o i

Ballantine/31597/89.95 in USA« $12.95 in Canada

IBM PCjr'
User’s Handbook

‘The only manual you'll ever need—
from the moment you plug in your computer

7 through set-up, operation, maintenance,

o and programming

. ‘Weber Systems, Inc. Staff
s s el S S ey

IBM PCjre
User's Haondlbook

IBM PCijre
User's Hanalbook

by
Weber Systems Inc. Staff

Ballantine Books ® New York

This book is available to organizations for special use.
For further information, direct your inquiries to:
Ballantine Books

Special Sales Department

201 East 50th Street

New York, New York 10022

IBM PC;jr™ User’s Handbook
Copyright® 1984 by Weber Systems, Inc.

Allrights reserved under Internationaland Pan-American Copyright Con-
ventions. Published in United States by Ballantine Books, a division of Random
House, Inc., New York, and simultaneously in Canada by Random House of
Canada Limited, Toronto.

Intel 8087™ and 8088™ are trademarks of Intel Corporation. Microsoft BASIC™ and
Multiplan are trademarks of Microsoft Corporation. Visicalc™ is a trademark of VisiCorp.
Homeword™ is a trademark of Sierra On-Line Inc. Epson MX-80™ is a trademark of Epson
Corporation. The following are trademarks of IBM Corporation:

IBM PCjr* Cartridge BASIC™

DOS 1.0,1.1,20,2.1™ IBM Compact Printer™

IBM PC XT™ IBM Graphics Printer™

IBM Color Display™ IBM PC;jr Attachable Joystick™
IBM Monochrome Display Adapter™ IBM Keyboard Cord™

IBM Asynchronous Communications Adapter™ IBM Internal Modem™

BASIC 1.0,1.1,2.0,2.1™ Graphics Definition Language™
Cassette BASIC™ IBM Logo version 1.00™

Disk BASIC™ IBM Terminal Emulator™

Advanced BASIC™

Library of Congress Catalog Card Number: 83-91222
ISBN: 0-345-31597-9

Manufactured in the United States of America

First Ballantine Books Edition: May 1984
10987654321

Contents

Introduction

1. Introduction to the PCjr

Overview 11. Differences Between the PC and PC XT and the
PCjr15. Technical Data 16. ROMand RAM 17. Dynamicand Static
RAM 18. IBM PCjr's CPU 18. Software 20. Operating System Soft-
ware 20. Language Software 20. NOISE 22. PALETTE 22. PAL-
ETTE USING 23. PCOPY 23. TERM 23. Applications Software 23.
PCjr Cartridges 24. Peripheral and Add-On Devices 24. Disk Drives
26. Floppy Diskettes 27. Tracks and Sectors 28. Hard and Soft
Sectors 28. Diskette Capacity 29. Diskette Write Protection 31. PCjr
Disk Drive Operation 32. Printers 32. 1BM Compact Printer 34. I1BM
Graphics Printer 36. Joysticks 37. Keyboard Cord 38. PCjr Memory
and Display Expansion 39. PCjr Internal Modem 40. Cassette
Recorder/ Player 41.

2. Installation, Operation & Keyboard Usage

Introduction43. Installation43. System Unit Installation 44. Attach-
ing a TV Set 44. Attaching a Monitor 45. Attaching a Composite
Monitor 46. Attaching an RGB Monitor 46. Attaching the Power
Transformer 46. Keyboard Installation 47. Start Up Procedure 48.
Keyboard Usage 49. Peripheral Ports 50.

3. Introduction to PCjr BASIC Programming 55

Introduction 55. Getting Started with PCjr BASIC 55. Start-up
without a Disk Drive 56. Start-up with a Disk Drive 57. BASIC
Command Entry-DOS 58. Immediate and Program Modes 60. Com-
mand and Statement Structure 61. Enteringa Program 62. Error and
Warning Messages 64. Listing a Program 64. Editing a Program 66.
Running a Program 67. Savinga Program 68. Loading a Program 69.
Multiple Statements 69.

4. Data Types, Variables, and Operators 71

Introduction 71. Data Types 71. Strings 71. Numeric Data 72. Vari-
ables 75. Variable Names75. Assignment Statements 76. Expressions
and Operators 77. Arithmetic Operators 78. Order of Evaluation
(Arithmetic Expressions) 79. Mixing Variable Types 80. Relational
Operators 81. Logical Operators 83. Overall Order of Evaluation 86.

5. BASIC Programming Concepts 89

Introduction 89. Inputting and Outputting Data 89. PRINT 90.
Horizontal Formatting 92. Vertical and Horizontal Tabs 93. Format-
ting Output 93. Outputting Data to the Printer 96. Line Width 96.
INPUT97. LINEINPUT98. INKEY$99. Conditionals, Branching,
and Looping 99. Conditionals 99. Branching Statements 100. Sub-
routinesand GOSUB 101. Conditional Statements with Branching 102.
Looping Statements 103. Conditional Looping Statements 105. Error
Handling 107. Tables and Arrays 109. Subscripted Variables 109.
Dimensioning an Array 111. DATA and READ Statements 113.
Functions and String Handling 117. Built-In Mathematical Functions
118. User-Defined Functions 121. Strings and String Handling 122,
String Concatenation 123. String Handling Functions 123. String/-
Numeric Data Conversion 125. Variable Table and String Storage
126. Housekeeping and FRE 127. Function Summary 127. Program
Concatenation 130. CHAIN 130. COMMON 131.

6. Files & File Handling with PCjr BASIC 133

Introduction 133. Files, Records and Fields 133. File Specifications
135. File Access 136. Sequential and Random Files 137. Opening a
Sequential File 138. Writing to a Sequential File 141. Reading from a
Sequential File 142. EOF, LOC, and LOF with Sequential Files 145.
Random File Access 146. Opening and Closing a Random File 147.
Field Variables 147. Writing Data to a Random File Buffer 148.
Writing a Record from the Random File Buffer to the File 150.
Reading a Record from the Random File into the Buffer 150. Reading
Data from the Random File Buffer 151. LOC and LOF with Random

Files 151. Using Random Access Files 151. File Commands 154.
SAVE 154. LOAD 154. RUN 156. KILL 156. NAME 156. MERGE
157. CHAIN 157. FILES 157.

7. PCjr BASIC Graphics and Sound 159

Introduction 159. Pixels 160. Redefining the Screen Coordinates 161.
Selecting a Graphics Mode — SCREEN 166. Attributes and Palettes
167. Selecting a Color 170. Plotting — PSET 171. Relative Coordi-
nates 172. Advanced Graphics Commands 172. Retrieving Informa-
tion from the Screen 176. Shape Definition 177. DRAW — Movement
Commands 177. DRAW-M Command 178. DRAW-B 179. DRAW-
N Command 179. DRAW-C Command 179. DRAW-A Command
180. DRAW-TA Command 180. DRAW-P Command 180. DRAW-
X Command 181. Sound 183. Producing Sounds 185. Advanced
Music 187. Sound Effects 190. Writing a Game Program 191.

8. Logo on the PCjr 195

Introduction 195. Loading the Logo Diskette 196. Exploring Turtle
Graphics 197. Finding the Turtle 197. Moving the Turtle 198. The
Logo Editor 199. Lifting the Pen 200. Repeating Commands 201.
Filling an Area of the Screen 202. Turtle Coordinates 203. Color 204.
Background Color 205. Pen Color 205. Clean-Up 206. Sound 207.
Sample Procedures 208. Procedure Handling 209. Conclusion 210.

9. DOS 2.1 Features 211

Introduction 211. Notation 212. Types of Commands 212. Starting
DOS 213. Entering the Date 213. Entering the Time 214. DOS
Prompt 215. DOS Keyboard Usage 216. Entering a Command 216.
Stoppinga Command 216. Correcting Typing Errors 216. Slow Screen
Scrolling 217. Send Data on the Screen to the Printer 217. Send
Keyboard Entries to the Printer 218. System Reset 218. DOS Editing
Keys 218. DOS Usage 219. Copying Your DOS Diskette 219. Files,
Filenames, and Filename Match Characters 221. Formatting a Disk-
ette — Format 223. Backing Up Diskettes 224. DISKCOPY 225.
COPY — Copyinga File to the Same Diskette 226. COPY — Copying
a File to a Different Diskette 226. Diskette Directory — DIR 227.
Displaying a File’s Contents — TYPE 228. Renaming a File -
RENAME 228. Erasinga File — ERASE229. Clearing the Screen —
CLS 229. Changing the DOS Prompt — PROMPT 229. Changing the
Date — DATE 230. Changing the Time — TIME 231. Changing the
Standard 1/ O Device — CTTY 231. Determining the Version of DOS
— VER 232. Analyzing a Diskette — CHKDSK 232. Screen Dump-
ing — GRAPHICS 233. Checking Data Written to a File — VERIFY
234. Saving a Damaged Diskette — RECOVER 235. Checking the

10.

Volume Label of a Diskette — VOL 236. Transferring the Operating
System — SYS 236. Controlling the Break Key — BREAK 237.
Printing a List of Data Files — PRINT 237. Filters 238. Locating a
Stringina File — FIND 239. Screen Filling— MORE 240. Sorting —
SORT 241. Batch Processing242. AUTOEXEC.BAT File 243. Creat-
ing a Batch File 243. Using Replaceable Parameters with .BAT Files
243. Executing a Batch File with Replaceable Parameters 244. Batch
Subcommands 244. Introduction to EDLIN 246. Executing EDLIN
247. EDLIN Command Summary 248. Append Lines 249. Copy
Lines 249. Delete Lines 250. Edit Lines 250. End Edit 251. Insert
Lines 251. List Lines 252. Move Lines 252. Page 253. Quit 253.
Replace Text 254. Search Text 254. Transfer Lines 255. Write Lines
255. DOS Components 256. _

PCjr Communications

Communications with the PCjr 257. Internal Modem 257. Terminal
Emulator 258. IBM Terminal Emulator 258. Line -Bit Rate (Baud
Rate)259. Changing the Baud Rate 259. Data Bits 260. Changing the
Number of Data Bits 260. Parity 260. Changing the Parity 261.
Echoing 261. Changing the Echo Status 262. Screen Width 262.
Changing the Screen Width 262. Modem Commands 262. Enteringa
Modem Command 267. Errors 268. Functions Keys 268. Using the
Terminal Emulator Program 269.

Appendix A. PCjr BASIC Reserved Words
Appendix B. DOS Reserved Words
Appendix C. ASCIlI Character Codes
Appendix D. Printer Usage with the PCjr
Appendix E. IBM PCjr Device Names
Appendix F. IBM PCjr BASIC Error Messages
Index

257

275
276
277
280
285
286
293

Infroduction & Acknowledgements

IBM PC;jr® User’s Handbook is meant to serve as a tutorial as wellasan
on-going reference guide to the operation and programming of the IBM
PCjr. All of PCjr’s important features are discussed including:

e Keyboard usage o Communications
o BASIC programming ® Graphics

e DOS usage e File handling

® | ogo programming

A number of examples are included with the text to illustrate the topics
being discussed. Terms that may be unfamiliar to the reader will be presented
in bold in the text. These terms will be defined in subsequent paragraphs.

Chapter | of this book is meant to serve as an introduction to PCjr and
its related peripherals. Both the entry and the enhanced models are discussed.
Topics covered include the system unit, keyboard unit, optional disk drive,
8088 CPU, DOS 2.1, operating system, Microsoft BASIC 2.1, and peripher-
als such as printers, joysticks, RAM expansion, and modems.

Chapter 2 details the procedures provided in initially installing the PCjr
as well as its start-up. Keyboard usage and the available peripheral ports are
also discussed in chapter 2.

Chapter 3 is meant to serve as an introduction to programming the PCjr
in Microsoft BASIC version 2.1. The following topics are discussed:

® BASIC start-up e Editing a program
® Program entry ® Running a program
® Listing a program ® Saving and loading a program

9

10 1BM PCjr User's Handbook

Chapter 4 discusses data types, operators, and variables in the context of
BASIC programming. Chapter 5 includes additional fundamental BASIC
programming concepts including:

e Input and output e String handling
o Tables and arrays ® Program concatenation
e Functions

In chapter 6, the use of files in Microsoft BASIC is discussed. Chapter 7
describes techniques for outputting graphics using BASIC commands.

Chapter 8 includes a discussion of the Logo language. Logo is used
frequently in educational environments, and is expected to be widely imple-
mented on the PCjr. '

Chapter 9 consists of a detailed discussion of DOS 2.1 usage on the PCjr.
Topics covered include:

e DOS start-up e Erasing files

e DOS keyboard usage ® Analyzing the diskette

e Copying diskettes e Copying the operating system
e Copying files ® Batch files

e Formatting diskettes e EDLIN

® Backing-up diskettes e SORT

o Listing the diskette directory e FIND

® Renaming files e MORE

Chapter 10 contains a discussion of using the PCjr as a terminal to
communicate with other computers using telephone lines as the communica-
tions link. Topics covered include:

e Internal modem
e Terminal Emulator program
e Practical example of PCjr communications

A number of appendices are included with IBM PCjr User’s Handbook.
These detail the PCjr ASCII code set, BASIC reserved words, BASIC error
messages, DOS commands, and printer usage with the PCjr.

We gratefully acknowledge Rosemary Morrissey and Jeanette Mahrer
of IBM Corporation for their assistance.

We also wish to thank Ron Hall and Jeff Jones of the HCS Computer
Shoppes for their cooperation and assistance.

1

Introduction to the PCjr

Overview

The IBM PCjr is expected to reshape the home computer market.
The PCjr is IBM’s follow-up to the tremendously successful IBM Per-
sonal Computer. Apparently, IBM intends the PCjrto appeal to the home
and education markets, while the PC and PC XT are targeted at the
business market.

The PCjrisavailable as two separate models (see figures 1-1and 1-2).
The entry model includes 64K (or kilobytes) of RAM, two slots for
inserting program cartridges, a cordless keyboard, and the Intel 8088
microprocessor used on the IBM PC and PC XT models. The enhanced
model contains an additional 64K Memory and Display Expansion
board, as well as a slim-line 5Y inch floppy diskette drive which is capable
of storing 360K. The Memory and Display Expansion board increases
user RAM to 128K and allows 80 characters to be displayed on each line
of text on the screen.

11

12 IBM PCjr User's Handbook

T (A
i o ==

—

a. cartridge slots

FIGURE 1-1. IBM PCjr (Entry Model)

S

a. cartridge slots b. diskette drive c. keyboard

FIGURE 1-2. IBM PCjr (Enhanced Model)

Introduction to the PCjr 13

The 1BM PCjr consists of three basic units; the keyboard, System
Unit,and power supply/transformer (see figures 1-3 to 1-5). The System
Unit contains the heart of the PCjr, the Intel 8088 microprocessor, 64 or
128K of RAM, the cartridge slots, and the Microsoft BASIC interpreter
in ROM (read-only memory).

The keyboard allows the PCjr user to communicate with the System
Unit. Unlike the PC and PC XT models, the PCjr keyboard does not
necessarily have to be connected to the System Unit with a cable. The
PCjr keyboard is cordless. Communications with the System Unit is
accomplished via an infrared optical signal.

If more than one PCjr is being used concurrently in a room, it is
necessary to connect the keyboard to the System Unit using the optional
keyboard connection cable. Otherwise, the keyboard can be used without
the cable to communicate with the System Unit. The advantage of cord-
less communications is especially useful in a classroom situation -- as the
System Unit can be placed in a central location and the keyboard can be
passed around the classroom. The effective range of cordless keyboard
communications is approximately 20 feet.

The PCjr keyboard is powered by four AA batteries. It contains 62
programmable* keys arranged in a typewriter-like sequence.

A display must be added to your PCjr in order for it to be a useful
device. The PCjrcan utilize either a television set, the IBM Color Display,
or a standard video monitor as a display device. Since the PCjr offers
built-in color graphics, a color display device offers the greatest
advantage.

Unlike the IBM PC and PC XT models, the PCjr’s power supply is
not built into the System Unit. Rather, the power supply/transformer
(see figure 1-5) is housed in a separate unit which isattached to the System
Unit by a power cord.

* Programmable keys allow any letter, number, function, or command to be assigned.

14 IBM PCjr User's Handbook

FIGURE 1-4. IBM PC;jr System Unit.

Introduction to the PCjr 15

FIGURE 1-5. IBM PCjr Power Transformer

DIFFERENCES BETWEEN
THE IBM PC and PC XT AND THE PCjr

Since many of our readers are likely to already be familiar with
IBM’s PC and PC XT models, it may be helpful to begin our discussion of
the PCjr with a summary of the differences between itand the PCand PC
XT.

First of all, while the PC comes with 128K of RAM on the System
Board and the PC XT includes 256K of RAM, the PCjr includes only
64K of RAM. Expansion up to 128K is available on the PCjr by
incorporating the optional Memory and Expansion board. The PC and
PC XT models allow for RAM Expansion up to 896K.

The keyboard on the PC and PC XT models includes 83 separate
keys, while the PCjrincludes only 62 keys. Although the PCjr’s keyboard
contains fewer keys than the PC and PC XT keyboards, nearly all of the
characters available on these two can be generated by the PCjr’s key-
board. This is accomplished by having a number of keys serve a dual
purpose. Forexample, the function keys are now located along the top of
the keyboard rather than along the left hand side (as on the PCand PC

16 1BM PCjr User's Handbook

XT models). These keys are also used to generate special symbols (! @ #)
and numbers.

Another difference between the PC and PC XT keyboards and the
PCjr keyboard is that the PCjr keyboard need not necessarily be physi-
cally connected to the System Unit with a cable. The connection between
the PCjr System Unit and keyboard is made via an infrared link. This will
be explained in more detail later in this chapter as well as in chapter 2.

The PCjr’s keyboard also differs from the PC and PC XT keyboard
in that the keytops on the PCjr keyboard are not labeled. Keyboard
overlays (see figure 1-6) are used to identify the individual keys according
to the application for which the PCjr is to be used. The symbol for each
key is printed on the overlay above it.

Another difference between the PCjrand PC and PC XT models is
the availability of disk storage. The PCjr allows for the addition of one
optional floppy disk drive. The PC allows the addition of two drives.
Fixed disk storage can also be added to the PC by adding an Expansion
Unit. The PC XT includes one floppy disk drive as wellasa 10MB* fixed
drive as part of its standard configuration.

The PC and PC XT will support the IBM Graphics, Compact, or
Color Printers. The PCjr will only support the Graphics and Compact
Printers.

Finally, the 8087 comprocessor which is available for the IBM PC
and PC XT is not available for the PCjr.

Technical Data

As was mentioned in the preceding section, the System Unit contains
the fundamental components of the PCjr. A system board or mother-

* MB is an abbreviation for megabyte (1 million bytes).

Introduction to the PCjr 17

FIGURE 1-6. IBM PCjr Keyboard Overlay

board is housed within the System Unit. Most of the circuitry for the PCjr
is located on the system board including the following:

8088 microprocessor

64K RAM

64K ROM

RS-232 Interface

Speaker

Connectors for optional devices

ROM and RAM

ROM stands for Read Only Memory. ROM will hold the data stored
in it permanently. If the power to the PCjr is shut off, the information
stored in ROM will remain there. As previously mentioned, the Microsoft
BASIC language interpreter is stored in ROM.

RAM stands for Random Access Memory*. Any data stored in
RAM will be lost when the PCjr’s power is shut off. When data is loaded
from a tape cassette, a disk drive, or the keyboard, it is stored in RAM.

* Random Access Memory is a somewhat misleading term to describe RAM, as most memory
(including ROM) is randomly accessed.

18 IBM PCjr User's Handbook

DYNAMIC AND STATIC RAM

There are two different types of RAM memory; dynamic RAM and
static RAM. Dynamic RAM can only hold the data it is storing for a few
milliseconds. Therefore, any data being stored in dynamic RAM must
constantly be rewritten or refreshed. This dynamic RAM refresh function
must be a part of the support logic when the dynamic RAM memory is
designed.

Static RAM is more expensive than dynamic RAM. However, once
data has been written into static RAM, it will be retained as long as power
is supplied.

IBM PCJr's CPU

The central processing unit or CPU s the heart of any computer. The
CPU controls all of the other components for the computer.

In larger computers, the CPU and the ALU (arithmetic logic unit)
consist of a group of IC chips each dedicated to its own task. In smaller
computers, the CPU and ALU are generally combined on a single chip
which is known as a microprocessor.

A microprocessor can be defined as a single chip which contains the
logic of a central processing unit as well as any additional logic that must
complement the CPU.

The microprocessor used in the PCjr is the Intel 8088, which is
manufactured by Intel Corporation of Sunnyvale, California. Intel is a
pioneer in the development of microprocessors. Intel developed the
predecessor of the 8088, the 4004 calculator chip, in the early 1970. Intel
subsequently developed the 8008, 8080, 8085, and 8088/8086 micro-
processors.

Microprocessor logic is based upon the bit. A bit is the basis of all
information storage within the computer. A bit is a simple switch that can
consist of either of the two binary states, on or off.

Bits are often separated into groups of eight. These groups of 8 bits
are knownasa byte. A byte is required to represent a single character (i.e.
letter, number, or symbol). Generally, bytes are processed by the compu-
ter in groups of 2.

Most 8-bit microprocessors can only address (or work directly with)

Introduction to the PCjr 19

65,536 (64K) bytes at any one time. Even though this number appears
large, a 30 page document would fill this memory area.

Most 16-bit microprocessors can address from 65,536 to 16 million
bytes of memory. Moreover, 16 bit microprocessors process data at a
speed from 2 to 10 times faster than 8-bit microprocessors.

One of the main advantages the IBM PCjr has over other home
computers is the power provided by its use of the 8088 CPU.

The 8088 can address up to one million bytes of memory (or 1
megabyte, abbreviated as I MB). The 8088 has 20 different address lines,
which allows 2 to exponent 20 (220) different address combinations. This
is the equivalent of 1,048,576 different addresses.

The speed of the 8088 is about .65 mps (or million operations per
second). In other words, the 8088 will process 650,000 arithmetic opera-
tions or data transfers per second. When compared with the Intel 8080 A,
the 8088 is approximately six times faster. The characteristics of the 8088
are outlined in table 1-1.

TABLE 1-1. Intel 8088 Characteristics

Intel 8088

Construction: Chip technology -- HMOS 40 pin
plastic package.

Manufacturer: Intel Corporation

Introduction Date: 1979

Features: 20 address lines

1.

2. 1 MB memory addressing

3. 650,000 operations per second

4, 8 data lines

5.4.77 Mhz clock speed

6. Separate bus interface and execu-
tion units.

7. 99 basic machine language
instructions.

8. Software compatible with Intel
8086.

20 I1BM PCjr User's Handbook

Software

Software can be defined as the set of instructions or programs that
cause the computer to operate. Software can be divided among three
general classifications:

® Operating System Software
® Language Software
® Applications Software

Each of these classes of software will be defined and discussed briefly
in the context of the PCjr in the following sections. PCjr software can be
stored on cassette tape, floppy diskettes, or cartridges.

OPERATING SYSTEM SOFTWARE

An operating system can be defined as a group of programs which
manage the overall operation of the computer. The operating system
performs system operations such as controlling data input/output,
memory assignments etc. The PCjr’s operating system is stored perman-
ently in ROM.

The standard operating system available for the PCjris DOS version
2.1. DOS 2.1 was developed by Microsoft Corporation and is a revised
version of the earlier versions of Microsoft’s DOS used on the IBM PC
(versions 1.0, 1.1, and 2.0). DOS version 2.1 can also be used on the IBM
PCand PC XT. DOS version 2.1 usage on the PCjris discussed in chapter
9.

LANGUAGE SOFTWARE

A language can be defined as a group of characters and/or symbols
which can be combined using a set of syntax rules to represent informa-
tion. Examples of languages include English, Spanish, French, as well as
computer programming languages such as BASIC, ADA, PASCAL, and
COBOL.

The BASIC language is supplied with the PCjr. The version of
BASIC used is that developed by the Microsoft Corporation -- Microsoft
BASIC version C1.20. Microsoft BASIC is located in memory on the
PCjrs system board. Microsoft BASICisalso supplied with the IBM PC

Introduction to the PCjr 21

and PC XT computers. Microsoft BASIC version 2.1 is the latest version
used on 1BM personal computers. Earlier versions includes versions 1.0,
1.1, and 2.0.

Computer languages are often distinguished as being either com-
piled or interpreted languages. Microsoft BASIC is an interpreted
language.

A compiled language program consists of the source code and the
compiled code. The source code consists of the program statements in
their original form. For example, the following is a line of source code
from a program written in the CBASIC compiled language.

100 INPUT "ENTER TODAY’S DATE:";DATE.1

The source code is processed by a program known as a compiler into
the compiled code. The compiled code is very similar to the machine
language used by the microprocessor. The compiled code is the code
actually used when a compiled program is run. A program known as a
run-time monitor is used to run the compiled program.

Aninterpreted language consists of only the source code. The source
code is translated line-by-line directly into machine language instruc-
tions. The Microsoft BASIC language that is standard on the IBM PC s
an interpreted language.

One advantage of interpreted languages over compiled languages is
that interpreted language programs are more easily developed. When
working with interpreted languages, a programmer need only write a
program, enter it, run it, and alter it at his leisure. When working with a
compiled language, the source code must be recompiled every time it is
edited. This can be frustrating during the program debugging process.

One advantage of compiled languages over interpreted languages is
that execution time is much faster. The compiled code is much closer to
the machine language than the source code. Since interpretation is not
necessary, execution of compiled code is much faster.

The IBM PC and PC XT use three separate versions of BASIC;
Cassette BASIC, Disk BASIC, and Advanced BASIC.

Cassette BASIC is the version of BASIC used when a cassette
recorder is being used to store information. Cassette BASIC cannot be
used when data is being stored on diskettes.

22 1BM PCjr User's Handbook

Disk BASIC contains all of the capabilities of Cassette BASIC and
can also be used when data is being stored on diskettes. In other words,
Disk BASIC can be used when data is being stored on diskettes or when it
is being stored on cassette tape.

Advanced BASIC has all of the capabilities of Cassette BASIC and
Disk BASIC as well as additional features not found on these other two
versions of BASIC, Advanced BASIC includes several graphics com-
mands such as CIRCLE, DRAW, and PAINT that allow the user to fully
utilize the color graphics capabilities of the IBM PC when it is equipped
with the Color/Graphics Monitor Adapter and a color monitor or color
TV set.

Both the Advanced BASIC and the Disk BASIC versions require
DOS before they can be run, or before any programs written in Advanced
or Disk BASIC can be run.

The PCjr uses the same Cassette BASIC used by the PCand PC XT.
The Cassette BASIC portion of the interpreter is resident in 32K of ROM.
This is also the case with the PC and PC XT.

For the PCjr, the features of Disk and Advanced BASIC have been
combined (along with additional new features) into Cartridge BASIC.
Cartridge BASIC is called from a ROM cartridge which must be inserted
in one of the PCjr’s two available cartridge slots. Cartridge BASIC hasa
length of approximately 32K, and requires 6K of RAM for operation.

As we mentioned in the last paragraph, Cartridge BASIC incorpo-
rates a number of new features not found in previous versions of BASIC
available for the PCand PC XT. The majority of these features consist of
commands which allow for more effective usage of the PCjr’s color
graphics options and generation of sound through an extended feature. A
few of the more useful commands included in Cartridge BASIC are
described briefly below.

NOISE
This command allows the programmer to generate complex sound
effects through an external speaker connected to the PCjr.

PALETTE
This command allows the programmer to select the palette in use.

Introduction to the PCjr 23

PALETTE USING
This command allows the programmer a means of efficiently setting
all palette entries.

PCOPY
This command allows the programmer to copy one page of screen
memory to another page. :

TERM

The TERM command causes a Terminal Emulator program, which
is present in the ROM of the BASIC cartridge, to be loaded into the
PCjr’s RAM. This Terminal Emulator program can be used to allow the
PCjr to communicate with a host computer. The Terminal Emulator
program will be discussed in detail in chapter 10.

Cartridge BASIC can be used either when DOS 2.1 has been loaded
froma diskette into RAM or when DOS has not been loaded. If DOS has
not been loaded, any disk related BASIC commands will not be
functional.

BASIC programming on the PCjr will be discussed in more detail in
chapters 3 through 7.

Since the PCjr has a great deal of appeal in educational settings,
another language, Logo, is also widely used. Logo is a language which
begins by teaching computer fundamentals to grade school age children
and progressively exposes the reader to more advanced concepts such as
mathematical and logical operators, file handling, graphics, and assem-
bly language subroutines. The use of Logo on the PCjr will be discussed in
more detail in chapter 8.

APPLICATIONS SOFTWARE

Applications software can be defined as a set of instructions designed
toaccomplish a specific task that is of some value to the user. Examples of
applications programs include games, word processing programs, spread-
sheets, and database software. Generally, applications programs are
stored on cassette or diskette and are transferred into RAM, where the
program is available to the computer. Applications programs can also be
stored in a permanent form ona ROM cartridge. This ROM cartridge can
be plugged into one of the PCjr’s cartridge slots.

24 1BM PCjr User's Handbook

A large variety of applications software is available for use with the
PC;jr. These include programs which can be used in the home such as
Home Budget; programs which can be used at work such as Multiplan
and Visicalc; programs with educational applications such as Monster
Math and Turtle Power, and finally games such as Adventure.

PCJjr CARTRIDGES

As was mentioned in the preceding section, cartridges are often used
to store PCjr programs including the Cartridge BASIC interpreter. A
PCjr ROM cartridge is pictured in figure 1-7. The cartridge consists of
32K of ROM enclosed in a plastic case. '

The ROM cartridge should generally be inserted into the PCjr’s left
cartridge slot (see figure 1-8).

Peripheral and Add-On Devices

A peripheral can be defined as an auxiliary device which can be
connected to a computer to perform some additional function.

A number of peripherals and add-on devices can be added to the
PCjrto expand it into a total computer system. These include a cassette
player/recorder, a diskette drive, printers, joysticks, a modem, and addi-
tional RAM. A number of these peripheral components will be described
in the following sections. -

Introduction to the PCjr 25

FIGURE 1-7. PCjr Cartridge

IR ; -
N o L

26 1BM PCjr User's Handbook

Disk Drives

The optional disk drive for the PCjris a soft sectored, double density,
and double sided drive. The floppy disk drive uses 40 tracks per diskette
side. Each track has nine sectors* of 512 bytes. This gives a total of 180K
of data storage per side or 360K of storage for the drive.

IBM refers to the disk drive used with the PCjr as a slimline drive.
This drive isapproximately half the height of the standard size disk drives
used with the IBM PC. However, the slimline drive uses the same 5! inch
diskettes as do the standard size drives.

The PCjrslimline diskette drive.is manufactured by Qume Corpora-
tion of San Jose, California. Qume is a subsidiary of IT&T. The majority
of diskette drives used in the IBM PC were manufactured by Tandon
Corporation of Chatsworth, California.

As was mentioned previously, a diskette drive is standard with the
PCjr enhanced model. A drive can, however, be added to the basic PCjr
model. IBM provides comprehensive installation instructions with the
diskette drive for users who wish to add this option to their PCjr.

The disk drive is one of the most important parts of a computer
system. Strong consideration should be given to purchasing the enhanced
version of the PCjr as it includes a disk drive. Disk drives allow the
storage of relatively large amounts of data and also offer relatively fast
access to that data.

Unlike RAM storage, when information is stored on a disk, the
information is not lost when the computer is turned off. In other words,
disks offer a permanent means of storing data.

A disk stores data in a magnetic form, much like data is stored on
magnetic tape. The main difference between storage on a magnetic tape
and storage on a disk lies in the means by which that data can be accessed.

The disk drive contains a device known as a read/write head, which
is used to read and write information. The computer can move the head to
any position desired on the disk surface. This is in contrast to magnetic
tape, where data is read from or written onto the tape in consecutive
order.

* A definition of sectors is provided on page 28.

Introduction to the PCjr 27

This capacity to read or write data at a particular position is known
as random access. Disk drives are known as random access storage
devices. On the other hand, in cases where data must be read or written in
a consecutive order, the accessing is known as sequential access. A
cassette tape recorder is known as a sequential access device.

FLOPPY DISKETTES

Disk drives store data on floppy diskettes. A floppy diskette consists
of a round vinyl disk which is enclosed within a plastic cover. The diskette
is generally stored in a diskette envelope.

This cover protects the diskette from damage while it is being
handled by the operator. The diskette should never be removed from its
cover. A 5Y% inch diskette with its protective envelope is shown in figure
19.

The diskette is allowed to rotate within the protective envelope. The
round hole in the middle of the diskette allows the disk drive to hold the
diskette and spin it. The oblong shaped opening on the protective
envelope provides an area where the head can read from or write to the
diskette surface.

Temporary Label

Write Protect Notch
(Some diskettes do

Permanent Label
.not have this notch.)

Diskette in

Protective Cover —— Index Hole

Exposed Read/Write

Head Slot
Diskette

Envelope

FIGURE 1-9. 5% Inch Floppy Diskette

28 IBM PCjr User’s Handbook

TRACKS & SECTORS

To facilitate the process of searching for data on the diskette surface,
that surface isdivided into tracks and sectors. Tracks may be visualized as
a series of concentric circles on the diskette surface, as shown in figure
1-10. DOS 2.1 divides each side of a diskette into 40 tracks.

To further reduce the time necessary to search for a particular data
item, DOS 2.1 divides each track into 9 sectors, which are also shown in
figure 1-10.

Each individual sector holds 512 bytes of data. When DOS has
access to the track and sector where a particular data item is being stored,
it will only have to search 512 bytes to find that item. The result of
dividing the diskette surface into tracks and sectors is that access time is
greatly decreased. '

HARD AND SOFT SECTORS

Locatinga particular track on the disk surface is a relatively uncom-
plicated matter. The drive merely moves the head to the position on the
diskette where the specified track is located, much like the needle on a
phonograph is positioned to the location of a specific song on a record
album.

However, locating a particular sector is a more difficult process. Two
different methods are used to locate sectors on a disk; hard sectoring and
soft sectoring.

Both the hard and soft sector methods involve the use of an index
hole. The index hole is shown in figure 1-9. It is located just to the right of
the large hole in the middle of the 5% inch diskette.

The index hole as shown in figure 1-9 is a hole only in the diskette’s
protective covering. Another index hole is located on the actual diskette
surface inside the envelope. As the diskette spins, the index hole (or holes)
on the diskette surface passes underneath the hole in the protective
envelope.

A light source inside the disk drive shines light onto the area of the
diskette containing the index hole. When an index hole on the disk
surface is aligned with the index hole on the protective envelope, the light
will shine through to a sensor. The sensor will relay information on the

Introduction to the PCjr 29

Track

One
Sector of
Track

FIGURE 1-10. Tracks and Sectors

location of the index holes, which can be used to calculate the various
sector locations.

Now that we have discussed the concepts of locating sectors, we will
discuss the difference between hard and soft sectored diskettes. A hard
sectored diskette contains a number of holes, each of which indicates the
location of a sector. An extra hole is used to indicate the location of the
first sector. The location of the various sectors is determined by counting
the number of holes occuring after the first sector. A hard sectored
diskette is depicted in figure 1-11.

Soft sectored diskettes have only one index hole as shown in figure
1-12. This solitary index hole marks the location of the first sector. By
timing the rotation speed of the floppy diskette, the location of the other
sectors can be determined. The IBM PCjr uses soft sectored diskettes.

DISKETTE CAPACITY

Two factors affect the amount of data that can be stored on a floppy
diskette -- density and the number of sides to which data can be written.
Density refers to a diskette’s recording format, which in turn affects
its capacity. Single density (SD) 5% inch diskettes have roughly 90K of
capacity per side. Double density (DD) 5% inch diskettes have a capacity

30 IBM PCjr User's Handbook

2 Index Holes

Sector

FIGURE 1-11. Hard Sectored Diskette

Index Hole

Sector

FIGURE 1-12. Soft Sectored Diskette

Introduction to the PCjr 31

of approximately 180K per side.

Some floppy diskettes are designed to be written on only one side.
These are known as single sided (SS) diskettes. Diskettes which are
designed to be written on both sides are known as double sided (DS)
diskettes. The PCjruses double sided, double density diskettes (DS, DD)
with a capacity of 360K.

DISKETTE WRITE PROTECTION

Diskettes have a notch on the side of their protective envelope which
determines whether or not data can be written onto that diskette. On 5%
inch diskettes this notch is known as a write-enable notch.

Information cannot be written onto a 5% inch diskette unless the
write-enable notch has been left uncovered.

Some 5% inch diskettes (especially system diskettes) may be per-
manently write protected if their protective envelope does not contain a
notch. Any 5% inch diskette with a notch can be write protected by merely
covering the notch with a piece of tape as shown in figure 1-13.

FIGURE 1-13. Write Protecting a 5% Inch Diskette

32 I1BM PCjr User's Handbook

PCjr DISK DRIVE OPERATION

PC;jrdisk drive operation is a relatively simple matter. When there is
no diskette in the disk drive, the disk slot handle should be in the
horizontal or open position (see figure 1-14).

When inserting a diskette, the diskette’s label should be facing up.
The side of the diskette containing the oval-shaped opening in the cover
should be inserted into the drive (see figure 1-15).

Slide the diskette into the diskette slot. Once the diskette has been
fully inserted, rotate the diskette slot handle to the vertical or closed
position. To remove a diskette from the drive, merely reverse this
procedure.

Your PCjr disk drive has a small red lamp on its front cover. This
lamp will light whenever data is being read from or written to a diskette.
Do not remove a diskette when this lamp is on.

Printers

Printers used with personal computers can be classified among two
major types -- dot matrix printers and daisy wheel printers. Dot matrix
printers output characters on paper as a group of dots. Dot matrix
printers output data at speeds ranging from 70 to 350 characters per
second (or 800 to 4000 words per minute).

Daisy wheel printers output characters that appear much like those
output by a typewriter. The only difference is that a daisy wheel printer
uses a round printing element which contains the standard character set.
The wheel spins to the correct position each time a character is to be
printed. Daisy wheel printers are generally more expensive as well as
slower than dot matrix printers. However, the quality of the characters
output by daisy wheel printers is higher than those output by dot matrix
printers.

Printers used with personal computers are generally either serial or
parallel devices. In serial communications, data is transferred one bitata
time from the source device to the receiving device. In parallel communi-
cations, data is transferred eight bits (or one byte) at a time.

Introduction to the PCjr 33

FIGURE 1-14. Diskette Slot Handle in Open Position

FIGURE 1-15. Inserting a Diskette into the PCjr Drive

34 IBM PCjr User's Handbook

IBM COMPACT PRINTER

The IBM Compact Printer is a serial device. The Serial Adapter
Cable (see figure 1-16) is required to install the Compact Printer. The first
step in installing the Compact Printer is to turn off the power switches on
the PCjr as well as any peripherals attached to it. The PCjr and any
attached peripherals should also be unpluged from electric outlets.

Next, plug the end of the Serial Adapter Cable labeled S into the
opening on the rear of the PCjrlabeled S. The letter S should be facing up
when it is inserted into the opening (see figure 1-17).

Locate the serial port on the Compact Printer. Once the port has
been located, plug the opposite end of the Serial Adapter Cable into that
port and tighten the connecting screws. The PCjr, Compact Printer, and
any additional peripherals can now be powered on and plugged in.

The Compact Printer can output either text or graphics characters.
Textcharactersare outputina 5 by 7 dot matrix. Graphics characters are
output with 560 dots per horizontal line with a character height of 8 dots.

Data is output from the PCjr at 1200 bits per second (bps). The
Compact Printer receives this data into its 256 character buffer. The
Compact Printer is rated by IBM for an output speed of 50 characters per
second (cps). Either sheet, fan-fold, or roll paper can be used with the
Compact Printer. The maximum paper width that can be accepted by the
Compact Printer is 8.5 inches.

The Compact Printer is a thermal dot matrix printer. Generally, dot
matrix printers are impact dot matrix printers. With impact printers,
printing is accomplished by a print head striking the paper surface.

Thermal dot matrix printers utilize a less expensive technology than
impact dot matrix printers. Thermal dot matrix printing requires a
special, coated paper. When the paper’s coating is struck by the thermal
printer’s hot impact surface, the character will be formed.

The Compact Printer can output text characters in any one of four
different modes:

e Standard Mode

¢ Double-Width Mode

® Compressed Mode

¢ Compressed Double-Width Mode

Introduction to the PCjr 35

1 Adapter Cable

-16. Seria

FIGURE 1

ial Adapter Installation

-17. Ser

FIGURE 1

36 IBM PCjr User's Handbook

In the standard mode, 80 characters are output per line. Ten charac-
tersare output per inch. In the double-width mode, only 5 characters per
inch are output. Therefore, in this mode, only 40 characters are output
per line. In the compressed mode, 17.5 characters are output per inch.
This mode allows for 136 characters per line. In the compressed double-
width mode, 8.75 characters are output per inch. This translates to 68
characters per line.

Printer operation and programming in BASIC for printer output will
be discussed in more detail in appendix D.

IBM GRAPHICS PRINTER

The IBM Graphics Printer (see figure 1-18) canalso be used with the
PCjr. The IBM Graphics printer is a parallel device. In order for the IBM
Graphics Printer to be used with the PCjr, a device known as the Parallel
Printer Attachment must be installed on the PCjr. This device will also
allow the connection of many parallel printers not manufactured by IBM
to the PCjr.

FIGURE 1-18. IBM Graphics Printer

Introduction to the PCjr 37

The IBM Graphics Printer is actually a version of the Epson MX-80
printer. This printer has an output speed of 80 characters per second in
any of several styles of dot matrix print. The IBM Graphics Printer will
accept forms with a minimum width of 4 inches and a maximum width of
10 inches. The maximum paper thickness accepted by the IBM printeris 3
plies or .012 inches.

Paper is fed into the IBM Graphics Printer from the rear of the unit.
The unit’s ribbon is enclosed in a removable cartridge. Each ribbon hasa
print capacity of 3 million characters which translates to approximately
1150 typed pages. The IBM Graphics Printer uses a bidirectional, 9-wire
printhead. The printhead has a life expectancy of 30 million impressions.
The printhead can easily be replaced by the operator.

A 9 by 9 dot matrix pattern is used to form characters. Character
sizes may range from 5 to 16.5 characters per inch (CPI). Onan 8 inch line
width, these pitch sizes (5, 8.25, 10,and 16.5) will produce a maximum of
40, 66, 80, and 132 characters respectively.

The 1BM Graphics Printer offers 3 different printing styles; normal,
double, and emphasized. Normal printing involves one strike of the
printhead per character. Double printing involves a double strike of the
printhead for each character. Emphasized printing involves a single strike
for the character, after which the paper is stepped up by a fraction of an
inch, and a single strike is again made. Emphasized printing gives the
appearance of a bold character, which adds to the versatility of the
printer.

JOYSTICKS

A joystick is a controller device used to position an object on the
display. Generally, joysticks are used with game software. The IBM PCjr
Attachable Joystick is pictured in figure 1-19.

Once the joysticks have been installed, it maybe necessary to use the
centering levers (see figure 1-19) located at the top of the PCjr joystick to
properly position the object to be controlled. Centering lever 1 controls
the horizontal positioning, while centering lever 2 controls the vertical
positioning.

The PCjr joystick can be operated in either the free mode or in the
center return mode. In the free mode, the control stick will remain in

38 IBM PCjr User's Handbook

FIGURE 1-19. IBM PCjr Attachable Joystick

whatever position it is placed. The PCjr joystick can be placed in the free
mode by moving the control stick to either cornerand then moving either
one or both of the switches located on the underside of the joystick to the
free position.

In the center return mode, the controller stick always returns to the
center position. The joystick can be operated in this mode by moving the
switches located on the underside of the joystick to the position opposite
“Free”. The controller stick may be in any position when this adjustment
is made.

KEYBOARD CORD

IBM’s optional Keyboard Cord (see figure 1-20) must be used
whenever more than one PCjr is being used in the same room. To install
the Keyboard Cord, first of all, be certain that the PCjrand all attached
peripherals are powered off and unplugged. Attach the end of the Key-
board Cord labelled K into the connector labelled K on the rear of the
PCjr.

The connector on the other end of the Keyboard Cord should be
plugged into the port on the rear of the PCjr’s keyboard.

Introduction to the PCjr 39

FIGURE 1-20. IBM Keyboard Cord
PCjr MEMORY AND DISPLAY EXPANSION

The PCjr's Memory and Display Expansion device (see figure 1-21)
expands the PCjr’s (basic model) memory from 64K to 128K. This device
also supports 80 column video output. Installation of the Memory and
Display Expansion is relatively simple. Instructions are included with the

device.

/ e NN

T

i

FIGURE 1-21. PCjr Memory and Display Expansion

40 1BM PCjr User's Handbook

PCjr INTERNAL MODEM

A modem is a device that prepares data for transmission. Modems
generally are used with computers to encode data into a series of tones
that can be transmitted over telephone lines. Modems can also decode
tones into digital information. A typical modem link is depicted in figure
1-22.

The PCjr Internal Modem is installed in the PCjr’s System Unit
(most modems are external devices). Modem installation instructions are
included with this option. Use of the PCjr Internal Modem for communi-
cations will be discussed in chapter 10.

FIGURE 1-22. Computer/ Modem Link

Introduction to the PCjr 41

CASSETTE RECORDER/PLAYER

The IBM PC;jr can utilize a cassette recorder for program and data
storage. Cassette recorders are the most inexpensive data storage devices
available for home computers. They provide a low cost and reliable
means of data storage for the budget-minded home computer consumer.

A cassette recorder uses standard cassette tapes to store data. It is
good practice to use only high quality cassette tapes to save programs and
data. Using lesser quality cassette tapes could result in the loss of pro-
grams and data.

The PCjr can use nearly any type of cassette recorder. However, a
special adapter cable must be purchased in order to connect the cassette
recorder to the PCjr. This PCjr adapter cable is pictured in figure 1-23.

FIGURE 1-23. PCjr Adapter Cable for Cassette
A cassette recorder can be attached to the PCjr as follows:

1. Disconnect the power for the PCjr and all peripherals. Installing
peripherals while the power is connected can be hazardous not
only to the PCjr but to the user as well.

42 1BM PCjr User's Handbook

2. Find the end of the adapter cable with the letter “c”. Insert this
end into the back of the computer in the port marked “c”. The "c”
on the cable should be facing up.

3. The other end of the adpater cable contains three colored wires.
These wires are to be connected to the cassette recorder. Plug the
black cable into the cassette jack marked EAR or EARPHONE.
Plug the red cable into the cassette jack marked AUX or AUXIL-
IARY. Plug the grey cable into the cassette jack marked REM or
REMOTE.

4. Plug in the power cord of the PCjr and all peripherals. The
cassette player is now ready for operation.

2

Installation, Operation & Keyboard
Usage

Introduction

In this chapter, we will explain the steps necessary for setting up the
IBM PC;jr. IBM has simplified the installation procedures for the PCjr to
the point where almost anyone can set the unit up. Set up involves
unpacking the various system components and peripherials and attach-
ing the necessary cables and connectors.

This chapter will also explain PCjr keyboard usage. IBM has
included a number of advanced features in the PCjr’s keyboard. These
will be described in detail in this chapter.

Installation

In the following section, we will discuss the installation of the PCjr

and related peripheral devices.
43

44 |BM PCjr User's Handbook

SYSTEM UNIT INSTALLATION

The system unit is the PCjr’s brain. The system unit houses all the
PCjr’s standard and optional hardware. For example, the optional disk
drive is housed within the system unit. The system unit is pictured in
figure 2-1.

FIGURE 2-1. System Unit

The system unit must be attached to either a television set or a
monitor. If a television set is used, refer to the section entitled “Attaching
a Television Set.” If a monitor is to be used, refer to the section entitled
“Attaching a Monitor”.

ATTACHING A TELEVISION SET

In order to connect a television to the PCjr,an optional RF modula-
tor (T.V. connector cable) must be purchased. An RF modulatoris shown
in figure 2-2.

Installation, Operation & Keyboard Usage 45

FIGURE 2-2. RF Modulator

To install the RF modulator, first disconnect the television antenna
from the VHF terminals at the back of the television. Then, connect the
two short wires leading from the RF modulator to the twin VHF termi-
nals and tighten the screws. Reconnect the television antenna to the two
terminals on the RF modulator and tighten the screws. Finally, connect
the end of the long video cable to the port in the rear of the PCjr marked
with a T. Be sure the T marked on the end of the video cable is facing up.

The RF modulator contains a switch marked Computer/ Television.
When this switch isat the computer position, the television set receives its
signal from the PCjr. When the switch is in the television position, the
television set receives its signal from the television antenna.

ATTACHING A MONITOR

Two types of monitors can be used with the PCjr, a composite
monitor or an RGB monitor. If a composite monitor is being used, refer
to the section “Attaching a Composite Monitor.” If an RGB monitor is
used, refer to the section “Attaching an RGB Monitor.”

46 1BM PCjr User's Handbook

ATTACHING A COMPOSITE MONITOR

A composite monitor can be attached to the system unit via the
composite display port. This portislocated on the rear of the PCjr. and is
marked with a V. To attach a composite montior to the PCjr, simply
connect one end of the video cable to the V port on the computer and the
other end of the video cable to the monitor.

ATTACHING AN RGB MONITOR

An RGB monitor can be attached to the system unit via the direct
drive display port. This port is located on the rear of the PCjr and is
marked with a D. In order to connect an RGB monitor to the PCjr, the
optional color display adaptor cable must be purchased. To connect the
cable, simply insert the end of the cable marked with a D into the port in
the rear of the PCjr. Be sure the D on the cable is facing up. Connect the
other end of the cable to the RGB monitor.

ATTACHING THE POWER TRANSFORMER

The power transformer must be attached to the PCjr via the port
marked P on the rear of the system unit. Notice the two cables which
originate from the power transformer. The end of the cable marked with
a P must be inserted into the port marked P. The other cable must be
inserted into a standard three prong wall outlet. The power transformer
is pictured in figure 2-3.

FIGURE 2-3. PCjr Power Transformer

Installation, Operation & Keyboard Usage 47

KEYBOARD INSTALLATION

The IBM PCjr is equipped with a cordless keyboard. The cordless
keyboard has the advantage of allowing the user more freedom of move-
ment. The keyboard has a maximum operating range of 20 feet.

An infrared link allows communication between the keyboard and
the system unit. The keyboard transmits an infrared light signal to the
system unit each time a key is pressed. In order for a proper link to be
maintained, the keyboard must be within a 30° angle of the system unit.

The keyboard is powered by four AA batteries. The batteries must
be installed before the PCjr can be used. In order to install the batteries,
follow the steps outlined below.

1. Turn off the system unit and all peripherals.

2. The battery compartment is located on the underside of the
keyboard in the upper left corner. Open the cover of the
battery compartment as illustrated in figure 2-4.

3. Insert the batteries into the battery compartment as illus-
trated in figure 2-5.

4. Close the cover of the battery compartment. The keyboard
is now ready for operation.

FIGURE 2-4. Opening Battery Compartment

48 IBM PCjr User's Handbook

FIGURE 2-5. Inserting Batteries

Start Up Procedure

Be sure that the PCjrand all optional peripherals have been properly
installed. The PCjr may now be turned on. The power switch is located in
the rear of the system unit. Move the switch to the 1 (or on) position. A
few seconds will elapse before a screen similar to that pictured in figure
2-6, will appear. At this point, the PCjr is performing a self-test. The
number in the lower right of the screen indicates the amount of RAM
which has been tested.

FIGURE 2-6. Start Up Display

Installation, Operation & Keyboard Usage 49

One of the four following phenomenon will occur following the
self-test:

1. If the optional disk drive is installed, and the DOS diskette (Disk
Operating System diskette) is inserted into the diskette drive, the PCjr
will boot DOS. (See chapter 9 for a more detailed explanation on
booting DOS). '

2. If the BASIC cartridge is inserted into one of the two cartridge ports,
the PCjr will load BASIC and display the BASIC prompt.

3. If the DOS diskette is inserted into the disk drive and the BASIC
cartridge is inserted into one of the two cartridge ports, the PCjr will
boot DOS. BASIC can be loaded by typing the command, BASIC,
while in DOS.

4. If neither a disk nor cartridge is present, the PCjr will start cassette
BASIC. Cassette BASIC is built into the PCjr's ROM.

KEYBOARD USAGE

The PCjr’s keyboard is pictured in figure 2-7. Most its keys are
similar to those of a standard typewriter keyboard. The alpha-numeric
keys and shift key are used as they are on a standard typewriter.

Many keys are marked with two characters, one in black and one in
white. Pressing one of those keys will cause the white character to appear.
The character in black can be accessed by holding down the shift key and
then pressing the key with the desired character.

The alternate (Alt) and function (Fn) keys have special purposes
depending on whether DOS or BASIC is being used. DOS uses the Fn
key, in conjunction with the numeric keys, for editing. For more informa-
tion on DOS editing, see chapter 9.

BASIC uses the Fn and Alt keys to access commands which have
been preprogrammed.into keys. For example, holding down the Fn key
and pressing the 1 key causes the LIST command to be displayed on the
screen. The LIST command can now be executed by simply pressing the
enter key.

Preprogramming keys with BASIC commands saves program entry
time. A list of the BASIC commands available using Fn and Alt is
provided in table 2-1.

50 IBM PCjr User's Handbook

FIGURE 2-8. Rear View of PCjr

Installation, Operation & Keyboard Usage 51

TABLE 2-1. Preprogrammed Keys in BASIC

Hold Down Press Result
Alt A AUTO
Alt B BSAVE
Alt C COLOR
Alt D DELETE
Alt E ELSE
Alt F FOR
Alt G GOTO
Alt H HEXS
Alt 1 INPUT
Alt K KEY
Alt L LOCATE
Alt M MOTOR
Alt N NEXT
Alt (0] OPEN
Alt P PRINT
Alt R RUN
Alt S SCREEN
Alt T THEN
Alt U USING
Alt \Y VAL
Alt w WIDTH
Alt X XOR
Fn 1 LIST
Fn 2 RUN [Ret]
Fn 3 LOAD”
Fn 4 SAVE”
Fn 5 CONT [Ret]
Fn 6 "LPTI1:"[Ret]
Fn 7 TRON [Ret]
Fn 8 TROFF [Ret]
Fn 9 KEY
Fn 0 SCREEN 0,0,0 [Ret]

52 1BM PCjr User's Handbook

PERIPHERAL PORTS

The IBM PCjr has a number of ports designed to accommodate
specific peripherals. The majority of these ports are located on the rear of
the system unit (see figure 2-8). Each port is marked with a letter which
represents the type of peripheral that can be attached to that port. Table
2-2describes the peripheral ports on the PCjras they appear from left to
right.

When attaching peripherals to the PCjr, it is important to remember
to first disconnect the power from the computer. Merely turning off the
computer is an insufficient precaution when installing peripherals.
Always disconnect the computer power cord. Installing peripherals
without first disconnecting the power is dangerous to both the user and
the computer.

TABLE 2-2. Peripheral Ports

Port Name Function

J JOYSTICKI1 PORT Allows a joystick to be con-
. nected to the PCjr.

] JOYSTICK2 PORT Allows a second joystick to be
connected to the PCjr.

L no name Reserved for possible future
use.

K KEYBOARD PORT Allows the optional cable to be
attached between the keyboard
and the main console.

LP LIGHT PEN PORT Allows the optional light pen
to be attached to the PCjr.

T TELEVISION PORT | Allows a television to be con-
nected to the PCjr via an RF
modulator.

Installation, Operation & Keyboard Usage 53

TABLE 2-2. (cont.) Peripheral Ports

Port Name Function

\Y - COMPOSITE Allows a composite display to
\, DISPLAY PORT be attached to the PCjr.

M MODEM PORT Allows connection between
PCjr and a telephone line. The
optional internal modem board
must have been previously
installed in the PCjr.

D DIRECT DRIVE Allows the IBM color graphics
DISPLAY PORT display to be connected to the
PCjr.
S SERIAL PORT Allows serial devices to be

connected to the PCjr via the
optional serial adaptor cable.

C CASSETTE PORT Allows a cassette recorder to
be attached to the PCjr via the
optional cassette adaptor

cable.

P POWER PORT Allows the power cord and
transformer to be attached to
the PCjr.

A AUDIO PORT Allows external speakers to be

connected to the PCjr via the
audio adaptor cable.

3

Introduction to PCjr BASIC Programming |

Introduction

In this chapter, the operating details necessary to begin using PCjr
BASIC will be provided. These include start-up, program entry, state-
ment structure, program editing, program saving, and program loading.

Getting Started with PCjr BASIC

As mentioned in chapter 1, BASIC is a high-level language that must
be interpreted into the microprocessor’s native language. This is accom-
plished with a program known as an interpreter.

The PCjr has a resident interpreter (Cassette BASIC) and an
optional cartridge interpreter (Cartridge BASIC). These two versions of
BASIC are upward-compatible. That is, anything that can be done with
Cassette BASIC can also be done with Cartridge BASIC. Also, Cartridge
BASIC includes features not available in Cassette BASIC.

55

56 IBM PCjr User's Handbook

The correct BASIC start-up procedure depends on whether or not
the system contains a disk drive. Both methods will be detailed in the
following sections.

START-UP WITHOUT A DISK DRIVE

This section describes how to start-up BASIC without a disk drive.
Therefore, if the system includes a disk drive, skip this section and
proceed to the next.

To get started, remove any cartridges from the cartridge slots on the
front of the system unit. If Cartridge BASIC is to be implemented, the
Cartridge BASIC cassette should now be inserted into the left-hand
cartridge slot.

If the PCjr is not yet powered up, do so. The IBM logo will appear
while the PCjr performs a series of self-tests. (If the ERROR B message is
displayed on the screen, press Enter and proceed*.) About ten seconds
later, several words will appear at the bottom of the screen. A message
similar to the following will be displayed atop the screen:

The IBM PC jr Basic
Version C1.20

Copyright IBM Corp. 1981
62940 Bytes free

Ok

Cassette BASIC is known as "Version C”. If the BASIC cartridge had
been inserted, “Version J” would have replaced “Version C” at the begin-
ning of line two. Cartridge BASIC is known as ”Version J”.

If the system has already been powered up, BASIC can still be
restarted. Todo so, press and hold down the Ctrland Alt keys, then press
the Del key. The Ctrl-Alt-Del sequence can be used at any time to restart
the PCjr.

* If pressing Enter does not clear the error, the keyboard may not be working properly.

Infroduction to PCjr BASIC Programming 57

START-UP WITH A DISK DRIVE

The resident BASIC interpreter, Cassette BASIC, does not support
disk access. However, disk access is supported by Cartridge BASIC.
Therefore, PCjr’s with a disk drive should be started with the Cartridge
BASIC cartridge inserted in the lefthand slot on the front of the System
Unit. Also, a DOS 2.10 system diskette should be inserted into the disk
drive. Remember, never use the original copy of DOS. Make a copy, and
then store the original in a safe place. Always use a copy for everyday use.
Chapter 9, “DOS 2.10 Usage”, explains how to make back-ups.

If the system is not yet powered up, do so. The IBM logo will appear
while the PCjr performs its self tests. (If the ERROR B message
is displayed on the screen, press Enter and proceed*.) A message
similar to the following should appear on the screen:

Current date is Tues 1-01-1980
Enter new date:

Either enter the date or merely press Enter to proceed. The next
message to appear will be similar to the first:

Current time is 0:00:34.49
Enter new time:

Again, either enter the time or merely press Enter to procéed. The
final DOS message will appear as follows:

The IBM Personal Computer DOS
Version 2.10 (C) Copyright 1981,
1982, 1983

A>

‘The "A>" is the DOS prompt. DOS commands are entered in
response to this prompt. The user should now type the word BASIC, and
then press Enter. The BASIC start-up display should now be visible.

* If pressing Enter does not clear the error, the keyboard may not be working properly.

58 IBM PCjr User's Handbook

The IBM PC jr Basic

Version J1.00

Copyright IBM Corp 1981, 1982, 1983
59694 Bytes free

Ok

If the system has already been powered up, DOS can still be
rebooted. To do so, pressand hold down the Ctrland Alt keys, then press
the Del key. The Ctrl-Alt-Del sequence can be used at any time to
perform a System Reset.

BASIC COMMAND ENTRY — DOS

This section may seem a bit confusing for beginning programmers. If
this section is overly confusing, skip it and continue with the rest of
chapter 3.

‘When activating BASIC, additional parameters can be included with
the BASIC entry. These parameters can be used to:

® Automatically load and run a program
® Set aside storage areas for programs, data and buffers
® Change the standard input or output device

The configuration for the BASIC command with all of its optional
parameters is as follows:

BASIC [Allfilespec)[<input][>)[>output][/ F:files)[/S:bufsize] [/C:bufcom]
[/ M:[workarea][,blockspace]]

In order to be compatible with the PC, Cartridge BASIC allows
either "BASIC” or "BASICA” to be used as the BASIC command entry.
The two command entries have identical results.

The optional parameter, filespec, indicates the file specification of a
program that is to be automatically loaded and executed by BASIC. If no
filename extension is specified, the extension .BAS will be used. filespec
can also include an optional directory path specification.

Generally, data is input into a BASIC program via the keyboard.
<input allows a BASIC program to receive data from a file specified by
the user. For example, the following command line causes INPUT, LINE
INPUT, INPUTS, and INKEYS to read data from the file, TEXTA.

Introduction to PCjr BASIC Programming 59

BASIC PROGRAMA < TEXTA

Genera]ly, a BASIC program outputs data to the screen. >output
allows a BASIC program to output data to a file specified by the user. For
example, the following command causes the PRINT statement to output
data to the file named TEXTB:

BASIC PROGRAMB > TEXTB

When >> output is used in place of > output, any data output by the
program will be appended to the file indicated by output. For example,
the following command line causes the PRINT statement to append data
to the file named TEXTC:

BASIC PROGRAMC >> TEXTC

Any BASIC command line option preceded by a slash (/) is known as
a switch. Switches are used to specify optional parameters on the BASIC
command line. These control memory allocation and the number of
allowable files.

The optional parameter /F;files indicates the maximum number of
files that can be open at one time while a BASIC program is being
executed. The maximum number is 15. If this parameter is omitted, the
number of files open will default to 3.

The number of files that can be specified with /F depends upon the
value indicated for the FILES parameter in CONFIG.SYS, the DOS
configuration file. The default for FILES is 8, of which BASIC uses 4 files
by default. This leaves 4 files available for BASIC I/O operations. There-
fore, the maximum value for /F when FILES = 8 is /F:4.

The optional parameter /S:bufsize assigns the buffer size to be used
with random files. The default value for the buffer size is 128. The
maximum size that can be used is 32767. For maximum performance,
IBM recommends that a buffer size of 512 bytes be specified. Note that the
record length parameter used with the OPEN statement may not be
greater than the number of bytes specified in /S:bufsize.

The optional parameter /C:bufcom is used to initialize the area to be

reserved for the communications receive buffer. This parameter will not
be used unless the Internal Modem has been installed on the system. The

60 1BM PCjr User's Handbook

default value for this parameter is 256 bytes for the receive bufferand 128
bytes for the transmit buffer. IBM recommends that the value / C:1024 be
used for high speed lines. If a value of /C:0 is specified, no buffer space
will be reserved for communications. In this case, communications sup-
port will be disabled when BASIC is loaded.

The optional parameter /M:workarea can be used to initialize the
maximum amount of memory in bytes that can be used as a work area
under BASIC. The maximum value that can be used is 64K. The default
value is 64K. This parameter is often used to reserve work areas for
machine language subroutines.

/M:blockspace allows the user to reserve a working area above the
BASIC work area in memory for loading BASIC programs. blockspace is
specified in multiples of 16. When blockspace is omitted, the default
multiplier (4096) will be used. Therefore, since 4096 x 16 = 65536, 65536
bytes are allocated by default for BASIC’s work area. The following
parameter,

/M:,2048

would reserve a maximum of 32,768 bytes for BASIC working area (as
2048 x 16 = 32,768). The following command,

/M:32512,2048

would reserve 32,768 bytes for BASIC but would only allow the usage of
the lower 32,512 bytes. The remaining 256 bytes would be reserved for
program storage.

IMMEDIATE AND PROGRAM MODES

The immediate mode isalso known as the direct or calculator mode.
In the immediate mode, most BASIC command entries result in the
instructions being executed without delay. For example, if the following
immediate mode line was typed, and the Enter key pressed,

PRINT "Walter A. Haupt”
the following would be displayed on the video screen:

Walter A. Haupt

Introduction to PCjr BASIC Programming 61

In the program or indirect mode, the computer accepts program
lines into memory, where they are stored for later execution. This stored
program will be executed when the appropriate command (generally
RUN) is entered.

Figure 3-1 contains an example of the entry of a program in the
program mode and its execution. Notice that in the program mode, each
BASIC program line must be preceded with a line number. Line numbers
will be discussed in more detail later in this chapter.

10 PRINT "Walter A. Haupt” \

20 PRINT 24270 Glenbrook”
30 PRINT "Euclid, OHIO 44112"
40 END

RUN

Walter A. Haupt

24270 Glenbrook

Euclid, OHIO 44112

Ok

- _/

FIGURE 3-1. Program Mode Entry & Execution

COMMAND AND STATEMENT STRUCTURE

In PCjr BASIC, instructions being relayed to the interpreter are
known as commands in the immediate mode, and statements in the
program mode. In practice, the difference between a command and a
statement is primarily one of semantics, as both generally use the same
structure and keywords. '

Both commands and statements begin with a BASIC keyword or
reserved word. The keyword identifies the operation to be undertaken by
the BASIC interpreter. For example, in the preceding section, the PRINT
command was used to instruct the PCjr to display information on the
screen.

In PCjr BASIC, keywords may be entered in either uppercase or
lowercase letters. In the examples in this book, keywords will be dis-

62 1BM PCjr User's Handbook

played as uppercase letters.

A BASIC command or statement generally includes one or more
arguments or parameters following the keyword. In our example, "Wal-
ter A. Haupt” is the PRINT statement parameter.

PRINT “Walter A. Haupt”
ENTERING A PROGRAM

In the preceding section, the fundamentals of entering and running a
PCjr BASIC program have been touched upon. In this section, that
discussion will be expanded upon by using the example in figure 3-2.

BASIC programs are entered as program lines. Any text preceded
with a number (line number) and ended by pressing the Enter key will be
regarded as a program line. The maximum number of characters that
may be included in any one line is 255. Line numbers must be integers in
the range 0 to 65529. If a line either exceeds its character limit, or a line
number is not valid, an error condition will result.

Note that in the first 7 lines of figure 3-2, a program was entered in
the command mode and run in the execute mode. After the answer, 5,
had been displayed, the “Ok” prompt appeared.

At this point, the original program will be stored in memory, and can
be added to or changed. That is what was done in line number 150 of
figure 3-2. An additional statement was inserted between statements 100
and 200 in the program being stored in memory. This revised program
can be executed by again entering RUN.

The computer memory can only hold one program at a time. The
NEW command is used to erase the program in memory so as to allow a
new program to be entered. Note the use of NEW in figure 3-2.

Note in our examples the following features common to BASIC
programs:

1. Each program line must begin with a line number. The compu-
ter executes program lines in order from lowest line number to
highest line number.

2. The END statement signals the end of a program. When END
is executed, the program run will stop.

Infroduction to PCjr BASIC Programming 63

Itis recommended that consecutive line numbers (10, 11, 12, 13, etc.)
not be used in programs. By using numbers that are a fixed distance apart
(100, 110, 120, 130, etc.), additional lines can be inserted between existing
lines without renumbering the lines.

Line numbers need not be entered in any particular order. For
example, the user could enter lines 100 and 200 and then enter line 150.
The computer will automatically rearrange the lines according to their
line numbers.

If two lines are entered with the same line number, the original line
wail be erased, then replaced with the new line. This feature allows the user
to replace an entire line by merely entering a new line with the same
line number.

A new line can be added to a BASIC program by merely entering a
line number followed by the desired text and Enter. When Enter is
pressed, the line will be saved as part of the BASIC program.

To delete a line in an existing program, merely enter the line number
of the line to be deleted followed by Enter. A group of lines can be deleted
via the DELETE command, and an entire program can be deleted with
the NEW command.

NEW
‘ Ok

100 PRINT 5
200 END
RUN
5
Ok
150 PRINT -5
RUN
5
-5
Ok
NEW
Ok
100 PRINT 50
200 END
RUN

N

FIGURE 3-2. Entering and Running a Program

64 1BM PCjr User's Handbook

ERROR AND WARNING MESSAGES

When a statement with an incorrect format has been entered, an
error message will be displayed. The error message describes the type of
problem that occurred. '

If a problem develops while a program is being executed, an error
message will also be displayed. An error that occurs during the execution
of a program will generate an error message that includes a description of
the problem as well as the line number of the statement that caused the
problem.

When an error occurs in a program, an error message will be dis-
played and the execution of the program will stop. If a problem occurs in
a program that is not serious enough to stop the execution, a warning
message will be displayed. Warning messages describe the nature of the
problem as well as the line number where the problem occurred.

LISTING A PROGRAM

LIST is used to display the program stored in memory on the screen
or printer. This display is often referred to as a program listing. An
example of the use of LIST is given in figure 3-3.

When the LIST command is executed, the program in the computer’s
memory will be displayed on the screen. Each line of the program appears
initially at the bottom of the display. In order for each subsequent line of
the program to appear on the last line of the display, each line of the
display must be moved one line toward the top.

Asaresult, if a program occupies more than 24 display lines, the first
lines of the program will be moved off the top of the display in order to
accommodate the last lines. This process is called scrolling.

When a lengthy program is listed on the display, the information will
* only be displayed briefly. As a result, it is often necessary to temporarily
halt the listing of a program. If this is the case, simply hold down the Fn
key and type Q. This key combination, Fn-Q, is known as the Pause
function. The pause continues until another key is pressed.

LIST can be used with optional parameters to display only a portion-
of the program. For example, LIST can be used with a single line number
parameter to list only that line. This is shown in figure 3-3.

weidold e Sunsry "e-¢ 3HNOI

4)

A0

«8ldwexa, INIHd 0€
«Ue sl, LNIdd 02
«SIUl, LNIHd OL

oe- 1SN

A0

Lwweiboid, INIHd OV
Loldwexs, INIHd 0€
-0€ 1811

. [o]

«Sldwexs, LNIdd 0€
«Ue sl, LNIdd 02
«SIUL, LNIHd Ol
0€-0L 1SI17

X0

«SIULl, LNIHd OL

ot 1sin

Jweiboid, INIHd OV
«oldwexs, INIHd 0€
«Ue s, LNIdd 02
#SIUL, LNIHd O}
lsin

Lweiboud,, INIHd OY
~oldwexs, LNIHd 0€
+Uesl, 1INIHd 02
«SIUL., LNIHd O}

*€-€ 2InS1y U1 PaYEIISUOWIP OS[B JI. ISAY] “Paisi|
aq [[1m aut| parjroads ay) Jurpnpout pue 1ayye saur| wesdoid [je ‘usydAy e4q
PamoJ[og st Iaquinu dui] 3y} J “193owrered | SIT oY) se 1 Suisn pue uaydAy
B Y Joquinu auy jeyy Suixiyard £q sur payads & o3 werSoixd ayy
Jo 8uruuilaq ay3 wouy sroquinu auy| [[e Ae[dsip 03 pasn aq ued [SI']

‘€-€ 2ang1j ut umoys urese st sy ‘O¢
01] d8ue1 ay) UIYIIM SIdqUINU UI[[[® ISI[P[nOoM O€-0] LSIT PUBWIWOD
a3 ‘ojdwrexs 104 ‘s1aqunu aul] Jo afuel B Y3m pasn aq Os[e ued | S|

69 Buiwwpiboy Disva A[Dd 0} uoyonpou|

66 I1BM PCjr User's Handbook

EDITING A PROGRAM

If a program line is entered incorrectly, it can be changed in one of
two ways. The first method is to simply re-enter the program line. This is
accomplished by retyping the line number, followed by one or more
appropriate statements.

The second method uses the PCjr’s full screen edit feature to alter a
program line. This feature allows the cursor to be moved to any location
on the screen. Once the cursor has been positioned over the incorrect
entry, the correct character or characters can be typed in place of the
error.

The cursor can be moved by the 4 keys on the lower right portion of
the keyboard. These keys are labelled 1, |, «——, and —. The "arrow” keys
move the cursor in the direction of the arrow. The cursor is a blinking
underline (-), which indicates the position where the next character
entered via the keyboard will appear. ‘

Program lines can be manipulated by the Ins and Del keys. Ins sets
the insert mode. Del deletes the character at the current cursor position.
The use of the full-screen editor is best explained using a simple example.
Begin by entering the following program:

10 FOR S =100 TO 200
20 PRINT S
30 NEXTR

When the LIST command is issued, the program will appear on the
display as follows:

LIST

10 FOR S =100 TO 200
20 PRINT S

30 NEXTR

Ok

Suppose that line number 30 was incorrect and was intended to
appear as follows:

30 NEXT S

Introduction to PCjr BASIC Programming 67

The correction can be made by using the { key to move the cursor up
to line 30. Proceed by using the — key to move the cursor beneath the
"R”. Correct the error by typing the correct letter, ”S”, then press Enter.

Suppose that line number 10 was intended to read as follows:

10 FOR S =1 TO 200

Again, use the arrow keys to position the cursor beneath the first offend-
ing "0”. Pressing the Del key will remove the first “0” from the line. The
cursor should now be positioned beneath the other "0”. Pressing the Del
key a second time will delete the second "0”. Now, press Enter. The PCjr
does not record any corrections until the Enter key has been pressed.
Therefore, once the line has been edited, always press Enter to register the
line.

Finally, suppose line number 20 is also incorrect, and was intended
to appear as follows:

20 PRINT "THE NUMBER IS “;S

Use the arrow keys to position the cursor beneath the “S” in line 20.
This is the position where the additional characters are to be inserted.
Press the Ins key once to enter the insert mode. The cursor will change
from the standard underline to a rectangle. Now, type the text to be
inserted, “THE NUMBER IS ”;. Notice that in the insert mode, any
characters to the right of the cursor will be moved over to make room for
the additional characters. To exit the insert mode, either repress Ins or use
one of the arrow keys. Remember to press Enter after editing line 20, so
that the changes will be stored.

RUNNING A PROGRAM

Once a program is present in memory, the operator can executeit. As
mentioned previously, a program can be entered into memory via the
keyboard or loaded into memory from a storage device — cassette or
disk. The procedure for loading a program will be discussed later in the
chapter.

The RUN command is used to begin program execution. RUN can be
used with or without an optional line number or file specification as its

68 IBM PCjr User's Handbook

parameter. Because RUN is generally executed without an optional
parameter, we will limit our discussion of RUN, in this section, to its
execution without parameters. The usage of RUN with parameters will be
discussed in chapter 6.

When the RUN command has been entered and the Enter key
pressed, program statements entered in the indirect mode (with line
numbers) will be executed in order, beginning with the lowest line. An
example of the usage of RUN is shown in figure 3-4. The execution of a
program can be stopped at any time by holding down the Fn key and then
typing B. This key combination, Fn-B, is known as the Break function.

/ 100 PRINT “THIS IS LINE 1" \

200 PRINT "LINE 2 IS BEING EXECUTED"
300 PRINT “LINE 3 IS BEING EXECUTED"
400 PRINT "LINE 4 IS THE FINAL LINE”
500 END

RUN

THIS IS LINE 1

LINE 2 1S BEING EXECUTED

LINE 3 IS BEING EXECUTED

LINE 4 1S THE FINAL LINE

N J

FIGURE 3-4. RUN Command

SAVING A PROGRAM

As you may recall from our discussion of program entry, only one
BASIC program may be stored in memory at any one time. When the
PCjr’s power is turned off, the contents of memory will be erased and any
program stored there will be lost unless it is first stored on a permanent
medium such as a diskette or a cassette tape.

Before a program can be saved, it must first be assigned a name from
one to eight characters in length. This is known as a filename. Once a
filename has been selected for a program, it can be saved using the SAVE

Introduction to PCjr BASIC Programming 69

command.
Forexample, if a program was presently residing in memory, it could
be saved on a diskette with the following command:

SAVE "PROGRAM"

Notice that quotation marks are required around the filename, PRO-
GRAM.

When SAVE is executed, the program remains in memory where it
can be added to, edited, or run if desired.

Both cassettes and disks can be an effective means of retaining
programs and data when the computer is turned off. The details of the
procedures used to save programs and‘data will be presented in chapter 6.

LOADING A PROGRAM

Once a program has been saved on cassette tape or floppy disk, it can
be loaded back into memory using the LOAD command. An example of a
LOAD command is given below.

LOAD "PROGRAM"

Again, the quotation marks are required around the filename, PROGRAM.

If the file, PROGRAM, is not found on either the disk or cassette, a
”File Not Found” error will be generated. Whether the PCjr searches the
disk or cassette for the file depends on your specific system configuration.
See chapter 6 for details.

MULTIPLE STATEMENTS

In our examples thus far, only one BASIC statement has been
included in each program line. In PCjr BASIC, multiple statements may
be included in a single program line as long as each statement is separated
with a colon. The following program uses multiple statements in line 10:

70 1BM PCjr User's Handbook

/ 10 PRINT “JOHN":PRINT "NELSON"\

20 PRINT “ATLANTA"
30 PRINT “"GEORGIA"
40 END

RUN

JOHN

NELSON

ATLANTA

GEORGIA

. J

4

Data Types, Variables, and Operators

Introduction

In chapter 3, a few of BASIC’s fundamental operating details were
discussed. In chapter 4, the basic concepts necessary to master PCjr
BASIC will be examined. In particular, the various data types used in
PCjr BASIC as well as the operations that can be performed on that data
will be discussed.

Data Types

The data processed in PCjr BASIC can be classified under two
special headings: string and numeric. String and numeric data are stored
differently in memory by the PCjr. Also, the various operatorsin BASIC
affect string and numeric data in different manners.

STRINGS

A string can be defined as one or more ASCII characters. The

71

72 1BM PCjr User's Handbook

various ASCII characters are listed in appendix C and consist of the
digits (0-9), letters of the alphabet, and a number of special symbols.

BASIC also allows a string of zero characters. This is also known as
the empty or null string and is used much as a zero is in mathematics.

As may have already been noted from our examples in chapter 3,
when a string is used in a BASIC statement, it must be enclosed within
quotation marks. The quotation marks serve to identify the beginning
and ending points of the string. They are not a part of the string.

A string enclosed within quotation marks is known as a string
constant. A constantis an actual value used by BASIC during execution.
The following are examples of string constants:

"JOHN SMITH"
"12197"

"E97432"

"BOSTON, MA 01270"
"213-729-4234"

Notice that numbers can be used within a string constant. Remem-
ber, however, that the numbers within a string constant are string rather
than numeric data.

One final point that should be kept in mind regarding string con-
stants is that they cannot contain quotation marks. For example, the
following string constant,

"John said, "Goodbye."” as he walked away."

would be illegal. Since quotation marks are used to denote the beginning
and ending points of a string constant, their inclusion within the string
itself would cause difficulties and, therefore, their inclusion is not
allowed. The CHRS function can be used to place the ASCII code for
quotation marks within a string constant. This will be discussed in
chapter 6.

NUMERIC DATA

Numeric data can be defined as information denoted with numbers.
Numeric data is stored and operated on in a different manner than is
string data.

Data ypes, Variables, and Operators 73

Numeric constants consist of positive and negative numbers.
Numeric constants cannot include commas. For example, 10,000 would
be an illegal numeric constant.

BASIC further classifies numeric constants as integers, fixed point
numbers, and floating point numbers.

Integers can be defined as the whole numbers in the range between
-32767 and 32767, inclusive. Integer numbers do not have a decimal
portion.

Fixed point numbers can be defined as the set of positive and
negative real numbers. Fixed point numbers contain a decimal portion.

Floating point numbers are represented in scientific notation. A
number in scientific notation takes the following format:

+xExyy

is an optional plus or minus sign.

x can either be an integer or fixed point number. This position of
the number is known as the coefficient or mantissa.

E stands for exponent.

yy isatwodigitexponent. The exponent gives the number of places
that the decimal point must be moved to give its true location.
The decimal point is moved to the right with positive exponents,
and to the left with negative exponents.

The following are examples of floating point numbers and their
equivalent notation in fixed point:

Floating Point Fixed Point
3.87E+05 387000
4.064E-04 .0004064
-1E+06 -1000000
7.87642E+03 7876.42

BASIC can only handle floating point numbers in the range between
1.70E+38 and -1.70E +38. Any decimal numbers in the range between
-2.93E-39 and 2.93E-39 will be converted to zero.

Floating point notation is used as a more efficient means for the
computer to manipulate exceedingly large or exceedingly small values.

74 1BM PCjr User's Handbook

As a result, some values that are entered in fixed point notation may
automatically be converted to floating point notation by the computer.

Numbers represented in floating point or fixed point notation can be
stored in one of two degrees of precision, or accuracy. Single precision
numbers are stored with 7 significant digits. Double precision numbers
are stored with 17 significant digits. Any additional digits will be
rounded.

A single precision constant will be specified if the constant is written
using any of the following formats:

e Number contains seven or fewer digits
e Number is written in exponential form (E)
e Number contains a trailing exclamation point (!)

Double precision can be specified using any of the following formats:

e Number contains eight or more characters
e Number is written in exponential form (D)
e Number contains a trailing number sign (#)

Single Precision Double Precision

-48.7 123456789
2.56E03 2.56D03
900! 900#

Integers differ from floating point-and fixed point values in that
integers cannot contain digits to the right of the decimal point. This
condition allows integers to be stored ina smallerarea of the computer’s
memory. Also, integers can be handled more quickly than other types of
values.

The following are examples of integers, floating point, and fixed
point numeric values:

Integers Floating Point Fixed Point
-7978 -387E+04 47988
32600 4.015E+07 37.0

37 6.870E-27 45.874
192 1D+06 3.1415927

-687 1.414D+00 -238.5

Data Wypes, Variables, and Operators 75

Note that 47988 cannot be considered an integer since it lies outside
the allowable range of values (-32767 to 32767). Also, note that 37.0 is
notan integer because it contains a digit to the right of the decimal point.

Variables -- An Overview

In the preceding section, we discussed BASIC’s different types of
data -- string and numeric. So far, data has only been represented as a
constant. The value of a string or numeric constant suchas "MICHELLE”
or 382.436 always remains the same.

Data can also be represented by using a variable. A variable can be
defined asan area of memory that is represented with a name. That name
is known as the variable name. The information stored in the memory
area defined by a variable name can vary as BASIC commands or
statements are executed (hence the name variable). The data currently
stored in the memory area defined by a variable is known as the variable’s

value.

VARIABLE NAMES

BASIC allows variable names of up to 40 characters in length. A
variable name must begin with a letter of the alphabet followed by
additional alphanumeric characters. Blank spaces are not allowed within
a variable name. Letters entered in lowercase will be automatically
converted to uppercase by the computer. The following are examples of
valid BASIC variable names:

ADDRESS X9
JOHN PHONE23

A variable name may not duplicate a BASIC reserved word (see
appendix A). However, a variable name may incorporate a reserved
word as part of its name.* Therefore, although the following would be
invalid variable names,

NEW AND PRINT

* The exception to this rule is FN. A variable name cannot begin with FN.

76 1BM PCjr User's Handbook

the following variable names would be valid:

NEWPHONE ANDY PRINTNAME

Variables, like constants, can either be string or numeric. Numeric
variables can be integer, single precision, or double precision. A variable
type can be declared using a type identification character. The type
identification characters are as follows:

% = integer

! = single precision
= double precision
$ = string

For example, the following variable names would be declared as
string and integer respectively. If a variable type character is not speci-
fied, the variable is assumed to be a single precision value.

LOUISE$ REBEL%

ASSIGNMENT STATEMENTS

Numeric variables are initially assumed to have a value of zero.
String variables are initially assumed to be null. Values may be assigned
toa variable as the result of a calculation or as the result of an assignment
statement. The LET statement is used to assign a value toa variable. LET
is used with the following configuration:

LET variable = expression*

Whenever a LET statement is used in a program, the value of the
variable on the left side of the equation will be replaced with the value
appearing on the right.

* Inourconfigurationexamples, BASIC reserved words will be depicted in uppercase, regular face
type. Parameters to be entered by the programmer will be depicted in lowercase italics.

Data Types, Variables, and Operators 77

The reserved word, LET need not actually be included in a LET
statement. Both of the following commands have the same meaning:

LETA=5
A=5

The value assigned to a variable can either be a constant, a variable,
or the result of an operation. In the following example, A$ is assigned the
string constant "JOHN”, B is assigned the numeric constant 27.9, C is
assigned the value of B, and D is assigned the value of B multiplied by 2:

10 A$ = "JOHN"
20 B=27.9
30 C=8B
40 D=B*2
50 PRINT A$
60 PRINT B
70 PRINT C
80 PRINT D
RUN
JOHN

27.9

27.9

55.8
Ok

Expressions & Operators

The values of variables and constants are combined to form a new
value through the use of expressions. The following are examples of
expressions:

4+7

A$ +B$
3*1

14 <21
XANDY

BASIC includes several types of expressions including arithmetic,
relational, and Boolean. In our previous examples, the first three exam-
ples were arithmetic expressions, while the fourth and fifth were exam-
ples of relational and Boolean expressions, respectively. Each of these
types of expressions will be discussed in detail in the following sections.

78 1BM PCjr User's Handbook

The sign or word dc\fscribing the operation to be undertaken is
known as the operator. An operator is a symbol or word which represents
anaction which is to be undertaken on one or more values specified with
the operator. These values are known as operands.

The operators in our previous examples were as follows:

4+ 4+

2 A

ARITHMETIC OPERATORS

Arithmetic operators are used to perform mathematical operations
on numeric variables and constants. The various arithmetic operatorsare
listed in table 4-1.

A number of these operations should already be familiar. The sym-
bols + and - are used for addition and subtraction, respectively. The
asterisk (*) is used to indicate multiplication, while the slash (/) is used to
indicate division.

PRINTS5+3
8

Ok

PRINT 24/8

3
Ok

The first arithmetic operation specified in table 4-1 is exponentia-
. .. A, . . .
tion. Exponentiation (carat ") is the process of raising a number to a
specified power. For example, the following two expressions would be
evaluated identically as 25. The exponent, 2, indicates the number of
times that the base, 5, is to be multiplied by itself.

25
5§*5 =25

wn
n

When the symbol - precedes a number, it changes that number’s
sign. This usage is known as negation.

Data Types, Variables, and Operators 79

The backslash (\) represents integer division. Integer division is
identical to standard division except that no decimal places are returned.
The MOD operator returns the remainder of an integer division.

PRINT 62\ 8
7

Ok

PRINT 62 MOD 8
6

Ok

TABLE 4-1. Arithmetic Operations

Symbol Operation Example
A Exponentiation AAB
- Negation -A
ame { * Multiplication A*B
priority / Division A/B
\ Integer Division A\B
MOD Remainder A MOD B
same { + Addition A+B
priority - Subtraction A-B

ORDER OF EVALUATION (ARITHMETIC EXPRESSIONS)

All of our preceding examples were simple expressions. A simple
expression is one which contains just one operator and one or two
operands. Simple expressions can be combined to form compound
expressions. The following are examples of compound expressions:

(-A) + 3MOD 2
A+B*A/(C+D)
27 +47 \ AB

80 IBM PCjr User's Handbook

With compound expressions, it is necessary that the computer
knows which operations should be undertaken first. BASIC follows a
standard order of evaluation within compound expressions.

In this section, the order of evaluation of compound arithmetic
expressions will be discussed. Later in this chapter, the order of evalua-
tion of relational and logical operators will be discussed. Also, the
relative evaluation priorities of these three groups will be outlined.

Inanexpression with more than one arithmetic operator, the opera-
tors with higher priority are evaluated first followed by those with lower
priority. If two operators have the same priority, evaluation is performed
from left to right in the expression. The operators in table 4-1 are listed in
descending priority. For example, exponentiation is listed before multi-
plication, because exponentiation has a higher priority. Multiplication
and division have the same priority. Also, addition and subtraction have
the same priority. The following is an example of the evaluation of the
arithmetic operators in an expression:

A=371+129*21-7+4N2
=371+129*21-7+16
=37.1+27.09-7+16
=64.19-7 + 16
=57.19+ 16
=73.19

Parentheses can be used to alter the order of evaluation in arithmetic
expressions. Expressions appearing within parentheses have the highest
priority in the order of evaluation. For example, the use of parentheses
with our preceding example could change the value of the expression.

A=(37.1+12.9) * 2.1 - (7 +472)
=50 * 2.1 - (7 + 16)
=50*2.1-23
=105.0 - 23
= 82,0

MIXING VARIABLE TYPES

Although certain variable types may be mixed in a BASIC expres-
sion, it is preferable to use a single variable type throughout each expres-
sion. By doing so, execution time will be decreased, memory require-

Data Types, Variables, and Operators 81

ments will be reduced, and the probability for program errors will be
lessened.

BASIC does not allow a string value to be assigned to a numeric
variable or vice versa. However, a numeric value in one precision can be
assigned to a numeric variable with another precision.

When a numeric value is assigned to a variable of lower precision,
the value is rounded to fit that variable. A single precision value is
assigned to aninteger in the following example. Notice that the value 1.75
is rounded to 2 in order to fit the integer variable.

10 X=1.75
20 X% =X

30 PRINT X%
40 END

RUN

2
Ok

Likewise, a numeric value can be assigned to a variable of higher
precision. The following example demonstrates the result. Notice that
although the single precision value, 2.04, was assigned to a double
precision variable, the result was only accurate to 7 digits (single preci-
sion). This is because the original value 2.04 was only accurate to single
precision.

10 X = 2.04
20 X# =X

30 PRINT X#
40 END
RUN

2.039999961853027
Ok '

RELATIONAL OPERATORS

Relational operators are used to make a comparison using two
operands. The following relational operators are used in BASIC:

< less than

<= less than or equal to
> greater than

>= greater than or equal to
= equal to

<> not equal

82 1BM PCjr User's Handbook

A relational operation evaluates to either true or false. For example,
if the constant 1.5 was compared to the constant 2.4 to see whether they
were equal, the expression would evaluate to false. In BASIC, a value of
-1 represents a condition of true, while a value of 0 represents false.

The only values returned by a comparisonin BASICare -1 (true) or
0 (false). These values can be used as any other integer would be used. The
following relational expressions and their results demonstrate com-
parisons:

5>7 0 (false)
5>3 -1 (true)
7=7 -1 (true)

Relational operations are evaluated after the arithmetic operations.
Relational operations are performed from left to right in an expression.

Relational operations using numeric operations are fairly straight-
forward. However, relational operations using string values may prove
confusing to the first time user. Strings are compared by taking the ASCII
value for each character in the string one at a time and comparing the
codes.

For example, consider the two string values ”"BONNIE” and "BECK".
In a relational expression, the initial characters of the strings will be
compared first. Since both strings begin with "B”, the comparison will
continue with the second character. Since the ASCII code for "E” (69) is
less than the ASCII code for “O” (79), "BECK” is considered less than
"BONNIE".

If the end of a string is encountered during a string comparison, the
string with the fewer number of characters will be considered to be less
than the longer string. For example, “ABC” would be evaluated as less
than “ABCD”. The relational operators can be used in this manner to
indicate the relative location of strings in alphabetical order.

The following examples demonstrate the use of relational operators
with string values. All of the following expressions are true:

"ABC" ="ABC"
"ABC" > "AAA"

"ALFRED" < "ALFREDO"

A$ < Z$ where A$ = "ALFRED" and Z$ = "ALFREDO"

Note that all string constants must be enclosed in quotation marks.

Data Types, Variables, and Operators 83

LOGICAL OPERATORS

Logical or Boolean operators are generally used in BASIC to com-
pare the outcomes of two relational operations. Logical operations
themselves return a true or false value which will be used to determine
program flow.

The logical operators are NOT (logical complement), AND (con-
junction), OR (disjunction), XOR (exclusive-or), IMP (implication), and
EQV (equivalence). These return results as shown in figure 4-1.

A logical operator evaluates an input of one or more operands with
true or false values. The logical operator evaluates these true or false
values and returns a value of true or false itself. An operand of a logical
operator is evaluated as true if it has a non-zero value. (Remember,
relational operators returna value of -1 fora true value.) An operand of a
logical operator is evaluated as false if it is equal to zero.

The result of a logical operation is also a number which if non-zero is
considered true, and false if it is zero.

The following are examples of the use of logical operators in combi-
nation with relational operators in decision-making:

IFX>100RY <0 THEN 900
IF A>0AND B >0 THEN 200
FLAG% = NOT FLAG%

In the first example, the result of the logical operation will be true if
the variable X is greater than 10 or if the variable Y is less than 0.
Otherwise, it will be false. If the result of the logical operation is true, the
program will branch to line 900. Otherwise, it will continue to the next
statement. In the second example, the result of the logical operation will
be true only if the value of both variables A and Bare greater than zero. If
the result of the logical operation is true, program control will branch to
line 200. In the final example, the value of FLAG% is switched from true
to false or vice versa.

84 IBM PCjr User's Handbook

FIGURE 4-1. Logical Operators

NOT Operation
T F A Operand

F T NOT A

OR Operation

T T F F A Operand
T F T F B Operand
T T T F AORB

AND Operation

T T F F A Operand
T F T F B Operand
T F F F A AND B

XOR Operation

T T F F A Operand
T F T F B Operand
F T T F A XOR B

T T F F A Operand

T F T F B Operand

T F T T AIMPB

Data Types, Variables, and Operators 85

FIGURE 4-1. (cont) Logical Operators

EQV Operation

T T F F A Operand
T F T F B Operand
T F F T A EQVB

Logical operators actually convert their integer operands into their
16 bit binary equivalents before evaluating them. If an operand is nega-
tive, the two’s complement is used to form that operand’s 16 bit
equivalent.

The binary equivalent of -1 may be found as follows. First, convert 1
into binary.

0000 0000 0000 0001

Then, complement every bit in the binary equivalent. This is known
as the one’s complement.

Il 1111 1111 1110,

Finally, increment the one’s complement to obtain the two’s
complement.

-1, =1111 111 1111 1111,

If the 16 bit equivalent is used to evaluate a logical expression, true is
represented by a bit value of one, while false is represented by a bit value
of zero. This is consistent with our earlier assignment of true = -1,
because the 16 bit representation of -1 consists of 16 one’s (1111 1111
I 111, =-1,).

86 IBM PCjr User's Handbook

The following example illustrates the use of the logical operator,
XOR, with one positive and one negative argument.

PRINT -15 XOR 31
-18
Ok

A5,=1111 1111 1111 0001
31,=0000 0000 0001 1111
AISXOR31=1111 1111 1110 1110=-18,

Overall Order of Evaluation

In this chapter, we have outlined the use of the arithmetic, relational
and logical operations. Table 4-2 outlines the overall order of evaluation
of the operators.

Data Types, Variables, and Operators 87

TABLE 4-2. Order of Evaluation

Type Operation Symbol Priority

Arithmetic Exponentiation A 1
Negation - 2
Multiplication * 3
Division /
Integer Division \ 4
Remainder MOD
Addition + 6
Subtraction -

Relational Equality =
Inequality <>
Less Than < 7
Greater Than >

Less Than or Equal <=
Greater Than or Equal >-=

Logical Complement NOT 8
Conjunction AND 9
Disjunction OR 10
Exclusive-or XOR 11
Implication IMP 12

Equivalence EQV 13

5

BASIC Programming Concepts

Introduction

In chapters 3 and 4, BASIC programming fundamentals were dis-
cussed. In this chapter, we will discuss some additional fundamental
programming concepts. These include:

e data input and output

e conditionals, branching and loops
e tables and arrays

e functions and string handling

e program concatenation

Inputting and Outputting Data

Thus far, we have briefly described the usage of the PRINT state-
ment to output data. Now, we will discuss the usage of PRINT to format

89

90 I1BM PCjr User's Handbook

the outputted data. After we have discussed the methods used to output
data, we will discuss the statements used to input data into variables.
These include INPUT and INKEYS.

PRINT

To this point, we have only used the PRINT statement to output a
single constant or variable value to the screen. The PRINT statement can
also be used to output more than one item to the screen. When PRINT is
used in this manner, the spacing between the items to be printed can be
controlled by separating them with a comma or semicolon. Forexample,
compare the results of the following PRINT statements:

PRINT “PAT” "MIKE" "KEN"
PATMIKEKEN
Ok

PRINT "PAT", "MIKE"
PAT MIKE
Ok

PRINT "PAT";"MIKE";"KEN"
PATMIKEKEN
Ok

Notice that in our first example, no delimiter was used to separate
the three string constants. These were output as one continuous string.

In the second example, the comma was used to delimit the string
constants. Whena comma appearsina PRINT statement, the computer
is instructed to begin printing the next parameter in the PRINT state-
ment at the beginning of the next print zone.

When the PC;jr is configured in the 40 column mode (WIDTH 40),
the screen is divided into two print zones. The first print zone extends
from column 1 to column 14, The second extends from column 15 to
column 40. When the PCjris configured in the 80 column mode (WIDTH
80), the screen is divided into five print zones. These begin at columns 1,
15,29, 43, 57. '

Commas are very useful when data is to be output in tabular form.
This is illustrated in the following example program:

BASIC Programming Concepts 91

10 PRINT “Name”, “ID No.”

20 PRINT “Jack Williams”,3749
30 PRINT "Ann Timmons”,3622
40 PRINT "Jay Randolph”,2511

50 END

RUN

Name ID No.
Jack Williams 3749
Ann Timmons 3622
Jay Randolph 2511
Ok

In the third example, on page 90, the semicolon was used as the
delimiter. The semicolon causes each string data item in the PRINT
statement to be output immediately adjacent to the preceding item.

When semicolons are used to separate data items in a PRINT
statement, the output will be displayed without the insertion of any
additional spaces between data items. As a result, spaces must be inserted
in PRINT statements between any data items that need to be separated.
The most common technique used to insert spaces is to include a space
(enclosed in quotation marks) in a PRINT statement. The following
example program demonstrates this technique:

10 A$ = "IBM”
20 B$ = "PCjr"

30 PRINT A$;B$

40 PRINT A$; " ";B$
50 END

RUN

IBMPCjr

IBM PCjr

Ok

Generally, when a PRINT statement has been executed, the cursor
or print head will advance to the leftmost position on the next output
line. This is known as a carriage return/line feed, which can be abbre-
viated as CR/LF.

A CR/LF can be suppressed by ending a PRINT statement with
either a comma or a semicolon. When a semicolon is used to end a
PRINT statement, the output from the next PRINT statement will be
positioned immediately after the data output by its predecessor. This is
illustrated in the following example:

92 IBM PCjr User's Handbook

10 PRINT "Datat";
20 PRINT "Data2";
30 PRINT "Data3"
40 END

RUN
Data1Data2Data3
Ok

Whena PRINT statement ends with a comma, subsequent data will
be output at the next zone on the same display line. This is shown in the
following example:

10 PRINT "Daga1”,
20 PRINT "Data2”
30 END
RUN

[Datai Data2
Ok

HORIZONTAL FORMATTING

BASIC includes several functions that allow the programmer to
control the horizontal format of output. These include TAB and
SPACES.

BASICallows anitem to be printed in any position on the screen or
printer with the TAB command. The print position can range from I to
255. Notice that the following example causes output to be positioned at
columns 10 and 20:

10 PRINT TAB(10) "10";TAB(20)"20"
RUN

10 20
Ok

There are 255 print positions available because of the fact that a
logical line in BASIC can consist of up to 255 characters. If the argument
of a TAB function exceeds the length of the display line, the output will
appear on a subsequent line.

The SPACES function causes the number of spaces specified as its
argument to be output. In the following example, SPACES$(10) causes
the cursor to move 10 positions to the right once BOB has been output:

BASIC Programming Concepts 93

10 PRINT “BOB";SPACE$(10);"LIGGETT"
RUN

BOB LIGGETT

Ok

VERTICAL AND HORIZONTAL TABS

The output of a program can be tabulated by either rows or columns
on the display. The LOCATE statement causes the cursor to move to a
specified row and column. The following example program uses the
tabulation feature to output data in the four corners of the screen:

10 CLS

20 PRINT "UPPER LEFT"
30 LOCATE 1,28

40 PRINT "UPPER RIGHT"
50 LOCATE 22,1

60 PRINT "LOWER LEFT"
70 LOCATE 22,28

80 PRINT "LOWER RIGHT”
90 END

The CLS statement at line 10 causes the screen to be cleared. As a
result, the first output will occur in the upper-left corner of the display.
The LOCATE statement at line 30 moves the cursor to column 28 of row
1. The second output will then occur in the upper right of the screen.
Likewise, the LOCATE statements at lines 50 and 70 position the cursor
to the lower right and lower left of the display. The row numbers extend
from | (top) to 25 (bottom), while the column numbers extend from 1
(left) to 20, 40 or 80 (right). The correct range of column numbers
depends on the selected screen width.

FORMATTING OUTPUT

BASIC allows the user to format numeric data when it is output to
the screen or to the printer. Formatting is accomplished through the use
of the PRINT USING statement and a format string. The format string
contains the formatting characters enclosed in quotation marks. These
characters determine the appearance of the numeric data when it is
output.

94 1BM PCjr User's Handbook

The following statement,
100 PRINT USING "#it##.##";X

will result in the numeric value in variable X being output in decimal
form with four digits to the left of the decimal point, and two digits to the
right. The # sign in the format string is used to represent a digit, while the
period is used to represent a decimal point.

If the following numeric data items were printed with the preceding

statement’s format string,

7
8971.17
18.5782
999.77
1000.01
85712.11

the following would be output:

7.00
8971.17
18.58
999.77
1000.01
%85712.11

Note that the final data item has a value greater than that allowed for
by the format string. In these situations, the number will be displayed

with a leading percent character (%).
A second formatting character, the dollar sign ($), is often used with

the digit character (#) to display monetary figures. A single dollar sign in
aformat string causes the $ to be printed in that position in the output. If
we assume the value of X to be 17.98, the following statement,

100 PRINT USING "$####.##",X
would result in the following output:

$ 17.98

BASIC Programming Concepts 95

The inclusion of two dollar signs (3%) in the format string is known
as the floating dollar sign. The floating dollar sign results in a single
dollar sign character being printed to the immediate left of the numeric
value being output. Again, if we assume the value of X to be 17.98, the
following statement,

100 PRINT USING "$$####.##"; X ‘
would result in the following output:
$17.98

The format string can be used to include commas when printing
large numbers. If we assume the value of X to be 999999, the following
statement,

100 PRINT USING "### ###.##",X
would result in the following output:
999,999.00

The format string can also be used to include a numeric value’s sign
inits output. By including the addition sign (+) at the beginning or end of
the format string, the number’s sign (+ or -) will be printed in the position
specified. For example, if we assume the value of X to be -77.1, the
following statement,

100 PRINT USING "+###.##";X
would result in the following output:
-77.10
The output could be altered by using the following format string:
100 PRINT USING "###.##+";X

The result would be 77.10-.

96 1BM PCjr User's Handbook

Another formatting character, leading asterisks (**), will cause all
blank digit positions in a format string to be filled with asterisks. If we
assume that X has a value of 58.29, the following statement,

100 PRINT USING "**####.#4#";X
would result in the following output:
****58.29

Another formatting character, the trailing minus sign (-), causes the
number to be output with a trailing minus sign if that number has a
negative value and no sign if it is positive. If we assume X’s value to be
-79, the following statement,

100 PRINT USING "####-";X
would output the following:
79-
OUTPUTTING DATA TO THE PRINTER

The printer can be accessed as the output device by using LPRINT
or LPRINT USING. The LPRINT statement functions as does the
PRINT statement, except that LPRINT sends data to the printer rather
than the screen. A program listing can be sent to the printer by using
LLIST. :

LINE WIDTH

The WIDTH command allows the user to change the line w1dth of
the video dlsplay or printer.

The width of the video display can be set to 20, 40, or 80 characters.
For example, to set the screen width to 20 columns, the following state-
ment would be used:

WIDTH 20

BASIC Programming Concepts 97

Likewise, WIDTH 40 and WIDTH 80 would set screen width to 40
columns and 80 columns, respectively.

The LPRINT and LPRINT USING statements assume a printer
width of 80 characters. However, this width can be changed by executing
a WIDTH "LPT!:” statement. LPT1: is the device name for the printer.
The following statement sets the printer width to 130 characters:

WIDTH "LPT1:",130

If a line being sent to the video display consists of a greater number
of characters than the width of the screen, the extra characters will “wrap
around” to the next line. Likewise, if a line being output to the printer
contains a greater number of characters than allowed for, the excess
characters will be printed on successive lines.

INPUT

When an INPUT statement is executed, the computer will display a
question mark and wait for the operator to enter a response. That entry
will be assigned to the variable indicated. The entry must be ended by
pressing the Enter key. Program execution will then resume.

The values of several variables can be input with a single INPUT
statement. These variables may either be numeric or string as shown in
the following example:

100 INPUT A$,B$,C -

When the preceding INPUT statement is executed, the INPUT
prompt (?) will be displayed. The operator should then input the data
items for variables A$, B$, and C. Each input should be separated by a
comma. The Enter key should be pressed after all input entries have been
made. An example of a valid entry for the preceding INPUT statement is
given below:

JOHN,SMITH,281

These entries will be assigned to the variables as follows:

98 I1BM PCjr User's Handbook

A$ = "JOHN"
B$ = "SMITH"
C = 281

If an incorrect number of entries were made or if a string constant
were input for a numeric variable or vice versa, the following message
would be displayed,

? Redo from start
2

and the computer would wait for a valid entry.

Itisa good programming practice to include a prompt message with
the INPUT statement to let the operator know what data the computer is
expecting. The prompt message is a string constant that will be displayed
when the computer expects an input. For example, the following INPUT
statement,

100 INPUT "ENTER NAME, PHONE";A$,B$

will result in the prompt being displayed. The PCjr will then wait for a
keyboard entry. The operator enters the underlined output in the follow-
ing example:

ENTER NAME,PHONE? MARY, 845-2956 ()

These entries will be assigned to the variables A$ and BS. AS will be
assigned a value of "MARY”, and B$ will be assigned a value of "845-
2956”. Notice that the string entries did not need to be enclosed in
quotation marks. When a string is entered in response to an INPUT
prompt, the quotation marks can be excluded, unless the entry includes
commas or begins with spaces.

LINE INPUT

The LINE INPUT statement isa variation of the INPUT statement.
LINE INPUT allows an entire line (maximum of 254 characters) to be
input to a string variable. Unlike INPUT, LINE INPUT does not recog-
nize spaces and commas as delimiters. Therefore, it is more simple to
include these charactersinan inputted string. Pressing the Enter key ends
the input process.

BASIC Programming Concepts 99

LINE INPUT [;]["prompt";lvariable$

If the optional semi-colonis included after LINEINPUT,a CR/LF
to the screen will not occur when the Enter key is pressed.

INKEY$

An INKEYS statement is an alternate means of inputting data from
the keyboard. INKEY$ can be used to accept a single character, and
assign that character to a string variable. However, unlike INPUT or
LINE INPUT, if no character was typed when INKEY$ was executed,
the PCjr will not wait for a keyboard response. The following program
illustrates INKEY$:

10 A$ = INKEY$
20 PRINT A$
30 GOTO 10

Line 10 assigns the string value of the currently pressed key to AS. If
no keys have been pressed, the null string will be assigned to AS. Line 20
prints the string, while line 30 transfers program control back to line 10.
The GOTO statement will be discussed in the next section of this chapter.

Conditionals, Branching and Looping

Thus far in our discussion of PCjr BASIC, program statements have
been executed in sequential order. Several BASIC statements are
available that can be used to alter program control. These include:

IF-THEN-ELSE ON-GOTO

GOTO ON-GOSuUB
GosuB ON ERROR GOTO
FOR-NEXT WHILE-WEND

These statements will be discussed in the following sections.

CONDITIONALS

One of the most important features of a computer is its ability to
make a decision. BASIC uses the IF-THEN statement to take advantage

100 1BM PCjr User's Handbook

of the computer’s decision making ability. The IF-THEN statement
takes the following form:

IF expression THEN statement

The IF statement sets up a decision. If expression evaluates to true,
then statement will be executed. If expression evaluates to false, the
subsequent program statement will be executed. In the following exam-
ple, if AGE is greater than or equal to 21, "LEGAL” will be printed.

IF AGE > =21 THEN PRINT “"LEGAL"

An ELSE statement may be added to an IF-THEN statement to
achieve an IF-THEN-ELSE structure. IF-THEN-ELSE uses the follow-
ing configuration:

IF expression THEN statement, ELSE statement,

If expression evaluates to true, then statement, will be executed.
Otherwise statement, will be executed. In other words, a true expression
causes statement, to be executed, while a false expression causes state-
ment, to be executed. In the following example, if SCORE is greater than
90000, then the PCjr will print "NICE GAME". Otherwise, it will print
"NOVICE".

IF SCORE > 90000 THEN PRINT "NICE GAME"
ELSE PRINT "NOVICE"

BRANCHING STATEMENTS

Branching statements change the execution pattern of programs
from their usual line by line execution. A branching statement allows
program control to be altered to any line number desired. The most
commonly used branching statements in BASIC are GOTO and
GOSUB.

GOTO takes the following format:

GOTO line number

BASIC Programming Concepts 101

For example, the following program statement,

500 GOTO 999

999 END

would branch program control from line 500 to 999.

SUBROUTINES AND GOSUB

Many times you will find that the same set of program instructions
are used more than once in a program. Re-entering these instructions
throughout the program can be very time consuming. By using subrou-
tines, these additional entries will be unnecessary.

A subroutine can be defined as a program which appears within
another larger program. The subroutine may be executed as many times
as desired.

The execution of subroutines is controlled by the GOSUB and
RETURN statements. The format for the GOSUB statement is as
follows:

GOSUB line number

The computer will begin execution of the subroutine beginning at the line
numberindicated. Statements will continue to be executed in order, until
a RETURN statement is encountered. Upon execution of the RETURN
statement, the computer will branch out of the subroutine back to the
first line following the original GOSUB statement. This is illustrated in
the following example:

10 GOSUB 100

20 GOSUB 200

30 END

100 PRINT "subroutine #1”
110 RETURN

200 PRINT "subroutine #2"
210 RETURN

RUN

subroutine #1

subroutine #2

Ok

102 I1BM PCjr User's Handbook

Subroutines can help the programmer organize his program more
efficiently. Subroutines also can make writing a program easier. By
dividing a lengthy program into a number of smaller subroutines, the
complexity of the program will be reduced. Individual subroutines are
smaller and therefore, more easily written. Subroutines are also more
easily debugged than a longer program.

CONDITIONAL STATEMENTS WITH BRANCHING

Branching statements are often used in conjunction with conditional
statements. In such a situation, the normal execution of the program will
be altered depending upon the outcome of the conditionset upinan IF or
an ON statement. This is shown in the following example:

100 INPUT "Enter the amount”;A
200 IF A =0 THEN GOTO 500

300 PRINT A

400 GOTO 100

500 INPUT "Are you finished?”;A$
600 IF A$ <>"y" THEN 100

700 END

In our preceding example, if the value input for A has a zero value,
then the program will branch to line 500 where the operator will be asked
whether he has finished entering data. In line 600, the program will set up
a condition where if the input was anything other than the letter "y”, the
program will branch to line 100. If the entry was equal to y, the program .
will end at line 700.

Note in line 600 that a GOTO statement is not used to precede the
line number being branched to. When a line number is indicated follow-
ing a THEN statement, the computer assumes the presence of GOTO.

The ON-GOTO and ON-GOSUB statements are also combinations
of a conditional statement and a branching statement. The use of the
ON-GOTO statement is illustrated in the following program:

100 INPUT A

200 ON A GOTO 400, 500
300 GOTO 999

400 PRINT "A =1":GOTO 999
500 PRINT "A =2"

999 END

BASIC Programming Concepts 103

If the variable or expression following ON evaluates to 1, program
control will branch to the first line number specified after GOTO; if 2, to
the second, etc.

If the variable or expression evaluates to a number greater than the
number of line numbers following GOTO, program control will branch
to the statement immediately following the ON-GOTO statement. This is
also the case if the variable or expression following ON evaluates to zero.
Negative values for the control expression are not allowed.

The ON-GOSUB statement is very similar in nature to the ON-
GOTO statement. The following statement is an example of an ON-
GOSUB statement:

100 ON X GOSUB 1000,2000,3000

If the value of X is 1, the subroutine at line 1000 will be executed. If X
is 2, the subroutine at line 2000 will be executed. If X is 3, the subroutine
at line 3000 will be executed. If X evaluates to 0 or to a number greater
than 3, the statement immediately following the ON-GOSUB will be
executed.

If ON-GOSUB causes a branch to a subroutine, program control
will revert to the line immediately following the ON-GOSUB statement,
once the subroutine has been executed.

LOOPING STATEMENTS

Suppose that you needed to compute the square of the integers from
1 to 20. One way of doing this is by calculating the square for each
individual integer as shown below:

100 A=1A2
200 PRINT A
300 B=2A2
400 PRINT B
500 C=3/2
600 PRINT C

This method is very cumbersome. The problem could be solved

104 1BM PCjr User's Handbook

much more efficiently through the use of a FOR-NEXT loop as shown
below:

100 FORA=1TO 20
200 X=AA2

300 PRINT X

400 NEXT A

500 END

The sequence of statements from line 100 to 400 is known as a loop.
When the computer encounters the FOR statement in line 100, the
variable A will be set to 1. X will then be calculated and displayed in lines
200 and 300.

The NEXT statement in line 400 will request the next value for A.
Execution returns to line 100 where the value of A will be incremented (to
2)and then compared to the value appearing after TO. Since the value of
Aisless than that value, the loop will be executed again with the value of
A set at 2. The loop will continue to be executed until A attains a value
greater than 20. When this occurs, the statement following the NEXT
statement will be executed.

In our preceding example, A is known as an index variable. If the
optional keyword STEP is not included with the FOR statement, the
index variable will be increased by | every time the NEXT statement is
executed.

STEP can be included at the end of a FOR statement to change the
value by which the index variable is increased. The integer appearing
after STEP is the new increment. For example, if our preceding example
were changed as follows,

100 FORA =1TO 20 STEP 2
200 X=AA2

300 PRINT X

400 NEXT A

500 END

the index variable, A, would be increased by 2 every time the NEXT
statement was executed.

One loop can be placed inside another loop. The innermost loop is
known as a nested loop. The following program contains a nested loop:

BASIC Programming Concepts 105

100 DIM R(2,3)

200 DATA 10,20,30,40,50,60
300 FORK=1TO 2 ==
400 FORJ=1TO3

500 READ R(K,J) inner loop outer loop
600 NEXTJ

700 NEXT K ~—

Our preceding example is used to read data into the numeric array
R. Arrays, as well as the READ and DATA statements, will be discussed
in detail later in this chapter.

Be certain that any integer loop is ended prior to ending its outer
loop. Also, be certain that every NEXT statement has a matching FOR
statement. If the BASIC interpreter cannot match every NEXT state-
ment with a preceding FOR statement, an error will result.

CONDITIONAL LOOPING STATEMENTS

Suppose that you wanted to execute a series of statements in a loop
as longasa given condition remained true. An example would be reading
from a data file, until a desired item was reached. Another example
would be doing an iterative approximation of a mathematical function.

The WHILE-WEND statement pair forms a loop similar to the one
formed by the FOR-NEXT statements. As long as the expression follow-
ing the keyword WHILE evaluates to a logical value of true (-1), the
statements between WHILE and WEND will be continuously reex-
ecuted.

WHILE-WEND loops also may be nested just as with FOR-NEXT
loops. Again, be careful not to cross nest WHILE-WEND loops. Since it
is not always clear which WEND statement is associated with a corres-
ponding WHILE statement, try to clarify this by using the same indenta-
tion for associated WHILE-WEND statements. REM statements may
also be used to indicate which WHILE-WEND statements are associated.

106 1BM PCjr User's Handbook

10 1=0

20 WHILEI <10
30 PRINTI

40 I1=1+1

50 WEND

60 END

RUN

QCDW\!G’C’I#WN—BO

In the previous example, the value of I is continually incremented in
the WHILE-WEND loop, until the value of I is no longer less than 10.

The WHILE-WEND loop in the previous example did not offer any
gains over the FOR-NEXT loop structure. In fact,a FOR-NEXT loop
with three statements could have duplicated the results of the previous
example.

10 FOR1=0TO9
20 PRINTI

30 NEXTI

40 END

The real beauty of the WHILE-WEND loop structure is evidenced
when the programmer is uncertain as to how many times the loop must be
executed. Suppose that one wished to obtain a root of the following
polynomial. A root is another name for the solution.

X3-3X2+1=0

The algebraic expression can manipulated into the following form:

BASIC Programming Concepts 107

We will now instruct the computer how to numerically approximate
the solution by iterations. If a value is plugged into the right-hand side of
the previous equation, a value will be obtained that is closer to the root
than the original guess. If this new value is then plugged into the right-
hand side of the equation, a value even closer to the answer will be
obtained. If this process is repeated until the last two obtained values are
very close to each other, these two values will be very close to the root.

100 XNEW =2

110 WHILE ABS(X-XNEW) > 0.0000001
120 X =XNEW

130 XNEW = (-1)/(XA 2-3*X)

140 WEND

150 PRINT X;"is the ROOT”

160 END

The condition for the loop to continue is that the last two values are
fartherapart than 0.0000001. ABS(XNEW-X)is merely their separation.
ABS is a function that computes the absolute value. Functions will be
discussed later in the chapter. Line 130 is the computer’s representation
of the second algebraic expression.

ERROR HANDLING

In some situations, it is easier to correct problems as they occurina
program, rather than to avoid them. This technique is called error
handling. BASIC allows the use of an ON ERROR GOTO statement to
specify a line number where the program should proceed if an error
occurs. This feature allows a portion of the program to be set asideas an
error handling routine.

Error handling routines are commonly used to correct small pro-
blems that occur infrequently in a program. When appropriate correc-
tions have been performed,a RESUME statement can be used to branch
the program back to the location where the error occurred. The function
of a RESUME statement is analogous to the use of a RETURN state-
ment at the end of a subroutine.

The following program demonstrates the technique used to branch a
program in event of an error:

108 1BM PCjr User's Handbook

10 ON ERROR GOTO 100

20 INPUT "INPUT X:";X

30 Y=XA5

40 PRINT "The square root of “;X;"is";Y
50 END

100 Y = (-X)A.5

110 PRINT “The square root of ";X";is";Y"i"”
120 END

The preceding example program contains an ON ERROR GOTO
statement at line 10. This statement indicates that the program control
will branch to line 100 in the event of an error. An ON ERROR GOTO
statement must be executed in a program before an error actually occurs.

The program calculates the square root of a value input for the
variable X. However, BASIC does not allow the square root of negative
numbers. These values can only be defined in the context of complex
numbers, where the symbol “i” is used to represent the square root of -1.
Asa result, the square root of -4 could be represented by the value 2i since
the following expression is true:

V-4=yAy-1=y4i=2i

It is not necessary to understand the use of “complex” numbers to
comprehend the example. The main concept of the program is:

The statement at line 30 would normally have
caused an error if a negative value had been input
for the variable X. However, in this case, the ON
ERROR GOTO statement causes the program to
branch to line 100 whenever an error occurs.

Lines 100 and 110 perform an alternate set of operations whenevera
negative value is input for X. Some typical applications of the sample
program would appear as follows:

RUN

INPUT X: 4 <«———— user’s response
The square root of 4 is 2

Ok

RUN

INPUT X: -16 <¢=———— user’s response

The square root of -16 is 4i
Ok

BASIC Programming Concepts 109

ERR and ERL are used to return the error code and the line number
associated with an error. ERR returns the error code for the last error.
ERL returns the line number of the line where the error was discovered.
The ERL and ERR variables are often used in conjunction with an
IF-THEN statement to test for an error as shown in the following
example:

100 ON ERROR GOTO 999

999 IF ERR =27 THEN LOCATE 1,1:
PRINT “Please Turn on Printer”;:RESUME

Appendix F contains the BASIC error messages along with their
corresponding error numbers and description of the errors.

Tables and Arrays

In chapter 4 we introduced the concept of variables. A variable is
designed to hold a single data item — either string of numeric. However,
some programs require that hundreds or even thousands of variable
names be used.

The processing of large quantities of data can be greatly facilitated
through the use of arrays and tables in a program.

SUBSCRIPTED VARIABLES

Obviously, the use of thousands of individual names could prove
extremely cumbersome. To overcome this problem, BASIC allows the
use of subscripted variables. Subscripted variables are identified with a
subscript, a number appearing within parentheses immediately after the
variable name. An example of a group of subscripted variables is given
below:

A(0),A(1),A(2),A(3),A(4),etc.

Note that each subscripted variable is a unique variable. In other
words, A(0) differs from A(1), A(2), A(3), etc...

(2's)v | (96)v | (g'9)v| (b'9)v | (e'9)v| (@'S)lv| (L'Sv| (0'G)v| S
L'V | (O'vIV| (S'vIV| V| (EPIv] @'YV (L'PIV | (0'v)v] +
(Z'e)v | (9'e)v | (s'e)v| (Pelv | (e'e)v| (@elv| (L'e)v| (0'€lv| €
(L2)v| (92)v| (s2)v| (Po)v| (e2)v| (@2)V| (L'2)V| (0'2)W| Z smon
(Z'iv | O'Iv| (g'Uv] PV | Ev| @Uv| L'V 0y 1
(Z'o)v | (9'0)v | (s'0)v| (F'O)V | (€'0)v | ('O)V| (L'0)v]| (0'O)W ©

L 9 S 14 € 4 I 0
suwnjod

:mo[aq parordap st
SUWN[0J § PUB SMOI g FUTUIBIUOD J[qe] Y "SI[qB) S8 UMOUY OS[k dIe sAelle
[BUOTSUSWIP-OM] °SUOISUSWIP 2I0W IO OM} JABY OS[E UBD SAelly

(o)v

(v

(v

(e

(v

(S)v

(9v

(v

(8)v

(6)v

(onv

"SJUDWIIMS [YIMm Aelie [euogéuaw[p-auo ® JO SISISU0D
pInom y £q pautjop Aelle ay) ul paulejuod eyep ay3 ‘ojdwrexa snoiaard
Ino uj ‘(3[qe) 10) AeLIB UR Sk PIZI[BNSIA 9q ABW S3[qeLIeA pardLiosqng

%OOQPUDH sJesn Od Wal O |

BASIC Programming Concepts 111

Notice from our illustration that a position within the table is identi-
fied with a subscripted variable. The subscript contains two numbers.
The first number identifies the row number and the second identifies the
column. For instance, A(1,2)identifies the element located in column two
of row one.

Array variables can be assigned values and used with operators as
can any other variable. This is illustrated in the following example:

10 A(0) =5
20 A(1)=6
30 A(2) =7
40 A(3)=8
50 A(4) =9

60 PRINT A(0) * A(1)
70 A(5) =A(2) +A(4)
80 PRINT A(5)
90 END
RUN

30

16
Ok

DIMENSIONING AN ARRAY

Before an array variable can be used in a program, an area in
memory must be reserved to store its elements. This is known as dimen-
sioning the array and is accomplished with the DIM statement.

The DIM statement defines the maximum subscript value that can
be used for an array. For example, the following DIM statement:

DIM A(20)

would define a one-dimensional array consisting of twenty-one elements
ranging from A(0) to A(20) inclusive.
Two dimensional arrays are dimensioned as follows:

DIM A(4,7)

The preceding DIM statement would dimension an array consisting of
five rows with eight columns each.
Notice that a DIM statement was not included in our first example.

112 IBM PCjr User's Handbook

When a subscripted variable which has not been previously dimensioned
is referenced in a program, the array variable is automatically dimen-
sioned with a maximum subscript value of 10. If we added the following
program line to our example:

85 A(11) =24:PRINT A(11) * A(1)
the following error message would be displayed:
Subscript out of range in 85

This error is generated because an array variable was referenced with a
subscript greater than originally stated.

If the following DIM statement was inserted in our example
program,

5 DIM A(11)

it would execute properly, because A(11) would have been defined by the
DIM statement.

Generally, it is good programming practice to dimension all array
variables and to group all DIM statements at the beginning of the
program. This preventsan array variable from inadvertently being refer-
enced before it has been dimensioned.

Whenanarrayis no longer needed ina program, the DIM statement
canbe reversed witha CLEAR statement. This will free the memory area
previously reserved for the array. This is illustrated in the following
program:

10 PRINT FRE(0)
20 DIM A(50,50)
30 PRINT FRE(0)
40 CLEAR
50 PRINT FRE(0)
60 END
RUN

59631

49216

59631
Ok

BASIC Programming Concepts 113

In line 10, the number of available bytes in memory is displayed.
FRE is a function which displays the available free bytes in memory.
FRE is explained in more detail, later in this chapter.

In line 20, the DIM statement reserves an area in memory for a table
consisting of 2601 elements. From line 30, it is evident that the number of
free bytes has decreased substantially. Thisis due to the fact thatanarea
of memory has been reserved for the elements in table A.

In line 40, the CLEAR statement reverses the DIM statement and
frees the memory previously required for the elements in table A. The
CLEAR statement is also a memory management command. CLEAR
has three optional parameters.

CLEAR [memory] [,[stack] [,screen]]

memory is a byte count which sets the maximum BASIC workspace.
memory can be set to reserve memory for machine language subroutines.
stack sets aside the specified number of bytes for stack usage (default =
512 bytes). It is a good practice to increase the size of the stack if a
program includes a large number of FOR-NEXT loops or subroutines.
screen specifies the total memory that is reserved for screen usage
(default = 16384 bytes). In order to executea SCREEN 5 or SCREEN 6
statement, 32768 bytes of memory must be set aside for the screen.

DATA & READ STATEMENTS

Earlier, we discussed how data could be assigned to a variable witha
LET statement as well as how data could be input directly from the
keyboard and assigned to a variable with an INPUT or INKEYS state-
ment. However, none of these statements are practical for assigning data
values to the individual variables in a large array or table. DATA and
READ statements are much more practical for assigning values to varia-
blesin an array. DATA and READ statements can be used for assigning
values to any variable — not just array variables.

A typical DATA statement is shown below:

100 DATA "WILLIAMS",27,"ST.LOUIS","314-727-1141"

Notice that this DATA statement contains four data items, three of

114 IBM PCjr User's Handbook

which are string, and one of which is numeric. In our example, we have
enclosed the string data items in quotation marks. However, this was not
actually required. In a DATA statement, a string only needs to be
enclosed in quotation marks if it contains a comma, a colon, orif its first
character is a blank space. :

DATA statements are used in conjunction with READ statements to
assign data values to variables. An example of a READ statement is
given below:

200 READ NAME$,AGE,CITY$,PHONES$

Whena READ statement is executed, the computer will first search
for a DATA statement. When a DATA statement is found, the values in
the DATA statement will be assigned one-by-one to the variables in the
READ statement.

If the first DATA statement encountered does not have enough data
items to be assigned to all the variables in the READ statement, the next
DATA statement will be searched for. The values from this and succeed-
ing DATA statements will continue to be assigned to the variables in the
READ statement until all of the variables in the READ statement have
been assigned a value.

The computer keeps track of the next DATA statement data item to
be used via an internal pointer. When any future READ statements are
executed, this pointer will determine which is the next data item to be
read into the READ variable.

BASIC includes a statement known as RESTORE, which when
executed, sets the DATA item pointer back to the beginning of the
DATA statement list. The use of the DATA item pointer and the effect of
RESTORE on it is depicted in figure 5-1.

The RESTORE statement may be used with a line number following
the reserved word. When RESTORE is used in this manner, the DATA
item pointer is set to the first item of the DATA statement in that line. For
example, if line 400 in our example had been the following,

400 RESTORE 110

the READ statement in line 500 would have assigned the value 27 to the
variable X.

BASIC Programming Concepts 115

/ 100 DATA 537 \

110 DATA 27,WILSON,276-46-4142
200 READ A.B
300 READ C$,D$

DATA Item List

537 27 WILSON 276-46-4142
Y

L J

Data Statement Data Statement Data Statement
Pointer Pointer Pointer
(Before Line 200) (After Line 200) (After Line 300)

400 RESTORE
500 READ X

DATA Item List

537 | 27 | WILSON | 276-46-4142 |
| ¥

Data Statement Data Statement
Pointer Pointer

(After Line 400) (After Line 500) /

Figure 5-1. DATA Statement Pointer

When not properly used, DATA and READ statements can be the
source of program errors. One potential error source occurs when the
program attempts to READ more data items than were given in the
DATA statements. Such anerror would occur in the following program:

116 I1BM PCjr User's Handbook

100 DATA 7,8,11,13,15
200 FORK=1TO7
300 READ X(K)

400 PRINT X(K)

500 NEXT K

600 END

In the preceding example, the program would attempt to read 7 data
items. However, since the DATA statement only contained 5 data items,
the following error message would appear:

Out of Data in 300

Another potential source of error when executing DATA and
READ statements are situations where the program attempts to read a
numeric data item into a string variable or vice versa. If such an error is
encountered, the following message will be displayed:

Syntax error

DATA and READ statements are often used in conjunction with
FOR-NEXT loops toread large amounts of data into arrays. Anexample
of this use of FOR-NEXT is given below:

10 FORK=0TOS5

20 READ NAMES$(K)
30 READ AGE(K)

40 NEXTK

50 FORJ=0TOS5

60 PRINT NAMES$(J),AGE(J)
70 NEXTJ

80 END

90 DATA Jim,10

100 DATA Tom,11

110 DATA Matt,9

120 DATA Eric,10

130 DATA Steve,10

140 DATA Joe,9

Run

Jim 10
Tom 1"
Matt) 9
Eric 10
Steve 10
Joe 9

Ok

BASIC Programming Concepts 117

An example of the use of the READ and DATA statements in
conjunction witha FOR-NEXT loop for the purpose of reading data into
a two-dimensional array is given in the following program:

10 DATA 10,20,30,40
20 DATA 50,60,70,80
30 DATA 90,10,20,30
40 FORJ=0TO2
50 FORK=0TO3
60 READ A(J,K)
70 PRINT A(J,K);" ",
80 NEXT K
90 PRINT
100 NEXTJ
110 END
RUN
10 20 30 40
50 60 70 80
90 10 20 30
Ok

The preceding program would read data items into table A() as
shown in the following illustration:

columns
0 1 2 3

0 10 20 30 40
Rows 1 50 60 70 - 80
2 90 10 20 30

Functions and String Handling

In mathematics, a function is generally defined as a quantity whose
value will vary as a result of another quantity. In computing, functions
define operations that are performed on strings or numeric values.

In BASIC, a number of functions are already defined by reserved
words and are a part of the BASIC interpreter. These are known as
built-in functions (see table 5-1). Built-in functions cover a wide range of
standard math operations such as absolute value, square root, loga-
rithms, etc. Built-in functions are also available for working with strings,

118 I1BM PCjr User's Handbook

as well as a variety of other operations.

BASIC also allows the programmer to define his or her own func-
tions. These are known as user-defined functions. Both built-in and
user-defined functions will be discussed in this section.

BUILT-IN MATHEMATICAL FUNCTIONS

The majority of BASIC functions are used in mathematical applica-
tions. We provide an overview of BASIC’s math functions in this section.
Each individual function will be described at the end of the chapter.

Table 5-1. BASIC Built-in Functions

ABS ERR LPOS SPC

ASC EXP MID$ SQR

ATN FIX OCT$ STICK
CDBL FRE PEEK STR$
CHR$ HEX$ PEN STRIG
CINT INKEY$ PLAY STRING$
Ccos INP PMAP USR
CSNG INPUT$ POINT TAB
CSRLIN INSTR POS TAN

CVvD INT RIGHT$ TIME$
cvi LEFT$ RND TIMER
Ccvs LEN SCREEN VAL
DATE$ Loc SGN VARPTER
EOF LOF SIN VARPTER$
ERL LOG SPACE$

All of the BASIC mathematical functions operate in much the same
manner. Each function is defined by a reserved word (ex. SIN for Sine,
COS for Cosine, LOG for Logarithm etc.).

A numeric constant, variable, or expression may appear in paren-
theses following the reserved word which identifies the function. The
function for that numeric value will then be calculated by the computer.
The use of several mathematical functions is shown in figure 5-2.

BASIC Programming Concepts 119

BASIC includes the following three trigonometric functions:

SIN(N) = sine of the angle N.
COS(N) = cosine of the angle N.
TAN(N) = tangent of the angle N.

The angle N must be given in terms of radians. One radian is the
equivalent of 57.29578 degrees. One degree equals .017453 radians.
Therefore, the following can be used to calculate a trigonometric
function with its argument (X) given in degrees:

SIN(.017453 * X)
COS(.017453 * X)
TAN(.017453 * X)

/ 100 PRINT SIN(.47) \
200 PRINT COS(.98)
300 PRINT TAN(.37)
400 PRINT SQR(49)
500 PRINT INT(5.79)
600 PRINT INT(-5.79)
700 PRINT ABS(-4.7)
800 PRINT SGN(2.7)
900 PRINT SGN(-2.7)
1000 END
RUN
4528863
5570226
.3878632
7
5
-6
4.7

1
-1

__ /

FIGURE 5-2. Mathematical Functions

120 1BM PCjr User's Handbook

The other three principle trigonometric functions: secant, cosecant,
and cotangent can be computed by using SIN, COS, and TAN as shown
in the following identities:

SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)
COT(X) = 1/TAN(X)
BASIC also includes the arctangent function ATN. This function
returns the angle (expressed in radians) whose tangent is given in its
argument.

ATN(X) = angle in radians whose tangent equals X

The following formula can be used to calculate the angle expressed
in degrees (rather than radians) whose tangent is given in X:

57.29578 * ATN(X)

BASIC also contains functions for calculating natural logarithms
and exponentials. The exponential formula takes the following form: .

A = EXP(B)

The preceding EXP function is calculated by computing the value of e
raised to the B power. e is known as the base of natural logarithms. The
value e in BASIC is 2.718281828459.

The natural logarithm of a number may be calculated with the LOG
function.

LOG(X) = natural logarithm of X

Logarithms with a base other than e may be calculated using the follow-
ing formula:

LOGp(X) = LOG(X)/LOG(b)

where b is the base of the logarithm.
BASIC includes the SQR function for determining the positive
square root of its argument.

BASIC Programming Concepts 121

SQR(X) = positive square root of X

The square root of a number can also be calculated with the exponential
arithmetic operator. The following expression,

XA (1/2)

will calculate the square root of X. The arithmetic exponential operator
can also be used to calculate a root other than the square root (ex. cube
root) as shown below:

X A (1/3)

BASIC also includes several functions that can be used in working
with numeric values. These include INT, ABS, and SGN. The INT
function returns the integer with the greatest value which is less than or
equal to its argument. INT takes the following form:

INT(X) = highest integer whose value
is less than or equal to X

Figure 5-2 contains examples of the usage of the INT function.
The ABS function returns the absolute value of its argument. ABS
takes the following form:

ABS(X) =| x|

An example of the use of ABS appears in figure 5-2.
The SGN function returns the sign of its argument. An example of
the use of SGN appears in figure 5-2.

USER-DEFINED FUNCTIONS

In the preceding section, we discussed a number of predefined
BASIC functions. BASIC also allows the user to define his own func-
tions. These are known as user-defined functions. A user-defined func-
tion must be defined with the DEF FN statement before it can be used in
the program.

For example, the following DEF FN statement would define a

122 IBM PCjr User's Handbook

function in which the argument was squared, and 1 was then subtracted
from that calculation:

100 DEF FN A(X) =X /A 2-1

The name of the function (FN A) appears immediately following the
DEF statement. Any valid variable name may be used as a user-defined
function name. The following would be a valid function name:

FN TANH

In our first example, notice the X in parentheses following the function
name. This is known as a dummy argument. Any valid variable name can
be substituted for X as the dummy argument. :
When the user-defined function is called in the program, the argu-
ment supplied with the function when it is called will be substituted for
the dummy argument whenever it appears on the right-hand side of the
DEF FN statement. The expression will then be evaluated, and the value
returned as the value of the function. '

10 M =3.9878
20 DEF FN S(X) = COS(X) + SIN(X)
30 PRINT FN S(M)
RUN
- -1.4116
Ok

The previous example contains a program that has a DEF FN
statement at line 20. The function is assigned the name S, and the dummy
argument X is used in the function. The operations in the function
- (COS(X) + SIN(X)) can be as complicated as necessary. At line 30, the S
function is evaluated as the value of the variable M. The function substi-
tutes 3.9878 for the dummy argument X and returns a numeric value that
is displayed by the PRINT statement.

STRINGS & STRING HANDLING

As a programmer, you will encounter a number of situations where
you may need to work with string data. For example, you might want to
combine several strings, compare two strings, separate portions of a

BASIC Programming Concepts 123

string, or even convert string data to its numeric equivalent. BASIC
allows for all of these.

STRING CONCATENATION

The process of joining together one or more strings is known as
concatenation. The arithmetic operator for addition (+) is used for string
concatenation. However, concatenation is very different from addition.
In concatentation, the strings being concatenated are joined to form a
new string as shown below:

100 A$ = "JOHN"
200 B$ = "SON"
300 C$=AS$ +B$
400 PRINT C$
500 END

RUN

JOHNSON

Ok

Either string constants or variables may be concatenated. Any
number of strings may be concatenated as long as the resulting string
contains 255 or fewer characters.

STRING HANDLING FUNCTIONS

BASIC contains a number of strings handling functions which allow
the user to extract a part of a string. These functions are LEFTS, MID$

and RIGHTS.
The LEFTS function takes the following format:

LEFT$(A$.X)

AS$ represents a string constant or string expression on which the
operation is to be performed, and X represents the number of characters
to be extracted. The LEFTS$ function will extract the number of
characters given in X from the left-hand side of the string given in AS.
Figure 5-3 contains an example of the use of LEFTS.

124 IBM PCjr User's Handbook

f 100 A$ ="JOHNSON" \

200 B$ = LEFT$(A$,4)
300 PRINT B$

400 END

RUN

JOHN

_ | Y

FIGURE5-3. LEFTS

The RIGHTS function works exactly like the LEFT$ function
except that the number of characters specified are returned from the
string’s right-hand side. Figure 5-4 contains an example of the use of
RIGHTS. :

100 A$ = "JOHNSON" \
200 B$ = RIGHT$(A$,3)
300 PRINT B$

400 END

RUN
SON

N Y

FIGURE5-4. RIGHTS

The MIDS$ function can be used to return a portion of a string.
MIDS takes the following format:

a$ = MID$(b$.x[.y])

The string being returned is a$. a$ is being returned from 5$. The
string being returned will begin with the xth character in b$. The number
of characters returned from b$ is specified in y. y is an optional
parameter. If y is omitted, all rightmost characters in b$ will be returned
in a$. An example of the use of MIDS to return a portion of a string is
given in figure 5-5.

BASIC Prografnmlng Concepts 125

S

100 X$ = "NEW CASTLE"
200 Y$ = MID$(X$,5,4)
300 PRINT Y$

400 END

RUN

CAST

Ok

\

FIGURE 5-5. MID$

STRING/NUMERIC DATA CONVERSION

Programmers often encounter situations where numeric data must
be converted into string data and vice versa. This is often the case where a
function is being used which will accept only string or numeric data as its

arguments.

The STR$ and VAL functions are used to convert numeric data to its
string equivalent and strings to their numeric equivalent respectively.
The ASC function is used to convert a single character to its ASCII
numeric equivalent. If ASC is given a string, it will return the ASCII
equivalent of the first character in that string. The CHRS function
converts an ASCII numeric code to an equivalent text character.

Examples of the use of STR$, VAL, CHRS, and ASC are given in
figure 5-6 and figure 5-7.

/

-

100
200
300
400
500
600
700
800
900
RUN

335783

Ok

W = 33578 N\

W$ = STR$(W):REM W$ = "33578"

X = 33579

X$ = STR$(X)

Y$ = W$ + X$:REM Y$ = "3357833579"
Y = VAL(Y$):REM Y = 3357833579

Z = INT(Y/10000)

PRINT Z

END

FIGURE 5-6. STRS$ and VAL Examples

126 I1BM PCjr User's Handbook

100 A$ = "GILBERT" \
200 A = ASC(A$)
300 PRINT A
400 X =90
500 X$ = CHR$(X)
600 PRINT X$
700 END
RUN
71
z

o y

FIGURE 5-7. CHRS and ASC Examples

VARIABLE TABLE AND STRING STORAGE

BASIC maintains an area in memory in which an entry is
maintained for every variable (including array variables) referenced
either ina program or in the direct mode. This memory area is known as
the variable table.

For numeric variables, the value currently assigned to that variable
isalso stored in the variable table. When that variable’s value is changed,
the value stored in the variable table will also be changed.

In BASIC, the amount of memory required to store a numeric value
in the variable table remains constant. On the other hand, the amount of

- memory required to store a string variable’s value can vary depending
upon that value.

Since the memory space required to store a string value can vary, it
would be difficult to store these values in the variable table, as that table
would have to be continually revised as different values were assigned to
string variables. For this reason, BASIC stores string values in a separate
memory area known as a string space.

BASIC stores a value in the variable table which associates the string
variable name (in the variable table) with its associated value in string
space. This is known as the descriptor. The descriptor describes the
number of characters currently assigned to the string variable as well as
its location in string space."

BASIC Programming Concepts 127

Descriptors are not limited to referencing string values stored in the
string space. Descriptors can reference strings stored anywhere within
BASIC’s working area — including file buffers and the program itself.
When a string constant is assigned to a string variable in a BASIC
program (ex. 10 A$ = "TINA"), that constant need not be stored in the
string space as the descriptor can reference it in the program storage area.

HOUSEKEEPING AND FRE

Areas assigned to strings can become unused, because strings in
BASICcan have variable lengths. Every time a different value is assigned
to a string variable, its length may change. This may cause the space
assigned to a string to become partially unused. If the string space is in
need of a housekeeping, BASIC will automatically halt program execu-
tion and perform one. This operation may be time consuming.

The FRE function allows the programmer to see how much space is
available and perform a housekeeping operation if desired. FRE can take
either a string or numeric argument. When given a numeric argument,
FRE (1) for example, FRE will return the number of bytes of memory
remaining. If FRE is given a string argument. FRE(” ”) for example, it
will first perform a housekeeping operation, and then report the number
of free bytes remaining.

FUNCTION SUMMARY

The various built-in functions available in PCjr BASIC are summar-
ized in table 5-2.

128 1BM PCjr User's Handbook

Table 5-2. PCjr BASIC Functions

LPOS(x)

Function Description
ABS(x) Absolute value of x
ASC(x$) ASCII code of the first character in x$
ATN(x) Arctangent of x (in radians)
CDBL(x) x in double precision
CHR$(x) Character with ASCII code x
CINT(x) x in integer precision
COS(x) Cosine of x (ih radians)
CSNG(x) x in single precision
CSRLIN Vertical line position of cursor
CVD(x$) Double precision value for x$
CVI(x$) Integer value for x$
CVS(x$) Single precision value for x$
DATE$ System date
EOF(f) True or false, indicating End of File of file f
ERL Line number where last error occurred
ERR Error code of last error
EXP(x) e raised to the x power.
FIX(x) Integer obtained by truncating x
FRE(x$) Amount of available memory
HEX$(x) Hexadecimal string equivalent of x
INKEY$ Character from keyboard
INP(x) Byte value from port x
INPUTS$ (x,#f) x characters from file #f
INSTR(x,x$,y$) Position of the first occurrence of y$ in x$ starting
at location x.
INT(x) Largest integer less than or equal to x
LEFT$(x$,x) Leftmost x characters of x$
LEN(x$) Length of x$
LOC(f) Location of file pointer in file f
LOF(f) Length of file f
LOG(x) Natural logarithm of x

Carriage position of printer

BASIC Programming Concepts 129

Table 5-2. (cont.) PCjr BASIC Functions

Function Description
MID$(x$,x,y) y characters from x$, starting at the xth character.
OCT$(x) Octal equivalent of x
PEEK(x) Byte value in memory location x
PEN(x) Light pen value
PLAY(x) Number of notes in the music background buffer
PMAP Either actual or relative coordinates
POINT(x,y) Color of the point (x,y)
POS(x) Cursor column position
RIGHT$(x$,x) Rightmost x characters from x$
RND(x) Random number
SCREEN(x,y,2) Character or color at the point (x,y)
SGN(x) Sign of x
SIN(x) Sine of x (in radians)
SPACE$(x) String of x spaces
SPC(x) String of x spaces
SQR(x) Square root of x
STICK(x) Coordinates of joystick
STR$(x) String value corresponding to x
STRIG(x) State of joystick button
STRINGS$(x,y) Character with ASCII code y, x times
STRING$(x,x$) First character of x$, x times
USRn(x) Calls machine language routine with argument x
TAB(x) Enough spaces to move cursor to position x
TAN(x) Tangent of x (in radians)
TIMES$ System time
TIMER Number of seconds since midnight or reset
VAL (x$) Numeric value of x$§
VARPTER(variable) | Address of variable in memory
VARPTER(#f) Address of file control block for file f
VARPTER$ Three byte string containing the type of variable,
(variable) and its address in memory

130 1BM PCjr User's Handbook

Program Concatenation

The final topic covered in this chapter is program concatenation, or
program chaining. A complex program may overrun the PCjr’s memory
limitations. When this is the case, the program can be separated into two
or more self-sufficient parts. If a portion of the program is needed that is
not currently in memory, it can be loaded without destroying any of the
work that the previous portion had accomplished. Program concaten-
tation is facilitated by BASIC’s CHAIN and COMMON statements.

CHAIN

CHAIN transfers control to another program and passes variables
and files to it from the current program. CHAIN has the following
configuration:

CHAIN [MERGE] file [,[linenumber][,[ALL][,DELETE rangel]]]

file is the name of the program that is to be loaded and run. file
follows the same rules as would any other program file. The following
example would load and run the program, PJK:

CHAIN "PJK"

linenumber specifies the line to which control will be given,
following the loading of the new program. If linenumber is omitted,
execution will begin with the first line in the new program.

ALL keeps all variables intact. Therefore, the new program can use
all the variables of the old program as if the new program had created
them itself. The CHAIN command will not, however, preserve the
current variable types or currently defined functions, unless the MERGE
parameter is also used.

MERGE is used to combine two programs. For example, suppose a
program has a main menu screen which selects the different options
available to the operator. It would be convenient, if the main menu was
always in memory. The various options could then be loaded into or out
of memory, as needed. The main menu portion of the program could be
merged with the options as they were called for. The following example

BASIC Programming Concepts 131

merges the program named SORT into the main program, and then
starts execution at line 100. A program must be stored in the ASCII
format, in order to be merged.

CHAIN MERGE "SORT",100

After one of the options, or overlays, has been used, it would be
desirous to delete it from memory. In this way, room could be made to
accommodate another section of the program. The optional DELETE
parameter will erase the program lines specified in range.

CHAIN MERGE “WILBUR",3000,DELETE 3000-3999

The previous example will merge the program named WILBUR into
memory after deleting lines 3000 through 3999 of the program currently
in memory. The DELETE parameter is rather picky in that it requires
that the line numbers specified as the first and last in the range. actually
exist.

COMMON

If all the variables of the old program are required by the new
program, the programmer may choose which variables are passed to the
new program. The COMMON statement declares a variable as a com-
mon varible to both programs. The COMMON statement must appear
in the old program, before a CHAIN command can be executed.

COMMON variable [,variable]...

Itis recommended that CHAIN’s ALL parameter be used, if a number of
variables are to be passed to the main program.

100 COMMON PAT,PHONE$,PRO()

Notice that arrays may be specifiedina COMMON statement by placing
a pair of parentheses ”()” after the array’s name. Of course, the array
must have previously been dimensioned, using a DIM statement.

6

Files & File Handling with PCjr BASIC

Introduction

In the preceding chapters, we did not discuss the concepts and
programming techniques related to storage of data on cassette tape or
diskette. In this chapter, these concepts will be discussed. The writing of
programs which make use of these devices will also be discussed.

FILES, RECORDS, AND FIELDS

Before learning specific concepts which relate to the cassette tape
unit and diskette drives, it is essential that the user understand the
concepts of files, records, and fields.

A file can be defined as a collection of related data. Files can be
distinguished as being either program files or data files. A program file
consists of a program which has been saved on diskette or cassette tape.

A data file consists of a collection of related information which has
been saved on a diskette or cassette tape. Generally, a data file is read
from or written to storage by a program. Data files are divided into

133

134 1BM PCjr User's Handbook

smaller segments known as records and fields. A field is a single piece of
data. Fields are grouped together as a record. These records, in turn,
make up the file.

A simple illustration may help clarify the concepts of a data file,
record, and field. Take an address book as an example of a data file. This
file would contain name, address, and telephone number data for the
individuals appearing in the address book. Each individual’s name,
address, and phone number would represent one record. For example,
the following data would make up one record:

Jay Gatsby

1 Shore Lane
West Egg, NY 10565

516-787-2122

Each individual data item within the record (i.e. name, street
address, city, state, zip code, telephone number) could be thought of as a
field.

A data file is written or read as a series of constants. For example,
our address book example might be read as follows:

"Jay Gatsby”,”] Shore Lane”,”West Egg”,"NY”,10565,”516-787-2122"
"Nick Carraway”,”7 Shore Lane”,”West Egg”,"NY”,10565,”516-787-2736"

When these data items are read or written, the first field will have
been defined as the name, the second as the street address, the third as the
city, the fourth as the state, the fifth as the zip code, and the sixth as the
‘telephone number.

Note that the fifth field is numeric, while the others contain string
data. Notice that the string data is enclosed in quotation marks. Finally,
note that each data item is separated by a comma. For the computer to be
able to distinguish where one data item ends and another begins, these
items must be separated with a character known as a delimiter. A delim-
iter might consist of a comma (as in our example), a blank space, a line
return character, or a form feed character.

The advantages of using data files with programs is obvious. Data
files allow the user to save, alter, and redisplay data as is necessary. For
example, using our address book as an example, programs could be

Files & File Handling with PCjr BASIC 135

written to do the following:

1. Enter changes in an individual’s record by reading the file from storage
until the desired record is found, inputting the required changes, and
rewriting the file back into storage.

2. Displaying an individual’s name, address, and telephone information
by reading the file from storage until the desired record has been found,
outputting the field data to the screen, and rewriting the file back into
storage.

- The use of a data file with a mass storage device is analogous to the
use of a file cabinet for storing information in an office.

FILE SPECIFICATIONS

Every file is identified with a file specification, which consists of a
filename and a device name.* The filename identifies the file to be
searched for, and the device identifies where the file is to be searched for.
Some examples of file specifications are given below.

CASL:TEXT
A:INVOICE
A:LETTER2.TXT

Every file is identified by a filename that can include up to eight
characters. These characters can contain the letters A to Z, the numbers 0
to 9, or any of the following special characters:

(H)Y{} @ #$%$ % & ! - " | ~ _ |

Filenames for files being stored on diskette may also include a filename
extension. A filename extension consists of a period and three letters
which appear immediately after the primary filename.

" Afilename can be entered with upper or lowercase letters. However,
the computer will interpret all lowercase entries as capitals. The follow-
ing filenames all refer to the same file:

* In certain instances in Cartridge BASIC, a directory path must also be specified.

136 I1BM PCjr User's Handbook

Vendor. TXT
VENDOR.txt
VENDOR.TXT
vendor.txt

The file specification prefixes the filename with a device name. The
device name is the name of the storage device which is to hold the file.

A device name can consist of 1 to 4 characters followed by a colon.
Table 6-1 contains the device names that are recognized by the PCjr. Each
of the devices in the table can accept files. Although the disk drive and
cassette unit will be used throughout the chapter as input and output
devices, any of the devices listed in table 6-1 could easily be substituted.
Some of the devices can only be used for input or output. For example,
SCRN: can only be used as an output file, and KYBD: can only be used as
an input file.

The device name need not be specified in the file specification if that
device is the default device. In Cassette BASIC, the default device is
CASL:. In Cartridge BASIC, the default device is A:.

TABLE 6-1. Filename Devices

Device

Name Reference Input | Ouput

CASI: Cassette Recorder X X
A: Diskette Drive

COMI: Modem or Asynchronous
Communications Adapter

COM2: | Asynchronous Comm. Adapter X

LPTI: Line Printer

KYBD: Keyboard X

SCRN: | Screen - X

File Access

File access refers to the processes of reading data from a file or

Files & File Handling with PCjr BASIC 137

writing data to it. In BASIC, data is organized in a file in either a
sequential or a random manner. The mode in which a file’s data is
organized determines how that data will be accessed. Random access
does not mean that the file is stored in a haphazard manner. Random
access denotes that any part of the file can be accessed directly. Sequen-
tial access denotes that the file’s data must be read or written in a specific
order.

SEQUENTIAL AND RANDOM FILES

Two types of data files are used in PCjr BASIC, sequential data files
and random access data files. Cassette BASIC allows only sequential
files, while Cartridge BASIC allows either. Random access is not
available when a cassette tape is being used for data storage.

Each record of a sequential disk file is assigned éxactly as much
storage space as it requires. There are no blank spaces between records in
a sequential file. In random data files, a constant space is assigned to
every record in the file. If the record does not occupy the entire space
assigned to it, the remaining space is left blank.

The concepts of sequential and random files are pictured in figure
6-1. Notice that the length of each record in the random file is constant at
400 bytes. The record length of a sequential file is variable.

The important difference between random and sequential files lies in
how each file is accessed. Direct access of any record in a random file is
possible regardless of where that record is located on the file. By direct
access, we mean that any record in the file may be retrieved regardless of
its position, without having to search through the entire file to find it.
With random files, PCjr BASIC knows the length of each record and can
easily calculate the location of any record in the file.

Records in a sequential file can only be retrieved by sequential
access. In sequential access, the record search begins with the first record
in the file and must continue until the desired record is found. In other
words, in a sequential file, to find record 17, PCjr BASIC would first have
to read the preceding 16 records, one by one. Since BASIC does not know
the record length of sequential files, it has no way of determining the
location of record 17, other than by reading the first 16 records.

138 IBM PCjr User's Handbook

Random File

SECTOR 1 SECTOR 2 SECTOR 3
1]]
[]] [}
1 1 |
A 1 1
x
Record 1 Record 2 Record 3
400 Bytes 400 Bytes 400 Bytes

Sequential File

SECTOR 1 SECTOR 2 SECTOR 3
1]
1 [] [
1 (1 [
1 [1
X A
Record | Record 2 Record 3 Record 4
400 Bytes 150 Bytes 390 Bytes 470 Bytes

FIGURE 6-1. Random and Sequential Data Files

Random and sequential files each have advantages and disadvan-
tages. Sequential files use less disk space than random files. Since each
record in a sequential file is assigned only the disk space it needs, no
diskette space is wasted by sequential files. Random files require every
record to be assigned the same amount of disk space required by the
longest record in that file. This generally results in wasted space. Random
files have an advantage over sequential files in that a record from a
random file may be read into memory, changed, and then written back to
the disk. A record from a sequential file cannot be read, modified, and
then rewritten, as any change that might affect a single record’s length
could adversely affect the entire file.

OPENING A SEQUENTIAL FILE

Before a file can be read from or written to in PCjr BASIC, it must be
opened. When a file is opened in BASIC, first, the operating system is
called upon to read the disk to find information regarding that file in the
disk directory. Once this information has been obtained, BASIC will
initialize buffer areas in memory through which data will pass as it is read
from and written onto the disk.

Once a file has been opened, the BASIC program can read data from

Files & File Handling with PCjr BASIC 139

that file one sector at a time. This data is passed to the memory buffer that
had been set up when the file was opened. BASIC may then read this data
from the buffer area in the same manner that it would read and use any
other data stored in memory.

When BASIC writes data to an open file, the data is first written to
that file’s memory buffer. Data is not actually written to the diskette or
cassette until the memory buffer has become filled. When the buffer is
full, the data is written to the diskette or cassette one sector at a time.

Once a file has been opened and file access operations have been
completed, that file should be closed. This is especially important when-
ever data is written to a file.

When a BASIC file is closed, any data remaining in that file’s
memory buffer will be written to the diskette. This occurs even if the
memory buffer is not full. Next, the operating system adds the necessary
directory information for that file.

The BASIC statement OPEN is used to open a file. OPEN can be used
with either of two configurations with sequential files. The first is as
follows:

OPEN "file specification” FOR mode AS [#] filenumber

The abbreviations in the preceding format can be interpreted as
follows:

file specification Filename and optional drive identifier

mode can be any of the following:

INPUT -- for sequential input. Data can only be read from the
file. Data cannot be written to it. A "File not found” error will
occur if an attempt is made to open a file for input that does not
already exist.

OUTPUT -- for sequential output. OUTPUT always causes a
new file to be created. If a file already exists with the same
filename as that specified in an OPEN statement with the
OUTPUT mode indicated, existing data in the file will be
erased. Data will be written to that file from its beginning
point.

APPEND --for sequential output mode for diskette files only.
APPEND is specified when data is to be added to the end of an

140 IBM PCjr User's Handbook

existing file. If the file being opened for an APPEND already
exists, new data will be written to the end of that file. If that file
does not exist, a new output file will be created.

filenumber is a required number which is used to refer to a file while
it is open. It is much easier to refer to a file as #1 than by its file
specification. '

The following are examples of valid OPEN statements:

OPEN "A:TRANS.DAT" FOR INPUT AS #1
OPEN "B:TEXT.FLE"” FOR APPEND AS #2

The first example opens TRANS.DAT on drive A forinputasfile#1. The
second example opens TEXT.FLE on drive B for an append as file #2.

The OPEN statement can also be used with the following alternate
format for sequential files:

OPEN altmode, [#] filenumber, filespec

The abbreviations in the preceding format can be interpreted as
follows:

altmode is a string whose first character is one of the following:

O Indicates sequential output mode.
I Indicates sequential input mode.
(APPEND is not available in this configuration.)

filenumber and filespec retain the same meanings as in the first format.
The following are examples of the use of the alternate format of the
OPEN statement:

OPEN "O",#1,"LPT1:"
OPEN "1" #2,"A:VENDOR.DAT"
OPEN "0" #1,"CAS1:CHECKS"

The first example opens the printer as #1 for output. The second
example opens VENDOR.DAT as #2 for input on the disk drive. The third
example opens CHECKS as #1 for output on the cassette device.

In Cassette BASIC and Cartridge BASIC without DOS, a maximum
of four files can be open at any one time. However, none of these open

Fites & File Handling with PCjr BASIC 141

files can be disk files. Although Cartridge BASIC with DOS does allow
disk files, a limit exists on the number of disk files that may be openatany
one time. The maximum number of open disk files is specified in the
BASIC command entry (as explained inchapter 3). From | to 15 files may
be specified as that maximum. If no entry is made in the BASIC com-
mand, a maximum of three disk files can be open at any one time. Notice
that the use of a filenumber other than 1, 2, or 3 in such a case will cause
the "Bad file number” error to occur.

Itis possible to open a single file under two separate file numbers. A
sequential file can be opened for both input and output, provided that the
file is first opened for output and then opened for input. PCjr BASIC will
not allow a file to be opened first for input, then for output, because of the
problems that this situation presents to the operating system.

To change a file from input to output, the file must first be closed.
This could be accomplished by using a CLOSE statement. Once a file has
been closed as an input file, it may be reopened as an output file.

Itis good programming practice to close a file, once the program has
finished accessing it. More than one file can be closed with a single
CLOSE statement as illustrated below:

900 CLOSE #2,#3

If the CLOSE statement is executed without an argument as shown
below, all open files will be closed:

950 CLOSE

WRITING TO A SEQUENTIAL FILE

Once a sequential file has been opened, any one of the following
statements can be used to output data to it:

PRINT#
PRINT# USING
WRITE#

PRINT# and PRINT# USING function almost exactly as do PRINT
and PRINT USING. The difference lies in the fact that PRINT# and

142 IBM PCjr User's Handbook

PRINT# USING require that a file number be specified. Data is written to
that file rather than to the display. An example of PRINT# and PRINT#

USING is given below:

10 OPEN "FILE.DAT” FOR OUTPUT AS #1
20 A =27.932:B% = "DON"

30 C=5.722D =9.84

40 PRINT#1,A;B$

50 PRINT#1,USING "**$##.## ";,C,D

The following will be saved by the PRINT# and PRINT# USING
statements in lines 40 and 50:

27.932 DON
+85.72 *$9.84 CR and LF characters

We can actually check this output by substituting “SCRN:” for
"FILE.DAT” in line 10. This causes the output to appear on the screen.

When WRITE# is used to output data to a sequential file, individual
data items will be separated with commas, and strings will be surrounded
by quotation marks.

10 OPEN "SCRN:"” FOR OUTPUT AS #1
20 A =27.932:B$ = "DON"

30 C=5.72.D =9.84

40 WRITE#1,A,B$,C,.D

50 END

RUN

27.932,"DON",5.72,9.84

Ok

One advantage of the WRITE# statement is that it outputs data in
the same format in which it is read by the INPUT# statement.

READING FROM A SEQUENTIAL FILE

The following commands are used in PCjr BASIC to input data from
a sequential file:

INPUT#
LINE INPUT#
INPUT$

Files & File Handling with PCjr BASIC 143

INPUT# and LINE INPUT# function with sequential files much like
INPUT and LINE INPUT do with the keyboard. INPUT# will read the
data at the current position in the sequential file and assign that data to
the variable indicated as its argument. The data and variable must be of
the same type. If they are not, an incorrect data value may be assigned to
a variable.

When INPUTH# is reading numeric data, any leading blanks will be
ignored. Any non-numeric characters assign the value zero to the varia-
ble in the INPUT# statement. As is the case with INPUT, CR/LF charac-
ters and commas may be used as delimiters. Spaces may also be used with
the INPUTH# statement.

When INPUT# is reading string data, any leading blanks will again
be ignored. If the first character read by INPUT# is a double quotation
mark, every subsequent character will be assigned to the string variable
until the next double quotation mark is encountered. If the first character
read is not a double quotation mark, every subsequent character will be
assigned to the string variable untila comma, carriage return, or line feed
character is encountered. A maximum of 255 characters can be assigned
to a string variable.

10 A$ = "Jerry Smith”:B$ = "Williams,Dave”
20 OPEN "TEXT.DAT"” FOR OUTPUT AS #2
30 PRINT#2,A$;B$

40 CLOSE#2

50 OPEN "TEXT.DAT” FOR INPUT AS #2
60 INPUT#2,A$,B$

70 PRINT A$

80 PRINT B$

90 END

RUN

Jerry SmithWilliams

Dave

Ok

In our preceding example, A$ and B$ were output as follows:

Jerry SmithWilliams,Dave”

* The PRINT# statement does not output the quotation marks specified in the assignment state-
ment in line 10.

144 IBM PCjr User's Handbook

When INPUTH# caused these to be read and assigned to variables, "Jerry
SmithWilliams” was assigned to A$ and "Dave” was assigned to B$. Note
that the data was input into A$ until the comma was encountered.

By using quotation marks to delimit the strings when they are output
in line 30, we can re-input the string properly. We must use the CHR$
function with the ASCII code for the quotation mark (34) to represent
this character. If line 30 of our preceding example was edited as follows,

30 PRINT#2,CHR$(34);A$;CHR$(34); CHR$(34);B$;CHR$(34)
and the program was executed, the following data would be displayed:

Jerry Smith
Williams, Dave

LINE INPUTH# is used with the following configuration:
LINE INPUTH# filenumber, variable

All characters will be assigned to the specified variable until a
CR/LF character is encountered.

Note our revised version of the program described on the previous
page using LINE INPUT#. LINE INPUT# accepted every character
including the double quotations that served as delimiters in INPUT#.

10 A$ = "Jerry Smith”:B$ = "Williams, Dave"
20 OPEN "TEXT.DAT"” FOR OUTPUT AS #2
30 PRINT#2,CHR$(34);A$;CHR$(34);CHR$(34);B$;CHR$(34)
40 CLOSE#2

50 OPEN "TEXT.DAT"” FOR INPUT AS #2
60 LINE INPUT#2,A$

70 PRINT A$

80 PRINT B$

90 END

RUN

"Jerry Smith""Williams, Dave"”

Williams, Dave

Ok

INPUTS is used to retrieve a specific number of characters from a

Files & File Handling with PCjr BASIC 145

file. INPUTS is used with the following configuration:
z8 = INPUTS(x [,#y])

If x and y are both specified, the next x characters from the file
indicated by y will be read into z3. If a file is not specified, the designated
number of characters will be read from the keyboard. The use of INPUT$
is shown in the following example:

10 A$ = "Jerry Smith”:B$ = "Williams, Dave"
20 OPEN "TEXT.DAT” FOR OUTPUT AS #2
30 PRINT#2,CHR$(34);A$;CHR$(34);CHR$(34);B$;CHR$(34)
40 CLOSE#2

50 OPEN "TEXT.DAT"” FOR INPUT AS #2
60 A$ = INPUT$(13,#2)

70 PRINT A$

90 END

RUN

"Jerry Smith”

Ok

EOF, LOC, AND LOF WITH SEQUENTIAL FILES

The EOF (End of File) function can be used with sequential files to
determine if the end of the file has been reached. The configuration for

EOF is given below:
A = EOF(filenumber)

filenumber indicates the file for which the end-of-file condition is to
be checked. This function returns a value of true (1) if the end-of-file has
been reached, and a value of false (0) if it has not. EOF is often used to test
for end-of-file while inputting data to avoid an input attempt when the
end-of-file has been reached. The following program illustrates this use
of EOF:

10 OPEN "TEXT.DAT"” FOR OUTPUT AS #1

20 PRINT#1, "WHAT'S THE DIFFERENCE BETWEEN AN APPLE?"
30 PRINT#1, “"AN ORANGE;"

40 PRINT#1, "BECAUSE A VEST HAS NO SLEEVES."”

50 CLOSE:OPEN"TEXT.DAT” FOR INPUT AS #1

60 WHILE 1 =1

146 1BM PCjr User's Handbook

70 INPUT#1,A$
80 PRINT A$
90 WEND
100 END
RUN
WHAT'S THE DIFFERENCE BETWEEN AN APPLE?
AN ORANGE;
BECAUSE A VEST HAS NO SLEEVES
INPUT PAST END IN 70
Ok

If line 60 is edited as follows, the error would no longer occur:

60 WHILE NOT EOF(1)

RUN

WHAT'S THE DIFFERENCE BETWEEN AN APPLE?
AN ORANGE;

BECAUSE A VEST HAS NO SLEEVES.

Ok

The LOF (Length of File) function returns the specified file in bytes.
LOF is used with the following configuration:

A = LOF(filenumber)

LOC returns the location within the file of the last record read or
written. LOC is used with the following configuration:

A = LOC(filenumber)

LOC is calculated in terms of 128 byte blocks. In other words, LOC
will return the number of records (assuming each record consists of 128
bytes) that have been input or output to the file since it was opened. For
instance, if 256 records of 16 bytes each (4096 bytes) were written to a
sequential file, LOC would return a value of 32.

Random File Access

Before a random file can be used, the programmer must determine
the length of each of its records. The length of each record in the random
file must be the same, and can be calculated by adding the length of each

Files & File Handling with PCjr BASIC 147

of the individual fields in that record.

When a random file is opened, a random file buffer is set up in
memory. Data to be written to the random file is first placed in that file’s
buffer. When all the data for a record has been written to the buffer, the
programmer can instruct the computer to store the record on diskette.
When data is to be read from a random file, a record is first read from
disk into the random file buffer. The individual fields within that record
can then be read by instructing the program to access the buffer.

Once a random file has finished being accessed, it should be closed.
When a random file is closed, any existing data in the random file buffer
will be written to the random file on disk, and the memory space reserved
for the buffer will be freed.

OPENING AND CLOSING A RANDOM FILE
The following configurations can be used to open a file.

OPEN filespec AS [#] filenumber [LEN = rcdlen]
OPEN "R”, [#] filenumber, filespec [,rcdlen]

filespec refers to the file specification. filenumber refers to the
number that will be assigned to the random file. rcdlen specifies the
length of each record in the random file in bytes. If this parameter is
omitted, a record length of 128 bytes will be assumed. The maximum
record length is 32,767 bytes.

The random file’s record length may not be greater than that indi-
cated by the /S: option when BASIC was started up. If /S: was not
specified in the BASIC command line, a record of up to 128 bytes will be
allowed. CLOSE works with random files exactly as it does with sequen-
tial files.

FIELD VARIABLES

As discussed earlier, random file records are read into a random
buffer. Each field in the record will correspond to a certain area in the
buffer. In order to access a particular field in the random file record, the
corresponding field in the buffer must actually be accessed. In ordertodo
so, these buffer fields must be identified with a buffer variable or field
variable.

148 1BM PCjr User's Handbook

A field variable must always be a string variable. A string variable
via its descriptor can refer to a string value in the string storage space, in
the BASIC program itself, or in fact anywhere in the BASIC working
area. A string variable can use its descriptor to reference a string constant
in the file buffer.

A numeric variable could not be used for a field variable because the
value in the field buffer would also have to be stored in the variable table.

'The FIELD statement is used to define field variables. FIELD is used
with the following configuration:

FIELD # filenumber, size AS fieldvariable, ...

size indicates the length of the field in bytes, and fieldvariable
indicates the string variable used to reference that field.

A FIELD statement cannot be executed until a file has been opened.
The sum of the lengths of the field variables specified by FIELD cannot
exceed the record length indicated in the OPEN statement. If the com-
bined length of the field variables exceeds that of the record length, the
following error message will appear:

FIELD overflow

More than one FIELD statement can be executed concurrently for
the same random file. This allows the programmer to create several
different types of records within the same random file depending upon
how the field variables are defined. :

FIELD 1, 10 AS A$, 20 AS B$, 30 AS C$

In the preceding example, the FIELD statement allocates the first 10
positions of the random file buffer #1 for the string variable A$. The next
20 positions are reserved for B$, and the following 30 positions are
reserved for C§.

WRITING DATA TO A RANDOM FILE BUFFER

The LSET and RSET statements assign values to field variables. In
effect, LSET and RSET place data into the buffer field designated by the

Files & File Handling with PCjr BASIC 149

field variable. LSET and RSET are used with the following configura-
tions:

LSET fieldvariable = x$
RSET fieldvariable = x§

fieldvariable refers to a string variable referenced in a FIELD state-
ment. x$ can refer to either a string constant or a string variable. If x38
contains fewer bytes than those allowed for in fieldvariable, LSET will
cause x§ to be left-justified in the field buffer. In other words, the first
character in x$ will be placed in the farthest left byte in the field buffer. If
x3 does not occupy the entire field buffer, blank spaces will be added to
the right of x$’s last character. RSET causes x§ to be right-justified in the
field buffer. If necessary, blank spaces will be added to the left of x§’s first
character.

If the string to be placed in the field bufferis larger than that allowed
for, extra characters will be truncated from the right of the string. This is
true regardless of whether RSET or LSET is being executed.

Although only string variables can be used to define field buffers,
numeric values can still be stored in a random file. However, to store
numeric values in a random file, it is necessary to convert the numeric
data to a string. The STRS function could be used to convert a numeric
value to a string. The difficulty in using STRS is that a string value
returned by STR$ consumes more memory storage than a numeric
constant would.

PCjr BASIC includes three functions, MKI$, MKS$, and MKD$
which allow a string to be converted to a numeric value. The resultant
string will occupy the same number of bytes on the disk as did the original
variable in memory. These functions are used as follows:

AS = MKIS$(integer)
AS$ = MKSS$(single precision)
AS$ = MKDS$(double precision)

integer, single precision, and double precision refer to integer, single
precision, and double precision constants or variables respectively. MKI$
converts an integer value into a 2-byte string. MKS$ converts a single
precision value into a 4-byte string, and MKDS$ converts a double preci-

150 1BM PCjr User's Handbook

sion value into an 8-byte string. MKI$, MKS$,and MKDS$ are only meant
to be used to convert data for storage in a random file.

To store numeric data in a random file, the field variables must have
a sufficient number of bytes reserved in the FIELD statement. For
example, the field variables defined by the following FIELD statement
could allow for the storage of 4 numbers in a record. Two of these
numbers could be integers, one could be single precision, and one could
be double precision.

1000 FIELD #2,2 AS A$, 2 AS B$, 4 AS C$, 8 AS D$

WRITING A RECORD FROM THE
RANDOM FILE BUFFER TO THE FILE

Once the field buffers have been assigned values via LSET and
RSET, the PUT statement can be used to write the random buffer to the
random file as a record. PUT is used with the following configuration:

PUT # filenumber [,rcdnumber]

filenumber refers to the number assigned to the random file when it
was opened. If the optional rcdnumber parameter is omitted, the con-
tents of the file buffer will be written in the next available position in the
random file. If rednumber is specified, the file buffer’s contents will be
written at the indicated record number. The record number can range
from 1 to 32,767.

In the following example, PUT will cause the contents of the file
buffer to be written at the fifth record location in the random file opened
as #3.

100 PUT #3,5

READING A RECORD FROM THE
RANDOM FILE INTO THE BUFFER

The GET statement is used to read a record from the random file into
the buffer. The configuration for GET is very similar to that for PUT.

GET # filenumber [,rcdnumber)

Files & File Handling with PCjr BASIC 151

If rednumber is not specified, the record following the last one read
will be retrieved. The following GET statement would cause the tenth
record of the random file opened as number 5 to be read into the buffer:

100 GET #5,10

READING DATA FROM THE RANDOM FILE BUFFER

Once data has been read into the random file buffer, that data can be
read from the buffer by using that buffer’s field variables in an assign-
ment statement. If a string value in the buffer represents a numeric value,
the string should be converted back to its numeric equivalent. PCjr
BASIC’s CVI, CVS, and CVD functions allow string data to be converted
back into numeric data. These function as the exact opposites of MKIS,
MKSS$, and MKDS, respectively. CVI converts a 2-byte string to an
integer, CVS converts a 4-byte string to a single precision numeric value,
and CVD converts an 8-byte string to a double precision numeric value.

LOC & LOF WITH RANDOM FILES

When used with random files, LOC will return the number of the
record last accessed by BASIC. Assuming that file buffers #1 and #2 are
opened to the same file, the following line could be used to load file buffer
#2 with the record last accessed by file buffer #1:

GET #2,LOC(1)

LOF operates with random files the same as it does with sequential
file. EOF cannot be used with random files.

USING RANDOM ACCESS FILES

Random access files are much easier to use than sequential access
files. The examples in figures 6-2 and 6-3 demonstrate the use of random
files. Figure 6-3 uses the economical MKSS$ function in order to reduce
disk space used. Figure 6-2 uses the more readable STR$ function in
order to make the data file more understandable.

152 IBM PCjr User's Handbook

10 INPUT "ENTER PAYROLL NUMBER ";Z
20 Z$ = STR$(2)
30 Y$ = "PAY" + Z$ + ".DAT"
40 OPEN Y$ AS #2 LEN =53
50 FIELD#2,2 AS RCD.NO$,4 AS EMPL.NO$,15 AS LAST.NAMES,
15 AS FIRST.NAME$,5 AS NO.HOUR$,5 AS RATE$,7 AS PAY$
60 X% =1
70 A$=""B$=""C$=""D=0E=0
100 INPUT “ENTER EMPLOYEE'S PERSONNEL NO. ";A$
110 INPUT "ENTER EMPLOYEE'S LAST NAME ";B$
120 INPUT "ENTER EMPLOYEE'S FIRST NAME “;C$
130 INPUT "ENTER NUMBER OF HOURS WORKED ;D
140 INPUT "ENTER PAY RATE ";E
145 LSET RCD.NO$ = STR$(X%)
150 LSET EMPL.NO$ = A$
160 LSET LAST.NAMES$ = B$
170 LSET FIRST.NAMES$ = C$
180 LSET NO.HOURS$ = STR$(D)
190 LSET RATE$ = STR$(E)
200 LSET PAY$ = STR$(D*E)
210 PUT#2,X%
220 INPUT “DO YOU HAVE ADD’L ENTRIES (Y = YES:N = NO) ";FLAG$
230 IF FLAGS$ ="Y" THEN X% = X% + 1:GOTO 70
240 IF FLAGS$ = "N" GOTO 300 ELSE 220
300 INPUT "DO YOU WISH TO DISPLAY A RECORD (Y = YES:N =
NO) ";BFLAG$
310 IF BFLAG$ = "N” THEN 999
320 IF BFLAG$ = "Y" THEN 330 ELSE 300
330 INPUT "WHICH RECORD WOULD YOU LIKE TO DISPLAY (0 =
END) ";Y%
340 IF Y% =0 THEN 999
350 IF Y% <= X% THEN GET #2,Y% ELSE 330
360 PRINT RCD.NO$;EMPL.NO$;LAST.NAMES$;FIRST.NAMES;
NO.HOUR$;RATES$;PAY$
365 GOTO 330
370 CLOSE 2
999 END

FIGURE 6-2. Random File Access Using STRS

SANN % ‘$SA ‘SIMN Suls) $$300V 3[1f WOpPUEY "€-9 IUNDOIS

aN3 666
23S010 0.¢
0€€ OLOD S9¢
ialiona: $awvw ‘LSHIJ'$INVN LSV T:$ON 1dINI %Y J.NIHd 09¢
($AVd)SAD =
:($3.Lvu)3/\o= i0:($HNOH'ON)SAD = ig:($ON'AOH)IND = %v SGE
08 OLOD %A‘Z# 13D NIHL %X=">%A dI 0S¢
666 NIHL 0 = %A 4l 0¥€
o/OA n GNB
= 0) AV1dSIa OL 3MIT NOA @TNOM auooau HOIHM., LNdNI 0€€
00€ 3S713 0€€ NIHL A, = $OV149 41 02€
666 NIHL .N. = $9v149 41 0LE
$ov149'. (ON
= N:S3A = AJGHOO3H V AV1dSIA OL HSIM NOA OA.. LNdNI 00€
022 3573 00€ OLOD .N.. = $OV14 4I 0ve
0L OLOD:L + %X = %X NIHL »A. = $DV1d 41 0€2
$ov14:, (ON = N:S3A = A)SIIHLNT 1.daV IAVH NOA OA. LNdNI 022
%X‘2#LNd 012
()$SHMW = $AVd L3S 002
(3)$SHI = $3LvH 13S1 061
(Q)$SMW = $HNOH'ON L3S 081
$0 = $aNVN'LSHI4 1381 041
- $9 = $3IWVN'LSV1 1357 091
$v = $ON'1dW3 L3S 0St
(%X)$IMW = $ON'QOH L3S Shi
3.0=4 2vl
3!, 3LVH AVd HILN3. LNdNI OVl
Q‘., aa¥HOM SHNOH 40 H3GWNN H3LN3., LNdNI 0E}
$0'., IWVN 1SHI4 S.33A01dW3 H3LN3., LNdNI 021
¢4, IWVN LSV S.33A01dW3 H3LN3,, LNdNI 0Lt
¢V, "'ON TINNOSHId S.33A01dW3 HILN3,, LNdNI 00t
0= 30 = iG:u u= $0:u u= $8:u n= $V OL
= %X 09
$AVd SV $'$3.1VH SV ¥'$HNOHON SV #'$3WVN'LSHIA
SY SL'$IWVNLSY1 SV S1L'$ON1dW3 SV #'$ON'AOH SV 2'2#a71314 05
0S = N31 2# SV $A N3dO 0F
21VQA' .+ $Z + WAV, = $A 0F
_ (Z)$H1S = $Z 02
Z'., HIGWNN T10HAVd H31N3., LNdNI O}

€61 2isva 1Dd Uiim BulipudH aji 3 selid

154 1BM PCjr User's Handbook

File Commands

PCjr BASIC includes eight commands designed to allow the user to
perform file handling operations while the BASIC interpreter is active.
These include SAVE, LOAD, RUN, KILL, NAME, MERGE, CHAIN,
and FILES.

SAVE

SAVE generally is used to store a program on a cassette or a disk file.
SAVE is used with the following configuration:

SAVE "filespecification” [’i]

Jfilespecificationindicates the device where the program in RAM is to
be saved as well as the filename to be assigned to that file. Note that
Jilespecification must be enclosed within double quotation marks.

The optional parameter A indicates that the file is to be saved in
ASCII format.. Only files saved in this format can be loaded with the
MERGE command.

The optional parameter P causes the program file to be saved in
encoded binary format. In effect, P results in the program file being
protected. If an attempt is made to LIST or EDIT a protected program
file, the following error will result:

Illegal function call

When SAVE is used to save a file on disk and no filename extension
is indicated in filespecification, an extension of .BAS will automatically
be assigned. If Cassette BASIC is active, the default device will be CASI:.
If Cartridge BASIC is active, the default device will be A:.

LOAD

The LOAD command is generally used to load a program file into
memory from cassette or diskette. LOAD is used with the following
configuration:

LOAD "filespecification” [,R]

Files & File Handling with PCjr BASIC 155

LOAD erases any program lines and variables in memory before the
specified program is loaded. When LOAD is used without the optional R
parameter, any open files will be closed.

When LOAD is executed with R, the program will be automatically
run after it has been loaded. Also, if R is specified, all data files will
remain open. LOAD is generally executed with the R option in order to
chain two or more programs together. Since existing data files remain
open, this information can be shared by the programs being chained.

If filespecification does not include a filename extension, the .BAS
extension will be automatically provided.

When LOAD is used with the cassette device (CASI:), the filenames
present in the cassette will be displayed one by one on the screen. Each
filename will be followed by a period and a letter which specifies the file
type. These letters are listed with the types of files they reference in table
6-2.

If the filename displayed matches that indicated by filespecification,
that file will be loaded into memory and the following message will be
displayed:

Found

If these do not match, the message “Skipped” will be displayed, and
the next filename on the cassette will be displayed.

The search for the indicated filespecification on the cassette tape can
be ended at any time by pressing Ctrl-Break. If filespecification is not
indicated when LOAD is executed for the cassette unit, the next program
file on the cassette will be loaded.

TABLE 6-2. File Type Abbreviations During a Cassette LOAD

File Type
Abbrev. Reference
BASIC programs stored in internal format (with SAVE).
A BASIC programs stored in ASCII format (with
SAVE,A).
P Protected BASIC programs stored in encoded binary

format (with SAVE,P).

156 1BM PCjr User's Handbook

.D Data files created by OPEN.
M Memory image files created by BSAVE.
RUN

The RUN command is used to begin execution of a program. RUN is
used with the following configuration:

RUN ["filespecification”][,R]

If RUN is executed with filespecification, the indicated file will be
loaded into memory and executed. If RUN is executed without the
filespecification parameter, the program currently stored in RAM will be
executed. If filespecification is indicated, it must be enclosed within
double quotation marks.

If the optional parameter R is specified, any open files will remain
open. Otherwise, they will be closed.

KILL

KILL is used with the following configuration to delete the indicated
diskette file. If the filename includes the .BAS extension, that extension
must be included in filespecification.

KILL "filespecification”
NAME

NAME is used with the following configuration to change a
filename.

NAME "filespecification” AS "newfilename”

The filename included in filespecification will be changed to that
specified in newfilename. If the filename includes the .BAS extension,
that extension must be included in the command line. -

Files & File Handling with PCjr BASIC 157

MERGE

The MERGE command loads the specified program file into
memory and combines it with existing program lines in memory.

MERGE "filespecification”

If the file being loaded contains a program line with the same line
number as one of the program lines already present in memory, the
program line being loaded will replace that line.

Fora program to be loaded with MERGE, it must have been saved in
ASCII format using the A option with the SAVE command.

CHAIN

The CHAIN statement allows one BASIC program to load and run
another BASIC program. A COMMON statement can be included in the
program containing the CHAIN statement which allows that program to
pass the values of some or all of its variables to the program being
chained.

FILES

The FILES command can be used to display the filename of one,
several, or all of the files on the indicated drive.

FILES ["filespecification”]

If FILES is executed without the optional parameter, all diskette
files on the disk drive will be displayed. The use of wild cards in filespeci-
ficationis analogous to their usage with the DOS command, DIR. Please
refer to chapter 9 for an explanation of wild cards.

7

PCjr BASIC Graphics and Sound

Introduction

The PCjr has six available graphics modes, four graphics modes
more than its predecessors, the IBM PC and IBM PC XT. Since the
PCjr's display was designed to mimic the IBM PC’s color graphics board,
all of the original graphics modes operate the same on the PCjras theydo
on the PC. The new modes give the PCjr some of the best color graphics
available on a home computer.

All of the graphics modes are color capable, although the maximum
number of concurrently displayable colors is limited by the selected
graphics mode. Inaddition to its color capability, the PCjrsupports three
distinct screen resolutions — low (160 x 200 pixels*), medium (320 x 200
pixels) and high (640 x 200 pixels). Table 7-1 illustrates the avallablc
combinations of colors and screen resolutions.

* A pixel can be defined as a single screen coordinate.

159

160 1BM PCjr User's Handbook

‘ Table 7-1. # of Colors vs. Resolution

Colors Screen Resolution
16 low
4 ~ medium*
16 medium
2 high
4 high

Besides its additional graphics modes, the PCjr supports sophisti-
cated sound capabilities, including three channel music and sound
effects. These are generated by the Texas Instruments programmable
tone generator, the SN76489A. The use of this IC to generate complex
sounds will be discussed later in this chapter.

Pixels

In low resolution graphics, the display can be divided into a grid of
200 rows of 160 columns each. Every point on the screen can be uniquely
identified by using its row and column numbers. In low resolution, there
are 32000 uniquely addressable screen elements. Each specific screen
element is called a pixel. ‘

The farthest left column of the screen has been defined as column 0.
The farthest right column has been defined as column 159. Likewise, the
row numbers extend from 0 (top) to 199 (bottom). Thisarrangement may
seem upside down to persons familiar with a cartesian coordinate system.

The medium and high resolution screens can likewise be divided into
grids of 320 x 200 and 640 x 200, respectively. In the case of medium
resolution graphics, the column numbers now extend from 0 (left) to 319
(right). In the case of high resolution graphics, they extend from 0 (left) to
639 (right). The row numbers extend from 0 (top) to 199 (bottom) in both
medium and high resolution.

* There are two medium resolution modes that can support four colors. The color
selection process differs between these modes.

PCjr BASIC Graphics and Sound 161

REDEFINING THE SCREEN COORDINATES

As previously mentioned, the default screen coordinates are
“upside-down” when compared to standard cartesian coordinates.
Figure 7-1 shows the difference between the default coordinates in low
resolution and the more natural cartesian coordinates.

Cartridge BASIC allows the programmer to redefine the default
screen coordinates. Using the WINDOW statement, cartesian coordi-
nates may be selected. In fact, any rectangular coordinate system may be
chosen. The correct syntax of the WINDOW command is as follows:

WINDOW [[SCREEN] (x1,y4) - (X2:¥2)]

X1, Y1, X2, and x, are called world coordinates. World coordinates are
single precision floating point numbers. They redefine the coordinates of
the screen block, defined by the VIEW statement (discussed later). If no
VIEW statements have been executed, the coordinates of the entire
screen will be redefined.

WINDOW (-1, -1)- (1, 1)

For example, the previous WINDOW statement will set the screen
coordinates to the cartesian coordinates shown in figure 7-1.

The optional SCREEN parameter allows the screen to be left upside
down while still redefining the screen coordinates. The statement,

WINDOW SCREEN (-1, -1) - (1, 1)

would define the screen coordinates as shown in figure 7-2.

162 I1BM PCjr User's Handbook

0,0 159,0 -11

80,100 0,0

0,199 159,199 -1,-1

11

default cartesian

FIGURE 7-1. Coordinate System Comparison

-1,-1 1,-1

0,0

FIGURE 7-2. Effect of WINDOW SCREEN (-1, -1) - (1, 1)

PCjr BASIC Graphics and Sound 163

Suppose that a screen, similar to figure 7-3, is to be replicated using
the PCjr. Perhaps the screen is one from an educational program for
preschoolers. At any one time, the programmer would like to devote his
attention to a particular quadrant of the screen. VIEW allows the
definition of subsets of the screen called viewports. Once a viewport has
been defined, all screen input and output is accomplished through that
part of the screen. VIEW uses the following configuration:

VIEW [[SCREEN] [(x1.y1) - (x2y2)[,[fill] [.[boundary]]]]]

X1, Y1, X2, and y, are the coordinates of the defined viewport. Inlow
resolution graphics, the following statement would establish the view-
port illustrated in figure 7-4:

VIEW (10, 15) - (75, 90)

can Danny

FIGURE 7-3. Screen to be Replicated

164 1BM PCjr User's Handbook

0,0

0,199

159,0
10,15 75,15
& viewport
10,90 75,80
159,199

FIGURE 7-4. Viewport

3
§
L

If the previous statement had been executed in a program, any
subsequent references to the point (0, 0) would actually affect pixel (10,
I5). Likewise, a reference to the point (159, 199) would affect pixel (75,
90). VIEW compresses the old screen coordinates (defined by WIN-
DOW) to fit into the new viewport. Therefore, scaling is easily
accomplished.

10
20
30
40
50
60
70
100
110
120
130

SCREEN 2: CLS

WINDOW SCREEN (0,0) - (639,199)
GOSUB 100

FOR J =1 TO 1000: NEXT J: CLS
VIEW (0,0) - (320,100)

GOSUB 100

END

'DRAW ELLIPSES

CIRCLE (320,100), 80... .3
CIRCLE (300,100), 70... .8
RETURN

PCjr BASIC Graphics and Sound 165

The optional parameter, fill, will cause the newly defined viewport
to be filled with the color assigned to the attribute specified by fill.

Attributes will be discussed later in this chapter. The optional
parameter, boundary, will cause a border to be drawn around the newly
defined viewport, using the color assigned to the attribute specified by
boundary. In the 16 color modes, both filland boundary may range from
0 to 15. In the 4 color modes, they may range from 0 to 3. And in the 2
color mode, they may be assigned either 0 or 1.

SCREEN is the final optional parameter. When included, the
SCREEN’s coordinate system will no longer fit into the new viewport. In
fact, the coordinate system is not changed. However, only points plotted
within the viewport will appear on the SCREEN. For example, if the
point (10,10) is plotted after “VIEW SCREEN (20,20) -(30,30) has been
executed, nothing will appear as the screen, because the point (10,10) was

"not present in the viewport.

WINDOW and VIEW will sort both the x and y pairs, placing the
smallest values first. For example, the following four WINDOW com-
mands produce the same coordinate definition, as shown in figure 7-5:

WINDOW (0,0) - (10,20)
WINDOW (0,20) - (10,0)
WINDOW (10,0) - (0,20)
WINDOW (10,20) - (0,0)

If VIEW or WINDOW is used without an argument, the default

conditions for the currently active graphics mode will be restored.

0,20 10,20

5,10

0,0 10,0

FIGURE 7-5. Coordinate Definition Produced by Example WINDOW
Commands) '

166 I1BM PCjr User's Handbook

SELECTING A GRAPHICS MODE — SCREEN

As mentioned earlier, six graphics modes are available. These are
the low resolution graphics modes and two high resolution graphics
modes. The SCREEN statement allows the programmer to select
between these modes and the text mode. SCREEN uses the following
configuration.

SCREEN [model[,[burst][,[active pg]|visual pg]][,erase]]

mode indicates the display mode. SCREEN 0 sets the display to the
text mode. SCREEN 1 through SCREEN 6 select the graphics modes.
This is summarized in table 7-2. SCREEN 0 through SCREEN 2 are also
supported on the PC with a Color/ Graphics Monitor Adapter installed.
SCREEN 3 through SCREEN 6 are only supported in Cartridge BASIC.

Table 7-2. Graphics Modes & Memory Requirements

Screen Display Mode Memory Requirement

0 text 40 Column 2K
80 Column 4K

1 medium resolution; 4 colors 16K

2 high resolution; 2 colors 16K

3 low resolution; 16 colors 16K

4 medium resolution; 4 colors 16K

5 medium resolution; 16 colors 32K

6 high resolution; 4 colors 32K -

'SCREEN can also include an optional second parameter which
enables or disables the color burst signal. A TV signal contains a compo-
nent known as the color burst. If the color burst is present, a color picture
will be displayed. If it is absent, a black and white picture will be
displayed. In the text mode, if burst evaluates to 0 (false), the color burst
will be disabled. A value of 1 (true) in the text mode enables the color
burst. In medium resolution graphics (mode = 1 or mode = 4), a true
value for burst will disable color, while a false value will enable color.
burst has no effect when mode = 2, 3, 5 or 6.

PCjr BASIC Graphics and Sound 167

Using the CLEAR statement, more memory may be allotted to the
screen than is needed to hold a single page of graphics or text. Thisallows
more than one page of screen memory to be stored. Each of the display
modes uses a specific amount of memory (see table 7-2). For example,
suppose that 20K was allotted to the screen. Five pages of 80 column text
could be stored (5 x 4K = 20K). These would be numbered 0 to 4,
inclusive. If 40 column text had been displayed, 10 pages could have been
stored (10 x 2K = 20K). These would have been numbered 0 to 9,
inclusive.

The two optional parameters for SCREEN, activepg and visualpg,
allow the programmer to select the page to which output will be sent
(activepg), as well as the page which is displayed on the screen (visualpg).
This allows the user to write to one page while another is being displayed.
activepg and visualpg can be used in any screen mode. However, suffi-
cient memory must be allotted for the screen.

The final optional parameter, erase, indicates how much display
memory is to be cleared. erase should evaluate to an integer in the range
0-2. 0 indicates not to erase video memory, even if the screen mode
changes. 1 indicates to erase the union of the new page and the old page,
provided that the mode or burst changes. And 2 indicates to erase all
video memory if mode or burst changes. If no value is specified, a 1 will be
" assumed.

ATTRIBUTES & PALETTES

An attribute may be defined as one of the sixteen possible color
numbers. Any color may be assigned to each of the attributes. The notion
of an attribute is analogous to that of painting by number. Using a
graphics command, such as LINE, CIRCLE or PSET, corresponds to
drawing the boundaries of a paint by number canvas.

LINE (0,0) - (4,4).2,B

When LINE is used in the previous configuration, a box will be
drawn with corners at pixels (0,0), (0,4), (4,4), and (4,0). The square will
be drawn using attribute number two. The following will be the result:

168 1BM PCjr User's Handbook

0 1 2 3 4 5§ <+——— Column
0 2 2 2 2 2 0
1 2 0 0 0 2 0
RowW—op- 2 2 0 0 0 2 0
3 2 0 0 0 2 0
4 2 2 2 2 2 0
5 0 0 0 0 0 0

Now that the paint by number canvas has been constructed, the
canvas must be given colors. Colors are assigned to attributes by the
PALETTE statement.

PALETTE [attribute][,color)

attribute is an expression that evaluates to an integer. It determines
which attribute will be effected by the PALETTE statement. attribute
may range from 0 to either 1, 3 or 15, depending on the graphics mode.

color is an integer that selects from the sixteen displayable colors.
Table 7-3 contains a list of these colors. Colors 8 through 15 may be
thought of as the “high intensity” values of colors 0 through 7.

PALETTE 2, 10
PALETTEO, 6

The previous two statements will cause our square to be colored
light green, with a brown background. The square could have just as
easily been colored brown with a light green background.

PALETTE 2,6
PALETTEO, 10

Also, the square and its background could have been assigned the
same color. In this case, the square would have been invisible to the
viewer.

PCjr BASIC Graphics and Sound 169

PALETTE 2, 6
PALETTEO, 6

Table 7-3. Displayable Colors

0 — Black 8 — Gray

1 — Blue 9 — Light Blue

2 — Green 10 — Light Green

3 — Cyan 11 — Light Cyan

4 — Red 12 — Light Red

5 — Magenta 13 — Light Magenta

6 — Brown 14 — Yellow

7 — White 15 — High-Intensity White

Often, many attributes must be changed simultaneously. PALETTE
USING allows the setting of all the attributes with one statement.

PALETTE USING [array (start)]

arrayisaninteger array that must have 16 elements beginning at the
starting index. start is an integer indicating the first position in the array
to be used in assigning palette colors.

The values in array are directly assigned to the attributes. If a value
of -1 is in the array, the attribute corresponding to that position in the
array will not be changed. Figure 7-6 demonstrates this process.

170 I1BM PCjr User's Handbook

PALETTE USING PAL%(4)

PAL%(4) 3| — attribute 0
PAL%(5) 4 | — attribute |
PAL9%(6) -1 g attribute 2
PAL%(7) -1 — attribute 3
PAL%(8) -1 | — attribute 4
PAL%(9) 10 | — attribute 5
PAL%(10) 15 | — attribute 6
PAL%(11) -1 | — attribute 7
PAL%(12) -1 | — attribute 8
PAL%(13) -1 |1 attribute 9
PAL%(14) -1 i attribute 10
PAL%(15) -1 | — attribute 11
PAL%(16) -1 — attribute 12
PAL%(17) 7 | — attribute 13
PAL%(18) 8§ | — attribute 14
PAL%(19) 9 | — attribute 15
i A

These colors into

FIGURE 7-6. PALETTE USING Example

SELECTING A COLOR

Before any graphics information can be plotted to the screen, an
attribute must be selected. This is accomplished through the use of the
COLOR command. The correct syntax of this command is as follows:

FOR SCREENS 3-6 — COLOR [foreground],[[background]]
FOR SCREENS 1 — COLOR [background][,[palette]]

The two different configurations can be understood by realizing that
screen 1 was originally designed for the PC, while screens 3 through 6
were designed especially for the PCjr’s advanced hardware.

In both configurations, background represents the color to be
assigned to attribute 0.

PCjr BASIC Graphics and Sound 171

In the configuration for screens 3-6, whenever a graphics command
such as PSET or LINE is issued, the configuration of the command will
allow an attribute to be specified. This attribute is then used to draw the
graphics object. If no attribute is specified by the programmer, the
current default attribute will be used. foreground determines the default
drawing attribute.

The use of COLOR with the latter configuration is somewhat more
complex. SCREEN 1 does not support the flexible palette of screens 3-6,
but instead supports only two fixed palettes. These are given in table 7-4.
For example, if palette = 0, then green will automatically be assigned to
attribute 1. SCREEN 1 is obviously a poor choice for a graphics mode,
because SCREEN 4 could be used in its place without sacrificing the
number of available colors (4) or changing the memory requirements,
(16K). SCREEN 1 was merely included on the PCjr to make it compati-
ble with the PC and the PCXT.

Table 7-4. Screen 1 Palettes

Attribute Palette 0 Palette 1
1 Green Cyan
2 Red Magenta
3 Brown White

PLOTTING — PSET

Aftera COLOR has been selected, information can be plotted to the
screen. This is accomplished by using the PSET command. The correct
syntax of this command is as follows:

PSET (col, row) [,attribute]

col and row specify the world coordinates of the pixel to be illumi-
nated. The optional parameter artribute determines the color of the
plotted pixel. If this parameter is not included, then the current default
attribute will be used.

172 1BM PCjr User's Handbook

RELATIVE COORDINATES

PSET, as well as the rest of the graphics commands, requires the
programmer to specify the position on the screen to which graphics data
is to be plotted. This information is given in the form of coordinates. As
was the case with PSET, coordinates can be of the form (co/, row), where
colis the column number and row is the row number. This is known as
absolute addressing. row and col actually specify screen coordinates,
without regard to the last point referenced (LPR). The LPR isanalogous
to the cursor position in the text mode.

Another means of indicating coordinates is relative addressing.
With relative addressing, BASIC must be told where the point is located
relative to the LPR. This form of addressing uses the following syntax:

STEP (coloff, rowoff)

coloff and rowoff indicate the column offset and row offset, respec-
tively. The numbers specify the horizontal and vertical direction of the
new point from the LPR.

100 SCREEN 3
110 PSET (100,100), 15
120 PSET STEP (20,-10), 15

The previous program sets two points on the screen. Their actual
coordinates are (100,100) and (120,90).

ADVANCED GRAPHICS COMMANDS

With the right combination of PSET and elbow grease, any graphics
screen can be drawn. In other words, although PSET gets the job done, it
does not accomplish it with a great deal of efficiency. BASIC includes
three commands that can simplify the creation of graphics displays.
These are LINE, CIRCLE, and PAINT. LINE and CIRCLE have
already been illustrated in several of our examples.

LINE can be used to plot consecutive pixels. For example, the
following statement will connect the pixel (100,100) to pixel (150,150)
with a white line:

LINE (100,100) - (150,150), 15

PCjr BASIC Graphics and Sound 173

If the first coordinate is omitted, the line will be drawn from the LPR to
the second coordinate. The following statement will connect the LPR
(150,150) to pixel (20,150) with a blue line.

LINE -(20,150), |

P When the optional parameter “,B” is included in a LINE statement,
the two pixels are not connected. Instead a box is drawn, using the two
coordinates as opposite corners.

LINE (20,20) - (100,150), 2, B

If“,B”is replaced with “,BF", the box will be drawn. However, it will
be filled with the specified attribute. As in the following example, if the
attribute is omitted, the current default attribute will be used. Notice that
the double comma is used to indicate the omitted attribute.

LINE (0,0) - (50,30),, BF

CIRCLE is used to draw an ellipse on the screen. Of cource, CIR-
CLE canalso drawa circle, because a circle is merely a special case of an
ellipse.

CIRCLE (80,100), 40, 2

The previous example will draw a circle centered at (80,100) with a
radius of 40. The circle will be drawn using attribute 2. If only part of a
circle (arc) is to be drawn, the optional start and end parameters should
be used.

CIRCLE (100,100), 40,, 0, 3.14159

This example draws a semi-circle, centered at (100,100) with a radius
of 40. The semi-circle will be drawn with the default attribute since the
attribute parameter has been omitted. The two numbers, 0 and 3.14159
are the starting and ending angles in radians.

174 1BM PCjr Users Handbook

A /2

m = 3.14159

> 0

Y
3n/2

If the start or end angles are negative, the PCjr will treat them as
positive values and will connect the ellipse to its center.

CIRCLE (160,100), 80,, -6.28, -3.14

The previous statements will draw a semi-circle with its starting and
ending points connected to its center.

- start

end >

center

The final optional parameter is called aspect. The aspect determines
the ellipse’s elongation. When aspect =1, a nearly perfect circle will be
drawn in screen 4. For values less than one, a flat ellipse will be drawn.
For values greater than one, a narrow ellipse will be drawn. For example,

the following statement will draw a long narrow ellipse:

CIRCLE (160,100), 80,,,,10

PCjr BASIC Graphics and Sound 175

U C

aspect = 10 aspect = 2 aspect =1

aspect = 1/2 aspect = 1/10

The third advanced graphics command is PAINT. This command
will fillan enclosed section of the screen with a user determined attribute.
The correct syntax of this command is as follows:

PAINT (col, row) [,paint][,boundary]

col and row determine where the filling process will begin. paint deter-
mines the attribute used for PAINT. If paint is omitted, the maximum
attribute for the current graphics screen will be assumed. boundary is the
attribute where painting is to be halted. For example, if a circle is drawn
using attribute two, it may be filled with attribute ten in the following
manner. If boundary is omitted, the paint attribute will be assumed.

CIRCLE (80,100), 40, 2
PAINT (80,100), 10, 2

176 IBM PCjr User's Handbook

The following example program uses the majority of the graphics
commands learned thus far:

100 CLEAR,,,32768

110 DIM PAL%(30)

120 SCREEN 5

130 KEY OFF

140 WINDOW (-10,-10)-(10,10)

150 FOR RADIUS =13 TO 1 STEP -1
160 CIRCLE (0,0),RADIUS,RADIUS
170 PAINT (0,0),RADIUS

180 NEXT RADIUS

190 FORK =0TO 30

200 PAL%(K) = K MOD 16
210 NEXTK

220 FORK =15 TO 0 STEP -1

230 PALETTE USING PAL%(K)
240 NEXT K

250 GOTO 220

The CLEAR statement at line 100 reserves 32768 bytes for screen
memory. (The amount needed for graphics screen five.) The DIM state-
ment in the next line dimensions an integer array to be used in the
PALETTE USING statement at line 230. KEY OFF merely turns off the
function key labels on line 25 of the display.

Lines 140-180 draw and paint the concentric circles. Lines 190-210
initialize the array which will be used in the loop at lines 220-240. This
loop strobes the colors, giving the illusion of movement. Line 250 end-
lessly repeats the motion loop.

RETRIEVING INFORMATION FROM THE SCREEN

After information has been output to the screen, it may become
necessary to determine which color is displayed at a certain screen
position. The function POINT takes as its arguments the row and column
numbers, and returns the attribute number. The correct syntax of the
POINT function is as follows:

X = POINT (col, row)

colrepresents the column number. row represents the row number. Upon

PCjr BASIC Graphics and Sound 177

execution of the preceding command, X will be assigned the value of the
attribute at screen location column = col, row = row.

SHAPE DEFINITION

Often, a particular shape must be drawn a number of times in the
same graphics screen. For example, 50 stars must be drawn in order to
create an American flag. The DRAW statement is used to draw an object
defined by a string containing drawing commands. These commandsare
collectively known as a graphics definition language (GDL™). The con-
figuration for DRAW is given below:

DRAW string

string is string expression containing GDL commands. When DRAW is
executed, each GDL command in the string will be interpreted and
executed one by one.

DRAW — MOVEMENT COMMANDS

The GDL commands can be categorized as movement commands,
set angle commands, set color commands, set scale factor commands,
and execute substring commands. We will discuss the movement
commands first. These commands are described as follows:

Un Move up

Dn Move down

Ln Move left

Rn Move right

En Move diagonally up and right
Fn Move diagonally down and right
Gn Move diagonally down and left.
Hn Move diagonally up and left

Each of the movement commands is executed in a similar manner.
Each indicates a direction in which the plotting will take place. A numeric
argument (n) follows the commands which indicate the distance to be

moved.
ndoes not specify the actual number of points to be moved. This can

be calculated by multiplying n times the scaling factor. The scaling factor

178 IBM PCjr User's Handbook

is set with the scale command using the following configuration:

Sn

ncan range from 1 to 255. The scale factor is calculated by dividing n by
4. Therefore, the effective range for the scale factor is .25 to 63.75.

The following program illustrates the use of the movement com-
mands and the scale factor:

10 SCREEN 4

20 COLOR 3,1

30 CLS

40 A$="U30 R40 D30 L40”
50 FORX=1TO 10

60 B$ = “S" + STR$(X) + A$
70 DRAW B$

80 NEXT X

90 END

Line 40 defines a square as A$. This square is drawn at 10 different
scales by the loop at lines 50-80. Notice that although 40 points were
plotted along the x-axis and only 30 points were plotted along the y-axis,
that our figure was drawn as a square. This is due to the fact that the
screen’s aspect ratio in medium resolution graphics is 4:3, which means
that four horizontal points occupy the same amount of space as do 3
vertical points.

In high resolution, the aspect ratio is 16:7, while the aspect ratio in
low resolution is 2:3. Aspect ratio will not affect the diagonal move
commands. This is shown in the following example program:

10 SCREEN 4

20 CLS

30 A$ =“E40 F40 G40 H40"
40 DRAW A$

50 END

DRAW-M COMMAND

Althoughthe U, D, L, R, E, F, G, and H commands are useful for
drawing a figure, they are less useful in situations where a line is to be
drawn from the LPR to a specific screen location. The M (movement)

PCjr BASIC Graphics and Sound 179

command is provided for this purpose. M is used with the following
configuration:

Mx,y

x,y specify the coordinates to which a line is to be drawn from the LPR. If
a plus (+) or minus (-) sign prefix x and y, the move will be relative.
Otherwise, the move will be absolute. This is illustrated in the following
example:

10 SCREEN 4

20 CLS

30 A$ =“U30 R40 D30 L40”
40 DRAW A$

50 M$ = “M +20,+30

60 DRAW M$

70 N$ = “M200,100”

80 DRAW N$

DRAW-B COMMAND

If the B command is placed in front of any GDL movement com-
mand, the move will be executed, but no points will be plotted. By editing
line 70 of the previous program as follows:

70 N$ = “BM 200,100”
the effect of B will be illustrated.

DRAW-N COMMAND

If GDL’s N command is placed in front of a movement command,
the line will be drawn but the LPR will remain unchanged. The effect of N
can be shown by editing line 30 as follows:

30 A$=“U30 R40 D30 NL40”

DRAW-C COMMAND

The C command can be used to set the color for the shape being
drawn. C is used with the following configuration:

180 1BM PCjr User's Handbook

Cn

n specifies the attribute number. Its allowable range depends on the
current graphics mode. The following program illustrates the use of the C
command:

10 SCREEN 4
20 CLS
30 A$=“C1 U30 R40 C2 D30 R40”

40 DRAW A$
50 END

DRAW-A COMMAND

The A command is used to set a rotational angle for any subsequent
GDL commands. The format for A is as follows:

An

n can be any value from 0 to 3, where 0 indicates 0 degrees, |
indicates 90 degrees, 2 indicates 180 degrees, and 3 indicates 270 degrees.

DRAW-TA COMMAND

The TA command can be used to turn the figure at the angle
indicated by n. n can range from +360 to -360. If n is negative, the angle
turns clockwise. The use of TA is illustrated in the following program:

10 SCREEN 4

20 CLS

30 FOR X =0 TO 360 STEP 45

40 DRAW “TA” + STR$(X)+“U30"
50 NEXT X

DRAW-P COMMAND

The P command is the GDL equivalent of the PAINT command. P
specifies the attribute that the figure is to be filled with, as well as the
border attribute. P is used with the following configuration:

P paint, boundary

PCjr BASIC Graphics and Sound 181

paint can range from 0-15 and specifies the attribute of the figure.
boundary indicates the border attributes of the figure to be filled in.
boundary can also range from 0-15. Both parameters must be specified.

10 SCREEN 4
20 CLS

30 A$="“U30 R40 D30 L40"
40 B$ = “BE10”

50 C$ = “P1,3"

60 DRAW A$ + B$ + C$

DRAW-X COMMAND

The X command allows a DRAW statement to execute a substring
from within another command string. The substring is generally specified
with a variable name. It must be preceded by X and followed by a
semicolon.

The X command allows the user to define a part of a drawing as a
separate part from the definition of the entire object. This command also
facilitates the defining of objects which need more than 255 characters for
their definition.

10 SCREEN 4

20 CLS

30 A$=“E50 D50 L50"

40 B$ =“A1" + A$

50 C$ = “A2" + A$

60 D$ = “A3" + A$

70 DRAW “XA$; XB$; XC$; XD$;”
80 END

With any of thecommandsin the GDL, the argument n can either be
aconstant oritcan be a variable. If nisa variable, it must be preceded by
an equal sign (=). Also, a semicolon must be used to delimit commands
where a variable is used for n. The various GDL commands are summar-
ized in table 7-5.

182 IBM PCjr User's Handbook

Table 7-5. DRAW’s GDL Commands

Command
Format Reference

Un Move up.

Dn Move down.

Ln Move left.

Rn Move right.

En Move diagonally up and right.

Fn Move diagonally down and right.

Gn Move diagonally down and left.

Hn Move diagonally up and left.

Mxy Move absolute or relative. If x is preceded by a
plus (+) or minus (-) sign, it is relative. If not, it
is absolute.

B Moves as indicated without the plotting of any
points.

N Moves per the command but returns to the
original position when the movement has been
completed.

An Sets an angle at the value indicated by n. n can
be any value from 0 to 3, where 0 indicates 0
degrees, 1 indicates 90 degrees, 2 indicates 180
degrees, and 3 indicates 270 degrees.

Cn Sets the color to the value indicated by n. n
can range from 0 to 3 in medium resolution or
from 0 to 1 in high resolution.

PCjr BASIC Graphics and Sound 183

Command
Format Reference
P paint, Sets the color of the figure to the color speci-

boundary | fied by paint (0-3). boundary indicates the
border color of the figure to be filled.

Sn Sets the scale factor. n can range from | to
255. To calculate the scale factor, divide n by 4.

TAn Turns at the angle indicated by n. n can range
from +360 to -360. If n is positive, the angle
turns counterclockwise. If n is negative, the
angle turns clockwise.

Xstring Executes the substring. This allows the user to
execute a second string from within the origi-

nal string.

Sound

As mentioned earlier, the PCjr contains a programmable tone gen-
erator. The PCjris also equipped with the audio hardware of the PC, a
8253 timer. The tone generator can produce top quality music and sound
effects. The less capable 8253 timer was included so that the PCjr could
emulate the PC. Either set of hardware may be software selected.
However, both may not be active simultaneously. The following two
commands select which set of hardware will be activated:

SOUND ON activate programmable
tone generator

SOUND OFF set PC emulation
mode

The PC emulation mode is the default setting.

Inaddition to its two means of sound generation, the PCjr has three
ways of outputting that sound. These include the internal speaker, an
audio jack, and a modulated output to be used by a television set.

184 1BM PCjr User's Handbook

Although the sound of the 8253 timer can be directed to any of these
outputs, the programmable tone generator may not use the internal
speaker. Therefore, whenever the tone generator is activated (SOUND
ON), the internal speaker will be deactivated. Likewise, the internal
speaker will be activated whenever the 8253 is being used.

PCjr BASIC contains another pair of commands that activate the
external audio outputs. The external outputs are the audio jack and the
TV modulated output. These are controlled by the BEEP commands.

BEEP ON activate external
connections

BEEP OFF deactivate external
connections

By using the aforementioned rules, if BEEP is OFF and SOUND is ON,
it would seem that all audio outputs would be disabled. SOUND ON
would turn off the internal speaker,and BEEP OFF would deactivate the
external audio connections. In this combination, PCjr BASIC will acti-
vate the external audio connections, to assure an active output channel.
Table 7-6 illustrates the possible combinations of BEEP and SOUND.

Table 7-6. BEEP & SOUND

INTERNAL EXTERNAL
SOUND BEEP SPEAKER |CONNECTIONS
ON ON OFF ON
ON OFF OFF ON
*OFF *ON ON ON
OFF OFF ON OFF

When activated, the 8253 timer can be programmed to play any
single note. The duration of this note may also be programmed. How-
ever, when compared to the capabilities of the SN76489A, the 8253 is
dwarfed. The programmable tone generator can play any three notes, can
independently control the volume on each of these notes, and can pro-

* default setting

PCjr BASIC Graphics and Sound 185

duce sound effects. The duration of these notes may again be pro-
grammed. Therefore, any sound produced on the 8253 can also be
produced on the SN76489A. Henceforth, all PCjr BASIC commands
will be discussed in reference to the SN76489A.

PRODUCING SOUNDS

Besides being used to enable the programmable tone generator, the
SOUND statement has an alternate configuration that can be used to -
directly control the frequency, volume and duration of a note, played on
any of the voices. A voice can be defined as an oscillator that can produce
any one note. The SN78498A has 3 tonal voices and | noise voice. The
SOUND command may be configured as follows:

SOUND pitch, duration [,[volume][,[voicel]]]

pitchis the frequency in Hertz of the note to be played. pizch must lie
between 37 and 32767. Any value from 37 to 110 will produce a 110 Hz
note, the lowest attainable by the tone generator. The value 32767 will
produce a period of silence. Table 7-7 contains a listing of musical notes
and their corresponding frequencies. Notes in a higher octave may be
obtained by doubling the frequency of the corresponding note in the
previous octave. Notes in a lower octave may be obtained by halving the
frequency of the corresponding note in the next octave.

186 1BM PCjr User's Handbook

Table 7-7. The Frequencies of Common Musical Notes

Note Frequency (Hz) Note Frequency (Hz)
C 261.63 middle C 523.25
CH# 277.18 CH 554.37
D 293.66 D 587.33
D# 311.13 D# 622.25
E 329.63 E 659.26
F 349.23 F 698.46
F# 369.99 F# 739.99
G 39200 |G 783.99
G# 415.30 G# 830.61
A 440.00 A 880.00
A# 466.16 A# 932.33
B 493.88 B 987.77

durationis the desired length of time that the note or silence is to be
sustained. duration can be calculated by multiplying the desired delay
time in seconds by 18.2. For example, to facilitate a 2 second delay,
duration must equal 36.4 (2 x 18.2).

volume can range from 0 to 15, with 15 being loudest and 0 being
silent. voice can range from 0 to 2. If this parameter is omitted, 0 will be
assumed.

PCjr executes the SOUND command as follows — first, the tone
generator will be instructed to produce the desired note. Then, the
program will continue executing program lines until another SOUND
statement is encountered. When encountered, the computer will wait
until the first statement is completed (duration runs out). Then, it will
execute the new SOUND statement in a manner similar to the first.
However, if the new statement has a duration of zero, that voice will
immediately be turned off.

When using Cartridge BASIC, the programmer has the option to
buffer the SOUND statements. To buffer means to continue program
execution even when a new SOUND statement is encountered. The
program merely stores the musical information of the SOUND statement
until the computer is able to execute it. Up to 32 unplayed SOUND

PCjr BASIC Graphics and Sound 187

statements can be stored this way. When SOUND statements are being
buffered, a zero value for duration will result in an error.

ADVANCED MUSIC

Activating all three voices requires three SOUND statements. While
SOUND gets the job done, it is not the most efficient means of program-
ming sound. A single PLAY statement can control any or all of the
voices. PLAY is similar to DRAW in that it employs a “tune definition
language.” This tune definition language in turn controls the voices. The
configuration for PLAY is as follows:

PLAY music0$[,[music18$][,music2$]]

music0$, musicl$ and music2$ are string constants or string expressions
consisting of music commands. music0$ controls voice #0; musicl$
controls voice #1; and music2$ controls voice #2. If a string is left out,
then that voice is not affected by the PLAY statement. For example, a
statement like the following would skip voices 0 and 1, and use voice #2:

PLAY, TUNES$

The commands in the “tune definition language” are listed in table
7-8.

188 IBM PCjr User's Handbook

Table 7-8. The Tune Definition Language

Com_mand

Result

#
A-G +

The note given is played. # or + after the note
means sharp, while - means flat.

Lx

This is used to set the length of each note. L1 indi-
cates a whole note; L2 a half note; L4 a quarter
note; L16 a sixteenth note, etc... x may range from
1 to 64.

If you wish to change the length for only one note,
you can do so by placing the length directly after
the letter for the note (ex. A4 would be a quarter
note A).

MB

This causes music to play in the background. Each
note or sound is placed in a buffer. This allows the
BASIC program to continue execution as music
plays in the background. As many as 32 notes can
be played in the background at any one time. MB
(music background) is the default value of MB and
MF.

MF

This causes music to run in the foreground. Each
note or sound will not begin to play until the
preceding note or sound has finished playing.

ML

Music legato causes each note to be played at the
entire length specified in L.

- MN

Music normal, results in every note being played at
7/8th of the value given in L (length). This is the
default setting of ML, MN and MS.

MS

Music staccato causes each note to be played at
3/4 of the time specified in L. -

Na

This is used to play the note specified in a, where a
can range from 0 to 84. Since there are 7 octaves
available, there are 84 notes available. If ais 0, a
rest is indicated.

PCjr BASIC Graphics and Sound 189

Table 7-8. (cont.) Definition Language

Command

Result

Ob

This is used to set the current octave. Seven
octaves are available. These are numbered from 0
to 6. Each octave extends from C to B. Octave 3
begins with middle C.

Pc

This is used to indicate a pause. The length of the
pause (as given in ¢), may range from 1 to 64 and is
calculated as in L (length).

Td

This is used to indicate the tempo. Tempo is
defined by the number of quarter notes per second.
d may range from 32 to 255. The default value for
dis 120.

Ve

Ve adjusts the volume. The volume must lie
between 0 and 15. This command is only valid
when SOUND is ON.

A period following a note causes it to be played as
a dotted note (the note’s length is muitiplied by
1.5). More than one period may follow a note. If
more than one period does follow a note, its length
will be adjusted as indicated. For instance, “A...”
will play 3.37 times as long as “A.” Periods may
also follow a pause to lengthen it in the same
manner.

>f

This is used to play the note given in f'in the next
higher octave. Each time the note specified is
played, the next higher octave is used, until octave
6 is attained.

<g

This functions as does >f. Each note is played in
the next lower octave.

X string$

~ This causes the execution of the specified string $.

'S9SI0U 9[qe[lBAR OY) SIZLIBWWNS 9[qe)
SUIMO[[0] 3 ‘MBS UIBYD B 3)B[NWIS 0} Pasn 3q P[nod 1By} punos pagdes
dI0W € §9)819U3F ISIOU JIPOLISJ “INOMO[q 311} B JO punos 3y} ‘Aouanbaiy
ay3 uo Surpuadap ‘10 sauidus 19)001 Jo punos 3y} aonpoid 01 pasn
3q u®d I "SuISSIY II[1BYMIWOS SPUNos asiou ANYp ‘swerdord swes
ur asn Jenonded e sey adA) yoeq -Isiou AIYM B SI)BIIPUL /- JOo aFuel
B 3[IyMm ‘astou d1potiad e saredsipul ¢- Jo a8uel y */ 03) woayafueidyj ur .
$31BN[BAS 1B} UOISSAIdXd OLISWNU B IO JUBISUOD JLIJWNU © SI 224N0S

uoneINp ‘ewn|oA ‘92.1n0s JSION

:SMOJ[0] se paIn31Juod si
FASION ‘purwIwWod JSION 241 Suisn £q asay) Suowre 319973s uwd 1owweIsd
-oad Sy ‘punos jualafyip e ssonpoid yoeq ‘pajersusd aq ued suriof
JABM 3st0u Jo sadA) 14SIg "NOBQPIIY 10 — IAISN[IXD YIIM I3)SI1TaI JIyS
e Juisn pajersusd are asay] °sasindwr [eOL1303[2 Jo douanbas tenFoun
ue Aq paonpoid s1 ‘S109jJ9 puUNOS Ul Pasn Se ‘90I0A ISIOU Y] ,'I0I0A
asiou,, ® SBY Y68P9LNS Y} ‘SIJ10A [BUOI 21y} SII O} UOTIPPE U]

$103443 ANNOS

$SA'SLA'SOA AVd 0€2

NO ANNOS 022

Buos ayy Aeid, o1L¢

$ONOS + .1d Ld SO. =$2A 002
$ONOS + .1d ¥O. = $IA 061
$ONOS + .£0. =$0A 081
sSpunoJ ojul Buos ay} 608|d, 0oLL
$ONOS + $ONOS = $ONOS 091
$YMOY + $6MOY + $2MOH + $LMOH = $DNOS 0S1
#¢0 4349 81.=$rMOH Ofl
4039>0< ¥, = $eMOY 0L
2D 4303 81.=$2MOH 02t

na 90 OO v-ln = $1MOH Ol-l
Buos ayy ajum, 001

4Dd
ay1 Aq [[9m inb paresidal st Auowiey jred 921y} Y[‘spunol ul jeog
INox MOy ‘Moy ‘moy,, Ar[d [[IM weiSosd sjdwexas Summofjoj ay .

}00QpPUPH sJesn IfOd el 061

PCjr BASIC Graphics and Sound 191

Periodic | White Source Sound
0 4 2330Hz high option; less coarse hiss
1 5 1165Hz medium pitch
2 6 582Hz low pitch; more coarse hiss
3 7 freq. of voice #2 depends on voice #2

Notice that for source = 3 and source =7, the frequency of voice #2 is
Loed instead of a fixed frequency. By varying voice #2, even more
complex sounds can be generated. Voice #2 can be controlled using either
SOUND or PLAY. For example, the following program uses SOUND to
vary voice #2 which in turn controls the NOISE output. Notice that
although the volume of voice #2 has been set very low, the voice still
controls the NOISE output.

100 SOUND ON
110 WHILE I>100 AND 1>32000

120 NOISE 3,15,3

130 SOUND 1,.00001,1,2
140 A$=INKEY$

150 IF A$="." THEN I=1"1.1
160 IF A$="," THEN I=1/1.1
170 PRINT |

180 WEND

180 1=4000

200 GOTO 110

By using the period (.) and comma (,) keys, the operator can vary the
frequency of voice 2. This, in turn, controls the frequency of the noise
output.

Writing a Game Program

In this section, the game, “BARRICADE” will be designed. The
object of the game is to avoid the barricades as well as your own trail. The
game will be written in BASIC so that it may be easily modified.

If the reader does not wish to follow the step-by-step designing of
BARRICADE, he may page through the chapter. All program lines may
easily be distinguished from the rest of the text. To play BARRICADE,

192 IBM PCjr User's Handbook

merely enter every line belonging to the prograin.
The first step in designing “BARRICADE” is to program the com-
puter to draw a trail. The following statements accomplish this:

100 SCREEN 3

110 CLS

120 KEY OFF

150 COLOR 3

170 X =80:Y = 100:A =65

180 PSET (X.Y)

190 lﬁﬂﬂﬂ*ﬁ*iMAIN LOOP*Q.'Q‘*!'Q

200 A$ = INKEY$

210 IF A$<>"" THEN A = ASC(A$)

220 IFA=44 THEN X = X-3
230 IF A =46 THEN X = X+3
240 IFA=65THENY =Y-3
250 - IFA=90THENY =Y+3

270 LINE -(X,Y)
310 GOTO 190

Line 100 enables low resolution graphics, while lines 110 and 120
clear the screen. Line 170 sets the initial position at screen location
(80,100). This is the center of the screen. The A = 65 statement that also
appears in line 170 selects “up™ as the initial direction of movement.

(A)
65

()44 ~— : 46 ()

w
90
(2

These values represent the ASCII coded values for the controller keys: A, Z, period and comma.

PCjr BASIC Graphics and Sound 193

Lines 190-310 set up a loop that will monitor the keyboard and act
accordingly. Line 200 accepts a keypress. Line 210 sets the direction
variable, A. Lines 220 through 250 recalculate the position variables
based on the current direction. Executing the program is the best way to
see how it operates. By the way, the program will not operate correctly
unless the CapsLock key is active. If the program does seem to be
operating correctly, try depressing the CapsLock key once.

Recall from our description of BARRICADE, that one of the rules
was that the player was not allowed to collide with the trail. The POINT
function will be used to check for collision. If the following line is added
to the program collisions will be detected:

260 IF POINT (X,Y) >THEN 20

The program has not yet been completed. When it is run, an error
occurs after every collision. This is because the computer does not know
where to jump when there is a collision. Let’s tell it, by adding the
following lines to the program:

130 SOUND ON

320 '******COLLISION ROUTINE*******
330 LOCATE 12,7

340 PRINT “COLLISION"

350 NOISE 4,15,20

360 NOISE 5,12,20

370 NOISE 6,9,40

380 FORJ=1TO 15

390 PALETTE 0,J

400 NEXT

410 IF INKEY$<>CHR$(13) THEN 410
420 GOTO 100

Lines 330 and 340 print the word, “COLLISION”in the center of the
screen. Lines 350-370 produce a noise that sounds something like an
explosion. Lines 380-400 flash the screen with a number of colors.
Finally, line 410 delays a new game from starting until Enter has been
pressed. .

BARRICADE’s score can be easily kept track of by merely incre-
menting a variable each time a move has been completed.

194 1BM PCjr User's Handbook

160 1=0

280 I=1+1

290 LOCATE 1,1
300 PRINT |;

A final technicality remains in the creation of a playing field. A
square field with scattered circular barriers was chosen.

140 GOSUB 430:'DRAW PLAYING FIELD
430 "*****DRAW PLAYING FIELD******
440 COLOR 9

450 LINE (2,10)-(4,199),.BF

460 LINE -(158,197),,BF

470 LINE -(156, 12),,BF

480 LINE (158,12)-(2, 10),,BF

490 FORJ=1TO6

500 X = 120*RND+20

510 Y = 150*RND+30

520 CIRCLE (X,Y),10*RND+10
530 PAINT (X.Y)

540 NEXT

550 RETURN

The ideas in this section by no means exhaust the possibilities that
could be added to “BARRICADE". Other upgrades might include:
keeping track of the high score, or adding another player. The only two
limiting factors are execution speed and one’s imagination.

Logo on the PCjr

- Introduction to Logo

Logo is a language which was originally designed to teach children
about programming computers. However, due to the simplicity and
power of Logo, it has become popular for many different age groups fora
number of different applications. .

Logo is best known for its excellent graphics capabilities. Simple
commands can be used to create graphics. This chapter will focus specifi-
cally on Logo’s graphics capabilities.

The version of Logo which will be discussed in this chapter is the
disk based IBM Logo version 1.00. This chapter is not meant to be a
reference chapter for Logo, but rather an introductory tutorial for the
inexperienced Logo programmer.

195

196 1BM PCjr User's Handbook

Loading the Logo Diskette

Logo can be loaded in two different ways depending on the present
state of the computer. The loading procedure is detailed below. If the
PCjris presently off, beginat step 1. If the PCjris presently powered on,
begin at step 5.

1. Insert the Logo diskette into the PCjr's disk drive.

2. Turnon the monitor, printer and any other peripheral device. Turn
on the computer after all other peripherals have been turned on.

3. A pause of 3 to 45 seconds will occur while the system check takes
place. Following the system check, the disk drive will engage, and
the Logo diskette’s contents will begin to load into memory.

4. Proceed to step 8.
5. Insert the Logo diskette into the disk drive of the PCjr.

6. Press the CTRL and Alt keys, and while holding them, press the
Del key. Then, release all three.

7. The computer’s memory will now be cleared. The disk drive will
engage and the contents of the Logo diskette will begin to load into
memory.

8. A message willappear prompting the user the enter a new date. The
date must be entered in the form month-day-year. The following
shows the prompt which will be displayed along with the user
response. In this example, the date 6-23-83 was entered:

A>DATE
Current date is Tue 1-01-1980
Enter new date: 6-23-83

9. Following the date prompt, a message will appear prompting the
user to enter a new time. The time must be entered in the form
hours:minutes:seconds.hundredths of seconds*. The following
shows the prompt which will be displayed along with the user
response. In this example, the time 16:34 (4:34 PM) was entered.

AS>TIME
Current time is 0:00:55.360
Enter new time: 16:34

* The seconds and hundredths of seconds may be omitted. These values will simply
default to zero.

Logo on the PCjr 197

10. Following the time prompt, the disk drive will engage and Logo
will begin to load into the computer’s memory. Once Logo has
been completely loaded into the computer’s memory, the Logo
prompt will appear on the display as follows:

IBM Personal Computer Logo Version 1.00
(C) Copyright IBM Corp. 1983

(C) Copyright LCSI 1983

Serial Number XXXXXXXX

WELCOME TO LOGO
?

At this point, Logo is ready and waiting for a command.

Exploring Turtle Graphics

“Turtle Graphics” is the term used to describe the type of graphics
which Logo uses. Logo uses a small character, which is called a turtle, to
create graphics. The turtle can be moved around the screen while leaving
a trail. The turtle can be thought of as a pen. By moving the turtle, lines
can be drawn.

FINDING THE TURTLE

When Logo is first loaded, the turtle cannot be seen. The command
SHOWTURTLE is used to make the turtle visible. The SHOWTURTLE
command can be abbreviated as ST.

EXAMPLE: ST
RESULT: The turtle becomes visible. ST has no affect if the turtle is

already visible.

The turtle can be made to disappear by using the command
HIDETURTLE. The HIDETURTLE command can be abbreviated as

HT.

EXAMPLE: HT
RESULT: The turtle disappears. HT will have no affect if the turtle is

not presently visible.

198 1BM PCjr User's Handbook

MOVING THE TURTLE

As stated earlier, the Logo turtle can be thought of as a pen. By
moving the turtle, lines can be drawn on the screen. There are several
commands which can be used to move the turtle. The FORWARD
command moves the turtle forward a specified numbers of pixels.*
Forward is defined as the direction in which the turtle is pointing. The
FORWARD command can be abbreviated FD.

EXAMPLE: FD 60
RESULT: The turtle moves forward 60 pixels. A line isdrawn from the
turtle’s starting point to its ending point.

The BACK command moves the turtle backwards a specified
number of pixels. Backwards is defined as the opposite direction from
which the turtle is pointing. The BACK command can be abbreviated
BK.

EXAMPLE: BK 70
RESULT: The turtle moves backwards 60 pixels. A line is drawn from
the turtle’s starting point to its ending point.

When Logo isinitially loaded, the turtle is located in the center of the
screen and is pointing upwards. The direction in which the turtle is
pointing can be changed by using either the RIGHT or LEFT commands.

The RIGHT command is used to turn the turtle a specified number
of degrees. There are 360 degrees in a complete circle. Therefore, 90
degrees is 1/4 of a complete turn, 180 degrees is 1/2 of a complete turn,
and so on. The RIGHT command will turn the turtle to the right the
specified number of degrees, while the LEFT command will turn the
turtle to the left the specified number of degrees. The RIGHT and LEFT
commands can be abbreviated RT and LT respectively.

* A pixel is one screen element. A pixel can be thought of as the smallest dot which
the computer can generate on the screen. There are 250 vertical pixels and 320
horizontal pixels.

Logo on the PCjr 199

EXAMPLE: RT 70
RESULT: The turtle will turn 70 degrees to the right.

EXAMPLE: LT 45
RESULT: The turtle will turn 45 degrees to the left.

We have now learned several commands which can be used to
manipulate the turtle. It is time to use what we have learned to create a
graphics display. First of all, clear the screen using the CLEAR SCREEN
command. To do this, simply type CS and press enter (CS is the abbrevia-
tionfor CLEAR SCREEN). Now, enter the following lines one at a time.
Be sure to press the ENTER key after each line is entered. Observe the
movements of the turtle as each line is entered.

FD 50
RT 90
FD 50
RT 90
FD 50
RT 90
FD 50

The turtle executed each command as it was entered. The result of
the preceding lines is a square in the middle of the screen.

THE LOGO EDITOR

In the previous section, the graphics commands FORWARD (FD)
and RIGHT (RT) were used to create a square on the screen. It took a
total of seven lines to create a square on the screen. It would be a tedious
task to type in the same seven commands more than once. Fortunately,
procedures can be defined in Logo.

A procedure is a set of instructions which can be executed by using
one command. For example, a procedure would contain all the instruc-
tions which were previously used to create the square.

Procedures are defined using the Logo Editor. To enter the Logo
Editor, simply type the command EDIT followed by the name of the
procedure. Forexample, to create a procedure called SQUARE, type the
following command:

EDIT "SQUARE

200 IBM PCjr User's Handbook

The following should now be displayed on the screen:
TO SQUARE

At this point, the Logo Editor is waiting for the instructions that will
define the procedure SQUARE. To define the procedure SQUARE,
press the Enter key and type the following lines. The four arrow keys may
be used to position the cursor. This feature is convenient for correcting
typing errors.

FD 50
RT 90
FD 50
RT 90
FD 50
RT 90
FD 50
END

The last command entered is the END command. The END
command must always be the last command entered when defining a
procedure. When all the lines in a procedure have been entered, press the
ESC (escape) key to complete the process.

Let’s check the procedure we have just defined to see if it functions as
desired. First of all, clear the screen by entering the CS command. Now,
enter the command SQUARE. The turtle did what was expected.

EXAMPLE: CS
SQUARE
RESULT: The screen is cleared and the instructions in the procedure
SQUARE are executed.

We have now learned several Logo commands. We have also
learned how to combine a number of commands into a procedure. The
instructions in a procedure can be executed simply by entering the name
of the procedure. Now, let’s go on and discover more Logo commands.

LIFTING THE PEN

As stated earlier, the Logo turtle may be thought of as a pen.
Whenever the turtle moves, a line is drawn from its starting point to its

Logo on the PCjr 201

ending point. However, at times it may be desirable to move the turtle
without drawing a line. This can be accomplished by using the PENUP
command (abbreviated PU). Executing the PU command is similar to
lifting the pen off the paper. The turtle can now be moved around the
screen without leaving a trail.

Similarly, the PENDOWN command (abbreviated PD), is used to
put the pen back down on the paper. Executinga PD command will cause
the turtle to leave a trail when it is moved around the screen.

EXAMPLE: PU
RESULT: The turtle will no longer leave a trail when it moves around
the screen. A PD command must be executed before the
turtle will leave a trail.

EXAMPLE: PD
RESULT: The turtle will leave a trail whenever it is moved around the
screen.

REPEATING COMMANDS

In many instances, it may be desirable to repeat a command or
commands. Logo’s REPEAT command facilitates command repetition.
The REPEAT command can be used to repeat a command a specified
number of times. The following example illustrates the format of the
REPEAT command:

EXAMPLE: REPEAT 20([FD5]
RESULT: The command FD 5 will be executed 20 times.
The previous example is identical to entering the command
FD 5 20 times

The REPEAT command has many useful applications. For exam-
ple, a circle can be drawn by executing one REPEAT command. A circle
can be drawn by repeating the two commands FD1 and RT1 360 times.
Let’s draw a circle using the REPEAT command. First of all, clear the
screen using the CS command. Next, enter the following line:

REPEAT 360 [FD | RT 1]

It will take the computer a few moments to complete the circle. This
is because it has to repeat two instructions 360 times.

202 IBM PCjr User's Handbook

The size of the circle can be increased or decreased simply by
changing the number of pixels moved for every degree turned. For
example, a larger circle can be drawn using the following command:

REPEAT 360 [FD 2 RT 1]

A smaller circle can be drawn using the following command:

REPEAT I80[FD | RT 2]

The REPEAT command could have been used to draw the square
which we created earlier in this chapter. If you recall, the square consisted
of two commands, which were repeated four times. Use the CS command
to clear the screen and enter the following line:

REPEAT 4 [FD 50 RT 90]

The preceding command created a square. It can be seen that the
REPEAT command is very useful when commands are to be executed
more than once.

FILLING AN AREA OF THE SCREEN

In the preceding sections, we learned the process for drawing shapes
such as circles and squares. Previously, however, only the outline of these
shapes were drawn. It is possible to fill a closed shape by using the FILL
command. The FILL command causes the closed shape which contains
the turtle to be filled in.

Let’s try the FILL command. First of all, clear the screen using the
CS command (you have probably already noticed that the CS command
also causes the turtle to return to the center of the SCREEN.) Now,
create a circle using the following command:

REPEAT 360 [FD | RT 1]

Now, the turtle must be positioned inside the circle. First of all, lift
the pen of the turtle using the PU command. Next, turn the turtle towards
the center of the circle using the RT 90 command. Move the turtle into
the circle by entering FD 20. In order to use the FILL command, the
turtle’s pen must be down. Therefore, enter the PD command. Finally,

Logo on the PCjr 203

enter the FILL command. The circle will now be filled in.

Let’s create a procedure which will draw a square and fill it in. First,
we must enter the Logo Editor by entering the EDIT command. The
name of this procedure will be FILLEDSQUARE.

EDIT "FILLEDSQUARE

Now, enter the following lines. Remember to press Esc when all the
lines have been entered.

CsS

PD

REPEAT 4[FD 50 RT 90]
PU

RT 45

FD 10

PD

FILL

END

The following steps should be followed to fill a particular area.

1. Raise the turtle’s pen by using the PU command.

2. Move the turtle into the closed shape which is to be filled.
3. Put down the turtle’s pen by using the PD command.

4, Enter the FILL command.

TURTLE COORDINATES

As stated earlier in this chapter, the display screen is made up of
screen elements known as pixels. These pixels can be divided into a
coordinate system with the center pixel being labeled 0,0. With this type
of coordinate system, the X or horizontal coordinate can have a value
ranging from -159 to 160. The Y or vertical coordinate can have a value
ranging from -124 to 125.

This type of coordinate system allows the turtle to be relocated to a
specific point. A simple command, the SETPOS command, can be used
to relocate the turtle to any point on the screen.

204 1BM PCjr User's Handbook

EXAMPLE: SETPOS [2040]
RESULT: The turtle will move from its present position to the
coordinate position (20,40). A line will be drawn from its
previous position to its new position if the pen is down.

The turtle’s present position can be determined by using the com-
mand PRINT POS. PRINT POS will print the coordinates of the turtle’s
present position.

EXAMPLE: PRINT POS
RESULT: Two numbers will be displayed on the screen. The first
number is the turtle’s X coordinate and the second number is
its Y coordinate.

If only one of the two coordinates needs to be changed, a specialized
command can be used. For example, if only the turtle’s X coordinate
need be changed, the command SETX can be used. If only the turtle’s Y
coordinate need be changed, the command SETY can be used.

EXAMPLE: SETX 30
RESULT: The turtle will move to the X coordinate 30. The Y coordi-
nate will not be changed. A line will be drawn from the old X
coordinate to the new X coordinate.

EXAMPLE: SETY 70
RESULT: The turtle will move to the Y coordinate 70. The X coordi-
nate will not be changed. A line willbe drawn from the old Y
coordinate to the new Y coordinate.

The turtle’s home or starting position is (0,0). The HOME command
will cause the turtle to return to its home position.

EXAMPLE: HOME
RESULT: The turtle will move to its home position (0,0). A line will be
drawn from the turtle’s old position to the point (0,0).

Color

Up to this point, we have only used a black background and a white
turtle. We will now show how to change the color of both the background
and the turtle.

Logo on the PCjr 205

BACKGROUND COLOR

The background color can be changed by using the SETBG com-
mand. The background can be changed to any one of 16 colors. The 16
available background colors are listed in table 8-1.

TABLE 8-1. Background Colors

Number Color Number Color
0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow
7 White 15 High-Intensity White

EXAMPLE: SETBG 8
RESULT: The background color becomes gray.

EXAMPLE: SETBG 12
RESULT: The background color becomes light red.

The color code of the background color presently being used can be
displayed using the following command:

PRINT BG

EXAMPLE: PRINT BG
RESULT: Thecolor code of the present background color being used is
displayed on the screen.

PEN COLOR

The color of the turtle, or the pen color, can be changed using the
SETPC command. The SETPC command is used in conjunction with
the SETPAL command to determine the pen color. Logo includes three
different pen color numbers and two different palettes. Therefore, a total
of six colors are possible. These colors, along with there respective color
code combinations, are given in table 8-2.

206 1BM PCjr User's Handbook

TABLE 8-2. Pen Colors

EXAMPLE:

RESULT:

EXAMPLE:

RESULT:

SETPC SETPAL Resulting Color
1 0 Green
2 0 Red
3 0 Brown
1 1 Cyan
2 1 Magenta
3 1 White

SETPAL 0

SETPC 2

The turtles pen will turn red, and any lines drawn by the
turtle will be red.

SETPAL |

SETPC 3

The turtle’s pen will turn white, and any lines drawn by the
turtle will be white.

The present value of the pen color and the palette can be displayed
using the PRINT command.

EXAMPLE: PRINT PC
RESULT: Displays the present value of the pen color.
EXAMPLE: PRINT PAL
RESULT: Displays the present value of the palette.
CLEAN-UP

We have already encountered the CLEARSCREEN command
(CS). The CS command clears the graphics screen and returns the turtle
to its home position. The CLEAN command also clears the graphics
screen. However, the CLEAN command does not cause the turtle to
return to its home position. Instead, the turtle will remain at its present

position.

Logo on the PCjr 207

Neither of the preceding commands will clear the textat the bottom
of the screen. The CLEARTEXT (or CT) command is used to clear the
text at the bottom of the screen. The CT command will clear only the text
and will not affect the graphics screen.

SOUND

Logo has the capability of generating a wide range of musical
sounds. All sound is controlled by one command, the TONE command.
The TONE command is followed by two parameters. The first parameter
is the frequency of the desired note. The frequency can range from 37 to
19723. Table 8-3 includes a list of the more popular musical notes and
their corresponding frequencies.

The second parameter of the TONE command is the duration for
which the specified frequency is to be generated. The duration can range
from 0 to 9999. A duration of 18 is approximately one second.

TABLE 8-3. Musical Notes and Frequencies

Note Frequency Note Frequency Note Frequency
C 130.810 F 349.230 B 987.770
D 146.830 G 392.000 C 1046.800
E 164.810 A 440.000 D 1174.700
F 174.610 B 493.880 E 1318.500
G 196.000 C* 523.250 F 1396.900
A 220.000 D 587.330 G 1568.000
B 246.940 E 659.260 A 1760.000
C 261.630 F 698.460 B 1975.500
D 293.660 G 783.990
E 329.630 A 880.000

EXAMPLE: TONE 392 32
RESULT: A G note will be generated for approximately two seconds.

EXAMPLE: TONE 880 128
RESULT: An A note will be generated for approximately eight
seconds.

* Middle C

208 1BM PCjr User's Handbook

SAMPLE PROCEDURE

The following are sample procedures. Only commands which have
been discussed in this chapter will be used.

PROCEDURE 1:

EDIT "CIRCLE

CS

REPEAT 360 [FD 1 RT 1]
PU

RT 90

FD 20

PD

FILL

END

PROCEDURE 2:

EDIT "SINEWAVE

CS

REPEAT 3 [REPEAT 90 [FD .93 RT 2]
REPEAT 90 [FD .93 LT 2]]

RT 90

FD 320

END

PROCEDURE 3:

EDIT "FIGURES

CS

REPEAT 180 [FD 1 RT 2}
REPEAT 180 [FD 1 LT 2]
END

Logo on the PCjr 209

PROCEDURE 4:

EDIT "3DBOX
cs

REPEAT 4 [FD 60 RT 90]
FD 60

RT 45

FD 60

RT 45

FD 60

RT 135

FD 60

LT 45

FD 60

LT 135

ED 60

LT 45

FD 60

HT

END

PROCEDURE HANDLING

At this point, we have defined several procedures. Also, several
options are available. If you wish to review all the procedures which are
currently defined, enter the command POPS.

EXAMPLE POPS
RESULT: All procedures along with their instructions will be dis-
played on the screeen.

If only one procedure is to be displayed, the PO command can be
used. Entering PO followed by the name of the procedure enclosed in
quotation marks will cause that procedure to be displayed.

EXAMPLE: PO "SQUARE
RESULT: Displays the procedure SQUARE on the screen.

Procedures currently defined can be saved on disk for future use.
The SAVE command will save all procedures under the specified file
name.

210 IBM PCjr User's Handbook

EXAMPLE: SAVE “FILEI
RESULT: All procedures which are presently defined will be saved on
disk under the name FILEI.

The LOAD command is used to retrieve procedures which have
been previously stored on disk.

EXAMPLE: LOAD “FILEI
RESULT: Loads into memory all the procedures stored under the
filename FILEI.

CONCLUSION

This chapter has explained only a few of the many capabilities of the
Logo language. The user should now have a strong foundation upon
which he or she can continue on to learn of all the capabilities of Logo.

9

DOS 2.1 Features

Introduction

DOS is an abbreviation for Disk Operating System. IBM DOS
consists of a group of programs which allow the user to manage informa-
tion on diskette. The DOS programs (commands) are themselves pro-
vided on a diskette known as the DOS diskette. The original DOS
diskette should not be used in day to day operations -- copies should be
used instead. Procedures for copying the original DOS diskette will be
detailed in this chapter. DOS start up as well as DOS command usage will
also be explained.

There are several versions of DOS that can be used with IBM
computers. This chapter will focus specifically on version 2.1. This is the
version that is used with the PCjr. The label on the DOS diskette should
specify the version of DOS.

Notice that the DOS diskette does not have a write protect notch. Ifa
diskette does not have a write protect notch, it is permanently write
protected and no data can be written to it by the computer. This will

21

212 1BM PCjr User's Handbook

prevent the user from accidentally erasing data by overwriting it with new
data.

NOTATION

DOS allows the user to enter data with uppercase letters, lowercase
letters, or a combination of both. To prevent confusion, our examples will
use upper and lowercase letters except for the names of DOS commands,
program names, and filenames. These will be displayed in uppercase
letters in our examples.

TYPES OF COMMANDS

There are two types of DOS commands on the DOS diskette. These
are internal commands and external commands. Internal commands are
those which are loaded into the memory when DOS is loaded. External
commands are not loaded with the DOS, but remain on the DOS
diskette. In order to access an external command, the DOS diskette must
be inserted in the drive before the command is given. Table 9-1 shows
which commands are internal and which are external.

TABLE 9-1. Internal and External Commands

Internal External
BREAK GOTO THNME ASSIGN MODE
CHDIR IF TYPE BACKUP MORE
CLS MKDIR VER CHKDSK PRINT
COPY PATH VERIFY COMP PROMPT
CTTY PAUSE VOL DISKCOMP | RECOVER
DATE REM DISKCOPY RESTORE
DIR RENAME EXE2BIN SORT
ECHO RMDIR FIND SYS
ERASE SET - FORMAT TREE
FOR SHIFT GRAPHICS

DOS 2.1 Features 213

STARTING DOS

Generally, DOS will be started whenever the computer is started.
When starting (or loading) DOS, a copy of the DOS programs will be
read from the DOS diskette and loaded into the computer’s memory. The
diskette drive will emit a series of noises while this is taking place. The
steps involved in loading DOS with the computer off are as follows:

1. Insert DOS diskette in drive A and close the drive door.
2. Turn on printer, monitor, and then computer.

3. A pause of 3 to 45 seconds will occur while the system check
takes place. The disk drive will emit a series of noises while
DOS is being read into memory.

If the computer is already on, DOS can be loaded by performing a
systemreset. A system reset first causes the current contents in memory to
be erased. DOS is then loaded into memory. A system reset is similar to
turning the computer off and then on. The following steps should be
taken to reset the system and load DOS:

1. Insert the DOS diskette in drive A and close the drive door.

2. Press the CTRL and ALT keys, and while holding them press
the DEL key. Then, release all three.

3. The disk drive’s in-use light will come on while DOS is being
read into memory. '

ENTERING THE DATE

When DOS has been loaded and is ready, a message similar to that
shown below will be displayed on the screen:

Current date is Mon 4-01-1983
Enter new date:

The new date should be entered as follows:

1. Enter one or two numbers from 1 to 12 for the month.

214 1BM PCjr User's Handbook

2. Enter a dash (-) or a slash (/).

3. Enter one or two numbers from 1 to 31 for the day.
4. Enter a second dash or slash.

5. Enter two numbers between 80 and 99 for the year.
6. Press the Enter key.

DOS will check the date entry to be certain that it is valid. If not, the
following will be displayed:

Invalid Date
Enter new date:

The following would all be valid entries for June 10, 1983:

6-10-83
6/10/83
06/10/83

ENTERING THE TIME

Earlier versions of DOS may not require a time entry. However, with
version 2.1 of DOS, once the date has been entered, the following prompt
will appear:

Current time is 0:01:21.53
Enter new time: _

Time is displayed in the following format:
Hour:Minutes:Seconds. Hundredths of Seconds

The numeric keys at the top of the keyboard will be used to set the
time. The steps for setting the time are as follows:

1. Enter one or two numbers in the range (0-23) for the hours.
2. Enter a colon (3).

3. Enter one or two numbers in the range (0-59) for the minutes.
To enter seconds and hundredths of seconds, continue with
steps 4 through 7. Otherwise, skip to step 8, and DOS will set
these values to zero.

DOS 2.1 Features 215

4. Enter another colon (:).
5. Enter one or two numbers in the range (0-59) for seconds.

6. Enter a period (not a colon) to separate seconds from hun-
dredths of seconds.

7. Enter two numbers in the range 00 to 99 for the hundredths of
seconds.

8. Press the Enter key.
The following would all be valid entries for 10 A.M.:

10:00
10:00:0.00
10:00:0

If an invalid entry was made for time, the following message will be
displayed:

Invalid Time
Enter new time: _

DOS PROMPT

Once a valid time has been entered, the following will be displayed on
the screen:

The IBM Personal Computer DOS
Version 2.10 (c) Copyright IBM Corp. 1981,
1982, 1983

A> _'\
N
DOS Cursor

Prompt

A>is known as the DOS prompt. A prompt is an indication to the
user that he or she is to enter data. Note that the DOS prompt isa letter (A
or B). This letter identifies which drive is the default drive (or current
drive). The default drive is the drive that DOS assumes will contain the
diskette or files specified by the commands. The default drive can be
changed from A to B by entering the following:

216 1BM PCjr User's Handbook

A>b:
B> __

Although the PCjr has only one disk drive, the drive identifier B can
still be used. The same drive will now be identified as drive B. The utility
of this feature will become evident later in this chapter and in more
advanced applications.

DOS Keyboard Usage

In the next few pages, we will discuss how some of the keys on the
IBM keyboard are used with DOS.

ENTERING A COMMAND

Enter

The Enter key is used to execute or start a
command after it has been typed in.

STOPPING A COMMAND

A command can be stopped in one of two
ways. One way is to hold down the Function

+
B key while pressing the Break key. When both
keys are released, the command will stop. The
DOS prompt will appear, and the next com-
o mand can be entered.
g % The second way to stop a command is to
S hold down the Control key while pressing the C
* key.
c
L

CORRECTING TYPING ERRORS

There are several ways of correcting errors in a DOS command. We
will discuss two of the most commonly used here, the Backspace and the

DOS 2.1 Features 217

Escape keys. Note that mistakes can only be corrected before the Enter
key has been pressed to execute the command.

- ——
Backspace

Esc

The Backspace key moves the cursor one
character to the left. The Backspace key deletes
characters as the cursor is moved to the left.
Once the Backspace key has deleted characters,
the correct characters can be entered.

The Escape key can be used to erase an
entire line. A backslash will appear, and the
cursor will move down one line on the screen
where the command can be re-entered.

SLOW SCREEN SCROLLING

Scrolling is a term which is used to de-
scribe the process where information continues
to move upward on the screen as new informa-
tion replaces it on the bottom of the screen.

If scrolling is taking place too fast to read

- the data on the screen, press the Controland S

keys together and then release them. To display
new data, press any key. '

SEND DATA ON THE SCREEN TO THE PRINTER

PrtSc

Data appearing on the screen can be sent
to the printer as well. First of all, be sure that
the printer is turned on and loaded with paper.
Then, press and hold the Function key while
pressing the PrtSc (Print Screen) key.

218 IBM PCjr User's Handbook

SEND KEYBOARD ENTRIES TO THE PRINTER

If a printer is connected to the system,
keyboard entries can be sent to the printer as
well as to the screen by pressing the Function
key simultaneously with the Echo key. Then,
release both keys.

All subsequent keyboard entries will be
displayed on the screen and also simultane-
ously transmitted or echoed to the printer. To
end this echoing, again press the Control and
Print Screen keys s1multaneously, and then
release same.

SYSTEM RESET

Ctrl

As previously mentioned, to begin DOS
overagain, be sure a DOS diskette isindrive A.
Then, press and hold the Ctrl and Alt keysand
press the Del key. Then, release all three keys.
DOS will be reloaded and the DOS start up
message will appear.

DOS EDITING KEYS

The DOS editing keys can be used to correct DOS commands. The
DOS editing keys should be used to edit within a line. To operate on one
or more complete lines within a file, use the Line Editor program
(EDLIN). EDLIN is discussed later in this chapter. However, if EDLIN is
active and editing is to take place within a line, the DOS editing keys can
be used for that purpose.

DOS 2.1 Features 219

One principle to keep in mind when entering DOS command lines is
that the line entered via the keyboard is retained in an input buffer when
Enter is pressed. Since this line remains in the input buffer, it can be used
as a template which can be edited as desired by the DOS editing keys. The
user has the option of repeating the template line, changing it with the
DOS editing keys, or entering an entirely new line. The DOS editing keys
are summarized in Table 9-2.

TABLE 9-2. DOS Editing Keys

Key Function

Del Skips over one character in the template without moving
the cursor i

Esc Cancels the line currently being displayed without affecting
the template

Fl Copies and displays one character from the template

F2 Copies all characters up to the character specified

F3 Copies all characters remaining in the template to the
screen

F4 Skips over all characters prior to the character specified

F5 Causes the line currently displayed to become the new
template without sending it to the receiving program

Ins Allows characters to be inserted within a line

DOS Usage

In the remainder of this chapter, we will discuss the application of
DOS commands to everyday disk operating tasks. To clarify our exam-
ples, commands and user’s responses will be underlined.

COPYING YOUR DOS DISKETTE

As mentioned previously, a copy of the DOS diskette should be
made. This original DOS diskette is also known as the master diskette.

220 1BM PCjr User's Handbook

Copies, or back-ups, should be used in day to day operation. The master
diskette should be stored in a safe place. That way, if the back up DOS
diskette becomes damaged or misplaced, additional copies can be made
from the master. The procedure for copying the DOS diskette is as
follows:

Step 1. Start DOS and be certain that the DOS prompt (A>)
is displayed. Do not remove the DOS diskette from the disk
drive.

Step 2. Enter the following:
A > DISKCOPY I €— denotes pressing Enter
The following prompts will be displayed:

Insert source diskette in drive A:

Strike any key when ready
The DOS diskette is the source diskette. Therefore, at this
point, simply press any key.

Step 3. Swapping procedure. A prompt will now appear
requesting insertion of the target diskette. The target diskette is
the diskette which is to contain the copy of the DOS. This
diskette can be a new diskette and does not have to be format-
ted. Insert the new diskette and press any key.

Prompts will be displayed describing which disk is to be
inserted in the drive. Each time a prompt is displayed, insert the
specified diskette and press any key. Remember, the source
diskette is the DOS diskette and the target diskette is the new
diskette. When the computer has completed making the DOS
copy, the following prompt will be displayed:

Copy complete
Copy another (Y/N)?

At this point, press “"N”, and the DOS prompt will appear. .
The original DOS diskette should now be stored in a safe place.
Use the copy for daily use.

DOS 2.1 Features 221

FILES, FILENAMES, AND FILENAME MATCH CHARACTERS

At this point, you have gained some knowledge as to the organiza-
tion of diskettes (chapter 1). You have gained an introductory knowledge
of DOS and have learned how to copy your DOS diskette master. Before
continuing our discussion of DOS, we will explain the concepts of files,
filenames, and filename extensions.

A file is a group of related information. For example, a file might
consist of a list of all the names, addresses, and phone numbers of your
customers. A file might also contain the text of a standard form letter
being sent to sales prospects. A file could also contain a program to edit
and print the form letters. The advantage of grouping informationina file
is that it can be easily retrieved by DOS, and can be stored on diskette
when it is not being used.

A number of files can be stored on a single diskette. IBM DOS 2.1
allows up to 64 files per single sided diskette (112 for double-sided). Every
file that is stored on the same diskette must have a unique filename. In
other words, no two files on the same diskette can have the same filename.
A filename consists of a primary filename and an optional filename
extension. Examples of filenames are given below. Note that the second
example does not contain a filename extension.

TEXT.DAT
PROGRAMI
NEW.TXT
ACCOUNT.BAS

IBM DOS allows primary filenames of up to eight characters in
length. These characters can be the letters of the alphabet, integer
numbers (0-9), or the following symbols: '

$#&@!'B()-{1" ="

The filename extension is an optional name that can appear after the
primary filename. The filename extension begins with a period and either
one, two, or three characters. When a filename extension is included in a
- filename, both the primary filename and the extension must be used to
identify the file in DOS.

When inventing filenames, it is a good idea to make up a filename

222 1BM PCjr User's Handbook

that somehow identifies the information contained in that program. For
example, the following would be a good name for a BASIC program file
that printed a list of a firm’s customers:

CUSTLIST.BAS

In situations where the same DOS operations are to be performed
with several files, it may be advantageous to copy all of the data files on
one diskette to another diskette. DOS includes two filename match
characters. These allow the user to specify a number of files with just one
specification. These characters are the asterisk (*) and the question mark
(7). For example, if the current drive (A) contained the following files,

TEXT1.DAT
TEXT2.DAT
TEXT3.DAT
TEXT4.DAT
TEXTS.BAK

and the following DOS command was entered,

DIR TEXT?.DAT

all files except the TEXTS5.BAK would be listed.
If the following DOS command was entered,

DIR TEXT?.2??

all of the above files would be listed.

The asterisk (*) in a primary filename or filename extension is used
to indicate that any character can be placed in that particular position in
the rest of the filename. Using our previous example’s files, if the follow-
ing DOS command were entered,

DIR *.BAK
the following file would be listed:

TEXTS.BAK

DOS 2.1 Features 223

If the following DOS command was entered,

DIR TEXT?.*

all of the files would be listed.

FORMATTING A DISKETTE -- FORMAT

Before a new diskette is used, it must first be formatted using the
FORMAT command. The FORMAT command writes on every sector of a
diskette, initializes the directory,initializes the File Allocation Table,and
places a program known as the boot record at the beginning of the
diskette.

The directory is used to store the names of the files on the diskette
along with other data regarding the files such as size, location, and data
created. The File Allocation Table is located adjacent to the directory on
the diskette. The File Allocation Table keeps track of which sectors
belong to which file, as well as available unused disk space. Each diskette
contains one directory and two copies of the File Allocation Table. The
second copy is used as insurance in case the first is unreadable for some
reason. :

FORMAT is an external command. Therefore, the DOS diskette
must be inserted before the command is given. When the FORMAT
command is given, directions as to how to proceed will appear on the
screen. The following messages will be displayed when the FORMAT
command is executed. Those parts which are underlined are the user’s
response.

A > FORMAT/V J
Insert new diskette for drive A:
and strike any key when ready

Formatting...Format complete

Volume label (11 characters, ENTER for none)? DISK1-
xxxxxx bytes total disk space
xxxxxx bytes available on disk

Format another (Y/N)? N
A>

224 1BM PCjr User's Handbook

The preceding example shows the FORMAT command being issued
along with the V or volume option. Including the /V with the FORMAT
command allows the user to assign a name to the new diskette. The name
of the diskette is referred to as its volume label. It is a good practice to
include a volume label on all new diskettes. The volume label can become
the identifying factor for all diskettes. In the preceding example, the
volume label was given as DISKI.

When the formatting procedure has been completed, a prompt will
appear which asks whether another diskette is to be formatted. At this
point, simply press “N”, and the usual DOS prompt will appear. The
formatting process is now complete.

BACKING UP DISKETTES

Back up copies should always be made of important diskettes, soifa
diskette becomes damaged or if a file is accidentally erased, the user will
still have access to that information. IBM DOS includes two different
commands for creating back up; DISKCOPY and COPY.

The DISKCOPY command is used to copy an entire diskétte to
another. DISKCOPY copies every file on the diskette including DOS in
one operation. DISKCOPY is the fastest method of copying a diskette.
DISKCOPY is only recommended when copying to new diskettes (for-
matted or unformatted). If the diskette being copied to either has defec-
tive tracks or has had a large amount of data written and then erased, the
use of the COPY command is recommended.

The COPY command can also be used to copy one or more of a
diskette’s files to a different diskette. The COPY command is slower than
the DISKCOPY command. However, it is the preferred method of copy-
ing to a diskette where a substantial amount of data writing and erasure
has taken place. This is because unlike the DISKCOPY command which
creates an exact duplicate of the original, the COPY command writes files
sequentially - or one right after the other. This sequential writing of files
results in better performance, as the files are all grouped together. When
files are copied with DISKCOPY, they may be spread throughout the

diskette.

DOS 2.1 Features 225

DISKCOPY

Since the PCjr contains only one diskette drive, the original diskette
must be removed and replaced with the diskette on which the copy is to be
made. This process is known as swapping. Once DISKCOPY has been

“executed, diskettes may have to be swapped as many as 4 or 5 times before
the entire copying operation has been completed. To begin DISKCOPY,
enter the following:

A > DISKCOPY

DOS will display the following prompt when it is necessary to swap
diskettes:

Insert source diskette in drive A:
Insert target diskette in drive A:

The source diskette is the original diskette. The target diskette is the
back up. When the disk swapping process has been completed, the
following message will appear:

Copy complete
Copy another (Y/N)?

If N is entered, DISKCOPY will end, and the DOS prompt will
appear.

Once a disk has been copied, it is good practice to check for any
errors on the newly copied disk. The DISKCOMP command can be used
to compare two diskettes. If any differences are discovered between the
two diskettes, an error will be displayed. To begin DISKCOMP, enter the
following: :

A > DISKCOMP !

As with DISKCOPY, DOS will prompt the user when it is necessary
to swap diskettes. Ifa discrepancy occurs during the comparison, anerror
message will be displayed. When the comparison procedure has been
completed, a message will be displayed stating so.

226 1BM PCjr User's Handbook

COPY -- COPYING A FILE TO THE SAME DISKETTE

As discussed previously, COPY can be used to make back up copies
of one or more diskette files. Files can be copied to the same diskette (as
long as a new filename is used), or to a different diskette The following
configuration is used to copy a file to the same diskette with a different
filename:

COPY original backup

original is the name of the file being copied, and backup is the name
of the copy. Remember to always use different filenames when copying
files to the same diskette. A diskette cannot contain two files with identi-
cal filenames.

COPY -- COPYING A FILE TO A DIFFERENT DISKETTE

Just as with DISKCOPY, since the PCjr contains only one drive, disk
swapping will be necessary. The prompt messages used by COPY give the
impression that the system contains two drives. To prevent confusion,
think of COPY’s prompt messages as referencing diskettes rather than
drives.

Assuming a system drive contained a diskette containing DOS and a
file named TEXTA, the following entry should be made to copy TEXTA:

A > COPY TEXTA B: -/
The following prompt would then be displayed:

Insert diskette for drive B: and
strike any key when ready

The original diskette should then be replaced with the diskette which
is to contain the copy of TEXTA. This diskette should have already been
formatted. If the file being copied is large, it may be necessary to swap
diskettes several times. If this is the case, DOS will prompt for the diskette
swaps. When the copying process has been completed, the DOS prompt
will appear.

Once a file has been copied, it is a good practice to check that it had
been copied correctly. The COMP command can be used to accomplish

DOS 2.1 Features 227

this. The COMP command will cause the computer to check for any
discrepancies between the two specified files. The following is an example
of COMP:. In this case, the files TEXT1 and TEXT2 are compared. We
have assumed that both files are on the same diskette and that DOS is
resident on the diskette.

A>COMP TEXT1 TEXT 2

The previous example will compare two files residing on the same
diskette. In order to compare files which reside on different diskettes, a
drive specification must be given. The following example shows how files
on different diskettes can be compared. The prompts will instruct the user
which diskette is to be inserted in the drive. When the prompt asks for
drive A, insert the first diskette. When the prompt asks for drive B, insert
the second diskette.

A > COMP A:TEXT1 B:TEXT1 -

A:TEXT1
Insert diskette for drive B: and strike
any key when ready

and B:TEXT1
Eof mark not found
Files compare ok

Insert diskette for drive A: and strike
any key when ready

Compare more files (Y/N)? n
A>

DISKETTE DIRECTORY -- DIR

The Directory command (DIR) can be used to list one, several, orall
of the files on a diskette. The following entry will list all files on the
diskette that is inserted in drive A:

A>DIR -

228 IBM PCjr User's Handbook

The following information pertaining to each file would also be
displayed:

Filename

Filename extension

File size in bytes

Date and time when data was last written to the file

After all of the files have been listed, the amount of free diskette
space will be displayed in bytes.

In certain instances, it may be necessary to check a diskette to see if it
includes a certain file. The following entry would check the diskette in
drive’ A for the existence of TEXTA:

A>DIR TEXTA -

Filename match characters can also be used with DIR to display
several files. The following entry would display all files on the diskette in
drive A with the filename extension .BAS:

A>DIR *.BAS -
DISPLAYING A FILE'S CONTENTS -- TYPE

The TYPE command allows the user to display a file’s contents on
the screen. The following entry would display the contents of TEXTA on
the screen: &

A > TYPE TEXTA -~

By pressing the Functionand Echo keys simultaneously prior to the
entry of the TYPE command, the file’s contents will be sent to the printer
as well as displayed on the screen.

RENAMING A FILE -- RENAME

The RENAME command is used to change a file’s name. The follow-
ing RENAME command will change the name of TEXTA to FILEA.
Note that the “old” name precedes the “new” name in the command.

A > RENAME TEXTA FILEA ~

DOS 2.1 Features 229

ERASING A FILE -- ERASE

The ERASE command allows the user to remove files from a diskette
that no longer are needed. The following commands will erase the file-
name TEXTA from the diskette in drive A:

A > ERASE TEXTA -

The DEL command can be used interchangeably with the ERASE
command. Both commands give the same results.

CLEARING THE SCREEN -- CLS

At times, the display screen may become cluttered with information.
This would make it desirable to have some means of clearing the screen.
Fortunately, DOS hasa command that will clear the screen and return the
cursor to the upper left-hand corner of the display screen. This command
is the CLS command. Upon execution, the CLS command will clear the
entire screen and return the cursor to its upper left-hand side. The
following example illustrates the correct syntax for the CLS command:

A>cCLS -

CHANGING THE DOS PROMPT -- PROMPT

By this point, the DOS prompt (A>) should be familiar. This
prompt can be changed to any group of characters desired using DOS’s
PROMPT command. Any text entered following the PROMPT command
will become the new prompt. The following example shows the prompt
being changed to "ENTER COMMAND”:

operator types —> A > PROMPT ENTER COMMAND ~!
ENTER COMMAND __ & cursor

Several special characters can be used to create variable prompts.
These special characters will generate the prompts listed in table 9-3. The
”$” character must precede the special character to display the variable

B

230 IBM PCjr User's Handbook

prompt. The following example illustrates the use of the special character
"T” to set the time as the new DOS prompt:

A > PROMPT $T
3:37:22.18 _

T

cursor

TABLE 9-3. Special Prompt Characters

Character Prompt
$ Displays ”$” character
T Displays current time
D Displays current date
P Displays the current directory of the default drive
\" Displays the version of DOS (version number)
N Displays the default drive letter
h Causes a backspace and erases last character
E Displays the escape character
— Causes a carriage return and line feed

CHANGING THE DATE -- DATE

Earlier in this chapter, we learned how to enter the date when DOS is
loaded. Now, we will learn how to change the date using the DATE
command. The correct syntax for the DATE command is as follows:

A > DATE <

DOS 2.1 Features 231

Once the DATE command has been entered, the current date will be
displayed. (The current date is the date which was entered when DOS was
loaded.) Following the current date, a prompt will be displayed request-
ing the new date. A new date may be entered at this point. Use the same
format for entering the data as was used when DOS was loaded. The
following is a sample of the prompts displayed when the DATE command
is entered:

A >DATE -
Current date is Tue 1-24-1984
Enter new date:

CHANGING THE TIME -- TIME

Earlier in this chapter, we learned how to enter the time when DOS is
loaded. Now, we will learn how to change the time using the TIME
command. The correct syntax for the TIME command is as follows:

A >TIME -

Once the TIME command has been entered, the current time will be
displayed. (The current time was initiated when DOS was loaded.) Fol-
lowing the current ti=e, a prompt will be displayed requesting the new
time. A new time may be entered at this point. Use the same format for
entering the time as we did when DOS was loaded. The following is a
sample of the prompts displayed when the TIME command is entered:

A>TIME -
Current time is 12:34:29.31
Enter new time:

CHANGING THE STANDARD 1/0 DEVICE -- CTTY

When DOS is loaded, the standard input and output device is set to
the console (keyboard and display). The standard input and output
device can be changed to any device which can be used for input and
output. A modem, for example, can be used as an input and output
device. A printer, however, cannot be used as an input and output device.

The CTTY command can be used to change the standard input and
output device. The CTTY command must be followed by the device name

232 1BM PCjr User's Handbook

of the new input and output device. Some legal device names are AUX,
COM1, and COM2. The following is a typical CTTY command that will
change the input and output device to COM2:

A>CTTY com2 -

DETERMINING THE VERSION OF DOS -- VER

When DOS was first loaded, a message appeared stating the version
of DOS being used. The version of DOS being used can be verified by
entering the VER command. VER results in a message being displayed
which states the version of DOS being used. The following illustrates the
usage of VER:

A>VER -
IBM Personal Computer DOS Version 2.10
A> '

ANALYZING A DISKETTE -- CHKDSK

Frequently used diskettes should be regularly checked for errors.
DOS’s CHKDSK command will display the status of the diskette and
optionally correct any errors. CHKDSK (also known as the Check Disk
command) is used to analyze the directories and File Allocation Table
and to produce a disk and memory status report. The following configu-
ration should be used with the CHKDSK command. Information within
the brackets are optional.

CHKDSK [filenamel[/F][/V]

If a filename is specified, CHKDSK will display the number of
non-continuous areas that are occupied by the specified file. /F causes
CHKDSK to automatically correct errors found in the directory and File
Allocation Table. /V causes CHKDSK to display a set of messages which
provide information on the command’s progress and the errors it discov-
ers. After the diskette has been checked, any pertinent error messages will
be displayed along with the following status report:

DOS 2.1 Features 233

-

Volume DSKAA Created MAY 12, 1984, 11.00

XXxxxx bytes total disk space
xxxxxx bytes in x hidden files
xxx bytes in x directories
xxxxx bytes of x user files
xxxxxx bytes available on disk

xxxxxx bytes total memory

\ xxxxxx bytes free j

The x’s will be replaced by integers in an actual display. It is recom-
mended that CHKDSK be periodically run on frequently used diskettes to
check for errors and determine available free space.

SCREEN DUMPING -- GRAPHICS

The act of copying an entire screen of graphics onto the printer is
known as a screen dump. Screen dumping is supported by DOS 2.1.
DOS’s GRAPHICS command can be used to prepare the PCjr for a screen
dump. The GRAPHICS command has no arguments or parameters.
Simply enter the command, GRAPHICS, while in DOS. The computer is
now ready to copy a graphics screen onto the printer.

The following example illustrates the procedure involved in a screen
dump:

Step 1. Load DOS and enter the GRAPHICS command.
A > GRAPHICS -
The computer will respond with the DOS prompt.
Step 2. A graphics screen will now be created. This example

will create a graphics screen in BASIC. Type BASICA to enter
BASIC*. Once BASIC has been loaded, enter the following

program:

* The BASIC cartridge must be inserted in the proper slot.

234 1BM PCjr User's Handbook

10 LPRINT CHR$(27);"A";CHR$(8)
20 CLS

30 SCREEN 2

40 FOR1=1TO 100

50 LINE -(640*RND, 200*RND)

60 NEXT |

This program will create a random graphics screen. Line
10 is an escape character which instructs the printer to print
nine lines per inch.* Lines 20 through 60 create the graphic
screen. **

Step 3. Once the program has been loaded, enter the RUN
command. Lines will be drawn randomly on the screen.

Step 4. When the drawing has been completed, hold down the
Function and PrtSc keys simultaneously. ‘The entire graphics
screen will be printed on the printer. This process may take a
few minutes.

CHECKING DATA WRITTEN TO A FILE -- VERIFY

When the computer writes data, such as a file, onto the disk, it
normally does not check whether or not that data was written properly.
The VERIFY command can be used to cause the computer to automati-
cally check whether data was correctly written to the disk. The following
examples illustrate the three possible syntaxes for the VERIFY command:

A > VERIFY ON -}
A > VERIFY OFF -
A > VERIFY

The first example turns on VERIFY. This means that every time the
computer writes to the disk, it will automatically check to be sure that the
data was properly written.

* Line 10isa specific command for the 1BM parallel printers. If a different printer is being used,
line 10 may have to be changed.
** Refer to chapter 7 for an explanation of the graphics commands.

DOS 2.1 Features 235

The second example turns off VERIFY. The computer will not check
whether data was properly written onto the disk.

When VERIFY is entered without any parameters (example 3), the
current status of VERIFY (ON or OFF) will be displayed.

SAVING A DAMAGED DISKETTE -- RECOVER

Diskettes that are used frequently or mishandled may become dam-
aged. If any sectors containing data are damaged, all of the data on that
sector will be lost. If a sector containing the directory is damaged, all of

the filesin that portion of the directory can no longer be accessed as usual.
. Fortunately, DOS 2.1 provides a method for recovering data from all
sectors of the diskette not directly damaged. The RECOVER command
causes the computer to recover any or all files on a diskette.

Specifying a filename after RECOVER will cause the computer to
recover only the specified file (minus any data lost because of a bad
sector). If the RECOVER command is entered without a filename, the
entire diskette will be recovered (minus any data lost in bad sectors).

An important note to keep in mind is that when an entire diskette is
recovered, the computer will automatically rename all the files that have
been recovered. The filenames will be in the form FILEnnnn.REC*.

The following two examples provide the correct syntax for the
RECOVER command. The first example will recover the file TEXTS5. The
second example will recover the entire diskette in drive A.

A > RECOVER TEXT5 -
A>RECOVERA: .J

* Files will be numbered in the order in which they were recovered. The number of the recovered file
will be displayed in place of the nnnn in the filename. A typical directory of a recovered disk might
be as follows:

FILE000! REC 5120 1-01-80 12:12a
FILE0002 REC 17408 1-01-80 12:12a
FILEGC03 REC 18432 1-01-80 12:12a
FILE0004 REC 2048 1-01-80 12:12a
FILE0COS REC 6144 1-01-80 12:12a

FILE0006 REC 7168 1-01-80 12:12a

236 1BM PCjr User's Handbook

CHECKING THE VOLUME LABEL OF A DISKETTE -- VOL

Earlier in this chapter, we learned how to format a diskette as well as
how to assign a volume label to a diskette. The volume label is used
strictly for identification and organizational purposes.

The VOL command can be used to read the volume label of a
particular diskette. The correct syntax for the VOL command is shown
below:

A>VOL J
Volume in drive A is REPFILES

TRANSFERRING THE OPERATING SYSTEM -- SYS

The SYS command is used to transfer the operating system from the
default drive to the drive specified in the command. The following illus-
trates the correct syntax for the SYS command. The letter following the
SYS command specifies the drive to which the operating system is to be
transferred. '

A>SYS A:J

The following files will be copied to the drive specified when SYS is
executed:

IBMBIO.COM
IBMDOS.COM

When using SYS, the diskette in the drive specified by the command
must previously have been formatted with the FORMAT command and
/S or /Boptionsso as toallocate the directory entries for IBMBIO.COM
and IBMDOS.COM. If this is not done, SYS will not be able to transfer
the operating system files.

The SYS command was designed to be used to transfer a copy of the
DOS files to an applications program diskette formatted to use DOS, but
sold without DOS.

DOS 2.4 Features 237

CONTROLLING THE BREAK KEY -- BREAK

The BREAK command can be used to cause DOS to check for a
control break whenever the program requests a DOS operation (ex. disk
access). The BREAK command can appear in one of three forms. If the
keyword ON is entered following BREAK, DOS will check for a control
break whenever a program requests any DOS function. If the keyword
OFF is entered following BREAK, DOS will only check for a control
break during screen, keyboard, printer, or asynchronous communica-
tions operations. When BREAK is encountered without parameters, the
current status of BREAK (ON or OFF) will be displayed.

The following examples illustrate the correct syntax for BREAK:

A >BREAKON J
A > BREAK OFF !
A > BREAK -

PRINTING A LIST OF DATA FILES -- PRINT

The PRINT command allows a queue (list) of data files to be output
on the printer while the computer is undertaking other processing tasks.
As many as ten filenames can be specified with PRINT. Only files in the
current directory can be opened for printing. The following configuration
is used with PRINT:

PRINT [[d: filename][/ T][/CI[/P]...]

/T sets the terminate mode. In this mode, all queued files will be
cancelled from the print operation. If a file is in the process of being
printed, the printing will stop, a cancellation message will be generated,
the paper will advance to the top of the page, and the printer’s alarm will
sound. '

/C sets the cancel mode which allows the user to select one or more
files which are to be cancelled from the print queue. The filename preced-
ing /C and all subsequent filenames until a /P has been specified will be
cancelled.

/P sets the print mode. The filename preceding /P and all subsequent
filenames until a /C has been specified will be added to the printer queue.

238 IBM PCjr User's Handbook

If no parameters are given in the command line, a list of all the files in
the print queue will be displayed.

When PRINT is executed for the first time, the following message
will be displayed:

Name of list device [PRN]:

The user should then specify the output list device. This can be LPTI,
LPT2, LPT3, PRN, COMI, COM2, or AUX. The default is PRN. PRN
can be selected by just pressing the Enter key.

After PRINT has been executed, the files will be queued for printing
in the order specified in the command line. After each file has been
printed, the printer will advance to the top of the next page.

A > PRINT a:texta !
A>PRINT /T J
A > PRINT text?/C -J

In the first example, texta is added to the print queue. In the second
example, the printer queue is emptied. In the final example, any files in
the print queue that match text? will be removed from the queue.

Filters

Filters are special DOS commands which can be used to manipulate
or change files in some way. Filters can be used to examine or completely
change a file. Filters normally use the standard output device for display
purposes. However, the filter command’s output can also be sent to a file.

Special characters can be used to redirect a filter’s input and output.
The less than symbol (<) can be used to direct a particular file as input to
a filter. The greater than symbol (>) can be used to direct the output of a
filter to a particular file. The double vertical slash (}) can be used to cause
the output of one command to be the input of a filter.

A>SORT <LIST J
A>SORT < LIST > OUTCOME
A>DIR| SORT

DOS 2.1 Features 239

The previous three examples illustrate several of the possible uses of
the special redirectional characters (< >). The first example will cause
the file named LIST to be the input to the SORT filter. The output will be
displayed on the default output device (usually the display screen unless
changed using the CTTY command). The second example will use the file
named LIST as the input to the SORT filter and the output will now go to
a file named OUTCOME. The third example will direct the output of the
DIR command as input to the SORT filter.

There are three filters in DOS version 2.1. These are FIND, MORE,
and SORT. These three filters will be explained individually in the follow-
ing three sections.

LOCATING A STRING IN A FILE -- FIND

At times, it may be desirable to locate only part of a file. The FIND
filter can be used to do so. Any and all lines containing a specified string
can be located using the FIND filter. The FIND filter must be followed by
the string which is to be searched for. Following this string, a filename
must be specified. The following is a typical FIND filter:

A > FIND “"BUSINESS" TEXT1

The previous example will look for the string BUSINESS in the file
named TEXTI. The computer will then display all lines containing the
~ string BUSINESS. The entire line will be displayed.

More than one filename can be specified after the string specification
in FILE. In this case, every occurrence of the specified string in each file
will be displayed. These will be displayed in the same order in which they
appeared in the files. If more than one file was specified, the occurrences
in the first file will be displayed first, followed by the second, and so on.

Several options can be used with the FIND filter. These options are
designated by single characters and must follow the keyword FIND. Each
character which represents an option must be preceded by a slash (/)
when used with the FIND filter. Table 9-4 describes these options and
shows their corresponding character representations.

240 IBM PCjr User's Handbook

TABLE 9-4. FIND Options

Character
Representation Option Effect

\Y Causes the FIND command to display all the
lines that do not contain the specified string.

C Causes the FIND command to display only the
number of occurrences of the specified string in
the specified file.

N Causes the FIND command to display the line
number along with the line containing the speci-
fied string.

A > FIND/V "BUSINESS” TEXT1 -J
A > FIND/C "BUSINESS" TEXT1 J
A > FIND/N "BUSINESS” TEXT1 -J

The previous three examples all designate the same file but perform
different tasks. The first example will display all the lines that do not
contain the word BUSINESS. The second example will display a number
that represents the number of times the word BUSINESS appears in the
file TEXTI. The third example will display all the lines containing the
word BUSINESS along with their respective line numbers.

SCREEN FILLING -- MORE

Earlier in this chapter, we discussed the TYPE command and its
usage for displaying a file’s contents on the screen. This is fine for short
files, but what would happen if the file contained more information than
the screen could hold. Using the TYPE command with such a file would
cause the contents of that file to scroll off the screen before it could be
read. The only information visible would be the last page. Fortunately, a
DOS filter command is available which solves this problem. The MORE

DOS 2.1 Features 241

filter command can be used to display a file’s contents one page ata time.

The MORE filter will display one page of a file and pause. The
prompt "--MORE--" willappear at the bottom of the screen. At this point,
pressing any key will cause the next page of the file to be displayed. Once
again, the prompt "--MORE--" will appear at the bottom of the screen.
Press any key to display the next page. This process of displaying one page
ata time will continue until the file’s entire contents has been displayed. If
MORE is to be exited before the entire file has been displayed, press
CTRL-C or Fn-BREAK. The DOS prompt will then appear.

The following example uses the MORE filter. In this case, the file
named TEXTI is piped into the MORE filter. The file TEXTI will be
displayed one page at a time.

A >MORE <TEXT1

SORTING -- SORT

DOS version 2.1’s SORT filter can be used to sort a file’s lines by
ASCII code either in ascending or descending order. The following
examples describe usage of SORT along with all of its options.

Example 1: Sorting a File in Ascending Order.

The following example will sort the file CUSTLIST and store the
newly sorted file into the file called NEWLIST. If ">NEWLIST” had not
been included in this example, the sorted file would have been displayed
on the screen. It would not have been saved as a file.

A > SORT <CUSTLIST >NEWLIST -

Example 2: Sorting a File in Descending Order

By including a /R after the SORT command, a reverse sort can be
accomplished. The following example will reverse sort the file named
CUSTLIST and store that newly sorted file as NEWLIST. If ">NEW-
LIST” had not been included in this example, the reverse sorted file
would have merely been displayed on the screen. It would not have been
saved as a file.

A >SORT/R < CUSTLIST > NEWLIST

242 1BM PCjr User's Handbook

Example 3: Sorting a Specified Column

The SORT filter can sort a specified column in a file. For example,
the SORT filter could be used to sort a file according to the ninth column
of each line. The column where the sort should take place must be
specified in the following format:

[+n

where 7 is the column number.

The following example will sort the directory according to column
14. Column 14 of the directory is the size of each file. Therefore, the
following example will sort the directory in ascending order according to
file size:

A>DIR| SORT/+14

Batch Processing

Batch processing allows automatic execution of a file with a filename
extension of .BAT. Naturally, this file must have been created prior to its
execution as a batch file. The proper configuration for executing a batch
file is given below. The items enclosed in brackets are optional.

[drive specifier:] filename [parameters)

Notice that only the primary filename and not the filename extension
(.BAT) need be entered. The .BAT extension is assumed.

Batch processing can be temporarily stopped by pressing the FN and
BREAK keys (or CTRL and C keys). When these keys are pressed, the
following prompt will appear:

Terminate batch job (Y/N)?

If Y isentered, batch processing will be ended and the system prompt
(A>) will appear. If N is entered, the current command only will be
ended, and batch processing will continue with the next command in the
file.

DOS 2.1 Features 243

AUTOEXEC.BAT FILE

The AUTOEXEC.BAT file represents a special usage of batch pro- -
cessing. Whenever DOS is started, the command processor will search for
a file with the filename AUTOEXEC.BAT. If this file is present, it will be
executed automatically upon system start up.

CREATING A BATCH FILE

A batch file can be created either via the line editor (EDLIN) or by
using the console as an input device. The line editor will be explained later
in this chapter. We will explain the use of the console here.

Suppose that you wished to create an AUTOEXEC.BAT file that
would automatically run a BASIC program called LIST.BAS. Your first
entry would be as follows:

A > COPY CON: AUTOEXEC.BAT I

The preceding command instructs DOS to copy from the console
device into AUTOEXEC.BAT. Your next entry would be as follows:

BASICLIST

This entry places a command in AUTOEXEC.BAT to load BASIC
and run the LIST program.

Press the F6 key followed by Enter to mark the end of the AUTOEX-
EC.BAT file and end the use of CON: for input. Now, when DOS is
started, BASIC will automatically be loaded and the program LIST will
be run.

USING REPLACEABLE PARAMETERS WITH .BAT FILES

When you enter the commands to be included in a batch file, youcan
include replaceable parameters. These replaceable parameters will be
replaced by values specified when the batch file is executed. Up to 10
replaceable parameters can be used. These are %0, %1, %2, %3, %4, %5,
%6, %7, %8 and %9. The dummy parameters are replaced one by one in
ascending order. The first dummy parameter, %0 is always replaced by
the filename of the batch file preceded by the drive designator (if one is

244 IBM PCjr User's Handbook

specified).
The following entries illustrate the use of replaceable parameters in a
batch file:

A > COPY CON:FILE.BAT I
COPY %1.TXT %2.TXT !
TYPE %2.TXT

TYPE %0.BAT

F6 1~
1 File copied
A>

The batch file named FILE.BAT will now be placed on the diskette in
the current drive, A.

EXECUTING A BATCH FILE
WITH REPLACEABLE PARAMETERS

To execute a batch file with replaceable parameters, simply enter the
name of the batch file followed by the parameters to be substituted for
%1, %2, %3, etc.

If the following were entered,

A >FILE.BAT A:OLD B:NEW !

FILE would be substituted for %0, A:OLD would be substituted for %1,
and B:NEW would be substituted for %2.

BATCH SUBCOMMANDS

Batch subcommands are commands that can be executed directly
froma batch file. Table 9-5 gives a listing of all the batch commands along
with their proper configurations. Table 9-5also includes a short explana-
tion of each subcommand.

* F6 indicates that the F6 key is to be pressed.

DOS 2.1 Features 245

TABLE 9-5. Batch Subcommands

Subcommand

Configuration

Reference

ECHO

ECHO [ON/OFF/ message]

ECHO ON causes batch commands
to be displayed on the screen as
they are read from the batch file.
ECHO OFF stops this display.
ECHO ON is the default. message
causes a message to be displayed
even if ECHO has been turned off.

FOR

FOR % % variable IN (set)
DO command

FOR allows the repeated execution
of DOS commands. %%variable is
set sequentially to each member of
set. The command is then evalu-
ated and executed.

GOTO

GOTO label

GOTO causes commands to be
executed beginning with the line
immediately after label. A label in
a batch file is a character string
where the first 8 characters are sig-
nificant.

IF [NOT] condition command

The IF subcommand allows condi-
tionalexecution of DOS commands.
The condition parameter is one of
the following:

ERRORLEVEL number

string| == string2

EXIST filespec

When the IF condition is true, the
DOS command is executed. Oth-
erwise, it is passed by and the next
command is executed.

ERRORLEVEL number is true if
the previous program had an exit
code of number or higher.

246 IBM PCjr User's Handbook.

Subcommand Configuration

Reference

(cont.) (cont.)

IF IF[NOT] condition command

string| == string2 is true when both

" are identical.

EXIST filespec is true if filespec is
found on the indicated drive.

SHIFT SHIFT

SHIFT allows command lines to
make greater use of the replaceable
parameters (%0-%9). SHIFT shifts
all parameters on the command
line one position to the left with %0
being replaced by %], etc. This
allows over 10 parameters on the
command line.

PAUSE PAUSE [remark]

This subcommand suspends sys-
tem processing and causes the fol-
lowing message to be displayed:

Strike a key when ready...

REM REM [remark]

This subcommand displays remarks
within a batch file.

Introduction to EDLIN

DOS’s line editor (EDLIN) can be used to create, modify, and
display source or textfiles. A source file isan assembly language program
in source language format which has not been assembled.

The text of the files which are being processed by EDLIN are divided
into lines. The length of these lines can vary -- with a maximum of 253
characters per line. Numbers are automatically assigned to these lines.
Although these line numbers are displayed during the editing session,
they are not actually present within the file being edited.

DOS 2.1 Features 247

EXECUTING EDLIN

EDLIN is executed using the following configuration:

EDLIN [d:] filename [/ B]

If the file specified does exist on the current drive, the file will be
loaded into memory until it is 75% full. If enough memory is available to
load the entire file, the following message and prompt will be displayed:

End of input file

If the entire file cannot be loaded, the file will be loaded line by line
until memory has become 75% full. The EDLIN prompt (*) will then be
displayed.

When only a portion of a file has been loaded, only those lines which
have been loaded into memory can be edited. Before you can edit the
remaining lines, some of the edited lines in memory must be written to the
diskette so as to free available memory for the unedited lines.

If the /B parameter is not specified, EDLIN will cease the loading
when it encounters Ctrl-Z (EOF mark). When /B is specified, the entire
file will be loaded, regardless of any EOF characters.

If the file specified is not present on the designated drive, a new file
with that name will be created. When this occurs, the following message
and prompt will appear:

New file

The asterisk is
the EDLIN prompt

You may now enter lines into this new file after issuing an Insert lines
command (discussed later).

When the editing process is ended, both the original and the edited
files will be saved on a diskette. The original file will be renamed with the
same primary filename and an extension of .BAK. The new file will have
the filename specified in the EDLIN command.

248 1BM PCjr User's Handbook

When EDLIN is executed, if a file exists with the same primary name
as the file specified and filename extension .BAK, that file will be erased.
A new file with the same primary name as the file specified and extension
$$$ will be created. This file will eventually be used to hold the edited file,
and its filename extension will be changed from $$$ to that specified in
the EDLIN command. ‘

A file with an extension of .BAK cannot be edited. If you wish to edit
such a file, first use the RENAME command to change the filename
extension from .BAK.

EDLIN Command Summary

In this section, we will discuss the various commands that can be
used with EDLIN. All EDLIN commands consist of a single letter except
the Edit line command. Commands generally are used with parameters.
Both commands and parameters can be entered in uppercase, lowercase,
or a mixture of both.

Generally, commands and their parameters are separated by delim-
iters (spaces or commas) to improve their readability. However, thisis not
required. Delimiters are only required between two adjacent line
numbers. '

DOS commands can be aborted by pressing Fn-Break. A DOS
command will be executed when Enter is pressed at the end of the
command. If a large amount of data is being displayed as a result of a
DOS command, you can hold the screen by pressing Ctrl-S. To continue
the scrolling, press any key.

The following parameters will be used in our discussion of DOS
commands:

line Three entries can be made for /ine. An integer from 1 to 65529
can be used to identify a particular line.

A period (.) can be used to identify the current line. The current
line is used to mark the location of the last change in the file
being edited. This does not have to be the last line displayed.
The current line is identified by an asterisk which appears
between the line number and first character in the line.

DOS 2.1 Features 249

A pound sign (#) is used to identify the line after the final line in
memory.

n This specifies the number of lines to be written to the diskette
or read from the diskette.

The n parameter is used only with the Write Lines and Append
Lines commands. These commands are used when the file
being edited is too large to fit in memory.

string One or more characters are to be entered in place of this
parameter. These characters represent text to either be searched
for, replaced, deleted, or to be used in place of other text. The
string parameter is only used with the search text and replace
text parameters.

APPEND LINES EDLIN COMMAND

The Append Lines command is used to append lines from the
diskette to the file in memory being edited. These lines are added to the

end of that file.
Configuration

[7] A

The Append Lines command is only used when the file being edited
is too large to fitin memory. If no nis included, the number of lines to be
appended are not specified in the command. In this case, lines will be
appended until available memory is 75% filled. When the last line of a
diskette file has been appended into memory, the following message will
be displayed:

End of input file

COPY LINES EDLIN COMMAND

The Copy Lines command copies the range of lines specified in the
first two parameters to the line number specified by the third parameter.
This new data is inserted before the line indicated in the third parameter.

The Copy Lines operation is repeated the number of times specified
in the optional parameter count. count has a default value of 1.

250 IBM PCjr User's Handbook

Configuration

[linel,[line},line[,count] C

If either of the first two parameters are omitted, the line being copied
defaults to the current line. In effect, this results in the current line being
copied to the line specified in the third parameter.

When Copy Lines is executed, the file’s lines are renumbered to
reflect the repositioned lines. The first line which has been copied will
become the current line.

Example

1,3,8C

In the preceding example, lines 1 through 3 are copied to line 8. Line
8 becomes the current line.

DELETE LINES EDLIN COMMAND

The Delete Lines command is used to delete a specified group of lines
from the file being edited.

Configuration

[line](,line] D

When lines are deleted, the line following the last line deleted will
become the current line in memory. The current line and those lines
following it will be renumbered.

If both parameters are included, that range of lines will be deleted. If
the first parameter is deleted, the deletion will begin with the current line
and continue to the line specified by the second parameter (note the
comma’s inclusion to denote the second parameter).

If the second parameter is omitted (/ineD or line, D), only the single
line named will be deleted. If both parameters are omitted, only the
current line will be omitted.

EDIT LINE EDLIN COMMAND

This command is used to enter the line number of the line to be
edited.

DOS 2.1 Features 251

Configuration
[line]

If no entry is made (the Enter key is pressed), this indicates that the
line following the current line is to be edited. When this command is
executed, the line number entered and its contents will be displayed. The
line number will then be repeated on the following line.

This may then be edited using the Control and Editing keys, or the
line may be completely replaced by entering new text. When editing is
complete, press Enter, and the edited line will be placed in the current file
where it will become the current line.

If after reviewing the line displayed by Edit Line, you decide not to
edit it, you can either press FN-Break or the Enter key (if the cursor is at
the first position) to abort the command.

END EDIT EDLIN COMMAND

The End Edit command is used to end EDLIN and to save the file
being edited on diskette.

Configuration
E

The file being edited will be stored on a diskette with the name
specified when the EDLIN command was issued. The original version of
the newly edited file will be saved with the filename extension .BAK.

When editing files, be certain that there is enough available diskette
space to store both the original file and its backup. If enough space is not
available, that part of the file in memory for which diskette space is not
available will be lost. When the EDLIN command has been ended, the
DOS prompt will appear.

INSERT LINES EDLIN COMMAND

The Insert Lines command is used to insert lines of text in front of the
line number specified. If no line number is specified, the insertion will
occur before the current line.

252 1BM PCJr User's Handbook

Configuration

[line] 1

If the specified line number is greater than the highest existing line
number, or is specified as #, the insertion will be made after the final line
in memory.

As each new line is typed in, press the Enter key. A new line number
will be displayed every time Enter is pressed. To end the Insert command,
press the FN-Break keys.

The line following the inserted lines will become the current line.
Both the current line and all following lines will be renumbered to reflect
the insertion.

LIST LINES EDLIN COMMAND

The List Lines command is used to display the lines specified in the
command. The current line is not changed by this command.

Configuration

[line]l,line] L

If the first parameter is omitted, the display will begin 11 lines before
the current line, and 23 lines in total will be displayed.

If the second parameter is omitted, a total of 23 lines will be dis-
played beginning with the specified line.

If both parameters are omitted, a total of 23 lines will be displayed.
These include the 11 lines immediately preceding the current line, and the
11 lines immediately following the current line. If there are not 11 lines
preceding the current line, additional lines following the current line will
be displayed to total 23 lines.

MOVE LINES EDLIN COMMAND

The Move Lines command moves the range of lines indicated by the
first two line parameters ahead of the line indicated by the third line
parameter. '

If either of the first two parameters are omitted, the parameter will
default to the current line. Note that the third parameter is required.

DOS 2.1 Features 253

Configuration

[linel,[linel,line M

After the move has been completed, the first line moved will become
the current line. The lines are renumbered following the move.

Example

50M

In the preceding example, the current line is moved just ahead of line
50.

PAGE EDLIN COMMAND

The Page command lists the block of lines indicated by its
parameters.

Configuration

[linell,line] P

If the first line is omitted, the default is the current line plus 1. If the
second line is omitted, 23 lines are listed. Page differs from List Lines in
that it changes the current line to the last line displayed.

QUIT EDIT EDLIN COMMAND

The Quit Edit command is used to end the editing session without
any of the editing changes being saved.

Configuration

Q
When the Q command is used, the following prompt will appear:
Abort edit (Y/N)?

If you wish to exit EDLIN with no changes made in the original file,
enter Y. Otherwise, enter N and continue editing.
Note that when you execute EDLIN, your previous backup copy

254 IBM PCjr User's Handbook

(with the .BAK filename extension) will have been erased. Therefore,
exercise caution when using the Q command as your backup file will have
been erased.

REPLACE TEXT EDLIN COMMAND

The Replace Text command is used to replace existing string data
with new data.

Configuration
[line][,line}[?7] R string [F6string]

The Replace Text command will replace the characters specified in
the first string with those specified in the second string in the range of lines
given preceding the R. If a second string is not specified, the characters
given in the first string will be deleted. The last line changed will be the
current line.

The optional parameter ? is used to display a prompt (Ok?) after each
line to be modified. If a Y-or Enter is pressed, the modification will be
made. Otherwise, the modification will not be made.

If the first /ine parameter is omitted, the search will begin with the
line after the current line. If the second line parameter is omitted, the
second line value will default to the last line. If both line parameters are
omitted, all lines in memory will be searched.

Note that the F6 key is used to separate the two strings. A Ctrl-Z
entry can also be used to separate these.

SEARCH TEXT EDLIN COMMAND
The Search Text command is used to search a specified range of lines
for a designated string.
Configuration
[linell,linel[7] S string
Unless the ? parameter is used, the first line to contain a matching

string will be displayed and the search will end. This line will become the .

current line.
If no match isfound, the following message will be displayed, and the

DOS 2.1 Features 255

search will end. The current line will remain the same.

Not found

If the optional ? parameter is included, the following prompt will be
displayed when a match is encountered:

Ok?

If Y or Enter is pressed in response to this prompt, the matching line
will become the current line and the Search Text command will end.

If any other entry is made, the search will continue until another
match is found or until all the lines in the specified range have been
searched.

If the first line parameter is omitted, the default value will be the first
line following the current line. If the second /ine parameter is omitted, the
value will be the last line. If both are omitted, all lines from the line after
the current line to the last line will be searched.

TRANSFER LINES EDLIN COMMAND

The Transfer Lines command is used to merge a specified file into the -
file that is currently being edited. '

Configuration
[line] T [d:] filename

The filename specified will be inserted prior to the line specified. If
line is omitted, the default will be the current line.

The file being merged will be read from the current directory of the
drive indicated. If a path was specified in EDLIN, then the directory
specified by that path will be the current directory, and any Transfer Lines
command for that drive must indicate a file from that directory.

WRITE LINES EDLIN COMMAND

The Write Lines command is used to write to the diskette file from
the lines being edited in memory. The lines are written beginning with the
first line. '

256 IBM PCjr User's Handbook

Configuration

[n] W

The Write Lines command need only be used in instances where the
file being edited was too large to fit into memory. In these cases, edited
lines in memory must be written to the diskette file before additional lines
can be appended with the Append Lines command.

DOS COMPONENTS

The core of DOS consists of three programs, the boot record,
IBMBIO.COM, and IBMDOS.COM.

The boot record is a program that lies at the very beginning of your
DOS diskette. The boot record is automatically loaded into memory
when DOS is started (or booted). The boot record then loads the remain-
ing DOS programs. The boot record is placed on all diskettes by the
FORMAT program.

IBMBIO.COM is a program which handles the transfer of data
between the computer’s memory and the various input and output devices
attached to it. IBMBIO.COM is also placed on the diskette by the FOR-
MAT program. IBMBIO.COM will not be included in a directory listing
of a DOS diskette’s files.

IBMDOS.COM includes a file management program and a number
of service programs that are used to control programs written to run
under DOS. Like IBMBIO.COM, IBMDOS.COM will not be included ina
directory listing of a DOS diskette’s files.

10

PCjr Communications

Communications with the PCjr

The IBM PCjrcan be used as a terminal to communicate with other
computers via phone lines. This is accomplished through the use of the
IBM internal modem and a Terminal Emulator program.

INTERNAL MODEM

The IBM internal modem contains all the hardware necessary for
phone line communications. The internal modem must be installed
directly into the PCjr’s system unit. For a detailed explanation on instal-
lation, refer to the manual that accompanies the internal modem.

Once the internal modem has been properly installed in the system
unit, the PCjr may be connected to the telephone lines. A cable is
provided with the internal modem which must be used to connect the
PCjr to a standard modular telephone jack. Insert one end of the cable
into the port in the rear of the system unit marked with an M. Insert the

257

258 IBM PCjr User's Handbook

other end into a standard modular telephone jack. The modem is
powered by the PCjr and is ready for operation whenever the PCjr is
powered up.

TERMINAL EMULATOR

The internal modem supplies all the hardware necessary for
communications over phone lines. However, a program is also necessary
to utilize this available hardware. A program that is used with a modem
for communications purposes is known as a Terminal Emulator pro-
gram. The PCjr’s cartridge BASIC has a built-in Terminal Emulator.
This program is designed to utilize the IBM internal modem for com-
munications purposes.

IBM TERMINAL EMULATOR

The Terminal Emulator program that is built into the BASIC
cartridge can be accessed directly from BASIC. The TERM command is
used to load and run the Terminal Emulator program.

EXAMPLE: TERM
RESULT: The Terminal Emulator program is loaded into memory
and begins execution.

Keep in mind that when the TERM command is entered, any
program that was in memory will be lost and any open files will be closed.
Any program in memory should be saved on disk before the TERM
command is entered.

When the Terminal Emulator program begins execution, the screen
will clear and the following message will be displayed:

(TERM) — TERMINAL EMULATOR

Following this message, the Terminal Emulator program checks to
see if the internal modem is present. If the internal modem is present, the
baud rate will automatically be set to 300.

The terminal selection menu will now be displayed on the screen.
The terminal selection menu appears as follows:

PCjr Communications 259

(TERM)—Terminal Emulator

1 Line Bit Rate [300] (300..4800)
2 Data Bits [7]1 (7 or 8)

3 Parity [E] (E,O.N)

4 Host Echos [Y] (Y or N)

5 Screen Width [80] (40 or 80)

6 Modem Command []
Change <line,data>?

f1-conv f2-exit f3-nul f4-break

The terminal selection menu allows transmission specifications to be
programmed into the Terminal Emulator. The transmission specifica-
tions depend primarily on the capabilities of the host computer. The
transmission specifications presently being used are enclosed in brackets.
The parentheses enclose the options which may be chosen. Each trans-
mission specification will now be discussed individually.

LINE BIT RATE (BAUD RATE)

The baud rate is the speed at which data will be transferred between
the PCjr and the host computer. Several different baud rates can be
specified in the Terminal Emulator program. However, the internal
modem can only transmit and receive at a baud rate of 300. When the
Terminal Emulator program is initially executed, the baud rate is set to
300 if the internal modem is present. If a device other than the internal
modem is to be used, the baud rate can be increased.

CHANGING THE BAUD RATE

All specifications are changed by entering the line where the change
is to occur, followed by the change itself. In the case of the baud rate, the
line number is 1. Therefore, to change the baud rate, simply type the
number | followed by acomma and the new baud rate. Acceptable values
for baud rate are 300, 600, 1200, 1800, 2400, and 4800.

260 IBM PCjr User's Handbook

EXAMPLE: 11,1200
RESULT: The baud rate is changed to 1200. The new baud rate will
appear in the brackets in line 1. The numbers in the paren-
theses show the possible range of values for the baud rate.

DATA BITS

The number of bits transmitted for each piece of data is known as
data bits. The number of data bits can only be 7 or 8. The value chosen for
the number of data bits depends entirely onthe host computer. If the host
computer transmits 7 data bits, then the data bits should be set to 7. If the
host computer transmits 8 data bits, then the data bits should be set to 8.
Consult the specifications of the host computer to determine the number
of data bits to use.

CHANGING THE NUMBER OF DATA BITS

All specifications are changed by entering the line where the change
is to occur followed by the change itself. In the case of the data bits, the
line number will be 2. Therefore, to change the number of data bits, type
the number 2 followed by a comma and the number of data bits desired.

EXAMPLE: 28
RESULT: The number of data bits will be changed to 8. The number
of data bits currently being used will be displayed in
brackets. The values enclosed in parentheses are values
that could be used for the number of data bits.

PARITY

Parity is a method used by computers to check for errors that may
have occurred during transmission. In order for this error detection
method to work properly, both computers must be set on the same parity
type.

Parity takes advantage of the fact that data is transmitted in sets of
one’s and zero’s. An error can be detected simply by determining if an
even or odd number of one’s has been received.

There are two types of parity. The first type is even parity. Even
parity means that both computers will transmit data with an even
number of one’s. If either computer receives data with an odd number of

PCjr Communications 261

one’s, an error has occurred in the transmission.

The second type of parity is odd parity. Odd parity means that both
computers will transmit data with an odd number of one’s. If either
computer receives an even number of one’s, an error has occurred in the
transmission.

The parity type that should be chosen depends entirely on the host
computer. If the host computer uses even parity, then even parity should
be used on the PCjr. If the host computer uses odd parity, then odd parity
should be used on the PCjr. If the host computer uses no parity check,
fhenthe N option should be chosen. Consult the specifications of the host
computer to determine the type of parity that should be used.

CHANGING THE PARITY

All specifications are changed by entering the line where the change
is to occur followed by the change itself. In the case of parity, the line
number is 3. The possible options for parity are EVEN (E), ODD (O), or
NONE (N). To change the parity, type the number 3 followed by a
comma and the desired parity option.

EXAMPLE: 3,0
RESULT: Changes the parity type to odd.

EXAMPLE: 3N
RESULT: Turns off the parity check.

ECHOING

Echoing is the process by which the host computer returns the
original message to the sender to verify that the message was properly
received. If yes (Y) is specified for echo, the PCjr will not display what has
been typed until the host computer sends back the original message. If no
(N) is specified for echo, the PCjr will display all characters as they are
typed. The PCjr will not wait for an echo from the host computer.

Whether or not an echo is specified depends entirely on the host
computer. If the host computer does echo characters, then yes (Y) should
be specified for echo. If the host computer does not echo characters, then
no (N) should be specified for echo.

262 1BM PCjr User's Handbook

CHANGING THE ECHO STATUS

All specifications are changed by entering the line where the change
is to occur followed by the change itself. In the case of echo, the line
number will be 4. The possible options forecho are yes (Y) and no (N). To
change the echo status, type the number 4 followed by a comma and
either Y or N.

EXAMPLE: 4N
RESULT: The PCjr will not wait for echoed characters and will
display all characters as they are typed.

SCREEN WIDTH

The screen width specifies the number of characters that will be
displayed on one line. The two possible options for screen width are 40
and 80. In order to display 80 characters per line, the PCjr being used
.must have 128K of memory. If the PCjr being used has only 64K of
memory, only 40 characters can be displayed per line.

CHANGING THE SCREEN WIDTH

The screen width option appears on line 5. Therefore, a 5 must be
specified to change the screen width. The line number should be followed
by a comma and the desired screen width (40 or 80).

EXAMPLE: 580
RESULT: The screen width becomes 80 characters per line.

MODEM COMMANDS

Modem commands are specialized commands used with the IBM
internal modem. If the IBM internal modem is not present, this option
will not appear in the terminal selection menu.

There are several modem commands that can be used with the
Terminal Emulator program. These commands will be discussed
individually.

PCjr Communications 263

I. ANSWER command (A)

The ANSWER command is used to put the modem in the
Answer mode.

EXAMPLE: A
RESULT: The modem will respond to an incoming tone.

2. BREAK command (B)
The BREAK command is used to send a break character
for a specified amount of time. The argument of the
BREAK command must be in hexadecimal. The argu-
ment specifies the multiple of 100 milliseconds at which a
break character should be sent.

EXAMPLE: B4
RESULT: The modem will send a break character for a period of 400
milliseconds.

3. COUNT command (C)
The COUNT command will cause the modem to answer
an incoming call after a specified number of rings.
COUNT’s argument specifies the number of rings for
which the modem should wait. The argument must be in
hexadecimal format.

EXAMPLE: C7
RESULT: The modem will answer an incoming call after 7 rings.

4. DIAL command (D)
The DIAL command causes the modem to automatically
dial a specified number. The number can be up to 33
digits in length.
Several options may be used with the DIAL command.
These options are as follows:

P: Specifyinga P after the DIAL command causes the
modem to wait for 10 seconds for a dial tone.

W: Specifying a W before a set of numbers causes the
modem to wait 5 seconds before continuing to dial.
This feature is convenient when an access code is
necessary to reach an outside line.

I: Specifying an I before a set of numbers causes the
following numbers to be rotary-dialed as opposed
to tone-dialed.

264 IBM PCjr User's Handbook

EXAMPLE:
RESULT:

EXAMPLE:
RESULT:

DIAL P 9876543
The modem will wait 10 seconds for a dial tone and then
proceed to dial the specified number.

DIAL 9 W 9876543
The modem will diala 9, wait 5 seconds, then dial the given
number.

5. FORMAT command (F)

The FORMAT command is used to specify several
transmission specifications. However, these transmis-
sion specifications have-already been set in lines |
through 5 of the Terminal Emulator program. Therefore,
the FORMAT command need not be specified when
using the Terminal Emulator program. The FORMAT
command is generally used when accessing the modem
through BASIC.

6. HANGUP command (H)

The HANGUP command causes the modem to hang up
the phone lines. This command does not apply when
using the Terminal Emulator program, since Fn 1 will
cause the modem to break all connections.

7. INITIALIZE command (I)
The INITIALIZE command causes the modem to re-
start. Thisisidentical toa cold start. When the INITIAL-
IZE command is executed, all modem default options
will be assumed.

EXAMPLE:
RESULT:

1
The modem performs a cold start on itself.

8. LONG RESPONSE command (L)
The LONG RESPONSE command modifies the message
feedback to either long or short. If a zero'is used as the
LONG RESPONSE argument, the message feedback
will be set long. If a one is specified as the LONG
RESPONSE argument, the message feedback will be set

short.
EXAMPLE: LI
RESULT: The message feedback will be set short.

PCjr Communications 265

9. MODEM command (M)

The MODEM command sets the modem into the data
state. The signal carrier is placed on the line:

EXAMPLE: M
RESULT: The modem is set into the data state.

10. NEW command (N)

The NEW command is used to change the command
character. The command character is only used when
entering modem commands from BASIC. When using
the Terminal Emulator program, command characters
are not necessary. '

11. ORIGINATE command (O)
The ORIGINATE command causes the modem to go

into the originate mode. The modem will generate the
originate tone.

EXAMPLE: O
RESULT: The modem assumes the originate mode.

12. PICKUP command (P)

The PICKUP command causes the modem to go into the
voice state. Generally, this command will only be used in
the BASIC command mode and not while executing the
Terminal Emulator program.

13. QUERY command (Q)

The QUERY command is used to display information
regarding modem operation. Table 10-1 lists the possible
characters returned by the QUERY command.

EXAMPLE: Q
RESULT: A modem status report will be displayed in the format
depicted in table 10-1.

14. RETRY command (R)
The RETRY command is used in conjunction with the
DIAL command. The RETRY command will cause the
modem to redial a number up to ten times if a busy signal
is encountered. -

266 1BM PCjr User's Handbook

Table 10-1. Possible Results of QUERY Command

Character display Meaning

HO Modem is presently off hook.

HI Modem is presently on hook.

S# The number following the S specifies the present
setting of COUNT.

B The number dialed gave a busy signal.

D There is no dial tone. The line is dead.

L The number was dialed and there is a connection.

N The number was dialed but the dial tone is still
present.

TO Integrity test passed.

Tl Integrity test failed.

EXAMPLE: R

RESULT: The modem will redial the present number up to ten times if

15.

17.

a busy signal is encountered.

SPEED command (S)

The SPEED command is used to set the baud rate at
which the modem will send and receive data. The SPEED
command is not necessary when using the Terminal Emu-
lator program since this option is already included in the
main menu.

. TRANSPARENT command (T)

The TRANSPARENT command causes the computer to
ignore command sequences which normally are directed
to the modem. The modem will send every character it
receives. This command is not necessary when using the’
Terminal Emulator program. The Terminal Emulator
program has a separate conversation mode and main
menu mode.

VOICE command (V)

The VOICE command causes the modem to go into the
voice state. This command is generally used in the BASIC
command mode and not while executing the Terminal
Emulator program.

PCjr Communications 267

18. WAIT command (W)

The WAIT command causes the modem to stop any
actions and wait for the next command from the host
computer.

EXAMPLE: W
RESULT: The computer stops all actions and waits for a command
from the host computer.

19. XMIT command (X)
The XMIT command can only be used in the voice state.
This command is used to send Dual Tone Modulated
Frequency tone pairs while in the voice state. This
command is generally used only in the BASIC command
mode and not while executing the Terminal Emulator
program.

20. ZTEST command (Z)

The ZTEST command is used to place the modem in the
test mode. The Terminal Emulator program is presently
set to perform a hardware test when the modem is acti-
vated. Therefore, the ZTEST command need not be used
with the Terminal Emulator program.

ENTERING A MODEM COMMAND

A modem command is entered by typing the number 6 followed by
the modem command. If more than one modem command is to be
entered, they should be separated by commas. When the modem
commands are entered via the Terminal Emulator program, they will not
be sent to the modem until Fn 1 is pressed. Fn 1 initiates the conversation
mode and sends all modem commands to the modem.

EXAMPLE: 6, DIAL 9876543, R
RESULT: When Fn 1 is pressed, the modem will be instructed to dial
the number 987-6543 and to keep dialing if a busy signal is
encountered.

EXAMPLE: 6, COUNT 3,0
RESULT: When Fn | is pressed, the modem will be instructed to
answer an incoming call after three rings. The modem will
be in the originate mode.

268 IBM PCjr User's Handbook

ERRORS

If anerror is made while entering a line, that line will be ignored. No
error message will be displayed. If an error is discovered in a line before
ENTER is pressed, the line can be erased by pressing ESC. No other

editing keys are functional.

FUNCTION KEYS

There are several special keys available that can be used in the
Terminal Emulator program. These special function keys are described in

table 10-2.

Table 10-2. Function Keys

Keys

Purpose

Fn+1

Initiates the connection between the host computer
and the PCjr. Also, all modem commands in line 6
will be sent to the modem. The Terminal Emulator
program will now be in the conversation mode.

If the Terminal Emulator program is presently in
the conversation mode and Fn 1 is pressed, the
Terminal Emulator program will return to the
terminal menu. Any connection with the host
computer will be broken.

Fn+2

Causes the Terminal Emulator program to stop.
The computer returns to normal BASIC operation.
The Terminal Emulator program will still reside in
memory and can be executed using a RUN
statement.

Fn+3

Sends a null character to the host computer. Fn 3
is only operational in the conversation mode.

Fn+4

Sends a BREAK signal to the host computer. Fn 4
is only operational in the conversation mode.

. PCjr Communications 269

USING THE TERMINAL EMULATOR PROGRAM

This section will provide a step by step approach to the use of the
Terminal Emulator program for communicating with a host computer.
The first step for communicating with a host computer is to acquire its
communications specifications. This information is generally supplied to
the subscriber of the host computer. For this example, the following
communications specifications will be used:

Line Bit Rate (Baud Rate) 300
Data Bits 7
Parity Type 0Odd

Host does not echo characters
Host is in orginate mode.

In order for the IBM Per to communicate with this particular host
computer, the Terminal Emulator program must be used to change some
of the communications specifications. The first step is to execute the
Terminal Emulator program by entering the TERM command. The
Terminal Emulator program will begin execution and the Terminal
selection menu will be displayed on the screen as shown in figure 10-1.

ﬁTERM) — Terminal Emulator \

1 Line bit rate [300] (300..4800)

2 Data bits [7]1 (7 or 8)

3 Parity type [E] (E,O, or N)
4 Host echoing [Y] (Y or N)

5 Screen width [80] (40 or 80)

6 Modem Command []

Change <line,data>? |
cursor

K f1=Conv f2=Exit f3=Nul f4=Break j

FIGURE 10-1. Tefminal Selection Menu after Execution of TERM

270 IBM PCjr User's Handbook

Once the terminal selection menu appears on the screen, changes can
be made in any or all of the communications specifications. For this
example, the line bit rate and the number of data bits will not have to be
changed. The parity type, however, must be changed from even to odd.
This is accomplished by typing the line number where the change is to be
made, in this case 3, followed by the desired change, in this case 0, for
odd. The screen should appear as shown in figure 10-2.

/(TERM) — Terminal Emulator \

1 Line bit rate [300] (300..4800)
2 Data bits [7]1 (7 or 8)

3 Parity type [E] (E,O, or N)

4 Host echoing [Y] (Y or N)

5 Screen width [80] (40 or 80)

6 Modem Command [}

Change <line,data>? 3,0

. cursor
kﬂ:Conv f2=Exit f3=Nul f4=Break J

FIGURE 10-2. Terminal Selection Menu after Changes in
Communications Specifications

The parity type will not be changed until the Enter key has been
pressed. Once the Enter key has been pressed, the parity change will
appear in line 3. The screen will resemble that depicted in figure 10-3
when the Enter key has been pressed.

PCjr Communications 271

/(TERM) — Terminal Emulator \

1 Line bit rate [300] (300..4800)
2 Data bits [7]1 (7 or 8)

3 Parity type [O] (E,O, or N)
4 Host echoing [Y] (Y or N)

5 Screen width [80] (40 or 80)

6 Modem Command []

Change <line,data>? ll\
’ cursor

\1‘1 =Conv f2=Exit {3=Nul f4=Break /

FIGURE 10-3. Terminal Emulator Selection Menu after Pressing Enter Key

The next change which must be made is in line 4. According to the
communications specifications, the host computer does not echo charac-
ters. The Terminal Emulator is presently set for a host computer that
does echo characters. This must be changed by typing the line number (4)
followed by “N”. The “N” signifies that the host computer does not echo
characters.

As with the parity type, the change will not be made until the Enter
key has been pressed. Pressing the Enter key at this point will cause the
change in the echo status to be made. The screenshould appear as shown
in figure 10-4 after the Enter key was pressed.

The final changes that must be entered via the terminal emulator -
program are the modem commands. The modem commands that will be
used in this example are DIAL, RETRY, and ANSWER. The DIAL
command will be used to instruct the modem to dial the number of the
host computer. The RETRY command will be used to redial the number
of the host computer if a busy signal is encountered. The ANSWER
command will be used to place the modem in the answer mode. This
command is necessary since the host computer is the originate mode.

All three of the modem commands that will be used can be abbrev-
iated by their first character. When the modem commands are typed in,
the screen should appear as depicted in figure 10-5.

272 1BM PCjr User's Handbook

/ (TERM) — Terminal Emulator \

1 Line bit rate [300] (300..4800)
2 Data bits [7]1 (7 or 8)

3 Parity type [O] (E,O, or N)
4 Host echoing [N] (Y or N)

5 Screen width [80] (40 or 80)

6 Modem Command [] '

Change <line,data>?1l 'Y
cursor

\f1=Conv f2=Exit f3=Nul f4=Break j _

FIGURE 10-4. Terminal Emulator Menu after Adjusting Host Echoing

((TERM) —

Terminal Emulator

1 Line bit rate [300] (300..4800)
2 Data bits [7]1 (7 or 8)

3 Parity type [O] (E,O, or N)
4 Host echoing [N] (Y orN)

5 Screen width [80] (40 or 80)

6 Modem Command []

Change <line,data>? 6,D 9876543,R,A

\fj =Conv f2=Exit f3=Nul f4=Break /

FIGURE 10-5. Terminal Emulator Menu after Modem Command Entries

PCjr Communications 273

The number following the DIAL command is the number of the host
computer. Each command must be separated by acomma. At this point,
press the Enter key and the screen will appear as shown in figure 10-6.

/” (TERM) — Terminal Emulator \

1 Line bit rate [300] (300..4800)
2 Data bits [7] (7 or 8)

3 Parity type [O] (E,O, or N)
4 Host echoing [N] (Y or N)

5 Screen width [80] (40 or 80)

6 Modem Command [D9876543,R,A]

Change <line,data>?

Q=Conv f2=Exit {3=Nul f4=Break /

FIGURE 10-6. Terminal Emulator Menu after Pressing Enter

The Terminal Emulator is now prepared to connect the PCjr to the
host computer. At this point, simply hold down the Fn key and press the |
key. The modem will automatically dial the number of the host computer
and establish a connection. If an error occurs in establishing a connection
between- the PCjr and the host computer, an error message will be
displayed on the screen. If the connection has been properly made, the
following message will be displayed:

CONNECTION...COMPLETE
Ok

The PCjris now connected to the host computer. The PCjr can now
be used as a direct terminal link to the host computer.
~Ifatany time, the connection needs to be broken, simply hold down
the Fn key and press the | key. This will cause the terminal emulator
program to return to the terminal selection menu.

Appendix A. 275

Appendix A.

PCjr BASIC Reserved Words

Reserved words are words which have a special meaning in BASIC.
They include all BASIC commands, statements, function names, and

.operator names.

Reserved words are not allowed to be: uSed as variable names in
BASIC statements. Also, reserved words must be delimited in BASIC
statements so that they can be recognized. Generally, referenced words
can be delimited through the use of blank spaces or special characters.

ABS
AND
‘ASC
ATN
AUTO
BEEP
BLOAD
BSAVE
CALL
CDBL
CHAIN
CHDIR
CHRS
CINT
CIRCLE
CLEAR
CLOSE
CLS
COLOR
COM
COMMON
CONT
COS
CSNG
CSRLIN
CVD
Cvr’
CVS
DATA
DATES
DEF
DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE

PCjr BASIC Reserved Words

DIM
DRAW
EDIT
ELSE
END
ENVIRON
ENVIRONS
EOF

EQV
ERASE
ERDEV
ERDEVS
ERL

ERR
ERROR
EXP
FIELD
FILES

FIX
FNxxxxxxxx
FOR

FRE

GET

- GOSUB

GOTO
HEXS$
IF

IMP
INKEY$
INP
INPUT
INPUTH#
INPUTS
INSTR
INT
INTERS

I0CTL
IOCTLS$
KEY
KILL
LEFT$
LEN
LET
LINE
LIST
LLIST
LOAD
LOC
LOCATE
LOF
LOG |
LPOS
LPRINT
LSET.

MERGE .

MID$
MKDIR
MKD$
MKI$
MKS$
MOD
MOTOR
NAME
NEW
NEXT
NOISE
NOT
OCT$
OFF
ON
OPEN
OPTION

OR
ouT
PAINT
PALETTE
PCOPY
PEEK
PEN
PLAY
PMAP
POINT
POKE
POS
PSESET
PRINT
PRINT#
PSET
PUT
RANDOMIZE
READ
REM
RENUM
RESET
RESTORE
RESUME
RETURN
RIGHTS
RMDIR
RND
RSET
RUN
SAVE
SCREEN
SGN
SHELL
SIN
SOUND

SPACES
SPC(
SQR
STEP
STICK
STOP
STR$
STRIG
STRING$
SWAP
SYSTEM
TAB(
TAN
TERM
THEN
TIMES
TIMER
TO
TROFF
TRON
USING
USR
VAL
VARPTR
VARPTRS
VIEW
WAIT
WEND
WHILE
WIDTH
WINDOW
WRITE
WRITE#
XOR

276 1BM PCjr User's Handbook

Appendix B.
DOS Reserved Words

ASSIGN
BACKUP
BREAK
CHDIR
CHKDSK
CLS
COMP
COPY
CTTY
DATE

DIR
DISKCOMP
DISKCOPY
ECHO
ERASE
EXE2BIN
FIND

FOR
FORMAT
GOTO
GRAPHICS

IF
MKDIR
MODE
MORE
PATH
PAUSE
PRINT
PROMPT
RECOVER
REM
RENAME
RMDIR
SET
SORT
SYS
TIME
TREE
TYPE
VER
VERIFY
VOL

Appendix C. 277

- Appendix C.
ASCII Character Codes

In the following table, the ASCII codes will be given with any
associated characters and control characters (for codes 0-31).

If you wish to display these characters, you can do so by issuing the
following statement: ’

PRINT CHR$(x)

where x is the ASCII code of the character being displayed.

ASCII Control ASCII Control

Value* Character Character Value Character Character
000 (null) NUL 016 | 4 DLE
001 ® SOH 017 < DCI
002 © STX 018 } DC2
003 | ETX 019 " DC3
004 [EOT 020 m DC4
005 é ENQ 021 R NAK
006 . L] ACK 022 - SYN
007 (beep) BEL 023 4 ETB
008 B BS 024 A CAN
009 (tab) HT 025 Y EM
010 (line feed) LF 026 - SUB
011 (home) vT 027 - ESC
012 (form feed) FF 028 (cursor right) FS
013 (carriage return) CR 029 (cursor left) GS
014 ﬁ SO 030 (cursor up) RS
015 'I:f' Si 031 (cursor down) uUsS

* Decimal

278 1BM PCjr User's Handbook

ASCII ASCII ASCII
Value Character Value Character | Value Character
032 (space) 071 G 110 n

- 033 ! 072 H 111 o
034 " 073 1 112 p
035 # 074 J 113 q
036 $ 075 K 114 r
037 % 076 L 115 s
038 & 077 M 116 t
039 ’ 078 N 117 u
-040 (079 o . 118 v
041) 080 P 119 w
042 * 081 Q 120 X
043 + 082 R 121 y
044 , 083 S 122 z
045 - 084 T 123 {

. 046 . 085 U 124 !
047 / 086 \Y 125 }
048 0 087 w 126 ~
049 1 088 X 127 0
050 2 089 Y 128 C
051 3 090 z 129 u
052 4 091 [130 é
053 5 092 \ 131 4
054 6 093] 132 Ey
055 7. 094 A 133 a
056 8 095 — 134 2.
057 9 096 . 135 g
058 : 097 a 136 ¢
059 ; 098 b 137 €
060 < 099 ¢ 138 ¢
061 = 100 d 139 Ny
062 > 101 e 140 4
063 ? 102 f 141 h
064 @ 103 g 142 A
065 A 104 h 143 R
066 B 105 i 144 E
067 C 106 j 145 CE
068 D 107 k 146 A
069 E 108 1 147 6
070 F 109 m 148 o

Appendix C. 279

ASCII ASCII ASCll
Value Character Value Character Value Character
149) 188 = 227 T
150 i 189 —u 228 s
151 u 190 = 229 0
152 y 191 - 230 u
153 o 192 L 231
154 4] 193 L 232 @
155 ¢ 194 T 233 e
156 £ 195 F 24 Q
157 ¥ 196 — 235 5
158 Pt 197 + 236 oo
159 f 198 E 237 @
160 4 199 IF 238
161 { 200 1= 239 N
162) 201 ™= 240 =
163 i 202 4L 241 +
164 i 203 IF 242 =
165 N 204 I= 243 <
166 a 205 = 244
167 o 206 Ik 25 U
168 R 207 L 246 +
169 — 208 i 247 =
170 - 209 = 248)
171 14 210 T 249 o
172 Vi 211 w 250 .
173 i 212 = 51+
174 < 213 = 252 n
175 > 214 — 253 2
176 215 #+ 254]
177 216 % 255 (blank ‘FF)
178 217 J
179 | 218 r
180 — 219 []
181 =] 220 -—
182 — 221 |
183 - 973]
184 = 223 -
185 =l 224 o<
186] 225 B
187 = 226 r

280 1BM PCjr User's Handbook

Appendix D.
Printer Usage with the PCjr

A printer can be a valuable addition to a PCjr computer system
allowing it to perform a number of useful tasks. For example, a printer
enables the PCjrto function as a word processor. IBM provides two ways
to interface a printer to the PCjr:

e IBM PCjr Parallel Printer Attachment
e Serial Port (built-in)

Almost any parallel printer may be connected to the PCjr. after the
Parallel Printer Attachment has been correctly installed. Specifically,
IBM markets a medium-priced parallel printer — the IBM 80 CPS
Matrix Printer. ,

As an alternative to the Parallel Printer Attachment, the consumer
may elect to use the Serial Port on the back panel of the PCjr. This port is
indicated with an “S”,

The inexpensive IBM PC Compact Printer plugs directly into the
Serial Port. Although the Compact Printer attaches quite easily to the
Serial Port, the connector used is not the industry standard — RS232 (25
pin-D connector). A serial adapter cable may be purchased to allow any
RS232 compatible printer to interface to the PCjr through the Serial Port.

LISTING PROGRAMS

The LIST command can output a copy of the program currently
stored in the computer’s memory. Since the printeris knownas “LPT1:”,
the LIST command requires this device name to cause the output to be
sent to the printer. .

LIST “LPTI:”

The LLIST command is functionally equivalent to the previously
described LIST command. Note that “LPT1:”is an abbreviation for Line
Printer #1.

Appendix D. 281

OUTPUTTING DATA

A PRINT# statement is most commonly used to output data to the
printer. However, an I/ O channel must be opened for the printer before
any data can be output. The following statement is a typical OPEN
statement that can be used to establish an I/ O channel for the printer:

OPEN “LPTI1:” FOR OUTPUT AS #3

The following example program demonstrates the use of the OPEN
and PRINT# statements to output data to the printer:

100 OPEN “LPT1:" FOR OUTPUT AS #1
110 FORJ=1TO 15

120 PRINT #1,J,JA2

130 NEXT

140 CLOSE #1

150 END

If only intermittent printer output is necessary for a specific pro-
gram, it is advisable to use LPRINT instead of PRINT#. The equivalent
of the previous program using LPRINT is given below:

100 FORJ=1TO 15
110 LPRINT JJA2
120 NEXT

130 END

Notice that no OPEN statement is required with LPRINT. Gener-
ally, PRINT#is used in place of LPRINT because PRINT# is faster than
LPRINT. The speed difference is difficult to notice in a short program,
but becomes apparent in more lengthy applications.

CONTROL CODES

All printers have control codes that select specific printer functions.
These codes can be used to change character sets or print styles, cause a
line feed or carriage return, and select other functions of the printer.

The IBM PC Compact Printer and the IBM 80 CPS Matrix Printer
are by far the most popular with the PCjr. IBM has written its printer
software to be compatible with these printers. The control codes for these

282 IBM PCjr User's Handbook

printers are given in the balance of this appendix. These codes may be sent
in BASIC by using the CHR$(n) function.

Table D-1. IBM 80 CPS Matrix Printer (Graphics Printer)
Control Codes

Control Code Value Function

BEL 07 Sounds buzzer for | second
BS 08 Backspace

HT 09 Horizontal Tabulation

LF 10 Line Feed

VT : 11 Vertical Tabulation

FF 12 Form Feed

CR 13 Carriage Return

SO 14 Turns on enlarged printing mode
SI 15 Turns on condensed printing mode
DCI i 17 Selects printer

DC2 18 Turns off condensed mode
DC3 19 Deselects printer

DC4 20 Turns off enlarged mode
ESCO0 27,48 Line spacing = 8 lines per inch
ESC2 27,50 Line spacing = 6 lines per inch
ESC8 27,56 Deselects paper end detector
ESC9 27,57 Selects paper end detector
ESCAn 27,65, n Line spacing = n/72 inches
ESC Bn NUL 27, 66, n, 0 VT=n

ESCCn 27,67, n Form length = n lines

ESCD nNUL 27,68,n,0 HT=n

ESCE 27,69 Turns on emphasized mode
ESCF 27,70 Turns off emphasized mode
ESCK 27,75 Turns on normal dénsity
ESCL 27,76 Turns on dual density

ESCN 27,78 Sets skip over perforation
ESCO 27,79 Release skip over perforation
ESCQn 27,81, n Column width=n

ESCRn 27,82, n Select character set = n

Appendix D. 283

Table D-2. IBM PC Compact Printer Control Codes
Control Code Value Function
HT 09 Horizontal Tabulation
LF 10 Line Feed
VT 11 Vertical Tabulation
FF 12 Form Feed
CR 13 Carriage Return
SO 14 Set Double Width
SI 14 Set Compressed
DC2 18 Compressed Off
DC4 20 Double Width Off
CAN 24 Clears the printer buffer
ESC — I 27,45, 1 Set underline mode
ESC—#¢ 27,45, 8 Clear underline mode
ESC¢ 27,48 Line feed = 1/9 inch
ESC1 27,48 Identical to ESC @
ESC?2 27, 50 Line feed = 1/6 inch
ESC5 1 27,53, 1 Line feed after every CR
ESC5 ¢ 27,53,0 No line feed after every CR
ESC< 27,60 Homehead
ESCBn NUL |27,66,n,0 Vertical Tab=n
ESCCn 27,671, n Lines per page = n
ESCDnNUL |27,68,n,0 Horizontal Tab=n
ESCK n, n, 27,75, n, n, Sets graphics mode. n & n, specify the number
of data points.
ESCNn~n 27,78, n Set skip perforation. # of lines_ =n
ESCO 27,78 Cancel skip perforation
ESCR 27,82 Clear Tabs
ESCW 1 27,87, 1 Set double width
ESC W@ 27,87, 8 Cancel double width

Appendix E. 285

Appendix E.
IBM PCjr Device Names

Device Name Interpretation

KYBD: Keyboard — used in all versions of BASIC for input.

SCRN: Screen — used in all versions of BASIC for output.

CASI: Cassette Tape Unit — used in all versions of BASIC
for input and output.

A: System Disk Drive — used in Cartridge BASIC and

Compiler BASIC for input and output.

LPTI: Printer — used in all versions of BASIC for output.

COMI: Asynchronous Communications Adapter — used in

Cartridge BASIC for serial input and output (if
internal modem is not present).

Internal Modem — used in Cartridge BASIC for
serial input and output using the phone lines.

COM2: Asynchronous Communications Adapter — uséd in
Cartridge BASIC for serial input and output (if
internal modem is present).

CON: Console — used in Cartridge BASIC for input and
output. Console is the combination of the Keyboard
and Screen devices.

286 1BM PCjr User's Handbook

Appendix F.
IBM PCjr BASIC Error Messages

The following give all the BASIC error messages along with the
related error message number and a description of the error.

1 NEXT without FOR The variable that follows NEXT does not match with
any preceding FOR statement.

2 Syntax error The program line contains errors in punctuation or spelling
(ex. misspelled reserved word, deleted parentheses, €tc.).

3 RETURN without GOSUB A RETURN statement is found which does
not have a corresponding GOSUB.

4 Out of data A READ statement is encountered where no more items are
available to be read from DATA statements.

5 Tllegal function call A parameter is sent to a system function that is out of
range. Examples of the cause of this error include the following:

® A negative subscript

® A subscript that is too large

® A calltoa USR function when the starting address for that function had
not been given

A negative record number used with GET and PUT

Trying to list or edit a BASIC program that is protected

An argument for a function or statement that is not legal

6 Overflow A number is larger than that allowed by BASIC. If the overflow
occurs with an integer, program execution will stop. With non-integers,
machine infinity will be returned with the proper sign.

If a number is smaller than that allowed by BASIC, an underflow condition
will result. A zero will be returned and execution will continue.

7 Out of memory This error occurs when the program is too large for
available memory, or if a program contains too many FOR loops or
GOSUB?s. '

Appendix F. 287

8

10

12

13

14

15

16

17

Undefined line number A reference is made in the program for a line
number that does not exist.

Subscript out of range An array variable contains a subscript that is
outside of the range that was given in the DIM statement.

Duplicate definition The same array was defined twice. The following may

cause this error:

e Two DIM statements were included for the same array.

e A DIM statement is used foranarray after a default dimension of 10 had
been established previously.

e An OPTION BASE statement which sets an unacceptable array size was
encountered after an array had already been dimensioned by a DIM

statement or by default.

Divisionby zero Either division by zero was attempted, oranattempt was
made to raise to a negative power.

Illegal direct Anattempt was made to enter a statement in the direct mode
that can only be entered in indirect.

Type mismatch The data used fora variable does not match that variable’s
type (ex. numeric data for a string variable).

Out of string space BASIC assigns available free memory to string varia-
bles until that memory has been depleted. When this occurs, this message will

be displayed.

String too long The user attempted to create a string in excess of 255
characters.

String formula too complex The string expression is too long or too
complex. Try breaking the expression into smaller, less complex expressions.

Can’t continue CONT was used in one of the following situations:

e CONT was used to attempt to start a program that had stopped because of
an error.

e CONT was used to attempt to start a program that had been changed
during a temporary halt in execution.

e CONT was used to attempt to start a program that does not exist.

288 IBM PCjr User's Handbook

18
19
20

22

23
24

25

26

27

29
30

50

51

Undefined user function A function was called before it was defined with
DEF FN.

No RESUME The program branched toanerror trapping routine without
a RESUME statement.

RESUME without error A RESUME statement was encountered before
an error trapping routine was executed.

Missing operand No operand following an operator such as +, ¥, AND.

Line buffer overflow The user tried to enter a line containing too many
characters.

Device Timeout Information was not received from an input or output
device within an allotted length of time.

Device Fault A hardware error flag was returned by the interface adapter.

FOR without NEXT A FOR statement was encountered without a corres-
ponding NEXT.

Out of Paper Either the printer has run out of paper or it is not turned on.

WHILE without WEND A WHILE statement was encountered without a
corresponding WEND.

WEND without WHILE A WEND statement was encountered without a
corresponding WHILE statement.

FIELD overflow The programcontainsa FIELD statement in which more
bytes are allocated for a random file’s record length than were specified for
that file in its OPEN statement. Another possibility is a situation where the
end of the FIELD buffer was reached while a sequential input/output was
being performed to a random file (ex. PRINT#, WRITE#, INPUTH#, etc.).

Internal Error Some problem is present internally in BASIC. Call IBM or
your IBM dealer with a description of the circumstances under which the
error occurred.

Appendix F. 289

52

53

54

55

57

58

61

62

63

Bad file number A file number is referenced that is not currently assigned
to an open file, or is not within the range of valid file numbers specified
during initialization. Another possibility is when an invalid device name is
used in a file specification or when the filename is invalid.

File not found A file is referenced ina LOAD, KILL, FILES, NAME, or
OPEN that does not exist on the diskette on the specified drive.

Badfilemode Thiserror occurs when the PUT or GET statement was used
with one of the following:

e Sequential file

® Closed file :

e To MERGE a non-ASClI file

e Toexecutean OPEN with a file mode other than input, output, append, or
random

File already open An attempt was made to open a file that had been

previously opened for sequential output oranappend. Thiserroralso occurs
when an attempt is made to kill an open file.

Device I/0 Error An error occurred during a device 1/ O operation. Error
recovery is not possible in DOS.

Filealready exists The filename witha NAME statement duplicates that of
a filename already being used on that diskette.

Disk full The entire diskette space is being used. When thiserror occurs, all
files will be closed.

Input past end This error statement indicates that an end of file error
occurred. This is caused by an INPUT# statement being executed for a
sequential file whose entire data has already been read or for a null file. By
using the EOF function, this error can be avoided. Another cause of this
errorisanattempt to read froma file that had been opened foran append or
for output.

Bad record number The record number used ina GET or PUT statement
was either zero or was greater than the allowed maximum (32767); BASIC
2.0 (16,777,215); Cartridge BASIC (16,777,215).

290 IBM PCjr User's Handbook

64

66

67

68

69

70

71

72

Bad filename An invalid form is used for a filename.

Direct statement in file Any ASCII files loaded by LOAD or CHAIN
should only contain statements with line numbers. If a direct statement is
encountered in a program file being LOAD’ed or CHAINd, the LOAD or
CHAIN will be terminated. A common cause of thiserror is the inclusion of
a line feed character.

Too many files An incorrect file specification was used, or an attempt was
made to create a new file when the directory was full.

Device unavailable An attempt was made to open a file to a non-existent
device. The device may have been disabled or the hardware may not be
present.

Communications buffer overflow A communications input statement was
executed with the input buffer already full. When thiserror condition occurs,
use the ON ERROR statement to attempt input again. When ensuing inputs
are attempted, the error condition will be cleared unless characters are
received at a rate faster than the program can process them. In this case, try
one of the following:

® Use /C: option when starting BASIC to increase the size of the communi-
cations buffer.

® Usea hand-shaking routine with the other computer to send a message to
tell it to stop sending data so that the receiving computer can empty its
buffer.

® Use a lower baud rate for data transmission and reception.

Disk write protect The user attempted to write to a diskette that was
write-protected.

Disk notready Eithera diskette is notin place or the diskette door is open.

Disk media error Generally, this is due to a bad diskette, although the
cause can be a hardware related problem. The user should copy any existing
data to a new diskette and reformat the bad diskette. If the formatting fails,
the diskette is unusable and should be discarded.

Appendix F. 291

73

74

75

76

Advanced feature This error occurs when a program attempts to use an
Advanced BASIC feature when Disk BASIC is being used. Load Advanced
BASIC and run the program under it.

Rename across disks During an attempt to rename a file, the wrong disk
identifier was used. :

Path/File Access Error The user used anillegal path or filename duringan
OPEN, NAME, MKDIR, CHDIR, or RMDIR statement.

Path not found The specified path cannot be located.

Incorrect DOS version The command specified requires a different version
of DOS. ‘

Unprintable error Theerror condition does not have a correspondingerror
message. This message is generally the result of usingan ERROR statement
with an undefined error code.

Cartridge required Anattempt was made to access BASIC from a diskette
without the BASIC Cartridge present.

Index 293

INdex
A B
A: 136, 154 B: 173
A command 180 B command 179
ABS 107, 121 BACK 198
Absolute addressing 172 Back-ups 219, 224
Addition 79 .BAK 248
Advanced BASIC 21-22 BASIC 17,20
Adventure 24 commands 61
Alt key 49-51 statements 61
ALU 18 command entry 58
AND 83-84 error messages 64, 286-291
Answer commands 263 file commands 154-157
APPEND 139 program entry 62-63

Append Lines command 249

Applications Software 20, 23-24

Argument 62

Arithmetic expression 72

Arithmetic operators 78

Arrays 109-111

ASC 125-126

ASCII codes 277-279

Aspect 174, 178

Assignment statement 76

Asynchronous Communications Adapter 16,
285

ATN 120

Attribute 167

AUTOEXEC.BAT 243

program listing 64-65
reserved words 275
start-up 55-60
.BAT 242
Batch processing 242-246
Batch subcommands 244-246
Baud rate 259-260
BEEP 183, 186
BF 173
Bit 18
Boolean expression 77
Boolean operators 83-86
Boot record 223, 256
Branching Statements 100-103
BREAK 237

294 1BM PCjr User's Handbook

. Break command 263

' Buffer 186
Buffer variable 147-148
Built-in function 117
Byte 18

C

C command 179-180
Cartesian coordinates 161
Cartridge BASIC 22-23, 285
Cartridges 24, 25

CASI: 135, 154-155, 285
Cassette BASIC 21
CHAIN 130-131, 154, 156-157
Chaining, programs 130
CHKDSK 232-233
CHRS 72, 125-126, 144
CIRCLE 173-175

aspect 174

CLEAN 206
CLEAR 112-113, 167
CLEAR SCREEN 199, 206
CLEARTEXT 207
CLOSE 141
CLS 93, 229
COLOR 170-171
Color burst signal 166
Colors 169, 205
COM 1: 136, 285
COM2: 136, 285
COMMON 130-131, 157
Commands 61
COMP 226-227
Compiled languages 21
Compound expression 79-80
CON: 285
Concatenation, string 123
Conditional Statements 99-100
~ CONFIG.SYS 59

- Connectors, device 17
Constant 72
Control Codes 281-283
COPY 224, 226
Copy Lines command 249-250
COS 119-120
Count command 263
CPU 18
CS 206
CTTY 231-232
CVD 151

CV1 151
CVS 151

D

D command 177
Daisy wheel printers 32
DATA 113-117
Data files 133-135
Data bits 260
Data types 71
DATE 230-231
Date entry 213-214
DEF FN 121-122
DEL 229
Del key 66
DELETE 63
Delete Lines command 250
Delimiter 134
Density 29
Descriptor 126-127
Device name 135-136
Dial command 263-264
DIM 111-113
DIR 227-228
Direct access 136
Directory 223, 227-228
Disk BASIC 21-22
Disk drives 20
Disk drives, operation 32
DISKCOMP 225
DISKCOPY 220, 224-225
Diskette 27
double-sided 31
envelope 27
read/ write slot 27
write-protection 31
Division 79
DOS 211
DOS 2.1 20, 57
DOS prompt 57
back-ups 224
copying 219
data entry 213
data sent to printer 218
editing keys 218
error correction 216-217
external commands 212
internal commands 212
keyboard usage 216
print screen 217

index 295

prompt 215-216

reserved words 276

start-up 213

stopping commands 216

system reset 218

time entry 214-215
Dot matrix printers 32
Double printing 37
Double-sided diskettes 31
DRAW 177

A command 180

B command 179

C command 179-180

D command 177

E command 177

F command 177

G command 177

H command 177

L command 177

M command 178-179

N command 179

P command 180

R command 177

TA command 180

X command 182-183
Dummy argument 122

E command 177

Echo 218

ECHO 245

Echoing 261-262

EDIT 199

Edit lines command 250-251

Editing 66-67

EDLIN 218, 246-256
Append Lines 249
Copy Lines 249-250
Edit Lines 250-251
End Edit 251
Insert Lines 251-252
List Lines 252
Move Lines 252-253
Quit Edit 253-254
Page 253
Replace Text 254
Search Text 254-255
Transfer Lines 255
Write Lines 255-256

Emphasized printing 37

END 200

End Edit command 251

EOF 145, 151

Epson MX-80 printer 37

EQV 83, 85

ERASE 229

ERL 109

ERR 109

Error handling 107

Error messages 64, 286-291

Errors 268

EXP 120

Expansion Unit 16

Exponentiation 78-79

Expression 77
arithmetic 77
Boolean 77
compound 79-80
relational 77
simple 79-80

External command 212

F

F command 177

FIELD 148, 150

Field Variable 147-148

Fields 133-134

File 221

File access 136

File Allocation Table 223

File commands 154, 157

Filename 68, 135, 231

Filename extension 135-136, 221

Filename match characters 226

File specification 135-136

Files 133

FILES 154, 156-157
random 136-138
sequential 136-138

FILL 202-203

Filters 238-239

FIND 239-240

Fixed disk drive 16

Fixed point 73-74

Floating point 73-74

Fn keys 49-51

FOR,NEXT 116-117, 245

FORMAT 223

Format command 264

Format string 93

296 1BM PCjr User's Handbook

Formatting character,
*96
+95
-95-96
$94,95
#94
, comma 95
FORWARD 198-199
FRE 113, 127
Function keys 268
Functions 117, 128-129
built-in 117
mathematical 118-121
string 123-124
user-defined 118

G

G comand 177
GDL 177, 182-183
GET 150-151
GOTO 100-101
GOSUB 100-101
GOTO 245
Graphic, low resolution 159-160
GRAPHICS 233
Graphics Definition Language 177
Graphics modes 159
colors 169
high resolution 159-160
low resolution 159-160
medium resolution 159-160

H

H command 177

Hangup command 264

Hard sectors 28, 30
HIDETURTLE 197

High resolution graphics 159-160
HOME 204

Home Budget 24

Housekeeping 127

1140
IBMBIO.COM 236, 256
IBMDOS.COM 236, 256
IBM
Color Display 13
Compact Printer 34, 283

Graphics Printer 36-37
Keyboard Cord 38-39
Logo version 1.00 195
PC 11, 15-16
PC XT 11, 15-16
PCjr 11, 15-16
Attachable Joystick 37-38
communications 257-273
enhanced model 11, 12
entry model 11, 12
installation 43-48
keyboard 13, 15
Parallel Printer Attachment 280
peripheral ports 52-53
power supply/transformer 13, 15
printer usage 280-283
sound 183-190
start up 4849
system unit 13, 14
80 CPS Matrix Printer 280-283
1F 99-100, 245
Immediate mode 60
IMP 83-84
Impact dot matrix printer 34
Index hole 28-30
Index variable 104
Infrared link 16
Initialize command 264
INKEY$ 90,99, 113
INPUT 90, 97-98, 113, 139
INPUTH# 142-143
INPUTS 142, 144-145
Ins key 66
Insert Lines Command 251-252
Installation 43-48
INT 121
Integer division 79
Integers 73-74
Inte1 8088 11, 17-19
Internal command 212
Internal modem 40, 257-258
Interpreted code 21
Interpreted languages 21
Interpreter 17, 55
Iterations 107

J
Joysticks 37

Index 297

K

Keyboard 13, 15, 17
installation 47
usage of 49

Keyword 61

KILL 154, 156

Kilobytes 11

KYBD: 136, 286

L

L comand 177
Language 20
Language system software 20
Languages

compiler 21

interpreted 21
Last point referenced 172
LEFT 198-199
LEFTS 123-124
LET 76-77
LINE 107, 171-173
LINE INPUT 98-99
LINE INPUT# 142-144
LINE

B 173

BF 173
LIST 64-65, 280
List Lines Command 252
LLIST 280
LOAD 69, 154-155, 210
LOC 145, 151
LOCATE 93
LOF 145, 151
LOG 120
Logical operators 81-82
Logo 23, 195-210

. Logo Editor 199

Logo

colors 205

loading 196-197
Long Response command 264
Loop 104
Looping statements 103-107
Low resolution graphics 159-160
LPR 172-173
LPRINT 96, 281
LPRINT USING 96 .
LPTI: 97, 136, 280, 285
LSET 148-150

M

M command 178-179
Master diskette 219
Mathematical functions 118-121
Medium resolution graphics 159-160
Megabyte 19
Memory and Display Expanison Board 11,

15,39
MERGE 130-131, 154, 156, 157
Microprocessor 11, 18
Microsoft BASIC 17, 20-21
Microsoft Corporation 20
MIDS$ 123-125
MKDS 149-150, 153
MKIS 149-150, 153
MKSS 149-150, 153
MOD 79
Modem 40 .
Modem commands 262-267

Answer 263

Break 263

Count 263

‘Dial 263

Entry 267

Format 263

Hangup 264

Initialize 264

Long Response 264

New 265

Originate 265

Pickup 265

Query 265-266

Retry 265

Speed 266

Transparent 266

Voice 266

Wait 267
Monitor, installation 45-46
Monochrome Display Adapter 16
Monster Math 24
MORE 240-241
Move Lines Command 252-253
Multiplan 24
Multiple statements 69

N

N command 179
NAME 154-156
Negation 78-79

298 IBM PCjr User's Handbook

Nested loop 104-105
NEW 62, 63

New command 265
Noise 22

NOISE 190

Normal printing 37
NOT 83-84

Numeric constants 73
Numeric data 72-75

o

O 140

ON ERROR GOTO 107-108
ON GOSUB 102-103

ON GOTO 102-103

OPEN 139-140, 147, 281
Operating system software 20
Operations 71

Operator 78

OR 83-84

Order of evaluation 87
Originator command 265
OUTPUT 139

P

P 154

P command 180

Page command 253

PAINT 175

PALETTE 22, 167-168

PALETTE USING 23, 169-170

Parallel Communications 32

Parallel printer attachment 36

Parameter 62

Parity 260-261

PAUSE 246

PCOPY 23

PENDOWN 201

PENUP 201

Peripheral 24

Peripheral ports 52-53

Pickup command 265

Pixel 159-160, 203

PLAY 187, 191

PO 209

POINT 176

POPS 209

Power Supply/ Transformer 13
installation 46

Primary filename 221
PRINT 89-92, 237-238

BG 205

PAL 206

PC 206

POS 204

semicolon 91-92

comma 90-92
Print Screen key 217
PRINT USING 93

format string 93
Print Zones 90
PRINT# 141, 281
PRINT# USING 141-142
Printers 32, 280-283

control codes 281-283

daisy wheel 32

dot matrix 32
Printing

double 37

emphasized 37

normal 37
Procedure 199
Program

entry 62-63

files 133

lines 62

listing 64-65

mode 60-61

editing 66-67

loading 69

running 67-68

saving 67-68
Programmable Keys 13
PROMPT 229-230
Prompt 215-216
PSET 171-172
PUT 150

Q

Query command 265-266
Quit Edit Command 253-254
Qume Corporation 26

R

R command 177
RAM 17
static 18
Random access 27, 136, 146-147

Index 299

Random files 136-138, 151-153
READ 113-117
Read/ write

head 26

slot 27
Records 133-134
RECOVER 235
Relational expression 77
Relational operators 81-82
Relative addressing 172
REM 105, 246
Remainder 79
RENAME 228
REPEAT 201-202
Replace text command 254
Replaceable parameters 243-244
Reserved word 61

BASIC 275

DOS 276
RESTORE 114
RESUME 107
Retry command 265
RETURN 101, 107
RF modulator 44-45
RIGHT 198-199
RIGHTS 123-124
ROM 13,17
RS-232 280
RSET 148-150
RUN 62, 67-68, 154, 156

S

SAVE 68-69, 154, 157, 209-210
SCREEN 161-162, 165-167, 171
Screen dump 233
Screen width 262
SCRN: 136, 142, 285
Scrolling 64, 217
~ Search Text Command 254-255
Sectors 26, 28, 30
hard 28, 30
soft 28, 30
Sequential
access 27, 136
files 136-138
Serial Adapter Cable 34-35
Serial communications 32
SET PAL 205-206
SET PC 205-206
SET BG 205

SETPOS 203-204
SETX 204
SETY 204
SGN 121
SHIFT 246
SHOWTURTLE 197
Simple expression 79-80
SIN 119-120
Single-sided diskettes 31
Soft sectors 28, 30
Software 20
application 20, 23-24
language 20
operating system 20
SORT 241-242
SOUND 183-187, 191
Source file 246
SPACES 92-93
Speaker 17
Speed command 266
SQR 120-121
Start-up
BASIC 55-60
DOS 213
PCjr 4849
STEP 104, 172
STRS$ 125, 149, 152
String 71-72
concatenation 123
constant 72
functions 123-124
space 126
Subroutines 101-102
Subscript 109

Subscripted variables 109-111

Subtraction 79
Swapping 255
Switch 59
SYS 236
System
board 16
installation 44
reset 218
Unit 13, 14

T

TA command 180
TAB 92

Tables 109-111
TAN 119-120

300 1BM PCjr User's Handbook

Tandon Corporation 26
Television set, installation 44-45
Template 219

TERM 23, 258-259, 269

Terminal Emulator 257-258, 268-273
Text file 246

Thermal dot matrix printer 34

TI SN76489A 160

TIME 231

Time entry 214-215

TONE 207

Trade 26, 28-29

Transfer Lines command 255
Transparent command 266

Tune Definition Language 187-190
Turtle 197

Turtle coordinates 203

Turtle graphics 197

Turtle Power 24

TYPE 228, 240

U

U command 177)
User-defined functions 118, 121-122

v

V 224

VALS 125

Variable 75-76
name 75
table 126
value 75

VER 232

VERIFY 234-235

VIEW 163-165

Viewports 163-164

Visicalc 24)

Voice command 266

VOL 236

Volume 224

w

Wait command 267

WHILE, WEND 105-107

WIDTH 96-97

WINDOW 161-162, 164-165
~ World coordinates 161

Write Lines comand 255-256

Write protect notch 27, 211
WRITE# 141-142

X

X command 180
Xmit 267

Z
Z test 267

Special Characters

#94

$94

$3 95

* 96, 222-223

+95

,95

— 95-96

2222

| 238-239

8087 math co-processor 16
9253 timer 183-187

ABOUT THE
WEBER SYSTEMS, INC. STAFF

In 1982, Weber Systems, Inc. began a start-up publishing
division specializing in books related to the personal computer
field. They initially published three books, and within a year, ex-
panded their list to eighteen machine-specific titles, with fourteen
more scheduled for early 1984.

All Weber Systems USER'S HANDBOOKS are created by an
in-house editorial staff with extensive backgrounds in computer
science and technical writing. The three basic tenets of their
publishing philosophy are: quality, timeliness and maintenance
(frequent updating).

Weber Systems is located in Cleveland, Ohio.

Other Books in This Series
Published by Ballantine Books

IBM BASIC® USER’S HANDBOOK

IBM PC® & XT® USER’S HANDBOOK
KAYPRO® USER’S HANDBOOK

VIC-20® USER’S HANDBOOK
COMMODORE 64® USER’S HANDBOOK
APPLE Ile® USER'S HANDBOOK

IBM PCjr" USER’S HANDBOOK

The IBM PCjr USER’'S HANDBOOK is a clear, concise, and practical guide to
-the capabilities and operations of IBM’s inexpensive new home computer—
destined to be the most widely used home computer yet. This handbook
can be used by families, schools, and at home in conjunction with the
IBM PC & XT.

This complete description of the PCjr includes precise information on set-up,
operation, programming, and maintenance.

The following topi‘cs are covered in detail:

PCjr Installation

PCjr Operation

Available PCjr Software

Keyboard Usage

PCjr Peripherals , -
PCjr BASIC Programming

PCjr Communications

No user or potential user of the IBM PCjr should be without the IBM PCjr
USER’S HANDBOOK.

H 545197
D

70999"0099
ISBN D0-345-30L597=

Cover printed in USA

LA_.___ 3 g b b S = e T (A ARIR L AAE B H T o S e PSS

