n) | PLAY (n)} STOP

B-23

Advanced Features

Remarks

COM (n) where n is the number (1 through 4) of the
communications channel.

Typically, the COM trap routine will read an
entire message from the COM port before
returning. We do not recommend using the
COM trap for single character messages
because at high baud rates the overhead of
trapping and reading for each character may
allow the interrupt buffer for COM to overflow.

KEY (n) where n is a trappable key number. Trappable
keys are numbered 1 through 20.

Note that KEY(n) ON is not the same
statement as KEY ON. KEY(n) ON sets an
event trap for the specified key. KEY ON
displays the values of all the function keys on
the twenty-fifth hne of the screen.

When GWBASIC is in direct mode function

keys maintain their standard meanings.

When a key is trapped, that occurrence of the
key is destroyed. Therefore, you cannot
subsequently use the INPUT or INKEY$
statements to find out which key caused the
trap. So if you wish to assign different
functions to pgirticular keys, you must set up a
different subroutine for each key, rather than
assigning the various functions within a
single subroutine. ^ ^

B-24

TIMER

PLAY

Advanced Features

The ON TIMER(n) GOSUB statement (where
n is a numeric expression representing a
number of seconds since the previous
midnight) can be used to perform background
tasks at defined intervals.

The ON PLAY(n) GOSUB statement (where n
is a number of notes left in the music buffer) is
used to retrieve more notes from the

background music queue, to permit continuous
background music during program execution.

B-25

Advanced Features

B-26

THE ON GOSUB STATEMENT

The ON GOSUB statement sets up a line
number for the specified event trap. The
format is:

ON {COM(n) I KEY(n) | TIMER(n) |
PLAY(n)} GOSUB linenum

Advanced Features

A linenum of zero disables trapping for that
event.

When an event is ON and if a non-zero line

number has been specified in the ON GOSUB
statement, every time GWBASIC starts a new
statement it will check to see if the specified
event has occurred (e.g., a COM character has
come in). When an event is OFF, no trapping
takes place, and the event is not remembered
even if it takes place.

When an event is STOPped, no trapping takes
place, but the occurrence of that event is
remembered so that an immediate trap will
take place when the associated event ON
statement is executed.

When a trap is made for a particular event, the
trap automatically causes a STOP on that
event, so recursive traps can never occur. A
return from the trap routine automatically
executes an ON statement unless an explicit
OFF has been performed inside the trap
routine.

Note that once an error trap takes place, all
trapping is automatically disabled. In
addition, event trapping will never occur when
GWBASIC is not executing a program.

B-27

Advanced Features

B-28

THE RETURN STATEMENT

When an event trap is in effect, a GOSUB
statement will be executed as soon as the

specified event occurs. For example, the
statement:

OIM KEY(10] GOSUB 1000

specifies that the program go to line 1000 as
soon as Function Key FIO is pressed. If a
simple RETURN statement is executed at the
end of this subroutine, program control will
return to the statement following the one
where the trap occurred. When the RETURN
statement is executed, its corresponding
GOSUB return address is cancelled.

GWBASIC includes the RETURN linenum

enhancement, which lets processing resume at
a definable line. Normally, the program
returns to the statement immediately
following the GOSUB statement when the
RETURN statement is encountered. However,
RETURN linenum enables you to specify
another line. If not used with care, however,
this capability may cause problems. Assume,
for example, that your program contains:

Advanced Features

10 ON KEY(10] GOSUB 1000
20 FOR I = 1 TO 10

30 PRINT I

40 NEXT I

50 REM NEXT PROGRAM LINE

200 REM PROGRAM RESUMES HERE

1000 'FIRST LINE OF SUBROUTINE

1050 RETURN 200

If the Function Key FIO is pressed while the
FOR/NEXT loop is executing, the subroutine
will be performed, but program control will
return to line 200 instead of completing the
FOR/NEXT loop. The original GOSUB entry
will be cancelled by the RETURN statement,
and any other GOSUB, WHILE, or FOR that
was active at the time of the trap will remain
active. The current FOR context will also

remain active, and a FOR without NEXT error
may result.

B-29

c
Conversion of

Programs to
GWBASIC

Introduction

String Dimensioning

MAT Functions

Multiple Assignments

Multiple Statements

PEEKS and POKEs

IF...THEN...[ELSE...]

File I/O

Graphics

Sounding the Bell

C-l

Converting Programs

INTRODUCTION

C-2

GWBASIC bears a similarity to many
BASICs. Your personal computer will support
programs written for an extensive variety of
microcomputers. For programs written in a
BASIC other than GWBASIC, some minor
adjustments may be necessary before running
them. This appendix highlights some specific
areas to examine when converting programs.

Converting Programs

STRING DIMENSIONING

LENGTH OF STRINGS

GWBASIC strings are of variable lengths.
Therefore, all statements that declare the
length of strings should be deleted. For
example, in a statement which dimensions a
string array for 'J' elements of lengths T
such as:

DIM AS(I,J]

the conversion for GWBASIC would be:

DIM AS[J]

C-3

Converting Programs

C-4

SUBSTRINGS

In GWBASIC the following functions are used
to take substrings of strings:

LEFTS

MIDS

RIGHTS

Other forms, such as:

AS(i] (to access the Ith character in A$) or
AS(i|J] (to take a substring of A$ from
position I to J) should be changed as follows:

Other BASICS GWBASIC

XS=AS[i] = XS=MiDS(AS,i,1)
XS=AS(i,J) = XS=MiDS(AS,i,J-i+1]

If the substring reference is on the left side of
an assignment and X$ is used to replace
characters in A$, then the conversion should
be carried out as follows:

Other BASICS GWBASIC

AS(I)=XS = MID$(A$,I,1]=XS
A$(I,J)=X$ = MIDS(AS,I,J-I+1]=X$

Converting Programs

CONCATENATION

GWBASIC uses a plus (+) sign to denote
string concatenation. Other BASICs use a
comma (,) or an ampersand (&) which should
be altered accordingly.

C-5

Converting Programs

MAT FUNCTIONS

C-6

Any programs which use the MAT function
(available in some BASICs) must be rewritten
incorporating FOR. . . NEXT loops before they
will run properly.

rv

Converting Programs

MULTIPLE

ASSIGNMENTS

Some BASICs allow the following syntax:

10 LET D=E=Q

to set D and E equal to zero. GWBASIC
interprets the second equal sign as a logical
operator and sets D equal to -1 if E was equal
to 0. This statement should therefore be

broken up into two assignment statements as
follows:

10 D=0:E=0

C-7

Converting Programs

MULTIPLE STATEMENTS

Multiple statements on a GWBASIC line must
always be separated by colons (:), unlike some
other BASICs which use a backslash (\)
instead.

Converting Programs

PEEKS AND POKES

The execution of programs containing PEEK
and POKE instructions may vary from
machine to machine. It is therefore necessary
to analyze the purpose of these instructions in
other BASIC programs before translating the
same functions into GWBASIC.

C-9

Converting Programs

IF...THEN...[ELSE...]

Not all BASICs feature the optional ELSE
clause which is performed in the event of a test
proving false.

For example, a BASIC statement may
originally be:

10 IF D=E THEN 30

20 PRINT "NOT EQUAL" : GOTO 40

30 PRINT "EQUAL"

40 REM CONTINUE

The above statement sequence wiU work
correctly, but it may be optimized in GWBASIC
as follows:

10 IF 0=E THEN PRINT "EQUAL"

ELSE PRINT "NOT EQUAL"

20 REM CONTINUE

C-IO

Converting Programs

FILE I/O

In GWBASIC, the reading and writing of
information to and from a disk file is achieved

by opening the file to associate it with a
particular file number, then selecting
particular I/O statements that specify that file
number. In some other BASICs, the I/O to
disk is somewhat different. Refer to Chapter 4,
"Disk File Handling," and to the Reference
section under the OPEN statement, for fuller
descriptions.

C-ll

Converting Programs

GRAPHICS

C-12

Drawing an image on the screen can vary
from BASIC to BASIC. Refer to Chapter 5,
"Graphics," and the Reference section for a
description of the available graphic
statements.

Converting Programs

SOUNDING THE BELL

The PRINT CHR$(7) is required for some
BASICs to send an ASCII bell character.

Under GWBASIC the BEEP, SOUND and
PLAY statements can also be used to sound

the bell.

C-13

D

D
Error Codes

and Error
Messages

• Error Messages

• Error Codes

D-l

Error Messages

ERROR MESSAGES

NUMBER MESSAGE

D-2

1 NEXT without FOR

2 Syntax error
3 RETURN without GOSUB

4 Out of data

5 Illegal function call
6 Overflow

7 Out of memory
8 Undefined line number

9 Subscript out of range
10 Duplicate definition
11 Division by zero
12 Illegal direct
13 Type mismatch
14 Out of string space
15 String too long
16 String formula too complex
17 Can't continue

18 Undefined user function

19 No RESUME

20 RESUME without error

22 Missing operand
23 Line buffer overflow

24 Device timeout

25 Device fault

26 FOR without NEXT

27 Out of paper
29 WHILE without WEND

30 WEND without WHILE

50 FIELD overflow

51 Internal error

52 Bad file number

NUMBER MESSAGE

53 File not found

54 Bad file mode

55 File already open
57 Device I/O error

58 File already exists
61 Disk full

62 Input past end
63 Bad record number

64 Bad filename

66 Direct statement in file

67 Too many files
68 Device unavailable

69 Communication buffer overflow

70 Disk write protected
71 Disk not ready
72 Disk media error

74 Rename across disks

75 Path/file access error

76 Path not found

Error Messages

D-3

Error Codes

CODE NUMBER

NF

SN

RG

OD

FC

D-4

MESSAGE

NEXT without FOR

A NEXT statement has been encountered

without a matching FOR

Syntax error
A line is encountered which includes an

incorrect sequence of characters (misspelled
keyword, incorrect punctuation, etc.).
GWBASIC automatically enters edit mode
at the line that caused the error.

RETURN without GOSUB

A RETURN statement is encountered for

which there is no previous, unmatched
GOSUB statement.

Out of data

A READ statement is executed when there

are no DATA statements with unread data

remaining in the program.

Illegal function call
A parameter that is out of range is passed
to a numeric or string function. This FC error
may also occur as the result of:

1. A negative or unreasonably large
subscript.

2. A negative or zero argument with LOG.
3. A negative argument to SQR.
4. A negative mantissa with a noninteger

exponent.

5. A call to a USR function for which the

starting address has not yet been given.
6. An improper argument to MID$, LEFTS,

RIGHTS, INP, OUT, WAIT, PEEK,
POKE, TAB, SPG, STRINGS, SPACES,
INSTR, or ON. . . GOTO.

Error Codes

CODE NUMBER MESSAGE

OV 6 Overflow

The result of a calculation is too large to be
represented in GWBASIC number format. If
underflow occurs, the result is zero and exe

cution continues without an error.

CM 7 Out of memory
A program is too big, or has too many loops,
subroutines, variables; or has expressions
that are too complicated to evaluate

UL 8 Undefined line number

A nonexistent line is referenced in a GOTO,

GOSUB, IF. . THEN. . .ELSE, or

DELETE statement.

BS 9 Subscript out of range
An array element is referenced either with a
subscript that is outside the dimensions of
the array or with the wrong number of
subscripts.

DD 10 Duplicate Definition
Two DIM statements are given for the same
array; or a DIM statement is given for an
array after the default dimension of 10 has
been established for that array; or an
OPTION BASE is given after an array has
been dimensioned.

10 11 Division by zero
A division by zero is encountered in an
expression; or, the value zero has been raised
to a negative power. In the former case, the
result is machine infinity (with the appropri
ate sign); in the latter case, the result is posi
tive machine infinity.

D-5

Error Codes

CODE NUMBER MESSAGE

ID

TM

OS

LS

ST

ON

UF

D-6

12 Illegal direct
A statement that is illegal in direct mode is
entered as a direct mode command.

13 Type mismatch
A string variable name is assigned a numeric
value or vice versa; a function that expects
a numeric argument is given a string argu
ment or vice versa.

14 Out of string space
String variables have caused GWBASIC to
exceed the amount of free memory remain
ing. GWBASIC will allocate string space
dynamically, until it runs out memory.

15 String too long
An attempt is made to create a string in
excess of 255 characters.

16 String formula too complex
A string expression is too long or too com
plex to be processed. It should be broken into
smaller expressions.

17 Can't continue

An attempt is made to continue a program
that:

1. Has halted due to an error.

2. Has been modified during a break in
execution.

3. Does not exist.

18 Undefined user function

A USR function is called before the function

definition (DEF statement) is given.

Error Codes

CODE NUMBER MESSAGE

19 No RESUME

An error handling routine is entered but con
tains no RESUME statement.

20 RESUME without error

A RESUME statement is encountered before

an error handling routine is entered.

22 Missing operand
An expression contains an operator with no
operand following it.

23 Line buffer overflow

An attempt has been made to input a line
that has too many characters.

24 Device Timeout

GWBASIC did not receive information from

an I/O device within a predetermined amount
of time.

25 Device Fault

In GWBASIC, will only occur when a fault
status is returned from the Line Printer inter

face. Usually indicates a hardware error in the
printer or interface card.

26 FOR without NEXT

A FOR statement was encountered without

a matching NEXT.

27 Out of paper
The printer is out of paper or is not switched
on. Insert paper, ensure power is switched on
and continue.

D-7

Error Codes

CODE NUMBER MESSAGE

D-i

29 WHILE without WEND

A WHILE statement does not have a match

ing WEND.

30 WEND without WHILE

A WEND statement was encountered

without a matching WHILE.

50 FIELD overflow

A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

51 Internal error

An internal malfunction has occurred in

GWBASIC. Report the conditions under
which the message appeared to the AT&T
Information Systems Services Hotline.

52 Bad file number

A statement or command references a file

with a file number that is not OPEN or is out

of the range of file numbers specified at
initialization.

53 File not found

A LOAD, KILL, or OPEN statement refer
ences a file that does not exist on the current

disk.

54 Bad file mode

An attempt is made to use PUT, GET, or
LOF with a sequential file, to LOAD a ran
dom file, or to execute an OPEN statement
with a file mode other than 1, O, or R.

55 File already open
A sequential output mode OPEN statement
is issued for a file that is already open; or a
KILL statement is given for a file that is
open.

Error Codes

CODE NUMBER MESSAGE

57 Device I/O Error

An I/O error occurred on a peripheral device
I/O operation. It is a fatal error; i.e., the oper
ating system cannot recover from the error.

58 File already exists
The filename specified in a NAME statement
is identical to a filename already in use on the
disk.

61 Disk full

All disk storage space is in use.

62 Input past end
An INPUT statement is executed after aU the

data in the file has been INPUT, or for a null

(empty) file. To avoid this error, use the EOF
function to detect the end-of-file.

63 Bad record number

In a PUT or GET statement, the record num

ber is either greater than the maximum
allowed (32,767) or equal to zero.

64 Bad filename

An illegal form is used for the filename with
a LOAD, SAVE, KILL, or OPEN statement

(e.g., a filename with too many characters).

66 Direct statement in file

A direct statement is encountered while

LOADing an ASCII-format file. The LOAD
is terminated.

67 Too many files
An attempt is made to create a new file (using
SAVE or OPEN) when all 255 directory
entries are full.

D-9

Error Codes

CODE NUMBER MESSAGE

D-IO

68 Device unavailable

An attempt was made to open a file to a non
existent device. It may be that hardware did
not exist to support the device, such as LPT2;
or LPT3:, or was disabled by the user. This
occurs if an OPEN "COMl:... statement is

executed after the user has disabled RS232

support via the /C:0 switch directive on the
command line.

69

70

Communication buffer overflow

Not enough space has been reserved for
communications I/O. Several options are
available:

1. Increase the size of the COM receive

buffer via the IC: switch.

2. Implement a "hand-shaking" protocol
with the host/satellite such as

XON/XOFF as demonstrated in the TTY

programming example to turn transmit
off long enough to catch up.

3. Use a lower baud rate for transmit and

Disk Write Protected

This is one of 3 "hard" disk errors returned

from the disk controller. This occurs when an

attempt is made to write to a disk that is
write protected. Use an ON ERROR GOTO
statement to detect this situation and request
user action. Other possible "hard" disk errors
are:

71 Disk not ready
Occurs when the disk drive door is open or
a disk is not in the drive. Again use an ON
ERROR GOTO statement to recover.

Error Codes

CODE NUMBER MESSAGE

72 Disk media error

Occurs when the FDC controller detects a

hardware or media fault. This usually indi
cates damaged media. Copy any existing files
to a new disk and reformat the damaged disk.
FORMAT will flag the bad tracks and place
them in a file "badtrack." The remainder of

the disk is now usable.

74 Rename across disks

An attempt was made to rename a file to a
new name that was declared to be on a disk

other than the disk specified for the old name.
The renaming operation is not performed.

75 Path/file access error

During an OPEN, MKDIR, CHDIR or
RMDIR operation, MS-DOS was unable to
make a correct Path to File connection. The

operation is not completed.

76 Path not found

During an OPEN, MKDIR, CHDIR, or
RMDIR operation, MS-DOS was unable to
find the path specified. The operation is not
completed.

D-11

Glossary

Glossary

GLOSSARY

absolute In graphics, specifiying the location of a pixel
coordinate with respect to the origin of the specified
form coordinate system.

access mode A technique that is used to obtain a specific
logical record from, or place a specific logical
record into, a file.

active page The screen buffer which has information
written to it. It may be different from the
visual page whose information is being
displayed.

address Location in storage.

addressable The technique of displaying a sequence of
point images so that you can see the objects moving

on the screen (see the GET and PUT graphics
statements).

argument A value that is passed from the main program
to a function or a subroutine.

array A collection of variables of the same type under
one name. You can distinguish them by the
value(s) of one or more subscripts.

r^

array

element

ASCII

aspect
ratio

asynchronous

background
color

Glossary

An element of an array. It is a variable whose
name coincides with the name of the array and
is followed by one or more subscripts in paren
theses. They specify the position of the array
element within the array.

American Standard Code for Information
Interchange. A standard 8 bit code used for
exchanging information among data processing
systems and associated equipment.

Determines the spacing of the horizontal,
vertical, and diagonal points. The standard
aspect ratio of 4/3 indicates that the horizontal
axis of the screen is 4/3 as long as the vertical
axis.

A method of transmitting data in which each
transmitted character is preceded by a start bit
and followed by a stop bit, thus permitting the
interval between characters to vary.

The color of the area which surrounds the
subject. In particular, the color of the screen
surrounding a character (character background
color) or the color displayed when a graphics
viewport is cleared (graphics background color).

Glossary

baud

boolean

value

bps

built-in

function

call

carriage

return

character

definition

tag

The transmission rate which is in effect;
synonymous with signal events (usually bits) per
second.

A numeric value that is interpreted as "true"
value (if it is not zero) or "false" (if it is zero).

Bits per second.

"See intrinsic function."

The branching or transfer of control to a
specified subroutine.

A character that causes the print or display
return position to move to the first position on
the next line. Entering CR when you finish typ
ing a GWBASIC line, passes the line to
GWBASIC for processing.

A special character placed at the end of a
definition variable—It may be: % (integer
definition variable), ! (single-precision variable). It
(double-precision variable), or $ (string
variable).

clipping

command

level

Glossary

The graphics statements use line clipping, i.e.,
Unes that cross the screen or viewport are
"chpped" at or cut off at the edges of the
viewing area.

The GWBASIC is at command level when Ok

appears on the screen, i.e., when it is waiting
for the user to enter an immediate or program
line.

comment A statement used to document a program. In
GWBASIC, a comment may be entered by
REM or a single quote C) followed by the
comment string. The single quote (') also
gdlows the insertion of comments at the end of

a GWBASIC line.

concatenation The operation that joins two strings together.

constant A fixed value or data item. A constant may be
string or a numeric constant. In the latter case
it may be an integer, a single-precision or a
double-precision number.

coordinates Numbers which identify a location on the
screen. They may be text coordinates to
identify a chgiracter or the cursor (expressed in
terms of rows and columns) or graphics
coordinates to identify a pixel (expressed as x
and y Cartesian coordinates).

Glossary

current

directory

current

line

current

point

current

program

The directory you are working on. You may
change the current directory by the CHDIR
command. Just after formatting a disk the
ROOT directory is the current directory.

The line you are working on, or the line you
have just entered, or the line where an error
has occurred.

See ''last-referenced point."

The program currently in memory.

current The viewport you are working on. To change
viewport viewport you must use a VIEW statement.

cursor

debug

A movable marker that is used to indicate a

position on the screen. There are three types of
cursor (see the LOCATE statement in the
Reference section). The shape and blinkrate of
the overwrite £md user cursors are

progrgunmable. The user cursor is not visible at
initiahzation.

To locate and correct mistakes in a program.

Glossary

default Pertaining to a value or option that is assumed
when none is given.

dehmeter A character that limits a string of characters
and therefore cannot be part of the string.

destination The variable to the left of the equal sign in an
assignment statement.

direct The ability to read or write information at any
access access location within a storage device.

direct line See ''immediate line."

direct mode See "immediate mode."

directory The directory contains the names of files on the
disk, along with information that tells MS-DOS
where to find the file.

disk Is a generic term to specify either a hard-disk
or a diskette.

diskette A 5V4-inch mini floppy disk.

Glossary

double This is the maximum precision GWBASIC can
precision handle. If a number contains more than 7 digits

it is a double-precision number.

drive Synonymous with disk drive. May be specified
by A: (first diskette drive), B: (second diskette
drive), C: (hard-disk drive), etc.

dummy A fictitious parameter in a function or
argument statement or command. A value must be

entered, but it is ignored by GWBASIC.

edit To enter, modify, or delete a GWBASIC line.

end of file A "marker" immediately following the last
(EOF) record of a file. It signals the end of the file.

error When an error occurs, the control of the
trapping program may be automatically directed to a

specified program line.

event When a certain event occurs, the control of the
trapping program may be automatically directed to a

specified program line. Events include; receipt of
characters from a communication port, detection
of certain keystrokes, time passage, emptying of
the background music queue.

Glossary

expression An algorithm returning a single numeric value
(numeric, relational or logical expressions) or
a string operation returning a string value
(string expression).

field In a record, a specific area used for a
particular type of data.

file

fixed-

length

filename

file

specification

floppy

A collection of records. The records of a file
may be accessed by GWBASIC sequentially
(one after the other) or randomly (by record
number).

Enumerable elements in a file each of which has
the same length. For example, random files have
fixed-length records.

Name assigned to a file.

Unique file identifier. A file specification can
include a drive specifier (A:,B:,C:, etc.).

A diskette.

foreground The color of the character itself (character
color foreground color), or the color used to draw

pictures when no color parameter is specified in
a graphics statement (graphics foreground
color).

Glossary

full duplex

function

function key

graphics
viewport

GWBASIC

half duplex

hard disk

10

A communication system permitting
simultaneous operation in both directions.

An algorithm returning a single value. A
function can be a user or an intrinsic function.

It can be called forth simply by stating its
name, followed (in parentheses) by one or more
"arguments" representing the values that the
function parameters are to assume.

A key to which the user can assign a special
meaning. Typing the key you may generate any
character string. Some function keys may
already be assigned by the system at
initialization.

See "viewport."

In this manual refers only to Microsoft
GWBASIC Version 2.02 as implemented on the
AT&T Personal Computer.

A communication system permitting operation
in either direction, but not simultaneously.

A rigid disk. In this manual, referring to a
5 -inch Winchester-type disk.

Glossary

immediate A GWBASIC line which begins with a letter. It
line is executed as soon as you press CR.

immediate This mode is used to immediately enter and
mode execute a GWBASIC line.

indirect

line

indirect

mode

interrupt

intrinsic

function

keyword

See ''program line.''

See "program mode."

The suspension of a process, such as the
execution of a program, caused by an event
external to that process, and performed in such
a way that the process can be resumed.

A function that the user may call without
defining it since it is an integral part of
GWBASIC (e.g., SIN(x)).

One of the predefined words of GWBASIC. It
is a reserved word.

last- In graphics, the last-referenced point may be
referenced used for relative coordinates (see the STEP
point option in the LINE statement).

11

Glossary

line

line clipping

line folding

loop

machine

infinity

mantissa

matrix

MS-DOS

12

A GWBASIC line may begin with a line
number (if it is a program line) or with a letter
(if it is an immediate line). The line may
contain one or more GWBASIC statements or

commands (separated by colons) and may be
up to 255 characters long.

See "clipping."

The continuation of a logical line on a
subsequent physical line, so that the line can
be modified by insertion or deletion without
losing any other characters on that line.

The repeated execution of a series of statements
for a fixed number of times.

The largest number that can be represented in
internal format.

The numeral that is not the exponent in floating
point notation.

See "array."

Microsoft-Disk Operating System.

nest

null

numeric

expression

numeric

keypad

numeric

variable

offset

option
switch

Glossary

To embed a subroutine or block of data into a
larger routine or block of data.

A string with zero length, i.e., with no
characters in it. (It is represented as "".)

An expression whose evaluation returns a
numeric value. This may be an integer, a
single-precision or a double-precision value.

The section on the right of the keyboard
dedicated to numbers, arithmetic symbols,
cursor movement keys, and some control
characters.

A simple variable or array element whose value
is numeric; i.e., an integer, a single precision or
a double precision, depending on the type
defined for the variable.

The number of bytes from a starting point to
some other point. For example, in GWBASIC a
memory address may be given as an offset from
the memory segment defined by the DEF SEG
statement.

One of the options in the GWBASIC command
line switch specified with a slash (/) followed by
a character or by a character and a colon.

13

Glossary

overflow

overlay

parameter

pixel

port

program mode

14

In an arithmetic operation, the generation of a
quantity beyond the capacity of a register or
location which is to receive the result.

Programs too large for memory can be divided
into logical segments (or overlays).

Value supplied to a command or language
statement that provides additional information
for the command or statement. Used

interchangeably with argument. An "actual
parameter" is a value that is substituted for a
"formal parameter" in a given procedure or
function when invoked.

A graphics "point" addressable on the screen
by its coordinates (x,y). Also, the bits which
contain the information for that point.

An access channel for data entry or exit.

This mode is used to enter into memory a
GWBASIC program line. To tell GWBASIC the
line you are entering is part of a program, you
begin the line with a line number. A program
line is stored in memory when you press CR,
but it is not executed. The lines are stored in
memory in line number sequence to form a
GWBASIC program. To execute the program
press RUN CR

o

prompt

record

reset

redirection

relative

coordinate

REM

reserved

word

raster

Glossary

Message displayed on the screen to request the
user to do a specific action.

A group of one or more consecutive fields on a
related subject. For example, an employee's
payroll record. A file is a collection of
records.

To reload an operating system from disk into
memory.

You can redirect your GWBASIC input and
output by the GWBASIC command. Standard
input can be redirected to any file, standard
output to any file or device.

In graphics, x and y values that identify the
location of a pixel by specifying displacements
from some other pixel.

See "comment."

A word that is used in GWBASIC for a special
purpose, Uke a statement keyword, or a function
name, etc. It cannot be used as a variable name.

A horizontal line of pixels on the screen.

15

Glossary

scan code

scroll

segment

sequential
access

A number (usually in hexadecimal form) that
identifies the position of a key on the keyboard.

To move all or part of the text display
vertically or horizontally so as to show
characters that do not fit on the screen.

A 64K-byte area of memory.

An access mode in which records are

processed in consecutive order, i.e., they are
read in the same order in which they were
written.

single If a number is not an integer and contains 7 or
precision fewer digits it is a single precision number.

soft key Synonymous with function key.

soft-key The display of the soft-key values on the 25th
display screen line.

stack An area of memory to temporarily store data
so that the last item stored is the first item to
be processed.

statement An instruction to the computer to perform some
sequence of operations.

16

string
expression

string
variable

subroutine

subscript

^ text
window

trap

Glossary

An expression that returns a string value.

A simple variable or array element whose
value is a string.

Section of a GWBASIC program which is
caUed by a GOSUB or ON...GOSUB
statement. At the end of the execution of a

subroutine, control is returned to the first
statement following the most recent GOSUB (or
ON...GOSUB) that has been executed.

A positive integer number that identifies the
position of an element in an array.

A rectangular portion of the screen where text
is output. It may be defined by a VIEW PRINT
or a WIDTH statement.

A special form of a conditional breakpoint
that is activated by an event to be intercepted.
It also refers to the action to be taken after the

interception.

17

Glossary

type of Indicates whether the variable is a string or a
variable numeric variable and (if numeric) if it is an

integer, a single-precision, or a double-precision
variable. The type of variable may be set by a
DEF (INT, SNG, DEL, or STR) statement, or
by a character definition tag at the end of the
variable name.

type of The type of expression is the data-type
expression (string, integer, single-precision, or double-

precision) of the resulting evaluation of the
expression. It depends on the type of its
operands.

typewriter
keyboard

user

function

variable

variable-

length
record

vector

18

The central section of the keyboard that is used
as a standard typewriter keyboard.

A function that the user must define before it

is called (see DEF FN statement).

A named data item whose values may change
during program execution.

A record whose length is independent of the
length of other records in the file.

A one-dimensional array.

Glossary

viewport A rectangular portion of the screen onto which
window contents are mapped. A viewport is
defined by a VIEW statement to display both
graphics and text.

wildcard

window

A special symbol used to represent any single
character (?) or any string of characters (*) in
a filename.

A rectangular portion of the screen onto which
text may be displayed.

19

ABS Function
Accessing A Sequential

File
Adding Data to A

Sequential File
An Exercise in

Communication I/O
Arc, Ellipses
Arithmetic Operators
Array Variables
ASC Function
ASCII Codes
ATN Function
AUTO Command
Automatic Line

Numbering

B

7-16

4-26

4-27

6-7

5-19
3-15

3-9

7-17
A-4

7-18

7-19

2-28

BEEP Statement 7-21
BINARY to Hexadecimal

Conversion Table A-11
BLOAD Command 7-22
BSAVE Command 7-24

CALL Statement 7-26, C-6
Calling Subroutine

from GWBASIC B-6
CALLS Statement 7-27
CDBL Function 7-28
CHAIN Statement 7-29
Character Set 1-9
CHDIR Command 7-34
CHR$ Function 7-35
CINT Function 7-36
CIRCLE Statement 7-37

Index

CLEAR Command 7-42
CLOSE Statement 7-44
CLS Statement 7-45
COLOR Statement,

Graphics Mode 7-51
COLOR Statement,
Text Mode 7-47

COM(n) Statement 7-55
Commands For Program

Files 4-18
COMMON Statement 7-56
Communication I/O 6-3
Communication I/O

Functions 6-4
Concatenation C-5
Constants 3-2
CONT Command 7-61
Correcting the Current

Line 2-17
COS Function 7-63
Creating A Random

Access File 4-29
Creating A Sequential

File 4-22
CSNG Function 7-64
CSRLIN Function 7-65
Current Directory 4-13
CVLCVS,CVD

Functions 7-66

D
DATA Statement
DATE$ Function and
Statement

DEF FN Statement
DEF SEG Statement
DEF USR Statement
DEFINT/SNG/DBL/STR

Statements
DELETE Command
Derived Functions

7-67

7-69
7-71
7-73
7-75

7-76

7-77
A-12

Index

DIM Statement
Direct Mode
Directory Paths
Displaying Points
Double Precision
DRAW Statement
Drawing and Coloring

Lines

E
EDIT Command
END Statement
Entering A Program
ENVIRON Statement
ENVIRONS Function
EOF Function
ERASE Statement
ERDEV and ERDEVS

Functions
ERR and ERL

Functions
Error Messages
Event Trapping
ERROR Statement
Executing A Program
EXP Function
Expressions and

Operators
Extended ASCII Codes

F
FIELD Statement
FILE I/O
File Numbers
FILES Command
FIX Function
FOR...NEXT

Statements
ERE Function
Function Keys
Functional Operators
Functions, Derived

7-78
2-3
4-9

5-18
3-5

7-82

5-19

7-86
7-87
2-26

7-88
7-91
7-92
7-94

7-95

7-96
D-2

B-22

7-99
2-32

7-101

3-14

A-8

7-102

C-11
4-5

7-106
7-108

7-109
7-113

2-5
3-24

A-12

G
GET (COM files)
Statement

GET (Files) Statement
GET (Graphics)
Statement

GOSUB...RETURN
Statements

GOTO Statement
Graphics Mode
GWBASIC, Command
GWBASIC Screen
Editor

7-114
7-115

7-117

7-120
7-123

5-7

7-124

2-12

H
-132HEX$ Function 7-

Hexadecimal to Decimal
Conversion Tables A-10

High Resolution Mode 5-11
How MS-DOS Keeps

Track of Your Files 4-3

I
IF...GOTO...ELSE
Statements

IF...THEN...ELSE
Statements

IF...THEN[...ELSE]
Indirect Mode
Initialization Procedure
INKEY$ Function
INP Function
INPUT Statement
INPUT# Statement
INPUTS Function
Statement

INSTR Function
INT Function
Integer Division
Internal Representation

7-133

7-133

C-10
2-3
2-2

7-137

7-139
7-40

7-142

7-144

7-146

7-148
3-17
B-4

Interrupts
lOCTL Statement
IOCTL$ Function

K
KEY Statement
KEY(n) Statement
Keyboard
KILL Command

LOOPY Command
Leaving GWBASIC
LEFTS Function
LEN Function
Length of Strings
LET Statement
Line Format
LINE INPUT

Statement
LINE INPUT#
Statement

LINE Statement
LIST Command
Listing A Program
LLIST Command
Loading A Program
LOAD Command
LOC Function
LOCATE (Graphics)
LOCATE (Text)
Statement

EOF Function
LOG Function
Logical Operators
LPOS Function
LPRINT Statement
LSET and RSET

Statements

2-37

7-149
7-152

7-154

7-160
2-4

7-162

7-163
2-2

7-164

7-165

C-3
7-166

1-7

7-171

7-173
7-167

7-175
2-29

7-177

2-31
7-178
7-179
7-180

7-185

7-189

7-190
3-21

7-191
7-192

7-193

Index

M
Major Features 1-3
MAT Functions C-6
Medium Resolution Mode 5-9
Memory Allocation
Memory Requirements
MERGE Command
MID$ Function and
Statement

MKDIR Command
MKI$,MKS$,MKD$

Functions
Modes of Operations
Modifying Program

Lines
Modulus Arithmetic
Multiple Assignments
Multiple Statements

N
NAME Command
Naming Devices
Naming Files
NEW Command
Numeric Constants
Numeric Keypad

o
OCT$ Function
ON COM(n) Statement
ON ERROR Statement
ON...GOSUB and

ON...GOTO
Statements

ON KEY(n) Statement
ON PLAY(n)

Statement
ON STRIG(n)

Statement
ON TIMER Statement
OPEN COM Statement

B-2
3-10

7-195

7-196
7-200

7-202

2-3

2-20

3-17
C-7
C-8

7-203
4-8
4-5

7-205
3-5

2-11

7-206

7-207
7-209

211

212

7-215

217

219
229

Index

OPEN Statement
Opening

Communications Files
OPTION BASE
Statement

OUT Statement
Overflow

PAINT Statement
PEEK Function
PEEKS and POKEs
PLAY Statement
PLAY(n) Function
PLAY {on|off|stop}
PMAP Function
POINT Function
POKE Statement
POS Function
PRESET Statement
PRINT Statement
PRINT USING
Statement

PRINTiJf and PRINT#
USING Statements

Protected Files
PSET Statement
PUT (COM files)
Statement

PUT (Files) Statement
PUT (Graphics)

Statement

R
Random Access Files
RANDOMIZE
Statement

READ Statement

7-221

6-2

7-233
7-234

3-18

7-235
7-241

C-9
7-242
7-246
7-247
7-248
7-250
7-252
7-253
7-254

7-255

7-258

7-264
4-20

7-267

7-268
7-269

7-271

4-28

7-275
7-277

Rectangles, Objects,
Circles

Relational Operators
REM Statement
RENUM Command
Reserved Words
RESET Command
RESTORE Statement
RESUME Statement
RETURN Statement

See GOSUB...RETURN
RIGHTS Function
RMDIR Command
RND Function
RUN Command
Running A Sample

Program

s
SAVE Command
Saving A Program
Scan Codes
Screen Coordinates
SCREEN Function
SCREEN Statement
Selecting the Screen
Attributes

Sequential Files
SGN Function
SIN Function
Single Precision
SOUND Statement
SPACES Function
SPC Function
Special Screen Editor

Keys
SQR Function

5-19
3-19

7-279
7-281

1-10
7-283
7-284
7-285
7-120

7-286
7-287
7-289
7-291

2-34

7-293
2-30

A-8
5-15

7-295
7-297

5-2
4-21

7-302
7-303

3-5
7-304
7-307

7-308

2-12

7-309

Index

STICK Function 7-310 u
STOP Statement
STRIG Statement

and Function
STRIG(n) Statement
STR$ Function

7-311

7-312

7-314

7-315

Using Your System
As A Calculator

USR Function
USR; calling

2-23

7-327
B-16

String Dimensioning C-3 VString Operators 3-24

STRINGS Function 7-317 VAL Function 7-329
Substrings C-4 Variables 3-7
Super Resolution Mode 5-13 VARPTR Function 7-330
SWAP Statement 7-318 VARPTRS 7-333
Syntax Conventions 1-4 VIEW Statement 5-16,7-335
SYSTEM Command 7-319 VIEW PRINT

T
TAB Function 7-320

Statement

w
7-341

TAN Function 7-321 WAIT Statement 7-342
Text Mode 5-4 WHILE...WEND
TIMES Function and Statements 7-343

Statement 7-322 WIDTH Statement 7-345
TIMER Function 7-324 WINDOW
TIMER Statement 5-17,7-351

{ON|OFF|STOP} WRITE Statement 7-359
Statements 7-325 WTIRE# Statement 7-360

TROFF/TRON
Commands 7-326

Type Conversion 3-11
Typewriter Keyboard 2-6

