
(jJT) Ballantine/31597/S9.95 in USA* $12.95 in Canada

the only manual you'll ever need
from the moment you plug in your computer

through set-up, operation, maintenance,
and programming

Weber Systems, Inc. Staff

■i:-

i: '

2b b y HV

i<l7- ■ I'X Def wg-

IBM PCjr®
User's Handbook

IBM PCjr®
User's Handbook

by
Weber Systems Inc. Staff

Ballantine Books • New York

This book is available to organizations for special use.
For further information, direct your inquiries to:
Ballantine Books

Special Sales Department
201 East 50th Street

New York, New York 10022

IBM PQ>™ User's Handbook

Copyright© 1984 by Weber Systems, Inc.

All rights reserved under International and Pan-American Copyright Con
ventions. Published in United States by Ballantine Books, a division of Random
House, Inc., New York, and simultaneously in Canada by Random House of
Canada Limited, Toronto.

Intel 8087™ and 8088™ are trademarks of Intel Corporation. Microsoft BASIC™ and
Multiplan are trademarks of Microsoft Corporation. Visicalc™ is a trademark of VisiCorp.
Homeword™ is a trademark of Sierra On-Line Inc. Epson MX-80™ is a trademark of Epson
Corporation. The following are trademarks of IBM Corporation:

IBM PCyr™ Cartridge BASIC™
DOS 1.0, 1.1, 2.0, 2.1™ IBM Compact Printer™
IBM PC XT™ IBM Graphics Printer™
IBM Color Display™ IBM PCyr Attachable Joystick™
IBM Monochrome Display Adapter™ IBM Keyboard Cord™
IBM Asynchronous Communications Adapter™ IBM Internal Modem™
BASIC 1.0, 1.1,2.0, 2.1™ Graphics Definition Language™
Cassette BASIC™ IBM Logo version 1.00™
Disk BASIC™ IBM Terminal Emulator™
Advanced BASIC

Library of Congress Catalog Card Number: 83-91222
ISBN: 0-345-31597-9

Manufactured in the United States of America

First Ballantine Books Edition: May 1984
10 98765432 1

Contents

Introduction 9

1. Introduction to the PCjr 11

Overview 11. Differences Between the PC and PC XT and the

PCy'rlS. Technical Data 16. RGMandRAMlT. Dynamic and Static
RAM 18. IBMPC/r'sCPU 18. Software 20. Operating System Soft
ware 20. Language Software 20. NOISE 22. PALETTE 22. PAL
ETTE USING 23. PCOPY 23. TERM 23. Applications Software 23.
VCjr Cartridges 24. Peripheral and Add-On Devices 24. Disk Drives
26. Floppy Diskettes 27. Tracks and Sectors 28. Hard and Soft
Sectors 28. Diskette Capacity 29. Diskette Write Protection 31. PC/>
Disk Drive Operation 32. Printers 32. IBM Compact Printer 34. IBM
Graphics Printer 36. Joysticks 37. Keyboard Cord 38. PC/> Memory
and Display Expansion 39. PC/> Internal Modem 40. Cassette
Recorder/ Player 41.

2. installation, Operation & Keyboard Usage 43

Introduction 43. Installation43. System Unit Installation 44. Attach
ing a TV Set 44. Attaching a Monitor 45. Attaching a Composite
Monitor 46. Attaching an RGB Monitor 46. Attaching the Power
Transformer 46. Keyboard Installation 47. Start Up Procedure 48.
Keyboard Usage 49. Peripheral Ports 50.

3. Introduction to PCjr BASIC Programming 55

Introduction 55. Getting Started with PCjr BASIC 55. Start-up
without a Disk Drive 56. Start-up with a Disk Drive 57. BASIC
Command Entry-DOS 58. Immediate and Program Modes 60. Com
mand and Statement Structure 61. Entering a Program 62. Error and
Warning Messages 64. Listing a Program 64. Editing a Program 66.
Running a Program 67. Saving a Program 68. Loading a Program 69.
Multiple Statements 69.

4. Data Types, Variables, and Operators 71

Introduction 71. Data Types 71. Strings 71. Numeric Data 72. Vari
ables 75. Variable Names 75. Assignment Statements 76. Expressions
and Operators 77. Arithmetic Operators 78. Order of Evaluation
(Arithmetic Expressions) 79. Mixing Variable Types 80. Relational
Operators 81. Logical Operators 83. Overall Order of Evaluation 86.

5. BASIC Programming Concepts 89

Introduction 89. Inputting and Outputting Data 89. PRINT 90.
Horizontal Formatting 92. Vertical and Horizontal Tabs 93. Format
ting Output 93. Outputting Data to the Printer 96. Line Width 96.
INPUT97. LINE INPUT 98. INKEY$99. Conditionals, Branching,
and Looping 99. Conditionals 99. Branching Statements 100. Sub
routines and GOSUB 101. Conditional Statements with Branching 102.
Looping Statements 103. Conditional Looping Statements 105. Error
Handling 107. Tables and Arrays 109. Subscripted Variables 109.
Dimensioning an Array 111. DATA and READ Statements 1 13.
Functions and String Handling 117. Built-in Mathematical Functions
118. User-Defined Functions 121. Strings and String Handling 122.
String Concatenation 123. String Handling Functions 123. String/-
Numeric Data Conversion 125. Variable Table and String Storage
126. Housekeeping and FRE 127. Function Summary 127. Program
Concatenation 130. CHAIN 130. COMMON 131.

6. Files & File Handling with PCjr BASIC 133

Introduction 133. Files, Records and Fields 133. File Specifications
135. File Access 136. Sequential and Random Files 137. Opening a
Sequential File 138. Writing to a Sequential File 141. Reading from a
Sequential File 142. EOF, LOC, and LOF with Sequential Files 145.
Random File Access 146. Opening and Closing a Random File 147.
Field Variables 147. Writing Data to a Random File Buffer 148.
Writing a Record from the Random File Buffer to the File 150.
Reading a Record from the Random File into the Buffer 150. Reading
Data from the Random File Buffer 151. LOC and LOF with Random

Files 151. Using Random Access Files 151. File Commands 154.
SAVE 154. LOAD 154. RUN 156. KILL 156. NAME 156. MERGE

157. CHAIN 157. FILES 157.

7. PCjr BASIC Graphics and Sound 159

Introduction 159. Pixels 160. Redefining the Screen Coordinates 161.
Selecting a Graphics Mode — SCREEN 166. Attributes and Palettes
167. Selecting a Color 170. Plotting — PSET 171. Relative Coordi
nates 172. Advanced Graphics Commands 172. Retrieving Informa
tion from the Screen 176. Shape Definition 177. DRAW—Movement
Commands 177. DRAW-M Command 178. DRAW-B 179. DRAW-

N Command 179. DRAW-C Command 179. DRAW-A Command

ISO. DRAW-TA Command 180. DR A W-P Command 180. DRAW-

X Command 181. Sound 183. Producing Sounds 185. Advanced
Music 187. Sound Effects 190. Writing a Game Program 191.

8. Logo on the PCjr 195
Introduction 195. Loading the Logo Diskette 196. Exploring Turtle
Graphics 197. Finding the Turtle 197. Moving the Turtle 198. The
Logo Editor 199. Lifting the Pen 200. Repeating Commands 201.
Filling an Area of the Screen 202. Turtle Coordinates 203. Color 204.
Background Color 205. Pen Color 205. Clean-Up 206. Sound 207.
Sample Procedures 208. Procedure Handling 209. Conclusion 210.

9. DOS 2.1 Feotures 211

Introduction 211. Notation 212. Types of Commands 212. Starting
DOS 213. Entering the Date 213. Entering the Time 214. DOS
Prompt 215. DOS Keyboard Usage 216. Entering a Command 216.
Stopping a Command 216. Correcting Typing Errors 216. Slow Screen
Scrolling 217. Send Data on the Screen to the Printer 217. Send
Keyboard Entries to the Printer 218. System Reset 218. DOS Editing
Keys 218. DOS Usage 219. Copying Your DOS Diskette 219. Files,
Filenames, and Filename Match Characters 221. Formatting a Disk
ette — Format 223. Backing Up Diskettes 224. DISKCOPY 225.
COPY — Copying a File to the Same Diskette 226. COPY — Copying
a File to a Different Diskette 226. Diskette Directory — DIR 227.
Displaying a File's Contents — TYPE 228. Renaming a File -
RENAME228. Erasing a File — ERASE 229. Clearing the Screen—
CLS229. Changingthe DOS Prompt—PROMPT 229. Changing the
Date — DATE 230. Changing the Time — TIME 231. Changingthe
Standard I/O Device — CTTY 231. Determining the Version of DOS
— VER 232. Analyzing a Diskette — CHKDSK 232. Screen Dump
ing — GRAPHICS 233. Checking Data Written to a File — VERIFY
234. Saving a Damaged Diskette — RECOVER 235. Checking the

Volume Label of a Diskette — VOL 236. Transferring the Operating
System — SYS 236. Controlling the Break Key — BREAK 237.
Printing a List of Data Files — PRINT 237. Filters 238. Locating a
Stringina File—F1ND239. Screen Filling—MORE240. Sorting —
SORT241. Batch Processing242. AUTOEXEC.BAT File 243. Creat
ing a Batch File 243. Using Replaceable Parameters with .BAT Files
243. Executing a Batch File with Replaceable Parameters 244. Batch
Subcommands 244. Introduction to EDLIN 246. Executing EDLIN
247. EDLIN Command Summary 248. Append Lines 249. Copy
Lines 249. Delete Lines 250. Edit Lines 250. End Edit 251. Insert

Lines 251. List Lines 252. Move Lines 252. Page 253. Quit 253.
Replace Text 254. Search Text 254. Transfer Lines 255. Write Lines
255. DOS Components 256.

10. PCjr Communications 257

Communications with the PCjr 257. Internal Modem 257. Terminal
Emulator 258. IBM Terminal Emulator 258. Line Bit Rate (Baud
Rate) 259. Changing the Baud Rate 259. Data Bits 260. Changing the
Number of Data Bits 260. Parity 260. Changing the Parity 261.
Echoing 261. Changing the Echo Status 262. Screen Width 262.
Changing the Screen Width 262. Modem Commands 262. Entering a
Modem Command 267. Errors 268. Functions Keys 268. Using the
Terminal Emulator Program 269.

Appendix A. PCjr BASIC Reserved Words 275

Appendix B. DOS Reserved Words 276

Appendix C. ASCil Character Codes 277

Appendix D. Printer Usage with the PCjr 280

Appendix E. iBM PCjr Device Names 285

Appendix F. IBM PCjr BASIC Error Messages 286

Index 293

Introduction & Acknowledgements

IBM FCJr® User's Handbook is meant to serve as a tutorial as well as an

on-going reference guide to the operation and programming of the IBM

PCjr. All of PCyr's important features are discussed including:

Keyboard usage • Communications

BASIC programming • Graphics
DOS usage • File handling
Logo programming

A number of examples are included with the text to illustrate the topics
being discussed. Terms that may be unfamiliar to the reader will be presented
in bold in the text. These terms will be defined in subsequent paragraphs.

Chapter 1 of this book is meant to serve as an introduction to PCyrand
its related peripherals. Both the entry and the enhanced models are discussed.
Topics covered include the system unit, keyboard unit, optional disk drive,
8088 CPU, DOS 2.1, operating system, Microsoft BASIC 2.1, and peripher
als such as printers, joysticks, RAM expansion, and modems.

Chapter 2 details the procedures provided in initially installing the PCy>
as well as its start-up. Keyboard usage and the available peripheral ports are
also discussed in chapter 2.

Chapter 3 is meant to serve as an introduction to programming the PCjr
in Microsoft BASIC version 2.1. The following topics are discussed:

• BASIC start-up • Editing a program
• Program entry • Running a program
• Listing a program • Saving and loading a program

10 IBM PCjr User's Handbook

Chapter 4 discusses data types, operators, and variables in the context of
BASIC programming. Chapter 5 includes additional fundamental BASIC
programming concepts including:

• Input and output • String handling
• Tables and arrays • Program concatenation
• Functions

In chapter 6, the use of files in Microsoft BASIC is discussed. Chapter 7
describes techniques for outputting graphics using BASIC commands.

Chapter 8 includes a discussion of the Logo language. Logo is used
frequently in educational environments, and is expected to be widely imple
mented on the PCyr.

Chapter 9 consists of a detailed discussion of DOS 2.1 usage on the PCyr.
Topics covered include:

• DOS start-up • Erasing files
• DOS keyboard usage • Analyzing the diskette
• Copying diskettes • Copying the operating system
• Copying files • Batch files
• Formatting diskettes • EDLIN
• Backing-up diskettes • SORT
• Listing the diskette directory • FIND
• Renaming files • MORE

Chapter 10 contains a discussion of using the ?Cjr as a terminal to
communicate with other computers using telephone lines as the communica
tions link. Topics covered include:

• Internal modem

• Terminal Emulator program

• Practical example of PCyr communications

A number ofappendices are included with IBM PCyr User's Handbook.
These detail the PCyr ASCII code set, BASIC reserved words, BASIC error
messages, DOS commands, and printer usage with the PCjr.

We gratefully acknowledge Rosemary Morrissey and Jeanette Mahrer
of IBM Corporation for their assistance.

We also wish to thank Ron Hall and Jeff Jones of the HCS Computer

Shoppes for their cooperation and assistance.

I
Introduction to the PCjr

Overview

The IBM PQ'r is expected to reshape the home computer market.

The PQ'r is IBM's follow-up to the tremendously successful IBM Per
sonal Computer. Apparently, IBM intends the PCyr to appeal to the home

and education markets, while the PC and PC XT are targeted at the

business market.

The PCyr is available as two separate models (see figures 1 -1 and 1 -2).
The entry model includes 64K (or kilobytes) of RAM, two slots for
inserting program cartridges, a cordless keyboard, and the Intel 8088
microprocessor used on the IBM PC and PC XT models. The enhanced
model contains an additional 64K Memory and Display Expansion

board, as well as a slim-line 5!4 inch floppy diskette drive which is capable

of storing 360K. The Memory and Display Expansion board increases
user RAM to 128K and allows 80 characters to be displayed on each line

of text on the screen.

11

12 IBM PCjr User's Handbook

a. cartridge slots

Figure 1-1. IBM PQV (Entry Model)

a. cartridge slots b. diskette drive c. keyboard

Figure 1-2. IBM PQV (Enhanced Model)

Introduction to ttie PCjr 13

The IBM PQr consists of three basic units; the keyboard, System
Unit, and power supply/transformer (see figures 1-3 to 1-5). The System
Unit contains the heart of the PQr, the Intel 8088 microprocessor, 64 or
128K of RAM, the cartridge slots, and the Microsoft BASIC interpreter
in ROM (read-only memory).

The keyboard allows the PCjr user to communicate with the System
Unit. Unlike the PC and PC XT models, the PCjr keyboard does not

necessarily have to be connected to the System Unit with a cable. The
PCjr keyboard is cordless. Communications with the System Unit is
accomplished via an infrared optical signal.

If more than one PCjr is being used concurrently in a room, it is
necessary to connect the keyboard to the System Unit using the optional
keyboard connection cable. Otherwise, the keyboard can be used without
the cable to communicate with the System Unit. The advantage of cord
less communications is especially useful in a classroom situation ~ as the
System Unit can be placed in a central location and the keyboard can be
passed around the classroom. The effective range of cordless keyboard
communications is approximately 20 feet.

The PQr keyboard is powered by four AA batteries. It contains 62
programmable* keys arranged in a typewriter-like sequence.

A display must be added to your PQr in order for it to be a useful
device. The PQr can utilize either a television set, the IBM Color Display,
or a standard video monitor as a display device. Since the PCyr offers
built-in color graphics, a color display device offers the greatest
advantage.

Unlike the IBM PC and PC XT models, the PC/r's power supply is

not built into the System Unit. Rather, the power supply/transformer
(see figure 1-5) is housed in a separate unit which is attached to the System
Unit by a power cord.

Programmable keys allow any letter, number, function, or command to be assigned.

14 IBM PCjr User's Handbook

W^Uhb

Figure 1-3. IBM PQ> Keyboard Unit.

Figure 1-4. IBM PCjr System Unit.

Introduction to ttie PCjr 15

Figure 1-5. IBM PQ> Power Transformer

DIFFERENCES BETWEEN

THE IBM PC and PC XT AND THE PCjr

Since many of our readers are likely to already be familiar with
IBM's PC and PC XT models, it may be helpful to begin our discussion of
the PCjr with a summary of the differences between it and the PC and PC
XT.

First of all, while the PC comes with 128K of RAM on the System

Board and the PC XT includes 256K of RAM, the PCjr includes only

64K of RAM. Expansion up to 128K is available on the PCy> by
incorporating the optional Memory and Expansion board. The PC and
PC XT models allow for RAM Expansion up to 896K.

The keyboard on the PC and PC XT models includes 83 separate
keys, while the PCjr includes only 62 keys. Although the PCy'r's keyboard
contains fewer keys than the PC and PC XT keyboards, nearly all of the
characters available on these two can be generated by the PCjr's key

board. This is accomplished by having a number of keys serve a dual
purpose. For example, the function keys are now located along the top of
the keyboard rather than along the left hand side (as on the PC and PC

16 IBM PCjr User's Handbook

XT models). These keys are also used to generate special symbols (! @ #)
and numbers.

Another difference between the PC and PC XT keyboards and the
PCyr keyboard is that the PCyr keyboard need not necessarily be physi
cally connected to the System Unit with a cable. The connection between

the PC/r System Unit and keyboard is made via an infrared link. This will
be explained in more detail later in this chapter as well as in chapter 2.

The PCyr's keyboard also differs from the PC and PC XT keyboard
in that the keytops on the PCyr keyboard are not labeled. Keyboard
overlays (see figure 1 -6) are used to identify the individual keys according
to the application for which the PCjr is to be used. The symbol for each
key is printed on the overlay above it.

Another difference between the PCyrand PC and PC XT models is
the availability of disk storage. The PCjr allows for the addition of one
optional floppy disk drive. The PC allows the addition of two drives.

Fixed disk storage can also be added to the PC by adding an Expansion
Unit. The PC XT includes one floppy disk drive as well as a lOMB"^ fixed
drive as part of its standard configuration.

The PC and PC XT will support the IBM Graphics, Compact, or
Color Printers. The PCyr will only support the Graphics and Compact
Printers.

Finally, the 8087 comprocessor which is available for the IBM PC
and PC XT is not available for the PCyr.

Technical Data

As was mentioned in the preceding section, the System Unit contains
the fundamental components of the PCyr. A system board or mother-

* MB is an abbreviation for megabyte (I million bytes).

Introduction to thie PCjr 17

Figure 1-6. IBM PQ> Keyboard Overlay

board is housed within the System Unit. Most of the circuitry for the PQ>
is located on the system board including the following:

• 8088 microprocessor

• 64K RAM

• 64K ROM

• RS-232 Interface

• Speaker

• Connectors for optional devices

ROM and RAM

ROM stands for Read Only Memory. ROM will hold the data stored
in it permanently. If the power to the PQ> is shut off, the information
stored in ROM will remain there. As previously mentioned, the Microsoft
BASIC language interpreter is stored in ROM.

RAM stands for Random Access Memory*. Any data stored in
RAM will be lost when the PCjr's power is shut off. When data is loaded
from a tape cassette, a disk drive, or the keyboard, it is stored in RAM.

• Random Access Memory Is a somewhat misleading term to describe RAM, as most memory
(including ROM) is randomly accessed.

18 IBM PCjr User's Handbook

DYNAMIC AND STATIC RAM

There are two different types of RAM memory; dynamic RAM and
static RAM. Dynamic RAM can only hold the data it is storing for a few
milliseconds. Therefore, any data being stored in dynamic RAM must
constantly be rewritten or refreshed. This dynamic RAM refresh function
must be a part of the support logic when the dynamic RAM memory is
designed.

Static RAM is more expensive than dynamic RAM. However, once
data has been written into static RAM, it will be retained as long as power
is supplied.

IBM PCy/'s CPU

The central processing unit or CPU is the heart of any computer. The
CPU controls all of the other components for the computer.

In larger computers, the CPU and the ALU (arithmetic logic unit)
consist of a group of IC chips each dedicated to its own task. In smaller
computers, the CPU and ALU are generally combined on a single chip
which is known as a microprocessor.

A microprocessor can be defined as a single chip which contains the
logic of a central processing unit as well as any additional logic that must
complement the CPU.

The microprocessor used in the PCjr is the Intel 8088, which is
manufactured by Intel Corporation of Sunnyvale, California. Intel is a
pioneer in the development of microprocessors. Intel developed the
predecessor of the 8088, the 4004 calculator chip, in the early 1970's. Intel
subsequently developed the 8008, 8080, 8085, and 8088/8086 micro
processors.

Microprocessor logic is based upon the bit. A bit is the basis of all
information storage within the computer. A bit is a simple switch that can
consist of either of the two binary states, on or off.

Bits are often separated into groups of eight. These groups of 8 bits
are known as a byte. A byte is required to represent a single character (i.e.
letter, number, or symbol). Generally, bytes are processed by the compu
ter in groups of 2.

Most 8-bit microprocessors can only address (or work directly with)

Introduction to the PCjr 19

65,536 (64K) bytes at any one time. Even though this number appears
large, a 30 page document would fill this memory area.

Most 16-bit microprocessors can address from 65,536 to 16 million

bytes of memory. Moreover, 16 bit microprocessors process data at a
speed from 2 to 10 times faster than 8-bit microprocessors.

One of the main advantages the IBM PQ'r has over other home

computers is the power provided by its use of the 8088 CPU.
The 8088 can address up to one million bytes of memory (or 1

megabyte, abbreviated as 1 MB). The 8088 has 20 different address lines,
which allows 2 to exponent 20 (220) different address combinations. This
is the equivalent of 1,048,576 different addresses.

The speed of the 8088 is about .65 mps (or million operations per
second). In other words, the 8088 will process 650,000 arithmetic opera
tions or data transfers per second. When compared with the Intel 8080 A,
the 8088 is approximately six times faster. The characteristics of the 8088
are outlined in table 1-1.

Table 1-1. Intel 8088 Characteristics

Intel 8088

Construction: Chip technology — HMOS 40 pin
plastic package.

Manufacturer: Intel Corporation

Introduction Date: 1979

Features: 1. 20 address lines

2. 1 MB memory addressing

3. 650,000 operations per second
4. 8 data lines

5. 4.77 Mhz clock speed
6. Separate bus interface and execu

tion units.

7. 99 basic machine language
instructions.

8. Software compatible with Intel
8086.

20 IBM PCjr User's Handbook

Software

Software can be defined as the set of instructions or programs that
cause the computer to operate. Software can be divided among three
general classifications:

• Operating System Software
• Language Software
• Applications Software

Each of these classes of software will be defined and discussed briefly
in the context of the PQr in the following sections. PQ> software can be
stored on cassette tape, floppy diskettes, or cartridges.

OPERATING SYSTEM SOFTWARE

An operating system can be defined as a group of programs which
manage the overall operation of the computer. The operating system
performs system operations such as controlling data input/output,
memory assignments etc. The PQr's operating system is stored perman
ently in ROM.

The standard operating system available for the PQr is DOS version
2.1. DOS 2.1 was developed by Microsoft Corporation and is a revised
version of the earlier versions of Microsoft's DOS used on the IBM PC

(versions 1.0, 1.1, and 2.0). DOS version 2.1 can also be used on the IBM
PC and PC XT. DOS version 2.1 usage on the PCjr is discussed in chapter
9.

LANGUAGE SOFTWARE

A language can be defined as a group of characters and/or symbols
which can be combined using a set of syntax rules to represent informa
tion. Examples of languages include English, Spanish, French, as well as
computer programming languages such as BASIC, ADA, PASCAL, and
COBOL.

The BASIC language is supplied with the PCjr. The version of
BASIC used is that developed by the Microsoft Corporation — Microsoft
BASIC version CI.20. Microsoft BASIC is located in memory on the
PCyr's system board. Microsoft BASIC is also supplied with the IBM PC

Introduction to the PCjr 21

and PC XT computers. Microsoft BASIC version 2.1 is the latest version

used on IBM personal computers. Earlier versions includes versions 1.0,
1.1, and 2.0.

Computer languages are often distinguished as being either com
piled or interpreted languages. Microsoft BASIC is an interpreted
language.

A compiled language program consists of the source code and the
compiled code. The source code consists of the program statements in
their original form. For example, the following is a line of source code
from a program written in the CBASIC compiled language.

100 INPUT "ENTER TODAY'S DATE:";DATE.1

The source code is processed by a program known as a compiler into
the compiled code. The compiled code is very similar to the machine
language used by the microprocessor. The compiled code is the code
actually used when a compiled program is run. A program known as a
run-time monitor is used to run the compiled program.

An interpreted language consists of only the source code. The source
code is translated line-by-line directly into machine language instruc

tions. The Microsoft BASIC language that is standard on the IBM PC is
an interpreted language.

One advantage of interpreted languages over compiled languages is
that interpreted language programs are more easily developed. When
working with interpreted languages, a programmer need only write a
program, enter it, run it, and alter it at his leisure. When working with a
compiled language, the source code must be recompiled every time it is
edited. This can be frustrating during the program debugging process.

One advantage of compiled languages over interpreted languages is
that execution time is much faster. The compiled code is much closer to

the machine language than the source code. Since interpretation is not
necessary, execution of compiled code is much faster.

The IBM PC and PC XT use three separate versions of BASIC;

Cassette BASIC, Disk BASIC, and Advanced BASIC.

Cassette BASIC is the version of BASIC used when a cassette

recorder is being used to store information. Cassette BASIC cannot be

used when data is being stored on diskettes.

22 IBM PC)r User's Handbook

Disk BASIC contains all of the capabilities of Cassette BASIC and

can also be used when data is being stored on diskettes. In other words,

Disk BASIC can be used when data is being stored on diskettes or when it

is being stored on cassette tape.

Advanced BASIC has all of the capabilities of Cassette BASIC and

Disk BASIC as well as additional features not found on these other two

versions of BASIC, Advanced BASIC includes several graphics com

mands such as CIRCLE, DRAW, and PAINT that allow the user to fully

utilize the color graphics capabilities of the IBM PC when it is equipped
with the Color/Graphics Monitor Adapter and a color monitor or color
TV set.

Both the Advanced BASIC and the Disk BASIC versions require

DOS before they can be run, or before any programs written in Advanced
or Disk BASIC can be run.

The PCyr uses the same Cassette BASIC used by the PC and PC XT.

The Cassette BASIC portion of the interpreter is resident in 32K of ROM.

This is also the case with the PC and PC XT.

For the PCyr, the features of Disk and Advanced BASIC have been

combined (along with additional new features) into Cartridge BASIC.

Cartridge BASIC is called from a ROM cartridge which must be inserted
in one of the PCyr's two available cartridge slots. Cartridge BASIC has a

length of approximately 32K, and requires 6K of RAM for operation.
As we mentioned in the last paragraph. Cartridge BASIC incorpo

rates a number of new features not found in previous versions of BASIC

available for the PC and PC XT. The majority of these features consist of

commands which allow for more effective usage of the PCjr's color

graphics options and generation of sound through an extended feature. A

few of the more useful commands included in Cartridge BASIC are

described briefly below.

NOISE

This command allows the programmer to generate complex sound

effects through an external speaker connected to the PCjr.

PALETTE

This command allows the programmer to select the palette in use.

Introduction to ttie PCjr 23

PALETTE USING

This command allows the programmer a means of efficiently setting
all palette entries.

PCOPY

This command allows the programmer to copy one page of screen
memory to another page.

TERM

The TERM command causes a Terminal Emulator program, which

is present in the ROM of the BASIC cartridge, to be loaded into the

PCyr's RAM. This Terminal Emulator program can be used to allow the

PCjr to communicate with a host computer. The Terminal Emulator

program will be discussed in detail in chapter 10.

Cartridge BASIC can be used either when DOS 2.1 has been loaded

from a diskette into RAM or when DOS has not been loaded. If DOS has

not been loaded, any disk related BASIC commands will not be

functional.

BASIC programming on the PCjr will be discussed in more detail in

chapters 3 through 7.

Since the PCjr has a great deal of appeal in educational settings,

another language, Logo, is also widely used. Logo is a language which

begins by teaching computer fundamentals to grade school age children

and progressively exposes the reader to more advanced concepts such as
mathematical and logical operators, file handling, graphics, and assem

bly language subroutines. The use of Logo on the PCyr will be discussed in

more detail in chapter 8.

APPLICATIONS SOFTWARE

Applications software can be defined as a set of instructions designed

to accomplish a specific task that is of some value to the user. Examples of

applications programs include games, word processing programs, spread

sheets, and database software. Generally, applications programs are

stored on cassette or diskette and are transferred into RAM, where the

program is available to the computer. Applications programs can also be

stored in a permanent form on a ROM cartridge. This ROM cartridge can

be plugged into one of the PQ'r's cartridge slots.

24 IBM PCjr User's Handbook

A large variety of applications software is available for use with the

PQ>. These include programs which can be used in the home such as
Home Budget; programs which can be used at work such as Multiplan
and Visicalc; programs with educational applications such as Monster
Math and Turtle Power, and finally games such as Adventure.

PC/r CARTRIDGES

As was mentioned in the preceding section, cartridges are often used

to store PQ> programs including the Cartridge BASIC interpreter. A

PCyr ROM cartridge is pictured in figure 1-7. The cartridge consists of
32K of ROM enclosed in a plastic case.

The ROM cartridge should generally be inserted into the PCjr's left

cartridge slot (see figure 1-8).

Peripheral and Add-On Devices

A peripheral can be defined as an auxiliary device which can be

connected to a computer to perform some additional function.

A number of peripherals and add-on devices can be added to the

PCjr to expand it into a total computer system. These include a cassette

player/ recorder, a diskette drive, printers, joysticks, a modem, and addi

tional RAM. A number of these peripheral components will be described

in the following sections.

Introduction to ttie PCjr 25

Figure 1-7. PQr Cartridge

Figure 1-8. inserting a PCjr Cartridge

26 IBM PCjr User's Handbook

Disk Drives

The optional disk drive for the PQ'r is a soft sectored, double density,

and double sided drive. The floppy disk drive uses 40 tracks per diskette

side. Each track has nine sectors* of 512 bytes. This gives a total of 180K

of data storage per side or 360K of storage for the drive.

IBM refers to the disk drive used with the PQ'r as a slimline drive.

This drive is approximately half the height of the standard size disk drives

used with the IBM PC. However, the slimline drive uses the same 5!4 inch

diskettes as do the standard size drives.

The PCyr slimline diskette drive is manufactured by Qume Corpora
tion of San Jose, California. Qume is a subsidiary of IT&T. The majority
of diskette drives used in the IBM PC were manufactured by Tandon
Corporation of Chatsworth, California.

As was mentioned previously, a diskette drive is standard with the

PC/r enhanced model. A drive can, however, be added to the basic PC/r

model. IBM provides comprehensive installation instructions with the

diskette drive for users who wish to add this option to their PC/r.

The disk drive is one of the most important parts of a computer
system. Strong consideration should be given to purchasing the enhanced

version of the PC/r as it includes a disk drive. Disk drives allow the

storage of relatively large amounts of data and also offer relatively fast

access to that data.

Unlike RAM storage, when information is stored on a disk, the

information is not lost when the computer is turned off. In other words,

disks offer a permanent means of storing data.

A disk stores data in a magnetic form, much like data is stored on

magnetic tape. The main difference between storage on a magnetic tape

and storage on a disk lies in the means by which that data can be accessed.

The disk drive contains a device known as a read/write head, which

is used to read and write information. The computer can move the head to
any position desired on the disk surface. This is in contrast to magnetic

tape, where data is read from or written onto the tape in consecutive

order.

A definition of sectors is provided on page 28.

Introduction to the PCjr 27

This capacity to read or write data at a particular position is known

as random access. Disk drives are known as random access storage

devices. On the other hand, in cases where data must be read or written in

a consecutive order, the accessing is known as sequential access. A

cassette tape recorder is known as a sequential access device.

FLOPPY DISKETTES

Disk drives store data on floppy diskettes. A floppy diskette consists

of a round vinyl disk which is enclosed within a plastic cover. The diskette

is generally stored in a diskette envelope.

This cover protects the diskette from damage while it is being
handled by the operator. The diskette should never be removed from its
cover. A 5i4 inch diskette with its protective envelope is shown in figure

1-9.

The diskette is allowed to rotate within the protective envelope. The

round hole in the middle of the diskette allows the disk drive to hold the

diskette and spin it. The oblong shaped opening on the protective
envelope provides an area where the head can read from or write to the
diskette surface.

Temporary Label

Permanent Label

Diskette in

Protective Cover

Exposed Read/Write
Head Slot

Write Protect Notch

(Some diskettes do
not have this notch.)

Index Hole

Diskette

Envelope

Figure 1-9. 5!4 inch Floppy Diskette

28 IBM PCjr User's Handbook

TRACKS & SECTORS

To facilitate the process of searching for data on the diskette surface,

that surface is divided into tracks and sectors. Tracks may be visualized as

a series of concentric circles on the diskette surface, as shown in figure

1-10. DOS 2.1 divides each side of a diskette into 40 tracks.

To further reduce the time necessary to search for a particular data

item, DOS 2.1 divides each track into 9 sectors, which are also shown in

figure 1-10.

Each individual sector holds 512 bytes of data. When DOS has

access to the track and sector where a particular data item is being stored,

it will only have to search 512 bytes to find that item. The result of

dividing the diskette surface into tracks and sectors is that access time is

greatly decreased.

HARD AND SOFT SECTORS

Locating a particular track on the disk surface is a relatively uncom
plicated matter. The drive merely moves the head to the position on the
diskette where the specified track is located, much like the needle on a

phonograph is positioned to the location of a specific song on a record

album.

However, locating a particular sector is a more difficult process. Two

different methods are used to locate sectors on a disk; hard sectoring and
soft sectoring.

Both the hard and soft sector methods involve the use of an index

hole. The index hole is shown in figure 1-9. It is located just to the right of
the large hole in the middle of the 5!4 inch diskette.

The index hole as shown in figure 1-9 is a hole only in the diskette's

protective covering. Another index hole is located on the actual diskette

surface inside the envelope. As the diskette spins, the index hole (or holes)

on the diskette surface passes underneath the hole in the protective
envelope.

A light source inside the disk drive shines light onto the area of the

diskette containing the index hole. When an index hole on the disk

surface is aligned with the index hole on the protective envelope, the light
will shine through to a sensor. The sensor will relay information on the

Introduction to the PCjr 29

One

Sector of

Track

Track

Figure 1-10. Tracks and Sectors

location of the index holes, which can be used to calculate the various

sector locations.

Now that we have discussed the concepts of locating sectors, we will

discuss the difference between hard and soft sectored diskettes. A hard

sectored diskette contains a number of holes, each of which indicates the

location of a sector. An extra hole is used to indicate the location of the

first sector. The location of the various sectors is determined by counting

the number of holes occuring after the first sector. A hard sectored

diskette is depicted in figure 1-11.

Soft sectored diskettes have only one index hole as shown in figure

1-12. This solitary index hole marks the location of the first sector. By
timing the rotation speed of the floppy diskette, the location of the other
sectors can be determined. The IBM PC/> uses soft sectored diskettes.

DISKETTE CAPACITY

Two factors affect the amount of data that can be stored on a floppy

diskette — density and the number of sides to which data can be written.
Density refers to a diskette's recording format, which in turn affects

its capacity. Single density (SD) 5!4 inch diskettes have roughly 90K of
capacity per side. Double density (DD) SIA inch diskettes have a capacity

30 IBM PCjr User's Handbook

Sector

2 Index Holes

Figure 1-11. Hard Sectored Diskette

Sector

Index Hole

Figure 1-12. Soft Sectored Diskette

Introduction to ttie PCjr 31

of approximately 180K per side.

Some floppy diskettes are designed to be written on only one side.

These are known as single sided (SS) diskettes. Diskettes which are

designed to he written on both sides are known as double sided (DS)

diskettes. The PQrusesdouhlesided,douhledensitydiskettes(DS, DD)

with a capacity of 360K.

DISKETTE WRITE PROTECTION

Diskettes have a notch on the side of their protective envelope which

determines whether or not data can he written onto that diskette. On 5'/i

inch diskettes this notch is known as a write-enahle notch.

Information cannot he written onto a S'A inch diskette unless the

write-enahle notch has been left uncovered.

Some 5'/4 inch diskettes (especially system diskettes) may he per

manently write protected if their protective envelope does not contain a

notch. Any 5'A inch diskette with a notch can he write protected by merely

covering the notch with a piece of tape as shown in figure 1-13.

Figure 1-13. Write Protecting a 5!4 Inch Diskette

32 IBM PCjr User's Handbook

PC/r DISK DRIVE OPERATION

PQ'rdisk drive operation is a relatively simple matter. When there is
no diskette in the disk drive, the disk slot handle should be in the

horizontal or open position (see figure 1-14).

When inserting a diskette, the diskette's label should be facing up.
The side of the diskette containing the oval-shaped opening in the cover
should be inserted into the drive (see figure 1-15).

Slide the diskette into the diskette slot. Once the diskette has been

fully inserted, rotate the diskette slot handle to the vertical or closed
position. To remove a diskette from the drive, merely reverse this
procedure.

Your PQ> disk drive has a small red lamp on its front cover. This
lamp will light whenever data is being read from or written to a diskette.
Do not remove a diskette when this lamp is on.

Printers

Printers used with personal computers can be classified among two
major types — dot matrix printers and daisy wheel printers. Dot matrix
printers output characters on paper as a group of dots. Dot matrix
printers output data at speeds ranging from 70 to 350 characters per
second (or 800 to 4000 words per minute).

Daisy wheel printers output characters that appear much like those
output by a typewriter. The only difference is that a daisy wheel printer
uses a round printing element which contains the standard character set.

The wheel spins to the correct position each time a character is to be
printed. Daisy wheel printers are generally more expensive as well as
slower than dot matrix printers. However, the quality of the characters
output by daisy wheel printers is higher than those output by dot matrix
printers.

Printers used with personal computers are generally either serial or
parallel devices. In serial communications, data is transferred one bit at a
time from the source device to the receiving device. In parallel communi
cations, data is transferred eight bits (or one byte) at a time.

Introduction to the PCjr 33

Figure 1-14, Diskette Slot Handle in Open Position

iiiniiu

Figure 1-15. inserting a Diskette into the PQ> Drive

34 IBM PCjr User's Handbook

IBM COMPACT PRINTER

The IBM Compact Printer is a serial device. The Serial Adapter

Cable (see figure 1-16) is required to install the Compact Printer. The first

step in installing the Compact Printer is to turn off the power switches on
the PCjr as well as any peripherals attached to it. The PCjr and any

attached peripherals should also be unpluged from electric outlets.

Next, plug the end of the Serial Adapter Cable labeled S into the

opening on the rear of the PCyr labeled S. The letter S should be facing up
when it is inserted into the opening (see figure 1-17).

Locate the serial port on the Compact Printer. Once the port has
been located, plug the opposite end of the Serial Adapter Cable into that
port and tighten the connecting screws. The PCjr, Compact Printer, and
any additional peripherals can now be powered on and plugged in.

The Compact Printer can output either text or graphics characters.
Text characters are output in a 5 by 7 dot matrix. Graphics characters are
output with 560 dots per horizontal line with a character height of 8 dots.

Data is output from the PCjr at 1200 bits per second (bps). The
Compact Printer receives this data into its 256 character buffer. The

Compact Printer is rated by IBM for an output speed of 50 characters per
second (cps). Either sheet, fan-fold, or roll paper can be used with the

Compact Printer. The maximum paper width that can be accepted by the
Compact Printer is 8.5 inches.

The Compact Printer is a thermal dot matrix printer. Generally, dot
matrix printers are impact dot matrix printers. With impact printers,
printing is accomplished by a print head striking the paper surface.

Thermal dot matrix printers utilize a less expensive technology than
impact dot matrix printers. Thermal dot matrix printing requires a
special, coated paper. When the paper's coating is struck by the thermal
printer's hot impact surface, the character will be formed.

The Compact Printer can output text characters in any one of four
different modes:

• Standard Mode

• Double-Width Mode

• Compressed Mode
• Compressed Double-Width Mode

Introduction to ttie PCjr 35

Figure 1-16. Serial Adapter Cable

Figure 1-17. Serial Adapter Installation

36 IBM PCjr User's Handbook

In the standard mode, 80 characters are output per line. Ten charac

ters are output per inch. In the double-width mode, only 5 characters per

inch are output. Therefore, in this mode, only 40 characters are output
per line. In the compressed mode, 17.5 characters are output per inch.
This mode allows for 136 characters per line. In the compressed double-
width mode, 8.75 characters are output per inch. This translates to 68

characters per line.

Printer operation and programming in BASIC for printer output will
be discussed in more detail in appendix D.

IBM GRAPHICS PRINTER

The IBM Graphics Printer (see figure 1-18) can also be used with the

PCjr. The IBM Graphics printer is a parallel device. In orderforthe IBM

Graphics Printer to be used with the PCy>, a device known as the Parallel

Printer Attachment must be installed on the PCjr. This device will also
allow the connection of many parallel printers not manufactured by IBM
to the PCy>.

Figure 1-18. IBM Graphics Printer

Introduction to ttie PCjr 37

The IBM Graphics Printer is actually a version of the Epson MX-80
printer. This printer has an output speed of 80 characters per second in
any of several styles of dot matrix print. The IBM Graphics Printer will
accept forms with a minimum width of 4 inches and a maximum width of
10 inches. The maximum paper thickness accepted by the IBM printer is 3
plies or .012 inches.

Paper is fed into the IBM Graphics Printer from the rear of the unit.
The unit's ribbon is enclosed in a removable cartridge. Each ribbon has a

print capacity of 3 million characters which translates to approximately
1150 typed pages. The IBM Graphics Printer uses a bidirectional, 9-wire
printhead. The printhead has a life expectancy of 30 million impressions.
The printhead can easily be replaced by the operator.

A 9 by 9 dot matrix pattern is used to form characters. Character
sizes may range from 5 to 16.5 characters per inch (CPI). On an 8 inch line
width, these pitch sizes (5,8.25,10, and 16.5) will produce a maximum of
40, 66, 80, and 132 characters respectively.

The IBM Graphics Printer offers 3 different printing styles; normal,
double, and emphasized. Normal printing involves one strike of the
printhead per character. Double printing involves a double strike of the
printhead for each character. Emphasized printing involves a single strike
for the character, after which the paper is stepped up by a fraction of an
inch, and a single strike is again made. Emphasized printing gives the
appearance of a bold character, which adds to the versatility of the
printer.

JOYSTICKS

A joystick is a controller device used to position an object on the
display. Generally, joysticks are used with game software. The IBM PCyr
Attachable Joystick is pictured in figure 1-19.

Once the joysticks have been installed, it maybe necessary to use the
centering levers (see figure 1-19) located at the top of the PC/r joystick to
properly position the object to be controlled. Centering lever 1 controls
the horizontal positioning, while centering lever 2 controls the vertical
positioning.

The PCyr joystick can be operated in either the free mode or in the
center return mode. In the free mode, the control stick will remain in

38 IBM PCjr User's Handbook

Figure 1-19. IBM PQ> Attachable Joystick

whatever position it is placed. The PQ/rjoystick can be placed in the free
mode by moving the control stick to either corner and then moving either
one or both of the switches located on the underside of the joystick to the
free position.

In the center return mode, the controller stick always returns to the
center position. The Joystick can be operated in this mode by moving the
switches located on the underside of the joystick to the position opposite
"Free". The controller stick may be in any position when this adjustment
is made.

KEYBOARD CORD

IBM's optional Keyboard Cord (see figure 1-20) must be used
whenever more than one PCjr is being used in the same room. To install
the Keyboard Cord, first of all, be certain that the PCyrand all attached
peripherals are powered off and unplugged. Attach the end of the Key
board Cord labelled K into the connector labelled K on the rear of the

PQ>.

The connector on the other end of the Keyboard Cord should be

plugged into the port on the rear of the PCyr's keyboard.

Introduction to ttie PCjr 39

Figure 1-20. IBM Keyboard Cord

PCyr MEMORY AND DISPLAY EXPANSION

The PCjr's Memory and Display Expansion device (see figure 1-21)
expands the PQV's (basic model) memory from 64K to 128 K. This device
also supports 80 column video output. Installation of the Memory and
Display Expansion is relatively simple. Instructions are included with the
device.

hww llUllHlllllllllll
\\\\U llllllllllllllllll!

Figure 1-21. PQr Memory and Display Expansion

40 IBM PCjr User's Handbook

PC/r INTERNAL MODEM

A modem is a device that prepares data for transmission. Modems

generally are used with computers to encode data into a series of tones

that can be transmitted over telephone lines. Modems can also decode

tones into digital information. A typical modem link is depicted in figure
1-22.

The PQ> Internal Modem is installed in the PCyr's System Unit
(most modems are external devices). Modem installation instructions are

included with this option. Use of the PQ> Internal Modem for communi
cations will be discussed in chapter 10.

Figure 1-22. Computer/ Modem Link

Introduction to ttie PCjr 41

CASSETTE RECORDER/PLAYER

The IBM PQ'r can utilize a cassette recorder for program and data
storage. Cassette recorders are the most inexpensive data storage devices
available for home computers. They provide a low cost and reliable
means of data storage for the budget-minded home computer consumer.

A cassette recorder uses standard cassette tapes to store data. It is
good practice to use only high quality cassette tapes to save programs and
data. Using lesser quality cassette tapes could result in the loss of pro
grams and data.

The PCjr can use nearly any type of cassette recorder. However, a

special adapter cable must be purchased in order to connect the cassette

recorder to the PCjr. This PCyr adapter cable is pictured in figure 1-23.

Figure 1-23. PCjr Adapter Cable for Cassette

A cassette recorder can be attached to the PCjr as follows:

1. Disconnect the power for the PCjr and all peripherals. Installing
peripherals while the power is connected can be hazardous not

only to the PCjr but to the user as well.

42 IBM PCjr User's Handbook

2. Find the end of the adapter cable with the letter "c". Insert this

end into the back of the computer in the port marked "c". The "c"

on the cable should be facing up.

3. The other end of the adpater cable contains three colored wires.
These wires are to be connected to the cassette recorder. Plug the

black cable into the cassette jack marked EAR or EARPHONE.

Plug the red cable into the cassette jack marked AUX or AUXIL
IARY. Plug the grey cable into the cassette jack marked REM or

REMOTE.

4. Plug in the power cord of the PQ> and all peripherals. The

cassette player is now ready for operation.

2
Installation, Operatian & Keybaard
Usage

Introduction

In this chapter, we will explain the steps necessary for setting up the
IBM PQr. IBM has simplified the installation procedures for the PQrto
the point where almost anyone can set the unit up. Set up involves
unpacking the various system components and peripherials and attach
ing the necessary cables and connectors.

This chapter will also explain PQr keyboard usage. IBM has
included a number of advanced features in the PQr's keyboard. These

will be described in detail in this chapter.

Installation

In the following section, we will discuss the installation of the PQr
and related peripheral devices.

43

44 IBM PCjr User's Handbook

SYSTEM UNIT INSTALLATION

The system unit is the PCjr's brain. The system unit houses all the

PQr's standard and optional hardware. For example, the optional disk

drive is housed within the system unit. The system unit is pictured in

figure 2-1.

-

Figure 2-1. System Unit

The system unit must be attached to either a television set or a

monitor. If a television set is used, refer to the section entitled "Attaching

a Television Set." If a monitor is to be used, refer to the seetion entitled

"Attaching a Monitor".

ATTACHING A TELEVISION SET

In order to connect a television to the PC/r, an optional RF modula

tor (TV. connector cable) must be purchased. An RF modulator is shown

in figure 2-2.

Installation, Operation & Keyboard Usage 45

Figure 2-2. RF Modulator

To install the RF modulator, first disconnect the television antenna

from the VHP terminals at the back of the television. Then, connect the

two short wires leading from the RF modulator to the twin VHP termi

nals and tighten the screws. Reconnect the television antenna to the two

terminals on the RF modulator and tighten the screws. Finally, connect

the end of the long video cable to the port in the rear of the PQ> marked

with a T. Be sure the T marked on the end of the video cable is facing up.

The RF modulator contains a switch marked Computer/Television.

When this switch is at the computer position, the television set receives its

signal from the PCy>. When the switch is in the television position, the
television set receives its signal from the television antenna.

ATTACHING A MONITOR

Two types of monitors can be used with the PCy'r, a composite

monitor or an RGB monitor. If a composite monitor is being used, refer
to the section "Attaching a Composite Monitor." If an RGB monitor is

used, refer to the section "Attaching an RGB Monitor."

46 IBM PCjr User's Handbook

ATTACHING A COMPOSITE MONITOR

A composite monitor can be attached to the system unit via the

composite display port. This port is located on the rear of the PC/>. and is

marked with a V. To attach a composite montior to the PQ>, simply
connect one end of the video cable to the V port on the computer and the

other end of the video cable to the monitor.

ATTACHING AN RGB MONITOR

An RGB monitor can be attached to the system unit via the direct
drive display port. This port is located on the rear of the PQ> and is

marked with a D. In order to connect an RGB monitor to the PCy>, the
optional color display adaptor cable must be purchased. To connect the
cable, simply insert the end of the cable marked with a D into the port in
the rear of the PCjr. Be sure the D on the cable is facing up. Connect the

other end of the cable to the RGB monitor.

ATTACHING THE POWER TRANSFORMER

The power transformer must be attached to the PCy> via the port

marked P on the rear of the system unit. Notice the two cables which

originate from the power transformer. The end of the cable marked with

a P must be inserted into the port marked P. The other cable must be

inserted into a standard three prong wall outlet. The power transformer

is pictured in figure 2-3.

Figure 2-3. PCjr Power Transformer

Installation, Operation & Keyboard Usage 47

KEYBOARD INSTALLATION

The IBM PCjr is equipped with a cordless keyboard. The cordless

keyboard has the advantage of allowing the user more freedom of move
ment. The keyboard has a maximum operating range of 20 feet.

An infrared link allows communication between the keyboard and

the system unit. The keyboard transmits an infrared light signal to the
system unit each time a key is pressed. In order for a proper link to be
maintained, the keyboard must be within a 30° angle of the system unit.

The keyboard is powered by four AA batteries. The batteries must
be installed before the PQrcan be used. In order to install the batteries,

follow the steps outlined below.

1. Turn off the system unit and all peripherals.

2. The battery compartment is located on the underside of the
keyboard in the upper left corner. Open the cover of the
battery compartment as illustrated in figure 2-4.

3. Insert the batteries into the battery compartment as illus
trated in figure 2-5.

4. Close the cover of the battery compartment. The keyboard
is now ready for operation.

Figure 2-4. Opening Battery Compartment

48 IBM PCjr User's Handbook

Figure 2-5. inserting Batteries

Start Up Procedure

Be sure that the PCyrand all optional peripherals have been properly
installed. The PQ>may now be turned on. The power switch is located in
the rear of the system unit. Move the switch to the 1 (or on) position. A
few seconds will elapse before a screen similar to that pictured in figure
2-6, will appear. At this point, the PQ> is performing a self-test. The
number in the lower right of the screen indicates the amount of RAM

which has been tested.

im

128 KK-

Figure 2-6. Stan Up Display

Installation, Operation & Keyboard Usage 49

One of the four following phenomenon will occur following the

self-test;

1. If the optional disk drive is installed, and the DOS diskette (Disk
Operating System diskette) is inserted into the diskette drive, the PCjr
will boot DOS. (See chapter 9 for a more detailed explanation on
booting DOS).

2. If the BASIC cartridge is inserted into one of the two cartridge ports,
the PCjr will load BASIC and display the BASIC prompt.

3. If the DOS diskette is inserted into the disk drive and the BASIC

cartridge is inserted into one of the two cartridge ports, the PCjr will
boot DOS. BASIC can be loaded by typing the command, BASIC,
while in DOS.

4. If neither a disk nor cartridge is present, the PCjr will start cassette
BASIC. Cassette BASIC is built into the PC/r's ROM.

KEYBOARD USAGE

The PQr's keyboard is pictured in figure 2-7. Most its keys are
similar to those of a standard typewriter keyboard. The alpha-numeric
keys and shift key are used as they are on a standard typewriter.

Many keys are marked with two characters, one in black and one in
white. Pressing one of those keys will cause the white character to appear.
The character in black can be accessed by holding down the shift key and
then pressing the key with the desired character.

The alternate (Alt) and function (Fn) keys have special purposes
depending on whether DOS or BASIC is being used. DOS uses the Fn
key, in conjunction with the numeric keys, for editing. For more informa
tion on DOS editing, see chapter 9.

BASIC uses the Fn and Alt keys to access commands which have
been preprogrammed into keys. For example, holding down the Fn key
and pressing the 1 key causes the LIST command to be displayed on the
screen. The LIST command can now be executed by simply pressing the
enter key.

Preprogramming keys with BASIC commands saves program entry
time. A list of the BASIC commands available using Fn and Alt is
provided in table 2-1.

50 IBM PCjr User's Handbook

Figure 2-7. PCjr Keyboard

Figure 2-8. Rear View of PC/>

InstaHation, Operation & Keyboard Usage 51

TABLE 2-1. Preprogrammed Keys in BASIC

Hold Down Press Result

Alt A AUTO

Alt B BSAVE

Alt C COLOR

Alt D DELETE

Alt E ELSE

Alt F FOR

Alt G GOTO

Alt H HEX$

Alt I INPUT

Alt K KEY

Alt L LOCATE

Alt M MOTOR

Alt N NEXT

Alt O OPEN

Alt P PRINT

Alt R RUN

Alt S SCREEN

Alt T THEN

Alt U USING

Alt V VAL

Alt W WIDTH

Alt X XOR

Fn 1 LIST

Fn 2 RUN [Ret]

Fn 3 LOAD"

Fn 4 SAVE"

Fn 5 CONT [Ret]

Fn 6 "LPT 1:" [Ret]

Fn 7 TRON [Ret]

Fn 8 TROFF[Ret]

Fn 9 KEY

Fn 0 SCREEN 0,0,0 [Ret]

52 IBM PCjr User's Handbook

PERIPHERAL PORTS

The IBM PCjr has a number of ports designed to accommodate

specific peripherals. The majority of these ports are located on the rear of

the system unit (see figure 2-8). Each port is marked with a letter which

represents the type of peripheral that can be attached to that port. Table
2-2 describes the peripheral ports on the PC/>as they appear from left to
right.

When attaching peripherals to the PQ>, it is important to remember
to first disconnect the power from the computer. Merely turning off the
computer is an insufficient precaution when installing peripherals.
Always disconnect the computer power cord. Installing peripherals
without first disconnecting the power is dangerous to both the user and
the computer.

TABLE 2-2. Peripheral Ports

Port Name Function

J JOYSTICK! PORT Allows a joystick to be con

nected to the PCyr.

j J0YSTICK2 PORT Allows a second joystick to be

connected to the PCyr.

L no name Reserved for possible future

use.

K KEYBOARD PORT Allows the optional cable to be

attached between the keyboard

and the main console.

LP LIGHT PEN PORT Allows the optional light pen

to be attached to the PCjr.

T TELEVISION PORT Allows a television to be con

nected to the PCy> via an RF

modulator.

Installation, Operation & Keyboard Usage 53

Table 2-2. (cont.) Peripheral Ports

Port Name Function

V COMPOSITE

V DISPLAY PORT

Allows a composite display to

be attached to the PCyr.

M MODEM PORT Allows connection between

PCyr and a telephone line. The

optional internal modem board

must have been previously

installed in the PCyr.

D DIRECT DRIVE

DISPLAY PORT

Allows the IBM color graphics

display to be connected to the

PCjr.

S SERIAL PORT Allows serial devices to be

connected to the PCyr via the

optional serial adaptor cable.

C CASSETTE PORT Allows a cassette recorder to

be attached to the PCyr via the

optional cassette adaptor

cable.

P POWER PORT Allows the power cord and

transformer to be attached to

the PCjr.

A AUDIO PORT Allows external speakers to be

connected to the PCjr via the

audio adaptor cable.

3
Introduction to PCjr BASIC Programming

Introduction

In this chapter, the operating details necessary to begin using PCyr
BASIC will be provided. These include start-up, program entry, state
ment structure, program editing, program saving, and program loading.

Getting Started with PC/r BASIC

As mentioned in chapter 1, BASIC is a high-level language that must
be interpreted into the microprocessor's native language. This is accom
plished with a program known as an interpreter.

The PCyr has a resident interpreter (Cassette BASIC) and an

optional cartridge interpreter (Cartridge BASIC). These two versions of
BASIC are upward-compatible. That is, anything that can be done with
Cassette BASIC can also be done with Cartridge BASIC. Also, Cartridge

BASIC includes features not available in Cassette BASIC.

55

56 IBM PCjr User's Handbook

The correct BASIC start-up procedure depends on whether or not

the system contains a disk drive. Both methods will be detailed in the

following sections.

START-UP WITHOUT A DISK DRIVE

This section describes how to start-up BASIC without a disk drive.
Therefore, if the system includes a disk drive, skip this section and
proceed to the next.

To get started, remove any cartridges from the cartridge slots on the

front of the system unit. If Cartridge BASIC is to be implemented, the
Cartridge BASIC cassette should now be inserted into the left-hand

cartridge slot.

If the PCyr is not yet powered up, do so. The IBM logo will appear
while the PCyr performs a series of self-tests. (If the ERROR B message is
displayed on the screen, press Enter and proceed*.) About ten seconds
later, several words will appear at the bottom of the screen. A message
similar to the following will be displayed atop the screen:

The IBM PC jr Basic
Version C1.20

Copyright IBM Corp. 1981
62940 Bytes free
Ok

Cassette BASIC is known as "Version C". If the BASIC cartridge had
been inserted, "Version J" would have replaced "Version C" at the begin
ning of line two. Cartridge BASIC is known as "Version J".

If the system has already been powered up, BASIC can still be

restarted. To do so, press and hold down the Ctrl and Alt keys, then press
the Del key. The Ctrl-Alt-Del sequence can be used at any time to restart

the PCjr.

* If pressing Enter does not clear the error, the keyboard may not be working properly.

Introduction to PCjr BASIC Programming 57

START-UP WITH A DISK DRIVE

The resident BASIC interpreter. Cassette BASIC, does not support

disk access. However, disk access is supported by Cartridge BASIC.
Therefore, PCjr's with a disk drive should be started with the Cartridge
BASIC cartridge inserted in the lefthand slot on the front of the System
Unit. Also, a DOS 2.10 system diskette should be inserted into the disk
drive. Remember, never use the original copy of DOS. Make a copy, and
then store the original in a safe place. Always use a copy for everyday use.
Chapter 9, "DOS 2.10 Usage", explains how to make back-ups.

If the system is not yet powered up, do so. The IBM logo will appear
while the PCjr performs its self tests. (If the ERROR B message
is displayed on the screen, press Enter and proceed*.) A message
similar to the following should appear on the screen:

Current date Is Tues 1-01-1980

Enter new date:

Either enter the date or merely press Enter to proceed. The next
message to appear will be similar to the first:

Current time Is 0:00:34.49

Enter new time:

Again, either enter the time or merely press Enter to proceed. The
final DOS message will appear as follows:

The IBM Personal Computer DOS
Version 2.10 (C) Copyright 1981,
1982,1983

A>

The "A>" is the DOS prompt. DOS commands are entered in
response to this prompt. The user should now type the word BASIC, and
then press Enter. The BASIC start-up display should now be visible.

* If pressing Enter does not clear the error, the keyboard may not be working properly.

58 IBM PCjr User's Handbook

The IBM PC jr Basic
Version J1.00

Copyright IBM Corp 1981,1982,1983
59694 Bytes free
Ok

If the system has already been powered up, DOS can still be

rebooted. To do so, press and hold down the Ctrl and Alt keys, then press
the Del key. The Ctrl-Alt-Del sequence can be used at any time to
perform a System Reset.

BASIC COMMAND ENTRY — DOS

This section may seem a bit confusing for beginning programmers. If
this section is overly confusing, skip it and continue with the rest of
chapter 3.

When activating BASIC, additional parameters can be included with
the BASIC entry. These parameters can be used to:

• Automatically load and run a program
• Set aside storage areas for programs, data and buffers
• Change the standard input or output device

The configuration for the BASIC command with all of its optional
parameters is as follows:

BASIC [\Jfilespec\<mpui]\>J>outpuflil¥:files_IS,:bufsize\ [lO.bufcom]
[/ Miworkarea][,blockspace]]

In order to be compatible with the PC, Cartridge BASIC allows
either "BASIC" or "BASICA" to be used as the BASIC command entry.
The two command entries have identical results.

The optional parameter, Jilespec, indicates the file specification of a
program that is to be automatically loaded and executed by BASIC. If no
filename extension is specified, the extension .BAS will be used, filespec
can also include an optional directory path specification.

Generally, data is input into a BASIC program via the keyboard.
<input allows a BASIC program to receive data from a file specified by
the user. For example, the following command line causes INPUT, LINE
INPUT, INPUTS, and INKEYS to read data from the file, TEXTA.

Introduction to PCjr BASIC Programming 59

BASIC PROGRAMA < TEXTA

Generally, a BASIC program outputs data to the screen. >output

allows a BASIC program to output data to a file specified by the user. For
example, the following command causes the PRINT statement to output
data to the file named TEXTB:

BASIC PROGRAMS > TEXTS

When » output is used in place of > output, any data output by the
program will be appended to the file indicated by output. For example,
the following command line causes the PRINT statement to append data
to the file named TEXTC:

BASIC PROGRAMC » TEXTC

Any BASIC command line option preceded by a slash (/) is known as
a switch. Switches are used to specify optional parameters on the BASIC
command line. These control memory allocation and the number of

allowable files.

The optional parameter l¥:files indicates the maximum number of
files that can be open at one time while a BASIC program is being
executed. The maximum number is 15. If this parameter is omitted, the

number of files open will default to 3.

The number of files that can be specified with /F depends upon the

value indicated for the FILES parameter in CONFIG.SYS, the DOS
configuration file. The default for FILES is 8, of which BASIC uses 4 files
by default. This leaves 4 files available for BASIC I/O operations. There
fore, the maximum value for /F when FILES = 8 is /F:4.

The optional parameter jS.bufsize assigns the buffer size to be used

with random files. The default value for the buffer size is 128. The

maximum size that can be used is 32767. For maximum performance,

IBM recommends that a buffer size of 512 bytes be specified. Note that the

record length parameter used with the OPEN statement may not be

greater than the number of bytes specified in IS.bufsize.

The optional parameter ICibufcom is used to initialize the area to be

reserved for the communications receive buffer. This parameter will not
be used unless the Internal Modem has been installed on the system. The

60 IBM PCjr User's Handbook

default value for this parameter is 256 bytes for the receive buffer and 128
bytes for the transmit buffer. IBM recommends that the value / C: 1024 be
used for high speed lines. If a value of /C:0 is specified, no buffer space
will be reserved for communications. In this case, communications sup
port will be disabled when BASIC is loaded.

The optional parameter jMiworkarea can be used to initialize the

maximum amount of memory in bytes that can be used as a work area
under BASIC. The maximum value that can be used is 64K. The default

value is 64K. This parameter is often used to reserve work areas for
machine language subroutines.

IM'.blockspace allows the user to reserve a working area above the
BASIC work area in memory for loading BASIC programs, blockspace is
specified in multiples of 16. When blockspace is omitted, the default
multiplier (4096) will be used. Therefore, since 4096 x 16 = 65536, 65536
bytes are allocated by default for BASIC'S work area. The following
parameter,

/M:.2048

would reserve a maximum of 32,768 bytes for BASIC working area (as
2048 X 16 = 32,768). The following command,

/M:32512,2048

would reserve 32,768 bytes for BASIC but would only allow the usage of
the lower 32,512 bytes. The remaining 256 bytes would be reserved for
program storage.

IMMEDIATE AND PROGRAM MODES

The immediate mode is also known as the direct or calculator mode.

In the immediate mode, most BASIC command entries result in the

instructions being executed without delay. For example, if the following
immediate mode line was typed, and the Enter key pressed,

PRINT "Walter A. Haupt"

the following would be displayed on the video screen:

Walter A. Haupt

Introduction to PCjr BASIC Programming 61

In the program or indirect mode, the computer accepts program
lines into memory, where they are stored for later execution. This stored
program will be executed when the appropriate command (generally
RUN) is entered.

Figure 3-1 contains an example of the entry of a program in the
program mode and its execution. Notice that in the program mode, each
BASIC program line must be preceded with a line number. Line numbers
will be discussed in more detail later in this chapter.

10 PRINT "Walter A. Haupt"
20 PRINT "24270 Glenbrook"

30 PRINT "Euclid, OHIO 44112"
40 END

RUN

Walter A. Haupt

24270 Glenbrook

Euclid, OHIO 44112
Ok

Figure a-l. Program Mode Entry & Execution

COMMAND AND STATEMENT STRUCTURE

In PCyr BASIC, instructions being relayed to the interpreter are
known as commands in the immediate mode, and statements in the
program mode. In practice, the difference between a command and a
statement is primarily one of semantics, as both generally use the same
structure and keywords.

Both commands and statements begin with a BASIC keyword or

reserved word. The keyword identifies the operation to be undertaken by
the BASIC interpreter. For example, in the preceding section, the PRINT
command was used to instruct the PC^r to display information on the
screen.

In PCyr BASIC, keywords may be entered in either uppercase or
lowercase letters. In the examples in this book, keywords will be dis-

62 IBM PCjr User's Handbook

played as uppercase letters.

A BASIC command or statement generally includes one or more

arguments or parameters following the keyword. In our example, "Wal
ter A. Haupt" is the PRINT statement parameter.

PRINT"Walter A. Haupt"

ENTERING A PROGRAM

In the preceding section, the fundamentals of entering and running a
PCjr BASIC program have been touched upon. In this section, that
discussion will be expanded upon by using the example in figure 3-2.

BASIC programs are entered as program lines. Any text preceded
with a number (line number) and ended by pressing the Enter key will be
regarded as a program line. The maximum number of characters that

may be included in any one line is 255. Line numbers must be integers in
the range 0 to 65529. If a line either exceeds its character limit, or a line

number is not valid, an error condition will result.

Note that in the first 7 lines of figure 3-2, a program was entered in
the command mode and run in the execute mode. After the answer, 5,

had been displayed, the "Ok" prompt appeared.

At this point, the original program will be stored in memory, and can
be added to or changed. That is what was done in line number 150 of

figure 3-2. An additional statement was inserted between statements ICQ

and 200 in the program being stored in memory. This revised program
can be executed by again entering RUN.

The computer memory can only hold one program at a time. The
NEW command is used to erase the program in memory so as to allow a
new program to be entered. Note the use of NEW in figure 3-2.

Note in our examples the following features common to BASIC
programs:

1. Each program line must begin with a line number. The compu
ter executes program lines in order from lowest line number to
highest line number.

2. The END statement signals the end of a program. When END
is executed, the program run will stop.

Introduction to PCjr BASIC Programming 63

It is recommended that consecutive line numbers (10,11,12,13, etc.)
not be used in programs. By using numbers that are a fixed distance apart
(ICQ, 110,120,130, etc.), additional lines can be inserted between existing
lines without renumbering the lines.

Line numbers need not be entered in any particular order. For

example, the user could enter lines 100 and 200 and then enter line 150.

The computer will automatically rearrange the lines according to their
line numbers.

If two lines are entered with the same line nuniber, the original line
Vriil be erased, then replaced with the new line. This feature allows the user

to replace an entire line by merely entering a new line with the same
line number.

A new line can be added to a BASIC program by merely entering a

line number followed by the desired text and Enter. When Enter is

pressed, the line will be saved as part of the BASIC program.
To delete a line in an existing program, merely enter the line number

of the line to be deleted followed by Enter. A group of lines can be deleted

via the DELETE command, and an entire program can be deleted with

the NEW command.

NEW

Ok

100 PRINTS

200 END

RUN

5

Ok

150 PRINT-5

RUN

5

-5

Ok

NEW

Ok

100 PRINT 50

200 END

RUN

50

Ok

Figure 3-2. Entering and Running a Program

64 IBM Pqr User's Handbook

ERROR AND WARNING MESSAGES

When a statement with an incorrect format has been entered, an

error message will be displayed. The error message describes the type of

problem that occurred.

If a problem develops while a program is being executed, an error

message will also be displayed. An error that occurs during the execution

of a program will generate an error message that includes a description of

the problem as well as the line number of the statement that caused the

problem.

When an error occurs in a program, an error message will be dis

played and the execution of the program will stop. If a problem occurs in

a program that is not serious enough to stop the execution, a warning
message will be displayed. Warning messages describe the nature of the
problem as well as the line number where the problem occurred.

LISTING A PROGRAM

LIST is used to display the program stored in memory on the screen
or printer. This display is often referred to as a program listing. An
example of the use of LIST is given in figure 3-3.

When the LIST command is executed, the program in the computer's
memory will be displayed on the screen. Each line of the program appears
initially at the bottom of the display. In order for each subsequent line of
the program to appear on the last line of the display, each line of the

display must be moved one line toward the top.
As a result, if a program occupies more than 24 display lines, the first

lines of the program will be moved off the top of the display in order to
accommodate the last lines. This process is called scrolling.

When a lengthy program is listed on the display, the information will
only be displayed briefly. As a result, it is often necessary to temporarily
halt the listing of a program. If this is the case, simply hold down the Fn

key and type Q. This key combination, Fn-Q, is known as the Pause
function. The pause continues until another key is pressed.

LIST can be used with optional parameters to display only a portion

of the program. For example, LIST can be used with a single line number
parameter to list only that line. This is shown in figure 3-3.

Introduction to PCjr BASIC R'ogramming 65

LIST can also be used with a range of line numbers. For example, the
command LIST 10-30 would list all line numbers within the range 10 to
30. This is again shown in figure 3-3.

LIST can be used to display all line numbers from the beginning of
the program to a specified line by prefixing that line number with a
hyphen and using it as the LIST parameter. If the line number is followed

by a hyphen, all program lines after and including the specified line will be

listed. These are also demonstrated in figure 3-3.

10 PRINT "This"

20 PRINT "Is an"

30 PRINT "example"
40 PRINT "program"
LIST

10 PRINT "This"

20 PRINT "Is an"

30 PRINT "example"

40 PRINT "program"

LIST 10

10 PRINT "This"

Ok

LIST 10-30

10 PRINT "This"

20 PRINT "Is an"

30 PRINT "example"
Ok

LIST SO-

SO PRINT "example"
40 PRINT "program"
Ok

LIST -30

10 PRINT "This"

20 PRINT "Is an"

30 PRINT "example"
Ok

Figure S-S. Listing a Program

66 IBM PCjr User's Handbook

EDITING A PROGRAM

If a program line is entered incorrectly, it can be changed in one of
two ways. The first method is to simply re-enter the program line. This is
accomplished by retyping the line number, followed by one or more
appropriate statements.

The second method uses the PC/r's full screen edit feature to alter a

program line. This feature allows the cursor to be moved to any location
on the screen. Once the cursor has been positioned over the incorrect
entry, the correct character or characters can be typed in place of the
error.

The cursor can be moved by the 4 keys on the lower right portion of
the keyboard. These keys are labelled t, i, -^5 and The "arrow" keys
move the cursor in the direction of the arrow. The cursor is a blinking

underline (_), which indicates the position where the next character

entered via the keyboard will appear.
Program lines can be manipulated by the Ins and Del keys. Ins sets

the insert mode. Del deletes the character at the current cursor position.

The use of the full-screen editor is best explained using a simple example.

Begin by entering the following program:

10 FOR S = 100 TO 200

20 PRINTS

30 NEXT R

When the LIST command is issued, the program will appear on the

display as follows:

LIST

10 FOR S = 100 TO 200

20 PRINTS

30 NEXT R

Ok

Suppose that line number 30 was incorrect and was intended to
appear as follows:

30 NEXTS

Introduction to PCjr BASIC Programming 67

The correction can be made by using the t key to move the cursor up
to line 30. Proceed by using the —^ key to move the cursor beneath the

"R". Correct the error by typing the correct letter, "S", then press Enter.

Suppose that line number 10 was intended to read as follows:

10 FOR S = 1 TO 200

Again, use the arrow keys to position the cursor beneath the first offend

ing "0". Pressing the Del key will remove the first "0" from the line. The

cursor should now be positioned beneath the other "0". Pressing the Del

key a second time will delete the second "0". Now, press Enter. The PCyr

does not record any corrections until the Enter key has been pressed.
Therefore, once the line has been edited, always press Enter to register the

line.

Finally, suppose line number 20 is also incorrect, and was intended

to appear as follows:

20 PRINT "THE NUMBER IS ";S

Use the arrow keys to position the cursor beneath the "S" in line 20.
This is the position where the additional characters are to be inserted.

Press the Ins key once to enter the insert mode. The cursor will change
from the standard underline to a rectangle. Now, type the text to be

inserted, "THE NUMBER IS Notice that in the insert mode, any

characters to the right of the cursor will be moved over to make room for
the additional characters. To exit the insert mode, either repress Ins or use

one of the arrow keys. Remember to press Enter after editing line 20, so
that the changes will be stored.

RUNNING A PROGRAM

Once a program is present in memory, the operator can execute it. As
mentioned previously, a program can be entered into memory via the
keyboard or loaded into memory from a storage device — cassette or
disk. The procedure for loading a program will be discussed later in the
chapter.

The RUN command is used to begin program execution. RUN can be

used with or without an optional line number or file specification as its

68 IBM PCjr User's Handbook

parameter. Because RUN is generally executed without an optional

parameter, we will limit our discussion of RUN, in this section, to its

execution without parameters. The usage of RUN with parameters will be

discussed in chapter 6.

When the RUN command has been entered and the Enter key

pressed, program statements entered in the indirect mode (with line

numbers) will be executed in order, beginning with the lowest line. An

example of the usage of RUN is shown in figure 3-4. The execution of a
program can be stopped at any time by holding down the Fn key and then
typing B. This key combination, Fn-B, is known as the Break function.

100 PRINT "THIS IS LINE 1"

200 PRINT "LINE 2 IS BEING EXECUTED"

300 PRINT "LINE 3 IS BEING EXECUTED"

400 PRINT "LINE 4 IS THE FINAL LINE"

500 END

RUN

THIS IS LINE1

LINE 2 IS BEING EXECUTED

LINE 3 IS BEING EXECUTED

LINE 4 IS THE FINAL LINE

Ok

Figure 3-4, RUN Command

SAVING A PROGRAM

As you may recall from our discussion of program entry, only one
BASIC program may be stored in memory at any one time. When the

PCjr's power is turned off, the contents of memory will be erased and any
program stored there will be lost unless it is first stored on a permanent
medium such as a diskette or a cassette tape.

Before a program can be saved, it must first be assigned a name from

one to eight characters in length. This is known as a filename. Once a

filename has been selected for a program, it can be saved using the SAVE

Introduction to PCjr BASIC Programming 69

command.

For example, if a program was presently residing in memory, it could
be saved on a diskette with the following command:

SAVE "PROGRAM"

Notice that quotation marks are required around the filename, PRO

GRAM.

When SAVE is executed, the program remains in memory where it
can be added to, edited, or run if desired.

Both cassettes and disks can be an effective means of retaining
programs and data when the computer is turned off. The details of the

procedures used to save programs and'data will be presented in chapter 6.

LOADING A PROGRAM

Once a program has been saved on cassette tape or floppy disk, it can

be loaded back into memory using the LOAD command. An example of a
LOAD command is given below.

LOAD "PROGRAM"

Again, the quotation marks are required around the filename, PROGRAM.

If the file, PROGRAM, is not found on either the disk or cassette, a

"File Not Found" error will be generated. Whether the PCyr searches the
disk or cassette for the file depends on your specific system configuration.

See chapter 6 for details.

MULTIPLE STATEMENTS

In our examples thus far, only one BASIC statement has been

included in each program line. In PCjr BASIC, multiple statements may

be included in a single program line as long as each statement is separated

with a colon. The following program uses multiple statements in line 10:

70 IBM PCjr User's Handbook

10 PRINT "JOHN":PRINT "NELSON"

20 PRINT "ATLANTA"

30 PRINT "GEORGIA"

40 END

RUN

JOHN

NELSON

ATLANTA

GEORGIA

Ok

4
Data Types, Variables, and Operators

Introduction

In chapter 3, a few of BASIC'S fundamental operating details were
discussed. In chapter 4, the basic concepts necessary to master PCjr
BASIC will be examined. In particular, the various data types used in
PCjr BASIC as well as the operations that can be performed on that data
will be discussed.

Data Types

The data processed in PCjr BASIC can be classified under two
special headings: string and numeric. String and numeric data are stored
differently in memory by the PCjr. Also, the various operators in BASIC
affect string and numeric data in different manners.

STRINGS

A string can be defined as one or more ASCII characters. The

71

72 IBM PCjr User's Handbook

various ASCII characters are listed in appendix C and consist of the
digits (0-9), letters of the alphabet, and a number of special symbols.

BASIC also allows a string of zero characters. This is also known as

the empty or null string and is used much as a zero is in mathematics.

As may have already been noted from our examples in chapter 3,
when a string is used in a BASIC statement, it must be enclosed within

quotation marks. The quotation marks serve to identify the beginning
and ending points of the string. They are not a part of the string.

A string enclosed within quotation marks is known as a string
constant. A constant is an actual value used by BASIC during execution.
The following are examples of string constants:

"JOHN SMITH"

"12197"

"E97432"

"BOSTON, MA 01270"

"213-729-4234"

Notice that numbers can be used within a string constant. Remem
ber, however, that the numbers within a string constant are string rather
than numeric data.

One final point that should be kept in mind regarding string con
stants is that they cannot contain quotation marks. For example, the
following string constant,

"John said, "Goodbye." as he walked away."

would be illegal. Since quotation marks are used to denote the beginning
and ending points of a string constant, their inclusion within the string
itself would cause difficulties and, therefore, their inclusion is not

allowed. The CHR$ function can be used to place the ASCII code for
quotation marks within a string constant. This will be discussed in

chapter 6.

NUMERIC DATA

Numeric data can be defined as information denoted with numbers.

Numeric data is stored and operated on in a different manner than is
string data.

Data Types, Variables, and Operators 73

Numeric constants consist of positive and negative numbers.

Numeric constants cannot include commas. For example, 10,000 would
be an illegal numeric constant.

BASIC further classifies numeric constants as integers, fixed point
numbers, and floating point numbers.

Integers can be defined as the whole numbers in the range between

-32767 and 32767, inclusive. Integer numbers do not have a decimal

portion.

Fixed point numbers can be defined as the set of positive and
negative real numbers. Fixed point numbers contain a decimal portion.

Floating point numbers are represented in scientific notation. A

number in scientific notation takes the following format:

±xE±yy

± is an optional plus or minus sign.

X can either be an integer or fixed point number. This position of

the number is known as the coefficient or mantissa.

E stands for exponent.

yy is a two digit exponent. The exponent gives the number of places

that the decimal point must be moved to give its true location.

The decimal point is moved to the right with positive exponents,

and to the left with negative exponents.

The following are examples of floating point numbers and their

equivalent notation in fixed point:

Floating Point Fixed Point

3.87E+05 387000

4.064E-04 .0004064

-lE+06 -I000000

7.87642E+03 7876.42

BASIC can only handle floating point numbers in the range between
1.70E+38 and -1.70E +38. Any decimal numbers in the range between

-2.93E-39 and 2.93E-39 will be converted to zero.

Floating point notation is used as a more efficient means for the

computer to manipulate exceedingly large or exceedingly small values.

74 IBM PCjr User's Handbook

As a result, some values that are entered in fixed point notation may
automatically be converted to floating point notation by the computer.

Numbers represented in floating point or fixed point notation can be
stored in one of two degrees of precision, or accuracy. Single precision
numbers are stored with 7 significant digits. Double precision numbers
are stored with 17 significant digits. Any additional digits will be
rounded.

A single precision constant will be specified if the constant is written
using any of the following formats:

• Number contains seven or fewer digits

• Number is written in exponential form (E)
• Number contains a trailing exclamation point (!)

Double precision can be specified using any of the following formats:

• Number contains eight or more characters

• Number is written in exponential form (D)

• Number contains a trailing number sign (#)

Single Precision Double Precision

-48.7 123456789

2.56E03 2.56D03

900! 900#

Integers differ from floating point-and fixed point values in that
integers cannot contain digits to the right of the decimal point. This
condition allows integers to be stored in a smaller area of the computer's
memory. Also, integers can be handled more quickly than other types of
values.

The following are examples of integers, floating point, and fixed
point numeric values:

Integers Floating Point Fixed Point

-7978 -387E+04 47988

32600 4.015E+07 37.0

37 6.870E-27 45.874

192 lD+06 3.1415927

-687 1.414D+00 -238.5

Data types, Variables, and Operators 75

Note that 47988 cannot be considered an integer since it lies outside

the allowable range of values (-32767 to 32767). Also, note that 37.0 is

not an integer because it contains a digit to the right of the decimal point.

Variables — An Overview

In the preceding section, we discussed BASIC'S different types of
data — string and numeric. So far, data has only been represented as a

constant. The value of a string or numeric constant such as "MICHELLE"

or 382.436 always remains the same.

Data can also be represented by using a variable. A variable can be

defined as an area of memory that is represented with a name. That name

is known as the variable name. The information stored in the memory

area defined by a variable name can vary as BASIC commands or

statements are executed (hence the name variable). The data currently

stored in the memory area defined by a variable is known as the variable's

value.

VARIABLE NAMES

BASIC allows variable names of up to 40 characters in length. A

variable name must begin with a letter of the alphabet followed by

additional alphanumeric characters. Blank spaces are not allowed within
a variable name. Letters entered in lowercase will be automatically

converted to uppercase by the computer. The following are examples of

valid BASIC variable names:

ADDRESS X9

JOHN PHONE23

A variable name may not duplicate a BASIC reserved word (see

appendix A). However, a variable name may incorporate a reserved
word as part of its name.* Therefore, although the following would be

invalid variable names,

NEW AND PRINT

♦ The exception to this rule is FN. A variable name cannot begin with FN.

76 IBM PCjr User's Handbook

the following variable names would be valid:

NEWPHONE ANDY PRINTNAME

Variables, like constants, can either be string or numeric. Numeric

variables can be integer, single precision, or double precision. A variable
type can be declared using a type identification character. The type

identification characters are as follows:

% = integer
! = single precision
= double precision
$ = string

For example, the following variable names would be declared as

string and integer respectively. If a variable type character is not speci
fied, the variable is assumed to be a single precision value.

LOUISES REBEL%

ASSIGNMENT STATEMENTS

Numeric variables are initially assumed to have a value of zero.

String variables are initially assumed to be null. Values may be assigned
to a variable as the result of a calculation or as the result of an assignment
statement. The LET statement is used to assign a value to a variable. LET

is used with the following configuration:

LET variable = expression*

Whenever a LET statement is used in a program, the value of the
variable on the left side of the equation will be replaced with the value
appearing on the right.

In our configuration examples, BASIC reserved words will be depicted in uppercase, regular face
type. Parameters to be entered by the programmer will be depicted in lowercase italics.

Data Types, Variables, and Operators 77

The reserved word, LET need not actually be included in a LET

statement. Both of the following commands have the same meaning:

LET A = 5

A = 5

The value assigned to a variable can either be a constant, a variable,

or the result of an operation. In the following example, A$ is assigned the

string constant "JOHN", B is assigned the numeric constant 27.9, C is

assigned the value of B, and D is assigned the value of B multiplied by 2:

10 A$ = "JOHN"

20 B = 27.9

30 C = B

40 D = B * 2

50 PRINT A$
60 PRINT B

70 PRINT C

80 PRINT D

RUN

JOHN

27.9

27.9

55.8

Ok

Expressions & Operators

The values of variables and constants are combined to form a new

value through the use of expressions. The following are examples of

expressions:

4 + 7

A$ + B$
3*1

14<21

X AND Y

BASIC includes several types of expressions including arithmetic,

relational, and Boolean. In our previous examples, the first three exam

ples were arithmetic expressions, while the fourth and fifth were exam
ples of relational and Boolean expressions, respectively. Each of these
types of expressions will be discussed in detail in the following sections.

78 IBM PCjr User's Handbook

The sign or word describing the operation to be undertaken is
known as the operator. An operator is a symbol or word which represents

an action which is to be undertaken on one or more values specified with

the operator. These values are known as operands.

The operators in our previous examples were as follows:

+

+

*

<

AND

ARITHMETIC OPERATORS

Arithmetic operators are used to perform mathematical operations
on numeric variables and constants. The various arithmetic operators are

listed in table 4-1.

A number of these operations should already be familiar. The sym

bols + and - are used for addition and subtraction, respectively. The
asterisk (*) is used to indicate multiplication, while the slash (/) is used to

indicate division.

PRINTS+ 3

8

Ok

PRINT 24/8

3

Ok

The first arithmetic operation specified in table 4-1 is exponentia
tion. Exponentiation (carat is the process of raising a number to a

specified power. For example, the following two expressions would be

evaluated identically as 25. The exponent, 2, indicates the number of

times that the base, 5, is to be multiplied by itself.

5^2 = 25
5*5 =25

When the symbol - precedes a number, it changes that number's

sign. This usage is known as negation.

Data types, Variables, and Operators 79

The backslash (\) represents integer division. Integer division is
identical to standard division except that no decimal places are returned.
The MOD operator returns the remainder of an integer division.

PRINT62\8
7

Ok

PRINT 62 MOD 8

6

Ok

Table 4-1. Arithmetic Operations

Symbol Operation Example

A Exponentiation A^B
-

Negation -A

(*
same J

Multiplication A* B

priority \ j Division A/B

\ Integer Division a\b

MOD Remainder A MODB

/ Addition A+ B

priority \ _ Subtraction A- B

ORDER OF EVALUATION (ARITHMETIC EXPRESSIONS)

All of our preceding examples were simple expressions. A simple
expression is one which contains just one operator and one or two
operands. Simple expressions can be combined to form compound
expressions. The following are examples of compound expressions:

(-A) + 3 MOD 2
A + 8 * A / (C + D)

27 + 47 \ a'^B

80 IBM PCjr User's Handbook

With compound expressions, it is necessary that the computer
knows which operations should be undertaken first. BASIC follows a

standard order of evaluation within compound expressions.

In this section, the order of evaluation of compound arithmetic

expressions will be discussed. Later in this chapter, the order of evalua

tion of relational and logical operators will be discussed. Also, the

relative evaluation priorities of these three groups will be outlined.

In an expression with more than one arithmetic operator, the opera

tors with higher priority are evaluated first followed by those with lower

priority. If two operators have the same priority, evaluation is performed

from left to right in the expression. The operators in table 4-1 are listed in
descending priority. For example, exponentiation is listed before multi

plication, because exponentiation has a higher priority. Multiplication

and division have the same priority. Also, addition and subtraction have

the same priority. The following is an example of the evaluation of the
arithmetic operators in an expression:

A = 37.1 + 12.9*2.1 - 7 + 4^2
= 37.1 + 12.9*2.1 - 7 + 16

= 37.1 +27.09-7 + 16

= 64.19-7 + 16

= 57.19+16

= 73.19

Parentheses can be used to alter the order of evaluation in arithmetic

expressions. Expressions appearing within parentheses have the highest

priority in the order of evaluation. For example, the use of parentheses

with our preceding example could change the value of the expression.

A = (37.1 + 12.9) * 2.1 - (7 + 4^2)
= 50*2.1 -(7 + 16)
= 50 * 2.1 - 23

= 105.0-23

= 82.0

MIXING VARIABLE TYPES

Although certain variable types may be mixed in a BASIC expres

sion, it is preferable to use a single variable type throughout each expres

sion. By doing so, execution time will be decreased, memory require-

Data lypes, Variables, and Operators 81

ments will be reduced, and the probability for program errors will be
lessened.

BASIC does not allow a string value to be assigned to a numeric
variable or vice versa. However, a numeric value in one precision can be
assigned to a numeric variable with another precision.

When a numeric value is assigned to a variable of lower precision,
the value is rounded to fit that variable. A single precision value is
assigned to an integer in the following example. Notice that the value 1.75
is rounded to 2 in order to fit the integer variable.

10 X = 1.75

20 X% = X

30 PRINT X%

40 END

RUN

2

Ok

Likewise, a numeric value can be assigned to a variable of higher
precision. The following example demonstrates the result. Notice that
although the single precision value, 2.04, was assigned to a double
precision variable, the result was only accurate to 7 digits (single preci
sion). This is because the original value 2.04 was only accurate to single
precision.

10 X = 2.04

20 X# = X

30 PRINT X#

40 END

RUN

2.039999961853027

Ok

RELATIONAL OPERATORS

Relational operators are used to make a comparison using two
operands. The following relational operators are used in BASIC:

< less than

< = less than or equal to
> greater than

> = greater than or equal to
= equal to

< > not equal

82 IBM PCjr User's Handbook

A relational operation evaluates to either true or false. For example,

if the constant 1.5 was compared to the constant 2.4 to see whether they

were equal, the expression would evaluate to false. In BASIC, a value of
-1 represents a condition of true, while a value of 0 represents false.

The only values returned by a comparison in BASIC are -1 (true) or

0 (false). These values can be used as any other integer would be used. The

following relational expressions and their results demonstrate com

parisons:

5 > 7 0 (false)

5 >3 -1 (true)

7 = 7 -1 (true)

Relational operations are evaluated after the arithmetic operations.

Relational operations are performed from left to right in an expression.

Relational operations using numeric operations are fairly straight

forward. However, relational operations using string values may prove

confusing to the first time user. Strings are compared by taking the ASCII

value for each character in the string one at a time and comparing the

codes.

For example, consider the two string values "BONNIE" and "BECK".

In a relational expression, the initial characters of the strings will be
compared first. Since both strings begin with "B", the comparison will
continue with the second character. Since the ASCII code for "E" (69) is

less than the ASCII code for "O" (79), "BECK" is considered less than

"BONNIE".

If the end of a string is encountered during a string comparison, the

string with the fewer number of characters will be considered to be less

than the longer string. For example, "ABC" would be evaluated as less

than "ABCD". The relational operators can be used in this manner to

indicate the relative location of strings in alphabetical order.

The following examples demonstrate the use of relational operators

with string values. All of the following expressions are true:

"ABC" = "ABC"

"ABC" > "AAA"

"ALFRED" < "ALFREDO"

A$ < Z$ where A$ = "ALFRED" and Z$ = "ALFREDO"

Note that all string constants must be enclosed in quotation marks.

Data types, Variables, and Operators 83

LOGICAL OPERATORS

Logical or Boolean operators are generally used in BASIC to com
pare the outcomes of two relational operations. Logical operations
themselves return a true or false value which will be used to determine

program flow.
The logical operators are NOT (logical complement), AND (con

junction), OR (disjunction), XOR (exclusive-or), IMP (implication), and
EQV (equivalence). These return results as shown in figure 4-1.

A logical operator evaluates an input of one or more operands with
true or false values. The logical operator evaluates these true or false
values and returns a value of true or false itself. An operand of a logical
operator is evaluated as true if it has a non-zero value. (Remember,
relational operators return a value of -1 for a true value.) An operand of a
logical operator is evaluated as false if it is equal to zero.

The result of a logical operation is also a number which if non-zero is
considered true, and false if it is zero.

The following are examples of the use of logical operators in combi
nation with relational operators in decision-making;

IF X > 10 OR Y < 0 THEN 900

IF A > 0 AND B > 0 THEN 200

FLAG% = NOT FLAG%

In the first example, the result of the logical operation will be true if
the variable X is greater than 10 or if the variable Y is less than 0.
Otherwise, it will be false. If the result of the logical operation is true, the
program will branch to line 900. Otherwise, it will continue to the next
statement. In the second example, the result of the logical operation will
be true onlyifthevalueofboth variables A and Bare greater than zero. If
the result of the logical operation is true, program control will branch to
line 200. In the final example, the value of FLAG% is switched from true
to false or vice versa.

84 IBM PCjr User's Handbook

Figure 4-1. Logical Operators

NOT Operation

T F

>

O

srand

AF T NOT

OR Operation

T T F F

T F T F

T T T F

AND Operation

T T F F

T F T F

T F F F

XOR Operation

T T F F

T F T F

F T T F

IMP Operation

T T F F

T F T F

T F T T

A Operand

B Operand

AOR B

A Operand

B Operand

A AND B

A Operand

B Operand

AXOR B

A Operand

B Operand

A IMP B

Data Types, Variables, and Operators 85

Figure 4-1. (cont.) Logical Operators

EQV Operation

T T F F A Operand

B Operand

A EQV B

T F T F

T F F T

Logical operators actually convert their integer operands into their

16 bit binary equivalents before evaluating them. If an operand is nega
tive, the two's complement is used to form that operand's 16 bit

equivalent.

The binary equivalent of-1 may be found as follows. First, convert 1

into binary.

0000 0000 0000 0001

Then, complement every bit in the binary equivalent. This is known

as the one's complement.

1111 1111 nil IIIO2

Finally, increment the one's complement to obtain the two's

complement.

-1,0=1111 1111 nil lllL

If the 16 bit equivalent is used to evaluate a logical expression, true is
represented by a bit value of one, while false is represented by a bit value
of zero. This is consistent with our earlier assignment of true = -1,

because the 16 bit representation of -1 consists of 16 one's (1111 1111

nil nn2 = -i,o).

86 IBM PCjr User's Handbook

The following example illustrates the use of the logical operator,

XOR, with one positive and one negative argument.

PRINT-15 XOR 31

-18

Ok

-15,0=1111 nil nil 0001

31,0 = 0000 0000 0001 1111

-i5X0R3i = nn nil iiio nio = -i8,o

Overall Order of Evaluation

In this chapter, we have outlined the use of the arithmetic, relational

and logical operations. Table 4-2 outlines the overall order of evaluation

of the operators.

Data Types, Variables, and Operators 87

Table 4-2. Order of Evaluation

Type Operation Symbol Pl-iority

Arithmetic Exponentiation A
1

Negation
-

2

Multiplication *

-j

Division 1
j

integer Division \ 4

Remainder MOD 5

Addition +

Subtraction
-

6

Relational Equality =

Inequality <>

Less Than <

Greater Than >
7

Less Than or Equal < =

Greater Than or Equal > =

Logical Complement NOT 8

Conjunction AND 9

Disjunction OR 10

Exclusive-or XOR 11

Implication IMP 12

Equivalence EQV 13

5
BASIC Programming Concepts

Introduction

In chapters 3 and 4, BASIC programming fundamentals were dis
cussed. In this chapter, we will discuss some additional fundamental
programming concepts. These include:

• data input and output

• conditionals, branching and loops

• tables and arrays

• functions and string handling

• program concatenation

Inputting and Outputting Data

Thus far, we have briefly described the usage of the PRINT state
ment to output data. Now, we will discuss the usage of PRINT to format

89

90 IBM PCjr User's Handbook

the outputted data. After we have discussed the methods used to output
data, we will discuss the statements used to input data into variables.
These include INPUT and INKEYS.

PRINT

To this point, we have only used the PRINT statement to output a
single constant or variable value to the screen. The PRINT statement can

also be used to output more than one item to the screen. When PRINT is

used in this manner, the spacing between the items to be printed can be
controlled by separating them with a comma or semicolon. For example,
compare the results of the following PRINT statements:

PRINT "PAT" "MIKE" "KEN"

PATMIKEKEN

Ok

PRINT "PAT". "MIKE"

PAT MIKE

Ok

PRINT "PAT";"MIKE";"KEN"

PATMIKEKEN

Ok

Notice that in our first example, no delimiter was used to separate
the three string constants. These were output as one continuous string.

In the second example, the comma was used to delimit the string
constants. When a comma appears in a PRINT statement, the computer
is instructed to begin printing the next parameter in the PRINT state
ment at the beginning of the next print zone.

When the PQ> is configured in the 40 column mode (WIDTH 40),

the screen is divided into two print zones. The first print zone extends
from column I to column 14. The second extends from column 15 to

column 40. When the PQ>is configured in the 80 column mode (WIDTH

80), the screen is divided into five print zones. These begin at columns 1,

15,29,43,57.

Commas are very useful when data is to be output in tabular form.

This is illustrated in the following example program:

BASIC Rogramming Concepts 91

10 PRINT "Name", "ID No."

20 PRINT "Jack Wllllams".3749

30 PRINT "Ann Timmons",3622

40 PRINT "Jay Randolph",2511

50 END

RUN

Name ID No.

Jack Williams 3749

Ann TImmons 3622

Jay Randolph 2511

Ok

In the third example, on page 90, the semicolon was used as the

delimiter. The semicolon causes each string data item in the PRINT

statement to be output immediately adjacent to the preceding item.
When semicolons are used to separate data items in a PRINT

statement, the output will be displayed without the insertion of any

additional spaces between data items. As a result, spaces must be inserted

in PRINT statements between any data items that need to be separated.

The most common technique used to insert spaces is to include a space

(enclosed in quotation marks) in a PRINT statement. The following

example program demonstrates this technique:

10 A$ = "IBM"
20 B$ = "PCjr"
30 PRINT A$;B$
40 PRINT A$; " ";B$
50 END

RUN

IBMPCjr
IBM PCjr
Ok

Generally, when a PRINT statement has been executed, the cursor

or print head will advance to the leftmost position on the next output
line. This is known as a carriage return/line feed, which can be abbre

viated as CR/ LF.

A CR/LF can be suppressed by ending a PRINT statement with

either a comma or a semicolon. When a semicolon is used to end a

PRINT statement, the output from the next PRINT statement will be

positioned immediately after the data output by its predecessor. This is

illustrated in the following example:

92 IBM PCjr User's Handbook

10 PRINT "Datal";

20 PRINT "Data2";

30 PRINT "DataS"

40 END

RUN

Datal Data2Data3

Ok

When a PRINT statement ends with a comma, subsequent data will

be output at the next zone on the same display line. This is shown in the

following example:

10 PRINT "Da^al",

20 PRINT "Data2"

30 END

RUN

' Datal Data2

Ok

HORIZONTAL FORMATTING

BASIC includes several functions that allow the programmer to

control the horizontal format of output. These include TAB and

SPACES.

BASIC allows an item to be printed in any position on the screen or

printer with the TAB command. The print position can range from 1 to

255. Notice that the following example causes output to be positioned at

columns 10 and 20:

10 PRINT TAB(IO) "10";TAB(20)"20"
RUN

10 20

Ok

There are 255 print positions available because of the fact that a

logical line in BASIC can consist of up to 255 characters. If the argument

of a TAB function exceeds the length of the display line, the output will

appear on a subsequent line.

The SPACES function causes the number of spaces specified as its

argument to be output. In the following example, SPACES(IO) causes

the cursor to move 10 positions to the right once BOB has been output:

BASIC F^ogrammlng Concepts 93

10 PRINT "BOB";SPACE$(10);"LIGGETT"
RUN

BOB LIGGETT

Ok

VERTICAL AND HORIZONTAL TABS

The output of a program can be tabulated by either rows or columns

on the display. The LOCATE statement causes the cursor to move to a
specified row and column. The following example program uses the
tabulation feature to output data in the four corners of the screen:

10 CLS

20 PRINT "UPPER LEFT"

30 LOCATE 1,28

40 PRINT "UPPER RIGHT"

50 LOCATE 22,1

60 PRINT "LOWER LEFT"

70 LOCATE 22,28

80 PRINT "LOWER RIGHT"

90 END

The CLS statement at line 10 causes the screen to be cleared. As a

result, the first output will occur in the upper-left corner of the display.
The LOCATE statement at line 30 moves the cursor to column 28 of row

1. The second output will then occur in the upper right of the screen.
Likewise, the LOCATE statements at lines 50 and 70 position the cursor
to the lower right and lower left of the display. The row numbers extend
from 1 (top) to 25 (bottom), while the column numbers extend from 1
(left) to 20, 40 or 80 (right). The correct range of column numbers
depends on the selected screen width.

FORMATTING OUTPUT

BASIC allows the user to format numeric data when it is output to

the screen or to the printer. Formatting is accomplished through the use

of the PRINT USING statement and a format string. The format string

contains the formatting characters enclosed in quotation marks. These

characters determine the appearance of the numeric data when it is
output.

94 IBM PCjr User's Handbook

The following statement,

100 PRINT USING "####.##";X

will result in the numeric value in variable X being output in decimal

form with four digits to the left of the decimal point, and two digits to the

right. The # sign in the format string is used to represent a digit, while the

period is used to represent a decimal point.

If the following numeric data items were printed with the preceding

statement's format string,

7

8971.17

18.5782

999.77

1000.01

85712.11

the following would be output:

7.00

8971.17

18.58

999.77

1000.01

%85712.11

Note that the final data item has a value greater than that allowed for

by the format string. In these situations, the number will be displayed

with a leading percent character (%).

A second formatting character, the dollar sign ($), is often used with

the digit character (#) to display monetary figures. A single dollar sign in

a format string causes the $ to be printed in that position in the output. If

we assume the value of X to be 17.98, the following statement,

100 PRINT USING "$####.##";X

would result in the following output:

$ 17.98

BASIC Programming Concepts 95

The inclusion of two dollar signs ($$) in the format string is known

as the floating dollar sign. The floating dollar sign results in a single
dollar sign character being printed to the immediate left of the numeric

value being output. Again, if we assume the value of X to be 17.98, the

following statement,

100 PRINT USING "$$####.##";X

would result in the following output:

$17.98

The format string can be used to include commas when printing
large numbers. If we assume the value of X to be 999999, the following
statement,

100 PRINT USING "###,###.##";X

would result in the following output:

999,999.00

The format string can also be used to include a numeric value's sign

in its output. By including the addition sign (+) at the beginning or end of

the format string, the number's sign (+ or -) will be printed in the position

specified. For example, if we assume the value of X to be -77.1, the

following statement,

100 PRINT USING "+###.##";X

would result in the following output:

-77.10

The output could be altered by using the following format string:

100 PRINT USING "###.##+";X

The result would be 77.10-.

96 IBM PCjr User's Handbook

Another formatting character, leading asterisks (**), will cause all
blank digit positions in a format string to be filled with asterisks. If we
assume that X has a value of 58.29, the following statement,

100 PRINT USING "**####.##":X

would result in the following output;

****58.29

Another formatting character, the trailing minus sign (-), causes the
number to be output with a trailing minus sign if that number has a
negative value and no sign if it is positive. If we assume X's value to be
-79, the following statement,

100 PRINT USING "####-";X

would output the following:

79-

OUTPUTTING DATA TO THE PRINTER

The printer can be accessed as the output device by using LPRINT
or LPRINT USING. The LPRINT statement functions as does the

PRINT statement, except that LPRINT sends data to the printer rather
than the screen. A program listing can be sent to the printer by using
LLIST.

LINE WIDTH

The WIDTH command allows the user to change the line width of
the video display or printer.

The width of the video display can be set to 20,40, or 80 characters.
For example, to set the screen width to 20 columns, the following state
ment would be used:

WIDTH 20

BASIC ftogramming Concepts 97

Likewise, WIDTH 40 and WIDTH 80 would set screen width to 40

columns and 80 columns, respectively.

The LPRINT and LPRINT USING statements assume a printer

width of 80 characters. However, this width can be changed by executing

a WIDTH "LPTl:" statement. LPTl: is the device name for the printer.

The following statement sets the printer width to 130 characters:

WIDTH "LPT1:'M30

If a line being sent to the video display consists of a greater number

of characters than the width of the screen, the extra characters will "wrap

around" to the next line. Likewise, if a line being output to the printer

contains a greater number of characters than allowed for, the excess
characters will be printed on successive lines.

INPUT

When an INPUT statement is executed, the computer will display a

question mark and wait for the operator to enter a response. That entry
will be assigned to the variable indicated. The entry must be ended by
pressing the Enter key. Program execution will then resume.

The values of several variables can be input with a single INPUT

statement. These variables may either be numeric or string as shown in
the following example:

100 INPUT A$,B$,C

When the preceding INPUT statement is executed, the INPUT
prompt (?) will be displayed. The operator should then input the data
items for variables A$, B$, and C. Each input should be separated by a

comma. The Enter key should be pressed after all input entries have been
made. An example of a valid entry for the preceding INPUT statement is
given below:

JOHN,SMITH,281

These entries will be assigned to the variables as follows:

98 IBM PCjr User's Handbook

A$ = "JOHN"
B$ = "SMITH"

C = 281

If an incorrect number of entries were made or if a string constant

were input for a numeric variable or vice versa, the following message
would be displayed,

? Redo from start

?

and the computer would wait for a valid entry.
It is a good programming practice to include a prompt message with

the INPUT statement to let the operator know what data the computer is

expecting. The prompt message is a string constant that will be displayed
when the computer expects an input. For example, the following INPUT
statement,

100 INPUT "ENTER NAME, PHONE";A$,B$

will result in the prompt being displayed. The PQ> will then wait for a

keyboard entry. The operator enters the underlined output in the follow

ing example:

ENTER NAME.PHONE? MARY. 845-2956

These entries will be assigned to the variables A$ and B$. A$ will be

assigned a value of "MARY", and B$ will be assigned a value of "845-

2956". Notice that the string entries did not need to be enclosed in

quotation marks. When a string is entered in response to an INPUT
prompt, the quotation marks can be excluded, unless the entry includes
commas or begins with spaces.

LINE INPUT

The LINE INPUT statement is a variation of the INPUT statement.

LINE INPUT allows an entire line (maximum of 254 characters) to be

input to a string variable. Unlike INPUT, LINE INPUT does not recog

nize spaces and commas as delimiters. Therefore, it is more simple to
include these characters in an inputted string. Pressing the Enter key ends

the input process.

BASIC ftogramming Concepts 99

LINE INPUT [;]["prompt"-,]variable$

If the optional semi-colon is included after LINE INPUT, a CR/ LF
to the screen will not occur when the Enter key is pressed.

INKEY$

An INKEYS statement is an alternate means of inputting data from

the keyboard. INKEYS can be used to accept a single character, and
assign that character to a string variable. However, unlike INPUT or
LINE INPUT, if no character was typed when INKEY$ was executed,

the PCjr will not wait for a keyboard response. The following program
illustrates INKEYS:

10 A$ = INKEY$
20 PRINT A$
30 GOTO 10

Line 10 assigns the string value of the currently pressed key to A$. If
no keys have been pressed, the null string will be assigned to A$. Line 20
prints the string, while line 30 transfers program control back to line 10.
The GOTO statement will be discussed in the next section of this chapter.

Conditionals, Branching and Looping

Thus far in our discussion of PQr BASIC, program statements have
been executed in sequential order. Several BASIC statements are

available that can be used to alter program control. These include:

IF-THEN-ELSE ON-GOTO

GOTO ON-GOSUB

GOSUB ON ERROR GOTO

FOR-NEXT WHILE-WEND

These statements will be discussed in the following sections.

CONDITIONALS

One of the most important features of a computer is its ability to
make a decision. BASIC uses the IF-THEN statement to take advantage

100 IBM PCjr User's Handbook

of the computer's decision making ability. The IF-THEN statement

takes the following form:

IF expression THEN statement

The IF statement sets up a decision. If expression evaluates to true,

then statement will be executed. If expression evaluates to false, the

subsequent program statement will be executed. In the following exam
ple, if AGE is greater than or equal to 21, "LEGAL" will be printed.

IF AGE > = 21 THEN PRINT "LEGAL"

An ELSE statement may be added to an IF-THEN statement to

achieve an IF-THEN-ELSE structure. IF-THEN-ELSE uses the follow

ing configuration:

IF expression THEN statement^ ELSE statement2

If expression evaluates to true, then statement^ will be executed.

Otherwise statement2 will be executed. In other words, a true expression

causes statement^ to be executed, while a false expression causes state-

ment2 to be executed. In the following example, if SCORE is greater than
90000, then the PCjr will print "NICE GAME". Otherwise, it will print

"NOVICE".

IF SCORE > 90000 THEN PRINT "NICE GAME"

ELSE PRINT "NOVICE"

BRANCHING STATEMENTS

Branching statements change the execution pattern of programs

from their usual line by line execution. A branching statement allows

program control to be altered to any line number desired. The most

commonly used branching statements in BASIC are GOTO and

GOSUB.

GOTO takes the following format:

GOTO line number

BASIC ftogramming Concepts 101

For example, the following program statement,

500 GOTO 999

999 END

would branch program control from line 500 to 999.

SUBROUTINES AND GOSUB

Many times you will find that the same set of program instructions
are used more than once in a program. Re-entering these instructions
throughout the program can be very time consuming. By using subrou
tines, these additional entries will be unnecessary.

A subroutine can be defined as a program which appears within
another larger program. The subroutine may be executed as many times
as desired.

The execution of subroutines is controlled by the GOSUB and
RETURN statements. The format for the GOSUB statement is as

follows;

GOSUB line number

The computer will begin execution of the subroutine beginning at the line
number indicated. Statements will continue to be executed in order, until

a RETURN statement is encountered. Uponexecution of the RETURN
statement, the computer will branch out of the subroutine back to the
first line following the original GOSUB statement. This is illustrated in
the following example:

10 GOSUB ICQ

20 GOSUB 200

30 END

100 PRINT "subroutine #1"

110 RETURN

200 PRINT "subroutine #2"

210 RETURN

RUN

subroutine #1

subroutine #2

Ok

102 IBM PCjr User's Handbook

Subroutines can help the programmer organize his program more

efficiently. Subroutines also can make writing a program easier. By

dividing a lengthy program into a number of smaller subroutines, the

complexity of the program will be reduced. Individual subroutines are

smaller and therefore, more easily written. Subroutines are also more

easily debugged than a longer program.

CONDITIONAL STATEMENTS WITH BRANCHING

Branching statements are often used in conjunction with conditional

statements. In such a situation, the normal execution of the program will

be altered depending upon the outcome of the condition set up in an IF or

an ON statement. This is shown in the following example:

100 INPUT "Enter the amount";A

200 IFA = OTHEN GOTO 500

300 PRINT A

400 GOTO 100

500 INPUT "Are you flnished?";A$
600 IF A$<>"y"THEN 100
700 END

In our preceding example, if the value input for A has a zero value,

then the program will branch to line 500 where the operator will be asked

whether he has finished entering data. In line 600, the program will set up
a condition where if the input was anything other than the letter "y", the

program will branch to line 100. If the entry was equal to y, the program
will end at line 700.

Note in line 600 that a GOTO statement is not used to precede the

line number being branched to. When a line number is indicated follow

ing a THEN statement, the computer assumes the presence of GOTO.

The ON-GOTO and ON-GOSUB statements are also combinations

of a conditional statement and a branching statement. The use of the

ON-GOTO statement is illustrated in the following program:

100 INPUT A

200 ON A GOTO 400, 500

300 GOTO 999

400 PRINT"A = 1":G0T0 999

500 PRINT "A = 2"

999 END

BASIC ftogrammlng Concepts 103

If the variable or expression following ON evaluates to 1, program
control will branch to the first line number specified after GOTO; if 2, to
the second, etc.

If the variable or expression evaluates to a number greater than the
number of line numbers following GOTO, program control will branch
to the statement immediately following the ON-GOTO statement. This is
also the case if the variable or expression following ON evaluates to zero.
Negative values for the control expression are not allowed.

The ON-GOSUB statement is very similar in nature to the ON-

GOTO statement. The following statement is an example of an ON-
GOSUB statement:

100 ON X GOSUB 1000,2000,3000

IfthevalueofXis 1, the subroutine at line 1000 will be executed. If X

is 2, the subroutine at line 2000 will be executed. If X is 3, the subroutine
at line 3000 will be executed. If X evaluates to 0 or to a number greater

than 3, the statement immediately following the ON-GOSUB will be
executed.

If ON-GOSUB causes a branch to a subroutine, program control

will revert to the line immediately following the ON-GOSUB statement,
once the subroutine has been executed.

LOOPING STATEMENTS

Suppose that you needed to compute the square of the integers from
1 to 20. One way of doing this is by calculating the square for each
individual integer as shown below:

100 A = 1A2

200 PRINT A

300 B = 2A2

400 PRINT B

500 0 = 3 ̂2

600 PRINT C

This method is very cumbersome. The problem could be solved

104 IBM PCjr User's Handbook

much more efficiently through the use of a FOR-NEXT loop as shown

below:

100 FOR A = 1 TO 20

200 X = A'^2

300 PRINT X

400 NEXT A

500 END

The sequence of statements from line ICQ to 400 is known as a loop.

When the computer encounters the FOR statement in line 100, the
variable A will be set to 1. X will then be calculated and displayed in lines

200 and 300.

The NEXT statement in line 400 will request the next value for A.

Execution returns to line 100 where the value of A will be incremented (to

2) and then compared to the value appearing after TO. Since the value of
A is less than that value, the loop will be executed again with the value of
A set at 2. The loop will continue to be executed until A attains a value
greater than 20. When this occurs, the statement following the NEXT

statement will be executed.

In our preceding example, A is known as an index variable. If the
optional keyword STEP is not included with the FOR statement, the
index variable will be increased by 1 every time the NEXT statement is

executed.

STEP can be included at the end of a FOR statement to change the

value by which the index variable is increased. The integer appearing
after STEP is the new increment. For example, if our preceding example

were changed as follows,

100 FOR A = 1 TO 20 STEP 2

200 X = AA2

300 PRINT X

400 NEXT A

500 END

the index variable. A, would be increased by 2 every time the NEXT

statement was executed.

One loop can be placed inside another loop. The innermost loop is
known as a nested loop. The following program contains a nested loop:

BASIC FYogrammlng Concepts 105

100 DIM R(2,3)

200 DATA 10,20,30,40,50,60

300 FOR K = 1 TO 2

400 FOR J = 1 TO 3 1
500 READ R(K,J) inner loop outer loop
600 NEXT J ' I
700 NEXT K 1

Our preceding example is used to read data into the numeric array
R. Arrays, as well as the READ and DATA statements, will be discussed

in detail later in this chapter.

Be certain that any integer loop is ended prior to ending its outer

loop. Also, be certain that every NEXT statement has a matching FOR

statement. If the BASIC interpreter cannot match every NEXT state

ment with a preceding FOR statement, an error will result.

CONDITIONAL LOOPING STATEMENTS

Suppose that you wanted to execute a series of statements in a loop

as long as a given condition remained true. An example would be reading

from a data file, until a desired item was reached. Another example

would be doing an iterative approximation of a mathematical function.

The WHILE-WEND statement pair forms a loop similar to the one

formed by the FOR-NEXT statements. As long as the expression follow

ing the keyword WHILE evaluates to a logical value of true (-1), the

statements between WHILE and WEND will be continuously reex-

ecuted.

WHILE-WEND loops also may be nested just as with FOR-NEXT

loops. Again, be careful not to cross nest WHILE-WEND loops. Since it
is not always clear which WEND statement is associated with a corres
ponding WHILE statement, try to clarify this by using the same indenta
tion for associated WHILE-WEND statements. REM statements may

also be used to indicate which WHILE-WEND statements are associated.

106 IBM PCjr User's Handbook

10 I =0

20 WHILE l< 10

30 PRINT I

40 1 = 1 + 1

50 WEND

60 END

RUN

0

1

2

3

4

5

6

7

8

9

Ok

In the previous example, the value of I is continually incremented in
the WHILE-WEND loop, until the value of I is no longer less than 10.

The WHILE-WEND loop in the previous example did not offer any
gains over the FOR-NEXT loop structure. In fact, a FOR-NEXT loop
with three statements could have duplicated the results of the previous
example.

10 FOR I = 0TO9

20 PRINT I

30 NEXT I

40 END

The real beauty of the WHILE-WEND loop structure is evidenced
when the programmer is uncertain as to how many times the loop must be
executed. Suppose that one wished to obtain a root of the following
polynomial. A root is another name for the solution.

X3 - 3X2 + 1 = 0

The algebraic expression can manipulated into the following form:

x =
X2-3X

BASIC Programming Concepts 107

We will now instruct the computer how to numerically approximate
the solution by iterations. If a value is plugged into the right-hand side of

the previous equation, a value will be obtained that is closer to the root

than the original guess. If this new value is then plugged into the right-

hand side of the equation, a value even closer to the answer will be

obtained. If this process is repeated until the last two obtained values are

very close to each other, these two values will be very close to the root.

100 XNEW = 2

110 WHILE ABS(X-XNEW) >0.0000001
120 X = XNEW

130 XNEW = (-1)/(X'^2-3*X)
140 WEND

160 PRINT X;"is the ROOT"

160 END

The condition for the loop to continue is that the last two values are

farther apart than 0.0000001. ABS(XNEW-X) is merely their separation.
ABS is a function that computes the absolute value. Functions will be

discussed later in the chapter. Line 130 is the computer's representation

of the second algebraic expression.

ERROR HANDLING

In some situations, it is easier to correct problems as they occur in a

program, rather than to avoid them. This technique is called error

handling. BASIC allows the use of an ON ERROR GOTO statement to
specify a line number where the program should proceed if an error

occurs. This feature allows a portion of the program to be set aside as an

error handling routine.

Error handling routines are commonly used to correct small pro

blems that occur infrequently in a program. When appropriate correc

tions have been performed, a RESU ME statement can be used to branch

the program back to the location where the error occurred. The function

of a RESUME statement is analogous to the use of a RETURN state

ment at the end of a subroutine.

The following program demonstrates the technique used to branch a

program in event of an error:

108 IBM PCjr User's Handbook

10 ON ERROR GOTO 100

20 INPUT "INPUT X:":X

30 Y = X^.5

40 PRINT "The square root of ":X:"is":Y
50 END

100 Y = (-X)''^.5
110 PRINT "The square root of ":X":is":Y"l"
120 END

The preceding example program contains an ON ERROR GOTO
statement at line 10. This statement indicates that the program control

will branch to line 100 in the event of an error. An ON ERROR GOTO

statement must be executed in a program before an error actually occurs.

The program calculates the square root of a value input for the
variable X. However, BASIC does not allow the square root of negative
numbers. These values can only be defined in the context of complex

numbers, where the symbol "i" is used to represent the square root of -1.
As a result, the square root of -4 could be represented by the value 2i since
the following expression is true:

j/-4 = j/4 |/-1 = i/4l = 21

It is not necessary to understand the use of "complex" numbers to
comprehend the example. The main concept of the program is:

The statement at line 30 would normally have
caused an error If a negative value had been Input
for the variable X. However, In this case, the ON
ERROR GOTO statement causes the program to
branch to line 100 whenever an error occurs.

Lines 100 and 110 perform an alternate set of operations whenever a
negative value is input for X. Some typical applications of the sample
program would appear as follows:

RUN

INPUT X: 4 — user's response

The square root of 4 is 2
Ok

RUN

INPUT X: -16 < user's response

The square root of -16 is 4i
Ok

BASIC Rogramming Concepts 109

ERR and ERL are used to return the error code and the line number

associated with an error. ERR returns the error code for the last error.

ERL returns the line number of the line where the error was discovered.

The ERL and ERR variables are often used in conjunction with an

IF-THEN statement to test for an error as shown in the following

example:

100 ON ERROR GOTO 999

999 IF ERR = 27 THEN LOCATE 1,1:

PRINT "Please Turn on Prlnter";:RESUME

Appendix F contains the BASIC error messages along with their
corresponding error numbers and description of the errors.

Tables and Arrays

In chapter 4 we introduced the concept of variables. A variable is
designed to hold a single data item — either string of numeric. However,
some programs require that hundreds or even thousands of variable
names be used.

The processing of large quantities of data can be greatly facilitated
through the use of arrays and tables in a program.

SUBSCRIPTED VARIABLES

Obviously, the use of thousands of individual names could prove
extremely cumbersome. To overcome this problem, BASIC allows the
use of subscripted variables. Subscripted variables are identified with a
subscript, a number appearing within parentheses immediately after the
variable name. An example of a group of subscripted variables is given
below:

A(0).A(1),A(2),A(3),A(4),etc.

Note that each subscripted variable is a unique variable. In other

words, A(0) differs from A(I), A(2), A(3), etc...

110 IBM PCjr User's Handbook

Subscripted variables may be visualized as an array (or table). In our
previous example, the data contained in the array defined by A would
consists of a one-dimensional array with 11 elements.

A(10)

A(9)

A(8)

A(7)

A(6)

A(5)

A(4)

A(3)

A(2)

A(1)

A(0)

Arrays can also have two or more dimensions. Two-dimensional

arrays are also known as tables. A table containing 6 rows and 8 columns

is depicted below:

Columns

0 1 2 3 4 5 6 7

0

1

Rows 2

3

4

5

A(O.O)A(0.1)A(0,2)A(0.3)A(0.4)A{0.5)A(0.6)A(0.7)

A(1.0)A(1.1)A(1.2)A(1.3)A(1.4)A(1.5)A(1.6)A(1.7)

A{2,0)A(2.1)A(2.2)A(2,3)A(2.4)A(2,5)A(2,6)A(2.7)

A(3.0)A(3.1)A(3.2)A(3,3)A(3.4)A(3,5)A{3,6)A(3.7)

A(4,0)A(4.1)A(4.2)A(4.3)A(4,4)A(4,5)A(4.6)A(4,7)

A(5,0)A(5,1)A{5.2)A(5,3)A(5,4)A(5.5)A(5,6)A(5.7)

BASIC Programming Concepts 111

Notice from our illustration that a position within the table is identi

fied with a subscripted variable. The subscript contains two numbers.
The first number identifies the row number and the second identifies the

column. For instance, A(1,2) identifies the element located in column two

of row one.

Array variables can be assigned values and used with operators as
can any other variable. This is illustrated in the following example:

10A(0)=5
20A(1)=6

30 A(2) = 7
40 A(3) = 8

50 A(4) = 9

60 PRINT A(0) *A(1)
70 A(5) = A(2) + A(4)
80 PRINT A(5)

90 END

RUN

30

16

Ok

DIMENSIONING AN ARRAY

Before an array variable can be used in a program, an area in
memory must be reserved to store its elements. This is known as dimen
sioning the array and is accomplished with the DIM statement.

The DIM statement defines the maximum subscript value that can

be used for an array. For example, the following DIM statement:

DIMA(20)

would define a one-dimensional array consisting of twenty-one elements

ranging from A(0) to A(20) inclusive.
Two dimensional arrays are dimensioned as follows:

DIM A(4,7)

The preceding DIM statement would dimension an array consisting of
five rows with eight columns each.

Notice that a DIM statement was not included in our first example.

112 IBM PCjr User's Handbook

When a subscripted variable which has not been previously dimensioned

is referenced in a program, the array variable is automatically dimen
sioned with a maximum subscript value of 10. If we added the following

program line to our example:

85 A(11) = 24:PRINTA(11)* A(1)

the following error message would be displayed:

Subscript out of range In 85

This error is generated because an array variable was referenced with a

subscript greater than originally stated.
If the following DIM statement was inserted in our example

program,

5 DIMA(II)

it would execute properly, because A(11) would have been defined by the
DIM statement.

Generally, it is good programming practice to dimension all array
variables and to group all DIM statements at the beginning of the
program. This prevents an array variable from inadvertently being refer
enced before it has been dimensioned.

When an array is no longer needed in a program, the DIM statement
can be reversed with a CLEAR statement. This will free the memory area
previously reserved for the array. This is illustrated in the following
program:

10 PRINT FRE(O)
20 DIMA(50,50)

30 PRINT FRE(O)
40 CLEAR

50 PRINT FRE(O)
60 END

RUN

59631

49216

59631

Ok

BASIC ftogramming Concepts 113

In line 10, the number of available bytes in memory is displayed.
FRE is a function which displays the available free bytes in memory.
FRE is explained in more detail, later in this chapter.

In line 20, the DIM statement reserves an area in memory for a table
consisting of 2601 elements. From line 30, it is evident that the number of
free bytes has decreased substantially. This is due to the fact that an area
of memory has been reserved for the elements in table A.

In line 40, the CLEAR statement reverses the DIM statement and
frees the memory previously required for the elements in table A. The
CLEAR statement is also a memory management command. CLEAR
has three optional parameters.

CLEAR [memory] [.[stack] [.screen]]

memory is a byte count which sets the maximum BASIC workspace,
memory can be set to reserve memory for machine language subroutines.
stack sets aside the specified number of bytes for stack usage (default =
512 bytes). It is a good practice to increase the size of the stack if a
program includes a large number of FOR-NEXT loops or subroutines.

screen specifies the total memory that is reserved for screen usage
(default = 16384 bytes). In order to execute a SCREEN 5 or SCREEN 6
statement, 32768 bytes of memory must be set aside for the screen.

DATA & READ STATEMENTS

Earlier, we discussed how data could be assigned to a variable with a
LET statement as well as how data could be input directly from the
keyboard and assigned to a variable with an INPUT or INKEYS state
ment. However, none of these statements are practical for assigning data
values to the individual variables in a large array or table. DATA and
READ statements are much more practical for assigning values to varia
bles in an array. DATA and READ statements can be used for assigning
values to any variable — not just array variables.

A typical DATA statement is shown below:

100 DATA "WILLIAMS".27."ST.LOUIS"."314-727-1141"

Notice that this DATA statement contains four data items, three of

114 IBM PCjr User's Handbook

which are string, and one of which is numeric. In our example, we have
enclosed the string data items in quotation marks. However, this was not
actually required. In a DATA statement, a string only needs to be
enclosed in quotation marks if it contains a comma, a colon, or if its first
character is a blank space.

DATA statements are used in conjunction with READ statements to
assign data values to variables. An example of a READ statement is
given below:

200 READ NAME$,AGE,CITY$,PHONE$

When a READ statement is executed, the computer will first search
for a DATA statement. When a DATA statement is found, the values in
the DATA statement will be assigned one-by-one to the variables in the
READ statement.

If the first DATA statement encountered does not have enough data
items to be assigned to all the variables in the READ statement, the next
DATA statement will be searched for. The values from this and succeed
ing DATA statements will continue to be assigned to the variables in the
READ statement until all of the variables in the READ statement have
been assigned a value.

The computer keeps track of the next DATA statement data item to
be used via an internal pointer. When any future READ statements are
executed, this pointer will determine which is the next data item to be
read into the READ variable.

BASIC includes a statement known as RESTORE, which when
executed, sets the DATA item pointer back to the beginning of the
DATA statement list. The use of the DATA item pointer and the effect of
RESTORE on it is depicted in figure 5-1.

The RESTORE statement may be used with a line number following
the reserved word. When RESTORE is used in this manner, the DATA
item pointer is set to the first item of the DATA statement in that line. For
example, if line 400 in our example had been the following,

400 RESTORE 110

the READ statement in line 500 would have assigned the value 27 to the
variable X.

BASIC ftogrammlng Concepts 115

100 DATA 537

110 DATA 27,WILSON,276-46-4142

200 READA,B

300 READ C$,D$

DATA Item List

537 27 WILSON 276-46-4142 |

Data Statement

Pointer

(Before Line 200)

Data Statement

Pointer

(After Line 200)

Data Statement

Pointer

(After Line 300)

400 RESTORE

500 READ X

DATA Item List

1 537 27 WILSON 276-46-4142

1]
Data Statement

Pointer

(After Line 400)

Data Statement

Pointer

(After Line 500)

Figure 5-1. DATA Statement Pointer

When not properly used, DATA and READ statements can be the
source of program errors. One potential error source occurs when the
program attempts to READ more data items than were given in the
DATA statements. Such an error would occur in the following program:

116 IBM PCjr User's Handbook

100 DATA 7,8,11,13,15

200 FOR K = 1 TO 7

300 READ X(K)
400 PRINT X(K)

500 NEXTK

600 END

In the preceding example, the program would attempt to read 7 data

items. However, since the DATA statement only contained 5 data items,

the following error message would appear:

Out of Data in 300

Another potential source of error when executing DATA and

READ statements are situations where the program attempts to read a
numeric data item into a string variable or vice versa. If such an error is

encountered, the following message will be displayed:

Syntax error

DATA and READ statements are often used in conjunction with

FOR-NEXT loops to read large amounts of data into arrays. An example

of this use of FOR-NEXT is given below:

10 FORK = 0TO5

20 READ NAMES$(K)
30 READ AGE(K)

40 NEXT K

50 FOR J = 0 TO 5

60 PRINT NAMES$(J),AGE(J)
70 NEXT J

80 END

90 DATA Jim,10

100 DATATom,11

110 DATA Matt,9

120 DATAErlc,10

130 DATASteve,10

140 DATAJoe.9

Run

Jim 10

Tom 11

Matt 9

Eric 10

Steve 10

Joe 9

Ok

BASIC Programming Concepts 117

An example of the use of the READ and DATA statements in
conjunction with a FOR-NEXT loop for the purpose of reading data into
a two-dimensional array is given in the following program:

10 DATA 10,20,30,40

20 DATA 50,60,70,80

30 DATA 90,10,20,30

40 FOR J = 0 TO 2

50 FOR K = 0 TO 3

60 READ A(J,K)

70 PRINT A(J,K);"

80 NEXTK

90 PRINT

100 NEXT J

110 END

RUN

10 20 30 40

50 60 70 80

90 10 20 30

Ok

The preceding program would read data items into table A(
shown in the following illustration:

) as

columns

1

0 10 20 30 40

Rows 1 50 60 70 80

2 90 10 20 30

Functions and String Handling

In mathematics, a function is generally defined as a quantity whose

value will vary as a result of another quantity. In computing, functions
define operations that are performed on strings or numeric values.

In BASIC, a number of functions are already defined by reserved

words and are a part of the BASIC interpreter. These are known as
built-in functions (see table 5-1). Built-in functions cover a wide range of

standard math operations such as absolute value, square root, loga

rithms, etc. Built-in functions are also available for working with strings.

118 IBM PCjr User's Handbook

as well as a variety of other operations.

BASIC also allows the programmer to define his or her own func

tions. These are known as user-defined functions. Both built-in and

user-defined functions will be discussed in this section.

BUILT-IN MATHEMATICAL FUNCTIONS

The majority of BASIC functions are used in mathematical applica

tions. We provide an overview of BASIC'S math functions in this section.

Each individual function will be described at the end of the chapter.

Table 5-1. BASIC Built-in Functions

ABS ERR LPOS SPC

ASC EXP MIDS SQR

ATN FIX OCTS STICK

CDBL FRE PEEK STRS

CHR$ HEX$ PEN STRIG

CINT INKEY$ PLAY STRINGS

COS INP PMAP USR

CSNG INPUTS POINT TAB

CSRLIN INSTR POS TAN

CVD INT RIGHTS TIMES

CVI LEFTS RND TIMER

CVS LEN SCREEN VAL

DATE$ LOO SGN VARPTER

EOF LOF SIN VARPTERS

ERL LOG SPACES

All of the BASIC mathematical functions operate in much the same

manner. Each function is defined by a reserved word (ex. SIN for Sine,

COS for Cosine, LOG for Logarithm etc.).

A numeric constant, variable, or expression may appear in paren

theses following the reserved word which identifies the function. The

function for that numeric value will then be calculated by the computer.
The use of several mathematical functions is shown in figure 5-2.

BASIC ftogramming Concepts 119

BASIC includes the following three trigonometric functions:

SIN(N) = sine of the angle N.

COS(N) = cosine of the angle N.
TAN(N) = tangent of the angle N.

The angle N must be given in terms of radians. One radian is the

equivalent of 57.29578 degrees. One degree equals .017453 radians.

Therefore, the following can be used to calculate a trigonometric
function with its argument (X) given in degrees:

SIN(.017453*X)

COS(.017453*X)

TAN(.017453*X)

100 PRINT

200 PRINT

300 PRINT

400 PRINT

500 PRINT

600 PRINT

700 PRINT

800 PRINT

900 PRINT

1000 END

RUN

.4528863

.5570226

.3878632

7

5

-6

4.7

1

-1

Ok

SIN(.47)

COS(.98)
TAN(.37)

SQR(49)

INT(5.79)
INT(-5.79)
ABS(-4.7)

SGN(2.7)
SGN(-2.7)

Figure 5-2. Mathematical Functions

120 IBM PCjr User's Handbook

The other three principle trigonometric functions: secant, cosecant,

and cotangent can be computed by using SIN, COS, and TAN as shown
in the following identities:

SEC(X) = 1/C0S(X)
CSC(X) = 1/SIN(X)
COT(X) = 1/TAN(X)

BASIC also includes the arctangent function ATN. This function
returns the angle (expressed in radians) whose tangent is given in its
argument.

ATN(X) = angle in radians whose tangent equals X

The following formula can be used to calculate the angle expressed
in degrees (rather than radians) whose tangent is given in X:

57.29578 * ATN(X)

BASIC also contains functions for calculating natural logarithms

and exponentials. The exponential formula takes the following form:

A = EXP(B)

The preceding EXP function is calculated by computing the value of e
raised to the B power, e is known as the base of natural logarithms. The
value e in BASIC is 2.718281828459.

The natural logarithm of a number may be calculated with the LOG
function.

LOG(X) = natural logarithm of X

Logarithms with a base other than e may be calculated using the follow
ing formula:

LOGb(X) = LOG(X)/LOG(b)

where b is the base of the logarithm.

BASIC includes the SQR function for determining the positive
square root of its argument.

BASIC Rrogramming Concepts 121

SQR{X) = positive square root of X

The square root of a number can also be calculated with the exponential
arithmetic operator. The following expression,

X (1/2)

will calculate the square root of X. The arithmetic exponential operator
can also be used to calculate a root other than the square root (ex. cube

root) as shown below:

X (1/3)

BASIC also includes several functions that can be used in working

with numeric values. These include INT, ABS, and SON. The INT

function returns the integer with the greatest value which is less than or
equal to its argument. INT takes the following form:

INT(X) = highest integer whose value
is less than or equal to X

Figure 5-2 contains examples of the usage of the INT function.
The ABS function returns the absolute value of its argument. ABS

takes the following form:

ABS(X) =1 x|

An example of the use of ABS appears in figure 5-2.
The SGN function returns the sign of its argument. An example of

the use of SGN appears in figure 5-2.

USER-DEFINED FUNCTIONS

In the preceding section, we discussed a number of predefined
BASIC functions. BASIC also allows the user to define his own func

tions. These are known as user-defined functions. A user-defined func

tion must be defined with the DEF FN statement before it can be used in

the program.

For example, the following DEF FN statement would define a

122 IBM PCjr User's Handbook

function in which the argument was squared, and 1 was then subtracted

from that calculation:

100 DEFFN A(X) = X ̂ 2-1

The name of the function (FN A) appears immediately following the

DEF statement. Any valid variable name may be used as a user-defined

function name. The following would be a valid function name:

FN TANH

In our first example, notice the X in parentheses following the function
name. This is known as a dummy argument. Any valid variable name can
be substituted for X as the dummy argument.

When the user-defined function is called in the program, the argu
ment supplied with the function when it is called will be substituted for

the dummy argument whenever it appears on the right-hand side of the
DEF FN statement. The expression will then be evaluated, and the value

returned as the value of the function.

10 M = 3.9878

20 DEF FN S(X) = COS(X) + SIN(X)
30 PRINT FNS(M)
RUN

-1.4116

Ok

The previous example contains a program that has a DEF FN

statement at line 20. The function is assigned the name S, and the dummy
argument X is used in the function. The operations in the function
(COS(X) + SIN(X)) can be as complicated as necessary. At line 30, the S
function is evaluated as the value of the variable M. The function substi

tutes 3.9878 for the dummy argument X and returns a numeric value that

is displayed by the PRINT statement.

STRINGS & STRING HANDLING

As a programmer, you will encounter a number of situations where

you may need to work with string data. For example, you might want to
combine several strings, compare two strings, separate portions of a

BASIC ftogramming Concepts 123

string, or even convert string data to its numeric equivalent. BASIC
allows for all of these.

STRING CONCATENATION

The process of joining together one or more strings is known as
concatenation. The arithmetic operator for addition (+) is used for string
concatenation. However, concatenation is very different from addition.

In concatentation, the strings being concatenated are joined to form a
new string as shown below:

100 A$ = "JOHN"
200 B$ = "SON"

300 C$ = A$ + B$
400 PRINT C$
500 END

RUN

JOHNSON

Ok

Either string constants or variables may be concatenated. Any
number of strings may be concatenated as long as the resulting string
contains 255 or fewer characters.

STRING HANDLING FUNCTIONS

BASIC contains a number of strings handling functions which allow

the user to extract a part of a string. These functions are LEFTS, MIDS
and RIGHTS.

The LEFTS function takes the following format:

LEFT$(A$,X)

AS represents a string constant or string expression on which the
operation is to be performed, and X represents the number of characters
to be extracted. The LEFTS function will extract the number of
characters given in X from the left-hand side of the string given in AS.
Figure 5-3 contains an example of the use of LEFTS.

124 IBM PCjr User's Handbook

100 A$ = "JOHNSON"

200 B$ = LEFT$(A$,4)
300 PRINT B$

400 END

RUN

JOHN

Ok

Figure 5-3. LEFTS

The RIGHTS function works exactly like the LEFTS function
except that the number of characters specified are returned from the

string's right-hand side. Figure 5-4 contains an example of the use of
RIGHTS.

100 A$ = "JOHNSON"

200 B$ = RIGHT$(A$.3)
300 PRINT B$
400 END

RUN

SON

Ok

Figure 5-4. RIGHTS

The MIDS function can be used to return a portion of a string.
MIDS takes the following format:

a$ = MID$(h$,x[.y])

The string being returned is a$, a$ is being returned from b$. The

string being returned will begin with the xih character in b$. The number

of characters returned from b$ is specified in y. y is an optional
parameter. If y is omitted, all rightmost characters in b$ will be returned
in a$. An example of the use of MIDS to return a portion of a string is
given in figure 5-5.

BASIC ftogrammlng Concepts 125

100 X$ = "NEW CASTLE"

200 Y$ = MID${X$,5.4)
300 PRINT Y$

400 END

RUN

CAST

Ok

Figure 5-5. M1D$

STRING/NUMERIC DATA CONVERSION

Programmers often encounter situations where numeric data must

be converted into string data and vice versa. This is often the case where a
function is being used which will accept only string or numeric data as its
arguments.

The STR$ and VAL functions are used to convert numeric data to its

string equivalent and strings to their numeric equivalent respectively.
The ASC function is used to convert a single character to its ASCII

numeric equivalent. If ASC is given a string, it will return the ASCII
equivalent of the first character in that string. The CHR$ function
converts an ASCII numeric code to an equivalent text character.

Examples of the use of STR$, VAL, CHR$, and ASC are given in
figure 5-6 and figure 5-7.

^— \

100 W = 33578

200 W$ = STR$(W):REM W$ = "33578"
300 X = 33579

400 X$ = STR$(X)
500 Y$ = W$ + X$:REM Y$ = "3357833579"
600 Y = VAL(Y$):REM Y = 3357833579
700 Z = INT(Y/10000)
800 PRINT Z

900 END

RUN

335783

Ok

Figure 5-6. STR$ and VAL Examples

126 IBM PCjr User's Handbook

100 A$ = "GILBERT

200 A = ASC(A$)
300 PRINT A

400 X = 90

500 X$ = CHR$(X)
600 PRINT X$
700 END

RUN

71

Z

Ok

Figure 5-7. CHR$ and ASC Examples

VARIABLE TABLE AND STRING STORAGE

BASIC maintains an area in memory in which an entry is
maintained for every variable (including array variables) referenced
either in a program or in the direct mode. This memory area is known as
the variable table.

For numeric variables, the value currently assigned to that variable
is also stored in the variable table. When that variable's value is changed,
the value stored in the variable table will also be changed.

In BASIC, the amount of memory required to store a numeric value

in the variable table remains constant. On the other hand, the amount of

memory required to store a string variable's value can vary depending
upon that value.

Since the memory space required to store a string value can vary, it
would be difficult to store these values in the variable table, as that table

would have to be continually revised as different values were assigned to
string variables. For this reason, BASIC stores string values in a separate
memory area known as a string space.

BASIC stores a value in the variable table which associates the string
variable name (in the variable table) with its associated value in string
space. This is known as the descriptor. The descriptor describes the

number of characters currently assigned to the string variable as well as
its location in string space.

BASIC FYogrammlng Concepts 127

Descriptors are not limited to referencing string values stored in the
string space. Descriptors can reference strings stored anywhere within
BASIC'S working area — including file buffers and the program itself.
When a string constant is assigned to a string variable in a BASIC
program (ex. 10 A$ = "TINA"), that constant need not be stored in the
string space as the descriptor can reference it in the program storage area.

HOUSEKEEPING AND PRE

Areas assigned to strings can become unused, because strings in

BASIC can have variable lengths. Every time a different value is assigned

to a string variable, its length may change. This may cause the space
assigned to a string to become partially unused. If the string space is in
need of a housekeeping, BASIC will automatically halt program execu
tion and perform one. This operation may be time consuming.

The PRE function allows the programmer to see how much space is
available and perform a housekeeping operation if desired. PRE can take

either a string or numeric argument. When given a numeric argument,
PRE (1) for example, PRE will return the number of bytes of memory

remaining. If PRE is given a string argument. PRE(" ") for example, it
will first perform a housekeeping operation, and then report the number
of free bytes remaining.

FUNCTION SUMMARY

The various built-in functions available in PCyr BASIC are summar

ized in table 5-2.

128 IBM PCjr User's Handbook

Table 5-2. PCjr BASIC Functions

Function Description

ABS(x) Absolute value of x

ASC(x$) ASCII code of the first character In x$

ATN(x) Arctangent of x (in radians)

CDBL(x) X in double precision

CHR$(x) Character with ASCII code x

CINT(x) X in integer precision

COS(x) Cosine of x (in radians)

CSNG(x) X in single precision

CSRLIN Vertical line position of cursor

CVD(x$) Double precision value for x$

CVI(x$) Integer value for x$

CVS(x$) Single precision value for x$

DATE$ System date

EOF(f) True or false, indicating End of File of file f

ERL Line number where last error occurred

ERR Error code af last error

EXP(x) e raised to the x power.

FIX(x) Integer obtained by truncating x

FRE(x$) Amount of available memory

HEX$(x) Hexadecimal string equivalent of x

INKEY$ Character from keyboard

INP(x) Byte value from port x

INPUT$(x.#f) X characters from file #f

INSTR(x,x$.y$) Position of the first occurrence of y$ in x$ starting
at location x.

INT(x) Largest integer less than or equal to x

LEFT$(x$.x) Leftmost x characters of x$

LEN(x$) Length of x$

LOC(0 Location of file pointer in file f

LOF(0 Length of file f

LOG(x) Natural logarithm of x

LPOS(x) Carriage position of printer

BASIC ftogramming Concepts 129

Table 5-2. (cont.) PCyr BASIC Functions

Function Description

MID${x$.x,y) y characters from x$, starting at the xth character.

OCT$(x) Octal equivalent of x

PEEK(x) Byte value in memory location x

PEN(x) Light pen vaiue

PLAY(x) Number of notes in the music background buffer

PMAP Either actual or relative coordinates

POINT(x.y) Color of the point (x,y)

POS(x) Cursor column position

RIGHT$(x$.x) Rightmost x characters from x$

RND(x) Random number

SCREEN(x.y.z) Character or coior at the point (x,y)

SGN(x) Sign of x

SIN(x) Sine of x (in radians)

SPACE$(x) String of x spaces

SPC(x) String of x spaces

SQR(x) Square root of x

STICK(x) Coordinates of joystick

STR$(x) String value corresponding to x

STRIG(x) State of joystick button

STRING$(x,y) Character with ASCII code y, x times

STRING$(x.x$) First character of x$, x times

USRn(x) Calls machine language routine with argument x

TAB(x) Enough spaces to move cursor to position x

TAN(x) Tangent of x (in radians)

TIME$ System time

TIMER Number of seconds since midnight or reset

VAL(x$) Numeric value of x$

VARPTER(var/a/)/e) Address of variable in memory

VARPTER(#f) Address of file control block for file f

VARPTER$ Three byte string containing the type of variable,
(variable) and its address in memory

130 IBM PCjr User's Handbook

Program Concatenation

The final topic covered in this chapter is program concatenation, or

program chaining. A complex program may overrun the PQ'r's memory
limitations. When this is the case, the program can be separated into two
or more self-sufficient parts. If a portion of the program is needed that is

not currently in memory, it can be loaded without destroying any of the

work that the previous portion had accomplished. Program concaten-

tation is facilitated by BASIC'S CHAIN and COMMON statements.

CHAIN

CHAIN transfers control to another program and passes variables

and files to it from the current program. CHAIN has the following
configuration:

CHAIN [MERGE] file l[linenumber][,[ALL]lDELETE range]]]

file is the name of the program that is to be loaded and run. file
follows the same rules as would any other program file. The following
example would load and run the program, PJK:

CHAIN "PJK"

linenumber specifies the line to which control will be given,
following the loading of the new program. If linenumber is omitted,

execution will begin with the first line in the new program.
ALL keeps all variables intact. Therefore, the new program can use

all the variables of the old program as if the new program had created

them itself. The CHAIN command will not, however, preserve the
current variable types or currently defined functions, unless the MERGE

parameter is also used.

MERGE is used to combine two programs. For example, suppose a
program has a main menu screen which selects the different options
available to the operator. It would be convenient, if the main menu was

always in memory. The various options could then be loaded into or out

of memory, as needed. The main menu portion of the program could be

merged with the options as they were called for. The following example

BASIC ftogrammlng Concepts 131

merges the program named SORT into the main program, and then
starts execution at line 100. A program must be stored in the ASCII
format, in order to be merged.

CHAIN MERGE "SORT",100

After one of the options, or overlays, has been used, it would be
desirous to delete it from memory. In this way, room could be made to
accommodate another section of the program. The optional DELETE

parameter will erase the program lines specified in range.

CHAIN MERGE "WILBUR",3000,DELETE 3000-3999

The previous example will merge the program named WILBUR into
memory after deleting lines 3000 through 3999 of the program currently
in memory. The DELETE parameter is rather picky in that it requires
that the line numbers specified as the first and last in the range, actually
exist.

COMMON

If all the variables of the old program are required by the new

program, the programmer may choose which variables are passed to the
new program. The COMMON statement declares a variable as a com
mon varible to both programs. The COMMON statement must appear
in the old program, before a CHAIN command can be executed.

COMMON variable [,variable]...

It is recommended that CHAIN'S ALL parameter be used, if a number of
variables are to be passed to the main program.

100 COMMON PAT,PHONE$,PRO()

Notice that arrays may be specified in a COMMON statement by placing
a pair of parentheses "()" after the array's name. Of course, the array
must have previously been dimensioned, using a DIM statement.

6
Files & File Flandling with PCjr BASIC

Introduction

In the preceding chapters, we did not discuss the concepts and
programming techniques related to storage of data on cassette tape or
diskette. In this chapter, these concepts will be discussed. The writing of
programs which make use of these devices will also be discussed.

FILES, RECORDS, AND FIELDS

Before learning specific concepts which relate to the cassette tape
unit and diskette drives, it is essential that the user understand the
concepts of files, records, and fields.

A file can be defined as a collection of related data. Files can be

distinguished as being either program files or data files. A program file
consists of a program which has been saved on diskette or cassette tape.

A data file consists of a collection of related information which has

been saved on a diskette or cassette tape. Generally, a data file is read

from or written to storage by a program. Data files are divided into

133

134 IBM PCjr User's Handbook

smaller segments known as records and fields. A field is a single piece of
data. Fields are grouped together as a record. These records, in turn,

make up the file.

A simple illustration may help clarify the concepts of a data file,
record, and field. Take an address book as an example of a data file. This
file would contain name, address, and telephone number data for the
individuals appearing in the address book. Each individual's name,
address, arid phone number would represent one record. For example,
the following data would make up one record:

Jay Gatsby
I Shore Lane

West Egg, NY 10565

516-787-2122

Each individual data item within the record (i.e. name, street
address, city, state, zip code, telephone number) could be thought of as a
field.

A data file is written or read as a series of constants. For example,
our address book example might be read as follows:

"Jay Gatsby","! Shore Lane","West Egg","NY",l0565,"516-787-2122"
"Nick Carraway","7 Shore Lane","West Egg","NY",!0565,"516-787-2736"

When these data items are read or written, the first field will have
been defined as the name, the second as the street address, the third as the
city, the fourth as the state, the fifth as the zip code, and the sixth as the
telephone number.

Note that the fifth field is numeric, while the others contain string
data. Notice that the string data is enclosed in quotation marks. Finally,
note that each data item is separated by a comma. For the computer to be
able to distinguish where one data item ends and another begins, these
items must be separated with a character known as a delimiter. A delim
iter might consist of a comma (as in our example), a blank space, a line
return character, or a form feed character.

The advantages of using data files with programs is obvious. Data
files allow the user to save, alter, and redisplay data as is necessary. For
example, using our address book as an example, programs could be

Files & File Handling with PCjr BASIC 135

written to do the following:

1. Enter changes in an individual's record by reading the file from storage
until the desired record is found, inputting the required changes, and
rewriting the file back into storage.

2. Displaying an individual's name, address, and telephone information
by reading the file from storage until the desired record has been found,
outputting the field data to the screen, and rewriting the file back into
storage.

The use of a data file with a mass storage device is analogous to the

use of a file cabinet for storing information in an office.

FILE SPECIFICATIONS

Every file is identified with a file specification, which consists of a

filename and a device name.* The filename identifies the file to be

searched for, and the device identifies where the file is to be searched for.

Some examples of file specifications are given below.

CASliTEXT

AilNVOICE

A:LETTER2.TXT

Every file is identified by a filename that can include up to eight

characters. These characters can contain the letters A to Z, the numbers 0

to 9, or any of the following special characters:

— 1

Filenames for files being stored on diskette may also include a filename

extension. A filename extension consists of a period and three letters

which appear immediately after the primary filename.

A filename can be entered with upper or lowercase letters. However,

the computer will interpret all lowercase entries as capitals. The follow
ing filenames all refer to the same file:

* In certain instances in Cartridge BASIC, a directory path must also be specified.

136 IBM PCjr User's Handbook

Vendor.TXT

VENDOR.txt

VENDOR.TXT

vendor.txt

The file specification prefixes the filename with a device name. The
device name is the name of the storage device which is to hold the file.

A device name can consist of 1 to 4 characters followed by a colon.
Table 6-1 contains the device names that are recognized by the PQr. Each
of the devices in the table can accept files. Although the disk drive and
cassette unit will be used throughout the chapter as input and output
devices, any of the devices listed in table 6-1 could easily be substituted.
Some of the devices can only be used for input or output. For example,
SCRN: can only be used as an output file, and KYBD: can only be used as
an input file.

The device name need not be specified in the file specification if that
device is the default device. In Cassette BASIC, the default device is
CASl;. In Cartridge BASIC, the default device is A:.

Table B-I. Filename Devices

Device

Name Reference Input Ouput

CASl: Cassette Recorder X X

A: Diskette Drive X X

COM I: Modem or Asynchronous X X

Communications Adapter

COM2: Asynchronous Comm. Adapter X X

LPTl: Line Printer X

KYBD: Keyboard X

SCRN: Screen X

File Access

File access refers to the processes of reading data from a file or

Files & File Handling with PCjr BASIC 137

writing data to it. In BASIC, data is organized in a file in either a

sequential or a random manner. The mode in which a file's data is

organized determines how that data will be accessed. Random access

does not mean that the file is stored in a haphazard manner. Random

access denotes that any part of the file can be accessed directly. Sequen

tial access denotes that the file's data must be read or written in a specific
order.

SEQUENTIAL AND RANDOM FILES

Two types of data files are used in PCyr BASIC, sequential data files

and random access data files. Cassette BASIC allows only sequential

files, while Cartridge BASIC allows either. Random access is not

available when a cassette tape is being used for data storage.

Each record of a sequential disk file is assigned exactly as much

storage space as it requires. There are no blank spaces between records in

a sequential file. In random data files, a constant space is assigned to

every record in the file. If the record does not occupy the entire space

assigned to it, the remaining space is left blank.
The concepts of sequential and random files are pictured in figure

6-1. Notice that the length of each record in the random file is constant at

400 bytes. The record length of a sequential file is variable.
The important difference between random and sequential files lies in

how each file is accessed. Direct access of any record in a random file is

possible regardless of where that record is located on the file. By direct
access, we mean that any record in the file may be retrieved regardless of

its position, without having to search through the entire file to find it.

With random files, PQ'r BASIC knows the length of each record and can

easily calculate the location of any record in the file.
Records in a sequential file can only be retrieved by sequential

access. In sequential access, the record search begins with the first record

in the file and must continue until the desired record is found. In other

words, in a sequential file, to find record 17, PCyr BASIC would first have

to read the preceding 16 records, one by one. Since BASIC does not know
the record length of sequential files, it has no way of determining the

location of record 17, other than by reading the first 16 records.

138 IBM PCjr User's Handbook

SECTOR I

400 Bytes

Random File

SECTOR 2

400 Bytes 400 Bytes

SECTOR 3

SECTOR 1

400 Bytes

Sequential File

SECTOR 2

150 Bytes 390 Bytes 470 Bytes

SECTOR 3

Figure 6-1. Random and Sequential Data Files

Random and sequential files each have advantages and disadvan

tages. Sequential files use less disk space than random files. Since each
record in a sequential file is assigned only the disk space it needs, no
diskette space is wasted by sequential files. Random files require every
record to be assigned the same amount of disk space required by the
longest record in that file. This generally results in wasted space. Random
files have an advantage over sequential files in that a record from a
random file may be read into memory, changed, and then written back to
the disk. A record from a sequential file cannot be read, modified, and

then rewritten, as any change that might affect a single record's length
could adversely affect the entire file.

OPENING A SEQUENTIAL FILE

Before a file can be read from or written to in PQ> BASIC, it must be

opened. When a file is opened in BASIC, first, the operating system is
called upon to read the disk to find information regarding that file in the
disk directory. Once this information has been obtained, BASIC will
initialize buffer areas in memory through which data will pass as it is read

from and written onto the disk.

Once a file has been opened, the BASIC program can read data from

Files & File Handling with PCjr BASIC 139

that file one sector at a time. This data is passed to the memory buffer that

had been set up when the file was opened. BASIC may then read this data
from the buffer area in the same manner that it would read and use any
other data stored in memory.

When BASIC writes data to an open file, the data is first written to

that file's memory buffer. Data is not actually written to the diskette or

cassette until the memory buffer has become filled. When the buffer is

full, the data is written to the diskette or cassette one sector at a time.

Once a file has been opened and file access operations have been

completed, that file should be closed. This is especially important when
ever data is written to a file.

When a BASIC file is closed, any data remaining in that file's

memory buffer will be written to the diskette. This occurs even if the

memory buffer is not full. Next, the operating system adds the necessary
directory information for that file.

The BASIC statement OPEN is used to open a file. OPEN can be used

with either of two configurations with sequential files. The first is as

follows:

OPEN "file specification" FOR mode AS [U^filenumber

The abbreviations in the preceding format can be interpreted as

follows:

file specification Filename and optional drive identifier

mode can be any of the following:

INPUT ~ for sequential input. Data can only be read from the
file. Data cannot be written to it. A "File not found" error will

occur if an attempt is made to open a file for input that does not
already exist.

OUTPUT ~ for sequential output. OUTPUT always causes a
new file to be created. If a file already exists with the same
filename as that specified in an OPEN statement with the
OUTPUT mode indicated, existing data in the file will be
erased. Data will be written to that file from its beginning
point.

APPEND ~ for sequential output mode for diskette files only.
APPEND is specified when data is to be added to the end of an

140 IBM PCjr User's Handbook

existing file. If the file being opened for an APPEND already
exists, new data will be written to the end of that file. If that file
does not exist, a new output file will be created.

filenumber is a required number which is used to refer to a file while
it is open. It is much easier to refer to a file as #1 than by its file
specification.

The following are examples of valid OPEN statements:

OPEN "AiTRANS.DAT" FOR INPUT AS #1

OPEN "BiTEXTFLE" FOR APPEND AS #2

The first example opens TRANS.DAT on drive A for input as file # 1. The
second example opens TEXTFLE on drive B for an append as file #2.

The OPEN statement can also be used with the following alternate

format for sequential files:

OPEN altmode, [U] filenumber, filespec

The abbreviations in the preceding format can be interpreted as

follows:

altmode is a string whose first character is one of the following:

O Indicates sequential output mode.

I Indicates sequential input mode.

(APPEND is not available in this configuration.)

filenumber and filespec retain the same meanings as in the first format.
The following are examples of the use of the alternate format of the

OPEN statement:

OPEN "0",#1."LPT1:"

OPEN 'T',#2,"A:VEND0R.DAT"

OPEN "0",#1,"CAS1:CHECKS"

The first exampje opens the printer as #1 for output. The second
example opens VENDOR.DAT as#2 for input on the disk drive. The third
example opens CHECKS as #1 for output on the cassette device.

In Cassette BASIC and Cartridge BASIC without DOS, a maximum

of four files can be open at any one time. However, none of these open

Files & File Handling with PCjr BASIC 141

files can be disk files. Although Cartridge BASIC with DOS does allow

disk files, a limit exists on the number of disk files that may be open at any
one time. The maximum number of open disk files is specified in the

BASIC command entry (as explained in chapter 3). From 1 to 15 files may

be specified as that maximum. If no entry is made in the BASIC com

mand, a maximum of three disk files can be open at any one time. Notice

that the use of a filenumber other than 1, 2, or 3 in such a case will cause

the "Bad file number" error to occur.

It is possible to open a single file under two separate file numbers. A

sequential file can be opened for both input and output, provided that the
file is first opened for output and then opened for input. PCyr BASIC will

not allow a file to be opened first for input, then for output, because of the

problems that this situation presents to the operating system.
To change a file from input to output, the file must first be closed.

This could be accomplished by using a CLOSE statement. Once a file has

been closed as an input file, it may be reopened as an output file.

It is good programming practice to close a file, once the program has

finished accessing it. More than one file can be closed with a single

CLOSE statement as illustrated below:

900 CLOSE #2,#3

If the CLOSE statement is executed without an argument as shown

below, all open files will be closed:

950 CLOSE

WRITING TO A SEQUENTIAL FILE

Once a sequential file has been opened, any one of the following
statements can be used to output data to it:

PRINT#

PRINT# USING

WRITE#

PRINT# and PRINT# USING function almost exactly as do PRINT

and PRINT USING. The difference lies in the fact that PRINT# and

142 IBM PCjr User's Handbook

PRINT# USING require that a file number be specified. Data is written to

that file rather than to the display. An example of PRINT# and PRINT#

USING is given below:

10 OPEN "FILE.DAT" FOR OUTPUT AS #1

20 A = 27.932:6$ = "DON"

30 C = 5.72:0 = 9.84

40 PRINT#1,A;B$

50 PRINT#1.USING "**$##.## ";C.D

The following will be saved by the PRINT# and PRINT# USING

statements in lines 40 and 50:

27.932 DON

***$5.72 ***$9.84 CR and LF characters

We can actually check this output by substituting "SCRN:" for

"FILE.DAT" in line 10. This causes the output to appear on the screen.
When WRITE# is used to output data to a sequential file, individual

data items will be separated with commas, and strings will be surrounded
by quotation marks.

10 OPEN "SCRN:" FOR OUTPUT AS #1

20 A = 27.932:6$ = "DON"
30 0 = 5.72:D = 9.84

40 WRITE#1AB$,C,D

50 END

RUN

27.932,"DON".5.72,9.84

Ok

One advantage of the WRITE# statement is that it outputs data in
the same format in which it is read by the INPUT# statement.

READING FROM A SEQUENTIAL FILE

The following commands are used in PCyr BASIC to input data from
a sequential file:

INPUT#

LINE INPUT#

INPUTS

Files & File Handling with PCjr BASIC 141^

INPUT# and LINE INPUT# function with sequential files much like
INPUT and LINE INPUT do with the keyboard. INPUT# will read the

data at the current position in the sequential file and assign that data to
the variable indicated as its argument. The data and variable must be of
the same type. If they are not, an incorrect data value may be assigned to
a variable.

When INPUT# is reading numeric data, any leading blanks will be
ignored. Any non-numeric characters assign the value zero to the varia
ble in the INPUT# statement. As is the case with INPUT, CR/ LF charac

ters and commas may be used as delimiters. Spaces may also be used with
the INPUT# statement.

When INPUT# is reading string data, any leading blanks will again
be ignored. If the first character read by INPUT# is a double quotation
mark, every subsequent character will be assigned to the string variable
until the next double quotation mark is encountered. If the first character
read is not a double quotation mark, every subsequent character will be
assigned to the string variable until a comma, carriage return, or line feed
character is encountered. A maximum of 255 characters can be assigned

to a string variable.

10 A$ = "Jerry Smith":B$ = "Williams,Dave"
20 OPEN "TEXT.DAT" FOR OUTPUT AS #2
30 PRiNT#2,A$:B$
40 CL0SE#2

50 OPEN "TEXT.DAT" FOR INPUT AS #2
60 INPUT#2.A$.B$
70 PRINT A$
80 PRINT B$
90 END

RUN

Jerry SmithWilllams
Dave

Ok

In our preceding example, A$ and B$ were output as follows:

Jerry SmithWIIIiams.Dave*

♦ The PRINT# statement does not output the quotation marks specified in the assignment state
ment in line 10.

144 IBM PC]r User's Handbook

When INPUT# caused these to be read and assigned to variables, "Jerry
SmithWilliams" was assigned to A$ and "Dave" was assigned to B$. Note
that the data was input into A$ until the comma was encountered.

By using quotation marks to delimit the strings when they are output
in line 30, we can re-input the string properly. We must use the CHR$
function with the ASCII code for the quotation mark (34) to represent

this character. If line 30 of our preceding example was edited as follows,

30 PRINT#2,CHR$(34);A$;CHR$(34);CHR$(34);B$;CHR$(34)

and the program was executed, the following data would be displayed:

Jerry Smith

Williams, Dave

LINE INPUT# is used with the following configuration:

LINE INPUT# filenumber, variable

All characters will be assigned to the specified variable until a

CR/LF character is encountered.

Note our revised version of the program described on the previous

page using LINE INPUT#. LINE INPUT# accepted every character

including the double quotations that served as delimiters in INPUT#.

10 A$ = "Jerry Smith":B$ = "Williams, Dave"
20 OPEN "TEXT.DAT" FOR OUTPUT AS #2

30 PRINT#2,GHR$(34);A$;CHR$(34);CHR$(34);B$;CHR$(34)
40 CL0SE#2

50 OPEN "TEXT.DAT" FOR INPUT AS #2

60 LINE INPUT#2,A$
70 PRINT A$
80 PRINT B$

90 END

RUN

"Jerry Smith""Williams, Dave"
Williams, Dave

Ok

INPUTS is used to retrieve a specific number of characters from a

Files & File Handling with PCjr BASIC 145

file. INPUTS is used with the following configuration:

zS= 1NPUT$(a: E,#;;])

If X and y are both specified, the next x characters from the file
indicated by >> will be read into z$. If a file is not specified, the designated
number of characters will be read from the keyboard. The use of INPUTS
is shown in the following example:

10 A$ = "Jerry Smlth":B$ = "Williams, Dave"
20 OPEN "TEXT.DAT" FOR OUTPUT AS #2

30 PRINT#2.CHR$(34);A$;CHR$(34);CHR$(34);B$:CHR${34)
40 CL0SE#2

50 OPEN "TEXT.DAT" FOR INPUT AS #2
60 A$ = INPUT$(13,#2)
70 PRINT A$

90 END

RUN

"Jerry Smith"
Ok

EOF, LOC, AND LOF WITH SEQUENTIAL FILES

The EOF (End of File) function can be used with sequential files to
determine if the end of the file has been reached. The configuration for
EOF is given below:

A = EOF(Jilenumber)

filenumber indicates the file for which the end-of-file condition is to
be checked. This function returns a value of true (-1) if the end-of-file has
been reached, and a value of false (0) if it has not. EOF is often used to test
for end-of-file while inputting data to avoid an input attempt when the
end-of-file has been reached. The following program illustrates this use
of EOF:

10 OPEN "TEXT.DAT" FOR OUTPUT AS #1
20 PRINT#1. "WHAT'S THE DIFFERENCE BETWEEN AN APPLE?"
30 PRINT#1, "AN ORANGE;"
40 PRINT#1, "BECAUSE A VEST HAS NO SLEEVES."
50 CLOSE:OPEN"TEXT.DAT" FOR INPUT AS #1
60 WHILE 1 = 1

146 IBM PCjr User's Handbook

70 INPUT#1,A$
80 PRINT A$

90 WEND

100 END

RUN

WHAT'S THE DIFFERENCE BETWEEN AN APPLE?
AN ORANGE:

BECAUSE A VEST HAS NO SLEEVES
INPUT PAST END IN 70

Ok

If line 60 is edited as follows, the error would no longer occur:

60 WHILE NOTEOF(I)
RUN

WHAT'S THE DIFFERENCE BETWEEN AN APPLE?
AN ORANGE:

BECAUSE A VEST HAS NO SLEEVES.
Ok

The LOF (Length of File) function returns the specified file in bytes.
LOF is used with the following configuration:

A = LOF(filenumber)

LOC returns the location within the file of the last record read or
written. LOC is used with the following configuration:

A = LOCifilenumber)

LOC is calculated in terms of 128 byte blocks. In other words, LOC
will return the number of records (assuming each record consists of 128
bytes) that have been input or output to the file since it was opened. For
instance, if 256 records of 16 bytes each (4096 bytes) were written to a
sequential file, LOC would return a value of 32.

Random File Access

Before a random file can be used, the programmer must determine
the length of each of its records. The length of each record in the random
file must be the same, and can be calculated by adding the length of each

Files & File Handling with PCjr BASIC 147

of the individual fields in that record.

When a random file is opened, a random file buffer is set up in
memory. Data to be written to the random file is first placed in that file's
buffer. When all the data for a record has been written to the buffer, the

programmer can instruct the computer to store the record on diskette.
When data is to be read from a random file, a record is first read from

disk into the random file buffer. The individual fields within that record

can then be read by instructing the program to access the buffer.
Once a random file has finished being accessed, it should be closed.

When a random file is closed, any existing data in the random file buffer
will be written to the random file on disk, and the memory space reserved

for the buffer will be freed-

OPENING AND CLOSING A RANDOM FILE

The following configurations can be used to open a file.

OPEN filespec AS \if]filenumber [LEN = rcdlen]
OPEN "R", [Wlftlenumber, filespec [,rcdlen]

filespec refers to the file specification, filenumber refers to the
number that will be assigned to the random file, rcdlen specifies the
length of each record in the random file in bytes. If this parameter is
omitted, a record length of 128 bytes will be assumed. The maximum
record length is 32,767 bytes.

The random file's record length may not be greater than that indi
cated by the /S: option when BASIC was started up. If /S: was not
specified in the BASIC command line, a record of up to 128 bytes will be
allowed. CLOSE works with random files exactly as it does with sequen

tial files.

FIELD VARIABLES

As discussed earlier, random file records are read into a random

buffer. Each field in the record will correspond to a certain area in the
buffer. In order to access a particular field in the random file record, the
corresponding field in the buffer must actually be accessed. In order to do
so, these buffer fields must be identified with a buffer variable or field
variable.

148 IBM PCjr User's Handbook

A field variable must always be a string variable. A string variable
via its descriptor can refer to a string value in the string storage space, in
the BASIC program itself, or in fact anywhere in the BASIC working
area. A string variable can use its descriptor to reference a string constant
in the file buffer.

A numeric variable could not be used for a field variable because the

value in the field buffer would also have to be stored in the variable table.

The FIELD statement is used to define field variables. FIELD is used

with the following configuration:

FIELD # filenumber, size AS Jieldvariable,...

size indicates the length of the field in bytes, and fieldvariable
indicates the string variable used to reference that field.

A FIELD statement cannot be executed until a file has been opened.
The sum of the lengths of the field variables specified by FIELD cannot
exceed the record length indicated in the OPEN statement. If the com

bined length of the field variables exceeds that of the record length, the
following error message will appear:

FIELD overflow

More than one FIELD statement can be executed concurrently for
the same random file. This allows the programmer to create several
different types of records within the same random file depending upon
how the field variables are defined.

FIELD 1, 10 AS A$, 20 AS B$, 30 AS C$

In the preceding example, the FIELD statement allocates the first 10

positions of the random file buffer # 1 for the string variable A$. The next
20 positions are reserved for B$, and the following 30 positions are
reserved for C$.

WRITING DATA TO A RANDOM FILE BUFFER

The LSET and RSET statements assign values to field variables. In
effect, LSET and RSET place data into the buffer field designated by the

Files & File Handling with PCjr BASIC 149

field variable. LSET and RSET are used with the following configura
tions:

LSET fieldvahable = x$
RSET fieldvariable = x$

fieldvariable refers to a string variable referenced in a FIELD state
ment. x$ can refer to either a string constant or a string variable. If x$

contains fewer bytes than those allowed for in fieldvariable, LSET will
cause x$ to be left-justified in the field buffer. In other words, the first
character in x$ will be placed in the farthest left byte in the field buffer. If
x$ does not occupy the entire field buffer, blank spaces will be added to
the right of x$'s last character. RSET causes x$ to be right-justified in the
field buffer. If necessary, blank spaces will be added to the left of x5's first
character.

If the string to be placed in the field buffer is larger than that allowed
for, extra characters will be truncated from the right of the string. This is
true regardless of whether RSET or LSET is being executed.

Although only string variables can be used to define field buffers,
numeric values can still be stored in a random file. However, to store

numeric values in a random file, it is necessary to convert the numeric

data to a string. The STR$ function could be used to convert a numeric
value to a string. The difficulty in using STR$ is that a string value
returned by STR$ consumes more memory storage than a numeric
constant would.

PQ'r BASIC includes three functions, MKI$, MKS$, and MKD$
which allow a string to be converted to a numeric value. The resultant
string will occupy the same number of bytes on the disk as did the original
variable in memory. These functions are used as follows:

A$ = MKI$(/n/eger)
A$ = MKS$(jing/e precision)
AS = MKD$(rfoMft/e precision)

integer, single precision, and double precision refer to integer, single
precision, and double precision constants or variables respectively. MKI$
converts an integer value into a 2-byte string. MKS$ converts a single
precision value into a 4-byte string, and MKD$ converts a double preci-

150 IBM PCjr User's Handbook

sion value into an 8-byte string. MKI$, MKS$, and MKD$ are only meant

to be used to convert data for storage in a random file.

To store numeric data in a random file, the field variables must have

a sufficient number of bytes reserved in the FIELD statement. For

example, the field variables defined by the following FIELD statement

could allow for the storage of 4 numbers in a record. Two of these

numbers could be integers, one could be single precision^, and one could

be double precision.

1000 FIELD #2. 2 AS A$, 2 AS B$, 4 AS C$, 8 AS D$

WRITING A RECORD FROM THE

RANDOM FILE BUFFER TO THE FILE

Once the field buffers have been assigned values via LSET and

RSET, the PUT statement can be used to write the random buffer to the

random file as a record. PUT is used with the following configuration:

PUT # filenumber [,rcdnumber]

filenumber refers to the number assigned to the random file when it

was opened. If the optional rcdnumber parameter is omitted, the con

tents of the file buffer will be written in the next available position in the
random file. If rcdnumber is specified, the file buffer's contents will be

written at the indicated record number. The record number can range

from I to 32,767.

In the following example, PUT will cause the contents of the file

buffer to be written at the fifth record location in the random file opened

as #3.

100 PUT #3,6

READING A RECORD FROM THE

RANDOM FILE INTO THE BUFFER

The GET statement is used to read a record from the random file into

the buffer. The configuration for GET is very similar to that for PUT.

GET # filenumber [,rcdnumber]

Files & File Handling with PCjr BASiC 151

If rcdnumber is not specified, the record following the last one read

will be retrieved. The following GET statement would cause the tenth

record of the random file opened as number 5 to be read into the buffer:

100 GET #5,10

READING DATA FROM THE RANDOM FILE BUFFER

Once data has been read into the random file buffer, that data can be

read from the buffer by using that buffer's field variables in an assign

ment statement. If a string value in the buffer represents a numeric value,

the string should be converted back to its numeric equivalent. PQ>

BASIC'S CVI, CVS, and CVD functions allow string data to be converted

back into numeric data. These function as the exact opposites of MKI$,

MKS$, and MKD$, respectively. CVI converts a 2-byte string to an

integer, CVS converts a 4-byte string to a single precision numeric value,

and CVD converts an 8-byte string to a double precision numeric value.

LOG & LOF WITH RANDOM FILES

When used with random files, LOC will return the number of the

record last accessed by BASIC. Assuming that file buffers # I and #2 are

opened to the same file, the following line could be used to load file buffer
#2 with the record last accessed by file buffer # I:

GET #2.L0C(1)

LOF operates with random files the same as it does with sequential

file. EOF cannot be used with random files.

USING RANDOM ACCESS FILES

Random access files are much easier to use than sequential access

files. The examples in figures 6-2 and 6-3 demonstrate the use of random

files. Figure 6-3 uses the economical MKS$ function in order to reduce
disk space used. Figure 6-2 uses the more readable STR$ function in
order to make the data file more understandable.

152 IBM PCjr User's Handbook

10 INPUT "ENTER PAYROLL NUMBER ":Z

20 Z$ = STR$(Z)
30 Y$ = "PAY" + Z$ + ".DAT"
40 OPEN Y$ AS #2 LEN = 53

50 FIELD#2,2 AS RCD.NO$,4 AS EMPL.NO$,15 AS LAST.NAME$,
15 AS FIRST.NAME$,5 AS NO.HOUR$,5 AS RATE$,7 AS PAY$

60 X% = 1

70 A$ = " ":B$ = " ":C$ = " ":D = 0:E = 0
100 INPUT "ENTER EMPLOYEE'S PERSONNEL NO. ":A$
110 INPUT "ENTER EMPLOYEE'S LAST NAME ":B$
120 INPUT "ENTER EMPLOYEE'S FIRST NAME ":C$

130 INPUT "ENTER NUMBER OF HOURS WORKED ":D

140 INPUT "ENTER PAY RATE ":E

145 LSET RCD.NO$ = STR$(X%)
150 LSET EMPL.NO$ = A$
160 LSET LAST.NAME$ = B$
170 LSET FIRST.NAME$ = 0$
180 LSET NO.HOUR$ = STR$(D)
190 LSET RATE$ = STR$(E)
200 LSET PAY$ = STR$(D*E)
210 PUT#2,X%

220 INPUT "DO YOU HAVE ADD'L ENTRIES (Y = YES:N = NO) ":FLAG$
230 IF FLAG$ = "Y" THEN X% = X% + 1:GOTO 70
240 IF FLAG$ = "N" GOTO 300 ELSE 220
300 INPUT "DO YOU WISH TO DISPLAY A RECORD (Y = YES:N =

NO) ":BFLAG$
310 IF BFLAG$ = "N" THEN 999
320 IF BFLAG$ = "Y" THEN 330 ELSE 300
330 INPUT "WHICH RECORD WOULD YOU LIKE TO DISPLAY (0 =

END) ":Y%
340 IF Y% = 0 THEN 999

350 IF Y% < = X% THEN GET #2,Y% ELSE 330

360 PRINT RCD.NO$:EMPL.NO$;LAST.NAME$:FIRST.NAME$:
NO.HOUR$:RATE$:PAY$

365 GOTO 330

370 CLOSE 2

999 END

Figure 6-2. Random File Access Using STR$

Files & File Handling with PCjr BASIC 153

10 INPUT "ENTER PAYROLL NUMBER ":Z

20 Z$ = STR$(Z)
30 Y$ = "PAY" + Z$ + ".DAT"
40 OPEN Y$ AS #2 LEN = 50
50 FIELD#2,2 AS RCD.NO$,4 AS EMPL.N0$,15 AS LAST.NAME$,15 AS

FIRST.NAME$.4 AS NO.HOUR$.4 AS RATE$,4 AS PAY$
60 X% = 1

70 A$ = " ":B$ = " ";C$ = " ";DI = 0:E = 0
100 INPUT "ENTER EMPLOYEE'S PERSONNEL NO. ":A$
110 INPUT "ENTER EMPLOYEE'S LAST NAME ":B$
120 INPUT "ENTER EMPLOYEE'S FIRST NAME ":C$
130 INPUT "ENTER NUMBER OF HOURS WORKED ":D
140 INPUT "ENTER PAY RATE ":E
142 F = D*E

145 LSET RCD.NO$ = MKI$(X%)
150 LSETEMPL.NO$ = A$
160 LSET LAST.NAME$ = B$ *"
170 LSET FIRST.NAME$ = 0$
180 LSET NO.HOUR$ = MKS$(D)
190 LSET RATE$ = MKS$(E)
200 LSET PAY$ = MKS$(F)
210 PUT#2,X%

220 INPUT "DO YOU HAVE ADD'L ENTRIES{Y = YES:N = NO) ":FLAG$
230 IF FLAG$ = "Y" THEN X% = X% + 1:GOTO 70
240 IF FLAG$ = "N" GOTO 300 ELSE 220
300 INPUT "DO YOU WISH TO DISPLAY A RECORD(Y = YES:N =

NO) ";BFLAG$
310 IF BFLAG$ = "N" THEN 999
320 IF BFLAG$ = "Y" THEN 330 ELSE 300
330 INPUT "WHICH RECORD WOULD YOU LIKE TO DISPLAY (0 =

END ":Y%

340 IFY% = 0THEN999

350 IF Y%<=X% THEN GET #2,Y% GOTO 330

355 A% = CVI(RCD.NO$);BI = CVS(NO.HOUR$):CI =CVS(RATE$);
D! = CVS(PAY$)

360 PRINT A%:EMPL.NO$:LAST.NAME$:FIRST.NAME$:BI;CI;DI
365 GOTO 330

370 CLOSE 2

999 END

Figure 6-3. Random File Access Using MKI$, MKS$, & MKD$

154 IBM PCjr User's Handbook

File Commands

PQ> BASIC includes eight commands designed to allow the user to
perform file handling operations while the BASIC interpreter is active.
These include SAVE, LOAD, RUN, KILL, NAME, MERGE, CHAIN,
and FILES.

SAVE

SAVE generally is used to store a program on a cassette or a disk file.
SAVE is used with the following configuration:

SAVE "filespecification"[:]
filespecification indicates the device where the program in RAM is to

be saved as well as the filename to be assigned to that file. Note that
filespecification must be enclosed within double quotation marks.

The optional parameter A indicates that the file is to be saved in
ASCII format. Only files saved in this format can be loaded with the
MERGE command.

The optional parameter P causes the program file to be saved in
encoded binary format. In effect, P results in the program file being
protected. If an attempt is made to LIST or EDIT a protected program
file, the following error will result:

Illegal function call

When SAVE is used to save a file on disk and no filename extension

is indicated m filespecification, an extension of .BAS will automatically
be assigned. If Cassette BASIC is active, the default device will be CASl:.

If Cartridge BASIC is active, the default device will be A:.

LOAD

The LOAD command is generally used to load a program file into
memory from cassette or diskette. LOAD is used with the following
configuration:

LOAD "filespecification" [,R]

Files & File Handling with PCjrBASiC 155

LOAD erases any program lines and variables in memory before the
specified program is loaded. When LOAD is used without the optional R
parameter, any open files will be closed.

When LOAD is executed with R, the program will be automatically
run after it has been loaded. Also, if R is specified, all data files will
remain open. LOAD is generally executed with the R option in order to
chain two or more programs together. Since existing data files remain
open, this information can be shared by the programs being chained.

filespecification does not include a filename extension, the .BAS
extension will be automatically provided.

When LOAD is used with the cassette device (CASl:), the filenames

present in the cassette will be displayed one by one on the screen. Each
filename will be followed by a period and a letter which specifies the file
type. These letters are listed with the types of files they reference in table
6-2.

If the filename displayed matches that indicated byfilespecification,
that file will be loaded into memory and the following message will be
displayed:

Found

If these do not match, the message "Skipped" will be displayed, and
the next filename on the cassette will be displayed.

The search for the indicated filespecification on the cassette tape can
be ended at any time by pressing Ctrl-Break. If filespecification is not
indicated when LOAD is executed for the cassette unit, the next program

file on the cassette will be loaded.

Table 6-2. File Type Abbreviations During a Cassette LOAD

File Type
Abbrev. Reference

.B BASIC programs stored in internal format (with SAVE).

.A BASIC programs stored in ASCII format (with
SAVE,A).

.P Protected BASIC programs stored in encoded binary
format (with SAVE,P).

156 IBM PCjr User's Handbook

.D Data files created by OPEN.

.M Memory image files created by BSAVE.

RUN

The RUN command is used to begin execution of a program. RUN is
used with the following configuration:

RUN ["filespecification"\,K\

If RUN is executed with filespecification, the indicated file will be
loaded into memory and executed. If RUN is executed without the

filespecification parameter, the program currently stored in RAM will be
executed. \i filespecification is indicated, it must be enclosed within
double quotation marks.

If the optional parameter R is specified, any open files will remain
open. Otherwise, they will be closed.

KILL

KILL is used with the following configuration to delete the indicated
diskette file. If the filename includes the .BAS extension, that extension
must be included in filespecification.

KILL "fllespecification"

NAME

NAME is used with the following configuration to change a
filename.

NAME "filespecification" AS "newjilename"

The filename included in filespecification will be changed to that
specified in newfilename. If the filename includes the .BAS extension,
that extension must be included in the command line.

Files & File Handling with PCjr BASIC 157

MERGE

The MERGE command loads the specified program file into
memory and combines it with existing program lines in memory.

MERGE "fllespecification"

If the file being loaded contains a program line with the same line
number as one of the program lines already present in memory, the
program line being loaded will replace that line.

For a program to be loaded with MERGE, it must have been saved in
ASCII format using the A option with the SAVE command.

CHAIN

The CHAIN statement allows one BASIC program to load and run

another BASIC program. A COMMON statement can be included in the
program containing the CHAIN statement which allows that program to
pass the values of some or all of its variables to the program being
chained.

FILES

The FILES command can be used to display the filename of one,
several, or all of the files on the indicated drive.

FILES ["filespecification"]

If FILES is executed without the optional parameter, all diskette
files on the disk drive will be displayed. The use of wild cards m' filespeci-
fication is analogous to their usage with the DOS command, DIR. Please
refer to chapter 9 for an explanation of wild cards.

7
PCjr BASIC Graphics and Sound

Introduction

The PQr has six available graphics modes, four graphics modes
more than its predecessors, the IBM PC and IBM PC XT. Since the
PCjr's display was designed to mimic the IBM PC's color graphics board,
all of the original graphics modes operate the same on the PCjr as they do
on the PC. The new modes give the PCjr some of the best color graphics
available on a home computer.

All of the graphics modes are color capable, although the maximum
number of concurrently displayable colors is limited by the selected
graphics mode. In addition to its color capability, the PCjr supports three
distinct screen resolutions — low (160 x 200 pixels*), medium (320 x 200
pixels) and high (640 x 200 pixels). Table 7-1 illustrates the available
combinations of colors and screen resolutions.

' A pixel can be defined as a single screen coordinate.

159

160 IBM PCjr User's Handbook

Table 7-1. # of Colors vs. Resolution

Colors Screen Resolution

16 low

4 medium*

16 medium

2 high
4 high

Besides its additional graphics modes, the VCjr supports sophisti
cated sound capabilities, including three channel music and sound
effects. These are generated by the Texas Instruments programmable
tone generator, the SN76489A. The use of this IC to generate complex
sounds will be discussed later in this chapter.

Pixels

In low resolution graphics, the display can be divided into a grid of
200 rows of 160 columns each. Every point on the screen can be uniquely

identified by using its row and column numbers. In low resolution, there
are 32000 uniquely addressable screen elements. Each specific screen
element is called a pixel.

The farthest left column of the screen has been defined as column 0.

The farthest right column has been defined as column 159. Likewise, the
row numbers extend from 0 (top) to 199 (bottom). This arrangement may

seem upside down to persons familiar with a cartesian coordinate system.
The medium and high resolution screens can likewise be divided into

grids of 320 x 200 and 640 x 200, respectively. In the case of medium
resolution graphics, the column numbers now extend from 0 (left) to 319
(right). In the case of high resolution graphics, they extend from 0 (left) to
639 (right). The row numbers extend from 0 (top) to 199 (bottom) in both
medium and high resolution.

' There are two medium resolution modes that can support four colors. The color
selection process differs between these modes.

PCjr BASIC Graphics and Sound 161

REDEFINING THE SCREEN COORDINATES

As previously mentioned, the default screen coordinates are
"upside-down" when compared to standard cartesian coordinates.
Figure 7-1 shows the difference between the default coordinates in low
resolution and the more natural cartesian coordinates.

Cartridge BASIC allows the programmer to redefine the default
screen coordinates. Using the WINDOW statement, cartesian coordi
nates may be selected. In fact, any rectangular coordinate system may be

chosen. The correct syntax of the WINDOW command is as follows:

WINDOW [[SCREEN] (x,.y,) - (Xz.ya)]

^1. y^' X2, and X2 are called world coordinates. World coordinates are
single precision floating point numbers. They redefine the coordinates of
the screen block, defined by the VIEW statement (discussed later). If no

VIEW statements have been executed, the coordinates of the entire

screen will be redefined.

WINDOW (-l,-l)-(l, I)

For example, the previous WINDOW statement will set the screen
coordinates to the cartesian coordinates shown in figure 7-1.

The optional SCREEN parameter allows the screen to be left upside
down while still redefining the screen coordinates. The statement,

WINDOW SCREEN (-1,-I)-(1, I)

would define the screen coordinates as shown in figure 7-2.

162 IBM PCjr User's Handbook

0,0 159,0

80,100

0,199 159,199

-1,1 1.1

0,0

-1.-1 1.-1

default cartesian

Figure 7-1. Coordinate System Comparison

-1.-1 1.-1

0.0

-1.0 1.1

Figure 7-2. Effect of window SCREEN (-1,-I)-(l, I)

PCjr BASIC Graphics and Sound 163

Suppose that a screen, similar to figure 7-3, is to be replicated using

the PQ'r. Perhaps the screen is one from an educational program for
preschoolers. At any one time, the programmer would like to devote his
attention to a particular quadrant of the screen. VIEW allows the
definition of subsets of the screen called viewports. Once a viewport has

been defined, all screen input and output is accomplished through that

part of the screen. VIEW uses the following configuration:

VIEW [[SCREEN] [(x,,y,) - (X2,y2)lim llboundary]]]]]

Xi, yi, X2, and y2 are the coordinates of the defined viewport. In low

resolution graphics, the following statement would establish the view

port illustrated in figure 7-4:

VIEW (10, 15)-(75, 90)

Danny

Figure 7-3. Screen to be Replicated

164 IBM PCjr User's Handbook

0,0 159,0

10,15 75,15

<— viewport

0,199

10,90 75,90

159,199

Figure 7-4. Viewport

If the previous statement had been executed in a program, any
subsequent references to the point (0,0) would actually affect pixel (10,
15). Likewise, a reference to the point (159, 199) would affect pixel (75,
90). VIEW compresses the old screen coordinates (defined by WIN
DOW) to fit into the new viewport. Therefore, scaling is easily
accomplished.

10 SCREEN 2: CLS

20 WINDOW SCREEN (0.0) - (639,199)
30 GOSUB100

40 FOR J = 1 TO 1000; NEXT J: CLS

50 VIEW (0,0) - (320,100)
60 GOSUB100

70 END

100 'DRAW ELLIPSES

110 CIRCLE (320,100), 80... .3
120 CIRCLE (300,100), 70... .8
130 RETURN

PCjr BASIC Graphics and Sound 165

The optional parameter,/i//, will cause the newly defined viewport
to be filled with the color assigned to the attribute specified by////.

Attributes will be discussed later in this chapter. The optional

parameter, boundary, will cause a border to be drawn around the newly
defined viewport, using the color assigned to the attribute specified by
boundary. In the 16 color modes, both ////and boundary may range from
0 to 15. In the 4 color modes, they may range from 0 to 3. And in the 2
color mode, they may be assigned either 0 or 1.

SCREEN is the final optional parameter. When included, the
SCREEN'S coordinate system will no longer fit into the new viewport. In
fact, the coordinate system is not changed. However, only points plotted
within the viewport will appear on the SCREEN. For example, if the
point (10,10) is plotted after "VIEW SCREEN (20,20) - (30,30)" has been
executed, nothing will appear as the screen, because the point (10,10) was
not present in the viewport.

WINDOW and VIEW will sort both the x and y pairs, placing the

smallest values first. For example, the following four WINDOW com

mands produce the same coordinate definition, as shown in figure 7-5:

WINDOW (0,0) - (10,20)
WINDOW (0,20) - (10,0)
WINDOW (10,0) - (0,20)

WINDOW (10,20) - (0,0)

If VIEW or WINDOW is used without an argument, the default
conditions for the currently active graphics mode will be restored.

0,20

5,10

10,20

0,0 10,0

Figure 7-s. Coordinate Definition Produced by Example WINDOW
Commands

166 IBM PCjr User's Handbook

SELECTING A GRAPHICS MODE — SCREEN

As mentioned earlier, six graphics modes are available. These are

the low resolution graphics modes and two high resolution graphics
modes. The SCREEN statement allows the programmer to select

between these modes and the text mode. SCREEN uses the following

configuration.

SCREEN [mode]llburst][,[active pg][visual P9]][,erase]]

mode indicates the display mode. SCREEN 0 sets the display to the

text mode. SCREEN 1 through SCREEN 6 select the graphics modes.

This is summarized in table 7-2. SCREEN 0 through SCREEN 2 are also

supported on the PC with a Color/ Graphics Monitor Adapter installed.
SCREEN 3 through SCREEN 6 are only supported in Cartridge BASIC.

Table 7-2. Graphics Modes & Memory Requirements

Screen Display Mode Memory Requirement

1

2

3

4

5

6

text

medium resolution; 4 colors

high resolution; 2 colors

low resolution; 16 colors

medium resolution; 4 colors

medium resolution; 16 colors

high resolution; 4 colors

40 Column 2K

80 Column 4K

I6K

16K

16K

16K

32K

32K

SCREEN can also include an optional second parameter which

enables or disables the color burst signal. A TV signal contains a compo
nent known as the color burst. If the color burst is present, a color picture

will be displayed. If it is absent, a black and white picture will be

displayed. In the text mode, if burst evaluates to 0 (false), the color burst

will be disabled. A value of 1 (true) in the text mode enables the color

burst. In medium resolution graphics {mode = 1 or mode = 4), a true

value for burst will disable color, while a false value will enable color.

burst has no effect when mode = 2, 3, 5 or 6.

PC|r BASIC Graphics and Sound 167

Using the CLEAR statement, more memory may be allotted to the
screen than is needed to hold a single page of graphics or text. This allows
more than one page of screen memory to be stored. Each of the display
modes uses a specific amount of memory (see table 7-2). For example,
suppose that 20K was allotted to the screen. Five pages of 80 column text
could be stored (5 x 4K = 20K). These would be numbered 0 to 4,
inclusive. If 40 column text had been displayed, 10 pages could have been
stored (10 x 2K = 20K). These would have been numbered 0 to 9,
inclusive.

The two optional parameters for SCREEN, activepg and visualpg,
allow the programmer to select the page to which output will be sent
(activepg), as well as the page which is displayed on the screen (visualpg).
This allows the user to write to one page while another is being displayed.
activepg and visualpg can be used in any screen mode. However, suffi
cient memory must be allotted for the screen.

The final optional parameter, erase, indicates how much display
memory is to be cleared, erase should evaluate to an integer in the range
0-2. 0 indicates not to erase video memory, even if the screen mode

changes. 1 indicates to erase the union of the new page and the old page,
provided that the mode or burst changes. And 2 indicates to erase all
video memory if moi/c or Z)Mrs/changes. If no value is specified, a 1 will be
assumed.

ATTRIBUTES & PALETTES

An attribute may be defined as one of the sixteen possible color
numbers. Any color may be assigned to each of the attributes. The notion
of an attribute is analogous to that of painting by number. Using a
graphics command, such as LINE, CIRCLE or PSET, corresponds to
drawing the boundaries of a paint by number canvas.

LINE (0,0) - (4,4),2,B

When LINE is used in the previous configuration, a box will be
drawn with corners at pixels (0,0), (0,4), (4,4), and (4,0). The square will
be drawn using attribute number two. The following will be the result:

168 IBM PCjr User's Handbook

Column

Row-

0

1

2

3

4

5

2 2 2 2 2 0

2 0 0 0 2 0

2 0 0 0 2 0

2 0 0 0 2 0

2 2 2 2 2 0

0 0 0 0 0 0

Now that the paint by number canvas has been constructed, the

canvas must be given colors. Colors are assigned to attributes by the
PALETTE statement.

PALETTE [affr/bt/fe][,co/or]

attribute is an expression that evaluates to an integer. It determines
which attribute will be effected by the PALETTE statement, attribute

may range from 0 to either 1, 3 or 15, depending on the graphics mode.
color is an integer that selects from the sixteen displayable colors.

Table 7-3 contains a list of these colors. Colors 8 through 15 may be

thought of as the "high intensity" values of colors 0 through 7.

PALETTE 2, 10

PALETTE 0, 6

The previous two statements will cause our square to be colored
light green, with a brown background. The square could have just as
easily been colored brown with a light green background.

PALETTE 2. 6

PALETTE 0, 10

Also, the square and its background could have been assigned the
same color. In this case, the square would have been invisible to the

viewer.

PCjr BASIC Graphics and Sound 169

PALETTE 2. 6

PALETTE 0. 6

Table 7-3. Displayable Colors

0 — Black 8 — Gray
1 — Blue 9 — Light Blue
2 — Green 10 — Light Green
3 — Cyan 11 — Light Cyan
4 — Red 12 — Light Red
5 — Magenta 13 — Light Magenta
6 — Brown 14 — Yellow

7 — White 15 — High-Intensity White

Often, many attributes must be changed simultaneously. PALETTE
USING allows the setting of all the attributes with one statement.

PALETTE USING [array (start)]

array is an integer array that must have 16 elements beginning at the
starting index, start is an integer indicating the first position in the array
to be used in assigning palette colors.

The values in array sltq directly assigned to the attributes. If a value

of -1 is in the array, the attribute corresponding to that position in the
array will not be changed. Figure 7-6 demonstrates this process.

170 IBM PCjr User's Handbook

PALETTE USING PAL%(4)

PAL%(4) 3 —^ attribute 0

PAL%(5) 4 —► attribute 1

PAL%(6) -1 attribute 2

PAL%(7) -1 attribute 3

PAL%(8) -1 attribute 4

PAL%(9) 10 —► attribute 5

PAL%(IO) 15 —► attribute 6

PAL%(1 1) -1 attribute 7

PAL%(12) -1 attribute 8

PAL%(13) -1 attribute 9

PAL%{14) -1 attribute 10

PAL%(15) -1 attribute 1 1

PAL%(16) -1 — attribute 12

PAL%(I7) 7 —► attribute 13

PAL%(I8) 8 attribute 14

PAL%(19) 9 —► attribute 15

'V T
These colors into

Figure 7-6. PALETTE USING Example

SELECTING A COLOR

Before any graphics information can be plotted to the screen, an
attribute must be selected. This is accomplished through the use of the
COLOR command. The correct syntax of this command is as follows:

FOR SCREENS 3-6 — COLOR [foreground],[[background]]
FOR SCREENS 1 - COLOR [background]l[palette]]

The two different configurations can be understood by realizing that
screen I was originally designed for the PC, while screens 3 through 6
were designed especially for the PCjr's advanced hardware.

In both configurations, background represents the color to be
assigned to attribute 0.

PCjr BASIC Graphics and Sound 171

In the configuration for screens 3-6, whenever a graphics command

such as PSET or LINE is issued, the configuration of the command will

allow an attribute to be specified. This attribute is then used to draw the

graphics object. If no attribute is specified by the programmer, the
current default attribute will be ustd. foreground determines the default

drawing attribute.

The use of COLOR with the latter configuration is somewhat more

complex. SCREEN 1 does not support the flexible palette of screens 3-6,

but instead supports only two fixed palettes. These are given in table 7-4.

For example, if palette - 0, then green will automatically be assigned to

attribute 1. SCREEN 1 is obviously a poor choice for a graphics mode,

because SCREEN 4 could be used in its place without sacrificing the
number of available colors (4) or changing the memory requirements,
(16K). SCREEN 1 was merely included on the PCyr to make it compati
ble with the PC and the PCXT

Table 7-4. Screen 1 Palettes

Attribute Palette 0 Palette 1

1 Green Cyan

2 Red Magenta

3 Brown White

PLOTTING — PSET

After a COLOR has been selected, information can be plotted to the

screen. This is accomplished by using the PSET command. The correct

syntax of this command is as follows:

PSET {col, row) [.attribute]

col and row specify the world coordinates of the pixel to be illumi

nated. The optional parameter attribute determines the color of the

plotted pixel. If this parameter is not included, then the current default

attribute will be used.

172 IBM PCjr User's Handbook

RELATIVE COORDINATES

PSET, as well as the rest of the graphics commands, requires the

programmer to specify the position on the screen to which graphics data

is to be plotted. This information is given in the form of coordinates. As
was the case with PSET, coordinates can be of the form {col row), where

col is the column number and row is the row number. This is known as

absolute addressing, row and col actually specify screen coordinates,

without regard to the last point referenced (LPR). The LPR is analogous

to the cursor position in the text mode.

Another means of indicating coordinates is relative addressing.

With relative addressing, BASIC must be told where the point is located

relative to the LPR. This form of addressing uses the following syntax:

STEP {coloff, rowofj)

coloff and rowojfyindicate the column offset and row offset, respec

tively. The numbers specify the horizontal and vertical direction of the

new point from the LPR.

100 SCREEN 3

110 PSET (100,100), 15

120 PSET STEP (20,-10), 15

The previous program sets two points on the screen. Their actual

coordinates are (100,100) and (120,90).

ADVANCED GRAPHICS COMMANDS

With the right combination of PSET and elbow grease, any graphics

screen can be drawn. In other words, although PSET gets the job done, it

does not accomplish it with a great deal of efficiency. BASIC includes

three commands that can simplify the creation of graphics displays.

These are LINE, CIRCLE, and PAINT. LINE and CIRCLE have

already been illustrated in several of our examples.

LINE can be used to plot consecutive pixels. For example, the

following statement will connect the pixel (100,100) to pixel (150,150)

with a white line:

LINE (100,100)-(150,150), 15

PCjr BASIC Graphics and Sound 173

If the first coordinate is omitted, the line will be drawn from the LPR to

the second coordinate. The following statement will connect the LPR

(150,150) to pixel (20,150) with a blue line.

LINE-(20,150), 1

When the optional parameter ",B" is included in a LINE statement,
the two pixels are not connected. Instead a box is drawn, using the two
coordinates as opposite corners.

LINE (20,20)-(100,150), 2, B

If ",B"is replaced with ",BF-", the box will be drawn. However, it will
be filled with the specified attribute. As in the following example, if the
attribute is omitted, the current default attribute will be used. Notice that

the double comma is used to indicate the omitted attribute.

LINE (0,0) - (50,30),, BP

CIRCLE is used to draw an ellipse on the screen. Of cource, CIR
CLE can also draw a circle, because a circle is merely a special case of an

ellipse.

CIRCLE (80,100), 40, 2

The previous example will draw a circle centered at (80,100) with a
radius of 40. The circle will be drawn using attribute 2. If only part of a

circle (arc) is to be drawn, the optional start and end parameters should
be used.

CIRCLE (100,100), 40„ 0, 3.14159

This example draws a semi-circle, centered at (100,100) with a radius
of 40. The semi-circle will be drawn with the default attribute since the

attribute parameter has been omitted. The two numbers, 0 and 3.14159
are the starting and ending angles in radians.

174 IBM PCjr User's Handbook

7r/2

7r = 3.14159

37r/2

If the start or end angles are negative, the PQ> will treat them as
positive values and will connect the ellipse to its center.

CIRCLE (160,100), 80„ -6.28, -3.14

The previous statements will draw a semi-circle with its starting and
ending points connected to its center.

end start

center

The final optional parameter is called aspect. The aspect determines
the ellipse's elongation. When aspect =1, a nearly perfect circle will be
drawn in screen 4. For values less than one, a flat ellipse will be drawn.
For values greater than one, a narrow ellipse will be drawn. For example,
the following statement will draw a long narrow ellipse:

CIRCLE (160,100), 80„„!0

PCjr BASIC Graphics and Sound 175

A

v

aspect = 10 aspect = 2 aspect = 1

aspect = 1/2 aspect = 1/10

c

The third advanced graphics command is PAINT. This command
will fill an enclosed section of the screen with a user determined attribute.

The correct syntax of this command is as follows:

PAINT (CO/, row) [,paint][,boundary]

col and row determine where the filling process will begin, paint deter
mines the attribute used for PAINT. If paint is omitted, the maximum
attribute for the current graphics screen will be assumed, boundary is the
attribute where painting is to be halted. For example, if a circle is drawn
using attribute two, it may be filled with attribute ten in the following
manner. If boundary is omitted, the paint attribute will be assumed.

CIRCLE (80,100), 40,2
PAINT (80,100), 10,2

176 IBM PCjr User's Handbook

The following example program uses the majority of the graphics
commands learned thus far:

100 CLEAR ,,.32768

110 DIM PAL%(30)

120 SCREENS

130 KEY OFF

140 WINDOW (-10,-10)-{10,10)
150 FOR RADIUS = 13 TO 1 STEP -1

160 CIRCLE (0,0),RADIUS,RADIUS
170 PAINT (0,0),RADIUS
180 NEXT RADIUS

190 FORK = 0TO30

200 PAL%(K) = KM0D16
210 NEXTK

220 FOR K = 15 TO 0 STEP -1

230 PALETTE USING PAL%(K)
240 NEXT K

250 GOTO 220

The CLEAR statement at line 100 reserves 32768 bytes for screen
memory. (The amount needed for graphics screen five.) The DIM state
ment in the next line dimensions an integer array to be used in the
PALETTE USING statement at line 230. KEY OFF merely turns off the
function key labels on line 25 of the display.

Lines 140-180 draw and paint the concentric circles. Lines 190-210
initialize the array which will be used in the loop at lines 220-240. This
loop strobes the colors, giving the illusion of movement. Line 250 end
lessly repeats the motion loop.

RETRIEVING INFORMATION FROM THE SCREEN

After information has been output to the screen, it may become
necessary to determine which color is displayed at a certain screen
position. The function POINT takes as its arguments the row and column
numbers, and returns the attribute number. The correct syntax of the
POINT function is as follows:

X = POINT {col, row)

col represents the column number, row represents the row number. Upon

PCjr BASIC Graphics and Sound 177

execution of the preceding command, X will be assigned the value of the
attribute at screen location column = col, row = row.

SHAPE DEFINITION

Often, a particular shape must be drawn a number of times in the
same graphics screen. For example, 50 stars must be drawn in order to
create an American flag. The DRAW statement is used to draw an object
defined by a string containing drawing commands. These commands are
collectively known as a graphics definition language (GDL™). The con
figuration for DRAW is given below:

DRAW string

String is string expression containing GDL commands. When DRAW is
executed, each GDL command in the string will be interpreted and
executed one by one.

DRAW — MOVEMENT COMMANDS

The GDL commands can be categorized as movement commands,
set angle commands, set color commands, set scale factor commands,
and execute substring commands. We will discuss the movement
commands first. These commands are described as follows:

Uw Move up

Dn Move down

Ln Move left

Rn Move right
En Move diagonally up and right
Fn Move diagonally down and right
Gn Move diagonally down and left.
Hn Move diagonally up and left

Each of the movement commands is executed in a similar manner.

Each indicates a direction in which the plotting will take place. A numeric
argument (n) follows the commands which indicate the distance to be
moved.

n does not specify the actual number of points to be moved. This can
be calculated by multiplying n times the scaling factor. The scaling factor

178 IBM PCjr User's Handbook

is set with the scale command using the following configuration:

Sn

n can range from 1 to 255. The scale factor is calculated by dividing n by
4. Therefore, the effective range for the scale factor is .25 to 63.75.

The following program illustrates the use of the movement com

mands and the scale factor:

10 SCREEN 4

20 COLOR 3,1

30 OLS

40 A$ = "U30 R40 D30 L40"
50 FOR X = 1 TO 10

60 B$ = "S" + STR$(X) + A$
70 DRAW B$

80 NEXTX

90 END

Line 40 defines a square as A$. This square is drawn at 10 different
scales by the loop at lines 50-80. Notice that although 40 points were
plotted along the x-axis and only 30 points were plotted along the y-axis,
that our figure was drawn as a square. This is due to the fact that the
screen's aspect ratio in medium resolution graphics is 4:3, which means
that four horizontal points occupy the same amount of space as do 3
vertical points.

In high resolution, the aspect ratio is 16:7, while the aspect ratio in
low resolution is 2:3. Aspect ratio will not affect the diagonal move
commands. This is shown in the following example program:

10 SCREEN 4

20 CLS

30 A$ = "E40 F40 G40 H40"
40 DRAWA$
50 END

DRAW-M COMMAND

Although the U, D, L, R, E, F, G, and H commands are useful for
drawing a figure, they are less useful in situations where a line is to be
drawn from the LPR to a specific screen location. The M (movement)

PCjr BASIC Graphics and Sound 179

command is provided for this purpose. M is used with the following
configuration;

x,y specify the coordinates to which a line is to be drawn from the LPR. If
a plus (+) or minus (-) sign prefix x and y, the move will be relative.
Otherwise, the move will be absolute. This is illustrated in the following
example:

10 SCREEN 4

20 CLS

30 A$ = "U30 R40 D30 L40"
40 DRAWA$
50 M$ = "M +20,+30

60 DRAW M$
70 N$ = "M200,100"

80 DRAW N$

DRAW-B COMMAND

If the B command is placed in front of any GDL movement com
mand, the move will be executed, but no points will be plotted. By editing
line 70 of the previous program as follows:

70 N$ = "BM 200,100"

the effect of B will be illustrated.

DRAW-N COMMAND

If GDL's N command is placed in front of a movement command,
the line will be drawn but the LPR will remain unchanged. The effect of N
can be shown by editing line 30 as follows:

30 A$ = "U30 R40 D30 NL40"

DRAW-C COMMAND

The C command can be used to set the color for the shape being
drawn. C is used with the following configuration:

180 IBM PCjr User's Handbook

Qn

n specifies the attribute number. Its allowable range depends on the
current graphics mode. The following program illustrates the use of the C

command:

10 SCREEN 4

20 OLS

30 A$ = "01 U30 R40 02 D30 R40"
40 DRAWA$

50 END

DRAW-A COMMAND

The A command is used to set a rotational angle for any subsequent
GDL commands. The format for A is as follows:

An

n can be any value from 0 to 3, where 0 indicates 0 degrees, 1

indicates 90 degrees, 2 indicates 180 degrees, and 3 indicates 270 degrees.

DRAW-TA COMMAND

The TA command can be used to turn the figure at the angle

indicated by n. n can range from +360 to -360. If n is negative, the angle
turns clockwise. The use of TA is illustrated in the following program:

10 SCREEN 4

20 OLS

30 FOR X = 0 TO 360 STEP 45

40 DRAW "TA" + STR$(X)+"U30"
50 NEXT X

DRAW-P COMMAND

The P command is the GDL equivalent of the PAINT command. P

specifies the attribute that the figure is to be filled with, as well as the

border attribute. P is used with the following configuration:

P paint, boundary

PCjr BASIC Graphics and Sound 181

paint can range from 0-15 and specifies the attribute of the figure.

boundary indicates the border attributes of the figure to be filled in.

boundary can also range from 0-15. Both parameters must be specified.

10 SCREEN 4

20 CLS

30 A$ = "U30 R40 D30 L40"

40 B$ = "BE10"

50 C$ = "P1,3"
60 DRAW A$ + B$ + 0$

DRAW-X COMMAND

The X command allows a DRAW statement to execute a substring

from within another command string. The substring is generally specified

with a variable name. It must be preceded by X and followed by a

semicolon.

The X command allows the user to define a part of a drawing as a

separate part from the definition of the entire object. This command also
facilitates the defining of objects which need more than 255 characters for

their definition.

10 SCREEN 4

20 CLS

30 A$ = "E50 D50 L50"
40 B$ = "A1" +A$
50 C$ = "A2" + A$
60 D$ = "A3" + A$
70 DRAW "XA$; XB$; XC$; XD$;"
80 END

With any of the commands in the GDL, the argument n can either be

a constant or it can be a variable. If «is a variable, it must be preceded by

an equal sign (=). Also, a semicolon must be used to delimit commands

where a variable is used for n. The various GDL commands are summar

ized in table 7-5.

182 IBM PCjr User's Handbook

Table 7-5. DRAW'S GDL Commands

Command

Format Reference

Vn Move up.

Dn Move down.

Ln Move left.

Rn Move right.

En Move diagonally up and right.

Fn Move diagonally down and right.

Gn Move diagonally down and left.

Mn Move diagonally up and left.

Mxy Move absolute or relative. If x is preceded by a

plus (+) or minus {-) sign, it is relative. If not, it

is absolute.

B Moves as indicated without the plotting of any

points.

N Moves per the command but returns to the

original position when the movement has been

completed.

An Sets an angle at the value indicated by n. n can

be any value from 0 to 3, where 0 indicates 0

degrees, 1 indicates 90 degrees, 2 indicates 180

degrees, and 3 indicates 270 degrees.

Cn Sets the color to the value indicated by n. n

can range from 0 to 3 in medium resolution or

from 0 to 1 in high resolution.

PCjr BASIC Graphics and Sound 183

Command

Format Reference

P paint,

boundary

Sets the color of the figure to the color speci

fied by paint (0-3). boundary indicates the

border color of the figure to be filled.

Sn Sets the scale factor, n can range from 1 to

255. To calculate the scale factor, divide n by 4.

TAn Turns at the angle indicated by n. n can range

from +360 to -360. If n is positive, the angle

turns counterclockwise. If n is negative, the

angle turns clockwise.

Xstring Executes the substring. This allows the user to

execute a second string from within the origi

nal string.

Sound

As mentioned earlier, the PQ> contains a programmable tone gen

erator. The PQ> is also equipped with the audio hardware of the PC, a

8253 timer. The tone generator can produce top quality music and sound

effects. The less capable 8253 timer was included so that the PC/r could

emulate the PC. Either set of hardware may be software selected.

However, both may not be active simultaneously. The following two

commands select which set of hardware will be activated:

SOUND ON

SOUND OFF

activate programmable
tone generator

set PC emulation

mode

The PC emulation mode is the default setting.

In addition to its two means of sound generation, the PCy/* has three

ways of outputting that sound. These include the internal speaker, an
audio jack, and a modulated output to be used by a television set.

184 IBM PCjr User's Handbook

Although the sound of the 8253 timer can be directed to any of these

outputs, the programmable tone generator may not use the internal

speaker. Therefore, whenever the tone generator is activated (SOUND

ON), the internal speaker will be deactivated. Likewise, the internal

speaker will be activated whenever the 8253 is being used.

PCyr BASIC contains another pair of commands that activate the

external audio outputs. The external outputs are the audio jack and the

TV modulated output. These are controlled by the BEEP commands.

BEEP ON activate external

connections

BEEP OFF deactivate external

connections

By using the aforementioned rules, if BEEP is OFF and SOUND is ON,

it would seem that all audio outputs would be disabled. SOUND ON

would turn off the internal speaker, and BEEP OFF would deactivate the

external audio connections. In this combination, PCyr BASIC will acti

vate the external audio connections, to assure an active output channel.

Table 7-6 illustrates the possible combinations of BEEP and SOUND.

Table 7-6. BEEP & SOUND

SOUND BEEP

INTERNAL

SPEAKER

EXTERNAL

CONNECTIONS

ON ON OFF ON

ON OFF OFF ON

*OFF *ON ON ON

OFF OFF ON OFF

When activated, the 8253 timer can be programmed to play any

single note. The duration of this note may also be programmed. How

ever, when compared to the capabilities of the SN76489A, the 8253 is
dwarfed. The programmable tone generator can play any three notes, can

independently control the volume on each of these notes, and can pro-

* default setting

PCjr BASIC Graphics and Sound 185

duce sound effects. The duration of these notes may again be pro

grammed. Therefore, any sound produced on the 8253 can also be
produced on the SN76489A. Henceforth, all PQ> BASIC commands
will be discussed in reference to the SN76489A.

PRODUCING SOUNDS

Besides being used to enable the programmable tone generator, the

SOUND statement has an alternate configuration that can be used to

directly control the frequency, volume and duration of a note, played on
any of the voices. A voice can be defined as an oscillator that can produce
any one note. The SN78498A has 3 tonal voices and 1 noise voice. The
SOUND command may be configured as follows:

SOUND pitch, duration [,[volume][,[voice]]]

pitch is the frequency in Hertz of the note to be played, pitch must lie
between 37 and 32767. Any value from 37 to 110 will produce a 110 Hz

note, the lowest attainable by the tone generator. The value 32767 will
produce a period of silence. Table 7-7 contains a listing of musical notes
and their corresponding frequencies. Notes in a higher octave may be
obtained by doubling the frequency of the corresponding note in the
previous octave. Notes in a lower octave may be obtained by halving the

frequency of the corresponding note in the next octave.

186 IBM PCjr User's Handbook

Table 7-7. The Frequencies of Common Musical Notes

Note Frequency (Hz) Note Frequency (Hz)

C 261.63 middle C 523.25

C# 277.18 C# 554.37

D 293.66 D 587.33

D# 311.13 D# 622.25

E 329.63 E 659.26

F 349.23 F 698.46

F# 369.99 F# 739.99

G 392.00 G 783.99

G# 415.30 G# 830.61

A 440.00 A 880.00

A# 466.16 A# 932.33

B 493.88 B 987.77

duration is the desired length of time that the note or silence is to be

sustained, duration can be calculated by multiplying the desired delay
time in seconds by 18.2. For example, to facilitate a 2 second delay,
duration must equal 36.4 (2 x 18.2).

volume can range from 0 to 15, with 15 being loudest and 0 being
silent, voice can range from 0 to 2. If this parameter is omitted, 0 will be
assumed.

PCjr executes the SOUND command as follows — first, the tone

generator will be instructed to produce the desired note. Then, the

program will continue executing program lines until another SOUND

statement is encountered. When encountered, the computer will wait
until the first statement is completed (duration runs out). Then, it will

execute the new SOUND statement in a manner similar to the first.

However, if the new statement has a duration of zero, that voice will

immediately be turned off.

When using Cartridge BASIC, the programmer has the option to
buffer the SOUND statements. To buffer means to continue program
execution even when a new SOUND statement is encountered. The

program merely stores the musical information of the SOUND statement

until the computer is able to execute it. Up to 32 unplayed SOUND

PCjr BASIC Graphics and Sound 187

statements can be stored this way. When SOUND statements are being

buffered, a zero value for duration will result in an error.

ADVANCED MUSIC

Activating all three voices requires three SOUND statements. While

SOUND gets the job done, it is not the most efficient means of program

ming sound. A single PLAY statement can control any or all of the

voices. PLAY is similar to DRAW in that it employs a "tune definition

language."This tune definition language in turn controls the voices. The

configuration for PLAY is as follows:

PLAY music0$[,[music1$][,music2$]]

musicOS, musiclS and music2$ are string constants or string expressions

consisting of music commands. musicOS controls voice #0; musiclS

controls voice #1; and music2$ controls voice ttl. If a string is left out,

then that voice is not affected by the PLAY statement. For example, a

statement like the following would skip voices 0 and 1, and use voice #2:

PLAY,TUNE$

The commands in the "tune definition language" are listed in table

7-8.

188 IBM PCjr User's Handbook

Table 7-8. The Tune Definition Language

Command Result

#

A-G +

The note given is played. # or + after the note
means sharp, while - means flat.

Ljc This is used to set the length of each note. LI indi
cates a whole note; L2 a half note; L4 a quarter
note; L16 a sixteenth note, etc... jc may range from
1 to 64.

If you wish to change the length for only one note,
you can do so by placing the length directly after
the letter for the note (ex. A4 would be a quarter
note A).

MB This causes music to play in the background. Each
note or sound is placed in a buffer. This allows the
BASIC program to continue execution as music
plays in the background. As many as 32 notes can
be played in the background at any one time. MB
(music background) is the default value of MB and
MF.

MF This causes music to run in the foreground. Each
note or sound will not begin to play until the
preceding note or sound has finished playing.

ML Music legato causes each note to be played at the
entire length specified in L.

MN Music normal, results in every note being played at
7/8th of the value given in L (length). This is the
default setting of ML, MN and MS.

MS Music staccato causes each note to be played at
3/4 of the time specified in L.

This is used to play the note specified in a, where a
can range from 0 to 84. Since there are 7 octaves
available, there are 84 notes available. If a is 0, a

rest is indicated.

PCjr BASIC Graphics and Sound 189

Table 7-8. (cont.) Definition Language

Command Result

Ob This is used to set the current octave. Seven

octaves are available. These are numbered from 0

to 6. Each octave extends from C to B. Octave 3

begins with middle C.

Pc This is used to indicate a pause. The length of the
pause (as given in c), may range from 1 to 64 and is
calculated as in L (length).

Id This is used to indicate the tempo. Tempo is
defined by the number of quarter notes per second.
d may range from 32 to 255. The default value for
dis 120.

\e We adjusts the volume. The volume must lie
between 0 and 15. This command is only valid
when SOUND is ON.

A period following a note causes it to be played as
a dotted note (the note's length is multiplied by
1.5). More than one period may follow a note. If
more than one period does follow a note, its length
will be adjusted as indicated. For instance, "A..."
will play 3.37 times as long as "A." Periods may
also follow a pause to lengthen it in the same
mariner.

>f This is used to play the note given in /in the next
higher octave. Each time the note specified is
played, the next higher octave is used, until octave
6 is attained.

<8 This functions as does >f. Each note is played in
the next lower octave.

X Strings This causes the execution of the specified string $.

190 IBM PCjr User's Handbook

The following example program will play "Row, Row, Row Your
Boat" in rounds. The three part harmony is replicated quite well by the
PQ>.

100 'write the song
110 R0W1$ = "L4 CO C8 E"
120 ROW2$ = "L8 EDEF G2"
130 R0W3$ = "L4 >C<GEC"
140 ROW4$ = "L8 GFED 02"
150 SONG$ = R0W1$ + ROW2$ + R0W3$ + R0W4$
160 SONG$ = SONG$ + SONG$
170 'place the song Into rounds
180 V0$ = "03" + SONG$
190 V1$ = "04P1" + S0NG$
200 V2$ = "OS PI PI" + SONG$
210 'play the song
220 SOUND ON

230 PLAYV0$,V1$.V2$

SOUND EFFECTS

In addition to its three tonal voices, the SN76489A has a "noise

voice." The noise voice, as used in sound effects, is produced by an
irregular sequence of electrical impulses. These are generated using a
shift register with exclusive — or feedback. Eight types of noise wave
forms can be generated. Each produces a different sound. The pro
grammer can select among these by using the NOISE command. NOISE

is configured as follows:

NOISE source, volume, duration

source is a numeric constant or a numeric expression that evaluates
in the range from 0 to 7. A range of 0-3 indicates a periodic noise, while a
range of 4-7 indicates a white noise. Each type has a particular use in
game programs. White noise sounds somewhat like hissing. It can be
used to produce the sound of rocket engines or, depending on the
frequency, the sound of a tire blowout. Periodic noise generates a more
ragged sound that could be used to simulate a chain saw. The following
table summarizes the available noises:

PCjr BASIC Graphics and Sound 191

Periodic White Source Sound

0 4 2330Hz high option; less coarse hiss

1 5 1165Hz medium pitch

2 6 582Hz low pitch; more coarse hiss

3 7 freq. of voice #2 depends on voice #2

Notice that for source = 3 and source - 7, the frequency of voice #2 is

Uocd instead of a fixed frequency. By varying voice #2, even more

complex sounds can be generated. Voice #2 can be controlled using either
SOUND or PLAY. For example, the following program uses SOUND to

vary voice #2 which in turn controls the NOISE output. Notice that
although the volume of voice #2 has been set very low, the voice still

controls the NOISE output.

100 SOUND ON

110 WHILE l>100 AND l>32000

120 NOISE 3,15,3

130 SOUND 1,-00001,1,2

140 A$=INKEY$
150 IF A$="."THEN 1=1*1.1

160 IF A$="," THEN 1=1/1.1

170 PRINT I

180 WEND

190 1=4000

200 GOTO 110

By using the period (.) and comma (,) keys, the operator can vary the

frequency of voice 2. This, in turn, controls the frequency of the noise

output.

Writing a Game Program

In this section, the game, "BARRICADE" will be designed. The

object of the game is to avoid the barricades as well as your own trail. The

game will be written in BASIC so that it may be easily modified.

If the reader does not wish to follow the step-by-step designing of

BARRICADE, he may page through the chapter. All program lines may
easily be distinguished from the rest of the text. To play BARRICADE,

192 IBM PCjr User's Handbook

merely enter every line belonging to the program.
The first step in designing "BARRICADE" is to program the com

puter to draw a trail. The following statements accomplish this:

100 SCREEN 3

110 CLS

120 KEY OFF

150 COLORS

170 X = 80:Y = 100:A = 65

180 PSET (X.Y)
190 LOOP**********

200 A$ = INKEY$
210 IF A$<>"" THEN A = ASC(A$)
220 IFA = 44THENX = X-3

230 IFA = 46THENX = X+3

240 IF A = 65THEN Y = Y-3

250 IFA = 90 THEN Y = Y+3

270 LINE-(X,Y)
310 GOTO 190

Line 100 enables low resolution graphics, while lines 110 and 120

clear the screen. Line 170 sets the initial position at screen location

(80,100). This is the center of the screen. The A = 65 statement that also

appears in line 170 selects "up" as the initial direction of movement.

(A)
65

(.) 44 46 (.)

90

(Z)

These values represent the ASCII coded values for the controller keys: A, Z, period and comma.

PCjr BASIC Graphics and Sound 193

Lines 190-310 set up a loop that will monitor the keyboard and act
accordingly. Line 200 accepts a keypress. Line 210 sets the direction
variable, A. Lines 220 through 250 recalculate the position variables
based on the current direction. Executing the program is the best way to
see how it operates. By the way, the program will not operate correctly
unless the CapsLock key is active. If the program does seem to be
operating correctly, try depressing the CapsLock key once.

Recall from our description of BARRICADE, that one of the rules
was that the player was not allowed to collide with the trail. The POINT
function will be used to check for collision. If the following line is added

to the program collisions will be detected:

260 IF POINT (X.Y) > THEN 20

The program has not yet been completed. When it is run, an error
occurs after every collision. This is because the computer does not know
where to jump when there is a collision. Let's tell it, by adding the
following lines to the program:

130 SOUND ON

320 '"""COLLISION ROUTINE""*"

330 LOCATE 12,7

340 PRINT "COLLISION"

350 NOISE 4,15,20

360 NOISE 5,12,20

370 NOISE 6,9,40

380 FORJ = 1T015

390 PALETTE 0,J

400 NEXT

410 IF INKEY$<>CHR$(13) THEN 410
420 GOTO 100

Lines 330 and 340 print the word, "COLLISION"in the center of the
screen. Lines 350-370 produce a noise that sounds something like an
explosion. Lines 380-400 flash the screen with a number of colors.
Finally, line 410 delays a new game from starting until Enter has been
pressed.

barricade's score can be easily kept track of by merely incre

menting a variable each time a move has been completed.

194 IBM PCjr User's Handbook

160 1 = 0

280 I = 1+1

290 LOCATE 1,1

300 PRINT I;

A final technicality remains in the creation of a playing field. A

square field with scattered circular barriers was chosen.

140 GOSUB 430:'DRAW PLAYING FIELD

430 '******DRAW PLAYING FIELD******

440 COLOR 9

450 LINE(2,10H 4,199)„BF
460 LINE -(158,197)„BF

470 LINE -(156, 12)„BF

480 LINE(158,12H 2, 10)„BF

490 FOR J = 1 TO 6

500 X = 120*RND+20

510 Y = 150*RND+30

520 CIRCLE (X,Y),10*RND+10
530 PAINT (X,Y)
540 NEXT

550 RETURN

The ideas in this section by no means exhaust the possibilities that

could be added to "BARRICADE". Other upgrades might include:

keeping track of the high score, or adding another player. The only two
limiting factors are execution speed and one's imagination.

8
Logo on the PCjr

Introduction to Logo

Logo is a language which was originally designed to teach children
about programming computers. However, due to the simplicity and
power of Logo, it has become popular for many different age groups for a
number of different applications.

Logo is best known for its excellent graphics capabilities. Simple
commands can be used to create graphics. This chapter will focus specifi
cally on Logo's graphics capabilities.

The version of Logo which will be discussed in this chapter is the
disk based IBM Logo version 1.00. This chapter is not meant to be a
reference chapter for Logo, but rather an introductory tutorial for the
inexperienced Logo programmer.

195

196 IBM PCjr User's Handbook

Loading the Logo Diskette

Logo can be loaded in two different ways depending on the present
state of the computer. The loading procedure is detailed below. If the

PCjr is presently off, begin at step 1. If the PCjr is presently powered on,
begin at step 5.

1. Insert the Logo diskette into the PCyr's disk drive.

2. Turn on the monitor, printer and any other peripheral device. Turn
on the computer after all other peripherals have been turned on.

3. A pause of 3 to 45 seconds will occur while the system check takes
place. Following the system check, the disk drive will engage, and
the Logo diskette's contents will begin to load into memory.

4. Proceed to step 8.

5. Insert the Logo diskette into the disk drive of the PCyr.

6. Press the CTRL and Alt keys, and while holding them, press the
Del key. Then, release all three.

7. The computer's memory will now be cleared. The disk drive will

engage and the contents of the Logo diskette will begin to load into
memory.

8. A message will appear prompting the user the enter a new date. The
date must be entered in the form month-day-year. The following
shows the prompt which will be displayed along with the user
response. In this example, the date 6-23-83 was entered:

A>DATE

Current date is Tue 1-01-1980

Enter new date: 6-23-83

9. Following the date prompt, a message will appear prompting the
user to enter a new time. The time must be entered in the form

hours'.minutes'.seconds.hundredths of seconds*. The following
shows the prompt which will be displayed along with the user
response. In this example, the time 16:34 (4:34 PM) was entered.

A>T1ME

Current time is 0:00:55.360

Enter new time: 16:34

* The seconds and hundredths of seconds may be omitted. These values will simply
default to zero.

Logo on the PCjr 197

10. Following the time prompt, the disk drive will engage and Logo
will begin to load into the computer's memory. Once Logo has
been completely loaded into the computer's memory, the Logo
prompt will appear on the display as follows:

IBM Personal Computer Logo Version 1.00
(0) Copyright IBM Corp. 1983
(C) Copyright LCSI 1983
Serial Number XXXXXXXX

WELCOME TO LOGO

?

At this point, Logo is ready and waiting for a command.

Exploring Turtle Graphics

"Turtle Graphics" is the term used to describe the type of graphics

which Logo uses. Logo uses a small character, which is called a turtle, to

create graphics. The turtle can be moved around the screen while leaving
a trail. The turtle can be thought of as a pen. By moving the turtle, lines

can be drawn.

FINDING THE TURTLE

When Logo is first loaded, the turtle cannot be seen. The command

SHOWTURTLE is used to make the turtle visible. The SHOWTU RTLE

command can be abbreviated as ST.

EXAMPLE: ST

RESULT: The turtle becomes visible. ST has no affect if the turtle is

already visible.

The turtle can be made to disappear by using the command

HIDETURTLE. The HIDETURTLE command can be abbreviated as

HT.

EXAMPLE: HT

RESULT: The turtle disappears. HT will have no affect if the turtle is
not presently visible.

198 IBM PCjr User's Handbook

MOVING THE TURTLE

As stated earlier, the Logo turtle can be thought of as a pen. By
moving the turtle, lines can be drawn on the screen. There are several

commands which can be used to move the turtle. The FORWARD

command moves the turtle forward a specified numbers of pixels.*
Forward is defined as the direction in which the turtle is pointing. The
FORWARD command can be abbreviated FD.

EXAMPLE: FD 60

RESULT: The turtle moves forward 60 pixels. A line is drawn from the
turtle's starting point to its ending point.

The BACK command moves the turtle backwards a specified
number of pixels. Backwards is defined as the opposite direction from
which the turtle is pointing.The BACK command can be abbreviated

BK.

EXAMPLE: BK 70

RESULT: The turtle moves backwards 60 pixels. A line is drawn from

the turtle's starting point to its ending point.

When Logo is initially loaded, the turtle is located in the center of the

screen and is pointing upwards. The direction in which the turtle is

pointing can be changed by using either the RIGHT or LEFT commands.

The RIGHT command is used to turn the turtle a specified number

of degrees. There are 360 degrees in a complete circle. Therefore, 90

degrees is 1 / 4 of a complete turn, 180 degrees is 1 / 2 of a complete turn,
and so on. The RIGHT command will turn the turtle to the right the

specified number of degrees, while the LEFT command will turn the

turtle to the left the specified number of degrees. The RIGHT and LEFT

commands can be abbreviated RT and LT respectively.

* A pixel is one screen element. A pixel can be thought of as the smallest dot which
the computer can generate on the screen. There are 250 vertical pixels and 320
horizontal pixels.

Logo on the PCjr 199

EXAMPLE: RT 70

RESULT: The turtle will turn 70 degrees to the right.

EXAMPLE: LT 45

RESULT: The turtle will turn 45 degrees to the left.

We have now learned several commands which can be used to

manipulate the turtle. It is time to use what we have learned to create a

graphics display. First of all, clear the screen using the CLEAR SCREEN
command. To do this, simply type CS and press enter (CS is the abbrevia
tion for CLEAR SCREEN). Now, enter the following lines one at a time.

Be sure to press the ENTER key after each line is entered. Observe the
movements of the turtle as each line is entered.

FD 50

RT 90

FD 50

RT 90

FD 50

RT 90

FD 50

The turtle executed each command as it was entered. The result of

the preceding lines is a square in the middle of the screen.

THE LOGO EDITOR

In the previous section, the graphics commands FORWARD (FD)
and RIGHT (RT) were used to create a square on the screen. It took a

total of seven lines to create a square on the screen. It would be a tedious
task to type in the same seven commands more than once. Fortunately,
procedures can be defined in Logo.

A procedure is a set of instructions which can be executed by using
one command. For example, a procedure would contain all the instruc

tions which were previously used to create the square.
Procedures are defined using the Logo Editor. To enter the Logo

Editor, simply type the command EDIT followed by the name of the
procedure. Forexample, to create a procedure called SQUARE, type the
following command:

EDIT "SQUARE

200 IBM PCjr User's Handbook

The following should now be displayed on the screen:

TO SQUARE

At this point, the Logo Editor is waiting for the instructions that will

define the procedure SQUARE. To define the procedure SQUARE,

press the Enter key and type the following lines. The four arrow keys may

be used to position the cursor. This feature is convenient for correcting

typing errors.

FD 50

RT 90

FD 50

RT 90

FD 50

RT 90

FD 50

END

The last command entered is the END command. The END

command must always be the last command entered when defining a

procedure. When all the lines in a procedure have been entered, press the

ESC (escape) key to complete the process.

Let's check the procedure we have just defined to see if it functions as

desired. First of all, clear the screen by entering the CS command. Now,

enter the command SQUARE. The turtle did what was expected.

EXAMPLE: CS

SQUARE

RESULT: The screen is cleared and the instructions in the procedure

SQUARE are executed.

We have now learned several Logo commands. We have also

learned how to combine a number of commands into a procedure. The

instructions in a procedure can be executed simply by entering the name

of the procedure. Now, let's go on and discover more Logo commands.

LIFTING THE PEN

As stated earlier, the Logo turtle may be thought of as a pen.

Whenever the turtle moves, a line is drawn from its starting point to its

Logo on the PCjr 201

ending point. However, at times it may be desirable to move the turtle

without drawing a line. This can be accomplished by using the PEN UP

command (abbreviated PU). Executing the PU command is similar to

lifting the pen off the paper. The turtle can now be moved around the

screen without leaving a trail.

Similarly, the PENDOWN command (abbreviated PD), is used to

put the pen back down on the paper. Executing a PD command will cause

the turtle to leave a trail when it is moved around the screen.

EXAMPLE: PU

RESULT: The turtle will no longer leave a trail when it moves around

the screen. A PD command must be executed before the

turtle will leave a trail.

EXAMPLE: PD

RESULT: The turtle will leave a trail whenever it is moved around the

screen.

REPEATING COMMANDS

In many instances, it may be desirable to repeat a command or
commands. Logo's REPEAT command facilitates command repetition.

The REPEAT command can be used to repeat a command a specified

number of times. The following example illustrates the format of the

REPEAT command:

EXAMPLE: REPEAT 20 [FD 5]

RESULT: The command FD 5 will be executed 20 times.

The previous example is identical to entering the command
FD 5 20 times

The REPEAT command has many useful applications. For exam

ple, a circle can be drawn by executing one REPEAT command. A circle
can be drawn by repeating the two commands FD! and RTl 360 times.

Let's draw a circle using the REPEAT command. First of all, clear the

screen using the CS command. Next, enter the following line:

REPEAT 360 [FD 1 RT 1]

It will take the computer a few moments to complete the circle. This
is because it has to repeat two instructions 360 times.

202 IBM PCjr User's Handbook

The size of the circle can be increased or decreased simply by

changing the number of pixels moved for every degree turned. For
example, a larger circle can be drawn using the following command:

REPEAT 360 [FD 2 RT I]

A smaller circle can be drawn using the following command:

REPEAT 180 [FD I RT 2]

The REPEAT command could have been used to draw the square

which we created earlier in this chapter. If you recall, the square consisted
of two commands, which were repeated four times. Use the CS command
to clear the screen and enter the following line:

REPEAT 4 [FD 50 RT 90]

The preceding command created a square. It can be seen that the
REPEAT command is very useful when commands are to be executed
more than once.

FILLING AN AREA OF THE SCREEN

In the preceding sections, we learned the process for drawing shapes
such as circles and squares. Previously, however, only the outline of these
shapes were drawn. It is possible to fill a closed shape by using the FILL
command. The FILL command causes the closed shape which contains
the turtle to be filled in.

Let's try the FILL command. First of all, clear the screen using the
CS command (you have probably already noticed that the CS command
also causes the turtle to return to the center of the SCREEN.) Now,

create a circle using the following command:

REPEAT 360 [FD 1 RT I]

Now, the turtle must be positioned inside the circle. First of all, lift
the pen of the turtle using the PU command. Next, turn the turtle towards
the center of the circle using the RT 90 command. Move the turtle into
the circle by entering FD 20. In order to use the FILL command, the
turtle's pen must be down. Therefore, enter the PD command. Finally,

Logo on the PC)r 203

enter the FILL command. The circle will now be filled in.

Let's create a procedure which will draw a square and fill it in. First,
we must enter the Logo Editor by entering the EDIT command. The
name of this procedure will be FILLEDSQUARE.

EDIT'TILLEDSQUARE

Now, enter the following lines. Remember to press Esc when all the
lines have been entered.

CS

PD

REPEAT 4 [FD SORT 90]
PU

RT 45

FD to

PD

FILL

END

The following steps should be followed to fill a particular area.

1. Raise the turtle's pen by using the PU command.

2. Move the turtle into the closed shape which is to be filled.

3. Put down the turtle's pen by using the PD command.

4. Enter the FILL command.

TURTLE COORDINATES

As stated earlier in this chapter, the display screen is made up of
screen elements known as pixels. These pixels can be divided into a
coordinate system with the center pixel being labeled 0,0. With this type
of coordinate system, the X or horizontal coordinate can have a value
ranging from -159 to 160. The Y or vertical coordinate can have a value
ranging from -124 to 125.

This type of coordinate system allows the turtle to be relocated to a
specific point. A simple command, the SETPOS command, can be used
to relocate the turtle to any point on the screen.

204 IBM PCjr User's Handbook

EXAMPLE: SETPOS [20 40]
RESULT: The turtle will move from its present position to the

coordinate position (20,40). A line will be drawn from its
previous position to its new position if the pen is down.

The turtle's present position can be determined by using the com
mand PRINT POS. PRINT POS will print the coordinates of the turtle's
present position.

EXAMPLE: PRINT POS

RESULT: Two numbers will be displayed on the screen. The first
number is the turtle's X coordinate and the second number is

its Y coordinate.

If only one of the two coordinates needs to be changed, a specialized
command can be used. For example, if only the turtle's X coordinate

need be changed, the command SETX can be used. If only the turtle's Y
coordinate need be changed, the command SETY can be used.

EXAMPLE: SETX 30

RESULT: The turtle will move to the X coordinate 30. The Y coordi

nate will not be changed. A line will be drawn from the old X

coordinate to the new X coordinate.

EXAMPLE: SETY 70

RESULT: The turtle will move to the Y coordinate 70. The X coordi

nate will not be changed. A line will be drawn from the old Y
coordinate to the new Y coordinate.

The turtle's home or starting position is (0,0). The HOME command

will cause the turtle to return to its home position.

EXAMPLE: HOME

RESULT: The turtle will move to its home position (0,0). A line will be
drawn from the turtle's old position to the point (0,0).

Color

Up to this point, we have only used a black background and a white
turtle. We will now show how to change the color of both the background

and the turtle.

Logo on the PC)r 205

BACKGROUND COLOR

The background color can be changed by using the SETBG com
mand. The background can be changed to any one of 16 colors. The 16
available background colors are listed in table 8-1.

Table 8-1. Background Colors

Number Color Number Color

0 Black 8 Gray
I Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow

7 White 15 High-Intensity White

EXAMPLE: SETBG 8

RESULT: The background color becomes gray.

EXAMPLE: SETBG 12

RESULT: The background color becomes light red.

The color code of the background color presently being used can be

displayed using the following command:

PRINT BG

EXAMPLE: PRINT BG

RESU LT: The color code of the present background color being used is
displayed on the screen.

PEN COLOR

The color of the turtle, or the pen color, can be changed using the
SETPC command. The SETPC command is used in conjunction with

the SETPAL command to determine the pen color. Logo includes three
different pen color numbers and two different palettes. Therefore, a total
of six colors are possible. These colors, along with there respective color
code combinations, are given in table 8-2.

206 IBM PCjr User's Handbook

Table 8-2. Pen Colors

SETPC SETPAL Resulting Color

1 0 Green

2 0 Red

3 0 Brown

I 1 Cyan

2 1 Magenta

3 1 White

EXAMPLE: SETPAL 0

SETPC 2

RESULT: The turtle's pen will turn red, and any lines drawn by the
turtle will be red.

EXAMPLE: SETPAL 1

SETPC 3

RESULT: The turtle's pen will turn white, and any lines drawn by the
turtle will be white.

The present value of the pen color and the palette can be displayed

using the PRINT command.

EXAMPLE: PRINT PC

RESULT: Displays the present value of the pen color.

EXAMPLE: PRINT PAL

RESULT: Displays the present value of the palette.

CLEAN-UP

We have already encountered the CLEARSCREEN command

(CS). The CS command clears the graphics screen and returns the turtle

to its home position. The CLEAN command also clears the graphics
screen. However, the CLEAN command does not cause the turtle to

return to its home position. Instead, the turtle will remain at its present

position.

Logo on the PCjr 207

Neither of the preceding commands will clear the text at the bottom
of the screen. The CLEARTEXT (or CT) command is used to clear the
text at the bottom of the screen. The CT command will clear only the text
and will not affect the graphics screen.

SOUND

Logo has the capability of generating a wide range of musical
sounds. All sound is controlled by one command, the TONE command.
The TONE command is followed by two parameters. The first parameter
is the frequency of the desired note. The frequency can range from 37 to
19723. Table 8-3 includes a list of the more popular musical notes and
their corresponding frequencies.

The second parameter of the TONE command is the duration for
which the specified frequency is to be generated. The duration can range
from 0 to 9999. A duration of 18 is approximately one second.

Table 8-3. Musical Notes and Frequencies

Note Frequency Note Frequency Note Frequency

C 130.810 F 349.230 B 987.770

D 146.830 0 392.000 C 1046.800

E 164.810 A 440.000 D 1174.700

F 174.610 B 493.880 E 1318.500

G 196.000 c* 523.250 F 1396.900

A 220.000 D 587.330 G 1568.000

B 246.940 E 659.260 A 1760.000

C 261.630 F 698.460 B 1975.500

D 293.660 G 783.990

E 329.630 A 880.000

EXAMPLE: TONE 392 32

RESU LT: A G note will be generated for approximately two seconds.

EXAMPLE: TONE 880 128

RESULT: An A note will be generated for approximately eight
seconds.

Middle C

208 IBM PCjr User's Handbook

SAMPLE PROCEDURE

The following are sample procedures. Only commands which have
been discussed in this chapter will be used.

PROCEDURE 1:

EDIT "CIRCLE

CS

REPEAT 360 [FD I RT I]
PU

RT 90

FD 20

PD

FILL

END

PROCEDURE 2:

EDIT "SINEWAVE

CS

REPEAT 3 [REPEAT 90 [FD .93 RT 2]
REPEAT 90 [FD .93 LT 2]]

RT 90

FD 320

END

PROCEDURE 3:

EDIT "FIGURES

CS

REPEAT 180 [FD I RT 2]
REPEAT I80[FD I LT 2]
END

Logo on the PCjr 209

PROCEDURE 4:

EDIT "3DBOX

CS

REPEAT 4 [FD 60 RT 90]
FD60

RT 45

FD 60

RT 45

FD 60

RT 135

FD60

LT45

FD 60

LT 135

FD 60

LT45

FD 60

HT

END

PROCEDURE HANDLING

At this point, we have defined several procedures. Also, several
options are available. If you wish to review all the procedures which are
currently defined, enter the command POPS.

EXAMPLE POPS

RESULT: All procedures along with their instructions will be dis
played on the screeen.

If only one procedure is to be displayed, the PC command can be
used. Entering PC followed by the name of the procedure enclosed in
quotation marks will cause that procedure to be displayed.

EXAMPLE: PC "SQUARE
RESULT: Displays the procedure SQUARE on the screen.

Procedures currently defined can be saved on disk for future use.
The SAVE command will save all procedures under the specified file
name.

210 IBM PCjr User's Handbook

EXAMPLE: SAVE "FILE!

RESULT: All procedures which are presently defined will be saved on
disk under the name FILEl.

The LOAD command is used to retrieve procedures which have
been previously stored on disk.

EXAMPLE: LOAD "FILEI

RESULT: Loads into memory all the procedures stored under the
filename FILEL

CONCLUSION

This chapter has explained only a few of the many capabilities of the
Logo language. The user should now have a strong foundation upon
which he or she can continue on to learn of all the capabilities of Logo.

9
DOS 2,1 Features

Introduction

DOS is an abbreviation for Disk Operating System. IBM DOS
consists of a group of programs which allow the user to manage informa
tion on diskette. The DOS programs (commands) are themselves pro
vided on a diskette known as the DOS diskette. The original DOS
diskette should not be used in day to day operations ~ copies should be
used instead. Procedures for copying the original DOS diskette will be
detailed in this chapter. DOS start up as well as DOS command usage will
also be explained.

There are several versions of DOS that can be used with IBM

computers. This chapter will focus specifically on version 2.1. This is the
version that is used with the PC/r. The label on the DOS diskette should
specify the version of DOS.

Notice that the DOS diskette does not have a write protect notch. If a
diskette does not have a write protect notch, it is permanently write
protected and no data can be written to it by the computer. This will

211

212 IBM PCjr User's Handbook

prevent the user from accidentally erasing data by overwriting it with new
data.

NOTATION

DOS allows the user to enter data with uppercase letters, lowercase
letters, or a combination of both. To prevent confusion, our examples will
use upper and lowercase letters except for the names of DOS commands,
program names, and filenames. These will be displayed in uppercase
letters in our examples.

TYPES OF COMMANDS

There are two types of DOS commands on the DOS diskette. These

are internal commands and external commands. Internal commands are

those which are loaded into the memory when DOS is loaded. External
commands are not loaded with the DOS, but remain on the DOS

diskette. In order to access an external command, the DOS diskette must
be inserted in the drive before the command is given. Table 9-1 shows
which commands are internal and which are external.

Table 9-1. Internal and External Commands

Internal External

BREAK GOTO TTME ASSIGN MODE

CHDIR IF TYPE BACKUP MORE

CLS MKDIR VER CHKDSK PRINT

COPY PATH VERIFY COMP PROMPT

CTTY PAUSE VOL DISKCOMP RECOVER

DATE REM DISKCOPY RESTORE

DIR RENAME EXE2BIN SORT

ECHO RMDIR FIND SYS

ERASE SET FORMAT TREE

FOR SHIFT GRAPHICS

DOS 2.1 i=eatures 213

STARTING DOS

Generally, DOS will be started whenever the computer is started.

When starting (or loading) DOS, a copy of the DOS programs will be

read from the DOS diskette and loaded into the computer's memory. The

diskette drive will emit a series of noises while this is taking place. The

steps involved in loading DOS with the computer off are as follows:

1. Insert DOS diskette in drive A and close the drive door.

2. Turn on printer, monitor, and then computer.

3. A pause of 3 to 45 seconds will occur while the system check

takes place. The disk drive will emit a series of noises while

DOS is being read into memory.

If the computer is already on, DOS can be loaded by performing a

system reset. A system reset first causes the current contents in memory to

be erased. DOS is then loaded into memory. A system reset is similar to

turning the computer off and then on. The following steps should be
taken to reset the system and load DOS:

1. Insert the DOS diskette in drive A and close the drive door.

2. Press the CTRL and ALT keys, and while holding them press

the DEL key. Then, release all three.

3. The disk drive's in-use light will come on while DOS is being
read into memory. '

ENTERING THE DATE

When DOS has been loaded and is ready, a message similar to that

shown below will be displayed on the screen:

Current date is Mon 4-01-1983

Enter new date:

The new date should be entered as follows:

1. Enter one or two numbers from 1 to 12 for the month.

214 IBM PCjr User's Handbook

2. Enter a dash (-) or a slash (/).

3. Enter one or two numbers from 1 to 31 for the day.

4. Enter a second dash or slash.

5. Enter two numbers between 80 and 99 for the year.

6. Press the Enter key.

DOS will check the date entry to be certain that it is valid. If not, the

following will be displayed:

Invalid Date

Enter new date:

The following would all be valid entries for June 10, 1983:

6-10-83

6/10/83

06/10/83

ENTERING THE TIME

Earlier versions of DOS may not require a time entry. However, with
version 2.1 of DOS, once the date has been entered, the following prompt
will appear:

Current time is 0:01:21.53

Enter new time:

Time is displayed in the following format:

Hour: Minutes .'Seconds, Hundredths of Seconds

The numeric keys at the top of the keyboard will be used to set the

time. The steps for setting the time are as follows:

1. Enter one or two numbers in the range (0-23) for the hours.

2. Enter a colon (:).

3. Enter one or two numbers in the range (0-59) for the minutes.

To enter seconds and hundredths of seconds, continue with

steps 4 through 7. Otherwise, skip to step 8, and DOS will set
these values to zero.

DOS 2.1 Features 215

4. Enter another colon (:).

5. Enter one or two numbers in the range (0-59) for seconds.

6. Enter a period (not a colon) to separate seconds from hun-
dredths of seconds.

7. Enter two numbers in the range GO to 99 for the hundredths of

seconds.

8. Press the Enter key.

The following would all be valid entries for 10 a.m.:

10:00

10:00:0.00

10:00:0

If an invalid entry was made for time, the following message will be

displayed:

Invalid Time

Enter new time:

DOS PROMPT

Once a valid time has been entered, the following will be displayed on
the screen:

The IBM Personal Computer DOS
Version 2.10 (c) Copyright IBM Corp. 1981,

1982, 1983

A>^

DOS Cursor

Prompt

A> is known as the DOS prompt. A prompt is an indication to the

user that he or she is to enter data. Note that the DOS prompt is a letter (A

or B). This letter identifies which drive is the default drive (or current

drive). The default drive is the drive that DOS assumes will contain the

diskette or files specified by the commands. The default drive can be
changed from A to B by entering the following:

216 IBM PCjr User's Handbook

A>b:

B>_

Although the PQ> has only one disk drive, the drive identifier B can

still be used. The same drive will now be identified as drive B. The utility

of this feature will become evident later in this chapter and in more

advanced applications.

DOS Keyboard Usage

In the next few pages, we will discuss how some of the keys on the
IBM keyboard are used with DOS.

ENTERING A COMMAND

Enter

k The Enter key is used to execute or start a

command after it has been typed in.

STOPPING A COMMAND

Fn

A command can be stopped in one of two

ways. One way is to hold down the Function

key while pressing the Break key. When both

keys are released, the command will stop. The

DOS prompt will appear, and the next com
mand can be entered.

The second way to stop a command is to

hold down the Control key while pressing the C

key.

CORRECTING TYPING ERRORS

There are several ways of correcting errors in a DOS command. We

will discuss two of the most commonly used here, the Backspace and the

DOS 2.1 Features 217

Escape keys. Note that mistakes can only be corrected before the Enter
key has been pressed to execute the command.

Backspace

Esc

m

The Backspace key moves the cursor one

character to the left. The Backspace key deletes

characters as the cursor is moved to the left.

Once the Backspace key has deleted characters,

the correct characters can be entered.

The Escape key can be used to erase an

entire line. A backslash will appear, and the

cursor will move down one line on the screen

where the command can be re-entered.

SLOW SCREEN SCROLLING

Ctrl
Scrolling is a term which is used to de

scribe the process where information continues

to move upward on the screen as new informa

tion replaces it on the bottom of the screen.

If scrolling is taking place too fast to read

the data on the screen, press the Control and S

keys together and then release them. To display

new data, press any key.

SEND DATA ON THE SCREEN TO THE PRINTER

Fn

mrnrnm
PrtSc

Data appearing on the screen can be sent

to the printer as well. First of all, be sure that

the printer is turned on and loaded with paper.

Then, press and hold the Function key while

pressing the PrtSc (Print Screen) key.

218 IBM PCjr User's Handbook

SEND KEYBOARD ENTRIES TO THE PRINTER

Fn

Echo

If a printer is connected to the system,
keyboard entries can be sent to the printer as

well as to the screen by pressing the Function

key simultaneously with the Echo key. Then,
release both keys.

All subsequent keyboard entries will be

displayed on the screen and also simultane

ously transmitted or echoed to the printer. To
end this echoing, again press the Control and
Print Screen keys simultaneously, and then
release same.

SYSTEM RESET

Ctrl

Ait

+

Del

As previously mentioned, to begin DOS

over again, be sure a DOS diskette is in drive A.

Then, press and hold the Ctrl and Alt keys and

press the Del key. Then, release all three keys.

DOS will be reloaded and the DOS start up

message will appear.

DOS EDITING KEYS

The DOS editing keys can be used to correct DOS commands. The

DOS editing keys should be used to edit within a line. To operate on one
or more complete lines within a file, use the Line Editor program
(EDLIN). EDLIN is discussed later in this chapter. However, if EDLIN is
active and editing is to take place within a line, the DOS editing keys can
be used for that purpose.

DOS 2.1 Features 219

One principle to keep in mind when entering DOS command lines is
that the line entered via the keyboard is retained in an input buffer when
Enter is pressed. Since this line remains in the input buffer, it can be used
as a template which can be edited as desired by the DOS editing keys. The
user has the option of repeating the template line, changing it with the
DOS editing keys, or entering an entirely new line. The DOS editing keys
are summarized in Table 9-2.

Table 9-2. DOS Editing Keys

Key Function

Del

Esc

F1

F2

F3

F4

F5

Ins

Skips over one character in the template without moving
the cursor

Cancels the line currently being displayed without affecting
the template

Copies and displays one character from the template

Copies all characters up to the character specified

Copies all characters remaining in the template to the
screen

Skips over all characters prior to the character specified

Causes the line currently displayed to become the new
template without sending it to the receiving program

Allows characters to be inserted within a line

DOS Usage

In the remainder of this chapter, we will discuss the application of
DOS commands to everyday disk operating tasks. To clarify our exam

ples, commands and user's responses will be underlined.

COPYING YOUR DOS DISKETTE

As mentioned previously, a copy of the DOS diskette should be
made. This original DOS diskette is also known as the master diskette.

220 IBM PCjr User's Handbook

Copies, or back-ups, should be used in day to day operation. The master
diskette should be stored in a safe place. That way, if the back up DOS
diskette becomes damaged or misplaced, additional copies can be made
from the master. The procedure for copying the DOS diskette is as
follows:

Step 1. Start DOS and be certain that the DOS prompt (A>)
is displayed. Do not remove the DOS diskette from the disk
drive.

Step 2. Enter the following:

A > DISKCOPY -J ̂ denotes pressing Enter

The following prompts will be displayed:

Insert source diskette In drive A:

Strike any key when ready

The DOS diskette is the source diskette. Therefbre, at this

point, simply press any key.

Step 3. Swapping procedure. A prompt will now appear
requesting insertion of the target diskette. The target diskette is
the diskette which is to contain the copy of the DOS. This
diskette can be a new diskette and does not have to be format

ted. Insert the new diskette and press any key.

Prompts will be displayed describing which disk is to be
inserted in the drive. Each time a prompt is displayed, insert the
specified diskette and press any key. Remember, the source
diskette is the DOS diskette and the target diskette is the new
diskette. When the computer has completed making the DOS
copy, the following prompt will be displayed:

Copy complete
Copy another (V/N)?

At this point, press "N", and the DOS prompt will appear.
The original DOS diskette should now be stored in a safe place.
Use the copy for daily use.

DOS 2.1 Features 221

FILES, FILENAMES, AND FILENAME MATCH CHARACTERS

At this point, you have gained some knowledge as to the organiza

tion of diskettes (chapter 1). You have gained an introductory knowledge

of DOS and have learned how to copy your DOS diskette master. Before

continuing our discussion of DOS, we will explain the concepts of files,

filenames, and filename extensions.

A file is a group of related information. For example, a file might

consist of a list of all the names, addresses, and phone numbers of your

customers. A file might also contain the text of a standard form letter
being sent to sales prospects. A file could also contain a program to edit
and print the form letters. The advantage of grouping information in a file
is that it can be easily retrieved by DOS, and can be stored on diskette

when it is not being used.

A number of files can be stored on a single diskette. IBM DOS 2.1

allows up to 64 files per single sided diskette (112 for double-sided). Every
file that is stored on the same diskette must have a unique filename. In

other words, no two files on the same diskette can have the same filename.

A filename consists of a primary filename and an optional filename

extension. Examples of filenames are given below. Note that the second
example does not contain a filename extension.

TEXT.DAT

PROGRAMl

NEW.TXT

ACCOUNT.BAS

IBM DOS allows primary filenames of up to eight characters in

length. These characters can be the letters of the alphabet, integer

numbers (0-9), or the following symbols:

$ # & @ !%()-{ }'_ '

The filename extension is an optional name that can appear after the

primary filename. The filename extension begins with a period and either
one, two, or three characters. When a filename extension is included in a

filename, both the primary filename and the extension must be used to

identify the file in DOS.

When inventing filenames, it is a good idea to make up a filename

222 IBM PCjr User's Handbook

that somehow identifies the information contained in that program. For
example, the following would be a good name for a BASIC program file

that printed a list of a firm's customers:

CUSTLIST.BAS

In situations where the same DOS operations are to be performed
with several files, it may be advantageous to copy all of the data files on

one diskette to another diskette. DOS includes two filename match

characters. These allow the user to specify a number of files with just one

specification. These characters are the asterisk (*) and the question mark

(?). For example, if the current drive (A) contained the following files,

TEXT1.DAT

TEXT2.DAT

TEXT3.DAT

TEXT4.DAT

TEXT5.BAK

and the following DOS command was entered,

DIP TEXT7.DAT

all files except the TEXTS.BAK would be listed.

If the following DOS command was entered,

DIP TEXT?.???

all of the above files would be listed.

The asterisk (*) in a primary filename or filename extension is used

to indicate that any character can be placed in that particular position in
the rest of the filename. Using our previous example's files, if the follow
ing DOS command were entered,

DIP *.BAK

the following file would be listed:

TEXT5.BAK

DOS 2.1 Features 223

If the following DOS command was entered,

DIR TEXT?.*

all of the files would be listed.

FORMATTING A DISKETTE - FORMAT

Before a new diskette is used, it must first be formatted using the

FORMAT command. The FORMAT command writes on every sector of a

diskette, initializes the directory, initializes the File Allocation Table, and

places a program known as the boot record at the beginning of the

diskette.

The directory is used to store the names of the files on the diskette

along with other data regarding the files such as size, location, and data

created. The File Allocation Table is located adjacent to the directory on
the diskette. The File Allocation Table keeps track of which sectors
belong to which file, as well as available unused disk space. Each diskette
contains one directory and two copies of the File Allocation Table. The

second copy is used as insurance in case the first is unreadable for some

reason.

FORMAT is an external command. Therefore, the DOS diskette

must be inserted before the command is given. When the FORMAT

command is given, directions as to how to proceed will appear on the
screen. The following messages will be displayed when the FORMAT

command is executed. Those parts which are underlined are the user's

response.

A > FORMAT/V ^

Insert hew diskette for drive A:

and strike any key when ready

Formatting...Format complete

Volume label (11 characters, ENTER for none)? DISK1

xxxxxx bytes total disk space
xxxxxx bytes available on disk

Format another (Y/N)? ̂
A>

224 IBM PCjr User's Handbook

The preceding example shows the FORMAT command being issued

along with the V or volume option. Including the /V with the FORMAT

command allows the user to assign a name to the new diskette. The name

of the diskette is referred to as its volume label. It is a good practice to
include a volume label on all new diskettes. The volume label can become

the identifying factor for all diskettes. In the preceding example, the

volume label was given as DISKl.
When the formatting procedure has been completed, a prompt will

appear which asks whether another diskette is to be formatted. At this

point, simply press "N", and the usual DOS prompt will appear. The
formatting process is now complete.

BACKING UP DISKETTES

Back up copies should always be made of important diskettes, so if a

diskette becomes damaged or if a file is accidentally erased, the user will

still have access to that information. IBM DOS includes two different

commands for creating back up; DISKCOPY and COPY.

The DISKCOPY command is used to copy an entire diskette to
another. DISKCOPY copies every file on the diskette including DOS in
one operation. DISKCOPY is the fastest method of copying a diskette.
DISKCOPY is only recommended when copying to new diskettes (for

matted or unformatted). If the diskette being copied to either has defec
tive tracks or has had a large amount of data written and then erased, the

use of the COPY command is recommended.

The COPY command can also be used to copy one or more of a

diskette's files to a different diskette. The COPY command is slower than

the DISKCOPY command. However, it is the preferred method of copy
ing to a diskette where a substantial amount of data writing and erasure
has taken place. This is because unlike the DISKCOPY command which

creates an exact duplicate of the original, the COPY command writes files

sequentially — or one right after the other. This sequential writing of files
results in better performance, as the files are all grouped together. When
files are copied with DISKCOPY, they may be spread throughout the
diskette.

DOS 2.1 Features 225

DISKCOPY

Since the PQ> contains only one diskette drive, the original diskette

must be removed and replaced with the diskette on which the copy is to be
made. This process is known as swapping. Once DISKCOPY has been

executed, diskettes may have to be swapped as many as 4 or 5 times before

the entire copying operation has been completed. To begin DISKCOPY,

enter the following:

A > DISKCOPY ^

DOS will display the following prompt when it is necessary to swap
diskettes:

Insert source diskette In drive A:

Insert target diskette In drive A:

The source diskette is the original diskette. The target diskette is the

back up. When the disk swapping process has been completed, the
following message will appear:

Copy complete
Copy another (Y/N)?

If N is entered, DISKCOPY will end, and the DOS prompt will

appear.

Once a disk has been copied, it is good practice to check for any
errors on the newly copied disk. The DISKCOMP command can be used

to compare two diskettes. If any differences are discovered between the

two diskettes, an error will be displayed. To begin DISKCOMP, enter the

following:

A > DISKCOMP

As with DISKCOPY, DOS will prompt the user when it is necessary
to swap diskettes. If a discrepancy occurs during the comparison, an error

message will be displayed. When the comparison procedure has been
completed, a message will be displayed stating so.

226 IBM PCjr User's Handbook

COPY - COPYING A FILE TO THE SAME DISKETTE

As discussed previously, COPY can be used to make back up copies
of one or more diskette files. Files can be copied to the same diskette (as

long as a new filename is used), or to a different diskette The following
configuration is used to copy a file to the same diskette with a different
filename:

COPY original backup

original is the name of the file being copied, and backup is the name
of the copy. Remember to always use different filenames when copying
files to the same diskette. A diskette cannot contain two files with identi

cal filenames.

COPY - COPYING A FILE TO A DIFFERENT DISKETTE

Just as with DISKCOPY, since the VCjr contains only one drive, disk

swapping will be necessary. The prompt messages used by COPY give the

impression that the system contains two drives. To prevent confusion,
think of COPY'S prompt messages as referencing diskettes rather than

drives.

Assuming a system drive contained a diskette containing DOS and a

file named TEXTA, the following entry should be made to copy TEXTA:

A > COPY TEXTA B:

The following prompt would then be displayed:

Insert diskette for drive B: and

strike any key when ready

The original diskette should then be replaced with the diskette which

is to contain the copy of TEXTA. This diskette should have already been
formatted. If the file being copied is large, it may be necessary to swap
diskettes several times. If this is the case, DOS will prompt for the diskette
swaps. When the copying process has been completed, the DOS prompt

will appear.

Once a file has been copied, it is a good practice to check that it had
been copied correctly. The COMP command can be used to accomplish

DOS 2.1 Features 227

this. The COMP command will cause the computer to check for any
discrepancies between the two specified files. The following is an example
of COMP. In this case, the files TEXTl and TEXT2 are compared. We
have assumed that both files are on the same diskette and that DOS is

resident on the diskette.

A > COMP TEXT1 TEXT 2

The previous example will compare two files residing on the same
diskette. In order to compare files which reside on different diskettes, a
drive specification must be given. The following example shows how files
on different diskettes can be compared. The prompts will instruct the user
which diskette is to be inserted in the drive. When the prompt asks for

drive A, insert the first diskette. When the prompt asks for drive B, insert
the second diskette.

A > COMP A:TEXT1 B:TEXT1

A:TEXT1

Insert diskette for drive B: and strike

any key when ready

and B:TEXT1

Eof mark not found

Files compare ok

Insert diskette for drive A: and strike

any key when ready

Compare more flies (Y/N)? n
A>

DISKETTE DIRECTORY - DIR

The Directory command (DIR) can be used to list one, several, or all
of the files on a diskette. The following entry will list all files on the
diskette that is inserted in drive A:

A>DiR -•

228 IBM PCjr User's Handbook

The following information pertaining to each file would also be

displayed:

Filename

Filename extension

File size in bytes
Date and time when data was last written to the file

After all of the files have been listed, the amount of free diskette

space will be displayed in bytes.

In certain instances, it may be necessary to check a diskette to see if it

includes a certain file. The following entry would check the diskette in

drive A for the existence of TEXTA:

A>DIRTEXTA ̂

Filename match characters can also be used with DIR to display
several files. The following entry would display all files on the diskette in

drive A with the filename extension .BAS:

A>DIR *.BAS

DISPLAYING A FILE'S CONTENTS - TYPE

The TYPE command allows the user to display a file's contents on

the screen. The following entry would display the contents of TEXTA on

the screen: 6

A > TYPE TEXTA

By pressing the Function and Echo keys simultaneously prior to the

entry of the TYPE command, the file's contents will be sent to the printer

as well as displayed on the screen.

RENAMING A FILE - RENAME

The RENAME command is used to change a file's name. The follow

ing RENAME command will change the name of TEXTA to FILEA.

Note that the "old" name precedes the "new" name in the command.

A > RENAME TEXTA FILEA

DOS 2.1 Features 229

ERASING A FILE - ERASE

The ERASE command allows the user to remove files from a diskette

that no longer are needed. The following commands will erase the file

name TEXTA from the diskette in drive A:

A > ERASE TEXTA

The DEL command can be used interchangeably with the ERASE

command. Both commands give the same results.

CLEARING THE SCREEN -- CLS

At times, the display screen may become cluttered with information.

This would make it desirable to have some means of clearing the screen.

Fortunately, DOS has a command that will clear the screen and return the

cursor to the upper left-hand corner of the display screen. This command

is the CLS command. Upon execution, the CLS command will clear the

entire screen and return the cursor to its upper left-hand side. The

following example illustrates the correct syntax for the CLS command:

A > CLS

CHANGING THE DOS PROMPT - PROMPT

By this point, the DOS prompt (A>) should be familiar. This

prompt can be changed to any group of characters desired using DOS's
PROMPT command. Any text entered following the PROMPT command

will become the new prompt. The following example shows the prompt
being changed to "ENTER COMMAND":

operator types A > PROMPT ENTER COMMAND

ENTER COMMAND _ cursor

Several special characters can be used to create variable prompts.

These special characters will generate the prompts listed in table 9-3. The

"$" character must precede the special character to display the variable

230 IBM PCjr User's Handbook

prompt. The following example illustrates the use of the special character
"T" to set the time as the new DOS prompt:

A > PROMPT $T

3:37:22.18 _

cursor

TABLE 9-3. Special Prompt Characters

Character Ptompt

$ Displays character

T Displays current time

D Displays cilrrent date

P Displays the current directory of the default drive

V Displays the version of DOS (version number)

N Displays the default drive letter

h Causes a backspace and erases last character

E Displays the escape character

—

Causes a carriage return and line feed

CHANGING THE DATE ~ DATE

Earlier in this chapter, we learned how to enter the date when DOS is
loaded. Now, we will learn how to change the date using the DATE
command. The correct syntax for the DATE command is as follows:

A > DATE J

DOS 2.1 Features 231

Once the DATE command has been entered, the current date will be

displayed. (The current date is the date which was entered when DOS was
loaded.) Following the current date, a prompt will be displayed request
ing the new date. A new date may be entered at this point. Use the same
format for entering the data as was used when DOS was loaded. The
following is a sample of the prompts displayed when the DATE command
is entered;

A>DATE-J

Current date is Tue 1-24-1984

Enter new date:

CHANGING THE TIME - TIME

Earlier in this chapter, we learned how to enter the time when DOS is

loaded. Now, we will learn how to change the time using the TIME

command. The correct syntax for the TIME command is as follows:

A > TIME

Once the TIME command has been entered, the current time will be

displayed. (The current time was initiated when DOS was loaded.) Fol
lowing the current ti'-^e, a prompt will be displayed requesting the new
time. A new time may be entered at this point. Use the same format for
entering the time as we did when DOS was loaded. The following is a
sample of the prompts displayed when the TIME command is entered:

A>TIME-J

Current time Is 12:34:29.31

Enter new time:

CHANGING THE STANDARD I/O DEVICE ~ CTTY

When DOS is loaded, the standard input and output device is set to

the console (keyboard and display). The standard input and output
device can be changed to any device which can be used for input and
output. A modem, for example, can be used as an input and output
device. A printer, however, cannot be used as an input and output device.

The CTTY command can be used to change the standard input and

output device. The CTTY command must be followed by the device name

232 IBM PCjr User's Handbook

of the new input and output device. Some legal device names are AUX,
COM 1, and COM2. The following is a typical CTTY command that will
change the input and output device to COM2:

A > CTTY C0M2 -J

DETERMINING THE VERSION OF DOS - VER

When DOS was first loaded, a message appeared stating the version
of DOS being used. The version of DOS being used can be verified by
entering the VER command. VER results in a message being displayed
which states the version of DOS being used. The following illustrates the
usage of VER:

A>yER

IBM Personal Computer DOS Version 2.10

A>

ANALYZING A DISKETTE - CHKDSK

Frequently used diskettes should be regularly checked for errors.
DOS's CHKDSK command will display the status of the diskette and
optionally correct any errors. CHKDSK (also known as the Check Disk
command) is used to analyze the directories and File Allocation Table
and to produce a disk and memory status report. The following configu
ration should be used with the CHKDSK command. Information within

the brackets are optional.

CHKDSK \filename\l¥][IV\

If a filename is specified, CHKDSK will display the number of
non-continuous areas that are occupied by the specified file. /F causes
CHKDSK to automatically correct errors found in the directory and File
Allocation Table. /V causes CHKDSK to display a set of messages which
provide information on the command's progress and the errors it discov
ers. After the diskette has been checked, any pertinent error messages will
be displayed along with the following status report:

DOS 2.1 Features 233

Volume DSKAA Created MAY 12,1984,11.00

xxxxxx bytes total disk space
xxxxxx bytes in x hidden files

XXX bytes in x directories

xxxxx bytes of x user files
xxxxxx bytes available on disk

xxxxxx bytes total memory
xxxxxx bytes free

The x's will be replaced by integers in an actual display. It is recom

mended that CHKDSK be periodically run on frequently used diskettes to

check for errors and determine available free space.

SCREEN DUMPING - GRAPHICS

The act of copying an entire screen of graphics onto the printer is
known as a screen dump. Screen dumping is supported by DOS 2.1.
DOS's GRAPHICS command can be used to prepare the PC/>for a screen

dump. The GRAPHICS command has no arguments or parameters.
Simply enter the command, GRAPHICS, while in DOS. The computer is
now ready to copy a graphics screen onto the printer.

The following example illustrates the procedure involved in a screen

dump:

Step 1. Load DOS and enter the GRAPHICS command.

A > GRAPHICS

The computer will respond with the DOS prompt.

Step 2. A graphics screen will now be created. This example
will create a graphics screen in BASIC. Type BASICA to enter
BASIC*. Once BASIC has been loaded, enter the following

program:

♦ The BASIC cartridge must be inserted in the proper slot.

234 IBM PCjr User's Handbook

10 LPRINT CHR$(27);"A";CHR$(8)
20 OLS

30 SCREEN 2

40 FOR I = 1 TO 100

50 LINE -(640*RND. 200*RND)
60 NEXT I

This program will create a random graphics screen. Line
10 is an escape character which instructs the printer to print
nine lines per inch.* Lines 20 through 60 create the graphic
screen.**

Step 3. Once the program has been loaded, enter the RUN

command. Lines will be drawn randomly on the screen.

Step 4. When the drawing has been completed, hold down the
Function and PrtSc keys simultaneously. The entire graphics

screen will be printed on the printer. This process may take a

few minutes.

CHECKING DATA WRITTEN TO A FILE -- VERIFY

When the computer writes data, such as a file, onto the disk, it

normally does not check whether or not that data was written properly.

The VERIFY command can be used to cause the computer to automati

cally check whether data was correctly written to the disk. The following

examples illustrate the three possible syntaxes for the VERIFY command:

A > VERIFY ON

A > VERIFY OFF

A > VERIFY U

The first example turns on VERIFY. This means that every time the
computer writes to the disk, it will automatically check to be sure that the

data was properly written.

♦ Line 10 is a specific command for the IBM parallel printers. If a different printer is being used,
line 10 may have to be changed.

*♦ Refer to chapter 7 for an explanation of the graphics commands.

DOS 2.1 Features 235

The second example turns off VERIFY. The computer will not check
whether data was properly written onto the disk.

When VERIFY is entered without any parameters (example 3), the
current status of VERIFY (ON or OFF) will be displayed.

SAVING A DAMAGED DISKETTE - RECOVER

Diskettes that are used frequently or mishandled may become dam

aged. If any sectors containing data are damaged, all of the data on that
sector will be lost. If a sector containing the directory is damaged, all of

the files in that portion of the directory can no longer be accessed as usual.

Fortunately, DOS 2.1 provides a method for recovering data from all

sectors of the diskette not directly damaged. The RECOVER command

causes the computer to recover any or all files on a diskette.
Specifying a filename after RECOVER will cause the computer to

recover only the specified file (minus any data lost because of a bad

sector). If the RECOVER command is entered without a filename, the

entire diskette will be recovered (minus any data lost in bad sectors).
An important note to keep in mind is that when an entire diskette is

recovered, the computer will automatically rename all the files that have
been recovered. The filenames will be in the form FILEnnnn.REC*.

The following two examples provide the correct syntax for the

RECOVER command. The first example will recover the file TEXTS. The

second example will recover the entire diskette in drive A.

A > RECOVER TEXTS

A > RECOVER A: J

* Files will be numbered in the order in which they were recovered. The number of the recovered file
will be displayed in place of the nnnn in the filename. A typical directory of a recovered disk might
be as follows:

FILEOOOl REC 5120 1-01-80 12:12a

FILE0002 REC 17408 1-01-80 12:12a

FILE0003 REC 18432 1-01-80 12:12a

FILE0004 REC 2048 1-01-80 12:12a

FILE0005 REC 6144 1-01-80 12:12a

FILE0006 REC 7168 1-01-80 12:12a

236 IBM PCjr User's Handbook

CHECKING THE VOLUME LABEL OF A DISKETTE -- VOL

Earlier in this chapter, we learned how to format a diskette as well as

how to assign a volume label to a diskette. The volume label is used

strictly for identification and organizational purposes.

The VOL command can be used to read the volume label of a

particular diskette. The correct syntax for the VOL command is shown

below:

A>VOL -I

Volume in drive A is REPFILES

TRANSFERRING THE OPERATING SYSTEM -- SYS

The SYS command is used to transfer the operating system from the
default drive to the drive specified in the command. The following illus
trates the correct syntax for the SYS command. The letter following the
SYS command specifies the drive to which the operating system is to be
transferred.

A > SYS A: ̂

The following files will be copied to the drive specified when SYS is
executed:

IBMBIO.COM

IBMDOS.COM

When using SYS, the diskette in the drive specified by the command

must previously have been formatted with the FORMAT command and

/ S or / B options so as to allocate the directory entries for 1BM B10.COM

and IBMDOS.COM. If this is not done, SYS will not be able to transfer

the operating system files.

The SYS command was designed to be used to transfer a copy of the
DOS files to an applications program diskette formatted to use DOS, but

sold without DOS.

DOS 2.1 Features 237

CONTROLLING THE BREAK KEY - BREAK

The BREAK command can be used to cause DOS to check for a

control break whenever the program requests a DOS operation (ex. disk
access). The BREAK command can appear in one of three forms. If the
keyword ON is entered following BREAK, DOS will check for a control
break whenever a program requests any DOS function. If the keyword
OFF is entered following BREAK, DOS will only check for a control
break during screen, keyboard, printer, or asynchronous communica
tions operations. When BREAK is encountered without parameters, the
current status of BREAK (ON or OFF) will be displayed.

The following examples illustrate the correct syntax for BREAK:

A > BREAK ON J

A > BREAK OFF -J

A > BREAK -J

PRINTING A LIST OF DATA FILES ~ PRINT

The PRINT command allows a queue (list) of data files to be output

on the printer while the computer is undertaking other processing tasks.
As many as ten filenames can be specified with PRINT. Only files in the
current directory can be opened for printing. The following configuration
is used with PRINT:

PRINT [ML//fe«a/«e][/T][/C][/P]...]

/T sets the terminate mode. In this mode, all queued files will be
cancelled from the print operation. If a file is in the process of being
printed, the printing will stop, a cancellation message will be generated,
the paper will advance to the top of the page, and the printer's alarm will
sound.

/C sets the cancel mode which allows the user to select one or more
files which are to be cancelled from the print queue. The filename preced
ing /C and all subsequent filenames until a /P has been specified will be
cancelled.

/P sets the print mode. The filename preceding /P and all subsequent
filenames until a /C has been specified will be added to the printer queue.

238 IBM PCjr User's Handbook

If no parameters are given in the command line, a list of all the files in
the print queue will be displayed.

When PRINT is executed for the first time, the following message

will be displayed:

Name of list device [PRN]:

The user should then specify the output list device. This can be LPTl,

LPT2, LPT3, PRN, COM!, COM2, or AUX. The default is PRN. PRN

can be selected by just pressing the Enter key.
After PRINT has been executed, the files will be queued for printing

in the order specified in the command line. After each file has been
printed, the printer will advance to the top of the next page.

A > PRINT a:texta J

A > PRINT/T J

A>PRINTtext?/C J

In the first example, texta is added to the print queue. In the second

example, the printer queue is emptied. In the final example, any files in
the print queue that match text? will be removed from the queue.

Filters

Filters are special DOS commands which can be used to manipulate
or change files in some way. Filters can be used to examine or completely
change a file. Filters normally use the standard output device for display
purposes. However, the filter command's output can also be sent to a file.

Special characters can be used to redirect a filter's input and output.
The less than symbol (<) can be used to direct a particular file as input to
a filter. The greater than symbol (>) can be used to direct the output of a

filter to a particular file. The double vertical slash (|) can be used to cause
the output of one command to be the input of a filter.

A > SORT < LIST J

A > SORT < LIST > OUTCOME ̂

DOS 2.1 Features 239

The previous three examples illustrate several of the possible uses of

the special redirectional characters (< > j). The first example will cause
the file named LIST to be the input to the SORT filter. The output will be

displayed on the default output device (usually the display screen unless

changed using the CTTY command). The second example will use the file

named LIST as the input to the SORT filter and the output will now go to
a file named OUTCOME. The third example will direct the output of the

DIR command as input to the SORT filter.

There are three filters in DOS version 2.1. These are FIND, MORE,

and SORT. These three filters will be explained individually in the follow

ing three sections.

LOCATING A STRING IN A FILE - FIND

At times, it may be desirable to locate only part of a file. The FIND

filter can be used to do so. Any and all lines containing a specified string

can be located using the FIND filter. The FIND filter must be followed by

the string which is to be searched for. Following this string, a filename

must be specified. The following is a typical FIND filter:

A > FIND "BUSINESS" TEXT1 J

The previous example will look for the string BUSINESS in the file

named TEXTl. The computer will then display all lines containing the
string BUSINESS. The entire line will be displayed.

More than one filename can be specified after the string specification

in FILE. In this case, every occurrence of the specified string in each file

will be displayed. These will be displayed in the same order in which they
appeared in the files. If more than one file was specified, the occurrences
in the first file will be displayed first, followed by the second, and so on.

Several options can be used with the FIND filter. These options are

designated by single characters and must follow the keyword FIND. Each
character which represents an option must be preceded by a slash (/)

when used with the FIND filter. Table 9-4 describes these options and

shows their corresponding character representations.

240 IBM PCjr User's Handbook

Table 9-4. find Options

Character

Representation Option Effect

v Causes the FIND command to display all the

lines that do not contain the specified string.

C Causes the FIND command to display only the
number of occurrences of the specified string in
the specified file.

N Causes the FIND command to display the line
number along with the line containing the speci
fied string.

A > FIND/V "BUSINESS" TEXT1 J

A > FIND/C "BUSINESS" TEXT1 J

A > FIND/N "BUSINESS" TEXT1 J

The previous three examples all designate the same file but perform

different tasks. The first example will display all the lines that do not

contain the word BUSINESS. The second example will display a number
that represents the number of times the word BUSINESS appears in the

file TEXTl. The third example will display all the lines containing the

word BUSINESS along with their respective line numbers.

SCREEN FILLING - MORE

Earlier in this chapter, we discussed the TYPE command and its

usage for displaying a file's contents on the screen. This is fine for short

files, but what would happen if the file contained more information than

the screen could hold. Using the TYPE command with such a file would

cause the contents of that file to scroll off the screen before it could be

read. The only information visible would be the last page. Fortunately, a

DOS filter command is available which solves this problem. The MORE

DOS 2.1 Features 241

filter command can be used to display a file's contents one page at a time.
The MORE filter will display one page of a file and pause. The

prompt "-MORE-" will appear at the bottom of the screen. At this point,
pressing any key will cause the next page of the file to be displayed. Once
again, the prompt "-MORE-" will appear at the bottom of the screen.
Press any key to display the next page. This process of displaying one page
at a time will continue until the file's entire contents has been displayed. If

MORE is to be exited before the entire file has been displayed, press

CTRL-C or Fn-BREAK. The DOS prompt will then appear.

The following example uses the MORE filter. In this case, the file
named TEXTl is piped into the MORE filter. The file TEXTl will be
displayed one page at a time.

A>M0RE<TEXT1 ̂

SORTING -- SORT

DOS version 2.rs SORT filter can be used to sort a file's lines by

ASCII code either in ascending or descending order. The following
examples describe usage of SORT along with all of its options.

Example 1: Sorting a File in Ascending Order.

The following example will sort the file CUSTLIST and store the
newly sorted file into the file called NEWLIST. If ">NEWLIST" had not
been included in this example, the sorted file would have been displayed
on the screen. It would not have been saved as a file.

A > SORT <CUSTLIST >NEWLIST -I

Example 2: Sorting a File in Descending Order

By including a /R after the SORT command, a reverse sort can be
accomplished. The following example will reverse sort the file named
CUSTLIST and store that newly sorted file as NEWLIST. If ">NEW-
LIST" had not been included in this example, the reverse sorted file
would have merely been displayed on the screen. It would not have been
saved as a file.

A > SORT/R < CUSTLIST > NEWLIST -•

242 IBM PCjr User's Handbook

Example 3: Sorting a Specified Column

The SORT filter can sort a specified column in a file. For example,
the SORT filter could be used to sort a file according to the ninth column
of each line. The column where the sort should take place must be
specified in the following format:

/ + «

where n is the column number.

The following example will sort the directory according to column
14. Column 14 of the directory is the size of each file. Therefore, the
following example will sort the directory in ascending order according to
file size:

Batch Processing

Batch processing allows automatic execution of a file with a filename
extension of .BAT. Naturally, this file must have been created prior to its
execution as a batch file. The proper configuration for executing a batch
file is given below. The items enclosed in brackets are optional.

[drive specifier:] filename [parameters]

Notice that only the primary filename and not the filename extension
(.BAT) need be entered. The .BAT extension is assumed.

Batch processing can be temporarily stopped by pressing the FN and
BREAK keys (or CTRL and C keys). When these keys are pressed, the
following prompt will appear:

Terminate batch job (Y/N)?

If Y is entered, batch processing will be ended and the system prompt
(A>) will appear. If N is entered, the current command only will be
ended, and batch processing will continue with the next command in the
file.

DOS 2.1 Features 243

AUTOEXEC.BAT FILE

The AUTOEXEC.BAT file represents a special usage of batch pro

cessing. Whenever DOS is started, the command processor will search for
a file with the filename AUTOEXEC.BAT. If this file is present, it will be

executed automatically upon system start up.

CREATING A BATCH FILE

A batch file can be created either via the line editor (EDLIN) or by

using the console as an input device. The line editor will be explained later
in this chapter. We will explain the use of the console here.

Suppose that you wished to create an AUTOEXEC.BAT file that
would automatically run a BASIC program called LIST.BAS. Your first
entry would be as follows:

A > COPY CON: AUTOEXEC.BAT ̂

The preceding command instructs DOS to copy from the console
device into AUTOEXEC.BAT. Your next entry would be as follows:

BASIC LIST U

This entry places a command in AUTOEXEC.BAT to load BASIC
and run the LIST program.

Press the F6 key followed by Enter to mark the end of the AUTOEX
EC.BAT file and end the use of CON: for input. Now, when DOS is

started, BASIC will automatically be loaded and the program LIST will
be run.

USING REPLACEABLE PARAMETERS WITH .BAT FILES

When you enter the commands to be included in a batch file, you can

include replaceable parameters. These replaceable parameters will be
replaced by values specified when the batch file is executed. Up to 10
replaceable parameters can be used. These are %0, %1, %2, %3, %4, %5,

%6, %7, %8 and %9. The dummy parameters are replaced one by one in
ascending order. The first dummy parameter, %0 is always replaced by
the filename of the batch file preceded by the drive designator (if one is

244 IBM PCjr User's Handbook

specified).

The following entries illustrate the use of replaceable parameters in a
batch file:

A > COPY CON:FILE.BAT

COPY %1.TXT %2.TXT ̂

TYPE %2.TXT ̂

TYPE %O.BAT Ji

*

1 File copied
A>

The batch file named FILE.BAT will now be placed on the diskette in
the current drive, A.

EXECUTING A BATCH FILE

WITH REPLACEABLE PARAMETERS

To execute a batch file with replaceable parameters, simply enter the
name of the batch file followed by the parameters to be substituted for
%l,%2,%3,etc.

If the following were entered,

A > FILE.BAT A:OLD B:NEW^

FILE would be substituted for %0, AiOLD would be substituted for %1,
and B:NEW would be substituted for %2.

BATCH SUBCOMMANDS

Batch subcommands are commands that can be executed directly
from a batch file. Table 9-5 gives a listing of all the batch commands along
with their proper configurations. Table 9-5 also includes a short explana
tion of each subcommand.

* F6 indicates that the F6 key is to be pressed.

DOS 2.1 Features 245

Table 9-5. Batch Subcommands

Subcommand Configuration Reference

ECHO ECHO [ON/OFF I message] ECHO ON causes batch commands

to be displayed on the screen as

they are read from the batch file.

ECHO OFF stops this display.
ECHO ON is the default, message
causes a message to be displayed
even if ECHO has been turned off.

FOR FOR % % variable IN (5^/)

DO command

FOR allows the repeated execution
of DOS commands. %%variable is

set sequentially to each member of
set. The command is then evalu

ated and executed.

GOTO GOTO label GOTO causes commands to be

executed beginning with the line
immediately after label. A label in
a batch file is a character string

where the first 8 characters are sig

nificant.

IF IF [NOT] condition command The IF subcommand allows condi

tional execution of DOS commands.

The condition parameter is one of
the following:

ERRORLEVEL number

string\ -- string!
EXIST filespec

When the IF condition is true, the

DOS command is executed. Oth

erwise, it is passed by and the next
command is executed.

ERRORLEVEL number is true if

the previous program had an exit
code of number or higher.

246 IBM PCjr User's Handbook.

Subcommand Configuration Reference

IF

{cont.)

IF[NOT] condition command
(cont.)

string\ -- string! is true when both
are identical.

EXISTfilespec is true iffilespec is
found on the indicated drive.

SHIFT SHIFT SHIFT allows command lines to

make greater use of the replaceable
parameters (%0-%9). SHIFT shifts
all parameters on the command

line one position to the left with %0
being replaced by %I, etc. This
allows over 10 parameters on the

command line.

PAUSE PAUSE [remark'\ This subcommand suspends sys
tem processing and causes the fol
lowing message to be displayed:

Strike a key when ready...

REM REM [remark] This subcommand displays remarks
within a batch file.

Introduction to EDLIN

DOS's line editor (EDLIN) can be used to create, modify, and
display source or text files. A source file is an assembly language program
in source language format which has not been assembled.

The text of the files which are being processed by EDLIN are divided

into lines. The length of these lines can vary — with a maximum of 253
characters per line. Numbers are automatically assigned to these lines.

Although these line numbers are displayed during the editing session,
they are not actually present within the file being edited.

DOS 2.1 Features 247

EXECUTING EDLIN

EDLIN is executed using the following configuration:

EDLIN [di] filename [/B]

If the file specified does exist on the current drive, the file will be

loaded into memory until it is 75% full. If enough memory is available to

load the entire file, the following message and prompt will be displayed:

End of input file
*

If the entire file cannot be loaded, the file will be loaded line by line

until memory has become 75% full. The EDLIN prompt (*) will then be

displayed.

When only a portion of a file has been loaded, only those lines which

have been loaded into memory can be edited. Before you can edit the

remaining lines, some of the edited lines in memory must be written to the

diskette so as to free available memory for the unedited lines.

If the /B parameter is not specified, EDLIN will cease the loading

when it encounters Ctrl-Z (EOF mark). When /B is specified, the entire

file will be loaded, regardless of any EOF characters.

If the file specified is not present on the designated drive, a new file

with that name will be created. When this occurs, the following message

and prompt will appear:

New file

The asterisk is

the EDLIN prompt

You may now enter lines into this new file after issuing an Insert lines
command (discussed later).

When the editing process is ended, both the original and the edited

files will be saved on a diskette. The original file will be renamed with the

same primary filename and an extension of .BAK. The new file will have
the filename specified in the EDLIN command.

248 IBM PCjr User's Handbook

When EDLIN is executed, if a file exists with the same primary name

as the file specified and filename extension .BAK, that file will be erased.
A new file with the same primary name as the file specified and extension
$$$ will be created. This file will eventually be used to hold the edited file,
and its filename extension will be changed from $$$ to that specified in
the EDLIN command.

A file with an extension of .BAK cannot be edited. If you wish to edit

such a file, first use the RENAME command to change the filename
extension from .BAK.

EDLIN Command Summary

In this section, we will discuss the various commands that can be

used with EDLIN. All EDLIN commands consist of a single letter except

the Edit line command. Commands generally are used with parameters.

Both commands and parameters can be entered in uppercase, lowercase,
or a mixture of both.

Generally, commands and their parameters are separated by delim
iters (spaces or commas) to improve their readability. However, this is not
required. Delimiters are only required between two adjacent line
numbers.

DOS commands can be aborted by pressing Fn-Break. A DOS
command will be executed when Enter is pressed at the end of the
command. If a large amount of data is being displayed as a result of a
DOS command, you can hold the screen by pressing Ctrl-S. To continue
the scrolling, press any key.

The following parameters will be used in our discussion of DOS
commands:

line Three entries can be made for line. An integer from 1 to 65529

can be used to identify a particular line.

A period (.) can be used to identify the current line. The current
line is used to mark the location of the last change in the file

being edited. This does not have to be the last line displayed.
The current line is identified by an asterisk which appears
between the line number and first character in the line.

DOS 2.1 Features 249

A pound sign (#) is used to identify the line after the final line in

memory.

n This specifies the number of lines to be written to the diskette
or read from the diskette.

The n parameter is used only with the Write Lines and Append
Lines commands. These commands are used when the file

being edited is too large to fit in memory.

string One or more characters are to be entered in place of this

parameter. These characters represent text to either be searched

for, replaced, deleted, or to be used in place of other text. The

string parameter is only used with the search text and replace
text parameters.

APPEND LINES EDLIN COMMAND

The Append Lines command is used to append lines from the
diskette to the file in memory being edited. These lines are added to the

end of that file.

Configuration

[n] A

The Append Lines command is only used when the file being edited
is too large to fit in memory. If no n is included, the number of lines to be
appended are not specified in the command. In this case, lines will be
appended until available memory is 75% filled. When the last line of a
diskette file has been appended into memory, the following message will
be displayed:

End of input file

COPY LINES EDLIN COMMAND

The Copy Lines command copies the range of lines specified in the
first two parameters to the line number specified by the third parameter.
This new data is inserted before the line indicated in the third parameter.

The Copy Lines operation is repeated the number of times specified
in the optional parameter count, count has a default value of 1.

250 IBM PCjr User's Handbook

Configuration

{lineWline\Jine[,couni\ C

If either of the first two parameters are omitted, the line being copied
defaults to the current line. In effect, this results in the current line being
copied to the line specified in the third parameter.

When Copy Lines is executed, the file's lines are renumbered to

reflect the repositioned lines. The first line which has been copied will
become the current line.

Example

1.3,8 0

In the preceding example, lines 1 through 3 are copied to line 8. Line
8 becomes the current line.

DELETE LINES EDLIN COMMAND

The Delete Lines command is used to delete a specified group of lines
from the file being edited.

Configuration

[line\Jine] D

When lines are deleted, the line following the last line deleted will
become the current line in memory. The current line and those lines
following it will be renumbered.

If both parameters are included, that range of lines will be deleted. If
the first parameter is deleted, the deletion will begin with the current line
and continue to the line specified by the second parameter (note the
comma's inclusion to denote the second parameter).

If the second parameter is omitted {lineT> or /m^,D), only the single
line named will be deleted. If both parameters are omitted, only the
current line will be omitted.

EDIT LINE EDLIN COMMAND

This command is used to enter the line number of the line to be

edited.

DOS 2.1 Features 251

Configuration

[//ne]

If no entry is made (the Enter key is pressed), this indicates that the
line following the current line is to be edited. When this command is
executed, the line number entered and its contents will be displayed. The
line number will then be repeated on the following line.

This may then be edited using the Control and Editing keys, or the
line may be completely replaced by entering new text. When editing is
complete, press Enter, and the edited line will be placed in the current file
where it will become the current line.

If after reviewing the line displayed by Edit Line, you decide not to
edit it, you can either press FN-Break or the Enter key (if the cursor is at
the first position) to abort the command.

END EDIT EDLIN COMMAND

The End Edit commarid is used to end EDLIN and to save the file

being edited on diskette.

Configufation

E

The file being edited will be stored on a diskette with the name
specified when the EDLIN command was issued. The original version of
the newly edited file will be saved with the filename extension .BAK.

When editing files, be certain that there is enough available diskette
space to store both the original file and its backup. If enough space is not
available, that part of the file in memory for which diskette space is not
available will be lost. When the EDLIN command has been ended, the

DOS prompt will appear.

INSERT LINES EDLIN COMMAND

The Insert Lines command is used to insert lines of text in front of the

line number specified. If no line number is specified, the insertion will
occur before the current line.

252 IBM PCjr User's Handbook

Configuration

[line] 1

If the specified line number is greater than the highest existing line
number, or is specified as #, the insertion will be made after the final line

in memory.

As each new line is typed in, press the Enter key. A new line number

will be displayed every time Enter is pressed. To end the Insert command,
press the FN-Break keys.

The line following the inserted lines will become the current line.

Both the current line and all following lines will be renumbered to reflect

the insertion.

LIST LINES EDLIN COMMAND

The List Lines command is used to display the lines specified in the

command. The current line is not changed by this command.

Configuration

[line\,line\ L

If the first parameter is omitted, the display will begin 11 lines before
the current line, and 23 lines in total will be displayed.

If the second parameter is omitted, a total of 23 lines will be dis

played beginning with the specified line.

If both parameters are omitted, a total of 23 lines will be displayed.
These include the 11 lines immediately preceding the current line, and the
11 lines immediately following the current line. If there are not 11 lines

preceding the current line, additional lines following the current line will
be displayed to total 23 lines.

MOVE LINES EDLIN COMMAND

The Move Lines command moves the range of lines indicated by the
first two /me parameters ahead of the line indicated by the third line
parameter.

If either of the first two parameters are omitted, the parameter will
default to the current line. Note that the third parameter is required.

DOS 2.1 Features 253

Configuration

[lineW^line^Jine M

After the move has been completed, the first line moved will become
the current line. The lines are renumbered following the move.

Example

50M

In the preceding example, the current line is moved just ahead of line
50.

PAGE EDLIN COMMAND

The Page command lists the block of lines indicated by its
parameters.

Configuration

[line\,line^ P

If the first line is omitted, the default is the current line plus 1. If the
second line is omitted, 23 lines are listed. Page differs from List Lines in

that it changes the current line to the last line displayed.

QUIT EDIT EDLIN COMMAND

The Quit Edit command is used to end the editing session without
any of the editing changes being saved.

Configuration

Q

When the Q command is used, the following prompt will appear;

Abort edit (Y/N)?

If you wish to exit EDLIN with no changes made in the original file,
enter Y. Otherwise, enter N and continue editing.

Note that when you execute EDLIN, your previous backup copy

254 IBM PCjr User's Handbook

(with the .BAK filename extension) will have been erased. Therefore,

exercise caution when using the Q command as your backup file will have

been erased.

REPLACE TEXT EDLIN COMMAND

The Replace Text command is used to replace existing string data

with new data.

Configuration

[/w^][,//>2^][?] R string [F6string]

The Replace Text command will replace the characters specified in

the first string with those specified in the second string in the range of lines

given preceding the R. If a second string is not specified, the characters

given in the first string will be deleted. The last line changed will be the
current line.

The optional parameter ? is used to display a prompt (Ok?) after each

line to be modified. If a Y or Enter is pressed, the modification will be

made. Otherwise, the modification will not be made.

If the first line parameter is omitted, the search will begin with the
line after the current line. If the second line parameter is omitted, the

second line value will default to the last line. If both line parameters are

omitted, all lines in memory will be searched.

Note that the F6 key is used to separate the two strings. A Ctrl-Z

entry can also be used to separate these.

SEARCH TEXT EDLIN COMMAND

The Search Text command is used to search a specified range of lines

for a designated string.

Configuration

[line][Jine'][l] S string

Unless the ? parameter is used, the first line to contain a matching

string will be displayed and the search will end. This line will become the

current line.

If no match is found, the following message will be displayed, and the

DOS 2.1 Features 255

search will end. The current line will remain the same.

Not found

If the optional ? parameter is included, the following prompt will be

displayed when a match is encountered:

Ok?

If Y or Enter is pressed in response to this prompt, the matching line

will become the current line and the Search Text command will end.

If any other entry is made, the search will continue until another
match is found or until all the lines in the specified range have been

searched.

If the first line parameter is omitted, the default value will be the first
line following the current line. If the second line parameter is omitted, the
value will be the last line. If both are omitted, all lines from the line after

the current line to the last line will be searched.

TRANSFER LINES EDLIN COMMAND

The Transfer Lines command is used to merge a specified file into the

file that is currently being edited.

Configuration

[line'] T [d:] filename

The filename specified will be inserted prior to the line specified. If

line is omitted, the default will be the current line.

The file being merged will be read from the current directory of the

drive indicated. If a path was specified in EDLIN, then the directory

specified by that path will be the current directory, and any Transfer Lines

command for that drive must indicate a file from that directory.

WRITE LINES EDLIN COMMAND

The Write Lines command is used to write to the diskette file from

the lines being edited in memory. The lines are written beginning with the

first line.

256 IBM PCjr User's Handbook

Configuration

[n] W

The Write Lines command need only be used in instances where the

file being edited was too large to fit into memory. In these cases, edited
lines in memory must be written to the diskette file before additional lines
can be appended with the Append Lines command.

DOS COMPONENTS

The core of DOS consists of three programs, the boot record,

IBMBIO.COM, and IBMDOS.COM.

The boot record is a program that lies at the very beginning of your

DOS diskette. The boot record is automatically loaded into memory

when DOS is started (or booted). The boot record then loads the remain

ing DOS programs. The boot record is placed on all diskettes by the
FORMAT program.

lBMBIO.COM is a program which handles the transfer of data

between the computer's memory and the various input and output devices

attached to it. IBMBIO.COM is also placed on the diskette by the FOR

MAT program. IBMBIO.COM will not be included in a directory listing

of a DOS diskette's files.

IBMDOS.COM includes a file management program and a number

of service programs that are used to control programs written to run
under DOS. Like IBMBIO.COM, IBMDOS.COM will not be included in a

directory listing of a DOS diskette's files.

10
PCjr Communications

Communications with the PC/r

The IBM PQr can be used as a terminal to communicate with other
computers via phone lines. This is accomplished through the use of the
IBM internal modem and a Terminal Emulator program.

INTERNAL MODEM

The IBM internal modem contains all the hardware necessary for
phone line communications. The internal modem must be installed
directly into the PQr's system unit. For a detailed explanation on instal
lation, refer to the manual that accompanies the internal modem.

Once the internal modem has been properly installed in the system

unit, the PQr may be connected to the telephone lines. A cable is
provided with the internal modem which must be used to connect the
PQr to a standard modular telephone jack. Insert one end of the cable
into the port in the rear of the system unit marked with an M. Insert the

257

258 IBM PCjr User's Handbook

other end into a standard modular telephone jack. The modem is
powered by the PQ> and is ready for operation whenever the PQ> is
powered up.

TERMINAL EMULATOR

The internal modem supplies all the hardware necessary for
communications over phone lines. However, a program is also necessary
to utilize this available hardware. A program that is used with a modem
for communications purposes is known as a Terminal Emulator pro
gram. The PCyr's cartridge BASIC has a built-in Terminal Emulator.

This program is designed to utilize the IBM internal modem for com

munications purposes.

IBM TERMINAL EMULATOR

The Terminal Emulator program that is built into the BASIC

cartridge can be accessed directly from BASIC. The TERM command is
used to load and run the Terminal Emulator program.

EXAMPLE: TERM

RESULT: The Terminal Emulator program is loaded into memory
and begins execution.

Keep in mind that when the TERM command is entered, any
program that was in memory will be lost and any open files will be closed.
Any program in memory should be saved on disk before the TERM

command is entered.

When the Terminal Emulator program begins execution, the screen

will clear and the following message will be displayed:

(TERM) — TERMINAL EMULATOR

Following this message, the Terminal Emulator program checks to
see if the internal modem is present. If the internal modem is present, the
baud rate will automatically be set to 300.

The terminal selection menu will now be displayed on the screen.
The terminal selection menu appears as follows:

PCjr Communications 259

(TERM)—Terminal Emulator

1 Line Bit Rate [300] (300..4800)

2 Data Bits [7] (7 or 8)

3 Parity [E] (E.O.N)

4 Host Echos [V] (Y or N)

5 Screen Width [80] (40 or 80)

6 Modem Command []

Change <line,data>?

fl-conv f2-exit f3-nul f4-break

The terminal selection menu allows transmission specifications to be
programmed into the Terminal Emulator. The transmission specifica
tions depend primarily on the capabilities of the host computer. The
transmission specifications presently being used are enclosed in brackets.
The parentheses enclose the options which may be chosen. Each trans
mission specification will now be discussed individually.

LINE BIT RATE (BAUD RATE)

The baud rate is the speed at which data will be transferred between
the PQr and the host computer. Several different baud rates can be
specified in the Terminal Emulator program. However, the internal
modem can only transmit and receive at a baud rate of 300. When the
Terminal Emulator program is initially executed, the baud rate is set to
300 if the internal modem is present. If a device other than the internal
modem is to be used, the baud rate can be increased.

CHANGING THE BAUD RATE

All specifications are changed by entering the line where the change
is to occur, followed by the change itself. In the case of the baud rate, the
line number is 1. Therefore, to change the baud rate, simply type the
number 1 followed by a comma and the new baud rate. Acceptable values
for baud rate are 300, 600, 1200, 1800, 2400, and 4800.

260 IBM PCjr User's Handbook

EXAMPLE: 1,1200

RESULT: The baud rate is changed to 1200. The new baud rate will

appear in the brackets in line 1. The numbers in the paren
theses show the possible range of values for the baud rate.

DATA BITS

The number of bits transmitted for each piece of data is known as
data bits. The number of data bits can only be 7 or 8. The value chosen for
the number of data bits depends entirely on the host computer. If the host
computer transmits 7 data bits, then the data bits should be set to 7. If the

host computer transmits 8 data bits, then the data bits should be set to 8.

Consult the specifications of the host computer to determine the number
of data bits to use.

CHANGING THE NUMBER OF DATA BITS

All specifications are changed by entering the line where the change
is to occur followed by the change itself. In the case of the data bits, the
line number will be 2. Therefore, to change the number of data bits, type
the number 2 followed by a comma and the number of data bits desired.

EXAMPLE: 2.8

RESULT: The number of data bits will be changed to 8. The number
of data bits currently being used will be displayed in
brackets. The values enclosed in parentheses are values
that could be used for the number of data bits.

PARITY

Parity is a method used by computers to check for errors that may
have occurred during transmission. In order for this error detection

method to work properly, both computers must be set on the same parity
type-

Parity takes advantage of the fact that data is transmitted in sets of
one's and zero's. An error can be detected simply by determining if an
even or odd number of one's has been received.

There are two types of parity. The first type is even parity. Even
parity means that both computers will transmit data with an even
number of one's. If either computer receives data with an odd number of

PCjr Communications 261

one's, an error has occurred in the transmission.
The second type of parity is odd parity. Odd parity means that both

computers will transmit data with an odd number of one's. If either
computer receives an even number of one's, an error has occurred in the
transmission.

The parity type that should be chosen depends entirely on the host
computer. If the host computer uses even parity, then even parity should
be used on the PQ>. If the host computer uses odd parity, then odd parity
should be used on the PQr. If the host computer uses no parity check,
fhen the N option should be chosen. Consult the specifications of the host
computer to determine the type of parity that should be used.

CHANGING THE PARITY

All specifications are changed by entering the line where the change
is to occur followed by the change itself. In the case of parity, the line
number is 3. The possible options for parity are EVEN (E), ODD (O), or
NONE (N). To change the parity, type the number 3 followed by a
comma and the desired parity option.

EXAMPLE

RESULT

EXAMPLE

RESULT

3,0

Changes the parity type to odd.

3,N

Turns off the parity check.

ECHOING

Echoing is the process by which the host computer returns the
original message to the sender to verify that the message was properly
received. If yes (Y) is specified for echo, the PCyr will not display what has
been typed until the host computer sends back the original message. If no
(N) is specified for echo, the PQ> will display all characters as they are
typed. The PQr will not wait for an echo from the host computer.

Whether or not an echo is specified depends entirely on the host
computer. If the host computer does echo characters, then yes (Y) should
be specified for echo. If the host computer does not echo characters, then
no (N) should be specified for echo.

262 IBM PCjr User's Handbook

CHANGING THE ECHO STATUS

All specifications are changed by entering the line where the change
is to occur followed by the change itself. In the case of echo, the line

number will be 4. The possible options for echo are yes (Y) and no (N). To
change the echo status, type the number 4 followed by a comma and
either Y or N.

EXAMPLE: 4,N

RESULT: The PQ'r will not wait for echoed characters and will

display all characters as they are typed.

SCREEN WIDTH

The screen width specifies the number of characters that will be

displayed on one line. The two possible options for screen width are 40
and 80. In order to display 80 characters per line, the PQ'r being used
must have 128K of memory. If the PQ'r being used has only 64K of
memory, only 40 characters can be displayed per line.

CHANGING THE SCREEN WIDTH

The screen width option appears on line 5. Therefore, a 5 must be

specified to change the screen width. The line number should be followed

by a comma and the desired screen width (40 or 80).

EXAMPLE: 5,80

RESULT: The screen width becomes 80 characters per line.

MODEM COMMANDS

Modem commands are specialized commands used with the IBM

internal modem. If the IBM internal modem is not present, this option
will not appear in the terminal selection menu.

There are several modem commands that can be used with the

Terminal Emulator program. These commands will be discussed

individually.

PCjr Communications 263

1. ANSWER command (A)

The ANSWER command is used to put the modem in the
Answer mode.

EXAMPLE: A

RESULT: The modem will respond to an incoming tone.

2. BREAK command (B)

The BREAK command is used to send a break character

for a specified amount of time. The argument of the
BREAK command must be in hexadecimal. The argu

ment specifies the multiple of 100 milliseconds at which a
break character should be sent.

EXAMPLE: B4

RESULT: The modem will send a break character for a period of 400
milliseconds.

3. COUNT command (C)

The COUNT command will cause the modem to answer

an incoming call after a specified number of rings.
COUNT'S argument specifies the number of rings for
which the modem should wait. The argument must be in
hexadecimal format.

EXAMPLE: C7

RESULT: The modem will answer an incoming call after 7 rings.

4. DIAL command (D)

The DIAL command causes the modem to automatically
dial a specified number. The number can be up to 33
digits in length.

Several options may be used with the DIAL command.
These options are as follows:

P: Specifying a P after the DIAL command causes the
modem to wait for 10 seconds for a dial tone.

W: Specifying a W before a set of numbers causes the
modem to wait 5 seconds before continuing to dial.

This feature is convenient when an access code is

necessary to reach an outside line.

I: Specifying an I before a set of numbers causes the
following numbers to be rotary-dialed as opposed
to tone-dialed.

264 IBM PCjr User's Handbook

EXAMPLE: DIAL P 9876543

RESULT: The modem will wait 10 seconds for a dial tone and then
proceed to dial the specified number.

EXAMPLE: DIAL 9 W 9876543

RESULT: The modem will dial a 9, wait 5 seconds, then dial the given
number.

5. FORMAT command (F)

The FORMAT command is used to specify several
transmission specifications. However, these transmis
sion specifications have already been set in lines I
through 5 of the Terminal Emulator program. Therefore,
the FORMAT command need not be specified when
using the Terminal Emulator program. The FORMAT
command is generally used when accessing the modem
through BASIC.

6. HANGUP command (H)

The HANGUP command causes the modem to hang up
the phone lines. This command does not apply when
using the Terminal Emulator program, since Fn 1 will
cause the modem to break all connections.

7. INITIALIZE command (I)

The INITIALIZE command causes the modem to re

start. This is identical to a cold start. When the INITIAL
IZE command is executed, all modem default options
will be assumed.

EXAMPLE: I

RESULT: The modem performs a cold start on itself.

8. LONG RESPONSE command (L)

The LONG RESPONSE command modifies the message
feedback to either long or short. If a zero is used as the
LONG RESPONSE argument, the message feedback
will be set long. If a one is specified as the LONG
RESPONSE argument, the message feedback will be set
short.

EXAMPLE: L 1

RESULT: The message feedback will be set short.

PCjr Communications 265

9. MODEM command (M)

The MODEM command sets the modem into the data

state. The signal carrier is placed on the line:

EXAMPLE: M

RESULT: The modem is set into the data state.

10. NEW command (N)

The NEW command is used to change the command
character. The command character is only used when
entering modem commands from BASIC. When using
the Terminal Emulator program, command characters
are not necessary.

11. ORIGINATE command (O)

The ORIGINATE command causes the modem to go

into the originate mode. The modem will generate the
originate tone.

EXAMPLE: O

RESULT: The modem assumes the originate mode.

12. PICKUP command (P)

The PICKUP command causes the modem to go into the

voice state. Generally, this command will only be used in
the BASIC command mode and not while executing the
Terminal Emulator program.

13. QUERY command (Q)

The QUERY command is used to display information
regarding modem operation. Table 10-1 lists the possible
characters returned by the QUERY command.

EXAMPLE: Q

RESULT: A modem status report will be displayed in the format
depicted in table 10-1.

14. RETRY command (R)

The RETRY command is used in conjunction with the
DIAL command. The RETRY command will cause the

modem to redial a number up to ten times if a busy signal
is encountered.

266 IBM PCjr User's Handbook

Table 10-1. Possible Results of QUERY Command

Character display Meaning

HO Modem is presently off hook.

HI Modem is presently on hook.

S# The number following the S specifies the present
setting of COUNT.

B The number dialed gave a busy signal.

D There is no dial tone. The line is dead.

L The number was dialed and there is a connection.

N The number was dialed but the dial tone is still

present.

TO Integrity test passed.

T1 Integrity test failed.

EXAMPLE: R

RESULT: The modem will redial the present number up to ten times if
a busy signal is encountered.

15. SPEED command (S)

The SPEED command is used to set the baud rate at

which the modem will send and receive data. The SPEED

command is not necessary when using the Terminal Emu
lator program since this option is already included in the
main menu.

16. TRANSPARENT command (T)

The TRANSPARENT command causes the computer to
ignore command sequences which normally are directed
to the modem. The modem will send every character it
receives. This command is not necessary when using the
Terminal Emulator program. The Terminal Emulator
program has a separate conversation mode and main
menu mode.

17. VOICE command (V)

The VOICE command causes the modem to go into the
voice state. This command is generally used in the BASIC
command mode and not while executing the Terminal
Emulator program.

PCjr Communications 267

18. WAIT command (W)

The WAIT command causes the modem to stop any

actions and wait for the next command from the host

computer.

EXAMPLE: W

RESULT: The computer stops all actions and waits for a command
from the host computer.

19. XMIT command (X)

The XMIT command can only be used in the voice state.

This command is used to send Dual Tone Modulated

Frequency tone pairs while in the voice state. This
command is generally used only in the BASIC command
mode and not while executing the Terminal Emulator
program.

20. ZTEST command (Z)

The ZTEST command is used to place the modem in the
test mode. The Terminal Emulator program is presently
set to perform a hardware test when the modem is acti
vated. Therefore, the ZTEST command need not be used

with the Terminal Emulator program.

ENTERING A MODEM COMMAND

A modem command is entered by typing the number 6 followed by
the modem command. If more than one modem command is to be

entered, they should be separated by commas. When the modem
commands are entered via the Terminal Emulator program, they will not

be sent to the modem until Fn 1 is pressed. Fn 1 initiates the conversation
mode and sends all modem commands to the modem.

EXAMPLE: 6, DIAL 9876543, R

RESULT: When Fn 1 is pressed, the modem will be instructed to dial
the number 987-6543 and to keep dialing if a busy signal is
encountered.

EXAMPLE: 6, COUNT 3, 0

RESULT: When Fn 1 is pressed, the modem will be instructed to
answer an incoming call after three rings. The modem will
be in the originate mode.

268 IBM PCjr User's Handbook

ERRORS

If an error is made while entering a line, that line will be ignored. No
error message will be displayed. If an error is discovered in a line before

ENTER is pressed, the line can be erased by pressing ESC. No other
editing keys are functional.

FUNCTION KEYS

There are several special keys available that can be used in the
Terminal Emulator program. These special function keys are described in
table 10-2.

Table 10-2. FunctionKeys

Keys Purpose

Fn+ I Initiates the connection between the host computer
and the PQ>. Also, all modem commands in line 6
will be sent to the modem. The Terminal Emulator

program will now be in the conversation mode.

If the Terminal Emulator program is presently in
the conversation mode and Fn 1 is pressed, the
Terminal Emulator program will return to the
terminal menu. Any connection with the host
computer will be broken.

Fn + 2 Causes the Terminal Emulator program to stop.
The computer returns to normal BASIC operation.
The Terminal Emulator program will still reside in
memory and can be executed using a RUN
statement.

Fn + 3 Sends a null character to the host computer. Fn 3
is only operational in the conversation mode.

Fn + 4 Sends a BREAK signal to the host computer. Fn 4
is only operational in the conversation mode.

PCjr Communications 269

USING THE TERMINAL EMULATOR PROGRAM

This section will provide a step by step approach to the use of the

Terminal Emulator program for communicating with a host computer.

The first step for communicating with a host computer is to acquire its

communications specifications. This information is generally supplied to

the subscriber of the host computer. For this example, the following

communications specifications will be used:

Line Bit Rate (Baud Rate) 300

Data Bits 7

Parity Type Odd

Host does not echo characters

Host is in orginate mode.

In order for the IBM PQr to communicate with this particular host

computer, the Terminal Emulator program must be used to change some

of the communications specifications. The first step is to execute the

Terminal Emulator program by entering the TERM command. The

Terminal Emulator program will begin execution and the Terminal
selection menu will be displayed on the screen as shown in figure 10-1.

(TERM) — Terminal Emulator

1 Line bit rate

2 Data bits

3 Parity type

4 Host echoing

5 Screen width

6 Modem Command []

[300] (300..4800)

[7] (7 or 8)

[E](E.O.orN)

[Y] (Y or N)

[80] (40 or 80)

Change <line,data>? |
cursor

f1=Conv f2=Exit f3=Nul f4=Break

Figure 10-1. Terminal Selection Menu after Execution of TERM

270 IBM PCjr User's Handbook

Once the terminal selection menu appears on the screen, changes can
be made in any or all of the communications specifications. For this

example, the line bit rate and the number of data bits will not have to be

changed. The parity type, however, must be changed from even to odd.

This is accomplished by typing the line number where the change is to be
made, in this case 3, followed by the desired change, in this case 0, for

odd. The screen should appear as shown in figure 10-2.

(TERM) — Terminal Emulator

1 Line bit rate

2 Data bits

3 Parity type

4 Host echoing

5 Screen width

6 Modem Command []

[300] (300..4800)

[7] (7 or 8)

[E] (E.O, orN)

[Y] (Y or N)

[80] (40 or 80)

Change <line,data>? 3,01 ̂
cursor

f1=Conv f2=Exit f3=Nul f4=Break

Figure 10-2. Terminal Selection Menu after Changes in
Communications Specifications

The parity type will not be changed until the Enter key has been
pressed. Once the Enter key has been pressed, the parity change will
appear in line 3. The screen will resemble that depicted in figure 10-3
when the Enter key has been pressed.

PCjr Communications 271

(TERM) — Terminal Emulator

1 Line bit rate

2 Data bits

3 Parity type

4 Host echoing

5 Screen width

6 Modem Command []

[300] (300..4800)

m (7 or 8)

[O] (E,0, or N)

[Y] (Y or N)

[80] (40 or 80)

Change <rme,data>?

cursor

f1=Conv f2=Exit f3=Nul f4=Break

Figure 10-3. Terminal Emulator Selection Menu after Pressing Enter Key

The next change which must be made is in line 4. According to the
communications specifications, the host computer does not echo charac

ters. The Terminal Emulator is presently set for a host computer that

does echo characters. This must be changed by typing the line number (4)

followed by "N". The "N" signifies that the host computer does not echo

characters.

As with the parity type, the change will not be made until the Enter
key has been pressed. Pressing the Enter key at this point will cause the
change in the echo status to be made. The screen should appear as shown

in figure 10-4 after the Enter key was pressed.
The final changes that must be entered via the terminal emulator

program are the modem commands. The modem commands that will be
used in this example are DIAL, RETRY, and ANSWER. The DIAL
command will be used to instruct the modem to dial the number of the

host computer. The RETRY command will be used to redial the number
of the host computer if a busy signal is encountered. The ANSWER
command will be used to place the modem in the answer mode. This

command is necessary since the host computer is the originate mode.

All three of the modem commands that will be used can be abbrev

iated by their first character. When the modem commands are typed in,

the screen should appear as depicted in figure 10-5.

272 IBM PCjr User's Handbook

(TERM) — Terminal Emulator

1 Line bit rate [300] (300..4800)

2 Data bits [7] (7 or 8)

3 Parity type [O] (E.G. orN)

4 Host echoing [N] (Y orN)

5 Screen width [80] (40 or 80)

6 Modem Command []

Change <line,data>?||^
cursor

f1=Conv f2=Exlt f3=Nul f4=Break

Figure 10-4. Terminal Emulator Menu after Adjusting Host Echoing

(TERM) — Terminal Emulator

1 Line bit rate [300] (300..4800)

2 Data bits [7] (7 or 8)

3 Parity type [0] (E,0. orN)

4 Host echoing [N] (Y orN)

5 Screen width [80] (40 or 80)

6 Modem Command []

Change <llne,data>? 6,D 9876543,R,A

f1=Conv f2=Exit f3=Nul f4=Break

Figure 10-5. Terminal Emulator Menu after Modem Command Entries

PCjr Communications 273

The number following the DIAL command is the number of the host

computer. Each command must be separated by a comma. At this point,
press the Enter key and the screen will appear as shown in figure 10-6.

(TERM) — Terminal Emulator

1 Line bit rate

2 Data bits

3 Parity type

4 Host echoing

5 Screen width

[300] (300..4800)

[7] (7 or 8)

[O] (E.O, orN)

[N] (Y orN)

[80] (40 or 80)

6 Modem Command [D9876543,R,A]

Change <iine,data>?

f1=Conv f2=Exit f3=Nul f4=Break

Figure 10-6. Terminal Emulator Menu after Pressing Enter

The Terminal Emulator is now prepared to connect the PCjr to the

host computer. At this point, simply hold down the Fn key and press the 1

key. The modem will automatically dial the number of the host computer
and establish a connection. If an error occurs in establishing a connection
between the FQ'r and the host computer, an error message will be

displayed on the screen. If the connection has been properly made, the
following message will be displayed:

CONNEGTION...COMPLETE

Ok

The PCjr is now connected to the host computer. The PCjr can now
be used as a direct terminal link to the host computer.

If at any time, the connection needs to be broken, simply hold down
the Fn key and press the 1 key. This will cause the terminal emulator

program to return to the terminal selection menu.

Appendix A. 275

Appendix A.
PCjr BASIC Reserved Words

Reserved words are words which have a special meaning in BASIC.

They include all BASIC commands, statements, function names, and

operator names.

Reserved words are not allowed to be used as variable names in

BASIC statements. Also, reserved words must be delimited in BASIC

statements so that they can be recognized. Generally, referenced words

can be delimited through the use of blank spaces or special characters.

PCjr BASIC Reserved Words

ABS DIM lOCTL OR SPACES
AND DRAW lOCTLS OUT SPC(
ASC EDIT KEY PAINT SQR
ATN ELSE KILL PALETTE STEP

AUTO END LEFTS PCOPY STICK

BEEP ENVIRON LEN PEEK STOP

BLOAD ENVIRONS LET PEN STRS

BSAVE EOF LINE PLAY STRIG

CALL EQV LIST PMAP STRINGS

CDBL ERASE LLIST POINT SWAP

CHAIN ERDEV LOAD POKE SYSTEM

CHDIR ERDEVS LOC POS TAB(
CHR$ ERL LOCATE PSESET TAN

CINT ERR LOF PRINT TERM

CIRCLE ERROR LOG PRINT# THEN

CLEAR EXP LPOS PSET TIMES
CLOSE FIELD LPRINT PUT TIMER

CLS FILES LSET RANDOMIZE TO

COLOR FIX MERGE READ TROFF

COM FNjrjcjcjcJCjrxA: MIDS REM TRON

COMMON FOR MKDIR RENUM USING

CONT FRE MKDS RESET USR

COS GET MKIS RESTORE VAL

CSNG GOSUB MKSS RESUME VARPTR

CSRLIN GOTO MOD RETURN VARPTRS
CVD HEX$ MOTOR RIGHTS VIEW

CVI IF NAME RMDIR WAIT

CVS IMP NEW RND WEND

DATA INKEYS NEXT RSET WHILE

DATE$ INP NOISE RUN WIDTH

DEE INPUT NOT SAVE WINDOW

DEFDBL INPUT# OCTS SCREEN WRITE

DEFINT INPUTS OFF SGN WRITE#

DEFSNG INSTR ON SHELL XOR

DEFSTR INT OPEN SIN

DELETE INTERS OPTION SOUND

276 IBM PCjr User's Handbook

Appendix B.
DOS Reserved Words

ASSIGN

BACKUP

BREAK

CHDIR

CHKDSK

CLS

COMP

COPY

CTTY

DATE

DIR

DISKCOMP

DISKCOPY

ECHO

ERASE

EXE2BIN

FIND

FOR

FORMAT

GOTO

GRAPHICS

IF

MKDIR

MODE

MORE

PATH

PAUSE

PRINT

PROMPT

RECOVER

REM

RENAME

RMDIR

SET

SORT

SYS

TIME

TREE

TYPE

VER

VERIFY

VOL

Appendix C. 277

Appendix C.
ASCII Character Codes

In the following table, the ASCII codes will be given with any

associated characters and control characters (for codes 0-31).

If you wish to display these characters, you can do so by issuing the
following statement:

PRINT CHR$(x)

where x is the ASCII code of the character being displayed.

ASCII Control ASCII Control

Value* Character Character Value Character Character

000 (n^l) NUL 016 ► OLE

001 © SOH 017 <
i

DCl

002 O STX 018 i DC2

003 ¥ ETX 019 If DC3

004 ♦ EOT 020 IT DC4

005 ENQ 021 NAK

006 ♦ ACK 022
i

SYN

007 (beep) BEL 023 i ETB

008 n BS 024 4 CAN

009 (tab) HT 025 t EM

010 (line feed) LF 026 SUB

Oil (home) VT 027 ESC

012 (form feed) FF 028 (cursor right) FS

013 (carriage return) CR 029 (cursor left) GS

014 SO 030 (cursor up) RS

015 SI 031 (cursor down) US

♦ Decimal

278 IBM PCjr User's Handbook

ASCII ASCII ASCII

Value Character Value Character Value Character

032 (space) 071 G 110 n

033 1 072 H 111 0

034 " 073 1 1 12 P

035 # 074 J 1 13 q

036 $ 075 K 114 r

037 % 076 L 1 15 s

038 . & 077 M 116 t

039 078 N 117 u

040 (. 079 O 118 V

041) 080 P 119 w

042 * 081 Q 120 X

043 + 082 R 121 y

044 , 083 S 122 z

045 - 084 T 123 {
046 085 U 124 1

1

047 / 086 V 125 1
048 0 087 W 126

6049 1 088 X 127

050 2 089 Y 128

051 3 090 Z 129 IT

052 4 091 [130
/

e

053 5 092 \ 131
A

a

054 6 093] 132 a

055 7 094 A 133
\

a

056 8 095 134 §.
057 9 096 135 Q

058 097 a 136
A

e

059 098 b 137 e*

060 < 099 c 138
\

e

06! = 100 d 139 "\

062 > 101 e 140 t

063 7 102 f 141
\

1

064 (5) 103 g 142 X

065 A 104 h 143 X
066 B 105 i 144 E

067 C 106 j 145 CE

068 D 107 k 146

069 E 108 1 147 6
070 F 109 m 148 0

Appendix C. 279

ASCII ASCII ASCII

Value Character Value Character Value Character

149
\

0 188 227 n

150
A

U 189 -11 228 2

151
\

u 190 =A 229 0

152 y 191 —1 230

153 0 192 L 231 T

154 u 193 j_ 232 4>

155 c 194 T 233 0

156 £ 195 h 234 n

157 196 — 235 6

158 Pt 197 + 236 oo

159 / 198 N 237 0

160 a 199 Ih 238 e

161
/

1 200 239 n

162
/

0 201 IP 240 =

163
/

u 202 JL 241 ±

164 n 203 if 242 >

165 N 204 \k 243 <

166 205 = 244 r

167 206
JL
ir 245 j

168 i 207 246

169 208 JLL 247

170 209 248 o

171 '/2 210 TT 249 •

172 '/4 211 11. 250 ■

173 i 212 b= 251

174 213 f= 252 n

175 > 214 rr- 253 2

176 215 + 254 ■

177 216 4= 255 (blank TF')

178 217 J

179 1 218 r
180 H 219 ■

181 =4 220 —

182 HI 221 1
183 -n 222 1
184 223

185 HI 224 oc

186 II 225 p
187 =t1 226 r

280 IBM PCjr User's Handbook

Appendix D.
Printer Usage with the PCjr

A printer can be a valuable addition to a PCjr computer system

allowing it to perform a number of useful tasks. For example, a printer
enables the PQ'r to function as a word processor. IBM provides two ways
to interface a printer to the PCjr:

• IBM PCjr Parallel Printer Attachment

• Serial Port (built-in)

Almost any parallel printer may be connected to the PCjr after the
Parallel Printer Attachment has been correctly installed. Specifically,
IBM markets a medium-priced parallel printer — the IBM 80 CPS

Matrix Printer.

As an alternative to the Parallel Printer Attachment, the consumer

may elect to use the Serial Port on the back panel of the PCjr. This port is

indicated with an "S".

The inexpensive IBM PC Compact Printer plugs directly into the
Serial Port. Although the Compact Printer attaches quite easily to the
Serial Port, the connector used is not the industry standard — RS232 (25
pin-D connector). A serial adapter cable may be purchased to allow any
RS232 compatible printer to interface to the PCjr through the Serial Port.

LISTING PROGRAMS

The LIST command can output a copy of the program currently
stored in the computer's memory. Since the printer is known as "LPT 1:",
the LIST command requires this device name to cause the output to be
sent to the printer.

LIST "LPTi:"

The LLIST command is functionally equivalent to the previously
described LIST command. Note that "LPT 1:" is an abbreviation for Line

Printer #1.

Appendix D. 281

OUTPUTTING DATA

A PRINT# statement is most commonly used to output data to the

printer. However, an I/O channel must be opened for the printer before
any data can be output. The following statement is a typical OPEN

statement that can be used to establish an I/O channel for the printer:

OPEN "LPTI:" FOR OUTPUT AS #3

The following example program demonstrates the use of the OPEN
and PRINT# statements to output data to the printer:

100 OPEN "LPT1:" FOR OUTPUT AS #1

110 FOR J = 1 TO 15

120 PRINT#1,J,J'^2

130 NEXT

140 CLOSE #1

150 END

If only intermittent printer output is necessary for a specific pro

gram, it is advisable to use LPRINT instead of PRINT#. The equivalent

of the previous program,using LPRINT is given below:

100 FOR J = 1 TO 15

110 LPRINTJ,J^2

120 NEXT

130 END

Notice that no OPEN statement is required with LPRINT. Gener

ally, PRINT# is used in place of LPRINT because PRINT# is faster than

LPRINT. The speed difference is difficult to notice in a short program,
but becomes apparent in more lengthy applications.

CONTROL CODES

All printers have control codes that select specific printer functions.

These codes can be used to change character sets or print styles, cause a
line feed or carriage return, and select other functions of the printer.

The IBM PC Compact Printer and the IBM 80 CPS Matrix Printer

are by far the most popular with the PCjr. IBM has written its printer

software to be compatible with these printers. The control codes for these

282 IBM PCjr User's Handbook

printers are given in the balance of this appendix. These codes may be sent
in BASIC by using the CHR$(/j) function.

Table D-1. IBM 80 CPS Matrix Printer (Graphics Printer)
Control Codes

Control Code Value Function

BEL 07 Sounds buzzer for 1 second

BS 08 Backspace

HT 09 Horizontal Tabulation

LF 10 Line Feed

VT 11 Vertical Tabulation

FF 12 Form Feed

CR 13 Carriage Return

SO 14 Turns on enlarged printing mode

SI 15 Turns on condensed printing mode

DCl 17 Selects printer

DC2 18 Turns off condensed mode

DC3 19 Deselects printer

DC4 20 Turns off enlarged mode

ESCO 27,48 Line spacing = 8 lines per inch

ESC2 27,50 Line spacing = 6 lines per inch

ESC8 27, 56 Deselects paper end detector

ESC9 27, 57 Selects paper end detector

ESC An 27, 65, n Line spacing = «/72 inches

ESC B n NUL 27, 66, n, 0 VT = «

ESCCn 27, 67, n Form length = n lines

ESC D n NUL 27, 68, n, 0 HT = w

ESCE 27,69 Turns on emphasized mode

ESCF 27, 70 Turns off emphasized mode

ESCK 27, 75 Turns on normal density

ESCL 27,76 Turns on dual density

ESCN 27, 78 Sets skip over perforation

ESCO 27, 79 Release skip over perforation

ESCQn 27, 81,n Column width = n

ESC Rn 27, 82,n Select character set = n

Appendix D. 283

Table D-2. IBM PC Compact Printer Control Codes

Control Code Value Function

HT 09 Horizontal Tabulation

LF 10 Line Feed

VT 11 Vertical Tabulation

FF 12 Form Feed

CR 13 Carriage Return

SO 14 Set Double Width

SI 14 Set Compressed

DC2 18 Compressed Off

DC4 20 Double Width Off

CAN 24 Clears the printer buffer

ESC- I 27, 45, 1 Set underline mode

BSC —0 27, 45, 0 Clear underline mode

ESC0 27, 48 Line feed =1/9 inch

ESC I 27, 48 Identical to ESC 0

ESC 2 27,50 Line feed =1/6 inch

ESC 5 1 27, 53, 1 Line feed after every CR

ESC 5 0 27,53,0 No line feed after every CR

ESC< 27, 60 Homehead

ESCBwNUL 27, 66, Ai, .0 Vertical Tab = n

ESCCn 27, 67, n Lines per page = n

ESCDwNUL 27, 68, n, 0 Horizontal Tab = n

ESC K n, «2 27, 75, n, 712 Sets graphics mode, n 81112 specify the number
of data points.

ESCNw 27, 78,n Set skip perforation. # of lines = n

ESCO 27,78 Cancel skip perforation

ESC R 27, 82 Clear Tabs

ESC W I 27, 87, 1 Set double width

ESC W0 27, 87, 0 Cancel double width

Appendix E. 285

Appendix E.
IBM PCjr Device Names

Device Name Interpretation

KYBD: Keyboard — used in all versions of BASIC for input.

SCRN: Screen — used in all versions of BASIC for output.

CASl: Cassette Tape Unit — used in all versions of BASIC
for input and output.

A: System Disk Drive — used in Cartridge BASIC and
Compiler BASIC for input and output.

LPTl: Printer — used in all versions of BASIC for output.

COMI: Asynchronous Communications Adapter — used in
Cartridge BASIC for serial input and output (if
internal modem is not present).

Internal Modem — used in Cartridge BASIC for
serial input and output using the phone lines.

COM2: Asynchronous Communications Adapter — used in
Cartridge BASIC for serial input and output (if
internal modem is present).

CON: Console — used in Cartridge BASIC for input and
output. Console is the combination of the Keyboard
and Screen devices.

286 IBM PCjr User's Handbook

Appendix R
IBM PCjr BASIC Error Messages

The following give all the BASIC error messages along with the
related error message number and a description of the error.

1 NEXT without FOR The variable that follows NEXT does not match with

any preceding FOR statement.

2 Syntax error The program line contains errors in punctuation or spelling
(ex. misspelled reserved word, deleted parentheses, etc.).

3 RETURN without GOSUB A RETURN statement is found which does

not have a corresponding GOSUB.

4 Out of data A READ statement is encountered where no more items are

available to be read from DATA statements.

5 Illegal function call A parameter is sent to a system function that is out of
range. Examples of the cause of this error include the following:

• A negative subscript
• A subscript that is too large
• A call to a USR function when the starting address for that function had

not been given
• A negative record number used with GET and PUT
• Trying to list or edit a BASIC program that is protected
• An argument for a function or statement that is not legal

6 Overflow A number is larger than that allowed by BASIC. If the overflow
occurs with an integer, program execution will stop. With non-integers,
machine infinity will be returned with the proper sign.

If a number is smaller than that allowed by BASIC, an underflow condition
will result. A zero will be returned and execution will continue.

7 Out of memory This error occurs when the program is too large for
available memory, or if a program contains too many FOR loops or
GOSUB's.

Appendix F. 287

8 Undefined line number A reference is made in the program for a line
number that does not exist.

9 Subscript out of range An array variable contains a subscript that is
outside of the range that was given in the DIM statement.

10 Duplicate definition The same array was defined twice. The following may
cause this error:

• Two DIM statements were included for the same array.

• A DIM statement is used for an array after a default dimension of 10 had
been established previously.

• An OPTION BASE statement which sets an unacceptable array size was
encountered after an array had already been dimensioned by a DIM
statement or by default.

11 Division by zero Either division by zero was attempted, or an attempt was
made to raise to a negative power.

12 Illegal direct An attempt was made to enter a statement in the direct mode
that can only be entered in indirect.

13 Type mismatch The data used for a variable does not match that variable's
type (ex. numeric data for a string variable).

14 Out of string space BASIC assigns available free memory to string varia
bles until that memory has been depleted. When this occurs, this message will
be displayed.

15 String too long The user attempted to create a string in excess of 255
characters.

16 String formula too complex The string expression is too long or too
complex. Try breaking the expression into smaller, less complex expressions.

17 Cant continue CONT was used in one of the following situations:

• CONT was used to attempt to start a program that had stopped because of
an error.

• CONT was used to attempt to start a program that had been changed
during a temporary halt in execution.

• CONT was used to attempt to start a program that does not exist.

288 IBM PCjr User's Handbook

18 Undefined user function A function was called before it was defined with

DEF FN.

19 No RESUME The program branched to an error trapping routine without
a RESUME statement.

20 RESUME without error A RESUME statement was encountered before

an error trapping routine was executed.

22 Missing operand No operand following an operator such as +, *, AND.

23 Line buffer overflow The user tried to enter a line containing too many
characters.

24 Device Timeout Information was not received from an input or output
device within an allotted length of time.

25 Device Fault A hardware error flag was returned by the interface adapter.

26 FOR without NEXT A FOR statement was encountered without a corres

ponding NEXT.

27 Out of Paper Either the printer has run out of paper or it is not turned on.

29 WHILE without WEND A WHILE statement was encountered without a

corresponding WEND.

30 WEND without WHILE A WEND statement was encountered without a

corresponding WHILE statement.

50 FIELD overflow The program contains a FIELD statement in which more

bytes are allocated for a random file's record length than were specified for
that file in its OPEN statement. Another possibility is a situation where the
end of the FIELD buffer was reached while a sequential input/output was
being performed to a random file (ex. PRINT#, WRITE#, INPUT#, etc.).

51 Internal Error Some problem is present internally in BASIC. Call IBM or
your IBM dealer with a description of the circumstances under which the
error occurred.

Appendix F. 289

52 Bad file number A file number is referenced that is not currently assigned
to an open file, or is not within the range of valid file numbers specified
during initialization. Another possibility is when an invalid device name is
used in a file specification or when the filename is invalid.

53 Filenotfound A file is referenced in a LOAD, KILL, FILES, NAME, or
OPEN that does not exist on the diskette on the specified drive.

54 Bad file mode Thiserroroccurs when the PUT or GET statement was used
with one of the following:

• Sequential file
• Closed file

• To MERGE a non-ASCII file

• To execute an OPEN with a file mode other than input, output, append, or
random

55 File already open An attempt was made to open a file that had been
previously opened for sequential output or an append. This error also occurs
when an attempt is made to kill an open file.

57 Device I/O Error An error occurred during a device I/O operation. Error
recovery is not possible in DOS.

58 File already exists The filename with a N AM E statement duplicates that of
a filename already being used on that diskette.

61 Disk full The entire diskette space is being used. When this error occurs, all
files will be closed.

62 Input past end This error statement indicates that an end of file error
occurred. This is caused by an INPUT# statement being executed for a
sequential file whose entire data has already been read or for a null file. By
using the EOF function, this error can be avoided. Another cause of this
error is an attempt to read from a file that had been opened for an append or
for output.

63 Bad record number The record number used in a GET or PUT statement
was either zero or was greater than the allowed maximum (32767); BASIC
2.0 (16,777,215); Cartridge BASIC (16,777,215).

290 IBM PCjr User's Handbook

64 Bad filename An invalid form is used for a filename.

66 Direct statement in file Any ASCII files loaded by LOAD or CHAIN
should only contain statements with line numbers. If a direct statement is
encountered in a program file being LOAD'ed or CH AIN'ed, the LOAD or
CHAIN will be terminated. A common cause of this error is the inclusion of

a line feed character.

67 Too many files An incorrect file specification was used, or an attempt was
made to create a new file when the directory was full.

68 Device unavailable An attempt was made to open a file to a non-existent
device. The device may have been disabled or the hardware may not be
present.

69 Communications buffer overflow A communications input statement was
executed with the input buffer already full. When this error condition occurs,
use the ON ERROR statement to attempt input again. When ensuing inputs
are attempted, the error condition will be cleared unless characters are
received at a rate faster than the program can process them. In this case, try
one of the following:

• Use IC: option when starting BASIC to increase the size of the communi
cations buffer.

• Use a hand-shaking routine with the other computer to send a message to
tell it to stop sending data so that the receiving computer can empty its
buffer.

• Use a lower baud rate for data transmission and reception.

70 Disk write protect The user attempted to write to a diskette that was
write-protected.

71 Disk not ready Either a diskette is not in place or the diskette door is open.

72 Disk media error Generally, this is due to a bad diskette, although the
cause can be a hardware related problem. The user should copy any existing
data to a new diskette and reformat the bad diskette. If the formatting fails,
the diskette is unusable and should be discarded.

Appendix F. 291

73 Advanced feature This error occurs when a program attempts to use an
Advanced BASIC feature when Disk BASIC is being used. Load Advanced
BASIC and run the program under it.

74 Rename across disks During an attempt to rename a file, the wrong disk
identifier was used.

75 Path/File Access Error The user used an illegal path or filename during an
OPEN, NAME, MKDIR, CHDIR, or RMDIR statement.

76 Path not found The specified path cannot be located.

- Incorrect DOS version The command specified requires a different version
of DOS.

— Unprintable error The error condition does not have a corresponding error
message. This message is generally the result of using an ERROR statement
with an undefined error code.

- Cartridge required Anattempt was made to access BASIC from a diskette
without the BASIC Cartridge present.

Index 293

Index

A: 136, 154

A command 180

ABS 107, 121

Absolute addressing 172

Addition 79

Advanced BASIC 21-22

Adventure 24

Alt key 49-51
ALU 18

AND 83-84

Answer commands 263

APPEND 139

Append Lines command 249
Applications Software 20, 23-24
Argument 62
Arithmetic expression 72
Arithmetic operators 78

Arrays 109-111

ASC 125-126

ASCII codes 277-279

Aspect 174, 178
Assignment statement 76
Asynchronous Communications Adapter 16,

285

ATN 120

Attribute 167

AUTOEXEC.BAT 243

B

B: 173

B command 179

BACK 198

Back-ups 219, 224
.BAK 248

BASIC 17, 20

commands 61

statements 61

command entry 58

error messages 64, 286-291

file commands 154-157

program entry 62-63
program listing 64-65

reserved words 275

start-up 55-60

.BAT 242

Batch processing 242-246

Batch subcommands 244-246

Baud rate 259-260

BEEP 183, 186

BE 173

Bit 18

Boolean expression 77

Boolean operators 83-86
Boot record 223, 256

Branching Statements 100-103

BREAK 237

294 IBM PCjr User's Handbook

Break command 263

Buffer 186

Buffer variable 147-148

Built-in function 117

Byte 18

C command 179-180

Cartesian coordinates 161

Cartridge BASIC 22-23, 285

Cartridges 24, 25

CASl: 135, 154-155, 285

Cassette BASIC 21

CHAIN 130-131, 154, 156-157

Chaining, programs 130
CHKDSK 232-233

CHR$ 72, 125-126, 144

CIRCLE 173-175

aspect 174
CLEAN 206

CLEAR 112-113, 167

CLEAR SCREEN 199, 206

CLEARTEXT 207

CLOSE 141

CLS 93, 229

COLOR 170-171

Color burst signal 166

Colors 169, 205

COMl: 136, 285

COM2: 136, 285

COMMON 130-131, 157

Commands 61

COMP 226-227

Compiled languages 21

Compound expression 79-80
CON: 285

Concatenation, string 123
Conditional Statements 99-100

CONFIG.SYS 59

Connectors, device 17

Constant 72

Control Codes 281-283

COPY 224, 226

Copy Lines command 249-250

COS 119-120

Count command 263

CPU 18

CS206

CTTY 231-232

CVD 151

CVI 151

CVS 151

D command 177

Daisy wheel printers 32
DATA 113-117

Data files 133-135

Data bits 260

Data types 71
DATE 230-231

Date entry 213-214

DEFFN 121-122

DEL 229

Del key 66
DELETE 63

Delete Lines command 250

Delimiter 134

Density 29
Descriptor 126-127
Device name 135-136

Dial command 263-264

DIM 111-113

DIR 227-228

Direct access 136

Directory 223, 227-228
Disk BASIC 21-22

Disk drives 20

Disk drives, operation 32
DISKCOMP225

DISKCOPY 220, 224-225

Diskette 27

double-sided 31

envelope 27
read/write slot 27

write-protection 31
Division 79

DOS 211

DOS 2.1 20, 57

DOS prompt 57
back-ups 224

copying 219

data entry 213
data sent to printer 218
editing keys 218
error correction 216-217

external commands 212

internal commands 212

keyboard usage 216

print screen 217

Index 295

prompt 215-216

reserved words 276

start-up 213
stopping commands 216

system reset 218
time entry 214-215

Dot matrix printers 32

Double printing 37

Double-sided diskettes 31

DRAW 177

A command 180

B command 179

C command 179-180

D command 177

E command 177

F command 177

G command 177

H command 177

L command 177

M command 178-179

N command 179

P command 180

R command 177

TA command 180

X command 182-183

Dummy argument 122

E command 177

Echo 218

ECHO 245

Echoing 261-262
EDIT 199

Edit lines command 250-251

Editing 66-67

EDLIN 218, 246-256

Append Lines 249

Copy Lines 249-250
Edit Lines 250-251

End Edit 251

Insert Lines 251-252

List Lines 252

Move Lines 252-253

Quit Edit 253-254
Page 253
Replace Text 254
Search Text 254-255

Transfer Lines 255

Write Lines 255-256

Emphasized printing 37

END 200

End Edit command 251

EOF 145, 151

Epson MX-80 printer 37
EQV 83, 85

ERASE 229

ERL 109

ERR 109

Error handling 107

Error messages 64, 286-291

Errors 268

EXP 120

Expansion Unit 16

Exponentiation 78-79

Expression 77
arithmetic 77

Boolean 77

compound 79-80
relational 77

simple 79-80

External command 212

F command 177

FIELD 148, 150

Field Variable 147-148

Fields 133-134

File 221

File access 136

File Allocation Table 223

File commands 154, 157

Filename 68, 135, 231

Filename extension 135-136, 221

Filename match characters 226

File specification 135-136

Files 133

FILES 154, 156-157

random 136-138

sequential 136-138
FILL 202-203

Filters 238-239

FIND 239-240

Fixed disk drive 16

Fixed point 73-74

Floating point 73-74
Fn keys 49-51

FOR,NEXT 116-117,245

FORMAT 223

Format command 264

Format string 93

296 IBM PCjr User's Handbook

Formatting character,

♦96

+ 95

- 95-96

$ 94, 95

#94

, comma 95

FORWARD 198-199

FRE 113, 127

Function keys 268

Functions 117, 128-129

built-in 117

mathematical 118-121

string 123-124

user-defined 118

G comand 177

GDL 177, 182-183

GET 150-151

GOTO 100-101

GOSUB 100-101

GOTO 245

Graphic, low resolution 159-160
GRAPHICS 233

Graphics Definition Language 177

Graphics modes 159

colors 169

high resolution 159-160

low resolution 159-160

medium resolution 159-160

H

H command 177

Hangup command 264

Hard sectors 28, 30

HIDETURTLE 197

High resolution graphics 159-160
HOME 204

Home Budget 24

Housekeeping 127

I

I 140

IBMBIO.COM 236, 256

IBMDOS.COM 236, 256

IBM

Color Display 13

Compact Printer 34, 283

Graphics Printer 36-37

Keyboard Cord 38-39

Logo version 1.00 195

PC 11, 15-16

PC XT 11, 15-16

PC/r 11, 15-16

Attachable Joystick 37-38

communications 257-273

enhanced model 11, 12

entry model 11, 12

installation 43-48

keyboard 13, 15

Parallel Printer Attachment 280

peripheral ports 52-53

power supply/transformer 13, 15
printer usage 280-283
sound 183-190

start up 48-49
system unit 13, 14

80 CPS Matrix Printer 280-283

IF 99-100, 245

Immediate mode 60

IMP 83-84

Impact dot matrix printer 34

Index hole 28-30

Index variable 104

Infrared link 16

Initialize command 264

INKEYS 90, 99, 113

INPUT 90, 97-98, 113, 139

INPUT# 142-143

INPUTS 142, 144-145

Ins key 66

Insert Lines Command 251-252

Installation 43-48

INT 121

Integer division 79

Integers 73-74
Intel 8088 11, 17-19

Internal command 212

Internal modem 40, 257-258

Interpreted code 21
Interpreted languages 21

Interpreter 17, 55
Iterations 107

Joysticks 37

Index 297

K

Keyboard 13, 15, 17
installation 47

usage of 49

Keyword 61

KILL 154, 156

Kilobytes 11

KYBD: 136, 286

L comand 177

Language 20

Language system software 20
Languages

compiler 21
interpreted 21

Last point referenced 172
LEFT 198-199

LEFTS 123-124

LET 76-77

LINE 107, 171-173
LINE INPUT 98-99

LINE INPUT# 142-144

LINE

B 173

BF 173

LIST 64-65, 280

List Lines Command 252

LLIST 280

LOAD 69, 154-155,210

LOG 145, 151

LOCATE 93

LOF 145, 151

LOG 120

Logical operators 81-82
Logo 23, 195-210

. Logo Editor 199
Logo

colors 205

loading 196-197

Long Response command 264
Loop 104
Looping statements 103-107
Low resolution graphics 159-160
LPR 172-173

LPRINT 96, 281

LPRINT USING 96

LPT1:97, 136, 280, 285

LSET 148-150

M

M command 178-179

Master diskette 219

Mathematical functions 118-121

Medium resolution graphics 159-160
Megabyte 19

Memory and Display Expanison Board 11,
15,39

MERGE 130-131, 154, 156, 157

Microprocessor 11, 18
Microsoft BASIC 17, 20-21

Microsoft Corporation 20
MIDS 123-125

MKDS 149-150, 153

MKIS 149-150, 153

MKSS 149-150, 153

MOD 79

Modem 40

Modem commands 262-267

Answer 263

Break 263

Count 263

Dial 263

Entry 267

Format 263

Hangup 264

Initialize 264

Long Response 264
New 265

Originate 265

Pickup 265

Query 265-266
Retry 265

Speed 266
Transparent 266

Voice 266

Wait 267

Monitor, installation 45-46

Monochrome Display Adapter 16
Monster Math 24

MORE 240-241

Move Lines Command 252-253

Multiplan 24
Multiple statements 69

N

N command 179

NAME 154-156

Negation 78-79

298 IBM PCjr User's Handbook

Nested loop 104-105

NEW 62, 63

New command 265

Noise 22

NOISE 190

Normal printing 37
NOT 83-84

Numeric constants 73

Numeric data 72-75

O 140

ON ERROR GOTO 107-108

ON GOSUB 102-103

ON GOTO 102-103

OPEN 139-140, 147, 281

Operating system software 20

Operations 71

Operator 78
OR 83-84

Order of evaluation 87

Originator command 265

OUTPUT 139

P 154

P command 180

Page command 253

PAINT 175

PALETTE 22, 167-168

PALETTE USING 23, 169-170

Parallel Communications 32

Parallel printer attachment 36

Parameter 62

Parity 260-261

PAUSE 246

PCOPY 23

PEN DOWN 201

PENUP201

Peripheral 24

Peripheral ports 52-53
Pickup command 265
Pixel 159-160, 203

PLAY 187, 191

PO209

POINT 176

POPS 209

Power Supply/Transformer 13

installation 46

Primary filename 221
PRINT 89-92, 237-238

BG205

PAL 206

PC 206

POS 204

semicolon 91-92

comma 90-92

Print Screen key 217
PRINT USING 93

format string 93
Print Zones 90

PRINT# 141,281

PRINT# USING 141-142

Printers 32, 280-283

control codes 281-283

daisy wheel 32
dot matrix 32

Printing

double 37

emphasized 37

normal 37

Procedure 199

Program

entry 62-63

files 133

lines 62

listing 64-65

mode 60-61

editing 66-67
loading 69

running 67-68

saving 67-68

Programmable Keys 13
PROMPT 229-230

Prompt 215-216
PSET 171-172

PUT 150

Q

Query command 265-266
Quit Edit Command 253-254

Qume Corporation 26

R command 177

RAM 17

static 18

Random access 27, 136, 146-147

Index 299

Random files 136-138, 151-153

READ 113-117

Read/write

head 26

slot 27

Records 133-134

RECOVER 235

Relational expression 77
Relational operators 81-82
Relative addressing 172

REM 105, 246

Remainder 79

RENAME 228

REPEAT 201-202

Replace text command 254
Replaceable parameters 243-244
Reserved word 61

BASIC 275

DOS 276

RESTORE 114

RESUME 107

Retry command 265
RETURN 101, 107

RF modulator 44-45

RIGHT 198-199

RIGHTS 123-124

ROM 13, 17

RS-232 280

RSET 148-150

RUN 62, 67-68, 154, 156

SAVE 68-69, 154, 157, 209-210

SCREEN 161-162, 165-167, 171

Screen dump 233

Screen width 262

SCRN: 136, 142, 285

Scrolling 64, 217

Search Text Command 254-255

Sectors 26, 28, 30

hard 28, 30

soft 28, 30

Sequential

access 27, 136

files 136-138

Serial Adapter Cable 34-35
Serial communications 32

SET PAL 205-206

SET PC 205-206

SET EG 205

SETPOS 203-204

SETX 204

SETY 204

SGN 121

SHIFT 246

SHOWTURTLE 197

Simple expression 79-80
SIN 119-120

Single-sided diskettes 31
Soft sectors 28, 30

Software 20

application 20, 23-24
language 20

operating system 20
SORT 241-242

SOUND 183-187, 191

Source file 246

SPACES 92-93

Speaker 17

Speed command 266
SQR 120-121
Start-up

BASIC 55-60

DOS 213

PCyr 48-49

STEP 104, 172

STR$ 125, 149, 152

String 71-72
concatenation 123

constant 72

functions 123-124

space 126

Subroutines 101-102

Subscript 109

Subscripted variables 109-111
Subtraction 79

Swapping 255
Switch 59

SYS 236

System

board 16

installation 44

reset 218

Unit 13, 14

TA command 180

TAB 92

Tables 109-111

TAN 119-120

300 IBM PCjr User's Handbook

Tandon Corporation 26

Television set, installation 44-45

Template 219
TERM 23, 258-259, 269

Terminal Emulator 257-258, 268-273

Text file 246

Thermal dot matrix printer 34
TI SN76489A 160

TIME 231

Time entry 214-215

TONE 207

Trade 26, 28-29

Transfer Lines command 255

Transparent command 266
Tune Definition Language 187-190

Turtle 197

Turtle coordinates 203

Turtle graphics 197
Turtle Power 24

TYPE 228, 240

u

U command 177

User-defined functions 118, 121-122

Write protect notch 27, 211

WRITE# 141-142

X command 180

Xmit 267

z

Z test 267

Special Characters

#94

$94

$$ 95

» 96, 222-223

+ 95

,95

— 95-96

7 222

I 238-239
8087 math co-processor 16
9253 timer 183-187

V224

VAL$ 125

Variable 75-76

name 75

table 126

value 75

VER 232

VERIFY 234-235

VIEW 163-165

Viewports 163-164
Visicalc 24

Voice command 266

VOL 236

Volume 224

w

Wait command 267

WHILE, WEND 105-107

WIDTH 96-97

WINDOW 161-162, 164-165

World coordinates 161

Write Lines comand 255-256

ABOUT THE

WEBER SYSTEMS, INC. STAFF

In 1982, Weber Systems, Inc. began a start-up publishing
division specializing in books related to the personal computer
field. They initially published three books, and within a year, ex
panded their list to eighteen machine-specific titles, with fourteen
more scheduled for early 1984.

All Weber Systems USER'S HANDBOOKS are created by an
in-house editorial staff with extensive backgrounds in computer
science and technical writing. The three basic tenets of their
publishing philosophy are: quality, timeliness and maintenance
(frequent updating).
Weber Systems is located in Cleveland, Ohio.

Other Books in This Series

Published by Baiiantine Books

IBM BASIC® USER'S HANDBOOK

IBM PC® & XT® USER'S HANDBOOK

KAYPRO® USER'S HANDBOOK

VIC-20® USER'S HANDBOOK

COMMODORE 64® USER'S HANDBOOK

APPLE lie® USER'S HANDBOOK

IBM PCjr" USER'S HANDBOOK

The IBM PCjr USER'S HANDBOOK is a clear, concise, and practical guide to
the capabilities and operations of IBM's inexpensive new home computer-
destined to be the most widely used home computer yet. This handbook
can be used by families, schools, and at home in conjunction with the
IBM PC & XT. /

This complete description of the PCjr includes precise information on set-up,
operation, programming, and maintenance.

The following topics are covered in detail:

• PCjr Installation
• PCjr Operation j .C'
• Available PCjr Software . > .
• Keyboard Usage
• PCjr Peripherals -
• PCjr BASIC Programming
• PCjr Communications

No user or potential user of the IBM PCjr should be without the IBM PCjr
USER'S HANDBOOK.

Cover printed in USA

