

COMPUTEl's
MAPPING the

IBM PCand PCjr
Russ Davies

22~e~!~!J:ublications;lnc.9
Greensboro, North Carolina

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

COMPUTE! Publications does not accept any responsibility for any possible damage
done to the reader's programs through the use or misuse of the information presented
here.

Printed in the United States of America

109876543

ISBN 0-942386-92-2

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies and is not associated with any
manufacturer of personal computers. IBM PC, PCjr, PC/XT, XT /370, Portable PC, PC
AT, and 3270PC are trademarks of Intemationa! ~1,1suwss Machines, Inc.

Contents
Figures, Tables and Programs . v

Foreword . ix

Acknowledgments . ix

Introduction xi
1. Memory Organization and Management 1
2. Keyboard . 67
3. Music and Sound . 109
4. Video .. 139

Appendices
A. Memory Map 211
B. Port Map 257
C. Interrupts 293
D. DOS Versions . 301
E. BASIC Versions . 305
F. BASIC Tokens 311
G. ASCII Values . 317
H. The Automatic Proofreader . 323

Charles Brannon

Index . 331

Figures, Tables, and Programs

Figures
1-1. Allocation of PC Memory Address Space in 64K Blocks 4
1-2. Calculation of Memory Address from Segment:Offset 6
1-3. Vector Format and Example of Contents 7
1-4. Format Change During Register/Memory Moves 8
1-5. 8088 Segment, Base/Index, and Miscellaneous Registers 9
1-6. 8088 Address Calculation with Base/Index 1 O
1-7. Levels of DOS and BIOS Service Requests 18
1-8. Map of Typical PC Memory Usage 20
1-9. Loading and Displaying the Boot Record Contents 24
1-10. MEMBAT.BAT . 34
1-11 . Sample Vector Program Output . 38
1-12. Output of Comparing Captured Vectors 39
1-13. BASIC Workspace · 45
1-14. BASIC Line Storage Format 47
1-15. Standard Variable Header . 48
1-16. Array Dimension Headers . 49
1-17. Creating SESAME.BLD 50
1-18. Allocation of PC 1/0 Port Address Space 54
2-1. Alt or Ctrl Shifted Keys Ignored . 71
2-2. Schematic Diagram of a Full Keyboard Buffer 77
3-1 . Direct Method Sound Production Schematic 113
3-2. Direct Method Sound Production Schematic 113
3-3. Timer Method Sound Production Schematic 121
3-4. PCjr Output Sound Source Selection 129
3-5. PCjr Complex Sound Generator Command Formats 130
4-1 . Conceptual Architecture of Display Adapter 143
4-2. Conceptual Architecture of PCjr Integrated Display Adapter . 144
4-3. Location and Size of Display Buffers . 154
4-4. Monochrome Adapter Character Cell 156
4-5. Color /Graphics Adapter Character Cell 157
4-6. Border Drawing Text Mode ASCII Characters CHR$(n) 167
4-7. Color/Graphics Single and Double Characters 170
4-8. Monochrome Adapter Display Attributes 171
4-9. Arrangement of Text Modes Character Attributes 171
4-10. Color/Graphics Adapter Display . 173
4-11. Arrangement of Text Modes Character Attributes 173
4-12. Color Adapter Memory Usage . 187
4-13. PCjr 128K Color/Graphics Memory Usage 188
A-1. Bit Contents of a Byte . 213
A-2. Map of Typical PC Memory Usage . 214
B-1 . 1/0 Ports Map . 260

Tables
1-1. Sizes of DOS/BASIC Versions 17
1-2. Interpreter Work Areas . 44
2-1. Shift Status Flag Bytes . 73

V

2-2. DOS INT 21 Keyboard Functions . 99
3-1. Musical Notes and Associated Frequencies, Piano Key

Arrangement . 114
3-2. PCjr BASIC SOUND and BEEP Settings 131
4-1. Viewing Requirements Satisfied by Monitor Types 146
4-2. Monochrome and RGB Monitor Characteristics 147
4-3. Summary of Available Video Mode Characteristics 152
4-4. Control Characters . 157
4-5. Summary of Available Color Text Modes 180
4-6. Summary of Available Graphics Modes Characteristics 185
4-7. Summary of Video Tracking, Ports, 6845 Registers,

VGA Registers . 202

Programs
1-1 . ROM BIOS Version ·. 13
1-2. Determining the DOS Version Using SHELL 14
1-3. Determining the DOS Version Using DOS Function 30h 14
1-4. Determining the BASIC Version . 16
1-5. Cold Start Invocation . 21
1-6. Warm Start Invocation . 22
1-7. MEMBAT.BAS 34
1-8. Capture Vectors from BASIC . 40
1-9. Capture Vectors from DEBUG . 41
1-10. Comparing Captured Vectors . 42
1-11. Determining the DEF SEG Segment Number 43
1-12. Issuing DOS Commands from BASIC . 51
1-13. SRVCCALL.BAS . 57
1-14. Functional Subset of SRVCCALL.BAS Invocation 60
1-15. SRVCCALL.ASM . 60
2-1 . Display INKEY$ Returned ASCII or Extended Scan Code 72
2-2. Displaying Keyboard Status . 7 4
2-3. Experimenting with PCjr Fn Status Flag 75
2-4. Monitoring the Keyboard Buffer and Pointers 78
2-5. Example of Plugging the Keyboard Buffer 80
2-6. Entering Screen Lines via the Keyboard Buffer 81
2-7. Relocating the Keyboard Buffer . 82
2-8. Restoring the Keyboard Buffer's Default Location 83
2-9. Escape Code Generator for ANSI.SYS Sequences 85
2-10. Creation of Key Definition File and Batch Command 86
2-11 : Creation of Key Reset File and Batch Command 87
2-12. EXE Program to Issue Escape Sequence Series 87
2-13. Trapping Break and Reboot Keys in BASIC 88
2-14. Ignoring the Break Key in BASIC . 89
2-15. Disabling Reboot via INT 9 91
2-16. Disassembly of BOOTNOT.COM 94
2-17. SRVCCALL Routines to Call BIOS INT 16 97
2-18. SRVCCALL Routines to Call BIOS INT 16 PCjr Functions 98
2-19. PCjr Modification of Typamatic Key Values 98
3-1 . Sample Direct Method Speaker Control Program 116
3-2. Direct Method Speaker Control with Stop-On-Any-Key 117

vi

3-3. Direct Method Speaker Control with Sound Table 118
3-4. Timer Method Sound with Stop-On-Any-Key 124
3-5. Timer Method Sound with Sound Table 125
3-6. Sound Chip Fundamentals Example Program 132
3-7. Sound Chip Keyboard Controller Program 133
4-1. Which Monitor Used at Boot Time . 148
4-2. Which Monitors Available . 149
4-3. Which Monitor Is Active . 149
4-4. Switc:;hing Monitors . 150
4-5. Create COLORMON.COM for DOS and BASIC Color Use . . 150
4-6. Switch to Monochrome Monitor While in BASIC 151
4-7. Text Characters Display . 159
4-8. Display Graphics Characters PEL Maps 160
4-9. Graphics Characters . 161
4-10. Program to Save PCjr Graphics Characters 128-255 162
4-11. Program to Load PCjr Graphics Characters 128-255 into a PC 163
4-12. PCjr Graphics Characters 128-255 . 165
4-13. Causing the Screen to Be Printed in BASIC 169
4-14. Disabling/Enabling PrtSc Feature in BASIC 169
4-15. Demonstration of All Possible Text Mode Attributes 176
4-16. Disabling/Enabling Blink and the Display 177
4-17. Color Swatches and PCjr Palette Registers 178
4-18. Program to Display Page Information 182
4-19. Demonstration of Display Buffer /Page Switching 183
4-20. Third Palette, 320 X 200 . 186
4-21. Graphics Memory Filler Program . 189
4-22. Bar Chart Graphics Program Using BIOS Calls 191
4-23. Glitch Elimination Experiments . 195
4-24. Screen Paging in Text Modes . 198
4-25. Text Scrolling . 200

vii

Foreword
If you've programmed in BASIC or machine language on the
IBM PC, you're aware of the many features that the computer
offers. You've probably also discovered that there are capabili­
ties which are difficult for the average programmer to learn
and use. COMPUTE!'s Mapping the IBM PC and PCjr is a mem­
ory map and guide to the inner workings and structure of the
IBM PC and PCjr. It will show you how to take advantage of
the vast and powerful abilities of your computer's built-in
hardware and software.

Through examples and illustrations, you'll be introduced
to the techniques that professional programmers use to add
polish to commercial software. By studying these keyboard,
sound, and screen techniques, you'll learn the skills needed to
design attractive and effective programs in any language.

Sample programs show you how to read the keyboard,
screen flip, call DOS commands from BASIC, and even define
the function keys to automatically execute the tasks you use
most often.

COMPUTE!'s Mapping the IBM PC and PCjr contains a se­
ries of detailed Appendices, including extensive memory and
port maps, a handy listing of interrupts and DOS function
calls, cross references to IBM documentation, and details of the
differences between each version of DOS and BASIC.

Whether you're new to machine language on the IBM or
are a veteran 8088 programmer, you'll find that COMPUTE!'s
Mapping the IBM PC and PCjr is the most clearly written and
easy-to-use guide to the IBM PC memory available.

Acknowledgments
My thanks to personal and professional acquaintances who
provided valuable suggestions and especially to those who
were tolerant of my absent-mindedness and lack of social
graces during yet another book-writing marathon. I promise
not to talk to myself anymore or scribble on tiny scraps of
paper in the middle of conversation-at least until the next
project. My warmest gratitude to Doug Martin, Lester
Kooyman, Greg Grimm, Guy Moore, and Jim Cady, each for
his own unique contribution.

ix

Special thanks go to Orson Scott Card, who first gave me
the opportunity to express myself through this medium. The
good cheer and wisdom of Stephen Levy and enthusiasm of
Gregg Keizer have made my relationship with COMPUTE!
Books a joy through two long projects.

My family have been dears through both projects. Thanks
for waiting, Mom; I can talk now. And finally, I am indebted
once more to Cindy King, who made this book happen. I simply
could not have persevered through it without her unselfish
sacrifices, constant support, good cheer, tender warmth, and
unfailing belief. "You know I'd like to, but I have to work on
the book" is finally over.

This book is dedicated with love to Earl, George, and
Jamie.

X

Introduction
Whether you use an IBM PC, XT, PCjr, XT/370, Portable PC,
or 3270PC, this book will help you get more from your com­
puter. In each chapter we'll explore the way the PC operates
and show how to make it work to your advantage. IBM docu­
mentation just doesn't say enough about the things the typical
user wants to be able to control and use.

Have you noticed that no DOS or ROM BIOS services are
available for the production of sound and that the Technical
Reference manual (TRM) doesn't explain how to produce
sound on the PC? Sound is left uncovered except for the
BASIC manual.

Wouldn't it be nice to be able to call ROM BIOS and DOS
functions from your BASIC program? Or to be able to deter­
mine, from your program, which version of DOS and BASIC
is being used? How can you program the function keys so that
they stay active even when you leave BASIC? Did you ever
wish that you could turn off the Break key in BASIC? Or set
the Shift keys on or off from your program? How do you
determine the best place to BLOAD or POKE a machine lan­
guage routine for BASIC?

Did you know that there's a third palette available in 320
X 200 mode on the PC? Do you understand the various video
modes? Would you like to be able to smooth-scroll and per­
form seemingly instantaneous full-screen writes? Would batch
file in-process modification or a secondary COMMAND.COM
be the best technique for nesting .BAT file calls? We'll explore
these topics and many more in this book.

These techniques and tricks will make your programs
more impressive, but what's more important is the knowledge
you'll gain about the way memory and ports are used on the
PC and PCjr. From this understanding you'll have a clear pic­
ture of the way the PC works from the ground up, through
ROM BIOS, DOS, BASIC, and application programs.

IBM documentation will be enhanced by the many ref­
erences you'll find to the proper sections for additional details.
Have you had problems finding information you need in the
Technical Reference manual? Quick-where can you look to
determine the cursor position for video page 3? How about the
port address associated with COM2? If you see a POKE to

xi

location &h20, what is the program doing? Why would an
INP(&h321) be in a program? Not the easiest things to find in
the existing IBM documentation, but this book's memory map
and port map will answer such questions quickly.

What You Need to Know
Although it is not imperative that you know BASIC or 8088
machine language, an understanding of them will be helpful if
you are to gain the most from this book.

You should have a fundamental knowledge of how to op­
erate the computer and how to enter a program. If you are un­
familiar with batch files or the use of DEBUG, you may want
to review those sections of the DOS manual. In addition,
experience using the most common DOS commands will be
useful.

What You Need to Have
You'll need to have access to an IBM PC or PCjr. Most of the
information in this book also applies to many of the IBM­
compatible work-a-like computers. The greater the compat­
ibility with an IBM PC, the more useful this book will be for a
non-IBM computer.

The PC, PCjr, XT, XT/370, Portable PC, and 3270PC will
run the sample programs without modification. The majority
of the sample programs require no modification for the PC AT.

It doesn't matter what amount of memory is present on
the computer, which display adapter you're using, or what
additional peripherals you have. You'll be able to learn a great
deal regardless of your configuration. A 384K PC, 384K XT,
and 128K PCjr (with 256K additional RAM sometimes used)
and both monochrome and RGB color monitors (only RGB for
the PCjr) are used for example purposes, but the principles ex­
plored are common to any memory size or display configuration.

The level of DOS that you are currently using is not criti­
cal. DOS versions come and go, and this material is presented
in a way that makes it relatively independent of the release
level of DOS. DOS 2.0/2.10 is used in this book for example's
sake, but DOS 1.1 through DOS 3.0/3.10 features are discussed.

Three IBM manuals are referenced in this book: the
BASIC manual, the DOS manual(s), and the system unit Tech­
nical Reference manual. If you have all three and are generally
aware of the range of information contained in each, you're in

xii

the best possible position to learn the most from this book.
But you needn't have the Technical Reference manual to gain
substantial knowledge. You'll need the Technical Reference
manual only to pursue the finer points of the concepts dis­
cussed here.

The primary Technical Reference manual address and page
references are for the XT and PCjr (see below for the exact
edition of the manuals used). The XT was selected as a com­
mon denominator because of the vast number purchased for
business use, the likelihood that serious users will eventually
be drawn to it as the price continues to erode, and the many
other configurations based on it (such as the 3270PC and
XT/370). The XT 2.02 Technical Reference manual contains
more information than any of the other TRMs, including the
PCjr. The Memory Map Appendix clearly lists the differences
in PC2 and XT routine addresses. These are primarily confined
to two areas of ROM BIOS.

For those unfamiliar with the differences between
PCl/2/XT models, here is a summary of the major
differences.

PCl PC2 XT PCjr
System board RAM
capacity 64K 256K 256K 128K
Minimum RAM 16K 64K 128K 64K
Expansion slots 5 5 8 3 dedicated
256K chips usable no no yes no
Cassette yes yes no yes
ROM pins 24 24 26 26
Config switches 2 2 1 0

The Technical Reference manuals have undergone a major
change from the PCl, PC2, XT, and PCjr versions. The Op­
tions and Adapters addendum volumes (1 and 2) are now used
to contain the information for optional adapters. Here is a list
of the versions of system unit Technical Reference manuals that
I have found available:
Computer

PCl
XT
Jr
PC2
All

Part Number Dated
6025008 7 /82
6936808 4/83 with "2.02" sticker
1502293 9/83
6322507 4/84
6322509 4/84 (Options and Adapters, vol. 1 and 2)

xiii

It's extremely unlikely that all these versions are available
to you. This book uses the XT and the PCjr Technical Reference
manuals (listed above) as standard references.

Unfortunately, this book cannot cover every aspect of the
PCs. Time and space requirements preclude the in-depth
examination of Cassette BASIC routines, DOS internals, disk,
printer, RS-232, cassette tape, expansion unit, game adapter,
and system board support chips. However, the memory and
port maps include detailed information about these subjects.
I'm sure you'll find that this volume contains the most im­
portant and usable information that could be _placed in a single
book.

The sample programs, diagrams, routine references, and
Technical Reference manual references reflect the results ob­
tained on several different configurations of PC models. The
PC values are derived from a computer with 384K, both color
and monochrome displays, and a parallel printer adapter. The
PC/XT used had the same memory and peripheral configura­
tion. The PCjr used contained the 64K display and memory
enhancement and an additional 256K to bring the system to
parity with the others. Although no particular configuration is
required, it is assumed throughout that there is a disk drive at­
tached and that some level of DOS is in use. The lack of these
would not preclude the bulk of information presented here,
but it would somewhat reduce the number of sample pro­
grams that you would find useful in your situation.

I recommend DOS 2.10 as the standard operating system
for your PC (assuming the 24K of memory used is tolerable),
because it is far more powerful than any DOS l .x versions,
with its redirection, pipes, filters, and built-in miniassembler
in DEBUG. Some problems with DOS 2.0 were fixed in 2.10,
and 2.10 is usable for all members of the PC family (except
the AT).

What You'll Find in This Book
The first chapter will introduce you to the memory architec­
ture of the PC and PCjr, and will explain the BASIC, DOS,
and ROM BIOS use of memory. It will also summarize the
cold start process and give you a powerful tool for invoking
DOS and BIOS services from within your BASIC programs.
This base of knowledge will be used in later chapters.

xiv

Because the keyboard, sound, and video image form the
interface between humans and computers, the primary focus
of the next three chapters is on using these devices to their full
potential. Through many sample and demonstration programs
you'll come to know the potential and limitations of each of
these devices. We'll also use nearly every feature that they are
endowed with, many of which are not explored in other
works.

The Appendices include a comprehensive memory map,
port map, DOS and BASIC version differences, an interrupt
and function guide by device type, and a BASIC token ref­
erence. I simply can't imagine how serious programming can
exist without decent memory and port maps. They seem fun­
damental. You can do so much more and use all the power of
the computer system only if you are aware of how it is struc­
tured and organized. The lack of such information makes
understanding other people's programs much more difficult,
especially if they are using advanced techniques or all the
available system resources.

Sample programs are included to demonstrate the meth­
ods that may be employed to use the features under dis­
cussion. They are not intended to be examples of clever
programming, optimization of speed or memory usage, or
models of programming form or technique. Additionally,
examining and trying the accompanying programs may clarify
finer details of the discussions.

Your involvement at the instructional level will solidify
your understanding of the concept being discussed. I
encourage you to modify and experiment with the programs to
suit your needs. You will ultimately learn much more by try­
ing to change the samples (once the programs are entered and
working correctly) than you would from merely observing
their original purpose and then moving on to the next subject.
The programs have been intentionally written in a straight­
forward, easy-to-follow manner so that you will find them
easy to tailor, adapt, incorporate, and understand.

xv

1
Memory

Organization
·and Management

1
Memory

Organization
and Management

Your PC or PCjr can address up to one megabyte of memory
which is a whopping 1,048,576 bytes for data and programs.
There are some programs and data already in the machine
before you turn it on. The ROM BIOS, BASIC ROM, and (if
you have an XT) Hard Disk ROM BIOS each take away a
chunk of the space. These programs need some RAM data
areas since ROM can't be written to, so another small chunk is
reserved for that purpose. Video mapping requires a healthy
section of storage, and memory reserved for future video
usage is even larger.

Then there are some areas reserved for future ROM. And
let's not forget the memory used to hold the Disk Operating
System (assuming that you have a disk drive). That leaves a
PC with maximum memory of about 600K for our use, give or
take 20K depending on the version of DOS. That's still a
healthy amount for programs. And we can always use over­
lays and disk files to reduce the amount of memory required.
CP /M machines have been limited (in general) to 64K, minus
the system and operating system overheads. PCs have 16
times the storage capacity.

Incidentally, some of the older PCs (referred to as PCl's
and identified by only 64K of memory on the motherboard)
do not have the ability in ROM BIOS to use memory above
544K. We'll be exploring ways to overcome that limitation in
this chapter. ROM BIOS manufactured after October 27, 1982
doesn't have this limitation. We'll see how to obtain the ROM
BIOS date in a moment.

Figure 1-1 shows the memory allocation of the one­
megabyte PC address space in 64K blocks.

3,

Memory Organization and Management

Figure 1-1. Allocation of PC Memory Address Space in 64K
Blocks

Hex
00000 OK

10000 64K

20000 128K

30000 192K

40000 256K

50000 320K

60000 384K

70000 448K

80000 512K

90000 576K

A0000 640K

B0000 704K

C0000 768K

D0000 832K

E0000 896K

F0000 960K

FFFFF 1024K

*"'**** 64K Block Memory Map ******

Vectors, data, DOS, Disk/ Advanced BASIC

User program RAM, if filled *

User program RAM, if filled *

User program RAM, if filled *

User program RAM, if filled *

User program RAM, if filled *

User program RAM, if filled*

User program RAM, if filled *

User program RAM, if filled*

User program RAM, if filled*

Future video reserved

Mono/ color video

Future ROM / XT fixed disk ROM

Future ROM/ jr cartridges

Future ROM / jr cartridges

Tests, ROM BASIC, ROM BIOS

* BASIC programs are limited to a 64K workspace

Memory Segmentation
Before exploring the boot process and the resulting configura­
tion of software in memory, let's discuss the concept of storage
segmentation, since from here on we'll be speaking in terms of
offsets within segments or absolute addresses. Since the 8088
microprocessor in the PC or PCjr can access a memory address
space of one megabyte (1024K), a memory address can reach
as high as FFFFFh, requiring 20 bits to express. This is obvi­
ously half a byte more than can fit into the two-byte, 16-bit
registers in the 8088. So how does the PC manage to address

4

Memory Organization and Management

memory which needs more than two bytes to express over
FFFFh (64K)? And how are 20-bit interrupt vector addresses
stored in memory? What are segment registers and why do we
need to use the DEF SEG statement to look into video mem­
ory? If you can confidently answer these questions in your
own mind, then feel free to skim ahead to the next section.

Figure 1-2 illustrates the process that the 8088 micro­
processor uses to develop an address that spans the memory
address range of Oh to FFFFFh. A two-byte offset is added to
an adjusted two-byte segment value to derive the memory ad­
dress. This is performed very quickly by the 8088 itself, and
we need take no special action to have it done; we need only
to insure that the segment register is loaded with the correct
segment number, then set the offset to the number of bytes
beyond the start of the segment.

The segment register is adjusted by adding a low-order
zero, which changes the segment number to the address of the
nearest-but-not-after memory location that ends in Oh. In
other words, B800h segment number is changed to B8000h
address. There's no sense carrying around the trailing zero in
the segment number since we need the space in the register
just to specify the full range of possible segments: 0-FFFFh.
The 8088 adjusts the segment number, logically adding a low­
order zero to it, adds the offset value, and out pops a memory
address.

Thus, every address that ends in Oh is potentially a seg­
ment number, and a segment number does not include the
low-order Oh. For address FFFF2h, the segment register could
contain FFFFh and the offset would be 2h. Sometimes it's
helpful to specify an address by indicating the segment and
the offset separated by a colon. For example, address FFFF2h
could be written as FFFF:2.

Figure 1-2 diagrams the segment:offset address computa­
tion process that the 8088 carries out for us.

Your PC Technical Reference manual (as discussed in the
Introduction, all page references are for the XT manual) illus­
trates the memory address resolution method shown in Figure
1-2 on page B4, but the PCjr Technical Reference manual has
strangely omitted this 8088 reference material. This lends cre­
dence to the rumor that IBM had planned to use another
microprocessor in the PCjr, but problems precluded that,
delaying the availability of the PCjr for many months. Since

5

Memory Organization and Management

Figure 1-2. Calculation of Memory Address from
Segment:Offset

Contents Effectively

0000 16-bit offset 10B2h 010B2h

bit 19 15 0

+ I 16-bit segment I 0000 I E0A6h E0A60h

bit 19 4 0

I 20-bit address I E1B12h

bit 19 0

that 8088 material isn't available to PCjr users, the diagrams
in this section will recap some of the 8088 material in the PC
Technical Reference manual.

Since an offset can range from 0 to FFFFh, you can see
that it would be possible to reference a memory address using
many different segment:offset combinations. For example,
12345h would be the address resulting from any of the follow­
ing segment:offsets-1234:5, 1230:45, 1200:345, 1000:2345, or
even 1233:15, 1190:A45, 430:£045, or 235:FFF5. An offset can
address any byte in 64K of memory, and there's no reason
that the segment can't start at any address ending with zero
(called a paragraph boundary), as long as the segment:offset
combination adds up to the needed address.

Actually, PC users have adopted the convention of only
starting segments that end with zero (such as segment number
40h) and that refer to the beginning of a major block of data
or instructions (such as segment B800h or F600h).

For the sake of clarity, all addresses in this book (except
where counterproductive to the discussion at hand) will be in
the absolute form, with the 8088 addition already done and
referring to a memory address between 0 and FFFFFh. So
when you see the address B8000h, you know that it may easily
be expressed in segment:offset form as B800:0 or any other
handy combination. Even though you often see an address
like 40:11 in other references, we'll refer to it as 411h, and
you can express it as any segment:offset that you prefer.

The first 64K of memory on the PC contains many vectors
to routines and data tables. These vectors are normally four

6

Memory Organization and Management

bytes and are formatted as shown in Figure 1-3. The format
may take a little getting used to, but it soon becomes familiar.
This concept of the Least Significant Byte (LSB) followed by
the Most Significant Byte (MSB) is used throughout the PC
and PCjr with only a few exceptions. You'll quickly become
adept at working with the format, and the VECTORSB,
VECTORSD, and VECTCMPR (Programs 1-8, 1-9, 1-10) pre­
sented in this chapter will ease the task of constructing ab­
solute addresses from memory vectors, as well as demonstrate
the process of determining the resulting absolute addresses.
DEBUG can also be used to examine these vectors in memory.

Figure 1-3. Vector Format and Example of Contents

Offset Segment

LSB

I
MSB

I
LSB

I
MSB

A4 14 23 FE

Byte: 0 1 2 3
Offset: 14A4h

Segment: FE230h

Address: FF6D4h

Sometimes you'll encounter a segment number stored in
memory with no associated offset. We'll see these during the
discussion of storage block chains later in this ehapter. This
format conserves data storage space and is used for addresses
that always occur on a 10h byte boundary. They also use the
LSB/MSB format, so you'll need to add a low-order zero to
derive the absolute address. The BASIC DEF SEG= statement
is this type of segment number. The statement is used to ad­
just BASIC's CS segment register so that memory outside BA­
SIC's 64K segment can be accessed. The offset is set with a
PEEK, POKE, BLOAD, BSAVE, CALL, or USR instruction. See
pages 4-71 and C-8 of the BASIC manual or PCjr BASIC,
pages 4-88 and C-9.

When using DEBUG, be aware that while memory is in
LSB/MSB format, the 8088 registers are in MSB then LSB for­
mat. Figure 1-4 illustrates the effect of moving data between
memory and registers. This demonstrates that memory is ac­
tually designed to hold data in the LSB/MSB format.

7

Memory Organization and Management

Figure 1-4. Format Change During Register/Memory Moves

AX Register

MSB I LSB

AH
FE

AL
53

.-MOVE ➔

.- Contents ➔

Memory

LSB I MSB

0
53

1
FE

byte

When using DEBUG or the Assembler, the registers
shown in Figure 1-5 are available for your use. Some registers
are designed to be used as segment registers, while others may
be used as general work areas or base/index registers. The fig­
ure shows each register available and its assumed usage in
certain instruction types. Registers that are split may be used
as two 8-bit registers or as a single 16-bit, two-byte (called
word) register.

Addressing Modifiers
From DEBUG and the Assembler, the base and index registers
can be specified for use in the calculation of the final absolute
address, as shown in Figure 1-6. You can experiment with using
base and index registers by entering assembly language state­
ments in DEBUG, setting the registers, and tracing the instruc­
tion to see the resulting memory address referenced.

As Figure 1-6 demonstrates, the Assembler and DEBUG
make assumptions about which segment register is to be used
when performing address calculations. This assumption is then
reflected in the 8088 instructions generated. Whenever the
next instruction to be executed is referenced (by a JMP or
CALL), the registers CS:IP are used. The SS:SP pair is used to
reference the stack, which we will be discussing in more de­
tail. The source and destination segment register is assumed to
be DS, while the destination for string operations is assumed
to be and must use ES:DI. If the BP register is used in an
instruction, the segment register is assumed to be SS.

A program can override the assumption that DS is the
source and destination and SS is the segment register when
BP is used in an instruction. The PCjr Technical Reference
manual does not document these segment register assump­
tions, but the PC Technical Reference manual has a figure on
page B-4.

8

Memory Organization and Management

Figure 1-5. 8088 Segment, Base/Index, and Miscellaneous
Registers

AH AL

BH BL

CH CL

DH DL

Data Registers

AX Accumulator

BX Base

CX Count

DX Data

Assumed Usage:
AX multiply and divide word, 1/0
AH multiply and divide byte
AL multiply and divide byte, 1/0,

decimal mode, translation
BX base register
CX string and loop
CL rotate and shift
DX multiply and divide word, 1/0

Pointer and Index Registers

SP Stack Pointer
SP

BP Base Pointer BP
SI

SI Source Index DI

DI Destination
Index

Segment Registers

CS Code Segment

DS Data Segment

55 Stack Segment

ES Extra Segment

Miscellaneous

IP Instruction Pointer

Assumed Usage:
stack index
base index
strings
strings

1 1 1 1 1 1 bit
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 no .

..__F_H ___ F_L__,I fl:gs I I I I 1°1°1 1 lrl 5 l2 I IAI IPI lcl

9

Memory Organization and Management

Figure 1-6. 8088 Address Calculation with Base/Index

bit

bit

bit

bit

bit

10

15 0 Offset developed by:

0000 BX or BP I base register or none

15 0

0000 DI or SI I added to index register
or none

15 0

0000 16 bit, 8 bit added to displacement
or none

derives total offset

15 0 Segment developed by:

0000 DS, CS, ES, or SS I segment number

19 4 shifted left four places

DS, CS, ES, or SS 0000 derives segment register

added together gives
absolute address

If DS=200h, BP=l000h, SI=S00h, and the instruction is
INC 12+[BP+SI]

BP 1000h
+ SI 500h
+ 12h

1512h total offset
DS segment *lOh = 2000h segment address

3512h absolute address

Memory Organization and Management

A caution about segment overrides: When a REP or REPZ
is used for a string operation and an interrupt such as an NMI
occurs, only the segment override nearest the string operation
code will be "remembered" and restored. The moral is that
segment overrides are not prudent for string operations using
REP or REPZ.

Segment registers can point to segments whose 64K range
overlaps other 64K segments specified by other segment reg­
isters. Of course, segment registers may each point to entirely
separate 64K segments of memory. The PC Technical Reference
manual illustrates a discrete segment example on page B-4.

Stack
The 8088 provides instructions to manage a last-in, first-out
(LIFO) stack area that is used to store and restore data. Stacks
are used by all programs. The current stack area is typically
used to save registers and other program control information.
But there's no reason that any data you wish could not be
saved on the stack, as long as you're willing to remove it later.
The Assembler instruction PUSH places data on the stack and
POP recalls it. These instructions are used with a word of
data.

The stack area is actually any area in RAM that the stack
segment register (SS) has been set to point to. Because the
stack grows downward toward offset O from offset FFFFh in
the SS segment, the correct setting of SP for an entirely empty
stack segment is FFFFh. A PUSH of a word of data onto the
stack causes SP to be decremented by two. Then the MSB is
placed on the stack, followed by the LSB, maintaining the
same LSB/MSB format as we've seen used in memory. So SP
always points to the last byte that was placed on the stack.

The POP of a word of data from the stack copies the data
pointed to by SS:SP to a location indicated by the instruction
and increments SP by two. The data on the stack is not
erased, but SP is adjusted so that it will be overlayed by the
next PUSH of a data word.

Besides accessing data at the top of the stack with SS:SP,
you can also obtain information from within the stack segment
by using BP with its default segment register of SS. This
method is employed to pass parameters to machine language
programs from BASIC. See either computer's BASIC manual,
page C-11. When moving data from the stack, other than
POPing, it, the original data remains on the stack.

11

Memory Organization and Management

Since DOS and BIOS use your stack area when you re­
quest one of their services, the DOS manual recommends that
your stack area be at least 80h larger than your program re­
quires. The INT instruction uses three words of the stack to
save the current CS:IP and flag register. CALL pushes the IP
word, and CS if a FAR CALL is used, onto the stack. RET (or
RET FAR) restores these registers by, POPing them from the
stack. The n parameter for RET specifies the number of bytes
(not words) to be discarded off the stack before the CS:IP loca­
tion on the stack. That's why n is typically twice the number
of parameters passed by BASIC to a machine language program.

As we shall see later, DOS has a few places where SS and
SP are set in the wrong order. SS should be set before SP,
since any interrupt that occurs after the setting of SP and
before SS would cause the wrong stack segment to be used,
possibly destroying vital information and certainly using an
incorrect return address. We could disable interrupts during
the setting of these registers, but an NMI (Non-Maskable
Interrupt) on the PCjr generated by the keyboard cannot be
disabled and would create havoc.

ROM BIOS Versions
Since there are different versions of DOS, BASIC, and even
ROM BIOS that include support for additional or enhanced
commands (as well as known bugs), you may want to deter­
mine the release level of the software on a PC before issuing a
command in a program. For example, the LOF function in
BASIC is helpful in determining the size of a file. But LOF is
not available in Cassette BASIC. In addition, BASIC 1.0 and
1.1 return the file size as the next higher multiple of 128
bytes, whereas BASIC 2.0 and above return the actual number
of bytes in the file. VARPTR$ didn't exist before BASIC 1.1,
and ON TIMER is new with BASIC 2.0. LABEL is a new DOS
command on DOS 3.0, redirection is new in DOS 2.0, and all
x.0 releases of DOS feature additional and enhanced function
calls.

It's therefore important to understand which version of
software is in the environment so that your programs can take
advantage of the power of provided facilities and avoid errors
caused by attempting to use nonexistent features. Program 1-1
determines the machine type, the ROM BIOS release date, and
the ROM part number. The release date and part number can

12

Memory Organization and Management

be used to distinguish early XTs which had the same machine­
type code as a PC. Your PC Technical Reference manual BIOS
listing may be back-level. Compare the date on the last page
of the BIOS listing to that found in ROM.

Program 1-1. ROM BIOS Version
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

~ 100 'MEMROMVR; Decode machine type, part num,
version date from ROM BIOS

HA 120 DEFINT A-Z
DL 130 DEF SEG=l!,HFFFF: MACHINE=PEEK Ct,HE)
IT 140 MACHINE$="n unknown machine"
GJ 150 MACHINE=MACHINE-l!,HFB: ON MACHINE GOSUB 240,

250,260,270
HA 160 •
QI! 170. FOR X=5 TO 12: VER-DATE$=VER.DATE$+CHR$(PE

EK<X»: NEXT
HE 180 •
LN 190 DEF SEG=&HF!2100: FOR X=!ll TO 7: PART$=PART$+

CHR$<PEEK<&HE000+X>>: NEXT
SF 200 •
IP 210 CLS:PRINT"This is a"MACHINE$" with ROM dat

ed "VER.DATE$", part num "PART$
LP 220 END
HL 230 •
JH 240 MACHINE$=" PC/AT": RETURN '8chFC
CL 250 MACHINE$=" PCjr": RETURN '&hFD
CL 260 MACHINE$=" PC/XT, XT /370, OR 3270 PC": RET

URN •&hFE
NB 270 MACHINE$=" PC": RETURN "8chFF

Running Program 1-1 has shown the following versions
of ROM BIOS:
Date
04/24/81
10/19/81
08/16/82
10/27 /82
11/08/82
06/01/83
01/10/84

Part
5700051
5700671
5000026
1501476
1501512
1504037
6181028

Machine
PC
PC
XT, XT/370
PC
XT, XT/370, and 3270PC
JR
AT

It's likely that other ROM BIOS versions exist, and it's
certain that more will be released in the future.

13

Memory Organization and Management

DOS Versions
The version of DOS that is being used on a PC can be ob­
tained by using the VER command, DOS function 30h, the
BASIC SHELL command on DOS 3.0 and higher, or Program
1-2 that allows SHELL to work on BASIC 2.0 or 2.1 (Program
1-2 will not work on the PCjr). In the Appendices of this book
you will find a list of the new and enhanced commands on
each level of DOS from 1.1 through 3.1.

You can use a machine language routine in BASIC to call
DOS function 30h for the version of DOS as illustrated by
Program 1-3 (Program 1-3 will work on the PCjr). We'll soon
explore a generalized machine language routine that can be
used for many other DOS functions and INT calls as well.

If 0.0 is shown as the DOS version, then DOS is previous
to 2.0.

Program 1-2. Determining the DOS Version Using SHELL
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

DP 100 'MEMDOSVR: Obtain version of DOS from BASI
C .

06 110 • wi 11 not work on .JR
HJ 120 •
GN 130 PL=PEEK(&H30): PH=PEEK<&H31) 'save data fr

om BASICs non-PSP
JK 140 SHELL "ver >temp.ver" 'create a file with

VER return message
00 150 POKE &H3'11,PL: POKE &H31,PH 'restore saved

data
HA 160 •
CD 170 OPEN "temp.ver" FOR INPUT AS #1 'show the

VER message
CE 180 INPUT #1, X$, Y$
FF 190 PRINT Y$
GF 200 •
LJ 210 VER$=RIGHT$(Y$,4): PRINT VER$ •set a strin

g to the DOS version
HM 22lll CLOSE #1: KILL "temp. ver" • erase the tempo

rary file

Program 1-3. Determining the DOS Version Using DOS
Function 30h
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

DO 100 'MEMDOSVS; Call DOS function 30h for versi
on number

GG 110 •

14

Memory Organization and Management

OB 12!21 GOSUB 16!21: CALL ASMROUT ! • load and cal 1
the assembler routine

QM 130 PRINT"DOS Versi on"PEEK (&HB> ". "PEEK <&HC)
LC 14!21 END
LC 150 • --- LOAD ASSEMBLER ROUT I NE ---
QN 160 DEF SEG=&H1800: I=0 •starting address for

assembler routine
IT 170 • outside of BASIC"s segment
JA 180 READ X$: IF X$="/*" GOTO 200 •read loop
OH 190 POKE I,VAL("&H"+X$): I=I+l:· GOTO 180 "cons

truct the routine
i:c 2!210 ASMROUT 1 =0 • address of the routine
MO 210 RETURN
KJ 220 • --- Assembler routine ---
MH 230 DATA B4, 30 : MDV AH, 30 ;REQUEST

DOS VERSION FUNCTION
lG 240 DATA CD,21 : INT 21 ;CALL DO

s
IN 25!21 DATA 2E CS: ; SAVE IN

THIS SEGMENT
Bi 26!21 DATA A3,0B,0!21 MDV [0B],AX ;SAVE DO

S RETURN INFO
ED 27!21 DATA CA,!21!21,!21!21 RETF 0!21!21 ;RETURN

TO BASIC
CJ 280 DATA !21!21. 0!21 AL, AH FROM DOS ; MAJOR,

MI NOR VERSION
OJ 290 DATA / *

BASIC Versions
The version of BASIC that the program is currently running
under may also be of interest. The BASIC version together
with the DOS version gives a clear picture of which BASIC
commands are supported. See the Appendices for a table of
which BASIC commands are not supported in which releases
of BASIC, and which releases enhanced the BASIC commands.

Cassette BASIC is an anomaly because, by definition, no
DOS is present. None of the new or enhanced BASIC com­
mands are available-only those commands that are in the
BASIC ROM. The PCjr BASIC cartridge is required for
BASIC(A) when running any level of DOS on the PCjr. So for
the PCjr, Cartridge BASIC is always at a DOS 2.1 level,
regardless of the DOS version. By renaming BASIC or
BASICA, you can run the disk versions of BASIC on the PCjr.
(But you'll still need the cartridge inserted.) A higher level of
Cartridge BASIC will undoubtedly be available in the future.

15

Memory Organization and Management

The level of DOS is meaningless for Cassette BASIC and
largely irrelevant for compiled BASIC programs. Of more in­
terest would be the level of the BASIC compiler.

Program 1-4 can be used to determine the version of
BASIC that is in use. Cassette BASIC is included for those
users who may be writing for systems that use a cassette tape
drive.

Program 1-4. Determining the BASIC Version
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

HE 1121121 'MEMBASVR; Determine version of basic
GG 11121 '
OD 12121 ON ERROR GOTO 23121
MP 13121 CV$="12":TEST=1:X=CVI(CV$) 'if bad, casse

tte
GC 14121 TEST=2:0N ERROR GOTO 15121: SOUND OFF: GOTO

EB 15121
PL 160
FF 17121

230 'if good, PCjr
RESUME 160
ON ERROR GOTO 23121
TEST=3:ON STRIG<4> GOSUB 18121:GOTO 19121 'if

bad, disk BASIC
NL 18121 RETURN
FH 19121 TEST=4:ON ERROR GOTO 21210:X$=SPACE$(256):GO

TO 230 'if good, compiled
AD 2121121 RESUME 21121
BP 21121 VERSION$= 11 A":PRINT 11 Advanced Basic":END
HJ 22121 '
GB 23121 ON TEST GOSUB 25121, 26121, 27121, 28121: END
HN 24121
NA 25121
IF 26121
PA 27121
KC 28121

,

VERSION$= 11 C 11 :PRINT 11 Cassette Basic":RETURN
VERSION$= 11 J 11 :PRINT 11 PCjr Basic":RETURN
VERSION$= 11 D11 :PRINT 11 Disk Basic":RETURN
VERSION$= 11 O11 :PRINT 11 Compiled Basic":RETURN

We could have determined the version of BASIC by read­
ing the copyright line that is presented on the screen when
BASIC is started. The SCREEN(x,y) command can perform this
for us. But the command BASIC PGM can be entered to cause
PCM.BAS to be run without the copyright line being dis-

. played. So PGM would have no copyright information line to
retrieve from the screen.

The copyright information is stored in various places
within each BASIC, not at the same offset into the programs.
So we would need to know which version of BASIC we are
using before we could find the version number. That's not

16

Memory Organization and Management

helpful. I have to believe that there is an indicator at some
uniform location within each BASIC, but try as I might, I have
been unable to locate it.

Incidentally, you can throw the user into Cassette BASIC
and provide no method of exit by using JMP F600:0. Nor­
mally, INT 18 could be used, but the PCjr BASIC cartridge
causes INT 18 to point to itself at E8177h.

Table 1-1 summarizes the sizes of various versions of
DOS and BASIC. This may be helpful in planning the
machine/DOS/BASIC versions to be supported by your
programs.

Table 1-1. Sizes of DOS/BASIC Versions
3.0 2.1 2.0 1.1

DOS Sum 36K 24K 24K 12K
IBMBIOS 8964 4736 4608 1920
IBMDOS 27920 17024 17152 6400
COMMAND 22042 17792 17664 4959
BASIC 17024 16256 16256 11392
BASICA 26880 26112 25984 16768

From DOS Requests to BIOS Requests
The PC and PCjr PC/DOS operating system provides a set of
generalized service requests for machine language applications
such as .COM or .EXE programs (including BASIC). DOS also
provides a set of internal commands (such as DIR, TYPE, and
.BAT file processing) that can be requested directly by the user
or from within programs. DOS can search for, load, and exe­
cute machine language programs at the request of a program
or a user. Some of the programs are supplied with DOS (ex­
ternal commands such as FORMAT, DEBUG, BASICA), while
other programs are user supplied. DOS currently makes no
distinction between user and provided programs.

Service requests (functions and interrupts) for DOS are
usually translated by DOS to the appropriate service requests
(interrupts) of the ROM BIOS device-level routines. By chang­
ing the interrupt vectors to these routines, you can replace
them or add additional front-end routines. When needed, DOS
and ROM BIOS call their own internal service requests to help
with the work at hand. Extensive use of subroutines within
DOS and BIOS allows service requests to use routines that are
also needed by other services. Generally transparent to the

17

Memory Organization and Management

user (and even the requesting program) are the myriad of
routines checking to be sure that all went well and just wait­
ing for the chance to handle an error situation.

As you can see, what your program may consider to be a
simple request at your level causes a spreading flurry of activ­
ity as it gets passed on to helper routines at the same level
and down to lower-level routines where all the messy details
get handled. A diagram (see Figure 1-7) of the activity looks
much like a drawing of a tree's root system. There really is no
such thing as a simple request for DOS or BIOS, especially for
any type of 1/0 activity.

Figure 1-7. Levels of DOS and BIOS Service Requests
Width of box suggests increasing path length. Figure not to
scale.

User Menu User selects "Print File"
Selection from displayed menu

High level BASIC Program OPEN filename

BASIC.COM DOS func 3Dh

· COMMAND.COM Call 3Dh entry

IBMDOS.COM Get directory item

IBMBIO.COM Filter for fixes

Low level ROM BIOS Read sector

Memory Usage: Loading the OS and BASIC
When you turn on your PC or PCjr with a DOS disk in the
drive, DOS is loaded into your computer and you receive
either a Date/Time prompt or an AUTOEXEC.BAT file sets up
the environment for you. Your DOS manual or DOS Technical
Reference manual contains a brief overview of the boot pro­
cess, starting on page B-1 for DOS 2.0, or page 1-3 of the DOS
Technical Reference manual for DOS 2.10 and 3.0. We'll be
adding important new information to those synopses.

18

Memory Organization and Management

Figure 1-8 shows the memory usage results of loading the
operating system into your computer and starting BASIC.
We'll be discussing each component shown in the diagram,
but let's start with a description of the boot process itself, as
we'll gain valuable insight by exploring that subject first. Use
the diagram in Figure 1-8 as a reference as we discuss the
method by which the system is prepared to perform produc­
tive work for the user.

This discussion won't detail the various self-test proce­
dures that the PC and PCjr ROM BIOS perform during the
initial stages of the power-on sequence; these are adequately
documented in the Technical Reference manual. Those steps
that result in decisions about the eventual memory usage
configuration will be discussed.

Cold/Warm Starts
When a boot is performed by switching on the computer
(called a cold start) or Ctrl-Alt-Del (called a system reset or
warm start), an instruction at location FFFF0h (by 8088
convention) is executed that causes the Power On Self Test
(POST) routines to begin component tests. If bytes 472-473h
are found to contain 3412h, a reset via Ctrl-Alt-Del has been
requested. If so, the POST actions are skipped and memory
will not be tested. Memory will simply be cleared to all zeros.
The time difference between a cold start and a reset is depen­
dent on the amount of memory installed, but worst case is
over two minutes for a cold start of 640K compared to around
20 seconds for a warm start.

Programs 1-5 and 1-6 show methods that can be used
within BASIC to call for cold and warm starts. The difference
between the two programs is the dependence on the presence
of the restart code in locations 472-473h. As written, the pro­
grams will perform a cold start (Program 1-5) or a warm start
(Program 1-6); be sure to save the programs before running,
since both warm and cold starts zero out memory.

Incidentally, the PCjr keeps 3412h in location 472-473h
after power-on so that inserting or removing a cartridge will
cause a warm start rather than a cold start.

19

Memory Organization and Management

Figure 1-8. Map of Typical PC Memory Usage

Using DOS 2.10, no CONFIG.SYS or AUTOEXEC.BAT, 384K memory
All numbers (except K) are hexadecimal

OK

lK 400

500
1.5K

3.5K

19K

21K
24K

700

E30

4DB9

53F0
5FD0

24.lK 6080

60B0

20

Trap vectors INT 0-7
8259 vectors INT 8-F

BIOS vectors INT 10-lF
DOS vectors INT 20-2F
Assignable INT 40-FF

ROM BIOS communications area

DOS data areas

IBMBIO
72F of 1280

IBMDOS
3F89 of 4280

Storage chain anchor ➔5100

Device drivers
User extensions of IBMBIO

such as ANSI.SYS
CONFIG.SYS: buffers, files

*P Resident COMMAND

* Master ENVIRONMENT for COMMAND
A0h bytes,

expandable to 32k if no programs
have been made resident

* ENVIRONMENT for next program

*P Application program or BASIC
BASIC Extensions Disk=12k, Advanced=22k

···
Start of BASIC 64k workspace:

DS:0 4K interpreter work area
...

Communications/file buffers
··· .. ,

DS:30-31> BASIC program
························"''''''''''''''''''''''"''''''''''''''''''''''"'''

DS:358-9> Scalars, toward FFFF
...

Arrays, toward FFFF
...

DEBUG Search Pattern
"VER 2.15"

DEBUG Search Pattern
E9 87 3F 03 44 45 56

... INT 20,25,26,27

... INT 21,22,23,24

BASIC
... redirected
INT 0,4,9,B

lB,lC,
23,24

Memory Organization and Management

Free space

Strings, toward 0000 t
··--·········

Stack 200 bytes toward 0000
end-3410

Jr:end=112K Transient COMMAND DEBUG Search Pattern:
end-FAS error messages B4 OE CD 21 2E SE 1E

lC000
Jr:12SK-16K

640K A0000

coooo

D0000

E0000

F0000

F6000

FE000

100000

end-BlO internal command table
end-9F6 length of last command
end-9F5 last command text
end-SAE formatted ftlespec

Video buffer in Jr

:::::::End of RAM memory expansion:::::::

Video buffers

PC: ROM expansion
CS000 XT: Hard disk ROM

Jr: cartridges
PC: ROM expansion

Jr: cartridges
PC: ROM expansion

Jr: POST /keyboard adventure
PC: ROM expansion

Jr: cartridges

Cassette BASIC
Jr: cartridges

ROM BIOS
Jr: cartridges

• = Storage chain block, 10h bytes
P = Program segment prefix, 100h bytes

Program 1-5. Cold Start Invocation

100 'MEMCOLD; Call for Power On Self Test <Col
d Start>

110 •
120 DEF SE6=0:POKE &H472,&H0 :POKE &H473, &H0

"insure no warm start code
130 DEF SEG=&HFFFF: POST=0 "address of 8088 re

st jump
140 CALL POST

21

Memory Organization and Management

Program 1-6. Warm Start Invocation
188 "NEMWARN; Call for Ctrl-Alt-Del (Warm Star

t I System Reset>
11'11 •
128 DEF SEG=8:POKE &H472,&H34 :POKE &H473,&H12

'insure warm start code
138 DEF SEG=&HFFFF: WARM=8 'address of 8888 re

set jump
14f!I CALL WARM

On the PC and XT (but not the PCjr), both cold and
warm starts use the configuration switch(es) to set the
configuration and memory size information in locations
410-413h. Locations 415-416h are set to the total amount of
memory found by scanning the entire address space for
contiguous RAM. The memory configuration switch usage is
quite different for the PCl/2 and XT. See the explanation of
ports 60-62h in the Port Map Appendix and memory locations
410-416h in the Memory Map Appendix. PCs with a ROM
date before October 27, 1982 are not designed to recognize
memory above 544K. You can correct this shortcoming. Also,
you may want to reduce the time needed to test the entire
range of memory with five different bit patterns (see Technical
Reference manual, page A-15) by setting the configuration
switches to some value lower than the amount of memory that
is present in the computer.

Once the PC has been booted, replace the values in
413-416h with the true memory sizes, and clear the POST­
unseen memory to zeros to prevent parity errors. Then use
INT 19 for a hot start, causing DOS to be loaded using the ad­
justed memory siz~, without reobtaining the configuration
switch settings. More about INT 19 in a minute.

The PCjr and AT don't use configuration switches to
determine the amount of memory installed, so we won't be
able to speed up their cold start process in this way.

When adding memory to your PC, insure that the
motherboard sockets are all filled before adding expansion
(1/0 channel) memory. Otherwise, intermittent memory parity
and disk errors may occur. The chance of parity errors is re­
duced by using 150 nanosecond RAM rather than the less
expensive 200 nanosecond chips.

22

Memory Organization and Management

ROM Expansion
Next, the ROM expansion areas from C0000h through F5800h
are checked in 2K increments to determine if any of those
areas are filled with ROM-resident programs. They are rec­
ognized by the signature of 55AAh in the first two bytes (off­
sets 0 and 1). The length of the program divided by 512 is
stored in byte 2 and is used to compute a checksum of the
ROM in 512-byte increments. Then the ROM initialization
routine, whose instruction is stored in bytes 3, 4, and 5, with
the offset in bytes 4 and 5, is given control. This method is
used to cause the hard disk BIOS to be used during the boot
of a PC with a hard disk. In the PCjr the BASIC cartridge
overlays the address of Cassette BASIC at INT 18 by using
this initialization routine.

A PCjr cartridge may contain a list of DOS commands
that are scanned when a DOS command is entered. This list
redirects a DOS command to the cartridge version. The PCjr
BASIC cartridge has the BASIC and BASICA commands in
this table to intercept the disk versions of these programs. So
by renaming the disk versions of BASIC, you can still get to
them if you should want to, but the PCjr BASIC cartridge is
still required. IBM PCjr Colorpaint uses this table to add the
DOS command G to activate the cartridge. PCjr cartridges are
designed so that even ROM BIOS may be replaced by a car­
tridge version since cartridges may occupy whatever address
above D0000h they are designed for. The three types of PCjr
cartridges are IPLable (automatically started when inserted or
power on), DOS (containing commands or programs), and
BASIC (programs written in BASIC that start automatically
when Cartridge BASIC is started). The PCjr Technical Ref­
erence manual has an in-depth discussion of cartridge concepts
and requirements (see page 2-107).

The Boot Record
Once the POST and memory-clearing routines have finished
their tasks, a short beep is sounded and INT 19 is called to
load the disk boot record into memory. The PCjr first insures
that there is a disk drive and jumps to Cassette or Cartridge
BASIC if not. Both the PC and the PCjr try four times to read
the disk, then give up and branch to Cassette (or Cartridge)
BASIC. If the boot record is missing from the disk (the disk

23

Memory Organization and Management

hasn't been formatted), then Cassette or Cartridge BASIC is
invoked.

When the INT 19 routine reads the disk, it's using INT 13
to load the special 512 (200h) byte boot sector into location
7C00h. This sector was placed on side 0, track 0, sector 1 by
the DOS FORMAT command.

For the XT, INT 19 has been replaced by the initialization
code in the hard disk BIOS at C8000h to point to a version of
INT 19 in the hard disk BIOS ROM. The INT 13 vector also is
replaced with a new INT 13 routine for hard disk 1/0 that
passes disk 1/0 on to INT 40. The hard disk version of INT
19 attempts to load from the disk first, then the hard disk (cyl­
inder 0, track 0, sector 1 of the DOS partition), then finally
jumps to Cassette BASIC.

Now that the boot sector has been loaded into location
7C00h, the INT 19 routine jumps to that location to start the
DOS level-dependent boot process. There's nothing that keeps
you from having your own version of a boot record that sup­
ports your particular needs. You could even have a custom
boot record that causes your own disk-resident programs to be
loaded instead of DOS, assuming that you have no require­
ment for DOS.

Figure 1-9 describes how to load the boot record into
memory and display its contents using DEBUG.

Figure 1-9. Loading and Displaying the Boot Record
Contents

I cs:7c00 0 0 1
u 7c00 7c02
d 7c03 7c2b
u 7c2c 7d7d
d 7d7e 7dff

jump to entry point
DOS version, disk parameters
main routine, using INT 13 for disk 1/0
error messages and filenames

IBMBIOS and IBMDOS
Once the boot record has been loaded, its task is to initiate a
fairly lengthy process of loading the disk-resident BIOS and
DOS program modules into the computer to perform their
start-up duties. This occurs between the time you hear a beep
from the system to when the first A> prompt is seen. Ac­
tually, some of this time period is spent in initializing
COMMAND.COM, as we shall see in the next section.

24

Memory Organization and Management

The activities that occur during this time are the subject
of this section. The DOS 2.0 manual contains a brief descrip­
tion of the actions taken during the boot process by the
IBMBIO.COM and IBMDOS.COM modules on page B-1, or
page 1-4 of the DOS 2.10 TRM. The additional insight pro­
vided by this section complements and enhances that infor­
mation. You may wish to read the short description in the
DOS manual before continuing here, but it's not necessary.

If you used DEBUG to load and examine the contents of
the boot record (as described in the previous section), you saw
the filenames of IBMBIO.COM and IBMDOS.COM near the
end of the boot record. The boot program will check that the
files listed there are the first two files in the disk directory, in­
sure that they are in the proper order, and load them into
memory.

We'll be using IBMBIO as a nickname for IBMBIO.COM,
and IBMDOS for IBMDOS.COM in the remainder of this sec­
tion. Incidentally, for IBM PC work-a-likes that use Microsoft
MS DOS rather than PC DOS, use the name IO.SYS instead
of IBMBIO.COM, and MSDOS.SYS instead of IBMDOS.COM.

If you wanted to load different files into memory to serve
as your operating system, the filenames for IBMBIO and
IBMDOS within the boot record could be changed with DE­
BUG to reflect the desired files. The files must be the first
names in the disk directory; otherwise, a Nonsystem disk or
disk error message will be displayed by the boot program, and
it will not be able to continue the boot process until a correct
disk is provided.

Although the FORMAT program sets some special at­
tributes for the IBMBIO and IBMDOS files, they really don't
need them. The attributes set by FORMAT make IBMDOS and
IBMBIO hidden files (from most commands), read-only (can't
be written to), and system files (a system file as opposed to a
user file) for them to be used properly by the boot program.
IBM has chosen to make them invisible and read-only files so
that they will not be inadvertently erased.

The file attribute byte is the byte following the filename
in the disk directory. You can use DEBUG to load the disk
directory (syntax: L cs:100 0 5 1) from a copy of your DOS
disk and see the attribute byte of 27h immediately after the
IBMBIO.COM filename. By entering 20h into this byte (syntax:
E lOB then 20), you can remove the hidden, read-only, and

25

Memory Organization and Management

system file attributes. Then use W 100 0 5 1 to write the modi­
fied directory sector back to the disk and exit DEBUG with Q.
Issue a DIR IBM*.* command to confirm that the change has

· caused the file to now be visible.
The boot record program loads the IBMBIO file into mem­

ory starting at absolute location 700h, follows it with the
IBMDOS file, and then jumps to the IBMBIO program's start­
ing point at absolute location 700h so that it may perform its
initialization tasks. Since the contents of these two programs
vary among the versions of DOS, we'll explore them from a
conceptual level rather than getting into the details of each
version.

IBMBIO begins its duties by initializing the devices asso­
ciated with CON:, AUX:, PRN:, NUL:, COMl:, COM2:, and
LPTl through LPT3:. These names are established by DOS to
allow the user to refer to standard peripheral devices by name.
For instance, COPY AUTOEXEC.BAT CON: causes the
AUTOEXEC.BAT file to be listed on the console (display
screen).

Your DOS manual contains a short description of these
names near the beginning of the manual, in the same section
as the description of filenames. These device names are an
inheritance from the predecessor CPM's CRT:, PTR:, BAT:,
and LPT: names. DOS initializes the devices associated with
the names by calling a set of DOS-provided device driver
routines. A device driver is a special program that is designed
to manage the data flow and control of a peripheral device be­
yond the level provided in BIOS. You can provide your own
device driver routines for special peripherals that you wish to
attach to your computer.

Next, IBMBIO processes the parameters contained in the
CONFIG.SYS file, if the file is found on the disk. If the file
can't be located, certain defaults are assumed by IBMBIO. The
meaning and defaults for the various CONFIG.SYS parameters
are shown in your DOS 2.0 manual on page 9-3, or DOS
2.10/3.0, page 4-3. Any memory space required to satisfy the
CONFIG.SYS parameters will be reserved from the memory
immediately following the IBMBIO and IBMDOS programs.

A word of caution: Do not use the undocumented, but
legal, CONFIG.SYS parameters SWITCHAR and AVAILDEV,
as they are no longer supported in DOS 3.0 and have been
shown to be particularly bug-laden. See the Appendices for a

26

Memory Organization and Management

list of the features and commands added by each release level
of DOS from 1.0 on.

Next, any device driver routines that are specified in
CONFIG.SYS DEVICE= statements are loaded into memory
from disk. Then, each device driver routine is called by
IBMBIO to perform any initialization tasks. The provided pro­
gram ANSI.SYS is an example of a device driver for the con­
sole. You can read more about device driver routines in the
DOS manual (page 14-1 for DOS 2.0, or 3-4 of the DOS 2.10
TRM).

IBMBIO provides an IRET (return from interrupt) instruc­
tion at absolute location 847h that is used as a dummy routine
for interrupts that are not used by DOS. This technique allows
the unused interrupt routine to simply do nothing (by virtue
of the IRET instruction) until a user's interrupt routine address
is placed in the interrupt vector. IBMBIO sets INT 1, INT 3,
and INT F to point to this IRET instruction. See the descrip­
tion of these interrupt vectors in the Memory Map Appendix
of this book.

Finally, IBMBIO moves the program IBMDOS down over
the completed IBMBIO initialization routines to minimize
memory space requirements and jumps to the IBMDOS pro­
gram to perform its own initialization tasks.

IBMDOS begins by initializing the vectors for INT 20-2F
to their proper values.

The next actions performed by IBMDOS are related to
DOS storage and program management functions. This topic
will take us deep into the technical intricacies of DOS program
control blocks. You may wish to only skim the following para­
graphs if you are not particularly interested in the details of
this subject. Programmers (both BASIC and machine language)
can gain some powerful techniques by understanding the
structure of the DOS storage and program management con­
trol blocks and learning to use the information contained in
them.

A storage chain anchor is built by IBMDOS at absolute
location EBCh for DOS 2.0, or F28h for DOS 2.10 (add 70h
for the PCjr, and 80h if a hard disk is installed). This storage
chain anchor is located within IBMDOS and contains the seg­
ment number of the first storage block. Storage blocks are used
by DOS to record the amount and location of allocated mem­
ory within the PC and PCjr memory address space. Let's

27

Memory Organization and Management

digress for a moment to look at the control areas (including
the storage block) used by DOS to manage programs.

A storage block, a Program Segment Prefix (PSP), and an
ENVIRONMENT area are built and maintained by DOS for
each program currently resident in the memory address space.
The storage block is used to record the address range of mem­
ory allocated to the program. It is used by DOS to find the
next available area to load a program and to determine if there
is enough memory remaining to load the requested program.
When an area of memory is in use by a program, it is said to
be allocated. When the program ends (or explicitly requests
less memory), all (or some) of the address range is deallocated.
Several DOS services support memory allocation and de­
allocation functions. These will be discussed in a later section.

A storage block contains a pointer to the Program Seg­
ment Prefix (PSP) associated with each program. This control
block is constructed by IBMDOS for the purpose of providing
standardized areas for DOS/program communications. Within
the PSP are areas that are used to save interrupt vectors, pass
parameters to the program, record disk file directory infor­
mation, and buffer disk reads and writes. This control block is
1 00h bytes in length and is followed by the program module
loaded by DOS. The contents of the PSP are described in the
DOS 2.0 manual on page E-8, or DOS 2.10/3.0 TRM, page 6-5.
A following section will discuss the PSP in more detail.

The PSP contains a pointer to an ENVIRONMENT area
for the program. This area contains a copy of the current DOS
SET, PROMPT, and PATH specified values. The program may
examine and modify this information as desired. We'll soon be
learning more about this ENVIRONMENT area which follows
the program module in memory. But let's return to our
examination of storage blocks.

Each storage block is 16 (10h) bytes long, although only
5 bytes are currently used by DOS. The first byte contains 4Dh
(a capital M) to indicate that it contains a pointer to the next
storage block. A 5Ah (capital Z) in the first byte of a storage
block indicates that there are no more storage blocks following
this one (it's called the end of the chain). This identifier byte is
followed by a 2-byte segment number of the associated Pro­
gram Segment Prefix (PSP) for the program. The next 2 bytes
contain the number of segments that are allocated to the pro­
gram. If this isn't the last storage block (4Dh Mis in the in-

28

Memory Organization and Management

dicator byte), then another storage block follows the allocated
memory area.

When the storage block contains zero for the number of
allocated segments, then no storage is allocated to this block
and the next storage block immediately follows this one. This
can happen when memory is allocated and deallocated repeat­
edly during your session on the PC. If the PSP segment num­
ber is zero, then the memory described by the storage block is
available (deallocated) rather than allocated.

. To finish its work, IBMDOS constructs a storage block
and PSP for the soon-to-be-loaded COMMAND.COM pro­
gram. Finally, IBMDOS returns to IBMBIO to cause the
COMMAND.COM program to be loaded and jumped to.
IBMDOS remains resident in memory to provide high-level
function services for the COMMAND.COM program. IBMDOS
will do its part in satisfying these requests and will call
IBMBIO for lower-level device-oriented functions.

After it jumps to the COMMAND.COM program, IBMBIO
stays in memory to provide an interface from IBMDOS to
ROM BIOS. Corrections to ROM BIOS errors are implemented
in IBMBIO. IBMBIO also includes some error recovery routines
and implements the "phantom" disk drives (such as drive B:
on a one-drive system).

COMMAND.COM
Normally, COMMAND.COM is loaded and given control of
the system by IBMBIO. However, if SHELL was found in
CONFIG.SYS, then the program named by that parameter
would be used in place of COMMAND.COM. It is permissible
to have more than one COMMAND.COM active at one time.
Any COMMAND.COM other than that loaded at boot-time is
called a secondary COMMAND.COM. The next section will ex­
plore the reasons for using a secondary COMMAND.COM.

Assuming that this is not a secondary COMMAND.COM
(the lack of an ENVIRONMENT address at PSP + 2Ch is
what tips off COMMAND.COM that it is not a secondary
copy), the program loads the transient portion of itself at the
high end of memory. This portion can be overlaid by an
application program and is automatically reloaded by the res­
ident portion of COMMAND.COM. The associated master
ENVIRONMENT address is built after the resident portion of

29

Memory Organization and Management

COMMAND.COM, the keyboard buffer is cleared, the disk
directory is selected, the logged (booted) disk ID is retrieved,
and the familiar A> prompt is given. The Break key is now
recognized from this point onward.

Finally, either DATE and TIME are executed and the
copyright information is displayed, or the AUTOEXEC.BAT
file is processed. You can change the name of the .BAT file to
be executed by using DEBUG and searching for the string
AUTOEXEC.BAT in capitals. You could also make this a hid­
den, read-only, system file by altering the disk director
attribute to 27h rather than 20h. In COMMAND.COM, just
above "AUTOEXEC.BAT", you'll find the copyright infor­
mation to be displayed. You can change these messages to
greet your user as appropriate.

Now our PC has been booted and is ready to work for us.
COMMAND.COM stays in memory and interacts with the
user when a DOS command is entered. INT 22, 23, and 24
vectors point within the resident portion so that the termina­
tion of a program can trigger the transient portion to be re­
loaded if needed. The resident portion also provides the bulk
of the error recovery messages such as Terminate batch job
(y /n)?, Abort, retry, or ignore?, Invalid COMMAND.COM, and
the like. COMMAND.COM implements the redirection of
standard input/ output devices and piping files.

An unfortunate aspect of COMMAND.COM is its blind
desire to reload the transient portion from the booted drive
rather than the currently logged drive. By changing the
COMSPEC parameter of the ENVIRONMENT using the SET
command, you can change the disk and path that are used to
reload the transient portion. The concept of a resident and a
transient portion is a powerful feature because it allows a full­
function user interface module to be available, while not
requiring dedicated storage to contain the module and internal
commands while they are not being used.

The transient portion prompts the user (using the default
or PROMPT specified characters), parses the user- or batch
file-entered line, processes the batch commands, executes the
internal commands, and contains (in about the last 1600 bytes
of memory) the program loader. This portion searches for
.COM and .EXE files to be loaded and executed for the user.
The scan order for commands is such that Cartridge DOS
commands are searched for, then the internal command table,

30

Memory Organization and Management

.COM files, .EXE files, and finally .BAT files. So XYZ.BAT will
never be found if it is on a disk with XYZ.COM, and
DIR.COM could never be found since DIR is an internal
command.

The loader uses DOS function 4Bh to load and execu~
the requested program. It's possible to use this function in
your programs to cause another program to be loaded and
executed ("spawned"), using your files if desired, then return
to your program. We'll be discussing this feature more in a
moment.

Secondary COMMAND.COM
One of the problems with batch files is that you can't execute
nested batch files. Try creating these two batch files and
executing the first as follows ([F6] means to press the F6 func­
tion key):
A>COPY CON 11.BAT
chkdsk
22
date [F6)
A>COPY CON 22.BAT
set [F6)
A>ll

We would like to see the following order of commands:
chkdsk, set, date. But, in fact, the 11.BAT date command is
never issued because once the 22.BAT set command was pro­
cessed, COMMAND.COM found that the batch file that it was
tracking reached the end of file. COMMAND.COM can only
track one batch file at a time.

The ability to nest batch files can be gained by invoking
another copy of COMMAND.COM to track the lower level of
batch file. The method used to invoke this "secondary"
COMMAND.COM is documented in the 2.0 DOS manual
starting on page 10-9, DOS 2.10, page 1-11, and DOS 3.0,
page 6-9. The DOS manual does not, however, mention that it
is useful in nesting batch files. The only mention of invoking
another batch file is that it can be done at the end of a batch
file being processed. That's not nearly as powerful.

To apply the method to the above example, try the
following revision:

31

Memory Organization and Management

A>COPY CON 11.BAT
chkdsk
command /c 22
date [F6)

A>COPY CON 22.BAT
set [F6)

A>ll

That solved the problem, and now the 11.BAT date command
is performed.

You should know a few facts about using multiple copies
of COMMAND.COM. Obviously, COMMAND.COM will need
to be available on the same disk as the nested batch files; other­
wise, you'll receive a Bad command or file name error message.
Each level of COMMAND.COM that is invoked in this man­
ner requires 17K (DOS 2.0 /2.10) or 22K (DOS 3.0) of memory
while that copy is in memory. The copy is discarded after
processing its parameter line, assuming that the /C parameter
is used. COMMAND.COM detects that it is a secondary copy
by observing that the pointer to an ENVIRONMENT has been
filled in at PSP + 2Ch.

It is also possible to invoke a secondary COMMAND.COM
from within an application program. This allows the execution
of a batch file (which in turn may cause other batch files or
programs to be executed) by an application program with
eventual return to the program. You can read more about
invoking a secondary COMMAND.COM from your program
on page F-1 of the DOS 2.0 manual and page 7-3 of the DOS
2.10 DOS Technical Reference manual. DOS function 4Bh is
discussed on page D-44 of the DOS 2.0 manual, 5-42 of the
DOS 2.10, and page 5-124 of the DOS 3.0 Technical Reference
manuals.

Batch File Modification
Another useful tool with batch files is the ability to modify a
batch file that is currently being processed by using a program
executed in the batch file. The modifications would logically
occur on lines that are yet to be executed. Of more practical
use is the addition of lines on the end of a temporary copy of
the master batch file.

32

Memory Organization and Management

Another technique to consider is the execution of another
batch file that the program has built by including its name
after the program's name in the batch file. This has the advan­
tage of allowing the master batch file to remain unaltered by
the program, but it is more limited in the number of programs
that can be called. Another disadvantage is that the associated
temporary batch filenames can get unmanageable in a com­
plex situation. The addition-to-a-copy method is my
preference.

Figure 1-10 and Program 1-7 demonstrate this batch file
modification technique. The COPY statement in the batch file
is used to make a copy of itself so that the original batch file
won't be changed. Then it invokes this temporary copy (pass­
ing any entered parameters) without using the command so
that the master batch file will not be returned to when the
temporary copy ends. We are now using a previous limitation
to our advantage. The IF statement before the COPY skips the
copy and invocation process in the temporary version.

A batch file can be coded to perform the function shown
here, without the need for the program at all. Also the date
sort does not optimally handle the month-date-year format.
You may want to add another program to read and format the
date before sorting. The point here is not that this is the only
way to achieve the function provided by the batch file and
BASIC program combination. Rather, a BASIC program can be
used to modify a temporary copy of a batch file while it is
executing. This opens up a whole new realm of possibilities
since the batch file facility does not provide many functions
that BASIC has, including prompting and acting upon the
response.

Enter the batch file, Figure 1-10, using your word proces­
sor, EDLIN, or the DOS COPY function; enter Program 1-7
while in BASIC. Note that you must have the DOS files
SORT.EXE and MORE.COM present on the disk and you must
name the BASIC program MEMBAT.BAS and the batch file
MEMBAT.BAT. To see the demonstration, enter MEMBAT
from the DOS A> prompt.

Be aware that DOS 3.0 has tightened the rules about com­
ment lines in batch files. Periods, quotes, and brackets are no
longer recognized as REM substitutes at the beginning of a
line.

33

Memory Organization and Management

Figure 1-10. MEMBAT.BAT
echo off
if %0 = = tempbat goto :tempbat
copy %0.bat tempbat.bat
tempbat %1 %2 %3 %4 %5 %6 %7 %8 %9
rem*** temporary, will not return to this master
:tempbat
rem*** this must be the temporary batch file
basic membat
rem *** above program will add needed lines[F6]

Program 1-7. MEMBAT.BAS
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

HC UJ0 'MEMBAT; Demonstrate BASIC adding to batch
file

66 110 '
KO 120 OPEN "tempbat. bat II FOR APPEND AS #1
HG 130 ' PRINT#1,CHR$(13>;CHR$(1'11> ' only needed

if "copy con" created .bat
PF 140 CLS: PR I NT" SORTED DI RECTORY WANTED BY WH IC

H FIELD?"
HK 150 LOCATE 3, 10: PRINT"D = Date"
D" 160 LOCATE 5, 10: PRINT"S = Size"
NE 170 LOCATE 7, 10: PRINT"N = Name"
JO 180 INPUT K$: K=INSTR("SsDdNn",K$): ON K GOTO

210,210,220,220,230,230
HF 190 BEEP: GOTO 180
SF 200 '
"K 210 PRINT#1,"dir 'Y.llsort Ir l+161more";: GOTO

240
LF 220 PRINT#l,"dir 'Y.1 :sort Ir l+241more"; :GOTO

240
KN 230 PRINT#1,"dir 'Y.llsort /+1: more";: GOTO 240
FK 240 CLOSE 1
IK 250 CLS: SYSTEM

Application Program Environmentals
We'll be discussing the BASIC program's environment in a
following section, but first let's understand the memory
environment that BASIC and our own .COM and .EXE pro­
grams inherit when invoked by COMMAND.COM or another
program.

The loader portion of COMMAND.COM is used to load
.COM and .EXE modules into memory, prepare the environ-

34

Memory Organization and Management

ment for the program, and execute the module. It is possible
to invoke this function from a program by using DOS function
4Bh and to specify whether the loaded module is to be exe­
cuted. This feature allows a program to cause overlays of
routines or data tables to be made available to a program.

The loader always allocates memory for a module (.COM
or .EXE) from the lowest numbered unallocated segment. All
remaining memory is then available to the new module. The
storage block for the new module (at PSP - 10h) and the PSP
itself contain the amount of memory available. The storage
block has a count of allocated segments in the fourth and fifth
bytes, while the PSP contains the number of available bytes in
the current segment at offset 6. There are additional memory
considerations for invoked modules (see DOS 2.10 Technical
Reference manual, page 10-1, and DOS 3.0 Technical Reference
manual, page 10-3).

In order for the module to execute another module, some
memory must be freed by using DOS function 49h or 4Ah.
This action causes a storage block to be created that marks the
freed area as unallocated. Then, DOS function 4Bh (load and
execute module) will allocate and use that area of memory.
For the load-but-don't-execute overlay option of function 4Bh,
the invoker must preallocate the memory for the module to be
loaded.

A "well-behaved" invoked module (not an overlay) will
free as much storage as possible so that other modules will fit
in memory, will free all memory allocated by it before exiting,
and will exit using DOS function 4Ch, passing a return code
to the invoking module. The invoker can retrieve this return
code by using DOS function 4Dh. See DOS 2.0 manual, pages
D-43 through D-48; DOS 2.10 Technical Reference manual,
pages 5-41 through 5-45; and DOS 3.0 Technical Reference
manual, pages 5-121 through 5-130.

When the loader processes an .EXE module, the loader re­
solves all necessary relocation and loads the module at the
low or high end of the needed memory size for the module .
. EXE modules do not necessarily own the remainder of mem­
ory, only the amount required to contain the module. For addi­
tional .EXE file information, see DOS 2.0 manual, page H-1,
and DOS 2.10/3.0 Technical Reference manual, page 9-3.

A resident COMMAND.COM causes a loaded module to
follow it in memory as illustrated in Figure 1-8, "Map of

35

Memory Organization and Management

Typical PC Memory Usage." If the loaded module executes
another module, that second module will follow the first in
memory, and so forth. Whenever the lowest module is fin­
ished, it returns to the invoking module because PSP + Ah
has been set to point to the next instruction in the invoker
module. The PSP of the invoked module is used to save the
invoker's INT 22-24 vectors, which are restored when the in­
voked module ends.

Several control blocks are formatted and made available
to the invoked (nonoverlay) module by DOS function 4Bh
(which COMMAND.COM uses to invoke our modules). Fore­
most of the control blocks is the PSP which is pointed to by
the DS register. This control block is 100h bytes long and is
preceded by a 10h byte storage block. Your program module
normally follows this control block. A layout of the PSP can
be found in your DOS 2.0 manual on page E-8, or DOS
2.10/3.0 Technical Reference manual, page 6-5. This section of
your DOS manual provides valuable information about the
program environmentals.

The PSP contains a default disk buffer (DTA), two file
control block (FCB) areas, a formatter parameter area, a
pointer to the ENVIRONMENT area for the program, a long
call to DOS (for portability), and save areas for the invoker's
INT 22-24. A few amplifications on the layout of the PSP are
needed.

BASIC uses the PSP for its own data storage purposes,
and some fields are not as described in the PSP layout. (See
the BASIC memory map in the Appendices.) The top-of­
memory word at offset 2 is normally the segment number of
the last segment usable, until memory is freed by an explicit
DOS call or when the program is made resident using function
31h. The long call to DOS (five bytes) is actually at offset 50h,
not at offset 6 as shown in the Technical Reference manual.
The word at offset 6 that contains the number of bytes avail­
able in the segment is usually FFF0h, because of the 10h bytes
used by the storage block. The word at offset 16h is normally
the invoker's PSP segment. In DOS 3.0, the zero marking the
end of the ENVIRONMENT is followed by a path and file­
name that was used to load the program. This makes it easier
for the program to locate its data files. Changes made to a
program's ENVIRONMENT will not be reflected in the master
ENVIRONMENT, but they will be present for invoked modules.

36

Memory Organization and Management

Resident Programs
INT 27 (or preferably DOS function 31h so that a return code
can be set) can be used to cause a program to stay resident
after it has finished execution. The size of the module is
passed back from the program and COMMAND.COM insures
that this program becomes logically a part of DOS. This
simply means its storage block, PSP, and program module re­
main in memory and the area is not reassigned.

This is a powerful facility that can be used by modules
that are intercepting other INT vectors in order to preprocess
the interrupt. CHAR28, in Chapter 4, illustrates the use of this
fundion for the purpose of loading video PEL (picture ele­
ment) map information.

A few considerations apply to resident programs. To pre­
vent the module from being made resident more than once
per session, leave a signature somewhere that will be detected
by the module, causing it not to reinstall itself again. INT
60-67 can be used for this type of information. If INT vectors
are being intercepted, you will probably want to save the orig­
inal contents of the vector so that you can branch to it after
your routine finishes processing. DOS allows larger programs
to be made resident if function 31h is used. You will want to
provide a stack area for the program since the default size of
eight words is probably not enough. Obviously, care must be
taken to save and restore the registers since the use of the rou­
tine must be transparent. DOS cannot be called from a res­
ident program that processes a timer interrupt.

If you install a resident program, it is wise to provide a
switch that will allow the program to deactivate itself, since
you may want to turn it off during your session. At that time,
release the storage used by the program by using function
4Ah. This will allow the ENVIRONMENT to expand if no
other resident programs are currently loaded (PRINT,
GRAPHICS, and MODE are resident programs). If any other
resident programs exist, releasing memory may have no
apparent effect since resident programs might be after the re­
leased memory. Programs that use this feature must not be
linked with the /HIGH option.

Memory Mapping Programs
To help you better understand vectors and allow them to be
compared to vectors from a previous hardware or memory

37

Memory Organization and Management

environment, some sample programs are-provided. With these
programs, you can examine the changes to memory that take
place as you add hardware to your computer, specify different
CONFIG.SYS options, or use a different version of DOS,
BASIC, or even an application program.

The programs should be used to determine the vector
contents when consulting the Memory Map Appendix, since
differing hardware/software configurations will affect the con­
tents of low memory. I keep a VECTORSD and several
VECTCMPR listings (with BASIC, with different DOS ver­
sions, with differing hardware/memory options) right next to
my computer for instant access to this information.

The programs map each four bytes of a memory range in
hexadecimal starting with the address, the contents of the four
bytes, the segment:offset represented, the absolute address,
and the ASCII translation of the characters. The segment:offset
and absolute address are useful in determining if the four
bytes actually contain a vector. If not, the hex and ASCII
representation of the bytes can be used to examine the con­
tents of the four bytes. Figure 1-11 shows a sample listing. In
all these programs, the output may be directed to SCRN,
LPTl, or PRN rather than to a file. To compare vector images,
an output file must be created.

Figure 1-11. Sample Vector Program Output
Segment=0h; Environment description placed on this line
0000 F6 06 0C 06 060C:06F6 0067B6 'y,:.'
0004 D6 FE 00 F0 F000:FED6 0FFED6 'V .. p'
0008 E4 FE 00 F0 F000:FEE4 0FFEE4 'd .. p'
000C D6 FE 00 F0 F000:FED6 0FFED6 'V .. p'
0010 D6 FE 00 F0 F000:FED6 0FFED6 'V .. p'
0014 E6 FE 00 F0 F000:FEE6 0FFEE6 'f .. p'
0018 D6 FE 00 F0 F000:FED6 0FFED6 'V .. p'
00lC D6 FE 00 F0 F000:FED6 0FFED6 'V .. p'

Program 1-8 is used to capture the memory image while
BASIC is active. Since BASIC changes some low memory vec­
tors (see the Memory Map Appendix), this program captures
those changes.

The vectors may be desired in non-BASIC modified form.
Program 1-9 will format these vectors from the output created
by using DEBVG>filename, then the appropriate display com­
mand (such as D 0:0 LS0O), and finally Q to send the data to

38

Memory Organization and Management

the file and exit DEBUG. You will have to type blindly while
DEBUG output is redirected to a file.

For example, this sequence of keystrokes will produce a
file called TEST with the contents of the first 128 bytes of
segment 0:
DEBUG> TEST [Enter]
D 0:0 L80 [Enter]
Q [Enter]

Remember, you will be typing the second and third lines blind
and you must have DEBUG.COM on your disk. Enter TYPE
TEST to see the contents of this file.

Program 1-10, the final program in this series, compares
the vectors captured by the other two programs. Usually, the
output of this program is substantially shorter than either of
the two input files, unless dissimilar areas are compared. It can
compare the output of VECTORSD with the output of
VECTORSB since both produce output of the same format. Be
careful when changing either program to insure that this fea­
ture remains. Figure 1-12 shows a sample output from this
program. The data is illustrative, not actual. Notice how the

Figure 1-12. Output of Comparing Captured Vectors
file 1 = temp
file 2 = tempd

Segment=Oh; From BASIC
From Debug

OOlC E2 30 15 OC OC15:30E2 OOF232 'bO . .'
OOlC 94 FE 00 FO FOOO:FE94 OFFE94 ... p

0024 60 30 15 OC OC15:3060 OOFlBO "O . .'
0024 06 01 EF OB OBEF:0106 OOBFF6 .. o.

006C 27 21 15 OC OClS:2127 OOE277 "!..'
006C 00 01 D8 05 05D8:0100 OOSE80 .. X.

007C CO 34 15 OC OC15:34CO OOF610 '.4 . .'
007C 00 00 00 00 0000:0000 000000

0088 8B 88 15 OC OC15:888B 0149D8
0088 4A 02 05 OC OC05:024A OOC29A J ...
0090 65 88 15 OC OC15:8865 0149B5 'e .. .'
0090 AB 04 2F OB OB2F:04A8 OOB798 (./.

39

Memory Organization and Management

lines from BASIC-captured vectors have quotes around the
ASCII portion, while debug output does not. This is a give­
away to which method was used to capture the data. Another
giveaway is Segment= in the environment description line.

As can be seen from running the programs, the vectors
that BASIC temporarily takes over are INT 0, 4, 9, B, lB, lC,
23, and 24.

Program 1-8. Capture Vectors from BASIC
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

DN 1fllfll 'VECTORSB: read and format low storage fro
m basic

PB 11fll • output filename can be SCRN:, LPT1:
, etc

HI 12fll •
PL 13fll ASCI$=" •• •• 11

BE 14fll INPUT "Output file name? ",FILED$
DK 1 Sfll OPEN FI LEO$ FOR OUTPUT AS 2
IC 16'11 INPUT "Segment (0-FFFF) "; SSE6$: SSEG=VAL < 11

Sch"+SSEG$)
BJ 17'11

ID 18'11

PB 19'11

PE 2QJQJ

KO 21'11
PB 22'11
KJ 23'11
JL 24'11

FK 25'11
KK 26'11
H6 27'11

LB 28'11

BO 29'11

EL 3QJQJ

40

INPUT "Starting offset <0-FFFF)";SOFFS: SO
FF=VAL<"Sch"+SOFF$)
IF SOFF <0 THEN SOFF=<32769!+<SOFF>>+32767

• since over Sch7fff is neg
INPUT "Last Offset <0-FFFF>";EOFF$: EOFF=V
AL("&:h"+EOFF$>
IF EOFF <'11 THEN EOFF=<32769!+<EOFF>>+32767

• since over &h7fff is neg
INPUT "Enter descriptive line";DESC$
PRINT #2,"Segment="HEX$(SSEG)"h; ";DESC$
MAX=32767*2+1
IF SSEG <'11 THEN SSEG=(32769!+(SSEG))+32767

• since over &h7fff is neg
DEF SEG=SSEG
FOR ADDR=SOFF TO EOFF STEP 4

CSH=PEEK<ADDR+3):CSHC=CSH AND &:H7F: IF CS
HC>32 THEN MID$(ASCIS,4,1>=CHR$(CSHC) ELSE

MID1i<ASCI1i,4,1>="."
CSL=PEEK<ADDR+2):CSLC=CSL AND &H7F: IF CS

LC>32 THEN MID$(ASCI1i,3,1>=CHR$<CSLC> ELSE
MID$(ASCIS,3,1)="."
IPH=PEEK<ADDR+1):IPHC=IPH AND &:H7F: IF IP

HC>32 THEN MID$(ASCI1i,2,1>=CHR$(IPHC) ELSE
MID$ (ASCI$, 2, 1 > =". 11

IPL=PEEK<ADDR+0>:IPLC=IPL AND &H7F: IF IP
LC>32 THEN MID$(ASCIS,1,1)=CHRS<IPLC> ELSE

MIDS<ASCIS,1,1>="."

AE 310

cc 320
IA 330
NN 340
CL 350
DB 360
JF 370

"N 380
PB 390
60 400

66 410

Memory Organization and Management

PRINT #2,RIGHT$("!21!210"+HEX$(ADDR>.4);""
'current offset · ·

IPLS=RIGHTS < 11 '11 11 +HEX$ <IPL>, 2)
IPHS=RIGHT$("0"+HEX$(IPH),2)
CSLS=RIGHT$ < "'11"+HEX$ <CSU, 2>
CSH$=RIGHT$("0"+HEX$(CSH>,2>
PRINT #2,IPLS" 11 IPH$ 11 "CSL$" "CSHS" ";
PRINT #2,CSHS;CSLS":"IPHS;IPLS" ";

• cs:ip image
SEG=<CSH*256+CSL)
DSP=IPH* 256 + IPL
VEC=SEG*16+DSP: HI=INT<VEC/MAX>: REST=H

ItMAX: LO=VEC-REST-HI
PRINT #2,RIGHT$("000000"+HEX$(HI>+RIGHT

$ ("0flJflJ000"+HEX$ (LO>, 4), 6); ' absolute addr
ess

GD 420 PRINT#2, 11 '"ASCI$"'"
HC 430 • CC$= I NKEYS: IF CC$=" " GOTO 345 for 1 i ne

-at-a-time
DI 440 NEXT
FJ 450 CLOSE 2: END

Program 1-9. Capture Vectors from DEBUG
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

KB 100 • VECTORSD: read and format debug output
EK 105 • WARNING debug must have been run in 80 c

olumn mode
AB 106 • for VECTCMPR to properly work
IJ 107 •
~ 110 INPUT "Input file name? ",FILE!$
GA 120 INPUT "Output file name? ",FILED$
CG 13'11 OPEN FI LEO$ FOR OUTPUT AS 2
NN 140 INPUT "Description of environment?",DESCS
NP 160 PRINT #2, DESCS
LC 170 OPEN FILEIS FOR INPUT AS #1 LEN=80
JO 180 MAX=32767*2+1
IL 190 IF EOF<1> THEN GOTO 410
AA 200 LINE INPUT#l, XS
AG 210 IF LEFTS<XS,1)="-" GOTO 190 'bypass debug

KH 22'11
EH 23'11
IK 240
NC 250
AB 260
CB 270

DJ 280

prompts
IF X$="" GOTO 190 'skip blank lines
OFFSETS=MIDS(XS,6,4)
OFFSET=VAL("3ch"+OFFSET$)
FOR X=0 TO 3

CUROFF=OFFSET+<X*4>
PRINT #2,RIGHT$("000"+HEX$(CUROFF>,4>;"

"; 'current offset
IPL$=MIDS(X$,12+<Xt12),2):IPL=VAL("8ch"+

IPL$)

41

PB 290

KM 300

KN 310

ND 320

JN 330

LF 340
PJ 350
HJ 360

HG 370

6J 380

OB 390
GC 400
EB 410

Memory Organization and Management

IPH$=MID$(X$,15+<X*12>,2>:IPH=VAL("8ch"+
IPH$)

CSL$=MID$(X$,1B+<X*12),2):CSL=VAL<"8ch"+
CSL$)

CSH$=MID$(X$,21+(X*12),2):CSH=VAL("8ch"+
CSH$)

PRINT #2,IPL$;" ";IPH$;" ";CSL$;" ";CSH
$;" "; • image of 4 bytes

PRINT #2,CSH$;CSL$":"IPH$;IPL$" ";
• cs:ip image

SE6=(CSH*256+CSL>
DSP=IPH* 256 + IPL
VEC=SEG*16+DSP:HI=INT<VEC/MAX>:REST=HI*

MAX:LO=VEC-REST-HI
PRINT #2,RIGHT$("00"+HEX$(HI>+RIGHT$("0

000"+HEX$(LO>,4>,6>; • absolute
PRINT #2," ";MID$(X$,62+<X*4>,4> 'sh

ow ascii translation
NEXT
GOTO 190
CLOSE 2: END

Program 1-10. Comparing Captured Vectors
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

KO 100 'VECTCMPR: compare two vector files, notin
g differences

• 110 you may use scrn: or lptl: for outp
ut file

HI 120 '
PK 130 INPUT "Input file one name':' ",FILE!$
n 140 INPUT "Input file two name? ",FILE2$
66 150 INPUT "Output file name-:> ",FILED$
FM 160 OPEN FI LEO$ FOR OUTPUT AS 3
GC 170 OPEN FILE!$ FOR INPUT AS #1 LEN=Bf21
FE 180 PR I NT #3, "f i 1 e 1 = "FI LE 1 $

IH 190 PRINT #3, "file 2 = "FILE2$
MO 200 PRINT #3," "
IE 210 OPEN FILE2$ FOR INPUT AS #2 LEN=80
ID 220 MAX=32767*2+1
DH 230 GOTO 420
LJ 240
BE 250

OL 260
u: 270

FE 280
HC 290

42

'IF LEFT$(X$,1)="-"
'IF LEFT$(X$,ll="*"
350: GOTO 400

'IF LEFT$(Y$,1)="-"
'IF LEFT$(Y$,1)="*"
350: GOTO 410

IF X$="" GOTO 400
IF Y$= GOTO 410.

GOTO 40!21
THEN 2$=X$: 2=1:

GOTO 410
THEN 2$=Y$: 2=2:

'skip empty lines
'skip empty lines

GOSUB

GOSUB

Memory Organization and Management

GO 300 IF LEFT$< X$, 34 >=LEFT$< V$, 34 > GOTO 420 'omi
t asci translation in test

HA 310 Z$=X$: Z=l: GOSUB 350
JI 320 Z$=V$: Z=2: GOSUB 350
IA 330 PRINT #3," ": GOTO 420
QK 340 • --- print selected 1 ine
PF 350 PRINT #3, 2$
NJ 360 RETURN
NN 370 • --- al 1 done
AG 380 CLOSE 1, 2, 3: END
II 390 '
OK 400 GOSUB 440: GOTO 240 • read =IH
CD 410 GOSUB 470: GOTO 240 • read #2
OC 420 GOSUB 440: GOSUB 470: GOTO 240 • read both
Bl 430 • --- read f i 1 e one ---
HA 440 IF EDF< 1 > GOTO 380
DO 450 LINE INPUT#1, X$: RETURN
BL 460 • --- read f i 1 e two --­
IC 470 IF EOF(2) GOTO 380
FS 480 LINE INPUT#2, V$: RETURN

BASIC Internal Areas
BASIC partitions the available memory into several discrete
areas that are used to contain certain types of data. The .COM
file that contains the extensions to Cassette BASIC is (as al­
ways) located immediately after the PSP. The PCjr contains
the .COM equivalent extensions in the cartridge, leaving more
memory available for the user's BASIC program. This is
particularly important for a 64K PCjr.

The workspace that BASIC uses to store a program and its
associated variables begins after the BASIC extensions. The
segment number of the beginning of this workspace is stored
in locations 510-Sllh. Program 1-11 will display this segment
number and set a variable to the value that corresponds to the
default DEF SEC. Even though the CS register is called the
code segment register, BASIC uses this register as its own data
segment register.

Program 1-11. Determining the DEF SEG Segment Number
100 'BASDS: display the BASIC data segment add

ress
110 •
120 DEF SFG=0:X=PEEK(&H510)+PEEK(&H511)*256
130 PRINT "BASIC's data segment begins at ";HE

X$(X);":0000 or decimal"Xt16

43

Memory Organization and Management

The first 4K of memory in the BASIC workspace is used
to store information needed by the BASIC interpreter during
the course of its work. This area contains many interesting bits
of information as shown in Table 1-2. You can undoubtedly
find other important data in this area by observing changes in
this area while running programs or direct BASIC commands.

Table 1-2. Interpreter Work Areas
Offset
02Ch
02Eh
030h
04Eh
0SCh
06Ah
1F7h
30Ah
32Fh

· 347h
350h
356h
358h
35Ah
35Ch
464h
4Flh
650h
702h
F79h

Length
2
2
2
1
1
1

256
2
2
2
2
2
2
2
2
1

11

Contents
Offset of stack end
Line number of line being executed
Offset of program text
Character color in graphics modes, default=3
Number of lines before scrolling screen
Keyboard buffer contents (0=none, l=some)
Keyboard buffer
Offset of string space start
Offset of string space end
Line number of last error
DEF SEG segment override
Offset of program text end
Offset of scalar variables
Offset of array variables
Offset of free space
FEh if program protected
Last file name
Key titles

2 Segment number of BASIC PSP
2 Random number seed

A PSP segment number is included in this area at location
702-3h. By referencing that segment and looking into the
formatted parameter areas, you can obtain runtime parameters
from the BASIC start-up line. If this line was entered to start
BASIC-"BASIC ABC DEF XYZ" -then program ABC would
be run, with DEF and XYZ left in the parameter areas for the
ABC program to act upon as desired.

The various pointers contained in the interpreter work
area divide up the BASIC workspace into partitions for data
storage, as illustrated in Figure 1-13. This diagram is an
amplification of that found in the 2.0 or PCjr BASIC manual
on page 1-2 or the DOS 3.0 BASIC manual on page B-29.

44

Memory Organization and Management

Figure 1-13. BASIC Workspace

DOS 2.10
24K-

• ENVIRONMENT for BASIC

•p BASIC Extensions Disk=l2K, Advanced=22K

Start of BASIC 64K workspace:
{/M or CLEAR may be used to size)

DS:0 4K interpreter work area

Communications {/C) buffers
180h default size

RS-232 routines
SE0h default size

File {/F) control blocks
234h default size

File {/S) random buffers
80h default size

DS:30-31> BASIC program text I
::~:: :;: :: :
DS:35C-D> Free space

:::::~~!~~;.\~:::~=~~~::~~~~~~::~~~~::::::::r:::::::::::
DS:2C-D> Stack 200h bytes

{/Mor CLEAR may be used to size)

Unused and available

• = Storage chain block, 10h bytes
P = Program segment prefix, 100h bytes

<- redirected
INT 0,4,9,B,

lB,lC,
23,24

If we can determine the DEF SEG value, which is the start
of the BASIC workspace, we can also determine the address
for the end of the workspace. This is a very useful thing to
know, since it tells us where we can BLOAD or POKE machine
language subroutines without destroying any of BASIC's data.

45

Memory Organization and Management

If the default DEF SEG number is now known to be con­
tained in variable X by PEEKing the value from absolute loca­
tions 510-Sllh, then HI.SEG=X+&hlO00 gives us the segment
number that is just beyond the BASIC 64K workspace and
HI.ADDR=HI.SEG"' 16 yields the address of the first byte be­
yond BASIC. If you have shortened the workspace size with
CLEAR or BASIC start-up options, simply adjust 1000h by the
appropriate number of segments.

The next thing that should be done is to determine if
there is enough memory installed to store our machine lan­
guage routine (or routines) above the BASIC workspace. If not,
we can resize BASIC to provide room for the routine. Absolute
location 413-4h contains the number of Kbytes of usable
memory. So DEF SEG=0:MEM.SIZE=PEEK(&h413)+256"'
PEEK(&h414) gives us the amount of memory available. If
HI.ADDR plus the size of our routine exceeds MEM.SIZE, then
we need to resize BASIC. Otherwise, our routine will fit above
BASIC.

To resize BASIC to make room for the routines, simply
calculate the override value for the 65,535-byte default
workspace size by subtracting the length of the routines from
65,535 and use CLEAR n, where n is the recalculated
workspace size in bytes (not segments).

Program Statement Storage
Your program is reduced in size by tokenizing the BASIC
keywords in the text. Tokens are one- or two-byte shorthand
codes for the BASIC keywords and are categorized by the ver­
sion of BASIC that they are implemented in. Tokenized BASIC
text is stored in the BASIC workspace, and the beginning of
the program is pointed to by offset 30-31h in the interpreter
work area. The program lines are stored in the format shown
in Figure 1-14. This format is common to Microsoft BASIC im­
plementations on various computers. A list of the BASIC to­
kens is presented in the Appendices. You can use the list to
find the token for a keyword or the keyword for a token.

BASIC Variable Storage
Program variables are stored after the text of the program and
are partitioned into types of data. First come the scalar (non­
array) variables, the first of which is pointed to by DS:358h.
Next is the area pointed to by DS:35Ah where array variables

46

Memory Organization and Management

Figure 1-14. BASIC Line Storage Format

I NL INM I LL jLM 1 · ... tokens and text.... O

NL Offset of next line, LSB
NM Offset to next line, MSB
LL Line number, LSB
LM Line number, MSB
0 end of line marker
If NL and NM both contain zeros, then that is end of program with
no BASIC text on that line.

are saved. The entire contents of this area must be pushed up­
ward whenever another scalar variable is added to the variable
pool below it.

From the bottom of the stack area, the string variables are
saved, but the scalar variable pool holds a pointer to the ac­
tual string contents. This string pointer can also point to the
string in the program text, saving space in the string variable
pool if the string has not been modified by the program. The
string variable pool has two pointers, DS:30Ah which points
to the highest address used in the pool and DS:32Fh which
points to the lowest address. Remember that the string vari­
ables grow downward into the free area while the scalar and
arrays grow upward into it. The free area is pointed to by
DS:35Ch for the low address and DS:32Fh for the upper
boundary.

The BASIC manual contains a general description of the
variable storage format on page 1-4, but some additional facts
will prove useful. The common 4- to 42-byte header used for
all variables is shown in Figure 1-15. We see that !-character
variable names save no storage in the variable pool compared
with 2-character names. Variable names are unique up to 40
characters.

Integer variables (type 2, type declaration %) are stored in
LSB/MSB format. The high-order bit is used to denote a neg­
ative value, in which case the number has been complemented
(FFFFh = -1, FFFE= -2, etc). The range of integer variables
is -32,768 to 32,767.

47

Memory Organization and Management

Figure 1-15. Standard Variable Header

0 1 2 3 4 4+Lr

Ty Nl N2 Lr remainder of variable name Value

Ty Type code of variable, length of data field
2 integer
3 string
4 single precision
8 double precision

Nl First character of variable name
Type declaration characters (% $#)are not stored as part of
the variable name

N2 Second character of variable name
Lr Length of remainder of name or zero

Remainder of name is stored with the high-order bit of each
byte turned on.
The value for the variable begins at offset 4+ Lr

String variables (type 3, type declaration$) contain a one­
byte length code followed by a two-byte offset to the string in
the string pool or BASIC program.

Single-precision variables (type 4, type declaration !) use
three bytes (24 bits) to contain the exponent with right-to-left
significance. The third byte high-order bit is the sign of the
mantissa, 0 signifying positive. The fourth byte contains the
binary exponent (the number of digits to the left of the binary
point before a 1 is found) with the high-order bit turned on.

Double-precision variables (type 8, type declaration#) ex­
tend the single-precision variable's three-byte mantissa to
seven bytes (56 bits). The eighth byte has the same format as
the single-precision fourth byte.

Array variables use the standard variable header, but after
any remaining characters in the name are the fields shown in
Figure 1-16 followed by the data in the array.

The size of each element in the array is indicated by the
type code in the variable header. The arrangement of the data
values within the variable descriptor is rather interesting. Con­
sider the example array G(l,1,2). First, be aware that Dnz,
Dny, and Dnx will appear as 3,2,2 since dimensions include a

48

Memory Organization and Management

zero numbered element. The elements would be in the follow­
ing order: G(0,0,0), G(l,0,0), G(0,1,0), G(l,1,0), G(0,0,1),
G(l,0,1); G(0,1,1), G(l,1,1), G(0,0,2), G(l,0,2), G(0,1,2), and
G(l,1,2).

Strings are stored in the string variable pool with no inter­
vening control information. For example, K$ = 11 abcde11 + 11

"

:Kl$= 11fgh"+ 11i" is stored as 11fghiabcde" in the string pool.
The strings would be located in the string pool since the pro­
gram has modified them. The string pool is built downward
from the top, so the strings are in reverse order from their
definition sequence.

Figure 1-16. Array Dimension Headers

0 1 2 3 4

Sz lorn I Dnz Dny

Sz Number of bytes in array
Dm Number of dimensions
Dnz Size of last dimension
Dny Size of next-to-last dimension
Dnx Size of second-from-last dimension

Protected Programs

Dnx I values

BASIC provides a protection feature that allows a program to.
be saved in protected mode which prevents examination or
modifications to the program. The BASIC manual states that
there is no way to unprotect a protected program. POKE is not
allowed from the immediate mode when a protected program
is in memory. However, we will see how a program can pro­
tect or unprotect itself if desired (such as when the correct
password has been entered) and how you can unprotect any
BASIC program. The key to protection is the byte at DS:464h
and the first byte of a BASIC program saved on disk.

When a protected BASIC program is saved, the text of the
program is enciphered so that simply changing the one-byte
indicator at the start of the file is not enough to unprotect or
protect the BASIC program. The first byte of the BASIC cre­
ated file is FFh for normal program text, FEh for a protected
program, or FDh for BLOAD files. Programs saved with the
ASCII option and data files do not have a leading byte that
describes the file format.

49

Memory Organization and Management

The BWAD command is the key to unprotecting. By using
BLOAD, we can overlay the byte at DS:464h that indicates
that the program is protected. Then we can list, change, and
save the program as if it were never protected.

First, we must create a key file that will unlock a pro­
tected program. We'll use DEBUG to do this, as shown in Fig­
ure 1-17. The entered byte meanings are as follows: FDh
indicates a BLOAD file, 66 66 is a dummy segment number,
64 04 is the offset of location 464h, 01 00 is the one-byte
length of the following data, 00 is the new value to be placed
in DS:464h that indicates the program is not protected, and lA
is the standard BASIC end-of-file marker. This is the format of
all BLOAD files.

Figure 1-17. Creating SESAME.BLD
A>DEBUG
-n sesame.bid
-e 100 fd 66 66 64 04 01 00 00 la
-rcx
:9
-w
-q

To use our newly created key, enter BASIC and load a
protected file but do not run it. See what happens when you
try to list it. Enter the command
BLOAD "sesame.bld",&h464

and the program is now unprotected. Try listing it now.
You may want your program to decide to unprotect or

protect itself dynamically by setting DS:464h to FFh for
protection or 00 to unprotect itself.

Issuing DOS Commands from BASIC
You can rename BASIC/BASICA.COM on the PCjr and run
them to gain access to the BASIC SHELL command. Or you
can use those programs under DEBUG on the PCjr without
restriction. The PCjr cartridge will not allow return from a_
SHELL command, so we are stuck with using a disk version of
BASIC to use SHELL on the PCjr. In all cases you still need
the BASIC cartridge since Cassette BASIC in ROM checks for
it when DOS is running. Of course, using a noncartridge ver­
sion of BASIC on the PCjr excludes the fine PCjr enhance­
ments to BASIC for video and sound.

50

Memory Organization and Management

On either the PC or PCjr, DOS 2.0 /2.10 contains a ver­
sion of SHELL that has a rather severe bug in the way it
tramples on what it assumes to be offset 30-3 lh of the PSP,
but which is really in the interpreter work area in BASIC. You
can circumvent this pre-DOS 3.0 SHELL problem by saving
and restoring this pointer to the beginning of the BASIC pro­
gram text. The sample routine in Program 1-12 allows SHELL
to be used successfully in DOS 2.0/2.10 BASIC or BASICA
(not Cartridge BASIC).

The SHELL command causes a COPY of COMMAND.COM
to be executed, so you may use SHELL to process batch file
commands, use external and internal DOS commands, and
perform redirection and piping. Many restrictions apply to the
use of the SHELL command. You should be prepared to reset
your screen mode and clear the screen when BASIC is re­
entered. Interrupt vectors that are critical to your work should
be saved and restored. Modifications to the following device
ports could prove fatal: 8259, 8253, 8237, 8255, and 8250.
Open files (including redirected standard input/ output) should
not be modified by any action during the SHELL session. Do
not use the /M option when starting BASIC. You should not
invoke terminate-but-stay-resident types of programs. BASIC
cannot be started in a SHELL session.

Program 1-12. Issuing DOS Commands from BASIC

UJ0 'MEMSHELL; Cal 1 for DOS functions from BAS
IC

110 • PCjr will receive a "Can't continue afte
r SHELL" message

120 • You may run BASIC<A> under DEBUG or rena
me BASIC(A>

130'
140 PRINT "Enter DOS command for SHELL
150 INPUT SHELL.CMD$' just press enter if you

wish to stay in DOS
160 • unit you enter the command EXIT.
170 • Save data from BASIC's non-PSP
180 DEF SEG: X=PEEK (&H30): Y=PEEI< <!!,H31 > • offset

to pgm
190 SHELL SHELL.CMD$
200 • Restore data to BASIC's non-PSP
210 DEF SEG: POKE &H3121, X : POKE ~,H31 • Y ' off set t

o pgm
220 PRINT"Back in BASIC"
230 END

51

Memory Organization and Management

DOS 2.0/2.10 SS:SP Sequence Errors
The order in which the stack segment (SS) and stack pointer
(SP) are set is significant to the PCjr and to 8088's that were
released without an interlocking mechanism. SS should be set
first, then SP. Any interrupt that occurs between the setting of
SP and then SS would cause the wrong stack segment to be
used, creating a real mess that usually means a power-on se­
quence to clear it. Using CLI to turn off interrupts helps, but
an NMI from the PCjr keyboard (such as the Break key) can't
be masked off, and it's a pain to have to remember to CLI/STI
around SS:SP settings.

DOS 2.0 and 2.10 were released with some SS:SP settings
in the wrong order. You can fix these errors. First, make sure
that this is not the only disk that contains the system files and be
sure you have a duplicate copy of any important files saved on
another disk. If you make a mistake, you can create another
copy of DOS from an unaltered disk by using FORMAT /S.
Now, change the attribute byte for the file IBMDOS.COM
with the commands:
A>DEBUG
-11000 51
- d 120 le
- e 12B 20
-wlO00 51
- q

load the directory
show IBMDOS.COM and attribute
nonsystem, non-read-only, nonhidden file
write the directory back

Now, DEBUG IBMDOS.COM and unassemble the follow­
ing areas for eight bytes each: 3AC, CDl, 1522, 311D, 325F,
409B. Change the order that SS and SP are set, being careful
of the sequence used in the last instruction group. Write the
file back to disk with the W command. You can now set the
file attribute back to 27h by using the same process as you
used to set it to 20h.

1/0 Port Address Space
Besides the memory address space, there is another separate
address space within the PC that is used for communications
with 1/0 devices. The 1/0 port address space contains 1024
bytes (lK) and is accessed with the special IN and OUT ·
Assembler instructions (INP and OUT in BASIC programs,
and I and O in DEBUG).

1/0 ports cannot necessarily be written to even if they
can be read, or read even if they can be written to. The ex-

52

Memory Organization and Management

pected contents of the bits in the port, as well as the ability to
read or write, are determined solely by the device connected
to the port.

The 1/0 port address space is summarized in Figure 1-18.
Those areas that are not used or reserved could be used by an­
other vendor's equipment or future IBM products. See the Port
Map Appendix for more detailed information about the port
address space contents.

SRVCCALL: BIOS/DOS Interrupt/Function
Service Routine
Functional compatibility in future releases of DOS or on new
IBM computers is aided by utilizing the provided interrupts
and DOS function calls. Also, BASIC is limited to a set of ser­
vices that do not currently allow for the full range of capabili­
ties provided in the interrupts and function calls. For example,
the amount of used/available space on any attached disk is
readily available from DOS, but no function supports this re­
quest for the BASIC programmer. The same is true of many
other handy and available DOS and BIOS services.

An obvious solution to the problem is to provide a ma­
chine language subroutine for BASIC programs that allows the
BASIC programmer to call interrupts and DOS functions, pass­
ing and receiving the standard register and flag parameters.
Additionally, the returned parameters from one call must be
available for later passing to another call. Program 1-13 is a
demonstration program that shows the use of a SRVCCALL
machine language routine that provides those features. The
machine language module is BLOADed at the end of the
BASIC workspace, then called to pass and return DOS /BIOS
parameters.

Some interrupts and DOS functions just don't make any
sense to use from a BASIC program since BASIC provides the
equivalent function, and others can be downright ridiculous.
DOS function 27h (terminate but stay resident) is an example.
Even though you will have a tool to call any of the interrupts
or functions, choose wisely those that you use.

The demonstration BASIC program illustrates the use of
the subroutine in seven different calls for BIOS /DOS services,
including the use of ASCIIZ strings and pointers to parameter
areas (be sure to delete line 210 if you don't have a printer
connected). Only 12 BASIC lines (Program 1-14) are needed to
provide the SRVCCALL facility.

53

Memory Organization and Management

Figure 1-18. Allocation of PC 1/0 Port Address Space

OOOh

010h

020h

030h

040h

050h

060h

070h

080h

090h

OAOh

OBOh

OCOh

OOOh

OEOh

OFOh

54

1/0 ports OOOh through OFFh-System board use

Oh I h 2h 3h 4h Sh 6h 7h Sh 9h Ah Bh Ch Oh Eh Fh

OMA 8237-A

MFGI

INT 8259 I

TIMER 8253-5 I

PPI 8255A-5 I

OMA Page Regs I

N M I Mask Register

Oh lh 2h 3h 4h Sh 6h 7h Sh 9h Ah Bh Ch Oh Eh Fh

1/0 ports 100h through IFFh-System board and 1/0 channel use
Restricted to.output-only use, unused in PC

200h

210h

220h

230h

240h

2S0h

260h

270h

2S0h

290h

2A0h

280h

2C0h

2O0h

2E0h

2F0h

300h

310h

320h

330h

340h

3S0h

360h

370h

3S0h

390h

3A0h

380h

3C0h

3O0h

3E0h

3F0h

Memory Organization and Management

1/0 ports 200h through 3FFh-l/O channel use
Oh lh 2h 3h 4h Sh 6h 7h Sh 9h Ah Bh Ch Oh Eh Fh

Game Control

Expansion Unit

Reserved

I Reserved

3270 PC

Reserved Asynch Communications 2

Oh I 1h I 2h I 3h I 4h I Sh I 6h I 7h Sh I 9h I Ah I Bh I Ch I Oh I Eh I Fh

Prototype Card

Prototype Card

Fixed Disk

XT/370

I Parallel Printer

SDLC or Second Bisynch Communications I
First Bisynch Communications I

Monochrome Display and Parallel Printer

Reserved

Color /Graphics Display

Reserved

Disk Asynch Communications I

Oh lh 2h 3h 4h Sh 6h 7h Sh 9h Ah Bh Ch Oh Eh Fh

55

Memory Organization and Management

The use of an integer array to pass parameters between
BASIC and the machine language routine would minimize the
instructions in both the BASIC and machine language
routines. For the BASIC program, the subscript could be a
variable name to make it clear which register is being used,
that is, PARMS(CL). Instead, I've elected to use discrete vari­
ables for the sake of rapid understanding of the code in the
machine language routine. Since the instruction lines are slight
variations of the preceding group of lines, duplication and
modification of the preceding lines will speed data entry.

I've also arbitrarily chosen to use the BLOAD technique
for storing the machine language module since the other tech­
niques of using a BASIC string, array, or POKEing beyond
BASIC are illustrated elsewhere in this book.

To create the SRVCCALL machine language routine, enter
either the source code shown in Program 1-15 (if you have an
assembler) and save it using the filename SRVCCALL.ASM, or
use DEBUG to enter the hex values at the indicated offset and
save the module as SRVCCALL.COM.

Assembler owners should then use the following batch
file to create the SRVCCALL.COM module (you must have
ASM, EXE2BIN.EXE, and your source file on the same disk):
asm %1,,,;
link %1,,con,;
exe2bin %1.exe %1.com

Once you have the batch file created, assuming you
called it CREATE.BAT, enter this command to create
SRVCCALL.COM:
A>CREATESRVCCALL

Now we'll use the .COM module to create the necessary
.BLD (BLOAD) module using DEBUG. Simply move it down
seve.n bytes, and add the .BLD header as follows:
DEBUG SRVCCALL.COM
-n SRVCCALL.BLD
-m 100 1 a8 107
-e 100

fd 00 00 00 00 a8 00
-rcx
:af
-w
-q

56

Memory Organization and Management

Program 1-13. SRVCCALL.BAS
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

~ 100 'SRVCCALL; Demonstrate DOS/BIOS interrupts
/functions from BASIC

66 110 •
BA 120 • Display options: -l=yes, 0=no Caption

is global switch
DA 130 CAPTION=-!: BEEP.ON=-!: FLAG.DEF=-!
Hft 140 •
CL 150 GOSUB 470 •install machine language mod

ule
KD 1.60 • --- perform demo routines --­
IJ 170 GOSUB 610
16 180 GOSUB 7 UI
Pl 190 GOSUB 790
MK 200 GOSUB 870
Cl 210 GOSUB 960 'delete this line if printer n

ot connected
DF 220 GOSUB Ul80
D6 23Qf GOSUB 11 70
LD 240 END
HP 250 •
66 260 • --- CALL DOS/BIOS ---
EA 270 FLAGS7.=FLAGS7. AND 8cHCD1 'isolate pertinent

flags
ftK 280 IF CAPTION THEN PRINT" DOS/BIOS cal 1: IN

T "HEX$(INTERRUPT7.)"h, function"HEX$(AH'Y.)"
h"

KD 290 IF CAPTION THEN LOCATE , 4: PRINT" sent
FLAGS= "HEX$(FLA65'Y.)"h";

66 300 •
FB 310 DEF SEG=SRVCCALL. SEG 'segment bloaded at
~ 320 CALL SRVCCALL.OFF(FLAGS'Y.,INTERRUPT'Y.,ES7.,SI

7.,DI7.,AH'Y.,AL'Y.,BH'Y.,BL'Y.,CH'Y.,CL'Y.,DH'Y.,DL'Y.>
HII 330 •
EL 340 FLAGS7.=FLAGS'Y. AND .&:HCD1 'isolate pertinent

flags
KA 350 IF CAPT I ON THEN IF BEEP. ON THEN BEEP
NF 360 IF NOT CAPTION GOTO 450
FA 370 PRINT", returned FLAGS = "HEX$(FLAGS'Y.) "h"
IIJ 380 •--- flag interpretation ---
CA 390 IF NOT FLAG. DEF GOTO 450
AE 400 PRINT" value: 8421
PJ 410 PRINT" F OD
EE 420 PRINT" L VI
66 430 PRINT" G RR
HP 440 •
NI 450 RETURN

8421
SZ A
GR U
NO X

8421"
C"
R"
Y"

KE 460 • LOAD MACH I NE LANGUAGE ROUT I NE

57

Memory Organization and Management

FN 47il CLS: PRINT II Inst al 1 i ng SRVCCALL ••• 11 ;

BN 4Bil DEF SEG=il: BASWS=PEEK<&H51il)+256*PEEK<&H51
1) "find end of basic workspace

EC 49il BASEND=BASWS+&H1ilili1+2: SRVCCALL.SEG=BASEND
LJ 5ilil DEF SEG=SRVCCALL.SEG: SRVCCALL.OFF=0 'use

offset ii because of LEA
Fl 51il BLOAD 11 SRVCCALL.BLD",SRVCCALL.OFF 'loa

d srvccall after basic
FI 52il PRINT"completed. ": GOSUB 540: RETURN
BC 53il • --- CLEAR REG I.STER PARAMETERS ---
IC 54il DEF SEG: INTERRUPT'Y.=g<H21: FLAGS%=QI
KO 55il AH'Y.=il:AL'Y.=0:BH%=0:BL'Y.=0:CH%=0:CL'Y.=0:DH%=0:

DL'Y.=il:ES'Y.=il:SI'Y.=il:DI%=il
CK 56il IF CAPTION THEN PRINT: PRINT"Regs zeroed."
NN 57il RETURN
II 5Bil •
QL 59il • -•-•-*- DEMO ROUTINES _*_*_*_
HJ 6i10 •
DD 610 • --- get disk free space ---
DP 62il • DOS function 36
PG 63il • returned: b>:=free clusters, dx=total

clusters
HF 640 • c>:=bytes/sector, a>:=sector

s/cluster
EF 65il GOSUB 54il 'clean up registers
~ 66il INTERRUPT'Y.=&H21: AH'Y.=&H36: DL%=il

signifies default drive
AG 67fJ GOSUB 27fJ 'call assembler routine

• dl=0

LJ 681) IF AL7.=&HFF AND AH%=&HFF THEN PRINT"DRIVE
NUl'IBER"DL7."INVALID": GOTO 700

NA 69fJ PRINT (BH%*256+BL'Y.> * (AH7.*256+AL7.> * <CHY.*256+
CL7.)"available bytes on disk"

NB 7ilfJ RETURN
JG 71fJ • Request vector address
FH 72fJ • DOS function 35h
QN 73fJ • returned: es:bx vector
EE 74fJ GOSUB 54fJ 'clean up registers
00 75fJ INTERRUPT1.=&H21: AH1.=&H35: AL1.=&H10 • get

vector for INT1fJ video
FN 76fJ GOSUB 27fJ •call machine language routine
SN 77fJ PRINT "vector points to "HEX$ <ES%)": "HEX$<

BH'X*256+BL1.)
NB 78fJ RETURN
DK 791) • Request OTA address
CF BfJfJ • DOS FUNCTION 2FH
FF 811) • returned: es: bx OTA address
EB 82fJ GOSUB 54Ql 'clean up registers
JD 83il I NTERRUPT'Y.=&H21 : AH'Y.=&H2F
FJ 840 GOSUB 270 'call machine language routine

58

Memory Organization and Management

NA 85QI PRINT "DTA is at "HEX$ (ESi.> ": "HEX$ <BH'Y.*256
+BLX>

ND 86QI
HD 870

RETURN

BE 880 '
KG 890 •

Request timer value ---

ot 24
PL 900 GOSUB

THEN

bi os INT ta, typ·e QI service
returned: dx=low, cx=high, a1=0 if n
hrs
54QI: Y=CAPTION: FOR X=1 TO
CAPTION=0

7: IF X>1

EC 910 GOSUB 920: NEXT: CAPTION=Y: RETURN
HL 920 I NTERRUPTi.=&H 1 A: AH7.=&H0 " ah 7.=0 i s ti mer

read
AB 930
QL 940

GOSUB 270 'call assembler routine
PRINT "Ti mer="; CHi.; CLi.; DH7.; DL½: IF AL% < >!21

THEN PRINT"OVER 24 HOURS"
NN 95QI
NL 960
QD 970
LI 980
LN 99QI

RETURN
Request printer output
DOS function 5
returned: nothing

GOSUB 540: Y=CAPTION: CAPTION=0 "turn off
tracing captions

HL 1!210!21 •
HI 1!2110 INTERRUPTi.=&H21: AH7.=&H5: TEXT$="DOS functi

on 5. Now you can call BIOS/DOS from BASI
C! ! !"

JF 1020 FOR X=1 TO LEN(TEXT$): DLi.=ASC<MID$(TEXT$
,X,1>>: GOSUB 270: NEXT

HB 1!213!21 DL%=13: GOSUB 27!21: DL%=10: GOSUB 27!21 'end
with CR/LF

HH 1040
EL 1050
IN 106QI
CP 1il7QI
ID 1i180
"8 1090
FA 1100

KL 1110
LD 1120

KA 1130

IID 1140
II 1150
JP 1160
FD 1170
NB 1180
BD 1190
r.r. 1200

.
CAPTION=Y: RETURN .

get country information . . DOS function 38 . returned: 24 bytes
te area

of info in 32 by

GOSUB 540 "clean up registers
INTERRUPT7.=&H21:AH%=&H38:BACK$=SPACE$(32>
+"" 'DATA RETURNED
BACK!=VARPTR<BACK$): DEF SEG: DH'l.=PEEK<BA
CK!+2): DL%=PEEK(BACK!+1)
GOSUB 270 "call machine language routine
PRINT "Country info= ";BACK$
RETURN
• --- get file attribute byte

DOS function 43
returned: cl=attribute

GOSUB 540 "clean up registers

59

Memory Organization and Management

JP 1210 INTERRUPT7.=&H21:AH7.=&H43:FILE$="CoMmAnD.C
oM"+CHR$(0) •case not significant

KJ 1220 FI LE ! =VARPTR <FI LE$> : DEF SEG: DH7.=PEEI< <FI
LE!+2): DL7.=PEEK(FILE!+1>

Fl 1230 GOSUB 270 •call assembler routine
06 1240 PRINT FILE$; "attribute="HEX$(CL7.> 11 h 11 : IF

(FLAGS% AND 2·"0> THEN PRINT"ERROR CODE="A
L7.

JO 1250 RETURN

Program 1-14. Functional Subset of SRVCCALL.BAS
Invocation
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

HN 10 GOSUB 470
e

'install machine language modul

'call machine language routine AE 20 GOSUB 270

FC 30
LF 250
GG 260
EA 270

'Main body of program
END
• --- CALL DOS/BIOS --­
FLAGS7.=FLAGS7. AND &HCD1 'isolate pertinent

FB 310
MG 320

EL 340

IF 350
BK 470

flags
DEF SEG=SRVCCALL. SES • segment b 1 oaded at
CALL SRVCCALL.OFF<FLA6S7.,INTERRUPT7.,ES1.,SI
%,DI7.,AH7.,AL7.,BH%,BL7.,CH7.,CL7.,DH7.,DL1.>
FLA6S7.=FLAGS% AND &HCD1 'isolate pertinent
flags

DEF SEG: RETURN
DEF SEG=0: BASWS=PEEK<&H510)+256*PEEK(&H51
1) 'find end of basic workspace

EA 480 BASEND=BASWS+&H1000+2: SRVCCALL.SES=BASEND
DEF SEG=SRVCCALL.SES: SRVCCALL.OFF=0 'use tn: 490
offset QI because of LEA

OH 500 BLOAD II srvccal 1 • b 1 d", SRVCCALL. OFF • 1 oad s
rvccall after basic

l P 51!21 DEF SEG: RETURN

Program 1-15. SRVCCALL.ASM

60

**
* SRVCCALL; BASIC callable routine to invoke BIOS/DOS interrupts *
* and functions. DS, CS, SS, SP, and BP not alterable. *

* CALL SRVCCALL(FLAGS%,INTERRUPT%,ES%,SI%,DI%,AH%, *
* AL%,BH%,BL%,CH%,CL%,DH%,DL%) *
* Because of LEA instruction, always bload at offset 0. *
**

Memory Organization and Management

service_call segment
SRVCCALL proc far

public SRVCCALL
off hex assume cs:service_call
set instruction

00 FA di
01 55 push bp ; use bp as parm frame

; pointer
02 88 EC mov bp,sp ; from current stack pointer
04 1E push ds ; save basic segment registers
05 06 push es

; --------------- set desired registers for call ---------------
06 88 76 1E mov si,[bp + 30) ; point to flag argument
09 88 04 mov ax,[si)
OB 50 push ax
oc 9D popf ; set flags, no other
OD 88 76 14 mov si,[bp + 20) ; point to ah argument
10 BA 24 mov ah,[si) ; set ah
12 88 76 12 mov si,[bp+18) ; point to al argument
15 BA 04 mov al,[si] ; set al
17 88 76 10 mov si,[bp+16) ; point to bh argument
lA BA 3C mov bh,[si) ; set bh
lC 88 76 OE mov si,[bp + 14) ; point to bl argument
lF BA 1C mov bl,[si] ; set bl
21 88 76 oc mov si,[bp+12) ; point to ch argument
24 BA 2C mov ch,[si] ; set ch
26 88 76 OA mov si,[bp+ 10) ; point to cl argument
29 BA oc mov cl,[si) ; set cl
28 88 76 08 mov si,(bp + 8) ; point to dh argument
2E BA 34 mov dh,[si) ; set dh
30 88 76 06 mov si,(bp+6) ; point to dl argument
33 BA 14 mov dl,[si] ; set dl
35 88 76 16 mov si,[bp+22) ; point to di argument
38 88 3C mov di,[si] ; set di
3A 88 76 lA mov si,[bp+26) ; point to es argument
3D 50 push ax ; save ax, use temporarily
3E 88 04 mov ax,[si] ; es arg in ax
40 BE co mov es,ax ; set es
42 58 pop ax ; restore ax
43 88 76 18 mov si,[bp + 24) ; point to si argument
46 88 34 mov si,[si] ; set si

----------- set interrupt number in instruction -----------
48 50 push ax ; save users reg
49 53 push bx ; save users reg
4A 88 SE lC mov bx,[bp+28) ; point to interrupt num
4D BA 07 mov al,[bx) ; interrupt num in al
4F SD 1E 0058 R lea bx,intins ; get runtime offset of int

; instruction
53 43 inc bx ; plus one for argument

61

54 2E: 88
57 5B
58 58

59 55
SA FB
5B
5B CD 00

SD FA
SE SD

SF 56
60 9C
61 88
64 88
66 88
69 88
68 88
6E 88
70 88
73 88
75 88
78 88
7A 88
7D 88
7F 88
82 88
84 88
87 88
89 58
SA 88
SD 89
SF 58
90 88
93 89
95 SC
97 88
9A 89
9C 88
9F 89

Al 07
A2 lF
A3 SD
A4 FB

76
24
76
04
76
3C
76
IC
76
2C
76
oc
76
34
76
14

76
04

76
04
co
76
04
76
3C

Memory Organization and Management

07 mov cs:[bx],al ; overlay int argument
pop bx ; restore users reg
pop ax ; restore users reg

-------------- call interrupt or DOS function -----
push bp ; sav_e bp to avoid bios bug
sti
intins:
int 0

di

; argument overlaid by
; intro%

pop bp ; restore bp
-------------- set registers returned from call -------------

14

. push si ; process later
pushf ; process later
mov si,[bp+20] ; point to ah argument
mov [si],ah ; pass ah back

12 mov si,[bp+18] ; point to al argument
mov [si],al ; pass al back

10 mov si,(bp+ 16] ; point to bh argument
mov [si],bh ; pass bh back

OE mov si,[bp+ 14] ; point to bl argument
mov [si],bl ; pass bl back

oc mov si,[bp+12] ; point to ch argument
mov [si],ch ; pass ch back

OA mov si,[bp+ 10] ; point to cl argument
mov [si],cl ; pass cl back

08 mov si,[bp+8] ; point to dh argument
mov [si],dh ; pass dh back

06 mov si,(bp+6] ; point to dl argument
mov [si],dl ; pass dl back

1E
pop ax ; restore returned flags
mov si,[bp+30] ; point to flags argument
mov [si],ax ; pass back flags
pop ax ; restore returned si

18 mov si,[bp+24] ; point to si argument
mov [si],ax ; pass si back
mov ax,es ; returned es to ax

lA mov si,[bp+26] ; point to es argument
mov [si],ax ; pass es back

16 mov si,(bp+22] ; point to di argument
mov [si],di ; pass di back

----------------------- return to caller ------------------------
pop es ; restore BASIC segment regs
pop ds
popbp
sti

; restore bp

AS CA 001A
AS

ret 26
SRVCCALL endp
service_call ends

; 13 arguments

AS
end

62

Memory Organization and Management

Memory Related Locations and References
Location shows PC2 values, then PCjr if they differ. The TRM
page indicated is the beginning or most significant page as
found in the XT Technical Reference manual (see the Introduc­
tion concerning the edition of manuals referenced in this
book). Examine the context of the surrounding pages.

Memory Support References

Location
Label
Usage

TRMpg
Location
Label
Usage

TRMpg

Location
Label
Usage

TRMpg

Location
Label
Usage

TRMpg
Location
Label
Usage

TRMpg

Sh
(INT 2)
Vector to memory parity error NMI handler (not PCjr)
FE2C3h
A-11, A-72

48h
(INT 12)
Vector to memory size determination routine
FF841H
A-71; PCjr: A-97

60h
(INT 18) BASIC-PTR
Vector to ROM-resident Cassette BASIC
F6000H; PCjr: FFFCBh if no cartridge, else E8177h
PCjr: A-109

64h
(INT 19) BOOT-PTR
Vector to bootstrap routine
FE6F2h
A-20; PCjr: A-62, A-26

410-411h
EQUIP-FLAG
Configuration switch memory size information
System board memory size, PCl includes 1/0 channel
memory
See Memory Map Appendix and ports 60-62h in Port
Map Appendix
PCjr: set by ROM BIOS for compatibility
1-10; PCjr: 2-31

63

Location
Label
Usage

TRMpg

Location
Label
Usage

Location :
Usage

Memory Organization and Management

413-414h
MEMORY-SIZE
Usable memory size in lK blocks
PCl: 1/0 channel memory from switches added to sys­
tem board
PC2: all available memory in lK blocks
PCjr (64 or 128K): 16 (for video) in lK blocks
See Memory Map Appendix and ports 60-62h in Port
Map Appendix
A-9; PCjr: A-16

415-416h (not XT)
TRUE-MEM
Total memory including 1/0 channel in lK blocks
PCl: 1/0 channel memory in lK blocks from switches
PC2: not used
PCjr: all available memory in lK blocks
See Memory Map Appendix and ports 60-62h in Port
Map Appendix
510-Sllh
BASIC's storage area for workspace segment number

ROM BIOS Memory Support References
PC2ROMBIOS
FE0AEh Call for ROM checksum
FE165h Determine memory size and check memory in first 32K
FElDEh Set first 32 interrupts to temporary routine
FElEFh Fill INT 10-lF
FE202h Save configuration switches in equipment flag .
FE3DEh Set up INT 0-15
FE418h Check expansion box
FE46Ah Test memory above 32K
FE518h Check for ROM in C80000-F40000h
FE53Bh Check BASIC ROM
FE66Dh INT 19 to bootstrap loader
FE66Fh Subroutine to test RAM
FE6F2h Bootstrap loader
FF841h INT 12 memory size service
FF85Fh NMI interrupt, parity check
FF8F2h ROM checksum subroutine
FF953h Checksum optional ROM and initialize
FFEF3h Interrupt vector table

64

Memory Organization and Management

PCjr ROM BIOS
F0134h Test BIOS/BASIC ROMs
F015Fh Test 0-2K RAM and just below end (for video buffer)
F0lEBh Initialize INT 0-lF
F0250h Simulate configuration switches
F0503h Size memory, test or clear
F07E0h Check for cartridges in C00000-F00000h
F0B18h Bootstrap loader
F0B59h Initialize or test memory
FE6F2h INT 19 redirection to bootstrap loader
FEB51h Checks ROM C0000-F00000h
FF841h INT 12 memory size service
FFE71h Checksum optional ROM and initialize
FFEF3h Interrupt vector table

Additional Memory lnfqrmation
Subject
Port address map
Configuration switches
System memory map
Memory expansion board
8088 interrupts 0-lFh
BASIC and DOS reserved interrupts
BASIC and DOS reserved memory locations
BASIC workspace variables
Expansion ROM characteristics
Parity error routine
Fixed-disk ROM initialization
Fixed-disk INT 19 bootstrap
8088 registers
8088 operation codes
Memory segmentation
System board 64K
Cartridge characteristics
64K expansion
Memory compatibility with PC

BASIC Memory Support

TRM Page
1-8
1-10, G-4
1-11
1-197
2-4; PCjr: 5-7
2-7; PCjr: 5-14
2-8; PCjr: 5-15
2-8; PCjr: 5-16
2-10; PCjr: 5-18
A-72
A-86
A-89
B-2
B-3
B-4
PCjr: 2-17
PCjr: 2-107
PCjr: 3-5
PCjr: 4-12

Basic provides many statements that may be used for memory
functions. Check your BASIC manual for the following state­
ments: PEEK, POKE, BLOAD, BSAVE, DEF SEG, VARPTR,
VARPTR$, OUT, INP, FREE, CLEAR, CALL, USR. See the
BASIC manual, Appendix C, for details of machine language
interfacing, and Appendix I for a BASIC memory map and
variables format.

65

Memory Organization and Management

DOS Memory Support References

Subject
Invoking a second COMMAND.COM
SET ENVIRONMENT command
Configuration commands
DOS structure
DOS initialization
COMMAND.COM
FCB
DTA
Device drivers
DOS memory functions
DOS EXEC function
DOS memory map
DOS PSP
DOS FCB
Invoking COMMAND.COM from an
application
Fixed-disk system initialization
Fixed-disk boot record
EXE file contents
DOS memory management

66

DOS Page 2.10
2.0 2.10 TRM
10-9 1-11
10-22 2-128
9-3 4-3
B-1 1-3
B-1 1-4
B-3 1-5
B-5 1-6
B-6 1-7
14-1 3-4
D-43 5-41
D-44 5-42
E-1 6-3
E-3 6-5
E-10 6-5

F-1 7-3
G-2 8-4
G-4 8-6
H-1 9-3

10-1

2
Keyboard

The IBM keyboard can be redefined by a program to suit the
needs of the application. A program may redefine key mean­
ings, create additional key combinations, display Shift key and
insert mode status indicators, or extend the standard keyboard
functions. A program may even allow you to redefine the
meaning of a combination of keypresses and save your defi­
nitions for later use. Such features are powerful boosts to
productivity. Customization of the keyboard can give the pro­
gram its own attractive keyboard personality.

In this chapter we'll see how various types of powerful
keyboard customization are done. You can use these tech­
niques in your own programs or those that you wish to mod­
ify. We'll monitor the keyboard as it goes about its job and
explore ways that you can control and extend its capabilities.

If the software you write is to be used on the PC, XT, and
PCjr, then the similarities and differences between the key­
boards of the PC/XT and the PCjr will interest you. We'll see
ways that the PCjr keyboard is different from the PC and dis­
cover how you can take advantage of these unique PCjr fea­
tures. The memory locations and sample programs that we
explore generally apply to all the IBM PC family, and I'll note
the differences between them as we go along. -

IBM PC DOS and BIOS provide interrupts and functions
for programs to use to request upward-compatible keyboard
services. Even though the PCjr keyboard produces completely
different scan codes from the PC and XT, the keyboard ser­
vices have remained compatible. This is a real-life testimonial
to the wisdom of using the provided service routines when­
ever possible. Fortunately, IBM took extreme care to insure
compatibility of the PCjr keyboard to several levels beyond
the provided service routines.

BASIC provides functions and statements that can be used
to predictably invoke several of these provided lower-level
keyboard services. Machine language programs can, of course,
invoke these keyboard services directly, and BASIC programs
calling machine language routines are an attractive hybrid. But

69

Keyboard

before we discuss the available BIOS, DOS, and BASIC key­
board facilities, let's look at the memory locations used for
keyboard management and see how those locations can be of
use to us in our programs.

Keyboard Flags at 417h, 41 Sh, and 488h
Probably the most frequently used keyboard memory locations
are the keyboard status flag bytes located at 417h and 418h.
The PCjr uses an additional flag byte at 488h. The keyboard
status flag bytes can be used effectively in your programs. A
typical use involves checking to see if the Alt key is being
pressed while another key is also held down. This Alt
combination can be used to signal a command. For instance,
Alt-E could be interpreted by your program to indicate exit.
The Technical Reference manual lists suggested key-combina­
tion usages that you may choose to follow or not. For the
PC2, this table starts on page 2-18 (as discussed in the In­
troduction, page references refer to the XT manual), while the
PCjr table begins on page 5-38. The Ctrl key is also excellently
suited for this purpose, and the PCjr adds yet another handy
shifting key in the Fn key.

Additional shift keys can be implemented by providing a
front-end routine for the keyboard interrupt routine INT 9h.
You can determine if multiple keys are being pressed, because
break codes are generated when a key is released. The break
code for any key is the scan code plus 80h. The generation of
break codes gives us the welcome capability for every key on
the keyboard to become a shift key. You can find a table of
the scan codes and extended scan codes in your Technical Ref­
erence manual just before the ROM BIOS listing. In my XT
Technical Reference manual, the table begins on page 2-11 and
is titled "Keyboard Encoding and Usage." A diagram of the
locations of the keys and their scan codes is presented on page
1-68, "Keyboard Diagram," followed by a hexadecimal chart.
Similar documentation starts on page 5-21 of the PCjr Tech­
nical Reference manual.

While a custom shift key is being held down, any number
of other keys can be pressed in series or together. The pro­
gram would know that the shift key had not yet been released
because the break scan code for the key had not been
received.

70

Keyboard

Given the inclusion of a customized keyboard interrupt
routine, the sequence in which the keys were pressed, and
possibly even the release sequence, could provide an astound­
ing number of combinations. Human considerations limit this
dizzying assortment to a more reasonable two or, infrequently,
three simultaneous keys.

The PCjr keyboard suppresses invalid key combinations
and sends a 55h scan code instead, indicating a problem. The
PCjr INT 48h KEY62_INT routine simply discards this phan­
tom keypress scan code.

On both the PC and PCjr, ROM BIOS resident KB-1NT
(INT 9) ignores many combinations of keys that you would
think could be used in your programs. For example, only two
of ·the ten number keys across the top of the keyboard are rec­
ognized when Ctrl is held down at the same time. See the
"Character Codes" table in the Technical Reference manual a
few pages before the ROM BIOS listing. Any -1 value in the
table indicates a key combination that INT 9 ignores. Your
own INT 9 or a front-end to the provided routine can cause
ignored or acted-upon key combinations to be passed on to
requesting programs. Figure 2-1 is provided as a recap of the
Technical Reference manual tables Alt and Ctrl columns.

Figure 2-1. Alt or Ctrl Shifted Keys Ignored
Ignored Alt shifts:

All cursor numeric keypad keys, including - + • *
Backspace, Enter, Tab, Esc, Insert, Delete, semicolon, comma
[] ' ' . / \(these last 7 are not ignored on the PCjr)

Ignored Ctrl shifts:
cursor/numeric keypad keys 2 5 8 0 . +
Tab, Insert, Delete
13457890=;",./

You can use the short routine shown in Program 2-1 to
determine whether a particular combination of pressed keys is
suppressed. INKEY$ returns a one-byte CHR$ value or a
CHR$(0) followed with a byte containing the CHR$ of the ex­
tended scan code keypress. INKEY$ does not provide a method
for determining which key(s) was used to generate the same
ASCII codes. Only the scan code can differentiate between a
Ctrl-H and a Backspace, the two asterisks on the keyboard,
Ctrl-M and Enter, and so on.

71

Keyboard

Program 2-1. Display INKEY$ Returned ASCII or Extended
Scan Code

100 'KBINKEV$; Show the BASIC INKEV$ returned
data in hex

110 X$=INKEV$: IF X$="" GOTO 110
•wait for a keypress

120 FOR X = 1 TO LEN(X$) 'possibly extended s
can code

130 PRINT HEX$(ASC<MID$(X$,X,1>>>;" ";
'show the ascii or

140 NEXT:PRINT:GOTO 110 • zero and extended s
can code

When designing Alt or Ctrl alternate shift key patterns for
keys, keep in mind that not all keys cause an extended scan
code (or even an ASCII character) when depressed in
combination with the Alt or Ctrl key. This is caused by the
provided keyboard interrupt routine (INT 9) in ROM BIOS.
Again, your Technical Reference manual shows those combina­
tions as -1 in the "Character Codes" table. For your quick
reference, those keys that are ignored with Alt or Ctrl are
listed in Figure 2-1. You will be pleased to notice that the
function keys are not ignored. Shift, Alt, and Ctrl provide
unique codes so that 40 function keys may be supported.
Additional function keys may be supported by examining the
keyboard shift status bytes ourselves.

The Technical Reference manual for your computer lists
the possible values for locations 417h and 418h on the second
page of the ROM BIOS. Look for KB_FLAG and KBJLAG_l
at offsets 17 and 18 within segment 40. The eye-catcher "KEY­
BOARD DATA AREAS" precedes the machine language
equate statements. Table 2-1 indicates the usage of each bit in
these keyboard flags, if you don't have a Technical Reference
manual handy.

The PCjr Technical Reference manual doesn't show that a
possible value for location 417h is 10h if Fn-ScrLk is currently
toggled on and a value of 80h if the Ins key has been toggled.

The PCjr also uses an additional flag byte at 488h for
tracking the function key, repeat key timing, and vertical
screen positioning available through the Ctrl-Alt-cursor keys.
This byte is labeled KBJLAG-2. You'll find the equate state­
ments for the byte under "BIT ASSIGNMENTS FOR
KBJLAG_2" on the next page of the Technical Reference

72

Keyboard

Table 2-1. Shift Status Flag Bytes

KBJ'LAG at 417H
Bit Hex Dec Meaning
7 80 128 Insert mode on
6 40 64 Caps Lock on
5 20 32 Num Lock on
4 10 16 Scroll Lock on
3 08 8 Alt pressed
2 04 4 Ctrl pressed
1 02 2 Left Shift pressed
0 01 1 Right Shift pressed

KBJ'LAG_l at 418H
Bit Hex Dec Meaning
.7 80 128 Insert pressed
6 40 64 Caps Lock pressed
5 20 32 Num Lock pressed
4 10 16 Scroll Lock pressed
3 08 8 Ctrl-Num Lock (pause key) toggled
2 04 4 PCjr keyboard clicker active
1 02 2 PCjr Ctrl-Alt-Caps Lock held
0 01 1

KBJ'LAG-2 at 488H (PCjr only)
Bit Hex Dec Meaning
7 80 128 Fn flag pressed
6 40 64 Fn key released
5 20 32 Fn next key pending
4 10 16 Fn key locked on
3 08 8 Typamatic off
2 04 4 Half rate typamatic
1 02 2 Initial typamatic delay increased
0 01 1 Put character out, typamatic delay has lapsed

manual. Program 2-2 tracks and reports the function key sta­
tus flag bits in KBJLAG-2. The keyboard clicker flag in
KBJLAG_l is also included in the display for the PCjr.

The program displays the current keyboard Shift key sta­
tus on the twenty-fifth line of the screen. Examine and tailor
the BASIC program to your own needs. You may want to
place a subset of the program in your own program as a sub­
routine. Notice that multiple PEEKs to the keyboard status
bytes are used. This technique will detect an individual
keypress more quickly than setting a variable from the result
of one PEEK at the start of the main loop.

73

Keyboard

Program 2-2. Displaying Keyboard Status
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

LJ 100 "KBSTATUS; display status indicators for s
hift keys·

BO 110 • Does not use conventions of DOS
int 16h

HF 120 • 25th line status indicators are: KB=iunlA
CSkf

OB 130 • status indicator in caps if key being hel
d down

BF 140 • see comments below for meanings
GG 150 BIT0=1:BIT1=2:BIT2=4:BIT3=8:BIT4=16:BITS=3

2:BIT6=64:BIT7=128:BITALL=2SS
AD 160 DEF SES=&:HFFFF:IF PEEK(&:HE>=&:HFD THEN JR=1

'determine if jr
611 170 DEF SES=0:KEY ON:KEV OFF "clear 25th line
AH 180 :KS=INKEVS:IF K$=CHR$(27) THEN KEV ON:END

•esc key exits
KN 190 KBSTAT$=" " • Ull indicators
!P 200 IF PEEK<&:H417) AND BIT7 THEN MID$(KBSTAT$,

1, 1)="i" 'insert
EI 210 IF PEEK <&:H418) AND BIT7 THEN MID$ (KBSTATS,

1, 1 >=" I" • insert held
QP 220 IF PEEK(&:H417> AND BIT6 THEN MID$(KBSTAT$,

2,1>="u" •caps lock
PP 230 IF PEEK<&:H418) AND BIT6 THEN MID$(KBSTATS,

2, 1 > ="U" •caps lock held
OK 240 IF PEEK(&:H417) AND BITS THEN MID$ (KBSTATS,

3,1>="n" •num lock
BN 250 IF PEEK<&:H418) AND BIT5 THEN MID$(KBSTAT$,

3, 1 >="N" •num lock held
EK 260 IF PEEK<&:H417) AND BIT4 THEN MID$(KBSTATS,

4, 1)="1" •scroll lock
KE 270 IF PEEK<&:H418) AND BIT4 THEN MIDS<KBSTATS,

4,l>="L" •scroll lock held
FE 280 IF PEEK(&:H417) AND BIT3 THEN MID$(KBSTAT$,

S,1>="A" 'alt
GE 290 IF PEEK<&:H417) AND BIT2 THEN MID$(KBSTAT$,

6,l>="C" •ctrl
06 300 IF <PEEK(&:H417) AND BIT1) THEN IF (PEEK<&:H

417) AND BIT0> THEN MID$<KBSTAT$,7,1>="8"~
SOTO 340 'both shifts

66 310 REM: IF <PEEK <&:H417> AND BIT1> OR (PEEK (&:H
417) AND BIT0> THEN MID$(KBSTATS,7,1)="S"'
either shift.key

PB 320 IF PEEK <&:H417) AND BIT0 THEN MID$ (KBSTA.TS,
7,1)="R" 'right shift

EF 330 IF PEEK<&:H417> AND BIT1 THEN MIDS<KBSTAT$,
7,1>="L" 'left shift

74

Keyboard

EK 340 IF JR=0 GOTO 390
LN 350 IF PEEK<&H488) AND BITS THEN MID$(KBSTAT$,

9,1>="F" 'Fn held
Kf1 360 IF PEEK <&H488) AND BIT6 THEN MID$ (KBSTAT$,

9,1>="f" 'Fn active
FH 370 IF PEEK<&H418) AND BIT2 THEN MID$(KBSTAT$,

B,1)="k" 'click active
NP 380 IF PEEK<&H41B> AND BIT1 THEN MID$(KBSTAT$,

B,1)="K" 'click held
FD 390 LOCATE 25,1:COLOR 5:PRINT "KB:";:COLOR 2:P

RINT KBSTAT$;:COLOR 7:GOTO 188

The keyboard status flag bytes can be set or reset by your
program to cause the desired keyboard state. Simply POKE
the desired value into the status byte to set the keyboard sta­
tus you desire. Individual status flag bits can be set or reset by
selecting the bit used to indicate the state desired and set it on
with
POKE byte,PEEK(byte) OR BITn

The flag bit can be turned off with
POKE byte,PEEK(byte) AND (255-BITn)

To flip the setting of a flag bit to the opposite setting:
POKE byte,PEEK(byte) XOR BITn

The PCjr Fn flags in 488h can be used in your programs
to provide yet another unique shifting key. If 488h contains
A0h, then a key was pressed while the Fn key was held. If
80h is in 488h, then the key was pressed after an Fn related
key (a key with a green caption), and while Fn continued to
be pressed. The program fragment shown in Program 2-3 can
be used to experiment with the Fn flags in 488h. Obviously,
green-captioned Pause, Echo, Break, and PrtSc keys pressed
while Fn is held (or immediately after) may cause unwanted
results. Green-captioned cursor and function keys are particu­
larly well-suited for custom use; however, the BASIC ON
KEY() statement provides trapping for green captioned keys.

Program 2-3. Experimenting with PCjr Fn Status Flag

10 'JR4BBH; Show PCjr KB_FLAG-2, ascii and he>:
for keypress

2'11 DEF SEG='11
30 X$=INKEYS:IF XS="" GOTO 30 •wait for a ke

ypress

75

Keyboard

40 PRINT HEX$(PEEK(l!<H488))" "; • show PCjr kb
_flag_2

50 PRINT X$" "; • show characte
rs

60 FOR X = 1 TO LEN<XS) 'possibly exte
nded scan code

70 PRINT HEXS(ASC<MIO$(X$, X, 1)));" "; 'show
the ascii or

80 NEXT:PRINT:GOTO 30

Another technique for defining still more special-meaning
keys involves using a unique key (such as Esc, a function key,
or a duplicate key such as the numeric keypad + key) as a
prefix that then causes the program to act upon the next key
pressed as a special key. For example, Esc-S could mean SAVE
or FlO Alt-X could mean that the user wants to extract a por­
tion of data.

DOS service 16h can be used to obtain information about
the current setting of KB_FLAG (but not KB_FLAG_l or _2)
and to set clicking and repeat key values for the PCjr. To fol­
low IBM compatibility conventions, use the BASIC SRVCCALL
routine to call service 16h.

The ROM BIOS routines that are responsible for maintain­
ing the keyboard status flags can be inspected in the Technical
Reference manual. The PC2 routine can be found on page A-28,
labeled KB-1NT. The PCjr manual has the equivalent routine
on page A-45. A preceding routine used to convert the PCjr
keyboard actions into PC-like actions is KEY62_INT (INT
48h), starting on page A-37. This routine shares the manage­
ment of the status flags with the KB_INT routine.

Keyboard Buffer and Pointers 41E-43Dh, 41Ah, and 41Ch
Keypresses are buffered in the memory of the computer until
the running program requests keyboard input. This keyboard
buffer is maintained by ROM BIOS routines and normally

· occupies locations 41E-43Dh. All requests from programs,
BIOS, or DOS for keyboard characters cause retrieval of
keypresses from this buffer. The buffer is a circular buffer in
that a pointer indicates the first entry that was placed in the
buffer, and another pointer contains the address of the next
available entry for. buffering the next keypress. As keypresses
are removed from the buffer in response to the program
requesting keyboard input, the pointer to the next entry to be

76

Keyboard

retrieved is advanced, making available the space used by the
keypress just retrieved.

The head of the buffer (the next character to be retrieved)
can be at any position within the buffer. When the head of the
buffer is at the last position, the pointer simply wraps around
from the end of the buffer to the beginning. That's why the
term circular buffer is used. The address of the ASCII/scan
code combination for the next key to be retrieved is maintained
at location 41Ah and is called BUFFER-HEAD. The pointer to
the next unused buffer location is called BUFFER_ TAIL and is
at 41Ch. If BUFFELHEAD and BUFFER-TAIL contain the
same address, the buffer is empty. If BUFFER-TAIL should
point to the buffer location before BUFFER_HEAD, then the
buffer is full. Figure 2-2 illustrates the pointer relationships
during a full-buffer condition.

Figure 2-2. Schematic Diagram of a Full Keyboard Buffer

KB_Buffer

Buffer_Start

Buffer_ Tail

Buffer__Head

Buffer_End

..

..
.. ..

ASCII + Scan Code

Third keypress

Fourth keypress

Fifth keypress

More keypresses

Last keypress

Unused entry

First keypress

Second keypress

The keyboard buffer is normally large enough to hold 16
keys, each key needing two bytes to store its ASCII value and
scan code. Since BUFFER_ TAIL contains the same address as
BUFFER_HEAD if the buffer is empty, the buffer is considered
full when only one entry is left unused. Because of this, only

77

Keyboard

15 keypresses can be in the buffer at any time. We'll be
enlarging this buffer shortly.

The Technical Reference manual shows the BUFFER_
prefixed labels on the second and third pages of the ROM
BIOS listing. The management of these pointers is performed
in the INT 9 routine, KB-1NT. The PC2 routine can be found
on page A-28, and the PCjr manual has the equivalent routine
on page A-45.

The keyboard buffer can be logically emptied by setting
BUFFER-HEAD to the same value as BUFFER-TAIL with
DEF SEG=0:POKE &H41A,PEEK(&H41C). DOS INT 21 func­
tion Ch provides a service that clears the keyboard buffer.

Program 2-4 monitors the keyboard buffer contents and
pointers in operation. As characters are entered, the
BUFFER-TAIL pointer is shown being updated and the ASCII
and scan codes for the new key are displayed along with its
character representation. When the buffer becomes full, a
flashing message will be displayed. You may want to use the
program to experiment with the ROM BIOS KB-1NT routine's
logic. See how unique scan codes can differentiate between a
Ctrl-H and a Backspace, the two asterisks on the keyboard,
Ctrl-M and Enter, and so on.

Program 2-4. Monitoring the Keyboard Buffer and Pointers
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

JC 100 "KBBUFFER; display keyboard buffer content
sand pointers

~ 105 • Does not use compatibility servic
e calls

&6' 110 •
CH 129 • --- display header info ---
~ 130 SCREEN 0:WIDTH 80:CLS:DEF SEG=0:COLOR 2,0
PL 148 PRINT" --- Keyboard Buffer Contents

-----------··
EK 150 LOCATE 2, 1: COLOR S, 0
OD 160 PRINT "Keyboard buffer at &cH41E thru &cH43D
PK 178 PRINT"Head = Tail indicates all have been

processed"
CC 189 PRINT"Tai 1 = head - 2 when buffer is ful 1"
BN 190 BUFFHEAD=ScH400+PEEK < &cH41 A>
NF 280 LOCATE 6,1:COLOR 5:PRINT"Current head at &c

H"HEXS(BUFFHEAD>;
JD 210 • --- display scale 1 ines --­
BA 221' GOSUB 418: GOSUB 430: GOSUB 460
IN 238 • --- ti me to update the screen
EK 248 BUFFTAIL=&cH480+PEEK <&cH41C>

78

Keyboard

JL 25f/.l LOCATE 6, 22: COLOR BUFFTAIL MOD 7+ 1
LH 26f/.l PRINT" Tai 1 at 8cH"HEX$ (BUFFTAIU;
NE 27f/.l IF BUFFTAIL=BUFFHEAD-2 THEN COLOR 7+16:PRI

NT" BUFFER FULL"
EK 2Bf/.l Y=&cH41E: Z=&H42D
IJ 29f/.l R=1f/.l:GOSUB 34'1.I 'show the contents of the b

uffer
EH 3f/.lf/.l Y=&cH42E: Z=8cH43D
FP 31f/.l R=17:GOSUB 34'1.I 'show the buffer contents
LP 329 GOTO 24f/.l • and back to top of loop
F& 33f/.l • --- show the address range of the buffer

JH 34f/.l LOCATE R, 1:COLOR 6,f/.1:FOR X=Y TO Z STEP 2
JI 359 X$=" ": IF PEEK<X> >32 THEN X$=" "+CH

R$(PEEK(X))+" II

ID 36f/.l PRINT X$; : NEXT: PRINT
111137f/.l • --- show the contents of the buffer, asc

ii and scan code ---
pp 38f/.l COLOR 4, fl.I: FOR X=Y TO Z STEP 2
OB 39f/.l PRINT " ";RIGHT$("f/.l"+HEX$(PEEK<X> > ,2>; 11 / 11 ;

RIGHT$("f/.l"+HEX$(PEEK(X+1>>,2>;:NEXT:PRINT:
RETURN

JD 4f/.lf/.l • --- display seal e 1 i nes ---
pp 41f/.l R=12:GOSUB 42'1.l:R=19:GOSUB 420:RETURN
CH 42f/.l LOCATE R,1:COLOR 3,0:FOR X=l TO B:PRINT"

as/sc";:NEXT:RETURN
LN 43f/.l R=9:Y=&cH41E:GOSUB 44'1.l:R=16:GOSUB 440:RETUR

N
KJ 44f/.l LOCATE R, 1:COLOR 2,f/.1:FOR X='1J TO 14 STEP 2
00 45f/.l PRINT 11 &ch"HEX$(Y+X>;:NEXT:Y=Y+X:RETURN
06 46f/.l LOCATE 7,1:COLOR 3,0:PRINT "Watch buffer a

s you enter characters":RETURN

DOS services are not provided for the direct inspection of
the keyboard buffer contents. DOS services 1, 6, 7, 8, Ah, and
Ch provide various combinations of waiting for a single
character, reading it, echoing it to the screen, and checking for
Ctrl-Break. Only the ASCII character or an extended scan code
is provided by these services; scan codes are not normally
made available. But your program can place a simulated key­
board entry directly in the keyboard buffer for later processing
or for future INPUT or INKEY$ statements. Try the example
listed in Program 2-5. When prompted for characters to place
in the buffer, enter the statement FILES.

The ROM BIOS and DOS do not provide keyboard buffer
plugging services.

79

Keyboard

ROM BIOS INT 16 can be used to determine if the key­
board buffer contains any keypresses, retrieve the ASCII and
scan code representation of the key, and obtain the KBJLAG
status byte. To follow IBM compatibility conventions, use the
BASIC SRVCCALL routine to call service 16h.

Program 2-5. Example of Plugging the Keyboard Buffer
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

JN 1N 'KBPLUGER; Demonstrate plugging the keyboa
rd buffer from keys entered

~ 119 • Does not use compatibility servic
e calls

6K 129 CLS : DEF SEG=flh PRINT"Enter characters (up
to 14> for keyboard buffer."

DP 1311 PRINT "Function keys may be used."
BC 149 INPUT K$: IF KS=" 11 THEN END • enter with

out characters causes exit
61 159 KS=LEFT$(K$, 14)+CHR$<13) • limit to 14 c

hars, add return
M 1611 DUBL=2tLEN(K$) • double length since asci

i/scan code
BP 179 FOR X= 1 TO DUBL STEP 2 • f i 11 every other

byte with key
NE 189 V=ASC<NID$(KS,<X+1)/2,1)) • character

for this buffer position
~ 199 POKE 8cH41D+X,V • fill character buff
K 299 NEXT: POKE &H41C,&H1E+DUBL • point tail

ptr to word after last character
KO 219 POKE &H41A,&H1E • point head ptr to start

of buffer

An extension of this technique is demonstrated by Pro­
gram 2-6. Lines of text carefully placed on the screen are "en­
tered" into the computer by positioning the cursor properly
and placing a carriage return in the keyboard buffer. This
method can be used to cause a runtime-determined set of
commands to be issued and to allow programs to modify
themselves or to create whole programs themselves.

If more lines than will fit on a screen are needed, the last
line to be displayed for "entry" should be a statement that
sets a variable to the number of the statement to put on the
screen next and a GOTO statement to the line of the running
program that will continue with further screen line formatting
and simulated entry. (Line 390 will cause the program to de­
lete itself. Be sure to save the program before running it.)

80

Keyboard

Program 2-6. Entering Screen Lines via the Keyboard Buffer
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

IL 1H "KBGENLNS; example of dynamic creation of
program lines

IA 1UIJ • Does not use compatibility serv
ices

NA 128 SCREEN 8:WIDTH 88 •so locates correctly
1B 138 CLS : DEF SEG=8
PN 148 • --- program lines to be created, could b

e built dynamically ---
OF 1se X$="995 •generated line ; when pgm done, t

he next line will say ok and cursor placed
on the beginning of next line. therefore

2 crsr ups placed in the buffer move us to
the last of the generated lines."

EE 168 PRINT XS
ID 178 PRINT1PRINT"996 •second generated line, pl

aced after first, leaving blank line for•
ok" prompt by basic"

QK 188 PRINT:PRINT"997 "third generated line"
KO 198 PRINT:PRINT"998 "last generated 1 ine, plac

ad after third, leaving blank line for "ok
• prompt by basic"

JK 2H • --- locate the cursor for enter keys com
ing ---

11 218 LOCATE INT«LEN(X$)/8flJ»+2,1 "place ending
cursor on last screen line of first gener

ated line
~ 238 • --- Update the buffer pointers to hold e

nter keys ---
LH 248 POKE &cH41A,&cH1E • head ptr points to buf

far
IA 258 POKE &cH41C,&cH1E+18 • tail ptr points to

word after last character
~ 268 • num of following pokes l2, can't excee

d 38
~ 278 • --- Position the cursor ---
~ 288 POKE &cH41E,8:POKE &cH41F,&cH48 'crsr up twic

e to get back to gened line,
~ 298 POKE &cH428,8:POKE &cH421,&cH48 'above 'ok' p

roapt
LJ 388 • --- place enter keys in buffer ---
~ 318 POKE &H422,13 •enter the line
El 328 POKE &H424, 13 • down to 2nd generated 1 ine
~ 338 POKE &cH426,13 •enter the 2nd line
~ 348 POKE &H428,13 "down to 3rd generated
BI 358 POKE &cH42A, 13 •enter the 3rd line
~ 368 POKE &cH42C,13 "down to last line
~ 378 POKE &cH42E,13 •enter the last line

line

81

Keyboard

EN 388 • --- all done, clean up ---
~ 398 DELETE lH-488 • only generated lines to

be left at end
~ 4H END • end the program and process the buf

fer

Keyboard Buffer Relocation 480h, 482h
In the PCl, the keyboard buffer location and length remain
constant. The ROM BIOS routines use absolute addresses for
the buffer location. The buffer is always located in the 32
bytes between 41Eh and 43Dh. This provides room for 15
keypresses, each made up of an ASCII byte and a scan code.
The newer PC models use the same locations for the keyboard
buffer by default, but the address and length of the keyboard
buffer can be changed. The XT, PC2, and PCjr contain pointers
at 480h and 482h that are used in ROM BIOS for the key­
board buffer starting and ending addresses, allowing a dif­
ferent location and length for the keyboard buffer. To see how
to relocate the keyboard buffer so that it can hold more
keypresses, look at the example in Program 2-7.

The location chosen to contain the new keyboard buffer is
used by MODE.COM, the intra-application communications
area, and part of the area is reserved by IBM. This location
may not be suitable in all instances.

DOS and ROM BIOS do not provide services for relocat­
ing the keyboard buffer.

If you need to put the keyboard buffer back to its original
position for buffer location sensitive programs, Program 2-8
will do this for you.

Program 2-7. Relocating the Keyboard Buffer
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

JJ 100 'KBBUFFMV; Create a 54 char buffer in segm
ant 4flJ

DC 105 • Does not use compatibility service calls
HF 11flJ DEF SE6=0
HN 120 ~--- change buffer pointers
DI 130 POKE 3cH480, 3cH9flJ • start
HI 140 POKE 3cH4B2,3cHFE 'end
LC 150 POKE 3cH41A,"H9flJ 'head
CN 16flJ POKE 3cH41C,3cH90 'tail
co 17il

:ii ___

show current pointers
JD 180 DEF SEG=il:CLS 'goto here to e>:amine ptrs
cc 190 LOCATE 1, 1

82

Keyboard

NF 200 PRINT"Buffer pointers"
PN 21fJ PRINT "start="HEX$ (PEEK <ScH48Ql) >;
FJ 220 PRINT ", end="HEX$ <PEEK <ScH4B2> >
HL 23Ql PRJNT "head="HEX$ (PEEK <&:H41A) >;
HO 240 PRINT", tail="HEX$(PEEK(&:H41Cl)
HK 250 GOTO 19Ql

Program 2-8. Restoring the Keyboard Buffer's Default
Location
10QJ 'KBBUFFBK; return keyboard buffer to origi

nal position
110 DEF SEG=Ql
120 ·--- restore default buffer pointers
13fJ POKE &:H4Bil,&:H1E • start
14Ql POKE ScH4B2,&:H3E •end
15fJ POKE &:H41A,&:H1E "head
160 POKE &:H41C,&:H1E •tail, rnark as empty

ANSI.SYS Escape Sequences
DOS 2.0 and 2.1 provide a tool that can be used to redefine
keys to suit the user. A string of characters beginning with the
escape character (lBh, 27 decimal) can be used to specify user
key redefinitions. These escape sequences do not correspond
to any particular memory locations; they are simply written as
messages to the standard output device. A provided DOS de­
vice driver, ANSI.SYS, intercepts and acts appropriately upon
the escape sequences. These sequences are detailed in Chapter
13 of the DOS 2.0 manual and Chapter 2 of the DOS 2.10
Technical Reference manual. You can install the device driver
with the following (remember, [F6) means press the F6 key):
A> COPY CON: CONFIG.SYS
DEVICE= ANSI.SYS
[F6]

Programs that set the meanings of keys themselves may
be confused by the user ANSI.SYS redefinition of keys, so be
prepared to turn off your redefinitions before executing sen­
sitive programs. BASIC' manages to totally ignore the
redefinitions.

A typical problem in the use of ANSI.SYS escape se­
quences is the creation of the required escape code (lBh) that
must begin each sequence. The Esc key on the keyboard can­
not be used to directly enter this character while in DOS

83

Keyboard

because of the special meaning associated with that key.
EDLIN also uses the escape key for its own purposes, but you
can create the escape code by entering Ctrl-V and (letting up
on the Ctrl key) the left square bracket. It looks strange, but
follow this with the left square bracket required by ANSI.SYS
and the remainder of the escape sequence. For example, the
escape sequence to turn on high intensity would look like this
in EDLIN: "V[[lm.

Using EDLIN, DEBUG, or an editor program that allows
the entry of the escape code (ASCII 27), such as the Personal
Editor, Professional Editor, VEDIT, and so on, you can easily
create the escape sequences in batch file ECHO, REM state­
ments, or data files to TYPE or COPY to the standard output
device (display).

The sample machine language program shown as Pro­
gram 2-9 can be used to create ANSI.COM which allows the
direct keyboard entry of the desired escape sequences. In addi­
tion, ANSI.COM will create the left square bracket character
that must follow the leading escape character. For example, to
set function key 10 for a DIR command, ANSI 0;68;'dir';13p
can be entered at the keyboard or placed in a batch file. ANSI
44;3 7m will select white characters on a blue background and
ANSI 2J will clear the screen.

To create ANSI.COM, you must first assemble Program 2-9.
Next, LINK the .OBJ file to create an .EXE file. Use ANSI.EXE
with EXE2BIN.EXE to create a .COM file with the following
command:
EXE2BIN ANSI.EXE

If you don't have an assembler, ANSI.COM can also be cre­
ated with DEBUG as follows (as you can see it is much easier
to create ANSI.COM using DEBUG):
A> DEBUG ANSI.COM
File not found
- E 100 BB 80 00 02 lF BF 80 00 C7 05 1B 5B C6 47 01 24
- E 110 BA 80 00 B4 09 CD 21 CD 20
-RCX
ex 0000
:19
-W
-Q

84

Keyboard

Program 2-9. Escape Code Generator for ANSI.SYS
Sequences

;ANSI; append escape code (lBh) and [on front of entered
;string and issue to standard output device.

' ;DOS 2.x CONFIG.SYS must contain "DEVICE=ANSI.SYS", and
; both files must be on the booted disk.
;Note error in DOS 2.0 manual on page 13-11: semicolon should

not be placed between ending quote of string and
the lowercase letter p. Same error in DOS 2.1 manual on
page 2-11.

PARM-LEN EQU
ESC_LBRK EQU

0080h
5B1Bh ; escape, left

; square bracket (reversed)
CODE SEGMENT

ASSUME CS:CODE
ANSI PROC FAR

; determine end of string location
MOV BX,PARM_LEN
ADD BL,(BX]

; place esc [on front of string
MOV DI,PARM_LEN

; PSP parm length address
; add length to address

; overlay parm length byte
and

MOV WORD PTR (DI],ESC_LBRK ; leading space of string
; place dollar sign on end

MOV BYTE PTR [BX+ 1],'$'

; write out the ANSI.SYS string and end

ANSI
CODE

MOV DX,PARM_LEN

MOV
INT
INT
ENDP
ENDS

AH,9
21H
20H

END ANSI

; dollar marks
; end for INT 21 9

; starting address of
message

; message output wanted
; call for DOS service
; all done

The repeated entry of ANSI for each escape sequence can
be inefficient when there is a whole group of escape sequences
to be issued. Let's create a file of the escape sequences we
wish to issue and then type that file on demand. A batch file
would simplify the process. Program 2-10 creates a data file
with example escape sequences as well as a batch file,
KEYSON.BAT, to cause the data file to be typed. Why not just
include the escape sequences in the batch file? Because batch
processing is slow compared with TYPE and COPY.

Program 2-11 creates the same type of data and batch file
for turning off the redefined keys.

85

Keyboard

For more speed, a machine language program can be used
to issue the desired escape sequences directly, as shown in
Program 2-12.

Before you get too thrilled with escape sequences, I have
to tell you that there is a limit of around 200 characters of key
redefinitions that can be saved in ANSI.SYS before they start
to overlay COMMAND.COM. So you may want to use some­
thing like PROKEY for the really involved key redefinitions.

Program 2-10. Creation of Key Definition File and Batch
Command
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

HB 100 • KEYSON Create ansi. sys f i 1 e to be typed t
o set function keys 9--10,

BC 110 • set mode co80, and white on blue s
creen.

CN 120 ·• DOS 2. >: CONFIG. SYS must contain "DEVICE=A
NSI.SYS", and

CD 130 • both files must be on the booted d
isk."

1B 135 "NOTE ERROR in DOS 2.0 manual on page 13-1
1: semi colon should

HH 136 • NOT be placed between ending quote
of string and

NL 137 • the lowercase letter p. SAME ERROR
in DOS 2.1 manual on

1B 138 • page 2-11.
HN 140 •
NJ 1 SfJ ESCS=CHR$ < 27 >
EK 160 OPEN "keyson" FOR OUTPUT AS #1
n 170 PRINT#1,ESC$;"t0;67;"DIR A:";13p" "f9
JS 18fJ PRINT#1,ESCS; "t0;68; "BASICA'; 13p" "f1QI
CD 190 PRINT#l, ESCS; "t=3h" • mode co80
EA 200 PRINT#l,ESCS; "t44m" "blue backgr-ound
ON 21 (IJ PR I NT# 1 , ESC$; " t 2.J" • c 1 s
ED 22(/J PRINT#l, ESCS; "C30m" • msg in black
D11 230 PRINT#l," fq=DIR

flfJ=BASIC" "key usage
SL 240 PRINT#l, ESCS; "t37m" • r-est in white
FN 250 CLOSE 1
QI 26fJ OPEN "keyson .• bat" FOR OUTPUT AS #1
11D 27fJ PRINT#l, "echo off"
HH 280 PRINT#l, "type keyson"
FE 290 CLOSE 1
LN 300 SYSTEM

86

Keyboard

Program 2-11. Creation of Key Reset File and Batch
Command
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

EN 100 • KEYSOFF; Create an5i. sys f i 1 e to be typed
to unset keys 9-10.

CL 110 'DOS 2.>: CONFIG.SYS must contain "DEVICE=A
NSI.SYS", and

CII 120 • both f i 1 es must be on the booted d
isk."

HK 130 •
LH 140 ESC$=CHR$ (27)
OA 150 OPEN "keysof f" FOR OUTPUT AS # 1
HB 16121 PRINT#l, ESC$; "[0; 67; 0; 67p" • f9
~ 170 PRINT#1,ESC$;"[!21;68;0;68p" 'f10
~ 180 PRINT#1,ESC$;"C40m" 'black back

ground
11B 190 PRINT#l, ESC$; "[2J" • c 1 s
EC 200 CLOSE 1
QL 2UJ OPEN "keysoff.bat" FOR OUTPUT AS #1
NJ 220 PRINT#1,"echo off"
NF 230 PRINT#!, "type keysoff"
FK 240 CLOSE 1
LF 250 SYSTEM

Program 2-12. EXE Program to Issue Escape Sequence
Series
I

;KEYSON; use ansi.sys to set function keys 9-10,
set mode co80, and white on blue screen.

;DOS 2.x CONFIG.SYS must contain "DEVICE=ANSI.SYS", and
; both files must be on the booted disk.
;Note error in DOS 2.0 manual on page 13-11: semicolon should

not be placed between ending quote of string and
the lowercase letter p. Same error in DOS 2.1 manual on
page 2-11.

I

STACK

STACK
I

KEYS
KEYSEQ

SEGMENT STACK
DW 64 DUP (?)
ENDS

SEGMENT PARA PUBLIC 'DATA'
DB 27,'[0;67;"DIR A:"
DB 27,'[0;68;" BASICA"
DB 27,'[=3h'
DB 27,'[44m'
DB 27,'[2}'
DB 27,'[30m'

;13p' ;f9
;13p' ;fl0
;mode co80
;blue background
;els
;msg in black

87

Keyboard

DB
DB 27,'[37m'
DB '$'

KEYS ENDS
;
CODE SEGMENT

ASSUME CS:CODE
I<EYSON PROC FAR

PUSH DS
SUB AX,AX
PUSH AX

MOV AX,I<EYS
MOV DS,AX
ASSUME DS:I<EYS
MOV DX,OFFSET I<EYSEQ
MOV . AH,9
INT 21H
RET

I<EYSON ENDP
CODE ENDS

END I<EYSON

Break and Reboot Keys

F9=DIR FlO=BASIC'
;rest in white

; save return address

BASICA in DOS 2.0 and 2.10 allows the programmer to trap
up to five different combinations of Shift, Alt, Caps Lock,
Num Lock, and Ctrl with an accompanying key's scan code.
These traps can send the program off to a subroutine to do the
desired actions whenever the selected combination of keys are
pressed. Use the ON KEY() statement to trap function or
cursor keys. Program 2-13 demonstrates how the Break key
and the Ctrl-Alt-Del sequence (REBOOT) can be trapped and
disabled by a BASIC program. This trapping is done asyn­
chronously, as demonstrated by the trap subroutines some­
times being driven between the LOCATE 2, 1 statement and
the (ollowing PRINT statement for the countdown value.

Program 2-13. Trapping Break and Reboot Keys in BASIC
For error-free program entry, be sure to use ''The Automatic Proofreader," Appendix H.

LA 1fl8 • BREAKNOT; use BAS I CA key statement to tra
p Break and Ctrl-Alt-Del

&& 118 •
NA 128 CLS:PRINT"Try to Break or Ctrl-Alt-Del"
1B 138 CTRL. BREAK$=CHR$ < 4 > +CHR$ < 78 > • Ctr l =4

, 78=scan code for Break
EP 148 CTRL.ALT.DEL$=CHR$<12)+CHR$(83> • Ctrl+A

lt=12, Del=83

88

Keyboard

IA 15C!I • --- setup trap routines ---
BS 16C!I KEY 15, CTRL. BREAK$: KEY (15) ON: ON KEY <

15) GOSUB 24C!I • set trap routine
06 17C!I KEY 16, CTRL.ALT.DEL$: KEY (16) ON: ON KEY

(16) GOSUB 28C!I
OE 18C!I • --- try to ·use keys ---
AD 19C!I FOR X=- 4C!IC!I TO C!1 STEP -1: LOCATE 2,1:PRINT

"countdown"X:NEXT:
EN 2C!IC!I PRINT"Break and Ctrl-Alt-Del now enabled"
LB 21C!I KEY <15> OFF:KEY <16) OFF • reset the tra

ps
FD 22C!I GOTO 22C!I • give time to try keys
DK 23C!I • --- Break trap routine ---
KP 24C!I BRK=BRK+1:LOCATE 1C!I, 1:PRINT".,...C BREAK KEY T

RAPPED"BRK
EP 25C!I • •••• here you could perform any break act

ion desired - depending ••••
HP 26C!I • •••• on program conditions, possibly wrap

up the program quickly •••
NK 27C!I RETURN
BA 28C!I • --- Ctrl-Alt-Del trap routine
JA 29C!I CAD=CAD+1: LOCATE 12, 1: PRINT" ! ! ! REBOOT TRA

PPED ! ! ! "CAD
11N 3C!IC!I RETURN

Break Interrupt Vector at 6C-6Fh INT 1 B
You may want to disable the Break key when your non-BASICA
program is running so that the user must use a program­
provided option to gracefully wrap things up. If we want to
simply ignore the Break key, one way to do this in BASIC is
to overlay the break interrupt vector at 6C-6Fh that BASIC
has established. Use the address of the routine that the power­
on routine places there before BASIC changed it. The routine
is a "return to caller" IRET instruction. To be safe, we can
save and restore the address that's currently in the vector, as
Program 2-14 demonstrates. The statements in lines 150 and
190-220 overlay the BASIC established break vector. The
pause function will still be available for the user to pace out­
put, even though the Break key has no effect.

Program 2-14. Ignoring the Break Key in BASIC
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

JP 1C!IC!I 'BRKIGNOR; ignore BASIC's break vector, sa
ving and restoring

BE 119 • Does not use convention of DOS
service& 25 and 35

89

Keyboard

QN 12f/J PRINT "BRKIGNOR; disables Break while runn
ing

00 138 •--- Show and save current BASIC break int
errupt vector

HE 148 DEFINT A-Z
IN 15" DEF SEG=f/J
HA 16fJ PRINT"BASIC"s vector= 11 ;1 GOSUB 3"'8 "Show B

ASIC•s break vector
611178 FOR X1118 TO 3: POKE 8cH18fJ+X,PEEK(8cH6C+X): N

EXT •save BASIC"s break vector
CN 188 •--- Change break vector to do-nothing rou

tine at 84f/Jh --­
PL 198 POKE &cH6C, &cH48
FE 2"e POKE &cH6D, &cH 1
00 218 POKE &H6E,&H78
68 22fJ POKE &cH6F, &cH8
18 238 • --- Restore and show current BASIC break

interrupt vector
DE 248 PRINT"Ignore vector=";: GOSUB 3H "Show du

mmy break vector
86 258 PRINT"running, try to break ••• ": FOR X=l

TO 9Hf/J: NEXT
JH 268 FOR X=-fJ TO 3: POKE 8cH6C+X,PEEK<&H18fJ+X): N

EXT •Restore BASIC"s break vector
PF 27fJ PRINT"BASIC" s vector restored=";: GOSUB 38

8 "Show BASIC"s break vector
ftl 28fJ END
Pft 298 •--- Subroutine to print current break vec

tor contents ---
KJ 3flfJ FOR X=fJ TO 3: PRINT PEEK (&H6C+X); • show cu

rrent break vector
DC 31fJ NEXT: PRINT: RETURN

DOS offers services 35 and 25 to retrieve and store inter­
rupt vectors. To follow IBM compatibility conventions, use the
BASIC SRVCCALL routine to save, modify, and restore the
break interrupt vector. The DOS manual for DOS 2.0 discusses
the use of services 25 and 35h in Appendix D. For DOS 2.10,
see Chapter 5 of the DOS Technical Reference manual.

Sometimes the single IRET instruction in the dummy rou­
tine set by power-on may not return control to the BASIC pro­
gram because of several levels of pending interrupts. You can
read about this consideration on page 5-8 of the PCjr Tech­
nical Reference manual or page 2-5 of the XT manual. If this
problem surfaces during testing, set the break vector to the ad­
dress of a BASIC variable that contains enough IRET instruc­
tions, each composed of a CHR$(207).

90

Keyboard

Reboot Trapping Outside BASIC
The Ctrl-Alt-Del (REBOOT) sequence may be detected and by­
passed by a short machine language front-end routine that
you can place before the normal ROM BIOS resident keyboard
INT 9 routine. The example Program 2-15 changes the INT 9
vector to point to the program and disallows the reboot se­
quence by turning off the Ctrl key when Alt and Del are being
pressed. On the PCjr, other Ctrl-Alt sequences are used for
key clicker start/stop, left/right screen adjustment, and the
starting of diagnostic routines with Ctrl-Alt-Ins. The program
carefully disables only the Delete and Insert keys while Ctrl­
Alt is pressed. The routine then allows the normal INT 9 rou­
tine to do its keyboard interrupt processing. BOOTNOT.COM
installs itself and stays resident, meaning that you must
power-on or reboot (using the "secret" Ctrl-Alt-right Shift se­
quence with the Del or Ins keys) to rid it from the system.

To create the BOOTNOT.COM routine, enter the source
code shown in Program 2-15 (if you have an assembler), and
save it using the filename BOOTNOT.ASM. If you don't have
an assembler, BOOTNOT.COM can also be created with DE­
BUG from the disassembly in Program 2-16.

Assembler owners should then use the following batch
file (this is the same batch file used in Chapter 1 to create
SRVCCALL.COM) to create the BOOTNOT.COM module
(you must have ASM, EXE2BIN.EXE, and your source file on
the same disk):

asm %1,,,;
link %1,,con,;
exe2bin %1.exe %1.com

Once you have the batch file created, assuming you called
it CREATE.BAT, enter this command to create BOOTNOT.COM:
A>CREATE BOOTNOT

Program 2-15. Disabling Reboot via INT 9
;BOOTNOT; Example int 9 interception routine
; to monitor shift status bits,

changing any Ctrl-Alt-Del to Alt-Del
so that machine cannot
be booted. Program stays resident,
power-on needed to remove.

Ctrl-Alt-lns also disabled
(PCjr diagnostics), but other

91

Keyboard

PCjr Ctrl-Alt combinations
allowed: clicker, screen shift.

Authorized users may use
Ctrl-Alt-right Shift-Del
to reboot, or Ctrl-Alt-right
Shift-Ins for PCjr diagnostics.

cseg segment para public 'code'
org 100h

BOOTNOT proc far
assume cs:cseg,ds:cseg

jmp install ; go install the new int 9 routine

oldint9 dd 0 ; saved original int 9 vector
int9loc equ 9h*4 ; location of int 9 vector
kb_flag equ 417h ; location of keyboard status flag
ctr! equ 04 ; kb_flag with ctr! bit on
alt equ 08 ; kb_flag with alt bit on
rshift equ 01 ; kb_flag with right shift bit on
noctrl equ 0ffh-ctrl ; kb_flag with ctr! bit off
delete equ 83 ; delete keyscan code
insert equ 82 ; insert keyscan code

newint9: ; entry here on keyboard interrupt 9
sti ; interrupts enabled
push es ; save requisites
push di
push ax
push ex
pushf

mov ax,0
mov es,ax ; es is segment 0
mov di,kb_flag ; kb_flag
mov ah,es:[di] ; into ah

test ah,alt ; Alt key down?
jz return ; no, exit
test ah,ctrl ; Ctr! key down?
jz return ; no, exit

in al,60h get the keypress from 8255
cmp al,delete check for Del key pressed
jne pcjr not delete, PCjr has other Ctrl-Alts

au th test:
test ah,rshift right Shift down?
jnz authuser yes, allow request
jmp inhibit no, don't allow reboot

ptjr:
cmp al,insert check for Ins key pressed
jne return no, allow other PCjr combos
jmp authtest yes, allow diagnostics if authorized

92

Keyboard

inhibit:
and ah,noctrl
mov es:[di],ah
jmp return

authuser:

return:
popf
pop ex
pop ax
pop di
pop es
jmp cs:[oldint9]

install:
mov ax,0
mov es,ax
mov di,int9loc
mov ax,es:[di]
mov bx,es:[di + 2]
mov si,offset oldint9
mov [si],ax
mov [si+2],bx

mov ax,0
mov es,ax
mov bx,ds

di
; - - interrupts disabled - -

mov di,int9loc
mov ax,offset newint9
mov es:[di],ax
mov es:[di+2],bx

; tum off the ctr! flag
; and put back KB_flag

; authorized user requests,
; let it go through

; back to the normal int 9 routine

; goto the original int 9 routine

; installation of this new int 9

; save old int 9 vector
; int 9 ip
; int 9 cs

; disable interrupts

; change int 9 vector ip
; change int 9 vector cs

sti ; reenable interrupts

mov dx,offset install

int 27h

BOOTNOT endp
cseg ends
end BOOTNOT

; length of resident portion of program
; terminate, but stay resident

93

Keyboard

Program 2-16. Disassembly of BOOTNOT.COM
0100 EB47 JMP 0149
0102 90 NOP
0103 0000
0105 0000
0107 FB STI
0108 06 PUSH ES
0109 57 PUSH DI
010A 50. PUSH AX
010B 51 PUSH ex
0lOe 9e PUSHF
010D B80000 MOV AX,0000
0110 8Ee0 MOV ES,AX
0112 BF1704 MOV DI,0417
0115 26 ES:
0116 8A25 MOV AH,(DI]
0118 F6e408 TEST AH,08
0118 7422 JZ 013F
011D F6e404 TEST AH,04
0120 741D JZ 013F
0122 E460 IN AL,60
0124 3e53 eMP AL,53
0126 7508 JNZ 0130
0128 F6e401 TEST AH,01
012B 7512 JNZ 013F
012D EB07]MP 0136
012F 90 NOP
0130 3e52 eMP AL,52 ·
0132 750B JNZ 013F
0134 EBF2 JMP 0128
0136 80E4FB AND AH,FB
0139 26 ES:
013A 8825 MOV [DI],AH
013C EB0l JMP 013F
013E 90 NOP
013F 9D POPF
0140 59 POP ex
0141 58 POP AX
0142 SF POP DI
0143 07 POP ES
0144 2E CS:
0145 FF2E0301 JMP FAR (0103]
0149 B80000 MOV AX,0000
014e 8Eeo MOV ES,AX
014E BF2400 MOV DI,0024

94

Keyboard

0151 26 ES:
0152 8B05 MOV AX,[DI]
0154 26 ES:
0155 8B5D02 MOV BX,[DI+02]
0158 BE0301 MOV 51,0103
015B 8904 MOV [51],AX
015D 895C02 MOV [51+02],BX
0160 B80000 MOV AX,0000
0163 8EC0 MOV ES,AX
0165 8CDB MOV BX,DS
0167 FA CLI
0168 BF2400 MOV DI,0024
016B B80701 MOV AX,0107
016E 26 ES:
016F 8905 MOV [DI],AX
0171 26 ES:
0172 895D02 MOV [DI+02],BX
0175 FB STI
0176 BA4901 MOV DX,0149
0179 CD27 INT 27

You'll notice in BOOTNOT.COM that the 8255 1/0 port at
address 60h can be retrieved by your own routine without
destroying the contents of this port for the following normal
interrupt routine. The provided INT 9 routine is long and
somewhat complicated in its processing of scan code tables. To
add a few instructions to the middle of INT 9, copy the INT 9
routine and tables to user memory, patch in a call to your re­
visions at the proper location, and point the INT 9 vector to
your version of the routine. A disassembly of the provided INT
9 routine can be directed to a disk file with DEBUG, tailored
and modified to suit your needs, an installation routine added,
the resulting instructions assembled, and then saved as a pro­
gram to be installed when desired.

An easier technique (although incompatible with other
versions of ROM BIOS and highly discouraged by IBM) in­
volves reproducing any foregoing INT 9 instructions into your
own routine. Then perform the processing you desire and
jump directly into the ROM BIOS at the instruction that you
wish to resume in the provided INT 9 routine. PC-compatible
machines may not handle this well.

Such manipulations are seldom needed because of the ex­
cellent support offered by the standard BIOS and DOS service
routines. Generally, custom INT 9 routines are needed only

95

Keyboard

when the provided routines would take some undesired action
upon or ignore certain keypress combinations.

BIOS Keyboard 1/0 Interrupt at 58-SCh INT 16
The ROM BIOS includes keyboard service routines reached by
issuing INT 16 with the desired function code placed in the
AH register. The INT 16 routines are labeled KEYBOARD_IO
in the PC2 ROM BIOS at FE82Eh or in the PCjr at F13DDh.
See Technical Reference manual, page A-24, or page A-43 in
the PCjr manual for a listing of the routines.

INT 16 services can be called upon to inform us if there is
· one or more keypresses currently in the keyboard buffer, re­
trieve a keypress ASCII character and scan code from the
buffer, or obtain the current Shift key status flag byte.

In BASIC, there is no way provided for determining the
shift status of the keyboard beyond INKEY$, and only six keys
at a time can be tested in the KEY(lS-20) statement. And this
facility is limited to BASICA asynchronous traps, so it's not
particularly usable as a facility to extend key possibilities by
the combination of Shift keys. INT 16, function 2 can provide
this capability to our BASIC and machine language programs.

BASIC programs can use the INKEY$ statement to request
the ASCII value of a keypress waiting in the keyboard buffer.
INKEY$ will return with no data, the keypress character, or a
zero followed by the extended code. It does not, however,
provide a method for determining which of the few duplicated
keys have been pressed, such as the asterisk on the 8 key and
on the PrtSc key. We may want to use these duplicate keys for
different purposes in our program, and we will need the scan
code to differentiate which key was pressed. Also, INKEY$
won't help us determine whether the left or right Shift key
was pressed, or if a combination of Shift and Ins, for example,
were pressed together.

The BIOS keyboard I/O interrupt routine (INT 16) will
provide this scan code information as well as wait for a
keypress if needed, eliminating the IF X$ = "" test needed for
INKEY$. The returned information is always two bytes (ASCII
value, then scan code), with an ASCII value of O indicating
that an extended code is present in the scan code byte. Break
and Pause key combinations will be honored by BIOS and will
not be passed on as data to the caller.

96

Keyboard

Program 2-17 demonstrates how to call various INT 16
functions from BASIC with SRVCCALL.

Program 2-17. SRVCCALL Routines to Call BIOS INT 16
' --- Request key availability status ---
' bios INT 16, type 1 service

returned: zero flag= 1 if none available
al%=ascii or 00, ah%=scan code

INTERRUPT% =&H16:AH% =&Hl:AL % =0
' Does not remove key from

buffer, but does return (in ax)
ASCII value of key.

GOSUB nnn 'call assembler routine
IF (FLAGS% AND 2A6) <> 0 GOTO 620
PRINT"keypress in buffer:" AL%"/" AH%:GOTO 630

620 PRINT"no keys in buffer":RETURN
630 ' Request ASCII and scan code of keypress

' bios INT 16, type 0 service
returned: al%= ascii or 0
ah%= scan code or extended code

INTERRUPT% =&H16:AH% =&H0:AL % = 0
'Unlike INKEY$, waits if needed
' and provides scan code besides
' ASCII value of key. BASIC's break
' routine is in effect.
GOSUB nnn 'call assembler routine
PRINT CHR$(AL%)"= scan code"AH%
' Request keyboard shift status
' bios INT 16, type 2 service

returned: al%= kb_flag contents
(see location 417h)

INTERRUPT% =&H16:AH% =&H2:AL % =0
' kb_flag_l at 418h is not

provided by this function
See 417h in Appendix A of TRM

GOSUB nnn 'call assembler routine
PRINT "KBJLAG = "HEX$(AL%)
RETURN

Two more BIOS INT 16 functions are provided on the
PCjr: the ability to toggle on/ off the keyboard clicker and
typamatic key rate adjustment. Program 2-18 demonstrates the
use of SRVCCALL to call these PCjr functions.

97

Keyboard

The appropriate PCjr settings could be made directly to
KB_FLAG at 417h and KB_FLAG_2 at 488h with POKE
statements. This is not recommended when such accessible
services exist that provide a level of protection from future
changes. However, the instructions in Program 2-19 could be
used in place of the statements starting at 990 in Program 2-18
if direct change to the typamatic bits in KBJLAG_2 is
needed.

Program 2-18. SRVCCALL Routines to Call BIOS INT 16 PCjr
Functions

' Request PCjr clicker on
' bios INT 16, type 4 service

returned: nothing
INTERRUPT%=&H16:AH%=&H4:AL%=1
' al% = 1 is clicker on
' al%= 0 would tum off clicker
GOSUB nnn 'call assembler routine
PRINT "PCjr keyboard clicker now ON"
RETURN
'Request PCjr typamatic rate change
' bios INT 16, type 3 service

returned: nothing
PRINT" -- Which PCjr typamatic adjustment? --"
PRINT" 0 - return to defaults "
PRINT" 1 - increase initial delay "
PRINT" 2 - half rate of repeat "
PRINT" 3 - both 1 and 2 above
PRINT" 4 - typamatic function off "

990 INPUT X:IF X <0 OR X>4 GOTO 990
INTERRUPT% =&H16:AH% =&H3:AL % = X
' al% is 0 through 4
GOSUB nnn 'call assembler routine
PRINT "PCjr typamatic function now adjusted"
RETURN

Program 2-19. PCjr Modification of Typamatic Key Values
990 INPUT X:IF X<0 OR X>4 GOTO 990

98

X=X*2:DEF SEG=0
' change 0-4 to 0,2,4,6,8
Y=(PEEK(&H488) AND (&HFF-&HE))
' turn off bits 1-3
POKE &H488,(Y OR X)
' adjust KBJLAG_2
PRINT "PCjr typamatic function now adjusted"

Keyboard

DOS Standard Input Interrupt Functions
DOS interrupt 21 offers standard input device (keyboard) ser­
vices as summarized by Table 2-2. SRVCCALL can be used to
invoke these services from BASIC. The number of the service
is placed in AH%. In Table 2-2, the "Waits" column indicates
that the service will wait until there is a keypress to return.
The obtained character will be displayed on the screen if the
"Echo" column indicates this. Most service functions check
and act upon the Break key.

Detailed descriptions of the DOS INT 21 keyboard func­
tions can be found starting on page D-17 of the DOS 2.0 man­
ual or starting on page 5-17 of the DOS 2.10 Technical
Reference manual.

Table 2-2. DOS INT 21 Keyboard Functions
AH Service performed Waits Echo Breaks
1 get character yes yes yes
6 get character (or display character) no no no
7 get character yes no no
8 get character yes no yes
A buffered input yes yes yes
B any characters available no no yes
C clear buffer, call 1, 6, 7, 8, or A no no yes

The examples below demonstrate the use of DOS INT 21
service function 1, and the combined services of function Ch
calling function Ah.

'keyboard input with echo, break, wait
' DOS INT 21, type 1 service

returned: ascii character in al%
INTERRUPT%=&H21:AH%=&Hl:AL%=0
GOSUB nnn 'call assembler routine
RETURN

'DOS buffered keyboard input
' DOS INT 21, type A service

returned: second byte of buffer
contains character count

AL%=&HA:BUFFER$=CHR$(&H80)+SPACE$(80)+""
' keyboard buffer
BUFF!= VARPTR(BUFFER$)
DH%= PEEK(BUFF! + 2)
DL % = PEEK(BUFF! + 1)
DEF SEG:GOSUB 1060
'call DOS int 21 function Ch

99

PRINT ''Received'' ASC(MID$(BUFFER$,2, 1))'' characters"
PRINT MID$(BUFFER$,3,80):RETURN

1060 ' keyboard clear and function 1, 6, 7, 8, or A
DOS INT 21, type C service,
then al% function
returned: depends on al% function selected

INTERRUPT% =&H21 :AH% =&HC
' al% should be 1, 6, 7, 8, or Ah
GOSUB nnn 'call assembler routine
RETURN

8255A-5 PPI Ports A, B, and C at Ports 60-62h
The keyboard has no idea what the meaning of any particular
key is; it simply views a key as one of 83 possible buttons (62
on the PCjr) that may be pressed and reports that occurrence
to the system unit. The 8048 microprocessor in the keyboard
(or 80C48 in the PCjr keyboard) reports when a key has been
pressed and passes the scan code for the key along to be inter­
preted by the default INT_9 routine in ROM BIOS. The scan
code comes into the computer over I/O port 60h, known as
8255 Port A (PA). In the PCjr, the scan code is placed into this
port address by ROM BIOS routine INT 48 KEY62-1NT to
maintain PC compatibility.

The handshaking between the 8048 and INT 9 is com­
plete when the 8048 receives an acknowledge signal. This
acknowledgment of the reception of the scan code is sent on
the output port at 61h (8255 PB) by turning on bit 7. Bit 6 of
the same port allows clocking signals to be sent to the key­
board if it contains a 1 and turns off clocking (and effectively
the keyboard) if a O is placed in that bit. In summary, the nor­
mal contents of the bits in port 61h are bit 6 = 1 (keyboard
receiving clocking pulses) and bit 7 = 0 (not acknowledging).

Let's see how to turh off the PC and XT keyboards using
the bits in port 61. If we turn on the acknowledge bit in 8255
port B (61h bit 7), then all scan codes from the keyboard will
be regarded as received by the keyboard 8048 and no longer
presented to the system unit. This, in effect, throws away all
keyboard input. The BASIC statement needed to turn off the
keyboard is
OUT &H61,&HCC
It turns on acknowledge bit (7). Now all keys are ignored­
even Break and reboot.

100

:Keyboard

'Ji'his line will tum the keyboard on again:
OUT &H6l,&H4C

It will turn off acknowledge bit (7).
The PCjr needn't acknowledge the reception of keyboard

scan codes, and keyboard clocking isn't required. The PCjr's
keyboard is connected directly to the Non-Maskable Interrupt
(NMI) line of the 8088 processor and can only be preempted
by a special timer that insures that the disk drive isn't left un­
attended too long if it's currently active. On the PCjr, bit 6 of
the 8255 port at 61h isn't needed for the keyboard (it's used
for control of the sound chip), and bit 7 is reserved for future
use. The PCjr does use bit O of port 62h (8255 PC) to sense
that a scan code is inbound from the keyboard. This bit is
used on the PC and XT to implement a loop in the power-on
diagnostics for manufacturer testing purposes.

On the PCjr, bit 6 of port 62h (8255 PC) indicates that
keyboard data is being serially received. Bit 7 contains a O if
the keyboard cable is attached, indicating that the infrared link
is not active. The PC and XT use these bits to flag 1/0 chan­
nel checks (expansion slot card problems) and memory parity
errors, respectively.

The PCjr keyboard can be turned off by simulating a
Pause key before every real key pressed. This causes the real
keypress to be thrown away, since it appears that this is a key
pressed to end the pause function. Use this BASIC statement
to simulate the Pause key (Fn-Echo is not ignored), thus effec­
tively turning off the keyboard:
DEF SEG=0:POKE &H418,(PEEK(&H418) OR 8)

And this statement to turn it back on:
DEF SEG=0:POKE &H418,(PEEK(&H418) AND &HFF-&HS)

The power-on tests initialize ports 60-63h and then use
them to do keyboard tests. These routines can be found at
FE3A2h and FFA2Ah in the PC2 Technical Reference manual.
The PCjr keyboard tests and initialization routines are unique
because of the different keyboard implementation. The PCjr
routines are at F04CCh and F0640h. The microprocessor in the
keyboard of the PC, XT, and PCjr is programmed to self-test
during the power-on sequence. If any keys are depressed, they
are assumed to be stuck in the down position, error code 301
is displayed on the screen (ERROR B on the PCjr), and a shrill
tone is produced to alert you of the condition.

101

Keyboard

Keyboard Interpret Interrupt INT 9 at FE987h PCjr:F1561h
For the keyboard input to be made available for use by pro­
grams, there must be a small flurry of activity in ROM BIOS
INT 9 for each keypress. In order for INT 9 to be activated on
the PC, a level-1 8259 interrupt (keyboard interrupt) is gen­
erated by the keyboard 8048. Only the timer interrupt at level
0 has more priority for the 8259. Bit 1 of the 8259 Interrupt
Request Register (IRR) is set to keep track of the pending
interrupt. If no other interrupt is being processed (the 8259 In
Service Register has zeros in bits O and 1) and the Interrupt
Mask Register allows the interrupt type, then the 8259 sends
an interrupt to the 8088. If the 8088 is enabled for that inter­
rupt, the 8259 is allowed to pass the interrupt type code, 9h
for the keyboard, to the 8088 for processing. The 8088 pushes
the CS:IP (code segment and offset) and flag register onto the
stack and jumps using the INT 9h CS:IP vector contained in
locations 24-27h. The 8259 sets on its ISR bit 1 to indicate
that a keyboard interrupt is being processed and lower level
interrupts must wait.

The INT 9 routine reads the scan code from port 60h and
sends an acknowledge signal to the keyboard through bit 7 of
port 61h. Bits 6 and 7 of port 61h are then set to their normal

. clock- and keyboard-enabled mode. The instructions that do
this can be examined at label KB-1NT in the ROM BIOS list­
ing. Any shifting-key make or break scan code is detected, and
the appropriate status flags are set or reset in 417h and 418h,
KBJLAG, and KB_FLAGl. Machine language equate state­
ments for the bit meanings within these flag bytes can be
found on the second page of the ROM BIOS listing. Shift keys
that can be toggled (Caps Lock, Insert, Scroll Lock, and Num
Lock) are processed specially so that typamatic repeating
"make" scan codes are ignored, and only a "break" will allow
a following "make." If this test wasn't there, it would be diffi­
cult to determine the state of a locking shift since it could
bounce back and forth very rapidly.

After the Shift key flags are adjusted, the Pause key is
acted upon if it was pressed. This sequence of processing
means that a toggled Shift key such as Ins or Caps Lock is set
even though the Pause key has been pressed. If the paused bit
is on in 418h and a key other than the Num Lock key is
pressed, then the key is discarded and the paused bit is reset.
This discarding of the key that terminated the pause can be

102

Keyboard

used to throw away unwanted keypresses as shown above.
At label K29, a test is made for the Ctrl-Alt-Del keys, and .

a jump to the RESET routine is performed if that combination
is found. Before the jump is made, 1234h is placed in location
472h to indicate that this is not the initial power-on sequence.
This indicator will later allow the POST routines to bypass
time-consuming tests.

If the Alt key is held while numeric keypad digits are
used, the keys are accumulated into ALLJNPUT to form the
ASCII character number. A space may be entered before, dur­
ing, or after the numeric sequence and will be acted upon im­
mediately without disturbing the accumulated ALT-1NPUT
value. ALT-1NPUT is accumulated in location 419h. If the 0
key is the only ALT-1NPUT value accumulated, the value is
discarded as though it was not entered. Several methods could
have been used to allow the entry of a ASCII code of zero, but
this is not provided in the method chosen.

The Insert and Delete keys become zero and decimal
point, respectively, while the keyboard is in Num Lock mode
unless the Shift key is also pressed. The Shift keys can nor­
mally be used to temporarily toggle the Num Lock mode on
or off, but the Shift keys will be ignored while the Alt key is
depressed.

The routine at label K38 checks for the Break key combi­
nation of Ctrl-Scroll Lock. If found, the high-order bit in loca­
tion 471h is set and an INT lB is issued. When a program
hasn't set this interrupt vector, nothing happens. If DOS is in
control at the time, "C will be displayed.

If the Shift and PrtSc keys are pressed, INT 5 is issued to
cause the screen to be printed.

The balance of the interrupt routine is concerned with
translating the scan code to ASCII and placement of the
character in the keyboard buffer, calling the K4 routine to up­
date the buffer pointers. A special test is performed to allow
the Shift keys to provide lowercase letters when the keyboard
is in Caps Lock mode. Extended scan codes are handled in the
routine labeled K63, with the zero preceding the extended
scan code being placed by routine K64.

The routine at K62 is called to sound the error tone when
the keyboard buffer is full or scan code FFh is received, in­
dicating a full buffer in the keyboard itself.

103

Keyboard

Once the scan code has been either acted upon, discarded
as meaningless, or translated (to ASCII or an extended scan
code) and placed in the buffer, 20h is sent out on port 20h to
inform the 8259 that the End Of Interrupt processing (EOI)
has occurred. The 8259 responds by resetting bit 1 of the ISR
so that lower priority (higher numbered) interrupts can now be
processed. An IRET instruction is issued by the keyboard
interrupt routine and normal processing is resumed.

Keyboard-Related Locations and References
Locations show PC2 values, then PCjr if they differ. The Tech­
nical Reference manual page indicated is the beginning or most
significant page from the XT manual. Examine the context of
the surrounding pages.
Location: 24h
Label (INT 9)
Usage Vector to KB-1NT FE987h; PCjr: F1561h
TRM pg : A-28; PCjr: A-45

Location: 58h
Label (INT 16)
Usage Vector to KEYBOARD-1O FE82Eh; PCjr: F13DDh
TRM pg: A-24; PCjr: A-43

Location: 6C-6Fh
Label (INT lB)
Usage Break interrupt vector, during BASICA FAD34h; PCjr:

EAC49h
TRM pg : 2-5; PCjr: 5-8
Location: PCjr: 120h
Label KEY62_pTR (INT 48)
Usage Vector to KEY62-1NT routine; PCjr: FlOC6h
TRM pg : PCjr: A-38
Location: PCjr: 124h
Label EXST (INT 49); PCjr: F109Dh
Usage Vector to nonkeyboard scan code table
TRM pg: 5-42
Location: 417-418h
Label KBDJLAG, KBDJLAG_l
Usage Keyboard toggle and Shift key status
TRM pg: A-3; PCjr: A-4

104

The PCjr TRM doesn't ~how that 417h = 10h "if Fn-ScrLk
is toggled and 80h if Ins is toggled.

Keyboard

Location: 419h
Label ALT_INPUT
Usage Accumulated Alt-numeric keypad entered ASCII value
TRM pg: A-3, A-31; PCjr: A-4, A-47

Location: 41Ah
Label BUFFEILHEAD
Usage Pointer to first character slot in circular keyboard buffer;

lEh is first slot in buffer.
TRM pg: A-3; PCjr: A-4

Location:
Label
Usage
TRM pg:
Location:
Label
Usage
TRM pg:
Location:
Label
Usage

41Ch
BUFFEILTAIL
Pointer to next unused character slot in circular buffer
A-3; PCjr: A-4

41E-43Dh
KB-BUFFER
Circular buffer for keyboard
A-3; PCjr: A-4

472h
RESET_FLAG
1234h indicates reboot in progress, not power-on
sequence

TRM pg : A-4, A-30; PCjr: A-5, A-46
Location: 480h (not in PCl)
Label BUFFEILSTART
Usage Address of first byte of circular buffer in segment 40h, de-

faults to lEh
TRM pg: A-4, PCjr: A-5

Location: 482h
Label BUFFEILEND (not in PCl)
Usage Address of last byte of circular buffer in segment 40, de­

faults to 3Eh
TRM pg : A-4; PCjr: A-5

Location:
Label
Usage
TRM pg:

Location:
Usage
TRMpg:
Location:
Label
Usage

PCjr: 488h
KBJLAG2
PCjr additional flag byte for Fn and repeating keys
PCjr: A-5

FE3A2h and FFA2Ah; PCjr: F04CCh and F0640h
Keyboard initialization and POST test routines
A-13, A-76; PCjr: A-16, A-18
FAD34h; PCjr: EAC49h
(INT_lB routine)
BASICA break routine

105

Keyboard

Location: PCjr: F0F78h
Label KBDNMI (8088 NMI routine)
Usage Keyboard read and deserialization
TRM pg : PCjr: A-35

Location: PCjr: F04CFh
Usage Initialize keyboard buffer parms during power-on
TRM pg: PCjr: A-16
Location: FE3A2; PCjr: F0640h
Label TST12; PCjr: Q43
Usage Test keyboard during power-on
TRM pg: A-13; PCjr: A-18

Location: PCjr: F109Dh
Label EXTAB (INT_49 table)
Usage Nonkeyboard scan code mapping table
TRM pg : PCjr: A-38

Location: PCjr: F10C6h
Label KEY62-1NT (INT_48 routine)
Usage Converts 62-key scan code to 83-key scan code
TRM pg : PCjr: A-38

Location: PCjr: F131Eh
Label TPM
Usage Typamatic repeating key effector
TRM pg : PCjr: A-41

Location: FE82Eh; PCjr: F13DDh
Label KEYBOARD-1O (INT_l6 routine)
Usage BIOS Services: status, read, available check. PCjr addi-

tions: typamatic and click adjustments
TRM pg : A-24; PCjr: A-43

Location: FE987h; PCjr: F1561h
Label KB-1NT (INT_9 routine)
Usage BIOS keyboard interrupt interpretation routine
TRM pg : A-28; PCjr: A-45

Location: FEB09h; PCjr: F1749h
Label K38
Usage Break test. PCjr additions: Fl lCBh (INT_48 detects also)
TRM pg : A-24; PCjr: A-43

Location: PCjr: F1937h
Label NEW-1NT_9
Usage Cassette BASIC examination for Ctrl-Esc or Esc key
TRM pg : PCjr: A-51

106

Location:
Label
Usage
TRM pg:

Location:
Label
Usage
TRM pg:

Location:
Label
Usage
TRM pg:

Keyboard

PCjr: FEOlBh
REALVECTOILSETUP
Setup INT_9 vector at 24h after power-on sequence
PCjr: A-53

PCjr: FF068h
KEY_SCAN_SAVE
Save any keypresses during power-on sequence
PCjr: A-82

Ports 60-63h
PORT_A ,_B, _C, CMD_pQRT
Keyboard 1/0 port usage
1-8, 1-10; PCjr: 2-30, 2-36

Additional information about the keyboard and its inter­
pretation may be found in the following:

Subject
Keyboard Encoding Section

Character codes table
Extended codes table
Shift states effects discussion
Suggested keyboard key combination

usage table
DOS and BASIC special function keys

tables
Keyboard keys/scan code layout
Keypresses needed for CHR$(0) through

CHR$(255)
Keyboard connector
PCjr keyboard compatibility with PC
PCjr 8088 NMI usage
PCjr infrared link cordless keyboard
Keyboard schematics

TRM Page
2-11; PCjr: 5-21

1-65; PCjr: 5-22

C-1; PCjr: C-1
1-70; PCjr: 3-87
PCjr: 4-14, 5-25, 5-10
PCjr: 2-7, 2-15, A-35
PCjr: 2-97, 2-101
D-12, D-14; PCjr: B-42
(IR link only)

BASIC provides several statements that may be used for
keyboard functions. Check your BASIC manual for the follow­
ing statements: INKEY$, INPUT, INPUT$, INPUT#, KEY,
KEY(n), and ON KEY.
Subject DOS page
ANSI.SYS device driver DOS page: Chapter 13 of DOS

2.0, Chapter 2 of DOS 2.10
DOS INT 21 keyboard functions D-17 of DOS 2.0, 5-17 of DOS

2.10

107

Keyboard

Keyboard Interrupts and Interrupt Functions
09 BIOS keyboard interrupt vector
16 BIOS keyboard functions

00 read key
01 get character status
02 get shift status
03 set typamatic rates (PCjr only)
04 set keyboard clicker on/off (PCjr only)

21 DOS function request
01 keyboard input (with wait, echo, break)
06 direct console 1/0 (no wait, break, or echo); DL=FFh return
input character
07 direct console input (with wait, no echo or break)
08 console input (with wait and break, no echo)
0A buffered keyboard input (with wait and break)
OB check standard input character availability
0C clear keyboard buffer and do function 1, 6, 7, 8, or A

48 BIOS cordless keyboard 62 to 83 key translation (PCjr only)
49 BIOS nonkeyboard scan code translation (PCjr only)

108

3
Music and Sound

The appropriate use of sound in your programs will make
them more attractive, friendly, enjoyable, and entertaining. Be­
sides programs that use sound to simulate existing or inno­
vative musical instruments, game and educational software are
obvious choices for sound effects and melodies. Sound is a
powerful tool for establishing the. setting and simulating activ­
ity. A catchy tune can provide a reward, while a rude blat can
cajole the user to do better.

Business and management software can also be enhanced
by appropriate audible signals, such as audio feedback of
keypresses, calling attention to errors, alerting the user that a
lengthy process has been completed, and even simulating
speech output. The future promises highly complex and
sophisticated voice recognition/response capabilities.

The PC and PCjr incorporate a small speaker that can be
driven to achieve a broad tonal range. The PCjr also features
an audio-out jack for attaching an external amplifier and
sound system such as those incorporated in a monitor with an
audio-in jack. The television attachment jack on the PCjr also
includes sound-output signals. Combined with the sophis­
ticated multivoice sound chip in the PCjr, your stereo and
computer can make beautiful music together. You can even
tape the music you create.

The speaker internal to the PC and PCjr may be driven
by turning the 8255A-5 Programmable Peripheral Interface
chip speaker control bit rapidly on and off, at the frequency of
the desired tone, or by programming the 8253 Programmable
Interval Timer chip to produce a given frequency automati­
cally. BASIC employs the latter sound production technique.
Machine language programs can mix these two methods to
achieve the desired effects. Later example programs will dem­
onstrate both of these speaker-driving methods.

The PCjr's complex sound generator chip is also sup­
ported by BASIC, with SOUND and BEEP statement param­
eters specifying whether the internal speaker or the sound
chip is to be used. BASIC's support of sound production has a

111

Music and Sound

few minor flaws. To name some: Notes may not be double
sharped or double flatted by including a second + or - after
the first; a double dot after a note incorrectly increases the
note length too much; notes may not be tied; and ML (legato)
incorrectly ties all notes.

Again, machine language programs can program the
sound chip directly. It's a shame that neither ROM BIOS nor
DOS provides any sound support services to ease the machine
language programmer's task in sound production. The variable
length beep routine provided in ROM BIOS (XT Technical Ref­
erence manual, page A-76; PCjr manual, page A-107) cannot
be employed since it ends with a near return.

You will want to design and collect your own generalized
support routines and macro interfaces if you intend to use ma­
chine language frequently for producing sounds or music.

Let's explore the various ways that sound can be gen­
erated on the PC and PCjr.

Direct Method of Producing Sound: 8255 Port B at 1/0
Port 61h
The direct method of sound generation is the most flexible
method, but it requires coding precise timing loops for both
the pitch and the duration of the desired tones. When using
this method, the programmer has the responsibility for, and
the advantages of, absolute control over the audio environment.

The 8088 microprocessor is kept busy with these timing
loops and little other program activity can take place concur­
rently. The other sound production methods discussed in this
chapter provide sound creation facilities that are independent
of the microprocessor, allowing simultaneous program activity.

Since the 8088 instruction set execution speed is generally
used to determine and measure the amount of time elapsed in
a direct-method timing loop, other implementations of the
microprocessor (such as an IBM-compatible machine or
superset microprocessors like the 8086, 80286, or 80188) may
produce different sounds.

Architectural and component differences may also cause
variations. This effect can be heard on the PCjr where the
non-OMA memory-refresh method, the sharing of main mem­
ory for video buffers, and a different speaker component cause
direct-method sounds to be almost halved in pitch. By placing
the machine language sound generation routines above the

112

Music and Sound

first 128K (when expansion memory is added beyond the first
64K expansion), PC-like performance and sound-timing loop
values can be used.

The direct method of sound generation can be pictured
schematically as shown in Figure 3-1.

Each time port 61h, bit 1 is changed to a one, a click is
produced at the speaker. When the clicks are generated rap­
idly enough, a pitch is heard.

Schematically again, the process may be thought of as de­
picted in Figure 3-2. A and C represent speaker clicks caused
by the port 61h, bit 1 being turned on.Band D represent
turning off the speaker by changing the contents of the bit to
zero. A plus B compose a complete square wave cycle. When
generated N times per second, a tone of N hertz is produced.

The A note above middle C (concert tuning A) on a piano
may be produced by using a frequency of 440 hertz or 440 AB
cycles per second. Table 3-1 shows the approximate integer
frequencies required to generate four octaves of musical notes.
Note that an octave begins at a C note and ends with the
following B note.

Figure 3-1. Direct Method Sound Production Schematic

Port 61h

Bit 1 Bit 0

must be
zero

1 = on,O = off

Figure 3-2. Direct Method Sound Production Schematic

A B C I D ,

A speaker on time
B speaker off time
AB complete square wave cycle time:

AB 500 times per second = tone of frequency 500 hertz

113

Music and Sound

Table 3-1. Musical Notes and Associated Frequencies,
Piano Key Arrangement
Note Frequency (Hz)
A 55 110 220 440 880 1760 3520 7040 14080 28160
A#,Bb 58 117 233 466 932 1857 3714 7428 14856 29712
B 62 123 247 494 988 1976 3952 7904 15808 31616
C 65 131 262* 523 1046 2093 4186 8372 16744
c#,ob 69 139 277 554 1109 2217 4434 8868 17736
D 37 74 149 294 587 1175 2349 4698 9396 18792
D#,Eb 39 78 156 311 622 1245 2489 4978 9956 19912
E 41 82 165 330 659 1319 2637 5274 10548 21096
F 44 87 175 349 698 1397 2794 5588 11176 22352
F#,d 47 93 185 370 740 1480 2960 5920 11840 23680
G 49 98 196 392 784 1568 3136 6272 12544 25088
G#,Ab 52 104 208 415 831 1661 3322 6644 13288 26576
*middle C

Program 3-1 will create a .COM file that will generate an
800 hertz tone indefinitely using the direct method of sound
production. Use Ctrl-Alt-Del to stop the example program.
Later examples will build upon the groundwork of concepts
presented in this example. On the PCjr, modify line 310 from
50 to 25 to produce the 800 hertz tone.

Line 310 loads a value into the CX register to be used in
line 320 to count down an amount of time before the speaker
state is reversed by the XOR instruction in line 280. In this way,
the number of cycles per second is specified, based upon the
8088 execution speed for the LOOP instruction in the IBM PC.

The important concept in Program 3-1 is the method em­
ployed to cause a time delay between speaker clicks. Also,
note the segregation of bit 1 of port 6 lh set up in lines
230-280. Destroying the contents of any other bits (other than
turning off bit 0) can have disastrous effects since port 61h is
used for keyboard, cassette, and parity error control. On the
PCjr sound input, cassette, sound chip, and display controls
share the bits in port 61h.

Since the 18.2 times per second timer tick interrupt rou­
tine (INT 8) has not been disabled in Program 3-1, you can
hear a slight warble in the tone produced. This may be de­
sirable in certain situations, but a purer tone can be obtained
by disabling interrupts, as shown in Program 3-2. While inter­
rupts are disabled, the time-of-day clock will not be updated.
Program 3-2 also adds the capability to stop the generated
tone when a key is pressed, eliminating the need to reboot the
computer to exit from the program.

114

Music and Sound

A tone of 800 hertz is produced by Program 3-2 also, so
change line 440 from 50 to 25 for the PCjr. You may want to
experiment with the CX value to hear other tone pitches. As

. always, you may leave out the comments and place multiple
statements on a line to reduce the time needed to enter the
program.

Notice that this second example used a machine language
routine contained in a string, while the first example created a
COM file program. The different implementations used are
illustrative and are not a cause of any differing results. You
may wish to refer to these examples in the future as im­
plementation samples. Comments in the examples note the
changes needed for the machine language routines when a dif­
ferent implementation is used.

Program 3-3 demonstrates a method for providing a
parameterized called machine language subroutine that pro­
duces a chosen pitch for a specified duration. Moreover, it al­
lows the caller to build these values into a table of sounds to
be produced in succession as well as the means to overlay a
previous sound table with the currently desired sound se­
quences. This third example also uses another implementation
technique for called machine language routines. As before,
PCjr frequency values should be about 0.45 times the PC
values.

The duration of the desired tone in Program 3-3 calculates
the value to be used in the DX register to count down the
number of loops through the AB cycle. The value that the user
specifies for duration is roughly equivalent to seconds on both
the PC and PCjr. The resulting calculated DX value is the
product of the frequency requested times the duration. As the
frequency of AB increases, the DX value is decreased since
more time is spent in loops for A and B.

Greater precision of the duration can be obtained by mul­
tiplying (or dividing) the DX result of line 360 by an addi­
tional precision factor such as DX=DX"'l.13.

You may wish to implement the program as shown rather
than implementing it as a COM file so that you can call it
from your BASIC programs. The called machine language
string technique does not allow enough room for an involved
sound table. You can enhance the example program to suit
your own needs as your experience in direct sound generation
grows.

115

Music and Sound

Variations in the volume of tones produced can be ob­
served when an ascending or descending scale of tones is pro­
duced. The loudness of each tone is a factor of the frequency
response of the speaker and its associated driving circuitry. No
volume control mechanism is available.

Program 3-1. Sample Direct Method Speaker Control
Program
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

NN 1H •BEEPDIR1; direct method of speaker contra
1

66 1fl5 • This program creates a CON file frDIR DAT
A statelRl!nt&.

LA 1 UIJ • Turn speaker data bit on and off at vari
able rate

~ 128 • determined by CX value. The higher the v
alue of CX,

HE 13flJ • the more delay bet..een pulses and so the
lower the tone.

OP 148 • Notice the "Marble" in the tone Mhen the
com program is run.

116 lSfJ • USE CTRL-ALT-DEL TO SET OUT OF THE CREAT
ED BEEPDIRl. COft PROGRM ! !

HA 16flJ •
AS 178 COl'INANES="beepdirl.com"
ON 188 OPEN eottNANES FOR OUTPUT AS =11
KB 199 READ XS: IF XS="/t" GOTO 218
6N 288 PRINT =11,CHRS<VAL("lcH"+XS>>;:60TO 199
IA 218 CLOSE =11:END
ND 228 • REQUEST DIRECT CONTROL OF SPEAKER l'IODUL

ATION
LL 23flJ

6K 248

NN 25fJ

BF 268
01 278
N.J 288

HN 298
IIJ 3flJfJ
EN 31fJ

BJ 32fJ

DN 33fJ

116

DATA E4,61 1 IN AL,61 ;BET 8255
PORT B

DATA 24,FE: AND AL,FE ;DIRECT SP
EAKER CONTROL VIA BIT 8 OFF

DATA E6,61: OUT 61,AL ;SET IT BA
CK INTO PORT B

• -- NAIN LOOP --
• TOGGLE SPEAKER
DATA 34,2 :SLP XOR AL,2 ;REVERSE BIT ONE

TO TOGGLE SPEAKER ON/OFF
DATA E6,61:. OUT 61,AL
• DELAY A WHILE
DATA 89,58,H I NOV CX,5fl; ON PC:CX=1E♦-

9/(7148tFREQUENCV DESIRED>
DATA E2,FE :$HR LOOP $HR ;LOOP H

ERE TILL CX=fl
• KEEP ALTERNATING SPEAKER ON/OFF, NO EXI

T!!

Music and Sound

~ 348 DATA EB,FS: JNP $LP
KP 358 DATA /t

Program 3-2. Direct Method Speaker Control with Stop-On­
Any-Key
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

DK Ulf0 'BEEPDIR2; direct method of speaker contro
1

KN 110 • This program uses BASIC cal 1 to ml routi
ne in a string.

68 120 • Enhancement of BEEPDIR1, adds eliminatio
n of "warble"

DE 130 • by disabling interrupts and periodically
<DX loop value)

LC 140 • checks for a keypress to stop the tone.
You'll hear a

GN 150 • slight click every time the keypress is
checked for.

HA 168 •
6J 170 GOSUB 220
PJ 18flJ PRINT"Calling ML routine •••• ";:CALL ASMRO

UT!:PRINT"back to BASIC."
11ft 1'98 END
GF 200 •
LL 210 • --- LOAD ML ROUT I NE ---
PN 220 DEF SES:PRINT "Installing ml routine

;
EB 23flJ ASMROUT$=SPACES<255) 'string for routine

"

EN 24flJ I=I+l:READ X$: IF XS="/t" GOTO 260 'read l
oop

NL 258 MID$(ASMROUT$, I, 1>=CHR1i(VAL("&H"+X$)) :GOTO
248

EP 260
OJ 278
LC 28flJ

NO 290
BP 3flJflJ
DL 310
GN 32flJ
PC 33flJ
AG 340

NK 3SflJ

PRINT"completed."
ASNROUT!=VARPTR<ASMROUT$)
ASNROUT!=PEEK<ASMROUT!+1)+(PEEK(ASMROUT!+2
)t256)
RETURN
• --- NL routine --­

•TURNOFF INTERRUPTS
DATA FA: CLI ;ELIMINATES "WARBLE"
• HOW MANY ex LOOPS BETWEEN STOP CHECK
DATA BA,0,'9 : NOV DX,16H ;NOT TOO 0

FTEN
• REQUEST DIRECT CONTROL OF SPEAKER MODUL

ATION
IA 360 DATA E4,61

PORT B
: IN AL,61 ;GET 8255

ND 370 DATA 24,FE : AND AL,FE ;DIRECT SPEAKE
R CONTROL VIA BIT 8 OFF

117

JK 380

CN 390
NN 480
IIN 418

NP 420
AA 438
QK 448

HF 458
Ill 460
KH 478

C& 480
Pl 498

Music and Sound

DATA E6,61 : OUT 61,AL ;SET IT BACK I
NTO PORT B

• -- 11AIN LOOP --
• TOGGLE SPEAKER
DATA 34,2: XOR AL,2 ;RVS BIT ONE TO TOGG

.SPEAKER ON/OFF
DATA E6,61 : OUT 61,AL
• DELAY A WHILE
DATA B9,59,ff: NOV CX,50 ;ON PC:CX=1E+

89/(7140SFREQUENCY DESIRED>
DATA E2,FE: LOOP 8HF ;LOOP TILL CX=0

• --- END OF LOOP ---
• IF DX IS DOWN TO ZERO, CHECK FOR KEYPRE

ss
DATA 4A: DEC DX ;SUBTRACT ONE FRON DX
DATA 83,FA,0 :CMP DX,0 ;IS DX EXHAUSTED Y

ET PRINT
Bl 580 DATA 75,F1 : JNZ HA ;NO, BACK TO TOP OF

l'IAIN LOOP
JP 510 DATA B4, 1

SS STATUS
: NOV AH,1 ;REQUEST KEYPRE

DATA CD,16 : INT 16 ;FRON BIOS
• IF A KEY WAS PRESSED, WRAP IT UP

Nt 528
IF 538
II 548 DATA 74,El: JZ 8H ;IF NOT PRESSED YET,

KEEP ON
11.l 558 DATA FB: STI ;RE-ENABLE INTERRUPTS
PF 568 • for a COl'I file version, use •co 28 N

1 INT 28• for the line below
~ 570 DATA CA,08,H I RETF He ;RETURN TO BASIC
KH 380 DATA /S

Program 3-3. Direct Method Speaker Control with Sound
Table
For error-free program entry,_ be sure to use "The Automatic Proofreader," Appendix H.

OH 100 'BEEPDIR3; Direct method of speaker contro
1

DB 110 'Calls an ml routine placed in reserved ar
ea above BASIC

• EC 120 'Demonstrates the use of variable pitch an
d duration values.

CJ 130 'The values are calculated by the BASIC pr
ogram and stored in

ES 140 •a table for the called machine language r
outine to play.

PG 150 'Rests are created by setting the frequenc
y beyond the

~ 160 'limit of hearing <>18,000Hz>.
HC 170 •

118

Music and Sound

BN 1Bf/J GOSUB 4Bf/J 'load the ml routine, once onl Y.
NE 19f!J PRINT"Calculating sound values •••• " •
OF 2f/Jf1J SOUND. TABLE=&:H3f!J 'displacement of table-4

within ml routine
LI 21f/J DURATION=1.7:FREQUENCY=40000!:GOSUB 350
LG 220 DURATION=.2:FREQUENCY=41'110:GOSUB 350
DK 230 DURATION=. 6: FREQUENCY=600: GOSUB 350
PD 240 DURATION=. 4: FREQUENCY=500: GOSUB 350
EN 25f/J DlJRATION=L 7: FREQUENCY=19200: GOSUB 350 • i

naudible resting time
FP 260 DURATION=.1:FOR FREQUENCY=100 TO 5000 STEP

200:GOSUB 350:NEXT
EG 270 DURATION=. 1: FOR FREQUENCY=5000 TO 100 STEP

-200:GOSUB 350:NEXT
DH 2Bf/J DURATION=.01:FOR FREQUENCY=100 TO 30{llQI STE

P 1f/J0:GOSUB 350:NEXT
HI 290 DURATION=.01:FOR FREQUENCY=3000 TO 100 STE

P -100:GOSUB 350:NEXT
DI 388 DURATION=.01:FOR FREQUENCY=100 TO 3000 STE

P 100:GOSUB 350:NEXT
Cl 310 SOUND.TABLE=SOUND.TABLE+4:FOR X=0 TO 3:POK

E SOUND.TABLE+X,0:NEXT
PN 315 • 1 ine above marks end of sound table ent

ries
OP 320 PRINT"Calling ML routine •••• ";:CALL ASMRO

UT!:PRINT"back to BASIC."
LC 330 END
BP 348 • --- CALCULATE FREQUENCY AND DURATION and

PLACE VALUES ---
60 358 CX=1E+09/.(7140*FREQUENCY>
NC 368 DX=DURATION*FREQUENCY
BE 37f/J IF INT<CX/256) >255 OR INT<DX/256) >255 GOTO

458
NB 388 SOUND. TABLE=SOUND. TABLE+4
JH 398 POKE SOUND. TABLE+1, INT <DX/256>
FN 408 POKE SOUND. TABLE+0, DX MOD 256
Kl 418 POKE SOUND. TABLE+3, INT (CX/256)
GF 428 POKE SOUND. TABLE+2, ex MOD 256
ED 430 PRINT"Note stored: "DURATION; FREQUENCY
NG 448 RETURN
DN 450 PRINT"Duration*frequency>32767, note bypas

sed:"DURATION;FREQUENCY:RETURN
HD 468 •
i,,1 4 70 • --- LOAD ML ROUTT NE ---
DA 480 DEF SEG=&:H1800: I=0 • starting address for

ml routine
90 498 PRINT "Installing ml routine •••• ";
JK 508 READ X$: IF X$="/*" GOTO 520 'read loop
NC 510 POKE I,VAL("&:H"+X$): I=I+1:GOTO 500
EK 520 PRINT"completed."

119

Music and Sound

IH 530 ASMROUT ! =0
"H 540 RETURN
CL 550
DI 560

IA 570
DC 580
ND 590

. ---
DATA

GMENT
DATA
DATA
DATA

ML
IE

0E
IF
FA

routine
PUSH DS ;SAVE ORIGINAL DATA SE

PUSH cs ;SET DS TO SAME AS CS
POP DS

CLI ;TURN OFF INTERRUPTS
r.r. 600 DATA BE, 30, 0 : MDV SI, $TB ; START OF LENGT

H/TONE TABLE ADDRESS-4
~ 610 'For COM file use "BE,30,1" instead of li

ne above
NO 620 DATA 83, D6, 4 : $TP ADC SI, +4 ; POINT TO NEX

T ENTRY IN TABLE
EN 630

GD 660

DN 670
LB 680

DATA 8B,14: MDV DX,[SIJ ;FIRST 2 BYTES I
S DX VALUE <DURATION>

DATA 83,FA,0: CMP DX,+0 ;IF DX=0,
DATA 74,lC: JZ $ON ;YES, WE'VE DONE THE

TABLE SO EX IT
DATA 8B.5C.2: MDV BX,CSI+2] ;NEXT 2 BYTE

SIS FREQUENCY LOOP COUNT .
DATA E4,61 : IN AL,61 ;GET 8255 PORT B
DATA 24,FE: AND AL,FE ;DIRECT SPEAKER CO

NTROL VIA BIT 0 OFF
CD 690 DATA C,2 :$OR OR AL,2 ;REVERSE BIT 1 T

0 TURN ON SPEAKER
CN 700 DATA E6, 61 : OUT 61, AL ; SET IT BACK INT

0 PORT B
PJ 710 DATA 89,D9 : MDV CX,BX ; INITIALIZE THE FR

EQUENCY COUNTER LOOP
AB 720 DATA E2,FE :$L1 LOOP $L1 ;WAIT WHILE TON

E PULSE IS HIGH
DG 730 DATA 24, FD : AND AL, FD ; TURN OFF BIT 1 TO

TURN OFF SPEAKER
61 740 DATA E6, 61 : OUT 61, AL ; SET IT BACK INTO

PORT B
PB 750 DATA 89,D9 : MDV CX,BX ; INITIALIZE THE FR

EQUENCY COUNTER LOOP
CN 760 DATA E2, FE : $L2 LOOP $L2 ; WAIT WHILE TON

E PULSE IS LOW
kl 770 DATA 4A : DEC DX ; DURATION MINUS ONE
BC 780 DATA 75. ED : JNZ $OR ; NOT ZERO YET, DO M

ORE ON/OFF PULSES
AF 790 DATA EB, DA : JMP $TP ; ZERO, GET THE NEXT

TABLE ENTRY
DO 800 DATA FB : $ON STI ; ALL DONE, ENABLE INTERR

UPTS
ID 810 DATA 1F POP DS ;ONLY NEEDED IF CALLING

FROM BASIC

120

Music and Sound

PJ 820 • for a COM file version, use •co 20 121121
: INT 20' for the line below

"B 830 DATA CA, 1210, 0121 : RETF 1211210 ; RETURN TO BASIC
GE 840 DATA '110, 00 UNUSED FILLER .
II 850 • TONE LENGTH AND FREQUENCY TABLE STARTS A

T ROUTINE+34 HEX ($TB BELOW)
E" 860 •
BE 870 •
BO 8B121
PK B9121 •
HJ 895 '
HJ 900
00 910
"F 920
QN 930
NG 940

Table is made up of 4 byte entries;
2 bytes DX value; Duration of tone
2 bytes CX value; Frequency of tone,
End of table indicated by DX= 00
:$TB actual sound table starts here

DATA 04,03,c0,00 SAMPLE TONE ONE
DATA DC,00,8C,00: SAMPLE TONE TWO
DATA 00,02,50,00: SAMPLE TONE THREE
DATA 00,00.00.00 END OF TABLE ENTRIES
DATA I* . .

Timer Method: 8255 Port B at 61 h, 8253 Timer Ports at
42-43h
Sounds may be produced independently of the 8088 micro­
processor (and memory refresh interruptions that occur every
72 system-clock cycles except on the PCjr) by using the 8253
Programmable Timer chip to modulate a 1.19 megahertz clock
signal to the speaker. This timer method is used by the BASIC
SOUND statement. That's how background music may be
played while the user's BASIC program continues.

A schematic representation of the 8253 timer method of
sound production is shown in Figure 3-3.

Figure 3-3. Timer Method Sound Production Schematic

Clock gate bit
Port 61h, bit 0

.- Frequency divisor port 42
_ Timer mode

l=on10=off

, ' 1 '

1.19 MHz 8253 Timer
► Clock Channel 2

Port 43h

Gate

Speaker data

Port 61h, bit 1
l=on, O=off

---□<]

121

Music and Sound

To produce sound using this method, an 8253 timer mode
is used that causes it to produce a high output for half the de­
sired time period and a low output for the other half. This
generated AB square wave (described in the discussion of the
direct method above) is directed to the speaker, based upon
the gate status in port 61, bit 1. The 8253 automatically re­
peats the AB square wave of the desired time period. The
number of AB cycles produced per second determines the
pitch of the tone.

This tone pitch is indirectly specified by the programmer
as a time period. The time period needed to produce a given
tone is expressed in relationship to the 8253 input clock speed
of 1,193,180 cycles per second (1.19 megahertz). This clock is
derived from the 14.3178 megahertz crystal on the system
board, as is the 8088 clock that runs at 4.77 megahertz.

For example, to produce a 1000 hertz tone at the speaker,
the programmer causes the 8253 to be loaded with a fre­
quency divisor of 1,193,180/1000 = 1193 (4A9h). The fre­
quency divisor is the number that when multiplied by the
desired frequency equals the 8253 input clock frequency. The
higher the frequency desired, the lower the frequency divisor
will be.

The 8253 (using square wave mode) decrements this fre­
quency divisor in step with the input clock and switches from
a high output to a low output when half the frequency divisor
is exhausted. When it decrements to zero, the frequency divi­
sor is automatically reloaded, and the process is repeated until
some other frequency divisor is loaded, the input clock is
gated off, or the mode port at 43h is changed.

Program 3-4 demonstrates the techniques needed to use
the 8253 for sound production. The value of B6h sent to the
8253 mode port at 43h causes the 8253 to use channel 2.
Using mode 3 (square wave generation) indicates that the fre­
quency divisor will be loaded in LSB /MSB order and specifies
that the divisor should be viewed as a binary number. The
INTEL Microprocessor and Peripheral Handbook or other avail­
able chip data sheets should be consulted for information
about the other possible meanings of this byte. The memory
map in this book summarizes the meaning of each possible
setting. The loop instruction is used only to waste time. Any
other desired processing could be done while the tone is being
sounded.

122

Music and Sound

Once the speaker data gate has been turned off at the end
of the sound production routine (as in lines 470-480 of Pro­
gram 3-4), the square wave is still being continuously pro­
duced by the 8253 timer when the input clock is enabled. This
production of the square wave does not affect the program or
any other aspect of operation of the computer. At any time the
speaker data gate may be turned on again and the tone will be
heard on the speaker. By turning off the channel 2 input clock
gate (which does not affect input clocking for other 8253 chan­
nels), the channel 2 timer function is suspended until the clock
is once again enabled. This feature can be used to suspend
music when the user presses a "freeze" key during a game.

Program 3-5 is a modified version of Program 3-4. It is
modified to use the 8253 timer method of sound production.
The slower execution speed of the PCjr requires that the dura­
tion value be halved to attain the same tone as on the PC.

Your BASIC manual includes a table for the SOUND
statement that shows how to convert a tempo (quarter notes
per minute) such as andante to clock ticks. Since a clock tick is
about 55 milliseconds (0.055 seconds), you can easily deter­
mine the proper duration of a tone for the desired tempo.

The routine in lines 790-840 may be used in other pro­
grams where time, ranging from 1 to 65,535 milliseconds
(65.535 seconds), needs to be wasted when other activity takes
place, as in the direct method of sound production explored in
the previous section.

The timer method and direct method of sound production
can be used together to achieve a wide range of sound effects.
You may further affect the channel 2 timer output by using
port 61, bit O to enable and disable the timer clock input
and/or port 61, bit 1 to turn the speaker on/off.

The contents of the decrementing frequency divisor inside
timer channel 2 can be checked at any time to determine how
much time has elapsed and, implicitly, remains. Simply put,
the latch-value-of-channel-2 command (86h) to port 43h and
the current value will be latched into port 42h.

Cassette tape write routines also use channel 2 of the
8253 timer chip, so avoid trying to do both sound and cassette
1/0 at the same time. Each 8253 channel has an input clock
that operates at 1.19318 megahertz, giving a clock period of
838.1 nanoseconds. OMA memory refresh (except on the PCjr)
uses chann·e1 1 of the 8253 in mode 2 with a frequency divisor

123

Music and Sound

of 18 to create an interrupt every 15.12 microseconds. Channel
0 generates the time-of-day interrupt every 54.936 milli­
seconds, with the maximum divisor of 65,536 (0 in the fre­
quency divisor). The clock frequency of 1.19318 megahertz
divided by 65,536 equals 18.203 interrupts per second. The
output of channel 0 is connected to the 8259 IRQ0 line,
thereby signaling an INT 8 interrupt. It is possible to use 8253
channel 0 for your own timing purposes if disk 1/0 is not
needed during that period and inaccuracy of the time-of-day
clock is acceptable. The disk motor's timing is determined by
BIOS using channel 0.

Program 3-4. Timer Method Sound with Stop-On-Any-Key
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

00 180 'BEEPTIHl; timer method of sound productio
n

~ 110 • This program uses BASIC call to a ml ro
utine in a string.

HH 128 • Example of using 8253 timer method for
sound production

CB 130 • Load AX below (line 340> with 1,193,180
/frequency

HII 148 •
EN 158 GOSUB 2H
OF 16fiJ PRINT"Calling HL routine •••• 11 ; :CALL

UT! = PRINT"back to BASIC."
NI 178 END
HE 188 •
11K 198 • --- LOAD HL ROUTINE ---
Pl 2"flJ DEF SEG:PRINT "Installing ml routine

;

ASHRO

II

EN 21fiJ ASHROUT1i=SPACE1i(255) • string for routine
PB 220 I=I+l:READ XS: IF XS="/t" GOTO 241.1 •read 1

oop
GF 238 HID1i(ASHROUT1i, I, 1>=CHR1i(VAL<"&rH"+X$) > :GOTO

228
EL 24fiJ PRINT"completed. 11

NF 25fiJ ASHROUT ! =VARPTR (ASHROUTS)
LO 268 ASHROUT!=PEEK(ASHROUT!+1)+(PEEK(ASHROUT!+2

> t256)
NK 278 RETURN
CD 288 • --- HL routine
~ 29fiJ DATA B0,B6 : HOV AL,B6 ;'18118118=

8255 NODE BYTE
IF 308 •

2:LSB then HSB
HH 310 •

ode31square wave

124

; • U'11=Chnl

; . Cllll=m

Music and Sound

LF 328 • ; .,_b
inary divisor

BL 338 DATA E6,43 : OUT 43,AL ;PUT 8255 N
ODE

SC 348 DATA BS,A9,4: NOV AX,4A9 ;18H HZ TO
NE

KH 358 DATA E6,42 : OUT 42,AL ;PUT LSB
6F 368 DATA BB,E8 : NOV AL,AH ;l'tSB TO LSB
NE 370 DATA E6,42 : OUT 42,AL ;PUT NSB
IIC 3BflJ DATA E4,61 : IN AL,61 ;GET 8255 P

ORT B
llJ 39flJ DATA C,3 1 OR AL,3 ;TURN ON SPEAKER DATA

AND CHNL2 GATE
JJ 4flJflJ DATA E6,61 I OUT 61,AL ;REPLACE 82

55 PORT B
NN 41flJ DATA 31,C9 I XOR cx,cx ;SET 65,536

COUNT FOR LOOP
6K 428 DATA E2,FE :SLP LOOP •LP ;WASTE SONE

TINE
NO 438 DATA 84, 1 : NOV AH,1 ;REQUEST KEVPRESS ST

ATUS
6D 448 DATA CD,16: INT 16; FRON BIOS
PF 458 DATA 74,FS : iJZ $LP ;NO KEVPRES

S, KEEP ON RUNNING
NP 468 DATA E4,61 I IN AL,61 ;GET 8255 P

ORT B
JD 478 DATA 24,FC : AND AL,FC ;TURN OFFS

PEAKER DATA AND CHNL2 SATE
KJ 488 DATA E6,61 : OUT 61,AL ;REPLACE 82

55 PORT B
A6 498 • for a CON file version, use 'CD 28 N 1

INT 28• for the line belDN
Nl 588 DATA CA,88,H : RETF H ;RETURN TO BASIC
NN 518 DATA 1*

Program 3-5. Timer Method Sound with Sound Table
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

EL 11110 'BEEPTIM2; Timer method of sound productio
n

NL 11111 • Cal ls a ml routine placed in reserved ar
ea above BASIC ·

BD 120 • Demonstrates the use of variable pitch a
nd duration values.

CF 13111 • The values are calculated by the BASIC p
rogram and stored in

SC 14fl • a table for the cal led machine language
routine to play.

IF 150 • Rests are created by setting the frequen
cy beyond the

125

Music and Sound

DF 16fJ • limit of hearing 018,fJfJfJHz>.
HC 17fJ •
AH 1 Bill GOSUB 48fJ • 1 oad the ml routine, once on 1 y
"E 19fJ PRINT 11 Calculating sound values 11

LJ 2fJfJ SOUND. TABLE=&:H38 'displacement of table mi
nus 4 within ml routine

CA 21fJ CLOCK=119318fJ! •frequency of 8253 clock
00 22fJ DURATION=!. 7: FREQUENCY=4fJfJfJfJ ! : GOSUB 37fJ
AE 23fJ DURATION=. 2: FREQUENCY=4fJfJ: GOSUB 370
II 24fJ DURATION=.6:FREQUENCY=6fJ0:GOSUB 378
EB 250 DURATION=.4:FREQUENCY=50fJ:GOSUB 371',!1
JA 26fJ DURATION=!. 7: FREQUENCY=19200: GOSUB 370 • i

naudible resting time
11H 27fJ DURATION=. 1 : FOR FREQUENCY= 100 TO 50fJl',!I STEP

200:GOSUB 370:NEXT
11A 28fJ DURATION=. 1: FOR FREQUENCY=500fJ TO 1QJ0 STEP

-200:GOSUB 370:NEXT
LB 290 DURATION=.01:FOR FREQUENCY=100 TO 3fJfJ0 STE

P 1QJQJ: GOSUB 37fJ: NEXT .
NB 30fJ DURATION=.fJl:FOR FREQUENCY=30fJ0 TO 1N STE

P -lfJfJ:GOSUB 370:NEXT
re 310 DURATION=. fJ 1 : FOR FREQUENCY= 100 TO 300fJ STE

P 1QJQJ:GOSUB 37QJ:NEXT
CK 320 SOUND. TABLE=SOUND. TABLE+4:FOR X=fJ TO 3:POK

E SOUND.TABLE+X,fJ:NEXT
OB 330 • 1 ine above marks end of sound table ent

ries
OD 340 PRINT 11 Call i ng ML routine •••• 11 ; : CALL ASMRO

UT!: PRINT 11 back to BASIC. 11

LG 350 END
BD 360 • --- CALCULATE FREQUENCY AND DURATION and

PLACE VALUES --­
AG 370 CX=CLOCK/FREQUENCY
CG 380 DX=DURATIONt 10QJ0 • number of mi 11 i seconds
KH 390 • DX=DX/2 'this line FOR PCjr ONLY: adjus

t for slower execution
NC 400 SOUND. TABLE=SOUND. TABLE+4
JI 410 POKE SOUND. TABLE+1, INT<DX/256)
FB 420 POKE SOUND. TABLE+0, DX MOD 256
t:11 430 POKE SOUND. TABLE+3, INT(CX/256)
HJ 440 POKE SOUND. TABLE+2,CX MOD 256
DH 450 PRINT 11 Note stored: 11 DURATION;FREQUENCY "com

ment out when tested
NK 460 RETURN
NJ 470 • --- LOAD ML ROUTINE
OA 480 DEF SE6=ScH1800: I=QJ •starting address for

ml routine
QO 490 PRINT II Installing ml routine •••• 11 ;

JK 500 READ XS: IF XS=" /t" GOTO 52fJ "read loop
11C 510 POKE I,VAL("&:H"+XS>: I=I+l:GOTO 5QJ0
EK 520 PRINT"completed."

126

Music and Sound

ASMROUT!=111
RETURN
' --- ML routine

IH 53111
NH 54111
CL 55111
EF 56111

LJ 57111

DATA 1E PUSH
SEGMENT
DATA 111E : PUSH

cs

DS ;SAVE ORIGINAL DATA

CS ;SET DS TO SAME AS

PO 58111 DATA 1F POP DS ;
CL 59111 • Set the next frequency from the sound ta

ble into the timer
BC 6111111 DATA BE,38,il : MOV SI,$TB ;START OF LENGT

H/TONE TABLE ADDRESS-4
611 61111 • For COM file use "BE,38, 1" instead of t

he above line
110 62111 DATA 83, D6, 4 : $TP ADC SI, +4 ; POINT TO NEX

T ENTRY IN TABLE
CD 63111 DATA BB, 14 MOV DX, CSIJ ;FIRST 2 BYTES

IS DX VALUE (DURATION>
110 64111 DATA 83,FA,il: CMP DX,+il ;IF DX=il,
II 65il DATA 74,26 :$JZ DN 'YES, WE' VE DONE THE T

ABLE SO EXIT
GD 66111 DATA BB,SC,2: MOV BX,CSI+2] ;NEXT 2 BYTE

SIS FREQUENCY LOOP COUNT
Ill 67il DATA B111,B6 : MOV AL,B6; SET 8253 CHNL2,l'I

ODE3,BINARY
CA 68il DATA E6,43 OUT 43,AL

PORT
HA 69il DATA 89, DB MOV AX, BX
JO 7QIQI DATA E6,42 OUT 42,AL
DG 71il DATA BB, Eil MOV AL, AH
JI 72il DATA E6, 42 OUT
Ll1 73il • Set the 8255 speaker

ck on

;PUT TO 8253 MODE

;FREQUENCY DVISOR
; TO 8253,
; FIRST LSB
42,AL ; THEN MSB

data and timer clo

BE 74il DATA E4, 61 : IN AL, 61 ; SAVE CURRENT CONT
ENTS

GH 75il DATA Sil : PUSH AX ; OF PORT 61H, 8255 PO
RT B

CL 76il DATA C, 3 : OR AL, 3 ; TURN ON SPEAKER DATA
CN 77il DATA E6,61 : OUT 61,AL ; AND TIMER INPU

T CLOCK
FN 78il • Expend the required amount of time
KH 79il DATA 89, D 1 : MDV ex, DX ; LOOP FOR THE SPE

CIFIED
GF 8i10 DATA 51

DS.
PUSH ex; NUMBER OF MILLISECON

JN 81il DATA B9,4, 1 : MOV ex, 1il4 ;EACH 1il4 LOOP
TAKES ONE

EN 82111 DATA E2,FE : LOOP 012C
MES THE NUMBER

MILLISECOND, TI

LI 83111 DATA 59 : POP ex ; OF ITERATIONS SPECIF
IED

127

Music and Sound

HE 840 DATA E2, F7 : LOOP 0128 ; BY THE DURATIO
N TABLE ENTRY.

EL 850 • Sound completed, time for another
JL 86'1.1 DATA 58 : POP AX ;REINSTATED THE SAVED

8255 STATE
ED 870 DATA E6,61 OUT 61,AL ;AND GO GET THEN

EXT
IK 88'1.I DATA EB,D'1.1 .JMP 01'1.16 ; SET OF TABLE ENT

RIES.
LE 890 . All entries done, exit back to caller
GB 900 DATA lF :SDN POP DS ;ONLY NEEDED IF CALLI

NG FROM BASIC
Pl 91'1.I • for a COM file version, use • CD 20 '1.lflJ

: INT 2'1.1" for the line below
BE 92'1.1 DATA CA, '1.1'1.I, 0'1.1 : RETF '1.lflJflJ ; RETURN TO BA

SIC
PA 930 DATA '1.1,0 UNUSED FILLER
JI 940 • TONE LENGTH AND FREQUENCY TABLE STARTS

AT ROUTINE+3C HEX ($TB BELOW)
HB 950 •
BJ 960 •
PG 970

JA 980 •
NL 990 •

Table is made up of 4 byte entries;
2 bytes DX.value; Duration of tone
2 bytes CX value; Frequency of tone

End of table indicated by DX= 00
:$TB actual sound table sta

rts here
18 1'1.100 DATA '1.14, '1.13, C'1.1, '1.1'1.I : SAMPLE TONE ONE
BH 1'1.110 DATA DC, '1.10, SC, '1.10 : SAMPLE TONE TWO
gp 1'1.120 DATA 00,02,50,'1.10 : SAMPLE TONE THREE
El 1'1.130 DATA 00, '1.10, 0'1.1, 00 : END OF TABLE ENTRIES
BC 1'1.140 DATA I*

PCjr Complex Sound Generator Method: 1/0 Ports at COh
and 61h
The PCjr's sound subsystem includes a Motorola MC14529B
sound multiplexor chip used to select a sound source to be di­
rected to all the audio output connectors: television, composite
video, direct-drive (RGB) monitor, and audio-out jack. Soft­
ware selects the desired sound source by setting bits 5 and 6
of port 61h. Figure 3-4 illustrates the input and output connec­
tions attached to the sound multiplexor chip. Be sure to set
only bits 5 and 6, because corrupting the other bits in this port
can cause some bizarre things to happen to your PCjr.

The ROM BIOS initializes this port during the power-on
sequence to select channel 2 of the 8253 timer as the default
sound source.

128

Music and Sound

Figure 3-4. PCjr Output Sound Source Selection

Port 61h, bits 5 and 6

1 1

0 0

1 0

0 1

TI SN76496 CSG chip -

8253. timer chnl 2 -
1/0 channel audio in -
Cassette audio in -

MC14529B

Multi­
plexor

Composite monitor audio_

TVaudio-

Audio jack-

Direct-drive audio -

IBM refers to the sound chip used in the PCjr as the
"Complex Sound Generator," although the manufacturer,
Texas Instruments, titles it the "SN76496 Programmable
Tone/Noise Generator." Throughout this section, we'll be
referring to it simply as the sound chip.

You can request a data sheet for the sound chip from your
local TI distributor from their Custom Logic Circuits library,
document D2801 (November 1983). Unfortunately, application
notes are not included, and the bulk of the information in the
data sheet is concerned with operating conditions and elec­
trical characteristics. The PCjr Technical Reference manual con­
tains most of the meat from this data sheet and frequently
quotes it.

The sound chip incorporates three programmable tone
generators (voices) that can produce tones through the entire
range of human hearing, a programmable noise generator, a
separate attenuation control for each voice, and simultaneous
mixed output. Separate volume controls allow a range of 2-28
decibel attenuation, as well as settings for full volume and no
volume.

Unfortunately, the resolution of the frequency range
(36.449 cycles) does not permit the same accuracy of tone that
can be achieved with the direct or timer method of sound
production.

Also, the Technical Reference manual is somewhat confus­
ing in the method used to number the bits of the registers in
the sound-system section. The bits are numbered in the reverse

129

Music and Sound

order from the rest of the manual, with the low-order bit la­
beled bit 7, downward to bit 0 for the high-order bit. This
reversal obviously occurred when the TI data sheet infor­
mation was blindly incorporated into the manual. We will
remain consistent with the power-of-two method used else­
where in the manual and will label the bits from low to high
order as bits 0-7.

Figure 3-5 restates the command register data formats
with conventional bit numbering.

Figure 3-5. PCjr Complex Sound Generator Command
Formats

Frequency (double or single byte)

1 Reg addr 0 Low data
r2 rl rO £3 £2 fl fO

Bit 7 6 5 4 3 2 1 0

Noise source

1 Reg addr X FB Shift
r2 rl rO nfl nfO

Bit 7 6 5 4 3 2 1 0

Attenuation

1 Reg addr 1 Data
r2 rl rO a3 a2 al aO

Bit 7 6 5 4 3 2 1 0

0 X High data
£9 fB £7 £6 £5 £4

7 6 543210

Shift rate

FB 00 = 6991
01 = 3496

l=white 10 = 1748
O=periodic 11 = Voice 3 out

The meaning of zero when used as an attenuation value is
not stated in the Technical Reference manual. Zero causes no
attenuation (full volume), while the occurrence of all ones (Fh)
turns the volume off (full attenuation).

Some early books about the PCjr have used the formula
(1193180/32)/frequency, or 37287 /frequency, to calculate the
ten-bit frequency divisor. This is clearly incorrect and is based
on the assumption that the input clock for the sound chip op­
erates at 1.193180 megahertz, which is not the case. Use the

130

Music and Sound

formula in the Technical Reference manual, 3579540/(32*fre­
quency), to obtain the correct frequency divisor. Since the
resolution of the ten-bit frequency divisor is 36.449 cycles,
some low notes may not be accurately pitched.

Again, no BIOS or DOS service routines are provided for
the sound chip, but BASIC provides high-level language sup­
port. The SOUND statement ON/OFF parameter specifies
whether the sound chip or the 8253 timer chip is used, with
OFF causing the 8253 to be used. The BEEP statement selects
whether or not the external audio connectors are used, with
BEEP ON selecting external audio. BEEP ON and SOUND
OFF signify that the 8253 is to be used with the external
connections and the internal speaker. Table 3-2 shows the
meanings of the possible combinations that the BEEP and
SOUND statements may be given. Other BASIC statements
that support sound production are PLAY, ON PLAY, and
NOISE.

Table 3-2. PCjr BASIC SOUND and BEEP Settings

External Internal
SOUND BEEP Audio-out Speaker Chip

ON ON X CSG

ON OFF X CSG

OFF ON X X 8253 (default)

OFF OFF X 8253

The first example, Program 3-6, is an elementary program
that saves the present value of the sound source selection bits
from port 61h, sets each voice to a frequency, enables the
sound chip for output, lets the sound occur for a length of
time, and then disables the sound chip output. ·

The subroutines in this program could be used for general
purposes in your own programs, but the BASIC SOUND state­
ment does all this for you already. Our purpose here is to
understand the mechanics of the sound chip.

You must be using a TV, monitor with audio input, or the
audio-output jack on the PCjr to hear the sound output of this
and the following program.

The second demonstration, Program 3-7, is a bit lengthy,
but it will provide hours of enjoyment and will fire your

131

Music and Sound

imagination with marvelous ideas about how to experiment
with the sound chip. Don't be surprised if you grab the atten­
tion of the whole household with this program. Because it is
written entirely in BASIC, the amount of information dis­
played about the active state of the sound chip is minimized
to allow fast response to user-controlled keystrokes.

When you start the program the first time, press the Enter
key as the first command to set default frequencies and vol­
umes. Now try this: Press the space bar to silence all voices
and press 4 to select voice 4. Now press PgUp to turn the vol­
ume up full. Press cursor right twice to select voice 3 output
for voice 4 input. Now press 3 to select voice 3. Notice the ef­
fect on voice 4 (the only one with volume on) as you vary the
frequency of voice 3 by using the right and left cursor keys.
Press Del to see what the same noise in white mode sounds
like. Now press Ins to select periodic noise. Go back to voice 3
by pressing 3. Turn up the volume for voice 3 by pressing
cursor up till a 3 volume appears next to the voice 3 indicator.
Now you can hear how voices 3 and 4 change together as you
press cursor right and left. Notice again the effect that pressing
Del has on the noise generator.

Program 3-6. Sound Chip Fundamentals Example Program
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

BD 188 'Beepcsg1; CSG simple demonstration
EE 118 • Set voice, freq, vol, and durat

ion below.
OP 128 • vol=f/J is loudest, 15=off
HK 131'/J •
BE 140 FREQ.SELECT.BYTE.1=2"'7 'High order bit val

ue
EL 15" CSGPORT=&HC0: PORTB. 8255=8cH61
~ 168 OLD.8255=INP(&H61> •save old sound source

byte
DB 1 70 DI SABLE. BEEP. CASS= 16
10 180 ATTENUATION=2"'4 'Bit indicating attenuatio

n register
BH 190 SND. SOURCE=&cH68 • CSG sound source
HD 28flJ VOICE=0:FREQ= 262:VOL=4:GOSUB 348 •voice 1

= middle C
FD 218 VOICE=1:FREQ= 338:VOL=flJ:GOSUB 34flJ "Voice 2

= E above mid C
HN 228 VOICE=2:FREQ= 392:VOL=S:GOSUB 348 'Voice 3

= G above mid C
OP 231'/J VOICE=3:FREQ=12ff:VOL=15:GOSUB 34flJ 'Noise

voice off

132

Music and Sound

CN 240 DURATION=31'1>H 'An arbitrary duration
EL 25e GOSUB 29flJ •Let• s hear them al l now!
LH 261'1> END
NC 27flJ :
~ 2SflJ •enable the CSG as the sound source for th

e duration
~ 29flJ OUT PORTB.8255,SND.SOURCE+OLD.8255 'OR the

sound source port
JI 3flJflJ FOR X=l TO DURATION:NEXT 'Count down the d

uration value
CL 310 OUT PORTB.8255,0LD.82551RETURN 'Put back

the old sound source
NJ 32flJ :
~ 33flJ •set the frequency and attenuation for the

voice
JF 34e N=357954e! / (32tFREQ> •calculate the diviso

r
CA 3Se LSN=N MOD 2.,.4 'least sig nybble of divisor
~ 36e MSN=N/2 4 •most sig 6 bits of divisor
AA 37flJ VOICE=VOICEt2 5 •voice in bits 6-5
JD 3Se OUT CSGPORT,FREQ.SELECT.BVTE.l+VOICE+ATTEN

UATION+VOL
GD 390 OUT CSGPORT,FREQ.SELECT.BVTE.l+VOICE+LSN •

freq least sig. nybble
LP 401'1> OUT CSGPORT,MSN:RETURN 'freq most sig. 6 b

its

Program 3-7. Sound Chip Keyboard Controller Program
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

FE 10 'BEEPCSG2; Complex Sound Generator method o
f sound production <PCjr)

DB 2e • This program turns the PCjr keyb
oard into a control panel

CN 30 • for the complex sound generator.
Directions are shown when

KF 4e • the program is started.
PC 5" • · Use Fn-Break to end the program

<may require several attempts> * 6" • --- Instructions and Initialization ---
CD 7e CLS:PRINT"REAL-TIME COMPLEX SOUND GENERATOR

PLAYER"
IE 80 PRINT" Voice selection: 1 2 3 4 keys, all f

allowing actions on last voice selected"
JA 98 PRINT" space bar=-silence all, enter key=mi

d C/aid vol all"
JB Ule PRINT " Cursor keys: "'=up volume, vzdow

n volu11Nt"

133

Music and Sound

OE 118 PRINT" Cursor keys: <~down freq, >=up
freq"

OK 128 PRINT" Home=low freq, End=high freq, PgUp
•high vol, PgDn=low vol"

66 138 PRINT" In voice 4: Ins=periodic noise, De
laMhita noise"

ED 148 LOCATE 18, 1:PRINT " Voice,attenuation"
~ 158 DIN VOL<4>,FREQ(4)
OK 168 FOR X=l TO 3:FREQ(X)=262:VOL<X>=S:NEXT:VOL

(4)•18 'setup initial values
FS 178 OUT &cH61,INP(&H61) OR &:H68 'TI76496 CSG is

sound aource
~ 188 • --- Get a key, top of main program loop

AH 198 KS=INKEYS:IF KS="" GOTO 198 •wait fo
r • key

EF 288 IF LEN(KS>=2 THEN KS=MIDS(KS,2,1> 'elimina
te lead 8 of extended scan code

JJ 218 • because of above line, capital keys c
an be used instead of cursor keys

LH 228 • if the user desires. See the INSTR st
atements below for details.

~ 238 • --- Adjust frequency ---
EB 248 K=INSTR("GKMO",KS> 'freq lowest,lower,hi

gher,highest
• 258 IF K=8 GOTO 438 •not a freq adjustment
~ 268 IF VOICE=4 GOTO 358 •voice 4 gets one of

four possible values
~ 278 ON K GOSUB 288,298,318,338:GOSUB 758:GOTO

198
~ 288 FREQ(VOICE>=&H3FF:RETURN 'lowest frequenc

y
~ 298 FREQ(VOICE>=FREQ(VOICE)+4:IF FREQ(VOICE>>&

H3FF THEN FREQ(VOICE>•lrH3FF 'lower
NII 388 RETURN
KC 318 FREQ(VOICE)=FREQ(VOICE>-4:IF FREQ(VOICE><e

THEN FREQ(VOICE)=18 'higher
NB 328 RETURN
~ 338 FREQ(VOICE>=18:RETURN 'highest frequency
JL 348 •
~ 358 ON K GOSUB 368,378,398,418:GOSUB 838:GOTO

198 •select the proper voice 4 mode
LS 368 FREQ (4) =8: RETURN • n/512
LH 378 FREQ (4) =FREQ (4) -1: IF FREQ (4) <8 THEN FREQ (4

)a8 •freq lower
NM 38fJ RETURN
LS 39fJ FREQ(4)=FREQ(4)+1: IF FREQ(4) >4 THEN FREQ(4

)z4 •freq higher
1111 4ff RETURN
~ 41fJ FREQ(4)=3:RETURN •use voice3 output

134

Music and Sound

~ 428 • --- Adjust attenuation fr-loudest, 14=sof
test, 1s~off ---

&C 438 K=INSTR("IHPQ",KS> 'vol highest,higher,lo
wer,lowest

JF 448 IF K=8 GOTO 538
EJ 458 ON K GOSUB 468,47f1J,49f1J,518:GOSUB 888:GOTO

198
00 468 VOL(VOICE>=8:RETURN 'no attenuation, lo

udest
JS 478 VOL(VOICE)=VOL(VOICE>-1:IF VOL(VOICE><f1J TH

EN VOL(VOICE>=8
DD 48f1J RETURN 'less attenuation, more volume
00 498 VOL(VOICE>=VOL(VOICE>+l:IF VOL(VOICE>>15 T

HEN VOL(VOICE>•15
~ 5ef1J RETURN •more attenuation, less volume
~ 518 VOL(VOICE>=15:RETURN 'full attenuation,

no volume
~ 528 • --- Select voice by number
JA 538 K=INSTR("1234",K$)
00 548 IF K=8 GOTO 578
CB 558 VOICE=VAL (K$): GOSUB see: GOSUB 86f1J: GOTO 198
OD 568 • --- Adjust noise type, periodic or white

OF 578 K::zINSTR("RS",KS>
LP 58e IF l(::z8 GOTO 638
DJ 598 ON K GOSUB 688,618:GOSUB 838:GOTO 198
M 688 NOISETYPE=8:RETURN
~ 618 NOISETYPE~l:RETURN
61 62f1J • --- Center or silence voices
~ 63f1J K=INSTR<CHR$(13)+CHR$(32),K$) 'center all

voices at mid vol/mid c
LO 64f1J IF K=8 GOTO 19f1J •or silence all voices
HJ 6Sf1J ON K GOTO 66'1.I, 68'1.I
FN 66fJ FOR X=l TO 3:VOL(X)=8:FREQ(X)=252:NEXT

•set voices to vol B, mid c
DB 67'1.I FREQ(4)=1:VOL(4)=15:GOSUB 7N:GOTO 19f1J

•and voice 4 vol off, first freq
PD 68f1J FOR X=l TO 4:VOL<X>=15:NEXT:GOSUB 748:GOTO

198 'Silence all voices
EP 698 • --- Set frequency and/or volume for voic

es ---
KD 788 GOSUB 728:GOSUB 748:RETURN •set all freq

and vol
1111 718 •
CL 728 V=VOICE:FOR VOICE=l TO 4:GOSUB 758:NEXT:VO

ICE•V1RETURN •set all freq
HA 73f1J •
DB 748 V=VOICE:FOR VOICE=l TO 4:GOSUB 88f1J:NEXT:VO

ICE~V1RETURN •set all vol

135

Music and Sound

NC 750 • --- Set frequency for voice
LN 768 Vl=FREQ(VOICE> MOD 16:V2=INT<FREQ(VOICE)/1

6)
~ 778 OUT &HC0r&H80+((VOICE-1>*32>+V1
LB 780 OUT &HC0, V2
ND 790 RETURN
DK 800 • --- Set volume for voice ---
~ 810 OUT &HC0,&H80+<<VOICE-1>*32>+&H10+VOL(VOIC

E>
NO 820 GOSUB 860: RETURN
DL 838 • Set noise type
~ 840 OUT &HC0,&HE0+NOISETVPE*4+FREQ(4):RETURN
KK 850 • --- Show current voice and volumes ---
KB 860 FOR X=l TO 4:LOCATE 18+X, 1:PRINT" "; :NEXT
HD 870 LOCATE 18+VOICE, 1: PRINT"*"; VOICE; HEX$ (VOL (

VOICE));
NC 880 RETURN

When controlling the sound chip from a machine lan­
guage program, you'll soon discover that timing loops, the
8253 timer, or INT lCh (the user timer tick interrupt vector at
70h) is needed to control the duration of the sounds being
produced. This can get somewhat complicated when notes
from multiple voices are to be timed concurrently. You'll want
to minimize the path length of any routine that times note
durations to prevent the distortion of the time resolution. But
still the routine must at least signal the silencing of a particu­
lar note when its time is up and begin the next note unless the
end of the melody has been reached.

If 18.2 times per second (55 milliseconds) is not a fine
enough resolution for your purposes, then you must consider
either the 8253 timer channel 2, timing loops, or changing the
frequency of timer ticks. When changing the timer tick fre­
quency, you'll want to front end the INT Sh routine (by
changing the vector at 20h to point to your own routine) and
pass control to the normal routine (if necessary for disk motor
timing control) only every 55 milliseconds. Some factor of
65,536 will probably prove best for modification of the timer
tick frequency to be loaded into port 40h. BASIC uses this
method for sound timings. BASIC replaces the system timer
tick interrupt routine vector to intercept the 8253 timer O inter­
rupt. It also causes the interrupt to occur four times as often
(72.8 per second) by replacing the 8253 channel O counter. Its
interrupt handler routine then branches to the normal timer

136

Music and Sound

tick interrupt routine once every four 8253 channel 0
interrupts.

Sound-Related Locations and References
"Location," below, shows PC2 values, then PCjr if they differ.
The Technical Reference manual page numbers are for the XT
manual and indicate the beginning or most significant page.
Examine the context of the surrounding pages as well.
Location: Port 6th
Label 8255 port B
Usage Speaker data enable bit 1, timer speaker gate bit 0;

additionally, PCjr: disable internal speaker bit 4,
sound source multiplexor bits 5-6

TRM pg: 1-10, 1-20; PCjr: 2-30, 2-32, 2-82

Location:
Label
Usage
TRM pg:

Ports 42-43h
8253 timer channel 2 counter
Output frequency divisor
1-20; PCjr: 2-85

Location: PCjr Port COh
Usage Sound chip command port
TRM pg: PCjr: 2-87

Basic provides several statements that may be used for
sound functions. Check your BASIC manual for the following
statements: BEEP, PLAY, ON PLAY, and SOUND.

Sound-related schematic diagrams may be found on the
following pages of the TRMs:

8253 timer
8255 PIA
Speaker

PC2 PCjr
D-9 B-11
D-10 B-11
D-9 B-11

B-12, B-14 sound chip, multiplexor

137

4
Video

Since the monitor image is the primary machine/human inter­
face, the characteristics of the images that a program displays
are usually the major criteria on which a program is judged.
These characteristics include the appropriate use of color or
monochrome attributes; the aesthetics of the format and de­
sign of the images displayed; the speed and smoothness with
which the screen is updated; the use of graphics characters or
screens; and the general impression of a rational, attractive, or­
ganized, easy-to-comprehend set of information.

As expected, diagrams and tables can have more visual
impact than straight text. Also, indications that processing is
taking place are appreciated-no one should have to wonder
if the machine has locked up or is just busy processing infor­
mation. A suggestion of humor in your displays, if not over­
done, adds a friendly touch. Most of all, video displays should
give a feeling of visual excitement.

In this chapter we'll concentrate on the memory and 1/0
ports used by the video display adapters and we'll see how
programs can use them to do interesting and useful things.
The discussion will touch on video hardware, DOS service
routines, and BASIC language support of video only when
relevant to programming the display adapters.

DOS and BASIC support of the graphics capabilities of
the PC and PCjr are impressively powerful and complete.
Many excellent references thoroughly cover those services.
There are also several good books that describe the BASIC
graphics commands and provide example programs.

Although the theory and details of video presentation
electronics used in monitors and televisions are fascinating
subjects, they are beyond the purpose and scope of this book.
Technical intricacies are best left to expert references on those
subjects. We'll be discovering how the various types of display
devices (RGB monitor, composite monitor, monochrome mon­
itor, and television) differ in capabilities and support.

The PCjr and 3270 /PC have demonstrated that using the
provided service routines for video is extremely important in

141

Video

maintaining compatibility with future machines and operating
systems. IBM has stated that the direct manipulation of dis­
play adapter ports and memory should be avoided.

Then why do many commercial-quality software pro­
grams (including many marketed by IBM and even IBM-logo
programs) ignore this admonition? For the sake of adequate
performance and control. For example, BIOS INT 10, function
Eh (write TTY character to current cursor position) may seem
to be a fast and straightforward task for the BIOS to do. In
actuality, up to four other INT 10 functions may be called,
each saving and restoring registers whether they matter or not.
When faced with the choice of this level of overhead or simply
placing the character directly into the video display memory
where it will eventually be placed by the service routine, the
diversion from standard service routines is understandable.

While there is no easy solution to this dilemma, many
programmers have taken the approach of replacing the inter­
rupt vectors for less-efficient ROM service routines to point to
their own optimized routines that use the same parameters. If
a compatibility conflict should surface in the future, the vector
overlay to the programmer's routine is simply omitted, causing
the program to use the system-provided routine until an im­
proved, and compatible, routine can be designed. IBM is com­
ing to understand these trade-offs and is attempting to quietly
accommodate both the DOS /BIOS-support-service method
and the direct-video-memory-manipulation method for future
compatibility's sake.

In any case, there is much to learn about how mono­
chrome and color/graphics adapters function on the PC, how
to use them, how the PCjr is different, and how to use the ex­
tended capabilities of the PCjr.

Adapter Components
The diagram in Figure 4-1 is not meant to be a comprehensive
diagram of the display adapter's internal workings, but it does
show the conceptual relationships of the components.

Notice that the character generator is used only for text
modes, and that the PC can directly access the display buffer
through the system bus address lines.

The monochrome display adapter has fast static RAM and
an 8088 adapter switch circuitry onboard to prevent simulta­
neous access to the display buffer. The color/graphics display

142

Video

adapter does not, which causes glitches or snow. You'll learn
more about avoiding these glitches later in this chapter. The
PCjr incorporates the components of the color display adapter
on the motherboard of the system rather than on a separate
option card. Although the architecture of this built-in (inte­
grated) adapter appears similar to the PC, there are major dif­
ferences, including the location of the display buffer (main
RAM), raster generation (done with a Video Gate Array,
VGA), 8088 / 6845 access to the display buffer (controlled by
the VGA), the character generator ROM (2K rather than SK,
since no monochrome characters are included), port usage,
color palettes, and additional video modes. Figure 4-2 shows
the overall architecture of the PCjr integrated display adapter.

Figure 4-1. Conceptual Architecture of Display Adapter

System Data Bus
-------------, .------------

Character
Generator ------.

ROM~

Text
Modes Path

Address
Lines

Display Buffer
Mono Color

4K 16K

I I
Graphics

Modes Path

~845

Control

1----_ ___.I ..__I _ ____,

Raster Generator

Adapter

Ports

Mono: video, intensity ➔ <- RGB: red, green, blue, intensity

Display
Unit

s
y

s
T
E
M

I

I
0

B
u
s

143

Video

Figure 4-2. Conceptual Architecture of PCjr Integrated
Display Adapter

System Data Bus
----------- ----------

Text
Modes Path

Address
Lines

.Js-L

Main Memory
Display Buffer

16K

,-.sr­
Graphics

Modes Path
Control

.____ _ ___.I ._I _ ____,
Video Gate Array

Display
Unit

Adapter

Ports

VGA

Ports

s
y

s
T
E
M

I

I
0

B
u
s

In Figure 4-2, the unconnected lines to the display buffer
2 indicate that the VGA, by way of a CRT /processor page reg­
ister, controls the part of main RAM that will be used as the
display buffer. Since the PCjr display buffer can start on any
16K boundary within the first 128K of memory (64K on an
unexpanded PCjr), compatibility with the PC's B800h and
B000h display buffer addresses is maintained by diverting any
reference to those areas of memory to the display buffer that
is selected in the processor portion of the CRT /processor page
register.

The CRT portion of the page register determines the
buffer to be used to generate the monitor display screen, while
the 6845 registers determine which page within the buffer is
to be displayed on the screen.

144

Video

Since the main RAM of the machine is also used for a
display buffer, 8088 and 6845 access to the memory must be
arbitrated somehow. The VGA causes the 8088 to wait when­
ever the 6845 needs access to the video display memory. A
happy outcome is that glitches never appear.

When the 64K display expansion is added to the PCjr, all
the even-addressed bytes are located in the first 64K of RAM
and the odd-addressed bytes are in the 64K expansion. With
this interleaving technique, the memory access load is now
shared between the 64K memory chips, rather than all being
borne by one of them.

Because of the 8088 "wait-states" created by the VGA
when the 6845 is accessing RAM, you can expect programs
that run in the first 128K to run slower than on a PC, only 50
to 75% as fast. Memory refresh is eliminated on the PCjr since
the 6845 reading of the display buffer causes the whole of
memory to be refreshed automatically.

When expanding the PCjr above 128K, the additional
memory must be supported by its own memory refresh
scheme. Also, the vendor of the memory must supply soft­
ware that repositions the PCjr default video-display memory
so that it doesn't sit right in the middle of RAM at its normal
position of 112K to 128K. Otherwise, the advantage of hav­
ing additional memory would be negated by a hole in mem­
ory at 112K for the display memory. IBM's approach in the
PCJRMEM.COM module is to relocate the display buffer at the
lowest address available and allow the user to choose the
amount of memory to be reserved for additional video pages.
We'll discuss the concept of video pages in detail later in this
chapter.

On the PCjr, the 4-color, high-resolution graphics mode
(640 X 200) and the 16-color, medium-resolution graphics
mode (320 X 200) require installation of the 64K display/
memory enhancement, since two 16K buffers are used to sup­
port these modes. When these modes are used, the CRT/
processor page register points to the first (lower addressed) of
two consecutive 16K buffers.

Monochrome/Color Comparison
Table 4-1 describes the viewing requirements satisfied by the
different monitors. Prices of monitors will erode as time goes
on, particularly RGB and color composite monitors. Since the

145

Video

IBM monochrome monitor gives the clearest 80-column text,
you might consider it for intensive word processing tasks. Al­
though 80 columns and color are obtainable on televisions,
they are usually unsatisfactorily blurry. Color composite mon­
itors may be marginally acceptable for color, depending on the
quality of the monitor.

The IBM term all-points addressable refers to the ability to
generate graphics displays on the color/graphics adapter at­
tached monitor by setting picture elements (PELs) individually.
This section will use the term graphics for the all-points­
addressable display modes on the color adapter. Text will be
used for the nongraphics display modes that are available on
both monochrome and color adapters.

In the graphics display modes, characters may be dis­
played on the graphics screen. We'll call these graphics charac­
ters. The term monochrome will refer to the IBM monochrome
monitor mode (unavailable on the PCjr), and black and white
(b /w), to color-capable modes with the color burst signal dis­
abled. So the available display modes with both monochrome
and color adapters are monochrome text, b /w or color text,
and b /w or color graphics with graphics characters.

Table 4-1. Viewing Requirements Satisfied by Monitor Types
Monitor Type Color Graphics 80 Columns Starting Price
IBM monochrome no no yes $300
B /W television no yes* no 100
Color television no yes* no 250
B /W composite not yes yes 75
Color composite maybe yes* no 200
RGB yes yes yes 400
• Usually limited to medium resolution
t Shows as shades of gray, green, or amber

Determining and Switching Monitors
Since the PC doesn't include a display adapter as standard
equipment (the PCjr does), many possible combinations of dis­
play devices may be attached to the computer. It is our pro­
gram's responsibility to determine exactly the display
environment. A program will need to do slightly different
things depending on the display being used. Of course, there
may be more than one monitor type attached. We may want

146

Video

Table 4-2. Monochrome and RGB Monitor Characteristics
Do not attempt swapping monitors or adapters; permanent
damage to monitors and/ or adapters could result!
Characteristics Monochromet RGB Color*
PEEK(&h410) AND &H30 = &H30 <> &H30
Buffer address &HB000 &HB800

&HB800 or &HB000 on PCjr

Buffer size &HlO00 (4K) &H4000 (16K)
16K or 32K on PCjr

Pages in buffer 1 1-4
half to four on PCjr, multiple buffers may

be used
Buffer memory static/no parity dynamic/no parity

PCjr: dynamic, no parity
6845 start ports &H3B4 &H3D4

&H3D4-5, &H3DA, &h3DF on PCjr
Band width 16.257 MHz 14.30 Mhz
Horz swe·ep rate
Vert sweep rate
Horz PELs
Vert PELs
Characte.r box size
Character size
(+ descenders)

Characters in char ROM

8088 access

Data rate
Usht pen usable

18.432 KHz
50 Hz
720

350
9 X 14

7 X 9*

256

15.75 KHz
60 Hz
640
200
8 X 8

7X7or5X7
no 5 X 7 on PCjr
text characters: 256
graphics characters:
128 in ROM, 128 in
RAM

256 in ROM on PCjr
when not refreshing at any time

PCjr: when not refreshing
1.8 Mbytes/sec 1.5 Mbytes/sec
no yes

* Eighth dot of character propagated into ninth dot for BOh-DFh characters for
nonbroken form design characters.

t Monochrome-High band width and nonstandard sweep rates require a special
monitor.

t Color RGB-lntensity signal ignored by some monitors, causing only eight colors to
be available.

147

Video

our programs to use the monitor type best suited for the pro­
gram or ask the user which monitor is preferred. Refer to Ta­
ble 4-2.

On the PC, presence of a color adapter card doesn't al­
ways mean that an RGB monitor is available. Any type dis­
play might be in use. The same is true of the PCjr. Your
well-designed and attractive color menu would appear in
shades of gray on a b/w television or composite monitor. Be­
cause of this, you may want the user to select the monitor
type and number of columns, regardless of the environment
detected by the program.

The routines listed below do several useful things, such as
determining the monitor in use at boot time and the adapters
available, switching monitors within BASIC, and creating DOS
commands to switch monitors. All these routines work cor­
rectly on the PCjr except for Programs 4-5 and 4-6, which
produce a strange 39-column screen that doesn't wrap around
to the next line, and Program 4-1, since the PCjr has no
configuration switches to interrogate.

Program 4-1. Which Monitor Used at Boot Time
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

KO UJ • read monitor configuration switches
JO 20 •
EC 3QI 'Read and store monitor captions
NC 40 FOR X==QI TO 3: READ MONITORS'S(X): NEXT
JB s0 •
QJ 6QI 'Obtain monitor type switch info
BL 70 OUT 8cH61,&H84 'Set port for switch read
EH SQ! MONITOR=< INP (8cH6QI) AND 8cH3QI) / 16 • separate

monitor type, shift to Ql-3
PB 9QI OUT 8cH61,8cH4QI 'Set port for keyboard activ

ity
SE lQl(!I •
OF 11(!1 • Display the configuration found
OK 12(!1 CLS: PRINT"Noni tor configuration switches

aet for:"
90 138 PR I NT MONITORS$ <MONITOR>
LC 14(!1 END
HO 158 •
PE 160 " Nonitor type Captions
CA 17(!1 DATA "FUTURE DISPLAY ADAPTER
NH 18QI DATA "COLOR ADAPTER (4Qlx25)
DF 198 DATA "COLOR ADAPTER (88x2S>
CL 208 DATA "l'IONOCHROME ADAPTER (88x25)

148

Video

Program 4-2. Which Monitors Available
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

LL UI • deter111ine monitors available
FN 15 • Checks for the presence of a 6845 control l

•rat ••ch adapter location
JO 28 •
LF 38 DEF SEGalcHFFFF:IF PEEK<&cHE>=&cHFD THEN PRINT

"PCjr COLOR AVAILABLE"1END
DJ 48 IF INP UcH3BS> < > &cHFF THEN PRINT"MONO AVAIL

ABLE" ELSE PRINT"MONO MISSING"
10 5" IF INP (&cH3DS> < > &cHFF THEN PRINT"COLOR AVAi

LABLE" ELSE PRINT"COLOR HISSING"
DI 68 END

Program 4-3. Which Monitor Is Active
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

Eft 18 • determine active monitor
KA 28 PRINT"The active monitor is ";
DA 21 • or change l i nes UI and 2fll
CG 22 • UJ • Current video is MONO COLOR
PH 23 • 28 DEF SEG=8: IF PEEK <&cH449> = 7 THEN POR

T=&H3BB ELSE PORT=&H3DB
OH 311 • --- direct BASIC ---
CF 48 DEF SEG=8: IF < PEEK < &cH4 UJ > AND &cH3'1J > = &cH30

THEN PRINT"mono" ELSE PRINT"color"
CH 511 END
AA 68 • --- BASIC using SRVCCALL --­
EO 78 INTERRUPT'Y.=&cH 11 : AH'Y.=&cH8: AL'Y.=fll
ftl Bfll GOSUB 22fll •call ml routine
ftJ 98 IF (AL'Y. AND &cH3'1J> = &cH3fll THEN PRINT"mono" E

LSE PRINT"color"
~ 180 • --- direct machine language
AD 118 REH xor ax,ax
LP 128 REN mov ds,ax
CD 138 REH mov al, [418] ;equip flag
ES 148 REH and al , 30
~ 158 REM cmp al,30
Nft 168 REH jne color
~ 178 • ---- BIOS machine language
~ 188 REM int 11 ; get config
FA 198 REM and al, 30
~ 288 REM cmp al,30
ftD 218 REM jne col or

149

Video

Program 4-4. Switching Monitors
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

1111 188 • switch to color monitor while in BASIC
66 1UI •
~ 128 • --- set equipment flag ---
Ell 13QJ DEF SEG=fiJ: POKE &cH410, < PEEK < &cH41 QI> AND &cHCF

> OR &cH18
~ 148 • --- call int 18 to set mode B0x25 color

DB 158 DEF SEG
PH 168 ASMROUTS=CHRS<&cHBS)+CHRS<&H3)+CHRS(&H0> •

mov ax,tlJ8tlJ3
ED 178 ASMROUT$=ASMROUTS+CHR$(&cHCD)+CHR$(&H18)

int UI
IJ 188 ASMROUT$=ASMROUTS+CHR$(&HCA)+CHR$(&H0>+CHR

$ (lcHtlJ> • retf
~ 198 ASMROUT!=VARPTR<ASMROUTS>
KC 288 ASMROUT!=PEEK(ASMROUT!+1)+(PEEK<ASMROUT!+2

>•256)
LIi 218 CALL ASMROUT !
Ill 228 •--- start with clean screen and make curs

or visible
SN 238 CLS: LOCATE , , 1, 6, 7

Program 4-5. Create COLORMON.COM for DOS and BASIC
Color Use
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

IC 188 • create colormon.com for DOS and BASIC co
lor use

66 118 •
JE 128 OPEN "colormon.com" FOR OUTPUT AS #1
PA 138 READ XS: IF XS=" I*" GOTO 150
HE 148 PRINT 4t1,CHR$(VAL("&cH"+X$));:GOTO 130
M 158 CLOSE #1:SYSTEM
~ 168 • --- switch to color routine ---
~ 188 DATA 1E : PUSH OS
IH 198 DATA 58 : PUSH AX
~ 2-8 DATA 31,C8 : XOR AX,AX
~ 218 DATA BE,D8 : MOV DS,AX
~ 220 DATA Al,18,84: MOV AL,C410J
CN 230 DATA 24, CF : AND AL, CF
IIJ 248 DATA 8C, 28 : OR AL, 20
EF 259 DATA A3, Ul,84 : MOV C410J,AL
DO 260 DATA BB, 03, 00 : MOV AX, 3
IIN 270 DATA CD, 10 : INT 10
DB 280 DATA 58 : POP AX
II 29fJ DATA 1F : POP DS
LL 3fJtlJ DATA CD,20 : INT 20 ;EXIT
JH 31tlJ DATA I*

150

Video

Program 4-6. Switch to Monochrome Monitor While in BASIC
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

SJ 1H • switch to mono monitor whi 1 e in BASIC
aa 1u, • •
• 129 • --- set equipment flag ---
• 139 DEF SEG=9:POKE &H418,PEEKC&H418) OR &H38
H 149 • --- call int 18 to set mode monochrome 8

h25 ---
DB 159 DEF SEG
8P 169 ASNROUTS=CHR$ClcHB8)+cHR$C&H7)+CHRS<&H8> •

IIOV a,c,9H7
ED 179 ASNROUTS=ASNROUTS+CHRS<&HCD>+cHRS<&H18) •

int 19
JJ 1N ASNROIJTS=ASl'IROUTS+cHRS (&HCA) +CHRS ClcH8) +CHR

S<lcHflf> •retf
OIi 19e ASNROUT!=VARPTR<ASNROUTS>
KC 2fHJ ASNROUT ! =PEEK <ASNROUT ! +1 >+<PEEK <ASl'IROUT ! +2

> •256>
LN 21e CALL ASMROUT !
NJ 22fJ •--- start with clean screen and make curs

or visible ---
LE 239 CLS1LOCATE , , 1, 12, 13

Use this line to ascertain if a PCjr is enhanced with the 64K
display /memory option:
DEF SEG=O: IF PEEK(&h416)*256+ PEEK(&h415) > 64 THEN
128K.JR$ = ''YES"

Video Modes
Because of the variety of available screen modes, widths, color
sets, and corresponding memory requirements, the possible
video modes and associated BASIC SCREEN statement param­
eters can be confusing.

The contents of the CRT-MODE byte at location 449h
corresponds to the mode value specified to the ROM BIOS set­
mode service (INT 10, AH=0) and returned from the read­
mode service (INT 10, AH=l5h). This screen mode indicator
is saved here by the ROM BIOS after it uses it as an index to
load the 6845 registers with the proper values. These values
are from the tables in ROM that are pointed to by the vector
at 74h (INT lD) and listed in the XT Technical Reference man­
ual on page A-48 (PCjr TRM, page A-82). The CRT-MODE
byte is the definitive description of a mode. Each display
mode has a unique value in this byte.

Table 4-3 summarizes the available video modes and their
characteristics.

151

..... Table 4-3. Summary of Available Video Mode Characteristics (JI
N

449h
ROM BIOS Display BASIC 465h 44Ch 462h
CRT Screen Screen/ 6845 Mode Page Buffer
Mode Characteristics Width/Burst PC PCjr Length Pages
00 40X25 b/w text 0/40/off 2Ch Ch 2048* 8
01 40X25 16-col text 0/40/on 28h 8h 2048* 8
02 80X25 b/w text 0/80/off 2Dh Dh 4096* 4
03 80 X 25 16-color text 0/80/on 29h 9h 4096* 4
04 320X200 4-col graphics 1,2,3,4/0/on 2Ah Ah 16384* 1
05 320X200 b/w graphics 1,2,3,4/40/off 2Eh Eh 16384* 1
06 640 X 200 b/w graphics 1,2,3,4/80/off lEh Eh 16384* 1
07 80 X 25 monochrome text any/any/any 29h n/a + 1 :s:;
08 PCjr 160X200 16-col graphics 3/20/on n/a lAh 16384* a.

(D

09 PCjr 320X200 16-col graphics 5,6/40/on n/a lBh 32768*t 0

10 PCjr 640 X 200 4-col graphics 5,6/80/on n/a Bh 32768*t

* The PCjr may have up to eight display buffers of 16K, each segmented into screen pages of the appropriate length.
t Requires PCjr 64K display /memory enhancement.
:j: Contains 16384 in error; should be 4096.
n/a Not applicable

Video

The mode number stored in 449h is the video mode as
it's known to ROM BIOS, while the mode stored in location
465h is the number that is actually loaded into the PC video
adapter port at 3B8h (monochrome), 3D8h (color), or the
PCjr's VGA register 0. You can read about this register in the
PC Technical Reference manual starting on page 1-141; for the
PCjr see pages 2-64 and 2-67 (as discussed in the Introduc­
tion, all page references are for the XT manual).

In addition, the PCjr has a bit in the 8255 port 61h (bit 2)
that must be set to indicate whether a text or graphics mode is
in effect. The bit may be thought of as a selection switch that
causes the character generator output to go to the VGA (text,
if the bit is 1) or the display buffer contents to be directed to
the VGA (graphics, if the bit is zero). This is described in the
PCjr Technical Reference manual on page 2-31.

Figure 4-3 illustrates the memory available for screen
buffers. The PCjr allows all of its base 128K (assuming the
64K display /memory enhancement has been added) to be
used for multiple 16K display buffers, but the first two,
0K-31K, should not be used since DOS and the application
program reside in this area.

By default the PCjr display buffer is sized at 16K and lo­
cated at the top of the base memory. BASIC allocates addi­
tional display memory (with the CLEAR statement) from the
top of the base memory downward (toward lower memory ad­
dresses). While the PCjr CRT/processor page register is used
to determine the 16K display buffer and the 6845 registers are
used to select the display page, BASIC's SCREEN statement
parameters, VPAGE and APACE, refer to the page number
from the beginning of the current 16K video buffer and change
the 6845 registers appropriately. No mechanism is included
within BASIC to change the CRT/processor page register.

You can tell when a graphics screen mode is in effect be­
cause the cursor changes from a flashing underline to a
nonflashing solid block. An application program can, of
course, change the cursor shape.

The color graphics/adapter has several advantages over
the monochrome adapter for text. It has capabilities for 80- or
40-column line widths; selectable foreground, background,
and border colors; and up to eight pages of text (more on the
PCjr) that may be prebuilt for later instantaneous display.

153

Video

Figure 4-3. Location and Size of Display Buffers
Monochrome 4K

BOOOOh

El
Color 16K

B8000h
14K 14K 14K 14K I

PCjr 128K (96K)
Oh (Don't use) 4000h (Don't use) 8000h

1«1«1«1«1 1«1«1«1«1 14K 14K 14K 14K I
COOOh (64K PCjr default) 10000h 14000h

1«1«1«1«1 1~«~1-«-14-K~l4~K, 14K 14K 14K 14K I
18000h lCOOOh (128K PCjr default)

14K 14K 14K j 4K I 14K 14K j 4K 14K I
You'll notice by looking at the 6845 initialization tables in

the Technical Reference manual that the 6845 registers are
initialized with the same values for modes 0-1, 2-3, and 4-6.
The difference between these is that the color burst signal is
enabled or not via the fourth port on the adapter (3B8h for
monochrome or 3D8h for color), and the contents of the
CRT_MODE_SET byte at 465h is different. The value stored
in location 465h for each mode is shown in Table 4-3. In 640 ·
X 200 b/w graphics mode (6), the overscan register port at
3D9h and the CRT_pALETTE byte at 466h are also set dif­
ferently from the 320 X 200 modes (4-5).

Memory locations 449h through 466h constitute an area
in which BIOS records the current settings of various CRT­
related values. Many of the 6845 control register ports are
write-only; this area has been provided so that you can obtain
the current values for the display adapter. Because the settings
always reflect the active display adapter, the information here

154

Video

is especially valuable. This chapter will explore the area in de­
tail, and we'll revisit the whole area later in the book.

The BASIC DRAW statement, M subparameter (Move ab­
solute or relative), suffers from poor documentation in the
BASIC manuals. BASIC 1.1 doesn't make it clear that variables
may be used. BASIC 2.0 explains this but then offers an in­
correct example of M + Xl;,- = X2; which should actually be
M + = Xl;,- = X2;. Line 30 of the "Shooting Star" example in
the BASIC manual should read STAR$= and not STAR$+.

Video Characters
The display adapters include SK (2K on the PCjr) of ROM­
resident PEL (picture element) maps for the characters that
may be displayed on the screen. Actually, both the mono­
chrome and color display adapters include the same character
sets in ROM, but each adapter uses different sections. The
PCjr doesn't include any monochrome characters in its
character-set ROM. These character-generator ROMs are used
only to produce the text-mode characters. ROM BIOS resident
PEL maps are used to draw the characters when a graphics
mode is in effect.

The SK ROM used in the PC display adapters is the
MK36000 chip. The PCjr uses a 2K MCM68A316E, which is
compatible with 2716 and 2732 EPROMs. The PC SK ROM
contains a monochrome character set in locations 0-4095, a
color single-dot set in locations 4096-6143, and the color text
default double-dot character set in locations 6144-8191. We'll
have more to say about the single-dot character set in a
moment.

The ASCII character number placed in the display adapter
memory to select the text character which displays in that po­
sition should be translated to row-by-row dots. The translation
of the ASCII character to row-by-row dots is processed from
the character ROM by a shift register on the display adapter or
the VGA in the PCjr. This is done 50 or 60 times a second for
each character on the screen so that the image won't fade
from view.

The monochrome characters are each displayed in a 9 X 14
cell on the display screen, with capital letters occupying a 7 X 9
grid in the top center, descenders reaching down to the elev­
enth line, and the underline-style cursor using the twelfth and
thirteenth rows. That leaves the fourteenth row blank for use

155

Video

as a line separation. Special circuitry on the monochrome
adapter causes the eighth column of dots to be propagated
into the ninth for characters B0-DFh so that form design
characters do not have a gap between them. Vertical lines are
two dots wide so as to achieve the most pleasing aspect ratio
to horizontal lines. The monochrome monitor's sharp 720 X
350 resolution makes it an excellent choice for word process­
ing and data entry functions. The monochrome text display
cell is shown in Figure 4-4.

The color adapter text characters are each displayed in an
8 X 8 cell on the display screen, with capital letters occupying
a 7 X 7 grid in the top left, descenders using the eighth line,
and the underline-style cursor using the seventh and eighth
lines. The bottoms of descenders will touch the tops of capital
letters on the row beneath them. Form design characters B0-DFh
are each 8 PELs wide or high so that they form continuous
touching lines. The color display has a resolution of 640 X
200 and is a bit fuzzy for word processing. Monitors with a
smaller dot pitch, such as 0.31 mm, improve the sharpness
somewhat. The color text display cell is shown in Figure 4-5.

Figure 4-4. Monochrome Adapter Character Cell

0
1
2
3
4
5
6
7
8
9
A
B
C
D

156

0 1 2 3 4 5 6 7 8

•
+- Cursor start
+- Cursor end

Video

Figure 4-5. Color/Graphics Adapter Character Cell

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

• ·----
Double Dot

+- Cursor start
+- Cursor end

When using a text mode screen, all 256 characters,
CHR$(0) through CHR$(255), are available for your use
through direct keyboard entry, Alt-numeric keypad entry, or
CHR$(n) statements. To display these characters as their as­
signed symbols (for example, Bh is a male symbol and Ch is a
female symbol), the ASCII number of the character must be
placed in screen memory when the screen is in text mode.
When certain characters are included in PRINT statements or
entered with Alt-keypad, they are acted upon by the ROM
BIOS and cause control functions to occur rather than a
character to be displayed. These characters are listed in Table
4-4.

Table 4-4. Control Characters

Decimal
7
9

10
11
12
13
28
29
30
31

Hex Control Action
7 Beep
9 Tab
A Linefeed
B Home
C Form feed/clear screen
D Carriage return

lC Cursor right
1 D Cursor left
1E Cursor up
lF Cursor down

Program 4-7 will produce a text character chart on the
screen and label the characters in both decimal and hexadeci­
mal order. Because the ASCII code for characters is POI<Ed
into the screen memory, the control characters discussed
above are displayed rather than acted upon. The program is
set to use the color monitor, but you can change the DEF SEG

157

Video

statement in line 200 to support the monochrome monitor if
you wish.

The PC ROM BIOS includes the necessary graphics PEL
maps to produce the graphics dot-by-dot drawn characters
0-127 (0-7Fh). You can see these maps starting at address
FFA6Eh on· page A-77 of the Technical Reference manual. Each
byte corresponds to the bit values needed to make up the
on/off PELs in one character row. Additional characters
128-255 (80-FFh) may be created by the user. The vector at
7CH is then set by the user (in the offset LSB/MSB, then seg­
ment LSB /MSB format) to point to· these PEL maps, allowing ·
the additional 128 graphics characters to be·customized to the
user's needs. The default setting of the vector at 7Ch causes
characters above 128 (7Fh) to be garbage.

The PCjr includes the PEL maps for graphics characters
128-255 (7F-FFh) in the ROM BIOS as well as characters
0-127 (0-7Fh). You can see the low-numbered set starting at
address FFA6Eh (the same as the PC) in the ROM BIOS listing
in Appendix A of the Technical Reference manual. The high- ·
numbered set begins at address FE05Eh. The PCjr uses a vec•
tor at 110H to point to the low-numbered set of graphics
characters (this vector is unused in the PC), and the vector at
7Ch (as in the PC) as a pointer to the high-numbered set. The
user can change both of these vectors to implement a whole
new set of graphics characters PEL maps-meaning that all
255 graphics characters may be substituted for characters more
to the user's liking or copied from ROM BIOS and altered.

Program 4-8 can be used to display and optionally print ·
with Ctrl-PrtSc the PEL maps for all graphics characters. The
program will also map characters 128-255 if the vector at 7Ch
is filled in. · · ·

The PEL maps created by Program 4-8 can be used to
determine the correct decimal or hexadecimal values for
on/off combinations needed to make up rows of your own
characters. Simply code the PEL map for each row of a charac­
ter in a separate DATA statement, POKE them into a free area
of memory above BASIC, then point the appropriate vector
(7Ch or 110h) to the start of the PEL maps that you have ..
placed into memory. You may want to save to disk the PEL · ~­
maps you have just built in memory. This image will be much
faster to install than a byte-by-byte POKE program. Use the
PCjr-to-PC character-copying program presented later in this

158

Video

chapter as a model, pointing the DEF SEG to your constructed
graphics PEL maps.

Program 4-9 will produce the same type of character chart
for the graphics text characters. Because the ASCII character
code for certain control characters (9-13 and 28-31) would
create havoc with the display, they are omitted from the dis­
play. You can hear the effect of CHR$(7) as it is displayed. If
you have set the vector at 7Ch for a 128-255 character set,
those characters will also be displayed; otherwise, you will see
garbage for characters 128-255.

Program 4-7. Text Characters Display
For error-free program entry, IJe sure to use "The Automatic Proofreader," Appendix H.

JS UHIJ 'Videoct; display text characters in decim
al and hex

88 11121 •
BN 12121 SCREEN 121: WIDTH 8121: KEY OFF: CLS
~ 13121 COLOR 121,7:PRINT" Characters 121-

EN 14121

PL 15121

HN 16121

255: CHRS(n) values in decimal
PRINT II Hundreds (" 1 1 1

1 1 1 1 1 1 1 2 2 2 2 2 211

PRINT II Tens -> 121 1 2 3 4 5 6 7 8 9 121 1 2
3 4 5 6 7 8 9 121 1 2 3 4 5"

PRINT II Units -------------------------
-----------------------";

JB 17121 V=121:FOR X=5 TO 5+<9*2> STEP 2:~0CATE X,3:P
RINT Y;"--- 11 ;:V=V+l:NEXT

HE 18121 •
KI 19121 COLOR 7,121: X=121: V=121: Z=121
NC 20121 DEF SEG=LHB800+((4*16121) /16) +((12*2> /16) •s

EN 219>
ED 22121
EB 23121

kip 4 rows, indent 12
FOR Z=121 TO 9

FOR X = 121 TO 25
V=Y+4:A=<X*1121>+Z:IF A>255 GOTO 24121 ELSE PO

KE V,A
JI 24121 NEXT:V=V+216:NEXT
PA 250 FOR Z=0 TO 0: FOR X=121 TO 0: NEXT: NEXT
68 26121 LOCATE 25, 1: PRINT"Press enter for hex tabl

e or Esc to end.";
HD 270 •
KN 28{11 K$=INKEY$: IF K$=" 11 GOTO 280
6P 29121 IF 1<$=CHR$ (27> GOTO 460
6J 3121121 CLS: COLOR 0, 7
JK 310 PRINT " Characters 121-255 CHRS<n> values

in He>:"
DC 320 PRINT "

DEF"
MSB-> 0 1 2 3 4 5 6 7 8 9 ABC

159

Video

10 33flJ PRINT II LSB
------··· ,

C6 34flJ V=flJ
CH 35flJ FOR X=4 TO 4+<15> :LOCATE X,3:PRINT 11 ";HEX

S<V>; 11 --- 11 ;:V=V+l:NEXT
HC 36flJ •
J& 37flJ COLOR 7, flJ: X=flJ: V=flJ: Z=flJ
KK 38flJ DEF SEG=&HB8flJflJ+((3U6flJ)/16)+((12*2>116) •s

kip 3 rows, indent 12
FC 39flJ FOR Z=flJ TO 15
CO 4flJflJ FOR X = flJ TO 15
L& 41flJ V=V+4:A=<XU6>+Z:POKE V,A
~42flJ NEXT:V=V+96:NEXT
"O 43flJ LOCATE 25, 1 :·PRINT"Press enter for decimal

table or Esc to end. 11 ;

&I 44flJ KS=INKEVS: IF KS=" 11 GOTO 44flJ
BM 45flJ IF KS< >CHRS (27> GOTO 12flJ
JJ46flJ KEV ON: LOCATE 23,1:END

Program 4-8. Display Graphics Characters PEL Maps
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

AC lflJ 'VIDEOGC; map all graphics characters in Bx
8 pel map

JI 2flJ • 128-255 will also be mapped if 7C-7Fh in
terrupt > flJ

JP 3flJ •
0" 4flJ DEFINTG=A-Z:SCREEN flhWIDTH 80:KEV OFF:CLS
JB 50 •
II 55 DEF SEG=0:LAST.128.0FF=PEEK<&H7C)+PEEKC&H7D

>*256:LAST.128.SEG#=PEEK(&H7E>+PEEKC&H7F)S2
56

JO 60 FIRST .128.SEG#=&HF0ff:FIRST .128.0FF=&HFA6E
• PC ONLY .

~ 70 • FIRST.128.SEG#=PEEKC&H112)+PEEK(&H113)S25
6:FIRST.128.0FF=PEEK(&H11flJ)+PEEKC&H111)S256

• PC.JR ONLY
ID 80 CHAR. SEG#=F I RST. 128. SEG#: OFFSET=FIRST. 128. 0

FF:SET=flJ:GOSUB 130
IH 90 IF LAST. 128. SEG#=flJ THEN CLS: PRINT"NO TABLE

FOR GRAPHICS CHARACTERS 128-255":END
HJ 95 IF LAST. 128. SEG#=6144flJ ! THEN IF LAST. 121}. OF

F=0 THEN CLS:PRINT"NO TABLE FOR GRAPHiCS CH
ARACTERS 128-255":END

EP 1flJ0 CHAR.SEG#=LAST.128.SEG#:OFFSET=LAST.128.0F
F:SET=1:GOSUB 130

L" 110 END
HI 120 •
"N 130 DEF SEG=CHAR. SEG#

160

Video

CC 141!1 FOR BEGIN=OFFSET TO OFFSET+ (8*127> STEP 8
i'IJ 151!1 CHRNUM= <SET* 128) + <BEGIN-OFFSET> /8
BJ 161!1 CLS
IA 171!1 PRINT"PEL MAP OF CHR$ < "MID$ (STR$ <CHRNUM), 2

,3)") / CHRS(&h"HEX$(CHRNUM)")"
KH 181!1 PRINT"starting at "HEX$(CHAR.SEG#)":"HEX$(

BEGIN> "h"
JC 190 PRINT
LM 200 PRINT"7 6 5 4 3 2 1 0 decimal hex"
IIN 211!1 PRINT"- - - - - - - - 11

HF 221!1 FOR X=l!I TO 7 : Z=PEEK<BEGIN+X> :FOR Y = 7 T
0 l!I STEP -1

DI 231!1 W=Z AND (2"Y) IF W THEN PRINT"O "; :GOTO
251!1

FL 241!1 PRINT". 11 ;

OE 251!1 NEXT Y: PRINT" "Z; :LOCATE ,26:PRINT HEX$.
<Z>"h": NEXT X:PRINT

QN 261!1 • FOR X= 1 TO 1500:NEXT 'enable this line
to allow break at character

GA 270 NEXT:RETURN

Program 4-9. Graphics Characters
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

BG 100 'Videocg; display all graphics text charac
ters

IF 111!1 • 128-255 wi 11 be garbage if vec_tor at 7Ch
hasn"t been set by user.

HI 121!1 •
CL 131!1 SCREEN 1 : WIDTH 80: KEY OFF: CLS
CP 141!1 PRINT " Characters 1!1-255 : CHRS

<n> values in decimal "
EP 151!1 PRINT " Hundreds ----------------> 1 1 1

1 1 1 1 1 1 1 2 2 2 2 2 2"
PN 161!1 PRINT " Tens -> 0 1 2 3 4 5 6 7 8 9 0 1 2

3 4 5 6 7 8 9 0 1 2 3 4 5"
HP 171!1 PRINT " Uni ts

-------------------------- ti ;

JD 180 Y=l!l:FOR X=5 TO 5+<9*2> STEP 2:LOCATE X,3:P
RINT Y;"---";:Y=Y+1:NEXT

HG 191!1 •
EK 21!11!1 FOR Z=l!I TO 9
DA 210 FOR X = 0 TO 25
CJ 220 A=<XUl!l)+Z:IF A>255 GOTO 26'1J
PF 230 IF <A>8 AND A< 14) GOTO 26'1J
HG 240 IF <A>27 AND A<32> GOTO 261!1
EF 251!1 LOCATE <Z*2>+5, <X*2>+11:PRINT CHR$<A>;
Fl 26121 NEXT: NEXT
PE 270 FOR Z=0 TO 0:FOR X=0 TO 0:NEXT:NEXT

161

Video

Hr 280 LOCATE 25, 1: PRINTtlPress enter for hex tabl
e or Esc to end. t1;

HH 290 •
Mr 300 K$=INKEY$: IF I<$="" GOTO 30fJ
rn 31121 IF K$=CHR$ (27> GOTO 490
AD 320 CLS
JO 330 PRINT " Characters 0-255 : CHR$(n) values

in He>: ti

OG 340 PRINT ti MSB-> 0 1 2 3 4 ~ 6 7 8 9 ABC
DEF"

IC 350 PRINT " LSB
------••;

DK 360 V=0
DL 370 FOR X=4 TO 4+(15) :LOCATE X,3:PRINT " ";HEX

$(Y>;tl ---";:Y=Y+1:NEXT
HG 380 •
FC 390 FOR Z=0 TO 15
CO 400 FOR X == 0 TO 15
CP 41-0 A= (X*16) +Z: LOCATE Z+4, < Xt2) +11
BA 420 IF <A>B AND A< 14) GOTO 450
JC 430 IF <A>27 AND A<32) GOTO 450
H• 440 PRINT CHR$ <A>;
FL 450 NEXT: NEXT
ME 460 LOCATE 25, 1 :P_RINTt1Press enter for decimal

table or Esc to end.";
Ml 470 1<$=INKEY$: IF K$='"' GOTO 470
DO 480 IF I<$< >CHR$ <27) GOTO 130
JP 490 KEY ON: LOCATE 23, 1: END

Supplemental Characters
The PCjr includes the PEL maps for graphics characters
128-255, but the PC doesn't. Why not borrow them from the
PCjr, save them on disk, and load them into the PC whenever
these extended graphics text characters are desired? Program
4-10 does just that.

Now that you've created the file of characters from a
loaner PCjr, simply run Program 4-11 to load them into your
PC anytime you need them. If you load the characters at the
suggested segment which is above BASIC (unless you have
expanded your PCjr above 128K), the characters will be avail­
able for your use even after exiting BASIC.

Program 4-1 O. Program to Save PCjr Graphics Characters
128-255
10 'VIDEOGG; create bloadable graphics charact

ers 128-256 from PCJR
20 •

162

-·

0 t>EFINTG=A-Z
40 •

Video

Sil tNPUT "File name for chars 128-256 (.bld wi
11 be added to name> '',FILES

60 FILE1i=FILE$+".BLD"
7. DEF SEG=0:LAST.128.0FF=PEEK(&H7C>+PEEK(&H7D

>t256:LAST.128.SEG#=PEEK<&H7E>+~EEK(&H7F>t2
56

8"' DEF SEG=LAST.128.SEG#tBSAVE FILE'S,LAST.12B.
OFF, Ull24

9(/J PR:tNTi•GRAPHIC characters 128-255 have been
saved from Pc.JR t~. file· "FILES

. '

PtaO!lfl.l 4-11. Program to Load PCjr Graphics Characters
128-255 into a PC
Pot etror•fre'e program entry, be sure to use "The Automatic Proofreader," Appendix H.

Pi< .• 1, -v1DEOGP; load. blaadable graphict. character
\ fl 128-256 frolft PC.JR .
JO 211 •·
1131 nEJ=tNTG=A-Z
ilA aw, • PreiGipt. fo,- file,-.ame, segment, offset
'6 9 tNPU't" "Fiie name of chars 128-256 (.bld wil
· 1 be addecf to name)";f:XLE$
Rl Y 'f:ILES=FILES+". 9LD"
P31f iNPU't "Segment to bload U124-byte character

maps Un hex> suggestion: 170it";SEG$
FC S, INPUT "offset to bload 1024-byte character

maps Un hex> suggestion·: 0";DFFSET$
Cl. 9fJ t;EG4t=VAL("&h"+SEGS>10FFSET=VAL("&ch"+OFFSET$

l
3F UJrii -~ Set up _extended graphics characters vect

or
RF llflJ 1'.>EF SEG=0
,1 12rii POKE &H7F, VAL ("&h"+MID$ (RIGHTS< "0flfll0"+SEG$

.. ,4>, 1,'2> >
Ell .l;U; POKE &H7E, VAL< "&h"+MIDS <RIGHTS< "fl0fll0"+SEGS
, ~-- . ,4),'3,2))
lt ,i49 p01(£ &H7t>, VAL< 11 &th 11 +MIDS< RIGHT$ < 11 0000 11 +OF!='S
--·- E:"rS,4>,1 11 2>>
BJ . 1se POKE &cH1C, VAL< 11 &:h 11 +MIO$ (RIGHT$< "0000"+0FFS

E'.t11,4>, 3,2> >
H 168 DEF SEG=SEG#:BLOAD FILE$,OFFSET
C8 17fJ ~ Show the extended graphics characters
~ iBfi SCREEN 1:WIDTH 80
Ill 198 PRINt"GRAPHIC characters 128-255 have been

loaded from PCJR file "'FILES
.tt 2fJfl!I PRINT"Vector 7C-7Fh has b_een set to point

at this.table, so"

163

Video

B" 2Ull PRINT"GRAPHIC characters 128-255 are now u
sable:"

BD 228 FOR X=128 TO 255:PRINT X"="CHRS<X>" "; :N
EXT

Unfortunately, some programs that you run after loading
the characters and exiting BASIC may overlay the character set
that you've loaded. Instead of loading the characters above
BASIC, you could load them into a page of the color display
adapter that you don't intend to use, but any change in screen
mode or width will destroy the characters loaded there. The
safest alternative is to create a .COM file that installs the
character set and terminates but stays resident using DOS
interrupt 27. That will make the character set logically a part
of DOS. This is fairly simple and can be accomplished by
using DEBUG on a PCjr that has a disk drive.

Do the following to create a resident COM module:

A> DEBUG
-m f000:e05e L400 1700:0 (move the 128-255 character set to RAM)
-n char128.com (name the COM module)
-f 16fe:0 _L20 90 (put 20h bytes of NOPs in front of the set)
-a 16fe:0 (start assembling instructions)
-mov ax,0 (zero the AX register)
-push ax (move the zero to ...)
-pop ds (the data segment register)
-mov (7e],cs (save the segment of this set in the vector)
-mov ax,120 (the set begins 120h into the module)
-mov [7c],ax (save the offset in the vector)
-mov dx,521 (tell DOS how long the set is, plus this code)
-int 27 (terminate but stay resident)

(press the Enter key to end assembly)
-res (display the current CS register)
-16ee (adjust for save beginning at CS+lO0)
-rcx (display the CX register)
-520 (the length of this code and character set)
-rbx (should zero this to prevent...)
-0 (an overly long disk file)
~w (write the finished module to disk)
-q (exit DEBUG)

After this is completed, you can install the character set
permanently anytime you wish just by issuing the command
CHAR128 at any DOS prompt.

If a PCjr is not available to you, you may use the DEBUG
ENTER command to create the character set at 1700:0h from
164

Video

Program 4-12. When you have finished entering the data, use
the above procedure (minus the DEBUG MOVE command) to
create the module. There are 1024 bytes of data to enter, so
first pursue any opportunity to borrow a few moments of PCjr
time.

Program 4-12. PCjr Graphics Characters 128-255
1700:0000 78 cc
1700:0002 CO CC 78 18 OC 78 00 CC-00 CC CC CC 7E 00 lC 00
1700:0012 78 CC FC CO 78 00 7E C3-3C 06 3E 66 3F 00 CC 00
1700:0022 78 OC 7C CC 7E 00 EO 00-78 OC 7C CC 7E 00 30 30
1700:0032 78 OC 7C CC 7E 00 00 00-78 CO CO 78 OC 38 7E C3
1700:0042 3C 66 7E 60 3C 00 CC 00-78 CC FC CO 78 00 EO 00
1700:0052 78 CC FC CO 78 00 CC 00-70 30 30 30 78 00 7C C6
1700:0062 38 18 18 18 3C 00 EO 00-70 30 30 30 78 00 C6 38
1700:0072 6C C6 FE C6 C6 00 30 30-00 78 CC FC CC 00 lC 00
1700:0082 FC 60 78 60 FC 00 00 00-7F OC 7F CC 7F 00 3E 6C
1700:0092 CC FE CC CC CE 00 78 CC-00 78 CC CC 78 00 00 CC
1700:00a2 00 78 CC CC 78 00 00 E0-00 78 CC CC 78 00 78 CC
1700:00b2 00 CC CC CC 7E 00 00 E0-00 CC CC CC 7E 00 00 CC
1700:00c2 00 CC CC 7C OC F8 C3 18-3C 66 66 3C 18 00 CC 00
1700:00d2 CC CC CC CC 78 00 18 18-7E CO CO 7E 18 18 38 6C
1700:00e2 64 FO 60 E6 FC 00 CC CC-78 FC 30 FC 30 30 F8 CC
1700:00f2 CC FA C6 CF C6 C7 OE 18-18 3C 18 18 D8 70 lC 00
1700:0102 78 OC 7C CC 7E 00 38 00-70 30 30 30 78 00 00 lC
1700:0112 00 78 CC CC 78 00 00 lC-00 CC CC CC 7E 00 00 F8
1700:0122 00 F8 CC CC CC 00 FC 00-CC EC FC DC CC 00 3C 6C
1700:0132 6C 3E 00 7E 00 00 38 6C-6C 38 00 7C 00 00 30 00
1700:0142 30 60 CO CC 78 00 00 00-00 FC CO CO 00 00 00 00
1700:0152 00 FC OC OC 00 00 C3 C6-CC DE 33 66 CC OF C3 C6
1700:0162 CC DB 37 6F CF 03 18 18-00 18 18 18 18 00 00 33
1700:0172 66 CC 66 33 00 00 00 CC-66 33 66 CC 00 00 22 88
1700:0182 22 88 22 88 22 88 55 AA-55 AA 55 AA 55 AA DB 77
1700:0192 DB EE DB 77 DB EE 18 18-18 18 18 18 18 18 18 18
1700:0la2 18 18 F8 18 18 18 18 18-F8 18 F8 18 18 18 36 36
1700:0lb2 36 36 F6 36 36 36 00 00-00 00 FE 36 36 36 00 00
1700:0lc2 F8 18 F8 18 18 18 36 36-F6 06 F6 36 36 36 36 36
1700:0ld2 36 36 36 36 36 36 00 00-FE 06 F6 36 36 36 36 36
1700:0le2 F6 06 FE 00 00 00 36 36-36 36 FE 00 00 00 18 18
1700:0lf2 F8 18 F8 00 00 00 00 00-00 00 F8 18 18 18 18 18
1700:0202 18 18 lF 00 00 00 18 18-18 18 FF 00 00 00 00 00
1700:0212 00 00 FF 18 18 18 18 18-18 18 lF 18 18 18 00 00
1700:0222 00 00 FF 00 00 00 18 18-18 18 FF 18 18 18 18 18
1700:0232 lF 18 lF 18 18 18 36 36-36 36 37 36 36 36 36 36
1700:0242 37 30 3F 00 00 00 00 00-3F 30 37 36 36 36 36 36
1700:0252 F7 00 FF 00 00 00 00 00-FF 00 F7 36 36 36 36 36
1700:0262 37 30 37 36 36 36 00 00-FF 00 FF 00 00 00 36 36
1700:0272 F7 00 F7 36 36 36 18 18-FF 00 FF 00 00 00 36 36
1700:0282 36 36 FF 00 00 00 00 00-FF 00 FF 18 18 18 00 00

165

Video

1700:0292 00 00 FF 36 36 36 36 36-36 36 3F 00 00 00 18 18
1700:02a2 lF 18 lF 00 00 00 00 00-lF 18 lF 18 18 18 00 00
1700:02b2 00 00 3F 36 36 36 36 36-36 36 FF 36 36 36 18 18
1700:02c2 FF 18 FF 18 18 18 18 18-18 18 F8 00 00 00 00 00
1700:02d2 00 00 lF 18 18 18 FF FF-FF FF FF FF FF FF 00 00
1700:02e2 00 00 FF FF FF FF FO FO-FO FO FO FO FO FO OF OF
1700:02£2 OF OF OF OF OF OF FF FF-FF FF 00 00 00 00 00 00
1700:0302 76 DC CS DC 76 00 00 78-CC F8 CC F8 CO CO 00 FC
1700:0312 CC CO CO CO CO 00 00 FE-6C 6C 6C 6C 6C 00 FC CC
1700:0322 60 30 60 CC FC 00 00 00-7E D8 D8 D8 70 00 00 66
1700:0332 66 66 66 7C 60 CO 00 76-DC 18 18 18 18 00 FC 30
1700:0342 78 CC CC 78 30 FC 38 6C-C6 FE C6 6C 38 00 38 6C
1700:0352 C6 C6 6C 6C EE 00 lC 30-18 7C CC CC 78 00 00 00
1700:0362 7E DB DB 7E 00 00 06 OC-7E DB DB 7E 60 CO 38 60
1700:0372 CO F8 CO 60 38 00 78 CC-CC CC CC CC CC 00 00 FC
1700:0382 00 FC 00 FC 00 00 30 30-FC 30 30 00 FC 00 60 30
1700:0392 18 30 60 00 FC 00 18 30-60 30 18 00 FC 00 OE 1B
1700:03a2 1B 18 18 18 18 18 18 18-18 18 18 D8 D8 70 30 30
1700:03b2 00 FC 00 30 30 00 00 76-DC 00 76 DC 00 00 38 6C
1700:03c2 6C 38 00 00 00 00 00 00-00 18 18 00 00 00 00 00
1700:03d2 00 00 18 00 00 00 OF OC-OC OC EC 6C 3C lC 78 6C
1700:03e2 6C 6C 6C 00 00 00 70 18-30 60 78 00 00 00 00 00
1700:03£2 3C 3C 3C 3C 00 00 00 00-00 00 00 00 00 00

Many times you will want to draw boxes or diagrams on
the screen. Figure 4-6 shows the decimal character codes you
will need. Since all the characters are above 127 (7Fh), you
will need to use the monochrome monitor, a PCjr, or load the
128-255 character set as described above.The Alt keypad
(Num Lock, then Alt and number keys on the PCjr) can be
used to enter the character numbers directly or for use within
PRINT statements. CHR$ may also be used in PRINT state­
ments.

Printing Screen Characters
Since the Epson printer sold by IBM doesn't have the full

• screen text character set available in its ROM, you won't be
able to print an exact image of a nicely designed nongraphics
text screen on your printer. Non-IBM Epson printers support
even fewer of the IBM text characters. And both styles of
printers use many of the ASCII characters as control characters
for the printer. Try the following line to see the effect that
each character has, compared with the display that Program
4-7 produces:
FOR X=0 TO 255: LPRINT X;CHR$(X):NEXT

166

Fwure 4-6. Border Drawing Text Mode· ASCH Characters
C · R$(n) .

Double Lines Single Lines

201 203 187 205 218 194 191 196

Fr ,r i1 -- r T 1
206 186 II II II 197 179

204 I~ JL ~I 185 = = 205 195 ~ t 1 180 -- 196 ,r
186 II II II 179

lb:!! :!I -- L .1. J
200 202 188 205 192 193 217 196

Corners Lines Corners Lines I<
C:
(1)

Mixed Double/Single I i ne s
,0

214 210 183 196 213 209 184 205

rr iT 'Tl -- f T' =t --
215 186 II _ll_ll 196

216 179
199 I~ * ~I 182 198 ~ =I= ~ 181 -- 205

186 II II II 179
u. JJ. .IJ -- b ~ :I --

211 208 189 196 212 207 190 205

Corners Lines Corners Lines

-°' "I

Video

You may want to save the listing as a reference guide to
show what effects the different ASCII characters have on the
printer. Because of the effect of the various ASCII printer con­
trol characters, you'll get very strange results when using
Shift-PrtSc if you have placed any of them in a display buffer.
Additionally, many of the form design characters will print as
only approximations of their screen images. What can we do
to produce a more faithful representation of the screen image?

We know that when the GRAPHICS module has been
loaded and the screen is in a graphics mode, it will be printed
sideways on the paper. This is done by using the bit-image
graphics capabilities of the printer to bitmap the screen image
using the graphics text character set held in ROM/RAM.
We've also seen how to extend the graphics character set with
the text characters 128-255. These techniques enable us to
print a fairly good representation of a graphics text screen.

If the screen is not in a graphics mode or if the GRAPH­
ICS module is not resident, the PC reverts to printing the
screen as ASCII characters, which causes the confusing mess
we've already seen.

To prove that the GRAPHICS method works, use the
CHAR128 program that you've created as described above,
cause the GRAPHICS module to be loaded in DOS, run Pro­
gram 4-9, and press Shift-PrtSc to print either the decimal or
hexadecimal character set. This chart will prove handy in the
future, so save it as a reference guide.

To reproduce the nongraphics mode text character set
(such as monochrome) on the printer, we would need to inter­
cept the characters going to the printer and cause bit-image
graphics to be used to produce those characters as well as the
characters that do not have a true representation in the printer
character ROM (such as 128-159 and the double form design
characters). ·

Perhaps a nice addition would be some method of speci­
fying which printer ASCII control codes should be passed on
to the printer. Carriage return (Dh) and linefeed (Ah) would
definitely be needed to be passed through, but backspace,
DC1-DC4, shift-in, shift-out, and ESC could be elected to be
printed as the associated text character or sent as control
characters.

A program that did this would probably replace the INT
17 vector with its own address and perform the needed printer

168

Video

special processing. This could be accomplished by converting a
printer control code coming into INT 17 to the appropriate es­
cape code sequence needed to produce the bit-image map of
the text character. Several versions of this type of program are
available from user groups or (for a small license fee) from
several private software companies. Of course, you will learn
the most by undertaking the task yourself-if you have the
time, curiosity, and need. Such a program is far too lengthy to
publish here. One version is 2688 bytes long, although a
significant portion is taken up by the needed bit-image tables.

The PC or PCjr screen will be printed in response to the
user pressing the Shift and PrtSc keys, or Fn-PrtSc on the
PCjr. This feature is available in BASIC as well as DOS and
most application programs. You may want to allow your
BASIC program to print screen images automatically, as initi­
ated by the program. Program 4-13 shows a method that can
do this.

You may also want to disable the capacity to print screen
images either for a period of time or permanently (even after
returning to DOS). The next example, Program 4-14, shows
how the vector for INT 05 can be saved, overlaid to point to a
do-nothing IRET instruction, and later restored to allow screen
printing to be performed.

Program 4-13. Causing the Screen to Be Printed in BASIC

100 "VIDEOPS; cause screen to be printed in ba
sic program

110 •
120 DEF SEG=&HFFF "in an area above b

asic
130 FOR X=0 TO 2: READ N:POKE X,N:NEXT 'build

assembler routine
140 PRTSC=0:CALL PRTSC 'call the routine
150 •
160 DATA &hCD,&h05,&hCB : 'INT5, RETF routine

Program 4-14. Disabling/Enabling PrtSc Feature in BASIC
100 'VIDEODEP; Disable PrtSc, then re-enable
110 •
120 DEF SEG=0
130 FOR X=0 TO 3:POKE &H180+X.PEEK<&H14+X>:NEX

T •save int5 in user int60
140 FOR X=0 TO 3:POl<E &H14+X,PEEK<&H4+X):NEXT

•copy int4 <single step) to int5 which cau
ses it to point to iret instruction

169

Video

150 PRINT"Try shift/PrtSc, press Esc to re-ena
ble" .

160 K$=INKEY$:IF K$<>CHR$(27> GOTO 16121
170 •
180 FOR X=0 TO 3:POl<E &H14+X,PEEK<l!,H18{1J+X> :NEX

T •restore saved int5
19{11 PRINT"Now shift/Prtsc re-enabled."

Double/Single Dots
On the color/ graphics adapter board of the PC (not the PCjr),
to the lower left of the number 6845 (below pins 1 and 2) is a
jumper (J3) that ~an be used in text modes to cause single-dot
5 X 7 characters to be used rather than the double-dot 7 X 7
characters. You will need to solder a wire between the two
contact points. These single-dot characters look best on an
RGB display. The double-dot characters are meant primarily
for composite monitors and television sets. When P3 has been
jumpered, the third section of the text character generator
ROM is selected. Caution: Electronic components are easily
damaged. If you're not qualified to perform this modification,
get help from a friend who understands electronics.

The first two sections of this ROM contain monochrome
characters 0-255 (the first eight rows in the first section of
ROM and the remaining rows iil the second section). The
fourth section holds the default double-dot characters. Figure
4-7 shows the difference in a typical text mode character using
double- or single-dot composition. The PCjr has only one char­
acter set containing all 256 characters in the 7 X 7 double-dot
format. Single-dot characters are not provided. However, a
2716 or 2732 EPROM with any desired character set may be
used to replace the MCM68A316E 2K character ROM used in
the PCjr.

Figure 4-7. Color/Graphics Single and Double Character

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 • • • • • 0 • • • • •
1 • • • • 1 • •
2 • • • • 2 • •
3 • • • • • 3 • • • •
4 • • 4 •
5 • • 5 •
6 • • • ·---- 6 - .. ·---- <- Cursor start
7 -------- 7 -------- ... Cursor end

Double Dot Single Dot

170

Video

Attributes
Attribute bytes are used in monochrome or color text modes to
assign display characteristics to individual characters. For each
character displayed on the screen there is an attribute byte
that may be used to assign the foreground and background
colors, determine whether the character is to blink, and estab­
lish one of two brightness levels for the character. Figure 4-8
shows the assignable attributes for the monochrome display
adapter.

In the monochrome adapter display buffer, the attribute
byte for a character is placed in the byte following the charac­
ter, with characters occupying even-numbered address posi­
tions and attributes located in the odd addresses. The color/
graphics adapter also uses this scheme for text modes. Figure
4-9 illustrates the character/attribute arrangement in the text
mode display buffer.

Figure 4-8. Monochrome Adapter Display Attributes

Background Foreground

I
Blink IRIGIBI Intensity IRIGIBI

1 = blink 1 = high

Nondisplay ... 0 0 0 0 0 0 Dark on dark
Underlined 0 0 0 0 0 1
Normal 0 0 0 1 1 1 Light on dark
Reverse 1 1 1 0 0 0 Dark on light

Figure 4-9. Arrangement of Text Modes Character Attributes

I Chart I Attrl

BOOOOh BOOOlh

I Char2 I Attr2

B0002h B0003h

I Char3 I Attr3 I ...
B0004h B0005h

Characters occupy even-numbered addresses with the associated
attribute occupying the next (odd) byte in the display adapter
memory.

Even though blink and intensity can be combined with
any of the above foreground and background settings (some­
such as blinking nondisplay-don't make much sense), the
foreground and background attribute settings cannot be

171

Video

combined with each other. For example, reverse and under­
lined (01110001) would appear as an underlined character, but
not reversed. All other unlisted bit combinations cause the
associated character to be displayed with the normal attribute,
unless the two least significant bits are 01, which will cause
the character to be underlined.

The blink and intensity bits function correctly on all un­
documented foreground and background combinations. By the
way, high intensity and reverse do not combine with an
attribute of 78h; the character is displayed in reverse, but not
high intensity. High-intensity reverse characters are obtainable
by playing a trick with the 6845 control register, as we'll see
in the next program.

Many authors and the IBM PC Technical Reference manual
describe the attribute setting of 01110111 (77h) as providing a
white box character and say this is the default for unlisted
attribute byte settings. This is not the case on the PCs and XTs
that I have tested; instead, a normal character was displayed
when using this attribute. Perhaps only the early monochrome
adapters function in the way described in the Technical Ref­
erence manual.

It's a shame that the unused monochrome attributes could
not have been used for additional functions, such as alternate
display fonts, field boundaries, nonalterability, auto-skip, and
tab stops.

A sample program that displays the possible monochrome
and color attributes is presented below. It shows some exciting
possibilities for extending the available attributes and also
demonstrates a multimonitor access technique used by many
popular software packages.

The color/ graphics adapter has the same attribute byte
format as the monochrome adapter, with the RGB bits
determining the foreground and background colors as shown
in Figure 4-10.

In the color/graphics display buffer, the attribute byte for
a character is placed in the byte following the character, with
character numbers occupying even-numbered addresses and
attribute bytes located in the odd ones. Figure 4-11 illustrates
the character/ attribute arrangement in all the text modes.

172

Video

Figure 4-10. Color/Graphics Adapter Display

Background Foreground

1 = blink 1 = high

Quoted Actual Foreground or Background
Color Color R G B
Black Black 0 0 0
Blue Blue 0 0 1
Green Lt Green 0 1 0
Cyan Lt Blue 0 1 1
Red Red 1 0 0
Magenta . . . Purple 1 0 1
Brown Orange 1 1 0
White White 1 1 1

Foreground with
Intensity Bit Set
Dk Gray
Med Blue
Lighter Green
Lighter Blue
Dk Orange
Violet
Yellow
Bright White

The intensity bit affects only the foreground color and makes it lighter
rather than darker as is meant by intensity when referring to pigments.

Figure 4-11. Arrangement of Text Modes Character
Attributes

Contents I Charl I Attrl I Char2 I Attr2 I Char3 I Attr3 ... etc.

Location B8000h B8001h B8002h 88003h B8004h 88005h ... etc.

Characters occupy even-numbered addresses with the associated
attribute occupying the next (odd) byte in the display buffer.

The demonstration program below (Program 4-15) shows
the effect of all 256 possible attribute byte combinations and
the hex (or optionally, decimal) value of the attribute byte
used to create the effect. The program can be used with either
the color/graphics or monochrome adapter, but the user
should not attempt to specify a different monitor from what is
currently being used unless a monitor-switch routine has· been
added to the program. The result of specifying an unused
monitor is that the captions for the attribute byte will appear
on the used monitor, and the actual attribute bytes will be
sent to the unused monitor's display buffer.

This capability of displaying on the unused monitor is a
feature of many popular programs which first insure that both

173

Video

monitors are available by using a technique similar to the one
in Program 4-2 that examines the 3B5h or 3D5h 6845 control
port. Obviously, the configuration switches do not give the
information needed to determine the actual monitors attached.

Program 4-15 also demonstrates how an additional back­
ground intensity attribute can be obtained by turning off the
blink capability via bit 5 of a 6845 register located at 3B8h or
3D8h (or via bit 1 of the PCjr VGA register 2). You can see
how this affects the screen image by pressing the return key
when prompted. This feature gives you an additional dimen­
sion in background colors for both monitor types when you
don't need blinking characters anywhere on the same screen.

You'll notice that the color monitor displays glitches while
the attribute bytes are being POKEd into every other byte of
the color display memory (except on the PCjr). We'll soon see
how your programs can avoid these glitches.

Program 4-15 uses the first of a series of 6845 or VGA
control registers (this one at port 3B8h or 3D8h or 3DAh) to
enable or disable the blink attribute for the display adapter.
You can also use this port to enable or disable the display of
information on the screen. You may want to do this to help
preserve the monitor screen phosphorous if the user has obvi­
ously left the program unattended for a period of time. Simply
check the BASIC TIMER value against the last time an entry
was made and issue an INKEY$ to obtain a keypress so that
you can reenable the display. In machine language the same
can be done using BIOS time-of-day and keyboard services.
Program 4-16 shows how to perform these tricks in BASIC for
the various screen modes.

Notice how the reverse blinking field becomes high inten­
sity when the blink feature is disabled, giving another type of
attribute possibility for the display screen. Also, you'll find
that the method used in line 160 to determine the current ac­
tive screen mode is useful in determining which display
adapter is currently active.

You can read about the blink bit and the video enable bit
for the PC starting on page 1-141 of the Technical Reference
manual, and on pages 2-64 and 2-73 for the PCjr.

Even though 16 foreground colors on 16 background col­
ors (using the blink-disable technique) are provided on the PC
and PCjr, you may need to create a wider range of shades.
Program 4-17 shows how additional colors can be created by

174

Video

mixing foreground and background colors. The program uses
CHR$(177), which is a pattern of alternating foreground/
background dots, to demonstrate how the various combina­
tions of colors can be mixed to achieve even more colors.
CHR$(178) or CHR$(176) can be substituted for CHR$(177) in
line 220 to achieve different shading effects.

You can also use the chart produced to see the effect of
mixing graphics PELs of different colors from the palettes
available in four-color 320 X 400 graphics mode or the ex­
tended modes available on the PCjr.

You'll need to use an RGB color monitor to see the full
range of colors available, although a monochrome monitor
shows some interesting combinations as well.

The PCjr menu options and routines may be omitted from
the program if you do not have access to that machine. The
PCjr provides a wonderful capability (besides extended colors
in medium and high resolution) in its ability to specify
dynamically the color desired for any of the attribute color
codes. With this feature, four-color graphics can be much more
useful because the colors can be set to the full 0-15 range.
You won't find much documentation on this feature in the
Technical Reference manual, so examine the sample program
and observe the effects of menu option 3.

Another feature of the PCjr palettes, the palette mask reg­
ister of the VGA is even less well-documented. Menu option 4
will show you how this register can be used to turn off the
IRGB output lines to the monitor to further customize the pal­
ette and create visual effects.

A PCjr palette register is loaded in line 590. The VGA re­
quires that port 3DAh be reset to some value under 10h to
reenable video display once any of the palette registers have
been changed. You can minimize any video disturbances dur­
ing the loading of the palette registers by waiting for the verti­
cal retrace period which is indicated by bit 3 after a read of
VGA register 3DAh. Or you may use the vector at 34h INT
OD to give control to a vertical retrace routine.

In the PCjr, additional ROM BIOS routines have been
added to the video services. These include the tables needed
to define the additional modes for the PCjr in service 0, addi­
tional color palettes for service Bh, a new service 10h to set
the color palette registers, and additional functions in service
Sh that can be used to set or read the CRT /processor page
register.

175

Video

The color register at port 3D9h is discussed starting on
page 1-140 in the PC Technical Reference manual. The PCjr
manual discusses the palette-related registers on pages 2-50,
2-65, 2-66, and 2-71.

Program 4-15. Demonstration of All Possible Text Mode
Attributes
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

U 1121121 'Videoma; Demonstrate effect of all possib
le attributes

~ 11121 • on blinking or high intensity backgroun
ds

HI 12121 •
SD 130 DEF I NTG=A-Z : DEF SEG=&HFFFF: IF PEEK (~,HE> =~,H

FD THEN DEF SEG=&HB800: CTRL.6845=0: BLINK
.OFF=&H0: BLINK.ON=&H2:SCREEN 0: GOTO 190
"PCjr

DD 14121 CLS: LOCATE 12, 19: INPUT "Enter Monitor Ty
pe: M=monochrome, C=color ",K$

IH 15121 IF K$="C" OR K$="c" THEN DEF SEG=~,HB800: C
TRL. 6845=&H3D8: BLINK. OFF=~,H9: BL I NI<. ON=&H
29: SCREEN 0: GOTO 190 "color adapter

ED 16121 IF K$="M" OR K$="m" THEN DEF SEG=&HB000: C
TRL.6845=&H3B8: BLINK.OFF=&HF: BLINK.ON=&H
FF: GOTO 19121' monochrome adapter

SC 17121 GOTO 140 • incorrect entry
HE 18!tl •
PN 19121 CLS: LOCATE 20, 25: COLOR 0, 7: PRINT"DISPLA

V CHARACTER ATTRIBUTES 0-255": COLOR 7,0
D11 20121 LOCATE 1.1: ATTR.LOC=1: FOR ATTR = 0 TO 25

5 • set increasing attributes
HI 21121 PRINT "+RIGHT$< "0"+HEX$ (ATTR), 2) +" ";

• show the attribute in hex
111 22121 'PRINT 11 "+RIGHT$(" "+STR$(ATTR> ,3)+" ";

• show the attribute in dee
LH 23121 FOR CAPTION.WIDTH = 1 TO 5: POKE ATTR.LOC,

ATTR: ATTR.LOC=ATTR.LOC+2: NEXT
DG 240 NEXT ATTR
HP 250 •
IIK 26121 IF CTRL. 6845=0 GOTO 360 • PCjr uses VGA ins

tead of adapter ports
D6 27121 OUT CTRL. 6845, BLINK. OFF 'turn off bit 5
HD 28121 GOSUB 330
EF 290 OUT CTRL.6845,BLINK.ON 'turn on bit 5
HA 300 GOSUB 340
FH 310 GOTO 270
HK 32121 •
DF 33121 LOCATE 22, 26: INPUT " Press Enter to enabl

e blink", K$: RETURN

176

Video

FF 340 LOCATE 22, 26: INPUT "Press Enter to di sabl
e blink", K$: RETURN

HA 350 •
81 360 X=INP<&H30A) •set vga to reg/data sequence
LJ 370 OUT 8cH3DA, 3 •select vga reg three
LJ 380 OUT &H3DA, BLINK. OFF
HG 390 60SUB 330
KN 400 OUT 8cH3DA, 3 •select vga reg three
AC 410 OUT 8cH3DA, BLINK. ON
HF 420 GOSUB 340
SL 430 GOTO 360

Program 4-16. Disabling/Enabling Blink and the Display
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

HP 100
66 110
DH 120

SL 130
DE 14121

DE 150

LA 160

1B 170

LP 18fl.l
EK 190

EP 20fl.l
NN 2UI

ID 220

DN 230

KN 240

FF 250
NC 260

'Videoed; enable/disable blink and display
•
CLS:LOCATE 5,9:COLOR 0+16,7:PRINT"THIS FIE
LO HAS BLINK ATTRIBUTES":PRINT
COLOR 7,121
DEF SEG=l!,HFFFF: IF PEEK (&HE) =&HFD THEN POR
T=8cH3DA: GOTO 350 'PCjr uses VGA
• Current video is: MONOCHROME
R

COLO

DEF SEG=0: IF PEEK<&H449> = 7 THEN PORT=&H
3BB ELSE PORT=&H3D8
CURRENT=PEEK<&H465) 'SAVE CONTENTS OF 3B~
HOR 308H PORT
GOSUB 290
OUT PORT,<CURRENT AND &HOF> • TURN OFF BLI
NK, BIT 5
GOSUB 300
OUT PORT, (CURRENT AND 8cHD7> 'TURN OFF DISP
LAY, BIT 3
FOR X = 1 TO 200121: NEXT' WAIT ABOUT 2 SEC
ONDS
OUT PORT, <CURRENT OR &HB) 'TURN ON DISPLAY
, BIT 3
OUT PORT, (CURRENT AND &HOF) 'TURN OFF BLIN
K, BIT 5
GOSUB 31fl.l
OUT PORT,(CURRENT OR 8cH20) 'TURN ON BLINK
, BIT 5

NJ 27!21 END
HF 2Bfl.l •
OD 290 PRINT"About to turn off blink, ";: GOTO 32

!21
CJ 3!21fl.l PRINT"About to turn off display for 2 seco

nds, ";: GOTO 320
NB 31!21 PRINT"About to turn on blink, ";: GOTO 32121

177

Video

DE 320 • • PRINT"Press enter to continue": INPUT K
$: RETURN

H" 330 •
ID 340 • PCjr uses VGA registers rather than adap

ter ports
LL 350 GOSUB 290
DC 360 X=INP <PORT> • SET VGA TO REG/DATA SEQUENC

E
IP 370 OUT PORT, 3: OUT PORT, '1J • TURN OFF BLINK,

BIT 1
FA 3B0 GOSUB 3'1.1'1.1
CB 39'1.1 OUT PORT, '1.1: OUT PORT, {11 ' TURN OFF DISPLAY

, BIT 3
18 41110 FOR X = 1 TO 2{11'1J'1J: NEXT WAIT ABOUT 2 SEC

ONDS
B" 41{11 OUT PORT,'1.1: OUT PORT,9 ' TURN ON DISPLAY,

BIT 3
FB 42{11 GOSUB 31'1.1
GE 43{11 OUT PORT, 3: OUT PORT, 2 TURN ON BLINK, B

IT 1
LF 44f,1J E'ND

Program 4-17. Color Swatches and PCjr Palette Registers
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

ED 10'1.I 'VIDEOCO; demonstrate color swatches and j
r palette capabilities

66 11'1.I •
EC 12'1.1 DEFINTG=A-Z: SCREEN '1.1,1,'1.1: WIDiH B'1.1: COLOR

15,'1.I: CLS
HK 13'1.I •
HN 14'1.I LOCATE 13,2: PRINT "bkgd";: LOCATE 14,2: P

RINT "colors"
DJ 15'1.1 LOCATE 2,9: PRINT "foreground colors"
HA 16'1.1 '
NL 1 70 FOR FRGD. SECT=0 TO 7
PO 1B{11 FOR FRGD=FRGD.SECT TO FRGD.SECT+24 STEP 8
KE 190 COLOR FRGD,'1.1: LOCATE 4,8+(2*FRGD>: PRINT M

ID$(STR$(FRGD>,2,2>;
AC 20'1.I FOR BKGD='1J TO -,.
NB 21'1.I IF FRGD='1J THEN COLOR BKGD,'1.1: LOCATE BKGD+5

,1: PRINT" ";BKGD;
DO 220 COLOR FRGD, BKGD: LOCATE BKGD+5, 8+ <2*FRGD>:

PRINT CHR$(177>;CHR$(177>
FK 23'1.I NEXT: NEXT: NEXT
HN 240 •
OE 25'1.I DEF SEG=&HFFFF: IF PEEK <&HE> =&HFD THEN CTR

L.6845=0: BLINK.OFF=&H0: BLINK.ON=&H2: GOT
0 440 'PCjr

178

Video

NC 26111 DEF SEG=111: CTRL. 6845=&H3D8: BLINK. OFF=&H9: B
LINK.ON=&H29

QL 27111 IF PEEK<&H449)=7 THEN CTRL.6845=&H3B8:BLIN
K.OFF=&HF:BLINK.ON=&HFF

FH 280 GOTO 440
HH 290
CB 31110 IF CTRL. 6845=0 GOTO 350 • jr
AE 310 OUT CTRL. 6845, BLINK. OFF : GOTO 520 • turn o

ff bit 5
JN 320 IF CTRL. 6845=0 GOTO 390 • j r
HJ 330 OUT CTRL.6845,BLINl<.ON :GOTO 520 • turn o

n bit 5
HO 340 •
AG 350 X=INP (&H3DA> • set vga to reg/data sequence
KH 360 OUT &H3DA, 3 • select vga reg three
1:H 370 OUT &H3DA, BLINK. OFF
FN 380 GOTO 520
80 390 X=INP (&H3DA) • set vga to reg/data sequence
KN 4'1.1'1.I OUT &H3DA, 3 • select vga reg three
AC 410 OUT &H3DA, BLINK. ON
EB 42'1.1 GOTO 520
HN 43'1.I •
DG 44'1.I COLOR 7,0:LOCATE 14, 18: PRINT"------------

QI 45'1.I
NA 46'1.I
CB 470
IC 48'1.I

------- MENU--------------------"
COLOR 15,'1.I
LOCATE ,22:PRINT"1 =
LOCATE ,22:PRINT"2 =
LOCATE ,22:PRINT"3 =
LORS"

ENABLE BLINK"
DI SABLE BLINK 11

JR, CHANGE PALETTE CO

Ill 490 LOCATE , 22: PRINT"4 = JR, CHANGE PALETTE CO
LOR MASK"

NN 500 LOCATE , 22:PRINT"S = JR, RESET PALETTES g,
MASK"

80 51'1.1 LOCATE ,22:PRINT"6 = EXIT program"
CA 52'1.I K$=INPUT$(1):K=VAL(K$):IF K<1 OR K>6 THEN

BEEP: GOTO 520
FL 530 ON K GOTO 320,300,550,620,670: END
HA 540
00 550 LOCATE 22, 5: INPUT "Enter FROM color numbe

r <0-15) •.. ",FC$
FK 560 FC=VAL < FC$) : IF FC > 15 GOTO 550
PC 570 LOCATE 22, 5: INPUT "Enter TO color numbe

r (0-15) •.• ",TC$
KE 58e> TC=VAL <TC$) : IF TC> 15 GOTO 570
OP 590 X=INP <&H3DA): OUT &H3DA, FC+&H10: OUT &H3DA,

TC: OUT &H3DA,0
DC 600 LOCATE 22, 1: PRINT SPACE$ <79);: GOTO 520
HL 610 •
JA 620 LOCATE 22, 5: INPUT "Enter IRGB hex value

0-F) see TRM 2-53 ••• ",TC$

179

Video

OF 630 TC=VAL<"&h"+TC$): IF TC>15 OR TC<0 GOTO 62
0

JF 640 X=INP(&H3DA> :OUT &H3DA, 1: OUT &H3DA, TC
EN 650 LOCATE 22, 1: PRINT SPACE$ (79>;: GOTO 520
HF 660 •
HD 670 X=INP (&H3DA>: FOR X=0 TO 15: OUT &H3DA, X+&

H10: OUT &H3DA,X: NEXT
GN 680 OUT &H3DA, 1 : OUT &H3DA, &HF
FB 690 GOTO 520

Screen Paging
When using the color adapter in text mode, several screen
pages of information can be prepared ahead and stored in the
display buffer in anticipation of display. Recall the possible
text modes for the color adapter as shown in Table 4-5.

These modes use either 2K or 4K of the video memory,
depending on the number of columns displayed, leaving room
(on the PC) for three or seven more screen pages waiting to be
instantaneously displayed. BIOS INT 10, service 5 is provided
to allow the selection of one of these pages for display. The
cursor location can be tracked and set in all the pages for fast
switching between the pages without any confusion regarding
the cursor location. Services 2 and 3 of INT 10 are available
for cursor functions.

Although the PCjr can hold many more pages of screen
information than the PC, only eight cursors can be tracked at
any time. And these cursor locations all refer to the current 16K
display buffer. The eight cursor locations are stored in loca­
tions 450h through 45Fh, as in the PC. The cursor-tracking
locations in the PCjr correspond to the pages within an in­
dividual 16K display buffer.

Table 4-5. Summary of Available Color Text Modes
449h
ROM
BIOS Display JJASIC 465h 44Ch 462h
CRT Screen Screen/ 6845 Mode Page Buffer
Mode Characteristics Width/Burst PC PCjr Length Pages
00h 40X25 b/w text 0/40/off 2Ch Ch 800h* 8
0lh 40 X 25 16-color text 0/40/on 28h 8h 800h* 8
02h 80X25 b/w text 0/80/off 2Dh Dh lO00h* 4
03h 80X25 16-color text 0/80/on 29h 9h lO00h* 4

*The PCjr may have up to eight display buffers of 16K, each segmented into screen
pages of the appropriate length.

180

Video

For both the PC and PCjr, BIOS supplies INT 10 services
to allow characters to be written into or obtained from any
screen page. Other services, such as scrolling up or down, are
performed only on the page currently being displayed. INT 10,
service Fh returns the active page number if your program needs
to know. The BASIC SCREEN statement allows the programmer
to specify which page is being displayed and which page in
the current display buffer that output is to be directed to.

The number of the active page of the display buffer is
kept in location 462h by ROM BIOS; the length of the page is
maintained in location 44Ch (with an incorrect length of
4000h for monochrome-it should be 1000h). The offset of
the page is saved in location 44E-44Fh and in the 6845 reg­
isters 12-13h. The location of the cursor for each page is
stored in the series of bytes between 450-45Fh. Each page has
a two-byte area in this range where the column and row of
the cursor are saved. Registers 14-15h of the 6845 track the
location of the cursor for the active page.

Program 4-18 displays the page-related information from
the BIOS CRT information block in memory.

Program 4-19 shows how to use the capabilities of the
multipage display buffer on both the PC and the PCjr. First,
all four 80 X 25 pages within the 16K display buffer are filled
with a character (two 16K buffers on the PCjr). Then the pro­
gram allows the user to select the page to be displayed. The
PCjr user can also select which buffer the page to be displayed
is located in, and the program adjusts the CRT /processor page
register to the correct buffer. You can see how quickly the
6845 registers that control the starting position in the display
buffer can cause the new information to be displayed on the
screen. Since Program 4-19 doesn't set the attribute byte asso­
ciated with each text byte, you may see some rather strange
colors on the screen when switching to some pages. This will
not hurt and as a side benefit will help identify the page being
viewed.

When the PCjr version of the program ends, the default
display buffer at the high end of memory (called "bufferl" in
the program) will be automatically switched to by BASIC,
causing the screen to display the "e" screen rather than the
"a" screen. This is consistent with the rules stated for the
SCREEN statement in the BASIC manual.

You'll see the PCjr switch to the "e" screen as it begins to

181

Video

fill the pages in the second buffer. This need not happen if the
CRT /processor register is changed so that only the processor
portion of the register is affected. Currently, the program
changes both the CRT and processor portions of the register.

When the program ends and you are left with a screen
with lots of letters on it, use Ctrl-End to clear the line the
cursor is on or Ctrl-Home to clear the whole screen. (On the
PCjr, while holding down Ctrl, press Fn followed by either
End or Home.) Incidentally, you'll notice that the KEY line be­
comes filled with the fill character. That tells you that the only
thing preventing the use of the twenty-fifth line is BASIC's
screen management and not any special restrictions in BIOS or
the display circuitry. But we already have seen this to be true
from other demonstration programs.

PRINT statements could be used instead of POKE to fill
the pages, but then SCREEN statements would be needed to
switch the current APAGE to correspond to the desired dis­
play page. This would seem only to slow us down more. The
speed of either POKE or PRINT is probably not satisfactory for
real applications. Machine language routines can build display
pages at sufficient speed to be effective.

Program 4-18. Program to Display Page Information
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

El Ul.l0
66 11'1.1
go 120

AF 130
6B 140

FJ 158

"D 160

FA 170
CJ 180

AA 190
JJ 200

JA 205
LB 210
El 220

182

'Videost; Display Video status data . '

DEF SEG=Ql:CLS:PRINT" --- Current Video St
atus ---":LOCATE 3,1
PRINT "MODE 449h =" PEEK<&H449)
PRINT "COLUMNS 44A-44Bh =" PEEK<&H44A)+
256tPEEK <ScH44B>
PRINT "PAGE SIZE 44C-44Dh =" PEEK<&H44C>+
256tPEEK<&H44D> 'MONOCHROME wrong !!
PRINT "PAGE START 44E-44Fh =" PEEK<&H44E>+
256tPEEK<&H44F>
PRINT "PAGE NUMBER 462h =" PEEK<&H462>
PRINT "CRSR LOC 450-45Fh = PAGE, ROW, CO
L"
FOR X=&H450 TO &H45F STEP 2
PRINT TAB(23>;<X-&H450)/2;TAB<29>;PEEK<X+1
>;TAB(34>;PEEK(X):NEXT
PRINT
PRINT "PCjr CRT/PROCESSOR PAGE REGISTER:"
PRINT "CONTENTS of 48Ah =" HEX$(PEEK(&H
48A)); 11 h 11

HI 230 PRINT 11

AND 8cH7

Video

CRT 16K page=" PEEK<&:H48A)

DB 240 PRINT " PROC 16K page =" (PEEK (8cH48A>
AND 8cH38)/8

Program 4-19. Demonstration of Display Buffer/Page
Switching
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

,L 11210 'VIDEOBP; demonstrate video buffer/pages u

66 110
HG 120

Kl'I 130
BP 14121

sage
•
• After pages filled, 121-3 =page number to
display, 8=jr buffer0, 9=jr buffer1
• --- Reserve 2 16K buffers if PCjr --­
DEF SEG=S.HFFFF: IF PEEK(8cHE>=8cHFD THEN CLE
AR ,,32768!: PCJR=-1

DF 151'/.1 • --- Initialization ---
GL 160 DEFINTG=A-Z: SCREEN 0: WIDTH 80: CHAR=ASC(

"a")-1
01 170 • --- If PCJR, fi 11 two 16K buffers --­
AC 180 IF NOT PCJR GOTO 210
GH 190 FOR BUFFER=6 TO 7: OUT &:H3DF,BUFFER+(BUFFE

R*8): CLS: DEF SEG=8cHB800: GOSUB 230: NEXT
: GOTO 280

JL 201'/.1 • --- If not PCjr, fill one 16K buffer ---
01 210 FOR BUFFER=0 TO 0: DEF SEG=&:HB800: GOSUB 2

30: NEXT: GOTO 28121
GB 221'/.1 • --- Subroutine to f i 11 four pages with i

ncrementing characters ---
PM 230 FOR PAGE=0 TO 3: CHAR=CHAR+1: LOCATE 1, 1
AE 240 PRINT" Filling buffer"BUFFER"/ page "PA

GE"with "CHR$(CHAR>""
IH 250 FOR OFFSET=0 TO 4095 STEP 2
GI 260 POKE PAGE*4096+OFFSET, CHAR: NEXT: NEXT:

RETURN
I<¥ 270 • --- Let the user select which page to di

splay ---
CB 28111 LOCATE 1 , 1
JC 29111 IF PCJR THEN PRINT" select page (0-3) to d

isplay, esc to exit, 8=buffer0, 9=buffer1
".
' CL 3'110 IF NOT PCJR THEN PRINT" select page (0-3)

to display, esc to exit";
EF 310 K$=INKEY$: IF K$=CHR$(27) GOTO 420 ELSE IF

K$= '"' GOTO 3 UJ
DI 320 t<=VAL (K$)
NE 330 • --- Set the buffer or page selected
PO 34'11 IF <K=8 OR K=9> AND PCJR GOTO 360
LO 35111 IF K>3 THEN BEEP: GOTO 3UJ

183

Video

BF 360 IF K=8 THEN OUT 8cH3DF, 6+8*6: GOTO 3 UIJ • 8= j
r buffer0

MO 370 IF K=9 THEN OUT 8cH3DF, 7+8*7: GOTO 3UIJ • 9=j
r buffer1

IA 380 OUT 8<H3D4, 8<HC: OUT 8cH3D5, ((4096*K> /2) /256
'set 6845 reg to page offset

GG 390 OUT 8<H3D4, &HD: OUT 8cH3D5, 0
LE 400 DEF SEG=0: POKE &H44E,<4096*K>l256: POKE 8c

H44F,0 • maintain video tracking
CA 410 GOTO 310
HN 420 • --- Reset 6845 page offset registers
FY 430 OUT &H3D4,&HC: OUT &H3D5,0
GN 440 OUT &H3D4, 8cHD: OUT &H3D5, 0
AF 450 DEF SEG=0: POKE 8cH44E, 0: POKE 8cH44F, 0
M,'. 460 END

Graphics
The graphics screen modes use a different technique from the
text screen modes to specify the images that are to appear on
the screen and the colors associated with them. Rather than
the display buffer being filled with ASCII character codes and
attribute bytes (as in text mode), the graphics modes incor­
porate color information directly in the bit settings that are
used to define which PELs are on or off on the display screen.

A graphics screen measures 320 X 200 or 640 X 200
PELs (also 160 X 200 on the PCjr) rather than being mea­
sured in character lines and columns. Text characters can be
placed on the graphics screen (in 40- or SO-column sizes), but
they are actually drawn PEL-by-PEL by the BIOS from BIOS­
or RAM-resident PEL maps rather than being constructed by
the shift register and character set ROM in the display adapter.

Table 4-6 summarizes the available graphics modes. The
320 X 200 four-color graphics mode assigns two bits to each
PEL position on the screen. Since two bits can represent bi­
nary digits with four possible values (0-3), any one of four
different colors can be selected. A binary value of 00 selects
the current background color, causing no PEL to be visible at
that position. The meaning of values 1-3 depends on which
color palette is being used.

The PCjr allows any 4 of 16 colors to be used by setting
the PCjr VGA palette registers. Because of this capability, the
number of palettes available in PCjr graphics modes is not
relevant.

184

Video

Table 4-6. Summary of Available Graphics Modes
Characteristics
449h
ROM
BIOS
CRT
Mode
04h
05h
06h
08h
09h
OAh

Display BASIC
Screen Screen/
Characteristics Width/Burst
320X200 4-col graphics 1,2,3,4/40/on
320X200 b/w graphics 1,2,3,4/40/off
640X200 b/w graphics 1,2,3,4/80/off
PCjr 160X200 16-col graphics 3/20/on
PCjr 320X200 16-col graphics 5,6/40/on
PCjr 640X200 4-col graphics 5,6/80/on
Key

465h 44Ch 462h
6845 Mode Page Buffer

PC PCjr Length Pages
2Ah Ah 4000h* 1
2Eh Eh 4000h* 1
lEh Eh 4000h* 1
n/a lAh 4000h* 1
n/a lBh 8000h*t
n/a Bh 8000h*t

* The PCjr may have up to eight display buffers of 16K, each segmented into screen
pages of the appropriate length.
t Requires PCjr 64K display /memory enhancement.
n/a Not applicable.

Non-PCjr palette 1 (cyan, magenta, white) or palette 0
(green, red, brown) is chosen by using bit 5 of port 3D9h, and
it may be examined in bit 5 of memory location 466h. The
background/border color is selected by setting bits 0-3 (IRGB)
of the same port, and the current setting can be seen in bits 0-3
of location 466h. The 320 X 200 b /w graphics mode presents
the four color possibilities for each PEL as shades of gray.
Palette 00 01 10 11

0 Bkgd Green Red Yellow
1 Bkgd Cyan Purple White
2 Bkgd Cyan Red White

In the 320 X 200 four-color mode, you can create a third
palette on RGB monitors by turning on bit 2 of port 3D8h.
Turning on this bit gives a third palette composed of the col­
ors cyan, red, and white. The current palette selection has no
effect on the colors in the palette when this bit is turned on.
Turning off the bit returns the original palette selection. While
the third palette is not a big change from palette 1, it may be
handy to be able to use red with cyan and white. Program
4-20 demonstrates the effect of using this bit to obtain another
palette.

185

Video

Program 4-20. Third Palette, 320 X 200
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

JP 100

66 110
FN 120
JC 130
HA 140
PB 150
QI 160

LJ 170
FD 180

KD 190
AH 200

'VIDEOP3; demonstrate third palette - cyan
, red, white .
SCREEN 1:CLS:DEF SEG=0
FOR X=0 TO 1 • palettes
COLOR 8,X
LOCATE 1,1:PRINT "palette "X;:2=0
FOR Y=100 TO 300 STEP 100:2=2+1 • z is col
ors in palette, y is circle location
CIRCLE (Y,50),10,2:PAINT (Y+5,51),2:NEXT
K$=INKEY$: IF K$="" GOTO 180 •wait --for keyp
ress
IF K$=CHR$(27) THEN END
OUT &cH3D8,<PEEK(&cH465) OR 4) 'enable palet
te 2

JK 210 LOCATE 1, 1: PRINT "bit 2 on "
LB 220 KS=INKEY$: IF K$="" GOTO 220 •wait for keyp

ress
EL 230 OUT &cH3D8, <PEEK< &cH465) AND (255-4 >) ' di sa

ble palette 2
NG 240 NEXT
AH 250 GOTO 130 • 1 oop

Every byte of the color display adapter memory starting at
B8000h contains the color information for four PELs: 320
across times 200 down is 64,000 PELs, divided by 4 PELs per
byte equals 16,000 bytes needed to define a full screen; this
leaves 384 bytes of the display adapter memory unused
(6*1024=16384=4000h). But these 384 spare bytes are not all
at the end of the display adapter's memory as you might as­
sume. We'll see in a moment where these free bytes are ac­
tually located.

Since each scan line has 320 PELs on it and each byte can
hold PEL information for 4 PELs, we'll need 320 divided by 4,
or 80 (50h) bytes for each scan line. Again, 200 scan lines
times 80 bytes per line is 16,000 bytes-384 bytes short of the
display buffer size.

The layout of memory usage for 640 X 200 b /w mode is
the same as for the 320 X 200 mode, but each byte holds the
on/off information for eight PELs. Since twice as many PELs
can be defined in a byte, we can double the number of PELs
described in the same amount of memory as the 320 X 200
mode. But we have room only in the one bit per PEL to

186

Video

choose one of two colors, the background or the foreground
color.

The PCjr 160 X 200 graphics mode uses four bits to de­
scribe each PEL, allowing the choice of 16 colors per PEL,
with half the number of PELs able to be described in the 16K
display buffer.

The 320 X 200, 160 X 200, and 640 X 200 graphics
modes each use the display adapter memory in halves. The
first 8000-byte half (0-1F3Fh) is used for the even-numbered
scan lines on the screen, and the second 8000-byte half
(2000-3F3Fh) is used for the screen's odd-numbered scan
lines. This arrangement complicates the rapid mapping of a
picture into the video adapter memory.

Figure 4-12 illustrates the layout of color adapter memory
for 320 X 200, 160 X 200, and 640 X 200 graphics modes.

Figure 4-12. Color Adapter Memory Usage

B800: 0000-004Fh
0050-009Fh
00A0-00EFh

1EF0-1F3Fh
1F40-1FFFh

2000-204Fh
2050-209Fh
20A0-20EFh

. .
3EF0-3F3Fh

3F40-3FFFh

Scan line 0
Scan line 2
Scan line 4

Scan line 198
192 (C0h) unused

Scan line 1
Scan line 3
Scan line 5

Scan line 199

192 (C0h) unused

The PCjr extended graphics modes of 320 X 200 16-color
graphics and 640 X 200 4-color graphics require 128K of
RAM and use two contiguous 16K graphics display buffers to
map the PELs into. The 320 X 200 16-color mode permits one
byte to hold the color information for two PELs, while 640 X
200 4-color mode packs four PELs into each byte. Once again

187

Video

Figure 4-13. PCjr 128K Color/Graphics Memory Usage

B800: 0000-004Fh Scan line 0
0050-009Fh Scan line 4
00A0-00EFh Scan line 8

1EF0-1F3Fh Scan line 196

1F40-1FFFh 192 (C0h) unused

2000-204Fh Scan line 1
2050-209Fh Scan line 5
20A0-20EFh Scan line 9

3EF0-3F3Fh Scan line 197

3F40-3FFFh 192 (C0h) unused

4000-404Fh Scan line 2
4050-409Fh Scan line 6
40A0-40EFh Scan line 10

SEF0-SF3Fh Scan line 198

SF40-SFFFh 192 (C0h) unused

6000-604Fh Scan line 3
6050-609Fh Scan line 7
60A0-60EFh Scan line 11

7EF0-7F3Fh Scan line 199

7F40-7FFFh 192 (C0h) unused

188 .

Video

we see that twice the resolution of PELs reduces the number
of available colors to 4. Of course, the PCjr, unlike the PC, al­
lows (via the VGA color registers) great latitude in choosing
which 4 colors are to be used.

Figure 4-13 illustrates the layout of color memory for PCjr
320 X 200 16-color and 640 X 200 4-color graphics modes.

Program 4-21 demonstrates several aspects of the graphics
mode memory that are common between the PC and the PCjr.
First, 320 X 200 mode is entered, and all four colors are
shown from your choice of the two supported palettes. Each
byte in a four-byte segment is filled with the binary code to
cause that byte to be displayed in one of the four colors. No­
tice how every other line is filled in from top to bottom; then
the blank lines are filled in the same method because of the
separation of the even and odd scan lines in the graphics
memory. The background color could also be specified by the
user when the palette is chosen; black is used to maintain a
constant for contrast purposes.

Removing the STEP 4 from line 160 and replacing line
170 with POKE L, TIMER MOD 256:NEXT produces a pleasing
color pattern.

Next, the 640 X 200 mode shows the range of shading
that can be obtained by using bytes with various combinations
of the bits from O to 255. Again, every other line is filled and
then the blank lines are filled in.

By making minor changes, you can have hours of fun
creating different visual patterns from this program.

Program 4-21. Graphics Memory Filler Program
For error-free program entry, be sure to use "The Automatic Proofreader," Appendix H.

PC lff 'Videogm; demonstrate graphics memory arra
ngement

66 110 •
PB 120 SCREEN 11 DEF SEG=&HBSfJCh KEV OFF: CLS
HK 130 •
QP 140 INPUT "Palette <ff-1) ";PAL
Fl 15" COLOR 0, PAL: CLS
00 160 FOR L=0 TO &cH3F3F STEP 4
EN 170 POKE L,&cH55:POKE L+1,&cH0:POKE L+2,&HAA:POK

E L+3,&cHFF:NEXT
JP 1B0 • above statement fi 11 s 4 bytes with 01fflff1

01,ffffffff,10101~1ff,11111111
AG 190 LOCATE 25,1:INPUT"Press enter for screen 2

",XS

189

Video

&F 2N •
1111219 SCREEN 2
~ 229 FOR L=9 TO lcH3F3F
~ 23" POKE L,L NOD 2561NEXT
AB 249 • above st.at.ement. f i 11 s every 256 byt.es wit

h 9-255 bit. pat.t.ern
KH 25fll LOCATE 25,1:INPUT"Presa ant.er m end",XS
118 26" •
IA 279 SCREEN 81 KEY ON1 END

There is a set of video service routines in ROM BIOS
that make it easy to perform text and graphics functions in the
IBM-supported manner. To illustrate their use, let's use a few
of the services in a simple program that generates bar charts.
Program 4-22 can be entered with DEBUG and saved as
VIDEOBIO.COM, using the the N (Name) command provided
by DEBUG. Set register BX to O and CX to 100h, using the R
(Register) command before giving the W (Write) command to
insure that the whole program is saved to disk.

This sample program is not intended to be a lesson in the
finer points of programming, but rather a collection of
demonstration routines that can be easily understood. I'm con­
fident that you will write more efficient, generalized, and
clever code in your own programs. But this grab bag of
routines gives you a quick and easily understood demonstra­
tion of some basic BIOS call routines for graphics program­
ming. Included are routines that set the screen mode, palette
and background colors; place a graphics dot; position the
cursor; write TTY-style text; and wait for keypress to continue.

You may want to experiment with extending the program
by adding scaling lines; using color-mixing techniques in the
bars to achieve more apparent colors; generalizing the draw
routine further to include any rectangular shape anywhere on
the screen; and adding keyboard-entered values for the bars,
bar labeling, and so forth. The more you try, the more you
will learn about the ROM BIOS service routines for video.

The DOS interrupts and function calls do not provide any
services that are strictly graphics, but rather make available
text character services that may be used in graphics or text
modes. Obviously, these eventually reduce to the BIOS service
routines. All BIOS and DOS interrupts and functions for video
support are listed at the end of this chapter.

190

Video

Program 4-22. Bar Chart Graphics Program Using BIOS Calls
0100 E81500 CALL 0118 ; Set video mode and colors
0103 E82C00 CALL 0132 ; Draw bar 1
0106 E84200 CALL 014B ; Draw bar 2
0109 E85800 CALL 0164 ; Draw bar 3
0lOC E86E00 CALL 0170 ; Draw bar 4
0lOF E89E00 CALL 01BO ; Show caption
0112 E8CB00 CALL 0lE0 ; Wait for keypress
0115 E9DE00 JMP 01F6 ; Reset video mode and end
0118 B400 MOV AH,00 ; Called to set 320 X 200,
011A B005 MOV AL,04 ; 4-color mode
0llC CDlO INT 10 ; via BIOS,
0llE 90 NOP ; then
0llF B40B MOV AH,0B ; Set color palette
0121 B700 MOV BH,00 ; background
0123 B301 MOV .BL,01 ; to blue,
0125 CDlO INT 10 ; via BIOS,
0127 90 NOP ; then
0128 B40B MOV AH,0B ; Set color palette
012A B701 MOV BH,01 ; foreground
012C B301 MOV BL,01 ; to cyan, magenta, white
012E CDlO INT 10 ; via BIOS
0130 C3 RET ; And return.
0131 90 NOP ; Called to draw bar 1,
0132 BA8000 MOV DX,0080 ; from row 80h
0135 8916F001 MOV [0lF0),DX i
0139 BB0lO0 MOV BX,0001 ; in color 1 (cyan)
013C 881EF401 MOV [01F4),BL i
0140 B94000 MOV CX,0040 ; from column 40h
0143 BB2000 MOV BX,0020 ; 20h PELs wide
0146 E84D00 CALL 0196 ; call drawing routine
0149 C3 RET ; And return.
014A 90 NOP ; Called to draw bar 2,
014B BA6000 MOV DX.0060 ; from row 60h
014E 8916F001 MOV [0lF0),DX i
0152 BB0200 MOV BX,0002 ; in color 2 (magenta)
0155 881EF401 MOV [01F4),BL i
0159 B97000 MOV CX.0070 ; from column 70h
015C BB2000 MOV BX,0020 ; 20h PELs wide
015F E83400 CALL 0196 ; call drawing routine
0162 C3 RET ; And return.
0163 90 NOP ; Called to draw bar 3,
0164 BA4000 MOV DX,0040 ; from row 40h
0167 8916F001 MOV [0lF0),DX i
0168 BB0300 MOV BX,0003 ; in color 3 (white)
016E 881EF401 MOV [01F4),BL i
0172 B9A000 MOV CX,00A0 ; from column A0h
0175 BB2000 MOV BX,0020 ; 20h PELs wide
0178 E81B00 CALL 0196 ; call drawing routine

191

Video

0178 C3 RET ; And return.
017C 90 NOP ; Called to draw bar 4,
017D BA2000 MOV DX,0020 ; from row 20h
0180 8916F001 MOV [0lF0),DX ;
0184 888100 MOV BX,0081 ; in color 1 (cyan) XORed
0187 881EF401 MOV [01F4),BL ;
0188 B9D000 MOV CX,00D0 ; from column D0h
018E 882000 MOV BX,0020 ; 20h PELs wide
0191 E80200 CALL 0196 ; call drawing routine
0194 C3 RET ; And return.
0195 90 NOP ; Called to draw bars on screen
0196 53 PUSH BX ; Save width of bar
0197 B40C MOV AH,0C ; Request put-dot service
0199 A0F401 MOV AL,[01F4) ; in caller's selected color
019C CDlO INT 10 ; via BIOS with DX=row,

; CX=col
019E 42 INC DX ; do next row till
019F 81FAC700 CMP DX,00C7 ; bottom of screen
01A3 75F2 JNZ 0197 ;
0lAS 8B16F001 MOV DX,[0lF0) ; then back to starting row
01A9 41 INC ex ; and next column
0lAA SB POP BX ; subtracting 1 from width
0lAB 48 DEC BX ; for the column just done
0lAC 75E8 JNZ 0196 ; till all columns are done
0lAE C3 RET ; then return.
0lAF 90 NOP ; Called to caption the screen
0180 8402 MOV AH,02 ; position the cursor
0182 BA0804 MOV DX,0408 ; at row 4, column 8
0185 CDlO INT 10 ; via BIOS
0187 BED00l MOV SI,0100 ; Point to caption start
0lBA B90E00 MOV CX,000E ; load loop counter with length
018D 8A04 MOV AL,[SI) ; load a byte of the caption
0lBF 46 INC SI ; point to the next caption byte
0lC0 B40E MOV AH,0E ; request TTY output
01C2 8303 MOV BL,03 ; in color white
01C4 CDlO INT 10 ; via BIOS
01C6 E2FS LOOP 018D ; until all of caption done
01C8 C3 RET ; then return.
01C9 909090909090 NOPs ; Unused filler
0lCF 90 NOP ; Unused filler
0100 53616C657320 "Sales " ; Caption
01D6 466F72656361 "Foreca" ; for
0lDC 7374 "st" ; screen
0lDE 9090 NOPs ; Called to wait for keypress
0lE0 8401 MOV AH,01 ; using service 1
01E2 CD16 INT 16 ; of BIOS
01E4 74FA JZ 0lE0 ; spin till key pressed
01E6 C3 RET ; then return.
01E7 909090909090 NOPs ; Unused filler
0lED 909090 NOPs ; Unused filler

192

0lF0 0000
01F2 9090
01F4 00
0lFS 90
01F6 B400
01F8 B003
0lFA CDlO
0lFC CD20
0lFE 9090

NOPs

NOP
MOV
MOV
INT
INT
NOPs

Video

AH,00
AL,03
10
20

; Row save area
; Unused filler
; Color save area
; Jump here to
; reset screen mode to
; 80 X 25 color
; via BIOS
; and exit program.
; Unused filler

Writing Glitch-free Screens on Color
When the color/graphics adapter is used in text mode, glitches
(random small lines of various colors) will appear on the
screen when the color/ graphics buffer is being written to.
These do not occur on the PCjr, thanks to its VGA memory
access circuitry.

The PC glitches occur because the character generator's
process of building each character on the screen is being dis­
rupted by writing to the color adapter memory. Sometimes
these glitches can be annoying and if excessive may cause
doubt in the user about the quality level of the software or
hardware.

You'll notice that the glitches do not necessarily appear at
the position on the screen corresponding to the data being
placed in screen memory. Rather, they can appear anywhere,
based on the circumstances in which characters were being
constructed on the screen by the character generator at the in­
stant of the program's memory write.

The BIOS text character service routines prevent these
glitches from appearing when they are placing data in the
screen memory, so we can use these service routines to pre­
vent glitches from appearing. BASIC uses the screen services
of BIOS since DOS may be absent. You won't have any prob­
lems with glitches in BASIC unless you POKE directly to the
color adapter memory.

When it isn't possible to use the BIOS routines to place
text on the screen (because of performance or special control
requirements), we can use the same techniques that the BIOS
routines use to eliminate screen glitches.

Program 4-23 experiments with the various methods of
suppressing screen glitches. It can be entered with DEBUG, or
you can follow the discussion of the methods and then use the
appropriate routines in your own machine language programs

193

Video

or call them from your BASIC programs when doing screen
memory POKEs.

First, issue a MODE COBO command from DOS to insure
that the color adapter is properly initialized, enter and save
the program using DEBUG, and then run the program from
within DEBUG. The program pauses after each write to screen
memory so that you can see the effect of the process in pulses.
The screen does not appear to change, but it is actually being
rewritten at every pulse. You'll have no problem seeing the
pulses. Press any key to end the program.

You'll notice that the program produces randomly located
glitches on the screen since the antiglitch routine called by the
instruction at 132h is a dummy routine. Also, the screen-en­
able call at 13Fh does nothing now since the screen is not be­
ing disabled in this version of the program. By altering the
number of bytes to be placed in the screen memory (by chang­
ing the value loaded into CX by the instruction at location
129h) up to the maximum of 7D0h, the glitches can become
quite prevalent. If the screen mode in the instruction at ad­
dress 102h is changed to any of the graphics or 40-column
text modes, the problem disappears. The problem occurs only
in screen modes 2 and 3 (b/w or color 80 X 25 text). This
tells us that any of the other modes can be used to escape the
glitch problem.

We can use the BIOS method of waiting for a horizontal
retrace before putting a byte in screen memory by changing
the instruction at 132h to CALL 146 and the LOOP instruction
at 13Dh to LOOP 132 with the DEBUG Assemble command.

Now a character is placed on the screen only during the
quiet period while the monitor scan line is being repositioned
to the left of the screen from the right-hand edge.

This sample program may still show glitches in the left­
hand 10 or 12 columns, but these will not be present in nor­
mal usage of this technique of waiting for the horizontal
retrace before placing characters. Waiting for the retrace period
does not slow the display of characters much, since the 12-
microsecond retrace occurs 12,000 times per second.

The monitor also has a vertical retrace period 60 times per
second. This is the period during which the scan line is
repositioned to the top left of the screen from the bottom-right
corner. This process takes 1.02 milliseconds, but occurs infre­
quently enough that waiting for this period can drastically

194

Video

slow down the screen display. You can try waiting for this re­
trace period by changing the instruction at 132h to CALL 159.

You may also want to change the instruction at 13Dh to
LOOP 135 to see how much glitch prevention is accomplished
by trying to write all the characters going to the screen during
a single vertical retrace period. Try different character lengths
by varying the value placed in the CX register at location 129h.

Replacing the instruction at 132h with CALL 191 and the
one at 13Dh with LOOP 135 activates the third antiglitch
technique-disabling the screen display while the screen is
written to, then reenabling it. This method causes the familiar
blinking that many color-text programs are known for,
depending on the amount of time that the screen is disabled.
The BIOS INT 10 services for scrolling the screen up and
down use this technique.

Program 4-23. Glitch Elimination Experiments
0100 B400 MOV AH,00 ; Set mode
0102 B003 MOV AL,03 ; to screen 3 (80 X 25 color text)
0104 CDlO INT 10 ; via BIOS
0106 90 NOP ;
0107 E81600 CALL 0120 ; Write to screen memory
0l0A E2FE LOOP 010A ; Wait till CX is exhausted
0lOC E2FE LOOP 0lOC ; then again, to create pause
0lOE 90 NOP ;
0lOF B401 MOV AH,01 ; Get key status
0111 CD16 INT 16 ; via BIOS
0113 74F2 JZ 0107 ; none yet, so fill memory again
0115 90 NOP ;
0116 B400 MOV AH,00 ; Reset mode
0118 B003 MOV AL,03 ; to 80 X 25 color
011A CDlO INT 10 ; via BIOS
0llC 90 NOP ;
011D CD20 INT 20 ; and EXIT program
0llF 90 NOP ;
0120 90 NOP ; - FILL SCREEN MEMORY -
0121 B800B8 MOV AX,B800 ; Location of screen memory
0124 50 PUSH AX ; to register
0125 07 POP ES ; ES
0126 BF0000 MOV DI,0000 ; Offset within ES starts at 0
0129 B90002 MOV CX,0200 ; Number of bytes times 2
012C B80000 MOV AX,0000 ; Initialize character number to 0
012F B401 MOV AH,01 ; Blue on black attribute for all
0131 FA CLI ; Disable interrupts
0132 E86200 CALL 0197 ; Call antiglitch routine
0135 26 ES: ; Target segment is screen memory
0136 8905 MOV [DI],AX ; Place the character and attribute

195

Video

0138 FEC0 INC AL ; Next character number
013A 90 NOP ;
0138 47 INC DI ; Next char/attr offset in screen

; memory
013C 47 INC DI ;
013D E2F6 LOOP 0135 ; Keep filling till CX = 0
013F E83D00 CALL 017F ; Reenable the screen display
0142 FB STI ; Reenable interrupts
0143 C3 RET ; Return to caller
0144 90 NOP
0145 90 NOP ;
0146 50 PUSH AX ; - WAIT FOR HORIZONTAL

; RETRACE -
0147 BADA03 MOV DX,03DA ; Color adapter status byte
014A EC IN AL,DX ; Read into AL
0148 A801 TEST AL,01 ; bit 0 = horizontal retrace
014D 75FB JNZ 014A ; Loop till off to get full cycle
014F 90 NOP ;
0150 EC IN AL,DX ; Now wait for the retrace bit
0151 A801 TEST AL,01 ; to be set so that we get
0153 74FB JZ 0150 ; a full retrace cycle
0155 90 NOP ;
0156 58 POP AX ; In horizontal retrace
0157 C3 RET ; Return to caller
0158 90 NOP ; - WAIT FOR VERTICAL RETRACE -
0159 50 PUSH AX ;
015A BADA03 MOV DX,03DA ; Color adapter status byte
015D EC IN AL,DX ; Read into AL
OISE A808 TEST AL,08 ; bit 3 = vertical retrace
0160 75FB JNZ 015D ; Loop till off to get full cycle
0162 90 NOP ;
0163 EC IN AL,DX ; Now wait for the retrace bit
0164 A808 TEST AL,08 ; to be set so that we get
0166 74FB JZ 0163 ; a full retrace cycle
0168 90 NOP ;
0169 58 POP AX ; In vertical retrace
016A C3 RET ; Return to caller
0168 90 NOP ;
016C 90 NOP ; - DISABLE SCREEN DISPLAY -
016D 50 PUSH AX
016E 31C0 XOR AX,AX
0170 50 PUSH AX ;
0171 IF POP DS ; Data segment 0
0172 A06504 MOV AL,[0465] ; Get current adapter mode byte
0175 24F7 AND AL,F7 ; Turn off bit 3
0177 BAD803 MOV DX,03D8 ; Send to adapter
017A EE OUT DX,AL ; mode register
0178 OE PUSH cs ; Restore DS
017C IF POP DS
017D 58 POP AX

196

Video

017E C3
017F 50
0180 31C0
0182 50
0183 lF
0184 A06504
0187 0C08
0189 BAD803
018C EE
018D OE
018E lF
018F 58
0190 C3
0191 E8B2FF
0194 E8D6FF
0197 C3
0198 90
0199 00

RET
PUSH
XOR
PUSH
POP
MOV
OR
MOV
OUT
PUSH
POP
POP
RET
CALL
CALL
RET
NOP
DB

AX
AX,AX
AX
DS
AL,[0465)
AL,08
DX,03D8
DX,AL
cs
DS
AX

0146
016D

00

; Return to caller
; - ENABLE SCREEN DISPLAY -

,
; Data segment 0
; Get current adapter mode byte
; Tum on bit 3
; Send to adapter
; mode register
; Restore DS

,
; Return to caller
; Call for horizontal retrace
; Call for disable screen
; Return to caller
; Unused
; filler

rcx (Set register CX to the program length)
:99
w (Write the program to disk)

Incidentally, the PCjr vertical retrace can be detected by
testing bit 3 after reading port 3DAh, or you may use the vec­
tor at 34h INT OD to drive a vertical retrace routine. See pages
2-72 and 2-73 of the PCjr Technical Reference manual. Hori­
zontal retrace is not signaled in the PCjr.

There's still one more method for the elimination of
glitches and it's extremely powerful. Glitch suppression is only
a side benefit from a much more versatile capability. Remem­
ber that in 80 X 25 text mode there is room in the color
adapter memory for four screen images?

By writing to a screen image currently not being dis­
played, the character generator is never bothered by the pro­
gram's screen memory accesses. Also, you can build screens
before needing them and then instantly (without blinking or
glitches) switch to the one that you want displayed. The
BASIC SCREEN statement supports this function with the
APAGE (active page being written to) and VPAGE (page cur­
rently being viewed) parameters. Many of the BIOS character
services also allow a screen page number to be specified,
including the routine for posit'ioning the cursor.

Since we've previously explored the use of display buffer
pages, we won't reexamine the whole subject here, but we
will demonstrate its use in glitch elimination.

197

Video

Program 4-24 is much like the preceding program, but it
uses no antiglitch routines. It switches between screen page 0
and page 1 to demonstrate that smooth and instantaneous
switching between screens can be done. Press any key to end
the demonstration. The length of characters loaded into the
CX register by the instruction at location 12th is set so that
page O is filled and page 1 is only partially filled-this let's
you distinguish between them.

Program 4-24. Screen Paging in Text Modes
DEBUG VIDEOSP.COM a (Enter the assembler language operation
code and parameters)

- MAINLINE -
0100 B400 MOY AH,00 ;Set mode
0102 B003 MOY AL,03 ;to screen 3 (80 X 25 color text)
0104 CDlO INT 10 ; via BIOS
0106 E80F00 CALL 0118 ; Write to screen pages 0 and 1
0109 90 NOP ;
0lOA E82900 CALL 0136 ; Switch between the two pages
010D 90 NOP ; till a key is pressed
0lOE B400 MOY AH,00 ; Reset mode
0110 B003 MOY AL,03 ; to 80 X 25 color
0112 CDlO INT 10 ; via BIOS
0114 90 NOP ;
0115 CD20 INT 20 ; and EXIT program
0117 90 NOP ;
0118 90 NOP ; - WRITE TO SCREEN PAGES -
0119 B800B8 MOY AX,B800 ; Location of screen memory
011C 50 PUSH AX ; to register
011D 07 POP ES ; ES
0llE BF0000 MOY DI,0000 ; Offset within ES starts at 0
0121 B9000C MOY cx,ocoo ; Number of bytes times 2
0124 B80000 MOY AX,0000 ; Initialize character number to 0
0127 B401 MOY AH,01 ; Blue on black attribute for all
0129 90 NOP ;
012A 26 ES: ; Target segment is screen memory
012B 8905 MOY [DI],AX ; Place the character and attribute
012D FEC0 INC AL ; Next character number
012F 90 NOP ;
0130 47 INC DI ; Next char/attr offset in screen

; memory
0131 47 INC DI ;
0132 E2F6 LOOP 012A ; Keep filling till CX = 0
0134 C3 RET ; Return to caller
0135 90 NOP
0136 B80000 MOY AX,0000 ;
0139 31C9 XOR cx,cx ; Pause while a screen page
013B E2FE LOOP 013B ; is being displayed

198

Video

013D E2FE LOOP 013D ;
013F 3401 XOR AL,01 ; Select the other page
0141 50 PUSH AX ;
0142 B405 MOY AH,05 ; with active page service
0144 CDlO INT 10 ; via BIOS
0146 B401 MOY AH,01 ; Test for a keypress
0148 CD16 INT 16 ; via BIOS
014A 7403 JZ 014F ; If not, repeat the loop
014C 58 POP AX ; Else
014D C3 RET ; return to caller
014E 90 NOP
014F 58 POP AX
0150 EBE7 JMP 0139
0152 00 DB 00
0155 90 NOP

rcx (Set the length of the program in the ex register)
:55
w (Save the program on disk)

You can use the multiple screen capabilities of the color
adapter and PCjr while doing BASIC programming by simply
listing a reference section of code in one or more screens and
using the SCREEN statement to switch to an unused screen to
enter additional statements. Switch to the other screens when­
ever you need to reference the listed information.

The BIOS routine to select the active page for display
simply adjusts some of the display adapter 6845 registers and
records the current screen status information in the video­
related memory locations from 449h through 466h. Changing
these 6845 registers will cause the information on the display
screen to scroll instantly, not only to a different screen page,
but also to any position you desire within the active or in­
active pages. The video display page starting address is stored
in 44Eh, and the active page number in 462h. Be sure to keep
these accurate.

Program 4-24 can be modified to demonstrate the results
of using the 6845 scrolling registers (C-Dh) to reposition the
active page at any character position desired. Program 4-25
contains the replacement routine to do this. The routine does
not update locations 44Eh and 462h since it is experimental
only, but in your programs be sure to keep these locations up­
dated with the current video environment. You can change the
number of bytes to scroll by using different values in the
instruction at 13Fh. Be sure that the instruction at 12th causes
enough bytes to be written to the display buffer for your

199

Video

scrolling trial. The samples, as written, provide enough charac­
ters to demonstrate the scrolling effect.

If the end of the display buffer is encountered during
screen character generation (because of scrolling within the
last video page), the adapter wraps around to the beginning of
the adapter memory to obtain the remainder of the infor­
mation needed to fill a screen. Thus, you can use scrolling as a
window into a much larger stream of text located in the dis­
play adapter's memory. The scrolling techniques work in
either text or graphics modes. Try changing the mode selected
by the instruction at 102H to 5 to see the effect in 320 X 200
color/ graphics. The monochrome display adapter can also be
programmed to perform scrolling, but since there is only one
video page, it's hard to imagine a reason for doing this. You
can try this by setting video mode 7, changing B800h to
B000h, and 3D4h to 3B4h in the example routine.

Program 4-25. Text Scrolling
DEBUG VIDEOSP.COM
-n VIDEOSS.COM (Assign a new name to the program)
-a (Enter the assembler language operation code and parameters)
0136 BB0000 MOV AX,0000 ,
0139 31C9 XOR CX,CX ; Pause while a screen page
013B E2FE LOOP 013B ; is being displayed
013D E2FE LOOP 0130
013F B92000 MOV CX,0020
0142 BAD403 MOV DX,03D4
0145 B00C MOV AL,0C
0147 EE OUT DX,AL
0148 42 INC DX
0149 88E8 MOV AL,CH
014B EE OUT DX,AL
014C 4A DEC DX
0140 B00D MOV AL,0D
014F EE OUT DX,AL
0150 42 INC DX
0151 88C8 MOV AL,CL
0153 EE OUT DX,AL
0154 B401 MOV AH,01
0156 CD16 INT 16
0158 74FA JZ 0154
015A C3 RET

I

; Scroll 32 characters into page 0
; 6845 register port
; Select register 12
; Tell 6845 to address reg Ch
; Register contents to port 3O5h
; MSB of scroll amount
; to register 12
; Back to 6845 register port
; Select register 13
; Tell 6845 to address reg Dh
; Register contents to port 3D5h
; LSB of scroll amount
; to register 13
; Spin here till key is pressed
; Via BIOS
I

; Return to caller

Video

rcx (Set the length of the program in the ex register)
:SA
w (Save the program on disk)

Ports and Registers
The display adapter ports and 6845 registers are fairly well de­
scribed in the Technical Reference manual, and the Port Map
Appendix in this book restates and expands on the manual
information. Be extremely careful when experimenting with the
first ten 6845 registers; incorrect values in these registers can
damage the display adapter or monitor. You may want to wait
for others to play with these registers and report their find­
ings. Some fairly innocuous registers are those for the cursor
start/end, the scrolling registers we've explored, and the
cursor address registers. Look at the BIOS video routines for
examples of how these registers are used.

Some clarification of the information in the Technical Ref­
erence manual about the ports and registers is necessary. Ports
3B4/3D4h can actually be accessed through ports 3X0, 3X2,
3X4, and 3X6h (replace X with B for monochrome or D for
color). Likewise, port 3X5h may be reached via port 3Xl, 3X3,
3X5, or 3X7h. This is why you'll see these other ports not
used. Of all the video ports in the adapter, only 3X5h and
3XAh can be read; all others are write-only.

Of the 6845 registers, only C-llh may be read (through
3X5h). Registers C-Fh should contain half the offset from the
beginning of the display buffer rather than the full amount. .
The cursor location registers (E-Fh) should be the same as the
page start registers (C-Dh) plus the number of positions into
the page.

For the PCjr, the 6845 registers and their contents are de­
scribed starting on page 2-75 of the Technical Reference man­
ual. The ports are mentioned briefly on page 2-80. The VGA
registers are described starting on page 2-63, and the contents
of the VGA registers for various modes are listed in a table on
page 2-81. The ROM BIOS video routines (INT 10) are listed
starting on page A-29, with page A-31 containing the ad­
dresses of all the service routines.

The Technical Reference manual for the PC describes the
monochrome 6845 registers on page 1-115, the monochrome
port addresses on page 1-117, the color 6845 registers on page
1-138, and the color ports starting on page 1-139. The ROM

201

Video

BIOS video service (IN1 10) routines are listed starting on
page A-46, with A-48 containing a list of the addresses for all
the subordinate services.

The video-tracking information maintained by BIOS in
locations 449-466h is at least as important as the display
adapter ports, VGA registers, and 6845 registers, but these
locations are largely undocumented. Since most of the display
adapter ports, VGA registers, and 6845 registers are write-only
(you can't read their contents), the video-tracking locations
provide the only means of determining the current settings of
ports and registers. Also, this section of memory is indepen­
dent of the display adapter in that the information stored there
reflects the state of the current video adapter, whichever type
is currently in use.

We've been using many of these locations in the sample
programs and diagrams in this chapter, and they are mapped
in detail in the Memory Map Appendix of this book. A sum­
mary of the information contained in them will clarify their
relationship to the display adapter ports and registers. Table
4-7 summarizes these video-tracking locations and the more
usable video ports, 6845 registers, and VGA registers.

Table 4-7. Summary of Video Tracking, Ports, 6845
Registers, VGA Registers
Purpose Tracking PC PCjr
BIOS video mode 449h
Mode selection 465h *Port: 3X8h *VGA: O, 4
PCjr CRT /processor page 48Ah *Port: 3DFh
Columns 44A-44Bh
Page length 44C-44Dh
Page beginning 44E-44Fh 6845: C-Dh 6845: C-Dh
Page number 462h
Current adapter port base 463-464h
Status Port: 3XAh Port: 3DAh
Palette 466h *Port:3X9h *VGA: 1, 2, 10-lFh
Cursor start/end 460-461h *6845: A-Bh *6845: A-Bh
Cursor position 450-45Fh *6845: E-Fh 6845:E-Fh
Other pages' cursor position 450-45Fh
Light pen position 6845: 10-llh 6845: 10-llh
Light pen latches *Port: 3DB-3DCh *Port: 3DB-3DCh
PCjr horizontal adjust 489h 6845: C-Dh

• = Not readable
X = B (monochrome) or D (color)

As you can see, about the only unique display adapter
port and register information not reflected in the video-tracking
locations is the status register at port 3BAh or 3DAh (apart

202

Video

from the esoteric vertical/horizontal-synch/adjust and light
pen location values).

PCjr Cartridge BASIC Video Enhancements
The PCjr BASIC cartridge includes video support that is not
available from ROM BASIC, Disk BASIC, or BASICA. Because
of this, the BASIC cartridge is needed to exploit the full
capabilities of the PCjr graphics enhancements. Here are some
of the major areas of added video support in the PCjr
cartridge.

SCREEN modes include 3, 4, 5, and 6
SCREEN parameter ERASE is added
SCREEN parameters VPAGE and APAGE are valid for

graphics modes
SCREEN parameter BURST is always set on for modes 2,

3, 5, and 6
CLEAR parameter V allocates video memory space
PALETTE and PALETTE USING for adjusting the VGA

color registers
COLOR parameter FOREGROUND available for modes 3,

4, 5, and 6
Colors 0-15 supported in CIRCLE, DRAW, LINE, PAINT
PCOPY may be used to copy screens in all modes, not

just graphics

Video-Related Locations and References
Locations show PC values, then PCjr if they differ. The TRM
page indicated is the beginning or most significant page as
found in the XT Technical Reference manual (see the Introduc­
tion concerning the edition of manuals referenced in this
book). You should also examine the context of the surround­
ing pages.

Memory Video Support References
Location:
Label
Usage

14h
(INT 5)
Vector to PRINT_SCREEN if GRAPHICS not loaded
FFF54h; PCjr: FFF54h

TRM pg: A-81; PCjr: A-108

203

Location:
Label
Usage

Video

PCjr: 34h
(INT D, IRQ-5)
Vector to PCjr vertical retrace dummy routine; PCjr:
FF815h

TRM pg: PCjr: A-96

Location:
Label
Usage

40h
(INT 10) VIDEO-1NT
Vector to VIDEO-IO video service routines FF0A4H; PCjr:
FF0A4h

TRM pg : A-46; PCjr: A-29

Location: 74h
Label (INT 1D) PARM-PTR
Usage Vector to VIDEO-PARMS 6845 register tables FF0A4H;

PCjr: FF0A4h
Parms may be changed by copying tables to RAM, then
changing this vector

TRM pg : 2-5, A-48; PCjr: 5-9, A-8

Location:
Label
Usage

7Ch
(INT lF) EXT_pTR
Vector to CRT_CHARH, graphics characters 128-255 PEL
maps
PC: 00000 (user sets); PCjr: FE05Eh
PCjr: vector to first set 0-127 (0-7Fh) at 110h INT 44

TRM pg: 2-6; PCjr: 5-9, A-54

Location:
Label
Usage

PCjr: 110h
(INT 44) CSET_pTR
Vector to CRT_CHAR-GEN, graphics characters 0-127
PEL maps
PCjr: FFA6Eh
Vector to second set 128-255 (80-FFh) at 7Ch INT lF

TRM pg: PCjr: 5-9, A-103

Location:
Label
Usage

TRM pg:
Location:
Label
Usage
TRM pg:

204

410h
EQUIP-FLAG
Installed hardware found or switches set at boot
bits 4-5; initial video mode
00=unused, 01=40X25 color, 10=80X25 color,
11=80X25 mono
PCjr default is 40X25, bits changed with video mode
1-10, A-71; PCjr: A-97
449h
CRLMODE
Current BIOS video mode number
A-4; PCjr: A-5

Location:
Label
Usage
TRM pg:
Location:
Label
Usage
TRM pg:

Location:
Label
Usage

44A-44Bh
CRT_COLS

Video

Current number of columns on screen
A-4; PCjr: A-5

44C-44Dh
CRT_LEN
Current length of page
A-4; PCjr: A-5

44E-44Fh
CRT_START
Current offset of page in display buffer
See 6845, reg C-Dh

TRM pg : A-4; PCjr: A-5

Location:
Label
Usage

450-45Fh
CURSOILPOSN
Cursor location for each of up to eight pages
See 6845, reg E-Fh

TRM pg: A-4; PCjr: A-5

Location: 460-461h
Label CURSOILMODE
Usage Cursor start and end lines

See 6845, reg A-Bh
TRM pg: A-4; PCjr: A-5

Location:
Label
Usage
TRM pg:

Location:
Label
Usage

462h
ACTIVE_pAGE
Current page number being displayed
A-4; PCjr: A-5

463-464h
ADDIL6845
Current base vector for the active display card
3B4 mono, 3D4 color

TRM pg: A-4; PCjr: A-5
Location:
Label
Usage

465h
CRT__MODE_SET .
Current video mode 6845 mode register setting
See port 3B8/3D8h, VGA reg 0,4

TRM pg: 1-118, 1-141, A-4; PCjr: 2-64, 2-66, 2-81, A-5

Location:
Label
Usage

466h
CRT_pALETTE
Current color register setting
See port 3B9 /3D9h, VGA reg 1, 2, 10-lfh

TRM pg : 1-140, A-4; PCjr: 2-66, 2-81, A-5

205

Video

Location: PCjr: 489h
Label HORZ-POS
Usage Current PCjr screen horizontal adjustment
TRM pg: PCjr: A-5
Location: PCjr: 48Ah
Label PAGDAT
Usage Current CRT /processor page register contents

See port 3DFh
TRM pg : PCjr: 2-47, 2-79
Location: B0000h-B0FFFh
Label VIDEO_MONO
Usage 4K monochrome display buffer
TRM pg: 1-117
Location: BS0OOh-BBFFFh
Label VIDEO-COLOR
Usage : 16K color display buffer
TRM pg: 1-133, 1-136, 1-145; PCjr: 2-61

Port Video Support References
Location: PCjr: Port 2th
Label INT A0l
Usage IRQ5 bit 5 on if vertical retrace in progress
TRM pg : PCjr: 2-82
Location: PCjr: Port 6th
Label PORT_B
Usage bit 2 alpha/graphics steerer
TRM pg : PCjr: 2-31
Location:
Label
Usage

Port 62h
PORT_C
Configuration switch 5-6 input, default monitor type
PCjr: 64K display expansion installed

TRM pg : 1-10; PCjr: 2-30
Location: Port 3B4h
Usage Monochrome 6845 index register
TRM pg : 1-115
Location: Port 3B5h
Usage Monochrome 6845 data register
TRM pg: 1-115
Location: Port 3B8h
Usage Monochrome mode register

See memory 465h
TRM pg : 1-118

206

Video

Location: Port 3BAh
Usage Monochrome status
TRM pg: 1-118

Location: Port 3D4h
Usage Color 6845 index register
TRM pg: 1-138; PCjr: 2-76, 2-80

Location: Port 3D5h
Usage Color 6845 data register
TRM pg: 1-138; PCjr: 2-76, 2-80

Location: Port 3D8h
Usage Color mode register

See memory 465h; PCjr: VGA 0,4
TRM pg: 1-141
Location: Port 3D9h
Usage Color-select register

See memory 466h; PCjr: VGA 1, 2, 10-lFh
TRM pg : 1-140
Location: Port 3DAh
Usage Color status register
TRM pg: 1-143; PCjr: 2-73, 2-80

Location: PCjr: Port 3DAh
Usage Video gate array access port
TRM pg : PCjr: 2-63, 2-80, 2-81

Location: Port 3DBh
Usage Clear light pen latch
TRM pg: 1-139; PCjr: 2-74, 2-80

Location: Port 3DCh
Usage Preset light pen latch
TRM pg : 1-139; PCjr: 2-74, 2-80
Location: PCjr: Port 3DFh
Usage CRT /processor page register

See memory 48Ah
TRM pg : PCjr: 2-47, 2-79, 2-80

207

Video

ROM BIOS Video Support References

PC2 ROM BIOS
INT Serv Address PC2 ROM BIOS

FElEFh fill INT 10-lF vectors from FFF03h
FE202h save configuration switches in equipment flag
FE3DEh set up INT 0-15 vectors

10 FF045h INT 10, video 1/0
1 D FFOA4h mode parameter tables
10 00 FFOFCh set mode
10 01 FFlCDh set cursor type
10 02 FFlEEh set cursor position
10 05 FF217h set video page
10 03 FF239h read cursor position
10 OB FF24Eh set colors
10 OF FF274h read video state

FF285h calculate display buffer address of character
10 06 FF296h scroll up
10 07 FF338h scroll down
10 08 FF374h read attribute and character at cursor
10 09 FF3B9h write attribute and character at cursor
10 OA FF3ECh write character at cursor
10 OD FF41Eh read dot
10 OC FF42Fh write dot

FF452h calculate buffer location for dot
10 06 FF495h graphics scroll up
10 07 FF4EEh graphics scroll down

FF5 78h graphics write character
FF629h graphics read character
FF6AEh expand medium color
FF6C3h expand byte
FF6E5h read medium byte
FF702h calculate medium cursor position in display

buffer
10 OE FF718h write TTY
10 04 FF794h read light pen

FFA6Eh PEL maps for graphics characters 0-127
05 FFF54h INT 5 screen print

208

PCjr ROM BIOS

INT Serv Address
F0103h
F0C21h

10 F0CE9h
10 00 F0DA5h
10 OE F1992h
lF FE05Eh
10 01 FE45Eh
10 02 FE488h
10 05 FE4B3h
10 05 FE4DBh
10 03 FE52Dh
10 OB FE543h
10 OF FE5B1h

FE5C2h
10 06 FE5D3h
10 07 FE63Fh

FE675h
10 10 FE685h
1D FF0A4h
10 08 FF0E4h
10 09 FF113h
10 0A FF12Ch
10 OD FF146h
10 0C FF1D9h
10 06 FF259h
10 07 FF305h

10 04
44
05

FF3Flh
FF531h
FF659h
FF67Eh
FF6A0h
FF6C3h
FF6FCh
FF729h

FF746h
FFA6Eh
FFF54h

Video

PCjr ROM BIOS
VGA and 6845 set up
put logo on screen
INT 10, video 1/0
set mode
write TTY
PEL maps for graphics characters 128-255
set cursor type
set cursor position
set video page
read/set CRT/CPU registers
read cursor position
set colors
read video status
calculate display buffer address of character
scroll up
scroll down
read 256 bytes in 512 bytes
set VGA palette registers
mode parameter tables
read attribute and character at cursor
write attribute and character at cursor
write character at cursor
read dot at cursor
write dot at cursor
graphics scroll up
graphics scroll down
write graphics character
read graphics character
expand medium color
expand byte
expand nybble
read medium byte
read medium byte
calculate medium cursor position in display
buffer
read light pen
PEL maps for graphics characters 0-127
INT 5 screen print

209

Video

Additional Video Information
Subject
Attribute meaning for 0-255 ASCII codes
Color display description
Monochrome display description
Monitor type switch settings
Video parameters table
PCjr: Memory interleave and video refresh
PCjr: 64K memory and display expansion
PCjr: Adapter cable for color display
PCjr: Connector for television
PCjr: Video/display buffer compatibility with PC
PCjr: Screen horizontal adjustment keys

BASIC Video Support

TRM
C-1; PCjr: C-1
1-149, E-2; PCjr: 3-81, D-5
1-121
G-4
2-5; PCjr: 5-9
PCjr: 2-17
PCjr: 3-5
PCjr: 3-93
PCjr: 3-85
PCjr: 4-12
PCjr: 5-37

BASIC provides many statements that can be used for video
functions. Check your BASIC manual for the following state­
ments: CIRCLE, CLEAR, CLS, CSRLINE, COLOR, DRAW,
GET, KEY, LINE, LOCATE, ON PEN, PAINT, PALETTE,
PCOPY, PEN, PMAP, POINT, POS, PRINT, PRESET, PSET,
PUT, SCREEN, SPC, TAB, VIEW, WIDTH, WINDOW, WRITE.

DOS Video Support References

Subject
ANSI.SYS screen device driver

DOS CLS internal command
DOS GRAPHICS external command
DOS display /standard output
callable functions

DOS Page
Chapter 13 of DOS 2.0,
Chapter 2 of DOS 2.10 TRM
6-58 of DOS 2.0, 2-42 of DOS 2.1
6-106 of DOS 2.0, 2-96 of DOS 2.1

D-18 of DOS 2.0, 5-18 of DOS 2.1 TRM

DOS Video Interrupts and Services

21 DOS Function Request

210

02 display character (with break)
06 direct console 1/0 (no wait, break, or echo)
DL<>ff output character
09 display string till $ (with break)

Appendix A

Memory Map
A number of the memory locations explored in this memory
map are shown in the Technical Reference manual, but they
suffer from little information, cryptic explanations, or none at
all. Their interdependences with other locations and usage by
the system are left to the programmer to discover by paging
through the entire machine language listing. This memory
map will give you a more lucid picture of the use of memory
locations, as well as point you to Technical Reference manual
references (XT and PCjr manual), example programs, and de­
tailed explanations in the various chapters in this book.
Additionally, a combined index of ROM BIOS routine starting
addresses is included so that you can quickly identify and
locate the appropriate ROM BIOS routine in any of the PC
models.

This Appendix details the contents of the PC memory ad­
dress space as though it were laid out top to bottom in low­
memory to high-memory order, as Figure A-2 shows.

Each byte of memory is composed of eight bits, each
containing either a one or a zero. Figure A-1 shows the bit for­
mat of a byte, the bit numbering scheme, and the values
represented by each bit.

Figure A-1. Bit Contents of a Byte

7 6 5 4 3 2 1 0 Bit number, 2An = value

80 40 20 10 8 4
128 64 32 16 8 4

2
2

Example: Bit 5 = 2A5 = 20h = 32
0101 0101 = 55h = 85

1 Hexadecimal values
1 Decimal values

213

Memory Map

Figure A-2. Map of Typical PC Memory Usage

Using DOS 2.10, No CONFIG.SYS or AUTOEXEC.BAT, 384K Memory

OK

lK 400h

500h
I.SK

700h

3.SK
E30h

19K
4DB9h

21K 53F0h
24K SFD0h

24.lK 6080h

60B0h

214

8088 Vectors INT 0-7
8259 Vectors INT 8-F
BIOS Vectors INT 10-lF
DOS Vectors INT 20-2F
Assignable INT 40-FF

ROM BIOS Communications Area

DOS Data Areas

IBMBIO
72Fh of 1280h

IBMDOS
3F89h of 4280h

Storage Chain Anchor ➔ 5100h

Device Drivers
User extensions of IBMBIO

such as ANSI.SYS
CONFIG.SYS: buffers, files

•p Resident COMMAND

• Master ENVIRONMENT for COMMAND
A0h bytes,

expandable to 32K if no programs
have been made resident

• ENVIRONMENT for Next Program

•p BASIC Extensions Disk=12K, Advanced=22K
•••••••••••••••••••••••••ooooo,.,ooooooo.,,,,,000,,000000,o,,,,,,,,,ooo,,,,.,,,,,,,,,,,,,,

Start of BASIC 64K Workspace:
(/M or CLEAR may be used to size)

05:0 4K interpreter work area

··
Communications (/C) Buffers

180h Default Size

·······························"···································"····················
RS-232 Routines

SE0h Default Size

··
File (/F) Control Blocks

234h Default Size
..

File (/5) Random Buffers
80h Default Size

.... , ...
DS:30-31h BASIC Program Text

··
DS,358-9h ""'"'· ffiFh I ...
DS:35A-Bh Arrays, toward FFFFh

..
DS:35C-Dh Free Space

DEBUG Search Pattern
"VER 2.15"

DEBUG Search Pattern
E9 87 3F 03 44 45 56

~ INT 20,25,26,27

~ INT 21,22,23,24

~ Redirected
INT 0,4,9,B,

lB,lC,
23,24

64K
BASIC ext.+

lCOOOh
Jr:128K-16K

end-3410h-
Jr:end = 112K

640K AOOOOh

704K BOOOOh

708K BlOOOh

736K B8000h

752K BCOOOh

768K COOOOh

SOOK C8000h

832K DOOOOh

864K D8000h

896K EOOOOh

928K E8000h

960K FOOOOh

984K F6000h

1016K FEOOOh

1024K 100000h

Memory Map

DS:2C-Dh Stack 200h Bytes
(/Mor CLEAR may be used to size)

Unused and Available

Video Buffer in Jr

Transient COMMAND
end- FA8h Error messages
end-BlOh Internal command table
end-9F5h Last command text
end-9F6h Length of last command
end - SAEh Formatted filespec

:::::::END OF RAM MEMORY EXPANSION::::::

Reserved for Future Video Buffers

Monochrome Video Buffer

Reserved for Future Video Buffers

Color Video Buffer(s)

Reserved for Future Video Buffers

Jr: Cartridge
PC: ROM Expansion

Jr: Cartridge
C8000h XT: Hard Disk ROM

Jr: Cartridge
PC: ROM Expansion

Jr: Cartridge
PC: ROM Expansion

Jr: Cartridge
PC: ROM Expansion

Jr: BASIC Cartridge
PC: ROM Expansion

Jr: POST /Keyboard Adventure
PC: ROM Expansion

Jr: Cartridges

Cassette BASIC
Jr: Cartridges

ROM BIOS
Jr: Cartridges

• = Storage chain block, 10h bytes
P = Program segment prefix, 100h bytes

DEBUG Search Pattern:
B4 OE CD 21 2E SE 1E

215

Memory Map

How the Map Entries Are Formated
Here is the explanation of a typical memory map interrupt
vector:

14 Print Screen Image
INT 5, All PCs, Points: BIOS, Set: BIOS, Contents: FFF54
BIOS calls this interrupt when Shift-PrtSc or Fn-P is pressed.
GRAPHICS.COM changes this vector to point to itself. See
also location 500h.

Location 14 hexadecimal contains a vector that is used to
point to Print Screen Image (which corresponds to interrupt
05h) and is used for the same purpose in the PCl, PC2, XT,
and PCjr.

The vector points to memory occupied by ROM BIOS.
This vector is set by ROM BIOS and its typical absolute

memory location contents are as shown. Any differences in
typical contents between models of the PC would also be
shown, so they must all use the same address in this vector.
The vector's actual (nonabsolute) four-byte memory contents
are composed of a two-byte IP offset (LSB, MSB), then a two­
byte CS segment (LSB, MSB). See Chapter 1 if you're unfamil­
iar with the use of this address format.

Memory location 500h contains some information related
to this subject, and further information may be present im­
mediately following 500h. An asterisk (*) would be placed
before the "INT 5" if the interrupt or function was new in
DOS 2.x, or a dagger (t) if it was new in DOS 3.x. Since mem­
ory contents are somewhat configuration-dependent, use Pro­
gram 1-9, VECTORSD, or 1-8, VECTORSB, in Chapter 1 to
determine and document the vector contents for the configura­
tion of your computer. The typical contents listed here were
obtained on the following systems:
PCl: DOS 2.1, 384K, color and monochrome monitors, par­
allel printer, using BASICA, two floppy disks.
XT: DOS 2.1, 384K, color and monochrome monitors, parallel
printer, using BASICA, one floppy disk, one hard disk.
PCjr: DOS 2.1, 384K (128K base and 256K expansion), color
monitor, parallel printer, using BASIC cartridge, one floppy
disk.

In order to increase the possiblity of compatibility with fu­
ture PCs, some locations should not be accessed directly. For

216

Memory Map

these locations, we have included the expression upward­
compatible manner or method. You should use the method in­
dicated to obtain the value of the memory location being
discussed.

Locations: 0-3FFh
1024 Bytes for 256 Interrupt Vectors
Interrupts may be caused by a signal on the INTR pin of the
8088. The 8088 detects the interrupt at the end of execution of
the current instruction. The flag register, CS (code segment),
and IP (instruction pointer) are pushed on the stack to save
the current state of the system. The trap and interrupt bits of
the flag register are cleared to prevent any further interrupts
while the interrupt is being handled. The interrupt vector se­
lected is based on the interrupt number, and the vector is used
to proceed to the interrupt routine. The routine issues an IRET
instruction when it has finished processing the interrupt con­
dition. This causes the saved system state to be restored, and
the interrupted process continues.

Interrupts can be ignored by using the CLI operation code
which clears the interrupt bit in the flag register. The NMI
interrupt cannot be tgnored. It is triggered by a signal on the
8088 NMI pin.

8088 Interrupts
00 8088 Divide by Zero Error
INT 0, All PCs, Points: IRET, Set: DOS/BASIC, Contents:
067B6, Jr= ESDEE
Produces divide overflow or BASIC's Division by zero message,
then continues.

04 8088 Single Step
INT 1, All PCs, Points: IRET, Set: DOS, Contents: 847
Performs routine after each instruction; trap flag automatically
set off during the routine. Activated by trap bit in flag register,
used by DEBUG trace.

08 Parity Error Non-Maskable-lnterrupt (NMI)
INT 2, not Jr, Points: BIOS, Set: BIOS, Contents: FF85F,
PC1=FE2C3
Produces parity check 1 or parity check 2 message, then halts.

217

Memory Map

08 Keyboard Non-Maskable-lnterrupt (NMI)
INT 2, Jr, Points: BIOS, Set: BIOS, Contents: F0F78
Keyboard read and assemble bits routine.

0C 8088 Breakpoint
INT 3, All PCs, Points: BIOS, Set: BIOS, Contents: 847
Routine to be executed when instruction CCh (or INT 3) is
reached. Used by DEBUG go with breakpoints.

10 8088 Overflow
INT 4, All PCs, Points: IRET, Set: DOS /BASIC, Contents:
067B2, Jr=E8DEA
Used with INTO operation code to activate user overflow
handler routine.

14 Print Screen Image
INT 5, All PCs, Points: BIOS, Set: BIOS, Contents: FFF54
BIOS calls this interrupt when Shift-PrtSc or Fn-P is pressed.
GRAPHICS.COM changes this vector to point to itself. See
also location 500h.

18 Reserved for Future Use
INT 6, All PCs, Points: IRET, PCl =0, Set: BIOS, Contents:
FFF23, PCl=0, Jr=FF815

1 C Reserved for Future Use
INT 7, All PCs, Points: IRET, PCl =0, Set: BIOS, Contents:
FFF23, PCl=0, Jr=FF815

8259 Interrupt Requests (IRQ)
The 8259 Interrupt Controller chip receives interrupts from
various other devices and presents these prioritized interrupts
to the 8088 if the 8259 interrupt mask bit in port 2 lh for that
type of interrupt is enabled. Pending interrupts are held until
the current interrupt has finished. A special end-of-interrupt
(EOI) signal must be sent to 8259 port 20h by an interrupt
routine to indicate that the next interrupt may be processed.
The 8259 prioritizes the types of interrupts so that the system
timer and keyboard have highest priority.

20 8253 Channel 0 System-Timer-Tick Attention (IRQ0)
INT 8, All PCs, Points: BIOS, Set: BIOS, Contents: FFEA5
Normally, 8253 channel 0 (see 8253 ports 40-43) causes an
IRQ0 interrupt every 54.936 milliseconds, which activates a

218

Memory Map

routine to update the system timer at 46C-470h, checks to see
if the disk motor should be turned off, and drives INT lC for
user timer-tick tasks. See also INT lA and INT 21 functions
2C-2Dh.

24 Keyboard Attention (IRQ1)
INT 9, All PCs, Points: BIOS /BASIC, Set: BIOS /BASIC,
Contents: FFEAS/07D85, Jr=F1561/EABB2
PC 8259 causes this vector to be used to activate the keyboard
handler routine whenever a key is pressed or released. PCjr
uses 8088 NMI INT 2 to detect a keypress or release, INT 48
to map 62-key keyboard to 83-key keyboard equivalent; then
this interrupt is called. PCjr Cassette BASIC uses a temporary
INT 9 so that it can check for Ctrl-Esc or Esc as first key
pressed after power-on. See also related memory usage start­
ing at locations 417h and 480h; also ports 60-61h. Because of
the large number of related memory locations, see Chapter 2.

28 Reserved for Future Use (IRQ2)
INT A, All PCs, Points: IRET, PCl=0, Set: BIOS, Contents:
FFF23, PCl=0, Jr=FF815
Reserved for 1/0 expansion channel use.

2C Reserved for Communications COM2 (IRQ3)
INT B, All PCs, Points: 0, Jr=IRET, Set: BIOS, Contents:
FF815 PCjr: Primary Serial Port.
See memory location 50h.

30 Reserved for Communications COM1, BSC, or SDLC
(IRQ4)
INT C, All PCs, Points: 0, Jr=IRET, Set: BIOS, Contents:
FF815 PCjr: Internal Modem Port.
See memory location 50h.

34 Hard Disk Attention (IRQS)
INT D, XT, Points: Hard Disk BIOS, Set: Hard Disk BIOS,
Contents: C8760
Used to signal hard disk BIOS that a hard disk controller inter­
rupt has occurred; usually means that status information is
now available.

34 Reserved for Hard Disk BIOS (IRQS)
INT D, Not XT /PCjr, Points: O, Set: BIOS, Contents: 00000

219

Memory Map

34 Vertical Retrace (IRQS)
INT D, PCjr, Points: IRET, Set: BIOS, Contents: FF815
Available for user routine to synchronize palette register
modification with video vertical refresh. See Chapter 4 for
details.

38 Disk Attention (IRQ6)
INT E, All PCs, Points: BIOS, Set: BIOS, Contents: FEF57

. Used to signal BIOS that a disk controller interrupt has oc­
curred. This usually means that status information for the last
1/0 request is now available. On the PCjr, the watchdog timer
(port F2h) is connected to this line to terminate the disk opera­
tion during a disk error. All other 8259 interrupts are disabled
during the disk function, causing a beep if a key is pressed.

3C Reserved for Parallel Printer (IRQ7)
INT F, All PCs, Points: 0, Jr=IRET, Set: BIOS, Contents:
FF815

BIOS Device Function Requests
The ROM BIOS provides service request routines for the
management of the attached peripheral devices. DOS provides
a higher-level interface to user programs for device requests,
but these BIOS routines are ultimately used by DOS routines
to satisfy requests for device services. See the ROM BIOS list­
ing in the Technical Reference manual. Notice that PCjr
routines are not always at the same BIOS location as PC
routines. The use of these interrupt vectors to reach the de­
sired routine is the key to upward compatibility with future
PCs. See Chapter I for a program that you can use in BASIC
to request DOS services.

40 Video Functions
INT 10, All PCs, Points: BIOS, Set: BIOS, Contents: FF065,
Jr=F0D0B
This routine provides a variety of video services. See Chapter
4, memory locations beginning at 74h, 7Ch, and 449h. Also
see INT ID, INT IF; DOS functions 2, 6, and 9; ports 3B0h,
3D0h, and 2Ih.

220

AH Function
00 Set mode
01 Set cursor type
02 Set cursor position
03 Get cursor position
04 Get light pen position
05 Set display page
06 Scroll up
07 Scroll down

Memory Map

08 Get attribute and character
09 Put attribute and character
OA Put character
OB Set palette
OC Put dot
OD Get dot
OE Put TTY mode
OF Get status: columns, mode, page
10 Set palette registers (PCjr only)

44 Equipment Determination
INT 11, All PCs, Points: BIOS, Set: BIOS, Contents: FF84D
The routine returns equipment configuration bytes originating
from ports 60-62h at power-on. See memory locations
410-41lh for details of returned information.

48 Memory Size Determination
INT 12, All PCs, Points: BIOS, Set: BIOS, Contents: FF841
The total amount of usable memory (not including display
memory) in lK blocks is returned. The PCjr includes only up
to 112K (128K-16K for video), no matter how much additional
memory is added. PCJRMEM.COM device driver supplied
with expansion memory alters to true total memory size or
memory size minus RAM disk space. See memory locations
413-414h and ports 60-62h.

4C Disk Functions
INT 13, Not XT, Points: BIOS, Set: BIOS, Contents: FEC59
The subject routine performs a variety of disk functions. See
also memory locations starting at 78h, 43Eh; ports 4, 21h, 40h,
4 lh, 60h, F0h (PCjr), and 3F0h.

221

AH Function
00 Reset controller

· 01 Get status
02 Get sectors
03 Put sectors
04 Verify sectors
05 Format track

4C Hard Disk Functions

Memory Map

INT 13, XT, Points: Hard Disk BIOS, Set: Hard Disk BIOS,
Contents: C8256
Routine performs a wide choice of hard disk functions. Disk
functions vector is relocated to INT 40. See ports mentioned
above and 6, C2h, and 320h; see memory location 474h and
routines starting at location C8000h.
AH Function
00 Reset controller
01 Get status
02 Get sectors
03 Put sectors
04 Verify sectors
05 Format track
06 Format track and bad sector flags
07 Format drive starting at specified sector
08 Return parameters from drive table
09 Initialize drive pair characteristics using INT 41
OA Read long
OB Write long
OC Seek
OD Alternate disk reset
OE Read sector buffer
OF Write sector buffer
10 Test drive read
11 Recalibrate
12 Controller RAM diagnostic
13 Drive diagnostic
14 Controller internal diagnostic

50 RS-232 Serial Communications Functions
INT 14, All PCs, Points: BIOS, Set: BIOS, Contents: FE739
For serial communications using a built-in modem or the asyn­
chronous communications adapter for a serial printer or ex­
ternal modein. See ports starting at 2F8h for primary COMl,
and 3F8h for alternate COM2. Pluggable shunt modules are

222

Memory Map

provided on the adapter card to allow COMl or COM2 selec­
tion. The PCjr Internal Modem is logically addressed as
COMl, even though it physically uses ports starting at 3F8h.
When the internal modem is not installed, COMl is the RS-
232 connection starting at port 2F8h. See associated locations
2Ch, 30h, 400h, 47Ch.
AH Function
00 Initialize port
01 Put character
02 Get character
03 Get port status
0B25
Pin

2
3
4
5
6
7
8

20
22

Usage
Transmitted data
Received data
Request to send
Clear to send
Data set ready
Signal ground
Carrier detect
Data terminal ready
Ring indicator

54 Cassette Functions
INT 15, All PCs, Points: BIOS, Set: BIOS, Contents: FF859
(The XT returns an invalid cmd error code if this vector is
used.) All other 8259 interrupts are masked off while the cas­
sette is being accessed, including the system timer. See related
memory locations starting at 467h. The PCjr provides a
mechanism to channel the cassette audio input to the TI CSG
sound chip. See Chapter 3; see also ports 42h and 62h (bit 4).
AH Function
00 Motor on
01 Motor off
02 Get blocks (motor on, then off)
03 Put blocks (motor on, then off)

58 Keyboard Functions
INT16, All PCs, Points: BIOS, Set: BIOS, Contents: FE82E,
Jr=F13DD
Provides a number of keyboard-related services. See Chapter
2, related memory starting at locations 24h, 417h, and 480h;
INT 9, INT 21 functions 1, 6-8, A-Ch, INT 48-49; and ports
60-61h.

223

AH Function
00 Read key
01 Get character status
02 Get Shift status

Memory Map

03 Set typamatic rates (PCjr only)
04 Set keyboard clicker on/off (PCjr only)

SC Parallel Printer Functions
INT 17, All PCs, Points: BIOS, Set: BIOS, Contents: FEFD2
The BIOS routine provides several parallel printer services.
The DOS MODE command can be used to direct parallel
printer functions to a serial printer. Also see INT 5, F, 21 func­
tion 5, and DOS 3.0 INT 2F. See ports 21h, 278h, 378h, and
3BCh. Connector pin usage is contained at the latter port
descriptions.
AH Function
00 Put character
01 Initialize printer
02 Get status

BIOS Miscellaneous Interrupts
60 ROM-Resident BASIC Entry Point
INT 18, Not PCjr, Points: Cassette BASIC, Set: BIOS, Con­
tents: F6000
Entry point for ROM-resident Cassette BASIC.

60 ROM-Resident BASIC Entry Point
INT 18, PCjr, Points: BIOS/Cartridge BASIC, Set:
BIOS/Cartridge BASIC, Contents: FFFCB/E8177
This vector is set to point to a BIOS routine that will install a
temporary INT 9 vector to test for Ctrl-Esc and Esc as the first
keypress; it overlays this vector to point to the ROM-resident
Cassette BASIC at F6000h and issues INT 18 to go there. If
the BASIC cartridge is installed, the cartridge initialization rou­
tine during POST or system reset overlays this vector to point
to its own entry point at E8177h. See Chapter 1 for more de­
tails about BASIC, cartridges, and Cartridge BASIC.

64 Bootstrap Routine
INT 19, All PCs, Points: BIOS, Set: BIOS, Contents: FE6F2,
XT=C8186, Jr=F0BlB
The routine loads a sector from the disk or hard disk into loca­
tion 7C00 and executes the instructions loaded. Failure to read

224

Memory Map

the disk or hard disk causes INT 18 to be used to go to ROM
BASIC. See Chapter 1 for a full description of the system
bootstrap process.

68 System Timer Functions/PCjr Sound Source Functions
INT 1A, All PCs, Points: BIOS, Set: BIOS, Contents: FFE6E,
Jr=F1393
Provides system timer (location 46Ch) read/set services and
PCjr sound input selection. See also INT lC and INT 8.
AH Function
00 Get clock
01 Set clock
80 Set sound multiplexor (PCjr only)

Timer channel 2
Cassette
I/0 channel
TI CSG sound chip

See Chapter 3 for details of the PCjr sound selection function.

6C Keyboard Break User Routine
INT 1B, All PCs, Points: IRET/BASIC, Set: BIOS/BASIC,
Contents: 840/7E30, Jr=840/EAC49
Called by INT 9 routine to perform any user-desired actions
when Ctrl-Break or Fn-Break is pressed. See Chapter 2 for
additional details.

70 System-Timer-Tick User Routine
INT lC, All PCs, Points: IRET/BASIC, Set: BIOS/BASIC,
Contents: 840/6371, Jr=FF83C/E880B
Called by INT 8 routine to perform any user-desired actions
when a system timer tick has occurred. See Chapter 3 for
additional details.

BIOS Tables
Vectors to system tables are provided so that the user can
copy the tables to RAM, modify them, then change the vector
to point to the customized version of the tables. See DOS
functions 35h and 25h for the supported upward-compatible
method of retrieving and changing the contents of a vector.

225

Memory Map

7 4 Video Parameter Table
INT 10, All PCs, Points: BIOS, Set: BIOS, Contents: FF0A4
This vector points to a table containing four sets of 16 values
to be loaded into the 6845 registers for screen modes
corresponding to 40 X 25 (modes 0 and 1), 80 X 25 (modes 2
and 3), graphics (modes 4-6), and monochrome (mode 7 or
extended graphics modes 8-Ah on the PCjr). See Chapter 4
for more video mode details. See location 449h; INT 10, INT
lF; DOS functions 2, 6, and 9; ports 3B0h, 3D0h, and 21h.

78 Disk Parameter Table
INT lE, All PCs, Points: DOS Data Area, Set: BIOS,
Contents: 522
The vector points to a table of disk operational characteristic
parameters copied from ROM BIOS (FEFC7, Jr= FEFB8) to the
DOS work area. The BIOS copy of the table is used during the
bootstrap process and later moved to 522h. See the XT Tech­
nical Reference manual, page A-44; PCjr, page A-80. Some
abbreviations need explanation: SRT=step rate time (ex­
pressed in 2 millisecond increments), HD=head, EOT=end of
track (number of last sector on the track), gap length=space
between sectors, DTL=data length of sector. If a hard disk is
present on the system, the disk parameter table is copied from
C8201 and the hard disk parameter table is pointed to by INT
41. The PCjr motor start-up time is enforced to a minimum of
0.5 seconds, regardless of any lower value that may be placed
in the table. See locations 522h, 43Eh, and port 3F0h (or port
F0h for the PCjr).

7C Graphics Characters 128-255
INT 1F, All PCs, Points: Expansion ROM/0/BIOS, Set:
BIOS, Contents: F0000, PCl=0, Jr=FE05E
This vector points to a table of PEL maps for graphics charac­
ters 128-255. The PCjr provides these maps in ROM BIOS. In
the PC, this vector is to be set by the user. DOS 3.0 loads a
table of PEL maps, makes it resident, and modifies this vector
in response to the GRAFTABL command. See Chapter 4 for
additional information and instructions for creating PEL maps
for graphics characters 128-255 for the PC, similar to the way
used by DOS 3.0. A vector to PEL maps for the first set of
graphics characters (0-127) can be found at INT 44 in the
PCjr.

·226

Memory Map

DOS Interrupts and Functions
See DOS 2.0, Appendix D, or DOS 2.10/3.0 Technical Ref­
erence manual, Chapter 5, for specifics of using these DOS ser­
vices. The key to upward compatibility with future PCs is the
use of these interrupt vectors to reach the desired routine. See
Chapter 1 (Programs 1-13, 1-14, and 1-15) for programs that
you can use in BASIC to request DOS services.

80 DOS Program Terminate
INT 20, All PCs, Points: DOS, Set: DOS, Contents: 1937,
XT=19B7, Jr=19A7
Normal program exit return address. The interrupts saved in
the PSP are restored for the terminating program. DOS func­
tions 31h or 4Ch are preferred over using INT 20 since return
codes may be passed. See Chapter 1 for additional details.

84 DOS Function Call
INT 21, All PCs, Points: Resident COMMAND.COM, Set:
COMMAND.COM, Contents: 5580, XT=55A0, Jr=5530
Used to pass function requests to COMMAND.COM for rout­
ing to the appropriate routine in IBMDOS.COM. See Appen­
dix D for a list of the interrupts and functions by type of
device. The SRVCCALL program (Programs 1-13, 1-14, 1-15)
in Chapter 1 can be used to call for DOS functions from your
BASIC programs. An asterisk (*) is placed before the function
number if the function was new in DOS 2.x or a dagger (t) if
it was new in DOS 3.x.

AH Function
00 Terminate program, same as INT 20
01 Keyboard input (with wait, echo, break)
02 Display character (with break)
03 Auxiliary input (with wait)
04 Auxiliary output
05 Printer output
06 Direct console 1/0 (no wait, break, or echo)

DL=FFh return input character
DL<>FFh output character

07 Direct console input (with wait, no echo or break)
08 Console input (with wait and break, no echo)
09 Display string till $ (with break)
OA Buffered keyboard input (with wait, break)
OB Check standard input character availability
OC Clear keyboard buffer and do function 1, 6, 7, 8, or Ah

227

Memory Map

OD Disk reset
OE Select disk
OF Open file FCB
10 Close file FCB
11 Search for first matching filename
12 Search for next matching filename
13 Delete file
14 Sequential disk read
15 Sequential disk write
16 Create file
17 Rename file
18 Reserved
19 Query current disk
lA Set disk transfer area address
1 B Query drive allocation units and sectors by FCB
lC Query drive allocation units and sectors by drive number
1D-20 Reserved
21 Disk random read by FCB
22 Disk random write by FCB
23 Disk file size to record number
24 Set disk random record number
25 Set interrupt vector
26 Create a program segment prefix
27 Random block read using FCB
28 Random block write using FCB
29 Parse filename
2A Get date
2B Set date
2C Get time
2D Set time
2E Set disk write verify on/off

* 2F Get disk trans£ er area address
* 30 Get DOS version
* 31 KEEP, terminate process and stay resident

32 Reserved
* 33 Get or set Break on/off

34 Reserved
* 35 Get interrupt vector
* 36 Get disk free space

37 Reserved
* 38 Get country delimiter information
* 39 MKDIR, create subdirectory using name
* 3A RMDIR, remove directory using name
* 3B CHOIR, change current directory using name
* 3C CREAT, create file using name
* 3D Open a file using name

228

*3E
*3F
*40
*41
*42
*43
*44
*45
*46
*47
*48
*49
*4A
*4B
*4C
*4D
*4E
*4F

50-53
*54

55
*56
*57
t58
t59
t5A
t5B
t5C
t5D
t5E
t5F
t60
t61
t62

Memory Map

Close a file using handle
Read file using handle, redirection if standard input device
Write file using handle, redirection if standard output device
UNLINK, delete file using name
LSEEK, move file pointer using handle
CHMOD, change or get file mode using name
IOCTL, perform get/put/status/device information by handle
DUP, get duplicate handle
DUP, point file handle at another file
Read directory for drive
Allocate memory in paragraphs
Free allocated memory in paragraphs
SETBLOCK, change allocated paragraphs amount
EXEC, load or execute program by name
EXIT, terminate process with return code
WAIT, get return code from process
FIND FIRST, find first file and get information using name
Find next file and get information using name
Reserved
Get disk verify state
Reserved
Rename file using name
Get/set file date/time using handle
Reserved
Get extended error code for INT 21 or 24
Create temporary file ·
Create new file, cannot previously exist
Lock/unlock file access
Reserved
Reserved
Reserved
Reserved
Reserved
Get PSP address

88 D.OS Program Terminate User Address
INT 22, All PCs, Points: Resident COMMAND.COM, Set:
COMMAND.COM, Contents: 568C, XT=56AC, Jr=563E
The routine that this vector points to is called by DOS when a
program ends so that any user-required cleanup may be done
by an invoking program. For example, modules under DEBUG
have this vector pointing back to DEBUG so that it will regain
control when the program ends. This vector is saved in the in­
voked program's PSP. DEBUG's INT 22 in its PSP points back
to COMMAND.COM. COMMAND.COM checks the integrity

229

Memory Map

of the transient portion and reloads it if needed. See Chapter 1
for more details on the transient portion of COMMAND.COM,
invoking programs, and the PSP contents.

SC DOS Break User Exit Address
INT 23, All PCs, Points: Resident COMMAND.COM/
BASIC, Set: COMMAND.COM/BASIC, Contents:
5689/623A, XT=56A9/625A, Jr=5649/E8157
This vector points to a user routine which is called by DOS
when a Ctrl-Break or Fn-Break is entered so that the program
will allow or disallow the termination of the current activity or
the program. For example, for modules running under DE­
BUG, this vector points back to DEBUG so that it will regain
control when Break is entered. This vector is saved in the in­
voked program's PSP. DEBUG's INT 23 in its PSP points back
to COMMAND.COM. See Chapter 1 for more details of
invoking programs and the PSP.

90 DOS Fatal Error Handler Address
INT 24, All PCs, Points: Resident COMMAND.COM/
BASIC, Set: COMMAND.COM/BASIC, Contents:
58D2/67BE, XT=58F2/67DE, Jr=5892/E8DF6
This vector is used to point to the routine that DOS will call
when an error occurs that DOS error recovery has been unable
to correct. The routine will examine the error conditions and
decide what action needs to be taken. The Abort, Ignore, or Re­
try message is indicative of the possible error choices. All pro­
grams, including those invoked by other programs, point by
default to a routine in COMMAND.COM. BASIC attempts to
handle its own errors, going to COMMAND.COM only in ex­
treme cases. The original contents of this vector are saved in
the current PSP to be restored when the program ends. The
INT 24 vector saved in the PSP for COMMAND.COM points
to the DOS entry point for a fatal error in COMMAND.COM.
This entry point is at 19F3h, XT=1A13h, Jr=19B3h.

94 DOS Read Absolute Disk Sectors
INT 25, All PCs, Points: DOS, Set: DOS, Contents: 2210,
XT=2290, Jr=2280

98 DOS Write Absolute Disk Sectors
INT 26, All PCs, Points: DOS, Set: DOS, Contents: 225E,
XT=22DE, Jr=22CE

230

Memory Map

9C DOS Terminate But Stay Resident
INT 27, All PCs, Points: DOS, Set: DOS, Contents: 3543,
XT=35C3, Jr=35B3
The terminating program is retained in memory with all fur­
ther programs being loaded above the end of it. Function 3th
serves the same purpose but allows a return code to be passed
to the invoking program or batch file. See Chapter 1 for addi­
tional details about this feature. The "Video" chapter, Chapter
4, uses this call to cause PEL maps for graphics characters
128-255 to remain resident after the program ends.

AO Used Internally by DOS
INT 28, All PCs, Points: DOS, Set: DOS, Contents: 1943,
XT=19C3, Jr=19B3
Seems to be consistently used as a vector to an IRET instruc­
tion in COMMAND.COM.

A4 Used Internally by DOS
INT 29, All PCs, Points: IBMBIO.COM, Set: DOS, Contents:
82E
Seems to be consistently used as a vector to an INT 10 func­
tion Eh (put TTY) followed by an IRET.

AB-BB Reserved for DOS
INT 2A-2E, All PCs, Contents: Zeros

BC Print Queue Functions
INT 2F, DOS 3.x, Points: DOS
Reports status; submits or cancels print queue files.
AL Function
00 Determine if queue handler installed
01 Submit file for printing
02 Cancel print of file
03 Cancel print of all files
04 Hold the print queue for scan
05 Activate the print queue after hold

BC Reserved for DOS
INT 2F, Not DOS 3.x, Contents: Zeros

CO-FF Reserved for DOS
INT 30-3F, All PCs, Contents: Zeros, Jr=FF815 (IRET)

231

Memory Map

100 Disk Functions
INT 40, Only XT, Points: BIOS, Set: Hard Disk DOS,
Contents: FEC59
When the XT hard disk BIOS replaces the INT 13 disk func­
tions vector with a vector pointing to itself for hard disk func­
tions, it saves the old disk INT 13 vector here so that it may
call INT 40 to perform disk functions. See locations 4Ch and
78h.

104 Hard Disk Parameter Table
INT 41, XT Only, Points: Hard Disk BIOS, Set: Hard Disk
BIOS, Contents: C83E7
The vector points to a table of hard disk operational
characteristic parameters in hard disk BIOS. You can copy this
table to RAM, modify the parameters, and change this vector
to point to your own version of the table. The hard disk BIOS
copy of the table will be used during the bootstrap process.
The hard disk parameters are used by the INT 13 routine to
accomplish the hard disk functions. Four different hard disk
drive types can be defined in the table entries. The contents
and meaning of the table entries can be seen starting on page
A-94 of the XT Technical Reference manual. The parameter
table for disk is copied from hard disk BIOS at C8201h to
location 522h and is pointed to by INT lE. See ports 6, C2h,
and 320h and memory location 474h; see hard disk BIOS
routines starting at location C8000h.

108-1 0C Reserved for BIOS
INT 42-43, All PCs, Contents: Zeros, Jr=FF815 (IRET)

110 PCjr Graphics Characters 0-127
INT 44, PCjr Only, Points: BIOS, Set: BIOS, Contents:
Jr=FFA6E
This vector points to a table of PEL maps for graphics charac­
ters 0-127. The PCjr provides these maps in ROM BIOS. In
the PC, the PEL maps are always assumed to be located at
FFA6Eh, making it impossible for the user to redefine these
characters. See Chapter 4 for additional information about PEL
maps. A vector to PEL maps for the second set of graphics
characters (128-255) for all PCs can be found at INT lF.

110 Reserved for BIOS
INT 44, Not PCjr, Contents: Zeros

232

Memory Map

114-11 C Reserved for BIOS
INT 45-47, All PCs, Contents: Zeros, Jr= FF815 (IRET)

120 PCjr Keyboard Translation
INT 48, PCjr Only, Points: BIOS, Set: BIOS, Contents:
Jr=F10C6
The subject routine performs the needed translation from the
PCjr 62-key keyboard scan codes to the PC 83-key keyboard
scan codes so that the PC-style INT 9 keyboard attention rou­
tine may be used for compatibility purposes. Scan codes above
those generated by the keyboard are also processed by using
the table pointed to by INT 49.

See Chapter 2 for additional details.

120 Reserved for BIOS
INT 48, Not PCjr, Contents: Zeros

124 PCjr Nonkeyboard Translation Table
INT 49, PCjr Only, Points: BIOS, Set: BIOS, Contents:
Jr=F109D
Translation table for INT 48 to use in interpreting
nonkeyboard-generated scan codes (56-7Eh and D6-FEh). The
default table translates these scan codes into keyboard scan
codes of 48-69h. See Chapter 2, INT 48, INT 9, and Technical
Reference manual, page 5-42.

124 Reserved for BIOS
INT 49, Not PCjr, Contents: Zeros

128-17F Reserved for BIOS
INT 4A-5F, All PCs, Contents: Zeros, Jr=FF815 (IRET)

180-19F Reserved for User Interrupts
INT 60-67, All PCs, Contents: Zeros, Jr= FF815 (IRET)

1 A0-1 FF Reserved
INT 68-7F, All PCs, Contents: Zeros, Jr= FF815 (IRET)

200-217 Reserved for BASIC
INT 80-85, All PCs, Contents: Dynamic

218-3C3 Reserved for BASIC Interpreter
INT 86-F0, All PCs, Contents: Dynamic

3C4-3FF Reserved for lnterproccess Communications
INT Fl-FF, All PCs, Contents: Dynamic

233

Memory Map

Locations: 400-4FFh
256 Bytes for BIOS Data Areas
Starting with memory location 400h, we will no longer be
discussing interrupt vectors but rather data storage areas.
Thus, the "INT number, Points:, Set:, and Contents:" line is of
no particular use. Since the data stored in these locations is
often model-dependent, each entry will indicate which model
the information applies to or does not apply to. If there is no
indication, then it is used in the same way for all models.

Configuration Data
400 Asynchronous Adapter Port Addresses
Port addresses of up to four RS-232 asynchronous adapters
(currently, only two supported). If two adapters are present,
the first two bytes will contain F8 03 (3F8h) and the next two,
F8 02 (2F8h). Any unused entries will contain zeros. The PCjr
has 2F8h as the first address if the internal modem is not in­
stalled; otherwise, 3F8h, then 2F8h. The port address order
corresponds to COMl and COM2. See ports 2F8h and 3F8h
and memory locations 50h, 2Ch, 30h, 526h, and 47Ch.

408 Parallel Printer Adapter Port Addresses
Port addresses of up to four parallel printer adapters (cur­
rently, only three supported). If three adapters are present, the
first two bytes will contain BC 03 (3BCh monochrome/printer
adapter), then 78 03 (378h), and the next two, 78 02 (278h).
Any unused entries will contain zeros. The PCjr contains 3 78h
in the first entry if the parallel printer adapter is installed. The
port address order corresponds to LPTl, LPT2, LPT3. See
ports 278h, 378h, and 3BCh, and memory locations 3Ch, SCh,
BCh, and 4 78h.

410 Equipment Flags
These indicator flags are set by BIOS POST routines from
configuration switches obtained through ports 60-62h. The
PCjr sets these flags (to maintain compatibility) based on the
equipment installed rather than using configuration switches.
Use INT 11 to obtain this byte and the next (4 llh) in an up­
wardly compatible manner. See Chapter 1 for additional de­
tails. The configuration switches are used in the following
arrangement:

234

Memory Map

Switch 1
Toggle XT PC1/PC2
1 POST loop Drives with 7-8
2 8087 Same
3-4 Memory on system board Same
5-6 Monitor type Same
7-8 Drives available Same

Switch 2
Toggle XT PC1/PC2
1-5 Not present Memory options
6-8 Not present Unused

bits 7-6 Number of disks present (if bit 0=l)
00=1

. 01=2
10=3
11=4

bits 5-4 Initial video mode
00=None (or enhanced video adapter)
01 =40X25 color (PCjr default)
10 = 80 X 25 color
11 = 80 X 25 monochrome

bits 3-2 System board RAM
XT /PC2 PCl PCjr
00=64K 16K
01=128K 32K
10=192K 48K Entry level, 48K
11 =256K 64K Enhanced, 64K

bit 1 Not used
bit 0 1 = Disk drive installed

411 Equipment Flag 2
This flag byte is set by the BIOS POST routines when examin­
ing the system for adapter cards. INT 11 should be used to ob­
tain the contents of this byte in an upwardly compatible
manner.
bits 7-6 Number of parallel printers (see location 408h)
bit 5 PCjr only: 1 =serial printer in use (see location 400h)

Unused by all PCs except PCjr
bit 4 1 =Game adapter present (normally 1 on PCjr) (see port 200)
bits 3-1 Number of asynchronous adapters (see location 400h)

bit 0
(normally 1 on PCjr)
PCjr only: 1 =no DMA, 0=DMA on system (normally 1)
Unused by all PCs except PCjr

235

Memory Map

412 PCjr: Count of Keyboard Transmission Errors
All PCs Except PCjr: Manufacturer Test Flags

413 Memory Size
Amount of memory available including system board and
expansion memory in 1/0 channel, not including display
memory. Expressed in terms of lK blocks. Use INT 12 to ob­
tain this value in an upwardly compatible method. See Chap­
ter 1, ports 60-62h, and location 415h.

The PCjr includes only up to 112K (128K-16K for video),
no matter how much additional memory is added. The
PCJRMEM.COM device driver supplied with expansion mem­
ory alters this location to true total memory size or to memory
size minus selected RAM disk space.

415 Expansion Memory
PCl/2: Number of lK blocks of memory expansion in 1/0
channel, not including display memory.
PCjr: Number of lK blocks of memory on system board and
expansion in 1/0 channel, but not display memory.
XT: Manufacturer test routines work area.

Keyboard Data
417 Keyboard Flag
This flag of the keyboard state is maintained by the INT 9
(and INT 48 in the PCjr) keyboard attention routines. It, and
location 418h, can be examined to determine the current Shift
and toggle key settings. Note that only location 417h (not
418h) is returned in response to using the provided keyboard
status function of INT 16, function 2. See Chapter 2 for addi­
tional information, related memory locations, and TRM
references.
bit 7 Ins toggled
bit 6 Caps Lock toggled
bit 5 Num Lock toggled
bit 4 Scroll Lock toggled
bit 3 Alt pressed
bit 2 Ctrl pressed
bit 1 Left Shift pressed
bit O Right Shift pressed

236

Memory Map

418 Keyboard Flag 1
See the description above of the first flag byte.
See location 485h for PCjr-only additional keyboard data.
bit 7 Ins pressed
bit 6 Caps Lock pressed
bit 5 Num Lock pressed
bit 4 Scroll Lock pressed
bit 3 Ctrl-Num Lock or Fn-Pause toggled
bit 2 PCjr: Keyboard clicker on
bit 1 PCjr: Alt-Ctrl-Caps Lock (clicker) toggled

419 Alt-Keypad Accumulator
Accumulator for Alt-keypad (or Alt-Fn-N Alt-numbers on
PCjr) ASCII character number entry. See Chapter 2.

41 A Buffer Head
Pointer to the next character to be retrieved from the keyboard
circular buffer.

The first entry in the buffer is 41Eh, but it's not necessar­
ily the head of the buffer, as explained in Chapter 2. The con­
tents of these locations are actually not in the typical vector
format, but are a two-byte offset from 400h.

All PCs except PCl: See 480h for keyboard buffer
start/end pointers.

41 C Buffer Tail
Pointer to the next unused entry in the circular keyboard
buffer.

The last entry in the buffer is 43Ch, but it's not necessar­
ily the tail of the buffer, as explained in Chapter 2. The con­
tents of these locations are actually not in the typical vector
format, but are a two-byte offset from 400h. If 41C-41Dh is
the same as 41A-41Bh, then the buffer is empty. If 41A-41Bh
is two more than 41C-41Dh, then the buffer is full. The key­
board buff er can be cleared by setting Buff er Tail to the same
value as Buffer Head or using DOS function Ch.

All PCs except PCl: See 480h for keyboard buffer
start/end pointers.

41 E Keyboard Buffer
Circular keyboard buffer containing 16 entries (15 usable),
each with the ASCII code/scan code or zero/extended scan
code of a keypress. See locations 41Ah, 41Ch, 480h, 417h,
and Chapter 2.

237

Memory Map

Disk Data
See also INT E, 13, lE; memory location 522h; and ports 3F0h
(or port F0h for the PCjr), 4, 21h, 40h, 41h, 60h.

43E Seek Status
Drive needs recalibration (the head retracted to track 0) if
drive number bit=0. Causes the next seek (positioning the
head to the proper cylinder) to be preceded by a recalibrate
operation. All set to zero with INT 13, function 0.

All PCs except PCjr: Bit 7= 1 means INT E/IRQ 6 being
processed.
bit 3 drive D
bit 2 drive C
bit 1 drive B
bit O drive A

43F Motor Status
The bit corresponding to the subject drive is set to zero if the
drive motor is running. Bit 7 is set on if a write is currently be­
ing performed on any of the drives. See port F2h for the PCjr
watchdog timer that monitors the motor status.
bit 7 1 = Write occurring
bit 3 drive D
bit 2 drive C
bit 1 drive B
bit O drive A

440 Motor Count
Used as a counter to insure that motor turnoff occurs two sec­
onds (default) after operation has completed.

441 Disk Status
Status of 1/0 request as interpreted by INT 13 (or INT 40 on
an XT). If the carry flag is set on return from INT 13, AH con­
tains the contents of this byte. See also location 442h.
bit 7 = Time-out from disk drive
bit 6 = Seek failed
bit 5 = Controller failure
bit 4=CRC error on read

238

Memory Map

All PCs except PCjr: bit 3 = DMA overrun
bit 2 = Requested sector not found
bit 1 = Write attempted to a protected disk

All PCs except PCjr: with bit 3 = DMA 64K boundary crossed
Pcjr: with bit 0=Address mark not found

bit 0 = Bad command given to disk controller

442 Controller Status/Hard Disk Command Block
This seven-byte area is used both as a storage area for status
information returned from the disk and hard disk controller
chip, and as a construction area for the command block to be
sent to the hard disk controller. See XT Technical Reference
manual, page 1-185, for the hard disk command block format
and A-92 for the routine that sets the block. See TRM, page
1-164, for the possible disk status codes returned. The PCjr
Technical Reference manual doesn't document the possible sta­
tus bytes, so see A-79 for the routine that tests the results. The
hard disk status bytes are shown starting on TRM page 1-181.
See ports starting at 320h.

Video Data
See Chapter 4 for details of user and system usage. Also see
INT 10, 1D, lF; memory locations 410h, 449h, B0000h,
B8000h; and ports 21h, 3B0h, 3D0h.

449 CRT Mode
ROM BIOS CRT mode value (as opposed to 6845 mode at
location 465h). Use INT 10, function Oto change the current
video mode, and function Fh to request the current setting of
the video mode.
Contents Meaning
0 40X25 b/w text
1 40 X 25 16-color text
2 80X25 b/w text
3 80X25 16-color text
4 320 X 200 4-color graphics
5 320X200 b/w graphics
6 640 X 200 b /w graphics
7 All PCs except PCjr:
7 80 X 25 mono text
8-A PCjr only:
8 160X200 16-color graphics
9 3WX200 16-color graphics
A 640 X 200 4-color graphics

Screen/Width
0 / 40 burst off
0 / 40 burst on
0 /80 burst off
0/80 burst on
1/40, 2/40, 4/40
3/40
1/80, 2/80, 3/80,4/80

any monochrome

3/20
5/40, 6/40
5/80, 6/80

239

Memory Map

44A CRT Columns
Width of display screen in columns. INT 10, function Fh re­
turns the current number of video columns. Set with video
mode using INT 10, function O.
14h = 20 column PCjr mode 8
28h = 40 columns
50h = 80 columns

44C CRT Buffer Length
Length of the video buffer for the current video mode page.
Set with video mode using INT 10, function 0.
Length Use Screen/Width Mode
800h Color text 0 / 40 0
1000h Color text 0/80 2/3
4000h Color graphics 1,2/40,80 4/6
4000h PCjr only 3/20,40,80 8/5/6
4000h PCjr only 4/40,80 4/6
8000h PCjr only 5,6/40,80 9 / A
4000h* Monochrome

(All PCs except PCjr) 0,1,2/40,80 7
*Should be 1000h

44E CRT Start

Pages in 16K
8
4
1
1
1

half

1

The offset of the starting byte of the active page (see location
462h) in the display buffer. Can be any multiple (including 0)
of CRT Buffer Length at location 44Ch. For example, the sec­
ond page of a mode O screen would be at offset 1000h since
the first page is at Oh. Set by implication with INT 10, func­
tion Sh, and determinable with function Fh.

450 Cursor Position
Cursor location for each of up to eight pages. Expressed in
two-byte column, row format for each page. Set and obtained
with INT 10, functions 2 and 3.
450-451h page 0
452-453h page 1
454-455h page 2
456-457h page 3
458-459h · page 4
45A-45Bh page 5
45C-45Dh page 6
45E-45Fh page 7

240

Memory Map

460 Cursor Mode
Current cursor mode setting. Set with INT 10, function 1. De­
faults would be expected to be 0706h (color) or 0C0Bh (mono­
chrome), but they are observed to be 6700h (regardless of
active monitor type in use) until set by user program.
460 Cursor end line

0Ch monochrome default
07h color default

461 Cursor start line
Bits 7-6 Unused
Bit 5 Cursor displayed, 0=yes
Bits 4-0 Cursor start line

0Bh monochrome default
06h color default

462 Active Page
Which page in display memory is currently being shown,
based upon the CRT Buffer Length and CRT Start values. INT
10, function 5 can be used to select the displayed page; func­
tion Fh is used to determine the current selection.

463 Address of Active 6845
Active display adapter index register port address.

3B4h Monochrome
3D4h Color

465 CRT Mode Setting
Current setting of the active 6845 mode register (3B8h or
3D8h) or the PCjr Video Gate Array, register 0. See also loca­
tion 449h. For the PCjr, see also port 61h, bit 2 for alpha/
graphics steering. INT 10, function 0 can be used to set the
video mode; function Fh is available to determine the current
setting.

bits 7-6 unused
bit 5 background intensity

becomes blink attribute
bit 4 640 X 200 dimensions
bit 3 enable video signal
bit 2 select b/w mode
bit 1 select graphics mode
bit O 80 X 25 text mode

bit: 543210
101100
101000
101101
101001

01110
01010
11110

40X25 b/w
40 X 25 16-color
80X25 b/w
80X25 16-color
320X200 b/w
320 X 200 4-color
640X200 b/w

241

449h

0
1
2
3
4
5
6
7
8
9
A

Memory Map

Screen
Characteristics
40X25 b/w text
40X25 16-col text
80X25 b/w text
80X25 16-col text
320X200 4-col graphics
320X200 b/w graphics
640X200 b/w graphics
PCjr 80 X 25 monochrome text
PCjr 160X200 16-col graphics
PCjr 320X200 16-col graphics
PCjr 640 X 200 4-col graphics

Screen/
Width/Burst
0/40/off
0/40/on
0/80/off
0/80/on
1,2,3,4/40/on
1,2,3,4/40/off
1,2,3,4/80/off
any/any/any
3/20/on
5,6/40/on
5,6/80/on

465h
PC PCjr

2Ch Ch
28h Sh
2Dh Dh
29h 9h
2Ah Ah
2Eh Eh
lEh Eh
29h n/a
n/a lAh
n/a lBh
n/a Bh

44Ch 462h
Length Pages

800h* 8
800h* 8

lO00h* 4
lO00h* 4
4000h* 1
4000h* 1
4000h* 1
:j: 1
4000h*
8000h*
8000h*

t
t

*The PCjr may have up to eight display buffers of 16K, each segmented into screen pages of the
appropriate length.
tRequires PCjr 64K display /memory enhancement.
:j:Contains 4000h in error, should be 1000h.
n/a Not applicable.

466 CRT Palette
Current palette mask setting from port 3D9h (not on PCjr).
Because of the significant differences in the method used to
select colors on the PCjr from the PC, you should use INT 10,
function Bh to select the color palette to maintain upward
compatibility.
Text Modes

bits 7-5 unused
bit 4 intensity of background
bits 3-0 screen/border IRGB

Graphics Modes
bits 7-6 unused
bit 5 0 = green, red, and brown palette

1 =cyan, magenta, and white palette
See third palette capabilities in Chapter 4.

bit 4 unused
bits 3-0 IRGB of background

Default Contents
3Fh 640 X 200 b /w
30h every other mode
00h PCjr

Cassette Data
Cassette supported in PCl/2 and PCjr only. The next three
entries therefore do not apply to the XT.

Used for POST routine work areas in the XT. See also
INT 15 and ports 42h, 62h.

242

Memory Map

467 Edge Time Count
Amount of time spent at last data transition.

469 CRC Register
Work register for 256-byte data block CRC calculation and
comparison.

468 Last Input Value
Last half-bit input value. A cassette bit is made up of two 250-
microsecond halves.

Miscellaneous Data
46C Timer
A four-byte timer value, incremented by INT 8/IRQ 0. Left-to­
right significance. See also INT lA, which can set or get this
value, INT lC, DOS functions 2C-2Dh, and ports 21h bit 0,
and 60h. For many purposes, the low-order byte can be used
as a random number.

470 Timer Overflow
If nonzero, then the above timer has rolled over (24 hours
have elapsed) since the last read.

471 BIOS Break
Bit 7 = 1 if Break key has ever been pressed.

472 Reset Flag
A value of 1234h, if Ctrl-Alt-Del detected by INT 9. POST
and memory testing are skipped if 34h is found here. See
Chapter 1 for a description of the system boot process.

PCjr only: Always 1234h so that cartridge
removal/insertion won't cause POST routine execution.

474-4EF PC1/2 Unused Area
· An unused area in the PC.

474 PCjr Disk Track Last Accessed
Four bytes used to note the number of the last track accessed
on each of four possible drives. If the last track was zero, a
seek need not be preceded by a recalibration.

474 XT Hard Disk Status
BIOS interpretation of hard disk controller status bytes. INT
13, function 1 obtains this byte for examination and zeros it.
See TRM, page A-85, for contents meaning.

243

Memory Map

475 XT Hard Disk File Number
Number of hard disks found on system, including expansion
unit. May contain a maximum of two.

476 XT Hard Disk Control Byte
Temporary holding area for hard disk control byte from sixth
parameter table entry. See INT 13, location 104h, and TRM,
page 1-186.

477 XT Hard Disk Port Offset
Which port relative to 320h is being accessed by INT 13.

478 Parallel Printer Time-out Values
All PCs except PCl: Four 0-255 second time-out values for
parallel printers. Each set by the POST routines to 14h (20
seconds). This value explains why it takes so long for a BASIC
program to determine that a parallel printer is not online.

47C RS-232 Time-out Values
All PCs except PCl: Four 0-255 second time-out values for
RS-232 serial devices. Each set by the POST routines to 1
second.

480 Keyboard Buffer Start
All PCs except PCl: Offset from 400h where the circular key­
board buffer begins. Defaults to lEh. See location 41Ah.

482 Keyboard Buffer End
All PCs except PCl: Offset from 400h where the circular key­
board buffer ends. Defaults to 3Eh. See location 41 Ch.

484-48F Unused Area in XT

484 PCjr Interrupt Flag
Flag used to indicate that a timer channel O interrupt occurred
as expected in POST routines.

485 PCjr Current Character
Character to be repeated by typamatic keyboard function. See
Chapter 2.

486 PCjr Variable Delay
Countdown of delay before typamatic key repeat. INT 16,
function 3 can be used to indirectly adjust this value. See
Chapter 2.

244

Memory Map

487 PCjr Current Function
Used by INT 48 as a flag to determine when the Fn key has
been released so that multiple functions can be requested
while the function key is held down.

488 PCjr Keyboard Flag 2
Third keyboard flag for the PCjr, used for the Fn key and
repeating keys. See locations 417h and 418h, as well as details
in Chapter 2. Not obtainable with provided interrupts.
bit 7 1 = Fn currently pressed
bit 6 1 = Fn key released
bit 5 1 = Fn key seen, green labeled key next
bit 4 1 = Fn key locked on
bit 3 1 =Typamatic off
bit 2 1 =Typamatic at half rate
bit 1 1 =Typamatic delay is increased
bit O 1 =Typamatic delay elapsed, put out character

489 PCjr Horizontal Position of Screen
Current value of 6845 register 2 (horizontal synch) adjustable
by five either way with Ctrl-Alt-cursor keys to center the
screen. See Chapters 2 and 4, and port 3D5h.

48A PCjr CRT /CPU Page Register Image
Image of data in CRT/CPU page register. Specifies the mem­
ory pages being accessed by the 8088 processor and displayed
on the monitor screen. See Chapter 4 and port 3DFh. The de­
fault contents for a 128K PCjr is 3Fh which causes 16K at
1 C000h to be used by the processor as well as the display.

490-4EF Reserved for System Usage
Normally contains zeros.

4F0-4FF Reserved for User Interprocess Communications

Locations: 500-&FFh
512 bytes for DOS Data Areas
The following 512 bytes in the memory map (except for a few
notable exceptions) are dynamically used by DOS and, in a
few areas, by BASIC. The level of DOS and BASIC that is em­
ployed determines the exact manner in which these bytes are
used, and there appear to be vast areas that are completely
unused except by POST and diagnostic routines.

245

Memory Map

500-700 Disk Directory Buffer for Boot Process
The use of this area to contain the disk directory for the boot
process explains the residual garbage left here.

500 Print Screen Status
Used by INT 5 to suppress a PrtSc request while processing a
previous PrtSc request.
O=not active or successful
1 = in progress
FFh=error

501-503 PCjr POST and Diagnostics Data Areas

504 Single Disk Drive Logical Drive
Indicator used by DOS to track the current logical disk drive
being used on a single drive system.
O=drive A
l=drive B

505-50E PCjr POST and Diagnostics Data Areas

50F BASIC SHELL Flag
Set to 2 as a flag. Prevents another BASIC from being exe­
cuted from the BASIC SHELL command. See Chapter 1.

510-511 BASIC Data Segment Storage
Contains the segment number of the beginning of the BASIC
64K workspace. Add 1000h (64K/16-byte segments) to find
the end of the workspace. Multiply by 10h for absolute mem­
ory address. See Chapter 1 for BASIC data segment memory
map.

512-515 BASIC Timer Interrupt Vector
BASIC's save area for the INT lC vector.

516-519 BASIC Break Interrupt Vector
BASIC's save area for the INT 23 vector.

51A-51D BASIC Fatal Error Interrupt Vector
BASIC's save area for the INT 24 vector.

51E-51F BASIC Dynamic Use

520-521 DOS Dynamic Use

246

Memory Map

522-52C Disk Parameter Table
Pointed to by INT lE, this is a table of disk characteristics
copied from ROM BIOS and modified constantly to self-adjust
the disk drive. The following table shows the location, typical
adjusted value, and meaning of the parameter table entries.
Location
522 bits 7-4

bits 3-0
523 bits 7-1

bit 0
524
525
526
527
528
529
52A

Meaning
Step rate time in 2 ms increments
Head unload time in 32 ms increments
Head load time in 4 ms increments
1 =non-OMA (used on PCjr)
Wait time before motor shutoff
Bytes per sector/256
Sectors per track
Gap length between sectors
Data length
Formatted gap length
Format fill byte

52B
52C

Value
DO
OF
02
01
25
02
09
2A
FF
50
F6
OF
02

Head settle time in millisecond increments
Motor start time in 1/8 second increments

52D-6FF DOS Unknown Use
Filling this area with zeros using DEBUG does not appear to
have any disastrous consequences, nor do the zeros appear to
be overlaid later.

Locations: 700-9FFFF
653,567 Bytes for Programs and Data Areas

See Chapter 1 for details of the partitioning of this area.

700-E2F IBMBIOS.COM in DOS 2.10

E30-4DB8 IBMDOS.COM in DOS 2.10
Memory storage block chain anchors (see Chapter 1):
EBC PC DOS 2.0 memory chain base
F28 PC DOS 2.1 memory chain base
F3C XT DOS 2.0 memory chain base
F98 PCjr DOS 2.1 memory chain base
FA8 XT DOS 2.1 memory chain base

247

Memory Map

4DB9-53EF Standard Device Drivers, Buffers, and File
Control Entries In DOS 2.10
The size of this area will be changed when specifying values
other than the defaults in CONFIG.SYS. The offsets of the
following areas of memory will be correspondingly different
from those shown.

53F0-5FCF Resident COMMAND.COM in DOS 2.10

5FD0-607F Default-Size Master Environment Area in DOS
2.10

6080-&0AF Environment Area for Next Application Program
in DOS 2.10

60B0-9FFFF Application Program Area

7C00 512-Byte Boot Sector Location

Locations: AOOOO-BFFFF
128K for Video Buffers
See Chapter 4 for details of the use of this area.

A0000-AFFFF Reserved for Future Video
All PCs except PCjr: Enhanced video adapters use this area.

B0000-B0FFF Monochrome Display Memory
All PCs except PCjr: 1000h 4096 bytes in length.
Pcjr: References to this area of memory are rerouted by the
PCjr VGA, based upon the CRT /CPU register (see location
48Ah).

B1 000-B7FFF Reserved for Future Video
All PCs except PCjr.

B8000-BBFFF Color Display Memory
All PCs except PCjr: 4000h 16384 bytes in length.
PCjr: References to this area of memory are rerouted by the
PCjr VGA, based upon the CRT /CPU register (see location
48Ah.)

BC000-BFFFF Reserved for Future Video
All PCs except PCjr.

248

Memory Map

Locations: COOOO-EFFFF
192K for Future ROM, PCjr Cartridges
See Chapter 1 for details on the partitioning of this area, car­
tridge fundamentals, and expansion ROM details.

An interrupt vector/function that references a routine in
the following memory map entries is indicated after the
description of the routine by the interrupt number and then
any associated function number.
C0000-C7FFF Reserved for future expansion ROM, PCjr cartridge
CSO00 Hard disk BIOS through C87BB; XT only
C8005 Copyright; XT only
C8003 Initialization: Replace INT 13, 19, 40, 41 diagnostics

C8142
C8186
C8201
C820C
C8256
C829C
C82CC
C82EA
C8337
C834D
C8356
C8360
C836A
C8372
C8379
C8380
C8390
C83E7
C8427

C8444
C84C2
C84CF
C84DD
C84F2
C84F9
C8507
C8515
C851C
C8523
C852A

for all drives; XT only
Diagnostics error handler; XT only
Bootstrap loader; XT only; 19
Disk parameter table; XT only; 1E
Exit housekeeping; XT only
Hard disk functions, high level; XT only; 13
Function table; XT only
Port select, low level; XT only
Hard disk functions, midlevel; XT only
Reset function; XT only; 13 /00
Status function; XT only; 13/01
Read function; XT only; 13 /02
Write function; XT only; 13 /03
Verify function; XT only; 13 /04
Format track function; XT only; 13 /05
Format bad track function; XT only; 13 /06
Format drive function; XT only; 13/07
Fetch parameter table byte; XT only; 13 /08
Parameter table for four drives; XT only; 41
Initialize drive pair function, high level; XT only;
13/09
Initialize drive, midlevel; XT only
Initialize drive, low level; XT only
Read long function; XT only; 13 /0A
Write long function; XT only; 13 /OB
Seek function; XT only; 13 /0C
Read sector buffer function; XT only; 13/0E
Write sector buffer function; XT only; 13 /OF
Test drive ready function; XT only; 13 /10
Recalibrate function; XT only; 13 /11
Controller RAM diagnostics; XT only; 13/12
Drive diagnostics; XT only; 13 /13

249

C8531
C8536
C8562
C859C

Memory Map

Controller internal diagnostics; XT only; 13 /14
DMA setup, high level; XT only
Command block output to controller; XT only
Interpret sense bytes returned from controller; XT
only

C861A Bad controller, seek, or time-out; XT only
C8627 Bad address mark, ECC, or track; XT only
C866A Bad command or address mark; XT only
C8677 Bad controller or ECC; XT only
C869F DMA setup, low level; XT only
C8708 Wait for hard disk attention interrupt; XT only
C8771 Port select, high level; XT only
C878D Find parameter table offset for drive; XT only
C87B3 ROM release date, eight bytes; XT only

D0000-D7FFF Reserved for future expansion ROM, PCjr cartridge
D8000-DFFFF Reserved for future expansion ROM, PCjr cartridge
E0000-E7FFF Reserved for future expansion ROM, PCjr cartridge
ES000-EFFFF Reserved for future expansion ROM, PCjr BASIC

cartridge

Locations: FOOOO-FFFFF
64K for ROM BIOS, Diagnostics, Cassette BASIC

An interrupt vector/function (if any) that references a routine
in the following memory map entries is indicated after the
description of the routine by the interrupt number and then
any associated function number.
F0000 ROM BIOS starts; PCjr only
F0000 ROM part number, eight characters, another at FEOOO;

PCjr only ·
F000S Copyright; PCjr only
F00lB Temporary return pointers; PCjr only
F0030 POST messages; PCjr only
F0043 Disable NMI, VGA, sound, cassette motor; PCjr only
F006D 8088 test; PCjr only
F00CA 8255 test and initialize; PCjr only
F0103 6845 /VGA initialize; PCjr only
F0134 ROM BIOS/BASIC test; PCjr only
F015F RAM test 0-2K and just below end (for video buffer);

PCjr only
F0lEB INT 0-lF initialize; PCjr only
F0250 Configuration switch simulation; PCjr only
F0260 8259 initialize and test; PCjr only
F02A0 8253 timer test; PCjr only
F03B7 CRT initialize and test, put logo; PCjr only

250

Memory Map

F04CC Keyboard buffer parameters initialize; PCjr only
F0503 Memory size, test or clear; PCjr only
F0SBC Memory K tested message to screen; PCjr only
F0640 Keyboard test; PCjr only
F0678 IR link test; PCjr only
F0703 Cassette port test; PCjr only
F0785 8250 serial printer test; PCjr only
F0796 8250 internal modem test; PCjr only
F07 AD Set up hardware interrupt table; PCjr only
F07E0 Cartridge scan between C0000-F0000h; PCjr only
F0806 Disk control chip/watchdog timer test; PCjr only
F0SE0 Printer/RS-232 base setup; PCjr only
F098C Bum-in loop check; PCjr only
F09AD Warm start INT 19 or cold start diagnostics;- PCjr only
F09BC POST error handler; PCjr only
F0A61 Manufacturer test routine; PCjr only
F0AC4 8250 initialization; PCjr only
F0AFS 8250 test; PCjr only
F0B1B Bootstrap loader; PCjr only; 19
F0B59 Initialize or test memory; PCjr only
F0C21 Put logo on screen; PCjr only
F0D0B Video 1/0; PCjr only; 10
F0DA5 Set mode; PCjr only; 10/00
F0F78 Keyboard read and deserialize NMI routine; PCjr only; 02
F1069 INT 48 tables; PCjr only
F109D INT 49 nonkeyboard scan code table; PCjr only; 49
F10C6 PCjr-to-PC scan code conversion, calls INT 9; PCjr only; 48
F11CB Break key test; PCjr only
F131E Typamatic key handler; PCjr only
F1393 Get/set time-of-day and audio source; PCjr only; lA
F13DD Keyboard 1/0; PCjr only; 16
F146C Scan codes; PCjr only
F1561 Keyboard interrupt routine (called by INT 48); PCjr only; 09
F1749 Break key test; PCjr only
F188D Manufacturer tick via INT lC; PCjr only
F18A9 Display ASCII code; PCjr only
F18C3 Handle no-printer condition; PCjr only
F1937 Temporary INT 9, test for Esc or Ctrl-Esc; PCjr only
F1992 Write TTY; PCjr only; 10/0E
FlA0C Sound error beep; PCjr only
F2000 Keyboard adventure program; PCjr only
F6000 Cassette BASIC; 18
FE000 ROM part number, eight characters
FE00S Copyright
FE01B Set up permanent INT 9; PCjr only
FE021 Load manufacturer test routine; XT only

251

Memory Map

FE035 Keyboard error beeps; PCjr only
FE0SB Test 8088; all PCs except PCjr
FE0SE PEL maps for graphics characters 128-255; PCjr only; lF
FE0AE 8255 initialize; all PCs except PCjr
FE0C3 Call for ROM checksum; XT only
FE0D3 Disable DMA; PC2 only
FE0D9 Disable DMA; XT only
FE0D7 Check timer channel 0; PC2 only
FE0E1 Check timer channel 0; XT only
FE10A Test and initialize OMA for memory refresh; PC2 only
FE112 Test and initialize DMA for memory refresh; XT only
FE14B Determine memory size and check memory in first 32K;

PC2 only
FE165 Determine memory size and check memory in first 32K;

XT only
FE1B4 Initialize 8259; PC2 only
FE1C4 Load manufacturer test routine; PC2 only
FE1CE Initialize 8259; XT only
FE1DE Set first 32 interrupts to temporary routine; XT only
FE1F7 Set first 32 interrupts to temporary routine; PC2 only
FE202 Save configuration switches in equipment flag; XT only
FE217 8259 test; XT only
FE242 Test and initialize 6845; XT only
FE2AD Test and initialize 6845; PC2 only
FE2C3 Jump to FF85F NMI parity error routine; XT only; 02
FE2F3 8253 test, setup; PC2 only
FE329 8259 test; XT only
FE35D 8253 test, setup; XT only
FE382 Check expansion box; PC2 only
FE3A2 Test keyboard; XT only
FE3DE Setup INT 0-15; XT only
FE43B Test keyboard; PC2 only
FE418 Check expansion box; XT only
FE45E Set cursor type; PCjr only; 10/01
FE46A Test memory above 32K; XT only
FE483 Cassette test; PC2 only
FE488 Set cursor position; PCjr only; 10 /02
FE4B3 Set video page; PCjr only; 10 /05
FE4BC Check ROM C8000-F4000h; PC2 only
FE4DB Read/set CRT/CPU register; PCjr only; 10/05
FE4DC Check BASIC ROM; PC2 only
FE4Fl Check disk; PC2 only
FE518 Check for ROM in C8000-F4000h; XT only
FE52D Read cursor position; PCjr only; 10 /03
FE53B Check BASIC ROM; XT only
FE53C Set up printer and RS-232 base addresses; PC2 only

252

Memory Map

FE543 Set colors; PCjr only; 10 /OB
FE551 Check disk; XT only
FE597 Set up printer and RS-232 base addresses; XT only
FESBl Read video status; PCjr only; 10 /OF
FESBC Enable NMI interrupts; PC2 only
FESC2 Calculate display buffer address of character; PCjr only
FESCD Branch to bootstrap loader; PC2 only; 19
FESCF Error beep; PC2 only
FE5O3 Scroll up; PCjr only; 10 /06
FE603 Beep; PC2 only
FE625 Convert and print ASCII; PC2 only
FE63F Scroll down; PCjr only; 10 /07
FE643 Reset the keyboard; PC2 only
FE65F Enable NMI interrupts; XT only
FE66D Branch to bootstrap loader; XT only; 19
FE66F Subroutine to test RAM; XT only
FE675 Read 245 bytes in 512 bytes; PCjr only
FE684 Perform checksum and initialization of ROM modules;

PC2 only
FE685 Set VGA palette registers; PCjr only; 10/10
FE6CB Print ROM checksum error message; XT only
FE6O8 Set manufacturer checkpoint; PCjr only
FE6E4 Bootstrap loader; PC2 only
FE6F2 Bootstrap loader; XT only
FE6F2 Redirection to bootstrap loader F0BlB; PCjr only; 19
FE6F5 8259 test conditions setup; PCjr only
FE706 8259 interrupt check; PCjr only
FE719 8250 interrupt clear; PCjr only
FE739 RS-232 1/0; 14
FE809 Print ROM checksum error message; PC2 only
FE81A Read timer 1; PCjr only
FE82E Keyboard 1/0; 16
FE831 Test 8250; PCjr only
FE87E Keyboard tables; all PCs except PCjr
FE987 Keyboard attention routine; all PCs except PCjr; 09
FE98A Disk control chip test; PCjr only
FE9B4 Fetch values from disk parameter table; PCjr only
FE9E1 Set buffer for read/write/verify; PCjr only
FE9FB Seek track, optionally recalibrate; PCjr only
FEA6F Disk control chip attention handler; PCjr only
FEAA0 Read disk control chip interrupt information; PCjr only
FEAEl Calculate sectors transferred; PCjr only
FEAFC Disable all 8259 interrupts except watchdog (INT 6);

PCjr only
FEB09 Ctrl-Break test; all PCs except PCjr
FEB0B Enable all interrupts; PCjr only

253

Memory Map

FEB31 Wait for clock update on 8253; PCjr only
FEB45 Set drive bit mask for INT 13; PCjr only
FEB51 Check ROM C0000-F0000h; PCjr only
FEC59 Disk I/O; 13
FED4A Perform verify of disk I/O; all PCs except PCjr
FEE41 Disk control chip-output; all PCs except PCjr
FEE6B Fetch values from disk parameter table; all PCs except PCjr
FEE7D Disk seek; all PCs except PCjr
FEECS OMA setup for disk operation; all PCs except PCjr
FEF12 Handle disk attention; all PCs except PCjr
FEF33 Wait for disk attention to occur; all PCs except PCjr
FEF57 Disk attention handler; OE
FEF69 Read disk control chip; all PCs except PCjr
FEFBS Disk parameter table moved to 522h; see INT lE; PCjr only
FEFC7 Disk parameter table moved to 522h; see INT lE; all PCs

except PCjr
FEFD2 Printer I/O
FF045 Video I/O; all PCs except PCjr
FF068 Save keyboard scan code during POST; save any keypresses

during power-on sequence; PCjr only
FF0SS Set 8250 parms; PCjr only
FF0A4 Mode parameter tables; 10
FF0E4 Read attribute and character at cursor; PCjr only; 10 /08
FF0FC Set mode; all PCs except PCjr
FF113 Write attribute and character at cursor; PCjr only; 10 /09
FF12C Write character at cursor; PCjr only; 10 /0A
FF146 Read dot at cursor; PCjr only; 10 /OD
FFlCD Set cursor type; all PCs except PCjr; 01
FF1D9 Write dot at cursor; PCjr only; 10 /0C
FF1EE Set cursor position; all PCs except PCjr
FF217 Set video page; all PCs except PCjr
FF239 Read cursor position; all PCs except PCjr
FF24E Set colors; all PCs except PCjr
FF259 Graphics scroll up; PCjr only; 10 /06
FF274 Read video state; all PCs except PCjr; 10/0F
FF285 Calculate display buffer address of character; all PCs except

PCjr
FF296 Scroll up; all PCs except PCjr; 10 /06
FF305 Graphics scroll down; PCjr only; 10/07
FF338 Scroll down; all PCs except PCjr; 10/07
FF374 Read attribute and character at cursor; all PCs except PCjr;

10/08
FF3B9 Write attribute and character at cursor; all PCs except PCjr;

10/09
FF3EC Write character at cursor; all PCs except PCjr; 10 /0A
FF3F1 Write graphics character; PCjr only ·

254

Memory Map

FF41E Read dot; all PCs except PCjr; 10 /OD
FF42F Write dot; all PCs except PCjr; 10 /0C
FF452 Calculate buffer location for dot; all PCs except PCjr
FF495 Graphics scroll up; all PCs except PCjr; 10/06
FF4EE Graphics scroll down; all PCs except PCjr; 10/07
FF531 Read graphics character; PCjr only
Ff 578 Graphics write character; all PCs except PCjr
FF629 Graphics read character; all PCs except PCjr
FF659 Expand medium color; PCjr only
FF67E Expand byte; PCjr only
FF6AO Expand nybble; PCjr only
FF6AE Expand medium color; all PCs except PCjr
FF6C3 Expand byte; all PCs except PCjr
FF6C3 Read medium byte; PCjr only
FF6E5 Read medium byte; all PCs except PCjr
FF6FC Read medium byte; PCjr only
FF702 Calculate medium cursor position in display buffer; all PCs

except PCjr
FF718 Write TTY; all PCs except PCjr; 10/0E
FF729 Calculate medium cursor position in display buffer;

PCjr only
FF746 Read light pen; PCjr only
FF794 Read light pen; all PCs except PCjr; 10/04
FF815 Dummy interrupt intercept for unused INT vectors like 180h;

PCjr only
FF83C IRET instruction for unused INT vectors; PCjr only
FF841 Memory size service; 12
FF84D Equipment determination; 11
FF859 Cassette dummy routine; XT only; 15
FF859 Cassette 1/0; all PCs except XT; 15
FF85F NMI interrupt routine, parity check; XT only
FF8F2 ROM checksum subroutine; XT only
FFSFF POST error messages; XT only
FF93C Blink LED for manufacturer tests; XT only
FF953 Checksum optional ROM and initialize; XT only
FF98B Convert and print ASCII; XT only
FF9A9 Print message on screen; XT only
FF9D8 Error beep; XT only
FFAOS Beep; XT only
FFA2A Reset the keyboard; XT only
FFASF Carriage return/linefeed to printer; PCjr only
FFA6E PEL maps for graphics characters 0-127; all PCs except PCjr
FFA6E PEL maps for graphics characters 0-127; PCjr only; 44
FFE6E Time-of-day read/set; all PCs except PCjr; lA
FFE71 Checksum optional ROM and initialize; PCjr only
FFE9A Read 8250 register; PCjr only

255

Memory Map

FFEA5 8253 interrupt handler, timer tick
FFEEB Checksum ROM; PCjr only
FFEF3 INT 8-lF vector table
FFF23 Error messages; PC2 only
FFF23 Temporary interrupt service routine; XT only
FFF23 Print message on screen; PCjr only
FFF31 Sound beeper; PCjr only
FFF47 Temporary interrupt service routine; PC2 only
FFF54 Screen print; 05
FFFCB Set Cassette BASIC vector, then call via INT 18; PCjr only
FFFCB Carriage return/linefeed to printer; PC2 only
FFFDA Error messages; PC2 only
FFFDA Print segment as 20-bit address; XT only
FFFEO Initialize timer; PCjr only
FFFFO Power-on reset jump vector
FFFF5 ROM release date, eight characters
FFFFE Model values .

256

FF= PC, early XT
FE=XT
FD=Jr
FC=AT

Appendix B

Port Map
Using the same address and data lines as main memory, the
1/0 port address space is segregated from main memory only
by the presence of a signal on a control line.

The architecture of the 8088 allows an 1/0 port address
space size of 1024, 400h, bytes (lK) since only ten bits are
used to derive the address of the port. The ports in this ad­
dress space are accessed by using special IN and OUT assem­
bler instructions (INP and OUT in BASIC programs, and I and
0 in DEBUG).

The Technical Reference manual discusses ports for each
feature in the section devoted to that feature. Reading the
BIOS listing provides additional information about port usage.
This Appendix is the culmination of all the available infor­
mation about port usage, presented in port number order for
ease of reference.

The PC implementation of the ports segregates them into
several usage groups: system board use only, system board
and 1/0 channel use (output only), and 1/0 channel use only.

These 1/0 ports cannot uniformly be used for both input
and output purposes. Some device ports are used for different
types of data in a flip:.flop manner. Other ports are used for
different purposes depending on the current contents of a sec­
ond port. The expected contents of a port as well as the 1/0
directions supported are determined solely by the device con­
nected to the port.

Figure B-1 summarizes the 1/0 port address space. Those
areas that are not used or reserved could be used by future
IBM products or another vendor's equipment.

259

Port Map

Figure B-1. 1/0 Ports Map

OOOh

010h

020h

030h

040h

050h

060h

070h

080h

090h

OAOh

OBOh

OCOh

ODOh

OEOh

OFOh

1/0 Ports OOOh Through OFFh-System Board Use

~ Th Th Th ~ ~ ~ ~ ~ % M ~ 0 ~ Th Th

DMA 8237-A

MFGI

INT 8259
I

TIMER 8253-5
I

PP! 8255A-5 I

DMA Page Regs I

N M I Mask Register

c1> I c2> I

PCJR Disk

~ Th Th Th ~ ~ ~ ~ ~ % M ~ Q ~ Th Th

(1) = PCjr sound chip
(2) = Non-PCjr DMA channel 3 connection selection

260

1/0 Ports 100h Through lFTh-System Board and 1/0 Channel Use
••• Restricted to Output-Only Use, Unused in PC •••

200h

210h

220h

230h

240h

250h

260h

270h

280h

290h

2A0h

2B0h

2C0h

2D0h

2E0h

2F0h

300h

310h

320h

330h

340h

350h

"360h

370h

380h

390h

3A0h

3B0h

3C0h

3D0h

3E0h

3F0h

Port Map

1/0 Ports 200h Through 3FFh-J/O Channel Use

~ Th Th Th ~ ~ ~ 7h ~ % M ~ 0 ~ ~ Fh

Game Control

Expansion Unit

Reserved

I 3rd Parallel Printer

3270 PC

Reserved Asynch Communications 2

Oh I th I 2h I 3h I 4h I Sh I 6h I 7h Sh I 9h I Ah I Bh I Ch I Dh I Eh I Fh

Prototype Card

Prototype Card

Hard D.i s k

XT/370

I 2nd Parallel Printer

SDLC or 2nd Bisynch Communications I

1st Bisynch Communications I
Monochrome Display and 1st Parallel Printer

Reserved

Color/Graphics Display

Reserved

Disk Asynch Communications 1

261

Port Map

000-0FF for System Board Only
Not for 1/0 Channel

8237 A-5 Direct Memory Access (DMA) Controller
The 823 7 provides four independent channels for fast data
transfer of up to 64K between devices and memory, or mem­
ory to memory (using two channels). Memory-to-memory
transfer is not supported on the PC.

The OMA controller accomplishes data movement using
one-sixth of the clock cycles needed by the 8088. The Tech­
nical Reference manual does not document the inner workings
of the 8237, or contain instructions for its use, as it is not nor­
mally accessible from user programs, and its correct operation
is crucial to system activities. See the XT Technical Reference
manual, page A-8 and A-41, for setup information. See INTEL
Microprocessor and Peripheral Handbook, page 2-88, for
specifications.

Channel O has the highest priority for operation, with
channel 3 having the lowest priority. OMA channels 1-3 are
present on the 1/0 bus to the expansion slots. The read-cycle
created by channel 0 is also present on the 1/0 bus.

000 Channel 0 Address Register
All PCs except PCjr: Used for memory refresh by read of one
byte in 64K every 15 microseconds, then automatically
reinitialized to do it all again, over and over. See port 83.
Write expects start address offset LSB, then MSB. Write auto­
matically sets current address. Read returns current address
offset LSB, then MSB. The base address cannot be obtained
from this register.

001 Channel 0 Word Count
All PCs except PCjr: Set to FFFFh = 64K for memory refresh
purposes. Write expects start count LSB, then MSB. Write
automatically sets the current count. Operation progresses un­
til the current count reaches zero. Read returns start count
LSB, then MSB. The base count cannot be obtained from this
register.

002 Channel 1 Address Register
All PCs except PCjr: Not used; memory-to-memory transfer
precluded on PC. See port 83 which is shared with channel 0.
Target address for memory-to-memory operations.

262

Port Map

003 Channel 1 Word Count
All PCs except PCjr: Not used; memory-to-memory transfer
precluded on PC.

004 Channel 2 Address Register
All PCs except PCjr: Used for floppy disk data transfer; see
port 81. Read/write data and sequences same as channel 0.

005 Channel 2 Word Count
All PCs except PCjr: Read/write data and sequences same as
channel 0.

006 Channel 3 Address Register
All PCs except PCjr: Used for hard disk data transfer; see port
82 and C2. Read/write data and sequences same as channel 0.

007 Channel 3 Word Count
All PCs except PCjr: Read/write data and sequences same as
channel 0.

008 Status/Command Register
All PCs except PCjr: Read returns status, write sets command.
Status register bits:

bit 7 channel 3 request pending
bit 6 channel 2 request pending
bit 5 channel 1 request pending
bit 4 channel O request pending
bit 3 channel 3 ended
bit 2 channel 2 ended
bit 1 channel 1 ended
bit O channel O ended

Command register bits, initialized to 00
bit 7 0 = DACK sense active low
bit 6 O=DREQ sense active high
bit 5 O=select late write (do not change)
bit 4 O=fixed priority (do not change)
bit 3 O=normal timing (do not change)
bit 2 O=controller enabled
bit 1 unused on PC, should be zero
bit O O = memory to memory disabled, unused on PC, should be

zero

263

Port Map

009 Request Register
All PCs except PCjr: Provided to generate DMA block mode
request by software. Unused on PC.

bits 7-3 not used
bit 2 1 = set request bit

O=reset request bit
bits 1-0 00 = channel 0

01 =channel 1
10 = channel 2
11 =channel 3

00A Mask Register
All PCs except PCjr: Selects DMA channel masks to enable or
disable the channel.

bits 7-3
bit 2
bits 1-0

not used
l=set mask bit (disable), O=clear mask bit (enable)
00 = channel 0
01 =channel 1
10 = channel 2
11 =channel 3

00B Mode Register
All PCs except PCjr: PC uses "single" mode for all channels.
Initialization values: channel 0=58h, 1 =4th, 2=42h, 3=43h.

bits 7-6 OO=demand mode
01 =single mode
10 = block mode
11 = cascade mode

bit 5 O=address increment
1 =address decrement

bit 4 1 =automatic reinitialize
bits 3-2 OO=verify

Ol=write
lO=read

bits 1-0 00 = channel 0
01 = channel 1
10 = channel 2
11 = channel 3

00C Clear LSB/MSB Flip-Flop
All PCs except PCjr: Write to here to reset to LSB first, then
MSB.

264

Port Map

00D Master Clear/Temporary Register
All PCs except PCjr: A write to this port causes all DMA activ­
ity to cease and an internal reset to be done; initialization will
be needed. The readable temporary register is not used on the
PC since it is used only in memory-to-memory operations.

OOE Clear Mask Register
All PCs except PCjr: A write to this port enables all DMA
channels for interrupts.

OOF Multiple Mask Register
All PCs except PCjr: A write sets all mask register bits.

bits 7-4
bit 3
bit 2
bit 1
bit O

not used
1 = set channel 3 mask bit, 0 = clear
1 = set channel 2 mask bit, 0 = clear
1 = set channel 1 mask bit, 0 = clear
1 = set channel O mask bit, 0 = clear

Manufacturer Test Monitoring Device
010 POST Routine sends a test checkpoint number to this de­
vice during manufacturer burn-in loop testing.

011-0lF not implemented

8259A Programmable Interrupt Controller
The 8259 prioritizes up to eight interrupts and presents them
to the 8088 in their priority sequence. Pending lower priority
interrupts are held until they may be processed. INT 08-0F are
associated with the eight 8259 interrupts (IRQ 0-7). IRQ 0 is
highest priority, while IRQ 7 is lowest. Interrupt types may be
individually enabled or disabled by setting 8259 mask bits.
The associated interrupt routine is responsible for notifying the
8259 when other interrupts may be processed by sending 20h
to port 20h. See the preamble to INT 08 in the Memory Map
Appendix for additional information.

The Technical Reference manual does not document the in­
ner workings of the 8259 or contain instructions for its use, as
it is not normally accessible from user programs. See XT Tech­
nical Reference manual, page 1-9, or PCjr, page 2-15, for a list
of the IRQ usage. PCjr TRM, page 2-16, offers some summary
information about the PC usage of the device. TRM, page A-9
and A-12, or PCjr, A-11, shows the initialization routine for
the 8259. See INTEL Microprocessor and Peripheral Handbook,
page 2-120, for specifications.

265

Port Map

Because of the complexity of the various options allowed
in this device, we'll be focusing on how the 8259 is used in
the PC models. Explanation of the full range of capabilities of
the 8259 is beyond the scope of this section.

020 8259 Command Port
Send 20h here to signal end-of-interrupt (EOI). PC models use
ICWl = 13h here to set edge-triggered mode, eight-byte inter­
rupt vectors, noncascade mode, and ICW4 required. Then,
ICW2=8h is sent to port 21 to select INT 08-0F to correspond
to IRQ 0-7. Next, ICW4=9h is set to port 21 to designate no
nesting, buffered slave mode, no automatic end-of-interrupt
(EOI), and 8088 mode.

021 Interrupt Mask Register
.0=interrupt enabled, l=interrupt disabled

bit 0=highest priority, bit 7=lowest
bit 7 IRQ 7 Parallel printer, on 1/0 channel
bit 6 IRQ 6 Disk controller, on 1/0 channel; all PCs except

PCjr
bit 6 IRQ 6 Disk watchdog timer, every three seconds; PCjr

only
bit 5 IRQ 5 Hard disk, on 1/0 channel; XT only
bit 5 IRQ 5 Available for 1/0 channel use; all PCs except PCjr
bit 5 IRQ 5 PCjr vertical retrace
bit 4 IRQ 4 COMl, on 1/0 channel
bit 3 IRQ 3 COM2, on 1/0 channel
bit 2 IRQ 2 1/0 channel use, available for use
bit 1 IRQ 1 Keyboard, not on 1/0 channel; all PCs except PCjr
bit 1 IRQ 1 PCjr reserved (keyboard uses 8088 NMI)
bit 0 IRQ 0 System timer, not on 1/0 channel

8253-5 Programmable Interval Timer
The 8253-5 features three independently programmable timers
with several modes of timing operations available. The Tech­
nical Reference manual does not document the inner workings
of the 8253 or contain instructions for its use. Because of this,
and the power of the 8253 in performing timing functions for
your programs, an expanded discussion of the 8253 is offered
here. See the INTEL Microprocessor and Peripheral Handbook,
page 6-139, for specifications. See TRM, page A-13, or A-11 in
PCjr TRM for the POST 8253 check-out routine. See also
Chapter 3 for examples of using channel 2 of the timer.

266

Port Map

The 8253 clock input of 1,193,180 hertz is derived from
the 4,772,727 hertz system clock which is obtained from the
system-board 14.3178 megahertz crystal. This frequency re­
sults in an interrupt frequency ranging between a high of
every 838.0965152 nanoseconds (corresponding to one bus cy­
cle, or four 8088 cycles) to a low of every 54.925493 milli­
seconds depending on the 1-65536 divisor selected. Use a
divisor of O after 65535 to obtain 65536. Set the mode bits in
port 43 to load the LSB /MSB divisor for the desired channel.

Load the divisor into the port for that channel (40-42) to
set the interrupt rate. To calculate the divisor, divide 1,193,180
by the desired frequency. Or, the frequency per second equals
1,193,180 divided by the divisor. For example, BASIC uses a
divisor of 16,384 to obtain 1,193,180/16,384=72.82592773
interrupts per second (an interrupt every 1/72.82592773 =
13.731373 milliseconds) to time music functions.

Timer channel current contents may be obtained without
affecting the current countdown in that channel by latching
the channel using port 43, then reading LSB/MSB with INP
instructions. Both LSB and MSB must be read to insure proper
operation.

040 8253 Channel 0
Used for system timer INT 08 via 8259 IRQ 0. See INT 08.
Uses a divisor of O (65536) to cause an interrupt 18.20648193
times per second, or 54.925493 milliseconds apart. The disk
motor timing is also based on INT 08. Operates in mode 3; see
port 43h. In its normal mode of operation, a pseudorandom
number can be obtained by latching the counter with OUT
&h43,0, then R=INP(&h40):Rl=INP(&h40). Both INPs must
be done. This latching of the counter does not affect its
countdown.

041 8253 Channel 1
All PCs except PCjr: Used to time the memory refresh cycle.
Operates in mode 2 with a divisor of 18, causing an interrupt
to the 8237 DMA controller every 15.08 microseconds. Do not
disturb.

PCjr only: PCjr uses for keyboard serial data timer and
accumulator for clock ticks during disk 1/0. Therefore, no
keyboard during disk 1/0.

267

Port Map

042 8253 Channel 2
Used for cassette (not XT) and speaker functions. Connected to
speaker by port 61h. See Chapter 3 for examples of use. See
TRM, page 1-120, or PCjr, page 2-85.

043 8253 Mode Control
bits 7-6 00=channel 0

01 =channel 1
10 = channel 2

bits 5-4 00 = latch present counter value
01 =read/write only MSB
lO=read/write only LSB
11 =read/write LSB, then MSB

bits 3-1 000=mode 0: countdown with optional inhibit (level
output)
inhibit via count register reload
001 =mode 1: countdown with optional restart (level
output)
restart via count register reload
0lO=mode 2: generate one pulse out of N
all PCs except PCjr: used for OMA memory refresh by
channel 1
011 =mode 3: generate square wave
used for channels 0 and 2
lOO=mode 4: countdown with optional inhibit (pulse
output)
101 =mode 5: countdown with optional restart (pulse
output)

bit 0 0=binary, l=BCD counter decrementing
binary counting always used in PC

8255A-5 Programmable Peripheral Interface
The 8255A-5 features three independently accessible 1/0 ports
that interface external devices to the bus circuitry. These ex­
ternal devices are the keyboard, speaker, configuration switches,
and cassette tape. The 8255 supports several modes of periph­
eral interfacing in addition to the mode used by the PC.

The Technical Reference manual does not document the in­
ner workings of the 8255 or contain instructions for its use. A
brief summary of the port allocation can be found on TRM
page 1-10 (PCjr page 2-30). These are the first pages of a
fairly complete explanation of port assignments. See the

268

Port Map

INTEL Microprocessor and Peripheral Handbook, page 6-166, for
specifications. See TRM, page A-7, or page A-8 in the PCjr
TRM for the POST 8255 initialization routine. Also see Chap­
ter 1 for explanations of the configuration switch usage.

Because each model of the PC family uses these ports in
vastly different ways, their contents will be separately
documented here, and PCl switch meanings will be included.
Be sure to use INT 11 to obtain the equipment configuration
that is set in the switches. See memory locations 410-411. The
following diagram summarizes switch usage on the PCl, PC2,
and XT.

XT
Switch group 1

Toggle

Switch 2

1 POST loop
2 8087
3-4 Memory on

system board
5-6 Monitor type
7-8 Num. drives

Not present

060 Port A Input

PC1/PC2

Num. drives, also 7-8
Same
Same, but different

Same
Same
Toggle

meanings

1-5 Memory expansion
6-8 Unused

PCl and PC2 only: Used for keyboard scan code input or
configuration switch group 1 input.

Keyboard scan code image if port 61 bit 7=0, or
configuration switch group 1 image if port 61 bit 7 = 1. The
configuration switches are presented in the following
arrangement:

bits 7-6 sw 8-7 Number of disks
00=1
01=2
10=3
11=4

bits 5-4 sw 6-5 Type of display
00 = reserved
0l=color 40X25 b/w
l0=color 80X25 b/w
ll=mono

269

Port Map

PCl only:
bits 3-2 sw 4-3 RAM on system board

00=16K
01=32K
10=48K
11=64K

PC2 only:
bits 3-2 sw 4-3 RAM on system board

00=64K
01=128K
10=192K
11=256K

bit 1 sw 2 Reserved for 8087
bit O sw 1 Use disk to load system

060 Port A Input
XT only: Bits 7-0 keyboard scan code image or diagnostic
monitoring output. See Chapter 2.

060 Port A Output
PCjr only: Used for keyboard scan code input simulation by
INT 48 in the PCjr, and four hardware mode selection output
switch bits. Bits 7-0 keyboard scan code image. See Chapter 1.

061 Port B Output
PCl and PC2 only:

bit 7 0 = Keyboard enable, 1 = clear keyboard and read switches
bit 6 1 = Keyboard clicking on, 0 = off (see Chapter 2)
bit 5 0 = Enable parity error signals from expansion ports
bit 4 0 = RAM parity error enable
bit 3 0 = Cassette motor on
bit 2 Select source for port 62 bits 0-3

0 = Read spare switches
1 = Read RAM size switches

bit 1 1 =Speaker enabled (see Chapter 3)
bit O Speaker input gate (see Chapter 3)

1 = 8253 channel 2 1.19318 megahertz clock input
O=Direct speaker control via port 61 bit 1

061 Port B Output
XT only:

bit 7 0 = Keyboard enable, 1 = acknowledge
bit 6 l=Keyboard clicking on, O=off (see Chapter 2)
bit 5 0 = Enable parity error signals from expansion ports

270

Port Map

bit 4 0 = RAM parity error enable
bit 3 0 = Read high switches

1 = Read low switches
bit 2 Spare
bit 1 1 = Speaker enabled (see Chapter 3)
bit 0 Speaker input gate (see Chapter 3)

1 = 8253 channel 2 1.19318 megahertz clock input
0 = Direct speaker control via port 61 bit 1

061 Port B Output
PCjr only:

bit 7 Reserved
bits 6-5 Sound source multiplexor input selection

(See Chapter 3)
00 = 8253 channel 2 (power-on default)
01 =Cassette audio in
10=1/O channel audio in
11 =TI76496 CSG

bit 4 Disable internal speaker and cassette motor
(See Chapter 3)

bit 3 0=Cassette motor on if port 61 bit 4=0
bit 2 Text/graphics steerer (see Chapter 4)

l=Text
0=Graphics

bit 1 1 =Speaker enabled (see Chapter 3)
bit 0 Speaker input gate (see Chapter 3)

1=8253 channel 2 1.19318 megahertz clock input
0 = Direct speaker control via port 61 bit 1

062 Port C Input
PCl and PC2 only:

bit 7
bit 6
bit 5
bit 4

Either

bits 3-0

Or
bits 3-1
bit 1

1 = RAM parity error
1 = Error in expansion slots
8253 channel 2 output signal (see Chapter 3)
Cassette data input

Switch group 2, switches 4-1 if port 61 bit 2 = 1
1/0 channel expansion memory /32K

Unused
Switch group 2, switch 5 if port 61 bit 2 = 0
1/0 channel expansion memory /32K

271

Port Map

062 Port C Input
XT only:

bit 7 1 = RAM parity error
bit 6 1 = Error in expansion slots
bit 5 8253 channel 2 output signal (see Chapter 3)
bit 4 Unused spare
Either

bits 3-0 Switches 4-1 if port 61 bit 3 = 1
Bits 3-2 memory on system board
00=64k

Or

01=128k
10=192k
11=256k
Bit 1 co-processor installed
Bit 0 loop in POST

bits 3-0 Switches 8-5 if port 61 bit 3 = 0
Bits 3-2 disk available
00=1
01=2
10=3
11=4
Bits 1-0 initial monitor mode
00=reserved (used for enhanced graphics adapters)
01 =color 40X25
lO=color 80X25
ll=b/w 80X25

062 Port C Input
PCjr only:

272

bit 7 0 = Keyboard cable connected
bit 6 Keyboard data serial input
bit 5 8253 channel 2 output signal (see Chapter 3)
bit 4 Cassette data input or same as bit 5
bit 3 0 = 64k expansion installed
bit 2 0 = Disk drive installed
bit 1 0 = Internal modem installed
bit 0 1 = Keyboard latched, cleared by read indicates missed

key during disk 1/0

Port Map

063 Mode Control Register
Normally set to 99h to cause port B to be an output port (a
read obtains the last value sent) and ports A and C to be input
ports. PCjr sets this to 88h to cause ports A and B to be output
ports and port A to be input.

bit 7 1 = Active
bits 6-5 Port A mode

bit 4
bit 3
bit 2

bit 1
bit 0

00=Mode 0 (PC usage)
0l=Mode 1
lx=Mode 2
l=Port A l=input, 0=output
l=Port C (bits 7-4) l=input, 0=output
Port B mode
0 = Mode 0 (PC usage)
l=Mode 1
l=Port B l=input, 0=output
l=Port C (bits 3-0) l=input, 0=output

DMA Page Registers
These page registers are provided to specify the high-order 4
bits to be used for the current DMA channel address register.
The DMA address registers are only 16 bits wide, so 4 bits of
these additional bytes are needed to form a 20-bit address.
(These page registers are for all PCs except PCjr.)
080 unused
081 high-order four bits of OMA channel 2 address
082 high-order four bits of OMA channel 3 address
083 high-order four bits of OMA channel 1 address

NMI Mask Register
0A0 RAM Parity and Channel Error NMI Mask
All PCs except PCjr:

bit 7 l=enable NMI, 0=disable NMI

0A0 Latching Options, Read Operation Clears
PCjr only: See PCjr TRM, 2-35.

bit 7 1 = NMI for keyboard enabled
0 = Disabled, used during disk 1/0 to sense ignored
keypresses by examining port 62 bit 0

bit 6 1 = 8253 timer channel 2 (40 kilohertz) to IR diagnos­
tic test

273

Port Map

bit 5 8253 timer channel 1 input clock select
0 = 1.1925 megahertz for keyboard deserialization
1 = Timer 0 output into timer 1 for timer 0 overflow
detection during disk 1/0 for accurate time-of-day
update (see 8253 timer)

bit 4 0=Enable 8088 HRQ line forfuture bus-attached
OMA controller or alternate processors

bits 3-0 Unused

Complex Sound Generator
The sound chip incorporates three programmable tone gen­
erators (voices) that can produce tones through the entire
range of human hearing, a programmable noise generator, a
separate attenuation control for each voice, and simultaneous
mixed output. Separate volume controls allow a range of 2 to
28 decibel attenuation, as well as settings for full and no vol­
ume. See Chapter 3 for a discussion of the use of this port.

0C0 T.I. SN76496 Programmable Tone/Noise Generator
Access Port
Warning: The PCjr "hangs" if this port is read.
PCjr only:

274

bit 7 1 = Bits 6-4 contain internal register number to select
one of eight internal registers
0 = Second byte of multibyte sequence, used only for
frequency specification continuation byte; bits 5-0 are
most significant and first byte bits 3-0 least
significant

bits 6-5 00 = Voice 1 selected
01 = Voice 2 selected
10 = Voice 3 selected
11 = Voice 4 selected

bit 4 0=Voices 1-3 frequency in bits 3-0 and possibly an­
other byte to follow
1 = Voices 1-4 attenuation in bits 3-0

Either

bits 3-0 Frequency or attenuation data as identified by bits
6-5
Frequency value: 3,579,540/(32 * desired frequency)
(See bits 7=0 description above for continuation byte
format)
Attenuation: any combination of bits 3-0
Bit 3 = 2 decibels
Bit 2 = 4 decibels

Or

Port Map

Bit 1 = 8 decibels
Bit 0 = 16 decibels
All bits 0 = full volume
All bits 1 = sound off

If bits 6-5 = 11 (voice 4)
bit 3 Unused
bit 2 0 = Periodic noise, 1 =white noise
bits 1-0 Frequency shift rate

00=6991
01=3496
10=1748
11 = Voice 3 frequency

OMA Channel 3 Selector
See also ports 6 and 82h.

0C2 Selects Device to Be Attached to OMA Channel 3
All PCs except PCjr:

bits 7-6 ll=DMA connected to DREQ3 and DACK3 on the
bus

bits 7-6 l0=DMA connected to hard disk

0E0-0EF Reserved

PCjr Disk Controller
See ports 3F0 for non-PCjr disk and 320 for hard disk.

0F0 Disk Controller
PCjr only:
See PCjr Technical Reference manual, page 3-13.

0F2 Control Port for the Controller
PCjr only:

bit 7
bit 6
bit 5
bit 0

0=Reset the controller
1 = Start watchdog timer, followed by 0
l=Enable watchdog timer; see port 21 bit 6
1 = Tum on drive motor and select drive

0F4 Status Register for Controller
PCjr only:

See also memory locations 43E-48, 78.

275

Port Map

Either
Contents before request:
bit 7 1 = Ready to communicate to controller
bit 6 1 = Data direction from controller to processor
bit 5 1 = Command in process, busy

Or

Contents after request:
bit 7 1 =Time-out from disk drive
bit 6 1 = Seek failed
bit 5 1 =Controller failure
bit 4 1 =CRC error on read
bit 3 1 = OMA overrun
bit 2 1 = Requested sector not found
bit 1 1 = Write attempted to protected disk

with bit 3 = OMA 64K boundary crossed
with bit O = Address mark not found

bit O 1 = Bad command given to disk controller

0F5 Data Port for Controller
PCjr only:

See also INT 13.
Write: 1-9 byte command block; includes cylinder, head, sector,
block, and control byte. Command class and operation:
02h = Read track
03h=Specify SRT, HUT, HLT, OMA
04h = Sense drive status
05h=Write data
06h=Read
07h = Recalibrate
08h = Sense interrupt status
09h = Write deleted data
OAh=Read ID
OCh = Read deleted data
ODh = Format track
OFh=Seek
llh=Scan equal
19h = Scan low or equal
1 Oh= Scan high or equal

0100-01FF for System Board and 1/0 Channel
Restricted to output-only and so unused on PCs.

276

Port Map

0200-03FF for 1/0 Channel, Not for System
Board
Game Controller
See Technical Reference manual, page 1-204; PCjr, page 2-119.
A read should be preceded by an initializing write of any data.
The write will start the timing for the resistive values.
201
bits 7-4 Digital inputs
1 =no contact, 0=pressed

bit 7 joystick b, button 2
bit 7 paddle d, button
bit 6 joystick b, button 1
bit 6 paddle c, button
bit 5 joystick a, button 2
bit 5 paddle b, button
bit 4 joystick a, button 1
bit 4 paddle a, button

bits 3-0 Resistive inputs
Length of pulse determined by 0-lO0K ohm resistive load.
Time=24.2 microseconds + (0.011 microsecond* resistance).
(1 is default bit setting, 0=timing active)

bit 3 joystick b, y coordinate
bit 3 paddle d, coordinate
bit 2 joystick b, x coordinate
bit 2 paddle c, coordinate
bit 1 joystick a, y coordinate
bit 1 paddle b, coordinate
bit 0 joystick a, x coordinate
bit 0 paddle a, coordinate

Expansion Unit
An optional expansion unit features a "receiver card" that
communicates with an "extender card" in an I/O expansion
slot of the system unit (PC). Switches on the card indicate the
amount of expansion RAM in the expansion unit, and wait
states are inserted for the RAM. The expansion unit ports dis­
cussed below apply to all PCs except the PCjr unless noted
otherwise. See XT Technical Reference manual, page 1-71.

277

Port Map

210-213 Extender Card Ports
210 write: latch expansion bus data

read: verify expansion bus data
211 write: clear wait, test latch

read: MSB of data address
212 read: LSB of data address
213 write: OOh = disable expansion unit,

Olh=enable expansion unit
read: status
bits 7-4 switches

l=off

bits 2-3
bit 1
bit 0

O=on
not used
wait state request flag
enabled/ disabled

214-215 Receiver Card Ports
214 write: latch data

read: data
215 read: MSB of address

next read: LSB of address

220-24F Reserved on All PCs

Third Parallel Printer
278-27F All PCs except PCjr: Third parallel printer (LPT3) if
other two installed; otherwise, second or first. See second
printer at 378-37F and the full description of parallel printer
ports at 3BC.

2D0-2DF reserved for 3270PC
2F0-2F7 reserved

Second Asynchronous Adapter, PCjr: First
2F8-:-2FF Secondary Asynchronous Communications
All PCs except PCjr: See primary at 3F8-3FF for details of
asynchronous ports. See also TRM, page 1-215.

2F8-2FF Primary Asynchronous Communications
PCjr only: See 3F8-3FF for details of asynchronous ports. See
also PCjr TRM, pages 2-125 and 4-18. Note that the PCjr does
not support user outl, out2, or ring indicator. When the in­
ternal modem is installed, it becomes COMl but uses ports
3F8-3FF.

278

Port Map

Prototype Card
300-31F All PCs except PCjr: Prototype experimentation card;
see TRM, page 1-209.

Hard Disk Controller
See XT Technical Reference manual, pages 1-179 and A-86. See
ports 3FO for disk ports or FO for the PCjr.

The descriptions of hard disk controller ports apply to all
PCs except the PCjr.
320 Read/write from/to controller

Write: 1-9 byte command block includes cylinder, head,
sector, block, and control byte.
Command class and operation:

OOh Test ready
Olh Recalibrate
03h Sense
04h Format drive
05h Check track
06h Format track
07h Format bad track
08h Read
OAh Write
OBh Seek
OCh Initialize drive
ODh Read ECC
OEh Read buffer
OFh Write buffer
EOh Perform RAM diagnostics
E3h Perform drive diagnostics
E4h Perform controller diagnostics
ESh Read long
E6h Write long

Read: sense bytes when port 321 error bit on.
Byte 0:

bit 7
bit 6
bit 5-4
bit 3-0

Byte 1:
bits 7-6
bit 5
bits 4-0

address valid
spare
error type (see TRM, page A-100)
error code

zero
drive number
head number

279

Port Map

Byte 2:
bits 7-5 cylinder number high bits
bits 4-0 sector number

Byte 3:
bits 7-0 cylinder number low bits

321 read: controller status

bit 5 drive number (0/1)
bit 1 error occurred, read sense bytes
write: controller reset

322 write: generate controller select pulse
323 write: pattern to DMA and interrupt mask register (see
ports OF, 21, and C2)
330-33F reserved for XT /370

Second Parallel Printer, PCjr First
378-37F All PCs except PCjr: Second parallel printer (LPT2) if
primary installed; otherwise first. See third printer at 278-27F
and the full description of parallel printer ports at 3BC. See
TRM, page 1-107.
378-37F PCjr only: Parallel printer (LPTl). See the full
description of the parallel printer ports at 3BC. See PCjr TRM,
page 3-95.

Second Bisynchronous or Primary SDLC Adapter
380-389 Second Binary Synchronous Adapter
All PCs except PCjr: If primary installed at 3AO; otherwise pri­
mary. See primary adapter at 3A0-3A9 for the description of
these ports. See TRM, page 1-245.

380-38C Synchronous Data Link Control (SDLC) Adapter
All PCs except PCjr: For the sake of anyone actually using this
high-performance, expensive, mainframe communications
adapter, a summary of port usage is included here. For more
specific information see TRM, page 1-265. All references to
8253, 8255, and 8273 for the SDLC adapter refer to the on­
board units and not to the system board devices.

The descriptions below apply to all PCs except the PCjr.
380 8255 Port A, internal/ external sense
381 8255 Port B, external modem interface
382 8255 Port C, internal control and gating
383 8255 Mode register
384 8253 Channel 0 square wave generation

280

Port Map

385 8253 Channel 1 inactivity time-out
386 8253 Channel 2 inactivity time-out
387 8253 Mode register
388 8273 Read: status; Write: command
389 8273 Write: parameter; Read: response
38A 8273 Transmit interrupt status
38B 8273 Receiver interrupt status
38C 8273 Data

Primary Bisynchronous Adapter
3A0-3A9 Primary Binary Synchronous Adapter
A secondary adapter can be installed at port location 380-38C.
See TRM, page 1-245. Just in case you ever acquire this
adapter or use one in your business environment, here is a
summary of the adapter's port usage. Since it is rare to find
one in a PC, consult the TRM for more specifics. The 8253,
8255, and 8273 referenced in this section are present on the
adapter and are distinct from those on the system board.

The descriptions below apply to all PCs except the PCjr.
3A0/380 8255 Port A, internal/external sense
3Al/381 8255 Port B, external modem interface
3A2/382 8255 Port C, internal control and gating
3A3/383 8255 Mode register
3A4/384 8253 Counter O not used
3A5/385 8253 Counter 1 inactivity time-outs
3A6/386 8253 Counter 2 inactivity time-outs
3A7 /387 8253 Mode register
3A8/388 8251 Data
3A9/389 8251 Command, mode, status register

Monochrome Monitor and Parallel Printer Adapter
This is the most popular adapter installed in non-PCjr models
of the PC. The clarity of the characters on a monochrome dis­
play, the relatively low cost of a monochrome monitor, and
the included connection for an inexpensive dot-matrix or letter­
quality printer combine to make this adapter an excellent
choice for word processing and nongraphics-display comput­
ing. The adapter is so popular that a whole industry has
formed to compete with the IBM version of the adapter, offer­
ing still more features packed into a single expansion slot.

The PCjr does not support this adapter. However, those
programs previously written for the monochrome display are

281

Port Map

supported by the PCjr Video Gate Array (VGA); access in­
tended for the monochrome display buffer is redirected to the
PCjr's active display buffer. References to the monochrome
display ports are, however, not redirected to the color display
ports, proving once again that provided interrupts and func­
tions are the necessary keys to upward compatibility.

See Chapter 4 for a full discussion of the port usage for
the monochrome display. See also XT Technical Reference man­
ual, page 1-113, ports 61/62, and memory locations B0000,
~49-465, INT 10, and INT 1D. See color video ports starting
at 3D0.

The descriptions below apply to all PCs except the PCjr.
3B0-3BB Monochrome Monitor Adapter
3B0-3B3 See ports 3B4 and 3B5.
3B4 6845 Index register, used to select register to be accessed
with port 3B5. See the register numbers at that port. This port
is not readable. The vector at 463h points here if monochrome
is the current active display. Note that the address decode
method used on the adapter allows port 3B4 to be addressed
as 3B0, 3B2, 3B4, or 3B6.

3B5 6845 Data to be placed in the register selected by port
3B4. Only registers C-Fh may be retrieved; all others are
write-only. If the adapter is not installed, FFh will be the result
of a read from this port. Note that the address decode method
used on the adapter allows port 3B5 to be addressed as 3Bl,
3B3, 3B5, or 3B7.
Register Use Contents

0 Horz total characters -1 6th
character clock cycles per
horizontal line (size to screen)

1 Horz displayed characters/line 50h
2 Horz synch position 52h

up/down centering
3 Horz synch width in characters OFh
4 Vert total lines -1 19h

int (lines * scan lines/char) -1
5 Vert total lines -1 06h

fraction of above
6 Vert displayed rows 19h
7 Vert synch position row 19h

top to first row of chars
8 Interlace mode 02h

282

Port Map

9 Maximum scan line address 0Dh
scan lines/ character -1

10 Cursor starting scan line 0Bh
bit 7 unused
bit 6 blink rate, don't use

since hardware blinking
bit 5 0=display

1 =no display
bits 4-0 starting scan line

0=top, 0D=bottom
BASIC LOCATE changes this register

11 Cursor ending scan line 0Ch
bits 7-5 unused
bits 4-0 ending scan line

0=top, 0D==bottom
BASIC LOCATE changes this register

12 Memory address MSB 00 readable
bits 7-6 unused
bits 5-0 half the offset for the

byte to be at top left
13 Memory address LSB 00 readable

half the offset for the
byte to be at top left

14 Cursor address MSB 00 readable
bits 7-6 unused
bits 5-0 half the offset for the

byte to be at top left,
plus cursor offset

15 Cursor address LSB 00 readable
half the offset for the
byte to be at top left,
plus cursor offset

16 Reserved for light pen
17 Reserved for light pen
3B6-3B7 See notes for ports 3B4 and 3B5.
3B8 6845 Mode control register

bit 5 enable blink
bit 3 enable video signal (doesn't affect monochrome cursor)
bit 0 80 X 25 text

3B9 Reserved for color select register on color adapter
3BA Status register, read-only

bit 3 1 =vertical retrace
bit 0 0=video enabled

1 = horizontal retrace
3BB Reserved for light pen strobe reset

283

Port Map

Primary Parallel Printer
3BC-3BF Parallel Printer Adapter
See ports 378-37F for second printer adapter (primary on
PCjr) and 278-27F for third printer. See TRM, page 1-107;
PCjr, page 3-95. Only ports 378 to 37F apply to PCjr.

3BC/378/278 Printer data out, also readable
bit 7 pin 9 data bit 7
bit 6 pin 8 data bit 6
bit 5 pin 7 data bit 5
bit 4 pin 6 data bit 4
bit 3 pin 5 data bit 3
bit 2 pin 4 data bit 2
bit 1 pin 3 data bit 1
bit O pin 2 data bit 0

3B0 /379 /279 Printer status register
bit 7 O=busy, pin 11
bit 6 O=acknowledge, pin 10
bit 5 1 =out of paper, pin 12
bit 4 1 =online (selected), pin 13
bit 3 1 =error, pin 15
bit 2 0 = unused
bit 1 O=unused
bit O 1 =time-out

3BE/37 A/27 A Printer control register
bits 7-5 unused
bit 4 0 = disable, 1 = IRQ7 enable for printer acknowledge
bit 3 l=printer reads output, pin 17
bit 2 O=initialize printer, pin 16
bit 1 1 =auto linefeed, pin 14
bit O 1 =output data to printer, pin 1

3BF /37F /27F not used
3C0-3CF reserved

Color/Graphics Adapter
See Chapter 4 for a full discussion of the port usage for the
color display. See also TRM, page 1-123; ports 21, 61, 62, 3DF;
and memory locations B80000, 449-466, 489-48A, INT 10,
INT 44, INT 05, INT IF, INT OD, and INT 1D. See mono­
chrome video ports at 3B0.

284

Port Map

3D0-3DC Color/Graphics Monitor Adapter
3D0-3D3 See ports 3D4 and 3D5.
3D4 6845 Index register, used to select register to be accessed
with port 3D5. See the register numbers at that port. This port
is not readable. The vector at 463h points here if color is the
current active display. Note that the address decode method
used on the adapter allows port 3D4 to be addressed as 3D0,
3D2, 3D4, or 3D6.
3D5 6845 Data to be placed in the register selected by port
3D4. Only registers C-Fh can be retrieved; all others are
write-only. If the adapter is not installed, FFh will be the result
of a read from this port. Note that the address decode method
used on the adapter allows port 3D5 to be addressed as 3D1,
3D3, 3D5, or 3D7.
Register Use

0 Horz total characters -1
character clock cycles per
horizontal line (size to screen)

1 Horz displayed characters/line
2 Horz synch position

up/down centering
3 Horz synch width in characters
4 Vert total lines -1

int (lines* scan lines/char) -1
5 Vert total lines -1

fraction of above
·6 Vert displayed rows
7 Vert synch position

top to first row of chars
8 Interlace mode
9 Maximum scan line address

scan lines per char -1
10 Cursor starting scan line

bit 7 unused
bit 6 blink rate, don't use

since hardware blinking
bit 5 0=display

1 =no display
bits 4-0 starting scan line

0=top, 0D=bottom
BASIC LOCATE changes this register

Contents
Mode 40/80/Graph/
Jr Graph
38/71/38/61h

28/50/28/S0h
2D /SA/2D /52h

A/A/A/Fh
1F/1F/7F/19h

6/6/6/6h

19/19/64/19h
1C/1C/70/19h

2/2/2/2h
7/7/1/Dh

6/6/6/Bh

285

Port Map

11 Cursor ending scan line 7 /7 /7 /Ch
bits 7-5 unused
bits 4-0 ending scan line

0=top, 0D=bottom
BASIC LOCATE changes this register

12 Memory address MSB 0/0/0/0 readable
bits 7-6 unused
bits 5-0 half the offset for the

byte to be at top left
13 Memory address LSB 0/0/0/0 readable

half the offset for the
byte to be at top left

14 Cursor address MSB 0/0/0/0 readable
bits 7-6 unused
bits 5-0 half the offset for the

byte to be at top left,
plus cursor offset

15 Cursor address LSB 0 /0 /0 /0 readable
half the offset for the
byte to be at top left,
plus cursor offset

16 Light pen MSB
17 Light pen LSB

3D6-3D7 not used; see notes for ports 3D4-3D5

3D8 control register
(Port access not honored by PCjr; see PCjr TRM, page 4-16,
port 3DA.)

bit 5 1 = background intensity means blink
0 = background intensity for 16 colors

bit 4 640 X 200 mode
bit 3 enable video signal
bit 2 select b/w mode
bit 1 select graphics
bit O 80X25 text

The usage of the above control register for various modes is:
Bit: 5 4 3 2 1 0 mode

286

1 0 1 1 0 0 40X25 b/w
1 0 1 0 0 0 40X25 16-color
1 0 1 1 0 1 80X25 b/w
1 0 1 0 0 1 80X25 16-color
x O 1 1 1 0 320X200 b/w
x O 1 0 1 0 320X200 4-color
x 1 1 1 1 0 640 X 200 b /w

Port Map

3D9 color select register
(Port access not honored by PCjr; see PCjr TRM, page 4-16,
port 3DA.)
For text modes:

bits 7-5 unused
bit 4 intensity of background
bits 3-0 screen/border IRBG

For graphics modes:
bits 7-6 unused
bit 5 0 = green, red, and brown palette

1 =cyan, magenta, and white palette
bit 4 unused
bits 3-0 IRGB for background

3F 640X200 b/w
30 every other mode

3DA Status register
PCjr uses this port for VGA access.
All PCs except PCjr:

bits 7-4 not used
bit 3 vertical retrace
bit 2 light pen switch
bit 1 light pen trigger set
bit 0 display enabled

PCjr only:
Video Gate Array (VGA) control port; see PCjr TRM, page
2-63. The port functions in an address/data flip-flop mode,
with a read setting the address mode and obtaining status bits.
The addressing mode accepts the number of the register to be
given the following data. Registers are numbered 0-lFh. See
also port 61, bit 2.
PCjr only:
Status register:

bit 4 1 =video dot information available, diagnostic function
bit 3 1 =vertical retrace active
bit 2 0 = light pen triggered
bit 1 1 = light pen trigger set
bit 0 1 =display enabled

PCjr only:

287

Register
00

01

02

03

04

10-lF

Port Map

Use
Mode control register 1
bits 7-5 unused
bit 4 1=16-color graphics for 160X200 and 320X200

modes
bit 3 1 =video enabled
bit 2 1 =color burst disabled, gray shades;

no effect on RGB monitors
bit 1 1 =graphics, 0=text
bit 0 1 = 64k expansion, high band width for modes

80X25 text, 640X200 4-color, 320X200 16-color
Palette mask register

A zero in the following bits causes the correspond­
ing attribute bits 3-0 to be ignored.
bit 3 palette mask 3 16-color mode
bit 2 palette mask 2 16-color mode
bit 1 palette mask 1 16/4 color mode
bit 0 palette mask 0 16/4/2 color mode
Border color register
bit 3 intensity
bit 2 red
bit 1 green
bit 0 blue
Mode control register 2
bit 3 1 =two-color graphics
bit 2 should be zero
bit 1 1 =enable blink
bit 0 should be zero
Reset register
Not usable to RAM-resident programs
bit 1 synchronous reset
bit 0 asynchronous reset
Palette registers

These registers allow the user to specify the colors to
be generated oy the matching attribute byte contents. For
example, an attribute byte containing 6h would use pal­
ette register 16h for the desired IRBG setting of the color.
bit 3 intensity
bit 2 red
bit 1 green
bit 0 blue

30B Clear light pen latch by any write
3DC Preset light pen latch
3DF PCjr only: CRT /CPU page register; see also memory location

48Ah.

288

Port Map

bits 7-6 00 = all text modes
01 =low-resolution graphics (160X200)
11 =high-resolution graphics (640X200)

bits 5-3 16K video page address for redirection of
B8000/B0000
bits 2-0 16K video page being displayed

The default contents for a 128K PCjr is 3Fh which means:
bit: 7654 3210

0011 1111=3Fh
bits 7-6 = 00 text mode
bits 5-3=111 = 7*16K = 114,688 = lC000h = processor
accessed page
bits 2-0=111 = 7*16K = 114,688 = lC000h = display
accessed page

3E0-3E7 reserved
Disk Controller
See ports 0F0 for PCjr disk and 320 for hard disk; see TRM,
page 1-151.

The following description of the disk controller ports ap­
plies to all PCs except PCjr.

3F2 Control Port for the Controller
bit 7 1 = drive D motor enable
bit 6 1 = drive C motor enable
bit 5 1 = drive B motor enable
bit 4 1 = drive A motor enable
bit 3 1 =enable interrupt and DMA requests,

0 = disconnect from bus
bit 2 0=reset the controller
bit 1-0 drive select

00=A
0l=B
lO=C
ll=D

3F4 Status Register for the Controller
bit 7 1 =ready to communicate to controller
bit 6 1 =data direction from controller to processor
bit 5 1 =non-DMA mode
bit 4 1 = command in process, busy
bit 3 1 = Drive D in seek mode
bit 2 1 = Drive C in seek mode
bit 1 1 = Drive B in seek mode
bit 0 1 = Drive A in seek mode

289

Port Map

3F5 Data Register
See also INT 13.
Write: 1-9 byte command block; includes cylinder, head, sec­
tor, block, and control byte. Command class and operation:

02h = Read track
03h =Specify SRT, HUT, HLT, OMA
04h = Sense drive status
05h = Write data
06h =Read
07h = Recalibrate
08h = Sense interrupt status
09h = Write deleted data
0Ah=Read ID
0Ch = Read deleted data
0Oh = Format track
0Fh =Seek
llh = Scan equal
19h = Scan low or equal
1 Oh = Scan high or equal

Primary Asynchronous Adapter, PCjr Internal Modem
3F8-3FF Primary Asynchronous Serial Communications
See secondary (PCjr primary) at 2F8-2FF.

See also TRM, page 1-215; PCjr TRM, pages 2-125, 3-33,
and 4-18. Note that the PCjr does not support user OUTl,
OUT2, or ring indicator. Also see memory locations 400, 50,
2C, 30, and 47C.

3F8/2F8 Read: transmit buffer. Write: receive buffer, or baud
rate divisor LSB if port 3FB, bit 7= 1.

PCjr baud rate divisor is different from other models;
clock input is 1.7895 megahertz rather than 1.8432 megahertz.

3F9 /2F9 Write: interrupt enable register or baud rate divisor
MSB if port 3FB, bit 7= 1.

PCjr baud rate divisor is different from other models;
clock input is 1.7895 megahertz rather than 1.8432 megahertz.
Interrupt enable register:

bits 7-4 forced to 0
bit 3 1 =enable change-in-modem-status interrupt
bit 2 1 =enable line-status interrupt
bit 1 1 =enable transmit-register-empty interrupt
bit 0 1 =data-available interrupt

290

Port Map

3FA/2FA Interrupt identification register (prioritized)
bits 7-3 forced to 0
bits 2-1 00=change-in-modem-status (lowest)
bits 2-1 0l=transmit-register-empty (low)
bits 2-1 lO=data-available (high)
bits 2-1 11 = line status (highest)
bit 0 1 = no interrupt pending
bit 0 0 = interrupt pending

3FB/2FB Line control register
bit 7 0=normal, l=address baud rate divisor registers
bit 6 0 = break disabled, 1 = enabled
bit 5 0=parity disabled

l=if bit 4-3=01 parity always 1
if bit 4-3 = 11 parity always 0
if bit 3 = 0 no parity

bit 4 0=odd parity, l=even
bit 3 0=no parity, l=parity
bit 2 0=1 stop bit

1 = 1.5 stop bits if 5 bits/ character or
2 stop bits if 6-8 bits/character

bits 1-0 00=5 bits/character
01 =6 bits/character
10=7 bits/character
11 =8 bits/character

3FC/2FC Modem control register
bits 7-5 forced to zero
bit 4 0=normal, l=loop back test
bits 3-2 all PCs except PCjr
bit 3 1 =interrupts to system bus, user-designated output: OUT2
bit 2 user-designated output, OUTl
bit 1 1 =activate rts
bit 0 1 =activate dtr

3FD /2FD Line status register
bit 7 forced to 0
bit 6 1 =transmit shift register is empty
bit 5 1 =transmit hold register is empty
bit 4 1 = break received
bit 3 1 = framing error received
bit 2 1 =parity error received
bit 1 1 = overrun error received
bit 0 1 =data received

291

Port Map

3FE/2FE Modem status register

bit 7 1 =receive line signal d~tect
bit 6 1 =ring indicator (all PCs except PCjr)
bit 5 l=dsr
bit 4 l=cts
bit 3 1 =receive line signal detect has changed state
bit 2 1 =ring indicator has changed state (all PCs except PCjr)
bit 1 1 =dsr has changed state
bit O 1 =cts has changed state

3FF /2FF Scratch pad register

292

Appendix C

Interrupts
Interrupts and Functions by Type of Service
See the Memory Map Appendix, Appendix A, for interrupts
and functions in numerical order.
An asterisk (*) marks new DOS 2.0 /2.10 interrupts and
functions.
A dagger (t) marks new DOS 3.0/3.01 interrupts and
functions.

Keyboard Services
09 BIOS keyboard interrupt vector
16 BIOS keyboard functions

00 Read key
01 Get character status
02 Get shift status
03 Set key repeat rates (PCjr only)
04 Set keyboard clicker on/ off (PCjr only)

21 DOS function request
01 Keyboard input (with wait, echo, break)
06 Direct console 1/0 (no wait, break, or echo)
DL = FFh return input character
07 Direct console input (with wait, no echo or break)
08 Console input (with wait and break, no echo)
0A Buffered keyboard input (with wait, break)
OB Check standard input character availability
0C Clear keyboard buffer and do function 1, 6, 7, 8, or A

48 BIOS cordless keyboard 62 to 83 key translation (PCjr only)
49 BIOS nonkeyboard scan code translation table (PCjr only)

Video Services
OD BIOS vertical retrace attention (PCjr only)
10 BIOS video functions

00 Set mode
0l Set cursor type
02 Set cursor position
03 Get cursor position
04 Get light pen position
05 Set display page

295

Interrupts

06 Scroll up
07 Scroll down
08 Get attribute and character
09 Put attribute and character
0A Put character
OB Set palette
0C Put dot
OD Get dot
OE Put TTY mode
OF Get status: columns, mode, page
10 Set palette registers (PCjr only)

1 D BIOS video parameters table vector
lF BIOS 128-255 graphics character patterns vector
21 DOS function request

02 Display character (with break)
06 Direct console 1/0 (no wait, break, or echo)

DL<>FFh output character
09 Display string till $ (with break)

44 BIOS 0-127 graphics character patterns vector (PCjr only)

Disk Services
OD BIOS hard disk attention
OE BIOS floppy disk attention
13 BIOS hard disk functions (XT only)

00 Reset controller

296

01 Get status
02 Get sectors
03 Put sectors
04 Verify sectors
05 Format track
06 Format track and bad sector flags
07 Format drive starting at specified sector
08 Return current drive parameters
09 Initialize drive pair characteristics using INT 41
0A Read long
OB Write long
0C Seek
OD Alternate disk reset
OE Read sector buffer
OF Write sector buffer
10 Test drive read
11 Recalibrate
12 Controller RAM diagnostic
13 Drive diagnostic
14 Controller internal diagnostic

13 BIOS disk functions
00 Reset controller
01 Get status
02 Get sectors
03 Put sectors
04 Verify sectors
05 Format track

Interrupts

1E BIOS disk parameters table vector
21 DOS function request

OD Disk reset
OE Select disk
OF Open file FCB
10 Close file FCB
11 Search for first matching filename
12 Search for next matching filename
13 Delete file
14 Sequential disk read
15 Sequential disk write
16 Create file
17 Rename file
19 Query current disk
lA Set disk transfer area address
1B Query drive allocation units and sectors by FCB
lC Query drive allocation units and sectors by drive number
21 Disk random read by FCB
22 Disk random write by FCB
23 Disk file size to record number
24 Set disk random record number
27 Random block read using FCB
28 Random block write using FCB
29 Parse filename

. 2E Set disk write verify on/ off
* 2F Get disk transfer area address
* 36 Get disk free space
* 39 MI<DIR, create subdirectory using name
* 3A RMDIR, remove directory using name
* 3B CHOIR, change current directory using name
* 3C CREAT, create file using name
* 3D Open a file using name
* 3E Close file using handle
* 3F Read file using handle, redirection if standard input device
* 40 Write file using handle, redirection if standard output device
* 41 UNLINK, delete file using name
* 42 LSEEK, move file pointer using handle
* 43 CHMOD, change or get file mode using name
*44 IOCTL, perform get/put/status/device-information by

handle
297

Interrupts

* 45 DUP, get duplicate handle
* 46 DUP, point file handle at another file
* 4 7 Read directory for drive
* 4E FIND FIRST, find first file and get information using name
* 4F Find next file and get information using name
* 54 Get disk verify state
* 56 Rename file using name
* 57 Get/set file date/time using handle
t SA Create temporary file
t SB Create new file, cannot previously exist
t SC Lock/unlock file access

25 DOS absolute disk read
26 DOS absolute disk write
40 BIOS reserved for floppy disk 1/0 when hard disk installed
41 BIOS hard disk parameter table vector

Program Management Services
1B BIOS user break routine vector
20 DOS program terminate, same as INT 21, function 00
21 DOS function request

00 Terminate program, same as INT 20
26 Create a program segment prefix

* 31 KEEP, terminate process and stay resident
* 48 Allocate memory in paragraphs
* 49 Free allocated memory in paragraphs
* 4A SETBLOCK, change allocated paragraphs amount
* 4B EXEC, load or execute program by name
* 4C EXIT, terminate process with return code
*4D WAIT, get return code from process
t59 Get extended error code for INT 21 or 24
t 62 Get PSP address

22 DOS program terminate address
23 DOS program Ctrl/Break exit address
24 DOS critical error handler vector
27 DOS terminate program, stay resident

Clock/Date/Time Services
08 BIOS 8253 timer interrupt vector
lA BIOS time-of-day clock functions

00 Get clock
01 Set clock

1 C BIOS user timer tick routine vector
21 DOS function request

2A Get date

298

2B Set date
2C Get time
2D Set time

Interrupts

* 38 Get country delimiter information
* 57 Get/set file date/time using handle

Printer Services
05 BIOS print screen
OF BIOS reserved for printer
17 BIOS printer functions

00 Put character
01 Initialize printer
02 Get status

21 DOS function request
05 Printer output

2F t DOS submit, cancel, or get printer status
t 00 Determine if handler installed
t0l Submit file for printing
t 02 Cancel print of file
t03 Cancel print of all files
t 04 Hold the print queue for scan
t 05 Activate the print queue after hold

RS-232 Services
OB BIOS reserved for communications
0C BIOS reserved for communications
14 BIOS RS-232 communications functions

00 Initialize port
01 Put character
02 Get character
03 Get port status

Cassette Services (Not XT)
15 BIOS cassette functions

00 Motor on
01 Motor off
02 Get blocks .
03 Put blocks

Auxiliary Device Services
21 DOS function request

03 Auxiliary input (with wait)
04 Auxiliary output

299

Interrupts

Miscellaneous 8088 System Services
00 8088 Divide by zero
01 8088 Single step
02 8088 Non-Maskable Interrupt
03 8088 Breakpoint instruction
04 8088 Overflow

Miscellaneous BIOS System Services
11 BIOS get equipment status
12 BIOS get memory size
18 BIOS BASIC entry point
19 BIOS system boot
lA BIOS

80 Set sound multiplexor (PCjr only)

Miscellaneous DOS System Services
21 DOS function request

25 Set interrupt vector
* 30 Get DOS version
* 33 Get or set Ctrl/Break on/off
* 35 Get interrupt vector
* 38 Get country delimiter information

300

Appendix D

DOS Versions
This Appendix will help you determine which commands and
functions are usable with the various versions of DOS. For ex­
ample, as you can see below, VER was new in DOS 2. You
will not be able to call it from a program designed for all ver­
sions of DOS unless you determine the DOS version from
your program and have the program act accordingly.

Batch file commands were enhanced in DOS 2.0, so you
will need to know the version of DOS before using those en­
hanced facilities. Programs 1-2 and 1-3, MEMDOSVR and
MEMDOSVS, presented in Chapter 1 can be used as models
for determining the version of DOS that is being used.

To further pursue the details of an enhancement made to
a DOS command, you will need the DOS manual at the level
of the enhancement. DOS changes are shown on page A-1 of
the DOS manual, page E-1 of the DOS 2.10 manual, and page
1-4 of the DOS 3.0 manual.

DOS level
IBMBIOS
IBMDOS
COMMAND

File Sizes of DOS
3.0 2.1 2.0

8964 4736 4608
27920 17024 17152
22042 17792 17664

1.1
1920
6400
4959

Approximate DOS Memory Usage
DOS level 3.0 2.1 2.0 1.1

36K 24K 24K 12K

DOS 1.1
New: EXEC2BIN, date/time stamping of files
Enhanced: COPY, DEBUG, DISKCOMP, DISKCOPY,

FORMAT, LINK, MODE

303

DOS Versions

DOS 2.0
New: ASSIGN, BACKUP, BREAK, CHOIR, CLS, CTTY,

FDISK, FIND, GRAPHICS, MKDIR, MORE, PATH,
PROMPT, PRINT, RECOVER, RESTORE, RMDIR,
SET, SORT, TREE, VER, VERIFY, VOL, sub­
directories, disk labels, Ansi.sys, redirection,
piping, nine sectors/track, functions 2F-57h

Enhanced: CHKDSK, COMP, DEBUG, DIR, DISKCOMP,
DISKCOPY, EDLIN, ERASE, FORMAT, Config.sys,
directories, batch files, function lBh, INT 25

DOS 3.0
New: ATTRIB, COUNTRY, GRAFTABL, KEYBxx,

LABEL, LASTDRIVE, SELECT, SHARE, VDISK,
high-capacity drives, country-specific keyboard and
graphics characters, extended error codes, unique
filenames, INT 2F (printer queue functions), func­
tions 45, 59-5C, 62h

Enhanced: BACKUP, DATE, DISKCOMP, DISKCOPY,
FORMAT, GRAPHICS, PRINT, RESTORE, com­
mand path, INT21, INT24, functions 38h, 3Dh, 44h

304

Appendix E

BASIC Versions
This Appendix will help you determine which BASIC com­
mands and functions are usable with the various versions of
BASIC and DOS. For example, as you can see below, WIN­
DOW was new in DOS 2, isn't present in Cassette or Disk
BASIC, and in the PCjr version has enhancements. You can
also see that LINE is supported in all versions of BASIC, but
DOS 2 and the PCjr versions have enhancements. Obviously,
enhancements are never reflected in Cassette BASIC or earlier
versions of BASIC. Program 1-4, MEMBASVR, in Chapter 1
can be used as a model to determine which version of BASIC
is being used. Programs 1-2 and 1-3 can be used to determine
the DOS version.

To pursue the details of an enhancement made to a
BASIC command further, you will need the BASIC manual at
the DOS level of that enhancement or above. The first part of
the manual describes enhancements from the earlier level.
BASIC 2.0 changes are shown on page vii of the BASIC man­
ual, while BASIC 3.0 shows changes for 2.0 and 3.0 beginning
on page v.

DOS level
BASIC
BASICA

File Sizes of BASIC
3.0 2.1 2.0

17024 16256 16256
26880 26112 25984

1.1
11392
16768

Key: C = Cassette, D = Disk, A= Advanced, J = Junior
l=DOS 1.1, 2=DOS 2.0, 3=DOS 3.0

See BASIC manual for BASIC compiler differences.

atn
basic
bload
bsave
chain

Not New in Enhanced in
in BASIC Version Version

2
C 2

2
2

C

307

BASIC Versions

Not New in Enhanced in
in BASIC Version Version

chdir C 2
circle C,D J, 2
clear J
color J
com(n) C,D
common C
cos 2
cvd C
cvi C
CVS C
date$ C
delete 2
draw C,D J, 2
environ C, J 3
environ$ C, J 3
eof 2
erdev C, J 3
erdev$ C,J 3
exp 2
field C
files C
get (files) C 2
get (graphics) C,D
ioctl C, J 3
ioctl$ C, J 3
key 2
key(n) C 2
kill C 2
line J, 2
load 2
loc C 2
lof 2
log 2
lset C
merge 2
mkd$ C
mkdir C 2
mki$ C
mks$ C
name C 2
noise C,D,A J
on com(n) C,D
on key(n) C,D
on pen C,D

308

BASIC Versions

Not New in Enhanced in
in BASIC Version Version

on play(n) C,D 2
on strig(n) C,D
on timer C,D 2
open 1, 2
open "com ... C
paint C,D J, 2
palette C,D,A J
palette using C,D,A J
pcopy C,D,A J
play C,D J, 2
play(n) C,D 2
pmap C,D 2
point 2
preset 2
pset 2
put (files) C 2
put (graphics) C,D
randomize 2
reset C
rmdir C 2
rset C
run 2
save 2
screen J
shell C, D, J 3
sin 2
sqr 2
strig(n) C 1
tan 2
term C J
time$ C
timer C 2
varptr$ C 1
view C,D 2
window C,D 2 J

309

Appendix F

BASIC Tokens

BASIC Tokens in Numeric Order
00 End of line, zero line link is end of

program
OB Two-byte octal integer
0C Two-byte hex integer
OD Two-byte line address -1 (after

RUN)
OE Two-byte line number (before RUN)
OF One-byte unsigned integer (10-255)
11 Digit 0
12 Digit 1
13 Digit 2
14 Digit 3
15 Digit 4
16 Digit 5
17 Digit 6
18 Digit 7
19 Digit 8
lA Digit 9
lC Two-byte unsigned integer (0-32767)
lD Four-byte single-precision floating

point
lF Eight-byte double-precision floating

point
20-7F Printable characters, not used for

tokens

Cassette Commands
81 END
82 FOR
83 NEXT
84 DATA
85 INPUT
86 DIM
87 READ
88 LET
89 GOTO
SA RUN
SB IF
SC RESTORE
8D GOSUB
SE RETURN
SF REM
90 STOP
91 PRINT

92 CLEAR
93 LIST
94 NEW
95 ON
96 WAIT
97 DEF
98 POKE
99 CONT
9C OUT
9D LPRINT
9E LUST
AO WIDTH
Al ELSE
A2 TRON
A3 TROFF
A4 SWAP
AS ERASE

A6 EDIT
A7 ERROR
AS RESUME
A9 DELETE
AA AUTO
AB RENUM
AC DEFSTR
ADDEFINT
AE DEFSNG
AF DEFDBL
BO LINE
Bl WHILE
B2 WEND
B3 CALL
B7 WRITE
BS OPTION
B9 RANDOMIZE

313

BASIC Tokens

BA OPEN CCTO DDOFF
BB CLOSE CD THEN DE INKEY$
BC LOAD CE TAB(E6 >
BD MERGE CF STEP E7 =
BE SAVE DO USR EB<
BF COLOR DlFN E9 +
CO CLS D2 SPC(EA -
Cl MOTOR D3 NOT EB •
C2 BSAVE D4 ERL EC/
C3 BLOAD DS ERR ED·
C4 SOUND D6 STRING$ EE AND
CS BEEP D7 USING EF OR
C6 PSET DB INSTR F0 XOR
C7 PRESET D9' Fl EQV
CB SCREEN DAVARPTR F2 IMP
C9 KEY DB CSRLIN F3 MOD
CA LOCATE DC POINT F4 \

Disk Functions
FD 81 CVI
FD 82CVS
FD 83 CVD
FD 84 MKI$
FD 85MKS$
FD 86MKD$

Disk Commands
FE 81 FILES FE BC CHAIN FE 98 VIEW
FE 82 FIELD FE BD DATE$ FE99 PMAP
FE 83 SYSTEM FE BE TIME$ FE 9A ERDEV
FE 84 NAME FE BF PAINT FE 9B CHDIR
FE 85 LSET FE 90 COM FE 9C RMDIR
FE 86 RSET FE 91 CIRCLE FE 9D ENVIRON
FE 87 KILL FE 92 DRAW FE 9E WINDOW
FE 88 PUT FE 93 PLAY FE 9F PALETTE
FE 89 GET FE 94 TIMER FE A4 NOISE
FE BA RESET FE 95 IOCTL FE AS PCOPY
FE BB COMMON FE 96 MKDIR FE A6 TERM

FE 97 SHELL

Cassette Functions
FF 81 LEFT$ FF BD TAN FF 9A HEX$
FF 82 RIGHT$ FF BE ATN FF 9B LPOS
FF 83 MID$ FF BF FRE FF 9C CINT
FF 84 SGN FF 90 INP FF 9D CSNG
FF 85 INT FF 91 POS FF 9E CDBL
FF 86 ABS FF 92 LEN FF 9F FIX
FF 87 SQR FF 93 STR$ FF AO PEN
FF 88 RND FF 94 VAL FF Al STICK
FF 89 SIN FF 95 ASC FF A2 STRIG
FF BA LOG FF 96 CHR$ FF A3 EOF
FF BB EXP FF 97 PEEK FF A4 LOC
FF BC COS FF 98 SPACE$ FF AS LOF

FF 99 OCT$

314

BASIC Tokens

BASIC Tokens in Alphabetical Order
D9
EB •
E9 +
EA
EC I
EB <
E7
E6 >
FF 86 ABS
EE AND
FF 95 ASC
FF BE ATN
AA AUTO
CS BEEP
C3 BLOAD
C2 BSAVE
B3 CALL
FF 9E CDBL
FE BC CHAIN
FE 9B CHOIR
FF 96 CHR$
FF 9C CINT
FE 91 CIRCLE
92 CLEAR
BB CLOSE
CO CLS
BF COLOR
FE 90 COM
FE BB COMMON
99 CONT
FF BC COS
FF 9D CSNG
DB CSRLIN
FD 83 CVD
FD 81 CVI
FD 82 CVS
84 DATA
FE 8D DATE$
97 DEF
AF DEFDBL
AD DEFINT
AE DEFSNG
AC DEFSTR
A9 DELETE
11 Digit 0
12 Digit 1
13 Digit 2
14 Digit 3
15 Digit 4
16 Digit 5
17 Digit 6
18 Digit 7
19 Digit 8
lA Digit 9

86 DIM
FE 92 DRAW
A6 EDIT
lF Eight-byte double-precision floating point
Al ELSE
81 END
00 End of line, zero line link is end of program
FE 9D ENVIRON
FF A3 EOF
Fl EQV
AS ERASE
FE 9A ERDEV
D4 ERL
DS ERR
A7 ERROR
FF SB EXP
FE 82 FIELD
FE 81 FILES
FF 9F FIX
Dl FN
82 FOR
lD Four-byte single-precision floating point
FF BF FRE
FE 89 GET
SD GOSUB
89 GOTO
FF 9A HEX$
8B IF
F2 IMP
DE INKEY$
FF 90 INP
85 INPUT
DB INSTR
FF 85 INT
FE 95 IOCTL
C9 KEY
FE 87 KILL
FF 81 LEFT$
FF 92 LEN
88 LET
BO LINE
93 LIST
9E LUST
BC LOAD
FF A4 LOC
CA LOCATE
FF AS LOF
FF BA LOG
FF 9B LPOS
9D LPRINT
FE 85 LSET
BD MERGE
FF 83 MID$
FD 86 MKD$

315

FE 96 MKDIR
FD 84 MKI$
FD 85 MKS$
F3 MOD
Cl MOTOR
FE 84 NAME
94 NEW
83 NEXT
FE A4 NOISE
D3 NOT
FF 99 OCT$
DD OFF
95 ON

BASIC Tokens

BE SAVE
CS SCREEN
FF 84 SGN
FE 97 SHELL
FF 89 SIN
C4 SOUND
FF 98 SPACE$
D2 SPC(
FF 87 SQR
CF STEP

OF One-byte unsigned integer (10-255)

FF Al STICK
90 STOP
FF 93 STR$
FF A2 STRIG

BA OPEN
BS OPTION
EF OR
9C OUT
FE BF PAINT
FE 9F PALETTE
FE AS PCOPY
FF 97 PEEK
FF AO PEN
FE 93 PLAY
FE 99 PMAP
DC POINT
98 POKE
FF 91 POS
C7 PRESET
91 PRINT
C6 PSET
FE 88 PUT
B9 RANDOMIZE
87 READ
SF REM
AB RENUM
FE BA RESET
SC RESTORE
AS RESUME
SE RETURN
FF 82 RIGHT$
FE 9C RMDIR
FF 88 RND
FE 86 RSET
SA RUN

316

D6 STRING$
A4 SWAP
FE 83 SYSTEM
CE TAB(
FF SD TAN
FE A6 TERM
CD THEN
FE BE TIME$
FE 94 TIMER
CC TO
A3 TROFF
A2 TRON
0C Two-byte hex integer
OD Two-byte line address -1 (after RUN)
OE Two-byte line number (before RUN)
OB Two-byte octal integer
IC Two-byte unsigned integer (0-32767)
D7 USING
DO USR
FF 94 VAL
DA VARPTR
FE 98 VIEW
96 WAIT
B2 WEND
Bl WHILE
AO WIDTH
FE 9E WINDOW
B7 WRITE
F0 XOR
F4 \.
ED "

Appendix G

ASCII Values

Hex ASCII Character Hex ASCII Character
0 000 (null) 20 032 (space)
1 001 Q 21 033 !
2 002 • 22 034
3 003 • 23 035 #
4 004 • 24 036 $
5 005 • 25 037 %
6 006 • 26 038 &
7 007 (beep) 27 039
8 008 • 28 040 (
9 009 (tab) 29 041)
A 010 II 2A 042 •
B 011 (j 2B 043 +
C 012 (form feed) 2C 044
0 013• (carriage return) 20 045
E 014 n 2E 046
F 015 ~ 2F 047 I

10 016 ► 30 048 0
11 017 ◄ 31 049 1
12 018

*
32 050 2

13 019 !! 33 051 3
14 020 qr 34 052 4
15 021 § 35 053 5
16 022 - 36 054 6
17 023 1 37 055 7
18 024 t 38 056 8
19 025 ~ 39 057 9
IA 026 - 3A 058
1B 027 - 3B 059
IC 028 L 3C 060 <
10 029 - 30 061
1E 030 ... 3E 062 >
IF 031 T 3F 063 ?

319

ASCII Values

Hex ASCII Character Hex ASCII Character
40 064 @ 60 096
41 065 A 61 097 a
42 066 8 62 098 b
43 067 C 63 099 C

44 068 0 64 100 d
45 069 E 65 101 e
46 070 F 66 102 f
47 071 G 67 103 g
48 072 H 68 104 h
49 073 I 69 105 i
4A 074 J 6A 106 j
48 075 K 68 107 k
4C 076 L 6C 108 I
40 077 M 60 109 m
4E 078 N 6E 110 n
4F 079 0 6F 111 0
50 080 p 70 112 p
51 081 Q 71 113 q
52 082 R 72 114 r
53 083 s 73 115 s
54 084 T 74 116 t
55 085 u 75 117 u
56 086 V 76 118 V

57 087 w 77 119 w
58 088 X 78 120 X
59 089 y 79 121 y
SA 090 z 7A 122 z
58 091 [78 123 {
SC 092 ' 7C 124 I

I

50 093 1 70 125 }
SE 094 I\ 7E 126
SF 095 7F 127 a

320

ASCII Values

Hex ASCII Character Hex ASCII Character
80 128 <; AO 160 a
81 129 ii Al 161
82 130 e A2 162 ci
83 131 a A3 163 u·
84 132 a A4 164 ii
85 133 a AS 165 N
86 134 a A6 166 !!
87 135 ~ A7 167 ~

88 136 ~ AS 168 '-
89 137 e A9 169 ,-

SA 138 e AA 170 -,

SB 139 1 AB 171 ½
SC 140

.
1 AC 172 ¼

8D 141 i AD 173 I

SE 142 A AE 174 «
SF 143 A AF 175 »
90 144 E BO 176 :::m
91 145 II! Bl 177 -92 146 ,E B2 178 -93 147

,..
B3 179 I 0

94 148 0 B4 180 -l
95 149 () BS 181 =I
96 150

,..
B6 182 -fl u

97 151 u B7 183 ..,.
98 152 y BS 184 =I

99 153 6 B9 185 =ll
9A 154 0 BA 186 II
9B 155 ¢ BB 187 ::;,

9C 156 £ BC 188 :!I

9D 157 ' BO 189 .JI

9E 158 Pt BE 190 ,d

9F 159 f BF 191 -,

321

ASCII Values

Hex ASCII Character Hex ASCII Character
co 192 L. E0 224 a
Cl 193 .J.. El 225 (3
C2 194 T E2 226 r
C3 195 f- E3 227 1T

C4 196 E4 228 I
cs 197 + ES 229 (J"

C6 198 ~ E6 230 µ

C7 199 I~ E7 231 T

CB 200 I!, E8 232 0
C9 201 IF E9 233 -&

CA 202 d!: EA 234 n
CB 203 ,? EB 235 6
cc 204 I~ EC 236 CXl

CD 205 = ED 237 0
CE 206 .JL EE 238 E ,r
CF 207 ~ EF 239 n
DO 208 .JL F0 240 -
D1 209 ::;= Fl 241 ±
D2 210 -,r- F2 242 ~

D3 211 IL F3 243 ,s;

D4 212 6 F4 244 r
OS 213 F FS 245 J
D6 214 rr F6 246
D7 215 * F7 247 ~

D8 216 =I= F8 248 0

D9 217 ...J F9 249 •
DA 218 r FA 250
DB 219 • FB 251 ..J
DC 220 - FC 252 n
DD 221 I FD 253 l

DE 222 I FE 254 ■
OF 223 - FF 255 (blank)

322

Appendix H

The Automatic
Proofreader

Charles Brannon

Now there's a way to banish practically all typing errors when
you enter BASIC programs in this book. "The Automatic
Proofreader" instantly checks your typing as you enter each
line. The Proofreader works on any IBM PC or Enhanced
Model PCjr with Cartridge BASIC.

The Proofreader lets you enter program lines as you nor­
mally do, but with an important difference. After you type in
a line and press Enter, a pair of letters appears, inserted just
before the line you've typed. This pair of letters is called a
checksum. You compare the checksum to a matching code of
letters in the program listing. If the pair of letters on your screen
matches the pair of letters in the program listing, the line was en­
tered correctly. A glance is all it takes to confirm that you've
typed the line right.

Does it sound too good to be true? It isn't. Thousands of
readers of our magazines, COMPUTE! and COMPUTE!'s Ga­
zette, have been successfully using similar Proofreaders to type
in program listings for their Commodore, Atari, and IBM
computers.

Using the Proofreader
To get started, type in the Automatic Proofreader listing at the
end of this Appendix and save a couple of copies. You'll want
to use it whenever you enter a program from this book, COM­
PUTE! magazine, and future COMPUTE! books. Naturally, the
Proofreader can't check itself, so you'll have to be extra careful
when you type it in. Often, when readers experience difficulty
with the Proofreader, the problem has been traced to improp­
erly typing the Proofreader program. If it's not typed in cor­
rectly, you may receive the message Error #2. The Proofreader
traps all errors, even syntax errors. Instead of getting the usual
message, Syntax error in ... , you get the error number (2 is syn­
tax error) with no hint as to where the error might be. To help

325

The Automatic Proofreader

you find your typos, change the 650 to 0 in line 140. This
turns off the error trapping so that you'll get the usual error
messages if you have any errors.

Before using the Proofreader to type in programs, it's a
good idea to test all the Proofreader commands, especially the
SAVE command, just to make sure there are no bugs lurking
in some obscure place in the program. To test the Proof­
reader's SAVE command, run the Proofreader and type in one
line, say, 10 REM. Now save this test program. If you didn't
get an error message, you can safely type in a complete listing
without fear of losing all your typing due to a bug in the
SAVE command. When you think you have all the bugs out,
type BASIC to exit the Proofreader, change line 140 back to
normal, and save this bug-free version of the Proofreader.

When you run the Automatic Proofreader, the screen
clears to white and the prompt Proofreader Ready appears. At
this point, the Proofreader is ready to accept program lines or
commands. You can just type in a program as you normally
would.

Here's an example of how it works. Type in the following
line:
120 RESUME 130

When you press Enter, there'll be a short delay and the
checksum will appear:
BE 120 RESUME 130

The two letters BE are the checksum. Try making a change in
the line, then press Enter. Notice that the checksum has
changed. The slightest alteration to the line results in a dif­
ferent checksum.

Most of the BASIC program listings published in this
book have a checksum printed to the left of each line number.
Just type in each line (omitting the printed checksum, of
course) and compare the checksum on your screen with the
checksum in the listing. If they match, go on to the next line.
If they don't match, there's a difference between the way you
typed the line and the way it appears in the book. It might be
a very slight difference that's hard to spot at first. When you
find it, you can correct the line immediately with the cursor
and editing keys instead of waiting to find the error when you
run the program.

326

The Automatic Proofreader

Although the Proofreader is an indispensable aid, there
are a few things to watch out for. First, the Proofreader is very
literal: It looks at the individual characters in a line. It makes a
distinction between upper- and lowercase, so be sure to leave
Caps Lock on while you type in a listing, releasing it when nec­
essary to enter lowercase. For similar reasons, do not use the
question mark (?) as an abbreviation for PRINT-they're not
the same thing in the Proofreader's eyes. The Proofreader can
even catch transposition errors-such as PIRNT instead of
PRINT.

The Proofreader is also picky with spaces, since proper
spacing is important to prevent syntax errors in IBM BASIC.
Adding an extra space or leaving one out-even in places
where it's normally permitted, such as within PRINT state­
ments or comment statements-will result in a different
checksum. If you want to modify something, we recommend
that you first type the program exactly as it's published, verify
that it runs, and then make your modifications.

Proofreader Commands
The Proofreader has many commands, almost identical in syn­
tax to those found in IBM BASIC. In fact, the editing environ­
ment is so similar that you may forget you're using a BASIC
program to enter other BASIC programs. If in doubt, remem­
ber that BASIC's prompt is Ok while the Proofreader says
Proofreader Ready. Also, the screen is white when the Proof­
reader is active.

LIST works just like it does in BASIC. LIST 10 lists line
10 only. LIST 40-90 displays all lines between 40 and 90,
inclusive. If you press any key while the program is listing,
the listing will stop. Unless you are running the Proofreader
under PCjr Cartridge BASIC or BASICA 2.0 or 2.1, do not
press Break to stop the listing or you will exit the Proofreader.
The Break key is trapped with Advanced BASIC 2.0 or 2.1, so
you'll get the message Stopped.

CHECK is a special Proofreader command that acts like
LIST, except it also displays th~ checksum for each line.

LUST will list the program to the current printer device. It
works as LUST does in BASIC.

NEW clears out the program in memory-not the Proof­
reader, but the program you're typing. However, there's an ex­
tra safeguard built in. Unlike BASIC, the Proofreader will ask,

327

The Automatic Proofreader

Erase program-Are you sure? You must enter Y to erase the
program. Remember, this won't remove the Proofreader itself,
but only the program held by the Proofreader.

FILES lists the disk directory on the screen. It lists only
the directory for drive A.

BASIC exits the Proofreader. It returns you to BASIC's Ok
prompt and returns the screen color to black, leaving the
Proofreader still in memory. To be safe, always save your pro­
gram on disk before leaving the Proofreader. If you acci­
dentally exit the Proofreader by typing BASIC, you can reenter
the Proofreader and retrieve your program by typing CONT.
You'll get a syntax error message and the screen won't return
to white, but the program you were typing will be intact.

SAVE and LOAD Commands
You can save a program at any point when using the Proof­
reader. Just type SAVE "filename". As usual, the ending quote
is optional. If you don't enter a period and a three-character
extender, the extender .BAS will be automatically appended.
Again, this is just like IBM BASIC.

Unlike IBM BASIC, the Proofreader always saves pro-
grams to disk in ASCII form. You can load this program from
BASIC like any other. Since ASCII files take up more room on •
a disk than ordinary program files, later you may want to
resave the program back to disk from BASIC in order to con­
serve disk space. (Be sure to type NEW before loading an
ASCII file.)

You can reload programs into the Proofreader with the
command LOAD "filename". (As with the SAVE command,
the extender .BAS is assumed if you don't enter an extension.)
This way you can type in part of a long program, save it on
disk, and load it again later to continue typing. But make sure
the program you're loading was saved by the Proofreader. The
Proofreader cannot successfully load a program file that's not
in ASCII form.

Program H-1. The Automatic Proofreader
10 'Automatic Proofreader Version 2.00 (Lines

270,510,515,517,620,630 changed from V1.0)
100 DIM L$(500>,LNUM(500):COLOR 0,7,7:KEY OFF:

CLS:MAX=0:LNUM(0)=65536!
110 ON ERROR SOTO 120:KEY 15.CHR$(4)+CHRS<70):

ON KEY(15) 60SUB 640:KEY. (15) ON:60TO 130

328

The Automatic Proofreader

12'1J RESUME 13'1J
13'1J DEF SEG=&H4'1J:W=PEEK<&H4A)
14'1J ON ERROR GOTO 650:PRINT:PRINT 11 Proofreader

Ready."
15'1J LINE INPUT L$:Y=CSRLIN-INT<LEN<L$)/W)-1:LO

CATE Y,1
160 DEF SEG=0:POKE 1050,30:POl<E 1052,34:POKE 1

'1154,0:POKE 1055,79:POKE 1056,13:POl<E 1057,
28:LINE INPUT L$:DEF SEG:IF L$= 1111 THEN 150

170 IF LEFT$(L$,1>=" 11 THEN L$=MID$(L$,2):GOTO
170

181/J IF VAL<LEFT$(L$.2))=0 AND MID$(L$.3, 1>= 11 11

THEN L$=MID$(LS,4> ..
190 LNUM=VAL(L$):TEXT$=MID$(L$,LEN<STR$(LNUM))

+1)

21/JIIJ IF ASC(L$))57 THEN 260 'no line number. th
erefore command ·

211/J IF TEXT$="" THEN GOSUB 540:IF LNUM=LNUM(P>
THEN GOSUB 560:GOTO 150 ELSE 150

22'11 CKSUM=QI: FOR I= 1 TO LEN < L $) : Cl<SUM= (CKSUM+AS
C(MID$(L$,I))tI> AND 255:NEXT:LOCATE Y,1:P
RINT CHR$ (65+CKSUM/ 16) +CHR$ (65+ (Cl<SUM AND
15))+" "+L$

230 GOSUB 540:IF LNUM(P>=LNUM THEN L$(P)=TEXT$
:GOTO 150 'replace line

24'11 GOSUB 580:GOTO 150 'insert the line
260 TEXT$= 1111 :FOR 1=1 TO LEN(L$):A=ASC<MID$(L$,

I>>:TEXT$=TEXT$+CHR$(A+32*<A>96 AND A<123J
> :NEXT

270 DELIMITER=INSTR<TEXTS," 11):COMMAND$=TEXT$:
ARG$= 1111 : IF DELIMITER THEN COMMAND$=LEFT$ <T
EXT$,DELIMITER-1):ARG$=MID$(TEXT$,DELIMITE
R+1) ELSE DELIMITER=INSTR(TEXT$,CHR$(34) >:
IF DELIMITER THEN COMMAND$=LEFT$(TEXT$,DEL
IMITER-1):ARG$=MID$(TEXT$,DELIMITER>

28'1J IF COMMAND$<) 11 LIST 11 THEN 410
29'1J OPEN "scrn: 11 FOR OUTPUT AS #1
300 IF ARG$= 1111 THEN FIRST=0:P=MAX-1:GOTO 340
310 DELIMITER=INSTR<ARGS, 11 -">:IF DELIMITER=0 T

HEN LNUM=VAL<ARGS>:GOSUB 540:FIRST=P:GOTO
34'1J

32'1J FIRST=VAL<LEFT$(ARG$,DELIMITER>>:LAST=VAL<
MID$(ARGS,DELIMITER+1>>

33'1J LNUM=FIRST:GOSUB 540:FIRST=P:LNUM=LAST:GOS
UB 540:IF P=0 THEN P=MAX-1

34'1J FOR X=FIRST TO P:N$=MIDS(STR$(LNUM<X>>,2)+
II II

350 IF CKFLAG=0 THEN A$="":GOTO 370

329

The Automatic Proofreader

360 CKSUM=0: A$=N$+L $ < X > : FOR I= 1 TO LEN (A$) : Cl<S
UM=(CKSUM+ASC(MID$(A$,I>>*I> AND 255:NEXT:
A$=CHR$(65+CKSUM/16)+CHR$(65+<CKSUM AND 15
)) +" "

370 PRINT #1,A$+N$+L$<X>
380 IF INKEY$< >'"' THEN X=P
390 NEXT :CLOSE #1:CKFLAG=!2l
400 GOTO 130
410 IF COMMAND$="LLIST" THEN OPEN "lptl:" FOR

OUTPUT AS #1:GOTO 300
420 IF COMMAND$="CHECK" THEN CKFLAG=1:GOTO 290
430 IF COMMAND$<> 11 SAVE 11 THEN 450
440 GOSUB 600:0PEN ARG$ FOR OUTPUT AS #1:ARG$=

1111 :GOTO 300
450 IF COMMAND$<)"LOAD" THEN 49!21
460 GOSUB 600:OPEN ARG$ FOR INPUT AS #1:MAX=QJ:

P=0
470 WHILE NOT EOF(l):LINE INPUT #1,L$:LNUM<P>=

VAL(L$):L$(P)=MID$(L$,LEN<STR$(VAL(L$)))+1
>: P=P+l: WEND

480 MAX=P:CLOSE #1:GOTO 13!21
490 IF COMMAND$="NEW" THEN INPUT "Erase progra

m - Are you sure";L$:IF LEFT$(L$,l)="y" OR
LEFT$(L$, l>="Y" THEN MAX=0:GOTO 13!21:ELSE

130
500 IF COMMAND$= 11 BASIC 11 THEN COLOR 7,0,0:0N ER

ROR GOTO 0:CLS:END
510 IF COl'IMAND$<> 11 FILES 11 THEN 52!21
515 IF ARG$= 1111 THEN AR6$= 11 A: 11 ELSE SEL=l:GOSUB

600
517 FILES ARG$:GOTO 130
520 PRINT"Syntax error":GOTO 130
540 P=0:WHILE LNUM>LNUM<P> AND P<MAX:P=P+1:WEN

D:RETURN
560 MAX=l'IAX-1:FOR X=P TO MAX:LNUM<X>=LNUM<X+l)

:L$<X>=L$(X+1):NEXT:RETURN
580 MAX=MAX+1:FOR X=MAX TO P+1 STEP -1:LNUM<X>

=LNUM<X-1):L$(X)=L$(X-1):NEXT:L$(P>=TEXT$:
LNUM(P)=LNUM:RETURN

600 IF LEFT$CARGS,1><>CHR$(34) THEN 520 ELSE A
RG$=MID$(ARG$,2)

610 IF RIGHT$<ARG$,1)=CHR$(34> THEN ARG$=LEFT$
<ARG$,LEN(ARG$)-1>

620 IF SEL=0 AND INSTR<ARG$,".")=0 THEN ARG$=A
RG$+ 11 .BAS"

630 SEL=0:RETURN
640 CLOSE #1:CKFLAG=Ql:PRINT"Stopped.":RETURN 1

50
650 PRINT "Error #";ERR:RESUME 150

330

Index
absolute address 6, 8, 10, 38
accumulator 9
active display page 199
active page number 199
allocated segment 35
all-points-addressable display 146
Alt key 72-73, 103
Alt-keypad accumulator 237
ANSI.SYS 26, 83
APAGE 153, 203
array variable 44, 46-49
asynchronous adapter

port addresses 234
primary 290
second 278

attenuation control 129
attribute byte 52, 171
audio jacks 111
AUTOEXEC.BAT 30
AX (AH/AL) 9
background

color 173-74, 184
intensity 174

base pointer 9
base register 9-10
BASIC

APAGE 153, 203
BEEP 111,131
break interrupt vector 246
BURST 203
CS segment register 7
data segment storage 246
DRAW 155
fatal error interrupt vector 246
keyboard buffer 44
key trapping 88
line number 45
PALETTE 203
PALETTE USING 203
PCjr cartridge 15, 23
protected program 49-50
random number seed 44
SCREEN 151-52, 203
segment number 44
SHELL flag 246
SOUND 111, 131
string space 44
timer interrupt vector 246
tokens 46, 313-16
variables 45-49
version 15-17, 307-9
VPAGE 153, 203
workspace 44, 46

BASICA 15
batch files 31-34

beep routine 111-12
BEEP statement 111, 131
BIOS

break data 243
hard disk 24
version 12-13
video mode 202

bisynchronous adapter 280-81
blink, character 171
BLOAD 45, 49-50, 56
boot

process 18-33
record 23
sector 24

bootstrap routine 224-25
border color register 288
border drawing characters 167
BP 9
break code 70
Break key 88-90
breakpoint 218
buffer

display 143-45, 180-81
head 77, 237
keyboard 76-83, 237
tail 77, 237

BURST 203
BX (BH/BL) 9
cable, keyboard 101
Caps Lock key 73, 103
cartridge 23, 30, 43, 50
cassette

CRC register 243
data input 271-72
edge time count 243
functions 223
last input value 243
motor on 270-71
tape write routines 123

character cell 156
character generator 142-44, 155, 193, 197
circular buffer 76
clicker 73, 97
clock tick 123
code segment register 9, 43
cold start 19
color

adapter, memory usage 187, 193
attribute byte 173
border 288
burst signal 154
display memory 248
palette 184
register 176
select register 28 7

color/graphics display adapter 142-43,
284-89

COMMAND.COM 29-37, 248
COMMAND.COM, secondary 31-32
command port, 8259 266
COMl, COM2 266
COMSPEC parameter 30
communications COMl 219
communications COM2 (IRQ3) 219
Complex Sound Generator 129
CONFIG.SYS 26, 38
configuration switches 22, 148, 269-70
co-processor 272
count register 9
CRT/processor page register 144, 153,

181, 288
cs 9
Ctr! key 72-73
Ctrl-Alt-Caps Lock keys 73
Ctrl-Alt-Del keys 19, 91 103
Ctrl-Alt-Ins keys 91

· Ctrl-Num Lock keys 73
Ctrl-Scroll Lock keys 103
cursor

ending scan line 283, 286
location 180
position 202
shape 153
start/end 202
starting scan line 283, 285

CX(CH/CL)9
data register 9
data segment register 9, 36, 43
DEF SEG 7, 43-44
destination index register 9
DI 9
digital input 277
disabling

Break key 89
reboot sequence 91

disk
attention (IRQ6) 220
controller 289
controller status/hard disk command

block 239
drive installed 272
functions 221-22, 232
motor count 238
motor status 238
parameter table 226, 247
seek status 238
status 238-39
watchdog timer 266

display
adapter, active 154
adapter ports 202
buffer 143-45

divide by zero error 217
Direct Memory Access Controller (DMA)

262, 273, 275. See also 8237
DMA memory refresh 123
DOS

break user exit address 230
commands from BASIC 50-51
directory buffer 246
fatal error handler address 230
function 16h 76
function 27h 53
function 31h 36-37
function 49h 35
function 4Ah 35, 37
function 4Bh 31, 35
function 4Ch 35
function 4Dh 35
function call 227-29
keyboard functions 99
program terminate 227
program terminate user address 229-30
read absolute disk sectors 230
terminate but stay resident 231
version 14-15, 303-4
write absolute disk sectors 230

double-dot character 155, 170
double precision variable 48
DRAW statement 155
DS 9
DTA 36
DX (DH/DL) 9
80C48 microprocessor 100
8088 interrupts 217-18
8048 microprocessor 100, 102
8255 Programmable Peripheral Interface

95, 100-101, 111, 121, 153, 268-73
8259 Programmable Interrupt Controller

102, 124, 265-66
8253 Programmable Interval Timer 111,

121, 218-19, 266-68, 271-74
8237 Direct Memory Access Controller 262
End of Interrupt (EOI) 104
ENVIRONMENT 28, 30, 36
equipment

determination 221
flags 234-35

error
B, PCjr 101
code 301 101
divide by zero 217
in expansion slots 271

ES 9
escape sequence 83-88
Esc key 83
.EXE module 35
expansion unit 277
extended graphics modes 187

extended scan code 70, 72, 79, 96, 103
extender card ports 278
extra segment register 9
file

attribute byte 25
control block (FCB) 36
hidden 25, 30
piping 30
system 25

Fn-Echo keys 101
foreground color 173
formatted parameter areas 44
frequency divisor 130-31
Function key 72-73, 75
game controller 277
gate, channel 2 input clock 123
glitches, video 193-98
graphics

character chart 158-62
characters 128-255 162, 226
PEL maps 158
screen modes 153, 184

hard disk
attention (IRQ5) 219
BIOS 24,249
control byte 244
controller 279
file number 244
functions 222
parameter table 232
port offset 244
status 243

hidden file 25
horizontal retrace 194, 283
hot start 22
IBMBIO.COM 25-29
IBMBIOS.COM 247
IBMDOS.COM 25-29, 52, 247
index register 10
infrared link 101
insert mode 73
instruction pointer 9
INT

0 40, 217
1 27, 217
2 217-18
3 27, 218
4 40, 218
5 103, 169, 218
6 218
7 218
8 114, 124, 218
9 40, 70-71, 78, 91, 95, 100, 102, 219
B 40, 219
C 219
D 175, 197, 219-20
E 220

F 27, 220
10 220-21
11 221
12 221
13 221-22
14 222-23
15 223
16 80, 96-98 223-24
17 224
18 17, 224
19 22, 224-25
IA 225
1B 40, 89, 103, 225
lC 40, 136, 225
1D 226
lE 226
lF 226
20-2F 27
20 227
21 99, 227-29
22-24 36
22 30, 229-30
23 30, 40, 230
24 30, 40 230
25 230
26 230
27 37, 231
28 231
29 231
2F 231
40 232
41 232
44 232
48 71, 233
49 233
60-67 37, 233

integer variable 47
intensity, character 171
interrupt

mask register, 8259 266
time-of-day 124

invoked module 35-36
invoking module 36
1/0

channel checks 101
ports 52-53

IO.SYS 25
IP 9
joystick 277
keyboard

Alt 103
attention (IRQl) 219
Break 30, 88-90
break code 70
break user routine 225
buffer 77-83, 103, 237
buffer end 244

buffer length 77-78, 82
buffer relocation 82-83
buffer start 244
cable 101, 272
Caps Lock 103
clicker 97, 270
Ctrl-Alt-Del 19
Ctrl-Scroll-Lock 103
data serial input 272
deserialization 2 7 4
differences 69
emptying buffer 78
enable 270
flags 72-73, 236-37
Fn 72-73, 75
functions 223-24
infared link 101
interrupt 266
latched 272
NMI 218,273
Num Lock 103
Pause 102
plugging buffer 79-80
Prtsc 103, 169
redefinitions 83
scan code 70, 79, 96, 100-102, 269-70
shift status 73-75, 96
state 75
status flag 70

key trapping, in BASIC 88
least significant byte 7
light pen 283, 286, 288
loader program 35
location

24-27h 102
58-5Ch 96
60h 95
70h 136
7Ch 158
110h 158
410-413h 22
413-414h 46
415-416h 22
417h 98
417-418h 70, 72, 102
419h 103
41Ch 77
41E-43Dh 76
449h 151, 153
449-466h 154
44Ch 181
44Eh 199
44E-44Fh 181
450-45Fh 180-81
462h 181, 199
465h 153
466h 154

472h 103
472-473h 19
480h 82
482h 82
488h 70, 75, 98
510-511h 43, 46
700h 26
7C00h 24

logical drive, single disk drive 246
LSB 7
machine language, in BASIC workspace 45
machine type 12
manufacturer

test flags 236
test monitoring device 265

MC14529B multiplexor chip 128
memory

allocated 2 7
color adapter usage 187, 193
expansion 236, 272
monochrome display 247
refresh 145
segment: offset addressing 4-10
size 236
size determination 221
typical PC usage 20-21

mode control register 288
modem, internal 272
monitors 146-51
monochrome monitor/parallel printer

adapter 281
most significant byte (MSB) 7
MSDOS.SYS 25
multipage display buffer 181
music

background 121
notes 113

NMI mask register 273
Non-Maskable Interrupt (NMI) 101
number

of asynchronous adapters 235
of disks 269
of disks present 235
of parallel printers 235

Num Lock key 73, 103
offset 4-10
overflow 218
paddle 277
page number, active 181
page register, CRT/processor 144, 153,

181, 288
palette

mask register 175, 288
registers 184, 288
third 185

PALETTE statement 203
PALETTE USING statement 203

paragraph boundary 6
parallel printer

adapter port addresses 234
primary 284
second 280
third 278
time-out values 244
functions 224

parity error 23, 101, 270-73
parity error NMI 217
pause 102
PCjr

BASIC cartridge 15, 23, 50
character generator ROM 155
count of keyboard transmission errors

236
CRT/CPU page register image 245
current character 244
current function 245
disk controller 275-76
disk track last accessed 243
Error B 101
extended graphics modes 187
Fn flags 75
frequency divisor 130
graphics characters 0-127 232
graphic characters 128-255 162
horizontal screen printer 245
internal modem 290
interrupt flag 244
keyboard flag 2 245
keyboard translation 233
nonkeyboard translation table 233
palette register 175, 184
POST and diagnostics data 246
sound chip 128-29
sound source functions 225
variable delay 244
vertical retrace 197

phantom keypress 71
picture element (PEL) 155, 186
piping 51
primary SDLC adapter 280
print

queue functions 231
screen image 218
screen status 246

program loader 30-31
Programmable Interrupt Controller

265-66. See also 8259
Programmable Interval Timer 266. See

also 8253
Programmable Peripheral Interface 111,

268. See also 8255
Program Segment Prefix (PSP) 28-29,

36-37, 44
protected program 44, 49-50

prototype card 2 79
Prtsc key 103, 169
port address space 52-53
power-on self test (POST) 19
RAM

on system board 270
parity error 2 71-72

random number, BASIC 44
raster generator 143
reboot sequence 91
receiver card ports 278
redirection 30, 51
reset flag 243
reset, system 19
resident portion, COMMAND.COM 29-30
resident programs 37
resistive input 277
restart, system 91
reverse character 171
RGB bits 172
ROM

BIOS 250
part number 12
resident BASIC entry point 224
resident programs 23

RS-232 serial communications functions
222-23

RS-232 time-out values 244
scalar variable 44, 46-49
scan code 70, 100-102
screen

active display page 199
active page number 199
disabling 195
KEY line 182
modes 151
page beginning 202
page length 181, 202
page number 202
page offset 181
paging 180-85
scrolling 195
scrolling registers 199
starting address, display page 199
type of display 269

SCREEN statement 151-52, 203
Scroll Lock 73
segment

generally 4-11
number 28
number in BASIC 44
:offset addressing 38
override 11
register 9

SHELL command 14, 29, 50-51
Shift key 72-73
shift status 96

SI 9
single-dot character 155, 170
single precision variable 48
single step 217
6845 143
6845 registers 151, 201-2
SN76496 Programmable Tone/Noise

Generator 129, 274-75
sound

attenuation 129, 274
chip 129, 274-75
frequency divisor 130
multiplexor input selection 271
voices 1-3 frequency 274

SOUND statement 111, 131
source index register 9
SP 9, 11
speaker

data gate 123
internal 11, 270-71

SRVCCALL 53, 96, 98
ss 9, 11
stack

pointer 52
pointer register 9, 11
segment 50
segment register 9, 11

storage
block 27, 35-37
chain anchor 27

string variable 47-49
switches 1-8 272
switch group 2 271
system

board RAM 235
file 25
timer 266
timer functions 225
timer tick user routine 225

text character chart 157-60
tick, clock 123
time-of-day interrupt 124
timer

data 243
overflow 243, 274
tick 114

tokenizing BASIC keywords 46-47
313-16

transient portion, COMMAND.COM
29-30

typamatic 73
typamatic key rate 97
underlined character 171
unprotecting BASIC programs 49-50
user interrupts 233
variable

BASIC 44
header 48
names 47
pool 46-49
storage 46-49

vector
break interrupt 89
captured 39-43
contents 38
general form 6-7
images 38

vertical retrace 194, 197, 220, 266, 283
VGA 143-44, 287 '
video

active page 241 .
address of active 6845 241
attributes 171
blink enable/disable 174, 283, 288
character generator 142-44, 155
CRT buffer length 240
CRT columns 240
CRT mode 239
CRT mode setting 241-42
CRT palette 242
CRT start 240
cursor mode 241
cursor position 240
display adapter ports 202
display buffer 143-45, 180-81
display enable/disable 174, 283
extended graphics modes 187
functions 220-21
Gate Array (VGA) 143-44, 287
glitch elimination 193-98
graphics characters 158-62
horizontal retrace 194, 283
initial mode 235, 272
modes 151-55
monitors 146-51
page switching 180-84
palette 202
palette register 175, 286
parameter table 226
picture element (PEL) 186
port base 202
ports 201
raster generator 143
screen paging 180, 197
status 202
text characters 157-60
third palette 185
tracking summary 202
vertical retrace 194, 283

VPAGE 153, 203
warm start 19, 91
workspace, size in BASIC 46

	2020_07_21_22_21_49
	2020_07_21_22_33_31
	2020_07_21_22_34_30

