
DSP Solutions

Audio API Library
V1.20

Interface Library
Programmer's Manual

© DSP Solutions, Incorporated, 1993
August 12, 1993

Software Driver Source Code Licensing

Agreement and Limited Warranty

DSP Solutions, Inc. warrants that its product will substantially
conform to the performance specifications contained in this
programmer's manual, provided that the product is used on the
computer hardware and with an operating system for which it
was designed. In the event of any defects in manufacture or
failure to conform to published specifications, DSP Solutions
will, at its option, repair or replace the defective product at no
charge. Defective product must be received at a DSP Solutions
facility within ninety (90) days from date of purchase,
accompanied by proof of purchase. Shipping charges to DSP
Solutions shall be prepaid by purchaser.

The foregoing warranty is exclusive and in lieu of all other
warranties, express or implied, including but not limited to
implied warranty for merchantability or fitness for a particular
purpose. DSP Solutions expressly disclaims any and all liability
for any incidental, special, or consequential damages arising
from the use or inability to use its product, software, or
documentation. In no case shall the liability of DSP Solutions
exceed the cost of the product.

Some States do not allow the limitation or exclusion of implied
warranties or general liability, so the above limitation or
exclusion may not apply, sole by operation of the law.

Software License Agreement

PLEASE READ THIS AGREEMENT BEFORE OPENING THE

ENVELOPE THAT CONTAINS THE DISKETTES. IF YOU DO

NOT WISH TO COMPLY WITH THE TERMS AND

CONDITIONS PRESENTED HERE, RETURN THE ENTIRE
PRODUCT IN ITS ORIGINAL PACKAGING TO YOUR

SUPPLIER.

By opening the envelope, you agree to the following terms and
conditions;

Audio API Interface Library

You may use this software to create software programs to be
used exclusively with DSP Solutions Audio Adapters. The use
of this software to create programs not capable of use with DSP
Solutions Audio Adapters is not permitted under the terms of this
License. The unauthorized use of this software shall be deemed

a breach of the copyright in the software owned by DSP
Solutions. You may use this software on a single computer, but
may transfer it to another computer as long as it is used on only
one computer at a time. You may copy the software for backup
purposes only. You may merge the software into another
program for your use on a single computer. You may include
the software in your applications and distribute them at your
discretion. You may NOT distribute any portion of the software
not integrated into your application.

You may transfer this software and license to another party if the
other party agrees to accept the terms and conditions of this
license, and you either transfer or destroy ail copies in any
format in your possession. This includes ail portions of the
software contained or merged into other programs.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE
SOFTWARE, IN WHOLE OR IN PART, EXCEPT AS
EXPRESSLY PROVIDED FOR IN THIS LICENSE.

This license is effective until terminated. You may terminate it
at any time by destroying the software together with ail copies,
modifications, and merged portions in any form. The license
also terminates if you fail to comply with the terms and
conditions of this agreement.

This software and accompanying documentation are protected
by United States Copyright law and also by Intemational Treaty
provisions. Any use of the software in violation of these laws
constitutes termination of the license and can be prosecuted.

Audio API Interface Library ii

Table Of Contents

Introduction 1

Audio Data Formats 3
The DIGiAPI Library 7
The Sample Programs 8

PLAY.C 9
RECORD.C 11
CALLBACK.C 14
CALLiDLE.C 17
MUSIC.C 19
EMULATE.C 22

Programming Considerations 25
Utility Functions 28

DSReset 29
DSGetStatus 30
DSUninstall 31
DSQuery 32

Digitized Audio Control Functions 34
DSGetByteCount 35
DSSetBuffer 36
DSSetGain 37
DSPause 38
DSResume 39
DSSetCailback 40
DSSetCaiildle 43

Audio Playback/Record Functions 45
DSBPiay 46
DSBPIayStereo 48
DSBRec 49

Compatibility Functions 51
Digispeech Format Functions 52

DSFPiayDigi 53
DSBPIayDigi 54

CVSD Format Functions 55
DSFRecCVSD 56
DSFPiayCVSD 57
DSFRecUCVSD 58
DSFPIayUCVSD 59
DSBPIayCVSD 60
DSBRecCVSD 61

PCM Format Functions 62
DSFPIayPCM 63
DSBPiayOKi 64

Audio API interface Library lii

LPC Playback Functions 65
DSLPCStatus 66

DSFPIayLPC 67
DSFPIayULPC 68
DSBPIayLPC 69
DSBPIayULPC 70

Tone Generator Functions 71

DSToneStart 72

DSToneCmd 73

DSToneCmd - Set Attenuation 74

DSToneCmd - Set Frequency LSBs 75
DSToneCmd - Set Frequency MSBs 76

DSToneStop 77
Synttieslzer Emulator Functions 78

DSGetEntry 79
DSEmulate 80

DSEmulate - SYNTHJNIT 81
DSEmulate - SYNTH_READ 82
DSEmulate - SYNTH WRITE 83

DSEmulate - SYNTH.RESET 84
Synthesized Music Functions 85

DSInltSyntheslzer 86
DSSetPatchTable 87

DSSetMuslcMode 89

DSTranspose 90
DSMIDINoteOn 91
DSMIDINoteOff 92

DSMIDIPgmChange 93
High Level Functions 94

General 95

Driverlnstalled 96

Digitized Audio 97
StartPlay 98
StartRecord 99

Tone Generator 100
Tone 101

PlayOneTone 102
PlayThreeTone 103

Synthesized Music 104
DSMuslclnit 105
DSSetStatusAddress 106

DSMusicStatus 107

DSSetMuslcRate 108

Audio API Interface Library iv

DSStartMusic 109

, DSStopMusic 110
DSTerminateMusic 111

Appendix A - Data File Formats 112
Appendix B - DIGI.H & DiGIDRV.H 116
Appendix C - Detecting the Driver 121
Appendix D - SDK Files 123

Audio API Interface Library

r

1

0

Introduction

The DSP Solutions Audio APi iibrary provides a common high
levei ianguage interface for the DSP Soiutions LWDiGi and
PDIGi audio drivers. The LWDiGi driver supports the DSP
Solutions DS201 and DS201A Audio Adapter Units. The PDIGi
driver supports the DS301 PORT*ABLE Sound and PORT*
ABLE Sound Pius Units. Except where a distinction must be
made, for ease of reading, this manuai refers to both the DS201
and the DS201A as DS201A, the PORT*ABLE Sound and

PORT*ABLE Sound Pius units as DS301, and the LWDiGi and
PDIGi dn'vers as DIGi.

The functions in this manual apply to all DSP Solutions Audio
Adapters, except where noted under the titie bar of each
function description. If the name of an Audio Adapter appears in
square brackets, the function appiies oniy to that unit (or units, if
more than one specified), if no units are listed in the titie bar,
that function appiies to aii units.

The DSP Solutions drivers are Terminate-and-Stay-Resident
(TSR) DOS programs. They can be ioaded at the DOS
command prompt prior to executing the application program, or
they can be loaded via the AUTOEXEC.BAT fiie when the
system is booted, in either case, the appropriate Audio Adapter
Unit MUST be powered up and connected to the PC before
executing the driver, if the driver does not detect the
appropriate Audio Adapter Unit, it wili not load.

A DSP Solutions driver consists of at least two files. The loader

file (xx.EXE) scans the PC environment to determine
appropriate ioading conditions for the DS201A and driver. The
driver fiie (xxx.DAT) is a TSR program ioaded by the loader file.
If more than one .DAT file is present, the appropriate fiie is
chosen by the ioader according to command iine switches and
the PC environment.

Audio API Interface Library

The DS301 PDIGI driver reads the DGSPEECH.INI file to

determine the appropriate port, interrupt, and communications
parameters for loading the .DAT file. The DGSPEECH.INI file
can be located either in the same directory as the PDIGI.EXE
file, or in the directory specified by the DGSPEECH
environment variable. The contents of the DGSPEECH.INI file

are created by the DGSETUP.EXE program, which tests the
CPU, the parallel port, and other factors to determine the best
communications parameters for the DS301 in that environment.

Audio API Interface Library 2

Audio Data Formats

DSP Solutions DIG! drivers support the following audio data
formats.

DI6ISPEECH Standard

DIGISPEECH Fixed

DIGISPEECH Realtime [DS301]

These proprietary compression formats are best used
for high quality, naturai-sounding voice reproduction.
Audio is sampled at 16 bits, 8000 samples per second
(sps) and compressed to average data rates of 1100,
1625, and 1650 bytes per second (bps), respectively.

Digispeech Standard and Fixed mode are supported for
playback only. Recording of these formats is accom
plished using the DSP Solutions Encoding Work Station
product.

Digispeech Realtime compression format is similar to
the Digispeech Fixed format, but allows real-time
recording in addition to playback. It produces very good
quality voice reproduction with approximately 4 to 1
compression.

PCM Linear

PCM pLaw
PCM aLaw

PCM Linear 16 bit [DS301]
PCM Stereo [DS301]

PCM Linear is the current industry standard for digitized
audio. It consists of raw, non-compressed 8-bit digitized
audio samples. It's advantages are that it provides rela
tively good sound reproduction with moderate storage
space requirements, and is supported by nearly every
sound device on the market. The iiLaw and aLaw
formats are United States and European
telecommunications industry standards that sample data
with logarithmic scaling, reducing background hiss.

Audio API Interface Library

LWDIGI supports recording at 8000 sps, and playback
at 8000-11025,22050, and 44100 sps. PDIGI supports
recording at 8000 and 11025 sps, 8 or 16 bit, and play
back at 4000-44100 sps, 8 or 16 bit. PCM pLaw and
aLaw are 8-bit only formats.

The DS201 and DS201A do not support aLaw recording.
The DS201 supports only foreground playback and re
cording at 8000 sps.

The DS301 supports stereo playback of PCM Linear,
PCM pLaw, and PCM Linear 16-bit formats at
11025, 22050, and 44100 sps.

CVSD

CVSD is a low to moderate quality compression format
included for compatibility with the IBM PS/2 Speech
Adapter, and used mainly in the education market. The
DIGI drivers support both recording and playback of
audio in CVSD format at six different rates, from 1,800
bps to 4,800 bps. It is recommended that Digispeech
Realtime or DVIADPCM compressions be used for new
designs.

OKI ADPCM [DS201A][DS301]

This compression format is compatible with the 4-bit
ADPCM format used by OKI Semiconductor MSM8205
and MSM5218 ADPCM Speech Synthesis integrated cir
cuits. The sampling rate can be set to any value from
4,000 to 44,100 sps (DS301) or 8,000 to 11,025 sps
(DS201A).

The DS201A supports OKI ADPCM playback only.
Recording of this format is accomplished using the DSP
Solutions Encoding Work Station product or the DS301.

Audio API Interface Library 4

DVIADPCM [DS301]

This compression format is compatible with Intel corpo
ration's DVI audio compression standard, and produces
very good quality voice and music reproduction with ap
proximately 4 to 1 compression. The sampling rate can
be set to any value from 4,000 to 44,100 sps.

SB ADPCM 2-blt [DS301]
SB ADPCM 2.6 bit [DS301]
SB ADPCM 4 bit [DS301]

These compression formats are compatible with
Creative Lab's Sound Blaster ADPCM formats. The

sampling rate can be set to any value from 4,000 to
44,100 sps. These formats produce poor to moderate
quality sound reproduction, and are included in the
DS301 only for compatibility purposes. It is
recommended that Digispeech Realtime or DVI ADPCM
compressions be used for new designs.

LPC Speech Synthesis [DS201A][DS301]

LPC speech synthesis uses a very low data rate to pro
duce poor but recognizable speech. It is included in the
DS201A and DS301 for compatibility with the IBM PS/2
Speech Adapter. The DIGI drivers emulate the IBM
PS/2 Speech Adapter LPC playback functions. The DIGi
drivers implement the following LPC related functions of
PS/2 Speech Adapter API (interrupt 4DH): AX=0200H,
AX=0202H, /0<=0300H, AX=0302H. More information
about LPC functions can be found in "PS/2 Speech
Adapter Technical Reference" by IBM, 68X2207 S68X-
2207-00, January 1987.

Audio API Interface Library

Three Voice Tone Generator [DS201][DS201A]

The DS201 and DS201A Audio Adapters contain a three
voice tone generator which emulates the Complex
Sound Generator (SN76496N) device used in IBM PC-
Junior and Tandy computers. The DIG I drivers provide
BIOS-level compatibility for programs written for these
machines via the INT 40 API.

Synthesized Music [DS301]

The PDIGI driver provides access to the DS301 music
synthesizer via MIDI-level commands and also provides
a Creative Labs .CMF file format compatible MIDI
interpreter.

Audio API Interface Library 6

The DIGIAPI Library

The DSP Solutions Software Development Kit provides the
application programmer with a library of function calls that inter
face with the DSP Solutions Audio Drivers. The library is
compatible with the standard drivers for both the DS201/A and
the PORT-ABLE Sound. See appendix D for a list of files on the
SDK disk.

The DIGIAPI library does not use any compiler specific
functions, and therefore can be linked with programs compiled
for both Microsoft and Borland compilers. The library is supplied
in SMALL and LARGE model versions. Both versions require
FAR pointers for all functions requiring pointers. If you require a
different programming model, please contact DSP Solutions for
assistance.

The function descriptions in this manual each contain a function
call summary, a Description section, a Returns section, and an
Implementation section.

The function summary uses the '0' language typedefs BYTE,
WORD, and DWORD as follows;

typedef unsigned char BYTE;
typedef unsigned int WOBD;
typedef unsigned long DWOBD;

The Descriptions section describes the basic operation of the
function, and lists the values for each parameter, if applicable.

The Returns section lists the possible return values for that
function. The retum values are described in Appendix B and
#defined in the DIGi.H header file.

The Implementation section lists the 80x86 register parameters
for the function, including a mnemonic literal for the function
code. The actual function codes can be found in Appendix B
and in the DiGI.H header file.

Audio API Interface Library

The Sample Programs

The DSP Solutions Software Development Kit provides multiple
examples of 'C language applications that interface with the
DIGIAPI iibrary.

All sample programs included on the SDK disk were written
using Microsoft C, v6.0a. Most of the 'C programs have been
tested with both the Microsoft and Borland compilers.

The following section provides a brief summary of each source
example. The source code itself is contained in the
corresponding files on the SDK disk.

Audio API Interface Library 8

PLAY.C

PLAY.C illustrates the use of the basic digitized audio functions
for playback of audio files In various formats, both compressed
and uncompressed. The program parses DSP Solution's file
headers, but the code for playing digitized audio Is modularized,
and may be used with other file formats.

PLAY.C plays audio data In the background, allowing the user to
control operation with the keyboard while sound Is In progress.
Background operation Is accomplished via a double-buffering
scheme, with the driver playing data from one buffer while the
foreground process (the application). Is filling the other buffer.

The main subroutine In PLAY.C supervises the operation. After
signing on and parsing the command line. It checks to see if a
DIGI driver Is Installed using the Driverlnstalled function.

DSSetup

After opening the file passed to the PLAY.C program, DSSetup
Is called to Initialize the driver for playback.

DSReset places the driver In a known state.

DSSetBuffer Is called twice, once for each buffer. This

application uses static buffers, but a typical application
would dynamically allocate buffers to get the largest
buffer for the available memory. The larger the buffer,
the better, up to a maximum of 64K bytes. Large
buffers allow more time for reading from disk and
performing user I/O.

DSSetGaIn Is called to set a starting volume level. This
call Is not strictly necessary, as DSReset sets a default
gain level, and may be left out If the default is
acceptable.

DSQuery determines the capabilities of the device and
the driver for use by other routines.

Audio API Interface Library 9

ParseFileHeader

If the driver setup is successful, ParseFileHeader is called to
determine the audio data format based on the file header. It

also matches the format and sample rate with the current device
and driver. If anything goes wrong, the program is aborted. If
everything is OK, the data format and sample rate are
displayed.

PlavManaaer

At this point, the PlayManager routine is called. After starting
the background play operation, it sits In a loop and monitors the
driver progress, filling each buffer from disk as it is used by the
driver, and checking for user input.

StartPlay is a higher-levei DIGIAPI function used to
start a background process. It is similar to the DSBPlay
routine except that it works correctly with all data
formats on all DIGI drivers. Typical applications will
chose the low-level routine appropriate for the format or
formats required for that application.

DSPause disables the driver playback function
temporarily. It returns EJGNORED status if the driver
was already in a paused state.

DSResume restores the driver playback function after a
DSPause call. It retums EJGNORED status if the
driver was not in a paused state.

DSGetStatus retums the current state of the driver.

While the playback operation is in progress, it will
normally return only E_PAUSE, E_BUFO, or E_BUF1.
E_BUFO and E_BUF1 indicate the buffer currently being
read by the driver. PlayManager uses this value In
combination with it's bufferlndex variable to determine

which buffer, if any, it should load from disk. E.PAUSE
Indicates, what else, pause state. Any other status Is
cause for ending the loop. E_OK Indicates that we
have played back for the length specified in the
StartPlay invocation, all else is an error.

The main subroutine ends by resetting the driver, closing the

Audio API Interface Library 10

data file, and exiting.

Audio API Interface Library 11

RECORD.C

RECORD.C illustrates the use of the basic digitized audio
functions for recording audio data In various formats, both
compressed and uncompressed. The program writes DSP
Solutions file headers, but the code for recording digitized audio
Is modularized, and may be used with other file formats.

RECORD.C records audio data In the background, allowing the
user to control operation with the keyboard while recording Is In
progress. Background operation Is accomplished via a double-
buffering scheme, with the driver writing data to one buffer while
the foreground process (the application). Is writing the other
buffer to a disk file.

The main subroutine In RECORD.C supervises the operation.
After signing on and parsing the command line. It checks to see
If a DIGI driver Is Installed using the Driverlnstalled function.

Ctrl-Break actions are disabled so that the program cannot be
exited without proper cleanup. If the application Is Interrupted
while the DIGI driver Is recording, it is possible for the next
application executed to be overwritten by the driver. To avoid
this problem, DSReset must be called before exiting the
application.

DSSetup

After opening the file passed to the RECORD.C program,
DSSetup Is called to Initialize the driver for recording.

DSReset places the driver in a known state.

DSSetBuffer is called twice, once for each buffer. This

application uses static buffers, but a typical application
would dynamically allocate buffers to get the largest
buffer for the available memory. The larger the buffer,
the better, up to a maximum of 64K bytes. Large
buffers allow more time for writing to disk and
performing user I/O.

DSSetGain Is called to set a starting volume level.
This call Is not strictly necessary, as DSReset sets a

Audio API Internee Library 12

default gain level, and may be left out if the default is
acceptable.

DSQuery determines the capabilities of the device and
the driver for use by other routines.

SetFormat

If the driver setup is successful, SetFormat is called to Initialize
the parameters for recording based on the user command line.
It matches the selected format and sample rate with the current
device and driver. If any Incompatibilities are detected, the
program is aborted. If everything is OK, the selected data
format and sample rate are displayed.

WhteFileHeader

If the driver and recording parameter setups are successful,
WnteFileHeader vrtites an initial file header, with place holders
for the file length. If applicable. This routine is also called after
the recording is complete, to update the header with the final file
length. DSP Solutions file headers are defined in Appendix A,
although we recommend the Windows .WAV file format for all
new applications.

RecordManaaer

At this point, the RecordManager routine is called. This routine
first prompts the user for a key to start recording. After starting
the background record operation, it sits in a loop and monitors
the driver progress, writing each buffer to disk as it is filled by
the driver, and checking for user input.

StartRecord is a higher-level DIGIAPI function used to
start a background process. It is similar to the DSBRec
routine except that it works correctiy with all recordable
data formats on all DIGI drivers. Typical applications
will chose the low-level routine appropriate for the
format or formats required for that application.

DSPause disables the driver recording function
temporarily. It retums E_IGNORED status If the driver
was already In a paused state.

DSResume restores the driver recording function after a

Audio API Interface Library 13

DSPausecall. It returns EJGNORED status if the
driver was not In a paused state.

DSGetStatus returns the current state of the driver.

While the recording operation is in progress, it will
normally return only E_PAUSE, E_BUFO, or E_BUF1.
E_BUFO and E_BUF1 indicate the buffer currently being
written to by the driver. RecordManager uses this value
in combination with it's bufferindex variable to

determine which buffer, if any, it should write to disk.
E_PAUSE indicates, what else, pause state. Any other
status is cause for ending the loop. E_OK indicates that
we have recorded for the length specified in the
StaitRecord invocation, anything else is an error.

DSGetByteCount is called if the record loop is exited
without an error status, it retums the number of bytes
the driver wrote to the last buffer it was writing to. This
buffer has not been written to disk, so we write the
remainder here.

The main subroutine ends by resetting the driver, closing the
data file, and exiting.

Audio API Interface Library 14

CALLBACK.C

CALLBACK.C illustrates the use of the DSSetCallback and

related functions to Implement a more sophisticated multiple
buffering scheme. The concept Is similar to the double-buffering
scheme used In PLAY.C, but allows more than two buffers.

CALLBACK.C plays an audio data file In the background,
allowing the user to control operation with the keyboard while
sound Is In progress. Background operation Is accomplished via
an eight buffer scheme, with the driver playing data from one
buffer while the foreground process (the application). Is filling
another buffer. The driver and the foreground application rotate
through all eight buffers In sequence.

This method Is less efficient than a double-buffered scheme with

two large buffers, but Is more flexible.

CALLBACK.C Is a much simpler program than PLAY.C. It
accepts one file name on the command line. The file must be
Linear 8 bit PCM at 8000 sps.

The main subroutine In CALLBACK.C performs all the file
handling and background task management. First, It signs on
and parses the command line.

Driverlnstalled Is used to detect the presence of a DSP
Solutions Audio driver.

It then opens the file specified on the command line.

DSQuery Is used to determine If the driver supports the
callback function.

DSReset places the driver In a known state.

Audio API Interface Library 15

The eight audio data buffers are fiiied from the contents of the
first file, and the length of data in each buffer is saved. A flag is
set for each buffer to indicate that it has been loaded. This is

done even if no data was actually placed in the buffer.

DSSetBuffer is called twice, once each for the first two
buffers in the list.

DSSetCallback is used to pass the address of our
callback procedure to the DIGI driver. Note that we
pass the address as a FAR pointer.

StartPlay is a higher-level DIG I API function used to
start a background process.

DSPause disables the driver playback function
temporarily.

DSResume restores the driver playback function after a
DSPause call.

DSGetStatus returns the current state of the driver.

The loop is exited based on the result of this call.

DSGetByteCount is called so that we can display the
total number of bytes played to this point.

The main subroutine ends by resetting the driver, closing the
data file, and exiting.

OurCallback

This function is the heart of the callback scheme. First, it
establishes a local data segment, since it is being called from
the driver, and the data segment is unknown. The address of
the internal driver buffer info structure is taken from the ES:DI

registers.

Audio API Interface Library 16

Next, it marks tlie previous data buffer as empty. It knows this
because that's why it was called. The local Index Indicating the
buffer that Is currently being played Is Incremented and possibly
wrapped around. The buffer that must be sent Is calculated as
the list buffer following the current buffer.

If the buffer to be sent has not been filled yet, an error flag Is
set, but life goes on. This routine Is not too smart. There are
many possible ways to handle this situation.

The routine now fills the Intemal driver structure using the
address of the 1o be sent' buffer, and the accompanying format
and sampling Information. If the buffer Is empty, we return a 0,
If It contains data, we return a 1.

Audio API interface Library 17

CALLIDLE.C

CALLIDLE.C illustrates the use of the DSSetCallidie and related
functions to implement a completion interrupt callback. The
concept is similar to the double-buffering scheme used in
PLAY.C, but performs a special callback to a application
supplied routine when the operation is truly complete.

CALLIDLE.C plays an audio data file in the background, half at
8000 sps, and half at 11025 sps, allowing the user to control
operation with the keyboard while sound is in progress.
Background operation is accomplished via the standard double-
buffered method, with the driver playing data from one buffer
while the foreground process (the application), is filling the other
buffer.

CALLIDLE.C is a much simpler program than PLAY.C. It
accepts one file name on the command line. The file must be
Linear 8 bit PCM at 8000 sps. The file should be at least 29000
bytes long.

The main subroutine in CALLIDLE.C performs all the file
handling and background task management. First, it signs on
and parses the command line.

Driverlnstalled is used to detect the presence of a DSP
Solutions Audio driver.

It then opens the file specified on the command line.

DSQuery is used to determine if the driver supports the
Idle callback function.

DS Reset places the driver in a known state.

Audio API Interface Library 18

The four audio data buffers are filled from the contents of the

data file.

DSSetBuffer Is called twice, once each for the first two

buffers In the list.

DSSetCallback Is used to pass the address of our
callback procedure to the DIGI driver. Note that we
pass the address as a FAR pointer.

StartPlay Is a higher-level DIGIAPI function used to
start a background process.

DSPause disables the driver playback function
temporarily.

DSResume restores the driver playback function after a
DSPause call.

DSGetStatus returns the current state of the driver.

The loop Is exited based on the result of this call.

DSGetByteCount Is called so that we can display the
total number of bytes played to this point.

The main subroutine ends by resetting the driver, closing the
data file, and exiting.

OurCallldle

This function Is the heart of the callback scheme. First, It
establishes a local data segment, since It Is being called from
the driver, and the data segment Is unknown.

If this Is the first time the routine has been called. It resets the

audio adapter, othenvlse, no action Is taken.

Since DSReset clears the callback state, DSSetCailldle must
be re-Issued. DSSetBuffer Is called to select the second set of

audio data buffers loaded by the main application. DSStartPiay
begins playback of the second set of buffers at the 11025
sample rate.

Audio API interface Library 19

MUSIC.C

MUSIC.C illustrates ttie use of the Synthesized Music functions
combined with the basic digitized audio functions.

MUSIC.C first plays a set of scales using a default synthesizer
Instrument. It then plays audio data In the background, allowing
the user to control operation with the keyboard while sound Is In
progress. During digitized audio playback, semi-random
synthesized notes are played to Illustrate the combination of
synthesized and digitized audio.

This program Is derived from the PLAY.C program, therefore,
the digitized audio functionality will not be described here.

The main subroutine In MUSIC.C supervises the operation.
After signing on and parsing the command line. It checks to see
If a DIGI driver Is Installed using the Driverlnstailed function.

DSSetup

After opening the digitized audio file passed to the MUSIC.C
program, DSSetup Is called to Initialize the driver for playback of
digitized and synthesized audio.

DSInitSynthesizer Initializes the driver synthesizer in
preparation for the DSMIDI<xxx> calls.

DSMIDIPgmChange is called to load channel 0 with
default Instrument 3.

Audio API Interface Library 20

PlavScales

PlayScales contains a loop that plays 8 octaves of 12 notes
each; the entire range of the synthesizer. The scales may be
Interrupted by pressing any key.

DSMIDINoteOn Is used to play the selected note by
converting the note and octave values to a 1 of 128
pitch value. An Intermediate velocity of 65 Is used for
every note. Channel 0 Is used since the DSSetup
routine loaded an Instrument patch on that channel.

After a delay of approximately a quarter-second,
DSMIDINoteOff Is used to turn the note off. The same

channel and pitch values are sent to correctly Identify
the note to be turned off.

ParseFileHeader

ParseFileHeader Is called to determine the digitized audio data
format based on the file header. Since the driver only allows
mixing synthesized audio with 8-blt linear and muLaw POM,
these are the only file types validated. If everything Is OK, the
data format and sample rate are displayed.

PlavManaaer

At this point, the PlayManager routine Is called to manage
digitized audio playback. The only differences In this routine
from It's original In PLAY.C Is In the pause and resume handling,
and the addition of code to play random synthesized music
notes. The functions added are described below.

Pause

This function replaces the simple call to DSPause found
In PLAY.C. Before calling DSPause, a command is
sent to turn off the current note. Then Pause waits a

short period of time to ensure that the note off command
Is received by the driver before calling the DSPause
function. If the routine did not wait, the DSPause might
take effect before the note off command was processed.
In some cases causing a continuing tone from the
synthesizer during the pause.

Audio API Interface Library 21

Resume

This function contains exactly the same logic as the
PLAY.C routine, but was moved to a subroutine for
symmetry with the Pause function.

PlavRandom

Turns off the previous note played, then sets a new,
semi-random, note and octave and sends the command
to play the note.

The main subroutine ends by resetting the driver, closing the
data file, and exiting.

Audio API Interface Library 22

EMULATE.C

EMULATE.C illustrates the use of the Synthesizer Emulator
functions combined with the basic digitized audio functions.

EMULATE.C first plays a set of scales using an Intemaliy
generated synthesizer Instrument. It then plays audio data In the
background, allowing the user to control operation with the
keyboard while sound Is In progress. During digitized audio
playback, semi-random synthesized notes are played to
Illustrate the combination of synthesized and digitized audio.

This program Is derived from the PLAY.C program, therefore,
the digitized audio functionality will not be described here.

The main subroutine In EMULATE.C supervises the operation.
After signing on and parsing the command line. It checks to see
If a DIGI driver Is Installed using the Driverlnstalled function.

DSSetup

After opening the digitized audio file passed to the EMULATE.C
program, DSSetup Is called to Initialize the driver for playback of
digitized and synthesized audio.

DSGetEntry Is used to obtain the entry pointer to the
synthesizer emulator. The result Is stored In the local
Emulate pointer.

Emulate Is called to Initialize the emulator.

Loadlnstrument

Calls Emulate multiple times to load channel 0 of the
emulator with the Instrument table values from the

testlnstrument structure.

Audio API interface Library 23

PlavScales

PlayScales contains a loop that plays 8 octaves of 12 notes
each; the entire range of the synthesizer. The scales may be
Interrupted by pressing any key. wm

PlavNote

Performs a table lookup for the appropriate note ^
frequency values, then calls Emulate to load the
synthesizer frequency registers. The second call to
Emulate also adds the key-on bit to sound the note.

After a delay of approximately a quarter-second, PlayNote Is
called for the next note, without actually tuming the note off,
which causes a smoother sequence through the notes. pp,

ParseFileHeader

ParseFileHeader Is called to determine the digitized audio data
format based on the file header. Since the driver only allows
mixing synthesized audio with 8-blt linear and muLaw PCM,
these are the only file types validated. If everything Is OK, the
data format and sample rate are displayed.

PlavManaaer

At this point, the PlayManager routine Is called to manage ^
digitized audio playback. The only differences In this routine
from It's original In PLAY.C Is in the pause and resume handling,
and the addition of code to play random synthesized music
notes. The functions added are described below.

Pause

This function replaces the simple call to DSPause found
In PLAY.C. Before calling DSPause, a command Is
sent to tum off the current note. Then Pause waits a

short period of time to ensure that the note off command
is received by the driver before calling the DSPause
function. If the routine did not wait, the DSPause might
take effect before the note off command was processed.
In some cases causing a continuing tone from the
synthesizer during the pause.

Audio API Interface Library 24

This function contains exactly the same logic as the
PlJkY.C routine, but was moved to a subroutine for

^ symmetry with the Pause function.

PlavRandom

Sets a new, semi-random, note and octave and cails
PlayNote to play the note.

The main subroutine ends by resetting the driver, dosing the
data fiie, and exiting.

Emulate is cailed a final time, with the SYNTH_RESET
fundion code, to stop the synthesizer. This is necessary

^ because the emulator fundions are independent from
the digitized audio driver fundions.

Audio API Interface Library 25

Programming Considerations

The DSP Solutions drivers are Terminate-and-Stay-Resi-
dent (TSR) DOS programs. The application program should
verify that the TSR driver is resident in memory before any
TSR function is called.

A call to ANY TSR that is not resident in memory may
result in a system crash.

• When a DIGI driver is ioaded into memory, the audio unit is
initialized and tested. The driver is installed as a TSR

program only after the hardware tests have been completed
successfully. If the TSR driver is successfuiiy loaded, it
returns to DOS with an exit code of 0. Otherwise it is not

loaded and the exit code is 255.

• When the DIGI loader is executed, it checks if a DSP
Solutions driver for either device family is already installed
in the system. If such a driver exists, the name and version
of the driver is displayed, installation is canceled, and the
loader exits to DOS with an exit code of 0 (the same as a
successfui instailation).

During all LWDIGI foreground playback and recording
routines, keyboard interrupts are disabled to prevent sound
distortion. The keyboard interrupt is not disabled for back
ground operations.

Background recording and playback are based on a double
buffer technique. Before starting any background playback
or record process, two buffers must be defined using the
DSSetBuffer function.

Buffers for both foreground and background operations must
not cross 64K segment boundaries.

if a playback or recording routine is called when the driver is
busy (piaying or recording a prior request), the driver will
ignore the command and retum an error code.

Audio API Interface Library 26

• Speech files compressed in Digispeech Standard Format
are limited to a total playback time of 1048 seconds (17.5
minutes).

• During background playback or recording, the application is
restricted in using system calls which have a potential of
frequently disabling system interrupts for relatively long
periods of time (more than 50-200 microseconds). The
Audio Adapters have an intemal input buffer, used to store
data sent by computer. If this buffer becomes empty
prematurely during playback, sound can be distorted.
Operations that can distort sound during background
playback or recording are listed below:

♦ Routines that disable interrupts for long periods of
time.

« Changing graphics or text mode during background
playback or recording (most graphics functions are
still allowed).

♦ Using modified system timer (INT 08H) or timer tick
interrupt (INT 1CH) handlers, which can disable
interrupts for long periods of time.

♦ Using mouse driver calls during CVSD recording in
background.

♦ Excessive disk or CD-ROM accesses. Double
buffers should be set up that are sufficient to
support the sound unit during periods of disk access.

Failure to follow the above restrictions can result in

degradation of the sound quality reproduced by the
DSP Solutions Audio Adapter.

Audio API interface Library 27

• If the DIGIAPI interface library is not used, the DIGI drivers
may be called directly by the application program. Most of
the library calls in this manual have direct equivalents in
driver functions. The Implementation section of each
library description indicates the registers that are used to
pass parameters to and from the driver functions. The
calling program must load the appropriate registers and call
interrupt 0x4D. Unless otherwise indicated, the routines
retum an integer status code in the AX register. See
appendices for error code descriptions and function codes.

Ex.
mov ax, 0x0403 ; Set Audio Adapter Gain

; function code

mov bx, gain ; 0 - 31 gain value
int 04Dh ; Call driver via

; software interrupt
mov status, ax ; Save retum status

♦ Note that whenever a pointer is required, the user must
pass a full FAR pointer (segment and offset) to the
driver function.

Audio API Interface Library 28

utility Functions

This section describes the iow-levei controi and status functions

of the Audio Adapter Unit that are common to aii modes of
operation.

Audio API Interface Library 29

DSReset
#include "digi.h"

int DSReset(void);

Description:

Terminates any current operation, including background
operations, sets default audio gain, and resets the Audio
Adapter hardware. Does not affect buffer definitions
(see DSSetBuffer). Also clears pause state (see
DSPause) and error state.

Returns: E_OK

Implementation:
AX - AX RESET

Audio API Interface Library 30

DSGetStatus
#include "digi.h"

WORD DSGetStatus(void);

Description:

Returns status of the DSP Solutions driver. The routine

returns E_OK if the driver is idle and no errors have
occurred. DSGetStatus can be called at any time and
does not affect background functions.

DSGetStatus is an integral part of background
operation. When called while a background operation is
in progress the retum value will indicate which buffer is
currently in use or if the background operation is
paused.

Returns: E_OK, E.PAUSE, E_BUFO, E_BUF1, E_COM,
E_MUSiC

Implementation:
AX - AX STATUS

Audio API Interface Library 31

DSUninstall
#inclucle "digi.h"

int DSUninstalK void):

Description:

Resets the Audio Adapter Unit and removes the DSP
Soiutions driver from memory. The DSP Soiutions
driver shouid be the iast driver (TSR) ioaded for this p..,
function to work properly. No calls to the driver shouid
be made after this routine returns. -

The DSUninstaii routine is called by the DSP Solutions
loader program when the /U parameter is specified.
Application programs may call this directly if TSR
unloading rules are followed properly.

Returns: E_OK

implementation:
AX - AX UNINSTAL

Audio API Interface Library 32

DSQuery
#include "digi.h"

int DSQuery (WORD _far *majVer, WORD _far *minVer,
DWORD _far *caps)

majVer-
minVer-

caps-

Description:

FAR pointer to major ID value.
FAR pointer to minor ID value.
FAR pointer to capabilities flag word

After the DSQuery call, maJVer contains the driver
major version number, minVer contains the driver minor
ID number. The caps variable contains the driver
capabilities flag word In the lower 16 bits and the driver
ID number In the upper sixteen bits.

Specifying a NULL pointer for any of the three
parameters causes DSQuery to skip loading that value.

The caps word Is a 32-blt flag word that may be tested
with the following values.

Flag value
CAPS_EPCM
CAPS.LPC
CAPS_TONE
CAPS_201A
CAPS.ADPCM
CAPS_CALLB
CAPS_LPCVOC
CAPS_PCMREC
CAPS.DRIVERID
CAPS_301

CAPS_MIDI
CAPS DIGI

CAPS CALLIDLE

Supports
Extended PCM.

LPC speech synthesis
3-volce tone generator
DS201A

OKI ADPCM

Callback function

LPC vocabulary
PCM recording

Driver ID In upper 16 bits
If this bit Is set, the following
bits are also valid:

MIDI Music translation.

DIglspeech formats
IDLE callback function

Audio API Internee Library 33

The upper 16 bits of the flag word contain the driver ID
code. This code is available only on newer DSP
Solutions drivers (CAPS_DRIVERID == 1). All other
drivers return 0 for driver ID. Current ID codes are:

DiD_UNK Unknown driver (early version)
DID_201 LWDIGI DS201 driver (new version)
DID_201A LWDIGI DS201A driver (new version)
DID_301 PDIGI Digital Audio only
DID_301 M PDIGI Digital Audio / MIDI Synthesizer
DID_301 V PDIGI Digital Audio / LPC Vocabulary
DID_301 MV PDIGI All features
DID_301TD PDIGI Digispeech format only.

Returns: E_OK, E.UNKNOWN

Implementation:
AX - AX QUERY

Audio API Interface Library 34

Digitized Audio Controi
Functions

This section describes functions that control the digitized audio
capabilities of the Audio Adapter.

Audio API Interfece Library 35

DSGetByteCount
#include "digi.h"

int DSGetByteCount(DWORD Jar notal);

total - FAR pointer to total byte count of operation.

Description:

Returns the number of bytes which were played back or
recorded from/into the buffer currently in use by the
background operation, if the total parameter is not a
NULL pointer, the long integer it points to is loaded with
the total number of bytes played/recorded since the
background operation was started.

The retum value is the current byte index into the active
buffer, and can be used at the end of a record operation
to determine the number of bytes to flush from the last
active buffer.

The total value can be used to synchronize extemal
events with the audio playback. The value starts at
zero and increases with time, until the final count
specified with the original play command is reached or
the operation is aborted via a call to DSReset.

Returns: See description

Implementation:
AX - AX GETCNT

Audio API Interface Library 36

DSSetBuffer
#inciude "digi.h"

int DSSetBuffer(int bufferlndex, int len, char _far *buf);

bufferlndex • Index of buffer being assigned (0 or 1).
len - Length of buffer being assigned,
buf - FAR pointer to buffer being assigned.

Description:

The DSSetBuffer routine is used to assign externally
allocated buffers for background operation.
DSSetBuffer must be called twice before calling any
other driver background function. Buffer length can be
as small as 2 bytes (16 bytes for LWDIGI), but is
recommended to be at least 256 bytes. Typical buffer
length is 8,192.

To redefine a buffer, call this function again with new
buffer parameters. A buffer cannot be redefined when a
driver operation is in progress (even if paused).

During a background operation, the two buffers are used
alternately - one by the background process (driver) and
the other by the foreground (the application program).
DSStatus can be called by the foreground process to
determine which buffer is currently used by background
process, so that the foreground process can load or
save the other buffer.

See DSSetCallback for alternative background
methods.

Returns: E_OK, E_INDEX, E_LENGTH, E.PAUSE,
E.BUFO,

E_BUF1, E_COM, E_MUSIC

Implementation:
AX - AX_SETBUF

BX - buffer index

CX - buffer length

Audio API Interface Library 37

n

SI - buffer offset

DS - buffer segment

I

fPWj

n

Audio API Interface Library 38

DSSetGain
#include "digi.h"

int DSSetGain(int gain);

gain - Audio volume.

Description:

Set new gain value for playback (08201,08301)
operation or recording (O8301 only) operation. Scale
value 0 is silence, 31 is maximum volume. Oefauit

value is 21. The DSSetGain function can be called

before or after starting a playback operation.

When DSSetGain is called during background playback
of CVSO files using the LWOIGI (OS201) driver, the
sound volume does not change until playback of the
next message.

DSSetGain has no effect on the tone generator. The
output sound volume of the tone generator can be
changed using the DSToneCmd function.

Returns: E_OK, E_GAIN. E_PAUSE

Implementation:
AX - AX_SETGAIN

BX - gain

Audio API Interface Library 39

DSPause
#include "digi.h"

int DSPause(void);

Description:

If a background operation is in progress, it will be
paused. Othenvise there is no effect. Use the
DSResume function to resume the operation. This
function also works for the synthesized music interpreter
(DS301).

Returns: E_OK, EJGNORED, E_COM, E.MUSIC

implementation:
AX - AX PAUSE

Audio API interface Library 40

DSResume
#include "digi.h"

int DSResume(void);

Description:

If a background operation is currently paused, it will be
resumed. Otherwise there is no effect. Use the

DSPause function to pause a background operation.
This function also works for the synthesized music
interpreter (DS301).

Returns: E_OK. EJGNORED, E_COM, E_MUSIC

impiementation:
AX - AX RESUME

Audio API Interface Library 41

DSSetCallback

#include "digi.h"

int DSSetCallback(void _far ̂routine);

routine - FAR pointer to user caliback routine.

Description:

Establish a user caliback function for background play
back operation. The callback routine is used to change a
buffer. During background operations, the DiGi driver
calls the specified routine after switching buffers. The
pointer must be a FAR pointer to a LARGE model
routine (i.e. the routine must execute a FAR return when
finished).

Normally, background operation is carried out using the
double-buffering technique supported by the general
functions of the driver. However, the callback
mechanism can be used to implement more
sophisticated multiple buffering schemes.

The DSReset function disables the caliback mechanism

and cancels the effect of the previous DSSetCallback
call. The callback mechanism is disabled by default.
Since DSReset disables the callback mechanism, the
DSSetCallback function must be called just before
calling any of the background play or record functions.
It is recommended to call DSReset after the operation
ends.

The application must establish two audio buffers in the
standard way, using DSSetBuffer calls. These two
buffers will be the first two buffers used during the
operation. Subsequent buffers must be defined by the
callback function.

The application's caliback function is passed a FAR
pointer to the following intemai driver structure in the
processor ES:DI registers.

Audio API Interface Library 42

struct

{

BYTE far *ptr; // Sampled data buffer address.

Int bufLength; 11 Length of buffer (bytes) .

} bufferCtrl;

The callback function is expected to load this stmcture
with the address and length of an audio data buffer.
This buffer will be switched to at the completion of the
current buffer.

The callback function must retum 1 in AX if more data is

to be played back or recorded. It should retum 0 in AX
and set the length member of bufferctri to 0 when
no more data is available or required.

The driver plays the audio buffers in the following order
after any background start function is called:

1) Buffer #0,(DSSetBuffer call). Callback call

#1.

2) Buffer #1.(DSSetBuffer call). Callback call

#2.

3) Buffer set by callback call #1. Callback call

#3.

4) Buffer set by callback call #2. Callback call

#4.

5) Buffer set by callback call #3. Callback call

#5.

6) etc.

The callback function is called for the first time when the
driver switches from buffer (1) to (2), as defined above.
When driver switches from (2) to (3), the callback
function is called again, etc.

If the callback function is unable to setup a new buffer
address for some reason, the driver wili alternate
between the two most recently defined buffers.

Audio API Interface Library 43

Note that when the callback function modifies the

bufferctrl Structure, it also alters the driver's
intemal definition of one of the two buffers defined

during the DSSetBuffer calls. Therefore, It is
recommended to redefine the buffers (by using
DSSetBuffer) before the next background operation is
started.

The callback function must load the DS register before
accessing its private data segment. It can use any CPU
registers without saving them. Since the callback
function is called from inside a hardware interrupt
handler. It should not call any DOS or BIOS functions.
The callback function is allowed to do direct memory
manipulations. If the callback function uses more than
few bytes of stack, it should switch to its private stack.
Interrupts are enabled when the callback function is
called, but the run time should be kept to a minimum to
prevent stack overflow, reentrant calls, etc.

The 0 program source in file CALLBACK.G, supplied
with the Developer's Kit can be used as an example of
an application using the callback mechanism.

Returns: E_OK, E_UNKNOWN

Implementation:
AX - AX_CALLBACK

DX - Callback routine offset

DS - Callback routine segment

Audio API Interface Library 44

DSSetCallldle
#include "digi.h"

int DSSetCallldle(void _far'routine);

routine - FAR pointer to user Idie caliback
routine.

Description:

Estabiish a user caiiback function for background piay-
back operation. The caiiback routine is used to caii an
appiication supplied routine when the playback or
recording operation is complete. During background
operations, the DIGI driver calls the specified routine
after the last buffer has been played. The pointer must
be a FAR pointer to a LARGE model routine (i.e. the
routine must execute a FAR return when finished).

The DSReset function disables the callback mechanism

and cancels the effect of the previous DSSetCallldle
caii. The caiiback mechanism is disabled by default.
Since DSReset disables the caiiback mechanism, the
DSSetCallldle function must be called just before
calling any of the background play or record functions.
It is recommended to call DSReset after the operation
ends.

The driver ignores any return value.

The callback function must load the OS register before
accessing its private data segment, it can use any CPU
registers without saving them. Since the caiiback
function is called from inside a hardware interrupt
handier, it should not call any DOS or BIOS functions.
The callback function is allowed to do direct memory
manipulations. If the callback function uses more than
few bytes of stack, it should switch to its private stack.
Interrupts are enabled when the callback function is
called, but the run time should be kept to a minimum to
prevent stack overflow, reentrant calls, etc.

Audio API Interface Library 45

The C program source in file CALLiDLE.C, supplied with
the Developer's Kit can be used as an example of an
application using the callback mechanism.

Returns: E_OK, E.UNKNOWN

Implementation:
AX - AX_CALLIDLE

DX - Callback

DS - Callback routine segment

Audio API Interface Library 46

Audio Playback/Record
Functions

The routines in this section provide access to the background
recording and playback functions of the DIGI drivers, They
should be used for all new application designs. The routines do
not support the older DS201 audio adapter.

Audio API Interface Library 47

DSBPlay
#include "digi.h"

[DS201A][DS301]

int DSBPIay(int format, WORD rate, DWORD len);

format - audio data format.

rate - Sample rate In samples per second.
len - Number of bytes to be played.

Description:

Starts background playback of audio data. Background
playback is accomplished via a double-buffering
scheme. Sampled data is read from one buffer while the
other buffer is loaded by the application program.

Background buffers are set up using the DSSetBuffer
function. The DSGetStatus routine is used to

determine the buffer from which DSBPlay is currently
drawing data.

Total playback length is determined by the len
parameter. The playback operation is terminated by the
driver after len b^es are sent to the audio device.
Background operation may be aborted using the
DSReset function. If a callback routine is defined (see
DSSetCallback), it is called after the driver switches to
each new buffer.

The rate parameter specifies the playback sampling
rate:

DS201A - 8000 to 11025 samples per second.
22050 SpS (DF_PCM8, DF_PCMU, DF_PCMA)
44100 sps (DF_PCM8, DF_PCMU, DF.PCMA)

DS301 - 4000 to 44100 samples per second.

DS201A playback rates of 22050 and 44100 for the
DF_PCM8, DF_PCMU, and DF_PCMA formats is
accomplished via sample-skipping by the LWDIGI

Audio API Interface Library 48

driver. Audio data is actually played at a rate of 11025
sps.

Audio API Interface Library 49

DF_DIGIREAL, DF_DIGISTD, and DF_DIGIFIX formats
are played at a sampling rate of 8000 sps, and Ignore
the sampleRate parameter.

The format parameter specifies the data format as
follows.

DF PCM8 0

DF_PCMMU 1
DF PCMA 2

DF PCM16 3

[DS301]
DF_SB2 4

[DS301]
DF_SB3 5

[DS301]
DF_SB4 6

[DS301]
DF_OKI4 7
DF_DVI4 8

[DS301]
DF_DIGIREAL 9

[DS301]
DF_DIGISTD 10
DF.DIGIFIX 11
DF_LPC 12

Returns: E OK, E_UNDEFINED, E ARGUMENT,
E.LENGTH, E_NOBUFFER, E.PAUSE,

E_BUFO,
E.BUFI, E_COM, E.TIMEOUT, E_MUSIC

implementation:
AX - AX_BLAY

BX - data format code

CX - Data length low word

DX - Data length high word

SI - Playback sampling rate

Audio API Interface Library 50

DSBPIayStereo
#include "digi.h"

[DS301]

int DSBPIayStereo(int format, WORD rate, DWORD len);

format - audio data format.

rate - Sample rate in sampies per second.
len - Number of bytes to be played.

Description:

Starts background playback of audio data in stereo
mode. This routine operates the same as the DSBPiay
function except that the number of data formats and
sampling rates supported is reduced.

The stereo data must be interleaved single samples, in
ieft channel - right channel order.

The rate parameter specifies a playback sampling rate
of 11025, 22050, or 44100 sps.

The format parameter specifies the data format as

IBWFfI

follows.

DF PCM8 0

DF PCMMU 1

DF PCM16 3

Returns: E OK, E UNDEFINED, E ARGUMENT,
E.LENGTH, E.NOBUFFER, E_PAUSE,

E_BUFO,
E_BUF1, E_COM, E_TIMEOUT, E_MUSIC

*!! impiementation:
AX - AX_BPSTEREO

BX - data format code

m, CX - Data length low word

DX - Data length high word

SI - Playback sampling rate

Audio API Interface Library 51

DSBRec
#include "digi.h"

[DS201A][DS301]

int DSBRec(int format, WORD rate, DWORD len);

format • audio data format.

rate • Sample rate in samples per second.
len - Number of bytes to be recorded.

Description:

Starts background recording in specified format. Back
ground recording is accomplished via a double-buffering
scheme. Sampled data is written to one buffer while the
second buffer is being saved by the application
program.

Background buffers are set up using the DSSetBuffer
function. The DSGetStatus routine is used to

determine the buffer to which DSBRecord is currently
writing data.

Total recording length is determined by the len
parameter. The recording operation is terminated by the
driver after len bytes are received from the audio
device. Background operation may be aborted using the
DSReset function. If a callback routine is defined (see
DSSetCallback), it is called after the driver switches to
a new buffer.

The rate parameter specifies a recording sampling rate
of 8000 or 11025 sps (DS301) or 8000 sps (DS201A).

DF_DiGiREAL format is recorded at a sampling rate of
8000 sps, and ignores the rate parameter.

Audio API Interface Library 52

The format parameter specifies the data format as
follows.

DF PCM8 0

DF PCMMU 1

DF PCMA 2

[DS301]
DF_PCM16 3

[DS301]
DF SB2 4

tDS301]
DF SB3 5

[DS301]
DF SB4 6

[DS301]
DF_OKI4 7

[DS301]
DF DVI4 8

[DS301]
DF.DIGIREAL 9

[DS301]

Returns: E_OK. E UNDEFINED, E.ARGUMENT,
E LENGTH, E NOBUFFER, E PAUSE,

E.BUFO,
E_BUF1, E_COM, E.TIMEOUT, E.MUSIC

Implementation:
AX - AX_BREC

BX - data format code

CX - Data length low word

DX - Data length high word

Audio API Internee Library 53

Compatibility Functions

The routines in this section are provided for backwards compati
bility with older DSP Solutions LWDIGI drivers (v1.21A and
under). It is recommended that the DSBPlay function be used
for new designs.

Audio API Interface Library 54

Digispeech Format Functions

The Digispeech Standard Format is based on a novei algorithm
for sound compression. The algorithm compresses audio to an
average rate of 1100 bytes per second, whiie preserving high
audio quaiity and naturai sounding voices.

Audio compressed in this format can be played back as a back
ground process, since only a small part of the processing power
of the CPU is required (e.g. iess than 10% for an 8MHz 8088
CPU).

The compression of audio to Digispeech Standard Format is
accomplished by the DSP Soiutions Encoding Work Station.

Audio API Interface Library 55

DSFPIayPigi
#include "digi.h"

int DSFPIayDigK char _far*buf, WORD len);

buf - FAR pointer to sampled data buffer,
len - Number of bytes in buffer to be played.

Description:

Foreground playback of Digispeech STD or FIX (movie)
data formats. Also plays 8-bit PCM formats. Sampled
data is read from buf, and is limited to a maximum of
65535 bytes, as specified by the len parameter.

The data format is determined by the data file header.
The entire header must be passed to the driver as part
of the sampled data. See appendix A for data file
headers.

The routine retums control to the calling program only
when playback is completed. Keyboard interrupts are
disabled during foreground playback operations to
prevent sound distortion.

Returns: E_OK. E_LENGTH, E.PAUSE, E_BUFO,
E_BUF1,

E_COM, E_TIMEOUT, E_MUSIC

Implementation:
AX - AX_FPDIGI

CX - buffer length

SI - buffer offset

DS - buffer segment

Audio API Interface Library 56

DSBPIayDigi
#include "digi.h"

int DSBPiayDigi(DWORD len);

len - Total length in bytes of sampled data to be
played

Description:

Background playback of Digispeech format data. Back
ground playback is accomplished via a double-buffering
scheme. Sampled data is read from one buffer vt^hile the
second buffer is being loaded by the application
program. The buffers are set up via the DSSetBuffer
function. The DSGetStatus routine is used to

determine the buffer from which the DSBPIayDigi
routine is currently drawing data. Background operation
may be aborted using the DSReset function. If a
callback routine is defined (see DSSetCaliback), it is
called when the driver switches from the first buffer to

the second buffer.

Playback is limited to a maximum of 1152800 bytes
(1048 seconds, or approx. 17.5 minutes), as specified
by the len parameter. Note that this parameter specifies
the total length to be played, not the individual buffer
length.

The data format is determined by the data file header.
The entire header must be passed to the driver as part
of the first buffer of sampled data. See appendix A for
data file headers.

Returns: E OK, E_LENGTH, E.NOBUFFER, E.PAUSE,
E.BUFO, E.BUFI, E_COM, E TIMEOUT,
E.MUSIC

Implementation:
AX - AX_BPDIGI

CX - Data length low word

Audio API Interface Library 57

DX - Data length high word

Audio API Interface Library 58

CVSD Format Functions

Digispeech CVSD functions utilize compression rates from 1800
bytes per second (bps) to 4800 BPS. Speech compressed in
CVSD format at 4800 bps has the same quality as speech com
pressed in Digispeech format. CVSD compression at rates
above 3000 bps of audio containing music or a combination of
music and speech sometimes results in better sound quality than
Digispeech format compression.

Routines in this section are compatible with the equivalent IBM
Speech Adapter BIOS calls. Programs written using these
functions should operate unchanged using the IBM PS/2 Speech
Adapter, providing that the DSP Solutions Driverlnstalled
function is not used to detect a driver. Driverlnstalled does not

detect the presence of an IBM PS/2 Speech Adapter.

Audio API Interface Library 59

DSFRecCVSD

#include "digi.h"

int DSFRecCVSD(char _far *buf,int rate, WORD len);

buf - FAR pointer to sampled data buffer.
rate - Recording rate code.
len • Maximum number of bytes to record.

Description:

Foreground recording in CVSD format. Sampled data is
stored in buf, and is limited to a maximum of 65535
bytes, as specified by the len parameter. The duration of
the recording is determined by the len parameter
divided by the rate parameter value, as specified below.

RATE_1800 1800 bytes per second
RATE_2400 2400 bytes per second
RATE_3000 3000 bytes per second
RATE_3600 3600 bytes per second
RATE_4200 4200 bytes per second
RATE_4800 4800 bytes per second

DSFRecCVSD returns control to the calling program
only when recording is complete. Keyboard interrupts
are disabied during foreground playback operations to
prevent sound distortion.

Returns: E OK, E CVSDSPEED, E_PAUSE, E_BUFO,
E_BUF1, E_COM, E_TIMEOUT, E.MUSIC

Implementation:
AX - AX_FRCVSD

BL - rate code

CX - Buffer length

SI - Buffer offset

DS - Buffer segment

Audio API Interface Library 60

DSFPIayCVSD
#include "digi.h"

int DSFPIayCVSD(char _far*buf, WORD rate, WORD len);

buf - FAR pointer to sampled data buffer.
rate - Playback rate code.
len - Number of bytes In buffer to be played.

Description:

Foreground playback of CVSD format data. Sampled
data Is read from buf, and Is limited to a maximum of
65535 bytes, as specified by the len parameter. The
duration of the playback Is determined by the len
parameter divided by the rate parameter value.

See the DSFRecCVSD routine description for rate
parameter values.

DSFPiayCVSD returns control to the calling program
only when playback Is completed. Keyboard Interrupts
are disabled during foreground playback operations to
prevent sound distortion.

Returns: E_OK, E_CVSDSPEED, E.PAUSE, E.BUFO,
E_BUF1, E_COM, E.TIMEOUT, E.MUSIC

Implementation:
AX - AX_FPCVSD

BL - rate code

CX - Buffer length

SI - Buffer offset

DS - Buffer segment

Audio API Interface Library 61

DSFRecUCVSD

#include "digi.h"

int DSFRecUCVSD(char _far *buf,int speed,WORD len);

buf - FAR pointer to sampled data buffer.
speed - Recording rate divisor.
len - Maximum number of bytes to record.

Description:

Same as DSFRecCVSD except that the speed
parameter specifies the sampling rate as follows:

sampling rate = 596656 / speed.

This implementation quantizes the user specified speed
into six levels according to the following rules.

speed parameter sampling rate
speed < 132 1800 bytes per second ^

132 <= speed <152 2400 bytes per second
152 <= speed < 180 3000 bytes per second
180 <= speed < 220 3600 bytes per second ^
220 <= speed < 284 4200 bytes per second
284 <= speed 4800 bytes per second

Returns: E OK, E_LENGTH, E PAUSE, E BUFO,
E BUF1,

E_COM, E.TIMEOUT, E.MUSIC

Implementation:
AX - AX_FRUCVSD

BX - speed parameter

CX - Buffer length

SI - Buffer offset

DS - Buffer segment

Audio API Interface Library 62

DSFPIayUCVSD
#include "digi.h"

int DSFPIayUCVSD(char _far "buf.int speed,WORD len);

buf - FAR pointer to sampled data buffer.
speed • Playback rate divisor.
len - Number of bytes In buffer to be played.

Description:

Same as DSFPIayCVSD except that the speed
parameter specifies the sampling rate as follows:

sampling rate = 596656 / speed.

The current Implementation quantizes the user specified
speed Into six levels according to the following rules.

speed parameter sampling rate
speed < 132 1800 bytes per second

132 <= speed < 152 2400 bytes per second
152 <= speed < 180 3000 bytes per second
180 <= speed < 220 3600 bytes per second
220 <= speed < 284 4200 bytes per second
284 <= speed 4800 bytes per second

Returns: E_OK. E_LENGTH, E_PAUSE, E_BUFO,
E_BUF1.

E_COM, E.TIMEOUT, E_MUSIC

Implementation:
AX - AX_FPUCVSD

BX - speed parameter

CX - Buffer length

SI - Buffer offset

DS - Buffer segment

Audio API Interfoce Library 63

DSBPIayCVSD
#include "digi.h"

int DSBPIayCVSD(int rate,DWORD len);

rate - Playback rate code (see below).
len - Number of bytes in buffer to be played. „

Description:

Starts background playback of CVSD format data.
Background playback Is accomplished via a double-
buffering scheme. Sampled data is read from one buffer
while the second buffer is loaded by the application n
program.

Background buffers are set up using the DSSetBuffer ^
function. The DSGetStatus routine is used to

determine the buffer from which the DSBPIayCVSD
routine is currently drawing data.

The total duration of the playback is determined by the
len parameter divided by the rate parameter value. The
playback operation is terminated by the driver after len
bytes are sent to the Audio Adapter unit. Background
operation may be aborted using the DSReset function. If
a callback routine is defined (see DSSetCallback), it is
called when the driver switches from one buffer to the

other buffer.

See the DSFRecCVSD routine description for rate
parameter values.

Returns: E OK, E_CVSDSPEED, E LENGTH, ^
E NOBUFFER, E.PAUSE, E BUFO, E_BUF1,
E_COM, E_TIMEOUT, E.MUSIC

implementation:
AX - AX_BPCVSD

BL - rate code

CX - Data length low word pufi

Audio API Interface Library 64

DX - Data length high word

Audio API Interface Library 65

DSBRecCVSD
#include "digi.h"

int DSBRecCVSD(int rate,DWORD len);

rate - Recording rate code.
len - Number of bytes in buffer to be played.

Description:

Starts background recording in CVSD format. Sampled
data is stored in buf, and is limited to a maximum of
xxxxx bytes, as specified by the len parameter.
Background recording is accomplished via a double-
buffering scheme. Sampled data is written to one buffer
while the second buffer is being saved by the application
program.

Background buffers are set up using the DSSetBuffer
function. The DSGetStatus routine is used to

determine the buffer to which the DSBRecCVSD routine

is currently writing data.

The duration of the recording is determined by the len
parameter divided by the rate parameter value. Back
ground operation may be aborted using the DSReset
function. If a callback routine is defined (see
DSSetCaliback), it is called when the driver switches
from the first buffer to the second buffer.

See the DSFRecCVSD routine description for rate
parameter values.

Returns: E OK, E CVSDSPEED, E_LENGTH,
E NOBUFFER, E.PAUSE, E_BUFO, E_BUF1.
E_COM, E.TIMEOUT, E_MUSIC

implementation:
AX - AX_BRCVSD

BL - rate code

CX - Data length low word

Audio API Interface Library 66

DX - Data length high word

Audio API Interface Library 67

PCM Format Functions

Audio API Interface Library 68

DSFPIayPCM
#include "digi.h"

int DSFPIayPCM(char Jar *buf.WORD len);

buf - FAR pointer to sampled data buffer,
len - Number of bytes In buffer to be played.

Description:

DSFPIayPCM Is a synonym for DSFPIayDlgl. See that
function description for further Information.

Returns: E OK, E_LENGTH, E_PAUSE, E_BUFO,
E BUF1,

E_COM, E.TIMEOUT, E_MUSIC

Implementation: See DSFPIayDlgl

Audio API Interface Library 69

DSBPiayOKI
#include "digi.h"

[DS201A][DS301]

int DSBPIayOKK int pole, WORD rate, DWORD len);

pole - Set to 0
rate - Playback sample rate.
len • Number of bytes in buffer to be played.

Description:

Starts background playback of OKI ADPCM format data.

Except for rate and pole values, DSBPiayOKI Is
Identical In operation to DSBPIayPCM.

The pole parameter Is unused by most of the DIGI
drivers and should be set to 0 for nominal operation.

The rate parameter specifies the playback sampling
rate, 8000 to 11025 samples per second (DS201A), or
4000 to 44100 samples per second (DS301).

Returns: E OK, E_UNDEFINED, E.ARGUMENT,
E LENGTH, E NOBUFFER, E_PAUSE,

E_BUFO,
E_BUF1, E_COM, E.TIMEOUT, E_MUSIC

Implementation:
AX - AX_BPOKIADPCM irn^

BX - pole

CX - Data length low word

DX - Data length high word

SI - Playback sampling rate

Audio API Interface Library 70

LPC Playback Functions

The DS201A and DS301 audio adapters support LPC speech
synthesis compatible with the IBM PS/2 Speech Adapter LPC
implementation. The DIGI drivers implement the following LPC
related functions of PS/2 Speech Adapter API BIOS (interrupt
4DH):

AX=0200H - LPC Status

AX=0201 H - *LPC Speak vocabulary word.,
background.

AX=0202H - LPC Speak data in buffer, background.
AX=0300H - LPC Status

AX=0301 H - *LPC Speak vocabulary word.,
foreground.

AX=0302H - LPC Speak data in buffer, foreground.

* - Requires N command line parameter when driver is loaded.

More information about LPC functions can be found in the PS/2

Speech Adapter Technical Reference by IBM, 6SX2207 S68X-
2207-00, January 1987.

Audio API Interface Library 71

DSLPCStatus

#include "digi.h"
[DS201A][DS301]

int DSLPCStatus(void);

Description:

Returns the status of the current LPC operation.

Returns: E_OK. E_LPC, E.LPCINDEX, E_COM

Implementation:
AX - AX LPCSTAT

Audio API Interface Library 72

DSFPIayLPC
#include "digi.h"

[DS201A][DS301]

int DSFPIayLPC(int index);

Index - LPC vocabulary word Index.

Description:

Foreground playback of an LPC vocabulary word. The
word played Is determined by the index parameter and
the loaded vocabulary.

This routine requires the DSP Solutions driver to be
loaded with either the A/ (use standard IBM LPC
vocabulary) parameter, or with a custom vocabulary file.

The routine returns control to the calling program only
when playback Is completed.

Returns: E_OK, E_LPCINDEX, E_COM, E.MUSIC

Implementation:
AX - AX_FLPCIX

BX - Vocabulary word index

Audio API Interface Library 73

DSFPIayULPC
#include "digi.h"

[DS201A][DS301]

int DSFPIayULPC(char_far *buf, int len);

buf - FAR pointer to LPC data buffer,
len • buffer length (max 4095).

Description:

Foreground playback of an LPC data buffer. The word
or phrase played is determined by the data contained in
the buffer.

The routine retums control to the calling program only
when playback is completed.

Returns: E_OK, E.LPCINDEX, E_COM, E.MUSIC

Implementation:
AX - AX_FLPCBUF

CX - Buffer data length

SI - Buffer offset

DS - Buffer segment

Audio API Interface Library 74

DSBPIayLPC
#inclucle "digi.h"

[DS201A][DS301]

int DSBPIayLPC(int index);

index - LPC vocabulary word index.

Description:

Starts background playback of an LPC vocabulary word.
The word played is determined by the index parameter
and the loaded vocabulary.

This routine requires the DSP Solutions driver to be
loaded with either the N (use standard IBM LPC
vocabulary) parameter, or with a custom vocabulary file.

The routine retums control to the calling program imme
diately. Use the DSLPCStatus routine to determine
when playback is completed.

Returns: E_OK, E.LPCINDEX, E_COM, E_MUSIC

Implementation:
AX - AX_BLPCIX

BX - Vocabulary word index

Audio API Interface Library 75

DSBPIayULPC
#include "digi.h"

[DS201A][DS301] „

int DSBPIayULPC(char _far *buf, int len);

buf - FAR pointer to LPC data buffer.
len - buffer length (max 4095).

Description:

Starts background playback of an LPC data buffer. The
word or phrase played is determined by the data ^
contained in the buffer.

The routine returns controi to the calling program imme-
diateiy. Use the DSLPCStatus routine to determine
when playback is completed.

Returns: E_OK, E.LPCINDEX, E_COM, E.MUSIC

Implementation:
AX - AX_BLPCBUF

CX - Buffer data length

SI - Buffer offset

DS - Buffer segment

Audio API Interface Library 76

Tone Generator Functions

Note: The DS301 does not contain a 3-tone generator. The
PDIGI driver emulates the DS201A 3-tone generator functions
using the DS301 music synthesizer.

Audio API Interface Library 77

DSToneStart
#include "digi.h"

int DSToneStart(void);

Description:

Enable the DIG! driver 3-tone generator functions.
Places the DIGi driver in tone generator mode,
precluding other operations until DSToneStop is called
to exit tone generator mode.

Returns: E_OK, E.PAUSE, E_BUFO. E BUF1, E_COM,
E.TIMEOUT

Implementation:
AX - AX STONE

Audio API Interface Library 78

DSToneCmd
#include "digi.h"

int DSToneCmd(BYTE command):

command - BYTE containing command parameter(s).

Description:

Send a command to the 3-tone generator. The
DSToneCmd routine can be called only after
DSToneStart has been successfully called. The
command format Is the same as that of the SN76496N

Complex Sound Generator 1.0. The DSP Solutions
Audio Adapter does not support a noise generator, as
the SN76496N does, but It supports 3 tone generators,
which can be programmed Independently.

There are 3 different sub-commands:

- Set Attenuation.

- Set 4 Least Significant Bits of Frequency Counter.
- Set 6 Most Significant Bits of Frequency Counter.

The tone frequency Is physically changed only when
"Set Frequency MSBs" command Is sent to the driver.
The "Set Frequency LSBs" command Is latched by the
driver but does not affect the tone frequency until the
upper part of the frequency counter Is updated.

The following pages describe the DSToneCmd sub
command codes.

Returns: E_OK, EJGNORED, E.COM, E_TIMEOUT

implementation:
AH - AH_CTONE

AL - tone command parameter

Audio API Interface Library 79

DSToneCmd - Set Attenuation

Command parameter format;

IBit? IBite IBits |Bit4 |Bit3 |Blt2 |Bltl |BltO |
I 1 1 1 1 1 1 1 1

I I I tl 1 to I 1 I g3 I g2 I gl I go I

Where: <tl, to field is tone selector:

00: Tone #1 is selected

01 : Tone #2 is selected

10: Tone #3 is seiected

<93 ,g2 ,gi ,gO> field is attenuation factor of specified
tone:

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

No attenuation

(-02dB)
(-04dB)
(-06dB)
(-08dB)
(-lOdB)
(-12dB)
(-14dB)
(-16dB)
(-18dB)
(-20dB)
(-22dB)
(-24dB)
(-26dB)
(-28dB)
silence

attenuation

attenuation

attenuation

attenuation

attenuation

attenuation

attenuation

attenuation

attenuation

attenuation

attenuation

attenuation

attenuation

attenuation

Audio API Interface Library 80

DSToneCmd - Set Frequency LSBs
Command parameter format:

IBlt?
1 _ _ _ _ _

iBite IBitS |Bit4 |Blt3 |Blt2 IBltl IBltO 1

1

1 1

. 1

1 ti 1 to 1 0 1 n3 1 n2 1 nl 1 nO 1

Where: <tl, to> field Is tone selector:

00 : Tone #1 Is selected

01 : Tone #2 Is selected

10 : Tone #3 Is selected

<n3,n2,ni,n0>field Is 4 least significant bits of 10-blt
number, N, used to set the tone frequency.

The frequency of selected tone can be calculated as
follows:

F = 3,579,000 Hz/32/N

The tone frequency Is physically changed only when
"Set Frequency MSBs" command Is sent to the driver.
The "Set Frequency LSBs" command Is latched by the
driver but does not affect the tone frequency until the
upper part of the frequency counter Is updated.

Audio API Interface Library 81

DSToneCmd - Set Frequency MSBs
Command parameter format;

|Bit7 IBitfi IBltS |Blt4 |Blt3 |Blt2 |Bltl |BltO |
I 1 1 1 1 1 1 1 1

I 0 I X I nd I n8 I n7 | n6 | nS | n4 I

Tone number is set to the tone number of the previous
command.

<n9,n8,... ,n4> fieid is 6 most significant bits of
10-bit number, N, used to set the tone frequency.

The frequency of seiected tone can be calcuiated as
follows:

F = 3,579,000 Hz/32/N

The tone frequency is physically changed only when
"Set Frequency MSBs" command is sent to the driver.
The "Set Frequency LSBs" command is latched by the
driver but does not affect the tone frequency until the
upper part of the frequency counter is updated.

Audio API Interface Library 82

DSToneStop
#include "digi.h"

int DSToneStop(void);

Description:

Disable the DIG! driver 3-tone generator functions,
allowing other operations. Use DSToneStart to enter
tone generator mode.

Returns: E_OK

Implementation:
AX - AX ETONE

Audio API Interface Library 83

Synthesizer Emulator Functions

The Synthesizer Emulator Functions of the PDiGI driver are „
used to control the DS301 music synthesizer via function calls
that emulate I/O port writes to the Yamaha YM3812 synthesizer
chip. Applications that are written for this chip can be easily
adapted to the DS301 by adding some initialization code and
changing the appropriate input and output instructions to calls
into these library functions.

The Synthesizer Emulator functions are not available on the
DS201 orDS201A.

The Synthesizer Emulator functions are contained in a library
module separate from the other low-level routines, if none of the
functions are used, the module is not linked into the application,
saving space. ^

During operation of the Synthesizer Emulator, recording is not
permitted, and playback of digitized audio is limited to eight bit ^
linear (DF_PCM8) or mu-Law {DF_PCMMU) PCM.

Audio API Interface Library 84

DSGetEntry
#include "digi.h"

IDS3011

int (Jar *DSGetEntry())(int func, BYTE addr, BYTE value);

Description:

Places a far pointer to the synthesizer control function
<*« DSSynthEntry in funcPtr. DSGetEntry requires the

PDRVXM driver loaded with the DOS command line

PDI6I /m The upper sixteen bits of the caps value
retumed by the DSQuery function contains the constant
DiD_301XM if this driver is loaded. NULL is placed in
funcPtr if the appropriate driver is not present.

Returns: E_OK

impiementation:
_ AX - AX DSMGETENTRY

Audio API Interface Library 85

DSEmulate

#include "digi.h"
[DS301]

int DSEmulate(int function, BYTE addr, BYTE value);

function - Synttiesizer function
addr - YM3812 register address,
value - YM3812 register value.

Description:

This function is not contained in the DIGIAPI library.
Rather, it is called via a function pointer obtained in a
caii to the DSGetEntry function.

DSEmulate provides access to the synthesizer emulator
functions without the overhead of the INT4D interface

used by most of the other library functions.

The emulator subfunctions are used by passing the
subfunction code in the function parameter and the
YM3812 parameters as required. The foilowing pages
describe the DSEmulate sub-functions.

Returns: E_OK

Implementation:

push word ptr ymValue

push word ptr ymAddr

push word ptr function

call far ptr funcPtr ; Obtained from

;DSGetEntry.

Audio API Interface Library 86

DSEmulate - SYNTH iNIT

#include "digi.h"
[DS301]

int DSEmulate(SYNTHJNIT, 0. 0);

Description:

Initialize the Synthesizer Emulator. Places the DS301 in
synthesizer mode and sets the emulator registers to
their default state. Ignored if already in synthesizer
mode.

Returns: E_OK, EJGNORED

Audio API Interface Library 87

DSEmulate - SYNTH READ

#include "digi.h"
[DS301]

int DSEmulate(SYNTH.READ, addr, 0); "

addr- YM3812 register address.

Description:

Returns the last value written to the emulator at the ^
passed YM3812 register address. If no value has been
written, the default value is returned. No error values are

returned.

Returns: See description.

^iR)

Audio API Interface Library 88

DSEmulate • SYNTH WRITE

#include "digi.h"
[DS301]

int DSEmulate(SYNTH.WRITE, addr, value);

addr - YM3812 register address,
value - YM3812 register value.

Description:

Write an eight bit value to an emulated YM3812
register. The emulator generates the appropriate data
to be sent to the DS301.

Returns: E OK

Audio API Interface Library 89

DSEmulate - SYNTH RESET

#inclucle "digi.h"
[DS301]

int DSEmulate(SYNTH_RESET, 0, 0);

Description:

Reset the synthesizer emulator. Stops synthesizer
operation, but does not stop digitized audio If In
progress.

The standard DSReset function will not stop emulator
operation. To completely reset the driver, this function
must be called In addtlon to DSReset.

Returns: E OK

Audio API Interface Library 90

Synthesized Music Functions

The Synthesized Music Functions of the PDiGi driver are used
to control the DS301 music synthesizer. Applications that
provide note to note timing may use these functions to
implement MIDI playback. Synthesized Music is not available on
the DS201 or DS201A.

The Synthesized Music functions are contained in a library
module separate from the other low-level routines. If none of the
functions are used, the module is not linked into the application,
saving space.

The driver provides two levels of support for synthesized music.
The following functions provide no note to note timing control.
They are for use by applications that provide note timing
independently.

The High Level functions provide support for Creative Labs
.CMP file data. Using these functions, combined with some of
the following functions, an application can directly play Creative
Labs .CMF song files.

Audio API Interface Library 91

DSInitSynthesizer
#include "digi.h"

void DSInitSynthesizer(void);

Description:

Initializes the synthesizer decode portion of the DIGI
driver. Must be called before any other Synthesizer ***
Music function. This function is called by the
DSMusicOpen high level function.

The DS301 music driver must be loaded (PDIGI /M) for
this function to operate. All other drivers will retum
E INVALID.
—

Returns: E.OK, EJNVALID

Implementation:
AX - AX SYNTHINIT

Audio API Interface Library 92

DSSetPatchTable
#include "digi.h"

[DS301]

int DSSetPatchTable(char _far*table, int count);

table - FAR pointer to user instrument table,
count - Number of instruments in user table.

Description:

This function is used to specify the set of instrument
definitions for use by the Synthesizer Music note
functions and the High Level music functions.

If this function is not called, the music functions
reference a set of 16 default instruments contained

within the driver.

The application passes a FAR pointer to it's instrument
table. The table format is the same as used by Creative
Labs .CMF file format instrument block. It is an array of
16-byte structures with the following format.

typedef unsigned char BYTE;

typedef struct ̂ InstrumentDef

{

BYTE mSound; // Modulator Sound Characteristics

// Bit 7 : Pitch Vibrato

// Bit 6 : Anplltude Vibrato

// Bit 5 : Sustaining snd type

// Bit 4 : Envelope Scaling

// Bit 3-0 : Frequency Multiplier

BYTE cSound; // Carrier Sound Characteristics

// Same bits as mSound.

BYTE mScallng;// Modulator Scaling / Output

// Bit 7-6 : Level Scaling

// Bit 5-0 : Output level.

BYTE cScallng;// Carrier Scaling / Output

// Same bits as mScallng.

BYTE nJ^ttDec; // Modulator Attack/Decay rates

Audio API Interface Library 93

// Bit 7-4 : Attack Rate.

11 Bit 3-0 : Decay Rate.

BYTE cAttDec; // Carrier Attack/Decay rates

// Sane bits as mAttDec

BYTE mSusRel; // Modulator Sustain/Release rates

// Bit 7-4 : Sustain Level.

// Bit 3-0 : Release Rate.

BYTE cSusRel; // Carrier Sustain/Release rates

// Sane bits as nSusRel

BYTE niRaveSel;// Modulator Wave Select

// Bit 7-2 : All 0

// Bit 1-0 : Wave Select.

BYTE cWaveSel;// Carrier Wave

// Sane bits as nWaveSel

BYTE feedback;// Feedback / connection

BYTE

// Bit 7-4

// Bit 3-1

// Bit 0

reserved [5] ;

All 0

Modulator Feedback.

Connection

> INSTRUMENT;

Returns: E OK

Implementation:
AX

CX

SI

DS

AX_SETINSTTAB

Instrument count

Instrument array offset

Instrument array segment

Audio API Interface Library 94

DSSetMusicMode

#include "digi.h"
[DS301]

int DSSetMusicMode(int mode);

mode - 0 - Melody mode (9 melody voices).
1 - Rhythm mode (7 melody voices, 4 rhythm).

Description:

Select the music synthesizer operating mode. Melody
mode (9 voices) is the default and is set whenever the
DSReset function is called.

Returns: E_OK

impiementation:

AX - AX_MUSICMODE

CX - Music mode

Audio API Interface Library 95

DSTranspose
#include "digi.h"

IDS301]

int DSTranspose(int semiToneOffset);

semiToneOffset • pitch offset vaiue.

Description:

This function causes the Synthesizer Music functions to
piay aii notes at a higher or lower pitch than specified by
the actual note parameters. The semitoneOffset vaiue
may be positive or negative and is added to each note's
pitch value before the note is played. If the offset would
cause the pitch value to exceed the driver limit, it is
truncated to the appropriate limit.

Returns: E_OK ^

Implementation:
AX - AX_TRANSPOSE

CX - pitch offset

Audio API Interface Library 96

DSMIDINoteOn
#include "digi.h"

[DS301]

int DSMIDINoteOn(char channel, char note, char velocity);

channel - MIDI channel to play note (range 0 -
15).

note-

velocity •
MIDI note number (range 0 -127).
MIDI note velocity (range 0 -127).

Description:

Plays a note on the requested channel. Notes are speci
fied using the same parameters as MIDI format music
data.

The routine retums control to the calling program imme
diately. The calling program is responsibie for timing be
tween notes. Use the DSMIDINoteOff function to turn

off the note.

Caliing the DSMIDINoteOn function with a velocity of 0
is the same as calling the DSMIDINoteOff function with
the same channel and note parameters.

Returns: E OK

implementation:
AX

BX

CX

DX

AX_NOTEON

Channel number

Note

Velocity

Audio API interface Library 97

DSMIDINoteOff
#include "digi.h"

[OS301]

int DSMIDINoteOff(char channel, char note);

channel - MIDI channel to play note (range 0 -
15).

note - MIDI note number (range 0 -127).

Description:

Turns the specified note off on the requested channel.
Notes are specified using the same parameters as MIDi
format music data.

The calling program is responsible for timing between
notes. When turning notes on and off at the same time
interval, perform the DSMIDINoteOff functions first.
This allows the DSMIDINoteOn function to allocate

voices for the notes to be turned on.

Since multiple notes can be played on the same
channel, you must specify the note value in addition to
the channel.

Calling the DSMIDINoteOn function with a velocity of 0
is the same as calling the DSMIDINoteOff function with
the same channel and note parameters.

Returns: E OK

Implementation:
AX

BX

CX

AX_NOTEOFF

Channel number

Note

Audio API Interface Library 98

DSMIDlPgmChange
„ #inclucle "digi.h"

[DS301]

^ int DSMIDIPgmChange(char channel, char program);

channel -MIDI channel to change program (range 0 •
15).

program -MIDI program number (range 0 -127).

Description:

Changes the program patch (instrument) for the
specified channel. The program parameter specifies the
index of a instrument in the driver patch table.

The driver provides a default set of 16 patches, or the
DSSetPatchTabie function can be called to load a

custom patch table. The program parameter should not
exceed the maximum number of patches currently
available.

The application should tum all notes off for the specified
channel before calling the DSMIDlPgmChange function
to prevent unwanted sound effects from changing the
instrument on an active note.

Returns: E_OK

Implementation:
AX - AX_PROGRAMCHG

BX - Channel number

CX - Program number

Audio API Interface Library 99

High Level Functions

The High level functions have been added to the PDiGi iibrary
to allow the programmer to talk to the Audio Adapter driver
using a minimum of functions. For example, the Tone function
is the only function needed to access the tone generator, and
the parameters are simplified from the low level requirements.

With the exception of the Driverlnstalled function, the high
level functions are contained in a iibrary module separate from
the low-level routines. If none of the high level functions are
used, the module is not linked into the application, saving space.
The Driverlnstalled function is contained in the Utility Functions
module.

Audio API interface Library 100

General

These high level functions are contained In the same library
module as the low-level functions, since they are commonly
used even If none of the other high-level functions are used.

liMil

Audio API Interface Library 101

Driverlnstalled

#include "digi.h"

int Driverlnstalled(void);

Description:

Determines if a DSP Solutions Audio Adapter driver is
present in memory.

Returns:

TRUE (1) - DSP Solutions driver present.
FALSE (0) - DSP Solutions driver not found.

implementation: Implemented by the DIGIAPI library.

Audio API interface Library 102

Digitized Audio

These high level functions control the digitized audio functions
of the driver. They are contained in their own DIGiHi library
module within the DiGiAPi library.

A

Audio API interface Library 103

StartPlay
#include "digi.h"

int StartPlay(int format, WORD rate, int ctiannels, DWORD
len):

format - audio data format.

rate - Sample rate appropriate to format.
channels - 1- mono, 2 - stereo
len - Number of bytes to be played.

Description:

One-stop shopping for the lower level background play
back routines. Chooses the appropriate iow-ievel
routine for all drivers and audio devices.

The channels parameter is ignored for formats that do
not support stereo. See DSBStereo for applicable
formats.

See the DSBPlay, DSBStereo, DSBPiayCVSD,
DSBPiayOKI, and DSBPIayDigi descriptions for
parameter values and description of operation for each
data format.

Returns: E_OK, E UNDEFINED, E ARGUMENT,
E_LENGTH, E_NOBUFFER, E_PAUSE,

E_BUFO,
E_BUF1, E_COM, E_TIMEOUT, E_MUSiC

Implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 104

StaitRecord

#inclucle "digi.h"

int StartRecord(int format, WORD rate.int channels, DWORD
len);

format - audio data format.

rate - Sample rate appropriate to format.
channels - 1- mono, 2 - stereo
len - Number of bytes to be played.

Description:

One-stop shopping for the lower level background play
back routines. Chooses the appropriate low-ievel
routine for all drivers and audio devices.

The channels parameter is ignored in the current
version.

See the DSBRec, and DSBRecCVSD descriptions for
parameter values and description of operation for each
data format.

Returns: E_OK, E UNDEFINED, E ARGUMENT,
E LENGTH, E NOBUFFER, E_PAUSE,

E BUFO,
E_BUF1, E_COM, E.TIMEOUT, E.MUSIC

implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 105

Tone Generator

These high level functions control the three-voice tone
generator. They are contained In their own TONE library
module within the DIGIAPI library.

Audio API interface Library 106

Tone
#include "digi.h"

int Tone(int command,int tone,WORD freq);

command • Tone generator function code,
tone - tone index, range 0-2.
freq - frequency, range 160 - 3000

(TONE_FREQ)
attenuation level, range 0-15
(TONE.LEVEL)

Description:

One-stop shopping for the lower level Tone Generator
routines. Not all parameters are used by all functions.
The following table lists supported functions and their
required parameters.

command parameter required parameters

TONE ENABLE none

TONE.DISABLE none
TONE.LEVEL tone,1req(level)
TONE_FREQ tone,freq

Parameters that are not required for a particular function
are ignored, but should be specified as 0.

Returns: E_OK

Implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 107

PlayOneTone
#include "digi.h"

int PlayOneTone(int tone, int freq, int level, WORD duration);

tone - tone index, range 0-2.
freq - frequency, range 160 - 3000
level -attenuation level, range0-15
duration - length of tone. In milliseconds.

Description:

Play a tone using a single channel of the 3-tone
generator. The tone generator Is enabled and disabled
automatically.

The routine retums only after duration milliseconds.

Returns: E_OK

Implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 108

PlayThreeTone
#include "digi.h"

int PlayThreeTone(int f1, int f2, int f3, int level, WORD
duration);

f1 - frequency of tone channel 1, range 160 - 3000
f2 - frequency of tone channel 2, range 160 - 3000
f3 - frequency of tone channel 3, range 160 • 3000
level - attenuation level, range 0 -15
duration - length of tone, in milliseconds.

Description:

Play a tone using all three channels of the 3-tone
generator. The tone generator is enabled and disabled
automatically.

The routine retums only after duration milliseconds.

Returns: E_OK

Implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 109

Synthesized Music

These high level functions control the music synthesizer. They
are contained In their own HFM library module within the PDIGI
library.

Audio API interface Library 110 fums

DSMusiclnit

#include "digi.h"

int DSMusiclnit(void);

Description:

Checks for a driver that supports FM Music and
initializes the driver music functions. This function must
be called prior to using the DSReadStatus function. If
this function is used, the DSSetStatusAddress function
must not be called.

if this function is successful, the calling program must
call the DSIerminateMusic function prior to exiting.

Returns: E_OK

Implementation: implemented by the DiGiAPi library.

Audio API Interface Library 111

DSSetStatusAddress

#include "digi.h"
[DS301]

void DSSetStatusAddress(BYTE _far *statusByte);

statusByte - FAR pointer to an unsigned char.

Description:

The calling program passes a pointer to it's local music
status byte. The PDIGI driver saves the pointer and
sets the music status byte to 0x00. During music piay
operations, the calling program may poll this byte to
obtain the current status of the music. The status byte
is set to OxFF by the DSPIayMusic routine at the start
of piay. The status byte is set to 0x00 when piay is
halted via DSStopMusic, DSReset or the MiDi STOP
status function code.

The status byte can also be set by the MIDI Control
Change function 0x67. This is a non-standard MIDi
extension that can be used to synchronize an extemal
program action with FM music events.

Returns: E_OK

implementation:
AX - AX_SETSTATADDR

SI - StatusByte offset

DS - statusByte segment

Audio API Interface Library 112

DSMusicStatus

#include "digi.h"
[DS301]

int DSMusicStatus(void);

Description:

Return the current contents of the music status byte set
M by the DSSetStatusAddress routine, if the vaiue is

non-zero, it is set to OxFF to avoid muitipie reads of the
same status vaiue.

The status byte is set to OxFF by the DSPiayMusic
routine at the start of piay. The status byte is set to
0x00 when play is halted via DSStopMusic, DSReset

' or the MIDI STOP status function code.

The status byte can also be set by the MIDI Control
^ Change function 0x67. This is a non-standard MIDI

extension that can be used to synchronize an external
program action with music events.

Returns: E_OK

impiementation: implemented by the DiGiAPI library.

Audio API Interface Library 113

DSSetMusicRate

#include "digi.h"
[DS301]

int DSSetMusicRate(WORD ticksPerSecond);

ticksPerSecond -Music rate (range 20 -160), default 96.

Description:

Set the rate, in ticks per second, at which the music
interpreter will process MIDI data.

Returns: E_OK

Implementation: Implemented by the DIGIAPI library.

Audio API Interface Library 114

DSStartMusic

#include "digi.h"
[DS301]

int DSPIayMusic(char _far *buf);

buf - FAR pointer to buffer containing MIDI format
music data.

Description:

Background play of MIDI format synthesized music.

The routine retums control to the calling program imme
diately. The calling program can monitor the music
status byte or use DSMusicStatus to determine
completion of play.

Retums: E_OK

Impiementation:
AX - AX_PLAYMUSIC

SI - Music data buffer offset

DS - Music data buffer segment

Audio API Interface Library 115

DSStopMusic
#inciude "digi.h"

[DS301]

int DSStopMusic(void);

Description:

Stop current synthesized music play operation.

Returns: E_OK

implementation:
AX- 0x0806

Audio API Interface Library 116 ^

DSTerminateMusic

#include "digi.h"

int DSSetMusicCallback(char _far ̂routine);

Description:

Undo DSMusicinit.

Returns: E_OK

impiementation: Implemented by the DIGIAPI library.

Audio API Interface Library 117

Appendix A - Data File Formats

This appendix defines the DSP Solutions Audio data file
formats. For aii new designs, it is recommended that the
Microsoft .WAV format be used. Aii new DSP Solutions utilities
utilize the .WAV format.

All values are displayed as hexadecimal. File extensions shown
in parenthesis are suggested, but not enforced.

Digispeech Standard Format file (.PAC)

I 77 I I H2 I DIGISPEECH STANDARD FORMAT DATA

^1*^2 ~ number of frames (N^ is the MSB)

Digispeech Fixed (Movie) Format file (.FIX)

1 78 1 N;i^ 1 N2 1 DIGISPEECH FIXED FORMAT DATA

^1*^2 ~ number of frcunes (Nj^ is the MSB)

Digispeech Realtime Format file (.RPE)

1 79 1 DIGISPEECH REALTIME FORMAT DATA

PCM 8 bit linear file (.PCM)

iwm,

1 80 1 PCM LIHEAR DATA

PCM 16 bit linear file (.SAM)

I FE I 16 BIT PCM LINEAR DATA

Note: Early .SAM files have no header byte.

Audio API Interface Library 118

PCM A-Law file (.A)

I 55 I PCM A-LAH DATA

PCM Mu-Law file (.U)

I FF I PCM MU-LAW DATA

ADPCM file (OKIDATA ADPCM) (.OKI)

I 11 I I OKIDATA ADPCM DATA

- sanpling rate index (0-3) .
0-8 KHz (4.0 Kbyte/sec)
1-9 KHz (4.5 ICbyte/sec)
2-10 KHz (5.0 Kbyte/sec)
3-11 KHz (5.5 Kbyte/sec)

DVI ADPCM (-DVI)

I 12 I 1 Ng I DVI ADPCM DATA

^2*^1 * sazrples per second (N^ is the LSB)

Audio API Interface Library 119

Digispeech CVSD file (,CVx) (x = 0-5)

I 44 I N3 I M4 I N5 I CVSD DATA

N3 - CVSD speed index (between OOH and
05H)

0 - 1800 bytes/sec.
1 - 2400 bytes/sec.
2 - 3000 bytes/sec.
3 - 3600 bytes/sec.
4 - 4200 bytes/sec.
5 - 4800 bytes/sec.

^4*^5 ~ nixnber of words (N^ is the MSB)

Note: CVSD DATA for both Digispeech CVSD and IBM Linkway
CVSD is the same after the file header.

IBM Linkway CVSD file (,CVS)

|Ni IN2 IN3 IN4 IN5 IRj IXj 1X2 1X3 1X4 I CVSD DATA

Ni:N5 - CVSD DATA Length in ASCII format.
- CVSD speed index (between 0 and 5)

in ASCII format.

0 - 1800 bytes/sec.
1 - 2400 bytes/sec.
2 - 3000 bytes/sec.
3 - 3600 bytes/sec.
4 - 4200 bytes/sec.
5 - 4800 bytes/sec.

^4*^4 "■ ASCII space characters (0x20)

Note: CVSD DATA for both Digispeech CVSD and IBM Linkway
CVSD is the same after the file header.

Audio API Interface Library 120

Microsoft Windows WAVE (.WAV)

The format of Windows .WAV files is documented in the
Microsoft Multimedia development kit. Please consult the
Microsoft documentation for further information.

The following WAVE file format identifiers are supported by the
DSP Solutions DOS drivers.

#define WAVE FORMAT PCM 0x0001

#define wave""format""IBM CVSD 0x0005

#define wave""format""alaw 0x0006

#define wave""format"'mulaw 0x0007

#define wave""format""OKI ADPCM 0x0010

#define wave""format""dVI ADPCM 0x0011

#define wave""format""digistd 0x0015

#define wave""format""digifix 0x0016

#define wave""format""unknown 0x0000

Audio API Interface Library 121

Appendix B - DIGI.H & DIGIDRV.H

This appendix provides the applicable parts of the DIGI.H and
DIGIDRV.H 'C" language header files.

/* DSQuery flag word definitions. */

#deflne CAPS__EPai 0x0001 // DS201A Extended PCM

// features

#deflne CAPS LPC 0x0002 // Driver plays LPC data
#deflne CAPS "̂tomb 0x0004 //

//

Supports PCJr 3-volce
tone generator

#deflne CAPS__201A 0x0008 // Unit Is DS201A (or

// compatible)
#deflne CAPS ADPCM 0x0010 // Driver plays OKI ADPCM
#deflne CAPS^I"CALLB 0x0020 // Driver supports banX

// switch callback

#deflne CAPS__LPCVOC 0x0040 // Driver contains LPC

// vocabulary.
#deflne CAPS_ PCMREC 0x0080 //

//

Driver supports PCM
recording

#deflne CAPS_JDRIVERID 0x0100 //
//

DSQuery returns Driver
ID In upper 16 bits.

#deflne CAPS__301 0x0200 // If this bit Is set, the

// following are valid:
#deflne CAPS_ DIGI 0x0400 // Driver supports

//
//

Dlgl speech\CVSD\LPC
formats

#deflne CAPS_ MIDI 0x0800 // Driver contains MIDI

// Interpreter.
#deflne CAPS_̂ CALLIDLE 0x1000 // Driver supports Idle

// callback

/* The upper 16 bits of the flag word */
/* contain the driver ID code. */

#deflne DID UMK 0 // Unknown driver (early version)
^define did""201 1 // LMDI6I DS201 driver (new)

#deflne did""201A 2 // LMDI6I DS201A driver (new)
#deflne did""301 3 // PDIGI Digital Audio only
#deflne DID_301M 4 // PDIGI Digital Audio / MIDI

// Synthesizer
#deflne DID__,301V 5 // PDIGI Digital Audio / LPC

// Vocabulary
#deflne DID 301MV 6 // PDIGI All features

#deflne did'"301TD 7 // PDIGI Dlglspeech format only.
#deflne did""301E 8 // PDIGI Educational LPC Emulator

#deflne did'"301XM 9 // PDIGI Synthesizer Emulator

Audio API Interface Library 122

#define B OK 0x0000

#define E UHDEFIHED 0x0001

idefine E BUFO 0x0002

#define E_BUF1 0x0102

#define S_MUSIC 0x0202

#define E COM 0x0003

idefine E L PC 0x0004

#define E CVSDSPEED 0x0005

#define E TIMEOUT 0x0006

#define E_ERR 0x0007

#define E PAUSE 0x1002

#define E GAIH 0x2001

#define E IHDEX 0x3001

#define E LENGTH 0x4001

#define E HOBUFFER 0x5001

#define E KRIORED 0x6001

idefine E INVALID 0x6002

#define E BUSY 0x6003

#define E_SYNTH 0x6004

#define E ARGUMENT 0x7001

#define E_RATE 0x7001

#define E_FORMAT 0x7002

#define E_MODE 0x7003

#define E VXD 0x7004

#define E CHANNELS 0x7005

Everything is OK.
Uhdeflned cononand.

Current buffer is 0.

Current buffer is 1.

Driver is in 3-tone

gen node.
COTSBunication error.

LPC index out of range.

CVSD speed is invalid.
Audio Unit not responding.
Audio Unit reported an

error.

DS201 is paused.
Invalid gain index.
Buffer index is invalid.

Buffer length is invalid.
Ho buffers were defined.

Command ignored.
Bad tone index specified.

Driver or device busy

Driver is playing synth
Invalid argument(s).

Invalid RATE argument.

Invalid FORMAT argument.

Invalid MODE argument
VxD Request error.
Invalid channel count.

/* Digispeech file header byte codes. ♦/

#define H_ADPCM 0x11

#define H_PCMDVI 0x12

#define H_MSADPCM 0x13

#define H SB4 0x14

#define H_SB3 0x15

#define H_SB2 0x16

#define H DIGICVSD 0x44

#define H PCMA 0x55

#define H DIGISTD 0x77

#define H DIGIFIX 0x78

#define HJDIGIREAL 0x79

#define H PCMRAN 0x80

#define H PCMRAN16 OxFE

#define H PCMMU OxFF

Audio API interface Library 123

/* Codes for data format parameter. */

#define DP_PCM8 0

#define DP PCMKU 1
r'#def ine DP PCMA. 2

#define DP PCM16 3

#deflne DP SB2 4 —

#deflne DP SB3 5

#define DP SB4 6

#deflne DP OKI4 7

#define DP DVI4 8

#deflne DP_piOIREAL 9

#define DP DIOISTD 10

#deflne DP DIOIPIX 11

#define DP LPC 12

#deflne DP MSADPCM 13 -

#define DP CVSD 14

/* PlayToneO command parameters. */

#deflne TONE_ENABLE 0
#deflne TOKE_piSABLE 1
#define TONE^LEVEL 2 ^
#deflne TONE_FREQ 3

#define TONE_PREQ_MIN 175
#define TONE_FREQ_MAX 3000 ^

/* Synthesizer Emulator function parameter. */

#define SYNTH_INIT 0
#define SYNTH_READ 1
#define SYNTHJHRITE 2
#define SYNTH RESET 3

Audio API Interface Library 124

#de£lne SOUND_IMT 0x4D

#de£lne AH RESET 0x00

ideflne AX_RESET 0x0000

#deflne AH FCVSD 0x01

#define AX FRCVSD 0x0100

#deflne AX FPCVSD 0x0101

#define AX_FRUCVSD 0x0102

#define AX_FPUCVSD 0x0103

#define AH BLPC 0x02

#deflne AX LPCSTAT 0x0200

#define AX BLPCIX 0x0201

#de£lne AX_BLPCBUF 0x0202

#de£ine AH FLPC 0x03

#deflne AX FLPCIX 0x0301

#deflne AX_FLPCBUF 0x0302

#de£ine AH GENERAL 0x04

#de£ine AX STATUS 0x0400

#define AX_GETCNT 0x0401

#cleflne AX SETBUF 0x0402

#de£ine AX SETGAIN 0x0403

#define AX PAUSE 0x0404

#de£lne AX RESUME 0x0405

#de£lne AX CALLBACK 0x0406

#de£ine AX_AUDIOHIX 0x0407

#de£lne AX_CALLIDLE 0x0408

#de£ine AHJBCVSD 0x05

#de£lne AX BPCVSD 0x0500

#de£ine AX_BRCVSD 0x0501

#de£lne AH_BDIGI 0x06

#de£lne AX BPDIGI 0x0600

#de£ine AX_FPDIGI 0x0601

#de£ine AH BPCM 0x07

#de£lne AX BPLAY 0x0700

#cle£lne AX BPOKIADPCM 0x0701

#de£ine AX BREC 0x0702

#de£lne AX BPSTEREO 0x0703

Audio API interface Library 125

#de£ine AH_FMMUSIC 0x08
#de£lne AXJMUSICINIT 0x0800
#de£lne AX_SETSTATADDR 0x0801
#de£lne AX_SETIMSTTAB 0x0802
«de£lne AX_SETHUSICRATE 0x0803
#de£ine AX_TRANSPOSE 0x0804
#de£lne AX_P1AYMUSIC 0x0805
#de£lne AX_STOPMOSIC 0x0806
#de£lne AX_MOTE(»T 0x0809
#de£lne AX_NOTEOFF 0x080A
#de£lne AX^PROGRAMCHG 0x080B

#de£lne AX_6ETCHAHHELS 0x0880
#de£lne AX_OETMUSICPTR 0x0881

#de£ine AX_GETDSMENTK3r 0x0885

#de£lne AH_STONE OxOA
#de£ine AX_STOME OxOAOO
#de£lne AH_CT01IE OxOB
#de£lne AX_CTQNE OxOBOO
#de£lne AH_ETONE OxOC
#de£lne AX_ETOHE OxOCOO

#de£lne AHJUNIHSTAL 0x64
#de£lne AX_UKINSTAL 0x6400
#de£lne AH_QUERY 0x65
#de£lne AX QUERY 0x6500

Audio API Interface Library 126

Appendix C - Detecting the Driver

The application program should test for existence of a DIGITSR
driver (LWDIGI or PDIGI) in memory before using the driver
services. The test for both drivers is the same, including the
identification string. This test can be done as follows:

Get address of current INT 4DH interrupt handler from
interrupt vector location.

Add 5 (as byte offset) to this address.

The contents of memory at this new address should con
tain the following text (not zero terminated):

"Digispeech DS201 LinkWay Driver"

If this text is found, then the TSR driver is resident in memory
and can be used. Otherwise the TSR should not be used until it
is successfully loaded.

Example of driver detection code:

#define SOUND_INT 0x4D // TSR interrupt.
#define KEY_LENGTH 31 // Length of keyID[]

static char keylD [] =
"Digispeech DS201 LinkWay Driver";

int Driverlnstalled (void)

{
int yvette;

char far *strl, far *str2;

// Get pointer to DIGISPEECH TSR
// interrupt routine.
// Translate Interrupt vector to
// memory address.

_asm

{
; ES:BX == 0;(vector * 4)mov bx. 0 ;

; ES:BX == pointer to start

mov es, bx

mov bx, SOUND INT

shl bx, 1

shl bx. 1

les bx, ES;[bx]

Audio API Interface Library 127

; of driver ^

mov word ptr strl, bx
mov word ptr strl + 2, es

/* Set SRC to point to TSR STAMP area */

FP_OFF{ strl) += 5;
str2 = (char far *)keyID; pat,

/* Check for Digispeech signature. */

for (yvette = 0; yvette < KEY_LENGTH; yvette++)
{

if (*(strl++) != *(str2++))

return(0); // Driver NOT found.

}

return(1); // Driver found. ^
}

Audio API Interface Library 128

Appendix D - SDK Files

The following files are found on the SDK disk. Consuit the
README.TXT file on the disk for any updates to this iist or
changes to the manuai.

ROOT Directory

README.TXT - SDK Updates and changes document.
PDIGI.EXE - PORT-ABLE Sound Driver Loader
PDRVA.DAT - PORT-ABLE Sound standard driver
PDRVB.DAT - PORT-ABLE Sound standard driver w/music
PDRVC.DAT - PORT-ABLE Sound standard driver w/LPC
PDRVD.DAT - PORT-ABLE Sound standard driver w/t)oth
LWDIGI.EXE- DS201/A Driver Loader
LWDRV.DAT - DS201 standard driver
LWDRVA.DAT- DS201A standard driver
LWDRVC.DAT- DS201/A standard driver w/LPC
DGSETUP.EXE - PORT-ABLE Sound Setup program
PLAY.EXE - Executable version of play program.
RECORD.EXE - Executable version of record program.
CALLBACK.EXE - Executable version of callback program.
CALLIDLE.EXE - Executable version of callldle program.
MUSIC.EXE - Executable version of Synthesizer Interface program.
EMULATE.EXE - Executable version of Emulator Interface program.
DIGI.CV5 - DIGISPEECH Format CVSD File.
DEMO.OKI - OKI ADPCM Sample file.
P1 .PCM - Linear 8 bit PCM Sample file.

LIB Directory

DIGIAPIL.LIB -

DIGIAPIS.LIB •

LARGE Model API library
SMALL Model API library

SOURCE Directory

GO.BAT - Generates all sample programs.
PLAY.C - Sample background play program.
RECORD.C - Sample background record program.
CALLBACK.C - Sample background play program.
CALLIDLE.C - Sample background play program.
MUSIC.C - Sample Synthesizer Interface program.
EMULATE.C - Sample Emulator Interface program.
DIGI.H - 'C Header file.
DIGIDRV.H - Low-level 'C Header file.

Audio API Interface Library 129

0

■rm mm ^.iaSS^r^

>>'
Af ♦ ^ -vi

* »-► -ds

^i-

;rKes«s

t -V 1- >

L& Cv ̂-4" <.r-r

