

COMPUTE!’s
MAPPING the

IBM PC and PCjr

Russ Davies

COMPUTE! Publications,nc.&3

Greensboro, North Carolina

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

COMPUTE! Publications does not accept any responsibility for any possible damage
done to the reader’s programs through the use or misuse of the information presented
here.

Printed in the United States of America

109876543

ISBN 0-942386-92-2

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies and is not associated with any

manufacturer of personal computers. IBM PC, PCjr, PC/XT, XT /370, Portable PC, PC
AT, and 3270PC are trademarks of International Business Machines, Inc,

Contents

Figures, Tables and Programs v
Foreword ix
Acknowledgments iX
Introduction L. Xi
1. Memory Organization and Management 1
2. Keyboard 67
3. Musicand Sound 109
4. Video ... 139
Appendices

A Memory Map 211
B.PortMap 257
C.interrupts 293
D. DOS Versionsc.uiiiiinaiinn. 301
E. BASIC Versions i, 305
F.BASICTOKENS 311
G. ASCI Values 317
H. The Automatic Proofreader 323

Charles Brannon

Figures, Tables, and Programs

Figures
1. Allocation of PC Memory Address Space in 64K Blocks
2. Calculation of Memory Address from Segment:Offset
-3. Vector Format and Example of Contents
-4. Format Change During Register/Memory Moves
-5. 8088.Segment, Base/Index, and Miscellaneous Registers
-6. 8088 Address Calculation with Base/lndex
-7. Levels of DOS and BIOS Service Requests
-8. Map of Typical PCMemory Usage
9. Loading and Displaying the Boot Record Contents
10. MEMBAT.BAT
11. Sample Vector Program Output
12. Output of Comparing Captured Vectors
-13. BASIC Workspace e
-14. BASIC Line Storage Format
15. Standard Variable Header P
16. Array Dimension Headers
17. Creating SESAMEBLD,
18. Allocation of PC I/O Port Address Space
2-1. Alt or Ctrl Shifted Keys Ignored
2-2. Schematic Diagram of a Full Keyboard Buffer
3-1. Direct Method Sound Production Schematic
3-2. Direct Method Sound Production Schematic
3-3. Timer Method Sound Production Schematic
3-4. PCjr Output Sound Source Selection
3-5. PCjr Complex Sound Generator Command Formats
1. Conceptual Architecture of Display Adapter
2. Conceptual Architecture of PCjr Integrated Display Adapter .
3. Location and Size of Display Buffers
4. Monochrome Adapter Character Cell
5. Color/Graphics Adapter Character Cell
6. Border Drawing Text Mode ASCII Characters CHR$(n)
7. Color/Graphics Single and Double Characters
8. Monochrome Adapter Display Attributes
9. Arrangement of Text Modes Character Attributes
10. Color/Graphics Adapter Display
11. Arrangement of Text Modes Character Attributes
12. Color Adapter Memory Usage
13. PCjr 128K Color/Graphics Memory Usage
1. BitContentsofaByte
-2. Map of Typical PC Memory Usage
A I/OPortsMap ...

ables

-1. Sizes of DOS/BASIC Versions,
2. Interpreter Work Areas
1. Shift Status FlagBytes,

144
154

DOS INT 21 Keyboard Functions
Musical Notes and Associated Frequencies, Piano Key
Arrangement ...
PCjr BASIC SOUND and BEEP Settings
Viewing Requirements Satisfied by Monitor Types
Monochrome and RGB Monitor Characteristics
Summary of Available Video Mode Characteristics
Control Characterso ..,
Summary of Available Color Text Modes
Summary of Available Graphics Modes Characteristics
Summary of Video Tracking, Ports, 6845 Registers,
VGARegisters

— N

PELADBEDGO N
NOOTHRWN =N

Programs
ROM BIOS VErsionoouiuiiininnaneiiiii.,
Determining the DOS Version Using SHELL
Determining the DOS Version Using DOS Function 30h
Determining the BASIC Version
Cold Start Invocation o
Warm Start Invocation oL
MEMBATBAS ...
Capture Vectors fromBASIC
Capture Vectors from DEBUG
. Comparing Captured Vectors
. Determining the DEF SEG Segment Number
. Issuing DOS Commands fromBASIC
.SRVCCALLBAS
. Functional Subset of SRVCCALL.BAS Invocation
SRVCCALLAASM .o
Display INKEY$ Returned ASCII or Extended Scan Code
Displaying Keyboard Status
Experimenting with PCjr Fn Status Flag
Monitoring the Keyboard Buffer and Pointers
Example of Plugging the Keyboard Buffer
Entering Screen Lines via the Keyboard Buffer
Relocating the Keyboard Buffer
Restoring the Keyboard Buffer's Default Location
Escape Code Generator for ANSI.SYS Sequences
. Creation of Key Definition File and Batch Command
. Creation of Key Reset File and Batch Command
. EXE Program to Issue Escape Sequence Series
. Trapping Break and Reboot Keys in BASIC
. Ignoring the Break Key in BASIC
. Disabling Reboot via INT9
. Disassembly of BOOTNOT.COM
. SRVCCALL Routines to Call BIOS INT16
. SRVCCALL Routines to Call BIOS INT 16 PCjr Functions
. PCjr Modification of Typamatic Key Values
Sample Direct Method Speaker Control Program
-2. Direct Method Speaker Control with Stop-On-Any-Key

SraR2abNed bbb~

OO O

O b=

QNI NI NI NN NI NI NI NI NINI NI NINI 74 7+ o 74— bbbk a
T OONOOOTBAWN—2O

[I S S N S T S e Gy Gy

<
=

OB MO

PONOPOMNOMNON) = = bk v (000~
ARBNASOOADT RSO -

AAARARRBADDPAARRRRDAARRARRRDQOPERE

Direct Method Speaker Control with Sound Table 118

Timer Method Sound with Stop-On-Any-Key 124
Timer Method Sound with Sound Table 125
Sound Chip Fundamentals Example Program 132
Sound Chip Keyboard Controller Program 133
Which Monitor Used at Boot Time 148
Which Monitors Available 149
Which Monitor Is Active 149
Switching Monitors 150
Create COLORMON.COM for DOS and BASIC Color Use .. 150
Switch to Monochrome Monitor While in BASIC 151
Text Characters Display 159
Display Graphics Characters PELMaps 160
Graphics Characters 161
. Program to Save PCjr Graphics Characters 128-255 162
. Program to Load PCjr Graphics Characters 128-255 into a PC 163
. PCjr Graphics Characters 128-255 165
. Causing the Screen to Be Printed in BASIC 169
. Disabling/Enabling PrtSc Feature in BASIC 169
. Demonstration of All Possible Text Mode Attributes 176
. Disabling/Enabling Blink and the Display 177
. Color Swatches and PCjr Palette Registers 178
. Program to Display Page Information 182
. Demonstration of Display Buffer/Page Switching 183
. Third Palette, 320 X 200 186
. Graphics Memory Filler Program 189
. Bar Chart Graphics Program Using BIOS Calls 191
. Glitch Elimination Experiments 195
. Screen Paging in Text Modes 198
CText Scrolling ... 200

vii

Foreword

If you've programmed in BASIC or machine language on the
IBM PC, you're aware of the many features that the computer
offers. You've probably also discovered that there are capabili-
ties which are difficult for the average programmer to learn
and use. COMPUTE!"s Mapping the IBM PC and PCjr is a mem-
ory map and guide to the inner workings and structure of the
IBM PC and PCjr. It will show you how to take advantage of
the vast and powerful abilities of your computer’s built-in
hardware and software.

Through examples and illustrations, youll be introduced
to the techniques that professional programmers use to add
polish to commercial software. By studying these keyboard,
sound, and screen techniques, you'll learn the skills needed to
design attractive and effective programs in any language.

Sample programs show you how to read the keyboard,
screen flip, call DOS commands from BASIC, and even define
the function keys to automatically execute the tasks you use
most often.

COMPUTE!’s Mapping the IBM PC and PCjr contains a se-
ries of detailed Appendices, including extensive memory and
port maps, a handy listing of interrupts and DOS function
calls, cross references to IBM documentation, and details of the
differences between each version of DOS and BASIC.

Whether you're new to machine language on the IBM or
are a veteran 8088 programmer, you'll find that COMPUTE!’s
Mapping the IBM PC and PCjr is the most clearly written and
easy-to-use guide to the IBM PC memory available.

Acknowledgments

My thanks to personal and professional acquaintances who
provided valuable suggestions and especially to those who
were tolerant of my absent-mindedness and lack of social
graces during yet another book-writing marathon. I promise
not to talk to myself anymore or scribble on tiny scraps of
paper in the middle of conversation—at least until the next
project. My warmest gratitude to Doug Martin, Lester
Kooyman, Greg Grimm, Guy Moore, and Jim Cady, each for
his own unique contribution.

- Special thanks go to Orson Scott Card, who first gave me
the opportunity to express myself through this medium. The
good cheer and wisdom of Stephen Levy and enthusiasm of
Gregg Keizer have made my relationship with COMPUTE!
Books a joy through two long projects.

My family have been dears through both projects. Thanks
for waiting, Mom; I can talk now. And finally, I am indebted
once more to Cindy King, who made this book happen. I simply
could not have persevered through it without her unselfish
sacrifices, constant support, good cheer, tender warmth, and
unfailing belief. ““You know I'd like to, but I have to work on
the book” is finally over.

This book is dedicated with love to Earl, George, and
Jamie.

Introduction

Whether you use an IBM PC, XT, PCjr, XT/370, Portable PC,
or 3270PC, this book will help you get more from your com-
puter. In each chapter we'll explore the way the PC operates
and show how to make it work to your advantage. IBM docu-
mentation just doesn’t say enough about the things the typical
user wants to be able to control and use.

Have you noticed that no DOS or ROM BIOS services are
available for the production of sound and that the Technical
Reference manual (TRM) doesn’t explain how to produce
sound on the PC? Sound is left uncovered except for the
BASIC manual.

Wouldn't it be nice to be able to call ROM BIOS and DOS
functions from your BASIC program? Or to be able to deter-
mine, from your program, which version of DOS and BASIC
is being used? How can you program the function keys so that
they stay active even when you leave BASIC? Did you ever
wish that you could turn off the Break key in BASIC? Or set
the Shift keys on or off from your program? How do you
determine the best place to BLOAD or POKE a machine lan-
guage routine for BASIC?

Did you know that there’s a third palette available in 320
X 200 mode on the PC? Do you understand the various video
modes? Would you like to be able to smooth-scroll and per-
form seemingly instantaneous full-screen writes? Would batch
file in-process modification or a secondary COMMAND.COM
be the best technique for nesting .BAT file calls? We'll explore
these topics and many more in this book.

These techniques and tricks will make your programs
more impressive, but what’s more important is the knowledge
you’ll gain about the way memory and ports are used on the
PC and PCjr. From this understanding you’'ll have a clear pic-
ture of the way the PC works from the ground up, through
ROM BIOS, DOS, BASIC, and application programs.

IBM documentation will be enhanced by the many ref-
erences you'll find to the proper sections for additional details.
Have you had problems finding information you need in the
Technical Reference manual? Quick—where can you look to
determine the cursor position for video page 3? How about the
port address associated with COM2? If you see a POKE to

e

location &h20, what is the program doing? Why would an
INP(&h321) be in a program? Not the easiest things to find in
the existing IBM documentation, but this book’s memory map
and port map will answer such questions quickly.

What You Need to Know

Although it is not imperative that you know BASIC or 8088
machine language, an understanding of them will be helpful if
you are to gain the most from this book.

You should have a fundamental knowledge of how to op-
erate the computer and how to enter a program. If you are un-
familiar with batch files or the use of DEBUG, you may want
to review those sections of the DOS manual. In addition,
experience using the most common DOS commands will be
useful.

What You Need to Have

You'll need to have access to an IBM PC or PCjr. Most of the
information in this book also applies to many of the IBM-
compatible work-a-like computers. The greater the compat-
ibility with an IBM PC, the more useful this book will be for a
non-IBM computer.

The PC, PCjr, XT, XT /370, Portable PC, and 3270PC will
run the sample programs without modification. The majority
of the sample programs require no modification for the PC AT.

It doesn’t matter what amount of memory is present on
the computer, which display adapter you're using, or what
additional peripherals you have. You'll be able to learn a great
deal regardless of your configuration. A 384K PC, 384K XT,
and 128K PCjr (with 256K additional RAM sometimes used)
and both monochrome and RGB color monitors (only RGB for
the PCjr) are used for example purposes, but the principles ex-
plored are common to any memory size or display configuration.

The level of DOS that you are currently using is not criti-
cal. DOS versions come and go, and this material is presented
in a way that makes it relatively independent of the release
level of DOS. DOS 2.0/2.10 is used in this book for example’s
sake, but DOS 1.1 through DOS 3.0/3.10 features are discussed.

Three IBM manuals are referenced in this book: the
BASIC manual, the DOS manual(s), and the system unit Tech-
nical Reference manual. If you have all three and are generally
aware of the range of information contained in each, you're in

xii

the best possible position to learn the most from this book.
But you needn’t have the Technical Reference manual to gain
substantial knowledge. You'll need the Technical Reference
manual only to pursue the finer points of the concepts dis-
cussed here.

The primary Technical Reference manual address and page
references are for the XT and PCjr (see below for the exact
edition of the manuals used). The XT was selected as a com-
mon denominator because of the vast number purchased for
business use, the likelihood that serious users will eventually
be drawn to it as the price continues to erode, and the many
other configurations based on it (such as the 3270PC and
XT/370). The XT 2.02 Technical Reference manual contains
more information than any of the other TRMs, including the
PCjr. The Memory Map Appendix clearly lists the differences
in PC2 and XT routine addresses. These are primarily confined
to two areas of ROM BIOS.

For those unfamiliar with the differences between
PC1/2/XT models, here is a summary of the major
differences.

PC1 PC2 XT PCjr
System board RAM

capacity 64K 256K 256K 128K
Minimum RAM 16K 64K 128K 64K
Expansion slots 5 5 8 3 dedicated
256K chips usable no no yes no
Cassette yes yes no yes
ROM pins 24 24 26 26
Config switches 2 2 1 0

The Technical Reference manuals have undergone a major
change from the PC1, PC2, XT, and PCjr versions. The Op-
tions and Adapters addendum volumes (1 and 2) are now used
to contain the information for optional adapters. Here is a list
of the versions of system unit Technical Reference manuals that
I have found available:

Computer Part Number Dated

PC1 6025008 7/82
XT 6936808 4/83 with “2.02" sticker
Jr 1502293 9/83
PC2 6322507 4/84

All 6322509 4/84 (Options and Adapters, vol. 1 and 2)

xiii

It's extremely unlikely that all these versions are available
to you. This book uses the XT and the PCjr Technical Reference
manuals (listed above) as standard references.

Unfortunately, this book cannot cover every aspect of the
PCs. Time and space requirements preclude the in-depth
examination of Cassette BASIC routines, DOS internals, disk,
printer, RS-232, cassette tape, expansion unit, game adapter,
and system board support chips. However, the memory and
port maps include detailed information about these subjects.
I'm sure you'll find that this volume contains the most im-
portant and usable information that could be placed in a single
book.

The sample programs, diagrams, routine references, and
Technical Reference manual references reflect the results ob-
tained on several different configurations of PC models. The
PC values are derived from a computer with 384K, both color
and monochrome displays, and a parallel printer adapter. The
PC/XT used had the same memory and peripheral configura-
tion. The PCjr used contained the 64K display and memory
enhancement and an additional 256K to bring the system to
parity with the others. Although no particular configuration is
required, it is assumed throughout that there is a disk drive at-
tached and that some level of DOS is in use. The lack of these
would not preclude the bulk of information presented here,
but it would somewhat reduce the number of sample pro-
grams that you would find useful in your situation.

I recommend DOS 2.10 as the standard operating system
for your PC (assuming the 24K of memory used is tolerable),
because it is far more powerful than any DOS 1.x versions,
with its redirection, pipes, filters, and built-in miniassembler
in DEBUG. Some problems with DOS 2.0 were fixed in 2.10,
and 2.10 is usable for all members of the PC family (except
the AT).

What You’ll Find in This Book

The first chapter will introduce you to the memory architec-
ture of the PC and PCjr, and will explain the BASIC, DOS,
and ROM BIOS use of memory. It will also summarize the
cold start process and give you a powerful tool for invoking
DOS and BIOS services from within your BASIC programs.
This base of knowledge will be used in later chapters.

Xiv

Because the keyboard, sound, and video image form the
interface between humans and computers, the primary focus
of the next three chapters is on using these devices to their full
potential. Through many sample and demonstration programs
you’ll come to know the potential and limitations of each of
these devices. We'll also use nearly every feature that they are
endowed with, many of which are not explored in other
works.

The Appendices include a comprehensive memory map,
port map, DOS and BASIC version differences, an interrupt
and function guide by device type, and a BASIC token ref-
erence. I simply can’t imagine how serious programming can
exist without decent memory and port maps. They seem fun-
damental. You can do so much more and use all the power of
the computer system only if you are aware of how it is struc-
tured and organized. The lack of such information makes
understanding other people’s programs much more difficult,
especially if they are using advanced techniques or all the
available system resources.

Sample programs are included to demonstrate the meth-
ods that may be employed to use the features under dis-
cussion. They are not intended to be examples of clever
programming, optimization of speed or memory usage, or
models of programming form or technique. Additionally,
examining and trying the accompanying programs may clarify
finer details of the discussions.

Your involvement at the instructional level will solidify
your understanding of the concept being discussed. I
encourage you to modify and experiment with the programs to
suit your needs. You will ultimately learn much more by try-
ing to change the samples (once the programs are entered and
working correctly) than you would from merely observing
their original purpose and then moving on to the next subject.
The programs have been intentionally written in a straight-
forward, easy-to-follow manner so that you will find them
easy to tailor, adapt, incorporate, and understand.

XV

1 |
Memory
Organization
and Management

1
Memory
Organization
and Management

Your PC or PCjr can address up to one megabyte of memory
which is a whopping 1,048,576 bytes for data and programs.
There are some programs and data already in the machine
before you turn it on. The ROM BIOS, BASIC ROM, and (if
you have an XT) Hard Disk ROM BIOS each take away a
chunk of the space. These programs need some RAM data
areas since ROM can’t be written to, so another small chunk is
reserved for that purpose. Video mapping requires a healthy
section of storage, and memory reserved for future video
usage is even larger.

Then there are some areas reserved for future ROM. And
let’s not forget the memory used to hold the Disk Operating
System (assuming that you have a disk drive). That leaves a
PC with maximum memory of about 600K for our use, give or
take 20K depending on the version of DOS. That's still a
healthy amount for programs. And we can always use over-
lays and disk files to reduce the amount of memory required.
CP/M machines have been limited (in general) to 64K, minus
the system and operating system overheads. PCs have 16
times the storage capacity.

Incidentally, some of the older PCs (referred to as PC1’s
and identified by only 64K of memory on the motherboard)
do not have the ability in ROM BIOS to use memory above
544K. We'll be exploring ways to overcome that limitation in
this chapter. ROM BIOS manufactured after October 27, 1982
doesn’t have this limitation. We'll see how to obtain the ROM
BIOS date in a moment.

Figure 1-1 shows the memory allocation of the one-
megabyte PC address space in 64K blocks.

Memory Organization and Management

Figure 1-1. Allocation of PC Memory Address Space in 64K
Blocks

Hex sownik 04K Block Memory Map ****#*
00000 OK

10000 64K Vectors, data, DOS, Disk/Advanced BASIC
20000 128K User program RAM, if filled *
30000 192K User program RAM, if filled *
40000 256K User program RAM, if filled *
50000 320K User program RAM, if filled *
60000 384K User program RAM, if filled *
70000 448K User program RAM, if filled *
80000 512K User program RAM, if filled *
90000 576K User program RAM, if filled *
A0000 640K User program RAM, if filled *
B0000 704K Future video reserved

C0000 768K Mono/color video

D0000 832K Future ROM / XT fixed disk ROM
E0000 896K Future ROM / jr cartridges
F0000 960K Future ROM / jr cartridges

Tests, ROM BASIC, ROM BIOS
* BASIC programs are limited to a 64K workspace

FFFFF 1024K

Memory Segmentation

Before exploring the boot process and the resulting configura-
tion of software in memory, let’s discuss the concept of storage
segmentation, since from here on we’ll be speaking in terms of
offsets within segments or absolute addresses. Since the 8088
microprocessor in the PC or PCjr can access a memory address
space of one megabyte (1024K), a memory address can reach
as high as FFFFFh, requiring 20 bits to express. This is obvi-
ously half a byte more than can fit into the two-byte, 16-bit
registers in the 8088. So how does the PC manage to address

4

Memory Organization and Management

memory which needs more than two bytes to express over
FFFFh (64K)? And how are 20-bit interrupt vector addresses
stored in memory? What are segment registers and why do we
need to use the DEF SEG statement to look into video mem-
ory? If you can confidently answer these questions in your
own mind, then feel free to skim ahead to the next section.

Figure 1-2 illustrates the process that the 8088 micro-
processor uses to develop an address that spans the memory
address range of Oh to FFFFFh. A two-byte offset is added to
an adjusted two-byte segment value to derive the memory ad-
dress. This is performed very quickly by the 8088 itself, and
we need take no special action to have it done; we need only
to insure that the segment register is loaded with the correct
segment number, then set the offset to the number of bytes
beyond the start of the segment.

The segment register is adjusted by adding a low-order
zero, which changes the segment number to the address of the
nearest-but-not-after memory location that ends in Oh. In
other words, B800h segment number is changed to B8000h
address. There’s no sense carrying around the trailing zero in
the segment number since we need the space in the register
just to specify the full range of possible segments: 0-FFFFh.
The 8088 adjusts the segment number, logically adding a low-
order zero to it, adds the offset value, and out pops a memory
address.

Thus, every address that ends in Oh is potentially a seg-
ment number, and a segment number does not include the
low-order Oh. For address FFFF2h, the segment register could
contain FFFFh and the offset would be 2h. Sometimes it’s
helpful to specify an address by indicating the segment and
the offset separated by a colon. For example, address FFFF2h
could be written as FFFF:2.

Figure 1-2 diagrams the segment:offset address computa-
tion process that the 8088 carries out for us.

Your PC Technical Reference manual (as discussed in the
Introduction, all page references are for the XT manual) illus-
trates the memory address resolution method shown in Figure
1-2 on page B4, but the PCjr Technical Reference manual has
strangely omitted this 8088 reference material. This lends cre-
dence to the rumor that IBM had planned to use another
microprocessor in the PCjr, but problems precluded that,
delaying the availability of the PCjr for many months. Since

Memory Organization and Management

Figure 1-2. Calculation of Memory Address from
Segment:Offset

Contents Effectively
| 0000 | 16-bitoffset | 10B2h 010B2n

bit 19 15 0
+ | 16-bitsegment | 0000 | E0A6h E0A60R
bit 19 4 0
= | 20-bit address | E1B12h
bit 19 0

that 8088 material isn't available to PCjr users, the diagrams
in this section will recap some of the 8088 material in the PC
Technical Reference manual.

Since an offset can range from 0 to FFFFh, you can see
that it would be possible to reference a memory address using
many different segment:offset combinations. For example,
12345h would be the address resulting from any of the follow-
ing segment:offsets—1234:5, 1230:45, 1200:345, 1000:2345, or
even 1233:15, 1190:A45, 430:E045, or 235:FFF5. An offset can
address any byte in 64K of memory, and there’s no reason
that the segment can’t start at any address ending with zero
(called a paragraph boundary), as long as the segment:offset
combination adds up to the needed address.

Actually, PC users have adopted the convention of only
starting segments that end with zero (such as segment number
40h) and that refer to the beginning of a major block of data
or instructions (such as segment B800h or F600h).

For the sake of clarity, all addresses in this book (except
where counterproductive to the discussion at hand) will be in
the absolute form, with the 8088 addition already done and
referring to a memory address between 0 and FFFFFh. So
when you see the address B8000h, you know that it may easily
be expressed in segment:offset form as B800:0 or any other
handy combination. Even though you often see an address
like 40:11 in other references, we’ll refer to it as 411h, and
you can express it as any segment:offset that you prefer.

The first 64K of memory on the PC contains many vectors
to routines and data tables. These vectors are normally four

6

Memory Organization and Management

bytes and are formatted as shown in Figure 1-3. The format
may take a little getting used to, but it soon becomes familiar.
This concept of the Least Significant Byte (LSB) followed by
the Most Significant Byte (MSB) is used throughout the PC
and PCjr with only a few exceptions. You'll quickly become
adept at working with the format, and the VECTORSB,
VECTORSD, and VECTCMPR (Programs 1-8, 1-9, 1-10) pre-
sented in this chapter will ease the task of constructing ab-
solute addresses from memory vectors, as well as demonstrate
the process of determining the resulting absolute addresses.
DEBUG can also be used to examine these vectors in memory.

Figure 1-3. Vector Format and Example of Contents

Offset Segment
LSB MSB LSB MSB
A4 14 23 FE
Byte: 0 1 2 3

Offset: 14A4h
Segment: FE230h

Address: FF6D4h

Sometimes you’ll encounter a segment number stored in
memory with no associated offset. We'll see these during the
discussion of storage block chains later in this chapter. This
format conserves data storage space and is used for addresses
that always occur on a 10h byte boundary. They also use the
LSB/MSB format, so you'll need to add a low-order zero to
derive the absolute address. The BASIC DEF SEG= statement
is this type of segment number. The statement is used to ad-
just BASIC’s CS segment register so that memory outside BA-
SIC’s 64K segment can be accessed. The offset is set with a
PEEK, POKE, BLOAD, BSAVE, CALL, or USR instruction. See
pages 4-71 and C-8 of the BASIC manual or PCjr BASIC,
pages 4-88 and C-9. ’

When using DEBUG, be aware that while memory is in
LSB/MSB format, the 8088 registers are in MSB then LSB for-
mat. Figure 1-4 illustrates the effect of moving data between
memory and registers. This demonstrates that memory is ac-
tually designed to hold data in the LSB/MSB format.

Memory Organization and Management

Figure 1-4. Format Change During Register/Memory Moves

AX Register Memory

MSB LSB « MOVE - LSB MSB

AH AL 0 1 byte
FE 53 < Contents - 53 FE

When using DEBUG or the Assembler, the registers
shown in Figure 1-5 are available for your use. Some registers
are designed to be used as segment registers, while others may
be used as general work areas or base/index registers. The fig-
ure shows each register available and its assumed usage in
certain instruction types. Registers that are split may be used
as two 8-bit registers or as a single 16-bit, two-byte (called
word) register.

Addressing Modifiers

From DEBUG and the Assembler, the base and index registers
can be specified for use in the calculation of the final absolute
address, as shown in Figure 1-6. You can experiment with using

base and index registers by entering assembly language state-

ments in DEBUG, setting the registers, and tracing the instruc-
tion to see the resulting memory address referenced.

As Figure 1-6 demonstrates, the Assembler and DEBUG
make assumptions about which segment register is to be used
when performing address calculations. This assumption is then
reflected in the 8088 instructions generated. Whenever the
next instruction to be executed is referenced (by a JMP or
CALL), the registers CS:IP are used. The SS:SP pair is used to
reference the stack, which we will be discussing in more de-
tail. The source and destination segment register is assumed to
be DS, while the destination for string operations is assumed
to be and must use ES:DI. If the BP register is used in an
instruction, the segment register is assumed to be SS.

A program can override the assumption that DS is the
source and destination and SS is the segment register when
BP is used in an instruction. The PCjr Technical Reference
manual does not document these segment register assump-
tions, but the PC Technical Reference manual has a figure on
page B-4.

Memory Organization and Management

Figure 1-5. 8088 Segment, Base/index, and Miscellaneous
Registers

Data Registers

AH

AL

BH

BL

CH

CL

DH

DL

Assumed Usage:

AX Accumulator AX multiply and divide word, I/O

AH multiply and divide byte

BX Base AL multiply and divide byte, 1/0,

decimal mode, translation

CX Count BX base register

CX string and loop

DX Data CL rotate and shift

DX multiply and divide word, I/O

Pointer and Index Registers

S

Pt

FH

FL

flags

SP Stack Pointer Assumed Usage:

SP stack index

BP Base Pointer BP base index

SI strings

Source Index DI strings

DI Destination
Index

Segment Registers
CS Code Segment
DS Data Segment
SS Stack Segment

ES Extra Segment

Miscellaneous

IP Instruction Pointer

bit

&, o)
B
W=
N =

1
0987654321 0no
D

1
1
O 1|T|S|Z| |A] |P C

Memory Organization and Management

Figure 1-6. 8088 Address Calculation with Base/Index

bit 15 0 Offset developed by:
0000 BX or BP base register or none
bit 15 0
0000 DI or SI added to index register
or none
bit 15 0
. . added to displacement
0000 16 bit, 8 bit or none
derives total offset
bit 15 0 Segment developed by:

0000 DS, CS, ES, or SS| segment number

bit 19 4 shifted left four places

DS, CS, ES, or SS | 0000 derives segment register

added together gives
absolute address

If DS=200h, BP=1000h, SI=500h, and the instruction is
INC 12+[BP+S]]

BP 1000h
+ SI 500h
+ 12h

1512h total offset
DS segment *10h = 2000h segment address

3512h absolute address

10

Memory Organization and Management

A caution about segment overrides: When a REP or REPZ
is used for a string operation and an interrupt such as an NMI
occurs, only the segment override nearest the string operation
code will be “remembered” and restored. The moral is that
segment overrides are not prudent for string operations using
REP or REPZ.

Segment registers can point to segments whose 64K range
overlaps other 64K segments specified by other segment reg-
isters. Of course, segment registers may each point to entirely
separate 64K segments of memory. The PC Technical Reference
manual illustrates a discrete segment example on page B-4.

Stack

The 8088 provides instructions to manage a last-in, first-out
(LIFO) stack area that is used to store and restore data. Stacks
are used by all programs. The current stack area is typically
used to save registers and other program control information.
But there’s no reason that any data you wish could not be
saved on the stack, as long as you're willing to remove it later.
The Assembler instruction PUSH places data on the stack and
POP recalls it. These instructions are used with a word of
data.

The stack area is actually any area in RAM that the stack
segment register (SS) has been set to point to. Because the
stack grows downward toward offset 0 from offset FFFFh in
the SS segment, the correct setting of SP for an entirely empty
stack segment is FFFFh. A PUSH of a word of data onto the
stack causes SP to be decremented by two. Then the MSB is
placed on the stack, followed by the LSB, maintaining the
same LSB/MSB format as we’ve seen used in memory. So SP
always points to the last byte that was placed on the stack.

The POP of a word of data from the stack copies the data
pointed to by SS:SP to a location indicated by the instruction
and increments SP by two. The data on the stack is not
erased, but SP is adjusted so that it will be overlayed by the
next PUSH of a data word.

Besides accessing data at the top of the stack with SS:SP,
you can also obtain information from within the stack segment
by using BP with its default segment register of SS. This
method is employed to pass parameters to machine language
programs from BASIC. See either computer’s BASIC manual,
page C-11. When moving data from the stack, other than
POPing, it, the original data remains on the stack.

11

Memory Organization and Management

Since DOS and BIOS use your stack area when you re-
quest one of their services, the DOS manual recommends that
your stack area be at least 80h larger than your program re-
quires. The INT instruction uses three words of the stack to
save the current CS:IP and flag register. CALL pushes the IP
word, and CS if a FAR CALL is used, onto the stack. RET (or
RET FAR) restores these registers by POPing them from the
stack. The n parameter for RET specifies the number of bytes
(not words) to be discarded off the stack before the CS:IP loca-
tion on the stack. That’s why 7 is typically twice the number
of parameters passed by BASIC to a machine language program.

As we shall see later, DOS has a few places where SS and
SP are set in the wrong order. SS should be set before SP,
since any interrupt that occurs after the setting of SP and
before SS would cause the wrong stack segment to be used,
possibly destroying vital information and certainly using an
incorrect return address. We could disable interrupts during
the setting of these registers, but an NMI (Non-Maskable
Interrupt) on the PCjr generated by the keyboard cannot be
disabled and would create havoc.

ROM BIOS Versions

Since there are different versions of DOS, BASIC, and even
ROM BIOS that include support for additional or enhanced
commands (as well as known bugs), you may want to deter-
mine the release level of the software on a PC before issuing a
command in a program. For example, the LOF function in
BASIC is helpful in determining the size of a file. But LOF is
not available in Cassette BASIC. In addition, BASIC 1.0 and
1.1 return the file size as the next higher multiple of 128
bytes, whereas BASIC 2.0 and above return the actual number
of bytes in the file. VARPTR$ didn’t exist before BASIC 1.1,
and ON TIMER is new with BASIC 2.0. LABEL is a new DOS
command -on DOS 3.0, redirection is new in DOS 2.0, and all
x.0 releases of DOS feature additional and enhanced function
calls.

It’s therefore important to understand which version of
software is in the environment so that your programs can take
advantage of the power of provided facilities and avoid errors
caused by attempting to use nonexistent features. Program 1-1
determines the machine type, the ROM BIOS release date, and
the ROM part number. The release date and part number can

12

Memory Organization and Management

be used to distinguish early XTs which had the same machine-

type code as a PC. Your PC Technical Reference manual BIOS
listing may be back-level. Compare the date on the last page

of the BIOS listing to that found in ROM.
Program 1-1. ROM BIOS Version

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

HM

HE
LN

BF
P

LP
HL
JH
L
cL

B

199

126
130
149
15a

164
17¢

i8¢
199

209
210

229
238
249
259
269

279

Running Program 1-1 has shown the following versions

*MEMROMYR: Decode machine type, part num,
version date from ROM RIOS

DEFINT A-Z

DEF SEG=%HFFFF: MACHINE=PEEK ($HE)
MACHINE$="n unknown machine”
MACHINE=MACHINE—-%HFB: ON MACHINE GOSUR 24¢,
250,269,278

>

FOR ¥=5 TO 12: VER.DATE$=VER.DATE4+CHR$ (PE
EK (X)) NEXT

DEF SEG=%HF#0@: FOR X=0 TO 7: PART$=PART$+
CHRS$ (PEEK (XHESAZ+X)) ¢ NEXT

CLS:PRINT"This is a"MACHINE$" with ROM dat
ed "VER.DATE$", part num "PARTS$

END

MACHINES$=" PC/AT": RETURN *&hFC
MACHINES$=" PCir": RETURN ’&hFD

MACHINES$=" PC/XT, XT/378, OR 3270 PC": RET
URN “&hFE

MACHINE$=" PC": RETURN ~&hFF

of ROM BIOS:

Date
04/24/81 5700051 PC

10/19/81 5700671 PC

08/16/82 5000026 XT, XT/370

10/27/82 1501476 PC

11/08/82 1501512 XT, XT/370, and 3270PC
06/01/83 1504037 JR

01/10/84 6181028 AT

It’s likely that other ROM BIOS versions exist, and it's
certain that more will be released in the future.

Part Machine

13

Memory Organization and Management

DOS Versions

The version of DOS that is being used on a PC can be ob-
tained by using the VER command, DOS function 30h, the
BASIC SHELL command on DOS 3.0 and higher, or Program
1-2 that allows SHELL to work on BASIC 2.0 or 2.1 (Program
1-2 will not work on the PCjr). In the Appendices of this book
you will find a list of the new and enhanced commands on
each level of DOS from 1.1 through 3.1.

You can use a machine language routine in BASIC to call
DOS function 30h for the version of DOS as illustrated by
Program 1-3 (Program 1-3 will work on the PCjr). We'll soon
explore a generalized machine language routine that can be
used for many other DOS functions and INT calls as well.

If 0.0 is shown as the DOS version, then DOS is previous
to 2.0.

Program 1-2. Determining the DOS Version Using SHELL

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

IF 166 *MEMDOSVR; Obtain version of DOS from BASI
C

06 114 *will not work on JR

Hl 12¢@ -

6N 130 PL=PEEK (&H3I@): PH=PEEK(&H31) ’save data fr
om BASICs non-PSP

¥ 148 SHELL "ver >temp.ver"” ‘create a file with
VER return message

it 150 POKE H3@,PL: POKE %H31,PH ’restore saved
data

HA 160 °

(0 170 OPEN "temp.ver” FOR INFUT AS #1 “show the
VER message

(E 180 INPUT #1,X$,Y$

fFF 199 PRINT Y$

6F 209 -

L 210 VER$=RIGHT$(Y%$,4): PRINT VER$ ’set a strin
g to the DOS version

Ht 22¢ CLOSE #1: KILL "temp.ver"” ’erase the tempo
rary file

Program 1-3. Determining the DOS Version Using DOS
Function 30h

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

) 144 *MEMDOSVS; Call DOS function 3¢h for versi
on number
66 119 -

14

Memory Organization and Management

(8 120 GOSUR 1&8: CALL ASMROUT! *load and call
the assembler routine

M 13@ PRINT”"DOS Version"PEEK{&HR)"."FEEK (&HC)

LC 144 END ’

LC 15¢ ° —-—— LOAD ASSEMBLER ROUTINE ——-—

BN 160 DEF SEG=%H1809: I=¢ ‘°starting address for

assembler routine

EF 174 ° outside of BASIC’s segment

JA 1868 READ X&: IF X$="/x" GOTO 200 °read loop

H 199 POKE I,VAL("&H"+X$): I=I+1: GOTO 189 ’cons
truct the routine

K0 204 ASMROUT !=9 * address of the routine

M 219 RETURN

W 226 ° ——— Assembler routine ———

¥ 23¢ DATA E4,30 : MOV AH,38 s REQUEST
DOS VERSION FUNCTION

It 240 DATA CD,21 s INT 21 sCALL DO
s

IN 254 DATA 2E : CS: s SAVE IN

THIS SEGMENT

i 268 DATA A3,0B,0¢ : MOV [#B1,AX s SAVE DO
S RETURN INFO
) 27¢ DATA CA,09,90 : RETF 00¢ s RETURN

TO BASIC

(] 2860 DATA 90,00
MINOR VERSION
0! 294 DATA /X%

AL, AH FROM DOS 3 MAJOR,

BASIC Versions
The version of BASIC that the program is currently running
under may also be of interest. The BASIC version together
with the DOS version gives a clear picture of which BASIC
commands are supported. See the Appendices for a table of
which BASIC commands are not supported in which releases
of BASIC, and which releases enhanced the BASIC commands.
Cassette BASIC is an anomaly because, by definition, no
DOS is present. None of the new or enhanced BASIC com-
mands are available—only those commands that are in the
BASIC ROM. The PCjr BASIC cartridge is required for
BASIC(A) when running any level of DOS on the PCjr. So for
the PCjr, Cartridge BASIC is always at a DOS 2.1 level,
regardless of the DOS version. By renaming BASIC or
BASICA, you can run the disk versions of BASIC on the PCjr.
(But you'll still need the cartridge inserted.) A higher level of
Cartridge BASIC will undoubtedly be available in the future.

15

Memory Organization and Management

The level of DOS is meaningless for Cassette BASIC and
largely irrelevant for compiled BASIC programs. Of more in-
terest would be the level of the BASIC compiler.

Program 1-4 can be used to determine the version of
BASIC that is in use. Cassette BASIC is included for those
users who may be writing for systems that use a cassette tape
drive.

Program 1-4. Determining the BASIC Version

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

RE 169 °>MEMBASVR: Determine version of basic

66 119 =

00 126 ON ERROR GOTO 23¢

WP 130 CV$="12":TEST=1:X=CVI(CV$) °“if bad, casse
tte

60 149 TEST=2:0N ERROR GOTO 15¢: SOUND OFF: GOTO

: 23¢ *if good, PCir

EB 159 RESUME 1&0

FL 164 ON ERROR GOTO 23¢

FF 174 TEST=3:0N STRIG(4) GOSUB 186:G0OT0O 199 ’*if
bad, disk BASIC

N 180 RETURN

F 199 TEST=4:0N ERROR GOTO 200: X$=SPACE$ {(256) : GO
TO 23¢9 °*if good, compiled

Al 200 RESUME 210

BP 216 VERSION$="A":PRINT"Advanced Basic":END

H 220 *

68 23@ ON TEST GOSUR 250,260,27¢,28@: END

N 240 *

N 25¢ VERSION$="C":PRINT"Cassette Basic":RETURN

IF 260 VERSION$="J":PRINT"PCjr Basic":RETURN

PA 279 VERSION$="D":PRINT"Disk Basic":RETURN

KL 280 VERSION$="0":PRINT"Compiled Basic":RETURN

We could have determined the version of BASIC by read-
ing the copyright line that is presented on the screen when
BASIC is started. The SCREEN(x,y) command can perform this
for us. But the command BASIC PGM can be entered to cause
PGM.BAS to be run without the copyright line being dis-

-played. So PGM would have no copyright information line to
retrieve from the screen.

The copyright information is stored in various places
within each BASIC, not at the same offset into the programs.
So we would need to know which version of BASIC we are
using before we could find the version number. That’s not

16

Memory Organization and Management

helpful. I have to believe that there is an indicator at some
uniform location within each BASIC, but try as I might, I have
been unable to locate it.

Incidentally, you can throw the user into Cassette BASIC
and provide no method of exit by using JMP F600:0. Nor-
mally, INT 18 could be used, but the PCjr BASIC cartridge
causes INT 18 to point to itself at E8177h.

Table 1-1 summarizes the sizes of various versions of
DOS and BASIC. This may be helpful in planning the
machine/DOS/BASIC versions to be supported by your
programs.

Table 1-1. Sizes of DOS/BASIC Versions

3.0 21 2.0 1.1
DOS Sum 36K 24K 24K 12K
IBMBIOS 8964 4736 4608 1920
IBMDOS 27920 17024 17152 6400
COMMAND 22042 17792 17664 4959
BASIC 17024 16256 16256 11392
BASICA 26880 26112 25984 16768

From DOS Requests to BIOS Requests

The PC and PCjr PC/DOS operating system provides a set of
generalized service requests for machine language applications
such as .COM or .EXE programs (including BASIC). DOS also
provides a set of internal commands (such as DIR, TYPE, and
.BAT file processing) that can be requested directly by the user
or from within programs. DOS can search for, load, and exe-
cute machine language programs at the request of a program
or a user. Some of the programs are supplied with DOS (ex-
ternal commands such as FORMAT, DEBUG, BASICA), while
other programs are user supplied. DOS currently makes no
distinction between user and provided programs.

Service requests (functions and interrupts) for DOS are
usually translated by DOS to the appropriate service requests
(interrupts) of the ROM BIOS device-level routines. By chang-
ing the interrupt vectors to these routines, you can replace
them or add additional front-end routines. When needed, DOS
and ROM BIOS call their own internal service requests to help
with the work at hand. Extensive use of subroutines within
DOS and BIOS allows service requests to use routines that are
also needed by other services. Generally transparent to the

17

Memory Organization and Management

user (and even the requesting program) are the myriad of
routines checking to be sure that all went well and just wait-
ing for the chance to handle an error situation.

As you can see, what your program may consider to be a
simple request at your level causes a spreading flurry of activ-
ity as it gets passed on to helper routines at the same level
and down to lower-level routines where all the messy details
get handled. A diagram (see Figure 1-7) of the activity looks
much like a drawing of a tree’s root system. There really is no
such thing as a simple request for DOS or BIOS, especially for
any type of I/0O activity.

Figure 1-7. Levels of DOS and BIOS Service Requests
Width of box suggests increasing path length. Figure not to
scale.

User Menu User selects “Print File”
Selection from displayed menu
High level BASIC Program OPEN filename
BASIC.COM DOS func 3Dh
-COMMAND.COM Call 3Dh entry
IBMDOS.COM Get directory item
IBMBIO.COM Filter for fixes
Low level ROM BIOS Read sector

Memory Usage: Loading the OS and BASIC
When you turn on your PC or PCjr with a DOS disk in the
drive, DOS is loaded into your computer and you receive
either a Date/Time prompt or an AUTOEXEC.BAT file sets up
the environment for you. Your DOS manual or DOS Technical
Reference manual contains a brief overview of the boot pro-
cess, starting on page B-1 for DOS 2.0, or page 1-3 of the DOS
Technical Reference manual for DOS 2.10 and 3.0. We'll be
adding important new information to those synopses.

18

Memory Organization and Management

Figure 1-8 shows the memory usage results of loading the
operating system into your computer and starting BASIC.
We'll be discussing each component shown in the diagram,
but let’s start with a description of the boot process itself, as
we’ll gain valuable insight by exploring that subject first. Use
the diagram in Figure 1-8 as a reference as we discuss the
method by which the system is prepared to perform produc-
tive work for the user.

This discussion won't detail the various self-test proce-
dures that the PC and PCjr ROM BIOS perform during the
initial stages of the power-on sequence; these are adequately
documented in the Technical Reference manual. Those steps
that result in decisions about the eventual memory usage
configuration will be discussed.

Cold/Warm Starts

When a boot is performed by switching on the computer
(called a cold start) or Ctrl-Alt-Del (called a system reset or
warm start), an instruction at location FFFFOh (by 8088
convention) is executed that causes the Power On Self Test
(POST) routines to begin component tests. If bytes 472-473h
are found to contain 3412h, a reset via Ctrl-Alt-Del has been
requested. If so, the POST actions are skipped and memory
will not be tested. Memory will simply be cleared to all zeros.
The time difference between a cold start and a reset is depen-
dent on the amount of memory installed, but worst case is
over two minutes for a cold start of 640K compared to around
20 seconds for a warm start.

Programs 1-5 and 1-6 show methods that can be used
within BASIC to call for cold and warm starts. The difference
between the two programs is the dependence on the presence
of the restart code in locations 472-473h. As written, the pro-
grams will perform a cold start (Program 1-5) or a warm start
(Program 1-6); be sure to save the programs before running,
since both warm and cold starts zero out memory.

Incidentally, the PCjr keeps 3412h in location 472-473h
after power-on so that inserting or removing a cartridge will
cause a warm start rather than a cold start.

19

Memory Organization and Management

Figure 1-8. Map of Typical PC Memory Usage

0K

1K

1.5K

3.5K

19K

21K
24K

24.1K

20

Using DOS 2.10, no CONFIG.SYS or AUTOEXEC.BAT, 384K memory

400

500

700

E30

4DB9

53F0
5FDO0

6080

60B0

All numbers (except K) are hexadecimal

Trap vectors INT 0-7
8259 vectors INT 8-F
BIOS vectors INT 10-1F
DOS vectors INT 20-2F
Assignable INT 40-FF

ROM BIOS communications area

DOS data areas

IBMBIO
72F of 1280

IBMDOS
3F89 of 4280
Storage chain anchor »5100

Device drivers
User extensions of IBMBIO
such as ANSLSYS
CONFIG.SYS: buffers, files

P Resident COMMAND

* Master ENVIRONMENT for COMMAND
AOh bytes,
expandable to 32k if no programs
have been made resident

* ENVIRONMENT for next program

*P Application program or BASIC
BASIC Extensions Disk=12k, Advanced=22k
Start of BASIC 64k workspace:

DS:0 4K interpreter work area

DEBUG Search Pattern
“VER 2.15"

DEBUG Search Pattern
E9 87 3F 03 44 45 56

< INT 20,25,26,27

< INT 21,22,23,24

BASIC

« redirected

INT 0,4,9,B
1B,1C,
23,24

Memory Organization and Management

Free space
Strings, toward 0000 1
Stack 200 bytes toward 0000
end—3410
Jrrend=112K Transient COMMAND DEBUG Search Pattern:
end—FA8 error messages B4 OE CD 21 2E 8E 1E
end—B10 internal command table
end—9F6 length of last command
end—9F5 last command text
end—8AE formatted filespec
1C000
Jr:128K-16K Video buffer in Jr
:iEnd of RAM memory expansion:::::::
640K A0000
Video buffers
C0000
PC: ROM expansion
C8000 XT: Hard disk ROM
D0000
Jr: cartridges
PC: ROM expansion
E0000
Jr: cartridges
PC: ROM expansion
F0000
Jr: POST /keyboard adventure
PC: ROM expansion
Jr: cartridges
F6000
Cassette BASIC
Jr: cartridges
FE000
ROM BIOS
Jr: cartridges
100000

* = Storage chain block, 10h bytes
P = Program segment prefix, 100h bytes

Program 1-5. Cold Start invocation

199 *MEMCOLD; Call for Power On Self Test (Col
d Start)

114 °

120 DEF SEG=9:POKE %H472,%HO :POKE &H473X, &HO
*insure no warm start code

13¢ DEF SEG=Y%XHFFFF: POST=% ’address of 8088 re
st jump

149 CALL POST

21

Memory Organization and Management

Program 1-6. Warm Start Invocation

1686 >MEMWARM; Call for Ctrl-Alt-Del {(Warm Star
t / System Reset)

119

12¢ DEF SEG=9:POKE &H472,%H34 :POKE &H473,&H12

*insure warm start code

138 DEF SEG=%HFFFF: WARM=8 ’address of 8088 re
set jump

149 CALL WARM

On the PC and XT (but not the PCjr), both cold and
warm starts use the configuration switch(es) to set the
configuration and memory size information in locations
410-413h. Locations 415-416h are set to the total amount of
memory found by scanning the entire address space for
contiguous RAM. The memory configuration switch usage is
quite different for the PC1/2 and XT. See the explanation of
ports 60-62h in the Port Map Appendix and memory locations
410-416h in the Memory Map Appendix. PCs with a ROM
date before October 27, 1982 are not designed to recognize
memory above 544K. You can correct this shortcoming. Also,
you may want to reduce the time needed to test the entire
range of memory with five different bit patterns (see Technical
Reference manual, page A-15) by setting the configuration
switches to some value lower than the amount of memory that
is present in the computer.

Once the PC has been booted, replace the values in
413-416h with the true memory sizes, and clear the POST-
unseen memory to zeros to prevent parity errors. Then use
INT 19 for a hot start, causing DOS to be loaded using the ad-
justed memory size, without reobtaining the configuration
switch settings. More about INT 19 in a minute.

The PCjr and AT don’t use configuration switches to
determine the amount of memory installed, so we won'’t be
able to speed up their cold start process in this way.

When adding memory to your PC, insure that the
motherboard sockets are all filled before adding expansion
(I/O channel) memory. Otherwise, intermittent memory parity
and disk errors may occur. The chance of parity errors is re-
duced by using 150 nanosecond RAM rather than the less
expensive 200 nanosecond chips.

22

Memory Organization and Management

ROM Expansion

Next, the ROM expansion areas from C0000h through F5800h
are checked in 2K increments to determine if any of those
areas are filled with ROM-resident programs. They are rec-
ognized by the signature of 55AAh in the first two bytes (off-
sets 0 and 1). The length of the program divided by 512 is
stored in byte 2 and is used to compute a checksum of the
ROM in 512-byte increments. Then the ROM initialization
routine, whose instruction is stored in bytes 3, 4, and 5, with
the offset in bytes 4 and 5, is given control. This method is
used to cause the hard disk BIOS to be used during the boot
of a PC with a hard disk. In the PCjr the BASIC cartridge
overlays the address of Cassette BASIC at INT 18 by using
this initialization routine.

A PCjr cartridge may contain a list of DOS commands
that are scanned when a DOS command is entered. This list
redirects a DOS command to the cartridge version. The PCjr
BASIC cartridge has the BASIC and BASICA commands in
this table to intercept the disk versions of these programs. So
by renaming the disk versions of BASIC, you can still get to
them if you should want to, but the PCjr BASIC cartridge is
still required. IBM PCjr Colorpaint uses this table to add the
DOS command G to activate the cartridge. PCjr cartridges are
designed so that even ROM BIOS may be replaced by a car-
tridge version since cartridges may occupy whatever address
above D0000 they are designed for. The three types of PCjr
cartridges are IPLable (automatically started when inserted or
power on), DOS (containing commands or programs), and
BASIC (programs written in BASIC that start automatically
when Cartridge BASIC is started). The PCjr Technical Ref-
erence manual has an in-depth discussion of cartridge concepts
and requirements (see page 2-107).

The Boot Record

Once the POST and memory-clearing routines have finished
their tasks, a short beep is sounded and INT 19 is called to
load the disk boot record into memory. The PCjr first insures
that there is a disk drive and jumps to Cassette or Cartridge
BASIC if not. Both the PC and the PCjr try four times to read
the disk, then give up and branch to Cassette (or Cartridge)
BASIC. If the boot record is missing from the disk (the disk

23

Memory Organization and Management

hasn’t been formatted), then Cassette or Cartridge BASIC is
invoked.

When the INT 19 routine reads the disk, it’s using INT 13
to load the special 512 (200h) byte boot sector into location
7CO00h. This sector was placed on side 0, track 0, sector 1 by
the DOS FORMAT command.

For the XT, INT 19 has been replaced by the initialization
code in the hard disk BIOS at C8000h to point to a version of
INT 19 in the hard disk BIOS ROM. The INT 13 vector also is
replaced with a new INT 13 routine for hard disk I/O that
passes disk I/O on to INT 40. The hard disk version of INT
19 attempts to load from the disk first, then the hard disk (cyl-
inder 0, track 0, sector 1 of the DOS partition), then finally
jumps to Cassette BASIC.

Now that the boot sector has been loaded into location
7C00h, the INT 19 routine jumps to that location to start the
DOS level-dependent boot process. There’s nothing that keeps
you from having your own version of a boot record that sup-
ports your particular needs. You could even have a custom
boot record that causes your own disk-resident programs to be
loaded instead of DOS, assuming that you have no require-
ment for DOS.

Figure 1-9 describes how to load the boot record into
memory and display its contents using DEBUG.

Figure 1-9. Loading and Displaying the Boot Record
Contents

1 ¢s:7¢00001

u 7¢00 7¢02 jump to entry point

d 7¢03 7c¢2b DOS version, disk parameters

u 7c2¢ 7d7d main routine, using INT 13 for disk I/O
d 7d7e 7dff error messages and filenames

IBMBIOS and IBMDOS

Once the boot record has been loaded, its task is to initiate a
fairly lengthy process of loading the disk-resident BIOS and
DOS program modules into the computer to perform their
start-up duties. This occurs between the time you hear a beep
from the system to when the first A> prompt is seen. Ac-
tually, some of this time period is spent in initializing
COMMAND.COM, as we shall see in the next section.

24

Memory Organization and Management

‘The activities that occur during this time are the subject
of this section. The DOS 2.0 manual contains a brief descrip-
tion of the actions taken during the boot process by the
IBMBIO.COM and IBMDOS.COM modules on page B-1, or
page 1-4 of the DOS 2.10 TRM. The additional insight pro-
vided by this section complements and enhances that infor-
mation. You may wish to read the short description in the
DOS manual before continuing here, but it's not necessary.

If you used DEBUG to load and examine the contents of
the boot record (as described in the previous section), you saw
the filenames of IBMBIO.COM and IBMDOS.COM near the
end of the boot record. The boot program will check that the
files listed there are the first two files in the disk directory, in-
sure that they are in the proper order, and load them into
memory.

We'll be using IBMBIO as a nickname for IBMBIO.COM,
and IBMDOS for IBMDOS.COM in the remainder of this sec-
tion. Incidentally, for IBM PC work-a-likes that use Microsoft
MS DOS rather than PC DOS, use the name I0.SYS instead
of IBMBIO.COM, and MSDQOS.SYS instead of IBMDOS.COM.

If you wanted to load different files into memory to serve
as your operating system, the filenames for IBMBIO and
IBMDOS within the boot record could be changed with DE-
BUG to reflect the desired files. The files must be the first
names in the disk directory; otherwise, a Nonsystem disk or
disk error message will be displayed by the boot program, and
it will not be able to continue the boot process until a correct
disk is provided.

Although the FORMAT program sets some special at-
tributes for the IBMBIO and IBMDOS files, they really don't
need them. The attributes set by FORMAT make IBMDOS and
IBMBIO hidden files (from most commands), read-only (can’t
be written to), and system files (a system file as opposed to a
user file) for them to be used properly by the boot program.
IBM has chosen to make them invisible and read-only files so
that they will not be inadvertently erased.

The file attribute byte is the byte following the filename
in the disk directory. You can use DEBUG to load the disk
directory (syntax: L ¢s:100 0 5 1) from a copy of your DOS
disk and see the attribute byte of 27h immediately after the
IBMBIO.COM filename. By entering 20h into this byte (syntax:
E 10B then 20), you can remove the hidden, read-only, and

25

Memory Organization and Management

system file attributes. Then use W 100 0 5 1 to write the modi-
fied directory sector back to the disk and exit DEBUG with Q.

Issue a DIR IBM*.* command to confirm that the change has

caused the file to now be visible.

The boot record program loads the IBMBIO file into mem-
ory starting at absolute location 700h, follows it with the
IBMDOS file, and then jumps to the IBMBIO program’s start-
ing point at absolute location 700h so that it may perform its
initialization tasks. Since the contents of these two programs
vary among the versions of DOS, we’ll explore them from a
conceptual level rather than getting into the details of each
version.

IBMBIO begins its duties by initializing the devices asso-
ciated with CON:, AUX:, PRN:, NUL:, COM1:, COM2:, and
LPT1 through LPT3:. These names are established by DOS to
allow the user to refer to standard peripheral devices by name.
For instance, COPY AUTOEXEC.BAT CON: causes the
AUTOEXEC.BAT file to be listed on the console (display
screen).

Your DOS manual contains a short description of these
names near the beginning of the manual, in the same section
as the description of filenames. These device names are an
inheritance from the predecessor CPM’s CRT:, PTR:, BAT:,
and LPT: names. DOS initializes the devices associated with
the names by calling a set of DOS-provided device driver
routines. A device driver is a special program that is designed
to manage the data flow and control of a peripheral device be-
yond the level provided in BIOS. You can provide your own
device driver routines for special peripherals that you wish to
attach to your computer.

Next, IBMBIO processes the parameters contained in the
CONFIG.SYS file, if the file is found on the disk. If the file
can’t be located, certain defaults are assumed by IBMBIO. The
meaning and defaults for the various CONFIG.SYS parameters
are shown in your DOS 2.0 manual on page 9-3, or DOS
2.10/3.0, page 4-3. Any memory space required to satisfy the
CONFIG.SYS parameters will be reserved from the memory
immediately following the IBMBIO and IBMDOS programs.

A word of caution: Do not use the undocumented, but
legal, CONFIG.SYS parameters SWITCHAR and AVAILDEV,
as they are no longer supported in DOS 3.0 and have been
shown to be particularly bug-laden. See the Appendices for a

26

Memory Organization and Management

list of the features and commands added by each release level
of DOS from 1.0 on.

Next, any device driver routines that are specified in
CONFIG.SYS DEVICE= statements are loaded into memory
from disk. Then, each device driver routine is called by
IBMBIO to perform any initialization tasks. The provided pro-
gram ANSLSYS is an example of a device driver for the con-
sole. You can read more about device driver routines in the
DOS manual (page 14-1 for DOS 2.0, or 3-4 of the DOS 2.10
TRM).

IBMBIO provides an IRET (return from interrupt) instruc-
tion at absolute location 847h that is used as a dummy routine
for interrupts that are not used by DOS. This technique allows
the unused interrupt routine to simply do nothing (by virtue
of the IRET instruction) until a user’s interrupt routine address
is placed in the interrupt vector. IBMBIO sets INT 1, INT 3,
and INT F to point to this IRET instruction. See the descrip-
tion of these interrupt vectors in the Memory Map Appendix
of this book.

Finally, IBMBIO moves the program IBMDOS down over
the completed IBMBIO initialization routines to minimize
memory space requirements and jumps to the IBMDOS pro-
gram to perform its own initialization tasks.

IBMDOS begins by initializing the vectors for INT 20-2F
to their proper values.

The next actions performed by IBMDOS are related to
DOS storage and program management functions. This topic
will take us deep into the technical intricacies of DOS program
control blocks. You may wish to only skim the following para-
graphs if you are not particularly interested in the details of
this subject. Programmers (both BASIC and machine language)
can gain some powerful techniques by understanding the
structure of the DOS storage and program management con-
trol blocks and learning to use the information contained in
them.

A storage chain anchor is built by IBMDOS at absolute
location EBCh for DOS 2.0, or F28h for DOS 2.10 (add 70h
for the PCjr, and 80h if a hard disk is installed). This storage
chain anchor is located within IBMDOS and contains the seg-
ment number of the first storage block. Storage blocks are used
by DOS to record the amount and location of allocated mem-
ory within the PC and PCjr memory address space. Let’s

27

Memory Organization and Management

digress for a moment to look at the control areas (including
the storage block) used by DOS to manage programs.

A storage block, a Program Segment Prefix (PSP), and an
ENVIRONMENT area are built and maintained by DOS for
each program currently resident in the memory address space.
The storage block is used to record the address range of mem-
ory allocated to the program. It is used by DOS to find the
next available area to load a program and to determine if there
is enough memory remaining to load the requested program.
When an area of memory is in use by a program, it is said to
be allocated. When the program ends (or explicitly requests
less memory), all (or some) of the address range is deallocated.
Several DOS services support memory allocation and de-
allocation functions. These will be discussed in a later section.

A storage block contains a pointer to the Program Seg-
ment Prefix (PSP) associated with each program. This control
block is constructed by IBMDOS for the purpose of providing
standardized areas for DOS/program communications. Within
the PSP are areas that are used to save interrupt vectors, pass
parameters to the program, record disk file directory infor-
mation, and buffer disk reads and writes. This control block is
100h bytes in length and is followed by the program module
loaded by DOS. The contents of the PSP are described in the
DOS 2.0 manual on page E-8, or DOS 2.10/3.0 TRM, page 6-5.
A following section will discuss the PSP in more detail. :

The PSP contains a pointer to an ENVIRONMENT area
for the program. This area contains a copy of the current DOS
SET, PROMPT, and PATH specified values. The program may
examine and modify this information as desired. We’ll soon be
learning more about this ENVIRONMENT area which follows
the program module in memory. But let’s return to our
examination of storage blocks.

Each storage block is 16 (10h) bytes long, although only
5 bytes are currently used by DOS. The first byte contains 4Dh
(a capital M) to indicate that it contains a pointer to the next
storage block. A 5Ah (capital Z) in the first byte of a storage
block indicates that there are no more storage blocks following
this one (it’s called the end of the chain). This identifier byte is
followed by a 2-byte segment number of the associated Pro-
gram Segment Prefix (PSP) for the program. The next 2 bytes
contain the number of segments that are allocated to the pro-
gram. If this isn’t the last storage block (4Dh M is in the in-

28

Memory Organization and Management

dicator byte), then another storage block follows the allocated
memory area.

When the storage block contains zero for the number of
allocated segments, then no storage is allocated to this block
and the next storage block immediately follows this one. This
can happen when memory is allocated and deallocated repeat-
edly during your session on the PC. If the PSP segment num-
ber is zero, then the memory described by the storage block is
available (deallocated) rather than allocated.

~ To finish its work, IBMDOS constructs a storage block
and PSP for the soon-to-be-loaded COMMAND.COM pro-
gram. Finally, IBMDOS returns to IBMBIO to cause the
COMMAND.COM program to be loaded and jumped to.
IBMDOS remains resident in memory to provide high-level
function services for the COMMAND.COM program. IBMDOS
will do its part in satisfying these requests and will call
IBMBIO for lower-level device-oriented functions.

After it jumps to the COMMAND.COM program, IBMBIO
stays in memory to provide an interface from IBMDOS to
ROM BIOS. Corrections to ROM BIOS errors are implemented
in IBMBIO. IBMBIO also includes some error recovery routines
and implements the “phantom” disk drives (such as drive B:
on a one-drive system).

COMMAND.COM
Normally, COMMAND.COM is loaded and given control of
the system by IBMBIO. However, if SHELL was found in
CONFIG.SYS, then the program named by that parameter
would be used in place of COMMAND.COM. It is permissible
to have more than one COMMAND.COM active at one time.
Any COMMAND.COM other than that loaded at boot-time is
called a secondary COMMAND.COM. The next section will ex-
plore the reasons for using a secondary COMMAND.COM.
Assuming that this is not a secondary COMMAND.COM
(the lack of an ENVIRONMENT address at PSP + 2Ch is
what tips off COMMAND.COM that it is not a secondary
copy), the program loads the transient portion of itself at the
high end of memory. This portion can be overlaid by an
application program and is automatically reloaded by the res-
ident portion of COMMAND.COM. The associated master
ENVIRONMENT address is built after the resident portion of

29

Memory Organization and Management

COMMAND.COM, the keyboard buffer is cleared, the disk
directory is selected, the logged (booted) disk ID is retrieved,
and the familiar A> prompt is given. The Break key is now
recognized from this point onward.

Finally, either DATE and TIME are executed and the
copyright information is displayed, or the AUTOEXEC.BAT
file is processed. You can change the name of the .BAT file to
be executed by using DEBUG and searching for the string
AUTOEXEC.BAT in capitals. You could also make this a hid-
den, read-only, system file by altering the disk director
attribute to 27h rather than 20h. In COMMAND.COM, just
above “AUTOEXEC.BAT”, you'll find the copyright infor-
mation to be displayed. You can change these messages to
greet your user as appropriate.

Now our PC has been booted and is ready to work for us.
COMMAND.COM stays in memory and interacts with the
user when a DOS command is entered. INT 22, 23, and 24
vectors point within the resident portion so that the termina-
tion of a program can trigger the transient portion to be re-
loaded if needed. The resident portion also provides the bulk
of the error recovery messages such as Terminate batch job
(y/n)?, Abort, retry, or ignore?, Invalid COMMAND.COM, and
the like. COMMAND.COM implements the redirection of
standard input/output devices and piping files.

An unfortunate aspect of COMMAND.COM is its blind
desire to reload the transient portion from the booted drive
rather than the currently logged drive. By changing the
COMSPEC parameter of the ENVIRONMENT using the SET
command, you can change the disk and path that are used to
reload the transient portion. The concept of a resident and a
transient portion is a powerful feature because it allows a full-
function user interface module to be available, while not
requiring dedicated storage to contain the module and internal
commands while they are not being used.

The transient portion prompts the user (using the default
or PROMPT specified characters), parses the user- or batch
file-entered line, processes the batch commands, executes the
internal commands, and contains (in about the last 1600 bytes
of memory) the program loader. This portion searches for
.COM and .EXE files to be loaded and executed for the user.
The scan order for commands is such that Cartridge DOS
commands are searched for, then the internal command table,

30

Memory Organization and Management

.COM files, .EXE files, and finally .BAT files. So XYZ.BAT will
never be found if it is on a disk with XYZ.COM, and
DIR.COM could never be found since DIR is an internal
command.

The loader uses DOS function 4Bh to load and executge
the requested program. It’s possible to use this function in
your programs to cause another program to be loaded and
executed (“spawned”), using your files if desired, then return
to your program. We'll be discussing this feature more in a
moment.

Secondary COMMAND.COM

One of the problems with batch files is that you can’t execute
nested batch files. Try creating these two batch files and
executing the first as follows ([F6] means to press the F6 func-
tion key):

A>COPY CON 11.BAT

chkdsk

22

date [F6]

A>COPY CON 22.BAT

set [F6]

A>11

We would like to see the following order of commands:
chkdsk, set, date. But, in fact, the 11.BAT date command is
never issued because once the 22.BAT set command was pro-
cessed, COMMAND.COM found that the batch file that it was
tracking reached the end of file. COMMAND.COM can only
track one batch file at a time.

The ability to nest batch files can be gained by invoking
another copy of COMMAND.COM to track the lower level of
batch file. The method used to invoke this “secondary”’
COMMAND.COM is documented in the 2.0 DOS manual
starting on page 10-9, DOS 2.10, page 1-11, and DOS 3.0,
page 6-9. The DOS manual does not, however, mention that it
is useful in nesting batch files. The only mention of invoking
another batch file is that it can be done at the end of a batch
file being processed. That’s not nearly as powerful.

To apply the method to the above example, try the
following revision:

31

Memory Organization and Management

A>COPY CON 11.BAT
chkdsk

command /c 22

date [F6]

A>COPY CON 22.BAT
set [F6]

A>11

That solved the problem, and now the 11.BAT date command
is performed.

You should know a few facts about using multiple copies
of COMMAND.COM. Obviously, COMMAND.COM will need
to be available on the same disk as the nested batch files; other-
wise, you'll receive a Bad command or file name error message.
Each level of COMMAND.COM that is invoked in this man-
ner requires 17K (DOS 2.0/2.10) or 22K (DOS 3.0) of memory
while that copy is in memory. The copy is discarded after
processing its parameter line, assuming that the /C parameter
is used. COMMAND.COM detects that it is a secondary copy
by observing that the pointer to an ENVIRONMENT has been
filled in at PSP+2Ch.

It is also possible to invoke a secondary COMMAND.COM
from within an application program. This allows the execution
of a batch file (which in turn may cause other batch files or
programs to be executed) by an application program with
eventual return to the program. You can read more about
invoking a secondary COMMAND.COM from your program
on page F-1 of the DOS 2.0 manual and page 7-3 of the DOS
2.10 DOS Technical Reference manual. DOS function 4Bh is
discussed on page D-44 of the DOS 2.0 manual, 5-42 of the
DOS 2.10, and page 5-124 of the DOS 3.0 Technical Reference
manuals.

Batch File Modification

Another useful tool with batch files is the ability to modify a
batch file that is currently being processed by using a program
executed in the batch file. The modifications would logically
occur on lines that are yet to be executed. Of more practical
use is the addition of lines on the end of a temporary copy of
the master batch file.

32

Memory Organization and Management

Another technique to consider is the execution of another
batch file that the program has built by including its name
after the program’s name in the batch file. This has the advan-
tage of allowing the master batch file to remain unaltered by
the program, but it is more limited in the number of programs
that can be called. Another disadvantage is that the associated
temporary batch filenames can get unmanageable in a com-
plex situation. The addition-to-a-copy method is my
preference.

Figure 1-10 and Program 1-7 demonstrate this batch file
modification technique. The COPY statement in the batch file
is used to make a copy of itself so that the original batch file
won't be changed. Then it invokes this temporary copy (pass-
ing any entered parameters) without using the command so
that the master batch file will not be returned to when the
temporary copy ends. We are now using a previous limitation
to our advantage. The IF statement before the COPY skips the
copy and invocation process in the temporary version.

A batch file can be coded to perform the function shown
here, without the need for the program at all. Also the date
sort does not optimally handle the month-date-year format.
You may want to add another program to read and format the
date before sorting. The point here is not that this is the only
way to achieve the function provided by the batch file and
BASIC program combination. Rather, a BASIC program can be
used to modify a temporary copy of a batch file while it is
executing. This opens up a whole new realm of possibilities
since the batch file facility does not provide many functions
that BASIC has, including prompting and acting upon the
response.

Enter the batch file, Figure 1-10, using your word proces-
sor, EDLIN, or the DOS COPY function; enter Program 1-7
while in BASIC. Note that you must have the DOS files
SORT.EXE and MORE.COM present on the disk and you must
name the BASIC program MEMBAT.BAS and the batch file
MEMBAT.BAT. To see the demonstration, enter MEMBAT
from the DOS A> prompt.

Be aware that DOS 3.0 has tightened the rules about com-
ment lines in batch files. Periods, quotes, and brackets are no
longer recognized as REM substitutes at the beginning of a
line.

33

Memory Organization and Management

Figure 1-10. MEMBAT.BAT

echo off

if %0 == tempbat goto :tempbat

copy %0.bat tempbat.bat

tempbat %1 %2 %3 %4 %5 %6 %7 %8 %9

rem *** temporary, will not return to this master
stempbat

rem *** this must be the temporary batch file
basic membat

rem *** above program will add needed lines[F6]

Program 1-7. MEMBAT.BAS

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

H 160 ~MEMBAT; Demonstrate BASIC adding to batch
file

66 119 °

Kl 120 OPEN "tempbat.bat” FOR APPEND AS #1 .

K 130 ° PRINT#1,CHR$(13);CHR$(1¢#) ° only needed
if "copy con" created .bat

PF 148 CLS: PRINT”SORTED DIRECTORY WANTED BY WHIC
H FIELD?"

K 156 LOCATE 3,10: PRINT"D = Date"
N 160 LOCATE S,14: PRINT"S = Size"
N 170 LOCATE 7,18: PRINT"N = Name"

0 188 INPUT K$: K=INSTR("SsDdNn",K$): ON K GOTO
219,210,220, 228, 230, 230
W 19¢ BEEP:GOTO 18¢

6F 20¢@ -

K 210 PRINT#1,"dir %lisort /r /+1&6imore”;: GOTO
249

LF 2290 PRINT#1,"dir %Zliisort /r /+24imore”; :G0TO
249

N 238 PRINT#1,"dir %“lisort /+1l!more";: GOTO 240
FK 2409 CLOSE 1
Ik 250 CLS: SYSTEM

Application Program Environmentals
We'll be discussing the BASIC program’s environment in a
following section, but first let’s understand the memory
environment that BASIC and our own .COM and .EXE pro-
grams inherit when invoked by COMMAND.COM or another
program.

The loader portion of COMMAND.COM is used to load
.COM and .EXE modules into memory, prepare the environ-

34

Memory Organization and Management

ment for the program, and execute the module. It is possible
to invoke this function from a program by using DOS function
4Bh and to specify whether the loaded module is to be exe-
cuted. This feature allows a program to cause overlays of
routines or data tables to be made available to a program.

The loader always allocates memory for a module ((COM
or .EXE) from the lowest numbered unallocated segment. All
remaining memory is then available to the new module. The
storage block for the new module (at PSP — 10h) and the PSP
itself contain the amount of memory available. The storage
block has a count of allocated segments in the fourth and fifth
bytes, while the PSP contains the number of available bytes in
the current segment at offset 6. There are additional memory
considerations for invoked modules (see DOS 2.10 Technical
Reference manual, page 10-1, and DOS 3.0 Technical Reference
manual, page 10-3).

In order for the module to execute another module, some
memory must be freed by using DOS function 4%h or 4Ah.
This action causes a storage block to be created that marks the
freed area as unallocated. Then, DOS function 4Bh (load and
execute module) will allocate and use that area of memory.
For the load-but-don’t-execute overlay option of function 4Bh,
the invoker must preallocate the memory for the module to be
loaded.

A “well-behaved” invoked module (not an overlay) will
free as much storage as possible so that other modules will fit
in memory, will free all memory allocated by it before exiting,
and will exit using DOS function 4Ch, passing a return code
to the invoking module. The invoker can retrieve this return
code by using DOS function 4Dh. See DOS 2.0 manual, pages
D-43 through D-48; DOS 2.10 Technical Reference manual,
pages 5-41 through 5-45; and DOS 3.0 Technical Reference
manual, pages 5-121 through 5-130.

When the loader processes an .EXE module, the loader re-
solves all necessary relocation and loads the module at the
low or high end of the needed memory size for the module.
.EXE modules do not necessarily own the remainder of mem-
ory, only the amount required to contain the module. For addi-
tional .EXE file information, see DOS 2.0 manual, page H-1,
and DOS 2.10/3.0 Technical Reference manual, page 9-3.

A resident COMMAND.COM causes a loaded module to
follow it in memory as illustrated in Figure 1-8, “Map of

35

Memory Organization and Management

Typical PC Memory Usage.” If the loaded module executes
another module, that second module will follow the first in
memory, and so forth. Whenever the lowest module is fin-
ished, it returns to the invoking module because PSP + Ah
has been set to point to the next instruction in the invoker
module. The PSP of the invoked module is used to save the
invoker’s INT 22-24 vectors, which are restored when the in-
voked module ends.

Several control blocks are formatted and made available
to the invoked (nonoverlay) module by DOS function 4Bh
(which COMMAND.COM uses to invoke our modules). Fore-
most of the control blocks is the PSP which is pointed to by
the DS register. This control block is 100h bytes long and is
preceded by a 10h byte storage block. Your program module
normally follows this control block. A layout of the PSP can
be found in your DOS 2.0 manual on page E-8, or DOS
2.10/3.0 Technical Reference manual, page 6-5. This section of
your DOS manual provides valuable information about the
program environmentals.

The PSP contains a default disk buffer (DTA), two file
control block (FCB) areas, a formatter parameter area, a
pointer to the ENVIRONMENT area for the program, a long
call to DOS (for portability), and save areas for the invoker’s
INT 22-24. A few amplifications on the layout of the PSP are
needed.

BASIC uses the PSP for its own data storage purposes,
and some fields are not as described in the PSP layout. (See
the BASIC memory map in the Appendices.) The top-of-
memory word at offset 2 is normally the segment number of
the last segment usable, until memory is freed by an explicit
DOS call or when the program is made resident using function
31h. The long call to DOS (five bytes) is actually at offset 50h,
not at offset 6 as shown in the Technical Reference manual.
The word at offset 6 that contains the number of bytes avail-
able in the segment is usually FFFOh, because of the 10h bytes
used by the storage block. The word at offset 16h is normally
the invoker’s PSP segment. In DOS 3.0, the zero marking the
end of the ENVIRONMENT is followed by a path and file-
name that was used to load the program. This makes it easier
for the program to locate its data files. Changes made to a
program’s ENVIRONMENT will not be reflected in the master
ENVIRONMENT, but they will be present for invoked modules.

36

Memory Organization and Management

Resident Programs

INT 27 (or preferably DOS function 31h so that a return code
can be set) can be used to cause a program to stay resident
after it has finished execution. The size of the module is
passed back from the program and COMMAND.COM insures
that this program becomes logically a part of DOS. This
simply means its storage block, PSP, and program module re-
main in memory and the area is not reassigned.

This is a powerful facility that can be used by modules
that are intercepting other INT vectors in order to preprocess
the interrupt. CHAR28, in Chapter 4, illustrates the use of this
function for the purpose of loading video PEL (picture ele-
ment) map information.

A few considerations apply to resident programs. To pre-
vent the module from being made resident more than once
per session, leave a signature somewhere that will be detected
by the module, causing it not to reinstall itself again. INT
60—-67 can be used for this type of information. If INT vectors
are being intercepted, you will probably want to save the orig-
inal contents of the vector so that you can branch to it after
your routine finishes processing. DOS allows larger programs
to be made resident if function 31h is used. You will want to
provide a stack area for the program since the default size of
eight words is probably not enough. Obviously, care must be
taken to save and restore the registers since the use of the rou-
tine must be transparent. DOS cannot be called from a res-
ident program that processes a timer interrupt.

If you install a resident program, it is wise to provide a
switch that will allow the program to deactivate itself, since
you may want to turn it off during your session. At that time,
release the storage used by the program by using function
4Ah. This will allow the ENVIRONMENT to expand if no
other resident programs are currently loaded (PRINT,
GRAPHICS, and MODE are resident programs). If any other
resident programs exist, releasing memory may have no
apparent effect since resident programs might be after the re-
leased memory. Programs that use this feature must not be
linked with the /HIGH option.

Memory Mapping Programs
To help you better understand vectors and allow them to be
compared to vectors from a previous hardware or memory

37

Memory Organization and Management

environment, some sample programs are- provided. With these
programs, you can examine the changes to memory that take
place as you add hardware to your computer, specify different
CONFIG.SYS options, or use a different version of DOS,
BASIC, or even an application program.

The programs should be used to determine the vector
contents when consulting the Memory Map Appendix, since
differing hardware /software configurations will affect the con-
tents of low memory. I keep a VECTORSD and several
VECTCMPR listings (with BASIC, with different DOS ver-
sions, with differing hardware/memory options) right next to
my computer for instant access to this information.

The programs map each four bytes of a memory range in
hexadecimal starting with the address, the contents of the four
bytes, the segment:offset represented, the absolute address,
and the ASCII translation of the characters. The segment:offset
and absolute address are useful in determining if the four
bytes actually contain a vector. If not, the hex and ASCII
representation of the bytes can be used to examine the con-
tents of the four bytes. Figure 1-11 shows a sample listing. In
all these programs, the output may be directed to SCRN,
LPT1, or PRN rather than to a file. To compare vector images,
an output file must be created.

Figure 1-11. Sample Vector Program Output

Segment=0h; Environment description placed on this line
0000 F6 06 0C 06 060C:06F6 0067B6 ‘y,:..
0004 D6 FE 00 F0 FO00:FED6 OFFED6 ‘V..p’
0008 E4 FE 00 FO FO00:FEE4 OFFEE4 ‘d..p’
000C D6 FE 00 FO FO00:FED6 OFFED6 ‘V..p’
0010 D6 FE 00 FO FO000:FED6 OFFED6 ‘V..p’
0014 E6 FE 00 FO FO000:FEE6 OFFEE6 ‘f..p’
0018 D6 FE 00 FO FO00:FEDé6 OFFED6 ‘V..p’
001C D6 FE 00 FO FO00:FED6 OFFED6 ‘V..p’

Program 1-8 is used to capture the memory image while
BASIC is active. Since BASIC changes some low memory vec-
tors (see the Memory Map Appendix), this program captures
those changes.

The vectors may be desired in non-BASIC modified form.
Program 1-9 will format these vectors from the output created
by using DEBUG>filename, then the appropriate display com-
mand (such as D 0:0 L500), and finally Q to send the data to

38

Memory Organization and Management

the file and exit DEBUG. You will have to type blindly while
DEBUG output is redirected to a file.

For example, this sequence of keystrokes will produce a
file called TEST with the contents of the first 128 bytes of
segment 0:

DEBUG>TEST [Enter]
D 0:0 L80 [Enter]
Q [Enter]

Remember, you will be typmg the second and third lines blind
and you must have DEBUG.COM on your disk. Enter TYPE
TEST to see the contents of this file.

Program 1-10, the final program in this series, compares
the vectors captured by the other two programs. Usually, the
output of this program is substantially shorter than either of
the two input files, unless dissimilar areas are compared. It can
compare the output of VECTORSD with the output of
VECTORSB since both produce output of the same format. Be
careful when changing either program to insure that this fea-
ture remains. Figure 1-12 shows a sample output from this
program. The data is illustrative, not actual. Notice how the

Figure 1-12. Output of Comparing Captured Vectors
file 1 = temp
- file 2 = tempd

Segment=0h; From BASIC
From Debug

001C E2 30

15 0C 0C15:30E2 00F232 ‘bO0..

001C

0024
0024

006C
006C

007C
007C

0088
0088

0090
0090

94 FE

60 30
06 01

27 21
00 01

CO0 34
00 00

8B 88
4A 02

65 88
A8 04

00 FO

15 0C
EF 0B

15 0C
D8 05

15 0C
00 00

15 0C
05 0C

15 0C
2F 0B

F000:FE94 OFFE94

0C15:3060 00F1BO
OBEF:0106 00BFF6

0C15:2127 00E277
05D8:0100 005E80

0C15:34C0 00F610
0000:0000 000000

0C15:888B 0149DB

..p

IIO ’
..0.

sy 7
L.

X

‘ 4 ’

’ ’

0C05:024A 00C29A J...

0C15:8865 0149B5
0B2F:04A8 00B798

¢ ’

e..

/-

39

Memory Organization and Management

lines from BASIC-captured vectors have quotes around the
ASCII portion, while debug output does not. This is a give-
away to which method was used to capture the data. Another
giveaway is Segment= in the environment description line.

As can be seen from running the programs, the vectors
that BASIC temporarily takes over are INT 0, 4, 9, B, 1B, 1C,
23, and 24.

Program 1-8. Capture Vectors from BASIC

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

N 198 *VECTORSB: read and format low storage fro

m basic

PE 110 * output filename can be SCRN:, LPT1:
s etc

Hl 129 *

PL 1306 ASCI®="...." .

6 140 INPUT "Output file name? ",FILEO%

K 15¢ OPEN FILEO$ FOR OUTPUT AS 2
IC 168 INPUT "Segment (@#-FFFF)";SSEG$: SSEG=VAL ("
&h"+SSEGS)
Bl 1790 INPUT "Starting offset (@#-FFFF)";50FF$: SO
FF=VAL ("&h " +S0FF$)
ID 180 IF SOFF <@ THEN SOFF=(32749'+(S50FF))+32767
’ since over &h7fff is neg
P6 199 INPUT "Last Offset (@—-FFFF)";EOFF$: EOFF=V
AL ("&h"+EOQFF$)
PE 2086 IF EOFF <@ THEN EOFF=(32769'+(EQFF))+327467
> since over &h7fff is neg
KD 2196 INPUT "Enter descriptive line”;DESC$
P6 220 PRINT #2, "Segment="HEX${(SSEG) "h; ";DESC%
KI 230 MAX=32767%2+1
L 240 IF SSEG <@ THEN SSEG=(3276%'!+(SSEG))+32767
’ since over &h7fff is neg
FKk 250 DEF SEG=SSEG
Kk 266 FOR ADDR=SOFF TO EOFF STEP 4
H6 278 CSH=PEEK (ADDR+3) :CSHC=CSH AND &H7F: IF CS
HC>32 THEN MID${(ASCI%,4,1)=CHR$(CSHC) ELSE
MID${(ASCI%,4,1)="."
L6 28¢ CSL=PEEK (ADDR+2):CSLC=CSL AND &H7F: IF CS
LC>32 THEN MID$(ASCI%,3, 1)=CHR$(CSLC) ELSE
MID$(ASCI%,3,1)="."
B0 29¢ IPH=PEEK{(ADDR+1):IPHC=IPH AND &H7F: IF IP
HC>32 THEN MID$(ASCI%$,2,1)=CHR$(IPHC) ELSE
MID$(ASCI$,2,1)="."
EL 309 IPL=PEEK (ADDR+®):IPLC=IPL AND &H7F: IF IP
LC>32 THEN MID${(ASCI$,1,1)=CHR$(IPLC) ELSE
MID$(ASCI%, 1,1)="."

40

Memory Organization and Management

AE

cc
]
X
cL
DB
JF

N
PB
60
&6
6D
Ne

01
Fl

319

320
330
349
350
360
379

389
399
409
410
429
430

449
459

PRINT #2,RIGHT$ ("##2"+HEX$ (ADDR) ,4);"
*current offset
IPL$=RIGHTS ("@"+HEX$(IPL) ,2)
IPH$=RIGHT&("@"+HEX${IPH) ,2)
CSL$=RIGHTS ("@"+HEX$ (CSL) , 2)
CSH$=RIGHT$ ("@"+HEX$ (CSH) ., 2)
PRINT #2,IPL$" "IPH$" "CSL%" "CSH&" ";
PRINT #2,CSH®;CSL$":"IPH%; IPLS" "3
’ cs:ip image

SEG= (CSHX256+CSL)
DSP=1PHX 256 + IPL
VEC=SEGXx16+DSP: HI=INT{(VEC/MAX): REST=H
I1¥MAX: LO=VEC-REST-HI

PRINT #2,RIGHTS ("S208@2"+HEXS$ (HI) +RIGHT
$("0O3PPP" +HEX$(1.0) ,4) ,6); * absolute addr
ess
PRINT#2," *"ASCI&""™"
> CCs=INKEY$: IF CC#%="" GOTO 345 for line
—at—-a—-time
NEXT
CLOSE 2: END

Program 1-9. Capture Vectors from DEBUG

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

KB
14

AB
1
PH
BA
C6
NN
NP
LC
J0
IL
AR
AG

KH
EH
iK
NC
AB
8

A

129
195

186
187
119
120
13¢
149
169
179
189
199
200
219

220
239
244
250
268
279

280

*VECTORSD: read and format debug output

* WARNING debug must have been run in 8¢ c

olumn mode

’ for VECTCMPR to properly work

INPUT "Input file name? ", FILEI$

INPUT "Output file name? ",FILEOS

OPEN FILEO$ FOR OUTPUT AS 2

INPUT "Description of environment?",DESC$

PRINT #2,DESC%

OPEN FILEI$ FOR INPUT AS #1 LEN=8¢
MAX=32767%2+1

IF EOF (1) THEN GOTO 419

LINE INPUT#1,X$

IF LEFT$(X$,1)="-" GOTO 19¢ ’bypass debug
prompts
IF X$="" GOTO 199 ’skip blank lines

OFFSET$=MID$ (X%, 56,4)
OFFSET=VAL ("&h"+0FFSET$)
FOR X=@ TO 3
CUROFF=0FFSET+{X%4)
PRINT #2,RIGHT$("#80"+HEX% (CUROFF) ,4);"
"3 current offset
IPL$=MID$ (X$, 12+(X%12),2): IPL=VAL ("&h"+
IPLS)

41

Memory Organization and Management

PB
KM
KN
ND
N
LF
PJ
i
HE

6J

349
359
360

379
389
399

409
410

IPH$=MID® (X%, 15+ (XX12) ,2) : IPH=VAL ("&h"+
IPHS)

CSL$=MID$ (X%, 18+{(Xx12),2):CSL=VAL("&h"+
CSLS)

CSH$=MID% (X$,21+(X%12) ,2) :CSH=VAL ("&h"+
CSH%$)

PRINT #2,IPL$;" ";IPH$;" ";CSL%;" ";CSH
s3" "3 * image of 4 bytes

PRINT #2,CSH%;CSL$":"IPH®$; IPL$" ";

* cs:ip image

SEG=(CSHX256+CSL.)

DSP=IPHXx 256 + IPL

VEC=SEGX16+DSP: HI=INT (VEC/MAX) : REST=HI X
MAX:LO=VEC-REST-HI

PRINT #2,RIGHT®("@8"+HEX$ (HI)+RIGHTS("@
P29 +HEX$(LO) ,4),6); * absclute

PRINT #2," ";MID${(X$,62+(X%4),4) ’sh
ow ascii translation
NEXT
GOTO 199
CLOSE 2: END

Program 1-10. Comparing Captured Vectors
For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

KD
H

HI
PK
6
66
M
6C
FE
IH
Mo
I
1D
DH
L
BE

U8
LK

FE
HC

42

180
119

120
139
149
150
169
170
189
199
200
219
229
239
240
259

260
270

280
299

*VECTCMPR: compare two vector files, notin
g differences

® you may use scrn: or lpti: for outp
ut file

INFUT "Input file one name? " FILELS
INPUT "Input file two name? ", FILE2%
INPUT "Output file name? ", ,FILEO$

OPEN FILEO$ FOR OQUTPUT AS 3

OPEN FILE1$ FOR INPUT AS #1 LEN=8¢

PRINT #3,"file 1 = "FILE1$
PRINT #3,"file 2 = "FILE2%
PRINT #3," "

OPEN FILE2% FOR INPUT AS #2 LEN=8¢
MAX=32767%2+1

GOTO 429

*IF LEFT$(X$,1)="-" GOTO 40@

*IF LEFTH(X$,1)="%" THEN Z4$=X$: 7Z=1: GOSUER
3S@: GOTO 499

*IF LEFT$(Y$,1)="-" GOTO 419

TIF LEFTS (Y%, 1)="%" THEN Z$=Y$: Z=2: GOSUR
359: GOTO 419

IF X$="" GOTO 4929 ‘skip empty lines

IF Y$="" GOTO 414 ‘skip empty lines

Memory Organization and Management

60 399 IF LEFT$(X$,34)=LEFT$(Y%$,34) GOTO 420 ’omi
t asci translation in test

HA 310 Z$=X$: Z=1: GOSUB 350

1 320 Z$=Y4$: Z=2: GOSUB 350

IR 338 PRINT #3," ": GOTO 420

K 344 *——- print selected line ——-—

PF 35¢ PRINT #3,7%

N 368 RETURN

W 376 *——— all done —--—-

A6 389 CLOSE 1,2,3: END

11 399 °

0K 400 GOSUB 44¢: GOTO 240 ‘read #1

) 419 GOSUB 47¢: GOTO 249 ‘read #2

0C 42¢ GOSUB 44¢: GOSUB 47¢: GOTO 244 *read both

Bl 43¢ °>——— read file one -——

HA 4490 IF EOF(1) GOTO 389

D0 45¢ LINE INPUT#1,X%$: RETURN

BL 460 " ——— read file two ——

IC 47¢ IF EOF(2) GOTO 380

F6 489 LLINE INPUT#2,Y%: RETURN

BASIC Internal Areas

BASIC partitions the available memory into several discrete
areas that are used to contain certain types of data. The .COM
file that contains the extensions to Cassette BASIC is (as al-
ways) located immediately after the PSP. The PCjr contains
the .COM equivalent extensions in the cartridge, leaving more
memory available for the user’s BASIC program. This is
particularly important for a 64K PCijr.

The workspace that BASIC uses to store a program and its
associated variables begins after the BASIC extensions. The
segment number of the beginning of this workspace is stored
in locations 510-511h. Program 1-11 will display this segment
number and set a variable to the value that corresponds to the
default DEF SEG. Even though the CS register is called the
code segment register, BASIC uses this register as its own data
segment register.

Program 1-11. Determining the DEF SEG Segment Number

199 °BASDS: display the BASIC data segment add
ress

119 °

12¢ DEF SFG=0:X=PEEK (&HS510) +PEEK {&HS511) X256

1340 PRINT "BASIC’s data segment begins at ";HE
X6(X);": 9900 or decimal”"X216

43

Memory Organization and Management

The first 4K of memory in the BASIC workspace is used
to store information needed by the BASIC interpreter during
the course of its work. This area contains many interesting bits
of information as shown in Table 1-2. You can undoubtedly
find other important data in this area by observing changes in
this area while running programs or direct BASIC commands.

Table 1-2. Interpreter Work Areas
Offset Length Contents

02Ch 2 Offset of stack end
02Eh 2 Line number of line being executed
030h 2 Offset of program text
04Eh 1 Character color in graphics modes, default=3
05Ch 1 Number of lines before scrolling screen
06Ah 1 Keyboard buffer contents (0=none, 1=some)
1F7h 256 Keyboard buffer
30Ah 2 Offset of string space start
32Fh 2 Offset of string space end
 347h 2 Line number of last error
350h 2 DEF SEG segment override
356h 2 Offset of program text end -
358h 2 Offset of scalar variables
35Ah 2 Offset of array variables
35Ch 2 Offset of free space
464h 1 FEh if program protected
4F1h 11 Last file name
650h Key titles
702h 2 Segment number of BASIC PSP
F7%h 2 Random number seed

A PSP segment number is included in this area at location
702-3h. By referencing that segment and looking into the
formatted parameter areas, you can obtain runtime parameters
from the BASIC start-up line. If this line was entered to start
BASIC—""BASIC ABC DEF XYZ”—then program ABC would
be run, with DEF and XYZ left in the parameter areas for the
ABC program to act upon as desired.

The various pointers contained in the interpreter work
area divide up the BASIC workspace into partitions for data
storage, as illustrated in Figure 1-13. This diagram is an
amplification of that found in the 2.0 or PCjr BASIC manual
on page I-2 or the DOS 3.0 BASIC manual on page B-29.

44

Memory Organization and Management

Figure 1-13. BASIC Workspace

DOS 2.10
24K-

* ENVIRONMENT for BASIC

*P BASIC Extensions Disk=12K, Ad\}anced=22K

Start of BASIC 64K workspace:
(/M or CLEAR may be used to size)

DS:0 4K interpreter work area « redirected
... INT 0,4,9,B,
Communications (/C) buffers 1B,1C,

180h default size 23,24

RS-232 routines

5EOh default size

File (/F) control blocks
234h default size

File (/S) random buffers
80h default size

DS:30-31> BASIC program text

DS:32F-0> Strings, toward 0000

DS:30A-B>

..... DSZC-D>Stack200hbytes
(/M or CLEAR may be used to size)

Unused and available

* = Storage chain block, 10h bytes
P = Program segment prefix, 100h bytes

If we can determine the DEF SEG value, which is the start
of the BASIC workspace, we can also determine the address
for the end of the workspace. This is a very useful thing to
know, since it tells us where we can BLOAD or POKE machine
language subroutines without destroying any of BASIC's data.

45

Memory Organization and Management

If the default DEF SEG number is now known to be con-
tained in variable X by PEEKing the value from absolute loca-
tions 510-511h, then H.SEG=X-+&h1000 gives us the segment
number that is just beyond the BASIC 64K workspace and
HI.ADDR=HI.SEG * 16 yields the address of the first byte be-
yond BASIC. If you have shortened the workspace size with
CLEAR or BASIC start-up options, simply adjust 1000h by the
appropriate number of segments.

The next thing that should be done is to determine if
there is enough memory installed to store our machine lan-
guage routine (or routines) above the BASIC workspace. If not,
we can resize BASIC to provide room for the routine. Absolute
location 413-4h contains the number of Kbytes of usable
memory. So DEF SEG=0:MEM.SIZE=PEEK(&h413)+256*
PEEK(&h414) gives us the amount of memory available. If
HI.ADDR plus the size of our routine exceeds MEM.SIZE, then
we need to resize BASIC. Otherwise, our routine will fit above
BASIC.

To resize BASIC to make room for the routines, simply
calculate the override value for the 65,535-byte default
workspace size by subtracting the length of the routines from
65,535 and use CLEAR n, where 7 is the recalculated
workspace size in bytes (not segments).

Program Statement Storage

Your program is reduced in size by tokenizing the BASIC
keywords in the text. Tokens are one- or two-byte shorthand
codes for the BASIC keywords and are categorized by the ver-
sion of BASIC that they are implemented in. Tokenized BASIC
text is stored in the BASIC workspace, and the beginning of
the program is pointed to by offset 30-31h in the interpreter
work area. The program lines are stored in the format shown
in Figure 1-14. This format is common to Microsoft BASIC im-
plementations on various computers. A list of the BASIC to-
kens is presented in the Appendices. You can use the list to
find the token for a keyword or the keyword for a token.

BASIC Variable Storage

Program variables are stored after the text of the program and
are partitioned into types of data. First come the scalar (non-
array) variables, the first of which is pointed to by DS:358h.
Next is the area pointed to by DS:35Ah where array variables

46

Memory Organization and Management

Figure 1-14. BASIC Line Storage Format

NL INM|LL |LM|....tokensand text.... | O

NL Offset of next line, LSB
NM Offset to next line, MSB
LL Line number, LSB
LM Line number, MSB
0 end of line marker

If NL and NM both contain zeros, then that is end of program with
no BASIC text on that line.

are saved. The entire contents of this area must be pushed up-
ward whenever another scalar variable is added to the variable
pool below it.

From the bottom of the stack area, the string variables are
saved, but the scalar variable pool holds a pointer to the ac-
tual string contents. This string pointer can also point to the
string in the program text, saving space in the string variable
pool if the string has not been modified by the program. The
string variable pool has two pointers, DS:30Ah which points
to the highest address used in the pool and DS:32Fh which
points to the lowest address. Remember that the string vari-
ables grow downward into the free area while the scalar and
arrays grow upward into it. The free area is pointed to by
DS:35Ch for the low address and DS:32Fh for the upper
boundary.

The BASIC manual contains a general description of the
variable storage format on page I-4, but some additional facts
will prove useful. The common 4- to 42-byte header used for
all variables is shown in Figure 1-15. We see that 1-character
variable names save no storage in the variable pool compared
with 2-character names. Variable names are unique up to 40
characters.

Integer variables (type 2, type declaration %) are stored in
LSB/MSB format. The high-order bit is used to denote a neg-
ative value, in which case the number has been complemented
(FFFFh = —1, FFFE= —2, etc). The range of integer variables
is —32,768 to 32,767.

47

Memory Organization and Management

Figure 1-15. Standard Variable Header
0 1 2 3 4 4+Lr

Ty |N1|N2 | Lr | remainder of variable name | Value

Ty Type code of variable, length of data field
2 integer
3 string
4 single precision
8 double precision
N1 First character of variable name
Type declaration characters (% $ #) are not stored as part of
the variable name
N2 Second character of variable name
Lr Length of remainder of name or zero
Remainder of name is stored with the high-order bit of each
byte turned on.
The value for the variable begins at offset 4+Lr

String variables (type 3, type declaration $) contain a one-
byte length code followed by a two-byte offset to the string in
the string pool or BASIC program.

Single-precision variables (type 4, type declaration !) use
three bytes (24 bits) to contain the exponent with right-to-left
significance. The third byte high-order bit is the sign of the
mantissa, 0 signifying positive. The fourth byte contains the
binary exponent (the number of digits to the left of the binary
point before a 1 is found) with the high-order bit turned on.

Double-precision variables (type 8, type declaration #) ex-
tend the single-precision variable’s three-byte mantissa to
seven bytes (56 bits). The eighth byte has the same format as
the single-precision fourth byte.

Array variables use the standard variable header, but after
any remaining characters in the name are the fields shown in
Figure 1-16 followed by the data in the array.

The size of each element in the array is indicated by the
type code in the variable header. The arrangement of the data
values within the variable descriptor is rather interesting. Con-
sider the example array G(1,1,2). First, be aware that Dnz,
Dny, and Dnx will appear as 3,2,2 since dimensions include a

48

Memory Organization and Management

zero numbered element. The elements would be in the follow-
ing order: G(0,0,0), G(1,0,0), G(0,1,0), G(1,1,0), G(0,0,1),
G(1,0,1); G(0,1,1), G(1,1,1), G(0,0,2), G(1,0,2), G(0,1,2), and
G(1,1,2).

Strings are stored in the string variable pool with no inter-
vening control information. For example, K$="abcde” +"
:K1$="1fgh”+"i” is stored as ““fghiabcde” in the string pool.
The strings would be located in the string pool since the pro-
gram has modified them. The string pool is built downward
from the top, so the strings are in reverse order from their
definition sequence.

Figure 1-16. Array Dimension Headers
0 1 2 3 _ 4

S'z Dm Dnz Dr'ly Dnx ... |Values

Sz Number of bytes in array

Dm Number of dimensions

Dnz Size of last dimension

Dny Size of next-to-last dimension

Dnx Size of second-from-last dimension

Protected Programs

BASIC provides a protection feature that allows a program to
be saved in protected mode which prevents examination or
modifications to the program. The BASIC manual states that
there is no way to unprotect a protected program. POKE is not
allowed from the immediate mode when a protected program
is in memory. However, we will see how a program can pro-
tect or unprotect itself if desired (such as when the correct
password has been entered) and how you can unprotect any
BASIC program. The key to protection is the byte at DS:464h
and the first byte of a BASIC program saved on disk.

- When a protected BASIC program is saved, the text of the
program is enciphered so that simply changing the one-byte
indicator at the start of the file is not enough to unprotect or
protect the BASIC program. The first byte of the BASIC cre-
ated file is FFh for normal program text, FEh for a protected
program, or FDh for BLOAD files. Programs saved with the
ASCII option and data files do not have a leading byte that
describes the file format.

49

Memory Organization and Management

The BLOAD command is the key to unprotecting. By using
BLOAD, we can overlay the byte at DS:464h that indicates
that the program is protected. Then we can list, change, and
save the program as if it were never protected.

First, we must create a key file that will unlock a pro-
tected program. We'll use DEBUG to do this, as shown in Fig-
ure 1-17. The entered byte meanings are as follows: FDh
indicates a BLOAD file, 66 66 is a dummy segment number,
64 04 is the offset of location 464h, 01 00 is the one-byte
length of the following data, 00 is the new value to be placed
in DS:464h that indicates the program is not protected, and 1A
is the standard BASIC end-of-file marker. This is the format of
all BLOAD files.

Figure 1-17. Creating SESAME.BLD

A>DEBUG
-n sesame.bld
-e 100 fd 66 66 64 04 01 00 00 1a
-rex
9
-W
-q
To use our newly created key, enter BASIC and load a
protected file but do not run it. See what happens when you
try to list it. Enter the command

BLOAD “sesame.bld”,&h464

and the program is now unprotected. Try listing it now.

You may want your program to decide to unprotect or
protect itself dynamically by setting DS:464h to FFh for
protection or 00 to unprotect itself.

Issuing DOS Commands from BASIC

You can rename BASIC/BASICA.COM on the PCjr and run
them to gain access to the BASIC SHELL command. Or you
can use those programs under DEBUG on the PCjr without
restriction. The PCjr cartridge will not allow return from a,
SHELL command, so we are stuck with using a disk version of
BASIC to use SHELL on the PCjr. In all cases you still need
the BASIC cartridge since Cassette BASIC in ROM checks for
it when DOS is running. Of course, using a noncartridge ver-
sion of BASIC on the PCjr excludes the fine PCjr enhance-
ments to BASIC for video and sound.

50

Memory Organization and Management

On either the PC or PCjr, DOS 2.0/2.10 contains a ver-
sion of SHELL that has a rather severe bug in the way it
tramples on what it assumes to be offset 30-31h of the PSP,
but which is really in the interpreter work area in BASIC. You
can circumvent this pre-DOS 3.0 SHELL problem by saving
and restoring this pointer to the beginning of the BASIC pro-
gram text. The sample routine in Program 1-12 allows SHELL
to be used successfully in DOS 2.0/2.10 BASIC or BASICA
(not Cartridge BASIC).

The SHELL command causes a COPY of COMMAND.COM
to be executed, so you may use SHELL to process batch file
commands, use external and internal DOS commands, and
perform redirection and piping. Many restrictions apply to the
use of the SHELL command. You should be prepared to reset
your screen mode and clear the screen when BASIC is re-
entered. Interrupt vectors that are critical to your work should
be saved and restored. Modifications to the following device
ports could prove fatal: 8259, 8253, 8237, 8255, and 8250.
Open files (including redirected standard input/output) should
not be modified by any action during the SHELL session. Do
not use the /M option when starting BASIC. You should not
invoke terminate-but-stay-resident types of programs. BASIC
cannot be started in a SHELL session.

Program 1-12. Issuing DOS Commands from BASIC

166 "MEMSHELL: Call for DOS functions from BAS
1cC

116 * PCir will receive a "Can’t continue afte
r SHELL" message

12¢ ° You may run BASIC(A) under DERUG or rena
me BASIC(A)

139 *

146 FPRINT "Enter DOS command for SHELL

1S58 INPUT SHELL.CMD$ °> just press enter if you
wish to stay in DOS

166 ° unit you enter the command EXIT.

170 ° Save data from BASIC’s non-FSP

180 DEF SEG: X=PEEK (&H3@) : Y=PEEK (&HI1) ‘“offset
to pgm

1996 SHELL SHELL.CMD$

209 °> Restore data to BASIC s non—-PSP

216 DEF SEG:POKE %H3@,X:POKE &HZ1,Y ‘offset t
o pam

22¢ PRINT"Back in BASIC"

238 END

51

Memory Organization and Management

DOS 2.0/2.10 SS:SP Sequence Errors

The order in which the stack segment (SS) and stack pointer
(SP) are set is significant to the PCjr and to 8088’s that were
released without an interlocking mechanism. SS should be set
first, then SP. Any interrupt that occurs between the setting of
SP and then SS would cause the wrong stack segment to be
used, creating a real mess that usually means a power-on se-
quence to clear it. Using CLI to turn off interrupts helps, but
an NMI from the PCjr keyboard (such as the Break key) can’t
be masked off, and it’s a pain to have to remember to CLI/STI
around SS:SP settings.

DOS 2.0 and 2.10 were released with some SS:SP settings
in the wrong order. You can fix these errors. First, make sure
that this is not the only disk that contains the system files and be
sure you have a duplicate copy of any important files saved on
another disk. If you make a mistake, you can create another
copy of DOS from an unaltered disk by using FORMAT /S.
Now, change the attribute byte for the file IBMDOS.COM
with the commands:

A>DEBUG

- 1100 0 51 Iload the directory

- d120 Ic show IBMDOS.COM and attribute

- e 12B 20 nonsystem, non-read-only, nonhidden file
- w100 0 5 1 write the directory back

- q

Now, DEBUG IBMDOS.COM and unassemble the follow-
ing areas for eight bytes each: 3AC, CD1, 1522, 311D, 325F,
409B. Change the order that SS and SP are set, being careful
of the sequence used in the last instruction group. Write the
file back to disk with the W command. You can now set the
file attribute back to 27h by using the same process as you
used to set it to 20h.

1/O Port Address Space

Besides the memory address space, there is another separate
address space within the PC that is used for communications
with /O devices. The I/O port address space contains 1024
bytes (1K) and is accessed with the special IN and OUT
Assembler instructions (INP and OUT in BASIC programs,
and I and O in DEBUG).

I/O ports cannot necessarily be written to even if they
can be read, or read even if they can be written to. The ex-

52

Memory Organization and Management

pected contents of the bits in the port, as well as the ability to
read or write, are determined solely by the device connected
to the port.

The I/O port address space is summarized in Figure 1-18.
Those areas that are not used or reserved could be used by an-
other vendor’s equipment or future IBM products. See the Port
Map Appendix for more detailed information about the port
address space contents.

SRVCCALL: BIOS/DOS Interrupt/Function
Service Routine

Functional compatibility in future releases of DOS or on new
IBM computers is aided by utilizing the provided interrupts
and DOS function calls. Also, BASIC is limited to a set of ser-
vices that do not currently allow for the full range of capabili-
ties provided in the interrupts and function calls. For example,
the amount of used/available space on any attached disk is
readily available from DOS, but no function supports this re-
quest for the BASIC programmer. The same is true of many
other handy and available DOS and BIOS services.

An obvious solution to the problem is to provide a ma-
chine language subroutine for BASIC programs that allows the
BASIC programmer to call interrupts and DOS functions, pass-
ing and receiving the standard register and flag parameters.
Additionally, the returned parameters from one call must be
available for later passing to another call. Program 1-13 is a
demonstration program that shows the use of a SRVCCALL
machine language routine that provides those features. The
machine language module is BLOADed at the end of the
BASIC workspace, then called to pass and return DOS/BIOS
parameters.

Some interrupts and DOS functions just don’t make any
sense to use from a BASIC program since BASIC provides the
equivalent function, and others can be downright ridiculous.
DOS function 27h (terminate but stay resident) is an example.
Even though you will have a tool to call any of the interrupts
or functions, choose wisely those that you use.

The demonstration BASIC program illustrates the use of
the subroutine in seven different calls for BIOS/DOS services,
including the use of ASCIIZ strings and pointers to parameter
areas (be sure to delete line 210 if you don’t have a printer
connected). Only 12 BASIC lines (Program 1-14) are needed to
provide the SRVCCALL facility.

53

Memory Organization and Management

Figure 1-18. Allocation of PC 1/O Port Address Space

000h
010h
020h
030h
040h
050h
060h
070h
080h
090h
0AOh
0BOh
0COh
0DOh
0EOh
0FOh

54

1/0 ports 000h through 0FFh—System board use

Fh

+

Oh 1h 2h 3h 4h 5h 6h 7h 8h 9h Ah Bh Ch Dh Eh

+

DMA 8237-A

—+ +

MFG

+

INT 8259

+

— + +

TIMER 8253-5

+ N +

PPI 8255A-5

+

DMA Page Re'gs

+ +

—_t . : +

N M I Mask Register

-

+ + : + +

+

+

Oh 1h 2h 3h

1/0 ports 100h through 1FFh—System board and 1/O channel use
Restricted to output-only use, unused in PC .

4h Sh 6h 7h

9h Ah Bh Ch Dh Eh

Fh

Memory Organization and Management

200h
210h

220h
230h

240h
250h
260h
270h
280h

290h

2A0h
2BOh
2C0h
2D0h
2EOh
2F0h

300h
310h
320h
330h
340h
350h
360h
370h
380h
390h
3A0h
3BOh
3COh
3D0h
3EOh
3FOh

1/0 ports 200h through 3FFh—I/O channel use

Oh 1h 2h 3h 4h Sh 6h 7h 8h 9h Ah Bh Ch Dh Eh Fh
)) ' ' G ame C on t ro] '
Expansion Unit
Reserved
Reserved
-) 3270 PC
R' eserved Asynch Communications 2
Oh | 1h | 2h | 3h | 4h | Sh | 6h | 7h | 8h | 9h | Ah | Bh | Ch | Dh | Eh | Fh
Prototype Card
) Prototype Card
Fi ixe d Di s k
XT/370
) Parallel Printer
SDLC or Second Bisynch Communications
Flrst Bxsynch Commumcauons)
Monochrome Dlsplay and Parallel Pnnter)
R eserve d '
Color/Grap‘ucs Dlsplay - ’
Reserved -)
Disk Asynch Communications 1
Oh 1th 2h 3h 4h 5h 6h 7h 8h 9h Ah Bh Ch Dh Eh Fh

55

Memory Organization and Management

The use of an integer array to pass parameters between
BASIC and the machine language routine would minimize the
instructions in both the BASIC and machine language
routines. For the BASIC program, the subscript could be a
variable name to make it clear which register is being used,
that is, PARMS(CL). Instead, I've elected to use discrete vari-
ables for the sake of rapid understanding of the code in the
machine language routine. Since the instruction lines are slight
variations of the preceding group of lines, duplication and
modification of the preceding lines will speed data entry.

I've also arbitrarily chosen to use the BLOAD technique
for storing the machine language module since the other tech-
niques of using a BASIC string, array, or POKEing beyond
BASIC are illustrated elsewhere in this book.

To create the SRVCCALL machine language routine, enter
either the source code shown in Program 1-15 (if you have an
assembler) and save it using the filename SRVCCALL.ASM, or
use DEBUG to enter the hex values at the indicated offset and
save the module as SRVCCALL.COM.

Assembler owners should then use the following batch
file to create the SRVCCALL.COM module (you must have
ASM, EXE2BIN.EXE, and your source file on the same disk):

asm %1,,,;
link %1,,con,;
exe2bin %1.exe %1.com

Once you have the batch file created, assuming you
called it CREATE.BAT, enter this command to create
SRVCCALL.COM:

A>CREATE SRVCCALL

Now we’ll use the .COM module to create the necessary
.BLD (BLOAD) module using DEBUG. Simply move it down
seven bytes, and add the .BLD header as follows:

DEBUG SRVCCALL.COM
-n SRVCCALL.BLD
-m 100 1 a8 107
-e 100
fd 00 00 00 00 a8 00
-rex
af
-w
-q

56

Memory Organization and Management

Program 1-13. SRVCCALL.BAS

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

HK

XD

66

NG

HN
EL

KA
NF
FA
LY
CA

P
EE

HP
N
KE

190

11¢
12¢

13¢
149
15¢

168
170
180
192
20¢
219

229
239
249
259
260
279

280

299

3o9
314
32¢

330
349

358
3608
37¢
380
390
490
419
429
43¢
449
450
/69

*SRVCCALL; Demonstrate DOS/BIOS interrupts
/functions from BASIC

* Display options: —-1=yes, @=no Caption
is global switch
CAPTION=-1: BEEP.ON=-1: FLAG.DEF=-1

GOSUB 479 ’install machine language mod
ule

? ——— perform demo routines ———

GAOSUB 61¢

GOSUB 710

GOSuUB 79¢

GOSUB 879

GOSUB 9&9 *delete this line if printer n
ot connected

GASUR 1989

GOSUB 1179

END

? -—— CALL DOS/BIOS ——-—

FLAGSYZ=FLAGSY. AND &HCD! °"isolate pertinent
flags

IF CAPTION THEN PRINT" DOS/RIOS call: IN

T "HEX$ {INTERRUPTX) "h, function"HEX${(AHL)"

hll

IF CAPTION THEN LOCATE ,4: PRINT" sent

FLAGS = "HEX$(FLAGSYL) "h";

DEF SEG=SRVCCALL.SEG ‘segment bloaded at

CALL SRVCCALL.QOFF (FLAGSY, INTERRUPTY,ESY,S1

%,DI%, AHY, ALY, BH%, BLY%, CH%L, CL%, DH%L, DL%)

FLAGS%Z=FLAGSYZ AND &%HCD! “isolate pertinent
flags

IF CAPTION THEN IF BEEP.ON THEN REEP

IF NOT CAPTION GOTO 459

PRINT"”, returned FLAGS = "HEX$(FLAGSZ)"h"
*——— flag interpretation ———

IF NOT FLAG.DEF GOTO 456

PRINT" value: 8421 8421 8421"
PRINT" F oD S A c"
PRINT"” L VI GR U R"
PRINT"” 6 RR NO X y"
>

RETURN

? LOAD MACHINE LANGUAGE ROUTINE

57

Memory Organization and Management

FN
BN

EC
Ll

Fl
FI
BC
1c
KO
X
i1
118
H

P
PE

HF

EF

AB
L

FN
6N

NB
oK
CF
FF
EB

Fd

58

479
489

499
So9

S19

o529
53¢
5S40
SS9

S60
S7¢
S89
999
&00
b1¢g
629
630

649

&59
&60

&70
&8¢

699

7909
710
720
730
749
759

768
779

78¢
790
809
81¢
829
83g
849

CLS: PRINT "Installing SRVCCALL...";

DEF SEG=@: BASWS=PEEK (%HS18) +256%PEEK (&H51
1) ’find end of basic workspace
BASEND=BASWS+&H1088@+2: SRVCCALL .SEG=BASEND
DEF SEG=SRVCCALL.SEG: SRVCCALL.OFF=8 ‘’use
offset @ because of LEA

BLOAD "SRVCCALL.BLD”,SRVCCALL.OFF ’loa
d srvccall after basic

PRINT"completed."”: GOSUB 54¢: RETURN

*——— CLEAR REGISTER PARAMETERS -—--

DEF SEG: INTERRUPTV=%H21: FLAGSY=@

AHYZ=0: AL%=0: BH/.=0: BL7Z=0: CHY.=@: CL%=0: DHY.=0:
DLY=@:ES/=0:51%=0:D17=0

IF CAPTION THEN PRINT: PRINT"Regs zeroed.”
RETURN

>

> —%—%—-%X— DEMO ROUTINES —X-—X—¥%-

> ——— get disk free space ———

’ DOS function 36

e returned: bx=free clusters, dx=total
clusters

’ cx=bytes/sector, ax=sector
s/cluster

GOSUB 549 °clean up registers

INTERRUPTZ=%H21: AHZ=%&H3I6: DL%Z=0 > dl=¢
signifies default drive

GOSUB 279 “call assembler routine 7

IF ALY=%HFF AND AHZ=%HFF THEN PRINT"DRIVE
NUMBER"DLZ" INVALID": GOTO 70¢

PRINT (BHZX256+BL%) X {AHYX256+AL7) X (CHL X256+
CL%)"available bytes on disk"

RETURN

? ——— Request vector address ———
’ DOS function 3Sh

’ returned: es:bx vector

GOSUB S4¢ “clean up registers
INTERRUPT%Z=8H21: AHZL=%H35: ALZ=%H18 * get
vector for INTi€¢ video

B60SUB 27¢ “call machine language routine
PRINT "vector points to "HEX$(ES%Z)":"HEX®(
BHZX256+BL%)

RETURN

? ——— Request DTA address ——-—

? DOS FUNCTION 2FH

4 returned: es:bx DTA address

GOSUB 540 °*clean up registers
INTERRUPTZ=&H21: AHZ=&H2F
GOSUB 278 °“call machine language routine

Memory Organization and Management

NA

NO
HD
BE
K6

PL

EC
HL

AB
oL

RN
NL
a0
LI
LN

HL
Hi

JF

HR

HH
EL
N
cp
1D
B
FA

KL
LD

KA

859

869
879
889
898

999

914
20

939
949

959
68
979
98¢
993

1000
1819

1040
1959
1960
1879
1289
1490
1100

PRINT "DTA is at "HEX$(ESJ)":"HEX% (BHZ¥254
+BL%Z)

RETURN

* —-- Request timer value ——-—

’ bios INT 1a, type @ service

* returned: dx=low, cx=high, al=@ if n

ot 24 hrs

GOSUB S4¢: Y=CAPTION: FOR X=1 TO 7: IF X>1
THEN CAPTION=9

GOSUR 92@: NEXT: CAPTION=Y: RETURN
INTERRUPTYZ=8H1A: AHL=%HO® * ah%=0 is timer
read

GOSUR 274 °call assembler routine °*

PRINT "Timer=";CHZ;CL%Z;DH%Z:DLY%: IF ALY <@
THEN PRINT"OVER 24 HOURS"

RETURN
" ——- Request printer output —--—
: DOS function S
’ returned: nothing

GOSUR S4@: Y=CAPTION: CAPTION=¢ ~turn off

tracing captions
INTERRUPTY%=%H21: AHZ=%HS: TEXT$="D0OS functi
on 5. Now you can call BRIDS/DOS from BRASI
Ctrn

FOR X=1 TO LEN(TEXT$): DL%Z=ASC{(MID$(TEXTS
«X,1)): GOSUR 279: NEXT

DL%=13: GOSUR 276: DLY%=10: GOSUR 27@ ’end
with CR/LF

CAPTION=Y: RETURN

>

* ——- get country information ——-

’ DOS function 38

* returned: 24 bytes of info in 32 by

te area

1119 GOSUB S4¢ “clean up registers
1128 INTERRUPTZ=%H21 : AHZ=&H38: BACK$=SPACE$ (32)

1139

+"" *DATA RETURNED

BACK !=VARPTR(BACK$): DEF SEG: DHY%=PEEK (RA
CK!+2): DLY=PEEK(BACK'+1)

1140 GOSUR 27¢ °call machine language routine
115¢ PRINT "Country info= ";BACKS$

1168 RETURN

1179 * —-—- get file attribute byte -——

1180 * DOS function 43

1194 ~° returned: cl=attribute

1209 GOSUR 548 “clean up registers

59

Memory Organization and Management

P
K
F1
06

30

1214 INTERRUPTZ=%HZ21:AHYL=8%H43: FILE$="CoMmAnD.C
oM"+CHR$ (#) “case not significant

1224 FILE!'=VARPTR(FILE$): DEF SEG: DHY=PEEK(FI
LE!'+2): DLY%=PEEK(FILE!+1)

123¢ GOSUB 278 "call assembler routine

1249 PRINT FILE%$; "attribute="HEX$(CL%)"h": IF
(FLAGSY AND 2°¢) THEN PRINT"ERROR CODE="A
L%

1258 RETURN

Program 1-14. Functional Subset of SRVCCALL.BAS
Invocation
For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

HM
AE
FC
LF
56
ER

FR
]

EL

IF
BK

EA
MK

O

iF

1¢ GOSUR 470 *install machine language modul
e

2¢ GOSUB 279 *call machine language routine

38 *Main body of program
259 END
260 ° —-—— CALL DOS/BRIOS —-—
278 FLAGSYZ=FLAGSYZ AND &HCD1 *isolate pertinent
flags
319 DEF SEG=SRVCCALL.SEG *segment bloaded at
324 CALL SRVCCALL.OFF (FLAGSY, INTERRUPTZ,ESX,SI
%, D1%,AH% ALY, BHYL,BLZL,CHZ,CL%,DHYZ,DL%)
340 FLAGS7.=FLAGSY AND &HCD1 ’isclate pertinent
flags
350 DEF SEG: RETURN
479 DEF SEG=0: BASWS=PEEK (Y¥HS10)+2S6XPEEK {&HS51
1) *find end of basic workspace
480 BASEND=BASUWS+%H10P@+2: SRVCCALL.SEG=BASEND
49¢ DEF SEG=SRVCCALL.SEG: SRVCCALL.OFF=@ ‘use
offset @ because of LEA
S09 BLOAD "srvccall.bld”,SRVCCALL.OFF “load s
rvccall after basic
519 DEF SEG: RETURN

Program 1-15. SRVCCALL.ASM

Ne Ne Ne Ne Ne Ne Ne N

60

SRVCCALL; BASIC callable routine to invoke BIOS/DOS interrupts
and functions. DS, CS, SS, SP, and BP not alterable.

CALL SRVCCALL(FLAGS%,INTERRUPT%,ES%,S1%,DI%,AH%,
AL%,BH%,BL%,CH%,CL%,DH%,DL%)
Because of LEA instruction, always bload at offset 0.

* ¥ * ® ¥ X

Memory Organization and Management

service_call segment
SRVCCALL proc far
public SRVCCALL
off hex assume cs:service_call
set instruction

00 FA cli
01 55 push bp ; use bp as parm frame
; pointer

02 8B EC mov bp,sp ; from current stack pointer
04 1E push ds ; save basic segment registers
05 06 push es

P set desired registers for call ---------------
06 8B 76 1E mov si,[bp+30] ; point to flag argument
09 8B 04 mov ax,|[si]
0B 50 push ax
0C 9D popf ; set flags, no other
0D 8B 76 14 mov si,[bp+20] ; point to ah argument
10 8A 24 mov ah,[si] ; set ah
12 8B 76 12 mov si,[bp+18] ; point to al argument
15 8A 04 mov al,fsi] ; set al
17 8B 76 10 mov si,[bp+16] ; point to bh argument
1A 8A 3C mov bh,[si] ; set bh
1C 8B 76 OE mov si,[bp+14] ; point to bl argument
1F 8A 1C mov bl,fsi] ; set bl
21 8B 76 0C mov si[bp+12] ; point to ch argument
24 8A 2C mov ch,[si] ; set ch
26 8B 76 O0A mov si,[bp+10] ; point to cl argument
29 8A 0OC mov cl,[si] ; set cl
2B 8B 76 08 mov si,[bp+8] ; point to dh argument
2E 8A 34 mov dh,[si] ; set dh
30 8B 76 06 mov si,[bp+6] ; point to dl argument
33 B8A 14 mov dl,[si] ; set dl
35 8B 76 16 mov si,[bp+22] ; point to di argument
38 8B 3C mov di,[si] ; set di
3A 8B 76 1A mov si,[bp+26] ; point to es argument
3D 50 push ax ; save ax, use temporarily
3E 8B 04 mov ax,[si] ; es arg in ax
40 8E CO mov es,ax ; set es
42 58 pop ax ; restore ax
43 8B 76 18 mov si,[bp+24] ; point to si argument
46 8B 34 mov si,[si] ; set si

; emmmmmmmeee set interrupt number in instruction -----------
48 50 push ax ; save users reg
49 53 push bx ; save users reg
4A 8B S5E 1C mov bx,[bp+28] ; point to interrupt num
4D 8A 07 mov al,[bx] ; interrupt num in al
4F 8D 1E 005B R lea bx,intins ; get runtime offset of int

; instruction

53 43 inc bx ; plus one for argument

61

Memory Organization and Management

: 88 07 mov cs:[bx],al ; overlay int argument
pop bx ; restore users reg
pop ax ; restore users reg
P call interrupt or DOS function --------------
push bp ; save bp to avoid bios bug
sti
intins:
00 int 0 ; argument overlaid by
; intro%
cli
pop bp ; restore bp
;e set registers returned from call -------------
"~ pushsi ; process later
pushf ; process later
76 14 mov si,[bp+20] ; point to ah argument
24 mov [si],ah ; pass ah back
76 12 mov si,[bp+18] ; point to al argument
04 mov [si],al ; pass al back
76 10 mov si,[bp+16] ; point to bh argument
3C mov [si],bh ; pass bh back
76 OE mov si,[bp+14] ; point to bl argument
1C mov [si],bl ; pass bl back
76 0C mov si,[bp+12] ; point to ch argument
2C mov [si],ch ; pass ch back
76 0A mov si,[bp+10] ; point to cl argument
0C mov [si],cl ; pass cl back
76 08 mov si,[bp+8] ; point to dh argument
34 mov [si],dh ; pass dh back
76 06 mov si,[bp+6] ; point to dl argument
14 mov [si],dl ; pass dl back
pop ax : ; restore returned flags
76 1E mov si,[bp+30] ; point to flags argument
04 mov [si],ax ; pass back flags
pop ax ; restore returned si
76 18 mov si,[bp+24] ; point to si argument
04 mov [si],ax ; pass si back
Co mov ax,es ; returned es to ax
76 1A mov si,[bp+26] ; point to es argument
04 mov [si],ax ; pass es back
76 16 mov si,[bp+22] ; point to di argument
3C mov [si],di ; pass di back
; return to caller
pop es ; restore BASIC segment regs
pop ds
pop bp ; restore bp
sti
001A ret 26 ; 13 arguments
SRVCCALL endp
service_call ends
end

Memory Organization and Management

Memory Related Locations and References
Location shows PC2 values, then PCjr if they differ. The TRM
page indicated is the beginning or most significant page as
found in the XT Technical Reference manual (see the Introduc-
tion concerning the edition of manuals referenced in this
book). Examine the context of the surrounding pages.

Memory Support References

Location
Label
Usage

TRM Pg
Location

Label
Usage

TRM pg

Location
Label
Usage

TRM pg

Location
Label
Usage

TRM pg

Location
Label
Usage

TRM pg

: 8h
: (INT 2)
: Vector to memory parity error NMI handler (not PCjr)

FE2C3h

1 A-11, A-72

: 48h
: (INT 12)
: Vector to memory size determination routine

FF841H

: A-71; PCjr: A-97

: 60h
: (INT 18) BASIC-PTR
: Vector to ROM-resident Cassette BASIC

F6000H; PCjr: FFFCBh if no cartridge, else E8177h

: PCjr: A-109

: 64h
: (INT 19) BOOT-PTR
: Vector to bootstrap routine

FE6F2h

: A-20; PCjr: A-62, A-26

: 410-411h
: EQUIP-FLAG
: Configuration switch memory size information

System board memory size, PC1 includes I/O channel
memory

See Memory Map Appendix and ports 60-62h in Port
Map Appendix

PCjr: set by ROM BIOS for compatibility

: 1-10; PCjr: 2-31

63

Memory Organization and Management

Location : 413-414h

Label : MEMORY-SIZE

Usage : Usable memory size in 1K blocks
PC1: I/0 channel memory from switches added to sys-
tem board
PC2: all available memory in 1K blocks
PCjr (64 or 128K): 16 (for video) in 1K blocks
See Memory Map Appendix and ports 60-62h in Port
Map Appendix

TRM pg : A-9; PCjr: A-16

Location : 415-416h (not XT)

Label : TRUE-MEM

Usage : Total memory including I/O channel in 1K blocks
PC1: I/O channel memory in 1K blocks from switches
PC2: not used
PCjr: all available memory in 1K blocks
See Memory Map Appendix and ports 60-62h in Port
Map Appendix

Location : 510-511h

Usage : BASIC's storage area for workspace segment number

ROM BIOS Memory Support References

PC2 ROM BIOS

FEOAEh Call for ROM checksum

FE165h Determine memory size and check memory in first 32K

FEIDEh Set first 32 interrupts to temporary routine

FE1EFh Fill INT 10-1F

FE202h Save configuration switches in equipment flag

FE3DEh Set up INT 0-15

FE418h Check expansion box

FE46Ah Test memory above 32K

FE518h Check for ROM in C80000-F40000h

FE53Bh Check BASIC ROM

FE66Dh INT 19 to bootstrap loader

FE66Fh Subroutine to test RAM

FE6F2h Bootstrap loader

FF841h INT 12 memory size service

FF85Fh NMI interrupt, parity check

FF8F2h ROM checksum subroutine

FF953h Checksum optional ROM and initialize

FFEF3h Interrupt vector table

64

Memory Organization and Management

PCjr ROM BIOS

F0134h Test BIOS/BASIC ROMs

FO15Fh Test 0-2K RAM and just below end (for video buffer)
FO1EBh Initialize INT 0-1F

F0250h Simulate configuration switches

F0503h Size memory, test or clear

FO7EOh Check for cartridges in C00000-F00000h
FOB18h Bootstrap loader

FOB59h Initialize or test memory

FE6F2h INT 19 redirection to bootstrap loader
FEB51h Checks ROM C0000-F00000h

FF841h INT 12 memory size service

FFE71h Checksum optional ROM and initialize
FFEF3h Interrupt vector table

Additional Memory Information

Subject

Port address map

Configuration switches

System memory map

Memory expansion board

8088 interrupts 0-1Fh

BASIC and DOS reserved interrupts
BASIC and DOS reserved memory locations
BASIC workspace variables
Expansion ROM characteristics
Parity error routine

Fixed-disk ROM initialization
Fixed-disk INT 19 bootstrap

8088 registers

8088 operation codes

Memory segmentation

System board 64K

Cartridge characteristics

64K expansion

Memory compatibility with PC

BASIC Memory Support

Basic provides many statements that may be used for memory

TRM Page
1-8

1-10, G4
1-11

1-197

2-4; PCjr: 5
2-7, PCjr: 5
-8; PCjr: 5-
-8, PCjr: 5
-10; PCjr: 5-18

N

> > >R

\
0 0 3
O NN

1

WUFUU
> WN

PCjr: 2-17
PCjr: 2-107
PCjr: 3-5
PCjr: 4-12

functions. Check your BASIC manual for the following state-
ments: PEEK, POKE, BLOAD, BSAVE, DEF SEG, VARPTR,
VARPTRS$, OUT, INP, FREE, CLEAR, CALL, USR. See the
BASIC manual, Appendix C, for details of machine language
interfacing, and Appendix I for a BASIC memory map and

variables format.

Memory Organization and Management

DOS Memory Support References

DOS Page
Subject 20 2.10
Invoking a second COMMAND.COM 10-9 1-11
SET ENVIRONMENT command 10-22 2-128

Configuration commands 9-3 4-3

DOS structure B-1 -

DOS initialization B-1 -

COMMAND.COM B-3 -

FCB B-5 -

DTA B-6 -
14-

>
—_
|

Device drivers

DOS memory functions D-43 -
DOS EXEC function D-44 -
DOS memory map E-1 -
DOS PSP E-3 -
DOS FCB E-10 -
Invoking COMMAND.COM from an

application F-1 -
Fixed-disk system initialization G-2 -
Fixed-disk boot record G-4 -
EXE file contents H-1 -

DOS memory management

66

N =

Ghobhbbhgadibhw

S\Oiwm\l
T WO W
—_

2

Keyboard

The IBM keyboard can be redefined by a program to suit the
needs of the application. A program may redefine key mean-
ings, create additional key combinations, display Shift key and
insert mode status indicators, or extend the standard keyboard
functions. A program may even allow you to redefine the
meaning of a combination of keypresses and save your defi-
nitions for later use. Such features are powerful boosts to
productivity. Customization of the keyboard can give the pro-
gram its own attractive keyboard personality.

In this chapter we’ll see how various types of powerful
keyboard customization are done. You can use these tech-
niques in your own programs or those that you wish to mod-
ify. We'll monitor the keyboard as it goes about its job and
explore ways that you can control and extend its capabilities.

If the software you write is to be used on the PC, XT, and
PCjr, then the similarities and differences between the key-
boards of the PC/XT and the PCjr will interest you. We'll see
ways that the PCjr keyboard is different from the PC and dis-
cover how you can take advantage of these unique PCjr fea-
tures. The memory locations and sample programs that we
explore generally apply to all the IBM PC family, and I'll note
the differences between them as we go along.

IBM PC DOS and BIOS provide interrupts and functions
for programs to use to request upward-compatible keyboard
services. Even though the PCjr keyboard produces completely
different scan codes from the PC and XT, the keyboard ser-
vices have remained compatible. This is a real-life testimonial
to the wisdom of using the provided service routines when-
ever possible. Fortunately, IBM took extreme care to insure
compatibility of the PCjr keyboard to several levels beyond
the provided service routines.

BASIC provides functions and statements that can be used
to predictably invoke several of these provided lower-level
keyboard services. Machine language programs can, of course,
invoke these keyboard services directly, and BASIC programs
calling machine language routines are an attractive hybrid. But

69

@

Keyboard

before we discuss the available BIOS, DOS, and BASIC key-
board facilities, let’s look at the memory locations used for
keyboard management and see how those locations can be of
use to us in our programs.

Keyboard Flags at 417h, 418h, and 488h

Probably the most frequently used keyboard memory locations
are the keyboard status flag bytes located at 417h and 418h.
The PCjr uses an additional flag byte at 488h. The keyboard
status flag bytes can be used effectively in your programs. A
typical use involves checking to see if the Alt key is being
pressed while another key is also held down. This Alt
combination can be used to signal a command. For instance,
Alt-E could be interpreted by your program to indicate exit.
The Technical Reference manual lists suggested key-combina-
tion usages that you may choose to follow or not. For the
PC2, this table starts on page 2-18 (as discussed in the In-
troduction, page references refer to the XT manual), while the
PCjr table begins on page 5-38. The Ctrl key is also excellently
suited for this purpose, and the PCjr adds yet another handy
shifting key in the Fn key.

Additional shift keys can be implemented by providing a
front-end routine for the keyboard interrupt routine INT 9h.
You can determine if multiple keys are being pressed, because
break codes are generated when a key is released. The break
code for any key is the scan code plus 80h. The generation of
break codes gives us the welcome capability for every key on
the keyboard to become a shift key. You can find a table of
the scan codes and extended scan codes in your Technical Ref-
erence manual just before the ROM BIOS listing. In my XT
Technical Reference manual, the table begins on page 2-11 and
is titled “Keyboard Encoding and Usage.” A diagram of the
locations of the keys and their scan codes is presented on page
1-68, “Keyboard Diagram,” followed by a hexadecimal chart.
Similar documentation starts on page 5-21 of the PCjr Tech-
nical Reference manual.

While a custom shift key is being held down, any number
of other keys can be pressed in series or together. The pro-
gram would know that the shift key had not yet been released
because the break scan code for the key had not been
received.

70

Keyboard

Given the inclusion of a customized keyboard interrupt
routine, the sequence in which the keys were pressed, and
- possibly even the release sequence, could provide an astound-
ing number of combinations. Human considerations limit this
dizzying assortment to a more reasonable two or, infrequently,
three simultaneous keys. ‘

The PCjr keyboard suppresses invalid key combinations
and sends a 55h scan code instead, indicating a problem. The
PCjr INT 48h KEY62_INT routine simply discards this phan-
tom keypress scan code.

On both the PC and PCjr, ROM BIOS resident KB_INT
(INT 9) ignores many combinations of keys that you would
think could be used in your programs. For example, only two
of the ten number keys across the top of the keyboard are rec-
ognized when Ctrl is held down at the same time. See the
““Character Codes” table in the Technical Reference manual a
few pages before the ROM BIOS listing. Any —1 value in the
table indicates a key combination that INT 9 ignores. Your
own INT 9 or a front-end to the provided routine can cause
ignored or acted-upon key combinations to be passed on to
requesting programs. Figure 2-1 is provided as a recap of the
Technical Reference manual tables Alt and Ctrl columns.

Figure 2-1. Alt or Ctrl Shifted Keys Ignored

Ignored Alt shifts:
All cursor numeric keEpad keys, including — + .
Backspace, Enter, Tab, Esc, Insert, Delete, semicolon, comma

[17 ./ \(these last 7 are not ignored on the PCjr)

Ignored Ctrl shifts:
cursor /numeric keypad keys 258 0. + —
Tab, Insert, Delete
13457890=;"",./

You can use the short routine shown in Program 2-1 to
determine whether a particular combination of pressed keys is
suppressed. INKEY$ returns a one-byte CHR$ value or a
CHR$(0) followed with a byte containing the CHR$ of the ex-
tended scan code keypress. INKEY$ does not provide a method
for determining which key(s) was used to generate the same
ASCII codes. Only the scan code can differentiate between a
Ctrl-H and a Backspace, the two asterisks on the keyboard,
Ctrl-M and Enter, and so on.

*

71

Keyboard

Program 2-1. Display INKEY$ Returned ASCII or Extended
Scan Code

149 “KRINKEY$:; Show the BASIC INKEY$ returned
data in hex
114 X$=INKEY®: IF X&$="" GOTO 114
*wait for a keypress
126 FOR X = 1 TO LEN(X%) ‘possibly extended s
can code
13¢ PRINT HEX$(ASC(MIDS(X$,X,1)))3" ":
*show the ascii or
1404 NEXT:PRINT:GOTO 116 ’ zero and extended s
can code

When designing Alt or Ctrl alternate shift key patterns for
keys, keep in mind that not all keys cause an extended scan
code (or even an ASCII character) when depressed in
combination with the Alt or Ctrl key. This is caused by the
provided keyboard interrupt routine (INT 9) in ROM BIOS.
Again, your Technical Reference manual shows those combina-
tions as —1 in the “Character Codes” table. For your quick
reference, those keys that are ignored with Alt or Ctrl are
listed in Figure 2-1. You will be pleased to notice that the
function keys are not ignored. Shift, Alt, and Ctrl provide
unique codes so that 40 function keys may be supported.
Additional function keys may be supported by examining the
keyboard shift status bytes ourselves.

The Technical Reference manual for your computer lists
the possible values for locations 417h and 418h on the second
page of the ROM BIOS. Look for KB_FLAG and KB_FLAG_1
at offsets 17 and 18 within segment 40. The eye-catcher “KEY-
BOARD DATA AREAS” precedes the machine language
equate statements. Table 2-1 indicates the usage of each bit in
these keyboard flags, if you don’t have a Technical Reference
manual handy.

The PCjr Technical Reference manual doesn’t show that a
possible value for location 417h is 10h if Fn-ScrLk is currently
toggled on and a value of 80h if the Ins key has been toggled.

The PCjr also uses an additional flag byte at 488h for
tracking the function key, repeat key timing, and vertical
screen positioning available through the Ctrl-Alt-cursor keys.
This byte is labeled KB_FLAG_2. You'll find the equate state-
ments for the byte under “BIT ASSIGNMENTS FOR
KB_FLAG_2" on the next page of the Technical Reference

72

Keyboard

Table 2-1. Shift Status Flag Bytes

KB_FLAG at 417H

t Hex Dec Meaning

80 128 Insert mode on
40 64 Caps Lock on
20 32 Num Lock on
16 Scroll Lock on
08 8 Alt pressed

4 Ctrl pressed

02 2 Left Shift pressed
01 1 Right Shift pressed

KB_FLAG_1 at 418H
Hex Dec Meaning
80 128 Insert pressed
40 64 Caps Lock pressed
20 32 Num Lock pressed
16 Scroll Lock pressed
08 8 Ctrl-Num Lock (pause key) toggled
04 4 PCjr keyboard clicker active
02 2 PCjr Ctrl-Alt-Caps Lock held
01 1

KB_FLAG_2 at 488H (PCjr only)
t Hex Dec Meaning
80 128 Fn flag pressed
40 64 Fn key released
20 32 Fn next key pending
Fn key locked on
Typamatic off
Half rate typamatic
Initial typamatic delay increased
Put character out, typamatic delay has lapsed

B

I~

O NWER OO
—
(=]

=]
-

ORNWR U g S
[y
o

B

o

O=NWk OO
O =
o O
—
- N = o

manual. Program 2-2 tracks and reports the function key sta-
tus flag bits in KB_FLAG_2. The keyboard clicker flag in
KB_FLAG_1 is also included in the display for the PCijr.

The program displays the current keyboard Shift key sta-
tus on the twenty-fifth line of the screen. Examine and tailor
the BASIC program to your own needs. You may want to
place a subset of the program in your own program as a sub-
routine. Notice that multiple PEEKSs to the keyboard status
bytes are used. This technique will detect an individual
keypress more quickly than setting a variable from the result
of one PEEK at the start of the main loop.

73

Keyboard

Program 2-2. Displaying Keyboard Status

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

W 14¢ "KBSTATUS; display status indicators for s

hift keys

80 110 - Does not use conventions of DOS

int 16h

HF 120 " 25th line status indicators are: KB=iunlA
CSkf

Ck 130 "status indicator in caps if key being hel
d down

¥ o149 - see comments below for meanings

66 15 RITA=1:BIT1=2:RIT2=4:RIT3=8:BIT4=16:RITS=3
© 2:BIT6=64:BIT7=128:BITALL=255
A) 164 DEF SEG=&HFFFF: IF PEEK(&HE)=%HFD THEN JR=1
’determine if jr
6 170 DEF SEG=@:KEY ON:KEY OFF “clear 25th line
M 180 :K$=INKEY$:IF K$=CHR$(27) THEN KEY ON:END
*esc key exits

KN 198 KBSTATH=" " 1@ indicators
IP 200 IF PEEK(%H417) AND RIT7 THEN MID$(KBSTATS,
1,1H)="1" ‘insert

£l 210 IF PEEK(%H418) AND BIT7 THEN MID$(KBSTATS,
1,1)="1I" ‘*insert held

0F 226 IF PEEK(&H417) AND BIT6 THEN MID$ (KBSTATS,
2,1)="u" ‘’caps lock

PP 23¢ IF PEEK(%XH418) AND RITé6 THEN MID$(KBSTATS,
2,1)="y" ‘caps lock held

K 244 IF PEEK(%H417) AND BITS THEN MID$(KBSTATS,
J.10)="n" ’num lock

BN 250 IF PEEK(&H418) AND BRITS THEN MID%{KBSTATS,
3, 1)="N" “num lock held

E 260 IF PEEK{(%H417) AND RIT4 THEN MID$ (KBSTATS,
4,1)="1" ‘“scroll lock

KE 278 IF PEEK(&H418) AND BRIT4 THEN MID$ (KBSTATS,
4,1)="L" ’scroll lock held

fFE 280 IF PEEK(%H417) AND RIT3 THEN MID$(KBSTATS,
S, 1)="A" ‘*alt

6E 294 IF PEEK(&H417) AND RIT2 THEN MID$(KBSTATS,
b6,1)="C" ‘ctrl

06 398 IF (PEEK(&H417) AND BIT1) THEN IF (PEEK(&H
417) AND BIT®) THEN MID$(KBSTAT$,7,1)="B":
GOTO 34¢ ’both shifts

66 319 REM: IF (PEEK(&H417) AND BIT1) OR (PEEK{(&H
417) AND BIT®) THEN MID%(KBSTAT$,7,1)="§""
either shift key

PR 320 IF PEEK(&H417) AND BIT@ THEN MID%(KBSTATS,
7.1)="R" ’right shift

EF 33¢ IF PEEK(&H417) AND BIT1 THEN MID$(KBSTATS,
7,1)="L" *left shift

Keyboard

K 240 IF JR=¢ GOTO 399

LN 358 IF PEEK (%H488) AND BITS THEN MID$ (KBSTATS,
9,1)="F" *Fn held

kKM 36@¢ IF PEEK{(&H488) AND BITé& THEN MID$ (KBSTATS,
9,1)="f" "Fn active

Fi 370 IF PEEK{(%H418) AND BIT2 THEN MID${(KBSTATS,
8,1)="k" *click active

NP 380 IF PEEK(%H418) AND BIT1 THEN MID${(KBSTATS,
8,1)="K" *click held

F) 390 LOCATE 25,1:COLOR S:PRINT "KB:"3;:COLOR 2:P
RINT KBSTAT$;:COLOR 7:G07TO 189

The keyboard status flag bytes can be set or reset by your
program to cause the desired keyboard state. Simply POKE
the desired value into the status byte to set the keyboard sta-
tus you desire. Individual status flag bits can be set or reset by
selecting the bit used to indicate the state desired and set it on
with
POKE byte, PEEK(byte) OR BITn
The flag bit can be turned off with
POKE byte, PEEK(byte) AND (255—BITn)

To flip the setting of a flag bit to the opposite setting:
POKE byte,PEEK(byte) XOR BITn

The PCjr Fn flags in 488h can be used in your programs
to provide yet another unique shifting key. If 488h contains
AOh, then a key was pressed while the Fn key was held. If
80h is in 488h, then the key was pressed after an Fn related
key (a key with a green caption), and while Fn continued to
be pressed. The program fragment shown in Program 2-3 can
be used to experiment with the Fn flags in 488h. Obviously,
green-captioned Pause, Echo, Break, and PrtSc keys pressed
while Fn is held (or immediately after) may cause unwanted
results. Green-captioned cursor and function keys are particu-
larly well-suited for custom use; however, the BASIC ON
KEY() statement provides trapping for green captioned keys.

Program 2-3. Experimenting with PCjr Fn Status Flag

14 *JR488H; Show PCir KB_FLAG-2, ascii and hex
for keypress

20 DEF SEG=9

3@ X$=INKEY$: IF X%="" GOTO 3@ *wait for a ke
ypress

75

Keyboard

49 PRINT HEX$(PEEK (3H488))" "; * show PCir kb

_flag_2

S@ PRINT X% "; *show characte
rs

6@ FOR X = 1 TO LEN(X%) "possibly exte

nded scan code

70 PRINT HEX$ (ASC(MIDE{X$, X, 1)))s3" "3 ’show
the ascii or

84 NEXT:PRINT:GOTO =@

Another technique for defining still more special-meaning
keys involves using a unique key (such as Esc, a function key,
or a duplicate key such as the numeric keypad + key) as a
prefix that then causes the program to act upon the next key
pressed as a special key. For example, Esc-S could mean SAVE
or F10 Alt-X could mean that the user wants to extract a por-
tion of data.

DOS service 16h can be used to obtain information about
the current setting of KB_FLAG (but not KB_FLAG_1 or _2)
and to set clicking and repeat key values for the PCjr. To fol-
low IBM compatibility conventions, use the BASIC SRVCCALL
routine to call service 16h.

The ROM BIOS routines that are responsible for maintain-
ing the keyboard status flags can be inspected in the Technical
Reference manual. The PC2 routine can be found on page A-28,
labeled KB_INT. The PCjr manual has the equivalent routine
on page A-45. A preceding routine used to convert the PCjr
keyboard actions into PC-like actions is KEY62_INT (INT
48h), starting on page A-37. This routine shares the manage-
ment of the status flags with the KB_INT routine.

Keyboard Buffer and Pointers 41E-43Dh, 41Ah, and 41Ch
Keypresses are buffered in the memory of the computer until
the running program requests keyboard input. This keyboard
buffer is maintained by ROM BIOS routines and normally
“occupies locations 41E-43Dh. All requests from programs,
BIOS, or DOS for keyboard characters cause retrieval of
keypresses from this buffer. The buffer is a circular buffer in
that a pointer indicates the first entry that was placed in the
buffer, and another pointer contains the address of the next
available entry for buffering the next keypress. As keypresses
are removed from the buffer in response to the program
requesting keyboard input, the pointer to the next entry to be

76

Keyboard

retrieved is advanced, making available the space used by the
keypress just retrieved.

The head of the buffer (the next character to be retrieved)
can be at any position within the buffer. When the head of the
buffer is at the last position, the pointer simply wraps around
from the end of the buffer to the beginning. That’s why the
term circular buffer is used. The address of the ASCII/scan
code combination for the next key to be retrieved is maintained
at location 41Ah and is called BUFFER_HEAD. The pointer to
the next unused buffer location is called BUFFER_TAIL and is
at 41Ch. If BUFFER_HEAD and BUFFER_TAIL contain the
same address, the buffer is empty. If BUFFER_TAIL should
point to the buffer location before BUFFER_HEAD, then the
buffer is full. Figure 2-2 illustrates the pointer relationships
during a full-buffer condition.

Figure 2-2. Schematic Diagram of a Full Keyboard Buffer

KB_Buffer
ASCII + Scan Code

Buffer_Start —— g Third keypress I

Fourth keypress

Fifth keypress

More keypresses

Buffer_Taill —— g Last keypress *

Unused entry

Buffer_Head —p» First keypress

Buffer_End ——p» Second keypress —_—

The keyboard buffer is normally large enough to hold 16
keys, each key needing two bytes to store its ASCII value and
scan code. Since BUFFER_TAIL contains the same address as
BUFFER_HEAD if the buffer is empty, the buffer is considered
full when only one entry is left unused. Because of this, only

77

Keyboard

15 keypresses can be in the buffer at any time. We’ll be
enlarging this buffer shortly.

The Technical Reference manual shows the BUFFER__
prefixed labels on the second and third pages of the ROM
BIOS listing. The management of these pointers is performed
in the INT 9 routine, KB_INT. The PC2 routine can be found
on page A-28, and the PCjr manual has the equivalent routine
on page A-45.

The keyboard buffer can be logically emptied by setting
BUFFER_HEAD to the same value as BUFFER_TAIL with
DEF SEG=0:POKE &H41A PEEK(&H41C). DOS INT 21 func-
tion Ch provides a service that clears the keyboard buffer.

Program 2-4 monitors the keyboard buffer contents and
pointers in operation. As characters are entered, the
BUFFER_TAIL pointer is shown being updated and the ASCII
and scan codes for the new key are displayed along with its
character representation. When the buffer becomes full, a
flashing message will be displayed. You may want to use the
program to experiment with the ROM BIOS KB__INT routine’s
logic. See how unique scan codes can differentiate between a
Ctrl-H and a Backspace, the two asterisks on the keyboard,
Ctrl-M and Enter, and so on.

Program 2-4. Monitoring the Keyboard Buffer and Pointers
For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

I 189 *KBBUFFER: display keyboard buffer content
s and pointers

i 195 * Does not use compatibility servic
e calls '

66 110 *

12¢ > -—- display header info ———

130 SCREEN @:WIDTH 80:CLS:DEF SEG=¢:COLOR 2,0

PL 148 PRINT"——————————— Keyboard Buffer Contents

s

EX 1S¢ LOCATE 2,1:COLOR 5,0

00 1608 PRINT "Keyboard buffer at &H41E thru &H43D

K 1760 PRINT"Head = Tail indicates all have been
processed"”

€€ 18¢ PRINT"Tail = head — 2 when buffer is full"

BN 199 BUFFHEAD=%HA4@@+PEEK (&H41A)

W 200 LOCATE 6,1:COLOR S:PRINT"Current head at &
H"HEX$ (BUFFHEAD) ;

J 219 * ——— display scale lines ———
6f 220 GOSUB 419:G0SUB 43¢:G0SUB 4460
IN23¢ * ——— time to update the screen ———

K 249 BUFFTAIL=&HAGS+PEEK (&H41C)

Keyboard

L 25¢ LOCATE 6,22:COLOR BUFFTAIL MOD 7+1
LH 268 PRINT" Tail at &H"HEX$(BUFFTAIL);
N 270 IF BUFFTAIL=BUFFHEAD-2 THEN COLOR 7+16:PRI
NT" BUFFER FULL"
EK 288 Y=%H41E:Z=%H42D
Il 2990 R=10:60SUB 340 >show the contents of the b
uffer
EH 300 Y=&%H42E:Z=%H43D
FP 319 R=17:G0SUB 340 ’*show the buffer contents
P 326 GOTO 249 * and back to top of loop
F6 33¢ > ——— show the address range of the buffer
Ji 348 LOCATE R,1:COLOR 6,8:FOR X=Y TO Z STEP 2
Il 358 X¢e=" "3 IF PEEK(X) >32 THEN X&=" "+CH
R$(PEEK(X))+" »
ID 360 PRINT X$3;:NEXT:PRINT
i 378 > ——— show the contents of the buffer, asc
ii and scan code -——
PP 380 COLOR 4,0:FOR X=Y TO Z STEP 2
0B 399 PRINT " ";RIGHT$ ("@"+HEX$ (PEEK(X)),2)3"/";
RIGHTS ("@"+HEX$(PEEK (X+1)),2) ; :NEXT: PRINT:
RETURN
499 * -—-- display scale lines ———
419 R=12:6G0SUB 42¢:R=19:6G0SUB 42¢:RETURN
429 LOCATE R,1:COLOR 3,9:FOR X=1 TO 8:PRINT "
as/sc"; :NEXT:RETURN
LN 430 R=9:Y=%H41E:GOSUB 449:R=16:G0SUB 44¢:RETUR
N
449 L OCATE R,1:COLOR 2,8:FOR X=¢ TO 14 STEP 2
458 PRINT " &h"HEX$(Y+X); :NEXT:Y=Y+X:RETURN
469 LOCATE 7,1:COLOR 3,8:PRINT "Watch buffer a
s you enter characters”:RETURN

2IS

8§8&

DOS services are not provided for the direct inspection of
the keyboard buffer contents. DOS services 1, 6, 7, 8, Ah, and
Ch provide various combinations of waiting for a single
character, reading it, echoing it to the screen, and checking for
Ctrl-Break. Only the ASCII character or an extended scan code
is provided by these services; scan codes are not normally
made available. But your program can place a simulated key-
board entry directly in the keyboard buffer for later processing
or for future INPUT or INKEY$ statements. Try the example
listed in Program 2-5. When prompted for characters to place
in the buffer, enter the statement FILES.

The ROM BIOS and DOS do not provide keyboard buffer
plugging services.

79

Keyboard

ROM BIOS INT 16 can be used to determine if the key-
board buffer contains any keypresses, retrieve the ASCII and
scan code representation of the key, and obtain the KB_FLAG
status byte. To follow IBM compatibility conventions, use the
BASIC SRVCCALL routine to call service 16h.

Program 2-5. Example of Plugging the Keyboard Buffer

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

¥ 109 °KBPLUGER; Demonstrate plugging the keyboa
rd buffer from keys entered

K 119 > Does not use compatibility servic
e calls

6K 120 CLS : DEF SEG=¢:PRINT"Enter characters (up

to 14) for keyboard buffer."

@ 130 PRINT "Function keys may be used."

B 149 INPUT K$: IF K$="" THEN END ’ enter with
out characters causes exit

61 150 K$=LEFT$(K$,14)+CHR$(13) > limit to 14 c
hars, add return

H¥ 160 DUBL=2%LEN(K$%) > double length since asci
i/scan code

BP 170 FOR X=1 TO DUBL STEP 2 * fill every other
byte with key

NE 180 Y=ASC(MIDE {(K$, (X+1)/2,1)) * character
for this buffer position

M 190 POKE &H41D+X,Y > fill character buff

BE 209 NEXT : POKE &H41C,&HI1E+DUBL * point tail
ptr to word after last character

K0 219 POKE &H41A,&%H1E ’* point head ptr to start
of buffer

An extension of this technique is demonstrated by Pro-
gram 2-6. Lines of text carefully placed on the screen are “en-
tered” into the computer by positioning the cursor properly
and placing a carriage return in the keyboard buffer. This
method can be used to cause a runtime-determined set of
commands to be issued and to allow programs to modify
themselves or to create whole programs themselves.

If more lines than will fit on a screen are needed, the last
line to be displayed for “entry” should be a statement that
sets a variable to the number of the statement to put on the
screen next and a GOTO statement to the line of the running
program that will continue with further screen line formatting
and simulated entry. (Line 390 will cause the program to de-
lete itself. Be sure to save the program before running it.)

80

Keyboard

Program 2-6. Entering Screen Lines via the Keyboard Buffer
For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

IL 180 *KBGENLNS; example of dynamic creation of
program lines

A 119 ° Does not use compatibility serv
ices

N 120 SCREEN #:WIDTH 8¢ ’so locates correctly

i8 138 CLS : DEF SEG=¢

PN 1480 > —-- program lines to be created, could b
e built dynamically -——

OF 158 X$="995 “generated line ; when pgm done, t
he next line will say ok and cursor placed
on the beginning of next line. therefore
2 crer ups placed in the buffer move us to
the last of the generated lines."”

EE 168 PRINT X$

ID 178 PRINT:PRINT"996 *second generated line, pl
aced after first, leaving blank line for °*
ok’ prompt by basic”

& 188 PRINT:PRINT"997 °“third generated line"

K0 199 PRINT:PRINT"998 °®last generated line, plac
ed after third, leaving blank line for ‘ok
* prompt by basic”

X 2088 ? —-—— locate the cursor for enter keys com
ing —

Il 216 LOCATE INT((LEN(X$)/88))+2,1 ’place ending
cursor on last screen line of first gener
ated line

M 23¢ * -—— Update the buffer pointers to hold e
nter keys ——— ’

tH 248 POKE &H41A,&HIE > head ptr points to buf
fer

I 256 POKE &H41C,&H1E+18 > tail ptr points to
word after last character

88 268 °*° num of following pokes 12, can’t excee
d 38
N 2786 ° —— Position the cursor -—
W 2688 POKE &H41E,#:POKE &H41F,&H48 ’crsr up twic
e to get back to gened line,
M 298 POKE &H428,8:POKE %H421,%H48 *above "ok’ p
rompt
398 * —-— place enter keys in buffer —-——
31¢ POKE &H422,13 ’enter the line

326 POKE %H424,13 ’down to 2nd generated line
338 POKE &%H426,13 ’enter the 2nd line

346 POKE %H428,13 ’>down to 3rd generated line
358 POKE &H42A,13 ‘enter the 3rd line

368 POKE &H42C,13 ’down to last line

378 POKE &H42E,13 ’enter the last line

RegzmzEEDSC

81

Keyboard

EN 38¢ > ——— all done, clean up ———

(P 3986 DELETE 1060-468 ° only generated lines to
be left at end

0K 4086 END > end the program and process the buf
fer

Keyboard Buffer Relocation 480h, 482h

In the PC1, the keyboard buffer location and length remain
constant. The ROM BIOS routines use absolute addresses for
the buffer location. The buffer is always located in the 32
bytes between 41Eh and 43Dh. This provides room for 15
keypresses, each made up of an ASCII byte and a scan code.
The newer PC models use the same locations for the keyboard
buffer by default, but the address and length of the keyboard
buffer can be changed. The XT, PC2, and PCjr contain pointers
at 480h and 482h that are used in ROM BIOS for the key-
board buffer starting and ending addresses, allowing a dif-
ferent location and length for the keyboard buffer. To see how
to relocate the keyboard buffer so that it can hold more
keypresses, look at the example in Program 2-7.

The location chosen to contain the new keyboard buffer is
used by MODE.COM, the intra-application communications
area, and part of the area is reserved by IBM. This location
may not be suitable in all instances.

DOS and ROM BIOS do not provide services for relocat-
ing the keyboard bulffer.

If you need to put the keyboard buffer back to its original
position for buffer location sensitive programs, Program 2-8
will do this for you.

Program 2-7. Relocating the Keyboard Buffer

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

W 19¢ “KBBUFFMV; Create a 54 char buffer in segm
ent 49

0 165 ° Does not use compatibility service calls

HF 116 DEF SEG=¢

M 120 >——- change buffer pointers ——-

M 13¢ POKE &H48¢,%H98 “start

Hl 149 POKE %H482,%HFE ’end

Il 150 POKE &H41A,¥H94 ~head

(N 160 POKE &H41C,&H99 “tail

0 178 *——— show current pointers ———

i) 18¢ DEF SEG=#:CLS "goto here to examine ptrs

L 19¢ LOCATE 1,1

82

Keyboard

N 208 PRINT"Buffer pointers”

PN 210 PRINT "start="HEX$ (PEEK{(%H48%)) ;
Fl 226 PRINT ", end="HEX${(PEEK{&H482))
H 238 PRINT "head="HEX$(PEEK (XH41A));
HO 2498 PRINT ", tail="HEX${(PEEK(XH41C))
K 25¢ GOTO 199

Program 2-8. Restoring the Keyboard Buffer’s Default
Location

168 "KBRBUFFBK: return keyboard buffer to origi
nal position

114 DEF SEG=¢

120 *——— restore default buffer pointers ——-

130 POKE &H48@#,%HIE ’start

14 POKE &H482,%H3IE ’end

158 POKE &%H41A,3HIE ’head

1680 POKE &H41C,%HIE ’tail, wark as empty

ANSI.SYS Escape Sequences

DOS 2.0 and 2.1 provide a tool that can be used to redefine
keys to suit the user. A string of characters beginning with the
escape character (1Bh, 27 decimal) can be used to specify user
key redefinitions. These escape sequences do not correspond
to any particular memory locations; they are simply written as
messages to the standard output device. A provided DOS de-
vice driver, ANSIL.SYS, intercepts and acts appropriately upon
the escape sequences. These sequences are detailed in Chapter
13 of the DOS 2.0 manual and Chapter 2 of the DOS 2.10
Technical Reference manual. You can install the device driver
with the following (remember, [F6] means press the F6 key):

A> COPY CON: CONFIG.SYS
DEVICE=ANSLSYS
[F6]

Programs that set the meanings of keys themselves may
be confused by the user ANSI.SYS redefinition of keys, so be
prepared to turn off your redefinitions before executing sen-
sitive programs. BASIC manages to totally ignore the
redefinitions.

A typical problem in the use of ANSLSYS escape se-
quences is the creation of the required escape code (1Bh) that
must begin each sequence. The Esc key on the keyboard can-
not be used to directly enter this character while in DOS

83

Keyboard

because of the special meaning associated with that key.
EDLIN also uses the escape key for its own purposes, but you
can create the escape code by entering Ctrl-V and (letting up
on the Ctrl key) the left square bracket. It looks strange, but
follow this with the left square bracket required by ANSLSYS
and the remainder of the escape sequence. For example, the
escape sequence to turn on high intensity would look like this
in EDLIN: “V[[1m.

Using EDLIN, DEBUG, or an editor program that allows
the entry of the escape code (ASCII 27), such as the Personal
Editor, Professional Editor, VEDIT, and so on, you can easily
create the escape sequences in batch file ECHO, REM state-
ments, or data files to TYPE or COPY to the standard output
device (display).

The sample machine language program shown as Pro-
gram 2-9 can be used to create ANSI.COM which allows the
direct keyboard entry of the desired escape sequences. In addi
tion, ANSL.COM will create the left square bracket character
that must follow the leading escape character. For example, to
set function key 10 for a DIR command, ANSI 0;68;dir’;13p
can be entered at the keyboard or placed in a batch file. ANSI
44;37m will select white characters on a blue background and
ANSI 2] will clear the screen.

To create ANSI.COM, you must first assemble Program 2-9.
Next, LINK the .OB]J file to create an .EXE file. Use ANSI.EXE
with EXE2BIN.EXE to create a .COM file with the following
command:

EXE2BIN ANSILEXE

If you don’t have an assembler, ANSI.COM can also be cre-
ated with DEBUG as follows (as you can see it is much easier
to create ANSI.COM using DEBUG):

A> DEBUG ANSI.COM

File not found

- E 100 BB 80 00 02 1F BF 80 00 C7 05 1B 5B C6 47 01 24
-E 110 BA 80 00 B4 09 CD 21 CD 20

-RCX

CX 0000

119

-W

-Q

84

Keyboard

Program 2-9. Escape Code Generator for ANSI.SYS
Sequences

;ANS]I; append escape code (1Bh) and [on front of entered
;string and issue to standard output device.

DOS 2.x CONFIG.SYS must contain “DEVICE=ANSLSYS”, and
; both files must be on the booted disk.

;Note error in DOS 2.0 manual on page 13-11: semicolon should
not be placed between ending quote of string and

the lowercase letter p. Same error in DOS 2.1 manual on

’
’
’

page 2-11.
PARM_LEN EQU 0080h
ESC_LBRK EQU 5B1Bh ; escape, left
; square bracket (reversed)
CODE SEGMENT
ASSUME CS:CODE
ANSI PROC FAR
; determine end of string location
MOV BX,PARM_LEN ; PSP parm length address
ADD BL,[BX]} ; add length to address
; place esc [on front of string
MOV DIL,PARM_LEN ; overlay parm length byte
and
MOV WORD PTR [DILESC_LBRK ; leading space of string
; place dollar sign on end
MOV BYTE PTR [BX+1),'$’ ; dollar marks

; end for INT 21 9
; write out the ANSLSYS string and end

MOV DX,PARM_LEN ; starting address of
message

MOV AH,9 ; message output wanted
INT 21H ; call for DOS service
INT 20H ; all done

ANSI ENDP

CODE ENDS
END ANSI

The repeated entry of ANSI for each escape sequence can
be inefficient when there is a whole group of escape sequences
to be issued. Let’s create a file of the escape sequences we
wish to issue and then type that file on demand. A batch file
would simplify the process. Program 2-10 creates a data file
with example escape sequences as well as a batch file,
KEYSON.BAT, to cause the data file to be typed. Why not just
include the escape sequences in the batch file? Because batch
processing is slow compared with TYPE and COPY.

Program 2-11 creates the same type of data and batch file
for turning off the redefined keys.

85

Keyboard

For more speed, a machine language program can be used
to issue the desired escape sequences directly, as shown in
Program 2-12.

Before you get too thrilled with escape sequences, I have
to tell you that there is a limit of around 200 characters of key
redefinitions that can be saved in ANSI.SYS before they start
to overlay COMMAND.COM. So you may want to use some-
thing like PROKEY for the really involved key redefinitions.

Program 2-10. Creation of Key Definition File and Batch
Command
For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

HR 160 "KEYSON Create ansi.sys file to be typed t
o set function keys 916,

BC 119 ° set mode co8¢, and white on blue s
creen.

N 120 "DOS 2.x CONFIG.SYS must contain "DEVICE=A
NSI.SYS", and

6 139 * both files must be on the booted d
isk.”

IB 135 *NOTE ERROR in DOS 2.¢ manual on page 13-1
1: semi colon should

HH 136 * NOT be placed between ending quote
of string and

A 137 ° the lowercase letter p. SAME ERROR
in DOS 2.1 manual on

1B 138 ° page 2-11.

it 149 °

N 15@ ESC$=CHR$ (27)

EK 160 OPEN "keyson" FOR OUTPUT AS #1

(L 170 PRINT#1,ESC$:"[@#;67;: DIR A: ;13p" " 49
J6 180 PRINT#1,ESC$;"[@#;:68; "BASICA™ : 13p" "10

(0 1990 PRINT#1,ESCH;"[=3h" ’mode co8®
EA 200 PRINT#1,ESC$;"[44m" *blue background
0N 210 PRINT#1,ESC$:;" (23" *cls
ED 220 PRINT#1,ESCS; "(30m" *msg in black
I 2390 PRINT#1,"” f2=DIR
' f19=BASIC" ’key usage
6L 2490 PRINTH#1,ESC$;"[37m" ‘rest in white

¥ 250 CLOSE 1

8l 266 OPEN "keyson.bat" FOR OUTFUT AS #1
D 278 PRINT#1, "echo of+f"”

H 280 PRINT#1,"type keyson"

FE 299 CLOSE 1

M 399 SYSTEM

86

Keyboard

Program 2-11. Creation of Key Reset File and Batch
Command

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

EN 190 °KEYSOFF; Create ansi.sys file to be typed
to unset keys 9-14.

(L 116 "DOS 2.» CONFIG.SYS must contain "DEVICE=A
NS1.5YS", and

120 both files must be on the booted d
isk.

K 139 2

lH 140 ESCH=CHR$(27)

0h 150 OPEN "keysoff” FOR OUTPUT AS #1

HB 164 PRINTH#1,ESCS;"[08;67;:0:67p" £9

M6 170 PRINTH#1,ESC$;"(0;68;:0;68p" 1@

M 188 PRINT#1,ESCS; "[40m" *black back
ground

M 199 PRINT#1,ESCS$;"[23" ‘cls

EC 204 CLOSE 1

0L 219 OPEN "keysaff.bat" FOR OUTPUT AS #1
M 220 PRINT#1,"echo off"

NF 238 PRINT#1,"type keysoff”

FK 249 CLOSE 1

LF 250 SYSTEM

Program 2-12. EXE Program to Issue Escape Sequence
Series

;KEYSON; use ansi.sys to set function keys 9-10,

; set mode c080, and white on blue screen.

DOS 2.x CONFIG.SYS must contain “DEVICE=ANSILSYS”, and
; both files must be on the booted disk.

;Note error in DOS 2.0 manual on page 13-11: semicolon should
not be placed between ending quote of string and

; the lowercase letter p. Same error in DOS 2.1 manual on
; page 2-11.

’

STACK SEGMENT STACK
DW 64 DUP (?)
STACK ENDS

’KEYS SEGMENT PARA PUBLIC 'DATA’

KEYSEQ DB 27,10;67;”DIR A:"” ;13p” .19
DB 27,'[0;68;" BASICA” ;13p’ ;£10
DB 27,/[=3W ;mode co80
DB 27,[44m’ ;blue background
DB 27,12 ;cls
DB 27,[30m’ ;msg in black

87

Keyboard

KEYS
CODE

DB ’ F9=DIR F10=BASIC’
DB 27,[37m’ ;rest in white

DB I$I

ENDS ‘

SEGMENT

ASSUME CS:CODE

KEYSON PROC FAR

PUSH DS
SUB AX,AX ; save return address
PUSH AX

MOV AX,KEYS

MOV DS,AX

ASSUME DS:KEYS

MOV DX,OFFSET KEYSEQ
MOV . AH,9

KEYSON ENDP

CODE

7

INT 21H

RET

ENDS

END KEYSON

Break and Reboot Keys

BASICA in DOS 2.0 and 2.10 allows the programmer to trap
up to five different combinations of Shift, Alt, Caps Lock,
Num Lock, and Ctrl with an accompanying key’s scan code.
These traps can send the program off to a subroutine to do the
desired actions whenever the selected combination of keys are
pressed. Use the ON KEY() statement to trap function or
cursor keys. Program 2-13 demonstrates how the Break key
and the Ctrl-Alt-Del sequence (REBOOT) can be trapped and
disabled by a BASIC program. This trapping is done asyn-
chronously, as demonstrated by the trap subroutines some-
times being driven between the LOCATE 2,1 statement and
the following PRINT statement for the countdown value.

Program 2-13. Trapping Break and Reboot Keys in BASIC

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

LA 100
66 119
M 120
I8 139

EF 149

88

*BREAKNOT; use BASICA key statement to tra
p Break and Ctrl-Alt-Del

CLS:PRINT"Try to Break or Ctrl-Alt-Del”
CTRL . BREAK$=CHR%$ (4) +CHR% (79) > Ctrl=4
s 7@=scan code for Break
CTRL.ALT.DEL$=CHR$(12) +CHR$(83) * Ctrl+A
1t=12, Del=83

Keyboard

A 15¢ * ——— setup trap routines ——

B6 1680 KEY 1S5, CTRL.BREAK$: KEY (15) ON: ON KEY (
1S) GOSUB 249 ’> set trap routine

06 17¢ KEY 16, CTRL.ALT.DEL$: KEY (16) ON: ON KEY

{16) GOSUB 28¢

0t 186 > ——— try to use keys —-—

A 198 FOR X= 4069 TO @ STEP —1: LOCATE 2,1:PRINT
“countdown" X: NEXT:

¥ 208 PRINT"Break and Ctrl-Alt-Del now enabled”

1B 218 KEY (15) OFF:KEY (16) OFF ’ reset the tra

ps
F) 220 GOTO 220 * give time to try keys
K 23¢ » —— Break trap routine —-
kP 249 BRK=BRK+1:LOCATE 10, 1:PRINT"~C BREAK KEY T
RAFPPED"BRK

P 259 *.... here you could perform any break act
ion desired - depending

W 268 *.... on program conditions, possibly wrap
up the program quickly ...

N 279 RETURN

BA 2806 * ——— Ctrl-Alt-Del trap routine ———

A 299 CAD=CAD+1:LOCATE 12,1:PRINT”!!! REBOOT TRA
PPED !!!"CAD

N 388 RETURN

Break Interrupt Vector at 6C-6Fh INT 1B

You may want to disable the Break key when your non-BASICA
program is running so that the user must use a program-
provided option to gracefully wrap things up. If we want to
simply ignore the Break key, one way to do this in BASIC is
to overlay the break interrupt vector at 6C-6Fh that BASIC
has established. Use the address of the routine that the power-
on routine places there before BASIC changed it. The routine
is a “return to caller” IRET instruction. To be safe, we can
save and restore the address that’s currently in the vector, as
Program 2-14 demonstrates. The statements in lines 150 and
190-220 overlay the BASIC established break vector. The
pause function will still be available for the user to pace out-
put, even though the Break key has no effect.

Program 2-14. Ignoring the Break Key in BASIC

For error-free program entry, be sure to use “The Automatic Proofreader,” Appendix H.

P 1808 *BRKIGNOR; ignore BASIC’s break vector, sa
ving and restoring

BE 119 * Does not use convention of DOS
services 25 and 35

89

Keyboard

N 1290 PRINT "BRKIGNOR; disables Break while runn
in

00 139 ’—2— Show and save current BASIC break int
errupt vector -———

KE 140 DEFINT A-Z

N 150 DEF SEG=0

168 PRINT"BASIC’s vector="3;: GOSUB 308 ’Show B

ASIC’s break vector

HA

6 170 FOR X=0 TO 3: POKE &H180+X,PEEK(&H&C+X): N
EXT ’Save BASIC’s break vector

CN

180 *——— Change break vector to do—nothing rou
- tine at 84%h ——-—
PL 1990 POKE &H6C,%H4Q
FE 280 POKE &H&D, &H1
N 218 POKE &H6E,&H78
68 22¢ POKE &H&F, &HO
IB 238 >——— Restore and show current BASIC break
interrupt vector -—-—-—
If 240 PRINT"Ignore vector=";: GOSUB 30¢ °*Show du
mmy break vector
86 256 PRINT"running, try to break... ": FOR X=1
TO 99€8: NEXT
H 260 FOR X=0 TO 3: POKE &H6C+X,PEEK(&H180+X): N
EXT ’Restore BASIC’s break vector
PF 278 PRINT"BASIC’s vector restored=";: GOSUB 38
@ °Show BASIC’s break vector
L 2886 END :
PN 299 °—-— Subroutine to print current break vec
tor contentg ———

K 388 FOR X=¢ TO 3: PRINT PEEK (&H&C+X)3;’show cu
rrent break vector

oc 319 NEXT: PRINT: RETURN

DOS offers services 35 and 25 to retrieve and store inter-
rupt vectors. To follow IBM compatibility conventions, use the
BASIC SRVCCALL routine to save, modify, and restore the
break interrupt vector. The DOS manual for DOS 2.0 discusses
the use of services 25 and 35h in Appendix D. For DOS 2.10,
see Chapter 5 of the DOS Technical Reference manual.

Sometimes the single IRET instruction in the dummy rou-
tine set by power-on may not return control to the BASIC pro-
gram because of several levels of pending interrupts. You can
read about this consideration on page 5-8 of the PCjr Tech-
nical Reference manual or page 2-5 of the XT manual. If this
problem surfaces during testing, set the break vector to the ad-
dress of a BASIC variable that contains enough IRET instruc-
tions, each composed of a CHR$(207).

90

Keyboard

Reboot Trapping Outside BASIC

The Ctrl-Alt-Del (REBOOT) sequence may be detected and by-
passed by a short machine language front-end routine that
you can place before the normal ROM BIOS resident keyboard
INT 9 routine. The example Program 2-15 changes the INT 9
vector to point to the program and disallows the reboot se-
quence by turning off the Ctrl key when Alt and Del are being
pressed. On the PCjr, other Ctrl-Alt sequences are used for
key clicker start/stop, left/right screen adjustment, and the
starting of diagnostic routines with Ctrl-Alt-Ins. The program
carefully disables only the Delete and Insert keys while Ctrl-
Alt is pressed. The routine then allows the normal INT 9 rou-
tine to do its keyboard interrupt processing. BOOTNOT.COM
installs itself and stays resident, meaning that you must
power-on or reboot (using the “secret” Ctrl-Alt-right Shift se-
quence with the Del or Ins keys) to rid it from the system.

To create the BOOTNOT.COM routine, enter the source
code shown in Program 2-15 (if you have an assembler), and
save it using the filename BOOTNOT.ASM. If you don't have
an assembler, BOOTNOT.COM can also be created with DE-
BUG from the disassembly in Program 2-16.

Assembler owners should then use the following batch
file (this is the same batch file used in Chapter 1 to create
SRVCCALL.COM) to create the BOOTNOT.COM module
(you must have ASM, EXE2BIN.EXE, and your source file on
the same disk):

asm %1,,,;
link %]1,,con,;
exe2bin %1.exe %1.com

Once you have the batch file created, assuming you called
it CREATE.BAT, enter this command to create BOOTNOT.COM:

A>CREATE BOOTNOT
Program 2-15. Disabling Reboot via INT 9

;BOOTNOT; Example int 9 interception routine

; to monitor shift status bits,
changing any Ctrl-Alt-Del to Alt-Del
so that machine cannot
be booted. Program stays resident,
power-on needed to remove.

Ctrl-Alt-Ins also disabled
(PCjr diagnostics), but other

91

Keyboard

PCjr Ctrl-Alt combinations
allowed: clicker, screen shift.

Authorized users may use
Ctrl-Alt-right Shift-Del

to reboot, or Ctrl-Alt-right
Shift-Ins for PCjr diagnostics.

Ne Nu Ne Se e N N s

cseg segment para public ‘code’
org 100h
BOOTNOT proc far
assume cs:cseg,ds:cseg

’

jmp install ; go install the new int 9 routine
oldint9 dd 0 ; saved original int 9 vector
int9loc equ 9h*4 ; locat