DSP Solutions
Audio API Library
v1.20

Interface Library
Programmer's Manual

© DSP Solutions, Incorporated, 1993
August 12, 1993

Software Driver Source Code Licensing
Agreement and Limited Warranty

DSP Solutions, Inc. warrants that its product will substantially
conform to the performance specifications contained in this
programmer's manual, provided that the product is used on the
computer hardware and with an operating system for which it
was designed. In the event of any defects in manufacture or
failure to conform to published specifications, DSP Solutions
will, at its option, repair or replace the defective product at no
charge. Defective product must be received at a DSP Solutions
facility within ninety (90) days from date of purchase,
accompanied by proof of purchase. Shipping charges to DSP
Solutions shall be prepaid by purchaser.

The foregoing warranty is exclusive and in lieu of all other
warranties, express or implied, including but not limited to
implied warranty for merchantability or fitness for a particular
purpose. DSP Solutions expressly disclaims any and all liability
for any incidental, special, or consequential damages arising
from the use or inability to use its product, software, or
documentation. In no case shall the liability of DSP Solutions
exceed the cost of the product.

Some States do not allow the limitation or exclusion of implied
warranties or general liability, so the above limitation or
exclusion may not apply, sole by operation of the law.

Software License Agreement

PLEASE READ THIS AGREEMENT BEFORE OPENING THE
ENVELOPE THAT CONTAINS THE DISKETTES. IF YOU DO
NOT WISH TO COMPLY WITH THE TERMS AND
CONDITIONS PRESENTED HERE, RETURN THE ENTIRE
PRODUCT IN ITS ORIGINAL PACKAGING TO YOUR
SUPPLIER.

By opening the envelope, you agree to the following terms and
conditions:

WWW (3 DS-PS N C@ N\

Audio API Interface Library i

You may use this software to create software programs to be
used exclusively with DSP Solutions Audio Adapters. The use
of this software to create programs not capable of use with DSP
Solutions Audio Adapters is not permitted under the terms of this
License. The unauthorized use of this software shall be deemed
a breach of the copyright in the software owned by DSP
Solutions. You may use this software on a single computer, but
may transfer it to another computer as long as it is used on only
one computer at a time. You may copy the software for backup
purposes only. You may merge the software into another
program for your use on a single computer. You may include
the software in your applications and distribute them at your
discretion. You may NOT distribute any portion of the software
not integrated into your application.

You may transfer this software and license to another party if the
other party agrees to accept the terms and conditions of this
license, and you either transfer or destroy all copies in any
format in your possession. This includes all portions of the
software contained or merged into other programs.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE
SOFTWARE, IN WHOLE OR IN PART, EXCEPT AS
EXPRESSLY PROVIDED FOR IN THIS LICENSE.

This license is effective until terminated. You may terminate it
at any time by destroying the software together with all copies,
modifications, and merged portions in any form. The license
also terminates if you fail to comply with the terms and
conditions of this agreement.

This software and accompanying documentation are protected
by United States Copyright law and also by International Treaty
provisions. Any use of the software in violation of these laws
constitutes termination of the license and can be prosecuted.

Audio API Interface Library i

Table Of Contents

INEFOQUCION ... eerteee et e e e rneeeeessssssnreeseseessssssanssnnens 1
Audio Data FOrmMatsccceveeieeenrneriineiinnneeeiinineccinnneeesns 3
The DIGIAP! LIDrary.......cccceeevveircreciiiicennniinnnnneccenieneeens 7
The Sample Programscccveeniininnninneninneeiennnnneeenes 8
PLAY.C .ootiieeteereeeccreessseeeessvneessnnnes s snseesssnnsaees 9
RECORD.Cootietteeeereevrteeerenireessseneeseemeeessssannnees 11
CALLBACK.Cooireervrernreeeeseesssniccsessssstesessnnens 14
CALLIDLE.C.....oveeereeeeirreecrreeessrneessesnmreeeeessressssannes 17
MUSIC.C...coeeeeceeeenreteeener et ste e s ane s s b 19
EMULATE.C....ooeeeeerereccere e sreeeeeecc e 22
Programming Considerations.............cccccvveiniiniienninnnennen. 25
Utility FUNGHIONSc..ooviniiiiiiiiiinecieteces e 28
DSRESELoeeiieeiirieeiccrtreer e seesiiteee s 29
DSGEtStatUuscccveierrrereiecneitiiereennire e 30
DSUNINSEALL......cociireeiiirreers e 31
DSQUETY ..ooecererieeeeieniencrtcsinte et rre e 32
Digitized Audio Control FUNCHONS..........ccceiiiiniiiniiicniens 34
DSGetByteCount..........ccocveivniviiiiniiricieeeiinnnes 35
DSSEtBUSfEr......ccvviieeiiiiccirccric e 36
DSSEtGaINcccirrreeiiirrreee s 37
DSPAUSEoooenrrrireeeeiiiieeeeeesssseneesssesessssssnsesseees 38
DSRESUMEvtiieeiirrirreeeeseeseeereesesssrsnnsnssranseeesaens 39
DSSetCallbackc.cceeveerriiieriiiiiiiiiinniiinns 40
DSSetCallldle........uceeevreererreeniiiiiriireeiiiienec e 43
Audio Playback/Record FUNCHONS...........cccoiiiiniiiiiinicenienns 45
DSBPIAY....cceeiereeeininiiiicreese e 46
DSBPIayStereo..........cccovvivuiinueininitneniennnncieeeneenes 48
DSBREC ..o cevireeetieeeeeeesereeesesres e reee e eanseessnnanees 49
Compatibility FUNCLIONS.........coovinmiiiniiic e 51
Digispeech Format Functionsc..ccceeiiennnnne 52
DSFPIayDIigiccvverueeineiiiieiiiecinieciiieennes 53
DSBPIaYDIgicveerneeeieeaneeniereriieeniieeene 54
CVSD Format FUNCIONSccceeeeviiciiiciici, 55
DSFRECCVSDvveerererrnrrrreeeeeeeeesssnnees 56
DSFPIayCVSD.......coceeveeriiniiiiiiiiiiiieneens 57
DSFRECUCVSD.......covvreeirnrreeeeceecennnneen 58
DSFPIayUCVSDovvireeriniennniiciiieens 59
DSBPIayCVSD......cccceeiiriiirerennniciieneeand 60
DSBRECCVSDcoiieirericrnreeneemeeeee e 61
PCM Format FUNCtions........cccccevriuereeeennnmnnnninninennnaa 62
DSFPIayPCM........oooreeviiniriineieiiiiecieenne 63
DSBPIaYyOKIoooviereeeeriencecnieceienees 64

Audio API Interface Library i

LPC Playback Functionscccccovvuvervevererneerenennns 65

DSLPCStatusccceocvvrrveeeeeeeeeeceeeeenenenn 66
DSFPIayLPCcoometeeireereeeeeeereeeeresenens 67
DSFPIayULPC........ccovvteerteeeereeerenrereennens 68
DSBPIayLPC ...ttt 69
DSBPIayULPC........coooviieereecreeeeceecennaee 70
Tone Generator FUNCLIONS.............ccceevieeieereeceeceeceecteeneae 7
DSToneStartccccoevevvierieeeccre e 72
DSTONeCMd........ooevereeeeeiccieeeeee e 73
DSToneCmd - Set Attenuation..................... 74
DSToneCmd - Set Frequency LSBs............. 75
DSToneCmd - Set Frequency MSBs............ 76
DSTONESLOPooovvvirierriiecieriiinee e eesereere s 77
Synthesizer Emulator Functionsc..ccccevvevuvenveeeneennenne. 78
DSGELENLrY......cocvevverreriieieetteeeeeeee e 79
DSEmuIate.........cccocevveieeeieeeeecer e 80
DSEmulate - SYNTH_INITccouveeueennee. 81
DSEmulate - SYNTH_READ 82
DSEmulate - SYNTH_WRITE...................... 83
DSEmulate - SYNTH_RESETc.......... 84
Synthesized Music FUNctions...........ccccoevuevuvivivecrnenceeeenen. 85
DSInitSynthesizer............ccoccceevrrveeeerecieeceereene 86
DSSetPatchTable.........ccccccvveevuirecrvirecceiee e, 87
DSSetMusicModecccccvvvvrieecieeeeeceeeeeeeenn 89
DSTransp0Secccevveeeecrieeeeirrienereecnneeeeseveessnneees 90
DSMIDINOLEON.......c..eovrreeeiereeree et 91
DSMIDINOtEOST.......ccceeeeecreeeierceee et 92
DSMIDIPgmMChange.........c.cccceevuiviirneeceeseecreeeeene 93
High Level FUNCtions.............ccccoeveeeeevieiccicceceeseceeeen 94
GeNETAL.......ccveeeeeieerere e 95
Driverinstalledcccccovvreeeeeeiieeieecnnneen. 96
Digitized Audiococeeeveeeeieeeicereccec e 97
StartPlay.....cccoceeiecvreeiec e 98
StartRecordccccoveeeeieiiieeeeeeee s 99
TONE GENETator..........ccceeeeireeeernrreenreeeenreeeseeeeennee 100
TONC..cooei ettt 101
PlayOneTonecccccuveveereecneecereeneeieeseneane 102
PlayThreeTone..........cccccevvervevnvrerenrivernnnnnen. 103
Synthesized MUSICccccceveririiiieiieeecceee e 104
DSMUSICINtcccovverereeeieeceeeccceccee, 105
DSSetStatusAddress..........cccovveeevveiennnennn. 106
DSMusicStatus.........ccccceeveenvereevirecieeeeeneen 107
DSSetMusicRate..........cccuveeeeeeveecneeecnnnnee. 108

Audio API Interface Library iv

DSStartMUSIC.........cevveeeiiiieeiiieerreiceeereeenens 109

, DSStopMusIC.........coevvmiiiiiiiniiiiie, 110
DSTerminateMusicC..........cccccoeeiiiiiiiiiiniiennenens 111

Appendix A - Data File Formatsccccocceeiiiiciiiininennnn. 112
Appendix B - DIGLH & DIGIDRV.H........ccccooviriiiiiiiiiinninnns 116
Appendix C - Detecting the Driver.............ccccvvevvinninnninnnns 121
Appendix D - SDK FIleScccocveeiiniiiiiiiiniiiiiiiecrieeneeee 123

Audio API Interface Library v

Introduction

The DSP Solutions Audio API library provides a common high
level language interface for the DSP Solutions LWDIGI and
PDIGI audio drivers. The LWDIGI driver supports the DSP
Solutions DS201 and DS201A Audio Adapter Units. The PDIGI
driver supports the DS301 PORTeABLE Sound and PORTe
ABLE Sound Plus Units. Except where a distinction must be
made, for ease of reading, this manual refers to both the DS201
and the DS201A as DS201A, the PORTeABLE Sound and
PORTeABLE Sound Plus units as DS301, and the LWDIGI and
PDIGI drivers as DIGI.

The functions in this manual apply to all DSP Solutions Audio
Adapters, except where noted under the title bar of each
function description. If the name of an Audio Adapter appears in
square brackets, the function applies only to that unit (or units, if
more than one specified). If no units are listed in the title bar,
that function applies to all units.

The DSP Solutions drivers are Terminate-and-Stay-Resident
(TSR) DOS programs. They can be loaded at the DOS
command prompt prior to executing the application program, or
they can be loaded via the AUTOEXEC.BAT file when the
system is booted. In either case, the appropriate Audio Adapter
Unit MUST be powered up and connected to the PC before
executing the driver. If the driver does not detect the
appropriate Audio Adapter Unit, it will not load.

A DSP Solutions driver consists of at least two files. The loader
file (xx.EXE) scans the PC environment to determine
appropriate loading conditions for the DS201A and driver. The
driver file (xxx.DAT) is a TSR program loaded by the loader file.
If more than one .DAT file is present, the appropriate file is
chosen by the loader according to command line switches and
the PC environment.

Audio APl Interface Library 1

The DS301 PDIGI driver reads the DGSPEECH.INI file to
determine the appropriate port, interrupt, and communications
parameters for loading the .DAT file. The DGSPEECH.INI file
can be located either in the same directory as the PDIGI.EXE
file, or in the directory specified by the DGSPEECH
environment variable. The contents of the DGSPEECH.INI file
are created by the DGSETUP.EXE program, which tests the
CPU, the parallel port, and other factors to determine the best
communications parameters for the DS301 in that environment.

Audio API Interface Library 2

Audio Data Formats

DSP Solutions DIGI drivers support the following audio data
formats.

DIGISPEECH Standard
DIGISPEECH Fixed
DIGISPEECH Realtime [DS301]

These proprietary compression formats are best used
for high quality, natural-sounding voice reproduction.
Audio is sampled at 16 bits, 8000 samples per second
(sps) and compressed to average data rates of 1100,
1625, and 1650 bytes per second (bps), respectively.

Digispeech Standard and Fixed mode are supported for
playback only. Recording of these formats is accom-
plished using the DSP Solutions Encoding Work Station
product.

Digispeech Realtime compression format is similar to
the Digispeech Fixed format, but allows real-time
recording in addition to playback. it produces very good
quality voice reproduction with approximately 4 to 1
compression.

PCM Linear

PCM plLaw

PCM aLaw

PCM Linear 16 bit [DS301]
PCM Stereo [DS301]

PCM Linear is the current industry standard for digitized
audio. It consists of raw, non-compressed 8-bit digitized
audio samples. It's advantages are that it provides rela-
tively good sound reproduction with moderate storage
space requirements, and is supported by nearly every
sound device on the market. The uLaw and aLaw
formats are United States and European
telecommunications industry standards that sample data
with logarithmic scaling, reducing background hiss.

Audio APl Interface Library 3

CvsD

LWDIGI supports recording at 8000 sps, and playback
at 8000-11025,22050, and 44100 sps. PDIGI supports
recording at 8000 and 11025 sps, 8 or 16 bit, and play-
back at 4000-44100 sps, 8 or 16 bit. PCM pLaw and
alLaw are 8-bit only formats.

The DS201 and DS201A do not support aLaw recording.
The DS201 supports only foreground playback and re-
cording at 8000 sps.

The DS301 supports stereo playback of PCM Linear,
PCM pLaw, and PCM Linear 16-bit formats at
11025, 22050, and 44100 sps.

CVSD is a low to moderate quality compression format
included for compatibility with the IBM PS/2 Speech
Adapter, and used mainly in the education market. The
DIGI drivers support both recording and playback of
audio in CVSD format at six different rates, from 1,800
bps to 4,800 bps. It is recommended that Digispeech
Realtime or DVI ADPCM compressions be used for new
designs.

OKI ADPCM [DS201A][DS301]

This compression format is compatible with the 4-bit
ADPCM format used by OKI Semiconductor MSM8205
and MSM5218 ADPCM Speech Synthesis integrated cir-
cuits. The sampling rate can be set to any value from
4,000 to 44,100 sps (DS301) or 8,000 to 11,025 sps
(DS201A).

The DS201A supports OKI ADPCM playback only.
Recording of this format is accomplished using the DSP
Solutions Encoding Work Station product or the DS301.

Audio API Interface Library 4

DVI ADPCM [DS301]

This compression format is compatible with Intel corpo-
ration's DVI audio compression standard, and produces
very good quality voice and music reproduction with ap-
proximately 4 to 1 compression. The sampling rate can

be set to any value from 4,000 to 44,100 sps.

SB ADPCM 2-bit [DS301]
SB ADPCM 2.6 bit [DS301]
SB ADPCM 4 bit [DS301]

These compression formats are compatible with
Creative Lab's Sound Blaster ADPCM formats. The
sampling rate can be set to any value from 4,000 to
44,100 sps. These formats produce poor to moderate
quality sound reproduction, and are included in the
DS301 only for compatibility purposes. It is
recommended that Digispeech Realtime or DVI ADPCM
compressions be used for new designs.

LPC Speech Synthesis [DS201A][DS301]

LPC speech synthesis uses a very low data rate to pro-
duce poor but recognizable speech. It is included in the
DS201A and DS301 for compatibility with the 1BM PS/2
Speech Adapter. The DIGI drivers emulate the IBM
PS/2 Speech Adapter LPC playback functions. The DIGI
drivers implement the following LPC related functions of
PS/2 Speech Adapter API (interrupt 4DH): AX=0200H,
AX=0202H, AX=0300H, AX=0302H. More information
about LPC functions can be found in "PS/2 Speech
Adapter Technical Reference" by IBM, 68X2207 S68X-
2207-00, January 1987.

Audio API Interface Library 5

Three Voice Tone Generator [DS201][DS201A]

The DS201 and DS201A Audio Adapters contain a three
voice tone generator which emulates the Complex
Sound Generator (SN76496N) device used in IBM PC-
Junior and Tandy computers. The DIGI drivers provide
BIOS-level compatibility for programs written for these
machines via the INT 4D API.

Synthesized Music [DS301]

The PDIGI driver provides access to the DS301 music
synthesizer via MIDI-level commands and also provides
a Creative Labs .CMF file format compatible MIDI
interpreter.

Audio API Interface Library 6

The DIGIAPI Library

The DSP Solutions Software Development Kit provides the
application programmer with a library of function calls that inter-
face with the DSP Solutions Audio Drivers. The library is
compatible with the standard drivers for both the DS201/A and
the PORT-ABLE Sound. See appendix D for a list of files on the
SDK disk. :

The DIGIAPI library does not use any compiler specific
functions, and therefore can be linked with programs compiled
for both Microsoft and Borland compilers. The library is supplied
in SMALL and LARGE model versions. Both versions require
FAR pointers for all functions requiring pointers. If you require a
different programming model, please contact DSP Solutions for
assistance.

The function descriptions in this manual each contain a function
call summary, a Description section, a Returns section, and an
Implementation section.

The function summary uses the 'C' language typedefs BYTE,
WORD, and DWORD as follows:

typedef unsigned char BYTE;
typedef unsigned int WORD ;
typedef unsigned long DWORD;

The Descriptions section describes the basic operation of the
function, and lists the values for each parameter, if applicable.

The Returns section lists the possible return values for that
function. The return values are described in Appendix B and
#defined in the DIGI.H header file.

The Implementation section lists the 80x86 register parameters
for the function, including a mnemonic literal for the function
code. The actual function codes can be found in Appendix B
and in the DIGI.H header file.

Audio APl Interface Library 7

The Sample Programs

The DSP Solutions Software Development Kit provides multiple
examples of 'C' language applications that interface with the
DIGIAPI library.

All sample programs included on the SDK disk were written
using Microsoft C, v6.0a. Most of the 'C' programs have been
tested with both the Microsoft and Borland compilers.

The following section provides a brief summary of each source
example. The source code itself is contained in the
corresponding files on the SDK disk.

Audio API Interface Library 8

PLAY.C

PLAY.C illustrates the use of the basic digitized audio functions
for playback of audio files in various formats, both compressed
and uncompressed. The program parses DSP Solution's file
headers, but the code for playing digitized audio is modularized,
and may be used with other file formats.

PLAY.C plays audio data in the background, allowing the user to
control operation with the keyboard while sound is in progress.
Background operation is accomplished via a double-buffering
scheme, with the driver playing data from one buffer while the
foreground process (the application), is filling the other buffer.

The main subroutine in PLAY.C supervises the operation. After
signing on and parsing the command line, it checks to see if a
DIGI driver is installed using the Driverinstalled function.

DSSetup
After opening the file passed to the PLAY.C program, DSSetup

is called to initialize the driver for playback.
DSReset places the driver in a known state.

DSSetBuffer is called twice, once for each buffer. This
application uses static buffers, but a typical application
would dynamically allocate buffers to get the largest
buffer for the available memory. The larger the buffer,
the better, up to a maximum of 64K bytes. Large
buffers allow more time for reading from disk and
performing user 1/O.

DSSetGain is called to set a starting volume level. This
call is not strictly necessary, as DSReset sets a default
gain level, and may be left out if the default is
acceptable.

DSQuery determines the capabilities of the device and
the driver for use by other routines.

Audio API Interface Library 9

ParseFileHeader

If the driver setup is successful, ParseFileHeader is called to
determine the audio data format based on the file header. It
also matches the format and sample rate with the current device
and driver. If anything goes wrong, the program is aborted. If
everything is OK, the data format and sample rate are
displayed.

PlayManager
At this point, the PlayManager routine is called. After starting

the background play operation, it sits in a loop and monitors the
driver progress, filling each buffer from disk as it is used by the
driver, and checking for user input.

StartPlay is a higher-level DIGIAPI function used to
start a background process. It is similar to the DSBPlay
routine except that it works correctly with all data
formats on all DIGI drivers. Typical applications will
chose the low-level routine appropriate for the format or
formats required for that application.

DSPause disables the driver playback function
temporarily. It returns E_IGNORED status if the driver
was already in a paused state.

DSResume restores the driver playback function after a
DSPause call. It returns E_IGNORED status if the
driver was not in a paused state.

DSGetStatus returns the current state of the driver.
While the playback operation is in progress, it will
normally return only E_PAUSE, E_BUFO0, or E_BUF1.
E_BUFO0 and E_BUF1 indicate the buffer currently being
read by the driver. PlayManager uses this value in
combination with it's bufferindex variable to determine
which buffer, if any, it should load from disk. E_PAUSE
indicates, what else, pause state. Any other status is
‘cause for ending the loop. E_OK indicates that we
have played back for the length specified in the
StartPlay invocation, all else is an error.

The main subroutine ends by resetting the driver, closing the

Audio API Interface Library 10

1

3

data file, and exiting.

Audio API Interface Library

11

RECORD.C

RECORD.C illustrates the use of the basic digitized audio
functions for recording audio data in various formats, both
compressed and uncompressed. The program writes DSP
Solutions file headers, but the code for recording digitized audio
is modularized, and may be used with other file formats.

RECORD.C records audio data in the background, allowing the
user to control operation with the keyboard while recording is in
progress. Background operation is accomplished via a double-
buffering scheme, with the driver writing data to one buffer while
the foreground process (the application), is writing the other
buffer to a disk file.

The main subroutine in RECORD.C supervises the operation.
After signing on and parsing the command line, it checks to see
if a DIGI driver is installed using the Driverinstalled function.

Ctri-Break actions are disabled so that the program cannot be
exited without proper cleanup. [f the application is interrupted
while the DIGI driver is recording, it is possible for the next
application executed to be overwritten by the driver. To avoid
this problem, DSReset must be called before exiting the
application.

DSSetup
After opening the file passed to the RECORD.C program,

DSSetup is called to initialize the driver for recording.
DSReset places the driver in a known state.

DSSetBuffer is called twice, once for each buffer. This
application uses static buffers, but a typical application
would dynamically allocate buffers to get the largest
buffer for the available memory. The larger the buffer,
the better, up to a maximum of 64K bytes. Large
buffers allow more time for writing to disk and
performing user 1/O.

DSSetGain is called to set a starting volume level.
This call is not strictly necessary, as DSReset sets a

Audio API Interface Library 12

1

default gain level, and may be left out if the default is
acceptable.

DSQuery determines the capabilities of the device and
the driver for use by other routines.

SetFormat

If the driver setup is successful, SetFormat is called to initialize
the parameters for recording based on the user command line.
It matches the selected format and sample rate with the current
device and driver. [f any incompatibilities are detected, the
program is aborted. If everything is OK, the selected data
format and sample rate are displayed.

WriteFileHeader

If the driver and recording parameter setups are successful,
WriteFileHeader writes an initial file header, with place holders
for the file length, if applicable. This routine is also called after
the recording is complete, to update the header with the final file
length. DSP Solutions file headers are defined in Appendix A,
although we recommend the Windows WAV file format for all
new applications.

RecordManager
At this point, the RecordManager routine is called. This routine

first prompts the user for a key to start recording. After starting
the background record operation, it sits in a loop and monitors
the driver progress, writing each buffer to disk as it is filled by

the driver, and checking for user input.

StartRecord is a higher-level DIGIAPI function used to
start a background process. It is similar to the DSBRec
routine except that it works correctly with all recordable
data formats on all DIGI drivers. Typical applications
will chose the low-level routine appropriate for the
format or formats required for that application.

DSPause disables the driver recording function
temporarily. It returns E_IGNORED status if the driver
was already in a paused state.

DSResume restores the driver recording function after a

Audio API Interface Library 13

DSPause call. It returns E_IGNORED status if the
driver was not in a paused state.

DSGetStatus returns the current state of the driver.
While the recording operation is in progress, it will
normally return only E_PAUSE, E_BUFO, or E_BUF1.
E_BUFO0 and E_BUF1 indicate the buffer currently being
written to by the driver. RecordManager uses this value
in combination with it's bufferindex variable to
determine which buffer, if any, it should write to disk.
E_PAUSE indicates, what else, pause state. Any other
status is cause for ending the loop. E_OK indicates that
we have recorded for the length specified in the
StartRecord invocation, anything else is an error.

DSGetByteCount is called if the record loop is exited
without an error status. It returns the number of bytes
the driver wrote to the last buffer it was writing to. This
buffer has not been written to disk, so we write the
remainder here.

The main subroutine ends by resetting the driver, closing the
data file, and exiting.

Audio API Interface Library 14

CALLBACK.C

CALLBACK.C illustrates the use of the DSSetCallback and
related functions to implement a more sophisticated multiple
buffering scheme. The concept is similar to the double-buffering
scheme used in PLAY.C, but allows more than two buffers.

CALLBACK.C plays an audio data file in the background,
allowing the user to control operation with the keyboard while
sound is in progress. Background operation is accomplished via
an eight buffer scheme, with the driver playing data from one
buffer while the foreground process (the application), is filling
another buffer. The driver and the foreground application rotate
through all eight buffers in sequence.

This method is less efficient than a double-buffered scheme with
two large buffers, but is more fiexible.

CALLBACK.C is a much simpler program than PLAY.C. It
accepts one file name on the command line. The file must be
Linear 8 bit PCM at 8000 sps.

The main subroutine in CALLBACK.C performs all the file
handling and background task management. First, it signs on
and parses the command line.

Driverinstalled is used to detect the presence of a DSP
Solutions Audio driver.

It then opens the file specified on the command line.

DSQuery is used to determine if the driver supports the
callback function.

DSReset places the driver in a known state.

Audio APl Interface Library 15

The eight audio data buffers are filled from the contents of the
first file, and the length of data in each buffer is saved. A flag is
set for each buffer to indicate that it has been loaded. This is
done even if no data was actually placed in the buffer.

DSSetBuffer is called twice, once each for the first two
buffers in the list.

DSSetCallback is used to pass the address of our
callback procedure to the DIGI driver. Note that we
pass the address as a FAR pointer.

StartPlay is a higher-level DIGIAPI function used to
start a background process.

DSPause disables the driver playback function
temporarily.

DSResume restores the driver playback function after a
DSPause call.

DSGetStatus returns the current state of the driver.
The loop is exited based on the result of this call.

DSGetByteCount is called so that we can display the
total number of bytes played to this point.

The main subroutine ends by resetting the driver, closing the
data file, and exiting.

OurCallback

This function is the heart of the callback scheme. First, it
establishes a local data segment, since it is being called from
the driver, and the data segment is unknown. The address of
the internal driver buffer info structure is taken from the ES:DI
registers.

Audio API Interface Library 16

Next, it marks the previous data buffer as empty. It knows this
because that's why it was called. The local index indicating the
buffer that is currently being played is incremented and possibly
wrapped around. The buffer that must be sent is calculated as
the list buffer following the current buffer.

If the buffer to be sent has not been filled yet, an error flag is
set, but life goes on. This routine is not too smart. There are
many possible ways to handle this situation.

The routine now fills the internal driver structure using the
address of the 'to be sent' buffer, and the accompanying format
and sampling information. [f the buffer is empty, we return a 0,
if it contains data, we return a 1.

Audio AP! Interface Library 17

CALLIDLE.C

CALLIDLE.C illustrates the use of the DSSetCallidle and related
functions to implement a completion interrupt callback. The
concept is similar to the double-buffering scheme used in
PLAY.C, but performs a special callback to a application
supplied routine when the operation is truly complete.

CALLIDLE.C plays an audio data file in the background, half at
8000 sps, and half at 11025 sps, allowing the user to control
operation with the keyboard while sound is in progress.
Background operation is accomplished via the standard double-
buffered method, with the driver playing data from one buffer
while the foreground process (the application), is filling the other
buffer.

CALLIDLE.C is a much simpler program than PLAY.C. It
accepts one file name on the command line. The file must be
Linear 8 bit PCM at 8000 sps. The file should be at least 29000
bytes long.

The main subroutine in CALLIDLE.C performs all the file
handling and background task management. First, it signs on
and parses the command line.

Driverinstalled is used to detect the presence of a DSP
Solutions Audio driver.

It then opens the file specified on the command line.

DSQuery is used to determine if the driver supports the
Idle callback function.

DSReset places the driver in a known state.

Audio API Interface Library 18

The four audio data buffers are filled from the contents of the
data file.
DSSetBuffer is called twice, once each for the first two
buffers in the list.

DSSetCallback is used to pass the address of our
callback procedure to the DIGI driver. Note that we
pass the address as a FAR pointer.

StartPlay is a higher-level DIGIAPI function used to
start a background process.

DSPause disables the driver playback function
temporarily.

DSResume restores the driver playback function after a
DSPause call.

DSGetStatus returns the current state of the driver.
The loop is exited based on the result of this call.

DSGetByteCount is called so that we can display the
total number of bytes played to this point.

The main subroutine ends by resetting the driver, closing the
data file, and exiting.

OurCallldle

This function is the heart of the callback scheme. First, it
establishes a local data segment, since it is being called from
the driver, and the data segment is unknown.

If this is the first time the routine has been called, it resets the
audio adapter, otherwise, no action is taken.

Since DSReset clears the callback state, DSSetCallldie must
be re-issued. DSSetBuffer is called to select the second set of
audio data buffers loaded by the main application. DSStartPlay
begins playback of the second set of buffers at the 11025
sample rate.

Audio API Interface Library 19

MUSIC.C

MUSIC.C illustrates the use of the Synthesized Music functions
combined with the basic digitized audio functions.

MUSIC.C first plays a set of scales using a default synthesizer
instrument. It then plays audio data in the background, allowing
the user to control operation with the keyboard while sound is in
progress. During digitized audio playback, semi-random
synthesized notes are played to illustrate the combination of
synthesized and digitized audio.

This program is derived from the PLAY.C program, therefore,
the digitized audio functionality will not be described here.

The main subroutine in MUSIC.C supervises the operation.
After signing on and parsing the command line, it checks to see
if a DIGI driver is installed using the Driverinstalled function.

DSSetu
After opening the digitized audio file passed to the MUSIC.C

program, DSSetup is called to initialize the driver for playback of
digitized and synthesized audio.

DSInitSynthesizer initializes the driver synthesizer in
preparation for the DSMIDI<xxx> calls.

DSMIDIPgmChange is called to load channel 0 with
default instrument 3.

Audio API Interface Library 20

PlayScales
PlayScales contains a loop that plays 8 octaves of 12 notes

each; the entire range of the synthesizer. The scales may be
interrupted by pressing any key.

DSMIDINoteOn is used to play the selected note by
converting the note and octave values to a 1 of 128
pitch value. An intermediate velocity of 65 is used for
every note. Channel 0 is used since the DSSetup
routine loaded an instrument patch on that channel.

After a delay of approximately a quarter-second,
DSMIDINoteOff is used to turn the note off. The same
channel and pitch values are sent to correctly identify
the note to be turned off.

ParseFileHeader

ParseFileHeader is called to determine the digitized audio data
format based on the file header. Since the driver only allows
mixing synthesized audio with 8-bit linear and muLaw PCM,
these are the only file types validated. If everything is OK, the
data format and sample rate are displayed.

PlayManager
At this point, the PlayManager routine is called to manage

digitized audio playback. The only differences in this routine
from it's original in PLAY.C is in the pause and resume handling,
and the addition of code to play random synthesized music
notes. The functions added are described below.

Pause

This function replaces the simple call to DSPause found
in PLAY.C. Before calling DSPause, a command is
sent to turn off the current note. Then Pause waits a
short period of time to ensure that the note off command
is received by the driver before calling the DSPause
function. If the routine did not wait, the DSPause might
take effect before the note off command was processed,
in some cases causing a continuing tone from the
synthesizer during the pause.

Audio API Interface Library 21

Resume

This function contains exactly the same logic as the
PLAY.C routine, but was moved to a subroutine for
symmetry with the Pause function.

PlayRandom
Tumns off the previous note played, then sets a new,

semi-random, note and octave and sends the command
to play the note.

The main subroutine ends by resetting the driver, closing the
data file, and exiting.

Audio API Interface Library 22

EMULATE.C

EMULATE.C illustrates the use of the Synthesizer Emulator
functions combined with the basic digitized audio functions.

EMULATE.C first plays a set of scales using an internally
generated synthesizer instrument. It then plays audio data in the
background, allowing the user to control operation with the
keyboard while sound is in progress. During digitized audio
playback, semi-random synthesized notes are played to
illustrate the combination of synthesized and digitized audio.

This program is derived from the PLAY.C program, therefore,
the digitized audio functionality will not be described here.

The main subroutine in EMULATE.C supervises the operation.
After signing on and parsing the command line, it checks to see
if a DIGI driver is installed using the Driverinstalled function.

DSSetup
After opening the digitized audio file passed to the EMULATE.C

program, DSSetup is called to initialize the driver for playback of
digitized and synthesized audio.

DSGetEntry is used to obtain the entry pointer to the
synthesizer emulator. The result is stored in the local
Emulate pointer.

Emulate is called to initialize the emulator.

Loadlnstrument

Calls Emulate multiple times to load channel 0 of the
emulator with the instrument table values from the
testinstrument structure.

Audio APl Interface Library 23

PlayScales
PlayScales contains a loop that plays 8 octaves of 12 notes

each; the entire range of the synthesizer. The scales may be
interrupted by pressing any key.

PlayNote

Performs a table lookup for the appropriate note
frequency values, then calls Emulate to load the
synthesizer frequency registers. The second call to
Emulate also adds the key-on bit to sound the note.

After a delay of approximately a quarter-second, PlayNote is
called for the next note, without actually turning the note off,
which causes a smoother sequence through the notes.

ParseFileHeader

ParseFileHeader is called to determine the digitized audio data
format based on the file header. Since the driver only allows
mixing synthesized audio with 8-bit linear and muLaw PCM,
these are the only file types validated. If everything is OK, the
data format and sample rate are displayed.

PlayManager
At this point, the PlayManager routine is called to manage

digitized audio playback. The only differences in this routine
from it's original in PLAY.C is in the pause and resume handling,
and the addition of code to play random synthesized music
notes. The functions added are described below.

Pause

This function replaces the simple call to DSPause found
in PLAY.C. Before calling DSPause, a command is
sent to tum off the current note. Then Pause waits a
short period of time to ensure that the note off command
is received by the driver before calling the DSPause
function. If the routine did not wait, the DSPause might
take effect before the note off command was processed,
in some cases causing a continuing tone from the
synthesizer during the pause.

Audio API Interface Library 24

Resume

This function contains exactly the same logic as the
PLAY.C routine, but was moved to a subroutine for
symmetry with the Pause function.

PlayRandom
Sets a new, semi-random, note and octave and calls

PlayNote to play the note.

The main subroutine ends by resetting the driver, closing the
data file, and exiting.

Emulate is called a final time, with the SYNTH_RESET
function code, to stop the synthesizer. This is necessary
because the emulator functions are independent from
the digitized audio driver functions.

Audio AP! Interface Library 25

ProgrammingQConsiderations

The DSP Solutions drivers are Terminate-and-Stay-Resi-
dent (TSR) DOS programs. The application program should
verify that the TSR driver is resident in memory before any
TSR function is called.

A call to ANY TSR that is not resident in memory may
result in a system crash.

When a DIGI driver is loaded into memory, the audio unit is
initialized and tested. The driver is installed as a TSR
program only after the hardware tests have been completed
successfully. If the TSR driver is successfully loaded, it
returns to DOS with an exit code of 0. Otherwise it is not
loaded and the exit code is 255.

When the DIGI loader is executed, it checks if a DSP
Solutions driver for either device family is already installed
in the system. If such a driver exists, the name and version
of the driver is displayed, installation is canceled, and the
loader exits to DOS with an exit code of 0 (the same as a
successful installation).

During all LWDIGI foreground playback and recording
routines, keyboard interrupts are disabled to prevent sound
distortion. The keyboard interrupt is not disabled for back-
ground operations.

Background recording and playback are based on a double
buffer technique. Before starting any background playback
or record process, two buffers must be defined using the
DSSetBuffer function.

Buffers for both foreground and background operations must
not cross 64K segment boundaries.

If a playback or recording routine is called when the driver is
busy (playing or recording a prior request), the driver will
ignore the command and return an error code.

Audio API Interface Library 26

Speech files compressed in Digispeech Standard Format
are limited to a total playback time of 1048 seconds (17.5
minutes).

During background playback or recording, the application is
restricted in using system calls which have a potential of
frequently disabling system interrupts for relatively long
periods of time (more than 50-200 microseconds). The
Audio Adapters have an internal input buffer, used to store
data sent by computer. If this buffer becomes empty
prematurely during playback, sound can be distorted.
Operations that can distort sound during background
playback or recording are listed below:

+ Routines that disable interrupts for long periods of
time.

¢ Changing graphics or text mode during background
playback or recording (most graphics functions are
still allowed).

¢ Using modified system timer (INT 08H) or timer tick
interrupt (INT 1CH) handlers, which can disable
interrupts for long periods of time.

+ Using mouse driver calls during CVSD recording in
background.

+ Excessive disk or CD-ROM accesses. Double
buffers should be set up that are sufficient to
support the sound unit during periods of disk access.

Failure to follow the above restrictions can result in
degradation of the sound quality reproduced by the
DSP Solutions Audio Adapter.

Audio API Interface Library 27

If the DIGIAP! interface library is not used, the DIGI drivers
may be called directly by the application program. Most of
the library calls in this manual have direct equivalents in
driver functions. The implementation section of each
library description indicates the registers that are used to
pass parameters to and from the driver functions. The
calling program must load the appropriate registers and call
interrupt 0x4D. Unless otherwise indicated, the routines
return an integer status code in the AX register. See
appendices for error code descriptions and function codes.

Ex.
mov ax, 0x0403 ; 8et Audio Adapter Gain
; function code
mov bx, gain ; 0 - 31 gain value
int 04Dh ; Call driver via
; software interrupt
mov status, ax ; Save return status

+ Note that whenever a pointer is required, the user must
pass a full FAR pointer (segment and offset) to the
driver function.

Audio API Interface Library 28

Utility Functions

This section describes the low-level control and status functions
of the Audio Adapter Unit that are common to all modes of
operation.

Audio API Interface Library 29

DSReset
#include "digi.h"

int DSReset(void);
Description:

Terminates any current operation, including background
operations, sets default audio gain, and resets the Audio
Adapter hardware. Does not affect buffer definitions
(see DSSetBuffer). Also clears pause state (see
DSPause) and error state.

Returns: E_OK

Implementation:
AX - AX_RESET

Audio API Interface Library 30

DSGetStatus
#include “digi.h"

WORD DSGetStatus(void);
Description:

Returns status of the DSP Solutions driver. The routine
returns E_OK if the driver is idle and no errors have
occurred. DSGetStatus can be called at any time and
does not affect background functions.

DSGetStatus is an integral part of background
operation. When called while a background operation is
in progress the return value will indicate which buffer is
currently in use or if the background operation is
paused.

Returns: E_OK, E_PAUSE, E_BUF0, E_BUF1, E_COM,
E_MUSIC

Implementation:
AX - AX_STATUS

Audio AP! Interface Library 31

DSUninstall

#include "digi.h"
int DSUninstall(void);
Description:

Resets the Audio Adapter Unit and removes the DSP
Solutions driver from memory. The DSP Solutions
driver should be the last driver (TSR) loaded for this
function to work properly. No calls to the driver should
be made after this routine returns.

The DSUninstall routine is called by the DSP Solutions
loader program when the /U parameter is specified.
Application programs may call this directly if TSR
unloading rules are followed properly.

Returns: E_OK

implementation:
AX - AX_UNINSTAL

Audio API Interface Library 32

DSQuery
#include "digi.h"

int DSQuery (WORD _far *majVer, WORD _far *minVer,
DWORD _far *caps)

majVer- FAR pointer to major ID value.

minVer- FAR pointer to minor ID value.

caps - FAR pointer to capabilities flag word
Description:

After the DSQuery call, majVer contains the driver
major version number, minVer contains the driver minor
ID number. The caps variable contains the driver
capabilities flag word in the lower 16 bits and the driver
ID number in the upper sixteen bits.

Specifying a NULL pointer for any of the three
parameters causes DSQuery to skip loading that value.

The caps word is a 32-bit flag word that may be tested

with the following values.

Flag value
CAPS_EPCM
CAPS_LPC
CAPS_TONE
CAPS_201A
CAPS_ADPCM
CAPS_CALLB
CAPS_LPCVOC
CAPS_PCMREC
CAPS_DRIVERID
CAPS_301

CAPS_MIDI
CAPS_DIGI
CAPS_CALLIDLE

Supports
Extended PCM.
LPC speech synthesis
3-voice tone generator
DS201A
OKI ADPCM
Caliback function
LPC vocabulary
PCM recording
Driver ID in upper 16 bits
If this bit is set, the following
bits are also valid:
MIDI Music translation.
Digispeech formats
IDLE callback function

Audio API Interface Library 33

The upper 16 bits of the flag word contain the driver ID
code. This code is available only on newer DSP
Solutions drivers (CAPS_DRIVERID == 1). All other
drivers return O for driver ID. Current ID codes are:

DID_UNK Unknown driver (early version)

DID_201 LWDIGI DS201 driver (new version)
DID_201A LWDIGI DS201A driver (new version)
DID_301 PDIGI Digital Audio only

DID_301M PDIGI Digital Audio / MIDI Synthesizer
DID_301V PDIGI Digital Audio / LPC Vocabulary

DID_301MV PDIGI All features
DID_301TD PDIGI Digispeech format only.
Returns: E_OK, E_UNKNOWN
Implementation:
AX - AX_QUERY

Audio API Interface Library 34

Digitized Audio Control
Functions

This section describes functions that control the digitized audio
capabilities of the Audio Adapter.

Audio API Interface Library 35

DSGetByteCount
#include "digi.n"

int DSGetByteCount(DWORD _far *total);
total - FAR pointer to total byte count of operation.
Description:

Returns the number of bytes which were played back or
recorded from/into the buffer currently in use by the
background operation. If the total parameter is not a
NULL pointer, the long integer it points to is loaded with
the total number of bytes played/recorded since the
background operation was started.

The return value is the current byte index into the active
buffer, and can be used at the end of a record operation
to determine the number of bytes to flush from the last
active buffer.

The total value can be used to synchronize external
events with the audio playback. The value starts at
zero and increases with time, until the final count
specified with the original play command is reached or
the operation is aborted via a call to DSReset.

Returns: See description

Implementation:
AX - AX_GETCNT

Audio AP! Interface Library 36

DSSetBuffer
#include "digi.h"

int DSSetBuffer(int bufferindex, int len, char _far *buf);

bufferindex - Index of buffer being assigned (0 or 1).

len - Length of buffer being assigned.
buf - FAR pointer to buffer being assigned.
Description:

The DSSetBuffer routine is used to assign externally
allocated buffers for background operation.
DSSetBuffer must be called twice before calling any
other driver background function. Buffer length can be
as small as 2 bytes (16 bytes for LWDIGI), but is
recommended to be at least 256 bytes. Typical buffer
length is 8,192.

To redefine a buffer, call this function again with new
buffer parameters. A buffer cannot be redefined when a
driver operation is in progress (even if paused).

During a background operation, the two buffers are used
alternately - one by the background process (driver) and
the other by the foreground (the application program).
DSStatus can be called by the foreground process to
determine which buffer is currently used by background
process, so that the foreground process can load or
save the other buffer.

See DSSetCallback for alternative background

methods.
Returns: E_OK, E_INDEX, E_LENGTH, E_PAUSE,
E_BUFO,

E_BUF1, E_COM, E_MUSIC

Implementation:

AX - AX_SETBUF
BX - buffer index
CX - buffer length

Audio APl Interface Library 37

SI
DS

- buffer offset
- buffer segment

Audio API Interface Library 38

DSSetGain
#include "digi.h"

int DSSetGain(int gain);
gain - Audio volume.
Description:

Set new gain value for playback (DS201,DS301)
operation or recording (DS301 only) operation. Scale
value 0 is silence, 31 is maximum volume. Default
value is 21. The DSSetGain function can be called
before or after starting a playback operation.

When DSSetGain is called during background playback
of CVSD files using the LWDIGI (DS201) driver, the
sound volume does not change until playback of the
next message.

DSSetGain has no effect on the tone generator. The
output sound volume of the tone generator can be
changed using the DSToneCmd function.

Returns: E_OK, E_GAIN, E_PAUSE

Implementation:
AX - AX_SETGAIN
BX - gain

Audio API Interface Library 39

DSPause
#include "digi.h"

int DSPause(void);
Description:

If a background operation is in progress, it will be
paused. Otherwise there is no effect. Use the
DSResume function to resume the operation. This
function also works for the synthesized music interpreter
(DS301).

Returns: E_OK, E_IGNORED, E_COM, E_MUSIC

Implementation:
AX - AX_PAUSE

Audio API Interface Library 40

DSResume
#include "digi.h"

int DSResume(void);
Description:

If a background operation is currently paused, it will be
resumed. Otherwise there is no effect. Use the
DSPause function to pause a background operation.
This function also works for the synthesized music
interpreter (DS301).

Returns: E_OK, E_IGNORED, E_COM, E_MUSIC

Implementation:
AX - AX_RESUME

Audio API Interface Library 41

DSSetCallback
#include "digi.h"

int DSSetCallback(void _far *routine);
routine - FAR pointer to user callback routine.
Description:

Establish a user callback function for background play-
back operation. The callback routine is used to change a
buffer. During background operations, the DIGI driver
calls the specified routine after switching buffers. The
pointer must be a FAR pointer to a LARGE model
routine (i.e. the routine must execute a FAR return when
finished).

Normally, background operation is carried out using the
double-buffering technique supported by the general
functions of the driver. However, the callback
mechanism can be used to implement more
sophisticated multiple buffering schemes.

The DSReset function disables the callback mechanism
and cancels the effect of the previous DSSetCallback
call. The callback mechanism is disabled by default.
Since DSReset disables the callback mechanism, the
DSSetCallback function must be called just before
calling any of the background play or record functions.
It is recommended to call DSReset after the operation
ends.

The application must establish two audio buffers in the
standard way, using DSSetBuffer calls. These two
buffers will be the first two buffers used during the
operation. Subsequent buffers must be defined by the
callback function.

The application's callback function is passed a FAR
pointer to the following internal driver structure in the
processor ES:DI registers.

Audio API Interface Library 42

struct
{
BYTE far *ptr; // Sampled data buffer address.
int buflength; // Length of buffer (bytes).
} bufferCtrl:

The callback function is expected to load this structure
with the address and length of an audio data buffer.
This buffer will be switched to at the completion of the
current buffer.

The callback function must return 1 in AX if more data is
to be played back or recorded. It should return 0 in AX
and set the length member of bufferctrl to 0 when
no more data is available or required.

The driver plays the audio buffers in the following order
after any background start function is called:

1) Buffer #0, (DSSetBuffer call). Callback call
2)1 'Buffer #1, (DSSetBuffer call). Callback call
g)z'Buffer set by callback call #1. Callback call
f;;.Buffer set by callback call #2. Callback call
2)4'Buffer set by callback call #3. Callback call
:f etc.

The callback function is called for the first time when the
driver switches from buffer (1) to (2), as defined above.
When driver switches from (2) to (3), the callback
function is called again, etc.

If the callback function is unable to setup a new buffer
address for some reason, the driver will alternate
between the two most recently defined buffers.

Audio API Interface Library 43

Note that when the callback function modifies the
bufferctrl structure, it also alters the driver's
internal definition of one of the two buffers defined
during the DSSetBuffer calls. Therefore, it is
recommended to redefine the buffers (by using
DSSetBuffer) before the next background operation is
started. ‘

The callback function must load the DS register before
accessing its private data segment. It can use any CPU
registers without saving them. Since the callback
function is called from inside a hardware interrupt
handler, it should not call any DOS or BIOS functions.
The callback function is allowed to do direct memory
manipulations. If the callback function uses more than
few bytes of stack, it should switch to its private stack.
Interrupts are enabled when the callback function is
called, but the run time should be kept to a minimum to
prevent stack overflow, reentrant calls, etc.

The C program source in file CALLBACK.C, supplied
with the Developer's Kit can be used as an example of
an application using the callback mechanism.

Returns: E_OK, E_UNKNOWN

Implementation:
AX - AX_CALLBACK
DX - Callback routine offset
DS - Callback routine segment

Audio API Interface Library 44

DSSetCallldle

#include “digi.h"

int DSSetCalildle(void _far *routine);

routine.

routine - FAR pointer to user Idle callback

Description:

Establish a user callback function for background play-
back operation. The callback routine is used to call an
application supplied routine when the playback or
recording operation is complete. During background
operations, the DIGI driver calls the specified routine
after the last buffer has been played. The pointer must
be a FAR pointer to a LARGE model routine (i.e. the
routine must execute a FAR return when finished).

The DSReset function disables the callback mechanism
and cancels the effect of the previous DSSetCallldle
call. The callback mechanism is disabled by default.
Since DSReset disables the callback mechanism, the
DSSetCallldle function must be called just before
calling any of the background play or record functions.
It is recommended to call DSReset after the operation
ends.

The driver ignores any return value.

The callback function must load the DS register before
accessing its private data segment. It can use any CPU
registers without saving them. Since the callback
function is called from inside a hardware interrupt
handler, it should not call any DOS or BIOS functions.
The callback function is allowed to do direct memory
manipulations. If the callback function uses more than
few bytes of stack, it should switch to its private stack.
Interrupts are enabled when the callback function is
called, but the run time should be kept to a minimum to
prevent stack overflow, reentrant calls, etc.

Audio APl Interface Library 45

The C program source in file CALLIDLE.C, supplied with
the Developer's Kit can be used as an example of an
application using the callback mechanism.

Returns: E_OK, E_UNKNOWN
Implementation:
AX - AX_CALLIDLE
DX - Callback
DS - Callback routine segment

Audio API Interface Library 46

Audio Playback/Record
Functions

The routines in this section provide access to the background
recording and playback functions of the DGl drivers. They
should be used for all new application designs. The routines do
not support the older DS201 audio adapter.

Audio API Interface Library 47

DSBPlay |

#include "digi.h"
[DS201A][DS301]

int DSBPlay(int format, WORD rate, DWORD len);

format - audio data format.

rate - Sample rate in samples per second.

len - Number of bytes to be played.
Description:

Starts background playback of audio data. Background
playback is accomplished via a double-buffering
scheme. Sampled data is read from one buffer while the
other buffer is loaded by the application program.

Background buffers are set up using the DSSetBuffer
function. The DSGetStatus routine is used to
determine the buffer from which DSBPlay is currently
drawing data.

Total playback length is determined by the /len
parameter. The playback operation is terminated by the
driver after /en bytes are sent to the audio device.
Background operation may be aborted using the
DSReset function. If a callback routine is defined (see
DSSetCallback), it is called after the driver switches to
each new buffer.

The rate parameter specifies the playback sampling
rate:

DS201A - 8000 to 11025 samples per second.
22050 sps (DF_PCM8, DF_PCMU, DF_PCMA)
44100 sps (DF_PCM8, DF_PCMU, DF_PCMA)
DS301 - 4000 to 44100 samples per second.

DS201A playback rates of 22050 and 44100 for the
DF_PCM8, DF_PCMU, and DF_PCMA formats is
accomplished via sample-skipping by the LWDIGI

Audio API Interface Library 48

driver. Audio data is actually played at a rate of 11025
Sps.

Audio APl Interface Library 49

DF_DIGIREAL, DF_DIGISTD, and DF_DIGIFIX formats
are played at a sampling rate of 8000 sps, and ignore
the sampleRate parameter.

The format parameter specifies the data format as

follows.

DF_PCM8 0

DF_PCMMU 1

DF_PCMA 2

DF_PCM16 3
[DS301]

DF_sB2 4
[DS301]

DF_SB3 5
[DS301]

DF_SB4 6
[DS301]

DF_OKi4 7

DF_DVIi4 8
[DS301]

DF_DIGIREAL 9
[DS301]

DF_DIGISTD 10

DF_DIGIFIX 11

DF_LPC 12

Returns: E_OK, E_UNDEFINED, E_ARGUMENT,

E_LENGTH, E_NOBUFFER, E_PAUSE,
E_BUFO,
E_BUF1, E_COM, E_TIMEOUT, E_MUSIC

Implementation:

AX - AX_BLAY

BX - data format code

CX - Data length low word
DX - Data length high word
SI - Playback sampling rate

Audio API Interface Library S0

DSBPlayStereo
#include "digi.h"
‘ [DS301]

int DSBPlayStereo(int format, WORD rate, DWORD len);

format - audio data format.

rate - Sample rate in samples per second.

len - Number of bytes to be played.
Description:

Starts background playback of audio data in stereo
mode. This routine operates the same as the DSBPlay
function except that the number of data formats and
sampling rates supported is reduced.

The stereo data must be interleaved single samples, in
left channel - right channel order.

The rate parameter specifies a playback sampling rate
of 11025, 22050, or 44100 sps.

The format parameter specifies the data format as

follows.
DF_PCM8 0
DF_PCMMU 1
DF_PCM16 3
Returns: E_OK, E_UNDEFINED, E_ARGUMENT,

E_LENGTH, E_NOBUFFER, E_PAUSE,
E_BUFO,
E_BUF1, E_COM, E_TIMEOUT, E_MUSIC

Implementation:

AX - AX_BPSTEREO

BX - data format code

CX - Data length low word
DX - Data length high word
ST - Playback sampling rate

Audio API Interface Library 51

DSBRec
#include "digi.h"
[DS201A][DS301)

int DSBRec(int format, WORD rate, DIWORD len);

format - audio data format.

rate - Sample rate in samples per second.

len - Number of bytes to be recorded.
Description:

Starts background recording in specified format. Back-
ground recording is accomplished via a double-buffering
scheme. Sampled data is written to one buffer while the
second buffer is being saved by the application
program.

Background buffers are set up using the DSSetBuffer
function. The DSGetStatus routine is used to
determine the buffer to which DSBRecord is currently
writing data.

Total recording length is determined by the /len
parameter. The recording operation is terminated by the
driver after /en bytes are received from the audio
device. Background operation may be aborted using the
DSReset function. If a callback routine is defined (see
DSSetCallback), it is called after the driver switches to
a new buffer.

The rate parameter specifies a recording sampling rate
of 8000 or 11025 sps (DS301) or 8000 sps (DS201A).

DF_DIGIREAL format is recorded at a sampling rate of
8000 sps, and ignores the rate parameter.

Audio API Interface Library 52

The format parameter specifies the data format as

follows.
DF_PCM8 0
DF_PCMMU 1
DF_PCMA 2
[DS301]
DF_PCM16 3
[DS301]
DF_SB2 4
[DS301]
DF_SB3 5
[DS301]
DF_SB4 6
[DS301]
DF_OKI4 7
[DS301]
DF_DVI4 8
[DS301]
DF_DIGIREAL 9
[DS301]
Returns: E_OK, E_UNDEFINED, E_ARGUMENT,
E_LENGTH, E_NOBUFFER, E_PAUSE,
E_BUFO,
E_BUF1, E_COM, E_TIMEOUT, E_MUSIC
Implementation:
AX - AX_BREC
BX - data format code
CX - Data length low word
DX - Data length high word

Audio API Interface Library 53

Compatibility Functions

The routines in this section are provided for backwards compati-
bility with older DSP Solutions LWDIGI drivers (v1.21A and
under). It is recommended that the DSBPIlay function be used
for new designs.

Audio API Interface Library 54

Digispeech Format Functions

The Digispeech Standard Format is based on a novel algorithm
for sound compression. The algorithm compresses audio to an
average rate of 1100 bytes per second, while preserving high
audio quality and natural sounding voices.

Audio compressed in this format can be played back as a back-
ground process, since only a small part of the processing power
of the CPU is required (e.g. less than 10% for an 8MHz 8088
CPU).

The compression of audio to Digispeech Standard Format is
accomplished by the DSP Solutions Encoding Work Station.

Audio API Interface Library 55

DSFPlayDigi
#include "digi.h"

int DSFPlayDigi(char _far *buf, WORD len);

buf - FAR pointer to sampled data buffer.
len - Number of bytes in buffer to be played.
Description:

Foreground playback of Digispeech STD or FIX (movie)
data formats. Also plays 8-bit PCM formats. Sampled
data is read from buf, and is limited to a maximum of
65535 bytes, as specified by the len parameter.

The data format is determined by the data file header.
The entire header must be passed to the driver as part
of the sampled data. See appendix A for data file
headers.

The routine returns control to the calling program only
when playback is completed. Keyboard interrupts are
disabled during foreground playback operations to
prevent sound distortion.

Returns: E_OK, E_LENGTH, E_PAUSE, E_BUFO,
E_BUF1,
E_COM, E_TIMEOUT, E_MUSIC

Implementation:

AX - AX_FPDIGI

CX - buffer length
SI - buffer offset
DS - buffer segment

Audio API Interface Library 56

DSBPlayDigi

#include "digi.h"

int DSBPlayDigi(DWORD len);

played

len- Total length in bytes of sampled data to be

Description:

Background playback of Digispeech format data. Back-
ground playback is accomplished via a double-buffering
scheme. Sampled data is read from one buffer while the
second buffer is being loaded by the application
program. The buffers are set up via the DSSetBuffer
function. The DSGetStatus routine is used to
determine the buffer from which the DSBPlayDigi
routine is currently drawing data. Background operation
may be aborted using the DSReset function. If a
callback routine is defined (see DSSetCallback), it is
called when the driver switches from the first buffer to
the second buffer.

Playback is limited to a maximum of 1152800 bytes
(1048 seconds, or approx. 17.5 minutes), as specified
by the /en parameter. Note that this parameter specifies
the total length to be played, not the individual buffer
length.

The data format is determined by the data file header.
The entire header must be passed to the driver as part
of the first buffer of sampled data. See appendix A for
data file headers.

Returns: E_OK, E_LENGTH, E_NOBUFFER, E_PAUSE,

E_BUFO0, E_BUF1, E_COM, E_TIMEOUT,
E_MUSIC

Implementation:

AX - AX_BPDIGI
CX - Data length low word

Audio APl Interface Library 57

DX - Data length high word

Audio API Interface Library 58

CVSD Format Functions

Digispeech CVSD functions utilize compression rates from 1800
bytes per second (bps) to 4800 BPS. Speech compressed in
CVSD format at 4800 bps has the same quality as speech com-
pressed in Digispeech format. CVSD compression at rates
above 3000 bps of audio containing music or a combination of
music and speech sometimes results in better sound quality than
Digispeech format compression.

Routines in this section are compatible with the equivalent IBM
Speech Adapter BIOS calls. Programs written using these
functions should operate unchanged using the IBM PS/2 Speech
Adapter, providing that the DSP Solutions Driverinstalled
function is not used to detect a driver. Driverinstalled does not
detect the presence of an IBM PS/2 Speech Adapter.

Audio APl Interface Library 59

DSFRecCVSD
#include "digi.h"

int DSFRecCVSD(char _far *buf.int rate, WORD len);

buf - FAR pointer to sampled data buffer.
rate - Recording rate code.
len - Maximum number of bytes to record.

Description:

Foreground recording in CVSD format. Sampled data is
stored in buf, and is limited to a maximum of 65535
bytes, as specified by the len parameter. The duration of
the recording is determined by the Jen parameter
divided by the rate parameter value, as specified below.

RATE_1800 1800 bytes per second
RATE_2400 2400 bytes per second
RATE_3000 3000 bytes per second
RATE_3600 3600 bytes per second
RATE_4200 4200 bytes per second
RATE_4800 4800 bytes per second

DSFRecCVSD returns control to the calling program
only when recording is complete. Keyboard interrupts
are disabled during foreground playback operations to
prevent sound distortion.

Returns: E_OK, E_CVSDSPEED, E_PAUSE, E_BUFO,
E_BUF1, E_COM, E_TIMEOUT, E_MUSIC

Implementation:

AX - AX_FRCVSD
BL - rate code

CX - Buffer length
SI - Buffer offset
DS - Buffer segment

Audio API Interface Library 60

DSFPlayCVSD
#include "digi.h"

int DSFPlayCVSD(char _far *buf, WORD rate, WORD len);

buf - FAR pointer to sampled data buffer.
rate - Playback rate code.
len - Number of bytes in buffer to be played.

Description:

Foreground playback of CVSD format data. Sampled
data is read from buf, and is limited to a maximum of
65535 bytes, as specified by the /en parameter. The
duration of the playback is determined by the Jen
parameter divided by the rate parameter value.

See the DSFRecCVSD routine description for rate
parameter values.

DSFPlayCVSD returns control to the calling program
only when playback is completed. Keyboard interrupts
are disabled during foreground playback operations to
prevent sound distortion.

Returns: E_OK, E_CVSDSPEED, E_PAUSE, E_BUFO,

E_BUF1, E_COM, E_TIMEOUT, E_MUSIC
Implementation:

AX - AX_FPCVSD

BL - rate code

CX - Buffer length

SI - Buffer offset

DS - Buffer segment

Audio API Interface Library 61

DSFRecUCVSD

#include "digi.h"

int DSFRecUCVSD(char _far *buf,int speed, WORD len);

buf - FAR pointer to sampled data buffer.
speed - Recording rate divisor.
len - Maximum number of bytes to record.

Description:

Same as DSFRecCVSD except that the speed
parameter specifies the sampling rate as follows:

sampling rate = 596656 / speed.

This implementation quantizes the user specified speed
into six levels according to the following rules.

speed parameter

sampling rate

speed < 132 1800 bytes per second
132 <= speed < 152 2400 bytes per second
162 <= speed < 180 3000 bytes per second
180 <= speed < 220 3600 bytes per second
220 <= speed < 284 4200 bytes per second
284 <= speed 4800 bytes per second
Returns: E_OK, E_LENGTH, E_PAUSE, E_BUFO,
E_BUF1,

E_COM, E_TIMEOUT, E_MUSIC

implementation:
AX -
BX -
CX -
SI -
DS -

AX_FRUCVSD
speed parameter
Buffer length
Buffer offset
Buffer segment

Audio APl Interface Library 62

DSFPlayUCVSD

#include "digi.h"

int DSFPlayUCVSD(char _far *buf,int speed, WORD len);

buf - FAR pointer to sampled data buffer.

speed - Playback rate divisor.

len - Number of bytes in buffer to be played.
Description:

Same as DSFPlayCVSD except that the speed
parameter specifies the sampling rate as follows:

sampling rate = 596656 / speed.

The current implementation quantizes the user specified
speed into six levels according to the following rules.

speed parameter

sampling rate

speed < 132 1800 bytes per second
132 <= speed < 152 2400 bytes per second
152 <= speed < 180 3000 bytes per second
180 <= speed < 220 3600 bytes per second
220 <= speed < 284 4200 bytes per second
284 <= speed 4800 bytes per second
Returns: E_OK, E_LENGTH, E_PAUSE, E_BUFO,
E_BUF1,
E_COM, E_TIMEOUT, E_MUSIC
Implementation:
AX - AX_ FPUCVSD

BX -
CX -
SI -
Ds -

speed parameter
Buffer length
Buffer offset
Buffer segment

Audio API Interface Library 63

DSBPlayCVSD
#include "digi.h"

int DSBPlayCVSD(int rate, DWORD len);

rate - Playback rate code (see below).
len - Number of bytes in buffer to be played.
Description:

Starts background playback of CVSD format data.
Background playback is accomplished via a double-
buffering scheme. Sampled data is read from one buffer
while the second buffer is loaded by the application
program.

Background buffers are set up using the DSSetBuffer
function. The DSGetStatus routine is used to
determine the buffer from which the DSBPlayCVSD
routine is currently drawing data.

The total duration of the playback is determined by the
len parameter divided by the rate parameter value. The
playback operation is terminated by the driver after /en
bytes are sent to the Audio Adapter unit. Background
operation may be aborted using the DSReset function. If
a callback routine is defined (see DSSetCallback), it is
called when the driver switches from one buffer to the
other buffer.

See the DSFRecCVSD routine description for rate
parameter values.

Returns: E_OK, E_CVSDSPEED, E_LENGTH,
E_NOBUFFER, E_PAUSE, E_BUF0, E_BUF1,
E_COM, E_TIMEOUT, E_MUSIC

Implementation:

AX - AX_BPCVSD
BL - rate code
CX - Data length low word

Audio API Interface Library 64

DX -

Data length high word

Audio API Interface Library 65

DSBRecCVSD
#include "digi.h"

int DSBRecCVSD(int rate, DIWORD len);

rate - Recording rate code.
len - Number of bytes in buffer to be played.
Description:

Starts background recording in CVSD format. Sampled
data is stored in buf, and is limited to a maximum of
xxxxx bytes, as specified by the Jen parameter.
Background recording is accomplished via a double-
buffering scheme. Sampled data is written to one buffer
while the second buffer is being saved by the application
program.

Background buffers are set up using the DSSetBuffer
function. The DSGetStatus routine is used to
determine the buffer to which the DSBRecCVSD routine
is currently writing data.

The duration of the recording is determined by the /en
parameter divided by the rate parameter value. Back-
ground operation may be aborted using the DSReset
function. If a callback routine is defined (see
DSSetCallback), it is called when the driver switches
from the first buffer to the second buffer.

See the DSFRecCVSD routine description for rate
parameter values.

Returns: E_OK, E_CVSDSPEED, E_LENGTH,
E_NOBUFFER, E_PAUSE, E_BUF0, E_BUF1,
E_COM, E_TIMEOUT, E_MUSIC

Implementation:

AX - AX_BRCVSD
BL - rate code
CX - Data length low word

Audio API Interface Library 66

DX

- Data length high word

Audio AP! interface Library 67

PCM Format Functions

Audio API Interface Library 68

DSFPlayPCM
#include "digi.h"

int DSFPlayPCM(char _far *buf, WORD len);

buf - . FAR pointer to sampled data buffer.
len - Number of bytes in buffer to be played.
Description:

DSFPlayPCM is a synonym for DSFPlayDigi. See that
function description for further information.

Returns: E_OK, E_LENGTH, E_PAUSE, E_BUFO,
E_BUF1,
E_COM, E_TIMEOUT, E_MUSIC

Implementation: See DSFPlayDigi

Audio API Interface Library 69

DSBPlayOKI
#include "digi.h"
[DS201A][DS301]

int DSBPlayOKI(int pole, WORD rate, DWORD len);

pole - Setto 0

rate - Playback sample rate.

len - Number of bytes in buffer to be played.
Description:

Starts background playback of OKI ADPCM format data.

Except for rate and pole values, DSBPlayOKIl is
identical in operation to DSBPlayPCM.

The pole parameter is unused by most of the DIGI
drivers and should be set to 0 for nominal operation.

The rate parameter specifies the playback sampling
rate, 8000 to 11025 samples per second (DS201A), or
4000 to 44100 samples per second (DS301).

Returns: E_OK, E_UNDEFINED, E_ARGUMENT,

E_LENGTH, E_NOBUFFER, E_PAUSE,
E_BUFO,

E_BUF1, E_COM, E_TIMEOUT, E_MUSIC
Implementation:

AX - AX_BPOKIADPCM

BX - pole

CX - Data length low word

DX - Data length high word

SI - Playback sampling rate

Audio API Interface Library 70

LPC Playback Functions

The DS201A and DS301 audio adapters support LPC speech
synthesis compatible with the IBM PS/2 Speech Adapter LPC
implementation. The DIGI drivers implement the following LPC
related functions of PS/2 Speech Adapter API BIOS (interrupt
4DH):

AX=0200H - LPC Status

AX=0201H - *LPPC Speak vocabulary word.,
background.

AX=0202H - LPC Speak data in buffer, background.

AX=0300H - LPC Status

AX=0301H - *LPC Speak vocabulary word.,
foreground.

AX=0302H - LPC Speak data in buffer, foreground.

* - Requires /V command line parameter when driver is loaded.
More information about LPC functions can be found in the PS/2

Speech Adapter Technical Reference by IBM, 68X2207 S68X-
2207-00, January 1987.

Audio APl Interface Library 71

DSLPCStatus

#include "digi.h"
[DS201A][DS301]

int DSLPCStatus(void);
Description:

Returns the status of the current LPC operation.

Returns: E_OK, E_LPC, E_LPCINDEX, E_COM
Implementation:
AX - AX_LPCSTAT

Audio API Interface Library 72

DSFPlayLPC

#include "digi.h"
[DS201A][DS301]

int DSFPlayLPC(int index);
index - LPC vocabulary word index.
Description:
Foreground playback of an LPC vocabulary word. The
word played is determined by the index parameter and
the loaded vocabulary.
This routine requires the DSP Solutions driver to be
loaded with either the /V (use standard IBM LPC
vocabulary) parameter, or with a custom vocabulary file.

The routine returns control to the calling program only
when playback is completed.

Returns: E_OK, E_LPCINDEX, E_COM, E_MUSIC
Implementation:

AX - AX_ FLPCIX

BX - Vocabulary word index

Audio API Interface Library 73

DSFPlayULPC

#include "digi.h"
[DS201A][DS301]

int DSFPlayULPC(char _far *buf , int len);

buf - FAR pointer to LPC data buffer.
len - buffer length (max 4095).
Description:

Foreground playback of an LPC data buffer. The word
or phrase played is determined by the data contained in
the buffer.

The routine returns control to the calling program only
when playback is completed.

Returns: E_OK, E_LPCINDEX, E_COM, E_MUSIC
Implementation:

AX - AX_FLPCBUF

CX - Buffer data length

SI - Buffer offset

DS - Buffer segment

Audio API Interface Library 74

DSBPlayLPC

#include "digi.h"
[DS201A][DS301]

int DSBPlayLPC(int index);
index - LPC vocabulary word index.
Description:

Starts background playback of an LPC vocabulary word.
The word played is determined by the index parameter
and the loaded vocabulary.

This routine requires the DSP Solutions driver to be
loaded with either the /V (use standard IBM LPC
vocabulary) parameter, or with a custom vocabulary file.

The routine returns control to the calling program imme-
diately. Use the DSLPCStatus routine to determine
when playback is completed.

Returns: E_OK, E_LPCINDEX, E_COM, E_MUSIC
Implementation:

AX - AX_BLPCIX

BX - Vocabulary word index

Audio APl Interface Library 75

DSBPlayULPC

#include "digi.h"
[DS201A][DS301]

int DSBPlayULPC(char _far *buf , int len);

buf - FAR pointer to LPC data buffer.
len - buffer length (max 4095).
Description:

Starts background playback of an LPC data buffer. The
word or phrase played is determined by the data
contained in the buffer.

The routine returns control to the calling program imme-
diately. Use the DSLPCStatus routine to determine
when playback is completed.

Returns: E_OK, E_LPCINDEX, E_COM, E_MUSIC
Implementation:

AX - AX BLPCBUF

CX = Buffer data length

SI - Buffer offset

DS - Buffer segment

Audio API Interface Library 76

Tone Generator Functions

Note: The DS301 does not contain a 3-tone generator. The
PDIGI driver emulates the DS201A 3-tone generator functions
using the DS301 music synthesizer.

Audio AP Interface Library 77

DSToneStart

#include "digi.h"

int DSToneStart(void);

Description:
Enable the DIGI driver 3-tone generator functions.
Places the DIGI driver in tone generator mode,
precluding other operations until DSToneStop is called
to exit tone generator mode.

Returns: E_OK, E_PAUSE, E_BUF0, E_BUF1, E_COM,
E_TIMEOUT

Implementation:
AX - AX_STONE

Audio API Interface Library 78

DSToneCmd
#include “digi.h"

int DSToneCmd(BYTE command);
command - BYTE containing command parameter(s).
Description:

Send a command to the 3-tone generator. The
DSToneCmd routine can be called only after
DSToneStart has been successfully called. The
command format is the same as that of the SN76496N
Complex Sound Generator I.C. The DSP Solutions
Audio Adapter does not support a noise generator, as
the SN76496N does, but it supports 3 tone generators,
which can be programmed independently.

There are 3 different sub-commands:

- Set Attenuation.
- Set 4 Least Significant Bits of Frequency Counter.
- Set 6 Most Significant Bits of Frequency Counter.

The tone frequency is physically changed only when
"Set Frequency MSBs" command is sent to the driver.
The “"Set Frequency LSBs" command is latched by the
driver but does not affect the tone frequency until the
upper part of the frequency counter is updated.

The following pages describe the DSToneCmd sub-
command codes.

Returns: E_OK, E_IGNORED, E_COM, E_TIMEOUT
implementation:

AH - AH_CTONE

AL - tone command parameter

Audio APl Interface Library 79

DSToneCmd - Set Attenuation

Command parameter format:

|Bit7 |Bit6 |BitS |Bit4 |Bit3 |Bit2 [Bitl [BitO |
| | | | | | | | |
11 1t1 |t |1 |g3 1lg2 Igl |g0 |

Where: <t1,t0> field is tone selector:

00 : Tone #1 is selected
01 : Tone #2 is selected
10 : Tone #3 is selected

<g3,g92,g1,g0> field is attenuation factor of specified
tone:

0000 - No attenuation
0001 : (-02dB) attenuation
0010 : (-04dB) attenuation
0011 : (-06dB) attenuation
0100 : (-08dB) attenuation
0101 : (-10dB) attenuation
0110 : (-12dB) attenuation
0111 : (-14dB) attenuation
1000 : (-16dB) attenuation
1001 : (-18dB) attenuation
1010 : (-20dB) attenuation
1011 : (-22dB) attenuation
1100 : (-24dB) attenuation
1101 : (-26dB) attenuation
1110 : (-28dB) attenuation
1111 - silence

Audio AP! Interface Library 80

DSToneCmd - Set Frequency LSBs

Command parameter format:

|Bit7 |Bité |Bit5 |Bit4 |Bit3 |Bit2 |Bitl |Bito |

| | | | | | | | |
|1 | t1 | t0 | O fn3 | n2 | nl | n0o |

Where: <t1,t0> field is tone selector:

00 : Tone #1 is selected
01 : Tone #2 is selected
10 : Tone #3 is selected

<n3,n2,n1,n0> field is 4 least significant bits of 10-bit
number, N, used to set the tone frequency.

The frequency of selected tone can be calculated as
follows:

F=23,579,000Hz/32/N

The tone frequency is physically changed only when
"Set Frequency MSBs" command is sent to the driver.
The "Set Frequency LSBs" command is latched by the
driver but does not affect the tone frequency until the
upper part of the frequency counter is updated.

Audio API Interface Library 81

DSToneCmd - Set Frequency MSBs

Command parameter format:

IBit7 |Bit6é |Bit5 |Bit4 |Bit3 |Bit2 |Bitl (BitO |

1 I I] I | I I 1
|l 0 | x |n9 [n8 | n7 | n6 | nS | nd |

Tone number is set to the tone number of the previous
command.

<n9,n8,...,nd4> field is 6 most significant bits of
10-bit number, N, used to set the tone frequency.

The frequency of selected tone can be calculated as
follows:

F=3,579,000Hz/32/N

The tone frequency is physically changed only when
"Set Frequency MSBs" command is sent to the driver.
The "Set Frequency LSBs" command is latched by the
driver but does not affect the tone frequency until the
upper part of the frequency counter is updated.

Audio API Interface Library 82

DSToneStop
#include "digi.h"

int DSToneStop(void);

Description:
Disable the DIGI driver 3-tone generator functions,
allowing other operations. Use DSToneStart to enter
tone generator mode.

Returns: E_OK

Implementation:
AX - AX ETONE

Audio APl Interface Library 83

Synthesizer Emulator Functions

The Synthesizer Emulator Functions of the PDIGI driver are
used to control the DS301 music synthesizer via function calls
that emulate 1/O port writes to the Yamaha YM3812 synthesizer
chip. Applications that are written for this chip can be easily
adapted to the DS301 by adding some initialization code and
changing the appropriate input and output instructions to callis
into these library functions.

The Synthesizer Emulator functions are not available on the
DS201 or DS201A.

The Synthesizer Emulator functions are contained in a library
module separate from the other low-level routines. If none of the
functions are used, the module is not linked into the application,
saving space.

During operation of the Synthesizer Emulator, recording is not
permitted, and playback of digitized audio is limited to eight bit
linear (DF_PCMS8) or mu-Law (DF_PCMMU) PCM.

Audio API Interface Library 84

DSGetEntry

#include "digi.h"
[DS301]

int (_far *DSGetEntry())(int func, BYTE addr, BYTE value);
Description:

Places a far pointer to the synthesizer control function
DSSynthEntry in funcPtr. DSGetEntry requires the
PDRVXM driver loaded with the DOS command line
PDIGI /xM. The upper sixteen bits of the caps value
returned by the DSQuery function contains the constant
DID_301XM if this driver is loaded. NULL is placed in
funcPtr if the appropriate driver is not present.

Returns: E_OK

Implementation:
AX - AX_ DSMGETENTRY

Audio API Interface Library 85

DSEmulate

#include "digi.h"
[DS301]

int DSEmulate(int function, BYTE addr, BYTE value);

function -
addr -
value -

Description:

Synthesizer function

YM3812 register address.

YM3812 register value.

This function is not contained in the DIGIAPI library.
Rather, it is called via a function pointer obtained in a
call to the DSGetEntry function.

DSEmulate provides access to the synthesizer emulator
functions without the overhead of the INT4D interface
used by most of the other library functions.

The emulator subfunctions are used by passing the
- subfunction code in the function parameter and the
YM3812 parameters as required. The following pages
describe the DSEmulate sub-functions.

Returns: E_OK
Implementation:

push
push
push
call

word ptr ymValue
word ptr ymAddr
word ptr function
far ptr funcPtr

;Obtained from
;DSGetEntry.

Audio API Interface Library 86

DSEmulate - SYNTI;I=INIT
#include "digi.h"
[DS301]

int DSEmulate(SYNTH_INIT, 0,0);
Description:

Initialize the Synthesizer Emulator. Places the DS301 in
synthesizer mode and sets the emulator registers to
their default state. Ignored if already in synthesizer
mode.

Returns: E_OK, E_IGNORED

Audio APl Interface Library 87

DSEmulate - SYNTH_READ

#include "digi.h"
[DS301]

int DSEmulate(SYNTH_READ, addr, 0);
addr - YM3812 register address.

Description:
Returns the last value written to the emulator at the
passed YM3812 register address. If no value has been
written, the default value is returned. No error values are

returned.

Returns: See description.

Audio API Interface Library 88

=

]

DSEmulate - SYNTH_WRITE

#include "digi.h"
[DS301]

int DSEmulate(SYNTH_WRITE, addr, value);

addr - YM3812 register address.
value - YM3812 register value.
Description:

Write an eight bit value to an emulated YM3812
register. The emulator generates the appropriate data
to be sent to the DS301.

Returns: E_OK

Audio APl Interface Library 89

DSEmulate - SYNTH_RESET

#include "digi.h"
[DS301]

int DSEmulate(SYNTH_RESET, 0, 0);

Description:
Reset the synthesizer emulator. Stops synthesizer
operation, but does not stop digitized audio if in
progress.
The standard DSReset function will not stop emulator
operation. To completely reset the driver, this function
must be called in addtion to DSReset.

Returns: E_OK

Audio API Interface Library 90

Synthesized Music Functions

The Synthesized Music Functions of the PDIGI driver are used
to control the DS301 music synthesizer. Applications that
provide note to note timing may use these functions to
implement MIDI playback. Synthesized Music is not available on
the DS201 or DS201A.

The Synthesized Music functions are contained in a library
module separate from the other low-level routines. If none of the
functions are used, the module is not linked into the application,
saving space.

The driver provides two levels of support for synthesized music.
The following functions provide no note to note timing control.
They are for use by applications that provide note timing
independently.

The High Level functions provide support for Creative Labs
.CMF file data. Using these functions, combined with some of
the following functions, an application can directly play Creative
Labs .CMF song files.

Audio API Interface Library 91

DSInitSynthesizer

#include "digi.h"
[DS301]

void DSlInitSynthesizer(void);

Description:
Initializes the synthesizer decode portion of the DIGI
driver. Must be called before any other Synthesizer
Music function. This function is called by the
DSMusicOpen high level function.
The DS301 music driver must be loaded (PDIGI /M) for
this function to operate. All other drivers will return
E_INVALID.

Returns: E_OK, E_INVALID

Implementation:
AX - AX_SYNTHINIT

Audio API Interface Library 92

DSSetPatchTable

#include "digi.h"
[DS301]

int DSSetPatchTable(char _far *table, int count);

table -
count -

Description:

FAR pointer to user instrument table.
Number of instruments in user table.

This function is used to specify the set of instrument
definitions for use by the Synthesizer Music note
functions and the High Level music functions.

If this

function is not called, the music functions

reference a set of 16 default instruments contained
within the driver.

The application passes a FAR pointer to it's instrument
table. The table format is the same as used by Creative
Labs .CMF file format instrument block. It is an array of
16-byte structures with the following format.

typedef unsigned char BYTE;
typedef struct _instrumentDef

{
BYTE

BYTE

BYTE

BYTE

BYTE

mSound; // Modulator Sound Characteristics
// Bit 7 : Pitch Vibrato
// Bit 6 : Amplitude Vibrato
// Bit 5 : Sustaining snd type
// Bit 4 : Envelope Scaling
// Bit 3-0 : Frequency Multiplier

cSound; // Carrier Sound Characteristics
// Same bits as mSound.

mScaling;// Modulator Scaling / Output
// Bit 7-6 : Level Scaling
// Bit 5-0 : Output level.

cScaling;// Carrier Scaling / Output
// Same bits as mScaling.
mAttDec; // Modulator Attack/Decay rates

Audio API Interface Library 93

// Bit 7-4 : Attack Rate.
// Bit 3-0 : Decay Rate.
BYTE cAttDec; // Carrier Attack/Decay rates
// Same bits as mAttDec
BYTE mSusRel; // Modulator Sustain/Release rates
// Bit 7-4 : Sustain Level.
// Bit 3-0 : Release Rate.
BYTE cSusRel; // Carrier Sustain/Release rates
// Same bits as mSusRel
BYTE mWaveSel;// Modulator Wave Select
// Bit 7-2 :All O
// Bit 1-0 : Wave Select.
BYTE cWaveSel;// Carrier Wave
// Same bits as mWaveSel
BYTE feedback;// Feedback / connection

// Bit 7-4 : All O
// Bit 3-1 : Modulator Feedback.
// Bit 0 : Connection

BYTE reserved [5]:;
} INSTRUMENT;

Returns: E_OK
implementation:
AX - AX_SETINSTTAB
CX - Instrument count
SI - Instrument array offset
DS - Instrument array segment

Audio AP! Interface Library 94

DSSetMusicMode
#include "digi.h"
[DS301]

int DSSetMusicMode(int mode);

mode - 0 - Melody mode (9 melody voices).
1 - Rhythm mode (7 melody voices, 4 rhythm).

Description:
Select the music synthesizer operating mode. Melody
mode (9 voices) is the default and is set whenever the
DSReset function is called.

Returns: E_OK

Implementation:

AX - AX_MUSICMODE
CX - Music mode

Audio API Interface Library 95

DSTranspose

#include "digi.n"
[DS301]

int DSTranspose(int semiToneOffset);
semiToneOffset - pitch offset value.
Description:

This function causes the Synthesizer Music functions to
play all notes at a higher or lower pitch than specified by
the actual note parameters. The semitoneOffset value
may be positive or negative and is added to each note's
pitch value before the note is played. If the offset would
cause the pitch value to exceed the driver limit, it is
truncated to the appropriate limit.

Returns: E_OK

Implementation:
AX - AX_TRANSPOSE
CX - pitch offset

Audio API Interface Library 86

DSMIDINoteOn

#include "digi.h"
[DS301]

int DSMIDINoteOn(char channel, char note, char velocity);

channel - MIDI channel to play note (range O -
15).

note - MIDI note number (range 0 - 127).

velocity - MIDI note velocity (range 0 - 127).

Description:

Plays a note on the requested channel. Notes are speci-
fied using the same parameters as MIDI format music
data.

The routine returns control to the calling program imme-
diately. The calling program is responsible for timing be-
tween notes. Use the DSMIDINoteOff function to turn
off the note.

Calling the DSMIDINoteOnR function with a velocity of 0
is the same as calling the DSMIDINoteOff function with
the same channel and note parameters.

Returns: E_OK

Implementation:
AX - AX_NOTEON
BX - Channel number
CX - Note
DX - Velocity

Audio API Interface Library 97

DSMIDINoteOff

#include "digi.h"

[DS301]

int DSMIDINoteOff(char channel, char note);

15).

channel - MIDI channel to play note (range 0 -

note - MIDI note number (range 0 - 127).

Description:

Tumns the specified note off on the requested channel.
Notes are specified using the same parameters as MIDI
format music data.

The calling program is responsible for timing between
notes. When turning notes on and off at the same time
interval, perform the DSMIDINoteOff functions first.
This allows the DSMIDINoteOn function to allocate
voices for the notes to be turned on.

Since multiple notes can be played on the same
channel, you must specify the note value in addition to
the channel.

Calling the DSMIDINoteOn function with a velocity of 0
is the same as calling the DSMIDINoteOff function with
the same channel and note parameters.

Returns: E_OK

Implementation:

AX - AX_NOTEOFF

BX - Channel number
CX - Note

Audio API Interface Library 98

DSMIDIPgmChange

#include "digi.h"

[DS301]

int DSMIDIPgmChange(char channel, char program);

15).

channel -MIDI channel to change program (range O -

program -MIDI program number (range 0 - 127).

Description:

Changes the program patch (instrument) for the
specified channel. The program parameter specifies the
index of a instrument in the driver patch table.

The driver provides a default set of 16 patches, or the
DSSetPatchTable function can be called to load a
custom patch table. The program parameter should not
exceed the maximum number of patches currently
available.

The application should turn all notes off for the specified
channel before calling the DSMIDIPgmChange function
to prevent unwanted sound effects from changing the
instrument on an active note.

Returns: E_OK

Implementation:

AX - AX_PROGRAMCHG
BX - Channel number
CX - Program number

Audio APl Interface Library 99

High Level Functions

The High level functions have been added to the PDIGI library
to allow the programmer to talk to the Audio Adapter driver
using a minimum of functions. For example, the Tone function
is the only function needed to access the tone generator, and
the parameters are simplified from the low level requirements.

With the exception of the Driverinstalled function, the high
level functions are contained in a library module separate from
the low-level routines. If none of the high level functions are
used, the module is not linked into the application, saving space.
The Driverinstalled function is contained in the Utility Functions
module.

Audio API Interface Library 100

General

These high level functions are contained in the same library
module as the low-level functions, since they are commonly
used even if none of the other high-level functions are used.

Audio APl Interface Library 101

Driverinstalled
#include "digi.h"

int Driverinstalled(void);
Description:

Determines if a DSP Solutions Audio Adapter driver is
present in memory.

Returns:

TRUE (1) - DSP Solutions driver present.
FALSE (0) - DSP Solutions driver not found.

implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 102

Digitized Audio

These high level functions control the digitized audio functions
of the driver. They are contained in their own DIGIHI library
module within the DIGIAPI library.

Audio API Interface Library 103

StartPlay

#include "digi.h"

int StartPlay(int format, WORD rate, int channels, DOVORD

len);

format - audio data format. _

rate - Sample rate appropriate to format.
channels - 1- mono, 2 - stereo

len - Number of bytes to be played.

Description:

One-stop shopping for the lower level background play-
back routines. Chooses the appropriate low-level
routine for all drivers and audio devices.

The channels parameter is ignored for formats that do
not support stereo. See DSBStereo for applicable
formats.

See the DSBPlay, DSBStereo, DSBPlayCVSD,
DSBPlayOKIl, and DSBPlayDigi descriptions for
parameter values and description of operation for each
data format.

Returns: E_OK, E_UNDEFINED, E_ARGUMENT,

E_LENGTH, E_NOBUFFER, E_PAUSE,

E_BUFO,

E_BUF1, E_COM, E_TIMEOUT, E_MUSIC

Implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 104

StartRecord
#include "digi.h"

int StartRecord(int format, WORD rate,int channels, DWORD
len);

format - audio data format.

rate - Sample rate appropriate to format.

channels - 1- mono, 2 - stereo

len - Number of bytes to be played.
Description:

One-stop shopping for the lower level background play-
back routines. Chooses the appropriate low-level
routine for all drivers and audio devices.

The channels parameter is ignored in the current
version.

See the DSBRec, and DSBRecCVSD descriptions for
parameter values and description of operation for each
data format.

Returns: E_OK, E_UNDEFINED, E_LARGUMENT,
E_LENGTH, E_NOBUFFER, E_PAUSE,
E_BUFO,
E_BUF1, E_COM, E_TIMEOUT, E_MUSIC

Implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 105

Tone Generator

These high level functions control the three-voice tone
generator. They are contained in their own TONE library
module within the DIGIAPI library.

Audio API Interface Library 106

Tone
#include “digi.h"

int Tone(int command,int tone, WORD freq),

command - Tone generator function code.

tone - tone index, range 0 - 2.

freq - frequency, range 160 - 3000
(TONE_FREQ)

attenuation level, range 0 - 15
(TONE_LEVEL)

Description:
One-stop shopping for the lower level Tone Generator
routines. Not all parameters are used by all functions.
The following table lists supported functions and their
required parameters.

command parameter required parameters

TONE_ENABLE none
TONE_DISABLE none
TONE_LEVEL tone,freq(level)
TONE_FREQ tone, freq

Parameters that are not required for a particular function
are ignored, but should be specified as 0.

Returns: E_OK

Implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 107

PlayOneTone
#include "digi.h"

int PlayOneTone(int tone, int freq, int level, WORD duration);
tone -tone index, range 0 - 2.
freq - frequency, range 160 - 3000
level - attenuation level, range 0 - 15
duration - length of tone, in milliseconds.
Description:
Play a tone using a single channel of the 3-tone
generator. The tone generator is enabled and disabled
automatically.
The routine returns only after duration milliseconds.
Returns: E_OK

Implementation: Implemented by the DIGIAP! library.

Audio API Interface Library 108

PlayThreeTone
#include "digi.h"

int PlayThreeTone(int f1, int f2, int f3, int level, WORD
duration);

f1 - frequency of tone channel 1, range 160 - 3000

f2 - frequency of tone channel 2, range 160 - 3000

3 - frequency of tone channel 3, range 160 - 3000

level - attenuation level, range 0 - 15

duration - length of tone, in milliseconds.
Description:

Play a tone using all three channels of the 3-tone

generator. The tone generator is enabled and disabled

automatically.

The routine returns only after duration milliseconds.
Returns: E_OK

Implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 109

Synthesized Music

These high level functions control the music synthesizer. They
are contained in their own HFM library module within the PDIGI
library.

Audio API Interface Library 110

DSMusiclnit
#include "digi.h"

int DSMusiclnit(void);

Description:
Checks for a driver that supports FM Music and
initializes the driver music functions. This function must
be called prior to using the DSReadStatus function. [f
this function is used, the DSSetStatusAddress function
must not be called.

If this function is successful, the calling program must
call the DS TerminateMusic function prior to exiting.

Returns: E_OK

Implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 111

DSSetStatusAddress
#include "digi.h"
[DS301]

void DSSetStatusAddress(BYTE _far *statusByte);
statusByte - FAR pointer to an unsigned char.
Description:

The calling program passes a pointer to it's local music
status byte. The PDIGI driver saves the pointer and
sets the music status byte to 0x00. During music play
operations, the calling program may poll this byte to
obtain the current status of the music. The status byte
is set to OxFF by the DSPlayMusic routine at the start
of play. The status byte is set to 0x00 when play is
halted via DSStopMusic, DSReset or the MIDI STOP
status function code.

The status byte can also be set by the MIDI Control
Change function 0x67. This is a non-standard MIDI
extension that can be used to synchronize an external
program action with FM music events.

Returns: E_OK

Iimplementation:
AX - AX_SETSTATADDR
SI - statusByte offset
DS - statusByte segment

Audio API Interface Library 112

DSMusicStatus
#include "digi.h"
[DS301]

int DSMusicStatus(void);
Description:

Retumn the current contents of the music status byte set
by the DSSetStatusAddress routine. If the value is
non-zero, it is set to OxFF to avoid multiple reads of the
same status value.

The status byte is set to OxFF by the DSPlayMusic
routine at the start of play. The status byte is set to
0x00 when play is halted via DSStopMusic, DSReset
or the MIDI STOP status function code.

The status byte can also be set by the MIDI Control
Change function 0x67. This is a non-standard MIDI
extension that can be used to synchronize an external
program action with music events.

Returns: E_OK

Implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 113

DSSetMusicRate
#include "digi.h"
[DS301)

int DSSetMusicRate(WORD ticksPerSecond);
ticksPerSecond -Music rate (range 20 - 160), default 96.
Description:

Set the rate, in ticks per second, at which the music
interpreter will process MIDI data.

Returns: E_OK

implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 114

DSStartMusic
#include "digi.h"
[DS301]

int DSPlayMusic(char _far *buf);

buf - FAR pointer to buffer containing MIDI format
music data.

Description:
Background play of MIDI format synthesized music.
The routine returns control to the calling program imme-
diately. The calling program can monitor the music

status byte or use DSMusicStatus to determine
completion of play.

Returns: E_OK

implementation:
AX - AX PLAYMUSIC
SI - Music data buffer offset
DS - Music data buffer segment

Audio APl Interface Library 115

DSStopMusic

#include "digi.h"
[DS301]

int DSStopMusic(void);
Description:

Stop current synthesized music play operation.

Returns: E_OK
Implementation:
' AX - 0x0806

Audio API Interface Library 116

DSTerminateMusic

#include "digi.h"

int DSSetMusicCallback(char _far *routine);

Description:
Undo DSMusiclnit.
Returns: E_OK
implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 117

Appendix A - Data File Formats

This appendix defines the DSP Solutions Audio data file
formats. For all new designs, it is recommended that the
Microsoft WAV format be used. All new DSP Solutions utilities
utilize the WAV format.

All values are displayed as hexadecimal. File extensions shown
in parenthesis are suggested, but not enforced.

Digispeech Standard Format file (.PAC)

1 77 | Ny | N, | DIGISPEECH STANDARD FORMAT DATA

Ny:Np - number of frames (N7 is the MSB)

Digispeech Fixed (Movie) Format file (.FIX)

| 78 | N; | N, | DIGISPEECE FIXED FORMAT DATA

Ny:Np - number of frames (N; is the MSB)

Digispeech Realtime Format file (.RPE)

| 79 | DIGISPEECH REALTIME FORMAT DATA

PCM 8 bit linear file (.PCM)

| 80 | PCM LINEAR DATA

PCM 16 bit linear file (.SAM)

| FE | 16 BIT PCM LINEAR DATA

Note: Early .SAM files have no header byte.

Audio API Interface Library 118

PCM A-Law file (.A)

| 55 | PCM A-LAW DATA

PCM Mu-Law file (.U)

| FF | PCM MU-LAW DATA

ADPCM file (OKIDATA ADPCM) (.OKI)

| 11 | N, | OKIDATA ADPCM DATA

Ny - sampling rate index (0-3).

0 8 KHz (4.0 Kbyte/sec)
9 KHz (4.5 Kbyte/sec)
10 KHz (5.0 Kbyte/sec)
11 KHz (5.5 Kbyte/sec)

1
2
3

DVI ADPCM (.DVI)

| 12 | Ny | N, | DVI ADPCM DATA

Np:Nj - samples per second (Nj is the LSB)

Audio API Interface Library 119

Digispeech CVSD file (.CVx) (x = 0-5)

| 44 | N3 | N, | Ng | CVSD DATA

N3 - CVSD speed index (between OOH and
05H)
0 - 1800 bytes/sec.

1 - 2400 bytes/sec.
2 - 3000 bytes/sec.
3 - 3600 bytes/sec.
4 - 4200 bytes/sec.
5 - 4800 bytes/sec.
Ny4:Ng - number of words (N4 is the MSB)

Note: CVSD DATA for both Digispeech CVSD and IBM Linkway
CVSD is the same after the file header.

IBM Linkway CVSD file (.CVS)

INg IN, INg INg INg IRy IX; IX, IX3 Xy | CVSD DATA

Ny:Ng - CVSD DATA Length in ASCII format.
Ry - CVSD speed index (between 0 and 5)
in ASCII format.
0 - 1800 bytes/sec.
1 - 2400 bytes/sec.
2 - 3000 bytes/sec.
3 - 3600 bytes/sec.
4 - 4200 bytes/sec.
5 - 4800 bytes/sec.
ASCII space characters (0x20)

X4:X, -

Note: CVSD DATA for both Digispeech CVSD and IBM Linkway
CVSD is the same after the file header.

Audio API Interface Library 120

Microsoft Windows WAVE (.WAV)

The format of Windows .WAV files is documented in the
Microsoft Multimedia development kit. Please consult the
Microsoft documentation for further information.

The following WAVE file format identifiers are supported by the
DSP Solutions DOS drivers.

#define WAVE_FORMAT_PCM 0x0001
#define WAVE_FORMAT_IBM CVSD 0x0005
#define WAVE_FORMAT ALAW 0x0006
#define WAVE_FORMAT_ MULAW 0x0007
#define WAVE_FORMAT_OKI_ADPCM 0x0010
#define WAVE_FORMAT_ DVI_ADPCM 0x0011
#define WAVE_FORMAT DIGISTD 0x0015
#define WAVE_FORMAT DIGIFIX 0x0016
#idefine WAVE_FORMAT UNKNOWN 0x0000

Audio API Interface Library 121

Appendix B - DIGI.H & DIGIDRV.H

This appendix provides the applicable parts of the DIGI.H and
DIGIDRV.H 'C" language header files.

/* DSQuery flag word definitions. */

0x0001 // DS201A Extended PCM

#define CAPS_EPCM
// features
#define CAPS_LPC 0x0002 // Driver plays LPC data
#define CAPS_TONE 0x0004 // Supports PCJr 3-voice
// tone generator
#define CAPS_201A 0x0008 // Unit is DS201A (or
// compatible)
#define CAPS ADPCM 0x0010 // Driver plays OKI ADPCM
#define CAPS_CALLB 0x0020 // Driver supports bank
// switch callback
#define CAPS_LPCVOC 0x0040 // Driver contains LPC
// vocabulary.
#define CAPS_PCMREC 0x0080 // Driver supports PCM
// recording
#define CAPS DRIVERID 0x0100 // DSQuery returns Driver
// ID in upper 16 bits.
#define CAPS_301 0x0200 // If this bit is set, the
// following are valid:
#define CAPS DIGI 0x0400 // Driver supports
// Digispeech\CVSD\LPC
// formats
#define CAPS_MIDI 0x0800 // Driver contains MIDI
// interpreter.
#define CAPS_CALLIDLE 9x1000 // Driver supports Idle
// callback
/* The upper 16 bits of the flag word */
/* contain the driver ID code. */
#define DID_UNK 0 // Unknown driver (early version)
#define DID_201 1 // LWDIGI DS201 driver (new)
#define DID_201A 2 // LWDIGI DS201A driver (new)
#define DID_301 3 // PDIGI Digital Audio only
#define DID_301M 4 // PDIGI Digital Audio / MIDI
// Synthesizer
#define DID_301V $ // PDIGI Digital Audio / LPC
// Vocabulary
#define DID_301MV 6 // PDIGI All features
#define DID_301TD 7 // PDIGI Digispeech format only.
#define DID_301E 8 // PDIGI Educational LPC Emulator
#define DID_301XM 9 // PDIGI Synthesizer Emulator

Audio API Interface Library 122

#define E_OK 0x0000 // Everything is OK.
#define E_UNDEFINED 0x0001 // Undefined command.
#define E_BUFO 0x0002 // Current buffer is O.
#define B_BUF1 0x0102 // Current buffer is 1.
#define B MUSIC 0x0202 // Driver is in 3-tone
// gen mode.
#define E_COM 0x0003 // Communication error.
#define E_LPC 0x0004 // LPC index out of range.
#define B_CVSDSPEED 0x0005 // CVSD speed is invalid.
#idefine BE_TIMEOUT 0x0006 // Audio Unit not responding.
#define E_ERR 0x0007 // Audio Unit reported an
// error.
#idefine E_PAUSE 0x1002 // DS201 is paused.
#define E_GAIN 0x2001 // Invalid gain index.
#define E_INDEX 0x3001 // Buffer index is invalid.
#define E_LENGTH 0x4001 // Buffer length is invalid.
#define E_NOBUFFER 0x5001 // No buffers were defined.
#define E_IGNORED 0x6001 // Command ignored.
#define E_INVALID 0x6002 // Bad tone index specified.
#define E_BUSY 0x6003 // Driver or device busy
#define E SYNTH 0x6004 // Driver is playing synth
#define E_ARGUMENT 0x7001 // Invalid argument(s).
#define E RATE 0x7001 // Invalid RATE argument.
#define E_FORMAT 0x7002 // Invalid FORMAT argument.
#define E_MODE 0x7003 // Invalid MODE argument
#define E VXD 0x7004 // VxD Request error.
#define B_CHANNELS 0x7005 // Invalid channel count.
/* Digispeech file header byte codes. */
#define H_ADPCM 0x11
#define H PCMDVI 0x12
#define H_MSADPCM 0x13
#define H_SB4 0Ox14
#define H SB3 0x15
#define H SB2 0x16
#define H DIGICVSD 0x44
#define H PCMA 0x55
#define H DIGISTD ox77
#define B_DIGIFIX 0x78
#define H DIGIREAL ox79
#define H_PCMRAW 0x80
#define H_PCMRAW16 OXFE
#define H_PCMMU OXFF

Audio API interface Library

123

/* Codes for data format parameter. */

#define DF_PCMB
#define DF_PCMMU
#define DF_PCMA
#define DF_PCM16
#define DF_SB2
#define DF_SB3
#define DF_SB4
#define DF_OKI4
#define DF_DVI4
#define DF_DIGIREAL
#define DF_DIGISTD 10
#define DF_DIGIFIX 11
#define DF_LPC 12
#define DF_MSADPCM 13
#define DF_CVSD 14

VOO WNHO

/* PlayTone() command parameters. */

#define TONE_ENABLE 0
#define TONE DISABLE 1
#define TONE_LEVEL 2
#define TONE_FREQ 3

#define TONE_FREQ MIN 175
#define TONE_FREQ MAX 3000

/* Synthesizer Emulator function parameter. */

#define SYNTH INIT
#define SYNTH READ
#define SYNTH WRITE
#define SYNTH RESET

wN+=o

Audio API Interface Library 124

/ttﬁ**t*t*i****tttttitﬁ**itt'tt'tttttt*t*tttt*tt*t**ttt**ti/

/* */
/* DIGIDRV.E - Interrupt 4D Low Level function codes. */
/* */
/**t'ﬁi***t**ttﬁttttt**ittittt**i*'t*ﬂttttﬁtﬂtt**ti*****i*ﬁ/
#define SOUND_INT 0x4D

#define AH RESET 0x00

#define AX RESET 0x0000

#define AH_FCVSD 0x01

#define AX_FRCVSD 0x0100

#define AX_FPCVSD 0x0101

#define AX FRUCVSD 0x0102

#define AX FPUCVSD 0x0103

#define AH BLPC 0x02

#define AX LPCSTAT 0x0200

#define AX BLPCIX 0x0201

#define AX_BLPCBUF 0x0202

#define AH FLPC 0x03

#define AX FLPCIX 0x0301

#define AX_FLPCBUF 0x0302

#define AH_GENERAL 0x04

#define AX_STATUS 0x0400

#define AX GETCNT 0x0401

#define AX_SETBUF 0x0402

#define AX_SETGAIN 0x0403

#define AX PAUSE 0x0404

#define AX RESUME 0x0405

#define AX CALLBACK 0x0406

#idefine AX_AUDIOMIX 0x0407

#define AX_CALLIDLE 0x0408

#define AH_BCVSD 0x05

#define AX BPCVSD 0x0500

#define AX_BRCVSD 0x0501

#define AH BDIGI 0x06

#define AX_BPDIGI 0x0600

#define AX FPDIGI 0x0601

#define AH BPCM 0x07

#define AX BPLAY 0x0700

#define AX BPOKIADPCM 0x0701

#define AX BREC 0x0702

#define AX BPSTEREO 0x0703

Audio API Interface Library 125

#define AH FMMUSIC 0x08

AX MUSICINIT 0x0800
AX SETSTATADDR 0x0801
AX SETINSTTAB 0x0802
AX SETMUSICRATE 0x0803
AX TRANSPOSE 0x0804
AX PLAYMUSIC 0x0805

#define
#define
#define
#define
#define
#define

#define AX STOPMUSIC 0x0806
#define AX NOTEON 0x0809
#define AX NOTEOFF 0x080A

#define

#define
#define

AX PROGRAMCHG 0x080B

AX GETCHANNELS 0x0880
AX GETMUSICPTR 0x0881

#define AX GETDSMENTRY 0x0885

#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

AH_STONE 0x0A
AX_STONE 0X0A00
AH_CTONE 0x0B
AX_CTONE 0x0B00
AH_ETONE oxoc
AX_ETONE 0x0C00
AH_UNINSTAL 0x64
AX_UNINSTAL 0x6400
AH_QUERY 0x65
AX_QUERY 0x6500

Audio API Interface Library

126

Appendix C - Detecting the Driver

The application program should test for existence of a DIGI TSR
driver (LWDIGI or PDIGI) in memory before using the driver
services. The test for both drivers is the same, including the
identification string. This test can be done as follows:

Get address of current INT 4DH interrupt handler from
interrupt vector location.

Add 5 (as byte offset) to this address.

The contents of memory at this new address should con-
tain the following text (not zero terminated):

"Digispeech DS201 LinkWay Driver"

If this text is found, then the TSR driver is resident in memory
and can be used. Otherwise the TSR should not be used until it
is successfully loaded.

Example of driver detection code:

fidefine SOUND_INT 0x4D // TSR interrupt.
#define KEY_LENGTH 31 // Length of keyID{]

static char keyID [] =
"Digispeech DS201 LinkWay Driver";

int DriverInstalled (void)
{
int yvette;
char far *strl, far *str2;

// Get pointer to DIGISPEECH TSR
// interrupt routine.

// Translate Interrupt vector to
// memory address.

asm

mov bx, 0 ; ES:BX == 0:(vector * 4)

mov es, bx

mov bx, SOUND_INT

shl bx, 1

shl bx, 1

les bx, ES:[bx] ; ES:BX == pointer to start

Audio API Interface Library 127

; of driver

mov word ptr strl, bx
mov word ptr strl + 2, es

}

/* Set SRC to point to TSR STAMP area */

FP_OFF(strl) += 5;
str2 = (char far *)keyID;

/* Check for Digispeech signature.

for (yvette = 0; yvette < KEY_LENGTH;
{
if (*(strl++) != *(str2++))
return(0); //
}
return(1); //

}

*/

yvette++)

Driver NOT found.

Driver found.

Audio API Interface Library 128

Appendix D - SDK Files

The following files are found on the SDK disk. Consult the
README.TXT file on the disk for any updates to this list or
changes to the manual.

ROOT Directo

README.TXT- SDK Updates and changes document.
PDIGI.EXE - PORT-ABLE Sound Driver Loader
PDRVA.DAT - PORT-ABLE Sound standard driver
PDRVB.DAT - PORT-ABLE Sound standard driver w/music
PDRVC.DAT - PORT-ABLE Sound standard driver w/LPC
PDRVD.DAT - PORT-ABLE Sound standard driver w/both

LWDIGI.EXE - DS201/A Driver Loader

LWDRV.DAT - DS201 standard driver
LWDRVADAT- DS201A standard driver
LWDRVC.DAT- DS201/A standard driver w/LPC
DGSETUP.EXE- PORT-ABLE Sound Setup program
PLAY.EXE - Executable version of play program.
RECORD.EXE - Executable version of record program.
CALLBACK.EXE - Executable version of callback program.
CALLIDLE.EXE - Executable version of callidle program.

MUSIC.EXE - Executable version of Synthesizer Interface program.
EMULATE.EXE - Executable version of Emulator Interface program.
DIGI.CVS - DIGISPEECH Format CVSD File.

DEMO.OKI - OKI ADPCM Sample file.

P1.PCM - Linear 8 bit PCM Sample file.

LIB Directo

DIGIAPIL.LIB - LARGE Model API library
DIGIAPIS LIB - SMALL Model API library

SOURCE Directory

GO.BAT - Generates all sample programs.
PLAY.C - Sample background play program.
RECORD.C - Sample background record program.
CALLBACKC - Sample background play program.
CALLIDLE.C - Sample background play program.
MuUsSIC.C - Sample Synthesizer Interface program.
EMULATE.C - Sample Emulator Interface program.
DIGI.H - ‘C' Header file.

DIGIDRV.H - Low-level 'C' Header file.

Audio API Interface Library 129

B SV s st s sou Sesi ma s s sl sl SR s s -

- OEE (e e O e e O (e e e e e .

