
SIGNET SPECIAL • 451-XE2088 • (CANADA $8.75) 'U.S. $6.95

THE BIGGEST ASSORTMENT EVER OF PROGRAMS

FOR AMERICA'S MOST TRUSTED HOME COMPUTER

FINANCIAL PLANNING

GAME CREATIONS

GRAPHICS
TEXT PROCESSING

PROGRAMS
HIGH-PERFORMANCE SOFTWARE

BY AN ACCLAIMED PROGRAMMER

KENT PORTER

ALL THE PROGRAMS IN

PORTER'S PROGRAMS FOR

THE COMMODORE 64

AND PORTER'S PROGRAMS
FOR THE IBM pgr ^
ARE AVAILABLE ON

CONVENIENT DISKS

Now you can have all the programs
featured in PORTER'S PROGRAMS FOR
THE COMMODORE 64 and PORTER'S

PROGRAMS FOR THE IBM PCjr on
ready-to-run floppy disks. The disks will
not only save you time, but will
eliminate the many errors that can
occur so easily when typing In your
own programs.

ORDER YOUR DISKS TODAY!
$19.95 ($24.95 in Canada) each

New American Library
P.O. Box 999

Bergenfleid, N.J. 07621

YES, send me copies of (0-451-82099-1) PORTER'S PROGRAMS
FOR THE COMMODORE 64 Disk and copies of (0-451-82098-3)
PORTER'S PROGRAMS FOR THE IBM PCyr Disk at $19.95 per disk
($24.95 in Canada). $1.00 postage and handling per order is included.

TOTAL AMOUNT ENCLOSED $

I enclose check or money order (no cash or CODs)
or charge: Visa Mastercard

Account number Expiration date

Signature ^

Name

Address

City State Zip_

Allow 6-8 weeks for delivery. Offer expires June 30,1985.
Prices and offer subject to change or cancellation without notice.

THE WIDE-RANGING LIBRARY OF PROGRAMS

EVERYONE CAN AFFORD

The question that confronts all who bring home the IBM® PCjr Is
how to save money on the costly array of software designed to
utilize all the remarkable powers of this superlative piece of
hardware.

This invaluable book, written by an expert, provides you with
programs you can type right into your machine by yourself without
additional expense. Included, too, are models that show you how to
write your own programs, and all the aids for mastering the fiill
range of the IBM PCjr's capabilities. Many of these programs will
also run on the IBM PC.

PORTER'S
PRDGRAMS FOR
THE
IBMTCj/?

KENT PORTER is known both for his computer expertise and his
remarkable ability to write about computers in language that every
one can understand. His widely acclaimed books include The New
American Computer Dictionary, Beginning with Basic: An Intro
duction to Computer Programming, and Mastering Sight and Sound
on the Commodore® 64.®

BOOKS BY KENT PORTER

Computers Made Really Simple (1976)

Building Model Ships from Scratch (1977)

New American Computer Dictionary (NAL/Signet, 1983)

Mastering Sight and Sound on the Commodore® 64™
(NAL/PLUME, 1984)

Porter's Programs for the Commodore® 64™
(Signet Special, 1984)

Practical Programming in Pascal (NAL/PIume, forthcoming)

Mastering the Coleco® Adam™
(NAL/PIume, 1984)

Beginning with BASIC:
An Introduction to Computer Programming

(NAL/PIume, 1984)

PORTER'S
PROGRAMS FOR
THE
IBM* PC J/?

BY Kent Porter-

A SIGNET BOOK

IMEW AMERICAIM UBRARY

NAL BOOKS ARE AVAILABLE AT QUANTITY DISCOUNTS WHEN

USED TO PROMOTE PRODUCTS OR SERVICES. FOR INFORMA

TION PLEASE WRITE TO ̂>REMIUM MARKETING DIVISION, NEW
AMERICAN LIBRARY, 1633 BROADWAY. NEW YORK, NEW YORK
10019.

Copyright © 1984 by Kent Porter

-TRADEMARK ACKNOWLEDGMENTS

IBM and PCjr are trademarks of International Business
Machines, Inc.

All rights reserved

SIGNET TRADEMARK REG. U.S. PAT. OFF. AND FOREIGN COUNTRIES

REGISTERED TRADEMARK—MARCA REGISTRADA

HECHO EN CHICAGO, U.S.A

Signet, Signet Classic, Mentor, Plume, Meridian and NAL Books
are published by New American Library,
1633 Broadway, New York, New York 10019

First Printing, July, 1984

1 234 56 7 89

PRINTED IN THE UNITED STATES OF AMERICA

CONTENTS
INTRODUCTION 1

Operating the IBM PCjr 2
Setting up for disk operation 4
The care and feeding of floppy disks 5
Starting the computer with a disk 6
Preparing a working diskette 7

Starting cartridge BASIC 8
BASIC prcgram diskette 9
Cassette versus cartridge BASIC 9

Conversing with the computer 10
Saving and retrieving programs on disk 19
Program file names 20
Saving a program on disk 21
Retrieving a program from disk 22
Program updates 22
Loading and running a program on disk 23
Finding out what's on a disk 23
Removing a file from the disk 24

SECTION 1—PROGRAMS HAVING TO DO WITH

MATHEMATICS 26

ENIAC 26

Integral factors of a number 28
Prime numbers 29

Powers of a number 31

Roots of real numbers 32

Trigonometry No. 1 34
Trigonometry No. 2 35
Trigonometry No. 3 37
Factorial I 38

Distance between two points 39
Cones, buckets, and lampshades 40
Spheres 42
Cylinders 43
Statistics No. 1' 44

Statistics No. 2 46

vi Contents

SECTION 2—WEIGHTS AND MEASURES 48

Distance measurements 50

Area measurements 51

Weight conversions 53
Liquid measurements 55
Recipe changer 56
Temperature conversion 59

SECTION 3—SORTING AND TEXT PROCESSING 81

Sorting a group of numbers 81
Descending sort 83
Text analysis 84
Reversing text 88
Alphabetizing 88
Reverse alphabetical order 88

SECTION 4—PROGRAMS HAVING TO DO WITH MONEY 70

Loan terms 70

Loan analysis 72
Interest paid over a period 75
Present worth of a future amount 78

Future worth of a present amount 78
Saving toward a future amount 79
Annuity from a present amount 81
Lease versus purchase analysis 82
Car cperating expense 88
Personal net worth 89

SECTION 5—CALENDARS AND CLOCKS 98

Day of the week 98
Perpetual calendar 98
Elapsed time in days 100
Digital clock 102
Ringing digital clock 104
Tick-tock 108

Countdown alarm 108

SECTION 8—COMPUTER GRAPHICS FOR THE

FUN OF IT 110

Easter egg 111
Bunting 111

Contents vii

Target 112
Chambered nautilus 113

Spiral 114
Polygon 115
A continuous series of polygons 116
Patchwork quilt 118
Crazy quilt 120
Perspective puzzle 121
Kaleidoscope 122
Simple animation 123
Zooming in and out 125

SECTION 7—GETTING DOWN TO BUSINESS WITH

GRAPHICS 127

Equation plotting 127
Bar charts 131

A sample bar chart program 135
Pie charts 138

A sample pie chart program 140

SECTION B—COMPUTER GAMES 142

Odds and risks in dice 143

Docking a spacecraft 144
Math drill 149

Shooting gallery 153

SECTION 9—SOUND EFFECTS AND COMPUTER MUSIC 158
Emergency! 158
Sounds for late at night 159
R202 180

Nursery song 181
Bugle call 182
Who says classical music is stuffy? 183
Patriot 185

INTRODUCTION

When people find out that I write books about personal computers,
they often tell me that they're thinking about getting one, but
they're not quite sure what they'd do with it. Once in a while, too,
somone says, "Okay, I bought one. Now what?" The answer to
both of these questions is that you can do an astonishing number
of useful and entertaining things with a computer. All it takes is a
little imagination and some programming.
This book contains some imagination and quite a number of

programs for the IBM PCjr, but it's only a smattering. of the
possibilities. Not eyery program in it is for everybody; on the other
hand, everybody will tod something of value in it. For convenience,
we've grouped the programs into broad categories such as math,
money, measurements, and time. With a few exceptions that are
noted as such, they're all standalone programs that you can type
into the computer, run, and save for later recall and use. Thus, you
can pick those that interest you and bypass those that don't, ft's an
easy way to accumulate a library of programs that put your com
puter to work doing useful and/or entertaining things for you. This
book, then, is dedicated to people who don't quite know what to do
with a computer or those who have one and want to do more with it.
The programs were all developed on, and therefore presuppose,

the following configuration:

An IBM PCjr with 128K of memory
A color TV set as a monitor

2 PORTER'S PROGRAMS FOR THE IBM® PCjr

One disk drive

IBM cartridge BASIC (by Microsoft Corp.)

One of the games also needs an IBM joystick, which is an inexpen
sive and fun addition to the system. ActuaUy, many of these pro
grams will also work on a Junior using cassette BASIC and a tape
recorder. Most of these programs will also run on Junior's older
brother, the IBM PC.
Now let me tell you what this book won't do. Except by example,

it won't teach you to program and it won't reveal the secrets of the
PCjr's special features. For those things you have to turn to two
other books that I also wrote: Beginning with BASIC (New York:
NAL/PIuriie, 1984) and Graphics and Music Programming on the
IBM PCjr (New York: NAL/PIume, forthcoming). I hasten to point
out that prograinming skills and expertise in the technicalia of the
computer are not requirements for using this particular bookj
since its programs incorporate all those things. AH you have to do
is type them, and even if you don't understand them and you think
they're a bunch of gobbledygook, they'll stiU work.

It is important, however, to understand the mechanics of work
ing with the Junior. It has some features and commands that
make it much more than a typewriter that prints on a screen. For
that reason, the rest of this introduction is a tutorial that discusses
the PCjr in general, diskettes, program inpjit and editing, and the
saving and fetching of programs on disk. If you already know
about these things, skip the rest of this Introduction and we'll
meet you among the programs.

Operating the IBM PCjr
As our point of departure on this journey into rudiments of work
ing with the PCjr, we'U assume that you have hooked the parts
together according to the instructions that came with the machine
and inserted four AA batteries into the keyboard. Furthermore,
we'll assume that you have never before touched a computer
or even seen one in operation at close range.
Turn on the monitor (the TV set connected to the computer),

and then power on the computer by operating the rocker switch at
the left rear of the machine's housing. For a few moments you wiU

Introduction 3 .

see the IBM logo and a color bar on the screen. The machine beeps
and the disk drive tests to see if there's a disk in it (there shouldn't
be for this preliminary exercise). Then the screen clears and dis
plays the message:

The IBM Personal Computer Basic
Version 01.20 Copyright IBM Corp 1981
62940 Bytes free
Ok

(The exact text of the message might be slightly different on your
machine, but that doesn't matter.) The computer is now in cas
sette BASIC and ready to operate.
The first advice, before we try anything, is this: Don't be afraid.

There is absolutely nothing you can do to damage this computer
by pushing the wrong button, and as long as you don't knock it to
the floor or drop something heavy on it, it's not going to break.
Also, it won't giggle and consider you an idiot if you make a
mistake (and 1 won't tell a soul, either). Type a half-dozen keys at
random and notice the positive, quiet action of the keys. Press the
ENTER key at the right end of the keyboard. The screen should
show the letters you typed with the next lines saying "Syntax
error" and "Ok." TThe random keys made no sense to the computer,
and it said so with the "Syntax error" message. That is about the
worst you can expect. Not so bad, is it? Type confidently, even if
you don't feel that way right now. There's almost nothing you can
do that you can't subsequently undo, and there is absolutely no
reason to fear the machine.

Now look at the screen again. Across the bottom are some words
("ILIST 2RUN" etc.) called the key. You don't need the key for
this book, and since it's just in the way we'll get rid of it. Type the
command

Key off

and press the ENTER button. The key instantly vanishes, and the
computer responds "Ok." BASIC always says "Ok" when it is ready
to accept another command.

Notice the flashing underscore. This is called the cursor, and it
indicates where the next character you type will appear. The
cursor roughly corresponds to the print mechainism on a typewriter.
It should be under the last "Ok."

4 PORTER'S PROGRAMS FOR THE IBM® PCyr

Customarily, BASIC programs are typed In upper-case letters.
They don't have to be, but that's the convention, as the hstings in
this book illustrate. You can set the keyboard to all upper-case
letters by pressing the CapsLock button to the right of the SPACE
bar. Type some random letters and you'll see that they are all
capitals. This is unlike the SHIFT LOCK on a typewriter in that it
only shifts alphabetic letters. Type some numbers and they appear
as numbers. To get the shifted number characters (such as the %
sign, which is shifted 5), you have to hold down the SHIFT key;
there's one at each end of the first fiill row of keys. The CapsLock
mode on the PCjr also has another peculiarity. If you are in
CapsLock and you hold down SHIFT when you type a letter, you
get its.lower-case equivalent.
Whenever you have typed a line of characters, you teU the

computer that the line is complete by pressing the ENTER key.
That's the only way the computer knows it's time to act on the
command you've entered. A lot of computer novices fail to press
ENTER and then wonder why the computer isn't doing anything.
In fact it is doing something: It's waiting for you to finish the line.
You have a lot of garbage on the screen right now. You can get

rid of it with a simple command. Type CLS and press ENTER.
The screen clears and the cursor appears in the extreme upper-left-
hand comer. You can always erase the display with CLS.
Oh, can't you see the cursor? There might be a little of it

blinking up there on the edge. There's a simple solution: Hold
down the buttons marked CTRL and ALT at the same time (lower
left keyboard) and press the right-arrow key. It's one of the four
keys clustered on the right end of the keyboard. The effect of this
operation is to shift the whole display to the right. You can also
shift it to the left by holding down CTRL and ALT and operating
the left-arrow key., Move it several positions each way to get the
idea. Incidentally, you don't have to press ENTER to execute these
operations.

Setting Up for Disk GparatiDn
Right now the machine is in cassette BASIC, the mode it auto
matically enters when you power up without a disk in the drive.
Chances are that if you have a disk drive in your Junior, you have

Introduction 5

a more powerful version of the language called cartridge BASIC,
under which aU of the programs in this book will run. We will
discuss these two "built-in" BASICs in more detail presently. For
now, it's important only to know that to use' the cartridge version
you have to power up the computer differendy than we did it this
time. And in order to do that, you first have to set up a working
disk.

The care and feeding of floppy disks
A floppy disk (also known as a diskette or simply a disk) is a
circle of magnetic material encased in a sealed envelope. Informa
tion is recorded on the disk as magnetic spots arranged in concen
tric circles called tracks. The disk drive reads and writes on the

surface via an oval slot on each side of the envelope. There is also a
small hole near the central hub openmg. A hole in the recording
surface passes this outer hole, and the disk drive detects it and
uses it as a point of reference for synchronizing its read/write
operations.
The IBM PCjr uses both sides of the floppy disk for the storage

of programs and data files, and it records at a high density. For this
reason, you need double-sided double-density (DSDD) diskettes
for your machine. Typically, these are top-of-the-line diskettes that
cost a little more. You can get by with less expensive disks rated
for single sided and/or single density, but that's a false economy.
So are generic (no brand name) disks. You're entrusting a lot of
work and perhaps valuable records to this thing. Stick with name
brands rated for DSDD storage. A generic disk gave me enough
grief that I finally threw it away. Spend $5 instead of $4 and be
certain.

The diskette surface is extremely sensitive to dirt, dust, skin oils,
and other contaminarits. Never touch the recording surface visible
through the oval slots. It will ruin the disk permanently. Also, don't
leave diskettes lying around (the way people do in computer
stores, who should know better or at least set an example). When
the disk is not in use, store it in the jacket that came with it, and
house your diskettes in a box of some sort that will ward off dust
and tobacco smoke.

Diskettes are not usable as delivered, except when they contain
a software product. The diskettes you purchase for your own use
in saving programs and files must first be prepared for the PCjr. This

B PORTER'S PROGRAMS FOR THE IBM® PC/r

process is called formatting. It writes the housekeeping Informa
tion needed by the computer to find and save data and programs
on the disk.

Starting the computer with a disk
The disk-equipped PCjr comes with several manuals, one of
them marked "DOS," pronounced as a word and meaning Disk
Operating System. In the back of the manual is an envelope
containing two diskettes. Take out the one that is not marked
"Supplemental Programs." Holding it by the upper edge, remove it
from the IBM jacket and insert it into the disk drive with the label
up and the oval slot away from you. Turn the small handle on the
upper-left-hand comer of the drive down so that it prevents you
from withdrawing the diskette, and then turn the computer power
off and back on.

The IBM logo reappears, and after a moment the computer
beeps and the drive makes some "put-put" sounds. The screen
announces that the "Current date is Tue 1-01-1980" and asks you
to "Enter new date." Type today's date in the form MM-DD-YYYY,
so that if it's October 25, 1984, you'll enter 10-25-1984. After you
press ENTER, the computer reports the current time according to
its system clock (which begins running when you turn the power
on), and asks you to "Enter new tune." You can type just the hour
and minute separated by a colon, though the machine reports time
as HH:MM:SS, with the hundredth of a second appearing as a
decimal number afterward. The time 03:08:15.04, for example,
means 15.04 seconds after 3:08. If the time and date are unimpor
tant to you, you can simply respond to both queries by pressing
ENTER. The computer \rill then think it's January 1, 1980, and
the time will be measured from when the machine was last pow
ered on. The display on the screen reports that you have signed on
to

IBM Personal Computer DOS i
Version 2.10 (C)Copyright IBM Corp 1981,
1982, 1983

The exact text of this message may vary slightly.
The prompt "A>" appears under the signon messages. This is the

indicator that DOS is ready to accept a command. It is comparable
to the "Ok" we saw in BASIC.

Introduction 1

. f\ •

Preparing a working diskette
Type the command

FORMAT

and press the ENTER key. The computer responds with

Insert new diskette for drive A:

and strike any key when ready

Twist the lever on the disk drive back to its original position, and
remove the DOS disk, carefully placing it back in its jacket. Now
insert a new disk into the drive, close the lever, and press ENTER
or the SPACE bar. The computer responds

Formatting...

and the drive goes to work. The formatting process takes about a
full minute before the computer reports that it has completed the
job. It also tells you the totd amount of space on the disk and the
available space (362,496 bytes in both cases), and asks

Format another (Y/N)?

Type Y for yes, N for no. If you type Y, the process repeats and
you can insert another new disk, then another, and so on until you
have formatted all your diskettes. It's a good idea to format the
whole batch as soon as you buy diskettes, so that you can be
assured that all diskettes you possess are machine ready. When
you reply N to the query, DOS displays the "A>" prompt to tell you
it's ready for the next command.
Your working disk has to contain DOS itself and all the com-

'mand fQes you'll need to operate the computer. In other words, it
has to be a duplicate of the DOS disk you used to begin formatting.
Place the original DOS disk from the manual back into the drive
and type the command

D1SKC0PYA:B:

which means copy all the files firom one disk to another. The
original DOS disk will be referred to during the transfer process as
the source diskette and the new working disk you're creating as
the target diskette. It will be necessary to swap disks in the drive
several times during DISKCOPY in response to messages from the
computer such as

8 ' PORTER'S PROGRAMS FOR THE IBM® PC/r

s '

Insert source diskette in drive A: i

Strike any key when ready

This means you should place the indicated diskette into the drive,
close the lever, and only then press a key to resume the copying.
When the entire DOS delivery disk has been copied to your

working diskette, this message appears:

Copy complete
Copy another (Y/N)?

For the BASIC working disk you need for this book, you need
make only one copy, so type N.
Now—and this is important—^put the original DOS disk back

into its jacket and fQe it away in the DOS binder. Never use the
delivery diskette for any purpose except to make working copies!
Diskettes are subject to wear, tear, and deterioration, and if you
wear out your Original you won't get much sympathy from anybody.
You also won't be able to use your computer until you obtain a
replacement.

All diskettes look alike, so it's important to label the disks you set
up. Take a sticky-back label and write

DOS WORKING MASTER

on it. Then attach it to the newly created diskette in a position
corresponding to the location of the label on the original. Be
careful not to touch the magnetic recording surface and to keep
the label from interfering with any openings in the disk cover.
From now on, whenever you do any BASIC programming, you will

use this working master to start the computer, as described next.

Starting Cartridge Basic
With your computer you received a cartridge—a. black object a
little smaller than a package of cigarettes—^bearing a brown label
that says "cartridge BASIC" on it. Turn off the computer and
insert this cartridge, label up, in one of the two slots directly
under the disk drive on the front (it doesn't matter which slot you
use).
To start up the computer with cartridge BASIC, do the following:

Introduction 9

1. Turn on the monitor.

2. Insert your DOS WORKING MASTER into the disk drive,
slotted end first with the label up.

3. Close the lever on the disk drive;
4. Turn on the computer.
5. Furnish the current date and time in response to the DOS

queries (or press ENTER twice to bypass the calendar/clock
update).

6. When you see the "A>" prompt, type BASIC.

In cartridge BASIC, you get an initial screen similar to that for
cassette BASIC, except the version number begins with the letter
"J" (instead of "C") and you have about 3000 fewer bytes of free
memory. This difference is taken up by the expanded features of
cartridge BASIC.

BASIC program diskette
You wiU need a second diskette for your BASIC programs, since
the working master hasn't enough firee space to contain more than
a few programs. Take a fireshly formatted disk and label it

PORTER'S PROGRAM FOR THE IBM PCJR

so that you'll know what it contains.
Once you've gotten into BASIC using the procedure described

above, you can remove the working master firom the disk drive and
file it in its jacket; then place the program disk into the drive. All
the programs in this book wiU be saved on and loaded firom this
diskette.

Cassette versus cartridge BASIC
Cassette BASIC comes built into every Junior and, as we have
seen, it comes up automatically when there is no diskette in the
drive (or no drive on the computer). Cassette BASIC is suitable for
elementary programming, as well as including many advanced
features, but it has some serious limitations. For one thing, it does
not work with a disk drive but instead, as the name suggests, with
a cassette tape unit. Also, cassette BASIC does not work with DOS,
thus denying your programs many important services av£tilable
only through the operating system. Finally, some of the more
exotic instructions for graphics and sound either don't work at all

1D PORTER'S PROGRAMS FOR THE IBM® PCjr

in cassette BASIC or work only to a limited extent. With cassette
BASIC, the PCjr is on a par with low-end machines such as the
Commodore 64 ̂ d Atari systems.

Cartridge BASIC, on the other hand, is one of the most exten
sive and powerftil BASIC programming systems available. It makes
full use of DOS, handles inultiple disk, drives and hard disk storage,
and performs marvels of graphics and soimd. It raises the PCjr to a
level nearly equivalent to its big brother, ̂the IBM PC. Like all
interpreted BASICs, it is rather slow about some operations, but
there is litde it cannot do within a reasonable time. Cartridge
BASIC is a "superset" of the industry-standard Microsoft BASIC
(and is a product of Microsoft), meaning that it contains all the
nuclear instructions of Microsoft BASIC plus some that are pecu
liar to this computer and its features. In my experience, which
spans several dozen computers and programming languages, it is
one of the best.

Conversing with the Gomputer
The PCjr accepts four kinds of entries from the keyboard: con
trol button operations (CTRL/ALT/cursor right to shift the display),
commands, program lines, and answers to questions asked by pro
grams. We won't talk about the last kind here. They are obvious when
they happen in the programs, as you will see later in this book. The
control button operations play a part in editing, and we'll discuss
them presendy.
A command is an instruction that you expect the computer to act

on immediately. The KEY OFF and CLS commands we entered
earlier are commands because they told the computer to take an
action and produce a discernible result. Other commands are

RUN Causes a program to operate
NEW Clears away program lines in the computer and

prepares it to accept a new program
LIST Displays the program

A w ur AW w vA X XV./ T T

Displays the program
Writes the program to disk
Reads a program from disk

SAVE

LOAD Reads a program

There are others, but these are the ones you'll use most.

Introduction 11

A command doesn't always alter the status of the machine,
however. As an example of one that doesn't, type

PRINT "HI, THERE"

(Don't forget to press ENTER!) The message

HI, THERE

immediately appears under your command, because that's what
you told the computer to do.
You can use this abiUty to act on commands not only to control

the computer, but to do useful work such as calculations. Suppose
you want to know the sum of 15.25, 1091, and 66.81. You can
have the computer teU It to you by typing.

PRINT 15.25 + 1091 + 66.81

As soon as you press ENTER, It displays the answer (1173.06).
The arithmetic operators In BASIC are

-1- Addition
— Subtraction
• Multiplication
/ Normal division

DIV Integer division
MOD Remainder In division

Consequently, if you want to multiply the first two numbers and
divide by the third, you can type

PRINT 15.25 X 1091 / 66.81

and the answer 249.030834 Instantly appears. The PRINT In
struction tells the computer to do whatever follows arid to display
the result on the screen. Clever, n'est-ce pas? Incidentally, if you
type simply

PRINT

you have told It to print nothing, and that's what It does; It just
makes a blank line on the screen., ,

After every command Is executed, the computer displays the
prompt "Ok." This Indicates that It Is ready to accept your next
bidding. When It doesn't understand the command. It says

12 PORTER'S PROGRAMS FOR THE IBM® PCjr

Syntax error
Ok

and that means "Huh?"
You can put two or more commands on the same line if you

separate them with colons (:). For instance, to turn off the key and
clear the screen in one fell swoop, type

KEYOFF:CLS

and the computer will act on both instructions at the same time.
The screen of the IBM PCjr holds 25 rows of 40 characters each.

Sometimes a line is longer than 40 characters, but that doesn't
matter. Just keep typing and the letters will begin to appear in the
next row. Even if a word or a number gets split, the computer still
understands it and thinks of it as though it were all together. A
logical line on the Junior is up to 80 characters or, in other words,
two full rows. A few program^ lines here and there in this book spill
onto a second row. The listings show them as being on one line
even though they don't look that way on. the screen. But now that
you're warned you won't be dismayed when it happens.

Single-line commands are good for getting quick results to sim
ple actions, but clearly they won't do for complex processes involv
ing numerous calculations, decisions, and so on. For that we need
multiple lines of instructions with some indication of the order in
which we want them performed, and that's what a program is.
Fundamentally, a program is a logical sequence of commands that
the computer stores and acts on at some future time in order to
produce a reasoned result. The PCjr recognizes a program line by
the fact that it has a number in front of it. An example is the "HI,
THERE" command we typed. The command itself reads

PRINT "HI, THERE"

We can make it a program, in contrast to a command, by typing

100 PRINT, "HI, THERE"

When you press ENTER, nothing happens. Why not? Because the
instruction has a number in front of it, and that's a program line,
and program lines get stored up to be acted on later.
Now it's later, and we can make the computer act on it with

RUN

Introduction 13

And voil^l, the Mendly little message appears. We have written one
of the world's shortest computer programs, a one-liner.
Type the CLS command. WhcMps! The screen went blank. Let's

suppose we can't remember if there's a program in the computer
or if there is, what it is. To get it back, type

LIST

, Our dinky little program appears. The screen may have forgotten
what it held, but the computer still remembers the program. Clear
the screen again and type

RUN

The message appears just like before, as a result of the program
running.
A one-line program isn't worth a whole lot, so let's make it

longer. Type the following:

90 CLS

110 PRINT

120 PRINT "I'M A DUMB OLD COMPUTER"

RUN

The result should be that the screen clears and the following lines
appear on it:

HI, THERE

I'M A DUMB OLD COMPUTER

Ok

Now let's see the program as a whole by typing LIST. The
computer displays the program, which reads

90 CLS

100 PRINT, "HI, THERE"
110 PRINT

120 PRINT "I'M A DUMB OLD COMPUTER"

Note that the program includes line 100. You'll recall that you
typed line 100 and ran it a few times as a one-liner before typing
lines 90, 110, and 120. The line numbers are significant in that
they decree the order in which the computer performs the
statements. The values of the Une numbers are themselves of no

real concern, but their numeric order is. The computer knows this.

14 PORTER'S PROGRAMS FOR THE IBM® PCjr

and so it automatically merges new lines with old lines in the
proper numeric sequence. In this case, it put line 90 in front of
the existing line 100 and lines 110 and 120 after line 100 to
achieve the proper order. This is important to know, because if you
type a program and leave a line out by accident, you can always go
back and type only the missing line and the computer wiU put it
into the right place.

Similarly, you can replace one line with another that has the
same line number. To illustrate, type

110 PRINT "LET ME INTRODUCE MYSELF"
RUN

The output now looks different. It says

HI, THERE
LET ME INTRODUCE MYSELF

I'M A DUMB OLD COMPUTER

You can see the effect of the new line 110 by listing the program.
Whereas before line 110 simply read PRINT, now it holds the
more recent instruction. The old line was replaced.

Finally, you can remove a line entirely from the program by
typing its line number and pressing EN'TER. Type 110 and hit
ENTER, then run and list the program again. The "LET ME ..."
is gone, and so is line 110, without a trace.
One of the very first things we did in this tutorial was to make a

mistake on purpose, to show you that the computer won't bite. We
did that by typing a nonsense command, and the computer came
back with a syntax error message. You can also get a syntax error
from a bad program instruction. It doesn't show up when you type
the statement but rather when the computer encounters it as the
program runs. To illusdrate what happens, enter the following
meaningless instruction into our little program:

110SKLRGX

The computer accepts it initially, when you press ENTER, be
cause it makes no attempt to interpret program lines as they are
keyed. The interpretation happens after you type RUN. Do it and
watch. See, the display reads

HI, THERE
Syntax error in 110

Introduction 15

Ok

110SKLRGX

The computer performed the instructions until it gdt to line 110.
It couldn't understand that line, so it threw up its hands and quit,
doing you the minimal courtesy of identifying the line that contains
the error. The syntax error message is a catchall that means, "I
don't know what's wrong, but something is." The computer also
displays the offending line with the cursor in its first position. This
enables you to correct the error immediately.
BASIC issues other more specific messages. For example, it is

mathematically impossible to divide by zero. The computer can
diagnose this problem. Therefore, if if encounters a statement such
as

PRINT 90/0

it tells you what's wrong. Press ENTER to get the cursor off line
110 and then type this command to see for yourself. It says

Division by zero
1.701412E + 38

The number is machine infinity, the largest possible number the
computer can represent and therefore the closest it can come to
actual infinity.

Bring the program back onto the screen with the LIST command.
It still has the bad instruction at line 110, and we^U use it to
experiment with on-screen editing.

Adjacent to the ENTER button are four keys marked with
arrows pointing north, south, east, and west. Their purpose is to
move the cursor about the screen. You can use these keys to edit
your programs and correct mistakes without having to retype entire
lines. Like all keys on the Junior, these have an auto-repeat action,
meaning that if you hold it down its action repeats until you
release it. There is a slight delay after the first move so that you
have time to release before the cursor goes skittering. That way
you can move just one position or several with a single keystroke.
Use the up-arrow key to move the cursor to line 110 and the

right arrow to position it on the "S" in "SLKRGX." To replace the
present instruction with a PRINT, simply type the word PRINT.
The new letters replace those on the screen as you type them. The

16 PORTER'S PROGRAMS FOR THE IBM® PC/r

trouble is that we now have "PRINTX," with the "X" left over from
the previous contents of the line. The simplest way to get rid of the
extraneous letter is to type a space, thus making the PRINT
correct. Press ENTER and die change is made. We'll talk about other
on-screen editing operations in a few minutes.
Press the down-arrow key so that it auto-repeats and moves

down the left edge of the screen to the bottom, and then watch
what happens. It seems to stall there, neither moving nor doing
anything but flickering. This is because the cursor controls only
operate within the screen boundaries. Press the left arrow a few
times and you'll see the cursor wrap backward to the end of the
line above. A few pushes on the right-arrow key moves it back to
the start of the bottom row.

Now press the ENTER key and watch what happens to the text
at the top of the screen. It moves upward one row each time you
strike ENTER. Since the cursor can't move off the bottom of the

screen, it pushes the rest of the display upward with a phenome
non called scrolling. Scrolling is similar to the paper advancing
upward through a typewriter with one big difference: You can't
wind the screen back down. A line that scrolls off the top of the
screen is gone. If it's a program hne, you can get it back, of course,
with the LIST command, but other ̂ splay lines simply evaporate
from the top of the screep.

Scrolling is the computer's way of dealing with a full screen. In
effect, it adds a line at the bottom and pushes everything else up.
For an example of the automatic high-speed scrolling, type the
following command and try to watch the top and the bottom of the
screen at the same time:

FOR L = 1 TO 2000: PRINT " -I- : NEXT

This command prints 2000 plus signs (-I-). Since the cursor was
at the bottom of the screen when it began writing plus signs, it
always placed its output on the bottom row. When the line filled, it
pushed the whole screen up and continued streaming symbols
across the bottom. Eventually the screen was full of plus signs, up
to 1000 of them, which is the capacity of the PCjr's 64 display. It
kept on for another 1000 (for a total of 2000), but the scrolling
was no longer apparent since each top hne was replaced by an
other line identical to it. For an example of scrolling a more
meaningful output, try this command:

Introduction 17

FOR L = 1 to 200: PRINT L,: NEXT L

With this command you get a list of all the numbers between 1
and 200, arranged in two tabular columns of 100 lines of output.
The screen can't hold that much output, so it scrolls.
Now let's go back to some uses of the CRSR keys. Type LIST to

view the litde program stiU lurking in the computer's memory.
Sure enough, there it is:

90 CLS

100 PRINT "HI, THERE" ,
110 PRINT

120 PRINT "I'M A DUMB OLD COMPUTER"

Let's say we want to change the world OLD in line 120 to NEW.
To do this, use the arrow keys to position the cursor at the "O" in
OLD. Type the word "NEW" right over the word "OLD." The hne
now reads

120 PRINT "I'M A DUMB NEW COMPUTER"

and the cursor is flashing between NEW and COMPUTER. You
can see the difference, but the computer regards it as only a
tentative change. The way to make the change effective is to press
ENTER. (If you used the arrow keys to move the cursor, to a
different row without first hitting ENTER, the computer would
disregard the change you made in hne 120.) The cursor is now
one row below hne 120. Run the program by typing the RUN
command. You can see the effect of the change in hne 120,
because the prograha now introduces itself as "A DUMB NEW
COMPUTER."

Maybe you dishke the idea of making the computer so disrespect
ful of itself, even though it has no feelings about,the programs you
give it to run. Let's give it a chance to defend itself against
self-slander by inserting a word into hne 120. Type LIST to see
the program again. Then move the cursor up to hne 120 and to
the right until it's on the "A" after the contraction I'M. (If you
overshoot the mark, use the left-arrow key to go back to the correct
position.) Now press the INSERT key, abbreviated INS and lo
cated two keys to the right of the SPACE bar. Notice that the
cursor becomes larger as soon as you do so. This is to remind you
that you are in Insert—^rather than normal text—^mode. Type the
word NOT and watch what happens to the existing text each time

18 PORTER'S PROGRAMS FOR THE IBM® PCyr

you type a letter. Starting with "A," everything shifts right to make
room for the new letter, and the cursor remains with the "A." That
is because it indicates where the next inserted character wiU

appear. The line should now read

120 PRINT TM NOTA DUMB NEW COMPUTER"

We need a space between "NOT" and "A," so press the SPACE
bar. As before, you have to make the change official by pressing
ENTER. To see the effect of the change, type RUN. The computer
now claims that it is not dumb.

We've seen how to make replacements and insertions with the
cursor keys. What about deletions, that is, taking things out of a
program hne? For that, we'll enclose a lesson within a lesson and
begin by learning about a useful extension to the LIST command.
LIST, as we've used it so far, displays the entire program, which is
fine for a bitty little one like our like our sample, but not so good
when the program is bigger than the screen. If this program had
40 Unes, LIST woiald never let us see more than 25 at a time, since
that's how many rows there are on the display. In addition, be
cause of scrolling we'd never get a clear look at the first 15 lines or
so and wouldn't be able to maneuver the cursor into them. For this
reason, LIST permits us to display either one hne or a selected
range of lines.

First, type the simple command LIST to get the entire program
on the screen. That way, you can more readily see the effect of the
two exercises that follow. To single out one line for viewing, you
can enter LIST with the line number after it. As an example, type

LIST 100

and the computer displays only that line, not the rest of the
program. Similarly, to select a range of lines, type LIST followed
by the first and last hne numbers you want to see, with a hyphen
(minus sign) between them. You can view hnes 90 through 100
with

LIST 90-100

The computer shows you all the hnes within that range of hne
numbers. If we had a hne 95, for example, it would be there, as
would hnes 93 and 97 if they existed.
The original program that we're extracting from doesn't have to

Introduction 19

be on the screen as it is here. Were that the case, the LIST
extensions wouldn't be very useful. Clear the screen with the CLS
command so that the program is no longer in view, and then get
line 120 with the command.

LIST 120

It appears near the top of the screen, followed by "Ok."
As long as a line is on the screen, you can change it with the

methods we've described. As an illustration and to demonstrate the

deletion of characters from a line, let's take out the word "NEW
Move the cursor up to the line and run it out to the space after the
"W" in "NEW." Press the BACKSPACE key (above ENTER) one
time, and watch what it does. It deletes the character to the left of
the cursor—^and the "W"—and closes the line as though the "W"
had never existed. Press it four more times. Oops! We took out the
"B" in "DUMB," deleting too much from the line.
What to do? Simple. Insert a space by striking INS and then

typing a "B." You can continue editing this line for the rest of the
week, and none of the changes become effective until you press
ENTER. Do that, then type RUN. The coiilputer says it's NOT A
DUMB COMPUTER (with NEW no longer there), because we've
deleted that word from the instruction.

Chances are you still feel a litde timid about these editing
steps, but they'll soon become second nature to you. If you mangle
a line beyond redemption, you can always bail out by pressing
ENTER, then moving the cursor down to an empty row and
retyping the line entirely, even if it's out of sequence.

Saving and Retrieving Programs
on Disk

You probably won't want to save every program you ever type,
whether it is from this book or another book or written by yourself.
Usually, however, you wiU save programs on disk so that you can
call them back later and run them.

Each program on a disk is saved in a file, which is a unit of
storage that is self-contained and known by a name. You can
think of a file on disk as being analogous to a chapter in a book: It
has an identifying tide, a location, and takes as much space as it

20 PORTER'S PROGRAMS FOR THE IBM® PC/r

needs. Obviously, to look up a chapter in a particular book, you
need to open that book and not another. Similarly, to retrieve a
program file fi"om a disk, that diskette must be in the disk drive.
DOS takes care of managing disk space ebid the placement of

program files for you, as long as you observe certain rules and use
the proper commands.

Program file names
The first rule is that a program file must have a name. The
name can consist of up to eight characters (letters or numbers),
with a letter in the first position. These are proper program file
names:

! BUZZER R1234567

D ZEBRAl

The following are not acceptable file names for the reasons
given:

TRAINWHISTLE Too many characters
3MICE First character must be a letter

TOM&DICK & is not a valid character

I have made the selection of program names easy for you by
including, in the first line of each program in this book, a sug
gested name in parentheses. Exceptions are made when the first
Une is itself an acceptable file name, such as HOOP.
Another rule is that only one file of a given name can exist on a

disk at a time. You cannot have two files named HOOP on the
same diskette, because DOS would have no way of knowing which
HOOP you meant. Thus, every file name on a given diskette must
be unique. Although you can't have two files named HOOP on a,
diskette, it's okay to have HOOPl and H00P2, because each one
is a unique name.

Ordinarily, DOS files have a suffix, which is an extension of up
to three characters set apart fi:om the main file name with a
period. When you save BASIC program files, DOS automatically
attaches the suffix ".BAS" to the file name. Consequently, when
you type the command

SAVE "HOOP"

DOS writes it to disk with the file name "HOOP.BAS." As long as a

Introduction 21

program ffle has the ".BAS" suffix, you don't need to specify it
when you save or fetch the program in BASIC. (If you create or
work on the program with a text editor or word processor, however,
you do have to specify the suffix.)

Saving a program on disk
Make sure your PORTER'S PROGRAMS disk, and not the DOS
WORKING MASTER, is in the drive. We still have the little
sample program in the computer, and we'll use it to demonstrate
how to save a program on disk.
BASIC writes programs to disk storage in one of two formats. In

compressed format, it squishes the program to make it smaller so
that it uses minimal space on the disk. It's a bad idea, and here's
why. If you later retrieve that program to make changes or fix bugs
(errors that cause the program to malfunction), you cannot read
some instructions because they've been changed to gibberish. Also,
cosmetic spacing, loop indentions, and other tricks to make pro
grams readable have all been removed, so that what you see is a
mass of text and symbols that bears little resemblance to what you
typed. The way to save the sample program in compressed format
is with the command

SAVE "SAMPLE"

(Note: this program is so short and simple that the compressed
format is identical to what was typed. This is not so in larger, more
complex programs.) Don't use compressed format unless you en
joy frustration and aimoyance.
The better way is to save programs in ASCII format. ASCII

(pronounced "askey" and short for American Standard Code for
Information Interchange) is the electronic alphabet the PCjr uses
to represent your typing within its memory and circuitry. When
you save a program in ASCII format, the computer writes it to disk
exactly as it appears on the screen and later retrieves it as a
faithful copy. It does not in any way tamper with your work. The
command to save the sample file in ASCII format is

SAVE "SAMPLE",A
t

The only difference is the ",A" following the file name. This is a
parameter that specifies ASCII. If you fail to include it in the
command, the program "gets compressed.

22 PORTER'S PROGRAMS FOR THE IBM® PCjr

Suppose you just saved a program without the ",A" and then
realized your mistake. As long as you haven't wiped the program
out of memory (with a NEW command, a LOAD, or turning off the
power), you can retype the same SAVE command with the ",A"
and DOS will replace the compressed copy on disk with an ASCII
copy.

Retrieving a program from disk
Turn the PCjr off with the power switch. This wipes the mem
ory clean, thus assuring that the sample program no longer exists
within the computer and proving that what we're about to do
works. Now turn the machine back on and go through the slgnon
procedure to get Into BASIC (you'll have to put the DOS WORK
ING MASTER Into the drive for start-up).

Replace the working master with the PORTER'S PROGRAMS
diskette. If you do a LIST, you'll see that there Is no program In
memory at the moment.
The process of retrieving a program file fi:om a disk Is called

loading, since it's analogous £o loading a truck (the computer's
memory) from a warehouse (the disk). As in the case of SAVE, you
must specify the file name in double quotes. Happily, there are no
options with LOAD as there are with SAVE, so to get the program
back from disk, type the command

LOAD "SAMPLE"

The disk whirrs a moment and the computer says "Ok," meaning
that the load is complete. Type the LIST command and—^voil^ll
—the program reappears, identical to the one we had before we
powered down. It has been fetched from the disk and'restored in
toto. You can run it, edit it, do anything to it that you could before.

Program updates
If you don't make any changes to the program, it is not neces
sary to resave it. A copy already exists on disk, and the LOAD
operation doesn't affect it, just as the words on this page are
unaffected by your having read them.
On the other hand, if you do modify the program and you want

to save it as a hew version, you can use the same file name in the
SAVE command and DOS will replace the old copy on disk with
the update. To save the new version without affecting the old, give

Introduction 23

the new one a different name. For example, an update to the base
program SAMPLE might have the name SAMPLE 1, a subsequent
version SAMPLE2, and so on.

Loading and running a program on disk
You can take a shortcut when you want to fetch a program
that's on disk and run it immediately. As an illustration, type the
commands

NEW: LIST

which delete SAMPLE from memory and show that there is no
program currently in the computer.
Now type the command

RUN "SAMPLE"

and you'll see that BASIC loads the program from disk and exe
cutes it right away. Afterward, type LIST and the program lines
appear on the screen, since they remain in memory after execution
ends. The RUN "SAMPLE" command is identical in effect to

LOAD "SAMPLE"

. RUN

and merely abbreviates the process of starting a program from the
disk. '

Finding out what's on a disk
Sometimes you don't know what fQes you have on a particular
diskette. To find out, type the BASIC command

FILES

The computer then searches an area on the disk caUed the directory
and lists the names of all the files .it contains. It also tells you how
much space is left for storage on the diskette. In this case, the
display should read

FILES

A:

SAMPLE .BAS

361472 Bytes free

When you have many files on the diskette, their names will appear

24 PORTER'S PROGRAMS FOR THE IBM® PG/r

in two columns. As the screen Ms, the computer will pause briefly
to give you time to scan the list and will then resume until all the
file names have been displayed.
The FILES command has no effect on any pro^am lines cur

rently in memory. Type LIST and you'll see that the sample pro
gram is stiU there.

Removing a file from the disk
There's no point in keeping a copy of the sample program, so
we'll use it as a case study in deleting files from diskettes. In
IBM/Microsoft nomenclature, the act of removing a file from stor
age is called kiUing, a distressing term that nonetheless accurately
conveys what happens. When you kill a file, you remove aU traces
of it from the disk, as though it had never existed. The space
formerly occupied by the file is made available for other files that
you might add later.
To delete the SAMPLE program from the disk, type

KILL "SAMPLE.BAS"

Note that it is necessary in this case to include the ".BAS" suffix.
If you simply type

KILL "SAMPLE"

the computer responds "File not found," which means no action
has occurred. When the operation is successM, as in the first
example, BASIC replies "Ok," indicating that the file was killed.
You can check to verify that it no longer exists with the FILE

command. The computer will reply "File not found," in this case
meaning that there are no files to find on the diskette or, in other
words, that the diskette is blank. In fact this is so, since SAMPLE
was the only program we saved, and it's gone now.
SAMPLE StiU exists in memory, however, as the LIST command

proves. The KILL command o^y removed it from the diskette.
We can also wipe it out of the computer's memory by typing
NEW.

Much of this probably stiU seems mysterious and fiightehing,
especiaUy if the PCjr is your first computer. The point is that you
have nothing to be afraid of. The computer is only a tool, and like
any tool you have to leam to use it and gain the experience that

Introduction 25

will make you comfortable with it. I guarantee that after you've
entered, run, and saved a few of the programs that follow, you'll
begin to feel like a pro, and most of these new commands and
operations will become automatic.

SECTIDN 1

PROGRAMS HAVING TO

DO WITH MATHEMATICS

Eniac

The first machine that could accurately be called a computer by
today's standards was the Electronic Numerical Integrator and
Calculator, or ENIAC. It was developed during World War II at
lavish expense, occupied a space 30 x 50 feet, stood about 12 feet
high, and needed a legion of magicians to operate it. Programming
it was a tedious task involving plugboards, whose multitudinous
connections were designed by a tiny society of elites accord
ing to principles so exotic that it seemed ordinary people would
never be able to understand them. And when it was done, the
government proudly announced that it could compute the cube
root of 2589 to the 16th power "in a fraction of a second."
How far we have come in so short a time! Before you sits the

IBM PCjr, a household-priced machine that you can carry around
under your arm. It takes no great genius to program it, and you
can operate it all by yourself with only a little training, usually
self-taught. As for its speed in doing the much-publicized ENIAC
calculation ... Well, enter the following brief program and see for
yourself how Junior Stacks up against the ENIAC.

NEM

100 ' ENIAC

110 T = TIMER

120 .X = EXP(L06<2589) 51 16/3)

130 E = TIMER - T

26

Programs Having to Do with Mathematics 27

140 PRINT "CUBE ROOT OF 2589 TO 14TH POMER =" X
150 PRINT USING "TIME 0.0# SEC"5 E
160 END

RIW

I

Sample run:

CUBE ROOT OF 2589 TO 16TH POWER = 1.59723<SE+18

TIME 8.85 SEC

Ok

"A fraction of a second" indeed! Junior does It in a mere 0.05
(5/100) second. The government didn't say how many fractions of
a second, but surely this diminjutive computer compares favorably
with ENIAC. And it can do a lot more than ENIAC ever could,
since that- huge hulking collection of vacuum tubes and equip
ment bays was designed chiefly to calculate the trajectories of
artillery shells.
Perhaps we should explain the answer Junior came up with,

since "E -I- 18" is a strange-looking sufhx for a number. Now and
again you might see numbers such as this in the output of the
computer. It's a form of scientiQc notation, which in this case can
be transformed into the more familiar 1.597236 x 10^®. StiU doesn't
make sense to you? It means shift the decimal point 18 positions to
the right, giving the number

1,597,236,000,000,000,000

which is approximately the number of miles traveled by a ray of
light in 272,300 years. The PCjr, able to produce up to seven
digits at a time (in single-precision format, which most of the
programs in this book use), reports very large numbers in this
format.

It also reports very small numbers in a similar way. The plus
sign is replaced by a minus sign, meaning shift the decimal point
to the left by the number of positions indicated. For example, the
number 1.597236E-18 translates into

0.000000000000000001597236

(that's 17 leading zeros, plus the 1 for 18 places), which is in the
realm of the weights of individual atoms.

Junior can represent shifts of up to ± 37 decimal points in this

28 PORTER'S PROGRAMS FOR THE IBM® PCjr

fashion. An eleetton weighs 4.1 x pounds, and the Earth
weighs 1.70481048 x 10*^ pounds, both of which are well within
the computer's range of numbers.
ENIAC, for all its gigantic size and complexity and cost, couldn't

express numbers this small and large. It couldn't do a lot of other
things Junior can, either. The programs that follow give a sampling
of this computer's capabilities and furnish a usefid and entertaining
library.

Integral Factors of a Ngmbar
Integers are whole numbers with no fractional or decimal compo
nent, such as 2, 9, and 5280. The number 3.14159 is not an
integer because it has a fractional part. Factors are the divisors of a
number; for example, the factors of 6 are 2 and 3. It's also true
that 4 and 1.5 are factors of 6, but they are not integral factors
because one of them has a fractional part.
The foUowing program takes any number and computes all its

integral factors (except the obvious one of 1 times the number
itself). If the number has no integral factors, the program tells you
so.

NEW ~
108 ' FACTORS OF A NUMBER (FACTORS)

lie CLS: KEY OFF; R = 8 .
128 PRINT "INTEGRAL FACTORS"; PRINT

138 INPUT "NUMBER... N

148 FOR F1 = 2 TO <N / 2) -1

158 F2 « N / F1

168 IF F2 <> INT<F2) THEN 198

178 PRINT Fl, F2
188 R = R + 1

198 NEXT Fl

288 IF R = 8 THEN PRINT "NONE"

218 END

RUN

Sample run;

Progrsms Having tx) Do with Mathematics 29

INTEGRAL FACTORS

NUMBER... ? 63

3 21

7 9

9 7

21 3

Ok

Prime Numbers

Primes are numbers that cannot be divided without producing a
fraction or, in other words, numbers only divisible by 1 or by
themselves. An example is the number 5; there are no numbers
that you can multiply except 1 and 5 to produce 5; therefore, 5
is prime. In a sense, the program to find primes is the opposite of
the preceding program in that it finds numbers for which there are
no factors.

A program that computes all the prime numbers from 1 to an
upper limit (N) is called the Sieve of Eratosthenes. It does a
gigantic amount of work (for an admittedly trivial result). Com
puter people use a Sieve to compare the speeds of two or more
machines or of two or more programming languages running on
the same computer in order to find out which is the most efficient.
This process is called benchmarking, and it often plays an impor
tant part in selecting a particular system over others.
There are several ways of calculating prime numbers. It's not

important which method is used in benchmarks, so long as the
same method is used consistently for all tests. First, this program
multiplies all the numbers from 2 to N/2 and marks a list for each
product. The second phase then scans the list and prints all the
entries not marked, which are the prime numbers. Consequently,
the list has "holes" indicating the prime numbers, hence (he
analogy to a sieve.
Because the purpose of this kind of program is usually to mea

sure running time for the calculations, the program times itself
during that phase. At the end of the list, it reports how many
seconds it took to compute all rionprime numbers. Output time is
not measured. If the screen fills, the program pauses until you

30 PORTER'S PROGRAMS FOR THE IBM® PG/r

press RETURN. Beware: The higher die limit, the longer this
program runs, time increases as the square of the limit.

N&i ^
100 ' ERATOSTHENES SIEVE (SIEVE)

110 CLS: KEY OFFs PRINT

120 PRINT "PRIME NUMBERS"

130 INPUT " UP TO WHAT"; N
140 DIM PXCN)

150 PRINT; PRINT "THINKING"

160 Tl= TIMER

170 FOR X « 2 TO (N / 2)

180 FOR Y = 2 TO <N / 2)

190 I » X X Y

200 IF I > N THEN 230

210 P/<I) = 1

220 NEXT Y

230 NEXT X

240 T2 = TIMER

250 '

260 ' DISPLAY RESULTS

270 I' = 0
280 FOR X = 1 TO N

290 IF P/.(X) <> 0 THEN 340

300 PRINT X,
310 1 = 1+ 1

320 IF I = 48 THEN 60SUB 398

330 NEXT X

340 ET = T2 - T1

358 PRINT

360 PRINT USING "TIME SEC"5 ET
370 END

380 '

390 ' FULL SCREEN PAUSE

400 PRINT "PRESS RETURN FOR MORE..."

410 X« = INKEY$
420 IF X$ = "" THEN 418

430 I = 0: RETURN

RUN

Programs Having to Do with Mathematics 31

Sample run:

PRIME NUMBERS

UP TO WHAT? lee

THINKING

1 2

3 5

7 11

13 17

19 23

29 31

37 41

43 47

53 59

6i 67

71 73

79 83

89 97

TIME 4.23

Ok

SEC

Powers of a Number

Everybody knows that 3^ means 3 squared or 3 raised to the
power of 2. And everybody knows how to do the calculatlbn; you
multiply the number by itself the number of times indicated by the
power, that is, 3 x 3. ̂
But what about raising 3 to the 3.14159 power? Or worse yet, 3 to

the -3.14159 power? How can you multiply a number by itself a frac
tional and/or negative number of times? It's possible, but it isn't easy.
Pity the poor Greeks who figured out this kind of stuff without
even the benefit of an adding machine. Computers make things
like this simple, as you'll see by running the following program.

NEW

lee ' POWER OF A NUMBER (POWER)

110 CLS: KEY QFF: PRINT (continued)

32 PORTER'S PROGRAMS FOR THE IBM® PCjr

120 PRINT "NUMBER RAISED TO A POWER:"
130 INPUT " WHAT IS THE NUMBER "5 N
140 IF N = 0 THEN END
150 INPUT " RAISE TO WHAT POWER"5 P
140 PRINT: PRINT "ANSWER IS" N P
170 PRINT; GOTO 130

RUN

Sample run:

NUMBER RAISED TO A POWER:

WHAT IS THE NUMBER ? 3
RAISE TO WHAT POWER? 3.14159

ANSWER IS 31.54419

WHAT IS THE NUMBER ? 3

RAISE TO WHAT POWER? -3.14159

ANSWER IS 3.170154E-02

WHAT IS THE NUMBER? 0

Ok

Roots of Real Numbers

The last program concerned powers, and the next one has to do
with roots. They're really the same things viewed from opposite
directions; If 2^ Is 16, then the 4th root of 16 Is 2. But although
raising a number to a power Is somewhat Intuitive (at least when
the power Is a whole number). It's quite a different ball game to
find a root. Some we know by heart because we can work the
times tables backward: The square root of 25 Is 5, for Instance.
Cube roots are a little harder, but still possible, as In the cube root
of 27 = 3; But what about the 17th root of 266.3, or the -5.61 root
of 427.616? Now we're In trouble.
Enter Our Hero, a program to find any root of a real number

with a minimum of fuss and bother. This program. In line 180,

Programs Having tx) Do with Mathematics 33

divides the logarithm of the number by. the magnitude of the root
and converts the answer back to an ordinary number. That's some
thing few of us can do in our heads, and not many more can do on
paper. But you don't have to be a math wizard to work the program
(nor do you even have to understand the process). SufQce it to say
that it works and gives an accurate answer.

Before proceeding, however, we need to point out that the term
real number is significant in this case. No one has yet come up
with a way to find the root of a negative number, which is why
mathematicians call such phenomena imaginary numbers. They
exist in theory, but not in fact Computers only work with facts, so
this program will not and cannot provide roots of negative numbers.
If you try to make it, it will kick out the answer "NO CAN DO"
and ask you for another, more reasonable input.

hiN ^
180 ' ROOT OF A NUMBER (ROOT)

lie CLS: KEY OFF: PRINT

120 m - "No can do"

130 PRINT "ROOT OF A REAL NUMBER:"

140 INPUT • WmT IS THE NUMBER"; N
150 IF N » 0 THEN END

160 IF N < 0 THEN PRINT N^: GOTO 288
170 INPUT " FIND WHAT ROOT "; R
180 A = EXP<LOG<N) / R)

190 PRINT "ANSWER IS" A

200 PRINT: GOTO 148

Sample run:

ROOT OF A REAL NUMBER:

WHAT IS THE NUMBER? 266.3

FIND WHAT ROOT ? 17

ANSWER IS 1.388893

y\mi IS THE NUMBER? 427.616

FIND WHAT ROOT ? -5.61

ANSWER IS .3396303 (continued)

34 POSTER'S PROGRAMS FOR THE IBM® PCjr

WHAT IS THE NUMBER? 6

Ok

Trigonometry No. 1
The world abounds with practical applications of trigonometry,
the mathematics of triangles and curves: figuring out how high
something is, determining our position relative to other objects,
surveying, and so on. Few of us think of the world in trigonometric
terms, of course, instead living our lives by eyeballing and
approximating. When we do come up; against a situation demand
ing more accuracy than a guess, we are suddenly reminded how
complex the world is.
Trigonometry is not a simple aspect of mathematics. It relies on

obscure measurements of relativity called sines and cosines and
tangents and what not, the derivations and purposes of which
remain cloaked in confusion for most people. With the following
three programs, which deal with classic problems of trigonometry,
you don't have to know anything about the mechanics of trian^es
or trigonometric functions. These programs return accurate infor
mation about any form of triangle—scalene, obtuse, right, equilateral,
or you name it.
A note regarding mathematical notation in triangles: The sides

are called A, B, and C, and the angle opposite side A is called angle
A, the angle opposite side B is angle B, and so on. These programs
use that customary notation.
The first program takes the lengths of two sides and the degrees

of their included angle (the included angle is the one between the
two sides whose measurements are given) and tells you the length
of the other side and the degrees of the other two angles.

Siw
100 ' TRIGONOMETRY #1 <TRI61)

lie ' 2 SIDES AND INCLUDED ANGLE

120 CLS: KEY OFFs PI = 3.1416

130 PRINT "TRIGONOMETRY #ls"s PRINT

140 INPUT • SIDE A "; SA
150 IF SA = 0 THEN END

160 INPUT " SIDE B "; SB
170 INPUT " ANGLE C, "; AC

Progrmtrs Having to Do with Mathematics 35

180 IF AC > 180 THEN AC = 340 - AC
190 AC = AC X <PI / 180)
200 C2 » SA^2+8B^2-2X<SAX8BXC0S<AC))
210 SC = SQR<C2)

220 BC = <SC'^2+SA^2-SB'^2)/<2XSAXSC)
230 BS = SQRd - BC''2)
240 AB = ATN<BS / BC)

250 IF AB < 0 THEN AB = AB + PI
240 AA = PI - CAB + AC)
270 PRINT: PRINT

280 PRINT "SIDE C " SC

290 PRINT "^GLE A " AA / (PI/180)
300 PRINT "«W6LE B " AB / (PI/180)
310 PRINT: PRINT

320 GOTO 130

RUN

Sample run:

TRIGONOMETRY #1:

SIDE A ? 4

SIDE B ? 5.5

<WGLE C ? 112

SIDE C 9.538044

ANGLE B 35.47999

fiiHGLE C 32.32

TRIGONOMETRY «1:

SIDE A ? 0

Ok

Trigonometry No. 2
The second classic exercise In trigonometry resembles the first,
except that this time It solves the triangle with two angles and one

36 PORTER'S PROGRAMS FOR THE IBM® PG/r

included side (between the two given angles). The same notation
applies as before.

NEW

100 ' TRIGONOIETRY #2 <TRIG2)

110 ' 2 ANGLES AND INCLUDED SIDE

120 CLS: KEY OFF: PI = 3.141<f.

130 PRINT "TRIGONOMETRY #2:": PRINT

140 INPUT i^GLE A

150 IF AA = 0 THEN END

1(50 INPUT " (!«4GLE 8

170 INPUT "

180 IF >
190 AA =

200 IF AB >

210 AB = AB

i AB
SIDE C SC

180 THEN AA = 360 - AA

X (PI / 180)

180 THEN AB = 368 - AB

X (PI / 180)

220 AC = PI - (AA + AB)

230 SA = EXP(LOG(SC) - LOG(SIN(AC))

240 SB = EXP(LOG(SC)

250 PRINT; PRINT

260 PRINT "<WGLE C

270 PRINT "SIDE A

280 PRINT "SIDE B

290 PRINT: PRINT

300 GOTO 130

Rm

L06(SIN(AC))

AC / (PI/18

LOG(SIN(AA)))

LOG(SIN(AB)))

0)

SA

SB

Sample run:

TRIG(B40METRY #2:

ANGLE A

l^GLE B

SIDE C

? 35.68

? 32.32

? 9.54

ANGLE C

SIDE A

SIDE B

112

6.00129

5.501127

TRIGtWOMETRY #2;

ANGLE A ? 0

Ok

Programs Having tx) Do with Mathematics 37

Trigonometry No. 3
The third and last classical trigonometry problem we'll consider
is that of a triangle in which the lengths of all three sides are
known and we need to find the angles.

NEW

lee ' TRIGONOMETRY #3 (TRIGS)

lie REM 3 SIDES

120 CLS: KEY OFF: PI » 3.14U

130 PRINT "TRIGONOMETRY #3:": PRINT

140 INPUT " SIDE A A

150 IF A « 0 THEN END

140 INPUT " SIDE B "} B
170 INPUT " SIDE C »} C
180 AC = (B*2 + C^2 - A^2)/(2 * B X C)

190 AS = SQR<1 - AC^2)

200 AA » ATN(AS / AC)

210 IF AA < 0 THEN AA » PI -i- AA

220 BC = (C^2 + A^2 - B*2)/(2 X A * C)

230 BS = SQR< 1 - BC^2)

240 AB s ATN(BS / BC)

250 IF AB < 0 THEN AB > PI + AB

240 AC = PI - <AA + AB)

270 PRINT "ANGLE A

280 PRINT "ANGLE B

290 PRINT "ANGLE C

300 PRINT: PRINT

310 GOTO 130

RUN

Sample run:

TRIGONOMETRY #3:

AA / tPI/180)

AB / <PI/180)

AC / (PI/180)

SIDE A

SIDE B

SIDE C

? 9.54

? 4

? 5.5

(continued)

38 PORTER'S PROGRAMS FOR THE IBM® PCyr

ANGLE A 112.0353

ANGLE B 35.66103

ANGLE C 32.30365

TRIGONOMETRY #3:

SIDE A ? 0

Ok

Factorial!

In working with binoniials and other algebraic mysteries, it is
occasionally useful to calculate the factorial of a number, which
mathematicians write as n!. A factorial is the product of all the
integers leading up to the number in question, for example, 4! = 1
X 2 X 3 X 4 = 24. The following program computes any factorial
up to 33!. Beyond that point, the product is too large a number for
the computer to express. The answer repeats until you enter 0 in
response to the prompt.

N&i
100 ' FACTORIAL! (FACTORIL)

110 CLS: KEY OFF

120 PRINT "PRODUCT OF A SERIES OF INTEGE
RS:-

130 INPUT "FACTORIAL"; N
140 IF N = 0 THEN END
150 F# = 1

160 FOR X = 1 TO N

170 F# = F# X X

180 NEXT X

190 PRINT N "! =" FH

200 PRINT: PRINT: GOTO 130

RUN

Sample run:

PRODUCT OF A SERIES OF INTEGERS:

FACTORIAL? 5

5 ! = 120

Priigrams Having to Do with Mathematiqs 39

FACTORIAL? 18

18 ! = 6402373705728000

FACTORIAL? 0

Ok

Distance Between Two Points

It's often useful when working with graphs and grids that have
coordinate systems to find the distance between two points. That's
a laborious task by hand, but it's a simple one for a computer, as
the following program illustrates.

If you're uncertain about the meaning of X and Y coordinates,
we'll explain briefly. A graph has a vertical line that represents the
0 point for horizontal measurements and a horizontal line repre
senting the 0 point for vertical measurements. These reference
lines are called the Y and X axes, respectively. Any point on the
graph can be described by its horizontd distance from the vertical
axis (its X coordinate) and by its vertical distance from the horizon
tal axis (its Y coordinate). A point 3 units to the right of the vertical
axis has an X coordinate of 3; a point 5 units above the horizontal
axis, has a Y coordinate of 5. Thus, its position is defined as X = 3,
Y = 5. Any point on the graph can be defined in this marmer. By
custom, X coordinates to the left of the vertical axis and Y coordi
nates below the horizontal axis have negative numbers. Conse
quently a point opposite the one discussed above (i.e., 3 units left
of the vertical axis and 5 units below the horizontal axis) has the
coordinates X = -3, Y = -5. The program finds the distance
between any two points so defined,

nd5
100 ' DISTANCE BETWEEN POINTS (DISTANCE)

110 CLSs KEY OFF

120 PRINT -DISTANCE BETWEEN 2 POINTS

130 INPUT "POINT #1 X, Y..."; XI, Y1
140 INPUT -POINT #2 X, Y..."; X2, Y2
150 D = SQR<<X1 - X2)'^2 + (Y1 - Y2)'^2>

160 PRINT: PRINT "DISTANCE =" D

170 PRINT: PRINT ^ (continued)

4D PORTER'S PROGRAMS FOR THE IBM® PCjr

180 INPUT "ANOTHER (Y/N)"; R$
190 IF R$ O "Y» THEN END

200 PRINT: PRINT: GOTO 130

RUN

Sample run:

DISTANCE BETWEEN 2 POINTS:

POINT #1 X, Y...? 3,5
POINT #2 X, Y.,.? -3,-5

DISTANCE = 11.4619

ANOTHER <Y/N)? Y

POINT #1 X, Y...? 0,4
POINT #2 X, Y...? 3,0

DISTANCE » 5

ANOTHER <Y/N>? N

OK

Cones, Buckets, and Lampshades
Everyone knows what a cone is, of course; you eat ice cream
from it, or drink water from it, or wear it on your head New Year's
Eve. But do you know what a frustum is?
Frustum is the geometric term for a cone with the upper end

whacked off. It forms a shape like a lampshade or a bucket (hence
the name of tWs program). A frustum is a fairly complicated geo
metric form, and c^culating its dimensions by hand can be an
odious (frustumating?) task. But no more: This prograih does it in
a twinkle for both frusta and cones.

Maybe we should explain a few terms. Height as used here

Programs Having to Do with Mathematics 41

means the depth of the thing measured vertically as in, "How deep
is the bucket?" Slant height, which the program figures out, is the
height of the outside surface measuring from bottom to top at the
slant of the side. Lateral surface means the area of the side if you
cut a lampshade and spread it flat, excluding the top and bottom areas,
if any. Total surface does include the ends, as in the munber of
square inches of metal in the sides, bottom, and lid of a bucket.
The following program is geared toward finsta, but you can use

it for cones and get valid results if you tell the program that one of
the diameters is 0.

NEW

160 ' CONES, BUCKETS ic LAMPSHADES (CONES)
118 CLS: KEY OFF: PI = 3.1416

120 PRINT "CONICAL THINGS": PRINT

130 INPUT "HEIGHT "; H
140 INPUT "BOTTOM DIAMETER... "5 D1
150 INPUT "TPP DIAMETER...... "j D2
160 R1 = D1 / 2: R2 = D2 / 2

170 SH = SQR<H^2 + <Rl'- Rl)''2)
180 S s PI SH X (R1 * R2)

190 B1 » PI X Rr2

200 B2 = PI X R2^2

210 A B2

220 V = (PIXH)/3X(<Rr2+R2^2> + <RlXR2)>

230 PRINT
240 PRINT "SLANT HEIGHT"

250 PRINT "LATERAL SURFACE" TAB<25)

260 PRINT "BOTTOM SURFACE" TAB<25)

270 PRINT "TOP SURFACE"

280 PRINT "TOTAL SURFACE"

290 PRINT "VOLUME"

300 END

Sample run:

CONICAL THINGS

TAB<25> SH

S

81

TAB(25) 82

TAB<25)

TAB<25)

A

V

HEIGHT. ? 12

(continued)

42 PORTER'S PROGRAMS FOR THE IBM® PCyr

BOTTOM DIAMETER... ? 12

TOP DIAMETER...... ? 7

SLANT HEIGHT 12.25765
LATERAL SURFACE 365.832

BOTTOM SURFACE 113.8976
TOP SURFACE 38.4846
TOTAL SURFACE 517.4142

VOLUME 870.2231
Ok

Spheres
The following program takes the diameter of a sphere, defined
as a straight line passing from one point on the surface to another
through the center, and calculates the clrciimference, surface
area, and volume.

100 ' SPHERE ~
110 CLS; KEY OFF: PI = 3.1416
120 PRINT "SPHERE CALCULATIONS"

130 PRINT: Input "diameter... "; D
140 C = PI M D

150 A = D X C

160 V = <PI X (D'^3>) / 6
170 PRINT

180 PRINT "CIRCUMFERENCE" TAB(25) C

190 PRINT "SURFACE AREA" TAB<25) A

200 PRINT "VOLUME" TAB<25) V

210 END

Sample run:

SPHERE CALCULATIOjS

DIAMETER... ? 10

CI RCltiFERENCE 31.416

Programs Having to Do with Mathematios 43

SURFACE AREA

VOLUME

Ok

314.14

523.6

Cylinders
Almost anything you'd ever need to know about a cylinder can
be determined from its diameter and height, which is what the
next program asks for. Use it to figure out dimensions of beer
cans, the pistons in your car, bulk petroleum storage tanks, and
anything else of a cylindrical shape.

NEH

100 ' CYLINDER

110 CLS: KEY OFF: PI = 3.1416

120 PRINT "CYLINDER CALCULATIONS:"

130 PRINT: INPUT "DIAMETER... "j D
140 PRINT: INPUT "HEIGHT..... "j H
150 C = PI X D: R « D / 2
160 S = C X H

170 A = PI X D X <H + R)
180 B = <A - S) / 2

190 V = PI X H X R'^2

200 PRINT "CIRCUMFERENCE" TAB<25) C
210 PRINT "LATEIWL SURFACE" TAB<25) S

220 PRINT "TOTAL SURFACE" TAB<25) A

230 PRINT "BASE AREA"

"VOLUME"240 PRINT

TAB<25) B

TAB<25) V

250 END

RUN

Sample run:

CYLINDER CALCULATIONS:

DIAMETER... ? 3

HEIGHT ? 10
(continued)

44 PORTER'S PROGRAMS FOR THE IBM® PCjr

CIRCUMFERENCE 9.4248

LATERAL SURFACE 94.248

TOTAL SURFACE 188.3852

^SE AREA 7.M86
VOLUME 78.686

Ok

Statistics No. 1

The next program takes any number of numeric values and
calculates their range, mean, variance, and standard deviation.
It is a simple statistical program that does not weight the results
for frequency distribution by groupings (see STATISTICS No.
2 for that). You can enter the values in any order. The last
value has to be 0, which tells the program that the Ust is
completed.

N&l ~
188 ' STATISTICS #1 (STATSl)

118 L = 9999999 s H - -L

128 CLSi KEY OFF

138 PRINT "STATISTICS #l!"I PRINT

148 PRINT • ENTER VALUES ONE AT A TIME"

158 PRINT " END LIST WITH 8"

168 '

178 ' INPUT AND SUM^RIZE
188 INPUT "VALUE"; Q
198 IF Q « 8 THEN 278

288 IF Q < L THEN L = Q

218 IF Q > H THEN H » Q

228 N » N + 1 SAMPLE SIZE

238 T = T + Q TOTAL

248 D = D .+ 0^2 SUM SQUARES
258 GOTO 178

268 '

278 ' CALCULATIONS

288 M = T / N MEAN

298 V » <D / N) - M*2:' VARIANCE

388 S = SQR<V> STD DEV

Programs Having to Do with Mathematics 45

310 '

320 ' OUTPUT

330 PRINT "

340 PRINT "SAMPLE SIZE

"RANGE

" LOWEST

HIGHEST

350 PRINT

340 PRINT " LOWEST " L

370 PRINT " HIGHEST " H

380 PRINT "MEAN

390 PRINT

400 PRINT

410 PRINT: END

RUN

"VARIANCE

"STANDARD DEVIATION

PRINT

N

H

M

V

S

- L

S^ple run (earnings per share of 7 stocks):

STATISTICS #1:

ENTER VALUES ONE AT A TIME

END LIST WITH 0

VALUE ? 2.34

VALUE ? 4.84

VALUE ? 5.51

VALUE ? 3.03

VALUE ? 9.44

VALUE ? .39

VALUE ? 2.99

VALUE ? 0

SAMPLE SIZE

RANGE:

LOWEST

HIGHEST
, MEAN

VARIANCE

STANDARD DEVIATION

Ok

7

9.049999

.39

9.439999

4.08

7.18817

2.481074

46 PORTER'S PROGRAMS FOR THE IBM® PC/r

Statistics No. 2

The following program is more sophisticated than STATISTICS
No. 1, because it can take grouped data and apply weights for the
number of observations per class. The sample run here categorizes
fleet cars by miles pier g^on (mpg), with the first number the start
of the range, the second the upper limit of the range, and the third
the number of cars that get that mileage (for example, there are 13
cars that get between 19 and 19.9 mpg).

NEW

100 ' STATISTICS #2 <STATS2)
110 CLS; KEY OFF

120 PRINT "STATISTICS #2!"; PRINT

, 130 PRINT » ENTER CLASS Lm, HIGH, OBSERVATI(»^IS"
140 PRINT " END LIST WITH THREE 0'S"

150 '

140 ' INPUT (!«qD SIM>WRI2E

170 INPUT CL, CH, F
180 IF CL = 0 AND F r 0 THEN 250

190 N = N + F

200 X = CH - (<CH - CL) / 2)

210 FX = FX + (F X X)

220 F2 = F2 + (FX X''2)

230 GOTO 140

240 '

250 ' CALCULATKM^S

240 M = FX / N

270 V = <F2 - (N X M'^2)) / N

280 S = SQR(V)

290 '

300 ' OUTPUT

310 PRINT " PRINT

320 PRINT "SAMPLE SIZE " N

330 PRINT "MEAN " M

340 PRINT "VARIANCE " V

350 PRINT "STANDARD DEVIATION " S

340 END

Programs Having to Do with Mathematics 47

Sample run (miles per gallon o-f a group of fleet cars):

STATISTICS #2:

ENTER CLASS LCW, HIGH, OBSERVATIONS
END LIST WITH THREE 0'S
? 14, 14.9, 4
? 15, 15.9, 5
? 16, 16.9, 8
? 17, 17.9, 5
? 18, 18.9, 11
? 19, 19.9, 13
? 20, 20.9, 17

•? 21, 21.9, 21

? 22, 22.9, 14

? 23, 23.9, 2
? 0,0,0

SmPlE SIZE 100

MEAN 19.69

VARIANCE 5.362422

STANDARD DEVIATION 2.315691

Ok

In other words, of the 100 ears sampled, their mean (or average)
miles per gallon is 19.69 plus or minus 2.316, although any car
might vary as much as 5.36 mpg from the mean.

SECTION 2

WEIGHTS AND
MEASURES

The next several programs will deal with the rather serious arid
perplexing problem of converting among various common units of
measurement. The United States is, by a global process of
elimination, becoming the only nation that still uses Ae old En
glish systems of measurements, which are irrational, arbitrary, and
nonsensical (even if they are comfortable). More and more often,
we see measurements expressed in metric units, even though
most of us still can't visualize how long a kilometer is or how
much a kilogram really weighs. This irritates some people, who
think there's an evil conspiracy to force the metric system on
us, yet those same people have to stop and think for a long
time to convert; say, cups into quarts. The object here is not
to sell metric, but to point out that our own system of measure
ments is essentially unfamiliar to us because it makes no logical
sense.

The programs that follow try to overcome the hurdles of going
from one unit to another, within the English system, between the
English and the metric systems, and within metric itself, although
the latter is usually uimecessary. The metric system classifies
measurements by types, which allows us to convert instantly from
any unit to any other within the classification.

All of these programs follow the same general model, and only the
units vary from one to another. We do some slick stuff with them
on the screen, so sample runs on paper can't show what you'll see.
In the case of the first program, you get a list that says

48

Weights and Measures 49

DISTANCE CONVERSION:

IINCHES

2 FEET

3 YARDS

4 MILES

5 CENTIMETERS

6 METERS

7 KILOMETERS

CONVERT TO?

and the cursor blinks after the question mark. The way to respond
is to pick the number of the unit you want to convert to. Let's say
you want to convert kilometers to miles, so you type 4. What
makes this tricky is that the number you typed disappears and the
name of the unit replaces it, so the last line becomes

CONVERT TO MILES

The same thing happens with the next line, which asks

CONVERT FROM?

and leaves the cursor winking after the question mark. You're
going from kilometers to miles, so type 7. The hne then becomes

CONVERT FROM KILOMETERS

Finally, the program asks you

HOW MANY KILOMETERS?

It knows which unit to ask for because of the preceding question.
If you're converting 10 kilometers to miles, type 10. The program
instandy replies

10 KILOMETERS = 6.21371192 MILES

and then it asks you

ANOTHER-(Y/N)?

Type N (for No) to end the program or Y (for Yes) to repeat it with
different units or values.

These are handy programs ̂ d will become ever handier as the
day approaches when metric will take over. Therefore, be sure to
store them on disk where you can readily get to them.

50 PPRTER'S PROGRAMS FOR THE IBM® PCjr

Distance Measurements

This program converts among the following units:

Inches

Feet

Yards

Miles

Centimeters

Meters

Kilometers

NEH

m ' DISTANCE CONVERSION (DISTCON)
110 D = 7

120 DIM C<D,D), N$<D)
130 FOR X = 1 TO D

140 READ X*, C<X,0)
150 NEXT X: RESTORE

160 FOR Y = 1 TO D

170 READ N$<Y>, C(0,Y)
180 NEXT Y

190 '

200 ' CONVERSION FACTORS GRID
210 FOR X = 1 TO D

220 FOR Y = 1 TO D

230 C(X,Y) = C<0,Y) / C<X,0)
240 NEXT Y

250 NEXT X

260 '

270 ' SCREEN SETUP

280 CLS: KEY OFF

290 PRINT "DISTANCE CONVERSION:"

300 FOR X = 1 TO D

310 PRINT TABC5); Xj N$<X>
320 NEXT X: PRINT

330 '

340 ' GET INPUTS

350 INPUT "CONVERT TO"; Y
360 LOCATE CSRLIN-1, 12: PRINT N«<Y)
370 PRINT: INPUT "CONVtRT FROM"; X

Weights and Measures 51

380

390

LOCATE CSRLIN-l, 14; PRIMT N$(|:)
PRINT: PRINT "HOW " N$<X);
INPUT U: PRINT

410

420

430

440

450

470

480

490

500

510

520

530

540

550

5^0

570

RUN

= "j YU; N$(Y)

; Xf

' RESULTS

YU = U / C<X,Y)
PRINT U; Nf(X)j
PRINT: PRINT

INPUT "ANOTHER (Y/N)"

IF X$ = "Y" THEN 270

END
/

' UNITS IN CENTIMETERS

DATA "INCHES", 2.54
DATA "FEET", 30.48

91.44DATA "YARDS",
DATA "MILES",
DATA "CENTIMETERS"

DATA "METERS",
DATA "KILOMETERS",

1^0934.4

1

100

100000

Area Measurements

This program converts among the following units:

Square inches
Square feet
Square yards
Acres

Square miles
Square centimeters
Square meters
Hectares

Square kilometers

Do yourself a favor. Reload the last program from disk and
change lines 100, 110, 140, 170, 290, and the DATA state-

52 PORTER'S PROGRAMS FOR THE IBM® PCjr

ments from 510 onward. They're the only differences between the
two programs. Save the new program under the name AREACON.

NEW

lee ' AREA COl^ERSIGN (AREACON)

110 D = 9

120 DIM C(D,D), Nf<D)
130 FOR X = 1 TO D

140 READ X0, C<X,0) s C<X,0> » C(X,0)'^2
150 NEXT Xs RESTORE

160 FOR Y = 1 TO D

170 READ N$<Y),0(0,Y)!C<0,Y) « C<0,Y)^2
180 NEXT Y

190 '

200 ' CONVERSION FACTORS GRID

210 FOR X = 1 TO D

220 FOR Y = 1 TO D

230 C(X,Y) = C<0,Y) / C<X,0)
240 NEXT Y

250 NEXT X

260 '

270 ' SCREEN SETUP

280 CIS; KEY OFF

290 PRINT "AREA CONVERSION:"

300 FOR X = 1 TO D

310 PRINT TAB<5)5 Xj N*(X)
320 NEXT X: PRINT

330 '

340 ' GET INPlffS

350 INPUT "CONVERT TO"} Y
360 LOCATE CSRLIN-1, 12: PRINT N$(Y)
370 PRINT: INPUT "CONVERT FROM"} X
380 LOCATE CSRLIN-1, 14: PRINT N^(X)
390 PRINT: PRINT "HOW MANY " N*<X)}
400 INPUT U: PRINT

410 '

420 ' RESULTS

430 YU = U / C<X,Y)
440 PRINT U} N$<X)} " = "} YU} N0(Y)
450 PRINT: PRINT

460 INPUT "ANOTHER <Y/N)"} Xf

Weights and Measures 53

470 IF X« = "Y" THEN 270

480 END

490 /

500' UNITS IN CENTIMETERS

510 DATA "SO INCHES", 2.54

520 DATA "SO FEET", 30.48

530 DATA "SQ YARDS", 91.44

540 DATA "ACRES", ^3^1.4907

550 DATA "SO MILES", ld0934.4

5^0 DATA "SO CENTIMETERS", 1

570 DATA "SQ METERS", 100

580 DATA "HECTARES", 10000

590 DATA "SQ KILOMETERS", 100000

RUN

Weight Conversions
Use this program to convert weights among

Ounces

Pounds

Stone

Tons

Long tons
Grams

Kilograms
Metric tons

As in the preceding program, you can save some typing by
reloading the distance program and changing lines 100, 110,
290, and the DATA statements from 500 onward.

iiw "
lee REM XM MEI6HT CONOeRSION (M6HTC0N)
110 D = 8

120 DIM C<D,D), N$<D)
130 FOR X = 1 TO D

140 READ X*, CO<,0)

54 PORTER'S PROGRAMS FOR THE IBM® PCjr

150 NEXT X: RESTORE

140 for Y « 1 TO D
170 READ N*<Y), C(0,Y)
180 NEXT Y

190 '

200 ' COM^ERSIGN FACTORS GRID

210 FOR X = 1 TO D

220 FOR Y » 1 TO D

230 C<X,Y) = C<0,Y) / C(X,0)
240 NEXT Y

250 NEXT X

240 '

270 ' SCREEN SETUP

280 CLSs KEY OFF

290 PRINT "WEIGHT COWERSION:"

300 FOR X = 1 TO D

310 PRINT TAB<5); X; N*<X)
320 NEXT Xs PRINT

330 '

340 ' GET INPUTS

350 INPUT "CONMERT TO"; Y
340 LOCATE CSRLIN-1, 12; PRINT N$<Y)
370 PRINT: INPUT "CONVERT FROM"; X
380 LOCATE CSRLIN-1, 14: PRINT N0(X)
390 PRINT: PRINT "HOW MANY " N*<X);
400 INPUT U; PRINT

410 '
420 ' RESULTS

430 YU = U / C(X,Y)
440 PRINT U; NtCX); " = YU; N*<Y)
450 PRINT: PRINT

440 INPUT "ANOTHER <Y/N)"; X*
470 IF X0 = "Y» THEN 270

480 END

490 '

500 ' UNITS IN GRAMS

510 DATA "OUNCES", 28.3495
520 DATA "POUNDS", 453.592
530 DATA "STONE", 4350.288
540 DATA "TONS", 907184

Weights and Measures 55

550 DATA "LONG TONS", 1014046.1
540 DATA "GRAMS", 1
570 DATA "KILOGRAMS", 1000
580 DATA "METRIC TONS", 1000000
RUN

Liquid Measurements
This is a really easy program to set up. Just reload the distance
program and change lines 100, 290, and the DATA statements.
You'll then have a program that converts among the following:

Cups
Pints

Quarts (U.S.)
Imperial quarts
GaUons(U.S.)
Imperial gallons
Liters

NEW

100 REM XX LIQUID MEASUREMENTS (LIQMEAS)
110 D = 7

120 DIM C(D,D), Nf<D)
130 FOR X = 1 TO D

140 READ X$, C(X,0>
150 NEXT X; RESTORE

140 FOR Y = 1 TO D

170 READ N*<Y>, C<0,Y>
180 NEXT Y

190 '

200 ' CONVERSION FACTORS GRID
210 FOR X = 1 TO D

220 FOR Y = 1 TO D

230 C<X,Y) = C<0,Y) / C<X,0)
240 NEXT Y

250 NEXT X . ,v
(continued)

56 PORTER'S PROGRAMS FOR THE IBM® PCjr

269 '

270 ' SCREEN SETUP

280 CLS! KEY OFF

290 PRINT "LIQUID MEASUREMENTS:"

300 FOR X = 1 TO D

310 PRINT TABCS); Xj N0<X)
320 NEXT Xi PRINT

330 '

340 ' GET INPUTS

350 INPUT "CONVERT TO"; Y
340 LOCATE CSRLIN-1, 12: PRINT N$<Y>
357 PRINT; INPUT "CONVERT FROM"; X
380 LOCATE CSRLIN-1, 14: PRINT N$<X)
390 PRINT: PRINT "HOW MANY " N$<X);
400 INPUT U: PRINT

410 '

420 'RESULTS

430 YU = U / C(X,Y)
440 PRINT U; N$<X); • = •; YU; N$<Y)
450 PRINT: PRINT

440 INPUT "ANOTHER <Y/N)"; X$
470 IF X0 » "Y" THEN 270
480 END

490 '

500 UNITS IN LITERS

510 DATA

520 DATA

CUPS", .234575
PINTS", .47315

530 DATA "QUARTS", .9443
540 DATA "IMPERIAL QUARTS", 1.1345
550 DATA "GALLONS", 3.7852
540 DATA "IMPERIAL GALLONS", 4.544
570 DATA "LITERS", 1
RUN

Recipe Changer
There's an age-old problem of cooks: The recipe serves five
people and you have eight coming to dinner. How much should
you increase measurements such as IVa cups to keep the right

Weights and Measures 57

proportions? The following program saves the day (and a headache)
because it increases or decreases any of the common kitchen
measures in proportion to the number the recipe serves versus
how many people you plan to serve.

It's an unusual program in that it works with fractions, consist
ent with the way recipes are written. The fractions it calculates
are approximate, rounded to the nearest common kitchen measure
(nothing like W27, which no cup is calibrated to measure). This
shouldn't be a problem, since cooking measurements don't require
great precision.

The program keeps asking for quantities. It doesn't care about
cups or tablespoons or pounds, just numbers. When you enter the
measurement for, say, cups of flour, it tells you how much to use
based on .the number you're serving. It knows the proportions
'based on the first two questions, which establish the size of the
recipe and the size of your dirmer party. When you've entered all
the measurements and want the program to stop, type 0.

NEN

100 REM XX RECIPE CHANGER (RECIPE)

110 CLSI KEY OFF

120 PRINT "RECIPE CttWGER:": PRINT

130 INPUT "NUMBER RECIPE SERVES RQ

140 INPUT "NUMBER YOU'RE SERVING"} SO
150 CF « SQ / RQ

140 '

170 ' MAIN LOOP

180 PRINT: INPUT "QUANTITY"} Q*
190 If Q0 = "0" THEN END
200 L « LEN(Q»):X« 1: SL= 1: Q»0

210 FOR P = 1 TO L

220 IF MID$<Q$, P, 1) = "/" THEN 250
230 NEXT P

240 Q = VAL(Q«): GOTO 390

250 FOR P » 1 TO L

240 IF MID*<Q*, P, 1) = " " 290
270 NEXT P

280 GOTO 310

290 SL — P (continued)

58 PORTER'S PflOGRAMS FOR THE IBM® PC/r

300 Q « VAULEFT«<Q$, P)) i X » P + 1
310 FOR P » X TO L

320 IF MII>f((», P, 1) = "/" THEN 350
330 NEXT P

340 PRINT •BAD INPUT"! GOTO 170
350 N = VAL<MID0<Q», SL, P - SL>)
3^0 D » VAL<RIGKT*<Q0, L - P))
370 F « N / D! Q « Q + F
380 *

390 ' FIGURE QUANTITY
400 Q » Q X CF: W » INT(Q)
410 F = Q - W! F« = ■"
420 IF F >= .95 THEN W « W + 1
430 PRINT •CHANGE TO" Wj
440 '
450 ' FRACTION
440 IF F < .04 THEN 550
470 IF F < .95 THEN F* = "7/8
480 IF F < .82 THEN F» = "3/4"
490 IF F < .7 THEN F* = "2/3"
500 IF F < .4 THEN F« = "1/2"
510 IF F < .4 THEN F* = "1/3"
520 IF F < .3 THEN F$ = "1/4"
530 IF F < .18 THEN F$ = "1/8"
540 PRINT F«
550 PRINT! PRINT! GOTO 170
RUN

M

Sample run! -

RECIPE CHANGER!

NW1BER RECIPE SERVES ? 5

NIWBER YOU'RE SERVING? 8

QUANTITY? 1 1/3
CHANGE TO 2 1/8

Weights and Measures 59

QUANTITY? 3/4

CttWGE TO 1 1/4

QUWrriTY? 2 1/2

CWtNGE TO 4

QIWNTITY? e

Ok

V

Temperature Conversion
Back in the olden days they called it Centigrade, but nowadays
it's Celsius. Someone, no doubt, knows why. At any rate, it's the
metric way of measuring temperatures, whereby water freezes at
O'C and boils at 100°C, rather than at the capricious Fahrenheit
marks of 32° and 212°. This program converts from one system to
the other, with a menu that lets you pick which conversion you
want to make. Using it, you'll know whether to be hot or cold
when the temperature is 40°C.

NEH ^
100 ' TEMPERATURE CObWERSION (TEMPCQN)

110 DEF FNC<X) = <5/9) * <X - 32)

120 DEF FNF<X) » <<9/5) X X) +32

130 DEF FNR<X) = INT<(X X 10) + .5) / 10

140 '

150 ' CONUERSIQN LOOP

160 CLS: KEY OFF

170 PRINT "TEMPERATURE COWERSION:"

180 PRINT

190 PRINT " 1 CELSIUS TO FAHRENHEIT"
200 PRINT " 2 FAHRENHEIT TO CELSIUS"

210 PRINT! INPUT " WHICH"} X
220 PRINT! INPUT " TEMPERATURE"}T
230 PRINT! PRINT

240 IF X « 2 THEN 280

250 '

260 ; CEL TO FAHR (continued)

60 PORTER'S PROGRAMS FOR THE IBM® PC/r

270 PRINT T "DEGREES C ="j
280 PRINT FNR<FNF(T)) "DEGREES F"

290 GOTO 340

300 '

310 ' FAHR - CEL

320 PRINT T "DEGREES F ="j
330 PRINT FNR(FNC<T)) "DEGREES C"

340 PRINT! INPUT "ANOTHER <Y/N)"j X$
350 IF X0 = "Y" THEN 150

340 END

RUN

Sampie run 9

TEMPERATURE CONVERSION:

1 CELSIUS TO FAHRENHEIT

2 FAHRENHEIT TO CELSIUS

WHICH? 1

TEMPERATURE? 40

40 DEGREES C » 104 DEGREES F

rt40THER <Y/N)? N

Ok

SECTION 3

SORTING AND TEXT
PROCESSING

Sorting a Group of Numbers
Sorting is the process of rearranging unorganized information
into an orderly sequence. The following program takes numbers
and puts them into ascending order (lowest to highest in value),
with the results displayed on the screen in a left-to-right fashion.
The display holds up to 44 numbers before lines begin to scroll off
the top; therefore, 44 is the limit of the sort size. When you enter
0, the program stops accepting numbers and begins sorting.

Noi
lee ' NUMERIC SORT (NUMSORT)

110 CLS; KEY OFF! SIZE = 43

120 PRINT "NUMERIC SORT"! PRINT

130 PRINT "ENTER NUMBERS ONE AT A TIME"

140 PRINT "ENTER 0 TO START SORT"

150 DIM A(SIZE)

160 N = 0: MAX =9999999

170 '

180 ' INPUT LOOP

190 INPUT A(N)

200 IF A<N) = 0 THEN 240

210 N = N + 1

228 IF N <= SIZE THEN 188 (continued)

61

62 PORTER'S PROGRAiyiS for THE IBM® PC/r

230 '

240 ' SORT

250 PRINT: PRINT "SORTED LIST:'

2^0 L » MAX: M » 0

270 FOR P « 0 TO <N - 1)

280 IF A(P) < L THB^ L = A<P>: M = P

290 NEXT P

300 IF L s MAX THEN END

310 PRINT L,
320 A(M) » MAX

330 GOTO 260

RUN

Sampie run:

NUMERIC SORT

ENTER NUMBERS ONE AT A TIME

ENTER 0 TO START SORT

? 91

? 73

? 55

? 37

? 19

? 28

? 46

? 64

? 82

? 0

SORTED LIST:

19 28

37 46

55 64

73 82

91

OK

!

Sorting and Text Processing 63

Descending Sort
Sometimes it's useful to sort numbers into descending order
(highest to lowest in value), which produces a result that is exactly
opposite that of the preceding program. The next program works
the same in all other respects.

NEW

100 ' DESCENDING SORT (DESORT)
110 CLSs KEY OFF: SIZE = 43
120 PRINT "DESCENDINO SORT": PRINT
130 PRINT "ENTER NUMBERS ONE AT A TIME"
140 PRINT "ENTER 0 TO START SORT"
150 DIM A<SIZE)

160 N = 0: MAX = -1
170 '

180 ' INPUT LOOP
190 INPUT A(N)

200 IF A<N) = 0 THEN 240

210 N = N + 1

220 IF N <= 87 THEN 180
230 '

240 ' SORT

250 PRINT: PRINT "SORTED LIST:"
260 L = -1: M = 0

270 FOR P = 0 TO <N - 1)

280 IF A<P) > L THEN L = ACP): M = P
290 NEXT P

300 IF L = -1 THEN END

310 PRINT L,
320 A<M) = -1

330 GOTO 260

RUN

Sample run:

(continued)

64 PPRTER-S PROSRAMS FOR THE IBM® PC/r

NUMERIC SORT

ENTER NUMBERS ONE AT A TIME

ENTER 0 TO START SORT

? 91

? 73

? 55

? 37

? 19

? 28

? A6

7 64

7 82

? 0

91 82

73 64

55 46

37 28

19

Ok

Text Analysis
Although the word "computer" suggests (and the majority of
usages confirms) a machine devoted exclusively to doing cal
culations, computers can also process and analyze text in various
ways. This program demonstrates simple text analysis by taking
any line you type and telling you the number of words it contains,
the length of the line, and the number of occurrences of each
character (except that it doesn't report the number of SPACE
characters, which you can override by removing line 280).

NEM

100 ' TEXT ANALYSIS (TEXTAN)

110 CLSs KEY OFF

120 DIM CH<255)

130 '

140 ' GET AND ANALYZE TEXT LINE
150 PRINT "ENTER A LINE OF TEXT"

Sorting and Text Processing 65

160 LINE INPUT TX$s PRINT

170 LT = LEN<TX*)

180 FOR P = 1 TO LT

190 y = ASC <MID« <TX«, P, 1>)
200 CH<V) = CHCV) + 1

210 NEXT P

220 '

230 ' DISPLAY RESULTS

240 NM = CH<32) * I

250 PRINT "CONTAINS" LT "CHARACTERS ";
260 PRINT "IN" NW "WORDS"

270 FOR P « 0 TO 255

280 IF P » 32 THEN 310

290 IF CH<P) = 0 THEN 310

300 PRINT TAB<8) CHR*<P), CH<P>
310 NEXT P

320 END

RUN

Sample run:

ENTER A LINE OF TEXT

? THIS LINE IS GOING TO BE ANALYZED

CONTAINS 33 CHARACTERS IN 7 WORDS

A 2

B 1

D 1

E 3

G 2

H 1

I 4

L 2

N 3

0 2

S 2

T 2

Y 1

2 1

Ok

66 PORTER'S PROGRAMS FOR THE IBM® PCjr

Reversing Text
To see another example of text processing, type a line and the
PCjr immediately displays it backward. This repeats each time
you enter another line. Stop it by entering 0.

nEw ~
100 ' TEXT REVERSER (TEXTREW

110 CLS: KEY OFF

120 PRINT: PRINT 'ENTER A LINE OF TEXT"

130 LINE INPUT X*

140 IF X* = "0" THEN END

150 FOR P = LEN<X^) TO 1 STEP -1

160 PRINT MID0 (X$, P, 1)5
170 NEXT P

180 PRINT

190 GOTO 120

RUN

Sampie run:

ENTER A LINE OF TEXT

THIS LINE HILL APPEAR BACKHARDS

SDRAHKCAB RAEPPA LLIW ENIL SIHT

ENTER A LINE OF TEXT

0

Ok

Alphabetizing
The process of alphabetizing a list differs little &om that of
sorting a group of numbers. The computer compares entries in the
list and selects the one whose ASCII value is the lowest. In this

particular program, first, a selected entry is printed and, then, the
program changes that entry to the highek possible ASCII value so
it won't be selected again. You can alphabetize up to 25 entries
with this program. During the input phase, a 0 signals the end of

Sorting and Text Processing 67

the list. The program then sorts and displays the list in alphabeti
cal order.

NEW

100 ' ALPHABETIZE (ALFBTIZE)

110 CLS: KEY OFF: X* = CHR$<255)

120 PRINT "ALPHABETIZE A LIST"

130 PRINT " ENTER ITEMS ONE AT A TIME"

140 PRINT " ENTER 0 TO END LIST"
150 DIM L«(25)

160 N » 0

170 '

180 ' INPUT LOOP

190 LINE INPUT "? "; L«<N)
200 IF L0<N) » "0" THEN PRINT: GOTO 240

210 N = N + 1

220 IF N <« 25 THEN 180

230 '

240 ' ALPHABETIZE LIST

250 C$ = X$: M = 0

260 FOR P « 0 TO <N - 1)

270 IF L$<P) >» C0 THEN 290

280 C* = L0<P): M « P

290 N^ P
300 IF C$ » X0 THEN END

310 PRINT C$

320 L0<M) = X0

330 GOTO 240

RUN

Sample run:

ALPHABETIZE A LIST

ENTER ITEMS ONE AT A TIME

ENTER 0 TO £Nb LIST
? JOHN

? mRIANNE

? BETH

? mRY
(continued)

68 PORTER'S PROGRAMS FOR THE IBM® PCjr

? LUISA

? ZEKE

? ANNETTE

? PETER

? e

ANNETTE

BETH

JOHN

LUISA

MARIANNE

MARY

PETER

ZEKE

Ok

Reverse Alphabetical Order
Just as you might sometimes want to sort numbers into descend
ing order, so might you occasionally need to place a list into
reverse alphabetical order (Z to A). This program produces exactly
the opposite results of the preceding program, but note that the
programs themselves are almost identical. The only real instruc
tion changes occur in lines 110 and 250; the others (lines 100
and 120) are cosmetic.

NEW

100 ' REVERSE ALPH. ORDER (REVALPH)

110 CLS: KEY OFF: Xt » CHR*<0)

120 PRINT "REVERSE ALPHABETIZE A LIST"

130 PRINT " ENTER ITEMS ONE AT A TIME"

140 PRINT " ENTER 0 TO END LIST"

150 DIM L«(25>

ld0 N « 0

170 '

180 ' INPUT LOOP

190 LINE INPUT "? "j L$<N>
200 IF L«<N> = "0" THEN PRINT: GOTO 240

210 N = N + 1

Sorting and Text Processing 69

220 IF N <= 25 THEN 180

230 '

240 ' REVERSE ALPHABETIZE LIST

250 C* = X0! M = 0

240 FOR P = 0 TO <N - 1)

270 IF L0<P) <= C0 THEN 290

280 C0=L0<P);M=P

290 NEXT P

300 IF C0 « X0 THEN END

310 PRINT C0

320 L$<M) = X*

330 GOTO 240

RUN

Sample run:

REVERSE ALPHABETIZE A LIST

ENTER ITEMS ONE AT A TIME

ENTER 0 TO END LIST

? JOHN

? MARIANNE

? BETH

? mRY

? LUISA

? ZEKE

? ANNETTE

? PETER

? 0

ZEKE

PETER

MARY

MARIANNE

LUISA

JOHN

BETH

ANNETTE

Ok

SECTION 4
PROGRAMS HAVING TO
DO WITH MONEY

Loan Tepms

So you're thinking about borrowing some money, are you? The big
question is, how much will it cost, given a certain interest rate
applied to the amount over time? Since lenders usually calculate
interest on the declining balance, estimating the monthly payment
with any degree of accuracy is no simple task.
The next program figures out how much a loan will cost within

a few cents, giving you the monthly and final payments ̂ d the
total amount you'll repay the lender. That entails quite a lot of
work, so there is a brief delay while the program "thinks." This is a
very useful program that lets you play "what if' with differing
interest rates, repayment terms, and borrowed amounts. It repeats
until you tell it you want to borrow $0.

_ ̂

100 ' LOAN TERMS (LNTERMS)

110 DEF FNM(X)=INT(((X*MP)M100)+.5)/100

120 CLS: KEY OFF

130 PRINT "LOAN TERMS": PRINT

140 INPlfT "AMOUNT OF LOAN " j A
150 IF A « 0 THEN END

U0 INPUT "ANNUAL INTEREST RATE "j AI
170 INPUT "NUMBER OF PAYMENTS "} NP

70

Programs Haying to Do with Money 71

180 '

190 ' COMPUTE TERMS

200 IF AI > 1 THEN AI = AI / 100

210 MP = AI / 12

220 F = MP + li T = F

230 FOR C = 2 TO NP

240 T = T M F

250 NEXT C

260 PF = 1 / T

270 8MP = A X (MP / (1 - PF))

280 SMP « <INT(SMP 100)> / 100 + .01

290 CB = A

300 FOR C « 1 TO (NP - 1)

310 CB = INT((CB-SMP+FNM(CB))3(100)/100

320 NEXT C

330 FP = CB + FNM(CB)

340 TP = (SMP X (NP - D) + FP

350 '

360 ' PRINT RESULTS

370 PRINT; BEEP

380 PRINT NP-1 "PAYMENTS OF" TAB(30) SMP

390 PRINT " AND A FlhttL PAYMENT OF" TAB(30) FP

400 PRINT

410 PRINT " FOR A TOTAL OF f" TP

420 PRINT; PRINT; GOTO 140

RUN

Sample run;

LOAN TERMS

AMOUNT OF LOAN ? 3500

ANNUAL INTEREST RATE ? 18

NUMBER OF PAYMENTS ? 36

35 PAYMENTS OF *126.54

AND A FIKbi^L PAYMENT OF * 126.04

FOR A TOTAL OF * 4554.94

(continued)

72 PORTER'S PROGRAMS FOR THE IBM® PCyr

AMOUNT OF LOAN ? 3508
ANNUAL INTEREST RATE ? 18

NUMBER OF PAYMENTS ? 30

29 PAYMENTS OF « 145.74

AND A FINAL PAYMENT OF « 145.55

FOR A TOTAL OF % 4372.81

AMOUNT OF LOAN ? 8

Ok

Loan Analysis
TMs Is an extremely useful and powerful program for analyzing
a loan based upon three of the following four factors:

Principal amount borrowed
Monthly payment (principal and Interest)
Number of payments
Aimual percentage Interest rate

The program presents a questionnaire In which you fill In the
terms you know and enter 0 for the unknown. It then calculates
and gives you the missing Item. You must answer three of the
questions. If you answer all four, the program can't Identify the
unknown and therefore reports an error and asks for reentry. If
you enter more than one unknown, the program tells you and you
have to start over.

The results are estimates and may not be exact, since a certain
amount of rounding occurs. It assumes the Interest Is applied
monthly on the declining balance of principal.

Programs Having to Do with Money 73

NEW

m ' LOAN At^LYSIS (LCmW)

110 CLS: KEY OFF

120 ON ERROR GOTO 730

130 Ql^s-PRINCIPAL AMOUNT ": Q2$="M0NTHLY PAYMENT

140 Q3$="NUMBER OF PAYMENTS": Q4^"AhWUAL '/ INTEREST "

150 GOTO 250

160 '

170 ' GET FACTORS

180 PRINT Ql$;: INPUT V: RETURN
190 PRINT Q2$;: INPUT M: RETURN
200 PRINT Q3^;: INPUT N: RETURN
210 PRINT Q4$;: INPUT I
220 IF I > 1 THEN I = I / 100

230 I = I / 12: RETURN

240 '

250 ' BEGIN HERE

260 PRINT "LOAN ANALYSIS:": PRINT

270 . PRINT ̂ ENTER 0 FOR THE UNKNOW"

280 PRINT; GOSUB 180: IF U = 0 THEN 340

290 GOSUB 190: IF M » 0 THEN 410

300 GOSUB 200: IF N = 0 THEN 480

310 GOSUB 210: IF I = 0 THEN 550

320 PRINT: PRINT " MUST mJE ONE UNKNOWN": GOTO 270

330 '

340 ' CALCULATE PRINCIPAL

350 GOSUB 190: GOSUB 200: GOSUB 210

360 U = M X (1 - <1 / (1 + D'^N)) / I

370 U = INT(U X 100) / 100

380 PRINT: PRINT Ql$ V

390 GOTO 680

400 '

410 ' CALCULATE PAYMENT

420 GOSUB 200: GOSUB 210

430 M = U X <I / (1 - <1 + I>^<-N)))

440 M = INT<M X 100) / 100

450 PRINT: PRINT 02$ "0" M

460 GOTO 680

470 '

480 ' CALCULATE # PAYMENTS

490 GOSUB 210

500 N = L0G(1/<1-IXU/M)) / L0G<1+I)

510 N = JNT<N + .4999)
520 PRINT: PRINT Q30 N

530 GOTO 680

540 '

550 ' CALCULATE Y. INT RATE

560 PRINT "THINKING"

570 II = 2 X <N - U / M) / <N X <N + D)

580 U1 = M X <1 - <1 + ID^'C-N)) / II

590 IF Ml > <1.000001 X U) THEN 640

.(continued)

74 PORTER'S PROGRAMS FOR THE IBM® PCyr

600 IF VI < <0.999999 * V) THEN 640

610 I = 11 X 1200

620 PRINT; PRINT Q4« I: BEEP

630 GOTO 680

640 Y = <1 + ID-^C-N); W = 1 - Y

650 II = II 35 <1-<(<I135V/M)-W) / (W-(N*I135Y / <1+11)))))
660 GOTO 580

670 ' ■

680 ' QUIT OR REPEAT

690 PRINT: INPUT "ANOTHER RU4 <Y/N)"; R0
700 IF R0="Y° THEN PRINT:PRINT:GOTO 250
710 END

720 ' '

730 ' ERROR HANDLER

740 PRINT; PRINT " TOO MlW UNKNOWNS"
750 PRINT " TRY AGAIN"
760 PRINT; PRINT; RESUME 270

RIW

Sample run; In the tipst case, the monthly payment is unknown. In-
the second run, the terms are the same but the annual percent
interest rate is indicated as unknown. The "thinking" message
appears because this c«nputation causes a delay.

LOAN ANALYSIS;

ENTER 0 FOR THE UNKNOWN

PRINCIPAL AMOUfT ? 10000
MONTHLY PAYMENT ? 0

NUMBER OF PAYMENTS? 120
AmUAL X INTEREST ? 10.05

MtHTHLY PAYMENT % 132.42

ANOTHER RIW <Y/N)? Y

LOAN ANALYSIS;

ENTER 0 FOR THE UNKNtM4

PRINCIPAL AMOUNT ? 10800
MONTHLY PAYMENT ? 132.42
NIWBER OF PAYMENTS? 120

Atfl>IUAL •/. INTEREST ? 0

THINKING

(WIUAL X INTEREST 10.0485992

ANOTHER Rm <Y/N)? N
Ok

Programs Having to Do with Monay 75

Interest Paid Over a Period
Here's a lifesaver during Income tax time when you have to
itemize interest deductions for the year on your home mortgage,
car loan, and so on. This program figures how much interest you
paid over a period bracketed by two payments such as payment
No. 19 in January and Payment No. 30 in December. If you know
the annual interest rate, the monthly payrnent, and the total num
ber of payments over the life of the loan, the program tells you the
interest cost for that period. As a fi±nge benefit, it also gives you
the starting and ending balances for the period.

NEW

100 ' INTEREST PAID (INTPAID)

110 CL8: KEY OFF: F$ =

120 PRINT"INTEREST OVER A PERIOD;":PRINT

130 PRINT "MONTHLY PAYMENT" TAB<28);
140 INPUT P

150 IF P = 0 THEN END

160 PRINT"(W1UAL INTEREST RATE" TAB<28) 5
170 INPUT J

180 IF J > >1 THEN J = J / 100

190 I = J / 12

200 PRINT "TOTAL PAYMENTS IN LO<W";
210 PRINT TAB<28);; INPUT T
220 PRINT"# OF FIRST PMT IN PERIOD";
230 PRINT TAB(28);; INPUT PI: P1=P1-1
240 PRINT "# OF LAST PMT IN PERIOD";
250 PRINT TAB<28);: INPUT P2: PRINT
260 DEF FNKX) = <1 + D^X

270 DEF FNR(X> = INT<X * 100) / 100

280 IP = P M (P2 - PI - <FNI<P2-T)/I) + <FNI<P1-T)/I)

290 B1 = <P / I) X (1 - FNKPl - T))

300 82 = <P / I) X <1 - FNI<P2 - T))

310 PRINT "INTEREST OVER PERIOD:";
320 PRINT USING F*; FNR(IP): PRINT
330 PRINT "STARTING BALANCE:";
340 PRINT USING Ft; FNR<B1)
350 PRINT "ENDING BALANCE:";
360 PRINT USING Ft; FNR<B2)
370 PRINT: PRINT: GOTO 130 ,
RLN (continued)

76 PORTER'S PROGRAMS FOR THE IBM® PC/r

Sample run:

INTEREST OVER A PERIOD:

MCHTHLY PAYMENT ? 285.36

AmiWL INTEREST RATE ? 8.5

TOTAL PAYMENTS IN LOAN ? 368

OF FIRST RIT IN PERIOD ? 168

OF LAST PMT IN PERIOD ? 179

INTEREST O^ER PERIOD; *2,512.43

STARTING BALANCE: *29,969.63
ENDING BALANCE: *29,057.75

MONTHLY PAYMENT: ? O

Ok

Present Worth of a Future Amount

This and the following three programs deal with various aspects
of the time value of money. If you have a certain amount of money
today and interest applies to it, its value will increase with time.
Conversely, if you want to have a certain amount of money several
years from now, you can use the time value to calculate how much
to set aside today. All of these programs assume continuous
compounding, which most banks and financial institutions use.
Inflation and taxes are not considered.

The present worth of a future amount, though self-explanatory,
is a stuffy economist's term. It means the following: If you want to
have a certain amount of money after so many years, how much do
you have to put in the bank, given a fixed iftterest rate? This
program teUs you the lump sum to invest today in order to meet
an objective several years from how.
The sample run shows that if you want $20,000 10 years

from now, you have to invest $7368.97 at 10.5% or $6734.12 at

Programs Having to Do with Money 77

11.5% mterest. Obviously, the amount of up-front money varies
greatly with the Interest rate.

NEW

lee ' PRES WORTH OF FUTURE AMT (PRESWRTH)

118 CLS: KEY OFF

128 PRINT "PRESENT WORTH:"! PRINT

138 INPUT " FUTURE <WOUNT F

148 IF F = 8 THEN END

158 INPUT " INTEREST RATE "j I
1^8 INPUT " NUMBER OF YEARS "j N
178 IF I > 1 THEN 1=1/ 188

188 J = L06<1 * U / L06(2.71828)

198 PF = 1 / ((1 + D'-N)

288 PW = F X PF

218 '

228 ' DISPLAY RESULTS

238 PW = INT<PW X 188) / 188

248 PRINT: PRINT

258 PRINT "PRESENT WORTH IS ; PW
268 PRINT: PRINT " "

278 PRINT: GOTO 138

RUN

Sample run:

PRESENT WORTH:

FUTURE AMOUNT ? 28888
INTEREST RATE ? 18.5

NUMBER OF YEARS ? 18

PRESENT WORTH IS t 7368.97

FUTURE AMOUNT ? 28888

INTEREST RATE ? 11.5

NUMBER OF YEARS ? 18
(continued)

78 PORTER'S PROGRAMS FOR THE IBM® PC/r

PRESENTT WORTH 18 ♦ <4734 .12

FUTURE AMOUNT ? 0
Ok

Future Worth of a Present Amount

This Is the opposite of the preceding program, but the same
assumptions apply concerning continuous compounding. Future
worth answers questions such as, "If I make a one-time deposit
of a certain amount in a savings account, how much will it
be worth after some number of years, given a fixed interest
rate?"

NEW

100 ' FUTURE WORTH OF PRESENT AMT (FUTWRTH)

110 CLS: KEY OFF

120 PRINT "FUTURE WORTH:"! PRINT

130 INPUT " PRESENT AMOUNT "j P
140 IF P = 0 THEN END

150 INPUT " INTEREST RATE "j I
169 INPUT • NUMBER OF YEARS "j N
170 IF I > 1 THEN I = I / 100

180 J = L06<1 + I) / L0G<2.71828)

190 FF = <1 + I)*N

200 FW » P X FF

210 '

220 ' DISPLAY RESULTS

230 FW = INTCFW 31 100) / 100

240 PRINT: PRINT

250 PRINT "FUTURE WORTH IS $"5 FW
269 PRINT: PRIMT " -"

270 PRINT: GOTO 130

RUN

(

Sample run:

Pmgrants Having to Do with Mmey 79

FUTURE WORTH:

PRESENT AMOUNT ? 5080

INTEREST WiTE ? 9.65

nuHber of years ? 15

FUTURE WORTH IS ♦ 19911.3

PRESENT AMOUNT ? 5000

INTEREST RATE ? 10.5

NUMBER OF YEARS ? 15

FUTURE WORTH IS « 22356.51

PRESENT AMOUNT ? 0

Ok

This display means that If you have $5000 and you Invest It at
9.65% Interest, after 15 years It will be worth $19,911.30. If you're
fortunate enough to earn 10.5% on It, It will be worth $22,356.51
rfler 15 years. A small variation In the Interest rate, then, can
greatly IniEluence the time value of money.

Saving Toward a Future Amount
Let's suppose you're a parent and you want to set up a savings
plan to put your kid through college. Your objective Is to have
$30,000 15 years from now. How much do you have to save per
month, given a fixed Interest rate and continuous compounding, to
reach this goal? Or perhaps you're not a parent, but you want to
take a fabulous trip around the world. This program helps you
establish a savings plan toward a specific amount.

80 PORTER'S PROGRAMS FOR THE IBM® PCyr

NEW

100 ' MONTHLY SWINGS PLAN

110 CLSs KEY OFF

120 PRINT "SAVING PLAN:": PRINT

130 INPUT " YOUR GOAL "; F
140 IF F = 0 THEN END

150 INPUT " INTEREST RATE "; I
140 INPUT " NUMBER OF YEARS N
170 IF I > 1 THEN I = I / 100

180 J = L0G<1 + I) / L0G<2.71828)

190 AF = J / (<(1 + D'^N) - 1)
200 M = <F X AF) / 12

210 '

220 ' DISPLAY RESULTS

230 M = INTXM ^ 100) / 100

240 PRINT; PRINT

250 PRINT "AMOUNT TO SWE MONTHLY IS ";
240 PRINT USING 00"5 M
270 PRINT; PRINT " "

280 PRINT; GOTO 130

RUN

Sample run;

SAVINGS PLAN;

YOUR GOAL ? 30000
INTEREST RATE ? 8.45

NUMBER OF YEARS ? 15

AMOUNT TO SWE MONTHLY IS *83.93

YOUR GOAL ? 30000

INTEREST RATE ? 9.4

NUMBER OF YEARS ? 15

Programs Having to Do with Money 81

AMOUNT TO SWE MONTHLY IS $77.54

YOUR GOAL ? e

Ok

Annuity From a Present Amount
The next program is somewhat different from the preceding ones
having to do with the time value of money. They dealt with
attaining a measure of financial Independence, whereas this prob
lem assumes you've reached that enviable plateau and now you
want to spend It.

Let's say you have come Into a $100,000 Inheritance and have
decided to live It up. You want It to last 5 years, at the end of
which you won't have a permy left. How much can you spend per
month, given compoundhig Interest on the balance?
This program, of course, also pertains to establishing a pension,

the Idea being to set aside a certain amount that has to last for a
specified period of time. In other words, this program answers the
following questions: "If I put $P In the bank at 1%, how much can 1
take out each month to have It last N years?"

N&i ~
lee ' ̂̂UITY FROM AN AMT (ANNUITY)

110 CLS! KEY OFF

120 PRINT "ANNUITY:": PRINT
130 INPUT " INITIAL WOUNT " j P
140 IF P » 0 THEN END

150 INPUT " INTEREST RATE "j I
140 INPUT ■ NUMBER OF YEARS "}N
170 IF I > 1 THEN I = I / 100

180 J = LOGd + I) / L0G<2.71828)

190 AF = (JXd+D^N) / (<1+I)''N-1)

200 MA = <P X AF) / 12

(continued)

82 PORTER'S-PROGRAMS FOR THE IBM® PG/r

220 ' DISPLAY RESULTS

230 MA « INTCMA X 100) / 100
240 PRINT: PRINT

250 PRINT "MONTHLY PAYOUT IS "j
2^0 PRINT USING MA

270 PRINT: PRINT "

280 PRINT: GOTO 130
RUN

Sampie run:

ANNUITY:

INITIAL AMOUNT ? 100000

INTEREST RATE ? 7.5

NUMBER OF YEARS ?5

MONTHLY PAYOUT IS $1984.12

INITIAL AMOUNT ? 100800

INTEREST RATE ? 4.5

NUMBER OF YEARS ? 5

MONTHLY PAYOUT IS $1942.88

INITIAL AMOUNT ? 8

Ok

Lease Versus Purchase Analysis
It has become increasingly popular for people to lease big-ticket
items such as cars, pianos, and entire suites of home furnishings.
The assumption is Aat things wear out and have to be replaced.

Programs Having to Do with Money 83

and besides, they're usually bought on credit^ so leasing is about
the same as buying.
But is it really? Which is the more advantageous to you, the

consumer? The answer, of course, depends on many factors. This
program helps you analyze the real costs of leasing versus
purchasing. It does not consider the tax advantages pro or con
either alternative, since they vary widely with circumstances, nor
does it take into account "hidden costs" such as the loss of interest
if you withdraw money from savings to buy the item.
The salvage category covers the estimated trade-in value at the

end of the item's expected life, or in other words, how much you
think you will be able to sell it for. Depreciation can be viewed as a
reserve fund set aside to replace the item. It assumes an amount
equivalent to the purchase price, without regard to inflation. Both
of these are deferred noncash effects that you experience at the
end of the purchase's life, and that is why they are . separated on
the analysis report.

NEWr ^ ~
lee ' LEASE/PURCHASE ANALYSIS <LSPURCH>

110 CLS; KEY OFF: = " —'

120 PRINT "LEASE/PURCHASE COMPARISON:"

130 PRINT: INPUT "DESCRIPTION"; I*
140 PRINT

150 PRINT: PRINT "OPERATING EXPENSES:"
140 INPUT "FUEL AND OIL/YEAR 01

170 INPUT "POWER/YEAR "; 62
180 INPUT "SUPPLIES/YEAR 63

190 INPUT "OTHER MISC/YEAR "} 64
200 PRINT: PRINT "LEASE OPTION:"

210 INPUT "MONTHLY PAYMENT LI

220 INPUT "INSURANCEA'EAR " j L2
230 INPUT "TAXES/YEAR "; L3
240 INPUT "LICENSES/YEAR L4

250 INPUT "REPAIRS k MTNCE/YEAR"; L5
240 PRINT: PRINT "PURCHASE OPTION:"

270 INPUT "PURCHASE PRICE "; PI
280 INPUT "EST. LIFE IN YEARS Y

290 INPUT "FINANCING EXPENSE »; P4 ^continued)

84 PORTER'S PROGRAMS FOR THE IBM® PC/r

300 INPUT 'INSURANCE/YEAR "5 P2
310 INPUT "TAXES/YEAR "j P3
320 INPUT "LICENSES/YEAR P4
330 INPUT 'REPAIRS tc MTNCE/YEAR"; P5
340 INPUT 'SALUAGE VWLUE '; P7
350 '

340 ' LEASE AND GENERAL COSTS

370 A1 = LI : A2 = L2 / 12

380 A3 « L3 / 12 : A4 = L4 / 12

390 A5 = L5 / 12 : A4 = 0

400 A7 » G1 / 12 : AS = G2 / 12

420 A9 = G3 / 12 J Bt » G4 / 12

420 L9 = A1+A2+A3+A4+A5+A7+A8+A9+B1

430 '

440 ' PURCmSE COSTS

450 B2 = P2 / 12

440 B3 = P3 / 12 5 B4 « P4 / 12

470 B5 = P5 / 12 ; B4 = P4 / Y / 12

480 P9 = B2+B3+B4+B5+B4+A7+A8+A9+B1

490 C2 = P7/12/Y s C3 = PI / Y / 12

500 T = P9 - C2 + C3

510 '

520 ' DISPLAY ANALYSIS

530 CLS; PRINT

540 PRINT 'LEASE/PURCHASE FOR " I$:PRINT

550 PRINT TABdS) "LEASE" TAB<29) "PURCHASE"

540 X$»'MO. PAYMENT " tXl=Al:X2a'0;GOSUB 800

570 X«s" INSURANCE" :Xl»A2sX2='B2:G0SUB 800

58'0 X««"TAXES" eXl»A3!X2»B3:G0SUB 808
590 X«="LICENSES" :X1»A4:X2»B4:G0SUB 880

400 X$="MAINTENANCE":X1sA5:X2bB5:G0SUB 888

410 X«="INTEREST" :X1=A4:X2=B4:G0SUB 808

420 X««"FUEL AND 0IL":X1«A7:X2»A7:G0SUB 888

430 X$»'P0MER" :XlaA8:X2»A8:G0SUB 888
^40 X$="SUPPLIES" :X1=A9:X2=A9!G0SUB 888

450 X«»"MISC." sX1bB1:X2«B1:G0SUB 800
440 PRINT TABdS) U$ TAB(29) U*

470 X«=" CASH EXP/MO": X1=L9: X2=P9
480 GOSUB 800: PRINT

490 X«=" - SALVAGE":X1=0:X2=C2:GOSUB 800

Programs Having to Do with Money 85

700 X$«" ♦ DEPREC."sXl=0:X2=G3:6OSUB 800
710 PRINT TAB(18) U$ TAB(29) U$
720 X«='NET EXP/M0'':X1«L9!X2=T:60SUB 800
730 END

799 ' ——

800 ' FORMAT OUTPUT LINE
810 PRINT X$;
820 PRINT TAB<17)j
830 PRINT USING ; XI}
840 PRINT TAB(28);
850 PRINT USING »«$#,###.##•} X2
8^0 RETURN

Sample run:

LEASE/PURCHASE COMPARISON

DESCRIPTION? NEW CAR

OPERATING EXPENSES:
FUEL AND OIL/YEAR ? 1200
POWER/TEAR ? 0

SUPPLIES/YEAR ? 250
OTHER MISC/YEAR ? 300

LEASE OPTION:

MONTHLY PAYMENT 7249.81
INSURANCE/YEAR ? 625
TAXES/YEAR 70

LICENSES/YEAR 7 55
REPAIRS ic MTNCE/YR 7 100

PURCHASE OPTION:

PURCHASE PRICE 7 11000
EST. LIFE IN YEARS 7 4

FINANCING EXPENSE 7824.13

(continued)

86 PORTER'S PpOGRAMS FOR THE IBM® PCjr

INSUIWICE/nrEAR ? ̂25

TAXES/YEAR ? 50

LICENSES/YEAR ? 55

REPAIRS ic MTNCE/7R ? 375

SALVAGE VAi^LUE ? 1580

;1ears, then...

LEASE/PURCHASE FOR NEW CAR

LEASE PURCHASE

MO. PAYMENT 0249.81 00 .00

INSURANCE 052.08 052.08

TAXES 00.00 04.17

LICENSES 04.58 04.58

MAINTENANCE 08.33 031.25

INTEREST 00.00 017.17

FUEL OIL 0100.00 0100.00

POWER 00.00 00.00

SUPPLIES 020.83 020.83

MISC. 025.00 025.00

CASH EXP/MO 0460.64 0255.09

- SALVAGE 00.00 031.25

+ DEPREC. 00.00 0229.17

NET EXP/MO 0460.64 0453.00

OK

Car Operating Expanse
Most of us think of a car as something we have to replace now
and again—always at a dramatically higher price than last time—^so
that we cm get from one place to another. To some, it's also an
expression of individuality and a vehicle not only for transportation,
but for personal freedom. We think about the cost of operating the
car when we buy gas or get it worked on, but those seem like

Programs H^ing to Do with Money 37

incidental expenses in the category of petty drains on the pocket-
book rather than as significant expenditures.
This program attempts to put a price on personal transportation

by answering the following question: What does it reaUy cost to
operate the car? You might be quite surprised at the answer. For
me, at least, it's nearly as much as the purchase price. The answer,
of course, varies with individual circumstances, but it's probably
more than you think.
This is more than just an academic, nice-to-know figure, too. If

you have to drive 30 miles to take advantage of that big sale, how
much do you have to save on the merchandise to recover the cost
of travel? This program will give you a guide and make you think
before you hop in and dash off somewhere on a whim.
The program simply totals up the costs of operation that you

provide and averages them oVer the projected lifetime and miles
driven. It includes an automatic kicker for unexpected repairs
($300 a year after you've driven 30,000 rriiles) and assumes that
tires have to be replaced eveiy 30,000 miles, but otherwise the
results are extrapolations of the amounts you furnish.

NEW

100 ' CAR EXPENSE (CAREXR)

110 CLS: KEY OFF

120 PRINT 'CAR EXPENSE:": PRINT

130 INPUT "EXPECTED LIFE IN YEARS"; LY
140 INPUT "MILES DRIVEN PER YEAR MY

150 M = LY X MY

140 INPUT "FIKfcWCED <Y/N)"; X$
170 IF = "Y" THEN 200

180 INPUT "PURCHASE PRICE PC

190 Goto 240
200 INPUT "DOWN PAYMENT "; PI
210 INPUT "NUMBER OF PAYMENTS "; P2
220 INPUT "MONTHLY PAYMENT "; P3
230 PC = PI + (P2 M P3>

240 INPUT "MILES PER GALLON "; MG
250 INPUT "PRICE PER GALLON "; GG
240 TG = (M / MG) X GG / .

(continued)

88 PORTER'S PROGRAMS FOR THE IBM® PCjr

270 INPUT "ANNUAL MTNtE COST "j AM
280 AM = AM X LY
290 ER = LY M <(M - 30000) / M) * 300
300 IF ER > 0 THEN = FNR(W1 ♦ ER)
310 INPUT "COST OF A TIRE TC
320 TC = <M / 30000) X <TC X 4)
330 INPUT "INSURlWCE COST/YEAR"; IP
340 IP » IP X LY
350 INPUT "MISC EXPENSES "5
3<10 C = PC + TO + AM * TC + IP ♦ AA
370 CM = INT<(<C / M)X100) + .5)/100
380 ^

390 ' OUTPUT RESULTS
400 M$ « "\

410 CLS: PRINT "OPERATING EXPENSES:"
420 PRINT USING M«;" FUEL", TG
430 PRINT USING M*5" UPKEEP",AM
440 PRINT USING M*;" TIRES", TC
450 PRINT USING M$;" INSURANCE", IP
460 PRINT USING M*;" MISCELLANEOUS"
470 PRINT: OT = C - PC
480 PRINT USING M$|"OPERATING TOTAL",0T
490 PRINT

500 PRINT USING M»;"PURC1WSE COST",PC
510 PRINT

520 PRINT USING M$;"TOTAL COST OF CAR",C
530 PRINT

540 PRINT "MILES DRIVEN M
550 PRINT

560 PRINT USING M$5"COST PER MILE",CM
570 END

RUN

Sample run:
CAR EXPENSE:

EXPECTED LIFE IN YEARS? ,4
MILES DRIVEN PER YEAR ? 17500
FINANCED <Y/N)? Y

Pmgrams Having to Do with Money 89

DOWN payment ? see
NUMBER OF PAYMENTS ? 36
MONTHLY PAYMENT 7 265.26
MILES PER GALLON ? 17.5
PRICE PER GALLON ? 1.26
^IWL MTNCE COST ? 225
COST OF A TIRE ? 9e
INSURANCE COST/YEAR? 425
MISC EXPENSES ? 2ee

(New screen)

OPERATING EXPENSES!
FUEL $5048.00
UPKEEP $1585.71
TIRES $848.00
INSURANCE $1700.00

MISCELLANEOUS $200.00

OPERATING TOTAL $9365.71

PURCHASE COST $10349.36

TOTAL COST $19715.07

MILES 70000

COST PER MILE $0.28

Personal Net Worth
How much are you worth? Corporations and other businesses'^
regularly assess and publish their net worth, but as individuals we
seldom do so. As a consequence we have only the vaguest idea
how we're doing on making our fortunes in the world. This pro
gram lets you know how things are going.
We all earn money, spend it, and accumulate property during

our lives. Your net worth is the total of all you have less the total of
all you owe. The things you own are called assets, the amounts

90 PORTER'S PROGRAMS FOR THE IBM® PC/r

you owe are liabilities. Thus, your total assets are your gross
worth, the total value of all you have. Net wor A supposes that you
sell it all and pay o£f your obligations, and that's how much you
have left. It is, in effect, the equity you have in yourself (and
corporations in fact call this difference "stockholders' equity" and
regard it as a liability).
The program, though long, is very simple. It asks you for

amounts in various categories. Use whole dollars without centSj
since any net worth assessment is only an approximation. It then
summarizes this infotmation and gives you the totals in each
category and your net worth.
The program goes through three screens of questions and answers,

and produces two screens of output. The first report screen lists
your assets and fireezes. You can then advance to the liabilities and
net worth screen by pressing any key.
Net worth is a static figure. It does not attempt to place a

value on the income-producing potential of holdings such as
investments. Instead it deals with current market values, con
sistent with the notion of liquidating everything today. The net
worth figure is useful for evaluating your toancial progress on a
regular basis—quarterly, for example—and comparing it with prev
ious periods.
Try it. You'll probably find that you're richer than you think (and

if you get an unpleasant surprise instead, maybe it spur you to
plan your way out of trouble).

NEM

lee ' PERSONAL NET WORTH (NETWORTH)

110 DATA "CASH ON HAND"

120 WTA " IN aWK ACCOIKTS"

130 DATA " IN IRA/KEOGH PLANS"

140 DATA " IN RETIREMENT PLANS"

150 DATA "CASH VALUE OF SAVINGS BCWDS"

160 DATA "OF LIFE INSURANCE"
170 DATA " OF STOCKS"

180 DATA "OTHER CASH VALUE ASSETS"

190 DATA "VALUE OF REAL ESTATE"

200 DATA " OF CARS"

210 DATA " OF BOATS, PLANES, ETC."
220 DATA " OF BUSINESS EQUITY"

230 Data "replacement cost of clothing"

Programs Having to Do with Money 91

240 DATA " OF FURNITURE"
250 DATA " OF HOBBY EQUIPMENT"
260 DATA " OF JEWELRY AND FURS"
270 DATA " OF ART WORKS <WD <!a^IQUES"
280 DATA " OF TOOLS AND MACHINERY"
290 DATA " OF COLLECTIONS"
300 DATA "OTHER ASSETS OF LWLUE"
310 DATA "SHORT-TEWi DEBTS DUE"
320 DATA "BALANCE ON MORTGAGE"
330 DATA " (»>< CAR LOWS"
340 DATA " ON PERSONAL LOANS"
350 DATA " CW RETAIL CREDIT"

360 DATA " ON OTHER LONG-TERM DEBTS"
370 DATA "OTHER LIABILITIES"

380 '

390 DIM C<8), C$<8)
400 DIM A(12V, A*(12), L<7), L*<7>
410 FOR X=1 TO 8: READ C$<X)s NEXT X
420 FOR X«1 TO 12: READ A$(X): NEXT X
430 FOR X=1 TO 7: READ L$<X): NEXT X

440 '

450 M$ = "\

460 T s 30: GOSUB 1000

470 PRINT "CURRENT ASSETS:": PRINT
480 FOR X = 1 TO 8

490 PRINT C*<X) TAB<T)j
500 INPUT C<X)

510 C<0) = C<0) + C<X)

520 NEXT X

530 GOSUB 1000 NEW SCREEN
540 PRINT "OTHER ASSETS:": PRINT
550 FOR X = 1 TO 12

560 PRINT A«(X) TAB<T);
570 INPUT A(X)

580 A<0) = A(0) + A(X)

590 NEXT X

600 GOSUB 1000 NEW SCREEN

610 PRINT "LIABILITIES:": PRINT

620 FOR X = 1 TO 7

(continued)

92 PORTER'S PROGRAMS FOR THE IBM® PC/r

630 PRiNT U(X) TAB<T) •,
640 INPUT L<X)

650 L(0) = L<0) + L(X)

660 NEXT X

680 60SUB 1000 NEN SCREEN

690 PRINT "ASSETS;"

700 FOR X = 1 TO 8

710 IF C(X) = 0 THEN 730

720 PRINT C$<X) TAB<T) C<X)

730 NEXt X
740 PRINT TAB<T) " "

750 PRINT "TOTAL CURRENT ASSETS" TABCT);
760 PRINT USING jCCS): PRINT
770 FOR X = 1 TO 12

780 IF A<X) = 0 THEN 800

790 PRINT A*(X) TAB(T) A<X)

800 NEXT X

810 PRINT TAB<T) "

820 PRINT "TOTAL OTHER ASSETS" TAB<T);
830 PRINT USING ; A(0)
840 PRINT TAB<T) •====—■
850 PRINT "TOTAL ASSETS" TAB<T>;
860 PRINT USING "«$«««, ; C<0) * A(0)
870 Xi = INKEY^i IF X$ = "" THEN 878
880 '
890 60SUB 1000 NEW SCREEN
900 PRINT "LIABILITIES:"
910 FOR X = 1 TO 7
920 IF L(X) = 0 THEN 940
930 PRINT USING L*<X) , L(X)
940 NEXT X
950 PRINT TAB(T> "
960 PRINT USING "TOTAL LIABILITIES", L<0)
970 X = A<0)+C<0)-L<0)
980 PRINT USING M*; "NET WORTH", X
990 END
1000 ' SCREEN ADUANCE SUBRTN
1010 CLS: PRINT "PERSONAL NET WORTH:"
1020 PRINT

Programs Having to Do with Money 93

1630 RETURN

RUN

Sample run:

[Input screen #1]
PERSONAL NET WORTH:

CURRENT ASSETS:

CASH ON HAND ? 366
IN BANK ACCOUNTS ? 2366
IN IRA/KE06H PLANS ? 2660
IN RETIREMENT PLANS ? 6395

CASH UALUE OF SWINGS BONDS ? 866
OF LIFE INSURANCE ? 1166
OF STOCKS ? 1266

OTHER CASH <^LUE ASSETS ? 6

[Input screen #21

PERSONAL NET WORTH:

OTHER ASSETS:

UALUE OF REAL ESTATE 85666
OF CARS 6566
OF BOATS, PLANES, ETC. 6

OF BUSINESS EQUITY 0

REPLACEMENT COST OF CLOTHING? 3566
OF FURNITURE ? 9666
OF HOBBY EQUIPMENT 9 566
OF JEWELRY AND FURS ? 6

OF ART WORKS AND ANTIQUES 9 1066
OF TOOLS AND MACHINERY 9 2566
OF COLLECTIONS 9 6

OTHER ASSETS OF VALUE 9 6

(continued)

94 PORTER'S PROGRAMS FOR THE IBM® PCjr

[Input screen #33
PERSONAL NET WORTH:

LIABILITIES:

SHORT-TERM DEBTS DUE ? 587

BALANCE ON MORTGAGE ? 53686

ON CAR LOANS ? 3456

ON PERSONAL LOANS ? 955

ON RETAIL CREDIT ? 746

ON OTHER LONG-TERM DEBTS ? 6

OTHER LIABILITIES ? 866

[Output screen #13
PERSONAL NET WORTH:

ASSETS:

CASH ON HAND t366

IN BANK ACCOUNTS $2844

IN IRA/KEOGH PLANS $2666

IN RETIREMENT PLANS $4395

CASH kA^LUE OF SWINGS BONDS $866

OF LIFE INSURANCE $1146

OF STOCKS $1266

TOTAL CURRENT ASSETS $14787

VALUE OF REAL ESTATE $85666

OF CARS $6500

REPLACEMENT COST OF CLOTHING $3586

OF FURNITURE $9666

OF HOBBY EQUIPMENT $566

OF ART WORKS AND ANTIQUES $1666

OF TOOLS AND MACHINERY $2566

TOTAL OTHER ASSETS

TOTAL ASSETS

$168666
Bssssssssss;

$122787

Programs Having to Do with Money 95

[Output screen #2]
PERSONAL NET WORTH:

LIABILITIES:

SHORT-TERM DEBTS DUE

BALANCE ON MORTGAGE

ON CAR LOANS

ON PERSONAL LOANS

ON RETAIL CREDIT

OTHER LIABILITIES

TOTAL LIABILITIES

NET WORTH

Ok

*587

$53800

$3450

$955

$740

$800

$59532

$4&3255

SECTIONS
CALENDARS AND
CLDCKS

Day of the Week
On which day of the week were you bom? What day was It when
our Founding Fathers signed the Declaration of Independence?
This program figures out the day of the week for any date, but
there Is one catch: In 1582, the calendar was changed to the one
we presently use, so any day of the week given for a date before
that year Is subject to doubt. It's still accurate In terms of our
Qalendar, but October 12, 1492, was not necessarily a Wednesday
under the old way of keeping track of the passage of time.
This program Is fun and a little startling because of Its Instanta

neous production of a day, no matter how many years before or
hence. Incidentally, the New Year's Eve that wlU usher in the
twenty-first century occurs on Friday. What a weekend that's
going to be!

NEW

180 ' DAY OF THE WEEK (DAYOWEEK)

110 CLS: KEY OFF

120 DEF FNA<X) = INT<X / 4)

130 DEF FNB<X) = INT<X / 7)

140 DIM T<12), D*(7)
150 FOR X = 1 TO 12: READ T<X): NEXT X

160 FOR X = 1 TO 7: READ D«<X): NEXT X

170 PRINT "DAY OF THE WEEK FOR ANY DATE:"

96

Calendars and Clocks 97

180 PRINT

190 INPUT "DATE AS MM,DD,YYYY..."jMjD.Y
200 IF M = 0 THEN END

210 60SUB 270

220 PRINT: PRINT

230 PRINT "DATE IS A " D«<B)

240 PRINT " »; PRINT
250 GOTO 180

260 '

270 ' FIGURE DAY OF WEEK

280 J = INT<<Y - 1500) / 100)

290 A = <J X 5) + <J + 3) / 4

300 K = INT(A - FNB(A) X 7)

310 W = INT(Y / 100): V = INT(Y-W3(100)
320 A = <V / 4) + V + D + T(M) + K

330 B = INT<A - FNB<A) X 7) + 1

340 IF M > 2 THEN 430

350 IF V = 0 THEN 410

360 T1 = INT<Y - FNA(Y) 31 4)

370 IF T1 <> 0 THEN 430

380 IF B <> 0 THEN 400

. 390 B = 6

400 B = B - 1: GOTO 430

410 A = J - 1: T1 = INT(A-FNA<A)X4>
420 IF T1 = 0 THEN 380

430 IF B <> 0 THEN 450

440 B = 7

450 RETURN

460 DATA 0,3,3,6,1,4,6,2,5,0,3,5
470 DATA "SUNDAY", "MONDAY", "TUESDAY"
480 DATA "WEDNESDAY", "THURSDAY"
490 DATA -FRIDAY", "SATURDAY-
RUN

Sample run:

(continued)

98 PORTER'S PROGRAMS FOR THE IBM® PCyr

DAY OF THE WEEK FOR ANY DATE:

DATE AS MM,DD,YYYY...? 18,30,1983

DAY IS A SmDAY

DATE AS W,DD,YYYY...? 7,4,177<S

DATE IS A THURSDAY

DATE AS m,DD,YYYY...? 0,0,0
Ok

Perpetual Calendar
Using the next program, you can see the calendar for any month
of any year. It's handy for history buffs, vacation planners, and
anybody else who has to look ahead or behind more than a year or
so. The program uses the same-day-finding subroutine (line 310
onward) as DAY OF THE WEEK to determine which day Is the
first of the month. And, like the preceding program. It's reliable for
all years after 1582.

NEW

100 ' PERPETUAL CALENDAR
110 CLS: KEY OFF

120 DEF FNACX) = INTtX / 4)
130 DEF FNB<X) = INT(X / 7)
140 DIM T<12>, N(12)
150 FOR X = 1 TO 12: READ T<X): NEXT X
1^0 FOR X = 1 TO 12: READ N<X): NEXT X
170 INPUT "CALENDAR FOR MCMTH, YEAR..."; M,Y
180 IF M = 0 THEN END

190 PRINT: GOSUB 310: PRINT

200 PRINT • SU MO TU WE TH FR
210 H = N(M)

220 IF T1 = 0 ̂ D M = 2 THEN H = H ♦ 1

Calendars and Clocks 99

238 T = <B - 1) X 4 + 1
240 FOR X = 1 TO H

250 PRINT TAB<T)}; T = T + 1
2^0 PRINT USING " #«"j X}
270 IF T > 25 THEN T = 8; PRINT

280 NEXT X

290 PRINT; PRINT: GOTO 170

308 *

310 ' FIRST DAY OF MONTH

320 J = INT<(Y - 1500) / 180)

330 A = <J X 5) + <J + 3) / 4
340 K » IMTCA - FNB(A) X 7)

350 M " INT<Y / 100): M » INT<Y-WX100)

340 A = (V / 4) + g + D + T<M) + K
370 B = INT<A - FNB<A) X 7) + 1

380 IF M > 2 THEN 478

390 IF g = 0 THEN 458

400 T1 = INT<Y - FNA(Y) X 4)
410 IF T1 <> 0 THEN 478
420 IF B <> 0 THEN 440

430 B » 4

440 B = B - 1: GOTO 470

450 A = J - 1: T1 = INT(A - FNA<A) X 4)
440 IF T1 = 0 THEN 428

470 IF B <> 0 THEN 498

480 8=7

490 RETURN

500 DATA 0,3,3,4,1,4,4,2,5,0,3,5
510 DATA 31,28,31,30,31,30,31,31
520 DATA 30,31,30,31
RUN

Sample run:

(continued)

10G PORTER'S PROGRAMS FOR THE IBM® PCyr

CALENDAR FOR MONTH, YEAR...? 12,1941

SU MO TU WE TH FR SA

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 i6 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

CALENDAR FOR MONTH, YEAR...? 0,0
Ok

Elapsed Time in Days
How many sunrises have there been during your hfetime?
How many days since Pearl Harbor? How many days did you live
in your last home? How many days did the Revolutionary War
last? How many days remain in the twentieth century? An
swers to questions such as these usually aren't the most compel
ling concerns of our lives, but it's interesting to find them
out.

This program computes the elapsed days between any two dates
of all time, and it doesn't care in which order you enter them. It
adjusts for the vagaries of leap years and century leap years, but
because of rounding it might be one day off over a very long, span
of time (does it really matter whether it was 792,616 or 792,617
days?). It does not take into account the calend^ change that
occurred in 1582. Sorry, but again, it's hard to get excited over a
minor discrepancy in that long a period.
Have fun. This is a neat program that wiU gladden the heart of

any trivia lover.

NEW

100 ' ELAPSED DAYS (ELAPDAYS)

110 DIM M(12) '

120 FOR X = 1 TO 12
130 READ M(X>

140 NEXT X

150 '

U0 ' GET DATES

170 CLS: KEY OFF

Calendars and Clocks 101

180 PRINT: PRINT "ELAPSED DAYS:": PRINT

190 INPUT "MCWTH, DATEy YEAR"; MM,DD,YY
200 60SUB 390

210 IF EC = 0 THEN 230

220 PRINT "X* ERROR XX": GOTO 190

230 D1 = J: PRINT

240 INPUT "MONTH, DATE, YEAR"; MM,DD,YY
250 GOSUB 390

2^0 IF EC = 0 THEN 280

270 PRINT "XX ERROR XX": GOTO 240

280 D2 = J: PRINT

290 '

300 ' COMPUTE ELAPSED DAYS

310 ED » ABS(D1 - D2>

320 ED = ED - INT<ED / <108 X 345.25))

330 ED = ED + INTCED / <400 X 345.25))

340 PRINT ED "DAYS BETWEEN DATES"

350 PRINT: INPUT "ANOTHER <Y/N)"; X$
340 IF X* <> "Y" THEN END

370 PRINT; PRINT: PRINT: GOTO 190

380 '

390 ' JULIAN DATE

400 EC = 0

410 IF DD > 31 THEN EC = 99: GOTO 490

420 IF MM > 12 THEN EC = 99: GOTO 498

430 X = YY X 345.25

440 J « INT<X)

450 L = X - J

440 J = J + M<MM) + DD

470 IF L <> 0 THEN 490

480 IF MM <= 2 THEN J = J - 1

490 RETURN

500 '

510 ' ELAPSED DAYS BY MONTH

520 DATA 0, 31, 59, 90, 120, 151, 181
530 DATA 212, 243, 273, 304, 334
RUN

(continued)

102 PORTER'S PROGRAMS FOR THE IBM® PCyr

Sample run:

ELAPSED DAYS:

MONTH, WTE, YEAR? 11,18,1983

MONTH, DATE, YEAR? 7,17,1941

15464 DAYS BETWEEN DATES

ANOTHER <Y/N)? Y

MOhfTH, DATE, YEAR? 6,2,1969

MONTH, DATE, YEAR? 8,14,1972

1169 DAYS BETWEEN DATES

ANOTHER <Y/N)? N

Ok

Digital Clock
The following program turns your computer Into a digital clock
that keeps extremely accurate time. In the center of the screen, It
displays a digital readout showing the hour, minute, and second,
surrounded by a box.
The program asks you to set the time by entering the hour and

minutes, separated by a comma. It does not ask for seconds, so if
the precise time is important, press the RETURN key at the
instant the minute advances on the clock you're synchironizing
with. This program will run forever, or until you press any key
to stop it. It keeps the time on a 12-hour basis; if you want
it to display military time instead, change "13" to "25" in line
390.

Calendars and Clocks 10 3

NEW

100 ' DIGITAL CLOCK (DCLOCK)

110 CLS: KEY OFF; PRINT: S = 0

120 PRINT "DIGITAL CLOCK:": PRINT

130 PRINT " ENTER HOUR, MINUTE"
140 INPUT " SEPARATED BY A COMMA"} H,M
150 '

160 ' FACE OF CLOCK

170 SCREEN 1

180 LINE <120,88>-<216,112),,B
190 GOSUB 440 ' DISPLAY TIME

200 '

210 ' TIMING LOOP

220 TIMER ON
230 ON TIMERCl) GOSUB 330

240 Xt INKEYt

250 IF X$ O "■ THEN 280
260 GOTO 230
270 '
280 ' STOP THE CLOCK
290 TIMER OFF
300 SCREEN 0: CLS: END
310 / —

320 '
330 ' ADVANCE TIME ONE SECOND
340 S = S + 1
350 IF S < 60 THEN 410
360 S = 0: M = M + 1
370 IF M <60 THEN 410
380 M = 0: H = H + 1
390 IF H < 13 THEN 410
400 H - 1
410 GOSUB 440
420 RETURN
430 ' ,
440 ' DISPLAY THE TIME
450 T« = ""
460 IF H < 10 THEN T$ = ? "
470 H$ = STR*(H>: L - LEN(Hi) (continued)

104 PORTER'S PROGRAMS FOR THE IBM® PCjr

480 H$ = RIGHTiCH*, L-1)
490 Tf = T$ + H* + ";"

500 M* SI STR$<M> : L = LEN(M$)

510 M$ = RI6HT$<M*, L-1)
520 IF M < 10 THEN T* = T$ + "0"

530 S$ = STR«<S)! L = LEN<S$)

540 S$ = RIGHT$<S*, L-1)
550 T$ = T$ + M* +

540 IF 8 < 10 THEN T* = T$ + •0"

570 T« = T* ♦ S$
580 LOCATE 13,18
590 PRINT Tt

600 RETURN

RUN

Ringing Digital Clock
The next program combines the accuracy and readability of a
modem digital clock with the more old-fashioned notion of chim
ing the hour. The chime Is Junior's beep tone.

This program builds upon the digital clock in the last program,
and. In fact, you can load a copy of that program and make only a
few changes to create this one. The changes are In lines 100,
110, 385, 400, 595, and the new lines 610-650. The listing
given below Is the complete program;^

NEW

100 ' RINGING DIGITAL CLOCK (RCLOCK)
110 CLS: KEY OFF; PRINT; 8=0; R = 0
120 PRINT "DIGITAL CLOCK;"; PRINT

130 PRINt " ENTER HOUR, MINUTE"
140 INPUT " 8EPARATED BY A COJtlA"; H,M
150 '

160 ' FACE OF CLOCK

170 8CREEN 1

180 LINE (120,88)-(216,112) ,,B
190 G08UB 440 ' DI8PLAY TIME

Calendars and Clocks 105

200 '

210 ' TIMING LOOP

220 TIMER ON

230 0NTIMER<1) OOSUB 330

240 X* = INKEY»

250 IF X« <> »" THEN 280

2^0 GOTO 230

270 '

280 ' STOP THE CLOCK

290 TIMER OFF

300 SCREEN 0: CL8:.END
310 /

320 '

330 ' ADVANCE TIME ONE SECOND

340 S = S + 1

350 IF S < 60 THEN 410

360 S = 0: M = M + 1

370 IF M < 60 THEN 410

380 M = 0: H = H + 1
003 p s H

390 IF H < 13 THEN 410

400 H = 1: R = H

410 OOSUB 440

420 RETURN

430 ^

440 ' DISPLAY THE TIME

450 T* = "•'

460 IF H < 10 THEN T* = " "

470 H« = STR$(H): L = LEN<H»>

480 H* = RIOHT$<H*, L-1)
490 T$ = T« + H* + »:"

500 m = STR$<M); L = LEN<M$)

510 M« = RIOHT$(M$, L-1)
520 IF M < 10 THEN T« = T$ + "0''

530 Si - STR$(S)s L = LEN<S$>

540 Si = RIOHT*<S$, L-1)
550 T* = T« + M$ +

560 IF S < 10 THEN T* = T$ + '0"

570 T* = T« + S«

(continued)

10B PORTER'S PRDGRAMS FOR THE IBM® PC/r

580 LOCATE 13,18
590 PRINT T«

595 IF R O 0 THEN 60SUB 620

600 RETURN

610 '

620 ' CHIME THE HOUR

630 BEEP

640 R = R - 1

650 RETURN

RUN

Tick-Tock

Like the preceding chiming clock, this program Is a. variation on
the digital clock program. Instead of ringing the hour, however. It
ticks each second. The only changes from the digital clock are the
title In line 100 and a new line 595.

nbT ~~ ~
100 / TICKING DIGITAL CLOCK (TCLOCK)

110 CLS: KEY OFF: PRINT: 8=0

120 PRINT "DIGITAL CLOCK:": PRINT

130 PRINT " ENTER HOUR, MINUTE"
140 INPUT " SEPARATED BY A COMMA"; H,M
150 '

160 ' FACE OF CLOCK

170 SCREEN 1

180 LINE <120,88)-<216,112),,B
190 GOSUB 440 ' DISPLAY TIME
200 '

210 ' TIMING LOOP

220 TIMER ON

230 ON TIMERC1) GOSUB 330

240 X$ = INKEY*

250 IF X$ <> "" THEN 280

260 GOTO 230

270 '

Calendars and Clocks 107

280 ' STOP THE CLOCK

290 TIMER OFF

300 SCREEN 0: CIS: END
310 '

320 '

330 ' ADOANCE TIME ONE SECOND

340 S = S + 1

350 IF S < 60 THEN 410

360 S « 0: M » M^ 1

370 IF M < 60 THEN 410

380 M = 0! H = H + 1

390 IF H < 13 THEN 410

400 H = 1

410 OOSUB 440

420 RETURN

430 '

440 ' DISPLAY THE TIME

450 T* «
n B

460 IF H < 10 THEN T$ = " "

470 H$ = STR$<H)! L = LEN<H*)

480 H* = RIGHT$<H$, L-1)
490 T« = T* + H* + "s"

500 m = STR$<M): L = LEN(M$)

510 m = RIGHT$<M*, L-l)
520 IF M < 10 THEN T* = T$ + "0

530 S« = STR*(S): L = LEN<S$)

540 S« = RIGHT$<S$, L-l)
550 T$ = T* + M0 +

560 IF S < 10 THEN T* = T* + "0

570 T* = T* + S$

580 LOCATE 13,18
590 PRINT T$

595 SOUND 37,1
600 RETURN

RUN

108 PORTER'S PROGRAMS FOR THE IBM® PC/r

Countdown Alarm

Ovens, spacecraft launchers, and other things use a countdown
alarm to trigger some action at the end of an exact period of time.
In this case, the countdown clock sounds a beep-beep tone a^t the
end of the period you specify, which can be any number of hours,
minutes, and seconds. Enter the values, separated by commas.
The display wlU give you an exact readout of the remaining time.
When the alann sounds, you can stop It by pressing any key.

If you're as absentmlnded as 1 ahi, this program Is a good thing
to keep handy. You can customize It to give you a reminder
message by replacing "TIME'S UP!" In line 390. For example. If
Jane says, "Call me back In 20 minutes," you can change the line
to

390 PRINT "CALL JANE"

When the alarm sounds, that's the message that will appear.

NEW

100 ' COUNTDOliM ALARM <COUNTDN>

110 CLS: KEY OFF: PRINT

120 PRINT "COUNTDOWN ALARM:"; PRINT

130 PRINT "HOURS, MINUTES, SECONDS"5
140 INPUT HH, MM, SS
150 U - "0# HOURS, 00 MIN, 00 SEC"
160 CLS: LOCATE 9, 13
170 PRINT "REMAINING TIME": GOSUB 310

180 '

190 ' COUNTDOWN LOOP

200 TIMER ON

210 ON TlMER(l) GOSUB 240

220 GOTO 210

230 '

240 ' REDUCE TIME ONE SECOND

250 SS = SS - 1

260 IF SS > -1 THEN 310

270 SS = 59: MM = MM - 1

280 IF MM > -1 THEN 310

290 MM = 59: HH = HH - 1

Calendars and Clocks'] 09

300 '

310 ' DISPLAY TIME

320 LOCATE 12, 8
330 PRINT USING I*; HH, m, SS
340 IF HH=0 AND MM=0 AND SS=0 THEN 370
350 RETURN

360 '

370 ' TIME'S UP

380 LOCATE 15, 15
390 PRINT "TIME'S UP!"
400 BEEP

410 FOR T = 1 TO 600: NEXT T
420 X$ = INKEY$

430 IF X« = THEN 400
440 '

450 ' SHUT D(M>I ON KEYPRESS
460 CLS: END

RUN

SECTION 6

COMPUTER GRAPHICS
FOR THE FUN OF IT

The IBM PCjr is a splendid machine for producing computer
graphics. Its BASIC possesses a powerful set of graphics instruc
tions that, although somewhat esoteric to those accustomed to
standard Microsoft BASIC, nevertheless makes it relatively simple
to create striking artworks, illusions of motion, bursts of color,
shimmering kaleidoscopes, and other treats for the eye.

Graphics also has a serious side, of course, and that's why we've
divided the subject into two sections. This section deals with
graphic arts and lighthearted topics, and Section 7 presents its
more businesslike face.

Virtually all of these programs buUd a display and "freeze" it so
that you can admire the screen as long as you hke. To stop the
program and restore the machine to its normal state, tap the
SPACE bar (actually, ̂ y key will do). The programs that produce
moving displays work on the same principle and will stop anytime
you press a key. Exceptions to this general rule will be noted in the
text that precedes the affected program. ,
Most of the graphics programs are quite short, which testifies to

the extraordinary amount of work done by the graphics instructions.
One word of caution: Some graphics statements have several com
mas in a row, and it's important to include the correct number
of commas or else the programs won't work. Otherwise they're
easy to enter and fun to run, Have a good time. I did vmting
them!

110

Computer Graphics for the Fun of It 111

Easter Egg
This program draws a brilliantly striped Easter egg against an
off-white background. Besides looking pretty, it's a good tool for
adjusting your monitor, since it displays most of Junior's 16
colors.

few ~ ~
100 ' EASTER E66 (EGG)
110 KEY OFF! SCREEN 3: CLS
120 WIND(M«1 (-80,50)-(80,-50)
130CIRCLE (0,0),58,,,,2.5
140 '

150 ' BOUNDARY LINES

140 FOR Y = -30 TO 30 STEP 4
170 LINE (-30,Y)-(30,Y)
180 NEXT Y

190 '

200 ' PAINT THE BACKGROUND
210 PAINT (40,0),15,15
220 '

230 ' paint the egg
240 C = 0

250 FOR Y = 28 TO -28 STEP -4
240 PAINT (0,Y),C,15
270 C = C + 1

280 NEXT Y
290 '

300 ' FREEZE UNTIL KEYPRESS
310 IF INKEY* = »" THEN 140
320 SCREEN 0: CLS: END

RUN

Bunting
Patriotism shines through this elegantly simple but colorful display.
It's a red, white, and blue bunting studded with stars- and sur
rounded by a circle of stars against a black background.

112 PORTER'S PROGRAMS FOR THE IBM® PCyr

NEW
100 ' BUNTING

110 SCREEN 3: CLS: KEY OFF

120 WINDOW (-80,100)-(80,-100)
130 LINE (-40,30)-(40,i0),12,BF
140 LINE (-40,10)-(40,-10),15,BF
150 LINE (-40,-10)-(40,-30),9,BF
U0 '

170 ' CIRCLE OF STARS

180 RADIUS = 50

190 FOR ANGLE = 90 TO 450 STEP 12

200 R = ANGLE ̂ (3.141593 / 180)

210 X = COS(R) * RADIUS

220 Y = SIN(R) X RADIUS 5/3

230 PSET (X,Y)
240 NEXT ANGLE

250 '

2^0 ' STARS IN BUNTING

270 FOR X = -30 TO 30 STEP 10

280 FOR Y = 20 TO -20 STEP -40

290 PSET (X, Y)
300 NEXT Y

310 NEXT X

320 '

330 ' FREEZE DISPLAY UNTIL KEYPRESS

340 IF INKEY* = »" THEN 340

350 SCREEN 0: CLS: END

RUN

Target
The display looks at first glance like an ordinary target fix)in a
shooting gallery, but if you stare at the bull's-eye for a while you
can find all sorts of other things in it (including a hypnotic trance
if you're not careful). The program draws a series of concentric
circles, fills them alternately with red and black, and then turns off
the white outlines of the circles.

Computer Graphics for the Fun of It 113

NEW

lee ' TARGET

110 SCREEN 1: CLS: KEY OFF

120 WINDOW SCREEN <-160,110)-<159,-110)
130 COLOR 7,0
140 PALETTE 3,15: PALETTE 1,0
150 PALETTE 2,12
140 '

170 ' MAKE THE TARGET

180 FOR RADIUS » 18 TO 110 STEP lO

190 CIRCLE (0,0),RADIUS
200 NEXT RADIUS

210 '

220 ' PAINT THE BLACK RINGS

230 FOR X = 3 TO 103 STEP '20

240 PAINT <X,0),1,3
250 NEXT X

240 '

270 ' PAINT ALTERNATING RINGS RED

280 FOR X = 13 TO 93 STEP 20

290 PAINT <X,0),2,3
300 NEXT X

310 '

320 ' ERASE THE OUTLINES

330 PALETTE 3,0
340 ' ,

350 ' FREEZE UNTIL KEYPRESS

340 X$ = INKEY$

370 IF X0 = "» THEN 340

380 SCREEN 0: CLS: END

RUN

Chambered Nautilus
At first you'll wonder what on Earth this program is doing, as It
appears to squlggle a blob of light around in the center of a black
screen. Soon, however, you'll watch the speeded-up growth of a
chambered nautilus, one of nature's most beautiful designs, until
it fills most of your display screen.

114 PORTER'S PROGRAMS FOR THE IBM® PCjr

NEW

lee ' C»WBERED NAUTILUS <h^UTILUS)

110 SCREEN 1:CL8

120 WINDOW SCREEN <-140,110)-<159,-110)
130 RADIUS = 2: ANGLE =0: LX = 0s LY=0
140 '

150 ' SPIRAL OUT

140 RAD » |!^6LE X <3.14159 / 180)

170 X » COS<RAD) X RADIUS

180 IF ABS<X) > 159 THEN 290

190 Y s SIN<RAD) ̂ RADIUS

200 IF ABS<Y) > 110 THEN 290

210 LINE <X,Y)-<X/2, Y/2)
220 LINE <X,Y)-<U,LY)
230 LX = Xs LY = Y

240 RADIUS ° RADIUS X 1.032

250 ANGLE « ANGLE + 14

240 IF ANGLE > 340 THEN ANGLEsANGLE-340

270 GOTO 150

280 /
290 ' FREEZE UNTIL KEYPRESS

300 X* = INKEY0

310 IF X* = "" THEN 300

320 SCREEN 0: CLS: END
RUN

Spiral
Despite the almost ridiculous brevity of this program, it runs for
a long time. About 6 minutes are needed for it to complete the
spiral outward from the center of the screen. It's mesmerizing to
watch it and even more so to stare at the focus of the finished

spiral.

nEw
100 'SPIRAL

110 SCREEN 1: CLS
120 WINDOW <-140,-110)-<159,109)
130 RADIUS = 1: INCR = i03

Computer Graphics for the Fun of It 115

140 ANGLE =0

150 '

140 ' LOOP TO DRAW SPIRAL

170 RAD = ANGLE * <3.141593 / 180)
180 X = INT(COS<RAD) * RADIUS)
190 Y = INT<SIN<RAD) X RADIUS)
200 IF ABS<X) > 159 THEN 270
210 IF ABS<Y) > 109 THEN 270
220 PSET <X, Y)
230 ANGLE = ANGLE + 1

240 RADIUS » RADIUS * INCR
250 GOTO 140

240 '

270 ' FREEZE DISPLAY
280 IF INKEY* = THEN 280
290 SCREEN 0: CLS

300 END

RUN

Polygon
Use this program to dazzle your friends with the speed of a
computer. It asks you how many sides you want the polygon to
have. Type any positive number greater than two. The computer
pauses for a second or so while it "solves" the polygon, and
then it draws it in the twinkle of a cursor. Each angle of the
polygon is joined to the center by a line; there is also a perimeter
that defines the actual shape. TTie computer labels the drawing
to tell you how many sides the figure has. Tap a key to make it
go away.

NEW

100 ' P0LYG(»1

110 CLSs KEY OFF
120 PRINT! PRINT "POLYGON:"! PRINT
130 INPUT "HOW MANY SIDES"; SIDES
140 '

(continued)

116 PORTER'S PROGRAMS FOR THE IBM® PC/r

150 ' BUILD ARRAY OF CORNER COORDS

1^0 DIM C (SIDES, 2)
170 ANGLE = 270: RADIUS » 80

180 INCR s 3^0 / SIDES

190 FOR RAY = 1 TO SIDES

200 RAD = ANGLE X (3.141593 / 180)

210 C<RAY,1) = COS<RAD> X RADIUS
220 C(RAY,2) « SIN<RAD) * RADIUS
230 ANGLE = ANGLE + INCR

240 NEXT RAY

250 C(0,1) = C(SIDES,1)
240 C(0,2> s C(SIDES,2)
270 '

280 ' SET UR SCREEN

290 SCREEN 1: CLS

300 WINDOW SCREEN (-140,110)-<159,-110)
310 PRINT TAB<13)5
320 PRINT SIDES "SIDED FIGURE"

330 '

340 ' PLOT THE FIGURE

350 FOR S - 1 TO SIDES

340 SX = C<S,1) : SY = C(S,2)
370 DX = C<S-1,1): DY » C<S-1,2)
380 LINE (SX,SY)-(DX,DY)
390 LINE <SX,SY)-(0,0)
400 NEXT S

410/

420 ' FREEZE UNTIL SIGNAL

430 X* = INKEY*

440 IF X$ = "" THEN 430

450 SCREEN 0: CLS

440 END

RUN

Continuous Series of Polygons
This program makes a great conversation piece at a party. Just
start it and let it run, and the folks wiU gather 'round to watch it

Computer Graphics for the Fun of It 117

cycle tirelessly through all the polygons from 5 to 20 sides and
back down again.
The program embellishes on the preceding one, but there is one

difference in the figures it produces. Here, all the angles are
joined, filling the inside of each polygon with a maze of lines. They
create interesting , illusions (a ball of jewels, a space station from
Star Wars, a string sculpture with glass beads, etc.). When your
guests' interests begin to flag, ask them what they see in the
figures. And be prepared for some strange visions in the long
conversatibn that wUl surely take place.
You can stop the program by pressing any key at any time. The

actual halt comes the next time the program decides to change the
figure.

N&i
100 ' POLYGON DEMO (MANYGONS)

110 CLS; KEY OFF

120 SIDES = 5: MOST = 20: SV = 1

130 DIM C<MOST, 2)
140 '

150 ' BUILD ARRAY OF COINER COORDS

160 ANGLE » 270: RADIUS » 80

170 INCR = 360 / SIDES

180 FOR RAY = 1 TO SIDES

190 RAD - ANGLE X <3.141593 / 180)

200 C<RAY,1) » COS(RAD> X RADIUS
210 C(RAY,2) » SIN(RAD) X RADIUS
220 ANGLE = ANGLE * INCR

230 NEXT RAY

240 '

250 ' SET UP SCREEN
260 SCREEN 1: CLS

270 WINDOW SCREEN <-160,110)-C159,-110)
280 PRINT TAB<13);
290 PRINT SIDES "SIDED FIGURE"

300 /

310 ' PLOT THE FIGURE

320 FOR S = 1 TO SIDES

330 SX = C<S,1): SY = C<S,2) .
' ' (continued)

118 PORTER'S PROGRAMS FOR THE IBM'?' PCjr

340 FOR V = 8+1 TO SIDES

350 DX = C<V,1)5 DY « C(V,2)
360 LINE <SX,SY)-(DX,DY)
370 NEXT V

380 NEXT S

398 '

400 ' CHECK FOR SIGhWL TO END

410 X« = INKEY$

420 IF X$ = "" THEN 450

430 SCREEN 0: CLS: END

440 '

450 'REPEAT FOR NEXT POLYGON

460 FOR DELAY = 1 TO 500: NEXT DELAY
470 SIDES = SIDES + SV

480 IF SIDES = MOST THEN SM = -1

490 IF SIDES = 5 THEN SP = 1
500 GOTO 150

RUN

Patchwork Quilt

This program produces a rectangular quilt of four-by-four multi
colored patches. Some patches have an up-and-down pattern, some
a horizontal division, and others split on the diagonal. The quilt is
brilliantly colored.
Because it relies heavily on randomness to produce both the

sequences of patch patterns and the colors, you can run this
program a million times and. never get the same quilt twice. The
basic layout will always be the same, but the combination of
patches and colors will always be different.

nEw ~
100 ' PATCHWORK DESIGN (PATCHES)

110 PX = 0: PY = 0

120 DEF FNR<X)=INT(RND(1)3(14)+ 1

130 SCREEN 3: CLS: RANDOMIZE TIMER

140 '

150 ' BUILD THE QUILT WITH VIEWPORTS

160 FOR PORT = 0 TO 15

Computet Graphics for the Fun of It 119

170 CX = PX + 39: CY = PY + 49
180 CA = FNR<0)

190 VIEW <PX,PY)-<CX,CY),FNR<0),15
200 'SLICE VIEWPORT
210 V=FNR(0): M3=V MOD 3: M2aV MOD 2
220 IF M3=0 THEN G08UB 4<S0: GOTO 250
230 IF M2=0 THEN GOSUB 370: GOTO 250
240 GOSUB 410

250 PAINT < 2,25),FNR<0), 15
240 PAINT <37,35),FNR<0>,15
270 'ADWWCE VIEWPORT LOCATION
280 PX = PX ♦ 40
290 IF PX < 159 THEN 310
300 PX = 0: PY = PY + 50

310 NEXT PORT

320 '
330 ' FREEZE UNTIL KEYPRESS

340 IF INKEY* = ""THEN 340

350 SCREEN 0: CLS: END

360 '

370 ' SLICE PORT HORIZONTALLY

380 LINE (0,25)-<39,25),15
390 RETURN

400 '

410 ' SLICE PORT VERTICALLY
420 LINE <13,0)-<13,49),15
430 LINE <27,0)-<27,49),15
440 RETURN

450 '

460 ' SLICE PORT DIAGONALLY
470 IF V > 7 THEN 500

480 LINE < 0, 0)-<39,49),15
490 GOTO 510
500 LINE < 0,49)-<39, 0) ,15
510 RETURN

RUN

120 PORTER'S PROGRAMS FOR THE IBM® PCjr

Crazy Quilt
This program is the same general idea as the last one, except
that it builds its pattern from randomly placed overlapping geomet
ric figures and then fills the spaces between lines with assorted
colors. Occasionally, it changes the same area's color several times,
and usually it leaves some areas uncolored. The result is a wild
profusion of shapes and colors that delights fans of abstract art and
pleases the eye of anyone who likes colorful and somehow orderly
disarray. The probability of this program ever repeating a pattern is
one in several hundred trillion.

rcw

108 ' CRAZY QUILT (CRAZYQLT)

110 SCREEN 3: CLS: KEY OFF

120 WINDOW <0,199)-<159,0)
130 RANDOMIZE TIMER

140 DEF FNKX) = INT<RND<1) % 288)

150 '

U0 ' QUILT PIECES

170 FOR P = 1 TO 25

180 Q=FNI<1)

190 IF <Q MOD 2) = 1 THEN 210

200 GOSUB 380: GOTO 228
210 GOSUB 430

220 NEXT P

230 '

240 ' COLOR THE QUILT

250 FOR P = 1 TO 200

240 Y = FNI<1)

270 X=FNI<1)

280 IF X > 159 THEN 278

290 C = INTCFNKl) / 14)

300 PAINT <X,Y),C,15
310 NEXT P

320 '

330 ' FREEZE UNTIL KEYPRESS

340 IF INKEY* = "" THEN 348

350 SCREEN 8: CLS: END
3^0 / ——

370 '

Computer Graphics for the Fun of It 121

389 'CIRCLE PATTERN
390 X = FNK1) ! Y = FNK 1) j R = FNK 1)
400 CIRCLE <X,Y),R
410 RETURN

420 '

430 ' RECT^GULAR PATTERN

440 XI = FNKl) : Y1 = FNK 1)

450 X2 = FNK 1) ; Y2 = FNK 1)

460 LINE (X1,Y1)-(X2,Y2),,B
470 RETURN

RUN

Perspective Puzzle
This is the kind of trompe I'oeil (joke on the eye) that made Max
Escher a famous artist. It's a whole screen fiaU of interlocking
cubes. The question is, are you closer to their upper-left-hand
comers and looking down, or are you closer to their lower-right-
hand comers and looking up? It can be either way, you see, and
there is no correct answer. It's a puzzle of perspective.
And just to further trick the eye, about every 2 seconds one of

the colors in the puzzle changes. That can have the startling effect
of turning the entire display inside out (or at least your perspective
of it).

nbS ~ "
100 ' CUBES

110,RANDOMIZE TIMER
120 SCREEN 1: COLOR 7,0; CLS: KEY OFF
130 PALETTE 3,15; PALETTE 1,0
140, WINDOW (0,0)-<319,199)
150 '

160 BX « 0; BY = 307; X=BX; Y=BY
170 GOSUB 330

180 X = X + 36 ; Y = Y - 12

190 IF X < 319 THEN 170

200 BX = BX - 24; BY = BY - 24 ,
(conttnued)

122 PORTER'S PROGRAMS FOR THE IBM® PG/r

210 X - BX: Y = BY

220 IF Y > 0 THEN 170

230 '

240 ' CYCLE COLORS UNTIL KEYPRESS
250 IF INKEY0 = "" THEN 270
260 SCREEN 0,: CLS: END
270 FOR T = 1 TO 1000: NEXT T
280 A = INTCRNDt1) X 4)

290 C = INT<RND(0) X 16)

300 PALETTE A,C
310 GOTO 240

320 '

330 ' DRAW A CUBE AT X,Y
340 PSET <X,Y)
350 DRAW ''R24 F12 L24 H12''

360 DRAW ''BF3 BR3 PI,3 BL3 BH3"
370 DRAW °C3 D24 F12 U24»

380 DRAW "BL3 P2,3 BR3"
390 DRAW "C3 D24 R24 U24"

400 DRAW "BL4 BU2 PI,3 BD2 BR4 C3"
410 RETURN

RUN

Kaleidoscope
Here's another party program that runs forever (unless you
press a key), producing an ever-changing kaleidoscopic sunburst
of colors on the screen. It's not as challenging to the imagination
as the continuous series of polygon program, but the shimmering
patterns of colors are a joy to behold. It's recommended to counter
act the blahs of a rainy gray day.

iiw
100 ' KALEIDOSCOPE <KALEIDO>

110 SCREEN 3: CLS: KEY OFF

120 WINDOW <-80,100)-(80,-100)
130 RADIUS » 100

140 FOR ANGLE = 0 TO 360 STEP 28

150 R = ANGLE X <3.141593 / 180)

Computer Graphics for the Fun of it 123

140 X = COSCR) * iWDIUS
170 Y = SINCR) * RADIUS M 5/3
180 LINE <0,0)-(X,Y)
190 NEXT ANGLE

200 CIRCLE (0,0),45
210 '

220 ' FILL WITH COLORS
230 C » 1

240 FOR RADIUS = 30 TO 70 STEP 30
250 FOR ANGLE = 10 TO 350 STEP 20
240 R = ANGLE X <3.141593 / 180)
270 X = COS<R) a RADIUS
280 Y = SIN<R) X RADIUS X 5/3
290 PAINT <X,Y),C,15
300 C = C 4 1

310 IF C > 14 THEN C = 1

320 NEXT ANGLE

330 NEXT RADIUS

340 '

350 ' SHIMMER

340 DEF FNC<X) = INT<RND<1) X 14) 4 1
370 A = FNC< 1): C = FNC< 1)

380 PALETTE A,C
390 FOR T = 1 TO 300: NEXT T

400 IF INKEY$ = "• THEN 370
410 SCREEN 0: CLS: END

RUN

Simple Animation
This program introduces apparent motion into the display by
rotating a hoop around a vertical axis. It creates the iUusion of
animation in the same manner as a movie film, with a series of still
firames carrying progressive stages of the action. That accounts for
the visible stepping of the hoop as it spins.
The program uses two screen images within the computer

memory. While one is visible on the display, the program clears
the other and builds the image, then switches the visible firames.

124 PORTER'S PROGRAMS FOR THE IBM® PC/r

You don't see the actual swap but see instead the result as the
hoop appears to rotate a lltde farther. This continues for as long as
the program runs. Like most of the others, this one stops when
you press a key.
As you watch the hoop, see if you can figure out which way it's

turning (left to right or right to left?).

NEW

lee ' HOOP

lie CLEAR ,,,34814!
120 V = l! A = 30: R = 40

130 DIM ASPECT (A)

140 '

150 ' LOAD ARRAY FOR ELLIPSES

140 FOR P » 0 TO A

170 X = <P * <90 /A)) X .0174533

180 Y = R / <(COS<X) X R) + .01)

190 ASPECT<P) = Y

200 NEXT P

210 '

220 ' SIDE VIEW TO END VIEW

230 SCREEN 1: CLS: COLOR 1,1
240 FOR P = 0 TO A

250 GOSUB 340 :REM SPIN THE HOOP

240 GOSUB 480 :REM CHECK FOR STOP

270 NEXT P

280 '

290 ' END VIEW TO SIDE VIEW

300 FOR P = A-l TO 1 STEP -1

310 GOSUB 340 :REM SPIN AGAIN

320 GOSUB 480 :REM CHECK FOR STOP

330 NEXT P

340 GOTO 240

350 '

340 ' SUBRTN TO ADVANCE ROTATION

370 CLS

380 CIRCLE <140,100),R,2,,,ASPECT(P)
390 LINE <140,30)-<140,149),1
400 IF V a 0 THEN 440

410 V = 0

420 SCREEN 1,,1,0! COLOR 1,1

Computer Graphics for the Fun of it 125

430 GOTO 460

440 V = 1

450 SCREEN 1,,0,1: COLOR 1,1
460 RETURN

470 '

480 ' CHECK FOR KBD STOP SIGNAL
490 X* = INKEY$

500 IF X$ = "" THEN RETURN
510 SCREEN 0: CLS

520 END

RUN

Zooming In and Out
One of the neatest things about'computer art Is that you can
create a living, moving "reality" that exists only in your imagination.
Putting it another way, the objects that appear on the screen don't
necessarily have to look or behave like anything familiar. This is
true, of course, in any art form, but artists who work in static
media, such as painters and sculptors, can only suggest motion,
whereas a dynamic medium such as a display screen can actually
produce it.
This program does precisely that. The ohjet d'art is very simple.

It zooms, shrinking and growing in a manner all its own. Although
1 invented it, I don't know what it is and I don't think it matters;
perhaps after watching it awhile you'll discover that it resembles
something in your reality.

nEw
100 ' ZOOM

110 SCREEN 1: CLS

120 WINDOW <-160,110)-<160,-110)
130 COLOR 0,0: PALETTE 3,15
140 S=20: F-50: I^l: GOSUB 180
150 S=49: F=21: I=-l: GOSUB 180
160 GOTO 140

(continued)

■ 126 PORTER'S PROGRAMS FOR THE IBM® PCjr

180 ' SUBRTN TO ZOOM DISPLAY

190 FOR R = S TO F STEP I

200 LINE <-R,0)-<R,0)
210 LINE (0,-R*.9>-<0,RX.9)
220 CIRCLE (0,0) ,R
230 IF INKEY$ <> "" THEN 280

240 CIRCLE (0,0) ,R-I,0
250 NEXT R

240 RETURN

270 '

280 ' PAINT THE FIGURE

290 PAINT (-5, 5),1,3
300 PAINT (5,-5),1,3
310 PAINT (5, 5),2,3
320 PAINT (-5,-5),2,3
330 '

340 ' FREEZE UNTIL KEYPRESS

350 IF INKEY$ = "" THEN 350

340 SCREEN 0: CLS: END

RUN

SECTION 7
GETTING DOWN TD
BUSINESS WITH
GRAPHICS

The business and professional worlds are only beginning to dis
cover the potential of computer graphics. Since business applica
tions tend to be highly specialized—^in contrast to the general
kinds of programs appearing in this book—this chapter probably
won't do much to advance the cause of graphics among the more
serious-minded. On the other hand, here are three graphics utility
programs that are useful "as is" and give a glimpse of the potential
in representing data pictorially.

Equation Plotting
This is a self-scaling plot program that uses the full screen to
graph the curve of any equation whose x is variable and whose y is
the unknown.

The program asks you to supply the range of x. It then scales
the screen to fit the range of ac and the approximate range of the
resulting y. If the axes are within the plot area, it draws them. It
also furnishes dots within the plot area to show the intersections of
the reference points; that is, the first dot below and to the right of
the axis intersection is at a: = 1, j/ = -1, the first dot above and
right of the 0 point is ac + 1, y = 1, and so on, according
to the standard Cartesian convention. The plot itself appears as

127

128 PORTER'S Pf^GGRAMS FOR THE IBM® PCyr

a curve (normally) consisting of dots. Finally, the program reports
the range of y to three decimal places across the bottom of the
display.
'This program listing furnishes an equation for demonstration

purposes. Run it with sc in the range from -2 to 5 and it will
produce a double curve that sweeps up from the lower-left-hand
comer, bends down toward the lower-right-hand comer, then shoots
up off the upper-right-hand comer of the screen, with y ranging
from -19.000 to 7.049.

Naturally, you'll want to plug your own equations into this
program and not always mn the one supplied here. To do this,
enter the calculations as BASIC instmctions starting at hne 930.
You may use as many lines as you need. The program provides
a RETURN at line 999 (since the equation operates as a sub
routine), so you don't need to worry about program control or
structure. Your calculations are subject to the following rules in
this program:

1. The controlling variable must have the name X.
2. The computations must resolve to a variable named Y.
3. BASIC programming notation must be used.
4. The first (or only) hne of the calculation must be hne 930,

and subsequent lines must have numbers in the range
931-998.

These mles might force you to rearrange and/or rewrite an
equation, substituting X and Y for other variable names used in
the original expression. Suppose, for example, you have the equation

^b==2a^-5a-S

In this case, a is the controlling variable and b is the unknown.
Thus, by substitution according to the mles, it becomes

y = 2x^ -5x-3

Converted into BASIC notation the instmction reads

930 Y = (2 * X'2) - (5 * X) - 3

\vhich is exactly the hne you need to type in to incorporate it into
the program.

Geuing Dom IX) Business with Graphics 129

NEW

108 ' XY EQUATION PLOT <PLOTXY)

110 ' SELF-SCALING PLOT PROGRAM

120 CLS: KEY OFF

130 PRINT: PRINT "EQUATION PLOT"

140 PRINT; PRINT

150 INPUT "LOWEST X..."} LX
140 INPUT "HIGHEST X.."} HX
170 '

180 ' PROGRAM DRIVER

190 GOSUB 340 a' DEVELOP Y SCALE

SCALE PLOT AREA

MARK X AXIS

MARK Y AXIS

X INCR FOR PLOT

PLOT THE GRAPH

DISPLAY RANGE OF Y

200 GOSUB 440

210 GOSUB 520

220 GOSUB 580

230 GOSUB 480

240 GOSUB 740

250 GOSUB 830

240 '

270 ' FREEZE DISPLAY

280 IF INKEYf = "" THEN 288

290 SCREEN 0: END

300 ' ——

310 '

320 ' SUBROUTINES

330 '

340 ' DETERMINE APPROX Y LIMITS

350 IX = <HX - LX) / 10

340 LY = 999999!: HY = -LY

370 FOR X = LX TO HX STEP IX

380 GOSUB 920

390 IF Y < LY THEN LY = Y

400 IF Y > HY THEN HY » Y

410 NEXT X

420 RETURN

430 '

440 ' SCALE PLOT

450 SCREEN 1

440 XL = LX X 1.05; XR « HX X 1.85

(continued)

130 PORTER'S PROGRAMS FOR THE IBM® PCjr

470 YT = HY X 1.05: YB = LY * 1.1

480 WINDOW (XL,YT)-<XR,YB)
490 RETURN

500 '

510 '

520 ' DRAW X AXIS

530 IF LY > 0 THEN 560

540 IF HY < 0 THEN 560

550 LINE <LX,0>-(HX,0>
560 RETURN

570 '

580 ' DRAW Y AXIS

590 IF LX > 0 THEN 620

600 IF HX < 0 THEN 620

610 LINE <0,HY)-<0,LY)
620 FOR X = INT<LX> TO HX
630 FOR Y = LY TO HY

640 PSET (X,Y)
650 NEXT Y

660 NEXT X; RETURN

670 '

680 ' COMPUTE X STEP VALUE

690 L = PMAP<LX,0>: R = PMAP<HX,0>
700 D = R - L

710 IX = <HX T LX> / D

720 RETURN

730 '

740 ' PLOT EQUATION

750 FOR X = LX TO HX STEP IX

760 60SUB 920

770 PSET <X,Y>
780 IF Y > HY THEN HY = Y

790 IF Y < LY THEN LY = Y

800 NEXT X

810 RETURN

820 <

830 ' DISPLAY RANGE OF Y

840 LOCATE 25,1
850 II* = "RANGE OF Y; "

860 12* = ■««#.««« TO

Getting Down to Business with Graphics 131

870 I* = 11* +

880 PRINT USING I*; LY, HY;
890 LOCATE 1,1
900 RETURN

910 '

920 ' EQUATION

930 Y = X'^3 - (5 X X*2) - X + 7

999 RETURN

RUN

Bar Charts

This listing introduces the concept^ familiar to seasoned program
mers but new to others, of the library subroutine. It is a canned
routine that is not a complete program, but one -that you can
incorporate into your programs simply by building it in, without
having to figure out and vvrite the instructions yourself and with
out even having to understand how it works.
This particular library routine produces a bar chart. Your pro

gram must pass it certain information that it uses to draw a
professional-looking graph in up to four colors on the screen of the
computer. You load certain variables with the information and
then call one of its three subroutines with a GOSUB instruction.

The library routine takes care of the actual graphing. This relieves
you of the tedium of figuring out how to make the machine do
graphics functions.
The first step is to type the BARCHART subprogram shown in

the listing and save it on disk with the command

SAVE "BARCHART",A

Once this is done, you can create programs that use BARCHART
by first loading the routine with the command.

LOAD "BARCHART"

and then developing your program in lines 1-998, following the
guidelines discussed below. When you save your program, BAR-
CHART becomes a part of it as though you had written the

132 PORTER'S PROGRAMS FOR THE IBM® PCyr

instructions yourself. An example will be given in the next pro
gram listing ("Sales chart").

Guidelines: BARCHART provides three services for constructing
bar graphs;

GOSUB 1000 sets up the screen for the chart.
GOSUB 1300 draws a bar.

GOSUB 1400 freezes the display until you press a key.

The first two services require that you load certain variables with
control information before calling them, as follows.

Screen setup:
The screen setup is always the first step in building a bar graph
since it establishes the operating environment, scale, and layout of
the screen according to the data you plan to display. After loading
the variables, execute GOSUB 1000 and BARCHART will auto
matically adjust the screen as you specify.

XS = the X scale, that is, the number of horizontal reference
points across the screen, assuming that the left edge of
the screen is point 0.

YS = the Y scale, that is, the number of vertical reference
points assuming that 0 is at the bottom of the screen and
the points are numbered upward.

BG = the number of the color for the screen background.
A1 = attribute No. 1 color. ' i
A2 = attribute No. 2 color.

A3 = attribute No. 3 color.

(Attributes are numbers that refer to colors. BARCHART uses
the medium resolution graphics mode, which permits up to
three colors in addition to the background. The IBM color
coding scheme assigns specification number 6 to the color
brown, so the instruction

A1 = 6

says that "hereafter, when I refer to attribute No. 1, T mean
brown." These assignments remain in effect for as long as the
program continues to run.)

Getting Down to Business with Graphics 133

YR = the number of vertical units between horizontal reference
lines across the chart. These lines Indicate the scale of
the bars, so if the maximum bar height on the graph is
10, specify

YS = 10: YR = 1

and BARGRAPH will draw a base line and 10 reference
lines evenly spaced. This lets you see the magnitude
each bar represents. If you don't want reference lines on
the graph, assign 0 to YR.

H$ = screen heading. This is a line of text across the top of
the screen telling what the graph represents. The text
must be less than 40 characters in length.

Plotting a bar
Each time you want to draw a bar, you must set up the following
variables and then execute GOSUB 1300.

B1 = the location of the bar's left edge, measured in "XS"
units from the left side of the screen.

BW = the width of the bar in "XS'^ units.
BH = the height of the bar in "YS" units.
Note: Normally "Bl" and "BW" are greater than 0 and less
than "XS," and "BH" is a value between 0 and "YS."
BARCHART does not check to make sure these variables fall
within the view of the screen, however, and it does not report
an error if they fall outside it. The result of a range error may
be a bar partially or wholly outside the viewing window. It is
your responsibility to ensure that the screen boundaries are
respected.

BA = the attribute number of the bar. Suppose, for example,
that in the setup you specified

A1 = 6

assigning brown to attribute No. 1. If you want a brown
bar, before GOSUB 1300 specify

BA = 1

The value of "BA" must always be in the range 0-3,
where 0 is the screen background color and 1-3 refer to

134 PORTER'S PROGRAMS FOR THE IBM® PC/r

the attributes whose colors were establlshed ln the setup
phase.

, 1

Freezing the displey
Code GOSUB 1400 to hold the display until you press a key.
No setup is required. This subroutine places the display in a state
of suspended animation until a key is operated, and then it clears
the screen and returns to the program. If you want the program to
stop at this point, write

GOSUB 1400: END

since the subroutine itself does not automatically halt execution.
All of this might seem to be rather complicated, but it actually

substantially reduces the effort of writing bar chart programs. The
next listing gives a sample of programming using BARCHART.

NEW

999 '8UBRTN BARCHART

1000
/ SET UP SCREEN FOR GRAPH

1010
/ PARAMETERS:

1020 / XS X SCALE <0 - XS)

1030 / YS Y SCALE <0 - YS)

1040
/ BG BACKGROUND COLOR

1050 / A1 ATTR 01 COLOR

1060
/ A2 ATTR #2 COLOR

1070 / A3 ATTR #3 COLOR

1080
/ YR INTERVAL BTWN Y REF'S

1090
/ H* CHART HEADING

1100
/

1110 SCREEN 1: CLS: COLOR BG, 0
1120 PALETTE 1, A1
1130 PALETTE 2, A2
1140 PALETTE 3, A3
1150 LH = LEN(Ht)

1160 LH = INT((40 - LH) / 2) + 1
1170 LOCATE 1, LH: PRINT H$
1180 LX = 0 - <XS X . 1)

1190 RX = XS + <XS * .1)

1200 TY = YS + <YS X .1)

1210 BY = 0 - <YS X .1)

1220 WINDOW <LX,TY)-<RX,BY)

Getting Down to Business with Graphics 135

1230 LINE <0,YS)-<O,O)
1240 IF YR = 0 THEN 1280
1250 FOR Y = 0 TO YS STEP YR
1240 LINE <0,Y)-(XS,Y)
1270 NEXT Y

1280 RETURN

1290

1300 ' PLOT A BAR

1310 ' PARAMETERS:

1320 ' 81 BAR LEFT EDGE

1330 ' BW BAR WIDTH

1340 ' BH BAR HEIGHT

1350' BA BAR ATTRIBUTE

1340 B1 » BL + BW

1370 LINE (BL,BH)-C61,0>,BA,BF
1380 RETURN

1390 '

1400 '

1410 ' FREEZE CHART UNTIL KEYPRESS

1420 IF INKEYt = "» THEN 1420

1430 SCREEN 0: CLS

1440 RETURN

1450 ' ~

SAME "BARCHART",A

A Sample Bar Chart Program
This program illustrates how to use the BARCHART library rou
tine by creating a program that reports projected sales and actual
sales oyer four quarters for a hypothetical organization.
The first step in writing a program that will use a library routine

is to bring the routine into memory from disk, so we begin with the
command

LOAD "BARCHART"

This makes BARCHART the basis for any program we write, and
the program itself is an addition to the almady existing Unes of
BARCHART. The only thing we must be careful to do, aside from

136 PORTER'S PROGRAMS FOR THE IBM® PCyr

using BARCHART correctly, is to make sure our new program
lines don't conflict with those of BARCHART. Consequently, our
program must avoid using line numbers in the range 999—1450.
Also, because BASIC executes hne numbers in numeric sequence,
the new part of the program has to begin with line numbers less
than 999. (If 1-998 aren't enough lines, we can have a GOTO that
jumps to additional program lines above 1450, although that's
seldom necessary and woii't be done here.)
The display will show projected versus actual sales for each of

four quarters. Projected sales will be a green bar, actual sales red.
Each quarter will have a space, a green bar, another space, then a
red bar, and three bar-widths will separate it from the next quarter
to the right. Stated another way, the patterns will consist of
space—bar—space—bar—space (5 bar-widths x 4 clusters), plus an
extra space between each cluster, for a total of 23 units of width.
Consequently, "XS" = 23.
The maximum sales volume per quarter in this organization is

$100,000, so the vertical scale of the chart is "YS" = 100,000.
We'll mark the graph every $10,000, giving "YR" = 10,000.
This comprises hne 110 of the program.
The chart will have a blue background ("BG" = 1), with bars in

green ("Al" = 2) and red ("A2" = 4). Lettering in IBM BASIC
normally appears in the highest-numbered attribute, so to have
soft white text on the screen we'll assign "A3" = 7. Line 120
includes these setup instructions.

Finally, the text of the graph heading will read "SALES PROJ
VS ACTUAL," which appears in line 130 and completes the
information needed before calling the setup subroutine in line 140.
The sales volumes themselves appear in DATA statements at

lines 310 and 330 (although they could be anywhere in the
program listing). These volumes are the bar heights on a scale of
0-100,000, so the loops at 170-200 and 230-270 read them as
"BH." Line 160 establishes the bar width "BW" as one unit. For
the first loop, the bar color attribute "BA" = 1 for green, and in the
second, "BA" = 2 for red. In this way, the loops superimpose the
data bars on the graph, projections first, then actuals.
Line 280 freezes the display with a call to 1400, and when you

press a key, END stops the program with the screen cleared.
This is, of course, only one approach to structuring a program

Getting Dovvn to Business with Graphics 137

that uses thie BARCHART services. It is not necessary to use
DATA statements; we could have coded the data directly into the
program instructions (usually a poor idea, however). Also, the
rationale in having the screen fieeze and restore in a subroutine is
that you could have a program build several different screens for
presentation in the maimer of a flip-chart, where each time you
press a key the program advances to the next chart. The idea here
has been merely to show a working example of a program that
uses BARCHART.

After you've typed and run the program, save it with .

SAVE "CHARTSAM" ,A

BARCHART has now been incorporated into CHARTSAM and
saved as a part of the new program, so you won't need to reLOAD
BARCHART again to run CHARTSAM.

LOAD "BARCIWRT" ~
100 ' SALES CHART SAMPLE <CHARTSAM)
110 XS « 23: YS « 100000: YR x 10000
120 B6 = 1: A1 » 2: A2 = 4: A3 x 7
130 H» X -SALES PROJ VS ACTUAL"
140 GOSUB 1000 'SET UP SCREEN

150 ' PROJ SALES

ld0 BM » 1: BA > 1
170 FOR BL X 1 TO 19 STEP 6

180 READ BH

190 GOSUB 1300 'PLOT BAR
200 NEXT BL

210 '

220 ' ACTUAL SALES

230 BA » 2
240 FOR BL X 3 TO 22 STEP 6
250 READ BH

266 GOSUB 1300 'PLOT BAR
270 NEXT BL

280 GOSUB 1400: END
290 '

300 ' PROJ SALES DATA ^ x
(continued)

138 PORTER'S PROGRAMS FOR THE IBM® PCjr

316 DATA ̂ 660 , 45606, ̂ 9666 , 88666
326 ' ACTUAL SALES DATA
336 DATA 49666, 57666, 71666, 94666
RUN

Pie Charts

Another popular graphing model is the pie chart, in which portions
of a whole are represented as slices of a pie. The size of each slice
depends on its percentage of the whole. For example, if you sur
veyed a large group of people to determine the months in which
they were bom, a pie chart representing the results would have 12
slices of approximately equal size, since about the same number of
babies are born each month of the year. A pie chart, then, is a
means of reducing statistical percentages to a visual image," which
is easier to understand than a complex table of numbers.

Like the BARCHART routine, PIECHART given here is a library
aid that is not a complete program, but a caimed routine that you
can draw upon as a basis for programs that produce pie charts. It
contains three services:

1. GOSUB 1000 sets up the screen for a pie chart.
2. GOSUB 1200 cuts a slice in the pie.
3. GOSUB 1400 freezes the display until a keypress and then

restores it to normal operation.

The setup steps for PIECHART are simpler than those for
BARCHART, since a pie chart merely depicts portions of a whole
and thus requires less flexibility.
The only variable you need to load to set up the screen is "H$,"

which must contain the heading text for the display. Because
PIECHART uses low-resolution graphics, which supports 20 char
acters per line of text, the heading must have fewer than that
number of characters. Once you have loaded "H$," GOSUB 1000
and a white circle appears on the screen with the heading above it.
The program can now begin charting percentages.
To cut a slice, load the variable "PCT" with the percentage to be

represented (30% is specified as PCT = 30, not 0.3). Having

Getting Dovvn to Business vvith Graphics liSQ

assigned the percentage to PCT, GOSUB 1200 and the subrou
tine will slice a piece of the appropriate size from the pie and paint
it with a color. Each slice has a different color up to 14, and then
the colors begin to repeat. It is up to you to make sure that the
total of the percentages passed to PIECHART is less than 100,
since the routine does not check for reasonableness of the data,
Each time you GOSUB 1200, the new slice begins where the last
one left off.

Your program must not use variables named "TP" and "SO,"
which are reserved for management of the pie by the subroutine.
If you accidentally alter these variables, the pie chart will come out
wrong and the program might crash.
The library routine follows, and the next program shows an

example of using it.

NB4 ~
1000 'SUBRTN PIECHART

1010 ' SET UP SCREEN FOR PIE CHART

1020 ' Pi^RM: H« SCREEN HEADER
1030 SCREEN 3:CLS:KEY OFF:RADIUS - 70

1040 WINDOW <-80,110)-<80,-90)
1050 CIRCLE <0,0),RADIUS
10^0 PAINT <0,0),7,15
1070 LINE <<RADIUS X 3/5),0) - <0,0)
1080 LH » LEN<H$)

1090 LH = INT<<21 - LH) / 2) + 1

1100 LOCATE 1,LH: PRINT H$
1110 RETURN

1120 '

1200 / CUT A SLICE FROM THE PIE

1210 ' PARM: PCT OF PIE TO SLICE

1220 ' RESERVED VARIABLES:

1230 ' TP TOTAL '/. USED

1240 ' SC NEXT SLICE COLOR

1250 LTP « TP: TP = TP + PCT/100

12^0 DEF FNR<X)«<360 X X)I$<3.141593/180)

1270 DEF FNX<X)=COS<R) * X X 3/5

1280 DEF FNY<X)=SIN<R) XX

1290 ' SLICE LINE ^ js
(continued)

140 PORTER'S PROGRAMS FOR THE (BM® PC/r

1300 R»FNR<TP): X«FNX<RADIUS); Y=FNY(^DIUS)
1310 LINE <X,Y)-(0,0)
1320 ' PAINT THE SLICE

1330 XP«<TP+LTP)/2: PX=RADIUS - 7

1340 R=FNR(XP):X»FNX<PX)5Y=FNY<PX)

1350 SO = SO +1

1360 IF SC > 14 THEN SO = 1

1370 IF SC « 7 THEN SC = 8

1380 PAINT <X,Y),SC,15
1390 RETURN

1400 '

1410 ' FREEZE UNTIL KEYPRESS

1420 IF INKEY* = THEN 1420

1430 SCREEN 0: CLS

1440 RETURN

SAVE "PIEdHART»,A

A Sample Pie Chart Program
This program will demonstrate a working example of program
ming with the PIECHART library routine.

Let's suppose that we've acquired information about the racial
makeup of a' town and we want to show it with a pie chart. The
raw numbers are unimportant because we've already converted
them to percentages, with the following results:

European 71.9%

Black 16.1%

Jewish 5.3%

Hispanic 3.8%

Oriental 2.2%

Other 0.7%

The first thing we have to do is bring the PIECHART routine
into memory with the command

LOAD "PIECHART"

It now becomes the basis for our program, which builds upon it
just as we built upon BARCHART earlier.

Getting Down to Business with Graphics ^ 4^

Now we can begin the program by assigning the title to "H$" in
line 110 and calling the screen setup subroutine in line 120.
The population data will be included in a DATA statement (line

250). The list of items will end with 0, a value that we would
never put on a pie chart. Consequently, the loop in lines 150-180
re^s each item and, if it's not 0, calb the "shcing" subroutine at
line 1200. When it does read a 0, it jumps out of the loop to line
210, freezes the display until someone presses a key, and then the
program ends.
This is a very simple program, which serves to emphasize how

easy it is to create pie charts using the library routine. ^
Save the program using the command

SAVE "PIESAM" ,A

Anytime you run this program in the future, you can type

RUN "PIESAM"

without having first to load PIECHART. This is because a copy of
PIECHART has become part of the new PIESAM program.

LOAD "PIECmRT" "
lee ' PIECHART S«iPLE (PIESAM)

110 H$ = "POPULATION"

120 60SUB 1000 ' SET UP SCREEN

130 /

140 ' POPULATION PIE CHART ^

150 READ PCT

166 IF PCT = 0 THEN 200

170 GOSUB 1200 ' SLICE OF PIE

180 GOTO 150

190 '

200 ' END OF RUN

210 GOSUB 1410 ' FREEZE DISPLAY

220 END

230 ' '
240 ' POPULATION DATA

250 DATA 71.9,14.1,5.3,3.8,2.2,.7,0
RUN

SECTIONS
COMPUTER GAMES

When UNIVAC produced the first commercial computers back in
the early 1950s, computer pioneers immediately began talking
on the radio and to newpapers about playing tic-tac-toe with
the machine. Today, perhaps one of the most widely distributed
programs for large-scale IBM mainframes is the game StarTrek,
which is iilicidy played by programmers who are supposed to
be doing productive things it their terminals (when I was a
systems programming manager, my people thought they were
fooUng me; maybe 1 thought I was fooling them, too, when I
played it at the terminal in my office). The advent of personal
computers has made computer games more , visible and created
an industry for them, but it's hardly a surprising development.
The computer is unquestionably the most captivating plaything
ever invented.

The first program in this section is not really a game, but instead
a "gambler's aid" that uses probability theory tb assess the odds
and maximum reasonable bet to place on throws of the dice. The
other three programs' are games of skill that offer challenges to
players of all ages.
Good luck.

142

Computer Games 143

Odds and Risks in Dice
To shoot dice is to play With probabilities, and all the blowing on
them and pat chants in the world won't change that. A pair of dice
can fall in any of 36 different combinations, the sum of which is
somewhere between 2 and 12. The probability of the dice adding
up to any particular sum is determined by how many possible
combinations can equal that sum, divided by 36.
So how much money should you risk on a throw of the dice?

That depends on two things: the probability of throwing the sum
that will win the pot and the amount you stand to gain.
This program calculates the odds, the probability, and the safe

bet for any pot.

NEW ^ ^
lee ' ODDS AND RISK IN DICE (ODDS)

110 CLS: KEY OFF: NC = 0

120 PRINT "LIFE'S A CRAP SHOOT":PRINT

130 INPUT "HOW MUCH IS THE POT"-, POT
140 IF POT = 0 THEN END

150 INPUT "WHAT DO YOU HWE TO THROW" jT
160 PRINT: PRINT "COMBINATIONS:"

170 FOR D1 = 1 TO 6

180 FOR D2 = 1 TO 6

190 IF D1 + D2 O T THEN 220
200 PRINT Dl, D2
210 NC = NC + 1

220 NEXT D2

230 NEXT Dl: PRINT

240 IF NC <> 0 THEN 270

250 PRINT "NONE": PRINT

260 PRINT "DON'T BET": GOTO 340

270 P = NC / 36

280 BET = INT<(P X POT) X 108) / 100

290 PRINT "ODDS ARE" NC "IN 36"

300 18 = "PROBABILITY = #.«#«####»

310 PRINT USING Itj P
320 I* = "SAFE BET LIMIT IS

330 PRINT USING I*, BET (continued)

144 PORTER'S PROGRAMS FOR THE IBM® PC/r

340 PRINT; PRINT: NC = 0

350 GOTO 130

RUN

Samplt. run:

LIFE'S A CRAP SHOOT

HOW MUCH IS THE POT? 50
DO YOU H^WE TO THROW? II

COMBINATIONS:

5 6

6 5

ODDS ARE 2 IN 34

PROBABILITY = 0.05555554

SAFE BET LIMIT IS *2.77

HOW MUCH IS THE POT? 0

Ok

Docking a Spacecraft
Space fantasies are almost synonymous with arc^e-styie com
puter games, so this is our contribution to the genre. To play it,
you need a joystick attached to the "A" port (the connector closest
to the right side of the machine in the rear).
Here is the situation: You are flying a spacecraft—the green

square in the upper-left-hand comer of the screen—^to a rendezvous
with one of our space stations. That's the circle, which appears at a.
different location each time you play die game. Your objective is to
reach the space station, signal it to open its door, and maneuver
inside to safety.
The problem is that the Bad Guys have thrown a barrier around

Computer Games 145

this region of space (the white border) and filled it with the
explosive particles that look like stars. If you touch any particle or
the barrier with your spacecraft, a terrible explosion occurs and
you lose the game. Also, the space station is extremely fragile, and
if you touch any part of it with your craft the same fate will befall
you.

Oh, and there's one other problem, too. The space station is
round and you have no way of knowing where the door is. Our
people keep it closed so that particles can't enter, and they won't
open it until your craft is nearly touching the station and you press
the red button atop your joystick. If you're too far away, they'll
ignore your signal, so you have to maneuver alongside, open Ae
door, and the maneuver around the particles to get inside to safety.
If you succeed, your reward is ... Well, try it and find out for
yourself.
Rules of play. You may move the spacecraft in any direction in

order to maneuver and avoid obstacles. If the craft touches any
object, including the border and the space station, you lose. The
game is won by moving the spacecraft inside the space station
without it touching anything. When the game ends, you can signal
to play another by pressing the red button on top of the joystick
housing or by typing Y in response to the question on the screen.
If you don't want to play again, type N.
You can increase or decrease the difficulty of the game by

changing the value of "NP" in line 150. This governs the number
of randomly placed particles that obstruct your progress. The higher
the number, the harder the game; 300 is a moderate level of
difficulty, 200 is easy, and 600 is almost impossible.
Good luck. Astronaut.

NBi " ~
lee ' DOCKING A SPACECRAFT (DOCKING)

118 ' USES JOYSTICK A

120 STRIG<0) ON: KEY OFF

138 ON STRIG(8> GOSUB 1478

140 TRUE = -1: WON = NOT TRUE

158 RANDOMIZE TIMER: NP « 388

148 DEF FNR<X)=INT<(RND<1))(X) + 1)

178 '
(continued)

14B PORTER'S PROGRAMS FOR THE IBM® PCyr

180 'SET UP FOR RUN
190 JX = STIGK<0) 'JOYSTICK NEUTRAL
200 JY = STICK(1) ' POSITION
210 eOSUB 340 'OBSTACLE COURSE
220 60SUB 410 'BUILD PLAYER
230 '

240 ' GAME LOOP

250 QOSUB 480 'STICK DIRECTION
240 IF DX=0 AND DY=0 THEN 250
270 GOSUB 740 'NEW POSITION
280 GOSUB 880 'COLLISICH^ CHECK
290 GOSUB 1280 'MOUE THE PLAYER
300 GOSUB 1340 'W(M THE GAME?
310 GOTO 240 'IF NOT, REPEAT

330 '

340 ' SUBROUTINES

350 '

340 ' BUILD THE OBSTACLE COURSE
370 SCREEN 1,0s CLS: PALETTE 3,7
380 WINDOW SCREEN <-10,-10)-C329,209)
390 LINE <0,0)-<319,199),,B
400 FOR P = 0 TO NP

410 X = FNR<320)s Y = FNR<200)
420 PSET <X,Y)
430 NEXT P

440 '

450 ' SPACE STATION
440 AX = FNR<300)

470 IF AX < 30 THEN 440
480 AY B FNR<170)

490 IF AY < 30 THEN 480

500 FOR R = 1 TO 9

510 CIRCLE <AX,AY),R,0
520 NEXT R
530 CIRCLE <AX,AY),10,3
540 D1 = <RND<1) M 2) * 3.14159
550 IF D1 <0 THEN 540
540 D2 ,B D1 + 1.2

570 IF'D2 > 4.2831 THEN 540

Computer Games 147

580 RETURN
590 /

400 '

410 ' BUILD "THE PLAYER"

420 CX » 5: LX = CX + 4

430 CY = 5; LY = CY + 4

440 LINE <CX,CY)-<LX,LY>,1,BF
450 return
<560 '

470 '

480 ' GET JOYSTICK DIRECTION

490 X » STICK<0) - JXs DX = 0

700 Y = 8TICK<1) - JY: DY » 0
710 IF ABS(X>>10 THEN DX = SGN<X)

720 IF ABS<Y)>10 THEN DY = SCN<Y)
730 RETURN
740 /

750 '

740 ' POSITION AHEAD OF PLAYER

770 ' (BASED ON JOYSTICK DIRECTION)
780 IF DX » 0 THEN VX = CX: GOTO 810
790 IF DX = 1 THEN VX = CX + 7

800 IF DX » -1 THEN VX = CX - 1

810 VY = CY + DY: HX = CX + DX
820 IF DY = 0 THEN HY = CY: GOTO 850
830 IF DY = 1 THEN HY = CY + 7

840 IF DY = -1 THEN HY = CY - 1

850 RETURN

840 '

870 '

880 ' CHECK FOR COLLISION

890 IF DX » 0 THEN 930

900 FOR Y = VY TO VY+4
910 IF P0INT(VX,Y)=3 THEN 990
920 NEXT Y

930 IF DY =0 THEN 970
940 FOR X = HX TO HX+4

950 IF P0INT<X,HY)=3 THEN 990
940 NEXT X

(continued)

148 PORTER'S PROGRAMS FOR THE IBM® PC/r

970 RETURN 'NO COLLISION

980 '

990 ' THE GAME IS LOST

1000 SOUND ON: BEEP OFF

1010 FOR C » 1 TO 10

1020 COLOR 4

1030 NOISE 4,15,10
1040 FOR T = 1 TO 50: NEXT T

1050 NOISE 4,15,10
1040 COLOR 15

1070 FOR T » 1 TO 50: NEXT T

1080 NEXT C

1090 SOUND OFF: BEEP ON

1100 '

1110 ' RESTORE SCREEN

1120 ON STRI6<0> 60SUB 1540

1130 SCREEN 0: CLS: PRINT: PRINT: PRINT

1140 IF NOT WON THEN 1140

1150 PRINT "YOU WON!": GOTO 1170

1140 PRINT "SORRY, YOU LOST"
1170 PRINT; PRINT

1180 PRINT "WANT TO PLAY AGAIN?"

1190 PRINT » IF NO, TYPE N"
1200 PRINT " IF YES, TYPE Y OR ELSE"
1210 PRINT " PRESS THE JOYSTICK BUTTON"

1220 X* = INKEY«: IF X$="" THEN 1220

1230 IF X* = "Y" THEN GOTO 100

1240 PRINT "N"

1250 END

1240 ' ̂

1270 '

1280 ' ADVANCE THE PLAYER PER JOYSTICK

1290 NX » CX + DX; NY = CY + DY

1300 LINE (CX,CY)-<CX+4,CY+4),0,BF
1310 LINE (NX,NY>-<NX+4,NY+4),1,BF
1320 CX = NX: CY « NY

1330 RETURN

1340 ' —

1350 '

1340 ' CHECK IF INSIDE SPACE STATION

Computer Games 149

1378 IF ABS(CX-AX) > 5 THEN 1398
1388 IF ABS(CY-AY) < 5 THEN 1418
1398 RETURN 'IF NOT DOCKED

1488 '

1418 ' THE 6AHE IS WON

1428 PLAY "02 T288 LB B>C E64 E62"
1438 WON = TRUE

1448 GOTO 1118

1458 ' —

1448 '

1478 ' OPEN STATION DOOR IF NEARBY
1488 IF ABS<CX-AX) > 35 THEN 1518

1498 IF ABS<CY-AY) > 35 THEN 1518
1588 CIRCLE <AX,AY),18,8,01,D2
1518 RETURN

1528 '

1538 '

1548 ' BUTTON PRESSED TO REPEAT GAME
1558 X* = "Y"

1548 RETURN 188
1570 ^ — —

RUN

Math DriW

This program is as much an educational tool as a game. It tests
the player's ability to do the basic arithmetic operations: addition,
subtraction, multiplication, and division. The'numbers are all inte
gers taken at random in the range from -99 to +99. In division,
Ae result is cairied to three decimal places (both the computer's
answer and the player's, so if the player enters more than three
decimals, the program rounds the answer).

Play this game as follows:

1. Start the program by typing RUN.
2. The computer displays the instructions.

150 PORTER'S PROGRAMS FOR THE IBM® PC/r

3. Press the ENTER key (or any other except S) to be^ the
game.

4. The computer poses a problem and asks you to type the
answer. It then tells you if you were right or. If you gave the
wrong answer, what yoii should have typed.

5. Press ENTER for the next problem, or S to stop.

The computer maintains the score at the top of the screen. It is
updated each time you begin a new problem to reflect the current
number of right and wrong answers you have given.
When you stop the game by typing S, the computer tells the

total number of right and wrong answers, the percentage score,
and the grade (A through F). You flunk with fewer than 60%, and
the grade rises by one letter for each 10% above that (60% and
above is a D, 70% and above is a C, etc).
Notes far teachers. Feel to use this program in your classroom.

It's a great exercise and the kids will love it. The program doesn't
time out waiting for an answer, so there's no pressure and the
student can take as much time as necessary to figure out the
answer on paper. For younger children you can simplify the prob
lems by holding them to one-digit calculations of positive numbers
with the following replacement hne:

140 DEF FNR(X) = 10 - INT(RND(0))

If you have not yet covered fractional quotients in division, you can
elbninate division problems altogether with the following replace
ment line:

460 M = INT(RND(0) * 4)

You can control the number of decimal places to which the an
swers are rounded by changing the value of "NP" in line 110:
"NP = 3" means three places, "NP = 4" means four places, and so
on. Finally, to change the grading system so that it corresponds with
yours, replace the "cut points" in lines 1010-1040. For ekample,
if you give an A for 95% or better, change the 90 in hne 960 to
95.

Even those of us who aren't teachers will find this a useful
exercise for brushing up rusty arithmetic skills.

Computer Games 151

NEW

100 ' MATH DRILL <MATHDRIL)

110 NP = 3: RM = 10''NP

120 i^DOMIZE TIMER

130 DEF ̂ (X) = FIX(X X RV) / RV
140 DEF FNR(X) « 100-INT<RND(1) X 200)

150 CLS: KEY OFF

140 PRINT "MATH DRILL:": PRINT

170 Print "computer gives a problem.";
180 PRINT " YOU TYPE THE"

190 PRINT "ANSWER. IF YOU ARE RIGHT,";
200 PRINT " THE COMPUTER"

210 PRINT "TELLS YOU SO, AND IF YOU";
220 PRINT " GIVE THE WRONG"

230 PRINT "ANSWER, THE COMPUTER TELLS";
240 PRINT » YOU WHAT THE"

250 PRINT "CORRECT ANSWER IS."

240 PRINT " AFTER EACH EXERCISE, TAP";
270 PRINT " 'ENT£R' TO"

280 PRINT "CONTINUE OR";
290 PRINT " THE LETTER 'S' TO STOP."
300 PRINT "THE COMPUTER WILL THEN ";
310 PRINT "GRADE YOUR PER-"

320 PRINT "FORMANCE."

330 PRINT " DECIMALS ARE CARRIED OUT ";
340 PRINT "TO" NP "PLACES."

350 GOTO 410
3^0 /

370 '

380 ' DONTINUE/STOP QUERY

390 PRINT "S TO STOP, 'ENTER' FOR NEXT"
400 X«=INKEY«: IF X« = "" THEN 400

410 IF X$ = "S" THEN 920

420 RETURN

430 ' —

440 '

450 ' SELECT OPEIWTION

440 M = INT(RND<1) X 5)

470 IF M < 1 THEN 440 (continued)

152 PORTER'S PROGRAMS FOR THE IBM® PCyr

48e RETURN
490 /

500 '

510 ' GOMPUTATION

520 N1 = FNR<0): N2 = FNR<0)
530 ON N GOTO 540, 550, 568, 570
540 A » Nl^ N2: GOTO 588

550 A « NI - N2: GOTO 588
560 A = N1 X N2: GOTO 588

570 A « FNA<N1 / N2>

580 RETURN
590 /

600 '

610 ' XXll MAIN PROGRAM XXX

620 C ̂ 0 * I ~ 0

630 PRINT:PRINT "TAP 'ENTER' TO BEGIN"
640 GOSUB 400

650 '

660 ' MAIN LOOP

670 CLS: LOCATE 1,14
680 PRINT "MATH DRILL:"
690 PRINT " RIGHT:" C; TAB(25);
700 PRINT "WRONG:" I

710 PRINT: PRINT
720 PRINT "PROBLEM:"

730 GOSUB 450: GOSUB 518
740 PRINT TAB<5) Nl;
750 ON M GOTO 768, 778, 788, 798
760 PRINT " + "j: GOTO 808
770 PRINT " - "•,: GOTO 888
780 PRINT " X "j: GOTO 888
790 PRINT " / "}
800 print N2: PRINT: PRINT
810 INPUT "ANSWER"; Y: PRINT
820 Y » FNA(Y)

830 IF Y <> A THEN 868
840 PRINT "THAT'S RIGHT!"
850 C » C 4" 1: GOTO 880
860 PRINT "SORRY, THE ANSWER IS" A
870 I » i ♦ 1

Computer Games 153

880 PRINT: PRINT: 60SUB 380
890 GOTO 66&
^>00 /

910 '

920 ' GRADE PERFORMANCE
930 CLS: LOCATE 2,14
940 PRINT "YOUR SCORE:"

950 PRINT: PRINT: PRINT
969 PRINT " NUMBER RIGHT: " C
970 PRINT " NUMBER WRONG: " I
980 T = C ♦ I: A = FNA<C / T X 100)
990 PRINT " PERCENT RIGHT: " A
1000 6* rs «F"

1010 IF A >= 60 THEN G* = "D"
1020 IF A >= 70 THEN G$ = "C"
1030 IF A >= 80 THEN G$ = "8"

1040 IF A >» 90 THEN G« = "A"
1050 PRINT

1060 PRINT • YOUR GRADE IS " G»
1070 PRINT: PRINT: PRINT: END
RUN

Shooting Gallery
You don't need a joystick to play this game.

Here's the situation: You are in a shooting gallery, and you have
a gun with a fixed aim. Targets move across your line of fire at
differeiit distances from the gun. Your task is to judge their speed
relative to the speed of the bullet <80 that you fire at the moment
when the two intercept and you'll score a hit. Fire the gun by
pressing the SPACE bar. It's a game of timing.
You have 10 bullets in each game. The top of the screen tells

you how many hits you have scored and how many shots remain.
After the last shot, the game lets you know how you did.

154 PORTER'S PROGRAMS FOR THE IBM® PC/r

NEW

100 ' SHOOTING GALLERY (GALLERY)
110 RANDOMIZE TIMER

120 SOUND ON: BEEP ON: KEY OFF
130 SCREEN 1: CLS

140 '

150 ' SET UP GALLERY
140 WINDOW (-5,-5)-(84,205)
170 COLOR 9,1
180 PALETTE 1,4
190 LINE (40,98)-(79,102),1,BF
200 LINE (-1,0)-(79,199),3,8
210 LINE (-2,0)-(-2,199)
220 PAINT (0,200),2,3
230 '

240 ' CONTROL VALUES

250 H = 0: M = 0 :' HITS, MISSES
240 BR « 10 BULLETS REMAINING
270 GOSUB 1380 DISPLAY SCORE
280 DEF FNR(X) = INT(RND(1) M 45) + 4
290 '

300 ' XXX MAIN PROGRAM XXX

310 BX = 200: BI » 0: FIRED « 0

320 GOSUB 450 :' START TARGET

330 '

340 ' ACTION LOOP

350 IF FIRED THEN 370

340 GOSUB 980 :' CHECK IF FIRING

370 GOSUB 740 ADVM4CE TARGET
380 GOSUB 870 :' AT T«WLL YET?
390 GOSUB 1080 BULLET IMPACT?
400 GOSUB 1310 ADVANCE BULLET
410 GOTO 340

420 '

430 ' ACTION FINISHED
440 IF BR <= 0 THEN 480

450 GOSUB 1380 DISPLAY SCORE
440 GOTO 300 :' REPEAT FOR NEXT
470 '

Pomputer Games 155

480 ' END OF GAME

490 SCREEN 0: CLS
500 LOCATE 3,14: PRINT "GAME'S OVER"
510 LOCATE 6,14: PRINT "HITS » H
520 LOCATE 7,14: PRINT "MISSES " M
530 W$ » "TERRIFIC"

540 IF H < 8 THEN W$ = "GOOD"
550 IF H < 5 THEN m » "FAIR"

560 IF H < 3 THEN W» = "LOUSY"
570 LOCATE 9,11: PRINT "YOU'RE A
580 PRINT W$ " SHOT"

590 LOCATE 11,10
600 INPUT "ANOTHER GAME <Y/N)"} X$
610 IF X« = "Y" THEN 100

620 CLS: END

630 '

640 '

650 ' START A TARGET

660 XI = FNR<0): X2 = XI + 2

670 IF (XI MOD 2) = 1 THEN 710

680 TY = 191: MI = -2

690 LINE <XliTY)-<X2,TY+7),l,BF
700 GOTO 730

710 TY = 8: MI = 2

720 LINE <Xl,TY)-<X2,TY-7),1,BF
730 RETURN
740 /

750 '

760 ' ADVANCE TARGET

770 IF MI < 0 THEN 800

780 Y1 = TY-5: Y2 » TY-7: Y3 » TY-6

790 GOTO 810

800 Y1 = TY+5: Y2 = TY+7: Y3 = TY+6

810 TY = TY + MI

820 LINE (X1,TY)-<X2,Y1),1,BF
830 LINE <X1,Y2)-(X2,Y3),0,BF
840 RETURN
350 / :

860 '

(continued)

156 PORTER'S PROGRAMS FOR THE IBM® PC/r

878 ' CHECK IF TARGET HAS CROSSED
880 IF MI > 0 then 908
890 IF TY < 2 THEN 930 ELSE 918
900 IF TY > 197 THEN 938

910 RETURN !' NOT AT WALL YET

920 '

930 ' TARGET IS AT THE WALL

940 LINE <X1,TY)-(X2,Y2),0,BF
950 RETURN 438 ACTION FINISHED
9^0 /

970 '

980 ' CHECK TRIGGER, FIRE IF PUSHED
990 IF INKEYf = "" THEN 1058

1000 ' FIRE THE BULLET

1010 ex = 58: BI = -2

1020 BR = BR - 1: FIRED « -1

1030 PSET (BX,100)
1040 NOISE 6,15,1
1050 RETURN

1060 '

1070 '

1080 ' CHECK IF BULLET HAS STRUCK

1090 A = POINT<BX-1,100)
1100 IF A » 1 THEN GOSUB 1148

1110 IF A - 3 THEN,GOSUB 1220
1120 RETURN

1130 '

1140 ' HIT TARGET

1150 H » H + 1 SCORE A HIT

1160 NOISE 3,15,4
1170 GOSUB 1380

1180 PRESET (BX,100)
1190 LINE <XliTY>-<X2,Y2),0,BF
1200 RETURN 430 DISPLAY SCORE

1210 '

1220 ' HIT THE WALL

1230 M = M + 1 SCORE A MISS

1240 NOISE 3,15,4
1250 GOSUB 1380

1260 PRESET <BX,100)

Computer Games 157

1270 BX « 200: BI,» 0
1280 RETURN ;' RESLWE
1290 ' — —-

1300 '

1310 ' APVANCE THE BULLET
1320 BX » BX + BI

1330 PSET (BX,100)
1340 PRESET <BX-BI,100)
1350 RETURN

13^0 ' —•—

1370 '

1380 ' DISPLAY THE SCORE
1390 LOCATE 2,30
1400 PRINT "HITS " H

1410 LOCATE 3,30
1420 PRINT "MISSES " M

1430 RETURN

1440 ^ —

RUN

SECTION 9

SDUND EFFECTS AND
COMPUTER MUSIC

The IBM PCjr has a three-voice synthesizer capable of making
sounds ranging from strange effects to quite sophisticated music
in three-part harmony. What we'll give you in this section is but a
sampling of its capabilities. Yet some—the Bach invention in
particular—^are quite remarkable and demonstrate the artistic heights
to which you can i^se.
Few computers offer such wide-ranging sound capabilities (most

offer none at all), with the result that software has heretofore been
mosdy silent. Not any longer; let your imagination take off after
you try these programs and hear for yourself what you can do to
enliven your own programs.
One caution: These programs don't work at all if you fail to turn

up the volume on your monitor. Whereas that might seem a
statement of the obvious, 1 once spent a couple of hours vilifying
the computer for its refusal to make even the simplest sound, only
to discover that a mere twist of the knob was all it needed. Turn it
up to the same volume you normally use when watching TV, and
then enjoy the new magic of computer sound effects.

Emergency!
Here's a sound effect that will electrify anybody within earshot
and send them to the windows looking for flashing lights. It

158

Sound Effects and Computer Music 159

repeats full cycles until you tap any key, and then the siren winds
down to silence. Use It by itself or build it into other programs such
as games.

nb5
108 ' EMERGENCY! (EMR(»1CY)
110 SOUND ON

120 FOR T = 200 TO 588 STEP 5
130 SOUND T, .5
140 NEXT T

150 FOR T = 500 TO 1880 STEP 3
U0 SOUND T, .5
170 NEXT T

180 FOR T = 1000 TO 500 STEP -3
190 SOUND T, .5
200 NEXT T

210 IF INKEY$ = »» THEN 158
220 FOR T = 500 TO 37 STEP -3
230 SOUND T, .5
240 NEXT T

250 SOUND OFF

RUN

Sounds for Late at Night
The fact that I wrote this program at about 2 o'clock in the
morning might have a bearing on its name. Nevertheless, it'll send
shivers down your spine at any hour. Some of the sounds resemble
the weird sizzling and the "Russian woodpecker" familiar to radio
hams, aijd others seem to come from Deep Space and the macabre
imaginations of people who make sci-fi horror films. Let your own
imagination run wild.
On a more practical note, this program runs through eight

sound effects and keeps repeating them. If you tap any key, it will
stop when it has completed the set of eight.

NB<

<100 ' SOUNDS FOR LATE AT NI6HT <CREEPY)
110 FOR N » 0 TO 7 ^

(continued)

TSp PORTER'S PROPRAMS FOR THE IBM® PCjr

120 SOUND ON

130 FOR V = 0 TO 15

140 NOISE N,U,10
150 NEXT V

160 FOR T = 1 TO 100: NEXT T

170 FOR V = 15 TO 0 STEP ̂ 1
180 NOISE N,U,10
190 NEXT U

200 FOR T = 1 TO 8000: NEXT T

210 NEXT N

220 IF INKEY* = "" THEN 110

230 SOUND OFF: END

RUN

R2D2

Everybody loves R2D2, that cute little robot from the Star Wars
films. We can't understand what he says, but that doesn't matter;
his sounds are cute, maybe because they remind us of how we
used to think computers sounded before we learned that they're
actually silent.
This program relies heavily on random numbers to generate not

only the actual sounds, but the duration of R2D2's "speech." After
you start the program, R2D2 "talks" in phrases of varying lengths
until you tap a key, and then he'U finish what he's saying before he
falls silent.

N&i
100 ' R2D2

110 RANDOMIZE TIMER: SOUND ON

120 DEF FNR<X)=INT<RND(1) * X) + 1

130 '

140 ' TALK TO ME

150 N = FNR<32) : A$ = ''T200 L16 ML"
155 IF N < 5 THEN 150

160 FOR L = I TO N '

170 V = FNR<84)

180 A* « A$ + "N" + STR$<V)
190 NEXT L

Sound Effects and Computer Music 161

280 PLAY A»

210 '

220 ' PAUSE FOR BREATH

230 FOR T = 1 TO 1000: NEXT T

240 IF INKEY* = "" THEN 140

250 END
RUN

Nursery Song
One of the great strengths of the PCjr's synthesizer is the musical
"sublanguage," which enables you to transcribe music directly
from a score or from experimentation on a keyboard instrument
such as a piano. The musical notation is not d^cult to master if
you read .music (and not bad even if you don't). The secret is in the
creative use of DATA statements to contain aU the music; a simple
program with minor variations can then play anything from "Mary
Had a Little Lamb" all the way up to classics and baroque. The
next four programs demonstrate just that.

100 ̂ r«RY HAD A... (LILAMB)
110 SOUND ON

120 READ A$: PLAY A«
130 PLAY ON

140 ON PLAY(l) GOSUB 170

150 GOTO 140

160 '

170 ' MEASURE OF MUSIC

180 READ A$

190 IF A0 » "99" THEN 240

200 PLAY A0

210 RETURN
220 '

230 ' STOP THE MUSIC

240 END

250 '

260 ' THE SCORE FOLLOWS / jx
(continued)

162 PORTER'S PROGRAMS FOR THE IBM® PCyr

270 DATA "02 T150 L4 MS EDCD"

280 DATA "EEE2", "DDD2"
300 DATA "EGG2", "EDCD"
310 DATA"EEEE", "DDEDCl"
320 DATA "99"

RUN

Bugle Call
iMicionados of the sport of kings will feel their blocd pressure
rise at this bugle call. It's the signal for the start of a horse race. It
also demonstrates that the same program can be used over and
over to make music; the only differences between this and the
previous program are line 100 and the DATA statements that
contain the actual musical notation. Both of these programs use
only one of the synthesizer's three voices.

nEw " " ~ ~ ~~
100 ' SPORT OF KINGS <BUGLE)

110 SOUND ON

120 READ A«: PLAY A$

130 PLAY ON

140 ON PLAY(1) GOSUB 170

150 GOTO 140

140 '

170 ' MEASURE OF MUSIC

180 READ A»

190 IF A* = "99" THEN 240

200 PLAY A$

210 RETURN

220 '

230 ' STOP THE MUSIC

240 END

250 '

240 ' THE SCORE FOLLONS

270 DATA "02 T150 L8 MS G>"

280 DATA "CE 08 L12 GGG"

300 DATA "E8 EEE L8 CEC <G2»

310 DATA "6>CE6 L12 GGG"

Sound Effects aYtd Computer Music 163

320 DATA «L8 QEC<6 L12 GGG >C1"
330 DATA "99"

RUN

Who Says Classical Music
is Stuffy?
Enough of this elementary stuff! Let's make some real music, as
written by one of the greatest composers of all time.
A lot of people seem to have the idea that Johann Sebastian

Bach was a longhair who wrote music to put concert goers to
sleep. A lot of people are wrong, ̂ach was an enormously versatile
man who did indeed write some very serious music, but who was
also the Duke Ellington or John Lennon of his time. In fact, many
of hiis compositions are the basis for jazzy pieces by people such as
Barry Manilow, and the unadulterated Bach stands up well with
much of today's hard rock and catchy rhythms.
Take this piece as an example. It's the first section of Bach's

Two-Part Invention No. 8, originally written for the harpsichord in
the early 1700s. The term "two-part" doesn't mean two sections,
but instead that only two notes are ever played at the same time.
Listening to it, you'll probably have difficulty believing that, but it's
true. This piece uses two of the synthesizer's three voices, and so
the program differs slightly in the "play a measure" subroutine
firom the two programs that precede it.
There are a lot of DATA statements, for the simple reason that

the Invention is crammed \rith 16th notes and, by dint of u^g
two voices, it takes twice as many notes to make a piece. Still, it's
well worth the keying just to hear the result.

I

rcw ~
100 ' BACH INM 08 <BACH8) '

110 DEF FNC<X$) = INT<<40-LEN<X$))/2)+l
120 CLS; KEY OFF

130 SCREEN 1: COLOR 1

140 LINE <^4,54)-<248,112),,B
150 X« = "TWO-PART INVENTION #8" , .

(conttnued)

164 PORTER'S PROGRAMS FOR THE IBM® PCjr

140 LOCATE 9,FNC(X$>s PRINT X*
170 LOCATE 11,19: PRINT "BY"
180 X$ = "JOWWN SE^STIAN BACH"
190 LOCATE 13, FNCCXi): PRINT X*
200 '

210 PLAY ON: SOUND ON

220 60SUB 240

230 ON PLAY(2) GOSUB 240

240 GOTO 230

250 '

240 ' MEASURE OF MUSIC

270 READ T$

280 IF T$ = "99" THEN 320

290 READ B$

300 PLAY B*,T«
310 RETURN

320 ' STOP THE MUSIC

330 PLAY OFF

340 FOR T = 1" TO 1000: NEXT T
350 SCREEN 0: CLS: END
340 '

370 DATA "02 V15 T120 MS P8 L8 FAF>C<F"

380 DATA "01 V12 T120 MS L8"

390 DATA ">F L14 EDCDC<B-AB-AG"

400 DATA "P8 F A F >C <F"

410 data "L8F A>C<A> F C"
420 DATA " >F L14 ED CDC<B- AB-AG"
430 DATA "L14 A>C<B->C"

440 DATA "L8 F A"

450 DATA "<A>C<B->C <A>C<B->C"

440 DATA ">C <A >F C L14"

470 DATA "<FAGA FAGA FAGA"

480 DATA "F>C<B->C<A>C<B->C<A>C<B->C<"
490 DATA "DFEF DFEF DFEF"

500 DATA "FAGA FA(^ FAGA"
510 DATA "L8<B G >D F D"

520 DATA » DFEF DFEF DFEF"

530 DATA "L14 GAGF EFED CDC<B-"

540 DATA "L8 <B G >C<G >E C L14"

550 DATA "A8>DC C<BA G A GF"

Sounct Effects and Cornputer Music 165

540 DATA "F6 FE D E DC C<BA"
570 DATA "EF E D CS >CCB>C8< E8"
580 DATA "G8>C<B AB A G F6 FE"
590 DATA "L8 F >C <E >C <D B"
400 DATA " DE DC GF EF G8 <G8"
410 DATA ">C4'

420 DATA "»C4

430 DATA "99"

RUN

Patriot

It seems appropriate to end this section and this book with an
all-out salvo, sort of like the ending of the Fourth of July fireworks
show. So here it is: computer graphics and three-part harmony,
together with a patriotic salute to the country that fostered the
technology that made this fantastic computer available to—^and
affordable by—^you.
Hint: Load the BUNTING program from disk and start typing

this program at line 330. Except for line 100, it's all the same
down to that point.

NEM

100 ' PATRIOT

110 SCREEN 3: CLS: KEY OFF

120 MINDING (-80,100)-(80,-100)
130 LINE (-40,30)-(40,10),12,BF
140 LINE (-40,10)-(40,-10),15,BF
150 LINE (-40,-10)-(40,-30),9,BF
140 '

170 ' CIRCLE OF STARS
180 RADIUS = 50

190 FOR (WGLE = 90 TO 450 STEP 12
200 R = ANGLE X (3.141593 / 180)
210 X s COS(R) K RADIUS
220 Y = SIN(R)^ X RADIUS X 5/3

(continued)

166 PORTER'S PROGRAMS FOR THEISM® PC/r

230 PSET <X,Y>
240 NEXT ANGLE

250 '

2^0 ' STARS IN BUNTING

270 FOR X = -30 TO 30 STEP 10

280 FOR Y = 20 TO -20 STEP -40
290 PSET (X, Y)
300 NEXT Y

310 NEXT X

320 '

330 ' MY COUNTRY 'TIS OF THEE
340 SOUND ON: PLAY ON

350 READ S», A$, B$
3<S0 PLAY B$,A$,S«
370 ON PLAY(2) GOSUB 400

380 GOTO 370

390 '

400 ' MUSIC IN 3 PARTS

410 READ S»

420 IF Sf = "99" THEN 470

430 READ A», B$
440 PLAY Bt, A*, S*
450 RETURN

460 '

470 ' END OF RUN

480 FOR T = 1 TO 2000: NEXT T

490 SCREEN 0: CLS: END
see —

510 '

520 ' MUSICAL SCORE

530 DATA "02 ML T90 V15 L4 F F G"
540 DATA "01 m T90 V12 L4 OD D"
550 DATA "01 m T90 VI2 L4 F D<B-'
540 '

570 DATA " E. F8 G A A B-"

580 DATA " C. D8 E F F G"

590 DATA ">C. C8 C F D <B-"

400 ̂

610 DATA " A. G8 F G F E F4.G8A8B-8"
620 DATA " F. E8 F D C C C2."

630 DATA ">C. C8 D <B->C C F2."

Sound Effects end Computer Music 167

<S40 '

^50 DATA ">C C C C.<B-a^"
^<50 DATA " A A A A. 68 F"
^670 DATA " F A >C <F. F8 F"
680 '

690 DATA "8- 8- 8- 8-.A8 6"
B700 MTA " 6 6 6 6. F8 E

710 DATA " C E 6 C. C8 C"
720 '

730 DATA " A L8 8-A 6 F LA'
740 DATA " F L8 D C<8-A>L4"
750 DATA " F F F"
760 '

770 DATA " A. 8-8 >C D8 <8-8A 6 F2.
780 DATA " F. F8 F F8 68 F E<HL A2.''
790 DATA " F, 68 A 8-8>D8 e<C ML F2."
800 DATA "99"

RUN

n

0
Explore the World of Computers with SIGNET

(0451)
□ THE TIMEX PERSONAL COMPUTER MADE SIMPLE: A Ouide to the Tlmex/

Sinclair tOOO by Joe Campbell, Jonathan D. Siminoff, and Joan Yatos.
You don't need a degree or have an understanding of computer language
to follow plain and simple English in the guide that lets you quickly,
easily, and completely master the Timex/Sinclair 1000—^the amazingly
Inexpensive, immeasurably valuable personal computer that can enhance
every area of your life. (121384—$3.50)*

□ 51 GAME PROGRAMS FOR THE TIMEX/SIHCLAIR 1000 and 1500 by Tim
Harthell. Why spend money on expensive software? Here are easy-to-
program, exciting to play games designed especially for your Tlmex/
Sinclair 1000 and 1500. Whether you like thought games or action games,
roaming the far reaches of space or the ocean depths, drawing pictures
or solving puzzles, you'll find something to challenge your game playing
skills. (125983-^2.50)*

□ THE HEW AMERICAH COMPUTER DICTIOHARY by Kent Porter. If the
words "Does not compute!" flash through your mind as you try to wade
through the terminology in even a "simple" programming manual, or
you're having trouble understanding this odd language your friends,
family, and co-workers are suddenly speaking, then you definitely need
this, your total guide to "computerese". Includes more than 2000 terms
defined in easy-to-understand words, plus a wealth of illustrations.

(125789—$3.50)*

*Prices slightly higher in Canada

Buy them at your local bookstore or use this convenient coupon for ordering.
NEW AMERICAN LIBRARY
P.O. Box 999, Bergenfleld, New Jersey 07621

Please send me the books I have checked above. I am enclosing
add $1.00 to this order to cover postage and handling). Send check

or money order—no cash or C.O.D.'s. Prices and nurnbers are subject to change
without notice.

Address^

City State ^ Zip Code
Allow 4-6 weeks for delivery.

This offer is subject to withdrawal without notice.

SOME OF THE THINGS YOU CAN DO
WITH KENT PORTER'S PROGRAMS—

AND YOUR IBM -PC/r

FIGURE OUT THE REAL INTEREST YOU ARE PAYING
WHEN YOU BUY ON THE INSTALLMENT PLAN OR TAKE OUT A LOAN

CREATE YOUR OWN SAVINGS PLAN TO REACH THE AMOUNT
YOU SEEK BY A CERTAIN DATE

CALCULATE THE ODDS IN GAMES OF CHANCE
ALPHABETIZE LONG LISTS

PLAY YOUR OWN VIDEO GAMES

TURN YOUR COMPUTER INTO A DIGITAL TIMEPIECE AND CALENDAR

USE THECOLOR CAPACITY OF THEISM PCjr
EMPLOY NUMEROUS SUBROUTINES

TO IMPROVE THE QUALITY OF YOUR PROGRAMS

AND MUCH MORE!

WITH THE WIDE RANGE OF PROGRAMS INCLUDED IN THIS BOOK,
YOU WILL NOT NEED TO BUY EXPENSIVE SOFTWARE!

IBMPCirll
nis|ri

8 2088

71162 00695

ISBN D-MSl-flEDflfi-b

	2020_08_08_12_18_40.pdf
	2020_08_08_12_22_29.pdf

